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Preface

Cells are individuals. Even microbial cells, which in case of some environmental
bacteria present a size down to 0.4 or 0.5 lm, deviate from each other in terms of
life cycle, protein composition, and metabolism. This heterogeneity results from
distinct intrinsic cell features like age, stage in cell cycle and position of the
division plane, gene transfer or loss, mutations, or epigenetic inheritance. Simi-
larly, external parameters influence cellular features due to various micro-envi-
ronmental inhomogeneities comprising, e.g., the availability of carbon or other
sources of energy and of electron acceptors like oxygen and the prevalence of
stress conditions like, e.g., mechanical pressure.

All these parameters influence the efficiency of a cell in a biotechnological
process. Since every cell contributes to the product yield of, e.g., a fermentation
process in industrial biotechnology, dead, inactive or weakly active cells will limit
this productivity. Therefore, single cell-related analytical techniques need to be
involved in the evaluation and control of such processes. Although many of such
technologies are already successfully used in medical sciences, where human cell
populations are investigated with a new generation of amazing instruments, this is
not true for microorganisms. One reason for this discrepancy is the priority of
medical research in terms of funding. A more scientific point is the fact that
microbial cells comprise only a thousandth of the volume of a normal blood cell
and are therefore much more difficult to observe and to analyse.

In recent years, however, microorganisms have started to come into the focus of
many fields as, e.g., chemistry, which were since long thought to have no interest
in these ‘un-steerable’ organisms. This is because microorganisms are not only
tremendously diverse from a phylogenetic point of view, they also catalyse a
wealth of biochemical processes which can be used, e.g., in white biotechnology or
in energy producing processes like biogas production. Very often the organisms
involved in such applications are still unknown with regard to affiliation and
function. Since most of these microorganisms still cannot be cultivated as a pure
culture, single cell techniques to follow their performance are of utmost interest
and necessity.

xi



Still such techniques are expensive and often difficult to operate. Usually they
are used in research laboratories to understand the very basic principles of
microbial life. In a few cases, however, people have already tried to obtain
information referring to individual microorganisms by using single cell technol-
ogies, either relying on sophisticated but also on cheaper equipment, based on
chip- and microfluidic devices. Remarkable insights into cell behaviour have
already been obtained by using such small-scale and sometimes partly disposable
instrumentations.

Population dynamics or subpopulation dynamics in biotechnologically or
environmentally relevant processes are responsible for the variability in seemingly
homogeneous populations under seemingly homogeneous micro-environmental
conditions and result in surprisingly quick intra-population changes within a
‘stable’ process. Here, not only live/dead states play a crucial role in population
development but also the above mentioned intrinsic parameters. For a deeper
understanding and forecasting of the behaviour of microbial populations quanti-
tative analysis and mapping into mathematical models will provide the indis-
pensable theoretical foundations. In this context, we can make use of a broad panel
of different model concepts. Their usefulness has to be proven by their ability to
assign the characteristic features of single cells or of segregated subpopulations to
the model variables. These models will ultimately allow to develop, control and
enhance microbial performances in bioreactors or in locally confined, natural
systems where microorganisms are used for distinct tasks.

All in all, microbial single cell analytics evolved to a large degree within the
last 10 years. Nevertheless, these technologies are still on the edge and have the
potential to become far more usable and useful for basic research and for appli-
cation in already well established microbial processes. We hope that this volume
intrigues the reader to learn more about microorganism and their complexity but
mainly on the techniques which can be used to understand their basic principles of
live and survival. Highly resolved information on these small organisms will
enable us to quantify their life and to orchestrate their abilities to a successful
control and optimisation of bioprocesses.

We would like to thank all the authors for their valuable contributions and
discussions on the topic. We also want to thank Springer for implementation of
this project as well as Thomas Scheper and Ingrid Samide for suggestions, ideas,
and patience during the preparation of the volume.

Spring, 2011 Susann Müller
Thomas Bley
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Light Microscopic Analysis
of Mitochondrial Heterogeneity in Cell
Populations and Within Single Cells

Stefan Jakobs, Stefan Stoldt and Daniel Neumann

Abstract Heterogeneity in the shapes of individual multicellular organisms is a
daily experience. Likewise, even a quick glance through the ocular of a light
microscope reveals the morphological heterogeneities in genetically identical
cultured cells, whereas heterogeneities on the level of the organelles are much less
obvious. This short review focuses on intracellular heterogeneities at the example
of the mitochondria and their analysis by fluorescence microscopy. The overall
mitochondrial shape as well as mitochondrial dynamics can be studied by classical
(fluorescence) light microscopy. However, with an organelle diameter generally
close to the resolution limit of light, the heterogeneities within mitochondria
cannot be resolved with conventional light microscopy. Therefore, we briefly
discuss here the potential of subdiffraction light microscopy (nanoscopy) to study
inner-mitochondrial heterogeneities.

Keywords Fluorescence microscopy � Mitochondria � Nanoscopy �
Single-cell heterogeneity � Super-resolution microscopy

Abbreviations

GSD microscopy Ground state depletion microscopy
GSDIM Ground state depletion microscopy followed by individual

molecule return
MMP Mitochondrial membrane potential
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RESOLFT Reversible saturable/switchable optical linear (fluorescence)

transitions
STED microscopy Stimulated emission depletion microscopy
STORM Stochastic optical reconstruction microscopy
TOM Translocase of the outer membrane
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1 Mitochondria: The Powerhouses of the Cell

Oxidative phosphorylation (OXPHOS) takes place in mitochondria, and thus these
organelles are crucial for the regeneration of ATP from ADP and inorganic
phosphate in respiration [112]. They are the ‘powerhouses of the cell’ [84, 115]. In
addition, several other essential metabolic pathways take place in these organelles,
such as the b-oxidation of fatty acids [66], the formation of iron-sulfur centers
[76], the urea cycle, as well as the biogenesis of pyridines, nucleotides and
phospholipids [116]. Mitochondria take part in the cellular Ca2+ homeostasis
[61, 127], and they play an important role during the progression of programmed
cell death referred to as apoptosis [25, 42, 70].

Especially in the last 2 decades, it has become clear that mitochondria also play
a crucial role in a number of human diseases [36, 94], including diabetes mellitus
[93], cancer [12, 15, 86], neurodegenerative diseases such as Parkinson’s and
Alzheimer’s [72, 106, 128], and several others. Further, mitochondrial (dis-)
function has been linked to the cellular aging processes, characterized by impaired
levels of oxidative phosphorylation and increasing amounts of reactive oxygen
species [88, 115].

2 Mitochondrial Heterogeneity Between Different Species

The term mitochondrium [6] is derived from the Greek words mitos, which stands
for fiber or thread, and chondros, which means grain or corn. Put together, they can
be translated as a thread-like grain; thus, the word already indicates the hetero-
geneity of the mitochondrial morphology, which has been known since this
organelle was first described [68].

2 S. Jakobs et al.



In the last 3 decades, most studies investigating the morphology and dynamics of
mitochondria have relied on various forms of far-field fluorescence microscopy
imaging mitochondria that were stained with specific fluorescent dyes or tagged with
fluorescent proteins [62]. Mitochondrial morphology and dynamics have been
studied in many eukaryotic organisms, ranging from monocellular yeasts [63, 95, 96]
to higher multicellular eukaryotes, including plants [3, 77, 122] and mammals
[7, 27, 71, 75, 108].

Examples of diverse mitochondrial shapes in different organisms are shown in
Fig. 1. The spherical mitochondria in the guard cells of a tobacco plant (Fig. 1b)
vary considerably from the tubular mitochondria in budding yeast (Fig. 1a) or
from the complex mitochondrial networks of a cultivated human cancer cell
(Fig. 1c). Mitochondria in plant cells often do not form a continuous network, and
they are frequently located next to chloroplasts. Indeed, plant mitochondria differ
substantially from mitochondria of other eukaryotes in a number of aspects,
including different strategies for genome maintenance, genetic decoding, gene
regulation and organelle segregation [9, 80, 104, 105]. In the plant Arabidopsis
thaliana, the mitochondrial proteome encompasses about 3,000 proteins [10],
whereas about 1,000 different mitochondrial proteins were predicted for budding
yeast [85, 103] and about 1,500 for human cells [85].

3 Mitochondrial Heterogeneity Between Different Cell Types

In most cultivated mammalian cells mitochondria form a complex, more or less
connected network [39]. These mitochondria have a similar set of proteins and
fulfill similar metabolic needs; still, their actual shape may vary considerably:

Fig. 1 Different mitochondrial morphologies in fungi, plant and mammalian cells. Fluorescence
micrographs of the budding yeast Saccharomyces cerevisiae (a), a guard cell of the tobacco plant
Nicotiana tabacum (b) and a cultured human (U2OS) cell (c). In a and b the mitochondria (green)
were labeled by the expression of the green fluorescent protein (GFP) targeted to the
mitochondrial matrix. In c the mitochondria (green) were immunostained by an antibody against
the mitochondrial outer membrane protein Tom20. The chloroplasts (b) (red) were visualized
using their strong autofluorescence. The nuclei (a, c) (blue) were highlighted with DAPI

Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations 3



Fig. 2 Mitochondrial heterogeneities between different mammalian cell types. a The overall
mitochondrial morphologies differ between three human carcinoma cell types (HeLa cervical
carcinoma, SHEP neuroblastoma, RCC-MF renal cell carinoma). Mitochondria were immuno-
stained with an antiserum against the mitochondrial protein Tom20; the nuclei were labeled with
DAPI. Shown are representative images taken with an epi-fluorescence microscope. b The
mitochondrial membrane potential (MMP) reflects the functional status of mitochondria. The mean
MMP varies significantly between different mammalian cell types (from [58], with permission)
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Whereas the mitochondria of HeLa (derived from a human cervical carcinoma)
and SHEP (derived from a human neuroblastoma) cells build up a highly
interconnected, dense meshwork of slightly curled mitochondrial tubules; the
mitochondria of RCC-MF (human renal cell carcinoma) cells are much less
interconnected, and the straight mitochondrial tubules appear to radiate from
the nucleus (Fig. 2a). However, a more spherical grain-like morphology has
been observed in a few cell types [2, 20]. Moreover, in addition to these
overall shape differences, also more subtle but characteristic distinctions in
the diameter of the mitochondrial tubules of different cell types have been
reported [31].

Morphologic shape differences in genetically similar cells are not restricted to
closely related mammalian cell lines, but have also been described in other
kingdoms. For example, in most plant tissues, the mitochondria exhibit spherical
structures of uniform diameter. However, in certain cell types within the vascular
tissue, the shapes range from sausage-shaped to long worm-like forms [78].

In addition to these morphological variations, Huang et al. reported on different
mitochondrial membrane potentials in various mammalian cell types (Fig. 2b). The
mitochondrial membrane potential is a key indicator of cellular viability, as it reflects
the pumping of protons across the inner membrane during the process of electron
transport and oxidative phosphorylation. The mean MMP in the analyzed cell types
ranged from -112 ± 2 mV in fibroblasts to -87 ± 2 mV in SH-SY5Y cells,
suggesting specific adaptations to the energy demands of the respective cells [58].

Hence, there can be large differences in the shapes of the mitochondria of
different cells. Some of these differences may be attributed to different functional
tasks of the respective cells, whereas other shapes are less obvious to comprehend.
Obviously, cells have a wide repertoire of potential mitochondrial morphologies
that may be adapted to the specific metabolic state of the cell.

4 Mitochondrial Shape Changes in a Cell Over Time

4.1 Structural Adaptations to the Cellular Energy Demands

The main physiological role of mitochondria is to generate ATP. Frequently, a
connection between mitochondrial structure and the bioenergetical requirements of
the cell has been suggested [5, 13, 109, 131]. For example, in budding yeast cells
(S. cerevisiae), the volume of the mitochondrial reticulum is increased up to three-
fold after changing from a fermentable (glucose) to a non-fermentable (glycerol)
carbon source (Fig. 3a) [34, 125]. When glucose is available in large amounts in
the budding yeast, respiration is repressed and ATP is primarily produced via
glycolysis (without involvement of mitochondria), a phenomenon also known as
the ‘‘Crabtree effect’’ [24, 26, 29, 37]. Therefore, only under non-fermentable

Light Microscopic Analysis of Mitochondrial Heterogeneity in Cell Populations 5



conditions are mitochondria required for ATP production. This is a clear example
of mitochondrial shape adaptations to different energy needs.

Likewise, it has been reported that in drought-stressed spinach leaves, a
decrease of the mitochondrial volume in parenchyma cells can be observed [138].
This reduced mitochondrial volume has been suggested to be caused by glucose
starvation deriving from decreased photosynthetic activity.

The energy requirements of the cell may also influence the inner structure of the
mitochondria. Depending on the ADP concentration, the architecture of the inner
membrane can change between a condensed and an orthodox state [43]. Electron
tomography revealed that in the condensed state, the matrix is compacted, and the
cristae form large compartments with multiple tubular connections to the peripheral
region as well as to each other. In the orthodox state, the matrix is expanded, and the
cristae tend to be tubes or short flat lamellae with one or two openings in the
peripheral region of the inner membrane (Fig. 3b) [82]. It has been suggested that
this morphological transition could result in the elimination of diffusion bottlenecks
inside large intracristal compartments that would otherwise reduce the efficiency of
ATP production [82, 83].

Fig. 3 Mitochondrial shape adaptations to different conditions. a The mitochondrial network of
the budding yeast S. cerevisiae adapts to different carbon sources in the growth medium. Shown
are 3D reconstructions of the mitochondria of living cells labeled with the green fluorescent
protein (GFP). The cells were grown in a fermentable (glucose) or a non-fermentable (glycerol)
growth medium. Images were taken with a multifocal multiphoton 4Pi-confocal microscope
(from [34], with permission). b Electron tomographic reconstructions of rat liver mitochondria
reveal changes in the mitochondrial inner membrane topology associated with the orthodox-
condensed transition. The mitochondrial outer membrane is shown in red, the inner boundary
membrane in yellow and the cristae in green. The depicted mitochondria have diameters of
1,500 nm (left) and 500 nm (right) (from [82], with permission). c Mitochondria in unchallenged
cultivated mammalian cells (U2OS) adopt a tubular shape, forming an interconnected network
(left). Upon induction of apoptosis (10 lM actinomycin D for 12 h), the network fragments,
resulting in numerous small mitochondria with a spherical shape (right). For visualization, the
mitochondria were labeled with an antiserum against the mitochondrial protein Tom20 and
imaged with a confocal microscope
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4.2 Fusion and Fission

In healthy cells, mitochondrial fusion and fission events are in an equilibrium so that
their relative rates determine the average size of the individual mitochondrial tubules
and the degree of network connectivity [7, 18, 19, 56, 63, 95]. In the fission yeast
Schizosaccharomyces pombe, the equilibrium is shifted during mitosis to fission,
resulting in highly fragmented mitochondria [65]. A similar observation has been
made in budding yeast cells undergoing meiosis [41]. A tempting explanation for
these temporal fragmentations is the conversion of a low copy number organelle into
a high copy number one, thus increasing the chance to distribute a sufficient number
of mitochondria for each daughter cell to commence the next cell cycle [65, 79, 130].

Another process where excessive fission takes place is apoptosis. Upon
induction of the cell death program, the mitochondrial network disintegrates,
yielding numerous and smaller mitochondria (Fig. 3c) [17, 64, 137]. Whether this
fragmentation of the mitochondrial network has a functional relevance for the
ongoing cell death program or if it is just a by-product is still under debate
[16, 38, 73, 98, 123, 137]. Apoptosis is also accompanied by a remodeling of the
mitochondrial inner membrane [120, 129, 135, 136].

5 Mitochondrial Heterogeneity Within a Single Cell
at a Certain Time

5.1 Morphological Heterogeneity

The distribution and shape of the mitochondria in many cultured mammalian cells
are rather heterogeneous. Although they may disperse throughout the whole
cytosol, frequently a pronounced tendency of aggregation around the nucleus can
be observed (Figs. 1, 2a) [7, 20, 39]. But are the mitochondria of a cell luminally
continuous? To address this question, Collins and coworkers performed FRAP
(fluorescence recovery after photobleaching) experiments with different cell types
including HeLa, PAEC, COS-7, HUVEC, cortical astrocytes and neuronal cells
expressing a fluorescent protein in the mitochondrial matrix [20]. It was observed
that the fluorescence in the bleached regions did not recover to[10% of its initial
value 1 h after irradiation. These data suggest that in the analyzed cells, the
mitochondria were largely disconnected, possibly indicating functional heteroge-
neities of the mitochondria within a single cell.

5.2 Functional Heterogeneity

For pancreatic acinar cells, the existence of three distinct groups of mitochondria
with different functions was shown [97]: perigranular mitochondria, perinuclear
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mitochondria and peripheral mitochondria near the basal plasma membrane.
Photobleaching experiments indicated that these three groups are not luminally
connected and respond differently to cytosolic Ca2+ signals. Therefore, it was
suggested that they participate in the local regulation of Ca2+ homeostasis.

Differences between mitochondria within a single cell were not only revealed
by their response to Ca2+ levels, but also by their membrane potential. The
membrane potential is a potent functional readout of mitochondrial activity and
can be monitored by using positively charged, lipophilic fluorescent dyes [62, 74,
92, 113], including JC-1 (tetrachloro-1,1,3,3-tetraethylbenzimidazol-carbocya-
nine-iodide) [124] and TMRM (tetramethylrhodamine-methyl-ester) [35]. JC-1 is
a green fluorescent monomer at low membrane potentials and forms orange/red
fluorescent aggregates at high membrane potentials. The appropriateness of JC-1
has been controversially discussed, because it provides only a qualitative readout
on the membrane potential, and the staining efficiency is concentration and salt
dependent [92, 126, 133]. Still, using JC-1, it was demonstrated that within a
single HeLa cell, mitochondria exhibiting green fluorescence coexist with red
fluorescing mitochondria (Fig. 4) [20]. Heterogeneities in the membrane potential
were also conclusively reported using TMRM allowing quantitative studies
[14, 28, 30, 126, 132].

These findings demonstrate that even in cells with morphologically rather
similar mitochondria, pools of functionally distinct mitochondria may exist.
Hence, presumably not unexpectedly, functional heterogeneities within the
mitochondria were also observed in nerve cells, which exhibit a pronounced
spatial and functional asymmetry. For example, in one of the largest nerve

Fig. 4 Heterogeneity in the functional status of mitochondria within a single cell. Heterogeneity
in the mitochondrial membrane potential is revealed by the dye JC-1 in HeLa cells. JC-1 is a
green fluorescent monomer at low membrane potentials and forms orange/red fluorescent
aggregates at high membrane potentials. Thus, the different colors of the fluorescence emission
indicate the heterogeneity of the mitochondrial membrane potential in a single cell (from [20])
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terminals in the central nervous system of mammals, the calyx of Held [45], two
mitochondrial subpopulations were described: a small mitochondrial population
with complex geometries located near the presynaptic membrane called the
mitochondria-associated adherens complex (MAC) and a large mitochondrial
pool with a simpler architecture, which was not preferentially located near pre-
synaptic membranes [110]. The MAC-forming mitochondria were suggested to
play a central role in high rate, temporally precise neurotransmission. Further,
electron tomography revealed that these MAC-forming mitochondria have a
specialized ultrastructure exhibiting a polarized cristae architecture in that cristae
junctions were aligned with the cytoskeleton and occurred at higher density in the
mitochondrial membrane that faces the presynaptic membrane [102].

These data conclusively indicate that, at least in some cell types, morpholog-
ically and functionally distinct mitochondrial subpopulations exist. However, very
little is known about whether such functional differences are due to different
protein distributions within the mitochondria.

6 Nanoscopy of Protein Distributions in Mitochondria

Almost all that we know about the inner architecture of mitochondria comes from
electron microscopy and electron tomography data. These techniques are very
powerful for dissecting the membrane architecture of the organelles, but are
generally less well suited to study the distributions of proteins, requiring specific
labeling, ideally in living cells. For these challenges, fluorescence microscopy is
generally the method of choice.

However, the wave nature of light imposes a seemingly fundamental limit to
the attainable resolution of light microscopes. According to Abbe, the resolution
limitation is ultimately rooted in the phenomenon of diffraction [1]. Because of
diffraction, focusing of light always results in a blurred spot [11], whose size
determines the resolution. Thus, the highest achievable resolution with objective
lenses and visible light is *180 nm in the imaging plane. When using a single
lens, the resolution along the optical axis is inescapably worse; even confocal or
two photon fluorescence microscopes, which stand out in their ability to provide
3D images by optical sectioning, can only distinguish fluorescent objects if their
axial separation is at least 500–800 nm.

For this reason, it has been impossible to resolve protein distributions within the
inner membrane of unaltered mitochondria using light microscopy [134]. Like-
wise, the protein density in mitochondria is apparently so high that also protein
complexes in the mitochondrial matrix or in the outer membrane have proved to be
non-resolvable by conventional light microscopy. In fact, not very long ago,
obtaining a spatial resolution sufficient to resolve inner-mitochondrial features
with an optical microscope that uses lenses and focused visible light was con-
sidered unfeasible.
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6.1 Concepts to Overcome the Diffraction Barrier

In recent years, a number of ‘nanoscopy’ or ‘superresolution’ fluorescence
microscopy techniques have been invented to fundamentally overcome the dif-
fraction barrier. A number of excellent and exhaustive reviews describing the
theory as well as the practical details are available [47, 48, 57, 99]. Therefore, we
give here only a brief overview of the concepts of the various nanoscopy schemes.

Stimulated emission depletion (STED) microscopy [53] and ground state
depletion (GSD) microscopy [52] were the first concrete and viable physical
concepts to fundamentally overcome the limiting role of diffraction in a lens-
based optical microscope. In brief, STED and GSD use a selected pair of bright
(fluorescent) and dark (non-fluorescent) fluorophore states to restrict the bright
state to subdiffraction dimensions. To this end, optical transitions are utilized
that allow one to transiently switch off the ability of the dye to fluoresce by
confining the dye to a dark state. The transition is effected with a light
intensity distribution featuring a zero, switching the fluorescence off every-
where except at the zero where the fluorophore is still allowed to be bright.
Moving the zero across the specimen switches the signal of adjacent features
sequentially on and off, allowing their separate registration. This allows one to
image fine structures that would otherwise be blurred in a conventional dif-
fraction-limited image. Hence, the spatial confinement of molecular states
allows the elimination of the resolution-limiting effect of diffraction without
eliminating the diffraction.

In its initial demonstration, STED microscopy was realized as a point-scanning
system (Fig. 5), whereby the excitation focus was a normal confocal spot and the

Fig. 5 Schematic drawing of a point-scanning STED microscope. Excitation and STED are
accomplished with synchronized laser pulses focused by a lens onto the sample, sketched as blue
and red beams, respectively. Fluorescence is registered with a detector. A phase plate is placed in
the light path of the STED beam to create a ring-shaped focus featuring an intensity zero in its
center. Measured intensity distributions in the focus are shown on the right. The diffraction limited
excitation focus is overlapped with the ring-shaped STED focus. Saturated depletion confines the
region of excited molecules to the zero, leaving an effective focus of subdiffraction dimensions
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STED focus resembled a doughnut, featuring a light intensity zero in the center
[67]. Figure 5 shows a typical experimental focal intensity distribution of the
excitation spot (blue), overlapped with a STED-spot (red) featuring a central
intensity zero. Saturated depletion inhibits the fluorescence everywhere except at
the very center of the focal region.

Later, the concept of STED and GSD microscopy was expanded to photos-
witching molecules, including synthetic organic molecules and reversibly photo-
switchable fluorescent proteins (RSFPs). This family of approaches was named
RESOLFT, standing for reversible saturable/switchable optical linear (fluores-
cence) transitions [46, 50, 51]. The RESOLFT concepts are purely ‘‘physical’’ or
‘‘physicochemical’’ concepts, because the subdiffraction resolution is a direct
consequence of the molecular transition employed. Because the position of the
zero is defined with the RESOLFT concepts, e.g., it is defined where the molecules
are ‘‘on’’ and where they are ‘‘off,’’ these concepts operate with any number of
molecules, ranging from single to many (Fig. 6a).

The concept of switching is also essential in more recent far-field fluorescence
nanoscopy approaches referred to here as superresolution microscopy by single-
molecule switching and localization, which differ from the RESOLFT concepts by
the fact that they switch molecules stochastically in space and utilize mathematics
to assemble the image (Fig. 6). This family of approaches has been initially
implemented independently by several groups and named photoactivated locali-
zation microscopy (PALM) [8], fluorescence photoactivated localization micros-
copy (FPALM) [55] and stochastic optical reconstruction microscopy (STORM)
[111].

The operating principle of these concepts is to start with the vast majority of
labels in an inactive (dark) state, not contributing to the fluorescence (Fig. 6b).
A small fraction (�1%) is then stochastically transferred to the fluorescence state
so that the single molecules can be individually imaged and localized to give
nanometer-level precision coordinates. After the coordinates have been recorded,
the bright fluorophores are then removed (e.g., by bleaching, thermal relaxation, or
otherwise) so that a new subset of the fluorophores can be transferred into the
fluorescent state and recorded to obtain an additional set of molecular coordinates.
This process is repeated thousands of times until a sufficient number of molecular
coordinates is recorded. Importantly, the molecular coordinates do not have infinite
localization accuracy, but the localization accuracy depends on the number of
emitted photons from the individually localized single molecule. Finally, a com-
posite single-molecule nanoscopy image of all these coordinates is created.

6.2 Nanoscopy on Mitochondria

As described above, several studies using conventional light microscopy or elec-
tron microscopy have provided ample evidence on morphological and functional
heterogeneities of mitochondria within single cells. However, due to the previous
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lack of appropriate technologies, it is still largely unclear whether these hetero-
geneities also reflect heterogeneities in the sub-mitochondrial distribution of
proteins. Until the advent of the nanoscopy concepts detailed above, it had proved
to be very challenging or even impossible to address such questions because many
mitochondrial protein complexes could not be resolved with conventional
microscopy due to the limited resolution. For example, the TOM complexes,
which are the primary import pores for nuclear encoded mitochondrial proteins,
proved to be so densely packed in the mitochondrial outer membrane that it
required STED microscopy to reveal individual TOM clusters in the mitochondrial
outer membrane (Fig. 7a) [32]. Likewise, STED microscopy in combination with
co-localization algorithms was used to determine quantitatively the degree of
co-localization between hexokinase-I and each of the three isoforms of the human
voltage-dependent anion-selective channel (hVDAC). The nanoscopy data showed

Fig. 6 Concepts to overcome the diffraction barrier. To resolve image details that are closer than
the diffraction limit, all far-field fluorescence nanoscopy concepts realized so far switch the
fluorophore between two distinguishable states, a bright state A and a dark state B, to construct
subdiffraction images. a In the targeted readout mode, a spatial light intensity distribution
I(x, t) having a zero intensity point in space switches the molecules such that one of the states
(here: A) is confined to subdiffraction dimensions. The image is assembled by scanning the zero
over the sample and recording adjacent features sequentially in time. To parallelize the recording
procedure, the zero can also be line shaped or an array of zero lines. As the zero is translated
across the object, the molecules undergo several times the transition B ? A ? B, which explains
the need for reversible transitions A  ! B. b The stochastic readout mode detects single
fluorophores from a random position within the diffraction zone. To this end, a molecule is
transferred to a state A that is able to emit m � 1 photons in a row, while the neighboring
molecules remain in the dark state B. The distance between molecules in state A should be larger
than the diffraction limit. The detection of m � 1 photons allows the calculation of the
coordinate of emission from the centroid of the diffraction fluorescence spot formed on a camera.
After the recording, the molecule is switched off to B in order to allow the recording of an
adjacent molecule. If it is sufficient to record a single picture, the stochastic readout requires each
molecule to cycle only once B ? A ? B (adapted from [49], with permission)
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that the degree of co-localization between hVDAC and hexokinase-I is isoform-
specific, suggesting a more complex interplay of these proteins than previously
anticipated [91].

Recently, the implementation of STED with opposing lenses, called isoSTED
microscopy, has enabled the recording of the interior of mitochondria with a 3D
resolution of better than 50 nm in all room directions [117]. Using this approach,
Schmidt et al. analyzed the distributions of various proteins within these organelles
(Fig. 7b) [117]. By labeling the F1F0ATPase, a protein complex that lines the inner
membrane, these authors could also delineate the flow of the inner membrane in
the mitochondria of intact cells, revealing heterogeneities in the cristae arrange-
ments (Fig. 7c) [118].

These data conclusively demonstrate that with the now widely available
nanoscopy approaches, it is possible to analyze sub-mitochondrial protein distri-
butions. We expect that in the near future these approaches will be utilized
to correlate functional heterogeneities with the nanoscale distribution of mito-
chondrial proteins, providing new insights into the heterogeneity of mitochondria
on an additional level.

Fig. 7 STED microscopy reveals sub-mitochondrial protein distributions on the nanoscale.
a Comparison of images taken with a (diffraction-limited) confocal microscope (left) and a STED
microscope (right). The mitochondria of a PtK2 (rat kangaroo kidney) cell were labeled with an
antibody against the outer membrane protein Tom20. In case of the STED image, individual
Tom20 clusters are resolved, whereas they are blurred in the confocal case. b Two-color isoSTED
images of mitochondria in Vero (African green monkey) cells allow distinguishing between
proteins localized in the outer mitochondrial membrane (Tom20, left) and proteins of the
mitochondrial matrix (Hsp70, right). c With the isoSTED approach, it is possible to reveal the
arrangement of cristae, here in mammalian PtK2 cells (left). The cells were labeled with
antibodies against the inner membrane protein complex F1F0ATP-synthase. The brackets indicate
parallel cristae arrangements, and the arrows indicate regions devoid of cristae. Alterations in the
cristae structure could be observed when depleting the protein mitofilin (right), which controls
cristae morphology (modified from [117] and [118], with permission)
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7 Quantitative Image Analysis of Mitochondria

The pronounced heterogeneity of mitochondria on the functional and morpholog-
ical level not only between individual cells, but also within them, immediately
prohibits a biologically meaningful analysis of subtle mitochondrial differences
based on individual images. A plethora of computational tools has been developed
to analyze large image data sets quantitatively [4, 21–23, 30, 54, 59, 60, 69, 81,
89–91, 100, 114, 119] and have been reviewed expertly [33, 40, 44, 87, 101,
107, 121]. The availability of nanoscopy/superresolution techniques to a growing
scientific community will undoubtedly further increase the need for quantitative
data analysis and at the same time will elicit new challenges, including among
others the fact that with these techniques the attainable optical resolution is similar
to the size of the used fluorescent labels.
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Advanced Microscopy of Microbial Cells

Janus A. J. Haagensen, Birgitte Regenberg and Claus Sternberg

Abstract Growing awareness of heterogeneity in cells of microbial populations
has emphasized the importance of advanced microscopy for visualization and
understanding of the molecular mechanisms underlying cell-to-cell variation. In
this review, we highlight some of the recent advances in confocal microscopy,
super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force
microscopy and Raman spectroscopy. Using examples of bistability in microbial
populations as well as biofilm development and differentiation in bacterial and
yeast consortia, we demonstrate the importance of microscopy for visualization of
variation between cells in phenotypic traits such as gene expression.
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1 Introduction

While culture or community-based approaches where millions of organisms are
studied collectively as a single entity are adequate for general physiological
studies, microscopy of single cells and subpopulations has lately been realized as
an important and sometimes indispensable tool when a community of apparently
homogenous cells is investigated for phenotypic diversity.

The often used assumption when monitoring gene expression in a bacterial
population is to consider the population as a uniform pool. However, this will only
report average values and never pick up variations between individual single cells.
This assumption has been prevailing as analyzing and visualizing single cells in
large populations have been difficult or impossible.

Microscopy has been an important method for analysis of microbial cells since
Antonie van Leeuwenhoek described amoebae and other microorganisms in the
late 1600s. The ‘compound microscope’, i.e., a microscope with more than one
lens, was invented almost a century before these first reports of living microor-
ganisms [8]. Development of the microscope has since undergone numerous
improvements, where some of the most notable are the invention of the fluores-
cence microscope [60], the phase contrast principle [150], the electron microscope
in 1931 [114], the confocal microscope in 1955 [89], and the atomic force
microscope (AFM) in 1986 [15] and derivatives of these.

Today, new technologies provide the possibility to differentiate between sub-
populations and to analyze single cells for altered gene expression using advanced
microscopy, cell sorting and a growing number of fluorescent reporter tools. An
increased awareness of cellular differentiation has emphasized the need for
understanding of microbial gene expression and provides a more efficient and
direct treatment of bacterial and fungal infections [128, 138]. Furthermore, a better
insight into the regulation of differentiation in bacteria and yeasts can lead to a
wider application in biotechnology [27].

Microbes are found everywhere from settings in the human host to soil and
aquatic environments. They are constantly meeting new environmental conditions
and have evolved highly sophisticated abilities to adapt to changes. Several
adaptive mechanisms are used by microbial populations to turn on and off genes
stochastically in a population of cells while being in the same environment. This
approach can ensure that a subpopulation of cells will survive in a situation where
life conditions suddenly change (bet-hedging). Bistability is an example of a
molecular mechanism that has evolved to diversify the transcriptional program and
phenotype of a clonal population within the same environment. Bistability can be
described as an inheritable and reversible switch at the level of transcription that
does not involve genetic rearrangements or mutations but is rather epigenetic in its
nature [27, 35, 39].

In this chapter, we will describe the current state of the art microscopy tech-
niques and use bistability in microbial populations and biofilm development and
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differentiation in these as examples of biological properties, which to a large
extent has been observed and investigated using advanced microscopy.

2 Advanced Microscopy and Tools

2.1 The Standard Confocal Microscope Today

From the time the first confocal microscopes became commercially available, a
long range of improvements has been implemented and are now standard: The
lasers used in most microscopes have a much improved lifetime compared to early
models, and in particular the ruggedness of diode lasers significantly extend the
period before replacement is necessary. In addition, this type of laser requires less
for the installation environment in terms of power supply and cooling—all factors
that lower the running costs. Traditional gas lasers, such as the most common
Argon gas laser, has also improved and now provides longer life spans. The
detectors of confocal microscopes are traditionally photo-multipliers, PMTs. Their
sensitivity largely determines the overall image quality, particularly in conditions
of low light intensity. Newer PMTs have improved signal-to-noise ratios, enabling
detection of fainter fluorescence signals. The band-pass filters on the emission side
has also been improved from the original glass filters, which were placed in the
light path manually, over motorized filter wheels to the acousto-coupled beam
deflector [42], commonly known as an acousto-optical tunable filter (AOTF).
AOTF selectively deflects specific wavelengths out of the light path, leading only
the desired emission to the detectors. This technology has been developed into
multiline spectral splitters, such as the acousto-optical beam splitter (AOBS) [16],
which allows for detection of multiple wavelength ranges simultaneously. An
alternative to this is the technology where the light beam is spectrally split by a
grate working like a prism, and selected parts of the spectrum are captured by an
array of detectors.

Confocal microscopes have been and are widely used in the study of complex
microbial communities (biofilms) since the first reports by the Caldwell group in
1992 [21, 85] and onto the present day [97, 103, 148].

2.2 Wide Spectrum (‘‘white’’) Lasers

Traditional gas lasers can emit light of at most a few, well-defined wavelengths.
For instance, the most commonly used laser in confocal microscopy, the Argon gas
laser, emits a range of monochromatic wavelengths at 488, 351, 454.6, 457.9,
465.8, 476.5, 496.5, 501.7, 514.5 and 528.7 nm. However, in the standard visible
light configuration, the laser is configured to mainly provide 488-nm blue exci-
tation light. Some of the other wavelengths require alteration of the mirror system
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to be usable, and some are considerably weaker than the 488-nm line. It is also
common that commercial instruments have multiple lasers with different charac-
teristics to enable the use of more fluorophores. Despite multiple simultaneous
lasers, the choices of excitation wavelengths are limited. To alleviate this, the
super-continuum laser, also known as the ‘‘white’’ laser, has been introduced. The
super-continuum laser is a compound laser consisting of a pump laser and a crystal
photonic fiber optic. A conventional laser delivers a narrow band laser illumination
to the end of the fiber that consists of a bundle of hollow tubes. When passing
through the fiber the spectrum is broadened, resulting in a wide spectrum emission.
The width of the spectrum depends on the pattern and length of the tube
arrangement inside the fiber. The first verified reports of broad spectrum laser light
were published already in 1970 [3, 4]. However, it was only after the invention of
the hexagonal photonic fiber that the white laser we know today was made useful
for practical applications [81]. The technology is currently used for confocal
microscopy [18] and stimulated emission depletion (STED) [145–147] (see
below). A typical wide spectrum laser used in confocal microscopy has a spectrum
covering most of the visible wavelengths, 470–670 nm.

2.3 Multi-Photon/Two-Photon Microscopy

Conventional confocal imaging has its basis in the fluorescence microscope, i.e.,
the specimen must contain a dye that is fluorescent—an added dye in the form of a
chemical, a fluorescent protein expressed by cells in the sample or auto-fluores-
cence. The sample is illuminated using a laser throughout the entire depth, and
fluorescence is emitted from the whole cross section. The emission pinhole will
remove most of the fluorescence from all planes except the focal plane. This
method is most likely harmful to living cells as all cells are exposed to laser
radiation for the duration of the scanning, and the aberrant fluorescence from the
layers other than the focal plane do in fact contribute to noise in the image.

The two- or multi-photon (MP) principle [51] predicts that when two or more
photons hits a fluorophore simultaneously (i.e., within a femtosecond timeframe)
the two photons will both contribute to the excitation. In other words, a longer
wavelength laser illumination can provide a localized energy pulse corresponding
to that of a shorter, more energy-rich wavelength used in a conventional one-
photon system. Thus, using infrared laser light, it is possible to excite molecules
that require, e.g., blue light for excitation. Since the multi-photon effect only
occurs where more photons are precisely in synchronicity, it is possible to exploit
this property to narrow the illumination to an extremely small volume. This is used
in the two-photon confocal microscope [36]. The MP-confocal microscope gives
better vertical (z-)resolution, about 100 nm [96] compared to 5–700 nm for con-
ventional, one-photon confocal microscopy. High-resolution confocal microscopy
of relatively thick specimens is possible with MP excitation [95, 96]. The emission
pinhole is not necessary, since only objects in a small volume in the focal plane are
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excited by more than one photon at a time, the remainder of the specimen only
experiences long wavelength light with less detrimental effects (both for cyto-
toxicity and bleaching). However, since the light flux is very high in the small
volume that is excited, cell damage can occur if care is not taken to protect the
exposed cells [67]. MP microscopy in life sciences was reviewed by König [83].

2.4 Super Resolution Confocal Microscopy

Ernst Abbe (1840–1905) determined the theoretical optical resolution as d = k/
2NA, where k is the wavelength and NA is the numerical aperture of the objective
[1]. Using visible light, this means that the practical horizontal resolution (the
distance to resolve two objects) is 200–250 nm. While this is sufficient for many
purposes, analysis of sub-cellular structures, surface components and appendages
is rarely possible. Electron microscopy and atomic force microscopy (see below)
have several-fold improved resolution but have other shortcomings; e.g., electron
microscopy usually requires the sample to be fixed, dried and dyed with metal
dyes, whereas atomic force microscopy is restricted to analysis of the top surface
of structures with little variation in height. The optical microscope is superior since
it allows scrutiny of living, wet samples in three dimensions.

A number of methods now exist to circumvent the law of Abbe, either as a
physical, on-line method or as a computational reconstruction from several
interlaced images. Probably the most prominent high-resolution technology is
STED [40, 57, 63, 79]. In STED the sample is illuminated by two tightly syn-
chronized light pulses. The fluorophore is excited with a pulsed excitation beam,
e.g., 640 nm, which causes the sample to emit light (Fig. 1). Without STED, the

Fig. 1 Stimulated emission depletion (STED) microscopy. Without STED the fluorescence
emission light (light grey) produces a light spot, which cannot be localized to a better resolution
than predicted by Abbe. By application of a ring-shaped STED laser light (dark grey) that
extinguishes parts of the fluorescence from the sample, the effective resolution is improved. By
increasing the STED laser effect, the resolution improves accordingly, as indicated by the size
indicator bars
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emitted light will have a diffraction limit that in part is determined by Abbe’s
equation. STED adds an additional light pulse at, e.g., 730–780 nm, which is
doughnut shaped with a dark center. The wavelength of the STED illumination
does not excite the fluorophore—rather it causes the already excited molecules to
return to the ground state without emitting light. The result is that fluorescence is
only emitted from the dark center, the size of which is determined by the
laser power of the STED light, increasing the effective resolution to this center
area.

Instrument development platforms have reached a resolution of 5.8 nm [111],
while commercial instruments typically will have a lower effective resolution. The
first generation STED microscopes were limited in the number of fluorescent dyes
that could be employed since the laser configuration required was limited to
640 nm excitation and 730–780 nm depletion. Using lasers with tunable excitation
wavelengths, the STED technology has broadened the versatility of the instrument.
Using the continuous wave laser or super-continuum lasers, it is possible to utilize
commonly used markers such as green fluorescent protein (GFP) with a resolution
of 29–60 nm [61, 145–147].

2.5 Other Microscopy Techniques Surpassing the Diffraction
Resolution Limit

Computational treatment of images after acquisition demonstrate other methods
for rendering of images with sub-diffraction resolution. Three such methods have
been commercialized, the stochastic optical reconstruction microscopy (STORM),
photo-activated localization microscopy (PALM) and structured illumination
microscopy (SIM).

STORM is based on sequential excitation of photo-switchable fluorophores in a
sample followed by reconstruction of a high-resolution image from a series
(sometimes hundreds or thousands) of images of the same field of view [68, 115].
The principle of STORM is that only a fraction of the fluorophores are excited at
any time in the sample, which then is recorded by the microscope. A quenching
light pulse extinguishes the fluorophores and excites another set of dye spots in the
sample. By changing the position that is illuminated or quenched, it is possible to
record a fine map of the position of the fluorescent molecules. Using computer
programs, this information can be converted into an image with in principle
unlimited resolution [115], but mechanical limitations give an effective resolution
in the range of 20 nm. PALM is an independently developed technique using the
same principle as STORM [13, 64, 104, 122]. One prominent feature of this
method for resolution improvement is that that in principle standard microscopy
equipment and a low cost laser are all that is required of the hardware, although
advanced software is needed for the post-recording image manipulation. STORM
and PALM have been used for 3D imaging [68, 76, 105, 123, 137] and multicolor
imaging [10, 118, 122].
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SIM uses the principle of interlaced information from structured illumination
by very high-resolution patterns that are projected onto the fluorescent sample.
When two patterns are overlaid, these images result in a moiré fringe with a lower
resolution. Figure 2 demonstrates how two idealized high-resolution patterns
result in a moiré fringe (here perceived as horizontal lines) with lower resolution
(spacing) than the original patterns. In the SIM one of the patterns is comprised of
the structure in the sample (the distribution of fluorescent dye) and the overlaying
pattern of the illumination pattern. Using multiple images recorded with different
illumination angles and mathematical processing, it is possible to reconstruct an
image with resolution corresponding to the resolution of the illumination pattern.

This method gives approximately a two-fold improvement in resolution com-
pared to the diffraction limit determined by Abbe [48]. A recent extension of this
technique, saturated SIM (SSIM), has further moved the resolution limit. SSIM
utilizes nonlinear patterned excitation of fluorescent samples and the image
reconstruction techniques of SIM to achieve in principle unlimited resolution,
while practical experimental setups have yielded a resolution of roughly 50 nm, or
four times that of standard microscopy [49, 62]. Due to the requirement for overlay
of several sequentially recorded images, SIM and SSIM are less well suited for
imaging of living cells, but a recent report has demonstrated SIM of slowly
moving cells [66].

2.6 Atomic Force Microscopy

Atomic force microscopy is a non-optical surface scanning method in which a tip
(probe) at the end of a flexible cantilever is transversing a structured surface. The
AFM can operate in several different modes. The two most commonly used for
imaging are contact mode and tapping mode, or dynamic mode. In contact mode,
the tip is dragged across the surface and irregularities on the surface cause the
cantilever, which is carrying the tip, to bend up and down. A laser is recording the
bend, which can be directly correlated to the topology of the surface. In tapping
mode an oscillating frequency is applied to the cantilever, making the tip move up

Fig. 2 Structured
illumination microscopy
(SIM). In consecutive scans,
a patterned illumination is
applied to the sample. The
illumination pattern in
combination with the
fluorescence pattern in the
sample (symbolized by the
lines in the middle panel)
result in a moiré pattern that
can be the basis for computer-
assisted image reconstruction
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and down towards the surface. In tapping mode the tip is subjected to a combi-
nation of attractive and repulsive forces, which influence the amplitude of the
oscillation. A feedback loop corrects the distance between the cantilever and the
sample by piezo-electrical actuators (moving the stage or the cantilever-mount) to
bring the amplitude back to the initial state (Fig. 3). The required correction can be
correlated to the distance between the tip and sample at a specific position and then
converted to a height (3D) image of the surface when the tip is moved across the
sample.

The AFM has atomic resolution on crystalline surfaces and nanometer reso-
lution on other surfaces. It can be operated in liquids and gaseous environments.
Applications of atomic force microscopy in biological research began in the early
1990s [50, 86, 117, 133]. As the AFM became more integrated in life science
research, this new tool provided a new approach for the examination of bio-
molecules including proteins [55, 107, 117], DNA [56, 86, 134] and highly
topographic samples, such as bacterial [5, 17, 19, 22, 112] and yeast cells [44, 77]
at nanoscale resolution. Most importantly, samples could be imaged in physio-
logical relevant media, and in the case of bacteria and mammalian cells living cells
could be imaged in their native environment. While the AFM provides imaging
with extreme resolution, it does only facilitate analysis of surfaces that are
accessible from above; hence, it is not suitable for analysis of intercellular
processes.

2.7 Single-Cell Fluorescent Labeling, Visualization
and Physiology

Several microscopic methods require that cells are fluorescent. Consequently, it is
important to have tools available for staining or marking investigated cells with
specific fluorescent labels.

Recently, there has been a development of fluorescent stains, such as the Syto
stains (Invitrogen, Carlsbad, CA), that efficiently, although unspecifically, can

A B

C D

Fig. 3 Atomic force microscopy. The sample is scanned by a moving tip (b), which is attached
to a flexible cantilever (a). The deflection of the cantilever is recorded by using a laser
(c) illuminating a spot on the back of the cantilever. The position of the spot is recorded by a
photomultiplier (d), and a feedback loop moves the cantilever or the sample to return the
deflection to a neutral state (as determined by the location of the laser spot)
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stain cells. Combinations of stains with different excitation and emission wave-
lengths are available for possible use together with reporter gene constructs. Using
Syto9-labeled cells in combination with propidium iodide (PI), it is possible to
specifically determine living and dead cells in a population. The dye Syto9 will
mark all cells green, while it is generally assumed that only cells with a damaged
membrane integrity will be stained by the red PI dye, indicating dead cells. PI will
reduce Syto9 in dead cells, making them only fluoresce red. Recent results suggest
that propidium iodide might be of limited use as a cell viability indicator in some
settings and for some strains. Therefore, it is important for each species and
environment to calibrate the concentration of dye [91, 121].

As an alternative to direct staining, a common method used today is to modify
the cells of interest genetically by chromosomal tagging with a gene cassette
encoding a fluorescent protein or by plasmid introduction. In this way GFP
(green), RFP (red), CFP (cyan) and YFP (yellow) have been successfully intro-
duced into many different cell types. GFP-tagged cells can substitute the use of
Syto9 in the live/dead assay described above.

Fluorescent tagging can be used as simple labeling to verify and visualize the
location of several species in a mixed community. By selecting suitable variants of
fluorescent protein genes and promoters, this kind of tagging can be used for
monitoring gene expression in specific cells. This way metabolic/physiological
activity has been determined in biofilms by introducing constructs encoding for
GFP derivatives with a short half-life, placed under transcriptional control of a
ribosomal promoter. Cells that have a high activity will show as bright green,
whereas cells with low or no activity show little or no fluorescence [130].

2.8 Raman Microscopy

Raman spectroscopy is a method that can produce a fingerprint of the chemical
composition of materials in a cell based on Raman scattering of the molecules in
the materials. Molecules that are hit by an incoming photon can either absorb or
scatter the light, or not interact at all with the light. The scattered light will
primarily have the same wavelength as the incoming light, whereas a very small
fraction (1 per 106–108 photons) will have a different, higher or lower, wavelength
due to vibrational or rotational effects in the molecule: When a photon interacts
with the electron cloud and bonds in a molecule, it can excite it to a more energetic
state. Most photons excite a molecule to a higher virtual energy state from a
relaxed state. When the molecule returns to the relaxed state, energy of the same
magnitude (and hence photons with the same wavelength) as the excitation energy
is released. This is called Rayleigh scattering (Fig. 4).

Occasionally, however, the molecule may be excited to the higher virtual
energy state and return to an energy state that has a higher level than the relaxed
state, releasing less energy than the excitation photon. This will then result in a
scattering photon with less energy, i.e., longer wavelength, called Stokes

30 J. A. J. Haagensen et al.



scattering. Similarly, a condition can occur where the molecule is already in a
higher virtual energy state when the incoming photon excites the molecule. If the
molecule subsequently returns to the relaxed state, the scattered photon will have a
higher energy than the incoming photon, resulting in a shorter wavelength. This
very rare reaction is called anti-Stokes scattering. Together Stokes and anti-Stokes
scattering is called Raman scattering. Raman spectroscopy utilizes a single fre-
quency of radiation for excitation, and the spectrum of frequency shifted emission
from the sample is the Raman emission spectrum. The Rayleigh scattering is
filtered to leave only the much weaker Raman scattering [126]. Every molecule
will result in a characteristic Raman spectrum, which is the result of the combined
Raman scattering of the molecular bonds and electron clouds in that particular
compound. A complex organism will hence give a complicated spectrum con-
sisting of the overlaid combined spectra from all the molecules (e.g., proteins, fatty
acids, nucleic acids, etc.) in the sample, where signature peak heights and positions
are representative for individual components of the cells [94]. This can be used to
follow the change in chemical composition of single individual cells as a result of,
e.g., growth rate or interaction with the environment, and in this way differenti-
ation in a population can be determined on a single-cell level (see examples later
in this chapter). Raman spectroscopy can be combined with confocal microscopy
to provide 3D information on cell identity or chemical composition of, e.g.,
extracellular substances (EPS) in biofilms [106, 116, 144].

The Raman scattering is inherently very weak, and a number of methods exist
to enhance sensitivity. Surface-enhanced Raman spectroscopy (SERS) is fre-
quently used to amplify the weak Raman signals. In SERS the sample is placed on
a typically silver- or gold-covered surface. The physical explanation for the
enhancement (up to 1011 fold) is not fully elucidated, but it is believed that an
increase in the electrical field due to the excitation of the gold or silver surface
plasmons by the laser light source boosts the Raman scattering intensity [75].
SERS has successfully been used for identification and characterization of bacteria
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Fig. 4 Energy levels. Incident photons excite molecules to higher virtual energy states.
a Rayleigh scattering. b Stokes scattering. c Anti-Stokes scattering. d, e Coherent anti-Stokes
Raman radiation. d Fixed wavelength pump laser excites to X2; the Stokes laser beam facilitates
relaxation to X1. e The probe laser beam excites molecules at X1–X3, with subsequent relaxation
to the ground state. X1 Vibrational energy state. X2, X3 Virtual energy states. R relaxed or ground
state
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[73, 74]. In combination with the AFM, utilizing metal-coated tips, the Raman
measuring capability can be combined with very high resolution, enabling
chemical mapping of surfaces, e.g., of bacteria down to a molecular scale. In this
technique, termed tip-enhanced Raman spectroscopy (TERS), the Raman excita-
tion is performed at the metal-coated AFM tip, linking the atomic force micros-
copy high-resolution imaging to very localized SERS [20, 98, 100]. Further signal
enhancement can be achieved using coherent anti-Stokes Raman spectroscopy
(CARS). This technique relies on two laser excitation sources. These two lasers,
the fixed frequency pump laser and the tunable Stokes laser, simultaneously excite
the molecule to virtual state (X2) and vibrational state (X1) (see Fig. 4d, e): When
the Stokes laser has the right frequency, the return from X2 to a lower vibrational
energy state (X1) occurs via a stimulated Stokes emission. When the sample
molecule is in this state, it can be further excited by a probe laser beam to the
higher virtual energy state (X3) (in the actual setup this beam is provided by the
Stokes laser). When the molecule relaxes to the ground state (R), it emits a photon
with a higher energy than the excitation photon, resulting in an anti-Stokes effect,
i.e., a higher frequency [11, 90]. This setup produces coherent anti-Stokes photons
resulting in a dramatically enhanced signal. Furthermore, since the emitted Raman
scattering has a shorter wavelength than the excitation photons, interference from
fluorescence is eliminated [90]. A complication is that so-called phase matching is
required to conserve the sum of photon momentum; it means that the strong
confined beam of CARS photons is being emitted in its own direction, depending
on the direction of the two incoming beams and their frequencies [23]. This
method has already been used for imaging of bacterial cells, although at an
experimental stage [25, 153]. The emergence of new commercial instruments with
CARS-enhanced confocal microscopy gives great promise for the future coupling
of structure and chemical composition of microorganisms.

2.9 Presentation and Analysis Software

Many software packages exist for the analysis of microscopy images. They can
roughly be divided into: general purpose and dedicated programs, programs for
presentation of single images or image stacks, and programs for analytical pur-
poses. Representative examples are provided in Table 1.

3 Bacterial Single-Cell and Biofilm Microscopy, Bistability
and Subpopulations

The following sections will concentrate on the phenomenon of bistability in
bacterial populations and how microscopy of single cells and biofilm structures has
revealed differentiation between cells in a population. Bacillus subtilis and
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Escherichia coli will be used as the main case studies of bistability, whereas
Pseudomonas aeruginosa will be used as a model organism in connection to
differentiating subpopulations found in biofilms and visualized using confocal
microscopy.

3.1 Bistability in B. subtilis

3.1.1 Competence

By recent advances in the ability to investigate gene expression on a single-cell
level, several studies have demonstrated bistability and differentiation in gene
expression. Under certain growth conditions B. subtilis cells are able to enter the
state of genetic competence, i.e., the bacteria can take up free DNA and incor-
porate it into their genome by recombination via the process of transformation
[38]. When B. subtilis enters the stationary phase, competence occurs naturally in a
subpopulation of cells and depends this way on the growth phase of the single cell
as well as nutrient composition and availability in the near environment [37].

Table 1 Examples of software packages for microscope image processing. Image processing
programs

Name General
purpose

Dedicated
(instrument
specific)

Analytical 2D 3D Source

ImagePro Plus X Xa X X X http://www.mediacy.com
ImageJ and NIH

Imageb, c
X X X X [2]

Zeiss ZEN (free
viewer
available)

X Xa X X Carl Zeiss AG, Germany

Leica LAS (free
viewer
available)

X Xa X X Leica Microsystems,
Germany

ISAd X X X [87, 149]
ISA3Dd X X X [14, 87]
COMSTAT and

COMSTAT2b
X X [65] http://www.comstat.dk

Daimeb X X X X [34]
Imaris X Xa (X) X http://www.bitplane.ch
Phlipb X X X http://www.phlip.org
MicrAn and ConAn X X X X http://www.biocon-online.de
a Via add-on module
b Free (public domain)
c Open source
d Algorithm source code available
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Competence development in B. subtilis is regulated by the transcriptional
activator ComK, which binds to the comK promoter and thus acts as an auto
regulator [136]. Fluorescent microscopy of single cells with GFP expression
controlled by the comK promoter showed that the population divides into two
subpopulations when entering the stationary phase, this way demonstrating bi-
stability in competence expression; some cells express comK while others do not
activate the ComK promoter [92, 127].

When cells are growing exponentially the level of ComK is low as the
housekeeping protease complex MecA-ClpC-ClpP is degrading the ComK protein.
Furthermore, at least two repressors, Rok and CodY, act on the comK promoter. At
near stationary phase, quorum sensing results in upregulation of ComS, which will
partly block the inactivation of ComK by binding to the MecA-ClpC-ClpP com-
plex [52, 92, 93].

3.1.2 Sporulation

Differentiation in cell types can in some cases be distinguished by cell morphol-
ogies using light microscopy, but in many cases a clear picture of different cell
types in a population can only be analyzed by use of transcriptional reporter gene
fusions for each cell type in combination with fluorescent microscopy, which also
will make quantification by flow cytometry of the cell populations possible. Using
time-lapse microscopy, it is furthermore possible on a single-cell level to follow
dynamic development in growth activity, structure and gene expression using
fluorescently labeled appropriate reporter strains. When B. subtilis reaches the
stationary phase, nutrients become limited, and an endospore will be produced in
some, but not all cells. Many cells lyse at this point, liberating nutrients, and the
release of the endospore from mother cells eventually takes place. The released
nutrients support a second growth period and production of spores. The produced
spores will maintain their dormant stage, which is highly resistant to environ-
mental stress until a preferred environmental signal triggers germination.

Like in the case of ComK, the regulatory protein Spo0A has been found to
exhibit bistable behavior during sporulation. Using a gfp fusion to a promoter
under the control of Spo0A, it was shown by fluorescent microscopy that the
population revealed a heterogeneous distribution of cells, with only a subpopu-
lation of cells expressing Spo0A [47].

Spo0A is under the control of a positive feedback loop through activation of its
own promoter as well as a double repressor system. Spo0A represses abrB and
AbrB represses sigH, an activator of spo0A. A high expression of spo0A thus is
necessary to reduce the AbrB-mediated repression of sigH resulting in further
expression of spo0A. It was demonstrated using CFP and YFP in promoter fusions
to AbrB and SpoIIA that expression of the abrB and spoIIA genes is distinct in
individual cells during sporulation, resulting in a bimodal expression profile [140].

Single-cell tracking was used by Veening et al. [139] to investigate three cell
forms in B. subtilis: spore-forming cells, lysing cells and actively growing cells
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reappearing after cells had entered stationary phase. It was found that the fate of
most cells already is determined before reaching the stationary phase. Cells that
result in spore formation will not grow after the exponential phase, whereas cells
that start growing actively after the first exponential phase will not become spore
formers. A cell population that has lysis as its final cell fate will be able to join
both groups of cells. By time-lapse recording of colony development in B. subtilis,
using a GFP reporter system showing expression of SpoIIA, another regulatory
protein regulating spore formation, it was visualized that spore-forming cells in
most cases were situated next to each other (light grey cells in Fig. 5). This finding
indicated a non-random development of the two subpopulations in a way that cell
offspring’s will share a phenotype with their parents in a bistable B. subtilis
population [141].

3.1.3 Motility

Bistability in competence and sporulation in B. subtilis is pronounced during the
late exponential and stationary growth phase, and fluorescent reporter systems and
microscopy have been found useful for demonstrating this phenomenon. A third
bistable regulation takes place in B. subtilis, namely in cell motility in exponen-
tially growing cells. Only some cells express sigD, the sigma factor necessary for
flagella production, and the result is a differentiating cell population of motile and
non-motile cells. The non-motile cells will often appear as chain-like structures,
making it possible to distinguish them from the motile cells even by morphology
using light microscopy (Fig. 6) [78].

3.2 Bimodal Gene Expression and Biofilm Formation

For the last decade, it has been well know and accepted that bacteria in most
environmental settings live in surface-associated communities called biofilms [28–

Fig. 5 Epigenetic
inheritance in a B. subtilis
sporulation, non-random
bistability. The image shows
how subfamilies of spoIIA
Gfp expressing cells (light
grey) develop a non-random
bistability pattern [141].
Reproduced with permission.
Copyright (2008) National
Academy of Sciences USA
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32, 54, 82, 132, 135]. The importance of detailed knowledge about this bacterial
lifestyle has proven to be required in order to understand many aspects of bacterial
biology and is relevant both in environmental microbiology and medical micro-
biology. An important part of a biofilm structure in many cases is the presence of
an extracellular polymeric substance (EPS) that is produced by the cells and that
holds the biofilm structure together. EPS binding material between cells of E. coli
was demonstrated using atomic force microscopy (Fig. 7) [29, 78].

Vlamakis and colleges [143] have combined gene expression profile studies
with spatio-temporal differentiation in matrix-producing, motile and sporulating
cells in connection to biofilm development and architecture of B. subtilis. In this
study fluorescent protein reporter fusions were used to track expression of EPS
matrix-producing, sporulating and motile cell types during dynamic biofilm
development over a 72-h period. It was found after cell sorting of harvested
biofilm cells that motility was upregulated in the initial stages of biofilm forma-
tion. That matrix-producing cells started to dominate after 24 h growth, and
sporulating cells showed up in the older biofilm after 48 h. All three cell types
coexisted in the mature B. subtilis biofilm, and production of EPS was carried out
by only a subpopulation of cells [24].

Direct localization of the different cell types was also mapped during biofilm
growth and maturation, and showed that motile cells dominated in the early bio-
film at the top layers and represented only a minor part in the mature biofilm,
mainly localized at the substratum. The matrix-producing cells were found ran-
domly throughout the biofilm structure, whereas the sporulating cells were found
in the upper structures in the mature biofilm. Using dual reporters it was shown
that the mature biofilm harbored all three cell types and that motile cells were

Fig. 6 Differentiation in motility. GFP was fused to the P(hag) promoter where hag is under
control of the alternative sigma factor sigD, controlling motility and chaining in B. subtilis. Single
cells were found GFP positive (light grey), whereas chains of cells did not show GFP expression
[78]. Reproduced with permission from Cold Spring Harbor Press
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found mainly in distinct regions relative to sporulating cells that co-existed with
the matrix-producing cells (Fig. 8).

Dual fluorescent-reporter systems combined with time-lapse microscopic
recording was applied for the investigation of differentiation and transition of the
three cell types at a single-cell level. By monitoring CFP-tagged cells reporting
motility and YFP-tagged cells reporting matrix production, it was found that
motile cells can perform a transition to matrix-producing cells. In the same way, it
was shown that matrix-producing cells can turn into sporulating cells, whereas
only a few motile cells have the ability to transform into sporulating cells (Fig. 9).

3.3 Persistence and Bistability in E. coli

Since the early days of antibiotic treatment of infections, it has been known that
some bacteria develop resistance to certain antibiotics. The bacteria can cope with
antibiotics by mutation, expressing efflux pumps, releasing indigenous antibiotic
inactivation enzymes or the occasional acquisition of resistance-inferring genes
from the environment. However, a subpopulation of cells in certain bacteria seems
to have a different strategy in dealing with environmental stress. They develop
persister cells with antibiotic tolerance, which is non-heritable and reversible,
meaning that when the antibiotics are not present anymore the cells again become
sensitive.

Until recently it has been difficult to isolate and investigate the small amount of
persister cells developing in a population. Using microscopy in combination with
microfluidic devices, phenotypic switching was studied in E. coli. The microfluidic

Fig. 7 AFM micrographs showing E. coli cells carrying the F plasmid, adhering to each other
most likely by their F pili and by virtue of the produced EPS. a Cluster of cells and b zoomed
image of a few cells in a showing the binding material between the cells (Haagensen and
Sternberg, unpublished)

Advanced Microscopy of Microbial Cells 37



channels were dimensioned to only allow propagation in one dimension (Fig. 10)
[7]. The system thus allows for monitoring individual cells during growth and
response to antibiotics, in this case ampicillin. It was possible to find persister cells
already present before antibiotic challenge as a small subpopulation of cells
showing a much reduced growth rate. During the antibiotic treatment only the
persister cells survived in the microfluidic channels, and after removal of the
antibiotic media the persister cells could resume growth (Fig. 10) [7].

Development of persister cells is a spontaneous bet-hedging survival strategy
allowing E. coli to distribute its population heterogeneously such that some cells at
all times are prepared for changing, adverse environmental conditions.

3.4 Raman Microscopy of Bacterial Cells

For Clostridium organisms, studies of the cell cycle have shown that cells ger-
minating from spores develop rod-shaped cells, which eventually differentiate into

Fig. 8 Micrographs showing biofilm structure of B. subtilis and the distribution of motile cells in
blue, matrix-producing cells in red and sporulating cells in orange [143]. Reproduced with
permission from Cold Spring Harbor Press
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Fig. 9 Micrograph images showing dynamic development of single cells in a biofilm of a motile
cells in blue and matrix-producing cells in red. The arrow shows a motile cell transitioning to a
matrix-producing cell. b Matrix-producing cells in red and sporulating cells in green. The arrow
shows matrix development followed by transitioning to a sporulation cell. c Motile cells in blue
and sporulating cells in orange. The arrow shows that sporulating cells arise from non-motile
cells (a few sporulating cells arise from motile cells, arrowhead) [143]. Reproduced with
permission from Cold Spring Harbor Press

Fig. 10 Micrographs showing E. coli cells growing in a microfluidic chamber. Only slow-
growing persister cells survived antibiotic treatment. a–c Cells are dividing and growing in
narrow channels allowing the growth rate of the single cells to be monitored as the length of
strings of cells developing over time. d Cells were exposed to ampicillin for 4 h. e, f After
washing, cells were changed back to growth medium without ampicillin [7]. Reprinted with
permission from AAAS

Advanced Microscopy of Microbial Cells 39



clostridial cell forms after which spores start to become visible. In this study it was
demonstrated that Raman microscopy enables investigations of differentiation in
cell physiology and composition on a single-cell level during the cell cycle of C.
acetobutylicum [119]. In other examples, Raman microscopy has shown potential
for investigation of the consequences of antibiotic treatment of bacterial cells [58,
99] and to differentiate between planktonic and biofilm-associated Pseudomonas
putida cells [70]. Raman spectroscopy also has been used as a tool to determine
identity of bacterial cells, although this requires a large training set (database) of
spectra from already identified bacteria of the type to be determined, which by
itself is not a trivial task [58, 113], reviewed recently by Harz [59].

3.5 Pseudomonas aeruginosa Biofilm Development and Differen-
tiating Subpopulations

Pseudomonas aeruginosa has been used extensively for the study of microbial
biofilm formation, and many of the most important contributions to our under-
standing of biofilm development comes from these studies. Lately, this organism
has also been subject to differentiation studies and clinically relevant antibiotic
treatment studies with the goal to investigate phenotypic heterogeneity in biofilm
populations [9, 72, 80, 102, 148]. A combination of fluorescent reporter strains,
confocal microscopy, fluorescent recovery after photo-bleaching (FRAP) and real-
time microscopy has made it possible to follow the spatial distribution of phe-
notypic subpopulation development.

A mature biofilm of P. aeruginosa can be described as a mushroom-shaped
structure composed of two major subpopulations, a subpopulation situated close to
the substratum and a subpopulation forming the top of the mushroom [80]. The
diversification into two subpopulations was shown by combining growth of GFP
tagged P. aeruginosa in flow chambers with confocal time lapse microscopy in
combination with FRAP. The GFP signal from cells in a section of a mature
microcolony was bleached using high-intensity laser illumination in a rectangular
region along the biofilm structure. The bleached area was monitored at small time
intervals with respect to GFP fluorescent single-cell appearance. It was demon-
strated that two populations of P. aeruginosa exist, one motile subpopulation
forming the outer layer of the structure and able to move into the bleached region
and one non-motile population forming the core of the microcolony (Fig. 11a–c)
[72]. Furthermore, the phenotypic diversity and two-population development were
demonstrated using a 1:1 mixture of a wild-type P. aeruginosa tagged with YFP
and a non-motile pilA mutant of P. aeruginosa tagged with CFP. The role of the
two populations in forming the final biofilm structure was in this way shown on a
single-cell level as well as on a 3D structural level (Fig. 11d, e) [80, 103].
Interestingly, it was found that upon antimicrobial treatment of this biofilm, only
one of the two subpopulations was sensitive to compounds like colistin,
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tetracycline, ciprofloxacin, etc., implying that P. aeruginosa forms different sub-
populations to have a higher chance of handling incoming perturbations. The
surviving subpopulation of cells exhibits phenotypic tolerance and not resistance,
as surviving biofilm cells harvested from antimicrobial-treated biofilms exhibit the
same antimicrobial susceptibility phenotype as the cells that were used to initiate
the biofilm (Fig. 11f, g) [72, 102].

Fig. 11 Micrographs showing a top-down view of GFP-tagged PAO1 cells in a microcolony.
FRAP was applied to the colony by bleaching a rectangular area across the colony (a), followed
by time-lapse recording using confocal laser scanning microscopy of the cells. b and c Show how
only cells located in the periphery of the microcolony are motile and cover the bleached area [72].
d and e The initial development and the final mature 3D structure respectively of a mixture of
motile PAO1 tagged with YFP (yellow) and a PAO1 pilA mutant tagged with CFP (blue) [103].
Reproduced with permission from John Wiley & Sons. Micrographs f, g shows 3D structure
representations of live (GFP-tagged green cells) and dead [propidium iodide (PI)-stained red
cells] distributed after treatment with colistin and ciprofloxacin, respectively [72, 102 and
Haagensen, unpublished]
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In sputum obtained from cystic fibrosis patients undergoing intensive antibi-
otic treatment, LIVE/DEAD� staining (Invitrogen, CA) in combination with
confocal microscopy indicated that potentially persistent cells appear frequently.
Colistin, a membrane-targeting agent, was used during the treatment, and cell
sorting followed by plating of live and dead cells confirmed the existence of two
populations and persistence of cells also upon antibiotic used in treatment
(Fig. 12). As described for E. coli, growth rate-dependent development of tolerant
cells and phenotypic differentiation are important survival strategies also for
P. aeruginosa.

4 Yeast Single-cell and Biofilm Microscopy

Historically, microscopy of yeast cells has focused on free-living cells in pure
culture. In this respect the yeast Saccharomyces cerevisiae has served as a suc-
cessful model for the study of organelles and cell structures in the eukaryotic cell.
S. cerevisiae is easily genetically modified, has a fast reproduction time and
perhaps most importantly a large number of community resources exists, such as a
complete set of GFP-tagged proteins and targeted knockout mutants of all genes in
the genome [45, 71]. Though relatively small in comparison to other eukaryotic
cells, with a cell size of 3–5 lm, S. cerevisiae live cell imaging has excelled in
recent years with the development of STED microscopy and beam-scanning
multifocal multiphoton confocal microscopy, which have led to resolution limits
much below 100 nm [41, 79] (and Stelzer, this volume).

Fig. 12 Micrograph shows 3D structure representations of live (Syto9-stained green cells) and
dead (PI-stained red cells) cells from cystic fibrosis patients undergoing intensive antibiotic
treatment. Cells were stained immediately after sampling (Haagensen unpublished)
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4.1 Cell-to-Cell Variation in Yeast Populations

As with bacteria, biochemical assays for yeast cells are based on the assumption
that protein expression and localization are uniform throughout a population of
isogenic cells. Genetic tools however are widely used to investigate cell-to-cell
variation within a population. Examples of these are mating type switching in
haploid cells, mating between cells of different mating type [129], a morphological
shift in S. cerevisiae from a yeast to a pseudohyphal form and a shift in Candida
albicans from a yeast to a filamentous phenotype [46, 88]. More recently,
microscopic methods have been applied to screen for cell-to-cell variation in gene
expression within populations.

GFP tagging of 4,156 S. cerevisiae proteins in individual cell lines has been
used to identify and verify protein localization by fluorescence microscopy [71].
While many proteins have specific cellular localization, some proteins vary their
localization between cells. A classical example of this is the uneven distribution of
the S. cerevisiae mating type switching protein (Ash1p) between mother and
daughter cells. Ash1p is asymmetrically distributed in a way that the concentration
of Ash1p is higher in the daughter nucleus where it inhibits mating type switching
[124]. Ash1p asymmetry is regulated at the mRNA level, with mRNA synthesized
in the mother cells being transported to the daughter cell. This was elegantly
shown in living yeast cells by fluorescence microscopy of ASH1 mRNAs inter-
acting with a GFP-labeled MS2 bacteriophage coat protein through a stem loop
structure introduced into the mRNA [12]. Tagging of mRNA with GFP-MS2 was
later used to show that most mRNA species in S. cerevisiae have a specific location
in the cell and that localization is uniform among cells in a population [53, 151].

Protein abundance seems to vary much within populations. To understand the
background of variation, Weissman and coworkers measured the abundance of
2500 protein in individual clones at the single-cell level [101]. They performed
high-throughput flow cytometry of a library of GFP-tagged yeast strains and
discovered that variation in protein expression is largely caused by stochastic
variation at the level of mRNA. Interestingly, there are drastic differences in noise
between the functional classes of proteins in S. cerevisiae. Genes responding to
environmental changes encode gene products with large variation, while proteins
involved in structural processes vary less. These differences may reflect selective
pressure for a given level of variation, where cellular processes that require
accuracy will select for low variation. Large variation, however, may permit a
population to express multiple phenotypes to optimize average fitness in changing
environments.

4.2 Bistability in Yeasts

Subpopulations with inheritable differential expression of certain genes due to
bistability are known from the common human opportunistic pathogenic yeast C.
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albicans. C. albicans can switch between spherical cells that form white colonies
and bigger elongated cells that form opaque colonies [110, 125]. Bistability is
regulated at the genetic level by the transcription factor Wor1p that is present in
very low amounts in white cells and accumulates in opaque cells. Wor1p binds to
the promoter of its own gene and induces its expression in a positive feedback loop
[69, 152]. The positive feedback loop in combination with stochastic variation in
Wor1p expression is suggested to be responsible for switching and inheritance of
white and opaque states.

While investigations of bistability in C. albicans have been driven by macro-
scopic features, advanced microscopy such as microscopic high-content screening
and high throughput flow cytometry combined with libraries of strains with GFP-
tagged proteins may likely lead to the discovery of bistability in S. cerevisiae [33,
71, 101, 142].

4.3 Microscopy of Candida albicans Biofilm

Microscopy of yeast communities has become increasingly important with a
growing number of human infections caused by fungal biofilm on catheters and
implants (recently reviewed by Ramage [108]). Biofilms from the most common
fungal pathogens, Candida spp., are currently being studied by scanning electron
microscopy and confocal laser scanning microscopy (CLSM). While scanning
electron microscopy reveals biofilm organization and extracellular matrix [26],
CLSM can be used to monitor live cell biofilm development in three dimensions
over time [26, 108, 120]. Recently atomic force microscopy has also been used to
visualize the surface structure of the C. albicans biofilm, though the full potential
of the AFM for this purpose has probably not been fully exploited yet [84].

A mature biofilm of C. albicans is composed of two morphotypes, a unicellular
yeast and a multicellular hyphal form [6, 26]. Scanning electron microscopy
revealed that both morphotypes can form biofilm individually, though the coex-
istence of hyphae with yeast cells appears to be essential for a dense biofilm [6].
Deletion of genes essential for filamentous growth in C. albicans leads to thin
biofilms composed solely of unicellular yeast cells. Biofilms composed of hyphae
are dense and appear to lack channel-like structures found in the wild-type C.
albicans biofilms.

While morphology of C. albicans biofilms is well understood, little is known
about the molecular mechanism underlying biofilm formation [108]. A limiting
factor in this respect is the choice of model organism. Genetic modifications and
screens in Candida species are cumbersome and often hampered by the existence
of paralogous genes that mask the phenotype of a gene deletion. The closely
related yeast, S. cerevisiae, offers an attractive alternative with its ability to form
biofilm [109] and the ease by which genetic modifications can be carried out in this
organism. To further develop S. cerevisiae as a model for biofilm studies, we have
recently developed CLSM methods for the study of biofilms of this organism.
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4.4 Confocal Microscopy of S. cerevisiae Biofilms on Batch Cul-
ture Slides and in Flow Chambers

Saccharomyces cerevisiae biofilm formation and development can be studied by
CLSM (Fig. 13) applying the batch culture slide method described for C. albicans
and C. glabrata with the modifications described in the figure legends to Fig. 13
[120].

With few exceptions, S. cerevisiae biofilms can be studied in flow cells
according to the protocol applied for P. aeruginosa (Fig. 14; [131]). A necessary
development was the choice of surface where S. cerevisiae can adhere and form
biofilm. While P. aeruginosa and many other bacteria readily attach to silica
surfaces, S. cerevisiae adheres poorly to glass surfaces. Suitable surfaces for S.
cerevisiae biofilm formation are plastics such as, e.g., polyethylene (PE), poly-
propylene (PP) and to a lesser extent polyvinylchloride (PVC), which were first
described for S. cerevisiae biofilm assays [109]. Besides these polymers, different
polyesters and slides coated with collagen or poly-L-lysine are suitable substrates
for S. cerevisiae biofilm assays in batch as well as flow cells (unpublished). While
plastic cover slides are applicable as biofilm surfaces, several of them suffer from
autofluorescence that disturbs CLSM visualization. Coverslips such as the
Thermanox PE are autofluorescent in the range 380–545 nm, excluding work with
blue and green dyes such as the vital stain Syto9 (Invitrogen. Irvine, CA), GFP and
CFP. PVC on the other hand is without autofluorescence in the visible range and
therefore an optimal choice as a surface for yeast biofilm imaging (Fig. 15).

Fig. 13 CLSM of
S. cerevisiae
(CEN.PK113.7D sfl1) batch
biofilm after 24-h growth in
synthetic complete medium
with amino acids and 2%
glucose (SC-ura). Cells were
grown in a Lab-TekTM

Chamber SlideTM System;
Permanox� (NUNC,
Denmark) in 1 ml medium
and stained 30 min with
Syto9. Bottom left bar 30 lm.
CLSM was performed with a
Zeiss LSM510 microscope
using a 63x/0.95NA water
immersion lens. Bar 30 lm
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Secondly, S. cerevisiae biofilm formation is dependent on a haploid cell state
[109] and expression of cell surface adhesins such as Flo11p (Muc1p) or Flo1p.
Most laboratory strains as well as many natural isolates of S. cerevisiae do not
express the FLO11 gene or other adhesion genes [43], and they are therefore not
directly applicable for biofilm studies. The S. cerevisiae strain background of
choice for biofilm studies has so far been strain R1278b [109]. However, mutants

Fig. 14 Experimental setup for S. cerevisiae biofilm in flow cells. A flow cell with flow channels
is covered with a PVC cover slip that serves as a surface for yeast biofilm attachment and
development. A peristaltic pump ensures constant flow of media from the media bottle through
the flow channels

Fig. 15 CLSM of S. cerevisiae (CEN.PK113.7D sfl1) biofilm in the flow cell setup shown in
Fig. 14. Image was recorded after 42 h growth in continuous flow of synthetic complete medium
with amino acids and 0.02% glucose (SC-ura). Biofilm formed on PVC cover slips (Rinzl,
Electron Microscopy Sciences, Hatfield, PA) and was visualized by staining with Syto9. CLSM
was performed with a Zeiss LSM510 microscope using a 40x/1.3NA oil immersion lens. Bar
30 lm
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of other strain backgrounds such as S288c or CEN.PK may be used to study
biofilms of S. cerevisiae if these strains express the FLO1 or FLO11 genes [43].

Besides the use of S. cerevisiae for identification of genes involved in yeast
biofilm formation, maturation and detachment, S. cerevisiae biofilm in both batch
and flow cells can effectively be screened for susceptibility to fungicides.
Molecular targets for fungicides as well as fungicide resistance mechanisms may
be uncovered by the combination of barcode-target yeast mutants and fluorescence
microscopic high-content screening.

5 Future Perspectives

While the novel advances in microscopy have proven useful for investigation of
microbial communities and microbial single cells, biological discoveries made on
the basis of these technologies are only starting to emerge.

One major opportunity is to resolve live objects below the theoretical optical
resolution of 200–250 nm with methods such as STED, STORM and SIM. These
improved resolution limits enable increased insight into complex spatiotemporal
processes such as cell cycle, DNA repair and DNA organization. Higher resolution
of fluorescent tagged proteins and RNAs of unknown function that co-localize
with others of known function will further aid in the assignment of function to the
large group of genes with hitherto unknown role in the cell. Combined with Raman
spectroscopy, high-resolution microscopy can also provide information on the
molecular basis, localization and structure of extracellular matrix that is otherwise
difficult to obtain.

Nanoscale spatial resolution by AFM facilitates visualization of cell surface
structures such as extracellular polymers, flagella and pili. At the macromolecular
level, the AFM has already proven to provide novel understanding of interactions
between macromolecules, e.g., for protein-DNA binding kinetics.

Another aspect of the new technologies is high content automated screening.
Automated high-resolution microscopy combined with libraries of, e.g., GFP-
tagged proteins or knock-out mutants allows integrated analysis of antibiotic
resistance, signal transduction, expression patterns and many other aspects of cell
biology and physiology. As mentioned previously, screening of expression pat-
terns is likely to reveal novel examples of bistabilities in microorganisms that are
not readily recognized at the macroscopic level. High content automated screening
may also find its application in evolution biology where clones of populations that
have undergone experimental evolution may be screened for phenotypic
differentiation.

Finally, physiological measurements of microbial cells in complex communi-
ties, with methods such as confocal Raman microscopy, will provide valuable
insight into the physiology of complex microbial communities with respect to
cross feeding between species and cell types, local gradients and organization of
communities, and internal changes in metabolism. Information about physiological
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processes in complex microbial communities has a high impact on our basic
understanding of microorganisms and applied applications in biotechnology.
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Algebraic and Geometric Understanding
of Cells: Epigenetic Inheritance
of Phenotypes Between Generations

Kenji Yasuda

Abstract We have developed methods and systems for analyzing epigenetic
information in cells, as well as that of genetic information, to expand our under-
standing of how living systems are determined. Because cells are minimum units
reflecting epigenetic information, which is considered to map the history of a
parallel-processing recurrent network of biochemical reactions, their behaviors
cannot be explained by considering only conventional DNA information-
processing events. The role of epigenetic information in cells, which complements
their genetic information, was inferred by comparing predictions from genetic
information with cell behavior observed under conditions chosen to reveal adap-
tation processes and community effects. A system for analyzing epigenetic
information was developed starting from the twin complementary viewpoints of
cell regulation as an ‘algebraic’ system (emphasis on temporal aspects) and as a
‘geometric’ system (emphasis on spatial aspects). The knowledge acquired from
this study may lead to the use of cells that fully control practical applications like
cell-based drug screening and the regeneration of organs.

Keywords On-chip single-cell-based cultivation/analysis � Epigenetic informa-
tion � Algebraic viewpoint � Geometric viewpoint � Individuality
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1 Introduction: On-Chip Cultivation Methods for ‘Algebraic’
and ‘Geometric’ Viewpoints

Cells are minimum units determining their responses through genetic and epige-
netic information like the history of interactions between them and fluctuations in
environmental conditions affecting them. The cells in a group are also individual
entities, and their differences arise even among cells with identical genetic infor-
mation that have grown under the same conditions. These cells respond differently
to perturbations [1]. Why and how do these differences arise? To understand the
rules underlying possible differences occurring in cells, we need to develop
methods of simultaneously evaluating both the genetic and epigenetic information
not only for molecular level measurement but also for functional measurement. In
other words, if we are to understand topics like variations in cells with the same
genetic information, inheritance of non-genetic information between adjacent
generations of cells, cellular adaptation processes caused by environmental change,
the community effect of cells, we also need to analyze their epigenetic information.
We thus started a series of studies to analyze epigenetic information among
neighboring generations of cells and in the spatial structures of cell network to
expand our understanding of how the fates of living systems are determined. As
cells are minimum units reflecting epigenetic information, which is considered to
map the history of a parallel-processing recurrent network of biochemical reactions,
their behaviors cannot be explained by considering only conventional DNA
information-processing events. The role of epigenetic information in the higher
complexity of cellular groups, which complements their genetic information, is
inferred by comparing predictions from genetic information with cell behavior
observed under conditions chosen to reveal adaptation processes and community
effects. A system for analyzing epigenetic information should be developed starting
from the twin complementary viewpoints of cell regulation as an ‘algebraic’ system
(emphasis on temporal aspects; adaptation among generations) and as a ‘geometric’
system (emphasis on spatial aspects; spatial pattern-dependent community effect).
The acquired knowledge should lead us not only to understand the mechanism of
the inheritable epigenetic memory but also to be able to control the epigenetic
information by the designed sequence of the external stimulation.

As we can see in Fig. 1, the strategy behind our on-chip microfabrication
method is constructive, involving three steps. First, we purify cells from tissue one

56 K. Yasuda



by one in a nondestructive manner such as using ultrahigh-speed camera-based
real-time cell sorting, or digestible DNA-aptamer labeling [2]. We then cultivate
and observe them under fully controlled conditions (e.g., cell population, network
patterns, or nutrient conditions) using an on-chip single-cell cultivation chip
[3–12] or an on-chip agarose microchamber system [13–20]. Finally, we perform
single-cell-based genome/proteome analysis through photothermal denaturation
and single-molecule level analysis [21].

In this chapter, we explain the aims of our single-cell-based study using the
single-cell-based cultivation/analysis system and introduce some of the results
focusing on the ‘algebraic’ understanding of cellular systems using Esche-
richiacoli cells.

2 Cultivation System for ‘Algebraic’ Viewpoint: On-Chip
Single-Cell Cultivation System for Isolated E. coli Cells

The first aim of our single-cell-based study was to develop methods and systems
using on-chip microcultivation system that enable the mechanism responsible for

Fig. 1 Our strategy: on-chip single-cell-based analysis with the aim of probing temporal and
spatial aspects of cell regulation
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controlling (regulating) cells epigenetically to be analyzed for ‘algebraic’ under-
standing. The advantage of this approach is that it removes the complexity in
underlying physicochemical reactions that are not always completely understood
and for which most of the necessary variables cannot be measured. Moreover, this
approach shifts the view of cell regulatory processes from a basic chemical ground
to a paradigm of the cell as an information-processing unit working as an intel-
ligent machine capable of adapting to changing environmental and internal con-
ditions. This is an alternative representation of the cell and can bring new insights
into cellular processes. Thus, models derived from such a viewpoint can directly
help in more traditional biochemical and molecular biological analyses that assist
in our understanding of control in cells.

Phenotypic and behavioral variations from cell to cell have been observed to
exist even in a genetically identical population [1, 22–25]. The resulting hetero-
geneity in a clonal population may well be important not only for survival [24], but
also for cooperation in a population that must obviously exist and work in mul-
ticellular organisms [26–28]. The mechanisms of producing phenotypic variations
are explored both theoretically [29–34] and experimentally [35–37] as an intra-
cellular noise (fluctuation, or stochastic transcription/translation)-driven process
[38]. McAdams and Arkin proposed that stochasticity in the process of gene
expression could lead to the substantially large difference in the amount of protein
products, which eventually affects the switching mechanisms in individual cells in
a group that select between alternative phenotypes [33]. The existence of noise in
the gene expression process was shown experimentally by van Oudenaarden and
colleagues [37]. They showed that the resulting phenotypic noise had a strong
positive correlation with translational efficiency, in contrast to the weak positive
correlation observed for transcriptional efficiency. As another example of the
experiment, Elowitz and colleagues [36] examined the contributions to overall
variation from the gene expression process and from other cellular components
separately, showing that the noise in the gene expression process did not uniquely
determine the total variability.

These studies are based on the temporal observation of a cell group. The group-
based observation, however, cannot show how an individual cell produces different
phenotypes and behaviors in the course of proliferation and whether phenotypes
and behaviors specific to an individual cell can be inherited. Flow cytometry
enables us to obtain the distributions of parameters like concentration, size, shape,
DNA content etc. at the single-cell level in a group and is a powerful method to
check huge numbers of cells within a short time [39]. To confirm the acquired
results from flow cytometry, as a complementary supporting approach, it is
desirable to acquire the continuous trackings of a specific single cell’s dynamics
under the specific circumstances like isolated conditions or comparison of neigh-
boring generations of single cells. In other words, cytometry can give us infor-
mation about the average properties of huge numbers of cells, i.e., how the group
changes, but it cannot give us information about how a single cell changes. Direct
microscopic measurement of cells in solid media like cultivation plates [28, 40–43]
can identify individual cells and thus can track specific cells continuously.
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Although we can begin cultivating cells under isolated conditions and establish the
desired connections by controlling the initial spread concentration, it is impossible
to keep cells isolated or track more than ten direct descendant generations espe-
cially after cell divisions have occurred, and it is impossible to control the inter-
actions between particular cells because the positions of the cells are fixed at the
beginning of the cultivation. Thus this on-chip measurement system is thought to be
complementary to these conventional methods for gaining an understanding of
single-cell level interactions of particular cells.

New techniques are needed to clarify the interactions between genetically
identical cells, and for this purpose, we have developed an on-chip single-cell-based
microculture method exploiting recent microfabrication techniques and
conventional in vivo techniques. To manipulate cells in microchambers, we use
non-contact forces, such as optical tweezers and acoustic radiation force, which
have been used to handle cells, organelles, and biomolecules on microscope
specimens [2, 44–49].

2.1 On-Chip Single-Cell Cultivation System Design

To directly compare sister or direct descendant cells, we developed an on-chip
single-cell cultivation system. It enabled excess cells to be transferred from the
analysis chamber to the waste chamber through a narrow channel that allowed a
particular cell to be selected from cells in the microfabricated cultivation chamber
with non-contact force, optical tweezers (Fig. 2).

Figure 3 is a schematic drawing of the procedure of isolation of single cells
using optical tweezers, and the entire system we used for on-chip single-cell-based

Fig. 2 Single-cell cultivation in microchambers to measure variability in genetic information.
a Schematic drawing of concept of on-chip single cell cultivation using microchamber system,
b an example of microchamber array design for single cell cultivation for four generations,
c micrograph of microchamber array structure made of polydimethylsiloxane (PDMS) on the
glass slide, bar 50 lm
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analysis. It consists of a microchamber array plate (chip), a cover chamber
attached to the medium circulation unit, a 9100 phase-contrast/fluorescent
microscope, and optical tweezers. The microchamber arrays are the microfabri-
cated structure etched on the glass slide (Fig. 4a–e), or made of thick photo-resist
SU-8-5 on the glass slide (Microlithography Chemical Corp., MA) (Fig. 4f). The
height of the microchamber array is at least 5 lm, in which the cells are enclosed.
The microchamber array is sealed with a semipermeable membrane to prevent the
cells escaping from it. The semipermeable membrane is decorated with avidin and
the glass slide with biotin to ensure the seal is tight (Fig. 5). With these decora-
tions on the membrane and slide, it is possible to observe cells in the micro-
chamber without them escaping. The microchamber is composed of two main
parts and the first is the observation area, which has four compartments in it at the
center of the microchamber. Each compartment has a volume of 20 9 20 9 5 lm.
Each compartment has four observation sub-compartments (A, B, C, and D in
Fig. 4f) at the center of the microstructure. The second part includes the discarding
areas at both sides of the microchamber. These enclose surplus cells in observa-
tions. The first four direct descendant cells derived from a single cell were placed
in one of the four compartments individually to keep them isolated. The excess
descendant cells were transferred to the two large compartments (discarding areas)
along the white arrow with the optical tweezers. Cells were transferred from the
observation area to the discarding area by using the optical tweezers through the
narrow path along the white arrow in Fig. 4f. As we can see in the micrographs,
only one cell is enclosed in each of the four compartments of the observation area

Fig. 3 On-chip single-cell cultivation system for E. coli cells. a One of the divided two daughter
cells was removed from analysis chamber, b one of the cultivated cells in a group in the
cultivation chamber was picked up and transferred into the analysis chamber, c schematic
drawing and micrographs of the system
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Fig. 4 Optical micrographs of microchambers. a Schematic drawing of the microchamber array
plate. An n 9 n (n = 20–50) array of microchambers is etched into a 0.17-mm-thick glass slide.
Each microchamber is covered with a semipermeable membrane separating the chamber from the
nutrient medium circulating through the medium bath. A single cell or group of cells in the
microchamber can thus be isolated from others perfused with the same medium. b Optical
micrograph of the microchamber array plate. The arrow indicates the position of one
microchamber with a 20-lm diameter and 5-lm depth. Bar 100 lm. c Schematic drawing of
the two sizes of microchambers. The ‘small chamber’ on the left has a 20-lm diameter and 5-lm
depth (shown in b), and the ‘large chamber’ on the right has a 70-lm diameter and 30-lm depth.
Optical micrographs of d a small chamber, and e a large chamber. The arrows indicate the
positions of E. coli in the chambers. Bar 10 lm. f Microchamber array with four compartments
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under isolated conditions. Four specific cells in the four compartments were
simultaneously observed without any disruption by the other cells and without
leaving the field of view of the microscope.

Fig. 5 Differential analysis
of sister cells from isolated
single E. coli in a micro-
chamber. The magnified
micrographs at the top
a–g show the time course of
one of the microchambers in
Fig. 4b (see arrow) at times
of a 0 min, b 100 min,
c 150 min, d 175 min,
e 225 min, f 230 min, and
g 15 h after the inoculation
started. The arrows in the
micrographs show the
positions of E. coli in
the microchamber. Bar
10 lm. h Time course growth
of the individual E. coli.
i Chamber size dependence of
cell growth and interdivision
time, small chamber and
large chamber in Fig. 4c
(open circle and open square
for cell length, and a and
b for interdivision time,
respectively), indicating no
dependence of cell growth
speed on chamber size
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Optical tweezers were introduced to enable non-contact handling of the cell
specimens. An Nd:YAG laser (wavelength = 1,064 nm, T20-8S, Spectra Physics,
SpectraPhysics, CA) was guided to the 9100 phase contrast objective lens
(UplanApo, Olympus, Tokyo, Japan) as the light source for the optical tweezers,
which are widely used in handling micron-sized particles and biomaterials [44–49].
We used it in the system in our protocol to transport particular cells within the
microchamber.

The medium circulation unit utilized a glass box with a volume of 1 ml that had
two branches. It was mounted on the microchamber array chip and fresh medium
buffer was always circulated in the glass box through the two branches at a rate of
1 ml/min with a peristaltic pump. The bottom of the glass box was open and the
condition of the medium around the cells could be constantly maintained by buffer
exchanges through the semipermeable membrane.

A phase contrast microscope (obj. 9100 magnitude) was set up with IX-70
(Olympus). The whole microcultivation part was placed in a thermo control cage
(IX-IBM, Olympus) to maintain the temperature at 37 �C throughout observation.
The observation images were taken with a CCD camera (CS230, Olympus) and
recorded on digital video cassette. These were analyzed on a personal computer
(PCV-R73 K, Sony, Tokyo, Japan).

2.2 Differential Analysis of Sister Cells with Identical Genetic
Information and Experience

To investigate non-genetic variability in the division cycle and growth of single
cells, we first compared the growth and division times for pairs of E. coli daughter
cells under isolated conditions using the on-chip single-cell cultivation system we
just have described [3, 5] (Figs. 3 and 4).

In this experiment, we used E. coli strain JM109 (endA1, recA1, gyrA96, thi,
hsdR17(rk

-, mk
+), relA1, supE44, k-, D(lac-proAB), [F0, traD36, proAB,

lacIqZDM15] obtained from Toyobo, Tokyo, Japan) in a minimal medium, M9
(4.5 g/l KH2PO4, 10.5 g/l K2HPO4, 50 mg/l MgSO4�7H2O, pH 7.1) containing
0.2% (w/w) of glucose at 37 �C.

First, we checked the chamber size dependence of cell growth and interdivision
time using different sized microchambers (Fig. 4c) and found there no apparent
difference (Fig. 5i).

Before starting continuous isolation of direct descendant cells using optical
tweezers, we have compared the difference of growth and divisions of sister cells
within the microchambers under the conditions without any physical stimulation
applied to the cultivating cells. After on-chip single-cell cultivation has started, an
isolated single cell (mother cell) grew in the microchamber after the resting of
growth from 2.8 to 5.6 lm in 90 min, and finally divided into two 2.8-lm daughter
cells (Fig. 6a). Although the newborn daughter cells grew synchronously in the
same manner, they divided into granddaughter cells at different times, i.e., 70 and
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90 min (see arrowheads in graph). The three other examples (Fig. 6b–d) show that
even though the growth of the mother cell and her daughter cells seems to have no
significant correlation, the growth of two daughter cells from the same mother cell
seems to be quite similar. In contrast, the division times for daughter cells of the
same length (Fig. 6a, c, d) were not synchronous. In Fig. 6b, on the other hand, the
division time and cell growth tendency of two daughter cells were synchronous
even though they were born after unequal divisions of the mother cell. These
results indicate that variations in cell growth and cell division may not be closely
correlated and that cell division time is independent of genetic identity and cell
size.

The division time differences between two daughter cells from the same mother
cells were also measured (Fig. 7). Although sister cells are thought to have the
same DNA and chemical components as their mother’s cells, the results revealed
only 36% of daughter cells divided into granddaughter cells within a 10-min
difference of period even when they started at the same cell lengths (Fig. 7a). The
dependence of division time differences for newborn daughter cells on length was
also evaluated and the time distribution was similar regardless of the initial length
(Fig. 7b). These results mean that variations in cell division may not depend on
DNA or the initial cell size.

The initial dependence of variations in cell growth and division on length was
also evaluated. The ratio of the final length of these cells and their initial length
seems to be independent of the initial length, about 170%, when it is longer than
3 lm. The speed of growth of cells also has no significant dependence on the
initial length.

In this experiment, we observed and compared the cell growth and division of
two daughter cells of isolated single E. coli using the on-chip culture system, and
found a broad range of variations in cell growth and division time. Such variations
are not attributable to the genetic differences in DNA. The variations in the growth

Fig. 6 Time course growth for isolated individual E. coli and two daughters
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ratio between the final and initial lengths, and the speed of growth seem to be
independent of their initial length, at least when they are longer than 3 lm. The
same tendency toward a broad distribution in the division time (data not shown)
and the division time differences of two daughter cells from the same mother cells
(Fig. 7) suggests the involvement of a probabilistic process that starts division.
A Poissonian variation in a small number of molecules that determines growth and
division might explain the origin of these non-genetic variations in cells.

2.3 Differential Analysis of Direct Descendant Cells with Identical
Genetic Information and Experience

We next examined whether the characteristics of direct descendants of an isolated
single cell could be inherited under isolated conditions using the on-chip single-
cell cultivation/analysis system with optical trapping to maintain the isolated

Fig. 7 a Differences in
division time for two
daughter cells of same mother
cells (n = 80 pairs), and
b initial dependence of
division time differences
on length
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condition of cells even after several generations of cell divisions [4, 6]. Figure 8
plots temporal variations in cell lengths of individuals and their descendants.
Figure 8a shows schematics explaining the measured interdivision time and cell
length. The four graphs (b–e) indicate growth and division patterns for four cells
born from a single cell and isolated into the four chambers A–D in Fig. 4f.

Figure 9a also plots variations in interdivision times for consecutive genera-
tions of other isolated E. coli cells derived from a common ancestor. The four
series of interdivision times varied around the overall mean value, 52 min (dashed
line); the mean values of the four cell lines a, b, c, and d were 54, 51, 56 and
56 min, indicating rather small differences compared with the large variations in
the interdivision times of consecutive generations. These results support the idea
that interdivision time variations from generation to generation are dominated by
fluctuations around the mean value, and this was evidence of a stabilized pheno-
type that was subsequently inherited. To explore this idea further, we examined
the dependence of interdivision time on the interdivision time of the previous
generation. We grouped all interdivision time data into four categories and cal-
culated their distributions (Fig. 9b). A comparison of these distributions revealed
that they were astonishingly similar, suggesting that there was no dependence on

Fig. 8 Temporal variations in cell lengths of individual cells and their direct descendants

66 K. Yasuda



the previous generation. That is, there was no inheritance of interdivision time
from one generation to the next.

2.4 Adaptation Process for Sensor Proteins in Cells Caused
by Environmental Changes

We have modified the on-chip single-cell cultivation/analysis system to simulta-
neously measure the sensor-protein dynamics and motility of identical single cells
for several generations [8]. This technique revealed the potential of combining the
microfabrication technique (single-cell cultivation technique) and molecular
biology (single-molecule observation).

Escherichiacoli cells are able to respond to changes in environmental chemo-
effector concentrations through reversing their flagellar motors [50, 51]. Attrac-
tants (such as aspartate and serine) promote counterclockwise rotation of the
flagella, resulting in a smooth swimming action, whereas repellents (such as
phenol and Ni) promote clockwise rotation, resulting in tumbling. These
responses are mediated by membrane-bound, methyl-accepting chemoreceptor
proteins (MCPs). Immunoelectron microscopy revealed that MCP–CheW–CheA
complexes are clustered in vivo, predominantly at the cell poles [52], and merely

Fig. 9 Variations of interdivision time in direct descendant cells of E. coli
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weaker lateral clusters could be observed [53–55]. Polar localization changes
have been expected according to environmental conditions, whereas no evidence
concerning the dynamics of localization changes has been reported. Conventional
group-based experiments do not allow the process of MCP clustering and the
effect its change has on consecutive generations in individual cells, which is
essential in estimating the changes occurring during the alternation of genera-
tions. To understand epigenetic processes such as adaptation and selection, both
the protein dynamics and the cell dynamics of particular single cells should be
observed continuously and simultaneously for several generations.

We used assayed intracellular proteins tagged with green fluorescent protein
(GFP) to measure the localization dynamics of expressed proteins (Fig. 10).

We modified the shape of the microchambers into a wheel to measure the time
course for motility (Fig. 11a). In the experiment, we first placed a single bacterium
in the microchamber and isolated it in the wheel region so that it could swim along
the track seal with the semipermeable membrane lid on the microchamber. Then,
the bacterium running around the circle structure was continuously monitored by
measuring the tumbling frequency and protein localization dynamics. When the
cell divided into two daughter cells, one of these was picked up with the optical
tweezers, transported to the axle area, and continuously confined in this region to
stop it growing. The bacterium was chemically stimulated by changing the con-
tents of the medium.

When the cultivation started, the tar localization ratio (filled squares) was 2.5
and the tumbling frequency (filled circles) was 0.5 (s-1) (Fig. 11B-a and arrow-
head ‘a’ in Fig. 11C). After the second cell division had occurred, a minimal
medium containing 1 mM of aspartate was applied to the third-generation cell
(135 min after microcultivation). After the attractant was added, tumbling fre-
quency decreased immediately compared to the previous generation. Localization
of the aspartate-sensitive sensor protein at two poles in E. coli (filled squares)
also decreased quickly by half to 45 min following the change of medium
(Fig. 11B-b, C-b). Finally, after 80 min of stimulation with the aspartate,

Fig. 10 MCP–GFP
localization in E. coli cell.
a Fluorescent micrograph of
E. coli.b Intensity profile of
MCP–GFP localization
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the localized tar had diffused completely. Then, the aspartate was removed from
the cultivation medium and the cells were cultivated further to enable the recovery
of tar localization dynamics to be measured (Fig. 11B-c, C-c). After the first
change of medium, it took more than three generations to recover the original
pattern of tar localization (Fig. 11B-d, B-e, C-d, C-e). However, the frequency of
tumbling remained higher than the former generations. This may indicate that tar
localization requires more time to form than to diffuse. Such asymmetric
reversibility in protein localization may contribute to cell phenomena being
inherited in response to environmental changes [1, 4, 7, 56–66]. It also suggests
the possibility that change in tar localization can be inherited by descendant cells
and this can affect their motility and therefore their phenotype.

2.5 Epigenetic Inheritance of Elongated Phenotypes Between
Generations Revealed by Individual-Cell-Based Direct
Observation [67–76]

When implementing individual-cell-based measurements of epigenetic inheritance
instead of group-based measurement, we developed an ‘on-chip individual-cell
cultivation system’ [3, 4, 77]. This system enabled us to compare the phenotypes
between generations and to examine the existence of phenotypic transmission at
the individual cell level under stringently controlled conditions. We called this
method a ‘differential individual-cell observation assay’. We measured the vari-
ations in quantitative traits at the individual cell level under uniform and isolated

Fig. 11 Simultaneous observation of MCP–GFP localization and motility in identical E. coli cell
for generations
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conditions and found that the interdivision time, initial length, and final length
varied at the individual cell level as much as 33, 26, and 26%, respectively [78].

This experiment reports the phenotypic dynamics involved in changing normal
isolated cells into elongated ones, and the transmission of elongated phenotypes to
descendants at the individual cell level, hence enabling epigenetic inheritance to be
directly observed in E. coli using the differential individual-cell observation assay.

The E. coli strain EJ2848 (LacI3 DlacZ lacY+DfliC) [79] was used in this
experiment. To simplify the model, we used a strain that lacks motility due to the
deletion of flagellin. Cells were prepared by using M9 minimal medium
(Qbiogene) supplemented with 0.2% (w/w) glucose and amino acids (MEM amino
acids, Invitrogen). The cultivated cells were loaded and observed in the on-chip
individual-cell cultivation system described in a previous report [78].

Figure 12a plots example growth and division dynamics of individual E. coli
cells under uniform and isolated conditions. A single cell was first loaded in the
on-chip individual-cell cultivation system and observed continuously (Fig. 12a).
The cell exhibited normal growth and division patterns in the first and second

Fig. 12 Presence and inheritance of elongated phenotype under uniform conditions
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generations and divided almost equally; hence, we randomly discarded one of the
two daughter cells (closest to the exit). Despite the normal growth and division
characteristics in the first and second generations, the cell in the third generation
was extraordinarily elongated. A striking feature of the cell was that it divided
unequally (Fig. 12a, arrowheads), thereby producing two daughter cells; one was
elongated and the other was normal (Fig. 12a). Elongated daughter cells followed
in the subsequent descendents, remaining elongated through repeated unequal cell
divisions in most cell divisions. In other words, the cell transmitted its abnormally
long cell length to its descendants. However, the normal daughter exhibited normal
growth and division patterns and did not elongate in the following generations
(Fig. 12b). The normal daughter cell born from the elongated cell had the same
tendencies as those of typical normal cells. Just as in the third generation, the
shorter of the two daughter cells in the ninth generation also demonstrated normal
growth and division patterns (Fig. 12c). Therefore, it is conceivable that the
shorter of the two daughters from the elongated cells possesses a normal
phenotype.

The transmission of the elongated phenotype between generations can clearly
be seen in the returning map of initial cell-length transitions (Fig. 12d). The
converging dots indicate stable states in the transition. The initial cell-length
transition for elongated lineage jumped from the normal cell-length area to the
elongated cell-length area at the beginning of the fourth generation and stayed
there throughout the following generations, whereas the shorter daughters’ tran-
sitions were within the normal cell-length area. The clear distinction between the
two transition areas hence indicates that the elongated cell transmitted a distinctive
phenotype to one lineage of its descendants.

The presence of elongated cells was not restricted to this example. We found
5% of the normal-phenotype cells (12 out of 242) observed in the on-chip indi-
vidual-cell cultivation system under the same conditions acquired elongated
phenotypes.

The question is what is the mechanism responsible for passing on the elongated
phenotype in one lineage of descendants? It should be noted that the evidence
accrued from our results suggests the presence of elongated cells is not caused by
the mutation of genetic information because one of the two daughters possessed
normal cell characteristics, which should have had the same genetic information as
the other elongated daughter cells. Otherwise, the normal of the two daughters
would have elongated in the following generations if the elongation had been
caused by mutation.

The repeated unequal divisions of elongated cells in Fig. 12a suggest that there
is an intracellular mechanism that induces unequal cell divisions to elongate cells.
Moreover, the mechanism for inducing unequal cell division should underlie the
stable inheritance of the elongated phenotype in one lineage; unequal cell division
produces a daughter cell with a long start cell, which would also attain a long cell
by the next division, enabling it to divide unequally again. Repeating this process,
a cell could stably transmit the elongated phenotype to the one lineage of
descendants once they acquired a long cell.
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The question arising from the above observations is whether there is a boundary
for length that changes cell characteristics if variations exceed a certain length. We
then examined the relationship between the final length and the position of the
division plane (Fig. 12e). The position of the division plane, r, was defined by
using the cell lengths of two daughter cells produced in the corresponding cell
divisions as

r ¼ ðInitial length of longer daughter cellÞ
ðInitial length of shorter daughter cellÞ: ð1Þ

Therefore, ‘r = 1’ corresponds to equal cell division and ‘r [ 1’ corresponds to
unequal cell division. Figure 12e shows that the position of the division plane
was at an uneven point when the cell length was longer than 10 lm. The results
clearly reveal that there is a boundary for cell length that affects division
characteristics; cells shorter than 10 lm divide equally (normal phenotypes),
while those longer than 10 lm divide unequally (elongated phenotypes). Hence, it
is conceivable that a kind of geometric index, i.e., cell length, controls their
phenotypic characteristics.

We next examined the division cycles of elongated cells. Figure 13a plots the
interdivision time distributions for elongated and normal cells. ‘Elongated cells’
were defined as those whose final length was longer than 10 lm and those whose
final length in the previous generation was also longer than 10 lm. Based on this
definition, the interdivision time for generation in which a cell elongated
extraordinarily from normal length (like the third generation in Fig. 12a) was not
categorized as elongated in plotting the distribution. The average elongated-cell
interdivision time was 25.9 ± 1.6 min, which was half that of normal cells
(52.4 ± 1.1 min) and might be able to explain how the cell division process of
both ends of the elongated cell proceeded independently. The coefficients of
variance (CV) were 48 and 33% for the elongated and the normal, respectively.
The distinct interdivision time distribution for elongated cells also confirms that
they could easily be distinguished from normal cells. The characteristics of
elongated cells cannot be explained by variations in normal cells. We thus
regarded elongated and normal cells to be different phenotypes.

The next question is how does an elongated cell achieve a short interdivision
time? Figure 13b shows an alternative formation for the division plane at opposite
poles between neighboring generations. Image 1 shows an elongated cell emerging
in the fourth generation from a normal phenotype before the division plane is
formed. A visible division plane was then formed near the lower end as can be
seen from Image 2 (fourth generation). After cell division, the longest daughter
cell was selected and observed thereafter. We found a division plane was formed
in the next generation near the opposite end of the cell (Image 3, fifth generation).
Although the cell divided equally and produced two elongated daughters in
the sixth generation, the division ended in the following two generations
(seventh and eighth) exhibiting the same behavior as in the fourth and fifth gen-
erations, i.e., division planes were generated on opposite sides (Images 4 and 5).
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The fact that the positions of division planes in consecutive generations (fourth–
fifth and seventh–eighth) were opposite indicates that two division mechanisms
operate simultaneously in an elongated cell near both ends. The half interdivision
time of elongated cells can be explained by two division planes simultaneously
and independently working near both ends in elongated cells, each of which works
at approximately the same interval as interdivision in the normal phenotype.

The question then is what intracellular mechanism is responsible for the
observed unequal cell divisions in elongated cells? It has been suggested that
two mechanisms in E. coli, nucleoid occlusion and the Min system, determine
the position of the division plane. Nucleoid occlusion is the mechanism where
the assembly of the FtsZ ring, which determines the position of the final cell
division plane, is inhibited within the close vicinities of nucleoids [80, 81]. The Min
system, on the other hand, is comprised of three proteins, MinC, MinD, and MinE,
which dynamically interact with one another and exhibit rapid pole-to-pole
oscillations [82–92]. MinC and MinD form an inhibitory complex to form Z rings
[85–87]; Z-ring formation has been proposed to be directed to positions
where concentrations of the MinCD complex are low on average in oscillations
[89, 91, 92]. To examine the relevance of observed unequal cell divisions to the
proposed mechanisms responsible for the position of the division plane,

Fig. 13 Short interdivision time for elongated cell. Bar 1 lm
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we visualized the position of nucleoids in elongated cells by 40,6-diamidino-2-
phenylindole dihydrochloride hydrate (DAPI) fluorescence using Hiraga’s method
[93] (Fig. 13c, d). A normal-sized cell reaching the mean division length possessed
two segregated nucleoids with a space in the middle as seen in Fig. 13c (phase-
contrast image for reference in Fig. 13e). MinCD concentration should be low in
the middle and high at the poles [89, 91, 92], leading to Z-ring formation in the
middle. However, an elongated cell possessed multiple nucleoids with spaces
between them as can be seen from Fig. 13d (phase-contrast image for reference in
Fig. 13f). There are numerous positions where constrictions can occur in this
elongated cell according to the nucleoid occlusion model. However, MinCDE
oscillations are known to achieve ‘doubled’ patterns in an elongated cell [85, 86,
88], which has been proposed to inhibit Z-ring formation both around the midplane
and at the poles. Consequently, the cell divisions in elongated cells of this size
should only occur at the uneven nucleoid gap positions (Fig. 13d, arrows).

Although the presence of unequal cell divisions in elongated cells is under-
standable from the combined views of nucleoid occlusion and Min oscillation, it is
still unclear what determines the cell-length boundary, 10 lm, between the equal
and unequal cell divisions shown in Fig. 12e. We therefore calculated the oscil-
lation dynamics of the MinCD complex and MinE at various cell lengths according
to Huang’s model (Fig. 14) [92]. Figure 14a–e are micrographs of the time course
change in the concentration of MinD at the cell membrane along the long axis of
the cell, indicating that the number of oscillations doubles when the cell length is
longer than 8 lm. The single-cycle averages for MinD concentration at the
membrane in Fig. 14a–e also reveal the concentration of MinD at the midplane
becomes highest for all positions when the cell length is longer than 8 lm. The
MinD concentration at the midplane relative to the overall averages is plotted in
Fig. 14f. The results indicate a drastic increase in MinD concentration at the
midplane when the oscillation doubles, which suggests that the cell-length
boundary between the single and double oscillations of Min proteins determines
the cell-length boundary between equal and unequal cell divisions in Fig. 12e.

On the basis of the results in Fig. 14f, FtsZ should be unable to form a ring at
the midplane in cells with lengths longer than 8 lm. Therefore, FtsZ would
inevitably form rings at uneven positions in these long cells, which would lead to
unequal cell divisions. The formation of FtsZ rings lies at the heart of the process
of division at the membrane [94]. In previous studies, the time between when cell
division was initiated by the polymerization of FtsZ and the appearance of con-
striction visualized by electron microscopy was found to be approximately 20 min
[95]. Under the conditions in our experiment, the average time to double cell
length was 52 min (Fig. 13a); hence, the expected division cell-length for a cell
whose Z-ring formation was initiated at a cell length of 8 lm can be calculated as
8 lm 9 220/52 = 10.4 lm. This calculation suggests that the boundary for final
length that separates equal and unequal cell divisions should be 10.4 lm, which
matches our experimental results in Fig. 12e. All these results indicate that it is
highly probable that Min oscillations determine the observed cell-length boundary
between equal and unequal cell divisions.
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It is still unclear at this point how a cell acquires length. We previously reported
that the length distributions for the division of genetically identical cells in the
same environment had variations of 26% (CV) [78]. The large variations in cell-
length distributions reflect uncertainty about whether genetically identical cells
can generate the same length when the environmental conditions are the same. In
other words, the intracellular mechanism inevitably includes stochasticity, which
causes variations in the length of divided cells. Therefore, extraordinarily elon-
gated cells with final lengths longer than 10 lm can occur with a certain

Fig. 14 Simulated MinD dynamics within cells with various cell lengths
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probability based on intracellular stochasticity; this occurred with 5% probability
under our test conditions.

The fact that elongated cells divide unequally would enable the elongated
phenotype to be inherited in one lineage. Unequal cell division produces longer
and shorter daughter cells. The longer daughter cell with a long starting cell length
can easily exceed the boundary cell length. Consequently, the next division also
becomes unequal. Repeating this process, a cell will eventually transmits its longer
length to one of its descendant once it has acquired that length. Geometry, i.e., cell
length in this inheritance mechanism, plays a key role in enabling the phenotypic
characteristics to be inherited between generations without any consideration
given to genetic modifications.

The mechanisms for cellular epigenetic inheritance have mainly been studied to
reveal the gene regulatory network to achieve multistability [75, 76, 96, 97] to the best
of our knowledge. The roles of chromatin, DNA methylation, and acetylation also
relate to gene regulation [74, 98–100]. However, the epigenetic inheritance discussed
in this chapter occurred once a cell reached a certain cell length; it was independent of
the gene regulatory network. Therefore, our results suggest the inheritance of geo-
metric information, such as cell shape, is significant in epigenetic inheritance.

3 Conclusion

We developed and used a series of new methods for understanding the meaning of
genetic and epigenetic information in a life system from a ‘temporal’ or ‘algebraic’
viewpoint by exploiting microstructures fabricated on a chip. The most important
contribution of this study was to be able to reconstruct the concept of a cell
regulatory network from the ‘local’ (molecules expressed at certain times and
places) to the ‘global’ (the cell as a viable, functioning system). Knowledge of
epigenetic information, which we can control and change during cell lives, com-
plements the genetic variety, and these two kinds are indispensable for living
organisms. This new kind of knowledge has the potential to be the basis of cell-
based biological and medical fields like those involving cell-based drug screening
and the regeneration of organs from stem cells.
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Measuring the Mechanical Properties
of Single Microbial Cells

Colin R. Thomas, John D. Stenson and Zhibing Zhang

Abstract Many cells are considered to be susceptible to mechanical forces or
‘‘shear’’ in bioprocessing, leading to undesirable cell breakage or adverse
metabolic effects. However, cell breakage is the aim of some processing
operations, in particular high-pressure homogenisation and other cell disruption
methods. In either case, the exact mechanisms of damage or disruption are
obscure. One reason for this is that the mechanical properties of the cells are
generally unknown, which makes investigation or prediction of the damage
difficult. There are several methods for measuring the mechanical properties of
single microbial cells, and these are reviewed briefly. In the context of biopro-
cessing research, a powerful method of characterising the mechanical properties of
single cells is compression testing using micromanipulation, supplemented by
mathematical modelling of the cell behaviour in compression. The method and
associated modelling are described, with results mainly from studies on yeast cells.
Continuing difficulties in making a priori predictions of cell breakage in pro-
cessing are identified. In future, compression testing by micromanipulation might
also be used in conjunction with other single cell analytical techniques to study
mechanisms controlling form, growth and division of cells and their consequential
mechanical behaviour. It ought to be possible to relate cell wall mechanics to cell
wall composition and structure, and eventually to underlying gene expression,
allowing much greater understanding and control of the cell mechanical properties.
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RT-PCR Reverse transcription polymerase chain reaction
TEM Transmission electron microscope

Contents

1 Introduction.......................................................................................................................... 84
2 Methods to Measure Single Cell Mechanical Properties................................................... 85

2.1 Osmotic Pressure Variation........................................................................................ 85
2.2 Atomic Force Microscopy.......................................................................................... 86
2.3 Optical Tweezers ........................................................................................................ 87
2.4 Compression Testing by Micromanipulation............................................................. 87
2.5 Nanomanipulation ....................................................................................................... 94

3 Future Prospects for Compression Testing......................................................................... 95
4 Conclusion ........................................................................................................................... 96

References ........................................................................................................................... 97

1 Introduction

As this review will describe, techniques have become available over the last
decade that can be used to measure the mechanical properties of single microbial
cells. In some cases, it has been possible to use mathematical models of cell
mechanical behaviour to deduce key material properties of cells, and in particular
of their walls. Clearly, there must be reasons for undertaking such research. Early
investigations of the mechanical properties of single cells were focussed on
problems in bioprocessing, in particular possible damaging effects of ‘‘shear’’
on animal cells [43, 45]. However, cells with walls such as bacteria and yeast cells
are generally considered to be strong, and the main issue with such cells in
bioprocessing is the requirement in some circumstances for deliberate cell
disruption, for example in a high pressure homogeniser, in order to release cell
contents for subsequent recovery [10]. It has been suggested that in a high pressure
homogeniser, two mechanisms may cause cell disruption: fluid mechanical stresses
in the valve unit and subsequent jet impingement on the impact ring [22].
However, the extent of disruption not only depends on the hydrodynamics, but also
on the mechanical properties of the cells [15, 35], and only by characterising the
mechanical properties of single cells, and the material properties of their walls,
will it be possible to determine successfully the specific mechanisms of cell dis-
ruption (which may be different for different cell types). Furthermore, it has been
suggested that there can be significant adventitious disruption of Escherichia coli
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in centrifugation [7], and knowledge of cell mechanical properties would inform
understanding of mechanisms here too.

In most bacteria shape is maintained by the cell wall [14], and this will also be
the case for other microbial cells. Another reason for investigating the mechanical
properties of cells and cell wall material properties is to try to relate those
properties to the cell wall composition and structure and eventually through
physiology and metabolism to gene expression. In this way we might increase our
understanding of the form of cells and their mechanisms of growth.

2 Methods to Measure Single Cell Mechanical Properties

Lim et al. [19] reviewed experimental techniques for single human cell and single
molecule biomechanics, but did not cover work on microbial cells. A more recent
review considered the mechanical characterisation of single particles, including
alternative techniques to compression testing by micromanipulation [42]. The
scope of this review was greater than just single microbial cells as it included
animal and plant cell research and studies on non-biological particles such as
tablets and microcapsules. Not all of the methods described are applicable to
microbial cells, which are generally smaller and more robust than many of the
other particles found in biological and functional products. The pressure probe
technique is used to study water relations in plant cells [36], but can also provide
information on their bulk elastic moduli. However, it cannot be used on cells of
sizes much smaller than 50 lm. Micropipette aspiration [19] is widely used to
characterise the mechanical properties of many types of animal cells, but only
works with such large and easily deformed cells.

2.1 Osmotic Pressure Variation

Microbial cell volume changes with the external osmotic pressure of the sus-
pending solution, and this can be used to infer some cell mechanical properties.
The cells are suspended in hypotonic solution, which is changed to hypertonic,
causing water to flow from the cells because of the osmotic pressure change. The
dependence of cell volume on the external osmotic pressure can be determined
using a Coulter Counter� or Malvern Mastersizer� [21, 30] or for single cells by
image analysis [4]. In the latter case, the cells can be fixed to the surface of a
visualisation chamber, using chitosan in the case of yeast cells [4], so that an
individual cell can be observed despite the flow of solution through the chamber. It
is possible to use the cell volume-external osmotic pressure relationship to find the
internal (turgor) pressure-volume relationship, from which a bulk elastic modulus
for the cell can be found [21]. In the case of exponentially growing Saccharomyces
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cerevisiae cells, this was about 3 MPa. However, a bulk modulus treats the cell as
a homogeneous body rather than a liquid-filled shell (i.e., cytoplasm within a cell
wall), and in any case it is only found indirectly. On the other hand, this is a good
method for studying (yeast) cell water relations [9] provided the time responses of
the mixing chamber and of the cells are considered. This technique is not able to
cause microbial cell failure, which is important in disruption studies.

2.2 Atomic Force Microscopy

Atomic force microscopy (AFM) [5] is a powerful technique for imaging the
topography of surfaces, including those of microbial cells and other surfaces. As a
nano-indentation system (i.e., a method by which a nanometer scale probe can be
pushed into a surface), it can give local values of cell wall mechanical properties
by providing curves of force versus indentation distance. It can do this with
piconewton sensitivity and nanometer lateral resolution. The basis of the method is
well known, and the reader is referred to an excellent review of microbial appli-
cations by Gaboriaud and Dufrene [12]. The method primarily gives the cell spring
constant, treating a cell as a linearly elastic spring [3, 12], but it is possible to
estimate a cell wall elastic modulus using either a Hertz model of compression of
the surface [12, 37] or finite element analysis [46].

A particularly interesting application of AFM to microbial cells is given by
Touhami et al. [37], who measured the elastic (Young’s) modulus of normal cell
walls of a brewer’s yeast (Saccharomyces cerevisiae) and that of a bud scar where
one expects a high level of chitin. The bud scar had a modulus value some ten
times higher than the value for the surrounding wall, i.e., it was significantly
stiffer. This was an important observation, distinguishing regions of different
elasticity resulting from cell division.

Atomic force microscopy is so sensitive it has even been used to demonstrate
local mechanical motions of the cell wall of Saccharomyces cerevisiae [25]. These
motions were periodic (frequencies around 1 kHz with amplitudes of about 3 nm)
and depended on an active metabolism. It was postulated that the motions were
generated by large-scale forces resulting from the action of many molecular motor
proteins working in concert. This is a remarkable observation that shows the power
of AFM.

Although AFM is now an indispensable tool for investigating single cell bio-
mechanics, it is not able to exert enough force to cause cell wall failure, i.e. cell
disruption. It is also probable that the method gives elastic moduli that are not only
laterally local, but also primarily reflect wall surface properties. For example,
Touhami et al. [37] used indentations of about 40 nm, applying a Hertz surface
compression model to extract moduli. The yeast cell wall is about 100 nm thick
[32] and multilayered [16, 18]. The outer layer of mannoproteins can be 50% of
the mass of the wall [16], and it seems plausible that the elastic moduli quoted by
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Touhami et al. [37] are for this outer layer rather than the b 1,3-glucan layer,
which is claimed to be load bearing [47]. This problem might be overcome by
using finite element analysis of the cell wall behaviour, as applied (to Aspergillus
nidulans) by Zhao et al. [46]. It is probably significant that the moduli found by
Zhao et al. [46] were more than an order of magnitude greater than those estimated
by Touhami et al. [37] and were more comparable with the values found by
compression testing on yeast cells (Sect. 2.4). In any case, it is difficult to see how
local properties from AFM could be related to useful global values for prediction
of cell disruption behaviour.

2.3 Optical Tweezers

The optical trapping method or ‘‘optical tweezers’’ uses a strongly focussed beam
of laser light to trap and manipulate particles suspended in a medium. The basis of
the method is well known, and the reader is referred to a short review by Grier
[13]. In most nanomechanical applications, silica microbeads are attached to
opposite sides of the cell. One bead is fixed to a surface, and the other is moved by
the optical tweezers to stretch the cell, with forces in the piconewton range.
Although there are many examples of this technique being used to study the
mechanical properties of cells, these are usually animal cells, without cell walls
and therefore of low stiffness. Unfortunately, such small forces are not sufficient
for characterising the mechanical properties of cells with walls, at least for large
deformations (e.g. to cell wall failure).

2.4 Compression Testing by Micromanipulation

2.4.1 Introduction to Compression Testing

Compression testing by micromanipulation is a technique by which a single cell
can be compressed or stretched and the force-deformation behaviour determined.
This technique was developed over a decade ago by two of the authors
(C.R. Thomas and Z. Zhang) and has since been applied to characterising the
mechanical properties of a wide range of microscopic particles including single-
celled (usually suspension-cultured) microorganisms [42]. In particular, the
method has been applied to Escherichia coli cells [28], Saccharomyces cerevisiae
[20, 31, 32], hybridomas [44, 45], tomato fruit cells [39] and tomato suspension-
cultured cells [6]. Work on Saccharomyces cerevisiae is described more fully in
Sect. 2.4.4 and a study on Escherichia coli in Sect. 2.4.5.

It should be noted that Peeters et al. [24] proposed similar equipment to study
the biomechanical response of skeletal muscle cells, but it does not appear to have
been used on microbial cells.
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2.4.2 Experimental Setup

The method of compression testing by micromanipulation is described in Blewett
et al. [6] and Wang et al. [39]. Figure 1 shows a photograph of the most important
parts of the equipment used by these workers and by Stenson et al. [34].

A cell in suspension is compressed between a glass fibre probe and the bottom
of the chamber containing the suspension. The compression surfaces represent two
flat parallel surfaces that may be considered infinite with respect to the cell.
Figure 2 shows an image of a yeast cell prior to compression between the probe
and chamber.

The probe is mounted on a force transducer capable of measuring forces of
1 lN and greater. The extent of compression of the cell is known as a micro-
manipulator is used to drive the probe down onto the cell. In this way force-
displacement data can be generated, which can be converted into force-cell
deformation curves. The compression speed of the equipment was up to 68 lms-1.
Recent improvements using a piezo-electric stack to move the stage and cell
against the probe allow speeds of at least 1.5 mm s-1 to be achieved [38]. The
advantage of high speeds is that compression of cells can be rapid enough that
water loss or other time-dependent effects can be neglected in modelling [34, 39].

Fig. 1 Photograph of the high strain rate compression testing equipment. A sample of cell
suspension is placed in the glass chamber, where the cell under test can be seen from beneath
using an inverted microscope, and from the side using a second microscope. The glass probe
attached to the force transducer is positioned over the cell. The stage carrying the glass chamber
is driven upwards by the micromanipulator. As the cell is compressed, force displacement data
are generated. The low strain rate compression tester is similarly arranged except the force
transducer and glass probe are moved downwards by the micromanipulator, compressing the cell
against the bottom of the chamber
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Figure 3 shows a dimensional force-displacement plot for a dried baker’s yeast,
resuspended in buffer, and compressed at 68 lms-1. The cell size was 5 lm, so
compression to bursting at 66% deformation took about 49 ms.

Unfortunately, force at wall failure (cell bursting) is not an intrinsic material
property of the cell or its wall, and it would be better to have properties like the

Fig. 2 Saccharomyces cerevisiae cell positioned under a glass probe ready for compression. In
this image the probe base is 30 lm in diameter, and the yeast cell is ca. 5 lm in diameter;
magnification: 9350
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wall elastic modulus or the stresses in the wall at failure. Conceivably, these could
be used in research into mechanisms of cell disruption or other cell wall studies.
For this purpose, mathematical modelling is needed, as described in the following
section.

2.4.3 Mathematical Modelling of Compression

The purpose of mathematical modelling of force-displacement data from com-
pression testing is to extract cell wall material properties. The earliest work on this
problem was by Feng and Yang [11] and Lardner and Pujara [17], who derived the
governing equations for compression of a thin elastic spherical shell, gas or liquid-
filled, respectively. These equations related local wall stresses to the corresponding
strains as the shell was compressed. In this way theoretical force-deformation
curves could be generated for given choices of elastic modulus and wall thickness.
The modelling is difficult; even if the wall material can be assumed to be
homogeneous and isotropic and to obey a version of Hooke’s law (having a
‘‘linear-elastic constitutive equation’’), the geometry during compression is very
complicated, and the pressure inside the shell and the shape change during the
compression. Nevertheless, approximating microbial cells as water-filled spheres
with thin elastic walls has been the basis of much subsequent modelling, for
example of yeast cells by Smith et al. [29–31]. More recently, an improved model
has been developed that allows for the high strains and associated rotations that
can occur during large compressions, for example to cell bursting [34]. This new
model was based on work-conjugate Kirchoff stresses and Hencky strains,
improving on the earlier use of infinitesimal strains. It is worth noting that there
has been a recent detailed analysis of the general problem of the contact of a
spherical membrane enclosing a fluid with rigid parallel plates [23], but this work
has not yet influenced modelling of cell compression.

The assumptions of all of these and other models are that cells are initially
spherical, that they have a relatively thin elastic wall surrounding an incom-
pressible fluid, and that each single cell is compressed between two parallel sur-
faces, effectively of infinite size. In general, the cell is inflated at the start; its
internal (turgor) pressure is greater than that outside. This matters because the wall
is pre-stressed before compression, and this must be taken into account. The ratio
of the inflated diameter to the original diameter is called the ‘‘initial stretch ratio’’
and is an important modelling parameter, along with the elastic modulus.

There is another important issue to be considered, which is that the cell wall/
membrane of microbial cells is usually porous. This means that water can flow
from a cell during compression, reducing the turgor pressure and consequently the
stresses and strains in the wall. Although these water flows can be modelled, an
additional parameter (the cell wall permeability) is required, and this is hard to
identify [29]. For this reason it is helpful to have a high rate of compression, so any
water flows during compression can be neglected. This was the approach taken by
Stenson et al. [34] for compression testing of yeast cells.
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Clearly the assumption of wall linear elasticity, especially across the whole
range of cell deformation to bursting, may be false. Indeed, the cell walls of
suspension-cultured tomato cells have been found to be elastic-plastic, showing
irreversible deformations at higher strains [40]. Fortunately, the wall of a baker’s
yeast strain has been shown to be linearly elastic to failure [34]. Figure 4 shows
how a test cell was repeatedly compressed and then released. Up to a deformation
of about 60%, the curves overlapped, suggesting elasticity to this extent at least.
Model fits (Fig. 5) showed that this was probably the case up to failure and that a
linear-elastic wall constitutive equation could be applied throughout. This linear
elasticity of the wall is of course a global description that does not discriminate
between regions of different mechanical properties, in particular bud scars
(see Sect. 2.2).

Whatever the extent of the elastic region, the elastic modulus and the initial
stretch ratio may be found by matching experimental and modelling data until
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the best fit is determined. In the case of yeast cells, once an appropriate fit to cell
bursting has been found, estimates can be made of wall stresses and strains
at failure.

An alternative approach to analytical modelling is to use finite element analysis
(FEA). This has the advantage that it is relatively easy to allow explicitly for water
loss and elastic-plastic cell wall behaviour or other wall material constitutive
equations. FEA was used by Smith et al. [29] for modelling compression of yeast
cells. As analytical models become impractical as descriptions of the cell
behaviour become more complex (e.g. elastic–plastic wall behaviour, local vari-
ations in wall properties), it is probable that FEA will eventually replace analytical
modelling.

2.4.4 Saccharomyces cerevisiae Studies

Using compression testing and the model of Stenson et al. [34], intrinsic cell wall
mechanical properties of a strain of baker’s yeast (rehydrated from the dried state)
have been determined. Because water loss could be neglected, it was possible to use
modelling to obtain an elastic modulus, the initial stretch ratio, and (maximum)
stresses, strains and strain energy per unit volume at failure. The mean values were
185 ± 15 MPa, 1.039 ± 0.006, 115 ± 5 MPa, 0.46 ± 0.03 and 30 ± 3 MPa
(or MJm-3) respectively [32], although it must be emphasised that data were
obtained for single cells in this population; this is a single cell technique. It is
possible the values will be less for freshly grown yeast cells, rather than rehydrated,
previously dried, cells and this is currently being investigated. The elastic modulus
might be compared with typical values for rubber (ca. 10–100 MPa), structural
steel (ca. 200 GPa) and (suspension-cultured) tomato cell walls at low strain
(2.3 ± 0.2 GPa; Wang et al. [40]). The strain energy per unit volume at failure may
be useful in cell disruption studies, on the assumption that any cell breakage in
processing would require the energy stored in the cell wall to exceed some critical
level. The energy in cell walls might be estimated by mathematical modelling of
how cells interact with fluid flow in processing equipment.

It appeared from the study of Stenson [32] that the elastic modulus and initial
stretch ratio were essentially independent of cell size, whilst showing substantial
biological variability (wide range of values for cells of similar sizes). However, all
the failure criteria decreased with increasing cell size. It is possible that the elastic
modulus and initial stretch ratio were not affected significantly by the presence
of a few bud scars in the cell walls (Fig. 6), and any effect was masked by
the variability, whilst the scars caused stress concentrations in the walls.
The assumption of the model that the walls are homogeneous may be questionable.
Because compression testing is a single-cell technique, it should be possible to
investigate this further. See Sect. 3. Figure 6 also illustrates that assuming yeast
cells are spheres is only an approximation. This matters as lack of sphericity
implies that the walls vary in material properties around the cell, possibly not only
due to bud scars. Fortunately, yeast cells are generally close to spherical, and the
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approximation has to be accepted at present because techniques for modelling non-
spherical cells are not yet available.

It should also be noted that the elastic modulus that is found is dependent on the
value chosen for the cell wall thickness, and at present this cannot be measured for a
single cell as it is being compressed. The wall thickness is estimated from the cell
radius using a pre-determined (mean) cell wall thickness to cell radius ratio, taken
from transmission electron microscopy images. In any case, the assumption that the
cell wall is isotopic is incorrect as it is multi-layered. If the load-bearing layer is
only the b 1,3-glucan layer [47], then it may be possible to estimate the elastic
modulus of this layer and relate it to the composition and structure of this layer.

2.4.5 Other Microbial Single-Cell Studies

Compression testing by micromanipulation has been applied to some bacterial
cells [28]. Figure 7 shows an image of an Escherichia coli cell trapped between
the surface of a probe and the chamber containing the cell suspension.

Fig. 6 TEM image of
yeast cells, one showing
a bud scar in cross section.
Magnification: 910,000
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Although the glass probes are optic fibres, they were not chosen originally for
their light-carrying properties. However, bacteria are so small that achieving
adequate lighting for visualisation is very difficult. This was achieved by passing
light down the optic fibre to the cell. It was found that the bursting force of
Escherichia coli was about 4 lN. However, it has not yet been possible to model
non-spherical bacteria like E. coli so intrinsic cell wall material properties are not
yet available by compression testing.

2.5 Nanomanipulation

It has been shown that an environmental scanning electron microscope (ESEM)-
based nanomanipulation technique is able to measure the force imposed on single
yeast cells during compression between two parallel surfaces to determine their
deformation including accurate cell shape information [26, 33]. Unfortunately,
beam damage may be an issue, even for ESEM. Nevertheless, this approach offers
new opportunities for gathering force-deformation data not only for yeast cells, but
also for bacteria, which are often of sizes at the limit of the capability of con-
ventional micromanipulation.

Ahmad et al. [1, 2] penetrated the cell walls of yeast cells using a nanoma-
nipulator integrated into an ESEM. The penetration force rose with cell size and
increased on average as the culture moved from log to stationary phase.

Fig. 7 Escherichia coli cell on the surface of an optical fibre probe as seen through the base of
the chamber of the compression testing apparatus. The illuminated flat region, ground down from
a 50-lm optic fibre probe, was ca. 7 9 7 lm. Photo: C Shiu. Reprinted from Thomas and Zhang
[35] with permission
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Elastic (Young’s) moduli of about 3 MPa were found, although these values
relate to the stiffness of the whole cell rather than just the wall. It will be useful
to use compression testing by micromanipulation (Sect. 2.4) to study yeast
cell wall material properties over the time course of a batch fermentation
in the hope of understanding why penetration force rose with cell size and
fermentation time.

3 Future Prospects for Compression Testing

Work is in hand to use compression testing to characterise the mean intrinsic
mechanical properties of growing yeast cells throughout fermentations. However,
as compression testing is a single cell technique, it opens up the prospect of using
it in conjunction with other single cell analytical techniques to investigate these
properties for sub-populations of cells. For example, flow cytometry might be used
to sort cells by number of bud scars or other physiological factors to see how the
wall properties vary with cell age or condition. It should also be possible to strip
off cell wall layers enzymatically or chemically to confirm or disprove the claim
that the b 1,3-glucan layer is the load-bearing layer of the yeast cell wall. If this
layer bears the load, it should be possible to estimate its stiffness and to discover if
this can be predicted from a molecular model of the layer. These methods might
also be applied to cell wall mutants in a search for links between cell wall
composition and structure and mechanical properties, and to investigate the
mechanisms controlling form, growth and division of cells and their consequential
mechanical behaviour. The ability to measure wall properties of single cells will
remove some of the adverse effects of population heterogeneity that hinder other
research in this area.

Finite element analysis (FEA) will be essential if intrinsic material properties
are to be derived from compression testing data from cells with elastic-plastic wall
behaviour or cells with inhomogeneous cell walls such as yeast cells. More
importantly, FEA will be essential for work on non-spherical cells such as E. coli.
However, the nanomanipulation methods need to be developed further for this to
be really useful, as optical microscopy only gives crude shape information for such
small cells.

AFM (Sect. 2.2) is a powerful method for obtaining local mechanical properties.
Such data might be input into appropriate FEA models to model whole cells with
scars. However, the differences in elastic moduli between AFM and compression
testing by micromanipulation suggest that some reconciliation is required here, for
example by discovering whether AFM is only a surface technique in this context, or
whether the modelling of compression data is in some way flawed.

With good data on cell mechanical properties, it should be possible to investigate
the mechanisms of cell damage or deliberate disruption in processing, for example
in high pressure homogenisation or centrifugal recovery. There is the interesting
possibility of predicting cell breakage by estimating the energy imparted to cells by
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fluid flow in processing equipment and comparing that with the strain energy per
unit volume required for cell walls to failure.

Finally, compression testing might also be used to investigate cell genetic and
metabolic responses to mechanical stresses, for example using RT-PCR. This has
already been achieved with chondrocytes, chondrons and encapsulated chondro-
cytes [41] and should be possible with microbial cells. In the yeast case, the
composition and architecture of the wall is controlled by about 1,200 genes [8].
Some obvious targets for directly manipulating the cell wall composition and
structure to investigate consequential effects on the material properties are deletion
of mcd4 leading to an increase in b 1,6-glucan levels and a reduction in GPI-
anchored protein and mannan levels, cwh41D, which is very low in b 1,6-glucans,
and gas1D, a cell wall assembly mutant [27].

4 Conclusion

There are several single-cell techniques for measuring the mechanical properties of
single microbial cells. For investigations of local variations around the wall,
atomic force microscopy is a powerful tool. If ambiguity about what exactly is
being measured by nano-indentation can be resolved, then this will be the method
of choice for such local measurements. The data could then be used in finite
element analysis to develop more sophisticated models of microbial cell
mechanics than those presently available. It may also be possible to use atomic
force microscopy for cell wall penetration to obtain information about wall failure.
However, modelling of this needs further development and validation. At present,
the authors believe that compression testing by micro- or nano-manipulation
provides the most scope for future research into cell wall material properties up to
failure, which will be required if the mechanisms of cell disruption and cell
damage in processing are to be understood. Furthermore, as a single-cell technique
rather than a sub-cell technique, compression testing will be particularly suited to
investigating the gene expression and cell physiology that underlie cell mechanical
properties. Conceivably it will be feasible to combine the method with other
single-cell techniques such as fluorescent microscopy in order to obtain simulta-
neously data on material properties and cell physiology. An alternative approach
would be to use flow cytometry to sort cells by physiological or genetic markers
before compression testing. Compression testing will be particularly valuable if
analytical models are supplemented or replaced by finite element analysis,
allowing cells with a wider range of sizes and shapes to be studied.
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Single Cell Analytics: An Overview

Hendrik Kortmann, Lars M. Blank and Andreas Schmid

Abstract The research field of single cell analysis is rapidly expanding, driven by
developments in flow cytometry, microscopy, lab-on-a-chip devices, and many
other fields. The promises of these developments include deciphering cellular
mechanisms and the quantification of cell-to-cell differences, ideally with spatio-
temporal resolution. However, these promises are challenging as the analytical
techniques have to cope with minute analyte amounts and concentrations. We
formulate first these challenges and then present state-of-the-art analytical tech-
niques available to investigate the different cellular hierarchies—from the genome
to the phenome, i.e., the sum of all phenotypes.
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1 Size, Volume and Content of a Single Cell

Analytical challenges in single cell analysis are numerous, and mainly scale
inversely with the size of the cell. Therefore, single cell analysis initially started
with very large cells, such as the neurons from the Californian sea slug (Aplysia
californica), one of the largest cells in nature (except bird eggs), with a volume of
about 7 ll [1]. In contrast, the bacterium Brevundimonas diminuta has one of the
smallest cells, with a diameter of 0.3 lm and a length of 1.0 lm. The volume is
approximately 0.08 fl [2]. These two cell types differ in volume by a factor of
about 1 9 108. Despite these extremes, cells used in many laboratories differ quite
significantly in size. Three of the most commonly used organisms in biological
research are Escherichia coli (bacterium), Saccharomyces cerevisiae (lower
eukaryote), and human cells (higher eukaryote). E. coli, depending on the
respective growth conditions, has a diameter of about 0.6 lm and a length of about
1.7 lm [2], the spherical S. cerevisiae a diameter of roughly 5 lm, and an average
mammalian cell of about 10 lm. At first glance, these differences seem compa-
rably minute. Another picture evolves when comparing the respective volumes,
which are 0.5, 65, and 500 fl (Table 1). A S. cerevisiae cell is 140 times and a
mammalian cell is 1,100 times larger in volume than an E. coli cell. The total

Table 1 Average cell content of a mammalian, a S. cerevisiae, and an E. coli cell
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amount of analytes scales with the volume, and is therefore considerably lower in
bacteria than in yeast and mammalian cells (Table 1).

The small volume of a single cell and the resulting extremely low absolute
number of target molecules (Table 1) pose a great challenge for any analytical
method used. It is obvious that the detection method must be very sensitive and
capable of analyzing miniscule sample volumes. Alternatively, signal intensifi-
cation might be necessary, e.g., by amplifying the analyte signal or by specifically
labeling the analyte, allowing subsequent selective signal amplification. However,
not only the performance of an analytical method sets the limit for the detection of
compounds in single cells, but also the sample handling and its preparation.
Manual handling of very low ll volumes can be challenging, but in single cell
analysis nl and fl volumes have to be dealt with. Technologies like nanoHPLC and
nanoESI as well as lab-on-a-chip (LOC) and lTAS technologies are methods of
choice and good starting points for further developments [3]. For LOC technol-
ogies in particular, the construction of suitable interfaces between analytical
instrumentation and microfluidic cell devices was and still is a major issue. Today,
different analytical methods are available that enable single cell analysis.

Single cell analytics, as cell analytics, can be divided into cell consuming and
non-consuming approaches. For example, optical methods and the analysis of cell
products and environmental changes give evidence of the cellular status without
consuming the cell. Other detection methods often require cell lysis, enabling
research on genomic [4, 5], transcriptomic [6, 7], proteomic [8–10], and meta-
bolomic levels [11, 12]. New methods allow non-cell-consuming research on these
levels as well.

In the following, research on the level of a few to single cells is discussed in
detail. After a short description of single cell analysis using microscopy, sub-
sequent paragraphs are structured according to the cellular functional hierarchy
into genome, transcriptome, proteome, and metabolome and cellular productivity
analysis.

2 Microscopy, a Prerequisite for Single Cell Analysis

Analysis of the single cell requires knowledge of its existence. Knowledge of
cells and microorganisms sounds commonplace today. However, Antoni van
Leeuwenhoek is recognized as the first human ever to see microbes, reporting his
discoveries from 1679 onwards [13, 14]. As late as 1838 the term bacteria was
coined by Christian G. Ehrenberg [15]. These early works formed the foundation
of the science of microbiology, founded mainly by Louis Pasteur, Ferdinand Cohn,
and Robert Koch.

Microscopy is a standard technique today, with an often underestimated power.
Yet, only the careful design of lenses, filters, and the light beam allows real-time
analysis of single living cells. In fact, microbes, such as E. coli, are just above the
physical resolution of a standard light microscope, which is *0.2 lm.
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With a light microscope, shape, size, volume, and motility of cells can be
detected. When using a hemocytometer the concentration of cells in a given
sample is quantifiable. Cell growth rates can be determined by long-time obser-
vations [16, 17]. More information is traceable using staining techniques. Stains,
such as fluorophores, allow discriminating dead or live cells, for example, by
staining dead cells, because of compromised membranes or are metabolized to
fluorophores by living cells [18, 19]. Usage of fluorophore stains in microscopy
enabled analysis of molecules and organelles at very low concentrations because
of the high sensitivity of fluorescence detectors. Even metabolic activity can be
directly measured in single cells using fluorescent substrates [20, 21]. A huge
improvement in biological research by microscopy was the development of green
fluorescent protein (GFP) and other fluorescent proteins as molecular tools. By
tagging proteins with GFP, cell productivity [22], transport processes in cells [23],
and spindle pole formation were revealed [16]. The latest biotechnological
methods even allow designing fluorophores with different properties, such as
emission and excitation spectra (e.g., GFP, eGFP, YFP), special fluorophores for
anaerobic conditions [24], or to influence sensitivity to photo bleaching [25].
Careful selection of two fluorophores allowed, for example: (1) real-time detection
of mRNA transcription and protein translation in single cells [26] or (2) the highly
selective fluorescence energy transfer (FRET) technique [27]. At the end of this
section, flow cytometry has to be mentioned. Flow cytometry is an optical high-
throughput single cell analysis platform, with which cellular parameters like cell
size and density can be measured. In addition, a large variety of fluorescence-based
methods for single cell analysis exist. The high speed of flow cytometry (up to
10,000 nds of cells per second) allows the analysis of the heterogeneity of cell
populations, but at the cost of spatiotemporal resolution in every single cell ana-
lyzed [28–30].

The techniques described in the section above use optical methods to gain
cellular information. Despite the fact that these techniques make a wide variety of
analytes and cellular processes traceable, they are limited to phenotypical analysis
or require staining.

3 Genome

Genomic sequence data are the basis for every biological systems approach, as
they harbor information about the capacity for metabolic activities, regulation, and
finally growth and division of the cells of interest. For a deeper understanding of
population heterogeneity, genomic to full genome analysis of each single cell
would be ideal. The first advanced techniques allow DNA analysis of a few to
single cells and are summarized here. Developments of genomic technologies on
the few or single cell level are driven by research in preimplantation, prenatal, and
forensic diagnostics [31–33]. Genomic single cell methods are often based on PCR
[34, 35], utilizing its huge amplification capacity. The ultimate sensitivity is the
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amplification of a single DNA molecule followed by the detection of the many
amplicons [36, 37]. Such high performance PCR methods were used to differen-
tiate cells by the absence or presence of genetic targets [38]. First single cell PCR
protocols were established with the inherent limitation to target only one or a small
number of known sequences simultaneously [31].

This limitation can be overcome by whole genome amplification (WGA)
techniques [39], which yield a DNA amount sufficient for additional analyses.
Most WGA methods are also based on PCR technology, like DOP-PCR (degen-
erate oligonucleotide primed-PCR) [39, 40], PEP (primer extension preamplifi-
cation) [39, 41], and LM-PCR (ligation-mediated PCR) [42]. Consequently, these
methods share most intrinsic limitations of PCR, such as a relatively high error
rate, allele drop out (ADO) [43], incomplete coverage, and a bias towards the
percentage of GC content and loci. A potent alternative is the multiple displace-
ment amplification (MDA) method. Advantages of MDA are its low amplification
bias, high short tandem repeat (STR) and single nucleotide polymorphism (SNP)
genotype completion rates, the lengths of resulting DNA products ([100,000 bp),
and amplification rates [31, 43–47]. This non-PCR based WGA method is based
on the highly processive bacteriophage U29 DNA polymerase [43, 48]. MDA was
used to amplify genomic DNA from single mammalian cells [5, 49] and from
single microbial cells [50, 51], such as a single E. coli cell [52]. The E. coli DNA
was amplified 5 billion-fold, with a yield of several micrograms that allowed the
sequencing of the multicopy 16S rRNA gene [52]. Heterogeneity in the genome
copy number of human single cells from tissues was analyzed by combining whole
genome amplification and high-resolution array comparative genomic hybridiza-
tion (CGH) [53]. Single rat cancer cells were captured by laser microdissection,
and of those cells, 122 genomic and mitochondrial loci were amplified by MDA.
The amplified products were sequenced and analyzed by gel and capillary elec-
trophoresis, revealing slippage and point mutations [54]. WGA techniques can
thus close the gap between quantity and sensitivity, and are already in use to
provide sufficient amounts of DNA for high throughput screening technologies
such as SNP for personalized medicine applications [31, 55].

Alternative analytical techniques bridge the gap of quantity and sensitivity by
decreasing the required DNA amount. Fluorescence methods are especially
prominent when combined with microfluidic approaches. An example is laser-
induced fluorescence (LIF), allowing the detection and quantification of DNA in
the subpicomolar range [56], single-quantum-dot-based DNA nanosensors with a
detection limit of about 50 DNA copies [57], and single DNA molecule detection
(SMD) by molecular beacons [58]. In the ideal extreme, the idea of single mol-
ecule sequencing was experimentally demonstrated [59–61], which could make
prior DNA amplification obsolete. So far, these methods are not applicable to
bacteria, and no demonstration of the technology has been reported to the best of
our knowledge.

Of highest importance is not only the detection method itself, but the sample
preparation. Dilution effects during the process of DNA recovery, purification, and
amplification were decreased by microfluidic strategies. For example, cells were
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lysed and PCR was performed in capillaries as well as in microfluidic chips
[62, 63]. PCR methods were scaled down to nanoliter volumes [64, 65] and were
improved by integrating cell isolation, cell lysis, DNA purification, and recovery
on a nanoliter scale to analyze single mammalian and bacterial cells [32].

The above-described methods and developments already allow genetic research
on the single cell level and will develop into routine whole single cell genome
sequencing and analysis, with the prospect of screening whole cell populations.
Assuming high enough analyte amounts, the current high throughput sequencing
technologies (e.g., Illumina) can deliver in a one-week-long run up to 200 Gb of
sequence information, providing 40,000 or more single bacterial genome sequen-
ces. When fully assembled genomes are desired, the development of single mole-
cule sequencing technologies has to be followed (e.g., Helicos, Nanopore, Pacific
Biosciences). When matured, these technologies might not only allow single
genome sequencing without amplification, but also the detection of DNA modifi-
cation, and hence can be used for epigenetic analyses of cell populations on the
single cell level, adding another degree of complexity to cell function. The com-
mercialization of new sequencing technologies just started a few years back; hence,
major technological advances, including throughput, accuracy, read length, sensi-
tivity, and price, can be expected.

4 Transcriptome

While genomic data provide insights into the stored information in organisms and
the possible cellular functions, the transcriptome gives direct evidence of the
information used by the cell. The transcriptome is the amount and composition of
all messenger RNAs in a cell or a cell population. The abundance of the different
mRNAs elucidates the status of the cell and can be a direct response to pertur-
bation as in microbes mRNA half-lives are in the short minute range.

The reverse transcription (RT) of the RNA into the complementary DNA
(cDNA) sequence enables transcriptome analysis with modified DNA techniques,
such as RT-PCR. By using fluorescence-labeled primers, the amplification of the
cDNA is quantifiable with RT-quantitative PCR (RT-QPCR, also called real-time
PCR and denoted RT-PCR), allowing the determination of starting mRNA con-
centrations in a given sample. The well-established technologies RT-PCR and
RT-QPCR enable transcriptome research of single cells with high accuracy and
high sensitivity down to a single mRNA copy [66, 67]. The minute sample demand
even allows parallel analysis of one cell [6, 68, 69]. With multiplex RT-QPCR, 5
transcripts [6, 70], 20 transcripts [68], and 30 transcripts [71] were measured from
individual cells in parallel. It was found that the mRNA concentration of a specific
gene differed up to nine-fold in single mouse cells [6] and up to 10,000-fold in
monoclonal T cells [68].

Using RNA microarrays, wider screening for transcripts on the single cell level
is feasible [72], although at the expense of sensitivity. Improvements of cDNA
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microarrays aim at intensifying fluorescence signals [73] or at better RNA
amplification strategies [74, 75]. To get the needed probe amount, mRNA is
amplified mainly by two methods. The first method is RT-PCR as described above.
The second method is the amplification of antisense RNA (aRNA) by T7 RNA
polymerase, which is less error prone and yields higher amplification yields of
mRNA [76]. The transcriptome of individual pancreas cells was analyzed with
microarrays. The detection limit was 25 transcript copies, prior to RT-PCR
amplification, and a total of 95 separate transcripts were screened. Individual cells
showed unpredicted gene expression combinations. Additionally, the finding that
early pancreas consists of heterogeneous cell populations lead to a new definition
of six different cell groups [77]. After T7-based linear amplification of mRNA
samples, corresponding to 2 to 1,000 cell equivalents, 4,000 to 9,000 mRNAs were
measured with a benchtop microarray and a lab-on-a-chip system [78]. Such
analyses are increasingly parallelized [79]. The new parallelized and miniaturized
sequencing technologies promise an unmatched resolution, with the possibility to
measure the number of all mRNA molecules with in a single cell [80]. Although
the reports are from higher cells, with the advantage of mRNAs with poly(A) tails
for simple amplification starts, the development of microbial transcriptome anal-
ysis by direct sequencing is enforced and will be a widespread tool in the near
future [81].

Single cell mRNA analysis techniques as described give more detailed infor-
mation as averaged population results. However, they are still just a snapshot of a
living system since they are cell-consuming techniques [82, 83]. Only tagging of
mRNA in vivo provides spatiotemporal insight into a single cell [26, 84–86]. This
was accomplished for mRNA concentration changes in a single cell [84] using a
selective mRNA binding GFP fusion protein [87] and fluorescence correlation
spectroscopy (FCS). Exposures of cells to steady levels of an inducer lead to an
unexpected pulsating expression profile, which coincided with the cell cycle. This
was contrary to the standard assumption gained by population research and is a
landmark in single cell analysis. The average result obtained from 14 cells was
equivalent to results from cell populations. With the same fusion protein, mRNA
numbers were estimated [26, 88]. Quantal bursts were found even in fully induced
cells (Fig. 1) [26]. In conclusion, the simultaneous use of different dyes in one cell
was shown [26], and staining of more than one mRNA at a time was suggested
[84]. This offers real-time analysis of gene networks on the single cell level.

5 Proteome

Until recently, standard proteomic methods required large sample quantities not
obtainable from single cells [89]. Single cell proteome analysis necessitates spe-
cialized methods, geared for minute sample amounts, and equipped with extreme
sensitivity. The typical protein content of differently sized single cells is given in
Table 1. For example, assuming that a mammalian cell expresses 10,000 different
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proteins, the average protein is present at the 200 zmol or 100,000 copies level
[90].

Capillary electrophoresis (CE) is the method of choice for single cell proteome
analysis, due to its minute sample demand and high separation efficiency. Single
cells were analyzed by CE coupled with LIF (laser-induced fluorescence) detec-
tion. As a first step, the cell lysate or the single cell is brought into the capillary.
Whole cells are lysed by chemicals [62], heat [91, 92], or electricity [93, 94]. Lysis
of the cell in the capillary ensures that the complete cell content is in the capillary
and circumvents unwanted dilution of the analytes in external preparation steps. In
the next step, the cell content is separated by CE and often detected by LIF [95].
Detection by LIF requires native fluorescent proteins [96], proteins that are fused
with a fluorescence tag [97, 98], marked due to derivatization [92] or tagged by
fluorescent antibodies [99]. One drawback of CE-LIF is its inability to identify
detected proteins directly [100]. This can be partly overcome by spiking the
sample with known proteins (Fig. 2) [92].

The cell cycle dependence of protein expression was observed in a single
cancer cell by protein fingerprinting, using capillary sieving electrophoresis with
LIF detection [91]. After spiking the protein of interest, it was detectable in the
single cell lysate [92]. In both experiments, the cell was injected into the capillary,
then lysed, and the protein content was derivatized. Instead of unspecific deriva-
tization, human interferon gamma was selectively labeled by fluorescent anti-
bodies. The immunoreaction was performed in the capillary after lysis and
products were detected by LIF, achieving a detection limit of 3.8 amol [99].
A further improvement was gained by in vivo (in the cell) binding of antibodies
and proteins prior to lysis. Dilution and diffusion effects are decreased to the

Fig. 1 Quantification of cell-to-cell differences. a Observation of mRNA (green, tagged by a
GFP protein) and the translated red fluorescent protein in living E. coli cells. The picture is a
false-colored overlay of the green and red channels. Scale bar 1 lm. b Estimated number of
transcripts per cell, as a function of time. Red dots raw data, green line smoothed data, black lines
fit by eye. The fit indicates periods of transcriptional inactivity and activity. Three out of four
original diagrams were chosen. For further details, see text and original paper [26]. Reprinted
from [26]. Copyright (2005), with permission from Elsevier
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absolute minimum when using the cell as reaction chamber. The method resulted
in a zeptomole detection limit when combined with CE-LIF (Fig. 3) [101].
A detection limit of 100 ymol for eGFP dilutions was reached in studies with
CE-LIF; 100 ymol translates into 60 eGFP molecules. In cell experiments 20,000
eGFP molecules were measured after lysis of individual Deinococcus radiodurans
cells [98]. Not by LIF, but by electrochemical detection after CE (CE-ECD) the
glucose-6-phosphate dehydrogenase amount of erythrocytes was indirectly quan-
tified by detecting the produced NADH, with a limit of detection of 1.3 zmol
[102].

An even higher separation efficiency of complex mixtures is achieved by two-
dimensional CE. Protein fingerprints of different single cells were obtained using
capillary sieving electrophoresis/micellar electrokinetic capillary chromatography.
Changes in protein abundance in single cells were detected for (1) osteoprogenitor
cells (MC3T3-E1), native and recombinant, and (2) in native and apoptosis
induced breast cancer cells (MC-F7). The fingerprints consisted in maximum of
167 local maxima after baseline correction. The detection sensitivity of the method
is sufficient, while the protein separation efficiency has to be improved as it is an
order of magnitude lower than in standard 2D SDS-PAGE [8].

Fig. 2 Protein landscape image from single MC3T3-E1 cell. The figure presents the data in a
landscape plot, where the height of the peak is proportional to the fluorescence intensity.
Reprinted in part with permission from Hu et al. [8]. Copyright 2004 American Chemical Society

Fig. 3 The cell itself as reaction chamber; the schematic diagram shows the process of
intracellular immunoreaction [101]. Reprinted from [101]. Copyright (2006), with permission
from Elsevier
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Single cell analysis is possible with CE and LIF. However, the method fails for
identification of unknown proteins. Here, mass spectrometry provides identifica-
tion ability of unknown compounds in combination with a broad detection range,
high specificity, and high sensitivity. For proteome and peptide analysis, mainly
electrospray ionization (ESI) and matrix-assisted laser desorption ionization
(MALDI) as ionization methods and ion trap, time of flight (TOF), quadrupole,
and Fourier transform ion cyclotron resonance (FTICR) mass spectrometers as
analyzers are in use [90]. Generally, the sensitivity of MS detectors is lower than
that of LIF detectors [100].

Profiting from the huge cell size and thus absolute analyte number, MALDI-
TOF analysis of single A. californica neurons with direct peptide sequencing after
postsource decay was performed [103]. The spatial distribution of neuropeptides
within single neurons was profiled with MALDI-MS. Neuropeptide amounts in the
cells were in the femto- to picomole range [104]. By stable isotope labeling of a
neuropeptide, quantitative measurements within single-neurons of the mollusks by
MALDI-MS was doable [105]. In single rat cells, more than 15 signaling peptides
were observed by MALDI-TOF. Moreover, 14 of these peptides were identified by
comparison with population homogenates [106]. Shortly afterwards, an improved
protocol of the method was published [107]. The proteome of phenotypically
similar bacteria was recently analyzed by MS techniques after a heterogeneous cell
population had been sorted using flow cytometry [108]. With such combinatorial
techniques, sub-population analysis becomes truly feasible.

First demonstration of single cell analysis by CE-FTICR was performed on red
blood cells detecting alpha-chains and beta-chains (each 450 amol cell-1) of
hemoglobin [109]. A few years later, hemoglobin chains were separated and
detected by CE-ESI-TOF mass spectrometry [110]. In an approach to analyze the
two chains plus carbonic anhydrase I and II (7 and 0.8 amol cell-1), separation of
the four components was achieved by improved CE. Whereas detection of the two
chains was achieved from one cell, the detection limits of carbonic anhydrase I and
II were 20 and 44 amol and were hence not detected [111]. With the coupling of
ESI to FTICR, a sensitivity of 30 zmol for proteins ranging from 8 to 20 kDa was
achieved [112]. Similar sensitivity was reached by means of nanoLC coupled
online with a micro-solid-phase sample extraction and a nanoscale ESI interface to
a FTICR-MS, detecting 75 zmol of individual proteins from 0.5 pg whole prote-
ome extract [89], which might enable the analysis of single cells [113].

High throughput analysis of the influence of medium conditions on the prote-
ome of single S. cerevisiae cells was applied to a library of [2,500 GFP-tagged
yeast strains using flow cytometry. An automated setup measured seven samples
per minute, with each sample counting [50,000 cells. The observed population
heterogeneity on the proteome level differed especially under dynamic conditions
from the known population heterogeneity on the transcriptome level [114]. In a
similar approach, a cancer cell library with 1,200 different clones was analyzed.
Time-lapse fluorescent microscopy enabled monitoring of dynamic proteome
changes of individual cancer cells in response to a drug. In total, nearly 1,000
tagged proteins were observed during several days of cell growth. Undisturbed
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cells displayed a cell-to-cell fluorescence variability of 10–60% of the mean. In
response to drug addition, the variability increased by about 30%. Notably, 24
proteins reacted highly differently in individual cells, from increasing over con-
stant to decreasing concentrations inside the cell (Fig. 4) [115].

Microfluidic lab-on-a-chip platforms were used for proteome analysis.
Improvements were made by integrating several preparation steps on a chip,
thereby reducing dilution, delay, and dead volumes. For example, integrations of
enrichment column, separation column, and nanoESI on polymer microfluidic
chips were accomplished [116, 117], although they have not been evaluated yet for
single cell analysis. On another chip, the protein contents of two different cell
types, a human and an insect, were analyzed. In this study, single cells were
transported to a chamber and then lysed. The lysis buffer contained fluorescently
labeled antibodies, targeting specific proteins. After electrophoretic separation, the
fluorescently tagged proteins were detected by confocal microscopy. The detection
area of the microscope was enlarged by using cylindrical optics [9]. In another
chip, single cell injection, high voltage lysis, derivatization, CE separation, and
LIF detection were combined for the analysis of single red blood cells. The
derivatized glutathione was detected at attomole concentrations [93]. A non-
destructive method was shown, in which the release of neuropeptides from an A.
californica neuron bag cell was collected on-chip by functionalized gold strips.
Employment of three channels downstream of the cell allowed temporal analysis
of protein release, since the channels were consecutively flushed for 15 min. The
collected neuropeptides where then prepared off-line for and analyzed by MALDI-
TOF, revealing temporal differences in neuropeptide release [118].

mRNA translation over complete cell live times was measured by fluorescent
microscopy in different cell types. Heat shock-induced transcription and subse-
quently translation of eGFP tagged heat shock proteins in S. cerevisiae were
quantified by measuring the overall cell fluorescence by microscopy. The cells
were trapped in single cell traps on a chip [119]. In E. coli a membrane protein was
conjugated with an YFP variant and transcribed under control of the lac-promoter,
allowing the tracing of single proteins in single cells by microscopy. The cells
were placed on an agarose gel [120]. In another survey, single cell gene induction
dynamics were revealed, using an automated tracking and detection program for
fluorescent photographs. A period of vulnerability to antibiotics in persister bac-
teria was thereby found. The E. coli cells were cultivated and analyzed in a lab-on-
a-chip device with constant medium flow and changing inducer concentrations
(Fig. 5) [121].

Especially for the fluorescence techniques, and for analysis of many proteins,
the MS technologies will be used increasingly for single cell protein analysis. With
respect to living single cell analysis, the analysis of secreted proteins seems to be a
viable approach [122]. As the sensitivity and comprehensiveness of protein
analysis including quantification was shown, and will be adapted by many groups,
the dynamic range of the analytical method will move into focus. In bacteria, the
difference between low and highly abundant proteins can be as high as 105, while
current MS have a dynamic range of 103 to 104. Most likely, the relative change of
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a very rare transcription factor has more influence on the phenotype than a highly
abundant ribosomal protein has. Therefore, dynamic range increases should go
hand in hand with quantification accuracy allowing the researcher to trace regu-
latory decisions throughout the cellular networks.

Fig. 4 A subset of proteins displays a bimodal response at the individual cell level in response to
camptothecin (CPT). a and b Examples of proteins that do not show bimodal behavior, which are
representative of most proteins in the study. Profiles are similarly shaped in each individual cell.
Profiles rise with time (red lines) or decrease with time (blue lines) in parallel. Cell-cell
variability (defined as standard deviation divided by the mean of cell-cell distribution at each time
point) increases slightly over time, and the distribution of slopes of fluorescence levels shows
uniform behavior. c–f Examples of proteins that show bimodal behavior. The dynamics after
about 20 h vary between cells: Some cells show an increase in fluorescence levels (red) and other
cells show a decrease (blue). This resulted in bimodal distributions of fluorescent intensity slopes
measured in arbitrary units (A.U.). Slopes are defined as median temporal derivative of the
fluorescence levels in the interval between 24 h after drug addition to 48 h (or time of cell death).
Figure and text from [115]. Reprinted with permission from AAAS
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6 Metabolic Activity and Metabolites

The metabolome comprises the sum of all small molecules produced by a cell.
Metabolite concentrations and metabolite production rates give direct evidence of
the fundamental cellular functions of transcription, translation, and biochemical
performance, thus the present status of the cell. Metabolites typically have
molecular weights below 1 kDa. When compared to the proteome, the additional
analytical challenges are plenty. The metabolome has higher turnover rates, a by
far larger chemical diversity, and a significantly lower mass content. Finally, the
low molecular weights complicate analysis and detection by, for example, mass
spectrometry [123]. Not only the metabolic content, but also the metabolic activity
of a single cell is difficult to measure. Single cell production rates were estimated
from population data: lysine production by bacteria is in the range of 0.2 fmol
cell-1 s-1 [124], and the ethanol production rate is around 6 fmol cell-1 s-1 [125].
Therefore, a single yeast cell can produce about 1 ng ethanol in 1 h. Assuming that
the yeast would be captured in a 0.1/ll microchamber, the ethanol concentration
would be approximately 0.2 mM. In consequence, the sampling strategy and the
sample volume are of high importance to minimize analyte loss and dilution.

Thus, a method of choice for metabolome analysis of single cells is CE. CE-LIF
was employed to examine the correlation of cell cycle and metabolism in human

Fig. 5 The growth of
E. coli microcolonies was
monitored, which originated
each from a single cell. a–c
Simultaneous pictures of the
same field of view, in a phase
contrast; b YFP and
c mCherry induced
fluorescence. d Automated
monitoring of growth and
lineage; new cells are
assigned an arbitrary color
by the algorithm. Scale bar
5 lm. Figure from [121].
Copyright 2008 National
Academy of Sciences, USA
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cancer cells (HT29). Cells were fed on a fluorescent disaccharide and then lysed
inside the capillary. The released biosynthetic and biodegraded products were
separated and detected by LIF. Several cell subpopulations with unique biosyn-
thetic patterns were identified [126]. Using a similar analytical method, glyco-
sphingolipid metabolism in tumor cells (AtT-20) was monitored. Fluorescently
tagged ganglioside was fed to the cells, which were fixed in formalin for 50 h,
transferred to a CE capillary, lysed in the capillary, and metabolic products con-
taining the fluorescent substrate were detected by LIF. The achieved detection
limit was at the low zeptomol level [127]. Instead of feeding cells fluorogenic
substrates, amino acids in erythrocytes were intracellularly derivatized. The
derivatizing reagent was introduced into the living cells by electroporation.
Thereafter, a single cell was brought into the electrode, lysed, and derivatized
products were detected by LIF [128].

CE analysis of the contents of single mitochondria [129] and human cells
(Jurkat T) [130] was demonstrated applying the lab-on-a-chip concept. The chips
combined steps of cell handling and analyte separation. The acidic content of the
mitochondria was labeled intracellularly. Mitochondria were then photolysed, and
the content was separated by CE within milliseconds. The gained preliminary
results indicated differences between individual cells [129]. All necessary steps for
single human cell (Jurkat T) analysis by CE and LIF detection were combined on a
single chip. The chip allowed single cell isolation, delivering of chemical reagents,
cell lysis, and chemical derivatization, and as a last step, separation of the amino
acids by CE coupled to LIF detection [130].

Sheath flow coupling of CE to ESI-MS enabled analysis of 6 nl aliquots of a
single A. californica neuron cell, without prior derivatization of the analytes. The
detection limit was in the low nanomole range for signaling molecules, such as
acetylcholine, histamine, dopamine, and serotonine [131].

Only picoliters from single living cells were needed for live cell imaging of
mammalian cells (rat, RBL-2H3). Cells were placed under a microscope, and with a
nano-ESI tip, contents of the cytoplasma were withdrawn. The gained sample was
then directly introduced via ESI into a MS. The method allowed spatial sampling of
the metabolite contents of a cell. More then 700 peaks were detected, and the local
distribution of histidine and tryptophan could be determined. With the knowledge
of spatial occurrence of metabolites, metabolic processes, including comparti-
mentation, might be identifiable [132]. A high-throughput MALDI method for
chemical single cell analysis was developed and tested using S. cerevisiae. Samples
were prepared by spotting picoliters on a thin matrix. Although not used for single
cell analysis, the method has single cell sensitivity; its limit of detection was
calculated to be 5 to 12 amol for species such as ADP, GDP, ATP, GTP, and acetyl-
CoA [123]. Instead of spotting the samples, a microfluidic device was used for
continuous sample deposition on the matrix. The continuous deposition of the
analyte sample preserved the separation order [133]. Alternatively, a non-invasive
technique for intracellular metabolite quantification based on proteins that respond
with a conformational change to small molecule binding was developed by
Frommer and co-workers. Using microscopy to quantify fluorescence resonance
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energy transfer (FRET) allows the detection of conformational changes, which can
subsequently be correlated to metabolite concentrations [134]. The technique is
also discussed for measuring intracellular reaction rates (fluxes) in single cells
[135].

The analysis of metabolic conversion rates is only possible by spatiotemporal
monitoring of a cell. Commonly, fluorogenic substrates are used, and the signal
increase over time is quantified. Fluorescein diacetate (FDA) is a widely used
substrate that when metabolized yields the fluorescent product fluorescein. The
cellular changes were monitored in human cells (Jurkat T). From the fluorescein
increase in microchambers, the numbers of present mRNAs and enzymes per S.
cerevisiae cell were calculated [136]. The enzymatic activity of alkaline phos-
phatase per E. coli cell was spatiotemporally measured in a microdroplet lab-on-
a-chip (Fig. 6) [20].

An enzymatic reaction is also detectable by electrochemical techniques. Lac-
tate, for example, is quantifiable by amperometric detection of the amount of
produced hydrogen peroxide when oxidized by lactate oxidase. In an ultra-
low-volume microtiter chamber, lactate concentration changes of single living
human heart cells were measured using two microelectrodes. A linear range from

Fig. 6 Droplet-based single cell analysis. a Droplet-generating area of the microfluidic device.
The cells and the solution containing substrate (FDP) and ITPG were combined on-chip before
droplet formation. A typical droplet volume was approximately 20 pl. b Droplet storage area on
the microfluidic chip, loaded with droplets. c Fluorescein concentration increase due to enzymatic
conversion of FDP over time. Each series of symbols represents product formation in individual
droplets starting with no cell (background hydrolysis), one or two cells in the droplet storage area.
Figure composed of different original figures. Figures reprinted in part with permission from
Shim et al. [20]. Copyright 2009 American Chemical Society
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65 to 266 fmol was achieved. A threefold difference in lactate content between
healthy and anoxic single cells after metabolic inhibition demonstrated the value
of the method for biological research [137]. With a lab-on-a-chip incorporating
five electrodes, the lactate production of single heart cells was measured. One pair
of the electrodes was used as pacing electrodes for field-stimulation of the cell.
The three other electrodes quantified lactate production. When the heart cell was
electro-permeabilized, lactate was detected in the extracellular space. The limit of
detection was 4.8 fmol, equivalent to a concentration of 7.4 lM [138].

Single cell oxygen consumption rates could be measured by oxygen-sensitive
platinum phosphor sensors in cell proximity. The sensors are excited by a laser,
and changes in emission are recorded by a microscope, allowing calculating
oxygen consumption [139–141]. With this measuring principle, oxygen con-
sumption rates of single human lung cancer cells [139] and rat macrophage cells
were measured [140, 141].

The analysis of metabolite concentrations and reaction rates in single cells will
increasingly move into focus for example in cancer research. Metabolic network
operation, i.e., the flux distribution in the metabolic network, is not sequenced
based and is a proxy of the cellular phenotype [142]. Advances in existing and
development of new analytical technologies to improve the reliability and usability
of single cell metabolism analysis will be reported in the future.

7 Conclusion

Single cell analysis is feasible, allowing the monitoring of concentrations and
concentration changes of certain analytes on all levels of the cellular hierarchy.
Many methods provide, in principle, the sensitivity to detect low concentrations of
analytes dissolved in buffer. However, it is generally difficult to reach the same
sensitivity during single cell analysis, since femtoliter handling and dilution effects
complicate the task. Especially low volume methods such as CE and lab-on-
a-chips are advantageous [143–148]. However, due to the diversity and complexity
of the cell content, none of the current methods enable comprehensive single cell
analysis, and hence rather specific cellular processes, with very limited numbers of
analytes are in the focus of research. To increase the portfolio of possible analytes,
the development of analytical methods and interfaces to couple several analytical
methods is desirable. As introduced, the analytical challenges scale not only with
the number of cells, but also with the cell size. Many of today’s robust and well-
established single cell analytical tools have to be adapted in the future to conquer
small unicellular organisms.

Although the challenges are huge, the rewards waiting to be gathered outweigh
the required efforts. We are facing the genotype-phenotype conundrum, and hence
can read and write the genetic code, but do not comprehend what we are reading
nor do we know what to write. This conundrum is a result of a missing under-
standing of basic concepts of cellular function, including regulation on all levels of
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the cell hierarchy [149]. Only by verifying/falsifying hypotheses that address these
basic cellular concepts, the existing gap in knowledge can be bridged. We are
convinced that single cell analysis will contribute significantly to this develop-
ment, as in single cell analysis the cellular complexity is not blurred by population
averages. With the rapid developments in single cell analytics, we will see major
contributions to our understanding of this cellular complexity.
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Abstract Cultivation-independent assessment of bacterial viability is essential
when (1) results are required fast and at high throughput, and/or (2) when the
specific target or mode-of-action of a certain bactericidal process is of interest,
and/or (3) when the organisms under investigation are regarded as ‘‘uncultivable’’.
However, aside from cultivation, there exists no ‘‘silver bullet’’ method that
demonstrates with absolute certainty whether an organism is alive or dead, and all
currently available methods are prone to produce varying results with different
organisms and in different environments. Here we discuss the fundamental concept
of viability in bacteria, with specific focus on the main aspects that define it. It is
argued that the presence of intact and functional nucleic acids, as well as an intact
and polarized cytoplasmic membrane are essential components of cellular via-
bility, while numerous other parameters and processes that are linked to viability
are explored. Different methods/approaches are discussed with particular emphasis
on the advantages and disadvantages of each approach, the applicability of the
methods toward environmental samples, and the underlying link between the
various viability parameters.
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1 Introduction

Knowing what is alive and what is dead, as well as what transpires in between
those two extremities, is one of the main challenges that microbiologists are facing
across all fields of application on a daily basis. The information arising from this
knowledge affects people in their daily lives. For example, the production of wine,
beer, cheese and yogurt requires well-defined viable microbial starting cultures as
well as quality control during the production process [44]. Similarly, the pro-
ductivity of industrial fermentations that utilise microbial cultures to synthesize
metabolites and recombinant proteins can be controlled and optimised through
real-time monitoring and increased understanding of the viability and activity of
the vector organism [41, 70]. Drinking water and wastewater treatment systems
often utilise disinfection processes as critical steps to safeguard the public against
microbiological diseases. The dosages of disinfectants and the constant monitoring
of the efficacy of such processes, are directly dependent on accurate viability
assessment [23, 53, 72]. In medical-related research, a well-known application of
viability assessment is testing the efficacy and mode of action of current and new
antibiotics [42, 51]. Furthermore, viability assessment is used in research labora-
tories worldwide to understand the fundamental processes that drive growth,
survival and die-off of bacteria in both carefully controlled laboratory environ-
ments [4] as well as in complex natural ecosystems [63].

While accurate viability assessment of bacteria is clearly important, it is far from
simple. First and foremost, it boils down to the essential question of what exactly
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defines ‘‘life’’ and ‘‘death’’ for bacteria? This becomes a near-philosophical dis-
cussion, initiated already half a decade ago by Postgate [56] and aptly summarised
by Roszak and Colwell [60], in which opinions remain highly subjective. Secondly,
viability assessment requires a fundamental understanding of the various parame-
ters that constitute and define life or death for a bacterium, relative to both the
individual organism and the environment in which it is studied. Moreover, it
requires tools that can determine these viability parameters in an accurate and
unambiguous manner, also distinguishing between parameters that change imme-
diately upon cell death, and those that are affected in a time-dependent manner. As
will be discussed below, these issues alone already pose daunting challenges to
researchers and practitioners. Thirdly, viability assessment is complicated by the
fact that bacteria represent a broad and complex group of organisms [66]. Based on
16S rRNA sequences, there are in excess of 50 recognized bacterial phyla [58, 62],
which in layman’s terms mean groups of bacteria as genetically distinct from each
other as a snail is from a human. There are in these phyla an estimated 1–10 million
bacterial species, and these organisms exhibit immense heterogeneity on multiple
levels including physical properties (e.g., size, shape and composition), nutritional
behaviour (e.g., oligotrophy vs. copiotrophy) and physiological states (e.g., dor-
mancy or exponential growth). For a simple example, some organisms have Gram-
positive cell walls, while others have Gram-negative cell walls, S-layers, sheaths,
etc. The cell wall is the primary barrier between the cell and the environment, and
the composition thereof is known to affect the action, functionality and interpre-
tation of some commonly used viability stains [5, 66]. Some bacteria are able to
thrive in a high cell density fast growing environment (e.g., fed-batch bioreactors)
while others can persist in low cell concentrations under near-starvation conditions
(e.g., groundwater). Different growth conditions are likely to affect the way in
which bacteria are perceived in terms of viability and activity (e.g., RNA content or
growth rates). Moreover, bacterial heterogeneity is not limited to broad groups, but
is known to occur even within a single species growing in the same environment
[13, 47], further highlighting the need for meaningful analysis on single-cell level.

Technological advances during the last 30 years, specifically the development
of powerful epi-fluorescence microscopes and the accompanying methodologies of
fluorescent staining, have largely facilitated the rise of fast, cultivation-indepen-
dent microbial methods. Moreover, the focus has shifted from analysing bulk
sample parameters to analysing individual organisms on single-cell level [13]. In
fact, improvements in laser technology and microfluidics have pushed single-cell
analysis to the point where basic bench top flow cytometers are common instru-
ments in research laboratories [22], and where inline/online instrumentation is a
reality rather than a vision [3, 18]. These practical advances have facilitated
fundamental shifts in the perception and understanding of microbial diversity and
heterogeneity, both within pure cultures and in natural environments [13, 47].

This paper approaches cultivation-independent viability assessment from the
perspective of ‘‘what is life or death for a bacterium’’ and how various viability
parameters relate to this. The purpose is to demonstrate the subjective nature of the
topic, to provide insights in how this topic can be approached in research and/or
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routine monitoring, as well as to highlight the practical value gained from such
information. Specific focus is given to high throughput single-cell methods, typ-
ically requiring microscopy or flow cytometry for analysis. The first section covers
the cultivation paradox, highlighting the need for cultivation-independent methods
for viability assessment, while the second part explores the fundamental aspects of
bacterial viability. In the third section, different bacterial processes related to
viability are discussed in the context of tools used for the analysis of these pro-
cesses. The take home message is that the proverbial ‘‘silver bullet’’ for viability
assessment remains (and will probably remain) illusive, but an intelligent com-
bination of available methods can be (and have already been) used to obtain
interesting and new information on diverse aspects of bacterial viability.

For additional reading, five recent review papers address the current state-of-
the-science with broader focus on flow cytometric applications in general [15, 16,
22, 46, 67], while the history of cultivation-independent viability research is
outlined in the thorough review papers of Roszak and Colwell [60], McFeters et al.
[45], Kell et al. [34], Nebe-von Caron et al. [49] and Joux and Lebaron [31].

2 Viability Versus Cultivability

2.1 Cultivability: The Gold Standard

While the present paper deals specifically with cultivation-independent viability
analysis, the basic fact is that cultivation (including conventional plating, most
probable number (MPN), and direct viable counts (DVC) remains the single most
solid evidence of viability [34], if the appropriate growth medium and cultivation
conditions for the organism are known [60]. All bacteria are in theory cultivable,
for the simple reason that they have grown/divided in order to exist. Moreover, at
least one school of thought on the topic of viability argues that an organism has to
be cultivable in order to be classified as viable [56, 60], and several disciplines
(e.g., drinking water analysis) still rely heavily on cultivation as primary method
for microbial analysis. However, numerous strong arguments exist in favour of
looking beyond cultivation alone when describing viability, and these are explored
below.

2.2 Time and Throughput

Cultivation can be a time-consuming analysis method, with growth to detectable
colony formation taking from 1 day to well over 1 month, depending on the
organisms and the growth media. Notably, some advanced cultivation methods (e.g.,
micro-colony counting and DVC) improve the time problem to some extent [2].
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Nonetheless, there are numerous cases, particularly in industrial and hygienic
applications, where a long time lapse would not suffice the purpose of the analysis.
For example, if a microbiological problem is detected in a drinking water
disinfection step only 3 days after the actual event, any corrective action will only
occur after the water has already reached the consumer. Similar examples can be
found in food and beverage industries. Indeed, the aim for microbiological analysis
should be to achieve accurate measurements in a matter of minutes, rather than hours
or days. Moreover, cultivation is a labour intensive method that does not allow high
throughput detection similar to automated microscopy, solid-phase cytometry or
flow cytometry.

2.3 Dealing with So-called ‘‘Uncultivable’’ Bacteria

One of the strongest arguments in favour of cultivation-independent analysis is the
analysis of indigenous environmental bacteria. Firstly, for the vast majority of
environmental bacteria, appropriate cultivation methods are simply not known
[58, 69], thus nullifying the use of conventional cultivation-based approaches.
Secondly, it is highly unlikely that all organisms in the same environmental sample
would share the same synthetic cultivation medium, rendering this approach
inappropriate for analysis of a diverse indigenous microbial community. Notably,
some recent studies have addressed this problem by cultivating bacteria in sterile
media prepared from the same aqueous environments from which the targeted
organisms originated (e.g., [69]). Thirdly, several reasons such as extremely slow
growth of specific organisms might render cultivation impractical to detect [49].
Organisms that do not grow readily on conventional growth media are broadly
(and most probably erroneously) referred to as ‘‘uncultivable/unculturable’’ bac-
teria. In the case of environmental samples, it is clear that only cultivation-
independent analysis can provide the much-needed information when viability is
assessed, which makes it the most appropriate approach for analysis of samples
from e.g., wastewater, drinking water and natural surface waters [6, 63].

2.4 The Viable-But-Not-Cultivable (VBNC) Paradigm

The possibility of VBNC bacteria is often highlighted as a key reason for doing
cultivation-independent viability analysis [28]. In short: the argument is that nor-
mally cultivable bacteria under certain conditions become uncultivable on media
that they previously grew on, while maintaining other measurable viability signs
[34, 52]. However, it would not be over-critical to state that the VBNC term is used
very liberally in peer-reviewed literature, often with scant regard for the basic
concepts of viability, which it apparently describes. The most common VBNC
example is the use of temperature shifts to regulate cultivability of Vibrio vulnificus,
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with cold-stored cells losing their ability to grow on standard media, and regaining it
through a temperature upshift [52]. Another example was shown by Berney et al. [4]
with E. coli exposed to low levels of solar radiation stress, no longer growing on the
standard cultivation media, but still appearing viable with cultivation-independent
parameters. At first sight, these two examples seem to underpin the VBNC concept.
However, in the latter case of the stressed E. coli cells, it was demonstrated that a
considerable percentage of the ‘‘uncultivable’’ cells were capable of growing
anaerobically on medium that was specifically supplemented with sodium pyruvate
(which scavenges reactive oxygen species) [4], showing that the cells were indeed
cultivable if the appropriate medium is used. Similarly, Bogosian and Bourneuf [7]
described a control experiment that showed that the cold-stored uncultivable
V. vulnificus cells were probably injured cells that were merely sensitive to the high
concentrations of hydrogen peroxide found in rich cultivation media. In fact, the
brilliant critical review by Kell et al. [34], later mirrored by Bogosian and Bourneuf
[7], needs to be illuminated in the VBNC context. This has to serve as a blueprint for
VBNC advocates for the experimental standard to which this concept should be
held, and the importance of careful use of this terminology. The somewhat critical
opinion of VBNC data expressed herein is not meant to undermine the efforts of
understanding different physiological states in bacteria, but rather to emphasize the
care that should be taken with viability analysis tools, and the expression of data
generated with these methods.

2.5 A Description of Specific Injuries and Slow Death

There is another clear advantage of cultivation-independent methods over culti-
vation-based viability methods. Cultivation provides only a binary (presence/
absence) result, i.e. the organisms are either detected as cultivable or not, a result
which is then usually interpreted as meaning alive or dead. But this type of result
limits the researcher in his/her understanding of the process that brought about the
result. The fundamental aspects of cell death, such as the sequence of damage or
type of injury caused by a certain bactericidal agent (e.g., [8]), or the specific targets
of different bactericidal agents and the kinetics of damage to these targets (e.g.,
[51]), all requires specific tools that can explore individual cellular processes and
mechanisms in more detail than a simplistic yes/no answer. The fact that cultiva-
tion-independent viability analysis targets a variety of individual cellular processes
renders this approach meaningful and suitable to address such complex questions.

3 How Dead is Dead?

In the absence of cultivation-based methods, the determination of viability
becomes a difficult and contentious topic. Argumentatively, three main cellular
components are prerequisites for life, namely: (1) the presence of functional
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nucleic acids, allowing transcription/translation and DNA replication, (2) the
presence of minimum cellular energy, allowing basic functioning of cellular
processes, and (3) the presence of an intact and functional cellular membrane,
maintaining the unique intracellular environment (Fig. 1). These three components
are inherently linked to one another as well as with other cellular components and
viability parameters, and without them, a cell cannot be considered as viable.

For all bacteria, one of the core processes essential for life is the maintenance of
a membrane potential. The membrane potential is the voltage difference between
the interior and exterior of a cell (usually between 70 and 200 mV in bacteria) and
in microorganisms this is typically generated by the electron transport chain
(proton translocation) or enzymes like oxaloacetate decarboxylase [37] that can
translocate sodium ions (Fig. 2). The membrane potential (Du) and the pH gra-
dient (ZDpH) produce the proton motive force (also called the electrochemical
gradient), which drives ATP synthesis via the F1FO ATP synthase in most bacteria
[17]. Membrane potential is used for (1) generating energy (ATP synthase),
(2) driving active transport of molecules across the membrane (such as the active
efflux/uptake of potassium ions), (3) enabling motility (flagella), and (4) keeping
the cytoplasm from equilibrating with the environment (like maintaining a specific
intracellular pH) (Fig. 2). Technically, a bacterial cell that cannot maintain a

Fig. 1 The four main stages of bacterial cell viability and the cellular processes that relate to these
stages. The order and degree of the affected processes, as well as the reversibility of the injury,
depends on the organism, the cause of injury/death, and the environment (adapted from [16, 49])
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membrane potential can be considered dead, since this will lead to an inhibition of
selective exchange of molecules across the cytoplasmic membrane like ions,
metabolites, amino acids or carbon and energy sources. For example, the main-
tenance of a high intracellular concentration of potassium is essential for protein
and nucleic acid synthesis and turgor pressure. The difference between intracel-
lular and extracellular potassium concentration can be up to 100-fold (5 M
intracellular, 0.05 M extracellular) as for the bacterium Halobacterium salinarium
[43]. Likewise, sodium ion homeostasis is essential for numerous sodium/solute
symporters present in bacterial membranes [32]. Generally speaking, without a
membrane potential, cells cannot maintain an intracellular environment that
enables the functioning of life-supporting metabolic processes and the cells
become more vulnerable to their environment. This additionally means that most
other cellular functions that are measured with viability indicators (e.g., efflux
pump activity, substrate uptake, ATP synthesis) are dependent or linked to a
membrane potential. Hence, measuring the membrane potential, or the dissipation
thereof, is in theory a good discriminator between living and dead cells.

However, a cornerstone to the above argument in favour of membrane potential
as a main viability indicator is the principle that a bacterium should be able to
‘‘maintain’’ its membrane potential: a bacterium that experiences a lethal stress does

Fig. 2 The importance of membrane potential for bacterial cells. Membrane potential is
produced by the electron transport chain comprising of, e.g. complex I–IV (I NADH
dehydrogenase, II succinate dehydrogenase, III cytochrome bc1 complex, IV terminal oxidase,
e.g. cytochrome c oxidase) and/or sodium-pumping decarboxylases (e.g., oxaloacetate decar-
boxylase). Membrane potential powers processes like the ATP synthase, solute-ion symporter,
e.g. (porline/Na+), ion antiproters (e.g., H+/K+), efflux pumps (e.g., ethidium) and motility
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not necessarily disintegrate immediately, nor does it lose its membrane potential on
the spot. In most cases, death occurs with a time-dependent shutdown of cellular
processes (in minutes or hours) that is dependent on the type of lethal agent (e.g.,
antibiotics, H2O2, chlorine, UV light or starvation), the extent of the cellular damage,
and the ability of the cell to recover form injury (Fig. 1). For example, cells of
Salmonella typhimurium that have been exposed to UV-A light for 2 h, retained a
membrane potential and the ability to actively transport glucose immediately after
irradiation but the majority of the cells lost these abilities after 24 h dark storage [8].
These same authors demonstrated in a subsequent study that a major cause of cell
death is irreversible damage to cellular proteins [9]. This is a clear example of lethal
injury requiring a certain timeframe to manifest in detectable viability parameters,
highlighting the dangers of rash interpretations of viability staining.

4 Specific Processes that can be Measured with Viability
Indicators

The following section covers a variety of cellular processes, functions and
parameters that are linked to bacterial viability, and for which in many cases well-
developed methodology is already available (Fig. 3). It deals mostly with

Fig. 3 The concept of evaluating various cellular processes in order to assess the viability state
of the organism (adapted from [4, 16, 31])
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fluorescent dyes (or substrates that become fluorescent upon intracellular cleavage
or binding) that are used in combination with single-cell methods such as epi-
fluorescence microscopy, solid-phase cytometry and particularly flow cytometry.
Examples of individual stains, methods and applications are discussed, but it is
important that the reader does not regard this information as methodological
standard protocols. All too often these stains are used in a manner ‘‘according-
to-the-manufacturer’s-guidelines’’, which completely disrespects the complex
interplay of the stains with the target organism, the different environments and the
basic concepts of viability. It is strongly encouraged that individual stains/proto-
cols should be tested in detail and rigorously optimised (e.g., stain selection, stain
concentrations, staining times, use of specific staining buffers, use of fixation and
permeabilisation reagents and appropriate positive and negative controls) in a
manner relevant to the sample that is being investigated. In this respect, Sträuber
and Müller [66] highlighted the importance of understanding the mechanisms of
specific stains and their interaction with different types of bacteria. Table 1 pro-
vides an overview of some of the criteria and related information that are required
to make an informed decision on a specific stain and staining protocol, with an
example of membrane integrity staining provided. While several examples
of stains and dyes are discussed in the section below, it is noted that the range of
available products is significantly broader and expanding on a regular basis.
A good tabular overview of viability stains can be found in Tracy et al. [67].

Table 1 Essential criteria and required information for the selection and optimisation of a
specific stain

Parameter Information Example

Stain selection Stain Propidium iodide
Purported mechanism Exclusion based on size and charge
Cellular binding target Nucleic acids
Binding mechanism Intercalates with DNA
Non-specific binding Not known
Species specificity Non-specific
Instrumentation EFM, FCM

Staining conditions Concentration 2–6 lM for \106 cells/mL
Temperature [20 �C
Staining time (min/max) 15–30 min
Salinity, pH, etc. Not known

Additives required Permeabilisation EDTA (5 mM)
Potential for false results Increased positives with EDTA use
Stain combinations SYTO 9, SYBR Green I

Controls Positive control Cell damage with lysis buffer or heat
Negative control Freshly grown pure culture

Exceptions Known false positives Possible (e.g. [65])
Alternatives Dyes with similar actions SYTOX green, Ethidium homodimer2

The example of membrane integrity staining with propidium iodide is provided, based on
experience in the authors’ group [5, 6]
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The different processes are discussed as individual entities for the sake of
clarity, but it is emphasized that these separate processes are often linked directly
to each other, forming part of a broader viability concept or continuum (Fig. 1)
[49]. Therefore, these processes (and the related methodologies) should preferably
not be viewed or used in isolation. Moreover, it is important to realise that the
parameters measured in typical viability assessments are usually not measuring
viability as such, but rather provide information about a specific cellular function
that can be related to viability (Fig. 3). Hence, if the mode of action of a bacte-
ricidal agent is known (e.g., oxidative membrane damage by chlorine dioxide),
specific viability indicators can be used to assess the mode of action of interest.
However, if a biocidal agent has multiple target sites (e.g., UV-A light), or if a
completely unknown sample is analysed (e.g., natural surface water), viability
stains are best used in concert (e.g., [4, 28, 40, 51, 70]). This enables the researcher
to derive a meaningful interpretation of the sample in question.

4.1 Presence of (Intact) Nucleic Acids

4.1.1 Principle

Without intact and functional nucleic acids, a cell will not be able to replicate or
produce any proteins and thus perform even the most basic cellular functions including
repair, stress response and cell division. Cells without nucleic acids are described in
literature as ghost cells [31], and are regarded as irreversibly dead (Fig. 1).

4.1.2 Methodology

Well-known total cell count stains such as SYTO 9, SYBR Green I and II, Pico-
Green and Acridine Orange can be used to stain the nucleic acids of bacteria [23,
38]. From a practical perspective, it is important to ensure that the outer membrane
is properly permeabilised (e.g., by adding EDTA) during nucleic acid staining,
since it was shown previously that some Gram-negative bacteria partially reject
such stains (Fig. 4) [5]. Schumann et al. [63] makes the relevant point that partially
disintegrated dead cells without a chromosome would go undetected with any
nucleic acid targeting stains, and this was elucidated by Phe et al. [54], who showed
that propidium iodide cannot bind to cellular nucleic acids that were damaged
extensively by progressive chlorination, leaving such cells undetected. Argumen-
tatively, cells that are damaged to an extent that nucleic acids can no longer be
detected should perhaps not even be recognised as cells, but rather as organic
particles. As an alternative, a recent publication by Saint-Ruf et al. [61] proposed
the use of highly fluorescent hydrazides that do not bind to nucleic acids but rather
to carbonyl groups on intracellular proteins, for the detection of dead cells where
nucleic acids might already be absent or damaged to an extent that does not allow
binding of conventional nucleic acid stains. However, while the absence of nucleic
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acids is a certain ‘‘death’’ indicator, the mere presence of nucleic acids is not a
measurement of viability. For example, none of the general stains that are men-
tioned above are sensitive enough to detect the specific nucleic acid damage caused
by UV-C disinfection, commonly used in drinking water treatment. The inactiva-
tion of bacteria by far-ultraviolet (190–300 nm) radiation results from the
absorption of the radiation by the DNA, causing the formation of thymine dimers
that distort the conformation of the DNA double helix and interfere with cell
replication and transcription [1, 25]. A recent paper describes the use of a mono-
clonal antibody against cyclobutyl thymine dimers (anti-TDmAb) that results in
dimer specific fluorescence [1]. This can be used on a single-cell level and has been
demonstrated to detect UV damage in protozoan parasites, using epi-fluorescence
microscopy, but a general, broad-based application of this approach has not yet
been described. Moreover, it should be emphasized that such an approach is limited
to a detection of cellular injury, but does not describe the extent of the injury (lethal
or not), or the ability of the cell to repair the damaged nucleic acids. It is also
possible to distinguish between the DNA and RNA content of cells by using a
specific staining combination such as Hoechst 33342 or DAPI (for DNA content)
and Pyronin Y (for RNA content) [64], while general stains such as SYBR Green I
and II or Acridine Orange have apparently different affinities or fluorescence
emission for DNA and RNA. Additionally, RNA staining in pure cultures can be
accomplished with FISH probes [33].

4.1.3 Applications

Detection of nucleic acids is a basic check to determine if bacterial cells have one
of the essential components of life, but is typically used for viability assessment

Fig. 4 The potential impact of pre-treatment in staining protocols: nucleic acid labelling of
stationary phase Gram-negative E. coli cells with SYBR Green I without (a) and with (b) a pre-
treatment step using a commercially available lysis buffer. Staining was done for 15 min at
25 �C; analysis was done with a Cyflow Space instrument (Partec)
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only in situations where extremely aggressive damage to cells is expected. For
example, assessment of non-specific damage to nucleic acids has been used to
characterise disinfection of indigenous microbial communities during chlorination
of drinking water [53, 54]. These authors have shown a considerable reduction in
fluorescence intensity of cells stained with SYBR Green II after extensive chlo-
rination, suggesting that this is linked to irreversible oxidative damage of cellular
DNA and that this approach can be used as an indicator for complete disinfection.
The efficacy of ozonation as disinfection process during drinking water treatment
was similarly demonstrated with SYBR Green I and flow cytometry, which
showed no detectable nucleic acids or cell structures after ozonation [23]. It has
been proposed previously that the mere presence of specific clusters of high
(HNA) and low (LNA) nucleic acid content bacteria, as visualised with common
nucleic acid staining and flow cytometry (Fig. 5), differentiates between active and

Fig. 5 Double-staining of indigenous high (HNA) and low (LNA) nucleic acid content bacteria
from river water with SYBR Green I and propidium iodide before (A1, A2) and after (B1, B2)
cell wall permeabilisation using a commercially available lysis buffer. Staining was done for
15 min at 25 �C; analysis was done with a Cyflow Space instrument (Partec)
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inactive bacteria in environmental samples [21, 39]. However, recent studies have
directly questioned this interpretation (e.g., [69]), and it should be assumed that
such a general approach is probably too simplistic, given the heterogeneity
observed in indigenous microbial communities.

4.1.4 Opinion

Indigenous bacterial cells have widely different amounts of nucleic acids (both
DNA and RNA), typified by the HNA and LNA bacteria found in nearly all natural
water samples (Fig. 5) [69]. So the amount of cellular nucleic acids is per se not a
useful indicator of life or death, especially when indigenous microbial commu-
nities are considered. While the complete lack of nucleic acids would be a clear
indicator of cell death [63], it should be regarded as an extremely conservative
approach to viability assessment. Firstly, only aggressive disinfection processes
result in DNA damage that is detectable with general methods. Secondly, small
but lethal damage to DNA (e.g., UV-C disinfection) would not be detected with
this approach. The RNA content of bacteria is at best an indicator of cellular
activity and not viability [60]. Moreover, when slow-growing or dormant cells are
present in a sample, it is likely that RNA content of such cells is beneath the
detection limit of most methods, while the cells remain essentially viable and
even active.

4.2 Membrane Integrity

4.2.1 Principle

Bacterial membranes provide a highly regulated physical barrier between the
intracellular and extracellular environment. Severe structural/physical damage
to the cytoplasmic membrane of bacteria is usually irreversible and most
likely leads to cell death [31]. An intact membrane can be detected through
exclusion of molecules based on their molecular size, charge, hydrophobicity
and presence of groups that cause steric hindrance for membrane diffusion
[26, 63, 66].

4.2.2 Methodology

Membrane integrity staining was made famous by the unfortunately named
‘‘LIVE/DEAD’’ kit [10], containing propidium iodide (PI) as the selective mole-
cule for permeabilised membranes. The name is ‘‘unfortunate’’ because it reflects
hypothetical concepts of ‘‘life’’ or ‘‘death’’, rather than a methodological concept
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that is assessed (membrane permeability) [63], and results gained from the
application of this method are often wrongly interpreted as meaning ‘‘alive or
dead’’. PI is a large (668 Da), double-charged, red-fluorescent dye that intercalates
with double-stranded DNA and normally only enters cells of which the cyto-
plasmic membrane of the cell is permeabilised [5, 10]. PI is commonly used in
combination with a total nucleic acid stain such as SYBR Green I or SYTO 9
(Table 1; Fig. 5) [5, 19], and the specific flow cytometric patterns that can be
detected in this manner are indicative of different degrees of cellular damage [5].
Several alternative stains are available, which provide the user with additional
information of membrane damage. These include SYTOX Green, which is an
asymmetrically triple-charged cyanine dye and ethidium homodimer-2 (Eth-D2)
that consists of two phenanthridinium fluorophores and which is quadruply
charged [36, 63]. In an interesting test, Schumann et al. [63] used these three stains
together on natural aquatic communities and found decreasing dye permeability in
the order of (1) PI, (2) SYTOX Green, and (3) Eth-D2, ascribing the result to the
molecular structure of the dyes. These results suggest that the magnitude of
membrane damage can be measured with the use of different dyes, but conclusive
information in this regard is still required. Positive controls for membrane integrity
staining include treatment with heat (90 �C, 3–5 min), ethanol, or with a mem-
brane damaging detergent (Fig. 5).

4.2.3 Applications

Analysis of membrane damage is best used for viability assessment in situations
where aggressive physico-chemical damage to cells is expected. This includes
disinfection by heat [6], oxidants [40], several antibiotic compounds [51] and
physical processes like sonication or electroperforation. PI has been used more
than any other viability stain on both pure cultures and natural microbial com-
munities from environmental samples [10, 19, 31]. For example, Berney et al. [6]
showed with flow cytometric analysis that 70–80% of indigenous communities in
drinking water displayed intact cytoplasmic membranes, while Schumann et al.
[63] used epi-fluorescence microscopy to demonstrate that between 50 and 60% of
indigenous surface water communities had intact membranes. However, these
former examples are snapshot analysis of complex communities that reveals little
about the processes leading to the membrane damage. From controlled laboratory
scale experiments from the authors’ group, Berney et al. [4] and Bosshard et al. [8]
described die-off of E. coli, Salmonella and Shigella cells from solar (UV-A)
radiation with a range of viability parameters, demonstrating that cell membrane
damage is typically the last level of damage to become detectable. Similarly, Lisle
et al. [40] described the impact of chlorination on E. coli cells with multiple
parameters, and also showed that membrane integrity was the last viability indi-
cator to be disabled in the disinfection process.
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4.2.4 Opinion

Most membrane integrity stains are applicable for pure cultures as well as
indigenous communities, and analysis with epi-fluorescence microscopy and flow
cytometry is typically yielding clear results. Membrane integrity analysis is,
similar to nucleic acid damage, a conservative indicator for viability [4, 40]. It can
be assumed that a cell with a severely damaged cytoplasmic membrane can be
considered as ‘‘dead’’, due to an inability to maintain a unique intracellular
environment [5, 49], although some exceptions to this have been noted and dis-
cussed in some detail [47, 65]. However, the reverse argument (that cells with
intact membranes are ‘‘alive’’) is not necessarily true [5, 31]. A straightforward
example is UV-C disinfection (discussed above), which would result in inactiva-
tion of bacteria without any immediate detectable damage to the cytoplasmic
membrane. It is of importance to note that the value of membrane integrity stains
is not to measure ‘‘life’’ or ‘‘death’’, but to assess a particular location-specific
damage to cells. Hence, both the application/purpose and the interpretation of data
from membrane integrity analysis, as well as the manner and nomenclature in
which such data are reported, should be considered with the utmost care.

4.3 Membrane Potential

4.3.1 Principle

As discussed in detail in Sect. 3 (above), only living cells are in theory capable of
maintaining a membrane potential. An irreversible loss of membrane potential
would expose the cell to potentially lethal stress factors (e.g., pH, salts) in its
environment. The processes shown in Fig. 2 demonstrate that a loss of membrane
potential would have profound impacts on several vital cellular functions and
processes, eventually leading to cell death.

4.3.2 Methodology

The presence of a membrane potential selectively regulates the passage of lipo-
philic cationic and anionic charged molecules through the cytoplasmic membrane.
Depending on the charge of the dye, such molecules can either accumulate in
polarized (cationic dyes) or depolarised cells (anionic dyes) [11, 31]. For example,
uptake of anionic bis-(1,3-dibutylbarbituric acid) tri-methine oxonol (DiBAC4(3)),
also known as BOX, is limited to cells that are depolarized, upon which non-
specific binding to intracellular proteins occurs [4, 26]. Alternatively, Rhodamine
123 (Rh123) is a polar cationic dye with a single delocalised positive charge,
which crosses polarized membranes and accumulates in viable cells [20, 51].
Additional membrane potential dyes include 3,30-dihexyloxacarbocyanine
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(DiOC6(3)), 3,30-diethyloxacarbocyanine (DiOC2(3)) and 3,30-dipropylthiadicar-
bocyanine (DiSC3(5)) [11, 50, 51]. Anionic dyes like DiBAC4(3) are typically
used to obtain a yes/no answer about the membrane potential of the cell and are
thus suitable as viability stains. Other stains like DiOC2(3) have been used to
accurately measure the membrane potential and changes thereof in bacterial cells
on a single-cell level [50]. For many of the membrane potential dyes, a pre-
treatment step with EDTA is often needed to permeabilize the outer membrane [6,
31], but this treatment may by itself affect the cell’s membrane potential. One
drawback is that these dyes are usually fluorescent as such, which means back-
ground fluorescence can be a problem when analysing such samples. A dilution or
washing step can be useful to avoid this problem. The appropriate control for
membrane potential staining is to use uncoupling agents such as carbonyl cyanide
m-chlorophenyl hydrazone (CCCP) or ionophores (e.g., nigericin, valinomycin)
[31, 47, 51], while heat-killed cells (3 min, 90 �C) serve as a usable absolute
negative control [6].

4.3.3 Applications

While some antibiotic compounds are thought to specifically target membrane
potential [51], this parameter is often used as a sensitive and general indicator of
the viability state of bacteria. Multiple reports have investigated the use of
membrane potential stains for the analysis of bacterial pure cultures during fed-
batch fermentations, with the general conclusion that this method can provide
fast and useful information for monitoring industrial processes [27, 70]. Novo
et al. [51] have used a combination of membrane integrity and membrane
potential dyes to analyse and describe the mode of action of a range of antibi-
otics on pure cultures. A typical example is streptomycin, which causes K+ efflux
and an inhibition of respiration in bacterial cells, both of which are factors that
would contribute to membrane depolarisation. In contrast, chloramphenicol,
which targets protein synthesis mechanisms, had no detectable short/mid-term
impact on bacterial membrane potential [51]. The same authors also noted that
fluorescence intensity of membrane potential stains (e.g. DiBAC4(3)) can be
influenced by cell size, which may hamper application and interpretation when
natural communities are analysed. In this regard, Müller and Nebe-von Caron
[46] note that a typical approach is to create a ratio between fluorescence
intensity and cell size when membrane potential is analysed (see also [66]). The
application of membrane potential dyes to natural communities has been largely
limited [31]. In one such application, Berney et al. [6] have demonstrated the use
of DiBAC4(3) on indigenous drinking water communities, showing 60–80% of
cells in non-chlorinated drinking water showing ‘‘viable’’ polarized membranes.
This was, however, not in relation to specific bactericidal processes, but rather a
general ‘‘snapshot’’ assessment of an indigenous community. For accurate
application of membrane potential methods on natural communities, additional
information is needed about the accuracy of staining small cells that are
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prevalent in natural environments, and the interaction of the stains with charged
compounds in the water samples [31].

4.3.4 Opinion

Membrane potential is a rather sensitive viability parameter and during general
disinfection processes (e.g., solar disinfection), the loss of the membrane potential
occurs in conjunction with a failure in cellular energy systems (ATP formation and
the energy-dependent uptake of molecules), often well before membrane perme-
abilisation occurs [4, 8]. As a result, extensively damaged cells that have per-
meable membranes (Sect. 4.2) would typically display a lack of membrane
potential as well [6]. However, the loss of membrane potential as a result of
cellular inactivation may be time-dependent. For example, many bacteriostatic
agents work through interference with protein synthesis, and therefore an imme-
diate response in membrane potential is not expected [51]. Hence, it is essential to
assess not only the presence of membrane potential, but also the time-dependant
maintenance thereof. Of the available methods, the anionic dyes seem to have
broader applicability, but it should always be remembered that the experimental
outcome is not a direct measurement of membrane potential, but rather the specific
behaviour of a given dye in a cell. While extensive work has been done with
membrane potential staining of pure cultures, the application in natural samples is
largely limited [6, 20, 31].

4.4 Efflux Pump Activity

4.4.1 Principle

Some molecules that can cross intact cytoplasmic membranes by passive diffusion
are pumped out of active cells via specific or non-specific proton antiport transport
systems. The pumping is ATP-independent but directly dependent on a trans-
membrane electrochemical gradient. A loss of this pumping activity is therefore
indicative of a change in membrane potential or damage to the membrane.

4.4.2 Methodology

The most commonly used stain for efflux pump activity analysis is ethidium
bromide (EB) [30, 31, 41]. The small EB molecules (394 Da) with a single
positive charge enter the cell through passive uptake. If the membrane pumps are
no longer functioning it accumulates in the cell and binds to nucleic acids.
A common approach is the use of EB in combination with a green fluorescent
nucleic acid stain (e.g. SYBR Green I), which allows dynamic detection of small
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changes and intermediate cell states [41]. An appropriate control for EB-staining
has been described as using a combination of sodium azide (NaN3) and Tween-20,
which apparently halts EB extrusion without compromising the membrane
integrity [48], while treatment with verapamil, and m-chlorophenyl hydrazone also
inhibit efflux pump activity [46].

4.4.3 Application

Efflux pump activity has been used successfully in the monitoring of industrial
fermentation processes with pure cultures of bacteria. For example, Looser et al.
[41] demonstrated that the damage caused to E. coli membranes through the
expression of a heterologous membrane protein could be followed most accurately
with EB-staining, and this can be used for real-time monitoring of the process. In
several studies the group of Hewitt [27, 70] have used a protocol combining EB
with PI (membrane integrity) and DiBAC4(3) (membrane potential) to describe
various sub-populations occurring during industrial fed-batch fermentations.

4.4.4 Opinion

The absence of a pumping activity suggests potential stressful conditions, but not
necessarily cell death. Müller and Nebe-von Caron [46] suggested that active
transport is obviously low in that are viable but with very low activity, which may
lead to false interpretations of staining results. Nebe-von Caron et al. [48] as well
as Looser et al. [41] described EB as more sensitive than either membrane
potential dyes (e.g., DiBAC4(3)) or membrane integrity dyes (e.g., PI) for the
detection of physiological changes in cells, and a similar observation was also
made for solar irradiated cultures [4]. However, while EB staining works fairly
well for assessment of pure cultures, Joux and Lebaron [31] opined that the current
methodology for detection of pumping activity is not universal enough for analysis
of environmental samples—an opinion that is shared by the present authors. As
discussed below, efflux pump activity can also have a negative impact on other
staining methods (e.g., enzyme activity staining), where either the fluorochromes
or the cleavage products are in some cases actively exported from viable cells.

4.5 Respiratory Activity

4.5.1 Principle

Respiratory activity in bacteria depends on a functioning electron transport chain,
which is the main process for maintaining a membrane potential (Fig. 2). The
presence of respiratory activity is therefore an indicator of viability in cells, linking
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membrane potential and the recycling of reducing equivalents (e.g. NAD+) that
are produced in many catabolic reactions.

4.5.2 Methodology

Respiratory activity in bacteria can be detected by the use of artificial electron
acceptors, specifically tetrazolium salts, which are reduced to insoluble formazan
products [71]. The reduction of tetrazolium salts are indirectly linked with the
enzymes that form part of the electron transport chain (NADH dehydrogenase I
& II, succinate dehydrogenase, cytochrome c reductase and the terminal oxi-
dases), which is why respiratory activity is also often described together with
enzyme activity protocols [67]. The two most commonly used tetrazolium salts
are INT (2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride),
which is reduced to INT-formazan, and CTC (5-cyano-2,3-ditolyl tetrazolium
chloride), which is reduced to red-fluorescent 3-cyan-1,5-ditolyl formazan (CTF)
[71]. Of these two dyes, CTC seems to be the preferred choice based on the easy
detection of the fluorescent product with fluorescence microscopy and/or flow
cytometry. Different staining protocols include differences in staining times
(4–24 h), the addition of intermediate electron carriers, changing the oxygen
concentrations during staining, and also the inclusion of additional substrates in
the medium during staining [14, 71]. For negative controls, the dissipation of the
membrane potential can be achieved by the addition of a combination of nige-
ricin and valinomycin, or similar reagents as described above in Sect. 4.3
[12, 57].

4.5.3 Application

Respiratory activity staining is one of the older viability assays, with already
numerous applications in both pure cultures and environmental microbiology
during the last two decades [59, 71]. For example, Schumann et al. [63] found
reasonably good correlations between CTC reduction and esterase activity
(discussed below) in a number of environmental samples. For a comprehensive
review of various CTC applications and comparisons with other methods,
the reader is referred to the comprehensive discussion in the study of Creach
et al. [14].

4.5.4 Opinion

Considerable disagreement exists to the exact value of this method for the analysis
of environmental samples [14, 68]. One of the shortcomings of the CTC assay is
that it often requires long staining times (up to 24 h) [71], which makes it less
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interesting for a rapid microbiological assay. Such a long staining time could result
in other viability changes (e.g., die-off, regrowth) in the samples. Also, for flow
cytometric analysis it is essential that the crystals are formed inside the cells,
which is not always the case. Moreover, it has been noted that not all bacteria are
capable of reducing formazan salts (because not all bacteria have a functioning
electron transport chain), which seriously questions the general applicability of the
method on indigenous environmental communities [14, 68, 71].

4.6 Enzymatic Activity

4.6.1 Principle

Bacteria maintain a number of housekeeping enzymes with relative general
functions (e.g., esterases, dehydrogenases, peptidases). The absence of these
enzymes from a cell suggests an inability of the cell to synthesise and maintain
new proteins, which is indicative of inactivity and potential death [49]. Enzyme
activity is usually measured through the detection of specific cleavage products in
cells.

4.6.2 Methodology

All bacteria contain relative unspecific esterases, and the presence thereof can be
detected through the addition of an uncharged, non-fluorescent and lipophilic
substrate, which upon cleavage, becomes a fluorescent polar product that is
retained to varying degrees in cells. For this purpose, a very wide variety of
substrates have been tested rather extensively, including fluorescein diacetate
(FDA), carboxyfluorescein diacetate (CFDA), carboxyfluorescein diacetate acet-
oxymethyl ester (CFDA-AM), 20,70-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluo-
rescein-AM (BCECF-AM) and calcein-AM [11, 31, 36]. Some of the above-
mentioned dyes tend to be pH-dependent, which influences their efficacy [46].
Additionally, some of the fluorogenic substrates or cleavage products can be
actively exported from bacterial cells [16, 46], again hampering the interpretation
of staining data. As a result, various different staining protocols exist in which
different substrates are favoured. It is, however, essential that any chosen protocol
should be carefully controlled, e.g., by inhibition of efflux pumps (Sect. 4.4.2) and
also by complete heat-inactivation of enzymes (negative control). Apart from
esterases, at least two other enzyme systems are often targeted in viability assays.
Firstly, the reduction of tetrazolium dyes (e.g. CTC, see section above) is indi-
rectly linked to the enzymes of the electron transport chain (see Sect. 4.5.). Sec-
ondly, Schumann et al. [63] describe the use of 7-amino-4-chloromethylcoumarin,
L-leucine amide hydrocloride (CMAC-Leu) for the measurement of peptidase
activity in bacteria.
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4.6.3 Application

Specific disinfection processes like heat-killing would directly affect enzymatic
activity in bacterial cells through denaturation of the enzymes. Therefore, loss of
specific enzyme activity can be indicative of a specific location or type of cell
damage (e.g., proteins). Schumann et al. [63] assessed both esterase and peptidase
activity in a number of natural surface water samples. In general, higher esterase
activity was detected in all samples, but the exact interpretation from studies based
on such grab-samples is difficult to make. In a recent study in the authors’ research
group, esterase activity was measured along with several other viability parameters
in different drinking water samples. What was particularly interesting was that a
relatively good correlation was found between the concentration of esterase
positive cells and the concentration of ATP in the water samples (Fig. 6). How-
ever, as discussed below, there is sufficient reason to believe that esterase data
should be regarded with care, particularly during disinfection experiments.

4.6.4 Opinion

Most of the substrates used for enzyme activity measurements enter bacterial cells
through passive diffusion. Moreover, the actual cleavage (substrate–enzyme
reaction) is independent of cellular energy [49]. Hence, the detection of enzyme
activity does not necessarily suggest cell viability, and recently killed cells are

Fig. 6 A general correlation between the concentration of ATP and esterase positive cells
(CFDA staining) in water samples (n = 80) including groundwater, tap water, surface water and
wastewater effluent. Samples were analysed as described in Berney et al. [6]
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more than likely to still display enzymatic activity. In fact, Breeuwer and Abee
[11] reported several cases where dead cells displayed enhanced esterase activity,
probably due to better transport of the dyes into dead cells while enzymes remain
active. Therefore, a key aspect again is the time-dependent maintenance of
enzymatic activity in cells, rather than the mere presence thereof in a snapshot
analysis of a sample. On the other hand, the absence of enzymatic activity is by no
means an indicator of dead cells, but can also be associated with a low activity
state in bacteria. Moreover, Diaz et al. [16] describes problems with dye uptake as
well as active dye extrusion. Heat-killing is an often-used control for esterase
stains [6, 55]. However, it has to be recognized that heat would denature proteins,
thereby damaging and inactivating the esterase enzymes. Heat-killing is therefore
only a control for enzyme presence and activity, but it is not a control for the
response of enzyme activity relative to cell viability (or the lack thereof). Hence, it
is the authors’ opinion that enzymatic activity should be considered with care, and
reported accurately to the experimental or environmental conditions that were
studied.

4.7 Cellular Energy: Adenosine Tri-Phosphate (ATP)

4.7.1 Principle

All microorganisms require a minimum amount of energy to maintain life-sus-
taining processes. Energy in bacteria is generally present in the form of ATP,
which can be generated either through oxidative phosphorylation (by creating a
proton motive force that drives the ATP synthase) or substrate level phosphory-
lation (e.g., glycolysis). Additionally, bacteria can accumulate compounds like
phosphoenolpyruvate, glycogen or triacylglyceride, which can be converted to
ATP under energy starvation conditions. ATP is commonly referred to as the
energy currency of microbial cells [29]. It is turned over rapidly in cells due to the
coupling of anabolic and catabolic reactions, and as a result, ATP concentrations
often respond to physiological states in microorganisms.

4.7.2 Methodology

Khlyntseva et al. [35] presents an extensive review of ATP determination methods
(not limited only to bacterial cells). Although bacterial ATP measurements on
single-cell level are not commonly used [29], bulk ATP analysis has evolved
during the last decade into easy and straightforward measurements [24]. In stan-
dard laboratory applications, ATP measurements are typically accomplished with
commercially available ATP kits, based on detection of luminescence generated
from the interaction of extracted ATP with the luciferin–luciferase enzyme
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complex. Intracellular and extracellular ATP can be distinguished from each other
by using 0.1 lm filtration.

4.7.3 Application

In a recent paper from the authors’ group, it was demonstrated that a good general
correlation was obtained between the concentration of intact cells (measured with
SGPI-staining) and the concentration of bacterial ATP for a variety of indigenous
aquatic microbial communities [24]. Similarly, a good correlation was obtained
with esterase-positive cells following CFDA-staining (Fig. 6). However, it should
be emphasized that this data set looked specifically at freshwater environments
where no dramatic stress conditions could be expected. During sunlight disin-
fection experiments, it was demonstrated that ATP is sensitive to cellular stress
and often displayed decreases considerably earlier than parameters such as culti-
vability and substrate uptake [4, 8].

4.7.4 Opinion

The advantage of ATP analysis in the context of viability is that it provides the
user with an independent tool to compliment the flow cytometry or microscopy
data (Figs. 3, 6). Unfortunately, this is in most applications only a bulk parameter
and not a single-cell measurement. This is indeed problematic, since the ATP
content of bacterial cells is not constant. For example, HNA cells contain on
average about 10-fold more ATP than LNA cells [69]. This means that bulk ATP
measurements can easily lead to erroneous conclusions when the data are com-
pared to single-cell data. Also, ATP measurements do not take into account the
rapid changes in cellular ATP levels, and specific responses to environmental
conditions, e.g., increased catabolism or decreased anabolism. It is a known fact
that the energy in a cell depends on the balance between the various adenosine
phosphates [ATP, adenosine di-phosphate (ADP) and adenosine monophosphate
(AMP)] [35]. In addition, it was shown that extracellular ATP can have an
influence on total ATP measurements, and should be considered during analysis
[24].

5 Conclusions

It is highly unlikely that any single silver-bullet viability staining method exist,
due to the heterogeneous nature of microbial life. As a result, the best approach is
the use of a combination of cultivation-independent methods that target different
cellular processes linked to viability in order to gain specific and meaningful
information on different cellular states, types of cell damage and the degree of
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cellular injury. It is emphasized that the methods should be carefully chosen and
optimised prior to application, bearing in mind the particular environment and
organisms that are analysed. In this regard, critical points to consider are (1) the
cellular process measured with the method (Fig. 3), (2) the specificity of the
method towards the target organism, (3) the inherent link between different
methods/processes (e.g., Figs. 3, 6), (4) the sequence and time-dependent manner
in which cellular processes respond to a specific stress (e.g., Fig. 1), and the ability
of cells to recover from a certain injury. The application of cultivation-independent
viability assays to environmental samples is a needed and worthwhile endeavour in
order to understand bacterial behaviour in complex natural environments. How-
ever, pure culture work, specifically using defined organisms under diverse (but
controlled) stress conditions, coupled to cell sorting and re-cultivation, has the
potential to enhance the actual understanding and interpretation of cultivation-
independent methods [46, 49].
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Resolution of Natural Microbial
Community Dynamics by Community
Fingerprinting, Flow Cytometry,
and Trend Interpretation Analysis

Petra Bombach, Thomas Hübschmann, Ingo Fetzer, Sabine Kleinsteuber,
Roland Geyer, Hauke Harms and Susann Müller

Abstract Natural microbial communities generally have an unknown structure
and composition because of their still not yet cultivable members. Therefore,
understanding the relationships among the bacterial members, prediction of their
behaviour, and controlling their functions are difficult and often only partly suc-
cessful endeavours to date. This study aims to test a new idea that allows to follow
community dynamics on the basis of a simple concept. Terminal restriction
fragment length polymorphism (T-RFLP) analysis of bacterial 16S ribosomal
RNA genes was used to describe a community profile that we define as compo-
sition of a community. Flow cytometry and analysis of DNA contents and forward
scatter characteristics of the single cells were used to describe a community
profile, which we define as structure of a community. Both approaches were
brought together by a non-metric multidimensional scaling (n-MDS) for trend
interpretation of changes in the complex community data sets. This was done on
the basis of a graphical evaluation of the cytometric data, leading to the newly
developed Dalmatian plot tool, which gave an unexpected insight into the
dynamics of the unknown bacterial members of the investigated natural microbial
community. The approach presented here was compared with other techniques
described in the literature. The microbial community investigated in this study was
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obtained from a BTEX contaminated anoxic aquifer. The indigenous bacteria were
allowed to colonise in situ microcosms consisting of activated carbon. These
microcosms were amended with benzene and one of the electron acceptors nitrate,
sulphate or ferric iron to stimulate microbial growth. The data obtained in this
study indicated that the composition (via T-RFLP) and structure (via flow
cytometry) of the natural bacterial community were influenced by the hydro-
geochemical conditions in the test site, but also by the supplied electron acceptors,
which led to distinct shifts in relative abundances of specific community members.
It was concluded that engineered environments can be successfully monitored by
single cell analytics in combination with established molecular tools and sophis-
ticated statistical analyses, a combination that holds great promise for studying and
monitoring natural microbial community behaviour.

Keywords Bioprocess control � Biostimulation �Microbial community analysis �
Microbial flow cytometry � In situ microcosms
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1 Resolving Complex Microbial Communities

It has been a long-time ambition of scientists to link certain environmental pro-
cesses to activities of individual cells within complex microbial communities.
Studying solely variations of chemical parameters in the environment provides
only limited information on an ecosystem. To unlock this ‘‘black box’’, traditional
concepts focussed on isolation and subsequent characterisation of cultured
microorganisms. Since most bacteria have not been cultivable until now, this
concept does not seem appropriate for revealing the role of individual microor-
ganisms within complex microbial communities.

Recently established methods, such as microautoradiography-fluorescence in
situ hybridisation (MAR-FISH), stable isotope probing (SIP) of nucleic acids or
quantitative PCR detecting key genes of biochemical pathways or their transcripts
(for overview see Sect. 5.3 of this review and [45]), can provide information on the
microbial communities and their catabolic functions, but these methodologies are
often too elaborate and difficult to apply to field samples. During the last few years,
population-correlated approaches on the basis of fluorescent labeling of single cells
combined with cell sorting and further analysis of the sorted sub-populations have
emerged as a valuable and robust tool to understand the development of intra-
population functional variability [52]. The same basic idea can be used to resolve
quantitatively natural microbial communities by labelling either already known
bacteria (using phylogenetic probes for in situ hybridisation; [29, 30, 38]) or all
bacteria with fluorescent dyes to facilitate cell sorting and subsequent analyses of
the cells’ functional potential by phylogenetic analysis (for overview see [33]). The
easiest way to label all bacteria in a community is to stain the nucleic acids, which is
widely done by the application of Syto� dyes resulting in the detection of so-called
low nucleic and high nucleic acid (LNA and HNA, respectively) bacteria. HNA
bacteria can contain high amounts of DNA and RNA, and are often regarded as very
active, whereas LNA bacteria have been suggested to be generally inactive.
However, recently very small representatives (below 0.8 lm, [51]) were found to
be part of the LNA sub-community and proven to multiply. Microbial community
dynamics can be followed at higher resolution when labeling exclusively the DNA.
The blue fluorescent dye DAPI can be used for this purpose. Resulting DNA-pattern
distributions and sorting of subsets of cells represent a quick and already well-
established tool to allow investigators to observe natural microbial communities in
detail [12, 19, 32]. The same approach is the basis for the routine in situ monitoring
of complex groundwater microbial communities of unknown composition and
structure, the outcome of which is presented in this study.

2 Investigation of In Situ Biodegradation as a Case Study

As a result of human activities, toxic chemicals have become ubiquitous con-
taminants of soils and groundwater worldwide. In 2006, the European
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Environment Agency reported that approximately 250,000 contaminated field sites
are in need of remediation due to the risks that pollutants pose to human and
ecosystem health [8]. A similar situation exists in the USA, where there are
approximately 294,000 contaminated field sites [46]. One frequent group of
contaminants worldwide is made up of the aromatic hydrocarbons benzene, tol-
uene, ethylbenzene and xylenes, collectively known as BTEX. BTEX compounds
are petroleum products that penetrate into the groundwater as a result of leaking
pipes and underground fuel tanks. Groundwater contamination by benzene is of
particular concern, since benzene is highly water soluble and has been determined
to be toxic and carcinogenic [2], thus affecting the quality of drinking water
resources and function of ecosystems.

Microbial degradation of BTEX compounds is an important process for natural
attenuation (NA) at field sites, leading to the removal of contaminants by min-
eralising them to carbon dioxide or methane. Thus, investigations of in situ bio-
degradation have become a highly relevant field of research within the field of
aquifer decontamination. Previous studies have shown that BTEX compounds are
amenable to microbial degradation under oxic [47] as well as under anoxic con-
ditions using nitrate, sulphate, iron or carbon dioxide as electron acceptors (for
review see [9, 43]). However, field studies revealed that anaerobic biodegradation
was occurring at some sites, but failed at others [25]. This could be due to the
geochemical heterogeneity of the contaminated sites, the associated varying
potential of the indigenous microorganisms to degrade contaminants under anoxic
conditions within a certain time frame, and the prevailing terminal electron
acceptor processes influencing the energy yield [53]. Stimulation of the indigenous
microbial communities is possible by addition of suitable electron acceptors and
constitutes a conceivable bioremediation strategy called enhanced natural atten-
uation (ENA). To investigate the influence of specific electron acceptors, labora-
tory microcosms and enrichment cultures have often been used [26, 44]. The
relevance of these studies for the actual in situ processes might be questioned as
such laboratory settings cannot mirror environmental variables and reproduce the
complexity of environmental habitats [28]. In situ microcosms, however, provide a
valuable tool to study stimulation of microbial communities directly in the field.
The microcosms [e.g., stainless steel cages filled with Bio-Sep� beads (BAC-
TRAP�)] can be a useful prerequisite for a successful assessment of bioremedi-
ation strategies. During the deployment of these microcosms in a groundwater
well, indigenous microorganisms colonise the Bio-Sep� beads, thus supporting
development of microbial communities. This type of in situ microcosm has been
used in several studies [37] to provide evidence for the in situ biodegradation of
BTEX compounds, mono-chlorobenzene and MTBE (for a review see [5]), as well
as to enrich a toluene-degrading microbial consortium for further cultivation
experiments [4].

In this study, a combined approach of community fingerprinting, flow cytom-
etry, and trend interpretation analysis was applied to follow and interprete
microbial groundwater community microcosm colonisation. Therefore, in situ
microcosms were amended with benzene and one of the electron acceptors nitrate,
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ferric iron or sulphate to mimic ENA treatment. The microcosms were exposed to
three monitoring wells of a BTEX-contaminated aquifer to allow colonisation of
the matrix by indigenous bacteria. The monitoring wells differed in their hydro-
geochemical conditions with regard to benzene concentrations and electron
acceptor availabilities. The colonised microbial communities were characterised
according to features we defined as composition and structure. Community com-
position comprises phylogenetic information obtained by T-RFLP profiles, and
community structure gives cytometric information on the single cells’ DNA
contents and light-scatter characteristics. Prominent sub-communities were sepa-
rated by cell sorting for detailed phylogenetic analysis. As an outcome huge data
sets were obtained, which could not be evaluated and compared by simple
statistical approaches. Therefore, cytometric and phylogentic data were inspected
in a combined approach by using the Dalmatian plot tool, which was newly
developed for this study on the basis of non-metric multidimensional scaling
(n-MDS) for trend interpretation of changes in the complex community data sets.

3 Experimental Procedures

3.1 Field Site

The BTEX-contaminated aquifer is located in the area of a former coal hydro-
genation and benzene production plant close to Zeitz (Saxony-Anhalt, Germany).
The main contaminant of the aquifer is benzene, with total concentrations of up to
1,000 mg l-1. A detailed description of the history and hydro-geochemical con-
ditions of the field site was given in previous articles [41, 49]. To assess the
geology and contaminant distribution at the field site, a very dense monitoring
network has been installed with over 90 monitoring wells. The microcosm
experiments were performed in the wells 18/00, 7/99, and 52/03, located in the
upper aquifer along a transect with decreasing contaminant concentration.
Groundwater samples for hydro-geochemical analysis were taken 2 days before
microcosm deployment. An overview on the hydro-geochemical parameters is
given in Table 1.

3.2 Exposure of In Situ Microcosms

The field experiment was performed using BACTRAP�s, a microcosm system
consisting of perforated stainless steel cages of 10 cm 9 5 cm 9 0.5 cm filled
with 1 g Bio-Sep� beads (kindly provided by Kerry Sublette, University of Tulsa,
OK). The spherical beads with a diameter of 2–3 mm were generated from a
composite of 75% powdered activated carbon and 25% aramid polymer (Nomex)
[37]. The beads have a porosity of 75%, an internal surface area of [600 m2 g-1
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and surface pore sizes of 1–10 lm, thus enabling microorganisms to penetrate.
A detailed description of the BACTRAP system is given elsewhere [10, 18, 37].

In this study, five different types of BACTRAP� microcosms were prepared for
each monitoring well: microcosms amended with benzene, benzene and nitrate,
benzene and sulphate, benzene and ferric iron (in the following this is referred to
iron for simplification), respectively, and microcosms without substrate and
electron acceptor as controls. For preparation of microcosms, Bio-Sep� beads
were heated to 300�C for 4 h to remove organic residues and were filled in per-
forated stainless steel cages. After sterilisation and hydration, the microcosms
were each loaded with 133 ll benzene via the gas phase under reduced pressure as
described previously [10]. The amendment with the electron acceptors was per-
formed with NaNO3, Na2SO4, and FeCl3 to a concentration of 412 ± 8 mg g-1,
472 ± 24 mg g-1, and 490 ± 2 mg g-1, respectively, during the manufacturing
of the beads. All microcosms were stored in anoxic sterile water during their
transport to the field site. The five different types of microcosms were fixed to a
stainless packer system with 5 cm distance to each other and deployed 5 m below
the groundwater table in the wells 18/00, 7/99, and 52/03.

3.3 Cell Preparation and DNA Staining

After 42 days of exposure, all microcosms were recovered, and the beads of each
microcosm were transferred to a glass tube. The beads were immediately crushed
mechanically and treated with 5 ml fixation buffer (0.5 mM sodium chloride,
15 mM sodium molybdate). Hydrogen peroxide (125 mM final concentration) and
sodium azide (15 mM final concentration) were added immediately, and the
samples were stored at 4�C. This procedure was found to preserve the cells at least
for 5 days (data not shown). Preservation of the solution by using bismuth nitrate
oxide dissolved in PBS as described below for Azoarcus sp. DSM 9506 was also
tested, but caused cell aggregation. Cells were detached from the beads using
10 mM tetrasodium pyrophosphate dissolved in the fixation buffer as described for

Table 1 Concentrations of benzene, nitrate (NO3
-), sulphate (SO4

2-), manganese (Mn), iron
(Fe), nitrite (NO2

-), ammonium (NH4
+) and sulphide (S2-) in the groundwater wells Zz 7/99, Zz

18/00 and Zz 52/03

Well Benzene
(mg l-1)

Redox
potential
(mV)

NO3
-

(mg l-1)
SO4

2-

(mg l-1)
Mn
(mg l-1)

Fe
(mg l-1)

NO2-

(mg l-1)
NH4

+

(mg l-1)
S2-

(mg l-1)

Zz 7/99 179 -203 n.d. 2.40 0.57 2.72 0.02 2.29 0.89
Zz 18/00 241 -267 n.d. 9.10 3.26 42.40 0.05 5.43 5.23
Zz 52/03 3.72 +62 41.20 462 2.18 0.23 0.06 17.74 0.04

n.d. Nitrate concentration under the detection limit of 0.22 mg l21
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Azoarcus sp. DSM 9506. After pelleting crushed bead fragments, 2 ml of the
aqueous phase was transferred to a glass tube, and the cells were washed and stained
for DNA determination as described previously [50]. DNA labelling was optimised
for the field samples with regard to DAPI concentration and staining time. The
procedure was found to label all cells when using a DAPI concentration of 0.68 lM
and a staining time of at least 10 min. This was confirmed microscopically.

3.4 Azoarcus sp. DSM 9506 as a Test Organism

Azoarcus sp. strain DSM 9506 was used as a reference strain to establish and
verify if flow cytometry can be successfully applied in combination with the in situ
microcosm approach. The strain was obtained from the DSMZ (German Collec-
tion of Microorganisms and Cell Cultures, Braunschweig, Germany). The strain
was anaerobically grown in batch cultures with toluene as the sole source of
carbon and energy using the mineral salt medium 586 of DSMZ. Tracer solution
SL-10 (DSMZ medium 320) and vitamin solution (DSMZ medium 461) were
added to the medium. The medium was completed by adding 18.7 ml of 1 M
NaHCO3 and 18.7 ml of 1 M KNO3 l-1. All solutions were sterilised by filtration
or autoclaving and flushed with nitrogen before use. The medium was subse-
quently prepared in an anoxic glove box (gas atmosphere 95% nitrogen, 5%
hydrogen; Coy Laboratory Products Inc., Grass Lake, MI) to ensure anoxic con-
ditions. For cultivation, 118 ml serum bottles were each filled with 50 ml of
medium and 55 Bio-Sep� beads, which were used as microcosm material. Before
use, the beads were heated to 300�C for 4 h. The activated carbon matrix of the
beads provides a surface that microorganisms can colonise and that serves as an
adsorbent for toluene to prevent toxic effects. Serum bottles were amended each
with 26 ll toluene and immediately closed with Teflon-coated butyl rubber
stoppers (ESWE Analysentechnik Gera GmbH, Germany). The serum bottles were
incubated at 30�C for 24 h before inoculation in order to allow uniform adsorption
of the toluene to the bead material. Subsequently, the microcosms were inoculated
with 5% of a pre-culture of Azoarcus sp. DSM 9506 grown to the late exponential
phase and incubated statically at 30�C in the dark.

For single cell analytics, ten beads of each serum bottle (in triplicate) were
taken under anoxic conditions after 25, 49, 72, 95, 167 and 213 h of incubation and
crushed mechanically with a sterile glass bar. Samples were fixed immediately
with 5 ml fixation buffer consisting of 5 mM phosphate buffered saline (PBS),
5 mM bismuth nitrate oxide and 10% sodium azide [11]. For detaching the cells
from the matrix, different concentrations of tetrasodium pyrophosphate, Brij 35,
Tween 20, sodium ethylene-diamine-tetra-acetate (EDTA), and sodium chloride
were tested. The addition of tetrasodium pyrophosphate to the fixation buffer at a
final concentration of 10 mM followed by gentle shaking of samples for 45 min
was found to result in the highest efficiency of cell detachment with an efficiency
of 61%. The sample was centrifuged for 3 min at 2469g to pellet the bead
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material. The detached cells were stored in glass vials at 4�C until performing the
DNA staining procedure (see below). The fixation procedure was proven to pre-
serve the cells in a stable state for 3 days (data not shown).

3.5 Cell Enumeration and Analysis of Multiplication
of Bio-Sep� Bead-Grown Bacteria

The laboratory studies with Azoarcus sp. DSM 9506 were used to specifically
establish (1) if it was possible to detach structurally intact cells from the porous
Bio-Sep� beads, (2) to determine the sensitivity of the method to detect changes
in cell numbers during anaerobic growth, and (3) the resolution of the method by
analysing proliferation activity of Azoarcus sp., i.e., varying chromosome con-
tents. The microcosms were amended with toluene as carbon and energy source
and nitrate as an electron acceptor. Every few days (see above for Azoarcus sp.
cultivation), ten beads were harvested from the laboratory microcosms and cell
numbers, scatter signals, and DNA patterns were analysed (Fig. 1). The intact cell
structure was confirmed by strictly clustered cell distributions in a histogram

Fig. 1 Growth of Azoarcus sp. strain DSM 9506 on toluene as carbon and energy source and
nitrate as an electron acceptor. Cultivation was performed using Bio-Sep� beads cultivated in
static batches at 30�C. The control was obtained from sterile beads. The beads were crushed and
handled as described in Experimental Procedures for flow cytometric investigation. The cells
were harvested and labelled with DAPI for DNA quantification and the sub-populations fractions
estimated for changing proliferation activity a. The bacteria were also analysed together with
alignment microspheres (1.0 lm) for cell number determination both in the cultivation broth and
within the crashed Bio-Sep� beads b. Clearly, increases in cell numbers (closed symbols = cells
in solution, open symbols = cells in Bio-Sep beads) and sub-population shifts are in agreement,
providing evidence for reliable quantification and activity determination of bacteria grown on
surfaces and within pores of Bio-Sep� beads
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displaying forward scatter (FSC) and side scatter (SSC, data not shown) features
of the cells. Communities dominated by cells with disturbed cell walls and
membranes would not show such a discontinuous scatter behaviour. Growth was
confirmed by increases in cell numbers up to around 80 h, representing about
three duplications. The DNA pattern confirmed this activity. Azoarcus sp. DSM
9506 represented two sub-populations with different chromosome contents during
anaerobic growth on toluene. The C2n sub-population with the higher DNA
content is a marker for growth since the percentage of C2n cells increased in
parallel to increases in cell numbers. During the stationary growth phase cells
with the single DNA content (C1n) were dominant. All data were obtained by
analysing at least three biological replicates. The flow cytometry approach
developed and tested here displayed high sensitivity and resolution and was
therefore considered to be a suitable protocol to analyse microbial communities
colonising in situ microcosms.

3.6 Microscopy

DNA-DAPI-stained cells were subjected to epifluorescence and phase contrast
microscopy (Axioskop, Zeiss; camera: DXC-9100P). The Zeiss filter set 02
(excitation G 365, BS 395, emission LP 420) was used for examining blue fluo-
rescence of DAPI. Visualisation of merged phase contrast and fluorescence images
was performed using the Openlab 3.1.4 software (Improvision, USA).

3.7 Multiparametric Flow Cytometry

Flow cytometric measurements were carried out using a MoFlo cell sorter
(DakoCytomation, Fort Collins, CO) equipped with two water-cooled argon-ion
lasers (Innova 90C and Innova 70C from Coherent, Santa Clara, CA). Excitation
at 488 nm (with 400 mW) was used to analyse the forward scatter (FSC) and side
scatter (SSC) as trigger signal at the first observation point, using a neutral density
filter with an optical density of 2.3. DAPI was excited ML-UV (333–365 nm,
100 mW) at the second observation point. The orthogonal scatter signal was
recorded after reflection by a 555 nm long-pass dichroic mirror, passage by a 505
nm short-pass dichroic mirror and a BP 488/10. The orthogonal DAPI signal was
passed through a 450/65 band pass filter. Photomultiplier tubes were obtained
from Hamamatsu Photonics (models R 928 and R 3896; Hamamatsu City).
Amplification was carried out at linear or logarithmic scales, depending on the
application. Fluorescent beads (Polybead Microspheres: diameter, 0.483 lm; flow
check BB/Green compensation Kit, Blue Alignment Grade, ref. 23520,
Polyscience, USA) were used to align the MoFlo (coefficient of variation, CV
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value about 2%). Also, an internal DAPI-stained bacterial cell standard was
introduced for tuning the device up to a CV value not higher than 6%.

Cell numbers were counted accurately (and with negligible deviation) in the cell
suspensions using flow cytometry. Fluorescent beads (from a 5 ll stock solution of
Fluosheres polystyrene microsperes 1.0 lm (505/515), Molecular Probes; as
above) were mixed with the DAPI-stained cells. The dot plots were gated with
regard to the sub-communities and the beads, and cell counts were calculated.
Cell aggregation was not observed; thus, clearly separated sub-populations were
found.

Proliferation activity was determined by evaluating the flow cytometric histo-
grams obtained using both FlowJo (Tristar, Switzerland) and WinList 2.01 (Verity
Software House, Maine, USA) software. The dot plots were gated in a way that
visibly distinct sub-communities were included in the gates and cell counts therein
were calculated. The percentage of cells of any sub-community with a distinct
DNA content was counted. Forward scatter (FSC) signals gave additional
information.

Cell sorting was performed using the four-way sort option at high speed
(12 m s-1). The most accurate sort mode (single and one drop mode: highest purity
99%) was chosen for separating 5,000 cells per second. The cells were sorted into
nucleic acid free glass flasks. Cells were separated from the whole community
using DNA-DAPI fluorescence intensity and forward scatter signals in several
independent experiments using different gate settings. Dominant and apparently
growing sub-communities were separated in order to facilitate their molecular
identification. Up to four sub-communities per sample could be separated simul-
taneously. Between 104 and 105 cells per sub-community, depending on the
abundance of cells within the sub-community, were sorted for further phylogenetic
analysis.

3.8 DNA Preparation, Cloning and Sequencing
of Bacterial 16S rRNA Genes

DNA for whole community analysis was extracted directly from the beads
according to Maher et al. [27]. DNA from sorted sub-communities was prepared as
described by Günther et al. [12]. For generating 16S rRNA gene clone libraries,
bacterial 16S rRNA gene fragments were PCR-amplified using the bacteria-
specific primers 27F and 1492R [20] and cloned as described elsewhere [19]. From
each of the microcosm variants, 96 clones were collected and screened by
restriction fragment polymorphism analysis. Based on the restriction patterns,
representative clones were partially sequenced using the sequencing primers 27F
and 519R [20]. A total of 130 clones representing 22 operational taxonomic units
(OTUs) were selected for partial sequencing. Sequence analysis was done as
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described previously [31]. The determined partial 16S rRNA gene sequences were
deposited in the GenBank database under accession numbers HM217219-217348.

3.9 T-RFLP Profiling of Bacterial 16S rRNA Genes

T-RFLP analysis of 16S rRNA amplicons was performed according to Günther
et al. [12] with the restriction endonucleases AluI or BstUI. Relative peak areas
were determined by dividing the individual T-RF area by the total area of peaks
within the range of 50 to 500 bp. Theoretical T-RF values of the representative
phylotypes represented in the clone library were calculated using the NEB cutter
(http://tools.neb.com/NEBcutter2) and confirmed experimentally by T-RFLP
analysis using the corresponding clones as templates (Table 2). Relative T-RF
abundances of representative phylotypes were determined based on the relative
peak areas of the corresponding T-RF.

Table 2 Sequencing results of representative 16S rRNA gene clones and experimentally
determined terminal restriction fragments (T-RF) of the respective operational taxonomic units
(OTU)

OTU Acc. no. Taxonomic affiliation
according to RDP 10

T-RF
AluI (bp)

T-RF
BstUI (bp)

1 HM217219-217269 Achromobacter sp. 149 141
2 HM217270-217279 Ralstonia sp. 69 390
3 HM217280 Burkholderia sp. 228 381
4 HM217281-217284 Ochrobactrum sp. 202 88
5 HM217285 Acidovorax sp. 145 201
6 HM217286 Comamonadaceae 247 173
7 HM217287 Magnetospirillum sp. 205 195
8 HM217288 Azoarcus sp. 147 139
9 HM217289 Rhodocyclaceae 232 115
10 HM217290-217299 Geobacter sp. 67 105
11 HM217300-217306 Geobacter sp. 249 105
12 HM217307 Geobacter sp. 149 141
13 HM217308 Peptococcaceae 1 71 234
14 HM217309 Peptococcaceae 1 312 174
15 HM217310-217223 Peptococcaceae 1 222 110
16 HM217224-217331 Peptococcaceae 1 271 161
17 HM217332-217337 Peptococcaceae 1 85 124
18 HM217338-217343 Acetivibrio sp. 232 32
19 HM217344-217345 Acidaminobacter sp. 236 123
20 HM217346 Prolixibacter sp. 184 99
21 HM217347 TM7 phylum 435 58
22 HM217348 Unclassified Bacteria 226 393
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3.10 Statistical Analyses

3.10.1 Analysis of T-RFLP Profiles

For estimating differences in whole community composition, T-RFLP data were
analysed by non-metric multidimensional scaling (n-MDS) based on Bray-Curtis
similarity and minimum of 40 repetitions. Prior to the statistical analysis, T-RFLP
signals were separated from noise following the statistical approach provided by
Abdo et al. [1] using a standard deviation of 3 as cutoff level. The resulting nor-
malised data were used as the basis for the following n-MDS analysis. All analyses
were carried out with the statistical computational environment R Version 2.10.1
(R Development Core Team 2009) and the R package ‘vegan’ Version 1.17-1 [36].

3.10.2 Analysis of Flow Cytometry Data

To identify variations in cluster distributions in flow cytometry bivariate plots, a
newly developed combination of image analyses with a multivariate approach was
used. This approach was called the Dalmatian plot tool. Similarities of the single
plots were estimated by direct comparison of the various plots to each other and
the subsequent estimation of the rate of overlap between the occurring clusters
indicated by sort gates (Fig. 2). Two different approaches were tested. For both
approaches the gates were extracted from the flow-cytometric bivariate plots using
FlowJo (Tristar, Switzerland) and transferred into bitmap pictures of 390 9 390
pixels in size. In the first approach, only presence-absence of clusters was regar-
ded, enabling equal priority of all emerging clusters independently of the abun-
dance of cells within. For the analysis, binary pictures were produced with gates
filled with black color and a white background (Fig. 2). By simple image calcu-
lation, overlays of all picture combinations were produced. For estimating overlap
rates, the area sums from all gates of the original binary pictures were calculated as
well as for the overlaps. Similarities were then estimated using a modified Jaccard
Index S given by:

SA1A2 ¼
P
ðA1 þ A2Þ � 2�

P
AtotalP

ðA1 þ A2Þ

with A1 and A2 as the sum of all gate areas in pixels in each of the two pictures, and
Atotal the sum of gate areas of the overlap of two pictures. Overlay creation and
gate area calculation were automatically done with ImageJ Version 1.43
(http://rsb.info.nih.gov/ij). The similarity results of all possible combinations were
then transferred into a triangular similarity matrix. The final n-MDS analysis based
on the similarity matrix was accomplished under R as described above.

For the second and slightly different approach, cell abundances of the gates
were included for calculating similarities. Gated clusters were again extracted and
transformed into 8-bit pictures providing 256 (= 28) grey color steps, and relative
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cell numbers of gates were then translated into grey values (Fig. 2b). To set the
correct grey value numbers, all gate cell numbers were calculated as relative to the
occurrence of the maximum cell number found in one gate of all pictures. Cell
numbers were then set to relative grey value of 255 (= black) for maximum
occurrence and 0 (= white) for areas where no cells (= outside of gates) were
present. Finally, all calculated grey values were divided by 2. The latter step was
necessary to prevent occasions in which two overlapping areas may together result
in grey values[255. Instead of estimating gate areas, we now calculated the mean
grey value (mean GV) for each picture and their resulting overlaps as proxy for
calculating similarities. Mean GV is estimated as the sum of all grey values
occurring in a picture divided by its pixel number (which was a constant of
390 9 390 = 152,100 pixels in our case). Mean GVs from each picture and all
overlay combinations were then used as a basis for calculating similarities and
subsequent n-MDS analysis as described above.

4 Variations in Composition and Structure
of Natural Microbial Communities

The goal of our study was to evaluate a combined approach of community
fingerprinting, flow cytometry, and trend interpretation analysis to study the effect

Presence-absenceA

Σ A1 = 29,333 pixel Σ A2 = 16,249 pixel

+

Σ (A1 A2) = 35,674 pixel

Cell abundances includedB

Mean GV = 29.1Mean GV = 5.2Mean GV = 25.2

+

Fig. 2 Illustration of methodology used for estimating community similarities of cytometric
flow plots using a Dalmatian plot. Areas of gates were estimated as a sum of pixels for presence–
absence and b grey values when cell abundances were taken into account. Sums were calculated
from plots of each of the samples separately and for the overlap of two samples, respectively. For
similarity estimation a modified Jaccard index was used (for more details see the Experimental
Procedures section)
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of various electron acceptor conditions on potentially active members of the
indigenous microbial community in a BTEX contaminated aquifer. Five micro-
cosm variants (see Exposure of in Situ Microcosms) were each exposed in three
monitoring wells differing in their hydro-geochemical characteristics. Alterations
in community structure and composition influenced by hydro-geochemical char-
acteristics (present in the different wells) and micro-environmental conditions
(kind of electron acceptor added) were studied using both molecular tools and
single cell analytics. For the latter, cells were quantitatively associated to clearly
defined clusters of sub-communities that alter in dependence on well conditions
and supplied electron acceptors. Whereas flow cytometry was used and defined to
follow alterations in community structure, the phylogenetic affiliation of abundant
community members was performed to obtain insights into variations in com-
munity composition.

4.1 Similarity of Community Composition According
to T-RFLP Patterns

Total DNA extracted directly from each microcosm was subjected to T-RFLP
analysis of amplified bacterial 16S rRNA genes to assess shifts in the whole
microbial community composition. Whether the hydro-geochemical conditions or
the supplied electron acceptors influenced the community composition was esti-
mated by n-MDS analysis (Fig. 3). Symbols in the plot located closer together
indicate more similar community composition, while those placed more distantly
are more dissimilar.

The n-MDS plot of T-RFLP data clearly highlighted the major influence of the
hydro-geochemical conditions on community composition (Fig. 3). Significant
differences in community composition with regard to phylogenetic identity and
relative abundances of the respective abundant phylotypes can be stated (Fig. 4).
The respective T-RFLP patterns of the microbial communities retrieved from each
of the three wells were grouped closely. This held particularly true for well 7/99.

In addition to the influence of hydro-geochemical parameters in different wells,
the microcosm treatments also had an influence on community composition.
Especially the microcosms loaded with nitrate were separated from all other
treatments, indicating distinct community compositions due to the supplied nitrate.
Sulphate-amended microcosm communities from the different wells were
also clearly distinct. The T-RFLP profiles of all untreated microcosms (blanks)
showed smaller differences to each other, indicating the influence of the hydro-
geochemical conditions to be potentiated by the electron acceptor and benzene
amendment.

The distances shown in the n-MDS plot (Fig. 3) are based on the phylogenetic
composition of every microcosm community (Fig. 4). In highly benzene-
contaminated wells (7/99, 18/00), the dominant phylotype grown in all
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microcosms but the nitrate-amended ones was affiliated with Achromobacter spp.
(relative T-RF abundances of 56–92%; Fig. 4a, b). Other phylotypes found in most
of the microcosms belonged to Ralstonia sp. (3–10%) and Burkholderia sp.
(2–3%). Pronounced shifts between the two groundwater wells were observed in
the remaining T-RF. Phylotypes affiliated to Acidovorax sp. were found in all
benzene-amended microcosms within well 18/00, with relative T-RF abundances
of 5–16%. Phylotypes affiliated to Geobacter sp. were found in most of the
benzene-amended microcosms within both wells; however, the relative abundance
of this T-RF increased dramatically in the nitrate-amended microcosm within well
18/00, indicating a stimulation of Geobacter sp. by nitrate supply in well 18/00,
but not in 7/99.

The T-RFLP profiles generated from well 52/03 revealed a different community
development compared to the other two wells (Fig. 3, 4). This can be attributed to
the fact that the well is located at the fringe of the contamination plume and
therefore has distinct hydro-geochemical conditions. The n-MDS plot (Fig. 3)
strengthens these findings for this community. Generally, a higher diversity of the
microbial community was observed (Fig. 4c). Additionally to Achromobacter sp.
(in this well abundant with 22–85%), another abundant phylotype belonging to the
Peptococcaceae group 1 (with three OTUs according to the RDP taxonomy,
12–35% in total, not in the blank microcosm) was detected. Further phylotypes
that were detected only in well 52/03 belonged to the Rhodocyclaceae (3–4% in all
treatments except for blank and nitrate-amended microcosms), to the genus

Treatment

Benzene

Blank

18/00
52/03

7/99
7/99

7/99
7/99 7/99

Benzene +
Sulphate

Benzene +
Iron

18/00

18/00

18/00

52/03

52/03

52/03

Benzene +
Nitrate

18/00
52/03

52/03

Stress = 2.2 

Fig. 3 N-MDS analysis plot of T-RFLP patterns of wells 7/99, 18/00 and 52/03 from
microcosms amended with benzene, benzene ? sulphate, benzene ? iron and benzene ? nitrate,
respectively. Blank (unamended) microcosms served as references. N-MDS analysis is based on
the Bray-Curtis index
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Azoarcus (9%, only in the nitrate-amended microcosm) or Acetivibrio sp.
(only with nitrate or sulphate amendment, compare also clone library, Table 2).
Similar to the other two wells, phylotypes belonging to Burkholderia sp. (3–4% in
all treatments) and Ralstonia sp. (4–9% in all treatments except for nitrate and
sulphate) were detected, but obviously played a minor role. To summarise the data
from well 52/03, microcosms loaded with benzene alone and with benzene and
iron showed similar community compositions. Microcosms amended with nitrate
and sulphate varied in terms of different relative abundances of all phylotypes
detected in the respective well and by the presence of treatment-specific phylo-
types, such as Azoarcus sp. or Acetivibrio sp.

Recapitulating, the T-RFLP profiles showed that the hydro-geochemical con-
ditions shaped the microbial community composition, which was, however, also
influenced by the specific microcosm treatments. The community compositions in
blank microcosms were all found to be similar due to the hydro-geochemical
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environment. Apart from the grouping of the data according to the respective well,
nitrate-amended microcosm communities were the most distinct, followed by
communities in sulphate- and benzene-amended microcosms.

4.2 Similarity of Community Structure as Inferred
from DNA Patterns

Apart from comparing community compositions based on T-RFLP data, it is also
possible to compare community structures based on DNA versus scatter patterns.
This approach relies on single cell analytics and the use of the fluorescent dye
DAPI, which specifically binds to AT-rich regions of the DNA. Bacteria contain
single chromosomes or several copies depending on the growth state. The light
that is refracted by the cells gives additional typical cell-based information. Both
parameters lead to fingerprint-like cytometric patterns of subsets of cells if the
bacteria are analysed one by one with regard to DNA contents and light scatter
characteristics using a flow cytometer. If several species are present, cells will
gather in numerous clusters with changing cell abundances therein. The position of
such clusters and the respective cell abundances give further information on
community stability over a time range. Community structure may change
according to micro-environmental conditions as was investigated here.

Flow-cytometric community pattern analysis was compared to T-RFLP com-
munity data. Typical pattern distributions are shown in Fig. 5 for the microcosms
of well 52/03. The upper three histograms show very similar distributions.
Although the benzene concentration is low in well 52/03, the basic community
pattern of the blank sample resembles that of the benzene-amended microcosm of
well 52/03. For comparison, the histogram of the benzene-treated microcosm of
the highly benzene-contaminated well 18/00 is also shown, and even here a similar
pattern is visible. The DNA patterns obtained from communities isolated from
iron- and sulphate-amended microcosms were similar to each other, whereas the
nitrate-amended community displayed a DNA pattern that was dissimilar to those
of all other microcosm variants.

As before, n-MDS plots were used to interpret the complex data. Subsets of
cells were virtually gated, and the number of cells inside the gates was determined
using the program FlowJo. The position of the gates in a histogram created the
basis of the Dalmatian-like pattern, named after the shape and colour of the gates
also invented in the n-MDS plot analysis. Data from all microcosms were analysed
in the same way and the complete number of events set to 100% with the exception
of the noise cluster within the lower left corner of the histograms. The positions of
the gates were rated via n-MDS analysis (Fig. 6). Additionally, cell numbers per
gate were used to obtain a higher sensitivity of the similarity analysis (Fig. 7). It
was surprising to see that either-or decisions like using only the gates’ positions as
was done with the Dalmatian plots clearly resulted in a contrasting predication
compared to the T-RFLP community data sets (Fig. 3). According to DNA pattern
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Fig. 5 DNA/FSC pattern distributions of cells harvested from the microcosms exposed in well
52/03. For comparison, the distribution of the benzene-treated microcosm harvested from well
18/00 is also shown. Up to 250,000 cells were analysed and the dominant sub-populations were
gated. The peak in the lower left corner of the histograms represents the noise of the cytometer as
well as unstained cell debris and was therefore not gated. All other upcoming sub-communities
are indicated by gates
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distributions, the treatment of the microcosms and not the hydro-geochemical
conditions determined the similarities of the developing communities. Three dis-
tinct clusters were grouped, one comprising all nitrate-amended microcosms, the
second one comprising sulphate- and iron-amended microcosms, and a third one in
which the highly similar communities from microcosms with only benzene
amendment and from those without any treatment were grouped. This scenario
suggests a strong dependence of the community structure on the microcosm
treatment. It also shows that the application of benzene to a microcosm in the
fringe well (52/03) shifted the community structure so that it became similar to
that of the highly contaminated wells.

Using only the position of gates for an n-MDS analysis is a strict approach
(Experimental Procedures, Fig. 2), but allows all gates to be judged independently
of the abundance of the bacteria therein. This might be of advantage given that
often highly abundant bacteria in a distinct cluster are not necessarily those most
relevant for the studied biogeochemical process, but represent functional gener-
alists. Such generalists might tolerate a wide range of environmental conditions
and be prominent in the majority of samples. The perceived importance of such
widespread bacteria can be down-weighted, while less abundant but potentially
important bacteria can be amplified by levelling species abundance to presence–
absence decisions.

However, it may as well be that high cell numbers reflect high bacterial activity.
In an alternative data treatment, cell numbers in gates were therefore included in
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Fig. 7 Dalmatian-n-MDS analyses with overlaid flow plot results derived from microbial
microcosm communities including cell abundances within gates. Cell abundances are given as
relative grey value within gates. Sample treatments are indexed in the square given in the upper
left corner of each flow plot picture
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the comparison (Fig. 7). It seems indeed reasonable to include cell numbers into
the n-MDS approach since they varied largely. In the best case, cell numbers may
correlate with BTEX degradation capacities or other important microbial activities
related to the microcosm amendment. As before, where cell abundances were
disregarded (Fig. 6), the resulting n-MDS plot (Fig. 7) indicated a stronger
influence of the microcosm treatment relative to the hydro-geochemical condi-
tions. However, when cell numbers were included, the trends were less pro-
nounced. Principally, when including cell numbers in the n-MDS analysis, a
gradient of changing species dominance resulted. Microcosm communities with
one dominant microbial group were positioned in the lower left part of the plot,
while those with levelled species dominance were located in the upper right
corner. Again, nitrate-amended communities stood out on the left side of the plot.
The blank and benzene-only-amended microcosm communities grouped together,
this time in the middle of the plot. Only the sulphate- and iron-amended micro-
cosm-derived data were more widely distributed than in Fig. 6. Again, there was
no obvious correlation with the hydro-geochemical conditions. Samples 52/03
nitrate and 7/99 iron, however, were distinct because these samples contained, due
to limited cell detachment from the bead material, only extremely few cells.

4.3 Identification of Key Players in Sorted Sub-Communities

Statistical analysis of T-RFLP profiles and cytometric DNA pattern analysis can
provide information on changes and trends in microbial community structure
resulting from varying micro-environmental conditions. The limitations of each
single approach, namely the limited sensitivity and quantitative resolution of the
whole community by T-RFLP profiles and the lack of phylogenetic information in
pure flow cytometric analyses, can be overcome by combining both approaches
and by including cell sorting.

To demonstrate the benefit of this combined approach, microcosms exposed in
well 52/03 were selected for detailed analysis of selected sub-communities using
flow cytometry, cell sorting, and T-RFLP analysis. As shown in Fig. 5, specific
sub-communities emerged in the DNA versus FSC scatter plots depending on the
treatment of a chosen microcosm. As an example, one specific sub-community that
was visible in all but the blank and the nitrate-amended microcosms was selected
for cell sorting. Sort gates were placed around the sub-communities as indicated in
Fig. 8 (gate 2), and cells within the gates were physically separated by cell sorting
for DNA extraction and T-RFLP profiling of bacterial 16S rRNA genes. The
phylogenetic composition of the two selected sub-communities in comparison to
the whole community composition is shown in Fig. 8. In both treatments, gate 2
comprised mainly the Peptococcaceae phylotype that was also present in both
whole communities, but in significantly lower proportions. By contrast, the other
phylotypes dominating the whole communities, most notably Achromobacter sp.,
were not detected in the sorted sub-communities.
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5 Significance of the Combined Approach for Ecological
Interpretation and Implications for Biostimulation

The combined use of T-RFLP profiling, cytometric DNA community pattern
analysis, and n-MDS similarity analyses provided insights into variations in
microbial community compositions and structures within in situ microcosms. The
newly developed Dalmatian plot evaluation of the cytometric data made an
important contribution for understanding changes in the community dynamics of
the microcosms. Our results indicate that T-RFLP profiling and the Dalamtian plot
evaluation of the cytometric data contributed to the same extent to the interpre-
tation of the microcosm community developments. As an outcome of the com-
bined approach, we found that hydro-geochemical conditions as well as
microcosm treatments with various electron acceptors affected the community
composition and structure. Such information increases the understanding of the
contaminated ecosystems and might contribute to the development and control of
future remediation strategies.

In this study the cytometric pattern analysis indicated greater effects by electron
acceptor amendments in all three wells than similar analyses of T-RFLP profiles.
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The same treatments performed in the different wells resulted in similar com-
munity structures. These peculiar findings were substantiated when cell numbers
were also accounted for cytometric n-MDS analysis (Fig. 7). At first glance the
results obtained by T-RFLP and cytometric pattern analyses seem to be contra-
dictory. However, this can be explained by the different targets of both approa-
ches: T-RFLP analysis targeted whole communities on the basis of the nucleic acid
sequence and reflects only those members that are present to a certain levelled
amount and whose sequence can be assorted using specific restriction endonu-
cleases. Cytometric pattern analysis targeted whole communities on the level of
the single cell. These cells cluster into subsets where cells contain stained chro-
mosomes of similar size and number and have similar light scatter refraction
features. As a result, specific sub-communities emerge from the background of the
overall community. Thus, both approaches complement each other and thus pro-
vide a comprehensive insight into indigenous community composition and struc-
ture development.

To summarise, most of the phylotypes found are likely to degrade benzene
under microoxic conditions, indicating that a specific benzene-degrading com-
munity colonised the microcosms. The co-occurrence of aerobic, nitrate-reducing,
iron-reducing and possibly fermentative bacteria indicates the development of
ecological micro-niches in the in situ microcosms. Here, the hydro-geochemical
parameters set the master conditions under which biostimulation affected com-
munity composition to a lower and community structure to a higher degree.

5.1 Benefit of the Phylogenetic Data Sets

The more specific outcomes are discussed in the following. In wells 7/99 and
18/00, the hydro-geochemical conditions were characterised by high benzene
concentrations and low dissolved oxygen concentrations (below 0.09 mg l-1) in
addition to low redox potentials, indicating the dominance of anaerobic metabo-
lisms in this part of the plume. Sulphate and nitrate with concentrations lower than
10 mg l-1 were strongly depleted compared to the pristine aquifer (around
1,000 mg l-1 for sulphate and 275 mg l-1 for nitrate), suggesting sulphate
reduction and nitrate reduction as dominant terminal electron acceptor processes.
The main difference between these two wells was the higher iron concentration in
well 18/00. As dissolved iron concentrations arise mainly from ferrous iron, iron
reduction seems to be an important process in well 18/00. However, aerobic and
facultative anaerobic nitrate-reducing bacteria were the dominant species involved
in the colonisation of the microcosms. The microbial communities were dominated
by a phylotype affiliated to the genus Achromobacter, a genus that is known to
comprise aerobic BTEX degraders [35]. The dominance of this genus indicated
that oxygen may play an essential role for biodegradation of benzene in those
wells. The other two phylotypes found in the most of the microcosms were
affiliated to the genera Burkholderia and Ralstonia. These organisms are known
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for their metabolic versatility, and several species degrade aromatic compounds
under both oxic and micro-oxic conditions [16]. The enrichment of these bacteria
in the benzene-amended microcosms points additionally at benzene degradation
with oxygen as electron acceptor. This dominance of the aerobic and nitrate-
reducing bacteria might be explained by a rapid consumption of the incoming
oxygen and nitrate, enabling the occurrence of BTEX degradation by both aerobic
as well as nitrate-reducing processes.

Well 52/03, located at the fringe of the contamination plume, was characterised
by low benzene concentrations and relatively high nitrate and sulphate concen-
trations compared to the other wells. Although oxygen concentrations were below
0.06 mg l-1, oxygen seemed also to play an important role in biodegradation
processes in this well as indicated by the dominance of the already-mentioned
phylotypes of Achromobacter, Burkholderia and Ralstonia. However, the different
hydro-geochemical conditions of this well compared to the others effected an
altered composition and increased phylogenetic diversity of its community when
benzene and the various electron acceptors were supplied (Figs. 3, 6, 7). Dis-
similar from the highly contaminated wells, phylotypes of Azoarcus and Rhodo-
cyclaceae also appeared. The Rhodocyclaceae comprise genera such as Azoarcus
and Thauera, which harbour several species known for BTEX degradation under
nitrate-reducing conditions (for a review see [43]). Members of the Peptococca-
ceae were also detected in well 52/03. This family, belonging to the Clostridia,
comprises gram-positive, strictly anaerobic, spore-forming bacteria, which are
known for a variety of biochemical activities, e.g., fermentation as well as sul-
phate, iron and nitrate reduction. Therefore, it is difficult to judge the specific role
of these organisms here. It is possible that they grow within anaerobic micro-
niches generated by oxygen consumption of fast-growing benzene degraders and
use metabolites or dead biomass accumulating within the colonised microcosms
after the added benzene has been consumed. Interestingly, they were absent in the
blank microcosm.

When evaluating the changes caused by the diverse electron acceptor treat-
ments, it was found that nitrate amendment had a strong influence on the com-
munity compositions in wells 18/00 and 52/03 according to the T-RFLP profiles.
Because well 18/00 is located in the highly contaminated zone where no nitrate
was detectable, the supply of nitrate obviously has stimulated nitrate-reducing
BTEX degraders here. In addition to the already above-described aerobic genera
Achromobacter, Ralstonia and Burkholderia, which belong to the Burkholderiales
of the Betaproteobacteria, an aerobic Acidovorax species was found in relatively
high proportions in this well. Although all these genera are expected to degrade
benzene using oxygenases and thus may depend on molecular oxygen, nitrate
respiration can also be widespread among them, but has still not been described as
an electron-accepting process for benzene degradation by the members of Burk-
holderiales or Acidovorax. Also, phylotypes affiliated to Geobacter sp. were found
to constitute a very large proportion (nearly 60%) in the nitrate-amended micro-
cosm in well 18/00. Members of the family Geobacteraceae are usually iron
reducers in subsurface environments [23], but Geobacter metallireducens, for
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example, can also degrade toluene while using nitrate as an electron acceptor [24].
Therefore, aerobic and facultative anaerobic nitrate-reducing bacteria were the
dominant species involved in the colonisation of the nitrate-amended microcosms
in well 18/00. Significant changes in the microbial community composition were
also observed in wells 18/00 and 52/03 when sulphate was supplied. Sulphate
concentrations were low in well 18/00, but high in well 52/03. However, sulphate
reducers were not detected in any of the investigated wells with the exception of
the phylotypes affiliated to Peptococcaceae, the ecological role of which is unclear
at present. The sulphate amendment obviously did not stimulate sulphate reducers
both in the presence or absence of high benzene concentrations when communities
were analysed by T-RFLP. The same is true for iron amendment. Remarkably,
microcosms deployed in well 7/99, in which potential electron acceptors were
strongly depleted, showed no response of the microbial community composition
when amended with benzene and any electron acceptor compared to the blank
(Figs. 3, 4).

To summarise, the observed changes of microbial community compositions
during enhanced bioremediation are in agreement with previous observations
made in biostimulation studies [42]. Nevertheless, the addition of electron
acceptors to a field site does not guarantee biostimulation because for this
approach to be effective the bacteria that are capable of utilising the amended
electron acceptor must be present in the first place [7]. Therefore, new technolo-
gies are required to assess the effect of various electron acceptors on the microbial
community and on biodegradation processes under in situ conditions. In this study
the influence of supplied electron acceptors on indigenous community composition
was investigated in combination with quantification of emerging potential
degraders, which is a novel and effective approach that has not been applied so far.

5.2 Benefit of the Dalmatian Plot Tool

Two-dimensional histograms of cytometric analyses are often complex and con-
tain various kinds of information (e.g., characteristics of events, number of gates,
gate positions, cell number within gates), which makes direct comparison often
difficult or even impossible, especially when many plots have to be compared.
Multivariate statistics like n-MDS, however, enable encompassing multiple
simultaneous variables, allow to simplify complex dimensionality and to make
complex correlations apparent. For this, the multivariate information of an input
matrix is normally broken down to an index number representing how identical
two measured objects are by direct comparison of every possible binary combi-
nation. Since n-MDS analyses have not yet been applied to cytometric analyses of
microbial communities, a close description and discussion of this new approach
are provided in this study.

Here, the characteristic cell parameters measured were the forward scatter
behaviour of the microbial cells, which is often correlated to cell size, and the
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DNA contents made detectable by DAPI staining. Upcoming dominant sub-
communities clustered according to these parameters. Virtual gates were set to
determine cell numbers of the dominant sub-communities. As a result, dot plots are
constructed, which in this study are called Dalmatian plots. For n-MDS analyses
the number of gates, their individual positions in the histogram and their form was
used as basic information on community structure. Although plots are reduced to
gate pictures, the inherent information of the community structure contained is
kept within these pictures. Gate areas of these binary, black-and-white pictures
were estimated as simply the sum values of all pixels that had the value of 1
(= ‘‘black’’) (Fig. 2a). Community similarities from gates were then estimated by
the degree of gate overlaps between all samples. Estimating gate overlaps was
used as a suitable proxy of how equal two communities are and moreover allows
elucidating the rate of change that has occurred between these two communities.
Estimating the degree of overlap directly allows estimating similarities between
samples at the presence-absence level.

In a second step cell abundances of gates were included since they varied
strongly between gates and should therefore have an influence on the significance
of a gate. Given the above-mentioned (see Experimental Procedures) modified
Jaccard index, one could down-weight gates relative to the cell number they
encompass by multiplication of the individual gate areas with their relative cell
numbers. But here initially a difficulty arose since it was cumbersome to estimate
the relative amount of cells contained in the overlapping areas and is thus not
feasible to estimate their significance directly. The predicament could be cir-
cumnavigated by using grey values representing relative cell numbers within
gates. Mathematical addition of the pixel grey values of two plots results not only
in a new picture containing the overlapping gates of both plots, but also enables an
estimate of the relative number of cells in the overlapping areas (Fig. 2). Grey
values of overlapping areas result from the relative amount of the cell contents of
the respective gates and thus allow to correctly ‘weigh’ the area where two gates
overlap. This simple graphic approach was used for estimating similarities, but
now involving cell numbers via grey value estimation (Fig. 2b). Thus, the
‘greyness’ (the mean sum of all grey values) of a picture represents (1) the total
amount of all gates, (2) their overall expansion and (3) all cells that are encom-
passed by all gates.

Both approaches (presence-absence and inclusion of cell numbers) should be
equally used and depend on the underlying hypothesis one assumes. The highest
cell abundances in gates may represent those microbial sub-communities that,
under the given environmental conditions or experimental treatment, are the key
players and therefore the most abundant ones. However, often the most abundant
ones are not the key players, but represent species that are most tolerant towards a
broad range of environmental parameters. Such euryoec species would then
dominate the classification by the n-MDS analyses irrespectively of the samples’
origin or treatment. Moreover, it is often not those phylotypes that are most
relevant for a given experiment that appear first, but those that grow most rapidly.
Usually such so-called r-strategists may then become out-competed by slower
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growing, but better adapted key players. However, in natural communities there is
often a disequilibrium between species abundances. Reasons for dominances in
those communities are often complex, depending on a multitude of factors, and not
yet completely understood. Thus, putting too much weight on abundances in such
situations would presumably lead to only small observable differences between
samples since the outcome may be completely determined by only the most
abundant species. In statistical analyses of, e.g., plant communities, this problem is
normally circumvented by decreasing the differences between species abundances
and down-weighting highly abundant species and increasing importance of low
abundance species by data transformation (typically square root, double-square
root, logarithmic transformation, etc.) prior to analysis [6]. In this study, the same
effect was obtained by introducing the grey values for cell numbers in gates. The
disadvantage of this approach is that organisms that are of low abundance but
highly productive may have no impact on the evaluation of community structure
and therefore community functioning.

To summarise, following the row of transformations, the presence-absence
(black and white) approach is the most rigorous transformation procedure possible.
Its advantage is that its outcome is not dependent on the dominance of bacteria in
gates and, moreover, allows clearer estimation of general changes in community
structure by easy determination of appearance or disappearance of species (see
Fig. 6). Its disadvantage is that equality of gate evaluation may miss the degree of
contribution of the cells within the gate to community functioning.

5.3 Benefit of Sub-Community Resolution Down
to the Individual Level for Functional Information

Identifying microorganisms responsible for recognised environmental processes
has been described as a great challenge in microbial ecology. During the last
decade, methodological innovations provided ways of linking the phylogeny and
function of uncultivated bacteria via, e.g., stable isotope probing (SIP) approaches
(for review see [34]). In this approach a 13C-labeled substrate is added to an
environmental isolate or sample, and biomarkers are purified and analysed fol-
lowing the consumption and incorporation of the 13C-labeled substrate into bio-
mass. RNA-SIP and DNA-SIP have been successfully applied for identifying
microorganisms responsible for certain biochemical processes, e.g., for the dis-
covery of microbial key players in anaerobic benzene degradation [13, 17, 22, 40].
Protein-based SIP experiments have been recently shown to provide information
regarding metabolic activities as well as phylogenetic information [15]. However,
this approach is only feasible in pure or enrichment cultures and relies on genome
data [48]. Another challenge of SIP approaches is that substrate incorporation has
to be sufficient to distinguish between labelled and unlabelled molecules.
Groundwater ecosystems are characterised by microbial communities with low
cell numbers and low growth rates resulting in low carbon incorporation rates, thus
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hampering the success of SIP experiments. Furthermore, SIP experiments
are relatively time-consuming, and suitable isotopically labelled substrates
(e.g., 13C, 15N) are required, which can be expensive. Real-time polymerase chain
reaction (qPCR) for quantification of functional genes encoding key enzymes of
degradation pathways has also been applied for studying biodegradation potentials
at contaminated field sites (e.g., [3]). However, a crucial prerequisite for
employing this approach is the knowledge of the degradation pathway of the
contaminant and its underlying genetics, which is not the case for all common
contaminants.

Another general approach is based on cultivation independent single cell ana-
lytics as was used in this study. This may involve various microscopic techniques
like fluorescence microscopy, confocal microscopy, and flow cytometry (for
review see [33]). The general principle is to analyse bacterial cells one by one
according to distinct intrinsic optical characteristics like scatter signals or auto-
fluorescence or to use extrinsic information like fluorescent dyes for labelling of
distinct cell features. In this case, various structural and functional characteristics
can be visualised and quantified using fluorescent probes. These fluorescent probes
can be used for phylogenetic differentiation (FISH, CARD-FISH, RING-FISH
targeting rRNA), for the determination of the physiological/functional state of the
microorganisms (DNA, storage products, also functional Card-FISH for micro-
scopic application) or various viability states of single cells. However, the com-
bination of fluorescent single cell techniques for phylogenetic differentiation and
those that give information on viability and function cannot be applied till now by
using flow cytometry alone. Although many methods are available for measuring
functions in pure cultures by application of, e.g., fluorescent substrates [33], this
cannot be easily applied to environmental samples since specific information
cannot be obtained with such approaches to date. Therefore, microscopic
approaches like microautoradiography [39], Raman spectroscopy [14] and Nano-
SIMS [21] were developed where radioactive or isotopically labelled substrates are
combined with in situ hybridisation to identify key players in microbial commu-
nities. However, quantification of the key players and following the dynamics of
the accompanying organisms remain difficult with these microscopic approaches.

Cell sorting according to fluorescently labelled DNA contents and light scatter
characteristics, which indicate multiplication and cell growth, followed by phy-
logenetic analysis of the separated cells is reliable, robust, and quick. Repeatedly,
the approach was shown to generate knowledge of key players in microbial
communities [12, 19, 31]. Preconditions are distinct sub-communities and yields of
at best 106 sorted cells for convenient DNA extraction and PCR. In our case, the
limitation was the availability of cell material. Only a few beads were available to
extract enough cells for recording flow-cytometric DNA patterns as well as DNA
for PCR, cloning, and subsequent T-RFLP analysis. Consequently, nearly no
material was left over for the sorting approach. Therefore, only two sub-
communities from microcosms exposed in well 52/03 were sorted. The results
nevertheless point at specific emerging key organisms. As illustrated in Fig. 8, gate
2 comprised the same Peptococcaceae phylotype present also in the whole
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community, but at a significantly higher proportion. Interestingly, the Achromo-
bacter phylotype dominating the whole community was not present in the sorted
sub-community, confirming the specificity of the cell-sorting approach. As dis-
cussed above, the Peptococcaceae might colonise anaerobic micro-niches that
occurred within the microcosms after substrates were locally exhausted by aerobic
or nitrate-reducing BTEX degradation. The cytometric pattern confirms this suc-
cession hypothesis as it shows the emergence of the Peptococcaceae from the
background of the whole community. These Peptococcaceae can be quantified via
cytometric gate setting and its abundance followed over longer time ranges. This
will facilitate understanding its role in the community. This one or any other
organism followed by flow cytometry, cell sorting, and T-RFLP analysis can be
seen or defined as a marker organism that gives information on specific micro-
environmental conditions at distinct sites and therefore can serve for monitoring
and control means. It is the intention of the authors to test the reliability of this
approach in more elevated studies in the future.

6 Conclusion

Microbial communities in engineered natural environments can be successfully
monitored by studying variations in the composition and structure of the indige-
nous members with high resolution and quantitatively by using the combined
approach of molecular tools, cytometric techniques and appropriate statistical
analyses. When a contaminated site is thoroughly studied using this combined
approach over a certain time frame, only the quick and inexpensive cytometric
pattern analysis together with the Dalmatian plot evaluation may be adequate to
monitor microbial community dynamics and predict changes according to biosti-
mulation treatments. Single cell analytics are therefore about to become an
indispensable tool when ecosystem stability or instability needs to be investigated
on the microbial level.
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Multivariate Data Analysis Methods
for the Interpretation of Microbial Flow
Cytometric Data

Hazel M. Davey and Christopher L. Davey

Abstract Flow cytometry is an important technique in cell biology and immu-
nology and has been applied by many groups to the analysis of microorganisms.
This has been made possible by developments in hardware that is now sensitive
enough to be used routinely for analysis of microbes. However, in contrast to
advances in the technology that underpin flow cytometry, there has not been
concomitant progress in the software tools required to analyse, display and dis-
seminate the data and manual analysis, of individual samples remains a limiting
aspect of the technology. We present two new data sets that illustrate common
applications of flow cytometry in microbiology and demonstrate the application of
manual data analysis, automated visualisation (including the first description of a
new piece of software we are developing to facilitate this), genetic programming,
principal components analysis and artificial neural nets to these data. The data
analysis methods described here are equally applicable to flow cytometric appli-
cations with other cell types.

Keywords Artificial neural nets � Data analysis methods � Flow cytometry �
Genetic programming
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1 Introduction

Flow cytometry offers many advantages for the analysis of microorganisms
including the rapid analysis of cells at the single cell level [35] permitting the
measurement of heterogeneity [1] and the ability to physically separate cells based
on their measured properties. These advantages have been reviewed extensively
elsewhere [11, 21, 36]; however, commonly cited drawbacks to the technique
include the cost of instrumentation, the requirement for skilled operators and the
interpretation of the large volumes of data that are produced. The first of these
problems—the expense—is beginning to be addressed through a new generation of
instruments that offer adequate numbers of parameters and sufficient sensitivity for
microbial analysis in lower cost, sometimes portable machines. The other two
problems are linked in that in addition to maintaining, setting up and running the
flow cytometer, one of the important skills of the operator is frequently the ability
to interpret the results of the experiment. This article seeks to describe the process
of manipulation and analysis of flow cytometric data and, via the use of appro-
priate data sets, to illustrate where computational tools may help alleviate the
problem of data handling and interpretation.

1.1 What do Flow Cytometric Data Sets Look Like?

In a typical microbial flow cytometry experiment, a number of samples will be
analysed, and ideally the data set will also contain replicate samples and appro-
priate controls [28, 38]. For example, an experiment may involve samples taken
at different stages of a batch culture, or they may be samples of a microorganism
that have been exposed to different levels of a stress condition. The results from
the analysis of each of the samples will be stored in a separate ‘listmode’ file, and a
set of these files from an experiment (the data set) will typically all be subjected to
the same post-acquisition processing to allow similarities and/or differences
between the samples to be identified and conclusions to be drawn from the
experiment.
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Listmode data files conform to a standard that provides the specifications
needed to describe the data completely. The first standard (FCS 1) was established
in 1984 [37] and is currently [49] at version 3.1. The aim of the standard is to
provide a file format that allows files created by one type of acquisition hardware
and software to be analysed by any other type and has the added advantage that
third party or end-user created software packages can read the files. The files
consist of a header and a data area. The header has information about the identity
of the sample, the flow cytometer settings used to run the sample, etc., while the
data area records measurements of each particle (e.g. microbial cell or spore)
detected by the flow cytometer.

When a particle passes through the detection point of the flow cytometer, it
intersects a beam of light from a laser and/or arc lamp. When this happens, light is
scattered out of the incident beam. Light scattering provides information on the
size and structure of the cells, but the relationship is far from straightforward [36]
particularly when cells of different types are considered. Additionally, fluores-
cence may occur and be measured at a number of discrete wavelengths. In some
cases, e.g. the analysis of phytoplankton, this may be autofluorescence from the
photosynthetic pigments present in the cells, more commonly though the fluo-
rescence will result from fluorescent stains, fluorogenic substrates or fluorescently
labelled antibodies that are added to the sample prior to analysis. The data area of
the listmode file will thus consist of a number of values for each recorded particle
that correspond to the light scattering or fluorescence intensity measured by the
appropriate detectors. The intensities are measured on an arbitrary scale of channel
numbers that may be distributed on a linear or log scale depending on the way that
the flow cytometer was set up to acquire the samples. Flow cytometers typically
analyse at very rapid rates—of the order of several hundred to more than a
thousand particles per second. Thus, it can be seen that each file in the flow
cytometric data set will contain multiple measurements made on tens of thousands
or hundreds of thousands of individual particles. This represents a challenge for
handling, storage and analysis of the data produced.

2 Methods: Generation of Flow Cytometric Data Sets

In order to illustrate the methods that can be used to analyse flow cytometric data,
two data sets were acquired according to the following methods and rationale.

2.1 Data Set 1: Detection of a Specific Microbial Threat

In recent years there has been increased concern regarding the threat of bioter-
rorism, and reliable techniques are required to detect and identify bioagents in
order that their impact on public health can be minimised [29]. With its short
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incubation time, high mortality rate and environmental resistance, Bacillus
anthracis, the causative organism of anthrax, has long been considered the most
credible biowarfare threat [8]. The anthrax attacks in the US in 2001 confirmed the
status of this pathogen in the modern context of bioterrorism [5, 22]. Rapid and
accurate determination of the presence, concentration and identity of microbial
cells in environmental samples is made more difficult by the complex, particulate
background against which the target organism must be identified. Flow cytometry
has the advantage that particles are measured individually, but such monitoring
would be most effective if the results were available in (near) real-time, during or
immediately after sample analysis, as this would permit the use of sensors to
trigger defensive strategies and medical interventions. A rapid first-stage screen
with low-cost, non-specific reagents would permit reanalysis of the sample to
confirm the results or the performance of specific tests—e.g. via the use of fluo-
rescently labelled antibodies. Additionally, in suitably equipped instruments,
detection and identification during analysis permits physical separation (sorting) of
the target organism to enrich it into a small volume, thereby increasing the effi-
ciency and economic viability of specific tests. For this to take place, efficient and
automated analysis is required.

A data set was therefore generated following methods previously outlined [10]
with Bacillus globigii (B. subtilis var niger, a well-established simulant for
B. anthracis [50]) as the target to be identified against a background of other
microbial particles. B. globigii spores were obtained from the Chemical and
Biological Defence Establishment, Porton Down, Salisbury, UK, as a dry prepa-
ration. Prior to analysis the spores were suspended in sheath fluid (see below) to
give a concentration of approximately 1 9 106 spores ml-1. Escherichia coli (Lab
Strain C500), Micrococcus luteus (NCIMB 13267) and Saccharomyces cerevisiae
were grown as previously described [10]. In order to deactivate microorganisms
and to facilitate storage, fixed samples were prepared by passing cell or spore
suspensions through a fine needle into ice-cold absolute ethanol to give a final
ethanol concentration of 70%. Prior to analysis, the fixative was removed by
centrifugation, and the cells were washed and resuspended in sheath fluid at an
appropriate concentration. Mixed samples were prepared by combining the
organisms to give known numbers of each cell type. Unstained controls were
analysed without further treatment. Stained samples were prepared using a cocktail
of three fluorescent stains—Tinopal CBS-X (Ciba Dyes and Chemicals Ltd.,
Macclesfield, UK) at a final concentration of 40 lg ml-1, propidium iodide
(Sigma, UK) at 50 lg ml-1 and fluorescein isothiocyanate (Sigma, UK) at
25 lg ml-1. Propidium iodide targets nucleic acids and fluorescein isothiocyanate
binds to proteins. The exact target of Tinopal CBS-X has not been determined.
Multiparametric flow cytometric analyses were performed using a Coulter Epics
Elite flow cytometer (Beckman Coulter UK Limited). Samples were illuminated
using a helium-cadmium laser (325 nm) and an argon ion laser (488 nm), and the
gated-amp assembly was used to recombine the signals from the separate lasers.
The flow cytometer was set up as described in the manufacturer’s manual and
10 lm fluorescent beads were used for alignment. The sheath fluid was prepared
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using Millipore Milli-Q water filtered to 0.22 lm and contained 150 mM KCl and
10 mM HEPES. The pH was adjusted to 6.8 with KOH and the sheath fluid was
then filtered to 0.1 lm using a Whatman WCN filter. The forward scatter (FS)
signal from the argon ion laser was used to discriminate between the signal from
the microorganisms and the background noise. The data files typically consisted of
*10,000 particles per file with seven parameters (Fig. 1) being measured from
each particle.

2.2 Data Set 2: Determination of Viability

The aim of the second experiment was to prepare a data set that would illustrate
the use of flow cytometry to measure viability in Saccharomyces cerevisiae. This
yeast is used in biotechnology and is also an important model organism [16]. As
such, methods for routine monitoring of its physiology are important. A widely
used stain for this purpose is propidium iodide, which acts as an effective viability
indicator in that the propidium ion is excluded by the intact membrane of viable
yeast cells but freely enters cells with damaged membranes whereupon it binds to
nucleic acids resulting in an enhancement of the stain’s fluorescence. Depending

Fig. 1 Flow cytometric analysis involves a system of fluidics for sample delivery and optics for
illumination and measurement of the sample. Scattered and fluorescent light is detected by
photomultiplier tubes (PMTs) for each particle in the sample. The graphs show analysis of a
sample of S. cerevisiae from data set 1. Two signals are collected by PMT3 (*525 nm)—one
from the UV laser and one from the argon ion laser
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on the concentration, propidium iodide may also bind to other polyanions. Use of
propidium iodide is often coupled with a second fluorescent stain bis-(1,3-dibu-
tylbarbituric acid) trimethine oxonol (DiBAC4(3)), which enters damaged (de-
energised) as well as dead cells [13, 54]. Thus, different deletant mutation strains
of S. cerevisiae were exposed to a 50�C heat stress for 30 min prior to staining
with propidium iodide (PI; 4.66 lg ml-1) alone or PI plus DiBAC4(3) at a con-
centration of 5 lg ml-1. Control samples were incubated at 30�C rather than 50�C,
but were otherwise treated identically. After incubation at room temperature for
10 min, samples were analysed on a Partec PAS III flow cytometer (Partec GmbH,
Münster, Germany). The flow cytometer was set up as described in the manu-
facturer’s manual using a 488-nm argon ion laser as light source. DiBAC4(3)
fluorescence was collected at *520 nm and PI fluorescence was collected at
*633 nm. At least 20,000 cells were analysed for each sample. Control samples
consisted of yeast cells that had not been exposed to the heat stress (live control)
and yeast cells that had been fixed with 70% ethanol (dead control).

Thus, this data set consisted of the analysis of five deletant mutation strains of
S. cerevisiae with two temperature treatments, and the data area of each of the
listmode files contained channel numbers reflecting forward scatter (FS), side
scatter (SS), green fluorescence (520 nm) and red fluorescence (633 nm). Addi-
tionally, as a standard template was used, the flow cytometer automatically
measured and stored orange fluorescence (*580 nm) and deep red fluorescence
(*665 nm), and, although not expected to encode additional information, these
parameters were used in multiparametric analyses (see later).

3 Data Visualisation

In order to be able to interpret the data, the first step is usually to produce a graph
(or graphs) of the data that have been acquired. Flow cytometers are supplied with
software that is used both to control the instrument and to display the data during
acquisition. Screen shots of such software can often be seen on the websites of the
manufacturing companies. Typically the data display is a panel of single and dual
parameter plots that show the data in a way that can be customised by the operator
according to the needs of the experiment and to his or her personal preferences
(Fig. 2). As particles pass through the flow cytometer, the magnitude of pulses
representing the extent of light scattered or the intensity of fluorescence at a given
wavelength is sorted electronically into ‘‘bins’’ or ‘‘channels,’’ permitting the
display of histograms of the number of cells possessing a certain quantitative
property versus the channel number. Three parameters can be plotted on a single
3D-scatter plot, but these graphs can be difficult to interpret, particularly when
represented as a 2D print. Of course, even with 3D plots, information is lost, but it
is generally impractical to visualise more than three dimensions simultaneously.

As shown in the examples given above, even with microbial flow cytometry it is
possible to collect data on seven different parameters for each cell, albeit that two
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or three dyes (4–5 parameters) are more common. Higher numbers of parameters
are more frequently associated with the multicolour analyses used in immuno-
phenotyping [2, 6, 44] and in analysis of fluorescence of aquatic samples [20], but
any analysis that involves more than three parameters presents a problem when it
comes to displaying the data in a useful way that will allow relationships to be
observed.

As described above it is usually desirable to display the data in two or, at most,
three dimensions. However, using this approach means that as the number of
measured parameters (n) increases, one must examine more graphs (G) to explore
the data. As shown in Table 1, whilst the number of single parameter graphs that
need to be examined increases by one for each additional parameter acquired, the
number of 2D and 3D plots rapidly becomes unmanageable. Instruments capable
of up to 18-colour analysis have found particular utility in immunophenotyping
studies where a range of markers exist for distinguishing between cell types [3, 17,
34]. An instrument capable of collecting up to 62 parameters has recently
been launched (http://www.isac-net.org/index.php?option=com_content&task=
view&id=795&Itemid=1), and procedures have been proposed that allow multi-
ple analyses to be combined, creating data files of potentially infinite dimensions

Fig. 2 Acquisition of flow cytometric data is typically carried out in software provided by the
manufacturer, in this example Partec (Partec GmbH, Münster, Germany). The data display can be
customised by the operator to display the required combinations of parameters. This process
allows subpopulations to be identified, such as the population of dead cells in the bottom-right
graph that have taken up both propidium iodide and DiBAC4(3)
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[40]. The unprecedented dimensionality of these data sets means that a full
exploration of the data space by generation of graphs is clearly impractical.

For straightforward analyses of a small number of parameters, the acquisition
software may be sufficient, but for more complex analyses or for production of
publication-quality graphs, additional software is often used. Off-line analysis
away from the computer on which the data were collected is advantageous in that
it frees up the flow cytometer for acquisition of data from other samples. The flow
cytometric community has developed a range of software, much of which has been
made available free of charge via links available at http://www.cyto.purdue.
edu/flowcyt/software/Catalog.htm. Whether free or commercial, a frequently
encountered problem is the lack of ongoing support or development, meaning that
older software cannot read the latest data files or use the longer file naming
conventions on newer operating systems.

3.1 Manual Data Processing

Manual analysis of flow cytometric data involves using the software tools
described earlier to produce the necessary graphs. Usually the operator has pre-
conceived ideas based on the experimental design regarding which combinations
of parameters should be plotted together. For example, in the case of data set 1, all

Table 1 The number of graphs of different types that need to be examined depends upon the
dimensionality of the data and the plotting method used

Graph type Number of parameters measured

1 2 3 4 5 6 7 8 9 10

Single parameter graph 1 2 3 4 5 6 7 8 9 10

Dual parameter graph 0 1 3 6 10 15 21 28 36 45

Triple parameter graph 0 0 1 4 10 20 35 56 84 120
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single parameter plots would be examined to identify if any of the stains offers
effective discrimination between the target organism and the other organisms.
Such an analysis of five of the parameters from data set 1 is shown in Fig. 3. In the
event that a single parameter offers sufficient discrimination, a region can be
drawn on the relevant histogram, and the number of positive events (events falling
within the region) can be determined. Frequently however, a second parameter is
required, and ideally all combinations of parameters should be examined for each
file. With five parameters per sample, this would represent ten 2D dot plots
(Table 1) per file—with four organisms plus the mixture, this would be 50 graphs
(and this number would scale with the number of replicates). So-called ‘stare and
compare’ analysis is not particularly efficient, but once a suitable pair of param-
eters has been identified, a region or gate is drawn around a group (cluster) of

Fig. 3 Single parameter histograms for the four microorganisms (B, B. globigii; E, E. coli; M, M.
luteus and S, S. cerevisiae) plus a mixture (labelled ‘mix’). Five of the measured parameters are
shown—FS forward scatter, Tin Tinopal CBS-X at \440 nm, SS side scatter, FITC fluorescein
isothiocyanate at *525 nm and PI propidium iodide at[600 nm. The remaining signals (Tinopal
fluorescence at *525 nm and fluorescence at 575 nm) were highly correlated with other signals
and are omitted for clarity. None of the measured parameters permitted effective discrimination
of B. globigii
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events that represents the target cells. The region should encompass the majority of
target events but exclude the non-target events. For this to be achieved the target
cells must share a combination of properties with each other (but not with the
background particulates), allowing them to form a distinct cluster in 2D space.
Clusters have been defined as ‘‘any relatively discernible, reasonably contiguous
region of points in a bivariate display’’ [46], and thus manual cluster identification
and the drawing of regions both depend heavily upon the skills and experience of
the individual analysing the data. As mentioned above, flow cytometers capable of
producing data sets of unprecedented dimensionality are becoming available. This
will necessitate improvements in methods for data handling and interpretation in
order to reach acceptable levels of consistency and time efficiency.

In the case of data set 2, a priori expectations of the relationship between
physiological status of the cell and uptake of the stains assist the operator in
choosing which graphs to display. Nevertheless, rigorous examination of the data
is required to ensure that the staining concentrations and times were suitable for
the cells in question. A typical procedure for the manual analysis of this data set is
shown in Fig. 4. First a dual parameter dot plot of SS versus FS is produced in
order to exclude noise from the analysis (Fig. 4a). All data files in the data set must
be checked at this stage to ensure that the chosen region is applicable. A region is
drawn around the cluster of interest and subsequent analysis is based only on the
events within this cluster. Histograms showing uptake of the two viability stains
are then produced (Fig. 4b, c) and, based on the analysis of control samples,
regions can be drawn that represent stained and unstained cells. Alternatively, to
exploit the multiparametric nature of flow cytometric data, a second dual
parameter graph can be produced of PI vs DiBAC4(3) fluorescence (Fig. 4d). To
aid in interpretation of the data from this graph, quadrants were drawn as shown.
The quadrants are drawn on the basis of analysis of control samples such that live,
undamaged cells (non-fluorescent) are recorded in the lower left quadrant, live but
damaged cells (DiBAC4(3) positive, PI negative) are in the lower right quadrant,
and dead cells [DiBAC4(3) positive, PI positive] are in the upper right quadrant.
This process is then repeated for all strains in the data set (Fig. 4e). The processes
of drawing the regions and the quadrants are both manual and based on a ‘by eye’
optimisation of their positioning and as such the experience of the investigator is
extremely important. As a consequence of this, manual processing of flow cyto-
metric data is time-consuming and open to the possibilities of inconsistent analysis
and/or inadvertent bias. Nevertheless, this approach remains the route most fre-
quently taken in the analysis of flow cytometric data.

3.2 Development of Automated Visualisation Software: FlowDec

As a consequence of the benefits and drawbacks of manual data analysis explained
earlier, we have been developing a programme called ‘‘FlowDec’’ to make the
process of manually analysing flow cytometric data sets as straightforward and
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Fig. 4 Sequential steps in the manual analysis of flow cytometric data for determination of the
physiological state of S. cerevisiae. a A dual parameter dot plot of SS versus FS. b Histogram
showing uptake of DiBAC4(3). On the basis of analysis of control samples, those cells in M1 are
considered to have deenergised membranes. c Histogram showing uptake of PI; on the basis of
analysis of control samples those cells in M1 are assumed to be dead. d A dual parameter plot of
PI vs DiBAC4(3) fluorescence. Quadrants have been drawn to aid interpretation of the data (see
the text for further information). e Comparison of yeast strains reveals a lower resistance to heat
stress in heterozygous deletant strains of YKL080w and YMR016c when compared to the other
strains
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time-efficient as possible. Figure 5 shows FlowDec’s display for one sample from
data set 2 showing histograms for each measured parameter and a grid of dot plots
representing each pair-wise combination of the parameters. FlowDec automati-
cally generates all of the plots and lays out the grid based on the data file that the
user specifies. The graphing routines (classes) of FlowDec were custom written to
ensure the axes of the plots always align perfectly and always have the expected
upper and lower values and labels thus preventing the graphs themselves
detracting from the user’s understanding of the data plotted. The six histograms
along the top of the figure are for each of the parameters starting with PMT1 (in
this case, the photomultiplier tube that detects the forward scatter signal) on the
left. Each histogram shows counts versus channel number and is auto-scaled to the
largest peak. However, as noise can be a problem in flow cytometric analyses of
microorganisms, a facility to ignore certain channels in calculation of the largest
peak has been added—in the example shown, data in the first four channels are
excluded. Below the histograms is a grid of dot plots. The top row of dot plots has
PMT1 channel numbers on the ordinate axes of the graphs, the row below has
PMT2 channel numbers on the ordinates and so on. The abscissa for each column
of dot plots is for the same parameter shown on the histogram at the top of the
column. This enables users to look directly down from the peaks on a histogram

Fig. 5 A screen shot of the FlowDec data analysis programme showing a file from data set 2.
The graphs in the top row are histograms of each of the measured parameters, and below these is
a grid of dot plots of each parameter versus each of the others. The bottom left shows a text entry
box that has been used to specify gate channels for the parameter 2 histogram (2nd plot from the
top left); the gate channels are shown as two vertical lines on the graph. For full details, see the
text
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and see how the data look when a second dimension is added. Only half of the total
grid of dot plots is plotted (i.e. where PMT1 vs. PMT2 is plotted, PMT2 vs. PMT1
is not needed as it conveys no additional information). This is partly because of the
time needed to generate large numbers of data-intensive graphs and partly as it
reduces the effort needed by the user to comprehend trends in the data. The PMT2
histogram (second graph from the top left) has two vertical bars plotted. These
represent the two channel numbers used to gate the data and were specified in the
text entry box shown at the bottom left of the figure. When gate channels are
entered, FlowDec replots all of the graphs but excludes events that do not fall
between the two gate channels. By putting the gate channels on either side of the
peaks on the histograms, the user can plot only the events that correspond to each
peak.

Thus, FlowDec enables quick and efficient visual exploration of the multiple
data files produced by a typical experiment. FlowDec is an ongoing development
project that currently has two further aims. The first is to add, on an incremental
basis, new analysis features to the programme as the need for them is identified
and then to evaluate their usefulness. This ultimately may include genetic algo-
rithms and artificial neural networks (see later) that will, for the first time, permit
users to apply these tools to flow cytometric data without manually converting
between data formats and using multiple software packages. Secondly, we will use
FlowDec as a platform to develop novel visualisations of flow cytometric data that
are directly aimed at answering the questions that users are actually asking when
they examine the 2D graphs and histograms. Such alternative visualisations of data
are now being used to make other large and complex data sets more compre-
hensible [18, 26, 48], but with flow cytometric data, we envisage their use as an
adjunct to, rather than a replacement for, normal manual analysis methods.

This broad range of aims for FlowDec along with the focus on rolling devel-
opment, generating bespoke visual representations and facilitating interaction,
means that we have had to take great care with the computer language chosen to
implement the programme. We are using the language ‘‘Processing’’, which is a
variation of Sun Java [47]. This was originally developed as a scripting language
for artists and animators [43], but has now come to be widely used in the inter-
active exploration and representation of large scientific data sets [18, 48]. The
strengths of Processing for this purpose are that ideas can be explored using
scripting and then finalised by being converted to classes and implemented in
object-orientated form if required, and that the structure of a Processing pro-
gramme makes the development of interactivity [47, 52] much easier than would
be the case with native Java. In addition, Processing has a rich set of facilities and
libraries that can be incorporated into custom-built programmes. For example,
these facilitate easier development of applications that involve data parsing, 2D
and 3D rendering, animation and sound, and there is now a library for genetic
algorithms. As the language is a variation of Java, that language’s facilities and
libraries are also available to the programmer (e.g. for artificial neural networks,
data plotting, graphs and networks, etc.). Like Java, Processing is platform inde-
pendent, and so it is possible to create versions of the same programme for the web
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(as an applet) or to run as a normal programme on a computer under different
operating systems. These strengths do, however, come with some compromise to
the speed of execution of the software. Processing is a free download from
http://www.processing.org/, and additionally Java must also be installed—this can
be downloaded for free from http://java.com/en/download/index.jsp. The latest
version of FlowDec (v1.00) is available from http://qbab.aber.ac.uk/flow/
software.html.

3.3 Mathematical Interpretation of Flow Cytometric Data

As can be seen above, whichever approach (manual or automated) is taken to
generate graphs of flow cytometric data, interpretation of single parameter histo-
grams is more straightforward than the analysis of dot plots. Effectively what is
done is to set a threshold, for example, in the case of data set 2, red fluorescence
above a certain channel number indicates that the cell is dead (Fig. 4c). Thus,
rather than plotting each data file, a mathematical interpretation of the data
becomes possible, which is advantageous for automated detection systems [29].
However, it is the multiparametric nature of flow cytometric data that is a par-
ticular advantage of the technique, and the mathematical approach has in a number
of cases been extended to incorporate two parameters via the use of ratios. The
ratio of two ‘‘standard’’ acquired parameters has been used to estimate membrane
potential in bacteria [39] and, more recently, to detect calcium signalling [7]. The
ratio approach is also applicable to the case of the problem defined in data set 1 [9]
where the ratio of propidium iodide (PI) fluorescence to forward scatter (FS) was
found to be discriminatory. Figure 6a shows this ratio calculated from an analysis
of a mixed sample containing all four organisms in approximately equal amounts
and reveals an encouraging split into two populations. Using prior experience that
the majority of fluorescent stains tested stain spores to a lesser extent than is
observed with vegetative organisms [10, 12], it was hypothesised that the majority
of the B. globigii spores were present in the subpopulation with the lowest PI:FS
ratio. Analysis of each of the microorganisms in isolation confirmed that the
smaller subpopulation identified does indeed largely represent the B. globigii
spores, whilst the larger population is formed from a combination of the three
other organisms (Fig. 6b). This finding allows a simple threshold to be set based
on the ratio of the two parameters to provide a first stage identification of B.
globigii. If a threshold of 1 is set, then 90.5% of events are correctly identified
(Fig. 6c) with 9.5% false negatives and 9.5% false positives. Often there is a
greater penalty for one type of error, and raising the threshold to 1.049 improves
the detection of B. globigii (events with a PI:FS ratio of less than 1.049) to 98%,
but increases the false-positive rate to 14.5%. One advantage of the mathematical
approach over ‘stare and compare’ analysis is that a sequence of criteria can be
applied to each event. Thus, the accuracy of detection of B. globigii can be further
improved by the use of additional parameters, for example, if the measured data
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are subjected to the additional criterion that the fluorescein isothiocyanate:side
scatter (FITC:SS) ratio for B. globigii should be less than 1.06, then there is one
additional false negative but nine fewer false positives (not shown). In this way an

Fig. 6 Ratiometric flow cytometry. a Flow cytometric analysis of a mixture of B. globigii
spores, E. coli, M. luteus and S. cerevisiae. Using the derived ratio of propidium iodide (PI):
forward scatter (FS), the population is split into two subpopulations. b Analysis of each organism
separately confirmed the hypothesis that the subpopulation with a low PI:FS ratio was B. globigii
(thick, solid line, B. globigii, thin line, summed data from the other three organisms, dotted line,
mixture of all four organisms). By plotting the PI fluorescence for each cell/spore as a ratio to its
forward scatter signal, the majority of the B. globigii events can be distinguished from the other
microorganisms. c A threshold of 1 for the PI:FS ratio allows correct classification of 90.5% of
the events as being B. globigii (ratio \ 1) or not B. globigii (ratio [ 1). Object numbers 1–200
are B. globigii, 201–400 are E. coli, 401–600 are M. luteus and 601–800 are S. cerevisiae
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effective algorithmic solution to the problem of using flow cytometric measure-
ments to make a preliminary identification of the microorganisms present in the
sample could be coded into a bespoke computer programme dedicated to the
automated interpretation of the data.

The ratiometric method is also applicable to the automated detection of the
other organisms in the sample. For example, a FITC:SS ratio greater than 0.7
correctly described 84% of E. coli with 15% false positives (Fig. 7). The lower
level of accuracy is largely a consequence of attempting to discriminate E. coli
from M. luteus as these are both vegetative bacteria.

4 Multivariate and Artificial Intelligence Approaches to Flow
Cytometric Data Analysis

The mathematical approaches described above work well for data analysis prob-
lems that have an exact solution and where the data are close to noise-free. In order
for this approach to be effective, software programmers must be able to define all
of the steps in the algorithm that need to be carried out to go from the data to the
desired output (the correct answer). The algorithm-based software programme is
then written to take the inputs and combine them in a specific way through a set of
sequential calculations to reach the conclusions. Quite apart from the fact that the
correct algorithm may not be apparent, in biology generally and flow cytometry in
particular, data are seldom noise-free. Such a set of circumstances requires a
different approach to identify an appropriate algorithm and to achieve a robust
result.

Fig. 7 Ratiometric flow
cytometry reveals that a
FITC:SS ratio greater than
0.7 correctly discriminates
the majority of E. coli from
the other organisms. By
plotting FITC fluorescence
for each cell/spore as a ratio
to its side scatter signal, the
majority of the E. coli events
can be distinguished from the
other microorganisms (object
numbers are as defined in the
legend to Fig. 6)
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4.1 Genetic Algorithms and Genetic Programming for Algorithm
Development

A genetic algorithm (GA) is an automated computer method to find a solution to a
problem. GAs use techniques based in evolutionary biology such as cross over,
mutation and selection to evolve a random starting population of ‘‘chromosomes’’
into more accurate and useful solutions. The ‘‘fitness’’ of each individual in the
population is evaluated in terms of its ability to match a flow cytometric data
pattern to the correct identity of the particle giving rise to the data. The most
accurate algorithms are selected and modified by recombination and/or mutation to
form the next generation. This process is repeated until errors are minimised and
the ‘‘best’’ algorithmic solution is found. Genetic programming (GP) is an
extension of GA in which a GA is used to ‘‘discover’’ an optimal set of rules (in
the form of a computer programme) by rearranging a set of available parts [19].

To illustrate this approach, a GP was used to classify yeast cells as ‘‘live’’ or
‘‘dead’’ using the free software package A.I. Solver Studio (http://www.perseptio.
com). As this is a generic piece of software rather than one designed for use with
flow cytometric data, its application to the data is somewhat convoluted. The first
step is to convert the data from the flow cytometry standard listmode format into
an ASCII text file. The freeware, command line programme lldata.exe
(http://www.cyto.purdue.edu/flowcyt/software/Catalog.htm#purdue), was used for
this purpose, and this generates a formatted file where each row in the file rep-
resents one analysed particle and each column represents a measured parameter
with the parameters being separated by multiple spaces. The A.I. Solver software
requires a single delimiter between parameters, a label at the beginning of each
row that identifies the particle as ‘‘live’’ or ‘‘dead’’ and a header row describing the
contents of each column. Thus, to create data files in the correct format, samples of
live (overnight cultures) and dead (ethanol fixed) yeast were stained with PI and
analysed on the Partec PAS III. The resulting files were converted using lldata.exe,
loaded into Microsoft Excel and 100-example patterns of live yeast and 100-
example patterns of dead yeast were selected at random and put into a new file. A
header row was added, and an additional spreadsheet cell was inserted at the start
of each row to identify each of the patterns. These data were partitioned, again
randomly, into a ‘training’ file and a ‘test’ file. The training file contained data
patterns representing 84 dead and 86 live yeast, and the test file contained data
corresponding to 16 dead and 14 live yeast. Files were saved as comma-separated
variable files. These files were then loaded into AI solver studio, and the software
was set up to assume that all errors were of equal consequence, that the solution
was of ‘medium complexity’ and to allow 25% of the training data to be used for
over-fitting prevention. Over-fitting prevention is used to eliminate a problem
commonly encountered in algorithms that are trained to associate patterns with
outputs whereby they achieve this by learning the associations exactly but in the
process, lose the ability to generalise. Training progresses and stops automatically
once an acceptable error level is achieved—in this case after 1,195 iterations
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(presentations of the training set). At this point all of the training data were
correctly classified, and in the test data 88% dead and 92% live yeast examples
were correctly identified. An unclassified data set from the analysis of a mixed
viability sample was then loaded into the software. This contained 80,446 events
that were presented to the trained GP for classification as ‘‘live’’ or ‘‘dead’’. Here
of course the physiological status of each particle is unknown (the file represents a
mixture of live and dead cells), and the GP needs to make a prediction of identity
according to the rules that it has developed. Conventional analysis would be as
described earlier (Fig. 4) through the analysis of control samples and the drawing
of gates, but with the GP the differentiation is automated and potentially uses all
measured parameters. Thus, it is not dependent upon the experience of the oper-
ator, does not limit the solution to one or two of the measured parameters, and is
not open to bias. The GP classification and manual classification of the data are
shown in Fig. 8.

Unfortunately, whilst freeware packages such as AI Solver produce the trained
GP and allow its interrogation as has been used above, they do not provide the GP
solution to the problem in an equation form. Also, as demonstrated by our
example, the data handling involves multiple steps and conversions increasing the
chances of errors being introduced, compromising data traceability and slowing
down the process considerably. Consequently, there have been very few appli-
cations of this technology to flow cytometric data; however, Day et al. [14] used a
commercial GP package to differentiate Phytophthora infestans sporangia from
other particulates (conidia, pollen, etc.), allowing 95% of the sporangia to be

Fig. 8 A genetic programme
was developed as described
in the text to discriminate
between live and dead yeast
based on the analysis of
controls. a Manual data
analysis of live (dotted line),
dead (thin line) and heat-
stressed (thick line) yeast.
b When data representing
80,446 heat-stressed cells
were presented to the GP for
classification, red
fluorescence was clearly an
important factor in the GP
rule that distinguished live
(thin line) from dead (thick
line). This is in agreement
with expectation, but it is not
dependent upon the
experience of the operator
and does not limit the
solution to one or two of the
measured parameters
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correctly identified with a false-positive rate of \1%. The best rule that was
evolved involved all measured parameters and contained nonlinear operators, and
was thus a very different solution to that which could have been obtained by
conventional flow cytometric analysis methods that rely on clusters being linearly
separable, usually in 2D space. In theory, as with the more straightforward
mathematical algorithms described above, this rule could be coded into a bespoke
piece of software to interpret the data.

4.2 Dimension Reduction

An alternative approach to dealing with multiparametric data sets is to reduce the
dimensionality to a more easily interpretable number of dimensions [15, 27, 51].
For example, the aim of Principal Components Analysis (PCA) [23, 24] is to rotate
the data points into a new co-ordinate system, such that the majority of the var-
iance in the data set is accounted for by a subset of these rotated axes. Hence, by
plotting the points in this new coordinate system (rather than the more familiar
scatter and fluorescence parameters), the significant differences within the multi-
parametric data set can be more easily visualised in two or three dimensions.

PCA is applicable to the problem defined in data set 1 (the detection and the
identification of a particular microorganism) where the aim is to distinguish
microbes from each other. To this end, a subset of the data representing all four
organisms was analysed using PCA, and two-dimensional plots were produced of
the 1st and 2nd, 1st and 3rd and 2nd and 3rd most discriminatory factors. The plot
that gave the best separation of the B. globigii data from the other organisms was
chosen, and a polygon was drawn around the B. globigii events (Fig. 9). The first
and third principal components were found to give the best partitioning of the data
with 98.5% of B. globigii being identified with 3.2% false positives. As with
manual analysis of raw flow cytometric data, the positioning, shape and size of the
polygon are judged by eye to achieve optimal separation of the target events from
the other data.

In theory, PCA should allow for better separation of the clusters than simply
plotting the raw data because the variance of the data set is preserved in a smaller
number of dimensions. However, PCA clusters data together based on similarities
that exist, but with no attempt to incorporate prior knowledge about the samples
being analysed, and consequently PCA sometimes highlights effects that are not of
direct relevance to the purpose of the experiment. This is described as an ‘unsu-
pervised’ approach, and although this approach can be effective and may even be
applauded in that it prevents the introduction of bias, it is very different to the
approach that is normally taken in manual flow cytometric analysis. When man-
ually analysing flow cytometry data the operator (or the scientist who has prepared
the samples) will typically have prior knowledge of the cell type being analysed,
preparation methods, etc., and good experimental design will necessitate that
appropriate controls have been analysed to which experimental samples may be
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compared. This a priori knowledge can be incorporated into automated analysis
methods via the use of a supervised learning method that relates input patterns
from samples of known identity (control samples) to the desired output during the
model development stage.

While unsupervised methods are ideal for a preliminary examination of the data
[53], more sophisticated ‘‘supervised’’ methods such as Principal Components
Regression (PCR), Partial Least Squares Regression (PLSR) [33] and Artificial
Neural Networks (ANNs) [55] may produce better results. When using multiple
variables as inputs to any multivariate analysis, some variables will be found to be
more important than others. Indeed, it often happens that some variables are det-
rimental to the multivariate calibration model [25]. This could be because they are
measuring something other than the searched-for correlation or simply because the
information contained is also contained in other variables. The Parsimony Prin-
ciple [45] states that where two models give the same result, the simpler model
should be preferred, as it will be better at making predictions on an unseen data set.

4.3 Clustering Methods

As discussed earlier, manual data analysis seeks to identify clusters in the data, and
a number of automated methods exist to do this. Clustering methods have recently

Fig. 9 PCA analysis of data set 1 showing discrimination of B. globigii spores (squares) from
the other microorganisms. PCA was used to rotate the data points into a new co-ordinate system
of discriminatory factors. A subset of the data representing all four organisms (200 examples of
each organism) revealed that the first and third principal components gave the best partitioning of
the data with 98.5% of B. globigii being correctly identified with 3.2% false positives
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been reviewed [57]. An algorithm based on multidimensional k-means clustering
via a feature-guided approach has been reported [58] that accurately identified an
artificial mixture of beads into the correct clusters. In the same year cluster
analysis was shown to be better than PCA at discriminating between age classes of
blood cell donors based on their T cell subsets [32]. This approach showed that
bioinformatic methods could help to identify the cellular characteristics that best
described and discriminated between a group of subjects—thus, this was not just
an exercise in automatic clustering of data, but led to the development of new
biological knowledge.

More recently, statistical model-based clustering approaches have been used to
identify cell populations [31]. This work was based on a generalisation of Gaussian
mixture models and thus was able to accommodate outliers. A direct multivariate
finite mixture modeling approach has also been applied to flow cytometric data
and has the advantage that it is suitable for detection of rare populations [42]. All
of these methods seek to overcome the significant subjectivity and human time
cost encountered in manual gating analysis, but none appear to have been adopted
beyond the initial study.

4.4 Artificial Neural Networks

In contrast to PCA (see Sect. 4.2), Artificial Neural Networks (ANNs) represent a
supervised learning method that exploits prior knowledge of class membership
obtained from the analysis of samples of known identity [55]. ANNs were origi-
nally inspired by and modelled upon the biological neural networks in the central
nervous system in an attempt to simulate through mimicry the logical intelligence
of humans within a computer programme. The human brain is composed of
interconnected neurons; each neuron is a specialised cell that can receive and
transmit electrochemical signals. Neurons receive signals via a branching input
structure of dendrites and pass signals on via their axons. Axons of one cell are
connected to the dendrites of another cell via a synapse, and when activated via
inputs to the dendrites the cell passes on an electrochemical signal via its axon. In
this way the signal is transmitted via synapses to other neurons, which in turn may
become activated. A neuron passes on a signal only if the total signal it receives
from its dendrites exceeds a certain threshold; thus, the biological neural net is a
highly flexible and responsive system. In an ANN, individual elements are simi-
larly connected together to form a network. These elements, usually referred to as
nodes of the network, have inputs and outputs, and through ‘experiencing’ dif-
ferent inputs together with known outputs the ANN identifies trends and is able to
learn patterns and thus predict outputs from previously unseen combinations of
inputs. In parallel with the biological neural network, the ANN is thus composed
of many highly interconnected processing elements (Fig. 10a) that work together
to solve a particular problem. Both artificial and biological neural networks have
enormous capacity to infer input-output relationships from extremely complex
inputs (stimuli).
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In the case of flow cytometric data the problem may involve microbial species
identification or the classification of events as corresponding to a particular type of
cell or to a cell in a given physiological state. Trained ANNs have the ability to
find meaning in complicated (e.g. multiparametric) or noisy data, and thus they can
be used to infer a pattern or trend from a set of observations that would not be
(immediately, if at all) apparent to the human eye and brain. Through the training
process, the ANN becomes expert in the type of data that it has been exposed to.

Fig. 10 Analysis of flow
cytometric data using an
ANN. a The ANN consists of
an interconnected set of
nodes. The input (leftmost)
layer receives data
representing each of the
measured parameters (here
fluorescence signals are
tagged with ‘UV’ for signals
originating from the HeCd
laser and ‘A’ for those from
the argon ion laser, together
with the fluorescence
wavelength). The ANN is
trained, by repeated
presentation of the training
set, to associate B. globigii
spores with an output value of
1 and all other cell types with
a value of 0. Progress of
training is assessed via the
use of a separate data set, and
weightings on the
connections within the ANN
are adjusted to reduce the
error between the expected
output and the predicted
output. Each complete
presentation of the training
set is referred to as an epoch.
b The trained ANN that was
produced correctly identified
all target organisms in a
previously unseen data set
with \1% false positives
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Like human experts the ANN can then use its experience to make predictions from
a novel set of inputs.

ANNs are also similar to the biological neural networks in that processing is
carried out in parallel by the nodes rather than as sequential operations. There is no
predefined algorithm (i.e. no preconceived ideas regarding which measured
parameters are of most importance) and therefore no programmer input into which
nodes become primarily responsible for a particular output, rather the network
adapts to the training data. Nonetheless, in the majority of current software,
although it is inspired by biology, a statistical and/or signal processing approach is
frequently used for practical purposes—not least because there is so much about
biological neural networks that we are still to learn.

Use of ANNs has been reported many times in flow cytometric data analysis
(e.g. [4, 10, 56]), and many commercial packages and free programmes exist to
analyse data sets. For ANNs to be applicable to a flow cytometric data set, there
must be a relationship between the proposed known inputs (the parameters you
measure on the flow cytometer) and the answer you are trying to obtain. It is
acceptable that this relationship may be noisy, and often this will be the case due to
both the inherent variability of biological material and the electronic and back-
ground noise present in the flow cytometer. Typically, however, at the outset the
exact nature of the relationship between inputs and outputs is unknown—if it was
known, it could be modelled directly rather than needing to be obtained through
the supervised training of an ANN.

Before an ANN can be used to identify unknown organisms from cytometric
data, it first needs to be trained to identify the organisms of interest. The exact
method for data presentation will depend on the package chosen, but typically the
data must first be converted from FCS format to ASCII as described for GPs
above. To train an ANN with flow cytometric data, training and test data are
prepared in a similar way to the process used for GP analysis in Sect. 4.1. For
identification of a specific microorganism (e.g. B. globigii in data set 1) the inputs
are a pattern of channel numbers corresponding to each of the measured param-
eters for the target organism. Additional patterns of inputs that represent other
organisms (in this case E. coli, M. luteus and S. cerevisiae) must also be provided
as negative controls. However, rather than the labels used in the GP the desired
outputs are coded as 1 (for the target organism) and 0 for all other organisms in the
training/test data sets. Furthermore, ANNs typically have the requirement that all
inputs must be scaled between 0 and 1, but because of the sigmoidal activation
function used in an ANN ‘‘headroom’’ must be available, and thus in the example
presented here the data were scaled between 0.2 and 0.8. The neural network was
taught, by repeated presentation of the training set, to associate inputs measured
for B. globigii with an output of 1, and inputs for all other organisms were
associated with an output of 0. In order to obtain the correct output, the ‘weights’
of each unit in the ANN are adjusted automatically to reduce the error between the
desired output (one or zero) and the actual output (the output that the ANN at its
current level of training is actually producing). The back propagation algorithm is
the most widely used method for carrying out this process, which is performed
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without user intervention. Once the ANN is trained, it can be supplied with inputs
of the channel numbers corresponding to unknown organisms, and its output
(proximity to 0 or 1) will indicate if it is the organism of interest or not. In this way
a trained ANN was produced after 100,000 epochs (presentations of the training
data) and on interrogation correctly identified 100% of B. globigii with less than
1% false positives (Fig. 10b).

5 Cautionary Tales

Although a number of useful, automated methods for the analysis of flow cyto-
metric data have been described here, it is worth stressing the need for care in
applying them for routine analysis. For example, the consequences of ‘‘Shapiro’s
Seventh Law of Flow Cytometry’’ [46], which states that ‘‘No data analysis
technique can make good data out of bad data’’, may be easily observed through
the manual analysis of dot plots, but an automated system that leads to a number or
a decision (e.g. live vs. dead) may not immediately ring equivalent alarm bells.
Thus, quality control and the contemporary analysis of appropriate calibration and
control samples are of paramount importance. Although many of the methods we
have described are designed to be tolerant of noisy data, it is still best to avoid this
wherever possible and certainly application of these methods does not provide an
excuse to use a poorly maintained flow cytometer.

In generating training and test data, it is important that these are representative
of the unclassified data that are to be analysed by the trained ANN/GP, etc. Thus, it
is essential to ensure that no settings are changed on the flow cytometer and that
the instrument has not drifted between generation of training and experimental
data. Often, day-to-day variation in instrument performance may mean that it is
necessary to produce a new model for the analysis of that day’s data. Whilst this is
becoming less problematic now that computer speed has increased, it is still time
consuming in terms of manipulating data files.

In producing a trained ANN, for example, it is important that the net learns to
predict unknowns rather than to learn the identity of each example in the training
set. In the latter case the ANN loses its ability to generalise. Likewise, it is
important that the data are collected in such a way that the differences between the
controls used to generate the training data are due only to the expected difference
between the samples. An often-quoted example of where a trained ANN failed to
give the correct answer when presented with previously unseen data involved an
attempt by the military to detect tanks in a forest. However, unwittingly the
photographs with tanks present had been taken in different weather conditions to
those of the ‘‘background’’ forest, and thus the ANN had learnt to identify the
weather conditions rather than the desired information [41]. An equivalent flow
cytometric problem could arise if a mistake was made in addition of a stain, for
example, and whilst this would probably become apparent during manual analysis,
it may not be apparent until a trained ANN failed to give the expected outputs.
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Thus, the best advice that can be given is to use these tools where appropriate, but
also to check the data in the time-honoured manual fashion.

6 Conclusions

The data analysis techniques discussed in this chapter offer a variety of methods
for quickly and easily interpreting multiparametric flow cytometry data—reducing
the data to a simple 1 or 0 (‘‘yes’’ or ‘‘no’’), rather than requiring the inspection of
multiple dual parameter plots. Notwithstanding this, the majority of flow cyto-
metric publications and applications rely upon manual data analysis by skilled
scientists. In part this may be due to lack of familiarity with techniques and the
different software packages required to undertake off-line analysis. In the future
these techniques may have more widespread acceptance in the flow cytometry
community if these advanced data analysis methods can be embedded in com-
mercial or other dedicated flow cytometry software. Indeed, it has been noted that
the multiparametric data sets that can be rapidly accumulated in flow cytometric
experiments require efficient data viewing and complex clustering that could only
be achieved using software specifically dedicated to flow cytometry [30]. Fur-
thermore, in contrast to the recent advances in the technology that underpins flow
cytometry, there has not been concomitant progress in the data analysis tools
required to analyse, display and disseminate the data, and manual analysis of
individual samples has been described as a limiting aspect of the technology [31].
It would appear that the time is right for a step forward to be made in flow
cytometry data analysis methods, and it is hoped that the above chapter, together
with the developmental FlowDec software, will facilitate this.
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From Single Cells to Microbial Population
Dynamics: Modelling in Biotechnology
Based on Measurements of Individual
Cells

Thomas Bley

Abstract The development of dynamic modelling of microbial populations in
bioprocesses is reviewed. In the 1960s Arnold Fredrickson established the theo-
retical basis of such models, and other researchers have subsequently advanced
them. This review explores the relationships that describe cell proliferation and
evaluates the importance of the application of flow cytometry to the fundamental
parameterisation of the models for their use in bioprocess engineering. The section
‘‘Individual-Based Modelling’’ discusses recent theoretical developments. Delay-
differential equations are demonstrated to describe accurately temporal variation
of the cell proliferation cycle and specialised approaches and related iconography
are applied to stochastic and deterministic modelling of stages of cellular devel-
opment. Synchronised cultures of the bacterium Cupriavidus necator were pre-
pared and monitored using a flow cytometer. The data obtained demonstrate that
cell proliferation could be simulated quantitatively using the developed model.
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1 Introduction

To model the behaviour of microbial populations at the cellular level, criteria are
required with which to distinguish one cell from another. The morphological and
physiological differences between cells have a molecular basis, since the amounts
and locations of all intrinsic molecules define the status of each cell. These
parameters span a multi-dimensional state space, and the development of a cell can
be described as a trajectory through this state space.

In order to design models for practical use, especially in biotechnology for
bioprocess control and optimisation, the number of dimensions of the state space
must be radically reduced by a mathematical projection of the original space onto
sub-spaces. The modern biological equivalent of such a projection is the investi-
gation of cells at the genomic, transcriptomic, proteomic, or metabolomic level.

The transition of cells or better the instant switch between different states is
caused by either an internal (maturation) program or a change in the environment
of the cell. The primary focus of this paper is the basic process of ageing, i.e., the
progress of a single cell through the cell division cycle. This is indeed a funda-
mental process, as proliferation (and variation of the offspring) of individuals
seems to be the most important feature for the evolution of life forms.

The mathematical tools that describe these processes map all the stages of the
proliferation process into a compatible state space, which may be continuous or
discrete and will be uni-dimensional if they map only the age of the cell, but multi-
dimensional if more features, such as cell mass or cell functions, are described.

This study includes the review and discussion of historical papers from the field
of dynamic population modelling and demonstrates that the mathematical tools for
individual-based modelling are well established, but require application to the
high-resolution analysis of single microbial cells to realise their true potential for
bioprocess analysis and control.

2 The Classical Models

The first valid model of population heterogeneity was constructed by von Foerster
[56] in a state space defined by the ages of the individuals. Cell age was interpreted
as an index of the degree of maturation of a cell and, in later iterations, the
maturation process of microbial cells was linked closely to their progress through
the cell cycle.

Trucco [55] subsequently published a comprehensive and detailed discussion of
this approach, and it was briefly, lucidly reviewed in German by Kiefer [31].

During the 1960s, the new scientific discipline of biochemical (or bioprocess)
engineering emerged. Scale-up from laboratory to industrial operation required
accurate modelling of the processes and was initially addressed using similar
techniques to chemical engineering: mass balances were calculated for systems
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that were assumed to be homogeneous, and the heterogeneity of microorganisms
was neglected.

A group of biochemical engineers and mathematicians of the Chemical
Engineering Department of the University of Minnesota, inspired by Arnold G.
Fredrickson, subsequently opened new scientific horizons by realising that
understanding of microbial life (in a bioreactor) must be based on a quantitative
description of how individual cells change their physiological state in response to
both an internal program and interaction with the environment. The publication
‘‘Statistics and Dynamics of Procaryotic Cell Populations’’ [21] is widely recog-
nised to be a key paper and to form the basis of all individual-based models in
microbial population dynamics. The concept of a physiological state vector was
clear, powerful, and could be represented by a matrix of concentration vectors to
describe the internal structure of cells.

This rigorous concept allowed the classification of models using two pairs of
antonyms, structured/unstructured and segregated/unsegregated, which are directly
applicable to systems analysis in bioengineering [19]. The matrix representation of
this analysis described by Bailey and Ollis [2] should be recommended reading for
bioengineers.

As the terms segregated/unsegregated are not very evocative, the alternative
terms corpuscular/non-corpuscular—or cellular/homogeneous [9]—were proposed
later and were preferred by Fredrickson [53].

This generic model was applied to describe specific features of growth and
proliferation at a single-cell level. Prime examples of this application were
reported in two papers from the Bailey research group, in which a model was
formulated using the Cooper-Helmstetter and Donachie hypotheses. These
hypotheses attempt to explain the organisation of DNA reduplication in fast-
growing prokaryotes, where the state space is defined by the cell mass and the
cellular DNA content [45]. Other published analyses, also incorporating frequency
functions for cell mass and DNA content, addressed eukaryotic cells in the form of
the budding yeast Saccharomyces cerevisiae and included the interesting phe-
nomena of asymmetric division and the accumulation of bud scars in the mother
cells [29].

Modelling of the cell cycle of the baker’s yeast S. cerevisiae stimulated the
development of quantitative microbial population dynamics modelling, which was
strongly supported by developments in flow cytometry, especially for the exami-
nation of continuous cultivation processes. The first description of population
dynamics of S. cerevisiae using an age-structured model in parallel with flow
cytometry was published in 1977 [51].

The phenomenon of autonomous oscillations in continuously cultivated
S. cerevisiae is related to the partial synchronisation of cell division in the
population. The discovery of this phenomenon created impetus for the develop-
ment of the segregated models required to describe this process quantitatively.

The Alberghina research group based in Milan, Italy, published one of the
first studies that combined the flow cytometric investigation of yeast cell popu-
lations with a quantitative description of dynamic cell processes using structured
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segregated models [13]. A collaboration between members of this group and
Christos Hatzis later led to the development of morphologically structured models
to describe the complex, heterogeneous structure of asymmetrically dividing cell
populations [14, 27]. A recent paper by Porro [47] provides a comprehensive
introduction to the theoretical understanding of cell size and structure in yeast
populations.

Hjortso and colleagues have attempted to describe the phenomenon of oscil-
latory modes in continuous processes using an age distribution population balance
model [30] and by numerical simulation [62], with which multiple oscillatory
attractors could be reproduced. However, in the model simulations the attractors
occurred at different dilution rates, while the oscillatory modes were observed
experimentally at the same dilution rate.

Zhu et al. [63] combined age distribution modelling with mass balances to
identify variables that can be compared directly to easily measured extracellular
parameters. Mhaskar, Hjortso, and Henson [39] adopted this approach for the
estimation of specific parameters needed for numerical simulations.

Bellgardt [3] developed a simple, age-structured model that included the
description of asymmetrical division of baker’s yeast cells, which quantitatively
described the fluctuation of different cell types in sustained synchronous oscilla-
tion in yeast populations in continuous processes and advanced the modelling of
population dynamics to practical bioprocess engineering. Bellgardt considered the
quality of the final yeast product (e.g., the ability to produce carbon dioxide) to be
influenced by the stage of the cellular propagation cycle. The fraction of budding
cells was used successfully as a product quality index for feedback control of the
process.

The Reuss research group explored the combination of a structured model in
single cells (restricted to the sugar uptake system) with a segregated modelling
approach to describe the behaviour of microbial populations in heterogeneous
bioreactor systems and to calculate and visualise the heterogeneous distribution of
metabolites in single cells caused by local glucose inputs and changing oxygen
concentrations in a bioreactor [34, 35].

A fundamental limitation of individual-based modelling of bioprocesses is that
it is usually not possible to measure cell state distributions in the system. In an
illuminating paper entitled ‘‘Cytometric data as the basis for rigorous models of
cell population dynamics’’, Srienc pointed out that ‘‘A complete understanding
of the growth processes of a culture must be based on a quantitative understanding
of how individual cells change in time and of how individual cells interact with the
environment’’ [53]. Srienc discussed the classical Fredrickson [21] approach
concisely and elaborated the primary requirement for practical use of the model:
the accurate estimation of cellular parameters. Because the model requires
information about a continuous state space, Srienc concluded that (flow)
cytometric measurements are inevitably the most suitable source of such data.
Modern molecular biological tools extend the determination of the physiological
state of a cell far beyond cell size or DNA content to allow the detailed evaluation
of cell composition, but there is a fundamental problem. A cell does not move
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continuously through its state space. Life is characterised by switching between
the different, relatively stable stages that can be observed using cytometric
investigation, and the cell cycle is the most important sequence of states in the
life of a cell. Consequently, Fredrickson and Mantzaris [22] concluded that a
population balance equation and a transition intensity function are required for
each phase.

3 Some New Trends

The phenotypic cell-to-cell variation observed in isogenic microbial populations
under the same environmental conditions presents a challenge to the dynamic
modelling of microbial populations. It is necessary to elucidate the reason for this
phenomenon and to find a mathematical tool to map it into an appropriate cal-
culus. Mantzaris has postulated that there are two fundamentally different
sources for this variability: unequal partitioning of cellular material during cell
division and stochastic fluctuations associated with intracellular reactions. The
combination of continuous and discrete variables has generated a deterministic
cell population balance formulation and a fully stochastic Monte Carlo model,
which can account for both intrinsic and extrinsic population heterogeneity
sources. On the basis of simulation experiments, a very important finding was
that simulation at the level of a single cell cannot lead to a comprehensive
understanding of the stochastic behaviour of a population. This is because there
is a complex interaction between single-cell genetic architecture and behaviour at
the cell population level [38].

The generation of complex nonlinearities from the emergence of age classes is
discussed further by Lavric and Graham [36].

Using a simplified model, Lee et al. [37] examined the influence of growth and
substrate utilisation kinetics on population behaviour.

The Ramkrishna group conducted a detailed investigation of phase transition
kinetics and parameterisation of age-structured models using experimental data
from the evaluation of human leukaemia cells. The methodology thus developed is
generically applicable to the determination of age-specific transition rates between
cell cycle phases during balanced growth [50].

A recent and significant development is the consideration of the spatial struc-
ture, or living sphere of the microbial population, which is especially necessary to
understand the behaviour of biofilms and the development of microbial colonies.

This aspect is not discussed in depth in this review, but some important
elements for bioprocess engineering are highlighted: For example, iDynomics, the
successor of BacSim, is a flexible, XML-based simulator for individual-based
modelling of bacterial colony and biofilm growth [32], which has been demon-
strated to model biofilms in a realistic manner [33], but the parameterisation of
such models is complicated because mass balance is very difficult to monitor in
such heterogeneous systems.
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A further development introduced by physicists to describe the formation of
co-operative growth patterns in bacterial colonies is a model that incorporates
individual walkers (representing bacteria) that move in response to gradients
in nutrient concentration and communicate with each other by means of a
chemotactic ‘‘feedback’’ (quorum sensing). The self-organisation of such colonies
can be described accurately using a simplified approach [4].

Also elementary altruistic behaviour was demonstrated by Xavier and Foster
[61] in an individual-based model simulating the outcome of evolutionary com-
petition between cells with a different level of extracellular polymer production.

The growth of biotechnologically relevant dimorphic yeast colonies under
famine nutrient supply has been investigated [12], and a hybrid cellular automaton
model has been developed. Further experimental parameterisation of this model
has been achieved [57–59].

Cellular automaton models have been also developed to analyse spatio-
temporal pattern formation in interacting cell populations, e.g., in populations of
the ascomycete Neurospora crassa [17, 18].

The cellular Potts Model (CMP), which can also be regarded as an individual-
based approach, has been used to discover a new mechanism that can explain the
formation of aligned cell clusters in myxobacteria. This mechanism does not
depend on cell cooperation, and in particular it does not depend on diffusive
signals guiding cell motion [54].

In ecological modelling sciences the term ‘‘Individual-based Modelling’’ has
been used for around 20 years. In a monograph the philosophy and the methods of
this approach are described and discussed [24].

Based on this approach several studies have been conducted to demonstrate that
the principles could also be transferred to the behaviour of microorganisms
[20, 28, 48]. Surprisingly, all the fundamental scientific work done by bioprocess
engineers in this field was not considered and reflected by these authors. Many
passages of their publications remind one of ‘‘reinventing the wheel’’.

4 Stage Structure Models: The Geometry
of Microbiological Time

It is evident that models of population dynamics for use in bioprocess engineering
should be as simple as practicable and that their structure should be determined by
measurements of the population distribution between the different states. Flow
cytometry is the technique best suited to such measurement.

Investigations of budding yeast using cell cycle stage determination reveals two
morphologically distinct stages: single cells and budding cells. They are connected
via the four eukaryotic cell cycle stages: G1, S, G2, and M, which are determinable
by measuring the cellular DNA content.

It has been demonstrated that simple, two-stage models can describe the phe-
nomenon of auto-synchronisation in continuous bioprocesses. A requirement for
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describing such dynamic behaviour is model equations in which the stages have
differing yields and maintenance coefficients, and the transition rates between the
cell stages are influenced by the concentration of a limiting substrate. Such a
model, using ordinary differential equations (ODEs), was published by Bley and
Schmidt [5], and analytical investigation of the equations demonstrated that the
emergence of a periodic attractor was caused by a Hopf bifurcation [8].

A similar model was successfully applied to the simulation of optimised PHB
synthesis by Methylobacterium rhodesianum [1] by mapping two stages of the
bacterial cell cycle into two variables that described different kinetics of product
synthesis. The population dynamics were determined by flow cytometric analysis
of the DNA and PHB content of the bacterial cells, and the data were applied to
parameter identification [25].

However, ODEs cannot describe the structure of time for individual biological
entities, because it is characterised by states of variable duration that depend on
environmental conditions and phases of a determined duration [60]. The duration
of the phases is almost constant and only slightly influenced by the environment,
for example, the life cycle of an insect, the duration of human pregnancy, and the
cell cycle of microorganisms.

This very basic property of cell cycle regulation was formulated as a hypothesis
by Smith and Martin [52]. Thus, the kinetics of transition to the next state can be
assumed to be stochastic, or there may be a time-controlled stage in which specific
events occur stepwise, i.e., which is deterministic.

In the case of eukaryotic cells, the stochastic state corresponds to the G1 phase
of the cell cycle, while the deterministic state corresponds to the S and M phases.
By expansion of the Smith and Martin hypothesis, the G2 phase can be a second
stochastic state.

In age-structured models, the existence of such a deterministic phase is mapped
into the shape of the function that describes the dependency upon cell age of the
division probability. Whereas in most applications this function is a Gaussian
normal distribution, the Smith and Martin hypothesis provides an exponential
distribution with a minimal age s (Fig. 1).

Cooper developed a unifying model for eukaryotes and prokaryotes [15] in
which the B (or I) phase represents the stochastic state and the C and D phases
span the deterministic stage. Prokaryotes have developed a much broader spectrum
of cell cycle regulation modes [43, 44], but the basic principle of a combination of
deterministic and stochastic states seems to be universal.

In contrast to the regulation of cell proliferation in multi-cellular systems by
substances produced internally by the organism, bioreactors depend upon control
of the environmental conditions within the reactor in order to influence the
behaviour of individual cells, for example, in response to the concentrations of
substrates and nutrients. The transition rate from the stochastic to the deterministic
state should be a function of nutrient or substrate concentration and can be
described in a model by a kinetic rate function.

How should the behaviour of single cells or other individuals be mathematically
described? The approach of Fredrickson and Mantzaris [22] is adequately generic
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to map the principles of cell regulation, but it is highly theoretical and may not be
practicable in general for parameter estimation. Thus, a mathematical model is
required in which the variables describe the states that can be measured directly by
a flow cytometer and, equally important, is clear to biologists.

Starting with an age distribution model, Gurney and Nisbet [26] derived a
model using delay-differential equations (DDE) in which the delay term s repre-
sents the duration of the deterministic stage. The model was demonstrated to
describe real biological populations accurately—in this case, insect populations
with larval and adult stages.

In parallel to the development noted above, the author of the present report and
co-workers developed a related calculus, based upon the Smith and Martin
hypothesis, to describe the microbial cell cycle and the population dynamics of the
stages of the cell cycle in bioprocesses. This was significantly different to the
Gurney and Nisbet approach because DDE calculus was applied to the deter-
ministic stages, but ODE calculus was used for the stochastic states [6, 7].

Specialised icons were developed to depict the various patterns of regulation of

proliferation. Stochastic states are mapped by a circle: xi and deterministic

stages by a rectangle: Xj

τj 

a

aτ

f(a) A

Bf(a)

Fig. 1 Division probability
function f(a). a Mathemati-
cally friendly Gauss function.
b Reality with a minimum
age s for division
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Figure 2 presents the generic structure of cell proliferation graphically. In this
scheme the rate, k, of the transition from the stochastic to the deterministic state is
constant, which means that it is not influenced by the environment. sj is the
residence time in the deterministic stage.

The basic equation of this graph is a combination of ODE and DDE, and has the
structure:

dx0ðtÞ=dt ¼ 2 kx0ðt � sÞ � k x0ðtÞ

dx1 tð Þ=dt ¼ kx0 tð Þ � kx0ðt � sÞ

with the boundary conditions

x0ðtÞ ¼ w tð Þ; t �s; 0½ �

x1ðtÞ ¼ x1;start

The boundary conditions determine the type of growth at the beginning of the
simulation, which is either synchronised or balanced.

The specific growth rate, l, for balanced growth depends on k and s, and is
calculated from the following transcendent equation:

lðk; sÞ ¼ k 2 elðk; sÞs � 1
� �

:

Graphs of the regulation of proliferation can also be constructed for other
microorganisms. The cell cycle of the budding yeast Saccharomyces cerevisiae is
characterised by an asymmetric division, especially under poor cultivation
conditions.

This is presented graphically in Fig. 3: x0
D are the small daughter cells

(G1 phase), x0
M are the large daughter and the mother cells (G1 phase), and x1 are

proliferating cells (S/G2/M phase).
Another type of reproduction is demonstrated by the bacterium Caulobacter

crescentus (Fig. 4), in which x0
SW and x1

SW are swarming cells, and x1
ST are stalked,

sessile cells.
The transition rates, ki, in these graphs are constants. For coupling the cell

proliferation process to the quality of the environmental conditions, especially the
concentration of (limiting) nutrients or substrates, it is necessary to modify ki to
ki(s), which describes the probability of cells leaving the stochastic state as a

2*k

X1
τ

X0
Fig. 2 Generic cell cycle
graph
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function of substrate concentration. This function is typically a constantly
increasing one, but it may also decrease.

Mueller described diverse types of cell cycle regulation in bacteria. One new
finding and proposal is the so-called Pre-D phase in which cells pass over if the
nutrition conditions are famine [43]. Typical bacteria with this proliferation pattern
are Acinetobacter calcoaceticus and Rhodococcus erythrophilus. It is easy to
construct the matching graph with the icon language; see Fig. 5. It is important
to consider that k1(s) and k3(s) are monotonic increasing functions; in contradiction
to this, k3(s) is a monotonic decreasing function.

The above modelling approaches were applied to describe phenomena such as
the auto-synchronisation of yeast populations, and, using data from literature, the
models could be parameterised [9, 10].

Theoretical investigations and practical experiments using these models veri-
fied that the application of periodic control regimes to continuous fermentation
processes can produce higher specific yields, better performance, and improved
specific process productivity [40, 41].

Unfortunately, the database was poor at this time because flow cytometry had
not developed sufficiently to be applied to bioprocess engineering practically, and

X0
D

X0
M

k1(S)

0

k0(S)

X1

τ

Fig. 3 Cell cycle graph of
Saccharomyces cerevisiae.
The transition rates ki(s)
depend on the concentration
of a limiting substrate s

X0
SW

k(S)

X1
STX1

SWX1
SW

τ1 τ2

Fig. 4 Cell cycle graph of Caulobacter crescentus. There is a stalked (xst) and a swarming (xsw)
form of these bacteria
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the monitoring of population distributions in dynamic bioprocesses was not a
major concern of microbiologists or bioprocess engineers.

5 Modelling Experiments with Synchronous Cultures

Fifteen years later, the research group of the present author and the Mueller
research group in Leipzig re-evaluated the concept of phased cultivation that was
developed by Dawson [16]. Phased cultivation is influenced by periodic changes
between feast and famine growth conditions in the bioreactor, thus inducing
synchrony [42]. By optimisation of the control parameters, it is possible to obtain
synchronisation of the population, so that the whole population becomes strongly
representative of the behaviour of a single cell, and single cell analysis, in a certain
sense, thus can be replaced by analysis of the whole biomass in the bioreactor.
Careful monitoring of the varying cell stage proportions is necessary to quantify
the degree of synchronisation.

Fritsch et al. [23] reported the successful synchronisation of Cupriavidus
necator under continuous phasing by managing the composition of the medium in
such a way that the amount of the limiting substrate, pyruvic acid, was sufficient
for a single duplication of the biomass (and the cell number). All other nutrients
were balanced in surplus. Many methods have been published for the determi-
nation of the degree of synchronisation, including possibly the most objective
method, developed by Priori and Ubezio [49], with which, using comprehensive
flow cytometry analysis, a synchronisation percentage of 75.9% was estimated.

k1 2*)S(

DX1
SWC

τC τD

PreDk2(S) k3(S)

k (S)1
k3(S)

k2(S)

SS

B

Fig. 5 Cell cycle graph of bacteria possessing a Pre-D phase, which is entered under famine
culture conditions
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The degree of synchronisation was controlled by changing the duration of the
phasing cycle.

According to Cooper [15], the cell cycle of Cupriavidus necator can be divided
into three phases (Fig. 6). Cellular growth is associated with the B phase, whereas
DNA synthesis and the following division into two daughter cells take place within
the C and D phases of the cell cycle. The probability of the cell leaving this state
depends on the quality of the extracellular environment (e.g., nutrient supply). In
contrast, the C and D phases of the cell cycle form the deterministic state, which
has a fixed traverse period, i.e., sCD = sC ? sD. Consequently, the growth rate of a
population depends on the transition probability between these two states and the
duration of the deterministic state. Hence, the doubling time td of the population
equals the sum of sCD and the variable fraction of the B-phase duration.

On the basis of the already introduced delay-differential calculus, a process
model for phased cultivation was developed [46].

dB

dt
¼ 2kCDðsÞBðt � sCDÞ � kðsÞBðtÞ �

Xnc

i¼1

aNdðt � tiÞBðtÞ

dC

dt
¼ kðsÞBðtÞ � kCðsÞBðt � sCÞ �

Xnc

i¼1

aNdðt � tiÞCðtÞ

dD

dt
¼ kCðsÞBðt � sCÞ � kCDðsÞBðt � sCDÞ �

Xnc

i¼1

aNdðt � tiÞDðtÞ

ds

dt
¼ � 1

YN=s
lðsÞNðtÞ þ

Xnc

i¼1

asdðt � tiÞð2s0 � sðtÞÞ

dðt � tiÞ ¼
0 t 6¼ ti

1 t ¼ ti

(

The draining and filling of a fixed reactor volume fraction a is modelled by a
Dirac-function d, i.e., generating a pulse after each phase cycle i.

A model simulation demonstrated that it was reasonable to describe the stop of
all single cells in the B state after passing the C and D phase when the substrate
was exhausted. Figure 7 presents a simulated example with a transition rate of

B

k(S)

DX SW

*2

D1C
τC τD

Fig. 6 Cell cycle graph of Cupriavidus necator
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k = 2 h-1 in which the population changes to asynchronous growth and the
division rate converges to a mean value of �R ¼ ln 2=td.

This model could be successfully parameterised using data from flow cyto-
metric investigations [23]. A genetic algorithm was applied to estimate the model
parameters. The results of fitting the model to a flow cytometry dataset (6th phase
cycle) with a defined phase interval of T = 4 h are presented graphically in the left
panel of Fig. 8. The initial values for the B-phase cells (B0) and the substrate
concentrations of the exchange medium (s0) were defined in accordance with the
measurements. The model reproduced the flow cytometric measurements with
high accuracy.

The simulation demonstrated that the culture reached a stable state, with a
balance between nutrient supply and population size, resulting in exactly one
doubling of the culture in each phase interval. Thus, with this really simple set of
DDE, it is possible to describe the population dynamics in a tricky and complex
controlled bioprocess. The reason for this success is due to a correct mapping of
the geometry of microbiological time in the model.

Fig. 7 Simulation of cells accumulating in the B phase under substrate limitation B0 = 106

cells/l; s0 = 1 g/l; sC = 1.75 h; sCD = 3 h; kmax = 2 h-1; lmax = 0.5 h-1; Ks = KT = 0.03 g/l;
YN/s = 2 9 106 cells/g [46]

Fig. 8 Simulation of a phased culture of Cupriavidus necator. Phased cultivation was imme-
diately started after a short batch phase at t = 0.2 h. B0 = 1011 cells/l; s0 = 0.85 g/l;
sC = 1.17 h; sCD = 2.39 h; kmax = 1.07 h-1; lmax = 0.73 h-1; Ks = 0.003 g/l; KT = 0.05 g/l;
YN/s = 1.79 9 1011 cells/g; T = 4 h [46]
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6 Conclusion

Currently, individual-based models of microbial population dynamics are not
applied to a significant extent in bioprocess optimisation and control. As it
becomes increasingly obvious that the modelling of microbial performance can
strongly influence the productivity and economic efficiency of bioprocesses, it is
necessary to ask why there has been so little scientific progress in this field. It
seems that incomplete communication between scientists who perform single cell
analysis or modelling and bioprocess engineers is a potential major cause.

There are three good reasons to improve upon the under-utilisation of such
models:

1. High-resolution microbial single cell analysis has advanced and can now pro-
vide quantitative analysis of the dynamic behaviour of microbial communities
in bioreactors. These data provide an excellent basis for the parameterisation of
mathematical models.

2. The fundamental model approaches to describe microbial population dynamics,
originated mainly by the schools of Fredrickson and Bailey, can be translated
into algorithms that are accessible to bioprocess engineers and bioscientists,
and which facilitate computer simulation as well as the interpretation of sim-
ulation data.

3. Mass balance is the fundamental quantitative description of a bioprocess. It is
known that the metabolite fluxes in different stages of microbial life are
unequal, and recently it has become possible to cultivate single cells and
observe their morphology and other features. However, it is currently impos-
sible to establish mass balances for single cell cultivation.

The solution to this constraint is to synchronise the population in the bioreactor
so that synchronous growth is used to couple single cell behaviour with mass
balance. Thus, synchronisation is the link between single cell analysis and
bioprocess engineering.

In 2002 the editors of this journal, Susann Mueller and Thomas Bley, asked
the question ‘‘How should microbial life be quantified to optimise bio-
processes?’’ [11].

The answer is that all integral measurement methods that are available should
be used. Without local measurement at the single cell level, it is not possible to
obtain all the information necessary for efficient process control and optimisation,
i.e., only the additional use of single cell analysis methods can provide a full
picture. Cytomics will be the key that opens the door to more comprehensive
understanding of bioprocesses.
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