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Chapter 1
Motivation, Aims and Examples

1.1 Motivation and Aims

In this course we will concentrate on (nonlinear) stochastic partial differential
equations (SPDEs) of evolutionary type. All kinds of dynamics with stochastic
influence in nature or man-made complex systems can be modeled by such
equations. As we shall see from the examples at the end of this section, the state
spaces of their solutions are necessarily infinite dimensional, such as spaces of
(generalized) functions. In this course the state spaces, denoted by H, will be mostly
separable Hilbert spaces, sometimes separable Banach spaces.

There is also enormous research activity on SPDEs where the state spaces are
not linear, but rather spaces of measures (particle systems, dynamics in population
genetics) or infinite-dimensional manifolds (path or loop spaces over Riemannian
manifolds).

There are basically three approaches to analyzing SPDEs: the “martingale
(or martingale measure) approach” (cf. [80]), the “semigroup (or mild solution)
approach” (cf. [26, 27]) and the “variational approach” (cf. [75]). There is an
enormously rich literature on all three approaches which cannot be listed here.
We refer instead to the above and the following other monographs on SPDEs:
[6, 13, 16, 19, 20, 26-28, 37, 46, 48, 50, 53, 66] and the references therein.

The purpose of this course is to give an introduction to the “variational
approach”, as self-contained as possible, including the “local case”, i.e. where, e.g.
the standard (weak) monotonicity conditions only hold locally. In the “global case”
this approach was initiated in the pioneering work of E. Pardoux [64, 65] and further
developed by N. Krylov and B. Rozovskii in [54] for continuous martingales as
integrators in the noise term and later by I. Gyongy and N. Krylov in [40—-42] for
not necessarily continuous martingales.

The predecessor [67] of this monograph grew out of a two-semester graduate
course given by the second-named author at Purdue University in 2005/2006. This
extended edition of [67] is the outcome of a two semester graduate course held at the
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2 1 Motivation, Aims and Examples

University of Bielefeld in 2012/2013. Prerequisites would be an advanced course in
probability theory, covering standard martingale theory, stochastic processes in R?
and maybe basic stochastic integration, though the latter is not formally required.
Since graduate students in probability theory are usually not familiar with the theory
of Hilbert spaces or basic linear operator theory, all required material from these
areas is included in the text, most of it in the appendices. For the same reason we
minimize the general theory of martingales on Hilbert spaces, paying, however, the
price that some proofs concerning stochastic integration on Hilbert space are a bit
lengthy, since they have to be done “with bare hands”.

For simplicity we specialize to the case where the integrator in the noise term
is just a cylindrical Wiener process, but everything is spelt out in such a way that
it generalizes directly to continuous local martingales. In particular, integrands are
always assumed to be predictable rather than just adapted and product measurable.
The existence and uniqueness proof (cf. Sect.4.2) is our personal version of the
proof in [54, 75] and is largely taken from [69] presented there in a more general
framework. The results on invariant measures (cf. Sect. 4.3) we could not find in the
literature for the “variational approach”. They are, however, quite straightforward
modifications of those in the “semigroup approach” in [27].

To keep this course reasonably self-contained we also include a complete proof
of the finite-dimensional case in Chap. 3, which is based on the very focussed and
beautiful exposition in [52], which uses the Euler approximation. Among other
complementing topics such as Chap. 6, which contains a concise introduction to
the “semigroup (or mild solution) approach”, the appendices contain a detailed
account of the Yamada—Watanabe Theorem on the relation between weak and strong
solutions (cf. Appendix E), and a detailed proof of Girsanov’s Theorem in infinite
dimensions (cf. Appendix I).

The structure of this monograph is, we hope, obvious from the list of contents.
Here, we only mention that a substantial part consists of a very detailed introduction
to stochastic integration on Hilbert spaces (see Chap. 2), major parts of which (as
well as Appendices A—C) are taken from the Diploma thesis of Claudia Prévot
(née Knoche) and Katja Frieler (see [34]), which in turn was based on [26] and
supervised by the second named author of this monograph. We would like to thank
both of them at this point for their permission to do this. We thank all coauthors of
those joint papers which form another component for the basis of this monograph. It
was really a pleasure working with them in this exciting area of probability theory.
We would also like to thank Nelli Schmelzer, Matthias Stephan, Sven Wiesinger
and Lukas Wresch for the excellent type job, as well as the participants of the
graduate courses at Purdue and Bielefeld University for checking large parts of the
text carefully. Special thanks go to Michael Scheutzow and Byron Schmuland for
spotting a number of misprints and small errors in [67]. We also thank Claudia
Prévot for giving permission for this extension of [67]. Furthermore, the first named
author acknowledges the financial support from NSFC (No. 11201234, 11571147)
and a project funded by PAPD of Jiangsu Higher Education Institutions. The last
named author would like to thank the German Science Foundation (DFG) for its
financial support through SFB 701 and also Jose Luis da Silva for his hospitality
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during a very pleasant stay at the University of Madeira where the final proofreading
of this monograph was done.

1.2 General Philosophy and Examples

Before starting with the main body of this course, let us briefly recall the general
philosophy of describing stochastic dynamics by stochastic differential equations
(SDE) in a more heuristic and intuitive way. These usually take values in a space
H of (generalized) functions, e.g. on a domain A C R4, or a differential manifold,
a fractal or even merely in an arbitrary measurable space (A, BB). Abstractly, H is a
separable Hilbert or Banach space. Then givenamap F : [0, T] xH xU — H, where
T €]0,00[ and U is another separable Hilbert space, one considers the differential
equations

dXd—Et) = F(t, X (1), W(1)) (1.1)
on H. Here W(t), t € [0,T], is a U-valued white noise in time, more precisely,
the generalised time derivative of a U-valued cylindrical Brownian motion W(¢) =
(Wi(1))ken. 1 € [0, T], on some probability space (2, F, P). Hence W(z), 1 € [0, T,
are independent centred Gaussian variables with infinite variance, hence in regard to
(1.1) the “worst” (Gaussian) random perturbation that can occur in (1.1). Employing
a Taylor expansion for F around 0 € U and, neglecting terms of order 2 and higher,
turns (1.1) into

dX(r)

4 = F(t.X(1),0) + D3F(t,X(t), 0)W(2), (1.2)

where D3 F denotes the derivative of F with respect to its third coordinate. Setting
A(t,x) :== F(t,x,0), B(t,x) := D3F(t,x,0)
and taking into account the non-differentiability of W(¢) in ¢, (1.2) turns into
dX(t) = A(t, X(¢))dr + B(t, X(1))dW(r), (1.3)

to be rigorously understood in integral form. We mention here that the stochastic
term in (1.3) is often called or interpreted as a “stochastic force”, though the equa-
tion is first order. This can, however, be justified by the Kramers—Smoluchowski
approximation (see [14, 15, 33, 51, 76]). Furthermore, A is called the drift of the
equation.

We briefly recall here that the linear pendant of (1.3) is given by the associ-
ated Fokker—Planck—Kolmogorov equations obtained as a linearization of (1.3) as
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follows: Let FC3 ;. denote the set of all functionsf : [0, T[xH — R, C'int € [0, T]
and C,% in x € H, depending only on finitely many coordinates of x (with respect to
a fixed orthonormal basis of H). Take f € F C,%.T and compose it with the solution of
(1.3) for z = s with initial datum x € H at times s, denoted by X(t, s, x), i.e. consider
[, X(1,s,x)). Subsequently, take the expectation (with respect to P) to get

Pss(f(t,)x) := E[f (. X(t,5,))] . s <t

Then apply It6’s formula to find that

ad
E‘ps,r(f(tv ))(X) = ps,t(Lf(tv ))(X), s<txe H, (14)

with L being the corresponding Kolmogorov operator given by

Lf(t,x) = %f(t, x) + %Tr(B*(t, X)B(t,x)D? f(t,x)) + A(t,x)D, f(t,x), x€H,
(1.5)

where DX,D)% are the Fréchet derivatives of f(t,-) : H — R. We note that (1.5)
is well-defined (in particular the trace exists) for f € F C;%,r We emphasize that
the less B*(t, x), B(t, x) is degenerate, the less degenerate is the second order part
of the operator L. In this sense the noise part in (1.3) makes the equation better
(“regularization by noise”). In this course, however, we shall concentrate on infinite
dimensional stochastic differential equations as (1.3) which in applications are
SPDE:s. For a detailed analysis of the corresponding Fokker—Planck—Kolmogorov
equations (1.4) we refer to the recent monograph [10].

Now we would like to give a few examples of SPDEs that appear in fundamental
applications. We present them in a very brief way and refer to the above-mentioned
literature for a more elaborate discussion of these and many more examples and their
role in the applied sciences. Below we use standard notation, in particular H6”’2 (A)
denotes the Sobolev space of order m in L?(A) with Dirichlet boundary condition
for an open set A C R%.

Example 1.2.1 (Stochastic Quantization of the Free Euclidean Quantum Field)
dX(1) = (A —m»)X (1) dr + dW(7)

on H C S'(RY).

¢ m € [0, 00) denotes “mass”,
* (W(#):=0 is a cylindrical Wiener process on L?(RY) C H (with the inclusion
being a Hilbert—Schmidt embedding).
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Example 1.2.2 (Stochastic Reaction Diffusion Equations)
dX (1) = [AX(1) — g(X(1))] dr + B(z, X (1)) dW;

onH = LZ(A), A CRIA open, d < 3,

* B(t,x) : H— H is Hilbert-Schmidt Vx € H,t = 0.

e g : R — Ris a “locally weakly monotone” function of at most polynomial
growth (depending on d),

e W = (W(t))=0 is a cylindrical Wiener process on H.

Example 1.2.3 (Stochastic Generalized Burgers Equation)
2

dx() = [ X(1) —f(X(t))iX(t) + g(X(t))} dr + B(1, X(1)) dW(2)

dg? dé

on H := L*(]0, 1]).

s £¢€]0,1],

e f:R — Ris a Lipschitz function,

e g:R — Risas above, of at most cubic growth,
e Band W are as above.

Example 1.2.4 (2D Stochastic Navier-Stokes Equation)
dX(r) = PH[UAXX(Z‘) —(X(1), V)X(t)] dr + B(t, X (1)) dW(r)

onH := {u € L>(A — R?, d§) | divu = 0}, A C R?, A open, dA smooth.

* v denotes viscosity,

¢ A, denotes the Stokes Laplacian,

e div is taken in the sense of distributions,

* Py denotes the Helmholtz—Leray projection,
e Band W are as above.

Example 1.2.5 (3D Stochastic Navier—Stokes Equation)
dX(#) = Py [vAX() — (X(2), V)X ()] dt + B(r) dW(7)

onH := {u € Hj(A — R* d§)|divu = 0}, A C R* A open, dA smooth .
* Band W are as above (but B is independent of X(7)).
Example 1.2.6 (Stochastic p-Laplace Equation)

dX (1) = div ([VX@)2VX(1) di + B(t, X(1)) dW(0)

on H := L*>(A), A C R?, A open,
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e Band W are as above.

Example 1.2.7 (Stochastic Porous Media Equation)
dX(t) = AV(X(¢)) dr + B(t, X (1)) dW(?)

on H := dual of H}(A), A as above.

e ¥U:R — Ris “monotone”,
e Band W are as above.

Example 1.2.8 (Stochastic Cahn—Hilliard Equation)

dX (1) = [-A%X(1) + Ap(X(1)] dr + B(r) dW (1)
VX(1)-n=V(AX())-n=0 ondA

on H := L*(A), A as above.

* 1 denotes the outward unit normal on JdA,

* ¢ :R — Ris C!,is locally weakly monotone and of at most polynomial growth
peR2 %,

* Band W are as above.

Example 1.2.9 (Stochastic Surface Growth Model)

8 2 LI
AX(0) = [~ 3 X(0) = g X(0) + 555 (5 X)) dr + BO) aW()

X(1) toa=0

on H = H*(A) with A :=]0, L],
« £€)0,1],
e Band W are as above.

The general form of these equations with state spaces consisting of functions
£ > x(£), where £ is a spatial variable, e.g. from a subset of R¢, is as follows:

dX (1)) = A(1. X0)). DX (E). DHX D) (§) ) dr
+ B(1. X)) DeX,(6). DEX(D(©) ) dW() -

Here D¢ and D§ mean first and second total derivatives, respectively. The stochastic
term can be considered as a “perturbation by noise”. So, clearly one motivation
for studying SPDEs is to get information about the corresponding (unperturbed)
deterministic PDE by letting the noise go to zero (e.g. replace B by ¢ - B and let
& — 0) or to understand the different features occurring if one adds the noise term.
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If we drop the stochastic term in these equations we get a deterministic PDE of
“evolutionary type”. Roughly speaking this means we have that the time derivative
of the desired solution (on the left) is equal to a non-linear functional of its spatial
derivatives (on the right).

For a detailed analysis of Example 1.2.1 and for the non-linear much harder
stochastic quantization equations for interacting Euclidean quantum fields we refer
to [2] and the recent survey [1] (including the references therein). All other examples
above under the respective appropriate conditions are covered by the theory
presented in this course and all of them are analyzed in detail here. This is in contrast
to [67], where Examples 1.2.2-1.2.5, 1.2.8 and 1.2.9, were not covered, since
they only satisfy “local monotonicity conditions” and/or weaker growth conditions
and/or “generalized coercivity conditions”. All these latter examples are included
only in this extended version, more precisely, in the newly added Chap.5, where
global solutions for Examples 1.2.2—1.2.4 are constructed in Sect.5.1 and local
solutions for Examples 1.2.5, 1.2.8 and 1.2.9 in Sect. 5.2 (see also Remark 5.1.11(4)
for a number of further examples which, in order to keep it within a reasonable
size, have not been included in this course). We would like to stress that Sect. 5.2
in particular contains the presentation of a general technique to construct local
solutions to SPDEs on the basis of a classical inequality due to Bihari. Furthermore,
we include a study of a “tamed version” of Example 1.2.5 (see Example 5.2.25), for
which global solutions exist (at least in the deterministic case), and we show that
the solutions in Example 1.2.8 are global, if B=0orp < 2.

After having discussed a number of typical examples of nonlinear SPDEs, we
would like to address a genuine problem of the theory of SPDEs, namely that
in some cases one is interested in perturbing the deterministic PDE by a very
rough noise, meaning a noise which is itself no longer function-valued, but only
takes values in a space of generalized functions, i.e. in a subspace of the space of
Schwarz distributions. One way out is to go to the mild formulation of the SPDE
(see Chap. 6) and use the smoothing property of a hopefully “strong enough” linear
part of the drift. But if one focuses on the Laplacian, “strong enough” requires that
the underlying domain is one dimensional. So, already in two dimensions one can
only expect Schwarz distribution-valued solutions to the SPDE, hence the simplest
non-linear parts of the drift, as e.g. a power of the solution, have to be defined
by renormalization techniques (see [2] and also [1]). Recently, a breakthrough has
been achieved in this direction by Martin Hairer in [44] (for which, together with
his work on the KPZ-equation [43] and other beautiful results in the field, he was
awarded the Fields Medal in 2014). In [44] he develops a whole theory to define and
(locally) solve nonlinear SPDE:s in a reformulated framework. This theory applies to
anumber of important (nonlinear) SPDEs with distribution-valued solutions on two-
or three-dimensional underlying domains. We refer to [35] for a detailed exposition
of this theory.

To conclude this introduction, let us summarize the new parts of this monograph
in comparison to [67], adding the references of their respective origin, which are all
quite recent papers, except for the new Chap. 6 and the new Appendix F. The new
Chap. 5, whose contents has already been summarized in the previous paragraph,
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is an extended version of [57-59]. Chapter 6 contains a concise introduction to the
“semigroup (or mild solution) approach”, in particular, addressing the measurability
issues occurring in this context and (through the famous “factorization method”
in [26]) also the question of when the solutions have continuous sample paths.
To complement Chap. 6 we also include Appendix F which is needed there. Both
Chap. 6 and Appendix F are elaborations of the corresponding sections in [34],
which in turn are based on [26]. Appendix E is a more detailed version of [71] and it
contains a complete proof of the Yamada—Watanabe Theorem in infinite dimensions,
whereas [67] only contains the finite dimensional case. The new Appendix H
contains two elementary proofs for well-known interpolation inequalities which
are essential for analyzing the (stochastic) Navier—Stokes equations. The proofs are
essentially taken from [61]. Finally, the new Appendix I on Girsanov’s Theorem in
infinite dimensions is an extended version of Appendix A.1 in [22].



Chapter 2
The Stochastic Integral in General Hilbert
Spaces (w.r.t. Brownian Motion)

We fix two separable Hilbert spaces (U, (, )y) and (H,( , )) with norms || ||y
and || ||g, respectively, where we drop the subscript H in the latter if there is no
confusion possible. The first part of this chapter is devoted to the construction of the
stochastic Itd integral

/t D(s) dW(s), te€][0,T],
0

where W(z), t € [0, T], is a Wiener process on U and @ is a process with values that
are linear but not necessarily bounded operators from U to H.

For that we will first have to introduce the notion of the standard Wiener
process in infinite dimensions. Then there will be a short section on martingales
in general Hilbert spaces. These two concepts are important for the construction of
the stochastic integral, which will be explained in the following section.

Following this, we shall collect and prove a number of properties of the stochastic
integral, which are necessary for the later chapters.

Finally, we will describe how to transfer the definition of the stochastic integral
to the case when W(7), t € [0, T], is a cylindrical Wiener process. For simplicity we
assume that U and H are real Hilbert spaces.

2.1 Infinite-Dimensional Wiener Processes

For a topological space X we denote its Borel o-algebra by B(X).
Definition 2.1.1 A probability measure p on (U, B(U)) is called Gaussian if for
all v € U the bounded linear mapping

vV :U—R

© Springer International Publishing Switzerland 2015 9
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10 2 Stochastic Integral in Hilbert Spaces

defined by

ur (u,v)y, wuel,

has a Gaussian law, i.e. for all v € U there exist m := m(v) € Rand o := o (v) €
[0, ool such that, if o (v) > 0,

(Lo (W) ™)A) =p €A) = dx for all A € B(R),

\/27[02
and, if o(v) = 0,

Mmoo (v/)_l = 8m(v)-

Theorem 2.1.2 A measure |1 on (U, B(U)) is Gaussian if and only if

au) = / wolu () = eftmulv— 2{ou. “wo o yeU,
U

where m € U and Q € L(U) is nonnegative, symmetric, with finite trace (see
Definition B.0.3; here L(U) denotes the set of all bounded linear operators on U).
In this case u will be denoted by N(m, Q) where m is called the mean and Q
is called the covariance (operator). The measure [L is uniquely determined by m
and Q.
Furthermore, for allh,g € U

[t @ = (.o
[ (@b = o) (1. )0 = (. gho) (@) = (O gho
[y (@0 = o
Proof (Cf. [26]) Obviously, a probability measure with this Fourier transform is
Gaussian. Now let us conversely assume that p is Gaussian. We need the following:

Lemma 2.1.3 Let v be a probability measure on (U, B(U)). Let k € N be such that

/|(va>U|k v(dx) <oco VzeU.
U
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Then there exists a constant C = C(k,v) > 0 such that for all hy, ..., iy € U
[ 100 o @) < € il Ul
In particular, the symmetric k-linear form
Uks (hy,....l) — /(hl,x)U---(hk,x)U p(dx) €eR

Is continuous.

Proof For n € N define

U, = {ZE U ’ /U|(z,x)y’k v(dx) < n}

Then each U, is a closed set in U, since if z; € U,, | € N, and z € U such that
lim z; = zin U, then by Fatou’s Lemma
=00

[ Henultv(an < timint [ (a2, v( a0 <
U =00 U

By assumption

o0
U=|Ju.
n=1

Since U is a complete metric space, by the Baire category theorem, there exists an
ny € N such that U,, has non-empty interior, so there exists a closed ball (with
centre zo and radius 7o) B(zo, ro) C Uy,. Hence

/ (20 +Y7X>Uik v(dx) <ng VyeB(0,r),
U
therefore for all y € B(0, ro)
[ ool v@) = [ [+ 3200 = o vian
U U

<2 / (20 + yox)ul v(d) + 27 / [(zo. 3} v
U U

k
< 2%nyg.
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Applying this for y := roz, z € U with ||z]|y = 1, we obtain
/ [(zx) o v(d) < 2tnory*.
U

Hence, if Ay, ..., € U\ {0}, then by the generalized Holder inequality

h h
[ g RS
vi\Illo [y N\l [y
1/k ‘ 1/k
h k h
< /< ! ,x> vidx) | ... /< k ,x> v(dx)
v\ Imllv [y v\l [y
$2kn0r5k,
and the assertion follows. O

Applying Lemma 2.1.3 for k = 1 and v := p we obtain that

Ush +— /(h,x)Uu(dx) eR

is a continuous linear map, hence there exists an m € U such that
/U(x,h)U u(dx) = (m,h) Y hel.
Applying Lemma 2.1.3 for k = 2 and v := u we obtain that
U3 (e) [ ()t (@0 — (oo heho

is a continuous symmetric bilinear map, hence there exists a symmetric Q € L(U)
such that this map is equal to

U? 5 (hi.hy) — (Ohi, ho)y.

Since forallh € U

2
(@h o = [ o} (@ - ( [ u(dX)) >0,
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Q is positive definite. It remains to prove that Q is trace class (i.e.

trQ:= Z(thei)U <00

i=1

for one (hence every) orthonormal basis {e; | i € N} of U, cf. Appendix B). We may
assume without loss of generality that i has mean zero, i.e. m = 0 (€ U), since
the image measure of p under the translation U 3 x — x — m is again Gaussian
with mean zero and the same covariance Q. Then we have for all &~ € U and all
c € (0,00)

| — e 3lQnhy / (1 — cos(h,x)U) w(dx)
U

< / (1 = cos(h,x)y) p(dx) + 2u({x € U | l|lxllu > c})
{l-llusc}

1

silw<q“hﬂufum”+QMGXEU“MW>fD 2.1

(since 1 —cosx < %xz). Defining a positive definite symmetric linear operator Q.
on U by

(Qchr. o)y = / (hrox)u - (haox)y (). ks € U,

{I-lluse

we even have that Q. is trace class because for every orthonormal basis {¢; | k € N}
of U we have (by monotone convergence)

k=1 <} k=1

— 2 _ 2
Stoenedo= [ Stadpue=[ b e
2

< 7 < o0

Claim There exists a ¢y € (0, 0o) (large enough) so that Q < 2log4 Q., (meaning
that (Qh, h)y < 21log4 (Q.h, h)y forall h € U).

To prove the claim let ¢y be so big that ,u({x eU ‘ lxllo > Co}) <
such that (Qc,h, h)y < 1. Then (2.1) implies

g-LetheU

1 _e—%(thh)U < l 4+ - =

3
4’

)
=

hence 4 = ¢2(hMv g0 (Oh, h)y < 2log4.1f h € U is arbitrary, but (Qcoh, WYy # 0,
1

then we apply what we have just proved to h/{(Q,h, h)}, and the claim follows for
such A. If, however, (Qh, h)y = O, then for all n € N, (Q.,nh,nh)y = 0 < 1,
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hence by the above (Qh, h)y < n~?2log 4. Therefore, (Qh, h)y = 0 and the claim
is proved, also for such 4.
Since Q. has finite trace, so has Q by the claim and the theorem is proved, since
the uniqueness part follows from the fact that the Fourier transform is one-to-one.
O

The following result is then obvious.

Proposition 2.1.4 Let X be a U-valued Gaussian random variable on a probability
space (2, F, P), i.e. there exist m € U and Q € L(U) nonnegative, symmetric, with
finite trace such that P o X~ = N(m, Q).

Then (X, u)y is normally distributed for all u € U and the following statements
hold:

. E((X, u)U) = (m,u)y forallu € U,
. E((X —m,u)y - (X —m, v)U) = (Qu,v)y forallu,v € U,
s E(|IX-m|}) =tO.
The following proposition will lead to a representation of a U-valued Gaussian
random variable in terms of real-valued Gaussian random variables.

Proposition 2.1.5 If O € L(U) is nonnegative, symmetric, with finite trace then
there exists an orthonormal basis ey, k € N, of U such that

Qe = Aer, A =0, k€N,

and 0 is the only accumulation point of the sequence (A)ien.
Proof See [68, Theorem VI.21; Theorem VI.16 (Hilbert—Schmidt theorem)]. |

Proposition 2.1.6 (Representation of a Gaussian Random Variable) Letm € U
and Q € L(U) be nonnegative, symmetric, with tr Q < oo. In addition, we assume
that ey, k € N, is an orthonormal basis of U consisting of eigenvectors of Q
with corresponding eigenvalues Ay, k € N, as in Proposition 2.1.5, numbered in
decreasing order.

Then a U-valued random variable X on a probability space (2, F,P) is
Gaussian with P o X~' = N(m, Q) if and only if

X = Z \//\_k,Bkek +m (as objects in L*(Q, F, P; U)),
keN

where By, k € N, are independent real-valued random variables with P o ,Bk_l =
N(0, 1) for all k € N with A; > 0. The series converges in L*(2, F, P; U).

Proof

1. Let X be a Gaussian random variable with mean m and covariance Q. Below we
set(,):={(,)u.
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Then X = ) ,cn(X.ex)ex in U where (X, er) is normally distributed with
mean (m, e;) and variance Ay, k € N, by Proposition 2.1.4. If we now define

= HalZlnal ik e Nwith 4 > 0
=0 eR else,

Br

then we get that P o ;7' = N(0,1) and X = Y,y vVAcBrex + m. To prove the
independence of By, k € N, we take an arbitraryn € Nandag; e R, 1 <k < n,
and obtain that for ¢ := — Y[, ; % (m, ey)

n n ak n ak

aifr = — (X, &) +c= <X, —ek>+c

2h= 2 U L n
AF0 AF#0

which is normally distributed since X is a Gaussian random variable. Therefore
we have that fi, k € N, form a Gaussian family. Hence, to get the independence,
we only have to check that the covariance of B; and B;, i,j € N, i # j, with
Ai # 0 # A, is equal to zero. But this is clear since

1
E(BiB)) = A,A,-E((X_ m, e))(X —m, e))) = M(Qei,ej)
Ai
- Aidj el =0
fori # j.

Furthermore, the series ZZ=1 v ArBrer, n € N, converges in L2(S2 ,F,P;U)
since the space is complete and

E(Hé: Ve 2) = gn:)‘kE(Wklz) = gn:)‘k‘

Since ),y Ak = trQ < oo this expression becomes arbitrarily small for m and
n large enough.

2. Let er, k € N, be an orthonormal basis of U such that Qe; = Arer, k € N, and
let Bx, k € N, be a family of independent real-valued Gaussian random variables
with mean 0 and variance 1. Then it is clear that the series Y ;_; v/Acfrex + m,
n € N, converges t0 X 1= Y,y vAcBrex + min L2 (2, F, P; U) (see part 1).
Now we fix u € U and get that

(Z \/A_kﬂkek + m, u> = Z \/A_kﬂk(ek, u) + (m,u)
k=1 k=1
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is normally distributed for all » € N and the sequence converges in
L*(R2, F,P). This implies that the limit (X,u) is also normally distributed
where

E((X.1)) = E(Y" vVaxBler u) + (m.u))

keN

= lim E(Z VaBules, u)) + (mu) = (m, u)
and concerning the covariance we obtain that

E(((X, u) — (m, u)) ((X. v) — (m, v)))

= lim E(l; VuBele u) ; VABiler, U))

n—>o0o

= > helew u) (e, v) = D (Qex, u)(ex, v)

keN keN
= > (e, Qu)(ex, v) = (Qu, v)
keN
forall u,v € U. O

By part 2 of this proof we finally get the following existence result.

Corollary 2.1.7 Let Q be a nonnegative and symmetric operator in L(U) with finite
trace and let m € U. Then there exists a Gaussian measure |t = N(m, Q) on

(U, B(U)).

Let us give an alternative, more direct proof of Corollary 2.1.7 without using
Proposition 2.1.6. For the proof we need the following exercise.

Exercise 2.1.8 Consider R* with the product topology. Let B(R*) denote its
Borel o-algebra. Prove:

(i) B(R*®) = o(m; | k € N), where ;. : R® — R denotes the projection on the
k-th coordinate.
o0
Gi) 2(R) (:: {(xk)keN € R® ‘ Y < oo}) € B(R™).
k=1
(i) BR®)NER) =o(m|p | k €N).
(iv) Let *(R) be equipped with its natural norm

=

elle == (3-)". x = (hen € P®),

k=1
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and let 3(12 (R)) be the corresponding Borel o-algebra. Then:
B(P([R)) = BR™) N F(R).

Alternative Proof of Corollary 2.1.7 1t suffices to construct N(0, Q), since N(m, Q)
is the image measure of N(0, Q) under translation with m. For k € N consider

the normal distribution N(0, ;) on R and let v be their product measure on
(R‘X’, B(R‘X’)), ie.

v=[]NO.2) on(R® BR™).

keN

Here A4, k € N, are as in Proposition 2.1.5. Since the map g : R* — [0, co] defined
by

o0
glx) = Zx;% . X = (x)ren € R™,
=1

is B(R®°)-measurable, we may calculate

[ _sv@n =Y [ VoA = Yk <.
Roe k=1 k=1

Therefore, using Exercise 2.1.8(ii), we obtain v(*(R)) = 1. Restricting v to
B(R*) N 2(R), by Exercise 2.1.8(iv) we get a probability measure, let us call
it i, on ((R),B((R))). Now take the orthonormal basis {e, | k € N}
from Proposition 2.1.5 and consider the corresponding canonical isomorphism
I : P(R) — U defined by

I(x) = Zxkeks x = (x)ren € F(R).
=1

It is then easy to check that the image measure
p:=pol ' on (U BU))

is the desired measure, i.e. & = N(0, Q). O

After these preparations we will give the definition of a standard Q-Wiener
process. To this end we fix an element Q € L(U), nonnegative, symmetric and
with finite trace and a positive real number 7.
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Definition 2.1.9 A U-valued stochastic process W(z), t € [0, T], on a probability
space (€2, F, P) is called a (standard) Q-Wiener process if:

« W) =0,
* W has P-a.s. continuous trajectories,
* the increments of W are independent, i.e. the random variables

W(t), W() —W(t),..., W(t,) — W(t-1)

are independentforall0 <# <--- <, <T,neN,
¢ the increments have the following Gaussian laws:

Po (W) —W(s))” =N(0,(1—5)Q) forall0<s<r<T.

Similarly to the existence of Gaussian measures the existence of a Q-Wiener
process in U can be reduced to the real-valued case. This is the content of the
following proposition.

Proposition 2.1.10 (Representation of the Q-Wiener Process) Let ¢, k € N,
be an orthonormal basis of U consisting of eigenvectors of Q with corresponding
eigenvalues Ay, k € N. Then a U-valued stochastic process W(t), t € [0,T), is a
Q-Wiener process if and only if

W) =Y VABeer, te€0.T], (2.2)

keN

where Br, k € {n € N | A, > 0}, are independent real-valued Brow-
nian motions on a probability space (2, F,P). The series even converges in
L’ (Q ,F,P;C([0,T], U)), and thus always has a P-a.s. continuous version. (Here
the space C([O, 7], U) is equipped with the sup norm.) In particular, for any Q as
above there exists a Q-Wiener process on U.

Proof

1. Let W(¢), t € [0, T], be a Q-Wiener process in U.
Since P o W(1)™' = N(0,1Q), we see as in the proof of Proposition 2.1.6 that

W@ =) Vabie. 1€0.7],

keN
with
_ (W@.er) :
=2 ifke NwithA; >0
By VE ‘

0 else,
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for all ¢ € [0, T]. Furthermore, P o ,Bk_l (1) = N(0,1), k € N, and Bi(¢), k € N, are
independent for each fixed ¢ € [0, 7.
Now we fix k € N. First we show that B;(¢), ¢ € [0, T, is a Brownian motion:
If we take an arbitrary partition0 =ty <ty <--- < t, < T,n € N, of [0, T]
we get that

Bi(t1), Bi(t2) — Bi(t1), ..., Bi(tn) — Bi(tu—1)

are independent for each k € N since for 1 <j <n

Bi(t:) — Br(tiz1) = = (W) = W(t-1). e} if A > 0,
J J—
0

else.

Moreover, we obtain that for the same reason P o (,Bk(t) — B (s))_l = N(,t—ys)
forO<s<tr<T.
In addition,

. %A_k(wm, e) = Bi(t)

is P-a.s. continuous for all k € N.

Secondly, it remains to prove that i, k € N, are independent.

We take ki,...,k, € N,n € N, k; # k; if i # j and an arbitrary partition
O0=tp<n<...<t, <T,meN.

Then we have to show that

O-(ﬂkl (tl)v LR .Bkl (tm))s cee O—(,Bk,,(tl)s ) .Bk,, (tm))

are independent.

We will prove this by induction with respect to m:

If m = 1itisclearthat B, (#1), ..., Bk, (#1) are independent as observed above.
Thus, we now take a partition 0 =7y < #; < ... < t,;+; < T and assume that

o (B (1) -+ Bry (t))s -, 0 (Br, (11), -, B, (1))

are independent. We note that

G(IBki(tl)’ BRX ﬂki(tm)7 IBki(tm+l))
= O-(IBki(tl)v cees ﬂki(tm)’ IBki(tm-H) - ﬂki(tm))y 1<i<n,
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and that

= (W(tnt1) — W(tw), ex,),, if g > 0,
Bt — Bt = | 0 ) = Wil 0>
0

else,

1 < i < n, are independent since they are pairwise orthogonal in
L*(Q,F,P:R) and since W(t,+1) — W(t,) is a Gaussian random variable.
If we take A;; € B(R), 1 < i < n, 1 <j < m+ 1, then because of the
independence of o (W(s) | s < t,) and o (W (t+1) — W(t)) we get that

n

P(N{B(n) € Air, -, Biltn) € Ai,

i=1

IBk,- (tm-l—l) - ,Bk,- (tm) € Ai,m-l—l})

ZP(ﬂ ﬂ{ﬂk; (1) € Ay} N ﬂ{ﬂk; (tmt1) — Br(tm) € Ai,m-H})

i=1j=1 i=1

e o(W(s) | s < ) € o (W(tns1) — W(tn))
:p(ﬁl ﬁ{ﬁki (1) € A}) p((n‘){ﬁki (1n52) — By (1) € A })
i=1j= i=
- (]‘[ P(("i]{ﬁk,. ) €1
M
. (:1 PUB (1) — Bi(in) € Ay}
- .ljp(é{ﬂki (1) € Ay N {Br (1) — Biy (1) € A,-,m+1})

and therefore the assertion follows.
2. If we define

W) =Y VABuer. 1€[0.7],

keN

where By, k € N, are independent real-valued continuous Brownian motions then
it is clear that W(¢), t € [0, T}, is well-defined in L*(Q2, F, P; U). Besides, it is
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obvious that the process W(r), ¢ € [0, T, starts at zero and that
Po (W) —W(s)) =N(0,(1—0), 0<s<i<T,

by Proposition 2.1.6. It is also clear that the increments are independent.
Thus it remains to show that the above series converges in
L*(Q, F,P;C([0,T],U)). To this end we set

N
WYt 0) =Y VAt )ex
k=1

for all (f,w) € Q7 := [0,7] x Q and N € N. Then WV, N € N, is P-as.
continuous and we have that for M < N

( sup [ W0 - W 0;) = £ sup. > MB))

r€[0.7] T =pm+1

N
Z ME( sup B(n) < Z A sup E(Be()’) <4T ) A

k=M+1 1€[0.7] k=m+1 I€0.1] k=M+1

because of Doob’s maximal inequality for nonnegative real-valued submartin-
gales. As Z Ar = tr Q < o0, the assertion follows. O
keN

Definition 2.1.11 (Normal Filtration) A filtration F;, ¢t € [0, T], on a probability
space (2, F, P) is called normal if:

e JFy contains all elements A € F with P(A) = 0 and
« Fi=Fip =()Fforallze0.7].

s>t

Definition 2.1.12 (Q-Wiener Process with Respect to a Filtration) A Q-Wiener
process W(t), t € [0, T}, is called a Q-Wiener process with respect to a filtration F;,
t €[0,T], if:

e W(),1t e [0,T],is adapted to F;, t € [0, T], and
e W(t) — W(s) is independent of F forall0 < s <r < T.

In fact it is possible to show that any U-valued Q-Wiener process W(t), t € [0, T,
is a Q-Wiener process with respect to a normal filtration:
We define

N:={AeF|PA)=0}. F :=0(W)|s<1)
and F0:=o(F'UN).



22 2 Stochastic Integral in Hilbert Spaces

Then it is clear that

Fo= (P tel0.T[ Fr=F, 2.3)

s>t

is a normal filtration, called the normal filtration associated to W(t), t € [0, T], and
we get:

Proposition 2.1.13 Let W(t), t € [0,T), be an arbitrary U-valued Q-Wiener
process on a probability space (2, F, P). Then it is a Q-Wiener process with respect
to the normal filtration F,, t € [0, T), given by (2.3).

Proof 1t is clear that W(¢), t € [0, T], is adapted to F;, t € [0, T]. Hence we only
have to verify that W(z) — W(s) is independent of F;, 0 < s <t < T. But if we fix
0 < s <t < Titis clear that W(¢) — W(s) is independent of F; since

a(W(t), W(t), ..., W(t,))
=o(W(n), W) = W(t), ..., W(t,) — W(te—1))

forall0 <1 <1 <--- <1, <s.Of course, W(r) — W(s) is then also independent
of F?. To prove now that W(r) — W (s) is independent of F; it is enough to show that

P({W() = W(s) € A} 1 B) = P(W(@) — W(s) € 4) - P(B)

for any B € F; and any closed subset A C U as £ := {A C U | A closed} generates
B(U) and is stable under finite intersections. But we have

P({W(t) —W(s) €A} N B)
- E(IA o (W(r) — W(s)) - 13)

= lim E([(l — ndist(W(1) = W(s),4)) v 0]13)

n—>oo

n—>00 m—>00

= lim lim E([(l —ndist(W(e) = W(s + £).4)) v 0]13)

= lim lim E((l — ndist(W(r) — W(s + i)’A)) v ()) - P(B)

n—>00 m—>00

= P(W(r) — W(s) € A) - P(B),

since W(t) — W(s + %) is independent of }~.?+ , D Fyforallm e N. O

m
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2.2 Martingales in General Banach Spaces

Analogously to the real-valued case it is possible to define the conditional expecta-
tion of any Bochner integrable random variable with values in an arbitrary separable
Banach space (E .|l ). This result is formulated in the following proposition.

Proposition 2.2.1 (Existence of the Conditional Expectation) Assume that E is
a separable real Banach space. Let X be a Bochner integrable E-valued random
variable defined on a probability space (2, F, P) and let G be a o-field contained
inF.

Then there exists a unique, up to a set of P-probability zero, Bochner integrable
E-valued random variable Z, measurable with respect to G, such that

/XdP:/ZdP forallA € G. 2.4)
A A

The random variable Z is denoted by E(X | G) and is called the conditional
expectation of X given G. Furthermore,

|EX 19| < E(IXII | G).

Proof (Cf. [26, Proposition 1.10, p. 27]) Let us first show the uniqueness.

Since F is a separable Banach space, there exist [, € E*, n € N, separating the
points of E. Suppose that Z;,Z, are Bochner integrable, G-measurable mappings
from €2 to E such that

/XdP:/ZldP:/ZZdP forallA € G.
A A A

Then for n € N by Proposition A.2.2
/(zn(zl) —1,(2,))dP =0 forallA €g.
A

Applying this with A := {ln(Zl) > ln(Zz)} and A := {ln(Zl) < ln(Zz)} it follows
that ,(Z,) = l,(Z,) P-as., so

Qo= ({L(2) = L(Z)}

neN

has P-measure one. Since /,, n € N, separate the points of E; it follows that Z; = Z,
on Q.
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To show the existence we first assume that X is a simple function. So, there exist
X1,...,xy € E and pairwise disjoint sets Ay, ..., Ay € F such that

N
X = ZxklAk'
k=1

Define

N
Z:=Y xE(ly, | G).

k=1

Then obviously Z is G-measurable and satisfies (2.4). Furthermore,

N N
12 < Y el EQs, 19) = E(Y st | 9) = E(IX] | ). 2.5)
k=1 k=1
Taking the expectation we get
E(IZl) < E(IX1). (2.6)

For general X take simple functions X,,, n € N, as in Lemma A.1.4 and define Z,
as above with X, replacing X. Then by (2.6) for all n,m € N

E(I1Z, — Zull) < E(IIXy — Xul).

0 Z := lim, 00 Z, exists in L' (Q, F, P; E). Therefore, forall A € G

/XdP:lim X, dP = lim anP=/ZdP.
A A A

n—>o00 A n—>oo

Clearly, Z can be chosen G-measurable, since so are the Z,. Furthermore, by (2.5)
lEX 16| =1z = lim [[Z,] < lim E(IX:0 | 6) = E(IX] | G).
n o0 n—>oo

where the limits are taken in L' (P). O
Later we will need the following result:

Proposition 2.2.2 Let (Ey, &) and (E3, &) be two measurable spaces and ¥ : E| X
E> — R be a bounded measurable function. Let X; and X, be two random variables
on (2, F, P) with values in (Ey, E1) and (E», &) respectively, and let G C F be a
fixed o-field.
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Assume that X, is G-measurable and X, is independent of G, then for P-a.e.
weQ

E(¥(X1,X2) | G)(w) = E[¥(X1(w), X2)].

Proof A simple exercise or see [26, Proposition 1.12, p. 29]. O

Remark 2.2.3 The previous proposition can be easily extended to the case where
the function W is not necessarily bounded but nonnegative.

Definition 2.2.4 Let M(t), t = 0, be a stochastic process on (€2, F, P) with values
in a separable Banach space E, and let F;, t = 0, be a filtration on (2, F, P).
The process M is called an F;-martingale, if:

* E(IM(1)]]) < oo forallz =0,
e M(t) is F;-measurable for all = 0,
« E(M@) | F;) = M(s) P-as. forall0 < s < 1 < o0.

Remark 2.2.5 Let M be as above such that E(||M(¢)|]) < oo for all ¢ € [0, T]. Then
M is an F;-martingale if and only if /(M) is an F;-martingale for all [ € E*. In
particular, results like optional stopping etc. extend to E-valued martingales.

There is the following connection to real-valued submartingales.

Proposition 2.2.6 If M(¢), t = 0, is an E-valued F;-martingale and p € [1, 00),
then HM (® HP t = 0, is a real-valued F;-submartingale.
Proof Since E is separable there exist [y € E*, k € N, such that ||z|| = sup lk(z) for

keN
all z € E. Then by Proposition A.2.2 fors < t

E(IM) | F) = slipE(lk(M,) | 7)
= sup L(EWM, | Fy))

= Sll':plk(Mv) = ”Mv“

This proves the assertion for p = 1. Then Jensen’s inequality implies the assertion
forall p € [1, 00). O

Theorem 2.2.7 (Maximal Inequality) Letp > 1 and let E be a separable Banach
space.
IfM(¢), t € [0, T), is a right-continuous E-valued F;-martingale, then

P N
(<Cagm o)) <55 s (o)

= L (Emnp))’
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Proof The inequality is a consequence of the previous proposition and Doob’s
maximal inequality for nonnegative real-valued submartingales. O

Remark 2.2.8 We note that in the inequality in Theorem 2.2.7 the first norm
is the standard norm on I? (Q,]—' , P; L°°([0, T];E)), whereas the second is the
standard norm on L ([0, T); P (2, F,P; E)). So, for right-continuous E-valued F;-
martingales these two norms are equivalent.

Now we fix 0 < 7 < oo and denote by M2(E) the space of all E-valued
continuous, square integrable martingales M(t), t € [0, T]. This space will play
an important role with regard to the definition of the stochastic integral. We will
especially use the following fact.

Proposition 2.2.9 The space M2(E) equipped with the norm

=

Ml = sup (EQMOIP))" = (EIMDI))

=

< (E(swp 0IP))" <2 E(MDI)*

t€[0,7]

is a Banach space.

Proof By the Riesz—Fischer theorem the space L? (Q ,F,P; L™ ([O 7], E)) is com-
plete. So, we only have to show that ./\/l% is closed. But this is obvious since even
LY(Q, F, P; E)-limits of martingales are martingales. O

Proposition 2.2.10 Let T > 0 and W(t), t € [0,T], be a U-valued Q-Wiener
process with respect to a normal filtration F;, t € [0,T], on a probability space
(2, F,P). Then W(z), t € [0,T), is a continuous square integrable F;-martingale,
i.e. W e M2(U).

Proof The continuity is clear by definition and for each r € [0, 7] we have that
E(||W(t)||%,) = ttrQ < oo (see Proposition 2.1.4). Hence let 0 < s < ¢ < T and
A € F;. Then we get by Proposition A.2.2 that

< / W(t) — W(s) dP, u> = / (W(t) — W(s),u), dP
A U A
= P(A) /(W(t) — W(s).u), dP =0

for all u € U as F; is independent of W(r) — W(s) and E((W(t) —W(s), u)U) =0
for all u € U. Therefore,

/ W() dP = / W(s) dP, forall A € F;.
A A
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2.3 The Definition of the Stochastic Integral

For the whole section we fix a positive real number 7 and a probability space
(2, F,P) and we define Q7 := [0,7] x Q and Pr := dr ® P where dx is the
Lebesgue measure.

Moreover, we let Q € L(U) be symmetric, nonnegative and with finite trace and
consider a Q-Wiener process W(7), t € [0, T], with respect to a normal filtration F;,
t€[0,T].

2.3.1 Scheme of the Construction of the Stochastic Integral

Step 1:  First we consider a certain class £ of elementary L(U, H)-valued pro-
cesses and define the mapping

Int: &€ > M3(H) =: M},
D > [ B(s) dW(s), te[0,T].

Step 2:  We prove that there is a certain norm on £ such that
Int: & - M3

is an isometry. Since M2 is a Banach space this implies that Int can be extended
to the abstract completion £ of €. This extension remains isometric and it is
unique.

Step 3: We give an explicit representation of £.

Step4: We show how the definition of the stochastic integral can be extended by
localization.

2.3.2 The Construction of the Stochastic Integral in Detail

Step 1:  First we define the class £ of all elementary processes as follows.

Definition 2.3.1 (Elementary Process) An L = L(U, H)-valued process ®(¢), t €
[0, T], on (2, F, P) with normal filtration F;, ¢t € [0, T], is said to be elementary if
thereexist0 =ty < --- <t = T, k € N, such that

k—1
(1) =D Dylyy,p,, (0. t€[0.T],

m=0
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where:

e &, : Q - L(U,H) is F,, -measurable, w.r.t. the strong Borel o-algebra on
LWU,H),0<m<k—1,
* &, takes only a finite number of values in L(U,H),0 <m < k— 1.

‘We now define

[ k—1
Int(®)(¢) := /0 D(s) dW(s) := Z D (W(tmsr A1) — Wt A1), 1€[0,T],
m=0

(this is obviously independent of the representation) for all ® € £.

t

Proposition 2.3.2 Let ® € &. Then the stochastic integral / D(s) dW(s), t €

0
[0, T], defined above, is a continuous square integrable martingale with respect to
Fi, t €10,T], ie.

Int: & — M.
Proof Let ® € £ be given by
k=1
(1) =Y Pply,y,, (0. t€[0.7],
m=0

as in Definition 2.3.1. Then it is clear that
[ k—1
> / D(s) dW(s) = Y @p(W(tmi1 A1) = W(tw A 1))
0 m=0

is P-a.s. continuous because of the continuity of the Wiener process and the
continuity of ®,,(w) : U - H,0 < m < k— 1, o € Q. In addition, we get
for each summand that

H @y (W(twis A1) — Wit A 1)) H
SN Pl |WEmsr A1) = Wt AD| -

Since W(¢), t € [0,T], is square integrable and @ — | ®,,(w)llrw z) is bounded
t
(because ,,(L2) is finite), this implies that / ®(s) dW(s) is square integrable for
0
eachr € [0, 7.
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To prove the martingale property we take 0 < s < ¢t < T and a set A from F;.
If {O,(w) | @ € Q) := {L}..... L'}, we obtain by Proposition A.2.2 and the
martingale property of the Wiener process that

k—1
/ Z q)m (W(tm+l A t) - W(tm A t)) dp
A m=0

= Z / D (W(tmg1 A S) — W(tw A5)) dP
A

0sm<k—1,
Im41<$

ki
+ L (W(tygr AN 1) — W(t, A1) dP
D> /mm:%,( (i1 A1) = Wity A1)

0<m<k—1, j=1

S<ty41
= > / @y (W(tmg1 A 5) — W(ty A 5)) dP
osm<k—1,7A
Im41<$
kim
+ Z ZL;"/ (W(tmgr A1) — W(t A 1)) P
osm<h—1, j=1  JAM®n=L]"}
S<ty41 ?}_—/
= Z / q)m (W(tm+l A S) - W(tm A S)) dp
o<m<k—1,7A
In+1<8

ki
+ Z Z;;"/ (W(tmgr A5) — W(tw A s)) dP

O<m<h—1, j=1 AN®,=Lj"}
I <S<lp+1

k—1
= / Z @y (W(tg1 A S) — Wit A s)) dP.
A m=0

|

Step 2:  To verify the assertion that there is a norm on € such that Int : £ — M2
is an isometry, we have to introduce the following notion.

Definition 2.3.3 (Hilbert—-Schmidt Operator) Let ¢;, k € N, be an orthonormal
basis of U. An operator A € L(U, H) is called Hilbert—Schmidt if

Z(Aek,Aek) < 0Q.

keN

In Appendix B we take a close look at this notion. So here we only summarize
the results which are important for the construction of the stochastic integral.
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The definition of a Hilbert—Schmidt operator and the number

1
Alz: = (Y lAed?)’

keN

are independent of the choice of the basis (see Remark B.0.6(i)). Moreover, the
space L, (U, H) of all Hilbert—Schmidt operators from U to H equipped with the
inner product

(A.B)L, := ) (Aer. Bey)

keN

is a separable Hilbert space (see Proposition B.0.7). Later, we will use the fact
that |A|lwm = A*|L@w), where A* is the adjoint operator of A (see
Remark B.0.6(i)). Furthermore, the composition of a Hilbert—Schmidt operator with
a bounded linear operator is again Hilbert—Schmidt.

Besides we recall the following fact.

Proposition 2.3.4 If Q € L(U) is nonnegative and symmetric then there exists
exactly one element Q% € L(U) nonnegative and symmetric such that Q% o Q% = Q.

If, in addition, tr Q < oo we have that Q% e L,(U), ||Q% ||i2 = tr Q and that
Lo Q? € Ly(U,H) forall L € L(U, H).

Proof [68, Theorem VL9, p. 196]. O

After these preparations we simply calculate the ./\/l%-norm of

t
/ D(s) dW(s), t € [0, T],
0
and get the following result.

Proposition 2.3.5 If & = Y “ !, D@, 1y,,,.4,41) B8 an elementary L(U, H)-valued
process then

H/ D(s) dW(s)
0

2 T
= E(/ |@(s) 0 02 ds) =: | ®|3 (“It-isometry”).
M 0 ’

Proof 1f we set A, :== W(t,,+1) — W(z,,) then we get that

2 2 k—1 2
| )=o)
= E(kz_iu%Amné) +26( Y (Pul BaA)).

m=0 0<m<n<k—1

T
/ D(s) dW(s)

0

| e awe)
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Claim 1:
k—1 k—1 1
E(Y 1 0nAnl) = D" st — ) E(I®n 0 022,)
m=0 m=0

= /OTE(HCD(S) 0 Q2 Hiz) ds.

To prove this we take an orthonormal basis f;, k € N, of H and get by the Parseval
identity and Levi’s monotone convergence theorem that

E(1@nAnlE) = D E(®@utn. fi)3) = 3 E(E((Am 0510 | F) ).

leN leN

Taking an orthonormal basis e, k € N, of U we obtain that

O fi =Y (fir Puer) e

keN

Since (f;, ®yex)u is Fy, -measurable, this implies that @ f; is F;, -measurable by
Proposition A.1.3. Using the fact that 6 (A,,) is independent of F;, we obtain by
Proposition 2.2.2 that for P-a.e. v € 2

E((Dn. @510 | Fi) @) = E((A. ®5 )7 )
= (b1 = 1){Q(P} @) @} @),

since E((Am, u)3) = (tu1 — tw){Qu, u)y for all u € U. Thus, the symmetry of
Q7 finally implies that

E(1®ntnl) = D2 E(E((An @503 | 7))

leN
= (twt1 — tw) Y E((Q®} f1. B} fi))
leN
= (w1 — 1) 3 E([ 0 @3 4]1)
leN

= (tpg1 — tm)E(H(ém o Q%)*

2
Lz(H,U))

= (tyt1 — lm)E<|| ), 0 Q% ”iz(U,H))'
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Hence the first assertion is proved and it only remains to verify the following
claim.
Claim 2:

E((®nAm. ©uA)H) =0, 0<m<n<k-1.

But this can be proved in a similar way to Claim 1:
E((q)mAmy q)nAn)H) = E(E(<<D:q)mAmv An)U i ‘/—"t,,))
= [ E(19: @) Ane). A1), ) Pl0) = 0,

since E ((u, A,,)U) = O for all u € U (see Proposition 2.2.2). Hence the assertion
follows. O

Hence the right norm on £ has been identified. But strictly speaking | ||z is only
a seminorm on £. Therefore, we have to consider equivalence classes of elementary
processes with respect to || ||z to get a norm on £. For simplicity we will not change
the notation but stress the following fact.

Remark 2.3.6 1f two elementary processes  and ) belong to one equivalence class
with respect to || ||7 it does not follow that they are equal Pr-a.e. because their values

only have to correspond on Q% (U) Pr-ae.

Thus we have finally shown that
s (€0 ) = (M3 le)

is an isometric transformation. Since £ is dense in the abstract completion £ of £
with respect to || ||7 it is clear that there is a unique isometric extension of Int to £.

Step 3: To give an explicit representation of £ it is useful, at this moment, to
introduce the subspace Uy := Q% (U) with the inner product given by

(ug, vo)o := (Q_%Mo, Q_%U0>U7

uy, vo € Uy, where Q_% is the pseudo inverse of Q% in the case that Q is not one-
to-one. Then we get by Proposition C.0.3(i) that (U, { , )o) is again a separable
Hilbert space.

The separable Hilbert space L,(Uy, H) is called L. By Proposition C.0.3(ii) we

know that Q%gk, k € N, is an orthonormal basis of (UO, (, )0) if gx, k € N, is an

orthonormal basis of (Ker Q%)J'. This basis can be supplemented to a basis of U
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by elements of Ker Q%. Thus we obtain that
1
ILll = |Lo0Q> HLZ for each L € LS.

Define L(U,H)y := {T|U0 \ T e L(U,H)}. Since Q% € Ly(U) it is clear that
L(U,H)y C L) and that the || ||7-norm of ® € € can be written in the following

way:
, ;
Pl = D)% ds ) | -
oy (E(/O o1, s))

We also need the following o-field:

Pri=o({s.x F, [0<s<t<T F e B} U {0} x Fo | Fo € Fo})
= U(Y Qr—-R | Y is left-continuous and adapted to
Fi t €10,77).
Let H be an arbitrary separable Hilbert space. If Y : Q7 — H is Pr/B(H)-
measurable it is called (H-)predictable.
If, for example, the process Y itself is continuous and adapted to F;, ¢t € [0, T,

then it is predictable.
So, we are now able to characterize £.

Claim There is an explicit representation of £ and it is given by

N0, T;H) := {@: [0, T] x @ — L | ® is predictable and || ®[|7 < co}
=L*([0,T] x Q,Pr, dt ® P;L)).
For simplicity we also write N3,(0, T) or N, instead of N3,(0, T; H).
To prove this claim we first notice the following facts:

1. Since L(U,H)o C L9 and since any ® € £ is L)-predictable by construction we
have that £ C N3
2. Because of the completeness of L) we get by Appendix A that

N = LA, Pr, Pr; L9)

is also complete.

Therefore ./\/%, is at least a candidate for a representation of €. Thus it only remains
to show that £ is a dense subset of ./\/%, But this is formulated in Proposition 2.3.8
below, which can be proved with the help of the following lemma.
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Lemma 2.3.7 There is an orthonormal basis of Lg consisting of elements of
L(U, H)y. This especially implies that L(U, H)y is a dense subset ong.

Proof Since ( is symmetric, nonnegative and trQ < oo we know by
Lemma 2.1.5 that there exists an orthonormal basis e¢;, k € N, of U such that
Qer = Arer, A = 0, k € N. In this case Q%ek = /Arer, k € N with A, > 0, is an
orthonormal basis of Uy (see Proposition C.0.3(ii)).

If fi, k € N, is an orthonormal basis of H then by Proposition B.0.7 we know that

1
i ® Ve = fi{v/ Avex, Yyu, = —=filer.)u,  J.k €N, A4 >0,
Ak

form an orthonormal basis of L consisting of operators in L(U, H),. O

Proposition 2.3.8 If ® € N, then there exists a sequence ®,, n € N, of L(U, H),-
valued elementary processes such that

|®—D,|lr — 0 asn — oo.

Proof

Stepl: If ® e ./\/%, there exists a sequence of simple random variables ®, =
S Lila, AY € Prand L € L3, n € N, such that

|®— D,y — 0 asn — oc.

As Lg is a separable Hilbert space, this is a simple consequence of Lemma A.1.4

and Lebesgue’s dominated convergence theorem.

Thus the assertion is reduced to the case that ® = L1, where L € Lg and A € Pr.
Step2: LetA € Prand L € Lg. Then there exists a sequence L,, n € N, in

L(U, H), such that

IL14 — Ly1allr — 0 asn — oo.

This result is obvious by Lemma 2.3.7 and thus now we only have to consider
the case when ® = L1,, L € L(U,H)y and A € Pr.

Step3: If® = Ll,, L € L(U,H)y, A € Pr, then there is a sequence ®,, n € N,
of elementary L(U, H)o-valued processes in the sense of Definition 2.3.1 such
that

|IL1y — ©,|lr — 0 asn —> oo.
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To show this it is sufficient to prove that for any ¢ > 0 there is a finite union
N

A= U A, of pairwise disjoint predictable rectangles

n=1
Ape{ls.)xF, |0<s<t<T. Foe FJU{{0}x Fy | Foe Fo} =1 A
such that

Pr((A\A)U(A\A)) <e.

For then we get that Zﬁl\;l L1,, differs from an elementary process by a function
of type Ll{pyxr, With Fy € Fo, which has || ||r-norm zero, and that

i - E(/OT”L(lA - é s,)

N
HLlA -3,
n=1

Hence we define

2
ds) <e|L|?,.
9 2

2

K= {UA,- ) lis finiteand A; € A, i € I}.

i€l

Then K is an algebra and any element in KC can be written as a finite disjoint
union of elements in .A. Now let G be the family of all A € Py which can be
approximated by elements of K in the above sense. Then G is a Dynkin system,
because obviously Q7 € K C G, and A° € G if A € G. Furthermore, if A; €
G, i € N, pairwise disjoint, and € > 0, then there exists an N € N such that

o0 o0 €
PT( U Ai) = Z Pr(A;) < 3
i=N+1 i=N+1

and A; € K such that Pr (A)\A;) U (A\A)) < 555 Hence A := | JL, A; € K
and

e’} N N [’} [’} N
Pr (UAi\ U Ai) u (U Ai\UAi) < Pr ( U Ai) + Pr (UAi\Ai)
=1 =1 =1 =1 i=1

i=N+1
N

+ Pr (U Ai\A,') < €.
i=1

Therefore Pr = o(K) =D(K) C Gas K C G. O
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Step 4: Finally, by the so-called localization procedure we shall extend the
definition of the stochastic integral to the linear space

Nw(0,T;H) := { @ : Q7 — LS | @ is predictable with

T
P(/O ||<1>(s)||§g ds < oo) = 1}.

For simplicity we also write Ny (0, T) or Ny instead of Ny (0, T; H) and Ny is
called the class of stochastically integrable processes on [0, T].

The extension is done in the following way:

For ® € Ny we define

T, = inf{t e [0, 7] ' / |D(s)]7y ds > n} AT. 2.7)
0 2

Then by the right-continuity of the filtration F;, t € [0, T], we get that

{t, <t} = ﬂ{rn<t+$}

meN

=ﬂ U {/Oq”cp(s)ujg ds>n} e F.

meN ge(0.14+ 1[NQ

€F, by the real Fubini theorem

€F , 1 and decreasing in m
=+ m

Therefore 7,, n € N, is an increasing sequence of stopping times with respect to
Fi, t € [0, T], such that

T
E(/o ||1]0,zn](s)q>(s)||ig ds) <n< oo.

In addition, the processes 1y9,®, n € N, are still LS-predictable since 1jo ) is
left-continuous and (F;)-adapted or since

10,7,] := {(s, w) € Qr | 0<s< rn(a))}
= ({(s, w) € Qr | ta(w) <5 < T} U{0} x Q)C

= (U a1 % m <a)uioyx Q) e Py

q€Q eF,

€Pr
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Thus we get that the stochastic integrals

/0 o) ()(s) AW(s), 1€ [0.T].

are well-defined for all n € N. For arbitrary 7 € [0, T] we set

/t D(s) dW(s) := /t 110,5,1(8)®(s) dW(s) on {z, > t}. (2.8)
0 0

(Note that the sequence t,, n € N, even reaches T P-a.s., in the sense that for
P-a.e. w € Q there exists an n(w) € N such that t,(w) = T for all n = n(w).)
To show that this definition is consistent we have to prove that for arbitrary
natural numbers m < nand ¢ € [0, T

/ 10,5, ()P (s) dW(s) 2/ L10,, (5) ®(s) dW(s) P-a.s.
0 0

on {t,, = t} C {r, = t}. This result follows from the following lemma, which
also implies that the process in (2.8) is a continuous H-valued local martingale.

Lemma 2.3.9 Assume that ® € N, and that © is an F;-stopping time such that
P(t < T) = 1. Then there exists a P-null set N € F independent of t € [0, T| such
that

t
/ 1j0.¢)(5)@(s) dW(s) = Int(1j91P) (1) = Int(P)(x A1)
0
TAL
= / ®(s) dW(s) on N forallt e [0,T].
0
Proof Since both integrals which appear in the equation are P-a.s. continuous we

only have to prove that they are equal P-a.s. at any fixed time ¢ € [0, 7.

Step 1:  We first consider the case that @ € £ and that 7 is a simple stopping time
which means that it takes only a finite number of values.
Let0=fy <t <--- < <T,keN,and

k—1
q) = Z q)ml]tmstanI]

m=0

where ®,, : @ — L(U, H) is F;,-measurable and only takes a finite number of
values forall0 < m < k— 1.
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If 7 is a simple stopping time, there exists an n € N such that t(2) = {ao, ..., an}
and

n
T = E ale_/.,
j=0

where 0 < @; < aj+1 < T and A; = {t = a;} € F,;. Then we get that 1j, 71 ® is
an elementary process since

k—1
L (9)®(s) = Z L T ) PR [O))
m=0
k—1 n
= Z Z lAchml]thm+1]n]aj,T] (S)
m=0 j=0
k—1 n
- Z Z Ly @m  Ly,vaiva)(s)
m=0j=0 _ T~

Fim vaj -measurable

and concerning the integral we are interested in, we obtain that

/ 1o () (s) dW(s) = /0 P(s) dW(s) - /0 Lo (9)B(s) AW (s)

k—

Z ot (W(tns1r A1) — Wty A 1))

— Z Z 1A m( (tm+1 \ Llj) A t) ((tm \ Clj) AN t))

m=0 j=0
k—1
= Z b, (W(l‘m_H ANt = W(t, A t))
m=0
_ZZL\, ( (1 VO A L) = ((mef)“))
m=0 j=0
k—1
= Z q>m (W(tm-i—l N t) - W(tm A t))
m=0

k—1

— Z d)m(W((tm+1 VT)AL) = W((tn vV T) A t))

m=0
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k—1
= Z q)m(W(tm-l—l A t) - W(tm A t)

m=0

= W((tms1 VO AL+ W((tw vV T) A t))

k—1

-y c1>m(W(tm+l ATAD) = W(tm AT A t)) - / ™ o(s) dWs).
0

m=0
Step 2: Now we consider the case when @ is still an elementary process while t
is an arbitrary stopping time with P(t < T) = 1.

Then there exists a sequence

2"—1

T, = Z T(k + 1)2_n1]Tk2_”,T(k+1)2—”] otr, ne€N,
k=0

of simple stopping times such that 7, | t as n — oo and because of the
continuity of the stochastic integral we get that

T, AL N TAL
/ ®(s) dW(s) —= / d(s) dW(s) P-as.
0 0
Besides, we obtain (even for non-elementary processes @) that

T
2 n—00
1190.60® = 0.0 ®@|; = E(/O ez 91261y dS) —=0,

which by the definition of the integral implies that

E(H/o Honl (D) dWE) = /0 10.0(5)(s) dW(s)

2) —
forall z € [0, T]. As by Step 1

/ r 10,0, (5)®(s) dW(s) = / " o) W), neN. re0.1].
0 0

the assertion follows.

Step 3:  Finally we generalize the statement to arbitrary ® € N7(0, T):
Ifd e ./\/;ZV(O, T), then there exists a sequence of elementary processes ®,,n € N,
such that

n—>oo

|®) — @7 — 0.
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By the definition of the stochastic integral this means that
’ n—>00 ’ . 2
D,(s) dW(s) —— d(s) dW(s) in M7 .
0 0

Hence it follows that there is a subsequence ni, k € N, and a P-null set N € F
independent of ¢ € [0, T] such that

t t
/ @, (s) dW(s) =2 / ®(s) dW(s) onN°
0 0
for all 7 € [0, T] and therefore we get for all # € [0, T] that
TAL k=00 TAL
/ D, (s) dW(s) — / ®(s) dW(s) P-a.s.
0 0

In addition, it is clear that
[110.0)®s — Lo @llr —> 0
n—>0o0

which implies that for all ¢ € [0, T

E(H/O Ho(5) @) AWS) _/o 110,71 (s)P(s) dW(s)

2) 200,

As by Step 2
t TAL
/ 110,71(8) @y, (s) dW(s) = / D, (s) dW(s) P-as.
0 0
for all k € N the assertion follows. O

Therefore, for m < non {t, =t} C {1, =t}
t T AL
[ 1naeem awe = [ 1,00 awe
0 0

:/ 110,5,1 (5) 110,2,, (5) P () dW(s):/ 110,5,,] (5)®(s) dW(s) P-as.,
0 0

where we used Lemma 2.3.9 for the second equality. Hence the definition is
consistent.

Remark 2.3.10 Let ® € Ny and 1,,n € N, as in 2.3.1. In fact it is easy to see that
the definition of the stochastic integral for ® € Ay does not depend on the choice
of 7,, n € N. We shall show this in several steps. So, let if 0,, n € N, be another
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sequence of stopping times such that 0, 1 T as n — oo and 1) 5,]P € ./\/%, for all
n € N. Then:

()
/ d(s) dW(s) = lim / 10,0, (5)@(s) dW(s) forallt € [0, T] P-ass.
0 n—>oQo 0

(ii) Lemma 2.3.9 holds for all ® € Ay.
(iii)

/t D(s) dW(s) = /t 1106, ()P (s) dW(s) on {0, > t}P-a.s.
0 0

Proof

(i) Lett € [0, T]. Then we get that on the set {z,, = 1}

/ D(s) dW(s) :/ 110,71 (5) @ (s) dW(s)
0 0

tAG,

= lim 110,7,,] () @ (s) AW (s)
0

n—>o00
AT

= lim 110.0,,] (5) @ (s) dW(s)

n—>oo 0
t

= lim/ 110,06, (5)@(s) dW(s) P-a.s.,
n—>oo 0

O
where we used Lemma 2.3.9 twice for the third equality. Letting m — oo
assertion (1) follows.

(ii) Let r be as in Lemma 2.3.9. Then P-a.s. for all ¢ €]0, T

TAL

/IN D(s) dW(s) = lim 110,6,1 () P (s) AW (s)
0 0

n—>o0o

= tim /0 1o.1(9) 10, () B(5) AW(s)

/0 1oy (5)®(s) dW(s),

where we used (i) for the first and last equality and Lemma 2.3.9 for the second.
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(iii) By (ii) we have P-a.s. on {o, > t}
/ ®(s) dW(s) = / " o) dw(s)
0 0

:/0 1]0’(7”](5‘)(1)(5) dW(S)

2.4 Properties of the Stochastic Integral

Let T be a positive real number and W(z), t € [0, T], a Q-Wiener process as described
at the beginning of the previous section.

Lemma 2.4.1 Let & be a Lg-valued stochastically integrable process,
(H, || ) afurther separable Hilbert space and L € L(H, H). N
Then the process L(q)(t)), t € [0, T), is an element of Nw (0, T; H) and

T T
L( / ®(1) dW(t)) = / L(®(1)) dW(1) P-a.s.
0 0
Proof Since @ is a stochastically integrable process and

CO)] A A LGOI

Ly (Uo.

it is obvious that L(CD(t)), 1 € [0, 7], is Lo(Uy, H)-predictable and

P( /O THL(QJ(I))

Step 1:  As the first step we consider the case that ® is an elementary process, i.e.

2
Ly (Uo.H)

dt<oo):1.

k—1
(1) = D Dylyy,p,, (0. t€[0.7],

m=0

where 0 =t <t <--- <t =T, P, : Q - L(U, H) F;,-measurable with
|q>m(52)| < oo for 0 < m < k. Then

k—1

T
([ 00 aw®) = (X 0n(Witr) - W)

m=0
k—1

T
= S L @u(Wits = W) = [ L0(0) W,

m=0
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Step2: Now let & € szv(O, T). Then there exists a sequence ®,, n € N, of
elementary processes with values in L(U, H)y such that

||d>n—<1>||f=< (/ 1@, () = @, @ )) iy

Then L(®,), n € N, is a sequence of elementary processes with values in
L(U,H)y and

|L(®) = L(®) | < 1Ll 1.0 | @0 — @17 —> 0.

By the definition of the stochastic integral, Step 1 and the continuity of L we get
that there is a subsequence ny, k € N, such that

T
/ L(®(r)) dW(r) = hm / D, (1)) dW(2)
0

= kl_i)n;o L( /0 ' D, (1) dW(t)) = L(kl_i?olo /0 ' D, (1) dW(t))
T
= L(/0 (1) dW(t)) P-as.

Step 3:  Finally let ® € Ay (0, T).
Let 7,, n € N, be a sequence of stopping times as in (2.7). Then 1) .| L(P) €
NZQO,T, H) forall n € N and we obtain by Remark 2.3.10 and Step 2 (selecting
a subsequence if necessary)

T T
/0 L(®() dW() = lim /O Lo OL(®() dW()

T T
= lim L( /0 10,5, (D (1) dW(t)) :L(nl_i)ngo /0 10,0, (D (1) dW(t))

n—>o00

T
= L(/0 (1) dW(t)) P-as.

Below B,(L(Uy, H)) denotes the Borel o-algebra generated by the strong
topology on L(Uy, H).

Lemma 2.4.2 Let ® : Qr — L(Uy, H) be Pr\Bs(L(Uy, H))-measurable and f :
Qr — H be Pr\B(H)-measurable such that

|

/ | ®*(t, w)f (2, a))||U0 dt <oo P-as.
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Set

T T
| .00 awo) = [ 8,0 awe 2.9)
0 0
with
(1) (u) := (1), P(1)u), u € Up.

Then the stochastic integral in (2.9) is well-defined as a continuous R-valued
stochastic process. More precisely, ®; is a Pr/B(L,(Uy, R))-measurable map from
[0, 7] x Q to L,(Uy, R), and

1D/ (t, @) |y wo.r) = |19* (1, @)f (1, ) ||, -

Proof Let e, k € N, be an orthonormal basis of Uy. Then for all (¢, w) € [0, T] x

o0

1D (1. ) |, ) = D _{f (1) (. w)er)?

>~
—_

M

(O* (1. 0)f (1. ), ),

,,.
I
-

|®* (1, 0)f (1. ) |,

Now all assertions follow. ]

Lemma 2.4.3 Let ® € Nyw(0,T) and &, n € N, a sequence in C([0, T], H) which
converges uniformly to {. Then there exists a subsequence {,,, k € N, such that

r k—00 r
| teuto.00 0w 0) == [ .00 aw) P
Proof

Step1: Let ® € NV2(0, 7).
Then we get that

|®e, — @c||, < sup | &u(®) — || 1@l
t€[0,7]

and therefore we get by the isometry that

L n—00 L
[ &0 avo == [ aw awo
0 0
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inL2(Q,F,P; R) which implies that there is a subsequence ny, k € N, such that

r k—00 r
/O (Gu (), B(r) AW (1)) — /O (¢, d(r) AW (1)) P-ass.

Step 2: Let ® € Ny (0, 7).
As in Step 4 of the definition of the stochastic integral we define the stopping
times

T = inf{t e [0, 7] ' /r||<1>(s)||j2 ds > m} AT.
0

Then the process 1y, ® is in N3(0,T; H) for all m € N. By Step 1 and a
diagonal argument we get the existence of a subsequence ny, k € N, such that

T k—>00 T
/0 (1), 1o (D) AW (D) =2 /O (£(). 110y (V() AW()  Pas.

for all m € N. Hence, by the definition of the stochastic integral, we obtain by
Lemma 2.3.9 that

T T
| .00 awon) - 15 e | .00 awo)

TATy,
Loy <1< / (). D) AW (1)

0

e

3
ﬂ

e

T
Lo rens /0 (1), Lo (HD() AW())

—_

mn

S T
> toerzan Jim [ 6,0 10s 000 aW00)
m=1 —eeJo

k—00

S T
= lim 3 1 reny /0 (60, 110, (V0 (2) AW (D)
m=1

T
kl_i)rgo/() (é‘nk(t),CD(t) dW(t)) P-as.
0

Lemma 2.4.4 Let ® € Ny (0,T; H) and M(t) := [y ®(s) dW(s), t € [0, T]. Define

(M), := /0 ||<I>(s)||ig ds, t € [0, T].
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Then (M) is the unique continuous increasing (F;)-adapted process starting at zero
such that |M(t)||> — (M),, t € [0,T), is a local martingale. If ® € N(0,T), then
for any sequence

={0=1<f<..<f, =T} l€N,
of partitions with

max(t —t _1) = 0asl— oo

lim E| 1S 1M(5,) = M@~ (M),| | = 0forall 1 €[0.7].

I <
G st

Proof Forn € Nlet 1, be as in (2.7) and t an F;-stopping time with P[t < 7] = 1.
Then by Remark 2.3.10 for o := 7 A 1,
2)

o 2 T
- (H/o ) dW(s) ) =E (H /0 1001 ®(s) dW(s)

T
— £ ([ Iomeoly o)
= ([ 190 ),

and the first assertion follows, because the uniqueness is obvious, since any real-
valued local martingale of bounded variation is constant.

To prove the second assertion we fix an orthonormal basis {e;|i € N} of H and
note that by the theory of real-valued martingales we have for eachi € N

lim E ’ Z (en M(ty)) — M(E)), /||<I>(s) el ds| | =0, (@10

[—00
t+l

since by the first part of the assertion and Lemmas 2.4.1 and 2.4.2

</ (e;, D(s) dW(s)) > / |[®(s)* el|| ds, t €0, 7).
0
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Furthermore, forall i,/ € N

E|| S (e M) — M3 / [0()* el ds

1
g st

I ?
<Y & (/,1+ (ei, B(s) AW() ) +E(/ ()" eill, ds )

1y St Y

-y E</H 1) il ds)+E(/ |B(s)* il ds )

St !

<2E (/ [®(s)*eill7, ds) (2.11)
0

which is summable over i € N. Here we used the isometry property of Int in the
second to last step. But

E|| 3 1M — M@ - / LIS

St
(12| 3 temtto —mai - [ 10w, o
=\
<> (| X temd ) -y - [ 106,
= St

where we used Remark B.0.6(i) in the first step. Hence the second assertion follows
by the Lebesgue dominated convergence theorem from (2.10) and (2.11). O

We conclude this section with the following useful result:

Proposition 2.4.5 Let ® € N30, T; H). Then P-a.s.

[ o6 awe) = 3 VA [ 0w dpi. <01,
k=1

where Ay, e, Br, k € N, are as in the representation (2.2) of Proposition 2.1.10 for
our Q-Wiener process W(t), t € [0,T), on U and the sum on the right-hand side
converges in L*(Q, F, P; C([0, T); H)).
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Proof Forn € N define
O<y i= Zlk {ex, )y ex,
k=1

Qs 1= Z Ak (exs )y ek

k=n+1

We, = Z Ve, 1€[0,T],
k=1

Wot) = D v uBr(Der, 1e€0,7].

k=n+1

Then Q<,, O-, are symmetric, nonnegative definite operators on U with finite
trace and Wg, (f), W=, (¢),t € [0,T], are Q<,- and Q-,-Wiener processes on U
respectively. Furthermore, since by construction our H-valued stochastic integrals
are linear in the integrators, it then follows by Proposition 2.2.9 that

2

E[ sup
t€l0,7]

/ D) dW(s) - / "0s) dWen(s)| 1

0 0

2

T
<2E [H /0 B(s) dW-.,(s)] ]

Lr(Q (U).H)

T
=2 F [/0 IS ds]

T o0
—2E | /0 > Ade(s)(en; ds)

k=n+1

which converges to zero as n —> oo by Lebesgue’s dominated convergence
theorem, since ® € N3(0, T; H). But clearly for ¢ € [0, T]

| @0 awa) = 3 VA [ @)ien dputs)
0 P 0

by construction of our H-valued stochastic integrals. Hence the assertion is proved.
|
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2.5 The Stochastic Integral for Cylindrical Wiener Processes

Until now we have considered the case that W(z), t € [0, T], was a standard Q-
Wiener process where Q € L(U) was nonnegative, symmetric and with finite trace.
We could integrate processes in

Ny =10:Qr — LQ(Q% (U),H) | ® is predictable and

T
P(/O ||<1>(s)||§g ds<oo) =1}.

In fact it is possible to extend the definition of the stochastic integral to the case
when Q is not necessarily of finite trace. To this end we first have to introduce the
concept of cylindrical Wiener processes.

2.5.1 Cylindrical Wiener Processes

Let O € L(U) be nonnegative definite and symmetric. We recall that in the case
when Q is of finite trace, a Q-Wiener process has the following representation:

WD) =Y Bder. tel0.T].

keN

where ¢;, k € N, is an orthonormal basis of Q%(U) = Uy and B, k € N,
is a family of independent real-valued Brownian motions. The series converges
in L*(Q, F, P; U), because the inclusion Uy C U defines a Hilbert—Schmidt
embedding from (Up, {, )o) to (U, {, )). In the case when Q is no longer of finite
trace one loses this convergence. Nevertheless, it is possible to define the Wiener
process.

To this end we need a further Hilbert space (U, (, )1) and a Hilbert—Schmidt
embedding

J:(Uo, (, Yo) = (U, {, ))-

Remark 2.5.1 (Uy,{, )1)) and J as above always exist; e.g. choose U; := U and
oy €]0,00[, k € N, such that ) ;2| @ < oc. Define J : Uy — U by

[
.](M) = Zak(u,ek)o e, ue€U.
k=1

Then J is one-to-one and Hilbert—Schmidt.
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Then the process given by the following proposition is called a cylindrical Q-
Wiener process in U.

Proposition 2.5.2 Let ¢, k € N be an orthonormal basis of Uy = Q% (U) and By,
k € N, a family of independent real-valued Brownian motions. Define Q| := JJ*.
Then Q) € L(U;), Q; is nonnegative definite and symmetric with finite trace and
the series

W(t) = But)Jer. te[0.T], (2.12)

k=1

converges in M%(Ul) and defines a Q1-Wiener process on U,. Moreover, we have

1
that Q7 (Uy) = J(Uo) and for all ug € Uy

1
luollo = 1Q; *Juolls = Muoll 1 .
Q1 (U1

1
ie.J: Uy — Qf (Uy) is an isometry.
Proof

Step 1:  We prove that W(¢), ¢ € [0, T, defined in (2.12) is a Q;-Wiener process
in U] .
If we set §(1) := B;(¢)J(¢;),j € N, we obtain that £(z), ¢ € [0, T}, is a continuous
U,-valued martingale with respect to

6= oot <n).
pet
t € [0, T], since
E(B(0) | G) = EBi0) | 0Bl < ) = fi(s) forall0< s <1< T
as & (0 (B;(u)|u < 5) U o(B;(1))) is independent of

o(Uottiwi<s).

keN
k#j

Then it is clear that

Wa(0) ==Y B (e). 1 €[0.T],

J=1
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is also a continuous U;-valued martingale with respect to G, t € [0,7]. In
addition, we obtain that

j=n

E| sup | Y Bin(epli | <4 sup E| D B0 (e}
t€[0,7] t€[0,7] j=n

=4T > I}, m=n=1.

j=n
Note that ||J||22(U0’U1) = Z||J(ej)||% < oo. Therefore, we get the convergence
jeN

of W,(1), t € [0,T], in M%(U,), hence the limit W(z), t € [0,T], is P-a.s.
continuous.

Now we want to show that Po (W(f) — W(s))™' = N(O0, (t—s)JJ*). Analogously
to the second part of the proof of Proposition 2.1.6 we get that (W (r) — W(s), u; ),
is normally distributed for all 0 < s < ¢ < T and u; € Uj. It is easy to see that
the mean is equal to zero and concerning the covariance of (W(r) — W(s), u;);
and (W(t) — W(s), v1)1, uy, v; € U, we obtain that

E(W(@) — W(s),u1)1 (W) — W(s), vi)1)

= Z(t - S)(Jek, M1)1<J€k7 Ul)l

keN

=(t—y) Z(e‘k,.]*m)o(e‘k,.]*vl)o

keN

= (t—s){(J*ur, J vi)o = (t — s)(JJ uy, v1)1.

Thus, it only remains to show that the increments of W(z), ¢ € [0, T], are indepen-
dent but this can be done in the same way as in the proof of Proposition 2.1.10.
1 1

Step2: We prove that Im Q; = J(Up) and that |uollo = ||Q, >Juoll1 for all

ug € Uy.
1
Since Q1 = JJ*, by Corollary C.0.6 we obtain that Q; (U;) = J(Up) and that
1

10, 2urlli = |/ ur|lo for all u; € J(Up). We now replace u; by J(uo), uy € U,
to get the last assertion, because J : Uy — U is one-to-one. O
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2.5.2 The Definition of the Stochastic Integral for Cylindrical
Wiener Processes

We fix Q € L(U) nonnegative, symmetric but not necessarily of finite trace. After

the preparations of the previous section we are now able to define the stochastic
integral with respect to a cylindrical Q-Wiener process W(r), t € [0, T].

Basically we integrate with respect to the standard U;-valued Q;-Wiener process

given by Proposition 2.5.2. In this sense we first get that a process ®(¢), ¢ € [0, T1,
1

is integrable with respect to W(z), t € [0, T}, if it takes values in L,(Q} (Uy), H), is

predictable and if
T
P / [®@)]*> ds<oo| =1.
0 L2(Qf (Un).H)

1
But in addition, we have by Proposition 2.5.2 that Q] (U;) = J(Uj) and that

_1 _1
(JMOaJUO)Q%(U) = (Q, *Juo, @, *Jvo)1 = (uo, vo)o
1 1

for all up, vo € Uy (by polarization). In particular, it follows that Je;, k € N, is an
1

orthonormal basis of Q7 (U;). Hence we get that

1
® €LY = 1,(Q*(U),H) <> ®oJ ' € L,(Q(U)), H)
since

@17, = D _(Per, der)
keN

=Y (PoJ 'Uer). @0 (Jer)) = [®oJ "> |, .

keN Ly(QF (Uy).H)

Now we define
/q>(s) dW(s) :=/ d(s) o~ dW(s), te]0.T]. (2.13)
0 0

Then the class of all integrable processes is given by

T
Ny = {CD : Qr — L) | ® predictable and P(/ ||d>(s)||i0 ds < oo) = 1}
0 2

as in the case where W(z), ¢ € [0, T, is a standard Q-Wiener process in U.
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Remark 2.5.3

1. We note that the stochastic integral defined in (2.13) is independent of the choice
of (Ui, (, )1) and J. This follows by construction, since by (2.12) for elementary
processes (2.13) does not depend on J.

2. If Q € L(U) is nonnegative, symmetric and with finite trace the standard Q-
Wiener process can also be considered as a cylindrical Q-Wiener process by
setting J = I : Up — U where [ is the identity map. In this case both definitions
of the stochastic integral coincide.

Exercise 2.5.4 Prove the analogue of Proposition 2.4.5, when W(¢),t € [0, T], is a
cylindrical Wiener process.

Finally, we note that since the stochastic integrals in this chapter all have a
standard Wiener process as integrator, we can drop the predictability assumption
on ® € Ny and (as we shall do in subsequent chapters) just assume progressive
measurability, i.e. ®|oxe is B([0,7]) ® F,/B(L))-measurable for all € [0,T],
at least if (2, F, P) is complete (otherwise we consider its completion) (cf. [81,
Theorem 6.3.1]). We used the above framework so that it easily extends to
more general Hilbert-space-valued martingales as integrators replacing the standard
Wiener process. The details are left to the reader.



Chapter 3
SDEs in Finite Dimensions

This chapter is an extended version of [52, Sect. 1].

3.1 Main Result and A Localization Lemma

Let (2, F,P) be a complete probability space and F;, ¢t € [0,00[, a normal
filtration. Let (W;)>0 be a standard Wiener process on R%, d, € N, with respect
to F;, t € [0, 0o[. So, in the terminology of the previous section U := R, Q :=1.
The role of the Hilbert space H there will be taken by R, d € N.

Let M(d xd;, R) denote the set of all real d x d;-matrices. Let the following maps
o =o(t,x,w), b = b(t,x, ) be given:

0 :[0, 00[xRY x Q@ — M(d x d},R),
b :[0, 0o[xR?Y x Q@ — R?

such that both are continuous in x € R? for each fixed t € [0,00[, w € , and
progressively measurable, i.e. for each 7 their restriction to [0, £] x 2 is B([0, 1]) ® F;-
measurable, for each fixed x € R?. We note that then both ¢ and b restricted to
[0,7] x RY x Q are B([0,7]) ® B(RY) ® F,-measurable for every t € [0, 00[. In
particular, for every x € RY, t € [0, oo[ both are F;,-measurable. We also assume
that the following integrability conditions hold:

T
/ sup{llo(t,x)|* + |b(t,x)|} dr < 0o on Q, (3.1)
0 |x|<R
© Springer International Publishing Switzerland 2015 55
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for all T, R € [0, oo[. Here | | denotes the Euclidean distance on R? and
d 4
ol =D "> Joyl™. (3.2)
i=1 j=1

(., ) below denotes the Euclidean inner product on R?.

Theorem 3.1.1 Let b, o be as above satisfying (3.1). Assume that on Q forallt,R €
[0, 00, x.y € RY, |x]. [y <R

2(x =y, b(t,x) = b(t,)) + [lo(t, ) — o (2, Y|
<K,R)|x— y|2 (local weak monotonicity)  (3.3)

and
2(x, b(t,x)) + |lo(t. x)|]> < K,()(1 + |x|*), (weak coercivity) (3.4)

where for R € [0, 0o, K;(R) is an Ry -valued (F;)-adapted process satisfying on
forall R,T € [0, o0

T
ar(R) ::/ K,(R) dt < oo. 3.5)
0

Then for any Fo-measurable map Xo : Q — RY there exists a (up to P-
indistinguishability) unique solution to the stochastic differential equation

dX(1) = b(t. X(1)) dt + o1, X (1)) dW (). (3.6)

Here solution means that (X(1))=0 is a P-a.s. continuous R*-valued (F;)-adapted
process such that P-a.s. for all t € [0, oo[

X)) =Xo+ /Otb(s, X(s)) ds + /Ot(r(s, X(s)) dW(s). (3.7

Furthermore, for all t € [0, o[
E(X(0)Pe™ ") < E(Xol) + 1. (3.8)

Remark 3.1.2 We note that by (3.1) the integrals on the right-hand side of (3.7) are
well-defined.

For the proof of the above theorem we need two lemmas.
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Lemma 3.1.3 Let Y(¢),t € [0,00], be a continuous, Ry-valued, (F;)-adapted
process on (2, F, P) and y an (F,)-stopping time, and let ¢ €]0, ool. Set

7. ;= y Ainf{t = 0|Y(¢) = ¢}

(where as usual we set inf @ = 4+00). Then

1
P({ sup Y(1) = ¢, y < OO}) S _E(l{y<oo}Y(f£))‘
r€[0.7] €

Proof We have

{sup Y1) = e} N{y < oo} ={Y(t:) = e} N {y < o0}.
1€[0.]

Hence the assertion follows by Chebyshev’s inequality. O
The following general “localization lemma” will be crucial.

Lemma 3.1.4 Letn € N and X"(1), t € [0, 00[, be a continuous, R9-valued,
(F1)-adapted process on (2, F, P) such that X" (0) = X, for some Fy-measurable
function Xy : @ — R¢ and

dX™ (1) = b(t, X (1) + p™ (1)) dt + o (1, X7 (1) + p™ (1)) AW(), 1 € [0, 00[

for some progressively measurable process p™ (1), t € [0, 00[. Forn € Nand R €
[0, oo[ let ™ (R) be (F;)-stopping times such that

(i)
IXO@)| + p" @) <R if 1€]0,t"R)] P-ae.

(ii)

TAT™(R)
lim E / P (@) dt =0 forall T € [0, oo
0

n—>oQo

(iii) There exists a function r : [0, co[— [0, oo[ such that limg_s0 r(R) = 00 and

lim lim P({r(”)(R) <T, sup  |[XP@)| < r(R)})

R—o00 n—00 1€[0,7" (R)]

= 0forallT € [0, oo].
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Then for every T € [0, oo we have

sup [X® (1) — X" (1)] — O in probability as n,m — oo.
t€[0,7]

Proof By (3.1) we may assume that

sup |b(t,x)| < Ki(R) forallR,t € [0, 00]. (3.9

[x|<R

(Otherwise, we replace K;(R) by the maximum of K;(R) and the integrand in (3.1).)
Fix R € [0, oo[ and define the (F;)-stopping times

(R, u) := inf{t = 0|a,(R) > u}, u € [0, ool.

Since t — «,(R) is locally bounded, we have that t(R,u) 1 oo as u — oo. In
particular, there exists a u(R) € [0, oo[ such that

1
P{t(R,u(R)) < R}) < R
Setting 7(R) := t(R,u(R)) we have 7(R) — oo in probability as R — oo and
iz r)(R) < u(R) forall ¢, R € [0, oo.

Furthermore, if we replace 7™ (R) by ™ (R) A T(R) forn € N, R € [0, o[, then
clearly assumptions (i) and (ii) above still hold. But

'
o

+P{z(R) < T,t™(R) > t1(R)})

R ATR) < T, sup X"(@)] < r(R)
t€[0,7™ (R)AT(R)]

R <T, sup |[XP@)|<rR).t"R) <t(R)
t€[0,7 (R)]

and limg_o0 P({T(R) < T}) = 0. So, assumption (iii) also holds when 7 (R) is
replaced by 7 (R) A (R). We may thus assume that 7™ (R) < 7(R), hence

Uyprin(r)(R) < u(R) forall £, R € [0, 00, n € N. (3.10)

Fix R € [0, oo[ and define

A" (R) ;=/0 1P (5)| K,(R) ds, t€]0,00[,n€N. (3.11)
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By (3.10) it follows that

lim E ()L;f”T(n) (R)(R)> — 0forall R, T € [0, o0[. (3.12)

A

Indeed, for all m,n € N

TAT™(R)
/ PP (0| K/(R) di
0

TAT™(R) TAT(R)
<m / P ()] d + R / oot (Ko (R)) Ki(R) db.
0 0

By assumption (ii) we know that as n — oo this converges in L' (Q, F, P) to

TAT(R)
R / ool (K:(R)) Ki(R) dr.
0

which in turn is dominated by R arar(r) < R u(R) and converges P-a.e. to zero
as m — oo by (3.5). So, (3.12) follows by Lebesgue’s dominated convergence
theorem. Let n, m € N and set
Vi(R) := exp(—2w(R) — [Xo[), 1€ [0, 00]. (3.13)
Then by It6’s formula we have P-a.e. for all ¢ € [0, oo[
X (0) = X" (0 PYi(R)
t
= [ @ 2600 = X606, X0 + 570
0

—b(s, X" (s) +p™(5)))
+ o (s, X" (5) +p"(s)) = 3 (5, X" (5) + p™ ()

— 2K, (R)[ X" (s) — X (s)|2i| ds + Mg™ (1), (3.14)

where M](Qn,m) (t),t € [0,00[, is a continuous local (J;)-martingale with
M\ (0) = 0. Writing

X0(s) =X (5) = X(s) 4+ p () = (X 5) + p™ () = p"5) + P (5)
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and by the weak monotonicity assumption (3.3), for ¢+ € [0, 7"(R) A ™ (R)] the
right-hand side of (3.14) is P-a.e. dominated by
t
[ 2676 70565, x6) 4 576
0
= b(s, X" (s) + p™(5)))
+ K, (R)| (X (s) = X" (5)) + (p"(s) = p™(s))I?

— 2K, (R)|X" (s) — X (s)|2} ds + MY (1)

<2 /0 VR Ko(R) (2™ (5) — p™ ()] + [0 (s) — p™(5)2) ds
+ MY (1),

where we used (3.9) and assumption (i) in the last step. Since ¥(R) < 1 for all
s € [0, oo[ and since for s €]0, 7™ (R) A (" (R)]

™ (s) = p™()]> < 2R(p™ ()] + [p"(s)])  P-ae.,

the above implies that for T € [0, oo[ fixed and y "™ (R) := T A T (R) A T (R)
we have P-a.e. for ¢t € [0, y "™ (R)]

XD (@) — X0 P9 (R) < 41+ RV R) + 2™ (R) + MT™ (1), (3.15)

Hence for any (F;)-stopping time < y ™™ (R) and (F;)-stopping times o} 1 00 as
k — 00 so that MY (1 A oy), t € [0, 0o, is a martingale for all k € N, we have

E(X™(z A or) = X" (2 A 0p)|*Veno (R))

S+ REAY /B + A7) 1) o (R)).

TAT(R)
First letting kK — oo and applying Fatou’s lemma, and then using Lemma 3.1.3 we
obtain that for every ¢ € ]0, oo[

P sup  (IXD(0) — XD (O Pyi(R)) > e})
t€[0,y ) (R)]
s@m‘”’ ®R)+ A" (R)).

TATM(R) TATM(R)
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Since [0,00[> t +— ¥ (R)(w) is strictly positive, independent of n,m € N, and
continuous, the above inequality and (3.12) imply that

sup  [XP@) — X" (@) -0 asn,m— oo
1€[0,y (= (R)]

in P-measure. So, to prove the assertion it remains to show that given T € [0, oo,
Jim ll)_ngo P({t"™(R) < T}) = 0. (3.16)
We first observe that replacing K;(R) by max(K;(R), K;(1)) we may assume that
K,(1) < K,(R) forallt € [0, 00[, R € [1, 00]. (3.17)
Now we proceed similarly as above, but use the assumption of weak coercivity

(3.4) instead of weak monotonicity (3.3). Let n € N and R € [1, oo[. Then by It6’s
formula P-a.e. for all ¢ € [0, co[ we have

X @) (1)
=[Xo[?e ol 4+ /0 r Y (D[2(X"(5), b(s, X" (5) + p™(5)))
+ [l (s, X (s) 4+ p™ (D> — 2K,(1)|X(s)[*] ds + M (1), (3.18)
where M,(e")(t),t € [0,00[, is a continuous local (F;)-martingale with
M (0) = 0. By (3.4) and (3.9) and since ¥,(1) < 1 for all s € [0, 00[ the

second summand of the right-hand side of (3.18) is P-a.e. for all t € [0, T A T™(R)]
dominated by

/O D2 6), b5, XD ) + p(5)
+ K (DX (s) + p™ (9)]” + K(1) = 2K(1) [X®(5)[*] ds
<2 /0 KR PP+ [P ds + /0 (1) ds
<201+ RA"(R) + /0 e gs, (3.19)

where we used (3.17) and assumption (i).
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Again localizing Ml(en) (#), t € [0, oo, from (3.18) and (3.19) we deduce that for
every (F;)-stopping time © < 7' A 7 (R)

EQX@) () < EXoPe™ ) 4 2 420+ REAL 0 (R))

TAT™(R)

Hence by Lemma 3.1.3 and (3.12) we obtain

lim sup Iim P({  sup  (IX@) >y, (1)) = c}) = 0.

COORe[0,00[ 1> 4]0, TAT™ (R)]

Since [0, oo[ 2 t — ¥,(1) is strictly positive, independent of n € N and continuous,
and since r(R) — oo as R — oo, we conclude that

fim fim P({ sup |X™()| = rR), T (R) <T})

R—00 n—>00 1€[0,20 (R)]

< lim sup Tim P({ sup  [X"(0)] = r(R)}) = 0.

R=0 gc0.00[" " tef0.r A0 (R)]

Hence (3.16) follows from assumption (iii). |

Remark 3.1.5 In our application of Lemma 3.1.4 below, assumption (iii) will be
fulfilled, since the event under P will be empty foralln € N, R € [0, ool. For a case
where assumption (iii) is more difficult to check, we refer to [52, Sect. 1].

3.2 Proof of Existence and Uniqueness

Proof of Theorem 3.1.1 The proof is based on Euler’s method. Fix n € N and define
the processes X" (1), t € [0, ool, iteratively by setting

X™(0) := X,

and fork e NU {0} and r € ]%l%] by

(o () ass [ (500 (£)) awo

x® 0)

=x® I_C
n

_|_
T
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This is equivalent to
X" = Xo + /0 t b(s, X (k(n, 5))) ds
+ /0 to(s,X(”) (k(n,s))) dW(s), t € [0, o0, (3.20)
where «(n,t) := [tn]/n(< 1), and also to
X" = Xy + /O r b(s, X" (s) + p™(s)) ds
+ /0 ra(s,X(”)(s) +p"(s)) dW(s), € [0, o0l

where
POr) =X (e, 1) — X (1)

=_/r b(s, X" (k(n, s))) ds

(n,1)

t
- / o (s, X" (k(n,s))) dW(s), t € [0, oo[.
k(n,t)
Now fix R € [0, oo and define
. R
t™(R) := 1nf{t = 0[|X" (1] > 3
and
R
R) := —.
r(R) = 5
Then clearly,

2R R
FRIGIES 5 and X7 (1)| < 3 if 7 €10, 7™ (R)].

In particular, condition (i) in Lemma 3.1.4 holds. Since X(t"(R)) = 133 on

{t™(R) < oo}, the event in Lemma 3.1.4(iii) is empty forall n € N, R € [0, o[, so
this condition is also satisfied. Let ¢;, 1 < i < d, be the canonical basis of R? and
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T € [0, ool. Since for ¢ € [0, T]
— (e p" (1))

t

= / r (i, b(s, X" (k(n, s)))) ds + / (ei,o (s, X" (k(n,s))) dW(s)),
K (n,t) K (n,t)

it follows that for ¢ €]0,00[and 1 < i < d, t € [0, 00[

P({l{er. P (0))] = 26, 1 < T (R)})

t
<P / sup |b(s,x)|ds = ¢
k(n,t) |x|<R

At (R)
+ P({ sup / Lic(n), 1 (8)
7e€f0,q] 1 /O

(ei,o (5, X" (k(n,s))) dW(s))| = e})

and by Corollary D.0.2 the second summand is bounded by

35 ! ) )
—+P sup |lo(s,x)||* ds > § .
& k(n,t) |x|<R

Altogether, first letting n — oo and using (3.1), and then letting § — 0 we obtain
that for all ¢ € [0, oo

1[O.t,,(R)] (l‘) p(n) (t) —0asn— o0

in P-measure. Since
2R
Lo.om (@) [P @) < S 1€ [0, oo,

it follows by Lebesgue’s dominated convergence theorem and Fubini’s theorem
that condition (ii) in Lemma 3.1.4 is also fulfilled. Now Lemma 3.1.4 and the
fact that the space of continuous processes is complete with respect to locally (in
t € [0, oo[) uniform convergence in probability imply that there exists a continuous,
(F1)-adapted, R?-valued process X(#), ¢ € [0, oo[, such that for all T € [0, oo[

sup |X" (1) — X(1)| — 0 in P-measure as n — oo. (3.21)
t€[0,7]

To prove that X satisfies (3.6) we are going to take the limit in (3.20). To this end,
fix T € [0,00[ and ¢t € [0, T]. By (3.21) and because of the path continuity we only
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have to show that the right-hand side of (3.20) converges in P-measure to

Xo + /Otb(s, X(s)) ds + /Ot(r(s, X(s)) dW(s).

Since the convergence in (3.21) is uniform on [0, 7], by equicontinuity we also have
that

sup |X™(k(n, 1)) — X(t)| = 0 in P-measure as n — 00.
t€l0,7]

Hence for Y () := X" («(n, 1)) and a subsequence (1) ren

sup |Y" (1) — X(r)] — 0 P-a.e. as k — oo.
t€[0,7]

In particular, for S(¢) := sup,cy |Y"(2)]

sup S(f) < oo P-ae. (3.22)
t€[0,7]

For R € [0, oo[ define the (F;)-stopping time
7(R) := inf{r € [0, T]|S() > R} AT.

By the continuity of » in x € R¢ and by (3.1)

lim / tb(s,X("“)(/c(nk,s))) ds = / tb(s,X(s)) ds P-ae.on{r<t(R)}.
k=00 Jo 0 (3 23)

To handle the stochastic integrals we need another sequence of stopping times. For
R, N € [0, oo define the (F;)-stopping time

y(R) := inf{r € [0, T]| f sup [lo(s,x)||* ds > N} A ©(R).

0 |x|<R

Then by the continuity of o in x € R?, (3.1), and Lebesgue’s dominated convergence
theorem

k—o00

w(R)
lim E ( / llo (s, X" (i (e, 5))) — (s, X(5)) || ds) =0,
0
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hence
/ tcr(s,X("") (k (ng, 5)) dW(s) — / tcr(s,X(s)) dw(s) (3.24)
0 0

in P-measure on {t < ty(R)} as k — oo. By (3.1), for every w € 2 there exists an
N(w) € [0, oo[ such that Ty (R) = t(R) forall N = N(w), so

Ut s aw®} =1 < t®).

NeN

Therefore, (3.24) holds in P-measure on {t < 7(R)}. But by (3.22) for P-a.e. w € Q
there exists an R(w) € [0, oo[ such that t(R) = T for all R = R(w). So, as above we
conclude that (3.23) and (3.24) hold in P-measure on 2. This completes the proof
of existence.

The uniqueness is a special case of the next proposition. So, let us prove the final
statement. We have by 1t6’s formula for our solution X that P-a.e. for all 7 € [0, oo

t
IX(0)7e™ D = X[ +/ e W [2(X(s), b5, X(5))) + llo (s, X ()|
0
— K(DIX($)I”] ds + M ().
where M(z), t € [0,00[, is a continuous local martingale with M(0) = 0. By

the weak coercivity assumption (3.4) the right-hand side of the above equation is
dominated by

o (1)
|Xo|? + / e ds + M(2).
0

So, again by localizing M(r), t € [0, oo, and Fatou’s lemma we get
E(IX(1)*e™* V) < E(1Xo)*) + 1. t € [0, 00].

O

Proposition 3.2.1 Let the assumptions of Theorem 3.1.1 apart from (3.4) be
satisfied. Let XO,X(()n) :Q — RY n e N, be Fy-measurable such that

P— lim X;" = Xo.

n—>oo
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Let T € [0, oo[ and assume that X (1), X" (¢), t € [0, T], n € N, be solutions of (3.6)
(up to time T) such that X(0) = Xo and X" (0) = X(()") P-a.e. forall n € N. Then

P— lim sup |X™ (1) —X(1)] = 0. (3.25)

00 4e0,7]

Proof By the characterization of convergence in P-measure in terms of P-a.e.

convergent subsequences (cf. e.g. [5]), we may assume that X(()") — Xpasn — oo
P-ae.
Fix R € [0, oo[ and define

$i(R) := exp(—a,(R) —sup X" ). 1 € [0, oo,

We note that since |Xy| < oo, we have ¢,(R) > 0 P-a.e. for all ¢ € [0, co[. Define
Y™ (R) := inf{r = 0|| X" ()| + |X(r)| > R} A T.

Analogously to deriving (3.15) in the proof of Lemma 3.1.4 using the weak
monotonicity assumption (3.3), we obtain that P-a.e. forall # € [0,T] and all n € N

XAy R)) = Xt Ay (R Ppin, o0y (R)
(n
SIXY = Xo e M) @ (1),

where mg‘) (1), t € [0, T), are continuous local (F;)-martingales such that mg‘) 0) =

0. Hence localizing mg') (#), t € [0, T], for any (F;)-stopping time T < y™(R) we
obtain that
E(X™ (2) — X(2) 2. (R)) < E(IX® — Xo[Pe™ %P %"y, (3.26)

Since the right-hand side of (3.26) converges to zero, by Lemma 3.1.3 we conclude
that

P—lim sup (IX"(tAy"R)—=X(tAY"R) P pymm@®) =0.  (3.27)

=00 4¢0,7]

Since P-a.e. the function [0,00[> ¢ — ¢;(R) is continuous and strictly positive,
(3.27) implies

P— lim sup [X®@Ay™R) —X1Ay™(R)| =0. (3.28)

=00 1e10.7]



68 3 SDE:s in Finite Dimensions

But

P({y"(R) < T})

<P({ Sgl;l(lX(")(t AYPR)|+ XAy R))]) = RY)

<P({ SEI;J(IX(”)(I AYPR) =X AyP (R = 13)

+ P({2 sup |X(®)| =R—1}).
t€[0,7]

This together with (3.28) implies that
lim Iim P{y™(R) <T}) = 0. (3.29)
R—o00 n—>00

(3.28) and (3.29) imply (3.25). O



Chapter 4
SDEs in Infinite Dimensions and Applications
to SPDEs

In this chapter we will present one specific method to solve stochastic differential
equations in infinite dimensional spaces, known as the variational approach. The
main criterion for this approach to work is that the coefficients satisfy certain
monotonicity assumptions. As the main references for Sect. 4.2 we mention [54, 69],
but one should also check the references therein, in particular the pioneering work
[65]. Section 4.1 is devoted to formulating the necessary conditions and a number
of key applications. In the last section we study the Markov property and invariant
measures.

4.1 Gelfand Triples, Conditions on the Coefficients
and Examples

Let H be a separable Hilbert space with inner product { , )y and H* its dual. Let V
be a reflexive Banach space, such that V C H continuously and densely. Then for
its dual space V* it follows that H* C V* continuously and densely. Identifying H
and H* via the Riesz isomorphism we have that

VCHCV* 4.1

continuously and densely and if «( , ), denotes the dualization between V* and V
(ie. yx(z,v)y 1= z(v) forz € V*, v € V), it follows that

ve{z,v)y = (z,v)g forallze HveV. 4.2)

(V,H,V*) is called a Gelfand triple. Note that since H C V* continuously and
densely, V* is also separable, hence so is V. Furthermore, B(V) is generated by

© Springer International Publishing Switzerland 2015 69
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70 4 SDEs in Infinite Dimensions and Applications to SPDEs

V* and B(H) by H*. We also have by Kuratowski’s theorem that V € B(H), H €
B(V*)and B(V) = B(H)NV, B(H) = B(V*) N H.
Below we want to study stochastic differential equations on H of type

dX(H) = A(t, X()) dt + B(t, X()) dW(?) 4.3)

with W(¢), t € [0,T], a cylindrical Q-Wiener process with Q = I on another
separable Hilbert space (U, (, )y) and with B taking values in L,(U, H) as in
Chap. 2, but with A taking values in the larger space V*.

The solution X will, however, take values in H again. In this section we give
precise conditions on A and B.

Let T € [0, oof be fixed and let (€2, F, P) be a complete probability space with
normal filtration F;, ¢ € [0, oo[. Let

A0, TIxVxQ—V* B:[0,T]xVxQ — L(U,H)
be progressively measurable, i.e. for every t € [0, T], these maps restricted to [0, ] X
VxQ are B([0, 1]) ® B(V) ® F;-measurable. As usual by writing A(#, v) we mean the

map w +— A(t, v, w). Analogously for B(z, v). We impose the following conditions
on A and B:

(H1) (Hemicontinuity) For all u,v,w € V, v € Q and ¢ € [0, T] the map
R A= (At u+ Av,w),w)y,

is continuous.
(H2) (Weak monotonicity) There exists a ¢ € R such that for all u,v € V

2y (AC,u) — A, v),u —v)y + |B(,u) — B(, U)”iz(u,y)

< c||u—v||§, on [0, T] x Q2.

(H3) (Coercivity) There exist « €]1, 00|, ¢; € R, ¢, €]0, 0o[ and an (F;)-adapted
process f € L'([0, T] x R, df ® P) such that forallv € V.t € [0, T]

2y (A1 V), )y HIBE V)7, < ctllvlf = eallvlly +7(@0) on Q.

(H4) (Boundedness) There exist ¢3 € [0,00[ and an (F;)-adapted process
g€ La1([0,T] x Q, dr ® P) such that forallv € V, 1 € [0, T]

A v)lvs < g(@) +esllvly™ on Q,

where « is as in (H3).
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Remark 4.1.1
1. By (H3) and (H4) it follows that forall v € V, ¢ € [0, T]

1B W7, < crllvllf +£@) +2[vllv g(0) + Qes = e2) o]y on Q.
2. Fix (t,w) € [0,T] x 2 and set foru € V
A(u) := At u, w).

Analogously to the finite dimensional case (see 3.1.3) we introduce:

(H2j,.) Forevery R € ]0, oo there exists a Cg such that for all u,v € V
with [lullv, vllv <R

2y« (A(u) —A(v),u—v)y < Cgllu— v||12q.

Then the following holds:
(H1) and (H2,,.) imply that A is demicontinuous, i.e.

u, — uasn — oo (strongly)in V
implies
A(u,) — A(u) as n — oo weakly in V*
(cf. [82, Proposition 26.4]).

In particular, if H = R?, d € N, hence V = V* = R, then (H1) and (H2y,.)
imply that u > A(t, u, @) is continuous from R¥ to R¢.

Proof Setforu e V,R € 10, 00[
Ag(u) := A(u) — Cg u.

The proof will be done in four steps. O

Claim 1: A s locally bounded, i.e. for all u € V there exists a neighborhood U (u)
such that A(U(u)) is a bounded subset of V*.

Proof of Claim 1 First consider u = 0. Suppose A(U(0)) is unbounded for all
neighborhoods U(0) of 0. Then there exist u,, € V, n € N, such that

llen]lv — 0 and ||A(un)|lv+ — oo as n — oo.
Then there exists an R € ]0, oo such that ||u,|v < R forall n € N. Set

an = (14 |AR ) 1y [lunl|v) "



72 4 SDEs in Infinite Dimensions and Applications to SPDEs

Then by (H2,.) for all v € V\{0} and vg := R}

Tolly
an v (AR (), tty — (FVR))y —an = (AR(FVR), Uy — (£VR))y, <0,

hence

Fan y+ (Ar(Un), VR)y < —an yx (AR(Un), Un)y +an v+ (AR(EVR), un F VR)y
< anl|Ar(un) v+ lunllv + AR (FVR) v+ [|n F vrllv
< 1+ [[Ar(FvR) v+ (R + [[vrllv)-

Consequently,

sup |y« (anAr(,), v)y | < ooforallv e V.

Therefore, by the Banach—Steinhaus theorem

N := sup|la,Ar(u,)|v+ < o0,
n
and thus for ny € N so large that ||u,| < ﬁ for all n = ny we obtain

_ 1
lAru) v+ < @, 'N <N+ Sl Ar(n)llv=,
i.e.
|Ag ()| v+ < 2N forall n = ny.
Hence also sup,,||A(u,)|lv+ < oo, which is a contradiction. So, A(U(0)) is bounded
for some neighborhood U(0) of 0.
For arbitrary u € V we apply the above argument to the operator

A,(v) =Au+v),veVv

which obviously also satisfies (H1) and (H2,,.). So, Claim 1 is proved. O

Claim 2: Letu € V, b € V* such that there exist R € [||u]|y, oo[, y €]0, co[ such
that

ye(b—A@),u—v)y, <yllu—v|3 forallv e V with |v]ly <R+ 1.

Then A(u) = b.
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Proof of Claim 2 Letw € V, |w|y < 1,¢ €]0,1[ and set v := u — tw. Then by
assumption

ve(b—A(u—tw), tw), = x(b—A(), u—v), < yt2||w||12q.
Dividing first by ¢ and then letting t — 0, by (H1) we obtain
ve(b—A(u),w), <Oforallwe V.
So, replacing w by —w, w € V, we get
v {b—A(u),w), =0forallw eV,

hence A(u) = b. O

Claim 3:  (“monotonicity trick”). Let u,, u € V,n € N, and b € V* such that

u, >u as n— oo weaklyinV,
u, > u as n— oo stronglyinH,

A(u,) - b as n— oo weaklyin V*

and

Hmsup v« (A(un), tn)y = (b, u)y .
n—>oo

Then A(u) = b.

Proof of Claim 3 Let R := ||lul|y + sup, ||u,|v. We have for all v € V with ||v]ly <
R+1

y* (A(un), Mn)v — (A(v), “n)V —y* (A(u,) —A(v), U)V

=y (Aun) —AW). tty — V) < Crytlun — V|7

by (H2,.). Taking lim sup we obtain

n—>00
y (b )y =y (A ), )y = (b = A(V), 0)y < Creallu = v,
SO
vi{b—A@W),u—v), < Cryru—v|% forall v € V with ||[v]|y <R + 1.

Hence Claim 2 implies that A(u) = b. O
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Claim4: Letu, u <V, ne N, such that
u, — uasn — oo (strongly)in V.
Then
A(u,) — A(u) as n — oo weakly in V*,

Proof of Claim 4 Since u, — u as n — oo in V, by Claim 1 {A(u,)|n € N}
is bounded in V*. Since V is separable, closed bounded sets in V* are weakly
sequentially compact. Hence there exists a subsequence (n¢)reny and b € V* such
that A(u,,) — b as k — oo weakly in V*. Since u,, — u strongly in V as k — oo,
we get

kl_llgo V* (A(uy,), ”m)v = y* (b, ”)V

Therefore, since V C H continuously, all conditions in Claim 3 are fulfilled and we
can conclude that A(u) = b. So, for all such subsequences their weak limit is A(u),
hence A(u,) — A(u) as n — oo weakly in V*. O

Let us now discuss the above conditions. We shall solely concentrate on A and
take B = 0. The latter we do because of the following:

Exercise 4.1.2

1. Suppose A, B satisfy (H2), (H3) above and A is another map satisfying (H2),
(H3). Then A + A, B satlsfy (H2),(H3). Likewise, if A and A both satisfy (H1),
(H4) then so does A + A.

2. If A satisfies (H2), (H3) (with B = 0) and for all r € [0, T], w € 2, the map u —
B(t,u, w) is Lipschitz with respect to || ||z with Lipschitz constant independent
of t € [0,T], w € Q, then A, B satisfy (H2), (H3).

Below, we only look at A independent of t € [0, T], w € Q. From here examples
for A dependent on (¢, w) are then immediate.

Example 4.1.3 V = H = V* (which includes the case H = RY).
Clearly, since forallv € V

2y (A@W), V)y < 2 (AW) = A0), v}y +AO) [T+ + (V]I

in the present case where V = H = V*, (H2) implies (H3) with ¢; > ¢; and & :=
2. Furthermore, obviously, if A is Lipschitz in u, then (H1)—(H4) are immediately
satisfied. But for (H1)—(H3) to hold, conditions (with respect to «#) on A, which can
be checked locally, can be sufficient, as the following proposition shows.

Proposition 4.1.4 Suppose A : H — H is Fréchet differentiable such that for some
¢ € [0, oo[ the operator DA(x) — cI (€ L(H)) is negative definite for all x € H. Then
A satisfies (H1)—(H3) (with B = 0).
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Proof Since A is Fréchet differentiable, it is continuous, so, in particular, (H1) holds.
Furthermore, for x,y € H we have

I d
Ax) —A(y) = /0 EA(y + s(x—y)) ds

1
2/0 DA(y + s(x —y))(x — y) ds.

Hence by assumption
1
(A0 = AG)x =) = [ (DA + 55 =)= ). x =3 ds

1
< c/ (x—y,x—y)g ds
0
= cllx =yl

and so (H2) holds and hence (H3), as shown above. O

We again note that Proposition 4.1.4 shows that locally checkable conditions on
A can already imply (H1)-(H3), if (V = H = V* and) @ = 2. However, the global
condition (H4) then requires that A is of at most linear growth since o« — 1 = 1 if
o = 2. We also note that for H = R! the conditions in Proposition 4.1.4 just mean
that A is differentiable and decreasing.

If H is a space of functions, a possible and easy choice for A would be, for
example, Au = —u>. But then we cannot choose H = L? because A would not leave
L? invariant. This is one motivation to look at triples V C H C V* because then we
can take V = L” and H = L? and define A from V to V* = [7/?~1 Let us look at
this case more precisely.

Example 4.1.5 (L? C L* C I’/"=Y and A(u) := —u|u|’~%) Hence the stochastic
differential equation (4.3) becomes

dX(1) = —X()|X@)P~? dr + B(t, X (1)) dW ().
Letp € [2,00[, A C R?, A open. Let
V:=LP(A) ;= LP(A, d§),
equipped with its usual norm || ||,, and

H:=L*(A) := L*(A, d§),
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where d¢ denotes Lebesgue measure on A. Then
V* = /07D(A).

If p > 2 we assume that

|A] = /Rd IA(§) dE < oo. 4.4)
Then
VCHCV*,
or concretely
LP(A) C L*(A) € I/07D(A)

continuously and densely. Recall that since p > 1, L?(A) is reflexive.
Define A : V — V* by

Au = —ululP2, u e V=L"(A).

Indeed, A takes values in V* = L//®~D(A), since

/ Au@®P/PD dt = / W(®P dt < 0o

for all u € LP(A).
Claim A satisfies (H1)—(H4).
Proof Letu,v,x € V. Then for A € R

v (A(u + Av) — A(u), x)y,
= /(M@)IM(%')V’_2 — (&) + Av(E)|u(€) + Av(E) P )x(E) d§

<[ululP~? = (u + Av)|u + Av|P?

y Ixllv

which converges to zero as A — 0 by Lebesgue’s dominated convergence theorem.
So, (H1) holds.
Furthermore,

v+ (AW —A(v), u—v)y

= /(v(?;‘)lv(é)lp_2 —u(®)u@?) @) —v(§)) d& <0,
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since the map s > s|s|P~2 is increasing on R. Thus (H2) holds, with ¢ := 0.
We also have that

e (AQ). v [ @) dt = —[vlf.

so (H3) holds with « := p. In addition,

p—1

MA@y = ( [wer ds)” e

so (H4) holds with « := p as required. ]

Remark 4.1.6 In the example above we may take A : V := LP(A) — L (A) =
V* defined by

A@V) := —W(v),v € LP(A),

where ¥ : R — Riis a fixed function satisfying properties (V1) — (W4) specified in
Example 4.1.11 below.

Now we turn to cases where A is given by a (possibly nonlinear) partial
differential operator. We shall start with the linear case; more concretely, A will
be given by the classical Laplace operator

d
9?
e

with initial domain given by C§°(A). We want to take A to be an extension of A to
a properly chosen Banach space V so that A : V — V* is (defined on all of V and)
continuous with respect to || ||y and || ||y=. The right choice for V is the classical
Sobolev space H(l)’P (A) for p € [2, oo[ with Dirichlet boundary conditions. So, as a
preparation we need to introduce (first-order) Sobolev spaces.

Again let A C RY, A open, and let C°(A) denote the set of all infinitely
differentiable real-valued functions on A with compact support. Let p € [1, oo[
and for u € C{°(A) define

1/p
il = ( / (@ + [Vu@)P) ds) . “5)
Then define

Hé’p(A) := completion of C3°(A) with respect to || [|1,,. (4.6)
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At this stage H,” (A), called the Sobolev space of order 1 in LP(A) with Dirichlet
boundary conditions, just consists of abstract objects, namely equivalence classes
of || |l1,-Cauchy sequences. The main point is to show that

Hy"(A) C LP(A), 4.7
i.e. that the unique continuous extension
i Hy"(A) = LP(A)
of the embedding
i:CP(A) = LP(A)

is one-to-one. To this end it suffices (in fact it is equivalent) to show that if u, €
C§°(A), n € N, such that

u, >0 inLP(A)
and
/ IV, —up) ()P d§€ — 0as n,m — oo,
then
/ |V (u, ()| d€ — 0as n — oo. (4.8)
But by the completeness of L”(A; R¥) there exists an
F=(F,...,F;) € L"(A;RY)

such that Vu, — F as n — oo in L?(A;R?). Let v € C°(A). Then for 1 <i < d,
integrating by parts we obtain that

ad
[ v ©F© ae = lim [ v d

d
— — lim / 5 V() d

=0.
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Hence F; = 0 dé-a.e. forall 1 <i <d, so (4.8) holds.
Consider the operator

Vi CP(A) C LP(A) — LP(A;RY).

By what we have shown above, we can extend V to all of Hé’p (A) as follows. Let
ue Hé’p(A) and let u, € C§°(A) such that lim, oo ||l# — un||1, = 0. In particular,
(Vuy)nen is a Cauchy sequence in LP(A; R?), hence has a limit there. So, define

Vu:= lim Vu, inL”(A;R?). (4.9)

n—>o0

By what we have shown above this limit only depends on u and not on the chosen
sequence. We recall the fact that Hé’p (A) is reflexive for all p €]1, oo[ (cf. [82]).

Example 4.1.7(Hé’2 clL’>cC (Hé‘z)*, A = A) Though later we shall see that to
have (H3) we have to take p = 2, we shall first consider p € [2, oo[ and define

1,
V= H,"(A),H := L*(A),
SO
V* = H)P(A)*.

Again we assume (4.4) to hold if p > 2. Since then V C L?(A) C H, continuously
and densely, identifying H with its dual we obtain the continuous and dense
embeddings

VCHCV*
or concretely

Hy"(A) C LX(A) C Hy”(A)*. (4.10)
Now we are going to extend A with initial domain C5°(A) to a bounded linear
operator A : V. — V*. First of all we can consider A as an operator taking values in
V* since
A CP(A) — CP(A) C L*(A) C V™.

Furthermore, for u, v € C§°(A) again integrating by parts we obtain

e (A, v)y| = [{(Au, v)pl

= '_/(W(g), Vu(§)) d§
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< (/ Vu()| dé)” (/ Vo) dé)”
< (/m(s)v”l ds) .

Hence for all u € C3°(A)

[Aulv < ([[Valll - (4.11)

So, by (4.4) and since plT)l < 2 < p, we get by Holder’s inequality

—2
lAully+ < A7 Jlulli, forallue CC(A), (4.12)

where for p = 2 the factor on the right is just equal to 1.

So, A with domain C{°(A) extends (uniquely) to a bounded linear operator A :
V — V* (with domain all of V), also denoted by A.

Now let us check (H1)—(H4) for A.

Claim
A(= A): HY?(A) - (Hé”’(A))*

satisfies (H1),(H2),(H4) and provided p = 2, also (H3).

Proof Since A : V — V* is linear, (H1) is obviously satisfied. Furthermore, if
u,v € V then there exist u,,v, € C;°(A), n € N, such that u, — u, v, — v as
n — oo in V. Hence, integrating by parts, we get

ve(A(u) —A(v), u—v)y = nl—l>nolo v (At — Avy, up — )y

= lim (A, — V), Uy — Vu)u
n—>oo

= — lim /lV(un —v,) (&) d& <0.
n—o0
So (H2) is satisfied. Furthermore,

2« (A(v),v), = lim 2(Av,, va)m

— tim 2 [ 1Vu,@)P d
— =2 [ IV &

=2(lvliz = IvlIi,)-
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So (H3) is satisfied if p = 2 with ¢ = 2. Furthermore, (H4), with @ = 2, is clear by
4.12). O

Remark 4.1.8 The corresponding SDE (4.3) then reads
dX(r) = AX(r) dt + B(t, X(¢)) dW ().

If B = 0, this is just the classical heat equation. If B # 0, but constant, the solution
is an Ornstein—Uhlenbeck process on H.

Example 4.1.9 (Hé"7 c L’ cC (Hé”7 )*, A = p-Laplacian) Hence the stochastic
differential equation (4.3) becomes

dX(r) = div ([VX(OP>VX(1)) dt + B(t. X(1)) dW (D).

Again we take p € [2,00[, A C R? A open and bounded, and V := H,"(A),
H :=I2(A), so V* = (Hy”(A))*. Define A : Hy”(A) — Hy” (A)* by

A) = div(|Vul’"2Vu), u € Hy"(A);
more precisely, given u € H(l)’P (A) forallv € H(l)’P (A)
ve(Aw),v)y = —/ [Vu(€)[P~2(Vu(), Vu(£)) & forallv e Hé’p(A).
(4.13)
A is called the p-Laplacian, also denoted by A,. Note that A, = A. To show that
A : V — V*is well-defined we have to show that the right-hand side of (4.13)
defines a linear functional in v € V which is continuous with respect to || ||y =

| |I1,- First we recall that by (4.9) Vu € LP(A;RY) forall u € Hé’p(A). Hence by
Holder’s inequality

[ vt vue ae < ( [ v ds) ’ ( [wver ds)”

—1
< Jlullf, ol

Since this dominates the absolute value of the right-hand side of (4.13) for all u €
Hé’p (A) we have that A(u) is a well-defined element of (H(l)’P (A))* and that

IAG@) v+ < full5 " (4.14)

Now we are going to check that A satisfies (H1)—(H4).
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(H1) Letu,v,x € Hé’p(A), then by (4.13) we have to show for A € R, |A| < 1

Ah_r}})/ (IV(M + A0V (U + Av)(€). Vx(§))
— [Vu@©) P (Vu(§), VX(S))) dé = 0.
Since obviously the integrands converge to zero as A — 0 dé-ae., we

only have to find a dominating function to apply Lebesgue’s dominated
convergence theorem. But obviously, since [A| < 1

[V @+ 20)E)P V(@ + Av)(E), Vx(E))]
<22 (IVu@P~ + [Vo@~") [Vx(é))|
and the right-hand side is in L'(A) by Holder’s inequality as we have seen
above.
(H2) Letu,v € Hy”(A). Then by (4.13)
— v+ (A@W) —A), u—v)y,

=/(|VM(S)I”_2VM(S) — [Vo@)F2Vo(§), Vu(§) — Vo(§)) dé

=/(|VM(S)I" + Vo@F — [Vu@)P > (Vu(©), Vo (@)
— V@ P~(Vu(§), Vo(©))) dé
2/(|W(§)I" + V@ — [Vu@ P~ Vo)
— V@I~ Vu®)l) dg
= /(IW(E)I"_l — V@) (Vu(§) — Vu(©)) dé
=0,
since the map Ry > s > s"~! is increasing. Hence (H2) is shown with ¢ = 0.

(H3) Because A is bounded by Poincaré’s inequality (cf. [39]) there exists a
constant ¢ = ¢(p, d, |A|) €]0, oo[ such that

/ IVu(®)P d& = ¢ / lu(€)P dg  forall u € HYP(A). 4.15)



4.1 Gelfand Triples, Conditions on the Coefficients and Examples 83

Hence by (4.13) for all u € Hy”(A)

min(1, ¢)

eta.ady = - [ 1@ dg < ="

el -

So, (H3) holds with « = p and ¢; = 0. (We note that only for (H3) have we
used that A is bounded.)
(H4) This condition holds for A by (4.14) with a = p.

Before we go on to our last example, which will include the case of the porous
medium equation, we would like to stress the following:

Remark 4.1.10

1. Ifoneis given V.C H C V*and A : V — V* (e.g. as in the above examples)
satisfying (H1)—(H4) (with B = 0) one can consider a “smaller” space Vj, i.e.
another reflexive separable Banach space such that

VoCV
continuously and densely, hence (by restricting the linear functionals to Vj)
V*c Vg
continuously and densely, so altogether
Vo CVCHCV*CVj.

Restricting A to V) we see that A satisfies (H1),(H2) and (H4) with respect to the
Gelfand triple

Vo CHCV.

However, since || ||y, is up to a multiplicative constant larger than | ||y, property
(H3) might no longer hold. Therefore, e.g. if one considers a map A which
is given by a sum of the Laplacian (cf. Example 4.1.7) and a monomial (cf.
Example 4.1.5) one cannot just take any Vy C Hé’z(A) N L?(A), since (H3)
might get lost.

In the case of the p-Laplacian, p € [2, oo], it is possible to add monomials of
order p, since Hé’p (A) C L?(A) continuously and densely, so

Au) = div(|Vul"2Vu) — ulul’2, u € Hy"(A),
satisfies (H1)—-(H4), if A is bounded, with respect to the Gelfand triple

Hy"(A) C LA(A) C (HY"(A))*.
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But generally, taking sums of A as above requires some care and is not always
possible.

2. In all our analysis the space V* is only used as a tool. Eventually, since the
solutions to our SDE (4.3) will take values in H, V* will be of no relevance.
Therefore, no further information about V* such as its explicit representation
(e.g. as a space of Schwartz distributions) is necessary.

Example 4.1.11 [L? C (Hol’z)* C (L?)*, A = porous medium operator] The
stochastic differential equation (4.3) becomes

dX(5) = AW(X(1)) dt + B(t, X()) dW(?).

As references for this example we refer to [4, 25, 69].
Let A C RY, A open and bounded, p € [2, oo[ and

V= LP(A), H:= (Hy*(A))*.

Since A is bounded we have by Poincaré’s inequality (4.15) that for some constant
c=c,d,|A]) >0

1

iz o o= ( [ 1V ae)

. min(1, ¢)
2

1
2
) lull12 forallu € Hy?(A). (4.16)

12 and

So, we can (and will do so below) consider Hé’Z(A) with norm || || !

corresponding scalar product
(4,0} 2 1= /(vu(g),w(g)) dE, u,v € HI2(A).

Since Hé'z(A) C L*(A) continuously and densely, so is

HY2(A) € LT (A).
Hence
D o * 1,2 *
L7(A) = (LF1(8) € (H ()" = H,
continuously and densely. Now we would like to identify H with its dual H* =

Hé’Z(A) via the corresponding Riesz isomorphism R : H — H* defined by Rx :
(x,-)u, x € H. Let us calculate the latter.
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Lemma 4.1.12 The map A : Hy*(A) — (Hy>(A)* = H (defined by (4.13) for
p = 2) is an isometric isomorphism. In particular,

(Au, Av)y = (u,v) 10 forallu,v € Hy*(A). (4.17)

N

Furthermore, (—A)™' : H — H* = Hé’Z(A) is the Riesz isomorphism for H, i.e.
foreveryx € H

(o= gra{(=8) ")y (4.18)

Proof Letu € Hy*(A). Since by (4.13) for all v € Hy?(A)
w1 = [ (V). Vo) d = () @.19)

it follows that —A : Hé’z(A) — H is just the Riesz isomorphism for Hé'z(A) and
the first part of the assertion including (4.17) follows. To prove the last part, fix
x € H. Then by (4.17) and (4.19) forally € H

()i = (=8) 7' (=) 2 = plx (CA) e

O

Now we identify H with its dual H* by the Riesz map (—A)~! : H — H*, so
H = H* in this sense, hence

V=L"(A) CHC (LP(A)* = V* (4.20)

continuously and densely.

Lemma 4.1.13 The map
A Hy2(A) — (LP(A))*
extends to a linear isometry
A LFT(A) — (LP(A))* = V*
and for all u € L (A), veLP(AN)
=By = e (o = [u@o) de. @an)

Remark 4.1.14 One can prove that this isometry is in fact surjective, hence

(LP(A))* = A(LFT) # LiT.
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We shall not use this below, but it shows that the embedding (4.20) has to be handled
with care, always taking into account that H is identified with H* by (—A)™! : H —
H*, giving rise to a different dualization between L”(A) and (L”(A))*. In particular,
forallx € H, v € LP(A)

(Lry* (x,v)pp = (x,v)n

(7‘é = fr.v)y = /x(S)v(g) dé provided x € Lpzl)'

Proof of Lemma 4.1.13 Letu € H(l)’z(A). Then since Au € H, by (4.2) and (4.18)
we obtain that forallv € V

ve(Au,v)y, = (Au,v)p = —Hl,z(u, V) = —(u,v)p2 4.22)
0
since v € V C L*(A). Therefore,
[Aullys < flull 2.
P
So, A extends to a continuous linear map
_p
A:LrFT(A) > V*

such that (4.22) holds for all u € L (A),i.e. (4.21) is proved.
So, applyingittou € L (A) and

4
vi=—lully " ulu’"* € LP(A),
where g := p%l, by (4.21) we obtain that
ve (B )y = ul 2,

and ||[v|l, = 1, so [|Aullyx = ||u||’% and the assertion is completely proved.
O
Now we want to define the “porous medium operator A”. So, let W : R — R be
a function having the following properties:

(P1) W is continuous.
(P2) Foralls,r € R

(t—s)(Y(@) — Y(s)) = 0.
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(W3) Thereexistp € [2,00], a €]0, 00|, ¢ € [0, oo[ such that for all s € R
sW(s) = als]f —c.
(W4) There exist c3, c4 €10, 00[ such that for all s € R
()| < ca + eals™",

where p is as in (W3).
We note that (¥4) implies that

W(v) € LFT(A) forall v € LP(A). (4.23)

Now we can define the porous medium operator A : LP(A) = V — V* = (LP(A))*
by

A(u) .= AV (), uelLP(N). (4.24)

Note that by Lemma 4.1.13 the operator A is well-defined. Now let us check (H1)-
(H4).

(H1) Letu,v,x € V=LP(A)and A € R. Then by (4.21)
ve (A + Av),x)y = v« (AW (u + Av), x),,
= [ W@ + 200 d 429)

By (W4) for |A| < 1 the integrand in the right-hand side of (4.25) is bounded
by

[ea + 2772 (Jul ™" 4 [0~ D11
which by Holder’s inequality is in L'(A). So, (H1) follows by (¥1) and
Lebesgue’s dominated convergence theorem.
(H2) Letu,v € V = LP(A). Then by (4.21)
v {A) —A@) u—v))y = (A () — W), u—v)y
= —/[‘P(M(S)) —V(ED]@(E) —v(§)) d§

§Oﬂ

where we used (W2) in the last step.
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(H3) Letv € LP(A) = V. Then by (4.21) and (¥3)
(A v)y = — / WE)V(E) d
< / (—alv®P + o) de.

Hence (H3) is satisfied with ¢; := 0, ¢; := 2a, @ = p and f(f) = 2¢|A|.
(H4) Letv € LP(A) = V. Then by Lemma 4.1.13 and (V4)

IA@)llv- = [A)]ly-
= Y@, 2,

<alAlT 4+ (/Iv(é)l” dE)P

p—1 p—1
=clAl 7 F ey,

so (H4) holds with & = p.
Remark 4.1.15

1. For p € [2, 00 and W(s) := s|s|"~% we have
A@V) = A7), v e LP(A),

which is the non-linear operator appearing in the classical porous medium
equation, i.e.

R0

% = AX@OIX@OP).  X(0,) = Xo,

whose solution describes the time evolution of the density X (7) of a substance in
a porous medium (cf. e.g. [4]).

2. Let ¥ : R — R be given such that (W1)—(W4) are satisfied with some p €1, oo[
(in (W3), (W4)). One can see that the above assumptions that A is bounded and
p = 2, can be avoided. But p then depends on the dimension of the underlying
space R?. Let us assume first that d > 3. We distinguish two cases:

Case 1. |[A| =ocoandp := %, ¢ = ¢4 = 0, where ¢, ¢4 are the constants in
(¥3) and in (W4) respectively.
2d
Case 2. |A|<ocandp € [m, oo[

By the Sobolev embedding theorem (cf. [39, Theorem 7.10]) we have

HY2(A) € L3 (M)
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continuously and densely, and

2(d—-1
| 20 < ¥||M|IH1,2 forall u € Hé’z(A).
=2 " Jd(d—2) 0
In Case 1 we have % = p%l and in Case 2 (hence in both cases)
2d _ p
d—2" p-1

and thus
H\2 R
12(A) C LT (A)
densely and for some ¢y €]0, oo[

12 forallu e Hé’Z(A).

el 2, < colluly

Now the above arguments generalize to both Cases 1 and 2, i.e. for the Gelfand
triple

V= LP(A) CH:= (Hy*(A)* C (LP(A))*
the operator
A:LP(A) =1V — V* = (LP(A)*

defined in (4.24), satisfies (H1)-(H4).
We note that in Case 1 the norm || || H? defined in (4.16) is in general not

equivalent to || |12, because the Poincaré inequality does not hold. In Case 1, if
d = 6, orin Case 2, if (3 <)d < 6, we may take p = % and

W(s) := sign(s)y/Js|. s € R.

In this case the equation in Remark 4.1.15 is called fast diffusion equation. For
A bounded the above extends, of course, also to the case d = 1,2 where even
stronger Sobolev embeddings hold (cf. [39, Theorems 7.10 and 7.15]).

4.2 The Main Result and An Ito Formula

Consider the general situation described at the beginning of the previous section.
So, we have a Gelfand triple

VcCHcCV*
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and maps
A:[0,T]xVxQ—=V* B:[0,T]|xVxQ— L(U,H)

as specified there, satisfying (H1)-(H4), and consider the stochastic differential
equation

dX(H) = A(t, X()) dt + B(t, X()) dW(?) (4.26)

on H with W(r), t € [0,T], a cylindrical Q-Wiener process with Q := I taking
values in another separable Hilbert space (U,{ , )y) and being defined on a
complete probability space (2, F, P) with normal filtration F;, ¢ € [0, T].

Before we formulate our main existence and uniqueness result for solutions of
(4.26) we have to define what we mean by “solution”.

Definition 4.2.1 A continuous H-valued (F;)-adapted process (X(¢));c[o,7] is called

a solution of (4.26), if for its dr ® P-equivalence class X we have X € LY([0, T] x
Q, dt®@P; V)N L*[0,T] x Q, dt ® P; H) with « as in (H3) and P-a.s.

X(t) = X(0) + /O rA(s,)_((s)) ds + /0 TB(S,X(S)) dW(s), te[0,T], 4.27)

where X is any V-valued progressively measurable dr ® P-version of X.
Remark 4.2.2

1. The existence of the special version X above follows from Exercise 4.2.3 below.
Furthermore, for technical reasons in Definition 4.2.1 and below we consider all
processes initially as V*-valued, hence by dr® P-equivalence classes we always
mean classes of V*-valued processes.

2. The integral with respect to ds in (4.27) is initially a V*-valued Bochner integral
which turns out to be in fact H-valued.

3. Solutions in the sense of Definition 4.2.1 are often called variational solutions in
the literature. There are various other notions of solutions for stochastic (partial)
differential equations. We recall the definition of (probabilistically) weak and
strong solutions in Appendix E below. The notions of analytically weak and
strong solutions as well as the notion of mild solutions and their relations are
recalled in Appendix G below.

4. We stress that the solution (X (#))e[o,r] from Definition 4.2.1 is in general not an
H-valued semimartingale, since the first integral in the right-hand side of (4.27)
is not necessarily of bounded variation in H. Therefore, the classical It6-formula
on Hilbert spaces (see Sect. 6.1 below) does not apply to (X (¥)):e(o,7]-

Exercise 4.2.3

1. Let BY* denote the closed unit ball in V*. Since BY* N H # @, it has a countable
subset {/;|i € N}, which is dense in BY* N H with respect to H-norm. Define
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® : H— [0, co] by
O(h) := sup |{l;, h)g|, h € H.
ieN

Then ©® is lower semicontinuous on H, hence B(H)-measurable. Since
ve{liv)y, = (li,v)m, i € N,v € V, we have

O) = |lv|ly forallv eV,
and furthermore (by the reflexivity of V)
{® <0} =V.

2. LetX : [0, T]x$2 — H be any progressively measurable (i.e. B([0, /])®F;/ B(H)-
measurable for all # € [0,7]) dr ® P-version of X € L*([0,T] x Q, df ®
P;V), a €]0, cc[. Then

X:= H{®0X<00}X

is a V-valued progressively measurable (i.e. B([0,7]) ® F;/B(V)-measurable)
dt ® P-version of X.

3. Both A(-,X) and B(-,X) are V*-valued respectively L,(U, H)-valued progres-
sively measurable processes.

Now the main result (cf. [54]):

Theorem 4.2.4 Let A,B be as above satisfying (HI)—-(H4) and let
Xo € L2, Fo. P; H). Then there exists a unique solution X to (4.26) in the
sense of Definition 4.2.1. Moreover,

E(sup |X(0)|7) < oo. (4.28)
t€l0,7]

The proof of Theorem 4.2.4 strongly depends on the following It6 formula, from
[54, Theorem 1.3.1], which we shall prove here first. The presentation of its proof
and that of Theorem 4.2.4 is an extended adaptation of those in [69].

Theorem 4.2.5 Let o €]l,00[, Xy € L*(Q,Fo,P;H) and Y € La1([0,T] x
Q, dt® P;V*),Z € L*([0,T] x Q, dt ® P;L,(U,H)), both progressively
measurable. Define the continuous V*-valued process

t

X(1) := Xo + /0 TY(s) ds + /0 Z(s) dW(s), ¢ € [0, T].

Iffor its dt ® P-equivalence class X we have X € L*([0,T] x 2, dt ® P; V) and if
E(|IX(D3) < oo for dt-a.e. t € [0, T] (which is automatically the case if & = 2),
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then X is a continuous H-valued (F;)-adapted process,

E ( sup IIX(t)II?q) <4 [E(IIX(O)H?;) + 1Yl (IXN& + 1)

t€[0,7]

T
+10E ( / IZIZ 010y ds) } (4.29)
0

and the following Ito-formula holds for the square of its H-norm P-a.s.
! —
IXOF; = 1¥olly + [ (2400 )y +HIZO i) 5
t
+ 2/ (X(s),Z(s) dW(s))y forallt € [0,T)] (4.30)
0

for any V-valued progressively measurable dt @ P-version X of X.

As in [54] for the proof of Theorem 4.2.5 we need the following lemma
about piecewise constant approximations based on an argument due to [29]. For
abbreviation below we set

K:=L%(0,T] x Q, dt ® P; V). 4.31)

Lemma 4.2.6 Let X : [0,T] X Q — V* be B([0, T]) ® F/B(V*)-measurable such
that for its dt @ P-equivalence class X we have X € K. Then there exists a sequence
of partitions I, :== {0 = t) < £ < -+- < t,lq = T} such that I} C Iy, and
§() = max;(£'—t._,) = 0asl — oo, X(t)) € V P-a.e.foralll e N,1 < i < k;—1,
and for

ki ki—1
XZ = Z l[tllfl,tll-[X(tg_l)’ XZ = Z l[l“liltf[X(tlZ)’ l € N,
i=2 i=1

we have that X', X! are ( dt ® P-versions of elements) in K such that

lim {|X —X|[x + |X - X'lx} = 0.
[—o0

Proof For simplicity we assume that 7 = 1 andlet X : [0,1] x @ — V bea dr ® P-
version of X such that fol ||)_((t)||‘{‘, dr < oo P-a.s. We extend X to R x Q by setting
X = 0on [0, 1]° x Q. There exists an Q' € F with full probability such that for
every w € Q’ there exists a sequence (f,,),en C C(R; V) with compact support such
that

- 1
/M@—mmwwms—,new
R 2n
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Thus, for every n € N,
lim sup/ [1X(8 + 5, w) — X(s, w)||% ds
§—0 R

<3¢ im suP/R [IX(5 + 5.0) =28 + 9IS + X (5. ) = fuls)I5] ds

§—0

a—1

=

,neN.
n

Here we used that since each f;, is uniformly continuous, by Lebesgue’s dominated
convergence theorem we have that for alln € N

tim [ 1,6 +9) ~ A1 ds = 0.

§—0 R

Letting n — oo we obtain
lim / 1X(8 + 5, 0) — X(s,0)||% ds =0, w e Q' (4.32)
§—0 R

Now, given ¢t € R, let [f] denote the largest integer <tLety,(t) :=27"[2"1], neN,
that is, y, () is the largest number of the form £ > k € Z, less or equal to 7. Shifting
the integral in (4.32) by ¢ and taking § = y,(f) — t we obtain

lim / IX(yu(t) +5) —X(t +5)]|% ds = 0 on Q.
n—>oo R
Moreover, since X(r) = 0 for all » € R\[0, 1],
1 - -
[ 1% +9 =X+ o)l as
< L gy(2°7 / [1IX(yu(®) + 9IS + 1X( + )19 ] ds
R
1 -
=2"1—2] (t)/ [ X(s)||§ ds on .
0
So, by Lebesgue’s dominated convergence theorem, we obtain that
1 - -
0= lim E/ dt/ 1X(yu(®) +5) — X+ 9| ds
n—>oo

> hm E/ ds/ X (yalt — 5) + 5) — X(£)||% dt. (4.33)
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Given s € [0, 1] and n € N, let the partition I,(s) be defined by

) 1 5 i S 2”9 tgu+1(s) = 1

[Z”S]) n i—1

66 :=0.40) = (s- 55 + 5

Then, for t € [f},(s), ' (s)[,2 < i < 2"+ l,onehast—s € [27"( — [2"s] —
2),27"(i — [2"s] — 1)[ and hence,

Yot —s)+s=2""1—[2"s]-2)+s=1_,(s), 2<i<2"+1.

Therefore, (4.33) implies
1 1 _
lim E/ ds/ 1X(®) — X" ()|}, dt = 0,
n—>oo 0 0

where X" is the process defined as X' for the partition 7,(s) but with X (7, (?_,(5)
replaced by X(r (#_,(s)). Similarly, the same holds for X" in place of X™* by using
Vn := Yn + 27" instead of y,, where X" is defined as X' for the partition I,,(s) but
with X(#/(s)) replaced by X (#'(s)). Hence, there exist a subsequence ny — oo and a
ds-zero set Ny € B([0, 1]) such that

1
lim £ /0 [1X() — X @15 + 1%@) — X 0)]5] dr = 0. s € [0.1]\ M.

In particular, X5 and X" are ( dt ® P-versions of elements) in K. Since for
1 < i < 2" the maps s — '(s) are piecewise C'-diffeomorphisms, the image
measures of ds under these maps are absolutely continuous with respect to ds.
Therefore, since X = X ds ® P-a.e., there exists a ds-zero set N, € B([0, 1]) such
that

X(£'(s)) = X(¢/(s)) P-ae.foralls e [0,1]\ Ny, 1 <i<2"
Therefore, fixing s € [0, 1[\(N; U N,), the sequence of the corresponding partitions
I,,(s),1 > 1, has all properties of the assertion. O

Remark 4.2.7

(1) As follows from the above proof all the partition points t’ > 1,1 <i=<
k; — 1, in the assertion of Lemma 4.2.6 can be chosen out31de an a priori given
Lebesgue zero set in [0, 7] instead of N, above.

(i) Tracing through the proof of Lemma 4.2.6 one sees that it also holds if we
replace K by the following space

Ko :=L%([0.T] x Q.dt ® P;V) N L3,([0.T] x Q.dr @ P; H),



4.2 The Main Result and An Itd6 Formula 95

equipped with the sum of the two respective norms, where we adopt the
standard notation of a subscript W for the subspace of those elements which
possess an (F;)-adapted dr @ P-version.

Proof of Theorem 4.2.5 Since M(t) := [y Z(s) dW(s), t € [0,T], is already a
continuous martingale on H and since Y € K* = LY@ ([0, T|xQ — V*; dt®P)
is progressively measurable, fot Y(s) dsis a continuous adapted process on V*. Thus,
X is a continuous adapted process on V*, hence B([0, T]) ® F/B(V*)-measurable.

Claim (a):
IXOII =IX$) 17 + 2 / v (Y(r). X(0)y dr + 2(X(s), M(t) — M(s))
+ IM(1) = M(s)ll3; — 1IX(0) —X(s) =M () + M(s)|;;  (4.34)

holds for all ¢ > s such that X(¢), X(s) € V.
Indeed, this follows immediately by noting that

IM(5) — M(s)|2, — IX (1) — X(s) — M(2) + M(s)|
+2(X(s), M(1) — M(s))

= 2(X(t), M(t) — M(s))u — IX(1) — X (5) ||

= 2(X(1). X (1) — X(5))ss — 2 / v (Y (). X(D)y dr
— X0 — 1X$) 17 + 2(X (@), X(s))

— IXO — X6 -2 / v (Y (D). X(O)y dr.

Claim (b): 'We have

E( sup ||X(z)||§,) < oo. (4.35)
t€l0,7]

To prove the claim let /;, [ € N, be a sequence of partitions as in Lemma 4.2.6. By

Remark 4.2.7(i) and the assumption that E(||X(7)||?,) < oo for dt-a.e. t € [0, 7]
we may choose [; such that

E(IX(®)]7) < oo forall t € | 1. (4.36)
leN

Then by (4.34), forany t = £/ € I, \ {0, T}

IX0)117 — 1Xoll3;



96 4 SDEs in Infinite Dimensions and Applications to SPDEs

i—1
=Y (X DI = IXEDIE)
j=0
:2/; s (Y (5), X'(5))y ds
r_ 4
+2 / (X'(s), Z(s) dW(s))u + 2(X(0), / Z(s) dW(s))y
0 0

i—1
+ Y (M) — M7 — X (@) — X(E) = M) + MED|7).
Jj=0
4.37)

where X' and X' are defined as in Lemma 4.2.6. We note that since X' is (J)-
adapted and pathwise bounded the stochastic integral involving X' above is well-
defined. By Lemma 4.2.6

T
E( /0 e (Y(5). R (5))y | ds) < ¥l 1% < 1 (4.38)

for some constant ¢; > 0 independent of /. Moreover, by the Burkholder—Davis
inequality (cf. Proposition D.0.1), Lemmas 2.4.2 and 2.4.4,

E(sup )
t€l0,7]

r T B 1/2
<3E< / ||z<s>*xf<s>||%]ds} )
L Jo
- T 1/2
$3E< /0 IX' O N ZOIZ, .0 dS} )

r T 1/2
=3E< /0 ||Xl(s>||%,d<M>y} )

/0 (%(5). Z(s) AW($)

1
<ye( s X ) + 98 (1)), 39

1<j<ki—1

since (M), = | 1Z($)I7 1.z ds and we used that

1, 2
absﬁa + 3b%, a,b > 0.
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Here we note that by (4.36)

E( sup ||X(¢§)||%,) < o0,
1<j<k—1

Finally, by Lemma 2.4.4

ZHM( ) — M@ ZE(/ 1ZOIE, 00 ds)

4
=E (/ ”Z(S)”iz(U,H) ds)
0

—E ((M),,_). (4.40)

Combining (4.37)—(4.40), we obtain

E( sup IIX(t)IIfq) <o
ren\{T}

with ¢ = 4 [EQIXO)I3) + 1Y - (1XIlx + 1) + 10E( 1ZGI2, ) d) -
Therefore, letting / 1 oo and setting [ := U;>1;\ {T'}, with [; as in Lemma 4.2.6,
we obtain

£ (sl ) < e

tel

since I; C Iy for all [ € N. Since for all ¢ € [0, T]

N
D (X0, ey 1 IX@F as N 1 oo,

j=1

where {ejlj € N} C V is an orthonormal basis of H and as usual for x € V* \ H
we set ||x||g := oo, it follows that ¢ — || X(7)||g is lower semicontinuous P-a.s.
Since 1 is dense in [0, 7], we have sup,¢(y 7 1X()]1% = sup,e; |1X(O]%. Thus,
(4.35) holds.

Claim (c):

lim sup
=00 10,11

/t(X(s) —X!(5), Z(s) dW(s))g| = 0 in probability. (4.41)
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We first note that because of (b) X is H-valued P-a.s. and by (b) and its continuity
in V* the process X is weakly continuous in H P-a.s. and, therefore, since B(H)
is generated by H*, progressively measurable as an H-valued process. Hence, for
any n € N the process P,X is continuous in H so that

T
lim / [P.(X(s) — X'(s)) |3, d(M)s =0, P-as.
I—>00 0

Here P, denotes the orthogonal projection onto span{ey, ..., ¢,} in H. Therefore,
applying Corollary D.0.2 we see that it suffices to show that for any ¢ > 0,

>s):0,

/0 (1= PR (). Z(5) AW (s))

lim supP( sup

=00 |eN 1€[0,T]

t
lim P( sup / (1 = Pu)X(s),Z(s) dW(s))y| > e) =0. (4.42)
n—>00 €f0.7] | Jo

Foranyn € N, § € (0,1) and N > 1 by Lemma 2.4.2 and Corollary D.0.2 we
have that

P( sup /t((l —P,,)}_(l(s),Z(s) dW(s))y| > 8)
t€[0,7]] JO
T
< ? + P(/ 1Z(s)*(1 = P,)(X'(9)) |7, ds > 52)
€ 0
38 N2 (T
=+ P( s KOl > N) + 5 [ 10 =2z 0 4

By first letting n — 00, and using Lebesgue’s dominated convergence theorem,
and then letting N — o0, and using Claim (b), and finally letting § — 0, we
prove the first equality in (4.42). Similarly, the second equality is proved.
Claim (d):  (4.30) holds forz € I.

Fix t € 1. We may assume that  # 0. In this case for each sufficiently large
I € N there exists a unique 0 < i < k; such that # = .. We have X(tjl.) eV
a.s. for all j. By Lemma 4.2.6 and (4.41) the sum of the first three terms in the
right-hand side of (4.37) converges in probability to 2 fot ve (Y(5), X(s))y ds +
2 [44X(s), Z(s) dW(s))p, as [ — oo. Hence by Lemma 2.4.4

IX0)17 — IXO)[I7;

:2/0 e (Y(5). X(5))y ds + 2/0 (X(s), Z(s) dW(s))u + (M), — &,
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where

i—1
L . ! ! ! 2
fo:= P lim ) - X510 = X(1) = Mt ) + M)
J=

exists and “P — lim” denotes limit in probability. So, to prove (4.30) for ¢ as
above, it suffices to show that ¢9 = 0. Since for any ¢ € V,

i

j+1

(X(ep) — X () — M(Ey ) + ML), o)y = / M (Y(5). o)y ds

1

letting M' and M’ be defined as X' and X' respectively, for M replacing X, we
obtain for every n € N

go =P — lim (/r v (Y (5), X' (5) = X'(5) — Pu(M'(s5) — M'(5))),, ds
—00 0

i—1

(10 s X = S~ X0~ M)

j=0
+ M), (1 = P) (ML}, ) — M(5)))u )

The weak continuity of X in H implies that ¢ fot Y(s)ds is weakly continuous
in H, since M is continuous in H. Hence the second term converges to zero
as [ — oo. Lemma 4.2.6 implies that for V*(Y(s),f(l(s) —)_(l(s))v ds — 0
in probability as | — oo. Moreover, since P,M(s) is a continuous process in
V, [y ve(Y(s). Pu(M'(s) — M'(s))), ds — O P-ass. as [ — oo. Thus, by the
Cauchy—Schwarz inequality, Lemmas 2.4.1 and 2.4.4

D=

o < P- hm(ZnX( ) = X() = M(5,) + M)
=0

Nl—

(Zn(l = P)M(Ly)) — M)

1/2/ l(1—=P )Z(S)“LZ(UH)

which goes to zero as n — oo again by Lebesgue’s dominated convergence
theorem. Therefore, g9 = 0.
Claim (e):  (4.30) holds for all ¢ € [0, T]\1.
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Take Q' € F with full probability such that the limit in (4.41) is a pointwise
limit on Q' for some subsequence (denoted again by I — 00) and (4.30) holds
forallz € Ton Q. If r ¢ I, for any [ € N there exists a unique j(I) < k; such
that 1 €], 14 ] Letting 1(I) := #j,, we have 7(/) 1 tas [ 1 oc. Using that
lu—v|% = ul? = v|% =2 y«(u—v, v), forallu,v € V, by (4.30) fort € I,
for all [ > m we have on Q'

IX (D) — X(tm)) |7, = IXEO) |7 — 1X(t(m)) 17,
t(l) t(l)
-2 (/ Y(s) ds + / Z(s) dW(s), X(t(m)))

v Jt(m) 1(m) 1%

t(l) _
—2 / Ve (V). X(5) = X(t(m))), ds

(m)

(1)
42 / (X(5) =X ((m)). Z(5) AW ()}t -+-(MYy— (Mo

m)

(1) . .
= 2/ v (Y(s), X(s) — X" (s)), ds
t(m)

t(l) _
12 /( 08K Z6) QW M)~
(4.43)

where in the second equality we tacitly assumed that m is so big that t(m) > 0.
The second summand is dominated by

4 sup
t€[0,7]

/0 (X(s) — X"(5). Z(s) AW (5))m

Thus, by the continuity of (M), and (4.41) (holding pointwise on '), we have
that

T
lim SUP%2‘/O Loy ) () X (8) — X" (5). Z(s) AW(s))

m—>00 I>m

+ M)y = (M)iim) I} =0 (4.44)

holding on Q’. Furthermore, by Lemma 4.2.6, selecting another subsequence if
necessary, we have for some Q” € F with full probability and Q" C Q’, that on
Q//

T
[ 1 1056 = 27y L85 =0

lim
m—>00
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Since

t(l) _ _
sup / |y (¥ (). K (s) — X7())y | ds

I>m Jt(m)
T
< [0 |y (¥ (). K (s) — X7()) | ds.

we have that on Q”

(0 _ _
lim sup/ v (Y(5), X(s) —X"(s)), ds = 0.

M=>00 1~m J t(m)

Combining this with (4.43) and (4.44), we conclude that

lim sup IX(1(1) — X(t(m))|If; = 0

holds on Q”. Thus, (X(#(1)))en converges in H on Q”. Since we know that
X(#(])) — X(r) in V*, it converges to X(¢) strongly in H on Q”. Therefore, since
(4.30) holds on Q" for #(l), letting I — oo, we obtain (4.30) on Q" also for all
ré¢l
Claim (f): X is strongly continuous in H.

Since the right-hand side of (4.30) is on Q" continuous in ¢ € [0, 7], so must be
its left-hand side, i.e. t — || X(¢)||g is continuous on [0, T]. Therefore, the weak
continuity of X () in H implies its strong continuity in H. O

Remark 4.2.8

(i) In the situation of Theorem 4.2.5 we have
E(IX@)17)

t
=Bl + [ EQ - (V6. X0y HIZ0 ) 5. 1€ 10.7)
(4.45)
Proof Let M(t), t € [0, T, denote the real valued local martingale in (4.30) and let
7, | € N, be (F;)-stopping times such that M(t A 1;), t € [0, T], is a martingale and
;1 Tasl— oco. Thenforalll € N, ¢t € [0, T], we have

E(IX(t A )3

=E(||Xo||12q)+/0 E(1jo,1($)[2 y+ (Y (), X(5))y +1Z() N7, 0. ds- (4.46)
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Using Claim (b) from the proof of Theorem 4.2.5 and the fact that the integrands
on the right-hand side of (4.45) are dt ® P-integrable we can apply Lebesgue’s
dominated convergence theorem to obtain the assertion. O

(i) We note that in (4.30) the stochastic integral is always a (global) martingale.
This immediately follows from Proposition D.01(ii), since

E(sup [X()I) < oo.
t€[0,7]

(iii) Suppose @ € (1, 2). Then by Remark 4.2.7(ii) and by tracing through the proof
of Theorem 4.2.5 one sees that the latter remains valid if we replace K by the
space Ky defined Remark 4.2.7(ii) and K* by K. The reason is that clearly

K =Ly ([0.T) x Q,dt ® P; V*) + L2,([0.T] x Q. dt ® P; H)

C LY([0.T] x Q.dr ® P;V*) with g := min(2, Ll),
o—

Now we turn to the proof of Theorem 4.2.4. We first need some preparations. Let
{e;]i € N} C V be an orthonormal basis of H and let H, := span{ey,...,e,} such
that span{e;|i € N} is dense in V. Let P, : V* — H, be defined by

P,y := Z ve{y,e))vei, ye V™. (4.47)
i=1
By (4.1.2), P,|g is just the orthogonal projection onto H, in H. Furthermore,
e (2 Puy)y = ye(y. Puz)y forally,z € V¥,
and

v (Puy, v)y = v« (v, Pyv)y, forally e V¥, v e V.

Let {g;|i € N} be an orthonormal basis of U and set

n

W (@) = (W), 8i)v & -

i=1

Here for g € U we define

<W®@U:/XgmdwwnemrL
0
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where the stochastic integral is well-defined by Sect.2.5.2 with H := R, since the
map u — (g, u),, u € U,isin L,(U,R).
For each finite n € N we consider the following stochastic equation on H,, :

dX™(r)
=P,A(t, X" (1)) dt + P,B(t. X" (1)) dW" (1), (4.48)
where X" (0) := P,X,. It is easily seen (cf. in particular Remark 4.1.1) that we are
in the situation of Theorem 3.1.1 which implies that (4.48) has a unique continuous
strong solution. Let

J:=L*[0,T] x Q, dr ® P; L,(U, H)). (4.49)

To construct the solution to (4.26), we need the following lemma.

Lemma 4.2.9 Under the assumptions in Theorem 4.2.4, there exists a C €]0, oo[
such that

”X(n)”K + ||A(',X(n))||1(* + sup E”X(n)(l)”é <C (4.50)
t€[0,7]

foralln e N.

Proof By the finite-dimensional Itd formula we have P-a.s.
X @1 = 1% 113 + /Or (2 y (A (s, X7 (5)), X (9))y
+ ||Z(n)(5)||i2(U,,,H)) ds + M™ (1), 1 €0,T],
where Z® (s) := PnB(s,X(") (s)), U, := span{ey,...,e,} and
M (1) =2 /0 T(X(”)(s),PnB(s, X" (5)) AW (s))n, 1 € [0, 7],

is a local martingale. Let 7, [ € N, be (F;)-stopping times such that |X" (¢t A
7)(w) ||y is bounded uniformly in (z,w) € [0,T] x Q, M (t A 1;), t € [0,T], is a
martingale foreach/ € Nand t; 1 T as | — oo. Thenforall/ e N, r € [0, T
E(IX™ @ A w)l7)
t
:meyn@>+34 E(10.01(5) 2 y+ (A (5. X7 (). X ()

+ 127G 0, )
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Hence using the product rule we obtain
E(e X" @A t)lF)
t
=E(Ix5" %) + /0 E(IX (s A ) |13) d(e™)
t
4 /0 1 AEXO (s A D))
t
=E(I1x5"13) — /0 AE(IX™ (s A T)[|3)e™* ds
t
+ / e—fle(l[o,r,] ()2 = (A5, X(5)), X (s)) y
0
+ ||Z(")(s)||i2(UmH))) ds. (4.51)
Applying (H3) we arrive at
t
E(E_Clt”X(n)([ A t,)||%1) + / C1E(||X(")(s A T])”%I)g_fls ds
0

t
+ ¢ / E(1o.) ()1 X™ (s A ) |%)e " ds
0

t T
<E(IXPIZ) + /0 AE(IXO () [Z)e ds + /0 E(f(s)]) ds.

where by the definition of 7;, [ € N, all terms are finite. Now taking [ — oo and
applying Fatou’s lemma we get

¢
E(e_c'lfHX(”)(t)”%_I) + oo F (/ ||X(")(s)||l‘x/e—01s dS)
0

T
<E(IXP|2) + E ( /0 £(s)] ds)

for all + € [0,T]. Here we used that by (3.8) the subtracted term is finite. Since
||X(()n)||H < || Xo|lz, now the assertion follows for the first and third summand in
(4.50). For the remaining summand the assertion then follows by (H4). O

Proof of Theorem 4.2.4 By the reflexivity of K, Lemma 4.2.9 and Remark 4.1.1,
part 1, we have, for a subsequence n; — 0co:

(i) X" — X weakly in K and weakly in L>([0, T] x Q; dr ® P; H).
(i) Y™ := A(-, X)) — Y weakly in K*.
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(iii) 2" := B(-,X"™)) — Z weakly in J and hence
/ P, B(s, X" (s)) dW"™ (s) — / Z(s) dW(s)
0 0

in M2(H) and, therefore, also weakly* in L°°([0,7], dr;L*(Q,P;H))
(equipped with the supremum norm).

Here th~e second part in (iii) follows since also P,, B(-, X(”k))i’,,k — Z weakly in J,
where P, is the orthogonal projection onto span{gi,--- , g,} in U, since

/ 'PnkB(s,X(”k)(s)) AW (5) = / .PnkB(s,X”k(s))i’nk dW(s)
0 0

and since a bounded linear operator between two Banach spaces is trivially weakly
continuous. Since the approximants are progressively measurable, so are (the dr ®
P-versions) X.,Y and Z.

Thus from (4.48) for all v € |J,», H.(C V), ¢ € L*([0,T] x Q) by Fubini’s
theorem we get

T
E([ k0. 0m), o)

T
= lim E( / v (X (1), o)), dt)
0

k—00

T
= lim E(/ v (X(()”k)7¢(t)v>v dr
0

k—00

T t
+ / / vx (Pr Y™ (s), o(t)v),, ds dr
0 0

T t
(k) (%)
+/0 </0 P, Z" (s) dW (s),<p(t)v>H dt)
T
= lim [E ((xg"k’,vm /0 o(f) dt)
T 0 T

+E(/O V*(Y (s),/s (1) dr v)V ds)

T t
+ /0 E(< /0 7 (5) dW("“)(s),go(t)v>H) dt:|

T . )
:E(/o V*(XO+/0 Y(s) ds—}-/0 Z(s) dW(s),(p(t)wV dt).
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Therefore, defining
t t
X(1) =X+ / Y(s) ds + / Z(s) dW(s), te€]0,T], (4.52)
0 0

we have X = X dr ® P-a.e.
Now Theorem 4.2.5 applies to X in (4.52), so X is continuous in H and

E(sup ||X(t)||§,) < o00.

1<T
Thus, it remains to verify that
B(-X)=2Z, A(-X)=Y, drQ® P-ae. (4.53)

To this end, we first note that for any nonnegative ¢ € L°°([0, T], dz; R) it follows
from (i) that

T
E ( /0 VOIROI dr)

T —_
— lim E ( /0 WO X 0)g dr)

1/2

T ) 1/2 T
<(& [ vorol o) (e [ ook o) <o
0 k—o00 0

Since X =X dt ® P-a.e., this implies

T T
E ( / vOIXOII dt) <liminfE ( / Y @O)IX™ @7 dt). (4.54)
0 k—00 0
By (4.52) using Remark 4.2.8, the product rule and Fubini’s theorem we obtain that
E(e™IX07) — E (IXoll7)

—E ( /0 e (2 v+ (Y(9). X))y + 1Z&) 17, .y — <IX ()17 ds). (4.55)

Furthermore, for any ¢ € K N L*([0,T] x , dt ® P; H), taking [ — oo in (4.51)
with ¢ replaced by ¢ and ¢ A t; replaced by ¢, we obtain

E (e—ct”X(nk)(t)”%_I) —FE (”X(()nk) ”1%-1)

_ E( / (2 e (A X (), X0 (5))
0
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1P X OBy 0 — X O o)

< E( | (2 e (A X (), X (5))
+IBG X O ~ XV OIF) 85

- E( | (2 (G X(9) — Al ) X () — ()
+ 1B(5. X)) = B(s: ¢ 6D 1 — cIX ™) = (@)1} ) ds

+ E( /0 e—“(z v (A(s, 9(5)), X (5))y

+2 v+ (A(, X" (5) = Als, $(5)), (9))v
— 1B, D7, .m0y + 2B, X" (5)), B(s, (D)) 2w,

= 2(X"(5), ¢ + clo ()}, ) ds). (4.56)

Note that by (H2) the first of the two summands above is negative. Hence by
letting k — oo we conclude by (i)—(iii), Fubini’s theorem, and (4.54) that for every
nonnegative ¥ € L*°([0, T, dr; R)

T
E ( / FOEIXOI - 1%l dr)
0

T t
=e( [ vo [ ooz too6) 50 + 2070
—A(5.9(9)), ¢y — IB(s. ¢ D17, w1 + 2(Z(5), B(5. $(9))) 110
—2¢(X(s), ¢($))n + c||¢>(s)||§,] ds) d,)_

Inserting (4.55) for the left-hand side and rearranging we arrive at
T 1
0 ZE(/O 10(t)(/0 e [2 v+ (Y(5) = A5, $(9)), X(5) — ¢ (s))v
+ 1B(s. ¢ () = ZO) 17,01y = clX(5) = D (5)II7] dS) dt)- (4.57)

Taking ¢ = X we obtain from (4.57) that Z = B(-, X). Finally, first applying (4.57)
topg =X—¢epvfore>0and¢ € L*°([0,T] x 2, dt® P;R), v € V, then dividing
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both sides by ¢ and letting ¢ — 0, by Lebesgue’s dominated convergence theorem,
(H1) and (H4), we obtain

T ' B
OzE( /0 w(r)( /0 d(s) V*<Y<s>—A(s,X(s)),v>vds) dr).

By the arbitrariness of ¥, $ and v, we conclude that Y = A(-, X). This completes
the existence proof.
The uniqueness is a consequence of the following proposition. O

Proposition 4.2.10 Consider the situation of Theorem 4.2.4 and let X,Y be two
solutions. Then for c € R as in (H2)

E(|1X(t) = Y(1) 1) < e"E(|1X(0) — Y(0)|3) forall t € [0, T]. (4.58)

Proof We first note that by our definition of solution (cf. Definition 4.2.1) and by
Remark 4.1.1, part 1 we can apply Remark 4.2.8 to X — Y and the product rule to
obtain for ¢ € [0, T]

E(e™IIX(0) = Y(0)3) = E(IXo — Yol3)
+ /0 (E(2 y+(A(s. X(5)) — A5, Y (), X(5) — Y (5))y

+ ||B(s, X(s)) — B(s, 1_/(S))HZ(U,H)
— cE(|IX(s) = Y(5)[[7))e™ ds
< E(I1X(0) = Y(0)7).
where we used (H2) in the last step. Applying Gronwall’s lemma we obtain the
assertion. .

Remark 4.2.11 Lets € [0, T] and X, € L*>(Q, Fs, P; H). Consider the equation

X(t) =X, + / tA(u,)_((u)) du + / tB(u,}_((u)) dW(u), t € [s.T] (4.59)

S S

with underlying Wiener process W(f) — W(s), t € [s, T], and filtration (F;),s, i.e.
we just start our time at s. We define the notion of solution for (4.59) analogously
to Definition 4.2.1. Then all results above in the case s = 0 carry over to this more
general case. In particular, there exists a unique solution with initial condition X;
denoted by X(t,5.X;), t € [s,T]. Let0 < r < s < T. Then for X, € L*(Q, F,, P; H)

X(t,r,X,) =X(t,s,X(s,r, X)), t € [s,T] P-ace. (4.60)
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Indeed, we have

Xt rX)=X + /tA(u,}_((u, r, X)) du + /tB(u,)_((u, r, X)) dW(u)

r r

t
=X(s,r, X;) + / A(u, X(u,r,X,)) du

S

+/t3(u,5((u,r,x,)) dW(u), tels, T].

But by definition X (¢, s, X (s, r, X)), t € [s, T], satisfies the same equation. So, (4.60)
follows by uniqueness. Furthermore, if for s € [0,7], X; = x for some x € H
and A and B are independent of w € €, then by construction X(z, s, x) obviously
is independent of F; for all ¢ € [s, T], since so are collections of increments of
W), t € [s, T].

4.3 Markov Property and Invariant Measures

Now we are going to prove some qualitative results about the solutions of (4.2.1) or
(4.59) and about their transition probabilities, i.e. about

pst(x, dy) := Po (X(z, s,x))_l( dy),0<s<t<T,x€eH. (4.61)

As usual we set for B(H)-measurable F : H — R,and 7 € [5,T], x € H

PoF() = / Fopslr. dy),

provided F is p;(x, dy)-integrable.

Remark 4.3.1 The measures p;,(x, dy), 0 < s <t < T, x € H, could in principle
depend on the chosen Wiener process and the respective filtration. However, the
construction of our solutions X(t, s, x), t € [s, T], suggests that this is not the case.
This can be rigorously proved in several ways. It is, for example, a consequence of
the famous Yamada—Watanabe theorem which is included in Appendix E below.

Proposition 4.3.2 Consider the situation of Theorem 4.2.4. Let F : H — R be
Lipschitz with

Lip(F) := sup wk o)

x,yEH x#y ”x_y”H
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denoting its Lipschitz constant. Then forall0 < s <t < T
psi|Fl(x) < ocoforallx € H
and forallx,y € H
PsF () = psF(Y)] < e2ILip(F) [lx =yl (4.62)

where c is as in (H2).

Proof Clearly, for all x € H
|F(x)| < |F(0)| + Lip(F) ||x|la,
andthusforall0 <s <t <T

Pl Fl(x) = E(IF|(X(1,5,x)))
< [F(0)| + Lip(F) E(|IX(z, 5. 0)[|1)
1/2
< |F(0)| + Lip(F) (E ( sup [|X(z. SJC)H%q))
t€ls,T]

< 0.

Furthermore, for x,y € H by (the “started at s” analogue of) (4.58)

ps. F(x) — o F ()| < E(F(X(1,5.x)) — F(X(1,5.)))])
< Lip(F) E(|X(t. 5.x) — X(t.5.Y)|lw)
< Lip(F) e2“™9||x — yl|.

O

Proposition 4.3.3 Consider the situation of Theorem 4.2.4 and, in addition, assume
that both A and B as well as f and g in (H3),(H4) respectively, are independent of
w € Q. Then any solution X(t), t € [r, T), of (4.59) (with r replacing s) is Markov
in the following sense:

for every bounded, B(H)-measurable G : H — R, and all s, t € [r,T], s <t

E(GX(1))|F,)(w) = E(GX(t, s, X(s)(®)))) for P-a.e. » € . (4.63)

Proof Lets,t € [r,T], s <. Thenby Theorem E.0.8 in Appendix E there exists an
F € & as in Definition E.0.5 such that for P-a.e. v € Q

X(D(@) = Fpox(e-1(X(s)(@), W())(®)
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with W := W — W(s) and W is defined by (2.12) as a Q;-Wiener process on Uj.
Then for every bounded, B(H)-measurable G : H — R and P-a.e. w € Q

E[G(X(1)|F](®)
=E[G(Fpox(s~1 (X(5) (@), W)(1))]
=E[G(Fsy,, X(5)(@), W)(®))]
=E[G(X(t, 5. X(5)(@)))],

where in the last equality we applied Theorem E.0.8 again and in the third equality
we used the fact that by the definition of &, for P o X(s) '-a.e.x € H

F,(x, ) =F(x, -)=Fs(x, ) = P9 -ae.

Corollary 4.3.4 Consider the situation of Proposition 4.3.3 andlet 0 < r < s <
t < T. Then we have (“Chapman—Kolmogorov equations”)

Pr.sPst = Pr.t» (4‘64)
i.e. for F : H— R, bounded and B(H)-measurable, x € H,

Prs(psF)(x) = pr.F(x).

Proof For F : H— R as above and x € H by Proposition 4.3.3 we have
Prs(psF)(x) = E(ps,F(X(s,7.x))) = / E(F(X(1.5.X(s, 1. x)())))P( dw)

- / E(FX(t, )| Fy) (@)P( do)
— EFX(t.r.) = praF ().

|

Now let us assume that in the situation of Theorem 4.2.4 both A and B as well as
f and g in (H3), (H4) respectively are independent of (¢, w) € [0, T] x 2 (so they
particularly hold for all T € [0, co[). Then again using the notation introduced in
Remark 4.2.11 for0 < s <t < oo and x € H we have

X(t,5,%) = XV (t — 5,0, %) P-ae., (4.65)
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where XW(t, 0,x), t € [0, o], is the solution of
t _ t _ B
X(r) = x + / AX () du + / B(X(u)) dW(u)
0 0

and W := W(- +s) — W(s) with filtration Fs4,, u € [0, oo[, which is again a Wiener
process. To show this let us express the dependence of the solution X(t, s, x), t €
[s, 00) of (4.59) with X := x on the Wiener process W by writing X" (¢, 5, x) instead
of X(t, s,x) and similarly, p!¥ (s, dy) instead of p; (x, dy). Then, for all 5, u € [0, oo
XW(u + 5,8,%)
u+s _ t B
=x+ / AXY (s, x)) du’ + / BX" (', s,x)) dW()
=x+ / AXY W + 5,5,x) du’ + / BXY (' +5,5,x)) dW(/).
0 0

Sq, by uniqueness the process XY (u+s,s,x), u € [0, 00[, must P-a.e. coincide with
XY (u,0,x), u € [0, 00[, and (4.65) follows with u := ¢ — s. In particular, it follows
that

p(x, dy) = Po (XY (1—s5.0.)"" (dy) = p,_,(x. dy) = p{l,_,(x. dy)  (4.66)

(“time homogeneity”), where we used Remark 4.3.1 for the last equality.
Defining

D= p(‘ft, t €0, 00,
equality (4.64) for r = 0 and s + ¢ replacing ¢ by (4.66) turns into
Ds+: = psp; for s, t € [0, ool. (4.67)
For x € H we define
P, :=Po (X(-,0,x))" ", (4.68)

i.e. P, is the distribution of the solution to (4.2.1) with initial condition x € H,
defined as a measure on C([0, oo[, H). We equip C([0, oo[, H) with the o-algebra

G = o(mg|s € [0, 00])
and filtration

G, = o(msls €]0,1]), t € [0, o],
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where 7,(w) := w(r) forw € C([0, oo, H), t € [0, oo].

Proposition 4.3.5 Consider the situation of Theorem 4.2.4 and, in addition, assume
that both A and B as well as f and g in (H3),(H4) respectively, are independent of
(t,w) € [0, T] x 2 (so they particularly hold for all T € [0, 0o[). Then the following
assertions hold:

1. Py,x € H, form a time-homogenous Markov process on C([0,00), H) with
respect to the filtration G,;,t € [0, 00|, i.e.for all s,t € [0, 00[, and all bounded,
B(H)-measurable F : H - R

E(F(,45)|Gs) = Ex,(F(;)) Py—a.e., (4.69)
where E, and E\(-|G;) denote expectation and conditional expectation with

respect to Py, respectively.
2. Suppose dim H < oo. If there exist n,f €10, oo[ such that

2« (A(v), v)y +||B(v)||§2(U,H) < —7]||v||§1 +f forallveV, (4.70)

(“strict coercivity”) then there exists an invariant measure [ for (p;)r=o, i.e. |4 is
a probability measure on (H, B(H)) such that

/p,F du = /Fd,u forallt € [0, 00 4.71)

and all bounded, B(H)-measurable F : H — R.
Proof

1. The right-hand side of (4.69) is G;-measurable by Proposition 4.3.2 and a
monotone class argument. So,let0 < <, <...<t, <sandletG: H" - R
be bounded and ®?_, B(H)-measurable. Then by (4.63) and (4.66)

Ex(G(”rls ceey ntn)F(”rﬂ))
— E(G(X(11,0,%), . .., X(1n, 0,)) F(X(t + 5,0, %))
=E(GX(t1,0,x),...,X(t,, 0, x)E(F(X(t + 5,0,x))|Fy))

— / GX (11,0, 1)(®). . ... X(12, 0. ) ()
E(F(X(t+ s,5,X(s,0,x)(w))))P(dw)
_ / G(X (11,0, 2)(@), - ... X(12, 0, ) ()

E(F(X(t,0,X(s, 0, %)(®))))P( do)
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_ / Gy (@), ... 71, (@) E(F(X(1, 0. () P dev)
- / Gty (@), . .. 71, (@) Enso(F () Po( dv).

Since the functions G(rny,, . . ., 7;,) considered above generate F, equality (4.69)
follows.

2. Let gy be the Dirac measure in 0 € H considered as a measure on (H, B(H)) and
for n € N define the Krylov—Bogoliubov measure

1 n
Mn = — / Sop; dt,
nJo

i.e. for B(H)-measurable F : H — [0, oo

1 n
/F du, = —/ p:F(0) dt.
nJo

Clearly, each u, is a probability measure. We first prove that {u,|n € N} is tight.
By Remark 4.2.8 for any solution X to (4.2.1) applying the product rule and using
(4.70) we get that

E@E" X% = E(XO)]3) + E( /0 " (2 (AX(5)), X(5))y,
+ IBX)Z,w.m + nIX6)17) ds)

< E(IXO)2) +f /0 "o ds. 1 e [0, 0ol

Therefore,
E(IX@)I7) < e E(IXO)IIF) + % 1 €0, 00], (4.72)
which in turn implies that
2 L[ 2 f
x|l g pndx) = — | E(|X(20,0)|g) dr < ; foralln € N. (4.73)
nJo
Hence by Chebychev’s inequality
2 Lf
supn({ll Iz > R}) < == — 0as R — oo. (4.74)
neN R n
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Since dim H < oo, the closed balls {|| |, < R}, R €]0, ool, are compact. Hence
by Prohorov’s theorem there exists a probability measure p and a subsequence
(M )ken such that pu,, — p weakly as k — oo.

Now let us prove that p is invariant for (p;)=0. So, let € [0, o[ and let F :
H — R be bounded and B(H)-measurable. By a monotone class argument we
may assume that F is Lipschitz continuous. Then p,F is bounded and (Lipschitz)
continuous by Proposition 4.3.2. Hence using (4.67) for the third equality below,
we obtain

/ pFdp

= lim / piF dpiy,
k—o00
1 [
= lim —/ ps(p:F)(0) ds
0

k—>00 nk

1 [™
= lim —/ Ps+:F(0) ds
0

k—00 1y
ni+t 1 t
= lim [ Fdu, + lim —/ psF(0) ds — lim —/ psF(0) ds
k—00 k=00 ng Jy, k—o00 ny Jo
= / F dpu, (4.75)

since |psF(0)| < sup,cy |F(x)|, so the second and third limits above are equal to
Zero. O

Remark 4.3.6 If dim H = oo, the above proof of Proposition 4.3.5, part 2 works up
to and including (4.74). However, since closed balls are no longer compact, one can
apply Prohorov’s theorem only on a Hilbert space H; into which H is compactly
embedded. So, let H; be a separable Hilbert space such that H C H; compactly and
densely (e.g. take H; to be the completion of H in the norm

00 1/2
||x||1 = |:Z Oli(X, ei)%{] ,X€E€H,
i=1

where o; €]0,00[, Y2, a; < 00, and {e;|i € N} is an orthonormal basis of H);
extending the measures u, by zero to B(H;) we obtain that {,|n € N} is tight
on H,. This extension of the measures is possible, since by Kuratowski’s theorem
H € B(H)) and B(H;) N H = B(H). Hence by Prohorov’s theorem there exists a
probability measure jt on (H;, B(H,)) and a subsequence (i, )ren such that p,, —
[ weakly on H; as k — oo. As in Exercise 4.2.3, part 1 one constructs a lower



116 4 SDEs in Infinite Dimensions and Applications to SPDEs

semicontinuous function ® : H; — [0, oo] such that

o= ) Illlx onH
" | 400 onH|\H.

Then (4.73) implies that for /;,i € N, as in Example 4.2.3, part 1,

/®z(x)ﬂ(dx): lim lim [ sup(lx)7, AM [i( dx)
H) N—>o0

M—o00 i<N

= sup lim sup(li,)c)i,1 AM py, (dx)
MNeNk—o0 J iy

< liminf sup /sup(l,-,x)%,l AM iy, (dx)

k=00 N peNJ i<N
= liminf/||x||12q oy ( dx)
k—o00 H

f

<_-
n

S

Hence ® < oo ji-a.e., so i(H) = 1. Therefore, u = [
measure on (H, B(H)).

Unfortunately, the last part of the proof of Proposition 4.3.5, which shows that
W is invariant, does not work. More precisely, for the first equality in (4.75) we
need that p,F is continuous with respect to the same topology with respect to which
(tn )ken converges weakly, i.e. the topology on H;. This is, however, weaker than
that on H. So, unless we can construct H; in such a way that p,F has a continuous
extension to H, the first equality in (4.75) may not hold.

() is a probability

So far, we have taken a positive time s as the starting time for our SDE (see
Remark 4.2.11). In the case of coefficients independent of ¢ and w, it is also possible
and convenient to consider negative starting times. For this, however, we need a
Wiener process with negative time. To this end we recall that we can run a cylindrical
Wiener process W(¢),t € [0, oo on H (with positive time) backwards in time and
again get a Wiener process. More precisely, for fixed T € [0, oo[ we have that
W(T —t) — W(T), t € [0,T] is again a cylindrical Wiener process with respect to
the filtration o ({W(T — 5) — W(T)|s € [0,1]}), t € [0, T], and also with respect to
the filtration 0 ({W(r2) — W(r1)|ri,r2 € [T —t,00][, r2 < r1}), t € [0, T], where the
latter will be more convenient for us.

So, let A, B be independent of (¢, w) € [0, T] x  and let WV (z), t € [0, oo, be
another cylindrical Wiener process on (2, F, P) with covariance operator Q = I,
independent of W(¢), t € [0, oo[. Define

W), if 1 € [0, o0,

WO =1 Wy, it s €] — 00, 0]

(4.76)
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with filtration

=7 teR, 4.77)

s>t

where F° := a({W(r2) — W(r1)|ri,r, € —o00,s],72 = ri},N)and N := {A €
F|P(A) = 0}. As in the proof of Proposition 2.1.13 one shows that if —co < s <
! < oo, then W(r) — W(s) is independent of F;. Now for s € R fixed consider the
SDE

dX(r) = A(X(r)) dr + B(X(2)) dW (1), 1 € [s, 0. (4.78)
Remark 4.3.7 Lets € Rand X, € L? (2, F..P:H ) and consider the integral version

of (4.78)

X)) =X, + / tA()_((u)) du + / tB()_((u)) dW(u), te€ls, o0, (4.79)

s s

with underlying Wiener process W(r) — W(s), t € [s,o0[ and filtration (F,):>s
(cf. Remark 4.2.11). We define the notion of solution for (4.79) analogously to
Definition 4.2.1. Then again all results above for s = 0 (respectively for s € [0, oo,
see Remark 4.2.11) carry over to this more general case. In particular, we have the
analogue of (4.64), namely

DPrsPst =Py forall —oco<r<s<t<oo, (4.80)

where fors,t e R, s<t,xe H

Pss(x.dy) 1= P o (X(1,5,x)) "' (dy),

and analogously to (4.66) one shows that

ps,t(xs d)’) :po,l‘—s(-xv dy)
In particular, for + = 0 we have
P—so(x, dy) = pos(x, dy) forallx € H, s € [0, oo]. (4.81)

Furthermore, for every s € R there exists a unique solution with initial condition
X, denoted by X(t,s5,X;), t € [s,00[, and (4.60) as well as the final part of
Remark 4.2.11 also hold in this case.

Our next main aim (cf. Theorem 4.3.9 below) is to prove the existence of a unique
invariant measure for (4.78) if the constant ¢ in (H2) is strictly negative (“strict
monotonicity”). The method of the proof is an adaptation from [27, Sect. 6.3.1]. We
shall need the following:
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Lemma 4.3.8 Suppose (H3), (H4) hold and that (H2) holds for ¢ := —A for some
A €]0, ool Let 1 €]0, A[. Then there exists a 8, €]0, oo[ such that for allv € V

2y (A@). v)y B, wmy < —nllvlF + 8- (4.82)

Proof Letv € V and ¢ €]0, 1[. Then first using (H2) (with ¢ = —A according to our
assumption), then Remark 4.1.1, part 1, and finally (H3) we obtain

2y (AQW), v)y B

= 2 (A(V) = A(0), v)y +2 4 (A(0), v)y +[|B(v) — BO) 7,1,
— 1BO)IIZ, 1) + 2(B(), BO)) o011

< <Al + 26v]¢ + 2675 (@ — DT JAO) 5T + e 1BO)I2, 0
+ & B .

< =AMl + 2ellvlly + Be

2 « oa—1 _a «
e (el +7 + 2ol + 2526 + 2aalol)

2 ~ 2
< [—A + ecy (1 +—(+ o+ 03))} vl + Be + —e(1+ o+ a)f
2 2
2 _
—ofte " )2y (A, )y HIBOE, )

with B, B. €10, 00| independent of v and where we applied Young’s inequality in
the form
(ag)—l/(a—l)

af(a—1) o
+ eb”,
afla—1) "

ab = [(ae)™"%a][(ae) /] <

a,b € [0,00[ in the second step. Hence taking ¢ small enough we can find §, €
10, oo[ such that for all v € V

2y« (A(v), v)y +||B(v)”%2(U,H) < =nlvll + 8.
O

Theorem 4.3.9 Consider the situation of Proposition 4.3.5 and, in addition,
assume that ¢ € R in (H2) is strictly negative, i.e. ¢ = —A, A €]0, oo[ (“strict
monotonicity”). Then there exists an invariant measure | for (p;);=o such that

[ VI 1 dy) < oo.
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Moreover, for F : H — R Lipschitz, x € H and any invariant measure [L for (p;)=0

PF() — / Fdul < e 3 Lip(F) / I —ylla i(dy) forallt e [0.00[  (4.83)

In particular, there exists exactly one invariant measure for (p;)=o.

Remark 4.3.10 (4.83) is referred to as “exponential convergence of (p;)=o to
equilibrium” (uniformly with respect to x in balls in H).

For the proof of Theorem 4.3.9 we need one lemma.

Lemma 4.3.11 Consider the situation of Theorem 4.3.9. Let t € R. Then there
exists an n, € L*(Q, F, P; H), such that for all x € H

lim X(t,s,x) = n, in L*(Q, F, P;H).
§—>—00
Moreover, there exists a C € [0, oo such that for all s €] — 00, 1]
E(IX(.5.%) = nillfy) < Ce (1 + x]y).
Proof For sy, s, €] —o00,t], s; < sy, andx € H

X(t,s1,x) — X(2, 52, %)
-/ AR 51,9) — AR, 52,20)] ds
+ / [B(X(u, 51, %)) — B(X(u, 52, x))] dW () + X (52,51, %) — x,
since

X(s2,51,x) =x+ /SZA()_((u,sl,x)) du + /52 B()?(u,sl,x)) dV_V(u). (4.84)

s1 K

Since Remark 4.2.8 extends to our present case we can use the product rule and
(H2) with ¢ = —A to obtain
E(M X (1, 51,%) = X (1, 52,0 |77) = E@*2||X (52, 51,%) = x[|7)
t

+ /e“E(Z v (AX(u, s1,x)) —AX(u, 52, %)), X (u, 51, %) —)_((u,sz,x))v

$2

+ 1B (. 51,%)) = BEw, 52,0 1)) d
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t

4 [ PAE (X 51.5) — X (s s2.9)113) du
52

< 2M20E (|1X (52, 51, 0) %) + [Ix13]- (4.85)

But again by Remark 4.2.8 extended to the present case, the product rule and (4.82)
imply

E(e™|X (52, 51,%) )

52 _ _
= e‘””||x||12q +/ e”“E(Z v (AX (e, 51, %)), X (u, 51, %))y,

51

— 52
1B 0) ) du+ [ M EQX w5001

s1

52 5
< es”’||x||12q + 5,7/ e™ du < es”’||x||12q + e, (4.86)
51 n
Combining (4.85) and (4.86) we obtain
8
B s1.) = Xt 2.0 1) < 2 (52 4 20 ) 70 487)

Letting s, (hence s;) tend to —oo, it follows that there exists an
ni(x) € LX(Q, F, P; H) such that

lim X(t,5,x) = n,(x) in L*(Q, F, P H),
§—>—00

and letting s; — —oo in (4.87) the last part of the assertion also follows, provided
we can prove that 7,(x) is independent of x € H. To this end let x,y € H and
s €] — o0, t]. Then

X(t,s,x) — X(1,5,y)
=y [ ARG 5,00) — ARG 5,) du
N /I(B(X'(u, 5, %)) — B(X(M, 5,y)) d‘/_V(M)

Hence by the same arguments to derive (4.85) we get

E(™||X(t,5,%) — X (1,5, ) |15) < e [x =y,



4.3 Markov Property and Invariant Measures 121

SO
lim (X(t,s,x) — X(t,5,y)) = 0in L*(Q, F, P; H).
§—>—00
Hence both assertions are completely proved. O

Proof of Theorem 4.3.9 Define
pi=Pon’

with 79 as in Lemma 4.3.11. Since no € L?(2, F, P; H) we have that

[ 11 () < oc.
Let ¢ € [0, co[. We note that by (4.80) and (4.81) for all s € [0, co[

DP—5.0P0s = P—si = P0.t+s = P—(t+s5).0- (4.88)

Let F : H — R, F bounded and Lipschitz. Then by Proposition 4.3.2 we have that
po.F is (bounded and) Lipschitz. Furthermore, by Lemma 4.3.11 forall x € H

P—so(x, dy) — u weakly as s — oo.

Hence by (4.88) forallx € H

[ ok a = i peson @) = lim p-irgoF ) = [ F an.

Recalling that by definition p; = pg,, it follows that @ is an invariant measure
for (p;)i=0. Furthermore, if p is an invariant measure for (p;);>0, then by Proposi-
tion 4.3.2 for all ¢ € [0, oo[

() — / F du‘ - ' / (PF () —ptF(y))u(dy)‘

< [ (e HLip(E) |x — yl) A 2] Flloo 11(dy).

which implies (4.83) and by letting + — oo also that all such invariant measures p
coincide. O



Chapter 5
SPDEs with Locally Monotone Coefficients

In this chapter we will present more general results on the existence and uniqueness
of solutions to SPDEs. More precisely, we will replace the standard monotonicity
condition and coercivity condition in Chap. 4 by a local monotonicity condition and
generalized coercivity condition respectively. The main references for this chapter
are [57-59].

In the applications we make a slight change of notation by writing for the
standard [”-norms ||-||;» instead of |-[|,, p € [1,00], as in previous chapters to
be more consistent with the notation for norms in Sobolev spaces, used below.

5.1 Local Monotonicity

5.1.1 Main Result

Let
VCH=H*"CV*

be a Gelfand triple and for T > 0 let W(r), t € [0,T], be a cylindrical Wiener
process in a separable Hilbert space U on a probability space (€2, F, P) with normal
filtration F;, t € [0, T]. We consider the following stochastic differential equation
on H

dX(r) = A(t, X(v)) dr + B(t, X (1)) dW(2), 5.1
where for some fixed time 7 > 0
A0, T)xVxQ—>V* B:[0,T]|xVxQ — L,(U,H)
are progressively measurable.

© Springer International Publishing Switzerland 2015 123
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In Chap.4 we have shown that (5.1) has a unique solution if A, B satisfy the
classical monotonicity and coercivity conditions. The main aim of this section is to
provide a more general framework for the variational approach, being conceptually
not more complicated than the classical one (cf. Chap.4 or [54] ), but including
a large number of new applications, for example, fundamental SPDEs such as the
stochastic 2-D Navier—Stokes equation and stochastic Burgers type equations. The
main changes consist of localizing the monotonicity condition and relaxing the
growth condition. Let us now state the precise conditions on the coefficients of (5.1):

Suppose that there exist constants & €]1, oo[, B € [0, oo[, 6 €]0, o[, Cyp € R and
a nonnegative adapted process f € L'([0,T] x Q; df ® P) such that the following
conditions hold for all u, v,w € V and (¢, w) € [0, T] x Q:

(H1) (Hemicontinuity) The map A > = (A(t, u + Av), w)y is continuous on R.
(H2') (Local monotonicity)

2y= (A(t,u) — A(1,v), u = v)y + |B(t.u) — Bt V)|I7, 0.

< (f@) + p(v)) llu — vl

where p : V — [0, +o0o[ is a measurable hemicontinuous function and
locally bounded in V.
(H3) (Coercivity)

2y=(A(1, V), V)v + IBE I, < Collvllz — Ollvlly +£(0).

(H4') (Growth)

o

IAG V5T < (F@) + Collol$) (1 + [ol17).

Remark 5.1.1

(1) (H?2') is significantly weaker than the standard monotonicity condition (H2)
(i.e. p = 0) in Chap. 4. One typical choice of p in applications is

p(v) = Cllv]y.

where C and y are some nonnegative constants.

One important example is the stochastic 2-D Navier—Stokes equation on a
bounded or unbounded domain. It satisfies (H2'), but not (H2) (see Sect.5.1.3
below).

(2) (H4) is also weaker than the standard growth condition (H4) in Chap. 4. The
advantage of (H4') is, e.g. that it allows the inclusion of many semilinear type
equations with nonlinear perturbation terms. For example, if we consider a
reaction-diffusion type equation, i.e. A(y) = Au + F(u), then for (H3) to
hold we need @ = 2. Hence (H4) would imply that F' has at most linear
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growth. However, for the weaker condition (H4’) we can allow F to have some
polynomial growth. We refer to Sect. 5.1.3 for more details.
(3) By (H3), (H4') and Young’s inequality it easily follows that

2(ax —1
1B =10 + Collol + 22 r) (14 o1

2 o a
+ = [Cola =11+ olf) + 1= 56 ] vl

(4) Since p is locally bounded, (H2') implies that for fixed w € Q,t € [0,T],
A(t, -, w) satisfies (H2,.) in Remark 4.1.1,2. Hence (H1) and (H2') imply that
A(t,-,w) : V — V* is demicontinuous for all (z, w) € [0, T] x Q.

Definition 5.1.2 A continuous H-valued (F;)-adapted process (X (f));c[0,7] is called
a solution of (5.1), if for its d¢r ® P-equivalence class X we have

XeL(0.T] x Q, dt® P;V) N L*([0,T] x Q, df ® P; H)

with @ in (H3) and P-a.s.
X(@) = X(0) + /tA(S,}_((S)) ds + /tB(s, X(s)) dW(s), t € [0, T],
0 0

where X is any V-valued progressively measurable dr ® P-version of X (which
exists by Exercise 4.2.3).

Theorem 5.1.3 Suppose (H1), (H2'), (H3), (H4') hold for some f € LP/*([0, T] x
Q; dt ® P) with some p > B + 2, and there exists a constant C such that

1B 0) |22 < CCE@ + [0]3). 1€ [0.T].v € V:
p(v) < C(1 + P[0 + [v]&), v e V. (5.2)

Then for any Xo € IP(2, Fo, P; H), (5.1) has a unique solution (X(t)):e[o,r] Such
that X(0) = Xy and it satisfies

t€l0,7]

E( sup ||X(t)||Z) < 0.

Moreover, if A(t,-)(w), B(t,-)(w) are independent of t € [0, T] and w € 2, then the
solution (X(1))iepo,1) of (5.1) is a Markov process.
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5.1.2 Proof of the Main Theorem

The first step of the proof is mainly based on the Galerkin approximation. Let
{6‘1,62,"'} cV

be an orthonormal basis of H and let H, := span{ey,---,e,} such that
span{ey, ey, --- } is dense in V. Let P, : V* — H, be defined by

P,y := Z v={y,e;)ve;, y € V*.
i=1
Recall that P, |y is just the orthogonal projection onto H, in H and we have
v* (PV!A(ts u)s U)V = (PnA(tv M)v U)H = v* (A(tv M)v U)Vv ue Vs S Hn-

Let {g1, g2, - - } be an orthonormal basis of U and

n

W) =Y (W), giugi = PW (),

i=1

where P, is the orthogonal projection onto span{g,--- ,g,} in U.
Then for each finite n € N we consider the following stochastic equation on H,

dX™ (1) = P,A(t, X (1)) dr + P,B(t, X" (1)) AW (1), X" (0) = P,.Xo.  (5.3)

By Remark 5.1.1, (3) and (4) it is easy to check that all assumptions of Theo-
rem 3.1.1 hold, which hence implies that (5.3) has a unique strong solution.

In order to construct the solution of (5.1), we need some a priori estimates for
X™ . As in Chap.4 we use the following notations:

K :=L%((0,T] x 2, dt® P;V);

J:=L1*0,T] x Q, dr ® P; L,(U, H)).

Lemma 5.1.4 Under the assumptions in Theorem 5.1.3, there exists a C > 0 such
that for alln € N

IX® |k + sup EIXP )7 < C.
t€[0,7]

Proof The assertion follows from (H3) as in the proof of Lemma 4.2.9. O
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Lemma 5.1.5 Under the assumptions in Theorem 5.1.3, there exists a C > 0 such
that for all n € N we have

T
E ( sup IIX(")(I)IIZ) + E/O IXO @5 IX " @5 dr

t€[0,7]
T
<C (E||Xo||’;, +E / 12 (1) dt) : (5.4)
0
In particular, there exists a C > 0 such that for alln € N
IAG, XY g < C.
Proof By Itd’s formula (for R”-valued semimartingales)
IX® @)
t
=X O +pp—2) / X ()15 1 (PaBls, X (5))P)* X (5) [ ds
0
t
p n p— n n n 5
+3 /0 X (2v+ A5 X (5)), X0 (5))y+ IPuB (s, X ()P 2, 10m) ds
t
+p /0 IX® ()15 (XM (5). PuB(s. X" (5)) dW™ (5)) 1.
Hence by (H3), (5.1.3) and Young’s inequality
Wy P2 [ i 12 1x® (s) [
IX* Ol + = | IX* ) ~1IX ()l ds
t
<IX“ Ol + C/O (XD +76) - 1X7G)57) as
t
+p /0 X )15 (X ™ (). PuB(s. X" (s)) dW™ (5))
t
<Ilfy + € [ (KOO +720) s
t
+P/0 IX () [52(X® (5), PaB(s, X (5)) AW (), 1€ [0, 7], (5.5)

where C is a constant (independent of #) and may change from line to line.
For n € N we define the stopping time

" = inf{t € [0, 7] : | X" @)||lu >R} AT, R> 0.
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Here, as usual, inf @ := oo. It is obvious that

lim rl(en) =T, P-a.s., n € N.

R—00

Then by Proposition D.0.1(i), (5.2) and Young’s inequality we have for all t
[0, 7]

E sup

rE[O.‘L'I(en)/\t]

/ X ()57 (X (5), PoB(s, X(s)) AW (5))
0

) g 1/2
R

g n 2p—2 n
<3E (/0 X S 1B, X DL, 0.1y ds)

(n) 1/2

- R At
<E[ s IX@™ . C [0 (X2 +£(s)) ds

XE[O.‘L’I(en)/\t]

p/2

t
SEe sp XOOL+C [0 (sup IXOWIE +£(s)) ds

SG[O,II(;)/\I‘] rE[O.‘L'I(en)/\t]

t
<3¢E( sup ||X(")(s)||§,)+3-(2T)P/2_1C£/ E sup (X% +17%(s)) ds,
s€[0, Ad 0 reo,r Al

(5.6)

where ¢ > 0 is a small constant.
Then by (5.5), (5.6) and Gronwall’s lemma we have

(n)

‘L'R -
E( sup ||X(”)(t)||§,)+E/O IX () 151X ()5 ds

ref0,7"]

T
<C (E||X0||';, + E/ 172 (s) ds) ,neN,
0

where C is a constant independent of n.
Letting R — oo, (5.4) follows from the monotone convergence theorem.
Moreover, by (H4') and because p > B + 2, we deduce from (5.4) and
Lemma 5.1.4 that

IAC.X")|g= <C, n> 1,

where C is a constant independent of n. O
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Proof of Theorem 5.1.3

(1) Existence: By Lemmas 5.1.4, 5.1.5 and (5.2) there exists a subsequence n; —
oo such that

(i) X" — X weakly in K and weakly* in L”(2; L°([0, T]; H)).
(i) Y™ := A(-, X)) — Y weakly in K*.
(iii) z™ := P, B(-,X"W) — Z weakly in J and hence

/ ' P, B(s, X" (5)) AW (5) — / . Z(s) dW(s)
0 0

weakly in M%(H) and, therefore, also weakly* in L*°([0, T], dr; L*(<2,
P;H)).

Now we define
X(1) := Xo +/ Y(s) ds +/ Z(s) dW(s), t € [0, T]. 5.7)
0 0

As in the proof of Theorem 4.2.4 one shows that X = X dr ® P-a.e.

Then by Theorem 4.2.5 we know that X is an H-valued continuous
(F;)-adapted process. Since X", k € N, converges weakly to X in
LP (Q2; L*°([0,T]; H)), it follows by Lemma 5.1.5 that

E ( sup ||X(t)||§1) < oo. (5.8)
t€[0,7]

Therefore, it remains to verify that
A(,X) =Y, B(.X) =Z dt ® P-a.e.
Define
M :=KNL(Q; L*(0,T]; H)).

Let ¢ be a V-valued progressively measurable version of an element in M and
let 7¢ : Q@ — [0, T] be a stopping time such that

o
cy 1= P-ess sup/ (f(s) + lp(®)) ds < oo.
o Jo
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Applying the Itd-formula (4.30) together with It6’s product rule we obtain for
te[0,T]

t/\‘[¢
E (e_ o (F®)+p@(s)) d‘V”X("k)(t A 7/.47)”1%1) —E (”X(W)(O)”%I)
InT? ;
:E|:/ e~ o V() +p(¢(1)) dr (zv* (A(s, x () (5)), x () (5))y
0
B X O = 0) + POODIX G ) ]
tAT? .
§E|:/ e~ JoF(r)+p(@(r)) dr (ZV* (A(s, x ) (5)). x ) (5))v
0
+ 1B(s. X" (7,000 — (F(8) + p((5))IX (S)”?{) ds}

tAT? 5
:E|:/ e~ JoF(+p(@(r)) dr (ZV* (A(s, X(”")(S)) —A(s, ¢s), X(”")(s) —o(s))y
0
+ 1B(s. X" () — B(s, ¢ (D12, 1

— (F(s) + p@ONIX"(5) = p(s) IIfq) db]

tAT? 5
* EU e e dr(zv* (A(s.X™(5) — Als. $(5)). () v
0

+ 2v+ (A(s, (), X" (9)=IIB(s, ¢ SDIIZ, 0.

+ 2(B(s, X'"™(5)), B(s, $(5))) Low.)

= 2(f(s) + PG ONX" (), () + (F(5) + p(¢>(S)))|I¢>(S)II§) dS}-
(5.9)

Above in (5.9) we used that by Proposition D.0.1(ii), (5.2) and Lemma 5.1.5
(used for fixed n) the local martingale appearing after applying It6’s formula is
a martingale, hence has expectation zero. Furthermore, by the definition of M,
the property of %, (5.2), (H4') and because of Lemma 5.1.5 (used for fixed k)
it is easy to check that all integrals in (5.9) are well-defined. Letting k — oo, by
(H?2'), (1)-(iii) and the same argument as in (4.53) we have for every nonnegative
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Y e L*°([0,T]; di),
T Ah ]
E[ / ¥ (1) (e‘fo FE+P@EN )X (5) |2, — ||X0||12q) dt}
0
r Ah
<liminfE [ / V() (e‘fo <f<f’+”‘¢“”’dan("”(t)ll%,—||X<"k’(0)||%,) dt}
k—>00 0

T tIAT? s
SE[ / w(t)( / o~ IO 0@ (0) dr(zv* (Y(s) —A(s,9(5)), ¢ (9))v
0 0
+ 2+ (A(5, (). X(9))v — 1B(s. g7, 0.0y + 2(Z(5). B(5. $(5))) Low.r)

—2(f(s) + p(@()N(X(5). p())u + (f(5) + p(¢($)))l|¢($)l|§) dS) df]

(5.10)
By It6’s formula and Proposition D.0.1(iii) we have
’t/\‘[¢
E (e—./o (F(s)+p(¢(s))) d‘Y”X(Z‘)”%I) _E (||X0||12q)
nT? )
:E[ / e~ J F@+pp(r))) dr (2V* (Y(s), X(s))v
0

12O = 66)+ pGONIXOI) as. (5.1

By inserting (5.11) into (5.10) we obtain

T tAT? s
0>E U W)( / e~ KON a2 (¥ (5) — A(s, p(5)), X(s) — B (s))v
0 0
B ) — ZO) 2y — (F5) + pSENIXG) — $(5) ) ds) dt}.
(5.12)
Note that (5.2), Lemmas 5.1.4 and 5.1.5 imply that
X e M.

Taking ¢ = X and for R > 0

=1 = inf{t efo0,7]: /t(f(s) + IX(®)[)ds > R*; AT,
0
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and then letting R — 0o, we obtain that Z = B(:, X). Next, we take ¢ = X—edv
for¢ € L®([0,T] x Q; dt ® P;R), v € Vand 7% := 1%, R > 0. Then we
divide by ¢ and let ¢ — 0 to derive by (H1) and the hemicontinuity of p that

T tAT? " _
ozﬁfwm(/ fmmmmw%mwwmﬁmjmxwmgm]
0 0 (5.13)

We note that interchanging the limit ¢ — O with the integrals is indeed justified
by (5.2), (H4') and the definition of 7. By the arbitrariness of ¥ and q;, we
conclude that ¥ = A(-,X) on [0, z§]. Letting R — oo we obtain that ¥ =
A(, X).

Hence X is a solution of (5.1).
Uniqueness: Suppose X, Y are solutions of (5.1) with initial conditions Xy, ¥y
respectively, i.e.

X(1) = Xo + /0 tA(s,}_((s)) ds + /O rB(s,)_((s)) dW(s), t € [0, T);

Y() =Yy + /O TA(s, Y(s)) ds + /0 tB(s, Y(s)) dW(s), t € [0, T].

Then by the product rule, 1td’s formula from Theorem 4.2.5 and (H2') we have
forr € [0,T]

e~ PU+HPTON &) x5y — y(1)[12, < [|1Xo — Yol

+2 / o B0 o) I(X(s) — Y(5), (B(s, X(5)) — B(s, Y(5))) dW(s))n.
0

By Proposition D.0.1(ii) the real-valued local martingale on the right-hand side
is a martingale. So, taking expectation we arrive at

E[em BRI T & 1x(6) - Y(0) 3] < EIXo — Yol 1 € [0.7)
If Xo = Yy, then
E[em BRI &3 () — y(@)|] =0, 1€ [0.7]

Since Y € M, (5.2) implies that

T
/ (f(s) + p(Y(s))) ds < 0o P-a.s.
0
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Consequently, for every ¢ € [0, T]

X(t) = Y(t) P-a.s.
Therefore, the pathwise uniqueness follows from the path continuity of X,Y
in H.

(3) The proof of the Markov property is similar to the proof of Proposition 4.3.5,1.
O

5.1.3 Application to Examples

Below we present some examples where the coefficients are only locally monotone,
hence the classical result of monotone operators cannot be applied.
In this section we use the notation D; to denote the spatial derivative % and A C

R4 is an open bounded domain. For the standard Sobolev space H(l)’P (A), p>1,as
before we always use the following Sobolev norm:

b= ( [ vt ds)w.

For simplicity we only consider examples where the coefficients are time indepen-
dent, but one can easily adapt those examples to the time dependent case.

Lemma 5.1.6 Consider the Gelfand triple
12 12 *
Vi= H2(A) C H:=IXA) C (HO' (A)) =y
and the operator
A(u) := Au+ {f(u), Vu),

where f = (fi,....f1) : R — R? is a Lipschitz function and ( , ) denotes the inner
product in RY. Let Lip(f) denote the corresponding Lipschitz constant.

(0) Ifd < 4, there exists a C €]0, o[ such that for allu,v,w € V

/ |u[Vw[lv] d§ < Cllullvlwlvvllv.
A

In particular A : V — V*. Furthermore, if d = 1 or f is bounded, A satisfies
(H4) witha = 1 and B = 2, B = 0 respectively.
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(1) Ifd = 1 orifeachf; is bounded and d = 2, then there exists a C € (0, 00) such
that

20 (AW = AW, u— v}y = —u— vl + (C+ ClI2) fu— vl wv e V.
(2) Ifd = 3, then there exists a C € (0, 00) such, that
2y (A() = A(v), u = v)y < =[lu=vl§, + (C+ Clv|ly) llu— vl u,veV.

(3) Let A be possibly unbounded and let b; € LY(A) + L®(A), 1 < i < d,
b= (bl,...,bd) and

A(u) := Au—+ (b, Vu).
Then for d > 3 there exists a C € (0, 00) such that
2y (A@W) = A@). 1 =)y = —|lu =y + Cllu — v][f. wv € V.

(i.e. in this case (H2) holds).
Proof
(0): Wehaveforallu,v eV

/I(f(u),Vu)IlvldSS/(lf(O)I+Lip(f)|u|)|VM||v|d§-
A A

Hence the second part of the assertion follows from the first and Example 4.1.7.
To prove the first part, we note that for all u, v,w € V

/AIMIIVWIIUI d§ < [luvlz2[lwllv,

and by the generalized Holder inequality the right-hand side is dominated by

@ lullz2[[v]lzee wllv.
®) fullzsllvlizslwlv.
© lullzalivll, 2o, wllv.

Incased = 1, Hé’Z(A) C L*°(A) continuously. Hence assertion (0) follows
from (a) ifd = 1.

In case d = 2, Hé’Z(A) C L?(A) continuously for all p € [1, co[. Hence
assertion (0) follows from (b) if d = 2.

In case d < 3,Hé’2(A) C L (A) continuously, and L7 (A) C LYA)
continuously if d < 4. Hence assertion (0) follows from (c) if d = 3 or 4.
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To prove the last part of the assertion we note that this is trivially true if f is
bounded. If d = 1 and if f is merely Lipschitz continuous it follows immediately
from (a).

(1) and (2): We have

ve(AQu) —A(v), u —v)y

d
==l + Y- [ (D=0 @) g
i=1

To estimate the second term on the right-hand side, let F; : R — R be such that
F;(0) = 0 and F! = f; and G; : R — R be such that G;(0) = 0 and G} = F;.
Then

| D= g
~ [ D= )+ () ~ )P v o
_/Aﬁ(u_v)u,-(u—v)(u—v) ds
+ /A D; (Fi(u—v)) (u—v) dé,

where integrating by parts and using that u — v € Hé’Z(A) we see that the last
term on the right-hand side is equal to

- / D; (Gilu — v) de,
A

which in turn after summation from i = 1 to d by Gauss’s divergence theorem is
zero, since Gi(u — v) = 0 on dA forall 1 <i < d, because u,v € Hé’z(A).
Hence altogether we obtain

v (A) —A(), u—v)y

=- ||u—vllzv+/(f(u) —flu—v), Vu—v))(u—v)d§
A

+ / (f(u) —f(v), Vv)(u—v) d&. (5.14)
A
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Now let us first consider the case d = 1. Then using that f is Lipschitz and
applying the Cauchy—Schwarz and Young inequalities, we estimate the right-
hand side of (5.14) by

—llu = vlI% + Lip() (lu = vlivl[vllzee lle = vll2 + [[vllvllu—v]7)

3
= —glle— vllf + C (I3 llu = vlIz + [ollvlie—vliZ.) . (5.15)

where C € (0, 00) is independent of u, v and we used that Hé’z(A) C L*®(A)
continuously, since d = 1.

In case d = 2,3 and f is bounded, we similarly obtain that the right-hand side of
(5.14) is dominated by

~llu = lI§; + 2Ilfllzeellu = vllvllu = vl 2 + Lip(H)vllvllu — v]7:

3
= =g lu=vlly + C (= vlz + Jollvlie—viZ) . (5.16)

where C € (0, co) is independent of u, v.
For d = 2, we have the following well-known interpolation inequality:

lullZe < 2[lull 2| Vull2, u € Hy*(A), (5.17)

(see Lemma H.0.1 (i) in Appendix H).
Hence combining this with (5.15), (5.16) and using Young’s inequality we
deduce that for some C € (0, o0)

1
v {(A()—A(W), u—v)y < —§||u—v||‘2/+(C + C||v||‘2/) ||u—v||12q forallu,v eV,

and assertion (1) is proved.
For d = 3 we use the following interpolation inequality

1 3
lulZe < 2v20|ull 2| Vul 2, u € Hy(A), (5.18)
(see Lemma H.0.1 (ii) in Appendix H).
Then assertion (2) can be derived similarly from (5.16) and Young’s inequality.
(3): Inthis case A is linear and the assertion follows from the following lemma.
|

Lemma 5.1.7 Let g € LY(A) + L®(A) and ¢ €0, 0ol.
Define

—1- &
o= a(e) =t inf {B € (0,001 g py8 i < X}’
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where A is the constant of the Sobolev embedding Hé'z(A) c L (A), ie

1
2
| 20 <A (/ |Vu)? dg) forall u € Hy*(A).
Ld—2 A

Then o < oo and for allu,v € Hé’z(A) we have

1
2 2
/Algllullvvldés (s/AmF ds+a||u||iz) (s/AWvP dé+a||v||§z) .

Proof Since g € LY(A) 4+ L*°(A), we have that @ < oo. Furthermore, by the

Cauchy-Schwarz inequality
; }
[rattarvorag < ( [ 1o ag) ([ 190 ) (5.19)
A A A

The first factor on the right-hand side can be estimated by

(/ Lgpsasy|gl’u” d& + aellulliz)

< (I e lisllul? o +aclul?;)

d—=2

1
2
5(82 / Va2 dé+ae||u||§z) ,
A

where we used Holder’s inequality and the definitions of A, « respectively. There-
fore, the right-hand side of (5.19) is dominated by

2 a0 : 2 o 2 :
€ [Vul® dé§ + —lull} IVol® dé + —lv]l;»
A 3 A &

which implies the assertion. O

=

Example 5.1.8 (Semilinear Stochastic Equations) Let d < 3 and consider the
situation of Lemma 5.1.6, (1), (3) with the operator A as defined there and the
semilinear stochastic equation

dX(t) = (AX(®)) + g(X (1)) dt + B(X(r)) dW(2), (5.20)

where W is a cylindrical Wiener process in L?>(A) defined on a probability space
(2, F,P) with normal filtration F,, ¢t € [0,T]. Let g, B satisfy the following
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conditions:
(i) ¢ : R — R is a continuous function with g(0) = 0 and such that for some
C,r,s €0,00[

lg()| < C(Ix[" + 1), x € R; (5.21)

(g(x) — g (x—y) < C(1 + [y)(x —y)* x.y e R. (5.22)

(i) B:[0,T] x V x Q — Ly(L*(A)) is as in Theorem 5.1.3.
Then the following holds:

(1) Ifd = 1,r = 3,5 = 2, then for any p € [6,00[ and X, € [P (2, Fo, P; H),
(5.20) has a unique solution (X(#)),c[o,r] and this solution satisfies

T
E ( sup [IX(O|5 + /O X (1) || dt) < oo. (5.23)

t€[0,7]

2) Ifd =2,r < 3,5 = 2, then for p > max(2r, 4) and any X, € LP (2, Fo, P; H),
(5.20) has a unique solution (X(#)),c[o,7] and this solution satisfies (5.23).

(3) Ifd =3,r = 1,5 =% thenforp > 2 and any X, € L(Q, Fo. P; H), (5.20)
has a unique solution (X()),eo,r} and this solution satisfies (5.23).

Proof We define the operator
Ag(u) =A(u) +g(u), ueVv.

Since d < 3, by Sobolev embedding (cf. the proof of Lemma 5.1.6,(0)) we have
V C L°(A), hence g(u) € L*(A) C V* forall u € V, and, therefore, A, : V —
V*. The hemicontinuity (H1) follows easily from the conditions on f, g and by
Lemma 5.1.6, (0) in case (1) and (2), respectively the linearity of A in case (3).

(1): Letd = 1. Thenby (5.22) forall u,v € V

ve(g(w) — g(v), u—v)y Z/A(g(u)—g(v)) (u—v) d§
<C(1+ lvlie) llu = vl
Since s = 2 and Hé’z(A) C L°°(A) continuously, it follows from

Lemma 5.1.6,(1) that A, satisfies (H2') with p(v) := C(1 + |[v||?) for some
constant C €]0, oo[. Likewise (H3) then follows with &« = 2, since g(0) = 0.
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Furthermore, for all u € V by (5.21), because r = 3,

gt o)l = € [ (14 ol g
<C (vl + llvllzee ullzeo lull72) .
which by the above embedding is up to a constant dominated by
lolly (14 lullv ulZ) -
Hence Lemma 5.1.6, (0) implies that (H4') and hence (5.2) holds (with @ = 2)
and B = 4. So, Theorem 5.1.3 applies, with p > 6.

(2):  Letd = 2. We recall that in this case we assume that f is bounded. We have
for all u,v € V by (5.22)

v (g(u) — g(v)u— v}y < C/A (1 + o) (u— v)? d

< Cllu— vl + Cllvlljalle = vi|7s
< Cllu— vl +2Clvlljallu — vl u —vllv.
where we used (5.17) in the last step. Applying Young’s inequality we obtain

that for some constant C €]0, oo[ the right-hand side of the above inequality is
bounded by

1 2 2 AR 2
Z”M —vlly + Cllu — vl + Cllvli lu — vl

Since s = 2, we can use (5.17) again to conclude by Lemma 5.1.6,(1) that A,
satisfies (H2') with

p(v) := C (1 + vl}) (1 + [lvllF)

for some constant C €]0, oo[. And again since g(0) = 0, (H3) also holds with
« = 2. Furthermore, for all u € V by (5.21) for ¢ €]0, 1]

v tgt@. o)yl = C [ (1 Juplo] g
A
< (Il + lullj ot vl zaore)
which (since d = 2) up to a constant is dominated by

(1 + lluellzo) Iolly
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with ¢ := r(1 + €). Now since r < 3 we can choose ¢ so small that » < 1 +
2(1 4+ &)™, hence

. —_ 2 1
P a1 Sl

Letp’ = p%l = (r_l)zw and A €]0, 1. Then by interpolation and choosing

A := r~! (assuming without loss of generality that » > 1) we obtain

A (1-2)
leellza < llullyig lull o,

< lull oo llull 2"
which is up to a constant dominated by |u|y||u||}; . Hence Lemma 5.1.6, (0)
implies that (H4') holds (with @ = 2) and 8 = 2(r — 1). So, (5.2) holds with
o =2, B =2 max(r— 1, 1) and Theorem 5.1.3 applies with p > max(2r, 4).
(3): Letd = 3. We recall that in this case as in Lemma 5.1.6,(3) we assume that

A = A + (b, V) with b as given there. We have for all u,v € V by (5.22) as in
the proof of assertion (2) that

ve(g(u) — g(v),u — v}y = Clu—vllf + Cllvlly llu — vl
1 3
< Cllu— vl +2vV2C v ][ lu = vl [l = v,

where we used (5.18) in the last step. So, by Young’s inequality for some Ce
10, oo the right-hand side is bounded by

1 2 2 4 Al 2
e —vlly + Cllu = vl + Cllol e — vz

By interpolation for A := % €]0,1[and p := 6, p’ = g we have, because
s=4,
4 4)s 4(1—=2)s
loliEs < Ivll2 vl ey
2 2(25—1)
= Il el
10
) 10
= [vlizslvllg

10
which is up to a constant dominated by ||v||? ||v||; . Hence Lemma 5.1.7 implies
that A, satisfies (H2') with

p() = C (1 + W) (1 + ||v||£;°)
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for some constant C €]0, oo[. And, since g(0) = 0, (H3) also holds with @ = 2.
Furthermore, for all u € V by (5.21)

m@mescAa+wwm&

= (vl + el o1, 2, )

withg := [12—1’2, which, since Hé’z (A) C L7 (A) continuously, is up to a constant
dominated by

(1 + llulizg) vllv.

For A := % €]0, 1] by interpolation we have

A (1-1
llullzy = IIMIIJWIIMIIL“,K,,,/

r—1
= ”u”L(TZ‘% ||M||L(r71)gp/ .

Choosing p := 42 and p’ = p‘T’l = 442 the right-hand side is equal to
r—1
leell, 24, ”M”L(rle)d :
which for r = 1 + f—l = %, since d = 3, is up to a constant dominated by
4 4

lullvliullfy = llullv]ull;. Hence Lemma 5.1.7 implies that (H4') holds (with

« =2)and B = £ So, (5.2) holds with @ = 2, 8 = L and Theorem 5.1.3

applies with p > 13—6. O
Remark 5.1.9
(i) Equation (5.20), in particular for g = 0, is often called the stochastic

(i)

generalized Burgers equation. In the case where d = 1 and f(r) = r,r € R,
(5.20) is called the stochastic Burgers equation.

One obvious generalization is that one can replace A in (5.20) by the p-Laplace
operator div(]Vu|’~2Vu) or the more general quasi-linear differential operator

> (=)D, AL (D),

| <m

where Du = (Dgu)|gj<n- Under certain assumptions (cf. [82, Proposition
30.10]) this operator satisfies the monotonicity and coercivity condition. Then,
according to Theorem 5.1.3, we can obtain the existence and uniqueness of
solutions to this type of quasi-linear SPDE with non-monotone perturbations
(e.g. some locally Lipschitz lower order terms).
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Example 5.1.10 (Stochastic 2 D Navier—Stokes Equation) Let A be a bounded
domain in R? with smooth boundary. Define

1/2
V= {v € Hy*(A; R?):V-v=0ae.in A}, Ivlly :== (/ |Vo? dg) ,
A

and let H be the closure of V in L?>(A; R?). The linear operator Py (Helmholtz—
Leray projection) and A (Stokes operator with viscosity constant v) are defined by

Py : L*(A;R?*) — H orthogonal projection;
A H** (AR NV — H, Au = vPyAu,

where H>?(A;R?) is the standard Sobolev space of order 2 in L2(A; R?) (see e.g.
[77, Chap.1, 3.6]) Then the Navier—Stokes equation can be formulated as follows

W =Au+ F(u)+f, u(0) =uy € H, (5.24)
where f € L2([0, T]; V*) denotes some external force and
F:VxV—=V* Fu,v):=—Py[u-V)v],F@u) := F(u,u),

where u-V = Yo u'd;andu = (u',u?). That F : V x V — V* is indeed well-
defined and even continuous follows by Lemma 5.1.6, (0). Using the Gelfand triple

VCH=H"CV*,
as in Example 4.1.7, one sees that A extends by continuity to a map
A:V >V
so that for some C €]0, oo|, ||Au|y= < C|lully, u € V. In particular, we have
ve(F(u,v),w)y = —y=(F(u,w), v)y, v={(F(u,v),v)y =0, u,v,we V. (5.25)
Now we consider the stochastic 2-D Navier—Stokes equation
dX(r) = (AX(@) + F(X(1)) +f(¢)) dr + B(X(r)) dW(r), X(0) = X, (5.26)

where W is a cylindrical Wiener process in H on a probability space (2, F, P) with
normal filtration F;, ¢ € [0, T).
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Claim Suppose that p > 4, Xy € (2, Fo,P; H)and B : [0,T] x V x Q is as
in Theorem 5.1.3. Then (5.26) has a unique solution (X(?)).epo,rj and this solution
satisfies

T
E( sup X% + / X0 dr) < .
] 0

t€l0,T

Proof The hemicontinuity (H1) is obvious since A is a linear and F is a bilinear
map.
By (5.25) and (5.17), respectively, it follows that for some constant C €]0, oo[
e (F ). 0)v] < ClwlZep o 10l

3/2 1/2
v (Fw), v)v| < Clwl 2 Iwll 0]l am2ys v, w € V. (5.27)

Then by (5.25) and (5.27) it follows that for some C, C €]0, oo

V*(F(M)—F(U),M—U)v = —Vv* (F(M,M—U),U>V + v (F(U,M—U),U>V
= —v=(F(u—v),v)y

IA

3/2 1/2
Cllu— vl 1w = vl 10l s a:22)

IA

v 2, € 2
5”"{_ v”V + FHUHLHA;RZ)HM_ v”H’ u,vevVv.
(5.28)

Hence

v C
ve(Au+ F(u) —Av — F(v),u —v)y < —Ellu —vlly + 5llvlli4(A;Rz)llu —vll}

and (H2') holds with p(v) := V—E;||v||24(A, R?) which by (5.17) is up to a constant

dominated by ||u||[|u[?. By (5.25) it is also easy to show (H3) with & = 2. Indeed,
for some C €]0, oo

v (Av + F(v) + (1), v)v < =vlPvll} + IF@ v+ llvllv
< =30l + W@ . v e V.
IBw)I7, < 2Cllvliz + 21BO)]7,, v € V.
(5.27) and (5.17) imply that (H4') and (5.2) hold with 8 = 2.

Therefore, the existence and uniqueness of solutions to (5.26) follow from
Theorem 5.1.3 by taking p > 4. O
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Remark 5.1.11

(1) Let us now consider the 3D Navier—Stokes equation. We note that (5.25) still
holds, since it is dimension independent. Hence using (5.18) (instead of (5.17)),
as above we obtain for some C, C €]0, oo

V* (F(M) — F(U), u— U)V = —y* (F(I/l — U), U)V

IA

7/4 1/4
Cllu — v/l = vl vl ae)

v , € 8 2
5”“ - v”V + W”U”LMA;RS)”"‘_ U”Hﬂ u,vev.

IA

Hence we have the following local monotonicity (H2'):

% C
ve(Au+ F(u) —Av—F(v),u—v)y < _5”"‘_ U”%, + 7|IU|IE4(A;R3)||M_U||12LI‘

Using an interpolation formula for the norm || ||;3 (see [78, Theorem 2.1]),
another form of local monotonicity can be derived similarly:

ve{F(u) — F(v),u—v)y = —y={F(u—v),v)y

IA

3/2 1/2
Cllu — vl u = vl > 1ol sa )

IA

v > Cos 2
5”“ - v”v + E”v”L"(A;D@)”u_ v”H’ u,vev.

(2) Clearly, (H3) holds with & = 2 by (5.25). However, concerning the growth
condition, by (5.18) we have in the 3D case that for some C, C €]0, oo

2 pd 1/2 3/2
IF @) v+ < Cllul2pgsy < Cllullyf*lully/?. e V.

Unfortunately, this is not enough to verify (H4'), since o = 2.

(3) By similar arguments as in the case of the 2D Navier—Stokes equation it can
be shown that Theorem 5.1.3 applies to incompressible non-Newtonian fluids
subject to random forces. For details we refer to [59, Sect. 3.5].

(4) Besides the stochastic 2D Navier—Stokes equation, many other hydrodynamical
systems also satisfy the local monotonicity condition (H2') and the coercivity
condition (H3). For example, in [17] the authors have studied the well-
posedness and large deviation principle for an abstract stochastic semilinear
equation which covers a wide class of fluid dynamical models. In fact, the Con-
ditions (C1) and (C2) in [17] imply that the assumptions in Theorem 5.1.3 hold.
More precisely, (2.2) in [17] implies (H3) and the local monotonicity (H2')
follows from (2.4) (or (2.8)) in [17]. The other assumptions in Theorem 5.1.3
can also be verified easily. Therefore, Theorem 5.1.3 can be applied to show
the well-posedness of all stochastic hydrodynamical models in [17] such as the
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stochastic magneto-hydrodynamic equations, the stochastic Boussinesq model
for the Bénard convection, the stochastic 2D magnetic Bénard problem, the
stochastic 3D Leray-a model and some stochastic shell models of turbulence.

5.2 Generalized Coercivity

5.2.1 Main Results

Let
VCH=H*"CV*

be a Gelfand triple as in Sect.4.1 and consider the general nonlinear evolution
equation

u'(t) = A(t,u(?)), 1 €]0, T[, u(0) = ug (5.29)

in H,where T > 0and A : [0,T] x V — V* is B([0, T] x V)/B(V*)-measurable.

In this section we establish the existence, uniqueness and continuous dependence
on initial conditions of solutions to (5.29) (see Theorems 5.2.2 and 5.2.4 below),
replacing the local monotonicity condition (H2') from the previous section by an
even weaker condition (see (H2") below) and also relaxing the coercivity condition
(H3) (see (H3') below). An analogous result for stochastic PDEs with general
additive noise is also obtained (see Theorem 5.2.6 below). In Sect. 5.2.3 below the
main result will then be applied to establish local/global existence and uniqueness of
solutions for a large class of classical (stochastic) nonlinear evolution equations such
as the stochastic 2D and 3D Navier-Stokes equations, the tamed 3D Navier—Stokes
equation and the Cahn—Hilliard equation. Through our generalized framework we
give new and significantly simpler proofs for all these well known results. Moreover,
the main result is also applied to less well-studied stochastic surface growth PDEs
and stochastic power law fluids to obtain existence and uniqueness results also for
these models (see Sect. 5.2.3 for details). We emphasize that by applying our main
results (see Theorems 5.2.2 and 5.2.6) we obtain both the classical local existence
and uniqueness of strong solutions to the stochastic 3D Navier—Stokes equation and
quite recent local existence and uniqueness results for stochastic surface growth
PDE (see [59]). Here the meaning of strong solution is in the sense of both PDE and
probability theory.

Let us now formulate the precise conditions on the coefficients in (5.29).

Suppose that there exist constants o €]1,00[, 8,C € [0,00[, 8 €]0,00[ and
nonnegative functions f, 2 € L'([0, T]; R) such that the following conditions hold
forallt € [0,T) and u,v,w € V:
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(H1) (Hemicontinuity) The map A +— y=(A(t,u + Av), w)y is continuous on R.
(H2") (Local monotonicity)

ye (At u) = A(t,v),u =)y < (F(D) + n() + p(v)) llu = vl7,

where 1, p : V — [0, 400[ are measurable and locally bounded functions
onV.
(H3') (Generalized coercivity)

2 v+ (A(t,v),v)y < h() g([vlIZ) — Ollvll% + £(2),

where g : [0, co[— [0, oo is a non-decreasing continuous function such that
8(10, oo]) C]0, ool.
(H4') (Growth)

JAG ) e < (f(r)”?‘ + cuvu%”) (1 + ||v||Z).

Remark 5.2.1 Since 1 and p are locally bounded on V, Remark 5.1.1,(4) holds cor-
respondingly. Hence (H1) and (H2") imply that A(¢,-) : V — V* is demicontinuous
for every t € [0, T].

Define
t t
L(t) := / h(s)ds + G (||u0||§, + / f(s) ds) , t€]0,T], (5.30)
0 0
where f, g, h are as in (H3') and G(x) := [ - ds, x €]0, oo[, for some fixed

xo g(s)
xo €]0, oo[. Note that since G(x) is not defined for x = 0, we have to make sure that

the argument of G in (5.30) is not zero. But we may always replace f in (H3)' by
a bigger function, so that fot f(s) ds > 0 for all ¢ €]0, T], which we shall tacitly do
below.

Now we can state the first main result of this section, which provides a more
general framework to analyze various classes of nonlinear evolution equations.

Theorem 5.2.2 Suppose that V C H is compact and that (H1), (H2"), (H3'), (H4')
hold.

(i) Foreveryuy € H and every Ty €0, T] such that

L(Ty) < sup G(x), (5.31)

x€]0,00[
(5.29) has a solution on [0, Ty), i.e.

u € L*([0, To]; V) N C([0, To]; H),
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and
u(t) = up + /IA(S, u(s)) ds, t € [0, To],
0

where the integral is a V*-valued Bochnel integral.
(ii) If (H3') holds with g(x) = Cx,x > 0, for some constant C, then one can take
Ty =T in (i).

Remark 5.2.3 If h = 1 and g(x) = Colx|"(y > 1), then for Ty €]0,T] we have
L(Tp) < sup G(x) if and only if

x€]0,00[

C
T() < 0 s

(= 1) (ol + J 1s) ds) ™

where the right-hand side tends to +o0 if y | 1, proving that (ii) follows from (i) in
Theorem 5.2.2.

The next result shows the continuous dependence of solutions to (5.29) on the
initial condition u.

Theorem 5.2.4 Supposethat V C H is compact and that (H1), (H2"), (H3'), (H4')
hold.

(i) Let Ty €]0,T] and let u; be solutions of (5.29) on [0, Ty for initial conditions
uip € H, i = 1,2 respectively. Then there exists a C € [0, oo such that

0 () — @ < 10 — o3 exp [c /0 (F(5) + 01 () + pa(s))) ds],
1 € [0, Tol. (5.32)

In particular, uy o = uy o implies u; = uy provided the integral in (5.32) is finite
Sfort = To, which in turn holds if there exist C,y € [0, oo[ such that

n(v) 4+ p) < C(1+ [[v[$H) (A + |vlp). veV. (5.33)

(ii) Suppose (5.33) holds. If u,u™ ,n € N, are solutions of (5.29) on [0, Ty such
that u™(0) — u(0) in H as n — oo, then

lim sup [lu"(r) — u(t)|w = 0.

790 1e(0.10)]

Now we formulate the analogous result for SPDEs on Hilbert spaces with
additive type noise. Suppose that U is another Hilbert space and W () is a U-valued
cylindrical Wiener process defined on a probability space (2, F, P) with normal
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filtration F;, t € [0,T]. We consider the following type of stochastic evolution
equations on H,

dX(r) = [A1(1, X(2)) + Ax(t, X(2))] dt + B(¢) dW(r), t € [0, T], X(0) = Xo,
(5.34)

where A1,A, : [0, T] XV — V*and B : [0, T] — L,(U, H) are measurable.
Now we give the definition of a local solution to (5.34).

Definition 5.2.5

(i) For an (F;)-stopping time 7 : & > [0, T] a process (X(¢)):e[0,7] is called (F;)-
adapted if the process (X(7))ejo,r] defined by

X ,te]0,1]

X0 = X(r) ,te€ ]t T]

is (F;)-adapted.

(ii) An H-valued (F;)-adapted process (X(f))icjo,r] is called a local solution of
(5.34)if X(-, w) € L'([0, T(w)]; V) N C([0, T(w)]; H) and P-a.s. w € L,

X = X0+/0f [A1(s, X (s)) + Az(s, X(5))] ds—i—/OtB(s) dw(s), t € [0, t(w)],

where 7 is an (F;)- stopping time satisfying t(w) > 0 for P-a.e. € Q and
Xo € L*(Q, Fo, P;H).

(iii) A local solution (X(?)).cjo ¥ is called unique if for any other local solution
(Y())sefo,rv] we have

PX@t)=Y@), te0.7*Ac"]}) =1

Theorem 5.2.6 Suppose that V. C H is compact, A, satisfies (H1), (H2"), (H3'),
(H4) withn = 0, 8 = 0, h = 1 and g(x) = Cx, A; satisfies (H1), (H2"),
(H3'), (H4') with the same o €]1,00[ in (H3'), (H4') as A,. Furthermore, suppose
that B € L*([0, T); Lo(U, H)), and that there exist C, y € [0, oo[ such that

glx+y) = Cgx) + (). x.y € [0,00[;
n(u+v) < Cnu) + nv)), u,v €V;

plu+v) = Clp(w) + p(v)), u,v eV;

n() + p(v) < CA + [lo[H)(1 + [[vllE), ve V.
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Then for any X, € Lz(Q , Fo, P; H), there exists a unique local solution (X(1))efo.]
to (5.34) satisfying

X(-) € L%(]0, t]; V) P-a.s.

Moreover if Ay also satisfies (H3') with g(x) = Cxand if af < 2, then all assertions
above hold for v = T.

Remark 5.2.7

(1) The main idea of the proof is to use a shift transformation to reduce (5.34) to a
deterministic evolution equation (with random parameter) which Theorem 5.2.2
can be applied to. More precisely, we consider the process Y which solves the
following stochastic differential equation:

dY(r) = A1(t,Y(2)) dt + B(r) dW(?), t € [0, T], Y(0) = 0. (5.35)

Since A; satisfies (H1), (H2"),(H3'), (H4') withn = 0, 8 = 0, h = 1 and
g(x) = Cx, the existence and uniqueness of Y(#) follows from Theorem 5.1.3
with p = 2. Let u := X — Y. Then it is easy to show that u satisfies a
deterministic evolution equation of type (5.29) for each fixed w € Q.

(2) Unlike in [38], here we do not need to assume the noise to take values in V (i.e.
B € L?([0, T]; Ly(U; V))). The reason is that here we use the auxiliary process ¥
instead of subtracting the noise part directly as in [38] and that A; # 0 because
it satisfies (H3').

5.2.2 Proofs of the Main Theorems

The proof of Theorem 5.2.2 is split into several lemmas. First, however, we
need some preparations. We shall start with the Galerkin approximation to (5.29).
However, even in the finite dimensional case, existence and uniqueness of solutions
to (5.29) do not immediately follow from the standard results because of the
generalized coercivity condition (H3’). We shall prove existence below by using
a classical theorem of Carathéodory for ordinary differential equations. Another
difficulty is that we cannot apply Gronwall’s lemma directly for (H3'). Instead, we
will use Bihari’s inequality, which is a generalized version of Gronwall’s lemma.

Lemma 5.2.8 (Bihari’s Inequality) Let g : [0, co[— [0, oo[ be a non-decreasing
continuous function such that g(]0,00[) CJ0,00[. If p, h : [0, 00[— [0, 00[ are
measurable functions with h € L}, ([0, oo[) and Ky €0, oo[ such that

p(t) < Ko+ /0 h(s) g(p(s)) ds, t > 0.
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Then we have
t
p() <G} (G (Ko) + / h(s) ds) ,0<t<T,, (5.36)
0

where G(x) 1= f;; % ds < oo for all x €]0, oo[ and some fixed xo €10, 00[, G™! :

G(]0, 0o[) —]0, 00| is the inverse function of G and Ty €]0, oo[ such that G(Ky) +

OT“ h(s) ds belongs to the domain of G~

Remark 5.2.9 G is continuous and strictly increasing, hence

G(J0, oo]) =] e%gf [G(X), sup G()[.

x€]0,00(
In particular, G(Kop) < sup G(x) and the interval [G(Ky), sup G(x)[is contained
x€]0,00[ x€]0,00[
in G(]0, oo|), i.e. in the domain of G~'. Hence (5.36) holds for ¢ € [0, Tp], where
Ty €]0, oo satisfies

/TO h(s) ds + G(Kp) < sup G(x).
0

x€]0,00(

In particular, if 7 = 1 and g(x) = Cox” for some constants Cy > 0 and y > 1, then

llysign (xl_y Y- 1x)
0 - .
Co

Hence (5.36) holds on [0, To] for any Ty € [0, %Ké_y[ (in particular, for any Ty €
[0,00[if y = 1).

y—
Co

G(x) = CE) (x(l)_y—xl_”) Gl (x) = lx

1_
1 X =

14

We first recall the definition of pseudo-monotone operators, which is a very
useful generalization of monotone operators and was first introduced by Brézis in
[11]. It will be crucial for us below. For abbreviation we use the notation “—” for
weak convergence in a Banach space.

Definition 5.2.10 The operator A : V — V* is called pseudo-monotone if u,, — u
in V and

liminf y* (A (u,), u, — u)y > 0
n—o0
implies that forallv € V

v (A(u), u — v)y > limsup v+ (A(uy), uy — v)y.
n—o0
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Lemma 5.2.11 Let A be pseudo-monotone and u,, — u in V. Then

lim sup v= (A(uy,), u, —u)y < 0.
n—>oo

Proof If the conclusion is not true, then we can extract a subsequence such that
Uy, — uinV and

liminf vy (A(uy, ), tn, — u)y > 0.
k—00

Since A is pseudo-monotone, this implies that

0= ve(A(u), u —u)y

> lim sup v+ (A(uy, ), Uy, — U)y
k—00

> liminf v« (A(uy, ), up, — u)y.
k—00

This contradiction proves the assertion. O

Remark 5.2.12 In [12] Browder introduced a different definition of pseudo-
monotone operators: An operator A : V — V* is called pseudo-monotone if
u, — uin V and

liminf y* (A (u,), u, — u)y > 0

n—oo
implies

A(up) — A(u) in V¥ and  lim v+ {A(uy,), us)y = v {A(u), u)y.
n—>o0

This definition, however, turns out to be equivalent to Definition 5.2.10. Indeed,
obviously the above definition implies that the operator A is pseudo-monotone in
the sense of Definition 5.2.10. Conversely, if A is as in Definition 5.2.10 and u,, — u
in V such that

liminf y= (A (u,), u, — u)y > 0,

n—>o00

then by Lemma 5.2.11

lim v« (A(up), uy — u)y = 0.
n—o0
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Hence forallv € V

lim sup y* (A(u,), u — v)y
n—>oo

=limsup y* (A(u,),u —v)y + lim y=(A(u,), u, — u)y
n—00 n—>00

=lim sup y={(A(up), u, — v)v
n—>o00

<yx{A(u),u—v)y.
Hence forallw € V

lim sup v+ (A(u,), W)y < v={(A(u), w)y.
n—>0o0

Replacing w by —w we deduce that A(u,) — A(u) in V*. Likewise, then we also
obtain that

lim v« (A(uy), uy)y = lim y=(A(uy), uy—u)y+ im v (A(u,), u)y = v+ (A(u), u)y.
n—00 n—>oo n—oo

Lemma 5.2.13 If the embedding V C H is compact, then (H1) and (H2") imply
that A(t,-) is pseudo-monotone for any t € [0, T).

Proof We fix t € [0, T| and denote A(, -) by A(-).
Suppose u, — u in V and

lim inf y= (A (u,,), u, — u)y > 0, (5.37)
n—>oo
then for any v € V we have to show

ve{A(u),u—v)y > limsup y=(A(u,), u, — v)y. (5.38)

n—>oo

Letv € V. We set
Co := |lullv + llvllv + sup [[valv:
n

Cll

sup {f (1) + 1(v) + p(v) :v € V. |vlly < 2Co} (< 00).
Since the embedding V C H is compact, we have u, — u in V* and

v* (Clu, u— U)V = lim v* (Clun, Uy, — U)V.
n—>oo
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Hence for proving (5.38) it is sufficient to show that

ve{Ao(u), u — v)y > limsup y=(Ag(uy), uy — v)v,
n—>oo

where Ag = A — C;/ and [ is the identity operator.
Then (H2") implies that

lim sup v+ (Ao (1), u, — u)y < limsup y={(Ao(u), u, — u)y = 0.
n—00 n—00

By (5.37) we obtain

lim V* (A()(Mn), u, — M)V =0. (539)
n—00

Letz = u+ (v —u) with € (0, 3), then the local monotonicity (F/2”) implies that

v+ {Ao(un) — Ao(2),un — 2)v <0,
i.e.

tv+{Ao(2), u — v)y — (1 = )y (Ao (un), uy — u)y

>tyx (Ao (Un), tty — V)v — v+ (A0(2), up — u)y.
By taking lim sup on both sides and using (5.39) we have

v (Ao (z), u — v)y > limsup y=(Ag(u,), u, — v)y.
n—>oo

Then letting t — 0, by the hemicontinuity (H1) we obtain

ve{Ao(u), u — v)y > limsup y=(Ag(uy,), u, — v)y.
n—>oo

Therefore, A is pseudo-monotone. O

Remark 5.2.14 As we shall see in Sect. 5.2.3 below, for some concrete operators, it
is easier to check the local monotonicity (H2") instead of the definition of pseudo-
monotonicity itself.

Let e, € V,n € N, be an orthonormal basis in H such that span{e, : n € N} is
dense in V. Let H, := span{ey,--- ,e,} and let P, : V* — H, be defined by

n
P,y := Z v« (v, e)ve;, y e V*.

i=1
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For each finite n € N we consider the following evolution equation on H,,:
t
u, () = Phug +/ P,A(s, u,(s)) ds, t € [0,T]. (5.40)
0

From now on, we fix Ty €]0, T] as in the assertion of Theorem 5.2.2, i.e. such
that L(Ty) < sup G(x) with L as defined in (5.30).

x€]0,00(
Set X := L*([0, To); V) and || [lx := || [lz«(o.7olsv)- Then X* = La=1 ([0, To]; V*)

with norm || ||x* := || ”Lﬁr([o,ro];v*)'

Lemma 5.2.15 Suppose that V C H is compact and that (H1), (H2"), (H3'), (H4')
hold. Then for every solution u, to (5.40) on [0, Ty] we have

t To t
0l +9 [ Tl 05 <67 (6 (1ol + [0 as) + [0 as).
0 0 0
t € [0, 7). (5.41)
In particular, there exists a Cy €]0, oo[ such that

lunllx + sup fun@ e + |AC, un)lx+ < Co foralln € N. (5.42)
IG[O,T()]

Proof By the It6 formula (4.29), (4.30) (with Z = 0) and (H3') we have
a1 = l1ea 0 14

= 2/0 v (Ul (5), un(s))v ds

2/0 v (PhA(s, uy (), un(s))y ds

2/ v (A (s, un(5)), u,(s))y ds
0
S/O (=Ollun()I5 + (s) & (lua(S) 1) +£()) ds. (5.43)

Hence we have for ¢ € [0, Tp],

t To t
ln I + 6 /0 ln() % ds < ol + /0 £(s) ds + /0 h(s) g(lun(s)|2) ds.

Then by Lemma 5.2.8 and Remark 5.2.9 we know that (5.41) holds.
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Therefore, there exists a constant C, such that

”Mn”X + sup ”Mn(t)”H <G,nz=1
IG[O,T()]

Then by (H4') there exists a constant C3 such that
[AC, un)llx+ < C3, n> 1.

Hence the proof is complete. O

Lemma 5.2.16 Suppose thatV C H is compact and that (H1), (H2"), (H3), (H4')
hold. Then (5.40) has a solution u, on [0, To].

Proof For any t € [0, T], by Remark 5.2.1 we know that A(¢, -) is demicontinuous,
ie.

u, — u (strongly) in V as n — oo
implies that
A(t,u,) — A(t,u) in V* asn — oo.

The demicontinuity implies that P,A(t,-) : H, — H, is continuous. If u : [0, Ty] —
H, is a solution of (5.40), then by Lemma 5.2.15 for some R €]0, oo[

lu()|lz <R for allt € [0, To]. (5.44)

Hence we may replace P,A(t,-) by x.rP,A(t,-) with x,g € C{°(H,), which is
identically equal to 1 on a ball in H,,, large enough in comparison with R from (5.44).
Then obviously (3.1) and (3.4) from Chap.3 are fulfilled with ¢ = 0 and b :=
xnrPrA(t,-) by (H4'). Also (3.3) follows from (H2"”). Hence by Theorem 3.1.1
there exists a u, : [0,T] —> H, such that u, is the unique solution to (5.40) on

[0, To). O
Remark 5.2.17 In the proof of Theorem 5.2.6 below we shall use Lemma 5.2.16
in the case where b := x,grP,A(t,-) also depends on w € 2 in a progressively

measurable way and Ty is an (F;)-stopping time. Then by Theorem 3.1.1 every
u, : [0,T] — H, from the proof of Lemma 5.2.16 above will be (F;)-adapted
and so will be &, := u,(- A Tp). This and (5.45) below implies that for u defined
in Lemma 5.2.18 below we have that (1(f))cjo,7,) is (F7)-adapted in the sense of
Definition 5.2.5 (i).

Note that X and X* are reflexive Banach spaces. Hence by Lemma 5.2.15 there
exists a subsequence of u,,n € N, from Lemma 5.2.16, again denoted by u,,, such
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that as n — oo

u, — u weakly in X and weakly™ in L ([0, To]; H);
A(,u,) > w weakly in X*. (5.45)

Recall that u,(0) = P,uy — up in H as n — oo.

Lemma 5.2.18 SupposethatV C H is compact and that (H1), (H2"), (H3), (H4')
hold. Define

u(t) = up +/ w(s) ds, t € [0, To]. (5.46)
0

Thenu € C([0,To]; H) andu = u dt-a.e.

Proof (Cf. the proof of Theorem 4.2.4) From (5.40) for all v € J, e Ha(C V),
@ € L*°([0, Ty]) by Fubini’s theorem we obtain

To
/0 v (@(0), (D)) dr

To
= lim v (un (1), @(H)v)y dt
0

n—>o0

n—>o0

To To ot
— lim (/0 v (Putio, ()0 y df + /0 /0 V*<PnA(s,un(s)),¢(r)v>vdsdr)

To To To
~ lim (V*<Pnuo,v>v /0 (1) di + /0 Ve (AGs, tn(5)), / </)(l)dfv)vds)

n—>oo

To t
:/ v {uo + / w(s) ds, p(f)v)y dr.
0 0

Therefore, we have u = u dt-a.e., and applying Theorem 4.2.5 (with Z = 0), we
obtain that u € C([0, Ty]; H) . O

Remark 5.2.19 We would like to emphasize that below we shall always work with
this fixed version u of i defined in (5.46). Furthermore, since A(-, u,) — w in X*,
(5.46) implies that

u,(f) = u(f)in V* forall ¢ € [0, Tp].

Since sup,, ||u.(#) ||z < oo, it follows that also

u,(t) — u(t) in H for all ¢ € [0, Tp). (5.47)
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Hence, by (5.45) and the lower sequence semicontinuity of the norm in a Banach
space with respect to weak convergence it follows that

To To To
sup )1+ 0 1ol a5 = 67 (6 (1ol + 100 05) + [ e ).
t€[0,To] 0 0 0
(5.48)
The next crucial step in the proof of Theorem 5.2.2 is to verify that w = A(u).
In the case of monotone operators, this is the well known Minty’s lemma or
monotonicity trick (cf. [82, Lemma 30.6] or Claim 3 in the proof of Remark 4.1.1).

In the case of locally monotone operators, we use the following integrated version
of Minty’s lemma which holds due to pseudo-monotonicity.

Lemma 5.2.20 Suppose that V. C H is compact and (H1), (H2"), (H3'), (H4')
hold, and assume that

To
lim inf / v (A, uy (1)), u, () — u(t))y dr > 0. (5.49)
* Jo

n—

Then for every v € X we have

T() T()
/0 v {A(t, u()), u(t) — v(t))y dt > lim sup/o ve{A(t, u, (1)), u,(t) — v(2))y dr.
(5.50)

In particular, the limit inferior in (5.49) and the limit superior in (5.50) are in fact
limits and thus A(t, u(t)) = w(t) for dt-a.e. t € [0, Tp).

Proof

Claim 1: For all ¢ € [0, Tp] such that u(r) € V, we have

lim sup v+ (A (L, un (1)), () — u(t))y < O. (5.51)

n—>oo

Indeed, suppose there exist #y € [0, To] such that u(zp) € V and a subsequence
such that

11_1)1(1310 v {A(t0, tn, (10)), un; (t0) — u(to))v > 0.

By (H3') and (H4') there exists a Cyp €]0, oo[ such that after applying Young’s
inequality we obtain

0
2y (A(to, tn (£0)), un; (t0) — u(to))v < — 5||“n,- )Y
+ Co (F(t0) + h(to) g(llun (10)[17))

+ Co (14 N ()57 ) o) 5.
(5.52)
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Hence by (5.47) we conclude that u,,(t), i € N, is a bounded sequence in V
(w.r.t. || |lv), which again by (5.47) then converges to u(ty) weakly in V. Since
A(ty, -) is pseudo-monotone, by Lemma 5.2.11 this, however, implies that

Lim sup v+ (A(to, U, (o)), un, (t0) — u(to))v < 0,

i—00

which is a contradiction to the definition of the subsequence u,,(ty), i € N.
Hence (5.51) holds.
As above, by (H3') and (H4') there exists a Cy €]0, oo[ such that for every v € X

2y (At un (1), un (1) — v(@0)v

0
== Sl @Iy + Co (F(1) + (o) g(llun() 13))
+co(1 + ||un(z)||fz,”) o2 for dr-ae. t &[0, Tol. (5.53)

Hence by Lemma 5.2.15, Fatou’s lemma and (5.49) we have

To
0 < lim inf/o v (AL, un (1)), up, (t) — u(t))y de

n—>oo

To
< lim sup/o v (A(t, un (1)), u,(t) — u(t))y dt

n—>oo
To
< / lim sup v* (A (¢, u, (1)), u, (t) — u())y dr (5.54)
0 n—o0
which by (5.51) is negative.
Hence
To
lim v (A, un (1)), u, (t) — u(t))y dr = 0, (5.55)
n—>o0 0

and, therefore, for every v € X

To To
lim ve (A, un (1), un (t) — v(1))y dt = / v (w(1), u(?) —v(®))y dr.
n—o0 0 0
(5.56)
Claim 2: There exists a subsequence u,,, i € N, such that

Lim yx (A, 1y, (1)), (1) — u(t))y = 0 for dr-a.e.t € [0, Tp]. (5.57)



5.2 Generalized Coercivity 159
Define g,,(t) := lgevy(t) v+ (A, un(2)), un(1)—u(t))v, t € [0, T]. Then by (5.55),
(5.51) respectively

To
lim gn(t) dt =0, limsupg,(r) <0 for dr-a.e.t € [0, Tp].

n—>oo 0 n—00

The latter clearly implies that lim,—, g (1) = 0 for dt-a.e.t € [0, Ty], where

g1 (1) := max{g, (1), 0}.
Furthermore, (5.53) (with v := u) and (5.42) imply that for some C €]0, co[ and
alln e N

g < C(F(®) + h() + |u(@®)|$) for dr-a.e.t € [0,Ty).

Hence by Lebesgue’s dominated convergence theorem we have

To
lim gr(de=o.

n—>o0o

Note that |g,(1)| = 2g;F (f) — ga(¢). Hence we have

To
lim / lgn(f)] dt = 0.
n—>o00 0
Therefore, we can take a subsequence g,,(¢), i € N, such that

lim g,, (1) = 0 for dr-a.e.t € [0, Ty],
1—> 00

i.e. (5.57) holds.

Lett € {s € [0, To] : u(s) € V} such that the convergence in (5.57) holds. Then
by (5.53) (with v := u), {u,,(t) : i € N} is bounded in V, hence by (5.47)
Uy, () — u(t) in V. Since A is pseudo-monotone, (5.57) implies that forall v € X

ve (A u(®), u(t) = v(0)y = limsup ys (A, uy, (1)), tn; (1) — (D)) v

i—00

By (5.53) and Fatou’s lemma it follows for every v € X that
To
| vty - v a
0

> / " lim sup v+ (A (2, uy, (1)), un, (t) — v(1))v dt
0

i—00

To
> lim sup/o v (At uy, (1)), uy, (1) — v(2))y dt

i—00
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Cim [ A ()05 — v}y dr
n—->oo 0
To
_ /0 v (W), u(t) — v(0)v dr, (5.58)

where we used (5.56) in the last two steps.
Hence (5.50) is proved. But since v € X was arbitrary, (5.58) implies that
A(-,u) = w as elements in X*, which completes the proof. O

Now we can give the complete proof of Theorem 5.2.2.

Proof of Theorem 5.2.2 Since (ii) was already proved in Remark 5.2.3 it remains
to prove (i). Using the It6 formula (4.29) (with Z = 0) we conclude from
Lemmas 5.2.16 and 5.2.18 that

To
N (T2 — N Q)] = 2 /0 v (At un(0)). a0y

and

To
lu(To) 17 — lluolz; = 2/ v (w(@), u(®))v dt,
0

respectively. Since by (5.47), u,(To) — u(Ty) in H, by the lower semicontinuity of
I |z we have

tim inf e, (To) I = Nu(To) 7

Hence we have by (5.45)

To
liminf /0 v (A 0y (0). 100 (1)) v it

n—

1
=5 (Tl = 1(O)l17)

To
/0 V* (W([), M(l))v dr

To
= lim v (AL, un(2)), u(t))y de.

n—>o00 0

By Lemma 5.2.20 it now follows that « is a solution to (5.29). O
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Proof of Theorem 5.2.4
(i) Let

a(s) := f(s) + n(ui(s)) + p(ua(s)). s € [0, To].

Since, otherwise, (5.32) is trivially true, we may assume that a € L' ([0, Ty]).
Then again by (4.29) with Z = 0 and the product rule we have for 7 € [0, Tp]

e RO Sy (1) — (@)
t

=lu1 o — urolly +2 / el A G (A(s, ur(5)) = Als, ua(s)), ur (s)— ua(s))v ds

0

t
_ /O e B9 IG5 1 (5) — ur(s) | ds,

which by (H2") is dominated by [lu1 0 — u2.0//%-
Hence (5.32) follows. The remaining parts of the assertion then follow
immediately.
(if) The assertion is an immediate consequence of (i), (5.48) and (5.33). O

Proof of Theorem 5.2.6 We first consider the process Y which solves the following
SPDE:

dY(t) = Ay(t,Y(r)) dt + B(r) dW (1), t € [0, T], Y(0) = 0.

By Theorem 5.1.3 we know that there exists a unique solution Y to the above
equation in the sense of Definition 5.1.2 and it satisfies

Y e L*([0,T]; V) N C([0,T]; H), P-a.s.

Fix w € Q2 and consider the transformed equation:
t ~
u(t) = up + / A(s,u(s)) ds, t € [0, T], (5.59)
0

where © = t(w) €]0, T] will be determined later, uy := Xo(w) and
At v) = AL v+ Y (1t w)—A (1, Y (1, 0) +Ax(t, v+ Y (1, w)), v eV, t €0,T].
Here Y is a fixed V-valued progressively measurable df ® P-version of Y (see

Definition 5.1.2). Clearly, if u(= u(w)) satisfies (5.59) up to some time (= t(w)),
then X := u + Y is a solution to (5.34) on [0, 7] in the sense of Definition 5.2.5.
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To obtain the existence (and uniqueness) of a solution to (5.59) we only need to
show that A satisfies all the assumptions of Theorem 5.2.2 for some properly chosen
T = t(w) replacing Ty.

Clearly, A is B([0, T]x V)/B(V*)-measurable. Furthermore, A is hemicontinuous
since (H1) holds for both A and A5.

For u,v € Vand t € [0, T] by our assumptions on 7, p (writing Y(¢) instead of
Y (1, w) for simplicity) we have

v (At u) — A1, v), u — v)y
=y« (A1 (t,u + Y(®) —Ai1(t,v + Y (1)), u —v)y

+ vx{Ax(t,u + Y()) — Ax(t,v + Y(8)),u — v)y
<@ + pv + YY) lu—vl7

+ (F() + (v + Y () + p(v + Y(0))) u— o]
<CIF(®) +n(Y(©®) + p(Y (1) + () + pW)] lu— vl

i.e. (H2") holds for A with
F@ = CIf@ + n(Y (1) + p(Y(®)] € L'([0.T)).

Since A, satisfies (H3") and (H4'), by Young’s inequality we have for v € V,t €
[0, 7]

2y (As(t,v + Y (1), v)y = 2y« {As(t,v + Y(1), v + Y (1) — Y(1))v
<—0lv+ YOI + h(t) g(llv + YOI +£) — 2v= (A2t v + Y (1)), Y(0))v
<—0llv + YOS + h@) g(llv + YOIF) + )

+C(f0F + v+ YOI ) (1+ o + YOI) YOIy
<= S+ YOI + 50 gl + YOI + (1 + 270
+ YOI (1+ v+ YOl
<= 2 @Il ~ IYOIS) + 40 g@lol + 217 ()1
270 + Yol (14 I +1vol)
<= 20l + Ch) (s(I 1) + gV OIR) + CIY @I ol

0
+ U+ O + YOI (1+ YOI ) v e V.
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where C is some constant changing from line to line (but independent of ¢ and w).
Similarly, we have v € V,r € [0, T]

2y« (A1(t,v + Y (1) — A1, Y (D), v)y
=2y« (A1(t, v + Y1), v + Y (1) = Y(0))v — 2y« (A1 (2, Y(1)), v)v
<—0lv+ YIS+ Clv+ YOI +£(0)

+21Y Wy (fOF + Cllv+ YOI ) + 200y 4@ Y O) v
0 0
<= Slv+ YOI + Clv + YOI + (1 + 510
+ CIY@I + 20l 41 Y @) v+
0
<=3 @Il = 1Y OIP) + € (I + 1Y017)
+ CE@ + YOI + Il (70 + Cly@ls™)
< =277 9o ly + Cllvlly + C (PO + YOS + 1YOIR) . v e V.
Since Y € L2([0, T]; V) N C([0, T); H), we conclude that A satisfies (H3') with
Ft.0) = C(F@) + 1Y (0§ + 1YE ) + 1Y )L 1Y )

+h) gY@ @)F)). 1€ [0.7]
2(x) == g(x) +x*P? 4 x, x € [0, 00[,
h(t, ) := C (h(t) + | Yt 0)|§ + 1), t € [0,T],
replacing f, g, h. 5
The growth condition (H4') also holds for A, since for some C €]0, 00]

independent of w and ¢ (which may change from line to line) we have for all
veV,tel0,T]

JAG v <IALE D + YDl + B YO e + 420 + V@) -
=C(fO + v+ Yol (14 v+ Y@If)
10T + YOl

= (o= + Y@l + clls™) (1+ IY@lg + 1vi;)

<c (1 + s ||Y(r)||f,) (Fo = +crore™) (1+1v17)
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Now for & €]0, sup G(x) — G(|luo|%)[ we define

x€]0,00[

To(w) :=inf{r € [0,7] : L(t,w) = sup G(x)—ep AT,

x€]0,00(

where L(-, ) is as defined in (5.30) with (. @), 8, h(-,w), G replacing f, g, h, G
respectively and G(x) := [, ﬁ ds, x €]0, oo[, with xy €]0, oo[ fixed.
_ Since f and h are (Fr)-adapted processes, the continuous real-valued process
L(r), t € [0,T], is also (F;)-adapted. Hence t. is an (F;)-stopping time.

Clearly,

L(t.) < sup G(x) —e on {z, > O}.

x€]0,00[
But by the choice of ¢, obviously {z. > 0} = Q. So,

Z(t£)< sup G(x),

x€]0,00[

i.e. (5.31) holds for L(-, w) with 7,(w) replacing T.

Therefore, according to Theorems 5.2.2, (5.59) has a solution # on [0, t.(w)] for
P-a.e.w € Q.

Define

X(t) ;= u(t) + Y(1), t € [0, Ts].

By Remark 5.2.17 (u(t))eo0,7,] and hence (X(¢))efo,,] is (F;)-adapted. Furthermore,
obviously (X(?))e[o.z.] is a local solution to (5.34).

To prove uniqueness let (Xi(f))re[o,ﬂi)]’ i = 1,2, be two local solutions to (5.34).
Define

ui(f) = X;(1) — Y(©), t € [0,77].

Then obviously each u; solves (5.59) on [0, t?]. Hence it follows by Theorem 5.2.4
(i) that u; = ur on [0, 7D A 7?P],i. e. X; = X, on [0, 7D A ?]. The last part of
the assertion follows by the definition of g above, since it implies that (5.59) has a
(global) solution on [0, 7.

Now the proof is complete. O

Remark 5.2.21 1t follows from the above proof that, of course, we have a unique
solution to (5.34) on [0, sup z.|[.

e>0
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5.2.3 Application to Examples

In this section we will first apply our general results to some classical examples
(see the first three examples below), but which have not been covered by the more
restricted framework in Sect. 5.1 and Chap. 4. Subsequently, in the last example of
this section we apply our results to an example, which, at least in such generality,
for the first time was solved in [57, 59] in the deterministic and stochastic case
respectively. Recall that in this section we use C to denote a generic constant which
may change from line to line.

3D Navier-Stokes Equation

First we want to apply Theorems 5.2.2 and 5.2.4 to the 3D Navier—Stokes equation,
which is a classical model to describe the time evolution of an incompressible fluid,
given as follows:

1) = VAU — () - V() + Vp(o) +1 0.
div(u) = 0, ulspa = 0, u(0) = uy, (5.60)

where A is a bounded open domain in R*® with smooth boundary, u(t,§) =
(u'(t,§),u*(t.€), U’ (t.£)), £ € A, represents the velocity field of the fluid, v is
the viscosity constant, the pressure p(z, £) is an unknown scalar function and f is a
(known) external force field acting on the fluid. In the pioneering work [55] Leray
proved the existence of a weak solution for the 3D Navier-Stokes equation in the
whole space. However, up to now, the uniqueness and regularity of weak solutions
are still open problems (cf. e.g. [79]).

Let C35 (A; R?) denote the set of all divergence free smooth vector fields from
A to R3 with compact support equipped with the following norms respectively:

1/2 1/2
el 12 = (/A |Vu|2 df;‘) v g2 = (/A |Au|2 df;‘) .

Forp > 1, let I” := LP(A;R?) be the vector valued LP-space with the usual norm
| llr. We note that by Poincaré’s inequality there exists a C € ]0, oo[ such that for
allu € C§% (A R?)

° \2 : .
Il = Z/A(a,-u/) dé = —Z/Awa%w aé

ij=1 ij=1
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IA

SN
; /A () de | fullye

1
2

3
c{ 3 [ 19w g | Tulins = Cllllalulies
=1

IA

hence
lullgr2 < Cllul| g2
Now we define

L? := completion of Cgfy(A;R3) w.rt || z2;
H := completion of Cgf,(A;R3) w.rt || || gi2;

V := completion of Cgff,(A;]l@) w.rt. || || g22.

Here the norm || ||g22 (resp. || ||z12) restricted to V (resp. H) will be also denoted
by || [lv (resp. || [|x)-

In the literature it is standard to use the Gelfand triple H C L2 C H* to
analyze the Navier—Stokes equation and it works very well in the 2D case even
with general stochastic perturbations (cf. Example 5.1.10). However, as pointed out
in Remark 5.1.11(2), the growth condition (H4') fails to hold on this triple for the
3D Navier—Stokes equation.

Motivated by some recent works on the (stochastic) tamed 3D Navier—Stokes
equation (see the next section and the references mentioned there), we will use the
new Gelfand triple V C H C V* defined above to verify the growth condition (H4).
One further ingredient is to use the following inequality in the 3D case (see e.g. [45,
Theorem 2.1]):

sup |u|* < C||Aull2||Vull2, ue V. (5.61)
A

Before we proceed, we note that forv € V, ¢ € C5 (A; R3)
Vi (Us (p>V = (U, @)H = (Us _A§0>L27
hence

lvs(v.@)vl < [llz2 ll@llv.
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so the linear map v + y=(v,-)y from V into V* extends by continuity to a
continuous linear map from L2 to V*, which we also denote by f. We have for
allf € 2
ve(f @)y = (f.—Ag) 2 forall g € C3 (A R?) (5.62)
and
v < Ifllzz- (5.63)
Let Py be the orthogonal (Helmholtz-Leray) projection from L?(A;R?) to L2.
Then by means of the divergence free Hilbert spaces V,H and the orthogonal
projection Py, the classical 3D Navier—Stokes equation (5.60) can be reformulated
in the following abstract form:
W = Au+ F(u) +f, u(0) = ug € H, (5.64)
where
F(u) := F(u, u),
f:00,T) = L2, f:= Puf

andA :V — V* F:V xV — V are defined as follows:
For u,v € C32 (A;R?) set

Au = vPyAu and F(u,v) := Pg[(u-V)v].
We note that for u € Cg7 (A; R?) also Au € Coo (A3 R3), so Au = vAu. Then
lv=(Au, v)v| = [{Au, v)g| = [{Au, (=A)v) 2| < [lullv[[v]lv, u,v € CGG(A).
Hence, A can be extended by continuity to a linear map from V to V* such that
Aully= < llully, uweV.
Furthermore, for all u, v, ¢ € C§° (A:R?) by (5.63)
IF @, v)llve < [F(u,v)]zz.

But for some C €]0, oo[ (independent of u, v)

/ |F(u, v)|? € < / - V)P d€ < Cllulleo 0],
A A
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which by (5.61) is up to a constant dominated by [|ul|v|u|z|v|?. So, altogether
there exist Cy, C,, C;5 €]0, oo[ such that

1/2 1/2
1F @, v)llye < Cillullzoe[v]lg < Collully? Nl Iolla

< Gsllullvl|v|x forall u, v € CJ2 (A; R?). (5.65)
Hence, since F : Cng(A;R3) X Cgffy(A;]R?’) — V* is bilinear, F has a unique

continuous bilinear extensions from V x V. — V™ such that (5.65) holds for all
u,vev.

Remark 5.2.22 'We note in contrast to (5.25) under the current Gelfand triple
v (F(u,v),v)y = (F(u,v), (—A)v) 2, u,v,w eV,

which might not be equal to 0 in general.

For simplicity we only apply Theorems 5.2.2 and 5.2.4 to the deterministic 3D
Navier-Stokes equation and give a simple proof for this well known result. But
we can also add an additive noise to (5.64) and obtain the corresponding result in
the stochastic case by applying Theorem 5.2.6. We refer to [77, 79] for historical
remarks and references on the classical local existence and uniqueness results for
the 3D Navier—Stokes equation.

Example 5.2.23 (3D Navier-Stokes Equation) If f € L*(0, T; L2) and uy € H, then
there exists a constant 7y € (0, 7] such that (5.64) has a unique strong solution
u € L([0, To); V) N C([0, To); H).

Proof For simplicity, let us assume that v = 1.

The hemicontinuity (H1) is obvious since A is linear and F is bilinear. Below
we prove (H2"), (H3'), (H4') for u,v € C3% (A;RR*) which by the continuity of
A:V > V*and F : V xV — V* is sufficient. Furthermore, C will denote a
constant that may change from line to line. We have

ve{Au —Av,u —v)y =A@ —v), (=A)(u — v)) 2
=~ Jlu—vl-
By (5.65) and Young’s inequality we have

ve(F(u) — F(v),u —v)y
=y« (F(u,u—v),u—v)y + yx(F(u—v,v),u—v)y

1/2 1/2
<Cllu= vl - (lulloe = vl + 1 = v}l = 01/ ol

1
=5 lu— vlly + € (lullfoe + llvliz) lle = vli7- (5.66)
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Combining these two estimates we obtain
ve{Au + F(u) —Av — F(v),u —v)y

1
=—5lu- vl + C (lullfoe + llvliz) lle = vll7- (5.67)

Hence (H2") follows with n(u) := Cllull?ec and p(v) := C|v||};. In particular,
taking # = 0 we obtain that

1
e (Av + F(v), v)y < —§||v||2V + Cllvll§.

Therefore, (H3') holds with g(x) = Cx* and h = 1, because

A

. 1 .
ve(Av + F(v) +f.v)v < —Ellvllzv + Cllvlly + v Iollv

A

1 ~
—levllzv + Clollg + ClIfl7. veV.

Moreover, by (5.63) and (5.65)

IA@) + F@) +Fllv+ < llvllv + Clolivivla + IF] 2
< (IFllzz + Cllvlly) (1 + [[vllm) . v € V. (5.68)
i.e. (H4') holds with § = 1.
Finally, we note that p + 7 satisfies (5.33) by (5.61) and both p and 7 are
subadditive up to a constant. Therefore, the local existence and uniqueness of

solutions to (5.64) on [0, Ty] with Ty satisfying (5.31) follows from Theorems 5.2.2
and 5.2.4. O

Remark 5.2.24
(1) By Remark 5.2.3 we can take any Ty € (0, 7] such that

Ty < 2 To c 7 2 ’
(luollz + o (1 + IF@17,) do)?

for a suitable C €]0, ool.

(2) Note that the solution here is a strong solution in the sense of PDEs. It is obvious
that we can also allow f in (5.64) to depend on the unknown solution u provided
f satisfies some local monotonicity condition.
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A Tamed 3D Navier-Stokes Equation

In the case of the 3D Navier—Stokes equation we have seen that the generalized
coercivity condition (H3') holds with g(x) = Cx?, hence we only get local existence
and uniqueness of solutions. In this section we consider a tamed version of the 3D
Navier-Stokes equation, which was proposed in [73, 74, 83]. The main feature of
this tamed equation is that if there is a bounded strong solution to the classical
3D Navier—Stokes equation (5.60), then this smooth solution must also satisfy the
following tamed equation (for N large enough):

du(r) = vAu(t) — (u(r) - Vyu(t) + Vp(t) — gw ([u(®)|700) u(t) + £(2),
div(u) = 0, ulsga = 0, u(0) = uy, (5.69)
where the taming function gy : R4y — R is smooth and satisfies for some N > 0,
gn(r) =0, if r <N,

gn(r)=@F—=N)/v, ifr>=N+1,
0<gy(n=<C, r>0.

We note that our “taming term” gN(||u(t) ||ioo)u(t) is slightly different and, in fact,

simpler than the one used in [73, 74, 83].
We will use the same Gelfand triple as for the 3D Navier—Stokes equation, i.e.,

H := completion of Cgfy(A,R3) w.r.t. || | ga2;

V := completion of Cgf,(A,]R3) w.rt. || ||g22-

Example 5.2.25 (Tamed 3D Navier-Stokes Equation) Forf € L*(0,T;L2) and ug €
H, (5.69) has a unique strong solution u € L([0, T]; V) N C([0, T]; H).

Proof We assume v = 1 for simplicity.
Similarly as in (5.64), using the Gelfand triple

VcCHcCV*

(5.69) can be rewritten in the following abstract form (a priori as an equation in V*):
t
u(r) = / [Au(s) + F(u)(s) — gn(|u(s) 7o )u(s) +f(s)] ds. £ € [0, To]. uo € H.
0

Again (H1) is easy to check since we already know that A + F + f is
hemicontinuous and because gy is Lipschitz continuous. By (5.61) and Young’s
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inequality we also have for all u, v € C° (A; R?)

— ve(gn(ullfoo)u — gn (017 )0, u — v)y
= — (en([lullzoo)u = gn([[v[I700)v, (=A) (= v)) 2
= — (gn(lullfoo) Vi = gn([|v[|7o0) VU, V(1 = 1)) 2
= — an(llullfoo)lu = Iz = ((en(lullzoe) — gn(v]I7)) Vo, V(= v)) 2
<lgn(llull7o0) = en(lvllZeo)] - I0la -l — vl
<Cllu—=vllzee ([[ullzee + [[v]lze0) [[V[|a e = V||
<Cllu = vllzso (oo + 10117 + Nvllzoe l[v]a) llu—vla

2 2
=<Clu—=vllv (lullze + Il + [0lizoe 0]la) lu = vilm
1 2 4 4 2 2 2
= lu—vly+C (lullzeo + Vil + NIV llZoe 017) 1t = vl

where we have used that gy > 0 and 0 < gﬁv < C in the above estimates.
Hence by (5.67) we have the following estimate for all u, v € Cgfr (A;RY)

v (Au + F(u) — gn(llul7oo)u — Av — F(v) + gn([[vl|Fee)v, 1 —v)y
1
== glle= olly + € (1 + llulljeo + vl + 01z llvlI7) e = vl
1
== llu— vlly + C (1 + llullgeo + lvllE + Ivllfe) llu = vliZ,

i.e. (H2") holds with n(u) = C|lu||jee and p(v) = C (|[v]|f; + [v]7so)-
Forall v € Cy4(A;R?) we have

ve{Av,v)y = (PpAv, (=A)v) = —[v]}
and by (5.65)
Lo 2 2
v (F@).v)y < [F@)llv=llvlly = Zlvlly + lvlize vl

Furthermore,

—gn(IvlZ00) (v, (=A)v)12

—v+{gn(llvll7e0)v. v}y

—en(lvle) /A V]2 dr

< =lvlise llvlif + NV + Divli,

where we used that gy(r) > r — (N + 1) in the last inequality.

171
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Adding these three inequalities we obtain
ve(Av + F(v) — gn([v[l7o0) + 7, v)v

3 -
<- levllzv + N+ Dlvlig + IFllz2lvllv
1 -
== 5 IvIY + OV + Dl + CIFIE, v eV,

where we used Young’s inequality in the last step. This implies (H3') with g(x) =
Nxandh = 1.
By (5.61) it easily follows that

2 2 2 2
len(lvlizeo)vlive < llgnllvlizeo) vl = Cllvllzee [vllz2 < Cllvlivivllg, v e V.

Then, combining this with (5.68), we obtain that (H4') holds witha = 2, 8 = 2.
Equation (5.61) implies that [|u|}co < C|lu|%lull3, hence p + 7 satisfies (5.33).

Clearly, both p and 7 are subadditive up to a constant. Hence the global existence

and uniqueness of solutions to (5.69) follows from Theorems 5.2.2 and 5.2.4. ]

Remark 5.2.26 As for the classical 3D Navier—Stokes equation we can also add
an additive noise and apply Theorem 5.2.6 to get a unique local solution for its
stochastic version. However, since as shown above, « = 2 and § = 2 in this
case, the last part of Theorem 5.2.6 does not apply to get global solutions by our
techniques. It is, however, true that a unique global solution exists in the stochastic
case. This can be proved by different methods (see [72, 73]).

The Cahn-Hilliard Equation

The Cahn-Hilliard equation is a classical model to describe phase separation in a
binary alloy and some other media, we refer to [62] for a survey on this model (see
also [21, 30] for the stochastic case). Let A be a bounded open domain in R4 with
d < 3 with smooth boundary. The Cahn—Hilliard equation has the following form:

du = —A%u + Ap(u), u(0) = uo,
Vu-n=V(Au)-n =0 on JA, (5.70)
where A is the Laplace operator and V is the gradient, n is the outward unit normal

vector on the boundary dA and the nonlinear term ¢ is some function which will be
specified below.
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Let C*(A) denote the set of all real valued functions on A, which are restrictions
of functions in C*(RY). Define

Vo:={ueC"A): Vu-n=V(Au)-n=0ondA}.
Now we consider the following Gelfand triple
V CH:=L*A)CV*,
where
V := closure of V, in H**(A)

and

1/2
gz = (/ | Aul? dx) .
A

For the reader’s convenience, we recall the following Gagliardo—Nirenberg inter-
polation inequality (cf. [78, Theorems 2.25 and 2.21]) for bounded open A C R¢,
d > 1, with smooth boundary.

If m,j € Z such that m > j > 0 and ¢g € [1, oo] such that

ma

d ’

+ <acx<l

3

| =
&=
3 |~

1
q
witha # 1,if m—j— ‘5’ = 0, then there exists a C €]0, oo[ such that

Il o < Cllull s lull 5, u € H™(A). (5.71)

Here, for nonnegative integers j, ¢, the space H/9(A) denotes the classical Sobolev
space of order j in L1(A).

Forj := 0,q := 0,m := 2 and hence a := ‘Zl, this implies, since d < 3 the
classical Sobolev embedding

H?*2(A) € L®(A) continuously. (5.72)

Then we get the following existence and uniqueness result for (5.70).

Example 5.2.27 Suppose that ¢ € C'(R) and that there exist C € ]0,00[, p €
[2, €44] such that

¢'(x) = —C, lp()| = C(1 + [x"), x € R;

o) =M = CA+ P~ + Iy )=yl xy e R.
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Then for every uy € L*(A), there exists a unique global solution to (5.70).

Proof Let
A(u) :=Aju+ Ayu, ue€Vy,
where
A(u) := —A%uand A> (1) := Ap(u), u € V.

Note that for u € V| by the boundary conditions imposed on the elements of V;, we
have forv € V)

lve (A1(), v)v| = [(=Au, Av) |

= lvlivilully.
Hence A; extends to a linear continuous map from V to V* such that
[A1@)|lv= < [lullv forall u € V. (5.73)

Furthermore, again by the boundary conditions on elements in V;, by the local
Lipschitz property of ¢ and by (5.71) we obtain for all u;, u, € Vy

ve(Aa(u1) — Ar(u2), vy = (@(u1) — @(u2), Av) 2
< IvClIA + [P + a7 Juy — o |12
< llvC( + i [Poe + lluzllboo) lur — ol 2

< vllvlur = walyCA + a5 + ol ). (5.74)

Therefore, by uniform continuity A, extends to a continuous map from V to V*. In
particular, (H1) holds and (H2"), (H3') and (H4’) only have to be checked for all
u,v € V.

For all u, v € V), we have

—y (A2 — A0, u—v)y = —|lu— v||%,.
In addition, as in (5.73) and using Young’s inequality we get
ve(Ag(u) — Ap(v), u—v)y

<llu=vlvlle@) — o)l

1 p—2 p—2
<=l + € (14l + ol ) e = vl w.v € Vo.
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Hence (H2") holds with n(v) = p(v) = C||v||i’;§2
Similarly, since ¢’ is lower bounded we have for all v € Vj,

v (8g ) o)y = = [ P @IVOP d < ol
A
1
——c [ avv g < S0l + I,
A
It follows that (H3') holds with @ = 2, h = 1 and g(x) = Cx.
By (5.71) with j := 0,¢ := 2p,m := 2 and thus a := £ it follows that for

4p
allv e V)

[Ap@)llv+ < llp@)lla
E C(l + ||v||221))

aq l—a
c(1+ Il ey =)

q 1—q —1
C(1+ Il Il ol ) -

IA

Sincep < 2 +1(i.e.ap = W < 1 and |v|g < C||lv|v, this implies that
lAp)|lv= < C A+ |v]v) (1 + ||v||’;,_l> forall v € V,.

Hence by (5.73) (H4') follows with 8 = p — 1.
Furthermore, (5.71) withj = 0,g = oo, m = 2, and thus a = % implies that for
allveV

2p—2 2a(p—1 2(1—a(p—1 2(pp—1)—2 2 2p—4
n()+pw) = C|725% < ClolF ol P~ v 77707 < Clvl ol

because a(p — 1) = le(p —1) < land |v||g < Cllv|lv. Hence (5.33) also holds and
both 7 and p are subadditive up to a constant.
Therefore, the assertion follows from Theorems 5.2.2 and 5.2.4. O

Remark 5.2.28 Again we can apply Theorem 5.2.6 to obtain local existence and
uniqueness of solutions for (5.70) perturbed by additive noise. These solutions are
global if p < 2, since, as shown above « = 2, B = p — 1 in this case. So, the last
part of Theorem 5.2.6 applies, because then o/ff < 2.
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Surface Growth PDE with Noise

We consider a model which appears in the theory of growth of surfaces, which
describes an amorphous material deposited on an initially flat surface in high
vacuum (cf. [7] and the references therein). Taking into account random noises the
equation is formulated on the interval A :=]0, L[ as follows:

dX (1) = [—agxm — X + ag(asxa))z] dt + B(t) dW(1),
X(®)]sa =0, X(0) = xo, 1 € [0,T], (5.75)

where 0¢, 3?, B‘g denote the first, second and fourth spatial derivatives in £ €]0, L]
respectively.

Recall that W(z), ¢ € [0, T], is a U-valued cylindrical Wiener process defined on
a probability space (2, F, P) with normal filtration F;, ¢ € [0, T]. We shall use the
following Gelfand triple

V= Hy*(0,L])) C H := Hy*(10,L]) C V*,

where as usual for nonnegative integers j, g the space H(’;’q (]0, L[) denotes the closure
of C$°(]0, L[) in H/4(]0, L[). We obtain the following local existence and uniqueness
of strong solutions for (5.75).

Example 5.2.29 Suppose that B € L*([0, T); L,(U: H)). For any X, € L*(Q2, Fo.
P; H), there exists a unique local solution (X(?))ef0,r] to (5.75) satisfying

X(-) € L*([0, 7]; V) n C([0, t]; H), P-a.s.
Proof 1t is sufficient to verify (H1), (H2"),(H3'), (H4') for (5.75). Then the

assertion follows from Theorem 5.2.6. For u € C§°(]0,L[) we have for all v €
C5(0,L)

- (—(agu + agu), v)V‘ = ‘(agu + agu, agv)Lz

= |(@u+ 0. 0tv).o

< (lullv + ullvllv,
hence —(82 + 8?) extends to a continuous linear map from V to V* such that
I = @ + 0pullve < llully + lully forallu € V.
Furthermore, recalling that

Hy?(0,L[) € L*°(J0, L[)
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continuously for u;,u, € C§°(]J0,L[) by the Leibnitz rule we have for all v €
C5°(0. L)

V* (35(3)#1)2 - 3?(35142)2’ v)y
=(0;(0zu1)” — 97(3zu2)”. ) 2
<llvllv]|a2@gu)* — 32 (dgu2)?l 2
=2y [||(3§Ml)2 — ()2 + 19101 9u1 — 3guz3guz||L2]
<2follv[(18usllzee + 19Fuallzoo) lur — wala
+ 0gun |00 [[83ur — Bua| 2 + [188uallp2 | 9gur — Bgual|roo ]
<Cllollv[(18ull2 + 18uall2) lur — wallar + el l]8 ey — u2) 2]
=Clllv[(I18zurlln2 + 197uall g 2) s — aller + Nuer a1 (1 — w2) 12
<Clollv[ 102w 5l 1 + 102ua 55 Nz 13> lr = ezl
+ N 102y — wo) 1155y — wall ]
=Cllollu[luslly sl + Nzl 217
+ llulalln = wa |y uy — ] (5.76)

luall g I lur — wall

where we used (5.71) in the second to last step and C €]0, oo, independent
of uy,uy, v, but possibly changing from line to line. This implies local uniform
continuity and hence extendability of 8%(85-)2 to a continuous map from V to V*.

We define the maps Aj, A, : V — V™ by
1 1
Al(u) = _E(agu + 03u), Ax(u) = _E(agu + B3u) + 07 (:u)*, weV,

which by continuity satisfy (H1). It is also easy to check that A; satisfies all
assumptions in Theorem 5.2.6. Furthermore, it suffices to check that A, satisfies
(H2"),(H3') and (H4') for u, v € C§°(]0, L[)

By (5.76) and Young’s inequality there exists a C €]0, oo[ such that for all u, v €
ceqo. L))

v (02 (Beu)? — B2(@:v)> u— v}y

1
=7 lu= olly + Clully lullm + Nollvivlla + lullz) e = vz (5.77)
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Furthermore, for all u, v € C§°(]0, L[)
1 4 2 4 2
EV*(_BE” — Jgu + 9gv + Jgv, u — v)y

1 1
<= Slu= vl + 3 lu=vlivlu—vlla

3
5—§||u—v||zv+8||u—v||§,. (5.78)
(5.77) and (5.78) imply that (H2") holds for A, with

n@) := C(llully + llully) . pv) = Cllv|3.

Taking u = 0 in (5.77), (5.78) and applying Young’s inequality we obtain that for
some C €]0, oo

1
2yx (A0, v)y < —Ellvllzv + C|[v]|% + C forall u € C°(J0, L),

which implies that (H3’) holds for A, with @ = 2, g(x) = Cx* and h = 1.
Furthermore, (5.76) implies that (H4') holds for A, witha =2 and § = 1.
Now the proof is complete. O

Remark 5.2.30

(1) It is known in the literature that the surface growth model has some similar
features of difficulty as the 3D Navier—Stokes equation. The uniqueness of
analytically weak solutions for this model is still an open problem in both the
deterministic and stochastic cases.

(2) The solution obtained here for the stochastic surface growth model is a strong
solution both in the analytic and probabilistic sense. For the space-time white
noise case, i.e. B = I, the existence of a martingale solution was obtained in [7]
for this model, and the existence of a Markov selection and ergodicity properties
were also proved there.

(3) In [8, 9] the authors established local existence and uniqueness of solutions for
the surface growth model with more general initial conditions in the critical
Hilbert space H'/? or some Besov space (the largest possible critical space
where weak solutions make sense). They used fixed point arguments and a
technique introduced by H. Koch and D. Tataru for the Navier—Stokes equation
(cf. [9] and the references therein).



Chapter 6
Mild Solutions

This chapter contains a concise introduction to the “semigroup (or mild solution)
approach”. One difference to the variational approach is that we do not use a Gelfand
triple, but just our Hilbert space H. The main idea is to use the linear part (if there
is one) of the drift as a “smoothing device”.

6.1 Prerequisites for This Chapter

As said before, this course is mainly concentrated on the “variational approach” and
this chapter is meant to be merely complementary, presenting another important
approach to stochastic partial differential equations. Therefore, and since these
prerequisites are only used in this chapter, in contrast to the other parts of this
monograph, in this section we do not include proofs, but refer instead to [26].

6.1.1 The Ito Formula

We assume that

e e Nw(o, T; H)
e ¢:Qr — H is a predictable and P-a.s. Bochner integrable process on [0, T
¢ X(0): 2 — H is Fy-measurable
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e F:[0,T] x H— R is twice Fréchet differentiable with derivatives

aF
o :=D/F:[0,T] xH — R
DF := D,F:[0,T] x H — L(H,R) ~ H
D’F := D3F:[0,T] x H — L(H),
which are uniformly continuous on bounded subsets of [0, 7] x H.

Under theses assumptions the process

t

t
X(1) := X(0) +/ @(s) ds +/ D(s) dW(s), te0,T],
0 0
is well defined and we get the following result.

Theorem 6.1.1 (Ité6 Formula) There exists a P-null set N € F such that the
following formula is fulfilled on N€ for all t € [0, T):

FX(0) = FO.XO) + [ (DF6.X(6). 96) W)
X
n /0 a—};(s, X(s)) + (DF (s, X(5)), ¢ (5))

45w [DFG X6 @00 @00 ds.

Proof [26, Theorem 4.17, p. 105]. Note that by PropositionB.0.10 the term
involving the trace is indeed finite and is equal to

e [@0eH D X6 @6)eh)]

6.1.2 A Burkholder-Davis—Gundy Type Inequality

Theorem 6.1.2 (Burkholder-Davis—Gundy Type Inequality) Letp = 2and @ €

Nw(0,T; H). Then
) <) (] oo )

E| sup
t€[0,7]

/t D(s) dW(s)

0




6.2 Existence, Uniqueness and Continuity with Respect to the Initial Data 181

Proof [26, Lemma 7.2, p. 182]. O
Remark 6.1.3 If ® € NZ(0,T) we get that [; d(s) dW(s), t € [0,T], is a

martingale and therefore
2 T 2
) =E (H/ D(s) dW(s) ) .
0

sup E( / D(s) dW(s)
t€[0,7]
6.1.3 Stochastic Fubini Theorem

0

We assume that

1. (E, &, n) is a measure space where u is finite.
2. :Qr xE = LY, (t,w,x) = ®(t,w,x) is Pr ® £/B(L))-measurable, thus in
particular ®(-, -, x) is a predictable L5-valued process for all x € E.

Theorem 6.1.4 (Stochastic Fubini Theorem) Assume 1., 2. and that

' W
[1ecn@ = [ (2 [ 10608 @) ) <.
Then

T T
/ [ / ®(t,x) dW(t)i| 1(dx) = / [ / ®(t, x) ,u(dx)i| dw(@)  P-as.
E 0 0 E

Proof [26, Theorem 4.18, p. 109] O

6.2 Existence, Uniqueness and Continuity with Respect
to the Initial Data

As in previous chapters let (U, || ||y) and (H, || ||) be separable Hilbert spaces. We
take Q = I and fix a cylindrical Q-Wiener process W (), t = 0, in U on a probability
space (2, F, P) with a normal filtration F;, t = 0. Moreover, we fix T > 0 and
consider the following type of stochastic differential equations in H

dX (1) = [AX(t) + F(X(¢))] dt + B(X(r)) dW(r), t€[0,T]

6.1)
X(©0) =§,

where
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A : D(A) — H is the infinitesimal generator of a Cy-semigroup S(¢), ¢t = 0, of
linear operators on H,

e F:H — His B(H)/B(H)-measurable,

B:H— L(U,H),

e £ is an H-valued, Fy-measurable random variable.

To motivate the definition of a mild solution below we first note that only in
very special cases can one find a solution to (6.1) such that X € D(A) dt ® P-a.s.
Therefore, one reformulates the equation on the basis of the following heuristics:

Consider the integral form of (6.1) and apply the (not-defined!) operator e for
t € [0, T] to this equation. Applying 1t6’s product rule (again heuristically), we find

e MX() = £+ /0 e M (AX(s)) + F(X(s)) ds + /0 e MB(X(s)) dW(s)

t
— / e MAX(s) ds

0
t

= X(1) =S()E + /0 S(t— s)F(X(s)) ds + /O S(t — 5)B(X(s)) dW(s).

Definition 6.2.1 (Mild Solution) An H-valued predictable process X(z), t € [0, T],
is called a mild solution of problem (6.1) if

X(6) = S()E + / rS(t—s)F(X(s)) ds
0
+ / rS(t—s)B(X(s)) dW(s) P-as. 6.2)
0

for each t € [0, T] (i.e. the P-zero set, where (6.2) does not hold, may depend on 7).
In particular, the appearing integrals have to be well defined.

To prove the existence of a mild solution on [0, 7] we make the following usual
assumptions (see [27, Hypothesis 5.1, p. 65]).

Hypothesis M.0
* A :D(A) — H is the infinitesimal generator of a Cy-semigroup S(f), t = 0, on H.
e F: H — H is Lipschitz continuous, i.e. that there exists a constant C > 0 such
that
|IF(x) —F()|| < Clx—y| forallx,y e H.

e B:H — L(U, H) is strongly continuous, i.e. the mapping

X = B(x)u
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is continuous from H to H foreachu € U.
e Forallr €]0,T] and x € H we have that

S(t)B(x) € L,(U,H).
* There is a square integrable mapping K : [0, T] — [0, co] such that
IS Bx) =Bz, < K@)]lx -yl

and

IS@BX) [, < KO + [lx])

forall t €]0,T] and x,y € H.
Remark 6.2.2

(i) My := supejo 7y [ISO) |z < oo
(i1) For the last assumption it is even enough to verify that there exists an ¢ €]0, T
such that the inequalities hold for 0 < 7 < ¢ and

/SKz(s) ds < oo.

0

(iii) The Lipschitz constant of F in Hypothesis M.0 can be chosen in such a way
that we also have

IF(x)|| < C(1 + ||x||) forallx e H.

Proof

(i) By the semigroup property it’s easy to show there exist constants @ = 0 and
M = 1 such that

ISy < Me®  forall £ = 0.
(i) LetK : [0, ] — [0, 0o] be square integrable such that
IS@B() = BO) L, < K@lx—y|
and
IS@B@) Iz, < K@ + [Ix])

forall t € [0, €] and x,y € H. Then we choose N € N such that § < ¢ and set

K() = MTf((%) for 7 € [0, T],
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where M7 = supeio 7 [IS() [|Lr)- Then it is clear that K : [0, 7] — [0, oo
is square integrable and for all x,y € H, t €]0,T] we get by the semigroup

property that
IS()BC) ~ BOD s = 1SS B - Bo)IL
< MrlS()(BG) — BO)
< MrR ()l =yl = K@ lx =]
and

t
ISOBC) 2, < Mrl|S(5)BW) ]Iz,
~ 1
< MrK() A+ xll) = K@@ + |lx).-
(iii) For all x € H we have that

IF@I < [1F(x) = FO)[| + [FO)l
< Cllxll + [[F O
< (CVIIFOI) A + [lxI)

and, of course, we still have that
[F(x) = FMI < (CV [FO)[)[lx—yl| forallx,yeH.

|

Now we introduce the spaces in which we want to find the mild solution of the above
problem:

Foreach T > 0 and p = 2 we define H” (T, H) to be the space of all H-valued
predictable processes Y such that

1
Y]l := supT](E(||Y(t)||f’))p < 0.

€0,

Then (HP(T, H), || ||%») is a Banach space (after going over to the usual equivalence
classes of processes).

For technical reasons we also consider the norms || ||,..7, A = 0, on H?(T, H)
given by

[¥llpar == sup e (BQYOI)"-

t€[0,7]
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Then || |2» = || ||po.r and forall A > 0, Y € HP(T, H) we get that

1Y llpar < 1Yl < TIY llpar,

which means that all norms || [|,.7, A = 0, are equivalent. For simplicity we
introduce the following notations

H(T,H) := (H'(T, H), || [l%)
and

HPM(T, H) == (HV(T, H), | llpr)-

Theorem 6.2.3 Under Hypothesis M.0 there exists a unique mild solution X (&) €
HP (T, H) of problem (6.1) with initial condition

£el’(Q,F,PH) = L.
In addition we even obtain that the mapping
X : Ly — H'(T,H)
§ > X(§)
is Lipschitz continuous with Lipschitz constant Lt p.

Remark 6.2.4

1. The above result can be found in [27, Theorem 5.3.1, p. 66]. The proof is based
on the abstract implicit function Theorem F.0.1. In particular, one has to verify
that there is a predictable version of

/ tS(t — $)B(Y(s)) dW(s), 1e]0,T],
0

forall Y € HP(T, H). In [27, Proposition 6.2, p. 153] this is solved in the case
where B(Y) € Ny. We, however, do not assume that B itself takes values in
L,(U,H).

2. It follows from the Lipschitz continuity of X that there exists a constant Cr
independent of & € L{, such that

IXE)lrr < Crp(1+ [1§]2r).

Before giving a proof of the theorem we need the following lemmas.
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Lemma 6.2.5 If Y : Qr — H is Pr/B(H)-measurable and Hypothesis M.0 is
fulfilled, then the mapping

? . QT —H
(s, w) = T (8)S(—5)Y (s, w)
is also Pr/B(H)-measurable for each fixed t € [0, T].

Proof

Step 1:  We prove the assertion for simple processes Y given by

n
Y = ZxklAk’
k=1

wheren e N, x, € H,1 <k < n,and Ay € Pr, 1 < k < n, is a disjoint covering
of Q7. Then we get that

?I QT—>H

(s, 0) = T ()S(t—5)Y (s, w) = 1o q(s) Z St — $)xpla (s, )
k=1

is Pr-measurable since for each B € B(H)
Y71 (B) = | J({s € [0. T)110.((s)S(t — s)x¢ € B} xQ) N A,

=l < B([0, 7))
(S} PT

because of the strong continuity of the semigroup.

Step 2:  We prove the assertion for an arbitrary predictable process Y.
If Y : Q7 — H is Pr-measurable, there exists a sequence Y,, n € N, of simple
predictable processes such that Y, (s,w) — Y(s,w) as n — oo for all (s,w) €
[0, T] x H (see Lemma A.1.4). Since S(¢) € L(H) for all ¢ € [0, T] we obtain that

f/(s, w) = lp (St —95)Y(s,w) = nli>nolo 1o(8)S(t — 5)Yu(s, w)

=:Y,(s, »)

By Step 1 Y., n € N, are predictable and, therefore, Proposition A.1.3 implies
that Y is also predictable. O
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Lemma 6.2.6 IfY is a predictable H-valued process and Hypothesis M.0 is fulfilled
then the mapping

(5, @) = 1 (5)S(t — 5)B(Y (s, ))

is Pr/B(L,(U, H))-measurable.

Proof Let fi, k € N, be an orthonormal basis of H and ¢, k € N, an orthonormal
basis of U. Then f; ® e¢; = fi{ej,-)v, k.j € N, is an orthonormal basis of L,(U, H)
(see Proposition B.0.7). Because of the strong continuity of B we obtain that

(5, @) = B(Y (s, w))e;
is predictable for all j € N. Hence the previous lemma implies that
(5, ) > (fk ® €. 101 (5)S( — $)B(Y (5. 0))) 1,
= {fi 1p((9)S(r = $)B(Y (s, @))¢))
is predictable for all j, k € N. This is enough to conclude that
(5, ) > Lpo()S(t — )B(Y (s, )

is predictable. O

Lemma 6.2.7 [famapping g : Qp — H is Py /B(H)-measurable then the mapping
y . QT —H
(5, @) = 1 (s)g(s, )
is B([0, T]) ® F;/B(H)-measurable for each t € [0, T).
Proof We have to show that ([0, {[xQ2) N Pr C B([0,T]) ® F.
Letz € [0, T]. If we set
A:={AePr|AN ([0,:xR) € B([0,T]) ® F;}
it is clear that A is a o-field which contains the predictable rectangles |s, u] x Fj,
Fye F,,0<s<u<Tand{0} x Fy, Fy € Fy. Therefore A = Pr. O

Lemma 6.2.8 If a process ® is adapted to F;,, t € [0,T], and stochastically
continuous with values in a Banach space E, then there exists a predictable version
of ®.

Proof [26, Proposition 3.6 (ii), p. 76] O
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Lemma 6.2.9 Let ® be a predictable H-valued process which is P-a.s. Bochner
integrable. Then the process given by

t
/ St—s5)D(s,w) ds, w € Q, te]0,T],
0

is P-a.s. continuous and adapted to F,, t € [0, T). This especially implies that it is
predictable (more precisely, has a predictable version).

Proof By Lemma 6.2.5 the process 1[,((s)S(t — s)®(s), s € [0, T}, is predictable
and in addition ||1jo(s)S(t — 5)®(s)|| < Mr||P(s)]l, s € [0, T].
t

Hence the integrals / St —s)®(s) ds, t € [0, T], are well defined.

0
First we want to prove the continuity. To thisend let 0 < s < ¢ < T. Then we get
that

||/0 S(s —u)®(u) du—/o S(t—u)®(u) dull
< /0 IS(s — 1) — G — W]P(w) dufl + | / S(— u)®(u) du
< /0 1ISGs — 1) — S(t — w)]D(w)]| du+ [ 1 — PG| du,

where the first summand converges to zero as s 1 ¢ or ¢ | s because by Lebesgue’s
dominated convergence theorem:

[105{@)[S(s — u) — S(t — )] P(u)|| > 0 ass?ttortls

for all u € [0, T] because of the strong continuity of the semigroup S(u), u € [0, T.
Moreover

10,5 (@) [S(s — u) — S(t — )] P )|
< Liosp(@) (IISCGs — )y + I1SE — ) lan) | P@) ||
< 2Mr || D).

where ||®| € L'([0, T], dx) := L'([0, T], B([0, T]), dx;R) P-a.s.
Concerning the second summand we get the same result since

/ 1 — )@ du

t
S/MTHCD(M)H du— 0 assttrortls
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P-a.s. by Lebesgue’s dominated convergence theorem.
In order to prove that the process given by the integrals is adapted, we fix ¢ €
[0, T]. By Lemma 6.2.7 the mapping

(5, ) = 1 (5)S(t — 5)D(s5, W)
is B([0, T]) ® F;-measurable. Hence, by Proposition A.2.2, we get for each x € H
that the mapping
t
1) |—>(/ S(t—s)P(s,w) ds,x)
0
t
= / (St —s5)P(s,w),x) ds
0

T
= / (Lo ()S(t — ) D(s, w), x) ds
0
is F;-measurable by the real Fubini theorem and, therefore, the integral itself is ;-

measurable. O

Lemma 6.2.10 Let (x,1)men, 1 € N, be sequences of real numbers such that for
each n € N there exists an x, € R with

Xpm —> Xn asm — 0O.

If there exists a further sequence y,, n € N, such that |x,,| < y, for allm € N and
Y nen Yn < 00 then

E x,,,m—>§ X, asm — oQ.

neN neN

Proof The assertion is a simple consequence of Lebesgue’s dominated convergence
theorem with respect to the measure 1= ), . 8, where §, is the Dirac measure
inn. O

Proof of Theorem 6.2.3
Idea: Letp >2.Forre[0,7),§ € Lyand Y € HP(T,H) we define
t t
FE Y@ =SHE + / S@t—s)F(Y(s)) ds +/ S(it—s)B(Y(s)) dW(s)
0 0
and prove that

F L) x H(T.H) — H(T. H).
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Since X(§) € HP(T,H) is a mild solution of problem (6.1) if and only if
F(£,X(§)) = X (&) we have to look for an implicit function X : L — H?(T, H)
such that the previous equation holds for arbitrary & € L{;. To this end we show
that there exists a A = A(p) = 0 such that

F oLy x AT (T, H) — HPHT (T, H)

is a contraction with respect to the second variable, i.e. that there exists an a/(p) <
1 such that forall § € Lj and Y, Y € H"(T, H)

IFEY) = FEDpar <a@Y =Yz

Setting G := F, A := Lﬁ and E := HP(T,H) we are hence in the situation
described at the beginning of Appendix F. Therefore, it is clear that the implicit
function X = ¢ exists and that it is unique.

To get the Lipschitz continuity of the mapping X : Ly — HP(T,H) we verify
that the condition of Theorem F.0.1 (ii) is fulfilled. Because of the equivalence of
the norms || ||,,»,7 and || ||7» that means that it is enough to show the existence
of a constant Lz, > 0 such that

IFEY) = FE V)llwr < LrpllE — &l

forall &, £ € Lyand Y € HP(T, H).
Step 1:  We prove that the mapping F is well defined.
Let§ € L and Y € HP (T, H).
t
1. The Bochner integral / S@t—s)F(Y(s)) ds, t € [0,T], is well defined by
0
Lemma 6.2.9:

(i) Because of the continuity of F : H — H itis clear that F(Y(¢)), t € [0, T],
is predictable.

(i1) In addition the process F(Y(?)), t € [0,T], is P-a.s. Bochner integrable
since

E( [ 1G] ds) < / E(C(1 + [Y©) ds<CT(1 + | V]}5) < oc.
0 0

t

2. The stochastic integrals / S(t—s)B(Y(s)) dW(s), t € [0,T], are well
0

defined since the processes 119 ((s)S(t — s)B(Y(s)), s € [0, T}, are in N3,(0, T)
forall r € [0, T7:

(i) The mapping

(s, 0) = 1p(8)S(t — 5)B(Y (s, w))
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is Pr/B(L2(U, H))-measurable by Lemma 6.2.6.

(i1) For the norm we obtain that

.S = )BW)II7 = E(/O IS¢~ $)B(Y ()7, ds)

= /0 E(|S(t—s5)B(Y(s)7,) ds

< /Oth(t—s)E((l + 1Y(s))?) ds

< Z/TKz(t—s)E(l +|1Y(s)|?) ds
0

t
<2(14 sup E(JY$)|>) | K*(r—s) ds
] 0

s€f0,T

t
<2(1+ ||Y||3{,,)/0 K*(s) ds < oco.

Step 2:  We prove that F(£,Y) € H(T,H) forall § € L and Y € HP(T, H).

Let§ € L and Y € HP(T, H).

1. The first summand S(7)&, ¢ € [0, T], is an element of H” (T, H):

(i) The mapping

(s, @) = S0)§ (w)

is predictable since for fixed w € Q

t— S@)E

(@)

is a continuous mapping from [0, 7] to H and for fixed t € [0, T

o~ S(HE(w)

is not only F;- but even Fy-measurable.
(i1) For the norm we obtain that

ISC)Ellnr = sup (E(S@E]
t€[0,7]

2. There is a version of the second summand

which is an element of H? (T, H):

1
P)r < Mrllgll < oo.

t

S(t— s)F(Y(s)) ds, 7 € [0,T],
0
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(i) First we notice that the mapping
t
(s,w) — / S(t—s)F(Y(s,w)) ds
0

has a predictable version because the assumptions of Lemma 6.2.9 are
fulfilled.
(i) Concerning the norm we prove that

I S6=9FTE) dslh < €M7+ 1V
0
To verify the assertion we take ¢ from [0, 7] and show that the L”-norm of
t
I ste=9rro) a
can be estimated independently of 7 € [0, T7:
t t
||/ S(t—s)F(Y(s)) ds|P < CPTP~' M, / (14 Y(s)]))’ ds P-as.
0 0
Taking the expectation we get that
! 1
(E( [ sa-9F0e) i)’
0

< CT"% My (E( /0 (1 + Y ds)?

T -

—1 T T 1
SCTTMT[(E(/O 1 ds)) +(/0 E(|Y(s)|IP) ds)?]

< CTMT(l + ||Y||’Hp) <0
and the claimed inequality follows.
t

3. There is a version of / S(t—s)B(Y(s)) dW(s), t € [0,T], which is in

0
HP (T, H): (i) First we show that there is a predictable version of the process.
To do so we proceed in several steps.

Claim1: If @« > 1 the process /a S(t—s)B(Y(s)) dW(s), t € [0,T], has a
0

predictable version.
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To prove this we first use the semigroup property and get that
/ " S(t— 5)B(Y(s)) dW(s)
0

= / " S(t— as)S(( — 1)$)B(Y(s)) dW(s), e [0,T].

0

We set

O%(s) == (911 (9)S((« — 1)s)B(Y (5)).

Then it is clear that ®*(7), t € [0, T], is an element of N'Z(0, T):
The fact that there is a predictable version of

(s, 0) = 1o.71()S((ax — 1)s)B(Y (5, w))

can be proved in the same way as Lemma 6.2.6 and, of course, by Hypothesis
M.O

T
E( /0 1@ — DB )2, ds)
T
s/o E(K*((a — Ds)(1 + [[Y(s))?) ds

<2 / K= 1)1+ sup BV ds

s€[0,T]

(a—1)T

=201+ ||Y||H2(TH))/ _11<2(s) ds < oo.

Therefore, we now have to prove that the process

/;S(t—as)ds(s) dw(s), t€][0,T],

0

has a predictable version for each > 1 and ® € N0, 7).

(a) We first consider the case where ®(7), r € [0, 7], is a simple process of the
form

D= Ll
k=1
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where m € N, Ly € Ly,(U,H) and Ay € Pr, 1 < k < m. To get the required
measurability we check the conditions of Lemma 6.2.8.
At first it is clear that

/ St — as)®(s) dW(s)

0

is F - and therefore also F;-measurable for each 7 € [0, T since the process
Lo, ((5)S(t — as)®(s), s € [0,T],

lies in ./\/%, (0,T) (see the proof of Lemma 6.2.6) and therefore the process

/ u1[0,é[(s)5(z—as)ci>(s) dW(s), uel[0,T].
0

is an H-valued martingale with respect to F,, u € [0, T]. Now we show that

t|—>/0 S(t— as)®(s) dW(s)

is continuous in mean square and, therefore, stochastically continuous.
To this end we take arbitrary 0 < ¢ < u < T and get that

t

0 [ st a9 av - [ sa-ande awo)’
= (E(II/OL [S(u — aus) — S(t — as)] D(s) dw(s)”z))%

+ (E(”/OZ 1z 2 ((9)S(u — as)D(s) AW (s)|?)?
= (E(/O; IS — as) — S(t — )] B2, ds))?

4 (E( / 1S —a B2, ds)?

m

< 3 (& /0 " a8 — as) — S — as) L, ds))?
k=1

m

# Y 1S a9, @)

k=1
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1

Z/o [[S(u — as) — S(t—ocs)]LkHL ds)%

=1

>~

+3°( / 1S(u — )L, ds)?, 6.3)
k=1

where the first summand in the right-hand side of (6.3) converges to zero as
t P uoru | tfor the following reason:

Lete,, n € N, be an orthonormal basis of U. Then we get for each s € [0, T
and I < k < mthat

Lo () [I[S(u — as) — S(t — as)]Lil7,

= D Lo @S —as) = St — as))Lien .

neN

where
1[0’i[(s)||[S(u —as) — St —as)|Lieq || — 0 astPuoru |t
and at the same time
Lo, £ (D[S (u — cws) — S(t — ws)]Lye||* < 4M7 || Lye,||?

foralln € N, 1 < k < m. By Lemma 6.2.10 this result implies the pointwise
convergence

Lo, £(()I[S(u — as) = S(t — ws)]Li|l7, — O astfuoru |t
Since there is the following upper bound
o2 (IS — as) — St — as)ILill3, < 4MFIL]12, € L'([0. 7). d)

foralls € [0,7],0 <t < u < T, we get the required convergence of the

integrals /d IS —as) — S — ocs)]Lk||%2 ds, 1 < k < m, by Lebesgue’s
0

dominated convergence theorem.
The second summand in the right side of (6.3) of the above equation also
converges to zero since foreach 1 <k <m

u

o u-—t
/L IS (ue —ozs)Lk||i2 ds < TM%HL/(Hi2 —> 0 asultort?u
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Hence Lemma 6.2.8 implies that there is a predictable version of

/ &S(t—as)&)(s) dW(s), te][0,T],
0

if @ is elementary.

(b) Now we generalize this result to arbitrary P e N, o
If @ is an arbitrary process in N&,(O, T) there exists a sequence CTJ,,, neN,
of simple processes of the form we considered in (a) such that

T ~ ~
B[ 186) - 8,01, 49 — 0

(see Lemma A.1.4). Hence let W, (1), t € [0,T], n € N, be a predictable
version of /a S(t — as)®,(s) dW(s), t € [0,T], n € N, which exists by
0

step (a). To get the predictability of / s (t—as)®(s) dW(s) we prove that
0

there is a subsequence ng, k € N, such that
W (1) —> / " S(t—as)®(s) dW(s) P-as.forallt e [0,T].
—>00 0
To this end we take ¢ > 0, ¢ € [0, 7] and obtain that

P( /0 "S- as)®(s) dW(s) — ()] > ©)

/A

S0 [ S6=a9[B6) = &, aWe)IP)
1 [« - -
= SE([ 15t alde) - 3,61, o

2 A . 2 T .
< e[ 160 - &,01, 09 < ZE( 166 - &0, .

As this upper bound is independent of ¢ € [0, T this implies that

t

sup P(]| ’ S(t—as)®(s) dW(s) — W, (1) > ¢)
t€[0,7] 0

Mi (T s AT
< —E(| [|[9(s) — Pu(s)]z, ds) —> 0.
C 0 n—o00



6.2 Existence, Uniqueness and Continuity with Respect to the Initial Data 197

Therefore, there is a sequence ng, k € N, such that
P(] /0 " (- a9)bis) W) - U, || > 27 <27
forall t € [0, T], k € N. By the Borel-Cantelli lemma it follows that
v, (1) — /0 ‘ S(t— as)®(s) dW(s) P-a.s.ask — 0o

for all ¢ € [0, T]. If we set now
A:={(t w) € Qr| (Y, (t w))ren is convergentin H},

then A € Pr and the process defined by

\IJ([, (U) — ghmk%oo \pnk(t, (,l)) if (t’ (1)) cA

otherwise

is a predictable version of / ‘ S(t — as)®(s) dW(s), 1 € [0, T).
. 0
Taking ® = ®* we hence obtain that

t I3

/& S(t—as)®*(s) dW(s) = /a S(t—s)B(Y(s)) dW(s), te€]0,T],
0 0

has a predictable version. By this result we can prove the assertion we are
interested in.

t
Claim 2: The process / S(t—s)B(Y(s)) dW(s), t € [0,T], has a predictable
0
version.

Let (a,)qeny be a sequence of real numbers such that o, | 1 as n —
00. By Claim 1 there is a predictable version W, (t), + € [0,7], of

t

/@ S(t—s)B(Y(s)) dW(s),t € [0,T], n € N. If we define
0

B :={(t,w) € Q7 | (W, (t, ®))nen is convergent},

it is clear that B € Pr and the process given by

\y(t, Cl)) — llmn—>oo ‘I’an (t, (U) if ([’ w) cB

otherwise
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is predictable. Besides we get that for each ¢ € [0, T
t
() = / S(t—s)B(Y(s)) dW(s) P-as.,
0
since P-a.s.
= t
W= [7S-9B06) aWe) — [ St-9Br6) awo)
0 n 0
because of the continuity of the stochastic integrals
/ Lo (5)S(t — s)B(Y(s)) dW(s), u€][0,T].
0

Therefore the predictable version is found.
(ii) Concerning the norm we get that

|| /0 S(—9)BY(s) dW(s)]xr

< - [ 6 @) 1+ 1)

since we obtain by Theorem 6.1.2 (Burkholder—Davis—Gundy type inequality)
that

E(| tS(t—S)B(Y(S)) dW(s)[I") ‘l’
0

1
2

< Eo- ([ @isa-osoon)F @)

\_/
Nl—

<Go- 0 / K= 9)(E(1 + [YG) 1))
G- 1))%(/ K2 =91+ [Y(6)ll)? ds)”

p 1 2
<Zp-i( [ K0 @) 1.
0
Therefore, we have finally proved that

F Ly x H'(T,H) — HP(T. H).
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Step 3:  For each p = 2 thereis a A(p) =: A such that
F( ) HPMNT H) — HPN(T. H)

is a contraction for all § € L{; where the contraction constant &(1) < 1 does not
depend on §:
LetY,Y € HP(T,H), § € Ly and t € [0, T]. Then we get that

IIFE Y) = FE DO
< II/ S(t = )[F(Y(5) = F(Y(s))] dslluy
0

+ II/0 S(t = )[B(Y(5)) = B(Y(5))] dW(s)]»,

where the first summand can be estimated in the following way:
t B t B
||/ S(t—s)[F(Y(s)) — F(Y(s))] ds|P < M?CPTP_I/ Y (s) — Y(s)||” ds P-a.s.,
0 0
which implies that
! - 1
(E(II/0 S(t—$)[F(Y(s)) — F(Y(s))] ds|”))”

< MCT'7 ( /0 E(IY(s) = 7)) ds)?

—1 ¢ -
= M/ CT'7 (/ P EE(|Y(s) = Y(s)I7) ds)r
0
<Y =YD, 7

—1 t -
<MrCrT ([ 7 a9y = Pl
0
=ty 11 ~
S MTCT roe (—)p ”Y— Y”p,)k,T-
Ap
Dividing by €' yields

|| /0 S(— IF¥(S) — FF()] dsllpar < MTCT,%I(ﬁ)‘l’ 1Y = Pl

~———— ——
— 0 asA— o0
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By Theorem 6.1.2 we get the following estimate for the second summand:

(5 [ s6=91B06) = BTN W)’

Nl—

< (’E’(p—l))%( /0 (E(||S(t—s)[B(Y(s))—B(l?(s))]l‘iz))% dS)
<Co- ([ Re=9Ir0 -T0l &)’

= G- 0( [ K9 e ~ 0, &)’

V12
s ||Y_ Y”p,k,T

< (’E’(p—l))%(/o K2t =9)e™ ds) Y = ¥llpar

4 LA ! 2 21 2 5
<(z(p—-1))2e ’(/ K*(s)e ds) 1Y —Yllpar.
2 0

As for the first summand this implies that
II/0 S¢=9)[BY(5) = BY ()] dW©)llpar

T 1
< (g(l’— 1))7</0 K*(s)e™ dS)2||Y— Yllpaz-

— 0 asA— o0

Therefore, we have finally proved that there is a A = A(p) such that there exists
an a(A) < 1 with

IFEY) — FE V) par < aMY = Ypar

for all § € L, Y, Y € HPA(T,H). Thus the existence of a unique implicit
function
X : Ly — H'(T.H)
£ X(6) = F(5.X(©)

is verified.
Step 4:  We prove the Lipschitz continuity of X : Lj — H?(T, H).

By Theorem F.0.1 (ii) and the equivalence of the norms || || and || ||, 1.7 We
only have to check that the mappings

F(.¥): L — HP (T, H)
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are Lipschitz continuous for all Y € H” (T, H) where the Lipschitz constant does
not depend on Y.
But this assertion holds as for all €, ¢ € L{ and Y € H?(T, H)

IFE.Y) = FE e = ISOE = Dl < Mrl§ =Ll

6.3 Smoothing Property of the Semigroup: Pathwise
Continuity of the Mild Solution

Let X (§) be the mild solution of problem (6.1) with initial condition § € L{. The aim
of this section is to prove that the mapping ¢ — X (£)(7) has a continuous version.
Because of Lemma 6.2.9 we already know that the process of the Bochner integrals

/ S(—9FXE) ds. 1€ 0.T]
0

is P-a.s. continuous. Hence it only remains to show that the process

/0 S(— 9BXE)s) dW(s). 1€ [0.T].

has a continuous version. To this end we use the method which is presented in
[27, Theorem 5.2.6, p. 59; Proposition A.1.1, p. 307]. In contrast to [27] we do not
demand that the semigroup is analytic and therefore we only get continuity instead
of Holder continuity as in [27].

First, we have to introduce the general concept of the stochastic convolution.

Definition 6.3.1 (Stochastic Convolution) If ®(r), r € [0,T], is a L(U, H)-valued
predictable process such that the stochastic integrals

W(r) = /OtS(t—s)QD(s) dw(s), 1 € [0, 7],

are well defined, then the process W/? (1), t € [0, T, is called stochastic convolution.

The following result (see [27, Theorem 5.2.5, p. 58]) is a corollary of the stochastic
Fubini Theorem (i.e. Theorem 6.1.4 above).

Theorem 6.3.2 (Factorization Formula) Ler o €]0,1[ and ® be an L(U, H)-
valued predictable process. Assume that

1. S(t — s)®(s) is Lr(U, H)-valued for all s € [0,1], t € [0, T).
2. / (s —u)"E (IIS(s — u)@(u)”iz) du < oo forall s € [0, T].
0
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t s 1
3. / (t—s5)*"" [/ (s—u)_ZO‘E(HS(s—u)d)(u)Hiz) du] P ds < oo forallt € [0,T].
0 0
Then we have the following representation of the stochastic convolution.

sin a7r

/ tS(t—s)CIJ(s) dw(s) = / (t—9)*7'S(t—5)Y2(s) ds (6.4)
0

P-a.s. for all t € [0, T], where Y2(s), s € [0,T), is an B([0, T]) ® Fr-measurable
version of

/ (s — 1)S(s — u)d) AW, s € [0.7]. 6.5)
0

Proof First we check that / (s —u)™S(s —uw)Pw) dW(wu), s € [0,T], is well

defined and has an B([0, T]) ® Fr-measurable version Y2 (s), s € [0, T]. But this is
true since first we have that the mapping

0 (u,w,5) > 1) (s —u) *S(s —u)®), ue[0,T],

is Pr ® B([0, T])/B(L,)-measurable by assumption 1. (The proof can be done in a
similar way as the proof of Lemma 6.2.5 and the proof of Lemma 6.2.6). Secondly,
by assumption 2., we obtain that

T
E( /0 0 0) s — ) S (s — S W)|2, )

= /S(s — u)_ZU‘E(HS(s — u)@(u)”iz) du < oo,
0

by assumption 2.

Therefore the mapping ¢ : Q7 x [0,T] — Ly(U, H) fulfills the conditions
of Theorem 6.1.4 and thus the process in (6.5) is well defined and has a product
measurable version Y, f (see the proof of [26, Theorem 4.18, p. 109]). In addition,
for fixed ¢ € [0, T] the mapping ¢, given by

¢ Qrx[0,T] - Ly(U,H)
(u, w, ) = Ly (s)(t — s)o‘_l Lio,sp () (s — ) "*S(t — u)®(u, w)

also fulfills the conditions of Theorem 6.1.4 for the following reasons:
Now fix ¢ € [0, T]. We have that the mapping

(pt . QT X [07 T] g LZ(Us H)
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is Pr ® B([0, T])/B(L,)-measurable. Moreover, we get by assumption 3 that

T T
/ (E( / Lo, () Ljo.s () (2 — )27V (s — u) ™
0 0

1

1S( — ) D) |2, du))2 ds

= /OT Lo (s)(r — S)a_l(/OT Lo.sf (u) (s — )™
E(||S(t - u)<I>(u)||i2) du)7 ds

(by Fubini’s theorem)

T

T
< bty [ a9 ([ s -

=

E(||S(s — u)CD(u)H%z) du) ds < o0
(by the semigroup property).

Therefore, there exists a product measurable version of

/‘Y Lo q(s)(r — $)% s —u) %St — u)®(w) dW(u), se]0,T].
0

Since by Lemma 2.4.1 for each s € [0, T

/OS Lo ()t =) (s — ) ™St — u)P(u) dW(u)
=l (s)(t —5)* 'St —9)YI(s) P-as.,

for this version again by Fubini’s theorem we get that
t
E(|| / (t—$)*"'S(t— 5)Y2(s) ds
0
T ps
[ [ 1@ =97 6= 0= wow awa asl)
0o Jo
T
= [ E(11pa)a =975 97209
0

s
- /0 Lo, (s)(t — $)% V(s — )48 (t — u) D () dW(u)||) ds

=0.

203
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Furthermore, we can use Theorem 6.1.4 to exchange the integration and thus we
finally obtain that

/ t(r — )" IS(t—5)Y2(s) ds

0

- / t / (=9 (5 — ) S( — u)D) AW () ds
0 Jo

= /t /t(t — ) s —u) ™St — u)®u) ds dW(u)
0 Ju

/ot(/ut(t -9 s —u)™ dS)S(f — W) 0(u) dW(u)

- /tS(t— u)®(u) dW(u) P-as.
sinam J

- (keyword: Euler’s beta function). |
sin

t
since / (t—9)*Ys—u)™ ds =
Using this representation of the stochastic convolution we are now able to prove
the desired pathwise continuity.
Letp > 2 and o E];lw 1[. For ¢ € L7([0, T); H) := L([0, T], B([0, T]), dt; H) we
define

Ryp(t) = /Or(t—s)“_lS(t— s)p(s) ds, t €[0,T].

Then R, ¢ is well defined since
t - t (a_l)L p—1
[ 1a=9 5wl as< ([ 5 00T brlolr < .
0 0

since @ > [17 and therefore (o — l)p‘T’1 > —1.
Proposition 6.3.3 Let o €]0, 1[andp > 1. Then
Ry : L7([0,T]; H) — C([0, TT: H).

Remark 6.3.4 1f one assumes that the semigroup S(¢), ¢ € [0, T, is analytic one even
gets that Ry is Holder continuous for all ¢ € LP([0, T]; H) (see [27, Proposition
A.1.1,p. 307]).
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Proof of 6.3.3 Let ¢ € LP([0,T]; H), t € [0,T], and let t,, n € N, be a sequence in
[0, T] such that f, —> r. Then
n—>oo

||Rot§0(tn) - Ra<ﬂ(f)||

y /0 1y = 51 S (60 — )p(s) ds— /0 (= 518 = 9)p(s) ds]

< /OTII 104, ((8)(tn = )71 S (1w = 9)9(5) = Lo ()(t = 9)*7'S(t = )9 (s)|| .
Concerning the inner term we obtain that
1 0.(() = 977 St = 9)0(5) = L)t = 7S = )p(s)]| — 0
for ds-a.e. s € [0, T]. Moreover, the family

o1 (80 = )78t = () = Lot = )* 7S = )p() | nen

is uniformly integrable :
For ¢ € [0, T] we set

Fi(s) := lipg(s)(t = )7 S = 9)e(s)|, s € [0, T].
Since (¢ — I)P%1 > —1, there exists an & > 0 such that
p
(a—1)(1+e)——>—landp>1+e.
p—1—¢

Then

p—l—e
/ Fl+£(s) ds < /(l )(Ot D(1+e) ;== dS) ? M1+£||q0||1+8

0
—1—.
s(/ D09 49) 7 Mg L
0

< 0.

T
Therefore, sup / F!™¢(s) ds < oo and hence F,, t € [0,T], is uniformly
t€[0,7] JO
integrable. Since
110,41 (5) (1 = )7 S (1 = 9)(5) = Lo, () (1 = 9)* 7' S (2 = )g() |
< F,(s) + Fi(s)
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for all s € [0, T] the assertion follows. O

Thus we have found a tool to check whether the process

/0 S(— HBX(E)s) dW(s). 1€ [0.7],

has a P-a.s. continuous version.

Proposition 6.3.5 Assume that the mappings A, F and B satisfy Hypothesis M.0,
and let p > 2. If there exists an o E]zl)’ ool such that

T
/ sT2K2(s) ds < oo,
0

then the mild solution X () of problem (6.1) has a continuous version for all initial
conditions & € L,

Proof Without loss of generality we may assume that o €]0, 1[. S(-)& is P-a.s.
continuous because of the strong continuity of the semigroup.

In Step 2, 2. (i) of the proof of Theorem 6.2.3 we have already shown that the
process of the Bochner integrals

/OS(t—s)F(X(g)(s)) ds, te]0,T7],

has P-a.s. continuous trajectories.
Thus, in fact, it only remains to prove that the process

/0 S(— HBX(E)s) dW(s). 1€ [0.7],

has a continuous version:
Since

/ (=57 / (5= u) 2 E(IS(s — BXE@)IZ,) du® ds
0 0

< / (=9 / (=0 K = wE((+ [XOWI)?) du]’ ds
0 0

=

<0+ W@ [ =9 [ [ =0 K 6= a]' o

<(1+ ||X(§)||Hz)</0Tu_2“K2(u) du)% /OTSH ds < oo,
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we have by Theorem 6.3.2 (factorization formula) that P-a.s.

/0 S(— )BX(E)(5) dW(s)

sin o

/t(t — )18t —s) /S(s —u) *S(s — u)B(X(&)(w)) dW(u) ds

sin Ol.7t

/( —u) "S- — w)BXE)(w) dW(w) ).

=:7Y,
Since the mapping ¢ : Q7 x [0, T] — L,(U, H) given by
Q. w,5) = L (u)(s —u)~*S(s — W) B(X(§) (u, )

fulfills the conditions of Theorem 6.1.4, the process Y, can be understood as a
t
B([0,T]) ® Fr-measurable version of / (t —uw)™S(t — wBXE)(w) dW(u),
0
t € [0, T] (see the proof of [26, Theorem 4.18, p. 109]).
To get the P-a.s. continuity of the stochastic integral we have to show that P-a.s.

Y, € ([0, T); H).

By Theorem 6.1.2 we can estimate £ (||Ya (t)||1’) independently of ¢ € [0, 7] in the
following way

E(IY.(1")

P

< Eo-)*( / (1= 9 (IS¢ — )BEEGDIE,))” ds)

[ST3S)

IS

< (Lo ) / (1= 9K = )(E + [X@ W) ds)
< Co-n)( /0 (= K= (1 + [XOll)? ds)’

)4 r 2
<Ge-0) 0+ @y ([ K @) <o

Finally, we obtain by the real Fubini theorem that

B[ ol a) = / "B 07) di < .



Appendix A
The Bochner Integral

Let (X, I ||) be a Banach space, B(X) the Borel o-field of X and (€2, F, t) a measure
space with finite measure p.

A.1 Definition of the Bochner Integral

Step 1:  As a first step we want to define the integral for simple functions which
are defined as follows. Set

5;:{f;Q—>X‘f:ZxklAk,xkeX,Ake}',1§k$n,neN}
k=1

and define a semi-norm || ||¢ on the vector space £ by

Il = / IFll du. f < €.

To get that (5 Ll ||g) is a normed vector space we consider equivalence classes
with respect to || ||¢. For simplicity we will not change the notation.

Forf € &,f = Y}, xla,, Ai’s pairwise disjoint (such a representation is called
normal and always exists, because f = Y _, x¢la,, where f(Q) = {x1,....x},
X; # xj, and Ay := {f = x}) and we now define the Bochner integral to be

/f du = Zka(Ak)-
k=1

© Springer International Publishing Switzerland 2015 209
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(Exercise: This definition is independent of representations, and hence linear.) In
this way we get a mapping
int: (€, lle) — (X, 1 11)
s [rau

which is linear and uniformly continuous since H [f du H < [IIfIl du for all
fet&.
Therefore we can extend the mapping int to the abstract completion of & with
respect to || ||¢ which we denote by €. _

Step 2:  We give an explicit representation of £.

Definition A.1.1 A function f : @ — X is called strongly measurable if it is
F/B(X)-measurable and f(2) C X is separable.

Definition A.1.2 Let 1 < p < co. Then we define
Lr(2, F, w; X) := LP(u: X)

= {f Q- X 'f is strongly measurable with

respect to F, and /|[f||" du < oo}

and the semi-norm

il = ( / TG du) " e Foux).

The space of all equivalence classes in £(2, F, u; X) with respect to || ||z is
denoted by LP (2, F, u; X) := LP(u; X).

Claim LN, F, u;X) = E.
Step 2.a: (L1 (Q2,F, :X), | ||L1) is complete.

The proof is just a modification of the proof of the Fischer—Riesz theorem by the
following proposition.

Proposition A.1.3 Let (2, F) be a measurable space and let X be a Banach space.
Then:

(i) the set of F/B(X)-measurable functions from Q to X is closed under the
formation of pointwise limits, and

(ii) the set of strongly measurable functions from Q to X is closed under the
formation of pointwise limits.
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Proof Simple exercise or see [18, Proposition E.1, p. 350]. O

Step 2.b £ is a dense subset of L' (2, F, u; X) with respect to || ||...
This will follow from the following lemma.

Lemma A.1.4 Let E be a metric space with metric d and letf : Q — E be strongly
measurable. Then there exists a sequence f,, n € N, of simple E-valued functions
(i.e. f, is F/B(E)-measurable and takes only a finite number of values) such that
for arbitrary w € 2 the sequence d(f,,(a)),f(a))), n € N, is monotonely decreasing
to zero.

Proof ([26, Lemma 1.1, p. 16]) Let {¢; | k € N} be a countable dense subset of
f(2). Form € N and w € €2 define

dw(w) := min{d(f(w).e) | k <m} (= dist(f(w), {ex. k < m})),
k(@) := min{k < m | du(®) = d(f(®), )},

fm(w) ‘= Chy(w)-

Obviously f,,, m € N, are simple functions since they are F/B(E)-measurable
(exercise) and

Jm(§2) Cler, e, ... em.
Moreover, by the density of {e; | k& € N}, the sequence dy,(w), m € N, is

monotonically decreasing to zero for arbitrary @ € 2. Since d (fm(a)),f (a))) =
dy(w) the assertion follows. O

Let now f € L'(Q, F, u: X). By Lemma A.1.4 above we get the existence of a
sequence of simple functions f,,, n € N, such that

an(a)) _f(w)H 10 forallw € Qasn — oc.

—>00 . .
Hence f, == fin || || by Lebesgue’s dominated convergence theorem.

A.2 Properties of the Bochner Integral

Proposition A.2.1 (Bochner Inequality) Letf € L'(Q2, F, u: X). Then

1[5 aul < [0 0
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Proof We know the assertion is true for f € £, i.e. int : £ — X is linear, continuous
with |lintf|| < ||f||le for all f € &, so the same is true for its unique continuous
extensionint : £ = L'(u; X) — X, i.e. forall f € L'(X, u)

|| / £ dull = [@f] < Iflls = [ 1 dp.

O
Proposition A.2.2 Letf € L'(Q, F, u: X). Then
/Lofd,u :L(/fdu)
holds for all L € L(X,Y), where Y is another Banach space.
Proof Simple exercise or see [18, Proposition E.11, p. 356]. O

Proposition A.2.3 (Fundamental Theorem of Calculus) Ler —0co <a < b < 00
andf € Cl([a,b];X). Then

[ @) (w) du ifs <t

J@) =f(s) = [ f(u) du = g_ [ Vg @)f () du  otherwise

forall s, t € [a, b] where du denotes the Lebesgue measure on B(R).
Proof

Claim 1: 1If we set F(t) := f;f’(u) du, t € [a, b], we get that F'(r) = f'(¢) for all
t € [a,b].
For that we have to prove that

I (F G+ 1 = F) = 0llx = 0.

To this end we fix 7 € [a, b] and take an arbitrary & > 0. Since f’ is continuous
on [a, b] there exists a § > 0 such that ||f’(u) —f (@ Hx < ¢ for all u € [a, b] with
|u —t| < 8. Then we obtain that

1 t+h
(F+ 1) = FO) =7 Ol =15 [ (7@ -5 ©) dul

G

1
I

)
Hf/(u) —f(0 Hx du<e

TRl Jinen

if t+ h € [a,b] and |h| < 8.
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Claim2: If F € C'([a,b]; X) is a further function with F' = F’ = f' then there
exists a constant ¢ € X such that F — F = c.
Let us first assume that F(a) = 0 = F(a). Then for all L € X* = L(X,R)
we define g; := L(F — F). Then g, = 0 and therefore g; is constant ¢;. But
gr(a) = L(F(a) — F(a)) = 0, so ¢, = 0. Since X* separates the points of X, by
the Hahn—Banach theorem (see [3, Satz 4.2, p. 114]) this implies that F' — F=0.
In the general case we apply the above to F — F(a) and F — F(a) to obtain the
assertion. O



Appendix B
Nuclear and Hilbert-Schmidt Operators

Let (U,(,)y) and (H,( , )) be two separable Hilbert spaces. The space of all
bounded linear operators from U to H is denoted by L(U, H); for simplicity we write
L(U) instead of L(U, U). If we speak of the adjoint operator of L € L(U, H) we write
L* € L(H,U). An element L € L(U) is called symmetric if (Lu,v)y = (u, Lv)y
for all u,v € U. In addition, L € L(U) is called nonnegative if (Lu,u) = 0 for all
uel.

Definition B.0.1 (Nuclear Operator) An element 7 € L(U, H) is said to be a
nuclear operator if there exists a sequence (a;)jen in H and a sequence (b;)jen in U
such that

o0
Tx = Zaj(bj,x)y forallx e U
j=1

and

SNl - l1B5lu < oo

jeN

The space of all nuclear operators from U to H is denoted by L, (U, H).
IfU=HandT € L, (U, H) is nonnegative and symmetric, then T is called trace
class.

Proposition B.0.2 The space L, (U, H) endowed with the norm
o0
1Tl = inf{ Y sl - bl | T = Y aey. 2o, x € U}
jeN j=1
is a Banach space.
© Springer International Publishing Switzerland 2015 215
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Proof [60, Corollary 16.25, p. 154]. O
Definition B.0.3 Let 7 € L(U) and let ¢, k € N, be an orthonormal basis of U.
Then we define

tr7 := Z(Tek,ek)y

keN

if the series is convergent.

One has to notice that this definition could depend on the choice of the
orthonormal basis. But there is the following result concerning nuclear operators.

Remark B.0.4 If T € L,(U) then tr T is well-defined independently of the choice of
the orthonormal basis ¢, k € N. Moreover we have that

e 7| < 1Tl w)-

Proof Let (aj)jen and (b))jen be sequences in U such that

Tx = Zaj(b] Xy

jeN
forall x € U and Z”‘U“U' Ibjlly < oo.

jeN
Then we get for any orthonormal basis e, k € N, of U that

(Tex, ex)v = Z(eluaj)U {ex. bj)u

jeN

and therefore

D WTereqyu] <D |lewap)u - ex b

keN JjEN keN
1 1
< Z(Z\(ek,aj)(,iz)z . (Z|<ek’bj>U|2)2
jEN keN eN
= Yl - bl < oo,
JEN

This implies that we can exchange the summation to get that

Z Tey, ex)y = ZZ €k, a; {ex, )U = Z(aj’bj)U’

keN jeN keN jeN

and the assertion follows. O
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Definition B.0.5 (Hilbert-Schmidt Operator) A bounded linear operator T :
U — H is called Hilbert—Schmidt if

> ITer]” < o0

keN

where ¢, k € N, is an orthonormal basis of U.
The space of all Hilbert—Schmidt operators from U to H is denoted by L, (U, H).

Remark B.0.6
(i) The definition of Hilbert—Schmidt operator and the number

2 . 2
NIz .y = Y| Texl
keN

does not depend on the choice of the orthonormal basis e, k € N, and we have
that |||z, w.z) = |T* |,#,v)- For simplicity we also write || 7|z, instead of
17| .ty

Q) 1Tlzw.rm < 1T ow.m)-

(iii) Let G be another Hilbert space and S, € L(H,G), S, € L(G,U), T €
Ly(U,H). Then $T € Ly,(U,G) and TS, € Ly(G, H) and

1S1T |, w.00 < ISille.o) 1T s m) -

1TS2 M|, 6.0 < T | w.m 182l 6.0y -

Proof

(i) If ex, k € N, is an orthonormal basis of U and f;, k € N, is an orthonormal
basis of H we obtain by the Parseval identity that

SIzed? = >3 (e )P = DT,

keN keN jeN jeN

and therefore the assertion follows.
(i) Letx € U and f, k € N, be an orthonormal basis of H. Then we get that

ITx]? = > (T fi)> < el YT hlls = 1717, 0 - 13-

keN keN

(iii) Let ex, k € N be an orthonormal basis of U. Then

ZnslTekug ISU1Z 1.6 117, 0.1y-
keN
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Furthermore, since (7S,)* = S5T*, it follows by the above and (i) that TS, €

L>(G,H) and
1782026,y = ITS2)* L a1.6)
= 15T .6
< 182060 1T lw.m).,
since a bounded operator has the same norm as its adjoint. O

Proposition B.0.7 Let S, T € L,(U, H) and let ey, k € N, be an orthonormal basis
of U. If we define

(Tv S)Lz = Z(SEk, Tek)

keN

we obtain that (Lz(U, H),(, )Lz) is a separable Hilbert space.
If fi, k € N, is an orthonormal basis of H we get that f; @ ey = filex, - )u,
j, k €N, is an orthonormal basis of L,(U, H).

Proof We have to prove the completeness and the separability.

1. L,(U, H) is complete:
Let 7,, n € N, be a Cauchy sequence in L,(U, H). Then it is clear that it
is also a Cauchy sequence in L(U, H). Because of the completeness of L(U, H)
there exists an element T’ € L(U, H) such that |T,, — T||yw,n) —> 0 as n — oo.
But by Fatou’s lemma we also have for any orthonormal basis e, k € N, of U
that

17 = 7117, = Y _((Tu = Dew (T, ~ Thex)
keN
=" liminf] (7, - Toe|
m—>00
keN
< 1mf§|| (T = Tex|” = liminf| T, — T, < ¢
€

for all n € N big enough. Therefore the assertion follows.
2. L,(U, H) is separable:
If we define fj®ey := fi{ex, - )u,Jj, k € N, thenitis clear that f;®e; € Lr(U, H)
for all j, k € N and for arbitrary T € L,(U, H) we get that

(i ®ewT), =Y (ewea)u (fiTen) = (fi Tex).

neN
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Therefore it is obvious that f;®ex, j, k € N, is an orthonormal system. In addition,
T =0if (ff ® ex, T)r, = 0 forall j, k € N, and therefore span(f; ® e | j, k € N)
is a dense subspace of L, (U, H). O

Proposition B.0.8 Let (G, (, )G) be a further separable Hilbert space. If T €
Ly(U,H) and S € Ly(H, G) then ST € L, (U, G) and

IST Nl w.6) < ISllzs - 1T ]|, -

Proof Let fi, k € N, be an orthonormal basis of H. Then we have that
STx =Y (Tx.f)Sfi. x€U
keN
and therefore

STl we < Y _IT*fllu - ISfillc
keN

1 1
2 2
< (200A) - (oNSAIZ) T = ISl - 1T e
keN keN
|

Remark B.0.9 Let ¢, k € N, be an orthonormal basis of U. If T € L(U) is
symmetric and nonnegative with Y, . (Tex, ex)y < oo then T € Ly (U).

Proof The result is obvious by the previous proposition and the fact that there
exists a nonnegative and symmetric T € L(U) such that T = T3T? (see
Proposition 2.3.4). Then T2 € Ly(U). O

Proposition B.0.10 Let L € L(H) and B € L,(U, H). Then LBB* € L(H), B*LB €
Ly(U) and we have that

tr LBB* = tr B*LB.
Proof We know by Remark B.0.6(iii) and Proposition B.0.8 that LBB* € L;(H) and

B*LB € L (U). Let ¢, k € N, be an orthonormal basis of U and let f;, k € N, be an
orthonormal basis of H. Then the Parseval identity implies that

> |{fi- Bew) - (fi LBey) |

k€N neN
<Xt enl) (B )’
neN keN keN

= lIBeul - ILBell < L) - IBIIF, -

neN



220 Appendix B

Therefore, below it is allowed to interchange the sums to obtain that

trLBB* = Y (LBB*fi.fi) = Y (B*f. B*L*fi)u

keN keN
=Y S B feeu- (B L ey = 3 3 W Beu) - (fio LBe)
keN neN neN keN
=Y (Ben,LBe,) =Y (en. B*LBe,)y = tr B*LB.
neN neN
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The Pseudo Inverse of Linear Operators

Let (U, (. )u) and (H, (. )) be two Hilbert spaces.

Definition C.0.1 (Pseudo Inverse) Let T € L(U,H) and Ker(7T) := {x € U |
Tx = 0}. The pseudo inverse of 7T is defined as

T~ = (T lgeryr) 2 T(Ker(T)*) = T(U) — Ker(T)*.

(Note that T is one-to-one on Ker(7)1.)
Remark C.0.2

(1) There is an equivalent way of defining the pseudo inverse of a linear operator
T € L(U,H). For x € T(U) one sets T~'x € U to be the solution of minimal
norm of the equation 7y = x, y € U.

(ii) If T € L(U,H) then T~" : T(U) — Ker(T)> is linear and bijective.
Proposition C.0.3 Let T € L(U) and T~" be the pseudo inverse of T.

(i) If we define an inner product on T(U) by
1w = (T, T7Yy)y forallx,y € T(U),

then (T(U), (, )T(U)) is a Hilbert space.
(ii) Let ey, k € N, be an orthonormal basis of (Ker T)J‘. Then Tey, k € N, is an
orthonormal basis of (T(U), (, )T(U)).

Proof T : (KerT)L — T(U) is bijective and an isometry if (Ker 7)* is equipped
with (, )y and T(U) with (, )T(U)- O

Now we want to present a result about the images of linear operators. To this end
we need the following lemma.
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Lemma C.0.4 Let T € L(U, H). Then the set TB.(0) (= {Tu | u € U, |lully < c}),
¢ =0, is convex and closed.

Proof Since T is linear it is obvious that the set is convex.

Since a convex subset of a Hilbert space is closed (with respect to the norm)
if and only if it is weakly closed, it suffices to show that TB.(0) is weakly
closed. Since T : U — H is linear and continuous (with respect to the norms
on U, H respectively) it is also obviously continuous with respect to the weak
topologies on U, H respectively. But by the Banach—Alaoglu theorem (see e.g. [68,
Theorem IV.21, p. 115]) closed balls in a Hilbert space are weakly compact. Hence
B.(0) is weakly compact, and so is its continuous image, i.e. TB.(0) is weakly
compact, therefore weakly closed. O

Proposition C.0.5 Let (Uy. (. )1) and (Uz.(. )2) be two Hilbert spaces. In
addition, let Ty € L(Uy,H) and T, € L(U,H). Then the following statements
hold.

(i) If there exists a constant ¢ = 0 such that | T x||; < c||T5x||2 for all x € H then
{Twu | ue U, llully <1} C {Tov | v € Uy, |l < c}. In particular, this
implies that ImT; C Im 7.

(i) If|Tix|y = || Tyxll2forallx € H thenIm Ty = Im T, and || T; 'x||; = ||T5 x|
for all x € Im Ty, where Ti_l is the pseudo inverse of T;, i = 1,2.

Proof [26, Proposition B.1, p. 407]

(i) Assume that there exists a uy € U; such that
luollit <1 and Tiug ¢ {Tzv | veU, vl < c}.

By Lemma C.0.4 we know that the set {Tov | v € U, vz < ¢} is
closed and convex. Therefore, we get by the separation theorem (see [3,
5.11 Trennungssatz, p. 166]) that there exists an x € H, x # 0, such that

1 < {x,Tiug) and (x,Tov) <1 forallv € U, with |[v]> < c.

Thus ||T7x||; > 1 and ¢|| TS x[|, = sup |(T2*x,v)2‘ < 1, a contradiction.
lvll2<e

(i) By (i) we know that Im 7} = Im T5,. It remains to verify that
||T1_1x||1 = ||T2_1x||2 forall x € ImTj.
If x = 0 then ||77'0[|; = 0 = || 750>

If x € Im T} \ {0} then there exist u; € (KerT})* and u, € (Ker T>)* such
that x = Tyu; = Toup. We have to show that |u]|; = ||uz]l2.
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Assume that ||u1]|; > |Juz]l2(> 0). Then (i) implies that

X us
o = ()
lluz]l2 llu2]l2

€ {Tzv i v € Uy, ||U||2 < 1} = {Tll/l i ue U, ||u||1 < 1}

Furthermore,

X ui

ui
[lu2ll2 lluzll2 luall2 |

Both together imply that there exists a it; € U, ||i;||; < 1, so that for u;
Mol € (Ker T1)* we have

Ty, = =T, i.e.uy —1u € KerTy.
l[uz]l2

Therefore,

1= (i, o)1 — il
~ ~ ~ 112
< |l — lla)? < (1|

This is a contradiction.

0 = (it — Un, it2)
lit2||1) |22 ]|y < 0.

|
Corollary C.0.6 LetT € L(U,H) and set Q := TT* € L(H). Then we have
ImQ: =ImT and |Q x| =T 'x|y foralix €ImT,
where Q_% is the pseudo inverse on%.

Proof Since by Lemma 2.3.4 Q% is symmetric we have for all x € H that

o

04| = (Qrx) = (T ) = [T

Therefore the assertion follows by Proposition C.0.5.



Appendix D
Some Tools from Real Martingale Theory

We need the following Burkholder—Davis inequality for real-valued continuous
local martingales.

Proposition D.0.1 Let (N,)cjo,r] be a real-valued continuous local martingale on
a probability space (2, F,P) with respect to a normal filtration (F;).cjo,r) with
Ny =0.

(i) Then for all stopping times T(< T)

E(sup |N,]) < 3E((N)'/?).
t€l0,7]

(ii) IfE((N)lT/Z) < 00, then (N)e(0.1 is a martingale.

Proof See e.g. [56, p. 75, line 1] for (i). Now we prove (ii).
Let oy : Q@ — [0,7T], N € N, be stopping times such that (Niacy)epo 7y is @
martingale and Nlim ty = T. Then foreach ¢ € [0, T
—>00

llm Nt/\l'N = Nl‘ P-a.s.
N—00

and by (i)

Sup |Niazry| < sup |Ns| € L (2; R).
NeN s€[0,7]

Hence by Lebesgue’s dominated convergence theorem for each ¢ € [0, T
lim Niag, = N, in L'(Q; R)
N—o00

and assertion (ii) follows. |
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Corollary D.0.2 Let ¢,§ €]0, oo[. Then for N as in Proposition D.0.1

P(sup N =€) < ZEUN)Y2 A8) + PANY > 5).

t€[0,7]

Proof Let
s 1/2
T:=inf{r = O| (N),”” > §} A T.

Then (< T) is an F;-stopping time. Hence by Proposition D.0.1

P sup |N|=¢
t€[0,7]

=P( sup [Ny = e, 7= T) +P( sup [N/ = ¢,17 < T)

t€[0,7] t€[0,7]
3
<Zey + p( sup NIz e ) 2 )
& 1€[0.7]

sSE((NVT/z A 8) + P((N)Y* > §).

Appendix D



Appendix E
Weak and Strong Solutions:
The Yamada—Watanabe Theorem

The main reference for this chapter is [71].
Let H be a separable Hilbert space, with inner product (-, -}y and norm || ||z. Let
V, E be separable Banach spaces with norms || ||y and || | g, such that

VCHCE

continuously and densely. For a topological space X let B(X) denote its Borel o-
algebra. By Kuratowski’s theorem we have that V € B(H), H € B(E) and B(V) =
BH)NV,BH)=B(E)NH.

Setting ||x||y := oo if x € H\ V, we extend | ||y to a function on H. We recall
that by Exercise 4.2.3 this extension is B(H)-measurable and lower semicontinuous.
Hence the following path space is well-defined:

T
B:= {w € C(R+;H)‘/ [w(®)|lydr < oo forall T € [0, oo)},
0

equipped with the metric

o0 k
pwrwn) = Y 2"‘[( 1 () — wa(Ollvds + sup [wn () — m(r)nH)Al]
P 0 1€[0.4]
Obviously, (B, p) is a complete separable metric space. Let B;(B) denote the o-
algebra generated by all maps 7, : B — H, s € [0, 1], where 7,(w) := w(s), w € B.
Let (U, {, )uv) be another separable Hilbert space and let L,(U, H) denote the
space of all Hilbert—Schmidt operators from U to H equipped with the usual Hilbert—
Schmidt norm || ||, .
Letb: Ry xB — FEando : Ry xB — Ly(U,H) be B(Ry) ® B(B)/B(E) and
B(R+) ® B(B)/B(L,(U, H))-measurable respectively such that for each r € Ry

b(t,-) is B,(B)/B(E)-measurable
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and
o(t,-)is B;(B)/B(L,(U, H))-measurable.

As usual we call (2, F, P, (F;)) a stochastic basis if (€2, F, P) is a complete
probability space and (F;) is a right continuous filtration on 2 augmented by the
P-zero sets. Let B, k € N, be independent (F;)-Brownian motions on a stochastic
basis (€2, F, P, (F;)) and define the sequence

W(@) := (Be())ien, t €0, 00).

Below we refer to such a process W on R* as a standard R*°-Wiener process.
We fix an orthonormal basis {ex, k € N} of U and consider W as a cylindrical Wiener
process on U, that is, we informally have

00
W(t) =" Bier. t€]0.00).
k=1
We consider the following stochastic evolution equation:
dX (1) = b(t, X)dt + o (1, X)dW(r), t € [0, 00). (E.1)
Definition E.0.1 A pair (X, W), where X = (X()):e[0,00) 1S an (F;)-adapted process

with paths in B and W is a standard R°°-Wiener process on a stochastic basis
(2, F,P,(Fy)), is called a weak solution of (E.1) if

(i) Forany T € [0, 00)

T T
/0 l1b(s, X) || gds + /0 llo (s, X)||§2(U’H)ds <oo P-ae.
(i) As a stochastic equation on E we have
t t
X(1) = X(0) —l—/ b(s,X)ds —i—/ o(s,X)dW(s), te€[0,00) P-ae.
0 0

Remark E.0.2

(i) By the measurability assumptions on b and o, it follows that if X is as in
Definition E.0.1 then both processes b(-, X) and o (-, X) are (F;)-adapted.
(ii)) We recall that by definition of the H-valued stochastic integral in (ii) we have

/ro(s,X)dW(s) = /to(s,X)oJ_ldV_V(s), t € [0,00),
0 0
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where J is any one-to-one Hilbert-Schmidt operator from U into another
Hilbert space (U(, );) and

W(t) =Y Bu(t)Jer. te€[0,00). (E.2)
k=1

By Sect. 2.5 this definition of the stochastic integral is independent of the choice
of Jand (U, (, )). We recall that for s € [0,00), w € B

o(s,w) oJ ' € L,(QY*(U), H)
with [|o (s, w) OJ_1||L2(Q1/2(U),H) = [lo (s, Wl w.m),

where Q := JJ*, and that W is a O-Wiener process on U.
Below we shall fix one such J and (U, (, ) ) as in Remark E.0.2(ii) and set
o(s,w):=o(s,w) oJ7!, se [0,00),w € B,

and for any standard R*°-Wiener process W we define W as in (E.2) for the fixed J.
Furthermore we define

Wy 1= {w € C(R4, U)|w(0) = 0}

equipped with the supremum norm and Borel o-algebra B(Wy). For 1 € Ry let
B (W) be the o-algebra generated by 5 : Wy — U, 0 <5 <1, m(w) := w(s).

Definition E.0.3 We say that weak uniqueness holds for (E.1) if whenever (X, W)
and (X', W’) are two weak solutions with stochastic bases (2, F, P, (F;)) and
(', F', P, (F))) such that

PoX(0) ' =P oX'(0)7",
(as measures on (H, B(H))), then
P OX_I — P/ o (X/)—l

(as measures on (B, B(B))).

Definition E.0.4 We say that pathwise uniqueness holds for (E.1), if whenever
(X, W), (X', W) are two weak solutions on the same stochastic basis (2, F, P, (F;))
and with the same standard-R®°-Wiener process W on (£2, F, P) such that X(0) =
X’(0) P-a.e., then P-a.e.

X(t) =X'(¢), t €0, 00).
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To define strong solutions we need to introduce the following class & of maps:
Let £ denote the set of all maps F : H x Wy — B such that for every probability

&P
measure p on (H, B(H)) there exists a B(H) ® B(WO)WX)P/ B(B)-measurable map
F, : H x Wy — B such that for y-a.e. x € H

F(x,w) = F,(x,w) for PP-ae.w e W,.

e
Here B(H) ® B (WO)M@)P denotes the completion of B(H) ® B(W,) with respect
tou® P2, and P2 denotes the distribution of the Q-Wiener process on U on
(W, B(Wy)). Of course, F), is uniquely determined 1+ ® P2-a.e.

Definition E.0.5 A weak solution (X, W) to (E.1) on (2, F, P, (F)) is called a
strong solution if there exists an F € & such that for x € H, w — F(x,w) is

" po
B,(WO)P/ B:(B)-measurable for every ¢ € [0, co) and
X = FPOX(O)_I (X(O), W) P-a.e.,

o
where B,(WO)P denotes the completion with respect to P2 in B(W,).

Definition E.0.6 Equation (E.1) is said to have a unique strong solution if there
exists an F' € & satisfying the adaptiveness condition in Definition E.0.5 and such
that:

1. For every standard R°°-Wiener process on a stochastic basis (2, F, P, (F;)) and
any Jy/B(H)-measurable £ : Q@ — H the B-valued process

X:= FPogff1 (Sv ‘/_V)
is (F;)-adapted and satisfies (i), (i) in Definition E.0.1, i.e. (F(£, W), W) is a
weak solution to (E.1), and in addition X(0) = £ P-a.e.
2. For any weak solution (X, W) to (E.1) we have
X = Fpox(o)-1(X(0), W) P-ace.
Remark E.0.7 Since X(0) of a weak solution is P-independent of W, thus

Po(X(0), W)™ = pn® P2,

we have that the existence of a unique strong solution for (E.1) implies that weak
uniqueness also holds.
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Now we can formulate the main result of this section.

Theorem E.0.8 Let 0 and b be as above. Then Eq.(E.1) has a unique strong
solution if and only if both of the following properties hold:

(i) For every probability measure u on (H,B(H)) there exists a weak solution
(X, W) of (E.1) such that  is the distribution of X(0).
(ii) Pathwise uniqueness holds for (E.1).

Proof Suppose (E.1) has a unique strong solution. Then (ii) obviously holds. To
show (i) one only has to take the probability space (W, B(Wy), P2) and consider

- Q0
(H x Wo, B(H) @ B(Wo)"®" i ® P2) with filtration

(o (BH) & Bi+e(Wo), ), 120,

e>0

e

where A denotes all i ® P9-zero sets in B(H) ® B(Wo)l@P .Leté : HxWy — H
and W : H x Wy — W, be the canonical projections. Then X := Fpoz—1(§, W) is
the desired weak solution in (1). |

Now let us suppose that (i) and (ii) hold. The proof that then there exists a
unique strong solution for (E.1) is quite technical. We structure it through a series
of lemmas.

Lemma E.0.9 Ler (2, F) be a measurable space such that {w} € F forall v € Q
and such that

D ={(w,0)|welle FRF
(which is the case, e.g. if Q2 is a Polish space and F its Borel c-algebra). Let Py, P,

be probability measures on (2, F) such that Py @ P2(D) = 1. Then P1 = Py = §u,
for some wy € 2.

Proof Letf : Q — [0, o0) be F-measurable. Then
/f(wl)Pl(dwl) = / f(w1)P1(dw1) P2 (dw,)
= [[ 1h(@r.wr@)P @oPan)

- // L (@1, 02)f (@2)P1 (deo1 )P (devy) = / Fln)Pa(dwn),
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so Py = P,. Furthermore,
1= // Ip(w1, w2)P1(dw) P2 (dw;) = /Pl({wz})Pz(dwz),

hence 1 = P;({w,}) for Pr-a.e. w, € Q. Therefore, P; = §,, for some wp € 2. 0O

Fix a probability measure w on (H, B(H)) and let (X, W) with stochastic basis
(2, F,P,(F;)) be a weak solution to (E.1) with initial distribution p. Define a
probability measure P, on (H x B x Wy, B(H) ® B(B) ® B(Wy)) by

P, = Po (X(0),X, W) .

Lemma E.0.10 There exists a family K, ((x,w),dw)),x € H,w € W, of
probability measures on (B, B(B)) having the following properties:

(i) Forevery A € B(B) the map
Hx Wy 3 (x,w) = K,((x,w),A)
is B(H) ® B(Wy)-measurable.

(ii) Forevery B(H) @ B(B) @ B(Wy)-measurable map f : Hx B x Wy — [0, 00)
we have

/ F G, wi, WP, (dx, dwi, dw)
HXBxWq
= / / / F e, wi, WK ((x, w), dwi) P2 (dw) i (dx).
H W() B
(iii) Ift € [0,00) andf : B — [0, 00) is B;(B)-measurable, then

HxWy3 (x,w) — /]Bf(wl)Ku((xa w),dwi)

B 2 _  ®P°
is BH) ® B,(WO)M(X)P -measurable, where B(H) ® B,(WO)M®P denotes the

completion with respect to 1 ® P2 in B(H) ® B(W)).
Proof Let Il : H x B x Wy — H x W be the canonical projection. Since X(0) is
Fo-measurable, hence P-independent of W, it follows that

P, ol =Po(X(0), W) = u® P

Hence by the existence result on regular conditional distributions (cf. e.g. [47,
Corollary to Theorem 3.3 on p. 15]), the existence of the family K, ((x, w), dw1), x €
H, w € Wy, satisfying (i) and (ii) follows.
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To prove (iii) it suffices to show that for ¢t € [0, 00) and for all Ay € B(H),
A € B,(B), A € B,(W;) and

A ={m, —m €By, 7, — 7y €Ba, ..., 7, — 7, €B}(C W),

t<n <...<rk,Bl,...,Bk€B(l_]),

/ / lAﬂA’(W)Ku ((x, W),Al)PQ(dw)M(dx)
Ag 4 Wy
:/A /W L W)E, g po (Ku (-, A1) |B(H) ® B,(Wo))P?(dw)p(dx), (E.3)

since the system of all AN A", A € B,(Wy), A" as above generates B(W). But by
part (ii) above, the left-hand side of (E.3) is equal to

/ lAO(x)lAﬂA’(W)lAI(Wl)Pu(dxa dW],dW)
HXBxWq
_ /Q Ly (X(0)) Ly, (¥) Ly (W) Ly (W)dP. (E4)

But 14/(W) is P-independent of F;, since W is a standard R>-Wiener process on
(2, F, P, F;), so the right-hand side of (E.4) is equal to

/ Lo (W)dP- / Lag (X (0)) L, (X) Ly (W)dP
Q Q

=P2(4") L4y () 14 (W) 14, (1) P, (dx, dwy, dw)
HXBxW,

ZPQ(A/)/A /AK;A((%W),Al)PQ(dw)p,(dx)
:PQ(A’)/A LEM®PQ(K#("AI)IB(H)®Bt(Wo))((x, W))PQ(dW),u(dx)
:/A /W Lana W)E g pe (K (-, A1) B(H) ® Bi(Wo))((x, w))PC(dw) e (dx),

since A’ is P2-independent of B,(Wy). O

For convenient labelling subsequently, up to and including the proof of
Lemma E.0.14, we rename our weak solution as (X', W) := (X, W) and define
QW FO_ ph) (}',(1))), V_V(I),PLI),K,(LI) correspondingly. Now take another weak
solution (X®, W?) of (E.1) with the same initial distribution x on a stochastic
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basis (2@, F@, PO (F?)). Define W?, P\? correspondingly and let K be
constructed correspondingly as in Lemma E.10. For x € H define a measure Q,
on

(HxBxBx Wy, B(H)® B(B) ® B(B) ® B(W,))

by

0:(4) 2=/H/B/BAVO La(z, wi, w2, w)

KD ((zw), dw)K D ((z, w), dw2) P2 (dw)8,(dz).
Define the stochastic basis

Q::HXIBX]B%XWO

F*:=B(H)® BB) ® B(B) ® B(WO)QX

Fri= ﬂa(B(H) ® Bite(B) ® Bi1:(B) ® Bi+:(Wo). No),

e>0

where
N 1= {N € F'|Q:(N) = 0},
and define maps

Hozfz — H, (x,w;, w2, w) — x,
Hi:fz - B, (x,w,wy,w)—>w; €B, i=1,2,

I : Q — W,, x, wi,wa,w) > w e W,.
Then, obviously,
Q.0 ;! =4, (E.5)
andfori=1,2
Q.o T3 = P(= Po (W)™, (E.6)

Lemma E.0.11 There exists an Ny € B(H) with (+(No) = 0 such that for all x € N
we have that I13 is an (F}')-Wiener process on (Q, F*, Qy) taking values in U.



E Weak and Strong Solutions: The Yamada—Watanabe Theorem 235

Proof By definition I3 is (}if)-adapted for every x € H. Furthermore, for 0 < s <
tv y € H, andA()?AO € B(H)7 Ai S BA(B)ﬂ i = 1525 A3 € BA(WO),

/A Eo. (exp(i{y: TT3(2) — TT())5) Lagstyxanas) ()

=[ / exp(i(y, w(t) — w(s)) g)1a,(x) 145 (w)
Ag J Wy
K (e w), ADK ((x, w), A2) P2 (dw) p(d)

- / / exp(ily. w(t) — w(s)) ) PC(dw) Qs (Ao x Ay x Az x As)pu(d),
Ap /Wy

where we used Lemma E.0.10(iii) in the last step. Now the assertion follows
by (E.6), a monotone class argument and the same reasoning as in the proof
of Proposition 2.1.13. O

Lemma E.0.12 There exists an Ny € B(H), No C Ny, with u(N) = 0 such that
forall x € NY, (I1y, I13) and (I1,, I13) with stochastic basis (Q Fx, O, (]-"‘)) are
weak solutions of (E.1) such that
I1,(0) = M2(0) =x  Qs-ace.,
therefore, I1| = T1, Q,-a.e.
Proof ([26, Theorem 4.18, p. 109]) Fori = 1,2 consider the set A; € F* defined by
t t
A; Z:{Hi(l‘) — I, = / b(S, Hl‘)dS + / O_'(S, H,)ng,(s) Vte [O, OO)}
0 0

T T
0 0

Define A € B(H) ® B(B) ® B(W,) analogously with II; replaced by the canonical
projection from H x B x W onto the second and ITy, [13 by the canonical projection
onto the first and third coordinate respectively. Then by Lemma E.0.10(ii) for i =
1,2

/ 0.(A) 1(d)
H

= /H[WO/]B/]BlAi(x’Wl’WZ’W)KI('LI)((X’W)’dWI)Kl(LZ)((x’W)’dWZ)PQ(dw)/"L(dX)

ng)(A) = POEXD(0), XD, WD) € A}) = 1. E.7
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Since all measures in the left-hand side of (E.7) are probability measures, it follows
that for p-a.e.x € H

1 = 0:(A) = O:(Ai),

where fori = 1,2
t t
Ai,x = {Hl(t) —Xx = / b(S, Hi)ds + / C_T(S, H,)dH3(s) Vt € [O, OO)}
0 0

T
m{ /0 15 Tz + ot L),y < 00 VT € [0, oo)} .

Hence the first assertion follows. The second then follows by the pathwise unique-
ness assumption in condition (ii) of the theorem. O

&P
Lemma E.0.13 There exists a B(H) ® B(WO)M®P/ B(B)-measurable map

F,:HxW,—B
such that
KLI)((X, W)? ) = KLZ) ((x, W)7 ) = SFH(x,w)
(= Dirac measure on B(B) with mass in F,,(x, w))

Sy e
for u ® P2-a.e. (x,w) € H x Wy. Furthermore, F, is B(H) ® B,(WO)M(X)P/B,(B)-

e
measurable for all t € [0, 00), where B(H) ® B,(WO)M@)P denotes the completion
with respect to i ® P2 in B(H) ® B(W,).

Proof By Lemma E.0.12 for all x € N{, we have
1 = 0:({I1; = I12})

B /w /B /B 1o (w1 w2 KD ((rw), dw))K D ((x, w), dw) PO(dw),

where D := {(w;,w;) € B x B|w; € B}. Hence by Lemma E.0.9 there exists an
N € B(H) ® B(Wy) such that 4 ® P2(N) = 0 and for all (x, w) € N¢ there exists
an F,(x,w) € B such that

KO ((x,w), dwi) = K2 ((x, w), dwi) = 85, (e (dw1).
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Set F (x,w) := 0,if (x,w) € N.LetA € B(B). Then fori =1,2
{F, € A} = ({F, € A}NN) U ({K)(-. A) = 1} N N°)

and the measurability properties of F,, follow from Lemma E.0.10. O

We note here that, of course, F,, depends on the two weak solutions (X, W(1))
and (X®, W) chosen(!) above.

Lemma E.0.14 We have
X9 = FM(X(i)(O), Wy PO_ge forbothi=1andi=?2.

In particular, any two weak solutions with initial law | have the same distribution
on B.

Proof By Lemmas E.0.10 and E.0.13 for both i = 1 and i = 2 we have
PO({XY = F,(x"(0), W)}

— [ [ [ timracsmn w108, @) PO a0
B

H W,

=1.

O

Let W be another standard R°-Wiener process on a stochastic basis
(QL,F,P,(F)) and § : Q" — H an F|/B(H)-measurable map such that
w=P okl Set

X' = F, (£ W).
Lemma E.0.15 (X', W’) is a weak solution to (E.1) with X'(0) = & P'-a.s. In
particular, if (X, W') is a weak solution to (E.1) on (', F', P', (F])) with X(0) = &
P'-a.e., then

X=Fu& W) P-ae

Proof By the measurability properties of F, (cf. Lemma E.0.13) it follows that X’
is adapted. We have

P'({E =X'(0)}) = P({E = Fu(&. W) (0)})
= u ® P2({(x,w) € H x Wolx = F,,(x,w)(0)})
= P({X(0) = F,(X(0), W)(0)}) = 1,

where we used Lemma E.0.14 in the last step.
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To see that (X', W’) is a weak solution we consider the set A € B(H) ® B(B) ®
B(W)) defined in the proof of Lemma E.0.12. We have to show that

P'{(X'(0), X', W) eA}) =1.

But since X’(0) = £ is P'-independent of W’, we have
/ 14(X'(0), F,,(X'(0), W'), W')dP'
[ [t R P @
H JW,
:/ / / 1A(x, wi, W)SFH(X,W)(dwl)PQ(dw)p,(dx)
HJW, JB

:/1A(x,w1,w)P,L(dx, dwy, dw)
=P{(X(0),X,W) € A}) = 1,

where we used Lemmas E.0.10 and E.O0.13 in the second to last step. The last part
of the assertion now follows from condition (ii) in Theorem E.0.8. O

Remark E.0.16 We stress that so far we have only used that we have (at least)
one weak solution to (E.1) with the fixed initial distribution p, and that pathwise
uniqueness holds for all solutions with initial distribution p or with a deterministic
starting point in a set of full ;-measure.

To complete the proof we still have to construct F € £ (for which we shall use our
assumption (i) in Theorem E.0.8 in full strength, i.e. that we have a weak solution
for every initial distribution) and to check the adaptiveness conditions on it. Below
we shall also apply what we have just obtained above to 6, replacing w. So, for each
x € H we have a function F;_: H x Wy — B. Now define

F(x,w) = Fs.(x,w), x € H, w € W,. (E.8)

The proof of Theorem E.0.8 is then completed by the following lemma.

Lemma E.0.17 Let pu be a probability measure on (H, B(H)) and F,, : Hx Wy —
B as constructed in Lemma E.0.13. Then for j-a.e. x € H

F(x,") = Fu(x,") P2 —aqe.

______po
Furthermore, F(x, ) is B,(WO)P/B,(B)-measurablefor allx € H, t € [0, 00), where
_____po
B,(WO)P denotes the completion of B,(Wy) with respect to P2 in B(W).
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In particular, (by Lemmas E.0.13 and E.0.15) Condition I and (by the last part
of Lemma E.0.15) Condition 2 in Definition E.0.6 hold.

Proof Let
Q:=HxBxW,
F = B(H) ® B(B) ® B(Wy)
and let x € H. Define a measure Q, on (Q, F) by

D.(A) = /H /W 0 A; a2 w1 WK (2 ). dw ) P2 (dw)S,(d2)

with K, as in Lemma E.0.10. Consider the stochastic basis (Q, F*, O, (}_';‘)) where

F*:=B(H) Q BB)® B(WO)Q”,

Ffi= " o(BH) @ By (B) ® Biio(Wo). o),

>0

where N := {N € F*|Q.(N) = 0}. As in the proof of Lemma E.0.12 one shows
that for x outside a p-zero set Ny € B(H), (I1, IT3) on (2, F*, O, (F})) is a weak
solution to (E.1) with IT(0) = x Oy-a.e. Here

Iy : HxBx Wy — H, (x,w,w) — x,
IM:HxBxWy— B, (x,w;,w) = wy,
I3 : HxB x Wy — Wy, (x,w,w) > w.

By Lemma E.0.15 (Fjs, (x, IT3), IT3) on the stochastic basis (S_Z F, Qx, (}_'f)) is a
weak solution to (E.1) with

F5,(¢, T13)(0) = x Oy —a.s.

for every x € H. Hence by our pathwise uniqueness assumption (ii), it follows that
for all x € N{

F5.(x,TI3) =TT Q,—a.s. (E.9)

Forall A € B(H) ® B(B) ® B(W,) by Lemma E.0.13

Q _ -
/H/V\VO/];%1A(X,W1,W)5FM(X,W)(dW1)P (dw) p(dx) /HQX(A)H(dx)-
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But for each x € Ny by (E.9)
0.4) = [ 14(Mo. i, (x. Ta). 140,
o
= / 1a(x, Fs (x, w), w)PQ (dw)
Wo
_ / / LA G w1 W), ooy (1) PE(d). (E.10)
Wo JB

Since x > O((A) = fWo fB La(x, wi, WK, ((x, w), dwi)P2(dw) is B(H)M-
measurable, so is the right-hand side of (E.10). Therefore, we can integrate with
respect to i and obtain

/1;/\;/0/]3lA(x’wl,W)SF“(X’W)(dwl)PQ(dW)M(dx)

- /H Av /B L 06 w1, )8y o (A1) P () (d),

which implies the first assertion.
Letx € H, t € [0,00), A € B,;(B), and define

Fs, == 1w, Fs,-
Then
Fs, =Fs, §,®P?—a.e.,

hence by the last part of Lemma E.0.13.

(F5. € A} € BAE) @ Bi(Wy) 2. (E.11)
But
{Fs, € A} = {x} x {Fs,(x,-) € A} U (H\{x}) x {0 € A},

so by (E.11) it follows that

{Fs.(x.)) € A} € B(Wq) .

|

Remark E.0.18 For a detailed proof of the Yamada—Watanabe Theorem in the
framework of the “semigroup (or mild solution) approach” to SPDEs, we refer to
[63].



Appendix F
Continuous Dependence of Implicit Functions
on a Parameter

In this section we fix two Banach spaces (E, || ||g) and (A, || ||a). For the whole
section we consider a mapping G : A x E — E with the following property:
There exists an « € [0, 1] such that
IG(A,x) = GA, ) |e < allx—y|e forall A € A and all
x,y € E.
Then we get by the contraction theorem that there exists exactly one mapping ¢ :
A — E such that (1) = G(A,¢(1)) forall A € A.
Theorem F.0.1 (Continuity of the Implicit Function)

(i) If we assume in addition that the mapping A — G(A,x) is continuous from A
to E forall x € E we get that ¢ : A — E is continuous.

(ii) If there exists an L = 0 such that
IG(A,x) — G(A,x)||g S L|A — Al forallx € E
then the mapping ¢ : A — E is Lipschitz continuous.

Proof
(1) We fix A¢g € A. Then for any other A € A

p(A) = 9(ho) = G(A,9(A)) = G(Ao. ¢(A0))
=[G(A. 9(1) = G(A, ¢(A0)] + [G(A. 9(A0)) — G(Ao. @(A0))].

Because of the contraction property we obtain that

lpd) —9o)lle < allo(d) = @(Ro)llz + IG(A, ¢(A0)) — G(Ao, p(A0)) ||
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and hence
1
le(d) — o)l < mIIG(K, @(A0)) — G(Xo, 9(A0)lE-

Therefore we get the result (i). _
(ii) In the same way as in (i) we obtain that for arbitrary A and A € A

o) = oDl < T 160 ¢(0) ~ G o)l < T I1A = X,

where we used the additional Lipschitz property of the mapping G in the last
step. O



Appendix G
Strong, Mild and Weak Solutions

In this chapter we only state the results and refer to [26, 34] for the proofs.

As in previous chapters let (U, || ||y) and (H, || ||) be separable Hilbert spaces.
We take Q = [ and fix a cylindrical Q-Wiener process W(¢), + = 0, in U on
a probability space (€2, F, P) with a normal filtration F;, ¢+ = 0. Moreover, we
fix T > 0 and consider the following type of stochastic differential equations
in H:

dX(1) = [CX(t) + F(X(8)] df + B(X(1)) dW (1), t€[0,T),
X(0) = &, (G.1)

where:

e C : D(C) — H is the infinitesimal generator of a Cy-semigroup S(), ¢ = 0, of
linear operators on H,

e F:H — His B(H)/B(H)-measurable,

* B:H— L(U,H),

e £ is a H-valued, Fy-measurable random variable.

Definition G.0.1 (Mild Solution) An H-valued predictable process X(t),
t € [0, T), is called a mild solution of (G.1) if

X(1) = S(1)€ + / tS(t — $)F(X(s)) ds
0
+ / tS(t—s)B(X(s)) dW(s) P-as. (G.2)
0

for each t € [0, T. In particular, the appearing integrals have to be well-defined.
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Definition G.0.2 (Analytically Strong Solutions) A D(C)-valued predictable
process X(t), t € [0,T], (i.e. (s,w) — X(s,w) is Pr/B(H)- measurable) is called
an analytically strong solution of (G.1) if

X =&+ /Ot CX(s) + F(X(s)) ds + /OtB(X(s)) dW(s) P-as. (G.3)

for each t € [0, T]. In particular, the integrals on the right-hand side have to be
well-defined, that is, CX(¢), F(X(?)), t € [0, T], are P-a.s. Bochner integrable and
B(X) € Nw.

Definition G.0.3 (Analytically Weak Solution) An H-valued predictable
process X(1), t € [0,7T], is called an analytically weak solution of (G.1)
if

(X().8) = (£.8) + /0 (X(). C°8) + (F(X(5)). 2) ds
+/0 (¢, B(X(s))dW(s)) P-a.s. (G4)

for each t € [0,7] and ¢ € D(C*). Here (C*, D(C*) is the adjoint of (C, D(C))
on H. In particular, as in Definitions G.0.2 and G.0.1, the appearing integrals have
to be well-defined.

Proposition G.0.4 (Analytically Weak Versus Analytically Strong Solutions)

(i) Every analytically strong solution of (G.1) is also an analytically weak
solution.

(ii) Let X(1), t € [0,T], be an analytically weak solution of (G.1) with values in
D(C) such that B(X(t)) takes values in L,(U, H) for all t € [0,T). We further

assume that
T
P (/ ICX(D)| dt < oo) =1
0
T
P (/0 |F(X(0)]| dr < oo) =1

T
P (/ IBX (@), dt < oo) =1.
0

Then the process is also an analytically strong solution.
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Proposition G.0.5 (Analytically Weak Versus Mild Solutions)

(i) Let X(t), t € [0,T], be an analytically weak solution of (G.1) such that
B(X(t)) takes values in Ly(U,H) for all t € [0,T]. Besides we assume

that
T
d =
P(/0 1IX®| t<oo) 1

P (/0T||F(X(t))|| dt < oo) =1

T
P (/ IBX ()7, dt < oo) =1.
0

Then the process is also a mild solution.
(ii) Let X(r), t € [0,T), be a mild solution of (G.1) such that the map-

pings
(t, o) — /Ot S(it—s)F(X(s,w)) ds
(t,w) — /0 S(t—s)B(X(s)) dW(s)(w)

have predictable versions. In addition, we require that
T
P NP dr < o0) = 1
0

T t
/ E( / (S — )BX(S). C*EVE, ) ds) dit < 00
0 0

forall ¢ € D(C*).

Then the process is also an analytically weak solution.

Remark G.0.6 The precise relation of mild and analytically weak solutions with
the variational solutions from Definition 4.2.1 is obviously more difficult to
describe in general. We shall concentrate just on the following quite typical special
case:

Consider the situation of Sect. 4.2, but with A and B independent of  and w. Assume
that there exist a self-adjoint operator (C, D(C)) on H such that —C = const. > 0
and F : H — H B(H)/B(H)-measurable such that

A(x) =Cx+F(x), xeV,
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and
V= D((=C)?),

equipped with the graph norm of (—C)%. Then it is easy to see that C extends to a
continuous linear operator form V to V*, again denoted by C such that for x € V,
y € D(C)

v+ (Cx,y)y, = (x, Cy). (G.5)
Now let X be a (variational) solution in the sense of Definition 4.2.1, then it follows

immediately from (G.5) that X is an analytically weak solution in the sense of
Definition G.0.3.



Appendix H
Some Interpolation Inequalities

For the following see [61, Lemma 2.1 and the subsequent remark].
Lemma H.0.1 Let A C R? be open, d € N and I := LP (M) for p € [1,00).
(i) Ifd =2, then ||p|l}, < 4ll@|121IV o2 for all ¢ € Hy?(A).
(ii) Ifd = 3, then ||p|l}, < 8llll2l|Vel)}, for all ¢ € Hy?(A).
(iii) If d = 2, then @V |y < [Digllp ID2v | for all o, ¢ € I2(A) N Hy' (M),
where D; := E)ix,

Proof Obviously, by a density argument it suffices to show assertions (i)—(iii) for
@ € CJ(A), since by Sobolev embedding H(l)’2 CLP(A)forallp € [1,00[if d = 2,
and H'2(A) C L#2(A) if d = 3. Therefore, fix ¢ € C}(A).

(i) Using the chain rule and the fundamental theorem of calculus we obtain
# = [ D) a= [ 206D

—00 —0o0

and hence

[ ¢ wnaar= [ [ wnet ey aray
s4//[/wuynwW@ynm}

[/ | (x, D] D29 (x, 1) dt} dxdy
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={//W@JNWW@JNM®

'//wwmwM@mwm

< 4lelz [IDigll2 llellz2 |1D2¢ll2
—— ——

<lIVell2 <lIVell2
2 2
< el Vel .
where we used Fubini’s theorem and the Cauchy—Schwarz inequality.

(i) Fix z € R. Again by the chain rule and the fundamental theorem of calculus
we have

z
#@m@=/ m#@w@msszw»mew»mw.
R

—00

Hence by (i)

2
//wﬂnyadMys4//¢%ny@dmw//Wwwwn%m drdy

S4///2“"’(3")”5”|D:‘3</)(x,y,s)| dsdxdy
2
'//Wx,y<ﬂ(x,y,z)| dxdy.

Integrating over z € R implies

|mms8///ww»meum@mmmz

sllell 2 1Dsell 2 <llell 21 Vel

.///’Vx’yq;(x,y,z)’z dxdydz

<Ivell?,

< 8ol Vel

(iii) By the fundamental theorem of calculus we have

y

wwwzf mwmwwzj‘nwmﬂm

—0o0 —00



H Some Interpolation Inequalities

and by Fubini’s theorem we get for all € Cj(A)

[ [ownv e aa

< //[/ D (5.3)] ds] [/ D2y (x.) dr} drdy
— [ [ 1w splasay [ [ 1D e ara

= D@l D2 |-

249



Appendix I
Girsanov’s Theorem in Infinite Dimensions
with Respect to a Cylindrical Wiener Process

In this section, which is an extended version of [23, Appendix A.1], we consider the
Girsanov theorem for stochastic differential equations on Hilbert spaces of type (1.2)
below with cylindrical Wiener noise. We shall give a complete and reasonably self-
contained proof of this well-known folklore result (see, for instance, [26, 32, 36]).
The proof is reduced to the Girsanov theorem of general real-valued continuous
local martingales (see [70, (1.7) Theorem, page 329]).

We consider the following situation: We are given a negative definite self-adjoint
operator A : D(A) C H — H on a separable Hilbert space (H, (-,-)) with (—A)~!*¢
being of trace class, for some § €]0, 1[, a measurable map F : H — H of at
most linear growth and W a cylindrical Wiener process over H defined on a filtered
probability space (2, F, (F;), P) represented in terms of the eigenbasis (ex)ren Of
(A, D(A)) through a sequence

W(t) = (Wr(Dep)ren, =0, (L.1)

where Wy, k € N, are independent real-valued Brownian motions starting at zero on
(2, F, (F), P). Consider the stochastic equations

dX(t) = (AX(t) + F(X(¢)))dt + dW(r), t€][0,T], X(0)=x, (1.2)
and
dZ(t) = AZ(t)dt + dW(r), t€][0,T], Z(0) = x, (L.3)

for some 7' > 0.

Theorem 1.0.2 Let x € H. Then (1.2) has a unique weak mild solution and its law
P, on C([0,T); H) is equivalent to the law Q, of the solution to (1.3) (which is just
the classical Ornstein—Uhlenbeck process). If F is bounded x may be replaced by an
Fo-measurable H-valued random variable.
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The rest of this section is devoted to the proof of this theorem. We first need
some preparation and start by recalling that because Tr[(—A)~!T%] < o0, § €]0, 1],
the stochastic convolution

t
Wa(t) == / T AW(s), 1> 0, (L4)
0

is a well defined F;-adapted stochastic process (“OU process”) with continuous
paths in H and

Z(t,x) = e x + Wy(t), tel0,T], (L5)
is the unique mild solution of (I.2). Let
Q:=PoZ(- )7, (1.6)

and b(t), t > 0, be a progressively measurable H-valued process on (2, F, (F;), P)
such that

T
E[ / |b(s)|2ds} < 00. (I.7)
0
Define

Y(t) = / (b(s).dW(s)) := > /0 (b(s), ex) dWi(s), t € [0,T]. (1.8)

t
0 k=1

Lemma 1.0.3 The series on the r.h.s. of (1.8) converges in L*(2, P; C([0, T]; R)).
Hence the stochastic integral Y(t) is well defined and a continuous real-valued
martingale, which is square integrable.

Proof We have for all n,m € N, n > m, by Doob’s inequality

o s |3 [tewnin ame|] <253 [ tevion awaeo ]
k=m

t€0.7] ' =,

=23 b [ fenb) i) [ febton awics)]

kl=m

n T )
:2;HE|:/O (ex, b(s)) dsi| — 0,

as m,n — oo because of (I.7). Hence the series on the right-hand side of (I.8)
converges in L*(Q,P;C ([0, T]; R)) and the assertion follows. O
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Remark 1.0.4 1t can be shown that if fot(b(s), dW(s)), t € [0, T], is defined as usual,
using approximations by elementary functions (see [67, Lemma 2.4.2]) the resulting
process is the same.

It is now easy to calculate the corresponding variation process ( fo (b(s), dW(s)) ) s
te[0,7].

Lemma 1.0.5 We have
(v, = < /0 '<b(s),dW(s)>>t - /0 b ds. 1e0.1]

Proof We have to show that

Y (r) — / t |b(s)|*ds, €[0,T],
0

is a martingale, i.e. for all bounded F;-stopping times t we have

EY2(0)] = E [ /0 “bs)? ds] ,

which follows immediately as in the proof of Lemma 1.0.3. O

Define the measure

Pi=' D30 p, (1.9)
on (2, F), which is equivalent to P. Since £(r) := @z ¢ ¢ [0,7],
is a nonnegative local martingale, it follows by Fatou’s Lemma that £ is a
supermartingale, and since £(0) = 1, we have

E[E(n] = E[E(0)] = 1.

Hence Pis a sub-probability measure.

Proposition 1.0.6 Suppose that P is a probability measure i.e.
E[E(T)] = 1. (1.10)

Then

ﬁ/k(t) = Wi (r) — /Ot(ek,b(s)) ds, te€l0,T], keN,
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are independent real-valued Brownian motions starting at 0 on (2, F, (]—',),?’) ie.
W(r) := Wi(Deren, t€[0,T],

is a cylindrical Wiener process over H on (2, F, (]—“,),75)

Proof By the classical Girsanov Theorem (for general real-valued martingales, see
[70, (1.7) Theorem, page 329]) it follows that for every k € N

Wi(t) — (Wi, Y),, te]0,T],

is a local martingale under P. Set
n t
Y, (f) := Z/ (e, b(s)) dWi(s), 1€[0,T], neN.
k=170

Then, because by Cauchy—Schwartz’s inequality

Wi, Y =Y, | < (W) /XY =Y, te[0,T], neN,

and since
E[(Y = Y,)] = E[(Y(1) = Y,(1))’] > 0 asn — oo,

by Lemma 1.0.3, we conclude that (selecting a subsequence if necessary) P-a.s. for
allt € [0, 7]

t
(Wi, Y), = li‘{}o(ka Y, = / (ex, b(s)) ds,
n— 0

since QVk, W), = 0if k # [, by independence. Hence each Wk is a local martingale
under P. . " .
It remains to show that for every n € N, (Wy,...,W,) is, under P, an n-

dimensional Brownian motion. But P-a.s. for [ # k
(Wi, Wi, = (W, We), = 8it, 1€ [0,T].
Since P is equivalent to P, this also holds P-a.s. Hence by Levy’s Characterization

Theorem [70, (3.6) Theorem, page 150] it follovfs@ that (Wl,..., Wn) is an n-
dimensional Brownian motion in R” for all n, under P. |
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Proposition L.0.7 Let W4 (), t € [0, T], be defined as in (1.4). Then there exists an
€ > 0 such that

2
E [ expqe€ sup |Wa(d)] < 00.
t€[0,7]

Proof Consider the distribution Qp := PoW; ! of Wy on E := C([0, T]; H). If Qy is
a Gaussian measure on E, the assertion follows by Fernique’s Theorem (see [31]).
To show that Qy is a Gaussian measure on £ we have to show that for each / in the
dual space E’ of E we have that Qp o [~! is Gaussian on R. We prove this in two
steps.

Stepl. Letfy € [0,7], h € H and {(w) := (h,w(ty)) for v € E. To see that
Qo o £7! is Gaussian on R, consider a sequence §; € C([0,T];R),k € N, such
that 8;(f)dr converges weakly to the Dirac measure €,,. Then forall w € E

T T
{(w) = lim (h, w(s)) 6r(s) ds = klim / (hér(s), w(s)) ds
—>00 0

k=00 J
= lm (h. )2 o.1y:m) -
Since (e.g. by Da Prato [19, Proposition 2.15]) the law of W, in L*([0, T]; H) is
Gaussian, it follows that the distribution of £ is Gaussian.

Step2. Let £ € E' be arbitrary. The following argument is taken from [24,
Proposition A.2]. Let w € E, then we can consider its Bernstein approximation

Bu(@)(®) =Y (Z)wkﬂ(r)w(ﬂc/nx neN, refo.7]
k=1

where @ ,(f) := (tT)*(1 — (T)"*. But the linear map
H>x— Lxpp,) €R
is continuous on H, hence there exists an A, € H such that
L(x@rn) = {hgn,x), x€H.

Since B,(w) — o uniformly for all w € E as n — o0, it follows that for all
w€E

to) = lim £(fy(w)) = lim /; (Z) (hicn. (Tk/n)).

Hence it follows by Step 1 that Qg o £7! is Gaussian. O
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Now we turn to SDE (I.2). We are going to apply the above with
1
b(t) = EF(efo + Wa(r)), 1€][0,T],

and define

M = oo (FAx+Wa () aWe) =5 [ [F(ex+Wa () e
(I.11)

P,:=MP.

Proposition 1.0.8 Piisa probability measure on (2, F), i.e. E(M) = 1.

Proof As before we set Z(t,x) := e“x + Wu(), t € [0, T]. By Proposition 1.0.7
the arguments below are standard, (see e.g. [49, Corollaries 5.14 and 5.16, pages
199/200]). Since F is of at most linear growth, by Proposition 1.0.7 we can find

N € Nlarge enough such thatforall0 <i < Nand¢ := %

e ] <

Defining F;(e"x + W (1)) := 1(,_, 1) () F(e”x + W4(1)) it follows from Novikov’s
criterion [70, (1.16) Corollary, page 333] thatforall 1 <i <N

Ei(t) 1= e FUE A+ WA W)= [{ IR+ WaWPds 4 o, 77,

is an F;-martingale under P. But then since &;(,—;) = 1, by the martingale property
of each &; we can conclude that

E [ Sl F @A+ WA(5).dW ()= [i IF(x+Wy (s)\zds]

= E[En(tn)En—1(tn—1) -+ E1(11)]
= E[En(tv—1)En—1(tn=1) -+ - E1(11)]

= E[En_1(ty—1) - E1(11)]

= E[&1(n)] = E[&1(10)] = 1.

O

Remark 1.0.9 Tt is obvious from the previous proof that x may always be replaced
by an Fy-measurable H-valued map which is exponentially integrable, and by any
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Fo-measurable H-valued map if F is bounded. The same holds for the rest of the
proof of Theorem 1.0.2, i.e., the following two propositions.

Proposition 1.0.10 We have Py-a.s.
t t —

Z(t,x) = e“x + / eIAF(Z(s,x)) ds + / T AW (s), rel0.T],  (1.12)
0 0

where W is the cylindrical Wiener process under P, introduced in Proposition 1.0.6
with b(s) := F(Z(s, x)), which applies because of Proposition 1.0.8, i.e. under P,,
Z(-, x) is a mild solution of

dZ(t) = (AZ(t) + F(Z(t)))dt + dW (1), 1€ [0,T], Z(0) = x.

Proof Since F is of at most linear growth and because of Proposition 1.0.7, to prove
(I.12) it is enough to show that for all k € Nand Fy, := (ex, F), Zy := (e, Z) , x; :=
(ex, x) for x € H we have, since Ae, = —Agey, that

de(t,x) = (—)Lka(t,x) + Fk(Z(t,x)))dt + de(l‘), te [O, T], Zk(O) = X.

But this is obvious by the definition of Wr. O

Proposition 1.0.10 settles the existence part of Theorem 1.0.2. Now let us turn to
the uniqueness part and complete the proof of Theorem 1.0.2.

Proposition 1.0.11 The weak solution to (1.2) constructed above is unique and its
law is equivalent to Q.

Proof Let X(t,x), t € [0,T], be a weak mild solution to (I.2) on a filtered
probability space (2, F, (F7), P) for a cylindrical process of type (I.1). Hence

t
X(t,x) = ex + Wa(t) + / eIAF(X (s, x)) ds,
0

for some cylindrical Wiener process W(f) = (Wi(t) ex)ren, t € [0,T], on some
filtered probability space (€2, F, (F;), P). Since F is at most of linear growth, it
follows from Gronwall’s inequality that for some constant C > 0

sup [X(t,x)| < Cy |1+ sup |ePx+ Wa(n)| ]
1€[0,7] 1€[0,7]

Hence by Proposition 1.0.7

E exp{e sup |X(t, x)| < 00. 1.13)

t€[0,7]
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Define

M = oo (FXG0)aW @)= [ 1FOX(so0)) Pds
and
P:=M-P.
Then by exactly the same arguments as above

EM] = 1.

Hence by Proposition 1.0.6 defining
- t
Wi(2) := Wi(2) +/ (ex, F(X(s,x)))ds, te]0,T], keN,
0

we obtain that W(t) = (Wk(t)ek)keN is a cylindrical Wiener process under P and
thus

Wa(t) := /0 t A AW (s) = Wa(h) + /0 t TIAF(X(s,x)) ds, 1€ [0,T],
and therefore,
X(t,x) = ex + Wa(1), te]0,T],
is an Ornstein—Uhlenbeck process under P starting at x. Consequently,
PoX(x)"' = Q.. (1.14)

But since it is easy to see that,

T T " T
/ (F(X(5. ). dW(s)) = / (F(X(5. ). T (s)) — / F(X(s, )2 ds,
0 0 0

it follows that

P = ol (FXG.0).dW©)~] i IFX(s0)ds | B

For k € N define W : C([0,T]; H) — R by

Wk(w)(t):z (ek, ex — w(t)) +Ak/ (ek, ey — w(s)) ds, we C([0,T]; H), te[0,T].
0
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Then, since fork € N, t € [0, T]

t
W) = (ex. Wa()) + M/ (ex, Wa(s))ds
0
and
X(t.x) = e™x + Wa).
it follows that
Wi(X(.x)(@)(1) = Wi(@)(®). k€N, 1€ [0.T], © € Q. (I.15)
Hence (Wk(t)),e[oqr], k € N, are independent Brownian motions on (C([0, T]; H),
FX(FF), 0y), where FX, FX are the image o-algebras under X (-, x) of F and F;
respectively. It is easy to check that ]—',X ,t € [0, T], is a normal filtration and that

F' C FX forallt €[0,T], (1.16)

where F/ is the normal filtration associated to the process 7 (¢) : C([0,T]; H) — H
defined by

(W) == w(t), tel0,T], we C([0,T]; H),

with respect to the measure Q, on C([0, T]; H) equipped with its Borel o-algebra
Fi(=o({m ()|t €[0,T]})),i.e.fort € [0, 7]

Fri= (ol @@lr <) UND),

s>t

where N9 := {N € FF|Q,(N) = 0}.

Since each Wk(t), t € [0,T], is (o(w(r)|r < 1))ico,) adapted, it is an (F})-
Brownian motion due to (I.16). Hence the stochastic integral in the following
definition is well-defined:

pu(w) = oo (Fer@). dW @) )on—3 f7 PP (0. TT: H), 1L.17)
where
W(1) := (Wi()ewen, 1 € [0, 7],
is the cylindrical Wiener process on H corresponding to Wk(t), t €[0,7], ke N.

We emphasize that thus p, : C([0, T]; H) —]0, o[ is an 7 (C F¥)-measurable
function which is defined independently of X(-,x), (2, F,(F;),P) and W. The
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definition of the stochastic integral in (I.17) is analogous to (1.8). Hence, due to
the general construction of R-valued stochastic integrals, it follows that P-a.s.

Pu(X (-, x)) = o FXG). W)= [ IFE0)Pds
Since, therefore, P = p,(X(-, x)) P, we deduce from (I.14) that

P oX(-,x)_1 = 0,0y .
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