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Preface

Ergodic theory, as a mathematical discipline, refers to the analysis of asymptotic
or long-range behaviour of a dynamical system, that is, a map or flow on a
state space, using measure-theoretic or probabilistic methods. A close cousin to
smooth dynamics (the study of differentiable actions on a smooth manifold) and
to topological dynamics (comprising a continuous action on a topological space),
there is a well-established and rich synergy between the three fields. Indeed, many
important applications bring tools from all the three fields to bear in the study of a
particular dynamical system.

As a quickly maturing mathematical field, both theoretical developments and
applications in the physical sciences, engineering, and computer science are flour-
ishing within the arena of modern research in ergodic theory. Driven by these
new theoretical tools and a growing breadth of natural applications, computational
aspects are now a central challenge to researchers in the field.

An open dynamical system is a natural extension of the traditional (closed)
dynamical system. In an open system, the state space is no longer deemed to
be invariant under the dynamical action, but some orbits are allowed to ‘escape’
depending on location and time. An everyday example is the dynamics of a ball on
a billiard table; when the ball falls in a hole in the table, the orbit is terminated.
As introduced by Yorke and Pianigiani in the late 1970s, the abstract concept of an
open system leads immediately to the notion of a conditionally invariant measure
and escape rate along with a host of detailed questions about how mass escapes or
fails to escape from the system under time evolution.

Perhaps ironically, concepts from open systems have recently been used to
analyse traditional, closed systems. For example, in many closed systems, relaxation
to equilibrium is by no means uniform throughout the state space. There may be
regions that remain ‘almost invariant’ for long periods of time, mixing with the
rest of the space at quantifiably slower rates than the other parts of the system.
These ‘almost invariant sets’ become key features determining the asymptotics
of the system. One particularly fruitful idea is to study almost invariant sets as
open subsystems of the larger closed dynamical system, wherein the escape rate
determines the rate of mixing and relaxation to equilibrium.

v
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In some realistic applications, time-varying parameters governing the flow or
transformation on the state space necessitate modelling by a non-autonomous
system. While the ergodic theory of non-autonomous systems parallels that of
autonomous dynamics in many ways, there are important differences. Stable and
unstable foliations, a foundation of geometric analysis for an autonomous map or a
flow, become equivariant, time-dependent structures. Other dynamical objects such
as Lyapunov exponents and Oseledets subspaces can be used in alternative ways
to describe non-autonomous or random dynamics. Invariant or almost invariant
objects arising in autonomous dynamics have non-autonomous analogues called
coherent structures. These are features that move around in the state space under
time evolution but that may still represent barriers to mixing and relaxation
to ‘equilibrium’, a concept that also has to be reinterpreted compared to the
autonomous setting.

From April 9 through April 15, 2012 a group of more than 40 researchers
in ergodic theory gathered at the Banff International Research Station in Banff,
Alberta, Canada to exchange cutting-edge developments in the field.1 Thirty-five
research talks were given during the course of the workshop, covering theoretical,
applied, and computational aspects of both open and closed, autonomous and non-
autonomous dynamics. After the workshop, a number of participants volunteered
to expand on their presentations and contribute chapters to this volume. Each
contribution was rigorously peer-reviewed before inclusion in this volume. We
briefly outline the resulting contributions:

• Balasuriya considers time-dependent flows where the time dependence enters
as a perturbation of an autonomous flow. He describes how to analytically
estimate the perturbed stable and unstable manifolds, which may be regarded
as Lagrangian coherent structures. He then uses Melnikov theory to quantify flux
across these perturbed manifolds.

• Bandtlow and Jenkinson consider the spectrum of transfer operators of real-
analytic expanding maps acting on holomorphic functions of the interval and
other finite-dimensional spaces. They particularly consider the open setting
where mass is leaving the phase space and prove bounds for each spectral point
of the corresponding open operators.

• Bandtlow, Jenkinson, and Pollicott specialise the previous chapter to the setting
of piecewise real-analytic expanding Markov maps of the interval, with escape
through a Markov hole. They show that the leading spectral point of the transfer
operator, which quantifies the escape rate, can be approximated using derivative
information from all periodic points of increasing period. The invariant measure
on the survivor set is also estimated.

• Basnayake and Bollt describe a method of extracting a flow field from a movie of
observations. Under the assumption of smooth time dependence of the flow field,

1Materials from this workshop, including abstracts and some videos of the presentations, are
available at the BIRS website, www.birs.math.ca; search on workshop code 12w5050.

www.birs.math.ca
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they introduce a multi-step method to enforce smooth behaviour. As an example,
they extract a flow field from a movie of sea surface temperature and calculate
Lagrangian coherent structures in the form of finite-time Lyapunov exponent
fields.

• Bose and Murray extend their earlier work on estimating absolutely continuous
invariant measures (ACIMs) to the open dynamics setting. In general, an open
system may support a continuum of escape rates and an infinity of absolutely
continuous conditional invariant measures (ACCIMs). Their approach, based on
maximum entropy and convex optimisation, allows one to prescribe the desired
escape rate and find the corresponding ACCIM.

• Bruin studies a map on a Euclidean .d �1/-dimensional triangle that arises from
a simple d -dimensional subtractive algorithm. For d D 2 the map becomes
the well-known Farey map on Œ0; 1�; for d D 3, Bruin shows that the map
is dissipative but at the same time ergodic with respect to two-dimensional
Lebesgue measure and even exact. This paper contributes to a long and histori-
cally important development of number theoretic applications of ergodic theory
dating back to Renyi in the 1950s with his foundational work on the continued
fraction expansion. At the same time, the tools used are up to date, bringing
modern notions such as distortion, Schwarzian derivative, and random walks to
bear on the problem.

• Bunimovich and Webb consider piecewise differentiable expanding Markov
maps of the interval with a Markov hole. Their focus is on estimating the survival
and escape probabilities after a finite number of iterations of the open system.
They provide explicit upper and lower bounds for these probabilities in terms of
eigenvalues of the transition matrices of induced Markov chains.

• Demers studies billiard dynamical systems with a variety of holes. Using transfer
operator and Young tower techniques, he proves the existence of a natural escape
rate and corresponding absolutely continuous conditional invariant measure
(ACCIM). He then considers the question of stability as the size of the hole goes
to zero and shows the limiting ACCIM is the SRB (or physical) measure for the
closed system. Finally he shows that the escape rate also arises via a variational
principle.

• Froyland and Padberg-Gehle give an overview of transfer operator methods
for finite-time almost-invariant and coherent sets. Their chapter unifies the
autonomous and time-dependent methodologies and then focuses on three
aspects, namely the flow direction, the flow duration, and the level of diffusion
present. They show that the coherent structures produced by the transport-based
transfer operator approach are very natural from a geometric dynamical point of
view.

• Haydn, Winterberg, and Zweimüller consider a general ergodic process and the
return time and hitting time distributions corresponding to a sequence of sets
of decreasing size. They first show that as the size of the sets approaches zero,
limiting return and hitting time distributions exist. Further, they show that if one
induces the original ergodic process via return times to a fixed set of positive
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measure, the limiting distributions of the return and hitting times of the original
and induced systems coincide.

The contributions to this book represent a broad cross section of the topics
represented at the April 2012 workshop and, in turn, make a fine collection of
sample papers for researchers who may be looking to broaden their outlook in
modern aspects of the field. The editors wish to thank all the workshop participants
for their contributions, but especially those participants who took the time to write
up their work as a submission to this book and the referees who helped to hone
the author’s contributions into the high-quality research papers you will find in the
following pages.

Finally, none of this would have been possible without the remarkable support
offered by the Banff International Research Station and its staff. BIRS is indeed one
of only a handful of first-class mathematical research venues in the world; if you
have a chance to go there, do not hesitate!

Leicestershire, UK Wael Bahsoun
Victoria, BC, Canada Christopher Bose
Sydney, Australia Gary Froyland
July 2013
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Chapter 1
Nonautonomous Flows as Open Dynamical
Systems: Characterising Escape Rates
and Time-Varying Boundaries

Sanjeeva Balasuriya

Abstract A Lagrangian coherent structure (LCS) in a nonautonomous flow can be
viewed as an open dynamical system, from which there is time-dependent escape
or entry. A difficulty with this viewpoint is formulating a definition for the time-
dependent boundary of the LCS, since it does not correspond to an entity across
which there is zero transport. Complementary to this is the question of how to
determine the escape rate—the time-dependent fluid flux—across this purported
boundary. These questions are addressed within the context of nonautonomously
perturbed two-dimensional compressible flow. The LCS boundaries are thought of
in terms of time-varying stable and unstable manifolds, whose primary locations
are quantified. A definition for the time-varying flux across these is offered, and
computationally tractable formulæ with a strong relation to Melnikov functions
are provided. Simplifications of these formulæ for frequently considered situations
(incompressibility, time-periodic perturbations) are demonstrated to be easily com-
putable using Fourier transforms. Explicit connections to lobe areas and the average
flux are also provided.

1.1 Introduction

A fairly recent inclusion into the theory of open dynamical systems is Lagrangian
Coherent Structures (LCSs) in nonautonomous flows in fluids. LCSs are time-
varying (unsteady) entities in a flow which remain ‘almost’ coherent as time
evolves yet have some fluid exchange with their surroundings. They are prevalent
in observational, experimental, and computational fluid mechanics and exist across
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the gamut of spatial scales. Examples of LCSs include eddies in the ocean
[2, 29, 31, 44] and the atmosphere [121, 123, 124], vortices at intermediate spatial
scales [33, 56, 74–76], nonmixing patches of fluid in nanofluidic devices [119],
and coherent shear jets [30, 34]. The term LCS was originally coined by Haller
and collaborators [59, 66], to emphasise the Lagrangian nature of these entities,
that is, the fact that these are associated with following fluid particles as opposed
to the Eulerian approach of studying the time variation of instantaneous flow
properties (vorticity field, rate of strain, pollutant concentration). If attempting to
understand transport (of fluid, of pollutants such as oil or volcanic ash, of passively
flowing organisms such as plankton, of heat energy which has strong implications
on the weather and climate, etc), the Lagrangian viewpoint has clear importance
[30, 34, 71, 79, 96, 101, 103, 112, 115, 123, 124]. Each LCS can be thought of as an
open dynamical system, with most of the fluid particles within the LCS remaining
within the LCS, yet with a smaller fraction exiting (or entering) the LCS as time
evolves. Thus, the escape rate associated with the open dynamical system is the
transport across the ‘boundary’ of the LCS. The obvious issues which immediately
emerge are:

(i) How is the boundary of the LCS defined?
(ii) How can the time-dependent escape rate across the boundary be quantified?

These questions are intimately related and are an intensive area of current study
[5,36,52,62, e.g.] due to their importance in transport across multiple spatial scales.
In this chapter, I will answer these questions within a specific limited setting.

While the above questions could be posed in any dimension, two- and three-
dimensional flows are the usual focus because of the fluid mechanical applications.
Three dimensions would seem to be the most natural setting, but two-dimensional
flows continue to attract vigorous research. An obvious reason is that these are more
tractable than three-dimensional (3D) flows, but two-dimensional (2D) flows are
also relevant in a variety of situations. In oceanic flows in particular, the dominant
fluid motion when away from land masses and bottom topography tends to be on
isopycnal (constant density) surfaces; most flow is on nearly horizontal 2D sheets
[100]. This is sometimes called the barotropic assumption [100, 105], and thus
studying flow in 2D is important in oceanography. Another situation of the 2D
approximation being valid is when the spatial scales of two of the dimensions are
hugely separated from the spatial scale of the third dimension, such as flow in long
channels or in certain types of micro/nanofluidic devices. While many studies in the
literature confine their attention to 2D incompressible (area-preserving) flow, it may
be relevant to relax this even if the fluid is incompressible. As my first example of this
claim, consider oceanic flows. The distance between the isopycnal surfaces need not
remain constant; they may be close at some points in space, and far apart in other,
and this relative positioning may also vary with time. Volume preservation in 3D will
therefore not necessarily imply 2D area preservation within each isopycnal surface.
As my second example of this claim, consider steady (autonomous) incompressible
inviscid non-Beltrami flow in 3D: results due to Arnol’d [6–8] indicate that in
this situation flow is confined to 2D surfaces which are topologically equivalent to



1 Nonautonomous Flow Boundaries 3

cylinders or tori, except for surfaces which demarcate the transition from cylinders
to tori.1 The 2D surfaces flow is confined to are called Lamb surfaces [63, 120]
and comprise level sets of the Bernoulli function. While in non-Beltrami flows
with volume preservation and symmetry it is possible to reduce to a Hamiltonian
structure on an abstract 2D manifold [63], area preservation is not necessary on the
Lamb surfaces because of the possibility of compression/expansion in the normal
direction of these surfaces. Thus, when relaxing steadiness or inviscidity (i.e. when
permitting the flow to be nonautonomous or viscous), insisting on area preservation
in 2D is not reasonable, even if the 3D flow was incompressible. Based on these
arguments, there is cause for studying 2D flows within the compressible setting for
incompressible 3D fluids, as it is of course also relevant when the (2D or 3D) fluid
is compressible as well.

For 2D autonomous flows, compressible or not, it is easy to identify boundaries
of LCSs and quantify transport across them. The reason is that the geometry here
is confined to two dimensions only, and hence, in the long term, fluid particles
approach either fixed points (stagnation points), periodic orbits, or heteroclinic
cycles (a set of fixed points which are connected together by heteroclinic trajectories
between the fixed points, forming a structure which is topologically equivalent
to a circle) by the Poincaré-Bendixson Theorem [4, 9, 58]. This implies well-
defined coherent motion associated with entities which remain spatially fixed, which
moreover can be identified easily using either Lagrangian or Eulerian diagnostics.
The paradigmatic example of such a coherent entity is a family of nested periodic
trajectories which are eventually bounded by a heteroclinic cycle. These can be
thought of as vortices (or eddies, in the geophysical literature) and are ubiquitous
in applications. I show a variety of such coherent structures in Fig. 1.1, which
illustrates the curves followed by particle trajectories. The Taylor-Green cellular
flow [1, 3, 10, 11, 18, 39, 106, 116, 118] is one example, which is also the � D 0 flow
(i.e. steady form) of the popular double-gyre model [35,45,49,51,81,93,114, e.g.].
This is displayed in Fig. 1.1a, and here each square cell is a coherent vortex structure,
which is separated from adjacent square cells by the four heteroclinic trajectories
along the sides of the square. Each heteroclinic trajectory is simultaneously a
branch of the stable manifold of one fixed point and a branch of the unstable
manifold of another. I shall often refer to this as a heteroclinic manifold, and thus
the boundary of each square cell is a heteroclinic cycle comprising a collection of
heteroclinic manifolds. The LCS boundary may even be a homoclinic manifold,
that is, a connection from a fixed point to itself. For example, Fig. 1.1b shows
an idealised model for a steady eddy [20, cf.]; the region of rotational motion is
bounded by such a homoclinic manifold. A particular example of this occurs in the
two-gyre Duffing model [5, 16, 17, 21, e.g.] as shown in Fig. 1.1c, in which case
there are two such homoclinic manifolds. Another example, pictured in Fig. 1.1d, is
the cats-eye structures in one-mode Bickley jet or two-mode Rossby wave models
[24, 38, 53, 102, 122, 127] loosely meant to represent the eddies alongside the cores

1Indeed, these separating surfaces can be rationalised as being boundaries of LCSs in this highly
idealised situation.
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a b

c d

Fig. 1.1 Coherent structures and their boundaries (heavy curves) in autonomous flows: (a) Taylor-
Green cellular flow, (b) an eddy, (c) two-gyre Duffing model, and (d) Bickley jet

of oceanic jets such as the Gulf Stream; in this case, each vortex is demarcated
by two heteroclinic manifolds. Of note is that here the jet itself can be thought
of as a coherent structure, and there is a heteroclinic manifold which demarcates
the boundary between the jet and each of the cats-eye structures. This observation
is generic: the boundaries of LCSs are heteroclinic cycles, and the escape rates
across them is zero. In other words, 2D autonomous flows can be thought of as
comprised of closed dynamical systems for each LCS, which is uninteresting from
the perspective of this chapter.

Real flows are however nonautonomous; the associated velocity field is unsteady.
This causes immediate difficulties, since heteroclinic manifolds are now moving
with time and may also intersect each other in complicated ways2 in each time
slice. For any given stable and unstable manifolds, there may be infinitely many

2Transverse intersections are prohibited in autonomous flows, since the presence of such an inter-
section would violate uniqueness of trajectories—the trajectory passing through the intersection
point will not be able to decide which manifold to follow.
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intersections associated with transport which is potentially chaotic, a finite number
of intersections or no intersections at all. This situation is compounded by the fact
that all data from real flows is finite time, whereas infinite times are in reality needed
to define stable and unstable manifolds, which are entities to which there is time-
asymptotic exponential decay. How exactly could one define an LCS boundary in
these situations? This question does not as yet have a completely agreed-on answer,
but many diagnostic identification techniques have been developed, for which
comprehensive reviews are available [32, 78, 99, 105]. The most popular technique
is to use ridges of Finite-Time Lyapunov Exponent (FTLE) fields [33, 34, 37, 71–
73, 103, 126], a method which continues to be developed [35, 65, 81, 113, 114] in
order to achieve higher efficiency and because of the potential for false positives
or negatives [46, 47, 60, 61]. A recently emerging class of diagnostics use Perron-
Frobenius (transfer) and Koopman operators [43, 51, 53, 54, 80, 89, 91], while yet
another is associated with averages along trajectories [70, 80, 85, 88, 92]. Several
very recently developed methods [5, 36, 52, 62] illustrate an interesting diversity of
approaches, indicating both the richness of this research area and the fact that a full
understanding of the diagnostic methods used for LCSs is yet to be attained.

Despite this continuing development, many challenges remain. Firstly, what
are the connections between each of these methods, and in what sense are they
related to invariant manifolds? Secondly, are the methods assured of unambiguously
identifying LCSs—that is, is there the potential for false positives or negatives?
(Recently developed exact models in both two- and three-dimensional flows [17]
may help in testing these two issues.) Thirdly, can the infinite-time necessity of
idealised flows needed to define time-asymptotic decay towards/from invariant
manifolds be reconciled with the finite-time nature of experimental, observational
and numerical studies? Fourthly, if a particular diagnostic method can be used to
identify LCSs, can the method be used to address the complementary question of
quantification of transport from one LCS to another?

Methods for quantifying transport depend very much on the context in which the
problem is posed. Two complementary aspects of transport are that of advection
and diffusion, which are (somewhat confusingly) sometimes thought of as transport
(or stirring) and mixing, respectively. The first of these relates to Lagrangian
particle motion due to nonautonomous velocity fields and will be the main focus
in this chapter. With regards specifically to transport from an LCS to another
LCS, the results available tend to specialise towards specific scenarios. The idea
of ‘transitory’ flows was used by Mosovsky and Meiss to quantify transport in
incompressible flows from one LCS to another when the flow was nonautonomous
only within a finite time interval [93, 94]. A highly popular idea due to Rom-Kedar
and collaborators measures transport in the sense of crossing a ‘pseudoseparatrix’
for specifically incompressible time-periodic two-dimensional flows [109,110,128].
The transport measure in this case is an area of a lobe and builds on the theory of lobe
areas in two-dimensional maps [40, 82, 83]. Under general time dependence, Haller
and Poje [64] suggested measuring transport across a time-varying barrier consisting
of a stable and an unstable manifold by measuring the flux of fluid which crosses a
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‘gate surface’ connecting together these manifolds. A significant contribution here
is to think of transport as a time-varying flux, but actually implementing this method
is difficult in general due to the ambiguity of defining the gate surface.

The second aspect of transport, diffusion, incorporates the effects of small-scale
randomness in many ways and is often associated with fluid mixing.3 Quantifying
diffusive effects tends to be associated with global mixing measures [55, 86, 95,
125, e.g.], and a standard numerical approach would be to quantify such a measure
after using an advection-diffusion equation for passive scalars. What is particularly
fascinating from the perspective of quantifying transport is the interplay between
advection and diffusion, for which new insights are emerging [69, 108, 117, 122,
e.g.]. From the perspective of this chapter, however, I will focus on advection, since
it is instrumental in forming the gross LCS structures.

This chapter approaches the issues of quantifying transport between two-
dimensional LCSs and demarcating the boundaries between them, under the
constraint that the time variation of the flow occurs as a perturbation. Within this
admittedly restrictive situation, a comprehensive theory on both identifying the
boundaries and quantifying transport across them can be developed. Incompressibil-
ity is not a necessary ingredient in the theory. I begin in Sect. 1.2 by describing the
setting in which the theory is to be developed. In Sect. 1.3, I adopt the attitude that
the time-varying boundaries between the LCSs that we seek are stable and unstable
manifolds and obtain leading-order expressions for their time-varying location. The
development here is based on Melnikov theory which is well understood in certain
situations [9,58,128, e.g.], but a couple of lesser known issues need to be addressed:
compressibility and the tangential motion of invariant manifolds. I then in Sect. 1.4
develop a transport description for time-aperiodic perturbations in terms of an
instantaneous flux, which is independent of the number of intersections between
stable and unstable manifolds (which might be zero, a finite number or infinity), and
is thus not dependent on lobe dynamics for which specific intersection patterns are
usually required [50, 84, 110, 128]. I show how explicit expressions can be obtained
for this instantaneous flux and in Sect. 1.5 outline the considerable simplifications
which occur under additional conditions. I also describe how the instantaneous flux
fits in with the well-known idea of lobe areas [109, 110, 128] which is relevant in
time-harmonic incompressible flows. Finally, in Sect. 1.6, I discuss the implications
and potential extensions of these results.

1.2 The Perturbative Setting

The focus shall be on systems in the form

Px D f .x/C "g.x; t / (1.1)

3Chaotic mixing, on the other hand, can be thought of as a purely advective mechanism.
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x t

a b

T t

N t
Fig. 1.2 The heteroclinic
manifold � of (1.2), with a
local coordinate structure at a
general point Nx.�/

in which x 2 ˝, a two-dimensional surface, and the parameter " satisfies 0 �
"� 1. The system (1.1) is a perturbation on the " D 0 system

Px D f .x/ (1.2)

for which certain hypotheses will be assumed.

Hypothesis 1. The vector field f 2 C2.˝/.

Hypothesis 2. Equation (1.2) contains saddle-fixed points a and b, each pos-
sessing one-dimensional stable and unstable manifolds. A branch of the unstable
manifold of a is assumed to coincide with a branch of the stable manifold of b,
forming a heteroclinic manifold � .

If a and b are the same point—which is permissible—� would be a homoclinic
manifold. Figure 1.2 displays the required topological structure. In the unperturbed
situation (1.2), � forms a barrier between the flows on the two sides and, depending
on how the stable manifold of a and the unstable manifold of b behave (these are not
pictured in Fig. 1.2), forms the boundary between two closed dynamical systems on
the two sides of � . No transport occurs across � ; this is zero escape rate from one
dynamical system to another. Thus, � could be any of the heteroclinic manifolds
illustrated in Fig. 1.1, which forms the boundary of an LCS. This behaviour changes
when the perturbed flow (1.1) is considered, and characterising such transport
between the open dynamical systems on the two sides of � , and defining the time-
varying boundaries demarcating these systems, is the goal of the remainder of this
chapter.

In order to do this, it helps to first introduce additional properties related to
the unperturbed system (1.2), as indicated in Fig. 1.2. The interface � can be
represented as a trajectory Nx.t/ of (1.2), such that

lim
t!�1 Nx.t/ D a and lim

t!1 Nx.t/ D b: (1.3)

This representation is unique up to a shift (i.e. Nx.t � ˇ/, for any real ˇ, also has
this property), since (1.2) posed with any initial condition on � has a solution
Nx.t/ which satisfies these conditions. For a chosen initial condition Nx.0/, there is
a solution Nx.t/ of (1.2) whose forward and backward trajectories span � . Let the
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parameter � represent the position Nx.�/ on � . If ` is the arc length parametrisation
along � such that ` D 0 at a and ` D L (the length of � ) at b, then

d` D jf . Nx.�//j d� ; or `0.�/ D jf . Nx.�//j : (1.4)

For each position Nx.�/ on � , I will set up a local orthogonal coordinate system by
defining the tangential and normal unit vectors, respectively, by

OT .�/ D f . Nx.�//
jf . Nx.�//j and ON .�/ D J f . Nx.�//

jf . Nx.�//j (1.5)

in which the ‘rotation by C�=2’ skew-symmetric matrix J is defined by

J D
�
0 �1
1 0

�
:

These concepts are indicated in Fig. 1.2. The focus hereafter shall be on the
perturbed situation (1.1). The perturbing vector field g will be assumed to satisfy:

Hypothesis 3. The function g 2 C2 .˝/ for any t 2 R, g 2 C2 .R/ for any x 2 ˝,
and g and Dg are both bounded in ˝ � R.

The matrix Dg mentioned above is the spatial derivative at fixed t . The formerly
impermeable barrier � ‘opens out’ in the perturbed system (1.1), which needs
characterisation. Defining the escape rates between the two open dynamical systems
on the two sides of the perturbed version of � is a closely related question. The
remainder of this chapter focusses on these issues.

Before getting to the results, I would like to point out several important subcases
for which I will be able to express simpler results. These subcases are:

Subcase 1 (Time-periodic). If there exists a constant T such that g .x; t C T / D
g .x; t / for all .x; t/ 2 ˝ � R, this situation shall be called the time-periodic
subcase.

Subcase 2 (Time-harmonic). If the representation g .x; t / D h .x/ cos .!t C �/

for some smooth function h W ˝ ! R
2 and constants ! ¤ 0 and � is possible, this

shall be called the time-harmonic subcase.

Subcase 3 (Incompressible). The subcase in which r � f D TrDf D 0 shall
be called the incompressible (or area-preserving) subcase. If so, there exists a
Hamiltonian function (or stream function) H W ˝ ! R defined by

f .x/ D �J DH .x/ D �J rH .x; t / ; (1.6)

such that H is conserved along flow trajectories of (1.2),4 and moreover ON in (1.5)
is the unit vector in the direction of rH .

4 dH.x.t//
dt

D DH .x.t// � Px D DH .x.t// � Œ�JDH .x.t//� D 0.
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Unless explicitly stated, the results that I will state will not assume a particular
subcase. In Sect. 1.5, however, I shall describe simplifications which occur to my
transport characterisations under various combinations of these subcases.

1.3 Boundaries Between Open Dynamical Systems:
Invariant Manifolds

To take into account the explicit time dependence in (1.1), I shall represent it in the
augmented form

Px D f .x/C "g .x; t /

Pt D 1

�
; (1.7)

which now renders the system autonomous at the cost of expanding phase space to
three dimensions. The " D 0 version of (1.7) has trivial time dependence, whose
important flow structures are shown in Fig. 1.3. The saddle point a of (1.2) becomes
a trajectory .a; t / in the augmented system. This trajectory is hyperbolic and
possesses two-dimensional stable and unstable manifolds, corresponding exactly
to the one-dimensional stable and unstable manifolds of the saddle point a in
the non-augmented system (1.2). For example, the branch of the one-dimensional
unstable manifold of a which formed � becomes a two-dimensional surface in the
augmented system. Trajectories on this two-dimensional surface are exponentially
pushed away from .a; t / as time progresses. The hyperbolicity of .a; t / is asso-
ciated exactly with such exponential rates of decay/growth and can be precisely
characterised in terms of exponential dichotomies [27, 42, 97]. Similarly, the one-
dimensional stable manifold of b of (1.2) corresponds to a two-dimensional stable
manifold of the trajectory .b; t /, which coincides with the two-dimensional unstable
manifold of .a; t /. Thus, the heteroclinic manifold in this situation can be thought
of as � � R, and the intersection of this surface at any fixed time t gives exactly
Fig. 1.2.

Now, when 0 < " � 1, the hyperbolic trajectories .a; t / and .b; t / of (1.7)
perturb to nearby hyperbolic trajectories A" WD .a".t/; t/ and B" WD .b".t/; t/,
respectively, and retain their stable and unstable manifolds. The proof of this fact is
related to the persistence of exponential dichotomies under bounded perturbations

t

a,t

b,tFig. 1.3 Important structures
associated with the
augmented system (1.7) when
" D 0
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x p
N p

T p
xu p,t

a

b

a t

Time t

Fig. 1.4 Unstable manifold � u
" of the hyperbolic trajectory .a".t/; t/ of (1.7) in a time slice t . The

dashed curve shows the unperturbed unstable manifold �

[42, 129, 130]. (Related persistence results under slightly different assumptions are
also available [48, 67, 97].) Now, the two-dimensional unstable manifold of A" and
the two-dimensional stable manifold of B" are the entities of interest; when " D 0

these coincided to form the impenetrable barrier � � R. The interesting issue is
that these do not need to coincide when " ¤ 0, providing an avenue for exchange
between regions above and below � in Fig. 1.2.

The perturbed versions of these manifolds will be characterised to leading order
in " based on recent results [16]. First, consider the unstable manifold of A", which
shall be called � u

" . This must be attached to the hyperbolic trajectory A" and is a
surface which is "-close to a suitable restriction of � �R in Fig. 1.3. The behaviour
of � u

" as it gets close to the hyperbolic trajectory B" is not obvious. Since this
second hyperbolic trajectory also possesses an unstable manifold, � u

" will get pulled
away from B" as it gets closer to it and thus be subject to global flow properties.
I will focus on the part of � u

" which remains O."/-close and show how it can be
characterised.

To do this, I fix a value of p and consider the point Nx.p/. I also fix a time value
t—my intention is to represent the perturbed unstable manifold parametrically in
terms of the position p and time-slice t . Now, the intersection of � u

" in the time slice
t is pictured in Fig. 1.4. By smoothness in ", there is a trajectory xu

".p; t/ of (1.1)
which lies on � u

" in the time slice t , whose backward time trajectory remains O."/-
close to the backward time trajectory through Nx.p/ of the unperturbed system (1.2).
Now I define the wedge product between vectors in R

2 by

F ^G WD GT JF D G � .JF / D F1G2 �G1F2 ; (1.8)
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in which the final equality expresses the wedge product in component form. I also
define the projected rate of strain:

R.	/ WD ON T
.	/

h
.Df /T . Nx.	//CDf . Nx.	//

i OT .	/ (1.9)

in which the superscript T represents the transpose, and the unit vectors OT and ON
are defined in (1.5).

Theorem 1.1. The part of the perturbed unstable manifold associated with the
hyperbolic trajectory A" of (1.7) has a parametric representation with parameters
.p; t/ 2 .�1; P / � .�1; T / for arbitrarily large P and T , given by

xu
".p; t/ D Nx.p/C "

�
M u.p; t/

jf . Nx.p//j
ON .p/C Bu.p; t/

jf . Nx.p//j
OT .p/

�
C O."2/ ; (1.10)

in which

M u.p; t/ D
Z p

�1
exp

�Z p

�

r � f . Nx.	// d	

�
f . Nx.�// ^ g . Nx.�/; � C t � p/ d�

(1.11)
and

Bu.p; t/ D jf . Nx.p//j2
Z p

0

R.�/M u.p; � C t � p/C f . Nx.�// � g . Nx.�/; � C t � p/
jf . Nx.�//j2 d� :

(1.12)

Proof. Details are available in [16]. ut
Remark 1.1. There is freedom in determining xu

".p; t/ which is O."/-close to the
trajectory passing through . Nx.p/; t/ of the unperturbed system, since any adjacent
point on the unstable manifold also satisfies this requirement. This freedom is
spurious if attempting to determine the unstable manifold in each time slice t , which
is a one-dimensional curve. Hence, I have made a specific choice in (1.10), which is
associated with choosing the specific lower limit 0 in the integral (1.12).

Remark 1.2. The limitation on P and T to be finite means that the full unstable
manifold of A" is not given by (1.10); the expression loses control of the manifold
as p ! 1 or t ! 1.

Remark 1.3. While the fact that the normal perturbation of the unstable manifold is
related to the Melnikov-like functionM u has been implicitly understood in the time-
periodic subcase, the tangential movement as characterised by Bu.p; t/ in (1.12)
is a new finding [16]. The impact of this previously neglected quantity has been
investigated in the situation of a time-aperiodically perturbed Duffing oscillator [16],
and its effect on the location of the unstable manifold is nontrivial.

Remark 1.4. The improper integral over .�1; p/ in defining M u in (1.11) con-
verges; see Remark 1.15. Convergence issues of a boundary term are also important
in deriving (1.11) [16].
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An exactly analogous calculation can be performed to determine the location of
the perturbed stable manifold of B" of (1.7):

Theorem 1.2. The part of the perturbed stable manifold associated with the
hyperbolic trajectory B" of (1.7) has a parametric representation with parameters
.p; t/ 2 .P;1/ � .T;1/ for arbitrarily large �P and �T , given by

xs".p; t/ D Nx.p/C "

�
Ms.p; t/

jf . Nx.p//j
ON .p/C Bs.p; t/

jf . Nx.p//j
OT .p/

�
C O."2/ ; (1.13)

in which

Ms.p; t/ D �
Z 1
p

exp

�Z p

�

r � f . Nx.	// d	

�
f . Nx.�// ^ g . Nx.�/; � C t � p/ d�

(1.14)
and

Bs.p; t/ D jf . Nx.p//j2
Z p

0

R.�/Ms.p; � C t � p/C f . Nx.�// � g . Nx.�/; � C t � p/
jf . Nx.�//j2 d� :

(1.15)

Proof. Details are available in [16]. ut
Remark 1.5. The leading-order stable and unstable manifolds given in Theo-
rems 1.1 and 1.2 are parametrised by p and t . The former parameter enables
thinking of each manifold segment as the graph of a function from � . The
inability to represent the invariant manifolds in regions beyond � (e.g. the parts
of the unstable manifold pictured in Fig. 1.4 which have progressed further than b)
may be seen as a serious shortcoming when attempting to quantify LCS barriers.
However, as shown in Sect. 1.4, knowledge of the parts of the manifolds as given in
Theorems 1.1 and 1.2 is sufficient for flux characterisation.

Remark 1.6. It is natural to pose the inverse problem: for a specified behaviour of
the nonautonomous stable and unstable manifolds, is it possible to determine the
requirements on g? Ongoing work [22] has made promising strides in this manifold
control problem.

Together, Theorems 1.1 and 1.2 characterise the two entities to which the unper-
turbed heteroclinic manifold � splits under the influence of the time-dependent
perturbation in (1.1). These are associated with ‘flow separators’, that is, of time-
varying boundaries between the ‘top’ and ‘bottom’ open dynamical systems which
were separated by � in Fig. 1.2. However, exactly how these separate the two
regions requires interpretation since many sorts of behaviours of these invariant
manifolds are possible. For example, in each time slice t , these two manifolds
could intersect infinitely many times (the classical paradigm under time-harmonic
perturbations [109, 110, 128]), only finitely many times [13] or not at all [24, 111,
e.g.]. This question is intimately linked to how one characterises the transport (flux)
between the regions originally separated by � , that is, the escape of trajectories
from one open dynamical system to another.
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1.4 Flux Quantification

The results of Sect. 1.3 helps locate stable and unstable manifolds in nonau-
tonomously perturbed systems in the form (1.1). The question to be addressed now
is: knowing the time variation of these manifolds as described in Theorems 1.1
and 1.2, is it possible to quantify a transport across them?

Within the context of two-dimensional maps, transport is often expressed in
terms of lobes resulting from the intersection of stable and unstable manifolds
[40, 82, 83, 109]. A typical picture is shown in Fig. 1.5. By evaluating how each
lobe evolves under the map P , a good qualitative understanding of flux can be
obtained. Time-periodic flows can be viewed within this framework, by considering
a Poincaré map which samples the flow at the period of the flow [110]. Lobes are
therefore used extensively in time-periodic flows, or when the time aperiodicity
lends itself to defining a sequence of maps [18, 28, 50, 84, 107, e.g.]. There
are however several difficulties with this interpretation. First, if there are no
intersections between the stable and unstable manifolds, then there are no lobes
present.5 How would flux be quantified in this case? Second, the lobes will typically
have different areas, and so which lobe(s) are the ones whose areas are to be used?
Would two small lobes be considered to represent ‘equivalent’ transport to one lobe
whose area is the sum of the smaller ones? This problem is compounded by the
fact that there are typically infinitely many lobes present. Third, when one thinks of
flux as a transport across ‘something’, what exactly is the ‘something’ in a situation

A B

q
P q

P 1 q

L1

L2

L3

L4

P L1 P L2

P L3 P L4

q

Fig. 1.5 A possible lobe structure resulting from the transverse intersection of a stable and
unstable manifold for a map

5A concrete example with no lobes is presented in Remark 1.12. Viscosity-induced perturbations
also result in no lobes [20, 24, 111].
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x p
ap t

bp t

a

b

N p

a t

b t

Time t

Fig. 1.6 A time slice t of the augmented system (1.7) for small j"j. The pseudoseparatrix is
indicated by the curve a"–ap–bp–b", and the gate surface G is the straight line segment between
ap.t/ and bp.t/, lying along the normal vector ON .p/

like Fig. 1.5? In the instances in which the flow is incompressible and all lobes have
equal areas, these questions can be resolved nicely by defining a pseudoseparatrix
[109, 110, 128]. Indeed, there are pleasing formulæ using integrals of Melnikov
functions to evaluate such lobe areas (originally developed by MacKay and Meiss
[82]; see also [110, 128]). When the lobes are unequal or nonexistent, however,
defining a flux becomes ambiguous.

To resolve this, I shall now define a flux which works not only in time-periodic
situations such as those discussed above but also under general time-dependent
perturbations. While the setting is assumed perturbative as in (1.1), some aspects
of the following discussion apply more generally. For example, the gate surface
in Definition 1.1 builds on an idea by Haller and Poje [64] to quantify transport
associated with a stable and an unstable manifold under general time dependence.

Definition 1.1. Consider the flow of (1.7) intersected with a time slice t , and let
Nx.p/ be a point lying on � (see Fig. 1.6):

(i) The gate surface G is the line segment between � u
" and � s

" , crossing through
Nx.p/ and which lies along the direction ON .p/. Let ap.t/ and bp.t/ be the
points at which G intersects � u

" and � s
" , respectively.

(ii) The pseudoseparatrix, parametrised by .p; t/, is the curve segment in the time
slice t comprising the segments a".t/–ap.t/–b

p.t/–b".t/, in which the first
and the last segments are the curves lying along � u

" and � s
" , respectively, and

the middle segment is the gate surface G.
(iii) The instantaneous flux at an instance in time t across the pseudoseparatrix is

defined by



1 Nonautonomous Flow Boundaries 15

˚.p; t/ WD sgn
n
Œap.t/ � bp.t/� � ON .p/

o Z
G
Œf .x.s//C "g .x.s/; t/� � OT .p/ ds

(1.16)

in which x.s/ is an arc length parametrisation of the gate surface G.

Remark 1.7. The pseudoseparatrix is a time-varying entity, and there is no transport
across the segments a".t/–ap.t/ and bp.t/–b".t/ since these are segments of
invariant manifolds. Thus, the time-varying transport across the pseudoseparatrix is
limited to that across the gate surface. The integral in Definition 1.1 ensures that the
instantaneous flux is measured as an amount of fluid crossing the pseudoseparatrix
per unit time, hence justifying using the term ‘flux’.

Remark 1.8. Since OT .p/ is the normal vector to G at all points on G and is in
the direction of the unperturbed flow, the integral in Definition 1.1 is positive to
leading order in ". The sign term outside ensures that the following convention is
met: if the flux across the pseudoseparatrix crosses � in the direction of ON , then the
instantaneous flux is positive. If in the opposite direction, it is negative.

Let me elaborate further on the sign convention in Remark 1.8. At the instance
of time pictured in Fig. 1.6, the transport occurs from left to right, or more properly,
from the region above the pseudoseparatrix to below it. The positive direction across
� is defined to be in the direction of ON .p/. This remains unidirectional as p is
varied; in Fig. 1.6, for example, it is always from below the pseudoseparatrix to
above it. On the other hand, for the situation pictured in Fig. 1.6, the instantaneous
transport across the gate surface leads to fluid from above the pseudoseparatrix
travelling to below it. The sign term in (1.16) takes care of this; since ON is in
the opposite direction to ap.t/ � bp.t/, the flux at the instance pictured in Fig. 1.6
is negative. If the vectors in the sign term of (1.16) are in opposite directions (as
will eventually occur when the manifold intersection point visible in Fig. 1.6 moves
through the gate surface G), the transport direction is reversed, and ˚.p; t/ will be
positive.

In quantifying the instantaneous flux, the length of the vector from bp.t/ to
ap.t/ in Fig. 1.6, that is, the length of the gate surface G, is seemingly key. This
can be obtained in terms of a Melnikov function. Melnikov’s original development
[87] and standard expositions [9, 58, 128] are mostly geared towards proving that
a perturbation leads to chaotic motion [68, 128, e.g.]. Melnikov methods have
recently had a surprising application in determining wave speeds of travelling
waves in reaction-diffusion equations in combustion and ecology [14,19,23,26,98].
While geometric methods are customarily used to derive the Melnikov function
[9, 13, 16, 57, 58, 68, 128], alternative functional analytic methods have also been
developed [27, 41, 97]. The most frequently used versions of Melnikov theory
[9, 58, 128] specialise to both the time-harmonic and incompressible subcases.
However, more general versions of Melnikov functions are available [11, 13, 16, 68,
e.g.], and in particular:
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Theorem 1.3. The width of the gate surface at a location and time parametrised by
.p; t/ is given by

Œap.t/ � bp.t/� � ON .p/ D "
M.p; t/

jf . Nx.p//j C O."2/ (1.17)

in which the Melnikov function is

M.p; t/ D
Z 1
�1

exp

�Z p

�

r � f . Nx.	// d	

�
f . Nx.�// ^ g . Nx.�/; � C t � p/ d� ;

(1.18)

or alternatively, in terms of the arc length parametrisation (1.4) on � ,

M.p; t/ D
Z L

0

exp

�Z p

�.`/

r � f . Nx.	// d	

�
g? . Nx .�.`// ; �.`/C t � p/ d` ;

(1.19)

in which �.`/ is the relationship between a general position Nx.�/ and arc length `
as indicated by (1.4), and

g? . Nx.�/; �/ WD g . Nx.�/; �/ � ON .�/ (1.20)

is the projection of g in the normal direction at each general point on � .

Proof. Subtracting (1.13) from (1.10) and considering only the normal term leads
to (1.18). The expression (1.19) arises from the observation that f ^ gd� D g�
.Jf / d� D g � ON jJf j d� D jf jg?d� D g?d`, in accordance with the connection
between the arc length parametrisation and location given in (1.4). At a general
position, this implies that `0.�/ D jf . Nx.�//j, and �.`/ is the inverse relationship
between � and `. ut
Remark 1.9. While (1.18) was derived by Holmes [68] 30 years ago, establishment
of the convergence of (1.11) and (1.14) when r � f ¤ 0, and the legitimacy of
discarding boundary terms at ˙1—required for the subtraction in the proof—is
more recent [16]. The basic reason for this convergence is explained in Remark 1.15.

Remark 1.10. In view of the expression (1.17), the existence of a transverse
intersection of the stable and unstable manifolds in a fixed time slice t can be
imputed using a straightforward implicit function theorem argument if M.p; t/ has
a simple zero with respect to p. Alternatively, a transverse intersection near a fixed
position Nx.p/ in some time slice can be imputed from a simple zero of M.p; t/
with respect to t . This duality occurs because each trajectory which is heteroclinic
persists in every time slice.

Remark 1.11. The Melnikov function, being the O."/-term of the distance function,
is only able to quantify primary intersection points, as understood as follows
from Fig. 1.6. In reality, in each time slice t , the unstable manifold emanating
from a".t/ gets pushed out near b".t/ since there is an unstable manifold (not
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pictured in Fig. 1.6) emanating from b".t/ as well. Consequently, the O."/ distance
representation becomes meaningless in these parts of the manifold. In a global sense,
the unstable manifold emanating from a".t/may get pushed outside the O."/-region
but then return subsequently to intersect the stable manifold emanating from b".t/

elsewhere. The Melnikov function is not able to analyse such a possibility.

Remark 1.12. If M.p; t/ were strictly bounded away from zero for all .p; t/, there
would be no primary intersections of the manifolds. For example, suppose

g.x; t / D Jf .x/ Œ3C cos!t� ; (1.21)

for which the flow (1.1) is time periodic. Then

M.p; t/ D
Z 1
�1

exp

�Z p

�

r � f . Nx.	// d	

�
jf . Nx.�//j2 Œ3C cos! .� C t � p/� d�

�
Z 1
�1

2 exp

�Z p

�

r � f . Nx.	// d	

�
jf . Nx.�//j2 d� > 0 (1.22)

where the inequalities are possible since the integrand is strictly positive. Thus, even
in the time-periodic case, it is possible that there are no intersections.

Corollary 1.1. Upon defining the scaled Melnikov function

QM.p; t/ WD
Z 1
�1

exp

�Z 0

�

r � f . Nx.	// d	

�
f . Nx.�// ^ g . Nx.�/; � C t � p/ d� ;

(1.23)

the Melnikov function can be written as

M.p; t/ D QM.p; t/ exp

�Z p

0

r � f . Nx.	// d	

�
; (1.24)

whose simple zeroes are exactly associated with simple zeroes of QM.p; t/.

Proof. I split the integral inside the exponential in (1.18) into two integrals: one
going from � to 0 and the other going from 0 to p. The exponential of the second
integral can then be pulled out of the outer integral, resulting in (1.24). ut
Remark 1.13. The distance function (1.17) can be written in terms of the scaled
Melnikov function as

Œap.t/ � bp.t/� � ON .p/ D "
QM.p; t/ exp

�R p
0
r � f . Nx.	// d	

�
jf . Nx.p//j C O."2/ : (1.25)

In view of the fact that the other factors in the leading-order term are non-zero,
simple zeroes of the function QM.p; t/ relate to intersections of the stable and
unstable manifolds. Thus, either the scaled or unscaled Melnikov function could
be used without prejudice when seeking intersections of manifolds for small j"j.
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Remark 1.14. The advantage of working with QM.p; t/ rather than M.p; t/ in the
analysis of intersections is that QM , unlike M , can be expressed in terms of just one
variable .t � p/. However, I will retain both quantities since in Theorem 1.4 I show
that M is critical to flux characterisation.

Remark 1.15. I now establish the convergence of the improper integral in QM ; this
argument also works for convergence of the expressions (1.11) and (1.14) used for
determining the unstable and stable manifolds. Upon defining


.�/ WD exp

�Z 0

�

r � f . Nx.	// d	

�
f . Nx.�// (1.26)

it is clear that the scaled Melnikov function can be written as

QM.p; t/ D
Z 1
�1


.�/ ^ g . Nx.�/; � C t � p/ d� : (1.27)

Now, g is bounded by hypothesis, and I now establish that 
.�/ decays exponen-
tially as � ! ˙1. Since a is a hyperbolic saddle fixed point of (1.2), I suppose
the eigenvalues of Df .a/ are ˛ and ˇ where ˛ < 0 < ˇ, then as � ! �1,

f . Nx.�// � eˇ� , but exp
hR 0
�
r � f . Nx.	// d	

i
� exp

hR 0
�
.˛ C ˇ/ d	

i
D e�.˛Cˇ/� .

Thus, 
.�/ � eˇt e�.˛Cˇ/t D e�˛t as t ! �1. A similar argument works as
� ! 1. This exponential decay in 
 ensures that QM is well defined.

Using the distance function under both incompressibilty and time periodicity,
and assuming that the Melnikov function has zeroes, a pleasing connection between
the Melnikov function and lobe areas can be obtained [82,109,110,128]. By (1.17),
an intersection of manifolds occurs near zeroes of the Melnikov function. In a fixed
time slice t , two adjacent zeroes in p (say p1 and p2) define the endpoints of a lobe.
These correspond to points Nx.p1/ and Nx.p2/, which in turn are associated with arc
length parameter values `1 and `2 using (1.4). Thus, using (1.17) [109, 110, 128],

Lobe Area D
Z `2

`1

ˇ̌̌
Œap.t/ � bp.t/� � ON

ˇ̌̌
d`C O."2/

D "

Z p2

p1

jM.p; t/j dp C O."2/ ; (1.28)

which has also been obtained via an action formalism [77, 82]. This powerful
expression has been frequently used in the incompressible and time-periodic
subcases [28, 107, e.g.]. However, the stronger time-harmonicity condition is in
actuality needed to show that the areas of all lobes are equal to leading order,6

enabling (1.28) to be used as an unambiguous measure of flux.

6See Corollary 1.5 in Sect. 1.5.
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Let me now return to the most general setting in which neither time periodicity
nor incompressibility is assumed. While (1.28) remains a valid definition for the size
of a particular lobe, establishing a connection to flux is difficult. I therefore revert to
the instantaneous flux as defined in (1.16), which is valid even if there were no lobes.
What is particularly pleasing is that for flows of the form (1.1), the instantaneous
flux has a much stronger connection to the Melnikov function than, for example,
in (1.28), where an integral of the Melnikov function is connected to a flux measure.
In the general time-dependent setting, the Melnikov function is the leading-order
flux:

Theorem 1.4. The instantaneous flux ˚.p; t/ associated with a time slice t and a
gate surface drawn at Nx.p/ as shown in Fig. 1.6 is given by

˚.p; t/ D "M.p; t/C O."2/ ; (1.29)

in which the Melnikov function is defined in (1.18).

Proof. This argument was provided in [13], but the basic idea is that the "g term
appearing in (1.16) can be ignored when seeking leading-order information. Thus,

˚.p; t/ D sgn
n
Œap.t/ � bp.t/� � ON .p/

o Z
G
Œf .x.s//C "g .x.s/; t/� � OT .p/ ds

D sgn
n
Œap.t/ � bp.t/� � ON .p/

o
jf . Nx.p//j

ˇ̌̌
Œap.t/ � bp.t/� � ON .p/

ˇ̌̌
C O."2/

D sgn fM.p; t/g " jM.p; t/j C O."2/

where the expression (1.17) has been used. ut
Remark 1.16. Let �0.x/ be an equilibrium scalar density advected by the steady
flow (1.2). If �.x; t / D �0.x/C O."/ is a scalar density advected by the perturbed
flow (1.1), then by extending the above idea [13], the flux of � across the gate
surface is

Instantaneous Flux of Scalar D "�0 . Nx.p//M.p; t/C O."2/ : (1.30)

Remark 1.17. In view of (1.19), the instantaneous flux can be written as

˚.p; t/ D "

Z L

0
exp

"Z �.`/

p
r � f . Nx.	// d	

#
g? . Nx .�.`// ; �.`/C t � p/ d`C O."2/ ;

(1.31)

In determining the instantaneous flux, note that it is not the normal component of g
at that instance in time t that needs to be used, but this component at a time value
which is shifted by p � �.`/. This reflects how the Lagrangian motion influences
the flux, which is further evidenced by the time-evolving compressibility term of
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the interior integral in (1.31). If an Eulerian instantaneous flux definition were used,
the temporal argument of g? would have been simply t , and the additional interior
integral would be absent.

Theorem 1.4 provides an important method for quantifying the flux, as a time-
dependent entity, for perturbed nonautonomous flows in the form (1.1). The leading-
order term of this flux is exactly the Melnikov function, and hence, it is possible
to think of the Melnikov function as the flux function. This flux function can of
course be computed from (1.18). In some frequently considered situations (as in the
subcases described in Sect. 1.2), the flux function can be simplified considerably, as
shown in the next section.

1.5 Simplifications of Flux Formulæ in the Subcases

I present some simplifications of the flux formulæ in relevant subcases. Since the
specialisation to these formulæ are often simple manipulations, many proofs in this
section will be omitted.

Corollary 1.2. Under the incompressible subcase (Subcase 3), the leading-order
flux function can be written in either of the forms

M.p; t/ D
Z 1
�1

rH . Nx.�// � g . Nx.�/; � C t � p/ d� (1.32)

D
Z L

0

g? . Nx .�.`// ; �.`/C t � p/ d` ; (1.33)

in which the .p; t/ dependence appears only in the combination .t � p/.
Now I revert to compressible flow, but which is time periodic (Subcase 1) and so

there exists T such that g .x; t C T / D g .x; t / for all .x; t / 2 ˝ � R. The devel-
opment I present here is a generalisation of the incompressible and time-periodic
results in [11], for which I have also adopted a more natural parametrisation. I define
! D 2�=T (the natural frequency associated with the period T ) and also the Fourier
coefficients gn.x/ for n 2 Z by

gn.x/ D
!

2�

Z 2�=!

0

g .x; t / e�in!t dt : (1.34)

Since smoothness in t is assumed, g has a complex Fourier series representation

g .x; t / D
1X

nD�1
gn .x/ e

in!t : (1.35)
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I now define the functions

�n.�/ WD exp

�Z 0

�

r � f . Nx.	// d	

�
f . Nx.�// ^ gn . Nx.�// (1.36)

for n 2 Z. By virtue of the argument in Remark 1.15, each �n has exponential decay
as � ! ˙1. Thus, I can define the associated Fourier transforms:


n.!/ WD F f�n.�/g .!/ WD
Z 1
�1

�n.�/e
�i!� d� ; (1.37)

where in reality ! is a constant.

Theorem 1.5. Under time periodicity (Subcase 1), the scaled Melnikov func-
tion (1.23) is T -periodic in both p and t and can be represented as a complex
Fourier series in the variable .t � p/ by

QM.p; t/ D
1X

nD�1
QMne

in!.t�p/ ; QMn D 
n .�n!/ : (1.38)

Proof. Using the definition of the scaled Melnikov function (1.23), I write

QM.p; t/ D
Z 1
�1

exp

"Z 0

�
r � f . Nx.	// d	

#
f . Nx.�// ^

1X
nD�1

gn . Nx.�// ein!.�Ct�p/ d�

D
1X

nD�1
ein!.t�p/

Z 1
�1

�n.�/e
in!� d� D

1X
nD�1


n.�n!/ein!.t�p/ : ut

Remark 1.18. The fact that QM.p; t/ is T -periodic in both p and t under the time-
periodic subcase is obvious from its definition (1.23) and is also reflected in (1.38).
The unscaled Melnikov function M.p; t/ is however only guaranteed to be T -
periodic in t , and not in p. On the other hand, since the zeroes of M and QM
coincide (see Remark 1.13), intersection points of stable and unstable manifolds
respect periodicity in both the position p and time slice t .

Remark 1.19. Since (1.38) converges very rapidly, efficient computation is possible
using fast Fourier transform software. This rapid convergence follows from the fact
that g and f are C2 in the spatial argument, and thus, �n 2 C2.R/. Thus, 
n.s/

decays to zero at least as fast as jsj�2 as s ! ˙1, and therefore, 
n.�n!/
decays at least as jnj�2 as n ! ˙1. Sample computations demonstrating this
rapid convergence are available [11].

Corollary 1.3. In the setting of Theorem 1.5, suppose that incompressibility (Sub-
case 3) is also assumed. Then (1.36) becomes �n.�/ D rH . Nx.�// � gn . Nx.�//; and
the Melnikov function acquires the form
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M.p; t/ D
1X

nD�1

n .�n!/ ein!.t�p/ : (1.39)

I now specialise Theorem 1.5 to the time-harmonic situation in which g.x; t / D
h.x/ cos .!t C �/, without assuming incompressibility. I first define

�.�/ WD exp

�Z 0

�

r � f . Nx.	// d	

�
f . Nx.�// ^ h . Nx.�// ; (1.40)

along with its Fourier transform 
.!/ WD F f�.�/g.
Corollary 1.4. Under time harmonicity (Subcase 2) the scaled Melnikov function
has the representation

QM.p; t/ D j
.!/j cos Œ!.t � p/C � � ArgŒ
.!/�� ; (1.41)

and therefore, the Melnikov function can be represented by

M.p; t/ D exp

�Z p

0

r � f . Nx.	// d	

�
j
.!/j cos Œ!.t � p/C � � ArgŒ
.!/�� :

(1.42)

Proof. While Corollary 1.4 can be obtained as an easy corollary of Theorem 1.5, the
following straightforward trigonometric calculation is worth stating. From (1.23),

QM.p; t/ D
Z 1
�1

�.�/ cos Œ! .� C t � p/C �� d�

D cos Œ!.t�p/C��
Z 1
�1

�.�/ cos!� d�� sin Œ!.t�p/C��
Z 1
�1

�.�/ sin!� d�

D cos Œ!.t � p/C ��Re Œ
�C sin Œ!.t � p/C �� Im Œ
�

D j
j
	

cos Œ!.t � p/C ��
Re Œ
�

j
j C sin Œ!.t � p/C ��
Im Œ
�

j
j
�

D j
j fcos Œ!.t�p/C�� cos .ArgŒ
�/C sin Œ!.t � p/C�� sin .ArgŒ
�/g
D j
j cos Œ!.t � p/C � � ArgŒ
�� ;

which is (1.41). This strategy was initially suggested in [11,12] for dealing with the
incompressible situation. Obtaining M in (1.42) is a simple application of (1.24).

ut

Remark 1.20. Thus, 
.!/ ¤ 0 is a sufficient condition for the presence of a
heteroclinic tangle even when incompressibility is not assumed. One quick Fourier
transform replaces the classical method of having to perform contour integration in
the complex plane to prove the existence of simple zeroes of M [9, 58, e.g.].
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Theorem 1.6. Under incompressible (Subcase 3) and time-harmonic (Subcase 2)
conditions, the leading-order flux function is itself harmonic in .t � p/ and is given
by

M.p; t/ D j
.!/j cos Œ!.t � p/C � � ArgŒ
.!/�� ; (1.43)

where


.!/ D F frH . Nx.�// � h . Nx.�//g : (1.44)

Remark 1.21. Since the .t; p/-dependence in (1.43) appears directly as a harmonic
function of .t � p/, the instantaneous flux is harmonic to leading order. This causes
fluid to slosh back and forth from above to below � ; in each period T D 2�=!

of the harmonic perturbation, the flux undergoes exactly one harmonic cycle as
well, and so fluid sloshes back and then forth exactly once in each cycle. This
result shows moreover that within a fixed time slice t , there are exactly two lobes
between an intersection point q and its image under the T -periodic Poincaré map.
The topological structure of the intersections between a point and its image must
match the topological structure of how Melnikov function (1.43) intersects the
p-axis in one period.

Corollary 1.5. Under incompressible (Subcase 3) and time-harmonic (Subcase 2)
conditions, the lobes caused through the intersection of stable and unstable
manifolds in any time slice t have identical areas to leading order in ", given by

Lobe Area D "
2 j
.!/j
!

C O."2/ : (1.45)

Proof. I take a fixed time slice t . Suppose p1 and p2 are two adjacent values at
which M.p; t/ has zeroes; given the form (1.43), p2 D p1 C �=!. By (1.17)
this means that the perturbed stable and unstable manifolds intersect near Nx.p1/
and Nx.p2/ in this time-slide and thereby form a lobe. Using (1.43) on the lobe
formula (1.28), I get [11, 12, 15, 18]

Lobe Area D "

Z p2

p1

jM.p; t/j dp C O."2/

D " j
.!/j
Z p2

p1

jcos Œ! .t � p/C ��j dp C O."2/

D " j
.!/j
Z �=.2!/

��=.2!/
cos .�!p/ dp C O."2/ ;

in which I have used the fact that harmonic functions have the same absolute area
between any two adjacent zeroes and have thus moved the integral to convenient
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limit. Computing this integral leads to (1.45). Since independent of the two adjacent
values p1 and p2, the answer is the same to leading order for all lobes. ut
Remark 1.22. If, following [108, 110], I define the average flux as being one of
these lobe areas divided by the time of the Poincaré map (which is T D 2�=!),
then

Average Flux D 1

2�=!
Lobe Area D "

j
.!/j
�

C O."2/ : (1.46)

Remark 1.23. If the flow is incompressible (Subcase 3) and time harmonic (Sub-
case 2), then one might consider three potential flux measures: the amplitude of the
instantaneous flux (1.43), a lobe area (1.45) or the average flux (1.46). The leading-
order term of all three measures are governed by the quantity j
.!/j.

1.6 Concluding Remarks

Extensions of the theory presented in this chapter to genuinely nonautonomous (not
merely in a perturbative sense) flows will clearly be useful. Thinking of time-varying
stable and unstable manifolds as flow barriers still remains attractive, but locating
them in general is not easy from a theoretical perspective. While many diagnostic
techniques have been proposed for locating boundaries between LCSs numerically,
questions still remain as to whether the diagnostics necessarily identify stable and
unstable manifolds. If the attitude that these stable and unstable manifolds are the
important entities to identify, and even if assuming that such an identification can be
done, the next issue is deciding how to quantify the transport ‘across’ them. Since
the pseudoseparatrix defined in this chapter is dependent on the perturbative nature
of the flow, their systematic extension remains problematic. The propensity for the
manifolds to wander around space in complicated ways precludes putting in a fixed
gate surface. A cautionary note is also provided by Remark 1.17, which shows that
in quantifying Lagrangian transport, determining the flux across a curve at a fixed
instance in time generally provides an invalid assessment of the particle transport.
The history of the fluid crossing such a curve is necessary. Transport needs to be
quantified in some form of Lagrangian frame (i.e. a frame which follows particle
trajectories in some appropriate way), but deciding how to set up this frame under
general time dependence is not obvious. After all, in a frame local to each fluid
particle, that particle undergoes no net transport.

The other obviously valuable extension would be to three dimensions. There
is certainly some insight in the literature into how time-varying two-dimensional
invariant manifolds might result in different transport mechanisms [25, 36, 94, 104],
but a comprehensive extension of the results of this chapter are still lacking. The
concepts analogous to area preservation and Hamiltonian flows might be volume
preservation and Liouville methods [63, 90, 94], but a theory which does not
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insist on incompressibility (such as presented here) would have applicability in
the atmosphere. A significant difficulty in three dimensions is in deciding on a
good interpretation of flux. For example, the corresponding gate surface (between
a two-dimensional stable manifold and a two-dimensional unstable manifold, both
of which are varying with time) should presumably be a two-dimensional entity,
but how exactly should one define its boundary? (This was not a problem in the
two-dimensional case; the one-dimensional gate surface ended when it met each of
the manifolds—whether the manifolds intersected or not. If in a three-dimensional
situation in which the two two-dimensional manifolds do not intersect, e.g. any
presumptive two-dimensional gate surface connecting these two manifolds will have
a direction in which it cannot be bounded.) On a similar note, how can intersections
between two one-dimensional manifolds, or between a one-dimensional and a two-
dimensional manifold, be used to characterise flux? Such difficulties make the study
of three-dimensional nonautonomous flows intriguing, challenging, and (of course)
highly relevant.
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Chapter 2
Eigenvalues of Transfer Operators
for Dynamical Systems with Holes

Oscar F. Bandtlow and Oliver Jenkinson

Abstract For real-analytic expanding open dynamical systems in arbitrary finite
dimension, we establish rigorous explicit bounds on the eigenvalues of the corre-
sponding transfer operators acting on spaces of holomorphic functions. In dimen-
sion 1 the eigenvalue decay rate is exponentially fast, while in dimension d it is
O.�n

1=d
/ as n! 1 for some 0 < � < 1.

2.1 Introduction

For an expanding map T W X ! X , the Perron-Frobenius operator P defined by

Pf .x/ D
X
TyDx

f .y/

jT 0.y/j

and more general transfer operators L defined by

L f .x/ D
X
TyDx

e'.y/f .y/

with potential function ' W X ! R are important objects in the thermodynamic
formalism approach to ergodic theory.

Given a subset H 	 X , which we regard as a hole in X , it is natural to
consider modified operators PH and LH , defined by setting PHf D P.f�XnH/
and LHf D L .f�XnH/, in view of their connections with escape rate (see, e.g.
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[6, 9]) and various equilibrium measures supported by the survivor set X1 D
\1nD0T �n.X nH/.

The purpose of this note is to describe, in the case where T is piecewise analytic
and H is a suitable hole, explicit estimates on the spectral asymptotics of PH and
LH when acting on various Banach spaces of holomorphic functions.1

Specifically, we take X 	 R
d to be compact and connected and X D fXigi2I

a finite partition (consisting of non-empty pairwise disjoint subsets of X , each one
open in R

d , whose union is dense in X ). The map T W X ! X is assumed Borel
measurable, with T .Xi / open in R

d for each i 2 I , and T jXi W Xi ! T .Xi / a C1

diffeomorphism which can be extended to a C1 map on Xi . We assume that T is
full branch, i.e. T .Xi / D X for all i 2 I , and expanding, i.e. there exists ˇ > 1

such that if x; y 2 Xi for some i 2 I , then kT .x/ � T .y/k � ˇ kx � yk. Each
T jXi has an inverse branch Ti , defined so that T ı Ti is the identity on the interior
of X , and Ti ı T the identity on Xi , and satisfying supx2int.X/



T 0i .x/

L.Rd / � ˇ�1

for all i 2 I , where k � kL.Rd / denotes the induced operator norm on L.Rd / D
L..Rd ; k � k//. We assume that T W X ! X is real analytic, i.e. there is a bounded
connected open set D 	 C

d , with X 	 D, such that each Ti has a holomorphic
extension to D.

For simplicity we shall take the hole H to be a union of some (but not all)
elements of X . In fact with some extra effort, and more cumbersome notation,
the techniques described here extend to the case where H is a union of members of
some refinement _n�1iD0T �iX (a so-called Markov hole). Let J 	 I be such that
[i2JXi D X nH . Transfer operators LH for the open dynamical system T jXnH
then take the form

LHf D
X
i2J

wi .f ı Ti / ; (2.1)

where the weight functions wi are related to the potential function ' by setting wi D
exp.' ı Ti / on X and assumed to admit a holomorphic extension to D which in
turn extends continuously to D. In the particular case ' D � log jT 0j, when wi are
the holomorphic extensions to D of jT 0i j on X , the corresponding transfer operator
is precisely the modified Perron-Frobenius operator PH . We shall always assume
thatD has the property that the closure of [i2J Ti .D/ lies insideD itself, referring
to such domains D as being admissible for the map T ; this technical requirement,
which we always assume without further comment, will ensure that LH preserves
suitable Banach spaces of functions holomorphic on D.

1When acting on these spaces, PH has a strictly positive spectral radius ı, with ı > 0 an
eigenvalue such that � log ı is the corresponding escape rate (see, e.g. [14] for one-dimensional
maps); thus escape is at an exponential rate, rather than anything faster. Moreover, ı�nPn

H 1! %,
where % is the density function for the Pianigiani-Yorke measure [15].
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The structure of the article is as follows. We begin in Sect. 2.2 by considering
transfer operators LH acting on the Banach space2 U.D/ of those holomorphic
functions onD which extend continuously toD equipped with the usual supremum
norm kwkU.D/ D supz2D jw.z/j. We show (Theorems 2.1 and 2.2) that in dimension
d D 1, the eigenvalues �n.LH/ (arranged in order of decreasing modulus) converge
to zero exponentially fast, deriving an explicit bound for j�n.LH/j. In higher
dimensions d � 2, there are similar explicit bounds (see Theorem 2.3), though here
the convergence to zero is3 O.�n

1=d
/ as n ! 1, for some � 2 .0; 1/. In Sect. 2.3

we show that in fact the eigenvalues for LH W U.D/! U.D/ are identical to those
for LH acting on a variety of Banach spaces A.D/ of holomorphic functions. This
suggests the possibility of improving the bounds of Sect. 2.2 by judicious choice of
A.D/, a strategy we pursue in Sect. 2.4 where A.D/ is chosen to be Hilbert Hardy
space H2.D/, yielding Theorems 2.6 and 2.7.

2.2 Eigenvalue Estimates via Weyl’s Inequality

We begin with an explicit estimate on the eigenvalues of the modified Perron-
Frobenius operator in dimension d D 1:

Theorem 2.1. For an expanding interval map, the eigenvalues of the modified
Perron-Frobenius operator PH W U.D/! U.D/ satisfy

j�n.PH/j � �n�1
p
n sup

z2D

X
i2J

jT 0i .z/j for all n � 1 ; (2.2)

provided each T 0i extends holomorphically to a disc D 	 C, where � < 1 is such
that [i2J Ti .D/ is contained in the concentric disc whose radius is �2 times that
of D.

The bounds in Theorem 2.1 are readily computed for specific maps T :

Example 2.1. As in [2], we consider the map

T .x/ D
(

9x
1�x if 0 � x � 1

10

10x � i if i
10
< x � iC1

10
; for 1 � i � 9

2The study of transfer operators on this space U.D/ was inaugurated by Ruelle [18].
3Ruelle [18], following Grothendieck [11], stated the asymptotics were O.�n/ as n ! 1,
independent of the dimension d , though Fried [10] corrected this to O.�n

1=d
/. One novelty of

our results, relative to Fried and Ruelle, is that the constant � , as well as the implicit constant in
the big-O asymptotics, is rendered explicit.
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Note that the inverse branches fTig0�i�9 are given by

T0.x/ D x

9C x

and

Ti .x/ D .x C i/=10 for 1 � i � 9 :

Choosing Markov hole H D Œ1=5; 1� corresponds to setting J D f0; 1g.
We claim that the eigenvalues of the modified Perron-Frobenius operator PH W

U.D/! U.D/ are bounded by

j�n.PH/j � 77

320

p
5n

�
1p
5

�n
for all n � 1 : (2.3)

In particular, note that the case n D 1 yields a bound on the escape rate � (see, e.g.
[6]) for this open dynamical system, namely, � � � log 77=320.

LetD be the disc of radius 1 centred at 0. Noting that T0.�1/ D �1=8, T1.�1/ D
0, T0.1/ D 1=10 and T1.1/ D 1=5, we see that [i2J Ti .D/ is contained in the disc
of radius 1=5 centred at 0. This means we may set � D 1=

p
5 in Theorem 2.1. Note

that jT 00.z/j C jT 01.z/j D 9

j9Czj2 C
1
10

, and the supremum of this expression on D is

the value 77=320, attained (on the boundary of D) at z D �1. The bound (2.3) then
follows from (2.2).

In fact Theorem 2.1 is a special case of the following one-dimensional result:

Theorem 2.2. For an expanding interval map, the eigenvalues of the transfer
operator LH W U.D/! U.D/ satisfy

j�n.LH/j � �n�1
p
n sup

z2D

X
i2J

jwi .z/j for all n � 1 ; (2.4)

provided each wi and Ti extend holomorphically to the discD 	 C, where � < 1 is
such that [i2J Ti .D/ is contained in the concentric disc whose radius is �2 times
that of D.

Proof. Let D0 denote the concentric disc whose radius is r D �2 times that
of D. First, we observe that OLHf WD P

i2J wi .f ı Ti / defines a continuous

operator OLH W U.D0/ ! U.D/. To see this, fix f 2 U.D0/ and note that
wi .f ıTi / 2 U.D/ with kwi .f ı Ti /kU.D/ � kwikU.D/ kf kU.D0/ for every i 2 J .

But since we have k OLHf kU.D/ � P
i2J kwikU.D/ kf kU.D0/, so OLHf 2 U.D/

and OLH is continuous. Now k OLHk � W DW supz2D
P

i2J jwi .z/j, because
for f 2 U.D0/ we have jf .Ti .z//j � kf kU.D0/ for every z 2 D, i 2 J ;

thus, by the maximum modulus principle, k OLHf kU.D/ D supz2D j. OLHf /.z/j �
supz2D

P
i2J jwi .z/j jf .Ti .z//j � W kf kU.D0/.



2 Eigenvalues of Transfer Operators 35

Recall that if L W B1 ! B2 is a continuous operator between Banach spaces,
then for k � 1, its kth approximation number ak.L/ is defined by

ak.L/ D inf f kL �Kk W K W B1 ! B2 linear with rank.K/ < k g :
Note that in general ak.L1L2/ � kL1k ak.L2/ (see [16, 2.2]).

Now clearly LH D OLHJ , where J W U.D/ ,! U.D0/ denotes the canonical
embedding, so

ak.LH/ � k OLHkak.J / � Wak.J / for all k � 1 : (2.5)

Moreover, it can be shown that LH is compact; in fact, it is of exponential class (see
[3]) and in particular nuclear of any order.

Before proceeding recall that Weyl’s inequality (see, e.g. [12]) asserts thatQn
kD1 j�k.LH/j � nn=2

Qn
kD1 ak.LH/ for every n 2 N.4

Together with (2.5) this yields the inequality

j�n.LH/j � W n1=2
nY

kD1
ak.J /

1=n for all n � 1 ; (2.6)

because j�n.LH/j �Qn
kD1 j�k.LH/j1=n.

Using a result originally due to Babenko (see [1] or [17, Theorem VIII.2.1]) we
see

al .J / � rl�1 for all l � 1 ;

hence,
Qn
lD1 al .J /1=n � r

1
n

Pn
lD1 l�1 D r.n�1/=2, so (2.6) becomes

j�n.LH/j � W n1=2r.n�1/=2 ;

which is the desired bound (2.4). ut
In higher dimension d the rate of eigenvalue decay is slower than exponential

and can be shown to be O.�n
1=d
/ as n ! 1, for some � 2 .0; 1/. The main new

ingredient in the following result, proved in [5], is an estimate due to Farkov [8]
on the approximation numbers of the embedding operator J in higher dimensions,
namely al .J / � rtl , where tl WD k for

�
k�1Cd
d

�
< l � �

kCd
d

�
.

Theorem 2.3. In dimension d � 1, suppose the Euclidean ball D 	 C
d is such

that [i2J Ti .D/ is contained in the concentric ball whose radius is r < 1 times that
ofD. SettingW WD supz2D

P
i2J jwi .z/j, the eigenvalues of LH W U.D/! U.D/

can be bounded by

j�n.LH/j < W

rd
n1=2 r

d
dC1 .d Š/

1=d n1=d for all n � 1 : (2.7)

4This is a Banach space version of Weyl’s original inequality [19] in Hilbert space; the constant
nn=2 is optimal (see [12]).
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2.3 The Common Spectrum

It turns out that a more oblique approach yields different, and sometimes better,
bounds on the eigenvalues of LH W U.D/ ! U.D/. This approach consists of
varying the space upon which LH acts. Clearly, in general U.D/ is not the only
function space preserved by a transfer operator LH , and we would expect the
spectrum of LH to vary according to the space on which it acts. There is interest,
however, in identifying a class of spaces A.D/ which are sufficiently closely related
to U.D/ to ensure that the spectrum of LH on these spaces is precisely the same as
that of LH W U.D/! U.D/. This motivates the following definition:

Definition 2.1. For a non-empty open connected set D 	 C
d , a Banach space

A.D/ of holomorphic functions f W D ! C is called favourable if it contains
U.D/, with the natural embedding U.D/ ,! A.D/ having norm 1, and if f 7!
f .z/ is continuous on A.D/ for each z 2 D.

Transfer operators LH can be shown (see [5]) to preserve all favourable spaces5

A.D/, with the eigenvalues of LH W A.D/ ! A.D/ related to a certain entire
function:

Theorem 2.4. The transfer operator LH defined by (2.1) preserves every
favourable space A.D/ of holomorphic functions on D. It has a well-defined
spectral trace �A.D/.LH/ DP1

nD1 �n.LH jA.D// and spectral determinant detA.D/,
related by

detA.D/.I � zLH jA.D// D exp

 
�
1X
nD1

zn

n
�A.D/.L

n
H /

!
; (2.8)

for all z 2 C in a suitable neighbourhood of 0, and such that, counting multiplicities,
the zeros of the entire function z 7! det.I � zLH jA.D// are precisely the reciprocals
of the eigenvalues of LH W A.D/! A.D/.

Motivated by the possibility that the trace and determinant do not in fact vary
with the choice of favourable space A.D/, we follow Ruelle [18] in considering the
following function:

Definition 2.2. For given weight functions wi , i 2 J , the associated dynamical
determinant is the entire function � W C ! C, defined for all z of sufficiently small
modulus by

�.z/ D exp

0
@�X

n2N

zn

n

X
i2J n

wi .zi /

det.I � T 0i .zi //

1
A ; (2.9)

5As always, we are making the standing assumption that D is an admissible domain, i.e. that the
closure of [i2J Ti .D/ lies in D.
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where for i D .i1; : : : ; in/ 2 J n, we set Ti WD Tin ı � � � ıTi1 , and wi WDQn
kD1 wik ı

TPk�1i , where Pk W J n ! J k denotes the projection Pki D .i1; : : : ; ik/ with the
convention that TP0i D id, and zi denotes the (unique, by [7]) fixed point of Ti inD.

Theorem 2.5. For every favourable space A.D/, the determinant of the transfer
operator LH W A.D/ ! A.D/ defined by (2.1) is precisely the dynamical
determinant �, and its eigenvalue sequence is precisely the same as for L W
U.D/! U.D/.

Proof. The common trace formula

�A.D/.L
n
H / D

X
i2I n

wi .zi /

det.I � T 0i .zi //
for all n � 1 (2.10)

can be established (see [5]), valid for every favourable space A.D/ on which LH

acts, so that equality of determinants follows from comparison of (2.8) and (2.9).
The equality of the eigenvalue sequences follows from the fact that the determinants
are spectral. ut

2.4 Hilbert Hardy Space

In view of Theorem 2.5, we are now at liberty to make particular choices of
favourable spaces, in the hope of obtaining interesting new bounds on the eigen-
values of the transfer operator L W U.D/! U.D/.

For p 2 Œ1;1/, the Hardy space Hp.D/ (see [13, Chap. 8.3]) is a favourable
space, and we will be particularly interested in the Hilbert Hardy space H2.D/.6

The following eigenvalue bounds, valid in dimension 1, are obtained by choosing
favourable space A.D/ D H2.D/ for D 	 C a disc:

Theorem 2.6. With the hypotheses and notation of Theorem 2.2,

j�n.LH/j � Wp
1 � �4 �

n�1 for all n � 1 : (2.11)

6If D has C2 boundary, then H2.D/ can be identified with the L2.@D; �/-closure of U.D/,
where � denotes .2d � 1/-dimensional Lebesgue measure on the boundary @D, normalised so
that �.@D/ D 1. The inner product in H2.D/ is given (see [13, Chaps. 1.5 and 8]) by .f; g/ DR
@D f

� g� d� , where, for h 2 H2.D/, the symbol h� denotes the corresponding nontangential
limit function in L2.@D; �/.



38 O.F. Bandtlow and O. Jenkinson

Proof. As in the proof of Theorem 2.3, let D0 denote the concentric disc whose
radius is r D �2 times that of D, and let J W H2.D/ ,! H1.D0/ denote canonical
embedding. It can be shown that, for all n � 1,

j�n.LH/j � W

nY
kD1

ak.J /
1=n ; (2.12)

an inequality which is superior to (2.6), by virtue of the original Hilbert space
version of Weyl’s inequality, namely

Qn
kD1 j�k.L/j �

Qn
kD1 ak.L/ (see [16, 3.5.1],

[19]). An argument (see [4]) exploiting the interplay between the reproducing kernel
of H2.D/ and an orthonormal basis for H2.D/ then allows the estimate

an.J / � rn�1p
1 � r2 ; (2.13)

and substituting into (2.12) yields the result. ut
Example 2.2. Comparing (2.12) with (2.4), we see that Theorem 2.6 leads to
improved eigenvalue bounds whenever n > 1=.1 � �4/. In Example 2.1 we can
choose � D 1=

p
5; therefore, for all n � 2 > 25=24, the estimate

j�n.PH/j � 77

320

5p
24

�
1p
5

�n�1

derived from (2.12) is sharper than the previous bound (2.3) on the eigenvalues of
the modified Perron-Frobenius operator.

A more elaborate version of the proof of Theorem 2.6 (see [4] for details) gives
the following higher dimensional analogue, which for sufficiently large values of n
yields estimates which are superior to those of Theorem 2.3:

Theorem 2.7. With the hypotheses and notation of Theorem 2.3,

j�n.LH/j < W
p
d

rd .1 � r2/d=2 n
.d�1/=.2d/ r

d
dC1 .d Š/

1=d n1=d for all n � 1 : (2.14)
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Chapter 3
Periodic Points, Escape Rates and Escape
Measures

Oscar F. Bandtlow, Oliver Jenkinson, and Mark Pollicott

Abstract For piecewise real analytic expanding Markov maps with Markov hole,
it is shown that the escape rate and corresponding escape measure can be rapidly
approximated using periodic points.

3.1 Introduction

For a dynamical system T W X ! X , a non-empty subset H 	 X induces an
escape time function:

e.x/ D eH .x/ D min fn � 0 W T n.x/ 2 H g ;
the nomenclature motivated by interpreting H as a hole in phase space X , through
which points may escape under iteration. The sequence of super-level sets En D
fx 2 X W e.x/ > ng decreases with n, and for a probability measure m on X , it is
often the case that m.En/! 0 as n! 1.

If T is a suitable hyperbolic map and m is, for example, Lebesgue measure, then
the m.En/ approach zero at an exponential rate. In this case the exponential decay
rate

ı D ı.T;H;m/ D lim
n!1m.En/

1=n

is a quantity of interest; indeed

" D ".T;H;m/ D � log ı.T;H;m/
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is commonly referred to as the escape rate and has been widely studied (see,
e.g. [3,4,8,9,12,13,21]). In certain special cases ı.T;H;m/ can be found exactly,1

though in general this is not feasible, so there is interest in developing methods for
its efficient approximation.

The purpose of this note is to describe, in the context of analytic expanding maps
T , a method for rapidly approximating ı D ı.T;H;m/. It relies on locating all
periodic points of T , up to a certain period N , say. This yields (see Sect. 3.3 for
further details) an approximation ıN 
 ı, where the error satisfies

jı � ıN j � C�N
2

for some constants � 2 .0; 1/ and C � 0; in particular, the ıN approximate ı super-
exponentially fast.

For example, if the map T W Œ0; 1�! Œ0; 1� is defined, as in [4], by

T .x/ D
(

9x
1�x if 0 � x � 1

10

10x � i if i
10
< x � iC1

10
for 1 � i � 9 ;

and H D Œ 9
10
; 1�, we derive (see Sect. 3.5 for further details) the successive

approximations

ı2 D 0:899376191482276109518851011534

ı3 D 0:901142928953763644891210358737

ı4 D 0:901139819292137417448614669069

ı5 D 0:901139820047631592907392158902

ı6 D 0:901139820047605710579196990120

ı7 D 0:901139820047605710706369756237

In fact these techniques also yield a means of rapidly approximating the corre-
sponding escape measure 
, the T -invariant measure supported on the survivor
set E1 D e�1H .1/, and maximising the quantity h.m/ � R

E
1

log jT 0j dm over
all T -invariant probability measures m, where h.�/ denotes metric entropy (see,
e.g. [9, 13, 20]). For example, 
 is completely determined by its sequence of nth
moments 
.n/ D R

xn d
.x/, which in general are not known exactly, but the
periodic points of T can again be used (see Sect. 3.4 for the method and Sect. 3.5
for an example) to derive a sequence 
N .n/, where j
.n/ � 
N .n/j D O.�N

2
/ as

N ! 1.

1For example, if T .x/ D 3x .mod 1/ on the interval X D Œ0; 1�, and H is the ‘middle third’
.1=3; 2=3/, then m.En/ D .2=3/n for each n, so that ı.T;H;m/ D 2=3.
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Using periodic points to calculate escape rates and related quantities is not a new
idea. Indeed, there is a considerable body of work for rather general systems in the
physics literature starting with [1,2] (see also [10,11,18,23] for later developments
and applications). Restricting attention to analytic expanding maps, however, we are
able to rigorously justify the approach and to provide precise estimates for the speed
of convergence of the approximations.

This article is organised as follows. After some preliminaries on transfer
operators and their determinants in Sect. 3.2, the method for approximating the
escape rate is described in Sect. 3.3 and for the escape measure in Sect. 3.4. In the
final Sect. 3.5, the speed of convergence of these methods is illustrated using the map
T and hole H defined above.

3.2 Transfer Operators and Determinants

Suppose the unit interval2 I D Œ0; 1� is partitioned as I D I1 [ � � � [ Id , d � 2,
where the Ii are closed intervals with pairwise disjoint interiors. We shall assume
that T W I ! I is such that T jIi is real analytic, for each i , and expanding in the
sense that min f jT 0.x/j W x 2 Ii ; 1 � i � d g > 1. We say that T is Markov if for
each 1 � i � d the closure of T .Ii / is a union of elements of the partition ˛ D
fI1; : : : ; Id g, in which case ˛ is referred to as the Markov partition. For each n � 1,
define the usual refined partition ˛.n/ D _n�1iD0T �i ˛. By a Markov hole we mean a
union of members of ˛.n/, for some n � 1. The fact that T is expanding ensures that
any subinterval H 	 I can be approximated arbitrarily well by a Markov hole.3

Although the techniques described below apply, with slight modification, to
general Markov holes H for Markov maps T , for simplicity of exposition we shall
henceforth assume that for each 1 � i � d , the closure of T .Ii / equals I (the
so-called Bernoulli case) and that the hole H 	 I is a member of ˛.

We denote by Ti W I ! Ii .1 � i � d/ the contractions which are inverse
branches to T . By the implicit function theorem, the maps Ti are real analytic,

2For simplicity of exposition we restrict attention to one-dimensional dynamical systems, though
in fact similar results apply to real analytic expanding Markov maps in higher dimensions. In
dimension D the rate of convergence (of ıN to ı, and of 
N .n/ to 
.n/) can be shown to be

O.�N
1CD�1

/ as N !1, for some 0 < � < 1; in particular it is super-exponential.
3This suggests the possibility of approximating the escape rate for non-Markov holes H , by using
the methods of this paper for a sequence of Markov holes approximating H . More precisely,
the escape rate can easily be seen to depend continuously on (the end points of) the hole, by a
perturbation theorem of Keller and Liverani for the bounded variation semi-norm andL1 (see [19]).
Thus, for ı > 0, provided n is sufficiently large, we can choose intervals H1 � H � H2 where
H1, H2 are unions of elements of ˛.n/ and such that ".T;H1;m/ � ".T;H;m/ � ".T;H2;m/

satisfy 0 � ".T;H;m/ � ".T;H1;m/; ".T;H2;m/ � ".T;H;m/ � ı. However, whereas the
values ".T;H1;m/, ".T;H2;m/ can be approximated quickly, there is less explicit control of the
dependence of n on ı.
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since each T jIi is real analytic. In particular, we can choose a bounded open
neighbourhood U 	 C containing I such that

[diD1TiU 	 U ; (3.1)

where here Ti denotes the relevant holomorphic extension to U .
Let A2.U / denote the Hilbert space of analytic functions f W U ! C which

are square-integrable with respect to two-dimensional Lebesgue measure on U ,
equipped with the usual inner product.

We may now define a transfer operator L acting on A2.U / by

L f .z/ D
dX
iD1

�iT
0
i .z/f .Ti z/ where f 2 A2.U / : (3.2)

Here �i 2 f�1; 1g denotes the sign of the derivative of Ti on I .
Using (3.1) it is not difficult to see that L mapsA2.U / continuously into itself. In

fact, on this space the transfer operator has strong spectral properties, which will be
crucial for the results to follow. The spectral properties are conveniently described in
terms of the theory of exponential classes developed in [5], which we briefly recall.
Given positive real numbers a and � , a bounded operator L on a Hilbert space is
said to belong to the exponential class E.a; �/ if

sup
n2N

sn.L/ exp.an�/ <1 ;

where sn.L/ D inf f kL �Kk W rank.K/ < n g denotes the nth approximation
number of L. We now have the following result.

Proposition 3.1. The transfer operator L W A2.U / ! A2.U / given in (3.2)
belongs to the exponential class E.a; 1/ for some a > 0. In particular, L is trace
class. Moreover, its eigenvalues decay at an exponential rate.

Proof. The first assertion follows from [6, Theorem 5.9]. The second now follows
since the approximation numbers of L are summable. The statement about the
eigenvalue decay follows from [6, Lemma 5.11]. ut

Given a hole H 2 ˛, without loss of generality assume that H D Id . In order to
analyse the corresponding escape rate, we consider the following modified operator:

Definition 3.1. Define LH by

LHf .z/ D
d�1X
iD1

�iT
0
i .z/f .Ti z/ where f 2 A2.U / and z 2 U : (3.3)
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Equivalently, we can think of LH as the original transfer operator L with the term
corresponding to H removed. As a result, the modified transfer operator enjoys the
same strong spectral properties as the original transfer operator.

Proposition 3.2. The modified transfer operator LH W A2.U / ! A2.U / given
in (3.3) belongs to the exponential class E.a; 1/ for some a > 0. In particular, LH

is trace class. Moreover, its eigenvalues decay at an exponential rate.

Proof. See the proof of Proposition 3.1. ut
Since LH is trace class, it has a well-defined trace. Moreover, there is an explicit

expression for the trace of any power of LH in terms of fixed points of the iterates
of the map:

Proposition 3.3. For any n 2 N, we have

tr.L n
H / D

X
x2FixH .T n/

sgn ..T n/0.x//
.T n/0.x/ � 1 ;

where FixH.T n/ D ˚
x 2 Œ0; 1� W T nx D x; T kx 62 H for 0 � k < n



and the

symbol sgn.	/ 2 f�1; 1g denotes the sign of 	 2 R.

Proof. This follows from [7, Theorem 4.2]. ut
The traces can now be used to calculate the determinant of the operator LH .

Proposition 3.4. The function z 7! det.1 � zLH/ given for z of sufficiently small
modulus by

det.I � zLH/ D exp

 
�
1X
nD1

zn

n
tr.L n

H /

!
(3.4)

extends to an entire function, the zeros of which are exactly the reciprocals of the
eigenvalues of LH (counting algebraic multiplicities).

The Taylor coefficients cn of

det.I � zLH/ D 1C
1X
nD1

cnzn (3.5)

satisfy both the recurrence relation

cn D �1
n

n�1X
lD0

cl tr.L
n�l
H / for n � 1 (3.6)
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with c0 D 1 and Plemelj’s formula

cn D .�1/n
nŠ

det

0
BBBBB@

tr.LH/ 1 0

tr.L 2
H / tr.LH/ 2
:::

:::
: : :

tr.L n�1
H / tr.L n�2

H / � � � tr.LH/ n � 1
tr.L n

H / tr.L n�1
H / � � � tr.L 2

H / tr.LH/

1
CCCCCA
: (3.7)

Moreover, we have

jcnj D O.�n
2

/ as n! 1 ; (3.8)

for some 0 < � < 1.

Proof. For the recurrence formula and Plemelj’s formula, see [22, Theorem 4.4.10].
The decay estimate for the Taylor coefficients is proved in [6, Theorem 6.1].
The remaining assertions follow from Lidskii’s Trace Theorem (see, e.g. [14,
Theorem 8.4, Chap. III]). ut
Remark 3.1. Explicit estimates for � , in terms of geometric properties of Ti .U /,
can be found in [6, Theorem 6.1].

Proposition 3.5. The following hold:

(a) The operator LH has a simple eigenvalue ı 2 .0; 1�, strictly larger in modulus
than all other eigenvalues, with corresponding eigenfunction % 2 A2.U /, which
is positive on I .

(b) There exists a probability measure � supported on the survivor set E1
satisfying Z

E
1

LHf d� D ı

Z
E
1

f d� for all f 2 A2.U / :

(c) The probability measure 
 D %� supported on the survivor set E1 is
T -invariant and coincides with the escape measure.

(d) The escape rate with respect to Lebesgue measure m satisfies

".T;H;m/ D � log ı :

Proof. The assertions in (a), (b) and (c) follow from results in [20]. To be precise,
the existence of the eigenmeasure � in (b) follows immediately from Theorem A
in [20]. For (a) observe that (b) together with the compactness of LH imply the
existence of an eigenvector % 2 A2.U / corresponding to ı, which, by the positivity
arguments used for the proof of Theorem A in [20], must have the stated properties.
The same theorem also yields (c). Finally, (d) follows from the fact that

m.En/ D
Z
InH

L n
H1 dm

together with the spectral properties of LH given in (a). ut
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3.3 Determining the Escape Rate

The results of Sect. 3.2 mean we can find the value 0 < ı.T;H;m/ � 1 by
considering the determinant:

Proposition 3.6. The smallest zero (in modulus) of z 7! det.I � zLH/ is simple,
real and equal to ı.T;H;m/�1.

Proof. By Proposition 3.5 the value ı.T;H;m/ is a simple eigenvalue of the transfer
operator LH and also the largest in modulus. Combining this with Proposition 3.4,
the assertions follow. ut

Setting ı D ı.T;H;m/, the expansion (3.5) now gives

0 D 1C
1X
nD1

cnı
�n D 1C

NX
nD1

cnı
�n CO.�N

2

/

leading naturally to the following definition:

Definition 3.2. For each N � 1 define ıN to be the largest value (in modulus) such
that

0 D 1C
NX
nD1

cnı
�n
N :

This brings us to the first main result:

Theorem 3.1. The values ıN converge to ı at a super-exponential rate; more
precisely,

ıN D ı CO.�N
2

/ as N ! 1 :

Proof. By construction the sequence ıN converges to ı. In order to estimate the
speed of convergence, fix N � 1 and write

�.z/ D det.1 � zLH/ D 1C
1X
nD1

cnzn ;

�N .z/ D 1C
NX
nD1

cnzn :

By the mean value theorem, there is tN on the line segment joining ı�1 and ı�1N such
that

�
ı�1 � ı�1N

�
�0N .tN / D �N.ı

�1/ ��N.ı
�1
N / D �N.ı

�1/ D �N.ı
�1/ ��.ı�1/ :
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But since �0N .tN / ! �0.ı�1/ ¤ 0 by Proposition 3.6, it follows that j�0N .tN /j is
bounded away from zero. Thus,

ˇ̌
ı�1 � ı�1N

ˇ̌ � 1ˇ̌
�0N .tN /

ˇ̌ 1X
nDNC1

jcnj ı�n D O.�N
2

/ as N ! 1

for some 0 < � < 1. ut
Remark 3.2. The implied constant in Theorem 3.1 can if necessary be explicitly
estimated, using bounds on the Taylor coefficients cn.

3.4 Determining the Escape Measure

In order to approximate the escape measure, we first introduce the following
weighted transfer operator.

Definition 3.3. Let � be a bounded holomorphic function on U . For t in a bounded
neighbourhood V of 0 2 C, define the weighted transfer operator LH;t by

LH;tf .z/ D
d�1X
iD1

�iT
0
i .z/e

t�.z/f .Ti z/ where f 2 A2.U / and z 2 U :

We now have analogues of the results from Sect. 3.2:

Proposition 3.7. The operators LH;t W A2.U /! A2.U / satisfy:

(a) For each t 2 V , the operator LH;t belongs to the exponential class E.a; 1/ for
some a > 0.

(b) The mapping t 7! LH;t is holomorphic in the trace-class operator topology; in
particular, the function .z; t / 7! det.1 � zLH;t / is holomorphic on C � V .

(c) For any t 2 V and any n 2 N, we have

tr.L n
H;t / D

X
x2FixH .T n/

sgn ..T n/0.x// et�.n/.x/

.T n/0.x/ � 1

where, as before, FixH.T n/D
˚
x 2 Œ0; 1� W T nxDx; T kx 62 H for 0 � k < n



and �.n/ DPn�1

kD0 � ı T k .
(d) The Taylor coefficients cn;�.t/ of the determinant

det.I � zLH;t / D 1C
1X
nD1

cn;�.t/z
n

satisfy supt2V jcn;�.t/j D O.�n
2
/ as n! 1 for some 0 < � < 1.
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Proof. Assertion (a) follows from [6, Theorem 5.9], while assertion (b) follows
from (a) and [14, Sect. 1.9, Chap. IV]. The formula for the traces in (c) is a
consequence of [7, Theorem 4.2], and (d) follows from [6, Theorem 6.1]. ut
Remark 3.3. Setting t D 0 we see that LH;0 D LH ; hence, cn;�.0/ D cn for all
n � 1.

It turns out that the escape measure can be expressed as a quotient of the partial
derivatives of .z; t / 7! det.I � zLH;t /. The proof of this relies on a formula for
the derivative of a determinant which we briefly recall. Let D 	 C be an open
neighbourhood of 0 and suppose that D 3 s 7! L.s/ is an operator-valued function
which is holomorphic in the trace-class topology. If det.I � L.0// ¤ 0, then

d

ds
det.I � L.s//jsD0 D � det.I � L.0// tr. PL.0/.I � L.0//�1/ ; (3.9)

where PL.0/ D d
ds L.s/jsD0. For a proof see [22, 4.3.1.9 Proposition] or [14, Sect. 1.9,

Chap. IV].
The calculation of the escape measure relies on the following result.

Proposition 3.8. We have

Z
E
1

� d
 D ı

@
@t

det.I � zLH;t /jtD0;zD1=ı
@
@z det.I � zLH;t /jtD0;zD1=ı

:

Proof. The proof is a simple application of formula (3.9), the only subtlety arising
from the fact that both @

@t
det.I � zLH;t / and @

@z det.I � zLH;t / vanish for t D 0 and
z D 1=ı. This problem, however, can be circumvented by choosing D to be a small
punctured neighbourhood of 1=ı such that det.1 � �LH;0/ ¤ 0 for � 2 D. We then
apply formula (3.9) for � 2 D and then take the limit � ! 1=ı.

We thus start by using (3.9) twice to obtain for any � 2 D
@

@t
det.I � �LH;t /jtD0 D � det.I � �LH;0/tr.� PLH;0.I � �LH;0/

�1/

where PLH;0 D d
dtLH;t jtD0, and

@

@z
det.I � zLH;0/jzD� D � det.I � �LH;0/tr.LH;0.I � �LH;0/

�1/ :

We now observe that d
dtLH;t jtD0 D M�LH;0 where M� W A2.U / ! A2.U / is the

operator of multiplication by �, that is, M�f D �f for f 2 A2.U /.
Before letting � ! 1=ı, we note that for � 2 D we can write

LH;0.1 � �LH;0/
�1 D ı

1 � �ı˘ CQ.�/ ;
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where ˘f D R
E
1

f d� % denotes the spectral projection associated to the
eigenvalue ı and Q is a trace-class operator-valued holomorphic function on D.
This follows from standard spectral theory (see, e.g. [22, Theorem 4.1.6 ]) together
with the fact that ı is a simple eigenvalue of LH;0 by Proposition 3.5.

Now

@
@t

det.I � zLH;t /jtD0;zD1=ı
@
@z det.I � zLH;t /jtD0;zD1=ı

D lim
�!1=ı

@
@t

det.I � �LH;0/jtD0
@
@z det.I � zLH;0/jzD�

D lim
�!1=ı �

ıtr.M�˘/C .1 � �ı/tr.M�Q.�//

ıtr.˘/C .1 � �ı/tr.Q.�// D 1

ı

tr.M�˘/

tr.˘/

and the result follows by noting that tr.˘/ D R
E
1

% d� D 1 and

tr.M�˘/ D
Z
E
1

�%d� D
Z
E
1

� d
 :

ut
Using Proposition 3.8 we can write

Z
E
1

� d
 D ı

P1
nD0 c0n;�.0/ı�nP1

nD0 n cn;�.0/ı�.n�1/
D

PN
nD0 c0n;�.0/ı1�nPN
nD0 n cn;�.0/ı1�n

CO.�N
2

/ ; (3.10)

for some 0 < � < 1. Here we have used the fact that c0n;�.0/ D O.�n
2
/ as n ! 1

for some 0 < � < 1, which follows from Proposition 3.7(d) and Cauchy’s formula.
This leads naturally to the following definition:

Definition 3.4. For each N � 1, define IN .�/ by

IN .�/ D
PN

nD0 c0n;�.0/ı1�nNPN
nD0 n cn;�.0/ı1�nN

D
PN

nD1 c0n;�.0/ı1�nNPN
nD1 n cnı1�nN

:

This brings us to the second main result:

Theorem 3.2. The values IN .�/ converge to
R
E
1

� d
 at a super-exponential
rate; more precisely,

IN .�/ D
Z
E
1

� d
CO.�N
2

/ as N ! 1

for some 0 < � < 1.

Proof. This follows from (3.10) and Theorem 3.1. ut
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Remark 3.4. Similar approximating formulae, in the context of invariant measures
equivalent to Lebesgue measure, have been derived in [15–17] using a slightly
different approach.

Importantly, it is possible to efficiently calculate each c0n;�.0/ using periodic
points:

Proposition 3.9. Setting

b�;n D 1

n

X
x2FixH .T n/

sgn..T n/0.x//�.n/.x/
.T n/0.x/ � 1 ; (3.11)

we have

c0�;n.0/ D �
nX
iD1

b�;i cn�i for all n � 1 : (3.12)

Proof. Let z belong to a sufficiently small disc centred at the origin. Then we have

@

@t
det.1 � zLH;t /jtD0 D � det.1 � zLH;0/

1X
mD1

zm

m

@

@t
tr.L n

H;t /jtD0

D �.1C
1X
nD1

cnzn/
1X
mD1

b�;mzm : (3.13)

On the other hand,

@

@t
det.1 � zLH;t /jtD0 D 1C

1X
nD1

c0n.0/zn ; (3.14)

and the result now follows by comparing coefficients in (3.13) and (3.14). ut

3.5 An Example

As in [4], we consider the map

T .x/ D
(

9x
1�x if 0 � x � 1

10

10x � i if i
10
< x � iC1

10
for 1 � i � 9

and H D Œ 9
10
; 1�.
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Note that the inverse branches fTig0�i�9 are given by

T0.x/ D x

9C x

and

Ti .x/ D .x C i/=10 for 1 � i � 9 :

Writing

an D 1

n
tr.L n

H / D
1

n

X
x2FixH .T n/

1

.T n/0.x/ � 1 ;

these an can be computed by locating the members of FixH.T n/, all of which are
quadratic numbers.

For example, there are 9 members of FixH.T /, denoted x0; x1; : : : ; x8, say. For
each 1 � i � 8, we see that

1

T 0.xi / � 1 D 1

10 � 1 D 1

9
;

whereas

1

T 0.x0/ � 1 D 1

9 � 1 D 1

8
:

Therefore,

a1 D
8X
iD0

1

T 0.xi / � 1 D 1

8
C 8

9
D 73

72
:

The computation of a2 is only slightly more involved. For the fixed point 0, we have

1

.T 2/0.0/ � 1 D 1

81 � 1 D 1

80
;

whereas for those 64 period-2 points xij D .Ti ı Tj /.xij / with 1 � i; j � 8, we
have

1

.T 2/0.xij / � 1 D 1

100 � 1 D 1

99
:

It remains to consider the 8 period-2 points of the form x0i D .T0 ı Ti /.x0i / and
the 8 period-2 points of the form xi0 D .Ti ı T0/.xi0/, for 1 � i � 8. In fact since
.T 2/0.x0i / D .T 2/0.xi0/, it suffices to consider the points x0i , and a calculation
gives
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.T0 ı Ti /.x/ D x C i

x C 90C i
; .T0 ı Ti /0.x/ D 90

.x C 90C i/2
;

x0i D 5

0
@
s�

9C i � 1
10

�2
C i

25
� 9 � i � 1

10

1
A ;

from which we compute

a2 D 1

2

 
1

80
C 64

99
C 2

8X
iD1

1

.T 2/0.x0i / � 1

!

D 0:410995345836251121588654162858 : : :

Subsequent values an can be computed similarly, for example:

a3 D 0:244247986872392594300895837121 : : :

a4 D 0:164881484924536515073990416986 : : :

a5 D 0:118849630250109944686793773181 : : :

a6 D 0:089248843422890449580723889612 : : :

a7 D 0:068936195289851448498303594869 : : :

3.5.1 The Escape Rate

We are now in a position to compute the power series coefficients ci of the
determinant det.I � zLH/ D 1 C P1

iD1 ci zi . Specifically, the formulae of
Proposition 3.4 give

c1 D �a1

c2 D �a2 C a21
2

c3 D �a3 C a1a2 � a31
6

c4 D �a4 C a22
2

C a1a3 � a21a2

2
C a41
24



54 O.F. Bandtlow et al.

c5 D �a5 C a1a4 C a2a3 � a21a3

2
� a1a

2
2

2
C a31a2

6
� a51
120

c6 D �a6C a23
2
Ca1a5Ca2a4� a

2
1a4

2
�a1a2a3� a

3
2

6
C a31a3

6
C a21a

2
2

4
� a

4
1a2

24
C a61
720

c7 D �a7 C a1a6 C a2a5 C a3a4 � a21a5

2
� a1a2a4 � a1a

2
3

2
� a22a3

2

Ca
3
1a4

6
C a21a2a3

2
C a1a

3
2

6
� a41a3

24
� a31a

2
2

12
C a51a2

120
� a71
5040

:

Substituting the above numerical values4 of an into the formulae for the ci then
gives

c1 D �73
72

D �1:013888888888888888888888888888 : : :
c2 D 0:102989993669921717917518676648 : : :

c3 D �0:001252380603001953819578039057 : : :
c4 D 1:994754501536932614209760476393 : : : � 10�6
c5 D �4:367117910658311343671035602900 : : : � 10�10
c6 D 1:348215512356863399693187985465 � � � � 10�14
c7 D �5:969559406869561159884947613741 : : : � 10�20 :

These values of ci allow us to form, for 1 � N � 7, the degree-N polynomial
approximation

�N.z/ D 1C
NX
iD1

ci z
i

to the determinant. The smallest root zN of �N can then be computed as follows:

z1 D 72=73 D 0:986301369863013698630136 : : :

z2 D 1:111881779249553184201012015076 : : :

4Of course we use higher precision for the an, ensuring that the values ci are correct to the precision
given.



3 Periodic Points, Escape Rates and Escape Measures 55

z3 D 1:109701877327063363180409111227 : : :

z4 D 1:109705706696569182143392132129 : : :

z5 D 1:109705705766218331774455583303 : : :

z6 D 1:109705705766250204483482219528 : : :

z7 D 1:109705705766250204326875729570 : : :

and inverting these gives the sequence of approximations ıN D z�1N to ı.T;H;m/
already listed in Sect. 3.1.

3.5.2 The Escape Measure

The escape measure 
 is completely determined by its set of momentsR
E
1

xn d
.x/, n � 0. Each nth moment can be rapidly approximated by setting
�.x/ D xn then using the approach described in Sect. 3.4. Here we shall illustrate
this in the case n D 1: the first moment 
.1/ D R

E
1

x d
.x/ is often called the
barycentre, or resultant, of the measure 
.

Since �.x/ D x is fixed, we write bn D b�;n (see (3.11)), so that

bn D 1

n

X
x2FixH .T n/

Pn�1
iD0 T ix

.T n/0.x/ � 1 :

We find that

b1 D 4=9 D 0:4444444444444444444444444 : : :

b2 D 0:363146979940866817710676390686 : : :

b3 D 0:323945697078082902031586942946 : : :

b4 D 0:291597918113354097600085433302 : : :

b5 D 0:262738636423342281952526356399 : : :

b6 D 0:236761095523224368789249278048 : : :

b7 D 0:213354539113042148099894783840 : : :
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Recall that the coefficients di D c0�;i .0/ (where �.x/ D x) are given by
formula (3.12). It follows that, for example, the first four5 di are given by

d1 D �b1
d2 D a1b1 � b2

d3 D �b3 C b1a2 C a1b2 � a21b1

2

d4 D a2b2 C b1a3 C a1b3 � b4 � a1b1a2 � a21b2

2
C a31b1

6

Substituting the numerical values of an; bn into the formulae for the di gives us

d1 D �4=9 D �0:444444444444444444444 : : :
d2 D 0:087470304009750466239940893264 : : :

d3 D �0:00152833960244703092715945867 : : :
d4 D 3:133193453094917698092477916170 : : : � 10�6
d5 D �8:40390182408161094002529348420 : : : � 10�10
d6 D 3:090985019372664486353921814698 : : : � 10�14
d7 D �1:60253894897971331452691425140 : : : � 10�19

The approximations


N .1/ D
PN

nD1 dnzn�1NPN
nD1 ncnzn�1N

to the integral 
.1/ D R
E
1

x d
.x/ are then


2.1/ D 0:442354383674664532214929145156 : : :


3.1/ D 0:442135977598196893113667748055 : : :


4.1/ D 0:442136676297808722065125231922 : : :


5.1/ D 0:442136676053865369048181249845 : : :

5In the calculation that follows, we use di for 1 � i � 7, though the algebraic formulae for di
in terms of an; bn are a little long to conveniently give here (e.g. the analogous expression for d7
consists of a sum of 30 terms).
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6.1/ D 0:442136676053875847256104872452 : : :


7.1/ D 0:442136676053875847197526214497 : : :
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Chapter 4
A Multi-time Step Method to Compute Optical
Flow with Scientific Priors for Observations
of a Fluidic System

Ranil Basnayake and Erik M. Bollt

Abstract Optical flow is a classical problem in computer vision, but the concepts
must be adapted for applications to other fields such as fluid mechanics and
dynamical systems. Our approaches are based on an inverse problem formalism,
considering imposed scientific priors in the form of a cost function that rewards
an assumed infinitesimal generator commensurate with assumed physics of the
observed density evolution. This leads to a practical and principled approach to
analyze an observed dynamical system. Additionally we present here for the first
time a new multi-frame version of the functional coupling of multiple images.
Following the calculus of variations, this yields a coupled set of Euler–Lagrange
PDEs which serve as an assimilation method that inputs video frames as driving
terms. The solution of the PDE which follows is the vector field, as designed. Data
from an oceanographic system will be highlighted. It is also shown here how these
flow fields can be used to analyze mixing and mass transport in the fluid system
being imaged.

4.1 Introduction

The goal of an optical flow method is to compute vector fields, considering
the apparent motion between time-adjacent images of the same scene. Horn and
Schunck in [10] introduced the original optical flow algorithm to detect the motion
field of a moving object making two assumptions. The first assumption, a brightness
constraint, states that the image brightness of a point on the brightness pattern
is constant over time for small motions. This includes a notion of rigid body
motion. Then an energy functional is obtained measuring the errors of the brightness
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constraint over the image domain so that the velocity components u and v along the
x and y directions, respectively, are obtained by minimizing the energy functional.
However, in general, minimizing this energy functional is an ill-posed problem.
Hence the above functional is regularized by making the second assumption that
the expected flow is smooth, called the smoothness constraint. While the Horn
and Schunck derivation was made in terms of local considerations only, the same
PDE could be derived as a conservation law. The functional obtained from the
brightness constraint is called the data term and the smoothness constraint is called
the regularization term. The total energy functional includes a regularization term to
the data term with weighting factor ˛, which is called the regularization parameter.

After regularizing the energy functional, the flow components u and v can be
reconstructed by minimizing the derived energy functional. We achieve this by
choosing a suitable regularization parameter ˛ [9, 12, 13] to balance the desire to
match the data fidelity but also to compromise with some form of regularity. We
minimize the energy functional using a calculus of variations [6] approach. We apply
Euler–Lagrange equations, first-order necessary conditions to have an extremum
and a functional as explained in Sect. 4.2.1, to the optical flow energy functional.
For this problem, we have two coupled Euler–Lagrange equations to be solved for
u and v. Fortunately, the resulting PDE system allows for known and relatively
simpler numerical techniques such as the Gauss–Seidel method, the gradient descent
method, or the LU factorization with Gaussian elimination.

The above general optimization framework of optical flow computations allows
reconstruction of both flow components u and v for a given image data. However,
the only measured data is the image intensity. Since there is only one measurement,
it is more stable to reconstruct just one unknown function in such a way that the
flow components u and v can be obtained from this computed function. One way
we suggested in [14] to help with the stability of the optimization problem while
at the same time representing the fluid nature of our problems of interests is to
reconstruct the stream/potential function  and then compute u and v by taking the
Hamiltonian/usual gradient on the stream/potential function.

Our main goal here is to analyze unsteady fluid flow dynamics inferred using
a sequence of image data of the system, taken by a movie camera or even from a
satellite. Our previous methods required that there were only small changes of scene
between each image, but otherwise the optimization approach just described yields a
spatially regularized vector field in as far as the regularity term in the cost function is
emphasized. However, if the scene in the movie data changes significantly between
frames of the movie due to a relatively fast changing non-autonomous system, then
there can be undesirable irregularity in the inferred vector field. This motivates us
to develop a new approach to emphasize temporal regularity, a new approach of
computing optical flow, using multiple images rather than just two. We will call
this approach a multi-time step optical flow computation, which we introduce and
develop here for the first time. For the computation of one stream function at a time,
the multi-time step method and the stream function method are the same. However,
when we compute more than one stream function for consecutive time points of the
system simultaneously, we wish to adjust the functional to emphasize that the stream
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functions of two consecutive time-adjacent motions have similar behavior. This new
assumption would incorporate an additional term into the energy functional with a
weighting factor ˇ. We will demonstrate our method with a benchmark data set
representing a gyre and also the sea surface temperature (SST) data from the coast
of Oregon, USA, as shown in Sect. 4.6.

Finally, we will demonstrate a use of the computed vector field to analyze mixing
and mass transport in the fluid system being imaged. Several methods such as
determining Lagrangian coherent structures (LCS) [2, 7, 18] and coherent pairs [5]
are available to achieve this goal. In this endeavor we compute finite time Lyapunov
exponents (FTLE) at each and every point in the system to determine LCSs. In
the computation of FTLEs, we consider two nearby points at time t0 and measure
the separation of the trajectories over the time period Œt0; T �. If the separation is
relatively high, the set of corresponding points are barriers for mixing and mass
transport in the fluid system. These separation barriers on the FTLE fields are the
LCSs. The LCS for the SST data set is computed using the vector fields obtained
from the multi-time step method and shown in Fig. 4.9.

4.2 Classical Optical Flow Method

According to the original Horn and Schunck formulation of optical flow [10], the
image brightness I.x; y; t/ at a point .x; y/ is assumed to be locally conserved over
the time if the motion is small. This implies that

I.x; y; t/ D I.x C u; y C v; t C 1/; (4.1)

where u and v are the velocity components along the x and y directions, respec-
tively, and here we consider a unit time interval. Note that I.x; y; t/ is the assumed
data function. I W ˝ � R

C ! R represents the gray scale color intensity of an
image at time t , where .x; y/ is in the scene domain ˝. Generally, actual data from
a digital movie camera is pixelated at discrete spatial locations fxi ; yj gp;qi;jD1 at times

tk , fIi;j;kgp;q;Ti;j;kD1 at times tk as a complete data set, where t1 D 0 and tk is the time
after k � 1 units. In other words, the image one was taken at t D 0 and the image k
was taken after k�1 time units from image 1 have been taken. Here p and q are the
number of rows and the number of columns of the input images. The Taylor series
expansion on Eq. (4.1) is

It C Ixu C Iyv D ı; (4.2)

where ı is the errors accumulated from the higher-order terms and It ; Ix , and Iy
are partial derivatives of I with respect to t; x, and y, respectively. The data term
can be obtained by integrating the errors of the brightness constraint over the image
domain as given by

Eb.u; v/ D
Z
˝

�
It C Ixu C Iyv

�2
d˝: (4.3)



62 R. Basnayake and E.M. Bollt

To develop u and v, as suggested by the brightness constraint objective in Eq. (4.2),
we state the functional in Eq. (4.3). However, minimizing Eb.u; v/ in Eq. (4.3) is
an ill-posed problem. To avoid ill-posedness of this problem, the data term must
be regularized. We approach the regularization by assuming the expected flow is
smooth. This implies that the partial derivatives of the velocity components u and v
exist and hence suggests the regularization term should become

R.u; v/ D
Z
˝

�
u2x C u2y C v2x C v2y

�
d˝: (4.4)

Now the problem can be reformulated in terms of an energy functional obtained by
combining the data term and the regularization term with weighting the second term
by nonnegative regularization parameter ˛. Then the total energy functional to be
minimized is given by

E.u; v/ D
Z
˝

�
It C Ixu C Iyv

�2
d˝ C ˛

Z
˝

�
u2x C u2y C v2x C v2y

�
d˝: (4.5)

4.2.1 Euler–Lagrange Equations

To minimize the functional in Eq. (4.5), we use a calculus of variations approach,
and in this subsection, we will demonstrate methods to minimize our functionals as
in [6]. First consider minimization of a simple functional and necessary conditions
to have a minimum to be solved for u and v.

Suppose we are given a functional J.u/ and to be determined is the optimizer
u.x/ D Ou.x/ over the interval a � x � b

J.u/ D
Z b

a

F.x; u; ux/ dx: (4.6)

Here F.x; u; ux/ is a function with continuous first and second partial derivatives
with respect to all of its arguments. Also, let u.x/ be a continuously differentiable
function on Œa; b� which satisfies the boundary conditions

u.a/ D A and u.b/ D B: (4.7)

Optimization necessitates that the first variations are stationary. Analogous to the
first derivative of a function, here we obtain the first variation of the given functional.
First, we give an increment h.x/ to the function u.x/ with the boundary conditions

h.a/ D h.b/ D 0: (4.8)
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The corresponding increment �J in Eq. (4.6) with respect to the increment of
h.x/ is

�J D
Z b

a

ŒF .x; u C h; ux C hx/ � F.x; u; ux/� dx: (4.9)

The first variation of the functional Eq. (4.9) with respect to the argument u is
obtained by taking the first-order terms of the Taylor series expansion on the
integrand of Eq. (4.9) as

ıJ D
Z b

a

ŒFu.x; u; ux/hC Fux .x; u; ux/hx� dx: (4.10)

Theorem 4.1 ([6]). A necessary condition for the differentiable functional J.u/ to
have an extremum for u D Ou is that its variation vanish for u D Ou, i.e., that

ıJ.h/ D 0 (4.11)

for u D Ou and all admissible h.

From the above theorem, the necessary condition, called the Euler–Lagrange
equation, for the functional in Eq. (4.6) to have an extremum can be obtained as

@F

@u
� d

dx

�
@F

@ux

�
D 0: (4.12)

This statement can be expanded to allow for many variables, and we are interested
to expand the results to a functional of the form

J.u; v/ D
Z
˝

F.x; y; u; v; ux; uy; vx; vy/ d˝; (4.13)

allowing for vector fields hu.x; y/; v.x; y/i in the plane .x; y/ 2 R
2. Since there

are two argument functions u and v, we may have two coupled Euler–Lagrange
equations. The Euler–Lagrange equations for the functional in Eq. (4.13) follow as

@F

@u
� @

@x

�
@F

@ux

�
� @

@y

�
@F

@uy

�
D 0

@F

@v
� @

@x

�
@F

@vx

�
� @

@y

�
@F

@vy

�
D 0:

(4.14)

The above Euler–Lagrange equations are specialized below for functionals such as
of the form in Eq. (4.5), and hence we can determine the velocity components by
solving the resulting Euler–Lagrange PDE equations for u and v.



64 R. Basnayake and E.M. Bollt

Another way to compute the Euler–Lagrange equations for a functional J.u/ in
Eq. (4.6) is to compute the Gateaux derivative J.u/ with respect to u and set it to
zero. The Gateaux derivative of the functional J.u/ is obtained as

DJ.u/ D d

d�
J.u C �h/j�D0 (4.15)

for all admissible h.

4.2.2 Solution to the Optical Flow Problem

In general, when we minimize the optical flow problem, assuming existence and
uniqueness of the solution, we determine the minimum by solving the Euler–
Lagrange equations for each argument variable. The issues of existence and
uniqueness of solutions of the PDEs in Eq. (4.14) follow the theory of convex
optimization including discussion of convexity, coercivity, and lower semicontinuity
of the specific functional J.u; v/. This goes beyond the needs of the discussion
here, but we refer to the excellent textbook [19]. The following theorem from [19]
explains sufficient conditions to have a unique minimum for the functional J.u; v/.

Theorem 4.2 ([19]). Assume that J W H ! R is weakly lower semicontinuous and
coercive and that C is a closed, convex subset ofH . Then J has a minimizer over C.
If, furthermore, J is also strictly convex, then the minimizer is unique.

In the minimization process, first, we apply the equations in Eq. (4.14) to the
functional in Eq. (4.5) to obtain the Euler–Lagrange equations, the gradients of the
energy functional with respect to u and v, as

ut D Ix.It C IxuC Iyv/C˛�2u; and vt D Iy.It C IxuC Iyv/C˛�2v:

(4.16)

When we numerically solve the above system for u and v, one way of reaching the
solution is to use numerical iterative methods such as the gradient descent method or
the Gauss–Seidel method. For instance, the gradient decent algorithm is an iterative
method which updates u and v for given initial conditions u0 and v0 as

u.kC1/ D u.k/ � ıt ŒIx.It C Ixu.k/ C Iyv
.k//C ˛�2u.k/�

v.kC1/ D v.k/ � ıt ŒIy.It C Ixu.k/ C Iyv
.k//C ˛�2v.k/�

(4.17)

Here k represents the iteration number and ıt is the time step. Recall that u.k/ and
v.k/ must be discretely represented on the grid fxi ; yj gp;qi;jD1 and derivatives must be
numerically approximated by finite differences.

On the other hand, we can linearize the Laplacian terms in the Euler–Lagrange
equations by introducing operators to compute second partial derivatives of u and
v and then use direct methods to solve the resulting linear system. We will explain
how to use the operator matrices to simplify a system in Sect. 4.3.
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4.3 Stream Function Method

The Horn and Schunck optical flow method was developed to capture rigid body
motion. Later research [14] applies this method to capture vector fields in fluid
systems but changes must better respect expected fluid behavior. When we deal
with a fluid system, dealing with the stream function of the motion is an accurate
and precise way to develop velocity components. Note that in order to use the stream
function, we assume the fluid is incompressible. Therefore, we convert the optical
flow method into a stream function formulation. If the stream function is  .x; y/,
then the velocity components are obtained as

hu; vi D h� y; xi: (4.18)

Substituting � y and  x into Eq. (4.5), the energy functional in terms of the stream
function  becomes

E. / D
Z
˝

�
It � Ix y C Iy x

�2
d˝C˛

Z
˝

. 2
xxC 2

yyC 2
xyC 2

yx/d˝ (4.19)

One of the other advantages of the stream function method is we can impose
the regularity directly to the stream function rather than to the flow components.
For instance, if the resulting flow is known to be sparse, then the appropriate
regularization term [17] in the usual optical flow computation “uv- method” is

R.u; v/ D
Z
˝

.j u j C j v j/ d˝: (4.20)

Minimization of this regularization term emphasizes u to be zero in some places or
v to be zero in some places which does not imply the flow to be zero. However, in
the stream/potential function method, we can apply the scientific prior directly to
the flow by regularizing the energy functional by the choice

R. / D
Z
˝

j 5 j d˝: (4.21)

This would measure the sparsity of the flow rather than components of the flow.
Next we review the development of Euler–Lagrange equations for the stream

function method. Taking the Gateaux derivative as in Eq. (4.15), the gradients of the
data fidelity

Z
˝

�
It � Ix y C Iy x

�2
d˝; and the regularization term

Z
˝

�
 2
xx C  2

yy C  2
xy C  2

yx

�
d˝; are obtained as

A�.It C A/ and .B C B�/ ;
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respectively. Here A� is the adjoint of operator A, and A and B are obtained as

A D �IxDy C IyDx and

B D DxxD
�
xx CDyyD

�
yy CDxyD

�
xy CDyxD

�
yx;

following standard considerations of calculus variations [19]. In the operators A
and B , the operator D�� is a matrix operator of size m � m to compute the partial
derivatives of a given vector of size m � 1 with respect to indices ��. Here we
stack the given matrix of size p � q into m � 1 vector and m D pq. To develop
the operator matrices D��, we use finite difference approximations with suitable
boundary conditions. Finally, choosing a suitable regularization parameter ˛, the
stream function  can be determined by solving the following Euler–Lagrange
equation:

ŒA�AC ˛.B C B�/� D �A�It : (4.22)

Now the system can be solved for  by taking the LU decomposition on A�A C
˛.BCB�/ and then applying Gaussian elimination. The velocity components u and
v can be derived from Eq. (4.18).

4.4 Multi-time Step Method

Now we introduce the new multi-time step method of computing optical flow
for a sequence of several time-dependent images to compute n time-dependent
vector fields simultaneously. Furthermore, we can use higher-order finite difference
approximations to compute It rather than the forward difference approximation
necessary when just two images are available. In this endeavor our multi-time
step optical flow algorithm is obtained based on the stream/potential optical flow
algorithm, and the energy functional for n D 1 is given in Eq. (4.19); the solution
can be obtained by solving the system Eq. (4.22). When we consider n D 2 or more,
we include the additional term in the data fidelity by introducing regularity in the
time direction by assuming two consecutive stream functions have similar behavior.
Suppose we are given T time-adjacent images as a movie of a dynamical system.
Then evolving the window is slow enough that considerations of continuously
evolving frame views allow inference of the underlying dynamical systems, though
the flow is unsteady. In other words assume I.x; y; t/ is continuous with respect to t
throughout the scene. In fact we cope with this assumption by including a new term
with a weighting factor. For instance, if there are only two stream functions  1 and
 2, the additional minimizing integral would beZ

˝

. 1 �  2/2 d˝ (4.23)
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added to the chosen data fidelity and regularization terms already designed for
assumed scientific priors. In this case we use three images at a time to compute
the flow in two different time instances unless we use higher-order finite difference
approximations.

We include into the new functional a parameter ˇ > 0 in the previous energy
functional, and the resulting energy functional is given by

E. 1;  2/ D
Z
˝

�
I1t�I1x 1yCI1y 1x/2C.I2t�I2x 2yCI2y 2x

�2
d˝

Cˇ
Z
˝

. 1� 2/2 d˝

C˛
Z
˝

. 2
1xxC 2

1yyC 2
1xyC 2

1yx/d˝

C˛
Z
˝

. 2
2xxC 2

2yyC 2
2xyC 2

2yx/d˝: (4.24)

Thus we have data fidelity in two time instances at once, the term to emphasize time
regularity and the spatial regularity.

Now taking the Gateaux derivative as in Eq. (4.15) of the functional in Eq. (4.24),
the Euler–Lagrange equations corresponding to 1 and 2 are the system of PDEs as

ŒA�1A1 C ˇ. 1 �  2/C ˛.B C B�/� 1 D �A�1 I1t
ŒA�2A2 � ˇ. 1 �  2/C ˛.B C B�/� 2 D �A�2 I2t ;

(4.25)

where

A1 D
��I1xDy C I1yDx

�
;

A2 D
��I2xDy C I2yDx

�
and

B D DxxD
�
xx CDyyD

�
yy CDxyD

�
xy CDyxD

�
yx:

We can generalize the energy functional for n stream functions at n successive time
instances as shown in the following:

E. 1;  2; : : : ;  n/ D
nX

kD1

Z
˝

�
Ikt � Ikx ky C Iky kx

�2
d˝

Cˇ
n�1X
kD1

Z
˝

. k �  k�1/2 d˝

C˛
nX

kD1

Z
˝

. 2
kxx C  2

kyy C  2
kxy C  2

kyx/d˝: (4.26)
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Similarly to n D 2, the Euler–Lagrange equations can be obtained for any number
n, using the Gateaux derivative as in Eq. (4.15) of the functional in Eq. (4.26) with
respect to  1;  2; : : :, and  n. The system of Euler–Lagrange equations for any
integer n is a system of n partial differential equations and is obtained as

A�1 .I1t C A1 1/Cˇ. 1� 2/C˛.B C B�/ 1 D 0

A�k .IktCAk k/Cˇ.� k�1C2 k� kC1/C˛.B C B�/ k D 0; for k D 2; 3; : : : n � 1

A�n.IntCAn n/Cˇ. n�1� n/C˛.B C B�/ n D 0;

where

Ak D
��IkxDy C IkyDx

� 8k and

B D DxxD
�
xx CDyyD

�
yy CDxyD

�
xy CDyxD

�
yx:

The above set of Euler–Lagrange equations can be reformulated as a linear system as

ŒK C ˛L� z D b (4.27)

where

K D

2
666664

A�1A1 C ˇ �ˇ
�ˇ A�2A2 C 2ˇ �ˇ
: : :

: : :
: : :

�ˇ A�n�1An�1 C 2ˇ �ˇ
ˇ A�nAn � ˇ

3
777775
;

L D

2
6666664

B C B�

B C B�

: : :

B C B�

B C B�

3
7777775
; z D

2
6666664

 1

 2
:
:
:

 n�1

 n

3
7777775

and b D

2
6666664

A�

1 I1t

A�

2 I2t
:
:
:

A�

n�1I.n�1/t

A�

n Int

3
7777775
:

All the entries of the matrices K and L are block matrices of the size m�m, where
m D pq and p � q are the dimensions of the image domain. The entries of the
vectors z and b are vectors of the size m � 1.

To solve the above system, first, we take the LU decomposition of the matrix
K C ˛L and then use Gaussian elimination. Solution of the above system yields
 1.x; y/ �  1.x; y; t1/,  2.x; y/ �  2.x; y; t2/; : : : ;  n.x; y/ �  n.x; y; tn/,
and taking the Hamiltonian gradient in Eq. (4.18) on each separately, the vector
fields for each time instance, t1; t2; : : : ; tn can be obtained. That is, the velocity
components u1; u2; : : : ; un and v1; v2; : : : ; vn are computed from  1;  2; : : : ;  n
using huk; vki D h� ky;  kxi for k D 1; 2; : : : n. To improve the accuracy of
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the results, instead of first-order finite differences for the time derivative of I ,
higher-order finite difference approximations can be used when more than two
images are available.

4.5 Scientific Priors

Toward our discussion of designing scientific prior information into our functional,
we first review some well-known inverse problem theory. Recall that in linear
algebra, solving a system Au D z when A and u are given is called a forward
problem. When A and z are available and the system is solved for u, it is called an
inverse problem. For an inverse problem, a unique solution can be obtained by

u D A�1z; if A�1 exists.

If A is not invertible, then the system may have infinitely many solutions or no
solutions. In either case, it is standard to reformulate the problem as a minimization
problem in such a way that from infinitely many solutions, we can select or
emphasize a desired solution. Then the new problem can be written as

arg min
u

kAu � zk2: (4.28)

In the modified problem, we find u in such a way to minimize the distance between
Au and z according to the Euclidean norm. This alternative approach of solving the
original problem ensures at least one solution to the original problem. We achieve
the unique solution by introducing a new constraint to the reformulate problem. For
instance, if we add kuk2, to the reformulated problem, then such a minimal solution
emphasizes the Euclidean perspective that the good solution should be on a radial
closest to the origin. We call this notion the scientific prior of this simple linear
problem. The procedure called imposing a scientific prior on the solution is done
by adding a new term, a regularization term R. /, to the modified problem with
a nonnegative weighting parameter ˛. On the other hand, the scientific prior can
be applied to the problem at the beginning of the construction of the model, by
choosing different operators for A according to the prior knowledge of the data.

Analogously, building scientific prior information into functionals allows our
inverse problem solutions for vector fields to emphasize expected physics. Now we
will discuss various operators and regularizations to emphasize expected scientific
prior information.

In the nominal optical flow algorithm, Horn and Schunck assumed conservation
of image brightness intensity locally for rigid body motion. For the entire domain
˝ with time step t , the conservation of image brightness I is emphasized by

E. / D
Z
˝

�
It � Ix y C Iy x

�2
d˝; (4.29)
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where  is the corresponding stream function for the motion. However, later
researchers were interested in fluid motion and assumed that the image brightness
I behaves according to the continuity equation over time in order to allow for
divergent flow fields. Therefore, Corpetti in [4] proposed the data fidelity term

E. / D
Z
˝

�
It � Ix y C Iy x � I yx C I xy

�2
d˝: (4.30)

Also Weickert in [20] improved the data fidelity by imposing the constancy of spatial
brightness gradient, instead of brightness constancy, with the following:

E. / D
Z
˝

�
Ixt � Ixx y C Ixy x

�2 C �
Iyt � Iyx y C Iyy x

�2
d˝: (4.31)

Further, researchers in [3] have combined the data fidelities Eqs. (4.29) and (4.31)
together with a nonnegative parameter ˇ. The resulting data fidelity is obtained as

E. / D
Z
˝

�
It � Ix y C Iy x

�2
d˝ C ˇ

Z
˝

�
Ixt � Ixx y C Ixy x

�2
d˝

Cˇ
Z
˝

�
Iyt � Iyx y C Iyy x

�2
d˝: (4.32)

In this data fidelity, either image brightness is constant or the gradient of the image
brightness is constant, by adjusting ˇ to emphasize either expected outcome or
underlying physics. Through this kind of approach, the notion of modeling, the
physics behind creating the scenes evolution in the movie data, is designed into
the functional.

In addition to the data fidelities, it is important to regularize the energy
functional, as understood by Andrey Tikhonov as shown in [11], to extract important
information from ill-posed problem, both for functional analysis and optimization
theoretic reasons of well posedness, and to further emphasize expected physics.
For instance, if the resulting flow is expected to be sparse, then the regularization
term that emphasizes sparsity is the total variation of the stream function. The
regularization term can be written as

R1. / D
Z
˝

j 5 j d˝: (4.33)

If, however, the flow field is expected to be smooth, then the appropriate regulariza-
tion is the Horn and Schunck-type regularization

R2. / D
Z
˝

. 2
xx C  2

yy C  2
xy C  2

yx/d˝: (4.34)

On the other hand, if we impose the regularity on flow components, we would use

R3. / D
Z
˝

. 2
x C  2

y/d˝: (4.35)
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According to the above explanation, we can develop different data terms and
regularization terms using the known physics of the data and the expected flow. We
can construct various multi-time step algorithms according to the prior knowledge
of systems being imaged. Hence applying a suitable algorithm, the motion field of
the observed system can be determined and then used to analyze the dynamics of
the system.

4.6 Results from Multi-time Step Method

In this section, we will demonstrate the importance of using the data term in
Eq. (4.29) and the regularization term in Eq. (4.34). Also we present the improve-
ment of the accuracy of our algorithm with larger n. For the above purpose, we
introduce a simple benchmark data set and an oceanic data set. Then we compare
and benchmark some data terms and regularization terms introduced in Sect. 4.5.

4.6.1 Synthetic Data

Since we are interested in applying our algorithm to capture fluid motions, we
constructed a benchmark data set, called the gyre, which is stereotypical of fluid
motion. The stream function

 .x; y/ D sin .�x/ sin .�y/ (4.36)

on the domain Œ0; 1� � Œ0; 1� was considered, and the vector field governed by
Eq. (4.36) is

hu; vi D h�� sin.�x/ cos.�y/; � cos.�x/ sin.�y/i: (4.37)

Evolving an initial condition over the domain Œ0; 1� � Œ0; 1� using the autonomous
vector field in Eq. (4.37) according to the continuity equation

dI

dt
D �.Ixu C Iyv C Iux C Ivy/; (4.38)

a sequence of images is obtained. Two images are selected after transients and are
shown in Fig. 4.1, images (a) and (b), and the vector field in Eq. (4.37) is shown in
image (c).

When we compare the reconstructed vector fields with the true vector field,
we need a figure of merit for comparison. Therefore, we computed angular error
between the computed flow and the true flow and then the mean over the domain
to obtain mean angular error (MAE) as explained in [15]. In this computation we
include a third unit component to both computed and true velocity components to
avoid the incorrect measurements near the points where flow magnitude is close to
zero and sufficiently large.
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Fig. 4.1 Gyre data and true flow—images (a) and (b) show two later time instances of an initial
density that has been evolved according to Eq. (4.38) with velocity components given by Eq. (4.37).
The true flow field is shown in (c)

Fig. 4.2 Gyre flow with data term in Eq. (4.29)—images (a), (b), and (c) show the computed
flow fields for the images (a) and (b) shown in Fig. 4.1 from the data term in Eq. (4.29) with
regularization terms in Eqs. (4.33)–(4.35), respectively

As explained in Sect. 4.5, there are various ways to develop an energy functional
to reconstruct vector fields. However, we choose the data term in Eq. (4.29) and
regularization term in Eq. (4.34), introduced in the original Horn and Schunck
method, to develop our multi-time step method. We introduce two other possible
regularization terms in Eqs. (4.33) and (4.35) to cope with optical flow functionals.
We combine three regularization terms in Eqs. (4.33)–(4.35) with the data term
in Eq. (4.29), and the flow reconstructions are shown in Fig. 4.2. Note that in this
presentation, we use the lagged diffusivity fixed point iteration method as in [1] to
reconstruct the vector fields, when the regularization term in Eq. (4.33) is combined
with any data term. Furthermore, we use multi-time step method with n D 1 to
compare the data terms and the regularization terms.

The computed MAE for the energy functionals constructed from the data term in
Eq. (4.29) with the regularization terms in Eqs. (4.33)–(4.35) are 2:4247ı, 0:9837ı,
and 2:2790ı, respectively. Among the three regularization terms, the regularization
term in Eq. (4.34) gives least MAE. Further, we can use the data term in Eq. (4.30)
instead of Eq. (4.29) with the regularization terms in Eqs. (4.33)–(4.35) to develop
another three different energy functionals, and three different reconstructions are
shown in Fig. 4.3.
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Fig. 4.3 Gyre flow with data term in Eq. (4.30)—images (a), (b), and (c) show the computed
flow fields for the images (a) and (b) shown in Fig. 4.1 from the data term in Eq. (4.30) with
regularization terms in Eqs. (4.33)–(4.35), respectively

The MAEs obtained from minimizing energy functionals of the data term in
Eq. (4.30) with the regularization terms in Eqs. (4.33)–(4.35) are 3:3909ı; 0:9895ı,
and 2:4787ı, respectively. In this case also, the energy functional obtained from data
term in Eq. (4.30) with the regularization terms in Eq. (4.34) gives the least MAE
even though it is slightly bigger than the combination of the data term in Eq. (4.29)
with regularization terms in Eq. (4.34). This verifies our selection for n D 1, and
hence for larger n also, we use the data term in Eq. (4.29) with regularization terms
in Eq. (4.34).

The next step is to compare the results by varying the step size n, the number
of stream functions  computed at a time using multiple images. We applied our
multi-time step method on an image sequence of gyre data set of which (a) and (b)
of Fig. 4.1 show the fourth and fifth images of that, respectively. For instance, if
we apply a first-order finite difference approximation to estimate It with the step
size n D 1, then we compute one stream function  1 using two images, image
1 and image 2. The velocity components .u1; v1/ D .� 1y;  1x/ represent the
motion field between image 1 and image 2. If however we choose the step size
n D 2, then we compute two stream functions  1 and  2 using three images.
Then .u1; v1/ D .� 1y;  1x/ is the motion field between image 1 and image 2
and .u2; v2/ D .� 2y;  2x/ is the motion field between image 2 and image 3,
respectively. Continuing in this manner, we can increase the step size n. Note that,
if there is a sequence of nine images, we can compute eight vector fields for each
consecutive image pair. When the step size is n D 1, eight separate computations are
necessary, but when n D 2, only four computations are necessary and so on. Again
we emphasize that the advantage of choosing larger n is that the time regularity
is emphasized as seen clearly in the computations. Addition of terms of the form
Eq. (4.23) penalizes large changes of  between successive frames. As explained,
the results from n D 1; 2; 3, and 4 for the gyre image sequence are shown in images
(a), (b), (c), and (d) in Fig. 4.4, respectively.

The MAEs for n D 1; 2; 3, and 4 are 0:9837ı, 0:9826ı, 0:9807ı, and 0:9883ı,
respectively. In this example, the accuracy of the algorithm improves until n D 3.
In all the above reconstructions, the regularization parameter ˛ was selected so that
it minimizes the MAE and the parameter ˇ was fixed at ˇ D 0:01.
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Fig. 4.4 Gyre flow from multi-time step method—images (a), (b), (c), and (d) show vector fields
computed on the image (b) in Fig. 4.1 from multi-time step method with n D 1, 2, 3, and 4,
respectively. The true flow field is shown in (a). While all estimated vector fields are visually
similar, the mean angular errors are improving up to n D 3

Fig. 4.5 SST data and true flow—three consecutive images of the SST data set are shown in (a),
(b), and (c), respectively, and the flow on image (b) is shown in the image (d)

4.6.2 An Oceanographic Data Set

Now we apply the algorithm to a natural scenario which shows the SST off the coast
of Oregon, USA. This data set was generated from a 3-D ocean model, using data
obtained from geostationary operational environmental satellite (GOES) [16]. In
Fig. 4.5, images (a), (b), and (c) show SST data of three consecutive hours on August
1, 2002. The image (d) represents the true vector field of the mixing temperature
corresponding to the image (b).

Since we have a time-dependent sequence of images of the SST data, we can
apply the multi-time step method to compute the vector fields. When the step size
is n, we compute n consecutive vector fields at a time and required nC 4 images, if
we apply fourth-order finite difference approximations to compute It . The Fig. 4.6
represents the computed flow fields on the image (b) shown in Fig. 4.5 with the step
size n D 1; 2; 3, and 4 in images (a), (b), (c), and (d), respectively. In each case, the
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Fig. 4.6 SST flow—the computed flow fields for the data showed in Fig. 4.5 with n equals to 1, 2,
and 3 are shown in (a), (b), (c), and (d), respectively. While all these are roughly similar and so not
immediately different to visual inspection, there are visible differences that are apparent in closer
inspection

algorithm captures the gyres accurately, and it is clearly visible that when n D 3, the
algorithm captures the laminar flow as appears just above the bottom gyre. Except
for the above laminar flow, all the other vectors represent a similar behavior and the
differences are not visible. Now we can compare the two vector fields consisting of
large numbers of vectors by comparing single numbers and in the comparison of the
step sizes; we use the percentage MAE.

Figure 4.7 shows the graph of percentage MAE of the computed flow relative to
the true flow versus the step size used to compute the flow fields. According to the
graph, the percentage MAE fluctuates and the minimum is achieved when n D 3

as we can see in the flow fields. Note that, for all the reconstructions in Fig. 4.5,
the regularization parameter ˛ was selected so that it minimizes the MAE and the
parameter ˇ was fixed at ˇ D 0:01.

4.7 Mixing and Transport Barriers

As an application, we will now discuss a transport analysis inferred directly
from observed spatiotemporal movie data. Toward the identification of mixing
and transport barriers, we compute FTLE. These are scalar values for each point
in the domain D as explained in [7, 8] and obtained LCS. In this case, for a
given point x D hx.t/; y.t/i, a flow map �T is obtained by evolving x over a
time period Œt; t C T � using the velocity components v D hu.x; y; t/; v.x; y; t/i.
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Fig. 4.7 Percentage MAE vs. step size—the graph shows the percentage of the mean angular
error for the computed flow by changing the step size n on the image (b) shown in Fig. 4.5. For the
parameters as we specified, the n D 3, multi-time step method is overall best

Then the Jacobian matrix of the flow map �T is obtained J D d�T (x)
dx , and therefore,

the finite time strain tensor of v D hu.x; y; t/; v.x; y; t/i along the trajectory
x D hx.t/; y.t/i is obtained as

M D d�T (x)�

dx
d�T (x)
dx

; (4.39)

where A� is the adjoint of A. Then the FTLE value at a point x over time T is
given by

�T D 1

jT j ln
p
�max.M/: (4.40)

When the FTLEs are computed for the entire domain of the system, the set of points
in the domain corresponding to relatively high FTLE values are suggested to act
as pseudo barriers for mixing and transport of the system, although it is known
that some can be simplified due to shear behavior. For instance, if we consider the
double gyre with the stream function  .x; y; t/ D C sin.�f .x; t// sin.�y/, where
f .x; t/ D � sin.!t/x2 C .1 � 2� sin.!t//x over the domain D D Œ0; 2� � Œ0; 1�,
the corresponding vector field can be obtained as

hu; vi D h��C sin.�f .x; t// cos.�y/; �C cos.�f .x; t// sin.�y/
@f

@x
i; (4.41)



4 A Multi-time Step Method to Compute Optical Flow 77

Fig. 4.8 Double gyre flow and FTLE field—the flow field for the non-autonomous double gyre at
time t D 0 and the computed FTLE field for T D 10 are shown in images (a) and (b), respectively

where the constants are C D 0:1; ! D 2�
10

and � D 0:25. The vector field that
represents hu; vi at t D 0 and the computed FTLE field using hu; vi with T D 10

are shown in Fig. 4.8. The red color represents relatively high FTLE values and the
blue color represents the relatively small FTLE values. In [18], the authors have
proven that flux across the LCS is close to zero, and hence it is difficult for fluids
in the system to cross the LCS. Therefore, these LCSs act as barriers to the mixing
and transport.

The next example represents the FTLE field for the SST data set using the
computed flow from the multi-time step method with n D 3. In Fig. 4.9, the
flow field obtained for the SST data on August 2, 2002, is shown in image (a)
and the FTLE field obtained from those computed vector fields is shown in (b).
When we compute FTLE fields, we need more than three time-adjacent vector
fields. Since we have a sequence of images, we apply multi-time step method on
the image sequence to obtain a sequence of non-autonomous vector fields. If we use
fourth-order finite difference approximations to estimate It , we need first 7 images
of the sequence to compute three time-adjacent vector fields on images 3, 4, and 5,
respectively. To compute the vector fields on images 6, 7, and 8, we apply multi-time
step method again on images 4 to 10, and we can continue the procedure until we
reach the end of the image sequence. In this case, we evolve 10 time steps forward in
time to get the FTLE field. The blue color represents relatively low FTLE values and
the red color represents relatively high FTLE values. The red color ridges, LCSs, act
as the mixing barriers to the heat.

4.8 Conclusion

We have developed a new optical flow algorithm to extract vector fields of an
observed system from spatiotemporal (movie) data. When a sequence of images
is available for an observed system, we can emphasize regularity not only spatially
but also in time. In spatial regularization, we emphasize known physics of both the
data and the expected flow, and in regularization in time, we emphasize the similar
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Fig. 4.9 SST flow and FTLE field—the computed flow field for the SST data and the FTLE field
are shown in images (a) and (b), respectively

behavior of the flow fields. From these computed vector fields, we can analyze
dynamics of the system by computing LCS. However, according to the results shown
in Sect. 4.6.2, when the number of frames n simultaneously used in our new multi-
time step method increases, the accuracy of the algorithm improves. Furthermore,
we use the same regularization parameter to compare the results, and it does not
need to be the same. Our future goal is to improve the algorithm to select the best
step size n and the suitable regularization parameter.
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Chapter 5
Numerical Approximation of Conditionally
Invariant Measures via Maximum Entropy

Christopher Bose and Rua Murray

Abstract It is well known that open dynamical systems can admit an uncountable
number of (absolutely continuous) conditionally invariant measures (ACCIMs) for
each prescribed escape rate. We propose and illustrate a convex optimisation-
based selection scheme (essentially maximum entropy) for gaining numerical
access to some of these measures. The work is similar to the maximum entropy
(MAXENT) approach for calculating absolutely continuous invariant measures of
nonsingular dynamical systems but contains some interesting new twists, including
the following: (i) the natural escape rate is not known in advance, which can destroy
convex structure in the problem; (ii) exploitation of convex duality to solve each
approximation step induces important (but dynamically relevant and not at first
apparent) localisation of support; and (iii) significant potential for application to the
approximation of other dynamically interesting objects (e.g. invariant manifolds).

5.1 Introduction

The study of classical dynamical systems concerns the existence and stability of
invariant sets under the action of a transformation T W X ! X . Depending on the
setting, X may be a measure space, a topological space (with or without a metric
structure), a differentiable manifold, a Banach space, and so on. In each case, orbits
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defined by iterative application of T remain in X . For an open dynamical system,
T is defined only on a subset A ¨ X , and there are x 2 A for which T .x/ … A.
Such x are said to escape.

Open dynamical systems may be studied in their own right (the paper of Demers
and Young [12] gives a summary of important questions) or may be used to study
metastable states in closed dynamical systems. In the latter case, a subset A 	 X is
metastable if T .A/ n A is in some sense small relative to A. Work on making this
precise dates at least to 1979, when Pianigiani and Yorke [22] introduced condi-
tionally invariant measures (CIMs) (see Sect. 5.1.2 below) and used them to study
metastability in expanding interval maps.1 More recently, Homburg and Young [19]
made productive use of CIM to analyse intermittent behaviour near saddle-node and
boundary crisis bifurcations in unimodal families. Many authors have continued to
obtain results connecting escape rates and metastable behaviour of closed systems;
see, for example, [1, 2, 13, 17, 18, 20].

One of the interesting challenges is to find CIMs which models the escape
statistics of orbits distributed according to some ‘natural’ initial measurem on A. In
closed dynamical systems, there may exist a unique ergodic invariant measure 

which is absolutely continuous (AC) with respect to m. Via Birkhoff’s ergodic
theorem, such measures 
 describes the orbit distribution of large2 sets of initial
conditions. By contrast, an open system may support uncountably many AC con-
ditionally invariant measures (ACCIMs) [12, Theorem 3.1], so ascribing dynamical
significance on the basis of absolute continuity alone does not make sense. Recently,
progress has been made in a variety of settings, identifying ACCIMs whose densities
arise as eigenfunctions of certain quasicompact conditional transfer operators
acting on suitable Banach spaces. Such ACCIMs may be considered ‘natural’
(see [12] for discussion), giving a well-defined escape rate from A. See, for
example, [6] for dynamics on Markov towers, [9, 10] for interval maps modelled
by Young towers, [7, 8] for expanding circle maps and subshifts of finite type, and
[21] for interval maps with BV potentials. Extending these techniques to higher-
dimensional settings such as billiards and Lorentz gas is an area of much current
interest [11].

This chapter develops a new class of computational methods for the explicit
approximation of conditionally invariant probability measures on A. Our ideas
use convex optimisation: the criteria for conditional invariance are expressed as a
sequence of moment conditions over L1 (integration against a suitable set of L1
test functions), and the principle of maximum entropy (MAXENT) is used to select
(convergent) sequences of measures that are approximately conditionally invariant,
in other words, approximate CIMs. The entropy maximisation is solved via standard
convex duality techniques, although attainment in the dual problem may necessitate
a nonobvious (but dynamically meaningful) reduction of the domain on which the

1The motivation in [22, p. 353] went beyond interval maps, including preturbulent phenomena in
the now famous Lorenz equations, and metastable structures in atmospheric and other fluid flows
and complex systems.
2In the sense of positive m-measure
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maximisation is done. The required steps are achievable for piecewise constant test
functions (similar in spirit to Ulam’s method [15] but with a completely different
mathematical foundation). The chapter is structured as follows: first, we introduce
notation for our study of open systems and formulate the ACCIM problem (and
its uncountable multiplicity of solutions) via conditional transfer operators; next,
the MAXENT problem is set up and analysed; the Ulam-style test functions are
introduced in Sect. 5.3, and the domain reduction and some numerical examples are
given to illustrate the method; we finish with some concluding remarks.

5.1.1 Nonsingular Open Dynamical Systems

Let .X;m/ be a measure space. We consider the dynamics generated by a transfor-
mation on a subset of X which fails to be forward invariant; such a dynamical
system is called open and may or may not support any recurrent behaviour. Let
A ¨ X be measurable and let T W A! X be a measurable transformation where:

• H0 WD T .A/ n A is a measurable subset of X (called the hole).
• m.A \ T �1H0/ > 0.
• m.E/ > 0 whenever m.T �1E/ > 0 and E is a measurable subset of X .
• T is locally finite-to-one (for each x 2 A, T �1.x/ D fx�1 2 A W T .x�1/ D xg

is either empty or finite).

Definition 5.1. Let mjA denote the restriction of the measure m to A. We call3

.T; A;mjA/ satisfying the above conditions a nonsingular open dynamical
system.

Notice that T .x/ is defined only for x 2 A, and the ‘hole’ H0 can be used to
define a survival time for each x 2 A:

�.x/ WD
	
n if x; T .x/; : : : T n.x/ 2 A and T nC1.x/ 2 H0

1 if T k.x/ 2 A 8k 2 ZC:

When �.x/ D n <1, T n.x/ 2 H1 WD A\T �1.H0/ and such orbits of T terminate
at time �.x/C1. Only those x for which �.x/ D 1 can exhibit recurrent behaviour.

For all that follows, it is convenient to decompose A into invariant and transient
parts. Define:

• The n step survivor set as

An WD fx 2 A W �.x/ � ng D fx W x; T .x/; : : : ; T n.x/ 2 Ag D \nkD0T �kA

3Clearly m ı T�1 � m so that T W .A;mjA/ ! .X;m/ is a nonsingular transformation, but
T W .A;mjA/! .X;mjA/ fails to be nonsingular, as mjA ı T�1.H0/ D m.A \ T�1.H0// > 0

while mjA.H0/ D 0.
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• A1 WD \n	0An.
• Hn WD An�1 n An D fx W �.x/ D n � 1g for 1 < n <1.

Notice that if x 2 Hn, then T k.x/ 2 Hn�k for 0 < k � n. The orbit of x ‘falls into
the hole’ at time n (escapes) and is lost to the system thereafter. As well as escape
from A, we need to account for the possibility that backward orbits may not be
defined (T W A1 ! A may not be onto). Since some x 2 A may have no preimages
in A, define the following subsets of A:

• K0 WD fx W A \ T �1x D ;g
• Kn WD fx W ; ¤ .A \ T �n.x// 	 K0g D fx W minfk W A \ T �kx D ;g D
nC 1g

• K1 WD fx0 W there is no sequence fx�ng1nD1 such that T .x�n/ Dx�.n�1/;
n > 0g

• H1 WD [n>0.Hn nK1/
Points in K1 are ‘backward transient’, while points in H1 are ‘forward transient’.
Lemma 5.1 contains some facts about the action of T on the various sets Hn;Kn.
The reader may easily verify that:

• A0 D A and T .An/ 
 An�1.
• Hn \Hm D ; if n ¤ m, Hn 
 An�1 and Hn \ An D ;.
• T .Hn/ 
 Hn�1.
• A \ T �1.Kn/ 
 [m<nKm and KnC1 
 T .Kn/.
• [1nD0Kn 
 K1, and the union on the left may be finite or infinite (or even the

empty set if T is onto A).

Any of the containments above may be strict. In order to avoid unduly messy
formulas, from this point on, we will generally assume the range of the map T �1 is
restricted to A.

Lemma 5.1. Let .T; A;mjA/ be a nonsingular open dynamical system. If ˝ WD
A1 nK1, then A admits the disjoint decomposition A D K1 [˝ [H1 and:

(a) T �1.[n	0Kn/ 
 [n	0Kn .mod mjA/.
(b) T .˝/ D ˝.
(c) T W .Hn n K1/ ! .Hn�1 n K1/ is onto and nonsingular (with respect to the

obvious restrictions of m).
(d) K1 D [1nD0Kn.

Proof. (a) Note that T �1Kn 
 [m<nKm (for each n > 0) and T �1K0 D ;.
(b) If x 2 ˝, then x 2 A1 so T n.x/ 2 A1. Thus, ˝ is the set of points whose

future orbit is contained in A and has at least one backward orbit in A.
(c) Let x 2 Hn�1 n K1. Then there is a sequence fx�kg1kD1 such that T .x�k/ D

x�.k�1/ and T .x�1/ D x. Clearly x�1 2 Hn nK1.
(d) First, suppose that x … [n	0Kn. Then x … K0 so ; ¤ T �1x. If T �1x 


[n	0Kn, then there areN1; : : : ; Nj such that T �1x 
 KN1 [� � �[KNj . Putting



5 MAXENT for ACCIMs 85

N D 1 C maxfN1; : : : ; Nj g, one has x 2 KN , a contradiction. Thus, there is
at least one x�1 2 T �1x such that x�1 … [n	0Kn. The proof is completed by
induction. ut

Example 5.1. Let X D R
2, A D Œ0; 1�2 and T .x; y/ D .2x; 1=2y/. Then Hn D

.2�n; 2�.n�1/� � Œ0; 1�, and A1 D f0g � Œ0; 1�. On the other hand, Kn D Œ0; 1� �

.2�.nC1/; 2�n�, so K1 D Œ0; 1� � .0; 1�. The ‘recurrent set’ A1 n K1 D f.0; 0/g
is a fixed point (so genuinely recurrent), and A1 \ K1 D f0g � .0; 1� is part of
the stable manifold to .0; 0/. Notice that H1 D .0; 1� � f0g is part of the unstable
manifold to .0; 0/.

5.1.2 Escape, Conditionally Invariant Measures
and Their Supports

We now make precise the notion of escape rates and establish some important
connections with CIMs.

Definition 5.2. The escape rate of a probability measure m0 on A is

�m0 WD lim
n!1�1

n
logm0.An/ D lim

n!1�1
n

logm0fx W �.x/ � ng

(when such a limit exists). The open system .T; A;mjA/ will satisfy the escape
hypothesis iff

m.A1/ D 0: (5.1)

Clearly, if there is an escape rate �m > 0, then (5.1) holds.

Definition 5.3. A probability measure 
 on A is a CIM iff there is ˛ 2 .0; 1/ such
that


.T �1E/ D ˛ 
.E/ 8 measurable E 
 A:

Note that if 
 is a CIM, then


f� � ng D 
.An/ D 
.A \ T �1An�1/ D ˛ 
.An�1/ D � � � D ˛n 
.A/ D ˛n:

Thus, �
 D � log˛ and 
fx W �.x/ � ng D 
.An/ D e��
 n, so that initial
conditions distributed according to 
 display geometric escape. Provided H1 ¤ ;,
Lemma 5.1(c) implies the existence of at least one backward semi-orbit fx�kgk	0
(with T .x�k/ D x�.k�1/). Demers and Young [12] point out that a CIM can be
obtained as .1�˛/P1kD0 ˛kıx�k . However, such CIMs describe only a single orbit,
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and it remains an interesting challenge to find a CIM which models the escape
statistics of the ‘natural’ initial measure mjA.

The domain decomposition of Lemma 5.1 and the following Lemma 5.2 reveal
that that A decomposes into three pieces:

(i) A backward transient part K1 which cannot support any CIM but includes
any local basins of attraction (we will later identify numerically certain parts
of K1 and exclude them for computational reasons). The intuition behind this
fact is that the lack of preimages of points in K1 means there is no way to
‘replenish’ mass which is lost to the hole.

(ii) An envelope ˝ D A1 n K1 for the ‘recurrent’ piece which can support
invariant measures, but not CIMs.

(iii) A transient partH1 which is the place to look for CIM (and includes any local
unstable manifolds).

Lemma 5.2. Let .T; A;mjA/ be a nonsingular open dynamical system and let ˝,
K1 and H1 be as defined previously. Then:

(a) If 
 is an invariant or CIM on A, then 
.Kn/ D 0 for all n (and 
.K1/ D 0).
(b) If 
 is an invariant measure, then 
.H1/ D 0.
(c) If 
 is a CIM, then 
.˝/ D 0.

Proof. (a) Suppose that 
 ı T �1 D ˛ 
 for some ˛ 2 .0; 1�. Then

˛nC1 
.Kn/D
 ı T �.nC1/.Kn/D
 ı T �1.T �nKn/ � 
.T �1K0/D
.;/D0:

By part (d) of Lemma 5.1, 
.K1/ D 
.[nKn/ �P
n 
.Kn/ D 0.

(b) If 
 is an invariant measure and 
.Hn/ > 0, then by the Poincaré recurrence
theorem almost every x 2 Hn recurs to Hn infinitely often. But if x 2 Hn, then
fk > n W T kx 2 Hng D ;, so 
.Hn/ D 0. It follows that 
.[Hn/ D 0 and
hence 
.H1/ D 0.

(c) By Lemma 5.1(b), ˝ 
 T �1.T .˝// 
 T �1˝ so that


.˝/ � 
 ı T �1.˝/ D ˛ 
.˝/ < 1
.˝/:

Hence 
.˝/ D 0. ut
Example 5.1 revisited. Let X D R

2, A D Œ0; 1�2 and T .x; y/ D .2x; 1=2y/. Since
˝ D f0g, K1 D Œ0; 1� � .0; 1� and H1 D .0; 1� � f0g, the only invariant measure
is concentrated on the fixed point at 0 and all CIMs are concentrated on H1 (the
unstable manifold to .0; 0/).

Remark 5.1. As suggested already, a discrete variant of the set K1 arises naturally
in the numerical methods described below. When T is countable-to-one, it can occur
that K1 ¤ [nKn DW K 01, but this does not alter the result of Lemma 5.2(a).
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5.1.3 Conditional Transfer Operators and the Multiplicity
of ACCIMs

We complete the introduction by characterising CIMs as eigenvectors of certain
conditional transfer operators. This provides a concrete mathematical setting for
the approximation algorithms and gives a useful technical tool for establishing the
existence of absolutely continuous CIM.

For each k � 0, put mk D mjAk (so that m0 D mjA). Then T W .AkC1;mkC1/!
.Ak;mk/ is a nonsingular transformation, so that mkC1 ı T �1 � mk and a
conditional Frobenius–Perron operator

Lk W L1.AkC1ImkC1/! L1.Ak Imk/

can be defined in the usual manner:

Lkf D d

dmk

.Œf mkC1� ı T �1/:

Dual to Lk is the (conditional) Koopman operator Uk W L1.Ak Imk/ !
L1.AkC1ImkC1/ with the action

Uk D  ı T:

The relation
Z
Ak

.Lk '/ dmk D
Z
AkC1

' Uk dmkC1 (5.2)

is automatic for ' 2 L1.AkC1ImkC1/;  2 L1.Ak Imk/. In particular, for any
' 2 L1.AIm0/ and  2 L1.AIm0/,

Z
A0

L0.' 1A1/  dm D
Z
A1

' U0 dm: (5.3)

Lemma 5.3. Let .T; A;mjA/ be a nonsingular open dynamical system and let 
�
m be a measure such that 
.A0/ D 1. Then 
 is a CIM with escape rate � log˛ if
and only if L0.1A1

d


dm
/ D ˛

d


dm
.

Proof. Let ' D d


dm
. Then for E 
 A0, one has T �1E 
 A1 so that using (5.3)

Z
E

L0.1A1'/ dm0 D
Z
A1

' U01E dm1 D
Z
' 1T�1E dm D 
.T �1E/;

since ˛
R
E
' dm D ˛ 
.E/ D 
.T �1E/. ut
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Lemma 5.3 characterises absolutely continuous conditionally invariant measures
(ACCIMs) as those whose density functions solve a conditional transfer operator
equation: L0.1A1'/ D ˛ '. However, in contrast to the typical situation for
nonsingular dynamical systems, this equation may have an uncountable number of
solutions for each ˛ if no additional regularity is specified; see [12, Theorem 3.1]
and discussion therein. We now give a version of this result.

Theorem 5.1. Let .T; A;m/ be a nonsingular open dynamical system. If there is
� > 0 such that L01A1 � � 1H

1

and m.H1/ > 0, then for every ˛ 2 .0; 1/ there is
a CIM which is AC with respect to m and has escape rate � log˛.

Proof. There is at least one N for which m.HN n K1/ > 0. By an inductive
application of Lemma 5.1(c), m.H1 n K1/ > 0. Now let 
1 � mjH1nK1

be
a finite measure and put '1 D d
1

dm
. Note that 1A1 '1 D 0. Next, we construct

(inductively) a sequence of integrable functions 'k , supported on Hk n K1 such
that each L0.1A1'kC1/ D Lk'kC1 D 'k . Let 'k 2 L1.Hk n K1Imk/ be given.
Assume that 'k is bounded (the general case follows from the bounded case by an
approximation argument). On HkC1 nK1 put

'kC1 WD 'k ı T
UkLk1HkC1nK1

(note that the denominator is bounded below by � 1HkC1nK1

). Let 
j D 'j mj for
j D k; k C 1 and E 
 Hk nK1. Then


kC1 ı T �1E D
Z
HkC1nK1

'kC1 Uk1E dm

D
Z
AkC1

Uk.'k 1E=Lk1HkC1nK1

/ 1HkC1nK1

dm

D
Z
Ak

'k 1E dm D 
k.E/:

Thus, 'k D d
dmk


k D d
dmk


kC1 ı T �1 D Lk
d
kC1

dmkC1
D Lk'kC1. Using E D

Hk n K1 and Lemma 5.1(c), we see that
R
'k dm D R

'kC1 dm. Finally, put
' D 1�˛


1.A0/

P1
kD1 ˛k�1'k . Then,

R
A0
' dm D 1 and L0.1A1'/ D ˛ '. The theorem

follows from Lemma 5.3. ut
Remark 5.2. The proof given above is essentially the one from [12]; the different
conditions are to account for the fact that we have not imposed any topological
(or smoothness) restrictions on T . Note that each choice of finite AC measure on
H1 nK1 gives a different ACCIM.
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5.2 Convex Optimisation for the ACCIM Problem

We now describe a selection principle for ACCIMs based on the Shannon–
Boltzmann entropy. The first idea is to encode the criteria for being a CIM into
a sequence of moment conditions and to search for approximate CIMs which
locally resemble the measure m. This leads to the optimisation problems .Pn;˛/,
where the entropy-maximising density is sought, subject to meeting the first n
moment conditions for conditional invariance (with escape rate � log˛). Then, in
Sect. 5.2.2, we recall some standard results from convex optimisation which allow
the MAXENT problem .Pn;˛/ to be recast in dual form. Theorem 5.2 identifies a
condition which is both necessary and sufficient for solvability of the dual problem.
Section 5.2.3 introduces a domain reduction technique which ensures that the
conditions of Theorem 5.2 are met, revealing an interesting connection between
the structure of the moment conditions and the backward transient sets K1. The
main result is Theorem 5.3: an explicit formula for the solution of (Pn;˛).

5.2.1 Moment Formulation of the ACCIM Problem

By Lemma 5.3, if 
 is an ACCIM and ' D d


dm
, then

L0.1A1'/ D ˛ '; ˛ D
Z
A1

' dm D 
.A1/:

This is equivalent toZ
A0

ŒL0.1A1'/ � ˛ '�  dm D 0 8 2 L1.AIm/;
Z
.1A1 '/ dm D ˛

and hence, using (5.3),Z
A0

Œ1A1 ı T � ˛  � ' dm D 0 8 2 L1.AIm/;
Z
A1

' dm D ˛:

To obtain a computationally tractable representation of these conditions, observe
that it suffices to verify for all  in a weak* dense subset of L1.AIm0/.

Definition 5.4. Let f j g1jD1 	 L1.AIm0/ be a sequence whose span is weak*
dense and put  0 D 1A. Fix ˛ 2 .0; 1�. Then

Fn WD
n
0 � ' 2 L1.AIm0/ W

Z
A1

' dm D ˛;

Z
A

'  0 dm D 1; and

Z
A

�
1A1 j ı T � ˛  j

�
' dm D 0; j D 1; : : : ; n

o
:

(5.4)
are approximately conditionally invariant densities with escape rate � log˛.
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Notice that each FnC1 	 Fn. If a sequence ffng is chosen such that each fn 2
Fn and fn

weak���! f1, then f1 2 \n>0Fn. Such an f1 is the density of a CIM.
Using arguments similar to those leading up to Theorem 5.2 in [4], one has weak
(and indeed L1) convergence of such a sequence when selecting fn to solve

maximise H.f / s:t: f 2 Fn (Pn;˛)

where H is a suitably chosen functional. We use the Shannon–Boltzmann entropy

H.f / WD �
Z
A

f .x/ log f .x/ dm.x/

(where t log t is set to 0 when t D 0 and 1 when t < 0). If T admits an ACCIM

 for whichH. d


dm
/ > �1, then each problem (Pn;˛) has a unique solution fn, and

limfn exists both weakly and in L1 (proofs can be adapted from [4]).
Each primal problem (Pn;˛) is concave, admitting a solution fn;˛ depending on

both n and ˛. As we illustrate with numerical examples (Sect. 5.3.4), the role of ˛
is interesting, being a parameter that is tunable to produce a range of escape rates4:
for ˛ near 0, escape is rapid (with mass of the ACCIM tending to concentrate on the
first few preimages of the hole); for ˛ near 1, escape is slow with mass concentrated
nearer to ˝.

In order to identify the entropy-maximising ACCIM, we propose a nested
approach: at the outer level, for each fixed n, optimise H.fn;˛/ (over ˛); as an
‘inner’ step, each fn;˛ is computed to solve (Pn;˛).

Remark 5.3. The optimisation problem (Pn;˛) can be reformulated to remove ˛ as
a variable. One simply replaces the j th moment condition in (5.4) withZ

A0

h
1A1 j ı T � .R

A1
' dm/ j

i
' dm D 0

for each  j . This destroys the linearity of the constraint and potentially the
convexity of the optimisation problem.

5.2.2 Convex Duality for Problem (Pn;˛)

Problems like .Pn;˛/ are never solved directly. Instead, a ‘Lagrange multipliers’
approach converts the problem to an equivalent finite-dimensional unconstrained
optimisation. For the benefit of readers not familiar with this type of argument, we
outline the steps leading to this ‘dual formulation’. Let n; ˛ and f kgnkD1 be fixed.

4The flexibility to tune ˛ without impact on numerical effort is reminiscent of the use of Ulam’s
method to calculate the topological pressure of piecewise smooth dynamical systems by varying
an inverse temperature parameter [16].
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To simplify matters we assume that the test functions form a partition of unity over
A, so  0 D 1A DPn

kD1  k and

0 D
Z
A0

Œ1A11A0 ı T � ˛ 1A0� ' dm D
Z
A1

' dm � ˛
Z
A0

' dm

follows from the corresponding conditions for  1; : : : ;  n. The normalisationR
A0
' dm D 1 is thus a consequence of

R
A1
' dm D ˛, so only one of those

conditions is needed.

Definition 5.5. Define M W L1.AIm0/! R
nC1 by

.M'/0 D
Z
A1

' dm and .M'/j D
Z
A

�
1A1 j ı T � ˛  j

�
' dm

for j D 1; : : : ; n. Let M� W RnC1 ! L1.AIm0/ be defined by

M
�� D �0 1A1 C

nX
jD1

�j .1A1 j ı T � ˛  j /:

Let e D Œ1; 0; : : : ; 0�T 2 R
nC1, put Q.�/ WD ˛ �T e � R

A
exp.M�� � 1/ dm and

define a dual problem:

maximise Q.�/ s.t. � 2 R
nC1: (Dn;˛)

We now outline how (Dn;˛) is related to (Pn;˛). First, note that

f 2 Fn , Mf D ˛ e and �T .Mf / D
Z
A

M
��f dm 8f 2 L1.AIm/:

For every � 2 R
nC1,

sup
f 2Fn

H.f / D sup
ff W MfD˛ eg

H.f /

D sup
ff W MfD˛ eg

ŒH.f /C �T .Mf � ˛ e/�

This last expression can be estimated by

sup
ff W MfD˛ eg

ŒH.f /C�T .Mf �˛ e/� � sup
f 2L1.AIm/

ŒH.f /C�T .Mf �˛ e/�

D �˛ �T eC sup
f 2L1.A0Im/

�Z
A
M
��f dm�.�H.f //

�

D �˛ �T eCH�.M��/

D �˛ �T eC
Z
A

exp.M���1/ dm D �Q.�/
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where H� is the Fenchel conjugate of the convex functional �H , and the second
to last equality is a nontrivial result in convex analysis (see Rockafellar [23] and
Borwein and Lewis [3]). Observe that �Q.�/ is an upper bound on H.f / for all
f 2 Fn and � 2 R

nC1 so that the (negative of the) solution to (Dn;˛) provides an
upper bound on the solution to (Pn;˛). This is called the principle of weak duality. In
fact, (Dn;˛) is a differentiable, unconstrained, concave maximisation problem, and
our method involves solving it.

Theorem 5.2 (Dual attainment). Let ˛; n be fixed.

(a) �� solves (Dn;˛) if and only if fn WD exp.M��� � 1/ 2 Fn and H.fn/ D
�Q.��/.

(b) The problem (Dn;˛) attains its maximum if and only if

0 ¤ � 2 fkerM� ˚ span.e/g? ) ŒM���C ¤ 0 m-a.e.: (5.5)

Proof. (a) This is a standard result in dual optimisation theory and is a consequence
of the fact that �� solves (Dn;˛) iff ˛ Œe�j � ŒM exp.M���� 1/�j D @Q

@�j
j�� D 0

for j D 0; : : : ; n.
(b) Sufficiency of (5.5) is established by minor modifications to the proof of

Theorem 3.3 in [5]. For necessity, suppose that �T e D 0, 0 ¤ � 2 fkerM�g?
and M �� � 0. Then there are � > 0 and E 
 A such that m.E/ > 0 and
M �� � �� 1E . Then, for any �� 2 R

nC1 and t > 0,

Q.�� C t �/ � Q.��/C .1 � e��t /
Z
E

exp.M��� � 1/ dm > Q.��/:

Hence Q cannot attain its maximum.
ut

5.2.3 Domain Reduction and Dual Optimality Conditions

The condition (5.5) incorporates some important facts about ACCIMs. First, by
Theorem 5.1, there exists an ACCIM. It follows from this that Fn ¤ ; and
˛ e 2 Range.M/ D fkerM�g? (this is the reason for separating out the direction e).
Second, the support of each ACCIM must be disjoint from subsets of A associated
with ‘bad functions’. (This is made precise in Lemma 5.4 below.) A function  
will be called a bad function if 1A1  ı T � ˛  � 0 (but not equal to 0 m-
a.e.). If � 2 R

nC1 is such that Œ��0 D 0 and M
�� � 0 (but nonzero), then

 D Pn
jD1Œ��j  j is a bad function. The condition (5.5) for solvability of (Dn;˛)

is equivalent to there being no bad functions in spanf j gnjD1. We are going to show
that bad functions may exist (Example 5.2), but they are irrelevant to the ACCIMs
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(their supports are disjoint fromH1; see Lemmas 5.2(c) and 5.4) and can be excised
from the problems (Pn;˛) and (Dn;˛) (Lemma 5.5). We call this latter procedure
domain reduction.

Example 5.2. If x 2 [n	0Kn, let N.x/ WD minfk W T �k.x/ \ A0 D ;g. Note
that N.x/ C 1 � N.T .x// (where N.y/ D 1 if y … [n	0Kn). Define  .x/ D
.˛=2/N.x/. Then �.˛=2/ D .˛=2/ �˛ �  ıT �˛ . Hence 1A1 ıT �˛ <

0 on [n	0Kn.

Lemma 5.4. Let ˛ 2 .0; 1/ and suppose that  2 L1.AIm/ satisfies 1A1 ı T �
˛  . Then  j[k>0Hk � 0 and  jAnK

1

� 0. In particular, m.H1 \ supp. // D 0.

Proof. First, let x 2 H1. Then 1A1.x/ D 0 so 0 D 1A1 ı T .x/ � ˛  .x/, so
 jH1 � 0. Now suppose that x 2 Hk . Then T k�1.x/ 2 H1 so that

0 �  .T k�1.x// � ˛  .T k�2.x// � � � � � ˛k�1 .x/:

Thus,  jHk � 0. On the other hand, if x … K1, then for each k > 0 there is at
least one x�k such that T k.x�k/ D x. Then  .x/ D  ı T k.x�k/ � ˛k  .x�k/ �
˛kk k1. Letting k ! 1,  .x/ � 0. ut

To apply Theorem 5.2 when K1 ¤ ;, we need to ensure that the chosen test
functions f j gnjD1 are unable to detect bad functions. To do this, we exploit a basis-
specific domain reduction: remove from the domain A the support of any function
h D M

�� where h � 0 and � 2 Range.M/=spanfeg. Let OA denote this reduced
domain.

Lemma 5.5. In the notation of this section, suppose that OA is measurable and f 2
Fn. Then f D f 1 OA m-a.e.

Proof. Suppose thatm.supp.f /n OA/ > 0 and let � be such that �T e D 0, M�� � 0

and supp.M��/\ supp.f / 
 A0 n OA has positive measure. Then, Mf D ˛ e so that

0 D �T .Mf / D
Z
A0

M
��f dm < 0;

an obvious contradiction. ut
In view of Lemma 5.5, m can be replaced with Om D mj OA in the definition of the

problem (Pn;˛) without any change to the set Fn. The value of the problem is also
unchanged, since there is no contribution toH.f / from those places where f takes
the value 0. The duality theory is now applied to the measure space .A0; Om/, and the
corresponding dual problem is

maximise OQ.�/ WD ˛ �T e �
Z
OA
exp.M�� � 1/ dm s.t. � 2 R

nC1: ( ODn;˛)
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Notice that if M�� � 0 m-almost everywhere, then the domain reduction ensures
that M�� D 0 Om-a.e. Thus, all potentially problematic � have been pushed into
kerM� (modulo Om). In particular, condition (5.5) is satisfied for the reduced domain.
The previous results can be collected in our main theorem.

Theorem 5.3. Let ˛; n be fixed and suppose that OA is measurable. Then ( ODn;˛)
attains its maximum at finite �� and fn D 1 OA exp.M��� � 1/ solves (Pn;˛).

We note that M� may have nontrivial kernel (modulo Om), so the optimising ��
can be non-unique. We also make the following observations:

• The reduced domain OA depends on n, possibly ˛, and may be very difficult to
determine for general test functions.

• Assuming the escape hypothesis (5.1), we have A n OA 
 K1 .mod m/
[m.A1/ D 0 by (5.1) which together with Lemma 5.4 shows that supp. / 

K1 .mod m/ for any bad function  ; the observation follows].

• If OA is overestimated, then condition (5.5) fails and the dual optimisation problem
does not have a solution for finite �. Nevertheless it would be a simple matter
to set up the dual formulation .Dn;˛/ and seek a numerical ‘solution’ of this
infeasible optimization problem without first verifying the optimality condition
in (5.5); such a numerical approach is bound to be both unstable and misleading.
See Borwein and Lewis [3] for further discussion of this and related issues.

Notwithstanding these warnings, in Sect. 5.3, we show how to compute OA for
piecewise constant test functions based on a measurable partition of A.

5.3 A MAXENT Procedure for Approximating ACCIMs

Under the conditions of Theorem 5.1, there are many ACCIMs for each escape rate.
If at least one of these has a density with finite Shannon–Boltzmann entropy, then
the solutions of a sequence of problems (Pn;˛) will converge (in L1) as n ! 1
to the density of an ACCIM. This, in principle, allows one to select an ‘entropy-
maximising’ ACCIM; the entropy maximisation spreads mass as uniformly as
possible, given the condition of being a CIM. Solutions to each problem (Pn;˛)
can be calculated via convex duality, provided there are no ‘bad functions’ (M��
which fail the condition (5.5) in Theorem 5.2). This condition can be ensured by
a basis-dependent domain reduction (Lemma 5.5 and Theorem 5.3), leading to
a domain-reduced dual problem ( ODn;˛). We now make a specific choice of test
functions, reminiscent of Ulam’s method [14, 15, 24]. We identify the reduced
domain OA (Lemma 5.6), derive the relevant optimality equations (Lemma 5.7) and
present a convergent fixed point method for their solution.
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5.3.1 Piecewise Constant Test Functions and Domain
Reduction

Let f j g be obtained from a sequence of increasingly fine partitions of A. In
particular, let Bn be a partition of A into measurable subsets fB1; : : : ; Bng and put
 j D 1Bj . Notice that 1A DPn

jD1  j so the partition of unity assumption is satis-

fied (cf. Sect. 5.2.2). To derive and solve the optimality equations for ( ODn;˛), notice
that M�� is a piecewise constant function, on elements of Bn _ fT �1Bn;H1g:

M
�� D 1A1

nX
j;kD1

.�0 C �j � ˛ �k/1Bj ı T 1Bk C 1H1

nX
kD1
.�˛ �k/ 1Bk

D
nX

j;kD1
.�0 C �j � ˛ �k/1Bk\T�1Bj � ˛

nX
kD1

�k 1H1\Bk (5.6)

(note that 1A1 D 1A\T�1A DP
jk 1Bk\T�1Bj ).

Definition 5.6. For the partition Bn, form a matrix C and vector c by putting

Ckj D m.Bk \ T �1Bj / and ck D m.H1 \ Bk/ j; k D 1; : : : ; n:

A set Bj is reachable from Bk if there is n > 0 such that .C n/kj > 0; write kÝ j .

Remark 5.4. The entries of the matrix C are the same data needed to compute the
(sub)stochastic transition matrices used by Ulam’s method.

Lemma 5.6. Suppose that .T; A;m/ is a nonsingular open dynamical system and
thatm.A1/ D 0. Fix ˛; n and let OA be the reduced domain when M

� is constructed
from the partition Bn. Then OA is the union of those Bk where either kÝ k or there
is at least one i for which i Ý i Ý k; in particular, OA is measurable.

Proof. Let �T e D 0 and suppose that M�� � 0. From (5.6), we immediately have

�j � ˛�k when Ckj > 0 and �k � 0 when ck > 0:

Since C is a non-negative matrix, i Ý k iff there is a string i D i0; i1 : : : ; in D k

such that each Cil ilC1
> 0. Thus, by induction, if i Ý k, then there is an n > 0

such that �k � ˛n �i . First, if ck > 0 and i Ý k, we infer that �i � 0. Next,
since m.A1/ D 0, for every Bi , there is an n for which m.Bi \ Hn/ > 0. Then,
since T is nonsingular, there is Bl such that Cil > 0 and m.Bl \ Hn�1/ > 0. By
induction, there is a k for which i Ý k and ck > 0. Hence, �i � 0 for all i . Now, if
kÝ k, again use the inequality �k � ˛n�k to infer that �k � 0 and hence �k D 0.
Similarly, if iÝiÝk, �k � ˛n �i D 0, so also �k D 0. Suppose that k is one of the
indices identified in the statement of the lemma. Then (5.6) implies that 1BkM

�� DP
j �j 1Bk\T�1Bj � 0; since M �� � 0, Bk \ supp.M��/ D ;. To complete the
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proof, let K denote those Ok which fail the condition in the statement. For each such
Ok, letN. Ok/ D maxfN W .CN /

i Ok > 0 9ig;N. Ok/may be 0. (Note that if .CN /ik > 0

for N > n, then there is a sequence i D i0; i1; : : : ; in D k for which Cil ilC1
> 0;

this list must contain at least one repeat, implying k … K .) Note that if C
i Ok > 0,

then N.i/C 1 � N. Ok/. Finally, for each Ok 2 K , put � Ok D .˛=2/N.
Ok/, with �k D 0

for k … K . Then, C
i Ok > 0 implies �i .˛=2/ � � Ok . Hence � Ok � ˛ �i � �� Ok < 0. It

follows that supp.M��/ D [ Ok2K B Ok . ut
Remark 5.5. The set OA identified by the lemma is the union of all Bk which are
reachable from the strongly connected components of the directed graph implied by
the nonzero elements of the matrix C . This can be found quickly and easily.

Now, form the matrix OC and vector Oc by retaining those entries where Bk is
identified as belonging to OA and setting the rest to 0. These ingredients can be used
to obtain explicit formulae for the optimality conditions for ( ODn;˛). Using (5.6),

OQ.�/ D ˛�0 �
X
jk

exp.�0 � 1C �j � ˛ �k/ OCkj �
X
k

exp.�1 � ˛ �k/ Ock:

Because OQ is differentiable and concave, the maximising �� is found by solving the

first-order conditions @ OQ
@�i

D 0. The following lemma writes these conditions in a
more convenient form.

Lemma 5.7. Assume the conditions of Lemma 5.6 and let OA be as given there. Let
OC ; Oc be obtained similarly to Definition 5.6, but using Om D mj OA in place of m. If
fxigniD1 are positive numbers solving

x1C˛i D ˛

P
j
OCij xj C OciP
k
OCkix�˛k

and ��0 satisfies e˛ �
�

0 �1P
j
OCij xj x�˛i D ˛, then ��i WD log.xi / � ��0 give the

solution to ( ODn;˛).

Proof. By differentiation, the optimality equations for ( ODn;˛) are

0 D ˛ �Pjk exp.�0 � 1C �j � ˛ �k/ OCkj .i D 0/

0 D ˛
P

j exp.�0 � 1C �j � ˛ �i / OCij �Pk exp.�0 � 1C �i � ˛ �k/ OCki
C˛ exp.�1� ˛ �i / Oci .1 � i � n/:

The i D 0 equation is a normalisation. By putting xi D e�iC�0 for 1 � i � n,
the latter equations are equivalent to

0 D ˛
X
j

OCij xj x�˛i �
X
k

OCkixix�˛k C ˛ Ocix�˛i :

Multiplying by x˛i and rearranging gives the equations in the statement of the
lemma. ut
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5.3.2 Iterative Solution of the Optimality Equations

We now summarise the numerical method:

1. Specify ˛ (D e�� where � is the preferred escape rate).
2. Fix a measurable partition Bn D fBj gnjD1 of A.
3. Obtain the matrix C and vector c of partition overlap masses (as specified in

Definition 5.6).
4. Use Lemma 5.6 to identify OA and thus form the dual problem ( ODn;˛).
5. Solve the optimality equations via Lemma 5.7. This can be accomplished with a

fixed point iteration: set x0 D Œ1; : : : ; 1�T and iterate

xtC1 D �.xt / where Œ�.x/�i D
 
˛

P
j
OCij xj C OciP
k
OCkix�˛k

!1=.1C˛/

until desired accuracy is achieved.
6. Recover the optimal �� via Lemma 5.7 and solution fn;˛ to (Pn;˛) from

Theorem 5.3.
7. (Optional) Calculate H.fn;˛/.

5.3.3 Sketch Proof of Convergence of the Fixed Point Iteration

Assume the escape hypothesis (5.1).
Without loss of generality, assume that all sums in the definition of

� are nonempty.5 Because ( ODn;˛) actually has a solution, there is y� for
which �.y�/ D y�. For any x 2 R

nC, let

V.x/ D min

	
R W 1

R
� xi

y�i
� R; 1 � i � n

�
:

Clearly V.x/ � 1 and V.x/ D 1 iff x D y�. Moreover,

Œ�.x/�i �
 
˛
V.x/

P
j
OCij y�j C Oci

V .x/�˛
P

k
OCki .y�k /�˛

!1=.1C˛/
� V.x/ Œ�.y�/�i D V.x/ y�i : (5.7)

Together with a similar inequality involving 1=V , one has V ı � � V . Thus, fV ı
�t.x0/g is a decreasing sequence, bounded below by 1. Because V.x0/ < 1, all

5Note that OCki D 08k only if Bi \ OA D ;. In this case also each OCij D Oci D 0 and the value of
M

�� on Bi is irrelevant to the solution of (Pn;˛) (by Lemma 5.5). The function � can be defined
to be 1 on such coordinates.



98 C. Bose and R. Murray

fxtg are confined to a closed, bounded rectangle in R
n; let x� be a limit point of

fxtg. Then V ı �.x�/ D V.x�/.
Suppose that i is such that6 Œ�.x�/�i D V.x�/y�i . An inductive argument [using

the equality form of (5.7)] shows that Œx��k D V.x�/y�k and Ock D V.x�/ Ock
whenever i Ý k. Since there is at least one k with Ock > 0 reachable from i ,
V.x�/ D 1. Thus, x� D y� and xt ! y�.

5.3.4 Examples

We present two simple examples to demonstrate the effectiveness of the method;
each implementation takes only a few dozen lines of MATLAB code.

Example 5.3 (Tent map with slope 3). Let X D R, A D Œ0; 1� and put

T .x/ D
	
3 x x < 0:5

3 .1 � x/ x > 0:5

Then, A1 D Œ0; 1=3� [ Œ2=3; 1� and H1 D .1=3; 2=3/. The ‘natural’ ACCIM is
Lebesgue measure with density f� D 1 and corresponding value of ˛ D 2=3. In this
case, Kn D ; D K1 (for all n) and the survivor set ˝ D A1 is the usual middle
third Cantor set. At a selection of values of ˛ 2 .0; 1/, we applied the MAXENT
method using the partition-based test functions f j D 1Œ.j�1/=1000;j=1000/g1000jD1.
The results are depicted in Fig. 5.1. As expected, for small values of ˛, escape
is rapid and the ACCIMs are strongly concentrated on the hole H1 and its first
few preimages. For ˛ near 1, escape is slow and the ACCIMs are more strongly
concentrated around the repelling Cantor set A1; see Fig. 5.2. The MAXENT
method can be tuned to produce a ‘most uniform’ approximate ACCIM, and the
maximal entropy solution is in fact the constant density function, appearing at
˛ D 2=3.

Example 5.4 (A linear saddle). LetA D Œ�1; 1�2 andm Lebesgue measure onX D
R
2; put

T .x; y/ D .2 x; 0:8 y/:

Then Kn D Œ�1; 1� � ˙.0:8.nC1/; 0:8n�, A1 D f0g � Œ�1; 1� and H1 D Œ�1; 1� �
f0gn.0; 0/. This linear map has a saddle-type fixed point at .0; 0/. The only invariant
measure is the delta measure at 0. All CIMs are supported on the local unstable
manifold to the origin; in this case, the segment of the x-axis contained inA. Indeed,
m.H1/ D 0 and there are no ACCIMs. There are, however, many CIMs which are
AC with respect to the one-dimensional Lebesgue measure on the x-axis, and these

6A similar argument works if i is such that Œ�.x
�

/�i D y�

i =V .x�/.
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negEntropy of minimum entropy density with escape rate α for tent map (slope 3)

Fig. 5.1 Example 5.3. Above: (neg)entropy�H.fn;˛/ of slope 3 tent map ACCIMs, depending on
˛ computed via MAXENT with uniform n D 1; 000 subinterval partition of Œ0; 1�. Below: densities
of the computed ACCIMs as a function of x 2 Œ0; 1� and ˛
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Fig. 5.2 Example 5.3 (compare Fig. 5.1). Above: approximate density f1000;0:5 of slope 3 tent map;
note the concentration of mass onH1 D Œ1=3; 2=3� and its preimages. Below: approximate density
f1000;0:9 of slope 3 tent map; note the concentration of mass on the survivor Cantor set A

1
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Fig. 5.3 Example 5.4. MAXENT approximations of CIMs for ˛ D 0:3 (above) and ˛ D 0:45

(below) for an open system with a simple saddle
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Fig. 5.4 Example 5.4. MAXENT approximations of CIMs for ˛ D 0:6 (above) and ˛ D 0:75

(below) for an open system with a simple saddle
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are detected by the numerical method. The domain reduction to OA is nontrivial here,
leading to a localisation in support of the MAXENT approximations. Calculations
were performed for several ˛, with 10000 test functions being the characteristic
functions of a 100 � 100 subdivision of A; in this case the set OA D Œ�1; 1� �
Œ�0:08; 0:08�. Some CIMs estimates are presented in Figs. 5.3 and 5.4.

5.4 Concluding Remarks

The MAXENT approach to calculating approximate ACCIMs has a sound analytical
basis (from optimisation theory) and is easy to implement. With test functions
f j g derived from a partition of phase space, the basic dynamical inputs to the
computational scheme are the integrals

R
 j ı T  i dm (which could be estimated

from trajectory data). For each choice of test functions, feasibility of the dual
optimisation problem depends on reducing the domain of the problem to exclude
certain ‘backward transient’ parts of the phase space. With test functions derived
from a partition, the resulting ‘reduced domain’ covers any recurrent set and local
unstable manifolds.

The work reported in this chapter suggests a number of avenues of future
enquiry:

• Are entropy-maximising ACCIMs of any particular dynamical relevance?
• Given that the analysis and computation of the variational approach is similar

with convex functionals other than H.�/, are other choices of objective more
appropriate?

• How is the quality of approximation affected by the choice of test functions f kg?
• How does the functional H.fn;˛/ depend on ˛ (and n)?
• Can dynamically interesting measures on unstable manifolds be recovered from

this approach?
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Chapter 6
Lebesgue Ergodicity of a Dissipative Subtractive
Algorithm

Henk Bruin

Abstract We prove Lebesgue ergodicity and exactness of a certain dissipative
2-dimensional subtractive algorithm, completing a partial answer by Fokkink et al.
to a question by Schweiger. This implies for Meester’s subtractive algorithm in
dimension d that there are d�2 parameters which completely determine the ergodic
decomposition of Lebesgue measure.

6.1 Introduction

Consider a triple x D x.0/ D .x1; x2; x3/ of positive reals and form a sequence
.x.n//n	0, by repeatedly subtracting the smallest of the three from the other two.
This dynamical system emerged from a percolation problem studied by Meester
[5]. Although .x.n//n	0 is clearly a decreasing sequence, x1 D limn!1 x.n/ is
different from 0 for Lebesgue-a.e. initial position. Let us write this more formally
as iterations of the subtractive map of increasing triples 0 � x1 � x2 � x3:

F.x1; x2; x3/ D sort.x1; x2 � x1; x3 � x1/;

where sort stands for putting the coordinates in increasing order. It is obvious that
x11 D x12 D 0, but also that if x3 > x1 C x2, then � WD x3 � .x1 C x2/ is a
preserved quantity. This means that once x3 > x1 C x2, the third coordinate will
always remain the largest, even under the unsorted subtractive algorithm, and in fact
x13 D �. Meester and Nowicki [6] showed that for Lebesgue-a.e. initial vector,

there is indeed some n � 0 such that � D x
.n/
3 � .x.n/1 C x

.n/
2 / > 0.
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Therefore F is non-ergodic w.r.t. Lebesgue measure �: triples with different
nonnegative values of � have disjoint orbits and thus belong to ‘carriers’ of different
ergodic components, which can be defined in the usual way even though � is non-
invariant and in fact dissipative. Let us recall these definitions.

Definition 6.1. A transformation .X;B; �IT / is

• non-singular if �.B/ > 0 implies �.T .B// > 0;
• ergodic if T �1.B/ D B implies that �.B/ D 0 or �.X n B/ D 0;
• conservative if for every set B 2 B of positive measure, there is n � 1 such that
�.T n.B/ \ B/ > 0;

• dissipative if it fails to be conservative, and totally dissipative, if there is no
invariant subset X0 	 X of positive measure on which T is conservative.

• exact if T �n ıT n.B/ D B for all n � 0 implies that �.B/ D 0 or �.X nB/ D 0.

All of these properties can be defined even though � is not T -invariant.

The result of [6] was generalised by Kraaikamp and Meester [4] to dimension
d � 3. They showed that for the map

Fd.x1; : : : xd / D sort.x1; x2 � x1; : : : ; xd � x1/;
and Lebesgue-a.e. initial vector x, the quantity �3 D x

.n/
3 �.x.n/1 Cx.n/2 / is eventually

positive, and so is �k WD x
.n/

k � x.n/k�1 for k > 3. Once �3 > 0, all �k are preserved,
and, as observed in [3], Lebesgue measure is therefore not ergodic. This answers in
the negative a question posed by Schweiger [10]. The natural question, however, is
whether the level sets

fx 2 R
d	0 W x1k D

kX
jD3

�j for all 3 � k � dg

constitute the ergodic decomposition of Lebesgue measure.
We can rephrase this question by passing from projective space (on which Fd

acts) to a fixed simplex � D fx D .x1; : : : ; xd / W 0 � x1 � � � � � xd D 1g,
by scaling the largest coordinate to 1. The map Fd then becomes fd W � ! �,
defined as 8<

:
x0 D Fd .x/ D sort.x1; x2 � x1; : : : xd � x1/;
fd W x 7! 1

x0d
x0:

For d D 2, the map reduces to the Farey map

x 7!
(

x
1�x if x 2 Œ0; 1

2
�I

1�x
x

if x 2 Œ 1
2
; 1�:

(6.1)

In the next simplest case d D 3, we know that limn!1 f n
d .x1; x2; 1/ D .0; 0; 1/ as

soon as x1 C x2 < 1, so fd is totally dissipative on the simplex �.
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g1

x

y

g0

g2

g3

A0

B0

B1

A1A2A3A4

B2

B3

B4

A0 = (0,0)
Bk = (0,1)
g0 = {x=0}

Ak = ( 1
k ,1)

Bk = ( 1
k+1 ,1− 1

k+1)
gk = {y= kx}

fork≥ 1

Dynamics of f :

··· →A3→A2→A1→A0�
··· →B3 →B2 →B1 →B0 �
··· → g3 → g2 → g1 → g0 �

Fig. 6.1 The Markov partition for partition f W � ! � consists of the triangles �L (to the left
of the line g1 D fy D 2xg), �R (between g1 and the line fx D 1

2
g) and �T (to the right of

fx D 1
2
g). Each of these triangles is mapped onto � by f . Further diagonal lines gk bound the

regions where the first return times to �R are constant (viz. k between gk and gkC1). The line
fxC y D 1g is invariant and separates the part where � > 0 and where � is not yet determined

Nogueira [9] used properties of GL.2;Z/ to prove that, although dissipative, the
three-dimensional system is Lebesgue ergodic. Further results on the homogeneous
(i.e., unscaled) version of these algorithms were obtained by Miernowski and
Nogueira [8]. In this paper we use a different method (based on a transient random
walk argument with a Lebesgue typical speed of ‘convergence to 0’, combined
with distortion estimates) to reprove ergodicity. Our method also yields Lebesgue
exactness and is, we hope, adaptable to similar (higher-dimensional) systems as
well; see also Remark 6.1.

Theorem 6.1. Partition the triangle � D f.x; y/ W 0 � x � y � 1g into �L D
f.x; y/ W 0 � 2x � y � 1g, �R D f.x; y/ W 0 < x � y < 2x � 1g and
�T D f.x; y/ W 1

2
< x � y � 1g.

Then with respect to the map f W �! � defined as

f .x; y/ D

8̂
<̂
ˆ̂:

.
y�x
x
; 1�x

x
/ if .x; y/ 2 �T ;

.
y�x
1�x ;

x
1�x / if .x; y/ 2 �R;

. x
1�x ;

y�x
1�x / if .x; y/ 2 �L;

see Fig. 6.1, Lebesgue measure is totally dissipative, ergodic and exact.
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It follows from [4] that for d � 3 and Lebesgue-a.e. initial vector x, there is
n 2 N such that for x.n/3 > x

.n/
2 C x

.n/
1 , so this case reduces to Theorem 6.1 as well.

In fact, we have the corollary:

Corollary 6.1. For each �3 > 0 and �4; : : : ; �d � 0, the map Fd restricted to the
invariant set fx 2 R

d	0 W x1k DPk
jD3 �j for 3 � k � dg is ergodic and exact w.r.t.

Lebesgue measure.

Proof. Since �3 > 0, we can divide the space fx W x13 D �3g into a countable
union [�	0X� where � D minfn � 0 W F n

d .x/3 > F
n
d .x/1CF n

d .x/2g. That is, after
� iterations, the order of the coordinates F �

d .x/k for 3 � k � d will not change

anymore under further iteration. (In fact F �
d .x/k D

Pk
jD3 �j CF �

d .x/1CF �
d .x/2.)

So from this iterate onwards, we can scale so that F �
d .x/3 D 1 and restrict our

attention to the first two coordinates. Theorem 6.1 applies to them. ut
Remark 6.1. Meester and Nowicki’s result was generalised by Fokkink et al. [3]
to a two-parameter setting, called Schweiger’s fully subtractive algorithm; see [10,
Chap. 9]:

Fad .x1; : : : xd / D sort.x1; : : : ; xa; xaC1 � xa; : : : ; xd � xa/:

Analogous quantities �k for k � a C 2 are still preserved as soon as �aC2 � 0,
and [3] show that this happens almost surely. The present paper shows Lebesgue
ergodicity and exactness of the level sets of .�2; : : : ; �d / for F1;d and all d � 3.
It is hoped that the techniques will be useful to understand Fad for general a 2
f1; 2; : : : ; d � 2g.

6.2 The Proof of Theorem 7.3

6.2.1 Finding Convenient Coordinates

To start the proof, it helps to recall from [3] the Markov partition of � that f
possesses; see Fig. 6.1. The Markov partition � D �L [ �R [ �T consists of
three full branches. In fact, f extends to a diffeomorphism f W �i ! � for
i D L;R; T . The region Y under the line x C y D 1 is invariant; it is here
that � D 1 � x � y > 0, and f n.x; y/ ! .0; 0/ for every .x; y/ 2 Y . Clearly
f .�T / � Y , and an additional distortion argument ensures that Lebesgue-a.e.
.x; y/ eventually falls into Y . Therefore f is totally dissipative.

The question is whether the convergence to .0; 0/ is so chaotic that �jY is in fact
ergodic or even exact. Let us restrict our Markov partition to

fYL D �L \ Y; YR D �R \ Y g;
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and study the first entry map G W Y ! YR in a new set of coordinates. First, note
that the lines gk D f.x; y/ 2 Y W y D kxg, k � 1, and g0 D f.x; y/ 2 Y W x D 0g
satisfy f .gk/ D gk�1 for k � 1 and g0 consists of neutral fixed points. Hence the
return time to YR on the region between gkC1 and gkC2 is exactly k for k � 1. For
fixed t � 0, the lines `.p; t/ D f.x; y/ 2 Y W y D p � txg, 0 < p � 1, foliate
Y and

f .`.p; t/\YL/ D `.p; tC1�p/; f .`.p; t/\YR/ D `

�
p

t C 1 � p ;
1

t C 1 � p
�
:

Therefore, if An.p; t/ 	 `.p; t/\YR is a maximal arc on which the first return time
is n, then

Gn.p; t/ WD G.An.p; t// D `

�
p

t C 1 � p ;
nC .n � 1/t � 2.n � 1/p

t C 1 � p
�
\ YR:

Remark 6.2. The point .0; 0/ is attracting under G, but not quite under f itself.
Namely, on YL,

Df jYL.0; 0/ D
�
1 0

�1 1
�
;

which is a nilpotent shear, whereas on YR,

Df jYR.0; 0/ D
��1 1
1 0

�
;

which is hyperbolic with stable eigenvalue �s D 1
2
.
p
5 � 1/ on stable eigenspace

Es D span.�s; 1/T (where T stands for the transpose) and unstable eigenvalue
�u D � 1

2
.
p
5C 1/ < �1 on unstable eigenspace Eu D span.�u; 1/

T . Therefore, if

.pk; tk/ D Gn1:::nk WD Gnk ıGnk�1 ı � � � ıGn1.p; t/

for successive return times .nk/k2N, then tk ! 1
2
.
p
5C 1/ as k ! 1 and nj D 1

for all large j , whereas tk immediately becomes large if nk is large.

Remark 6.3. For each .p; t/, the length of An.p; t/ is 1=n.nC 1/ times the length
of `.p; t/ \ YR. Let

An1:::nk .p; t/ D fx 2 `.p; t/ \ YR W the first k return times to YR are n1; : : : ; nkg:

Its length is approximately
Qk
iD1 n�2i . Each map Gk W An1:::nk .p; t/ ! YR acts

as the Gauss map with corresponding uniform distortion control; see Lemma 6.2.
Therefore, the conditional probability P.nkC1 D n j n1 : : : nkg/ � n�2, uniformly in
k and the history n1; : : : ; nk . The process .Sk/k2N given by Sk.x/ D n1 C � � � C nk
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if x 2 An1:::nk (which is a cone over An1:::nk .1; 1/) is a deterministic version of
the one-sided discrete Cauchy walk. Taking the difference of two sample paths of
such a walk, we obtain a symmetric two-sided Cauchy walk, i.e. a random walk
where the steps are distributed according to P.Xk D n/ D P.Xk D �n/ � cn�2.
This walk is recurrent, as follows from a more general theory on stable laws (see
[2, Theorem 2.9]1), so for �-a.e. pair .z; z0/ 2 Y 2R , there are infinitely many k,
such that their respective sums Sk D S 0k , i.e. f k.z/ and f k.z0/ both belong to YR.
For our proof, however, it suffices to have the somewhat weaker result proved in
Proposition 6.1.

Let us write p D p

˛CˇtC�p and t D ǪC ǑtCO�p
˛CˇtC�p , for integers ˛; ˇ; �; Ǫ ; Ǒ: O� , so the

initial values are ˛ D Ǒ D 1 and Ǫ D ˇ D � D O� D 0. Direct computation gives

Gn

 
`

 
p

˛ C ˇt C �p
;
Ǫ C Ǒt C O�p
˛ C ˇt C �p

!!
D

YR \ `
 

p

˛ C Ǫ C .ˇ C Ǒ/t C .� C O� � 1/p ;

n˛ C .n � 1/ Ǫ C .nˇ C .n � 1/ Ǒ/p C .n� C .n � 1/ O� � 2.n � 1//p
˛ C Ǫ C .ˇ C Ǒ/t C .� C O� � 1/p

!
:

This means that the iteration of G, for initial values p 2 .0; 1� and t � p, we find
that we can represent the iterations

.pk; tk/ D Gn1:::nk .p; t/ D
 

p

˛k C ˇkt C �kp
;
Ǫk C Ǒ

kt C O�kp
˛k C ˇkt C �kp

!
(6.2)

by affine transformations on the integer vectors .˛; Ǫ ; ˇ; Ǒ; �; O�/T :

0
BBBBBBB@

˛

Ǫ
ˇ
Ǒ
�

O�

1
CCCCCCCA

7!

0
BBBBBBB@

1 1 0 0 0 0

n n � 1 0 0 0 0

0 0 1 1 0 0

0 0 n n � 1 0 0

0 0 0 0 1 1

0 0 0 0 n n � 1

1
CCCCCCCA
�

0
BBBBBBB@

˛

Ǫ
ˇ
Ǒ
�

O�

1
CCCCCCCA
�

0
BBBBBBB@

0

0

0

0

1

2.n � 1/

1
CCCCCCCA

1In fact, the Cauchy distribution models the position on the horizontal axis where a standard
random walk on Z

2, starting from .0; 0/ returns to the horizontal axis. Since the standard random
walk on Z

2 is recurrent, the Cauchy walk is recurrent as well.
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with initial value .1; 0; 0; 1; 0; 0/T mapping to .1; n; 1; n � 1;�1;�2.n � 1//T , etc.
It is easy to check by induction that

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

˛k C ˇk C �k D Ǫk C Ǒ
k C O�k D 1 for all k � 0;

ˇk � ˛k � 2ˇk; for all k � 0;

Ǒ
k � Ǫk � 2 Ǒk; except that Ǒ

1 D 0

when n1 D 1;

˛k � Ǫk � 2˛k when nk D 2:

(6.3)

Therefore, as far as asymptotics are concerned, it suffices to keep track of ˛k and Ǫk
(or just of ˛k whenever nk D 2), cf. Proposition 6.1, so it makes sense to focus just
on the recursive relation(

˛kC1 D ˛k C Ǫk;
ǪkC1 D nkC1˛k C .nkC1 � 1/ Ǫk;

˛0 D 1; Ǫ0 D 0: (6.4)

In fact, there is 
 D 
.p; t/, but independent of k, such that

1 � ˛k C ˇkt C �kp

˛k
;
Ǫk C Ǒ

kt C O�kp
Ǫk � 
; (6.5)

whenever t � p and nk D 2.

6.2.2 Distortion Results

Given intervals J 0 	 J , we say that J is a ı-scaled neighbourhood of J 0 if both
component of J nJ 0 have length � ıjJ 0j. The following Koebe distortion property is
well-known; see [7, Sect. IV.1]: If g W I ! J is a diffeomorphism with Schwarzian
derivative Sg WD g000=g0 � 3=2.g00=g0/2 � 0, then for every I 0 	 I such that J is a
ı-scaled neighbourhood of J 0 WD g.I 0/, the distortion

sup
x;y2I 0

ˇ̌
ˇ̌g0.x/
g0.y/

ˇ̌
ˇ̌ � K.ı/ WD

�
1C ı

ı

�2
: (6.6)

Möbius transformations g have zero Schwarzian derivative, so (6.6) holds for g and
g�1 alike.

Lemma 6.1. The foliation of Y into radial lines

h� D f.r cos �; r sin �/ W 0 � r � .sin � C cos �/�1g

with � 2 Œ�=4; �=2� is invariant. Moreover, the distortion of Gk W h� ! h�k is
bounded in the sense of (6.6) uniformly in � 2 Œ0; �=2� and k 2 N.
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Proof. Since f preserves lines and .0; 0/ is fixed, the invariance of the foliation is
immediate.

Let tk be as in (6.2) and �k the angle of the image of h� under Gn1:::nk . The
lines `.1; tk/ and h�k intersect at a point .Rk cos �k; Rk sin �k/ for Rk D .cos �k C
tk sin �k/�1. Using (6.2) again, we see that Gn1:::nk acts on the parameter r as a
Möbius transformation

Mk W r 7! Rk
r

1C ˇk.1 � r/ ;

which has zero Schwarzian derivative, and so has its inverse. Therefore, within an
interval J b Œ0; R0� such that both components of Œ0; R0� n J have length ıjJ j,
the distortion supr0;r12J jM 0k.r0/j=jM 0k.r1/j is bounded by K.ı/ uniformly in k and
n1; : : : ; nk . ut

The following lemma is straightforward, using d D 1 in (6.6).

Lemma 6.2. The map f preserves the line `.1; 1/ D f.x; y/ W x C y D 1g and
acts on it like the Farey map (6.1). Hence the return mapG acts like the Gauss map,
and the distortion of every branch Gn1:::nk W [n	nkAn1:::nkn ! `.1; 1/ is uniformly
bounded by K D 4.

6.2.3 Growth of ˛k and Ǫk at Different Points

Let ˛k.x/ and Ǫk.x/ be as in (6.4). The first component of the expression (6.2),
together with (6.5), shows that the ˛k.x/ roughly dictate the distance between
F k.x/ and the origin. Hence the following proposition should be interpreted as
typical pairs of points infinitely often visit regions of similar distance to the origin.

Proposition 6.1. There is L � 10 such that for Lebesgue-a.e. .x; y/ 2 Y 2R ,

1

L
� ˛k.x/

˛l .y/
;
Ǫk.x/
Ǫ l .y/ � L for infinitely many k; l 2 N: (6.7)

Proof. The heuristics behind proving (6.7) is that the numbers log˛k are dominated
by random variables

Xk D
kX

jD1
d3 log nj e:

This follows immediately from (6.4). The probabilities P.d3 log nke D t / D
O.e�t=3/ for all k and t , so Xk is the sum of k random variables of finite
expectation 
. Standard probability theory (see, e.g. [2, Theorem 4.1]) gives that
1
r
#fk W Xk 2 Œ0; r�g ! 1=
 > 0 as r ! 1. Therefore, almost every sample
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path of f�kgk2N is a sequence with positive density, and since log˛k � Xk also
for �-a.e. x, the sequence .log˛k/k2N has positive density. It follows that there is
L0 such that for � � �-a.e. pair .x; y/, there are infinitely many integers k; l such
that j log˛k.x/ � log˛l.y/j � L0. Taking the exponential function, we obtain the
required result for ˛k in (6.7). Since Ǫk D nk˛k�1 C .nk � 1/ Ǫk�1 and the event
fnk D 2g is basically independent of the previous choices of nj , the result for Ǫk in
(6.7) follows as well. ut

6.2.4 The Main Proof

The total dissipativity of f already follows from [3]; it is a direct consequence of
f n.x; y/! .0; 0/ Lebesgue-a.e. We will now finish the proof of Theorem 7.3.

Proof. Assume that A;A0 	 YR are sets of positive measure such that f �1.A/ D A

and f �1.A0/ D A0. To prove ergodicity, we will find some i; j 2 N such that
f i .A/ \ f j .A0/ ¤ ;, so A and A0 cannot be disjoint.

Use coordinates u 2 Œ0; 1�, v 2 Œ0; p� to indicate points below the line `.p; 1/:
.x; y/ D .uv; u.p � v//. First take a D .vA; pA � vA/ a density point of A, where
it is not restrictive to assume that pA 2 .0; 1/. By Fubini’s theorem, we can find
" 2 .0; 1 � pA/ such that, letting H0.A/ be the strip between parallel lines `.pA; 1/
and `.pA.1�"/; 1/ (see Fig. 6.2, left), there is a set VA 2 Œ0; pA� of positive measure
such that fu 2 Œ1� "; 1� W .uv; u.pA � v// … Ag has measure � "=.10KL/ for every
v 2 VA and K as in (6.6) and L as in Proposition 6.1.

Since a 1-scaled neighbourhood of ŒpA.1� "/; pA� is still contained in Œ0; 1�, we
can choose K D 4 here as the common distortion bound in Lemmas 6.1 and 6.2.
We can also assume that vA is a density point of VA.

We do the same for A0, finding a point pA0 2 .0; 1/, a set VA0 	 Œ0; pA0 � of
positive measure and a density point a0 D .vA0 ; pA0 � vA0/ of VA0 .

By Proposition 6.1, it is not restrictive to assume that a D .vA; pA � vA/ and
a0 D .vA0 ; pA0 � vA0/ satisfy

1

L
� ˛k.a/

˛l .a0/
;

Ǫk.a/
Ǫ l .a0/ � L and nk D n0l D 2

for infinitely many k; l 2 N. Let Zn1:::nk 3 a denote the k-cylinder set containing a,
intersected withH0.A/. ThenGk.Zn1:::nk / D Hk.A/\YR, whereHk.A/ is the strip
between the linesGk.`.pA; 1/ andGk.`.pA.1�"/; 1//. Due to the small difference
between initial values pA and pA.1 � "/, formula (6.2) gives that these lines are
roughly parallel.

Applying (6.4) twice we get

(
˛kC2 D .nkC1 C 1/˛k C nkC1 Ǫk;
ǪkC2 D .nkC2nkC1 C nkC2 � nkC1/˛k C .nkC2nkC1 � nkC1 C 1/ Ǫk:

(6.8)
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Hl+4(y)

radial line hθ

Fig. 6.2 Left: The lines `.pA; 1/ and `.pA.1� "/; 1/ encloseH0.A/ and the area of large density
near a. Right: The strips HkC4.x/ and HlC4.y/ must intersect

For x 2 Zn1:::nk , the variables ˛k.x/; Ǫk.x/; ˇk.x/; Ǒk.x/; �.x/ and O�k.x/ are
all well-defined and constant. By choosing x 2 Zn1:::nk .a/ so that nkC2.x/ D
nkC1.x/ D 1 (which corresponds to choosing a k C 2-subcylinder Zn1:::nk11.x/),
formula (6.8) simplifies to

(
˛kC2 D 2˛k C Ǫk;
ǪkC2 D ˛k C Ǫk;

and we have Ǫk.x/ � ˛kC2.x/ � 2˛kC2.x/ for each x in this subcylinder. In view
of (6.2) and (6.5), this means that the slope of the strip HkC2.a/ is between 
 and
1=
. More precisely,

1



� tkC2.x/ � 
 for each x 2 Zn1:::nk11:

Similarly for cylinder Zn01:::n0l 3 a0, choosing also n0lC1 D n0lC2 D 1 and taking a

similar lC2-subcylinderZn01:::n0l , we find
0 D 
0.pA0 ; "/ such that 1

0

� tkC2.y/ �

0 for each y 2 Zn1:::nl 11.

Furthermore,

1

L
� ˛kC2.x/
˛lC2.y/

;
ǪkC2.x/
Ǫ lC2.y/ � L;
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which implies that

1


L
� pkC2.x/
plC2.y/

� 
L for all x 2 Zn1:::nk11 and y 2 Zn01:::n0k11:

In other words, HkC2.x/ and HlC2.y/ are two strips of roughly the same slope and
ordinates pkC2.x/ and plC2.y/ differing by no more than a uniform factor 
L.

The next step is to choose a kC4-subcylinder ofZn1:::nk11 and a lC4-subcylinder
of Zn01:::n0l 11 so that their images HkC2.x/ and HlC2.y/ must intersect. We use (6.3)
and (6.8) for k C 4 instead of k C 2 to find

pkC4 D pkC4
pkC2

pkC2 D ˛kC2 C ˇkC2t C �kC2p
˛kC4 C ˇkC4t C �kC4p

pkC2

D ˛kC2 C ˇkC2t C �kC2p
.nkC3 C 1/.˛kC2 C ˇkC2t C �kC4p/CnkC3. ǪkC2C Ǒ

kC2 C O�kC2p/
pkC2

� pkC2
nkC3

and

tkC4 D tkC4
tkC2

tkC2 D ǪkC4 C Ǒ
kC4t C O�kC4p

˛kC4 C ˇkC4t C �kC4p
˛kC2 C ˇkC2t C �kC2p
ǪkC2 C Ǒ

kC2t C O�kC2p
tkC2

D
.nkC4nkC3 C nkC4 � nkC3/.˛kC2 C ˇkC2t C �kC2p/C

.nkC4nkC3 � nkC3 C 1/. ǪkC2 C Ǒ
kC2t C O�kC2p

.nkC3 C 1/.˛kC2 C ˇkC2t C �kC4p/C nkC3. ǪkC2 C Ǒ
kC2t C O�kC2p/

� ˛kC2 C ˇkC2t C �kC2p
ǪkC2 C Ǒ

kC2t C O�kC2p
� tkC2

� nkC4
nkC3

By interchanging the role of A and A0, we can assume that

plC2.y/ � pkC2.x/ � 
LplC2.y/

for and x 2 Zn1:::nkC4
, y 2 Zn01:::n0lC4

. Next choose 10 < M < 2
L and

n0lC3 D nkC4 D 2; n0lC4 D nkC3 D 8M;
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so that
P4

jD1 nkCj D P4
jD1 n0lCj D 4 C 8M . Furthermore, for x in the

corresponding k C 4-subcylinder of Zn1:::nk and y in the corresponding l C 4-
subcylinder of Zn01:::n0l , we have

tkC4.x/ � 1

4M
; tlC4.y/ � 4M:

Let HkC4.x/ be entire strip between `.pkC4.x/; tkC4.x// and `.pkC4.x.1 �
"//; tkC4.x.1 � "///, and similarly for HlC4.y/. By the above estimates on pkC4
and tkC4, we see that HkC4.x/ and HlC4.y/ intersect, see Fig. 6.2, right.

The foliation of Y into radial lines h� is invariant, see Lemma 6.1. There is an
interval �, depending only on " and M , such that if � 2 �, then the radial line h�
intersects HkC4.x/ \HlC4.y/. More precisely, the length

jh�\HkC4.x/\HlC4.y/j�pkC4.x/"
4M

� 1

8L
min fjh� \HlC4.y/j; jh� \HkC4.x/jg :

Write h.v/ for the radial line intersecting the point .v; pA � v/, and similarly
for h.w/. If these lines are chosen such that both GkC4.h.v// and GlC4.h.w// are
subset of h� , and v 2 VA, w 2 VA0 , then we derive from the definition of VA and
VA0 , using the distortion bound K in Lemma 6.1, that

GkC4.h.v/ \ A/ \GlC4.h.w/ \ A0/ ¤ ;:

Since vA and vA0 are density points of VA and VA0 , respectively, we can assume that
k and l are so large that the relative measure of VA0 in [n0	MZn01:::n0lC2

n0 \ `.pA0 ; 1/

is at least 1�j�j=2K and, similarly, the relative measure of VA in [n	1Zn1:::nkC2n\
`.pA; 1/ is at least 1 � j�j=2K.

Recall that K D 4 is also the uniform distortion bound for iterates of the Gauss
map in Lemma 6.2 and that Gj`.1;1/ acts as the Gauss map. Thus expressed in terms
of polar angle � 2 Œ�=4; �=2�, the distortion bound is similar.

From this we can conclude that for each � in a subset of � of positive measure,
h� indeed intersects bothGkC4.H0.A/\h.v// for some v 2 VA andGlC4.H0.A

0/\
h.w// for some w 2 VA0 . Therefore h�\Gk.A/\Gl.A0/ ¤ ;, proving that f i .A/\
f j .A0/ ¤ ; for some i; j � 0. This concludes the ergodicity proof.

Now to prove exactness, we invoke [1, Proposition 2.1], which states that a non-
singular ergodic transformation .X;B; �IT / is exact if and only if for every set
A 2 B of positive measure, there is n 2 N such that �.T nC1.A/ \ T n.A// > 0.
Choosing a D .vA; pA � vA/ for density point vA 2 VA and " 2 .0; 1 � pA/ as
before, we can assume that .ni .a//i2N contains infinitely many k such that nk.a/ D
nkC1.a/ D 1. Let us consider the k C 2-subcylinder Zn1:::nkC11 as the set A0 with
a0 D .vA0 ; pA0 � vA0/ for pA0 D pB and vA0 a density point of VA0 D VA. Also set
l D k C 1. Then the above methods show that GkC4.A0/ \ GlC4.A/ intersect, and
since A0 	 A, we have verified the above condition for exactness with n D k C 4,
nC 1 D l C 4. ut
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Chapter 7
Improved Estimates of Survival Probabilities
via Isospectral Transformations

L.A. Bunimovich and B.Z. Webb

Abstract We consider open systems generated from one-dimensional maps that
admit a finite Markov partition and use the recently developed theory of isospectral
graph transformations to estimate a system’s survival probabilities. We show that
these estimates are better than those obtained through a more direct approach.

7.1 Introduction

Recently, a nontrivial relation between the dynamics of networks and the dynamics
of open systems has been found. This discovery has lead to advances in the analysis
of network dynamics and has also introduced a new research direction concerned
with the finite time properties of open systems with finite sized holes.

The main idea behind this approach is that network dynamics can be broken down
into three parts: (1) the network’s graph structure, often referred to as its topology,
(2) the local or intrinsic dynamics of the network elements, and (3) the network
interactions between these elements. To each of (1)–(3) there is an associated
dynamical system, which together can be used to characterize the dynamics of
the network [2, 3, 5, 8]. The same approach can be used to study the topological
properties of open dynamical systems [1, 4, 9].

One of the fundamental concerns in the study of networks is understanding the
relation between a network’s structure and its dynamics. However, the networks we
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often encounter in either nature or engineering are typically very large, i.e., have a
large number of elements. It is therefore tempting to want to reduce such networks
by excluding some subset of these elements while preserving some important
characteristic(s) of the original network.

Since real networks are typically dynamic, one might first consider the spectrum
of the network’s weighted adjacency matrix to be one such a characteristic worth
preserving. That is, one could hope to find a way of reducing a network while
maintaining its spectrum. However, it seems immediately clear that such an
“isospectral reduction” is impossible based on the Fundamental Theorem of Algebra
since the matrix A 2 C

n
n has more eigenvalues than B 2 C
m
m if m < n.

In fact, it is possible to reduce the size of a network (or matrix) while preserving
its spectrum. This theory of isospectral reductions can be found in [6] and is
part of a larger theory of isospectral transformations introduced in the paper.
Such transformations were used in [7] to improve each of the classical eigenvalue
estimates associated with Gershgorin, et al. [10].

In the present paper we make use of this interplay between dynamical networks
and open dynamical systems. We obtain estimates of survival probabilities corre-
sponding to Lebesgue measure for a class of one-dimensional maps which admit
a finite Markov partition. Most importantly, we have shown that any isospectral
transformation corresponding to an open system leads to sharper estimates of the
system’s survival probabilities.

7.2 Open and Closed Dynamical Systems

Let f W I ! I where I D Œ0; 1�. For 0 D q0 < q1 < � � � < qm�1 < qm D 1,
we let 	i D .qi�1; qi � for 1 � i � m and assume that the following hold. First, the
function f j	i is differentiable for each 1 � i � m. Second, the sets 	i D .qi�1; qi �
form a Markov partition 	 D f	igmiD1 of f . That is, for each 1 � i � m the closure
cl.f .	i // is the interval Œqj ; qjCk� for some k � 1 and j that depends on i .

We consider the situation where orbits of f W I ! I escape through an element
of the Markov partition 	 D f	igmiD1 or, more generally, some union H of these
partition elements. Equivalently, we can modify the function f so that orbits cannot
leave the set H once they have entered it. Here, orbits that enter H are considered
to have escaped from the system. This later approach of modifying f jH turns out
to be more convenient for our discussion and will be the direction we take. In what
follows we let M D f1; : : : mg.
Definition 7.1. Let H D S

i2I 	i where I 	 M . We introduce the new map
fH W I ! I defined by

fH.x/ D
(
f .x/ if x … H
x otherwise

:
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We call the set H a hole and the function fH W I ! I the open dynamical system
generated by the (closed) dynamical system f W I ! I over H .

The partition 	 will remain a Markov partition of the open dynamical system
fH W I ! I , but the dynamics of the original system f W I ! I will have been
modified such that each point in H is now a fixed point.

For n � 0 let

Xn.fH / D fx 2 I W f n.x/ 2 H; f k.x/ … H; 0 � k < ng
D fx 2 I W f n

H .x/ 2 H; f k
H .x/ … H; 0 � k < ng and

Y n.fH / D fx 2 I W f k.x/ 2 H; for some k; 0 � k � ng
D fx 2 I W f k

H .x/ 2 H; for some k; 0 � k � ng:
The set Xn.fH / consists of those points that escape through the hole H at time n,
while Y n.fH / are those points that escape through H before time nC 1.

For the moment suppose 
 is a probability measure on I , i.e. 
.I / D 1. Then

.Xn.fH // can be treated as the probability that an orbit of f entersH for the first
time at time n and 
.Y n.fH // the probability that an orbit of f enters H before
time nC 1. In this regard,

Pn.fH / D 1 � 
.Y n.fH //
represents the probability that a typical point of I does not fall into the hole H by
time n. For this reason, the quantity Pn.fH / is called the survival probability at
time n of the dynamical system fH for the measure 
.

One of the fundamental problems in the theory of open systems is determining or
finding ways of approximating 
.Xn.fH // and 
.Y n.fH // for finite n � 0. In the
following section we give exact formulae for these quantities in the case where
fH is a piecewise linear function with nonzero slope and 
 is Lebesgue measure.
In Sect. 7.3 we remove the assumption that fH is piecewise linear and present a
method for estimating 
.Xn.fH // and 
.Y n.fH // for functions that are piecewise
nonlinear.

7.3 Piecewise Linear Functions

As a first step, we consider those open systems fH W I ! I that are linear when
restricted to the elements of the partition 	 . More formally, suppose H D S

i2I 	i
for some I 	M . Let L be the set of all open systems fH W I ! I such that

jf 0H.x/j D ci > 0 for x 2 	i and i … I

where each ci 2 R. The set L consists of all open systems that have a nonzero
constant slope when restricted to any 	i ª H .
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To each fH 2 L there is an associated matrix that can be used to compute

.Xn.fH // and 
.Y n.fH //. To define this matrix let

	ij D 	i \ f �1.	j / for 1 � i; j � m: (7.1)

Definition 7.2. Let fH 2 L where H D S
i2I 	i for some I 	 M . The matrix

AH 2 R
m
m given by

.AH /ij D
(
jf 0.x/j�1 for x 2 	ij ¤ ;; i … I ;

0 otherwise
1 � i; j � m

is called the weighted transition matrix of fH .

Associated with the open system fH W I ! I , there is also a directed graph
� D .V;EH/ with vertices V and edges EH . For V D fv1; : : : ; vmg, we let eij
denote the edge from vertex vi to vj .

Definition 7.3. Let fH W I ! I whereH DS
i2I 	i for some I 	M . We define

�H D .V;EH/ to be the graph with

(a) vertices V D fv1; : : : ; vmg.
(b) edges EH D feij W cl.	j / 
 cl.f .	i //; i … I g.
The graph �H is called the transition graph of fH .

The vertex set V of �H represents the elements of the Markov partition
	 D f	igmiD1 and the edge set EH , the possible transitions between the elements
of 	 . Hence, eij 2 EH only if there is an x 2 	i ª H such that fH.x/ 2 	j , i.e. it
is possible to make a transition from 	i to 	j . We note that as H D ; is a possible
hole, the original (closed) system f W I ! I has a well-defined transition graph
which we denote by � .

Note that the matrix AH and the graph �H do not carry the same information
as �H only designates how orbits can make a transition between elements of 	
whereas AH additionally gives each of these transitions a weight. However, the
graph �H gives us a way of visualizing how orbits escape from the system, which
will be useful in the following sections. An open system and its transition graph are
demonstrated in the following example.

Example 7.1. Let the function f W I ! I be the tent map

f .x/ D
(
2x 0 � x � 1=2;

2 � 2x 1=2 < x � 1

with Markov partition 	 D f.0; 1=4�; .1=4; 1=2�; .1=2; 3=4�; .3=4; 1�g. Here we
consider the hole H D .0; 1=4�. The open system fH W I ! I is shown in Fig. 7.1
(left) with the graph �H (right).
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Fig. 7.1 The transition graph �H (right) of the open system fH W I ! I (left) in Example 7.1

As H D 	1 we emphasize this in �H by drawing the vertex v1 as an open circle,
i.e., as a hole. We note that the only difference between the transition graph � of
f W I ! I and �H is that there are no edges originating from v1 in �H . In this
sense a hole H is an absorbing state since nothing leaves H once it enters.

Let 1 D Œ1; : : : ; 1� be the 1 �m vector of ones and eH the m � 1 vector given by

.eH/i D
(

.	i / if i 2 I

0 otherwise
:

Theorem 7.1. If fH 2 L and n � 0 then


.Xn.fH // D 1AnH eH I and (7.2)


.Y n.fH // D 1

 
nX
iD0

AiH

!
eH : (7.3)

Instead of giving a proof of Theorem 7.1 we note that in Sect. 7.5 the main result,
Theorem 7.3, implies Theorem 7.2 in Sect. 7.4, which in turn implies Theorem 7.1.
We therefore omit the proofs of Theorems 7.1 and 7.2.

For the matrix B 2 R
m
m let �.B/ and �.B/ denote the set of all eigenvalues

and spectral radius of B , respectively. We then have the following corollaries to
Theorem 7.1.

Corollary 7.1. If fH 2 L and �.AH/ < 1, then


.Y n.fH // D 1.I � AH/�1.I � AnC1H /eH and

lim
n!1
.Y

n.fH // D 1.I � AH/�1eH ;

where I is the identity matrix.
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Corollary 7.2. Suppose fH 2 L . If 0 < �.AH/ < 1, then lim
n!1P

n.fH / D 0. If

�.AH/ D 0, then 
.Y n.fH // D 1 for some n <1.

A matrix B 2 R
m
m is called defective if it does not have an eigenbasis, i.e., if

there are not enough linearly independent eigenvectors of B to form a basis of Rm.
A matrix with an eigenbasis is called nondefective.

Corollary 7.3. Let fH 2 L and suppose the matrix AH is nondefective with
eigenpairs f.�1; v1/; : : : ; .�k; vk/g with no eigenvalue equal to 1. Then eH DPk

iD1 civi for some c1; : : : ; ck 2 C and


.Xn.fH // D
kX
iD1

ci si�
n
i (7.4)


.Y n.fH // D
kX
iD1

ci si

 
1 � �nC1i

1 � �i

!
(7.5)

where si D 1vi .

Example 7.2. Let the function f W I ! I be the tent map considered in
Example 7.1 and let H=(0,1/4]. As fH 2 L , one can calculate that fH has the
weighted transition matrix

AH D

2
664
0 0 0 0

0 0 1=2 1=2

0 0 1=2 1=2

1=2 1=2 0 0

3
775 :

The matrix AH is nondefective as its eigenvalues �.AH/ D f 1C
p
5

4
; 1�
p
5

4
; 0; 0g

correspond, respectively, to the linearly independent eigenvectors

v1 D

2
6664

0
1Cp5
2

1Cp5
2

1

3
7775 ; v2 D

2
6664

0
1�p5
2

1�p5
2

1

3
7775 ; v3 D

2
664
0

0

�1
1

3
775 ; v4 D

2
664
�1
1

0

0

3
775 :

Since the vector eH D Œ1=4; 0; 0; 0�T can be written as

eH D 5 �p
5

20C 20
p
5

v1 � 3Cp
5

8
p
5

v2 C 1

4
v3 � 1

4
v4;

Eqs. (7.4) and (7.5) in Corollary 7.3 imply
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0.8

n−axis

m (Xn ( fH))

m (Yn ( fH))

Fig. 7.2 Plots of 
.Xn.fH // and 
.Y n.fH // for fH W I ! I in Example 7.2


.Xn.fH // D 1

40
.5Cp

5/�n1 C
1

40
.5 �p

5/�n2 and


.Y n.fH // D 1

40
.5Cp

5/
1 � �nC11

1 � �1 C 1

40
.5 �p

5/
1 � �nC12

1 � �2
D 1 �

�
1

2
C 1p

5

�
�nC11 �

�
1

2
� 1p

5

�
�nC12 :

Note that as �.AH/ < 1 then limn!1 Pn.fH / D 0. Hence, the probability of
surviving indefinitely in this system for a typical x 2 I is in fact zero. This can be
seen in Fig. 7.2 where both 
.Xn.fH // and 
.Y n.fH // are plotted.

7.4 Nonlinear Estimates

We now consider the open systems fH W I ! I where f is allowed to be
a nonlinear but differentiable function when restricted to the elements of 	 . The
formulae we derive in this section allow us to give upper and lower bounds on

.Xn.fH // and 
.Y n.fH // for any finite time n � 0.

Suppose H D S
i2I 	i for some I 	 M . Let N be the open systems fH W

I ! I such that
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inf
x2	i

jf 0H.x/j > 0 for i … I and

sup
x2	i

jf 0H.x/j <1 for i … I :

To each fH 2 N , there are two associated matrices similar to the weighted
transition matrix AH defined for each open system in L .

Definition 7.4. Let fH 2 N where H D S
i2I 	i for some I 	 M . The matrix

AH 2 R
m
m is defined by

.AH /ij D
8<
:

inf
x2	ij

jf 0.x/j�1 for 	ij ¤ ;; i … I ;

0 otherwise
1 � i; j � m:

Similarly, define the matrix AH 2 R
m
m by

.AH /ij D
8<
:

sup
x2	ij

jf 0.x/j�1 for 	ij ¤ ;; i … I

0 otherwise
1 � i; j � m:

For fH 2 N and n � 0 let

Xn.fH / D 1AnH eH and X
n
.fH / D 1A

n

H eH I

Y n.fH / D 1

 
mX
iD0

AiH

!
eH and Y

n
.fH / D 1

 
mX
iD0

A
i

H

!
eH :

Theorem 7.2. If fH 2 N and n � 0 then Xn.fH / � 
.Xn.fH // � X
n
.fH / and

Y n.fH / � 
.Y n.fH // � Y
n
.fH /:

Theorem 7.2 allows us to bound the amount of phase space that escapes through
H at time n and before time n C 1. If the matrices AH and AH are nondefective,
then we have the following result similar to Corollary 7.3.

Corollary 7.4. Let fH 2 N and suppose both AH and AH are nondefective with
eigenpairs f.�1; v1/; : : : ; .�k; vk/g and f.�1; v1/; : : : ; .�k; vk/g with no eigenvalue
equal to 1. Then for each n > 0

kX
iD1

ci si�
n
i � 
.Xn.fH // �

kX
iD1

ci si�
n

i and (7.6)

kX
iD1

ci si

 
1 � �nC1i

1 � �i

!
� 
.Y n.fH // �

kX
iD1

ci si

 
1 � �nC1i

1 � �i

!
(7.7)
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Fig. 7.3 The transition graph �H (right) of the open system gH W I ! I (left) in Example 7.3

where si D 1vi , si D 1vi , eH D
nX
iD1

civi , and eH D
nX
iD1

civi .

The upper and lower bounds given in (7.6) are Xn.fH / and X
n
.fH /, respec-

tively. The upper and lower bounds given in (7.7) are Y n.fH / and Y
n
.fH /,

respectively.

Remark 7.1. If f 2 L , then the dynamics of fH over 	 reduces to Markov
chain, which allows for the exact formulas for 
.Xn.fH // and 
.Y n.fH // in
Theorem 7.1. However, if f 2 N , then this does not in general mean that the
dynamics of fH over 	 has this property. The result is that Theorem 7.2 contains
bounds instead of equations.

Example 7.3. Consider the function g W I ! I given by

g.x/ D
(
11
2
x � 21x2 C 28x3 0 � x � 1=2

11
2
.1 � x/ � 21.1 � x/2 C 28.1 � x/3 1=2 < x � 1

with Markov partition 	 D f.0; 1=4�; .1=4; 1=2�; .1=2; 3=4�; .3=4; 1�g and
H D .0; 1=4�. The function g W I ! I can be considered to be a nonlinear
version of the tent map f W I ! I in Example 7.1. In fact both systems have the
same transition graph (see Fig. 7.3).

For gH W I ! I one can compute 	23 D .1=4; :44�, 	24 D .:44; 1=2�, 	34 D
.1=2; :55�, 	33 D .:55; :3=4�, 	42 D .3=4; :94�, and 	41 D .:94; 1�. From this we find

AH D

2
664

0 0 0 0

0 0 0:29 2=11

0 0 0:29 2=11

2=11 0:29 0 0

3
775 and AH D

2
664

0 0 0 0

0 0 4 0:29

0 0 4 0:29

0:29 4 0 0

3
775 :

As AH and AH are nondefective, then using Corollary 7.4 one can compute that

0:097�n1 � 0:034�n2 � 
.Xn.gH // � 0:003�
n

1 � 0:215�
n

2 (7.8)
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0.1
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Xn(gH)

Xn(gH)

n–axis

Fig. 7.4 The upper bounds X
n
.gH / and lower bounds Xn.gH / for 
.Xn.gH // are shown for the

open system gH W I ! I in Example 7.3

where �1 D 0:41, �2 D �0:12, �1 D 4:27, and �2 D �0:27. Plotting the
inequalities in (7.8) yields the picture in Fig. 7.4. Here the shaded area indicates
the region in which 
.Xn.gH // must lie.

7.5 Improved Escape Estimates

In this section we define a delayed first return map of an open system fH 2 N ,
which we will use to improve the escape estimates given in Theorem 7.2. A key
step in this procedure is to choose a particular vertex set of �H over which this map
will be defined. This requires that we know the cycle structure of �H .

A path P in the graph �H D .V;EH/ is an ordered sequence of distinct vertices
v1; : : : ; vk 2 V such that ei;iC1 2 E for 1 � i � k � 1. If the vertices v1 and vk are
the same, then P is a cycle. If S 
 V where V is the vertex set of the graph, we
will write NS D V n S .

Definition 7.5. Let H D S
i2I 	i for some I 	 M and let �H D .V;EH/. The

set S 
 V D fv1; : : : ; vmg is an open structural set of �H if vi 2 S for i 2 I and
�H j NS has no cycles.

Structural sets were first defined in [6] where they were used to gain improved
estimates of a dynamical network’s stability. Later in [7] they were used to improve
the eigenvalue estimates of Gershgorin et. al. Here, our goal is to extend their use to
improve our estimates of 
.Xn.fH // and 
.Y n.fH //.
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For the open system fH W I ! I we let st.�H / denote the set of all open
structural sets of �H . If S 2 st.�H /, we let IS D fi 2 M W vi 2 Sg be the index
set of S and 	S DS

i2IS 	i .

Definition 7.6. Let S 2 st.�H /. For x 2 I we let �.x/ D i0i1 : : : it where ij D k

if f j
H .x/ 2 	k and t is the smallest k > 0 such that f k

H .x/ 2 	S . The set

˝S D f� W � D �.x/ for some x 2 I nH g

are the admissible sequences of fH with respect to S .

For x 2 I we say �.x/ D i0i1 : : : it has length j�.x/j D t . The reason
j�.x/j <1 is that the graph �H j NS has no cycles. Hence, after a finite number of
steps f t

H .x/ must enter 	S .

Definition 7.7. Let S 2 st.�H /. For x0 2 I and k � 0, we inductively define
xkC1 D RfS.xk; : : : ; x0/ where

xkC1 D
(
f
j�.xk/j
H .xk/ if xk�i D xk for each 0 � i � j�.xk/j � 1;
xk otherwise:

The function RfS W I kC1 ! I is called the delayed first return map of fH with
respect to S . The sequence x0; x1; x2; : : : is the orbit of x0 under RfS .

If T D maxx2I j�.x/j, then strictly speaking xkC1 D RfS.xk; : : : ; x� / for some
� < T . The map RfS acts almost like a first return map of fH to the set 	S . The
difference is that a return to 	S does not happen instantaneously (as it would happen
in the case of a first return map) but is delayed so that the trajectory of a point under
fH and RfS coincides after a return to 	S .

Example 7.4. Consider the open system gH W I ! I given in Example 7.3.
Observe that the vertex set S D fv1; v3; v4g is an open structural set of �H since v1
is the vertex that corresponds to H and the graph �H j NS D fv2g has no cycles (see
Fig. 7.3).

The delayed first return map RgS can be written as

RgS.xk/ D

8̂
<̂
ˆ̂:
gH.xk/ if xk … 	42;
g2H .xk/ if xk; xk�1 2 	42;
xk otherwise:

The map RgS is shown in Fig. 7.5 as a one-dimensional map, which is delayed on
the set 	42. Specifically, RgS D gH.x/ for x … 	42 and RgS D g2H .x/ for x 2 	42
where the trajectories of RgH stay in 	42 for two time-steps before leaving.
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Fig. 7.5 The delayed first return map RgS W I ! I in Example 7.4 where RgS is delayed on the
set 	42

For n � 0 we let Rf n
S .x0/ D xn and define

Xn.RfS/ D fx 2 I W Rf n
S .x/ 2 H; Rf k

S .x/ … H; 0 � k < ng and

Y n.RfS/ D fx 2 I W Rf k
S .x/ 2 H; for some k; 0 � k � ng:

Lemma 7.1. If S 2 st	.�fH / and n � 0 then Xn.fH / D Xn.RfS/.

Proof. For x0 2 I let Q�.x0/ D i0i1 : : : where ij D k if f j
H .x0/ 2 	k . Choosing

S 2 st.�H / let Q�S.x0/ D `0`1 : : : where `j D k if Rf j
S .x0/ 2 	k . Let t > 0 be

the smallest number such that it 2 IS . Then �.x0/ D i0i1 : : : it and Definition 7.7
implies Rf t

S .x0/ D f t
H .x0/. Therefore, it D `t where t 2 IS .

Continuing in this manner it follows that ij D `j for each j 2 IS . SinceH 
 	S
the point x0, if it escapes, will escape for both fH andRfS at exactly the same time.
This implies the result. ut

The major idea in this section is that one can use RfS to study the escape of fH
through H . However, the weighted transition matrix of RfS W I k ! I cannot be
defined in the same way that we have defined eitherAH orAH . To define a transition
matrix for RfS we require the following.

For S 2 st.�H / let

MS DM [ f� I i W � 2 ˝S; 0 < i < j� jg
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If � D i0 : : : ; it we identify the index � I 0 with i0 and the index � I t with it . We also
let 	� D fx 2 I W �.x/ D �g for each admissible sequence � 2 ˝S , which simply
extends our notation given by (7.1) in Sect. 7.3.

Definition 7.8. For S 2 st.�H / let AS be the matrix with rows and columns
indexed by elements of MS where

.AS/ij D

8̂̂
<
ˆ̂:

inf
x2	�

j�f j� j.x/�0j�1 if i D � I j� j � 1; j D � I j� j; for some � 2 ˝S

1 if i D � I k � 1; j D � I k; k ¤ j� j; for some �2˝S

0 otherwise:
(7.9)

We call AS the lower transition matrix of RfS . The matrix AS defined by replacing
the infimum in (7.9) by a supremum is the upper transition matrix of RfS .

Let 1S be the 1 � jMS j vector given by

.1S /i D
(
1 if i 2M;
0 otherwise:

Let eS be the jMS j � 1 vector given by

.eS /i D
(

.	i / if i 2 I ;

0 otherwise:

Lastly, for n � 0 let

Xn.RfS/ D 1SAnSeS and X
n
.RfS/ D 1SA

n

SeS I

Y n.RfS/ D 1S

 
nX
iD0

AiS

!
eS and Y

n
.RfS/ D 1S

 
nX
iD0

A
i

S

!
eS :

Using these quantities we give the following improved escape estimates.

Theorem 7.3. Let fH 2 N and suppose S 2 st.�H /. If n � 0, then

Xn.fH / � Xn.RfS/ � 
.Xn.fH // � X
n
.RfS/ � X

n
.fH / and

Y n.fH / � Y n.RfS/ � 
.Y n.fH // � Y
n
.RfS/ � Y

n
.fH /:

Theorem 7.3 together with Lemma 7.1 implies that the escape of fH through H
is better approximated by considering any of its delayed first return maps RfS than
fH itself. We now give a proof of Theorem 7.3.
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Proof. For S 2 st.�H / suppose i 2M nI and j 2 I . Then

.AS/ij .eS /j D
(

infx2	ij jf 0.x/j�1
.	j / if 	ij ¤ ;;
0 otherwise

� 
fx 2 	i W fH.x/ 2 	j g:

To show that a similar formula holds for larger powers of AS suppose k 2 IS .
If ik; kj 2 ˝S , then

.AS/ik.AS/kj .eS /j D inf
x2	ik

jf 0.x/j�1 inf
x2	kj

jf 0.x/j�1
.	j /

� 
fx 2 	i W fH.x/ 2 	k; f 2
H .x/ 2 	j g:

If either ik … ˝S or kj … ˝S then .AS/ik.AS/kj .eS /j D 0.
Suppose k 2M nIS . If ikj 2 ˝S then ikj I 1 2MS and

.AS/i;ikj I1.AS/ikj I1;j .eS /j D1 � inf
x2	ikj

j.f 2.x//0j�1
.	j /

�
fx 2 	i W fH.x/ 2 	k; f 2
H .x/ 2 	j g:

If ikj … ˝S then ijkI 1 …MS . Since

.A2S/ij .eS /j D
X
k2MS

.AS/ik.AS/kj
.	j /

D
X

ik;kj2˝S
.AS/ik.AS/kj
.	j /C

X
ikj2˝S

.AS/i;ikj I1.AS/ikj I1;j 
.	j /

�
X

k2IS[.MnIS /

fx 2 	i W fH.x/ 2 	k; f 2

H .x/ 2 	j g

D 
fx 2 	i W f 2
H .x/ 2 	j g:

Continuing in this manner it follows that

.AnS/ij .eS /j � 
fx 2 	i W f n
H .x/ 2 	j g (7.10)

for i 2 M n I , j 2 I , and n � 1. Since .eS /j D 0 if j … I then for n � 1

equation (7.10) implies

1SAnSeS D
X
i2M

X
j2MS

.AnS/ij .eS /j �
X

i2MnI

fx 2 	i W f n

H .x/ 2 H g

D 
fx 2 I nH W f n
H .x/ 2 H g:
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As 1SA0SeS D 
.H/ then Xn.RfS/ � 
.Xn.fH // � X
n
.RfS/ for n � 0 where

the second inequality follows by using the same argument with the matrix AS .
To show thatXn.fH / � Xn.RfS/we again suppose that i 2M nI and j 2 I .

Then we have

.AH/ij .eH/j D
(

infx2	ij jf 0.x/j�1
.	j / if 	ij ¤ ;;
0 otherwise

D .AS/ij .eS /j :

For larger matrix powers we have

X
k2MnIS

.AH /ik.AH /kj
.	j / D
X

k2MnIS
inf
x2	ik

jf 0.x/j�1 inf
x2	kj

jf 0.x/j�1
.	j /

�
X

k2MnIS
1 � inf

x2	ikj
j.f 2.x//0j�1
.	j / D

X
ikj2˝S

.AS/i;ikj I1.AS/ikj I1;j .eS /j :

From this it follows that

.A2H /ij .eH/j D
X
k2IS

.AH /ik.AH/kj
.	j /C
X

k2MnIS
.AH/ik.AH/kj
.	j /

�
X

ik;kj2˝S
.AS/ik.AS/kj
.	j /C

X
ikj2˝S

.AH/i;ikj I1.AH/ikj I1;j 
.	j /

D.A2S/ij .eS /j :

Again, continuing in this manner we have .AnH /ij .eH/j � .AnS/ij .eS /j for i 2
M nI , j 2 I , and n � 1. As 1HA0H eH D 
H D 1SA0SeS then

1HAnH eH D
X
i2M

X
j2I

.AnH /ij .eH/j �
X
i2M

X
j2MS

.AnS/ij .eS /j D 1SAnSeS

for n � 0. Hence, Xn.fH / � Xn.RfS/.
By using the same argument with the matrix AS we obtain the inequality

Xn.RfS/ � Xn.fH /. The second set of inequalities in Theorem 7.3 then follow,
which completes the proof. ut
Example 7.5. We again consider the open system gH W I ! I from Example 7.4
where it was shown that S D fv1; v3; v4g 2 �H . To compute the upper and lower
transition matrices of RgH note that the system’s admissible sequences are given
by ˝S D f23; 24; 33; 34; 424; 423; 41g implying

MS D f1; 2; 3; 4; 424I 1; 423I 1g: (7.11)



134 L.A. Bunimovich and B.Z. Webb

4 6 8 10 12

0.005

0.010

0.015

Xn(RgS)

Xn(gH)

lower bounds
2 3 4 5 6

5

10

15

20

X
n(gH)

X
n(RgS)

upper bounds

Fig. 7.6 Comparison between Xn.gH / and Xn.RgH / (left) and X
n
.gH / and X

n
.RgH / (right)

from Examples 7.3 and 7.5

From ˝S we compute that 	424 D .3=4; :85� and 	423 D .:85; :94�. The other
partition elements have been computed in Example 7.3. Using the order given
in (7.11) we obtain

AS D

2
66666664

0 0 0 0 0 0

0 0 :29 2=11 0 0

0 0 :29 2=11 0 0

2=11 0 0 0 1 1

0 0 0 :26 0 0

0 :26 0 0 0 0

3
77777775
; AS D

2
66666664

0 0 0 0 0 0

0 0 4 :29 0 0

0 0 4 :29 0 0

:29 0 0 0 1 1

0 0 0 :73 0 0

0 1:18 0 0 0 0

3
77777775
:

The vectors 1S and eS are given by

1S D Œ1; 1; 1; 1; 0; 0� and eS D Œ1=4; 0; 0; 0; 0; 0�T :

Figure 7.6 shows that Xn.gH / < X
n.RgS/ and X

n
.RgS/ < X

n
.gH / for a number

of n�values and indicates the extent to which using the delayed first return map
RgH improves our estimates of 
.Xn.gH //. The shaded regions in these graphs
represent the difference between these upper and lower estimates, respectively.

7.6 Conclusion

Our results demonstrate that the theory of isospectral transformations can be
effectively applied to open dynamical systems to obtain sharper estimates of a
system’s survival probabilities. Previous applications of this theory have allowed for
improvements in the classical estimates of matrix spectra and in obtaining stronger
sufficient conditions for the global stability of dynamical networks. We do not doubt
that this theory can be applied to other problems as well.
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Concerning the results of the present paper it is easy to see that the improved
estimates we obtained can also be found for a much broader class of open systems
via the same technique. For instance, one could extend these techniques to higher-
dimensional systems.
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Chapter 8
Dispersing Billiards with Small Holes

Mark F. Demers

Abstract We study several classes of dispersing billiards with holes, including both
finite and infinite horizon Lorentz gases and tables with corner points. We allow
holes in the form of arcs in the boundary and open sets in the interior of the
table as well as generalized holes in which escape may depend on the angle of
collision as well as the position. For a large class of initial distributions (including
Lebesgue measure and the smooth invariant (SRB) measure for the billiard before
the introduction of the hole), we prove the existence of a common escape rate and a
limiting conditionally invariant distribution. The limiting distribution converges to
the SRB measure for the billiard as the hole tends to zero. Finally, we are able to
characterize the common escape rate via pressure on the survivor set.

8.1 Introduction

The study of deterministic dynamical systems with holes was introduced by
Pianigiani and Yorke [32] who posed the following intuitive problem. Consider a
point particle on a billiard table with chaotic dynamics. If a small hole is made in
the table, what are the statistical properties of the trajectories of this system? At what
rate does mass escape from the system with respect to a given reference measure?
Given an initial distribution 
0 and letting 
n denote the normalized distribution
at time n (assuming the particle has not escaped by time n), does 
n converge to
a limiting distribution 
? Such a limiting measure may constitute a conditionally
invariant measure for the open system.

These initial questions in turn motivate many others. For example, does the
conditionally invariant measure converge to an invariant measure for the closed
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system as the size of the hole tends to zero? Such a result views the open system as
a perturbation of the closed system and examines the stability of invariant measures
under this type of perturbation. Alternatively, one can consider the survivor set, the
set of points which never escapes through the hole, and ask if there is a notion of
pressure on the survivor set which characterizes the escape rate with respect to a
certain class of initial distributions.

Such questions have been studied and affirmative or partial answers obtained for
a wide variety of dynamical systems. The first results are for uniformly hyperbolic
systems admitting a finite Markov partition: Expanding maps on R

n [16, 17, 32],
Smale horseshoes [6, 7], billiards with convex scatterers satisfying a non-eclipsing
condition [31, 33], and Anosov diffeomorphisms [9, 10, 14, 15]. Subsequent studies
include piecewise expanding maps of the interval [2,12,18,30] and certain unimodal
maps [3,19,27]. Recently, such questions were answered in the context of the finite
horizon periodic Lorentz gas [24, 25].

The purpose of this paper is to answer the questions posed above in the context
of two-dimensional dispersing billiards. Our results apply to both finite and infinite
horizon periodic Lorentz gases as well as billiard tables with corner points. In order
to answer these questions, we will study the transfer operator associated with the
billiard systems in question and use the recent Banach spaces constructed in [22,23]
on which these operators are known to admit a spectral gap. We show that the
spectral gap persists for maps with small holes satisfying mild conditions. This
unified approach allows us to study a wide variety of holes, including escape through
partially absorbing boundaries, i.e., boundaries which may allow particles to escape
from any position, but depending on the angle of collision. In addition to the new
results in the case of the infinite horizon Lorentz gas and billiards with corner
points, the current technique also strengthens results for the finite horizon case
obtained in [24]. For example, left open in [24] is whether the escape rates with
respect to Lebesgue measure and the smooth invariant measure (the SRB measure)
for the closed system are equal. Additionally, does the push-forward of Lebesgue
measure (renormalized to condition on non-escape) in the open system converge to
a conditionally invariant measure? We answer both questions in the affirmative here.

In order to study the notion of pressure on the survivor set, we invoke another
useful tool in the study of dynamical systems known as the Young tower, which is
a type of Markov extension for the system. Young towers were introduced in [34]
and constructed for piecewise hyperbolic systems (including billiards with corner
points) under general conditions in [8]. Young towers have also been used to study
open systems [3, 18, 24, 25], although in such cases, the towers must be constructed
after the introduction of the hole due to the extra cutting created by the boundary
of the hole. Young towers were used to prove a variational principle for the finite
horizon Lorentz gas in [25]. We build on this work here to extend such results to
more general dispersing billiards with holes and to complete the answers to the
questions posed above.
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8.1.1 Preliminaries

In this section, we recall some basic definitions that we shall use throughout this
paper. Given a map T W M � and a hole H 	 M , we define VM D M n H and
VMn D \niD0T �i .M nH/ to be the set of points inM that have not escaped by time
n, n � 1.

We let VT n D T nj VMn, for n � 1, denote the map with holes which loses track
of points once they enter H . In this sense, we will refer to VT n as the iterates of VT
despite the fact that the domain of VT is not invariant.

8.1.1.1 Rates of Escape

Let 
 be a measure on M (not necessarily invariant with respect to T ). We define
the exponential rate of escape with respect to 
 to be ��.
/ where

�.
/ D lim
n!1

1

n
log
. VMn/; (8.1)

when the limit exists.

8.1.1.2 Conditionally Invariant Measures

Given a Borel probability measure 
 on M , define VT�
.A/ D 
.T �1A \ VM1/ for
any Borel A 	M . We say 
 is conditionally invariant for VT if

VT�
.A/
VT�
.M/

D 
.A/ for all Borel A 	M: (8.2)

The normalizing constant � D 
. VM1/ is often referred to as the eigenvalue of

 since iterating the above equation yields VT n�
.A/ D �n
.A/ for n 2 N.

In particular, 
. VMn/ D VT n�
.M/ D �n so that � log� is the escape rate with
respect to 
 according to (8.1).

We remark that infinitely many conditionally invariant measures have been
shown to exist under quite general conditions for any 0 � � < 1 [21] so that
we are not interested in existence results for such measures. Rather, we will be
interested in conditionally invariant measures with physical properties: measures
that can be realized as the (renormalized) limit of Lebesgue measure or other
physically relevant initial distributions. Such conditionally invariant measures will
also describe a common rate of escape with respect to a large class of reference
measures.



140 M.F. Demers

8.1.1.3 Pressure on the Survivor Set

The survivor set1 VM1 WD \1iD�1T i .M nH/ is a VT -invariant (and also T -invariant)
set which supports all the invariant measures that persist after the introduction of the
hole. We define the pressure on VM1 with respect to a class of invariant measures
C to be

PC D sup
�2C

P� where P� D h�.T / �
Z
�C.T / d�:

Here h�.T / denotes the Kolmogorov-Sinai entropy of T with respect to � and
�C.T / represents the sum of positive Lyapunov exponents, counted with multi-
plicity.

We say the open system satisfies a variational principal if �.
/ D PC for some
physically relevant reference measure
 and a class of invariant measures C . If there
is an invariant measure � 2 C such that �.
/ D P� , we say that � satisfies an escape
rate formula.

Escape rate formulas have been proved for many of the uniformly hyperbolic
systems described in the introduction; for such systems, variational principles are
often formulated in terms of the associated symbolic dynamics. The recent reference
[25] contains variational principles and inequalities for nonuniformly hyperbolic
systems without appealing to symbolic dynamics.

8.2 Setting and Results

In this section, we describe the classes of billiards that we study in this paper and
formulate precise conditions on the holes we introduce. We include a variety of
examples of holes that meet these conditions.

8.2.1 Classes of Dispersing Billiards

We identify a domain Q 	 R
2 or T

2 (the 2-torus with Euclidean metric) as the
billiard table and assume that @Q has d connected components, �1; : : : ; �d , each
of which comprises a finite number of C 3 smooth, compact arcs. The dynamics
of the billiard flow on Q is induced by a particle traveling at unit speed and
undergoing elastic collisions at the boundary. The phase space for the billiard flow is
M D Q � S

1=� with the conventional identifications at collisions (see for example
[11, Sect. 2.5]).

1We give the definition for invertible T . When T is not invertible, define VM1 D \1

iD0T
�i

.M nH/.



8 Dispersing Billiards with Small Holes 141

DefineM D [diD1.�i�Œ��=2; �=2�/ to be a union of cylinders. The billiard map
T W M ! M is the Poincaré map corresponding to collisions with the scatterers.
We will denote coordinates on M by .r; '/, where r 2 �i is parametrized by
arclength (oriented positively in the usual sense) and ' is the angle that the (post-
collision) velocity vector at r makes with the normal pointing into the domainQ. We
shall denote normalized Lebesgue measure on M by m throughout. It is a standard
fact that T preserves the smooth measure 
SRB defined by d
SRB D �

2
cos' dm [11,

Sect. 2.12].
We include two types of dispersing billiard tables Q in the results of this paper.

8.2.1.1 Periodic Lorentz Gas

Let fBigdiD1 define a finite number of open convex regions in T
2 such that each

@Bi is C 3 with strictly positive curvature. Then in this case, Q D T
2 n .[iBi / and

�i D @Bi for i D 1; : : : ; d . We refer to the billiard flow on such a domain as a
periodic Lorentz gas.

For each x D .r; '/ 2 M , define �.x/ to be the time of the first (nontangential)
collision of the trajectory starting at x under the billiard flow. The billiard tableQ is
said to have finite horizon if � is uniformly bounded above on M . Otherwise, Q is
said to have infinite horizon. In this paper, we allow our Lorentz gas to have either
finite or infinite horizon.

8.2.1.2 Billiards with Corner Points

Let Q0 	 R
2 be a compact region whose boundary consists of finitely many C 3

curves that are positioned convex inward toQ0 with strictly positive curvature. In the
interior of Q0, we may also define a finite number of open convex regions fBigd 0

iD1
such that @Bi is also C 3 with strictly positive curvature. These obstacles fBigd 0

iD1
are either pairwise connected or disjoint. We define the billiard table Q to be the
compact regionQ WD Q0n.[iBi /. We assumeQ has a connected interior. Since the
obstacles Bi may or may not overlap, the boundary of Q comprises a finite number
d � d 0 C 1 of connected components, �i . Each �i consists of a finite number of
smooth curves as described above; the endpoints of these smooth curves are called
corner points. For such billiard tables, the horizon is always finite.

We make two additional assumptions in the case of billiards with corner points:

(C1) The intersections of the smooth curves comprising @Q are transverse, i.e., the
angle at each corner point is positive.2

(C2) The hyperbolicity of the billiard map dominates the complexity in the sense of
equation (8.10) of Sect. 8.3.4.

2In the presence of cusps (corner points whose angle is zero), it was proved in [CM07, CZ08] that
the billiard map has polynomial decay of correlations and so in general will have polynomial rates
of escape. Thus the present methods will not apply.
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Assumption (C2) says that the number of singularity curves for T �n which
intersect at a single point cannot grow too quickly compared to the expansion of
stable curves. Both assumptions are standard for billiards with corner points (see
[4, 5, 8, 23]).

8.2.1.3 Hyperbolicity and Singularities of Dispersing Billiards

Set S0 D f.r; '/ 2M W ' D ˙�=2g. Let r1; : : : rk denote the arclength coordinates
of the corner points in @Q and set P0 D f.r; '/ 2 M W r D ri ; i D 1; : : : kg
(for the periodic Lorentz gas, P0 D ;). The sets S˙n D [niD0T�i .S0 [ P0/ are
the singularity sets for T˙n, n � 1. The sets Sn comprise finitely many smooth
compact curves in the finite horizon case and countably many in the infinite horizon
case. Moreover, the curves Sn n S0 are decreasing for n > 0 and increasing for
n < 0.

To control distortion near S0, we define the usual homogeneity strips following
[4, 5],

Hk D f.r; '/ 2M W �=2 � 1=k2 � ' � �=2 � 1=.k C 1/2g;

for k � k0 to be determined later. We define H�k near ' D ��=2 similarly. By H0

we denote the complementary set M n .[jkj	k0Hk/.
The assumption of strict convexity of @Q for both classes of dispersing billiards

above guarantees the hyperbolicity of T in the following sense: There exist invariant
families of cones C s.x/ (stable) and C u.x/ (unstable), continuous on M n .S0 [
P0/ and satisfying DT �1.x/C s.x/ 	 C s.T �1x/ and DT.x/C u.x/ 	 C u.T x/

wherever T and T �1 are defined. Indeed, for all classes of billiards we consider
here, the angle between C u.x/ and C s.x/ is uniformly bounded away from zero
on M .

In terms of the global .r; '/ coordinates, the slopes of vectors in C s.x/

are always negative, while those in C u.x/ are always positive. Let Kmin > 0

denote the minimum curvature of boundary curves in @Q. Although vectors in
either cone can become arbitrarily close to vertical near corner points (but never
at the same time), in all cases d'=dr � Kmin for any .dr; d'/ 2 C u.x/ and
d'=dr � �Kmin for all .dr; d'/ 2 C s.x/ so that both cones are uniformly
bounded away from the horizontal. We refer the interested reader to [11] for the
Lorentz gas and to [8] for the case of billiards with corner points. See also [23,
Sect. 6.1] for an explicit calculation of the upper boundaries of the cones during a
corner series.

We say a curve W 	M is a homogeneous stable curve if W is contained in one
homogeneity strip and the tangent vector to W at x belongs to C s.x/ at every point
x inW . Homogeneous unstable curves are defined similarly. It is a well-established
fact that for all classes of billiards we consider, there exist families of stable and
unstable curves W s and W u which are invariant in the following sense: For any
W 2 W s , T �1W consists of at most countably many connected components, each
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of which belong to W s . Indeed, we may choose W s to consist of all homogeneous
stable curves whose curvature is bounded above by a uniform constant Bc > 0 and
whose length is no greater than some ı0 > 0 whose value we fix in Sect. 8.3.5,
Eq. (8.11). W u is similarly invariant under T after choosing Bc sufficiently large
([8, 11]).

8.2.2 Admissible Holes

We denote by N".A/ the "-neighborhood of a set A in M . In formulating our
conditions below, we consider the maximum length scale ı0 for stable curves,
defined by (8.11), to be fixed before the introduction of the hole.

A hole H 	 M is an open set with finitely many connected components whose
boundary consists of finitely many compact smooth arcs. In addition, we require
that:

(H1) (Complexity) There existsB0 > 0 such that any stable curve of length less than
ı0 can be cut into at most B0 pieces by @H ;

(H2) (Weak transversality) There exists C0 > 0 such that for any stable curve W ,
mW .N".@H/ \ W / � C0"

1=2 for all " > 0 sufficiently small3, where mW

denotes arclength measure on W .

Note that if @H is uniformly transverse to the stable cone, then (H2) is trivially
satisfied. The weaker form of transversality defined above admits the “square-root
type” tangencies that appear between singularity curves and stable and unstable
curves in billiards with corner points.

Although formally we consider holes in M satisfying the above assumptions,
we are especially interested in holes which are actually made in the configuration
space Q and in turn induce holes in M that satisfy (H1) and (H2). Such holes are
more physically relevant from the point of view of the billiard flow. Below we list
several examples of holes in Q which induce holes in M satisfying (H1) and (H2).
We follow [24] in our exposition of the first two types of holes.

8.2.2.1 I. Openings in the Boundary of Q

Let ! denote an open arc in one of the �i comprising @Q. If we consider !
as an absorbing boundary, then ! induces a hole H! in M which is simply a
vertical rectangleH! D .a; b/� Œ��=2; �=2�, where .a; b/ is the arclength interval
corresponding to !. Such holes are called holes of Type I in [24].

3According to [23, Sect. 2.1], we could take mW .N".@H/\W / � C0"t0 for any exponent t0 > 0.
We choose "0 D 1=2 here to simplify the exposition and choice of constants in the norms and
because this already contains an interesting class of examples (see also (A3)(2) of Sect. 8.3.3).
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It is clear that (H1) is satisfied with B0 D 3. If ! is a positive distance from a
corner point, (H2) is also satisfied since stable cones have strictly negative slopes
bounded away from the vertical direction outside any neighborhood of the corner
points so that @H is uniformly transverse to C s.x/. If ! contains a corner point,
(H2) is also satisfied due to the square-root type tangencies that appear between
stable curves and the vertical lines in P0 at corner points [8, Sect. 9].

8.2.2.2 II. Holes in the Interior of Q

Let ! be an open connected set in the interior of Q. ! does not immediately
correspond to a subset of M since it is a positive distance from @Q. Thus we have a
choice in declaring what we consider the induced holeH! to be either the backward
shadow of the hole, i.e., the set of all points in .r; '/ 2M whose forward trajectories
under the flow enter ! before they reach @Q again, or the forward shadow of the
hole, i.e., the set of all points .r; '/ 2 M whose backward trajectories under the
flow enter ! before reaching @Q. We choose to define H! as the latter, the forward
shadow of the hole. Thus those trajectories that are about to enter the hole in forward
time are still considered in the system, while those which would have passed through
the hole on their way to their current collision are considered out. Such holes are
called holes of Type II in [24].

We remark that with this definition it does not matter whether ! is convex or not.
The induced holeH! is always the forward shadow of the convex hull of !. We thus
adopt the convention that ! of this type are always convex. Also, a single ! of this
type induces H! 	 M with multiple connected components since each �i with a
line of sight to ! contains a component of H! .

One can easily obtain geometric properties of @H! by considering ! as a convex
scatterer in Q. Then @H! will correspond to the forward images of the trajectories
that meet @! tangentially, i.e., the forward image of the set @! � Œ��=2; �=2�
if ! were considered to be a scatterer. Other components of @H! may comprise
curves in S0 and T .S0/. Curves in T .S0/ and in the forward image of @! �
Œ��=2; �=2� have positive slopes, while curves in S0 are horizontal. All such curves
are uniformly transverse to the stable cone which has vectors with strictly negative
slopes bounded away from 0; thus (H2) is satisfied. See Fig. 8.1 for an example of
the geometry of H! induced by a hole of Type II. If ! does not lie in an infinite
horizon corridor, due to the uniform transversality and the fact that the connected
components of H! are a positive distance apart, (H1) is also satisfied and one has
B0 D 3 if ı0 is sufficiently small. In any case, B0 � 2kC 1 where k is the maximal
number of connected components of H! on a single scatterer.

8.2.2.3 III. Corner and Side Pockets

We can combine holes of the first two types described above by placing an open
hole ! which intersects @Q. Indeed, we even allow ! to contain a corner point.
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Fig. 8.1 Top: A hole ! of Type II on the billiard table is shown with a line of sight between two
scatterers. Bottom left: The induced holeH! in the component of the phase spaceM corresponding
to �2. Bottom right: The induced hole H! in the component of the phase space M corresponding
to �1. Notice that @H! is comprised of three types of curves: curves corresponding to @! 
 f˙ �

2
g

if ! is considered as a scatterer, curves in S0, and singularity curves in T .S0/. In all cases, @H!

is uniformly transverse to the stable cone
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Fig. 8.2 Left: A hole ! positioned as a corner pocket in a dispersing billiard table. Right: The
induced hole H! in the phase space M . The dotted line corresponds to the component of P0
created by the corner point. The portion of @H! formed by the forward image of @! 
 f˙ �

2
g

has positive slopes, similar to a hole of Type II. Such boundary curves as well as components of
@H! formed by S0 are uniformly transverse to the stable cone. The vertical segments formed by
the rectangle above ! \ @Q are not uniformly transverse to the stable cone as the diameter of !
shrinks; however, stable curves do satisfy a weaker “square-root type” tangency with components
of P0 so that (H2) is satisfied

Now ! \ @Q corresponds to a vertical rectangle in M as described for Type I holes
above, while taking the forward image of @! n @Q induces boundaries which are
curves with positive slopes in M . These two sets overlap, forming H! . See Fig. 8.2
for an example of a hole in the form of a corner pocket.

(H1) is clearly satisfied with B0 D 3 again. Near corner points, the stable
cones are not necessarily bounded away from the vertical and so are not uniformly
transverse to @H! . However, they do satisfy the square-root type tangency condition
required by (H2) (see [8, Sect. 9]).
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Fig. 8.3 (a) A partially absorbing hole ! (dashed curve) in a dispersing billiard table. (b) The
induced hole H in M if reflections close to normal are absorbed. (c) The two components of the
induced holeH inM if reflections close to tangential are absorbed. The dotted vertical lines in (b)
and (c) refer to singularity lines corresponding to corner points in the table

8.2.2.4 IV. Generalized Holes and Partially Absorbing Walls

A generalized hole is a subset ! of configuration space through which trajectories
escape if some additional condition is met. As a simple example, we consider !
to be an arc along the boundary and allow trajectories to be absorbed depending
on the angle of collision. In other words, if .a; b/ denotes the arclength interval
corresponding to !, we choose �1; �2 2 Œ��=2; �=2� and declare H! D .a; b/ �
.�1; �2/. We may even allow ! to be the entire boundary @Q. For large !, the
smallness of the hole, in the sense we shall make precise later, can be guaranteed by
choosing j�1 � �2j small.

In any case, since @H! consists of vertical and horizontal line segments, it is easy
to see that (H1) and (H2) are both satisfied. See Fig. 8.3 for an example of partially
absorbing walls.

There are many more interesting examples of generalized holes one can construct
in a similar manner. For example, one can allow the restriction on the angle to vary
depending on the position as long as the resulting holes inM satisfy (H1) and (H2).
We leave the generation of such additional examples to the interested reader.

8.2.3 Transfer Operator

If  is a smooth test function, then  ı T is only piecewise smooth due to the
singularities of T . For this reason, we introduce scales of spaces, defined using the
invariant family of homogeneous stable curves W s introduced in Sect. 8.2.1.3 (and
also described in property (A4) in Sect. 8.3.3) on which to describe the action of the
transfer operator L D LT associated with T .

Define T �nW s to be the set of homogeneous stable curves W such that T n is
smooth on W and T iW 2 W s for 0 � i � n. Then T �nW s 	 W s and it follows
from the definition of W s that the connected components of T �nW belong to W s

whenever W 2 W s (up to subdividing long pieces).
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For W 2 T �nW s , a complex-valued test function  W M ! C and 0 <

p � 1 define Hp
W . / to be the Hölder constant of  on W with exponent

p measured in the metric dW . Define Hp
n . / D supW 2T�nW s H

p
W . / and let

QC p.T �nW s/ D f W M ! C j j j1 CH
p
n . / <1g, denote the set of bounded

complex-valued functions which are Hölder continuous on elements of T �nW s .
The set QC p.T �nW s/ equipped with the norm j jC p.T�nW s / D j j1 C H

p
n . /

is a Banach space. We define C p.T �nW s/ to be the closure of QC 1.T �nW s/ in
QC p.T �nW s;C/.4

It follows from the hyperbolicity of T (see (A2) from Sect. 8.3.3) that

H
p
Wi
. ı T / � CH

p
W . /;

for each connected component Wi 	 T �1W and a uniform constant C depending
only on T . Thus if  2 QC p.T �.n�1/W s/, then  ı T 2 QC p.T �nW s/. Similarly,
if � 2 QC 1.T �.n�1/W s/, then � ı T 2 QC 1.T �nW s/. These two facts together imply
that for p < 1, if  2 C p.T �.n�1/W s/, then  ı T 2 C p.T �nW s/.

If f 2 .C p.T �nW s//0 is an element of the dual of C p.T �nW s/, then L W
.C p.T �nW s//0 ! .C p.T �.n�1/W s//0 acts on f by

L f . / D f . ı T / 8 2 C p.T �.n�1/W s/:

Recall that m denotes (normalized) Lebesgue measure on M . If f 2 L1.m/,
then f is canonically identified with a signed measure absolutely continuous with
respect to Lebesgue, which we shall also call f , i.e.,

f . / D
Z
M

 f dm:

With the above identification, we write L1.M;m/ 	 .C p.T �nW s//0 for each
n 2 N. Then restricted to L1.M;m/, L acts according to the familiar expression

L nf D f ı T �n j detDT n.T �n/j�1 for any n � 0 and any f 2 L1.M;m/.

When we wish to be explicit about the dependence of L on a map T , we will use
the notation LT .

When we introduce a hole H 	 M , the transfer operator corresponding to VT ,

which we shall denote by VL , is defined by the equivalent expressions,

VL D 1I VML 1I VM D L 1I VM1; (8.3)

4Here by QC 1.W s/, we mean to indicate QC p.W s/ with p D 1, i.e., functions which are Lipschitz
on elements of W s .
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where 1IA indicates the indicator function for the set A. Thus for any test function
 2 C p.W s/ and f 2 .C p.T �1W s/0, we have

VL f . / D 1I VML .1I VMf /. / D L .1I VMf /. 1I VM/ D f . ı T � 1I VM1/;

since 1I VM � 1I VM ı T D 1I VM1 . Iterating this expression we obtain

VL nf . / D f . ı T n � 1I VMn/; for each n 2 N:

When we wish to be explicit about the dependence of VL on a hole H , we will use

the notation VLH .

8.2.4 Main Results

In Sect. 8.3.2 we shall define the Banach spaces .B; k � kB/ and .Bw; j � jw/ used
in [23]. It was proved there that LT is quasi-compact on .B; k � kB/ under certain
abstract assumptions on the map T . We postpone the definition of these norms
and the abstract assumptions on the map (which will be satisfied by all classes of
billiards we consider here) and first state our results.

In order to obtain information about the spectrum of VL from the spectrum of L ,
we will use the perturbative framework of Keller and Liverani [29]. This framework
requires two ingredients: (1) uniform Lasota-Yorke inequalities along a sequence of
holes and (2) smallness of the perturbation in the following norm:

jjjL jjj WD fjL f jw W kf kB � 1g: (8.4)

The first two propositions establish these ingredients.
Let H .B0; C0/ denote a family of holes in M satisfying (H1) and (H2) with

uniform constants B0 and C0. Throughout this section, T is assumed to be a billiard
map corresponding to either a periodic Lorentz gas or a bounded domain with corner
points as described in Sect. 8.2.1.

Proposition 8.1. Fix B0; C0 > 0 and let H .B0; C0/ denote the corresponding
family of holes satisfying (H1) and (H2). Then there exist constants C > 0, � < 1

depending only on T , B0, and C0 such that for all H 2 H .B0; C0/ and n 2 N,

k VL n
Hf kB � C�nkf kB C C jf jw for all f 2 BI (8.5)

kL nf kB � C�nkf kB C C jf jw for all f 2 BI (8.6)

j VL n
Hf jw � C jf jw and jL nf jw � C jf jw for all f 2 Bw: (8.7)
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For a hole H 	 M , we define diams.H/ D supW 2W s jW \H j and refer to this
quantity as the stable diameter of H . We define the unstable diameter diamu.H/

similarly.

Proposition 8.2. Suppose H is a hole satisfying (H1) and (H2) and let h D
diams.H/. Then there exists C > 0, depending only on C0, B0, and T , such that

jjjL � VLH jjj � Ch˛�� ;

where 0 < � < ˛ are from the norms, Sect. 8.3.2.

Theorem 8.1. Fix B0; C0 > 0. Then for all H 2 H .B0; C0/ with diams.H/

sufficiently small, VLH has a spectral gap. Its eigenvalue of maximum modulus �H
is real and its associated eigenvector 
H is a conditionally invariant measure for VT
which is singular with respect to Lebesgue measure.

Moreover, for any probability measure 
 2 B such that limn!1 ��nH VL n
H
 ¤ 0,

we have

(i) �.
/ D log�H ;

(ii)







VL n
H


j VL n
H
j

� 
H






B

� C�n1 , for some C > 0, �1 < 1.

In particular, both Lebesgue measure and the smooth invariant measure 
SRB for T

have the same escape rate and converge to 
H under the normalized action of VT .

Theorem 8.2. LetH" be a sequence of holes in H .B0; C0/ such that diams.H"/ �
". Let 
" denote the conditionally invariant measures corresponding to �" from
Theorem 8.1. Then

lim
"!0 j
" � 
SRBjw D 0;

and �" ! 1 as "! 0.

We remark that convergence in the weak norm j�jw implies the weak convergence
of measures.

Next we proceed to study the connection between escape rate and pressure on
the survivor set, VM1. Let M VT denote the set of ergodic, VT -invariant probability

measures supported on VM1. Following [25], we define a class of invariant
measures by

GH D f� 2 M VT W 9C; r > 0 such that 8" > 0; �.N".S0 [ P0 [ @H// � C"rg:
(8.8)

If we omit @H , the condition on N".S0 [ P0/ is the same as that used in [28]
to ensure the existence of Lyapunov exponents and stable and unstable manifolds
for �-a.e. point. Thus this restriction, or something like it, on the class of invariant
measures is necessary for maps with singularities.
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Theorem 8.3. Suppose H 2 H .B0; C0/ satisfies the assumptions of Theorem 8.1.
If diamu.H/ is sufficiently small, then

�.m/ D log�H D sup
�2GH

fh�.T / � �C� .T /g:

Moreover, we may define a measure �H via the limit,

�H . / D lim
n!1�

�n
H 
H. / for all  2 C 0.M/;

and �H is an invariant probability measure for VT belonging to GH that achieves the
supremum in the variational principle above, i.e., �.m/ D h�H .T / � �C�H .T /.

8.3 Analytical Framework

In this section we introduce the necessary definitions and abstract assumptions on
the class of maps studied in [23]. We will then show in Sect. 8.4 that an iterate of
our map T with the expanded singularity set induced by @H satisfies these abstract
conditions.

8.3.1 Representation of Admissible Stable Curves

Recall from Sect. 8.2.1.3 that the stable cone C s.x/ is bounded away from the
horizontal direction in all cases we consider. Thus, any curve W 2 W s can
be viewed as the graph of a function rW .'/ of the angular coordinate ' with
derivative uniformly bounded above. For each homogeneous stable curve W , let
IW denote the '-interval on which rW is defined and define GW .'/ D .rW .'/; '/

so that W D fGW .'/ W ' 2 IW g.5
With this view of stable curves, we may redefine W s to be the set of homoge-

neous stable curves satisfying jW j � ı0 and j d2rW
d'2

j � Bc for some ı0; Bc > 0. W s

is invariant under T �1 in the sense described in Sect. 8.2.1.3 as long as Bc is chosen
sufficiently large [8]. From this point forward, we fix such a choice of Bc once and
for all.

The family W u of unstable curves has an analogous characterization.

5Our treatment of stable curves here differs from that in [23]. In that abstract setting, stable curves
are defined via graphs in charts of the given manifold. In the present more concrete setting, we
dispense with charts and use the global .r; '/ coordinates.
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We define a distance in W s as follows. Let Wi D GWi .Ii /, i D 1; 2 be two
curves in W s with defining functions rWi . We denote by `.I14I2/ the length of the
symmetric difference of the '-intervals on which they are defined. Then the distance
between W1 and W2 is defined as

dW s .W1;W2/ D �.W1;W2/C `.I14I2/C jrW1 � rW2 jC 1.I1\I2/;

where �.W1;W2/ D 0 if W1 and W2 lie in the same homogeneity strip in the same
component of M and � D 1 otherwise.

For two functions  i 2 C p.Wi /, we define the distance between them to be

dq. 1;  2/ D j 1 ıGW1 �  2 ıGW2 jC q.I1\I2/;

where q < 1 is from the definition of the strong stable norm in Sect. 8.3.2.

8.3.2 Norms

Given a curveW 2 W s and 0 � p � 1, we define QC p.W / to be the set of complex-
valued Hölder continuous functions onW with exponent p, with distance measured
in the Euclidean metric along W . We set C p.W / to be the closure of QC 1.W / in
the QC p-norm: j jC p.W / D j jC 0.W / CH

p
W . /, where Hp

W . / denotes the Hölder
constant of  on W as in Sect. 8.2.3. QC p.M/ and C p.M/ are defined similarly.

For ˛; p � 0, define the following norms for test functions

j jW;˛;p WD jW j˛ � cosW � j jC p.W /;

where cosW denotes the average value of cos' alongW , with respect to arclength.
We choose constants to define our norms as follows. Choose ˛; � > 0 such

that � < ˛ < 1
3
. Next choose p; q > 0 such that q < p < � and note that

p < 1
3

necessarily by the restriction on � . Finally, choose ˇ > 0 such that ˇ <

minf.˛ � �/=6; p � q; 1
3
� ˛g.

Given a function f 2 C 1.M/, define the weak norm of f by

jf jw WD sup
W 2W s

sup
 2C p.W /
j jW;�;p�1

Z
W

f  dmW :

We define the strong stable norm of f by

kf ks WD sup
W 2W s

sup
 2C q.W /
j jW;˛;q�1

Z
W

f  dmW ;
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and the strong unstable norm of f by

kf ku WD sup
"�"0

sup
W1;W22W s

dW s .W1;W2/<"

sup
 i2C p.Wi /j i jWi ;�;p�1
dq. 1; 2/<"

"�ˇ
ˇ̌̌
ˇ
Z
W1

f  1 dmW �
Z
W2

f  2 dmW

ˇ̌̌
ˇ ;

where "0 > 0 is chosen less than ı0, the maximum length of W 2 W s . We then
define the strong norm of f by

kf kB D kf ks C bkf ku;

where b is a small constant chosen in (8.12).
We define B to be the completion of C 1.M/ in the strong norm and Bw to be

the completion of C 1.M/ in the weak norm.

8.3.3 Uniform Properties of T

In this section we recall the uniform properties (A1)–(A5) for a hyperbolic map T
used in [23] to prove the required Lasota-Yorke inequalities for LT . The following
properties refer to the map before the introduction of a hole. Rather than recall
the properties in the abstract setting used in [23], we translate them into the concrete
setting of dispersing billiards which we have adopted here. This will make the
properties easier to verify and will avoid cumbersome additional notation which
serves no purpose here. Translated into this setting, most of the abstract assumptions
read as well-known facts about dispersing billiards.

(A1) Jacobian. jDT.x/j WD j detDT.x/j D cos'.x/= cos'.T x/ wherever
DT.x/ exists.

(A2) Hyperbolicity. The set S0 [ P0 consists of finitely many curves, although
S˙n, n � 1, may be finite or countable. There exist families of stable and unstable
cones, continuous on the closure of each component of M n .S0 [ P0/, such that
the angle between C s.x/ and C u.x/ is uniformly bounded away from 0 on M .
Furthermore, there exist constants C > 0, 
 > 1 such that the following hold

(1) DT.C u.x// 	 C u.T x/ and DT �1.C s.x// 	 C s.T �1x/ whenever DT and
DT �1 exist.

(2) kDT.x/vk� � 
kvk�;8v 2 C u.x/ and kDT �1.x/vk� � 
kvk�;8v 2
C s.x/, where k � k� is an adapted norm, uniformly equivalent to the Euclidean
norm, k � k.

(A3) Structure of Singularities.

(1) There exists C1 > 0 such that for all x 2M ,

C1
�.T �1x/

cos'.T �1x/
� kDT �1.x/vk

kvk � C�11
�.T �1x/

cos'.T �1x/
; 8v 2 C s.x/:
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Let expx denote the exponential map from the tangent space TxM toM . Then,

kD2T �1.x/vk � C�11 �2.T �1x/.cos'.T �1x//�3;

for all v 2 TxM such that T �1.expx.v// and T �1x lie in the same homogeneity
strip.

In the infinite horizon case, let x1 denote one of the finitely many infinite
horizon points: points in S0 which are the accumulation points of a sequence of
curves Sn 	 S�1. Let Dn;k denote the set of points between Sn and SnC1 and
whose image under T �1 lies in Hk . Then there exists a constant cs > 0 such
that k � csn

1=4.
(2) There exists C2 > 0 such that for any stable curve W 2 W s and any smooth

curve S 	 S�n, we have mW .N".S/ \W / � C2"
1=2 for all " > 0 sufficiently

small.
(3) @Hk are uniformly transverse to the stable cones.
(4) 9C > 0 such that for all k > k0, if W 2 W s and W 	 Hk , then jW j � Ck�3.
(5) The sum

P
k	k0 cos.Hk/ < 1, where cos.Hk/ is the average value of cos'

on Hk .

(A4) Invariant Families of Stable and Unstable Curves. There are invariant
families of curves W s and W u with the properties described in Sects. 8.2.1.3 and
8.3.1. Moreover, we require the following distortion bounds along stable curves.

There exists Cd > 0 such that for any W 2 W s with T iW 2 W s for
i D 0; 1; : : : ; n, and any x; y 2 W ,

ˇ̌
ˇ̌JW T n.x/
JW T n.y/

� 1
ˇ̌
ˇ̌ � CddW .x; y/

1=3 and

ˇ̌
ˇ̌ jDT n.x/j
jDT n.y/j � 1

ˇ̌
ˇ̌ � CddW .x; y/

1=3;

where JW T .x/ denotes the Jacobian of T along W .
We also require an analogous distortion bound along unstable curves. If T iW 2

W u for 0 � i � n, then for any x; y 2 W ,

ˇ̌̌
ˇ jDT

n.x/j
jDT n.y/j � 1

ˇ̌̌
ˇ � CddW .T

nx; T ny/1=3:

(A5) One-Step Expansion. Let W 2 W s and partition the connected components
of T �1W into maximal pieces Vi such that each Vi is a homogeneous stable curve
(not necessarily of length at most ı0). Let jJVi T j� denote the minimum contraction
on Vi under T in the metric induced by the adapted norm from (A2)(2). There exists
a choice of k0 for the homogeneity strips such that

lim
ı!0 sup

W 2W s

jW j<ı

X
i

jJVi T j� < 1: (8.9)
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8.3.4 Verifying (A1)–(A5) for Our Classes of Maps

For both the finite and infinite horizon periodic Lorentz gas, (A1)–(A5) are well-
established properties of the billiard map T (see [11]). In this concrete setting,
(A3)(3) is due to the fact that stable cones are bounded away from the horizontal,
(A3)(4) follows directly from (A3)(3), and the series in (A3)(5) is majorized by the
series C=k2 for some C > 0.

For billiards with corner points, the uniform transversality between P0 and the
stable cones fails. However, the tangencies between stable curves and vertical lines
in P0 are at worst of a square-root type so that (A3)(2) holds [8, Sect. 9].

In addition, the uniform expansion (A2)(2) and the one-step expansion (A5) fail.
In order to regain uniform hyperbolicity, the usual solution is to consider a higher
iterate of T , T1 D T n1 and prove the above properties hold for T1. This is done
in the present specific setting in [23, Sect. 6] based on the facts established in
[8, Sect. 9]. Indeed, in this case one may take the adapted norm k�k� to be simply the
Euclidean norm. Below, we formulate precisely the complexity condition referred
to in condition (C2) in Sect. 8.2.1 for billiards with corner points which allows us to
regain uniform hyperbolicity for this higher iterate of T .

A consequence of (C1) is that there is a uniform upper bound on the number
of consecutive collisions near a corner point. More precisely, let �0 > 0 be the
minimum angle of intersection of @Q at the corner points and definem0 D Œ�=�0�C
1. Then there exists a constant �c > 0 such that for each x 2 M , there is an i 2
f0; : : : ; m0 � 1g such that �.T ix/ � �c [4, 8]. Define


0 WD .1C �cKmin/
1=m0 > 1 and n0 WD

�
ln.1CK �2

min /

2 ln
0

�
:

Let Kn denote the maximum number of smooth curves in [niD0T i .S0 [ V0/ that
intersect or terminate at any one point in M . We assume there exists n2 � 1 such
that

Kn2 < 

n2
0 : (8.10)

This inequality can be iterated since K`n2 � .Kn2/
` for each ` 2 N. Let s D

Kn2

�n2
0 < 1. Choose `1 so that n2`1 > m0 C n0 and maxfs`1 ; 
�`1n20 g <

1
2


�m0�n0
0 . We define n1 D n2`1 and estimate

Kn1 � s`1

n1
0 < 


n1
0 .


�m0�n0
0 �
�n10 / D 


n1�m0�n0
0 � 1:

Now defining T1 D T n1 , it is shown explicitly in [23, Sect. 6] that T1 satisfies
(A2)(2) with respect to the Euclidean metric with
 WD 


n1�m0�n0
0 > 1. Also, since

T �11 W can be cut into at most Kn1 C 1 < 
 pieces by S�n1 , it follows that the
one-step expansion (8.9) of (A5) holds by choosing k0 large enough.
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8.3.5 Properties of the Banach Spaces

Properties (A1)–(A5) are sufficient to prove the following set of Lasota-Yorke
inequalities, with constants depending only on the quantities appearing in
(A1)–(A5). We have one more constant to fix.

In light of (A5), we fix ı0 > 0 in the definition of W s sufficiently small so that

sup
W 2W s

X
i

jJVi T j� DW �� < 1: (8.11)

The following proposition is [23, Proposition 2.3].

Proposition 8.3. Let T satisfy properties (A1)–(A5). There exists C > 0, depend-
ing only on the quantities in (A1)–(A5) such that for all n 2 N and all f 2 B,

jL nf jw � C jhjw
kL nf ks � C.�

n.1�˛/� C
�qn/kf ks C Cı
��˛
0 jf jw

kL nf ju � C
�ˇnkhku C C n khks ;
where �� is from (8.11).

The proposition is enough to conclude the required Lasota-Yorke inequality
in (8.6) since if we choose 1 > � > maxf
�ˇ; �1�˛� ; 
�qg, then there existsN � 0

such that

kL N hkB D kL N hks C bkL Nhku � �N

2
khks C Cı

��˛
0 jhjw C b�N khku C bCN khks

� �N khkB C Cı
��˛
0 jhjw; (8.12)

provided b is chosen small enough with respect to N .
It is proved in [23, Lemma 3.9] that the unit ball of B is compactly embedded in

Bw. Thus it follows from standard arguments (see [1,26]) that the essential spectral
radius of L on B is bounded by � , while the spectral radius of L is at most 1. The
fact that the spectral radius actually equals 1 is proved in [23, Lemma 5.1].

Next we state two lemmas proved in [23] that we shall need.

Lemma 8.1 ([23, Lemma 3.5]). Let P be a (mod 0) countable partition ofM into
open, simply connected sets such that (1) for each k 2 N, there is an Nk <1 such
that at most Nk elements P 2 P intersect Hk; (2) there are constants K;C3 > 0

such that for each P 2 P and W 2 W s , P \W comprises at most K connected
components and for any " > 0, mW .N".@P / \W / � C3"

1=2.
Let s > ˇ=.1 � ˇ/. If f 2 C s.P / for each P 2 P and supP2P jf jC s .P / <1,

then f 2 B. In particular, C s.M/ 	 B and both Lebesgue measure and the
smooth SRB measure for T are in B.
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Lemma 8.2 ([23, Lemma 5.3]). If f 2 B and  2 C s.M/, s > maxfˇ=.1 �
ˇ/; pg, then  f 2 B. Moreover, k f kB � Ckf kBj jC p.M/ for some C > 0

independent of  and f .

Other properties of B and Bw proved in [23] include:

• L is well defined as a continuous linear operator on both B and Bw. Moreover,
there is a sequence of continuous and injective embeddings C s.M/ ,! B ,!
Bw ,! .C p.M//0 for all s > ˇ=.1 � ˇ/.

• The elements of the peripheral spectrum of L on B are measures and all physical
measures belong to B.6

• If T is mixing, then L has a spectral gap, i.e., 1 is a simple eigenvalue and all
other eigenvalues have modulus strictly less than 1.

8.3.5.1 Working with Higher Iterates of T

As mentioned in Sect. 8.3.4, (A2)(2) and (A5) fail for billiards with corner points
so that we must work with a higher iterate of T , T1 D T n1 . In this context, the
spectral gap is originally proved for L1 D L n1 . In order to conclude that L also
has a spectral gap, one must show that kL kB is finite. This is done for billiards
with corner points in [23, Sect. 6.4].

The proof there relies on the fact that although (A4) for T fails in the sense
that the sum in (8.9) cannot be made less than 1 (so �� would be greater than
1 in Proposition 8.3), the sum in (8.9) does remain finite. Also, in (A2)(2), 
 is
not strictly greater than 1. Yet the rest of the Lasota-Yorke inequalities go through
without any problem for T so that one obtains the inequalities of the same form
as Proposition 8.3, but without contraction. This suffices to conclude that L is
bounded on B.

We will make a similar argument for our map with holes since the added
discontinuities coming from @H will cause (8.9) to fail, but due to the finiteness

assumption (H1), the sum will still converge, keeping VLH bounded. In order to
regain contraction for the open system, we will work with a higher iterate of T even
in the case of the Lorentz gas.

6Recall that a physical measure for T is an ergodic, invariant probability measure
 for which there

exists a positive Lebesgue measure set B
, with 
.B
/ D 1, such that lim
n!1

1

n

n�1X
iD0

 .T ix/ D

. / for all x 2 B
 and all continuous functions  .
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8.4 Extension to Open Systems

In this section we will prove Propositions 8.1 and 8.2 and Theorems 8.1 and 8.2.
Proposition 8.3 yields the required inequalities for Proposition 8.1 for L . We begin

by explaining how to extend those inequalities to VLH .
In this section, we assume that we have a map T (without holes) satisfying

(A1)–(A5) (in the case of corner points this is already an iterate T1 D T n1) and
then show how to choose a higher iterate of T once we introduce the additional cuts
made by @H so that (A1)–(A5) are still satisfied.

We fix B0; C0 > 0 and the set of holes H .B0; C0/ satisfying (H1) and (H2).
We choose H 2 H .B0; C0/ and define VT as in Sect. 8.1.1.

We want to think of @H as an extended singularity set for T . To this end,
we define a map OT which is equal to T everywhere, except OT has the expanded
singularity set induced by S0 [ P0 [ @H . Thus when iterating OT , we introduce
artificial cuts according to @H . When we want to consider the map with a hole, we
simply drop the pieces that would have entered H .

Note that by (H2) and (A3)(2), @H has the same properties as S0 [ P0. Since
OT and T are the same map everywhere, properties (A1)–(A4) hold for OT with

essentially the same constants as for T (we may have to replace C2 by C0 in (A3)(2),
but taking C 02 to be the larger of these two numbers, we note that both maps satisfy
(A3)(2) with respect to C 02).

Thus the only thing which we need to address is (A5) and in particular (8.9)
which may fail for OT due to the additional cuts. Note that since @H increases the
sums in (A5) by at most a factor of B0, both sums are still finite. This is sufficient
to ruin contraction in the Lasota-Yorke inequalities, but still yields a finite bound on
kL OT k according to the discussion in Sect. 8.3.5.1, where L OT denotes the transfer
operator corresponding to OT .

8.4.1 Complexity Bound and Proof of Proposition 8.1

In this section, we prove the following lemmas, which will allow us to regain (A5)
for a higher iterate of OT . This in turn will allow us to prove Proposition 8.1.

Lemma 8.3. There exists a sequence ın # 0 such that

sup
W 2W s

jW j�ın

X
i

jJV ni T nj� � �n� ; (8.13)

where V n
i denote the maximal homogeneous stable curves in T �nW on which T n is

smooth.
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Proof. We prove the lemma by induction on n. The case n D 1 follows from (A5)
and (8.11) by taking ı1 D ı0.

Now assume (8.13) holds for all 0 � k � n. In order to extend this inequality
to nC 1, we claim that ınC1 � ın can be chosen so small that jV n

i j � ı0 whenever
jW j � ınC1. In this way, V n

i will belong to W s and we may apply (A5) to each such
curve without additional artificial subdivisions. Let A.V n

i / comprise those indices
j such that T V nC1

j 	 V n
i . Then grouping V nC1

j according to the sets A.V n
i /, we

have

X
j

jJ
V
nC1
j

T nC1j� �
X
i

X
j2A.V ni /

jJ
V
nC1
j

T j�jJV ni T nj� �
X
i

jJV ni T nj��� � �nC1� ;

as required. It remains to prove the claim.
The claim follows from the fact that if T �1 is smooth on a stable curve W ,

then there exists a uniform constant C , depending only on T , such that jT �1W j �
C jW j1=2 in the finite horizon case and jT �1W j � C jW j1=3 in the infinite horizon
case [11, Sect. 4.9].7 Thus the lemma follows if we inductively choose ınC1 D ı2n
in the finite horizon case and ınC1 D ı3n in the infinite horizon case. ut

For W 2 W s , Let OV n
i denote the maximal homogeneous stable curves in OT �nW

on which OT n is smooth.

Lemma 8.4. For n 2 N, let ın be from Lemma 8.3. Then

sup
W 2W s

jW j�ın

X
i

jJ OV ni OT nj� � .1C n.B0 � 1//�n� :

Proof. Fix W 2 W s with jW j � ın. Each V n
i comprises one or more OV n

j due to the

expanded singularity set for OT . For a fixed V n
i , we must estimate the cardinality of

the curves OV n
j 	 V n

i .

Let Un
i D T nV n

i and OUn
j D T n OV n

j for each i and j . Note that if OV n
j1

and
OV n
j2

belong to the same curve V n
i , then in fact T �k OUn

j1
and T �k OUn

j2
belong to the

same smooth curve T �kU n
i for each 0 � k � n since the additional cuts due to OT

are artificial and do not change the orbits of points. Also, jT �kU n
i j � ı0 for each

k � n � 1 by choice of ın from the proof of Lemma 8.3.
Applying (H2) to T �kC1U n

i , the total number of new cuts in T �kU n
i compared

to T �kC1U n
i can be no more than B0 � 1. Inductively, the total number of cuts

introduced into V n
i by time n can be no more than n.B0 � 1/. Thus the cardinality

of the set of j such that OV n
j 	 V n

i is at most 1C n.B0 � 1/. This plus the fact that

jJ OV nj OT nj� � jJV ni T nj� whenever OV n
j 	 V n

i completes the proof of the lemma. ut

7Indeed, [11, Sect. 4.9] does not address the infinite horizon case explicitly, but a quick calculation
shows that an exponent of 1=3 is in fact needed.
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Proof (Proof of Proposition 8.1). Now we choose n0 such that .1Cn0.B0�1//�n0� D
�0 < 1. Then setting OT0 D OT n0 , and choosing ın0 from Lemma 8.3 to be the
maximum length scale of curves in W s , we have (A1)–(A5) satisfied for OT0. Thus
the results of [23] imply the uniform Lasota-Yorke inequalities for L OT0 given by
Proposition 8.3 with ın0 in place of ı0 and �0 in place of �� with the same choices
of constants in the norms.

Notice that we need not change the definition of the Banach spaces B and Bw.
This is because once we have the uniform Lasota-Yorke inequalities measured on
jW j � ın0 , we can quickly extend them to jW j � ı0 by subdividing such curves
into at most Œı0=ın0 �C1 pieces of length at most ın0 and then applying the estimates
on the shorter pieces. This has the effect of multiplying all the inequalities in
Proposition 8.3 by the factor Œı0=ın0 �C1 which affects neither the essential spectral
radius nor the spectral radius of L OT0 .

Since L OT is bounded as an operator on B as mentioned previously, this implies
that L OT also satisfies a uniform set of Lasota-Yorke inequalities with the contraction
factor in (8.12) weakened to �1=n0 .

Now the transfer operator VL VT corresponding to the map with a hole satisfies the
same Lasota-Yorke inequalities as L OT with the same constants since the pieces we
must sum over are fewer (we drop the pieces that pass throughH ), but the estimates
on each surviving piece remain the same (the maps T , VT , and OT are all the same on
such pieces). The equalities of Proposition 8.1 now follow with constants depending
only on (A1)–(A5), B0, and C0, as required. ut

8.4.2 Proof of Proposition 8.2

Fix H 2 H .B0; C0/ with diams.H/ � h. We must estimate jjjL � VL jjj. We
do this estimate for T directly rather than some power of T that we have been
working with in previous sections. This is because we do not need contraction for
the present estimate, but only use the smallness of the hole. We assume only that
T satisfies (A1)–(A5) with 
 D 1 and the sum in (A5) finite, but not necessarily
contracting. As noted previously, these weaker conditions are satisfied for all our
classes of billiard maps (see Sects. 8.3.4 and 8.3.5.1).

We choose f 2 B and recalling (8.3), we estimate

jL f � 1I VML .1I VMf /jw � jL f � 1I VML f jw C j1I VML f � 1I VML .1I VMf /jw
� j1IHL f jw C j1I VML .1IHf /jw;

(8.14)
by linearity since H DM n VM .

In order to estimate the two terms in (8.14), we will need the following two
lemmas. The first lemma shows that the indicator functions 1IH and 1I VM are bounded



160 M.F. Demers

multipliers in both spaces B and Bw. The second lemma shows that the hole is a
small perturbation in the sense of jjj � jjj.
Lemma 8.5. Suppose f 2 B and H 2 H .B0; C0/. There exists C > 0,
depending only on B0 and C0 and (A1)–(A5), such that k1IHf kB � Ckf kB and
j1IHf jw � C jf jw. Similar bounds hold for 1I VMf .

Lemma 8.6. If f 2 B and H 2 H .B0; C0/, then j1IHf jw � Ch˛��kf ks , where
h D diams.H/ and C > 0 depends only on B0.

Postponing the proofs of these two lemmas, we first show how they complete
the proof of Proposition 8.2. Let Cw D supfjL f jw W f 2 Bw; jf jw � 1g and
CB D supfkL f kB W f 2 B; kf kB � 1g denote the norm of L in the two spaces
Bw and B, respectively. Then using the two lemmas together with (8.14), we have

jL f � 1I VML .1I VMf /jw � j1IHL f jw C j1I VML .1IHf /jw
� Ch˛��kL f kB C CCwj1Hf jw
� CCBh

˛��kf kB C CCwh
˛��kf kB:

Now taking the supremum over f 2 B, kf kB � 1, completes the proof of the
proposition.

8.4.2.1 Proofs of Lemmas 8.5 and 8.6

We will use below that there exists a constant Cc > 0 such that

C�1c � cos'.x/

cos'.y/
� Cc (8.15)

whenever x and y lie in the same homogeneity strip.

Proof (Proof of Lemma 8.5). We begin by checking that the partition P formed
by the open, connected components of H and M n H satisfies assumptions (1)
and (2) of Lemma 8.1. Assumption (1) holds with Nk uniformly bounded in k due
to the fact that H has finitely many connected components. Also, assumption (2)
of Lemma 8.1 is satisfied due to (H2) and (A3)(2) with C3 D maxfC0; C2g and
K D B0.

By density, it suffices to prove the lemma for f 2 C 1.M/. We fix f 2 C 1.M/

and note that 1IHf and 1I VMf have the type of singularity admitted in Lemma 8.1
so that 1IHf; 1I VMf 2 B.

We now proceed to estimate k1IHf kB � Ckf kB . The estimate for the weak
norm is similar to that for the strong stable norm and is omitted. From these, the
estimates on 1I VMf follow by linearity since 1I VM D 1IM � 1IH .

To estimate the strong stable norm of 1IHf , let W 2 W s and  2 C q.W / with
j jW;˛;q � 1. Note that j jC q.W / � .cosW /�1jW j�˛ . Then sinceW \H comprises
at most B0 curves Wi 2 W s , we have
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Z
W

1IHf  dmW D
X
i

Z
Wi

f  dmW � kf ks
X
i

jWi j˛ cosWi j jC q.W /

� kf ks
X
i

jWi j˛
jW j˛

cosWi

cosW
� kf ksCcB0;

since cosWi= cosW is uniformly bounded by (8.15) and jWi j � jW j. Taking the
supremum over W 2 W s and  2 C q.W / yields k1IHf ks � CcB0kf ks .

Next we estimate the strong unstable norm of 1IHf . Let " � "0 and choose
W 1;W 2 2 W s with dW s .W 1;W 2/ � ". For ` D 1; 2, let  ` 2 W ` with
j `jW `;�;p � 1 and dq. 1;  2/ � ". We must estimate

Z
W 1

1IHf  1 dmW �
Z
W 2

1IHf  2 dmW :

Recalling the notation of Sect. 8.3.1, we considerW ` as graphs of functions of their
angular coordinates, rW `.'/, and write W ` D GW `.IW `/, ` D 1; 2. We subdivide
W 1 \ H and W 2 \ H into matched pieces U 1

j and U 2
j and unmatched pieces V 1

k

and V 2
k , respectively, using a foliation of horizontal line segments in M . Thus U 1

j

and U 2
j are matched if both are defined over the same '-interval Ij .

Due to (H1), there are at most B0 matched pieces and 2B0C 2 unmatched pieces
V `
k created by @H and near the endpoints ofW `. Note that due to (H2) and (A3)(2),

we have jV `
k j � C 02"1=2, whereC 02 D maxfC0; C2g, since dW s .W1;W2/ � ". We split

the estimate into matched and unmatched pieces

Z
W 1

1IHf  1 dmW �
Z
W 2

1IHf  2 dmW D
X
j

Z
U1j

f  1 dmW �
Z
U2j

f  2 dmW

C
X
`;k

Z
V `k

f  ` dmW :

We estimate the integrals on unmatched pieces first,

Z
V `k

f  ` dmW � kf ksjV `
k j˛ cosV `

k j `jC q.W`/ � kf ks jV
`
k j˛ cosV `

k

jW `j� cosW `

� CcC
0
2kf ks".˛��/=2;

(8.16)

where we have used (8.15) and jV `
k j � jW `j in the last step.

To estimate the integrals on matched pieces, note that

dW s .U 1
j ; U

2
j / � dW s .W 1;W 2/ � ":

Also,
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j 1 ıGU1j �  2 ıGU2j jC q.Ij / � j 1 ıGW 1 �  2 ıGW 2 jC q.IW 1\IW 2 / � ";

since rU 1j and rU 2j are simply the restrictions of rW 1 and rW 2 to Ij , respectively.
Thus,

ˇ̌̌
ˇ̌
Z
U1j

f  1 dmW �
Z
U2j

f  2 dmW

ˇ̌̌
ˇ̌ � khku"

ˇ:

Putting this estimate together with (8.16) and using the fact that the number of
matched and unmatched pieces is finite as mentioned earlier, we obtain
ˇ̌
ˇ̌Z
W 1

1IHf  1 dmW �
Z
W 2

1IHf  2 dmW

ˇ̌
ˇ̌ � CcC 0

2.2B0 C 2/khks".˛��/=2 C B0khku"
ˇ;

which, since ˇ � .˛ � �/=2, means we may divide through by "ˇ to complete the
estimate on the strong unstable norm and the proof of the lemma. ut
Proof (Proof of Lemma 8.6). Again, by density, it suffices to do this estimate for
f 2 C 1.M ).

Let f 2 C 1.M/ and W 2 W s . Take  2 C p.W / with j jW;�;p � 1. Let Wi

denote the at most B0 connected components of W \H . Then each Wi belongs to
W s and jWi j � h by definition of the stable diameter. We thus estimate

Z
W

1IHf  dmW D
X
i

Z
Wi

f  dmW �
X
i

kf ksjWi j˛ cosWi j jC q.W 1
i /

�
X
i

kf ksh˛�� jWi j� cosWi

jW j� cosW
� B0Cckf ksh˛��

where we have used (8.15) in the last line.
Taking the supremum over W 2 W s and  2 C p.W /, the lemma is proved. ut

8.4.3 Proof of Theorems 8.1 and 8.2

Proof (Proof of Theorem 8.1). Propositions 8.1 and 8.2 allow us to apply the
perturbative framework of Keller and Liverani [29] in the following way. We fix
B0; C0 and consider the family of holes H .B0; C0/. Proposition 8.1 guarantees

uniform Lasota-Yorke inequalities for VLH for all H 2 H .B0; C0/. Then for H 2
H .B0; C0/ with diams.H/ sufficiently small, Proposition 8.2 and [29, Corollary 1]
imply that the spectra outside the disk of radius � < 1 and the corresponding

spectral projectors of VLH move Hölder continuously for H 2 H .B0; C0/. Thus
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for diams.H/ sufficiently small, VLH has a spectral gap. We prove the remainder of

the theorem assuming that VLH has a spectral gap in this context.

Since VLH is real, its eigenvalue of maximum modulus, �H , must persist in being
real and positive. We claim that its corresponding eigenvector
H 2 B is a measure.

It follows from the spectral decomposition of VLH that for each f 2 B, there exists
a constant cf such that

lim
n!1�

�n
H

VL n
Hf . / D cf 
H. /; 8 2 C p.M/: (8.17)

Indeed, the above limit defines the spectral projector ˘�H onto the eigenspace

corresponding to �H for VLH . Letting ˘1 denote the eigenprojector onto the
eigenspace corresponding to eigenvalue 1 for L , we know that these projectors vary
Hölder continuously in the jjj � jjj-norm from (8.4) according to [29, Corollary 2].
Recall that 
SRB denotes the smooth invariant measure for T before the introduction
of the hole (see Sect. 8.2.1). Then since ˘1m.1/ D 
SRB.1/ D 1, where m denotes
Lebesgue measure, we must have˘�Hm.1/ D cm
H.1/ > 0. Indeed, the positivity

of VL requires both cm > 0 and 
H.1/ > 0.
Now (8.17) with 1 (the density of m) in place of f implies j
H. /j �

j j1j
H.1/j, which implies that 
H is a measure. Since 
H.1/ > 0 by the

positivity of VLH , we may normalize 
H to be a probability measure, 
H.1/ D 1.
It is now clear that 
H is a conditionally invariant measure for VT .

From (8.2) and the injectivity of T , it follows that 
H cannot be supported on
the set [i	0T i .H/. Since this set has full Lebesgue measure by the ergodicity of

SRB, 
H must be singular with respect to Lebesgue.

Now suppose that 
 2 B is a probability measure such that c
 > 0. Then
by (8.17),

c

H.1/ D lim
n!1�

�n
H

VL n
H
.1/ D lim

n!1�
�n
H 
.

VMn/;

so that the escape rates with respect to 
H and 
 are equal, i.e., �.
/ D log�H .
Moreover,

VL n
H


j VL n
H
j

D
VL n
H


�nH

�nH

VL n
H
.1/

D c

H � 1

c

H.1/
D 
H ;

and the convergence is at an exponential rate in B due to the spectral decomposition

of VLH .
We complete the proof by remarking that cm; c
SRB > 0 by continuity of the

spectral projectors so that Lebesgue and the smooth SRB measure for T are both
included in this class of measures in B. ut
Proof (Proof of Theorem 8.2). With Propositions 8.1 and 8.2 established, the
convergence of 
H to 
SRB and �H to 1 follows immediately from the continuity
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of the spectral projectors corresponding to VLH given by [29, Corollary 2] as long
as we take a sequence of holes in H .B0; C0/ with B0 and C0 fixed. ut

8.5 Variational Principle

For all the maps and holes that we consider, we have �.m/ � PGH , where GH is
from (8.8) by [25, Theorem C]. (Indeed, the setting in terms of both the maps and
the permissible holes considered in [25] is much more general than the classes of
billiard maps we consider here.) Thus, in order to show that a variational principle
holds, we need to find �H 2 GH such that �.m/ D P�H . We proceed to construct
such a measure.

8.5.1 Definition of �H

Let s > maxfˇ=.1 � ˇ/; pg. We define a linear functional on C s.M/ by

�H . / D lim
n!1�

�n
H 
H.1I VMn /; 8 2 C s.M/: (8.18)

The limit is well defined by (8.17) since 
H.1I VMn / D VL n. 
H/.1/ and  
H 2
B by Lemma 8.2. Indeed, �H . / D c 
H in the notation of (8.17).

Since j�H . /j � j j1, �H extends as a bounded linear functional to C 0.M/

so that by the Riesz representation theorem, �H is a measure. Also, the fact that
�H .1/ D 1 and the positivity of the limit in the definition of �H implies that indeed,
�H is a probability measure supported on the survivor set, VM1.

Now 1I VMn�1 ı VT D 1I VMn due to the nested nature of the sequence VMn. We use
this to write

�H . ı VT / D lim
n!1�

�n
H 
H.1I VMn ı VT / D lim

n!1�
�n
H

VLH
H.1I VMn�1 /

D lim
n!1�

�.n�1/
H 
H.1I VMn�1 / D �H . /;

so that �H is an invariant measure for VT and also for T since VT D T on VM1.
In the subsequent sections, we will show that �H defined in this way belongs to

GH and that �.m/ D P�H . To do this, we will use a Young tower constructed for
the open system. This approach combines the work of [8,34] to define and construct
the tower under general assumptions on the map and singularities (all of which are
satisfied in the present setting) and then applies the results of [25] to conclude the
variational principle for the open system.
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8.5.2 Review: Young Towers with Holes

In this section, we recall some of the important definitions regarding Young towers
for piecewise hyperbolic maps. We refer the reader to [34] for details.

8.5.2.1 Generalized Horseshoes

Given a piecewise C1C� diffeomorphism T W M � of a Riemannian manifold
M , the tower is built on a compact set X with a hyperbolic product structure:
X D .[� u/ \ .[� s/ where � u and � s are continuous families of local unstable
and stable manifolds, respectively, with m!.! \ �0/ > 0 for every ! 2 � u,
where m! is the Riemannian volume on !. We define an s-subset of X to be a
set Xs D .[� u/ \ .[ Q� s/ for some Q� s 	 � s; u-subsets are defined similarly.

Modulo a set of m!-measure zero, X is a countable disjoint union of closed
s-subsets Xi with the property that for each i , there exists Ri 2 Z

C such that
T Ri .Xi / is a u-subset of X . The function R W X ! Z

C is called the return time
function to X . We say the inducing scheme .T;X;R/ has exponential tail if there
exist C > 0, # < 1 such that m!.R > n/ � C#n for all ! 2 � u.

In [34], the return map T R W X � satisfies certain uniform hyperbolic properties
listed as (P1)–(P5) in that paper. We omit the formal statements of those properties
and instead focus on the properties we shall need in what follows. Essentially,
the structure of .T R;X/ is that of a generalized horseshoe with countably many
branches and variable return times.

For x 2 X , let !s.x/ denote the element of � s containing x. An important
quantity in the construction of the horseshoe is the separation time s W X�X ! Z

C
with the following properties: (i) s.x; y/ D s.x0; y0/ for x0 2 !s.x/, y0 2 !s.y/;
(ii) for x; y 2 Xi , s.x; y/ � Ri ; (iii) for x 2 Xi , y 2 Xj , i ¤ j , we have s.x; y/ �
min.Ri ; Rj /. The separation time is used in the construction of the horseshoe to
determine when the derivative along orbits starting in X cease to be comparable,
either due to discontinuities or subdivisions to control distortion.

8.5.2.2 Induced Markov Extensions

To the inducing scheme .T;X;R/ described above, it is shown in [34] that one can
associate a Markov extension F W � � which inherits the uniform hyperbolicity of
T R. The Young tower � WD [`	0�` is the disjoint union of sets �` WD f.x; `/ W
x 2 X;R.x/ > `g. The tower map F is defined by F.x; `/ D .x; ` C 1/ for
` < R.x/� 1 and F.x;R.x/� 1/ D .T Rx; 0/. Thus, F maps x up the levels of the
tower until the return time is reached. Identifying �0 with X , we have a uniquely
defined projection � W �!M such that T ı � D � ı F .
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The separation time s.�; �/ defines a natural countable Markov partition f�`;j g on
�: for x; y 2 �0, s.x; y/ D inffn > 0 W F nx; F ny lie in different �`;j g. We call
the Young tower mixing if g.c.d.fRg D 1.

8.5.2.3 Towers with Holes

Given a hole H 	 M , we say that a constructed tower .F;�/ respects the hole if
the following two conditions are met.

(R1) ��1H is the union of countably many elements of f�`;j g.
(R2) �.�0/ 	 M n H and there exist ı > 0, 	1 > 1 such that all x 2 �0 satisfy

d.T nx;S [ @H/ � ı	�n1 for all n � 0, where S is the singularity set for T .

The first condition above guarantees that the tower map with a hole VF is still a
Markov map on �. The second is a controlled approach condition to @H similar to
that required for the singularity set for the map. Both conditions have appeared in
several previous works, [20, 24, 25].

In this setting, the following theorem is proved in [25]. In the setting of [25], T
is a C1C� piecewise smooth diffeomorphism of a manifoldM satisfying the Katok-
Strelcyn conditions [28], which are more general than our assumptions (A1)–(A5)
(and indeed include a wide variety of billiard maps) so that we may apply the results
of [25] in the present setting.

Theorem 8.4. ([25, Theorem D]) Suppose T satisfies (A1)–(A4) and that
.T;M IH/ admits a mixing Young tower .F;�I QH/ with an exponential tail such
that .F;�/ respects the hole. Let 
SRB denote the unique invariant SRB measure
of T supported on �.�/. If the transfer operator on the tower with a hole has a
spectral gap with leading eigenvalue ��, then

(a) �.
SRB/ is well defined and equals log��;

(b) VT n�
SRB=j VT n�
SRBj converges weakly to a conditionally invariant measure Q
H
with eigenvalue ��;

(c) There exists Q�H 2 GH such that

�.
SRB/ D PQ�H WD hQ�H .T / � �CQ�H .T / :

(d) Q�H is defined by

Q�H . / D lim
n!1�

�n
�

Z
VMn

 d Q
H for all  2 C 0.M/:

In addition, Q�H enjoys exponential decay of correlations on Hölder observables.
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8.5.3 Proof of Theorem 8.3 Assuming a Young Tower
Respecting H

We proceed to prove Theorem 8.3 under the assumption that the tower construction
necessary to invoke Theorem 8.4 holds for some iterate T0 D T n0 , where T is one
of the billiard maps considered here. More precisely, we assume that T0 satisfies
(A1)–(A5) and that T0 admits a mixing Young tower with an exponential tail which
respects the hole H . Moreover, we assume the hole is sufficiently small that the

transfer operator VLT has a spectral gap by Theorem 8.1 and also the transfer
operator on the tower for . VF ;�I QH/ has a spectral gap.

In this context, Theorem 8.4 gives information about objects with respect to T0.
So for example, we distinguish between the escape rates with respect to T and T0
via the notation, �.
SRBIT / and �.
SRBIT0/. Obviously, �.
SRBIT0/ D n0�.
SRBIT /.

Since 
SRB D �
2

cos' m 2 B by Lemma 8.1, we have VL n
T 
SRB=j VL n

T 
SRBj ! 
H

and 
H 2 B is a conditionally invariant measure for VT with eigenvalue �H by
Theorem 8.1. Thus, applying Theorem 8.4(b) to T0, we must have Q
H D 
H and
�� D �

n0
H , since �� is the eigenvalue of 
H with respect to T0.

Since Q
H D 
H , comparing the definitions of �H in (8.18) and Q�H in
Theorem 8.4(d), we must have Q�H D �H as well. Thus by Theorem 8.4(c), we
have �.
SRBIT0/ D h�H .T0/ � �C�H .T0/. But since h�H .T0/ D n0h�H .T / and
�C�H .T0/ D n0�

C
�H
.T /, this implies

�.
SRBIT / D h�H .T / � �C�H .T /:

Now since �.mIT / D �.
SRBIT / D log�H by Theorem 8.1, this completes the
proof of Theorem 8.3.

8.5.4 Existence of a Young Tower Respecting the Hole

In this section we prove that a Young tower satisfying the assumptions of
Theorem 8.4 can be constructed for some iterate of our map with holes. Recall
the definition of OT0 D OT n0 from Sect. 8.4.1, where OT is the same as T , but with
expanded singularity set due to @H .

We showed in Sect. 8.4.1 that OT0 satisfies (A1)–(A5) so that the one-step
expansion condition (8.9) is recovered via Lemma 8.4 even in the presence of the
additional cuts due to @H .

In this setting, OT0 satisfies the abstract conditions used in [8] to construct Young
towers for a general class of hyperbolic maps with singularities. Below, we recall
the simplified two-dimensional version of these properties used in [13, Sect. 4] (see
also [8, Sect. 2] for the more general version).
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(1) Smoothness. Assume that M is a smooth, two-dimensional compact Rieman-
nian manifold and that F is a C2 diffeomorphism of M nD onto F .M nD/,
where D is a closed set of Lebesgue measure zero that is referred to as the
singularity set of F .

(2) Hyperbolicity. There exist two families of cones C s.x/ and C u.x/ satisfying
our assumptions (A2)(1) and (2). The singularity setsD are transverse to stable
and unstable cones as in our assumption (A2)(4) and (5). Defining D˙n D
[niD1F�i , the tangent vectors to Dn nD are in stable cones for n > 0 and in
unstable cones for n < 0.

(3) SRB measure. F preserves a mixing SRB measure.
(4) Distortion bounds. Our condition (A3), but for the corresponding unstable

Jacobian of F . To obtain this, D necessarily includes the boundaries of
homogeneity strips.

(5) Bounded curvature. The same as what we require in (A3), but for unstable
manifolds.

(6) Absolute continuity. The holonomy map between unstable manifolds is assumed
to be absolutely continuous wherever it is defined.

(7) One-step expansion condition. This is a slightly more complicated version of
our one-step expansion (8.9), but for unstable manifolds.

All these conditions are verified for the periodic Lorentz gas and dispersing
billiards with corner points in [8, Sects. 7–9]. The only way in which our map OT0
differs from F above is in the one-step expansion condition due to our expanded
singularity set. Although the formulation of this condition in [8] has a more
complicated form, it is proved in [13, Lemma 8] that our one-step expansion
condition (8.9) implies that the more complicated form holds for the billiard classes
considered here due to the controlled accumulation of singularity curves described
in our (A3)(1). This control is automatic for finite horizon billiards since the
singularity sets comprise finitely many smooth compact curves; it is proved via
simple geometrical estimates in the case of the infinite horizon Lorentz gas.

Thus our map OT0 satisfies the assumptions of [13, Theorem 10] which yields
a mixing tower with exponential tails for OT0. We proceed to check that this tower
respects the hole.

The fact that the singularity set for OT0 includes @H implies that for each stable
rectangle Xi in the horseshoe X and each n � R.Xi/, we have either OT n0 .Xi / 	 H

or OT n0 .Xi / \H D ;. This guarantees condition (R1).
Define for 	1 > 1 and ı > 0,

M	̇1;ı
fx 2M W dist.F˙n;D [ @M/ > ı	�n1 ; 8n � 0g:

The reference setX with hyperbolic product structure for the generalized horseshoe
constructed in [8] is defined on the positive measure Cantor set given by MC	1;ı \
M�	1;ı for fixed 	1 > 1 and ı > 0 chosen sufficiently small. Since @H is included in

the singular set for OT0, this guarantees the slow approach condition (R2). Thus the
constructed tower respects the hole.
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The final point to check is that the hole on the tower ��1H can be made
sufficiently small by making H sufficiently small in M . This follows from the
slow approach condition (R2) (this argument also appears in [20, 24]). If diamu.H/

denotes the unstable diameter of H , then the slow approach condition (R2) implies
that ��1H cannot appear in the tower below level ` � log diamu.H/. Thus by
decreasing the unstable diameter of H , we can make ��1H sufficiently small as
long as we remain in the class H .B0; C0/. This argument relies on the fact that
the tail bounds on the tower depend only on the quantities introduced in items 1–7
above, which depend only on the map and the added complexity due to the hole.
Thus keeping B0 and C0 fixed, we retain uniform tail estimates constructed for the
towers respecting holes in H .B0; C0/.

Now for ��1H sufficiently small in �, it follows from [3, Proposition 2.4] (see
also [24, Theorem 4.4]) that the transfer operator on the tower with a hole has a
spectral gap. This completes the verification of the assumptions of Theorem 8.4, so
we may apply the conclusions of that theorem to our map OT0 as we did in Sect. 8.5.3.
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Chapter 9
Almost-Invariant and Finite-Time Coherent
Sets: Directionality, Duration, and Diffusion

Gary Froyland and Kathrin Padberg-Gehle

Abstract Regions in the phase space of a dynamical system that resist mixing over
a finite-time duration are known as almost-invariant sets (for autonomous dynamics)
or coherent sets (for nonautonomous or time-dependent dynamics). These regions
provide valuable information for transport and mixing processes; almost-invariant
sets mitigate transport between their interior and the rest of phase space, and
coherent sets are good transporters of ‘mass’ precisely because they move about
with minimal dispersion (e.g. oceanic eddies are good transporters of water that
is warmer/cooler/saltier than the surrounding water). The most efficient approach
to date for the identification of almost-invariant and coherent sets is via transfer
operators. In this chapter we describe a unified setting for optimal almost-invariant
and coherent set constructions and introduce a new coherent set construction that is
suited to tracking coherent sets over several finite-time intervals. Under this unified
treatment we are able to clearly explain the fundamental differences in the aims of
the techniques and describe the differences and similarities in the mathematical and
numerical constructions. We explore the role of diffusion, the influence of the finite-
time duration, and discuss the relationship of time directionality with hyperbolic
dynamics. All of these issues are elucidated in detailed case studies of two well-
known systems.
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9.1 Introduction

The mathematical description of transport and mixing processes in dynamical
systems has been the subject of intense research over the last two decades. Relevant
applications include astrodynamics, molecular dynamics, geophysical flows, and
biological systems; see, e.g. [2, 34, 50, 51] for discussions and reviews of transport
and mixing phenomena.

Much research has focussed on the detection, approximation, and analysis of
the geometrical structures that may explain transport barriers and the underlying
transport mechanisms in autonomous and nonautonomous dynamical systems.
These methods include topics such as (time-dependent) invariant manifolds, lobe
dynamics, and finite-time Lyapunov exponents and related local extremisers of
stretching and shearing; see, e.g. [24–26, 41, 42, 45, 50, 51] and references therein.
A recent topological approach [1] attempts to find transport boundaries in two-
dimensional forced systems by inferring growth rates of loops from particle
trajectories.

Probabilistic approaches provide a macroscopic view of the dynamics, studying
the global evolution of densities. These techniques can be used to detect regions
in phase space that remain coherent under the action of the dynamical system.
In autonomous systems such regions are termed almost-invariant or metastable
sets, introduced in the past 15 years in the context of dynamical systems [8, 10]
and time-symmetric Markov processes [11, 27, 44]. These concepts rely on the
Perron-Frobenius (or transfer) operator, a linear Markov operator. Subdominant
eigenfunctions of this operator are heuristically used to estimate almost-invariant
sets; see [12, 13, 15] for further extensions to this approach. Studies on the
connections between eigenmodes of evolution operators and slow mixing in fluid
flow can be found in [33, 39, 40, 47], numerical investigations of stochastically
perturbed transfer operators include [3, 5], and a related series of work beginning
with [35, 36] decomposes the phase space into ergodic components. A numerical
study of two-dimensional periodically forced flows [48] connects transfer operator
results with topological braiding approaches [21], reminiscent of the almost-cyclic
behaviour in [10].

Building on the transfer operator framework, a mathematical definition and the
corresponding numerical treatment of coherent sets in nonautonomous systems
has only recently been proposed in the time-asymptotic [17, 18] and finite-time
[14, 19] settings. The mathematical concepts introduced in [12] for the autonomous
case and [19] for the finite-time case deal with finite-state Markov chains, i.e.
discretised transfer operators, and are thus purely finitary. Froyland [14] recently
proposed a transfer operator-based framework for identifying finite-time coherent
sets, generalising the matrix-based approach of [19]. A transfer operator is defined
via an appropriately chosen stochastic kernel and is shown to be a compact
L2-operator with suitable spectral properties. Of particular focus in [14] is a Perron-
Frobenius operator pre- and post-composed with �-diffusion; the influence of noise
on the spectrum and singular vectors is studied. While [14] focusses on developing
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an analytic framework for the matrix set-up used in [19], we will show in this paper
that the construction of [14] is rather generally applicable. We will adapt it to verify
the assumptions underlying the finitary almost-invariant sets framework in [12] and
to make further theoretical extensions to finite-time coherent sets concepts. We also
demonstrate how the duration of the finite-time interval under consideration and
the strength of diffusion influence the structure of the regions in phase space that
most resist mixing. Furthermore, we show how different concepts give rise to, or
suppress, the impact of time directionality on almost-invariant sets and finite-time
coherent sets in strongly hyperbolic conditions.

The paper is organised as follows. Section 9.2 begins by giving brief background
information on the Perron-Frobenius operator and is followed by three introductory
sections that describe the three dynamical settings considered in this chapter and set
up the associated problems of finding optimal almost-invariant and coherent sets.
Section 9.3 introduces the two key tools we will use: firstly, a variant of the Perron-
Frobenius operator developed in [14] that is adapted to the finite-time setting and
secondly, some background on the minimax properties of eigenvectors of compact,
self-adjoint operators on Hilbert space. Section 9.4 contains the mathematical set-
ups to handle the three problems described in Sect. 9.2. Section 9.5 discusses
the differences and similarities of single- and bidirectional coherence, describes
how one can create a sequence of finite-time coherent sets, and summarises some
further mathematical properties of the framework. Section 9.6 details how one
can numerically implement the theory in Sect. 9.4 in each of the three dynamical
settings, and Sect. 9.7 contains the two main case studies, in which we explain
the similarities and differences of the three dynamical set-ups and demonstrate the
influence of finite-time duration, diffusion amplitude, and connections with time
directions.

9.2 Transfer Operators and Three Transport Problems

Let M 	 R
d be compact, ` denote Lebesgue (or volume) measure on M , and

consider a map T W M ! M , which is non-singular1. The map T may describe
discrete time dynamics or may be a time-t map of a continuous time flow. The
Perron-Frobenius operator for T , denoted P W L1.M; `/ ! L1.M; `/, describes
the evolution of densities under T . Its action on an f 2 L1.M; `/ is defined
by insisting that

R
A

Pf d` D R
T�1A

f d` for all (Borel-)measurable A 	 M .
In the situation where T is differentiable, one has the equivalent definition of
P: Pf .y/ DP

x2T�1y f .x/=j detDT.x/j, whereDT.x/ is the spatial linearisation
of T at x 2 M . If T is differentiable and invertible, as in the situation where T

1A map T is non-singular if `.T�1A/ D 0 when `.A/ D 0; thus volume cannot be created from
nothing by pulling back with T or alternatively cannot be completely destroyed by pushing forward
with T .
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arises as a time-t map of a smooth flow, then the expression above simplifies to P:
Pf .y/ D f .T �1y/=j detDT.T �1y/j. The operator P is bounded; in fact kPk1 D 1,
and preserves nonnegative functions; that is, Pf � 0 if f � 0. A density is invariant
under T if the density is a fixed point of P. Further details on the Perron-Frobenius
operator may be found in [30].

In the following, we will introduce linear operators that are built around the
Perron-Frobenius operator. We will introduce some noise or diffusion to the purely
deterministic action of T , perform some ‘change of measure space’ transformations,
and combine these constructions with their duals in order to solve specific dynamical
transport problems. Before getting into details, we briefly describe the problems we
are interested in solving and prototype operator constructions for solving them.

An overarching goal is to detect and locate slow mixing dynamical structures.
These structures should be macroscopic in size and by ‘slow mixing’ we have in
mind a geometric mixing rate that is slower than 1=
, where 
 is the largest2

positive Lyapunov multiplier. Thus, such ‘slow mixing’ cannot be explained by local
stretching, but is instead due to the way in which the dynamics acts globally.

9.2.1 Autonomous, Time-Independent, or Periodically
Forced Dynamics

In this setting we have a single map T W X ! X , where X 	 M is the compact
region in which we will search for a single almost-invariant partition; repeated
iteration of T defines the dynamics. The map T may arise as a time-t map of an
autonomous ODE Px D F.x/. Alternatively, if the dynamics is periodic with period
p, then in discrete time one may study T D Tp ı� � �ıT2ıT1 (or cyclic permutations)
as a single map, or in continuous time, Px D F.x; t/, where F.x; t/ D F.x; t C p/

for all x 2 X , t 2 R, one may set T to the time-p map of the ODE.
We assume that there is some T -invariant3 probability measure 
 and that one is

interested in tracking the transport with respect to this measure. For example, if T
is volume-preserving, then a natural choice for 
 is Lebesgue measure.

As the dynamics is fixed in time, the global slowly mixing structures we seek are
also fixed sets. If a set A 	 X satisfies A 
 T �1A, then the set of points that are
currently in A and will remain in A after one time step, namely A \ T �1A, is large

relative to A in the sense of 
-measure, i.e. 
.A\T
�1A/


.A/

 1. Thus, the probability to

leave the set A in one time step is low; because of this property and the approximate
invariance4 property, these structures are known in the literature as almost-invariant

2As we are considering structures of full dimension, these structures will be stretched and mixed
according to the largest positive Lyapunov exponent.
3A probability measure 
 is called T -invariant if 
 ı T�1 D 
.
4A set A is called invariant if A D T�1A.
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sets or metastable sets. We will be interested in optimal almost-invariant sets;
optimal in the sense that the conditional probability to leave the set in one time
step is minimal.

In terms of operators, in the following sections we will work with an operator L
that is dynamically similar to P, but with the property that L1X D 1X , where 1X
denotes the characteristic function of X . If T is volume-preserving, then L D P.
The invariance condition A 
 T �1A can be translated into the operator equation
L1A 
 1A, where we think of 1A as a functional representation of the set A.
For technical reasons discussed later (in addition to a formal definition of L),
solving the problem of finding optimal almost-invariant sets is helped by forming
a symmetrised operator .L C L�/=2, where L� is the dual of L. While the action
of L can be interpreted as a push-forward under the dynamics T , the action of L�
can be interpreted as a pull-back (applying T �1). Thus, our symmetrised operator
is effectively checking how mass is transported in forward and backward time.
Because our measure 
 is T -invariant, it does not matter in which time direction we
check for mass loss from a set A; we do however benefit from optimality properties
of self-adjoint operators, so the symmetrisation construction is important.

9.2.2 Nonautonomous, Time-Dependent, or Aperiodically
Forced Dynamics: Single Time Direction

In contrast to the single map setting above, we now have a sequence of maps TtC� ı
� � � ı TtC1 ı Tt over a duration of � time steps. Alternatively, in continuous time,
one studies the flow of an ODE Px D F.x; t/ from some initial time t to some final
time t C � . In both cases, we construct a single-map T W X ! T .X/, which in the
discrete time setting is simply T D TtC� ı � � � ıTtC1 ıTt and in the continuous time
setting is the flow map of the ODE from time t to time t C � .

Superficially, we may now appear to be back in the autonomous setting discussed
in Sect. 9.2.1; however, there are two crucial differences. Firstly, in the autonomous
setting, our symmetrisation construction implicitly assumed that the dynamics in
backward time is T �1. However, in a general nonautonomous setting, the backward-
time dynamics is T �1t�� ı � � � ıT �1t�2 ıT �1t�1, which is different to T �1 D T �1t ıT �1tC��1 ı
T �1tC� . Secondly, because of the general time-dependence, the slowly mixing spatial
structures we are interested in may be time-varying, rather than fixed in space; for
example, consider oceanic eddies or atmospheric vortices, both of which move over
time. Because of this general time-dependence, we do not insist on tracking the
finite-time transport with respect to an invariant measure, but rather begin with
a user-specified probability measure 
 at time t . This measure describes a mass
distribution that we are interested in transporting; by the final time tC� , 
will have
transformed into another probability measure � via the transformation5 � D 
ıT �1.

5Note that � D 
 ı T�1 is the natural push-forward of 
 under T . For example, if 
 is supported
on a set A � X , then �.T .A// D 
 ı T�1T .A/ 	 
.A/ shows that � is supported on T .A/.
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As our slowly mixing spatial structures are time-varying, we call them coherent
sets to distinguish them from the spatially fixed almost-invariant sets. If the sets
At ; AtC� satisfy At 
 T �1AtC� , then the set of points that are currently in At and
will be carried to AtC� after � time steps, namely At \ T �1AtC� , is large relative

to At , i.e. 
.At\T�1AtC� /


.At /

 1. Thus, the conditional probability to not be carried

from At to AtC� is low, and we say that such At ; AtC� constitute a pair of coherent
sets. We will be interested in optimal coherent sets; optimal in the sense that the
conditional probability to not be carried from At to AtC� is minimal.

In terms of operators, we again make use of an operator L that is dynamically
similar to P, where P is the Perron-Frobenius operator for the map T which governs
the dynamics from time t to t C � ; roughly speaking, L will have the property that
L1X D 1T .X/. The equivariance condition At 
 T �1AtC� can be translated into the
operator equation L1At 
 1AtC�

. Clearly, this operator equation cannot be directly
solved as an eigenequation as 1At and 1AtC�

may be very different functions. Instead,
our approach will be to push forward 1At with L, to obtain something close to 1AtC�

,
and then pull back with L� to return to something close to 1At . The operators L and
L� will include a small amount of diffusive dynamics, and at the operator level,
the way in which mass is not carried from At to AtC� is by mass diffusing from
both At and AtC� . Leaving technical details for later, we consider eigenfunctions6

of L�L (push forward from t to t C � , then pull back from t C � to t ) to determine
the set At and eigenfunctions of LL� (pull back from t C � to t then push forward
from t to t C � ) to determine the set AtC� . Both L�L and LL� are self-adjoint in
appropriate Hilbert spaces and we make use of associated optimality properties to
find the optimal pair of coherent sets.

9.2.3 Nonautonomous, Time-Dependent, or Aperiodically
Forced Dynamics: Both Time Directions

The dynamical setting is almost the same as in Sect. 9.2.2, except that we consider
two segments of time. Firstly, we consider dynamics from time t to t � �1, governed
by a map T�, and secondly from t to tC�2, governed by a map TC. The maps T� and
TC are generated in the same way as in Sect. 9.2.2. Our focus is on finding a coherent
set at the intermediate time t , one that is coherent in both7 forward and backward
time. Thus, we wish to select a triple of sets At��1 ; At ; AtC�2 with the property
that At��1 
 T�At and AtC�2 
 TCAt . As in Sect. 9.2.2, the user prescribes a
probability measure 
 at time t that represents a mass distribution we are interested
in transporting.

6In numerical computations it is cheaper to compute singular vectors of L, than to form L�L and
compute eigenvectors (see Algorithm 2 in this chapter and Sect. 6 [14]).
7A similar result could also be achieved by a more direct application of the construction in the
previous section; we discuss this further in Sect. 9.5.2.
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In terms of operators, we again make use of operators L� and LC that are
dynamically similar to PT

�

and PT
C

, where PT
˙

is the Perron-Frobenius operator
for the map T˙. The equivariance conditions At��1 
 T�At and At 
 T �1C AtC�2
can be translated into the operator equations L�1At 
 1At��1 and LC1At 
 1AtC�2

,
respectively. As in Sect. 9.2.2, these operator equations cannot be directly solved
as an eigenequation. In analogy to the single-direction case, our approach will be
to push forward 1At with LC, to obtain something close to 1AtC�2

, and then pull
back with L�C, to return to something close to 1At ; this utilises the dynamics on
the interval Œt; t C �2�. Similarly, we also push forward 1At (under backward-time
dynamics) with L� and then pull back with L�� to again return to something close
to 1At , however, this time utilising the dynamics from t to t � �1. Both L�CLC and
L��L� are self-adjoint in the same Hilbert space (anchored at time t ). We may now
average the effect of the dynamics over the intervals Œt � �1; t � and Œt; t C �2� by
averaging the operators to form .L��L� C L�CLC/=2, again obtaining a self-adjoint
operator, which has the necessary optimality properties to find the optimal triple of
coherent sets.

9.3 Two Key Tools

In this section we introduce two key objects for the analysis that follows. The first is
the operator L, which acts as a building block for purpose-built operators for each
of the three dynamical settings we consider. The second is a class of self-adjoint
operators, which we use heavily to obtain optimality results.

9.3.1 A Building Block Operator

Our dynamical system is acting on a subset M of R
d and our transport analysis

will be confined to a compact subset X of M and neighbourhoods of X and T .X/,
denoted X� and Y� , respectively, where � is a diffusion parameter related to the
magnitude of diffusion. A specific type of diffusion is discussed at the end of
Sect. 9.3.1.

We construct our basic building block operator L from the Perron-Frobenius
operator for T . The constructions here are common to the three settings we consider
and may be found in greater detail in [14]. Specialisations for the autonomous case
will be pointed out after the main construction. We endow X with a probability
measure 
, which we assume is absolutely continuous with positive density h
.

We begin building the operator L by pre- and post-applying diffusion to P. We
define a diffusion operator on X , DX;� W L1.X; `/ ! L1.X�; `/ by DX;�f .y/ DR
X
˛X;�.y�x/f .x/dx, where ˛X;� W X� ! RC is bounded and satisfies

R
X�
˛X;�.y�

x/ dy D 1 for all x 2 X . The operator DX;� acts as convolution with a stochastic
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kernel; see, e.g. §10.5 [30]. Similarly we define DY 0

� ;�
W L1.Y 0� ; `/ ! L1.Y�; `/

by DY 0

� ;�
f .y/ D R

Y 0

�
˛Y;�.y � x/f .x/dx, where ˛Y;� is bounded and satisfiesR

Y�
˛Y;�.y � x/ dy D 1 for x 2 Y 0� . We think of X� D supp.DX;�1X/, Y 0� D T .X�/

and Y� D supp.DY 0

� ;�
1Y0

›
/: In terms of function spaces we have

L1.X; `/
DX;��!L1.X�; `/

P�!L1.Y 0� ; `/
D
Y 0� ;��!L1.Y�; `/ (9.1)

As an intermediate operator, we define P� D DY 0

� ;�
PDX;� , our pre- and post-diffused

Perron-Frobenius operator. In general P�1X ¤ 1Y� ; to obtain this property, we
perform a ‘change of measure’ transformation and define

L�f D P�.f � h
/=P�.h
/: (9.2)

Lemma 9.1. One has L�1X D 1Y� and L�� 1Y� D 1X .

We refer the reader to Sect. 4.2 [14] for the necessary calculations to prove
Lemma 9.1. The set-up described above covers both time-dependent situations
under consideration; the map T can control the dynamics over the interval Œt; t C ��

as in Sect. 9.2.2 or over one of the intervals Œt; t C �2�, Œt � �1; t � as in Sect. 9.2.3.
In the autonomous setting, there is one additional hypothesis, namely that h
 is
fixed by the advective and diffusive dynamics, that is8, P�h
 D h
. It follows that
X D Y�; examples of such a situation include:

(i) X is boundaryless (e.g. a solid torus represented by a solid cube in R
3,

identifying opposing faces),
(ii) X is an attractor,

(iii) X has boundaries; however, ˛X;�; ˛Y;� are chosen in such a way that the
diffusion does not perturb points across the boundary of X .

From Sect. 9.4 onwards, we will consider the situations where one chooses
˛X;� D ˛Y;� D .1=`.B�.0///1B�.0/. Dynamically, this means that one diffuses
uniformly over an �-ball, then applies the deterministic dynamics T , and then
diffuses uniformly over an �-ball again. We have chosen such ˛X;�; ˛Y;� as these are
very natural choices of small random perturbations of the dynamics with bounded
support. An important property of our building block operator is compactness.

Theorem 9.1 ([14]). If Y� has finite Lebesgue measure and one chooses ˛X;� D
˛Y;� D .1=`.B�.0///1B�.0/, then L� W L2.X;
/! L2.Y�; ��/ is compact operator.

Moreover, this choice of ˛X;�; ˛Y;� is numerically accessible by representing
the �-ball diffusion via a fine grid of points uniformly distributed over B�.0/; see
Sect 9.6.2 for further details.

8In general, P�h
 D h�� , where h�� is a density of the push-forward of h
 by the dynamics.
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9.3.2 Optimality Properties of Compact Self-Adjoint Operators
on Hilbert Space

We recall the minimax principle for compact self-adjoint operators, which forms
a key part of our approach. Let Q W H ! H be a compact, self-adjoint
operator on a Hilbert space H . Then Q has only a countable number of distinct
eigenvalues. We enumerate the positive eigenvalues of Q, �C1 � �C2 � � � � and the
negative eigenvalues, ��1 � ��2 � � � � , where the number of occurrences equals the
multiplicity of the eigenvalue. We choose orthonormal bases of eigenvectors ul̇ ,
enumerated so that Qul̇ D �l̇ ul̇ . We may write

Q D
M�X
lD1

��l h�; u�l iu�l C
MCX
lD1

�Cl h�; uCl iuCl ; (9.3)

where M˙ may be finite or infinite (see, e.g. Theorem II.5.1 [7]).
If Q is also positive9, then

Q D
MCX
lD1

�Cl h�; uCl iuCl ; (9.4)

where MC may be finite or infinite. All eigenvalues of Q are nonnegative and are
denoted �C1 � �C2 � � � � ; see, e.g., Proposition II.7.14 [7].

One has the following minimax principle (see, e.g. Theorem 9.2.4, p212 [4]):

Theorem 9.2. Let Q W H ! H be compact and self-adjoint and V denote a
subspace of H . Then

�Cl D min
V WcodimV�l�1<MC

max
0¤f 2V

hQf; f i
hf; f i ; l D 1; : : : ;MC (9.5)

and

��l D � min
V WcodimV�l�1<M�

max
0¤f 2V

�hQf; f i
hf; f i ; l D 1; : : : ;M�: (9.6)

Furthermore, the maximising f s are uCl and u�l , respectively.

The eigenvalue we are particularly interested in is �C2 , as this eigenvalue will
correspond to the subspace of functions with the slowest nontrivial decay10.

9An operator Q on a Hilbert space H is called positive if hQx; xi 	 0 for all x 2H .
10In our dynamical application, all eigenvalues of Q will have magnitude less than or equal
to 1, and those with magnitude strictly smaller than 1 correspond to decay. The corresponding
eigenfunctions will ultimately help us to find the most almost-invariant or coherent sets.
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A natural Hilbert space to consider is H D L2.X;
/ 	 L1.X;
/. With hf; gi
 DR
f � g d
, one has

Corollary 9.1. If �C1 is simple, then the V in (9.5) is spfuC1 g?, one has

�C2 D max
f 2L2.X;
/

	 hQf; f i

hf; f i
 W hf; uC1 i
 D 0

�
: (9.7)

and the maximising f is uC2 .

In the following we will only be interested in the large magnitude eigenvalues in
the positive part of the spectrum, and we henceforth drop the ‘+’ superscripts from
these eigenvalues and eigenvectors.

9.4 Main Constructions and Results

Using our building block operator L, in each of the three dynamical settings we
construct a suitable operator-based optimisation problem whose solution yields
optimal almost-invariant or coherent sets. We then form a relaxation of this problem
and show that at its core is a self-adjoint operator. Finally, we utilise the optimality
properties of this self-adjoint operator to exactly solve this relaxed problem via
eigenvectors and then use these eigenvectors to construct almost-invariant or
coherent sets.

9.4.1 Autonomous Dynamics

We consider the operator L� W L2.X;
/ ! L2.X;
/, defined as in (9.2) with P
the Perron-Frobenius operator for T . We wish to measurably partition X D A[Ac
such that L�1A 
 1A, L�1Ac 
 1Ac , and 
.A/ 
 
.Ac/; the latter condition
avoids highly unbalanced partitions where one of the sets contains almost all of the
measure. This can be achieved by considering

�.A/ D hL�1A; 1Ai


.A/

C hL�1Ac ; 1Ac i


.Ac/

: (9.8)

The above expression can be interpreted as follows. Supposing for the moment that
L� D L0 defined as L0f D P.f �h
/=h
; this is an ‘advection only’ version of L� .
Then (using the duality property of P with respect to `: hPf; gi` D hf; g ı T i`),
hL01A; 1Ai


.A/

D hP.1A � h
/=h
; 1Ai


.A/

D hP.1A � h
/; 1Ai`

.A/

D h1A � h
; 1A ı T i`

.A/

D h1A; 1A ı T i


.A/

D 
.A \ T �1A/

.A/

:

(9.9)
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Similarly, hL01Ac ; 1Ac i
=
.Ac/ D 
.Ac \ T �1Ac/=
.Ac/, thus, in the zero
diffusion setting

�0.A/ D 
.A \ T �1A/

.A/

C 
.Ac \ T �1Ac/

.Ac/

;

which is a natural expression to optimise over A to find the optimal almost-invariant
set A. Maximising �0 over all measurable sets is not a well-posed optimisation
problem so we use the addition of a small amount of diffusion via the operators DX;�

to regularise this problem, while not changing greatly the value of the expression
for �.A/.

As hL�1A; 1Ai
 D hL�1A; 1Ai
 D hL�� 1A; 1Ai
 one has

�.A/ D hL�1A; 1Ai


.A/

C hL�1Ac ; 1Ac i


.Ac/

D hQ�1A; 1Ai


.A/

C hQ�1Ac ; 1Ac i


.Ac/

; (9.10)

where Q� D .L�CL�� /=2. The advantage of Q� is that it is self-adjoint in L2.X;
/.
Now one has

�.A/� 1

D hQ�1A; 1Ai


.A/

C hQ�1Ac ; 1Ac i


.Ac/

� 1

D
�

.Ac/


.A/
C 1

�
hQ�1A; 1Ai
 C

�

.A/


.Ac/
C 1

�
hQ�1Ac ; 1Ac i
 � �hQ�1A; 1X i
 C hQ�1Ac ; 1X i
�

D
�

.Ac/


.A/
hQ�1A; 1Ai
C 
.A/


.Ac/
hQ�1Ac ; 1Ac i


�
�.hQ�1A; 1X�1Ai
ChQ�1Ac ; 1X�1Ac i
/

D
�

.Ac/


.A/

Z
Q�1A � 1A d
C 
.A/


.Ac/

Z
Q�1Ac � 1Ac d


�
�
�Z

Q�1A � 1Ac d
C
Z

Q�1Ac � 1A d

�

D
*

Q�

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!
;

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!+



Thus, finding A 	 X that maximises �.A/ is equivalent to the problem

max
A�X

*
Q�

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!
;

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!+



:

(9.11)

Note that
Dq


.Ac/


.A/
1A �

q

.A/


.Ac/
1Ac ; 1X

E


D 0 for any choice of A. Thus, a relaxed

form of (9.11), where we remove the restriction that the argument of Q� is a
difference of characteristic functions, but retain the orthogonality property of this
ansatz, is

max
f 2L2.X;
/

	 hQ�f; f i

hf; f; i
 W hf; 1X i
 D 0

�
: (9.12)
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Recall that Q�1X D 1X and that Q� is self-adjoint and compact (by Theorem 9.1
setting Y� D X and �� D 
), but not positive, in general. Furthermore (see
discussion in Sect. 9.5.3), �1 D 1 is simple. We may therefore apply Corollary 9.1
to see that the maximum value of (9.12) is �2, the second largest eigenvalue of Q� ,
and that the maximising f is u2, the corresponding eigenvector of Q� . As (9.12) is
a relaxation of (9.11), we immediately see that �.A/ � 1 C �2 for all measurable
A 	 X . One can also obtain an a priori lower bound for �.A/:

Theorem 9.3.

2 � 2
p
2.1 � �2/ � sup

A�X
�.A/ � 1C �2:

Proof. See the Appendix.

The above result is strongly related to classic conductance bounds in the reversible
Markov chain literature [31,46] and has been discussed in regard to almost-invariant
sets in a matrix setting [12]. An a posteriori lower bound (relying on eigenvector
computations) has been proposed by Huisinga and Schmidt [27].

Finally, to construct a partition A;Ac from the solution to (9.12), we set A D
Aˇ WD fx 2 X W u2.x/ > ˇg and Ac D Acˇ WD fx 2 X W u2.x/ � ˇg,
where ˇ is chosen to maximise �.Aˇ/. Intuitively, one may think of u2 as a signed
fuzzy partition, and the thresholding procedure makes a ‘hard’, non-fuzzy choice
of partition into sets. In numerical computations, ˇ is obtained via a line search, as
described in Sect. 9.6.3.

9.4.2 Nonautonomous or Time-Dependent Dynamics: Single
Time Direction

The constructions in this section may be found in greater detail in [14]; we recall
only the main points here. We consider the operator L� W L2.X;
/ ! L2.Y�; ��/

defined as in (9.2) using P the Perron-Frobenius operator for T , where T represents
the finite-time dynamics11 from some time t to t C � . We wish to measurably
partition X D A [ Ac and Y� D B [ Bc such that:

11We have argued earlier it is natural to look for almost-invariant sets in autonomous systems
and coherent sets in nonautonomous systems; however, there may be situations in which one is
interested in finding coherent sets in autonomous systems. The coherent set framework described
here and in [14] can be seamlessly applied to the situation where the map T arises from autonomous
dynamics.



9 Almost-Invariant and Finite-Time Coherent Sets: Directionality, Duration... 183

(i) L�1A 
 1B and L�1Ac 
 1Bc ,
(ii) 
.A/ D ��.B/ and 
.Ac/ D ��.B

c/.

We would also like 
.A/ 
 
.Ac/ and ��.B/ 
 ��.B
c/ to avoid highly unbalanced

partitions where one of the sets contains almost all of the measure.
This can be achieved by considering

�.A;B/ D hL�1A; 1Bi��

.A/

C hL�1Ac ; 1Bc i��

.Ac/

: (9.13)

The two terms in (9.13) are directly related to the two properties in point (i) above.
Using arguments identical to the autonomous case above, one can show that in the
‘advection only’ setting, one has

�0.A;B/ D 
.A \ T �1B/

.A/

C 
.Ac \ T �1Bc/


.Ac/
:

Thus, it is now clear that to maximise �.A;B/ one should choose A so that it is
close to the preimage of B (and likewise for the complements). Of course, one
could choose A D T �1B to obtain �.A;B/ D 2 and so there is a problem of
nonuniqueness in solutions to an optimisation of �.A;B/ over A and B . As in
the autonomous setting we require the small amount of diffusion via DX;�;DY 0

� ;�
to

regularise the optimisation of �.A;B/ overA andB; this also (generically) produces
a unique optimum.

Consider the optimisation problem

sup
A�X;B�Y�

f�.A;B/ � 1 W 
.A/ D ��.B/g; (9.14)

where we have subtracted a constant 1 for convenience. One has (see [14] for details)

�.A;B/ � 1 (9.15)

D hL�1A; 1Bi��

.A/

ChL�1Ac ; 1Bc i��

.Ac/

�1 (9.16)

D
*

L�

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!
;

 s
��.Bc/

��.B/
1B �

s
��.B/

��.Bc/
1Bc

!+
��

(9.17)

We note that
Dq


.Ac/


.A/
1A�

q

.A/


.Ac/
1Ac ; 1X

E


D0 and

Dq
��.Bc/

��.B/
1B�

q
��.B/

��.Bc/
1Bc ; 1Y�

E
��D 0 for any choice of A;B . Thus, a relaxed form of (9.14) where we remove the

restriction that the argument of L� is a difference of characteristic functions, but
retain the orthogonality property of this ansatz, is
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max
f 2L2.X;
/;g2L2.Y�;��/

	 hL�f; gi��
kf k
kgk��

W hf; 1X i
 D hg; 1Y� i�� D 0;

�
: (9.18)

Proposition 1 [14] shows that the value of (9.18) is �1=22 , the square root of the
second largest eigenvalue of Q� WD L�� L� , and the maximising f (resp. g) is
u2 (resp. v2), the corresponding eigenvector of Q� (resp. Q�� ). In the language of
singular values and singular vectors, �1=22 is the second largest singular value of L�
and u2 (resp. v2) is the corresponding left (resp. right) singular vector. As (9.18) is
a relaxation of (9.14), using (9.15)–(9.17) one obtains

Theorem 9.4 (Froyland [14]).

max
A�X;B�Y�

f�.A;B/ W 
.A/ D ��.B/g � 1C �
1=2
2 :

To construct a partition A;Ac from the solution to (9.18), we set A D Aˇ WD
fx 2 X W u2.x/ > ˇg, Ac D Acˇ WD fx 2 X W u2.x/ � ˇg, B D Bˇ0 WD fy 2 Y� W
v2.y/ > ˇ

0g, Bc D Bc
ˇ0

WD fy 2 Y� W v2.y/ � ˇ0g, where ˇ is chosen to maximise
�.Aˇ; Bˇ0/ and ˇ0 D ˇ0.ˇ/ is chosen so that 
.Aˇ/ D ��.Bˇ0/. In practice, the
optimal value of ˇ is found via a line search; see Sect. 9.6.4 for details.

9.4.3 Nonautonomous or Time-Dependent Dynamics: Both
Time Directions

Recall that TC represents the finite-time dynamics from some time t to t C �2 and
that T� represents the finite-time dynamics from some time t to t � �1. We consider
the operators L�;C W L2.X;
/ ! L2.Y�; ��/ and L�;� W L2.X;
/ ! L2.Z�; ��/.
The operator L�;C is defined by substituting PT

C

(the Perron-Frobenius operator for
TC) for P in the expression (9.2) for L in Sect. 9.3.1. The operator L�;� is defined by
substituting PT

�

(the Perron-Frobenius operator for T�) for P in (9.2) and replacing
Y 0� ; Y� with Z0�; Z� . In summary,

L1.Z�; `/
D
Z0

� ;� �L1.Z0

� ; `/
PT

� �L1.X�; `/DX;� �L1.X; `/DX;��!L1.X�; `/
PT

C�!L1.Y 0

� ; `/
D
Y 0� ;��!L1.Y�; `/

(9.19)

We wish to measurably partition X D A [ Ac , Y� D B [ Bc , and Z� D C [ Cc

such that

(i) L�;C1A 
 1B and L�;C1Ac 
 1Bc ,
(ii) L�;�1A 
 1C and L�;�1Ac 
 1Cc ,

(iii) 
.A/ D ��.B/ D ��.C / and 
.Ac/ D ��.B
c/ D ��.C

c/.

We would also like 
.A/ 
 
.Ac/, ��.B/ 
 ��.B
c/, and ��.C / 
 ��.C

c/, to
avoid highly unbalanced partitions where one of the sets contains almost all of the
measure.
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We consider

�.A;B; C /

D 1

2

�� hL�;C1A; 1Bi��

.A/

C hL�;C1Ac ; 1Bc i��

.Ac/

�
C
� hL�;�1A; 1C i��


.A/
C hL�;�1Ac ; 1Cc i��


.Ac/

��
:

(9.20)

The four terms in (9.20) are concerned with the four properties in points (i) and (ii)
above. Using arguments identical to the autonomous case above, one can show that
in the ‘advection only’ setting, one has

�0.A;B; C /

D 1

2

  

.A\ T�1

C

B/


.A/
C 
.Ac \ T�1

C

Bc/


.Ac/

!
C
�

.A\ T�1

�

C/


.A/
C 
.Ac \ T�1

�

Cc/


.Ac/

�!
:

Consider the optimisation problem

sup
A�X;B�Y�;C�Z�

f�.A;B; C / � 1 W 
.A/ D ��.B/ D ��.C /g; (9.21)

where we have subtracted a constant 1 for convenience. Using the expression (9.20)
for �.A;B; C / we have (using (9.17) twice)

�.A;B;C /� 1

D 1

2

�� hL�;C1A; 1B i��

.A/

ChL�;C1Ac ; 1Bc i��

.Ac/

�
C
� hL�;�1A; 1C i��


.A/
ChL�;�1Ac ; 1Cc i��


.Ac/

��
�1 (9.22)

D 1

2

 *
L�;C

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!
;

s
��.Bc/

��.B/
1B �

s
��.B/

��.Bc/
1Bc

+
��

(9.23)

C
*

L�;�

 s

.Ac/


.A/
1A �

s

.A/


.Ac/
1Ac

!
;

s
��.C c/

��.C /
1C �

s
��.C /

��.C c/
1Cc

+
��

1
A : (9.24)

Using the shorthand�A D
q


.Ac/


.A/
1A�

q

.A/


.Ac/
1Ac ,�B D

q
��.Bc/

��.B/
1B�

q
��.B/

��.Bc/
1Bc ,

and �C D
q

��.C c/

��.C /
1C �

q
��.C /

��.C c/
1Cc , it is straightforward to verify that jj�Ajj
 D

jj�B jj�� D jj�C jj�� D 1 and h�A; 1X i
 D h�B; 1Y� i�� D h�C ; 1Z� i�� D 0. Thus,
a relaxed form of (9.21), where we remove the restriction that the arguments of
L�;C and L�;� are differences of characteristic functions, but retain the orthogonality
properties of this ansatz, is

max
f 2L2.X;
/;g2L2.Y�;��/;h2L2.Z�;��/

	
1

2

� hL�;Cf; gi��
jjf jj
jjgjj��

C hL�;�f; hi��
jjf jj
jjhjj��

�

W hf; 1X i
 D hg; 1Y� i�� D hh; 1Z� i�� D 0



(9.25)
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We now rewrite this relaxed optimisation problem in terms of the self-adjoint
operator Q� D .L��;CL�;C C L��;�L�;�/=2.

(9.25) D max
f2L2.X;
/

	
1

2

� hL�;Cf;L�;Cf i��
jjf jj
kL�;Cf k�� C

hL�;�f;L�;�f i��
jjf jj
kL�;�f k��

�
W hf; 1X i
 D 0

�

D max
f2L2.X;
/

8<
:
1

2

0
@ hL�

�;CL�;Cf; f i

jjf jj
hL�

�;CL�;Cf; f i1=2

C hL�

�;�L�;�f; f i

jjf jj
hL�

�;�L�;�f; f i1=2


1
A W hf; 1X i
 D 0

9=
;

D max
f2L2.X;
/

8<
:
1

2

0
@
 hL�

�;CL�;Cf; f i

jjf jj2


!1=2
C
 hL�

�;�L�;�f; f i

jjf jj2


!1=21
A W hf; 1X i
 D 0

9=
;

� max
f2L2.X;
/

8<
:
 
1

2

 hL�

�;CL�;Cf; f i

jjf jj2
 C hL

�

�;�L�;�f; f i

jjf jj2


!!1=2
W hf; 1X i
 D 0

9=
;

D max
f2L2.X;
/

8<
:
 hQ�f; f i

jjf jj2


!1=2
W hf; 1X i
 D 0

9=
; :

The operator Q� is self-adjoint, compact (by Theorem 9.1, noting that duals,
compositions, and sums of compact operators are compact), and positive (since
L��;CL�;C and L��;�L�;� are positive, and sums of positive operators are positive).

Assuming �1 is simple, by Corollary 9.1 the value of (9.25) is �1=22 , the square root of
second largest eigenvalue of Q� WD .L��;CL�;C C L��;�L�;�/=2, and the maximising
f is u2, the second eigenvector of Q� . The corresponding maximising g and h are
L�;Cu2=kL�;Cu2k�� and L�;�u2=kL�;�u2k�� , respectively. As (9.25) is a relaxation
of (9.23), the equalities (9.22)–(9.23) prove:

Theorem 9.5.

max
A�X;B�Y�;C�Z�

f�.A;B; C / W 
.A/ D ��.B/ D ��.C /g � 1C �
1=2
2 :

To construct a partition A;Ac from the solution to (9.25), we set A D Aˇ WD
fx 2 X W u2.x/ > ˇg, Ac D Acˇ WD fx 2 X W u2.x/ � ˇg, B D Bˇ0 WD fy 2
Y� W L�;Cu2.y/ > ˇ0g, Bc D Bc

ˇ0
WD fy 2 Y� W L�;Cu2.y/ � ˇ0g, C D Cˇ00 WD

fz 2 Z� W L�;�u2.z/ > ˇ00g, Cc D Cc
ˇ00

WD fz 2 Z� W L�;�u2.z/ � ˇ00g, where ˇ
is chosen to maximise �.Aˇ; Bˇ0 ; Cˇ00/ and ˇ0 D ˇ0.ˇ/, ˇ00 D ˇ00.ˇ/ are chosen so
that 
.Aˇ/ D ��.Bˇ0/ D ��.Cˇ00/. In practice, the optimal value of ˇ is found via a
line search; see Sect. 9.6.5 for details.

9.5 Further Discussion

Having completed the description of the three dynamical set-ups, we now discuss
some further properties, focussing mainly on the similarities and differences of
Sects. 9.4.2 and 9.4.3.
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9.5.1 Single- vs. Bidirectional Coherence

One of the main features that we demonstrate in the two-dimensional numerical case
studies is that coherent sets in the sense of Sect. 9.4.2 typically have boundaries that
are approximately aligned along (time-dependent) stable and unstable manifolds of
organising trajectories of the dynamics. In particular, the boundaries of the coherent
sets at the initial time are aligned with stable directions and those at the final
time are aligned with unstable directions. Why should this be the case? If the
advective dynamics is invertible, the only way that finite-time mixing can occur
is via diffusion. Therefore, an efficient way for a set to be rapidly mixed over a
finite-time interval would be for the set to be stretched into long filaments, thus
greatly increasing the length of its boundary, allowing diffusion to have a much
greater effect. Alternatively, choosing a set at the initial time that already has a very
long boundary would also enhance mixing as the initial diffusion would have a large
effect.

Optimally coherent sets resist this diffusive mixing by having short boundaries
at both the initial and final times. Intuitively this is accomplished by the boundary
of the initial set being mostly roughly aligned with stable directions; thus, under
forward-time evolution, these parts of the boundary are not stretched much, and
when the final time is reached, they have evolved so as to roughly align with unstable
directions. Symmetrically, one can take the backward-time viewpoint: coherent
sets at the final time should have small boundary and evolve backwards in time
to sets with small boundary; this is achieved by the sets at the final time being
roughly aligned with unstable directions. The length of the finite-time interval under
consideration governs how well the boundaries are aligned with stable/unstable
manifolds (the latter are time-asymptotic objects); the longer the interval, the
stronger the alignment. In fact, we will show in Sect. 9.7 that the optimally coherent
sets depend on the time interval considered, as they should.

We have specifically chosen case studies that have regions of strong hyperbolicity
to illustrate this point. When the coherence is due to elliptic-type dynamics, as, e.g.
in the polar vortex example in [19] or the Agulhas rings in [20], this phenomenon is
not observed.

9.5.2 Creating a Sequence of Finite-Time Coherent Sets

In applications, one may be interested in sets that are coherent over a finite-time
duration of length � and in tracking such sets over a time horizon of several multiples
of � . If one were to compute coherent sets using the techniques of Sect. 9.4.2 from
time t�� to t , and then from t to tC� , the sets obtained at t would not match. This is
because the discussion in the previous subsection indicates that the first experiment
would yield a set at t with boundary roughly aligned with unstable directions, while
the second experiment would yield a set at t with boundary roughly aligned with
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stable directions. The construction of Sect. 9.4.3, on the other hand, computing over
the window t � � to t C � finds a ‘central’ set at time t with the property that its
boundary does not grow large in either backward or forward time. By applying the
method of Sect. 9.4.3 to a series of windows of length 2� , one obtains a sequence
of such sets which should vary continuously with time. This is one of the main
motivations for the constructions in Sect. 9.4.3.

A similar effect result could be achieved using the method of Sect. 9.4.2 in the
following way:

(i) Compute the transfer operator for the period t � � to t C � , and establish
optimally coherent sets at t � � and t C � via thresholding.

(ii) Push the left singular vector (at t � � ) forward with the transfer operator from
t � � to t and threshold according to the conservation of mass principle.

By pushing forward to the intermediate time t , the sets obtained should also have
the property that they have short boundaries when pushed forward to tC � or pulled
back to t � � . We will explore this possibility in future work.

9.5.3 Further Mathematical Properties of the Coherent Set
Framework

In [14] several properties of the operator L� from Sect. 9.4.2 are proved. We
briefly mention some of these properties here in the situation where one uses �-ball
diffusion for ˛X;� and ˛Y;� . These properties are dealt with in greater detail and
generality in [14].

(i) The analytical framework for identifying finite-time coherent sets based on the
second singular vectors of L� is frame-invariant or objective. This means if
the framework is applied in a general time-dependent rotating and translating
frame, the coherent sets obtained will be the same (except rotated and trans-
lated) as those obtained in a static frame. The issue of frame invariance does not
apply to Sect. 9.4.1 as the dynamics should not be time-varying. The arguments
in [14] could be adapted to the setting of Sect. 9.4.3.

(ii) If T is a diffeomorphism and X D Y� DM , the leading singular value �1 D 1

of L� is simple. Arguments similar to those in [14] could be applied to the
material in Sect. 9.4.1 and 9.4.3 to demonstrate simplicity of �1.

(iii) If T is a diffeomorphism and X D Y� D M , a lower bound on the second
singular value �2;� < 1 is given in [14], depending on �. The techniques in [14]
could be adapted to the constructions in Sect. 9.4.1 and 9.4.3.

(iv) If T is a diffeomorphism and X D Y� D M , subdominant singular vectors
of L� are 1/2-Hölder regular, with the Hölder constant having an explicit
dependence on � (larger �, smaller constant). In particular, this places some
limitations on the geometric shapes of the optimally coherent sets. One could
apply the techniques in [14] to the constructions in both Sects. 9.4.1 and 9.4.3.
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Regarding point (iii) above, in the case of autonomous two-dimensional
area-preserving maps T , Junge et al. [29] state that the probability to map out of a
T -invariant set by an �-perturbed systems is bounded to first order from above by
� (i.e. the amplitude of perturbation) multiplied by the ratio of set boundary length
to set volume. They also state a lower bound on the second largest eigenvalue �2 of
an operator R�; thus for a fixed �, if the invariant set of the unperturbed system has
small boundary and its (normalised) Lebesgue measure is close to 1/2, then �2 is
closer to 1. In [29], the self-adjoint operator R� is constructed similarly to our Q� ,
but using a one-sided diffusion only (i.e. akin to .DX;�P C .DX;�P/�/=2).

9.6 Numerical Representations of Transfer Operators

In order to apply the theory developed in the previous sections to specific math-
ematical models, we require a computer representation of the operators P;L;P�;
and L� . We recall here the standard approach of Ulam [49], adapted to our specific
operator constructions. We represent these operators as a projected action on a finite-
cardinality basis of characteristic functions. Let fB1; : : : ; Bmg denote a partition of
X and define �X;m W L1.X; `/! spf1B1 ; : : : ; 1Bmg by

�X;mf D
mX
iD1

�
1

`.Bi /

Z
Bi

f d`

�
1Bi :

Similarly, let fC1; : : : ; Cng denote a partition of Y� and define �Y�;n W L1.Y�; `/ !
spf1C1 ; : : : ; 1Cng by

�Y�;nf D
nX

jD1

 
1

`.Cj /

Z
Cj

f d`

!
1Cj ;

where ` is Lebesgue measure. If 
; �� are absolutely continuous with respect to `,
and the maximal diameter of the partition elements decreases to zero asm; n! 1,
then �X;m; �Y�;n converge strongly to the identity operator in Lp.X;
/; Lp.Y�; ��/,
p D 1; 2 (see, e.g. Prop. 9, Chap. 6 [43]).

9.6.1 Numerically Representing P and L

We consider the operator �Y�;nP�X;m W spf1B1 ; : : : ; 1Bmg ! spf1C1 ; : : : ; 1Cng,
which has matrix representation12

12Li [32] contains the first statement of this result in the context of interval maps, but it is
straightforward to derive using the property that for each measurable A � Y� ,

R
A Pf d` DR

T�1A f d` for all f 2 L1.X; `/.
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Pij D `.Bi \ T �1.Cj //
`.Cj /

: (9.26)

In what follows, it will be useful to consider the related matrix

NPij D `.Bi \ T �1.Cj //
`.Bi /

; (9.27)

which may be considered as a discrete action of T on measures. NP is row-stochastic,
has leading eigenvalue 1, and has an interpretation as a transition matrix where the
entry NPij represents the conditional probability that a randomly chosen point in Bi
lands in Cj after one application of T .

In what follows, we use the shorthand `B D Œ`.B1/; : : : ; `.Bm/� and
`C D Œ`.C1/; : : : ; `.Cn/�. Given 
, let pi D 
.Bi / and we approximate h
 asPm

iD1.pi=`Bi /1Bi ; from now on for brevity, we drop this functional representation
for densities and measures and write them as vectors. The image density h�� D P�h

is estimated as

Pm
iD1.pi=`Bi /Pij and the image measure �� is estimated asPm

iD1.pi=`Bi /Pij `Cj D Pm
iD1 pi NPij DW qj . Thus, to construct an approximate

matrix representation for L, we use the definition (9.2) to obtain

Lij D .pi=`
B
i /PijPm

iD1.pi=`Bi /Pij

D .pi=`
B
i /

NPij .`Bi =`Cj /Pm
iD1.pi=`Bi / NPij .`Bi =`Cj /

D pi NPijPm
iD1 pi NPij

: (9.28)

This latter expression appeared in [19]. It is clear that 1L D 1. Denoting the inner
products hx; yip and hx; yiq by

Pm
iD1 xiyipi and

Pn
iD1 xiyiqi , respectively, it is

straightforward to check that L�, the matrix dual satisfying hxL; yiq D hx; yL�ip ,
is NP> and that 1L� D 1.

In the autonomous setting, recall one has X D Y� and 
 D �� and 
 should be
T -invariant. To estimate the T -invariant 
, we use the leading eigenvector of NP , i.e.
choose p to be the (assumed unique) vector satisfying p D p NP . The expression for
L now becomes

Lij D pi NPij
pj

; (9.29)

and is a discrete approximation of L W L2.X;
/! L2.X;
/; in fact, in this setting
L is nothing but a discrete approximation of the Perron-Frobenius operator P
 W
L1.X;
/ ! L1.X;
/ defined with respect to 
, rather than `. In the autonomous
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setting, there have been a number of papers that discuss choosing partitions in a way
that Ulam’s method produces the most accurate estimate of the physical invariant
measure 
 for T [23, 28, 38]. For the purposes of finding almost-invariant and
coherent sets, as numerical diffusion plays an important role, we advise choosing
partition sets that are approximately spherically symmetric (e.g. squares or cubes)
so that the implicit numerical diffusion that results is approximately isotropic.

We remark that the matrix representation (9.28) is not the same as the matrix
representation of �X;mL0�Y;n; that is, L is not exactly a Galerkin projection of L0.
We have chosen this alternative formulation for numerical convenience and do not
believe that the numerical impact is great. To estimate the entry NPij numerically,
one may sample test points xi;k , k D 1; : : : ; K uniformly distributed over Bi (e.g.
on a uniform grid) and then compute T .xi;k/ and count how many fall in Cj ; that is,

NPij 
 #fk W T .xi;k/ 2 Cj g
K

: (9.30)

The software package GAIO [9] is used to estimate the transition matrix entries.
GAIO uses generalised rectangles (boxes) as partition elements and, using a
multilevel tree-like data structure, can efficiently find which boxes contain image
points.

9.6.2 Numerical Representation of P� and L�

Although in the previous section we have constructed a matrix representation of
L0, not L� for some � > 0, in fact, as a consequence of the discretisation we have
already implicitly incorporated a low level of numerical diffusion of the order of the
diameter of the partition elements. We now discuss two ways to construct a matrix
representation of L� , explicitly including diffusion of the type governed by DX;�

and DY 0

� ;�
:

(i) For each test point xi;k 2 Bi , k D 1; : : : ; K represent the diffusion over an �-
ball centred at xi;k by a second grid of points yi;k;k0 ; k0 D 1; : : : ; K 0 uniformly
spread over B�.xi;k/. For example, one could select yi;k;k0 on a grid centred
at xi;k ; in terms of computer code, the most efficient approach is to create a
‘mask’ of such points for an �-ball centred at zero and merely add the vector
xi;k to translate this fixed ‘mask’. Now compute T .yi;k;k0/; k D 1; : : : ; K; k0 D
1; : : : ; K 0; in total this represents K � K 0 points for each box Bi . Finally, for
each image point T .yi;k;k0/ we again create K 00 points uniformly distributed in
a ball of radius �, centred at T .yi;k;k0/; call this final set of K � K 0 � K 00 points
zi;k;k0;k00 . This final set of points can again be created via the ‘mask’ procedure
described above; now one adds the vector T .yi;k;k0/. Finally, we estimate

NP�;i;j D #fzi;k;k0;k00 2 Cj g
K �K 0 �K 00 :
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This was the approach taken in [14]. It has a high accuracy because it directly
simulates the concatenation DY 0

� ;�
PDX;� via test points and effectively applies a

discretisation only once.
(ii) While the above approach is cheap from a memory point of view, there

is an overhead to computing T -images of K � K 0 points. A faster (but
somewhat less accurate) approach would be to discretise each of the three
operators DY 0

� ;�
;P;DX;� separately and then estimate their product by matrix

multiplication. Such an approach is less accurate because the effects of the three
discretisations are multiplied together; however, if � is much larger than the box
diameters, the error should be comparatively small. An advantage to separately
discretising is that one can try different diffusion amplitudes without having to
recompute the discretisation P.

Let fB1; : : : Bmg denote a partition ofX . We first set up the matrix NP without
diffusion as described in Sect. 9.6.1. We construct a matrix DX;� representing a
discretised version of DX;� as follows. In each box Bi , we choose K test points
xi;k 2 Bi , k D 1; : : : ; K. For each xi;k 2 Bi we represent the diffusion over
an �-ball centred at xi;k by a second grid of points yi;k;k0 , k0 D 1; : : : ; K 0,
uniformly spread over B�.xi;k/, and estimate

DX;�;i;j D #fyi;k;k0 2 Bj g
K �K 0 :

We similarly construct a matrix DY 0

� ;�
based on sets fC1; : : : ; Cng. The matrix

P� is then obtained as P� D DY 0

� ;�
PDX;� .

In this paper we take an even faster and coarser approach whereby a ball of
radius � is approximated as a square or cube of side-length 2�. This approach
is faster as it makes use of the internal data structure of GAIO [9].

In the following sections we briefly describe how to appropriately put together
the matrices L. From now on, we drop the � subscript for the matrices P;Q; and L.

9.6.3 Autonomous Setting

In the autonomous setting, we construct Lij D pi NPij =pj , where the map T used to
construct NP represents the dynamics over the fixed time duration we are interested
in. As we are in the autonomous setting, only the duration matters, not the initial
time. We consider

Q WD .LC L�/=2I (9.31)

note thatQ is self-adjoint in h�; �ip (but is not a symmetric matrix in general) and that
1Q D 1Q� D 1. By Corollary 9.1 the solution to (9.12) is given by the second left
eigenvector u2 of Q; we will numerically estimate u2 as the second left eigenvector
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of Q, normalised so that hu2; u2ip D 1. If there is strong almost-invariance present,
we expect the entries of the vector u2 to be around ˙1. Note that Froyland [12]
proposed the use of the second right eigenvector of . NP C OP /=2 to obtain almost-
invariant sets (where OP denotes the transition matrix for the time-reversed Markov
chain governed by NP ). As . NP C OP /=2 D Q>, our use of the second left eigenvector
of Q yields an identical result. Here we have incorporated the autonomous and
nonautonomous constructions under a single unified set of constructions and also
have demonstrated how to naturally incorporate diffusive aspects of dynamics.

The aim is to find an optimal partition of X . We restate the algorithm as used in
[16] for finding almost-invariant sets using R.

Algorithm 1 (Almost-invariant sets).

(i) Partition the state space X into a collection of connected sets fB1; : : : ; Bmg of
small diameter.

(ii) Construct the Ulam matrix NP using (9.30) and compute the (assumed unique)
fixed left eigenvector p of NP . If explicit diffusion is to be added, use one of the
methods in Sect. 9.6.2.

(iii) Construct the matrix L using (9.29) and Q using (9.31).
(iv) Compute the second largest eigenvalue �2 < 1 of Q and corresponding left

eigenvector u2, normalised so that hu2; u2ip D 1.
(v) Denote I.b/ D fi W u2;i > bg; I c.b/ D fi W u2;i � bg. Perform a line search on

b to maximise13

P
i2I.b/;j2I.b/ pi NPijP

i2I.b/ pi
C
P

i2I c.b/;i2I c.b/ pi NPijP
i2I c.b/ pi

: (9.32)

(vi) Denote by Ob the optimal b and set OA WD [
i2I. Ob/Bi ; OAc WD [

i2I c. Ob/Bi .

9.6.4 Nonautonomous Setting: Single Direction

In this setting we wish to study transport over the time interval Œt0; t1� and build the
matrix NP using a map T that describes the dynamics over this interval. We then
construct L using (9.28). Proposition 1 [14] shows that the value of (9.18) is �1=22 ,
the square root of the second largest eigenvalue of Q� WD L�� L� , and the maximising
f (resp. g) is u2 (resp. v2), the corresponding left eigenvector of Q� (resp. Q�� ).
One could define a matrix approximation of Q� as Q WD LL� and a matrix
approximation of Q�� as Q� WD L�L; however, it is more efficient numerically
to find left and right singular vectors of L directly. The reason for this is that L is
reasonably sparse, especially for small �, and LL� may be significantly more dense
than the matrices involved in a calculation of singular value of L. The following
algorithm was put forward in [19].

13The expression (9.32) is a discrete form of (9.8).
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Algorithm 2 (Finite-time coherent sets, single time direction).

(i) Partition the domains X and Y� into a collection of connected sets
fB1; : : : ; Bmg and fC1; : : : ; Cng, respectively, of small diameter. If Y� is not
known precisely, then set Y� to be a neighbourhood of T .X/ that contains all
possible perturbed image points.

(ii) Select the reference measure 
 as the mass distribution to be tracked, and set
pi D 
.Bi /.

(iii) Construct the Ulam matrix NP as in (9.30), and compute q D p NP . If additional
explicit diffusion is used, then use one of the approaches in Sect. 9.6.2.

(iv) Define diagonal matrices .˘p/i i D pi , i D 1; : : : ; m, and .˘q/jj D
qj , j D 1; : : : ; n, compute the second largest singular value �2 < 1 of

˘
1=2
p

NP˘�1=2q and corresponding left and right singular vectors Qu2; Qv2, and set

u2 WD Qu2˘�1=2p , v2 WD Qv2˘�1=2q .
(v) Denote I.b/ D fi W u2;i > bg; I c.b/ D fi W u2;i � bg; J.b0/ D fj W v2;j >

b0g; J c.b0/ D fj W v2;j � b0g. Perform a line search on b to maximise14

P
i2I.b/;j2J.b0/ pi NPijP

i2I.b/ pi
C
P

i2I c.b/;j2J c.b0/ pi NPijP
i2I c.b/ pi

; (9.33)

selecting b0 D b0.b/ so that jPi2I.b/ pi �
P

j2J.b0/ qj j is minimised15 for each
choice of b.

(vi) Denote by Ob; Ob0 the optimal b; b0 and set OA WD [
i2I. Ob/Bi ; OAc WD

[
i2I c. Ob/Bi ; OB WD [

j2J. Ob0/Cj ; OBc WD [
j2J c. Ob0/Cj .

In the numerical case studies section we will frequently plot the output of item
(iv) above, namely, the vectors u2 and v2, and also the output of item (vi) above,
namely the sets OA; OAc; OB , and OBc . If the vectors Qu2; Qv2 have `2-norm16 1, then
the vectors u2; v2 will be normalised so that hu2; u2ip D 1 and hv2; v2iq D 1. If
there is strong coherence present, we expect the entries of the vectors u2 and v2 to
be around ˙1.

9.6.5 Nonautonomous Setting: Both Directions

In this setting we are interested in sets at time point t that remain coherent both in
forward and backward time. We build matrices NPC and NP� using maps TC and T�
that describe the dynamics from t to t C �2 and from t to t � �1, respectively. We
then construct LC, L� using (9.28) and consider the matrix approximation to Q�:

14The expression (9.33) is a discrete form of (9.13).
15This is the discrete version of insisting that 
.A.b// D ��.B.b

0//.
16This is the default output normalisation for MATLAB, for example.
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Q WD .LCL�C C L�L��/=2 (recall we always use left multiplication). We propose
the following algorithm:

Algorithm 3 (Finite-time coherent sets, both time directions).

(i) Partition the domains X , Y� , and Z� into a collection of connected sets
fB1; : : : ; Bmg, fC1; : : : ; Cng, and fE1; : : : ; Eog, respectively, of small diameter.
If Y� and Z� are not known precisely, then set Y� to be a neighbourhood
of TC.X/ that contains all possible perturbed image points, likewise Z� a
neighbourhood of T�.X/.

(ii) Select the reference measure 
 at time t as the mass distribution to be tracked,
and set pi D 
.Bi /.

(iii) Construct the Ulam matrix NPC as in (9.30) using T D TC and compute
qC D p NPC. To construct NP�, use T D T� and replace Cj with Ej in (9.30).
Set q� D p NP�. If additional explicit diffusion is used, then use one of the
approaches in Sect. 9.6.2.

(iv) Construct LC as in (9.28) using NPC and p and L� using NP� and p. Form
Q D .LCL�C C L�L��/=2 by matrix multiplication where L�C D NP>C and
L�� D NP>� .

(v) Compute the second largest eigenvalue �2 < 1 of Q and corresponding left
eigenvector u2. Set vC2 D u2LC and v�2 D u2L�. Normalise u2 so that
hu2; u2ip D 1 and normalise v2̇ so that hv2̇ ; v2̇ iq˙ D 1.

(vi) Denote I.b/ D fi W u2;i > bg; I c.b/ D fi W u2;i � bg; J.b0/ D fj W vC2;j >
b0g; J c.b0/ D fj W vC2;j � b0g and K.b00/ D fl W v�2;l > b00g; Kc.b00/ D fl W
v�2;l � b00g. Perform a line search on b to maximise17

P
i2I.b/;j2J.b0/ pi NPC;ijP

i2I.b/ pi
C
P

i2I c .b/;j2J c .b0/ pi NPC;ijP
i2I c .b/ pi

C
P

i2I.b/;k2K.b00/ pi NP�;ikP
i2I.b/ pi

C
P

i2I c .b/k2Kc.b00/ pi NP�;ikP
i2I c .b/ pi

;

(9.34)

selecting b0 D b0.b/ and b00 D b00.b/ so that jPi2I.b/ pi �
P

j2J.b0/ q
C
j j and

jPi2I.b/ pi �
P

k2K.b00/ q�k j are minimised18 for each choice of b.

(vii) Denote by Ob; Ob0; Ob00 the optimal b; b0; b00 and set OA WD [
i2I. Ob/Bi ; OAc WD

[
i2I c. Ob/Bi ; OB WD [

j2J. Ob0/Cj ; OBc WD [
j2J c. Ob0/Cj and OC WD [

k2K. Ob00/Ek; OCc W
D [

k2Kc. Ob00/Ek .

In the numerical case studies section we will frequently plot the output of item
(v) above, namely the vectors u2, v

C
2 , and v�2 , and also the output of item (vii) above,

namely the sets OA; OAc; OB , OBc , OC , and OCc . If there is strong coherence present, we
again expect the entries of the vectors u2; v

C
2 ; and v�2 to be around ˙1.

17The expression (9.34) is a discrete form of (9.23).
18This is the discrete version of insisting that 
.A.b// D ��.B.b

0// D ��.C.b
00//.
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9.7 Numerical Examples

In this section we will apply the different constructions to two well-known example
systems. First we consider a periodically driven double gyre flow [45], which has
frequently been used as a test bed for different tools for the numerical analysis of
transport. Due to the system’s periodicity we will analyse the system both with
respect to almost-invariant sets and finite-time coherent sets and point out the
differences of the constructions. We discuss the effects of diffusion for almost-
invariant sets, and, for coherent sets, additionally time direction and flow duration.

As a second example system we consider the transitory double gyre flow as
introduced in [37]. Here the dynamics is only nonautonomous on a finite-time
interval, but autonomous outside. Therefore the system is well suited to analysing
finite-time coherent structures. Special emphasis will be placed on how the structure
of finite-time coherent sets depends on the time direction and flow duration.

While in these examples the domain at the initial time and final time remains
the same, the coherent set framework also easily handles situations where the initial
domain and final domain do not intersect at all, as in, e.g. [20].

9.7.1 Case Study 1: Periodically Driven Double Gyre Flow

We consider the time-dependent system of differential equations [45]

Px D ��A sin.�f .x; t// cos.�y/ (9.35)

Py D �A cos.�f .x; t// sin.�y/
df

dx
.x; t/;

where f .x; t/ D ı sin.!t/x2 C .1 � 2ı sin.!t//x.
For detailed discussions of the system, we refer to [16, 45]. As in [16], we fix

parameter values A D 0:25, ı D 0:25, and ! D 2� and obtain a flow of period
p D 1. The system preserves Lebesgue measure on Œ0; 2� � Œ0; 1�. We partition
the domain19 M D Œ0; 2� � Œ0; 1� in n D 32768 D 215 square boxes. Here we
will identify M D X D Y� D Z� . We form matrices NP by integrating with a
fourth-order Runge-Kutta scheme with constant stepsize h D 0:01 from t D 0 over
different time spans, i.e. over one period (� D 1) and � D ˙2:5, using K D 400

uniformly distributed test points per box (inner grid20 points). In this set-up, with
box diameter 0:0078, we have a numerically induced diffusion of about � 
 0:0039.
In addition, we consider explicit diffusion via left and right multiplication of NP with
diffusion matrices DX;� , DY 0

� ;�
. Here we choose 100 inner grid points per box, for

19Note that the boundaries of M are invariant.
20See [9] for a description of inner grid points.
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Fig. 9.1 Almost-invariant sets in the double gyre flow on the time interval Œ0; 1� (� D 1) – no
explicit diffusion (� D 0). Due to symmetry in the system, both Ob D �0:7259 and Ob D 0:7259 are
optimal thresholds in Algorithm 1. We obtain �. OA/ D 1:9910, where OA is the light ( Ob D �0:7259)
or dark set ( Ob D 0:7259) and OAc DM n OA. The black dots correspond to typical orbits of the time-1
map T , visualising regular and chaotic phase space structures. In this setting, the almost-invariant
sets correspond to regular (invariant) structures in phase space

each test point we approximate a ball of radius � D 0:02 by 25 inner grid points of
a box of diameter 2� centred in the respective point.

In the following, we will demonstrate the usage of the different constructions and
discuss effects of diffusion, flow duration, and time direction.

9.7.1.1 Almost-Invariant Sets

As the system is 1-periodic by construction, the time-1 flow map T describes
an autonomous dynamical system. Thus, we want to determine fixed regions in
phase space that are almost-invariant under the dynamics of T . To this end, we
compute21 p D p NP and form matrices L and Q. Following Algorithm 1 we
consider the second left eigenvector u2 to eigenvalue �2 D 0:9998, normalised
such that hu2; u2ip D 1 (Fig. 9.2a). Optimal almost-invariant sets are obtained for
Ob D ˙0:7259, leading to two equally optimal almost-invariant sets shown in pale
yellow and red in Fig. 9.1; for both of these sets, one has �. OA/ D 1:9910. In Fig. 9.1
we have also plotted typical orbits of the map T , visualising the typical phase space
structure of area-preserving map consisting of regular islands and chaotic regions.
As indicated, regular phase space structures, i.e. truly invariant sets, are picked up
as optimal almost-invariant sets in our approach. We note that Fig. 9.1 does not
change visibly when more iterates of the time-1 map T (i.e. longer flow times) are
considered; for example, for � D 2 we obtained �2 D 0:9998 and �. OA/ D 1:9909

21As Lebesgue measure is preserved, p should give equal weight 1=m to each of the m partition
sets. However, in order to account for possible sampling-induced numerical inaccuracies when
setting up NP , we will use the numerically obtained p, which is very close to a constant vector in
practice.
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Fig. 9.2 Second eigenvectors and corresponding almost-invariant sets in the double gyre flow on
the finite-time interval Œ0; 1� (� D 1), with and without explicit diffusion. (a) Second eigenvector
u2 of Q (�2 D 0:9998), � D 0. (b) Partition by sign results in �.A0/ D 1:9803. Such a partition
would also be obtained when restricting the domain to the chaotic region as visualised in Fig. 9.1;
see [16] for a related case study. (c), (d) Effects of explicit diffusion on second eigenvectors and
almost-invariant sets in the double gyre flow. (c) Second eigenvector u2 to eigenvalue �2 D 0:9974

of Q in the diffusive case, � D 0:02. (d) Optimal partition into almost-invariant sets based on u2
in (c). Here Ob D 0 is the optimal threshold, resulting in �. OA/ D 1:9758. In (b) and (d), we have
plotted approximations of the stable (resp. unstable) manifolds of hyperbolic periodic orbits (i.e.
fixed points of T ) located on the y D 0 (resp. y D 1) axes. The partitions into almost-invariant
sets are influenced by these manifolds

and for � D 5we obtained �2 D 0:9997 and �. OA/ D 1:9903. This is understandable
because we are approximating invariant sets and � D 0: the only mass loss occurs
from those points in boxes on the boundary of the pale yellow and red sets that sit
outside the true invariant sets, and taking additional iterates does not increase the
mass loss.

In order to find a partition into almost-invariant sets that is not determined by
these invariant structures, one may restrict the box covering and transition matrix to
the chaotic region. Here one finds Ob D 0, i.e. a partition by sign, is now the global
optimum, but only a local optimum when the entire domain is considered. A similar
experiment was carried out in [16]. We show the partition by sign in Fig. 9.2b,
obtaining �.A0/ D 1:9803. Note that for the optimal partition, �. OA/ is within the
upper (1C�2 D 1:9998) and lower bounds (2� 2p2.1 � �2/ D 1:96); this applies
also to the suboptimal partition by sign.

In Fig. 9.2c, d we show the results of explicit diffusion, incorporated by left
and right multiplication of diffusion matrices DX;�;DY 0

� ;�
(� D 0:02) with NP

as described above. Applying Algorithm 1 to the diffused matrices results in a
visibly smoother eigenvector u2 (Fig. 9.2c) compared to the case without explicit
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diffusion (Fig. 9.2a). Moreover, the optimal partitions now are given by Ob D 0

and the boundaries are smoother and shorter. Figure 9.2d compared to Fig. 9.2b.
As expected, diffusion regularises eigenvectors of Q; this in turn usually shortens
and smoothens the boundaries of almost-invariant sets.

Another important phenomenon that has been illustrated here is an apparent
bifurcation of the almost-invariant sets with variation in noise amplitude. When only
numerical diffusion was present, the invariant sets shown in Fig. 9.1 were selected
by Algorithm 1. The addition of explicit diffusion resulted in Algorithm 1 selecting
the sets shown in Fig. 9.2d. The reason for this switch is that with very low diffusion,
advective flux dominates diffusive flux and the invariant sets in Fig. 9.1 minimise
transport across their boundaries. As the diffusion amplitude is raised, the optimal
almost-invariant structures change to those shown in Fig. 9.2d, which have a shorter,
non-invariant boundary, leading to a reduction in diffusive flux, but an increase in
advective flux; the net effect is, however, lower flux than the invariant sets in Fig. 9.1
under the � D 0:02 diffusion regime. We will further investigate bifurcation aspects
in future work. We note that bifurcations of almost-invariant and almost-cyclic sets
when changing a system parameter have been studied in [29] and [22], respectively;
qualitative bifurcations of the invariant density under varying noise amplitude have
been observed numerically in [5].

In Fig. 9.2b, d we have also plotted approximations22 to stable and unstable
manifolds of hyperbolic periodic orbits (oscillating around x D 1 on the y D 0

and y D 1 axes). Apparently, as already discussed in [16], the transfer operator
approach finds a decomposition into almost-invariant sets, which is influenced by
the underlying manifold structure, but tries to find a more optimal decomposition
than a geometrical approach such as lobe dynamics [41, 42] would suggest. While
the stable and unstable manifolds concern time-asymptotic dynamics, the optimal
almost-invariant sets identified are tuned to a finite flow time of the dynamics.

9.7.1.2 Finite-Time Coherent Sets: Single Time Direction

In this section we are no longer interested in spatially fixed sets, but in possibly
dynamical regions in phase space that remain coherent during some finite time span.
We will first study finite-time coherent sets obtained from considering the dynamics
in a single time direction. We restrict ourselves to the case without explicit diffusion.

As a first case study, we will consider the dynamics on the time interval Œ0; 1�,
i.e. using flow time � D 1, such as in the previous paragraph, but apply Algorithm 2
to the respective matrix NP . The resulting (normalised) singular vectors u2 and v2
with respect to the singular value �2 D 1 � 1:6 � 10�5 are shown in Fig. 9.3a, c.
The thresholds Ob D 0 and Ob0 D 0 turn out to define optimal coherent pairs shown
in Fig. 9.3b, d. We obtain �. OA; OB/ D 1:9976, which is bounded from above by

22We refer the reader to [16] for more details.
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Fig. 9.3 Singular vectors and finite-time coherent pairs ( Ob D Ob0 D 0 in Algorithm 2) in the double
gyre flow on the time interval Œ0; 1� (� D 1) for the case without explicit diffusion (� D 0). (a) Left
(normalised) singular vector u2 to singular value �2 D 1�1:6
10�5 as obtained from Algorithm 2.
(b) Finite-time coherent sets ( OA; OAc) at t D 0 from u2. Superimposed is an approximation of the
stable manifold of a hyperbolic periodic orbit on the y D 0 axis. (c) Right (normalised) singular
vector v2. (d) Finite-time coherent sets ( OB; OBc) at t D 1 from v2 and approximation of the unstable
manifold of a hyperbolic periodic orbit on the y D 1 axis. We obtain �. OA; OB/ D 1:9976, which is
bounded from above by 1C �2

1 C �2. In addition, we have overlaid the optimal partition in Fig. 9.3b with an
approximation to the stable manifold of the periodic orbit on the y D 0 axis and the
optimal partition in Fig. 9.3d with an approximation to the unstable manifold of
the periodic orbit on the y D 1 axis. The (asymptotic) geometric structures influence
the shape of the coherent sets, but due to the short finite-time horizon on which their
computation is based on, we do not get a nearly exact correspondence.

We repeat this study by considering the dynamics on the time interval Œ0; 2:5� as
well as on the time interval Œ�2:5; 0�, i.e. longer time intervals (� D 2:5) which are
not integer multiples of the period of the flow (though the latter property is not so
important here). Figure 9.4a, c show the outcome of an application of Algorithm 2
on the time interval Œ0; 2:5� and Fig. 9.4b, d the results for the interval Œ�2:5; 0�.

Again Ob D Ob0 D 0 turn out to be the optimal thresholds for a decomposition
into finite-time coherent sets23. The decompositions . OA; OAc/ at t D 0 and . OB; OBc/

at t D 2:5 are shown in Fig. 9.4a, c, whereas the respective decompositions . OA; OAc/
at t D �2:5 and . OB; OBc/ at t D 0 can be seen in Fig. 9.4 b, d. For both settings, we
obtain �2 D 0:9999 and �. OA; OB/ D 1:9951, bounded from above by 1C �2.

23Varying b and b0 around b D b0 D 0, one obtains partitions that are very close to optimal.
Because of the symmetry in the system, we concentrate on the partition by sign.
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Fig. 9.4 Finite-time coherent pairs in the double gyre flow on the time intervals Œ0; 2:5� and
Œ�2:5; 0�, i.e. � D 2:5, for the case without explicit diffusion (� D 0). (a) Finite-time coherent
sets . OA; OAc/ at t D 0 from left (normalised) singular vector u2 as obtained from Algorithm 2.
Here the dynamics on the time interval Œ0; 2:5� is considered. (b) Finite-time coherent sets . OA; OAc/
at t D �2:5 from left (normalised) singular vector u2 as obtained from Algorithm 2. Here the
dynamics on the time interval Œ�2:5; 0� is considered. (c) Finite-time coherent sets ( OB; OBc) at
t D 2:5 from right (normalised) singular vector v2 on the time interval Œ0; 2:5�. (d) Finite-time
coherent sets ( OB; OBc) at t D 0 from right (normalised) singular vector v2 from dynamics on
Œ�2:5; 0�. For both settings we obtain �. OA; OB/ D 1:9951, which is bounded from above by 1C�2,
with singular value �2 D 0:9999. The optimal thresholds in Algorithm 2 are Ob D Ob0 D 0. The
partitions are overlaid with approximations of the stable (a),(b) and unstable manifolds (c), (d) of
hyperbolic periodic orbits

We compare Fig. 9.4a with Fig. 9.3b to explain the effect of flow duration. Both
of these images describe coherent sets at t D 0; the only difference is the flow
duration. One can see that the boundary in Fig. 9.4a is longer than the boundary in
Fig. 9.3b and is also closer to the stable manifold of the hyperbolic fixed point for the
time-1 map on the x D 0 axis. The reason for this is that with increasing flow time,
advective flux effects increase, relative to diffusive flux. Thus, a short boundary is
less important for the longer flow duration; instead a boundary that grows in length
at a slower rate over the longer time interval is more important. This ensures that the
boundary in Fig. 9.4c (at t D 2:5) is shorter than the push-forward of the boundary
in Fig. 9.3b to time t D 2:5 would be. In each case (flows times 1 and 2.5), the
coherent sets are tuned to their particular finite-time duration to resist mixing over
that period.

Secondly, we notice that although the finite-time coherent sets in Fig. 9.4a, d
are both defined at t D 0, the different time spans under consideration (Œ0; 2:5�
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and Œ�2:5; 0�) produce markedly different results. This can be explained as follows.
For the interval Œ0; 2:5�, the sets at t D 0 should have boundaries that are small (to
reduce the diffusive effect at t D 0) and the images of the sets at t D 2:5 should
have the same property (to reduce the diffusive effect at t D 2:5). The optimal
coherent set at t D 0 therefore has a boundary that is approximately the stable
manifold of the hyperbolic point for the time-1 map at the bottom of the rectangle
at t D 0; then under forward iteration, this boundary will not grow very much
and indeed will tend to align with the unstable manifold of the hyperbolic point of
the time-1 map at the top of the rectangle. The deviation from the true stable and
unstable manifolds is a function of the diffusion level and the finite-time duration.
As the diffusion goes to zero and the time duration goes to infinity, we expect the
boundaries to approach the true stable and unstable manifolds. However, for a given
diffusion level and finite-time duration, the sets shown here have less flux transfer
than the true manifolds (which are complicated objects that would create a very
long boundary); the coherent sets are optimised to resist diffusion-assisted mixing
over the time interval Œ0; 2:5�. Turning now to the interval Œ�2:5; 0�, we can apply
the same argument as above, except that now t D 0 is the final time in the interval
and by the above argument one expects the coherent set boundaries to be roughly
aligned along unstable directions, rather than stable directions. This is indeed what
we see in Fig. 9.4.

9.7.1.3 Finite-Time Coherent Sets: Both Time Directions

Finally, we consider the coherent set framework that takes into account both time
directions. For this we study again both the dynamics on the time interval Œ0; 2:5�
and the backward-time dynamics on the time interval Œ�2:5; 0� as in the previous
paragraph and apply Algorithm 3, i.e. flow times � D ˙2:5. We obtain the second
left eigenvector u2 (after normalisation) at t D 0, corresponding to the eigenvalue
�2 D 0:9998 as well as corresponding optimal vectors vC2 at t D 2:5 and v�2 at
t D �2:5. The optimal thresholds in Algorithm 3 are given by Ob D Ob0 D Ob00 D 0,
defining finite-time coherent sets . OA; OAc/ at t D 0, as shown in Fig. 9.5a . OB; OBc/ at
t D 2:5 (Fig. 9.5c) and . OC ; OCc/ at t D �2:5 (Fig. 9.5e). One obtains �. OA; OB; OC/ D
1:9878, which is bounded from above by 1C .�2/

1=2 D 1:9999.
While the boundaries of the coherent sets at t D 0 obtained when considering

only one time direction are roughly aligned along stable or unstable manifolds
(see Fig. 9.4a, d), the result of the triple construction using both time directions
simultaneously is a dynamical compromise, influenced by both stable and unstable
directions at t D 0 (see Fig. 9.5a).

We also remark that the longer flow time (5 time units in Fig. 9.5 compared to
2.5 time units in Fig. 9.4) result in an even stronger correspondence of Fig. 9.5c–f
with stable/unstable manifolds (a zoom is shown in Fig. 9.5g).

We also consider explicit diffusion with � D 0:02 and obtain coherent triples
�. OA; OB; OC/ D 1:9628 and .�2/1=2 D 0:9972; see Fig. 9.5 b, d, and f. The boundaries
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Fig. 9.5 Finite-time coherent sets using forward- and backward-time dynamics on Œ0; 2:5� (� D
2:5) and Œ�2:5; 0� (� D �2:5) based on non-diffusive setting (� D 0, left) and for the case with
explicit diffusion (� D 0:02, right). (a) Finite-time coherent sets . OA; OAc/ at t D 0 obtained from
Algorithm 3, no explicit diffusion. (b) Same as (a) but for � D 0:02. (c) Corresponding finite-
time coherent sets . OB; OBc/ at t D 2:5 (� D 0); (g) shows a close-up. (d) Same as (c) but for
� D 0:02. (e) Corresponding finite-time coherent sets . OC ; OCc/ at t D �2:5 (� D 0). (f) Same
as (e) but for � D 0:02. Again we have overlaid the respective stable and unstable manifolds of
hyperbolic periodic orbits. The coherence of the triples for the case � D 0 can be estimated as
�. OA; OB; OC/ D 1:9878, which is bounded from above by 1C .�2/1=2 D 1:9999. For � D 0:02 one
obtains �. OA; OB; OC/ D 1:9628 and .�2/1=2 D 0:9972
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between the respective finite-time coherent sets are shorter and smoother than in the
non-diffusive case, and the small disconnected pieces (lower left of Fig. 9.5c (dark),
upper right of Fig. 9.5e (light)) no longer appear in Fig. 9.5d, f, respectively, as the
extra diffusive flux makes the small disconnected pieces nonoptimal.

9.7.2 Case Study 2: Transitory Double Gyre Flow

We consider the transitory dynamical system introduced in [37]

Px D � @

@y
�; Py D @

@x
�;

with stream function

�.x; y; t/ D .1 � s.t//�P C s.t/�F

�P .x; y/ D sin.2�x/ sin.�y/

�F .x; y/ D sin.�x/ sin.2�y/

and transition function

s.t/ D
8<
:

0; t < 0;

t2.3 � 2t/; 0 � t � 1;

1; t > 1:

A horizontal double gyre pattern (described by the ‘past’ system with stream
function �P ) on the unit square is rotated anticlockwise during times 0 < t < 1

into a vertical double gyre pattern (described by the ‘future’ system with stream
function �F ). For t � 0 and t � 1 the system is autonomous; thus the interesting
finite-time behaviour is restricted to the time interval Œ0; 1�. Figure 9.6 illustrates
the complex mixing processes on the time interval Œ0; 1�. Of particular importance
are the separatrices for the ‘past’ and ‘future’ autonomous systems, i.e. the vertical
line at x D 0:5 for t � 0 (Fig. 9.6a) and the horizontal line at y D 0:5 for
t � 1 (Fig. 9.6f). Their images and preimages in the transitory time interval Œ0; 1�
completely describe the transport mechanism as can be seen in Fig. 9.6. We refer to
[37] for a detailed discussion and analysis of this transitory dynamical system.

For our numerical study we partition the domain M D Œ0; 1� � Œ0; 1� in n D
16384 D 214 square boxes and form matrices NP by integrating with a fourth-order
Runge-Kutta scheme with constant stepsize h D 0:01 for different flow times � D 1

and � D ˙0:5 on Œ0; 1�, using K D 400 uniformly distributed test points per
box (inner grid points). In this set-up, again with box diameter 0:0078, we have a
numerically induced diffusion of about � 
 0:0039, but we do not take into account
any explicit additional diffusion from the operators DX;� or DY�;� .
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Fig. 9.6 Complex mixing dynamics of the transitory double gyre system. (a) Two vertical sets,
corresponding to invariant sets for the autonomous dynamics for t � 0, are initialized at time t D 0

and evolved forward under the dynamics. The sets are bounded by a heteroclinic orbit connecting
two saddle point equilibria at .0:5; 0/ and .0:5; 1/ in the ‘past’ autonomous system. (b) Image sets
of (a) at t D 0:5 (i.e. after flowing time � D 0:5) and (c) at t D 1 (flow time � D 1). (d) Preimage
at t D 0 (i.e. after flowing backwards � D �1 from t D 1) of the two horizontal sets in (f) that are
bounded by the separatrix of the ‘future’ autonomous system. (e) same as (d) but at t D 0:5 (i.e.
� D �0:5). (e) Two sets corresponding to invariant sets for the autonomous dynamics for t 	 1

are initialized at time t D 1 and evolved backwards under the dynamics. The sets are bounded by
a heteroclinic orbit connecting two saddle point equilibria at .0; 0:5/ and .1; 0:5/ in the ‘future’
autonomous system. For an explanation of the dashed lines in (c) and (d) (indicated by arrows),
see main text

First we consider the flow on the entire transition interval Œ0; 1� .� D 1/. The
results of an application of Algorithm 2 are shown in Fig. 9.7. The (normalised)
singular vectors u2 and v2 with respect to the singular value �2 D 0:9997 are shown
in Fig. 9.7a, c. The thresholds Ob D �0:0525, Ob0 D �0:0530 turn out to define
optimal coherent sets . OA; OAc/ at t D 0 and . OB; OBc/ at t D 1, shown in Fig. 9.7b, d.
The coherence can be estimated as �. OA; OB/ D 1:9885, which is bounded from
above by 1 C �2 D 1:9997. The finite-time coherent sets appear to pick up the
dominant light structures in Fig. 9.6c, f, whose boundaries match those of the sets
considerably.

However, one may wonder why the left hand ‘blob’ is picked up as the optimal
coherent set in Fig. 9.7b and not the right hand ‘blob’. An inspection of Fig. 9.6c
reveals that a small horizontal ‘cut’ across the thin light filament at approximately
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Fig. 9.7 Singular vectors and finite-time coherent pairs in the transitory double gyre flow on Œ0; 1�,
� D 1; no explicit diffusion (� D 0). (a) Left (normalised) singular vector u2 to singular value
�2 � 0:9997 obtained from Algorithm 2. (b) Finite-time coherent sets ( OA; OAc) at t D 0 from
u2. (c) Right (normalised) singular vector v2. (d) Finite-time coherent sets ( OB; OBc) at t D 1 from
v2. We obtain �. OA; OB/ D 1:9885, which is well bounded from above by 1 C �2. The transport
barriers from Fig. 9.6c and (f) are overlaid, delineating considerable parts of the boundaries of the
finite-time coherent sets

.x; y/ D .1; 0:4/ (indicated by black dotted line) will separate the light image blob
covering most of the lower half of Fig. 9.6c. This also holds for the light preimage
blob covering most of the left half of Fig. 9.6d (here cutting at approximately
.x; y/ D .0:4; 1/). Such a cut will lead to only a small advective flux across
the cut and both the light blob and its image have relatively small boundary, to
reduce diffusive flux. On the other hand, to similarly separate the dark image blob
covering most of the top half of Fig. 9.6c would require either a longer horizontal
cut around .x; y/ D .0:1; 0:9/, leading to a larger advective flux, or a small vertical
cut near, e.g. .x; y/ D .0:2; 1/ (see white dotted lines), leading to small advective
flux, but slightly more diffusive flux as the boundary of the dark image blob has
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been lengthened, similarly in Fig. 9.6d. Thus, there is some slight asymmetry in the
system, which is clearly picked up by the coherent set calculations.

In a second set of numerical experiments we consider transport and mixing on
the time subintervals Œ0; 0:5� and Œ0:5; 1�, i.e. for flow times � D 0:5. The results of
applying Algorithm 2 are shown in Fig. 9.8. The decompositions . OA; OAc/ at t D 0

and . OB; OBc/ at t D 0:5 w.r.t. the dynamics on the time interval Œ0; 0:5� can be seen
in Fig. 9.8a, c, whereas . OA; OAc/ at t D 0:5 and . OB; OBc/ at t D 1 w.r.t. the dynamics
on the time interval Œ0:5; 1� are shown in Fig. 9.8b, d.

On both time intervals we get the same second singular value �2 D 0:9998 and
Ob D 0:1488, Ob0 D 0:1511 turn out to be the optimal thresholds for a decomposition
into finite-time coherent sets. The coherence values �. OA; OB/ D 1:9919 for both
settings are bounded by the theoretical upper bound of 1C �2. While the shapes of
the sets are visibly influenced by the respective geometric structures, the boundaries
of the sets do not fully match the images of fx D 1=2g and fy D 1=2g. The reason
is again the small level of diffusion. The black curves in Fig. 9.8a–d are all much
longer than the boundaries of the coherent sets. Thus, again, the coherent sets are
tuned to a particular flow duration and small diffusion level.

Finally, we consider again the triple construction considering the dynamics on
the time intervals Œ0; 0:5� and Œ0:5; 1� from the previous paragraph (� D ˙0:5).
The results of an application of Algorithm 3 are shown in Fig. 9.9. In particular,
Fig. 9.9a shows the optimal decomposition into finite-time coherent sets . OA; OAc/ at
t D 0:5, (b) the sets . OB; OBc/ at t D 1, and (c) the corresponding partition . OC ; OCc/ at
t D 0. With thresholds Ob D �0:2532, Ob0 D Ob00 D �0:2464, we obtain �. OA; OB; OC/ D
1:9883 bounded by 1C .�2/

1=2, where �2 D 0:9994.
While the optimal sets do not exactly match the boundaries of the geometric

structures in Fig. 9.6, the partitions at t D 0 and t D 1 are very similar to the
ones in Fig. 9.7. Moreover, the central sets at t D 0:5 (Fig. 9.9a) are influenced
both by stable and unstable directions and thus form, as expected, a dynamical
compromise which accounts for both the forward- and backward-time dynamics.
As we have observed before, geometrical structures such as invariant manifolds
may not necessarily bound sets of minimal leakage. This is again due to the fact
that deterministic time-asymptotic objects do not account for the finite-time and
diffusive effects that are central to our transfer operator construction.

9.8 Summary

In this chapter we proposed a unified setting for finite-time almost-invariant and
coherent set constructions. The constructions were based around a building block
operator that combined advective dynamics via a Perron-Frobenius operator with
small amplitude diffusive dynamics, developed in [14]. This building block operator
was then manipulated to set up suitable optimisation problems for the autonomous
and nonautonomous settings. The unified setting clarified the similarities and
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Fig. 9.8 Finite-time coherent sets in the transitory double gyre flow on the time interval Œ0; 0:5�
(left) as well as on the time interval Œ0:5; 1� (right) using the one-sided construction in Algorithm 2.
Here � D 0:5 and � D 0. (a) Finite-time coherent sets ( OA; OAc) at t D 0 from dynamics on the time
interval Œ0; 0:5�. (b) Finite-time coherent sets ( OA; OAc) at t D 0:5 from dynamics on the time interval
Œ0:5; 1�. (c) Finite-time coherent sets ( OB; OBc) at t D 0:5 from dynamics on the time interval Œ0; 0:5�.
(d) Finite-time coherent sets ( OB; OBc) at t D 1 from dynamics on the time interval Œ0:5; 1�. For both
time intervals �. OA; OB/ D 1:9919 < 1C �2 D 1:9998. The optimal thresholds in Algorithm 2 are
Ob D 0:1488, Ob0 D 0:1511. The corresponding transport barriers from Fig. 9.6 are overlaid

differences of the dynamical problems being solved in the autonomous and nonau-
tonomous cases. These optimisation problems made use of the fact that the
underlying transfer operator was compact and self-adjoint, leading to a simple
analytic solution given by the eigenfunction corresponding to the second largest
eigenvalue.
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Fig. 9.9 Finite-time coherent sets for transitory double gyre flow on the time intervals Œ0; 0:5� and
Œ0:5; 1� (� D ˙0:5) using the two-sided construction (Algorithm 3, no explicit diffusion (� D 0).
(a) Optimal finite-time coherent sets . OA; OAc/ at t D 0:5. (b) . OB; OBc/ at t D 1. (c) . OC ; OCc/ at
t D 0. Here Ob D �0:2532, Ob0 D Ob00 D �0:2464, and �. OA; OB; OC/ D 1:9883. The corresponding
transport barriers from Fig. 9.6 are overlaid

Via two detailed case studies we investigated the dependence of almost-invariant
and coherent sets on three aspects of the dynamics: the level of diffusion, the flow
duration, and the time direction of the dynamics. We also compared the boundaries
of the coherent sets with the time-dependent stable and unstable manifolds of
organising hyperbolic points in flows.

As proved formally in [14], for fixed flow times, we showed that increased
levels of diffusion produce more regular eigenfunctions and coherent sets with
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shorter boundaries. Intuitively, this is because diffusive flux is proportional to the
boundary lengths of coherent sets, and so the boundary would like to be shortened
to minimise the effects of diffusive flux. On the other hand, shortening the boundary
usually means that the boundary is less equivariant (or in the autonomous case,
invariant) in an advective sense, increasing the advective flux. The result is that
an optimal compromise is reached, tuned to the specific diffusion level and flow
duration, with a somewhat shorter boundary. These remarks apply equally to the
autonomous and nonautonomous settings. We also demonstrated an instance where
the optimal almost-invariant sets appear to undergo a bifurcation as the diffusion
level is increased.

Increasing flow duration, with a fixed diffusion level, has the opposite effect.
Now, advective flux becomes a greater component of the overall flux, and the
boundary tries to move in a way that is more aligned with ‘stable’ directions. This is
so that at the final flow time, the boundary has not grown very much (which would
lead to high diffusive flux at the final time). Again, an optimal balance is reached; the
boundary of the coherent set at the initial time moves close to the stable direction,
likely growing somewhat in length, the result tuned to the specific flow time and
diffusion level.

In hyperbolic settings, we demonstrated numerically that the boundary of the
coherent set is approximately aligned with stable directions at the initial time
and unstable directions at the final time. This can be intuitively explained by an
argument identical to those above; the coherent set at the final time should have
relatively short boundary, and under backward advection, the boundary should not
grow very long; otherwise, there will be high diffusive flux at the initial time. In
order for this to occur, the coherent set is approximately aligned along unstable
directions at the final time so that under backward advection the boundary does not
grow very long; the exact positioning of the coherent sets are tuned to the particular
flow time and diffusion level to minimise flux out of the sets.

Finally, in order to produce a sequence of coherent sets over a sliding window
of fixed finite-time duration, we proposed a new construction where the focus is on
coherent sets in the middle of the finite-time window; these sets remain coherent in
both forward and backward time and can be used to create a natural time-dependent
sequence of coherent sets over several translated finite-time windows.

Future work will include further investigation of bifurcation phenomena and
computational improvements to the bidirectional coherent set calculations.
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9.9 Appendix

9.9.1 Proof of Theorem 9.3

Our building block operator L may be written as Lf .y/ D R
X
k.x; y/f .x/ d
.x/,

where k 2 L2.X; Y�/, satisfies k � 0. Thus Q D .L C L�/=2 is a self-adjoint
operator Q W L2.X;
/ ! L2.X;
/ defined by Qf .y/ D R

�.x; y/f .x/ d
.x/,
with Q1 D 1 (see [14] for the specific forms of k and �). From self-adjointness it
follows that �.x; y/ D �.y; x/ and thus

Z
�.x; y/ d
.y/ D 1 D

Z
�.x; y/ d
.x/: (9.36)

9.9.1.1 Lower Bound

The proof of Lemma 9.2 draws heavily on the proof of Theorem 2.1 [31] (which is
effectively a continuous time version of Lemma 9.2) and includes techniques from
Theorem 4.3, Chap. 6 [6].

Lemma 9.2. Let �2 denote the second largest eigenvalue of Q. Then 1��2 � c2=8

where c D infA.
R

Q1A � 1Ac d
/=.
.A/
.Ac//.

Proof. We know that supfhQf; f i
=hf; f i
 W hf; 1i
 D 0g D �2, where �2 is the
second largest eigenvalue of Q. Thus inffh.I �Q/f; f i
=hf; f i
 W hf; 1i
 D 0g D
1 � �2.

Now,

h.I � Q/f; f i


D
Z
f 2 d
 �

Z
�.x; y/f .y/ d
.y/ � f .x/ d
.x/

D
Z
f 2 d
 �

Z
�.x; y/f .y/ d
.y/ � f .x/ d
.x/

D
Z
f .x/

�Z
�.x; y/.f .x/ � f .y// d
.y/

�
d
.x/ using (9.36)

D
Z
f .y/

�Z
�.x; y/.f .y/ � f .x// d
.y/

�
d
.x/ interchanging x and y

D .1=2/

Z �Z
�.x; y/.f .x/ � f .y//2 d
.y/

�
d
.x/ combining previous 2 lines:
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Now
Z
�.x; y/.f .x/C f .y//2 d
.x/d
.y/

� 2

Z
�.x; y/.f .x/2 C f .y/2/ d
.x/d
.y/ using .aC b/2 � 2.a2 C b2/

D
Z
4�.x; y/f .x/2 d
.x/d
.y/ by symmetry of �

D
Z
4f .x/2 d
.x/ by (9.36):

So

.1=2/

Z �Z
�.x; y/.f .x/�f .y//2 d
.y/

�
d
.x/

	 .1=2/

Z �Z
�.x; y/.f .x/�f .y//2 d
.y/

�
d
.x/ �

R
�.x; y/.f .x/Cf .y//2 d
.x/d
.y/R

4f .x/2 d
.x/

	 .1=8/

�R
�.x; y/j.f .x/2�f .y/2/j d
.x/d
.y/�2R

f 2 d

by Hölder: (9.37)

Now
Z
�.x; y/j.f .x/2 � f .y/2/j d
.x/d
.y/

D 2

Z
�.x; y/1ff .x/2�f .y/2>0g.f .x/2 � f .y/2/ d
.x/d
.y/ by symmetry of �

D 2

Z 1
0

d˛

Z
�.x; y/1ff .x/2>˛	f .y/2g d
.x/d
.y/

D 2

Z 1
0

d˛

Z
�.x; y/1A˛ .x/ � 1Ac˛ .y/ d
.x/d
.y/ where A˛ D ff 2 > ˛g

D 2

Z 1
0

d˛

Z
Q1A˛ .y/ � 1Ac˛ .y/ d
.y/

� 2c

Z 1
0

d˛ 
.A˛/
.A
c
˛/; where c D infA.

R
Q1A � 1Ac d
/=.
.A/
.Ac//

D 2c

Z 1
0

d˛

Z
1ff .x/2>˛	f .y/2gd
.x/d
.y/

D 2c

Z 1
0

d˛

Z
1ff .x/2�f .y/2>0g.f .x/2 � f .y/2/d
.x/d
.y/

D c

Z
jf .x/2 � f .y/2j d
.x/d
.y/:
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By (9.37) we have

h.I � Q/f; f i
 � .1=8/
c2
�R jf .x/2 � f .y/2j d
.x/d
.y/�2

.
R
f 2 d
/

� .1=8/c2�0
Z
f 2 d


� .1=8/c2
Z
f 2 d
 by [31], Prop. 2.2 (see for a definition of �0):

Thus 1 � �2 � c2=8.

Define

�.A/ D
R

Q1A � 1A d


.A/

C
R

Q1Ac � 1Ac d


.Ac/

and c.A/ D
R

Q1A � 1Ac d


.A/
.Ac/

:

Lemma 9.3. �.A/ D 2 � c.A/.
Proof.

R
Q1A � 1A d


.A/

C
R

Q1Ac � 1Ac d


.Ac/

D 
.Ac/.
R

Q1A � 1 d
� R Q1A � 1Ac d
/

.A/
.Ac/

C
.A/.
R

Q1Ac � 1 d
� R Q1Ac � 1A d
/

.A/
.Ac/

D 
.Ac/
.A/ � 
.Ac/ R Q1A � 1Ac d
/

.A/
.Ac/

C
.A/
.A
c/ � 
.A/ R Q1Ac � 1A d
/

.A/
.Ac/

D 2 � 
.Ac/c.A/ � 
.A/c.Ac/ D 2 � c.A/ as c.A/ D c.Ac/:

Corollary 9.2. � WD supA �.A/ � 2 �p8.1 � �2/.
Proof. supA �.A/ D 2 � infA c.A/ D 2 � c D 2 �p8.1 � �2/. ut

9.9.1.2 Upper Bound

Lemma 9.4. � � �2 C 1.

Proof. We know that hQf; f i
 � �2 for all hf; 1i
 D 0. Consider the test function
f Dp


.Ac/=
.A/1A �p
.A/=
.Ac/1Ac : We have

hQf; f i

D hp
.Ac/=
.A/Q1A;

p

.Ac/=
.A/1Ai
 � h

p

.Ac/=
.A/Q1A;

p

.Ac/=
.A/1Ac i


�hp
.Ac/=
.A/Q1Ac ;
p

.Ac/=
.A/1Ai
 C h

p

.Ac/=
.A/Q1cA;

p

.Ac/=
.A/1Ac i
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D 
.Ac/


.A/
hQ1A; 1Ai
 � 2hQ1A; 1Ac i
 C 
.A/


.Ac/
hQ1Ac ; 1Ac i


D 
.Ac/


.A/
hQ1A; 1Ai
 C 
.A/


.Ac/
hQ1Ac ; 1Ac i


�.hQ1A; 1i
 � hQ1A; 1Ai
 C hQ1Ac ; 1i
 � hQ1Ac ; 1Ac i
/

D hQ1A; 1Ai


.A/

C hQ1Ac ; 1Ac i


.Ac/

� 
.A/� 
.Ac/

� �2:

As A is arbitrary, the result follows.
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Chapter 10
Return-Time Statistics, Hitting-Time Statistics
and Inducing

Nicolai T.A. Haydn, Nicole Winterberg, and Roland Zweimüller

Abstract In the framework of abstract ergodic probability-preserving transforma-
tions, we prove that the limiting return-time statistics and hitting-time statistics
persist if we pass from the original system to a first-return map and vice versa.

10.1 Introduction

The asymptotic behaviour of return-time and hitting-time distributions of small sets
H in an ergodic probability-preserving dynamical system .X;A ; 
; T / is a well-
studied circle of questions. For the open dynamical system obtained by regarding
H as a hole in X , this is of obvious interest since the hitting time of H represents
the survival time of orbits in the open system.

In the present note, we shall always assume that .X;A ; 
/ is a probability space
and that T W X ! X is an ergodic measure-preserving map thereon. Also, H;Hl

and Y will always denote measurable sets of positive measure. By ergodicity and the
Poincaré recurrence theorem, the measurable (first) hitting-time function ofH , 'H W
X ! N WD f1; 2; : : : ;1g with 'H.x/ WD inffn � 1 W T nx 2 H g, is finite a.e. on
X . When restricted to H it is called the (first) return-time function of our set, and it
satisfies Kac’ formula

R
H
'H d
H D 1=
.H/, where
H.A/ WD 
.H\A/=
.H/,

A 2 A . That is, when regarded as a random variable on the probability space
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.H;A \H;
H/, the return time has a distribution with expectation 1=
.H/, and
we will often normalize our variable accordingly, thus passing to 
.H/ 'H .

In the following, our goal is to obtain further information about this return-time
distribution of H , in particular when H is really small, that is, we are going to
study sequences .Hl/l	1 of asymptotically rare events, meaning that1 
.Hl/ ! 0.
The sequence is said to have (asymptotic) return-time statistics given by a random
variable QR which takes values in Œ0;1�, if its normalized return-time distributions
converge, in the usual sense, to that of QR, so that QFl.t/ WD 
Hl .
.Hl/ 'Hl � t / !
QF .t/ WD PrŒ QR � t � as l ! 1 whenever t > 0 is a continuity point of QF . In standard

probabilistic notation, this is expressed, on the level of distribution functions, as
QFl H) QF .

Similarly, one may study the hitting-time distribution of H , that is, the law of
'H on the original probability space .X;A ; 
/, and ask, for sequences .Hl/l	1 as
above, for (asymptotic) hitting-time statistics given by some Œ0;1�-valued random
variable R. This means that Fl.t/ WD 
.
.Hl/ 'Hl � t / ! F.t/ WD PrŒR � t �

for all continuity points t > 0 of F , that is Fl H) F . This situation is somewhat
simpler, as the underlying measure 
 remains the same.

A large amount of material on return- and hitting-time statistics for specific types
of dynamical systems is available. We refer the reader to [8,9,12] and the references
cited there. (For systems with some hyperbolicity, and reasonably well behaved
sequences .Hl/l	1 one typically gets convergence to an exponential law.)

Moreover, certain fundamental questions can be posed and answered in an
abstract ergodic-theoretical setup. Most important for us, this is the case for the
relation between the two types of limits introduced above, which has been clarified
in [6]. We will recall it below; see Theorem 10.1.

The focus of the present paper is on the behaviour of the two limiting relations
under the standard operation of inducing on a suitable reference set Y 
 X . The
technique of inducing is a basic tool, both for the analysis of specific systems and
for abstract ergodic theory. In the former sense, it has been used to identify return-
time statistics of certain non-uniformly hyperbolic systems in [4], where it is shown
that return-time statistics persist under inducing, at least in situations in which X is
a Riemannian manifold, .Hl/ is a sequence of "-neighbourhoods of a typical point,
and where the limit law has no mass at zero. This has been exploited in further
papers; see, e.g. [5].

Here, we extend this principle to the general measure-theoretical setup and
dispose of these extra conditions; see Theorem 10.3 below. We do so by first
proving a corresponding abstract statement for the easier case of hitting times
(Theorem 10.2) and then transfer it to return times via the aforementioned universal
correspondence between the two. The results below were obtained independently in
[7, 13].

1This is obviously a property of the sequence and not of the individual eventsHl . Still, we take the
liberty of following this imprecise but common terminology.
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10.2 Preliminaries

10.2.1 Distributional Convergence

A sub-probability distribution function on Œ0;1/ is a non-decreasing right-
continuous function F W Œ0;1/ ! Œ0; 1� (with a canonical extension to R which
vanishes on .�1; 0/). These F are in a one-to-one correspondence with the Borel
probability measures Q on Œ0;1�, where Q corresponds to the function given
by F.t/ WD Q.Œ0; t �/; t 2 Œ0;1/, so that Q.f1g/ D 1 � limt!1 F.t/. These
Q, in turn, are the distributions of random variables R taking values in Œ0;1�,
Q.B/ D PrŒR 2 B�, B 2 BŒ0;1�. R is (almost surely) real-valued iff F.t/ ! 1 as
t ! 1, i.e. iff F is a proper probability distribution function on Œ0;1/.

If F;Fl are sub-probability distribution functions on Œ0;1/, then Fl H) F

means that Fl.t/ ! F.t/ as l ! 1 for all continuity points t > 0 of F .
This is equivalent to the usual weak convergence Ql H) Q (cf. [3]) of the
corresponding Borel probabilities on Œ0;1�. (This is obvious if, e.g. we map Œ0;1�

onto Œ0; 1� by some orientation-preserving homeomorphism and carry the measures
and distribution functions along.)

In the present context we are interested in certain measurable functions Rl W
X ! Œ0;1�, the distributions of which may be taken w.r.t. different probabilities
�l on .X;A /. Convergence in the above sense of these distributions to the law of
some random variable R will be denoted by

Rl
�lH) R as l ! 1, (10.1)

that is, with F.t/ WD PrŒR � t � denoting the distribution function of R, (10.1) means

�l .Rl � t / �! F.t/ for all continuity points t > 0 of F .

As a special case, this includes the notationRl
�H) R for distributional convergence

of the Rl when regarded as random variables on the common probability space
.X;A ; �/, that is, �.Rl � t / �! F.t/ for all continuity points t > 0 of F .

If, in the setup of the introduction, Rl WD 
.Hl/ 'Hl , then return-time statistics

refer to convergence Rl
�lH) R with �l D 
Hl , while hitting-time statistics concern

the convergence Rl
�H) R with � WD 
.
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10.2.2 Relation Between Return-Time and Hitting-Time
Statistics

Given an arbitrary sequence .Hl/l	1 of asymptotically rare events, its return-time
statistics and its hitting-time statistics are intimately related to each other. The
following fundamental result was first established in [6]. For an alternative proof
see [2].

Theorem 10.1 (Hitting-time statistics versus return-time statistics). Let .X;A ;


; T / be an ergodic probability-preserving system and .Hl/l	1 a sequence of
asymptotically rare events. Then


.Hl/ 'Hl

H) R for some random variable R in Œ0;1� (10.2)

iff


.Hl/ 'Hl


HlH) QR for some random variable QR in Œ0;1�. (10.3)

In this case, the sub-probability distribution functions F and QF of R and QR satisfy
R t
0
.1 � QF .s// ds D F.t/ for t � 0. (10.4)

Through this integral equation each of F and QF uniquely determines the other.
Moreover, F is necessarily continuous and concave with F.t/ � t , while QF is a
probability distribution function s.t.

R1
0
.1 � QF .s// ds � 1.

It is also known that the properties recorded above [which follow easily from
(10.4)] completely determine the class of all F and QF which do occur as hitting-
and return-time limits in an arbitrary aperiodic ergodic system; see [10, 11].

10.2.3 Strong Distributional Convergence for Hitting Times
of Rare Events

It is an interesting but sometimes neglected fact that many distributional limit
theorems for ergodic processes automatically hold for large collections of initial
probability distributions � on the underlying space. In Sect. 10.4 below, this
principle will serve as an important technical tool. Let .Rl/l	1 be a sequence of
non-negative measurable functions on .X;A ; 
/ and R some Œ0;1�-valued random
variable. Strong distributional convergence w.r.t. 
 of .Rl/l	1 to R means that

Rl
�H) R for all probability measures � � 
, (10.5)

compare [1]. This type of convergence is denoted by Rl
L .
/H) R. (The probabilistic

literature sometimes uses the term (Rényi-)mixing.)
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A situation in which one always has strong convergence for trivial reasons is that
of an a.s. constant limit variable R, i.e. PrŒR D c� D 1 for some c 2 Œ0;1�. There
are, however, more interesting scenarios in which strong distributional convergence
is automatic. A discussion of a natural and widely applicable sufficient condition for
this to happen in an ergodic system can be found in [15]. Using it, it is not hard to
see that asymptotic hitting-time distributions for rare events always behave in this
way: If a limit law shows up under one particular initial distribution � � 
, then it
does so for all � � 
. The following fact, which will be very useful for the proof
of our main results, is contained in Corollary 5 of [15].

Proposition 10.1 (Strong distributional convergence of hitting times). Let
.X;A ; 
; T / be ergodic and probability preserving and � � 
 some probability
measure. Let .Hl/l	1 be a sequence of asymptotically rare events. Then, for any
random variable R in Œ0;1�,


.Hl/ 'Hl
�H) R implies 
.Hl/ 'Hl

L .
/H) R. (10.6)

As a consequence, we see that proving 
.Hl/ 'Hl
�H) R for some particular �

is as good as proving it for any other probability measure.
We emphasize that the analogous statement for return-time statistics is false.

First, for an arbitrarily chosen probability � � 
, we may have �.Hl/ D 0, so
that the statement doesn’t even make sense. But even if �.Hl/ > 0, there is no
hope for a universality statement like that of the proposition. We illustrate this in the
simple setup of disjoint sequences .Hl/l	1.

Example 10.1. Let .X;A ; 
; T / be an ergodic probability-preserving system and
.Hl/l	1 a sequence of pairwise disjoint asymptotically rare events. Assume that, for

some non-constant random variable QR, we have QRl WD 
.Hl/ 'Hl


HlH) QR. Then

there is some probability � � 
 such that �.Hl/ > 0 for l � l� but QRl
�Hl» QR.

To see this, let t� 2 .0;1/ be a continuity point of QF .t/ WD PrŒ QR � t � such
that 0 < QF .t�/ < 1. Define H�l WD Hl \ f QRl � t�g, l � 1. By assumption,

Hl .H

�
l / ! QF .t�/, so that 
.H�l / > 0 for l � l�. Let Z WD S

l	l�H�l
and � WD 
Z . Since the Hl are pairwise disjoint, we find that �Hl . QRl � t�/ D
�.H�l /=�.Hl/ D 
.H�l /=
.H�l / D 1 for l � l�. Our claim follows.

10.3 Hitting-Time Statistics via Inducing

As before, we let .X;A ; 
; T / be an ergodic probability-preserving system. Now
fix some Y 2 A , 
.Y / > 0. It is a well-known classical result that the first-return
map TY W Y ! Y defined by

TY x WD T 'Y .x/x, x 2 Y ,
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is a measure-preserving ergodic map on the probability space .Y;A \ Y;
Y /. (For
measure preservation by more general versions of induced maps, see, e.g., [14].)
When studying specific systems, one often tries to find some good reference set
Y such that TY is more convenient a map than T . In this case, it often pays to
prove a relevant property first for TY and to transfer it back to T afterwards – if
possible. Here, we show that this strategy can be employed to deal with hitting-time
statistics. The conclusion is pleasantly simple, as the respective limit laws for T and
TY coincide.

In the following, we let 'YH W Y ! N denote the hitting time of H 2 A \ Y
under the first-return map TY , that is,

'YH .x/ WD inffj � 1 W T jY x 2 H g, x 2 Y . (10.7)

The hitting-time functions 'H and 'YH are naturally related to each other in that

'H D
'YH�1X
jD0

'Y ı T jY on Y . (10.8)

This can be exploited in a fairly straightforward manner to obtain

Theorem 10.2 (Hitting-time statistics via inducing). Let .X;A ; 
; T / be an
ergodic probability-preserving system and Y 2 A , 
.Y / > 0. Assume that .Hl/l	1
is a sequence of asymptotically rare events in A \ Y and that R is any random
variable with values in Œ0;1�. Then


Y .Hl/ '
Y
Hl


YH) R as l ! 1 (10.9)

iff


.Hl/ 'Hl

H) R as l ! 1. (10.10)

Proof. (i) Let F W Œ0;1/ ! Œ0; 1� be the (sub-)distribution function of R.

Due to Proposition 10.1 we know that in (10.10) convergence

H) w.r.t. 


is equivalent to convergence

YH) w.r.t. 
Y . It is therefore sufficient to prove

that


Y
�

.Y /�1
.Hl/ '

Y
Hl

� t
� �! F.t/ for all continuity points t > 0

(10.11)

iff


Y
�

.Hl/ 'Hl � t

� �! F.t/ for all continuity points t > 0. (10.12)
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To this end, we fix any continuity point t > 0 of F and any " > 0. Next, we
choose ı > 0 so small that

F.t/ � "=4 < F.e�ıt/ � F.eıt/ < F.t/C "=4: (10.13)

Since F is continuous on a dense set, we may also assume that both e�ıt and
eıt are continuity points of F .

(ii) By the Ergodic theorem and Kac’ formula, we have

m�1
Pm�1

jD0'Y ı T jY �! 
.Y /�1 a.e. on Y . (10.14)

This implies that the increasing sequence of sets given by

EM WD fPm�1
jD0'Y ı T jY � e�ı
.Y /�1m for all m �M g 2 A \ Y

satisfies 
Y .E
c
M / ! 0 as M ! 1. Now fix some M such that


Y .E
c
M / < "=4.

Next, let Fl WD f'YHl �M g 2 A \Y , l � 1. Then Fl D Y \TM�1
jD1 T

�j
Y Hc

l .

Hence 
Y .F c
l / �

PM�1
jD1 
Y .T

�j
Y Hl/ � M 
Y .Hl/ ! 0 as l ! 1, since

TY preserves 
Y , and the sequence .Hl/l	1 is asymptotically rare. Therefore
there is some L � 1 such that 
Y .F c

l / < "=4 for l � L.
(iii) Now recall (10.8). By definition of EM and Fl , we have

'Hl D
P'YHl

�1
jD0 'Y ı T jY � e�ı 
.Y /�1'YHl on Fl \EM .

Therefore, for any s > 0,

Fl \EM \ f
.Hl/ 'Hl � sg 
 Fl \EM \ f
.Y /�1
.Hl/ '
Y
Hl

� eısg;

and hence


Y
�

.Hl/ 'Hl � s

� � 
Y
�

.Y /�1
.Hl/ '

Y
Hl

� eıs
�C 
Y ..Fl \EM/c/

< 
Y
�

.Y /�1
.Hl/ '

Y
Hl

� eıs
�C "=2 for l � L.

(10.15)

(iv) Assume (10.11). Since eıt is a continuity point of F , we can pick L0 � 1 s.t.

Y .
.Y /

�1
.Hl/ '
Y
Hl

� eıt/ < F.eıt/ C "=4 for l � L0. Combining this
with (10.13) and with (10.15) for s WD t , we obtain


Y
�

.Hl/ 'Hl � t

�
< F.t/C " for l � max.L;L0/: (10.16)
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If, on the other hand, we start from (10.12), then 
Y
�

.Hl/ 'Hl � e�ıt

�
>

F.e�ıt/ � "=4 for l � L0 with L0 large enough, as e�ıt , too, is a continuity
point of F . Combining this with (10.13) and with (10.15) for s WD e�ıt , we get


Y
�

.Y /�1
.Hl/ '

Y
Hl

� t
�
> F.t/ � " for l � max.L;L0/: (10.17)

Versions of (10.16) and (10.17) providing the corresponding estimate in the
opposite direction are obtained in exactly the same way. As " > 0was arbitrary,
our claim follows. ut

In the proof, Proposition 10.1 was used at the very start to ensure that


.Hl/ 'Hl

H) R iff 
.Hl/ 'Hl


YH) R: (10.18)

This special case of strong distributional convergence can also be verified directly.
We indicate an argument which is somewhat more elementary than the theory
behind Proposition 10.1.

Proof (of (10.18), direct version). (i) Let F denote the (necessarily continuous, see
Theorem 10.1) sub-probability distribution function of R. To prove that for every
t > 0 (henceforth fixed),



�
'Hl � sl

�! F.t/ iff 
Y
�
Y \ f'Hl � slg

�! F.t/ (10.19)

with sl WD t=
.Hl/, we show that for " 2 .0; t/ there is some L0 � 1 s.t.


Y
�
Y \ f'Hl � s�l g

� � " < 
 �'Hl � sl
�
< 
Y

�
Y \ f'Hl � sCl g

�C ", (10.20)

for l � L0, where sl̇ WD .t ˙ "/=
.Hl/. Below we focus on the second of these
estimates. The other one is obtained by an analogous argument.

(ii) To switch from 
 on X to its restriction to Y in (10.20), we will show that


�
'Hl � sl

� 
 R
Y
'Y � 1f'Hl�sl g d
 (which only involves 
 on Y ). This

uses the well-known canonical representation (from the theory of induced
transformations)


.A/ DP
n	0
 .Y \ f'Y > ng \ T �nA/ for A 2 A : (10.21)

As 
 is finite, there is some N � such that

P
n>N�


 .Y \ f'Y > ng/ < "=4. (10.22)

We observe an approximate invariance property of the variables 'Hl . Note
that

'Hl ı T n D 'Hl � n on f'Hl > ng: (10.23)
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As .Hl/ is asymptotically rare, there is some L1 s.t. 
.'Hl � N �/ <

"=4.N � C 1/ for l � L1. Moreover, there is some L2 s.t. sl C N � �
.t ˙ "=2/=
.Hl/ DW s�l whenever l � L2. For n 2 f0; : : : ; N �g and
l � L1 _ L2 we then find that



�
Y \ f'Y > ng \ T �nf'Hl � slg

�
� 


�
Y \ f'Hl > N �g \ f'Y > ng \ f'Hl � sl C ng�C 


�f'Hl � N �g�
< 


�
Y \ f'Y > ng \ f'Hl � s�l g

�C "=4.N � C 1/:

Combining the preceding considerations, we then obtain



�
'Hl � sl

�
<
PN�

nD0

�
Y \ f'Y > ng \ T �nf'Hl � slg

�C "=4

<
PN�

nD0

�
Y \ f'Y > ng \ f'Hl � s�l g

�C 2"=4

�P
n	0


�
Y \ f'Y > ng \ f'Hl � s�l g

�C "=2

D R
Y
'Y � 1f'Hl�s�l g d
C "=2: (10.24)

(iii) We now verify that
R
Y
'Y � 1f'Hl�sl g d
 
 
.Y /�1


�
Y \ f'Hl � slg

�
. To this

end, we use that TY is measure preserving and write

R
Y
'Y � 1f'Hl�s�l g d
 D N�1

PN�1
nD0

R
Y
'Y ı T nY � 1f'Hl�s�l g ı T nY d
. (10.25)

Due to ergodicity of TY and the L1-ergodic theorem (plus Kac’ formula), we
can choose this N in such a way that

R
Y

ˇ̌
ˇN�1PN�1

nD0 'Y ı T nY � 
.Y /�1
ˇ̌
ˇ d
 < "=4, (10.26)

and hence, a fortiori,

N�1
PN�1

nD0
R
Y
.'Y ı T nY / 1f'Hl�sCl g d
 < 
Y

�
Y \ f'Hl � sCl g

�C "=4:

(10.27)

The left-hand expression here differs from the right-hand side of (10.25).
However, to switch from 1f'Hl�s�l g ı T nY to 1f'Hl�sCl g, we can again exploit

approximate invariance of the 'Hl . We first record that there is some ı > 0

such that

R
A
'Y ıT nY d
 < "=4 for all n � 0 and A 2 A \Y with 
.A/ < ı: (10.28)

Indeed, since TY is measure preserving on Y , it is immediate that the sequence
.'Y ı T nY /n	0 is uniformly integrable on Y , whence (10.28).
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Reviewing the idea which gave (10.23), we see that

'Hl ı T nY D 'Hl �
Pn�1

jD0'Y ı T jY on Y \ f'YHl > ng: (10.29)

Let ˚ WD PN�1
jD0 'Y ı T jY which is finite a.e. on Y . Take M so large that


.Y \f˚ > M g/ < ı=2. Next, chooseL3 such that 
.Y \f'YHl � N g/ < ı=2
and s�l CM � sCl whenever l � L3. Then Al WD Y \f˚ �M g\ f'YHl > N g
satisfies 
.Y nAl/ < ı for l � L3. For such l and n 2 f0; : : : ; N g, we thus get

R
Y
'Y ı T nY � 1f'Hl�s�l g ı T nY d

� R

Al
'Y ı T nY � 1f'Hl�s�l CM g d
C R

Y nAl 'Y ı T nY d

<
R
Y
'Y ı T nY � 1f'Hl�sCl g d
C "=4: (10.30)

(iv) The proof of the right-hand half of (10.20) is completed by letting L0 WD L1 _
L2 _ L3 and combining (10.24) with (10.30) and (10.27). ut

10.4 Return-Time Statistics via Inducing

We finally extend the applicability of the inducing method to return-time statistics
from the setup of [4] to the general abstract framework of measure-theoretic ergodic
theory. With Theorem 10.1 and Proposition 10.1 at our disposal, we can easily
pass from the fully general Theorem 10.2 to a corresponding result for return-
time statistics which does not require any further assumptions. This is a significant
improvement of Theorem 2.1 of [4], since the latter (a) only deals with a slightly
restricted class of limit laws where the limiting distribution QF of the return times
satisfies limt!0C QF .t/ D 0, i.e. there is no point mass at t D 0, (b) assumes
that X is a Riemannian manifold and (c) only applies to sequences .Hl/ of
"-neighbourhoods of typical (but not arbitrary) points of X .

Theorem 10.3 (Return-time statistics via inducing). Let .X;A ; 
; T / be an
ergodic probability-preserving system, and Y 2 A ,
.Y / > 0. Assume that .Hl/l	1
is a sequence of asymptotically rare events in A \ Y and that QR is any random
variable with values in Œ0;1�. Then


Y .Hl/ '
Y
Hl


HlH) QR as l ! 1 (10.31)

iff


.Hl/ 'Hl


HlH) QR as l ! 1: (10.32)
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Proof. Applying Theorem 10.1 to TY , we see that (10.31) is equivalent to


Y .Hl/ '
Y
Hl


YH) R as l ! 1; (10.33)

with R and QR related by the integral equation (10.4) for their respective distribution
functions F and QF . Due to Theorem 10.2, (10.33) is equivalent to


.Hl/ 'Hl

H) R as l ! 1: (10.34)

But then we can again apply Theorem 10.1, this time to T , to validate that (10.34)
is indeed equivalent to (10.32), as claimed. ut

References

1. Aaronson, J.: An Introduction to Infinite Ergodic Theory. AMS, New York (1997)
2. Abadi, M., Saussol, B.: Hitting and returning to rare events for all alpha-mixing processes.

Stoch. Process. Appl. 121, 314–323 (2011)
3. Billingsley, P.: Convergence of Probability Measures. 2nd edn. Wiley, New York (1999)
4. Bruin, H., Saussol, B., Troubetzkoy, S., Vaienti, S.: Return time statistics via inducing. Ergod.

Theor. Dyn. Syst. 23, 991–1013 (2003)
5. Bruin, H., Vaienti, S.: Return time statistics for unimodal maps. Fundam. Math. 176, 77–94

(2003)
6. Haydn, N., Lacroix, Y., Vaienti, S.: Hitting and return times in ergodic dynamical systems.

Ann. Probab. 33, 2043–2050 (2005)
7. Haydn, N.: A note on the limiting entry and return times distributions for induced maps.

preprint, arXiv: 1208.6059v1
8. Hirata, M., Saussol, B., Vaienti, S.: Statistics of return times: A general framework and new

applications. Commun. Math. Phys. 206, 33–55 (1999)
9. Keller, G.: Rare events, exponential hitting times and extremal indices via spectral perturbation.

Dyn. Syst. 27, 11–27 (2012)
10. Kupsa, M., Lacroix, Y.: Asymptotics for hitting times. Ann. Probab. 33, 610–619 (2005)
11. Lacroix, Y.: Possible limit laws for entrance times of an ergodic aperiodic dynamical system.

Israel J. Math. 132, 253–263 (2002)
12. Saussol, B.: An introduction to quantitative Poincaré recurrence in dynamical systems. Rev.

Math. Phys. 21, 949–979 (2009)
13. Winterberg, N.: Return time statistics of ergodic dynamical systems. M.Sc Thesis, Universität

Salzburg, June 2012.
14. Zweimüller, R.: Invariant measures for general(ized) induced transformations. Proc. Am. Math.

Soc. 133, 2283–2295 (2005)
15. Zweimüller, R.: Mixing limit theorems for ergodic transformations. J. Theor. Probab. 20,

1059–1071 (2007)


	Preface
	Contents
	List of Contributors
	1 Nonautonomous Flows as Open Dynamical Systems: Characterising Escape Rates and Time-Varying Boundaries
	1.1 Introduction
	1.2 The Perturbative Setting
	1.3 Boundaries Between Open Dynamical Systems: Invariant Manifolds
	1.4 Flux Quantification
	1.5 Simplifications of Flux Formulæ in the Subcases
	1.6 Concluding Remarks
	References

	2 Eigenvalues of Transfer Operators for Dynamical Systems with Holes
	2.1 Introduction
	2.2 Eigenvalue Estimates via Weyl's Inequality
	2.3 The Common Spectrum
	2.4 Hilbert Hardy Space
	References

	3 Periodic Points, Escape Rates and Escape Measures
	3.1 Introduction
	3.2 Transfer Operators and Determinants
	3.3 Determining the Escape Rate
	3.4 Determining the Escape Measure
	3.5 An Example
	3.5.1 The Escape Rate
	3.5.2 The Escape Measure

	References

	4 A Multi-time Step Method to Compute Optical Flowwith Scientific Priors for Observations of a Fluidic System
	4.1 Introduction
	4.2 Classical Optical Flow Method
	4.2.1 Euler–Lagrange Equations
	4.2.2 Solution to the Optical Flow Problem

	4.3 Stream Function Method
	4.4 Multi-time Step Method
	4.5 Scientific Priors 
	4.6 Results from Multi-time Step Method
	4.6.1 Synthetic Data
	4.6.2 An Oceanographic Data Set

	4.7 Mixing and Transport Barriers 
	4.8 Conclusion
	References

	5 Numerical Approximation of Conditionally Invariant Measures via Maximum Entropy
	5.1 Introduction
	5.1.1 Nonsingular Open Dynamical Systems
	5.1.2 Escape, Conditionally Invariant Measures and Their Supports
	5.1.3 Conditional Transfer Operators and the Multiplicity of ACCIMs

	5.2 Convex Optimisation for the ACCIM Problem
	5.2.1 Moment Formulation of the ACCIM Problem
	5.2.2 Convex Duality for Problem (Pn,α)
	5.2.3 Domain Reduction and Dual Optimality Conditions

	5.3 A MAXENT Procedure for Approximating ACCIMs
	5.3.1 Piecewise Constant Test Functions and Domain Reduction
	5.3.2 Iterative Solution of the Optimality Equations
	5.3.3 Sketch Proof of Convergence of the Fixed Point Iteration
	5.3.4 Examples

	5.4 Concluding Remarks
	References

	6 Lebesgue Ergodicity of a Dissipative Subtractive Algorithm 
	6.1 Introduction
	6.2 The Proof of Theorem 7.3
	6.2.1 Finding Convenient Coordinates
	6.2.2 Distortion Results
	6.2.3 Growth of αk and k at Different Points
	6.2.4 The Main Proof

	References

	7 Improved Estimates of Survival Probabilities via Isospectral Transformations
	7.1 Introduction
	7.2 Open and Closed Dynamical Systems
	7.3 Piecewise Linear Functions
	7.4 Nonlinear Estimates
	7.5 Improved Escape Estimates
	7.6 Conclusion
	References

	8 Dispersing Billiards with Small Holes
	8.1 Introduction
	8.1.1 Preliminaries
	8.1.1.1 Rates of Escape
	8.1.1.2 Conditionally Invariant Measures
	8.1.1.3 Pressure on the Survivor Set


	8.2 Setting and Results
	8.2.1 Classes of Dispersing Billiards
	8.2.1.1 Periodic Lorentz Gas
	8.2.1.2 Billiards with Corner Points
	8.2.1.3 Hyperbolicity and Singularities of Dispersing Billiards

	8.2.2 Admissible Holes
	8.2.2.1 I. Openings in the Boundary of Q
	8.2.2.2 II. Holes in the Interior of Q
	8.2.2.3 III. Corner and Side Pockets
	8.2.2.4 IV. Generalized Holes and Partially Absorbing Walls

	8.2.3 Transfer Operator
	8.2.4 Main Results

	8.3 Analytical Framework
	8.3.1 Representation of Admissible Stable Curves
	8.3.2 Norms
	8.3.3 Uniform Properties of T
	8.3.4 Verifying (A1)–(A5) for Our Classes of Maps
	8.3.5 Properties of the Banach Spaces
	8.3.5.1 Working with Higher Iterates of T


	8.4 Extension to Open Systems
	8.4.1 Complexity Bound and Proof of Proposition 8.1
	8.4.2 Proof of Proposition 8.2
	8.4.2.1 Proofs of Lemmas 8.5 and 8.6

	8.4.3 Proof of Theorems 8.1 and 8.2

	8.5 Variational Principle
	8.5.1 Definition of νH
	8.5.2 Review: Young Towers with Holes
	8.5.2.1 Generalized Horseshoes
	8.5.2.2 Induced Markov Extensions
	8.5.2.3 Towers with Holes

	8.5.3 Proof of Theorem 8.3 Assuming a Young Tower Respecting H
	8.5.4 Existence of a Young Tower Respecting the Hole

	References

	9 Almost-Invariant and Finite-Time Coherent Sets: Directionality, Duration, and Diffusion 
	9.1 Introduction
	9.2 Transfer Operators and Three Transport Problems
	9.2.1 Autonomous, Time-Independent, or Periodically Forced Dynamics
	9.2.2 Nonautonomous, Time-Dependent,or Aperiodically Forced Dynamics: Single Time Direction
	9.2.3 Nonautonomous, Time-Dependent,or Aperiodically Forced Dynamics: Both Time Directions

	9.3 Two Key Tools
	9.3.1 A Building Block Operator
	9.3.2 Optimality Properties of Compact Self-Adjoint Operators on Hilbert Space

	9.4 Main Constructions and Results
	9.4.1 Autonomous Dynamics
	9.4.2 Nonautonomous or Time-Dependent Dynamics: Single Time Direction
	9.4.3 Nonautonomous or Time-Dependent Dynamics: Both Time Directions

	9.5 Further Discussion
	9.5.1 Single- vs. Bidirectional Coherence
	9.5.2 Creating a Sequence of Finite-Time Coherent Sets
	9.5.3 Further Mathematical Properties of the Coherent Set Framework

	9.6 Numerical Representations of Transfer Operators
	9.6.1 Numerically Representing P and L
	9.6.2 Numerical Representation of Pε and Lε
	9.6.3 Autonomous Setting
	9.6.4 Nonautonomous Setting: Single Direction
	9.6.5 Nonautonomous Setting: Both Directions

	9.7 Numerical Examples
	9.7.1 Case Study 1: Periodically Driven Double Gyre Flow
	9.7.1.1 Almost-Invariant Sets
	9.7.1.2 Finite-Time Coherent Sets: Single Time Direction
	9.7.1.3 Finite-Time Coherent Sets: Both Time Directions

	9.7.2 Case Study 2: Transitory Double Gyre Flow

	9.8 Summary
	9.9 Appendix
	9.9.1 Proof of Theorem 9.3
	9.9.1.1 Lower Bound
	9.9.1.2 Upper Bound


	References

	10 Return-Time Statistics, Hitting-Time Statistics and Inducing
	10.1 Introduction
	10.2 Preliminaries
	10.2.1 Distributional Convergence
	10.2.2 Relation Between Return-Timeand Hitting-Time Statistics
	10.2.3 Strong Distributional Convergence for Hitting Times of Rare Events

	10.3 Hitting-Time Statistics via Inducing
	10.4 Return-Time Statistics via Inducing
	References




