
Universitext

Wei Liu
Michael Röckner

Stochastic 
Partial 
Differential 
Equations: An 
Introduction



Universitext



Universitext

Series Editors

Sheldon Axler
San Francisco State University

Vincenzo Capasso
ADAMSS (Interdisciplinary Centre for Adv)

Carles Casacuberta
Universitat de Barcelona

Angus MacIntyre
Queen Mary University of London

Kenneth Ribet
University of California, Berkeley

Claude Sabbah
CNRS, Ecole polytechnique Centre de mathématiques

Endre Süli
University of Oxford

Wojbor A. Woyczynski
Case Western Reserve University, Cleveland, OH

Universitext is a series of textbooks that presents material from a wide variety of mathe-
matical disciplines at master’s level and beyond. The books, often well class-tested by their
author, may have an informal, personal even experimental approach to their subject matter.
Some of the most successful and established books in the series have evolved through several
editions, always following the evolution of teaching curricula, to very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks written for
new, cutting-edge courses may make their way into Universitext.

More information about this series at http://www.springer.com/series/223

http://www.springer.com/series/223


Wei Liu • Michael RRockner

Stochastic Partial Differential
Equations: An Introduction

123



Wei Liu
School of Mathematics and Statistics
Jiangsu Normal University
Xuzhou, China

Michael RRockner
Faculty of Mathematics
Bielefeld University
Bielefeld, Germany

ISSN 0172-5939 ISSN 2191-6675 (electronic)
Universitext
ISBN 978-3-319-22353-7 ISBN 978-3-319-22354-4 (eBook)
DOI 10.1007/978-3-319-22354-4

Library of Congress Control Number: 2015953013

Mathematics Subject Classification (2010): 60-XX, 60H15, 60H10, 60H05, 60J60, 60J25, 35-XX,
35K58, 35K59, 35Q35, 34-XX, 34F05, 34G20, 47-XX,
47J35

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

www.springer.com


Contents

1 Motivation, Aims and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 General Philosophy and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Stochastic Integral in General Hilbert Spaces
(w.r.t. Brownian Motion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Infinite-Dimensional Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Martingales in General Banach Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 The Definition of the Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Scheme of the Construction of the Stochastic Integral . . . . . . . 27
2.3.2 The Construction of the Stochastic Integral in Detail . . . . . . . . 27

2.4 Properties of the Stochastic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 The Stochastic Integral for Cylindrical Wiener Processes . . . . . . . . . . . 49

2.5.1 Cylindrical Wiener Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.2 The Definition of the Stochastic Integral

for Cylindrical Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 SDEs in Finite Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Main Result and A Localization Lemma .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Proof of Existence and Uniqueness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 SDEs in Infinite Dimensions and Applications to SPDEs . . . . . . . . . . . . . . . . 69
4.1 Gelfand Triples, Conditions on the Coefficients and Examples . . . . . . 69
4.2 The Main Result and An Itô Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Markov Property and Invariant Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 SPDEs with Locally Monotone Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1 Local Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.1 Main Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1.2 Proof of the Main Theorem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.3 Application to Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

v



vi Contents

5.2 Generalized Coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2.2 Proofs of the Main Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.3 Application to Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6 Mild Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1 Prerequisites for This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.1 The Itô Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1.2 A Burkholder–Davis–Gundy Type Inequality . . . . . . . . . . . . . . . . 180
6.1.3 Stochastic Fubini Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Existence, Uniqueness and Continuity with Respect
to the Initial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.3 Smoothing Property of the Semigroup: Pathwise
Continuity of the Mild Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A The Bochner Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.1 Definition of the Bochner Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.2 Properties of the Bochner Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B Nuclear and Hilbert–Schmidt Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C The Pseudo Inverse of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D Some Tools from Real Martingale Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

E Weak and Strong Solutions: The Yamada–Watanabe Theorem . . . . . . . . 227

F Continuous Dependence of Implicit Functions on a Parameter . . . . . . . . 241

G Strong, Mild and Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

H Some Interpolation Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

I Girsanov’s Theorem in Infinite Dimensions with Respect
to a Cylindrical Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



Chapter 1
Motivation, Aims and Examples

1.1 Motivation and Aims

In this course we will concentrate on (nonlinear) stochastic partial differential
equations (SPDEs) of evolutionary type. All kinds of dynamics with stochastic
influence in nature or man-made complex systems can be modeled by such
equations. As we shall see from the examples at the end of this section, the state
spaces of their solutions are necessarily infinite dimensional, such as spaces of
(generalized) functions. In this course the state spaces, denoted by H, will be mostly
separable Hilbert spaces, sometimes separable Banach spaces.

There is also enormous research activity on SPDEs where the state spaces are
not linear, but rather spaces of measures (particle systems, dynamics in population
genetics) or infinite-dimensional manifolds (path or loop spaces over Riemannian
manifolds).

There are basically three approaches to analyzing SPDEs: the “martingale
(or martingale measure) approach” (cf. [80]), the “semigroup (or mild solution)
approach” (cf. [26, 27]) and the “variational approach” (cf. [75]). There is an
enormously rich literature on all three approaches which cannot be listed here.
We refer instead to the above and the following other monographs on SPDEs:
[6, 13, 16, 19, 20, 26–28, 37, 46, 48, 50, 53, 66] and the references therein.

The purpose of this course is to give an introduction to the “variational
approach”, as self-contained as possible, including the “local case”, i.e. where, e.g.
the standard (weak) monotonicity conditions only hold locally. In the “global case”
this approach was initiated in the pioneering work of E. Pardoux [64, 65] and further
developed by N. Krylov and B. Rozovskiı̆ in [54] for continuous martingales as
integrators in the noise term and later by I. Gyöngy and N. Krylov in [40–42] for
not necessarily continuous martingales.

The predecessor [67] of this monograph grew out of a two-semester graduate
course given by the second-named author at Purdue University in 2005/2006. This
extended edition of [67] is the outcome of a two semester graduate course held at the

© Springer International Publishing Switzerland 2015
W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction,
Universitext, DOI 10.1007/978-3-319-22354-4_1
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2 1 Motivation, Aims and Examples

University of Bielefeld in 2012/2013. Prerequisites would be an advanced course in
probability theory, covering standard martingale theory, stochastic processes in R

d

and maybe basic stochastic integration, though the latter is not formally required.
Since graduate students in probability theory are usually not familiar with the theory
of Hilbert spaces or basic linear operator theory, all required material from these
areas is included in the text, most of it in the appendices. For the same reason we
minimize the general theory of martingales on Hilbert spaces, paying, however, the
price that some proofs concerning stochastic integration on Hilbert space are a bit
lengthy, since they have to be done “with bare hands”.

For simplicity we specialize to the case where the integrator in the noise term
is just a cylindrical Wiener process, but everything is spelt out in such a way that
it generalizes directly to continuous local martingales. In particular, integrands are
always assumed to be predictable rather than just adapted and product measurable.
The existence and uniqueness proof (cf. Sect. 4.2) is our personal version of the
proof in [54, 75] and is largely taken from [69] presented there in a more general
framework. The results on invariant measures (cf. Sect. 4.3) we could not find in the
literature for the “variational approach”. They are, however, quite straightforward
modifications of those in the “semigroup approach” in [27].

To keep this course reasonably self-contained we also include a complete proof
of the finite-dimensional case in Chap. 3, which is based on the very focussed and
beautiful exposition in [52], which uses the Euler approximation. Among other
complementing topics such as Chap. 6, which contains a concise introduction to
the “semigroup (or mild solution) approach”, the appendices contain a detailed
account of the Yamada–Watanabe Theorem on the relation between weak and strong
solutions (cf. Appendix E), and a detailed proof of Girsanov’s Theorem in infinite
dimensions (cf. Appendix I).

The structure of this monograph is, we hope, obvious from the list of contents.
Here, we only mention that a substantial part consists of a very detailed introduction
to stochastic integration on Hilbert spaces (see Chap. 2), major parts of which (as
well as Appendices A–C) are taken from the Diploma thesis of Claudia Prévôt
(née Knoche) and Katja Frieler (see [34]), which in turn was based on [26] and
supervised by the second named author of this monograph. We would like to thank
both of them at this point for their permission to do this. We thank all coauthors of
those joint papers which form another component for the basis of this monograph. It
was really a pleasure working with them in this exciting area of probability theory.
We would also like to thank Nelli Schmelzer, Matthias Stephan, Sven Wiesinger
and Lukas Wresch for the excellent type job, as well as the participants of the
graduate courses at Purdue and Bielefeld University for checking large parts of the
text carefully. Special thanks go to Michael Scheutzow and Byron Schmuland for
spotting a number of misprints and small errors in [67]. We also thank Claudia
Prévôt for giving permission for this extension of [67]. Furthermore, the first named
author acknowledges the financial support from NSFC (No. 11201234, 11571147)
and a project funded by PAPD of Jiangsu Higher Education Institutions. The last
named author would like to thank the German Science Foundation (DFG) for its
financial support through SFB 701 and also Jose Luis da Silva for his hospitality
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during a very pleasant stay at the University of Madeira where the final proofreading
of this monograph was done.

1.2 General Philosophy and Examples

Before starting with the main body of this course, let us briefly recall the general
philosophy of describing stochastic dynamics by stochastic differential equations
(SDE) in a more heuristic and intuitive way. These usually take values in a space
H of (generalized) functions, e.g. on a domain ƒ � R

d, or a differential manifold,
a fractal or even merely in an arbitrary measurable space .ƒ;B/. Abstractly, H is a
separable Hilbert or Banach space. Then given a map F W Œ0;T��H�U ! H, where
T 2�0;1Œ and U is another separable Hilbert space, one considers the differential
equations

dX.t/

dt
D F.t;X.t/; PW.t// (1.1)

on H. Here PW.t/; t 2 Œ0;T�, is a U-valued white noise in time, more precisely,
the generalised time derivative of a U-valued cylindrical Brownian motion W.t/ D
.Wk.t//k2N; t 2 Œ0;T�, on some probability space .�;F ;P/. Hence PW.t/; t 2 Œ0;T�,
are independent centred Gaussian variables with infinite variance, hence in regard to
(1.1) the “worst” (Gaussian) random perturbation that can occur in (1.1). Employing
a Taylor expansion for F around 0 2 U and, neglecting terms of order 2 and higher,
turns (1.1) into

dX.t/

dt
D F.t;X.t/; 0/C D3F.t;X.t/; 0/ PW.t/; (1.2)

where D3F denotes the derivative of F with respect to its third coordinate. Setting

A.t; x/ WD F.t; x; 0/; B.t; x/ WD D3F.t; x; 0/

and taking into account the non-differentiability of W.t/ in t, (1.2) turns into

dX.t/ D A.t;X.t//dt C B.t;X.t//dW.t/; (1.3)

to be rigorously understood in integral form. We mention here that the stochastic
term in (1.3) is often called or interpreted as a “stochastic force”, though the equa-
tion is first order. This can, however, be justified by the Kramers–Smoluchowski
approximation (see [14, 15, 33, 51, 76]). Furthermore, A is called the drift of the
equation.

We briefly recall here that the linear pendant of (1.3) is given by the associ-
ated Fokker–Planck–Kolmogorov equations obtained as a linearization of (1.3) as
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follows: Let FC2
b;T denote the set of all functions f W Œ0;T��H ! R; C1 in t 2 Œ0;T�

and C2
b in x 2 H, depending only on finitely many coordinates of x (with respect to

a fixed orthonormal basis of H). Take f 2 FC2
b;T and compose it with the solution of

(1.3) for t > s with initial datum x 2 H at times s, denoted by X.t; s; x/, i.e. consider
f .t;X.t; s; x//. Subsequently, take the expectation (with respect to P) to get

ps;t. f .t; �//.x/ WD E Œ f .t;X.t; s; x//� ; s < t:

Then apply Itô’s formula to find that

@

@t
ps;t. f .t; �//.x/ D ps;t.Lf .t; �//.x/; s < t; x 2 H; (1.4)

with L being the corresponding Kolmogorov operator given by

Lf .t; x/ D @

@t
f .t; x/C 1

2
Tr.B�.t; x/B.t; x/D2

x f .t; x//C A.t; x/Dx f .t; x/; x 2 H;

(1.5)

where Dx;D2
x are the Fréchet derivatives of f .t; �/ W H ! R. We note that (1.5)

is well-defined (in particular the trace exists) for f 2 FC2
b;T . We emphasize that

the less B�.t; x/;B.t; x/ is degenerate, the less degenerate is the second order part
of the operator L. In this sense the noise part in (1.3) makes the equation better
(“regularization by noise”). In this course, however, we shall concentrate on infinite
dimensional stochastic differential equations as (1.3) which in applications are
SPDEs. For a detailed analysis of the corresponding Fokker–Planck–Kolmogorov
equations (1.4) we refer to the recent monograph [10].

Now we would like to give a few examples of SPDEs that appear in fundamental
applications. We present them in a very brief way and refer to the above-mentioned
literature for a more elaborate discussion of these and many more examples and their
rôle in the applied sciences. Below we use standard notation, in particular Hm;2

0 .ƒ/

denotes the Sobolev space of order m in L2.ƒ/ with Dirichlet boundary condition
for an open set ƒ � R

d.

Example 1.2.1 (Stochastic Quantization of the Free Euclidean Quantum Field)

dX.t/ D .� � m2/X.t/ dt C dW.t/

on H � S 0.Rd/.

• m 2 Œ0;1/ denotes “mass”,
• .W.t//t>0 is a cylindrical Wiener process on L2.Rd/ � H (with the inclusion

being a Hilbert–Schmidt embedding).
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Example 1.2.2 (Stochastic Reaction Diffusion Equations)

dX.t/ D Œ�X.t/� g.X.t//� dt C B.t;X.t// dWt

on H WD L2.ƒ/;ƒ � R
d; ƒ open, d 6 3,

• B.t; x/ W H ! H is Hilbert–Schmidt 8x 2 H; t > 0.
• g W R ! R is a “locally weakly monotone” function of at most polynomial

growth (depending on d),
• W D .W.t//t>0 is a cylindrical Wiener process on H.

Example 1.2.3 (Stochastic Generalized Burgers Equation)

dX.t/ D
�

d2

d�2
X.t/� f .X.t//

d

d�
X.t/C g.X.t//

�
dt C B.t;X.t// dW.t/

on H WD L2
�
�0; 1Œ

�
.

• � 2�0; 1Œ,
• f W R ! R is a Lipschitz function,
• g W R ! R is as above, of at most cubic growth,
• B and W are as above.

Example 1.2.4 (2D Stochastic Navier–Stokes Equation)

dX.t/ D PH
�
��sX.t/� hX.t/;riX.t/

�
dt C B.t;X.t// dW.t/

on H WD ˚
u 2 L2.ƒ ! R

2; d�/
ˇ̌

div u D 0
�
, ƒ � R

2, ƒ open, @ƒ smooth.

• � denotes viscosity,
• �s denotes the Stokes Laplacian,
• div is taken in the sense of distributions,
• PH denotes the Helmholtz–Leray projection,
• B and W are as above.

Example 1.2.5 (3D Stochastic Navier–Stokes Equation)

dX.t/ D PH Œ��sX.t/� hX.t/;riX.t/� dt C B.t/ dW.t/

on H WD ˚
u 2 H1

0.ƒ ! R
3I d�/j div u D 0

�
; ƒ � R

3;ƒ open ; @ƒ smooth :

• B and W are as above (but B is independent of X.t/).

Example 1.2.6 (Stochastic p-Laplace Equation)

dX.t/ D div
�jrX.t/jp�2rX.t/

�
dt C B.t;X.t// dW.t/

on H WD L2.ƒ/;ƒ � R
d; ƒ open,
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• B and W are as above.

Example 1.2.7 (Stochastic Porous Media Equation)

dX.t/ D �‰.X.t// dt C B.t;X.t// dW.t/

on H WD dual of H1
0.ƒ/, ƒ as above.

• ‰ W R ! R is “monotone”,
• B and W are as above.

Example 1.2.8 (Stochastic Cahn–Hilliard Equation)

dX.t/ D Œ��2X.t/C�'.X.t//� dt C B.t/ dW.t/

rX.t/ � n D r.�X.t// � n D 0 on @ƒ

on H WD L2.ƒ/;ƒ as above.

• n denotes the outward unit normal on @ƒ,
• ' W R ! R is C1, is locally weakly monotone and of at most polynomial growth

p 2 Œ2; dC4
d �,

• B and W are as above.

Example 1.2.9 (Stochastic Surface Growth Model)

dX.t/ D Œ� @4

@�4
X.t/� @2

@�2
X.t/C @2

@�2
.
@

@�
X.t//2� dt C B.t/ dW.t/

X.t/ �@ƒD 0

on H D H2;2
0 .ƒ/ with ƒ WD�0;LŒ,

• � 2�0;LŒ;
• B and W are as above.

The general form of these equations with state spaces consisting of functions
� 7! x.�/, where � is a spatial variable, e.g. from a subset of Rd, is as follows:

dX.t/.�/ D A
	

t;X.t/.�/;D�X.t/.�/;D
2
�

�
X.t/.�/

�

dt

C B
	

t;X.t/.�/;D�Xt.�/;D
2
�

�
X.t/.�/

�

dW.t/ :

Here D� and D2
� mean first and second total derivatives, respectively. The stochastic

term can be considered as a “perturbation by noise”. So, clearly one motivation
for studying SPDEs is to get information about the corresponding (unperturbed)
deterministic PDE by letting the noise go to zero (e.g. replace B by " � B and let
" ! 0) or to understand the different features occurring if one adds the noise term.
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If we drop the stochastic term in these equations we get a deterministic PDE of
“evolutionary type”. Roughly speaking this means we have that the time derivative
of the desired solution (on the left) is equal to a non-linear functional of its spatial
derivatives (on the right).

For a detailed analysis of Example 1.2.1 and for the non-linear much harder
stochastic quantization equations for interacting Euclidean quantum fields we refer
to [2] and the recent survey [1] (including the references therein). All other examples
above under the respective appropriate conditions are covered by the theory
presented in this course and all of them are analyzed in detail here. This is in contrast
to [67], where Examples 1.2.2–1.2.5, 1.2.8 and 1.2.9, were not covered, since
they only satisfy “local monotonicity conditions” and/or weaker growth conditions
and/or “generalized coercivity conditions”. All these latter examples are included
only in this extended version, more precisely, in the newly added Chap. 5, where
global solutions for Examples 1.2.2–1.2.4 are constructed in Sect. 5.1 and local
solutions for Examples 1.2.5, 1.2.8 and 1.2.9 in Sect. 5.2 (see also Remark 5.1.11(4)
for a number of further examples which, in order to keep it within a reasonable
size, have not been included in this course). We would like to stress that Sect. 5.2
in particular contains the presentation of a general technique to construct local
solutions to SPDEs on the basis of a classical inequality due to Bihari. Furthermore,
we include a study of a “tamed version” of Example 1.2.5 (see Example 5.2.25), for
which global solutions exist (at least in the deterministic case), and we show that
the solutions in Example 1.2.8 are global, if B � 0 or p 6 2.

After having discussed a number of typical examples of nonlinear SPDEs, we
would like to address a genuine problem of the theory of SPDEs, namely that
in some cases one is interested in perturbing the deterministic PDE by a very
rough noise, meaning a noise which is itself no longer function-valued, but only
takes values in a space of generalized functions, i.e. in a subspace of the space of
Schwarz distributions. One way out is to go to the mild formulation of the SPDE
(see Chap. 6) and use the smoothing property of a hopefully “strong enough” linear
part of the drift. But if one focuses on the Laplacian, “strong enough” requires that
the underlying domain is one dimensional. So, already in two dimensions one can
only expect Schwarz distribution-valued solutions to the SPDE, hence the simplest
non-linear parts of the drift, as e.g. a power of the solution, have to be defined
by renormalization techniques (see [2] and also [1]). Recently, a breakthrough has
been achieved in this direction by Martin Hairer in [44] (for which, together with
his work on the KPZ-equation [43] and other beautiful results in the field, he was
awarded the Fields Medal in 2014). In [44] he develops a whole theory to define and
(locally) solve nonlinear SPDEs in a reformulated framework. This theory applies to
a number of important (nonlinear) SPDEs with distribution-valued solutions on two-
or three-dimensional underlying domains. We refer to [35] for a detailed exposition
of this theory.

To conclude this introduction, let us summarize the new parts of this monograph
in comparison to [67], adding the references of their respective origin, which are all
quite recent papers, except for the new Chap. 6 and the new Appendix F. The new
Chap. 5, whose contents has already been summarized in the previous paragraph,
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is an extended version of [57–59]. Chapter 6 contains a concise introduction to the
“semigroup (or mild solution) approach”, in particular, addressing the measurability
issues occurring in this context and (through the famous “factorization method”
in [26]) also the question of when the solutions have continuous sample paths.
To complement Chap. 6 we also include Appendix F which is needed there. Both
Chap. 6 and Appendix F are elaborations of the corresponding sections in [34],
which in turn are based on [26]. Appendix E is a more detailed version of [71] and it
contains a complete proof of the Yamada–Watanabe Theorem in infinite dimensions,
whereas [67] only contains the finite dimensional case. The new Appendix H
contains two elementary proofs for well-known interpolation inequalities which
are essential for analyzing the (stochastic) Navier–Stokes equations. The proofs are
essentially taken from [61]. Finally, the new Appendix I on Girsanov’s Theorem in
infinite dimensions is an extended version of Appendix A.1 in [22].



Chapter 2
The Stochastic Integral in General Hilbert
Spaces (w.r.t. Brownian Motion)

We fix two separable Hilbert spaces
�
U; h ; iU

�
and

�
H; h ; i� with norms k kU

and k kH , respectively, where we drop the subscript H in the latter if there is no
confusion possible. The first part of this chapter is devoted to the construction of the
stochastic Itô integral

Z t

0

ˆ.s/ dW.s/ ; t 2 Œ0;T�;

where W.t/, t 2 Œ0;T�, is a Wiener process on U and ˆ is a process with values that
are linear but not necessarily bounded operators from U to H.

For that we will first have to introduce the notion of the standard Wiener
process in infinite dimensions. Then there will be a short section on martingales
in general Hilbert spaces. These two concepts are important for the construction of
the stochastic integral, which will be explained in the following section.

Following this, we shall collect and prove a number of properties of the stochastic
integral, which are necessary for the later chapters.

Finally, we will describe how to transfer the definition of the stochastic integral
to the case when W.t/, t 2 Œ0;T�, is a cylindrical Wiener process. For simplicity we
assume that U and H are real Hilbert spaces.

2.1 Infinite-Dimensional Wiener Processes

For a topological space X we denote its Borel �-algebra by B.X/.
Definition 2.1.1 A probability measure � on

�
U;B.U/� is called Gaussian if for

all v 2 U the bounded linear mapping

v0 WU ! R

© Springer International Publishing Switzerland 2015
W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction,
Universitext, DOI 10.1007/978-3-319-22354-4_2
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defined by

u 7! hu; viU ; u 2 U;

has a Gaussian law, i.e. for all v 2 U there exist m WD m.v/ 2 R and � WD �.v/ 2
Œ0;1Œ such that, if �.v/ > 0,

�
� ı .v0/�1

�
.A/ D�.v0 2 A/ D 1p

2	�2

Z
A

e� .x�m/2

2�2 dx for all A 2 B.R/;

and, if �.v/ D 0,

� ı .v0/�1 D ım.v/:

Theorem 2.1.2 A measure � on
�
U;B.U/� is Gaussian if and only if

O�.u/ WD
Z

U
eihu;viU �.dv/ D eihm;uiU� 1

2 hQu;uiU ; u 2 U;

where m 2 U and Q 2 L.U/ is nonnegative, symmetric, with finite trace (see
Definition B.0.3; here L.U/ denotes the set of all bounded linear operators on U).

In this case � will be denoted by N.m;Q/ where m is called the mean and Q
is called the covariance (operator). The measure � is uniquely determined by m
and Q.

Furthermore, for all h; g 2 U

Z
hx; hiU �.dx/ D hm; hiU;

Z �hx; hiU � hm; hiU
��hx; giU � hm; giU

�
�.dx/ D hQh; giU;

Z
kx � mk2U �.dx/ D tr Q:

Proof (Cf. [26]) Obviously, a probability measure with this Fourier transform is
Gaussian. Now let us conversely assume that � is Gaussian. We need the following:

Lemma 2.1.3 Let � be a probability measure on .U;B.U//. Let k 2 N be such that

Z
U

ˇ̌hz; xiU

ˇ̌k
�.dx/ < 1 8 z 2 U:
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Then there exists a constant C D C.k; �/ > 0 such that for all h1; : : : ; hk 2 U

Z
U

ˇ̌hh1; xiU � � � hhk; xiU

ˇ̌
�.dx/ 6 C kh1kU � � � khkkU :

In particular, the symmetric k-linear form

Uk 3 .h1; : : : ; hk/ 7!
Z

hh1; xiU � � � hhk; xiU �.dx/ 2 R

is continuous.

Proof For n 2 N define

Un WD
�

z 2 U

ˇ̌̌
ˇ
Z

U

ˇ̌hz; xiU

ˇ̌k
�.dx/ 6 n

�
:

Then each Un is a closed set in U, since if zl 2 Un; l 2 N, and z 2 U such that
lim

l!1 zl D z in U, then by Fatou’s Lemma

Z
U

jhz; xiUjk�. dx/ 6 lim inf
l!1

Z
U

jhzl; xiUjk�. dx/ 6 n:

By assumption

U D
1[

nD1
Un:

Since U is a complete metric space, by the Baire category theorem, there exists an
n0 2 N such that Un0 has non-empty interior, so there exists a closed ball (with
centre z0 and radius r0) NB.z0; r0/ � Un0 . Hence

Z
U

ˇ̌hz0 C y; xiU

ˇ̌k
�.dx/ 6 n0 8 y 2 B.0; r0/;

therefore for all y 2 NB.0; r0/
Z

U

ˇ̌hy; xiU

ˇ̌k
�.dx/ D

Z
U

ˇ̌hz0 C y; xiU � hz0; xiU

ˇ̌k
�.dx/

6 2k�1
Z

U

ˇ̌hz0 C y; xiU

ˇ̌k
�.dx/C 2k�1

Z
U

ˇ̌hz0; xiU

ˇ̌k
�.dx/

6 2kn0:
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Applying this for y WD r0z, z 2 U with kzkU D 1, we obtain

Z
U

ˇ̌hz; xiU

ˇ̌k
�.dx/ 6 2kn0r

�k
0 :

Hence, if h1; : : : ; hk 2 U n f0g, then by the generalized Hölder inequality

Z
U

ˇ̌
ˇ̌
ˇ



h1
kh1kU

; x

�
U

� � �



hk

khkkU
; x

�
U

ˇ̌
ˇ̌
ˇ �.dx/

6
 Z

U

ˇ̌̌
ˇ



h1
kh1kU

; x

�
U

ˇ̌̌
ˇ
k

�.dx/

!1=k

: : :

 Z
U

ˇ̌̌
ˇ



hk

khkkU
; x

�
U

ˇ̌̌
ˇ
k

�.dx/

!1=k

6 2kn0r
�k
0 ;

and the assertion follows. ut
Applying Lemma 2.1.3 for k D 1 and � WD � we obtain that

U 3 h 7!
Z

hh; xiU �.dx/ 2 R

is a continuous linear map, hence there exists an m 2 U such that

Z
U

hx; hiU �.dx/ D hm; hi 8 h 2 U:

Applying Lemma 2.1.3 for k D 2 and � WD � we obtain that

U2 3 .h1; h2/ 7!
Z

hx; h1iUhx; h2iU �.dx/� hm; h1iUhm; h2iU

is a continuous symmetric bilinear map, hence there exists a symmetric Q 2 L.U/
such that this map is equal to

U2 3 .h1; h2/ 7! hQh1; h2iU:

Since for all h 2 U

hQh; hiU D
Z

hx; hi2U �.dx/�
�Z

hx; hiU �.dx/

�2
> 0;
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Q is positive definite. It remains to prove that Q is trace class (i.e.

tr Q WD
1X

iD1
hQei; eiiU < 1

for one (hence every) orthonormal basis fei j i 2 Ng of U, cf. Appendix B). We may
assume without loss of generality that � has mean zero, i.e. m D 0 (2 U), since
the image measure of � under the translation U 3 x 7! x � m is again Gaussian
with mean zero and the same covariance Q. Then we have for all h 2 U and all
c 2 .0;1/

1 � e� 1
2 hQh;hiU D

Z
U

�
1 � coshh; xiU

�
�.dx/

6
Z

fk�kU6cg
�
1 � coshh; xiU

�
�.dx/C 2�

�˚
x 2 U

ˇ̌ kxkU > c
��

6 1

2

Z
fk�kU6cg

ˇ̌hh; xiU

ˇ̌2
�.dx/C 2�

�˚
x 2 U

ˇ̌ kxkU > c
��

(2.1)

(since 1 � cos x 6 1
2
x2). Defining a positive definite symmetric linear operator Qc

on U by

hQch1; h2iU WD
Z

fk�kU6cg
hh1; xiU � hh2; xiU �.dx/; h1; h2 2 U;

we even have that Qc is trace class because for every orthonormal basis fek j k 2 Ng
of U we have (by monotone convergence)

1X
kD1

hQcek; ekiU D
Z

fk�kU6cg

1X
kD1

hek; xi2U �.dx/ D
Z

fk�kU6cg
kxk2U �.dx/

6 c2 < 1:

Claim There exists a c0 2 .0;1/ (large enough) so that Q 6 2 log 4 Qc0 (meaning
that hQh; hiU 6 2 log 4 hQc0h; hiU for all h 2 U).

To prove the claim let c0 be so big that �
�˚

x 2 U
ˇ̌ kxkU > c0

��
6 1

8
. Let h 2 U

such that hQc0h; hiU 6 1. Then (2.1) implies

1 � e� 1
2 hQh;hiU 6 1

2
C 1

4
D 3

4
;

hence 4 > e
1
2 hQh;hiU , so hQh; hiU 6 2 log 4. If h 2 U is arbitrary, but hQc0h; hiU 6D 0,

then we apply what we have just proved to h=hQc0h; hi 12U and the claim follows for
such h. If, however, hQc0h; hiU D 0, then for all n 2 N, hQc0nh; nhiU D 0 6 1,
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hence by the above hQh; hiU 6 n�22 log 4. Therefore, hQh; hiU D 0 and the claim
is proved, also for such h.

Since Qc0 has finite trace, so has Q by the claim and the theorem is proved, since
the uniqueness part follows from the fact that the Fourier transform is one-to-one.

ut
The following result is then obvious.

Proposition 2.1.4 Let X be a U-valued Gaussian random variable on a probability
space .�;F ;P/, i.e. there exist m 2 U and Q 2 L.U/ nonnegative, symmetric, with
finite trace such that P ı X�1 D N.m;Q/.

Then hX; uiU is normally distributed for all u 2 U and the following statements
hold:

• E
�hX; uiU

� D hm; uiU for all u 2 U,
• E

�hX � m; uiU � hX � m; viU
� D hQu; viU for all u; v 2 U,

• E
�kX � mk2U

� D tr Q.

The following proposition will lead to a representation of a U-valued Gaussian
random variable in terms of real-valued Gaussian random variables.

Proposition 2.1.5 If Q 2 L.U/ is nonnegative, symmetric, with finite trace then
there exists an orthonormal basis ek, k 2 N, of U such that

Qek D 
kek; 
k > 0; k 2 N;

and 0 is the only accumulation point of the sequence .
k/k2N.

Proof See [68, Theorem VI.21; Theorem VI.16 (Hilbert–Schmidt theorem)]. ut
Proposition 2.1.6 (Representation of a Gaussian Random Variable) Let m 2 U
and Q 2 L.U/ be nonnegative, symmetric, with tr Q < 1. In addition, we assume
that ek, k 2 N, is an orthonormal basis of U consisting of eigenvectors of Q
with corresponding eigenvalues 
k, k 2 N, as in Proposition 2.1.5, numbered in
decreasing order.

Then a U-valued random variable X on a probability space .�;F ;P/ is
Gaussian with P ı X�1 D N.m;Q/ if and only if

X D
X
k2N

p

kˇkek C m (as objects in L2.�;F ;PI U/),

where ˇk, k 2 N, are independent real-valued random variables with P ı ˇk
�1 D

N.0; 1/ for all k 2 N with 
k > 0. The series converges in L2.�;F ;PI U/.

Proof

1. Let X be a Gaussian random variable with mean m and covariance Q. Below we
set h ; i WD h ; iU.
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Then X D P
k2NhX; ekiek in U where hX; eki is normally distributed with

mean hm; eki and variance 
k, k 2 N, by Proposition 2.1.4. If we now define

ˇk W
(

D hX;eki�hm;ekip

k

if k 2 N with 
k > 0

� 0 2 R else,

then we get that P ı ˇ�1
k D N.0; 1/ and X D P

k2N
p

kˇkek C m. To prove the

independence of ˇk, k 2 N, we take an arbitrary n 2 N and ak 2 R, 1 6 k 6 n,
and obtain that for c WD �Pn

kD1; 
k¤0
akp

k

hm; eki

nX
kD1

akˇk D
nX

kD1;

k 6D0

akp

k

hX; eki C c D


X;

nX
kD1;

k 6D0

akp

k

ek

�
C c

which is normally distributed since X is a Gaussian random variable. Therefore
we have that ˇk, k 2 N, form a Gaussian family. Hence, to get the independence,
we only have to check that the covariance of ˇi and ˇj, i; j 2 N, i 6D j, with

i 6D 0 6D 
j, is equal to zero. But this is clear since

E.ˇiˇj/ D 1p

i
j

E
�hX � m; eiihX � m; eji

� D 1p

i
j

hQei; eji

D 
ip

i
j

hei; eji D 0

for i 6D j.
Furthermore, the series

Pn
kD1

p

kˇkek, n 2 N, converges in L2.�;F ;PI U/

since the space is complete and

E

����
nX

kDm

p

kˇkek

���2
U

�
D

nX
kDm


kE
�jˇkj2

� D
nX

kDm


k:

Since
P

k2N 
k D tr Q < 1 this expression becomes arbitrarily small for m and
n large enough.

2. Let ek, k 2 N, be an orthonormal basis of U such that Qek D 
kek, k 2 N, and
let ˇk, k 2 N, be a family of independent real-valued Gaussian random variables
with mean 0 and variance 1. Then it is clear that the series

Pn
kD1

p

kˇkek C m,

n 2 N, converges to X WD P
k2N

p

kˇkek C m in L2.�;F ;PI U/ (see part 1).

Now we fix u 2 U and get that

D nX
kD1

p

kˇkek C m; u

E
D

nX
kD1

p

kˇkhek; ui C hm; ui
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is normally distributed for all n 2 N and the sequence converges in
L2.�;F ;P/. This implies that the limit hX; ui is also normally distributed
where

E
�hX; ui� D E

	X
k2N

p

kˇkhek; ui C hm; ui




D lim
n!1 E

	 nX
kD1

p

kˇkhek; ui



C hm; ui D hm; ui

and concerning the covariance we obtain that

E
	�hX; ui � hm; ui��hX; vi � hm; vi�


D lim
n!1 E

	 nX
kD1

p

kˇkhek; ui

nX
kD1

p

kˇkhek; vi




D
X
k2N


khek; uihek; vi D
X
k2N

hQek; uihek; vi

D
X
k2N

hek;Quihek; vi D hQu; vi

for all u; v 2 U. ut
By part 2 of this proof we finally get the following existence result.

Corollary 2.1.7 Let Q be a nonnegative and symmetric operator in L.U/ with finite
trace and let m 2 U. Then there exists a Gaussian measure � D N.m;Q/ on�
U;B.U/�.

Let us give an alternative, more direct proof of Corollary 2.1.7 without using
Proposition 2.1.6. For the proof we need the following exercise.

Exercise 2.1.8 Consider R
1 with the product topology. Let B.R1/ denote its

Borel �-algebra. Prove:

(i) B.R1/ D �.	k j k 2 N/, where 	k W R1 ! R denotes the projection on the
k-th coordinate.

(ii) l2.R/
	
WD
n
.xk/k2N 2 R

1
ˇ̌̌ 1X

kD1
x2k < 1

o

2 B.R1/:

(iii) B.R1/ \ l2.R/ D �
�
	k jl2

ˇ̌
k 2 N

�
:

(iv) Let l2.R/ be equipped with its natural norm

kxkl2 WD
	 1X

kD1
x2k

 1
2
; x D .xk/k2N 2 l2.R/;
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and let B�l2.R/� be the corresponding Borel �-algebra. Then:

B�l2.R/� D B.R1/\ l2.R/:

Alternative Proof of Corollary 2.1.7 It suffices to construct N.0;Q/, since N.m;Q/
is the image measure of N.0;Q/ under translation with m. For k 2 N consider
the normal distribution N.0; 
k/ on R and let � be their product measure on�
R

1;B.R1/
�
, i.e.

� D
Y
k2N

N.0; 
k/ on
�
R

1;B.R1/
�
.

Here 
k, k 2 N, are as in Proposition 2.1.5. Since the map g W R1 ! Œ0;1� defined
by

g.x/ WD
1X

kD1
x2k ; x D .xk/k2N 2 R

1;

is B.R1/-measurable, we may calculate

Z
R1

g.x/ �.dx/ D
1X

kD1

Z
x2k N.0; 
k/.dxk/ D

1X
kD1


k < 1:

Therefore, using Exercise 2.1.8(ii), we obtain �
�
l2.R/

� D 1. Restricting � to
B.R1/ \ l2.R/, by Exercise 2.1.8(iv) we get a probability measure, let us call
it Q�, on

�
l2.R/;B�l2.R/��. Now take the orthonormal basis fek j k 2 Ng

from Proposition 2.1.5 and consider the corresponding canonical isomorphism
I W l2.R/ ! U defined by

I.x/ D
1X

kD1
xkek; x D .xk/k2N 2 l2.R/:

It is then easy to check that the image measure

� WD Q� ı I�1 on
�
U;B.U/�

is the desired measure, i.e. � D N.0;Q/. ut
After these preparations we will give the definition of a standard Q-Wiener

process. To this end we fix an element Q 2 L.U/, nonnegative, symmetric and
with finite trace and a positive real number T.



18 2 Stochastic Integral in Hilbert Spaces

Definition 2.1.9 A U-valued stochastic process W.t/, t 2 Œ0;T�, on a probability
space .�;F ;P/ is called a (standard) Q-Wiener process if:

• W.0/ D 0,
• W has P-a.s. continuous trajectories,
• the increments of W are independent, i.e. the random variables

W.t1/; W.t2/ � W.t1/; : : : ; W.tn/� W.tn�1/

are independent for all 0 6 t1 < � � � < tn 6 T, n 2 N,
• the increments have the following Gaussian laws:

P ı �W.t/ � W.s/
��1 D N

�
0; .t � s/Q

�
for all 0 6 s 6 t 6 T:

Similarly to the existence of Gaussian measures the existence of a Q-Wiener
process in U can be reduced to the real-valued case. This is the content of the
following proposition.

Proposition 2.1.10 (Representation of the Q-Wiener Process) Let ek, k 2 N,
be an orthonormal basis of U consisting of eigenvectors of Q with corresponding
eigenvalues 
k, k 2 N. Then a U-valued stochastic process W.t/, t 2 Œ0;T�, is a
Q-Wiener process if and only if

W.t/ D
X
k2N

p

kˇk.t/ek; t 2 Œ0;T�; (2.2)

where ˇk, k 2 fn 2 N j 
n > 0g, are independent real-valued Brow-
nian motions on a probability space .�;F ;P/. The series even converges in
L2
�
�;F ;PI C.Œ0;T�;U/

�
, and thus always has a P-a.s. continuous version. (Here

the space C
�
Œ0;T�;U

�
is equipped with the sup norm.) In particular, for any Q as

above there exists a Q-Wiener process on U.

Proof

1. Let W.t/, t 2 Œ0;T�, be a Q-Wiener process in U.
Since P ı W.t/�1 D N.0; tQ/, we see as in the proof of Proposition 2.1.6 that

W.t/ D
X
k2N

p

kˇk.t/ek; t 2 Œ0;T�;

with

ˇk.t/ W
(

D hW.t/;ekip

k

if k 2 N with 
k > 0

� 0 else,
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for all t 2 Œ0;T�. Furthermore, P ı ˇ�1
k .t/ D N.0; t/, k 2 N, and ˇk.t/, k 2 N, are

independent for each fixed t 2 Œ0;T�.
Now we fix k 2 N. First we show that ˇk.t/, t 2 Œ0;T�, is a Brownian motion:
If we take an arbitrary partition 0 D t0 6 t1 < � � � < tn 6 T, n 2 N, of Œ0;T�

we get that

ˇk.t1/; ˇk.t2/ � ˇk.t1/; : : : ; ˇk.tn/� ˇk.tn�1/

are independent for each k 2 N since for 1 6 j 6 n

ˇk.tj/ � ˇk.tj�1/ D
(

1p

k

˝
W.tj/ � W.tj�1/; ek

˛
if 
k > 0,

0 else.

Moreover, we obtain that for the same reason P ı �ˇk.t/�ˇk.s/
��1 D N.0; t � s/

for 0 6 s 6 t 6 T.
In addition,

t 7! 1p

k

˝
W.t/; ek

˛ D ˇk.t/

is P-a.s. continuous for all k 2 N.
Secondly, it remains to prove that ˇk, k 2 N, are independent.
We take k1; : : : ; kn 2 N, n 2 N, ki 6D kj if i 6D j and an arbitrary partition

0 D t0 6 t1 6 : : : 6 tm 6 T, m 2 N.
Then we have to show that

�
�
ˇk1 .t1/; : : : ; ˇk1 .tm/

�
; : : : ; �

�
ˇkn.t1/; : : : ; ˇkn.tm/

�

are independent.
We will prove this by induction with respect to m:
If m D 1 it is clear that ˇk1 .t1/; : : : ; ˇkn.t1/ are independent as observed above.

Thus, we now take a partition 0 D t0 6 t1 6 : : : 6 tmC1 6 T and assume that

�
�
ˇk1 .t1/; : : : ; ˇk1 .tm/

�
; : : : ; �

�
ˇkn.t1/; : : : ; ˇkn.tm/

�

are independent. We note that

�
�
ˇki.t1/; : : : ; ˇki.tm/; ˇki.tmC1/

�
D �

�
ˇki.t1/; : : : ; ˇki.tm/; ˇki.tmC1/� ˇki.tm/

�
; 1 6 i 6 n;
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and that

ˇki.tmC1/ � ˇki.tm/ D
8<
:

1p

ki

˝
W.tmC1/� W.tm/; eki

˛
U

if 
k > 0,

0 else,

1 6 i 6 n, are independent since they are pairwise orthogonal in
L2.�;F ;PIR/ and since W.tmC1/ � W.tm/ is a Gaussian random variable.
If we take Ai;j 2 B.R/, 1 6 i 6 n, 1 6 j 6 m C 1, then because of the
independence of �

�
W.s/

ˇ̌
s 6 tm

�
and �

�
W.tmC1/� W.tm/

�
we get that

P
	 n\

iD1

˚
ˇki.t1/ 2 Ai;1; : : : ; ˇki.tm/ 2 Ai;m;

ˇki.tmC1/ � ˇki.tm/ 2 Ai;mC1
�


DP
	 n\

iD1

m\
jD1

˚
ˇki.tj/ 2 Ai;j

�
„ ƒ‚ …
2 ��W.s/ ˇ̌ s 6 tm

�
\

n\
iD1

˚
ˇki.tmC1/ � ˇki.tm/ 2 Ai;mC1

�
„ ƒ‚ …

2 ��W.tmC1/� W.tm/
�




DP
	 n\

iD1

m\
jD1

˚
ˇki.tj/ 2 Ai;j

�
 � P
	 n\

iD1

˚
ˇki.tmC1/ � ˇki.tm/ 2 Ai;mC1

�


D
� nY

iD1
P
	 m\

jD1

˚
ˇki.tj/ 2 Ai;j

�
�

�
	 nY

iD1
P
˚
ˇki.tmC1/� ˇki.tm/ 2 Ai;mC1

�


D
nY

iD1
P
	 m\

jD1

˚
ˇki.tj/ 2 Ai;j

�\ ˚
ˇki.tmC1/� ˇki.tm/ 2 Ai;mC1

�


and therefore the assertion follows.
2. If we define

W.t/ WD
X
k2N

p

kˇk.t/ek; t 2 Œ0;T�;

where ˇk, k 2 N, are independent real-valued continuous Brownian motions then
it is clear that W.t/, t 2 Œ0;T�, is well-defined in L2.�;F ;PI U/. Besides, it is
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obvious that the process W.t/, t 2 Œ0;T�, starts at zero and that

P ı �W.t/ � W.s/
��1 D N

�
0; .t � s/Q

�
; 0 6 s < t 6 T;

by Proposition 2.1.6. It is also clear that the increments are independent.
Thus it remains to show that the above series converges in

L2
�
�;F ;PI C.Œ0;T�;U/

�
. To this end we set

WN.t; !/ WD
NX

kD1

p

kˇk.t; !/ek

for all .t; !/ 2 �T WD Œ0;T� � � and N 2 N. Then WN , N 2 N, is P-a.s.
continuous and we have that for M < N

E
	

sup
t2Œ0;T�

��WN.t/ � WM.t/
��2

U



D E

	
sup

t2Œ0;T�

NX
kDMC1


kˇ
2
k .t/




6
NX

kDMC1

kE

�
sup

t2Œ0;T�
ˇ2k .t/

�
6 4

NX
kDMC1


k sup
t2Œ0;T�

E
�
ˇk.t/

2
�

6 4T
NX

kDMC1

k

because of Doob’s maximal inequality for nonnegative real-valued submartin-
gales. As

X
k2N


k D tr Q < 1, the assertion follows. ut

Definition 2.1.11 (Normal Filtration) A filtration Ft, t 2 Œ0;T�, on a probability
space .�;F ;P/ is called normal if:

• F0 contains all elements A 2 F with P.A/ D 0 and
• Ft D FtC D

\
s>t

Fs for all t 2 Œ0;TŒ .

Definition 2.1.12 (Q-Wiener Process with Respect to a Filtration) A Q-Wiener
process W.t/, t 2 Œ0;T�, is called a Q-Wiener process with respect to a filtration Ft,
t 2 Œ0;T�, if:

• W.t/, t 2 Œ0;T�, is adapted to Ft, t 2 Œ0;T�, and
• W.t/ � W.s/ is independent of Fs for all 0 6 s 6 t 6 T.

In fact it is possible to show that any U-valued Q-Wiener process W.t/, t 2 Œ0;T�,
is a Q-Wiener process with respect to a normal filtration:

We define

N WD ˚
A 2 F ˇ̌

P.A/ D 0
�
; F0

t WD �
�
W.s/

ˇ̌
s 6 t

�
and QF0

t WD �.F0
t [ N /:
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Then it is clear that

Ft WD
\
s>t

QF0
s ; t 2 Œ0;TŒ; FT WD QF0

T ; (2.3)

is a normal filtration, called the normal filtration associated to W.t/; t 2 Œ0;T�, and
we get:

Proposition 2.1.13 Let W.t/, t 2 Œ0;T�, be an arbitrary U-valued Q-Wiener
process on a probability space .�;F ;P/. Then it is a Q-Wiener process with respect
to the normal filtration Ft, t 2 Œ0;T�, given by (2.3).

Proof It is clear that W.t/, t 2 Œ0;T�, is adapted to Ft, t 2 Œ0;T�. Hence we only
have to verify that W.t/ � W.s/ is independent of Fs, 0 6 s < t 6 T. But if we fix
0 6 s < t 6 T it is clear that W.t/ � W.s/ is independent of QFs since

�
�
W.t1/; W.t2/; : : : ; W.tn/

�
D �

�
W.t1/; W.t2/� W.t1/; : : : ; W.tn/� W.tn�1/

�

for all 0 6 t1 < t2 < � � � < tn 6 s. Of course, W.t/ � W.s/ is then also independent
of QF0

s . To prove now that W.t/�W.s/ is independent of Fs it is enough to show that

P
	˚

W.t/ � W.s/ 2 A
�\ B



D P

�
W.t/ � W.s/ 2 A

� � P.B/

for any B 2 Fs and any closed subset A � U as E WD fA � U j A closedg generates
B.U/ and is stable under finite intersections. But we have

P
	˚

W.t/ � W.s/ 2 A
�\ B




D E
	
1A ı �W.t/ � W.s/

� � 1B




D lim
n!1 E

�h	
1 � n dist

�
W.t/ � W.s/;A

�
 _ 0
i
1B

�

D lim
n!1 lim

m!1 E

�h	
1 � n dist

�
W.t/ � W.s C 1

m/;A
�
 _ 0

i
1B

�

D lim
n!1 lim

m!1 E

�	
1 � n dist

�
W.t/ � W.s C 1

m /;A
�
 _ 0

�
� P.B/

D P
�
W.t/ � W.s/ 2 A

� � P.B/;

since W.t/ � W.s C 1
m / is independent of QF0

sC 1
m

� Fs for all m 2 N. ut
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2.2 Martingales in General Banach Spaces

Analogously to the real-valued case it is possible to define the conditional expecta-
tion of any Bochner integrable random variable with values in an arbitrary separable
Banach space

�
E; k k�. This result is formulated in the following proposition.

Proposition 2.2.1 (Existence of the Conditional Expectation) Assume that E is
a separable real Banach space. Let X be a Bochner integrable E-valued random
variable defined on a probability space .�;F ;P/ and let G be a �-field contained
in F .

Then there exists a unique, up to a set of P-probability zero, Bochner integrable
E-valued random variable Z, measurable with respect to G, such that

Z
A

X dP D
Z

A
Z dP for all A 2 G: (2.4)

The random variable Z is denoted by E.X j G/ and is called the conditional
expectation of X given G. Furthermore,

��E.X j G/�� 6 E
�kXk ˇ̌ G�:

Proof (Cf. [26, Proposition 1.10, p. 27]) Let us first show the uniqueness.
Since E is a separable Banach space, there exist ln 2 E�, n 2 N, separating the

points of E. Suppose that Z1;Z2 are Bochner integrable, G-measurable mappings
from� to E such that

Z
A

X dP D
Z

A
Z1 dP D

Z
A

Z2 dP for all A 2 G.

Then for n 2 N by Proposition A.2.2

Z
A

�
ln.Z1/� ln.Z2/

�
dP D 0 for all A 2 G.

Applying this with A WD ˚
ln.Z1/ > ln.Z2/

�
and A WD ˚

ln.Z1/ < ln.Z2/
�

it follows
that ln.Z1/ D ln.Z2/ P-a.s., so

�0 WD
\
n2N

˚
ln.Z1/ D ln.Z2/

�

has P-measure one. Since ln, n 2 N, separate the points of E; it follows that Z1 D Z2
on �0.
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To show the existence we first assume that X is a simple function. So, there exist
x1; : : : ; xN 2 E and pairwise disjoint sets A1; : : : ;AN 2 F such that

X D
NX

kD1
xk1Ak :

Define

Z WD
NX

kD1
xkE.1Ak j G/:

Then obviously Z is G-measurable and satisfies (2.4). Furthermore,

kZk 6
NX

kD1
kxkkE.1Ak j G/ D E

	 NX
kD1

kxkk1Ak

ˇ̌̌
G



D E
�kXk ˇ̌ G�: (2.5)

Taking the expectation we get

E
�kZk� 6 E

�kXk�: (2.6)

For general X take simple functions Xn, n 2 N, as in Lemma A.1.4 and define Zn

as above with Xn replacing X. Then by (2.6) for all n;m 2 N

E
�kZn � Zmk� 6 E

�kXn � Xmk�;
so Z WD limn!1 Zn exists in L1.�;F ;PI E/. Therefore, for all A 2 G

Z
A

X dP D lim
n!1

Z
A

Xn dP D lim
n!1

Z
A

Zn dP D
Z

A
Z dP:

Clearly, Z can be chosen G-measurable, since so are the Zn. Furthermore, by (2.5)

��E.X j G/�� D kZk D lim
n!1kZnk 6 lim

n!1 E
�kXnk ˇ̌ G� D E

�kXk ˇ̌ G�;
where the limits are taken in L1.P/. ut

Later we will need the following result:

Proposition 2.2.2 Let .E1; E1/ and .E2; E2/ be two measurable spaces and‰ W E1�
E2 ! R be a bounded measurable function. Let X1 and X2 be two random variables
on .�;F ;P/ with values in .E1; E1/ and .E2; E2/ respectively, and let G � F be a
fixed �-field.
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Assume that X1 is G-measurable and X2 is independent of G, then for P-a.e.
! 2 �

E
�
‰.X1;X2/

ˇ̌ G�.!/ D E Œ‰.X1.!/;X2/� :

Proof A simple exercise or see [26, Proposition 1.12, p. 29]. ut
Remark 2.2.3 The previous proposition can be easily extended to the case where
the function‰ is not necessarily bounded but nonnegative.

Definition 2.2.4 Let M.t/, t > 0, be a stochastic process on .�;F ;P/ with values
in a separable Banach space E, and let Ft, t > 0, be a filtration on .�;F ;P/.

The process M is called an Ft-martingale, if:

• E
�kM.t/k� < 1 for all t > 0,

• M.t/ is Ft-measurable for all t > 0,
• E

�
M.t/

ˇ̌ Fs
� D M.s/ P-a.s. for all 0 6 s 6 t < 1.

Remark 2.2.5 Let M be as above such that E.kM.t/k/ < 1 for all t 2 Œ0;T�. Then
M is an Ft-martingale if and only if l.M/ is an Ft-martingale for all l 2 E�. In
particular, results like optional stopping etc. extend to E-valued martingales.

There is the following connection to real-valued submartingales.

Proposition 2.2.6 If M.t/, t > 0, is an E-valued Ft-martingale and p 2 Œ1;1/,
then

��M.t/
��p

, t > 0, is a real-valued Ft-submartingale.

Proof Since E is separable there exist lk 2 E�, k 2 N, such that kzk D sup
k2N

lk.z/ for

all z 2 E. Then by Proposition A.2.2 for s < t

E
�kMtk

ˇ̌ Fs
�

> sup
k

E
�
lk.Mt/

ˇ̌ Fs
�

D sup
k

lk
�
E.Mt j Fs/

�

D sup
k

lk.Ms/ D kMsk:

This proves the assertion for p D 1. Then Jensen’s inequality implies the assertion
for all p 2 Œ1;1/. ut
Theorem 2.2.7 (Maximal Inequality) Let p > 1 and let E be a separable Banach
space.

If M.t/, t 2 Œ0;T�, is a right-continuous E-valued Ft-martingale, then

�
E
	

sup
t2Œ0;T�

��M.t/
��p

� 1

p

6 p

p � 1 sup
t2Œ0;T�

	
E
�kM.t/kp

�
 1
p

D p

p � 1

	
E
�kM.T/kp

�
 1
p
:
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Proof The inequality is a consequence of the previous proposition and Doob’s
maximal inequality for nonnegative real-valued submartingales. ut
Remark 2.2.8 We note that in the inequality in Theorem 2.2.7 the first norm
is the standard norm on Lp

�
�;F ;PI L1.Œ0;T�I E/

�
, whereas the second is the

standard norm on L1�Œ0;T�I Lp.�;F ;PI E/
�
. So, for right-continuous E-valued Ft-

martingales these two norms are equivalent.

Now we fix 0 < T < 1 and denote by M2
T.E/ the space of all E-valued

continuous, square integrable martingales M.t/, t 2 Œ0;T�. This space will play
an important role with regard to the definition of the stochastic integral. We will
especially use the following fact.

Proposition 2.2.9 The space M2
T.E/ equipped with the norm

kMkM2
T

WD sup
t2Œ0;T�

	
E
�kM.t/k2�
 1

2 D
	

E
�kM.T/k2�
 1

2

6
	

E
�

sup
t2Œ0;T�

kM.t/k2�
 1
2 6 2 � E

�kM.T/k2� 12

is a Banach space.

Proof By the Riesz–Fischer theorem the space L2
�
�;F ;PI L1�Œ0;T�;E�� is com-

plete. So, we only have to show that M2
T is closed. But this is obvious since even

L1.�;F ;PI E/-limits of martingales are martingales. ut
Proposition 2.2.10 Let T > 0 and W.t/, t 2 Œ0;T�, be a U-valued Q-Wiener
process with respect to a normal filtration Ft, t 2 Œ0;T�, on a probability space
.�;F ;P/. Then W.t/, t 2 Œ0;T�, is a continuous square integrable Ft-martingale,
i.e. W 2 M2

T.U/.

Proof The continuity is clear by definition and for each t 2 Œ0;T� we have that
E
�kW.t/k2U

� D t tr Q < 1 (see Proposition 2.1.4). Hence let 0 6 s 6 t 6 T and
A 2 Fs. Then we get by Proposition A.2.2 that


Z
A

W.t/ � W.s/ dP; u

�
U

D
Z

A

˝
W.t/ � W.s/; u

˛
U

dP

D P.A/
Z ˝

W.t/ � W.s/; u
˛
U dP D 0

for all u 2 U as Fs is independent of W.t/ � W.s/ and E
�hW.t/ � W.s/; uiU

� D 0

for all u 2 U. Therefore,

Z
A

W.t/ dP D
Z

A
W.s/ dP; for all A 2 Fs:

ut
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2.3 The Definition of the Stochastic Integral

For the whole section we fix a positive real number T and a probability space
.�;F ;P/ and we define �T WD Œ0;T� � � and PT WD dt ˝ P where dx is the
Lebesgue measure.

Moreover, we let Q 2 L.U/ be symmetric, nonnegative and with finite trace and
consider a Q-Wiener process W.t/, t 2 Œ0;T�, with respect to a normal filtration Ft,
t 2 Œ0;T�.

2.3.1 Scheme of the Construction of the Stochastic Integral

Step 1: First we consider a certain class E of elementary L.U;H/-valued pro-
cesses and define the mapping

Int W E ! M2
T.H/ DW M2

T

ˆ 7! R t
0
ˆ.s/ dW.s/; t 2 Œ0;T�:

Step 2: We prove that there is a certain norm on E such that

Int W E ! M2
T

is an isometry. Since M2
T is a Banach space this implies that Int can be extended

to the abstract completion NE of E . This extension remains isometric and it is
unique.

Step 3: We give an explicit representation of NE .
Step 4: We show how the definition of the stochastic integral can be extended by

localization.

2.3.2 The Construction of the Stochastic Integral in Detail

Step 1: First we define the class E of all elementary processes as follows.

Definition 2.3.1 (Elementary Process) An L D L.U;H/-valued process ˆ.t/, t 2
Œ0;T�, on .�;F ;P/ with normal filtration Ft, t 2 Œ0;T�, is said to be elementary if
there exist 0 D t0 < � � � < tk D T, k 2 N, such that

ˆ.t/ D
k�1X
mD0

ˆm1�tm;tmC1�.t/; t 2 Œ0;T�;
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where:

• ˆm W � ! L.U;H/ is Ftm-measurable, w.r.t. the strong Borel �-algebra on
L.U;H/, 0 6 m 6 k � 1,

• ˆm takes only a finite number of values in L.U;H/, 0 6 m 6 k � 1.

We now define

Int.ˆ/.t/ WD
Z t

0

ˆ.s/ dW.s/ WD
k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�
; t 2 Œ0;T�;

(this is obviously independent of the representation) for all ˆ 2 E .

Proposition 2.3.2 Let ˆ 2 E . Then the stochastic integral
Z t

0

ˆ.s/ dW.s/, t 2
Œ0;T�, defined above, is a continuous square integrable martingale with respect to
Ft, t 2 Œ0;T�, i.e.

Int W E ! M2
T :

Proof Let ˆ 2 E be given by

ˆ.t/ D
k�1X
mD0

ˆm1�tm;tmC1�.t/; t 2 Œ0;T�;

as in Definition 2.3.1. Then it is clear that

t 7!
Z t

0

ˆ.s/ dW.s/ D
k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�

is P-a.s. continuous because of the continuity of the Wiener process and the
continuity of ˆm.!/ W U ! H, 0 6 m 6 k � 1, ! 2 �. In addition, we get
for each summand that

���ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

����
6kˆmkL.U;H/

��W.tmC1 ^ t/� W.tm ^ t/
��

U
:

Since W.t/, t 2 Œ0;T�, is square integrable and ! ! kˆm.!/kL.U;H/ is bounded

(because ˆm.�/ is finite), this implies that
Z t

0

ˆ.s/ dW.s/ is square integrable for

each t 2 Œ0;T�.
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To prove the martingale property we take 0 6 s 6 t 6 T and a set A from Fs.
If
˚
ˆm.!/

ˇ̌
! 2 �

� WD fLm
1 ; : : : ;L

m
km

g, we obtain by Proposition A.2.2 and the
martingale property of the Wiener process that

Z
A

k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�
dP

D
X

06m6k�1;
tmC1<s

Z
A
ˆm
�
W.tmC1 ^ s/ � W.tm ^ s/

�
dP

C
X

06m6k�1;
s6tmC1

kmX
jD1

Z
A\fˆmDLm

j g
Lm

j

�
W.tmC1 ^ t/ � W.tm ^ t/

�
dP

D
X

06m6k�1;
tmC1<s

Z
A
ˆm
�
W.tmC1 ^ s/ � W.tm ^ s/

�
dP

C
X

06m6k�1;
s6tmC1

kmX
jD1

Lm
j

Z
A\fˆmDLm

j g„ ƒ‚ …
2Fs_tm

�
W.tmC1 ^ t/ � W.tm ^ t/

�
dP

D
X

06m6k�1;
tmC1<s

Z
A
ˆm
�
W.tmC1 ^ s/ � W.tm ^ s/

�
dP

C
X

06m6k�1;
tm<s6tmC1

kmX
jD1

Lm
j

Z
A\fˆmDLm

j g
�
W.tmC1 ^ s/ � W.tm ^ s/

�
dP

D
Z

A

k�1X
mD0

ˆm
�
W.tmC1 ^ s/ � W.tm ^ s/

�
dP:

ut
Step 2: To verify the assertion that there is a norm on E such that Int W E ! M2

T
is an isometry, we have to introduce the following notion.

Definition 2.3.3 (Hilbert–Schmidt Operator) Let ek, k 2 N, be an orthonormal
basis of U. An operator A 2 L.U;H/ is called Hilbert–Schmidt if

X
k2N

hAek;Aeki < 1:

In Appendix B we take a close look at this notion. So here we only summarize
the results which are important for the construction of the stochastic integral.
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The definition of a Hilbert–Schmidt operator and the number

kAkL2 WD
	X

k2N
kAekk2


 1
2

are independent of the choice of the basis (see Remark B.0.6(i)). Moreover, the
space L2.U;H/ of all Hilbert–Schmidt operators from U to H equipped with the
inner product

hA;BiL2 WD
X
k2N

hAek;Beki

is a separable Hilbert space (see Proposition B.0.7). Later, we will use the fact
that kAkL2.U;H/ D kA�kL2.H;U/, where A� is the adjoint operator of A (see
Remark B.0.6(i)). Furthermore, the composition of a Hilbert–Schmidt operator with
a bounded linear operator is again Hilbert–Schmidt.

Besides we recall the following fact.

Proposition 2.3.4 If Q 2 L.U/ is nonnegative and symmetric then there exists
exactly one element Q

1
2 2 L.U/ nonnegative and symmetric such that Q

1
2 ıQ

1
2 D Q.

If, in addition, tr Q < 1 we have that Q
1
2 2 L2.U/, kQ

1
2 k2L2 D tr Q and that

L ı Q
1
2 2 L2.U;H/ for all L 2 L.U;H/.

Proof [68, Theorem VI.9, p. 196]. ut
After these preparations we simply calculate the M2

T -norm of

Z t

0

ˆ.s/ dW.s/; t 2 Œ0;T�;

and get the following result.

Proposition 2.3.5 If ˆ D Pk�1
mD0 ˆm1�tm;tmC1� is an elementary L.U;H/-valued

process then

����
Z �

0

ˆ.s/ dW.s/

����
2

M2
T

D E

�Z T

0

��ˆ.s/ ı Q
1
2

��2
L2

ds

�
DW kˆk2T (“Itô-isometry”):

Proof If we set �m WD W.tmC1/ � W.tm/ then we get that

����
Z �

0

ˆ.s/ dW.s/

����
2

M2
T

D E

 ����
Z T

0

ˆ.s/ dW.s/

����
2

H

!
D E

����
k�1X
mD0

ˆm�m

���2
H

�

D E
	 k�1X

mD0
kˆm�mk2H



C 2E

	 X
06m<n6k�1

hˆm�m; ˆn�niH



:



2.3 The Definition of the Stochastic Integral 31

Claim 1:

E
	 k�1X

mD0
kˆm�mk2H



D

k�1X
mD0

.tmC1 � tm/E
�kˆm ı Q

1
2 k2L2

�

D
Z T

0

E
	��ˆ.s/ ı Q

1
2

��2
L2



ds:

To prove this we take an orthonormal basis fk, k 2 N, of H and get by the Parseval
identity and Levi’s monotone convergence theorem that

E
�kˆm�mk2H

� D
X
l2N

E
�hˆm�m; fli2H

� D
X
l2N

E
	

E
�h�m; ˆ

�
m fli2U

ˇ̌ Ftm

�

:

Taking an orthonormal basis ek, k 2 N, of U we obtain that

ˆ�
m fl D

X
k2N

h fl; ˆmekiHek:

Since h fl; ˆmekiH is Ftm-measurable, this implies thatˆ�
m fl is Ftm-measurable by

Proposition A.1.3. Using the fact that �.�m/ is independent of Ftm we obtain by
Proposition 2.2.2 that for P-a.e. ! 2 �

E
�h�m; ˆ

�
m fli2U

ˇ̌ Ftm

�
.!/ D E

	˝
�m; ˆ

�
m.!/fl

˛2
U




D .tmC1 � tm/
D
Q
�
ˆ�

m.!/fl
�
; ˆ�

m.!/fl
E
U
;

since E
�h�m; ui2U

� D .tmC1 � tm/hQu; uiU for all u 2 U. Thus, the symmetry of

Q
1
2 finally implies that

E
�kˆm�mk2H

� D
X
l2N

E
	

E
�h�m; ˆ

�
m fli2U

ˇ̌ Ftm

�


D .tmC1 � tm/
X
l2N

E
�hQˆ�

m fl; ˆ
�
m fliU

�

D .tmC1 � tm/
X
l2N

E
	��Q

1
2 ˆ�

m fl
��2

U




D .tmC1 � tm/E

�����ˆm ı Q
1
2
�����2

L2.H;U/

�

D .tmC1 � tm/E
	��ˆm ı Q

1
2

��2
L2.U;H/



:
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Hence the first assertion is proved and it only remains to verify the following
claim.

Claim 2:

E
�hˆm�m; ˆn�niH

� D 0 ; 0 6 m < n 6 k � 1:

But this can be proved in a similar way to Claim 1:

E
�hˆm�m; ˆn�niH

� D E
	

E
�hˆ�

nˆm�m; �niU

ˇ̌ Ftn

�


D
Z

E
	˝
ˆ�

n .!/ˆm.!/�m.!/;�n
˛
U



P.d!/ D 0;

since E
�hu; �niU

� D 0 for all u 2 U (see Proposition 2.2.2). Hence the assertion
follows. ut
Hence the right norm on E has been identified. But strictly speaking k kT is only

a seminorm on E . Therefore, we have to consider equivalence classes of elementary
processes with respect to k kT to get a norm on E . For simplicity we will not change
the notation but stress the following fact.

Remark 2.3.6 If two elementary processesˆ and Q̂ belong to one equivalence class
with respect to k kT it does not follow that they are equal PT -a.e. because their values
only have to correspond on Q

1
2 .U/ PT-a.e.

Thus we have finally shown that

Int W �E ; k kT
� ! �M2

T ; k kM2
T

�

is an isometric transformation. Since E is dense in the abstract completion NE of E
with respect to k kT it is clear that there is a unique isometric extension of Int to NE .

Step 3: To give an explicit representation of NE it is useful, at this moment, to
introduce the subspace U0 WD Q

1
2 .U/ with the inner product given by

hu0; v0i0 WD ˝
Q� 1

2 u0;Q
� 1
2 v0
˛
U;

u0; v0 2 U0, where Q� 1
2 is the pseudo inverse of Q

1
2 in the case that Q is not one-

to-one. Then we get by Proposition C.0.3(i) that .U0; h ; i0/ is again a separable
Hilbert space.
The separable Hilbert space L2.U0;H/ is called L02. By Proposition C.0.3(ii) we

know that Q
1
2 gk, k 2 N, is an orthonormal basis of

�
U0; h ; i0

�
if gk, k 2 N, is an

orthonormal basis of
�
Ker Q

1
2

�?
. This basis can be supplemented to a basis of U
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by elements of Ker Q
1
2 . Thus we obtain that

kLkL02
D ��L ı Q

1
2

��
L2

for each L 2 L02:

Define L.U;H/0 WD ˚
T jU0

ˇ̌
T 2 L.U;H/

�
. Since Q

1
2 2 L2.U/ it is clear that

L.U;H/0 � L02 and that the k kT -norm of ˆ 2 E can be written in the following
way:

kˆkT D
 

E

�Z T

0

kˆ.s/k2
L02

ds

�! 1
2

:

We also need the following �-field:

PT WD �
	˚
�s; t� � Fs

ˇ̌
0 6 s < t 6 T; Fs 2 Fs

� [ ˚f0g � F0
ˇ̌

F0 2 F0
�


D �
�
Y W �T ! R

ˇ̌
Y is left-continuous and adapted to

Ft; t 2 Œ0;T��:
Let QH be an arbitrary separable Hilbert space. If Y W �T ! QH is PT=B. QH/-
measurable it is called ( QH-)predictable.
If, for example, the process Y itself is continuous and adapted to Ft, t 2 Œ0;T�,
then it is predictable.
So, we are now able to characterize NE .

Claim There is an explicit representation of NE and it is given by

N 2
W.0;TI H/ WD ˚

ˆ W Œ0;T� �� ! L02
ˇ̌
ˆ is predictable and kˆkT < 1�

D L2
�
Œ0;T� ��;PT ; dt ˝ PI L02

�
:

For simplicity we also write N 2
W.0;T/ or N 2

W instead of N 2
W.0;TI H/.

To prove this claim we first notice the following facts:

1. Since L.U;H/0 � L02 and since any ˆ 2 E is L02-predictable by construction we
have that E � N 2

W .
2. Because of the completeness of L02 we get by Appendix A that

N 2
W D L2.�T ;PT ;PT I L02/

is also complete.

Therefore N 2
W is at least a candidate for a representation of NE . Thus it only remains

to show that E is a dense subset of N 2
W . But this is formulated in Proposition 2.3.8

below, which can be proved with the help of the following lemma.
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Lemma 2.3.7 There is an orthonormal basis of L02 consisting of elements of
L.U;H/0. This especially implies that L.U;H/0 is a dense subset of L02.

Proof Since Q is symmetric, nonnegative and tr Q < 1 we know by
Lemma 2.1.5 that there exists an orthonormal basis ek, k 2 N, of U such that
Qek D 
kek, 
k > 0, k 2 N. In this case Q

1
2 ek D p


kek, k 2 N with 
k > 0, is an
orthonormal basis of U0 (see Proposition C.0.3(ii)).

If fk, k 2 N, is an orthonormal basis of H then by Proposition B.0.7 we know that

fj ˝
p

kek D fjh

p

kek; �iU0 D 1p


k
fjhek; �iU; j; k 2 N; 
k > 0;

form an orthonormal basis of L20 consisting of operators in L.U;H/0. ut
Proposition 2.3.8 If ˆ 2 N 2

W then there exists a sequenceˆn, n 2 N, of L.U;H/0-
valued elementary processes such that

kˆ �ˆnkT �! 0 as n ! 1:

Proof

Step 1: If ˆ 2 N 2
W there exists a sequence of simple random variables ˆn DPMn

kD1 Ln
k1An

k
, An

k 2 PT and Ln
k 2 L02, n 2 N, such that

kˆ �ˆnkT �! 0 as n ! 1:

As L02 is a separable Hilbert space, this is a simple consequence of Lemma A.1.4
and Lebesgue’s dominated convergence theorem.
Thus the assertion is reduced to the case thatˆ D L1A where L 2 L02 and A 2 PT .

Step 2: Let A 2 PT and L 2 L02. Then there exists a sequence Ln, n 2 N, in
L.U;H/0 such that

kL1A � Ln1AkT �! 0 as n ! 1:

This result is obvious by Lemma 2.3.7 and thus now we only have to consider
the case when ˆ D L1A, L 2 L.U;H/0 and A 2 PT .

Step 3: If ˆ D L1A, L 2 L.U;H/0, A 2 PT , then there is a sequence ˆn, n 2 N,
of elementary L.U;H/0-valued processes in the sense of Definition 2.3.1 such
that

kL1A �ˆnkT �! 0 as n �! 1:
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To show this it is sufficient to prove that for any " > 0 there is a finite union

ƒ WD
N[

nD1
An of pairwise disjoint predictable rectangles

An 2 ˚�s; t� � Fs

ˇ̌
0 6 s < t 6 T; Fs 2 Fs

� [ ˚f0g � F0
ˇ̌

F0 2 F0
� DW A

such that

PT
�
.A nƒ/ [ .ƒ n A/

�
< ":

For then we get that
PN

nD1 L1An differs from an elementary process by a function
of type L1f0g�F0 with F0 2 F0, which has k kT -norm zero, and that

���L1A �
NX

nD1
L1An

���2
T

D E

 Z T

0

����L
	
1A �

NX
nD1

1An


����
2

L02

ds

!
6 "kLk2

L02
:

Hence we define

K WD
n[

i2I

Ai

ˇ̌
ˇ I is finite and Ai 2 A, i 2 I

o
:

Then K is an algebra and any element in K can be written as a finite disjoint
union of elements in A. Now let G be the family of all A 2 PT which can be
approximated by elements of K in the above sense. Then G is a Dynkin system,
because obviously �T 2 K � G, and Ac 2 G if A 2 G. Furthermore, if Ai 2
G; i 2 N, pairwise disjoint, and � > 0, then there exists an N 2 N such that

PT

 1[
iDNC1

Ai

!
D

1X
iDNC1

PT.Ai/ <
�

2

andƒi 2 K such that PT ..Ainƒi/[ .ƒinAi// <
�

2iC2 . Henceƒ WD SN
iD1 ƒi 2 K

and

PT

 1[
iD1

Ain
N[

iD1
ƒi

!
[
 

N[
iD1
ƒin

1[
iD1

Ai

!
6 PT

 1[
iDNC1

Ai

!
C PT

 
N[

iD1
Ainƒi

!

C PT

 
N[

iD1
ƒinAi

!
< �:

Therefore PT D �.K/ D D.K/ � G as K � G. ut
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Step 4: Finally, by the so-called localization procedure we shall extend the
definition of the stochastic integral to the linear space

NW.0;TI H/ WD
(
ˆ W �T ! L02

ˇ̌
ˇ̌̌
ˆ is predictable with

P

�Z T

0

kˆ.s/k2
L02

ds < 1
�

D 1

)
:

For simplicity we also write NW.0;T/ or NW instead of NW.0;TI H/ and NW is
called the class of stochastically integrable processes on Œ0;T�.
The extension is done in the following way:
For ˆ 2 NW we define

�n WD inf

�
t 2 Œ0;T�

ˇ̌
ˇ̌ Z t

0

kˆ.s/k2
L02

ds > n

�
^ T: (2.7)

Then by the right-continuity of the filtration Ft, t 2 Œ0;T�, we get that

f�n 6 tg D
\
m2N

�
�n < t C 1

m

�

D
\
m2N

[
q2Œ0;tC 1

m Œ\Q

�Z q

0

kˆ.s/k2
L02

ds > n

�
„ ƒ‚ …
2Fq by the real Fubini theorem„ ƒ‚ …

2F
tC 1

m
and decreasing in m

2 Ft:

Therefore �n, n 2 N, is an increasing sequence of stopping times with respect to
Ft, t 2 Œ0;T�, such that

E

�Z T

0

k1�0;�n �.s/ˆ.s/k2L02 ds

�
6 n < 1:

In addition, the processes 1�0;�n�ˆ, n 2 N, are still L02-predictable since 1�0;�n� is
left-continuous and .Ft/-adapted or since

�0; �n� WD ˚
.s; !/ 2 �T

ˇ̌
0 < s 6 �n.!/

�

D
	˚
.s; !/ 2 �T

ˇ̌
�n.!/ < s 6 T

� [ f0g ��

c

D
	[

q2Q

�
�q;T� � f�n 6 qg„ ƒ‚ …

2Fq

�

„ ƒ‚ …
2PT

[ f0g ��

c 2 PT :
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Thus we get that the stochastic integrals

Z t

0

1�0;�n �.s/ˆ.s/ dW.s/; t 2 Œ0;T�;

are well-defined for all n 2 N. For arbitrary t 2 Œ0;T� we set

Z t

0

ˆ.s/ dW.s/ WD
Z t

0

1�0;�n�.s/ˆ.s/ dW.s/ on f�n � tg: (2.8)

(Note that the sequence �n, n 2 N, even reaches T P-a.s., in the sense that for
P-a.e. ! 2 � there exists an n.!/ 2 N such that �n.!/ D T for all n > n.!/.)
To show that this definition is consistent we have to prove that for arbitrary
natural numbers m < n and t 2 Œ0;T�

Z t

0

1�0;�m�.s/ˆ.s/ dW.s/ D
Z t

0

1�0;�n �.s/ˆ.s/ dW.s/ P-a.s.

on f�m > tg � f�n > tg. This result follows from the following lemma, which
also implies that the process in (2.8) is a continuous H-valued local martingale.

Lemma 2.3.9 Assume that ˆ 2 N 2
W and that � is an Ft-stopping time such that

P.� 6 T/ D 1. Then there exists a P-null set N 2 F independent of t 2 Œ0;T� such
that

Z t

0

1�0;��.s/ˆ.s/ dW.s/ D Int
�
1�0;��ˆ

�
.t/ D Int.ˆ/.� ^ t/

D
Z �^t

0

ˆ.s/ dW.s/ on Nc for all t 2 Œ0;T�:

Proof Since both integrals which appear in the equation are P-a.s. continuous we
only have to prove that they are equal P-a.s. at any fixed time t 2 Œ0;T�.
Step 1: We first consider the case that ˆ 2 E and that � is a simple stopping time

which means that it takes only a finite number of values.
Let 0 D t0 < t1 < � � � < tk 6 T, k 2 N, and

ˆ D
k�1X
mD0

ˆm1�tm;tmC1�

where ˆm W � ! L.U;H/ is Ftm -measurable and only takes a finite number of
values for all 0 6 m 6 k � 1.



38 2 Stochastic Integral in Hilbert Spaces

If � is a simple stopping time, there exists an n 2 N such that �.�/D fa0; : : : ; ang
and

� D
nX

jD0
aj1Aj ;

where 0 6 aj < ajC1 6 T and Aj D f� D ajg 2 Faj . Then we get that 1��;T�ˆ is
an elementary process since

1��;T�.s/ˆ.s/ D
k�1X
mD0

ˆm1�tm;tmC1�\��;T�.s/

D
k�1X
mD0

nX
jD0

1Ajˆm1�tm ;tmC1�\�aj ;T�.s/

D
k�1X
mD0

nX
jD0

1Ajˆm„ƒ‚…
Ftm_aj -measurable

1�tm_aj;tmC1_aj�.s/

and concerning the integral we are interested in, we obtain that

Z t

0

1�0;��.s/ˆ.s/ dW.s/ D
Z t

0

ˆ.s/ dW.s/�
Z t

0

1��;T�.s/ˆ.s/ dW.s/

D
k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�

�
k�1X
mD0

nX
jD0

1Ajˆm

	
W
�
.tmC1 _ aj/ ^ t

� � W
�
.tm _ aj/ ^ t

�


D
k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�

�
k�1X
mD0

nX
jD0

1Ajˆm

	
W
�
.tmC1 _ �/ ^ t

� � W
�
.tm _ �/ ^ t

�


D
k�1X
mD0

ˆm
�
W.tmC1 ^ t/ � W.tm ^ t/

�

�
k�1X
mD0

ˆm

	
W
�
.tmC1 _ �/ ^ t

� � W
�
.tm _ �/ ^ t

�
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D
k�1X
mD0

ˆm

	
W.tmC1 ^ t/ � W.tm ^ t/

� W
�
.tmC1 _ �/ ^ t

�C W
�
.tm _ �/ ^ t

�


D
k�1X
mD0

ˆm

	
W.tmC1 ^ � ^ t/ � W.tm ^ � ^ t/



D
Z t^�

0

ˆ.s/ dW.s/:

Step 2: Now we consider the case when ˆ is still an elementary process while �
is an arbitrary stopping time with P.� 6 T/ D 1.
Then there exists a sequence

�n D
2n�1X
kD0

T.k C 1/2�n1�Tk2�n;T.kC1/2�n � ı �; n 2 N;

of simple stopping times such that �n # � as n ! 1 and because of the
continuity of the stochastic integral we get that

Z �n^t

0

ˆ.s/ dW.s/
n!1���!

Z �^t

0

ˆ.s/ dW.s/ P-a.s.

Besides, we obtain (even for non-elementary processes ˆ) that

��1�0;�n�ˆ� 1�0;��ˆ
��2

T
D E

�Z T

0

1��;�n�.s/kˆ.s/k2L02 ds

�
n!1���! 0;

which by the definition of the integral implies that

E

 ����
Z t

0

1�0;�n�.s/ˆ.s/ dW.s/�
Z t

0

1�0;��.s/ˆ.s/ dW.s/

����
2
!

n!1���! 0

for all t 2 Œ0;T�. As by Step 1

Z t

0

1�0;�n�.s/ˆ.s/ dW.s/ D
Z �n^t

0

ˆ.s/ dW.s/; n 2 N; t 2 Œ0;T�;

the assertion follows.
Step 3: Finally we generalize the statement to arbitraryˆ 2 N 2

W.0;T/:
Ifˆ 2 N 2

W.0;T/, then there exists a sequence of elementary processesˆn, n 2 N,
such that

kˆn �ˆkT
n!1���! 0 :
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By the definition of the stochastic integral this means that

Z �

0

ˆn.s/ dW.s/
n!1���!

Z �

0

ˆ.s/ dW.s/ in M2
T :

Hence it follows that there is a subsequence nk, k 2 N, and a P-null set N 2 F
independent of t 2 Œ0;T� such that

Z t

0

ˆnk .s/ dW.s/
k!1���!

Z t

0

ˆ.s/ dW.s/ on Nc

for all t 2 Œ0;T� and therefore we get for all t 2 Œ0;T� that

Z �^t

0

ˆnk.s/ dW.s/
k!1���!

Z �^t

0

ˆ.s/ dW.s/ P-a.s.

In addition, it is clear that

k1�0;��ˆn � 1�0;��ˆkT �!
n!1 0

which implies that for all t 2 Œ0;T�

E

 ����
Z t

0

1�0;��.s/ˆn.s/ dW.s/ �
Z t

0

1�0;��.s/ˆ.s/ dW.s/

����
2
!

n!1���! 0:

As by Step 2

Z t

0

1�0;��.s/ˆnk .s/ dW.s/ D
Z �^t

0

ˆnk.s/ dW.s/ P-a.s.

for all k 2 N the assertion follows. ut
Therefore, for m < n on f�m > tg � f�n > tg
Z t

0

1�0;�n�.s/ˆ.s/ dW.s/ D
Z �m^t

0

1�0;�n �.s/ˆ.s/ dW.s/

D
Z t

0

1�0;�m�.s/1�0;�n �.s/ˆ.s/ dW.s/ D
Z t

0

1�0;�m�.s/ˆ.s/ dW.s/ P-a.s.,

where we used Lemma 2.3.9 for the second equality. Hence the definition is
consistent.

Remark 2.3.10 Let ˆ 2 NW and �n; n 2 N, as in 2.3.1. In fact it is easy to see that
the definition of the stochastic integral for ˆ 2 NW does not depend on the choice
of �n, n 2 N. We shall show this in several steps. So, let if �n, n 2 N, be another



2.3 The Definition of the Stochastic Integral 41

sequence of stopping times such that �n " T as n ! 1 and 1�0;�n�ˆ 2 N 2
W for all

n 2 N. Then:

(i)

Z t

0

ˆ.s/ dW.s/ D lim
n!1

Z t

0

1�0;�n �.s/ˆ.s/ dW.s/ for all t 2 Œ0;T�P-a.s.

(ii) Lemma 2.3.9 holds for all ˆ 2 NW .
(iii)

Z t

0

ˆ.s/ dW.s/ D
Z t

0

1�0;�n�.s/ˆ.s/ dW.s/ on f�n � tgP-a.s.

Proof

(i) Let t 2 Œ0;T�. Then we get that on the set f�m > tg
Z t

0

ˆ.s/ dW.s/ D
Z t

0

1�0;�m�.s/ˆ.s/ dW.s/

D lim
n!1

Z t^�n

0

1�0;�m�.s/ˆ.s/ dW.s/

D lim
n!1

Z t^�m

0

1�0;�n�.s/ˆ.s/ dW.s/

D lim
n!1

Z t

0

1�0;�n �.s/ˆ.s/ dW.s/ P-a.s.;

ut
where we used Lemma 2.3.9 twice for the third equality. Letting m ! 1
assertion (i) follows.

(ii) Let � be as in Lemma 2.3.9. Then P-a.s. for all t 2�0;T�
Z �^t

0

ˆ.s/ dW.s/ D lim
n!1

Z �^t

0

1�0;�n�.s/ˆ.s/ dW.s/

D lim
n!1

Z t

0

1�0;��.s/1�0;�n �.s/ˆ.s/ dW.s/

D
Z t

0

1�0;��.s/ˆ.s/ dW.s/;

where we used (i) for the first and last equality and Lemma 2.3.9 for the second.
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(iii) By (ii) we have P-a.s. on f�n � tg
Z t

0

ˆ.s/ dW.s/ D
Z �n^t

0

ˆ.s/ dW.s/

D
Z t

0

1�0;�n �.s/ˆ.s/ dW.s/:

2.4 Properties of the Stochastic Integral

Let T be a positive real number and W.t/, t 2 Œ0;T�, a Q-Wiener process as described
at the beginning of the previous section.

Lemma 2.4.1 Let ˆ be a L02-valued stochastically integrable process,
. QH; k k QH/ a further separable Hilbert space and L 2 L.H; QH/.

Then the process L
�
ˆ.t/

�
, t 2 Œ0;T�, is an element of NW.0;TI QH/ and

L

�Z T

0

ˆ.t/ dW.t/

�
D
Z T

0

L
�
ˆ.t/

�
dW.t/ P-a.s.

Proof Since ˆ is a stochastically integrable process and

���L
�
ˆ.t/

����
L2.U0; QH/

6 kLkL.H; QH/kˆ.t/kL02
;

it is obvious that L
�
ˆ.t/

�
, t 2 Œ0;T�, is L2.U0; QH/-predictable and

P

�Z T

0

���L
�
ˆ.t/

����2
L2.U0; QH/

dt < 1
�

D 1:

Step 1: As the first step we consider the case thatˆ is an elementary process, i.e.

ˆ.t/ D
k�1X
mD0

ˆm1�tm;tmC1�.t/; t 2 Œ0;T�;

where 0 D t0 < t1 < � � � < tk D T, ˆm W � ! L.U;H/ Ftm-measurable withˇ̌
ˆm.�/

ˇ̌
< 1 for 0 6 m 6 k. Then

L

�Z T

0

ˆ.t/ dW.t/

�
D L

	 k�1X
mD0

ˆm
�
W.tmC1/� W.tm/

�


D
k�1X
mD0

L
	
ˆm
�
W.tmC1/� W.tm/

�
 D
Z T

0

L
�
ˆ.t/

�
dW.t/:



2.4 Properties of the Stochastic Integral 43

Step 2: Now let ˆ 2 N 2
W.0;T/. Then there exists a sequence ˆn, n 2 N, of

elementary processes with values in L.U;H/0 such that

kˆn �ˆkT D
 

E

�Z T

0

kˆn.t/ �ˆ.t/k2
L02

dt

�! 1
2

n!1���! 0:

Then L.ˆn/, n 2 N, is a sequence of elementary processes with values in
L.U; QH/0 and

��L.ˆn/ � L.ˆ/
��

T
6 kLkL.H; QH/kˆn �ˆkT

n!1���! 0:

By the definition of the stochastic integral, Step 1 and the continuity of L we get
that there is a subsequence nk, k 2 N, such that

Z T

0

L
�
ˆ.t/

�
dW.t/ D lim

k!1

Z T

0

L
�
ˆnk.t/

�
dW.t/

D lim
k!1 L

�Z T

0

ˆnk.t/ dW.t/

�
D L

�
lim

k!1

Z T

0

ˆnk .t/ dW.t/

�

D L

�Z T

0

ˆ.t/ dW.t/

�
P-a.s.

Step 3: Finally let ˆ 2 NW.0;T/.
Let �n, n 2 N, be a sequence of stopping times as in (2.7). Then 1�0;�n�L.ˆ/ 2
N 2

W.0;T; QH/ for all n 2 N and we obtain by Remark 2.3.10 and Step 2 (selecting
a subsequence if necessary)

Z T

0

L
�
ˆ.t/

�
dW.t/ D lim

n!1

Z T

0

1�0;�n�.t/L
�
ˆ.t/

�
dW.t/

D lim
n!1 L

�Z T

0

1�0;�n �.t/ˆ.t/ dW.t/

�
D L

�
lim

n!1

Z T

0

1�0;�n �.t/ˆ.t/ dW.t/

�

D L

�Z T

0

ˆ.t/ dW.t/

�
P-a.s.

ut
Below Bs.L.U0;H// denotes the Borel �-algebra generated by the strong

topology on L.U0;H/.

Lemma 2.4.2 Let ˆ W �T ! L.U0;H/ be PTnBs.L.U0;H//-measurable and f W
�T ! H be PTnB.H/-measurable such that

Z T

0

kˆ�.t; !/f .t; !/k2U0 dt < 1 P-a.s.
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Set

Z T

0

˝
f .t/; ˆ.t/ dW.t/

˛ WD
Z T

0

Q̂ f .t/ dW.t/ (2.9)

with

Q̂ f .t/.u/ WD ˝
f .t/; ˆ.t/u

˛
; u 2 U0:

Then the stochastic integral in (2.9) is well-defined as a continuous R-valued
stochastic process. More precisely, Q̂ f is a PT=B.L2.U0;R//-measurable map from
Œ0;T� �� to L2.U0;R/, and

k Q̂ f .t; !/kL2.U0;R/ D kˆ�.t; !/f .t; !/kU0 :

Proof Let ek; k 2 N, be an orthonormal basis of U0. Then for all .t; !/ 2 Œ0;T���

k Q̂ f .t; !/k2L2.U0;R/ D
1X

kD1
h f .t; !/;ˆ.t; !/eki2

D
1X

kD1
hˆ�.t; !/f .t; !/; eki2U0

D kˆ�.t; !/f .t; !/k2U0 :

Now all assertions follow. ut
Lemma 2.4.3 Let ˆ 2 NW.0;T/ and 
n, n 2 N, a sequence in C.Œ0;T�;H/ which
converges uniformly to 
. Then there exists a subsequence 
nk , k 2 N, such that

Z T

0

˝

nk.t/; ˆ.t/ dW.t/

˛ k!1���!
Z T

0

˝

.t/; ˆ.t/ dW.t/

˛
P-a.s.

Proof

Step 1: Let ˆ 2 N 2
W.0;T/.

Then we get that

�� Q̂

n � Q̂




��
T

6 sup
t2Œ0;T�

��
n.t/ � 
.t/�� kˆkT

and therefore we get by the isometry that

Z T

0

Q̂

n.t/ dW.t/

n!1���!
Z T

0

Q̂

.t/ dW.t/
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in L2.�;F ;PIR/ which implies that there is a subsequence nk, k 2 N, such that

Z T

0

˝

nk.t/; ˆ.t/ dW.t/

˛ k!1���!
Z T

0

˝

.t/; ˆ.t/ dW.t/

˛
P-a.s.

Step 2: Let ˆ 2 NW.0;T/.
As in Step 4 of the definition of the stochastic integral we define the stopping
times

�m WD inf

�
t 2 Œ0;T�

ˇ̌
ˇ̌ Z t

0

��ˆ.s/��2
L2

ds > m

�
^ T:

Then the process 1�0;�m �ˆ is in N 2
W.0;TI H/ for all m 2 N. By Step 1 and a

diagonal argument we get the existence of a subsequence nk, k 2 N, such that

Z T

0

˝

nk.t/; 1�0;�m �.t/ˆ.t/ dW.t/

˛ k!1���!
Z T

0

˝

.t/; 1�0;�m�.t/ˆ.t/ dW.t/

˛
P-a.s.

for all m 2 N. Hence, by the definition of the stochastic integral, we obtain by
Lemma 2.3.9 that

Z T

0

˝

.t/; ˆ.t/ dW.t/

˛ D 1 1S
mD1

f�m�1<T6�mg

Z T

0

˝

.t/; ˆ.t/ dW.t/

˛

D
1X

mD1
1f�m�1<T6�mg

Z T^�m

0

˝

.t/; ˆ.t/ dW.t/

˛

D
1X

mD1
1f�m�1<T6�mg

Z T

0

˝

.t/; 1�0;�m �.t/ˆ.t/ dW.t/

˛

D
1X

mD1
1f�m�1<T6�mg lim

k!1

Z T

0

˝

nk .t/; 1�0;�m �.t/ˆ.t/ dW.t/

˛

D lim
k!1

1X
mD1

1f�m�1<T6�mg
Z T

0

˝

nk .t/; 1�0;�m �.t/ˆ.t/ dW.t/

˛

D lim
k!1

Z T

0

˝

nk.t/; ˆ.t/ dW.t/

˛
P-a.s.

ut
Lemma 2.4.4 Letˆ 2 NW.0;TI H/ and M.t/ WD R t

0
ˆ.s/ dW.s/; t 2 Œ0;T�. Define

hMit WD
Z t

0

kˆ.s/k2
L02

ds; t 2 Œ0;T�:
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Then hMi is the unique continuous increasing .Ft/-adapted process starting at zero
such that kM.t/k2 � hMit; t 2 Œ0;T�, is a local martingale. If ˆ 2 N 2

W.0;T/, then
for any sequence

Il WD f0 D tl
0 < tl

1 < : : : < tl
kl

D Tg; l 2 N;

of partitions with

max
i
.tl

i � tl
i�1/ ! 0 as l ! 1

lim
l!1 E

0
B@
ˇ̌̌
ˇ̌
ˇ̌
X

tljC1
6t

kM.tl
jC1/ � M.tl

j/k2 � hMit

ˇ̌̌
ˇ̌
ˇ̌
1
CA D 0 for all t 2 Œ0;T�:

Proof For n 2 N let �n be as in (2.7) and � an Ft-stopping time with PŒ� 6 T� D 1.
Then by Remark 2.3.10 for � WD � ^ �n;

E

 ����
Z �

0

ˆ.s/ dW.s/

����
2
!

D E

 ����
Z T

0

1�0;��ˆ.s/ dW.s/

����
2
!

D E

�Z T

0

k1�0;��ˆ.s/k2L02 ds

�

D E

�Z �

0

kˆ.s/k2
L02

ds

�
;

and the first assertion follows, because the uniqueness is obvious, since any real-
valued local martingale of bounded variation is constant.

To prove the second assertion we fix an orthonormal basis feiji 2 Ng of H and
note that by the theory of real-valued martingales we have for each i 2 N

lim
l!1 E

0
B@
ˇ̌̌ X

tljC1
6t

hei;M.t
l
jC1/ � M.tl

j/i2H �
Z t

0

kˆ.s/�eik2U0 ds
ˇ̌̌1CA D 0; (2.10)

since by the first part of the assertion and Lemmas 2.4.1 and 2.4.2


Z �

0

hei; ˆ.s/ dW.s/iH

�
t

D
Z t

0

kˆ.s/�eik2U0 ds; t 2 Œ0;T�:
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Furthermore, for all i; l 2 N

E

0
B@
ˇ̌
ˇ̌̌
ˇ̌
X

tljC1
6t

hei;M.t
l
jC1/� M.tl

j/i2H �
Z t

0

kˆ.s/�eik2U0 ds

ˇ̌
ˇ̌̌
ˇ̌
1
CA

6
X

tljC16t

E

2
4
 Z tljC1

tlj

hei; ˆ.s/ dW.s/iH

!23
5C E

�Z t

0

kˆ.s/�eik2U0 ds

�

D
X

tljC16t

E

 Z tljC1

tlj

kˆ.s/�eik2U0 ds

!
C E

�Z t

0

kˆ.s/�eik2U0 ds

�

6 2E

�Z t

0

kˆ.s/�eik2U0 ds

�
(2.11)

which is summable over i 2 N. Here we used the isometry property of Int in the
second to last step. But

E

0
B@
ˇ̌̌
ˇ̌
ˇ̌
X

tljC16t

kM.tl
jC1/� M.tl

j/k2 �
Z t

0

kˆ.s/k2
L02

ds

ˇ̌̌
ˇ̌
ˇ̌
1
CA

D E

0
B@
ˇ̌
ˇ̌̌
ˇ̌

1X
iD1

0
B@X

tljC1
6t

hei;M.t
l
jC1/� M.tl

j/i2H �
Z t

0

kˆ.s/�eik2U0 ds

1
CA
ˇ̌
ˇ̌̌
ˇ̌
1
CA

6
1X

iD1
E

0
B@
ˇ̌̌
ˇ̌
ˇ̌
X

tljC16t

hei;M.t
l
jC1/ � M.tl

j/i2H �
Z t

0

kˆ.s/�eik2U0 ds

ˇ̌̌
ˇ̌
ˇ̌
1
CA

where we used Remark B.0.6(i) in the first step. Hence the second assertion follows
by the Lebesgue dominated convergence theorem from (2.10) and (2.11). ut

We conclude this section with the following useful result:

Proposition 2.4.5 Let ˆ 2 N 2
W.0;TI H/. Then P-a.s.

Z t

0

ˆ.s/ dW.s/ D
1X

kD1

p

k

Z t

0

ˆ.s/.ek/ dˇk.s/; t 2 Œ0;T�;

where 
k; ek; ˇk; k 2 N, are as in the representation (2.2) of Proposition 2.1.10 for
our Q-Wiener process W.t/; t 2 Œ0;T�, on U and the sum on the right-hand side
converges in L2.�;F ;PI C.Œ0;T�I H//:
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Proof For n 2 N define

Q6n WD
nX

kD1

k hek; �iU ek;

Q>n WD
1X

kDnC1

k hek; �iU ek;

W6n WD
nX

kD1

p

kˇk.t/ek; t 2 Œ0;T�;

W>n.t/ WD
1X

kDnC1

p

kˇk.t/ek; t 2 Œ0;T�:

Then Q6n;Q>n are symmetric, nonnegative definite operators on U with finite
trace and W6n.t/;W>n.t/; t 2 Œ0;T�, are Q6n- and Q>n-Wiener processes on U
respectively. Furthermore, since by construction our H-valued stochastic integrals
are linear in the integrators, it then follows by Proposition 2.2.9 that

EŒ sup
t2Œ0;T�

����
Z t

0

ˆ.s/ dW.s/ �
Z t

0

ˆ.s/ dW6n.s/

����
2

�

6 2 E Œ

����
Z T

0

ˆ.s/ dW>n.s/

����
2

�

D 2 E Œ

Z T

0

kˆ.s/k2
L2.Q

1=2
>n .U/;H/

ds�

D 2 E Œ

Z T

0

1X
kDnC1


kkˆ.s/.ek/k2H ds�;

which converges to zero as n �! 1 by Lebesgue’s dominated convergence
theorem, since ˆ 2 N 2

W.0;TI H/. But clearly for t 2 Œ0;T�
Z t

0

ˆ.s/ dW6n.s/ D
nX

kD1

p

k

Z t

0

ˆ.s/.ek/ dˇk.s/

by construction of our H-valued stochastic integrals. Hence the assertion is proved.
ut
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2.5 The Stochastic Integral for Cylindrical Wiener Processes

Until now we have considered the case that W.t/, t 2 Œ0;T�, was a standard Q-
Wiener process where Q 2 L.U/ was nonnegative, symmetric and with finite trace.
We could integrate processes in

NW WD
�
ˆ W �T ! L2.Q

1
2 .U/;H/ j ˆ is predictable and

P

�Z T

0

kˆ.s/k2
L02

ds < 1
�

D 1

�
:

In fact it is possible to extend the definition of the stochastic integral to the case
when Q is not necessarily of finite trace. To this end we first have to introduce the
concept of cylindrical Wiener processes.

2.5.1 Cylindrical Wiener Processes

Let Q 2 L.U/ be nonnegative definite and symmetric. We recall that in the case
when Q is of finite trace, a Q-Wiener process has the following representation:

W.t/ D
X
k2N

ˇk.t/ek; t 2 Œ0;T�;

where ek, k 2 N, is an orthonormal basis of Q
1
2 .U/ D U0 and ˇk, k 2 N,

is a family of independent real-valued Brownian motions. The series converges
in L2.�;F ;PI U/, because the inclusion U0 � U defines a Hilbert–Schmidt
embedding from .U0; h ; i0/ to .U; h ; i/. In the case when Q is no longer of finite
trace one loses this convergence. Nevertheless, it is possible to define the Wiener
process.

To this end we need a further Hilbert space .U1; h ; i1/ and a Hilbert–Schmidt
embedding

J W .U0; h ; i0/ ! .U1; h ; i1/:

Remark 2.5.1 .U1; h ; i1// and J as above always exist; e.g. choose U1 WD U and
˛k 2�0;1Œ; k 2 N; such that

P1
kD1 ˛2k < 1. Define J W U0 ! U by

J.u/ WD
1X

kD1
˛khu; eki0 ek; u 2 U0:

Then J is one-to-one and Hilbert–Schmidt.
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Then the process given by the following proposition is called a cylindrical Q-
Wiener process in U.

Proposition 2.5.2 Let ek, k 2 N be an orthonormal basis of U0 D Q
1
2 .U/ and ˇk,

k 2 N, a family of independent real-valued Brownian motions. Define Q1 WD JJ�:
Then Q1 2 L.U1/, Q1 is nonnegative definite and symmetric with finite trace and
the series

W.t/ D
1X

kD1
ˇk.t/Jek; t 2 Œ0;T�; (2.12)

converges in M2
T.U1/ and defines a Q1-Wiener process on U1. Moreover, we have

that Q
1
2

1 .U1/ D J.U0/ and for all u0 2 U0

ku0k0 D kQ
� 1
2

1 Ju0k1 D kJu0k
Q
1
2
1 .U1/

;

i.e. J W U0 ! Q
1
2

1 .U1/ is an isometry.

Proof

Step 1: We prove that W.t/, t 2 Œ0;T�, defined in (2.12) is a Q1-Wiener process
in U1.
If we set �j.t/ WD ˇj.t/J.ej/, j 2 N, we obtain that �j.t/, t 2 Œ0;T�, is a continuous
U1-valued martingale with respect to

Gt WD �

�[
j2N
�.ˇj.s/js 6 t/

�
;

t 2 Œ0;T�, since

E.ˇj.t/ j Gs/ D E.ˇj.t/ j �.ˇj.u/ju 6 s// D ˇj.s/ for all 0 6 s < t 6 T

as �
�
�.ˇj.u/ju 6 s/ [ �.ˇj.t//

�
is independent of

�

�[
k2N
k 6Dj

�.ˇk.u/ju 6 s/

�
:

Then it is clear that

Wn.t/ WD
nX

jD1
ˇj.t/J.ej/; t 2 Œ0;T�;
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is also a continuous U1-valued martingale with respect to Gt, t 2 Œ0;T�. In
addition, we obtain that

E

0
@ sup

t2Œ0;T�
k

mX
jDn

ˇj.t/J.ej/k21

1
A 6 4 sup

t2Œ0;T�
E

0
@k

mX
jDn

ˇj.t/J.ej/k21

1
A

D 4T
mX

jDn

kJ.ej/k21; m > n > 1:

Note that kJk2L2.U0;U1/ D
X
j2N

kJ.ej/k21 < 1. Therefore, we get the convergence

of Wn.t/, t 2 Œ0;T�, in M2
T.U1/, hence the limit W.t/, t 2 Œ0;T�, is P-a.s.

continuous.
Now we want to show that P ı .W.t/�W.s//�1 D N.0; .t � s/JJ�/. Analogously
to the second part of the proof of Proposition 2.1.6 we get that hW.t/ � W.s/; u1i1
is normally distributed for all 0 6 s < t 6 T and u1 2 U1. It is easy to see that
the mean is equal to zero and concerning the covariance of hW.t/ � W.s/; u1i1
and hW.t/ � W.s/; v1i1, u1; v1 2 U1, we obtain that

E.hW.t/ � W.s/; u1i1hW.t/ � W.s/; v1i1/
D
X
k2N
.t � s/hJek; u1i1hJek; v1i1

D .t � s/
X
k2N

hek; J
�u1i0hek; J

�v1i0

D .t � s/hJ�u1; J
�v1i0 D .t � s/hJJ�u1; v1i1:

Thus, it only remains to show that the increments of W.t/, t 2 Œ0;T�, are indepen-
dent but this can be done in the same way as in the proof of Proposition 2.1.10.

Step 2: We prove that Im Q
1
2

1 D J.U0/ and that ku0k0 D kQ
� 1
2

1 Ju0k1 for all
u0 2 U0.

Since Q1 D JJ�, by Corollary C.0.6 we obtain that Q
1
2

1 .U1/ D J.U0/ and that

kQ
� 1
2

1 u1k1 D kJ�1u1k0 for all u1 2 J.U0/. We now replace u1 by J.u0/, u0 2 U0,
to get the last assertion, because J W U0 ! U1 is one-to-one. ut
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2.5.2 The Definition of the Stochastic Integral for Cylindrical
Wiener Processes

We fix Q 2 L.U/ nonnegative, symmetric but not necessarily of finite trace. After
the preparations of the previous section we are now able to define the stochastic
integral with respect to a cylindrical Q-Wiener process W.t/, t 2 Œ0;T�.

Basically we integrate with respect to the standard U1-valued Q1-Wiener process
given by Proposition 2.5.2. In this sense we first get that a process ˆ.t/, t 2 Œ0;T�,

is integrable with respect to W.t/, t 2 Œ0;T�, if it takes values in L2.Q
1
2

1 .U1/;H/, is
predictable and if

P

 Z T

0

kˆ.s/k2
L2.Q

1
2
1 .U1/;H/

ds < 1
!

D 1:

But in addition, we have by Proposition 2.5.2 that Q
1
2

1 .U1/ D J.U0/ and that

hJu0; Jv0i
Q
1
2
1 .U1/

D hQ
� 1
2

1 Ju0;Q
� 1
2

1 Jv0i1 D hu0; v0i0

for all u0; v0 2 U0 (by polarization). In particular, it follows that Jek, k 2 N, is an

orthonormal basis of Q
1
2

1 .U1/. Hence we get that

ˆ 2 L02 D L2.Q
1
2 .U/;H/ ” ˆ ı J�1 2 L2.Q

1
2

1 .U1/;H/

since

kˆk2
L02

D
X
k2N

hˆek; ˆeki

D
X
k2N

hˆ ı J�1.Jek/; ˆ ı J�1.Jek/i D kˆ ı J�1k2
L2.Q

1
2
1 .U1/;H/

:

Now we define

Z t

0

ˆ.s/ dW.s/ WD
Z t

0

ˆ.s/ ı J�1 dW.s/; t 2 Œ0;T�: (2.13)

Then the class of all integrable processes is given by

NW D
n
ˆ W �T ! L02 j ˆ predictable and P

	 Z T

0

kˆ.s/k2
L02

ds < 1



D 1
o

as in the case where W.t/, t 2 Œ0;T�, is a standard Q-Wiener process in U.
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Remark 2.5.3

1. We note that the stochastic integral defined in (2.13) is independent of the choice
of .U1; h ; i1/ and J. This follows by construction, since by (2.12) for elementary
processes (2.13) does not depend on J.

2. If Q 2 L.U/ is nonnegative, symmetric and with finite trace the standard Q-
Wiener process can also be considered as a cylindrical Q-Wiener process by
setting J D I W U0 ! U where I is the identity map. In this case both definitions
of the stochastic integral coincide.

Exercise 2.5.4 Prove the analogue of Proposition 2.4.5, when W.t/; t 2 Œ0;T�, is a
cylindrical Wiener process.

Finally, we note that since the stochastic integrals in this chapter all have a
standard Wiener process as integrator, we can drop the predictability assumption
on ˆ 2 NW and (as we shall do in subsequent chapters) just assume progressive
measurability, i.e. ˆjŒ0;t��� is B.Œ0; t�/ ˝ Ft=B.L02/-measurable for all t 2 Œ0;T�,
at least if .�;F ;P/ is complete (otherwise we consider its completion) (cf. [81,
Theorem 6.3.1]). We used the above framework so that it easily extends to
more general Hilbert-space-valued martingales as integrators replacing the standard
Wiener process. The details are left to the reader.



Chapter 3
SDEs in Finite Dimensions

This chapter is an extended version of [52, Sect. 1].

3.1 Main Result and A Localization Lemma

Let .�;F ;P/ be a complete probability space and Ft; t 2 Œ0;1Œ, a normal
filtration. Let .Wt/t>0 be a standard Wiener process on R

d1 , d1 2 N, with respect
to Ft; t 2 Œ0;1Œ. So, in the terminology of the previous section U WD R

d1 , Q WD I.
The role of the Hilbert space H there will be taken by R

d; d 2 N.
Let M.d�d1;R/ denote the set of all real d�d1-matrices. Let the following maps

� D �.t; x; !/; b D b.t; x; !/ be given:

� WŒ0;1Œ�Rd �� ! M.d � d1;R/;

b WŒ0;1Œ�Rd �� ! R
d

such that both are continuous in x 2 R
d for each fixed t 2 Œ0;1Œ, w 2 �, and

progressively measurable, i.e. for each t their restriction to Œ0; t��� is B.Œ0; t�/˝Ft-
measurable, for each fixed x 2 R

d. We note that then both � and b restricted to
Œ0; t� � R

d � � are B.Œ0; t�/ ˝ B.Rd/ ˝ Ft-measurable for every t 2 Œ0;1Œ. In
particular, for every x 2 R

d; t 2 Œ0;1Œ both are Ft-measurable. We also assume
that the following integrability conditions hold:

Z T

0

sup
jxj6R

fk�.t; x/k2 C jb.t; x/jg dt < 1 on �; (3.1)
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for all T;R 2 Œ0;1Œ. Here j j denotes the Euclidean distance on R
d and

k�k2 WD
dX

iD1

d1X
jD1

j�ijj2: (3.2)

h ; i below denotes the Euclidean inner product on R
d.

Theorem 3.1.1 Let b; � be as above satisfying (3.1). Assume that on� for all t;R 2
Œ0;1Œ; x; y 2 R

d; jxj; jyj 6 R

2hx � y; b.t; x/ � b.t; y/i C k�.t; x/ � �.t; y/k2
(local weak monotonicity) (3.3)6 Kt.R/jx � yj2

and

2hx; b.t; x/i C k�.t; x/k2 6 Kt.1/.1C jxj2/; (weak coercivity) (3.4)

where for R 2 Œ0;1Œ, Kt.R/ is an RC-valued .Ft/-adapted process satisfying on �
for all R;T 2 Œ0;1Œ

˛T.R/ WD
Z T

0

Kt.R/ dt < 1: (3.5)

Then for any F0-measurable map X0 W � ! R
d there exists a (up to P-

indistinguishability) unique solution to the stochastic differential equation

dX.t/ D b.t;X.t// dt C �.t;X.t// dW.t/: (3.6)

Here solution means that .X.t//t>0 is a P-a.s. continuous Rd-valued .Ft/-adapted
process such that P-a.s. for all t 2 Œ0;1Œ

X.t/ D X0 C
Z t

0

b.s;X.s// ds C
Z t

0

�.s;X.s// dW.s/: (3.7)

Furthermore, for all t 2 Œ0;1Œ

E.jX.t/j2e�˛t.1// 6 E.jX0j2/C 1: (3.8)

Remark 3.1.2 We note that by (3.1) the integrals on the right-hand side of (3.7) are
well-defined.

For the proof of the above theorem we need two lemmas.
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Lemma 3.1.3 Let Y.t/; t 2 Œ0;1Œ, be a continuous, RC-valued, .Ft/-adapted
process on .�;F ;P/ and � an .Ft/-stopping time, and let " 2�0;1Œ. Set

�" WD � ^ infft > 0jY.t/ > "g

(where as usual we set inf ; D C1). Then

P.f sup
t2Œ0;��

Y.t/ > "; � < 1g/ 6 1

"
E.1f�<1gY.�"//:

Proof We have

f sup
t2Œ0;��

Y.t/ > "g \ f� < 1g D fY.�"/ > "g \ f� < 1g:

Hence the assertion follows by Chebyshev’s inequality. ut
The following general “localization lemma” will be crucial.

Lemma 3.1.4 Let n 2 N and X.n/.t/; t 2 Œ0;1Œ; be a continuous, Rd-valued,
.Ft/-adapted process on .�;F ;P/ such that X.n/.0/ D X0 for some F0-measurable
function X0 W � ! R

d and

dX.n/.t/ D b.t;X.n/.t/C p.n/.t// dt C �.t;X.n/.t/C p.n/.t// dW.t/; t 2 Œ0;1Œ

for some progressively measurable process p.n/.t/; t 2 Œ0;1Œ. For n 2 N and R 2
Œ0;1Œ let �.n/.R/ be .Ft/-stopping times such that

(i)

jX.n/.t/j C jp.n/.t/j 6 R if t 2 �0; � .n/.R/� P-a.e.

(ii)

lim
n!1 E

Z T^�.n/.R/

0

jp.n/.t/j dt D 0 for all T 2 Œ0;1Œ:

(iii) There exists a function r W Œ0;1Œ! Œ0;1Œ such that limR!1 r.R/ D 1 and

lim
R!1 lim

n!1P
	n
�.n/.R/ 6 T; sup

t2Œ0;�.n/.R/�
jX.n/.t/j 6 r.R/

o


D 0 for all T 2 Œ0;1Œ:
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Then for every T 2 Œ0;1Œ we have

sup
t2Œ0;T�

jX.n/.t/ � X.m/.t/j ! 0 in probability as n;m ! 1:

Proof By (3.1) we may assume that

sup
jxj6R

jb.t; x/j 6 Kt.R/ for all R; t 2 Œ0;1Œ: (3.9)

(Otherwise, we replace Kt.R/ by the maximum of Kt.R/ and the integrand in (3.1).)
Fix R 2 Œ0;1Œ and define the .Ft/-stopping times

�.R; u/ WD infft > 0j˛t.R/ > ug; u 2 Œ0;1Œ:

Since t 7! ˛t.R/ is locally bounded, we have that �.R; u/ " 1 as u ! 1. In
particular, there exists a u.R/ 2 Œ0;1Œ such that

P.f�.R; u.R// 6 Rg/ 6 1

R
:

Setting �.R/ WD �.R; u.R// we have �.R/ ! 1 in probability as R ! 1 and
˛t^�.R/.R/ 6 u.R/ for all t;R 2 Œ0;1Œ.

Furthermore, if we replace �.n/.R/ by �.n/.R/^ �.R/ for n 2 N, R 2 Œ0;1Œ, then
clearly assumptions (i) and (ii) above still hold. But

P

 (
�.n/.R/ ^ �.R/ 6 T; sup

t2Œ0;�.n/ .R/^�.R/�
jX.n/.t/j 6 r.R/

)!

6 P

 (
�.n/.R/ 6 T; sup

t2Œ0;�.n/ .R/�
jX.n/.t/j 6 r.R/; � .n/.R/ 6 �.R/

)!

C P.f�.R/ 6 T; � .n/.R/ > �.R/g/

and limR!1 P.f�.R/ 6 Tg/ D 0. So, assumption (iii) also holds when �.n/.R/ is
replaced by �.n/.R/ ^ �.R/. We may thus assume that �.n/.R/ 6 �.R/, hence

˛t^�.n/.R/.R/ 6 u.R/ for all t;R 2 Œ0;1Œ; n 2 N: (3.10)

Fix R 2 Œ0;1Œ and define



.n/
t .R/ WD

Z t

0

jp.n/.s/j Ks.R/ ds; t 2 �0;1Œ; n 2 N: (3.11)
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By (3.10) it follows that

lim
n!1 E

	


.n/
T^�.n/.R/.R/



D 0 for all R;T 2 Œ0;1Œ: (3.12)

Indeed, for all m; n 2 N

Z T^�.n/.R/

0

jp.n/.t/j Kt.R/ dt

6 m
Z T^�.n/.R/

0

jp.n/.t/j dt C R
Z T^�.R/

0

1�m;1Œ.Kt.R//Kt.R/ dt:

By assumption (ii) we know that as n ! 1 this converges in L1.�;F ;P/ to

R
Z T^�.R/

0

1�m;1Œ.Kt.R//Kt.R/ dt;

which in turn is dominated by R ˛T^�.R/ 6 R u.R/ and converges P-a.e. to zero
as m ! 1 by (3.5). So, (3.12) follows by Lebesgue’s dominated convergence
theorem. Let n;m 2 N and set

 t.R/ WD exp.�2˛t.R/� jX0j/; t 2 Œ0;1Œ: (3.13)

Then by Itô’s formula we have P-a.e. for all t 2 Œ0;1Œ

jX.n/.t/ � X.m/.t/j2 t.R/

D
Z t

0

 s.R/

�
2hX.n/.s/ � X.m/.s/; b.s;X.n/.s/C p.n/.s//

� b.s;X.m/.s/C p.m/.s//i
C k�.s;X.n/.s/C p.n/.s// � �.s;X.m/.s/C p.m/.s//k2

� 2Ks.R/jX.n/.s/ � X.m/.s/j2
�

ds C M.n;m/
R .t/; (3.14)

where M.n;m/
R .t/; t 2 Œ0;1Œ, is a continuous local .Ft/-martingale with

M.n;m/
R .0/ D 0. Writing

X.n/.s/ � X.m/.s/ D .X.n/.s/C p.n/.s//� .X.m/.s/C p.m/.s// � p.n/.s/C p.m/.s/
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and by the weak monotonicity assumption (3.3), for t 2 Œ0; �n.R/ ^ �m.R/� the
right-hand side of (3.14) is P-a.e. dominated by

Z t

0

 s.R/

�
2hp.m/.s/� p.n/.s/; b.s;X.n/.s/C p.n/.s//

� b.s;X.m/.s/C p.m/.s//i
C Ks.R/j.X.n/.s/ � X.m/.s//C .p.n/.s/ � p.m/.s//j2

� 2Ks.R/jX.n/.s/� X.m/.s/j2
�

ds C M.n;m/
R .t/

6 2

Z t

0

 s.R/Ks.R/
�
2jp.m/.s/� p.n/.s/j C jp.m/.s/ � p.n/.s/j2� ds

C M.n;m/
R .t/;

where we used (3.9) and assumption (i) in the last step. Since  s.R/ 6 1 for all
s 2 Œ0;1Œ and since for s 2�0; �.n/.R/ ^ �.m/.R/�

jp.m/.s/ � p.n/.s/j2 6 2R.jp.m/.s/j C jp.n/.s/j/ P-a.e.;

the above implies that for T 2 Œ0;1Œ fixed and �.n;m/.R/ WD T ^ �.n/.R/ ^ �.m/.R/
we have P-a.e. for t 2 Œ0; �.n;m/.R/�

jX.n/.t/ � X.m/.t/j2 t.R/ 6 4.1C R/.
.n/t .R/C 

.m/
t .R//C M.n;m/

R .t/: (3.15)

Hence for any .Ft/-stopping time � 6 �.n;m/.R/ and .Ft/-stopping times �k " 1 as
k ! 1 so that M.n;m/

R .t ^ �k/, t 2 Œ0;1Œ, is a martingale for all k 2 N, we have

E.jX.n/.� ^ �k/ � X.m/.� ^ �k/j2 �^�k .R//

6 4.1C R/E.
.n/
T^�.n/.R/.R/C 


.m/
T^�.m/.R/.R//:

First letting k ! 1 and applying Fatou’s lemma, and then using Lemma 3.1.3 we
obtain that for every " 2 �0;1Œ

P.f sup
t2Œ0;�.n;m/.R/�

.jX.n/.t/ � X.m/.t/j2 t.R// > "g/

6 4.1C R/

"
E.
.n/

T^�.n/.R/.R/C 

.m/
T^�.m/.R/.R//:
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Since Œ0;1Œ3 t 7!  t.R/.!/ is strictly positive, independent of n;m 2 N, and
continuous, the above inequality and (3.12) imply that

sup
t2Œ0;�.n;m/.R/�

jX.n/.t/ � X.m/.t/j ! 0 as n;m ! 1

in P-measure. So, to prove the assertion it remains to show that given T 2 Œ0;1Œ,

lim
R!1 lim

n!1 P.f�.n/.R/ 6 Tg/ D 0: (3.16)

We first observe that replacing Kt.R/ by max.Kt.R/;Kt.1// we may assume that

Kt.1/ 6 Kt.R/ for all t 2 Œ0;1Œ; R 2 Œ1;1Œ: (3.17)

Now we proceed similarly as above, but use the assumption of weak coercivity
(3.4) instead of weak monotonicity (3.3). Let n 2 N and R 2 Œ1;1Œ. Then by Itô’s
formula P-a.e. for all t 2 Œ0;1Œ we have

jX.n/.t/j2 t.1/

DjX0j2e�jX0j C
Z t

0

 s.1/
�
2hX.n/.s/; b.s;X.n/.s/C p.n/.s//i

C k�.s;X.n/.s/C p.n/.s//k2 � 2Ks.1/jX.n/.s/j2
�

ds C M.n/
R .t/; (3.18)

where M.n/
R .t/; t 2 Œ0;1Œ; is a continuous local .Ft/-martingale with

M.n/
R .0/ D 0: By (3.4) and (3.9) and since  s.1/ 6 1 for all s 2 Œ0;1Œ the

second summand of the right-hand side of (3.18) is P-a.e. for all t 2 Œ0;T ^ �.n/.R/�
dominated by

Z t

0

 s.1/
�
2h�p.n/.s/; b.s;X.n/.s/C p.n/.s//i

C Ks.1/jX.n/.s/C p.n/.s/j2 C Ks.1/� 2Ks.1/ jX.n/.s/j2� ds

6 2
Z t

0

Ks.R/ jp.n/.s/j.1C jp.n/.s/j/ ds C
Z t

0

e�2˛s.1/Ks.1/ ds

6 2.1C R/
.n/t .R/C
Z ˛t.1/

0

e�2s ds; (3.19)

where we used (3.17) and assumption (i).
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Again localizing M.n/
R .t/; t 2 Œ0;1Œ, from (3.18) and (3.19) we deduce that for

every .Ft/-stopping time � 6 T ^ �.n/.R/

E.jX.n/.�/j2 � .1// 6 E.jX0j2e�jX0j/C 1

2
C 2.1C R/E.
.n/

T^�.n/.R/.R//:

Hence by Lemma 3.1.3 and (3.12) we obtain

lim
c!1 sup

R2Œ0;1Œ

lim
n!1

P.f sup
t2Œ0;T^�.n/.R/�

.jX.n/.t/j2 t.1// > cg/ D 0:

Since Œ0;1Œ3 t 7!  t.1/ is strictly positive, independent of n 2 N and continuous,
and since r.R/ ! 1 as R ! 1, we conclude that

lim
R!1 lim

n!1 P.f sup
t2Œ0;�.n/.R/�

jX.n/.t/j > r.R/; � .n/.R/ 6 Tg/

6 lim
R!1 sup

QR2Œ0;1Œ

lim
n!1 P.f sup

t2Œ0;T^�.n/.QR/�
jX.n/.t/j > r.R/g/ D 0:

Hence (3.16) follows from assumption (iii). ut
Remark 3.1.5 In our application of Lemma 3.1.4 below, assumption (iii) will be
fulfilled, since the event under P will be empty for all n 2 N; R 2 Œ0;1Œ. For a case
where assumption (iii) is more difficult to check, we refer to [52, Sect. 1].

3.2 Proof of Existence and Uniqueness

Proof of Theorem 3.1.1 The proof is based on Euler’s method. Fix n 2 N and define
the processes X.n/.t/; t 2 Œ0;1Œ, iteratively by setting

X.n/.0/ WD X0

and for k 2 N [ f0g and t 2 � k
n ;

kC1
n

�
by

X.n/.t/

DX.n/
�

k

n

�
C
Z t

k
n

b

�
s;X.n/

�
k

n

��
ds C

Z t

k
n

�

�
s;X.n/

�
k

n

��
dW.s/:
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This is equivalent to

X.n/.t/ D X0 C
Z t

0

b.s;X.n/.�.n; s/// ds

C
Z t

0

�.s;X.n/.�.n; s/// dW.s/; t 2 Œ0;1Œ; (3.20)

where �.n; t/ WD Œtn�=n.	 t/; and also to

X.n/.t/ D X0 C
Z t

0

b.s;X.n/.s/C p.n/.s// ds

C
Z t

0

�.s;X.n/.s/C p.n/.s// dW.s/; t 2 Œ0;1Œ;

where

p.n/.t/ WDX.n/.�.n; t//� X.n/.t/

D �
Z t

�.n;t/
b.s;X.n/.�.n; s/// ds

�
Z t

�.n;t/
�.s;X.n/.�.n; s/// dW.s/; t 2 Œ0;1Œ:

Now fix R 2 Œ0;1Œ and define

�.n/.R/ WD inf

�
t > 0

ˇ̌jX.n/.t/j > R

3

�

and

r.R/ WD R

4
:

Then clearly,

jp.n/.t/j 6 2R

3
and jX.n/.t/j 6 R

3
if t 2 �0; � .n/.R/�:

In particular, condition (i) in Lemma 3.1.4 holds. Since X.�.n/.R// > R
3

on
f�.n/.R/ < 1g, the event in Lemma 3.1.4(iii) is empty for all n 2 N, R 2 Œ0;1Œ, so
this condition is also satisfied. Let ei; 1 6 i 6 d; be the canonical basis of Rd and
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T 2 Œ0;1Œ. Since for t 2 Œ0;T�

� hei; p
.n/.t/i

D
Z t

�.n;t/
hei; b.s;X

.n/.�.n; s///i ds C
Z t

�.n;t/
hei; �.s;X

.n/.�.n; s/// dW.s/i;

it follows that for " 2 �0;1Œ and 1 6 i 6 d; t 2 Œ0;1Œ

P.fjhei; p
.n/.t/ij > 2"; t 6 �.n/.R/g/

6 P

 (Z t

�.n;t/
sup
jxj6R

jb.s; x/j ds > "

)!

C P

��
sup

Qt2Œ0;t�

ˇ̌
ˇ̌ Z Qt^�.n/.R/

0

1Œ�.n;t/;T�.s/

hei; �.s;X
.n/.�.n; s/// dW.s/i

ˇ̌
ˇ̌ > "

��

and by Corollary D.0.2 the second summand is bounded by

3ı

"
C P

 (Z t

�.n;t/
sup
jxj6R

k�.s; x/k2 ds > ı2
)!

:

Altogether, first letting n ! 1 and using (3.1), and then letting ı ! 0 we obtain
that for all t 2 Œ0;1Œ

1Œ0:�n.R/�.t/ p.n/.t/ ! 0 as n ! 1

in P-measure. Since

1Œ0:�n.R/�.t/
ˇ̌
p.n/.t/

ˇ̌
6 2R

3
; t 2 Œ0;1Œ;

it follows by Lebesgue’s dominated convergence theorem and Fubini’s theorem
that condition (ii) in Lemma 3.1.4 is also fulfilled. Now Lemma 3.1.4 and the
fact that the space of continuous processes is complete with respect to locally (in
t 2 Œ0;1Œ) uniform convergence in probability imply that there exists a continuous,
.Ft/-adapted, Rd-valued process X.t/; t 2 Œ0;1Œ, such that for all T 2 Œ0;1Œ

sup
t2Œ0;T�

jX.n/.t/ � X.t/j ! 0 in P-measure as n ! 1: (3.21)

To prove that X satisfies (3.6) we are going to take the limit in (3.20). To this end,
fix T 2 Œ0;1Œ and t 2 Œ0;T�. By (3.21) and because of the path continuity we only
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have to show that the right-hand side of (3.20) converges in P-measure to

X0 C
Z t

0

b.s;X.s// ds C
Z t

0

�.s;X.s// dW.s/:

Since the convergence in (3.21) is uniform on Œ0;T�, by equicontinuity we also have
that

sup
t2Œ0;T�

jX.n/.�.n; t//� X.t/j ! 0 in P-measure as n ! 1:

Hence for Y.n/.t/ WD X.n/.�.n; t// and a subsequence .nk/k2N

sup
t2Œ0;T�

jY.nk/.t/ � X.t/j ! 0 P-a.e. as k ! 1:

In particular, for S.t/ WD supk2N jY.nk/.t/j

sup
t2Œ0;T�

S.t/ < 1 P-a.e. (3.22)

For R 2 Œ0;1Œ define the .Ft/-stopping time

�.R/ WD infft 2 Œ0;T�jS.t/ > Rg ^ T:

By the continuity of b in x 2 R
d and by (3.1)

lim
k!1

Z t

0

b.s;X.nk/.�.nk; s/// ds D
Z t

0

b.s;X.s// ds P-a.e. on ft 6 �.R/g:
(3.23)

To handle the stochastic integrals we need another sequence of stopping times. For
R;N 2 Œ0;1Œ define the .Ft/-stopping time

�N.R/ WD infft 2 Œ0;T�j
Z t

0

sup
jxj6R

k�.s; x/k2 ds > Ng ^ �.R/:

Then by the continuity of � in x 2 R
d, (3.1), and Lebesgue’s dominated convergence

theorem

lim
k!1 E

 Z �N .R/

0

k�.s;X.nk/.�.nk; s/// � �.s;X.s//k2 ds

!
D 0;
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hence

Z t

0

�.s;X.nk/.�.nk; s// dW.s/ !
Z t

0

�.s;X.s// dW.s/ (3.24)

in P-measure on ft 6 �N.R/g as k ! 1. By (3.1), for every ! 2 � there exists an
N.!/ 2 Œ0;1Œ such that �N.R/ D �.R/ for all N > N.!/; so

[
N2N

ft 6 �N.R/g D ft 6 �.R/g:

Therefore, (3.24) holds in P-measure on ft 6 �.R/g. But by (3.22) for P-a.e. ! 2 �
there exists an R.!/ 2 Œ0;1Œ such that �.R/ D T for all R > R.!/. So, as above we
conclude that (3.23) and (3.24) hold in P-measure on �. This completes the proof
of existence.

The uniqueness is a special case of the next proposition. So, let us prove the final
statement. We have by Itô’s formula for our solution X that P-a.e. for all t 2 Œ0;1Œ

jX.t/j2e�˛t.1/ D jX0j2 C
Z t

0

e�˛s.1/
�
2hX.s/; b.s;X.s//i C k�.s;X.s//k2

� Ks.1/jX.s/j2
�

ds C M.t/;

where M.t/; t 2 Œ0;1Œ; is a continuous local martingale with M.0/ D 0. By
the weak coercivity assumption (3.4) the right-hand side of the above equation is
dominated by

jX0j2 C
Z ˛t.1/

0

e�s ds C M.t/:

So, again by localizing M.t/; t 2 Œ0;1Œ, and Fatou’s lemma we get

E.jX.t/j2e�˛t.1// 6 E.jX0j2/C 1; t 2 Œ0;1Œ:

ut
Proposition 3.2.1 Let the assumptions of Theorem 3.1.1 apart from (3.4) be
satisfied. Let X0;X

.n/
0 W � ! R

d; n 2 N, be F0-measurable such that

P � lim
n!1 X.n/0 D X0:
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Let T 2 Œ0;1Œ and assume that X.t/;X.n/.t/; t 2 Œ0;T�; n 2 N, be solutions of (3.6)
(up to time T) such that X.0/ D X0 and X.n/.0/ D X.n/0 P-a.e. for all n 2 N. Then

P � lim
n!1 sup

t2Œ0;T�
jX.n/.t/ � X.t/j D 0: (3.25)

Proof By the characterization of convergence in P-measure in terms of P-a.e.
convergent subsequences (cf. e.g. [5]), we may assume that X.n/0 ! X0 as n ! 1
P-a.e.

Fix R 2 Œ0;1Œ and define

�t.R/ WD exp.�˛t.R/ � sup
n

jX.n/0 j/; t 2 Œ0;1Œ:

We note that since jX0j < 1, we have �t.R/ > 0 P-a.e. for all t 2 Œ0;1Œ. Define

�.n/.R/ WD infft > 0jjX.n/.t/j C jX.t/j > Rg ^ T:

Analogously to deriving (3.15) in the proof of Lemma 3.1.4 using the weak
monotonicity assumption (3.3), we obtain that P-a.e. for all t 2 Œ0;T� and all n 2 N

jX.n/.t ^ �.n/.R//� X.t ^ �.n/.R//j2�t^�.n/.R/.R/

6 jX.n/0 � X0j2e� supn jX.n/0 j C m.n/
R .t/;

where m.n/
R .t/; t 2 Œ0;T�, are continuous local .Ft/-martingales such that m.n/

R .0/ D
0. Hence localizing m.n/

R .t/; t 2 Œ0;T�, for any .Ft/-stopping time � 6 �.n/.R/ we
obtain that

E.jX.n/.�/ � X.�/j2�� .R// 6 E.jX.n/0 � X0j2e� supn jX.n/0 j/: (3.26)

Since the right-hand side of (3.26) converges to zero, by Lemma 3.1.3 we conclude
that

P � lim
n!1 sup

t2Œ0;T�
�jXn/.t ^ �.n/.R//� X.t ^ �.n/.R//j2�t^�.n/.R/.R/

� D 0: (3.27)

Since P-a.e. the function Œ0;1Œ3 t 7! �t.R/ is continuous and strictly positive,
(3.27) implies

P � lim
n!1 sup

t2Œ0;T�
jX.n/.t ^ �.n/.R// � X.t ^ �.n/.R//j D 0: (3.28)
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But

P.f�.n/.R/ < Tg/
6 P.f sup

t2Œ0;T�
.jX.n/.t ^ �.n/.R//j C jX.t ^ �.n/.R//j/ > Rg/

6 P.f sup
t2Œ0;T�

.jX.n/.t ^ �.n/.R//� X.t ^ �.n/.R//j/ > 1g/

C P.f2 sup
t2Œ0;T�

jX.t/j > R � 1g/:

This together with (3.28) implies that

lim
R!1 lim

n!1 P.f�.n/.R/ < Tg/ D 0: (3.29)

(3.28) and (3.29) imply (3.25). ut



Chapter 4
SDEs in Infinite Dimensions and Applications
to SPDEs

In this chapter we will present one specific method to solve stochastic differential
equations in infinite dimensional spaces, known as the variational approach. The
main criterion for this approach to work is that the coefficients satisfy certain
monotonicity assumptions. As the main references for Sect. 4.2 we mention [54, 69],
but one should also check the references therein, in particular the pioneering work
[65]. Section 4.1 is devoted to formulating the necessary conditions and a number
of key applications. In the last section we study the Markov property and invariant
measures.

4.1 Gelfand Triples, Conditions on the Coefficients
and Examples

Let H be a separable Hilbert space with inner product h ; iH and H� its dual. Let V
be a reflexive Banach space, such that V � H continuously and densely. Then for
its dual space V� it follows that H� � V� continuously and densely. Identifying H
and H� via the Riesz isomorphism we have that

V � H � V� (4.1)

continuously and densely and if V�

h ; iV denotes the dualization between V� and V
(i.e. V�

hz; viV WD z.v/ for z 2 V�; v 2 V), it follows that

V�

hz; viV D hz; viH for all z 2 H; v 2 V: (4.2)

.V;H;V�/ is called a Gelfand triple. Note that since H � V� continuously and
densely, V� is also separable, hence so is V . Furthermore, B.V/ is generated by

© Springer International Publishing Switzerland 2015
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V� and B.H/ by H�. We also have by Kuratowski’s theorem that V 2 B.H/; H 2
B.V�/ and B.V/ D B.H/\ V; B.H/ D B.V�/ \ H:

Below we want to study stochastic differential equations on H of type

dX.t/ D A.t;X.t// dt C B.t;X.t// dW.t/ (4.3)

with W.t/; t 2 Œ0;T�, a cylindrical Q-Wiener process with Q D I on another
separable Hilbert space .U; h ; iU/ and with B taking values in L2.U;H/ as in
Chap. 2, but with A taking values in the larger space V�.

The solution X will, however, take values in H again. In this section we give
precise conditions on A and B.

Let T 2 Œ0;1Œ be fixed and let .�;F ;P/ be a complete probability space with
normal filtration Ft; t 2 Œ0;1Œ. Let

A W Œ0;T� � V �� ! V�; B W Œ0;T� � V �� ! L2.U;H/

be progressively measurable, i.e. for every t 2 Œ0;T�, these maps restricted to Œ0; t��
V �� are B.Œ0; t�/˝B.V/˝Ft-measurable. As usual by writing A.t; v/ we mean the
map ! 7! A.t; v; !/. Analogously for B.t; v/. We impose the following conditions
on A and B:

(H1) (Hemicontinuity) For all u; v;w 2 V; ! 2 � and t 2 Œ0;T� the map

R 3 
 7! V�

hA.t; u C 
v; !/;wiV

is continuous.
(H2) (Weak monotonicity) There exists a c 2 R such that for all u; v 2 V

2 V�

hA.�; u/� A.�; v/; u � viV C kB.�; u/� B.�; v/k2L2.U;H/
6 cku � vk2H on Œ0;T� ��:

(H3) (Coercivity) There exist ˛ 2 �1;1Œ; c1 2 R; c2 2 �0;1Œ and an .Ft/-adapted
process f 2 L1.Œ0;T� ��; dt ˝ P/ such that for all v 2 V; t 2 Œ0;T�

2 V�

hA.t; v/; viV CkB.t; v/k2L2.U;H/ 6 c1kvk2H � c2kvk˛V C f .t/ on �:

(H4) (Boundedness) There exist c3 2 Œ0;1Œ and an .Ft/-adapted process
g 2 L

˛
˛�1 .Œ0;T� ��; dt ˝ P/ such that for all v 2 V; t 2 Œ0;T�

kA.t; v/kV� 6 g.t/C c3kvk˛�1
V on �;

where ˛ is as in (H3).
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Remark 4.1.1

1. By (H3) and (H4) it follows that for all v 2 V; t 2 Œ0;T�

kB.t; v/k2L2.U;H/ 6 c1kvk2H C f .t/C 2kvkV g.t/C .2c3 � c2/kvk˛V on �:

2. Fix .t; !/ 2 Œ0;T� �� and set for u 2 V

A.u/ WD A.t; u; !/:

Analogously to the finite dimensional case (see 3.1.3) we introduce:

.H2loc/ For every R 2 �0;1Œ there exists a CR such that for all u; v 2 V
with kukV ; kvkV 6 R

2 V�

hA.u/� A.v/; u � viV 6 CRku � vk2H :

Then the following holds:
(H1) and .H2loc/ imply that A is demicontinuous, i.e.

un ! u as n ! 1 (strongly) in V

implies

A.un/ ! A.u/ as n ! 1 weakly in V�

(cf. [82, Proposition 26.4]).
In particular, if H D R

d; d 2 N; hence V D V� D R
d, then (H1) and .H2loc/

imply that u 7! A.t; u; !/ is continuous from R
d to R

d.

Proof Set for u 2 V;R 2 �0;1Œ

AR.u/ WD A.u/� CR u:

The proof will be done in four steps. ut
Claim 1: A is locally bounded, i.e. for all u 2 V there exists a neighborhood U.u/

such that A.U.u// is a bounded subset of V�.

Proof of Claim 1 First consider u D 0. Suppose A.U.0// is unbounded for all
neighborhoods U.0/ of 0. Then there exist un 2 V , n 2 N, such that

kunkV ! 0 and kA.un/kV� ! 1 as n ! 1:

Then there exists an R 2 �0;1Œ such that kunkV 6 R for all n 2 N. Set

an WD .1C kAR.un/kV�kunkV /
�1:
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Then by (H2loc) for all v 2 Vnf0g and vR WD R v
kvkV

an V�

hAR.un/; un � .˙vR/iV �an V�

hAR.˙vR/; un � .˙vR/iV 6 0;

hence


an V�

hAR.un/; vRiV 6 �an V�

hAR.un/; uniV Can V�

hAR.˙vR/; un 
 vRiV

6 ankAR.un/kV�kunkV C kAR.˙vR/kV�kun 
 vRkV

6 1C kAR.˙vR/kV� .R C kvRkV/:

Consequently,

sup
n

j V�

hanAR.un/; viV j < 1 for all v 2 V:

Therefore, by the Banach–Steinhaus theorem

N WD sup
n

kanAR.un/kV� < 1;

and thus for n0 2 N so large that kunk 6 1
2N for all n > n0 we obtain

kAR.un/kV� 6 a�1
n N 6 N C 1

2
kAR.un/kV� ;

i.e.

kAR.un/kV� 6 2N for all n > n0:

Hence also supnkA.un/kV� < 1, which is a contradiction. So, A.U.0// is bounded
for some neighborhood U.0/ of 0.

For arbitrary u 2 V we apply the above argument to the operator

Au.v/ WD A.u C v/; v 2 V

which obviously also satisfies (H1) and .H2loc/. So, Claim 1 is proved. ut
Claim 2: Let u 2 V; b 2 V� such that there exist R 2 ŒkukV ;1Œ; � 2�0;1Œ such

that

V�

hb � A.v/; u � viV 6 �ku � vk2H for all v 2 V with kvkV 6 R C 1:

Then A.u/ D b.
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Proof of Claim 2 Let w 2 V; kwkV 6 1; t 2 �0; 1Œ and set v WD u � tw. Then by
assumption

V�

hb � A.u � tw/; twiV D V�

hb � A.v/; u � viV 6 � t2kwk2H :

Dividing first by t and then letting t ! 0, by (H1) we obtain

V�

hb � A.u/;wiV 6 0 for all w 2 V:

So, replacing w by �w, w 2 V , we get

V�

hb � A.u/;wiV D 0 for all w 2 V;

hence A.u/ D b. ut
Claim 3: (“monotonicity trick”). Let un; u 2 V; n 2 N; and b 2 V� such that

un ! u as n ! 1 weakly in V;

un ! u as n ! 1 strongly in H;

A.un/ ! b as n ! 1 weakly in V�

and

lim sup
n!1 V�

hA.un/; uniV > V�

hb; uiV :

Then A.u/ D b.

Proof of Claim 3 Let R WD kukV C supn kunkV : We have for all v 2 V with kvkV 6
R C 1

V�

hA.un/; uniV � V�

hA.v/; uniV � V�

hA.un/� A.v/; viV

D V�

hA.un/� A.v/; un � viV 6 CRC1kun � vk2H
by .H2loc/. Taking lim sup

n!1
we obtain

V�

hb; uiV � V�

hA.v/; uiV � V�

hb � A.v/; viV 6 CRC1ku � vk2H ;

so

V�

hb � A.v/; u � viV 6 CRC1ku � vk2H for all v 2 V with kvkV 6 R C 1:

Hence Claim 2 implies that A.u/ D b. ut
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Claim 4: Let un; u 2 V; n 2 N, such that

un ! u as n ! 1 (strongly) in V:

Then

A.un/ ! A.u/ as n ! 1 weakly in V�:

Proof of Claim 4 Since un ! u as n ! 1 in V , by Claim 1 fA.un/jn 2 Ng
is bounded in V�. Since V is separable, closed bounded sets in V� are weakly
sequentially compact. Hence there exists a subsequence .nk/k2N and b 2 V� such
that A.unk/ ! b as k ! 1 weakly in V�. Since unk ! u strongly in V as k ! 1;

we get

lim
k!1 V�

hA.unk/; unk iV D V�

hb; uiV :

Therefore, since V � H continuously, all conditions in Claim 3 are fulfilled and we
can conclude that A.u/ D b. So, for all such subsequences their weak limit is A.u/,
hence A.un/ ! A.u/ as n ! 1 weakly in V�. ut

Let us now discuss the above conditions. We shall solely concentrate on A and
take B � 0. The latter we do because of the following:

Exercise 4.1.2

1. Suppose A;B satisfy (H2), (H3) above and QA is another map satisfying (H2),
(H3). Then A C QA; B satisfy (H2),(H3). Likewise, if A and QA both satisfy (H1),
(H4) then so does A C QA.

2. If A satisfies (H2), (H3) (with B � 0) and for all t 2 Œ0;T�; ! 2 �; the map u 7!
B.t; u; !/ is Lipschitz with respect to k kH with Lipschitz constant independent
of t 2 Œ0;T�; ! 2 �, then A;B satisfy (H2), (H3).

Below, we only look at A independent of t 2 Œ0;T�; ! 2 �. From here examples
for A dependent on .t; !/ are then immediate.

Example 4.1.3 V D H D V� (which includes the case H D R
d).

Clearly, since for all v 2 V

2 V�

hA.v/; viV 6 2 V�

hA.v/ � A.0/; viV CkA.0/k2V�

C kvk2V
in the present case where V D H D V�, (H2) implies (H3) with c1 > c2 and ˛ WD
2. Furthermore, obviously, if A is Lipschitz in u, then (H1)–(H4) are immediately
satisfied. But for (H1)–(H3) to hold, conditions (with respect to u) on A, which can
be checked locally, can be sufficient, as the following proposition shows.

Proposition 4.1.4 Suppose A W H ! H is Fréchet differentiable such that for some
c 2 Œ0;1Œ the operator DA.x/�cI .2 L.H// is negative definite for all x 2 H. Then
A satisfies (H1)–(H3) (with B � 0).
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Proof Since A is Fréchet differentiable, it is continuous, so, in particular, (H1) holds.
Furthermore, for x; y 2 H we have

A.x/� A.y/ D
Z 1

0

d

ds
A.y C s.x � y// ds

D
Z 1

0

DA.y C s.x � y//.x � y/ ds:

Hence by assumption

hA.x/� A.y/; x � yiH D
Z 1

0

hDA.y C s.x � y//.x � y/; x � yiH ds

6 c
Z 1

0

hx � y; x � yiH ds

D ckx � yk2H ;

and so (H2) holds and hence (H3), as shown above. ut
We again note that Proposition 4.1.4 shows that locally checkable conditions on

A can already imply (H1)–(H3), if (V D H D V� and) ˛ D 2. However, the global
condition (H4) then requires that A is of at most linear growth since ˛ � 1 D 1 if
˛ D 2. We also note that for H D R

1 the conditions in Proposition 4.1.4 just mean
that A is differentiable and decreasing.

If H is a space of functions, a possible and easy choice for A would be, for
example, Au D �u3. But then we cannot choose H D L2 because A would not leave
L2 invariant. This is one motivation to look at triples V � H � V� because then we
can take V D L p and H D L2 and define A from V to V� D Lp=.p�1/. Let us look at
this case more precisely.

Example 4.1.5 (L p � L2 � Lp=.p�1/ and A.u/ WD �ujujp�2) Hence the stochastic
differential equation (4.3) becomes

dX.t/ D �X.t/jX.t/jp�2 dt C B.t;X.t// dW.t/:

Let p 2 Œ2;1Œ; ƒ � R
d; ƒ open. Let

V WD L p.ƒ/ WD L p.ƒ; d�/;

equipped with its usual norm k kp; and

H WD L2.ƒ/ WD L2.ƒ; d�/;
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where d� denotes Lebesgue measure on ƒ. Then

V� D Lp=.p�1/.ƒ/:

If p > 2 we assume that

jƒj WD
Z
Rd

Iƒ.�/ d� < 1: (4.4)

Then

V � H � V�;

or concretely

L p.ƒ/ � L2.ƒ/ � Lp=.p�1/.ƒ/

continuously and densely. Recall that since p > 1, L p.ƒ/ is reflexive.
Define A W V ! V� by

Au WD �ujujp�2; u 2 V D L p.ƒ/:

Indeed, A takes values in V� D Lp=.p�1/.ƒ/, since

Z
jAu.�/jp=.p�1/ d� D

Z
ju.�/jp d� < 1

for all u 2 L p.ƒ/.

Claim A satisfies (H1)–(H4).

Proof Let u; v; x 2 V . Then for 
 2 R

V�

hA.u C 
v/ � A.u/; xiV

D
Z
.u.�/ju.�/jp�2 � .u.�/C 
v.�//ju.�/C 
v.�/jp�2/x.�/ d�

6
��ujujp�2 � .u C 
v/ju C 
vjp�2��

V�

kxkV

which converges to zero as 
 ! 0 by Lebesgue’s dominated convergence theorem.
So, (H1) holds.

Furthermore,

V�

hA.u/� A.v/; u � viV

D
Z
.v.�/jv.�/jp�2 � u.�/ju.�/jp�2/.u.�/ � v.�// d� 6 0;
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since the map s 7! sjsjp�2 is increasing on R. Thus (H2) holds, with c WD 0.
We also have that

V�

hA.v/; viV D �
Z

jv.�/jp d� D �kvkp
V ;

so (H3) holds with ˛ WD p. In addition,

kA.v/kV� D
�Z

jv.�/jp d�

� p�1
p

D kvkp�1
V

so (H4) holds with ˛ WD p as required. ut
Remark 4.1.6 In the example above we may take A W V WD L p.ƒ/ ! L

p
p�1 .ƒ/ D

V� defined by

A.v/ WD �‰.v/; v 2 L p.ƒ/;

where ‰ W R ! R is a fixed function satisfying properties .‰1/� .‰4/ specified in
Example 4.1.11 below.

Now we turn to cases where A is given by a (possibly nonlinear) partial
differential operator. We shall start with the linear case; more concretely, A will
be given by the classical Laplace operator

� D
dX

iD1

@2

@�2i

with initial domain given by C1
0 .ƒ/. We want to take A to be an extension of � to

a properly chosen Banach space V so that A W V ! V� is (defined on all of V and)
continuous with respect to k kV and k kV� . The right choice for V is the classical
Sobolev space H1;p

0 .ƒ/ for p 2 Œ2;1Œ with Dirichlet boundary conditions. So, as a
preparation we need to introduce (first-order) Sobolev spaces.

Again let ƒ � R
d, ƒ open, and let C1

0 .ƒ/ denote the set of all infinitely
differentiable real-valued functions on ƒ with compact support. Let p 2 Œ1;1Œ

and for u 2 C1
0 .ƒ/ define

kuk1;p WD
�Z

.ju.�/jp C jru.�/jp/ d�

�1=p

: (4.5)

Then define

H1;p
0 .ƒ/ WD completion of C1

0 .ƒ/ with respect to k k1;p: (4.6)
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At this stage H1;p
0 .ƒ/, called the Sobolev space of order 1 in L p.ƒ/ with Dirichlet

boundary conditions, just consists of abstract objects, namely equivalence classes
of k k1;p-Cauchy sequences. The main point is to show that

H1;p
0 .ƒ/ � L p.ƒ/; (4.7)

i.e. that the unique continuous extension

Ni W H1;p
0 .ƒ/ ! L p.ƒ/

of the embedding

i W C1
0 .ƒ/ ,! L p.ƒ/

is one-to-one. To this end it suffices (in fact it is equivalent) to show that if un 2
C1
0 .ƒ/; n 2 N; such that

un ! 0 in L p.ƒ/

and
Z

jr.un � um/.�/jp d� ! 0 as n;m ! 1;

then
Z

jr.un.�//jp d� ! 0 as n ! 1: (4.8)

But by the completeness of L p.ƒIRd/ there exists an

F D .F1; : : : ;Fd/ 2 L p.ƒIRd/

such that run ! F as n ! 1 in L p.ƒIRd/. Let v 2 C1
0 .ƒ/. Then for 1 6 i 6 d,

integrating by parts we obtain that

Z
v.�/Fi.�/ d� D lim

n!1

Z
v.�/

@

@�i
un.�/ d�

D � lim
n!1

Z
@

@�i
v.�/un.�/ d�

D 0:
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Hence Fi D 0 d�-a.e. for all 1 6 i 6 d, so (4.8) holds.
Consider the operator

r W C1
0 .ƒ/ � L p.ƒ/ ! L p.ƒIRd/:

By what we have shown above, we can extend r to all of H1;p
0 .ƒ/ as follows. Let

u 2 H1;p
0 .ƒ/ and let un 2 C1

0 .ƒ/ such that limn!1ku � unk1;p D 0. In particular,
.run/n2N is a Cauchy sequence in L p.ƒIRd/, hence has a limit there. So, define

ru WD lim
n!1 run in L p.ƒIRd/: (4.9)

By what we have shown above this limit only depends on u and not on the chosen
sequence. We recall the fact that H1;p

0 .ƒ/ is reflexive for all p 2 �1;1Œ (cf. [82]).

Example 4.1.7 (H1;2
0 � L2 � .H1;2

0 /
�; A D �) Though later we shall see that to

have (H3) we have to take p D 2, we shall first consider p 2 Œ2;1Œ and define

V WD H1;p
0 .ƒ/;H WD L2.ƒ/;

so

V� WD H1;p
0 .ƒ/

�:

Again we assume (4.4) to hold if p > 2. Since then V � L p.ƒ/ � H, continuously
and densely, identifying H with its dual we obtain the continuous and dense
embeddings

V � H � V�

or concretely

H1;p
0 .ƒ/ � L2.ƒ/ � H1;p

0 .ƒ/
�: (4.10)

Now we are going to extend � with initial domain C1
0 .ƒ/ to a bounded linear

operator A W V ! V�. First of all we can consider� as an operator taking values in
V� since

� W C1
0 .ƒ/ ! C1

0 .ƒ/ � L2.ƒ/ � V�:

Furthermore, for u; v 2 C1
0 .ƒ/ again integrating by parts we obtain

ˇ̌
V�

h�u; viV

ˇ̌ D jh�u; viHj

D
ˇ̌
ˇ̌�
Z

hru.�/;rv.�/i d�

ˇ̌
ˇ̌
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6
�Z

jru.�/j p
p�1 d�

� p�1
p
�Z

jrv.�/jp d�

� 1
p

6
�Z

jru.�/j p
p�1 d�

� p�1
p

kvk1;p:

Hence for all u 2 C1
0 .ƒ/

k�ukV� 6 kjrujk p
p�1
: (4.11)

So, by (4.4) and since p
p�1 6 2 6 p, we get by Hölder’s inequality

k�ukV� 6 jƒj p�2
p kuk1;p for all u 2 C1

0 .ƒ/; (4.12)

where for p D 2 the factor on the right is just equal to 1.
So, � with domain C1

0 .ƒ/ extends (uniquely) to a bounded linear operator A W
V ! V� (with domain all of V), also denoted by�.

Now let us check (H1)–(H4) for A.

Claim

A.D �/ W H1;p
0 .ƒ/ !

	
H1;p
0 .ƒ/


�

satisfies (H1),(H2),(H4) and provided p D 2, also (H3).

Proof Since A W V ! V� is linear, (H1) is obviously satisfied. Furthermore, if
u; v 2 V then there exist un; vn 2 C1

0 .ƒ/; n 2 N; such that un ! u; vn ! v as
n ! 1 in V . Hence, integrating by parts, we get

V�

hA.u/� A.v/; u � viV D lim
n!1 V�

h�un ��vn; un � vniV

D lim
n!1h�.un � vn/; un � vniH

D � lim
n!1

Z
jr.un � vn/.�/j2 d� 6 0:

So (H2) is satisfied. Furthermore,

2 V�

hA.v/; viV D lim
n!1 2h�vn; vniH

D � lim
n!1 2

Z
jrvn.�/j2 d�

D �2
Z

jrv.�/j2 d�

D 2
�kvk2H � kvk21;2

�
:
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So (H3) is satisfied if p D 2 with ˛ D 2. Furthermore, (H4), with ˛ D 2, is clear by
(4.12). ut
Remark 4.1.8 The corresponding SDE (4.3) then reads

dX.t/ D �X.t/ dt C B.t;X.t// dW.t/:

If B � 0, this is just the classical heat equation. If B 6� 0, but constant, the solution
is an Ornstein–Uhlenbeck process on H.

Example 4.1.9 (H1;p
0 � L2 � .H1;p

0 /
�, A D p-Laplacian) Hence the stochastic

differential equation (4.3) becomes

dX.t/ D div
�jrX.t/jp�2rX.t/

�
dt C B.t;X.t// dW.t/:

Again we take p 2 Œ2;1Œ, ƒ � R
d, ƒ open and bounded, and V WD H1;p

0 .ƒ/,
H WD L2.ƒ/, so V� D .H1;p

0 .ƒ//
�. Define A W H1;p

0 .ƒ/ ! H1;p
0 .ƒ/

� by

A.u/ WD div.jrujp�2ru/; u 2 H1;p
0 .ƒ/I

more precisely, given u 2 H1;p
0 .ƒ/ for all v 2 H1;p

0 .ƒ/

V�

hA.u/; viV WD �
Z

jru.�/jp�2hru.�/;rv.�/i d� for all v 2 H1;p
0 .ƒ/:

(4.13)

A is called the p-Laplacian, also denoted by �p. Note that �2 D �. To show that
A W V ! V� is well-defined we have to show that the right-hand side of (4.13)
defines a linear functional in v 2 V which is continuous with respect to k kV D
k k1;p. First we recall that by (4.9) ru 2 L p.ƒIRd/ for all u 2 H1;p

0 .ƒ/. Hence by
Hölder’s inequality

Z
jru.�/jp�1jrv.�/j d� 6

�Z
jru.�/jp d�

� p�1
p
�Z

jrv.�/jp d�

� 1
p

6 kukp�1
1;p kvk1;p:

Since this dominates the absolute value of the right-hand side of (4.13) for all u 2
H1;p
0 .ƒ/ we have that A.u/ is a well-defined element of .H1;p

0 .ƒ//
� and that

kA.u/kV� 6 kukp�1
V : (4.14)

Now we are going to check that A satisfies (H1)–(H4).
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(H1) Let u; v; x 2 H1;p
0 .ƒ/, then by (4.13) we have to show for 
 2 R; j
j 6 1

lim

!0

Z 	
jr.u C 
v/.�/jp�2hr.u C 
v/.�/;rx.�/i

� jru.�/jp�2hru.�/;rx.�/i



d� D 0:

Since obviously the integrands converge to zero as 
 ! 0 d�-a.e., we
only have to find a dominating function to apply Lebesgue’s dominated
convergence theorem. But obviously, since j
j 6 1

jr.u C 
v/.�/jp�2jhr.u C 
v/.�/;rx.�/ij
62p�2 �jru.�/jp�1 C jrv.�/jp�1� jrx.�/j

and the right-hand side is in L1.ƒ/ by Hölder’s inequality as we have seen
above.

(H2) Let u; v 2 H1;p
0 .ƒ/. Then by (4.13)

� V�

hA.u/� A.v/; u � viV

D
Z

hjru.�/jp�2ru.�/ � jrv.�/jp�2rv.�/;ru.�/ � rv.�/i d�

D
Z
.jru.�/jp C jrv.�/jp � jru.�/jp�2hru.�/;rv.�/i

� jrv.�/jp�2hru.�/;rv.�/i/ d�

>
Z
.jru.�/jp C jrv.�/jp � jru.�/jp�1jrv.�/j

� jrv.�/jp�1jru.�/j/ d�

D
Z
.jru.�/jp�1 � jrv.�/jp�1/.jru.�/j � jrv.�/j/ d�

> 0;

since the map RC 3 s 7! sp�1 is increasing. Hence (H2) is shown with c D 0.
(H3) Because ƒ is bounded by Poincaré’s inequality (cf. [39]) there exists a

constant c D c.p; d; jƒj/ 2�0;1Œ such that

Z
jru.�/jp d� > c

Z
ju.�/jp d� for all u 2 H1;p

0 .ƒ/: (4.15)
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Hence by (4.13) for all u 2 H1;p
0 .ƒ/

V�

hA.u/; uiV D �
Z

jru.�/jp d� 6 �min.1; c/

2
kukp

1;p:

So, (H3) holds with ˛ D p and c1 D 0. (We note that only for (H3) have we
used that ƒ is bounded.)

(H4) This condition holds for A by (4.14) with ˛ D p.

Before we go on to our last example, which will include the case of the porous
medium equation, we would like to stress the following:

Remark 4.1.10

1. If one is given V � H � V� and A W V ! V� (e.g. as in the above examples)
satisfying (H1)–(H4) (with B � 0) one can consider a “smaller” space V0, i.e.
another reflexive separable Banach space such that

V0 � V

continuously and densely, hence (by restricting the linear functionals to V0)

V� � V�
0

continuously and densely, so altogether

V0 � V � H � V� � V�
0 :

Restricting A to V0 we see that A satisfies (H1),(H2) and (H4) with respect to the
Gelfand triple

V0 � H � V�
0 :

However, since k kV0 is up to a multiplicative constant larger than k kV , property
(H3) might no longer hold. Therefore, e.g. if one considers a map A which
is given by a sum of the Laplacian (cf. Example 4.1.7) and a monomial (cf.
Example 4.1.5) one cannot just take any V0 � H1;2

0 .ƒ/ \ L p.ƒ/, since (H3)
might get lost.

In the case of the p-Laplacian, p 2 Œ2;1Œ, it is possible to add monomials of
order p, since H1;p

0 .ƒ/ � L p.ƒ/ continuously and densely, so

A.u/ WD div.jrujp�2ru/� ujujp�2; u 2 H1;p
0 .ƒ/;

satisfies (H1)–(H4), if ƒ is bounded, with respect to the Gelfand triple

H1;p
0 .ƒ/ � L2.ƒ/ � .H1;p

0 .ƒ//
�:
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But generally, taking sums of A as above requires some care and is not always
possible.

2. In all our analysis the space V� is only used as a tool. Eventually, since the
solutions to our SDE (4.3) will take values in H; V� will be of no relevance.
Therefore, no further information about V� such as its explicit representation
(e.g. as a space of Schwartz distributions) is necessary.

Example 4.1.11 [L p � .H1;2
0 /

� � .L p/�, A D porous medium operator] The
stochastic differential equation (4.3) becomes

dX.t/ D �‰.X.t// dt C B.t;X.t// dW.t/:

As references for this example we refer to [4, 25, 69].
Let ƒ � R

d, ƒ open and bounded, p 2 Œ2;1Œ and

V WD L p.ƒ/; H WD .H1;2
0 .ƒ//

�:

Since ƒ is bounded we have by Poincaré’s inequality (4.15) that for some constant
c D c.2; d; jƒj/ > 0

kuk1;2 > kukH1;2
0

WD
�Z

jru.�/j2 d�

� 1
2

>
�

min.1; c/

2

� 1
2

kuk1;2 for all u 2 H1;2
0 .ƒ/: (4.16)

So, we can (and will do so below) consider H1;2
0 .ƒ/ with norm k kH1;2

0
and

corresponding scalar product

hu; viH1;2
0

WD
Z

hru.�/;rv.�/i d�; u; v 2 H1;2
0 .ƒ/:

Since H1;2
0 .ƒ/ � L2.ƒ/ continuously and densely, so is

H1;2
0 .ƒ/ � L

p
p�1 .ƒ/:

Hence

L p.ƒ/ �
	

L
p

p�1 .ƒ/

� � .H1;2

0 .ƒ//
� D H;

continuously and densely. Now we would like to identify H with its dual H� D
H1;2
0 .ƒ/ via the corresponding Riesz isomorphism R W H ! H� defined by Rx WD

hx; �iH; x 2 H: Let us calculate the latter.
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Lemma 4.1.12 The map � W H1;2
0 .ƒ/ ! .H1;2

0 .ƒ//
� D H (defined by (4.13) for

p D 2) is an isometric isomorphism. In particular,

h�u; �viH D hu; viH1;2
0

for all u; v 2 H1;2
0 .ƒ/: (4.17)

Furthermore, .��/�1 W H ! H� D H1;2
0 .ƒ/ is the Riesz isomorphism for H, i.e.

for every x 2 H

hx; �iH D H1;2
0

h.��/�1x; �iH : (4.18)

Proof Let u 2 H1;2
0 .ƒ/. Since by (4.13) for all v 2 H1;2

0 .ƒ/

Hh��u; vi
H1;2
0

D
Z

hru.�/;rv.�/i d� D hu; viH1;2
0
; (4.19)

it follows that �� W H1;2
0 .ƒ/ ! H is just the Riesz isomorphism for H1;2

0 .ƒ/ and
the first part of the assertion including (4.17) follows. To prove the last part, fix
x 2 H. Then by (4.17) and (4.19) for all y 2 H

hx; yiH D h.��/�1x; .��/�1yiH1;2
0

D Hhx; .��/�1yiH1;2
0
:

ut
Now we identify H with its dual H� by the Riesz map .��/�1 W H ! H�, so

H � H� in this sense, hence

V D L p.ƒ/ � H � .L p.ƒ//� D V� (4.20)

continuously and densely.

Lemma 4.1.13 The map

� W H1;2
0 .ƒ/ ! .L p.ƒ//�

extends to a linear isometry

� W L
p

p�1 .ƒ/ ! .L p.ƒ//� D V�

and for all u 2 L
p

p�1 .ƒ/; v 2 L p.ƒ/

V�

h��u; viV D
L

p
p�1

hu; viL p D
Z

u.�/v.�/ d�: (4.21)

Remark 4.1.14 One can prove that this isometry is in fact surjective, hence

.L p.ƒ//� D �.L
p

p�1 / ¤ L
p

p�1 :
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We shall not use this below, but it shows that the embedding (4.20) has to be handled
with care, always taking into account that H is identified with H� by .��/�1 W H !
H�, giving rise to a different dualization between L p.ƒ/ and .L p.ƒ//�. In particular,
for all x 2 H; v 2 L p.ƒ/

.L p/�hx; viL p D hx; viH

�
¤

L
p

p�1
hx; viL p D

Z
x.�/v.�/ d� provided x 2 L

p
p�1

�
:

Proof of Lemma 4.1.13 Let u 2 H1;2
0 .ƒ/. Then since �u 2 H, by (4.2) and (4.18)

we obtain that for all v 2 V

V�

h�u; viV D h�u; viH D �
H1;2
0

hu; viH D �hu; viL2 (4.22)

since v 2 V � L2.ƒ/. Therefore,

k�ukV� 6 kuk p
p�1
:

So, � extends to a continuous linear map

� W L
p

p�1 .ƒ/ ! V�

such that (4.22) holds for all u 2 L
p

p�1 .ƒ/, i.e. (4.21) is proved.
So, applying it to u 2 L

p
p�1 .ƒ/ and

v WD �kuk� q
p

q ujujq�2 2 L p.ƒ/;

where q WD p
p�1 , by (4.21) we obtain that

V�

h�u; viV D kuk p
p�1

and kvkp D 1, so k�ukV� D kuk p
p�1

and the assertion is completely proved.
ut

Now we want to define the “porous medium operator A”. So, let ‰ W R ! R be
a function having the following properties:

.‰1/ ‰ is continuous.

.‰2/ For all s; t 2 R

.t � s/.‰.t/ �‰.s// > 0:
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.‰3/ There exist p 2 Œ2;1Œ; a 2 �0;1Œ; c 2 Œ0;1Œ such that for all s 2 R

s‰.s/ > ajsjp � c:

.‰4/ There exist c3; c4 2 �0;1Œ such that for all s 2 R

j‰.s/j 6 c4 C c3jsjp�1;

where p is as in .‰3/.

We note that .‰4/ implies that

‰.v/ 2 L
p

p�1 .ƒ/ for all v 2 L p.ƒ/: (4.23)

Now we can define the porous medium operator A W L p.ƒ/ D V ! V� D .L p.ƒ//�
by

A.u/ WD �‰.u/; u 2 L p.ƒ/: (4.24)

Note that by Lemma 4.1.13 the operator A is well-defined. Now let us check (H1)–
(H4).

(H1) Let u; v; x 2 V D L p.ƒ/ and 
 2 R. Then by (4.21)

V�

hA.u C 
v/; xiV D V�

h�‰.u C 
v/; xiV

D �
Z
‰.u.�/C 
v.�//x.�/ d�: (4.25)

By .‰4/ for j
j 6 1 the integrand in the right-hand side of (4.25) is bounded
by

Œc4 C c32
p�2.jujp�1 C jvjp�1/�jxj

which by Hölder’s inequality is in L1.ƒ/. So, (H1) follows by (‰1) and
Lebesgue’s dominated convergence theorem.

(H2) Let u; v 2 V D L p.ƒ/. Then by (4.21)

V�

hA.u/� A.v/; u � v/iV D V�h�.‰.u/�‰.v//; u � viV

D �
Z
Œ‰.u.�// �‰.v.�//�.u.�/ � v.�// d�

6 0;

where we used .‰2/ in the last step.
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(H3) Let v 2 L p.ƒ/ D V . Then by (4.21) and .‰3/

V�

hA.v/; viV D �
Z
‰.v.�//v.�/ d�

6
Z
.�ajv.�/jp C c/ d�:

Hence (H3) is satisfied with c1 WD 0; c2 WD 2a; ˛ D p and f .t/ D 2cjƒj.
(H4) Let v 2 L p.ƒ/ D V . Then by Lemma 4.1.13 and .‰4/

kA.v/kV� D k�‰.v/kV�

D k‰.v/k
L

p
p�1

6 c4jƒj p�1
p C c3

�Z
jv.�/jp d�

� p�1
p

D c4jƒj p�1
p C c3kvkp�1

V ;

so (H4) holds with ˛ D p.

Remark 4.1.15

1. For p 2 Œ2;1Œ and ‰.s/ WD sjsjp�2 we have

A.v/ D �.vjvjp�2/; v 2 L p.ƒ/;

which is the non-linear operator appearing in the classical porous medium
equation, i.e.

@X.t/

@t
D �.X.t/jX.t/jp�2/; X.0; �/ D X0;

whose solution describes the time evolution of the density X.t/ of a substance in
a porous medium (cf. e.g. [4]).

2. Let ‰ W R ! R be given such that .‰1/–.‰4/ are satisfied with some p 2 �1;1Œ

(in .‰3/, .‰4/). One can see that the above assumptions that ƒ is bounded and
p > 2, can be avoided. But p then depends on the dimension of the underlying
space R

d. Let us assume first that d > 3. We distinguish two cases:

Case 1. jƒj D 1 and p WD 2d
dC2 , c D c4 D 0, where c; c4 are the constants in

.‰3/ and in .‰4/ respectively.
Case 2. jƒj < 1 and p 2 � 2d

dC2 ;1
�
.

By the Sobolev embedding theorem (cf. [39, Theorem 7.10]) we have

H1;2
0 .ƒ/ � L

2d
d�2 .ƒ/
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continuously and densely, and

kuk 2d
d�2

6 2.d � 1/p
d.d � 2/

kukH1;2
0

for all u 2 H1;2
0 .ƒ/:

In Case 1 we have 2d
d�2 D p

p�1 and in Case 2 (hence in both cases)

2d

d � 2
> p

p � 1
and thus

H1;2
0 .ƒ/ � L

p
p�1 .ƒ/

densely and for some c0 2�0;1Œ

kuk p
p�1

6 c0kukH1;2
0

for all u 2 H1;2
0 .ƒ/:

Now the above arguments generalize to both Cases 1 and 2, i.e. for the Gelfand
triple

V WD L p.ƒ/ � H WD .H1;2
0 .ƒ//

� � .L p.ƒ//�

the operator

A W L p.ƒ/ DW V ! V� D .L p.ƒ//�

defined in (4.24), satisfies (H1)–(H4).
We note that in Case 1 the norm k kH1;2

0
defined in (4.16) is in general not

equivalent to k k1;2, because the Poincaré inequality does not hold. In Case 1, if
d D 6, or in Case 2, if .3 6/d 6 6, we may take p D 3

2
and

‰.s/ WD sign.s/
p

jsj; s 2 R:

In this case the equation in Remark 4.1.15 is called fast diffusion equation. For
ƒ bounded the above extends, of course, also to the case d D 1; 2 where even
stronger Sobolev embeddings hold (cf. [39, Theorems 7.10 and 7.15]).

4.2 The Main Result and An Itô Formula

Consider the general situation described at the beginning of the previous section.
So, we have a Gelfand triple

V � H � V�
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and maps

A W Œ0;T� � V �� ! V�; B W Œ0;T� � V �� ! L2.U;H/

as specified there, satisfying (H1)–(H4), and consider the stochastic differential
equation

dX.t/ D A.t;X.t// dt C B.t;X.t// dW.t/ (4.26)

on H with W.t/; t 2 Œ0;T�, a cylindrical Q-Wiener process with Q WD I taking
values in another separable Hilbert space .U; h ; iU/ and being defined on a
complete probability space .�;F ;P/ with normal filtration Ft; t 2 Œ0;T�.

Before we formulate our main existence and uniqueness result for solutions of
(4.26) we have to define what we mean by “solution”.

Definition 4.2.1 A continuous H-valued (Ft)-adapted process .X.t//t2Œ0;T� is called
a solution of (4.26), if for its dt ˝ P-equivalence class OX we have OX 2 L˛.Œ0;T� �
�; dt ˝ PI V/\ L2.Œ0;T� ��; dt ˝ PI H/ with ˛ as in (H3) and P-a.s.

X.t/ D X.0/C
Z t

0

A.s; NX.s// ds C
Z t

0

B.s; NX.s// dW.s/; t 2 Œ0;T�; (4.27)

where NX is any V-valued progressively measurable dt ˝ P-version of OX.

Remark 4.2.2

1. The existence of the special version NX above follows from Exercise 4.2.3 below.
Furthermore, for technical reasons in Definition 4.2.1 and below we consider all
processes initially as V�-valued, hence by dt ˝P-equivalence classes we always
mean classes of V�-valued processes.

2. The integral with respect to ds in (4.27) is initially a V�-valued Bochner integral
which turns out to be in fact H-valued.

3. Solutions in the sense of Definition 4.2.1 are often called variational solutions in
the literature. There are various other notions of solutions for stochastic (partial)
differential equations. We recall the definition of (probabilistically) weak and
strong solutions in Appendix E below. The notions of analytically weak and
strong solutions as well as the notion of mild solutions and their relations are
recalled in Appendix G below.

4. We stress that the solution .X.t//t2Œ0;T� from Definition 4.2.1 is in general not an
H-valued semimartingale, since the first integral in the right-hand side of (4.27)
is not necessarily of bounded variation in H. Therefore, the classical Itô-formula
on Hilbert spaces (see Sect. 6.1 below) does not apply to .X.t//t2Œ0;T�.

Exercise 4.2.3

1. Let BV�

1 denote the closed unit ball in V�. Since BV�

1 \ H ¤ ;, it has a countable
subset fliji 2 Ng, which is dense in BV�

1 \ H with respect to H-norm. Define
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‚ W H ! Œ0;1� by

‚.h/ WD sup
i2N

jhli; hiHj; h 2 H:

Then ‚ is lower semicontinuous on H, hence B.H/-measurable. Since

V�

hli; viV D hli; viH ; i 2 N; v 2 V , we have

‚.v/ D kvkV for all v 2 V;

and furthermore (by the reflexivity of V)

f‚ < 1g D V:

2. Let X W Œ0;T��� ! H be any progressively measurable (i.e. B.Œ0; t�/˝Ft=B.H/-
measurable for all t 2 Œ0;T�/ dt ˝ P-version of OX 2 L˛.Œ0;T� � �; dt ˝
PI V/; ˛ 2�0;1Œ. Then

NX WD If‚ıX<1gX

is a V-valued progressively measurable (i.e. B.Œ0; t�/ ˝ Ft=B.V/-measurable)
dt ˝ P-version of OX.

3. Both A.�; NX/ and B.�; NX/ are V�-valued respectively L2.U;H/-valued progres-
sively measurable processes.

Now the main result (cf. [54]):

Theorem 4.2.4 Let A;B be as above satisfying (H1)–(H4) and let
X0 2 L2.�;F0;PI H/. Then there exists a unique solution X to (4.26) in the
sense of Definition 4.2.1. Moreover,

E. sup
t2Œ0;T�

kX.t/k2H/ < 1: (4.28)

The proof of Theorem 4.2.4 strongly depends on the following Itô formula, from
[54, Theorem I.3.1], which we shall prove here first. The presentation of its proof
and that of Theorem 4.2.4 is an extended adaptation of those in [69].

Theorem 4.2.5 Let ˛ 2�1;1Œ; X0 2 L2.�;F0;PI H/ and Y 2 L
˛

˛�1 .Œ0;T� �
�; dt ˝ PI V�/; Z 2 L2.Œ0;T� � �; dt ˝ PI L2.U;H//; both progressively
measurable. Define the continuous V�-valued process

X.t/ WD X0 C
Z t

0

Y.s/ ds C
Z t

0

Z.s/ dW.s/; t 2 Œ0;T�:

If for its dt ˝ P-equivalence class OX we have OX 2 L˛.Œ0;T� ��; dt ˝ PI V/ and if
E.kX.t/k2H/ < 1 for dt-a.e. t 2 Œ0;T� (which is automatically the case if ˛ > 2),
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then X is a continuous H-valued .Ft/-adapted process,

E

 
sup

t2Œ0;T�
kX.t/k2H

!
6 4

�
E
�kX.0/k2H

�C kYkK� .kXkK C 1/

C 10 E

�Z T

0

kZ.s/k2L2.U;H/ ds

��
(4.29)

and the following Itô-formula holds for the square of its H-norm P-a.s.

kX.t/k2H D kX0k2H C
Z t

0

	
2 V�

hY.s/; NX.s/iV CkZ.s/k2L2.U;H/



ds

C 2

Z t

0

hX.s/;Z.s/ dW.s/iH for all t 2 Œ0;T� (4.30)

for any V-valued progressively measurable dt ˝ P-version NX of OX.

As in [54] for the proof of Theorem 4.2.5 we need the following lemma
about piecewise constant approximations based on an argument due to [29]. For
abbreviation below we set

K WD L˛.Œ0;T� ��; dt ˝ PI V/: (4.31)

Lemma 4.2.6 Let X W Œ0;T� �� ! V� be B.Œ0;T�/˝ F=B.V�/-measurable such
that for its dt ˝P-equivalence class OX we have OX 2 K. Then there exists a sequence
of partitions Il WD f0 D tl

0 < tl
1 < � � � < tl

kl
D Tg such that Il � IlC1 and

ı.Il/ WD maxi.tl
i �tl

i�1/ ! 0 as l ! 1, X.tl
i/ 2 V P-a.e. for all l 2 N; 1 	 i 	 kl�1;

and for

NXl WD
klX

iD2
1Œtli�1;t

l
i Œ
X.tl

i�1/; QXl WD
kl�1X
iD1

1Œtli�1;t
l
i Œ
X.tl

i/; l 2 N;

we have that NXl; QXl are ( dt ˝ P-versions of elements) in K such that

lim
l!1

˚k OX � NXlkK C k OX � QXlkK
� D 0:

Proof For simplicity we assume that T D 1 and let NX W Œ0; 1��� ! V be a dt ˝ P-
version of OX such that

R 1
0 k NX.t/k˛V dt < 1 P-a.s. We extend NX to R � � by setting

NX D 0 on Œ0; 1�c � �. There exists an �0 2 F with full probability such that for
every ! 2 �0 there exists a sequence . fn/n2N � C.RI V/ with compact support such
that

Z
R

k fn.s/ � NX.s; !/k˛V ds 	 1

2n
; n 2 N:
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Thus, for every n 2 N;

lim sup
ı!0

Z
R

k NX.ı C s; !/ � NX.s; !/k˛V ds

	3˛�1 lim sup
ı!0

Z
R

�k NX.ı C s; !/ � fn.ı C s/k˛V C k NX.s; !/ � fn.s/k˛V
�

ds

	3
˛�1

n
; n 2 N:

Here we used that since each fn is uniformly continuous, by Lebesgue’s dominated
convergence theorem we have that for all n 2 N

lim
ı!0

Z
R

kfn.ı C s/� fn.s/k˛V ds D 0:

Letting n ! 1 we obtain

lim
ı!0

Z
R

k NX.ı C s; !/ � NX.s; !/k˛V ds D 0; ! 2 �0: (4.32)

Now, given t 2 R, let Œt� denote the largest integer 	 t. Let �n.t/ WD 2�nŒ2nt�; n 2 N;

that is, �n.t/ is the largest number of the form k
2n ; k 2 Z, less or equal to t. Shifting

the integral in (4.32) by t and taking ı D �n.t/ � t we obtain

lim
n!1

Z
R

k NX.�n.t/C s/ � NX.t C s/k˛V ds D 0 on �0:

Moreover, since NX.r/ D 0 for all r 2 RnŒ0; 1�,
Z 1

0

k NX.�n.t/C s/ � NX.t C s/k˛V ds

	 1Œ�2;2�.t/2˛�1
Z
R

�k NX.�n.t/C s/k˛V C k NX.t C s/k˛V
�

ds

D 2˛1Œ�2;2�.t/
Z 1

0

k NX.s/k˛V ds on �0:

So, by Lebesgue’s dominated convergence theorem, we obtain that

0 D lim
n!1 E

Z
R

dt
Z 1

0

k NX.�n.t/C s/ � NX.t C s/k˛V ds

� lim
n!1 E

Z 1

0

ds
Z 1

0

k NX.�n.t � s/C s/� NX.t/k˛V dt: (4.33)
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Given s 2 Œ0; 1Œ and n 2 N, let the partition In.s/ be defined by

tn
0.s/ WD 0; tn

i .s/ WD
	

s � Œ2ns�

2n



C i � 1

2n
; 1 	 i 	 2n; tn

2nC1.s/ WD 1:

Then, for t 2 Œtn
i�1.s/; tn

i .s/Œ, 2 6 i 6 2n C 1, one has t � s 2 Œ2�n.i � Œ2ns� �
2/; 2�n.i � Œ2ns� � 1/Œ and hence,

�n.t � s/C s D 2�n.i � Œ2ns� � 2/C s D tn
i�1.s/; 2 	 i 	 2n C 1:

Therefore, (4.33) implies

lim
n!1 E

Z 1

0

ds
Z 1

0

k NX.t/ � NXn;s.t/k˛V dt D 0;

where NXn;s is the process defined as NXl for the partition In.s/ but with X.tl
i�1.s//

replaced by NX.tl
i�1.s//. Similarly, the same holds for QXn;s in place of NXn;s by using

Q�n WD �n C 2�n instead of �n, where QXn;s is defined as QXl for the partition In.s/ but
with X.tl

i.s// replaced by NX.tl
i.s//. Hence, there exist a subsequence nk ! 1 and a

ds-zero set N1 2 B.Œ0; 1�/ such that

lim
k!1 E

Z 1

0

�k NX.t/ � NXnk ;s.t/k˛V C k NX.t/ � QXnk;s.t/k˛V
�

dt D 0; s 2 Œ0; 1� n N1:

In particular, NXnk;s and QXnk;s are ( dt ˝ P-versions of elements) in K. Since for
1 	 i 	 2n the maps s 7! tn

i .s/ are piecewise C1-diffeomorphisms, the image
measures of ds under these maps are absolutely continuous with respect to ds.
Therefore, since NX D X ds ˝ P-a.e., there exists a ds-zero set N2 2 B.Œ0; 1�/ such
that

NX.tn
i .s// D X.tn

i .s// P-a.e. for all s 2 Œ0; 1� n N2; 1 	 i 	 2n:

Therefore, fixing s 2 Œ0; 1Œn.N1 [ N2/, the sequence of the corresponding partitions
Inl.s/; l � 1, has all properties of the assertion. ut
Remark 4.2.7

(i) As follows from the above proof all the partition points tl
i; l � 1; 1 	 i 	

kl � 1; in the assertion of Lemma 4.2.6 can be chosen outside an a priori given
Lebesgue zero set in Œ0;T� instead of N2 above.

(ii) Tracing through the proof of Lemma 4.2.6 one sees that it also holds if we
replace K by the following space

K0 WD L˛W.Œ0;T� ��; dt ˝ PI V/ \ L2W.Œ0;T� ��; dt ˝ PI H/;
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equipped with the sum of the two respective norms, where we adopt the
standard notation of a subscript W for the subspace of those elements which
possess an .Ft/-adapted dt ˝ P-version.

Proof of Theorem 4.2.5 Since M.t/ WD R t
0

Z.s/ dW.s/, t 2 Œ0;T�, is already a
continuous martingale on H and since Y 2 K� D L˛=.˛�1/.Œ0;T��� ! V�I dt˝P/
is progressively measurable,

R t
0

Y.s/ ds is a continuous adapted process on V�. Thus,
X is a continuous adapted process on V�, hence B.Œ0;T�/˝ F=B.V�/-measurable.

Claim (a):

kX.t/k2H DkX.s/k2H C 2

Z t

s
V�

hY.r/;X.t/iV dr C 2hX.s/;M.t/� M.s/iH

C kM.t/ � M.s/k2H � kX.t/ � X.s/� M.t/C M.s/k2H (4.34)

holds for all t > s such that X.t/;X.s/ 2 V:
Indeed, this follows immediately by noting that

kM.t/ � M.s/k2H � kX.t/� X.s/� M.t/C M.s/k2H
C 2hX.s/;M.t/� M.s/iH

D 2hX.t/;M.t/� M.s/iH � kX.t/ � X.s/k2H
D 2hX.t/;X.t/� X.s/iH � 2

Z t

s
V�hY.r/;X.t/iV dr

� kX.t/k2H � kX.s/k2H C 2hX.t/;X.s/iH

D kX.t/k2H � kX.s/k2H � 2
Z t

s
V�hY.r/;X.t/iV dr:

Claim (b): We have

E

�
sup

t2Œ0;T�
kX.t/k2H

�
< 1: (4.35)

To prove the claim let Il; l 2 N, be a sequence of partitions as in Lemma 4.2.6. By
Remark 4.2.7(i) and the assumption that E.kX.t/k2H/ < 1 for dt-a.e. t 2 Œ0;T�
we may choose Il such that

E.kX.t/k2H/ < 1 for all t 2
[
l2N

Il: (4.36)

Then by (4.34), for any t D tl
i 2 Il n f0;Tg

kX.t/k2H � kX0k2H
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D
i�1X
jD0
.kX.tl

jC1/k2H � kX.tl
j/k2H/

D 2

Z t

0
V�

hY.s/; QXl.s/iV ds

C 2

Z t

0

h NXl.s/;Z.s/ dW.s/iH C 2hX.0/;
Z tl1

0

Z.s/ dW.s/iH

C
i�1X
jD0

�kM.tl
jC1/� M.tl

j/k2H � kX.tl
jC1/ � X.tl

j/ � M.tl
jC1/C M.tl

j/k2H
�
;

(4.37)

where NXl and QXl are defined as in Lemma 4.2.6. We note that since NXl is .Ft/-
adapted and pathwise bounded the stochastic integral involving NXl above is well-
defined. By Lemma 4.2.6

E

�Z T

0

j V�

hY.s/; QXl.s/iV j ds

�
	 kYkK� k QXlkK 	 c1 (4.38)

for some constant c1 > 0 independent of l: Moreover, by the Burkholder–Davis
inequality (cf. Proposition D.0.1), Lemmas 2.4.2 and 2.4.4,

E

 
sup

t2Œ0;T�

ˇ̌̌
ˇ
Z t

0

h NXl.s/;Z.s/ dW.s/iH

ˇ̌̌
ˇ
!

63E

 �Z T

0

kZ.s/� NXl.s/k2U ds

�1=2!

63E

 �Z T

0

k NXl.s/k2HkZ.s/k2L2.U;H/ ds

�1=2!

D3E

 �Z T

0

k NXl.s/k2H dhMis

�1=2!

	1
4

E

�
sup

1�j�kl�1
kX.tl

j/k2H
�

C 9E
�hMiT

�
; (4.39)

since hMit D R t
0

kZ.s/k2L2.U;H/ ds and we used that

ab 6 1

12
a2 C 3b2; a; b > 0:
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Here we note that by (4.36)

E

 
sup

1�j�kl�1
kX.tl

j/k2H
!
< 1:

Finally, by Lemma 2.4.4

E

0
@ i�1X

jD0
kM.tl

jC1/� M.tl
j/k2H

1
A D

i�1X
jD0

E

 Z tljC1

tlj

kZ.s/k2L2.U;H/ ds

!

D E

 Z tli

0

kZ.s/k2L2.U;H/ ds

!

D E
	
hMitli



: (4.40)

Combining (4.37)–(4.40), we obtain

E

 
sup

t2IlnfTg
kX.t/k2H

!
	 c2

with c2 WD 4
h
E.kX.0/k2H/C kYkK� .kXkK C 1/C 10E.

R T
0

kZ.s/k2L2.U;H/ ds/
i
.

Therefore, letting l " 1 and setting I WD [l�1Il nfTg;with Il as in Lemma 4.2.6,
we obtain

E

�
sup
t2I

kX.t/k2H
�

6 c2;

since Il � IlC1 for all l 2 N. Since for all t 2 Œ0;T�
NX

jD1
V�

hX.t/; eji2V " kX.t/k2H as N " 1;

where fej

ˇ̌
j 2 Ng � V is an orthonormal basis of H and as usual for x 2 V� n H

we set kxkH WD 1, it follows that t 7! kX.t/kH is lower semicontinuous P-a.s.
Since I is dense in Œ0;T�, we have supt2Œ0;T� kX.t/k2H D supt2I kX.t/k2H : Thus,
(4.35) holds.

Claim (c):

lim
l!1 sup

t2Œ0;T�

ˇ̌
ˇ̌ Z t

0

hX.s/� NXl.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌ D 0 in probability. (4.41)
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We first note that because of (b) X is H-valued P-a.s. and by (b) and its continuity
in V� the process X is weakly continuous in H P-a.s. and, therefore, since B.H/
is generated by H�, progressively measurable as an H-valued process. Hence, for
any n 2 N the process PnX is continuous in H so that

lim
l!1

Z T

0

kPn.X.s/� NXl.s//k2H dhMis D 0; P-a.s.

Here Pn denotes the orthogonal projection onto spanfe1; : : : ; eng in H. Therefore,
applying Corollary D.0.2 we see that it suffices to show that for any " > 0;

lim
n!1 sup

l2N
P

�
sup

t2Œ0;T�

ˇ̌
ˇ̌ Z t

0

h.1� Pn/ NXl.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌ > "

�
D 0;

lim
n!1 P

�
sup

t2Œ0;T�

ˇ̌
ˇ̌ Z t

0

h.1� Pn/X.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌ > "

�
D 0: (4.42)

For any n 2 N, ı 2 .0; 1/ and N > 1 by Lemma 2.4.2 and Corollary D.0.2 we
have that

P

�
sup

t2Œ0;T�

ˇ̌
ˇ̌ Z t

0

h.1 � Pn/ NXl.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌ > "

�

	 3ı

"
C P

�Z T

0

kZ.s/�.1 � Pn/. NXl.s//k2U ds > ı2
�

	 3ı

"
C P

	
sup

t2Œ0;T�
kX.t/kH > N



C N2

ı2

Z T

0

k.1 � Pn/Z.s/k2L2.U;H/ ds:

By first letting n ! 1, and using Lebesgue’s dominated convergence theorem,
and then letting N ! 1, and using Claim (b), and finally letting ı ! 0, we
prove the first equality in (4.42). Similarly, the second equality is proved.

Claim (d): (4.30) holds for t 2 I:
Fix t 2 I. We may assume that t ¤ 0: In this case for each sufficiently large
l 2 N there exists a unique 0 < i < kl such that t D tl

i: We have X.tl
j/ 2 V

a.s. for all j. By Lemma 4.2.6 and (4.41) the sum of the first three terms in the
right-hand side of (4.37) converges in probability to 2

R t
0 V�hY.s/; NX.s/iV ds C

2
R t
0hX.s/;Z.s/ dW.s/iH; as l ! 1. Hence by Lemma 2.4.4

kX.t/k2H � kX.0/k2H
D2

Z t

0
V�

hY.s/; NX.s/iV ds C 2

Z t

0

hX.s/;Z.s/ dW.s/iH C hMit � "0;
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where

"0 WD P � lim
l!1

i�1X
jD0

kX.tl
jC1/ � X.tl

j/� M.tl
jC1/C M.tl

j/k2H

exists and “P � lim” denotes limit in probability. So, to prove (4.30) for t as
above, it suffices to show that "0 D 0: Since for any ' 2 V ,

hX.tl
jC1/ � X.tl

j/� M.tl
jC1/C M.tl

j/; 'iH D
Z tljC1

tlj

V�hY.s/; 'iV ds;

letting QMl and NMl be defined as QXl and NXl respectively, for M replacing X, we
obtain for every n 2 N

"0 D P � lim
l!1

�Z t

0
V�

hY.s/; QXl.s/ � NXl.s/ � Pn. QMl.s/ � NMl.s//iV ds

C h
Z tl1

0

Y.s/ ds; X.0/iH �
i�1X
jD0

hX.tl
jC1/� X.tl

j/ � M.tl
jC1/

C M.tl
j/; .1 � Pn/.M.t

l
jC1/ � M.tl

j//iH

�
:

The weak continuity of X in H implies that t 7! R t
0

Y.s/ds is weakly continuous
in H, since M is continuous in H. Hence the second term converges to zero
as l ! 1. Lemma 4.2.6 implies that

R t
0 V�

hY.s/; QXl.s/ � NXl.s/iV ds ! 0

in probability as l ! 1. Moreover, since PnM.s/ is a continuous process in
V ,
R t
0 V�

hY.s/;Pn. QMl.s/ � NMl.s//iV ds ! 0 P-a.s. as l ! 1. Thus, by the
Cauchy–Schwarz inequality, Lemmas 2.4.1 and 2.4.4

"0 	 P- lim
l!1

	 i�1X
jD0

kX.tl
jC1/ � X.tl

j/ � M.tl
jC1/C M.tl

j/k2H

 1
2

�
	 i�1X

jD0
k.1 � Pn/.M.t

l
jC1/� M.tl

j//k2H

 1
2

D "
1=2
0

Z t

0

k.1 � Pn/Z.s/k2L2.U;H/ ds;

which goes to zero as n ! 1 again by Lebesgue’s dominated convergence
theorem. Therefore, "0 D 0:

Claim (e): (4.30) holds for all t 2 Œ0;T�nI.
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Take �0 2 F with full probability such that the limit in (4.41) is a pointwise
limit on �0 for some subsequence (denoted again by l ! 1) and (4.30) holds
for all t 2 I on �0. If t … I, for any l 2 N there exists a unique j.l/ < kl such
that t 2�tl

j.l/; t
l
j.l/C1�: Letting t.l/ WD tl

j.l/; we have t.l/ " t as l " 1: Using that

ku � vk2H D kuk2H � kvk2H � 2 V�

hu � v; viV for all u; v 2 V , by (4.30) for t 2 I,
for all l > m we have on�0

kX.t.l// � X.t.m//k2H D kX.t.l//k2H � kX.t.m//k2H

� 2
V�

h
Z t.l/

t.m/
Y.s/ ds C

Z t.l/

t.m/
Z.s/ dW.s/; X.t.m//i

V

D 2

Z t.l/

t.m/
V�

hY.s/; NX.s/� X.t.m//iV ds

C 2

Z t.l/

t.m/
hX.s/�X.t.m//;Z.s/ dW.s/iHChMit.l/�hMit.m/

D 2

Z t.l/

t.m/
V�

hY.s/; NX.s/� NXm.s/iV ds

C 2

Z t.l/

t.m/
hX.s/� NXm.s/;Z.s/ dW.s/iHChMit.l/�hMit.m/;

(4.43)

where in the second equality we tacitly assumed that m is so big that t.m/ > 0.
The second summand is dominated by

4 sup
t2Œ0;T�

ˇ̌
ˇ̌Z t

0

hX.s/� NXm.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌ :

Thus, by the continuity of hMit and (4.41) (holding pointwise on �0), we have
that

lim
m!1 sup

l>m

�
2

ˇ̌
ˇ̌ Z T

0

1Œt.m/;t.l/�.s/h X.s/� NXm.s/;Z.s/ dW.s/iH

ˇ̌
ˇ̌

C jhMit.l/ � hMit.m/j
�

D 0 (4.44)

holding on �0. Furthermore, by Lemma 4.2.6, selecting another subsequence if
necessary, we have for some �00 2 F with full probability and�00 � �0; that on
�00

lim
m!1

Z T

0

j V�

hY.s/; NX.s/ � NXm.s/iV j ds D 0:
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Since

sup
l>m

Z t.l/

t.m/
j V�

hY.s/; NX.s/ � NXm.s/iV j ds

	
Z T

0

j V�

hY.s/; NX.s/ � NXm.s/iV j ds;

we have that on �00

lim
m!1 sup

l>m

Z t.l/

t.m/
V�

hY.s/; NX.s/ � NXm.s/iV ds D 0:

Combining this with (4.43) and (4.44), we conclude that

lim
m!1 sup

l�m
kX.t.l// � X.t.m//k2H D 0

holds on �00: Thus, .X.t.l///l2N converges in H on �00. Since we know that
X.t.l// ! X.t/ in V�, it converges to X.t/ strongly in H on �00. Therefore, since
(4.30) holds on �00 for t.l/, letting l ! 1, we obtain (4.30) on �00 also for all
t … I:

Claim (f): X is strongly continuous in H.
Since the right-hand side of (4.30) is on �00 continuous in t 2 Œ0;T�; so must be
its left-hand side, i.e. t 7! kX.t/kH is continuous on Œ0;T�: Therefore, the weak
continuity of X.t/ in H implies its strong continuity in H. ut

Remark 4.2.8

(i) In the situation of Theorem 4.2.5 we have

E.kX.t/k2H/

DE.kX0k2H/C
Z t

0

E.2 V�

hY.s/; NX.s/iV CkZ.s/k2L2.U;H// ds; t 2 Œ0;T�:
(4.45)

Proof Let M.t/; t 2 Œ0;T�, denote the real valued local martingale in (4.30) and let
�l; l 2 N, be .Ft/-stopping times such that M.t ^ �l/; t 2 Œ0;T�, is a martingale and
�l " T as l ! 1. Then for all l 2 N; t 2 Œ0;T�, we have

E.kX.t ^ �l/k2H/

DE.kX0k2H/C
Z t

0

E.1Œ0;�l�.s/Œ2 V�

hY.s/; NX.s/iV CkZ.s/k2L2.U;H/�/ ds: (4.46)
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Using Claim (b) from the proof of Theorem 4.2.5 and the fact that the integrands
on the right-hand side of (4.45) are dt ˝ P-integrable we can apply Lebesgue’s
dominated convergence theorem to obtain the assertion. ut
(ii) We note that in (4.30) the stochastic integral is always a (global) martingale.

This immediately follows from Proposition D.01(ii), since

E. sup
t2Œ0;T�

kX.t/k2H/ < 1:

(iii) Suppose ˛ 2 .1; 2/. Then by Remark 4.2.7(ii) and by tracing through the proof
of Theorem 4.2.5 one sees that the latter remains valid if we replace K by the
space K0 defined Remark 4.2.7(ii) and K� by K�

0 . The reason is that clearly

K�
0 D L

˛
˛�1

W .Œ0;T� ��; dt ˝ PI V�/C L2W.Œ0;T� ��I dt ˝ PI H/

� Lq
W.Œ0;T� ��; dt ˝ PI V�/ with q WD min.2;

˛

˛ � 1
/:

Now we turn to the proof of Theorem 4.2.4. We first need some preparations. Let
feiji 2 Ng � V be an orthonormal basis of H and let Hn WD spanfe1; : : : ; eng such
that spanfeiji 2 Ng is dense in V . Let Pn W V� ! Hn be defined by

Pny WD
nX

iD1
V�hy; eiiVei; y 2 V�: (4.47)

By (4.1.2), PnjH is just the orthogonal projection onto Hn in H. Furthermore,

V�

hz; PnyiV D V�

hy; PnziV for all y; z 2 V�,

and

V�

hPny; viV D V�

hy;PnviV for all y 2 V�; v 2 V .

Let fgiji 2 Ng be an orthonormal basis of U and set

W.n/.t/ WD
nX

iD1
hW.t/; giiU gi :

Here for g 2 U we define

hW.t/; giU WD
tZ

0

hg; �iU dW.s/; t 2 Œ0;T�;
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where the stochastic integral is well-defined by Sect. 2.5.2 with H WD R, since the
map u 7! hg; uiU , u 2 U, is in L2.U;R/.

For each finite n 2 N we consider the following stochastic equation on Hn W

dX.n/.t/

DPnA.t;X.n/.t// dt C PnB.t;X.n/.t// dW.n/.t/; (4.48)

where X.n/.0/ WD PnX0: It is easily seen (cf. in particular Remark 4.1.1) that we are
in the situation of Theorem 3.1.1 which implies that (4.48) has a unique continuous
strong solution. Let

J WD L2.Œ0;T� ��; dt ˝ PI L2.U;H//: (4.49)

To construct the solution to (4.26), we need the following lemma.

Lemma 4.2.9 Under the assumptions in Theorem 4.2.4, there exists a C 2 �0;1Œ

such that

kX.n/kK C kA.�;X.n//kK� C sup
t2Œ0;T�

EkX.n/.t/k2H 	 C (4.50)

for all n 2 N.

Proof By the finite-dimensional Itô formula we have P-a.s.

kX.n/.t/k2H D kX.n/0 k2H C
Z t

0

�
2 V�

hA.s;X.n/.s//;X.n/.s/iV

C kZ.n/.s/k2L2.Un;H/

�
ds C M.n/.t/; t 2 Œ0;T�;

where Z.n/.s/ WD PnB.s;X.n/.s//; Un WD span fe1; : : : ; eng and

M.n/.t/ WD 2

Z t

0

hX.n/.s/;PnB.s;X.n/.s// dW.n/.s/iH; t 2 Œ0;T�;

is a local martingale. Let �l; l 2 N; be .Ft/-stopping times such that kX.n/.t ^
�l/.!/kV is bounded uniformly in .t; !/ 2 Œ0;T� � �, M.n/.t ^ �l/; t 2 Œ0;T�; is a
martingale for each l 2 N and �l " T as l ! 1. Then for all l 2 N; t 2 Œ0;T�

E
�kX.n/.t ^ �l/k2H

�

DE.kX.n/0 k2H/C
Z t

0

E
	
1Œ0;�l�.s/.2 V�

hA.s;X.n/.s//;X.n/.s/iV

C kZ.n/.s/k2L2.Un;H//



ds:
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Hence using the product rule we obtain

E.e�c1tkX.n/.t ^ �l/k2H/

D E.kX.n/0 k2H/C
Z t

0

E.kX.n/.s ^ �l/k2H/ d.e�c1s/

C
Z t

0

e�c1s d.E.kX.n/.s ^ �l/k2H//

D E.kX.n/0 k2H/ �
Z t

0

c1E.kX.n/.s ^ �l/k2H/e�c1s ds

C
Z t

0

e�c1sE
	
1Œ0;�l �.s/.2 V�

hA.s;X.n/.s//;X.n/.s/iV

C kZ.n/.s/k2L2.Un;H//



ds: (4.51)

Applying (H3) we arrive at

E.e�c1tkX.n/.t ^ �l/k2H/C
Z t

0

c1E.kX.n/.s ^ �l/k2H/e�c1s ds

C c2

Z t

0

E.1Œ0;�l�.s/kX.n/.s ^ �l/k˛V /e�c1s ds

6 E.kX.n/0 k2H/C
Z t

0

c1E.kX.n/.s/k2H/e�c1s ds C
Z T

0

E.jf .s/j/ ds;

where by the definition of �l; l 2 N, all terms are finite. Now taking l ! 1 and
applying Fatou’s lemma we get

E.e�c1tkX.n/.t/k2H/C c2E

�Z t

0

kX.n/.s/k˛V e�c1s ds

�

6E.kX.n/0 k2H/C E

�Z T

0

jf .s/j ds

�

for all t 2 Œ0;T�. Here we used that by (3.8) the subtracted term is finite. Since
kX.n/0 kH 6 kX0kH , now the assertion follows for the first and third summand in
(4.50). For the remaining summand the assertion then follows by (H4). ut
Proof of Theorem 4.2.4 By the reflexivity of K, Lemma 4.2.9 and Remark 4.1.1,
part 1, we have, for a subsequence nk ! 1:

(i) X.nk/ ! NX weakly in K and weakly in L2.Œ0;T� ��I dt ˝ PI H/:
(ii) Y.nk/ WD A.�;X.nk// ! Y weakly in K�.
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(iii) Z.nk/ WD B.�;X.nk// ! Z weakly in J and hence

Z �

0

Pnk B.s;X.nk/.s// dW.nk/.s/ !
Z �

0

Z.s/ dW.s/

in M2
T.H/ and, therefore, also weakly� in L1.Œ0;T�; dtI L2.�;PI H//

(equipped with the supremum norm).

Here the second part in (iii) follows since also Pnk B.�;X.nk// QPnk ! Z weakly in J,
where QPn is the orthogonal projection onto spanfg1; � � � ; gng in U, since

Z �

0

Pnk B.s;X.nk/.s// dW.nk/.s/ D
Z �

0

Pnk B.s;Xnk.s// QPnk dW.s/

and since a bounded linear operator between two Banach spaces is trivially weakly
continuous. Since the approximants are progressively measurable, so are (the dt ˝
P-versions) NX;Y and Z.

Thus from (4.48) for all v 2 S
n>1 Hn.� V/; ' 2 L1.Œ0;T� � �/ by Fubini’s

theorem we get

E

�Z T

0
V�

h NX.t/; '.t/viV dt

�

D lim
k!1 E

�Z T

0
V�

hX.nk/.t/; '.t/viV dt

�

D lim
k!1 E

�Z T

0
V�

hX.nk/
0 ; '.t/viV dt

C
Z T

0

Z t

0
V�

hPnk Y.nk/.s/; '.t/viV ds dt

C
Z T

0


Z t

0

Pnk Z.nk/.s/ dW.nk/.s/; '.t/v

�
H

dt

�

D lim
k!1

�
E

�
hX.nk/

0 ; viH

Z T

0

'.t/ dt

�

C E

�Z T

0 V�

hY.nk/.s/;
Z T

s
'.t/ dt vi

V
ds

�

C
Z T

0

E

�
Z t

0

Z.nk/.s/ dW.nk/.s/; '.t/v

�
H

�
dt

�

D E

�Z T

0 V�

hX0 C
Z t

0

Y.s/ ds C
Z t

0

Z.s/ dW.s/; '.t/vi
V

dt

�
:
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Therefore, defining

X.t/ WD X0 C
Z t

0

Y.s/ ds C
Z t

0

Z.s/ dW.s/; t 2 Œ0;T�; (4.52)

we have X D NX dt ˝ P-a.e.
Now Theorem 4.2.5 applies to X in (4.52), so X is continuous in H and

E

�
sup
t�T

kX.t/k2H
�
< 1:

Thus, it remains to verify that

B.�; NX/ D Z; A.�; NX/ D Y; dt ˝ P-a.e. (4.53)

To this end, we first note that for any nonnegative  2 L1.Œ0;T�; dtIR/ it follows
from (i) that

E

�Z T

0

 .t/k NX.t/k2H dt

�

D lim
k!1 E

�Z T

0

h .t/ NX.t/;X.nk/.t/iH dt

�

	
�

E
Z T

0

 .t/k NX.t/k2H dt

�1=2
lim inf
k!1

�
E
Z T

0

 .t/kX.nk/.t/k2H dt

�1=2
< 1:

Since X D NX dt ˝ P-a.e., this implies

E

�Z T

0

 .t/kX.t/k2H dt

�
	 lim inf

k!1 E

�Z T

0

 .t/kX.nk/.t/k2H dt

�
: (4.54)

By (4.52) using Remark 4.2.8, the product rule and Fubini’s theorem we obtain that

E
�
e�ctkX.t/k2H

� � E
�kX0k2H

�

D E

�Z t

0

e�cs
�
2 V�hY.s/; NX.s/iV C kZ.s/k2L2.U;H/ � ckX.s/k2H

�
ds

�
: (4.55)

Furthermore, for any � 2 K \ L2.Œ0;T� � �; dt ˝ PI H/, taking l ! 1 in (4.51)
with c1 replaced by c and t ^ �l replaced by t, we obtain

E
�
e�ctkX.nk/.t/k2H

� � E
	
kX.nk/

0 k2H



D E

�Z t

0

e�cs
�
2 V�hA.s;X.nk/.s//;X.nk/.s/iV
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C kPnk B.s;X.nk/.s// QPnk k2L2.U;H/ � ckX.nk/.s/k2H
�

ds

�

	 E

�Z t

0

e�cs
�
2 V�hA.s;X.nk/.s//;X.nk/.s/iV

C kB.s;X.nk/.s//k2L2.U;H/ � ckX.nk/.s/k2H
�

ds

�

D E

�Z t

0

e�cs
	
2 V�hA.s;X.nk/.s//� A.s; �.s//;X.nk/.s/ � �.s/iV

C kB.s;X.nk/.s//� B.s; �.s//k2L2.U;H/ � ckX.nk/.s/ � �.s/k2H



ds

C E

�Z t

0

e�cs
	
2 V�hA.s; �.s//;X.nk/.s/iV

C 2 V�hA.s;X.nk/.s// � A.s; �.s//; �.s/iV

� kB.s; �.s//k2L2.U;H/ C 2hB.s;X.nk/.s//;B.s; �.s//iL2.U;H/

� 2chX.nk/.s/; �.s/iH C ck�.s/k2H



ds

�
: (4.56)

Note that by (H2) the first of the two summands above is negative. Hence by
letting k ! 1 we conclude by (i)–(iii), Fubini’s theorem, and (4.54) that for every
nonnegative 2 L1.Œ0;T�; dtIR/

E

�Z T

0

 .t/.e�ctkX.t/k2H � kX0k2H/ dt

�

	 E

�Z T

0

 .t/

� Z t

0

e�cs
h
2 V�hA.s; �.s//; NX.s/iV C 2 V�hY.s/

� A.s; �.s//; �.s/iV � kB.s; �.s//k2L2.U;H/ C 2hZ.s/;B.s; �.s//iL2.U;H/

� 2chX.s/; �.s/iH C ck�.s/k2H
i

ds

�
dt

�
:

Inserting (4.55) for the left-hand side and rearranging we arrive at

0 �E

�Z T

0

 .t/

� Z t

0

e�cs
�
2 V�hY.s/ � A.s; �.s//; NX.s/ � �.s/iV

C kB.s; �.s//� Z.s/k2L2.U;H/ � ckX.s/� �.s/k2H
�

ds

�
dt

�
: (4.57)

Taking � D NX we obtain from (4.57) that Z D B.�; NX/. Finally, first applying (4.57)
to � D NX � " Q� v for " > 0 and Q� 2 L1.Œ0;T���; dt ˝ PIR/; v 2 V , then dividing



108 4 SDEs in Infinite Dimensions and Applications to SPDEs

both sides by " and letting " ! 0, by Lebesgue’s dominated convergence theorem,
(H1) and (H4), we obtain

0 � E

�Z T

0

 .t/

�Z t

0

e�cs Q�.s/ V�hY.s/ � A.s; NX.s//; viV ds

�
dt

�
:

By the arbitrariness of  , Q� and v, we conclude that Y D A.�; NX/: This completes
the existence proof.

The uniqueness is a consequence of the following proposition. ut
Proposition 4.2.10 Consider the situation of Theorem 4.2.4 and let X;Y be two
solutions. Then for c 2 R as in (H2)

E.kX.t/ � Y.t/k2H/ 6 ectE.kX.0/� Y.0/k2H/ for all t 2 Œ0;T�: (4.58)

Proof We first note that by our definition of solution (cf. Definition 4.2.1) and by
Remark 4.1.1, part 1 we can apply Remark 4.2.8 to X � Y and the product rule to
obtain for t 2 Œ0;T�

E.e�ctkX.t/ � Y.t/k2H/ D E.kX0 � Y0k2H/

C
Z t

0

.E.2 V�

hA.s; NX.s// � A.s; NY.s//; NX.s/ � NY.s/iV

C kB.s; NX.s//� B.s; NY.s//k2L2.U;H/
� cE.kX.s/� Y.s/k2H//e�cs ds

6 E.kX.0/� Y.0/k2H/;

where we used (H2) in the last step. Applying Gronwall’s lemma we obtain the
assertion. ut
Remark 4.2.11 Let s 2 Œ0;T� and Xs 2 L2.�;Fs;PI H/. Consider the equation

X.t/ D Xs C
Z t

s
A.u; NX.u// du C

Z t

s
B.u; NX.u// dW.u/; t 2 Œs;T� (4.59)

with underlying Wiener process W.t/ � W.s/; t 2 Œs;T�, and filtration .Ft/t>s, i.e.
we just start our time at s. We define the notion of solution for (4.59) analogously
to Definition 4.2.1. Then all results above in the case s D 0 carry over to this more
general case. In particular, there exists a unique solution with initial condition Xs

denoted by X.t; s;Xs/; t 2 Œs;T�. Let 0 6 r 6 s 6 T. Then for Xr 2 L2.�;Fr;PI H/

X.t; r;Xr/ D X.t; s;X.s; r;Xr//; t 2 Œs;T� P-a.e. (4.60)
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Indeed, we have

X.t; r;Xr/ D Xr C
Z t

r
A.u; NX.u; r;Xr// du C

Z t

r
B.u; NX.u; r;Xr// dW.u/

D X.s; r;Xr/C
Z t

s
A.u; NX.u; r;Xr// du

C
Z t

s
B.u; NX.u; r;Xr// dW.u/; t 2 Œs;T�:

But by definition X.t; s;X.s; r;Xr//; t 2 Œs;T�; satisfies the same equation. So, (4.60)
follows by uniqueness. Furthermore, if for s 2 Œ0;T�; Xs D x for some x 2 H
and A and B are independent of ! 2 �, then by construction X.t; s; x/ obviously
is independent of Fs for all t 2 Œs;T�, since so are collections of increments of
W.t/; t 2 Œs;T�.

4.3 Markov Property and Invariant Measures

Now we are going to prove some qualitative results about the solutions of (4.2.1) or
(4.59) and about their transition probabilities, i.e. about

ps;t.x; dy/ WD P ı .X.t; s; x//�1. dy/; 0 6 s 6 t 6 T; x 2 H: (4.61)

As usual we set for B.H/-measurable F W H ! R, and t 2 Œs;T�; x 2 H

ps;tF.x/ WD
Z

F.y/ps;t.x; dy/;

provided F is ps;t.x; dy/-integrable.

Remark 4.3.1 The measures ps;t.x; dy/; 0 6 s 6 t 6 T; x 2 H, could in principle
depend on the chosen Wiener process and the respective filtration. However, the
construction of our solutions X.t; s; x/; t 2 Œs;T�, suggests that this is not the case.
This can be rigorously proved in several ways. It is, for example, a consequence of
the famous Yamada–Watanabe theorem which is included in Appendix E below.

Proposition 4.3.2 Consider the situation of Theorem 4.2.4. Let F W H ! R be
Lipschitz with

Lip.F/ WD sup
x;y2H;x¤y

jF.x/� F.y/j
kx � ykH

.< 1/
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denoting its Lipschitz constant. Then for all 0 6 s 6 t 6 T

ps;tjFj.x/ < 1 for all x 2 H

and for all x; y 2 H

jps;tF.x/� ps;tF.y/j 6 e
c
2 .t�s/Lip.F/ kx � ykH ; (4.62)

where c is as in (H2).

Proof Clearly, for all x 2 H

jF.x/j 6 jF.0/j C Lip.F/ kxkH ;

and thus for all 0 6 s 6 t 6 T

ps;tjFj.x/ D E.jFj.X.t; s; x///
6 jF.0/j C Lip.F/ E.kX.t; s; x/kH/

6 jF.0/j C Lip.F/

 
E

 
sup

t2Œs;T�
kX.t; s; x/k2H

!!1=2

< 1:

Furthermore, for x; y 2 H by (the “started at s” analogue of) (4.58)

jps;tF.x/� ps;tF.y/j 6 E.jF.X.t; s; x//� F.X.t; s; y///j/
6 Lip.F/ E.kX.t; s; x/� X.t; s; y/kH/

6 Lip.F/ e
c
2 .t�s/kx � ykH :

ut
Proposition 4.3.3 Consider the situation of Theorem 4.2.4 and, in addition, assume
that both A and B as well as f and g in (H3),(H4) respectively, are independent of
! 2 �. Then any solution X.t/; t 2 Œr;T�, of (4.59) (with r replacing s) is Markov
in the following sense:
for every bounded, B.H/-measurable G W H ! R, and all s; t 2 Œr;T�; s 6 t

E.G.X.t//jFs/.!/ D E.G.X.t; s;X.s/.!//// for P-a.e. ! 2 �: (4.63)

Proof Let s; t 2 Œr;T�; s 	 t. Then by Theorem E.0.8 in Appendix E there exists an
F 2 OE as in Definition E.0.5 such that for P-a.e. ! 2 �

X.t/.!/ D FPıX.s/�1.X.s/.!/; QW.!//.t/
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with QW WD W � W.s/ and W is defined by (2.12) as a Q1-Wiener process on U1.
Then for every bounded, B.H/-measurable G W H ! R and P-a.e. ! 2 �

EŒG.X.t//jFs�.!/

DEŒG.FPıX.s/�1.X.s/.!/; QW/.t//�
DEŒG.FıX.s/.!/.X.s/.!/; QW/.t//�
DEŒG.X.t; s;X.s/.!///�;

where in the last equality we applied Theorem E.0.8 again and in the third equality
we used the fact that by the definition of OE , for P ı X.s/�1-a.e. x 2 H

F�.x; � / D F.x; � / D Fıx.x; � / D PQ1-a.e.

ut
Corollary 4.3.4 Consider the situation of Proposition 4.3.3 and let 0 6 r 6 s 6
t 6 T. Then we have (“Chapman–Kolmogorov equations”)

pr;sps;t D pr;t; (4.64)

i.e. for F W H ! R; bounded and B.H/-measurable, x 2 H,

pr;s.ps;tF/.x/ D pr;tF.x/:

Proof For F W H ! R as above and x 2 H by Proposition 4.3.3 we have

pr;s. ps;tF/.x/ D E.ps;tF.X.s; r; x/// D
Z

E.F.X.t; s;X.s; r; x/.!////P. d!/

D
Z

E.F.X.t; r; x//jFs/.!/P. d!/

D E.F.X.t; r; x/// D pr;tF.x/:

ut
Now let us assume that in the situation of Theorem 4.2.4 both A and B as well as

f and g in (H3), (H4) respectively are independent of .t; !/ 2 Œ0;T� � � (so they
particularly hold for all T 2 Œ0;1Œ). Then again using the notation introduced in
Remark 4.2.11 for 0 6 s 6 t < 1 and x 2 H we have

X.t; s; x/ D X QW.t � s; 0; x/ P-a.e., (4.65)
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where X QW.t; 0; x/; t 2 Œ0;1Œ; is the solution of

X.t/ D x C
Z t

0

A. NX.u// du C
Z t

0

B. NX.u// d QW.u/

and QW WD W.�C s/�W.s/ with filtration FsCu, u 2 Œ0;1Œ, which is again a Wiener
process. To show this let us express the dependence of the solution X.t; s; x/; t 2
Œs;1/ of (4.59) with Xs WD x on the Wiener process W by writing XW.t; s; x/ instead
of X.t; s; x/ and similarly, pW

s;t.s; dy/ instead of ps;t.x; dy/. Then, for all s; u 2 Œ0;1Œ

XW.u C s; s; x/

Dx C
Z uCs

s
A. NXW.u0; s; x// du0 C

Z t

s
B. NXW.u0; s; x// dW.u0/

Dx C
Z u

0

A. NXW.u0 C s; s; x// du0 C
Z u

0

B. NXW.u0 C s; s; x// d QW.u0/:

So, by uniqueness the process XW.uCs; s; x/; u 2 Œ0;1Œ, must P-a.e. coincide with
X QW.u; 0; x/; u 2 Œ0;1Œ, and (4.65) follows with u WD t � s. In particular, it follows
that

pW
s;t.x; dy/ D P ı .X QW.t � s; 0; x//�1. dy/ D p QW

0;t�s.x; dy/ D pW
0;t�s.x; dy/ (4.66)

(“time homogeneity”), where we used Remark 4.3.1 for the last equality.
Defining

pt WD pW
0;t; t 2 Œ0;1Œ;

equality (4.64) for r D 0 and s C t replacing t by (4.66) turns into

psCt D pspt for s; t 2 Œ0;1Œ: (4.67)

For x 2 H we define

Px WD P ı .X.�; 0; x//�1; (4.68)

i.e. Px is the distribution of the solution to (4.2.1) with initial condition x 2 H,
defined as a measure on C.Œ0;1Œ;H/. We equip C.Œ0;1Œ;H/ with the �-algebra

G WD �.	sjs 2 Œ0;1Œ/

and filtration

Gt WD �.	sjs 2 Œ0; t�/; t 2 Œ0;1Œ;
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where 	t.w/ WD w.t/ for w 2 C.Œ0;1Œ;H/; t 2 Œ0;1Œ.

Proposition 4.3.5 Consider the situation of Theorem 4.2.4 and, in addition, assume
that both A and B as well as f and g in (H3),(H4) respectively, are independent of
.t; !/ 2 Œ0;T��� (so they particularly hold for all T 2 Œ0;1Œ). Then the following
assertions hold:

1. Px; x 2 H, form a time-homogenous Markov process on C.Œ0;1/;H/ with
respect to the filtration Gt; t 2 Œ0;1Œ, i.e. for all s; t 2 Œ0;1Œ; and all bounded,
B.H/-measurable F W H ! R

Ex.F.	tCs/jGs/ D E	s.F.	t// Px � a.e.; (4.69)

where Ex and Ex.�jGs/ denote expectation and conditional expectation with
respect to Px, respectively.

2. Suppose dim H < 1. If there exist �; f 2 �0;1Œ such that

2 V�

hA.v/; viV CkB.v/k2L2.U;H/ 6 ��kvk2H C f for all v 2 V; (4.70)

(“strict coercivity”) then there exists an invariant measure � for .pt/t>0, i.e. � is
a probability measure on .H;B.H// such that

Z
ptF d� D

Z
F d� for all t 2 Œ0;1Œ (4.71)

and all bounded, B.H/-measurable F W H ! R.

Proof

1. The right-hand side of (4.69) is Gs-measurable by Proposition 4.3.2 and a
monotone class argument. So, let 0 6 t1 < t2 < : : : < tn 6 s and let G W Hn ! R

be bounded and ˝n
iD1B.H/-measurable. Then by (4.63) and (4.66)

Ex.G.	t1 ; : : : ; 	tn/F.	tCs//

D E.G.X.t1; 0; x/; : : : ;X.tn; 0; x//F.X.t C s; 0; x//

D E.G.X.t1; 0; x/; : : : ;X.tn; 0; x//E.F.X.t C s; 0; x//jFs//

D
Z

G.X.t1; 0; x/.!/; : : : ;X.tn; 0; x/.!//

E.F.X.t C s; s;X.s; 0; x/.!////P.d!/

D
Z

G.X.t1; 0; x/.!/; : : : ;X.tn; 0; x/.!//

E.F.X.t; 0;X.s; 0; x/.!////P. d!/
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D
Z

G.	t1 .!/; : : : ; 	tn.!//E.F.X.t; 0; 	s.!////Px. d!/

D
Z

G.	t1 .!/; : : : ; 	tn.!//E	s.!/.F.	t//Px. d!/:

Since the functions G.	t1 ; : : : ; 	tn/ considered above generateFs, equality (4.69)
follows.

2. Let ı0 be the Dirac measure in 0 2 H considered as a measure on .H;B.H// and
for n 2 N define the Krylov–Bogoliubov measure

�n WD 1

n

Z n

0

ı0pt dt;

i.e. for B.H/-measurable F W H ! Œ0;1Œ

Z
F d�n D 1

n

Z n

0

ptF.0/ dt:

Clearly, each �n is a probability measure. We first prove that f�njn 2 Ng is tight.
By Remark 4.2.8 for any solution X to (4.2.1) applying the product rule and using
(4.70) we get that

E.e�tkX.t/k2H/ D E.kX.0/k2H/C E

�Z t

0

e�s
�
2 V�

hA. NX.s//; NX.s/iV

C kB. NX.s//k2L2.U;H/ C �k NX.s/k2H
�

ds

�

6 E.kX.0/k2H/C f
Z t

0

e�s ds; t 2 Œ0;1Œ:

Therefore,

E.kX.t/k2H/ 6 e��tE.kX.0/k2H/C f

�
; t 2 Œ0;1Œ; (4.72)

which in turn implies that

Z
kxk2H�n.dx/ D 1

n

Z n

0

E.kX.t; 0; 0/k2H/ dt 6 f

�
for all n 2 N: (4.73)

Hence by Chebychev’s inequality

sup
n2N

�n.fk k2H > Rg/ 6 1

R

f

�
! 0 as R ! 1: (4.74)



4.3 Markov Property and Invariant Measures 115

Since dim H < 1, the closed balls fk k2H 6 Rg; R 2 �0;1Œ, are compact. Hence
by Prohorov’s theorem there exists a probability measure � and a subsequence
.�nk /k2N such that �nk ! � weakly as k ! 1.

Now let us prove that � is invariant for .pt/t>0. So, let t 2 Œ0;1Œ and let F W
H ! R be bounded and B.H/-measurable. By a monotone class argument we
may assume that F is Lipschitz continuous. Then ptF is bounded and (Lipschitz)
continuous by Proposition 4.3.2. Hence using (4.67) for the third equality below,
we obtain

Z
ptF d�

D lim
k!1

Z
ptF d�nk

D lim
k!1

1

nk

Z nk

0

ps.ptF/.0/ ds

D lim
k!1

1

nk

Z nk

0

psCtF.0/ ds

D lim
k!1

Z
F d�nk C lim

k!1
1

nk

Z nkCt

nk

psF.0/ ds � lim
k!1

1

nk

Z t

0

psF.0/ ds

D
Z

F d�; (4.75)

since jpsF.0/j 6 supx2H jF.x/j, so the second and third limits above are equal to
zero. ut

Remark 4.3.6 If dim H D 1, the above proof of Proposition 4.3.5, part 2 works up
to and including (4.74). However, since closed balls are no longer compact, one can
apply Prohorov’s theorem only on a Hilbert space H1 into which H is compactly
embedded. So, let H1 be a separable Hilbert space such that H � H1 compactly and
densely (e.g. take H1 to be the completion of H in the norm

kxk1 WD
" 1X

iD1
˛ihx; eii2H

#1=2
; x 2 H;

where ˛i 2 �0;1Œ;
P1

iD1 ˛i < 1, and feiji 2 Ng is an orthonormal basis of H);
extending the measures �n by zero to B.H1/ we obtain that f�njn 2 Ng is tight
on H1. This extension of the measures is possible, since by Kuratowski’s theorem
H 2 B.H1/ and B.H1/ \ H D B.H/. Hence by Prohorov’s theorem there exists a
probability measure N� on .H1;B.H1// and a subsequence .�nk /k2N such that �nk !
N� weakly on H1 as k ! 1. As in Exercise 4.2.3, part 1 one constructs a lower
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semicontinuous function‚ W H1 ! Œ0;1� such that

‚ WD
� k kH on H

C1 on H1nH:

Then (4.73) implies that for li; i 2 N, as in Example 4.2.3, part 1,

Z
H1

‚2.x/ N�. dx/ D lim
N!1 lim

M!1

Z
sup
i6N

hli; xi2H1 ^ M N�. dx/

D sup
M;N2N

lim
k!1

Z
sup
i6N

hli; xi2H1 ^ M�nk . dx/

6 lim inf
k!1 sup

N;M2N

Z
sup
i6N

hli; xi2H1 ^ M �nk. dx/

D lim inf
k!1

Z
H

kxk2H �nk . dx/

6 f

�
:

Hence ‚ < 1 N�-a.e., so N�.H/ D 1. Therefore, � WD N�ˇ̌B.H/ is a probability
measure on .H;B.H//.

Unfortunately, the last part of the proof of Proposition 4.3.5, which shows that
� is invariant, does not work. More precisely, for the first equality in (4.75) we
need that ptF is continuous with respect to the same topology with respect to which
.�nk /k2N converges weakly, i.e. the topology on H1. This is, however, weaker than
that on H. So, unless we can construct H1 in such a way that ptF has a continuous
extension to H1, the first equality in (4.75) may not hold.

So far, we have taken a positive time s as the starting time for our SDE (see
Remark 4.2.11). In the case of coefficients independent of t and !, it is also possible
and convenient to consider negative starting times. For this, however, we need a
Wiener process with negative time. To this end we recall that we can run a cylindrical
Wiener process W.t/; t 2 Œ0;1Œ on H (with positive time) backwards in time and
again get a Wiener process. More precisely, for fixed T 2 Œ0;1Œ we have that
W.T � t/ � W.T/, t 2 Œ0;T� is again a cylindrical Wiener process with respect to
the filtration �.fW.T � s/ � W.T/js 2 Œ0; t�g/; t 2 Œ0;T�, and also with respect to
the filtration �.fW.r2/ � W.r1/jr1; r2 2 ŒT � t;1Œ; r2 6 r1g/, t 2 Œ0;T�, where the
latter will be more convenient for us.

So, let A;B be independent of .t; !/ 2 Œ0;T� �� and let W.1/.t/; t 2 Œ0;1Œ, be
another cylindrical Wiener process on .�;F ;P/ with covariance operator Q D I,
independent of W.t/; t 2 Œ0;1Œ: Define

NW.t/ WD
�

W.t/; if t 2 Œ0;1Œ;

W.1/.�t/; if t 2� � 1; 0�
(4.76)
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with filtration

NFt WD
\
s>t

NFı
s ; t 2 R; (4.77)

where NFı
s WD �.f NW.r2/ � NW.r1/jr1; r2 2� � 1; s�; r2 > r1g;N / and N WD fA 2

F jP.A/ D 0g. As in the proof of Proposition 2.1.13 one shows that if �1 < s <
t < 1, then NW.t/ � NW.s/ is independent of NFs. Now for s 2 R fixed consider the
SDE

dX.t/ D A.X.t// dt C B.X.t// d NW.t/; t 2 Œs;1Œ: (4.78)

Remark 4.3.7 Let s 2 R and Xs 2 L2.�; NFs;PI H/ and consider the integral version
of (4.78)

X.t/ D Xs C
Z t

s
A. NX.u// du C

Z t

s
B. NX.u// d NW.u/; t 2 Œs;1Œ; (4.79)

with underlying Wiener process NW.t/ � NW.s/; t 2 Œs;1Œ and filtration . NFt/t>s

(cf. Remark 4.2.11). We define the notion of solution for (4.79) analogously to
Definition 4.2.1. Then again all results above for s D 0 (respectively for s 2 Œ0;1Œ;

see Remark 4.2.11) carry over to this more general case. In particular, we have the
analogue of (4.64), namely

pr;sps;t D pr;t for all � 1 < r 6 s 6 t < 1; (4.80)

where for s; t 2 R; s 6 t; x 2 H

ps;t.x; dy/ WD P ı .X.t; s; x//�1. dy/;

and analogously to (4.66) one shows that

ps;t.x; dy/ D p0;t�s.x; dy/:

In particular, for t D 0 we have

p�s;0.x; dy/ D p0;s.x; dy/ for all x 2 H; s 2 Œ0;1Œ: (4.81)

Furthermore, for every s 2 R there exists a unique solution with initial condition
Xs denoted by X.t; s;Xs/; t 2 Œs;1Œ, and (4.60) as well as the final part of
Remark 4.2.11 also hold in this case.

Our next main aim (cf. Theorem 4.3.9 below) is to prove the existence of a unique
invariant measure for (4.78) if the constant c in (H2) is strictly negative (“strict
monotonicity”). The method of the proof is an adaptation from [27, Sect. 6.3.1]. We
shall need the following:
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Lemma 4.3.8 Suppose (H3), (H4) hold and that (H2) holds for c WD �
 for some

 2�0;1Œ. Let � 2�0; 
Œ. Then there exists a ı� 2�0;1Œ such that for all v 2 V

2 V�

hA.v/; viV CkB.v/k2L2.U;H/ 6 ��kvk2H C ı�: (4.82)

Proof Let v 2 V and " 2�0; 1Œ. Then first using (H2) (with c D �
 according to our
assumption), then Remark 4.1.1, part 1, and finally (H3) we obtain

2 V�

hA.v/; viV CkB.v/k2L2.U;H/
D 2 V�

hA.v/� A.0/; viV C2 V�

hA.0/; viV CkB.v/ � B.0/k2L2.U;H/
� kB.0/k2L2.U;H/ C 2hB.v/;B.0/iL2.U;H/

6 �
kvk2H C 2"kvk˛V C 2"� 1
˛�1 .˛ � 1/˛

�˛
˛�1 kA.0/k ˛

˛�1

V�

C "�1kB.0/k2L2.U;H/
C "kB.v/k2L2.U;H/

6 �
kvk2H C 2"kvk˛V C ˇ"

C "

�
c1kvk2H C f C 2

˛
kvk˛V C 2

˛ � 1

˛
g

˛
˛�1 C 2c3kvk˛V

�

6
�
�
C "c1

�
1C 2

c2
.1C ˛�1 C c3/

��
kvk2H C Q̌

" C 2

c2
".1C ˛�1 C c3/f

� 2

c2
".1C ˛�1 C c3/.2 V�

hA.v/; viV CkB.v/k2L2.U;H//

with ˇ"; Q̌
" 2 �0;1Œ independent of v and where we applied Young’s inequality in

the form

ab D Œ.˛"/�1=˛a�Œ.˛"/1=˛b� 6 .˛"/�1=.˛�1/

˛=.˛ � 1/
a˛=.˛�1/ C "b˛;

a; b 2 Œ0;1Œ in the second step. Hence taking " small enough we can find ı� 2
�0;1Œ such that for all v 2 V

2 V�

hA.v/; viV CkB.v/k2L2.U;H/ 6 ��kvk2H C ı�:

ut
Theorem 4.3.9 Consider the situation of Proposition 4.3.5 and, in addition,
assume that c 2 R in (H2) is strictly negative, i.e. c D �
; 
 2�0;1Œ (“strict
monotonicity”). Then there exists an invariant measure � for .pt/t>0 such that

Z
kyk2H �. dy/ < 1:
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Moreover, for F W H ! R Lipschitz, x 2 H and any invariant measure � for .pt/t>0

jptF.x/�
Z

F d�j 6 e� 

2 tLip.F/

Z
kx � ykH �. dy/ for all t 2 Œ0;1Œ: (4.83)

In particular, there exists exactly one invariant measure for .pt/t>0.

Remark 4.3.10 (4.83) is referred to as “exponential convergence of .pt/t>0 to
equilibrium” (uniformly with respect to x in balls in H).

For the proof of Theorem 4.3.9 we need one lemma.

Lemma 4.3.11 Consider the situation of Theorem 4.3.9. Let t 2 R. Then there
exists an �t 2 L2.�;F ;PI H/, such that for all x 2 H

lim
s!�1 X.t; s; x/ D �t in L2.�;F ;PI H/:

Moreover, there exists a C 2 Œ0;1Œ such that for all s 2 � � 1; t�

E.kX.t; s; x/ � �tk2H/ 6 Ce
.s�t/.1C kxk2H/:

Proof For s1; s2 2 � � 1; t�; s1 6 s2, and x 2 H

X.t; s1; x/� X.t; s2; x/

D
Z t

s2

ŒA. NX.u; s1; x//� A. NX.u; s2; x//� ds

C
Z t

s2

ŒB. NX.u; s1; x// � B. NX.u; s2; x//� d NW.u/C X.s2; s1; x/ � x;

since

X.s2; s1; x/ D x C
Z s2

s1

A. NX.u; s1; x// du C
Z s2

s1

B. NX.u; s1; x// d NW.u/: (4.84)

Since Remark 4.2.8 extends to our present case we can use the product rule and
(H2) with c D �
 to obtain

E.e
tkX.t; s1; x/� X.t; s2; x/k2H/ D E.e
s2kX.s2; s1; x/ � xk2H/

C
tZ

s2

e
uE
	
2 V�

hA. NX.u; s1; x// � A. NX.u; s2; x//; NX.u; s1; x/ � NX.u; s2; x/iV

C kB. NX.u; s1; x//� B. NX.u; s2; x//k2L2.U;H/



du
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C
tZ

s2

e
u
E
�kX.u; s1; x/ � X.u; s2; x/k2H

�
du

6 2e
s2 ŒE
�kX.s2; s1; x/k2H/C kxk2H

�
: (4.85)

But again by Remark 4.2.8 extended to the present case, the product rule and (4.82)
imply

E.e�s2kX.s2; s1; x/k2H/

D es1�kxk2H C
Z s2

s1

e�uE
	
2 V�

hA. NX.u; s1; x//; NX.u; s1; x/iV

C kB. NX.u; s1; x//k2L2.U;H/



du C
Z s2

s1

e�u�E.kX.u; s1; x/k2H/ du

6 es1�kxk2H C ı�

Z s2

s1

e�u du 6 es1�kxk2H C ı�

�
es2�: (4.86)

Combining (4.85) and (4.86) we obtain

E.kX.t; s1; x/ � X.t; s2; x/k2H/ 6 2

�
ı�

�
C 2kxk2H

�
e
.s2�t/: (4.87)

Letting s2 (hence s1) tend to �1, it follows that there exists an
�t.x/ 2 L2.�;F ;PI H/ such that

lim
s!�1 X.t; s; x/ D �t.x/ in L2.�;F ;PI H/;

and letting s1 ! �1 in (4.87) the last part of the assertion also follows, provided
we can prove that �t.x/ is independent of x 2 H. To this end let x; y 2 H and
s 2 � � 1; t�. Then

X.t; s; x/ � X.t; s; y/

Dx � y C
Z t

s
.A. NX.u; s; x//� A. NX.u; s; y// du

C
Z t

s
.B. NX.u; s; x//� B. NX.u; s; y// d NW.u/:

Hence by the same arguments to derive (4.85) we get

E.e
tkX.t; s; x/ � X.t; s; y/k2H/ 6 e
skx � yk2H ;
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so

lim
s!�1 .X.t; s; x/� X.t; s; y// D 0 in L2.�;F ;PI H/:

Hence both assertions are completely proved. ut
Proof of Theorem 4.3.9 Define

� WD P ı ��1
0

with �0 as in Lemma 4.3.11. Since �0 2 L2.�;F ;PI H/ we have that

Z
kyk2H �. dy/ < 1:

Let t 2 Œ0;1Œ. We note that by (4.80) and (4.81) for all s 2 Œ0;1Œ

p�s;0p0;t D p�s;t D p0;tCs D p�.tCs/;0: (4.88)

Let F W H ! R, F bounded and Lipschitz. Then by Proposition 4.3.2 we have that
p0;tF is (bounded and) Lipschitz. Furthermore, by Lemma 4.3.11 for all x 2 H

p�s;0.x; dy/ ! � weakly as s ! 1:

Hence by (4.88) for all x 2 H

Z
p0;tF d� D lim

s!1 p�s;0.p0;tF/.x/ D lim
s!1 p�.tCs/;0F.x/ D

Z
F d�:

Recalling that by definition pt D p0;t, it follows that � is an invariant measure
for .pt/t>0. Furthermore, if � is an invariant measure for .pt/t>0; then by Proposi-
tion 4.3.2 for all t 2 Œ0;1Œ

ˇ̌̌
ˇptF.x/�

Z
F d�

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
Z
.ptF.x/� ptF.y//�.dy/

ˇ̌̌
ˇ

6
Z
.e� 


2 tLip.F/kx � yk/ ^ 2kFk1 �.dy/;

which implies (4.83) and by letting t ! 1 also that all such invariant measures �
coincide. ut



Chapter 5
SPDEs with Locally Monotone Coefficients

In this chapter we will present more general results on the existence and uniqueness
of solutions to SPDEs. More precisely, we will replace the standard monotonicity
condition and coercivity condition in Chap. 4 by a local monotonicity condition and
generalized coercivity condition respectively. The main references for this chapter
are [57–59].

In the applications we make a slight change of notation by writing for the
standard Lp-norms k�kLp instead of k�kp; p 2 Œ1;1�, as in previous chapters to
be more consistent with the notation for norms in Sobolev spaces, used below.

5.1 Local Monotonicity

5.1.1 Main Result

Let

V � H � H� � V�

be a Gelfand triple and for T > 0 let W.t/; t 2 Œ0;T�, be a cylindrical Wiener
process in a separable Hilbert space U on a probability space .�;F ;P/with normal
filtration Ft; t 2 Œ0;T�. We consider the following stochastic differential equation
on H

dX.t/ D A.t;X.t// dt C B.t;X.t// dW.t/; (5.1)

where for some fixed time T > 0

A W Œ0;T� � V �� ! V�I B W Œ0;T� � V �� ! L2.U;H/

are progressively measurable.

© Springer International Publishing Switzerland 2015
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In Chap. 4 we have shown that (5.1) has a unique solution if A;B satisfy the
classical monotonicity and coercivity conditions. The main aim of this section is to
provide a more general framework for the variational approach, being conceptually
not more complicated than the classical one (cf. Chap. 4 or [54] ), but including
a large number of new applications, for example, fundamental SPDEs such as the
stochastic 2-D Navier–Stokes equation and stochastic Burgers type equations. The
main changes consist of localizing the monotonicity condition and relaxing the
growth condition. Let us now state the precise conditions on the coefficients of (5.1):

Suppose that there exist constants ˛ 2�1;1Œ, ˇ 2 Œ0;1Œ, � 2�0;1Œ, C0 2 R and
a nonnegative adapted process f 2 L1.Œ0;T� � �I dt ˝ P/ such that the following
conditions hold for all u; v;w 2 V and .t; !/ 2 Œ0;T� ��:

.H1/ (Hemicontinuity) The map 
 7! V�hA.t; u C 
v/;wiV is continuous on R.
.H20/ (Local monotonicity)

2V�hA.t; u/� A.t; v/; u � viV C kB.t; u/� B.t; v/k2L2.U;H/
	 .f .t/C �.v// ku � vk2H ;

where � W V ! Œ0;C1Œ is a measurable hemicontinuous function and
locally bounded in V .

.H3/ (Coercivity)

2V�hA.t; v/; viV C kB.t; v/k2L2.U;H/ 	 C0kvk2H � �kvk˛V C f .t/:

.H40/ (Growth)

kA.t; v/k ˛
˛�1

V�

	 .f .t/C C0kvk˛V /.1C kvkˇH/:

Remark 5.1.1

(1) .H20/ is significantly weaker than the standard monotonicity condition .H2/
(i.e. � � 0) in Chap. 4. One typical choice of � in applications is

�.v/ D Ckvk�V ;

where C and � are some nonnegative constants.
One important example is the stochastic 2-D Navier–Stokes equation on a

bounded or unbounded domain. It satisfies .H20/, but not .H2/ (see Sect. 5.1.3
below).

(2) .H40/ is also weaker than the standard growth condition .H4/ in Chap. 4. The
advantage of .H40/ is, e.g. that it allows the inclusion of many semilinear type
equations with nonlinear perturbation terms. For example, if we consider a
reaction-diffusion type equation, i.e. A.u/ D �u C F.u/, then for .H3/ to
hold we need ˛ D 2. Hence .H4/ would imply that F has at most linear
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growth. However, for the weaker condition .H40/ we can allow F to have some
polynomial growth. We refer to Sect. 5.1.3 for more details.

(3) By .H3/, .H40/ and Young’s inequality it easily follows that

kB.t; v/k2L2.U;H/ 	 f .t/C C0kvk2H C 2.˛ � 1/

˛
f .t/

	
1C kvkˇH




C 2

˛

h
C0.˛ � 1/.1C kvkˇH/C 1 � ˛

2
�
i

kvk˛V :

(4) Since � is locally bounded, .H20/ implies that for fixed ! 2 �; t 2 Œ0;T�,
A.t; �; !/ satisfies .H2loc/ in Remark 4.1.1,2. Hence .H1/ and .H20/ imply that
A.t; �; !/ W V ! V� is demicontinuous for all .t; !/ 2 Œ0;T� ��.

Definition 5.1.2 A continuous H-valued .Ft/-adapted process .X.t//t2Œ0;T� is called
a solution of (5.1), if for its dt ˝ P-equivalence class OX we have

OX 2 L˛.Œ0;T� ��; dt ˝ PI V/\ L2.Œ0;T� ��; dt ˝ PI H/

with ˛ in .H3/ and P-a:s:

X.t/ D X.0/C
Z t

0

A.s; NX.s// ds C
Z t

0

B.s; NX.s// dW.s/; t 2 Œ0;T�;

where NX is any V-valued progressively measurable dt ˝ P-version of OX (which
exists by Exercise 4.2.3).

Theorem 5.1.3 Suppose .H1/; .H20/; .H3/; .H40/ hold for some f 2 Lp=2.Œ0;T� �
�I dt ˝ P/ with some p � ˇ C 2, and there exists a constant C such that

kB.t; v/k2L2.U;H/ 	 C.f .t/C kvk2H/; t 2 Œ0;T�; v 2 VI
�.v/ 	 C.1C kvk˛V /.1C kvkˇH/; v 2 V: (5.2)

Then for any X0 2 Lp.�;F0;PI H/, (5.1) has a unique solution .X.t//t2Œ0;T� such
that X.0/ D X0 and it satisfies

E

 
sup

t2Œ0;T�
kX.t/kp

H

!
< 1:

Moreover, if A.t; �/.!/;B.t; �/.!/ are independent of t 2 Œ0;T� and ! 2 �, then the
solution .X.t//t2Œ0;T� of (5.1) is a Markov process.
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5.1.2 Proof of the Main Theorem

The first step of the proof is mainly based on the Galerkin approximation. Let

fe1; e2; � � � g � V

be an orthonormal basis of H and let Hn WD spanfe1; � � � ; eng such that
spanfe1; e2; � � � g is dense in V . Let Pn W V� ! Hn be defined by

Pny WD
nX

iD1
V�hy; eiiVei; y 2 V�:

Recall that Pn �H is just the orthogonal projection onto Hn in H and we have

V�hPnA.t; u/; viV D hPnA.t; u/; viH D V�hA.t; u/; viV ; u 2 V; v 2 Hn:

Let fg1; g2; � � � g be an orthonormal basis of U and

W.n/.t/ WD
nX

iD1
hW.t/; giiUgi D QPnW.t/;

where QPn is the orthogonal projection onto spanfg1; � � � ; gng in U.
Then for each finite n 2 N we consider the following stochastic equation on Hn

dX.n/.t/ D PnA.t;X.n/.t// dt C PnB.t;X.n/.t// dW.n/.t/; X.n/.0/ D PnX0: (5.3)

By Remark 5.1.1, (3) and (4) it is easy to check that all assumptions of Theo-
rem 3.1.1 hold, which hence implies that (5.3) has a unique strong solution.

In order to construct the solution of (5.1), we need some a priori estimates for
X.n/. As in Chap. 4 we use the following notations:

K WD L˛.Œ0;T� ��; dt ˝ PI V/I
J WD L2.Œ0;T� ��; dt ˝ PI L2.U;H//:

Lemma 5.1.4 Under the assumptions in Theorem 5.1.3, there exists a C > 0 such
that for all n 2 N

kX.n/kK C sup
t2Œ0;T�

EkX.n/.t/k2H 	 C:

Proof The assertion follows from .H3/ as in the proof of Lemma 4.2.9. ut
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Lemma 5.1.5 Under the assumptions in Theorem 5.1.3, there exists a C > 0 such
that for all n 2 N we have

E

 
sup

t2Œ0;T�
kX.n/.t/kp

H

!
C E

Z T

0

kX.n/.t/kp�2
H kX.n/.t/k˛V dt

	C

�
EkX0kp

H C E
Z T

0

f p=2.t/ dt

�
: (5.4)

In particular, there exists a C > 0 such that for all n 2 N

kA.�;X.n//kK� 	 C:

Proof By Itô’s formula (for Rn-valued semimartingales)

kX.n/.t/kp
H

DkX.n/.0/kp
H C p.p � 2/

Z t

0

kX.n/.s/kp�4
H k.PnB.s;X.n/.s// QPn/

�X.n/.s/k2H ds

C p

2

Z t

0

kX.n/.s/kp�2
H

	
2V�hA.s;X.n/.s//;X.n/.s/iVCkPnB.s;X.n/.s// QPnk2L2.U;Hn/



ds

C p
Z t

0

kX.n/.s/kp�2
H hX.n/.s/;PnB.s;X.n/.s// dW.n/.s/iH:

Hence by (H3), (5.1.3) and Young’s inequality

kX.n/.t/kp
H C p�

2

Z t

0

kX.n/.s/kp�2
H kX.n/.s/k˛V ds

	kX.n/.0/kH C C
Z t

0

	
kX.n/.s/kp

H C f .s/ � kX.n/.s/kp�2
H



ds

C p
Z t

0

kX.n/.s/kp�2
H hX.n/.s/;PnB.s;X.n/.s// dW.n/.s/iH

	kX0kp
H C C

Z t

0

�kX.n/.s/kp
H C f p=2.s/

�
ds

C p
Z t

0

kX.n/.s/kp�2
H hX.n/.s/;PnB.s;X.n/.s// dW.n/.s/iH ; t 2 Œ0;T�; (5.5)

where C is a constant (independent of n) and may change from line to line.
For n 2 N we define the stopping time

�
.n/
R WD infft 2 Œ0;T� W kX.n/.t/kH > Rg ^ T; R > 0:
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Here, as usual, inf ; WD 1. It is obvious that

lim
R!1 �

.n/
R D T; P-a:s:; n 2 N:

Then by Proposition D.0.1(i), (5.2) and Young’s inequality we have for all t 2
Œ0;T�

E sup
r2Œ0;�.n/R ^t�

ˇ̌
ˇ̌Z r

0

kX.n/.s/kp�2
H hX.n/.s/;PnB.s;X.n/.s// dW.n/.s/iH

ˇ̌
ˇ̌

	3E

 Z �
.n/
R ^t

0

kX.n/.s/k2p�2
H kB.s;X.n/.s//k2L2.U;H/ ds

!1=2

	3E

0
@ sup

s2Œ0;�.n/R ^t�

kX.s/.n//k2p�2
H � C

Z �
.n/
R ^t

0

�kX.s/.n//k2H C f .s/
�

ds

1
A
1=2

	3E

2
64" sup

s2Œ0;�.n/R ^t�

kX.n/.s/kp
H C C"

0
@Z t

0

. sup
r2Œ0;�.n/R ^t�

kX.n/.r/k2H C f .s// ds

1
A

p=2
3
75

	3"E. sup
s2Œ0;�.n/R ^t�

kX.n/.s/kp
H/C 3 � .2T/p=2�1C"

Z t

0

E sup
r2Œ0;�.n/R ^t�

�kX.n/.r/k2H C f p=2.s/
�

ds;

(5.6)

where " > 0 is a small constant.
Then by (5.5), (5.6) and Gronwall’s lemma we have

E. sup
t2Œ0;�.n/R �

kX.n/.t/kp
H/C E

Z �
.n/
R

0

kX.n/.s/kp�2
H kX.n/.s/k˛V ds

	 C

�
EkX0kp

H C E
Z T

0

f p=2.s/ ds

�
; n 2 N;

where C is a constant independent of n.
Letting R ! 1, (5.4) follows from the monotone convergence theorem.
Moreover, by .H40/ and because p � ˇ C 2, we deduce from (5.4) and

Lemma 5.1.4 that

kA.�;X.n//kK� 	 C; n � 1;

where C is a constant independent of n. ut
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Proof of Theorem 5.1.3

(1) Existence: By Lemmas 5.1.4, 5.1.5 and (5.2) there exists a subsequence nk !
1 such that

(i) X.nk/ ! NX weakly in K and weakly� in Lp.�I L1.Œ0;T�I H//.
(ii) Y.nk/ WD A.�;X.nk// ! Y weakly in K�.

(iii) Z.nk/ WD Pnk B.�;X.nk// ! Z weakly in J and hence

Z �

0

Pnk B.s;X.nk/.s// dW.nk/.s/ !
Z �

0

Z.s/ dW.s/

weakly in M2
T.H/ and, therefore, also weakly� in L1.Œ0;T�; dtI L2.�;

PI H//.

Now we define

X.t/ WD X0 C
Z t

0

Y.s/ ds C
Z t

0

Z.s/ dW.s/; t 2 Œ0;T�: (5.7)

As in the proof of Theorem 4.2.4 one shows that X D NX dt ˝ P-a:e:
Then by Theorem 4.2.5 we know that X is an H-valued continuous

.Ft/-adapted process. Since X.nk/; k 2 N, converges weakly to X in
Lp .�I L1.Œ0;T�I H//, it follows by Lemma 5.1.5 that

E

 
sup

t2Œ0;T�
kX.t/kp

H

!
< 1: (5.8)

Therefore, it remains to verify that

A.�; NX/ D Y; B.�; NX/ D Z dt ˝ P-a:e:

Define

M WD K \ Lp .�I L1.Œ0;T�I H// :

Let � be a V-valued progressively measurable version of an element in M and
let �� W � ! Œ0;T� be a stopping time such that

c� WD P-ess sup
�

Z ��

0

�
f .s/C k�.s/k˛V

�
ds < 1:
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Applying the Itô-formula (4.30) together with Itô’s product rule we obtain for
t 2 Œ0;T�

E

�
e� R t^��

0 .f .s/C�.�.s/// dskX.nk/.t ^ ��/k2H
�

� E
�kX.nk/.0/k2H

�

DE

�Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hA.s;X.nk/.s//;X.nk/.s/iV

C kPnk B.s;X.nk/.s// QPnk k2L2.U;Hn/ � .f .s/C �.�.s///kX.nk/.s/k2H
�

ds

�

	E

�Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hA.s;X.nk/.s//;X.nk/.s/iV

C kB.s;X.nk/.s//k2L2.U;H/ � .f .s/C �.�.s///kX.nk/.s/k2H
�

ds

�

DE

�Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hA.s;X.nk/.s//� A.s; �s/;X

.nk/.s/ � �.s/iV

C kB.s;X.nk/.s//� B.s; �.s//k2L2.U;H/

� .f .s/C �.�.s///kX.nk/.s/ � �.s/k2H
�

ds

�

C E

� Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hA.s;X.nk/.s// � A.s; �.s//; �.s/iViV

C 2V�hA.s; �.s//;X.nk/.s/�kB.s; �.s//k2L2.U;H/
C 2hB.s;X.nk/.s//;B.s; �.s//iL2.U;H/

� 2.f .s/C �.�.s///hX.nk/.s/; �.s/iH C .f .s/C �.�.s///k�.s/k2H
�

ds

�
:

(5.9)

Above in (5.9) we used that by Proposition D.0.1(ii), (5.2) and Lemma 5.1.5
(used for fixed n) the local martingale appearing after applying Itô’s formula is
a martingale, hence has expectation zero. Furthermore, by the definition of M,
the property of �� , (5.2), (H40) and because of Lemma 5.1.5 (used for fixed k)
it is easy to check that all integrals in (5.9) are well-defined. Letting k ! 1, by
.H20/, (i)-(iii) and the same argument as in (4.53) we have for every nonnegative
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 2 L1.Œ0;T�I dt/,

E

�Z T

0

 .t/

�
e� R t^��

0 .f .s/C�.�.s/// dskX.t/k2H � kX0k2H
�

dt

�

	 lim inf
k!1 E

�Z T

0

 .t/

�
e� R t^��

0 .f .s/C�.�.s/// dskX.nk/.t/k2H � kX.nk/.0/k2H
�

dt

�

	E

� Z T

0

 .t/

�Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hY.s/� A.s; �.s//; �.s/iV

C 2V�hA.s; �.s//; NX.s/iV � kB.s; �.s//k2L2.U;H/ C 2hZ.s/;B.s; �.s//iL2.U;H/

� 2.f .s/C �.�.s///hX.s/; �.s/iH C .f .s/C �.�.s///k�.s/k2H
�

ds

�
dt

�
:

(5.10)

By Itô’s formula and Proposition D.0.1(iii) we have

E

�
e� R t^��

0 .f .s/C�.�.s/// dskX.t/k2H
�

� E
�kX0k2H

�

DE

� Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr

�
2V�hY.s/; NX.s/iV

C kZ.s/k2L2.U;H/ � .f .s/C �.�.s///kX.s/k2H
�

ds

�
: (5.11)

By inserting (5.11) into (5.10) we obtain

0 �E

� Z T

0

 .t/

�Z t^��

0

e� R s
0 .f .r/C�.�.r/// dr.2V�hY.s/ � A.s; �.s//; NX.s/ � �.s/iV

C kB.s; �.s//� Z.s/k2L2.U;H/ � .f .s/C �.�.s///kX.s/� �.s/k2H/ ds

�
dt

�
:

(5.12)

Note that (5.2), Lemmas 5.1.4 and 5.1.5 imply that

NX 2 M:

Taking � D NX and for R > 0

�� WD �X
R WD inf

�
t 2 Œ0;T� W

Z t

0

�
f .s/C k NX.s/k˛V

�
ds > R˛

�
^ T;
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and then letting R ! 1, we obtain that Z D B.�; NX/. Next, we take � D NX�" Q�v
for Q� 2 L1.Œ0;T� � �I dt ˝ PIR/, v 2 V and �� WD �X

R ; R > 0: Then we
divide by " and let " ! 0 to derive by .H1/ and the hemicontinuity of � that

0 � E

�Z T

0

 .t/

� Z t^��

0

e� R s
0 .f .r/C�. NX.r/// dr Q�.s/V�hY.s/�A.s; NX.s//; viV ds

�
dt

�
:

(5.13)

We note that interchanging the limit " ! 0 with the integrals is indeed justified
by (5.2), (H40) and the definition of �X

R . By the arbitrariness of  and Q�, we
conclude that Y D A.�; NX/ on Œ0; �X

R �. Letting R ! 1 we obtain that Y D
A.�; NX/.

Hence X is a solution of (5.1).
(2) Uniqueness: Suppose X;Y are solutions of (5.1) with initial conditions X0;Y0

respectively, i.e.

X.t/ D X0 C
Z t

0

A.s; NX.s// ds C
Z t

0

B.s; NX.s// dW.s/; t 2 Œ0;T�I

Y.t/ D Y0 C
Z t

0

A.s; NY.s// ds C
Z t

0

B.s; NY.s// dW.s/; t 2 Œ0;T�:

Then by the product rule, Itô’s formula from Theorem 4.2.5 and .H20/ we have
for t 2 Œ0;T�

e� R t
0.f .s/C�. NY.s/// dskX.t/� Y.t/k2H 	 kX0 � Y0k2H
C 2

Z t

0

e� R s
0 .f .r/C�. NY.r/// drhX.s/� Y.s/;

�
B.s; NX.s//� B.s; NY.s//� dW.s/iH:

By Proposition D.0.1(ii) the real-valued local martingale on the right-hand side
is a martingale. So, taking expectation we arrive at

E
h
e� R t

0.f .s/C�. NY.s/// dskX.t/ � Y.t/k2H
i

	 EkX0 � Y0k2H ; t 2 Œ0;T�:

If X0 D Y0, then

E
h
e� R t

0.f .s/C�. NY.s/// dskX.t/ � Y.t/k2H
i

D 0; t 2 Œ0;T�:

Since Y 2 M, (5.2) implies that

Z T

0

.f .s/C �. NY.s/// ds < 1 P-a:s:
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Consequently, for every t 2 Œ0;T�

X.t/ D Y.t/ P-a:s:

Therefore, the pathwise uniqueness follows from the path continuity of X;Y
in H.

(3) The proof of the Markov property is similar to the proof of Proposition 4.3.5,1.
ut

5.1.3 Application to Examples

Below we present some examples where the coefficients are only locally monotone,
hence the classical result of monotone operators cannot be applied.

In this section we use the notation Di to denote the spatial derivative @
@xi

andƒ �
R

d is an open bounded domain. For the standard Sobolev space H1;p
0 .ƒ/; p � 1, as

before we always use the following Sobolev norm:

kuk1;p WD
�Z

ƒ

jru.�/jp d�

�1=p

:

For simplicity we only consider examples where the coefficients are time indepen-
dent, but one can easily adapt those examples to the time dependent case.

Lemma 5.1.6 Consider the Gelfand triple

V WD H1;2
0 .ƒ/ � H WD L2.ƒ/ �

	
H1;2
0 .ƒ/


� D V�

and the operator

A.u/ WD �u C hf .u/;rui;

where f D .f1; : : : ; fd/ W R ! R
d is a Lipschitz function and h ; i denotes the inner

product in R
d. Let Lip.f / denote the corresponding Lipschitz constant.

.0/ If d 	 4, there exists a C 2�0;1Œ such that for all u; v;w 2 V

Z
ƒ

jujjrwjjvj d� 	 CkukVkwkV kvkV :

In particular A W V ! V�. Furthermore, if d D 1 or f is bounded, A satisfies
.H40/ with ˛ D 1 and ˇ D 2; ˇ D 0 respectively.
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.1/ If d D 1 or if each fi is bounded and d D 2, then there exists a C 2 .0;1/ such
that

2V�hA.u/� A.v/; u � viV 	 �ku � vk2V C �
C C Ckvk2V

� ku � vk2H ; u; v 2 V:

.2/ If d D 3, then there exists a C 2 .0;1/ such, that

2V�hA.u/� A.v/; u � viV 	 �ku � vk2V C �
C C Ckvk4V

� ku � vk2H ; u; v 2 V:

.3/ Let ƒ be possibly unbounded and let bi 2 Ld.ƒ/ C L1.ƒ/; 1 	 i 	 d,
b WD .b1; : : : ; bd/ and

A.u/ WD �u C hb;rui:

Then for d � 3 there exists a C 2 .0;1/ such that

2V�hA.u/� A.v/; u � viV 	 �ku � vk2V C Cku � vk2H ; u; v 2 V;

(i.e. in this case .H2/ holds).

Proof

(0): We have for all u; v 2 V

Z
ƒ

jhf .u/;ruij jvj d� 	
Z
ƒ

.jf .0/j C Lip.f /juj/ jrujjvj d�:

Hence the second part of the assertion follows from the first and Example 4.1.7.
To prove the first part, we note that for all u; v;w 2 V

Z
ƒ

jujjrwjjvj d� 	 kuvkL2kwkV ;

and by the generalized Hölder inequality the right-hand side is dominated by

(a) kukL2kvkL1 kwkV ;

(b) kukL4kvkL4kwkV ;

(c) kukLd kvk
L

2d
d�2

kwkV :

In case d D 1; H1;2
0 .ƒ/ � L1.ƒ/ continuously. Hence assertion (0) follows

from (a) if d D 1.
In case d D 2; H1;2

0 .ƒ/ � Lp.ƒ/ continuously for all p 2 Œ1;1Œ. Hence
assertion (0) follows from (b) if d D 2.
In case d 	 3;H1;2

0 .ƒ/ � L
2d

d�2 .ƒ/ continuously, and L
2d

d�2 .ƒ/ � Ld.ƒ/

continuously if d 	 4. Hence assertion (0) follows from (c) if d D 3 or 4.
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To prove the last part of the assertion we note that this is trivially true if f is
bounded. If d D 1 and if f is merely Lipschitz continuous it follows immediately
from (a).

(1) and (2): We have

V�hA.u/� A.v/; u � viV

D �ku � vk2V C
dX

iD1

Z
ƒ

.fi.u/Diu � fi.v/Div/ .u � v/ d�:

To estimate the second term on the right-hand side, let Fi W R ! R be such that
Fi.0/ D 0 and F0

i D fi and Gi W R ! R be such that Gi.0/ D 0 and G0
i D Fi.

Then
Z
ƒ

.fi.u/Diu � fi.v/Div/.u � v/ d�

D
Z
ƒ

.fi.u/Di.u � v/C .fi.u/� fi.v//Div/ .u � v/ d�

�
Z
ƒ

fi.u � v/Di.u � v/.u � v/ d�

C
Z
ƒ

Di .Fi.u � v// .u � v/ d�;

where integrating by parts and using that u � v 2 H1;2
0 .ƒ/ we see that the last

term on the right-hand side is equal to

�
Z
ƒ

Di .Gi.u � v// d�;

which in turn after summation from i D 1 to d by Gauss’s divergence theorem is
zero, since Gi.u � v/ D 0 on @ƒ for all 1 	 i 	 d, because u; v 2 H1;2

0 .ƒ/.
Hence altogether we obtain

V�hA.u/� A.v/; u � viV

	 � ku � vk2V C
Z
ƒ

hf .u/� f .u � v/; r.u � v/i.u � v/ d�

C
Z
ƒ

hf .u/� f .v/; rvi.u � v/ d�: (5.14)
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Now let us first consider the case d D 1. Then using that f is Lipschitz and
applying the Cauchy–Schwarz and Young inequalities, we estimate the right-
hand side of (5.14) by

�ku � vk2V C Lip.f /
�ku � vkV kvkL1 ku � vkL2 C kvkV ku � vk2L4

�

	 �3
4

ku � vk2V C C
�kvk2V ku � vk2L2 C kvkV ku � vk2L4

�
; (5.15)

where C 2 .0;1/ is independent of u; v and we used that H1;2
0 .ƒ/ � L1.ƒ/

continuously, since d D 1.
In case d D 2; 3 and f is bounded, we similarly obtain that the right-hand side of
(5.14) is dominated by

�ku � vk2V C 2kf kL1 ku � vkV ku � vkL2 C Lip.f /kvkV ku � vk2L4

	 �3
4

ku � vk2V C C
�ku � vk2L2 C kvkV ku � vk2L4

�
; (5.16)

where C 2 .0;1/ is independent of u; v.
For d D 2, we have the following well-known interpolation inequality:

kuk2L4 	 2kukL2krukL2 ; u 2 H1;2
0 .ƒ/; (5.17)

(see Lemma H.0.1 (i) in Appendix H).
Hence combining this with (5.15), (5.16) and using Young’s inequality we
deduce that for some C 2 .0;1/

V�hA.u/�A.v/; u�viV 	 �1
2

ku�vk2V C�C C Ckvk2V
� ku�vk2H for all u; v 2 V;

and assertion (1) is proved.
For d D 3 we use the following interpolation inequality

kuk2L4 	 2
p
2kuk 1

2

L2
kruk 3

2

L2
; u 2 H1;2

0 .ƒ/; (5.18)

(see Lemma H.0.1 (ii) in Appendix H).
Then assertion (2) can be derived similarly from (5.16) and Young’s inequality.

(3): In this case A is linear and the assertion follows from the following lemma.
ut

Lemma 5.1.7 Let g 2 Ld.ƒ/C L1.ƒ/ and " 2�0;1Œ.
Define

˛ WD ˛."/ WD "�1 inf
n
ˇ 2 .0;1/jk1fjgj2>ˇggkLd 	 "




o
;
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where 
 is the constant of the Sobolev embedding H1;2
0 .ƒ/ � L

2d
d�2 .ƒ/, i.e.

kuk
L
2d

d�2
	 


�Z
ƒ

jruj2 d�

� 1
2

for all u 2 H1;2
0 .ƒ/:

Then ˛ < 1 and for all u; v 2 H1;2
0 .ƒ/ we have

Z
ƒ

jgjjujjrvj d� 	
�
"

Z
ƒ

jruj2 d� C ˛kuk2L2
� 1

2
�
"

Z
ƒ

jrvj2 d� C ˛kvk2L2
� 1

2

:

Proof Since g 2 Ld.ƒ/ C L1.ƒ/, we have that ˛ < 1. Furthermore, by the
Cauchy–Schwarz inequality

Z
ƒ

jgjjujjrvj d� 	
�Z

ƒ

jgj2u2 d�

� 1
2
�Z

ƒ

jrvj2 d�

� 1
2

: (5.19)

The first factor on the right-hand side can be estimated by

�Z
1fjgj2>˛"gjgj2u2 d� C ˛"kuk2L2

� 1
2

	
	
k1fjgj2>˛"ggk2Ld kuk2

L
2d

d�2
C ˛"kuk2L2


 1
2

	
�
"2
Z
ƒ

jruj2 d� C ˛"kuk2L2
� 1

2

;

where we used Hölder’s inequality and the definitions of 
; ˛ respectively. There-
fore, the right-hand side of (5.19) is dominated by

"

�Z
ƒ

jruj2 d� C ˛

"
kuk2L2

� 1
2
�Z

ƒ

jrvj2 d� C ˛

"
kvk2L2

� 1
2

which implies the assertion. ut
Example 5.1.8 (Semilinear Stochastic Equations) Let d 	 3 and consider the
situation of Lemma 5.1.6, (1), (3) with the operator A as defined there and the
semilinear stochastic equation

dX.t/ D .A.X.t//C g.X.t/// dt C B.X.t// dW.t/; (5.20)

where W is a cylindrical Wiener process in L2.ƒ/ defined on a probability space
.�;F ;P/ with normal filtration Ft; t 2 Œ0;T�. Let g;B satisfy the following
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conditions:

(i) g W R ! R is a continuous function with g.0/ D 0 and such that for some
C; r; s 2 Œ0;1Œ

jg.x/j 	 C.jxjr C 1/; x 2 RI (5.21)

.g.x/� g.y//.x � y/ 	 C.1C jyjs/.x � y/2; x; y 2 R: (5.22)

(ii) B W Œ0;T� � V �� ! L2.L2.ƒ// is as in Theorem 5.1.3.

Then the following holds:

(1) If d D 1; r D 3; s D 2, then for any p 2 Œ6;1Œ and X0 2 Lp.�;F0;PI H/,
(5.20) has a unique solution .X.t//t2Œ0;T� and this solution satisfies

E

 
sup

t2Œ0;T�
kX.t/kp

H C
Z T

0

kX.t/k2V dt

!
< 1: (5.23)

(2) If d D 2; r < 3; s D 2, then for p � max.2r; 4/ and any X0 2 Lp.�;F0;PI H/,
(5.20) has a unique solution .X.t//t2Œ0;T� and this solution satisfies (5.23).

(3) If d D 3; r D 7
3
; s D 4

3
, then for p � 16

3
and any X0 2 Lp.�;F0;PI H/, (5.20)

has a unique solution .X.t//t2Œ0;T� and this solution satisfies (5.23).

Proof We define the operator

Ag.u/ D A.u/C g.u/; u 2 V:

Since d 	 3, by Sobolev embedding (cf. the proof of Lemma 5.1.6,(0)) we have
V � L6.ƒ/, hence g.u/ 2 L2.ƒ/ � V� for all u 2 V , and, therefore, Ag W V !
V�. The hemicontinuity .H1/ follows easily from the conditions on f , g and by
Lemma 5.1.6, (0) in case (1) and (2), respectively the linearity of A in case (3).

(1): Let d D 1. Then by (5.22) for all u; v 2 V

V�hg.u/� g.v/; u � viV D
Z
ƒ

.g.u/� g.v// .u � v/ d�

	C
�
1C kvks1

� ku � vk2H :

Since s D 2 and H1;2
0 .ƒ/ � L1.ƒ/ continuously, it follows from

Lemma 5.1.6,(1) that Ag satisfies (H20) with �.v/ WD C.1 C kvk2V / for some
constant C 2�0;1Œ. Likewise .H3/ then follows with ˛ D 2, since g.0/ D 0.
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Furthermore, for all u 2 V by (5.21), because r D 3,

jV�hg.u/; viV j 	 C
Z
ƒ

.1C jujr/jvj d�

	C
�kvkL1 C kvkL1 kukL1 kuk2L2

�
;

which by the above embedding is up to a constant dominated by

kvkV
�
1C kukVkuk2H

�
:

Hence Lemma 5.1.6, (0) implies that .H40/ and hence (5.2) holds (with ˛ D 2)
and ˇ D 4. So, Theorem 5.1.3 applies, with p � 6.

(2): Let d D 2. We recall that in this case we assume that f is bounded. We have
for all u; v 2 V by (5.22)

V�hg.u/� g.v/; u � viV 	 C
Z
ƒ

.1C jvjs/ .u � v/2 d�

	 Cku � vk2H C Ckvks
L2s ku � vk2L4

	 Cku � vk2H C 2Ckvks
L2s ku � vkHku � vkV ;

where we used (5.17) in the last step. Applying Young’s inequality we obtain
that for some constant QC 2�0;1Œ the right-hand side of the above inequality is
bounded by

1

4
ku � vk2V C Cku � vk2H C QCkvk2s

L2s ku � vk2H :

Since s D 2, we can use (5.17) again to conclude by Lemma 5.1.6,(1) that Ag

satisfies .H20/ with

�.v/ WD C
�
1C kvk2V

� �
1C kvk2H

�

for some constant C 2�0;1Œ. And again since g.0/ D 0, .H3/ also holds with
˛ D 2. Furthermore, for all u 2 V by (5.21) for " 2�0; 1Œ

jV�hg.u/; viV j 	 C
Z
ƒ

.1C jujr/jvj d�

	 C
�kvkL1 C kukr

Lr.1C"/kvkL.1C"/="

�
;

which (since d D 2) up to a constant is dominated by

�
1C kukr

Lq

� kvkV
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with q WD r.1 C "/. Now since r < 3 we can choose " so small that r < 1 C
2.1C "/�1, hence

p WD 2

2 � .r � 1/.1C "/
2�1;1Œ:

Let p0 WD p
p�1 D 2

.r�1/.1C"/ and 
 2�0; 1Œ. Then by interpolation and choosing


 WD r�1 (assuming without loss of generality that r > 1) we obtain

kukr
Lq 	 kuk
r

L
qp kuk.1�
/r
L.1�
/qp0

	 kukL.1C"/p kukr�1
L2 ;

which is up to a constant dominated by kukVkukr�1
H . Hence Lemma 5.1.6, (0)

implies that .H40/ holds (with ˛ D 2) and ˇ D 2.r � 1/. So, (5.2) holds with
˛ D 2; ˇ D 2 max.r � 1; 1/ and Theorem 5.1.3 applies with p � max.2r; 4/.

(3): Let d D 3. We recall that in this case as in Lemma 5.1.6,(3) we assume that
A D �C hb;ri with b as given there. We have for all u; v 2 V by (5.22) as in
the proof of assertion (2) that

V�hg.u/� g.v/; u � viV 	 Cku � vk2H C Ckvks
L2s ku � vk2L4

	 Cku � vk2H C 2
p
2Ckvks

L2s ku � vk 1
2

L2
ku � vk 3

2

V ;

where we used (5.18) in the last step. So, by Young’s inequality for some QC 2
�0;1Œ the right-hand side is bounded by

1

4
ku � vk2V C Cku � vk2H C QCkvk4s

L2s ku � vk2H :

By interpolation for 
 WD 1
2s 2�0; 1Œ and p WD 6; p0 WD 6

5
we have, because

s D 4
3
,

kvk4s
L2s 	 kvk4
s

L2
sp kvk4.1�
/s
L2.1�
/sp0

D kvk2L6kvk2.2s�1/
L.2s�1/ 65

D kvk2L6kvk 10
3

H ;

which is up to a constant dominated by kvk2V kvk 10
3

H . Hence Lemma 5.1.7 implies
that Ag satisfies .H20/ with

�.v/ WD C
�
1C kvk2V

� �
1C kvk 10

3

H

�
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for some constant C 2�0;1Œ. And, since g.0/ D 0, .H3/ also holds with ˛ D 2.
Furthermore, for all u 2 V by (5.21)

jV�hg.u/; viVj 	 C
Z
ƒ

.1C jujr/jvj d�

	 C
	
kvkL1 C kukr

Lq kvk
L

2d
d�2




with q WD 2dr
dC2 , which, since H1;2

0 .ƒ/ � L
2d

d�2 .ƒ/ continuously, is up to a constant
dominated by

�
1C kukr

Lq

� kvkV :

For 
 WD 1
r 2�0; 1Œ by interpolation we have

kukr
Lq 	 kuk
r

L
qpkuk.1�
/r
L.1�
/qp0

	 kuk
L

2dp
.dC2/

kukr�1
L
.r�1/qp0

r

:

Choosing p WD dC2
d�2 and p0 D p

p�1 D dC2
4

, the right-hand side is equal to

kuk
L
2d

d�2
kukr�1

L
.r�1/d
2

;

which for r D 1 C 4
d D 7

3
, since d D 3, is up to a constant dominated by

kukV kuk 4
d
H D kukVkuk 4

3

H . Hence Lemma 5.1.7 implies that .H40/ holds (with
˛ D 2) and ˇ D 8

3
. So, (5.2) holds with ˛ D 2, ˇ D 10

3
and Theorem 5.1.3

applies with p � 16
3

. ut
Remark 5.1.9

(i) Equation (5.20), in particular for g � 0, is often called the stochastic
generalized Burgers equation. In the case where d D 1 and f .r/ D r; r 2 R,
(5.20) is called the stochastic Burgers equation.

(ii) One obvious generalization is that one can replace� in (5.20) by the p-Laplace
operator div.jrujp�2ru/ or the more general quasi-linear differential operator

X
j˛j�m

.�1/j˛jD˛A˛.Du/;

where Du D .Dˇu/jˇj�m. Under certain assumptions (cf. [82, Proposition
30.10]) this operator satisfies the monotonicity and coercivity condition. Then,
according to Theorem 5.1.3, we can obtain the existence and uniqueness of
solutions to this type of quasi-linear SPDE with non-monotone perturbations
(e:g: some locally Lipschitz lower order terms).
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Example 5.1.10 (Stochastic 2 D Navier–Stokes Equation) Let ƒ be a bounded
domain in R

2 with smooth boundary. Define

V WD
n
v 2 H1;2

0 .ƒI R
2/ W r � v D 0 a:e: in ƒ

o
; kvkV WD

�Z
ƒ

jrvj2 d�

�1=2
;

and let H be the closure of V in L2.ƒI R
2/. The linear operator PH (Helmholtz–

Leray projection) and A (Stokes operator with viscosity constant �) are defined by

PH W L2.ƒIR2/ ! H orthogonal projectionI

A W H2;2.ƒIR2/ \ V ! H; Au D �PH�u;

where H2;2.ƒIR2/ is the standard Sobolev space of order 2 in L2.ƒIR2/ (see e.g.
[77, Chap. I, 3.6]) Then the Navier–Stokes equation can be formulated as follows

u0 D Au C F.u/C f ; u.0/ D u0 2 H; (5.24)

where f 2 L2.Œ0;T�I V�/ denotes some external force and

F W V � V ! V�; F.u; v/ WD �PH Œ.u � r/ v� ;F.u/ WD F.u; u/;

where u � r D P2
iD1 ui@i and u D .u1; u2/: That F W V � V ! V� is indeed well-

defined and even continuous follows by Lemma 5.1.6, (0). Using the Gelfand triple

V � H � H� � V�;

as in Example 4.1.7, one sees that A extends by continuity to a map

A W V ! V�;

so that for some C 2�0;1Œ; kAukV� 	 CkukV ; u 2 V . In particular, we have

V�hF.u; v/;wiV D �V�hF.u;w/; viV ; V�hF.u; v/; viV D 0; u; v;w 2 V: (5.25)

Now we consider the stochastic 2-D Navier–Stokes equation

dX.t/ D .AX.t/C F.X.t//C f .t// dt C B.X.t// dW.t/; X.0/ D X0; (5.26)

where W is a cylindrical Wiener process in H on a probability space .�;F ;P/ with
normal filtration Ft; t 2 Œ0;T�.
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Claim Suppose that p � 4, X0 2 Lp.�;F0;PI H/ and B W Œ0;T� � V � � is as
in Theorem 5.1.3. Then (5.26) has a unique solution .X.t//t2Œ0;T� and this solution
satisfies

E

 
sup

t2Œ0;T�
kX.t/kp

H C
Z T

0

kX.t/k2V dt

!
< 1:

Proof The hemicontinuity .H1/ is obvious since A is a linear and F is a bilinear
map.

By (5.25) and (5.17), respectively, it follows that for some constant C 2�0;1Œ

jV�hF.w/; viV j 	 Ckwk2L4.ƒIR2/kvkV I
jV�hF.w/; viV j 	 Ckwk3=2V kwk1=2H kvkL4.ƒIR2/; v;w 2 V: (5.27)

Then by (5.25) and (5.27) it follows that for some C; QC 2�0;1Œ

V�hF.u/� F.v/; u � viV D �V�hF.u; u � v/; viV C V�hF.v; u � v/; viV

D �V�hF.u � v/; viV

	 Cku � vk3=2V ku � vk1=2H kvkL4.ƒIR2/

	 �

2
ku � vk2V C QC

�3
kvk4L4.ƒIR2/ku � vk2H ; u; v 2 V:

(5.28)

Hence

V�hAu C F.u/� Av � F.v/; u � viV 	 ��
2

ku � vk2V C
QC
�3

kvk4L4.ƒIR2/ku � vk2H

and (H20) holds with �.v/ WD QC
�3

kvk4
L4.ƒI R2/ which by (5.17) is up to a constant

dominated by kuk2Hkuk2V . By (5.25) it is also easy to show .H3/ with ˛ D 2. Indeed,
for some C 2�0;1Œ

V�hAv C F.v/C f .t/; viV 	 ��kvk2V C kf .t/kV� kvkV

	 ��
2

kvk2V C Ckf .t/k2V�

; v 2 V;

kB.v/k2L2 	 2Ckvk2H C 2kB.0/k2L2 ; v 2 V:

(5.27) and (5.17) imply that .H40/ and (5.2) hold with ˇ D 2.
Therefore, the existence and uniqueness of solutions to (5.26) follow from

Theorem 5.1.3 by taking p � 4. ut
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Remark 5.1.11

(1) Let us now consider the 3D Navier–Stokes equation. We note that (5.25) still
holds, since it is dimension independent. Hence using (5.18) (instead of (5.17)),
as above we obtain for some C; QC 2�0;1Œ

V�hF.u/� F.v/; u � viV D �V�hF.u � v/; viV

	 Cku � vk7=4V ku � vk1=4H kvkL4.ƒIR3/

	 �

2
ku � vk2V C

QC
�7

kvk8L4.ƒIR3/ku � vk2H ; u; v 2 V:

Hence we have the following local monotonicity .H20/:

V�hAu C F.u/� Av� F.v/; u � viV 	 ��
2

ku � vk2V C
QC
�7

kvk8L4.ƒIR3/ku � vk2H :

Using an interpolation formula for the norm k kL3 (see [78, Theorem 2.1]),
another form of local monotonicity can be derived similarly:

V�hF.u/� F.v/; u � viV D �V�hF.u � v/; viV

	 Cku � vk3=2V ku � vk1=2H kvkL6.ƒIR3/

	 �

2
ku � vk2V C QC

�3
kvk4L6.ƒIR3/ku � vk2H ; u; v 2 V:

(2) Clearly, (H3) holds with ˛ D 2 by (5.25). However, concerning the growth
condition, by (5.18) we have in the 3D case that for some C; QC 2�0;1Œ

kF.u/kV� 	 Ckuk2L4.ƒIR3/ 	 QCkuk1=2H kuk3=2V ; u 2 V:

Unfortunately, this is not enough to verify .H40/, since ˛ D 2.
(3) By similar arguments as in the case of the 2D Navier–Stokes equation it can

be shown that Theorem 5.1.3 applies to incompressible non-Newtonian fluids
subject to random forces. For details we refer to [59, Sect. 3.5].

(4) Besides the stochastic 2D Navier–Stokes equation, many other hydrodynamical
systems also satisfy the local monotonicity condition .H20/ and the coercivity
condition .H3/. For example, in [17] the authors have studied the well-
posedness and large deviation principle for an abstract stochastic semilinear
equation which covers a wide class of fluid dynamical models. In fact, the Con-
ditions .C1/ and .C2/ in [17] imply that the assumptions in Theorem 5.1.3 hold.
More precisely, .2:2/ in [17] implies .H3/ and the local monotonicity .H20/
follows from .2:4/ (or .2:8/) in [17]. The other assumptions in Theorem 5.1.3
can also be verified easily. Therefore, Theorem 5.1.3 can be applied to show
the well-posedness of all stochastic hydrodynamical models in [17] such as the
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stochastic magneto-hydrodynamic equations, the stochastic Boussinesq model
for the Bénard convection, the stochastic 2D magnetic Bénard problem, the
stochastic 3D Leray-˛ model and some stochastic shell models of turbulence.

5.2 Generalized Coercivity

5.2.1 Main Results

Let

V � H � H� � V�

be a Gelfand triple as in Sect. 4.1 and consider the general nonlinear evolution
equation

u0.t/ D A.t; u.t//; t 2�0;TŒ; u.0/ D u0 (5.29)

in H, where T > 0 and A W Œ0;T� � V ! V� is B.Œ0;T� � V/=B.V�/-measurable.
In this section we establish the existence, uniqueness and continuous dependence

on initial conditions of solutions to (5.29) (see Theorems 5.2.2 and 5.2.4 below),
replacing the local monotonicity condition .H20/ from the previous section by an
even weaker condition (see .H200/ below) and also relaxing the coercivity condition
.H3/ (see .H30/ below). An analogous result for stochastic PDEs with general
additive noise is also obtained (see Theorem 5.2.6 below). In Sect. 5.2.3 below the
main result will then be applied to establish local/global existence and uniqueness of
solutions for a large class of classical (stochastic) nonlinear evolution equations such
as the stochastic 2D and 3D Navier–Stokes equations, the tamed 3D Navier–Stokes
equation and the Cahn–Hilliard equation. Through our generalized framework we
give new and significantly simpler proofs for all these well known results. Moreover,
the main result is also applied to less well-studied stochastic surface growth PDEs
and stochastic power law fluids to obtain existence and uniqueness results also for
these models (see Sect. 5.2.3 for details). We emphasize that by applying our main
results (see Theorems 5.2.2 and 5.2.6) we obtain both the classical local existence
and uniqueness of strong solutions to the stochastic 3D Navier–Stokes equation and
quite recent local existence and uniqueness results for stochastic surface growth
PDE (see [59]). Here the meaning of strong solution is in the sense of both PDE and
probability theory.

Let us now formulate the precise conditions on the coefficients in (5.29).
Suppose that there exist constants ˛ 2�1;1Œ, ˇ;C 2 Œ0;1Œ, � 2�0;1Œ and

nonnegative functions f ; h 2 L1.Œ0;T�IR/ such that the following conditions hold
for all t 2 Œ0;T� and u; v;w 2 V:
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.H1/ (Hemicontinuity) The map 
 7! V�hA.t; u C 
v/;wiV is continuous on R.
.H200/ (Local monotonicity)

V�hA.t; u/� A.t; v/; u � viV 	 .f .t/C �.u/C �.v// ku � vk2H ;

where �; � W V ! Œ0;C1Œ are measurable and locally bounded functions
on V .

.H30/ (Generalized coercivity)

2 V�hA.t; v/; viV 	 h.t/ g.kvk2H/� �kvk˛V C f .t/;

where g W Œ0;1Œ! Œ0;1Œ is a non-decreasing continuous function such that
g.�0;1Œ/ ��0;1Œ.

.H40/ (Growth)

kA.t; v/kV� 	
�

f .t/
˛�1
˛ C Ckvk˛�1

V

��
1C kvkˇH

�
:

Remark 5.2.1 Since � and � are locally bounded on V , Remark 5.1.1,(4) holds cor-
respondingly. Hence .H1/ and .H200/ imply that A.t; �/ W V ! V� is demicontinuous
for every t 2 Œ0;T�.

Define

L.t/ WD
Z t

0

h.s/ ds C G

�
ku0k2H C

Z t

0

f .s/ ds

�
; t 2 Œ0;T�; (5.30)

where f ; g; h are as in .H30/ and G.x/ WD R x
x0

1
g.s/ ds; x 2�0;1Œ; for some fixed

x0 2�0;1Œ. Note that since G.x/ is not defined for x D 0, we have to make sure that
the argument of G in (5.30) is not zero. But we may always replace f in .H3/0 by
a bigger function, so that

R t
0 f .s/ ds > 0 for all t 2�0;T�, which we shall tacitly do

below.
Now we can state the first main result of this section, which provides a more

general framework to analyze various classes of nonlinear evolution equations.

Theorem 5.2.2 Suppose that V � H is compact and that .H1/; .H200/; .H30/; .H40/
hold.

(i) For every u0 2 H and every T0 2�0;T� such that

L.T0/ < sup
x2�0;1Œ

G.x/; (5.31)

(5.29) has a solution on Œ0;T0�, i.e.

u 2 L˛.Œ0;T0�I V/ \ C.Œ0;T0�I H/;
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and

u.t/ D u0 C
Z t

0

A.s; u.s// ds; t 2 Œ0;T0�;

where the integral is a V�-valued Bochnel integral.
(ii) If .H30/ holds with g.x/ D Cx; x � 0; for some constant C, then one can take

T0 D T in (i).

Remark 5.2.3 If h � 1 and g.x/ D C0jxj� .� > 1/, then for T0 2�0;T� we have
L.T0/ < sup

x2�0;1Œ

G.x/ if and only if

T0 <
C0

.� � 1/
	
ku0k2H C R T0

0
f .s/ ds


��1 ;

where the right-hand side tends to C1 if � # 1, proving that (ii) follows from (i) in
Theorem 5.2.2.

The next result shows the continuous dependence of solutions to (5.29) on the
initial condition u0.

Theorem 5.2.4 Suppose that V � H is compact and that .H1/; .H200/; .H30/; .H40/
hold.

(i) Let T0 2�0;T� and let ui be solutions of (5.29) on Œ0;T0� for initial conditions
ui;0 2 H, i D 1; 2 respectively. Then there exists a C 2 Œ0;1Œ such that

ku1.t/ � u2.t/k2H 	 ku1;0 � u2;0k2H exp

�
C
Z t

0

�
f .s/C �.u1.s//C �.u2.s//

�
ds

�
;

t 2 Œ0;T0�: (5.32)

In particular, u1;0 D u2;0 implies u1 D u2 provided the integral in (5.32) is finite
for t D T0, which in turn holds if there exist C; � 2 Œ0;1Œ such that

�.v/C �.v/ 	 C.1C kvk˛V /.1C kvk�H/; v 2 V: (5.33)

(ii) Suppose (5.33) holds. If u; u.n/; n 2 N; are solutions of (5.29) on Œ0;T0� such
that u.n/.0/ ! u.0/ in H as n ! 1, then

lim
n!1 sup

t2Œ0;T0�
ku.n/.t/ � u.t/kH D 0:

Now we formulate the analogous result for SPDEs on Hilbert spaces with
additive type noise. Suppose that U is another Hilbert space and W.t/ is a U-valued
cylindrical Wiener process defined on a probability space .�;F ;P/ with normal
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filtration Ft; t 2 Œ0;T�. We consider the following type of stochastic evolution
equations on H,

dX.t/ D ŒA1.t;X.t//C A2.t;X.t//� dt C B.t/ dW.t/; t 2 Œ0;T�; X.0/ D X0;
(5.34)

where A1;A2 W Œ0;T� � V ! V� and B W Œ0;T� ! L2.U;H/ are measurable.
Now we give the definition of a local solution to (5.34).

Definition 5.2.5

(i) For an .Ft/-stopping time � W � 7! Œ0;T� a process .X.t//t2Œ0;� � is called .Ft/-
adapted if the process .X.t//t2Œ0;T� defined by

eX.t/ WD
(

X.t/ ; t 2 Œ0; ��
X.�/ ; t 2 ��;T�

is .Ft/-adapted.

(ii) An H-valued .Ft/-adapted process .X.t//t2Œ0;� � is called a local solution of
(5.34) if X.�; !/ 2 L1.Œ0; �.!/�I V/ \ C.Œ0; �.!/�I H/ and P-a:s: ! 2 �,

X.t/ D X0C
Z t

0

ŒA1.s;X.s//C A2.s;X.s//� dsC
Z t

0

B.s/ dW.s/; t 2 Œ0; �.!/�;

where � is an .Ft/- stopping time satisfying �.!/ > 0 for P-a:e: ! 2 � and
X0 2 L2.�;F0;PI H/.

(iii) A local solution .X.t//t2Œ0;�X � is called unique if for any other local solution
.Y.t//t2Œ0;�Y � we have

P
�
X.t/ D Y.t/; t 2 Œ0; �X ^ �Y �g� D 1:

Theorem 5.2.6 Suppose that V � H is compact, A1 satisfies .H1/; .H200/; .H30/;
.H40/ with � � 0, ˇ D 0, h � 1 and g.x/ D Cx, A2 satisfies .H1/; .H200/;
.H30/; .H40/ with the same ˛ 2�1;1Œ in .H30/; .H40/ as A1. Furthermore, suppose
that B 2 L2.Œ0;T�I L2.U;H//, and that there exist C; � 2 Œ0;1Œ such that

g.x C y/ 	 C.g.x/C g.y//; x; y 2 Œ0;1ŒI
�.u C v/ 	 C.�.u/C �.v//; u; v 2 VI
�.u C v/ 	 C.�.u/C �.v//; u; v 2 VI
�.v/C �.v/ 	 C.1C kvk˛V /.1C kvk�H/; v 2 V:
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Then for any X0 2 L2.�;F0;PI H/, there exists a unique local solution .X.t//t2Œ0;� �
to (5.34) satisfying

X.�/ 2 L˛.Œ0; ��I V/ P-a:s:

Moreover, if A2 also satisfies .H30/ with g.x/ D Cx and if ˛ˇ 	 2, then all assertions
above hold for � � T.

Remark 5.2.7

(1) The main idea of the proof is to use a shift transformation to reduce (5.34) to a
deterministic evolution equation (with random parameter) which Theorem 5.2.2
can be applied to. More precisely, we consider the process Y which solves the
following stochastic differential equation:

dY.t/ D A1.t;Y.t// dt C B.t/ dW.t/; t 2 Œ0;T�; Y.0/ D 0: (5.35)

Since A1 satisfies .H1/; .H200/; .H30/; .H40/ with � � 0, ˇ D 0, h � 1 and
g.x/ D Cx, the existence and uniqueness of Y.t/ follows from Theorem 5.1.3
with p D 2. Let u WD X � Y. Then it is easy to show that u satisfies a
deterministic evolution equation of type (5.29) for each fixed ! 2 �.

(2) Unlike in [38], here we do not need to assume the noise to take values in V (i.e.
B 2 L2.Œ0;T�I L2.UI V//). The reason is that here we use the auxiliary process Y
instead of subtracting the noise part directly as in [38] and that A1 ¤ 0 because
it satisfies .H30/.

5.2.2 Proofs of the Main Theorems

The proof of Theorem 5.2.2 is split into several lemmas. First, however, we
need some preparations. We shall start with the Galerkin approximation to (5.29).
However, even in the finite dimensional case, existence and uniqueness of solutions
to (5.29) do not immediately follow from the standard results because of the
generalized coercivity condition .H30/. We shall prove existence below by using
a classical theorem of Carathéodory for ordinary differential equations. Another
difficulty is that we cannot apply Gronwall’s lemma directly for .H30/. Instead, we
will use Bihari’s inequality, which is a generalized version of Gronwall’s lemma.

Lemma 5.2.8 (Bihari’s Inequality) Let g W Œ0;1Œ! Œ0;1Œ be a non-decreasing
continuous function such that g.�0;1Œ/ ��0;1Œ. If p, h W Œ0;1Œ! Œ0;1Œ are
measurable functions with h 2 L1loc.Œ0;1Œ/ and K0 2�0;1Œ such that

p.t/ 	 K0 C
Z t

0

h.s/ g.p.s// ds; t � 0:
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Then we have

p.t/ 	 G�1
�

G .K0/C
Z t

0

h.s/ ds

�
; 0 	 t 	 T0; (5.36)

where G.x/ WD R x
x0

1
g.s/ ds < 1 for all x 2�0;1Œ and some fixed x0 2�0;1Œ; G�1 W

G.�0;1Œ/ !�0;1Œ is the inverse function of G and T0 2�0;1Œ such that G.K0/CR T0
0

h.s/ ds belongs to the domain of G�1.

Remark 5.2.9 G is continuous and strictly increasing, hence

G.�0;1Œ/ D� inf
x2�0;1Œ

G.x/; sup
x2�0;1Œ

G.x/Œ:

In particular, G.K0/ < sup
x2�0;1Œ

G.x/ and the interval ŒG.K0/; sup
x2�0;1Œ

G.x/Œ is contained

in G.�0;1Œ/, i.e. in the domain of G�1. Hence (5.36) holds for t 2 Œ0;T0�, where
T0 2�0;1Œ satisfies

Z T0

0

h.s/ ds C G.K0/ < sup
x2�0;1Œ

G.x/:

In particular, if h � 1 and g.x/ D C0x� for some constants C0 > 0 and � > 1, then

G.x/D C0
� � 1

	
x1��0 � x1��



I G�1.x/D

ˇ̌
ˇ̌x1��0 � � � 1

C0
x

ˇ̌
ˇ̌

1
1��

sign

�
x1��0 � � � 1

C0
x

�
:

Hence (5.36) holds on Œ0;T0� for any T0 2 Œ0; C0
��1K1��

0 Œ (in particular, for any T0 2
Œ0;1Œ if � D 1).

We first recall the definition of pseudo-monotone operators, which is a very
useful generalization of monotone operators and was first introduced by Brézis in
[11]. It will be crucial for us below. For abbreviation we use the notation “*” for
weak convergence in a Banach space.

Definition 5.2.10 The operator A W V ! V� is called pseudo-monotone if un * u
in V and

lim inf
n!1 V�hA.un/; un � uiV � 0

implies that for all v 2 V

V�hA.u/; u � viV � lim sup
n!1 V�hA.un/; un � viV :
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Lemma 5.2.11 Let A be pseudo-monotone and un * u in V. Then

lim sup
n!1 V�hA.un/; un � uiV 	 0:

Proof If the conclusion is not true, then we can extract a subsequence such that
unk * u in V and

lim inf
k!1 V�hA.unk/; unk � uiV > 0:

Since A is pseudo-monotone, this implies that

0 D V�hA.u/; u � uiV

� lim sup
k!1

V�hA.unk/; unk � uiV

� lim inf
k!1 V�hA.unk/; unk � uiV :

This contradiction proves the assertion. ut
Remark 5.2.12 In [12] Browder introduced a different definition of pseudo-
monotone operators: An operator A W V ! V� is called pseudo-monotone if
un * u in V and

lim inf
n!1 V�hA.un/; un � uiV � 0

implies

A.un/ * A.u/ in V� and lim
n!1 V�hA.un/; uniV D V�hA.u/; uiV:

This definition, however, turns out to be equivalent to Definition 5.2.10. Indeed,
obviously the above definition implies that the operator A is pseudo-monotone in
the sense of Definition 5.2.10. Conversely, if A is as in Definition 5.2.10 and un * u
in V such that

lim inf
n!1 V�hA.un/; un � uiV � 0;

then by Lemma 5.2.11

lim
n!1 V�hA.un/; un � uiV D 0:
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Hence for all v 2 V

lim sup
n!1 V�hA.un/; u � viV

D lim sup
n!1 V�hA.un/; u � viV C lim

n!1 V�hA.un/; un � uiV

D lim sup
n!1 V�hA.un/; un � viV

	V�hA.u/; u � viV :

Hence for all w 2 V

lim sup
n!1 V�hA.un/;wiV 	 V�hA.u/;wiV :

Replacing w by �w we deduce that A.un/ * A.u/ in V�. Likewise, then we also
obtain that

lim
n!1 V�hA.un/; uniV D lim

n!1 V�hA.un/; un�uiVC lim
n!1 V�hA.un/; uiV D V�hA.u/; uiV:

Lemma 5.2.13 If the embedding V � H is compact, then .H1/ and .H200/ imply
that A.t; �/ is pseudo-monotone for any t 2 Œ0;T�.
Proof We fix t 2 Œ0;T� and denote A.t; �/ by A.�/.

Suppose un * u in V and

lim inf
n!1 V�hA.un/; un � uiV � 0; (5.37)

then for any v 2 V we have to show

V�hA.u/; u � viV � lim sup
n!1 V�hA.un/; un � viV : (5.38)

Let v 2 V . We set

C0 WD kukV C kvkV C sup
n

kvnkV I

C1 WD sup ff .t/C �.v/C �.v/ W v 2 V; kvkV 	 2C0g .< 1/:

Since the embedding V � H is compact, we have un ! u in V� and

V�hC1u; u � viV D lim
n!1 V�hC1un; un � viV :
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Hence for proving (5.38) it is sufficient to show that

V�hA0.u/; u � viV � lim sup
n!1 V�hA0.un/; un � viV ;

where A0 D A � C1I and I is the identity operator.
Then .H200/ implies that

lim sup
n!1 V�hA0.un/; un � uiV 	 lim sup

n!1 V�hA0.u/; un � uiV D 0:

By (5.37) we obtain

lim
n!1 V�hA0.un/; un � uiV D 0: (5.39)

Let z D u C t.v � u/ with t 2 .0; 1
2
/, then the local monotonicity .H200/ implies that

V�hA0.un/� A0.z/; un � ziV 	 0;

i:e:

tV�hA0.z/; u � viV � .1 � t/V�hA0.un/; un � uiV

�tV�hA0.un/; un � viV � V�hA0.z/; un � uiV :

By taking lim sup on both sides and using (5.39) we have

V�hA0.z/; u � viV � lim sup
n!1 V�hA0.un/; un � viV :

Then letting t ! 0, by the hemicontinuity .H1/ we obtain

V�hA0.u/; u � viV � lim sup
n!1 V�hA0.un/; un � viV :

Therefore, A is pseudo-monotone. ut
Remark 5.2.14 As we shall see in Sect. 5.2.3 below, for some concrete operators, it
is easier to check the local monotonicity .H200/ instead of the definition of pseudo-
monotonicity itself.

Let en 2 V; n 2 N; be an orthonormal basis in H such that spanfen W n 2 Ng is
dense in V . Let Hn WD spanfe1; � � � ; eng and let Pn W V� ! Hn be defined by

Pny WD
nX

iD1
V�hy; eiiVei; y 2 V�:
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For each finite n 2 N we consider the following evolution equation on Hn:

un.t/ D Pnu0 C
Z t

0

PnA.s; un.s// ds; t 2 Œ0;T�: (5.40)

From now on, we fix T0 2�0;T� as in the assertion of Theorem 5.2.2, i.e. such
that L.T0/ < sup

x2�0;1Œ

G.x/ with L as defined in (5.30).

Set X WD L˛.Œ0;T0�I V/ and k kX WD k kL˛.Œ0;T0�IV/. Then X� D L
˛

˛�1 .Œ0;T0�I V�/
with norm k kX� WD k k

L
˛

˛�1 .Œ0;T0�IV�/
.

Lemma 5.2.15 Suppose that V � H is compact and that .H1/; .H200/; .H30/; .H40/
hold. Then for every solution un to (5.40) on Œ0;T0� we have

kun.t/k2H C �

Z t

0

kun.s/k˛V ds 	 G�1
�

G

�
ku0k2H C

Z T0

0

f .s/ ds

�
C
Z t

0

h.s/ ds

�
;

t 2 Œ0;T0�: (5.41)

In particular, there exists a C0 2�0;1Œ such that

kunkX C sup
t2Œ0;T0�

kun.t/kH C kA.�; un/kX� 	 C0 for all n 2 N: (5.42)

Proof By the Itô formula (4.29), (4.30) (with Z � 0) and .H30/ we have

kun.t/k2H � kun.0/k2H
D 2

Z t

0
V�hu0

n.s/; un.s/iV ds

D 2

Z t

0
V�hPnA.s; un.s//; un.s/iV ds

D 2

Z t

0
V�hA.s; un.s//; un.s/iV ds

	
Z t

0

���kun.s/k˛V C h.s/ g
�kun.s/k2H

�C f .s/
�

ds: (5.43)

Hence we have for t 2 Œ0;T0�,

kun.t/k2H C �

Z t

0

kun.s/k˛V ds 	 ku0k2H C
Z T0

0

f .s/ ds C
Z t

0

h.s/ g.kun.s/k2H/ ds:

Then by Lemma 5.2.8 and Remark 5.2.9 we know that (5.41) holds.
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Therefore, there exists a constant C2 such that

kunkX C sup
t2Œ0;T0 �

kun.t/kH 	 C2; n � 1:

Then by .H40/ there exists a constant C3 such that

kA.�; un/kX� 	 C3; n � 1:

Hence the proof is complete. ut
Lemma 5.2.16 Suppose that V � H is compact and that .H1/; .H200/; .H30/; .H40/
hold. Then (5.40) has a solution un on Œ0;T0�.

Proof For any t 2 Œ0;T�, by Remark 5.2.1 we know that A.t; �/ is demicontinuous,
i.e.

un ! u (strongly) in V as n ! 1

implies that

A.t; un/ * A.t; u/ in V� as n ! 1:

The demicontinuity implies that PnA.t; �/ W Hn ! Hn is continuous. If u W Œ0;T0� !
Hn is a solution of (5.40), then by Lemma 5.2.15 for some R 2�0;1Œ

ku.t/kH 	 R for all t 2 Œ0;T0�: (5.44)

Hence we may replace PnA.t; �/ by �n;RPnA.t; �/ with �n;R 2 C1
0 .Hn/, which is

identically equal to 1 on a ball in Hn, large enough in comparison with R from (5.44).
Then obviously (3.1) and (3.4) from Chap. 3 are fulfilled with � � 0 and b WD
�n;RPnA.t; �/ by .H40/. Also (3.3) follows from .H200/. Hence by Theorem 3.1.1
there exists a un W Œ0;T� �! Hn such that un is the unique solution to (5.40) on
Œ0;T0�. ut
Remark 5.2.17 In the proof of Theorem 5.2.6 below we shall use Lemma 5.2.16
in the case where b WD �n;RPnA.t; �/ also depends on ! 2 � in a progressively
measurable way and T0 is an .Ft/-stopping time. Then by Theorem 3.1.1 every
un W Œ0;T� ! Hn from the proof of Lemma 5.2.16 above will be .Ft/-adapted
and so will beeun WD un.� ^ T0/. This and (5.45) below implies that for u defined
in Lemma 5.2.18 below we have that .u.t//t2Œ0;T0� is .Ft/-adapted in the sense of
Definition 5.2.5 (i).

Note that X and X� are reflexive Banach spaces. Hence by Lemma 5.2.15 there
exists a subsequence of un; n 2 N; from Lemma 5.2.16, again denoted by un, such
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that as n ! 1

un ! Nu weakly in X and weakly� in L1.Œ0;T0�I H/I
A.�; un/ ! w weakly in X�: (5.45)

Recall that un.0/ D Pnu0 ! u0 in H as n ! 1.

Lemma 5.2.18 Suppose that V � H is compact and that .H1/; .H200/; .H30/; .H40/
hold. Define

u.t/ WD u0 C
Z t

0

w.s/ ds; t 2 Œ0;T0�: (5.46)

Then u 2 C.Œ0;T0�I H/ and u D Nu dt-a:e:

Proof (Cf. the proof of Theorem 4.2.4) From (5.40) for all v 2 S
n2N Hn.� V/,

' 2 L1.Œ0;T0�/ by Fubini’s theorem we obtain

Z T0

0
V�hNu.t/; '.t/viV dt

D lim
n!1

Z T0

0
V�hun.t/; '.t/viV dt

D lim
n!1

�Z T0

0
V�hPnu0; '.t/viV dt C

Z T0

0

Z t

0
V�hPnA.s; un.s//; '.t/viV ds dt

�

D lim
n!1

�
V�hPnu0; viV

Z T0

0

'.t/ dt C
Z T0

0
V�hA.s; un.s//;

Z T0

s
'.t/ dt viV ds

�

D
Z T0

0
V�hu0 C

Z t

0

w.s/ ds; '.t/viV dt:

Therefore, we have u D Nu dt-a:e:, and applying Theorem 4.2.5 (with Z � 0), we
obtain that u 2 C.Œ0;T0�I H/ . ut
Remark 5.2.19 We would like to emphasize that below we shall always work with
this fixed version u of Nu defined in (5.46). Furthermore, since A.�; un/ * w in X�,
(5.46) implies that

un.t/ * u.t/ in V� for all t 2 Œ0;T0�:

Since supn kun.t/kH < 1, it follows that also

un.t/ * u.t/ in H for all t 2 Œ0;T0�: (5.47)
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Hence, by (5.45) and the lower sequence semicontinuity of the norm in a Banach
space with respect to weak convergence it follows that

sup
t2Œ0;T0�

ku.t/k2H C �

Z T0

0

ku.s/k˛V ds 	 G�1
�

G

�
ku0k2H C

Z T0

0

f .s/ ds

�
C
Z T0

0

h.s/ ds

�
:

(5.48)

The next crucial step in the proof of Theorem 5.2.2 is to verify that w D A.u/.
In the case of monotone operators, this is the well known Minty’s lemma or
monotonicity trick (cf. [82, Lemma 30.6] or Claim 3 in the proof of Remark 4.1.1).
In the case of locally monotone operators, we use the following integrated version
of Minty’s lemma which holds due to pseudo-monotonicity.

Lemma 5.2.20 Suppose that V � H is compact and .H1/; .H200/; .H30/; .H40/
hold, and assume that

lim inf
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � u.t/iV dt � 0: (5.49)

Then for every v 2 X we have

Z T0

0
V�hA.t; u.t//; u.t/ � v.t/iV dt � lim sup

n!1

Z T0

0
V�hA.t; un.t//; un.t/ � v.t/iV dt:

(5.50)

In particular, the limit inferior in (5.49) and the limit superior in (5.50) are in fact
limits and thus A.t; u.t// D w.t/ for dt-a:e: t 2 Œ0;T0�.
Proof

Claim 1: For all t 2 Œ0;T0� such that u.t/ 2 V , we have

lim sup
n!1 V�hA.t; un.t//; un.t/ � u.t/iV 	 0: (5.51)

Indeed, suppose there exist t0 2 Œ0;T0� such that u.t0/ 2 V and a subsequence
such that

lim
i!1 V�hA.t0; uni.t0//; uni.t0/� u.t0/iV > 0:

By .H30/ and .H40/ there exists a C0 2�0;1Œ such that after applying Young’s
inequality we obtain

2V�hA.t0; uni.t0//; uni.t0/� u.t0/iV 	 � �

2
kuni.t0/k˛V

C C0
�
f .t0/C h.t0/ g.kuni.t0/k2H/

�

C C0
	
1C kuni.t0/k˛ˇH



ku.t0/k˛V :

(5.52)
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Hence by (5.47) we conclude that uni.t0/; i 2 N; is a bounded sequence in V
(w.r.t. k kV ), which again by (5.47) then converges to u.t0/ weakly in V . Since
A.t0; �/ is pseudo-monotone, by Lemma 5.2.11 this, however, implies that

lim sup
i!1

V�hA.t0; uni.t0//; uni.t0/� u.t0/iV 	 0;

which is a contradiction to the definition of the subsequence uni.t0/; i 2 N.
Hence (5.51) holds.
As above, by .H30/ and .H40/ there exists a C0 2�0;1Œ such that for every v 2 X

2V�hA.t; un.t//; un.t/ � v.t/iV

	 � �

2
kun.t/k˛V C C0

�
f .t/C h.t/ g.kun.t/k2H/

�

CC0
	
1C kun.t/k˛ˇH



kv.t/k˛V for dt-a:e: t 2 Œ0;T0�: (5.53)

Hence by Lemma 5.2.15, Fatou’s lemma and (5.49) we have

0 	 lim inf
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � u.t/iV dt

	 lim sup
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � u.t/iV dt

	
Z T0

0

lim sup
n!1 V�hA.t; un.t//; un.t/ � u.t/iV dt (5.54)

which by (5.51) is negative.
Hence

lim
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � u.t/iV dt D 0; (5.55)

and, therefore, for every v 2 X

lim
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � v.t/iV dt D

Z T0

0
V�hw.t/; u.t/ � v.t/iV dt:

(5.56)
Claim 2: There exists a subsequence uni ; i 2 N; such that

lim
i!1 V�hA.t; uni.t//; uni.t/ � u.t/iV D 0 for dt-a:e: t 2 Œ0;T0�: (5.57)
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Define gn.t/ WD 1fu2Vg.t/ V�hA.t; un.t//; un.t/�u.t/iV ; t 2 Œ0;T�. Then by (5.55),
(5.51) respectively

lim
n!1

Z T0

0

gn.t/ dt D 0; lim sup
n!1

gn.t/ 	 0 for dt-a:e: t 2 Œ0;T0�:

The latter clearly implies that limn!1 gC
n .t/ D 0 for dt-a:e: t 2 Œ0;T0�, where

gC
n .t/ WD maxfgn.t/; 0g.

Furthermore, (5.53) (with v WD u) and (5.42) imply that for some C 2�0;1Œ and
all n 2 N

gn.t/ 	 C
�
f .t/C h.t/C ku.t/k˛V

�
for dt-a:e: t 2 Œ0;T0�:

Hence by Lebesgue’s dominated convergence theorem we have

lim
n!1

Z T0

0

gC
n .t/ dt D 0:

Note that jgn.t/j D 2gC
n .t/ � gn.t/. Hence we have

lim
n!1

Z T0

0

jgn.t/j dt D 0:

Therefore, we can take a subsequence gni.t/; i 2 N; such that

lim
i!1 gni.t/ D 0 for dt-a:e: t 2 Œ0;T0�;

i:e: (5.57) holds.
Let t 2 fs 2 Œ0;T0� W u.s/ 2 Vg such that the convergence in (5.57) holds. Then
by (5.53) (with v WD u), funi.t/ W i 2 Ng is bounded in V , hence by (5.47)
uni.t/ * u.t/ in V . Since A is pseudo-monotone, (5.57) implies that for all v 2 X

V�hA.t; u.t//; u.t/ � v.t/iV � lim sup
i!1

V�hA.t; uni.t//; uni.t/ � v.t/iV :

By (5.53) and Fatou’s lemma it follows for every v 2 X that

Z T0

0
V�hA.t; u.t//; u.t/ � v.t/iV dt

�
Z T0

0

lim sup
i!1

V�hA.t; uni.t//; uni.t/ � v.t/iV dt

� lim sup
i!1

Z T0

0
V�hA.t; uni.t//; uni.t/ � v.t/iV dt
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D lim
n!1

Z T0

0
V�hA.t; un.t//; un.t/ � v.t/iV dt

D
Z T0

0
V�hw.t/; u.t/ � v.t/iV dt; (5.58)

where we used (5.56) in the last two steps.
Hence (5.50) is proved. But since v 2 X was arbitrary, (5.58) implies that
A.�; u/ D w as elements in X�, which completes the proof. ut
Now we can give the complete proof of Theorem 5.2.2.

Proof of Theorem 5.2.2 Since (ii) was already proved in Remark 5.2.3 it remains
to prove (i). Using the Itô formula (4.29) (with Z � 0) we conclude from
Lemmas 5.2.16 and 5.2.18 that

kun.T0/k2H � kun.0/k2H D 2

Z T0

0
V�hA.t; un.t//; un.t/iV dt

and

ku.T0/k2H � ku0k2H D 2

Z T0

0
V�hw.t/; u.t/iV dt;

respectively. Since by (5.47), un.T0/ * u.T0/ in H, by the lower semicontinuity of
k kH we have

lim inf
n!1 kun.T0/k2H � ku.T0/k2H :

Hence we have by (5.45)

lim inf
n!1

Z T0

0
V�hA.t; un.t//; un.t/iV dt

�1
2

�ku.T0/k2H � ku.0/k2H
�

D
Z T0

0
V�hw.t/; u.t/iV dt

D lim
n!1

Z T0

0
V�hA.t; un.t//; u.t/iV dt:

By Lemma 5.2.20 it now follows that u is a solution to (5.29). ut
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Proof of Theorem 5.2.4

.i/ Let

a.s/ WD f .s/C �.u1.s//C �.u2.s//; s 2 Œ0;T0�:

Since, otherwise, (5.32) is trivially true, we may assume that a 2 L1.Œ0;T0�/.
Then again by (4.29) with Z � 0 and the product rule we have for t 2 Œ0;T0�

e� R t
0 a.s/ dsku1.t/ � u2.t/k2H

Dku1;0 � u2;0k2H C 2

Z t

0

e� R s
0 a.r/ dr

V�hA.s; u1.s//� A.s; u2.s//; u1.s/� u2.s/iV ds

�
Z t

0

e� R s
0 a.r/ dra.s/ku1.s/� u2.s/k2H ds;

which by .H200/ is dominated by ku1;0 � u2;0k2H .
Hence (5.32) follows. The remaining parts of the assertion then follow

immediately.
.ii/ The assertion is an immediate consequence of (i), (5.48) and (5.33). ut
Proof of Theorem 5.2.6 We first consider the process Y which solves the following
SPDE:

dY.t/ D A1.t;Y.t// dt C B.t/ dW.t/; t 2 Œ0;T�; Y.0/ D 0:

By Theorem 5.1.3 we know that there exists a unique solution Y to the above
equation in the sense of Definition 5.1.2 and it satisfies

Y 2 L˛.Œ0;T�I V/ \ C.Œ0;T�I H/; P-a.s.

Fix ! 2 � and consider the transformed equation:

u.t/ D u0 C
Z t

0

QA.s; u.s// ds; t 2 Œ0;T�; (5.59)

where � D �.!/ 2�0;T� will be determined later, u0 WD X0.!/ and

QA.t; v/ WD A1.t; vC NY.t; !//� A1.t; NY.t; !//C A2.t; vC NY.t; !//; v 2 V; t 2 0;T�:

Here NY is a fixed V-valued progressively measurable dt ˝ P-version of Y (see
Definition 5.1.2). Clearly, if u.D u.!// satisfies (5.59) up to some time �.D �.!//,
then X WD u C Y is a solution to (5.34) on Œ0; �� in the sense of Definition 5.2.5.
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To obtain the existence (and uniqueness) of a solution to (5.59) we only need to
show that QA satisfies all the assumptions of Theorem 5.2.2 for some properly chosen
� D �.!/ replacing T0.

Clearly, QA is B.Œ0;T��V/=B.V�/-measurable. Furthermore, QA is hemicontinuous
since .H1/ holds for both A1 and A2.

For u; v 2 V and t 2 Œ0;T� by our assumptions on �; � (writing Y.t/ instead of
NY.t; !/ for simplicity) we have

V�h QA.t; u/� QA.t; v/; u � viV

DV�hA1.t; u C Y.t// � A1.t; v C Y.t//; u � viV

C V�hA2.t; u C Y.t// � A2.t; v C Y.t//; u � viV

	 .f .t/C �.v C Y.t/// ku � vk2H
C .f .t/C �.v C Y.t//C �.v C Y.t/// ku � vk2H

	C Œf .t/C �.Y.t//C �.Y.t//C �.v/C �.v/� ku � vk2H ;

i.e. .H200/ holds for QA with

Qf .t/ WD C Œf .t/C �.Y.t//C �.Y.t//� 2 L1.Œ0;T�/:

Since A2 satisfies .H30/ and .H40/, by Young’s inequality we have for v 2 V; t 2
Œ0;T�

2V�hA2.t; v C Y.t//; viV D 2V�hA2.t; v C Y.t//; v C Y.t/ � Y.t/iV

	 � �kv C Y.t/k˛V C h.t/ g.kv C Y.t/k2H/C f .t/ � 2V�hA2.t; v C Y.t//;Y.t/iV

	 � �kv C Y.t/k˛V C h.t/ g.kv C Y.t/k2H/C f .t/

C C
	

f .t/
˛�1
˛ C kv C Y.t/k˛�1

V


 	
1C kv C Y.t/kˇH



kY.t/kV

	 � �

2
kv C Y.t/k˛V C h.t/ g.kv C Y.t/k2H/C .1C �

2
/f .t/

C CkY.t/k˛V
	
1C kv C Y.t/k˛ˇH




	 � �

2

�
21�˛kvk˛V � kY.t/k˛V

�C h.t/ g.2kvk2H C 2kY.t/k2H/

C .1C �

2
/f .t/C CkY.t/k˛V

	
1C kvk˛ˇH C kY.t/k˛ˇH




	 � 2�˛�kvk˛V C Ch.t/
�
g.kvk2H/C g.kY.t/k2H/

�C CkY.t/k˛V kvk˛ˇH

C .1C �

2
/f .t/C CkY.t/k˛V

	
1C kY.t/k˛ˇH



; v 2 V;
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where C is some constant changing from line to line (but independent of t and !).
Similarly, we have v 2 V; t 2 Œ0;T�

2V�hA1.t; v C Y.t// � A1.t;Y.t//; viV

D2V�hA1.t; v C Y.t//; v C Y.t/ � Y.t/iV � 2V�hA1.t;Y.t//; viV

	 � �kv C Y.t/k˛V C Ckv C Y.t/k2H C f .t/

C 2kY.t/kV

	
f .t/

˛�1
˛ C Ckv C Y.t/k˛�1

V



C 2kvkV kA1.t;Y.t//kV�

	 � �

2
kv C Y.t/k˛V C Ckv C Y.t/k2H C .1C �

2
/f .t/

C CkY.t/k˛V C 2kvkV kA1.t;Y.t//kV�

	 � �

2

�
21�˛kvk˛V � kY.t/k˛V

�C C
�kvk2H C kY.t/k2H

�

C C.f .t/C kY.t/k˛V /C kvkV

	
f .t/

˛�1
˛ C CkY.t/k˛�1

V




	 � 2�˛�1�kvk˛V C Ckvk2H C C
�
f .t/C kY.t/k˛V C kY.t/k2H

�
; v 2 V:

Since Y 2 L˛.Œ0;T�I V/ \ C.Œ0;T�I H/, we conclude that QA satisfies .H30/ with

Qf .t; !/ WD C
	

f .t/C kY.t; !/k˛V C kY.t; !/k2H C kY.t; !/k˛V kY.t; !/k˛ˇH

C h.t/ g.kY.t; !/k2H/


; t 2 Œ0;T�;

Qg.x/ WD g.x/C x˛ˇ=2 C x; x 2 Œ0;1Œ;

Qh.t; !/ WD C
�
h.t/C kY.t; !/k˛V C 1

�
; t 2 Œ0;T�;

replacing f ; g; h.
The growth condition .H40/ also holds for QA, since for some C 2�0;1Œ

independent of ! and t (which may change from line to line) we have for all
v 2 V; t 2 Œ0;T�

k QA.t; v/kV� 	kA1.t; v C Y.t//kV� C kA1.t;Y.t//kV� C kA2.t; v C Y.t//kV�

	C
	

f .t/
˛�1
˛ C kv C Y.t/k˛�1

V


 	
1C kv C Y.t/kˇH




C f .t/
˛�1
˛ C CkY.t/k˛�1

V

	
	

Cf .t/
˛�1
˛ C CkY.t/k˛�1

V C Ckvk˛�1
V


 	
1C kY.t/kˇH C kvkˇH




	 C

 
1C sup

t2Œ0;T�
kY.t/kˇH

!	Qf .t/ ˛�1
˛ C Ckvk˛�1

V


 	
1C kvkˇH



:
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Now for " 2�0; sup
x2�0;1Œ

QG.x/ � QG.ku0k2H/Œ we define

�".!/ WD inf

(
t 2 Œ0;T� W QL.t; !/ � sup

x2�0;1Œ

QG.x/� "

)
^ T;

where QL.�; !/ is as defined in (5.30) with Qf .�; !/; Qg; Qh.�; !/; QG replacing f ; g; h;G
respectively and QG.x/ WD R x

x0
1

Qg.s/ ds; x 2�0;1Œ; with x0 2�0;1Œ fixed.

Since Qf and Qh are .Ft/-adapted processes, the continuous real-valued process
QL.t/; t 2 Œ0;T�; is also .Ft/-adapted. Hence �" is an .Ft/-stopping time.

Clearly,

QL.�"/ 	 sup
x2�0;1Œ

QG.x/ � " on f�" > 0g:

But by the choice of ", obviously f�" > 0g D �. So,

QL.�"/ < sup
x2�0;1Œ

QG.x/;

i.e. (5.31) holds for QL.�; !/ with �".!/ replacing T0.
Therefore, according to Theorems 5.2.2, (5.59) has a solution u on Œ0; �".!/� for

P-a:e: ! 2 �.
Define

X.t/ WD u.t/C Y.t/; t 2 Œ0; �"�:

By Remark 5.2.17 .u.t//t2Œ0;�"� and hence .X.t//t2Œ0;�"� is .Ft/-adapted. Furthermore,
obviously .X.t//t2Œ0;�"� is a local solution to (5.34).

To prove uniqueness let .Xi.t//t2Œ0;�.i/�; i D 1; 2, be two local solutions to (5.34).
Define

ui.t/ WD Xi.t/ � Y.t/; t 2 Œ0; � .i/�:

Then obviously each ui solves (5.59) on Œ0; � .i/�. Hence it follows by Theorem 5.2.4
(i) that u1 D u2 on Œ0; � .1/ ^ �.2/�, i. e. X1 D X2 on Œ0; � .1/ ^ �.2/�. The last part of
the assertion follows by the definition of Qg above, since it implies that (5.59) has a
(global) solution on Œ0;T�.

Now the proof is complete. ut
Remark 5.2.21 It follows from the above proof that, of course, we have a unique
solution to (5.34) on Œ0; sup

">0

�"Œ.
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5.2.3 Application to Examples

In this section we will first apply our general results to some classical examples
(see the first three examples below), but which have not been covered by the more
restricted framework in Sect. 5.1 and Chap. 4. Subsequently, in the last example of
this section we apply our results to an example, which, at least in such generality,
for the first time was solved in [57, 59] in the deterministic and stochastic case
respectively. Recall that in this section we use C to denote a generic constant which
may change from line to line.

3D Navier–Stokes Equation

First we want to apply Theorems 5.2.2 and 5.2.4 to the 3D Navier–Stokes equation,
which is a classical model to describe the time evolution of an incompressible fluid,
given as follows:

@

@t
u.t/ D ��u.t/� .u.t/ � r/u.t/C rp.t/C f .t/;

div.u/ D 0; uj@ƒ D 0; u.0/ D u0; (5.60)

where ƒ is a bounded open domain in R
3 with smooth boundary, u.t; �/ D

.u1.t; �/; u2.t; �/; u3.t; �//; � 2 ƒ, represents the velocity field of the fluid, � is
the viscosity constant, the pressure p.t; �/ is an unknown scalar function and f is a
(known) external force field acting on the fluid. In the pioneering work [55] Leray
proved the existence of a weak solution for the 3D Navier–Stokes equation in the
whole space. However, up to now, the uniqueness and regularity of weak solutions
are still open problems (cf. e.g. [79]).

Let C1
0;� .ƒIR3/ denote the set of all divergence free smooth vector fields from

ƒ to R
3 with compact support equipped with the following norms respectively:

kukH1;2 WD
�Z

ƒ

jruj2 d�

�1=2
I kukH2;2 WD

�Z
ƒ

j�uj2 d�

�1=2
:

For p � 1, let Lp WD Lp.ƒIR3/ be the vector valued Lp-space with the usual norm
k kLp . We note that by Poincaré’s inequality there exists a C 2 �0;1Œ such that for
all u 2 C1

0;� .ƒIR3/

kuk2H1;2 D
3X

i;jD1

Z
ƒ

�
@iu

j
�2

d� D �
3X

i;jD1

Z
ƒ

uj@2i uj d�
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0
@ 3X

jD1

Z
ƒ

�
uj
�2

d�

1
A

1
2

kukH2;2

	 C

0
@ 3X

jD1

Z
ƒ

jrujj2 d�

1
A

1
2

kukH2;2 D CkukH1;2kukH2;2 ;

hence

kukH1;2 	 CkukH2;2 :

Now we define

L2� WD completion of C1
0;� .ƒIR3/ w:r:t: k kL2 I

H WD completion of C1
0;� .ƒIR3/ w:r:t: k kH1;2 I

V WD completion of C1
0;� .ƒIR3/ w:r:t: k kH2;2 :

Here the norm k kH2;2 (resp. k kH1;2) restricted to V (resp. H) will be also denoted
by k kV (resp. k kH).

In the literature it is standard to use the Gelfand triple H � L2� � H� to
analyze the Navier–Stokes equation and it works very well in the 2D case even
with general stochastic perturbations (cf. Example 5.1.10). However, as pointed out
in Remark 5.1.11(2), the growth condition .H40/ fails to hold on this triple for the
3D Navier–Stokes equation.

Motivated by some recent works on the (stochastic) tamed 3D Navier–Stokes
equation (see the next section and the references mentioned there), we will use the
new Gelfand triple V � H � V� defined above to verify the growth condition .H40/.
One further ingredient is to use the following inequality in the 3D case (see e.g. [45,
Theorem 2.1]):

sup
ƒ

juj2 	 Ck�ukL2krukL2 ; u 2 V: (5.61)

Before we proceed, we note that for v 2 V , ' 2 C1
0;� .ƒIR3/

V�hv; 'iV D hv; 'iH D hv;��'iL2 ;

hence

jV�hv; 'iV j 	 kvkL2�
k'kV ;
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so the linear map v 7! V�hv; � iV from V into V� extends by continuity to a
continuous linear map from L2� to V�, which we also denote by f . We have for
all f 2 L2�

V�hf ; 'iV D hf ;��'iL2�
for all ' 2 C1

0;� .ƒIR3/ (5.62)

and

kf kV� 	 kf kL2�
: (5.63)

Let PH be the orthogonal (Helmholtz–Leray) projection from L2.ƒIR3/ to L2� .
Then by means of the divergence free Hilbert spaces V;H and the orthogonal
projection PH , the classical 3D Navier–Stokes equation (5.60) can be reformulated
in the following abstract form:

u0 D Au C F.u/C Qf ; u.0/ D u0 2 H; (5.64)

where

F.u/ WD F.u; u/;

Qf W Œ0;T� ! L2� ; Qf WD PHf

and A W V ! V�; F W V � V ! V are defined as follows:
For u; v 2 C1

0;� .ƒIR3/ set

Au WD �PH�u and F.u; v/ WD PHŒ.u � r/v�:

We note that for u 2 C1
0;� .ƒIR3/ also �u 2 C1

0;� .ƒIR3/, so Au D ��u. Then

jV�hAu; viV j D jhAu; viHj D jhAu; .��/viL2 j 	 kukV kvkV ; u; v 2 C1
0;� .ƒ/:

Hence, A can be extended by continuity to a linear map from V to V� such that

kAukV� 	 kukV ; u 2 V:

Furthermore, for all u; v; ' 2 C1
0;� .ƒIR3/ by (5.63)

kF.u; v/kV� 	 kF.u; v/kL2�
:

But for some C 2�0;1Œ (independent of u; v)

Z
ƒ

jF.u; v/j2 d� 	
Z
ƒ

j.u � r/vj2 d� 	 Ckuk2L1

kvk2V ;
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which by (5.61) is up to a constant dominated by kukV kukHkvk2V . So, altogether
there exist C1;C2;C3 2�0;1Œ such that

kF.u; v/kV� 	 C1kukL1kvkH 	 C2kuk1=2V kuk1=2H kvkH

	 C3kukVkvkH for all u; v 2 C1
0;� .ƒIR3/: (5.65)

Hence, since F W C1
0;� .ƒIR3/ � C1

0;� .ƒIR3/ ! V� is bilinear, F has a unique
continuous bilinear extensions from V � V ! V� such that (5.65) holds for all
u; v 2 V .

Remark 5.2.22 We note in contrast to (5.25) under the current Gelfand triple

V�hF.u; v/; viV D hF.u; v/; .��/viL2 ; u; v;w 2 V;

which might not be equal to 0 in general.

For simplicity we only apply Theorems 5.2.2 and 5.2.4 to the deterministic 3D
Navier–Stokes equation and give a simple proof for this well known result. But
we can also add an additive noise to (5.64) and obtain the corresponding result in
the stochastic case by applying Theorem 5.2.6. We refer to [77, 79] for historical
remarks and references on the classical local existence and uniqueness results for
the 3D Navier–Stokes equation.

Example 5.2.23 (3D Navier–Stokes Equation) If Qf 2 L2.0;TI L2� / and u0 2 H, then
there exists a constant T0 2 .0;T� such that (5.64) has a unique strong solution
u 2 L2.Œ0;T0�I V/ \ C.Œ0;T0�I H/.

Proof For simplicity, let us assume that � D 1.
The hemicontinuity .H1/ is obvious since A is linear and F is bilinear. Below

we prove .H200/; .H30/; .H40/ for u; v 2 C1
0;� .ƒIR3/ which by the continuity of

A W V ! V� and F W V � V ! V� is sufficient. Furthermore, C will denote a
constant that may change from line to line. We have

V�hAu � Av; u � viV DhA.u � v/; .��/.u � v/iL2

D � ku � vk2V :

By (5.65) and Young’s inequality we have

V�hF.u/� F.v/; u � viV

DV�hF.u; u � v/; u � viV C V�hF.u � v; v/; u � viV

	Cku � vkV �
	
kukL1 ku � vkH C ku � vk1=2V ku � vk1=2H kvkH




	1
2

ku � vk2V C C
�kuk2L1

C kvk4H
� ku � vk2H : (5.66)
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Combining these two estimates we obtain

V�hAu C F.u/� Av � F.v/; u � viV

	 � 1

2
ku � vk2V C C

�kuk2L1

C kvk4H
� ku � vk2H : (5.67)

Hence .H200/ follows with �.u/ WD Ckuk2L1

and �.v/ WD Ckvk4H . In particular,
taking u D 0 we obtain that

V�hAv C F.v/; viV 	 �1
2

kvk2V C Ckvk6H :

Therefore, .H30/ holds with g.x/ D Cx3 and h � 1, because

V�hAv C F.v/C Qf ; viV 	 �1
2

kvk2V C Ckvk6H C kQf kV�kvkV

	 �1
4

kvk2V C Ckvk6H C CkQf k2L2 ; v 2 V:

Moreover, by (5.63) and (5.65)

kA.v/C F.v/C Qf kV� 	 kvkV C CkvkV kvkH C kQf kL2

	 �kQf kL2 C CkvkV
�
.1C kvkH/ ; v 2 V; (5.68)

i.e. .H40/ holds with ˇ D 1.
Finally, we note that � C � satisfies (5.33) by (5.61) and both � and � are

subadditive up to a constant. Therefore, the local existence and uniqueness of
solutions to (5.64) on Œ0;T0� with T0 satisfying (5.31) follows from Theorems 5.2.2
and 5.2.4. ut
Remark 5.2.24

(1) By Remark 5.2.3 we can take any T0 2 .0;T� such that

T0 <
C

.ku0k2H C R T0
0
.1C kQf .t/k2

L2
/ dt/2

;

for a suitable C 2�0;1Œ.
(2) Note that the solution here is a strong solution in the sense of PDEs. It is obvious

that we can also allow Qf in (5.64) to depend on the unknown solution u provided
Qf satisfies some local monotonicity condition.
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A Tamed 3D Navier–Stokes Equation

In the case of the 3D Navier–Stokes equation we have seen that the generalized
coercivity condition .H30/ holds with g.x/ D Cx3, hence we only get local existence
and uniqueness of solutions. In this section we consider a tamed version of the 3D
Navier–Stokes equation, which was proposed in [73, 74, 83]. The main feature of
this tamed equation is that if there is a bounded strong solution to the classical
3D Navier–Stokes equation (5.60), then this smooth solution must also satisfy the
following tamed equation (for N large enough):

@tu.t/ D ��u.t/� .u.t/ � r/u.t/C rp.t/ � gN
�ku.t/k2L1

�
u.t/C f .t/;

div.u/ D 0; uj@ƒ D 0; u.0/ D u0; (5.69)

where the taming function gN W RC ! RC is smooth and satisfies for some N > 0,

8̂
<̂
ˆ̂:

gN.r/ D 0; if r 	 N;

gN.r/ D .r � N/=�; if r � N C 1;

0 	 g0
N.r/ 	 C; r � 0:

We note that our “taming term” gN

	
ku.t/k2L1



u.t/ is slightly different and, in fact,

simpler than the one used in [73, 74, 83].
We will use the same Gelfand triple as for the 3D Navier–Stokes equation, i.e.,

H WD completion of C1
0;� .ƒ;R

3/ w:r:t: k kH1;2 I
V WD completion of C1

0;� .ƒ;R
3/ w:r:t: k kH2;2 :

Example 5.2.25 (Tamed 3D Navier–Stokes Equation) For f 2 L2.0;TI L2� / and u0 2
H, (5.69) has a unique strong solution u 2 L2.Œ0;T�I V/ \ C.Œ0;T�I H/.

Proof We assume � D 1 for simplicity.
Similarly as in (5.64), using the Gelfand triple

V � H � V�

(5.69) can be rewritten in the following abstract form (a priori as an equation in V�):

u.t/ D
Z t

0

�
Au.s/C F.u/.s/� gN.ku.s/k2L1

/u.s/C Qf .s/� ds; t 2 Œ0;T0�; u0 2 H:

Again .H1/ is easy to check since we already know that A C F C Qf is
hemicontinuous and because gN is Lipschitz continuous. By (5.61) and Young’s
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inequality we also have for all u; v 2 C1
0;� .ƒIR3/

� V�hgN.kuk2L1

/u � gN.kvk2L1

/v; u � viV

D � hgN.kuk2L1

/u � gN.kvk2L1

/v; .��/.u � v/iL2

D � hgN.kuk2L1

/ru � gN.kvk2L1

/rv;r.u � v/iL2

D � gN.kuk2L1

/ku � vk2H � h�gN.kuk2L1

/� gN.kvk2L1

/
�rv;r.u � v/iL2

	jgN.kuk2L1

/ � gN.kvk2L1

/j � kvkH � ku � vkH

	Cku � vkL1 .kukL1 C kvkL1 / kvkHku � vkH

	Cku � vkL1

�kuk2L1

C kvk2H C kvkL1 kvkH
� ku � vkH

	Cku � vkV
�kuk2L1

C kvk2H C kvkL1 kvkH
� ku � vkH

	1
4

ku � vk2V C C
�kuk4L1

C kvk4H C kvk2L1

kvk2H
� ku � vk2H ;

where we have used that gN � 0 and 0 	 g0
N 	 C in the above estimates.

Hence by (5.67) we have the following estimate for all u; v 2 C1
0;� .ƒIR3/

V�hAu C F.u/� gN.kuk2L1

/u � Av � F.v/C gN.kvk2L1

/v; u � viV

	 � 1

4
ku � vk2V C C

�
1C kuk4L1

C kvk4H C kvk2L1

kvk2H
� ku � vk2H

	 � 1

4
ku � vk2V C C

�
1C kuk4L1

C kvk4H C kvk4L1

� ku � vk2H ;

i.e. .H200/ holds with �.u/ D Ckuk4L1

and �.v/ D C
�kvk4H C kvk4L1

�
.

For all v 2 C0;� .ƒIRd/ we have

V�hAv; viV D hPH�v; .��/viL2 D �kvk2V
and by (5.65)

V�hF.v/; viV 	 kF.v/kV�kvkV 	 1

4
kvk2V C kvk2L1

kvk2H :

Furthermore,

�V�hgN.kvk2L1

/v; viV D �gN.kvk2L1

/hv; .��/viL2

D �gN.kvk2L1

/ �
Z
ƒ

jrvj2 dx

	 �kvk2L1

kvk2H C .N C 1/kvk2H ;
where we used that gN.r/ � r � .N C 1/ in the last inequality.
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Adding these three inequalities we obtain

V�hAv C F.v/ � gN.kvk2L1

/v C Qf ; viV

	 � 3

4
kvk2V C .N C 1/kvk2H C kQf kL2kvkV

	 � 1

2
kvk2V C .N C 1/kvk2H C CkQf k2L2 ; v 2 V;

where we used Young’s inequality in the last step. This implies .H30/ with g.x/ D
Nx and h � 1.

By (5.61) it easily follows that

kgN.kvk2L1

/vkV� 	 kgN.kvk2L1

/vkL2 	 Ckvk2L1

kvkL2 	 CkvkV kvk2H ; v 2 V:

Then, combining this with (5.68), we obtain that .H40/ holds with ˛ D 2; ˇ D 2.
Equation (5.61) implies that kuk4L1

	 Ckuk2Hkuk2V , hence �C � satisfies (5.33).
Clearly, both � and � are subadditive up to a constant. Hence the global existence
and uniqueness of solutions to (5.69) follows from Theorems 5.2.2 and 5.2.4. ut
Remark 5.2.26 As for the classical 3D Navier–Stokes equation we can also add
an additive noise and apply Theorem 5.2.6 to get a unique local solution for its
stochastic version. However, since as shown above, ˛ D 2 and ˇ D 2 in this
case, the last part of Theorem 5.2.6 does not apply to get global solutions by our
techniques. It is, however, true that a unique global solution exists in the stochastic
case. This can be proved by different methods (see [72, 73]).

The Cahn–Hilliard Equation

The Cahn–Hilliard equation is a classical model to describe phase separation in a
binary alloy and some other media, we refer to [62] for a survey on this model (see
also [21, 30] for the stochastic case). Let ƒ be a bounded open domain in R

d with
d 	 3 with smooth boundary. The Cahn–Hilliard equation has the following form:

@tu D ��2u C�'.u/; u.0/ D u0;

ru � n D r.�u/ � n D 0 on @ƒ; (5.70)

where� is the Laplace operator and r is the gradient, n is the outward unit normal
vector on the boundary @ƒ and the nonlinear term ' is some function which will be
specified below.
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Let C4. Nƒ/ denote the set of all real valued functions onƒ, which are restrictions
of functions in C4.Rd/. Define

V0 WD fu 2 C4. Nƒ/ W ru � n D r.�u/ � n D 0 on @ƒg:

Now we consider the following Gelfand triple

V � H WD L2.ƒ/ � V�;

where

V WD closure of V0 in H2;2.ƒ/

and

kukH2;2 WD
�Z

ƒ

j�uj2 dx

�1=2
:

For the reader’s convenience, we recall the following Gagliardo–Nirenberg inter-
polation inequality (cf. [78, Theorems 2.25 and 2.21]) for bounded open ƒ � R

d,
d � 1, with smooth boundary.

If m; j 2 Z such that m > j � 0 and q 2 Œ1;1� such that

1

q
D 1

2
C j

d
� ma

d
;

j

m
	 a 	 1;

with a ¤ 1, if m � j � d
2

D 0; then there exists a C 2�0;1Œ such that

kukHj;q 	 Ckuka
Hm;2kuk1�a

L2 ; u 2 Hm;2.ƒ/: (5.71)

Here, for nonnegative integers j; q, the space Hj;q.ƒ/ denotes the classical Sobolev
space of order j in Lq.ƒ/.

For j WD 0; q WD 0;m WD 2 and hence a WD d
4
, this implies, since d 	 3 the

classical Sobolev embedding

H2;2.ƒ/ � L1.ƒ/ continuously: (5.72)

Then we get the following existence and uniqueness result for (5.70).

Example 5.2.27 Suppose that ' 2 C1.R/ and that there exist C 2 �0;1Œ ; p 2�
2; dC4

d

�
such that

' 0.x/ � �C; j'.x/j 	 C.1C jxjp/; x 2 RI
j'.x/ � '.y/j 	 C.1C jxjp�1 C jyjp�1/jx � yj; x; y 2 R:



174 5 SPDEs with Locally Monotone Coefficients

Then for every u0 2 L2.ƒ/, there exists a unique global solution to (5.70).

Proof Let

A.u/ WD A1u C A2u; u 2 V0;

where

A1.u/ WD ��2u and A2.u/ WD �'.u/; u 2 V0:

Note that for u 2 V0 by the boundary conditions imposed on the elements of V0 we
have for v 2 V0

jV�hA1.u/; viV j D jh��u; �viL2 j
	 kvkV kukV :

Hence A1 extends to a linear continuous map from V to V� such that

kA1.u/kV� 	 kukV for all u 2 V0: (5.73)

Furthermore, again by the boundary conditions on elements in V0, by the local
Lipschitz property of ' and by (5.71) we obtain for all u1; u2 2 V0

V�hA2.u1/ � A2.u2/; viV D h'.u1/� '.u2/;�viL2

	 kvkV Ck.1C ju1jp�1 C ju2jp�1/ ju1 � u2jkL2

	 kvkV C.1C ku1kp�1
L1

C ku2kp�1
L1

/ku1 � u2kL2

	 kvkV ku1 � u2kVC.1C ku1kp�1
V C ku2kp�1

V /: (5.74)

Therefore, by uniform continuity A2 extends to a continuous map from V to V�. In
particular, .H1/ holds and .H200/, .H30/ and .H40/ only have to be checked for all
u; v 2 V0.

For all u; v 2 V0, we have

�V�h�2u ��2v; u � viV D �ku � vk2V :

In addition, as in (5.73) and using Young’s inequality we get

V�h�'.u/��'.v/; u � viV

	ku � vkV k'.u/� '.v/kL2

	1
2

ku � vk2V C C
	
1C kuk2p�2

L1

C kvk2p�2
L1



ku � vk2H ; u; v 2 V0:
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Hence .H200/ holds with �.v/ D �.v/ D Ckvk2p�2
L1

.
Similarly, since ' 0 is lower bounded we have for all v 2 V0,

V�h�'.v/; viV D �
Z
ƒ

' 0.v/jrvj2 d� 	 Ckvk2H1;2

D �C
Z
ƒ

�vv d� 	 1

2
kvk2V C Ckvk2H :

It follows that .H30/ holds with ˛ D 2, h � 1 and g.x/ D Cx.
By (5.71) with j WD 0; q WD 2p;m WD 2 and thus a WD .p�1/d

4p it follows that for
all v 2 V0

k�'.v/kV� 	 k'.v/kH

	 C
�
1C kvkp

L2p

�

	 C
	
1C kvkap

V kvk.1�a/p
H




D C
	
1C kvkap

V kvk1�ap
H kvkp�1

H



:

Since p 	 4
d C 1 (i.e. ap D .p�1/d

4
	 1) and kvkH 	 CkvkV , this implies that

k�'.v/kV� 	 C .1C kvkV /
	
1C kvkp�1

H



for all v 2 V0:

Hence by (5.73) .H40/ follows with ˇ D p � 1.
Furthermore, (5.71) with j D 0; q D 1;m D 2, and thus a D d

4
implies that for

all v 2 V

�.v/C�.v/D Ckvk2p�2
L1

	 Ckvk2a.p�1/
V kvk2.1�a.p�1//

H kvk2.p�1/�2
H 	 Ckvk2V kvk2p�4

H ;

because a.p � 1/ D d
4
.p � 1/ 	 1 and kvkH 	 CkvkV . Hence (5.33) also holds and

both � and � are subadditive up to a constant.
Therefore, the assertion follows from Theorems 5.2.2 and 5.2.4. ut

Remark 5.2.28 Again we can apply Theorem 5.2.6 to obtain local existence and
uniqueness of solutions for (5.70) perturbed by additive noise. These solutions are
global if p 6 2, since, as shown above ˛ D 2; ˇ D p � 1 in this case. So, the last
part of Theorem 5.2.6 applies, because then ˛ˇ 6 2.
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Surface Growth PDE with Noise

We consider a model which appears in the theory of growth of surfaces, which
describes an amorphous material deposited on an initially flat surface in high
vacuum (cf. [7] and the references therein). Taking into account random noises the
equation is formulated on the intervalƒ WD�0;LŒ as follows:

dX.t/ D
h
�@4�X.t/� @2�X.t/C @2� .@�X.t//

2
i

dt C B.t/ dW.t/;

X.t/j@ƒ D 0; X.0/ D x0; t 2 Œ0;T�; (5.75)

where @�; @2� ; @
4
� denote the first, second and fourth spatial derivatives in � 2�0;LŒ

respectively.
Recall that W.t/; t 2 Œ0;T�, is a U-valued cylindrical Wiener process defined on

a probability space .�;F ;P/ with normal filtration Ft; t 2 Œ0;T�. We shall use the
following Gelfand triple

V WD H4;2
0 .�0;LŒ/ � H WD H2;2

0 .�0;LŒ/ � V�;

where as usual for nonnegative integers j; q the space Hj;q
0 .�0;LŒ/ denotes the closure

of C1
0 .�0;LŒ/ in Hj;q.�0;LŒ/. We obtain the following local existence and uniqueness

of strong solutions for (5.75).

Example 5.2.29 Suppose that B 2 L2.Œ0;T�I L2.UI H//. For any X0 2 L2.�;F0;
PI H/, there exists a unique local solution .X.t//t2Œ0;� � to (5.75) satisfying

X.�/ 2 L2.Œ0; ��I V/ \ C.Œ0; ��I H/;P-a:s:

Proof It is sufficient to verify .H1/; .H200/; .H30/; .H40/ for (5.75). Then the
assertion follows from Theorem 5.2.6. For u 2 C1

0 .�0;LŒ/ we have for all v 2
C4
0.�0;LŒ/

ˇ̌
ˇV�h�.@4�u C @2�u/; viV

ˇ̌
ˇ D

ˇ̌
ˇh@6�u C @4�u; @

2
�viL2

ˇ̌
ˇ

D
ˇ̌
ˇh@4�u C @2�u; @

4
�viL2

ˇ̌
ˇ

	 .kukV C kukH/kvkV ;

hence �.@4� C @2� / extends to a continuous linear map from V to V� such that

k � .@4� C @2�/ukV� 	 kukV C kukH for all u 2 V:

Furthermore, recalling that

H1;2
0 .�0;LŒ/ � L1.�0;LŒ/
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continuously for u1; u2 2 C1
0 .�0;LŒ/ by the Leibnitz rule we have for all v 2

C1
0 .�0;LŒ/

V�h@2�.@xu1/
2 � @2� .@�u2/2; viV

Dh@2�.@�u1/2 � @2�.@�u2/
2; @4�viL2

	kvkV k@2� .@�u1/2 � @2�.@�u2/
2kL2

	2kvkV

h
k.@2�u1/2 � .@2�u2/2kL2 C k@�u1@3�u1 � @�u2@

3
�u2kL2

i

	2kvkV
�
.k@2�u1kL1 C k@2�u2kL1/ku1 � u2kH

C k@�u1kL1 k@3�u1 � @3�u2kL2 C k@3�u2kL2k@�u1 � @�u2kL1

�
	CkvkV

�
.k@3�u1kL2 C k@3�u2kL2 /ku1 � u2kH C ku1kHk@3� .u1 � u2/kL2

�
DCkvkV

�
.k@2�u1kH1;2 C k@2�u2kH1;2 /ku1 � u2kH C ku1kHk@2� .u1 � u2/kH1;2

�
	CkvkV

�
.k@2�u1k1=2H2;2ku1k1=2H C k@2�u2k1=2H2;2ku2k1=2H /ku1 � u2kH

C ku1kHk@2� .u1 � u2/k1=2H2;2ku1 � u2k1=2H

�
DCkvkH

�
.ku1k1=2V ku1k1=2H C ku2k1=2V ku2k1=2H /ku1 � u2kH

C ku1kHku1 � u2k1=2V ku1 � u2k1=2H

�
; (5.76)

where we used (5.71) in the second to last step and C 2�0;1Œ, independent
of u1; u2; v, but possibly changing from line to line. This implies local uniform
continuity and hence extendability of @2� .@� �/2 to a continuous map from V to V�.

We define the maps A1;A2 W V ! V� by

A1.u/ WD �1
2
.@4�u C @2�u/; A2.u/ WD �1

2
.@4�u C @2�u/C @2� .@�u/

2; u 2 V;

which by continuity satisfy .H1/. It is also easy to check that A1 satisfies all
assumptions in Theorem 5.2.6. Furthermore, it suffices to check that A2 satisfies
.H200/; .H30/ and .H40/ for u; v 2 C1

0 .�0;LŒ/
By (5.76) and Young’s inequality there exists a C 2�0;1Œ such that for all u; v 2

C1
0 .�0;LŒ/

V�h@2� .@�u/2 � @2�.@�v/
2; u � viV

	1
4

ku � vk2V C C.kukV kukH C kvkV kvkH C kuk4H/ku � vk2H : (5.77)
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Furthermore, for all u; v 2 C1
0 .�0;LŒ/

1

2
V�h�@4�u � @2�u C @4�v C @2�v; u � viV

	 � 1

2
ku � vk2V C 1

2
ku � vkV ku � vkH

	 � 3

8
ku � vk2V C 8ku � vk2H : (5.78)

(5.77) and (5.78) imply that .H200/ holds for A2 with

�.u/ WD C
�kuk2V C kuk4H

�
; �.v/ WD Ckvk2V :

Taking u D 0 in (5.77), (5.78) and applying Young’s inequality we obtain that for
some C 2�0;1Œ

2V�hA2v; viV 	 � 1

10
kvk2V C Ckvk6H C C for all u 2 C1

0 .�0;LŒ/;

which implies that .H30/ holds for A2 with ˛ D 2; g.x/ D Cx3 and h � 1.
Furthermore, (5.76) implies that .H40/ holds for A2 with ˛ D 2 and ˇ D 1.

Now the proof is complete. ut
Remark 5.2.30

(1) It is known in the literature that the surface growth model has some similar
features of difficulty as the 3D Navier–Stokes equation. The uniqueness of
analytically weak solutions for this model is still an open problem in both the
deterministic and stochastic cases.

(2) The solution obtained here for the stochastic surface growth model is a strong
solution both in the analytic and probabilistic sense. For the space-time white
noise case, i.e. B � I, the existence of a martingale solution was obtained in [7]
for this model, and the existence of a Markov selection and ergodicity properties
were also proved there.

(3) In [8, 9] the authors established local existence and uniqueness of solutions for
the surface growth model with more general initial conditions in the critical
Hilbert space H1=2 or some Besov space (the largest possible critical space
where weak solutions make sense). They used fixed point arguments and a
technique introduced by H. Koch and D. Tataru for the Navier–Stokes equation
(cf. [9] and the references therein).



Chapter 6
Mild Solutions

This chapter contains a concise introduction to the “semigroup (or mild solution)
approach”. One difference to the variational approach is that we do not use a Gelfand
triple, but just our Hilbert space H. The main idea is to use the linear part (if there
is one) of the drift as a “smoothing device”.

6.1 Prerequisites for This Chapter

As said before, this course is mainly concentrated on the “variational approach” and
this chapter is meant to be merely complementary, presenting another important
approach to stochastic partial differential equations. Therefore, and since these
prerequisites are only used in this chapter, in contrast to the other parts of this
monograph, in this section we do not include proofs, but refer instead to [26].

6.1.1 The Itô Formula

We assume that

• ˆ 2 NW.0;TI H/
• 'W�T ! H is a predictable and P-a.s. Bochner integrable process on Œ0;T�
• X.0/W� ! H is F0-measurable

© Springer International Publishing Switzerland 2015
W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction,
Universitext, DOI 10.1007/978-3-319-22354-4_6
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• FW Œ0;T� � H ! R is twice Fréchet differentiable with derivatives

@F

@t
WD D1FW Œ0;T� � H ! R

DF WD D2FW Œ0;T� � H ! L.H;R/ Š H

D2F WD D2
2FW Œ0;T� � H ! L.H/;

which are uniformly continuous on bounded subsets of Œ0;T� � H.

Under theses assumptions the process

X.t/ WD X.0/C
Z t

0

'.s/ ds C
Z t

0

ˆ.s/ dW.s/; t 2 Œ0;T�;

is well defined and we get the following result.

Theorem 6.1.1 (Itô Formula) There exists a P-null set N 2 F such that the
following formula is fulfilled on Nc for all t 2 Œ0;T�:

F.t;X.t// D F.0;X.0//C
Z t

0

hDF.s;X.s//; ˆ.s/ dW.s/i

C
Z t

0

@F

@t
.s;X.s//C hDF.s;X.s//; '.s/i

C 1

2
tr
h
D2F.s;X.s//.ˆ.s/Q

1
2 /.ˆ.s/Q

1
2 /�
i

ds:

Proof [26, Theorem 4.17, p. 105]. Note that by Proposition B.0.10 the term
involving the trace is indeed finite and is equal to

1

2
tr
h
.ˆ.s/Q

1
2 /�D2F.s;X.s//.ˆ.s/Q

1
2 /
i
:

ut

6.1.2 A Burkholder–Davis–Gundy Type Inequality

Theorem 6.1.2 (Burkholder–Davis–Gundy Type Inequality) Let p > 2 andˆ 2
NW.0;TI H/. Then

 
E

 
sup

t2Œ0;T�

����
Z t

0

ˆ.s/ dW.s/

����
p
!! 1

p

6 p

�
p

2.p � 1/

� 1
2
�Z T

0

	
E
	
kˆ.s/kp

L02



 2
p

ds

� 1
2

:
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Proof [26, Lemma 7.2, p. 182]. ut
Remark 6.1.3 If ˆ 2 N 2

W.0;T/ we get that
R t
0
ˆ.s/ dW.s/, t 2 Œ0;T�, is a

martingale and therefore

sup
t2Œ0;T�

E

 ����
Z t

0

ˆ.s/ dW.s/

����
2
!

D E

 ����
Z T

0

ˆ.s/ dW.s/

����
2
!
:

6.1.3 Stochastic Fubini Theorem

We assume that

1. .E; E ; �/ is a measure space where � is finite.
2. ˆW�T � E ! L02, .t; !; x/ 7! ˆ.t; !; x/ is PT ˝ E=B.L02/-measurable, thus in

particular ˆ.�; �; x/ is a predictable L02-valued process for all x 2 E.

Theorem 6.1.4 (Stochastic Fubini Theorem) Assume 1., 2. and that

Z
E

kˆ.�; �; x/kt �.dx/ D
Z

E

�
E

�Z T

0

kˆ.t; �; x/k2
L02

dt

�� 1
2

�.dx/ < 1:

Then

Z
E

�Z T

0

ˆ.t; x/ dW.t/

�
�.dx/ D

Z T

0

�Z
E
ˆ.t; x/ �.dx/

�
dW.t/ P-a.s.

Proof [26, Theorem 4.18, p. 109] ut

6.2 Existence, Uniqueness and Continuity with Respect
to the Initial Data

As in previous chapters let .U; k kU/ and .H; k k/ be separable Hilbert spaces. We
take Q D I and fix a cylindrical Q-Wiener process W.t/, t > 0, in U on a probability
space .�;F ;P/ with a normal filtration Ft, t > 0. Moreover, we fix T > 0 and
consider the following type of stochastic differential equations in H

(
dX.t/ D ŒAX.t/C F.X.t//� dt C B.X.t// dW.t/; t 2 Œ0;T�

X.0/ D �;
(6.1)

where
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• A W D.A/ ! H is the infinitesimal generator of a C0-semigroup S.t/, t > 0, of
linear operators on H,

• F W H ! H is B.H/=B.H/-measurable,
• B W H ! L.U;H/,
• � is an H-valued, F0-measurable random variable.

To motivate the definition of a mild solution below we first note that only in
very special cases can one find a solution to (6.1) such that X 2 D.A/ dt ˝ P-a.s.
Therefore, one reformulates the equation on the basis of the following heuristics:

Consider the integral form of (6.1) and apply the (not-defined!) operator e�tA for
t 2 Œ0;T� to this equation. Applying Itô’s product rule (again heuristically), we find

e�AtX.t/ D � C
Z t

0

e�As.AX.s//C F.X.s// ds C
Z t

0

e�AsB.X.s// dW.s/

�
Z t

0

e�AsAX.s/ ds

) X.t/ DS.t/� C
Z t

0

S.t � s/F.X.s// ds C
Z t

0

S.t � s/B.X.s// dW.s/:

Definition 6.2.1 (Mild Solution) An H-valued predictable process X.t/, t 2 Œ0;T�,
is called a mild solution of problem (6.1) if

X.t/ D S.t/� C
Z t

0

S.t � s/F.X.s// ds

C
Z t

0

S.t � s/B.X.s// dW.s/ P-a.s. (6.2)

for each t 2 Œ0;T� (i.e. the P-zero set, where (6.2) does not hold, may depend on t).
In particular, the appearing integrals have to be well defined.

To prove the existence of a mild solution on Œ0;T� we make the following usual
assumptions (see [27, Hypothesis 5.1, p. 65]).

Hypothesis M.0

• A W D.A/ ! H is the infinitesimal generator of a C0-semigroup S.t/, t > 0, on H.
• F W H ! H is Lipschitz continuous, i.e. that there exists a constant C > 0 such

that

kF.x/ � F.y/k 6 Ckx � yk for all x; y 2 H:

• B W H ! L.U;H/ is strongly continuous, i.e. the mapping

x 7! B.x/u



6.2 Existence, Uniqueness and Continuity with Respect to the Initial Data 183

is continuous from H to H for each u 2 U.
• For all t 2�0;T� and x 2 H we have that

S.t/B.x/ 2 L2.U;H/:

• There is a square integrable mapping K W Œ0;T� ! Œ0;1� such that

kS.t/.B.x/� B.y//kL2 6 K.t/kx � yk
and

kS.t/B.x/kL2 6 K.t/.1C kxk/

for all t 2�0;T� and x; y 2 H.

Remark 6.2.2

(i) MT WD supt2Œ0;T� kS.t/kL.H/ < 1.
(ii) For the last assumption it is even enough to verify that there exists an " 2�0;T�

such that the inequalities hold for 0 < t 6 " and

Z "

0

K2.s/ ds < 1:

(iii) The Lipschitz constant of F in Hypothesis M.0 can be chosen in such a way
that we also have

kF.x/k 6 C.1C kxk/ for all x 2 H:

Proof

(i) By the semigroup property it’s easy to show there exist constants ! > 0 and
M > 1 such that

kS.t/kL.H/ 6 Me!t for all t > 0:

(ii) Let QK W Œ0; "� ! Œ0;1� be square integrable such that

kS.t/.B.x/� B.y//kL2 6 QK.t/kx � yk

and

kS.t/B.x/kL2 6 QK.t/.1C kxk/

for all t 2 Œ0; "� and x; y 2 H. Then we choose N 2 N such that T
N 6 " and set

K.t/ WD MT QK. t

N
/ for t 2 Œ0;T�;
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where MT D supt2Œ0;T� kS.t/kL.H/. Then it is clear that K W Œ0;T� ! Œ0;1Œ

is square integrable and for all x; y 2 H, t 2�0;T� we get by the semigroup
property that

kS.t/.B.x/ � B.y//kL2 D kS.
Nt � t

N
/S.

t

N
/.B.x/ � B.y//kL2

6 MTkS.
t

N
/.B.x/� B.y//kL2

6 MT QK. t

N
/kx � yk D K.t/kx � yk

and

kS.t/B.x/kL2 6 MTkS.
t

N
/B.x/kL2

6 MT QK. t

N
/.1C kxk/ D K.t/.1C kxk/:

(iii) For all x 2 H we have that

kF.x/k 6 kF.x/ � F.0/k C kF.0/k
6 Ckxk C kF.0/k
6 .C _ kF.0/k/ .1C kxk/

and, of course, we still have that

kF.x/ � F.y/k 6 .C _ kF.0/k/ kx � yk for all x; y 2 H:

ut
Now we introduce the spaces in which we want to find the mild solution of the above
problem:

For each T > 0 and p > 2 we define Hp.T;H/ to be the space of all H-valued
predictable processes Y such that

kYkHp WD sup
t2Œ0;T�

�
E.kY.t/kp/

� 1
p < 1:

Then (Hp.T;H/, k kHp ) is a Banach space (after going over to the usual equivalence
classes of processes).

For technical reasons we also consider the norms k kp;
;T , 
 > 0, on Hp.T;H/
given by

kYkp;
;T WD sup
t2Œ0;T�

e�
t
�
E.kY.t/kp/

� 1
p :
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Then k kHp D k kp;0;T and for all 
 > 0, Y 2 Hp.T;H/ we get that

kYkp;
;T 6 kYkHp 6 e
TkYkp;
;T ;

which means that all norms k kp;
;T , 
 > 0, are equivalent. For simplicity we
introduce the following notations

Hp.T;H/ WD .Hp.T;H/; k kHp/

and

Hp;
.T;H/ WD .Hp.T;H/; k kp;
;T /:

Theorem 6.2.3 Under Hypothesis M.0 there exists a unique mild solution X.�/ 2
Hp.T;H/ of problem (6.1) with initial condition

� 2 Lp.�;F0;PI H/ DW Lp
0:

In addition we even obtain that the mapping

X W Lp
0 ! Hp.T;H/

� 7! X.�/

is Lipschitz continuous with Lipschitz constant LT;p.

Remark 6.2.4

1. The above result can be found in [27, Theorem 5.3.1, p. 66]. The proof is based
on the abstract implicit function Theorem F.0.1. In particular, one has to verify
that there is a predictable version of

Z t

0

S.t � s/B.Y.s// dW.s/; t 2 Œ0;T�;

for all Y 2 Hp.T;H/. In [27, Proposition 6.2, p. 153] this is solved in the case
where B.Y/ 2 NW . We, however, do not assume that B itself takes values in
L2.U;H/.

2. It follows from the Lipschitz continuity of X that there exists a constant CT;p

independent of � 2 Lp
0 such that

kX.�/kHp 6 CT;p.1C k�kLp /:

Before giving a proof of the theorem we need the following lemmas.
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Lemma 6.2.5 If Y W �T ! H is PT=B.H/-measurable and Hypothesis M.0 is
fulfilled, then the mapping

QY W �T ! H

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/Y.s; !/

is also PT=B.H/-measurable for each fixed t 2 Œ0;T�.
Proof

Step 1: We prove the assertion for simple processes Y given by

Y D
nX

kD1
xk1Ak ;

where n 2 N, xk 2 H, 1 6 k 6 n, and Ak 2 PT , 1 6 k 6 n, is a disjoint covering
of �T . Then we get that

QY W �T ! H

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/Y.s; !/ D 1Œ0;tŒ.s/
nX

kD1
S.t � s/xk1Ak.s; !/

is PT-measurable since for each B 2 B.H/

QY�1.B/ D
n[

kD1
.fs 2 Œ0;T�j1Œ0;tŒ.s/S.t � s/xk 2 Bg„ ƒ‚ …

2 B.Œ0;T�/
��

„ ƒ‚ …
2 PT

/ \ Ak;

because of the strong continuity of the semigroup.
Step 2: We prove the assertion for an arbitrary predictable process Y.

If Y W �T ! H is PT -measurable, there exists a sequence Yn, n 2 N, of simple
predictable processes such that Yn.s; !/ �! Y.s; !/ as n ! 1 for all .s; !/ 2
Œ0;T�� H (see Lemma A.1.4). Since S.t/ 2 L.H/ for all t 2 Œ0;T� we obtain that

QY.s; !/ WD 1Œ0;tŒ.s/S.t � s/Y.s; !/ D lim
n!1 1Œ0;tŒ.s/S.t � s/Yn.s; !/„ ƒ‚ …

DW QYn.s; !/

By Step 1 QYn, n 2 N, are predictable and, therefore, Proposition A.1.3 implies
that QY is also predictable. ut
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Lemma 6.2.6 If Y is a predictable H-valued process and Hypothesis M.0 is fulfilled
then the mapping

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/B.Y.s; !//

is PT=B.L2.U;H//-measurable.

Proof Let fk, k 2 N, be an orthonormal basis of H and ek, k 2 N, an orthonormal
basis of U. Then fk ˝ ej D fkhej; �iU, k; j 2 N, is an orthonormal basis of L2.U;H/
(see Proposition B.0.7). Because of the strong continuity of B we obtain that

.s; !/ 7! B.Y.s; !//ej

is predictable for all j 2 N. Hence the previous lemma implies that

.s; !/ 7!hfk ˝ ej; 1Œ0;tŒ.s/S.t � s/B.Y.s; !//iL2

D hfk; 1Œ0;tŒ.s/S.t � s/B.Y.s; !//eji

is predictable for all j; k 2 N. This is enough to conclude that

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/B.Y.s; !//

is predictable. ut
Lemma 6.2.7 If a mapping g W �T ! H is PT=B.H/-measurable then the mapping

QY W �T ! H

.s; !/ 7! 1Œ0;tŒ.s/g.s; !/

is B.Œ0;T�/˝ Ft=B.H/-measurable for each t 2 Œ0;T�.
Proof We have to show that .Œ0; tŒ��/ \ PT � B.Œ0;T�/˝ Ft.
Let t 2 Œ0;T�. If we set

A WD fA 2 PT j A \ .Œ0; tŒ��/ 2 B.Œ0;T�/˝ Ftg

it is clear that A is a �-field which contains the predictable rectangles �s; u� � Fs,
Fs 2 Fs, 0 6 s 6 u 6 T and f0g � F0, F0 2 F0. Therefore A D PT . ut
Lemma 6.2.8 If a process ˆ is adapted to Ft, t 2 Œ0;T�, and stochastically
continuous with values in a Banach space E, then there exists a predictable version
of ˆ.

Proof [26, Proposition 3.6 (ii), p. 76] ut
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Lemma 6.2.9 Let ˆ be a predictable H-valued process which is P-a.s. Bochner
integrable. Then the process given by

Z t

0

S.t � s/ˆ.s; !/ ds; ! 2 �; t 2 Œ0;T�;

is P-a.s. continuous and adapted to Ft, t 2 Œ0;T�. This especially implies that it is
predictable (more precisely, has a predictable version).

Proof By Lemma 6.2.5 the process 1Œ0;tŒ.s/S.t � s/ˆ.s/, s 2 Œ0;T�, is predictable
and in addition k1Œ0;tŒ.s/S.t � s/ˆ.s/k 6 MTkˆ.s/k, s 2 Œ0;T�.

Hence the integrals
Z t

0

S.t � s/ˆ.s/ ds, t 2 Œ0;T�, are well defined.

First we want to prove the continuity. To this end let 0 6 s 6 t 6 T. Then we get
that

k
Z s

0

S.s � u/ˆ.u/ du �
Z t

0

S.t � u/ˆ.u/ duk

6 k
Z s

0

ŒS.s � u/� S.t � u/�ˆ.u/ duk C k
Z t

s
S.t � u/ˆ.u/ duk

6
Z s

0

kŒS.s � u/� S.t � u/�ˆ.u/k du C
Z t

s
kS.t � u/ˆ.u/k du;

where the first summand converges to zero as s " t or t # s because by Lebesgue’s
dominated convergence theorem:

k1Œ0;sŒ.u/ŒS.s � u/� S.t � u/�ˆ.u/k ! 0 as s " t or t # s

for all u 2 Œ0;T� because of the strong continuity of the semigroup S.u/, u 2 Œ0;T�.
Moreover

k1Œ0;sŒ.u/ŒS.s � u/� S.t � u/�ˆ.u/k
6 1Œ0;sŒ.u/.kS.s � u/kL.H/ C kS.t � u/kL.H//kˆ.u/k
6 2MTkˆ.u/k;

where kˆk 2 L1.Œ0;T�; dx/ WD L1.Œ0;T�;B.Œ0;T�/; dxIR/ P-a.s.
Concerning the second summand we get the same result since

Z t

s
kS.t � u/ˆ.u/k du

6
Z t

s
MTkˆ.u/k du �! 0 as s " t or t # s
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P-a.s. by Lebesgue’s dominated convergence theorem.
In order to prove that the process given by the integrals is adapted, we fix t 2

Œ0;T�. By Lemma 6.2.7 the mapping

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/ˆ.s; !/

is B.Œ0;T�/˝ Ft-measurable. Hence, by Proposition A.2.2, we get for each x 2 H
that the mapping

! 7!h
Z t

0

S.t � s/ˆ.s; !/ ds; xi

D
Z t

0

hS.t � s/ˆ.s; !/; xi ds

D
Z T

0

h1Œ0;tŒ.s/S.t � s/ˆ.s; !/; xi ds

is Ft-measurable by the real Fubini theorem and, therefore, the integral itself is Ft-
measurable. ut
Lemma 6.2.10 Let .xn;m/m2N, n 2 N, be sequences of real numbers such that for
each n 2 N there exists an xn 2 R with

xn;m �! xn as m ! 1:

If there exists a further sequence yn, n 2 N, such that jxn;mj 6 yn for all m 2 N andP
n2N yn < 1 then

X
n2N

xn;m �!
X
n2N

xn as m ! 1:

Proof The assertion is a simple consequence of Lebesgue’s dominated convergence
theorem with respect to the measure � WD P

n2N ın where ın is the Dirac measure
in n. ut
Proof of Theorem 6.2.3

Idea: Let p > 2. For t 2 Œ0;T�, � 2 Lp
0 and Y 2 Hp.T;H/ we define

F.�;Y/.t/ WD S.t/� C
Z t

0

S.t � s/F.Y.s// ds C
Z t

0

S.t � s/B.Y.s// dW.s/

and prove that

F W Lp
0 � Hp.T;H/ ! Hp.T;H/:
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Since X.�/ 2 Hp.T;H/ is a mild solution of problem (6.1) if and only if
F.�;X.�// D X.�/ we have to look for an implicit function X W Lp

0 ! Hp.T;H/
such that the previous equation holds for arbitrary � 2 Lp

0. To this end we show
that there exists a 
 D 
.p/ > 0 such that

F W Lp
0 � Hp;
;T .T;H/ ! Hp;
;T .T;H/

is a contraction with respect to the second variable, i.e. that there exists an ˛.p/ <
1 such that for all � 2 Lp

0 and Y, QY 2 Hp.T;H/

kF.�;Y/ � F.�; QY/kp;
;T 6 ˛.p/kY � QYkp;
;T :

Setting G WD F , ƒ WD Lp
0 and E WD Hp.T;H/ we are hence in the situation

described at the beginning of Appendix F. Therefore, it is clear that the implicit
function X D ' exists and that it is unique.
To get the Lipschitz continuity of the mapping X W Lp

0 ! Hp.T;H/ we verify
that the condition of Theorem F.0.1 (ii) is fulfilled. Because of the equivalence of
the norms k kp;
;T and k kHp that means that it is enough to show the existence
of a constant LT;p > 0 such that

kF.�;Y/ � F. Q�;Y/kHp 6 LT;pk� � Q�kLp

for all �, Q� 2 Lp
0 and Y 2 Hp.T;H/.

Step 1: We prove that the mapping F is well defined.
Let � 2 Lp

0 and Y 2 Hp.T;H/.

1. The Bochner integral
Z t

0

S.t � s/F.Y.s// ds, t 2 Œ0;T�, is well defined by

Lemma 6.2.9:

(i) Because of the continuity of F W H ! H it is clear that F.Y.t//, t 2 Œ0;T�,
is predictable.

(ii) In addition the process F.Y.t//, t 2 Œ0;T�, is P-a.s. Bochner integrable
since

E.
Z t

0

kF.Y.s//k ds/6
Z t

0

E.C.1C kY.s/k// ds 6 CT.1C kYkHp/<1:

2. The stochastic integrals
Z t

0

S.t � s/B.Y.s// dW.s/, t 2 Œ0;T�, are well

defined since the processes 1Œ0;tŒ.s/S.t � s/B.Y.s//, s 2 Œ0;T�, are in N 2
W.0;T/

for all t 2 Œ0;T�:
(i) The mapping

.s; !/ 7! 1Œ0;tŒ.s/S.t � s/B.Y.s; !//
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is PT=B.L2.U;H//-measurable by Lemma 6.2.6.
(ii) For the norm we obtain that

k1Œ0;tŒS.t � �/B.Y/k2T D E.
Z t

0

kS.t � s/B.Y.s//k2L2 ds/

D
Z t

0

E.kS.t � s/B.Y.s//k2L2 / ds

6
Z t

0

K2.t � s/E
�
.1C kY.s/k/2� ds

6 2

Z t

0

K2.t � s/E.1C kY.s/k2/ ds

6 2 .1C sup
s2Œ0;T�

E.kY.s/k2/
Z t

0

K2.t � s/ ds

6 2 .1C kYk2Hp/

Z t

0

K2.s/ ds < 1:

Step 2: We prove that F.�;Y/ 2 Hp.T;H/ for all � 2 Lp
0 and Y 2 Hp.T;H/.

Let � 2 Lp
0 and Y 2 Hp.T;H/.

1. The first summand S.t/�, t 2 Œ0;T�, is an element of Hp.T;H/:

(i) The mapping

.s; !/ 7! S.t/�.!/

is predictable since for fixed ! 2 �

t 7! S.t/�.!/

is a continuous mapping from Œ0;T� to H and for fixed t 2 Œ0;T�

! 7! S.t/�.!/

is not only Ft- but even F0-measurable.
(ii) For the norm we obtain that

kS.�/�kHp D sup
t2Œ0;T�

.E.kS.t/�kp//
1
p 6 MTk�kLp < 1:

2. There is a version of the second summand
Z t

0

S.t � s/F.Y.s// ds, t 2 Œ0;T�,

which is an element of Hp.T;H/:
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(i) First we notice that the mapping

.s; !/ 7!
Z t

0

S.t � s/F.Y.s; !// ds

has a predictable version because the assumptions of Lemma 6.2.9 are
fulfilled.

(ii) Concerning the norm we prove that

k
Z �

0

S.� � s/F.Y.s// dskHp 6 CTMT .1C kYkHp /:

To verify the assertion we take t from Œ0;T� and show that the Lp-norm of

k
Z t

0

S.t � s/F.Y.s// dsk

can be estimated independently of t 2 Œ0;T�:

k
Z t

0

S.t � s/F.Y.s// dskp 6 CpTp�1Mp
T

Z t

0

.1C kY.s/k/p ds P-a.s.

Taking the expectation we get that

�
E.k

Z t

0

S.t � s/F.Y.s// dskp/
� 1

p

6 CT
p�1

p MT
�
E.
Z t

0

.1C kY.s/k/p ds
� 1

p

6 CT
p�1

p MT
��

E.
Z T

0

1 ds/
� 1

p C � Z T

0

E.kY.s/kp/ ds
� 1

p
�

6 CTMT.1C kYkHp/ < 1

and the claimed inequality follows.

3. There is a version of
Z t

0

S.t � s/B.Y.s// dW.s/, t 2 Œ0;T�, which is in

Hp.T;H/: (i) First we show that there is a predictable version of the process.
To do so we proceed in several steps.

Claim 1: If ˛ > 1 the process
Z t

˛

0

S.t � s/B.Y.s// dW.s/, t 2 Œ0;T�, has a

predictable version.
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To prove this we first use the semigroup property and get that

Z t
˛

0

S.t � s/B.Y.s// dW.s/

D
Z t

˛

0

S.t � ˛s/S..˛ � 1/s/B.Y.s// dW.s/; t 2 Œ0;T�:

We set

ˆ˛.s/ WD .s/1�0;T�.s/S..˛ � 1/s/B.Y.s//:

Then it is clear that ˆ˛.t/, t 2 Œ0;T�, is an element of N 2
W.0;T/:

The fact that there is a predictable version of

.s; !/ 7! 1�0;T�.s/S..˛ � 1/s/B.Y.s; !//

can be proved in the same way as Lemma 6.2.6 and, of course, by Hypothesis
M.0

E.
Z T

0

kS..˛ � 1/s/B.Y.s//k2L2 ds/

6
Z T

0

E
�
K2..˛ � 1/s/.1C kY.s/k/2� ds

6 2

Z T

0

K2..˛ � 1/s/.1C sup
s2Œ0;T�

E.kY.s/k2// ds

D 2.1C kYk2H2.T;H//

Z .˛�1/T

0

1

˛ � 1K2.s/ ds < 1:

Therefore, we now have to prove that the process

Z t
˛

0

S.t � ˛s/ Q̂ .s/ dW.s/; t 2 Œ0;T�;

has a predictable version for each ˛ > 1 and Q̂ 2 N 2
W.0;T/.

(a) We first consider the case where Q̂ .t/, t 2 Œ0;T�, is a simple process of the
form

Q̂ D
mX

kD1
Lk1Ak
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where m 2 N, Lk 2 L2.U;H/ and Ak 2 PT , 1 6 k 6 m. To get the required
measurability we check the conditions of Lemma 6.2.8.
At first it is clear that

Z t
˛

0

S.t � ˛s/ Q̂ .s/ dW.s/

is F t
˛

- and therefore also Ft-measurable for each t 2 Œ0;T� since the process

1Œ0; t
˛ Œ
.s/S.t � ˛s/ Q̂ .s/; s 2 Œ0;T�;

lies in N 2
W.0;T/ (see the proof of Lemma 6.2.6) and therefore the process

Z u

0

1Œ0; t
˛ Œ
.s/S.t � ˛s/ Q̂ .s/ dW.s/; u 2 Œ0;T�;

is an H-valued martingale with respect to Fu, u 2 Œ0;T�. Now we show that

t 7!
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/

is continuous in mean square and, therefore, stochastically continuous.
To this end we take arbitrary 0 6 t < u 6 T and get that

�
E.k

Z u
˛

0

S.u � ˛s/ Q̂ .s/ dW.s/ �
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/k2/� 12

6
�
E.k

Z t
˛

0

ŒS.u � ˛s/ � S.t � ˛s/� Q̂ .s/ dW.s/k2/� 12

C �
E.k

Z u
˛

0

1Œ t
˛ ;

u
˛ Œ
.s/S.u � ˛s/ Q̂ .s/ dW.s/k2/� 12

D �
E.
Z t

˛

0

kŒS.u � ˛s/ � S.t � ˛s/� Q̂ .s/k2L2 ds/
� 1
2

C �
E.
Z u

˛

t
˛

kS.u � ˛s/ Q̂ .s/k2L2 ds/
� 1
2

6
mX

kD1

�
E.
Z t

˛

0

1Ak.s; �/kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2 ds/
� 1
2

C
mX

kD1

�
E.
Z u

˛

t
˛

1Ak.s; �/kS.u � ˛s/Lkk2L2 ds/
� 1
2
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6
mX

kD1

� Z t
˛

0

kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2 ds
� 1
2

C
mX

kD1

� Z u
˛

t
˛

kS.u � ˛s/Lkk2L2 ds
� 1
2 ; (6.3)

where the first summand in the right-hand side of (6.3) converges to zero as
t " u or u # t for the following reason:
Let en, n 2 N, be an orthonormal basis of U. Then we get for each s 2 Œ0;T�
and 1 6 k 6 m that

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2

D
X
n2N

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkenk2;

where

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkenk2 �! 0 as t " u or u # t

and at the same time

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkenk2 6 4M2

TkLkenk2

for all n 2 N, 1 6 k 6 m. By Lemma 6.2.10 this result implies the pointwise
convergence

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2 �! 0 as t " u or u # t:

Since there is the following upper bound

1Œ0; t
˛ Œ
.s/kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2 6 4M2

TkLkk2L2 2 L1.Œ0;T�; dx/

for all s 2 Œ0;T�, 0 6 t < u 6 T, we get the required convergence of the

integrals
Z t

˛

0

kŒS.u � ˛s/ � S.t � ˛s/�Lkk2L2 ds, 1 6 k 6 m, by Lebesgue’s

dominated convergence theorem.
The second summand in the right side of (6.3) of the above equation also
converges to zero since for each 1 6 k 6 m

Z u
˛

t
˛

kS.u � ˛s/Lkk2L2 ds 6 u � t

˛
M2

TkLkk2L2 �! 0 as u # t or t " u:
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Hence Lemma 6.2.8 implies that there is a predictable version of

Z t
˛

0

S.t � ˛s/ Q̂ .s/ dW.s/; t 2 Œ0;T�;

if Q̂ is elementary.
(b) Now we generalize this result to arbitrary Q̂ 2 N 2

W :
If Q̂ is an arbitrary process in N 2

W.0;T/ there exists a sequence Q̂ n, n 2 N,
of simple processes of the form we considered in (a) such that

E.
Z T

0

k Q̂ .s/ � Q̂ n.s/k2L2 ds/ �!
n!1 0

(see Lemma A.1.4). Hence let ‰n.t/, t 2 Œ0;T�, n 2 N, be a predictable

version of
Z t

˛

0

S.t � ˛s/ Q̂ n.s/ dW.s/, t 2 Œ0;T�, n 2 N, which exists by

step (a). To get the predictability of
Z t

˛

0

S.t � ˛s/ˆ.s/ dW.s/ we prove that

there is a subsequence nk, k 2 N, such that

‰nk.t/ �!
k!1

Z t
˛

0

S.t � ˛s/ Q̂ .s/ dW.s/ P-a.s. for all t 2 Œ0;T�:

To this end we take c > 0, t 2 Œ0;T� and obtain that

P.k
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/ �‰n.t/k > c/

6 1

c2
E.k

Z t
˛

0

S.t � ˛s/Œ Q̂ .s/ � Q̂ n.s/� dW.s/k2/

D 1

c2
E.
Z t

˛

0

kS.t � ˛s/Œ Q̂ .s/ � Q̂ n.s/�k2L2 ds/

6 M2
T

c2
E.
Z t

˛

0

k Q̂ .s/ � Q̂ n.s/k2L2 ds/ 6 M2
T

c2
E.
Z T

0

k Q̂ .s/� Q̂ n.s/k2L2 ds/:

As this upper bound is independent of t 2 Œ0;T� this implies that

sup
t2Œ0;T�

P.k
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/�‰n.t/k > c/

6 M2
T

c2
E.
Z T

0

k Q̂ .s/ � Q̂ n.s/k2L2 ds/ �!
n!1 0:
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Therefore, there is a sequence nk, k 2 N, such that

P.k
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/ �‰nk k > 2�k/ 6 2�k

for all t 2 Œ0;T�, k 2 N. By the Borel–Cantelli lemma it follows that

‰nk.t/ �!
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/ P-a.s. as k ! 1

for all t 2 Œ0;T�. If we set now

A WD f.t; !/ 2 �T j .‰nk.t; !//k2N is convergent in Hg;

then A 2 PT and the process defined by

‰.t; !/ WD
(

limk!1‰nk.t; !/ if .t; !/ 2 A

0 otherwise

is a predictable version of
Z t

˛

0

S.t � ˛s/ Q̂ .s/ dW.s/, t 2 Œ0;T�.
Taking Q̂ D ˆ˛ we hence obtain that

Z t
˛

0

S.t � ˛s/ˆ˛.s/ dW.s/ D
Z t

˛

0

S.t � s/B.Y.s// dW.s/; t 2 Œ0;T�;

has a predictable version. By this result we can prove the assertion we are
interested in.

Claim 2: The process
Z t

0

S.t � s/B.Y.s// dW.s/, t 2 Œ0;T�, has a predictable

version.
Let .˛n/n2N be a sequence of real numbers such that ˛n # 1 as n !
1. By Claim 1 there is a predictable version ‰˛n.t/, t 2 Œ0;T�, ofZ t

˛n

0

S.t � s/B.Y.s// dW.s/, t 2 Œ0;T�, n 2 N. If we define

B WD f.t; !/ 2 �T j .‰˛n.t; !//n2N is convergentg;

it is clear that B 2 PT and the process given by

‰.t; !/ WD
(

limn!1‰˛n.t; !/ if .t; !/ 2 B

0 otherwise
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is predictable. Besides we get that for each t 2 Œ0;T�

‰.t/ D
Z t

0

S.t � s/B.Y.s// dW.s/ P-a.s.;

since P-a.s.

‰˛n.t/ D
Z t

˛n

0

S.t � s/B.Y.s// dW.s/ �!
n!1

Z t

0

S.t � s/B.Y.s// dW.s/;

because of the continuity of the stochastic integrals

Z u

0

1Œ0;tŒ.s/S.t � s/B.Y.s// dW.s/; u 2 Œ0;T�:

Therefore the predictable version is found.
(ii) Concerning the norm we get that

k
Z �

0

S.� � s/B.Y.s// dW.s/kHp

6 .
p

2
.p � 1// 12

	 Z T

0

K2.s/ ds

 1
2
.1C kYkHp/;

since we obtain by Theorem 6.1.2 (Burkholder–Davis–Gundy type inequality)
that

	
E.k

Z t

0

S.t � s/B.Y.s// dW.s/kp/

 1

p

6 .
p

2
.p � 1// 12

	 Z t

0

�
E.kS.t � s/B.Y.s//kp

L2
/
� 2

p ds

 1
2

6 .
p

2
.p � 1// 12

	 Z t

0

K2.t � s/
�
E..1C kY.s/k/p/� 2p ds


 1
2

6 .
p

2
.p � 1// 12

	 Z t

0

K2.t � s/.1C kY.s/kLp /2 ds

 1
2

6 .
p

2
.p � 1// 12

	 Z T

0

K2.s/ ds

 1
2
.1C kYkHp /:

Therefore, we have finally proved that

F W Lp
0 � Hp.T;H/ ! Hp.T;H/:
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Step 3: For each p > 2 there is a 
.p/ DW 
 such that

F.�; �/ W Hp;
.T;H/ ! Hp;
.T;H/

is a contraction for all � 2 Lp
0 where the contraction constant ˛.
/ < 1 does not

depend on �:
Let Y, QY 2 Hp.T;H/, � 2 Lp

0 and t 2 Œ0;T�. Then we get that

kŒF.�;Y/ � F.�; QY/�.t/kLp

6 k
Z t

0

S.t � s/ŒF.Y.s// � F. QY.s//� dskLp

C k
Z t

0

S.t � s/ŒB.Y.s// � B. QY.s//� dW.s/kLp ;

where the first summand can be estimated in the following way:

k
Z t

0

S.t � s/ŒF.Y.s// � F. QY.s//� dskp 6 Mp
TCpTp�1

Z t

0

kY.s/ � QY.s/kp ds P-a.s.,

which implies that

�
E.k

Z t

0

S.t � s/ŒF.Y.s// � F. QY.s//� dskp/
� 1

p

6 MTCT
p�1

p .

Z t

0

E.kY.s/ � QY.s/kp/ ds/
1
p

D MTCT
p�1

p .

Z t

0

e
ps e�
psE.kY.s/ � QY.s/kp/„ ƒ‚ …
6 kY � QYkp

p;
;T

ds/
1
p

6 MTCT
p�1

p .

Z t

0

e
ps ds/
1
p kY � QYkp;
;T

6 MTCT
p�1

p e
t.
1


p
/
1
p kY � QYkp;
;T :

Dividing by e
t yields

k
Z �

0

S.� � s/ŒF.Y.s// � F. QY.s//� dskp;
;T 6 MTCT
p�1

p .
1


p
/
1
p

„ ƒ‚ …
�! 0 as 
 ! 1

kY � QYkp;
;T :
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By Theorem 6.1.2 we get the following estimate for the second summand:

	
E.k

Z t

0

S.t � s/ŒB.Y.s// � B. QY.s//� dW.s/kp/

 1

p

6 .
p

2
.p � 1//

1
2

	 Z t

0

�
E.kS.t � s/ŒB.Y.s// � B. QY.s//�kp

L2
/
� 2

p ds

 1
2

6 .
p

2
.p � 1//

1
2

	 Z t

0

K2.t � s/kY.s/ � QY.s/k2Lp ds

 1
2

D .
p

2
.p � 1//

1
2

	 Z t

0

K2.t � s/e2
s e�2
skY.s/ � QY.s/k2Lp„ ƒ‚ …
6 kY � QYk2p;
;T

ds

 1
2

6 .
p

2
.p � 1//

1
2

	 Z t

0

K2.t � s/e2
s ds

 1
2 kY � QYkp;
;T

6 .
p

2
.p � 1//

1
2 e
t

	 Z T

0

K2.s/e�2
s ds

 1
2 kY � QYkp;
;T :

As for the first summand this implies that

k
Z �

0

S.� � s/ŒB.Y.s// � B. QY.s//� dW.s/kp;
;T

6 .
p

2
.p � 1// 12

	 Z T

0

K2.s/e�2
s ds

 1
2

„ ƒ‚ …
�! 0 as 
 ! 1

kY � QYkp;
;T :

Therefore, we have finally proved that there is a 
 D 
.p/ such that there exists
an ˛.
/ < 1 with

kF.�;Y/ � F.�; QY/kp;
;T 6 ˛.
/kY � QYkp;
;T

for all � 2 Lp
0, Y, QY 2 Hp;
.T;H/. Thus the existence of a unique implicit

function

X W Lp
0 ! Hp.T;H/

� 7! X.�/ D F.�;X.�//

is verified.
Step 4: We prove the Lipschitz continuity of X W Lp

0 ! Hp.T;H/.
By Theorem F.0.1 (ii) and the equivalence of the norms k kHp and k kp;
;T we
only have to check that the mappings

F.�;Y/ W Lp
0 ! Hp.T;H/
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are Lipschitz continuous for all Y 2 Hp.T;H/ where the Lipschitz constant does
not depend on Y.
But this assertion holds as for all �, 
 2 Lp

0 and Y 2 Hp.T;H/

kF.�;Y/ � F.
;Y/kHp D kS.�/.� � 
/kHp 6 MTk� � 
kLp :

ut

6.3 Smoothing Property of the Semigroup: Pathwise
Continuity of the Mild Solution

Let X.�/ be the mild solution of problem (6.1) with initial condition � 2 Lp
0. The aim

of this section is to prove that the mapping t 7! X.�/.t/ has a continuous version.
Because of Lemma 6.2.9 we already know that the process of the Bochner integrals

Z t

0

S.t � s/F.X.�/.s// ds; t 2 Œ0;T�;

is P-a.s. continuous. Hence it only remains to show that the process

Z t

0

S.t � s/B.X.�/.s// dW.s/; t 2 Œ0;T�;

has a continuous version. To this end we use the method which is presented in
[27, Theorem 5.2.6, p. 59; Proposition A.1.1, p. 307]. In contrast to [27] we do not
demand that the semigroup is analytic and therefore we only get continuity instead
of Hölder continuity as in [27].

First, we have to introduce the general concept of the stochastic convolution.

Definition 6.3.1 (Stochastic Convolution) If ˆ.t/, t 2 Œ0;T�, is a L.U;H/-valued
predictable process such that the stochastic integrals

Wˆ
A .t/ WD

Z t

0

S.t � s/ˆ.s/ dW.s/; t 2 Œ0;T�;

are well defined, then the process Wˆ
A .t/, t 2 Œ0;T�, is called stochastic convolution.

The following result (see [27, Theorem 5.2.5, p. 58]) is a corollary of the stochastic
Fubini Theorem (i.e. Theorem 6.1.4 above).

Theorem 6.3.2 (Factorization Formula) Let ˛ 2�0; 1Œ and ˆ be an L.U;H/-
valued predictable process. Assume that

1. S.t � s/ˆ.s/ is L2.U;H/-valued for all s 2 Œ0; tŒ, t 2 Œ0;T�.
2.
Z s

0

.s � u/�2˛E
�kS.s � u/ˆ.u/k2L2

�
du < 1 for all s 2 Œ0;T�.
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3.
Z t

0

.t � s/˛�1hZ s

0

.s�u/�2˛E
�kS.s�u/ˆ.u/k2L2

�
du
i 1
2

ds < 1 for all t 2 Œ0;T�.
Then we have the following representation of the stochastic convolution.

Z t

0

S.t � s/ˆ.s/ dW.s/ D sin˛	

	

Z t

0

.t � s/˛�1S.t � s/Yˆ˛ .s/ ds (6.4)

P-a.s. for all t 2 Œ0;T�, where Yˆ˛ .s/, s 2 Œ0;T�, is an B.Œ0;T�/ ˝ FT-measurable
version of

Z s

0

.s � u/�˛S.s � u/ˆ.u/ dW.u/; s 2 Œ0;T�: (6.5)

Proof First we check that
Z s

0

.s � u/�˛S.s � u/ˆ.u/ dW.u/; s 2 Œ0;T�, is well

defined and has an B.Œ0;T�/˝ FT-measurable version Yˆ˛ .s/; s 2 Œ0;T�. But this is
true since first we have that the mapping

' W .u; !; s/ 7! 1Œ0;sŒ.u/.s � u/�˛S.s � u/ˆ.u/; u 2 Œ0;T�;

is PT ˝ B.Œ0;T�/=B.L2/-measurable by assumption 1. (The proof can be done in a
similar way as the proof of Lemma 6.2.5 and the proof of Lemma 6.2.6). Secondly,
by assumption 2., we obtain that

E
�Z T

0

k1Œ0;sŒ.u/.s � u/�˛S.s � u/ˆ.u/k2L2 du
�

D
Z s

0

.s � u/�2˛E
�kS.s � u/ˆ.u/k2L2

�
du < 1;

by assumption 2.
Therefore the mapping ' W �T � Œ0;T� ! L2.U;H/ fulfills the conditions

of Theorem 6.1.4 and thus the process in (6.5) is well defined and has a product
measurable version Yˆ˛ (see the proof of [26, Theorem 4.18, p. 109]). In addition,
for fixed t 2 Œ0;T� the mapping 't given by

't W �T � Œ0;T� ! L2.U;H/

.u; !; s/ 7! 1Œ0;tŒ.s/.t � s/˛�11Œ0;sŒ.u/.s � u/�˛S.t � u/ˆ.u; !/

also fulfills the conditions of Theorem 6.1.4 for the following reasons:
Now fix t 2 Œ0;T�. We have that the mapping

't W �T � Œ0;T� ! L2.U;H/
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is PT ˝ B.Œ0;T�/=B.L2/-measurable. Moreover, we get by assumption 3 that

Z T

0

	
E
�Z T

0

1Œ0;tŒ.s/1Œ0;sŒ.u/.t � s/2.˛�1/.s � u/�2˛

kS.t � u/ˆ.u/k2L2 du
�
 1

2
ds

D
Z T

0

1Œ0;tŒ.s/.t � s/˛�1	Z T

0

1Œ0;sŒ.u/.s � u/�2˛

E
�kS.t � u/ˆ.u/k2L2

�
du

 1
2

ds

(by Fubini’s theorem)

6 MT

Z T

0

1Œ0;tŒ.s/.t � s/˛�1
	Z T

0

1Œ0;sŒ.u/.s � u/�2˛

E
�kS.s � u/ˆ.u/k2L2

�
du

 1
2

ds < 1
(by the semigroup property).

Therefore, there exists a product measurable version of

Z s

0

1Œ0;tŒ.s/.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ dW.u/; s 2 Œ0;T�:

Since by Lemma 2.4.1 for each s 2 Œ0;T�
Z s

0

1Œ0;tŒ.s/.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ dW.u/

D1Œ0;tŒ.s/.t � s/˛�1S.t � s/Yˆ˛ .s/ P-a.s.,

for this version again by Fubini’s theorem we get that

E
	
k
Z t

0

.t � s/˛�1S.t � s/Yˆ˛ .s/ ds

�
Z T

0

Z s

0

1Œ0;tŒ.s/.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ dW.u/ dsk



	
Z T

0

E
	
k1Œ0;tŒ.s/.t � s/˛�1S.t � s/Yˆ˛ .s/

�
Z S

0

1Œ0;tŒ.s/.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ dW.u/k



ds

D 0:
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Furthermore, we can use Theorem 6.1.4 to exchange the integration and thus we
finally obtain that

Z t

0

.t � s/˛�1S.t � s/Yˆ˛ .s/ ds

D
Z t

0

Z s

0

.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ dW.u/ ds

D
Z t

0

Z t

u
.t � s/˛�1.s � u/�˛S.t � u/ˆ.u/ ds dW.u/

D
Z t

0

	Z t

u
.t � s/˛�1.s � u/�˛ ds



S.t � u/ˆ.u/ dW.u/

D 	

sin ˛	

Z t

0

S.t � u/ˆ.u/ dW.u/ P-a.s.

since
Z t

u
.t � s/˛�1.s � u/�˛ ds D 	

sin ˛	
(keyword: Euler’s beta function). ut

Using this representation of the stochastic convolution we are now able to prove
the desired pathwise continuity.

Let p � 2 and ˛ 2� 1p ; 1Œ. For ' 2 Lp.Œ0;T�I H/ WD Lp.Œ0;T�;B.Œ0;T�/; dtI H/ we
define

R˛'.t/ WD
Z t

0

.t � s/˛�1S.t � s/'.s/ ds; t 2 Œ0;T�:

Then R˛' is well defined since

Z t

0

k.t � s/˛�1S.t � s/'.s/k ds 6
�Z t

0

s.˛�1/ p
p�1 ds

� p�1
p MTk'kLp < 1;

since ˛ > 1
p and therefore .˛ � 1/ p

p�1 > �1.

Proposition 6.3.3 Let ˛ 2�0; 1Œ and p > 1
˛

. Then

R˛ W Lp.Œ0;T�I H/ ! C.Œ0;T�I H/:

Remark 6.3.4 If one assumes that the semigroup S.t/, t 2 Œ0;T�, is analytic one even
gets that R˛' is Hölder continuous for all ' 2 Lp.Œ0;T�I H/ (see [27, Proposition
A.1.1, p. 307]).
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Proof of 6.3.3 Let ' 2 Lp.Œ0;T�I H/, t 2 Œ0;T�, and let tn, n 2 N, be a sequence in
Œ0;T� such that tn �!

n!1 t. Then

kR˛'.tn/� R˛'.t/k

D k
Z tn

0

.tn � s/˛�1S.tn � s/'.s/ ds �
Z t

0

.t � s/˛�1S.t � s/'.s/ dsk

6
Z T

0

k1Œ0;tn Œ.s/.tn � s/˛�1S.tn � s/'.s/ � 1Œ0;tŒ.s/.t � s/˛�1S.t � s/'.s/k ds:

Concerning the inner term we obtain that

k1Œ0;tnŒ.s/.tn � s/˛�1S.tn � s/'.s/ � 1Œ0;tŒ.s/.t � s/˛�1S.t � s/'.s/k �!
n!1 0

for ds-a.e. s 2 Œ0;T�. Moreover, the family

.k1Œ0;tn Œ.tn � �/˛�1S.tn � �/'.�/� 1Œ0;tŒ.t � �/˛�1S.t � �/'.�/k/n2N

is uniformly integrable :
For t 2 Œ0;T� we set

Ft.s/ WD 1Œ0;tŒ.s/.t � s/˛�1kS.t � s/'.s/k; s 2 Œ0;T�:

Since .˛ � 1/ p
p�1 > �1, there exists an " > 0 such that

.˛ � 1/.1C "/
p

p � 1 � "
> �1 and p > 1C ":

Then

Z T

0

F1C"t .s/ ds 6
�Z t

0

.t � s/.˛�1/.1C"/ p
p�1�" ds

� p�1�"
p M1C"

T k'k1C"Lp

6
�Z T

0

s.˛�1/.1C"/ p
p�1�" ds

� p�1�"
p M1C"

T k'k1C"Lp

< 1:

Therefore, sup
t2Œ0;T�

Z T

0

F1C"t .s/ ds < 1 and hence Ft, t 2 Œ0;T�, is uniformly

integrable. Since

k1Œ0;tnŒ.s/.tn � s/˛�1S.tn � s/'.s/ � 1Œ0;tŒ.s/.t � s/˛�1S.t � s/'.s/k
6 Ftn.s/C Ft.s/
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for all s 2 Œ0;T� the assertion follows. ut
Thus we have found a tool to check whether the process

Z t

0

S.t � s/B.X.�/.s// dW.s/; t 2 Œ0;T�;

has a P-a.s. continuous version.

Proposition 6.3.5 Assume that the mappings A, F and B satisfy Hypothesis M.0,
and let p � 2. If there exists an ˛ 2� 1p ;1Œ such that

Z T

0

s�2˛K2.s/ ds < 1;

then the mild solution X.�/ of problem (6.1) has a continuous version for all initial
conditions � 2 Lp

0.

Proof Without loss of generality we may assume that ˛ 2�0; 1Œ. S.�/� is P-a.s.
continuous because of the strong continuity of the semigroup.

In Step 2, 2. (i) of the proof of Theorem 6.2.3 we have already shown that the
process of the Bochner integrals

Z t

0

S.t � s/F.X.�/.s// ds; t 2 Œ0;T�;

has P-a.s. continuous trajectories.
Thus, in fact, it only remains to prove that the process

Z t

0

S.t � s/B.X.�/.s// dW.s/; t 2 Œ0;T�;

has a continuous version:
Since

Z t

0

.t � s/˛�1�Z s

0

.s � u/�2˛E
�kS.s � u/B.X.�/.u//k2L2

�
du
� 1
2 ds

6
Z t

0

.t � s/˛�1�Z s

0

.s � u/�2˛K2.s � u/E
�
.1C kX.�/.u/k/2� du

� 1
2 ds

6 .1C kX.�/kH2 /

Z t

0

.t � s/˛�1�Z s

0

.s � u/�2˛K2.s � u/ du
� 1
2 ds

6 .1C kX.�/kH2 /
	 Z T

0

u�2˛K2.u/ du

 1
2

Z T

0

s˛�1 ds < 1;
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we have by Theorem 6.3.2 (factorization formula) that P-a.s.

Z t

0

S.t � s/B.X.�/.s// dW.s/

D sin˛	

	

Z t

0

.t � s/˛�1S.t � s/
Z s

0

.s � u/�˛S.s � u/B.X.�/.u// dW.u/ ds

D sin˛	

	
R˛
� Z �

0

.� � u/�˛S.� � u/B.X.�/.u// dW.u/
„ ƒ‚ …

DW Y˛

�
.t/:

Since the mapping ' W �T � Œ0;T� ! L2.U;H/ given by

'.u; !; s/ WD 1Œ0;sŒ.u/.s � u/�˛S.s � u/B.X.�/.u; !//

fulfills the conditions of Theorem 6.1.4, the process Y˛ can be understood as a

B.Œ0;T�/ ˝ FT -measurable version of
Z t

0

.t � u/�˛S.t � u/B.X.�/.u// dW.u/,

t 2 Œ0;T� (see the proof of [26, Theorem 4.18, p. 109]).
To get the P-a.s. continuity of the stochastic integral we have to show that P-a.s.

Y˛ 2 Lp.Œ0;T�I H/:

By Theorem 6.1.2 we can estimate E
�kY˛.t/kp

�
independently of t 2 Œ0;T� in the

following way

E
�kY˛.t/kp

�

6
�p

2
.p � 1/� p

2

	Z t

0

.t � s/�2˛
�
E.kS.t � s/B.X.�/.s//kp

L2
/
� 2

p ds

 p
2

6
�p

2
.p � 1/� p

2

	Z t

0

.t � s/�2˛K2.t � s/
�
E..1C kX.�/.s/k/p/� 2p ds


 p
2

6
�p

2
.p � 1/� p

2

	Z t

0

.t � s/�2˛K2.t � s/.1C kX.�/kHp/2 ds

 p
2

6
�p

2
.p � 1/� p

2 .1C kX.�/kHp/p
	Z T

0

s�2˛K2.s/ ds

 p
2
< 1:

Finally, we obtain by the real Fubini theorem that

E
�Z T

0

kY˛.t/kp dt
� D

Z T

0

E
�kY˛.t/kp

�
dt < 1:

ut



Appendix A
The Bochner Integral

Let
�
X; k k� be a Banach space, B.X/ the Borel �-field of X and .�;F ; �/ a measure

space with finite measure �.

A.1 Definition of the Bochner Integral

Step 1: As a first step we want to define the integral for simple functions which
are defined as follows. Set

E WD
n
f W � ! X

ˇ̌̌
f D

nX
kD1

xk1Ak ; xk 2 X; Ak 2 F ; 1 6 k 6 n; n 2 N

o

and define a semi-norm k kE on the vector space E by

kf kE WD
Z

kf k d�; f 2 E :

To get that
�E ; k kE

�
is a normed vector space we consider equivalence classes

with respect to k kE . For simplicity we will not change the notation.
For f 2 E , f D Pn

kD1 xk1Ak , Ak’s pairwise disjoint (such a representation is called
normal and always exists, because f D Pn

kD1 xk1Ak , where f .�/ D fx1; : : : ; xkg,
xi 6D xj, and Ak WD ff D xkg) and we now define the Bochner integral to be

Z
f d� WD

nX
kD1

xk�.Ak/:

© Springer International Publishing Switzerland 2015
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(Exercise: This definition is independent of representations, and hence linear.) In
this way we get a mapping

int W �E ; k kE
� ! �

X; k k�
f 7!

Z
f d�

which is linear and uniformly continuous since
��R f d�

�� 6
R kf k d� for all

f 2 E .
Therefore we can extend the mapping int to the abstract completion of E with
respect to k kE which we denote by E .

Step 2: We give an explicit representation of E .

Definition A.1.1 A function f W � ! X is called strongly measurable if it is
F=B.X/-measurable and f .�/ � X is separable.

Definition A.1.2 Let 1 6 p < 1. Then we define

Lp.�;F ; �I X/ WD Lp.�I X/

WD
�

f W � ! X

ˇ̌
ˇ̌ f is strongly measurable with

respect to F ; and
Z

kf kp d� < 1
�

and the semi-norm

kf kLp WD
�Z

kf kp d�

� 1
p

; f 2 Lp.�;F ; �I X/:

The space of all equivalence classes in Lp.�;F ; �I X/ with respect to k kLp is
denoted by Lp.�;F ; �I X/ WD Lp.�I X/.

Claim L1.�;F ; �I X/ D E .

Step 2.a:
�
L1.�;F ; �I X/; k kL1

�
is complete.

The proof is just a modification of the proof of the Fischer–Riesz theorem by the
following proposition.

Proposition A.1.3 Let .�;F/ be a measurable space and let X be a Banach space.
Then:

(i) the set of F=B.X/-measurable functions from � to X is closed under the
formation of pointwise limits, and

(ii) the set of strongly measurable functions from � to X is closed under the
formation of pointwise limits.
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Proof Simple exercise or see [18, Proposition E.1, p. 350]. ut
Step 2.b E is a dense subset of L1.�;F ; �I X/ with respect to k kL1 .

This will follow from the following lemma.

Lemma A.1.4 Let E be a metric space with metric d and let f W � ! E be strongly
measurable. Then there exists a sequence fn, n 2 N, of simple E-valued functions
(i.e. fn is F=B.E/-measurable and takes only a finite number of values) such that
for arbitrary ! 2 � the sequence d

�
fn.!/; f .!/

�
, n 2 N, is monotonely decreasing

to zero.

Proof ([26, Lemma 1.1, p. 16]) Let fek j k 2 Ng be a countable dense subset of
f .�/. For m 2 N and ! 2 � define

dm.!/ WD min
˚
d
�
f .!/; ek

� ˇ̌
k 6 m

� � D dist.f .!/; fek; k 6 mg/�;
km.!/ WD min

˚
k 6 m

ˇ̌
dm.!/ D d

�
f .!/; ek

��
;

fm.!/ WD ekm.!/:

Obviously fm, m 2 N, are simple functions since they are F=B.E/-measurable
(exercise) and

fm.�/ � fe1; e2; : : : ; emg:

Moreover, by the density of fek j k 2 Ng, the sequence dm.!/, m 2 N, is
monotonically decreasing to zero for arbitrary ! 2 �. Since d

�
fm.!/; f .!/

� D
dm.!/ the assertion follows. ut

Let now f 2 L1.�;F ; �I X/. By Lemma A.1.4 above we get the existence of a
sequence of simple functions fn, n 2 N, such that

��fn.!/ � f .!/
�� # 0 for all ! 2 � as n ! 1:

Hence fn
n!1���! f in k kL1 by Lebesgue’s dominated convergence theorem.

A.2 Properties of the Bochner Integral

Proposition A.2.1 (Bochner Inequality) Let f 2 L1.�;F ; �I X/. Then

k
Z

f d�k 6
Z

kf k d�:
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Proof We know the assertion is true for f 2 E , i.e. int W E ! X is linear, continuous
with kint f k 6 kf kE for all f 2 E , so the same is true for its unique continuous
extension int W E D L1.�I X/ ! X, i.e. for all f 2 L1.X; �/

k
Z

f d�k D ��int f
�� 6 kf kE D

Z
kf k d�:

ut
Proposition A.2.2 Let f 2 L1.�;F ; �I X/. Then

Z
L ı f d� D L

�Z
f d�

�

holds for all L 2 L.X;Y/, where Y is another Banach space.

Proof Simple exercise or see [18, Proposition E.11, p. 356]. ut
Proposition A.2.3 (Fundamental Theorem of Calculus) Let �1 < a < b < 1
and f 2 C1

�
Œa; b�I X

�
. Then

f .t/ � f .s/ D
Z t

s
f 0.u/ du WD

( R
1Œs;t�.u/f 0.u/ du if s 6 t

� R 1Œt;s�.u/f 0.u/ du otherwise

for all s; t 2 Œa; b� where du denotes the Lebesgue measure on B.R/.
Proof

Claim 1: If we set F.t/ WD R t
s f 0.u/ du, t 2 Œa; b�, we get that F0.t/ D f 0.t/ for all

t 2 Œa; b�.
For that we have to prove that

k1
h

�
F.t C h/� F.t/

� � f 0.t/kX
h!0���! 0:

To this end we fix t 2 Œa; b� and take an arbitrary " > 0. Since f 0 is continuous
on Œa; b� there exists a ı > 0 such that

��f 0.u/� f 0.t/
��

X
< " for all u 2 Œa; b� with

ju � tj < ı. Then we obtain that

k1
h

�
F.t C h/� F.t/

�� f 0.t/kX D k1
h

Z tCh

t

�
f 0.u/� f 0.t/

�
dukX

6 1

jhj
Z t_.tCh/

t^.tCh/

��f 0.u/� f 0.t/
��

X
du < "

if t C h 2 Œa; b� and jhj < ı.
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Claim 2: If QF 2 C1
�
Œa; b�I X

�
is a further function with QF0 D F0 D f 0 then there

exists a constant c 2 X such that F � QF D c.
Let us first assume that F.a/ D 0 D QF.a/. Then for all L 2 X� D L.X;R/
we define gL WD L.F � QF/. Then g0

L D 0 and therefore gL is constant cL. But
gL.a/ D L.F.a/ � QF.a// D 0, so cL D 0. Since X� separates the points of X, by
the Hahn–Banach theorem (see [3, Satz 4.2, p. 114]) this implies that F � QF D 0.
In the general case we apply the above to F � F.a/ and QF � QF.a/ to obtain the
assertion. ut



Appendix B
Nuclear and Hilbert–Schmidt Operators

Let
�
U; h ; iU

�
and

�
H; h ; i� be two separable Hilbert spaces. The space of all

bounded linear operators from U to H is denoted by L.U;H/; for simplicity we write
L.U/ instead of L.U;U/. If we speak of the adjoint operator of L 2 L.U;H/we write
L� 2 L.H;U/. An element L 2 L.U/ is called symmetric if hLu; viU D hu;LviU

for all u; v 2 U. In addition, L 2 L.U/ is called nonnegative if hLu; ui > 0 for all
u 2 U.

Definition B.0.1 (Nuclear Operator) An element T 2 L.U;H/ is said to be a
nuclear operator if there exists a sequence .aj/j2N in H and a sequence .bj/j2N in U
such that

Tx D
1X

jD1
ajhbj; xiU for all x 2 U

and

X
j2N

kajk � kbjkU < 1:

The space of all nuclear operators from U to H is denoted by L1.U;H/.
If U D H and T 2 L1.U;H/ is nonnegative and symmetric, then T is called trace

class.

Proposition B.0.2 The space L1.U;H/ endowed with the norm

kTkL1.U;H/ WD inf
nX

j2N
kajk � kbjkU

ˇ̌
ˇ Tx D

1X
jD1

ajhbj; xiU; x 2 U
o

is a Banach space.
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Proof [60, Corollary 16.25, p. 154]. ut
Definition B.0.3 Let T 2 L.U/ and let ek, k 2 N, be an orthonormal basis of U.
Then we define

tr T WD
X
k2N

hTek; ekiU

if the series is convergent.

One has to notice that this definition could depend on the choice of the
orthonormal basis. But there is the following result concerning nuclear operators.

Remark B.0.4 If T 2 L1.U/ then tr T is well-defined independently of the choice of
the orthonormal basis ek, k 2 N. Moreover we have that

jtr Tj 6 kTkL1.U/:

Proof Let .aj/j2N and .bj/j2N be sequences in U such that

Tx D
X
j2N

ajhbj; xiU

for all x 2 U and
X
j2N

kajkU � kbjkU < 1.

Then we get for any orthonormal basis ek, k 2 N, of U that

hTek; ekiU D
X
j2N

hek; ajiU � hek; bjiU

and therefore

X
k2N

ˇ̌hTek; ekiU

ˇ̌
6
X
j2N

X
k2N

ˇ̌hek; ajiU � hek; bjiU

ˇ̌

6
X
j2N

	X
k2N

ˇ̌hek; ajiU

ˇ̌2
 1
2 �
	X

k2N

ˇ̌hek; bjiU

ˇ̌2
 1
2

D
X
j2N

kajkU � kbjkU < 1:

This implies that we can exchange the summation to get that

X
k2N

hTek; ekiU D
X
j2N

X
k2N

hek; ajiU � hek; bjiU D
X
j2N

haj; bjiU;

and the assertion follows. ut
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Definition B.0.5 (Hilbert–Schmidt Operator) A bounded linear operator T W
U ! H is called Hilbert–Schmidt if

X
k2N

kTekk2 < 1

where ek, k 2 N, is an orthonormal basis of U.
The space of all Hilbert–Schmidt operators from U to H is denoted by L2.U;H/.

Remark B.0.6

(i) The definition of Hilbert–Schmidt operator and the number

kTk2L2.U;H/ WD
X
k2N

kTekk2

does not depend on the choice of the orthonormal basis ek, k 2 N, and we have
that kTkL2.U;H/ D kT�kL2.H;U/. For simplicity we also write kTkL2 instead of
kTkL2.U;H/.

(ii) kTkL.U;H/ 6 kTkL2.U;H/.
(iii) Let G be another Hilbert space and S1 2 L.H;G/; S2 2 L.G;U/; T 2

L2.U;H/. Then S1T 2 L2.U;G/ and TS2 2 L2.G;H/ and

kS1TkL2.U;G/ 6 kS1kL.H;G/kTkL2.U;H/;

kTS2kL2.G;H/ 6 kTkL2.U;H/kS2kL.G;U/:

Proof

(i) If ek, k 2 N, is an orthonormal basis of U and fk, k 2 N, is an orthonormal
basis of H we obtain by the Parseval identity that

X
k2N

kTekk2 D
X
k2N

X
j2N

ˇ̌hTek; fji
ˇ̌2 D

X
j2N

kT�fjk2U

and therefore the assertion follows.
(ii) Let x 2 U and fk, k 2 N, be an orthonormal basis of H. Then we get that

kTxk2 D
X
k2N

hTx; fki2 6 kxk2U
X
k2N

kT�fkk2U D kTk2L2.U;H/ � kxk2U :

(iii) Let ek; k 2 N be an orthonormal basis of U. Then

X
k2N

kS1Tekk2G 6 kS1k2L.H;G/kTk2L2.U;H/:
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Furthermore, since .TS2/� D S�
2T�, it follows by the above and (i) that TS2 2

L2.G;H/ and

kTS2kL2.G;H/ D k.TS2/
�kL2.H;G/

D kS�
2T�kL2.H;G/

6 kS2kL.G;U/ � kTkL2.U;H/;

since a bounded operator has the same norm as its adjoint. ut
Proposition B.0.7 Let S;T 2 L2.U;H/ and let ek, k 2 N, be an orthonormal basis
of U. If we define

hT; SiL2 WD
X
k2N

hSek;Teki

we obtain that
�
L2.U;H/; h ; iL2

�
is a separable Hilbert space.

If fk, k 2 N, is an orthonormal basis of H we get that fj ˝ ek WD fjhek; � iU,
j; k 2 N, is an orthonormal basis of L2.U;H/.

Proof We have to prove the completeness and the separability.

1. L2.U;H/ is complete:
Let Tn, n 2 N, be a Cauchy sequence in L2.U;H/. Then it is clear that it

is also a Cauchy sequence in L.U;H/. Because of the completeness of L.U;H/
there exists an element T 2 L.U;H/ such that kTn � TkL.U;H/ �! 0 as n ! 1.
But by Fatou’s lemma we also have for any orthonormal basis ek, k 2 N, of U
that

kTn � Tk2L2 D
X
k2N

˝
.Tn � T/ek; .Tn � T/ek

˛

D
X
k2N

lim inf
m!1

��.Tn � Tm/ek

��2

6 lim inf
m!1

X
k2N

��.Tn � Tm/ek

��2 D lim inf
m!1 kTn � Tmk2L2 < "

for all n 2 N big enough. Therefore the assertion follows.
2. L2.U;H/ is separable:

If we define fj˝ek WD fjhek; � iU , j; k 2 N, then it is clear that fj˝ek 2 L2.U;H/
for all j; k 2 N and for arbitrary T 2 L2.U;H/ we get that

hfj ˝ ek;TiL2 D
X
n2N

hek; eniU � hfj;Teni D hfj;Teki:
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Therefore it is obvious that fj˝ek, j; k 2 N, is an orthonormal system. In addition,
T D 0 if hfj ˝ ek;TiL2 D 0 for all j; k 2 N, and therefore span.fj ˝ ek j j; k 2 N/

is a dense subspace of L2.U;H/. ut
Proposition B.0.8 Let

�
G; h ; iG

�
be a further separable Hilbert space. If T 2

L2.U;H/ and S 2 L2.H;G/ then ST 2 L1.U;G/ and

kSTkL1.U;G/ 6 kSkL2 � kTkL2 :

Proof Let fk, k 2 N, be an orthonormal basis of H. Then we have that

STx D
X
k2N

hTx; fkiSfk; x 2 U

and therefore

kSTkL1.U;G/ 6
X
k2N

kT�fkkU � kSfkkG

6
	X

k2N
kT�fkk2U


 1
2 �
	X

k2N
kSfkk2G


 1
2 D kSkL2 � kTkL2 :

ut
Remark B.0.9 Let ek, k 2 N, be an orthonormal basis of U. If T 2 L.U/ is
symmetric and nonnegative with

P
k2NhTek; ekiU < 1 then T 2 L1.U/.

Proof The result is obvious by the previous proposition and the fact that there
exists a nonnegative and symmetric T

1
2 2 L.U/ such that T D T

1
2 T

1
2 (see

Proposition 2.3.4). Then T
1
2 2 L2.U/. ut

Proposition B.0.10 Let L 2 L.H/ and B 2 L2.U;H/. Then LBB� 2 L1.H/, B�LB 2
L1.U/ and we have that

tr LBB� D tr B�LB:

Proof We know by Remark B.0.6(iii) and Proposition B.0.8 that LBB� 2 L1.H/ and
B�LB 2 L1.U/. Let ek, k 2 N, be an orthonormal basis of U and let fk, k 2 N, be an
orthonormal basis of H. Then the Parseval identity implies that

X
k2N

X
n2N

ˇ̌hfk;Beni � hfk;LBeniˇ̌

6
X
n2N

	X
k2N

ˇ̌hfk;Beniˇ̌2
 1
2 �
	X

k2N

ˇ̌hfk;LBeniˇ̌2
 1
2

D
X
n2N

kBenk � kLBenk 6 kLkL.H/ � kBk2L2 :
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Therefore, below it is allowed to interchange the sums to obtain that

tr LBB� D
X
k2N

hLBB�fk; fki D
X
k2N

hB�fk;B
�L�fkiU

D
X
k2N

X
n2N

hB�fk; eniU � hB�L�fk; eniU D
X
n2N

X
k2N

hfk;Beni � hfk;LBeni

D
X
n2N

hBen;LBeni D
X
n2N

hen;B
�LBeniU D tr B�LB:

ut



Appendix C
The Pseudo Inverse of Linear Operators

Let
�
U; h ; iU

�
and

�
H; h ; i� be two Hilbert spaces.

Definition C.0.1 (Pseudo Inverse) Let T 2 L.U;H/ and Ker.T/ WD fx 2 U j
Tx D 0g. The pseudo inverse of T is defined as

T�1 WD �
T jKer.T/?

��1 W T
�
Ker.T/?

� D T.U/ ! Ker.T/?:

(Note that T is one-to-one on Ker.T/?.)

Remark C.0.2

(i) There is an equivalent way of defining the pseudo inverse of a linear operator
T 2 L.U;H/. For x 2 T.U/ one sets T�1x 2 U to be the solution of minimal
norm of the equation Ty D x, y 2 U.

(ii) If T 2 L.U;H/ then T�1 W T.U/ ! Ker.T/? is linear and bijective.

Proposition C.0.3 Let T 2 L.U/ and T�1 be the pseudo inverse of T.

(i) If we define an inner product on T.U/ by

hx; yiT.U/ WD hT�1x;T�1yiU for all x; y 2 T.U/;

then
�
T.U/; h ; iT.U/

�
is a Hilbert space.

(ii) Let ek, k 2 N, be an orthonormal basis of .Ker T/?. Then Tek, k 2 N, is an
orthonormal basis of

�
T.U/; h ; iT.U/

�
.

Proof T W .Ker T/? ! T.U/ is bijective and an isometry if .Ker T/? is equipped
with h ; iU and T.U/ with h ; iT.U/. ut

Now we want to present a result about the images of linear operators. To this end
we need the following lemma.
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Lemma C.0.4 Let T 2 L.U;H/. Then the set TBc.0/ (D ˚
Tu
ˇ̌

u 2 U; kukU 6 c
�
),

c > 0, is convex and closed.

Proof Since T is linear it is obvious that the set is convex.
Since a convex subset of a Hilbert space is closed (with respect to the norm)

if and only if it is weakly closed, it suffices to show that TBc.0/ is weakly
closed. Since T W U ! H is linear and continuous (with respect to the norms
on U;H respectively) it is also obviously continuous with respect to the weak
topologies on U;H respectively. But by the Banach–Alaoglu theorem (see e.g. [68,
Theorem IV.21, p. 115]) closed balls in a Hilbert space are weakly compact. Hence
Bc.0/ is weakly compact, and so is its continuous image, i.e. TBc.0/ is weakly
compact, therefore weakly closed. ut
Proposition C.0.5 Let

�
U1; h ; i1

�
and

�
U2; h ; i2

�
be two Hilbert spaces. In

addition, let T1 2 L.U1;H/ and T2 2 L.U2;H/. Then the following statements
hold.

(i) If there exists a constant c > 0 such that kT�
1 xk1 6 ckT�

2 xk2 for all x 2 H then˚
T1u

ˇ̌
u 2 U1; kuk1 6 1

� � ˚
T2v

ˇ̌
v 2 U2; kvk2 6 c

�
. In particular, this

implies that Im T1 � Im T2.
(ii) If kT�

1 xk1 D kT�
2 xk2 for all x 2 H then Im T1 D Im T2 and kT�1

1 xk1 D kT�1
2 xk2

for all x 2 Im T1, where T�1
i is the pseudo inverse of Ti; i D 1; 2.

Proof [26, Proposition B.1, p. 407]

(i) Assume that there exists a u0 2 U1 such that

ku0k1 6 1 and T1u0 … ˚T2v ˇ̌ v 2 U2; kvk2 6 c
�
:

By Lemma C.0.4 we know that the set
˚
T2v

ˇ̌
v 2 U2; kvk2 6 c

�
is

closed and convex. Therefore, we get by the separation theorem (see [3,
5.11 Trennungssatz, p. 166]) that there exists an x 2 H, x 6D 0, such that

1 < hx;T1u0i and hx;T2vi 6 1 for all v 2 U2 with kvk2 6 c:

Thus kT�
1 xk1 > 1 and ckT�

2 xk2 D sup
kvk26c

ˇ̌hT�
2 x; vi2

ˇ̌
6 1, a contradiction.

(ii) By (i) we know that Im T1 D Im T2. It remains to verify that

kT�1
1 xk1 D kT�1

2 xk2 for all x 2 Im T1:

If x D 0 then kT�1
1 0k1 D 0 D kT�1

2 0k2.
If x 2 Im T1 n f0g then there exist u1 2 .Ker T1/? and u2 2 .Ker T2/? such

that x D T1u1 D T2u2. We have to show that ku1k1 D ku2k2.
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Assume that ku1k1 > ku2k2.> 0/. Then (i) implies that

x

ku2k2 D T2

�
u2

ku2k2
�

2 ˚
T2v

ˇ̌
v 2 U2; kvk2 6 1

� D ˚
T1u

ˇ̌
u 2 U1; kuk1 6 1

�
:

Furthermore,

x

ku2k2 D T1

�
u1

ku2k2
�

and

���� u1
ku2k2

����
1

> 1:

Both together imply that there exists a Qu1 2 U1, kQu1k1 6 1, so that for Qu2 WD
u1ku2k2 2 .Ker T1/? we have

T1 Qu1 D x

ku2k2 D T1 Qu2 ; i.e. Qu1 � Qu2 2 Ker T1:

Therefore,

0 D hQu1 � Qu2; Qu2i1 D hQu1; Qu2i1 � kQu2k21
	 kQu1k1kQu2k1 � kQu2k21 	 �

1 � kQu2k1
�kQu2k1 < 0:

This is a contradiction. ut
Corollary C.0.6 Let T 2 L.U;H/ and set Q WD TT� 2 L.H/. Then we have

Im Q
1
2 D Im T and

��Q� 1
2 x
�� D kT�1xkU for all x 2 Im T;

where Q� 1
2 is the pseudo inverse of Q

1
2 .

Proof Since by Lemma 2.3.4 Q
1
2 is symmetric we have for all x 2 H that

����Q 1
2
��

x
���2 D ��Q

1
2 x
��2 D hQx; xi D hTT�x; xi D kT�xk2U :

Therefore the assertion follows by Proposition C.0.5. ut



Appendix D
Some Tools from Real Martingale Theory

We need the following Burkholder–Davis inequality for real-valued continuous
local martingales.

Proposition D.0.1 Let .Nt/t2Œ0;T� be a real-valued continuous local martingale on
a probability space .�;F ;P/ with respect to a normal filtration .Ft/t2Œ0;T� with
N0 D 0.

(i) Then for all stopping times �.6 T/

E. sup
t2Œ0;� �

jNtj/ 6 3E.hNi1=2� /:

(ii) If E.hNi1=2T / < 1, then .Nt/t2Œ0;T� is a martingale.

Proof See e.g. [56, p. 75, line 1] for .i/. Now we prove .ii/.
Let �N W � ! Œ0;T�; N 2 N, be stopping times such that .Nt^�N /t2Œ0;T� is a

martingale and lim
N!1 �N D T. Then for each t 2 Œ0;T�

lim
N!1 Nt^�N D Nt P-a.s.

and by (i)

sup
N2N

jNt^�N j 	 sup
s2Œ0;T�

jNsj 2 L1.�I R/:

Hence by Lebesgue’s dominated convergence theorem for each t 2 Œ0;T�

lim
N!1 Nt^�N D Nt in L1.�I R/

and assertion (ii) follows. ut
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Corollary D.0.2 Let "; ı 2�0;1Œ. Then for N as in Proposition D.0.1

P. sup
t2Œ0;T�

jNtj > "/ 6 3

"
E.hNi1=2T ^ ı/C P.hNi1=2T > ı/:

Proof Let

� WD infft > 0j hNi1=2t > ıg ^ T:

Then �.6 T/ is an Ft-stopping time. Hence by Proposition D.0.1

P

 
sup

t2Œ0;T�
jNtj > "

!

DP

�
sup

t2Œ0;T�
jNtj > "; � D T

�
C P

�
sup

t2Œ0;T�
jNtj > "; � < T

�

63
"

E.hNi1=2� /C P

�
sup

t2Œ0;T�
jNtj > "; hNi1=2T > ı

�

63
"

E.hNi1=2T ^ ı/C P.hNi1=2T > ı/:

ut



Appendix E
Weak and Strong Solutions:
The Yamada–Watanabe Theorem

The main reference for this chapter is [71].
Let H be a separable Hilbert space, with inner product h�; �iH and norm k kH . Let

V;E be separable Banach spaces with norms k kV and k kE , such that

V � H � E

continuously and densely. For a topological space X let B.X/ denote its Borel �-
algebra. By Kuratowski’s theorem we have that V 2 B.H/, H 2 B.E/ and B.V/ D
B.H/\ V , B.H/ D B.E/\ H.

Setting kxkV WD 1 if x 2 H n V , we extend k kV to a function on H. We recall
that by Exercise 4.2.3 this extension is B.H/-measurable and lower semicontinuous.
Hence the following path space is well-defined:

B WD
�

w 2 C.RCI H/

ˇ̌̌
ˇ
Z T

0

kw.t/kV dt < 1 for all T 2 Œ0;1/

�
;

equipped with the metric

�.w1;w2/ WD
1X

kD1
2�k

��Z k

0

kw1.t/ � w2.t/kV dt C sup
t2Œ0;k�

kw1.t/ � w2.t/kH

�
^1
�
:

Obviously, .B; �/ is a complete separable metric space. Let Bt.B/ denote the �-
algebra generated by all maps 	s W B ! H, s 2 Œ0; t�, where 	s.w/ WD w.s/, w 2 B.

Let .U; h ; iU/ be another separable Hilbert space and let L2.U;H/ denote the
space of all Hilbert–Schmidt operators from U to H equipped with the usual Hilbert–
Schmidt norm k kL2 .

Let b W RC � B ! E and � W RC � B ! L2.U;H/ be B.RC/˝ B.B/=B.E/ and
B.RC/˝ B.B/=B.L2.U;H//-measurable respectively such that for each t 2 RC

b.t; �/ is Bt.B/=B.E/-measurable
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and

�.t; �/ is Bt.B/=B.L2.U;H//-measurable.

As usual we call .�;F ;P; .Ft// a stochastic basis if .�;F ;P/ is a complete
probability space and .Ft/ is a right continuous filtration on � augmented by the
P-zero sets. Let ˇk; k 2 N, be independent .Ft/-Brownian motions on a stochastic
basis .�;F ;P; .Ft// and define the sequence

W.t/ WD .ˇk.t//k2N; t 2 Œ0;1/:

Below we refer to such a process W on R
1 as a standard R

1-Wiener process.
We fix an orthonormal basis fek; k 2 Ng of U and consider W as a cylindrical Wiener
process on U, that is, we informally have

W.t/ D
1X

kD1
ˇk.t/ek; t 2 Œ0;1/:

We consider the following stochastic evolution equation:

dX.t/ D b.t;X/dt C �.t;X/dW.t/; t 2 Œ0;1/: (E.1)

Definition E.0.1 A pair .X;W/, where X D .X.t//t2Œ0;1/ is an .Ft/-adapted process
with paths in B and W is a standard R

1-Wiener process on a stochastic basis
.�;F ;P; .Ft//, is called a weak solution of (E.1) if

(i) For any T 2 Œ0;1/

Z T

0

kb.s;X/kEds C
Z T

0

k�.s;X/k2L2.U;H/ds < 1 P-a.e.

(ii) As a stochastic equation on E we have

X.t/ D X.0/C
Z t

0

b.s;X/ds C
Z t

0

�.s;X/dW.s/; t 2 Œ0;1/ P-a.e.

Remark E.0.2

(i) By the measurability assumptions on b and � , it follows that if X is as in
Definition E.0.1 then both processes b.�;X/ and �.�;X/ are .Ft/-adapted.

(ii) We recall that by definition of the H-valued stochastic integral in (ii) we have

Z t

0

�.s;X/dW.s/ WD
Z t

0

�.s;X/ ı J�1d NW.s/; t 2 Œ0;1/;
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where J is any one-to-one Hilbert–Schmidt operator from U into another
Hilbert space . NUh ; i NU/ and

NW.t/ WD
1X

kD1
ˇk.t/Jek; t 2 Œ0;1/: (E.2)

By Sect. 2.5 this definition of the stochastic integral is independent of the choice
of J and . NU; h ; i NU/. We recall that for s 2 Œ0;1/, w 2 B

�.s;w/ ı J�1 2 L2.Q
1=2. NU/;H/

with k�.s;w/ ı J�1kL2.Q1=2. NU/;H/ D k�.s;w/kL2 .U;H/;

where Q WD JJ�, and that NW is a Q-Wiener process on NU.

Below we shall fix one such J and . NU; h ; i NU/ as in Remark E.0.2(ii) and set

N�.s;w/ WD �.s;w/ ı J�1; s 2 Œ0;1/;w 2 B;

and for any standard R
1-Wiener process W we define NW as in (E.2) for the fixed J.

Furthermore we define

W0 WD fw 2 C.RC; NU/jw.0/ D 0g

equipped with the supremum norm and Borel �-algebra B.W0/. For t 2 RC let
Bt.W0/ be the �-algebra generated by 	s W W0 ! NU, 0 	 s 	 t, 	s.w/ WD w.s/.

Definition E.0.3 We say that weak uniqueness holds for (E.1) if whenever .X;W/
and .X0;W 0/ are two weak solutions with stochastic bases (�;F ;P; .Ft// and
.�0;F 0;P0; .F 0

t // such that

P ı X.0/�1 D P0 ı X0.0/�1;

(as measures on .H;B.H//), then

P ı X�1 D P0 ı .X0/�1

(as measures on .B;B.B//).
Definition E.0.4 We say that pathwise uniqueness holds for (E.1), if whenever
.X;W/, .X0;W/ are two weak solutions on the same stochastic basis .�;F ;P; .Ft//

and with the same standard-R1-Wiener process W on .�;F ;P/ such that X.0/ D
X0.0/ P-a.e., then P-a.e.

X.t/ D X0.t/; t 2 Œ0;1/:
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To define strong solutions we need to introduce the following class OE of maps:
Let OE denote the set of all maps F W H � W0 ! B such that for every probability

measure � on .H;B.H// there exists a B.H/˝ B.W0/
�˝PQ

=B.B/-measurable map
F� W H � W0 ! B such that for �-a.e. x 2 H

F.x;w/ D F�.x;w/ for PQ-a.e. w 2 W0:

Here B.H/˝ B.W0/
�˝PQ

denotes the completion of B.H/˝ B.W0/ with respect
to � ˝ PQ, and PQ denotes the distribution of the Q-Wiener process on NU on
.W0;B.W0//: Of course, F� is uniquely determined �˝ PQ-a.e.

Definition E.0.5 A weak solution .X;W/ to (E.1) on .�;F ;P; .Ft// is called a
strong solution if there exists an F 2 OE such that for x 2 H, w 7! F.x;w/ is

Bt.W0/
PQ

=Bt.B/-measurable for every t 2 Œ0;1/ and

X D FPıX.0/�1.X.0/; NW/ P-a.e.;

where Bt.W0/
PQ

denotes the completion with respect to PQ in B.W0/.

Definition E.0.6 Equation (E.1) is said to have a unique strong solution if there
exists an F 2 OE satisfying the adaptiveness condition in Definition E.0.5 and such
that:

1. For every standard R
1-Wiener process on a stochastic basis .�;F ;P; .Ft// and

any F0=B.H/-measurable � W � ! H the B-valued process

X WD FPı��1 .�; NW/

is .Ft/-adapted and satisfies (i), (ii) in Definition E.0.1, i.e. .F.�; NW/;W/ is a
weak solution to (E.1), and in addition X.0/ D � P-a.e.

2. For any weak solution .X;W/ to (E.1) we have

X D FPıX.0/�1.X.0/; NW/ P-a.e.

Remark E.0.7 Since X.0/ of a weak solution is P-independent of NW , thus

P ı .X.0/; NW/�1 D �˝ PQ;

we have that the existence of a unique strong solution for (E.1) implies that weak
uniqueness also holds.
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Now we can formulate the main result of this section.

Theorem E.0.8 Let � and b be as above. Then Eq. (E.1) has a unique strong
solution if and only if both of the following properties hold:

(i) For every probability measure � on .H;B.H// there exists a weak solution
.X;W/ of (E.1) such that � is the distribution of X.0/.

(ii) Pathwise uniqueness holds for (E.1).

Proof Suppose (E.1) has a unique strong solution. Then (ii) obviously holds. To
show (i) one only has to take the probability space .W0;B.W0/;PQ/ and consider

.H � W0;B.H/˝ B.W0/
�˝PQ

; �˝ PQ/ with filtration

\
">0

�.B.H/˝ BtC".W0/;N /; t > 0;

where N denotes all �˝PQ-zero sets in B.H/˝ B.W0/
�˝PQ

. Let � W H �W0 ! H
and W W H � W0 ! W0 be the canonical projections. Then X WD FPı��1.�;W/ is
the desired weak solution in (i). ut

Now let us suppose that (i) and (ii) hold. The proof that then there exists a
unique strong solution for (E.1) is quite technical. We structure it through a series
of lemmas.

Lemma E.0.9 Let .�;F/ be a measurable space such that f!g 2 F for all ! 2 �
and such that

D WD f.!; !/j! 2 �g 2 F ˝ F

(which is the case, e.g. if � is a Polish space and F its Borel �-algebra). Let P1;P2
be probability measures on .�;F/ such that P1 ˝ P2.D/ D 1. Then P1 D P2 D ı!0
for some !0 2 �.

Proof Let f W � ! Œ0;1/ be F -measurable. Then

Z
f .!1/P1.d!1/ D

“
f .!1/P1.d!1/P2.d!2/

D
“

1D.!1; !2/f .!1/P1.d!1/P2.d!2/

D
“

1D.!1; !2/f .!2/P1.d!1/P2.d!2/ D
Z

f .!2/P2.d!2/;
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so P1 D P2. Furthermore,

1 D
“

1D.!1; !2/P1.d!1/P2.d!2/ D
Z

P1.f!2g/P2.d!2/;

hence 1 D P1.f!2g/ for P2-a.e. !2 2 �. Therefore, P1 D ı!0 for some !0 2 �. ut
Fix a probability measure � on .H;B.H// and let .X;W/ with stochastic basis

.�;F ;P; .Ft// be a weak solution to (E.1) with initial distribution �. Define a
probability measure P� on .H � B � W0;B.H/˝ B.B/˝ B.W0// by

P� WD P ı .X.0/;X; NW/�1:

Lemma E.0.10 There exists a family K�..x;w/; dw1/; x 2 H;w 2 W0, of
probability measures on .B;B.B// having the following properties:

(i) For every A 2 B.B/ the map

H � W0 3 .x;w/ 7! K�..x;w/;A/

is B.H/˝ B.W0/-measurable.
(ii) For every B.H/˝B.B/˝B.W0/-measurable map f W H �B �W0 ! Œ0;1/

we have
Z

H�B�W0

f .x;w1;w/P�.dx; dw1; dw/

D
Z

H

Z
W0

Z
B

f .x;w1;w/K�..x;w/; dw1/P
Q.dw/�.dx/:

(iii) If t 2 Œ0;1/ and f W B ! Œ0;1/ is Bt.B/-measurable, then

H � W0 3 .x;w/ 7!
Z
B

f .w1/K�..x;w/; dw1/

is B.H/˝ Bt.W0/
�˝PQ

-measurable, where B.H/˝ Bt.W0/
�˝PQ

denotes the
completion with respect to �˝ PQ in B.H/˝ B.W0/.

Proof Let … W H � B � W0 ! H � W0 be the canonical projection. Since X.0/ is
F0-measurable, hence P-independent of NW, it follows that

P� ı…�1 D P ı .X.0/; NW/�1 D �˝ PQ:

Hence by the existence result on regular conditional distributions (cf. e.g. [47,
Corollary to Theorem 3.3 on p. 15]), the existence of the family K�..x;w/; dw1/; x 2
H; w 2 W0, satisfying (i) and (ii) follows.
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To prove (iii) it suffices to show that for t 2 Œ0;1/ and for all A0 2 B.H/,
A1 2 Bt.B/, A 2 Bt.W0/ and

A0 WD f	r1 � 	t 2 B1; 	r2 � 	r1 2 B2; : : : ; 	rk � 	rk�1 2 Bkg .� W0/ ;

t 6 r1 < : : : < rk; B1; : : : ;Bk 2 B. NU/;

Z
A0

Z
W0

1A\A0.w/K�..x;w/;A1/P
Q.dw/�.dx/

D
Z

A0

Z
W0

1A\A0.w/E�˝PQ.K�.�;A1/jB.H/˝ Bt.W0//P
Q.dw/�.dx/; (E.3)

since the system of all A \ A0; A 2 Bt.W0/; A0 as above generates B.W0/. But by
part (ii) above, the left-hand side of (E.3) is equal to

Z
H�B�W0

1A0.x/1A\A0.w/1A1 .w1/P�.dx; dw1; dw/

D
Z
�

1A0.X.0//1A1.X/1A. NW/1A0. NW/dP: (E.4)

But 1A0. NW/ is P-independent of Ft, since W is a standard R
1-Wiener process on

.�;F ;P;Ft/, so the right-hand side of (E.4) is equal to

Z
�

1A0. NW/dP �
Z
�

1A0.X.0//1A1.X/1A. NW/dP

D PQ.A0/
Z

H�B�W0

1A0.x/1A.w/1A1.w1/P�.dx; dw1; dw/

D PQ.A0/
Z

A0

Z
A

K�..x;w/;A1/P
Q.dw/�.dx/

D PQ.A0/
Z

A0

Z
A
E�˝PQ.K�.�;A1/jB.H/˝ Bt.W0//..x;w//P

Q.dw/�.dx/

D
Z

A0

Z
W0

1A\A0.w/E�˝PQ.K�.�;A1/jB.H/˝ Bt.W0//..x;w//P
Q.dw/�.dx/;

since A0 is PQ-independent of Bt.W0/. ut
For convenient labelling subsequently, up to and including the proof of

Lemma E.0.14, we rename our weak solution as .X.1/;W.1// WD .X;W/ and define
.�.1/;F .1/;P.1/; .F .1/

t //; NW.1/;P.1/� ;K
.1/
� correspondingly. Now take another weak

solution .X.2/;W.2// of (E.1) with the same initial distribution � on a stochastic
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basis .�.2/;F .2/;P.2/; .F .2/
t //. Define NW.2/;P.2/� correspondingly and let K.2/

� be
constructed correspondingly as in Lemma E.10. For x 2 H define a measure Qx

on

.H � B � B � W0;B.H/˝ B.B/˝ B.B/˝ B.W0//

by

Qx.A/ WD
Z

H

Z
B

Z
B

Z
W0

1A.z;w1;w2;w/

K.1/
� ..z;w/; dw1/K

.2/
� ..z;w/; dw2/P

Q.dw/ıx.dz/:

Define the stochastic basis

Q� WD H � B � B � W0

QF x WD B.H/˝ B.B/˝ B.B/˝ B.W0/
Qx

QF x
t WD

\
">0

�.B.H/˝ BtC".B/˝ BtC".B/˝ BtC".W0/;Nx/;

where

Nx WD fN 2 QF xjQx.N/ D 0g;

and define maps

…0 W Q� ! H; .x;w1;w2;w/ 7! x;

…i W Q� ! B; .x;w1;w2;w/ 7! wi 2 B; i D 1; 2;

…3 W Q� ! W0; .x;w1;w2;w/ 7! w 2 W0:

Then, obviously,

Qx ı…�1
0 D ıx (E.5)

and for i D 1; 2

Qx ı…�1
3 D PQ.D P ı . NW.i//�1/: (E.6)

Lemma E.0.11 There exists an N0 2 B.H/with �.N0/ D 0 such that for all x 2 Nc
0

we have that …3 is an . QF x
t /-Wiener process on . Q�; QF x;Qx/ taking values in NU.
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Proof By definition…3 is . QF x
t /-adapted for every x 2 H. Furthermore, for 0 6 s <

t; y 2 H, and A0; QA0 2 B.H/; Ai 2 Bs.B/; i D 1; 2; A3 2 Bs.W0/,

Z
QA0
EQx.exp.ihy;…3.t/ �…3.s/i NU/1A0�A1�A2�A3 /�.dx/

D
Z

QA0

Z
W0

exp.ihy;w.t/ � w.s/i NU/1A0.x/1A3.w/

K.1/
� ..x;w/;A1/K

.2/
� ..x;w/;A2/P

Q.dw/�.dx/

D
Z

QA0

Z
W0

exp.ihy;w.t/ � w.s/i NU/PQ.dw/Qx.A0 � A1 � A2 � A3/�.dx/;

where we used Lemma E.0.10(iii) in the last step. Now the assertion follows
by (E.6), a monotone class argument and the same reasoning as in the proof
of Proposition 2.1.13. ut
Lemma E.0.12 There exists an N1 2 B.H/, N0 � N1, with �.N1/ D 0 such that
for all x 2 Nc

1; .…1;…3/ and .…2;…3/ with stochastic basis . Q�; QF x;Qx; . QF x
t // are

weak solutions of (E.1) such that

…1.0/ D …2.0/ D x Qx-a.e.;

therefore, …1 D …2 Qx-a.e.

Proof ([26, Theorem 4.18, p. 109]) For i D 1; 2 consider the set Ai 2 QF x defined by

Ai WD
n
…i.t/ �…0 D

Z t

0

b.s;…i/ds C
Z t

0

N�.s;…i/d…3.s/ 8 t 2 Œ0;1/
o

\
�Z T

0

kb.t;…i/kEdt C
Z T

0

k�.t;…i/k2L2.U;H/dt < 1 8 T 2 Œ0;1/

�
:

Define A 2 B.H/˝ B.B/˝ B.W0/ analogously with …i replaced by the canonical
projection from H �B�W0 onto the second and…0;…3 by the canonical projection
onto the first and third coordinate respectively. Then by Lemma E.0.10(ii) for i D
1; 2

Z
H

Qx.Ai/ �.dx/

D
Z

H

Z
W0

Z
B

Z
B

1Ai.x;w1;w2;w/K
.1/
� ..x;w/; dw1/K

.2/
� ..x;w/; dw2/P

Q.dw/�.dx/

D P.i/� .A/ D P.i/.f.X.i/.0/;X.i/; NW.i// 2 Ag/ D 1: (E.7)
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Since all measures in the left-hand side of (E.7) are probability measures, it follows
that for �-a.e. x 2 H

1 D Qx.Ai/ D Qx.Ai;x/;

where for i D 1; 2

Ai;x WD
�
…i.t/ � x D

Z t

0

b.s;…i/ds C
Z t

0

N�.s;…i/d…3.s/8t 2 Œ0;1/

�

\
�Z T

0

kb.t;…i/kE C k�.t;…i/k2L2.U;H/dt < 1 8T 2 Œ0;1/

�
:

Hence the first assertion follows. The second then follows by the pathwise unique-
ness assumption in condition (ii) of the theorem. ut
Lemma E.0.13 There exists a B.H/˝ B.W0/

�˝PQ

=B.B/-measurable map

F� W H � W0 ! B

such that

K.1/
� ..x;w/; �/ D K.2/

� ..x;w/; �/ D ıF�.x;w/

(= Dirac measure on B.B/ with mass in F�.x;w//

for � ˝ PQ-a.e. .x;w/ 2 H � W0. Furthermore, F� is B.H/˝ Bt.W0/
�˝PQ

=Bt.B/-

measurable for all t 2 Œ0;1/, where B.H/˝ Bt.W0/
�˝PQ

denotes the completion
with respect to �˝ PQ in B.H/˝ B.W0/.

Proof By Lemma E.0.12 for all x 2 Nc
1, we have

1 D Qx.f…1 D …2g/

D
Z
W0

Z
B

Z
B

1D.w1;w2/K
.1/
� ..x;w/; dw1/K

.2/
� ..x;w/; dw2/P

Q.dw/;

where D WD f.w1;w1/ 2 B � Bjw1 2 Bg. Hence by Lemma E.0.9 there exists an
N 2 B.H/˝ B.W0/ such that �˝ PQ.N/ D 0 and for all .x;w/ 2 Nc there exists
an F�.x;w/ 2 B such that

K.1/
� ..x;w/; dw1/ D K.2/

� ..x;w/; dw1/ D ıF�.x;w/.dw1/:
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Set F�.x;w/ WD 0, if .x;w/ 2 N. Let A 2 B.B/. Then for i D 1; 2

fF� 2 Ag D .fF� 2 Ag \ N/ [ .fK.i/
� .�;A/ D 1g \ Nc/

and the measurability properties of F� follow from Lemma E.0.10. ut
We note here that, of course, F� depends on the two weak solutions .X.1/;W.1//

and .X.2/;W.2// chosen(!) above.

Lemma E.0.14 We have

X.i/ D F�.X
.i/.0/; NW.i// P.i/-a.e. for both i D 1 and i D 2:

In particular, any two weak solutions with initial law � have the same distribution
on B.

Proof By Lemmas E.0.10 and E.0.13 for both i D 1 and i D 2 we have

P.i/.fX.i/ D F�.X
.i/.0/; NW.i//g/

D
Z
H

Z
W0

Z
B

1fw1DF�.x;w/g.x;w1;w/ıF�.x;w/.dw1/P
Q.dw/�.dx/

D1:
ut

Let W 0 be another standard R
1-Wiener process on a stochastic basis

.�0;F 0;P0; .F 0
t // and � W �0 ! H an F 0

0=B.H/-measurable map such that
� D P0 ı ��1. Set

X0 WD F�.�; NW 0/:

Lemma E.0.15 .X0;W 0/ is a weak solution to (E.1) with X0.0/ D � P0-a.s. In
particular, if . QX;W 0/ is a weak solution to (E.1) on .�0;F 0;P0; .F 0

t // with QX.0/ D �

P0-a.e., then

QX D F�.�; NW 0/ P0-a.e.

Proof By the measurability properties of F� (cf. Lemma E.0.13) it follows that X0
is adapted. We have

P0.f� D X0.0/g/ D P0.f� D F�.�; NW 0/.0/g/
D �˝ PQ.f.x;w/ 2 H � W0jx D F�.x;w/.0/g/
D P.fX.0/ D F�.X.0/; NW/.0/g/ D 1;

where we used Lemma E.0.14 in the last step.
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To see that .X0;W 0/ is a weak solution we consider the set A 2 B.H/˝ B.B/˝
B.W0/ defined in the proof of Lemma E.0.12. We have to show that

P0.f.X0.0/;X0; NW 0/ 2 Ag/ D 1:

But since X0.0/ D � is P0-independent of NW 0, we have

Z
1A.X

0.0/;F�.X0.0/; NW 0/; NW 0/dP0

D
Z

H

Z
W0

1A.x;F�.x;w/;w/P
Q.dw/�.dx/

D
Z

H

Z
W0

Z
B

1A.x;w1;w/ıF�.x;w/.dw1/P
Q.dw/�.dx/

D
Z
1A.x;w1;w/P�.dx; dw1; dw/

DP.f.X.0/;X; NW/ 2 Ag/ D 1;

where we used Lemmas E.0.10 and E.0.13 in the second to last step. The last part
of the assertion now follows from condition (ii) in Theorem E.0.8. ut
Remark E.0.16 We stress that so far we have only used that we have (at least)
one weak solution to (E.1) with the fixed initial distribution �, and that pathwise
uniqueness holds for all solutions with initial distribution � or with a deterministic
starting point in a set of full �-measure.

To complete the proof we still have to construct F 2 OE (for which we shall use our
assumption (i) in Theorem E.0.8 in full strength, i.e. that we have a weak solution
for every initial distribution) and to check the adaptiveness conditions on it. Below
we shall also apply what we have just obtained above to ıx replacing �. So, for each
x 2 H we have a function Fıx W H � W0 ! B. Now define

F.x;w/ WD Fıx.x;w/; x 2 H; w 2 W0: (E.8)

The proof of Theorem E.0.8 is then completed by the following lemma.

Lemma E.0.17 Let � be a probability measure on .H;B.H// and F� W H �W0 !
B as constructed in Lemma E.0.13. Then for �-a.e. x 2 H

F.x; �/ D F�.x; �/ PQ � a:e:

Furthermore, F.x; �/ is Bt.W0/
PQ

=Bt.B/-measurable for all x 2 H; t 2 Œ0;1/, where

Bt.W0/
PQ

denotes the completion of Bt.W0/ with respect to PQ in B.W0/.
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In particular, (by Lemmas E.0.13 and E.0.15) Condition 1 and (by the last part
of Lemma E.0.15) Condition 2 in Definition E.0.6 hold.

Proof Let

N� WD H � B � W0

NF WD B.H/˝ B.B/˝ B.W0/

and let x 2 H. Define a measure NQx on . N�; NF/ by

NQx.A/ WD
Z

H

Z
W0

Z
B

1A.z;w1;w/K�..z;w/; dw1/P
Q.dw/ıx.dz/

with K� as in Lemma E.0.10. Consider the stochastic basis . N�; NF x; NQx; . NF x
t // where

NF x WD B.H/˝ B.B/˝ B.W0/
NQx
;

NF x
t WD

\
">0

�.B.H/˝ BtC".B/˝ BtC".W0/; NNx/;

where NNx WD fN 2 NF xj NQx.N/ D 0g. As in the proof of Lemma E.0.12 one shows
that for x outside a �-zero set N1 2 B.H/, .…;…3/ on . N�; NF x; NQx; . NF x

t // is a weak
solution to (E.1) with ….0/ D x NQx-a.e. Here

…0 W H � B � W0 ! H; .x;w1;w/ 7! x;

… W H � B � W0 ! B; .x;w1;w/ 7! w1;

…3 W H � B � W0 ! W0; .x;w1;w/ 7! w:

By Lemma E.0.15 .Fıx.x;…3/;…3/ on the stochastic basis . N�; NF x; NQx; . NF x
t // is a

weak solution to (E.1) with

Fıx.x;…3/.0/ D x NQx � a:s:

for every x 2 H. Hence by our pathwise uniqueness assumption (ii), it follows that
for all x 2 Nc

1

Fıx.x;…3/ D … NQx � a:s: (E.9)

For all A 2 B.H/˝ B.B/˝ B.W0/ by Lemma E.0.13

Z
H

Z
W0

Z
B

1A.x;w1;w/ıF�.x;w/.dw1/P
Q.dw/�.dx/ D

Z
H

NQx.A/�.dx/:
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But for each x 2 Nc
1 by (E.9)

NQx.A/ D
Z

N�
1A.…0;Fıx.x;…3/;…3/d NQx

D
Z
W0

1A.x;Fıx.x;w/;w/P
Q.dw/

D
Z
W0

Z
B

1A.x;w1;w/ıFıx .x;w/.dw1/P
Q.dw/: (E.10)

Since x 7! NQx.A/ D R
W0

R
B
1A.x;w1;w/K�..x;w/; dw1/PQ.dw/ is B.H/�-

measurable, so is the right-hand side of (E.10). Therefore, we can integrate with
respect to � and obtain

Z
H

Z
W0

Z
B

1A.x;w1;w/ıF�.x;w/.dw1/P
Q.dw/�.dx/

D
Z

H

Z
W0

Z
B

1A.x;w1;w/ıFıx .x;w/.dw1/P
Q.dw/�.dx/;

which implies the first assertion.
Let x 2 H; t 2 Œ0;1/; A 2 Bt.B/, and define

NFıx WD 1fxg�W0
Fıx :

Then

NFıx D Fıx ıx ˝ PQ � a:e:;

hence by the last part of Lemma E.0.13.

f NFıx 2 Ag 2 B.H/˝ Bt.W0/
ıx˝PQ

: (E.11)

But

f NFıx 2 Ag D fxg � fFıx.x; �/ 2 Ag [ .Hnfxg/� f0 2 Ag;

so by (E.11) it follows that

fFıx.x; �/ 2 Ag 2 Bt.W0/
PQ

:

ut
Remark E.0.18 For a detailed proof of the Yamada–Watanabe Theorem in the
framework of the “semigroup (or mild solution) approach” to SPDEs, we refer to
[63].



Appendix F
Continuous Dependence of Implicit Functions
on a Parameter

In this section we fix two Banach spaces .E; k kE/ and .ƒ; k kƒ/. For the whole
section we consider a mapping G W ƒ � E ! E with the following property:

There exists an ˛ 2 Œ0; 1Œ such that

kG.
; x/ � G.
; y/kE 6 ˛kx � ykE for all 
 2 ƒ and all

x; y 2 E:

Then we get by the contraction theorem that there exists exactly one mapping ' W
ƒ ! E such that '.
/ D G.
; '.
// for all 
 2 ƒ.

Theorem F.0.1 (Continuity of the Implicit Function)

(i) If we assume in addition that the mapping 
 7! G.
; x/ is continuous from ƒ

to E for all x 2 E we get that ' W ƒ ! E is continuous.
(ii) If there exists an L > 0 such that

kG.
; x/ � G. Q
; x/kE 6 Lk
 � Q
kƒ for all x 2 E
then the mapping ' W ƒ ! E is Lipschitz continuous.

Proof

(i) We fix 
0 2 ƒ. Then for any other 
 2 ƒ

'.
/� '.
0/ D G.
; '.
// � G.
0; '.
0//

D ŒG.
; '.
// � G.
; '.
0//�C ŒG.
; '.
0// � G.
0; '.
0//�:

Because of the contraction property we obtain that

k'.
/ � '.
0/kE 6 ˛k'.
/ � '.
0/kE C kG.
; '.
0// � G.
0; '.
0//kE
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and hence

k'.
/ � '.
0/kE 6 1

1 � ˛ kG.
; '.
0// � G.
0; '.
0//kE:

Therefore we get the result (i).
(ii) In the same way as in (i) we obtain that for arbitrary 
 and Q
 2 ƒ

k'.
/� '. Q
/kE 6 1

1 � ˛ kG.
; '. Q
//� G. Q
; '. Q
//kE 6 L

1 � ˛ k
 � Q
kƒ;

where we used the additional Lipschitz property of the mapping G in the last
step. ut



Appendix G
Strong, Mild and Weak Solutions

In this chapter we only state the results and refer to [26, 34] for the proofs.
As in previous chapters let .U; k kU/ and .H; k k/ be separable Hilbert spaces.

We take Q D I and fix a cylindrical Q-Wiener process W.t/, t > 0, in U on
a probability space .�;F ;P/ with a normal filtration Ft, t > 0. Moreover, we
fix T > 0 and consider the following type of stochastic differential equations
in H:

dX.t/ D ŒCX.t/C F.X.t//� dt C B.X.t// dW.t/; t 2 Œ0;T�;
X.0/ D �; (G.1)

where:

• C W D.C/ ! H is the infinitesimal generator of a C0-semigroup S.t/, t > 0, of
linear operators on H,

• F W H ! H is B.H/=B.H/-measurable,
• B W H ! L.U;H/,
• � is a H-valued, F0-measurable random variable.

Definition G.0.1 (Mild Solution) An H-valued predictable process X.t/,
t 2 Œ0;T�, is called a mild solution of (G.1) if

X.t/ D S.t/� C
Z t

0

S.t � s/F.X.s// ds

C
Z t

0

S.t � s/B.X.s// dW.s/ P-a.s. (G.2)

for each t 2 Œ0;T�. In particular, the appearing integrals have to be well-defined.
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Definition G.0.2 (Analytically Strong Solutions) A D.C/-valued predictable
process X.t/, t 2 Œ0;T�, (i.e. .s; !/ 7! X.s; !/ is PT=B.H/- measurable) is called
an analytically strong solution of (G.1) if

X.t/ D � C
Z t

0

CX.s/C F.X.s// ds C
Z t

0

B.X.s// dW.s/ P-a.s. (G.3)

for each t 2 Œ0;T�. In particular, the integrals on the right-hand side have to be
well-defined, that is, CX.t/, F.X.t//, t 2 Œ0;T�, are P-a.s. Bochner integrable and
B.X/ 2 NW .

Definition G.0.3 (Analytically Weak Solution) An H-valued predictable
process X.t/, t 2 Œ0;T�, is called an analytically weak solution of (G.1)
if

hX.t/; 
i D h�; 
i C
Z t

0

hX.s/;C�
i C hF.X.s//; 
i ds

C
Z t

0

h
;B.X.s//dW.s/i P-a.s. (G.4)

for each t 2 Œ0;T� and 
 2 D.C�/. Here .C�;D.C�/ is the adjoint of .C;D.C//
on H. In particular, as in Definitions G.0.2 and G.0.1, the appearing integrals have
to be well-defined.

Proposition G.0.4 (Analytically Weak Versus Analytically Strong Solutions)

(i) Every analytically strong solution of (G.1) is also an analytically weak
solution.

(ii) Let X.t/, t 2 Œ0;T�, be an analytically weak solution of (G.1) with values in
D.C/ such that B.X.t// takes values in L2.U;H/ for all t 2 Œ0;T�. We further
assume that

P

�Z T

0

kCX.t/k dt < 1
�

D 1

P

�Z T

0

kF.X.t//k dt < 1
�

D 1

P

�Z T

0

kB.X.t//k2L2 dt < 1
�

D 1:

Then the process is also an analytically strong solution.
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Proposition G.0.5 (Analytically Weak Versus Mild Solutions)

(i) Let X.t/, t 2 Œ0;T�, be an analytically weak solution of (G.1) such that
B.X.t// takes values in L2.U;H/ for all t 2 Œ0;T�. Besides we assume
that

P

�Z T

0

kX.t/k dt < 1
�

D 1

P

�Z T

0

kF.X.t//k dt < 1
�

D 1

P

�Z T

0

kB.X.t//k2L2 dt < 1
�

D 1:

Then the process is also a mild solution.
(ii) Let X.t/, t 2 Œ0;T�, be a mild solution of (G.1) such that the map-

pings

.t; !/ 7!
Z t

0

S.t � s/F.X.s; !// ds

.t; !/ 7!
Z t

0

S.t � s/B.X.s// dW.s/.!/

have predictable versions. In addition, we require that

P.
Z T

0

kF.X.t//k dt < 1/ D 1

Z T

0

E.
Z t

0

khS.t � s/B.X.s//;C�
ik2L2.U;R/ ds/ dt < 1

for all 
 2 D.C�/.
Then the process is also an analytically weak solution.

Remark G.0.6 The precise relation of mild and analytically weak solutions with
the variational solutions from Definition 4.2.1 is obviously more difficult to
describe in general. We shall concentrate just on the following quite typical special
case:
Consider the situation of Sect. 4.2, but with A and B independent of t and !. Assume
that there exist a self-adjoint operator .C;D.C// on H such that �C > const. > 0

and F W H ! H B.H/=B.H/-measurable such that

A.x/ D Cx C F.x/; x 2 V;
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and

V WD D..�C/
1
2 /;

equipped with the graph norm of .�C/
1
2 . Then it is easy to see that C extends to a

continuous linear operator form V to V�, again denoted by C such that for x 2 V ,
y 2 D.C/

V�

hCx; yiV D hx;Cyi: (G.5)

Now let X be a (variational) solution in the sense of Definition 4.2.1, then it follows
immediately from (G.5) that X is an analytically weak solution in the sense of
Definition G.0.3.



Appendix H
Some Interpolation Inequalities

For the following see [61, Lemma 2.1 and the subsequent remark].

Lemma H.0.1 Let ƒ � R
d be open, d 2 N and Lp WD Lp.ƒ/ for p 2 Œ1;1/.

(i) If d D 2, then k'k4
L4

6 4k'k2
L2

kr'k2
L2

for all ' 2 H1;2
0 .ƒ/:

(ii) If d D 3, then k'k4
L4

6 8k'kL2kr'k3
L2

for all ' 2 H1;2
0 .ƒ/:

(iii) If d D 2, then k' kL1 6 kD1'kL1kD2 kL1 for all '; 2 L2.ƒ/ \ H1;1
0 .ƒ/,

where Di WD @
@xi

.

Proof Obviously, by a density argument it suffices to show assertions .i/–.iii/ for
' 2 C1

0.ƒ/, since by Sobolev embedding H1;2
0 � Lp.ƒ/ for all p 2 Œ1;1Œ if d D 2,

and H1;2
0 .ƒ/ � L

2d
d�2 .ƒ/ if d > 3. Therefore, fix ' 2 C1

0.ƒ/.

(i) Using the chain rule and the fundamental theorem of calculus we obtain

'2 .x; y/ D
Z x

�1
D1

�
'2 .s; y/

�
ds D

Z x

�1
2'.s; y/D1'.s; y/ds

and hence
Z Z

'4 .x; y/ dx dy D
Z Z

'2 .x; y/ '2 .x; y/ dx dy

6 4

Z Z �Z
j' .s; y/j jD1' .s; y/j ds

�

�
�Z

j' .x; t/j jD2' .x; t/j dt

�
dx dy
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D 4

Z Z
j' .s; y/j jD1' .s; y/j ds dy

�
Z Z

j' .x; t/j jD2' .x; t/j dt dx

6 4k'kL2 kD1'kL2„ ƒ‚ …
6kr'kL2

k'kL2 kD2'kL2„ ƒ‚ …
6kr'kL2

6 4k'k2L2kr'k2L2 ;

where we used Fubini’s theorem and the Cauchy–Schwarz inequality.
(ii) Fix z 2 R. Again by the chain rule and the fundamental theorem of calculus

we have

'2 .x; y; z/ D
Z z

�1
D3'

2 .x; y; s/ ds 6 2

Z
R

j' .x; y; s/j jD3' .x; y; s/j ds:

Hence by (i)

Z Z
'4 .x; y; z/ dx dy 6 4

Z Z
'2 .x; y; z/ dx dy

Z Z ˇ̌rx;y' .x; y; z/
ˇ̌2

dx dy

6 4

Z Z Z
2 j' .x; y; s/j jD3' .x; y; s/j dsdxdy

�
Z Z ˇ̌rx;y' .x; y; z/

ˇ̌2
dx dy:

Integrating over z 2 R implies

k'k4L4 6 8

Z Z Z
j' .x; y; z/j jD3' .x; y; z/j dx dy dz

„ ƒ‚ …
6k'kL2kD3'kL26k'kL2kr'kL2

�
Z Z Z ˇ̌rx;y' .x; y; z/

ˇ̌2
dx dy dz

„ ƒ‚ …
6kr'k2

L2

6 8k'kL2kr'k3L2 :

(iii) By the fundamental theorem of calculus we have

' .x; y/ D
Z x

�1
D1' .s; y/ ds D

Z y

�1
D2' .x; t/ dt
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and by Fubini’s theorem we get for all  2 C1
0.ƒ/

Z Z
' .x; y/  .x; y/ dx dy

6
Z Z �Z

jD1' .s; y/j ds

� �Z
jD2 .x; t/j dt

�
dx dy

D
Z Z

jD1' .s; y/j ds dy
Z Z

jD2 .x; t/j dt dx

D kD1'kL1kD2 kL1 :

ut



Appendix I
Girsanov’s Theorem in Infinite Dimensions
with Respect to a Cylindrical Wiener Process

In this section, which is an extended version of [23, Appendix A.1], we consider the
Girsanov theorem for stochastic differential equations on Hilbert spaces of type (I.2)
below with cylindrical Wiener noise. We shall give a complete and reasonably self-
contained proof of this well-known folklore result (see, for instance, [26, 32, 36]).
The proof is reduced to the Girsanov theorem of general real-valued continuous
local martingales (see [70, (1.7) Theorem, page 329]).

We consider the following situation: We are given a negative definite self-adjoint
operator A W D.A/ � H ! H on a separable Hilbert space .H; h�; �i/ with .�A/�1Cı
being of trace class, for some ı 2�0; 1Œ, a measurable map F W H ! H of at
most linear growth and W a cylindrical Wiener process over H defined on a filtered
probability space .�;F ; .Ft/;P/ represented in terms of the eigenbasis .ek/k2N of
.A;D.A// through a sequence

W.t/ D .Wk.t/ek/k2N; t � 0; (I.1)

where Wk, k 2 N, are independent real-valued Brownian motions starting at zero on
.�;F ; .Ft/;P/. Consider the stochastic equations

dX.t/ D .AX.t/C F.X.t///dt C dW.t/; t 2 Œ0;T�; X.0/ D x; (I.2)

and

dZ.t/ D AZ.t/dt C dW.t/; t 2 Œ0;T�; Z.0/ D x; (I.3)

for some T > 0.

Theorem I.0.2 Let x 2 H. Then (I.2) has a unique weak mild solution and its law
Px on C.Œ0;T�I H/ is equivalent to the law Qx of the solution to (I.3) (which is just
the classical Ornstein–Uhlenbeck process). If F is bounded x may be replaced by an
F0-measurable H-valued random variable.
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The rest of this section is devoted to the proof of this theorem. We first need
some preparation and start by recalling that because TrŒ.�A/�1Cı� < 1, ı 2�0; 1Œ,
the stochastic convolution

WA.t/ WD
Z t

0

e.t�s/A dW.s/; t � 0; (I.4)

is a well defined Ft-adapted stochastic process (“OU process”) with continuous
paths in H and

Z.t; x/ WD etAx C WA.t/; t 2 Œ0;T�; (I.5)

is the unique mild solution of (I.2). Let

Qx WD P ı Z.�; x/�1; (I.6)

and b.t/, t � 0, be a progressively measurable H-valued process on .�;F ; .Ft/;P/
such that

E

�Z T

0

jb.s/j2ds

�
< 1: (I.7)

Define

Y.t/ WD
Z t

0

hb.s/; dW.s/i WD
X
k�1

Z t

0

hb.s/; eki dWk.s/; t 2 Œ0;T�: (I.8)

Lemma I.0.3 The series on the r.h.s. of (I.8) converges in L2.�;PI C.Œ0;T�IR//.
Hence the stochastic integral Y.t/ is well defined and a continuous real-valued
martingale, which is square integrable.

Proof We have for all n;m 2 N, n > m, by Doob’s inequality

E
h

sup
t2Œ0;T�

ˇ̌̌ nX
kDm

Z t

0

hek; b.s/i dWk.s/
ˇ̌̌2i 	 2E

hˇ̌̌ nX
kDm

Z T

0

hek; b.s/i dWk.s/
ˇ̌̌2i

D 2

nX
k;lDm

E
h Z T

0

hek; b.s/i dWk.s/
Z T

0

hel; b.s/i dWl.s/
i

D 2

nX
kDm

E

�Z T

0

hek; b.s/i2 ds

�
! 0;

as m; n ! 1 because of (I.7). Hence the series on the right-hand side of (I.8)
converges in L2.�;PI C.Œ0;T�IR// and the assertion follows. ut
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Remark I.0.4 It can be shown that if
R t
0
hb.s/; dW.s/i; t 2 Œ0;T�; is defined as usual,

using approximations by elementary functions (see [67, Lemma 2.4.2]) the resulting
process is the same.

It is now easy to calculate the corresponding variation process
˝R �
0
hb.s/; dW.s/i˛

t
;

t 2 Œ0;T�:
Lemma I.0.5 We have

hYit D

Z �

0

hb.s/; dW.s/i
�

t

D
Z t

0

jb.s/j2 ds; t 2 Œ0;T�:

Proof We have to show that

Y2.t/ �
Z t

0

jb.s/j2ds; t 2 Œ0;T�;

is a martingale, i.e. for all bounded Ft-stopping times � we have

EŒY2.�/� D E

�Z �

0

jb.s/j2 ds

�
;

which follows immediately as in the proof of Lemma I.0.3. ut
Define the measure

eP WD eY.T/� 1
2 hYiT � P; (I.9)

on .�;F/, which is equivalent to P. Since E.t/ WD eY.t/� 1
2 hYit ; t 2 Œ0;T�;

is a nonnegative local martingale, it follows by Fatou’s Lemma that E is a
supermartingale, and since E.0/ D 1, we have

EŒE.t/� 	 EŒE.0/� D 1:

HenceeP is a sub-probability measure.

Proposition I.0.6 Suppose thateP is a probability measure i.e.

EŒE.T/� D 1: (I.10)

Then

eWk.t/ WD Wk.t/ �
Z t

0

hek; b.s/i ds; t 2 Œ0;T�; k 2 N;
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are independent real-valued Brownian motions starting at 0 on .�;F ; .Ft/;eP/ i.e.

eW.t/ WD .eWk.t/ek/k2N; t 2 Œ0;T�;

is a cylindrical Wiener process over H on .�;F ; .Ft/;eP/.
Proof By the classical Girsanov Theorem (for general real-valued martingales, see
[70, (1.7) Theorem, page 329]) it follows that for every k 2 N

Wk.t/ � hWk;Yit; t 2 Œ0;T�;

is a local martingale undereP. Set

Yn.t/ WD
nX

kD1

Z t

0

hek; b.s/i dWk.s/; t 2 Œ0;T�; n 2 N:

Then, because by Cauchy–Schwartz’s inequality

jhWk;Y � Ynitj 6 hWki1=2t hY � Yni1=2t ; t 2 Œ0;T�; n 2 N;

and since

EŒhY � Ynit� D EŒ.Y.t/ � Yn.t//
2� ! 0 as n ! 1;

by Lemma I.0.3, we conclude that (selecting a subsequence if necessary) P-a.s. for
all t 2 Œ0;T�

hWk;Yit D lim
n!1hWk;Ynit D

Z t

0

hek; b.s/i ds;

since hWk;Wlit D 0 if k ¤ l, by independence. Hence each eWk is a local martingale
undereP:

It remains to show that for every n 2 N; .eW1; :::; eWn/ is, under eP, an n-
dimensional Brownian motion. But P-a.s. for l ¤ k

heWl; eWkit D hWl;Wkit D ıl;k t; t 2 Œ0;T�:

Since P is equivalent to eP, this also holdseP-a.s. Hence by Lèvy’s Characterization
Theorem [70, (3.6) Theorem, page 150] it follows that .eW1; :::; eWn/ is an n-
dimensional Brownian motion in R

n for all n, undereP. ut
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Proposition I.0.7 Let WA.t/; t 2 Œ0;T�; be defined as in (I.4). Then there exists an
� > 0 such that

E

2
4exp

(
� sup

t2Œ0;T�
jWA.t/j

) 23
5 < 1:

Proof Consider the distribution Q0 WD PıW�1
A of WA on E WD C.Œ0;T�I H/. If Q0 is

a Gaussian measure on E, the assertion follows by Fernique’s Theorem (see [31]).
To show that Q0 is a Gaussian measure on E we have to show that for each l in the
dual space E0 of E we have that Q0 ı l�1 is Gaussian on R. We prove this in two
steps.

Step 1. Let t0 2 Œ0;T�, h 2 H and `.!/ WD hh; !.t0/i for ! 2 E. To see that
Q0 ı `�1 is Gaussian on R; consider a sequence ık 2 C.Œ0;T�IR/; k 2 N; such
that ık.t/dt converges weakly to the Dirac measure �t0 : Then for all ! 2 E

`.!/ D lim
k!1

Z T

0

hh; !.s/i ık.s/ ds D lim
k!1

Z T

0

hhık.s/; !.s/i ds

D lim
k!1 hhık; !iL2.Œ0;T�IH/ :

Since (e.g. by Da Prato [19, Proposition 2.15]) the law of WA in L2.Œ0;T�I H/ is
Gaussian, it follows that the distribution of ` is Gaussian.

Step 2. Let ` 2 E0 be arbitrary. The following argument is taken from [24,
Proposition A.2]. Let ! 2 E, then we can consider its Bernstein approximation

ˇn.!/.t/ WD
nX

kD1

 
n

k

!
'k;n.t/!.Tk=n/; n 2 N; t 2 Œ0;T�;

where 'k;n.t/ WD .tT/k.1 � tT/n�k: But the linear map

H 3 x ! `.x'k;n/ 2 R

is continuous on H, hence there exists an hk;n 2 H such that

`.x'k;n/ D hhk;n; xi; x 2 H:

Since ˇn.!/ ! ! uniformly for all ! 2 E as n ! 1, it follows that for all
! 2 E

`.!/ D lim
n!1 `.ˇn.!// D lim

n!1

nX
kD1

 
n

k

!
hhk;n; !.Tk=n/i:

Hence it follows by Step 1 that Q0 ı `�1 is Gaussian. ut
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Now we turn to SDE (I.2). We are going to apply the above with

b.t/ WD 1

2
F.etAx C WA.t//; t 2 Œ0;T�;

and define

M WD e
R T
0 hF.etAxCWA.t//;dW.t/i� 1

2

R T
0 jF.etAxCWA.t//j2dt;

ePx WD MP:

(I.11)

Proposition I.0.8 ePx is a probability measure on .�;F/, i.e. E.M/ D 1.

Proof As before we set Z.t; x/ WD etAx C WA.t/; t 2 Œ0;T�. By Proposition I.0.7
the arguments below are standard, (see e.g. [49, Corollaries 5.14 and 5.16, pages
199/200]). Since F is of at most linear growth, by Proposition I.0.7 we can find
N 2 N large enough such that for all 0 	 i 	 N and ti WD iT

N

E
h
e
1
2

R ti
ti�1

jF.etAxCWA.t//j2dt
i
< 1:

Defining Fi.etAx C WA.t// WD 1.ti�1;ti�.t/F.e
tAx C WA.t// it follows from Novikov’s

criterion [70, (1.16) Corollary, page 333] that for all 1 	 i 	 N

Ei.t/ WD e
R t
0hFi.esAxCWA.s//;dW.s/i� 1

2

R t
0 jFi.esAxCWA.s/j2ds; t 2 Œ0;T�;

is an Ft-martingale under P. But then since Ei.ti�1/ D 1, by the martingale property
of each Ei we can conclude that

E
h
e
R t
0hF.esAxCWA.s//;dW.s/i� 1

2

R t
0 jF.esAxCWA.s/j2ds

i

D E ŒEN.tN/EN�1.tN�1/ � � �E1.t1/�

D E ŒEN.tN�1/EN�1.tN�1/ � � �E1.t1/�

D E ŒEN�1.tN�1/ � � �E1.t1/�

� � �

D EŒE1.t1/� D EŒE1.t0/� D 1:

ut
Remark I.0.9 It is obvious from the previous proof that x may always be replaced
by an F0-measurable H-valued map which is exponentially integrable, and by any
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F0-measurable H-valued map if F is bounded. The same holds for the rest of the
proof of Theorem I.0.2, i.e., the following two propositions.

Proposition I.0.10 We haveePx-a.s.

Z.t; x/ D etAx C
Z t

0

e.t�s/AF.Z.s; x// ds C
Z t

0

e.t�s/A deW.s/; t 2 Œ0;T�; (I.12)

where eW is the cylindrical Wiener process underePx introduced in Proposition I.0.6
with b.s/ WD F.Z.s; x//, which applies because of Proposition I.0.8, i.e. under ePx,
Z.�; x/ is a mild solution of

dZ.t/ D .AZ.t/C F.Z.t///dt C deW.t/; t 2 Œ0;T�; Z.0/ D x:

Proof Since F is of at most linear growth and because of Proposition I.0.7, to prove
(I.12) it is enough to show that for all k 2 N and Fk WD hek;Fi ; Zk WD hek;Zi ; xk WD
hek; xi for x 2 H we have, since Aek D �
kek, that

dZk.t; x/ D .�
kZk.t; x/C Fk.Z.t; x///dt C deWk.t/; t 2 Œ0;T�; Zk.0/ D xk:

But this is obvious by the definition of eWk: ut
Proposition I.0.10 settles the existence part of Theorem I.0.2. Now let us turn to

the uniqueness part and complete the proof of Theorem I.0.2.

Proposition I.0.11 The weak solution to (I.2) constructed above is unique and its
law is equivalent to Qx.

Proof Let X.t; x/; t 2 Œ0;T�; be a weak mild solution to (I.2) on a filtered
probability space .�;F ; .Ft/;P/ for a cylindrical process of type (I.1). Hence

X.t; x/ D etAx C WA.t/C
Z t

0

e.t�s/AF.X.s; x// ds;

for some cylindrical Wiener process W.t/ D .Wk.t/ ek/k2N; t 2 Œ0;T�, on some
filtered probability space .�;F ; .Ft/;P/. Since F is at most of linear growth, it
follows from Gronwall’s inequality that for some constant C � 0

sup
t2Œ0;T�

jX.t; x/j 	 C1

 
1C sup

t2Œ0;T�
jetAx C WA.t/j

!
:

Hence by Proposition I.0.7

E

2
4exp

(
� sup

t2Œ0;T�
jX.t; x/j

) 23
5 < 1: (I.13)
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Define

M WD e� R T
0 hF.X.s;x//;dW.s/i� 1

2

R T
0 jF.X.s;x//j2ds

and

eP WD M � P:

Then by exactly the same arguments as above

EŒM� D 1:

Hence by Proposition I.0.6 defining

eWk.t/ WD Wk.t/C
Z t

0

hek;F.X.s; x//i ds; t 2 Œ0;T�; k 2 N;

we obtain that eW.t/ WD .eWk.t/ek/k2N is a cylindrical Wiener process under eP and
thus

eWA.t/ WD
Z t

0

e.t�s/A deW.s/ D WA.t/C
Z t

0

e.t�s/AF.X.s; x// ds; t 2 Œ0;T�;

and therefore,

X.t; x/ D etAx C eWA.t/; t 2 Œ0;T�;

is an Ornstein–Uhlenbeck process undereP starting at x. Consequently,

eP ı X.�; x/�1 D Qx: (I.14)

But since it is easy to see that,

Z T

0

hF.X.s; x//; dW.s/i D
Z T

0

hF.X.s; x//; deW.s/i �
Z T

0

jF.X.s; x//j2 ds;

it follows that

P D e
R T
0 hF.X.s;x//;deW.s/i� 1

2

R T
0 jF.X.s;x//j2ds �eP:

For k 2 N define bWk W C.Œ0;T�I H/ ! R by

bWk.w/.t/WD
˝
ek; etAx � w.t/

˛C
k

Z t

0

˝
ek; e

sAx � w.s/
˛
ds; w 2 C.Œ0;T�I H/; t 2 Œ0;T�:
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Then, since for k 2 N; t 2 Œ0;T�

eWk.t/ D ˝
ek; eWA.t/

˛ C 
k

Z t

0

˝
ek; eWA.s/

˛
ds

and

X.t; x/ D etAx C eWA.t/;

it follows that

bWk.X.�; x/.!//.t/ D eWk.!/.t/; k 2 N; t 2 Œ0;T�; ! 2 �: (I.15)

Hence .bWk.t//t2Œ0;T� ; k 2 N, are independent Brownian motions on .C.Œ0;T�I H/;
FX; .FX

t /;Qx/, where FX;FX
t are the image �-algebras under X.�; x/ of F and Ft

respectively. It is easy to check that FX
t ; t 2 Œ0;T�, is a normal filtration and that

F	
t � FX

t for all t 2 Œ0;T�; (I.16)

where F	
t is the normal filtration associated to the process 	.t/ W C.Œ0;T�I H/ ! H

defined by

	.t/.w/ WD w.t/; t 2 Œ0;T�; w 2 C.Œ0;T�I H/;

with respect to the measure Qx on C.Œ0;T�I H/ equipped with its Borel �-algebra
F	

T .D �.f	.t/jt 2 Œ0;T�g//, i.e. for t 2 Œ0;T�

F	
t WD

\
s>t

�.�.	.r/jr 6 s/ [ NQx/;

where NQx WD fN 2 F	
T jQx.N/ D 0g.

Since each bWk.t/; t 2 Œ0;T�; is .�.	.r/jr 6 t//t2Œ0;T� adapted, it is an .F	
t /-

Brownian motion due to (I.16). Hence the stochastic integral in the following
definition is well-defined:

�x.w/ WD e
R T
0

D
F.	.s//; dbW.s/E.w/� 1

2

R T
0 jF.w.s//j2ds

; w 2 C.Œ0;T�I H/; (I.17)

where

bW.t/ WD .bWk.t/ek/k2N; t 2 Œ0;T�;

is the cylindrical Wiener process on H corresponding to bWk.t/; t 2 Œ0;T�; k 2 N.
We emphasize that thus �x W C.Œ0;T�I H/ !�0;1Œ is an F	

T .� FX
T /-measurable

function which is defined independently of X.�; x/; .�;F ; .Ft/;P/ and W. The
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definition of the stochastic integral in (I.17) is analogous to (I.8). Hence, due to
the general construction of R-valued stochastic integrals, it follows thateP-a.s.

�x.X.�; x// D e
R T
0 hF.X.s;x//; dW.s/i� 1

2

R T
0 jF.X.s;x//j2ds :

Since, therefore, P D �x.X.�; x//eP, we deduce from (I.14) that

P ı X.�; x/�1 D �xQx :

ut
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30. Elezović, N., Mikelić, A.: On the stochastic Cahn-Hilliard equation. Nonlinear Anal. 16, 1169–

1200 (1991)
31. Fernique, X.: Régularité des Trajectoires des Fonctions Aleátoires Gaussiennes. In: Hennequin,

P.L. (ed.) Ecoles d’Eté de Probabilités de Saint-Flour IV-1975. Lecture Notes in Mathematics,
vol. 480, pp. 1–97. Springer, Berlin (1975)

32. Ferrario, B.: Uniqueness and absolute continuity for semilinear SPDE’s. In: Dalang, R.C.,
Dozzi, M., Russo, F. (eds.) Seminar on Stochastic Analysis, Random Fields and Applications
VII. Progress in Probability, vol. 87, Birkhäuser/Springer Basel AG, Basel (2013)

33. Freidlin, M.: Some remarks on the Smoluchowski-Kramers approximation. J. Stat. Phys. 117,
617–634 (2004)

34. Frieler, K., Knoche, C.: Solutions of stochastic differential equations in infinite dimensional
Hilbert spaces and their dependence on initial data. Diploma Thesis, Bielefeld University,
BiBoS-Preprint E02-04-083 (2001)

35. Fritz, P., Hairer, M.: A Course on Rough Paths, with an Introduction to Regularity Structures.
Springer, New York (2014)

36. Gatarek, D., Goldys, B.: On solving stochastic evolution equations by the change of drift with
application to optimal control. In: Stochastic Partial Differential Equations and Applications
(Trento, 1990). Pitman Research Notes in Mathematics Series, vol. 268, pp. 180–190.
Longman Sci. Tech., Harlow (1992)

37. Gawarecki, L., Mandrekar, V.: Stochastic differential equations in infinite dimensions with
applications to stochastic partial differential equations. In: Probability and Its Applications
(New York). Springer, Heidelberg (2011)

38. Gess, B., Liu, W., Röckner, M.: Random attractors for a class of stochastic partial differential
equations driven by general additive noise. J. Differ. Equ. 251, 1225–1253 (2011)

39. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 224. Springer, Berlin (1983)

40. Gyöngy, I.: On stochastic equations with respect to semimartingales, III. Stochastics 7, 231–
254 (1982)



References 263

41. Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales, I. Stochas-
tics 4, 1–21 (1980/1981)

42. Gyöngy, I., Krylov, N.V.: On stochastics equations with respect to semimartingales, II. Itô
formula in Banach spaces. Stochastics 6, 153–173 (1981/1982)

43. Hairer, M.: Solving the KPZ equation. Ann. Math. 2, 559–664 (2013)
44. Hairer, M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)
45. Heywood, J.: On a conjecture concerning the Stokes problem in nonsmooth domains. In:

Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 195–205.
Birkhäuser, Basel (2001)

46. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic partial differential equations. In: A
Modeling, White Noise Functional Approach, 2nd edn. Springer, New York (2010)

47. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-
Holland Mathematical Library, vol. 24. North-Holland, Amsterdam (1981)

48. Kallianpur, G., Xiong, J.: Stochastic Differential Equations in Infinite-Dimensional Spaces.
Institute of Mathematical Statistics Lecture Notes-Monograph Series, vol. 26. Institute of
Mathematical Statistics, Hayward (1995)

49. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in
Mathematics, vol. 113. Springer, New York (1988)

50. Kotelenez, P.: Stochastic ordinary and stochastic partial differential equations. Transition from
microscopic to macroscopic equations. In: Stochastic Modelling and Applied Probability,
vol. 58. Springer, New York (2008)

51. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica 7, 284–304 (1940)

52. Krylov, N.V.: On Kolmogorov’s equations for finite-dimensional diffusions. In: Stochastic
PDE’s and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998). Lecture Notes in
Mathematics, vol. 1715, pp. 1–63. Springer, Berlin (1999)

53. Krylov, N.V., Röckner, M., Zabczyk, J.: Stochastic PDE’s and Kolmogorov Equations in
Infinite Dimensions. Lecture Notes in Mathematics, vol. 1715. Springer, Berlin (1999)

54. Krylov, N.V., Rozovskiı̆, B.L.: Stochastic evolution equations. In: Current Problems in
Mathematics. Akad. Nauk SSSR, vol. 14 (Russian), pp. 71–147, 256. Vsesoyuz. Inst. Nauchn.
i Tekhn. Informatsii, Moscow (1979)

55. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–
248 (1934)

56. Lipster, R., Shiryaev, A.: Theory of Martingales. Kluwer Academic, Dordrecht (1989)
57. Liu, W.: Existence and uniqueness of solutions to nonlinear evolution equations with locally

monotone operators. Nonlinear Anal. 74, 7543–7561 (2011)
58. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct.

Anal. 259, 2902–2922 (2010)
59. Liu, W., Röckner, M.: Local and global well-posedness of SPDE with generalized coercivity

conditions. J. Differ. Equ. 254, 725–755 (2013)
60. Meise, R., Vogt, D.: Einführung in die Funktionalanalysis. Vieweg, New York (1992)
61. Menaldi, J.-L., Sritharan, S.: Stochastic 2D Navier-Stokes equation. Appl. Math. Optim. 46,

31–53 (2002)
62. Novick-Cohen, A.: The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv.

Math. Sci. Appl. 8, 965–985 (1998)
63. Ondreját, M.: Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes

Math. (Rozprawy Mat.) 426, 1–63 (2004)
64. Pardoux, É.: Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad.

Sci. Paris Sér. A-B 275, A101–A103 (1972)
65. Pardoux, É.: Équations aux dérivées partielles stochastiques de type monotone. In: Séminaire

sur les Équations aux Dérivées Partielles (1974–1975), III, Exp. No. 2, p. 10. Collège de France,
Paris (1975)



264 References

66. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. An
Evolution Equation.. Encyclopedia of Mathematics and Its Applications, vol. 113. Cambridge
University Press, Cambridge (2007)

67. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations.
Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

68. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic, London (1972)
69. Ren, J., Röckner, M., Wang, F.: Stochastic generalized porous media and fast diffusion

equations. J. Differ. Equ. 238, 118–152 (2007)
70. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293.
Springer, Berlin (1999)

71. Röckner, M., Schmuland, B., Zhang, X.: Yamada-Watanabe Theorem for stochastic evolution
equations in infinite dimensions. Cond. Matt. Phys. 11, 247–259 (2008)

72. Röckner, M., Zhang, T.-S.: Stochastic 3D tamed Navier-Stokes equation: existence, uniqueness
and small time large deviation principles. J. Differ. Equ. 252, 716–744 (2012)

73. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness
and ergodicity. Probab. Theor. Relat. Fields 145, 211–267 (2009)

74. Röckner, M., Zhang, X.: Tamed 3D Navier-Stokes equation: existence, uniqueness and
regularity. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 525–549 (2009)

75. Rozovskiı̆, B.: Stochastic Evolution Systems. Mathematics and Its Applications, vol. 35.
Kluwer Academic, Dordrecht (1990)

76. Smoluchowski, M.: Drei Vorträge über Diffusion Brownsche Bewegung und Koagulation von
Kolloidteilchen. Physik Zeit. 17, 557–585 (1916)

77. Sohr, H.: The Navier-Stokes Equations. Birkhäuser Advanced Texts: Basler Lehrbücher
[Birkhäuser Advanced Texts: Basel Textbooks], An Elementary Functional Analytic Approach.
Birkhäuser, Basel (2001)

78. Taira, K.: Analytic Semigroups and Semilinear Initial Boundary Value Problems. Cambridge
University Press, Cambridge (1995)

79. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis AMS Chelsea Publish-
ing, Providence (2001) [Reprint of the 1984 edition]

80. Walsh, J.B.: An introduction to stochastic partial differential equations. In: École d’été de
Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–
439. Springer, Berlin (1986)

81. Weizsäcker, H., Winkler, G.: Stochastic Integrals: An Introduction. Vieweg, New York (1990)
82. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/B. Nonlinear Monotone

Operators. Springer, New York (1990) [Translated from the German by the author and Leo F.
Boron]

83. Zhang, X.: A tamed 3D Navier-Stokes equation in uniform C2-domains. Nonlinear Anal. 71,
3093–3112 (2009)



Index

Bihari’s inequality, 149
Bochner inequality, 211
Bochner integral, 209
Burkholder–Davis–Gundy type inequality,

180
Burkholder–Davis inequality, 225

Coercivity, 70
weak, 56

Conditional expectation, 23
Covariance operator, 10

Demicontinuity, 71

Elementary process, 27
Euler method, 62

Factorization formula, 201
Fundamental theorem of calculus, 212

Gaussian
- law, 10
- measure, 9
random variable, 14

Gelfand triple, 69
Girsanov’s Theorem in infinite dimensions,

251

Heat equation, 81
Hemicontinuity, 70
Hilbert–Schmidt norm, 217

Interpolation inequalities, 247
Invariant measure, 109
Itô formula, 92, 180
Itô isometry, 30

Localization procedure, 36

Markov property, 109
Martingale, 25
Maximal inequality, 25
Mild solution, 182
Monotonicity

local, 124
local weak, 56
trick, 73
weak, 70

Normal filtration, 21

Operator
Hilbert–Schmidt -, 217
nonnegative -, 215
nuclear -, 215

© Springer International Publishing Switzerland 2015
W. Liu, M. Röckner, Stochastic Partial Differential Equations: An Introduction,
Universitext, DOI 10.1007/978-3-319-22354-4

265



266 Index

p-Laplace, 81
porous medium, 84
pseudo monotone, 150
symmetric -, 215
trace class -, 215

Ornstein–Uhlenbeck process, 81

Predictable process, 33
Predictable � -field, 33
Pseudo inverse, 221

Quadratic variation, 45

Sobolev space, 78
Solution

analytically strong -, 244
analytically weak -, 244
mild -, 243
strong -, 230
weak -, 228

Stochastically integrable process, 36
Stochastic convolution, 201
Stochastic differential equation

Burgers equation, 5
Cahn–Hilliard equation, 6, 172
heat equation, 81
- in finite dimensions, 56

- in infinite dimensions, 70
2D Navier–Stokes equation, 5, 142
3D Navier–Stokes equation, 5, 165
p-Laplace equation, 5, 81
porous media equation, 6
reaction diffusion equation, 5
semilinear, 137
surface growth model, 6, 176
tamed 3D Navier–Stokes equation, 170

Stochastic Fubini Theorem, 181
Stochastic integral, 27
Strong measurability, 210

Trace, 215

Uniqueness
pathwise -, 229
strong -, 230
weak -, 229

Wiener process
Cylindrical, 49
Q, 18

Yamada–Watanabe Theorem, 231


	Contents
	1 Motivation, Aims and Examples
	1.1 Motivation and Aims
	1.2 General Philosophy and Examples

	2 The Stochastic Integral in General Hilbert Spaces (w.r.t. Brownian Motion)
	2.1 Infinite-Dimensional Wiener Processes
	2.2 Martingales in General Banach Spaces
	2.3 The Definition of the Stochastic Integral
	2.3.1 Scheme of the Construction of the Stochastic Integral
	2.3.2 The Construction of the Stochastic Integral in Detail

	2.4 Properties of the Stochastic Integral
	2.5 The Stochastic Integral for Cylindrical Wiener Processes 
	2.5.1 Cylindrical Wiener Processes
	2.5.2 The Definition of the Stochastic Integral for Cylindrical Wiener Processes


	3 SDEs in Finite Dimensions
	3.1 Main Result and A Localization Lemma
	3.2 Proof of Existence and Uniqueness

	4 SDEs in Infinite Dimensions and Applications to SPDEs
	4.1 Gelfand Triples, Conditions on the Coefficients and Examples
	4.2 The Main Result and An Itô Formula
	4.3 Markov Property and Invariant Measures

	5 SPDEs with Locally Monotone Coefficients
	5.1 Local Monotonicity
	5.1.1 Main Result
	5.1.2 Proof of the Main Theorem
	5.1.3 Application to Examples

	5.2 Generalized Coercivity
	5.2.1 Main Results
	5.2.2 Proofs of the Main Theorems
	5.2.3 Application to Examples
	3D Navier–Stokes Equation
	A Tamed 3D Navier–Stokes Equation
	The Cahn–Hilliard Equation
	Surface Growth PDE with Noise


	6 Mild Solutions
	6.1 Prerequisites for This Chapter
	6.1.1 The Itô Formula
	6.1.2 A Burkholder–Davis–Gundy Type Inequality
	6.1.3 Stochastic Fubini Theorem

	6.2 Existence, Uniqueness and Continuity with Respect to the Initial Data
	6.3 Smoothing Property of the Semigroup: Pathwise Continuity of the Mild Solution

	A The Bochner Integral
	A.1 Definition of the Bochner Integral
	A.2 Properties of the Bochner Integral

	B Nuclear and Hilbert–Schmidt Operators
	C The Pseudo Inverse of Linear Operators
	D Some Tools from Real Martingale Theory
	E Weak and Strong Solutions: The Yamada–Watanabe Theorem
	F Continuous Dependence of Implicit Functions on a Parameter
	G Strong, Mild and Weak Solutions
	H Some Interpolation Inequalities
	I Girsanov's Theorem in Infinite Dimensions with Respect to a Cylindrical Wiener Process
	References
	Index

