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Preface

The numerous attempts over the last 15-20 years to define a quantum Lie algebra
as an elegant algebraic object with a binary “quantum” Lie bracket have not been
evidently and widely accepted. Nevertheless, the g-deformations of the enveloping
algebras introduced independently by Drinfeld and Jimbo have profoundly impacted
the development of both the modern theory of quantum groups and the much older
mathematical theory of Hopf algebras. Although the definition of the Drinfeld—
Jimbo quantization is not simple, a clear common property unites all of these
quantizations, as well as those that appeared later in different multiparameter
versions articulated by Reshetikhin, Costantini, Varagnolo, Chin, Musson, and
Benkart, with the universal enveloping algebras. Especially, these quantizations as
Hopf algebras are generated by skew-primitive semi-invariants. This book is mainly
concerned with Hopf algebras possessing this property. Because the action on a
semi-invariant is defined by a character, we call such Hopf algebras character Hopf
algebras.

We treat the character Hopf algebras as universal enveloping algebras of
“quantum Lie algebras.” The quantum Lie algebra must be an algebraic object
located inside a character Hopf algebra. The Cartier—Kostant theorem asserts a
category equivalence between Lie algebras (in characteristic zero) and connected
co-commutative Hopf algebras. Given this equivalence, a Lie algebra corresponds
to the space of primitive elements. This correspondence provides a clear idea to treat
the space spanned by skew-primitive elements as a quantum Lie algebra.

To maintain the Cartier—Kostant category equivalence in characteristic p > 0,
one must consider an additional unary operation x +— x” on the Lie algebras.
Thus, we must consider not only binary operations (brackets) but also operations
involving one or various variables. In this manner, we develop the notion of quantum
Lie operation, a polynomial in noncommutative skew-primitive variables with
skew-primitive values. We thus consider the space spanned by the skew-primitive
elements and equipped with the quantum Lie operations as a quantum analog of a
Lie algebra.

vii



viii Preface

There are many reasons motivating the extension of research to operations
that replace the Lie bracket but that depend on greater numbers of variables,
for example, operations of n-Lie algebras introduced by V.T. Filippov and then
independently appearing under the name ‘“Nambu-Lie algebras” in theoretical
research on generalizations of Nambu mechanics.

Another group of problems requiring the generalization of Lie algebras corre-
sponds to research on skew derivations of noncommutative algebras. A noncommu-
tative version of the fundamental Dedekind algebraic independence lemma states
that the algebraic structure of a Lie algebra and operators with “inner” action
define all algebraic dependencies in ordinary derivations. This result was extended
to the field of skew derivations by Chen-Lian Chuang. His fundamental theorem
may be interpreted in the same manner, i.e., the algebraic structure and operators
with “inner” action define all algebraic dependencies in skew derivations. Hence,
the following question arises: Which algebraic structure corresponds to the skew
derivation operators? This question requires the consideration of n-ary operations
irreducible to bilinear operations.

A third group of problems concerning multivariable generalizations of the
Lie bracket appeared in nonassociative algebra. P.O. Miheev and L.V. Sabinin
demonstrated that a simply connected local analytic loop is determined by an
algebraic system consisting of a series of multilinear operations. These systems are
now called Sabinin algebras.

This book is intended as an introduction to the mathematics behind the phrase
“quantum Lie algebra.” Despite the complexity of the subject, we have attempted
to make this exposition accessible to a wide audience. We assume a standard
knowledge of linear algebra and some rudimentary knowledge of representation
theory. Most of the text will be accessible to graduate students in mathematics who
have completed an introductory course in linear algebra.

Chapter 1 is introductory in nature. It contains many basic definitions related to
noncommutative algebra that are used in subsequent chapters. Starting with Gauss
polynomials and Lyndon—Shirshov standard words, we discuss the foundations of
Grobner—Shirshov theory, which is the basic tool for investigating noncommutative
algebras specified by generators and defining relations. In this “combinatorial
paradigm,” the Poincaré—Birkhoff—Witt theorem obeys an elegant proof, whereas
the concepts of a skew group ring and crossed product can be perfectly analyzed.
We then introduce the braid monoid and the permutation group and consider the
set of shuffles as a transversal of a direct product of symmetric subgroups. Although
representation theory is not used intensively in this book, we formulate the theorems
of Maschke and Wedderburn as initial statements without proofs. The concept of a
character Hopf algebra is central to this monograph. In the combinatorial paradigm,
the free character Hopf algebra plays a crucial role. The notion of a combinatorial
rank appears in the analysis of generators for Hopf ideals, which are the defining
relations for Hopf algebras. We develop the bracket technique as an important tool
for performing calculations that allows one to preserve and apply the intuition of the
Lie algebra machinery. Coordinate differential calculi, filtered and associated graded
spaces, and specific fundamental concepts from P.M. Cohn theory are developed
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as tools for further applications. We conclude the chapter with notes that provide
the reader with an opportunity to learn more about the subjects we review in the
introductory chapter. We have constructed this chapter to be as self-contained as
possible. Some arguments are new, and the remaining chapters have not previously
appeared in book form.

In the second chapter, we demonstrate that every character Hopf algebra has
a PBW basis. Our proof intensively uses the coalgebraic structure, distinct from
the known Lusztig’s method, which uses the algebraic structure only. Because the
coproduct may not differ between a polynomial with a zero value and a polynomial
with a skew-primitive value, in establishing linear independence, we automatically
obtain important information regarding the skew-primitive polynomials.

In the third chapter, we review possible quantum deformations of the universal
enveloping algebras of Kac—Moody algebras. To this end, we associate a class 2
with a given Kac—-Moody algebra g. The class 2 consists of all character Hopf
algebras defined by the same number of relations and with the same degrees as
g has. 2 contains all known quantizations of g. We demonstrate that Hopf algebras
from 2( have the so-called triangular decomposition as coalgebras. If the generalized
Cartan matrix A of g is indecomposable, then up to a finite number of exceptional
cases, the algebraic structure is solely defined by one “continuous” parameter g
related to the symmetrization of A and one “discrete” parameter m related to the
modular symmetrizations of A.

In the fourth chapter, consistent with the main concept of the book, we treat the
skew-primitive polynomials as quantum Lie operations. We discuss linearization
and specialization processes and criteria for a polynomial to be classified as a
quantum Lie operation. We also classify multilinear quantum Lie operations in two,
three, and four variables. Although generally a bilinear bracket there does not exists
as an operation, a binary bracket exists that is an important and effective tool for the
investigation. Specifically, all quantum Lie operations can be expressed in terms of
that bracket. The bracket becomes a quantum operation only if characters that define
the action of group-like elements satisfy a multiplicative skew-symmetry condition.
In this case, the quantum Lie algebra transforms into a color Lie algebra.

The fifth chapter focuses on multilinear quantum Lie operations involving more
than four variables. We establish a necessary and sufficient existence condition
and the number of linearly independent operations that may exist and define the
principle n-linear operation which by permutations of variables spans the space of
all n-linear operations. The symmetric operations pose an opposite property, namely,
in the context of permutations of variables, they do not change their values up to
a scalar factor. We deduce that there are precisely (n — 2)! linearly independent
symmetric generic quantum Lie operations and at least one principle generic n-
linear operation. Although this chapter does not require specialized knowledge, it
demands persistence from the reader.

The main goal of the sixth chapter is a detailed construction of free braided Hopf
algebra and shuffle braided Hopf algebra on the tensor space of a given braided
space. We define a Nichols algebra as a subalgebra of the shuffle braided Hopf
algebra generated by the given braided space. All calculations are performed within
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the braid monoid but not in the braid group; therefore, the constructions remain valid
for a noninvertible braiding. We then consider braided Hopf algebras that appear in
the Radford decomposition of character Hopf algebras and discuss filtrations.

As previously mentioned, numerous definitions had been proposed for the
binary quantum analog of a Lie algebra. It is likely that only the Gurevich—-Manin
generalization up to Lie r-algebras represents a completely successful definition.
In the seventh chapter we consider this generalization and its particular cases,
specifically, Lie superalgebras and color Lie algebras. The PBW theorem for Lie
r-algebras transforms into a coalgebra isomorphism between universal enveloping
algebras of Lie r-algebras defined within the same braided space. We establish a
t-Friedrichs criterion and consider subalgebras of free Lie t-algebra.

In the field of nonassociative algebras, there are known generalizations of Lie
algebras with nonassociative envelopes. Many of these well-known generalizations
involve only one or two operations. In the eighth chapter, we consider nonassociative
primitive polynomials as operations for nonassociative Lie theory similar to how we
considered skew-primitive polynomials as operations for quantum Lie theory. I.P.
Shestakov and U.U. Umirbaev discovered infinitely many independent operations
of that type. The proof constructed in this chapter demonstrates that Shestakov—
Umirbaev primitive operations together with the commutator form a complete set
of nonassociative Lie operations.

I am grateful to all who have offered suggestions or made corrections to
the manuscript. I am pleased to express my thanks to Ivan Shestakov, Cristian
Vay, Ualbai Umirbaev, Zbigniew Oziewicz, Robert Yamaleev, Mayra Lorena Diaz
Sosa, David Tinoco Varela, José Luis Garza Rivera, Alma Virginia Lara Sagahén,
Angélica Espinoza Godinez, Rodolfo Alvarado Cervantes, Alejandro Andrade
Alvarez, and Ricardo Paramont Hernandez Garcia for valuable discussions and
comments. Finally, I offer a special expression of thanks to my advisor, Leonid
Bokut’, who initiated me on the path toward understanding modern noncommutative
algebra.
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Chapter 1
Elements of Noncommutative Algebra

Abstract The first chapter contains many basic definitions and proves related to
noncommutative algebra that are used in subsequent chapters. Starting with Gauss
polynomials and Lyndon-Shirshov standard words, we discuss the foundations of
Grobner—Shirshov theory, which is the basic tool for investigating noncommutative
algebras specified by generators and defining relations. In this “combinatorial
paradigm,” the Poincaré-Birkhoff-Witt theorem obeys an elegant proof, whereas
the concepts of a skew group ring and crossed product can be perfectly analyzed.
We then introduce the braid monoid and the permutation group, and consider
the set of shuffles as a transversal of a direct product of symmetric subgroups.
The concept of a character Hopf algebra is central to this monograph. In the
combinatorial paradigm, the free character Hopf algebra plays a crucial role. The
notion of a combinatorial rank appears in the analysis of defining relations for Hopf
algebras. We develop the bracket technique as an important tool for performing
calculations that allows one to preserve and apply the intuition of the Lie algebra
machinery. Coordinate differential calculi, filtered and associated graded spaces,
and specific fundamental concepts from P.M. Cohn theory are developed as tools for
further applications. Although representation theory is not used intensively in this
book, we formulate the theorems of Maschke and Wedderburn as initial statements
without proofs. We conclude the chapter with notes that provide the reader with an
opportunity to learn more about the subjects we review in the introductory chapter.

This chapter contains the basic definitions and proves related to noncommutative
algebra that are used in sequel. We discuss Gauss polynomials, Lyndon-Shirshov
standard words, and the foundations of Grobner—Shirshov theory, which is the
basic tool for investigating noncommutative algebras specified by generators and
defining relations. We then introduce the braid monoid and the permutation group.
The concept of a character Hopf algebra is central to this monograph. In the
combinatorial paradigm, the free character Hopf algebra plays a crucial role. The
notion of a combinatorial rank appears in the analysis of defining relations for Hopf
algebras. Coordinate differential calculi, filtered and associated graded spaces, and
specific fundamental concepts from P.M. Cohn theory are developed as tools for
further applications. Although representation theory is not used intensively in this
book, we formulate the theorems of Maschke and Wedderburn. We conclude the

© Springer International Publishing Switzerland 2015 1
V. Kharchenko, Quantum Lie Theory, Lecture Notes in Mathematics 2150,
DOI 10.1007/978-3-319-22704-7_1



2 1 Elements of Noncommutative Algebra

chapter with notes that provide the reader with an opportunity to learn more about
the subjects we review in the introductory chapter.

1.1 Gauss Polynomials

Let x and y be variables subject to the relation yx = gxy, where ¢ is a variable with
values in the ground field k. For future applications, we need to compute the powers
of x + y. Expanding (x + y)", we see that the monomials in the expansion are all
scalar multiples of monomials of the form x*y"~*. Therefore, for all n > 0 we have

@+ =Y H Ky k, (1.1)
k=0 Lkdq

n

where[ i| , 0 <k < n are integer polynomials in g, called Gauss polynomials. We

k
q
have yx* = gfxFy, k > 0. Using these commutation rules, we may write

(x4 ) Z[":| iy ZZ["} xk+1yn—k+2|:n:| by
kg kg k=0 L¥dg

k=0 k=0
n n n
:xn+l + Z(I: :| + qk|: :| )xky(n-l—l)—k +yn+l.
=1 L1y kdg

This equality and definition (1.1) with n <— n + 1 imply the following recurrence
relation, called the first g-Pascal identity:

n+1 n n n+1 n+1
St O 8 Y T
k g k—lq kq 0 q n+1q

Similarly, starting with the decomposition (x +y)"*! = (x+y)"- (x +), we obtain
the second q-Pascal identity:

n+1 n n
el e
k q k—1 q k q

The Gauss polynomials have the following rational representation

H _qlgt gt
o, POPERT

, (1.4)
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where by definition, ¢! = 14+¢q+---+¢*7", g% = 0. To prove (1.4), it suffices to
demonstrate that those rational functions satisfy recurrence relations (1.2).

We have gl'tll = gl 4 g5 . gl"=*+1 Therefore, g"t1/gH = 1 + (¢* -
gl"=*+11/4l) This relationship implies the required decomposition:

g lgh .. ghi—42] i gl q[n—k+2](1 . q[n—k+1])
P D I e A AT
| ghlgh L gk ;. g g1 .. gl 1)
POPERPE] POPER

Future applications will require certain additional information about Gauss
polynomials when ¢! = 0. By multiplying the latter equality by ¢ — 1, we obtain
q" = 1. Hence, g is a primitive mth root of 1, and m is a divisor of n. The case
m = 1 is also possible if the characteristic / of the ground field k is positive. Thus,
we consider 1 to be a primitive 1st root of 1.

Lemma 1.1 If g is a primitive mth root of 1 and m is a divisor of n, then

H =0, 1<k<m.
k‘[

Proof In the rational representation (1.4), all factors qm, 1 < i < k of the
denominator have nonzero values because ¢ # 1, 1 <i <m by the definition of m.
Each numerator has a factor g/, Let n = m - s. We have gl = ¢l™! = (g™l . g™,
If m # 1, then gl = 0. If m = 1, then there is nothing to prove. ]

Lemma 1.2 Let g be a primitive mth root of 1, and let n = mi*, where | = 1 or
| = chark > 0. If x, y are variables subject to the relation yx = gxy, then

x+y)"=x"+y"

Proof Due to the above Lemma and (1.1), we have (x + y)" = x" 4 y™. In this
case y"x" = q’”zx’”y”’ = x"y". Hf:nce we may apply the ordinary Newton binomial
formula (x" + y")!" = xm" 4yl = 1 4y, O

1.2 Lyndon — Shirshov Words

Let X = {x; | i € I} be a set of variables. Assume that on X an order < is fixed such
that X is a well-ordered set (every nonempty subset has a least element). Consider
the set X to be an alphabet. On a set X* of all words in this alphabet, define the
lexicographical order: two words v and w are compared by moving from left to
right until the first distinct letter is encountered. Otherwise, if one of the words is
the beginning of another word, then the shorter word is assumed to be greater than
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the longer word. For example, all words of length at most two in two variables
X1 > xp respect the following order:

xp > x% > XX > Xp > XpX| > x%. (1.5)

The lexicographical order is stable under left concatenations and unstable under
right ones. Nevertheless, if # > v and u is not a beginning of v, then the inequality
is preserved under right concatenations, even by different words: uw > vt for all
w, .

Even if the alphabet is finite, there exist infinite ascending and infinite descending
chains of words (in particular, X* is not a well-ordered set):

x1>x1x2>x1x§>...>x1)ﬂ2">...; (1.6)

x2<x1x2<x%x2<...<x;"x2<..., (L.7)

provided thatx; > x,. These chains make it impossible to perform induction (neither
direct nor downward) on words using only the lexicographical order. Nevertheless,
it is possible to perform induction based on two parameters, for example, the length
of a word and its lexicographical position among words of the same length.

1.2.1 Standard Words

Definition 1.1 A word u is called standard (or a Lyndon-Shirshov word) if, for
each decomposition # = u;u,, where u; and u, are nonempty words, the inequality
u > upu; holds. For example, in (1.6), (1.7) all words are standard, whereas in (1.5),
three words are standard: x;, x1x3, and x;.

If u = x;,x;,---x;, is a word, then the set of all possible words u,u;, where
u = ujuy, is precisely the set of all cyclic permutations of u,

XiyXiy = Xipys XipXiz = Xi, Xy woe s Xj, Xy Xip 02 X,y e (18)

Therefore, the word u is standard if and only if it is greater than each cyclic
permutation of it. If the word u is not periodic, u # v", h > 1, then all words
in (1.8) are different. Hence, there is precisely one standard word among the cyclic
permutations of u. If the word u is periodic, u = v" with the maximal & > 1, then
each cyclic permutation u’ in (1.8) is periodic: u’ = (v’)", where v’ is a cyclic
permutation of v. In this case, the set of all cyclic permutations contains no standard
words but has precisely & words of the form w” with a standard w, whereas w is the
standard cyclic permutation of v.

Lemma 1.3 Let u = sv be a standard word. If s, v # @, then v is not a beginning

of u.
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Proof Suppose u = vs’. By definition, sv = vs’ > s'v, i.e., s > s’. Similarly,
vs’ = sv > vs, hence s’ > s which is a contradiction. O

Lemma 1.4 A word u is standard if and only if it is greater than each of its proper
endings.

Proof If the word u is standard and u = vv; then vv; > wvjv. According to
Lemma 1.3, the word v; is not the beginning of vv;; hence, u = vv; and vjv
differ already in their first I(v;) letters, where by definition /(w) is the length of a
word w. Therefore, u > v;. Conversely, if # = wu uy and u > u,, then u is not the
beginning of u,, so the inequality # > u, holds when the right side is multiplied
by u;. O

Lemma 1.5 Let u and v be standard words. If u > v, then u" > v.

Proof If u is not the beginning of v, then # > v can be multiplied from the right by
different words. Suppose that v = w*v’ and that v/ does not begin with u. If k > A,
then u" > v as the beginning. If k < h then v’ is nonempty, and v/ < v < u. It

follows that v = u* - v/ < uF - u - u=*1 h o

=u.

k

Lemma 1.6 If u, v are different standard words and u" contains v* as a sub-word,

w" = cvkd, then u contains v* as a sub-word, u = bvFe.

Proof Without loss of generality, we may suppose that I(c) < I(u); otherwise, n can
be diminished. In this case, u = cv’t, s > 0. If s < k, then ¢ is the beginning of
v, v = tt’, and the ending of u. Then, according to Lemma 1.4, either u > ¢ > v
or ¢ is empty. In the latter case, u > v because v is the ending of u. In turn, ¢’ is the
beginning of «"~!; thatis, #’ = u"t”, r > 0. Here, t" is the ending of v and the
beginning of u. Lemma 1.4 implies that either v > ¢” > u or ¢” is empty. In the
latter case v > u because u becomes the ending of v. We note the contradiction that
u>v>u. O

Lemma 1.7 Let u and u, be standard words such that u = uzu, and u, > u;. Then
uuy > uziy, Ul > Usldg. (1.9)

Proof First we demonstrate that upu; > u;. If u; does not begin with u,, then the
inequality follows immediately from u; > u;. Assume that u; = u’é ‘u 1/ and that u,
is not the beginning of u/. Since u; is standard, it follows that u§u| > us~'u/, i.e.,
upu| > uj. Hence, upu; = uk -upu| > uf-u] = u;. Multiplying this inequality from
the left by us yields the first required inequality. Consider the second inequality.
Because u is a standard word, u3u, > u, according to Lemma 1.4. As usu, is not

the beginning of u,, we can multiply the latter inequality from the right by ;. O
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Lemma 1.8 Ifu, v are standard words, and u > v, then uv is a standard word.

Proof Using Lemma 1.4, it is sufficient to demonstrate that uv = wt, w,t # @
implies uv > t.

If I(w) < Il(u), then u = wt’, t'v = t. According to Lemma 1.4, we obtain
u > t’. The word u is not the beginning of ¢’ because I(u) = I(w) + I(¢"). Therefore,
u > t’ may be multiplied from the right by v. Thus, uv > t'v = 1.

If I(w) > Il(u), then w = ut’ and 't = v. Applying Lemma 1.4, we obtain v > 7,
which implies that 4 > v > ¢. The inequality # > ¢ implies that uv > ¢ provided
that u is not the beginning of z. Otherwise, t = ut” implies that v = t'r = t'ut”.
Lemma 1.4 states that v > r”. Hence uv > ut” = 1. a

Theorem 1.1 Each word u has a unique decomposition

u=wi'-wy-...-wpnr (1.10)

m

where w;, 1 < i < m are standard words and w; < wy < ... < Ww,,.

Proof The initial letter of u is a standard word of length one. Let v; be the longest
beginning of u that is a standard word, u = v; - u;. Let v, be the longest beginning
of u; that is a standard word, u; = v, - u», and so on. In this manner, we find a
decomposition 4 = vy-v;-...-v;-... with standard v;, i > 1. In this decomposition,
v < vy < ... < v; <...because, due to Lemma 1.8, the inequality v; > v;4;
implies that v;v;4; is a standard beginning of u; of length greater than /(v;).

Ifv,<vy<...<v/<...andu =v{-vy-...-v/-...1is another decomposition
with standard factors, v, # vy, then v is a proper beginning of v;. In particular,
v; = v{-...-v{ t;, where i > 1 and #; is a non-empty beginning of v/, ;. The standard
word v; is greater than its ending #; and less than its beginning v{. In turn, v/, is
less than or equal to its beginning #;. Thus, we have a contradiction:

<t.

/ / /
<V <V =02V SV

|

Corollary 1.1 Every standard word w of length greater than one has a decomposi-
tionw = uv, u > v with standard u, v.

Proof Let u be the longest proper standard beginning of w, w = wuv. By
Theorem 1.1, the word v has a decomposition v = v - ... - v, with standard
v, 1 <i<mandv, < ... < v, If m > 1, then uv; is a proper beginning of
w. Therefore, uv; is not standard. By Lemma 1.8, this statement implies u < v;.
In this case, we have two different decompositions, i.e., w = u-v; - ... v, and
w = w, that satisfy the conditions of Theorem 1.1. Thus, m = 1, and v is a standard
word. ]
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1.2.2 Nonassociative Standard Words

The proven corollary and Lemma 1.8 make it possible to find all standard words
step-by-step. First, all words of length one are standard. Next, if all standard words
of length < [ are known, then every pair of different standard words u, v of length
i and [ — i, respectively, 1 < i < [, defines a standard word uv (if u > v) or vu (if
v > u). In this way, all standard words appear.

In this process, certain standard words may appear several times. For example,
if x;1 > x» > x3, then x1xox3 = x7 - xox3 and xjxx3 = x1x - x3. Recall that a
nonassociative word is a word in which [, | are somehow arranged to show how the
multiplication applies. We see that in the above process, a particular construction of
a given standard word u is equivalent to an alignment of brackets.

Definition 1.2 If u is a standard word, then [u] denotes a nonassociative word where
the brackets are arranged by the following inductive algorithm. The factors v and
w in the nonassociative decomposition [u] = [[v][w]] are standard words such that
u = vw, and v has the minimal possible length. The nonassociative word [u] is
called a nonassociative standard word.

For example, if x; > x, > x3, then the words
2 3 2
X1X2X3, X1Xp, XpX3, X1X2X3X2, X2X3X2X3X4, X1X2X3X2
are standard, and they define the following nonassociative standard words:

[rixox3] = o]l axg] = [[vxlxl, bas] = oo boxs]]],

[xixox3x0] = [[x1 Poxs]xa], [xoxsxoxsxa] = [eoxs]frafraxs]]],

[eixaxsxa] = (Do [Peaxalxs]]xa]. (1.11)
Proposition 1.1 Letr u > u, be standard words and [u] = [[u3][u2]]. Then, [[u][u1]]
is a standard nonassociative word if and only if uy < u,.

We prove this statement in two steps.
Lemma 1.9 [f[[u][u,]] is a standard nonassociative word, then uy < u,.

Proof If up > uy, then uyu, is a standard word, and we have a decomposition uu; =
us - upuy where the length of the first factor is less than the length of uu; = uszuy - u;.
Hence, [[u][u1]] is not standard. O

Lemma 1.10 [f [[u][u]] is not a standard nonassociative word then u; > u;.

Proof We perform induction on the length of uu,;. Let X; = {x;,x2,...,x,} be the
set of all letters that occur in the word uu;, and assume that x; > x, > ... > x,.
Consider a set Y = {y1,¥2,...,ys—1} of new symbols. On the set (X; U Y)* of all
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words in the alphabet X; U Y, define the lexicographical order such that
X1 >Y1>X2>Y2> ... > Yp—1 > Xp. (112)

For every word W in X; U Y, let £(W) denote a word in X that results from W under
the substitution y; <— x;x,, 1 <i < n. We note thatthe map £ : (X; UY)* — X[ is
an homomorphism of ordered monoids:

EVW) =E(V)EW), V< W= (V) <EW). (1.13)

The former equality is evident. The latter condition follows from the fact that &
preserves the order of letters: x; > x1x, > X2 > XX, > ... > X;—1X, > Xp.

A word W € (X U Y)* is standard if and only if £(W) is standard as a word in X
because each cyclic permutation of (W) either starts with the smallest letter x,, or
has the form £(W’) where W' is a cyclic permutation of W.

A decomposition U = V - W of a standard word U satisfies the conditions of the
algorithm given in Definition 1.2 if and only if §(U) = &(V) - £(W) satisfies the
same conditions as a decomposition of a word in X. Indeed, if £(U) = v; - wy, and
vy, wi are standard words such that v; has the minimal possible length, then either
vy = &(Vy), wi = E(W)) for a suitable decomposition U = V; - Uy, or w; starts
with x,. Because w is a standard word, in the latter case, w; = x,,; however, in this
case, the length of v; is greater than the length of £ (V).

If w is a standard word in X, then it does not start with the smallest letter x,
unless w = x,. Let ¢ (w) be a word in X; UY that appears from w under replacements
of all sub-words x;x,, with y;, 1 <i < n. Of course, we have

§@(w) = w.

If w = wyw, is a decomposition in the product of standard words, then

d(w) = p(wi)p(w2) (1.14)

provided that w, # x,,. Equality (1.14) is still valid if w, = x,, and w; ends with x,,.

Let us note that if u, = x,, then u; ends with x,. Indeed, [u] = [[us]x,] is
a standard nonassociative word. If [u3] = [[ua][us]], then by Lemma 1.9, we have
us < x, which is possible only if the standard word us equals x;,. This note and (1.14)

imply
¢ (u) = ¢(uz)¢ (u2).
Similarly, we have

¢ (uuy) = ¢ (u)p (ur)
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because otherwise either the required condition, u, > u;, holds, in which case we

have nothing to prove, or u, = u; = x,. In the latter case, (1.14) still applies.
Although the word ¢ (u3)¢ (u2)¢p (1) is a word in a new alphabet, its length is less

the length of uu;. Applying the induction hypothesis to the nonassociative word

(16 (u3)] [ )] [6 @)]],

we obtain ¢ (12) > ¢ (u1), whereas condition (1.13) implies up > u;. O

Remark 1.1 The induction of the above lemma provides a dual algorithm of the
alignment of brackets in a standard word w that results with the same standard
nonassociative word [w]: first, we put the brackets on all sub words [xx,], 1 <
i < n, and we then consider these bracketed sub-words as new letters y; with
ordering (1.12). Next, we repeat the first step. This procedure is an alignment
of brackets “from the bottom”, while the algorithm given in Definition 1.2 is an
alignment “from the top”.

1.2.3 Deg-Lex Orders

As mentioned above, the lexicographic order does not satisfy either ACC nor DCC,
see (1.6), (1.7), which makes it impossible to perform induction. To overcome this
obstacle, one may introduce additional stratification of all words in groups so that
each group has a finite number of words.

The simplest stratification is one given by the length. In this case, there appears
the Hall ordering of words: u <, v if l(u) < I(v), or [(u) = I(v) and u < v. The
Hall ordering is compatible with the concatenation product of words: If u <, v,
then wut <;, wut for all words w, ¢.

Another stratification is one given by the natural degrees. Let us assign natural
degrees to the letters of the alphabet, degx; = d;, i € I. As usual, the degree of
a word is the sum of the degrees of its letters (normally, such a degree is called a
formal degree with degx; = d;). In this way, there appears the so called Deg-Lex
ordering of words: u <4 v if degu < degv, or degu = degv and u < v. The
Deg-Lex ordering is also compatible with the concatenation product. Certainly, if
all d; equal 1, then the Dex-Lex order coincides with the Hall order.

If the alphabet is finite, then the set of words of fixed degree (or of fixed length)
is finite. However, if the alphabet is infinite, than that set may be infinite. Therefore,
it is useful to employ a more precise stratification by constitution.

Definition 1.3 A constitution of a word u in X = {x;|i € I} is a family of
nonnegative integers {m; | i € I} such that u has m; occurrences of x;. The number
m; has a notation m; = deg; u, which is called the degree of u with respect to x;. In
this terminology, the constitution of u is nothing more than the multidegree of u.
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A constitution of a word has only a finite number of nonzero components.
Therefore, the set of all words of a given constitution is finite. In fact, the order
related to the stratification by constitution is precisely the Deg-Lex order if, instead
of the natural degrees, we assign to the variables positive degrees from the free
additive (commutative) monoid I" generated by X.

This monoid consists of the formal finite linear combinations ) _,; nx;, where
each n; is a natural number or zero. Respectively, degx; = 1-x; and degu = Y m;x;,
where {m; | i € I} is the constitution of u.

The monoid I" is a well-ordered monoid with respect to the order

mixi, + maxi, + ...+ mx, > mixi, + myxi, + ...+ mx; (1.15)
provided that the first nonzero number from the left in
(my —my,my —mj, ... ,mg—m)

is positive, while x;, > x;, > ... > x; in X.

The Deg-Lex order of words in X is compatible with the concatenation product:
If degu < degv, then degwut = degw + degu + degt < degw 4 degv + degt =
degwut. If degu = deg v, then v is not a beginning of u, and u < v implies wut <
wut for all words w, t.

1.3 Grobner-Shirshov Systems of Defining Relations

In this section, we discuss the combinatorial representation of associative algebras
by means of generators and relations. The crucial problem is that there does not
exist a general algorithm to verify whether two polynomials are equal in the quotient
algebra k (X)/J (i.e., the equality problem for associative algebras is undecidable).
Nevertheless, there is an algorithm that allows resolution of the equality problem
and even the problem of the construction of a basis, provided that the system
of defining relations satisfies an additional property (is closed with respect to
the compositions). This algorithm is based on the Composition Lemma by A.L
Shirshov.

1.3.1 Composition Lemma

Let X be a set of variables, and let k (X) be the free associative algebra freely
generated by X. The free algebra k (X) consists of noncommutative polynomials,
the formal linear combinations ), awy of words in the alphabet X, with the
concatenation product. By definition, the algebra defined by the generators X and



1.3 Grobner—Shirshov Systems of Defining Relations 11

relations F; = 0, i € I, is the quotient algebra k (X)/J, where J is the ideal of k (X)
generated by F;, i € I.

We fix a well order < on the set of words X* such that u < v implies wut < wvt
for all words w, t € X*. For example, < may be the Hall order or one of the Deg-Lex
orders described above.

Definition 1.4 A leading word of a polynomial F = )", auwi € k(X), o # O'is
the greatest word w of the finite set {wy}.

Without loss of generality, we may assume that the coefficient at the leading word of
each defining relation is equal to one. In this case, the relation F; = 0 is equivalent
to the relation w; = f;, where w; is the leading word of F;, so that f; is a linear
combination of lesser than w; words, F; = w; — f;. Consider a system of relations

wi=f, iel (1.16)

Lemma 1.11 The set X of all words that have none of w;, i € I as sub-words spans
the algebra A defined by relations (1.16).

Proof We must demonstrate that in A, each word is a linear combination of words
from Y. Let w be the minimal word that is not such a linear combination. In this
case, w ¢ X, and w has a sub-word w; for a suitable i € I; that is, w = uw;v, where
u,v € X*. In the algebra A, we have w = uf;v. The leading term of the polynomial
ufiv is less than w because all words of f; are less than w;, which implies that all
words of ufjv are the required linear combinations. A contradiction. O

Definition 1.5 A system of relations (1.16) is said to be closed with respect to the
compositions if the following conditions are met:

1. None of w; contains wy, i # s € I as a sub-word;

2. For each pair of words (not necessarily different) w;, w; such that some non-
empty end of w; coincides with a beginning of wy; that is, w; = wi’ v, wy = vw/,
the difference fiw, — w/f;, called a composition, has the following representation
in the free algebra k (X):

i ! * i !
fiwg —wifs = E i F by, ak, by € X7, o € K, awiby, < wivwg.

k.t
(1.17)

We stress that the first condition does not provide an essential restriction on the
system of defining relations: if wy is a sub-word of w;, say, w; = awb, a,b € X*,
then we may replace the relation F; with F; — aFb, diminishing the leading word.

Remark 1.2 Traditionally, a system of relations closed with respect to the com-
positions is called a Grobner—Shirshov basis of the ideal generated by the F;’s.
However, the word “basis” here is not perfect because some of the defining relations
in a Grobner-Shirshov “basis” may follow from the others. Additionally, this term
sometimes leads to confusion between the set of relations (1.16) and the basis X
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of the algebra defined by these relations, especially when instead of “the Grobner—
Shirshov basis of an ideal,” they use “the Grobner—Shirshov basis of the algebra”
(defined by that ideal). For this reason, the term “Grobner-Shirshov system of
relations” seems to be more precise, at least in the context of this book.

Theorem 1.2 (Composition Lemma) If system (1.16) is closed with respect to the
compositions, then the set X of all words that have none of w;, i € I as a sub-word
is a basis of the algebra A defined by the relations (1.16).

Proof Let us show that the leading word of each polynomial F' € J has a sub-word
w; for a suitable i € I. The polynomial F' € J has a representation in the free algebra

F =Y ayaiFiby. (1.18)
ik

where ay, by € X*, 0 # oy € k, but of course this representation is not unique.
Among all representations, we consider only ones that share no similar terms:
for each i, if k # s, then the pairs (ax, by) and (ajs, b;) are different. Let w be
the maximal word among all words a; w; bix. The word w is related to the given
representation (1.18), and, of course, it may be different from the leading word of
F. Among all representations (1.18) without similar terms, we choose one with the
minimal possible word w. Our aim is to show that in this case, the word w (which
contains the sub-word w;) is the leading word of F.

The leading word of the term ay, F; by is the word ay w; by because < is stable
under multiplications: u < w; implies ay u by < ay w; bi.

Let IT be the set of all pairs (i, k) such that w = ay w; by.. We shall perform
induction on the number of pairs in I71. If IT has only one pair, then all terms of (1.18)
corresponding to other pairs are linear combinations of lesser than w words. Hence
w is the leading word of F'.

Assume that IT has more than one pair: w = ay w; by, = ag ws by, (s,1) # (i, k).
Consider the following two cases.

(a) The sub-words w; and w; of the word w have no intersection, say, w = aw,dw;b,
where a,d, b € X*. In this case, ay = asw;d, by = dw;bj. Let us modify the
sum of two terms of (1.18) corresponding to the pairs (i, k) and (s, £):

aiaix Fi by + agag Fy by = (o + otg)auFibi — agagFod(F; — wi)bi
+ astaxt(Fs - W‘v)dFibik-

All words that appear in the decomposition of the second and third summands
are less than w, for F; —w; = —f;, Fs —ws; = —f;. Hence, the set I for the
modified representation (1.18) diminishes by one, if o + o, 7 0, or by two, if
o + oy = 0. The set IT for the modified representation is non-empty, because
otherwise, the word w for the modified representation is less than for the initial
one.
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(b) The sub-words w; and w, have a non-empty intersection. Because neither of the
words w;, wy is a sub-word of the other, some proper end of one of them equals
a proper beginning of the other, say, w; = w/v, w, = vw/, whereas

w = agw/vw/by and azxw; = ay, wlby = by.
In this case, we modify (1.18) as follows:

aiaix Fi bix + otgas Fyby = (ot + og)aiFibi + agan(w/Fy — Fiw/)by

= ik st)Aik L' iOjk — AstAik|]i x/_ i/ s10st-
(oix + ag)aFiby — agailfiw, — w;fsb

If we replace the resulting composition according to (1.17), then the set I for the
modified representation (1.18) diminishes by one, if oy + o5 # 0, or by two,
if aj + oy = 0. Again, the set IT for the modified representation is non-empty
because otherwise, the word w for the modified representation is less than for the
initial one.

Thus, we have demonstrated that the leading word of each polynomial F' € J has
a sub-word w; for a suitable i € I. The leading term of any linear combination F”’ of
words from X belongs to X'; hence, F' ¢ J. O

Definition 1.5 does not provide an algorithm for how to check whether there
exists a representation (1.17) for a given composition. The following statement
demonstrates that the natural diminishing process always gives an answer.

Lemma 1.12 A system of relations (1.16) is closed with respect to the compositions
if and only if, first, none of w; contains wy, i # s € I as a sub-word and, second,
each composition fiw] — w/f; can be reduced to zero in the free algebra through a
sequence of one-sided diminishing substitutions w; < f;, t € I.

Proof Through the substitutions w, <— f;, t € I we may reduce any polynomial
to a linear combination of words from X because each substitution diminishes the
words. The value in A of a composition is zero, as fiw, — w/f; = —(Fiw, — w/F)
and the substitutions w, < f;, ¢+ € I do not change the value of a polynomial
in A. If (1.16) is closed with respect to the compositions, then the resulting linear
combination of words from X' must be empty because according to Theorem 1.2,
the values of words from X form a basis of A.

Conversely, a substitution w, <« f; transforms a word aw,b to the linear
combination of lesser words af;b, and we have af;b = aw,b — aF,b. If a polynomial
P reduces to zero through one sided substitutions w, < f;, then in the free algebra,
we have the equality 0 = P — >, agF;by, where agw;by are the words to which
the substitutions were applied. Because all words of the composition are less than

d L .
wo i w/vw/, the new words appearing in the process are still less than wo. Hence

P =), aiFbj is the required representation. O
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Remark 1.3 We stress that the succession of substitutions is not important: in
any case, the diminishing process leads to the linear combination of words
from the set X. Nevertheless, the shortest way to verify that a composition has
representation (1.17) may include increasing steps, aub < a(u — o~ ' F;)b, when
awib < w/vw/ and the monomial u < wy occurs in Fj with the coefficient @ # 0.

Example 1.1 Denote by A;’ an algebra generated by variables x; and x; and defined
by relations x7x; + axixox1 + Bxox? = 0 and x1x3 + axoxix2 + Padx; = 0, where
a, B are arbitrary elements from the ground field. If we fix the order x; > x,, then
the words of length three obey the lexicographical order:

x? > X%XZ > X1X2X1 > xlx% > sz% > XpX1Xp > x%xl > X%.

Consequently, the defining relations in the form (1.16) are:

x%xz = —a-xpxx — B -xzx%; (1.19)
2 _ 2
X1X; = —0 - XpX1X2 — B - X5x1. (1.20)
In other words, we have wi = x7xy, wy = x1x3, and fi = —a - xpx00x1 — B - X217,
_ 2
o= —a-xx1x0 — B x5x1.

To apply Theorem 1.2, we shall analyze all possible compositions. The word w,
has the endings x,, x3. Certainly, no one of them is a beginning of w; or w,. The
word w; has the endings x,, x;x,. One of them, v = xjxy, is also a beginning of
w,. Hence, we have only one composition, which corresponds to the relation of the
leading words,

xixy - wh = wh - xad,
with w| = x1, W) = xy:
flw/z — w/lfz = —a - xp0xx — B -xzx%xz + o - x1xx1% + B -xlx%xl.
The first and the third terms cancel each other, whereas the words of the second and
fourth ones contain (underlined) subwords w; and w,. Applying the diminishing
substitutions wy <— fi, w2 <— f>, we obtain
=B x(0 - xixx + - xx7) — B+ (@ xxix + - x5x)x = 0.

By Lemma 1.12, the system of relations (1.19), (1.20) is closed with respect to the
compositions. Theorem 1.2 implies that the set X' of all words containing not one

of the subwords x3x,, x;x3 forms a basis of A, whereas the natural diminishing
process provides a decomposition of words (and polynomials) in that basis. It is
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easy to see that
Y = {3 (xax)" x| m,n, k> 0}

Remark 1.4 If the diminishing process of the verification of a composition ends
with a nontrivial linear combination F ;s of words from X, then we may add the
relation Fj; = 0 to system (1.16). Then, the very composition we start with has a
required representation with respect to the extended system of relations, but many
compositions with the new relation may appear. If we are lucky, some number of
such extensions will result with a system of relations closed with respect to the
compositions, which allows us to find a basis of the algebra A.

Example 1.2 Let us consider a more complicated example of a two-parameter
family of algebras. Denote by B;‘ an algebra generated by variables x; and x, and
defined by relations

x%xz + axixx; + ,szx% =0; (1.21)
xlxg + )/xlex% + ngxlxz + Sx;xl =0, (1.22)

where
B=w' y=a+p §=yu &=, (1.23)

and «, p are arbitrary nonzero elements from the ground field. If we fix the order
X1 > X», then the above defining relations in the form (1.16) are:

x%xz = —a - xpx0x — B XX (1.24)
3 2 3.
XXy = =y -xlex% — 8- X5X1X0 — € X5X1; (1.25)
that is, we have w; = x3xp, wo = xix3, and fi = —a - x10x — B - X0,
==y 'xlexg -4 -x%xlxz —¢ 'x;xl.

Let us analyze all possible compositions. The word w; has the endings x,, x3, x3.
Certainly no one of them is a beginning of w; or w,. The word w; has the endings
X2, X1X2, and v = xjxp, is a beginning of w,. Hence, we have only one composition,
which corresponds to the relation of the leading words,

2 /o) 3
X[X2 = Wy = W+ X1X3,

: /o /o 2.
with w| = x;, w), = x3:

/ / 2 2 2 2 3
Siwy —wifa = —a - xp0x1x5 — B Xoxixoxs + Y - xixox1x; + 8 - xix5x1x0 + € - XXX
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The words of the second and fifth terms contain (underlined) subwords w; and w;.
Applying the diminishing substitutions w; < fi, w, < f>, we obtain

_ 2 2 2
= (y — a)xixx15 + Bxa(a - xpxox; + B - xaxp)xz + Sx1x5x1x2
25,2 3
—e(y - xox1x5 + 8 - X5x1 %0 + € - X5X1)x1
_ 2 222 §xix2
= (y — a)xixox1x; + B xpxixox1xp + Brxoxixs + 8 x1x5x1%2

— &y xmx%xl — &6 x§x1x2x1 — 82)6%)6%.

The word of the third term contains (underlined) subword w;. Applying the
diminishing substitution w; < f;, we may continue

_ 2 2
= (y — a)x1x0x1x;5 + Po Xox1X2x1X2 + 8 X1X5X1%2

—eyxox15x1 — (88 + af?) Kxxax; — (62 + B)xxd. (1.26)

None of the remaining words contains w; or w, as a subword. Consequently, due to
Lemma 1.12, the system of relations (1.24), (1.25) is not closed with respect to the
compositions.

The polynomial that appears in (1.26) is a relation of the algebra B;‘ . If we add
that relation,

xlxlexg = —,LL_I,BOl XX XX Xy — /L_IS xlxgxlxz + /L_lsyxlex%xl
_ _ d
+ 17 (€8 + ap?) Frixax + T (E + B LA, (1.27)

1 = y—a, to the two initial defining relations, then obviously the composition (1.26)
reduces to zero after the diminishing substitution x1x2x1x§ < f3. We must analyze if
the extended system (1.24), (1.25), (1.27) is closed.

In this case, there appeared a new leading word, ws = xlxlexg. The endings
of this word are x,, x3, x1x3, xox1x3. Among them, x;x3 is a beginning of w,. The
beginnings of wj are xy, x;x2, x1xx1x,. Among them, x;x; is an ending of w;. That
is, we have to analyze two more compositions.

1. xpxoxix3 X2 = XX+ X103, Wy = X, wh = x1x2. We have
’ ’ —1 2 -1 2 2 —1 2
fiwy —wifa = =7 B xox1 X105 — U8 X1 X X XoT + LT EY XaX1 XX Xo
—_— == == e —
—1 NI —1,2 3y.3.2
+ 1 (88 + af) | xxixxixy [+ 1T (67 + B)axxs,
2 2 3 3
+vy T X1 XX XD + 8 s X1X5X1 X + € - X1 XXX .

The second and the sixth terms are similar, whereas the first, fifth, seventh, and
eighth terms have leading words w3, w;, w, as subwords. Applying the diminishing
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substitutions, we obtain

(" Be? [ |+ B 28 vavadu,
N —’

—u " Baey xox1x05x1 — Bapu (&8 + aB?) ox1xx

—1 2
— Ba xax1xax1X5

i Ba e + FOxIX:

PN+ BY) e = T (@ + B o — T (€ + BB - xix

8 ‘xlxgxlxz = —§y -xlex%xlxz -8 x%xlxlexz —d¢e ‘xgxfxz;
2142 2142

- xl_xgxle = €y 'XQ)CI_)C;XI — &6 -x%xlxgxl — 82 'X;XIXQXI.
Further,
—de xg)@ = Sea - Jx10x) + 8eB - X5x3,
and

3. o222 3 2 42
—E&Y 1 XpX1X3X| = €Y7 - X3X1X5X1 + y88 cX5X1X0X1 + YET - XX

Using values 8 = u%, y = a +pu, § = yu, e = u of the coefficients given
in (1.23), we may find coefficients at the remaining six words.

'’ i —pT Sy =—pnTlyu+y =0

X111 ey + Bap T8 — 8y = T Wy + ayp —yuy
~—————

=yu(p+a—y)=0;

s TN eS8+ ap?) + (W Ba) — 87 = T Py 4 apt) + T pte?

V= pntap+ad —y) =P+ y)(p+a—y) =0
o —pu T Basy — 8 + ey’ = ey(—a —p+y) =0;
X3x; 1 —p T pa(e? + B7) — TN + BB+ Sep + e’
= pu®(—20 -2 +2y) = 0;
wxixx; - —Bap (&8 + af?) — uT (e + B — & + Sea + yed
= pH—a(y + @) = 2pa — @’ + ya + y?)
= pt(—a® —2pa — p? +y?) = 0.
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Thus, the first additional composition reduces to zero in the free algebra by
diminishing substitutions. Similarly we consider the second additional composi-
tion.

2 __ 2 2 / / 2
2. X1 X1 XXXy = X1X2 - X1X5, W = X1, W3 = X1X;.

’ / 2
Siny —wifs = —a- x1x2x1x1x2x2_,3 X2 X1 X1 X2X2 +u ,30061 X2 X1 X2 X1 X2

—1¢ .2 —1 2
+un 8x1x2x2x1x2 — U CEYXIX2X|X5X]

—1(gs 2 2 —1
— 17 (88 + af”) xpxox1x0x) — (e + B )xlxle

The first, second, fourth and sixth terms have the leading words wy, w3, and w, as
subwords. Applying the diminishing substitutions, we obtain

— - xlxzxfxzxz = 062 + X1 X2 X1 X2 X1 X2 + Oéﬂ X1X2XIXZ

2 _ 2 2 2
—B - xax1x7X0x2 = Por - Xox7X0X1X2 + BT+ XoX 1 XoX[X2

—ig 2 | —1 2 .
WS XTXX0X 1 Xy = —[0T S0 X1 X X1 X X1 Xp — (L 8P - XoX X0 X1 X0;

—1 2 _ —2 —2 2
— T EYXIX2X1X5X1 = LT eYBa XoX1XaX1X0X) + 14T €Y X1X5X1X0X)
b Uy XXX 6x

—M_28272 — ey (8 + af?) Koxinx

—p ey (e + BO)xdxy:
w i+ Y- x1x2xl = u '+ By m +u7NE + B8 - xpxixax]
+u 7 + e x3x;.

Four of the new terms contain the leading words as subwords:

af -xlxzxzx%xz —a?B -xlxgxlxle —ap? ‘xlxgxf

Ba -xzx%xgxlxg —Ba? -xlexzx%xg — Ba 'X%XIX%JQ.

2 2 2
B7 - xax1x0x7x0 = —0f - XaX1X0X1 XX -p3. x2x1x2xl

—1 2 —1 2 —lgp2 2. 2
—UT B xox XX 1 X2 = U SP- XoxyXoX (X + LT BT - xpx X X2,

and five more appearing terms admit the diminishing substitutions:

2 2¢ 2 2 2. 33
afy - xlexg f + a8 - xox1x00x] + affte - X5X7;
2 2. _ p.3 2
—Ba” - xx1x0X7%0 = P - xoxXox1 X% + o? xgxlxg % ;
— ~——

—af?- xlxle
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2,2, 2 p2.2 22 3, .42 2,
—Ba - xox1xx = Bra” - xpx1xx) + Bra - XX x0T

—1 2 —lg¢p2 2.2
—puT 8Bt - Xox XX XoX1 —Jb T OB - | XoX 1 X5x7 |5
N———

wlspa ‘xlexzxfxz

—lgp2 2.2 _ . —lgpd 22 —1gp3 2 2
WBT  xpxix Xy = — T 8B - xpx1xox — U687 - xpx1X0xT.
Finally,
2,2 .22 — 3.2
B a XX XX = —p2a? x2x1x2xl Ba
—lgp2 = u'8B%2 - 2 2 —1gp3 (3.3
8fa - x2x Xox) = 8B a” - xox1xpx] + 1 6B - X5X7.

19

Now, we are ready to calculate coefficients at the remaining six words using

values B = u?, y =a + u, § = yu, ¢ = p fixed in (1.23).

X1 X2 X1 X2 X1 X3 wlBa + o — o = po+at—yo = (u+a—yp)a=0;

x1x10x1 ¢ —p (€8 + af?) + p ey — o B = i (—puy —ap 4y —a?)

=Wy +a)(—p+y—a)=0;

XX XX 0% ¢ leyBa —af’ 4 Bad — pTl8Ba?
e ——

= pla(p —a)(py — u* + o’ — yo)
= pra(p—a)y —p—a)=0;

[oxided]s =722 + 1@ + By + oy — B+ B0 — 8

= pt (=>4 2uy + ay — i’ + o — ya)
= 1=y -’ +a?) =0;
Wxpxxt 1 —p 2oy (ed + aB?) + e + B8 + ap?s + Bla
— 17188 — B2 + 8B
= uH—py® — pya + 2%y + pay + o — Py — o’ + ya’)
= uH—py’ + 1’y + o+ o’ (—a +y))
= W=y + py + pa + o)
=Wy +a)(—y+p+a)=0
XX —u 2y (e + ) + ape — Bod + T 8B+ (6 + B
= puO(=2py + ap — o® + yo + 24%)
= puO(=2py + ap + (o + y)a +2p%)
=2u"(—y +a+p) =0.
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Because both additional compositions reduce to zero, Lemma 1.12 implies
that the system of relations (1.24), (1.25), (1.27) is closed with respect to the
compositions. Theorem 1.2 implies that the set X' of all words containing none of
the subwords x3x,, x1x3, x1xx1x35 forms a basis of Bj , and the natural diminishing
process provides a decomposition of polynomials on that basis. It is easy to see that

2 = {8 (xx0x2)" (xix2) Xy [ myn k, s > 0}

Remark 1.5 1f instead of the free algebra k (X), we consider the polynomial algebra
k [X], the free commutative algebra, then in this way, each system of relations may
be closed. This process is precisely the Buchberger algorithm that resolves the
equality problem for commutative algebras.

The Grobner-Shirshov system of relations is not uniquely defined by a given
set of defining relations. First, it depends essentially on the chosen order of words
< . Moreover, even if the order is fixed, there may exist various Grobner-Shirshov
systems that define the same ideal of relations. The simplest example with x; >
Xo > x3 1s as follows:

k{xi,x2,x3|x1 =0, x, = 0) = k{xg,x2,x3|x2 =0, xy = —x2).

Nevertheless, the set of the leading words of the Grobner-Shirshov system is
uniquely defined by the ideal (or, equivalently, by the initial defining relations),
provided that < is a fixed Deg-Lex order.

Proposition 1.2 If S| and S, are different Grobner-Shirshov systems of a given
ideal I with respect to the same Deg-Lex order, then the sets of the leading words
of relations from S| and S, are the same. In particular, the number of elements in a
Grobner-Shirshov system is an invariant of the ideal.

Proof We note that due to the first property of the Definition 1.5, none of the leading
words may appear twice in the same Grobner-Shirshov system. Denote by W(S) the
set of all leading words of a Grobner-Shirshov system S. We have to demonstrate
that W(S) = W(S>). Let us chose the minimal word w in the set (W(S;) \ W(S,)) U
(W(S2) \ W(S))). Let w € W(S1) \ W(S;2) and w = f is the relation from S with
the leading word w. Because w — f € I and S is a Grobner-Shirshov system for /,
it follows that the word w contains some v € W(S,) as a proper subword. In this
case, v does not belong to W(S;) due to the first property given in Definition 1.5. So
v € W(S2) \ W(S1) and v < w, which contradicts the choice of w. O

The following proposition shows that to some extent the Grobner-Shirshov
systems are indifferent to the non-leading terms of the relations.

Proposition 1.3 Let {w; = f; |t € T} be a Grobner-Shirshov system of an ideal I.
Iff], t € T are arbitrary polynomials such that w, — f; € I and all monomials of ]
are less than wy, then {w, = f{ | t € T} is a Grobner-Shirshov system for I.
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Proof By Lemma 1.12 it suffices to check that each composition can be reduced to
zero in free algebra by means of the one-sided diminishing substitutions w, < f/.
Certainly, every composition belongs to /. By induction on the leading word, we
shall show that each polynomial F € [ satisfies the required property. Because F
belongs to /, its leading word has one of the words wy, t € T as a subword. After
the substitution w, < f/, the obtained polynomial F; still belongs to I because
w, — f] € I. At the same time the leading word of F) is less than that of F. The
induction applies. O

Thus, the set of all leading words of a Grobner-Shirshov system and the set X
related to it are the basic Grobner-Shirshov invariants of an ideal I provided that a
Deg-Lex order < is fixed.

1.3.2 Noncommutative G-Polynomials

Let G be a group. We would like to discuss the construction of the algebra of
noncommutative G-polynomials G(X), which admit coefficients from G and satisty
certain commutation rules,

Xig = /\;gxi, /\; ek geG.

In the above context, we may introduce G(X) as an algebra defined by the generators
x; € X, g € G and the relations

xig = Mgxi, gh=f, g.h.f €G. (1.28)

The latter group of relations is precisely the table of multiplication of G; that is, for
each pair of elements g, 4 € G we have one relation gh = f where f is the product
of gand 4 in G.

On the set of all words in X U G we consider the Hall order with respect to
an arbitrary ordering of the variables with the only restriction that g < x for all
g € G, x € X. In this case (1.28) are relations of the form (1.16) with the leading
words x;g, gh. The set X' related to these words is the set of all words that contains
no one of x;g, gh as sub-words; that is, X' consists of the words gu, where g €
G, ueX*.

To be sure that these words are linearly independent in G(X), we must check all
possible compositions for (1.28). There are only two types of compositions, which
correspond to the following pairs of relations: x;g = Afggxi, gh = f;and gh = f,
hs = t, where s,t € G. We have

Afggxi ch—x;-f = A;nghxi - A}fxi = (k;k}; - A})fxi.

In the first step, we apply the diminishing substitutions x;7 < A}hx; and x;f «
A;}fxi, whereas in the second step, gh <— f. We see that this composition reduces to
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zero only if /\fgh = Ai,/\i; that is, the map x' : g > A} must be a character of the
group G. Otherwise, in G(X), we have a relation fx; = 0, which implies x; = 0.
Similarly,

fs—g-t=s—1,

where we apply the diminishing substitutions fs < s; and gt <— f; defined by
the relations fs = s; and gt = f;. As the group G is associative, the equalities
s1 = fs = (gh)s = g(hs) = gt = 1, are valid in the group G. Hence, s; —#; = 0 in
k (G UX).

1.3.3 Skew Group Rings

One may generalize the above construction, assuming that the variables are not
free. In this way, a construction of a skew group ring appears. Let G be a group
acting on an algebra R by linear transformations g : a +— a®, a,a® € R (not
necessarily faithfully). The skew group ring R * G is defined as a space of formal
sums Zi giai, g € G, a; € R, with a multiplication induced by commutation rules

ag=ga®, ge€G, acR
This multiplication is associative only if G acts by automorphisms, (ab)$ = a8bhs:

g(ab)® = (ab)g = a(bg) = a(gb®) = (ag)b® = (ga®)b* = g(a*b*).

Of course, it is more or less evident that monomials ga;, where g € G and a; runs
through a basis {a; | i € I} of R, are linearly independent in R * G. Nevertheless, to
be certain, we may apply the Composition Lemma.

In this context, we may introduce the skew group ring R * G as an algebra defined
by the generators a;, i € I, g € G and the relations

aig =gaj, gh=f. aa,=)y ofa. ghfeG isel (1.29)
kel

Here, in the first group of relations, gaf means a linear combination ) & ga,, where
Y. alas is a decomposition of @} in the basis {a;}; the second group of relations
is the table of multiplication of G; and the third group of relations is the table of
multiplication of R with coefficients af‘,x, called the structural constants, from the
ground field k.

On the set of all words in {a;} U G we consider the Hall order with respect to an
arbitrary ordering of the variables such that g < a;, g € G, i € I. In this case (1.29)
are relations of the form (1.16) with the leading words a;g, gh, a;as. The set ¥
related to this system of relations consists of the words ga;, where g € G, i € I.
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There are four types of compositions, and they correspond to the following values
of the word w/vw, = w; - w] = w/ - w, appeared in (1.17):

aig-h=a;-gh, aa;-g=ua;-a,8, gh-f=g-hf, aas-a, =a;-aa.
Consider the related compositions one by one. We have

gal - h—af = gh(ad)" — fa, = fl(a®)" —d]] = 0.

In the first step we apply the diminishing substitutions afh < h(af)" and a;f < falf ,
whereas in the second step gh <— f. This composition reduces to zero because by
definition of the action, the element f = gh acts on R as a superposition of g and 4;
that is, alf equals (af)" as a linear combination of the a;’s.

Considering that G acts by homomorphisms, the equality afaé = (a;a)%,
which is valid in R, implies that the expression afa$ by application of the table
of multiplication in the basis {a;} reduces to the linear combination (), a{fyak)g ;

: 8.8 — k 8
thatis, a;a$ = ), a; a;. Hence, we have
k g — ko, o8 g8 — kg k8 _
E oy - g —a;- gas = E o gay —ga;al = g E o a; — g E o a; = 0.
k k k k

The third type of compositions is already considered in the above subsection. Let
us examine the fourth:

k k — k r k r
E o Ai - ar—a; - E o A = E O E o Ar — E o ¢ E o; A
k k k r k r

The value in R of the latter linear combination equals a;a;-a; —a;-asa; = 0. Because
the a,’s are linearly independent in R, this combination remains zero provided that
the a,’s are considered to be the free variables.

1.3.4 Poincaré-Birkhoff-Witt Theorem

We conclude this section with an elegant proof of the Poincaré-Birkhoff-Witt
theorem due to L.A. Bokut’ based on the Composition Lemma. Recall that a Lie
algebra is a linear space L endowed with a bilinear operation [, ] : L®? — L that
satisfies the antisymmetry and Jacoby identities:

[, u] =0;  [[u,v],w] + [[v,w], u] + [[w,u],v] = 0.
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If Lis aLie algebraand u,v € L, then 0 = [u+ v, u+v] = [u, u] + [u, v] + [v, u] +
[v,v] = [u, v] + [v, u]. Therefore, the antisymmetry identity implies

[, v] = —[v, u].

A fundamental example of a Lie algebra appears from an associative algebra R
when in place of the bilinear operation, one considers the commutator [u, v] =
uv—vu. This Lie algebra is denoted by R™). Every Lie algebra is isomorphic to a Lie
subalgebra of a Lie algebra R if, in place of R, we take the universal enveloping
algebra U(L) of L. The algebra U(L) has the following construction in terms of
generators and defining relations.

Let us fix a well-ordered basis B = {u; |i € I} of L. Consider this basis to be a
set of free variables and define an associative algebra U(L) by the relations

uiny = usit; + [ui, ug], w; > u, (1.30)

where [u;, u ] is a linear combination ), ! u, that equals [u;, u] in L.

Theorem 1.3 (Poincaré-Birkhoff-Witt) The set of all monomials

uiluy -k, wp<wup <... <uw, up€B, 1 <i<k

form a basis of U(L).

Proof On the set of all words in {u;}, we consider the Hall order defined by the
fixed above ordering of {u;}. In this case, (1.30) are relations of the form (1.16)
with the leading words w;us, u; > u,. The set X' related to (1.30) is precisely the
set of monomials mentioned in the theorem. Therefore, it remains to analyze the
compositions of (1.30). There exists only one type of compositions when in (1.17),
we have

! i
W OW, <= Uills * Uy = U; * Uslly, Ui > Ug > Uy
We have

(usui + [I/t,', us])ut - Mi(urus + [uss ul‘])
= uguitty — with + [z, uglu, — wilug, ;]
= s (i + [ui, wi]) — ety + [ug, wi)us + [ug, wslu, — uiluy, ug]

= uglti — wlilly 4wy, wi] — g, weug + [, uglu, — wilug, u;)

(ul‘us + [uss ul‘])ui - ul‘(usui + [uiv MS]) + us[uiv Mt]
- [uis uT]uS + [uiv MS]MI - Mi[usv Mt]

= [ug, wuj — wi[ui, ug] + uglui, w] — [w, wlug + [wi, usluy — wilug, ;). (1.31)
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Let [ug, u,] =Y, a{;’tuk. In this case, [ug, uJu; — ui{us, u] =Y, a{;’t(ukui —uuy). If,
for a given k, we have u; > u;, then ugu; — uuy = [ug, u;], whereas if u; < u;, then
uplt; — winy = —[u;, ux] = [ug, u;] due to the antisymmetry identity of L. If u; = u;,
then it is still true that ugu; — w;ur = 0 = [ug, u;]. Therefore, in all cases, we have

(. ulut; — il ] = ok Jue ] = Y ok e ] = [fug, ). w).
k k

where the last two equalities are equalities of linear combinations of the u,’s in L.
In the perfect analogy, we obtain

—us[ui, ug) + [wi, usluy = [[w;, ug], uy,
and
us[uiv Mt] - [uis uT]uS = [ué‘v [uis ul‘]] = _[[Miv M[], ué‘] = [[ul‘v Mi]? MS]'

Applying these equivalences to (1.31), we see that by the diminishing process the
composition reduces to a linear combination

([uei, ], we] + ([, ], wi] + [[ur, wi], ).
This linear combination equals zero in L due to the Jacobi identity. Since the u;’s are

linearly independent in L, it follows that this combinations is still zero in the free
algebrak(u; |i € I). O

1.4 Braid Monoid and Permutation Group

By definition the braid monoid B,, is generated by braids sy, 52, . . . , S, subject to the
relations

SESK+15k = Sk+15kSk+1,  SiSk = Sisi,  |i— k| > 1. (1.32)

As usual, we assume that B, has the unit element 1 (the empty product of braids),
and By = {1}. Considering that the above defining relations are invariant with
respect to the substitutions s; <— s,—;, 1 < i < n, there exists an automorphism
1:B, — B, suchthati(s;) = s,—;, 1 <i < n.Similarly, an involution * : B, — B,
is well-defined on B,, which acts as follows

*
(silsiz e Sik—lsik) = SigSig—1 "7 SipSiy -
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Lemma 1.13 In the braid monoid, the following commutation rules hold

(StSk1 v+ - Se—=150) = (57871 7+ Sm) = (Sr418 - Sm1) « (SkS1 7+ 5—181),  (1.33)
provided thatk < m < r < t, and

(SeSi—1 Sk 18%) * (SrSr—1 -+ Sm) = (Sr—18r—2***Sm—1) * (818—1 = Sk181)  (1.34)

provided that k < m — 1 < r < t. In the latter formula, if r = m — 1, then we
postulate SySy—1 ++ Sy = Sy—18,—2 - Sm—1 = | as the empty products.

Proof If k <i < t, then s; commutes with s;+5, $i+3,..., ;. Therefore we have

(SkSk41 7 81) = Si = SkSkr1 -+ Si18iSit18i * Sit2 St

= SKSk+1 " Sim1Sit18iSit1 - Sik2c S = Sip1 + (SkSg+1 - 5r)

because s;+; commutes with sy, si—2,..., Sx. Applying the resulting equality to
i=r, r—1,..., m we obtain (1.33). The proof of (1.34) is quite similar. O
Let S, denote the permutation group of indices {1, 2,...,n}. It is well-known

that S, is generated by the elementary transpositions t; = (i,i + 1), 1 <i < n. It
is easy to check that the elementary transpositions satisfy the braid relations (1.32)
with ¢; in place of s;. Therefore, the map s; — ¢; can be extended to a homomorphism
w : B, — S, of monoids.

Theorem 1.4 The group S, as a monoid is defined by the generatorst;, 1 <i<n
and the relations

fitipilti = tipititie, £ =1, ty=1nt, k#itl (1.35)

1

Proof Let S, be the monoid defined by relations (1.35) with 7 in place of .
Because the elementary transpositions satisfy all relations (1.35), there is a natural
homomorphism @ : 7; > ;. We shall demonstrate that & is an isomorphism.

For each permutation 7 € §,,, we fix an element b e Sn as follows. If w € Sy =
{1}, then 7” = 1. Assume that 7” is already defined for 7 € S,_. If 7 € S,,\ S,_1.
then the permutation 7t (s)tr(n)+1 * - - ta—2t,—1 belongs to S,,—1, and we put

7" = (Ttapytey 41+ tn—atne1)” Tt =2+ (41 Fe () - (1.36)
Using induction on n, it is easy to verify that &(7”) = 7w, 7 € S,;:

(D(”b) = (D[(”tn(n) e 'tn—l)b]tn—l clpn) = gy =1 In—1 0 In(n) = T

(1.37)
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Let us demonstrate that each element 7 € S, has a representation 7 = 7* for
a suitable & € S,. By definition, we have &; = tf’ . In particular, SZ contains all
generators 7;, 1 < i < n. Hence, it suffices to prove that Sfj is closed with respect to
the right multiplications by the 7;’s. By induction on 7, we shall prove the following
identity

Nb;i = (ﬂl,’)b. (1.38)

Ifn=1,thenwehave 1 -7, = £, and 7 -7; = 1 = (£)*. If = € S, \ S,—1, then the
induction supposition implies

(Fta@y o)’ T = Tty tart)?, 1<i<n—1. (1.39)

Consider the following four cases.

1. 7m(n) <i < n.Inthis case, (1;)(n) = 7(n). As both the ;’s and 7;’s satisfy braid
relations (1.32), the commutation rules from Lemma 1.13 are valid in S, and in
S,. In particular, (1.33) witht < n—1, k < w(n), r < i—1, m < i—1 implies

t - tn(n) sty = tn(n) celp—y b,
respectively, (1.34) witht <~ n — 1, k < 7 (n), r < i, m < i yields
;i—l : ;n—l o ';r[(n) = ;n—l o ';r[(n) : ;i-

Considering these relations, we have

(7t:)? = (Flitagy  ta1) Tmt + Tr) = (Thruy -+ tum1tim1) Tet * Ty
(139 (Tt tae1)’ TimtFaet =+ Trny = Ty = tae1)” Tnmt =+ Er ()
=7,

2. i = m(n). In this case (r1;)(n) = 7 (n) + 1, and we have
(71)" = (Ftitaey+1 - tae1)" Taet ** Tn41 * Tn(y * Tntey = 77 11
3. i = m(n)—1.Inthis case (x#;)(n) = w(n) — 1, and t;t; (-1 = 1, which implies

(1) = (Ttity—1tamy ** tn1) Tnet =+ Tn(yErny—1 = 70 Fi.

4. 1 <i< m(n)—1.Inthis case, again, (71;)(n) = 7 (n), and 7; commutes with all
I, m(n) < k < n, whereas t; commutes with all #;, w(n) < k < n. Additionally,
the inequality i < m(n) — 1 shows that (1.39) is valid. Using these arguments,
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we have

(nti)b = (”titr[(n) tee tn—l)h ;n—l o ';n(n) = (NIn(n) tet tn—lti)h ;n—l o ';n(n)

= (ﬂtﬂ(n) tte tn—l)b ;i;n—l o ';ﬂ(n) = (ntﬂ(n) tte tn—l)b ;n—l o ';ﬂ(n);i = 7Tb ;i-
Finally, if @(7) = &(j1), #.fi € S, then # = 7%, i = p”, for suitable
w, 1 € S,. In view of (1.37), the equality @(7) = @(fi) reduces to 7 = L.

Therefore we have 7 = 7” = u? = ji. Thus, @ is an isomorphism.
O

Definition 1.6 For two indices m,k, let [m;k] designates a monotonous cycle
starting with m up to k, for example [2;4] = (2, 3,4), whereas [4;2] = (4,3,2).
For m < k we have decompositions in the symmetric group S,:

M k] = ticiti—z - twgitm,  [kim] = tutmg1 -+ ieati—1.
In B,, we maintain similar notation: [k; k] = 1;
[m; k] = si—1Sk—2 - Smt1Sms  [kim] = SpSmi1 -+ Sk—28k—1, m < k. (1.40)

In these designations, the commutation rules from Lemma 1.13 after the substitution
t < t—1, r < r — 1 take the following form:

k) -[msr] =[m+ Lir+1]- k], k<m<r<t, (1.41)
k;f] - msr] =[m—1L;r—=1]-[k;f], k<m<r<t (1.42)
Lemma 1.14 Consider an arbitrary partition of the set {1,2,...,n} into two
subsets K = {ky < ky < ... <kjandl = {i} < i < ... < iy—y}. In the

braid monoid B, the following relation holds
(L ki[2: k] -+ [rs k] =[5 in—r][n — Uy dpeyt] -+ [r 4+ 2002][r + Liin]. (1.43)

Proof First, we note that this relation is valid if one of the sets is empty because in
this case, one side is the empty product, and the other side is a product of elements
[m;m] = 1.

We perform induction on n. Let K}, and [ ,(1"_’) denote the left- and right-hand sides
of (1.43), respectively. Assume, first, that n € K. In this case, we have k, = n, and
K, = (K \ {n})"Z\[r:n], whereas 17" takes the form

(Sie it 1 7 Snm 1) (Siyyy Si g 417+ Sn=2) =+ (SiySipp1 == Sr1) (Siy Siy 417+ S7)-
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Using the relations s,s, = spS4, |a@ — b| > 1, we may move all underlined braids to
the right margin position, yielding I\"" = I,(l"__lr) [r; n]. The induction supposition
states that (K \ {n})"~} = Ir(l"__lr), and hence K/ = 1,

If n € I, then ip—, = n, and [n;i,—,] = 1. Hence, I""” = (I \ {n})"7'™"

n—1 ’
whereas K] = K] _ |, and induction applies. O

1.4.1 Co-sets and Shuffles

Given a group G and a subgroup H, the right co-sets of H in G are classes of the
equivalence relation m ~ v <> v~ € H, so that we obtain a partition of the group
G in the form

G=UHU

VEA

called the right co-set decomposition. The subset A of G containing a single element
from each right co-set is called a right transversal of H in G.

Let Si,r) be the subgroup of permutations leaving fixed all indices 1,2,...,r.
Of course, S,(f) is isomorphic to the symmetric group S,—,. Consider a subgroup
H=S, xS"0ofS, generated by S, and s

Definition 1.7 A permutation & € S, is called an r-shuffle if
() <na2)<...<xa(r); ar+ ) <nalr+2) <...<na@n). (1.44)

Below, Sh], denotes the set of all r-shuffles.

Clearly, if r = n, then the set Sh], contains only identical permutation. An r-shuffle
7 is uniquely defined by the set

Y={x(1),7(2),...,7(r)}

because 7 (r 4 1) is the smallest number of the interval 1,2, ..., n that does not
belong to Y; m(r + 2) is the next element with the same property, and so on. Thus,
the total number of r-shuffles equals n!/r!(n — r)!, the number of all r-element
subsets of {1,2,...,n}.

Theorem 1.5 The set Sh), of all r-shuffles is a right transversal of S, x Si,r) inS,.

Proof The index of the subgroup S, x Sff) in the group S, equals the total number of

r-shuffles: |S,|/(| S| |S£,r) |) = n!/rl(n—r)!. Therefore, it suffices to check that two r-
shuffles 7, v are equivalent only if they are equal to each other. Let 7v™' = h € H.
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Considering that i € S, x 5% we have

{1,2,...,r} = {h(1),h(2), ..., h(r)}
and
{r+1,r+2,....,n} ={h(r+ 1), h(r + 2),..., h(n)}.
Due to m = hv, these equalities imply
{v(1),v(2),...,v(N}={x(),7Q),...,w(r)} (1.45)
and
v+ D,v(r+2),....vin)}={x(r+1),7n(r+2),...,7(n)}. (1.46)
Because v and 7 are r-shuffles, in both sets of (1.45), the elements increase; hence,

v(l) = n(1),...,v(r) = m(r). In the perfect analogy, the equality (1.46) implies
vir+1)=na(r+1),...,v(n) = n(n). O

Lemma 1.15 The following recurrence relation is valid

Shi = SK._, Uln;r]-SKZY, 1 <r<n. (1.47)
Proof If & is an r-shuffle, then the inequalities (1.44) imply that either w(n) = n
or (r) = n. In the former case, clearly 7 € Sh)_,. Let n(r) = n. Consider
the element 7’ = [r;n]z. Obviously, 7'(n) = n, whereas 7'(i) = (i) when

1 <i<vr and /(i) = (i + 1) when r < i < n. In particular, 7" € S,—; and
inequalities (1.44) with m < 7/, r < r — 1 remain valid; that is, 7’ € Sh;:ll
and 7 = [n;r]m’ € [n; r]SK_}. Thus, the left-hand side of (1.47) is a subset of the
right-hand side.

If r = n, then both sides contain only the identical permutation. If r # n, then
the union of the right-hand side of (1.47) is disjunctive. Due to the Pascal equality,

n! _ (n—1)! 1 1
An—n! " (r—Dn—r—1)! (7+ n—r)

(=D (n—1)!
- r—1)! + r—D!n—r)"

both sides have the same number of elements. O

Lemma 1.16 Each r-shuffle & has a decomposition

=)@ —1)r—1]-- [7(2): 2][w(1); 1]. (1.48)
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Conversely, if | <k <k, <...<k, <n,then
p = [k rllke—rsr — 1] -+ [ka3 2] [k 1]

is an r-shuffle and pu(i) = k;, 1 <i <r.

Proof To prove (1.48), one may use the recurrence relation (1.47) for obvious
induction on 1 because 7 € [n; r] - Sh"_} implies 7 (r) = n.

Conversely, if we define n(i)) = k;, 1 < i < r, and w(r + 1) is the smallest
number of the interval 1,2, ..., n that does not belong to {k1, k2, ..., k.}; mw(r+2)is
the next element with the same property, and so on, then clearly = € Sh;,. By (1.48),
we have u = 7. O

Corollary 1.2 The group S, has the following right and left co-set decompositions:

Sn = U Sex SV [kir] - ki 2]z 1,
1<ki <kp <+ <k,<n
;= U [klRik] o [rik] S x SO

1<ky<ky <+ <k,<n

Proof The former decomposition follows from Theorem 1.5 and Lemma 1.16. The
latter decomposition follows from the former decomposition by application the
involution 7 — 7! because [i;k]™! = [ki;i], 1 <i<r. O

1.5 Hopf Algebras

We are reminded that a tensor product of two linear spaces A and B over the ground
field k can be defined as a linear space with a basis of formal tensors a; ® b, where
a; and b run through fixed bases of A and B, respectively. In this case, the symbol
® is extended to a bilinear map

® AXxB—>A®B. a®b=) af;a;®b,

[

where a = Zi oa; and b = ZS Bsbs are decompositions of the elements a, b in the
bases {a;} and {b;}, respectively.

We shall frequently use a functorial property of the tensor product: If ¢ : A — A’
and ¥ : B — B’ are linear maps, then the map

¢@Y:A®B—A'®B', (p®@V)(a®b) =9 YD)
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is a well-defined linear map, in which case

ker(p ® ¥) = A ®kery + kerg ® B. (1.49)
This property implies the following statement: If

aa®b1+a, by +---+a,®b,=0, a,€A, beB, 1 <t<n,

and by, by, ..., b, are linearly independent, then a; = 0, 1 <t < n. Symmetrically,
if ay,ay,...,a, are linearly independent, then b, = 0, 1 < ¢t < n. Indeed, if
by, by, ..., b, arelinearly independent in B, then there exists a linearmap ¢ : B — k

such that (b1) =1, ¢(b2) =0, ¢(b3) =0, ..., ¢(b,) = 0. We have
0=>0{d®@)a1 ®b1+a @b+ +a,®by) =a1®1,

and hence, a; = 0 because A ® k = A. Similarlya, =0, t =2,3,...,n.
By a Hopf algebra, we mean an associative algebra H over a ground field k
equipped with a homomorphism

A:H—->HQ®H, (1.50)

called a coproduct, which is coassociative and has a counit (a homomorphism ¢ :
H —K) and an antipode (an anttihomomorphism o : H — H). We use the Sweedler
notations for the coproduct,

Aa) = Za(l) ® ag). (1.51)
(a)
In these notations, the coassociativity takes the form
Afa) = Z Alaq)) ® ap) = Zau) ® Alap), (1.52)
(a) (a)
whereas the counit and the antipode by definition satisfy
Z s(a(l))a(z) = Z(a) a(l)s(a(z)) = a; (1.53)
(@)

ZG(G(I))G(Z) = Z(a) a(l)o(a(z)) = 8(61) - 1. (154)
(a)

For example, each group algebra k[G] becomes a Hopf algebra if we define

1

Alg) =g®g, (@ =1, o(gl =g ., g€G.
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1.5.1 Group-Like and Primitive Elements

Definition 1.8 A nonzero element g of a Hopf algebra H is said to be a group-like
elementif A(g) = g ® g.

Proposition 1.4 The set G of all group-like elements is a group. Different group-
like elements are always linearly independent; that is, the group-like elements span
a Hopf subalgebra that is isomorphic to the group algebra k[G].

Proof 1If A(g) = g ® g, then by definition of the counit, we have e(g)g = g; hence,
£(g) = 1. The definition of the antipode yields go(g) = 0(g)g = e(g) - 1 = 1; that
is, g is invertible. If 4 € G, then A(gh) = A(g)A(h) = (g ® g)(h® h) = gh ® gh,
hence gh € G. Finally, 1 ® 1 = A(1) = A(gg™") = A(g)A(g™!), and therefore
A(g™") = g7 ' ® g7!, which implies g~ € G.

Letg = o181+ ...+ au8,, Wwhere o; € K, g, g; € G and elements gy, ..., g, are
linearly independent. In this case, we have

gRg=A4) =01Ag)+ ...+, A(gn) =181 Qg1+ ... + Xu8n @ &n,

or
Y wgi®g =) g ® g
is i

Because the elements g; ® g, 1 < i,s < n are linearly independent in H ® H,
we have q;ay = 0 ati # s and oziz = o;. This statement is possible only if one of
the coefficients ¢; is equal to 1 and the others are zero. Thus, the initial dependence
assumes the form g = g, as required. O

Definition 1.9 A nonzero element u of a Hopf algebra H is said to be a primitive
elementif Alu)=u®1+1Qu.

The universal enveloping algebra U(L) of any Lie algebra L has a Hopf algebra
structure so that all elements from L are primitive. More precisely, according to the
Poincaré-Birkhoff-Witt theorem, the basis of U(L) consists of the monomials

W =u'uy? - u, (1.55)
where u; < up < ... < u; run through a fixed well-ordered basis of L. The

coproduct is defined as follows:

ny ny ng
ny . ny ky — rn.n Tk S1,,82 Sk
A(ul MZ...Mk)_ E ( )( )( )uluz...uk®uluz...uk’

. r
ritsi=n;, 1<i<k 1
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whereas (W) = 0 for all non-empty basis monomials W, and (@) = 1, where as
usual, the empty monomial is the unit of U(L). The antipode is given by

a(urlllugz ... qu) — (_1)n1+n2+...+nk “Zk .. ugzurllll
Of course, the coproduct and the counit, as homomorphisms, are uniquely defined
by A(u) = u®1+1Q®u, e(u) = 0, whereas the antipode, as an antihomomorphism,
is uniquely defined by o(#) = —u, u € L. In this particular case, the group G is
trivial, G = id.

If the characteristic of the ground field is p > 0, then the restricted universal
enveloping algebra U),(L) of each restricted Lie algebra L has the structure of Hopf
algebra with the same A, &, o also. Recall that according to the restricted version
of the Poincaré-Birkhoff-Witt theorem the basis of U,(L) consists of increasing
monomials (1.55) with the additional conditionn; < p, 1 <i <k.

Consider an arbitrary Hopf algebra H. The set L of all primitive elements of H is
closed with respect to the Lie brackets [a, b] = ab — ba:

A(la, b]) = A(ab — ba) = A(a)A(b) — A(b)A(a)
=(1®a+ax®)(1b+bs®1)-(10b+b31)(1Q®a+a®1)
=1®ab+b®a+a®@b+ab@1—-1®ba+a®b

+bQ@a+ba® 1
=(@—-ba)@1+1Q (ab—>ba) =[a,h|®@1+1Q [a,b].

In other words, L is a Lie algebra. If k is of characteristic p > 0, then L is closed
with respect to an additional unary operation a > a’:

P b
A(ap)=(1®a+a®1)f'=2()a"@ap‘k:1®aP+aP®1,
k
k=0

and L is a restricted Lie algebra with respect to the operations [a, b], a”.

Proposition 1.5 A subalgebra P generated by all primitive elements of a Hopf alge-
bra H is isomorphic to the universal enveloping algebra U (L) if the characteristic of
k is zero; otherwise, it is isomorphic to the restricted universal enveloping algebra.

Proof f A(u) = u®1+1Qu, thene(u)-1+¢e(1)-u = u, which implies e(u) = 0.
Similarly o(u) - 1 4+ o(1) - u = &(u), implies o (u) = —u.

Let us fix a well-ordered basis {u; |i € I} of L. As observed above, [u;, us] € L
for all i, s € 1. Therefore [u;, us] = Zke / oc,i’sux, and the following relations hold:

k
Uilly = UgU; + E o Uk, Ui > Us.
kel
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If char k = p > 0, then uf € L and we have the additional relations

W= oju, i€l

s€l

These relations define a diminishing procedure with respect to the Hall order that
allows one to decompose each word in {u; |i € I} into a linear combination of
words with no w;uy, u; > us; (and no uf' if char k= p > 0) as sub-words; see
Lemma 1.11. A word has no uu,, u; > u; as sub-words if and only if it has the
form (1.55). Additionally, it has no sub-words uf' if and only if in (1.55) we have
n; < p, 1 < i < k. Hence increasing monomials (1.55) (with n; < p if char
k= p > 0) span P.

It remains to demonstrate that different increasing monomials (1.55) (with n; < p
if char k= p > 0) are linearly independent. We perform induction on the length.
Assume that all increasing (restricted if p > 0) words of length < M are linearly
independent. Let W = Y. W;, where the length of W equals M and W; < W with
respect to the Hall ordering of words. Applying the coproduct to both sides of the
latter equality, we obtain

Z W ® W// Zai Z Wi/ ® Wi//

W'o W/'=W i Wi/o Wi//=Wi

In this formula, o is the commutative product of increasing monomials:

ny . np my . my my ni+my nytmy ny+my
Uy uy - uk O Uy Uy~ U™ = U Uy st U .

Cancelling the sums Zi oW, 1+ Zi 1 ® o;W; from both sides, we obtain

Z W/ ® W// — Z Z o Wi/ ® VVI-U.
Wo W/'=W, W W'+ i Wo w/'=w;, W W/'#0

According to the induction supposition, all different words W', W”, W/, W/ are
linearly independent. Therefore, all tensors in the above equality must be cancelled.

Let W = u’l”W Where W =us?--uf*, uy < up < ... < u. In the left-hand
side, the tensor u} "W ® u, is encountered exactly n; times. In the right-hand side,
tensors of the type u}' ™~ "W ® u, appear only under decomposition of the coproduct
of words uu'~ "W, where u,; < u;. The requirement of cancelling all terms results
in

n1 1W®(n1u1 ZO{I/I)—O

SES
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which is impossible, as n; is an invertible element of the ground field k, and the
elements uy, u;, s € S are linearly independent in H. O

The group G acts by conjugations on L:

AgTlug) = (7' @ g Hu®1+10u)(g®e =g lug®1+1® ¢ ug.
Hence g~ 'ug = Y, ;u;, where as above {u;|i € I} is a fixed basis of L. These
relations determine the following commutation rules:

ug = Zaiglfti, gegG, i€l

1

By Lemma 1.11, the products gW, where g € G and W is a (restricted) increasing
monomial, span the subalgebra generated by all primitive and group-like elements.
Moreover, arguments similar to the proof of the above Lemma demonstrate that
these products are linearly independent in H. In other words, the subalgebra
generated by primitive and group-like elements is isomorphic to a smash product
of Hopf algebras k [G]#U(L) or, in the case of a finite characteristic, k [G]#U,(L).
We are reminded that the well-known Kostant-Sweedler theorem states that each co-
commutative Hopf algebra over an algebraically closed field of zero characteristic
is generated by the primitive and group-like elements and is therefore precisely the
smash product k [G]#U (L).

1.5.2 Character Hopf Algebras

Let H be an arbitrary Hopf algebra over a field k with comultiplication A, counit &,
and antipode 0. Denote by G the group of all group-like elements.

Definition 1.10 Given A, f € G, an element a € H is called (h, f)-primitive if
Al@) =a@h+fQa. (1.56)

If h,f are not specified, the element a is called skew-primitive.

If g € G and a is skew-primitive , then both ga and ag are also skew-primitive:
A(ga) = A(g)Aa) = ga ® gh+ gf @ ga.

An element a is called semi-invariant if ga and ag are proportional for all g € G.

Definition 1.11 A Hopf algebra H is referred to as a character Hopf algebra if the
group G of all group-like elements is commutative and H is generated over k[G] by
skew primitive semi-invariants.
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Remark 1.6 Since the coproduct is a homomorphism of algebras, there exists a
clear procedure to find a coproduct of a word (product) of skew-primitive elements
w = ajay--- a,. This coproduct is a sum of 2" tensors w' ® w?, where A runs
through all subsets of {1,2, ..., n}, whereas w" is a word that appears from w upon
replacement of all a;, i € A with f;, respectively, and w” appears from w upon
replacement of all a;, i ¢ A with h;.

Given an Abelian group G, the character group G is the set of all homomor-
phisms y : G — Kk* from G to the multiplicative group k* of the ground field k

with the multiplication (x - x')(g) = x(g) - x'(g).
Lemma 1.17 Every character Hopf algebra is graded by the character group G:

H = @HX, H' ={aecH|g 'ag = y(g)aforall g € G}.
1€G

Proof By definition, every semi-invariant a satisfies the commutation rules
ag = ogga, oy € kfor all g € G. In this case, the map y* : g > «ay is a
character of the group G, whereas a € H*'. Moreover, if u = aja,--- a, then
gu € HX, where y = y™ y* ... y*», g € G. Hence, the subspaces HX, y € G span
H. _

It remains to verify that nonzero elements u; from different subspaces H?
are linearly independent. Suppose instead that Y ._, ¢;u; = 0. Conjugation by
any g € G yields Y, y'(g)aiu; = 0. By the Dedekind theorem on the linear
independence of characters, there exist gi, g2, . . . , g» € G such that the determinant
of the n x n matrix ||x'(gs)||, 1 < i,s < nis not zero. The system of equalities
> eiuix(gs) = 0, 1 <5 < n may be written in matrix form as follows:

(Qrur, oauta, . . ., )| 4 (g5)|] = 0,

which implies (ouy, ouy, . . ., a,u,) = 0, for || x(gy)|| is invertible. O

Lemma 1.18 IfA(a) = a®h+f®a, h,f € G, thene(a) =0, o(a) = —f ah™!.

Proof By the definition of the counit, we have €(a)h + &(f)a = a, which implies
¢(a) = 0. The antipode axiom yields o(a)h + o(f)a = ¢(a) - 1 = 0. Therefore,
o(a) = —o(f)ah™ = —flah™!. O

Lemma 1.19 Ifa € K[G] is skew-primitive, thena = a(h —f), o € Kk, h,f € G.

Proof Leta =) ;a;g; be an (h, f)-primitive element. By definition, we have

Zaigi ® g = Zaigi Qh+f® Zaigi- (1.57)
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Because different group-like elements are linearly independent, there exists a linear
map 7; : K[G] — K[G] such that ;(g;) = 8!g,. Applying 7; ® 7; to both sides
of (1.57), we obtain ;g; ® g = ;g ® 8§ + 8;“ ® a;g;. This equality implies that
for each i either g; = hor g; = f; thatis, a = ah + Bf and

ch@h+BfQf=ah@h+BfQh+af Qh+ BfQf,

which yields 0 = (@ + B)f ® h; thatis, § = —«, and a = a(h —f). O

Below, L, s denotes the space of all (, f)-primitive elements:
Lyy={alA(@)=a®h+f®a}, h feC.

Note that the spaces Ly related to different pairs (%, f) are not independent. First,
Ly s N Ly, contains h — f:

Ah=f)=h=Qh+f&"h—-f)=h-)f +h® (h—f).

More generally, if uy = h—fi, up =fi —f2, ..., uy = f—1 —f, then

n

D= (h=f)+ (i =f) + o+ (o —f) =h .

i=1

The following lemma implies, in particular, that all linear dependences between
skew-primitive elements related to different pairs have the above form.

Lemma 1.20 Let u;, 1 < i < n be (h;,f;)-primitive elements of a Hopf algebra H,
and let (hi,f;) # (he.fs) fori # s. If Y, u; € K[G], thenu; = a;j(hi—f;), 1 <i <n,
where o; € k.

Proof Due to Lemma 1.19, it suffices to demonstrate that u; € K[G], 1 < i < n.
Assume to the contrary that, say, u#; ¢ k[G]. We have

n
U = —Zui + Z(x‘vgs, g € G, o5 €k
=2 K}

We may suppose that the elements u;, 1 < i < n are linearly independent modulo
k [G], because otherwise, the number n can be diminished. Applying the coproduct,
we obtain

Y () @ (hi—h) + (i —fi) ® (—u) + Y g, ® g, = 0. (1.58)

i=2 s

As u;, 1 < i < n are linearly independent modulo k [G], there exists a linear map
w:H — Kksuchthat 7(up) = 1, n(k[G]) =0, w(u;) =0, 2 < i < n. Applying
id ® m to (1.58), we obtain f, = f;. Similarly, the application of 7 @ id implies
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h, = h;, which contradicts the condition that all pairs (h;,f;), 1 < i < n are
different. |

The evident equality gL,y = Lgj o allows one to normalize the skew primitive
elements. Given g € G, wedefine L, = {a € H| A(a) =a® 1 + g® a} = Li,.
This set forms a linear space, and we call its elements g-primitive, or normalized
skew-primitive if g is not specified. Linear spaces L, are independent; that is, their
linear span Prin (H) is a direct sum

Prin(H) £ Y Ly =EPL,. Ly={acH|A@=a®1+g®a}. (159

g€G g€G

Indeed, if Zi u; =0, u; € L,,, then by Lemma 1.20, we have g; = o;(1 —g;), which
implies ) ;i -1 — ), ;8 = 0,and ; = 0, 1 < i < n because distinct group-like
elements are linearly independent.

The space Prin (H) is invariant under conjugations by the group-like elements:

af
Li=g 'Lg = Ly—1jg, 8 heG.

In other words, Prin (H) is an Yetter—Drinfeld module over the Hopf algebra k[G].

1.5.3 Free Character Hopf Algebra

Let Y = {y;|i € I} be a set of free variables, and let G be an Abelian group.
We wish to consider Y as a set of free skew-primitive generators of a character Hopf
algebra. To this end, we must introduce the group-like elements 4;, f; € G and define
a coproduct

A) =yi®@hi+fi®yi, Ah) =h®h, A(f) =fQf. (1.60)

According to the definition of a character Hopf algebra, the group G must act on the
space V spanned by the y;’s via diagonal transformations: g~ 'y;g = /\;yi, X; ek
or, equivalently, we must postulate commutation rules

vig = Mgy, Myek, i€l geG. (1.61)

These commutation rules define the algebra of noncommutative G-polynomials only
if the maps y' : g —~ /\i, are characters of the group G, see Sect. 1.3.2. We consider
the algebra of noncommutative G-polynomials G(Y) with commutation rules (1.61)
as the free character Hopf algebra with counit e(y;) = 0, e(g) = 1, and antipode
Si) = —f vk, S(g) =g g€G. i€l

Thus, to define the free character Hopf algebra, we must associate with each
variable y; a character y', and two group elements 4;, f;. In this case, the character
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Hopf subalgebra of G(Y) generated by Y is Go(Y), where Gy is a subgroup of G
generated by h;, f;, i € I.

The Hopf algebra Go(Y) is defined by the parameters g, g;,. that appear in the
commutation rules for 4;, f;:

yile = quhwyi,  yifv = qpfivis Lk el (1.62)
Moreover, Go(Y) as a Hopf algebra is completely defined by the parameters
Pit = q - (1.63)
Indeed, consider the set of normalized generators x; = hi_1 vi, i € I. We have
A)=x® 1 +g®x;, g xigk =paxi, i,kel, (1.64)
where g; = h; If.. In this case, we have the equality of Hopf algebras

Go(Y) = Gy(X), and G(Y) = G(X). (1.65)

1.5.4 Brackets

Let y' : G — Kk* be the character associated with the variable y;, i € I. For every
word w in Y U G, let h,, denote an element of G that appears from w by replacing
each y; with A;. Similarly, f;, denotes a group-like element that appears from w by
replacing each y; with f;, whereas y" denotes a character that appears from w by
replacing each g € G with 1 and y; with . Because both the group G and the
group of characters G are commutative, the values h,, fw, x" are independent of
the order of variables y;, g in the word w. For this reason, we may extend x" on the
set of all homogeneous elements w € G(Y) in each y;, i € I. Similarly, h,, f,, have
extensions on the set of all homogeneous polynomials w in each y; € Y and each
geG.
In terms of the characters, the commutation rules take the following form:

wg = x"(g)gw, (1.66)

where w is an arbitrary element that is homogeneous in each y; € Y.
Let u, v be homogeneous polynomials in each y; € Y and each g € G. We define
brackets by the following formula:

[u.v] = 3" (huv — x"(f)vu,  [u, v]* = x*(hy Huv — 3 (f;Hvu. (1.67)
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For example, [y;, yx| = griyive — g;,yxyi. whereas [x;, x] = xixx — piaxpx; because
A i b ] = 5 ha)xoa — o (R f)xac = xioo — pacac.
Similarly, [y;, ye]* = g3 vive — (g]) " 'yiyi, and [x;, x]* = xx — pi; ' xax;, for
[ yis by i = (i, xioee — M (haf™ i = xee — pig xxe.

We did not define the brackets if u = y; +x;, because y; + hl._l y; is not homogeneous
with respect to hl._l € Gunless h; = 1.

Lemma 1.21 For every homogeneous u, we have
hilu, x;] ~ [u, yil, hilxi, u] ~ [yi.u], i€l (1.68)
Here a ~ b is the projective equality: a = ab, a € Kk, a # 0.
Proof By the definition (1.67) and the commutation rules (1.62), we have
hilu.xi]) = x'(ho)hiux; — x“(hi ' fhixiw = ' (h)hiuhy ' y; — x“(hi ')y
= ¥ (h) X" (hi) ™ uyi — ()~ 1 (F)yiue = 1 (h) ™ u .
Similarly,

hilxi,u) = hixau — 3 (f) X" (i)~ uhix; ~ [yi, u].

1.5.5 Defining Relations
If R, R,, ..., R, are elements from the free character Hopf algebra G(Y), then

d
Gyi,y2,.--.yn || R1,R2, ..., Ry) = G(Y)/Id(R(,Rs, ..., Ri),

the G-algebra defined by generators yi,...,y, and relations R; = 0, 1 <i < m
retains the Hopf algebra structure only if the ideal J generated by the R;’s is a Hopf
ideal.

Definition 1.12 A subspace J of a Hopf algebra (or more generally of a coalgebra)
H is said to be coideal it A(J) € J®H + H ®J and ¢(J) = 0. It is antipode stable
if 0(J) € J. An ideal that is an antipode stable coideal is called a Hopf ideal.

Lemma 1.22 Each coideal J of K[G] is spanned by its skew-primitive elements.



42 1 Elements of Noncommutative Algebra

Proof Assume, to the contrary, that u = Z;":l o;g; € J and the element u is not a

linear combination of skew-primitive elements from J. Among all those elements,

we choose the one with the minimal m. If m = 1, then 0 = ¢(u) = o; and u = 0.
Suppose that m > 1. We have

gl = Zﬂigiv (mod J), gi € G, ﬂi = —al_lai’ 2 E l E m.
i=2

The elements g;, 1 < i < m are linearly independent by modulo J because
otherwise, one can diminish the number m. Applying the coproduct, we obtain

g1®g =) figi® g (modJ @ k[G] +k[G] ®J). (1.69)
=2

Because g;, 1 < i < m are linearly independent modulo J, there exists a linear map
7w : k[G] — ksuchthat w(gy) =1, n(J) =0, n(g) =0, 2 <i < m. Applying
id ® 7 to (1.69), we obtain g;7(g;) = B2g2 (mod J), which implies

m(g1) = e(g17(g1) = e(B282) = B2

because £(J) = 0. Thus, g; — g, € J. Now, the element u’ = u — o (g1 — g2) € J
has a representation u’ = (@ + o1)g> + Zf”=3 o;g; with m — 1 summands. Hence
u' is a linear combination of skew-primitive elements from J. In this case, so is
u=u"+o(g1 —g2). o

At first glance, to introduce a character Hopf algebra defined by the relations
R, = 0, 1 < i < m, it looks reasonable to consider the smallest Hopf ideal that
contains the R;’s. However, the smallest Hopf ideal does not always exist because
the intersection of two Hopf ideals is not necessarily a Hopf ideal. For example, if
h; = f; = 1, i = 1,2 then the intersection of two Hopf ideals Id(y;) NId(y,) is not a
Hopf ideal. We shall discuss when an ideal generated by a given system of relations
is automatically a Hopf ideal.

Proposition 1.6 An ideal generated by an antipode stable coideal is a Hopf ideal.

Proof Let S be an antipode stable coideal. An arbitrary element 7 of the ideal J
generated by S is a sum T = ) ,a;s;b;, a;,b; € H, s; € S. We have o(T) =
Zi o (b;))o(s;))o(a;) € J as o is an antihomomorphism. Further,

AT =Y A@)A(s)Ab) eHS®H+HRSHeJQH+H® U,

1

and e(T) = Y, e(ay)e(si)e(b;) = 0. O
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Proposition 1.7 Each ideal generated by skew-primitive elements is a Hopf ideal.

Proof If Ry, Ry, ..., R, are skew-primitive, then by Lemma 1.18 the elements
fRih, f,h € G, 1 < i < m span an antipode stable coideal, and Proposition 1.6
applies. O

1.5.6 Combinatorial Rank

The majority of the known examples of character Hopf algebras are defined by
skew-primitive relations. Nevertheless, a Hopf ideal is not always generated by the
skew-primitive elements as ideal. The simplest example is given below.

Example 1.3 Consider the free character Hopf algebra in two variables defined by
parameters p1; = pa = pa1 = —1, p12 = 1 # —1. Let I be an ideal of G(x, x,)
generated by x7, x3, x1xox1x2 + xox1x2x1. Then, I is a Hopf ideal, which is not
generated by its skew-primitive elements.

Nevertheless, the skew-primitive relations play a permanent role in the construc-
tion of character Hopf algebras due to the following important statement.

Theorem 1.6 Every nonzero Hopfideal of a character Hopf algebra has a nonzero
skew-primitive element.

Recall that in Definition 1.3, we have defined a constitution (multidegree) of a
word u in X = {x; | i € I} as a family of nonnegative integers {m; | i € I} such that u
has m; occurrences of x;. We consider the set D of all families {m; | i € I} where m;
are natural numbers or zero as a partially ordered additive monoid

{m,|l€I}+{n,|l€I}={m,+n,|z€l},

{m;liel} <{n;|iel}ifandonlyifm; <n; i€l,

whereas the constitution D(u) is considered to be a degree of the word u. We extend
this degree on all G-monomials via D(gu) = D(u); that is, we set D(G) = 0.
Clearly, the formula D(uv) = D(u) + D(v) is valid for G-monomials u, v. The
coproduct of a monomial has a decomposition A(u) = u(1y @u(y where uyy, u)
are monomials such that D(u) = D(u(1)) + D(u()).

Let H be an arbitrary character Hopf algebra generated over Kk [G] by skew-
primitive elements ag;, i € I. There exists a Hopf algebra homomorphism

§E:GX)—H, §x)=a;, icl, §(g)=g, g€G. (1.70)

For each y € D, let H, denotes a space generated by the values in H of all
monomials that have D-degree less than or equal to y, and let H, denotes a
space generated by the values of all monomials that have D-degree less than y.
In particular, Hy = k[G], whereas H; = 0.
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Definition 1.13 We say that a nonzero element S is D-minimal with respect to a
subset/ C Hif S € H, NJ and H; N J = 0 for some positive y € D.

Because D as a partially ordered set satisfies the Ascending Chain Condition,
Theorem 1.6 follows from the more general statement below.

Lemma 1.23 Each D-minimal element in a nonzero coideal J of H is a linear
combination of skew-primitive elements from J.

Proof For all y > 0, we have k[G] NJ € H N J. Therefore, if K[G] N J # 0,
then all D-minimal elements of J belong to k[G], and we may apply Lemma 1.22 to
k [G] N J. Thus, we may assume k [G] N J = 0; that is, all group like elements are
linearly independent modulo J.

Let d be a D-minimal element in J. The element d has a decomposition

d=oaw+ Y awi+b, (1.71)

i=1

where o, # 0, b € H; and w, w; are G-monomials of D-degree y. Among all of
the D-minimal elements in J let us choose one that does not have the representation
required in the theorem and has the decomposition (1.71) with the smallest m. Let
us show that in the decomposition (1.71) of this element all w;, 1 < i < m are
linearly independent modulo J & H,,, provided that m > 0.

Indeed, the dependence

D Bwi=di+b. pi#0.d €J. b €H,

i=1
implies
Brldi =wi+ Y B Biwi— B by
i=2

Therefore d; has representation (1.71) with smaller m; that is, there exists the
representation for d; required by the theorem. Moreover,

d— ,31_10[1611 =ow + Z(Oéi - ﬂl_lﬁiozl)wi +b— ,31_10611)1,
i=2

which diminishes m.
The coproduct of G-monomials has the form A(w) = w®h+gQw+, A(w;) =
w;Qh;+g;®w;+ B;, where 8, B; € H, ®H,  and g, h, g;, h; are group-like elements.
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Therefore, we may write

Ad)—d®h—g®d=) aw® (hi—h)+ Y ailgi—g @wi  (1.72)

i=1 i=1

modulo H,” ® H, . Because d belongs to J, this statement implies

Y awi®(hi—h)+Y ai(gi—g) @wi € Hy @H, +JQH+H®J. (1.73)

i=1 i=1

Consider the canonical linear projections ¢ : H — H/(J+H,)andy : H - H/J.
Applying the map ¢ ® ¥ to relation (1.73), we obtain

> cip(w) ® (b —h) = 0. (1.74)

i=1

Since ¢(w;) are linearly independent in H/(J + H,’) and ¥ (h; — h) are nonzero in
H/J, provided that h; # h, we have that all coefficients «; with &; # h are equal to
zero. Likewise applying the map ¥ ® ¢ to (1.73), it follows that o; = 0, provided
that g; # g. With the help of these equalities, the relation (1.72) implies

Ad)—d®h—g®de (H, ®H,))NJ®H+H®J) =0,

forJ N H,” = 0. Thus d is skew-primitive, which contradicts the choice of d. O
Remark 1.7 In Theorem 1.6, we do not suppose that H is D-homogeneous.

Although not every character Hopf algebra is defined by skew-primitive relations,
Theorem 1.6 provides a way to define any Hopf algebra H step-by step using skew-
primitive relations.

Denote by J the kernel of ¢ : G(X) — H. By Theorem 1.6 the Hopf ideal J has
nonzero skew primitive elements. Let J; be an ideal generated by all skew primitive
elements of J. Clearly, J; is a Hopf ideal. Now, consider the Hopf ideal J/J; in
the quotient Hopf algebra G(X)/J;. Again, by Theorem 1.6, either J; = J or J/J;
has nonzero skew primitive elements. Denote by J,/J; an ideal generated by all
skew primitive elements of J/J;, and by J,, denote its pre-image with respect to the
natural homomorphism G(X) — G(X)/J;. In continuation of this process, we will
find a strictly increasing, finite or infinite chain of Hopf ideals of G(X)

O=JcCcJiclhpLC...CJ;C.... (1.75)

In this chain, the ideal J;/J;—; of G(X)/Js— is generated by skew-primitive
elements.
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Lemma 1.24

oo
=7
s=1

Proof Given y = {n;|i € I} € D, define |y| = > ., n;, and set G(X), =
>_lyj<s G(X)y. Because Us2o(G(X)s,NJ) = J, it suffices to demonstrate that for all
s we have

G(X)s N J C Jyy1. (1.76)

We perform induction on s. If s = 0, then G(X); = k[G]. Lemma 1.22 applied to
the coideal J N k [G] implies (1.76) with s = 0, for J; contains all skew-primitive
elements from J N k [G].

Assume that (1.76) holds for a given s. Let H' = G(X)/Js+1. In H' consider the
coideal /' = J/Jyp1. If |y| = s + 1, then (H'),” € G(X);/Js41, which implies

(H"), NJ" S (G(X)sNJ) + Jo41/Js+1 = 0.

In other words, according to Definition 1.13, the space (H'), N J’ consists of D-
minimal elements with respect to J’. With Lemma 1.23 applied to the Hopf algebra
H' and coideal J', we obtain that H) NJ" is contained in the space spanned by skew-
primitive elements of J’. The skew-primitive elements of J’ belong to Jyy2/Jy+1.
hence H; NJ’ C Jyy2/Jg+1. Considering that H)ﬁ = G(X)y/Js+1, we have G(X), N
J C Jy+2. Because y is an arbitrary element with |y| = s + 1, this statement yields
G(X)sr1NJ S Jgyo. |

Definition 1.14 The length « (H) of chain (1.75) is called a combinatorial rank of
the character Hopf algebra H with respect to the generators a;, i € I.

Remark 1.8 The arguments of Lemma 1.23 remain valid even if the skew-primitive
generators are not semi-invariants. Hence, Theorem 1.6 is valid for (and Def-
inition 1.14 may be applied to) an arbitrary Hopf algebra generated by the
skew-primitive elements.

1.5.7 Noncommutative Differential Calculi

A differential calculus on an associative unitary algebra R is defined by a linear map
d from R into a (R, R)-bimodule M such that the Leibniz formula

duv) =du-v+u-dv
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is valid. The map d is called a differential. If R has a distinguished (finite or infinite)
set of generators x;, i € [ such that M is freely generated by the differentials
dx;, i € I as aright module then the calculus is called right coordinate, originally a
first order differential calculus with right partial derivatives, whereas the generators
may be considered coordinate ‘“noncommutative functions”. In this case, we may
define on R the right partial derivatives 0; : R — R, i € I according to the formula
du = )", dx; - 9;(u). The bimodule structure defines commutation rules

vody =) dv,-A@)}. veKk(X), i€l (1.77)

Applying this relation to the product of two elements, we have

de,A(uv)l’- = (uv)dx; = u des CA(v)! = Z Z dxA(u) A(v);.

N

Thus, the linear maps A} : R — R satisfy the following comultiplication formula

Awv), =Y AWLAQ), w.v € K(X), tiel (1.78)

Since d(uv) = ), dx; 9;(uv), it follows that the Leibniz formula yields

duv) =Y dxi 0i(w)v+u Yy dre0c(v) = Y dx; 0i(w)v+ Y > d; Aw) 9 (v):
i k i i k

that is, the Leibniz formula reduces to the following relations for the partial
derivatives:

0;(uv) = 9;(u)v + ZA(M)Z d(v), wu,vek(X), iel. (1.79)
k

Conversely, if maps A! that satisfy (1.78) are given, then commutation
rules (1.77) uniquely define the structure of a left module on the free right R-
module generated by symbols dx;, i € I, whereas maps 0; : R — R, i € I define a
right coordinate differential calculus provided that (1.79) holds.

The free algebra k(X) considered as a subalgebra of the free character Hopf
algebra G(Y), has a right coordinate differential calculus related to the coproduct,
where, as above X, are the normalized skew-primitive generators x; = hi_1 yi, i € 1.

Proposition 1.8 A right coordinate calculus set up by commutation rules (1.77)
with A(u)! = & x"(gs)u is well-defined on k(X). The partial derivatives connect
this calculus with the coproduct on G(X) via

AW =u® 1+ Y gdiw) ®x (mod G(X)® A?), (1.80)
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where A is an ideal of k(X) generated by x;, i € 1. The Leibniz formula for right
partial derivatives takes the form

d;(uv) = 0;(w) - v + x"(g)u - 9;(v) with 9;(xx) = 8{»‘. (1.81)
Proof Because A(x;)) = x; ® 1 + g; ® x; and A is a homomorphism of algebras,
we have A(k(X)) € G(X) ® k(X). The space G(X) ® A? is an ideal of the
algebra G(X) ® k(X), so that (1.80) is an equality in the related quotient algebra.

Equation (1.80) uniquely defines linear maps 9; : k (X) — k (X). Let us verify that
these linear maps satisfy (1.81). We have, first, 9;(x;) = 81’.‘, and then,

Aw) = AWAW) = @@ 1+ Y 2idi(w) @ x)(v @ 1+ Y 2i0i(v) ® x;)
=uw®l+ Zug,-a,-(v) R x; + Zgiai(”)v ® X;

=uw @1+ Y gi(x"(g)udi(v) + () ® x;,

which demonstrates (1.81).
The maps A! defined in the proposition satisfy (1.78):

Aw): = 8 " (8) = 8 x"(8)x"(8) = Y _ 8! 1 (8)8L x"(85) = D AW)'A(v);.

The relations (1.79) for the commutation rules (1.77) with A(u); = 6; x*(gs)u take
the form (1.81). Hence, d(u) = ), 0;(u)dx; is a required differential calculus. O

If the module of differentials M is freely generated by dx;, i € I as a left module,
then the calculus is called left coordinate. In this case, we may define on R left
partial derivatives 37 : R — R, i € I according to the formula du = )_; 97 (u) - dx;.
The bimodule structure defines commutation rules

dxi-u = ZB(M)f dx,, ueKk(X), i€l (1.82)

Applying this relation to the product of two elements uv, we see that B} satisfy the
same comultiplication formula

Buv)} =Y BW)!B);. u.vek(X), isel. (1.83)
k

The Leibniz formula reduces to relations for the left partial derivatives

O (wv) = Y 0¥ B)L +udf(v). wvek(X), iel (1.84)
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Proposition 1.9 A left coordinate calculus d* set up by commutation rules (1.82)
with B(u)} = 87 x*(gu) u is well-defined on K(X). The left partial derivatives connect
the calculus d* with the coproduct on G(X) via

Alu) =g, Qu+ Zgugi_lxi ® 0% (u) (mod GA* ® k(X)), (1.85)

1

where u is a homogeneous polynomial in each x;, i € I, and as above A is the
ideal of K(X) generated by x;, i € I. The Leibniz formula in terms of the left partial
derivatives takes the form

3F(uv) = x'(g0)97 () - v +u- 37 (v) with 3} (x,) = 6. (1.86)

Proof The space GA? ®k(X) is an ideal of the algebra G(X) ® k(X), whereas (1.85)
is an equality in the related quotient algebra. Equality (1.85) uniquely defines linear
maps 97 : k(X) — Kk(X), i € I. These linear maps satisfy (1.86). Indeed, for
homogeneous polynomials u, v € k(X), we have

A@wv) = AWAW) = (g0 @ u+ ) gug; % ® 37 (1)

l

X (g ®V+ Y gugi % ® 07 (v))
= g.gy @ uv + Zgugvgi_lxi ® ud: (v) + Zgugi_lxi gv ® 9] (u)v

= 2w ®uv + Y gug X ® (1 ()37 () v + udf (v)),

1

which demonstrates (1.86), as ¥ (xx) = 8* clearly holds.
The maps Bj defined in the proposition satisfy (1.83):

B(uv); = 8! x'(gw)uv = Y _ 8 x'(g)us} x*(g)v = > B B(v);.
k k

The relations (1.84) for the commutation rules (1.82) with B(u); = &7 x*(g.) u take
the form (1.86). Hence, d*(u) = ), 9 (u)d*x; is a required differential calculus.
O

Remark 1.9 We must stress that, in general, d and d* are different differentials
defined on k(X). They may be identified only if p;;p; = 1 forall i, s € I.

Let ¢ : R — S be an epimorphism of algebras, and assume that R has a right
(left) coordinate calculus d with respect to generators x;, i € I. We would like
to understand when the homomorphism ¢ induces a right (left) coordinate calculus
with respect to the generators a; = ¢(x;) € S, so that the homomorphism ¢ becomes
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a homomorphism of differential algebras:

9(9i(u)) = 9i(p(u)). (1.87)

Definition 1.15 An ideal J of an algebra R with right (left) coordinate differential
calculus is said to be differential if 9;(J) C J, i € I.

Lemma 1.25 An epimorphism ¢ : R — S induces a right (left) coordinate calculus
with respect to the generators a; = ¢(x;) € S so that the homomorphism ¢ becomes
a homomorphism of differential algebras if and only if J] = Ker ¢ is a differential
ideal.

Proof 1f we take u € ker ¢, then (1.87) implies 0;(u) € kerg, i € I.

Conversely, if J is a differential ideal, then the formula 9;(¢ (1)) = ¢(9;(u))
correctly defines the linear maps 9; : S — § because an equality ¢(u) = ¢(v)
implies u — v € J and 0;(u) — 0;(v) € 9;(J) € J, which yields ¢(3;(u)) = ¢(3;(v)).
In particular, we have d;(ax) = ¢(3;(x)) = 8¥.

The Leibniz formula (1.79) implies 9;(ux;) = A(u)!, and hence A(J). < J.
For this reason, the formula A((p(u))f; = ¢(A(u)’) correctly defines the linear maps
Af; : § — §. Both the comultiplication formula (1.78) and the Leibniz formula (1.79)
with @ < 9, Al < A! remain valid, and they define the required differential calculus
onS.

Similarly, in the case of a left coordinate calculus, the Leibniz formula (1.84)
implies 07 (x;u) = B(u)! and B(J)] < J. Therefore, the formula B((p(u))f =
@(B(u)?) correctly defines the linear maps Bf : S — S. Both the comultiplication
formula (1.83) and the Leibniz formula (1.84) with 0* < 9, B} < Bf remain valid,
and they define the required differential calculus on S. O

If H is an arbitrary character Hopf algebra generated by normalized skew-
primitive semi-invariants a;, i € I and group G, then there exists a Hopf algebra
homomorphism

£:GX)>H, §x)=a;, (g9 =g, i€l, geG. (1.88)

Let A be a subalgebra of H generated by the elements a;, i € I.

Proposition 1.10 If ker§ C GA2, then & induces a right coordinate calculus of
A with respect to the generators a; so that the restriction of & on K (X) becomes
a homomorphism of differential algebras. In particular, the partial derivatives
connect the induced calculus with the coproduct on H via

A)=u® 1+ Zgi 0i(u) @ a; (mod H® Aﬁ), (1.89)

l

where A, = £(A) is anideal of A generated by a;, i € I. The Leibniz formula (1.81)
also remains valid for A.
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Proof By Lemma 1.25, it suffices to check that ker § N k(X) is a differential ideal.
If u € ker£ N k(X), then by (1.80) there exists W € G(X) ® A? such that

Aw) =u®1+ Y g diu) ®xi+ W eker§ ® G(X) + G(X) @ keré.  (1.90)

Consider a projection n : G{(X) — G + G - X that acts identically on G + G - X and
n(GA?) = 0. Applying id ® 1 to (1.90), we obtain

u® 1+ gidiw) ®x € kert ® (G + G- X). (1.91)

1

Let n; be a linear map n; : G + G - X — Kk such that ;(xx) = 67, k,s € I, and
ni(g) =0, g €G, nilhx;) =0, he G, h # 1, s € I. Applying id ® n; to (1.91),
we have g;0;(u) € ker &, which implies 9;(u) € ker&. O

Given h € G, consider a linear space G(X); spanned by all monomials gu, g € G
such that gg, = h, where g, is a group-like element that appears from the word u
under the substitutions x; < g;, i € I. In this way the free Hopf algebra G(X)
becomes a G-graded algebra:

G(X) =P Gx) (1.92)

heG

In particular, to define a linear map, it suffices to consider only homogeneous
elements with respect to the above grading.

Lemma 1.26 [fkeré C GA, then H maintains the G-grading (1.92). Here GA
denotes the ideal of G(X) generated by x;, i € I.

Proof We must demonstrate that ker £ is a homogeneous ideal with respect to (1.92).
Let U = >, oufvux € ker&, where by = figu,, 1 < k < m are different group-
like elements, f; € G. We have,

A(U) e keré ® G(X) + G(X) ® keré. (1.93)

Consider a projection 1 : G(X) — Kk[G] that acts identically on G and n(GA) = 0.
Applying n ® id to (1.93), we obtain

>l ® fuu € k[G] ® ker§ (1.94)
k=1

because for each G-monomial fu we have A(fu) € fg, ® fu + GA ® G(X).
Considering that i, 1 < k < m are linearly independent, there exist linear maps
n« - K[G] — K, such that ni(h;) = 8, 1 < k,s < m. The application of n; ® id
to (1.94) yields o fiu; € ker&, 1 <i < m, as required. O
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Proposition 1.11 If keré € GAZ2, then £ induces a left coordinate calculus of
A with respect to the generators a;, so that the restriction of & on k(X) becomes
a homomorphism of differential algebras. In particular, the partial derivatives
connect the induced calculus with the coproduct on H via

AW) =g ®@u+ Y gugr'xi® 07 () (mod GAL®A), (1.95)

1

and the Leibniz formula (1.86) remains valid for A, where u is a homogeneous
element with respect to grading (1.92).

Proof According to Lemma 1.25, we must verify that ker § N k(X) is a differential
ideal. If u € keré N k(X) is a homogeneous element with respect to (1.92), then
by (1.85) there exists W € GA? ® k(X) such that

A() = gu®u+ ) _ gug; ' xi®0; )+ W € ker ®G(X) +G(X) ®keré.  (1.96)

l

Applying id ® 7 to (1.96), where 7 is defined in the proof of Proposition 1.10, we
obtain

gu®u+ Y g8 xi® () € (G+G-X) ®kerk, (1.97)

Consider a linear map 7; : G + G- X — K, such that 1;(g.g; 'x;)) = 1, and n;(G) =
ni(hx;) = 0if h # g,g; ' ors # i. Applying 7;® id to (1.97), we have 97 (u) € ker§.
O

Definition 1.16 An element a € A is called a constant with respect to differential
calculus d : A — M if d(a) = 0. Of course, if d is a right (left) coordinate calculus,
then this statement is equivalent to the equalities d;(x) = 0, i € I (respectively
0f(u) =0, iel).

Lemma 1.27 If keré C GA?, then each skew-primitive element u € A2 is a
constant with respect to both calculi.

Proof 1Tt follows from (1.89) and (1.95). O

The converse statement is not valid. Indeed, the Leibniz formula implies that the set
C(H) of all constants with respect to the right coordinate calculus d is a subalgebra.
Similarly, the set of all constants C*(H) with respect to d* is a subalgebra too.
However, sets of skew-primitive elements almost never form subalgebras.

Lemma 1.28 In any Hopf algebra, a product of two nonzero normalized skew
primitive elements u, v with g, # g, is not skew-primitive.
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Proof Let A(u) =u®1+g,Qu, A(v) =v®1+g, ®v If uv is skew-primitive,
then for suitable f, h € G, we have

0=Awv)—uv@h—fRQuv =uv®(1—h)+g,vQu-+ug, ®v + (g,gv —f) Quv.

If g,g» # f, then the element uv is a linear combination of three skew-primitive
elements (1 — 4), u, v. As all of them are normalized, uv is also normalized; that is,
h = 1. In this case, uv = au + Bv and we have

(guv + a(gugv —f)) ® u+ (ugy + B(gugv —f)) ® v = 0.

By (1.59) the elements u, v are linearly independent. Hence g,v + «(g,8, —f) = 0,
ugy, + B(gugy —f) = 0. In particular &« # 0, B # 0. However in this case (1.59)
implies that cu + Bv is skew primitive only if g, = gy.

If g,gv = f, then u, v, 1 —h must be linearly dependent, say, «u+ Bv + y(1 —h)
= 0. Decomposition (1.59) implies that this requirement can be satisfied only if
either « = 0 or B = 0. Let, for example, ¢ # 0 and 8 = 0. In this case we obtain

wv—o'ygw)® (1 —h) + ug, ® v =0,

which is impossible due to decomposition (1.59). O

1.6 Filtrations

Let R be a linear space. Consider a basis B of R. A subspace S C R is said to
be admissible with respect to B if S is spanned by a subset b(S) of B. A sum of
admissible subspaces is admissible, (D _; S,) = U,b(S1), and an intersection of
admissible subspaces is also admissible: b(M).S;) = N, b(Sy).

Below, a linear space R is said to be filtered if there is established an increasing
chain of linear subspaces

{O}ZR(_OO)ER(O)ER(UE... CRyC<...,

such that | J; R;) = R. The filtration defines a degree functiond : R — N U {—o0}
by

d(x) = min{i|x € R(i)}.
We may choose a basis BX of R so that all spaces R, are admissible with respect to

BX. To this end, we choose a basis Bff) of R(o), then extend it to a basis Bf;, of R
and so on.
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With every filtered space R, a graded space gr R is associated as follows:

o

grR = @ er; R,

i=0
where gr; R, i > 0 is the quotient space R(;)/R(i—1). A linear map ¢ : R — T of
filtered spaces is a homomorphism of filtered spaces or a filtered linear map it

o(Ry) S T, i>0. (1.98)
A homomorphism induces a linear map gr ¢ of associated graded spaces:

gro tu+ Rp—1) = @) + Tu—1), u € Ry,
or, equivalently, in terms of operators acting on Ry,
LY = QT (1.99)

where 1, is the natural linear map R,y = R()/Ru—1) = gr, R, while the operators
act from the left to the right: u - ¢, = m,(¢(u)). In this way, the map gro is
well-defined because u = v (mod R(,—y) implies

pu) — o) = ¢ —v) € p(Ru—1)) S Tu-1)-

The following lemma shows that the operator gr is a functor from filtered spaces to
graded spaces.

Lemma 1.29 IfR, T, S are filtered spacesand ¢ : R — T, & : T — S are filtered
linear maps, then the superposition ¢ - £ is a filtered map and gr (¢ -£) = gro - gré€.

Proof We have ¢ - £(R(;)) = E(@(Rw)) € E(T(n)) S S()- Using (1.99), we obtain

ma(gro - gré) = om,gré = (p§)m,.

Therefore, gr (¢ - §) = gro - gré. O

We stress that functor gr is not exact. The simplest example is as follows. Let
R = k be a filtered space with the filtration Ry = 0, R,y = k, n > 1, while
T = Kk is a filtered space with the filtration 7,y = k, n > 0. Then, the identical
map ¢ : R — T is a filtered map, and gr¢ = 0. Due to this example, the following
simple lemma is of interest.

Lemma 1.30 [f¢ : R — T is afiltered linear map such that ¢(Ry) = Ty, n > 0,
then gr ¢ is an epimorphism. If ¢ is an embedding and ¢(R,)) = Ty N@(R), n > 0,
then gr ¢ is an embedding too.
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Proof If we have T(,y = ¢(R(,)), then each element u + T(,—1), u € T, has at least
one preimage v + R(,—1), where u = ¢(v).
If ¢ is an embedding and un® € kergro, then 0 = unfgr¢ = @(u)n!, and

hence ¢(u) € kerr] N ¢(R) = ¢(R(,—1)). The fact that ¢ is an embedding implies
that u € R,—1) and unr® = 0. O

If R, T are filtered spaces, then R®QT has an induced filtration, where by definition

R®T)wy = Y Ry®T. n=0. (1.100)
i+s=n

Respectively, the degree function on R ® T is defined by d(# ® v) = d(u) + d(v).
Each subspace Ry ® T(y), i,s > 0 is admissible with respect to the basis BR @ BT
of R ® T because it is spanned by the tensors u ® v, u € b(R(;)), v € b(T(y)).

Givenn > 0, let ff, 0 < i < ndenote the natural maps EZR : Ry = Rmy/Ri-1).
Of course, the quotient space R(»)/R(i—1) contains gr; R = R(;)/R(i—1) as a subspace.
Let 78 ® n7, i+ s = n be the linear map 7X ® 7! restricted on (R ® T) ).

Lemma 1.31 The image of X ® T equals gr,R ® gr,T.

Proof If k > i and k + m = n, then m < s; therefore, we have ﬁXT(T(m)) =0.1If
k < i, then TR (R)) = 0, which implies

im(rf@r!) = ( Z Ry ®T(m)T:i®Ts = Ry ®T(5))(nf @n]) = gr,R®er,T.
k+m=n

as required. O

Lemma 1.32 If R, T are filtered spaces, then gr(R ® T) = grR ® grT with the
decomposition of homogeneous components,

gr,(R®T) = @ griR ® gr,T,
i+s=n

via the identification

e = P nfen!. (1.101)

i+s=n

Proof By definition, the operator &, , (¥ ® 7T acts on (R ® T)(y as follows:

sS=n

URV > @ (urf @ vnl) e @ gr;,R ® gr,R.

i+s=n i+s=n
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In particular, the kernel of that operator equals the intersection of the kernels of all
a® @ nl, i+ s = n. The functorial property of the tensor product, (1.49), yields

ker(niR(X)nsT) = ker(ﬁ;@ﬁs)ﬂ(R(X)T)(n) = (R(;_1)®T(n)+R(,,)®T(S_1))O(R®T)(,,).

The latter intersection as an admissible subspace is spanned by the set

By £ ((BE_, ® Bl,) U (B}, ® Bl 1>))”( U Bl @B

k+m=n

A tensor u ® v, with u € Bfn) v € B(Tn) belongs to this set if and only if, first,
either d(u) < i or d(v) < s and, next, d(u) + d(v) < n. These conditions are met
if d(u) + d(v) < n. If both conditions are valid for all pairs (i,s), i + s = n, then
taking i = d(u), we have d(v) < s = n—i = n—d(u), which implies d(u) + d(v) <
n. In other words, the intersection of all B;,, i + s = n equals (B ® BT)(,,_U,
which implies that the kernel of the operator in the right-hand side of (1.101) (as an
admissible set) equals (R ® T)(,—1), the kernel of the left-hand side. Thus, we may
identify those operators. Finally,

g, RRT) =R T)ymr®" = R Ty P nfen! = P eR@erT.
i+s=n i+s=n

O
Lemma 1.33 If ¢ : R — R’ and £ : T — T’ are filtered linear maps, then so are
WRERRXT >R QT ,andgr(p ® §) = gro ® gré.
Proof We have

RRT)(p ®E) = D ¢R) ®ET) S Y Rl ®ET,) =R @T ).
i+s=n i+s=n

Using identification (1.101) we have

i (gro@grs) = P rferp@n! gt = @ onf @tn!’ = (pE)ak ®".
i+s=n i+s=n

Hence, according to definition (1.99), we obtain gr (¢ ® §) = gro ® gré. O

One may introduce the concepts of filtered algebras, coalgebras, modules,
comodules, Hopf algebras and other objects defined on linear spaces by linear maps
(operations) and tensor products by requiring that the ground space and all maps
(operations) be filtered. In this case, for every such object R, the graded object
grR is associated. If the axioms are given by certain operator relations, then the
Lemmas 1.29 and 1.33 proven above demonstrate that the operator relations remain
valid on grR. In other words, the associated graded object retains the structure of
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R. Moreover, considering that homomorphisms are normally defined in terms of
equalities of operators, gr is a functor of related categories, but it is certainly not
exact in general. Let us consider somewhat more thoroughly algebras, coalgebras
and Hopf algebras.

Definition 1.17 An algebra R is said to be filtered if R is a filtered space and the
multiplicationm : R ® R — R and the unit map @ — « - 1 are filtered linear maps;
thatis, Rj)R(s) € R(its), i,s > 0and 1 € R(g).

The operator form of the product grm on grR is
(7 @ my)grm =mm4y, I, s>0, (1.102)

where as above the operators act from the left to the right, (u® v)mm; 4y = m;45(uv).
The product can be written in the elementary form as follows:

(u+R(i_1))(v +R(S_1)) = uv +R(i+s—1)7 ue R(,‘), S R(S) i, s>0. (1.103)

To ascertain that gr R is associative, we must simply apply gr to the associativity of
m written in the operator form, (m ® id)m = (id ® m)m, and use Lemmas 1.29
and 1.33:

(grm ® id)grm = gr (m ® id)m) = gr ((id ® m)m) = (id ® grm)grm.

It is also easy to check the associativity using the elementary form (1.103).
Let R, T be filtered algebras. A linear map ¢ : R — T is called a homomorphism
of filtered algebras if it is a homomorphism of algebras and filtered spaces.

Lemma 1.34 If ¢ : R — T is a homomorphism of filtered algebras, then the map
gro : grR — grT is a homomorphism of associated graded algebras.

Proof 1Tt suffices to apply gr to the equality ¢(uv) = @(u)p(v) written in the
operator form, m¢ = (¢ ® ¢) m, and use Lemmas 1.29 and 1.33. O

Example 1.4 Every algebra R with a fixed set of generations A = {a;|i € I} has a
natural filtration, called a filtration by formal degree. Let us assign certain natural
degrees to the generators, d(a;) = d;, i € I. As usual, the degree of a word in the
a;’s is the sum of the degrees of its letters. By definition, the space Ry is spanned
by values of all words of degree < n. In particular, Ry = k- 1 is spanned by the
value of the empty word. R is a filtered algebra with respect to this filtration.

Let k(X) be a free associative algebra freely generated by a set X = {x;|i € I}.
If f € k(X), then there is a decomposition f = f, + fu—1 + ... + fi + fo of the
polynomial f into homogeneous components, where f; is the linear combination of
all monomials of degree i occurring in f. If f, # 0, then by definition # is the formal

degree of f. The polynomial f el [, is called a leading component of f.
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The quotient space K(X))/k(X) 1) is isomorphic to the space spanned by all
words of degree n; that is, we may consider f; € gr; k(X). In this case, the map

fohehian®...0fi ®f
is an isomorphism between k(X) and grk(X) that allows us to identify
grk(X) = k(X).

For the algebra R given in Example 1.4, a natural homomorphism ¢ : k(X) — R
defined by x; > q; is filtered because ¢(k(X))) = R(»). Moreover, Lemma 1.30
implies that gr ¢ : k(X) — grR is an epimorphism.

Proposition 1.12 The ideal ker(gr @) is spanned by all leading components f when
f runs through the ideal ker ¢.

Proof If f € kerg, thenf = O in R. Hence f;, = —f,—1 — ... — fi — fo € Ru-1);
that is, f = f, € kergro. Conversely, if f = f, + ... +fi + fo € ker(gr ¢), then all
homogeneous components f;, 0 < i < n also belong to ker(gr¢). By definition, for
each f;, there exists g; € k(X)—1) suchthatf; = g; in R, which implies f;—g; € ker ¢
andf; = f; — gi. O

Suppose that the algebra R is defined by relations F; = 0, i € I. Then, the above

proposition states that all leading components F; are relations of the associated
graded algebra. In other words, there exists a natural epimorphism

7:REX||F =0, iel) —> grR. (1.104)

This epimorphism is not always an isomorphism. For example, consider an algebra
R with a generator x and two relations x> = 1, x> = x. Then, of course,
R = k = grR, whereas R = k[x|x> = 0] is a two-dimensional algebra. The
situation is changed if the set {F; = 0} is a Grobner-Shirshov system of relations;
see Sect. 1.2.3.

Theorem 1.7 If < is a Deg-Lex ordering, and the set of relations {F; = 0, i € I} is
closed with respect to the compositions, then (1.104) is an isomorphism.

Proof If F € ker(gr ¢), then by Proposition 1.12, we have F = f, f € ker ¢. By the
definition of the Deg-Lex ordering, the leading word w of f has the maximal formal
degree. Therefore, w is one of the monomials of F. If ¢ is not an isomorphism, then
we may choose F ¢ ker ¢ with the minimal possible w. By Theorem 1.2, the word
w contains one of the leading words w; of F; = 0, i € [ as a subword, w = uw;v.
In this case, f' = f — uF;v still belongs to ker ¢, and the leading word of /' is less
than w. Therefore, f, € kerp. We have f = fl+ u F; v because w; is one of the
monomials of F;, which implies F = f € ker@ in view of the fact that F; € ker .
O
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If U is a subalgebra of k(X), then U has a filtration U,y = {u € U|d(u) < n}
induced by formal degree. By Lemma 1.30 the associated graded algebra gr U is a
subalgebra of grk(X) = k(X).

Proposition 1.13 The algebra gr U is spanned by all leading components f when f
runs through the algebra U.

Proof If f € Uy, then f + U(,—1) is identified with f 4 k(X)(,—1), which, in turn,
was identified with £, so that f € gr U.

Conversely, if f = f, + ... +f1 +fo € gr U, then each homogeneous component
fi» 0 < i < n belongs to gr; U. By definition, for each f;, there exists g; € U
such that f; = g; modulo k(X) ;—). In this case, the homogeneous element f; equals
fi+ (gi—f) =3 O

Assume that on a filtered space R, a coalgebra structure is given with a coproduct
A and a counit €.

Definition 1.18 The coalgebra R is said to be filtered if A : R® R — R is a filtered
linear map; that is,

ARuw) S ) Ry®Ry, n=0, (1.105)
s+i=n

or, equivalently, the degree function satisfies d(x) > d(x") + d(x®). Note that the
counit € : R — K is always a filtered map because k) = k.

Lemma 1.35 IfR is a filtered coalgebra, then the associated graded space grR is
a coalgebra with the coproduct gr A and the counit gre.

Proof The coalgebra axioms may be written in the form of equalities of operators
defined on tensor products:

1. Coassociativity: A - (A®id) = A-(ld® A);
2. Counit: A-(¢e®id) =id = A-(id® ¢).
Applying gr to those equalities and using Lemmas 1.29 and 1.33, we see that

gr A and gr ¢ also satisfy the axioms. O

In the elementary form, the coproduct gr A and counit gr ¢ behave as follows:

grA:u+Ruy—> @ @V +Ri1) ® @ +Ri1). ueRg. (1.106)

i+s=n

S(M), ifn= O, ue R(());

1.107
0, ifn>0, MER(n). ( )

gre u+Ry-1) = {

Example 1.5 Every coalgebra C has a natural filtration, called a coradical filtration.
By definition, C(g) is the coradical (a sum of all simple subcoalgebras of C), and C(y,
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is defined inductively as follows:
Coy = A" (C®Cu—t) + Cy ® C), n> 1.

The coalgebra C is a filtered coalgebra with respect to the coradical filtration. One
may find the basic properties of the coradical filtration in the books [1, 176, 220].

Let R, T be filtered coalgebras. A linear map ¢ : R — T is called a
homomorphism of filtered coalgebras if it is a homomorphism of coalgebras and
filtered spaces.

Lemma 1.36 If¢ : R — T is a homomorphism of filtered coalgebras, then the map
gro : grR — grT is a coalgebra homomorphism.

Proof The definition of a coalgebra homomorphism in the operator form reads as
follows: A - (¢ ® ¢) = ¢ - A. It remains to apply Lemmas 1.29 and 1.33. O

Definition 1.19 A Hopf algebra H is said to be filtered if on the space H, a filtration
is fixed so that the product m, the unit map @« — o« - 1, the coproduct A, and the
antipode o are filtered linear maps; that is,

I. RyR(s) S R(i+s), 1 € Ry, i, s=0;
2. ARm) € X gti=nRi) ® Ry, n=0;
3. 0(Rwm)) € R, n=>0.

Theorem 1.8 IfH is a filtered Hopf algebra, then the associated graded space gr H
is a Hopf algebra with the product grm, the coproduct gr A, the counit gr €, and the
antipode gro.

Proof By the above two lemmas gr H is both an algebra and a coalgebra. The rest
of the Hopf algebra axioms may be written in the form of equalities of operators as
follows:

1. Antipode: A- (0 Qidm=A-(ld®o)m=¢-1;
2. The coproduct is a homomorphism:mA = (A ® A)(id ® 6 ® id)(m ® m),

where 0 is the flip map, 0 : u® v +— v ® u. The flip map is filtered, and gr6 = 6.
Applying gr to those equalities and using Lemmas 1.29 and 1.33, we determine that
the associated graded maps satisfy these axioms too. O

In the elementary form, the graded antipode has a very clear representation
gro : M+R(n_1) l—)U(M) +R(n_1), u ER(n). (1.108)

Let R, T be filtered Hopf algebras. A linear map ¢ : R — T is called a
homomorphism of filtered Hopf algebras if it is a homomorphism of algebras,
coalgebras, and filtered spaces.

Lemma 1.37 If ¢ : R — T is a homomorphism of filtered Hopf algebras, then
gro : grR — grT is also a Hopf algebra homomorphism.
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Proof This statement follows from Lemmas 1.34 and 1.36. O

Example 1.6 The free character Hopf algebra (as well as each of its homomorphic
images) has two natural filtrations, the coradical filtration and the filtration defined
by the formal degree, d(x;) = 1, d(G) = 0. In general, these two filtrations
are different. The zero components are the same, G(X)@) = K[G], but the first
component of the coradical filtration contains all skew-primitive elements that may
have a formal degree greater than 1. For example, if p;;ps; = 1, then xix; — pisxsx;
is such an element. Thus, at least two graded Hopf algebras may be associated with
each character Hopf algebra.

1.7 Certain Concepts of P.M. Cohn’s Theory

A filtered space R is said to be connected if Ry = k. Each subspace of R has the
induced connected filtration. For example, an algebra with a distinguished set of
generators is connected with respect to a filtration defined by the formal degree; see
Example 1.4.

Let R be a connected filtered algebra, and let d be the degree function d(u) =
min{n |u € R(,}; we shall say that the family {a;|1 < i < n} of elements of R is
right d-dependent if there exist elements b; € R, such that

d()_ aib;) < max{d(a;) + d(b;)},

or if some a; = 0. Otherwise, the family {a;} is right d-independent. An element a
of R is said to be right d-dependent on a family {a;} if @ = O or if there exist b; € R
such that

d(a—_aib) <d(a), andd(a;) + d(b;) = d(a) for all i.

In the contrary case, a is said to be right d-independent of {a;}.

Definition 1.20 A set X in R is called a weak algebra basis if all words in X
(including the empty one) span R, and no element of X is right d-dependent on
the rest.

Lemma 1.38 Every connected filtered algebra R has a weak algebra basis.

Proof For each n > 0 denote by R(/n) the subspace of R, spanned by the products
ab, wherea, b € R,—1) and d(a)+d(b) < n. Now choose a minimal set X,, spanning
R (modR(/n)) over k, that is a set of representatives for a basis of R/ R(/n), and set
X = UX,.
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To show that X is a weak algebra basis, suppose that an element x € X is right
d-dependent on other elements xi, . . ., x,, of X.

x= inbi (mod R,—1y), (1.109)

where n = d(x). Any terms x;b; with d(x;) < n belongto R/, so (1.109) implies that

X = Z a;x; (mod R(’n)),

where «; € k and d(x;) = n whenever «; # 0. However, this statement contradicts
the construction of X; thus, no element of X is right d-dependent on the rest. An
easy induction on the degree shows that the monomials in X span R; more precisely,
the monomials with a formal degree of, at most, n span Ry,). O

Definition 1.21 The algebra R is said to satisfy the weak algorithm relative to d, if
in any right d-dependent family, say ay, . .., a,, where

d(al) <...=< d(al‘ﬂ)’

some g; is right d-dependenton ay, ..., a,—.

Theorem 1.9 Let R be a connected filtered algebra with the degree function d.
Then, R satisfies the weak algorithm relative to d if and only if R is the free
associative algebra on a set X such that the filtration is defined by the formal degree
induced fromd : X — Ny.

Proof Let X = {x;|i € I} be a weak algebra basis constructed in Lemma 1.38. By
induction on the length, we shall prove that all monomials in X are linearly inde-
pendent. The monomials of length zero certainly are. Assume that all monomials in
X of length < n are linearly independent as elements of R, and let ) o,ws = 0,
where w, are monomials of length < n. By splitting off the left-hand factor from X
in each monomial w,, we can write o + Ziel xifi = 0,a € k, f; € R, which implies

d()_xf) = d(—a) = 0 < max{d(x)) + d(f)}.

i€l

Therefore, X is a right d-dependent family. By the weak algorithm, either one of
the x;’s is d-dependent on the rest or each f; equals zero in R. The former option
contradicts the choice of X. Thus, each f; = 0 in R, and so ¢ = 0. By the induction
assumption, all f; are zero polynomials. Hence, the given relation f = 0 was trivial,
which completes the induction.

To demonstrate that d(f) = d’(f), where f = )__a,w is a linear combination of
monomials, we perform induction on the length of the monomials. It is clear that d
coincides with d’ on Ry = k. Assume that d(f) = d’(f) whenever all monomials
of f are of length < n. The formal degree d’ with d’(x;) = d(x;), i € I is defined
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by the equality

d'(Y_xif}) = max{d(x) +d' ()},

where f; are polynomials in X. If all monomials of f are of length < n, then
f =Y, xifi where all monomials of f; are of length < n, which implies

d'(f) = max{d(x;) + d'(wi)} = max{d(x;) + d(w)}.

At the same time, if d(f) < max{d(x;) + d(w;)}, then the weak algorithm states that
one of the x; is d-dependent on the rest, which contradicts the choice of X. Hence
d(f) = max{d(x;) + d(wy)} = d’(f).

We complete the proof by showing that the free algebra k(X) filtered by the
formal degree d(x;) = d; > 0 satisfies the weak algorithm.

Let us fix a monomial x; ... x, of degree r, and define the transduction for this
monomial as the linear map b — b* of k(X) into itself, which sends any monomial
of the form ax; ... x; to a and all other monomials to zero. Thus, b* is the “left
cofactor” of x; ... x; in the canonical expression for b. Clearly, for any b € k(X)
we have d(b*) < d(b) — r. Further, if a, b € k(X), then

(ab)* = ab* (mod k<X)(d(a)—l))‘

This statement is clear if b is a monomial term of degree at least r; in fact, we then
have equality. If b is a monomial term of degree less than r, the right-hand side is
zero, and the congruence holds. The general case follows by linearity.

Assume now that ay, ... ,a, is a d-dependent family:

d()_aibi) < m = max{d(a;) +d(by)}.

1

Taking the a;’s as ordered so that d(a;) < ... < d(a,), we must show that some
a; is d-dependent on those that precede. By omitting terms if necessary, we may
assume that d(a;) + d(b;) = m for all i and, hence, that d(b;) > ... > d(b,).

Let x; ... x, be a product of maximal degree » = d(b,) occurring in b, with a
nonzero coefficient o, and denote the transduction for x; ... x; by *. Consider now
> a;b¥; the ith term differs from (a;b;)* by a term of degree less than d(a;) < d(a,).
Hence the sum will differ by a term of degree less than d(a,) from (3_ a;b;)*, which
has degree < d(_; aib;)—r < m—r = d(a,). Therefore,d(}_ a;b¥) < d(a,), which
gives a relation of left d-dependence of @, ona;, i <n,asbf =a ek, « #0. O

Remark 1.10 One can easily define left d-dependent families and a left weak
algorithm. The above theorem implies that the concept of a weak algorithm for
connected filtered algebras is right-left symmetric because the free algebra R is
isomorphic to the opposite algebra R°? = (R, %) with the product u * v = vu.
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We conclude this section by describing a condition for a subalgebra to inherit
the weak algorithm. If U is a subalgebra of a filtered algebra R, then U has an
induced filtration U,y = R(,)NU with the same degree function. By Lemma 1.30 the
associated graded algebra gr U is a subalgebra of gr R by means of the identification
u -+ U(n—l) =u-+ R(n_l), u e U(,,).

Definition 1.22 We call homogeneous elements uy,...,u, € grU right linearly
independent over grR if Y w;r; = 0 implies r; = 0 for arbitrary r; € grR.
The subalgebra gr U is said to be right closed in grR if for any homogeneous
ui,...,u, € grU, which are right linearly independent over grR, if Y u;r; € grU,
thenr; € grU.

Similarly, u,, ..., u, € grU are left linearly independent over grRif Y riu; = 0
implies ; = 0O for arbitrary r; € gr R. The subalgebra gr U is said to be left closed in
gr R if for any homogeneous uy, ..., u, € gr U, which are left linearly independent
over grR, if > ru; € grU, thenr; € grU.

In other words, gr U is left closed in gr R if gr U P is right closed in gr R °P.

Proposition 1.14 Let R be a connected filtered algebra with the weak algorithm,
and let U be a subalgebra such that gr U with respect to the induced filtration is
right or left closed in gr R. In this case, U also has the weak algorithm.

Proof Assume that grU is right closed in grR, and A = {ay,... ,a,} is a d-
dependent set of U. This set is also d-dependent in R:

d()_aib;) < max{d(a) + d(b)}. a; €U, b;€R.

We may suppose that all proper subsets of A are d-independent in R, as otherwise
one may diminish the number » in the above relation.

Taking the a;’s as ordered so that d(a;) < ... < d(a,), we claim that
ap,...,a,—1, where a; = a; + R;) € grU are right linearly independent over gr R.
Indeed, if >°,_,a@; 7; = O, then {ay, ... ,a,—1} is a proper d-dependent in R subset
of A.

Since R has the weak algorithm, it follows that some «a; is d-dependent on the
rest:

i—1

d(ai— Y ) < da@).  d(a) + d(r) = d(@).

k=1
In the homogeneous component gr, R, h = d(a;) this relation reduces to
demr_/{ = @, € grU, which implies 7, € grU, 1 < k < i because

grU is right closed in grR. In terms of the algebra R, this statement reads as



1.8 Representation Theory and Crossed Products 65

follows: ry — ux € R(ry—1), ux € U. Finally, we have

i—1 i—1 i—1 i—1
d(a; — Zakuk) =d(a; — Zakrk + Z ai(ry —uy)) = d(a; — Zakrk) < d(aj);
k=1 k=1

k=1 k=1

that is, a; is d-dependenton ay, ...,a;—; in U.

If grU is left closed in grR, then grU is right closed in grR°, where
R°P, U®P are opposite algebra and subalgebra. By the above arguments, U has
the weak algorithm. Since the concept of weak algorithm is left-right symmetric
(see Remark 1.10), it follows that U also has the weak algorithm. ]

1.8 Representation Theory and Crossed Products

The word “representation” in Representation Theory originally stands for a concrete
representation of an abstract algebra (abstract group) by matrices or, equivalently,
by linear transformations of a linear space V. Certainly, such a representation is
equivalent to a consideration of a right module over the given algebra (correspond-
ingly, over the group algebra of the given group). The representation theory of
the symmetric group (more generally, of all finite groups) starts with the highly
important classical theorem of Maschke.

Theorem 1.10 Let G be a finite group of order n and let K be a field of characteristic
0 or of characteristic p where p is not a divisor of n. Then, the group algebra K[G]
is semisimple.

Proof See, for example, [57, Theorem 10.8], or [98, Theorem 1.4.1], or [200,
Theorem 1.5.3]. ]

Recall that by definition, a finite-dimensional algebra R is semisimple if each
right (left) module over R is a direct sum of simple submodules (a nonzero module
N is simple or irreducible if it has no proper submodules other than N and {0}). In
terms of representations, this case is equivalent to the condition that each invariant
subspace W C V, WR C W has an invariant complement V. = We®W’, W/'R C W',
In terms of structural theory, this case is equivalent to the radical of R being zero;
that is, R has no nilpotent ideals: [" = 0 = I = 0.

Lemma 1.39 Let R be a finite-dimensional semisimple algebra, and let p # 0 be
a right (left) ideal of R. Then, p = eR (respectively, p = Re) for some idempotent
e=¢e’inR.

Proof See [98, Theorem 1.4.2]. |

Corollary 1.3 If p is a right (left) ideal of the group algebra K[S,], then rl(p) =
p (respectively, Ir(p) = p) provided that chark = 0. Here [(p) = {x € R|xp = 0}
is the left annihilator, and r(p) = {x € R| px = 0} is the right annihilator.
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Proof By Maschke theorem K[S,] is a semisimple algebra. Lemma 1.39 states that
p = eR, ¢’ = e. The equality xeR = 0 implies xe = 0 and hence x = x(1 — e).
In other words /(p) = R(1 — e). Similarly, the right annihilator r(p) of a left ideal
p = Re equals (1 — ¢)R. Since 1 — e is also idempotent, it follows that rl(eR) = eR
and /r(Re) = Re. O

Interestingly, the above statement remains true even if the characteristic p is a divisor
of n!, see [57, Theorems 61.3, 62.1].

The fundamental theorem of Wedderburn connects abstract semisimple algebras
with matrix algebras.

Theorem 1.11 A finite-dimensional algebra is semisimple if and only if it is the
direct sum of simple algebras, whereas a finite-dimensional algebra is simple if and
only if it is isomorphic to the algebra of all n X n matrices over a division ring.

Proof See, [98, Theorem 1.4.4] and [98, Theorem 2.1.6]. O

Corollary 1.4 Let M be the algebra of all n x n matrices over a field F. Then,
each right M-module is a direct sum of simple submodules, whereas all simple
submodules are isomorphic to the n-rows module over F.

Proof By Wedderburn’s theorem M is a simple algebra. Since each finite-
dimensional simple algebra is semisimple, it follows that each right M-module
is a direct sum of simple submodules.

If N is a simple right M-module, then the annihilator r(N) = {x € M | Nx = 0} is
a two-sided ideal of M. Therefore, r(N) = 0. Let e;; = diag(1,0,0,...,0) be the
matrix with only one nonzero entire. Of course, e; M is precisely the n-rows module
over F. We have Ne; # 0. Let us fix n € N such that ne;; # 0. Then, ne;|M is
a nonzero submodule of N, which implies ne; ;M = N; that is, each element x of
N has a representation x = nejym, m € M. Now it is easy to check that the map
nejym +— ejym is the required isomorphism between N and e M. O

If, in the construction of the skew group ring given in Sect. 1.3.3, the algebra R
is a field, and G is a finite group of its automorphisms of order m, then R * G has
a special name: a trivial crossed product or a crossed product with trivial factor
set. The theory of crossed products is an important part of the theory of central
simple algebras and has many of applications in modern algebra, beginning with
the following beautiful result.

Theorem 1.12 The trivial crossed product R * G is isomorphic to the full algebra
of m x m matrices over a Galois subfield R® £ {a€R|a® = aforall g € G}.

Proof See, [98, Lemma 4.4.2]. O

In turn, the theory of central simple algebras starts with the following fundamental
statement.
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Theorem 1.13 Let M be an algebra and M, be a finite-dimensional simple
subalgebra with center K - 1. Then, M = M| ® Z,, where

Z,={me M|am = ma forall a € M}

is a centralizer of M in M.

Proof See, for example, [98, Theorem 4.4.2]. We are reminded that by definition,
the multiplication in the tensor product of algebras, M; ® Z;, is given as follows:
m®z)-(m' ®z7)=(mm' Q7). O

1.9 Chapter Notes

The second chapter of the book [142] by Klimyk and Schmiidgen contains all
basic formulas of what is commonly referred to as g-calculus, along with detailed
proofs. Among the considered topics are the following: g-numbers, g-factorials, g-
differentiation, basic hypergeometric functions, and g-orthogonal polynomials.

The associative standard words first appeared in an article published by Lyndon
[154] in 1954 during the investigation of the Burnside problem for groups, and then
in an article published by Shirshov [211] in 1958 while studying Lie algebras. The
famous theorem concerning standard words, Theorem 1.1, firstly appeared in an
explicit form in a paper by Schiitzenberger and Sherman [206, Lemma 2, p. 486],
though the authors credited this result to Shirshov [211]. In fact, the combina-
torics of words has arisen independently within several branches of mathematics,
including number theory, group theory and probability, and appears frequently in
problems related to theoretical computer science. The unified treatment of the area
was specified in Lothaire’s “Combinatorics on Words” [148] and again in two other
books: “Algebraic Combinatorics on Words” [149] and “Applied Combinatorics on
Words” [150].

What is now referred to as the Grobner—Shirshov “bases” theory was articulated
independently by Shirshov [212] in 1962 for Lie algebras explicitly and for
associative algebras implicitly, by Hironaka [99] in 1964 for formal and convergent
infinite series algebras, and by Buchberger [43, 44] in 1965 for commutative
algebras. Buchberger named this theory in honor of his supervisor W. Grobner.
The Grobner theory introduced by Buchberger provides a solution to the reduction
problem for commutative algebras and is now included in the standard algebra
curriculum in many universities. Given the ubiquity of scientific problems modeled
by polynomial equations, this subject is of interest to not only mathematicians but
also an increasing number of scientists and engineers, see [218, 219].

In [30], Bergman generalized the Grobner theory to associative algebras by
proving the Diamond Lemma. In [32], Bokut’ noted that the parallel theory
developed early for Lie algebras by Shirshov can be applied to associative algebras
as well, and thus, he adapted the proofs for undergraduate students in [33]. The key
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component of the theory is precisely the Composition Lemma given in Theorem 1.2.
We refer the reader to a survey by Bokut’ and Kolesnikov [36] and to a survey by
Bokut’ and Chen [35] for detailed information on the modern development of this
theory.

Notably, the Grobner—Shirshov theory also applies to braid monoids. In the case
of monoids (groups), the Grobner—Shirshov method and the method of rewriting
systems are equivalent. Both specify a method of constructing the normal form for
words of a monoid and are a powerful tool to solve many combinatorial problems,
see [34, 37, 38].

The symmetric group is undoubtedly the most important object of modern
mathematics. It arises not only in algebra and combinatorics but also in physics
[31], probability and statistics [61], topological graphs theory [227], the theory
of partially ordered sets [216] and many other branches of modern science. As
an introductory course, we recommend the book [200] written by Sagan for
graduate students. The monograph [45] by Cameron provides the general method
for investigating abstract groups represented by permutations, see also [57, 64, 228].

The concept of Hopf algebra appeared long before that of quantum groups in a
paper by Hopf [101] on algebraic topology. This concept was rediscovered in a pure
algebraic context by Kac [111]. Additionally to the basic early monographs [1, 220],
a modern treatment of the Hopf algebra theory is provided in the most recent book
by Radford “Hopf Algebras” [191] and in notes by Montgomery “Hopf Algebras
and Their Actions on Rings” [176]. The initial chapters of the books on quantum
group theory, Kassel, “Quantum Groups” [120], Joseph, “Quantum Groups and
Their Primitive Ideals” [107], and Klimik, Schmiidgen, “Quantum Groups and Their
Representations” [142], also contain the foundations of the Hopf algebra theory.
Books written for physicists, Shneider, Sternberg, “Quantum Groups” [213], and
Chaichian, Demichev, “Introduction to Quantum Groups” [46], provide a specific
perspective on the subject.

The notion of a combinatorial rank appeared in [127, 128]. In the context of
braided Hopf algebras it was investigated by Ardizzoni [7, §]. In [62, 137, 138],
Alvarez, Diaz Sosa, and the author determine the combinatorial rank of the
Frobenius—Lusztig kernels of types A,, B,, and D, to be |log,n| + 1, [log,(n —
1)] + 2, and [log,(2n — 3)] + 1, respectively. There exists an infinitely generated
character Hopf algebra of an infinite combinatorial rank. Whether there exists a
finitely generated character Hopf algebra of infinite combinatorial rank remains
unknown.

Fox [79] applied a special type of noncommutative differential calculus to
various problems in topology and combinatorial group theory. The general notion
of noncommutative differential calculus appeared later in the famous paper by
Woronowicz [230]. The fourth part of the book by Klimyk and Schmiidgen [142]
focuses on this topic. Numerous studies have focused on noncommutative differ-
ential calculi. The notion of a coordinate calculus, inspired by Wess and Zumino
[226], was introduced by Borowiec, Oziewicz, and the author [39—41]. In [81, 82],
Frgnsdal and Galindo considered coordinate calculi with diagonal commutation
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rules, whereas the author in [129] generalized their results to commutation rules
defined by Yang—Baxter operators.

Cohn theory [53] is one of the greatest algebra achievements of the twentieth
century. This theory was inspired by Maltcev’s (negative) solution of the Van der
Waerden problem of embedding of a ring with no zero divisors in a skew field [161],
followed by discovery of conditions when a monoid can be embedded into a group.
The necessary and sufficient conditions have been revealed to be so complicated
that they may not be able to be expressed as a finite number of elementary axioms
[162, 163]. In turn, PM. Cohn has found necessary and sufficient conditions for
a ring to be embeddable in a skew field [52, 53]. His theory of matrix-inverting
homomorphisms and matrix ideals is devised as if created for the solution of the
problem concerning embedding of a bialgebra into a Hopf algebra.



Chapter 2
Poincaré-Birkhoff-Witt Basis

Abstract In this chapter, we demonstrate that every character Hopf algebra has a
PBW basis. A Hopf algebra H is referred to as a character Hopf algebra if the group
G of all group-like elements is commutative and H is generated over k [G] by skew-
primitive semi-invariants, whereas a well-ordered subset V € H is a set of PBW
generators of H if there exists a function & : V — Z1 U {oo}, called the height
function, such that the set of all products

ny, na ng
gvl v2 oo ‘Uk s

whereg € G, vi<vy<...<w €V, n <h(v),l <i<kisabasisof H.

In this chapter, we demonstrate that every character Hopf algebra has a PBW basis.
According to Definition 1.11, a Hopf algebra H is referred to as a character Hopf
algebra if the group G of all group-like elements is commutative and H is generated
over k [G] by skew-primitive semi-invariants.

Definition 2.1 A well-ordered subset V of a character Hopf algebra H is considered
a set of PBW generators of H if there exists a function & : V — Z U {oo}, called
the height function, such that the set of all products

ny na

guyt vy e vk, 2.1)

whereg € G, vi<vy <...<v €V, n; <h(v;),l <i<kisabasis of H. The
value h(v) is referred to as the height of v in V.

For example, the standard words, due to Theorem 1.1, form a set of PBW
generators with infinite heights of the free character Hopf algebra G(X). This fact
provides an idea concerning how to find the PBW basis of an arbitrary character
Hopf algebra.

We establish a homomorphism G(X) — H of the character Hopf algebras. The
values of elements (2.1) in H span all of H but may be linearly dependent. If the
value of a standard word v is a linear combination of the monomials (2.1) with
v; < v, then the values of elements (2.1), where v; # v, continue to span H. Hence,
the set of all standard words may be reduced to the set of “hard” standard words,
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i.e., standard words v whose values in H are not linear combinations of (2.1) with
v; <.

Then, one must demonstrate that the increasing products of “hard” standard
words are linearly independent in H. For this task, we must use the coproduct. If
U is such a linear combination, then we may (somehow) find its coproduct in the
free character Hopf algebra

AU)=U®1+Y URU/+g®U, g€G.
If U =01in H, then in H @ H we have the equality
Y uieUu! =o. (2.2)

This equality of tensors provides one equation corresponding to each basis element
of the space spanned by all U”. Because the U’’s have degrees less than that of U,
we may theoretically decompose them in linear combinations of increasing products
of “hard” standard words that are already linearly independent in H (by induction).
This amount of information is sufficient for obtaining the required contradiction.

Because of technical reasons, it was impossible to realize these considera-
tions directly for “hard” standard words; Instead, developing the above logic for
nonassociative standard words seemed possible, interpreting the bracket as the
skew commutator of polynomials. Surprisingly, after this logic was developed,
demonstrating that the “hard” standard words are indeed the PBW generators
became straightforward.

The equality (2.2) is not equivalent to setting U to be zero but does indicate that U
is skew-primitive. In other words, while solving the above system of equations, we
will obtain information on the skew-primitive elements of character Hopf algebras.
This information is given in Theorem 2.3.

2.1 PBW Bases of the Free Character Hopf Algebra

Let G(Y) = G(X) be the free character Hopf algebra, see Sect. 1.5.3. Recall that
x;, i € I are free variables with the coproduct given by

Ax) =xi®1+g8®x;, Ag) =38 g (2.3)

whereas associated with each variable x; is a character y' : G — k* such that
g 'xig = yi(g)gx;, forall g € G, see (1.66).

For every word u in X let g, denotes a group-like element that appears from u
by replacing each x; with g;. Similarly, y“ is a character that appears from u by
replacing each x; with x'. Because both the group G and the group of characters are
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commutative, the values g,, y* are defined on the set of all homogeneous elements
in each x; € X. For a pair «, v of homogeneous polynomials in X put

Puv = X"(8v)- (2.4)
Obviously, the following equalities hold:
Puvw = PuwPows  Puww = PupPuw- (2.5)
Sometimes it is more convenient to denote this bimultiplicative operator by p(y, v).
Of course, the operator p(-, -) is completely defined by the parameters pix = x'(gx)-
In terms of this operator, the brackets (1.67) take the form

[, v] = uv — pyyvu, [u,v]* = uv —p;ivu. (2.6)

Lemma 2.1 The brackets [,] satisfy the following “Jacobi identity”:
(. v].w) = [ [ W] + o e W] 0]+ (P — Py e w] - v, 2.7

where - stands for usual multiplication in the free algebra.

Proof We have

[[e, v], w] = [uv — pypvu, W] = UVW — Dy WUV — Py y VUW + Py y Py wWUU.
Under the substitution w < v, this equality becomes

[, W], v] = UWV — Pryy L VUW — Py WUV ~+ Dy soPr.o VWU

Similarly,

[, [v, W]] = [u, YW — Py wWV] = UVW — Py UWU — Py oUWV + Py oDy sy WO,
and

[u, W] - v = uwv — p,,,,wiv.

It remains to compare the coefficients at all six permutations of uvw in (2.7).

uw: 1=1;
. _ —1 -1 .
WUV © —Puyw = —PyyPuw + (Pv.w _pw,u)Pu,m
. _ —1 .
vuUw . —pyy = _pmvpuvv,va

wou o PuyPouw = PvwPuwvs
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uwv . 0= p;lv — Pow + (Pv,w _pvjlv)’

. |
vwu: 0= PwyPuwPwuy — Puow-

O

Lemma 2.2 The following formulas link the brackets to multiplication:
[, v-w] = [u,v] - W+ puyv - [u,w], (2.8)
[u-v,w] = pylu,w]-v+u-[v,w] (2.9)
Proof We have, [u,v - w| = uvow — p,,, WU = UUW — Dy, VUW ~+ D, VUW —
DPuvPuwWlt = [u,v] - w + p, v - [u, w]. Similarly, [u - v, w] = uow — p,, ywuv =
UVW — Py UWU + Dy UWU — Py wWHY = U - [U, W] + py i, W] - v. O

Definition 2.2 A super-letter is a polynomial that equals a standard nonassociative
word where the brackets [, ] are defined in (2.6).

Every noncommutative polynomial f in X is a linear combination of different
words f = Y a;u;. Recall that a leading word of f is the maximal word »; that
occurs in this decomposition with nonzero coefficient.

Lemma 2.3 A leading word of a super-letter [u] with respect to the lexicographical
order is the word u, and it occurs in the decomposition of [u] with coefficient 1.

Proof We use induction on length. If [u] = [[v][w]] then the super-letter [u] equals
[v][w] — puw[w][v]. By the inductive hypothesis, [v] and [w] are homogeneous
polynomials with the leading words v and w, respectively. The leading word with
respect to the lexicographical order of a product of two homogeneous polynomials
equals the product of leading words of the factors. Therefore, the leading word of
[v][w] equals vw and has coefficient 1; the leading word of [w][v] equals wv and is
less than vw because vw = u is a standard word. O

The proven Lemma demonstrates that different standard words u and v define
distinct super-letters [u] and [v]. We define the order on the set of all super-letters
thus:

] > [v] <= u>v. (2.10)

Definition 2.3 A word in super-letters is called a super-word. A super-word is said
to be increasing if it has the form

W = [11] 2] -+ [uyn]*. @2.11)
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where u; < up < ... < u,. On the set of all super-words, we fix the lexicographic
order defined by the ordering of super-letters in (2.10).

Lemma 2.4 An increasing super-word W = [w ¥ [w2] - - - [w,]*" is greater than
an increasing super-word V.= [v1|™ [v2]"2 - - - [vk]™ if and only if the word w =
wWiWA - owhn i greater than the word v = v} v} ---v}*. Moreover; the leading
word of the polynomial W, when decomposed into a linear combinations of words,

equals w and has coefficient 1.

Proof LetW > V. Thenw; > v; in view of the ordering of super-letters. If w; = vy,
we can remove one factor from the left of both V and W, and then proceed by
induction. Therefore, we will put w; > v;. If w; is not the beginning of v, then the
inequality w; > v; can be multiplied from the right by suitable distinct elements,
which yields w > v, as required.

Letv, = wiT, T = W'k Wb hwl - vf, where 0 < I < k,. Here w; is
not a beginning of v}, whereas the term between the parentheses may be missing (in
this case s = 1,1 > 0).

If v is a nonempty word, then v{ < v; < w; < w;, because v; is standard.
The inequality vj < wy implies av|b < aw,c for all words a, b, ¢ because w; is
not a beginning of v}. Taking a = (W\'w& ---w5=")w! and suitable b, ¢, we obtain
v < w.

Let v| is the empty word. If / > 0, then the word v; should be greater than its
end w,. Therefore, w; > v; > w,, which contradicts the fact that w; < wy is valid
forall s > 1. If [ = 0, then s > 1 because v; begins with w,. It follows that v, is
greater than its end w,_;, which is again a contradiction with w; > v; > w,_;.

The second part of the lemma follows from Lemma 2.3 and the fact that the
leading word of a product of homogeneous polynomials equals the product of
leading words of the factors. O

Remark 2.1 We stress that the above lemma cannot be extended to all super-words,
for example if x; > x; > x3, then [x{] - [x3] > [x1x2] and x1x3 < x1x,.

Lemma 2.5 Let u, u; be standard words and u > uy. The polynomial [[u], [u1]] is a
linear combination of super-words in the super-letters [w] such that uu; > w > uy,
in which case the constitution of the super-words equals the constitution of uu,.

Proof 1If the nonassociative word [[u][u;]] is standard then it defines a super-letter
[w] and uu; = w > u; by Lemma 1.4. In particular, the lemma is valid if u and u;
are letters. We can therefore proceed by induction on the length of uu;.

Suppose that the lemma is true if the length of uu; is less than m. Choose a pair
u,u; with a greatest word u, so that the polynomial [[u], [#;]] does not enjoy the
required decomposition and the length of uu; equals m. Then the nonassociative
word [[¢][u;]] is not standard. By Lemma 1.10, we have [u] = [[u3][u:]] with
uy > Uj.
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We fix the notation for super-letters U; = [u], i = 1,2,3. By Jacobi
identity (2.1), we can write

[[Us, Us). Ui] = [Us, [U. Uil + p,,)},, [[Us. UL Us)
+Purar = Py ) [U3. Ur] - Us. (2.12)

We have u3 > u > u, > uy. By the inductive hypothesis, [Us, U] can be represented
as Y o; [[[wi], where us > wusu; > wy > wu;. Using Lemma 1.7, we obtain
i k

u > uuy > usu; > wy; that is, all super-letters [wy] satisfy the requirements of
the present lemma. Furthermore, the word u cannot be the beginning of u,, and so
u > up implies uu; > u,. Thus, the super-letter U, too, satisfies the requirements.
Consequently, the second [in view of (2.6)] and third summands of (2.12) have the
required decomposition.

Using the inductive hypothesis, for the first summand we obtain

(U2, 0] =) Bi [ Jlvad, (2.13)
i k

where uru; > vy > up. By Lemma 1.7, uu; > uyu; > vy; that is, the super-letters
[vik] satisfy the conditions of the lemma. Rewrite the first summand using skew-
derivation formula (2.8), with the first factor replaced by (2.13). In this way, the first
summand turns into a linear combination of words in the super-letters [v;] and skew
commutators [[u3], [vi]]. Because us > u > u, > vy and the length of vy does not
exceed that of u,u;, the inductive hypothesis applies to yield

[ls]. fwad] = > v [ Jiwil. (2.14)

where uz > uzvyg > wj; > vi. In this case uu; > vy implies
UUy = Uslpll] = UzVjx = Wi,

in addition, w;; > vy > uy, i.e., the super-letters [wj;] also satisfy the conditions.
O

Lemma 2.6 Every nonincreasing super-word W is a linear combination of lesser
increasing super-words of the same constitution whose super-letters all lie (not
strictly) between the greatest and the least super-letters of W.

Proof We proceed by induction on the length of the super-word. Assume that the
lemma is true for super-words of length < ¢, and let W = UU, --- U, be a least
super-word of length ¢ 4+ 1 for which our lemma fails.

If the super-word U, - - - U, is not increasing, then by the inductive hypothesis it is
a linear combination of lesser increasing super-words W;. In this case UW; < W, and
according to the choice of W, all super-words UW; have the required representation.
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Let
W=uUU{"---UR U <Uy<...<U,. (2.15)
If U < Uy, then W is increasing, and there is nothing to prove. Let U > U;. Then
W=[U U U U 4 p, U UYL UR, (2.16)

The second summand is less than W as a super-word, and so we can write it in the

required form. By Lemma 2.5, the factor [U, U] in the first term can be represented

as Y a; [[[wis], where the super-letters [w;] are less than U. Consequently, the
i

s
ki—1
1

super-words [[[wis]U --Uf’ are less than W; that is, the first term has the

s
required representation too. O

Theorem 2.1 The set of all super-words
1] [ua]™ - - fue] ™, (2.17)

where u; < up < ... < uy are standard words, forms a basis of k (X).

Proof Since by definition all words of length one are standard, the letters x; = [x;]
are super-letters. Hence, by Lemma 2.6, every polynomial is a linear combination of
increasing super-words. It remains to prove that the set of all increasing super-words
is linearly independent. Let

Z(X,’Wi =0 (218)

and assume that W = [w]% [wy]%2 - - - [w,,]* is a leading super-word in (2.18). By
Lemma 2.4, the leading word of W equals w = wi'wh2 .- wkn. This word occurs
exactly once in (2.18). Suppose, to the contrary, that W does also occur in the
decomposition of V = [v]™ [v2]™ - - - [vg]™. Then the word w is less than or equal
to the leading word v = v{"' vy - -- v} in the decomposition of V, which contradicts

the fact that W > V by Lemma 2.4. O

2.2 Coproduct on Super-Letters

Theorem 2.1 demonstrates that the super-letters are PBW generators of infinite
height for the free character Hopf algebra G(X). Our next goal is to describe
properties of the coproduct of these PBW generators.
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Lemma 2.7 The coproduct of a super-letter W = [w] has a representation

A = W] ® 1+ g ® [W] + ) aig(WH)W, @ W/, (2.19)

where W, are nonempty words in less super-letters than is [w]. Moreover, the sum
of constitutions of W! and W!' equals the constitution of V. Here g(u) denotes the
group-like element g, .

Proof We use induction on the length of a word w. For letters, there is nothing to
prove. Let W = [U, V], U = [u], and V = [v]. Assume that the decompositions

AU =UR1+g,QU+ Y aig(U)U;® U}, (2.20)

and

AV)=VR1+g,®V+Y BsVIVieV @21)

J

satisfy the requirements of the lemma. Using (2.6) and properties of p, we can write
AW) = A(U)AV) = pur ANAU) =WR1+g, W
+(1 = puspoa)gV @ U+ Y Bip(U. VI)g(V)IU. V] ® V/'
+ " Bigug(V/)V] ® (U] = puop(V]. U)V]'U)
+ Y 0ig(U)U} -V = puwp(V. U]V - U} ® U/
+3 ap(U], V)gug(UHU, ® [U. V]
+ Y BV UL VU, @ ULV
—pup(V}, U)VIU; @ V/'UY). (2.22)

Collecting similar terms in this formula was result in the canceling of terms of the
form g,U ® V only. We claim that all left parts of the remaining tensors in (2.22)
admit the required decomposition. First, in view of the inductive hypothesis, all
super-letters of all super-words Vz/ are less than V, which are in turn less than W
because v is the end of a standard word w. Moreover, by the inductive hypothesis
again, u cannot be the beginning of any word 1’ such that the super-letter [1'] would
occur in super-words U. Therefore, u > ' implies uv > u’ and W > [/]. Thus, all
but the first and fourth super-words on the left-hand sides of all tensors depend only
on super-letters which are less than W.
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We want to apply Lemma 2.5 to the fourth tensor. Let Vi = []Vy,
‘ k

where Vi = [vi] are less than V. By Eq. (2.8), the polynomial [U, Vj’] is a linear
combination of words in the super-letters Vi, and skew commutators [U, Vy]. By
Lemma 2.5, each of these commutators is a linear combination of words in the
super-letters [v'] such that v/ < uvy. In view of vy < v, we obtain v/ < uv = w.
The statement concerning the constitutions follows immediately from for-
mula (2.22) and the inductive hypothesis. O

Lemma 2.8 The coproduct of a super-word W has a decomposition

AW) =W 1+g(W) @ W+ Y aig(W)W @ W, (2.23)

1

where the sum of constitutions of W! and W!" equals the constitution of W.

Proof It suffices to observe that A is an homomorphism of algebras. Here, we can
no longer assert that W/ < W. o

Lemma 2.9 If [w] is a super-letter, then

A" = Y] e ol @ " + Y g (VUi @ Vi (224)
—Ljdq -
Jj=0 i
where [m] are the Gauss polynomials considered in Sect. 1.1 with g = p(w,w),
j g

whereas the super-words U; are less than [w]™ with respect to the lexicographical
ordering of words in super-letters.

Proof After developing of the product, the mth power of the right hand side of (2.19)
takes the form (2.24), where each of U; is a product of m super-words some of
whom equal to [w] (but not all of them!) and others equal to some of the W/’s. By
Lemma 2.7, all super-letters that occur in W; are less than [w]. Hence, the super-
word U; is less than [w]” with respect to the lexicographical ordering of words in
super-letters. O

2.3 Hard Super-Letters

Consider a character Hopf algebra H. By definition H is generated over k[G] by
skew-primitive semi-invariants b;,i € I:

Ab) =biQhi+f @b;, hi.fi € G, big= x"(g)-gbi, g€ G, iel. (2.25)

As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize the generators, ¢; = h; 'b;, diminishing
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the number of group-like elements related to them:
A7 'b) = h7'u® 1+ hi'f ® hy'by.
In what follows, we fix a set of normalized skew-primitive generators {a;}, so that

Aa)=a;® 1+ g ®a;, Alg) =g ®g, aig= x"(g)-gai, g€ G, i€l
(2.26)

Let G(X), X = {x;|i € I} be the free character Hopf algebra such that y' = y%
and g; = gq;, I € I. Then there exists a natural homomorphism of Hopf algebras

¢:G(X)— H, (2.27)

which maps x; to a;, i € I.

Definition 2.4 Let I" be a well-ordered additive (commutative) monoid. With each
x;, i € I we associate a nonzero element d; € I. The D-degree of a word, a
super-letter, a super-word, or more generally, a homogeneous polynomial f in X
of a constitution {m; | i € I} is

D(f) =) md; =) dideg,(f). (2.28)

In what follows, we fix a well-ordered monoid I" and elements d; = D(x;). For
example, I" may be the monoid related to the constitution given in the construction
after Definition 1.3. For the first reading, one may suppose that I = Z7 is the
monoid of nonnegative integer numbers, whereas d; = 1. However, we should stress
that the resulting set of PBW generators and its properties essentially depend on the
chosen D-degree function.

Lemma 2.10 The set X, of all words of a fixed D-degree m is well-ordered with
respect to the lexicographical order.

Proof We note, first, that I" has no negative elements: if a < 0, then there appears
an infinite descending chain 0 > a > 2a > 3a > .... Additionally, I" has the
cancelation property,a +x = a + y implies x = y: if x > y, thena +x > a + y.
Let F be a subset of X'. As (X, <) is well-ordered, the set A of all first letters of
words from F has a least element, say, x; € X. If xju, xjv € F, then D(x;)+D(u) =
D(x1) + D(v) = m. Hence, D(u) = D(v) < m because D(v) > m and D(x;) > 0
would imply D(x;) + D(v) > m. By these reasons, we may apply the induction
supposition to the set B = {u € X*|xju € F}. If up is a least element of B, then
XU 1s a least element of F. O

Definition 2.5 A G-super-word is a product of the form gW, where g € G and W
is a super-word. The degree, constitution, length, and other concepts which apply



2.3 Hard Super-Letters 81

with G-super-words are defined by the super-word W. In other words, we assume
that the D-degree and the constitution of g € G are equal to zero. In view of (2.26),
every product of super-letters and group-like elements equals a linear combination
of G-super-words of the same constitution.

Definition 2.6 A super-letter [¢] is said to be hard if its value ¢([¢]) in H is not
a linear combination of values of words of the same D-degree in less super-letters
than is [u] and of G-super-words of a lesser D-degree.

We are remanded that a primitive 7th root of 1 is an element ¢ € k such that
o' =landa” # 1forallr, 1 <r <t In particular, 1 is the 1st primitive root of 1.

Definition 2.7 We say that the height of a super-letter [u] of D-degree d € I" equals
h = h([u]) if h is the smallest natural number such that:

(1) puu is a primitive rth root of 1 and either h = t or h = tl", where [ is the
characteristic of k.

(2) the value in H of [u]" is a linear combination of values of super-words of D-
degree hd in less super-letters than is [¢] and of G-super-words of a lesser D-
degree.

If, for the super-letter [u], the number A with the above properties does not exist,
then we say that the height of [u] is infinite.

Theorem 2.2 The set of values in H of all G-super-words W in the hard super-
letters [u;],

W = glu]" [ua]™ - - - [ua]™, (2.29)

where g € G, uy < uy < ...<uy, n; <h([u]), forms a basis of H.

The proof will proceed through a number of lemmas. For brevity, we call a G-
super-word (2.29) restricted if each of the numbers #; is less than the height of [u;].
A super-word (a G-super-word) is said to be admissible if it is increasing restricted
and is a word in hard super-letters only.

First of all, we have to demonstrate that every element of H is a linear
combination of values of admissible G-super-words. Clearly, every element is a
linear combination of values of not necessarily admissible G-super-words because
each variable x; is a super-letter, x; = [x;]. In fact, there exist a natural diminishing
procedure, based on Lemma 2.5 and on the definitions of hard super-letters and their
heights, that allows one to find the required linear combination.

Lemma 2.11 The value of each non-admissible super-word of D-degree d is a
linear combination of values of lesser admissible super-words of D-degree d and
of admissible G-super-words of a lesser D-degree. Also, all super-letters occurring
in the super-words of D-degree d of this linear combination are less than or equal
to a greatest super-letter of the super-word given.
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Proof Assume that the lemma is valid for super-words of D-degree < m. Let W
be a least super-word of D-degree m for which the required representation fails. By
Lemma 2.6, the super-word W is increasing. If it has a non-hard super-letter, by
definition, we can replace it with a linear combination of G-super-words of a lesser
D-degree and of words in less super-letters of the same D-degree. Developing the
product turns W into a linear combination of G-super-words of a lesser D-degree
and of lesser super-words of the same D-degree, a contradiction with the choice
of W. If W contains a subword [u]*, where k equals the height of [u], then we can
replace it as is specified above, which gives us a contradiction again. Thus the W is
itself increasing restricted and is a word in hard super-letters only. O

In order to prove Theorem 2.2, it remains to show that admissible G-super-words
are linearly independent. Consider an arbitrary linear combination T of admissible
G-super-words and let U = V{'V,2 ... V;* be its leading (maximal) super-word of
D-degree m. Multiplying, if necessary, that combination by a group-like element,
we can assume that U occurs once without a group-like element:

T=U+Y agU+ Y  oigiWi Wi=ViVi.. Ve (2.30)

is
j=1 i=(il,i2,...,is)

In the next three lemmas, we accept the following assumptionsonm, U and r:

1. The admissible G-super-words of D-degree < m are linearly independent;
2. The admissible G-super-words of D-degree m which are less than U are linearly
independent modulo the space spanned by G-super-words mentioned in 1;
and, if » > 0, then
3. The super-words g; U, 1 < j < r are linearly independent modulo the space
spanned by G-super-words mentioned in 1 and 2.

In view of these assumptions and Lemma 2.11, every super-word of D-degree
m which is less than U, and every super-word of D-degree < m, can be uniquely
decomposed into a linear combination of admissible G-super-words. For brevity,
such will be referred to as a basis decomposition.

Lemma 2.12 Under the assumptions 1, 2, 3, if the value of T in H is a skew-
primitive element, then r = 0 and g; = 1 for all i such that D(W;) = m.

Proof Rewrite the linear combination T as follows:

T=U+) aigiWi+ W, (2.31)

i€l

where g;W; are distinct G-super-words of D-degree m in (2.30) (including o; g; U)
and W’ is a linear combination of G-super-words of D-degree < m. In the expression

AT)-TOh—-fi®T, h, 1 €G (2.32)
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consider all tensors of the form gW ® ..., where D(W) = m. By Lemma 2.8, the
sum of all such tensors equals

Z“igiwi ®gi_zaigiwi ®1= Zaigiwi ® (gi—1). (2.33)

iel iel i€l

By assumptions 1, 2, 3, the elements g; W;, i € I are linearly independent modulo
all left parts of tensors of D-degree < m in (2.32). Therefore, if (2.32) vanishes in
H, then either «; = Oorg; = 1 foreveryi € I, as required. O

Lemma 2.13 Under the assumptions 1, 2, 3, if T is a skew-primitive element, then
U = [u]" and all super-words of D-degree m except U are words in less super-letters
than [u] is.

Proof By the preceding lemma, we can assume that

T= Z aigiWi, Wi = Vi' Vi - Vie, (2.34)
i=(i1,i2,....is)

where one of the W; ’s is U, whereas V;; = [v;] are hard super-letters, r; are nonzero

coefficients, and g; = 1 if W; is of D-degree m. By Lemma 2.7, we have

A@iWi) = (2 @) [[(Vi @ 1485 ® Vs + D _g5jaVijg ® Vi)™, (2.35)
j=1 0

where Vi’j@ < Vj; and deg sz/jO + deg Vi/j/O = deg Vj;.

Let [u] be the greatest super-letter occurring in super-words of D-degree m
in (2.34). Because all super-words of (2.34) are increasing, this super-letter stands
at the end of some super-words Wj, i.e., [u] = Vj,. If one of these super-words
depends only on [u]; that is, W; = [u]", then W; is a leading super-word, W; = U as
required. Therefore, we assume that every super-word of D-degree m ending with
[t] is a word in more than one different super-letters.

Let & = n;, be the largest exponent of [¢] in (2.34). Consider all tensors of the
form g[u]* ® ... obtained in (2.35) by removing the parentheses and applying the
basis decomposition to all left parts of tensors in all terms except T ® 1 (all of these
terms are of D-degree < m).

All left parts of tensors which appear in (2.35) removing the parentheses arise
from the G-super-word g;Vi' Vi3> - -- Vi by replacing some of the super-letters V;;
either with group-like element g;; or with G-super-word g;jg Vi’j@ of alesser D-degree
in less super-letters. The right parts are, respectively, products obtained by replacing
super-letters V;; with super-words Vi/j/@ multiplied from the left by g;.

Let gR ® g'S be a resulting tensor under the replacements above and followed
then basis decomposition.
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If D(R) < hD(u), then its basis decomposition may give rise to terms of the
form g[u]* ® . ... In this case, however, D(S) < (m — h)D(u) because the sum of
D-degrees of both parts of the tensors either remains equal to m or decreases.

If D(R) < hD(u), or R is itself less than [u]" as a super-word, then the basis
decomposition of R have no terms of the form g[u]"; see Lemma 2.9.

If D(R) = hD(u), while D(W;) < m, then R can be greater than or equal to [u]",
but in this case D(S) < (m — h)D(u) because D(R) + D(S) < D(W;) < m.

If D(R) = hD(u), while D(W; ) does not end with [u]"; thatis, W; = Wi}[u]", 0 <
r < hand W] ends with a lesser than [u] supper-letter, then S is less than [u]" because,
due to Lemma 2.7, its first super-letter is less than [u] : if all super-letters of W} are
replaced with group-like elements, then D(R) < D([u]") < hD(u).

Finally, if W; = W; [u]", then a super-word R of D-degree hD(u), which is greater
than or equal to [«]", may appear only if all super-letters of the super-word Wi are
replaced with group-like elements, but [¢] is not. Here, the resulting tensor is of the
form g; g(W))[u)" ® gi W}

We fix an index i such that W; ends with [u]". Then the sum of all tensors of the
form g; g(W))[u]" ® ...in A(T) — T ® h, is equal to

gigW)" ® Y ajgj Wi + W), (2.36)
J

where W” is a linear combination of basis elements of D-degree less than
(m — h)D(u), and j runs through the set of all indices such that W; = W} [u]”,
gj8(W5) = gig(W)), and D(Wy) = (m — h)D([u]).

Because W} are distinct nonempty basis super-words of D-degree (m — h)D(u),
the value of tensor (2.36) in H is nonzero. A contradiction. O

Lemma 2.14 Under the conditions of the above lemma, p,, is a tth primitive root
of 1 witht > 1 and h = t, or the characteristic of k equals | > 0 and h = tI*.

Proof By Lemma 2.13, the linear combination T can be written in the form
T=[u"+ >  agiWi W, =Vivg. ..V (2.37)

is °
i=(il,i2,...,is)

where [u] is greater than all super-letters V;; for W; of D-degree m. First let £ =
L+ pu+pi, + ...+ plt # 0and assume h > 1.

In the basis decomposition of A(T) — T ® 1, consider tensors of the form
[u]"'®.... All super-letters V; in super-words of D-degree m are less than or equal
to [u]; therefore, tensors of this form may appear under the basis decomposition of a
tensor of A(W;) —W; ® 1, V; = V" Vi2 ... Vi only if either the left part of that
tensor is of D-degree greater than (h — 1)D(u) or Wj is of D-degree less than m. In
either case, the right part is of less D-degree than is [u]. As above, if we remove the
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parentheses in

A = (W@ 1+ g, @ [u] + Y g: UL @ UL)", (2.38)

we see that the left parts of the resulting tensors arise from the super-word [u]" by
replacing some super-letters [u] either with g, or with G-super-words g, U’ of a
lesser D-degree in less super-letters than is [u]. It follows that a super-word of D-
degree (h—1)D(u) which is greater than or equal to [u]"~' appears only if exactly one
super-letter is replaced with a group element. Using the commutation rule [u]*g, =
P’ .&u[ul’, we see that the sum of all tensors of the form g,[u]*~! ® ... equals

gu] ' @ (E[u] + F + W), (2.39)

where F is a linear combination of super-words in less than [u] super-letters, and
W is a linear combination of basis G-super-words of D-degree less than D(u).
Consequently, (2.32) is nonzero provided that £ # 0.

Now let £ = 0. In this case p’;.u = 1. Therefore, p,, is a tth primitive root of 1,
and h = t - g or, if k has a characteristic [ > 0, then & = tI’ - ¢ with ¢, 1 # 0 (mod /).
Our aim is to demonstrate that g = 1. Let ¥’ = h/q.

The commutation rule ([u] ® 1) - (g4 ® [1]) = puu(gu @ [u]) - ([u] ® 1) implies

(Mel+gu)" =u" &1+g" @ u". (2.40)

If we remove the parentheses in

A"y = (W ® 1+ g ® [u]) + Y 2(UU; @ U}, (2.41)

l

then Lemma 2.9 implies

AW =W @1+ @ " +)_ e(U))U; ® Uy, (2.42)
6

where all super-words Uj, are less than [u]”" (in particular, Uj, # [u]’, d < ') and
D(Uy) < h'-D(u).

This allows us to treat [u]h/ in (2.37) as a single block, or as a new formal super-
letter {[u]"} such that {[u]"} < [u], and {[u]"} > [vj] if u" > vy (the latter
inequality is equivalent to # > v; by Lemma 1.5):

is

T={u"}+ ) gV Vi Vi (2.43)
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Considering that p([u]" , [u]") = pZ:th/ = 1, we have

go= 14+ p(u]” ") + ...+ p(ul”, [u]")?™" = g # 0 (mod1).

As in the case above, assuming that {[u]”} is a single block, we can compute the
sum of all tensors of the form gfj/{[u]h/}‘f_l ® ... in the basis decomposition of
A(T) — T ® 1 (provided that ¢ > 1):

"y @ (g {lul"} + F+ W), (2.44)

where F is a linear combination of super-words in less than [u]h/ super-letters, and
W is a linear combination of basis G-super-words of less D-degree than is [u]h/. By
the induction hypothesis, tensor (2.44) is nonzero in H ® H, and so is (2.32). O

Now we are ready to complete the proof of Theorem 2.2 by induction on m, U,
and r. The least super-word of the minimal D-degree is a least variable x; with
minimal d;. In (2.30), the minimal value of r is zero. For these values of the induction
parameters, we have T = x;. If x; = 0 in H then U = [x;] is not a hard super-letter.

If under the induction assumptions 1, 2, 3, we have T = 0 in H, then value of T
is a skew-primitive element. By Lemmas 2.13, 2.14, the equality T = 0 takes the
form

W) = — Z aigiWi, Wi = V'V Vs,
i =(i1.22,...i5)

where V;; < [v] if D(W;) = D([u]"), whereas for & there are just the following
options: h = 1; or p,, is a primitive rth root of 1, and either 4 = ¢ or, in case when
the characteristic / is positive, & = tI*

If h = 1, then Definition 2.6 implies that [u] is not hard. In other cases,
Definition 2.7 implies that the height of [u] is less than 4. Theorem 2.2 is proved.

The skew-primitive elements in character Hopf algebras have a special form in
the basis decomposition related to hard super-letters. We are remanded that if a €
K[G] is a skew-primitive element, then a is proportional to & — f, see Lemma 1.19.

Theorem 2.3 Ifa ¢ k[G] is a skew-primitive element, then a = ag ¢(T), where
0 # o € Kk, g € G, and T has the following expansion:

T=[ul"+) Wi+ > BigW. (2.45)

Here, [u] is a hard super-letter; W; are basis super-words in super-letters less than
[u], D(W;) = hD([u]), and D(Wl/) < hD([u]). Moreover, if p,,, is not a root of 1,
then h = 1; if p,, is a primitive tth root of 1, then h = 1, or h = t, or (in case of
characteristic | > 0) h = tI*.
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Proof By Theorem 2.2, the element a is a linear combination of values of increasing
restricted G-super-words, a = ¢('T'),

k
T =agU+ Y yigiWi+W. a#0, (2.46)
i=1

where gU, g;W; are admissible G-super-words of maximal degree, and either U >
W;or U = W; but g; # g. Considering that, due to Theorem 2.2, assumptions 1, 2,
3 are universally true, we may apply Lemmas 2.12-2.14to T =a 'g7' T'. O

2.4 Monomial PBW Basis

In this section, we prove that values of standard words corresponding to hard super-
letters form a set of PBW generators for H also. Additionally we find some criterion
for a super-letter [¢] to be hard in terms of the values of monomials. This criterion
allows one to forget about skew brackets while computing the hard super-letters.

We keep the notations of the above section. In particular, H is a Hopf algebra
generated by an Abelian group G of all group-like elements and by skew-primitive
semi-invariants ay, .. ., @, with which degrees d, ..., d, are associated. We fix the
homomorphism of Hopf algebras ¢ : G(X) —> H, x;—~> a;, 1 <i <n.

Let w be an arbitrary word. By Theorem 1.1, there exists a unique decomposition
of the word w in the product: w = w1 wgz <. -wm wherew;, 1 <i < m are

m

standard words such that w; < wp < ... <wy. Let W = [wi]" - [wp]"2 - ...« [wp]™.

Lemma 2.15 [fthe super-word W is admissible, then the leading super-word of the
basis decomposition of ¢(w) is precisely W and it occurs with the coefficient 1 only.
If W is not admissible, then each super-word of the basis decomposition of ¢(w)
either is less than W or is of a lesser D-degree.

Proof Lemma 2.4 implies that the leading word of the polynomial W is precisely
w. Hence, W — w is a linear combination of words that are less than w.

If W is admissible, then the decomposition w = W + (w — W) allows one to
perform the evident induction.

If W is not admissible, then by Lemma 2.9, there is a decomposition (W) =
Z aj gj (W;), where W; are admissible super-words and for each j either W; < W
or D(W;) < D(w). Let W; = [wy]" - [wa)]" - - [wy]™ and w; = wi! ... -w,.
Lemma 2.4 implies that w; < w provided that D(w,) = D(w). Thus we have a
representation of ¢(w) as a linear combination of lesser words of the same D-degree
and G-words of lesser D-degree:

o) = ow = W)+ a;g0m;) — Y o g (W —w). (2.47)

J J

The induction applies. O
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Theorem 2.4 The set of values in H of all G-words
gui' Uyt -k, (2.48)

where g € G, u; < up < ... < uy are standard words such that [u;] are hard
super-letters, n; < h([u;]) forms a basis of H.

Proof Suppose that values of all words of degree < m belong to the space Hy
spanned by (2.48). Among the words of D-degree m, let w be the minimal one with
respect to the lexicographic order, such that ¢(w) ¢ Hy. If W is admissible, then w
itself has the form (2.48). If W is not admissible, than by induction (2.47) implies
that ¢ (w) € Hy. Hence, Hy = H.

Let wj, j € J be different words of the type (2.48); that is, w; = wy;
w:;”j?’ , whereas W; = [wy;]" - [wy]™ - ... - [wn]™ are admissible super-words. By
Lemma 2.15, the super-word W; is a leading super-word of the PBW decomposition
w; = W, +Y_,; a;W;;. Let W, is the maximal super-word among the W;’s of maximal
D-degree. Considering that different W;, W;;, j € J are linearly independent in H,
we obtain that a linear dependence

1

> ahip(w;) = 0. 0 # o €k, hy €G. (2.49)
jeJ, €T
would imply Y 7 ¢u&k@(Wi) = 0. This contradicts to Theorem 2.2. O

Corollary 2.1 A super-letter [u] is hard if and only if the value of u is not a linear
combination of values of lesser words of D-degree D(u) and of G-words of a lesser
D-degree.

Proof Let p(u) = ), aip(w;) + uo, &; € k, where w; < u, D(w;) = D(u) and
D(up) < D(u). By Lemma 2.15, we obtain u = [u] + Zi B; U; where the super-
words U; are less than [u].

Let w; = w/} -wh ... -w" where wy, 1 < k < mi are standard words such
that wy; < wy; < ... < Wy, and let W; = [wy;]™ - [wy]™2 - ... - [Wyi]™ . Lemma 2.15
demonstrates that all super-words V of the basis decomposition of w; are less than
or equal to W; unless D(V) < D(w;). Because u > w;, by Lemma 2.4, we have
[4] > W;, for all i.

Therefore [u] is greater than all super-words of degree D(u) in the basis decom-
position of ), a;j¢(w;). Thus, Theorem 2.2 implies that (1) # >, aip(w;) + uo.

Conversely, if ¢([u]) = Y a;p(W;) + Uy, where W; depends on super-letters less
than [u] only, and D(Uy) < D(u), then

o) = o([u]) + o —[u]) = Y aip(W;) + Uo + p(u— [u]).

Due to Lemma 2.4, the latter polynomial has no one monomial whose D-degree
equals D(u) and which is greater than or equal to u. O
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2.5 Serre Skew-Primitive Polynomials

In this section, using Theorem 2.3, we shall describe all skew-primitive polynomials
in two variables linear in one of them. We keep notation of Sect. 1.5.3:

A) =y ®hi+f®yi. vig=x'(9)gvi. hif,g€G, i=1.2.

We know that G(y;,y,) as a Hopf algebra with group G of group-like elements is
completely defined by the following four parameters

pic =qy qp = x'(h'fi), 1<ik=<2 (2.50)

related to the normalized skew-primitive generators x; = hl_lyl, Xy = hy y,
because G(y1, y2) = G(x1, x2).

Theorem 2.5 There exists a nonzero linear in y, skew-primitive element W of
degree n in y; if and only if either

P1apa = P%z_" (2.51)
or py is a primitive mth root of 1, m|n, and
Py = 1. (2.52)
If one (or both) of these conditions is satisfied, then

W=oagl...[[yi.y2.32]..... 2], @€k, g€, (2.53)

where the brackets are defined in (1.67).

Proof Let W be a skew-primitive element of constitution (1, 7). By Theorem 2.3
the element W has a representation (2.45) up to a factor og. Considering that
the free character Hopf algebra is homogeneous in each variable, there are no
terms W/ in that representation. There exist only one standard word of constitution
(1,n): this is xyxj. The standard alignment of brackets is precisely [xjxj] =
[. .. [[xix2]x2], . . .]x2]. Hence, (2.45) reduces to W = ag [x1x5]. Due to Lemma 1.21,
the G-super-word A5 [x1x;] becomes [y;y5] up to a scalar factor if we distribute the
group-like factors among the variables using the commutation rules (1.62):

/’llhg[[ .. [[.x1,.x2],.x2], o .],xz] ~ [[ .. [bfl,yz],yz], o .],yz]. (2.54)

This proportion proves (2.53).
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It remains to analyze when [x|x}] is skew-primitive. By induction on n we shall
prove the following explicit coproduct formula

A =[] @ 1+ o"gigy ™ ® g ™), (2.55)
k=0

n n—1
o = [ } - [T 0 =prapapsy). (2.56)
P22 s=n—k
If n = 0, then the equality reduces to A(x;) = x; ® 1 + g; ® x|, whereas oc(()o) =1.

Moreover, it is clear that oz(()") = 1 for all n. We have,

A @ 1) = kb @1+ Y o ags A @ g™, @2.57)
k=0

A(1x3]) - (82 ® x2) = [xix5] g2 ® x2 + Zai”’glg’é‘k)c’é 2 ® [x1 " xa.
k=0

(2.58)

0 ®1) - Al = wld @ 1+ o’ gigh ™ A ® v ™. (2.59)
k=0

(82 ®x2) - Al)) = aled] ® ;o + Yo 15 o @ oy ],
k=0

(2.60)

In the second and third relations we may move the group-like factors to the left:

[x1X5]g2 = piophs galviXs], X g0 = phygadh, xagigh ¥

— p21p1212—k glgg—k+l XI£+1.
Using all that relations, we develop the coproduct of
[y ™1 = Bl — piaph, xafxix]

taking into account that A(x;) = x; ® 1 + g» ® xp. The sums of (2.57) and (2.59)
provide the tensors

n
Z o (1 = propapi Mgigh * A @ [,
k=0
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whereas the sums of (2.57) and (2.59) produce the following ones:

Z“k Phyg1gs ! ® [y .

The first term of (2.58) cancels with the first term of (2.60). Finally, we arrive to a
formula (2.55) with n <— n + 1 and coefficients

le((nH) = le((n)l (1 = prpupss ) + Ol;((n)Plzcz, k>1, Ol(()n+l) 1. (2.61)

To prove the coproduct formula (2.55), it remains to check that values (2.56) satisfy
the above recurrence relations. To this end, we shall check the equality of the
following two polynomials in commutative variables A, g :

I:n+l:| (1= Ag") = |: n :| . _qun—k+1) " |:”:| a —Aqn_k) . qk' (2.62)
k kdg

k—1 q

If 1 = 0, then the equality reduces to the first g-Pascal identity (1.2). Let us compare
the coefficients at A,

["+1i| " k41, |" Kk
.qn — [ i| -q n— + |: i| .qn_ -q .
K, k1], k],

This equality differs from the second g-Pascal identity (1.3) just by a common factor
q". Hence, the equality (2.62) is valid.

If we multiply both sides of (2.62) by [T/} , +1(1 = Aq°) and next replace the
variables ¢ <— p», A < piapai, then we obtain precisely (2.61) for values (2.56).
The proof of (2.55) is complete.

Each oc,((") , 1 < k < n defined by (2.56) has a factor 1 — p12p21p22_ In particular,
if propa1 = p22 , then all of these coefficients are zero, whence [x;x}] is a skew-
primitive polynomial.

If py is a primitive mth root of 1, m|n, and pi,p4, = 1, then p1op,; is a power
ofpzz, that is, p1ap21p3, = 1 for some s, 0 < s < m. This implies that the product
T2} (1 = p1apaips,) equals zero provided that k > m. If k < m, then Lemma 1.1
applies.

Conversely, suppose that all coefficients o

i") = (1 —popapsy 1)p312] = 0. Therefore, 1fp12p21 # p5y", then p22 = 0. This

implies p3, = 1; that is, py; is a primitive mth root of 1 and m|n. In this case, the
equality o) = ]_[Z;(l)(l — P12p21Py,) = 0 implies that 1 — popo1p3, = 0 for some
s, 0 <s < n. Hence, (p12p21)™ = p3" = 1 which is required. O

(") 1 < k < n are zero. In particular,
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Corollary 2.2 If one of the existence conditions of the above theorem holds then

[..[Dyalyals ooyl ~ 2 as oo 2l - D (2.63)

Proof By Lemma 1.21, we have

a2, 2, oo s il -l ~ i, [xo, .o P, ] (2.64)

This lemma and (2.54) imply that it suffices to demonstrate (2.63) under the
substitution y; <— x;.

Let us introduce the opposite order, x, > x;. There exist only one standard word
of constitution (1, 7) with respect to this ordering of variables, xjx;, whereas the
standard alignment of brackets is [x;[xz ... [x2,x1]...]]- As [...[[x1, %], x2] . . ., x2]
is skew-primitive, it has a representation (2.45) where all summands have the same
constitution, (1, n). By definition of the lexicographical order x, > xJx;. Hence, x,
does not occur in (2.45) as a super-letter. Since every addend has degree 1 in x, it
follows that (2.45) reduces to T = «[x}x1]. O

2.5.1 Examples

In this subsection, we consider in more detail the above-described binary skew-
primitive polynomials with n < 3 and study the Hopf algebras set up by those
polynomials (as defining relations).

We fix two normalized skew-primitive variables x1, x» such that

A)=x®@1+g®x;, i=12.
Respectively, we put p;s = x'(gs), i,s = 1,2 so that

X181 = P1181X1, X182 = P1282X1, X281 = P2181X2, X282 = P2282X2.

We always suppose that the variables are ordered so that x; > x;.

Example 2.1 1f n = 1, then the existence condition of Theorem 2.53 reduces to
p12p21 = 1. Under that condition the skew commutator [x1, x;] = x1x2 — p12xpx; 1S
a skew primitive element. We have [x1,x;] = —pi2[x2, x1], which is the particular
case of the general formula (2.63). The Hopf algebra H defined by the relation
[x1,x2] = O is the skew group ring R * G, where G is the group generated by g1, g
and R is the so-called algebra of quantum polynomials

R = {Z U nXy X | X102 = praXaxi}.

m,n
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Obviously, x; and x, are the PBW-generators of H. To see this formally, we may
apply Composition Lemma (Theorem 1.2). Indeed, [x;,x;] = 0 is a Grobner-
Shirshov system of relations because there are no compositions at all. Hence, by
Composition Lemma, the set X' of all words without subword xx; is a basis of R.
Of course, X' = {x7'x| |m,n > 0}.

Example 2.2 1f n = 2, then the existence condition of Theorem 2.53 reduces to
(P12p21 = p3y) V (P1apar = 1 & py = —1). (2.65)
Under that condition, the polynomial
(1, x2), %2] = x135 — pra(l + pa)xaxixa + plpariix

is a skew primitive element. In this case, the general formula (2.63) takes the form
[x2, [x2, x1]] = popaa[[x1, x2], x2]. Similarly, condition

(P12p21 = pi) V (Pr2p2 = 1 & pi = —1) (2.66)

implies that
[r1, [, 0]l = xxs — pia(l + pr)xixxy + phopiixext

is a skew-primitive element and [xy, [x1, x2]] = pl,p11[[x2, x1], x1].

If both polynomials are skew-primitive, then we may consider the Hopf algebra
H defined by relations [[x;, x2], x2] = 0 and [x1, [x1, x2]] = 0. Of course, H = R* G,
where R is the algebra defined by the same relations, and G, as above, is the group
generated by g1, g2.

If pi1 = px», then the algebra R is precisely the algebra A; considered in
Example 1.1, where o = —pa(1 4+ pp), B = p%zpzz. In Example 1.1, we have
seen that the system of relations

[[x1,x2], x2] = 0, [x1, fx1,x2]] = 0
is closed with respect to the compositions, and
2 = {8 ()"t | mon, k> 0}

is a basis of R. In other words, the elements x;,x;x;,x; form a set of PBW
generators for H over G. Corollary 2.1 implies that all hard super-letters are
precisely xz, [x1x2], x1, and they form a set of PBW generators for H over G as
well.

We stress that the existence conditions (2.65), (2.66) imply p1; = pz» unless

P2 =pipan = 1, pni = —lorpy =—1,pipn =pn =1
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Example 2.3 Note that [[[x;, x2], x2], x2] is precisely the Lyndon—Shirshov standard
word [xlxg] with the standard alignment of brackets. Due to Theorem 2.53 the
polynomial [x;x3] is skew-primitive if either piopa1 = p57 or px» = { is a primitive
third root of 1 and py2py; € {1, ¢?}. Under that condition the polynomial

gl = x0 —p(1 + g + )i + pX(q + ¢ + ¢ ) — P g,
where p = p12, g = p22 is skew-primitive, and (2.63) takes the form

3] = —p*@[x2, [xa, [x2, x1]]]-

If p;} = pipa = p57. then both [x;x3] and [x}x,] are skew-primitive
polynomials. Consider the Hopf algebra H defined by two relations: [x;x3] = 0,
and [x%xz] = 0. These relations have the form (1.22) considered in Example 1.2
with

a=—p(l+¢>). B=p*¢. y=-p(+q+4). § =p*(q+@*+4°), e = —p°¢’.

whereas before, we put for short p = pj2, ¢ = pao. If we define © = —pgq, then
these parameters satisfy the following relations (1.23):

B=p> y=a+p §=yu e=pu’

In Example 1.2, we observed that the system of relations [x;x3] = 0 and [x?x,] = 0
becomes closed with respect to the compositions if we add one new relation, (1.27),
which is a consequence of the two initial ones. Hence the set

2 = {8 (xxox) (xix2) x) | m,n, ks > 0}

is a basis of R. In other words, the elements x5, xlx%, x1x2, x1 form a set of PBW-
genrators for H over G. Respectively, Corollary 2.1 implies that all hard super-letters
are precisely x;, [xlxg], [x1x2], x1, and they form a set of PBW-generators of H over
G also.

Interestingly, by Proposition 1.3 we may replace the very new relation with any
other relation with the same leading word. The leading word, xlxlexg, is standard,
and one may show (here we omit the detailed calculations) that [xlxlex%] =0
is a relation for R. Therefore the three relations [xlxg] = 0, [x%xz] = 0, and
[xlxgxlx%] = 0 is a Grobner—Shirshov system of defining relations for R. Here
[xlxgxlx%] = [[x1x2][[x1x2]x2]] has the standard alignment of brackets.

There exist five exceptional cases, when [xlxg], [x%xz] are still skew-primitive but
P 7517%2- They are: py1 = piopa1 = 1, p2 = put = pn = §, piopa1 = ¢%; and
p11 = —1, pipa =1, pn € {1,—1,}; here, ¢ is the third primitive root of 1. The
analysis of each one of these cases is much easier than that of Example 1.2, and we
let the reader find the PBW-generators and Grobner-Shirshov systems of relations
as an exercise.
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2.6 Chapter Notes

Examples 2.2 and 2.3 above are particular cases of quantizations of Lie algebras.
Grobner-Shirshov systems of defining relations for quantizations of Lie algebras of
infinite series A,, B,, C,, D, were found by the author [128] using as a basic tool
the PBW theorem proved in this chapter. Interestingly, all relations in those systems
have the form [u] = 0, where [u] is a standard word with standard alignment of
brackets. Independently, Chen et al. [48] found the Grobner-Shirshov systems for
quantizations U, (s/,) of type A, by means of the specific PBW basis constructed by
Rosso [195] and Yamane [234].

There are many publications on the construction of a PBW basis for Hopf
algebras. The first PBW-type theorem for Drinfeld-Jimbo quantizations (see the
next chapter) appeared in the pioneering paper by Jimbo [106], which discusses
U,(sl>) in detail. Rosso [195] and Yamane [234] independently constructed the
PBW basis for Drinfeld—Jimbo algebras U,(sl,) of type A,, n > 2. Thereafter,
G. Lusztig, in his fundamental works [151-153], determined the PBW bases for
arbitrary Drinfeld-Jimbo and Lusztig quantum enveloping algebras. These bases
and their modifications have been considered in a number of subsequent papers,
e.g., Kashiwara [119], Concini et al. [58], Berger [28], Towber [224], Bautista
[21], Gavarini [84], Chari and Xi [47], Reineke [192], Leclerc [146], Bai and Hu
[19]. An original approach based on the Ringel-Hall algebras was also advanced in
[59, 60, 194].

The general statement given in Theorem 2.2 can be attributed to the author
[124]. This PBW-type theorem was found to be essential in the construction of
the Weyl groupoid by Heckenberger [91] corresponding to a Nichols algebra (see
Sect. 6.7 below) of diagonal type. This groupoid was crucial in classifying such
Nichols algebras [90]. In turn, knowledge of these Nichols algebras is important to
perform the lifting method developed by N. Andruskiewitsch and H.-J. Schneider
for classifying pointed Hopf algebras [4] .

Theorem 2.2 was generalized in two different directions by Ufer [225], and
by Grafia and Heckenberger [87] using similar methods. Instead of character
Hopf algebras, S. Ufer considered braided Hopf algebras (see Chap.6 below)
with “triangular” braidings, whereas M. Grafia and 1. Heckenberger replaced the
skew-primitive generators with irreducible Yetter—Drinfeld modules and obtained a
factorization of the Hilbert series for a wide class of graded Hopf algebras, where
the factors are parametrized by Lyndon—Shirshov words in a manner similar to how
the PBW generators are parametrized in Theorem 2.2. In [97], I. Heckenberger and
H. Yamane modified Theorem 2.2 based on the work of G. Lusztig by using the
concept of the Weyl groupoid.

Returning to the main idea of the proof of Theorem 2.2, the right and left
sides of the tensors in (2.2) were used differently, although we required detailed
information (given in Lemma 2.9) about the left sides only. This information
provides a noteworthy idea for applying the method to subalgebras R of H such
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that A(R) € R ® H. A subspace that obeys the latter property is known as a right
coideal. The author developed this idea in [133] by proving the following statement:

Theorem 2.6 Every right coideal subalgebra of a character Hopf algebra H that
contains all group-like elements of H has a PBW basis that can be extended up to a
PBW basis of H.

One reason that one-sided coideal subalgebras are important is that Hopf algebras
do not have a sufficient number of Hopf subalgebras. The straightforward idea to
consider Hopf subalgebras as “quantum subgroups” appeared to be inappropri-
ate, whereas the one-sided coideal subalgebras are more precise. The one-sided
comodule subalgebras, not the Hopf subalgebras, are found to be the Galois objects
in the Galois theory for Hopf algebra actions (Milinski [173, 174], see also a
detailed survey by Yanai [235]). In particular, the Galois correspondence theorem
for the actions on free algebra establishes a one-to-one correspondence between
right coideal subalgebras and intermediate free subalgebras (see Ferreira et al.
[73]). In a detailed survey [147], G. Letzter provides a panorama of the use of
one-sided coideal subalgebras in constructing quantum symmetric pairs to form
Harish-Chandra modules and produce quantum symmetric spaces.

The importance of this concept led to a project to classify one-sided coideal
subalgebras of Drinfeld—Jimbo quantizations. In fact, the proof of Theorem 2.6
yields sufficient additional information to try to attempt this classification for the
subalgebras containing all group-like elements.

In a series of papers by Lara Sagah6n, Garza Rivera and the author [134, 135,
139, 140], using the parallelization technique for supercomputers, this program
was developed for a multiparameter version of the Drinfeld—Jimbo and Lusztig
quantizations of types A, and B,. It was found in [135, 139] that in these cases
the number of right coideal subalgebras of the positive Borel part U ;’ (g) coincides
with the order of the Weyl group.

The latter statement was extended to arbitrary quantizations of finite type by
Heckenberger and Schneider [96]. The right coideal subalgebras in that case are
the well-known spaces U™ [w] defined by the elements w of the Weyl group,
which was used by Lusztig [153] to establish a PBW basis for U;’(g). This
establishment represents an outstanding achievement of a general theory developed
by N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider in a number of papers
[5, 92, 95, 96]. Generally, this theory is a categorical version of the fundamental
theory of Lusztig’s automorphisms. More precisely, instead of the skew-primitive
generators xi,...,x, the authors consider irreducible finite-dimensional Yetter—
Drinfeld modules Vi,...,V, over a Hopf algebra H with bijective antipode, and
in place of the Weyl group is the Weyl groupoid theorized by I. Heckenberger. The
theory includes a PBW theorem for the related Nichols algebras and their right
coideal subalgebras.

Using these results as a starting point, Heckenberger and Kolb [94] classified all
homogeneous right coideal subalgebras for a quantized enveloping algebra U, ;’ (9)
of a complex semisimple Lie algebra g with deformation parameter g not a root of
unity.
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Using the computer algebra program to compute the commutative and non-
commutative rings and modules FELIX [6, 72], they determined the number of
different right coideal subalgebras when the order |W| of the Weyl group was less
than one million, thus confirming results of [139] for the case A, and reducing the
error in the explicit computer calculations for the case B, presented in [140]. These
numbers |Co| are given in the tables below.

Type Az A3 A4 A5 A6 A7 Ag E6 F4 Gz
W] 6 | 24 120 720 5040 40,320 362,880 51,840 1152 |12
|Co| |26 |252 | 3368 |58,810 |1,290,930 |34,604,844 |1,107,490,596 |38,305,190 91,244 |68

B, | B By, Cy Bs,Cs Bg, Co B, Cy Dy Ds Dg Dy
8 | 48 384 | 38,400 46,080 645,120 | 192 1920 23,040 322,560
38| 664 | 17,848 | 672,004 |33,369,560 | 2,094,849,020 | 6512 | 238,720 | 11,633,624 | 720,453,984

It is likely that the same numbers remain true for multiparameter and “small”
versions of the quantizations. Heckenberger and Kolb [93] recently extended their
work on classification problem by considering right coideal subalgebras that do not
contain all group-like elements.



Chapter 3
Quantizations of Kac-Moody Algebras

Abstract Numerous books and articles concerning quantizations of Kac-Moody
algebras have been published. However, almost all publications have their own
modifications in construction and different notations, so it is often unclear whether
the results of one work may be applied to the construction of another. Nevertheless
all of the constructions are character Hopf algebras. In view of the fact that the
number and degrees of relations in all of the constructions related to a given Kac-
Moody algebra g are identical, we introduce a class of character Hopf algebras
defined by the same number of defining relations of the same degrees as the Kac-
Moody algebra g is. This class contains all possible quantizations of g (including
multiparameter quantizations), and these Hopf algebras are considered as quantum
deformations of the universal enveloping algebra of g as well. The unification
in the above class provides the potential to understand the differences, if any,
between these constructions by comparing the basic invariants inside that class.
We demonstrate that if the generalized Cartan matrix A of g is connected then
the algebraic structure, up to a finite number of exceptional cases, is defined by
just one “continuous” parameter g related to a symmetrization of A, and one
“discrete” parameter m related to the modular symmetrizations of A. The Hopf
algebra structure is defined by n(n — 1)/2 additional “continuous” parameters.

In this chapter, we associate a class of character Hopf algebras 2( with a given
Kac-Moody algebra g. Algebras from 2 are defined by the same number of
defining relations and with the same degrees as g. The class 2 contains all known
quantizations of g (including multiparameter quantizations). The Hopf algebras
from 2 must be considered quantum deformations of the universal enveloping
algebra of g as well.

In Sect. 3.4, we demonstrate that all Hopf algebras from 2l have the so-called
triangular decomposition as coalgebras. In Sect. 3.5, we prove that if the generalized
Cartan matrix A of g is indecomposable, then the algebraic structure, up to a finite
number of exceptional cases, is defined by only one “continuous” parameter g
related to a symmetrization of A, and one “discrete” parameter m related to the
modular symmetrizations of A. In other words, the algebraic variety of parameters
that define the algebra structure of the quantizations related to a given g has the
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dimension < 1. The Hopf algebra structure is defined by n(n — 1)/2 additional
“continuous” parameters.
Throughout the chapter, k represents the algebraic closure of the ground field k.

3.1 Kac-Moody Algebras

Recall that due to the Gabber-Kac theorem [83], any Kac-Moody algebra g
associated with a symmetrizable generalized Cartan matrix A = ||a;l|, 1 <i,s <n
(an integral n x n matrix such thata; = 2, a;; < 0fori # s, and a;; = 0 implies that
as; = 0) has the following representation by generators and relations. The generators
are 3n elements e;, f;, h;, 1 <i < n. The relations are divided into three groups:

[h,’, hs] - O, [h,’, es] = a;s€s, [his fs] == _aisfs; (31)

[ei,fv] =0ifi ?é S, [ei,fi] = hi; (32)

(ade)! "Ue, =0, (adf)! ™9, = 0if i # s, (3.3)
where by definition (ada)"b = [...[[b,a],d],...,qd].
N————

A generalized Cartan matrix A = ||a;|| is said to be symmetrizable if there exist

natural numbers dy, d,, . .., d, such that dja;; = dsaz;, 1=<1i,s <n.
A generalized Cartan matrix A is said to be indecomposable if there is no partition
of the set {1,2,...,n} into two nonempty subsets such that a;; = 0 whenever i

belongs to the first subset, and s belongs to the second. Evidently, every generalized
Cartan matrix is a diagonal sum of its indecomposable components, A = €A,
whereas the Kac-Moody algebra g defined by A is a direct sum of the Kac-Moody
algebras g, defined by A, .

A generalized Cartan matrix A is called a Cartan matrix if all its indecomposable
components belongs to the following list of distinguished matrices:

Ana Bna Cna Dna E()a E7a ESa F4a GZ' (34)

The indices coincide with dimensions of the related matrices. The non-diagonal
coefficients of the matrix A,, are defined as follows:

—1, ifli—s| =1,

An is = .
@A) a 0, otherwise.

The matrices B,, C,, F4, G, differ from the matrix A, of the same dimension only
in one coefficient:

(Bn) Ap—1n = _2; (Cn) Appn—1 = —2, (F4) azs = _Za (G2) a1 = =3.
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The matrix D,, differs from A,, in four coefficients:
(Dy)  anp—1 = ap—12 =0, ap—2p = @up— = —1,
whereas E,, differs from A,,, n = 6,7, 8 only in the following coefficients:
(En) an=mi=a3z=a3»=0, a3 =a31 =axs =a4 =—1.

The fundamental property of the Cartan matrices is that they define semisimple
finite dimensional Kac-Moody algebras provided that the ground field k has zero
characteristic. Moreover, in this case all semisimple finite dimensional Lie algebras
over k are precisely the Kac-Moody algebras defined by the Cartan matrices.
Respectively, the list (3.4) corresponds to the finite dimensional simple Lie algebras.

In the theory of Kac-Moody algebras, another 16 types of generalized Cartan
matrices, called affine Cartan matrices, are important. These matrices also differ
from A, only in a small number of coefficients.

3.2 Quantum Deformations

The universal enveloping algebra U(g) of a Kac-Moody algebra g is the associative
algebra defined by the same relations (3.1)—(3.3) when the brackets are replaced by
ordinary commutators, [a, b] = ab — ba. Of course U(g) has the structure of a Hopf
algebra where all generators are primitive, A(v) = v® 1+ 1® v, v € g. We
wish to investigate all possible “deformations” H of U(g) to Hopf algebras which
are defined by relations of the same degrees without fixing the coefficients.

We suppose that the Chevalley generators, e;, f; are transformed to skew-
primitive generators y; and y;", 1 < i < n, respectively. Relations of the first group
demonstrate that the subalgebra generated by the h;’s (the Cartan subalgebra) is
commutative and acts on the Chevalley generators so that they are semi-invariants.
Moreover, the second and third relations demonstrate that characters defined by this
action on e; and f; with a fixed i are opposite to each other. For this reason, we
suppose that under a deformation the Cartan subalgebra is transformed to a group G
with the diagonal action on the skew-primitive generators,

g vig= 1@y & vgi= (e,
and related characters are opposite, L = ()(i)_l, 1 < i < n. We shall identify
the group G of group-like elements with diagonal transformations of the space V

spanned by y;, y7, 1 <i<n:

G = {diag (A1, A2, ..., A, AT AT L AT [ 4 € KL (3.5)
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The second group of relations demonstrates that y; and y;, i # s must be
connected by a bilinear relation:

df _ _
Ris = aisyiy, + Bisy, vi =0, (3.6)

whereas for i = s, some bilinear combination belongs to the coradical:

. df _ _
Ri(yi,y; ) = i yiy; + Biiyi yi— Z Hik 8k =0, gk €G. 3.7
X

Finally, the third group of relations is transformed to relations of the type

l—a,-,

df —ai— o
S i, y1) = E Vitk yf-‘yty} ok = 0, i#t (3.8)
k=0

l—a,-,

S;07 ) Y 8w GO O T =0, i1 (3.9)

k=0

For arbitrary values of the parameters «;, Bi, Wi, Vik, Oiuk, and arbitrary
generalized Cartan matrix A (not necessary symmetrizable) the relations (3.6)—(3.9)
define an algebra H, however, this algebra does not always remain a Hopf algebra.
Then, our next goal is to understand when H does retain the Hopf algebra structure.
As an example we consider the Drinfeld—Jimbo quantizations.

Example 3.1 Assume that a generalized Cartan matrix A = ||a;|| is symmetrizable;
that is, there exist natural numbers d;, d>, . . ., d, such that

Traditionally the skew-primitive generators of the Drinfeld-Jimbo algebra U,(g)
defined by the Kac-Moody algebra g and a parameter g € k have the designations
yi = E;, y; = F;, 1 <1i < n. The related group-like elements are #; = Ki_l, fi =
K; both for E; and F;, so that
AE)=EQ®K '+KQE; AF)=F,QK '+K®F, 1<i<n.
The characters y% and y% are defined by y% (K) = ¢4 and % (K,) = ¢q“s:
K'EK; = g ““E,, K['F,K;=q"F,,

in other words

K; = diag(q_diail , q_diai27 o q_diain, qdiail , qdiaiZ, o qdiain)_
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Relations (3.6) and (3.7) have a symmetric form

( KP—K7?
EjF_y - F_yEl' = 81- (m) 3 (310)

whereas relations (3.7) are:

L. [E.ELE]. E]=0, 1<i#s<n
——
1—asi
[..[[FiF]F]....F] =0, 1<i#s<n, (.11)
—_—

1—ay
where (1.67) defines the brackets, [u, v] = x"(h,)uv — x"(f,)vu, for example,
[Ei. E] = 25 (K7 DEEs — (*(K)EE: = ““ EiE; — ¢ " EE;,
and
[Fi. ] = x" (KT )FiFs — " (K)FF; = g~ " FiFy — g " F,F;.

Let us demonstrate that U,(g) retain the Hopf algebra structure. By Proposi-
tion 1.7 it suffices to check that all defining relations are skew-primitive elements as
polynomials of the free character Hopf algebra. Each of the relations is a polynomial
in two variables. Therefore we may apply Theorem 2.5. We have

[Ei, Fy] = ™ (K7 )EiFs — x5 (K)FF; = g " EF, — g “““F,F; ~ FiF; — FF;.

By Theorem 2.5 with n = 1, the polynomial [E;, Fy] is ((K;K;)~', K;K,)-primitive
because p1op21 = 1, where according to (2.50), we have

pi2 = xB(KY) = g%, py = xP(K]) = ¢*b

Thus, the left-hand side of (3.10) is always skew-primitive. If i = s, then the right-
hand side is (K72, K?)-primitive too since it is proportional to a difference of two
group-like elements K72 — K?2.

Similarly, by Theorem 2.5 with n = 1 — ay;, the left-hand sides of (3.11) are

Asi

skew-primitive provided that pjops1 = p55. For the relations in the E;’s we have,
pr2-pa = xO(KD) - )P (KD) = g2 g0 = (g% = (B (KD))™ = p3.
whereas relations in the F;’s satisfy

pi2-pa = g (KD - (KD = @00 = (g* )™ = (fF (KD = pSs.
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3.3 Defining Relations of the Main Class

To make notations compatible with Sect. 1.5, let us identify y;, n < k < 2n with
Vi—n> SO thatif k& = n + s then yr = vy, i = hy, fv = f, . We keep notation of
Sect. 1.5.3:

A) =yi®hi+f ®yi. vig=x'(9)gvi. hifi g€G, 1 <i<2n.

The parameters g = x'(ht), q), = x'(fc), 1 < i < n completely define the free
character Hopf algebra G(Y) over the diagonal group (3.5). Moreover, G(Y) as a
Hopf algebra is completely defined by parameters

Pk =dx'qh, 1<ik<n

related to the normalized skew-primitive generators x; = hi_l y; because G(Y) =
G(X).

We fix an algebra H defined by relations (3.6)—(3.9). The following three lemmas
demonstrate that if H keeps the structure of Hopf algebra, then values of the
parameters «;s, Bis, ik, Visks Oisk are completely defined by the basic parameters
Qis» qi’s, 1 < i,s < n. More precisely, we demonstrate that the only option
for keeping the coproduct is to replace the Lie operation in (3.2), (3.3) with the
brackets (1.67).

If{R|,Ry,...,R,} is a set of elements from G(Y U Y~), then the G-algebra

df
G(ylvyz"”7y2n || RlvRZv”me> = G(Y)/Id(RhRLaRm)

defined by generators y;, y2, ..., ¥, and relations Ry = 0, R, =0,..., R, =0
retains the Hopf algebra structure only if the ideal J generated by R|, R,, ..., Ry, is
aHopfideal: A(J) CJQG(YUY )+ G(YUY")®J, o(J) CJ, e(J) =0.

On the free character Hopf algebra G(Y U Y~) we introduce the following degree
function D with integer (not necessary positive) values. We set

D(y:) =1, Dy;)=Dut+i) =—1, 1 <i<n, D(g) =0, geG.

A degree of a word in Y U Y~ U G equals the sum of all degrees of its letters,
whereas a degree of a linear combination of words equals the maximum degree of
the words. The coproduct formula (1.60) is homogeneous with respect to D. Thus,
the free character Hopf algebra is homogeneous with respect to D as well. In other
words, the free character Hopf algebra is graded by the group of integer numbers,

G(Yuy ) = é r. amc @ ner.

i=—00 s+k=i

where the ith component [ is spanned by all words of degree i.
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Below, the relation a ~ b means projective equality: a = ab, @ € kK, o # 0.

Lemma 3.1 If the algebra H keeps the Hopf algebra structure then either y; =
vy =0inH orRi; ~ [y, y; | and q}.q}; = qiqii, k = n +s.

Proof All of the above-defining relations for H are homogeneous with respect to D.
Thus, the Hopf algebra H is homogeneous as well; that is, H also has a grading by
the integer numbers:

H= @ H. AH)< P H. ®Hi. (3.12)

i=—00 s+k=i
According to (3.6) in H ® H, we have

0 = A(R;s) = Ris ® hili + fi fi ® Ris + a5 yife ® hiyi + i fiyr ® yil
+Bis yifi ® hiyi + s fiyi @ yihi, (3.13)

where k = n + 5.
Due to the commutation relations (1.62), this equality implies that

(isqy + Bisqi)fiyi ® hiyi + (isqix + Bisq)five ® hyi = 0.

Note that the elements f;y; and f;y, are linearly independentin H or y; = y;, = 0
in H. Indeed, because the algebra H is homogeneous with respect to D, a relation
afiyi + Bfiye = 0 implies that fiy; = 0, fiyx = 0; thatis, y; = yx = 0.

As a consequence of the above note, the tensors fiy; ® h;y; and fiyr ® hiy; are
linearly independent in H ® H. Therefore,

aisqh + Bisqui = 0, g + Bisql; = 0. (3.14)

The above system of equations has a nonzero solution with respect to «;,, B;; if and
only if

qilk qii| _ 1 71 _
det S| = 9 — qiqri = 0. (3.15)
Gik 9y
Under that condition, o;s = g, Bis = —qj, is the only solution up to a scalar factor.

Thus,

Ris ~ quiyive — qi yiyi = [yiove] = [yi.y5 ]-
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Lemma 3.2 [fthe algebra H keeps the Hopf algebra structure, then

R,’,’ ~ [y,,yl_] — Ol,'(hihi_ _ﬁfi_)’ o; € k, (316)
and g}, Gy ii = Gintigntii-
Proof Let us denote for short s = n + i. Then, the relation (3.7) takes the form

df
R?i = ;i yiys + Bii ysyi = Z Mik &k-
k

Applying the coproduct to this relation, we obtain

R ® hihy + fifs ® RY + i fiys ® yihy + i yifs ® hyys

+Biifi ® yohi + Biryfi ® hoyi = Y ik 8k ® g (3.17)
k

Due to the commutation relations (1.62) and Rg. = Zk Wik 8k, this result implies that
(iigis + Bigsi)fsyi ® hiys + (@uqis + Biiq)fiys ® hsyi

= —(Z Wik 8k) @ hihs — fi fs @ (Z ik 8k) + Z Wik 8k ® &k-
k k k

The homogeneous components with respect to (3.12) of this relation are valid too:
®iqly + Bigsi = 0, @iqis + Buql; = 0, (3.18)

(Z Wik 8k) ® hihs + fifs ® (Z Wik 8k) = Z Wik 8k ® &k (3.19)
! ! !

The system of equations (3.18) has a nonzero solution ¢;;, f;; if and only if

ql{g‘ qii| _ 1 _
det )| = 4isdsi — qisqsi = 0. (3.20)
qis 9
Under that condition, o;; = gy, Bii = —qj, is the only solution up to a scalar factor.

Thus, R, ~ qsi yiys — qis ysvi = [visys] = [y y7]-

Different group-like elements in a Hopf algebra are always linearly independent.
If g # hihs, g # fifs then the tensor g ® g appears only in the right-hand
side of (3.19). This fact implies that uy; = 0. Thus, the right-hand side of (3.16)
has two terms: g, = h;hy, g2 = fifs, in which case, the relation (3.19) implies
that up; = —py;. Hence, the right-hand side of (3.16) equals o;(h;h; — f;f;) with
o = Wi O
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Lemma 3.3 IfHY = G{y1,y2, ... || Su(i,y),1 < i # t < n) maintains the
Hopf algebra structure, then S;; are skew-primitive polynomials. In particular, by
Theorem 2.5, we have Sy ~ [... [y, yil, yil, - - -, ¥i] in G(Y).

Proof All defining relations (3.8) are homogeneous with respect to each variable
vi, 1 <1i < n, as are the definition formulae (1.60) of the coproduct. Therefore, the
Hopf algebra H™ is also homogeneous with respect to each variable y;, 1 < i < n;
that is, H has a grading by (Z1)*" :

HY'= P Hf. AH)= P Hf @H]. (3.21)

ue(zt)xn u=v+w

where HI is spanned by the values of all words in ¥ U G of constitution u.

We observe that the ideal of relations I is generated by elements whose
constitutions have precisely two nonzero components, one of which equals 1.
In particular, / has no nonzero elements of constitution with just one nonzero
component. Moreover, the ideal / has no nonzero elements with a constitution
u = (d,ds,...,dy)suchthatd, = 1, d; < 1 —ay, d. = 0, k # i,t. Indeed,
only two generators, S;, and S, have constitutions with dy = 0, k # i,t. Thus, the
ideal I would have a nonzero element withd;, = 1, d; < 1 —a;, dy = 0, k # i,t
only if 1 — ay;, the degree of S;; in y;, equals 1. In this case, a; = 0, and according
to the definition of the generalized Cartan matrix a; = 0. Thus, d; < 1 — a;, implies
that d,' =0.

The coproduct of the polynomial S;; € G(Y) can be decomposed as follows:

A(Si) = Si ® hih{ ™ + fif} = @ Sy + Y 8" ® 5. (3.22)
k

where the sum of the constitutions of S,(cl) and S,(CZ) equals the constitution of S;;. In
algebra H *, we have S;, = 0; therefore,

0=>85"®s” inH"@H" (3.23)
k

One of the polynomials S,(cl) , S,(cz) has a constitution with only one nonzero

component, whereas another polynomial has a constitution with d; = 1, d; <
1 —ay, di = 0, k # i,t. We have observed above that the ideal I has no
nonzero polynomials with such constitutions. Therefore, relation (3.23) is valid in
G(Y) ® G(Y) as well. Thus, (3.22) implies that S;, is a skew-primitive polynomial
of G(Y). O
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In a perfect analogy, we have

Lemma34 If H = GUy7.y;.....0, | S;07.y7) = 0,1 <i # 1t < n)
maintains the Hopf algebra structure, then S;; ~ [...[[y, .y |.y;].....¥;] and
Si: are skew-primitive polynomials in G(Y™).

Thus, if H, HT, and H~ maintain the Hopf algebra structure then the defining
relations are simplified. Moreover, if the coefficient «; is nonzero in the relation R,
see (3.16), we may simplify that relation further by the substitution y; <— «;y;, so we
may suppose «; = 1. We can now define the main class of Hopf algebras in which
we are interested.

Definition 3.1 A Hopf algebra H is a quantization of a Kac-Moody algebra g if it
is generated by skew-primitive semi-invariants y;, y;, 1 <i < nwith y_ = ()™t
and is defined over the group G by the relations (3.6)—(3.9) that satisfy conclusions
of Lemmas 3.1-3.4:

[yiyi 1=0ifi# ¢t [yiy;]=hh; —fif;: (3.24)
([ Myo vyl Loyl =0, L. [y yi Lyl Ly T =0ifi # 1. (3.25)
—— N—
1—aj 1—aj;

We stress that the conclusions of Lemmas 3.1-3.4 imply that these relations are
skew-primitive as elements of the free character Hopf algebra G(Y, Y~). Therefore,
the algebras H, H, H™ defined by the above relations maintain the Hopf algebra
structure.

In variables x; = hi_l vi, 1 < i < 2n, the defining relations have the following
form in terms of the left adjoint action:

(adx)x; =0ifi # ¢, (adx)x; =1—gig;; (3.26)
(adx;)'™%x, = 0, (adx))'™x = 0ifi #1. (3.27)

Indeed, by definition, the left adjoint action has the form (ad v)u = )", vDu(ov®?),
where in Sweedler notations A(v) = Y, v’ ® v® and o is the antipode.
Considering that A(x;)) = x; @ 1 + g; Q@ x;, g = hi_lfi, 1 <i < 2n, we have

(adx)u=x;-u-1—gi-u- gi_lxi = Xju — X”(gi_l)uxi ~ux; — x"(g)xiu = [u, x.

Theorem 3.1 The Hopf algebra H is completely defined by n> parameters p;s, 1 <
i,s < n, whereas the algebra structure of H is completely defined by n(n + 1)/2
parameters p;i;, 1 < i < n, pispsi, | < i < s < n, in which case the algebra
structures of HT and H™ are completely defined by only n parameters p;, 1 < i <
n. The latter parameters are not independent yet:

is

(Pi —pi) (P — ) (P —ps) =0, 1<is=<n. (3.28)
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Additionally, if pispsi # pii*, then

(pispsi) ™% = pi = 1. (3.29)

Proof We start with the following auxiliary statement.

Lemma 3.5 We have x'(87) = x'(gn+s) = psi- 1 < i < n.Inparticular, the group-
like elements g;, g7 = gn+i, 1 <1 < n have the following representation (3.5):

gi = diag( P, Pais - - -+ Puis D3 > Poi s -+ - > Pt ) (3.30)
g7 = diag(pit. s - Pins Pt P+ - D). (3.31)

Proof In the proof of Lemma 3.1, we found the equality ¢/ g, = ququi, k = n +
s, I # s <n,see (3.15). Because py = qi’kqiz1 by definition, ppi; = 1, or, in terms
of the characters, x'(g;)- x*.(g:) = 1, 1 <i # s < n. Equation (3.20) demonstrates
that if i = s, the latter equality is valid as well. Considering that y° = (x')~!, we
obtain x'(g;) = x*(gi) = psi- To see representations (3.30) and (3.31), we recall
that by definition, if g = diag(A(, A2, ..., A2,), then ¥(g) = A;, 1 <i <2n. |

Representations (3.30) and (3.31) demonstrate that g;, 1 < i < 2n are completely
defined by the parameters p;;, 1 < i,s < n. Due to equalities y' = (x')~' and
1'(g7) = psi» all of the commutation rules are:

Xi8s = Pis@sXi» Xi€y = Dsi€s Xi» X; &5 = Pi &sX; , X, g5 = pLgr X . (3.32)

All coefficients of the relations (3.26) and (3.27) are polynomials in pjs, p;l. Thus
the Hopf algebra structure of H is completely defined by values of the parameters
Dis, 1 < i,S <n.

Let us check the algebra structure. To this end, we consider a new set of
generators y; = f;x;, ¥, = £; 'x7, where

. -1 _—1 -1
ti = diag(Tii, Toiy - - o Tnis Ty »Taj 5o v s T )
while the t’s are defined as follows:

1 if n>i>1,

Tis = JP
psi if i<s=<n.

In other words, the ¢;’s are defined as group-like elements from G with y(t,) =
Tis, 1 <i,s <n.Ifi <s, wehave

[iv, )71'] = )(i(fs)f’xf’i - Xs(tigi)j’ij’x = Tixf’xf’i - Txipsif’if’x ~ )~’x)~’i - )~’i}~’s;

That is, the bracket [y, ¥;] is proportional to the ordinary commutator which is
completely independent of the parameters.
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More generally, if u is a homogeneous polynomial in y;, y; linear in y, and of
degree k in y;, then [u, ;] ~ uy; — pyu. Indeed, h, = t* and x* = x*(x)*.
Additionally, by definition y'(t,) = ;s = ps, x*(t;}) = 7 = 1. Therefore,

[.5:] = X' (h)uFi — 1" (tf)Fiu = tiTiudi — th T pi) psidiue ~ uFi — piyiu.
Similarly, if ™ is linear in y;~ and of degree k in y,”, then

i) = X7 37w — L (g 8 ) wI
=TTy U — T Ty Py wY =Y u —ptuTy
where we have used 7 = 1, and x_(g}) = p;;'.
By (2.63) in the free character Hopf algebra the following proportion holds

(L (5. 3l 3l - Vil ~ B B D 3l - ) (3.33)

l—a,-s l—a,-s

This implies that all coefficients of defining relations (3.25) with i < s are
polynomials in p;; or p;'.

In a perfect analogy, we demonstrate that if i > s then [y, u] ~ yu — pfi uy;
and [u™, Y] ~u"y~ —pfi_ y; u~. In this case, 7,; = pjs, whereas 7;;, = 1; = 1.
Therefore,

i ul = x“(t) Fiu — 1 (e fl ;) us;
= Tsitili yitt — Ti];tis(pii)kpis uy; ~ yiu — pﬁ‘iuii-
Similarly,
[, 57) = X T uTyT = G e ) S
=ttty — Tta(pi) Py Vi uT = uTy —piviu

Again, due to proportion (3.33), we see that all coefficients of (3.25) with i > s
are polynomials in p; or pEl (up to a common scalar factor). Thus, the algebraic
structures of HT and H~ depend only on p;;, 1 <i <n.

To check the algebraic structure of H, we must analyze relations (3.24), where

i 31 = A2 @) 35, — 1 80) 35 5 = 1 395 — 13, ' psidy Vi
If i < sthen t;; = pyi, T = 1. Thus, the relation takes the form

iy, =9, Vi (3.34)
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If i > sthen ;; = 1, t; = pis, whereas the relation reduces to
yiyy = (pispsi)yy Yi- (3.35)
Finally, if i = s then the relation transforms to
yiyi —piy; yi=1-gig; (3.36)
whereas
gig; = diag (pupin. paipia. - - .. Puilins (Pripit) ™ (p2pi2) ™" -, (Puibin) ') -
Thus, the algebraic structure of H depends on additional n(n — 1)/2 parameters
PisPsi 1 <i<s<n.
Relations (3.28) and (3.29) follow from the existence conditions for skew-

primitive polynomials given in Theorem 2.5. If p* # p;; then p;; is not a primitive
mth root of 1 with m|(1 — a;5). Thus, p;* = p;ps. Similarly, if p% # p,, then pg,

ii
Ais

is not a primitive mth root of 1 with m|(1 — a;), and p% = p;py; = pi*, which
proves (3.28). If p;spsi # P, then p;; is a primitive mth root of 1 with m|(1 — a;)
and (p;spsi)™ = 1. This result implies (3.29). O

3.4 Triangular Decomposition

Relations (3.26) allows one to transform each word in X U X~ to linear combination
of G-words where all “negative” variables precede to “positive” variables. In
particular, the linear map H~ ®kjg)H" — H, w~ ®u > w™ u is an epimorphism. In
this section, we shall prove that this map is an isomorphism of coalgebras and k[G]-
bimodules. We consider a more general setting when instead of relations (3.27)
appear arbitrary polynomial relations of upper degree grater than 1. Recall that by
definition the upper degree of a polynomial is the minimal length of its monomials.
The set of all polynomialsin X = {x; | i € I} of upper degree grater than 1 coincides
with the ideal A2 generated by the monomials x;x;, i,s € I.

Let H1+ be an algebra defined as a G-algebra by the generators xi, ..., x, and
polynomial relations ¢, = 0, ¢, € k(X), s € S,

Hf =Gx1,....%: || ¢, 5 €5). (3.37)

Respectively, H is an algebra defined as a G-algebra by the generators x|, ..., x,,

and polynomial relations ¥, =0, ¥, e k(X™), r e T.

H =Gxi,....x, || ¥t €T). (3.38)
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Consider the algebra
Hl :G(xl,...,x,,,xl_,...,x;||F1,F2,F3), (339)

where F| = {¢,,s € S}, F» = {7 ,t € T}, and F3 are relations (3.26): [x;, x; | =
83(1 — gig;7). We still assume that x = (') ~! and x'(g;") = psi (see Lemma 3.5).
By evident induction on length of words, the latter equality is equivalent to y"(g,) =
x' (g, ), where u, v are words in X and u™ appears from u under replacements x; <
x;. Obviously, those two conditions are equivalent to commutation rules (3.32).

Lemma 3.6 IfH1+ and H” maintain the Hopf algebra structure, then so does H,.

Proof By Theorem 2.5 with n <— 1, the polynomials [x;,x; ] are skew-primitive
because x'(g7)x*(g) = psip;' = 1. Consider the ideals of relations I; =id(Fy)
and I, =id(F,) of H* and H™ respectively. In the present context, they are Hopf
ideals of G(X) and G(X~), respectively. Hence, V = I + L + >, k([x;, x;] —
8:(1—gig;")) is an antipode stable coideal of G(X). Consequently the ideal generated
by V is a Hopf ideal, see Proposition 1.6. O

Lemma 3.7 IfH1+ and H|” maintain the Hopf algebra structure, then every hard in
H, super-letter belongs to either H1+ or H{, and it is hard in the related algebra.

Proof 1f a standard word u in X U X~ contains at least one “positive” letter, then it
has to start with one of them. If u contains a “negative” letter, then it has a sub word
of the form x;x; . The substitution x;x; < pyx; x; + 87 (1 — g;g,") shows that value
of u in H is a linear combination of lesser words of the same degree and G-words of
lesser degrees. By Corollary 2.1, the super-letter [u] is not hard. O

The converse statement is much more complicated. We shall proceed with a
number of lemmas. Firstly we consider the case F; = F, = 0. Let

I:I:G(xl,...,x,,,xl_,...,x;||F3). (3.40)

Lemma 3.8 There is a natural isomorphism of linear spaces

H

Il

k{x(,....x,) ®K[G] ® k{xi, ..., x,).

Proof Since w™gu ~ gw™uforall v € (X)*, w™ € (X7)*, and g € G, it follows
that we have to demonstrate that the set of elements gw™u, where g € G and
w™, u run through all words in X~ and X respectively form a basis of H. The
latter set is precisely the set of all words in G U X U X~ that have no subwords
)cijE g, xix; . By Theorem 1.2 (Composition Lemma), it suffices to check that the
table of multiplication of G, commutations rules )cijE g = )(ijt (g)gxii, and relations
F are closed with respect to the compositions provided that

XI> ... .>X,>X >...>x, >g1>8>..., & €G.
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The leading words are: gh for the table of multiplication; xijE g, for the commutation
rules; and x;x;, 1 < i,s < nfor F3. Compositions between the former two type of
relations were resolved in Sect. 1.3.2. There are no compositions between different
relations from Fj3. It remains only one type of the compositions when the word
wivw/, appeared in (1.17) equals xx] - g = x; - x; g

{psixsxi + 67 (1 — gig; )} - g — xi - xL(9)gxy
= paixy Xig + 8]8(1 — gig;) — x(8)xigxy
— paix (§)x(8)gx; xi + 8ig(1 — gigi ) — 1 (&) A (g)gxixy
= pax Q)X (8)gx; xi + 8g(1 — gig;)
— 1@ (@glpsx; xi + 8(1 — gigi )y =0
by virtue of the fact that 8 = 0if i # s, and y'_(g)x'(g) = 1. ]
Lemma 3.9 In the Hopf algebra H, the following relations hold

[, x7] = 07 (u) — g:0s(w)g;, uek(X), 1 <s=<mn; (3.41)
i, u”] = 0%, (u)p(xi, u )p;" — gigr 0—i(u™), u” €ek(X™), 1<i<n.

Here 9, 0} are the partial derivatives on K(X), whereas d_;, 3%, are the partial
derivatives with respect to x; defined on k(X™), see Sect. 1.5.7.

Proof Consider the linear maps
Dy :uv> 3 (u) —g0,(w)g,, uek(X), 1<i<s. (3.43)
Relations (1.81) and (1.86) imply

Ds(uv) = a:(uv) - g‘vax(uv)gy_
= X*(80)9; (W)v + udi (v) — &:{0s(W)v + x“(g5)uds(v)}g, -

Let us replace: first, x*(g,) = x"(g;); then, vg, = x"(g;)g, v; and next,
gsx"(gs)u = ugs. In this way we obtain the following “Leibniz rule” :

Ds(u-v) = x"(g;)Ds(u) - v + u - Ds(v).
Under substitution Dy <— [ -, x, ], this rule coincides with (2.9) for w = x; :
[w-v,x;] =p.x)Hux;]-v+u-lv,x;]

Since Dg(x;) = 87(1 — gig; ) = [xi, x, ], it follows that D(u) = [u, x]].
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Similarly, consider the linear maps 7; : K(X~) — G(X™), 1 <i <mn,
Tiu™) = 0%, )p (e u )y — gigy D—i(u”). (3.44)
Using relations (1.81) and (1.86), we have
Ti(w™ -w7) = pi, v -w)py (XL (gu=)d%,(v7) - w™ + 07 - 8%,(w )}
—gigi {0—i(v7) - w™ + 2" (g)v i (w )}

Let us replace: first, p(x;,v™ - w™) = p(x;, v7)p(x;, w); then, x' (g,—) =
pxi,w™)™'; then gigi " (g7)v™ = (" (2))~'v™gig; s and next,

(" (@)™ = x"(e) = 1'(g) = plxi,v7).
In this way we obtain a “Leibniz rule” :
Li(v"-w) =Ti(v ) -w +plv)v -Ti(w),
which coincides with (2.8) under substitution u < x; :
X, v o wT ] =[x, v ] w +pli,v)vT - g, w . (3.45)
Since T;(x;) = 8;(1 — gig;) = [xi, x|, it follows that T;(u™) = [x;, u"]. O
Now we turn to the case F; = @, F, # @. Consider the algebra
H=Gx1,....%0X],....x, ||F2, F3). (3.46)

Lemma 3.10 If H maintains the Hopf algebra structure and the upper degrees of
Y, are greater than one, then the ideal generated by F, in the algebra H equals
LH = I, ®ug G(X), where I is the ideal generated by F, in G{(X™).

Proof Tt suffices to demonstrate that 12!:1 admits left multiplication by x;, 1 <i < n.
IfvTisawordin X, h~ € F,, r € H, then

xv hr=[x,v h |r+p,v h)v h xr. (3.47)
The second term belongs to I,H, whereas the first one can be rewritten by (2.8):

[xi, v h r =[x, v hr+pl, v )v [x, A ]r. (3.48)

The first term of the latter sum belongs to I,H because [x;,v™] € G(X~) due
to (3.42). If h~ is a skew-primitive element of G(X~)?® (this is a case for
the quantizations of Kac-Moody algebras!), then we are done, as (3.42) implies
[xi,h~] = 0 in view of the fact that by Lemma 1.27 all partial derivatives
0_i(h™), 0*;(h™) are zero.
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In general case, we may proceed by induction on the combinatorial rank of H7 .
Recall that by Theorem 1.6 each nonzero bi-ideal has a nonzero skew-primitive
element. Consider the ascending chain of ideals

0y =1"ciVciPc...ci”c...,

1"V are skew-

where Iém) is generated by all elements u~ € I, such that u~ +
primitive in I;m) /Iém_l). Assume that the ideal of H generated by Iém_l) equals
1" VH. Let k= +1{""" be a skew-primitive element of 11" /1{"~". By Lemma 1.27
partial derivatives of 4~ are zero in Iém) / Iém_l). In other words, 8* (A7) and d_;(h™)
belong to Iém_l) . Relation (3.42) implies that the second term of (3.48) belongs to
the ideal of H generated by I\"~", whereas the latter ideal equals "V A € I H.

Therefore, (3.47) implies that the ideal of H generated by I;m) equals Iém) H. O

The proven lemma implies a triangular decomposition of H:

H = G(X7) ®g) G(X) /I ®kc) G(X)
=~ (G(X7)/h) ®xg) G(X) = H ®xkig) G(X). (3.49)
Lemma 3.11 If H1+ and H| maintain the Hopf algebra structure and the upper

degrees of s, Y, are greater than one, then an ideal generated by F in H equals
IH = H{ Qxg) 1, where 1 is the ideal generated by F in G(X).

Proof The proof almost literally coincides with the proof of the above lemma. It
suffices to check that /; H admits left multiplication by x;, 1 < s < n.If vis a word
inX, heF, re ﬁ, then

X, vhr = —p(vh,)cx_)_l [vh,x]]r + p(vh,x:)_lvhx:r. (3.50)
The latter term belongs to 1 \H, whereas the former one can be rewritten by (2.9):
[vh,x; |r = p(h,x])[v, x; Jh + v[h, x]. (3.51)

The first term of the latter sum belongs to 11H because [v,x;] € G(X) due to (3.41).
If h is skew-primitive, then (3.42) implies [k, x; | = 0 in view of Lemma 1.27.

In general case, we may proceed by induction on the combinatorial rank of H 1+
in the perfect analogy with the proof of the above lemma. O

Theorem 3.2 Let H1+, Hi, and Hy be defined by (3.37), (3.38), and (3.39)
respectively. If H1+ and H maintain the Hopf algebra structure, and the upper
degrees of all polynomials vV~ and ¢, are greater than one, then we have an
isomorphism of coalgebras and K[G]-bimodules

Hy = Hy Q) H; (3.52)

provided that commutation rules (3.32) hold.
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Proof Using Lemmas 3.8, 3.10, 3.11, and decomposition (3.49), we have isomor-
phisms of k[G]-bimodules

H, =~ 1:1/11[:1 = H; Qug G(X)/H| ®ug i = Hy Qg (G(X) /1) = H1_®k[G]HI|—-

To check that the resulting isomorphism is a k[G]-coalgebra map, we are reminded
that the coproduct on H|” ®g[q) H1+ is defined as follows:

(a).(b)

where ® denotes the tensor product of k[G]-bimodules, ag®b = a®gb, g €
G, while ® is the ordinary tensor product of spaces. Clearly, this definition is
compatible with the k[G]-bimodule structure, A(ag®b) = A(a®gb), g € G. The
converse to isomorphism (3.53) map ¢ acts as follows { (a®b) = a-b, in which case

Ada-b) = A@)-AD) = Y _aV@a®)Q bV e@b?) = Y aVpV @a?b?.
(a) (b) (a),(b)

Therefore, ¢ is a coalgebra map. O

Remark 3.1 Informally, the fact that (3.52) is a coalgebra isomorphism means that
the basis decomposition of the coproduct of a basis super-word does not use (3.26).

Proposition 3.1 Under the conditions of the above theorem, the space spanned by
the skew-primitive elements of H equals the sum of these spaces for H and H 1+ .

Proof Let m be an algebra homomorphism 7 : H1+ — Kk[G] defined by n(g) =
g g €G, m(x;) =0, 1 <i<n.This homomorphism is well-defined as all ¢, have
upper degree grater than one. Moreover, 7 is a homomorphism of Hopf algebras.
Similarly we define a Hopf algebra homomorphism 7~ : H{ — K[G]. Consider the
map id®7m : H Qg H1+ — Hy . This is a k[G]-coalgebra map because so is .
Similarly 7~ ®id is also a k[G]-coalgebra map.

Inasmuch as the “negative” variables are less than the “positive” ones, the
increasing super-words for H; have the form V™~ - W, where V—, W are increasing
super-words for H", H 1+ respectively. The isomorphism & defined in (3.52) acts as
follows £(gV™ - W) = gV™QW.

Let T = > gV, - W, g € G, a; # 0 be the basis decomposition of a
skew-primitive element. Clearly, (id®@s)(£(T)) is the sum of all terms «,g,V, - W;
with empty W;, whereas (7~ ®id)(£(T)) is the sum of all the terms with empty V;".
Both of those elements are skew-primitive because all maps are homomorphisms of
coalgebras and k[G]-bimodules. By the same reason, the element

T' =T - (id®n)(E(1) — (x~ ®id)(E(T))
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is skew-primitive too. The basis decomposition of T’ is precisely the sum of all
terms «,g;V;” - W;, where both V;~ and W, are nonempty minus all the terms where
both V;~ and W, are empty.

However, if T’ ¢ K[G], then by Theorem 2.3 the leading term of T’ is a power
of a super-letter, while by Lemma 3.7 all super-letters of H; belong to either H™ or
H~. Hence T’ € K[G], and T is the sum of three skew-primitive elements: one of
them belongs to H—, another one belongs to H *, and the third one, T’, belongs to
both algebras H* and H™. O

3.5 Indecomposable Generalized Cartan Matrices

In this section, we return to the quantization H of a Kac-Moody algebra studied in
Sect. 3.3. We consider more thoroughly the case in which the generalized Cartan
matrix is indecomposable, i.e., there is no partition of the set {1,2,...,n} into
two nonempty subsets such that a;; = 0 whenever i belongs to the first subset,
and s belongs to the second. Every generalized Cartan matrix is a diagonal sum of
its indecomposable components, A = P A;. The Kac-Moody algebra g defined
by A is a direct sum of Kac-Moody algebras g, defined by A,. Respectively, all
quantizations of g are smash-products of quantizations of g,. In this section we
always suppose that A = ||a;|| is an indecomposable generalized Cartan matrix.

We maintain the notations used in the above sections. Particularly, p;;, 1 <i,s <
n are the parameters that define the quantization H according to Theorem 3.1.

3.5.1 Regular and Exceptional Quantizations

Definition 3.2 A quantization H is called regular if the relations
PisPsi = Py’ (3.54)

are valid for all pairs (i,s), 1 <i # s < n. Otherwise, H is called exceptional.

By Theorem 3.1 the algebraic structure of a regular quantization is completely
defined by n parameters p;;, 1 <i <n.

Theorem 3.3 Only a finite number of algebraic structures exists for exceptional
quantizations of a given Kac-Moody algebra.

Proof By Theorem 3.1, we must demonstrate that there are only a finite number of
admissible values for each parameter p;;, pispsi» 1 < 1i,s < n.Let (i, s) be a pair such
that p;psi # pi*. Then, (3.29) demonstrates that both p;; and p;py; are (1 — a;5)th
roots of 1. In particular, each parameter has no more than 1 — a;; admissible values.
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Let us consider an index i such that p; is an Nth root of 1 and then choose an
arbitrary k, 1 < k < n such that a;, or, equivalently, ay; is a nonzero integer number.
Consider the following four options:

1. pi = papu = pi*. Because p;; is a Nth root of 1, pupy is as well, whereas

DPik 18 a ag;Nth root of 1. In particular, both py and pypi have a finite number of
admissible values.

2. pi # pabki = pi. Due to (3.29), the fist inequality implies that both py and
pirPix are (1 — ag;)th roots of 1.

3. P = pabki # pi*. The second inequality and (3.29) imply that pypy is a
(1 — ag;)th root of 1. The first equality demonstrates that py is a ax (1 — ag;)th
root of 1.

4. pii # papri # Pi*. In this case (3.29) implies that py and pypy; are (1 — ay)th
roots of 1.

Thus, in all cases py and pypy are roots of 1. Because the Cartan matrix is
indecomposable, all p;;, pipsi, 1 < i, s < n are roots of 1 of a bounded degree. 0O

In the proof of the above theorem, we have observed that all parameters
that define the algebraic structure of an exceptional quantization are roots of 1.
Therefore, we have the following statement:

Corollary 3.1 If one of the parameters pipsi, 1 < i,s < n is not a root of 1 then
the quantization H is regular.

Theorem 3.1 and identities (3.54) demonstrate that the algebraic structure of a
regular quantization is defined by the parameters p;;, 1 < i < n. These parameters
satisfy the equations

i = (3.55)

which define an algebraic variety J3(A) over the algebraic closure k of the field
k. This variety is an algebraic group because it is invariant with respect to the
term-by-term product. Thus, one may identify 3(A) with an algebraic group of
diagonal matrices. Let By(A) be the connected component of the unit. It is well-
known that By(A), as well as an arbitrary connected algebraic group of diagonal
matrices (torus), is rationally isomorphic to a direct product (k*)*”, where m is
dimension of the variety and 3(A) is generated as a group by By(A) and periodic
elements (see, for example, [110]). In other words, the algebraic structure of H is
defined by m “continuous” independent parameters, and one discrete parameter that
runs through the quotient group P (A)/Bo(A).

Let us denote by I"(A) a simply-laced version of the Coxeter (or Dynkin) diagram
of A, see [116, p. 51]. More precisely, I"(A) is a graph on n points with labels
1,2,3,...,n, where two points i and s are connected by an edge if and only if
a;s # 0. It is clear that A is indecomposable if and only if I"(A) is a connected
graph.
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3.5.2 Non-symmetrizable Generalized Cartan Matrices

Recall that the matrix A is called symmetrizable if there exists a diagonal matrix
D = diag(d,, d>,...,d,) with natural d|,d>, ...,d, such that DA is a symmetric
matrix, d;a;; = dsag, 1 <i,s <n.1lfdy,d,,...,d, have a natural common divisor
dthend,/d,d»/d,...,d,/d also symmetrize A. Thus, there exists D with cosimple
entries. Furthermore, such D is unique. Indeed, if a value of d; for a given i is fixed,
then d; = d;a;s/ ay; is unique provided that the edge (i, s) belongs to I"(A). Because
I'(A) is connected, the value of d; uniquely defines values of alld;, 1 <i < n.

Lemma 3.12 The matrix A is symmetrizable if and only if for every cycle of I' =
L (A), say, i1,1ia, ..., I, ik+1 = i1, we have a relation

Aj iy Qiniz ** * Aiiy = Qipiy Aiziy *** Aiyiy - (356)

In particular, if I' has no cycles at all, the matrix A is symmetrizable.

Proof If A is symmetrizable, then
diy,/di, = aii ., /aiy i, 1 <5<k

The product of all left-hand sides equals 1. Hence, the product of all right-hand sides
is as well. This result implies (3.56).

Suppose that all (3.56) hold. Certainly, it is sufficient to find a matrix D with
positive rational d;’s. We put d; = 1. For each s, 1 < s < n, we fix a sequence of
edges of I" that connects 1 and s, say 1 = i, iy, ..., i, s, and define

Ajyiy Aiyiz * ** Ajis
d = Jaifihin i

Aiyiy Aiziy * ** Asiy,

Iftr # s,and 1 = iy, ip—1,...,04+3, lk+2 = tis the fixed sequence of edges that
connects 1 and ¢, then according to the above definition

Qiigy—y Ligg—yim— " ** Rigy 3t

dt ==
Qi Vi—im—1 * " Qtigy3

Now, (3.56) applied to acycle 1 = iy,ir,...,ik41 = S, ik+2 =1, ..., Iy = 1 implies
that

dSaSt _ ailizai2i3 et aiks T atik+3 e aim_zim_laim_lim -1

dis Qi Qigiy *** sy * Qrs * Tyt Qi iy Vi

O

Remark 3.2 Of course, if acycle iy, i», ..., i, i; has an edge that does not belong to

I', then both sides of (3.56) equal zero. In fact, when checking that A is symmetriz-
able, it is sufficient to analyze only the cycles that have no self intersections.
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The following statement demonstrates that if the matrix A is not symmetrizable,
then dim3(A) = 0.

Proposition 3.2 [f the matrix A is not symmetrizable, then there exists a natural
number N such that the parameters defining the algebraic structure of a regular
quantization have the form

pii = &M,

where & is a fixed primitive Nth root of 1 and (mi,ms,...,my,) is a modular
symmetrization:

m;a;; = mgag(modN), 0 <m;, my <N, 1 <i, s=<n.

Proof By the above lemma, there exists acycle iy, iz, . .., i, ix+1 = iy of I’ = I'(A)
such that L # R, where L and R are the left- and right-hand sides of (3.56),
. . . . Qi iy s .
respectively. Using the basic relations piSiS‘Jrl = p; J:}j ,» We obtain piLli1
l’f+1k+1' Because p;,;, = pi+1k+1, the parameter p;,;, is a |L — R|th root of 1.

If p;; is a Mth root of 1, and the edge (i, s) belongs to I, then relation p%i = pi*
demonstrates that pgs is an ag;Mth root of 1. Because I' is connected, all p;;’s are
Nth roots of 1, where N = |L — R| ]_[(i’s)e  ais. In particular, if £ is a fixed primitive
Nth root of 1, then p; = ™ for a suitable natural m; < N. The equality pi* = p%
reduces to £™i%s = £™s%i_This equality is equivalent to m;a;; = msaz;(modN), 1 <

i,s < nbecause £ is a primitive Nth root of 1. O

3.5.3 Symmetrizable Generalized Cartan Matrices

Consider a symmetrizable generalized Cartan matrix A. Let dy, . .., d, be cosimple
natural numbers that symmetrize A. Let I’ be a maximal subgraph of I' = I'(A)
that has no cycles. Because I is connected, the subgraph I" " contains all vertices
1,2,...,n. The graph I’ corresponds to a generalized Cartan matrix A’ that results
from A if one replaces all a;, (i,s) ¢ I'’ with zero, '’ = I'(A’). Denote by
I'’, 1 <i < nan oriented graph that appears from I"’ as follows:

Because the graph I'’ is connected and has no cycles, for every point s # i, there
exists precisely one sequence

i=i1,i2,i3,...,ik=s (357)

such that the edges E;, 1 <t < k connecting i, with i, belong to I"’. We replace
each edge E; with an arrow i, — i,4.
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Let N;(I"’) be the product of all |a,| with r — s € I} :

N =TT lasl (3.58)

r—>s€1’,./

If i and s are connected by an edge of I'’ then the products in (3.58) that define
N;(I'") and Ny(I" ") have the same factors with only one exception: the arrow i — s
provides a factor ay; in N;(I'’), whereas the arrow s — i provides a factor a;, in
Ny(I"'). This fact implies that N;(I" ') /asz; = Ny(I'')/ais, or Ni(I" ais = Ny(I' a;.
Thus, N;(I'’), 1 < i < n symmetrize the matrix A’. At the same time, the coprime
numbers d;, 1 < i < n symmetrize A’ as well. This implies that N;(I"") =
d;N(I''), 1 < i < nfor a suitable natural N(I"’). Of course, N(I"’) is the maximal
common divisor of the numbers N;(I"'’), 1 <i <n:

N('Y=dN(T"), 1<i<n; NI')y=med{N(I')|1<i<n}. (3.59

Denote the maximal common divisor of all N(I"’) by N when I" ' runs through the
set of all maximal subgraphs without cycles:

N =mecd {N(I"') | I’ has no cycles and connects all vertices}. (3.60)

Consider symmetrzations of A modulo N. The set of all modular symmetrizations
M’ is an additive group with respect to a term-by-term summation. There is a
subgroup My of trivial modular symmetrizations that are induced by the non
modular symmetrization, m; = Id;(modN), 0 <[ < N. Denote a fixed transversal
of My in I’ by M.

Theorem 3.4 [f A is symmetrizable, then dim*B(A) = 1, whereas SB(A)/Bo(A) is
isomorphic to MM’ /My. The algebraic structure of a regular quantization is defined
by two independent parameters q € k* and m € I such that

pi = qUE™,  m = (my,m,...,m),

where £ is a fixed Nth primitive root of 1. The number |90| of values of the second
parameter is a divisor of N.

Proof Let Py = {D(q) < diag(¢®, ¢, ....q") | q € k*}, whereas
Pi(A) = {a = diag(a;, 2, ...,0,) € P(A) |o; = 1}. (3.61)

The sets P;(A), 0 < i < n are subgroups of B(A). For each i, 1 <i < n, we have a
decomposition B(A) = PoP;(A). Indeed, if B = diag(B1, B2, ..., Bx) € B(A) then
we can find g € k such that g% = B;. In this case, BD(q)~' € Pi(A), which implies
that B € PyP;(A).
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All groups P;(A), 1 < i < n are finite because if o; = 1 and i is connected with
s by a path (3.57) with edges form I', then

k k
ro__ 0 — —
a; =o; =1, wherer = Haiv+1iw t= Ha,-v,-v+l. (3.62)
v=1

v=1

This result implies that the quotient group
B(A)/Po = PoPi(A)/Po = Pi(A)/Pi(A) N Py (3.63)

is also finite. Because Py is a connected subgroup of F(A), we have Py = PBy(A).
Furthermore, by definition Py is isomorphic to k* via diag(¢®', ¢®, ..., ¢%) — gq,
hence dim*B(A) = 1.

Let I’ be an arbitrary maximal subgraph of I" = I'(A) that has no cycles, and
let A’ be the matrix that appears from A upon replacement of all a;,, (i,s) ¢ I'/ with
zero. Because the d;’s still centralize A’, we have dim*B(A’) = 1, PBo(A") = Py,
whereas P;(A) C P;(A").

The order of the group P;(A’) equals N;(I" ') [see (3.58)]. Indeed, let a be defined
by (3.61) with A’ in place of A. If a value of o is fixed and k and s are connected
by an arrow of I’ then the equation o = x“* has precisely ay solutions in k.
Because the value o; = 1 is fixed and there exists precisely one path (3.57) for
each s that connects i and s in I';’, we see that the order of P;(A’) is a product of
all |a;,, ;,| that appears on the paths (3.57) for different final vertices s of I"". By
definition this product equals N;(I"’) = N(I"')d;, see (3.59).

We have P;(A) € r P;(A”). In particular, the order of P;(A) is a divisor of all
N;(I'") = N(I"')d; when I'’ runs through all maximal subgraphs without cycles.
The left-hand side of (3.63) is independent of i, whereas the right-hand side is a
homomorphic image of P;(A). This property implies that the order of F3(A)/PBo(A)
is a divisor of all orders of P;(A), 1 < i < 5. The maximal common divisor of
all N(I" ')d; equals N defined in (3.60). Thus, the order of 3(A)/Bo(A) is a divisor
of N.

In particular, pV € By(A) for each p € P(A). In greater detail, for each p =
diag(pi1. ..., pm) € P there exists ¢; € k such that p¥ = D(q;). We stress that the
element g is uniquely defined by p because if D(g1) = D(q/) then (g1/q;)% = 1
for the coprime numbers d;, 1 < i < n, which implies that (¢1/¢{) = 1. Let us
choose ¢ € k such that ¢V = g;. The element g is defined by p up to a factor which
is an Nth root of 1. Now, piiq_d", 1 <i < nare Nthroot s of 1. If £ is any primitive
Nth root of 1 then there exist integer numbers m;, 0 < m; < N, 1 <i < n, uniquely
defined by £ and ¢, such that p;;g~% = £™ or equivalently,

pPii = Cldigmi-

Because diag(§™, ..., &™) € P, we have §"itis = ™% ] < 5 < n. This implies
m;a;s = myag;(mod N); that is, m = diag(m;, ..., m,) is a modular symmetrization
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of A, m € M. If instead of ¢ we choose another element ¢’ = ¢&/, 1 <1 < N,
then related symmetrization will be changed via

diag(m/) = diag(m; + Id;) = diag(m;) (mod 9My).

Thus, when p runs through 93, the map ¢ : p +— m, is a homomorphism from
B to M’ /My. Moreover, the kernel of ¢ equals Po(A). Indeed, if m € My then
m; = Id;, 1 < i < n. This result implies p; = q%£" = (g&")%, and therefore p =
D(g€") € Bo(A). This proves the required isomorphism B(A) /Po(A) = M'/M,.

O

3.5.4 Cartan Matrices of Finite Type

We may apply Theorem 3.4 to describe regular quantizations of Kac-Moody
algebras of finite type.

Lemma 3.13 If a symmetrizable generalized Cartan matrix A has not more than
one ay, i # k different from —1 and 0, then || = 1, i. e., the discrete parameter
in Theorem 3.4 does not appear at all.

Proof If a;; # —1 then N;(I'’) = 1 because a;; does not appear among the
factors a;, with r — s € 1'}’. Thus, in Theorem 3.4, we have N = 1, and

1M = B(A)/PBo(A)| = 1; therefore, B(A) = Po(A). o

Since all Cartan matrices of finite type satisfy the conditions of the lemma, it follows
that the discrete parameter in Theorem 3.4 for regular quantizations does not appear
at all. With regard to the values of the main parameter ¢, we stress that ¢ = p;; € k
for all Cartan matrices of finite type, except two cases: B, and G> when g = p,, but
still g € k.

Further we consider in more details exceptional quantizations for Cartan matrix
of type A,,, where as usual a; = 2, whereas a;; = a;;, = —1ifs=i+1, 1 <i<n
and a;; = 0 otherwise.

Lemma 3.14 [fthe Dynkin diagram is simply-laced and connected then all param-
eters pii, pisPsi» 1 < i < s < n defining an exceptional quantization according
to Theorem 3.1 have values 1. If a;; = 0 then pipsi = 1. If a;; = —1 then
for the triple (pii, pispsi, Pss) there are just the following options (£1,1,£1) or
(—=1,—=1,=1). In other words, if p;sps; = —1 then p;; = pss = —1.

Proof The Dynkin diagram is simply-laced if and only if all non-diagonal a;s’s
are —1 or 0. If a;; = 0 then condition (2.51) as well as (2.52) imply that p;;ps; = 1.

If a;; = —1 then either condition (2.51), pispsi = pgl, or condition (2.52),

pii = —1, pispsi = £1, holds. In the latter case, if p;ps; = —1, then the first

condition still holds, and thus, the second option reduces to p; = —1, p;psi = 1.
If i is connected with s by an edge of I' then a;; = a;; = —1. Therefore,

condition (2.52) or (2.51) under substitution i <> s holds as well: either p;sp;; = pS_Xl



124 3 Quantizations of Kac-Moody Algebras

or ps = —1, pispsi = 1. Thus, we have either p; = ps; = (pixpsi)_1 or
PisPsi — 17 Pii = il? Pss = +1.
This result implies that p;; = =£1 is valid for all i, 1 < i < n. Indeed, consider

the set B of all i with p; = =£1. No single vertex s ¢ B, p;; # +1, is connected
by an edge with any i € B because py; = p;; otherwise. We obtain either B = @ or
B ={1,2,...,n}. In the former case conditions (2.51) are valid for all (i, 5); that is,
the quantization is regular. O

If char k = 2, then the above lemma demonstrates that there are no exceptions
in the simply-laced cases. Therefore, we suppose that char k # 2.

Let us label each vertex i of the graph I" by p;; and each edge (i, s) € I" by pispsi-

To find the total number of different parameters values that define the algebraic
structure for exceptional quantizations, we must find the number of all possible
options to put labels 1 on the graph I" such that, if (i, s) is labeled by —1 then i
and s are labeled by —1 as well.

Proposition 3.3 [fA is a Cartan matrix of type A, then there exists @2, — 2 options
for values of parameters that define the algebraic structure for exceptional quanti-
zations. Here ¢;, 0 < i is the Fibonacci sequence 1,1,2,3,5,8,13,..., ¢p+1 =
On + On—1-

Proof Denote by M, the number of all options for labeling I" of type A, so that if
an edge is labeled by —1, then both its vertices are labeled by —1.

p11 P22 Pn—1n—1 — — Pnn
° P12D021 5 P23DP32 . o Pn—1nPnn—1 3 (3.64)

Let M;F be the number of options among them with p,,, = 1.

P11 P22 pr3p3 Pn—1n—1  py—1nPnn— 1
o P12p21 5 P23pP32 o Pn—1nPnn—1 o (365)

Let M, be the number of options with p,,, = —1.

pu1 p22 Pn—1n—1 _ - 1
° P12p21 5 P23P32 n O” Pn—1nPnn—1 o (3.66)

We have M, = M} + M. One can easily find the recurrence relations for M=
because a subgraph of a correctly labeled graph is correctly labeled. There is only
one option for extending the graph (3.65) to the left by one edge and one vertex so
that the resulting graph has p,,+1,4+1 = 1, and one option to extend the graph (3.66).
Hence, M;f = M + M; . Similarly, there is only one option to extend the
graph (3.65) so that the resulting graph has p,+1,+1 = —1, and two options to
extend the graph (3.66). Thus, M 1= Mj + 2M;;. In matrix form, these relations

reduce to
(n+l) (11)(;1).
o 12) \m;
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Because My = 2 and M; = 3, this recurrence relation implies that

() =(1) ()= C)

Now, an ordinary induction demonstrates that

(1 1)n _ (‘Pzn—z 902n—1) 0> 1
12 Q-1 Q) T

which yields M;’ = ¢u—2, M, = @1, and M,, = ¢,. Thus, there are ¢,
options for labeling I" by +1 according to Lemma 3.14, and two of the options
Pii = pisPsi = pss = 1 all i 7é s, and Dii = PisPsi = Pss = —1 all i 7é s) are
regular. O

3.5.5 Isomorphism Problem

We did not discuss whether different admissible collections of the parameters define
abstractly different algebraic structures of quantizations. If a generalized Cartan
matrix has a symmetry, a;; = dx ;) =(s), With respect to some permutation of vertices
7, and p; = &, pisPsi = Bis = By 1s an admissible collection of parameters values,
then p;; = tz(i), PisPsi = Br()n(s) 1S also an admissible collection. In this manner,
the group of symmetries acts on the set of all admissible collections. In a regular
case, of course, dr; = d;; however, this may be m,; 7# m;(mod N) for some
index i, so that g#g™ # g% gm=0  In exceptional cases, it may be that o; # o)
or Bis # Bx)r(s) for some indices as well. Nevertheless, the k-algebra defined by
values p; = «;, pispsi = Pis = By in variables x;, x;7, 1 < i < nis isomorphic
to the k-algebra defined by the values p); = ax), PPl = Bri)r() in variables
xi’ , (xi’)_, 1 < i < n. The isomorphism acts on the group G via the permutation
a7l

. _ T _ _
diag(Ar, ..., A AT A0 = diag(A 11y, - - - ,Aﬂfl(n),knll(l), .. ,)Lnll(n)).

It similarly acts on the generators: x; LA x}’T —1y Xi % ()c7’r _l(i))_‘ Importantly,
the definition of the #;’s in Theorem 3.1 is not invariant under the permutations
(it depends on the order of vertices), therefore ¢(y;) # )7; 1) in general. Hence,
different collections from the same orbit define the same abstract algebraic structure.
We formulate a precise problem: do collections from the different orbits define
non-isomorphic K-algebras? Although it is likely that the isomorphism problem
has an affirmative solution, the arguments should include an analysis of possible
non-homogeneous isomorphisms. However, the existence of the famous Lusztig’s
automorphisms demonstrates that such analysis may be difficult.
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Among 25 types of generalized Cartan matrices related to affine Lie algebras
of Kac classification, [116, pp. 53-55], the matrices of 10 types have nontrivial
symmetries, whereas matrices of the other 15 types do not. In line with the
isomorphism problem, it is interesting to find the number of orbits for the former
cases. For example, in case A, there is just one nontrivial symmetry 7 (i) =
n—i+ 1, 1 < i < n. Therefore, each orbit has either one or two elements.
The number of one element orbits equals the number of symmetric admissible
(exceptional) collections. It is then easy to see that this number is ¢,+; — 2. Thus,
the total number of orbits is %(qu,, + @ut1) — 2.

3.6 Chapter Notes

The classification of finite-dimensional semisimple Lie algebras, being useful in
many areas of mathematics and physics, has an about 80-year history, starting with
a paper by Killing [141] and ending with Jean-Pierre Serre’s representation by
generators and relations [207]. The modern treatment of the theory is given in a
book by Humphreys [102]. The Kac-Moody algebras appeared in papers by Moody
[168] and Kac [112]. The book by Kac [116] is a canonical text for learning the
theory underlying Kac-Moody algebras.

A major event in developing the Hopf algebra theory was the discovery by
Drinfeld [65, 66] and Jimbo [106] of a class of Hopf algebras, now called Drinfeld—
Jimbo quantum groups, which can be considered as one-parameter deformations
of universal enveloping algebras of semisimple complex Lie algebra. Since then,
numerous books [46, 54, 71, 105, 107, 120, 142, 153, 160, 176, 213] and articles
have been published on the quantizations of Lie algebras.

The multiparameter quantizations appeared in different versions in papers by
Reshetikhin [193], Cotta-Ramusino and Rinaldi [56], and Constantini and Varag-
nolo [55]. In [194], Ringel developed an original approach based on deformations
of Hall algebras. Benkart and Witherspoon [22, 23] and then Bergeron et al. [29]
introduced a special two-parameter version from another perspective. Kang in
[118] and subsequently Benkart et al. in [24] considered quantum deformations of
generalized Kac-Moody algebras.

The analysis of quantizations of Kac-Moody algebras given in the book is based
on the author [136]. In the tableaux below, we provide the maximum possible
numbers, found in [136], of exceptional parameter values for Kac-Moody algebras
of finite or affine types in terms of the Kac classification, [116, pp. 53-55], where
@i, [ > 01is the Fibonacci sequence 1, 1,2, 3,5,8,13,21,....
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Ay P =2 G, 12 EVY 632

B, 2pm =2 Al 6 £V 4344

Cu 2¢02,— + 4 A;” Yo + Pop—2 — 2 Ag) 24

E 240 a" 454 + 28 A 49— + 16
E 632 G\ 38 p? 495, +2
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Chapter 4
Algebra of Skew-Primitive Elements

Abstract In this chapter we consider the skew-primitive polynomials of the free
character Hopf algebra to be quantum Lie operations. We discuss linearization and
specialization processes and criteria for a polynomial to be classified as a quantum
Lie operation. We also classify multilinear quantum Lie operations in two, three,
and four variables.

In this chapter we consider the skew-primitive polynomials of the free character
Hopf algebra to be quantum Lie operations. We discuss linearization and special-
ization processes and criteria for a polynomial to be classified as a quantum Lie
operation. We also classify multilinear quantum Lie operations in two, three, and
four variables.

4.1 Quantum Lie Operations

According to the Friedrichs criteria, Lie polynomials are characterized as primitive
elements of free associative algebra with primitive free generators:

A(x;) =x;®1+1®xi.

Because every Lie polynomial may be considered as a multivariable operation
on Lie algebras, this fact yields an idea to define quantum Lie operations as
polynomials of free algebra that are skew-primitive for all “admissible” values of
variables. In line with this idea, a quantum analog of a Lie algebra is the subspace
of a Hopf algebra span by skew-primitive elements and equipped by quantum Lie
operations.

The definition of a skew-primitive element includes two group-like elements,

Aw)=u®h, +f, Qu, hy,, f,€C.

© Springer International Publishing Switzerland 2015 129
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As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize one of these group-likes, say,

AR 'w)y = ' u @ 1+ 1, @ B

This allows us to concentrate our attention mainly only on skew-primitive elements
when h, = 1. This diminishes twice the number of parameters. Of course, every
operation f(x;, X2, . . ., X,) on normalized skew-primitive elements has an extension
to arbitrary ones by means of the substitution x; < h;'y; and followed then
multiplication by group-likes 4;. Let us proceed with the exact definitions.

4.1.1 Quantum Variables

We call a variable x as a quantum variable if an element g, of a fixed Abelian
group G and a character y* € G* are associated with it. The parameters g, and
x* associated with a quantum variable say that an element a in a Hopf algebra H
may be considered as a value of this quantum variable only if a is a skew-primitive
semi-invariant with the same parameters, that is

Ala) =a® 1+ g, ®a, g_lag = x'(g9)a, ge€G, “4.1)

where we suppose that the elements of G have some fixed interpretation in H as
group-like elements.

A noncommutative polynomial in quantum variables is called a quantum Lie
operation if all of its values in all Hopf algebras are skew-primitive for all values of
the quantum variables. In particular, a homogeneous quantum Lie operation has the
form:

[x1,...,%:] = Z U Xr(1)* " Xn(n)s

TES,

where xi, ..., x, are not necessarily distinct quantum variables. If those variables
are mutually distinct (but not necessarily with different y, g), the operation is called
multilinear.

Let xj,...,x, be a set of quantum variables. The skew group algebra G(X)
becomes a free character Hopf algebra if we define the coproduct

Ax) =x®1+g,®x, 1<i<l1, Alg)=g®g, g<C.
Hence the x;’s have skew-primitive values in G(X). By this means the quantum Lie

operations can be identified with skew-primitive polynomials of the free character
Hopf algebra G(X).
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Example 4.1 (Commutator) If G is a trivial group, then the usual commutator xy —
yx is a quantum Lie operation. If the ground field has a positive characteristic / > 0,
there exists a nonlinear quantum Lie operation x'. The Friedrichs criteria says that
all other operations (if, of course, G = id) are superpositions of these two.

Example 4.2 (Skew Commutator) Let x| and x; be quantum variables. If pjopy; = 1
then the skew commutator [x},x;] = x;x, — p12X2X) is a quantum Lie operation.

Example 4.3 (Unary Restriction Operation) Let x be a quantum variable such that
p11 = x*(gx) is a primitive tth root of 1. Then x' is a quantum Lie operation.
Indeed, we have (x® 1)(g®x) = p11(g®x)(x® 1). Lemma 1.2 implies A(x") =
A@x)' = X ® 1+ g, ® x'. Hence x' is a quantum Lie operation. Similarly, if the
characteristic [ of k is positive, then x', n > 0 are quantum Lie operations as well.

Example 4.4 (Pareigis Quantum Operation) Let { be a primitive nth root of unity
and pp;; = ¢%. Then

Poi,ox) =3 C ] @0 (@en)) Xrt) Xt

€S, i<j&n(i)>n(j)

is a quantum Lie operation (see [184, Theorem 3.1, p. 147 ], and [183, 185]).

Example 4.5 (Serre Quantum Operation) Let x|, x, be quantum variables. Then
Theorem 2.5 demonstrates that

W= [...[[xl,xz],xz],...,xg]
N——

n

is a quantum Lie operation provided that either p; p2; = p%z_ " or pyy is a primitive
mth root of unity, m|n, and p,p%} = 1.

4.1.2 Linearization and Specialization

The quantum Lie operations admit the well-known linearization process. Recall
that a multidegree D(u) of a word u is a sequence of non-negative integers
(my, my, ..., my) such that u is of degree m, in x;, deg(u) = my; of degree m; in
X2, degy(u) = my; and so on. A linear combination of words Y «;u; is homogeneous
if all words u; have the same multidegree. Of course, each polynomial is a sum of
its homogeneous components.

Lemma 4.1 All homogeneous components of a quantum Lie operation are again
quantum Lie operations.

Proof A coproduct of a word u = ajaz---apm, a; € X, 1 <i < misasum of 27

tensors u* ® uA, when A runs through all subsets of {1,2,...,m}, whereas u is a
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word that appears from u upon replacement of each a;, i € A with g;, and u is a
word that appears from u by deleting of all a;, i ¢ A, see Remark 1.6. In particular,
the sum of the multidegrees of u* and u* equals the multidegree of u.

If now F = Y oyt is a skew-primitive polynomial, then all tensors in

Y wAw)-F®1—g ®F (4.2)

under the above decomposition of A(u;) must be canceled. However, if either left or
right components of a pair of tensors have different multidegrees, then the tensors
may not cancel each other. Therefore, for a givend = (dy,d>,...,d,), the sum
of all tensors A ® B of (4.2) with D(A) + D(B) = d is zero. But the latter sum is
precisely A(Fq)—Fa®1—gr®Fq, where Fq = ZDWU:d oy is the d-homogeneous
component of F. This implies that homogeneous components Fy are skew-primitive.

O

Due to the proven lemma, we may concentrate our attention mainly on the
homogeneous polynomials. Let f(xi,...,x,) be a homogeneous quantum Lie
operation of degree m; in x;, 1 < i < n. Instead of x; we may introduce m; new
quantum variables y;, 1 < j < m; that have the same parameters (x*, g,,). In this
way any linear combination z; = ), &xyi is a skew-primitive semi-invariant with
the parameters (x*, gx,) in G(y;;). In particular, by the definition of the quantum Lie
operation

SOu+yi+ -+ Yim X2, .., Xn)

my
_Zf(yll +"'+"'+5)1q+"'y1m17x2a---axn)
q=1

+ Z f(yn+---+---)71q1+---+§1q2+---+y1m1,Xz,...,xn)

1=q1<g2=my
mi

— e (=M Zf(qu,xz, e Xy)

q=1

is a skew-primitive polynomial that defines a quantum Lie operationin yy;, 1 <j <
my, Xz,...,X%,. Here as usual the symbol " over the addend means that this addend
is omitted in the sum. The continuation of this process for x;, x3, ... will lead to a
multilinear quantum operation in y;. We call the obtained operation L(f) as complete
linearization of the given one.

Conversely, if some of the variables x; have the same parameters, say, y*' =
X, 8x = &x,. then we may substitute x; = x; in the operation. We will obtain a
new operation that is called a specialization of the given one. In particular we may
substitute y; = x; to the complete linearization L(f). In this way we get the initial
operation multiplied by a natural number.
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For instance, the complete linearization of the operation from Example 4.3 is

L(x") = Zyn(nyn(z)myn(rw r=1l",

TES,

whereas its complete specialization equals ! x". Of course, if the characteristic / is
positive, then the specialization is zero. So that, in the case of positive characteristic,
there exist operations that are not specializations of the multilinear ones.

However, over a field of zero characteristic, every constitution homogeneous
quantum Lie operation is a specialization of a multilinear one. By this reason the
investigation of the multilinear operations is of the primary importance.

4.2 Criteria for Quantum Lie Operations

Additionally to the Freiderichs criterion that characterizes the Lie polynomials as
primitive elements of the free associative algebra, there exist two more criteria
for the Lie polynomials: the Finkelstein and Specht—Wever criteria. We are going
to demonstrate that the Finkelstein criterion remains valid for the quantum Lie
operations, whereas the Specht—Wever condition is valid for the quantum Lie
operations, but this is not a criterion any more. Also we prove a new criterion
for quantum Lie operations linear at least in one variable, which reduces the
identification to the problem of linear dependence of some special polynomials.

4.2.1 Left and Right Primitive Polynomials

Definition 4.1 A polynomial W is called left primitive in x; € X if A(W) — W & 1
is a linear combination of tensors A ® B with deg, (A) = 0; that is, all left-hand sides
of the tensors are independent of x;. Similarly, W is called right primitive in x; if
A(W) — gy ® W is a linear combination of tensors A ® B with deg,(B) = 0.

Proposition 4.1 A linear in x| polynomial F is left primitive in x| if and only if it is
a linear combination of long skew commutators:

F= Y ol [lxx)xml .. oxl. (4.3)

i=(i1.i2,....ik)

Proof First we prove by induction on k that all summands on the right of (4.3) are
left primitive in x;. If k = 0, then A(x;) —x; ® 1 = g1 ® x1, whereas deg;(g;) = 0.

Letiz+1 =j # 1,andlet A(U) = U ® 1 + > u; ® d;, where the G-words u; are
independent of x;. Then, if we take into account that Ug; = p(U, x;)g;U and neglect
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tensors whose left-hand sides are independent of x;, we obtain
A(U.x]) = AW)AG) = p(U ) AG)AU)
=U®1+Y u®d)(x®1+gex)
—pU.x)x®1+gRx)UR 1+ 1;®d)
=U;®1+Ug®x—pUx)U®1+gU®x) =[Ux]® 1.

To prove the converse statement, we return to Remark 1.6. The tensor w @ wA
is proportional to a tensor of the form gu ® v, g € G, where both words u, v appear
from w by deleting of some letters. The word w may be reconstructed from the
words u, v by means of the so called shuffle construction: a word is a shuffle of u, v
if it appears from the word uv by means of the moving of some letters of v to the
left so that the order of letters from v is not changed. For example, the shuffles of
u = ab, v = xy are abxy, axby, axyb, xaby, xayb, xyab. We see that a tensor
gu ® v appears in the decomposition of A(w) if and only if w is a shuffle of u, v.

Assume that W is left primitive in x;. Let w be the leading word of the decompo-
sition of W in a linear combination of words: W = aw + Y a;w;, w; <w, a # 0.

If w = x1x;,x;, . . . x;, begins with x;, then the leading word of

W =W—al..[p,x]x,], ... x]

is less than w because [... [[x1, x;,], %3], . - - , X;;] has only one word, w, that begins
with x;. As W’ is still left primitive in x;, one may apply induction on the leading
word.

If w = ux;v and u is a nonempty word, then the decomposition of A(w) has a
tensor gx;v ® u with a nonzero coefficient because w = ux;v is a shuffle of x;v, u.
At the same time, other shuffles of x;v, u are greater than ux;v as x; is grater than
each letter of u. In particular, no one of the words w; < w is a shuffle of x; v, u. This
implies that the tensor gx;v ® u remains uncanceled in A(W), so that W is not left
primitive in x;. O

In a similar way, we may describe all right primitive in x; polynomials. To this
end, we have to use the dual brackets (1.67):

[u, v]* = uv —p;ivu = —p;i[v, ul. (4.4)

Proposition 4.2 A linear in x| polynomial F is right primitive in x| if and only if it
is a linear combination of dual long skew commutators:

F= Z 71 [ ESPET W v) L v

i=(i1,i2,... ,ix)

Proof The proof is quite similar to that of the above proposition. O
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4.2.2 Polynomial Criterion

For each word u = x;,x;, ... x;, in x2, x3, ..., x, consider the following polynomial
Dy =1[... [[x1,x, ) x0) - oox ] = [ e xa 15 x 1 - x5, 4.5)

where the dual brackets are defined in (4.4). The following theorem implies that
there exists a quantum Lie operation of multidegree (1, my, ms, ..., m,) if and only
if the polynomials D,, are linearly dependent.

Theorem 4.1 Each linear dependence Y B,D, = 0 where u runs through all
words in xa, ..., x, of multidegree (my, ms, ..., m,) defines a quantum Lie opera-
tion:

W= Zﬂu -xlv-xll] -xlz] xlk] - Zﬂu . -xlv-xll -xiz]*v ... 7-xik]*-
(4.6)

Conversely, every quantum Lie operation W of multidegree (1, my, ms, . .., my) has
a representation by (4.6).

Proof If 3", BuD, = 0 then the second equality of (4.6) fulfills and it defines the
element W. By Proposition 4.1 the element W is left primitive in x;, whereas by
Proposition 4.2 it is right primitive in x;. Since deg, (W) = 1, it follows that W is a
skew-primitive polynomial.

Conversely, if f is a skew-primitive polynomial of multidegree (1, ma, ..., my),
then it is left primitive in x;. By Proposition 4.1, we have

f= Z Bul- - b1 xi ] xi), i ). (4.7)
Applying Proposition 4.2, we obtain

f= Zﬁu[ [ESTETN T N (4.8)

Thus, we have the equality

Zﬂu . -xlv-xlz] xl3] -xlk] - Z :Bu[ [xls-xlz] -xi3]*v e 7-xik]*' (4’9)

If we compare coefficients at x1x;, - --x;, = xju in both sides of this equality, we get

m

B. = B,.and hence ), B.D, = 0. O

Corollary 4.1 If there exists a multilinear quantum Lie operation, then

[] ps=1 (4.10)

1<i#s<n
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Proof By definition a multilinear polynomial satisfies my = m3 = ... = m, = 1.
In this case, u = Xz(2)Xx(3) * * * Xx(n), Where m is a permutation of symbols 2, 3, ..., n.
Let us compare coefficients at X (y) - - - Xz(3)Xx(2)X1 in both sides of (4.9). We arrive
at a system of (n — 1)! equalities

n n

k—1 k—1
Bu(=D" T TPrirnw) = Bu=1""" [T [ Prtirn)-

k=2 i=1 k=2 i=1

Clearly, each of these equalities is equivalent to (4.10) if B, # 0. O

Using one additional variable, we may apply the criterion of Theorem 4.1 to
arbitrary quantum Lie operations.

Proposition 4.3 A homogeneous polynomial f in quantum variables x3,x3, . .., X,
defines a quantum Lie operation if and only if so does [x1,f] = xif — fx1, where x;
is a quantum variable with y*' =id, g, = id.

Proof The coproduct has a decomposition

AN)=1@f+g ®f + Y _ gt ®, 4.11)

u,v

where u, v run though nonempty words in x5, x3, . .., x,. We have,

Al f) = 1@ [ f]+g @1+ Y dungu(xr ul@v+ud[x,v]).  (4.12)

u,v

If f is skew-primitive, then ¢, = 0, and [x;, f] is skew-primitive as well. If [x;, f]
is skew-primitive, then

D gl @ v+ u® [x,v]) =0, (4.13)

u,v

which implies o, , = 0. O

4.2.3 Finkelstein Criterion and Specht—Wever Condition

Theorem 4.2 A homogeneous polynomial f = ) . 0iX; X, ...X; in quantum
variables x3, x3, . . ., X, is a quantum Lie operation if and only if

ffl= Yl b)) ). (4.14)

i=(i1,i2,....ik)
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Proof If f is skew-primitive, then Proposition 4.1 under substitution x, < f implies
that [x1,f] is left primitive in x;. The same proposition applied to k(X) provides a
representation

fofl= Y Bil-lbex ] ox].

i=(i1,02,.-,ik)

The polynomial [. .. [[x,x;], X;,] - . ., X; ] has only one word with the first letter x;.
Comparing the words starting with x; in both sides of the latter equality, we obtain

Bi = ai.

Conversely. If identity (4.14) is valid, then [x;, f] is left primitive in x,. Let

AP =fel+gaf+> fMef?. (4.15)

where fi(z) are linearly independent homogeneous polynomials and fi(l) ¢ k[G]. We
have,

Al f) =11 =Y (f) —pla,g)ff x) @f2 +---, (4.16)

i1

where by the dots we denote a sum of tensors whose left-hand side is independent of
x1. Since [x;. f] is left primitive in x;, it follows that x;£" = p(x, gn)fx1, i > 1.
These equalities are possible in G(X) only if fi(l) € K[G]. Hence, the sum in (4.15)
is empty. O

In perfect analogy, we have a dual criterion.

Theorem 4.3 A homogeneous polynomial f = Y, aix; X, ...%;, in quantum
variables x3,x3, ..., X, is a quantum Lie operation if and only if
bl = ) aal b ]t ) 4.17)
i=(i1,i2,.-»ik)

In the equalities (4.14), (4.17) the variables x;, 1 < i < n are algebraically
independent. Therefore this identity is valid for arbitrary, not necessarily skew-
primitive, values x; = u; provided that the skew commutators are defined by the
same coefficients. This proves the following statement.

Corollary 4.2 Iff(x;)) = Y ; aiXyXi, . . . X;, iS a quantum Lie operation in quantum

variables x3, . . ., x, then the following ad-identities hold
)= Y il [lzow] o). ug]. (4.18)
i=(i1,02,...,ik)
f@))* = > el [l ] un]* ] (4.19)

i=(i1.i2,..0k)
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provided that z, u;, 1 < i < n are arbitrary homogeneous polynomials such that
p(ui,u)) =py, 1 <i,j<n.

In order to understand more closely the sense of the ad-identities, let us consider
a number of simple examples.

Example 4.6 1f G = {id}, then the commutator [x1, x,] = x;x, —x,x) is a (Quantum)
Lie operation. In this case the ad-identity (4.18) turns into the Jacobi identity in the
following form:

[z, [u1, u2]] = [[z, u1], ua] — [[z, ua], us]. (4.20)

Example 4.7 More generally, if p;p; = 1 then the skew commutator [x;,x;] =
X1X3 — p12X2X; 1s a quantum Lie operation. The ad-identity takes up a conditional
identity

[Zv [Lt, U]] = [[Zv M]v U] _Pu,v[[Zs U]v M]v (4‘21)

under the condition p,, ,p, , = 1. This condition is universally true if the bicharacter
p is symmetric, p;p; = 1; in this case (4.21) is the Jacobi identity for color Lie
super-algebras.

Example 4.8 1f y*(g,) = ( is a rth primitive root of 1 and eithern = t, orn = 1"
where [ is the characteristic of the ground field, then x" is a quantum Lie operation.
Thus, we obtain the identities:

[z, u"] =[...[[[z.u], ul.u],....ul, [zu"]" =1[..[[z.u]*, u]*, u]*, ..., u]*
S——— N—

n

provided that p, , = ¢.

For a polynomial f(x;) = )_; &ixi, X;, . . . X;,, we define the operator o by

of) = Y ol [xixn]x). (4.23)

i=(i1,i2,....0)

Theorem 4.4 If f(x;) is a quantum Lie operation, then o (f(x;)) = kf (x;).

Proof Without loss of generality we may suppose that f(x;) is a polynomial in
X2,X3,...,%,. Let us introduce a variable x; with parameters ¥ =id, g = 1.
Consider a k[G]-algebra H defined by relations xjx; —xx; —x; = 0, 1 < i <
n. As left-hand sides of these relations are skew-primitive elements, algebra H
maintain the character Hopf algebra structure, and the natural homomorphism ¢ :
G(X) — H is a homomorphism of character Hopf algebras. In algebra H, we have
[x1,x] = x;. By evident induction this implies [x;,x;x;, ... %] = kxiXi, ... X,
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Therefore [x1,f(x;)] = kf(x;) in H. At the same time, the right-hand side of (4.14)
equals o(f(x;)) in H. Applying ¢ to the identity (4.14), we obtain o (f(x;)) =
kf (x;) in H. It remains to note that the restriction of ¢ on G(xz,x3,...,x,) is an
injection.

Indeed, there are no compositions between the defining relations, whereas the
compositions x1x; - g = xj - x;g between the defining relations and the commutation
rules x;g = y'(g)gx; are resolvable:

(v +x0)g —x1 (1 (9)gx) = X' (9)g(x' (®)xix1 +x) — x'(§) ' (9)g(xix1 +x)) = 0.
By Theorem 1.2 (Diamond Lemma), words that have no subwords x;x; are linearly
independent in H. In particular, so are all words in x, x3, ..., X,. O

The following example shows that the Specht-Wever condition is not a criterion
for the quantum Lie operations.

Example 4.9 The Specht-Wever condition for the polynomial x” is

[.. [, x], ..., x] = nx".

If p = x"(gx), then the above equality reduces to the following one

(1-p)d=pH---(1=p"H=n (4.24)

For p = 2,n = 3 the equality (4.24) is valid, whereas x>

provided that a characteristic of the ground field is zero.

is not a quantum operation

4.3 Bilinear and Trilinear Operations

Theorem 2.5 with n = 1 states that there exists only one bilinear operation [x;, x;]
up to a scalar factor, in which case the existence condition is pjpps; = 1. This
allows us to define the principle bilinear operation on skew-primitive elements as
follows:

|Ia7 b]l — [as b]s if X“(gb)Xb($¢z) =1 (4.25)
undefined, otherwise.

We stress that this operation applies to arbitrary, not necessary normalized, skew-

primitive elements. Recall that if A(a) = a®h,+f,®aand A(b) = bQhy+f, b,

then the brackets are defined thus: [a,b] = x’(hy)ab — y“(fy)ba, see (1.67).

In particular, [a,b] = hohyx“(hy) x°(ha)[h;'a, b, 'b] is still skew-primitive. By

definition g, = h;'f,, g = h;l f». Hence, the existence condition remains
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1%(gp) x"(ga) = 1, or it may be written in more symmetric form x°(f,) y*(f,) =

X (he) 1" (ha).
It is easy to see that the principle bilinear operation satisfies the identities

la,b] = —x“(g») [, a]. (4.26)

x“(g)la. [b. <l + x“(gn)le. [a. b1 + x”(8a)[b. [c. all = 0, 4.27)

subject to the condition that all values [ ] involved are determined.

Theorem 4.5 For quantum variables x|, x,, and x3, a nonzero trilinear quantum
operation exists if and only if

p12pap13p3papn = 1. (4.28)

If one of the inequalities

pi2pa1 # 1, piaps1 # 1, paspa # 1 (4.29)

holds, then there exists exactly one (up to multiplication by a scalar) such operation.
If no one of them holds, then all trilinear operations are linearly expressed in terms
of [x1, [x2, x3]] and [x2, [x3,x1]] via (4.26) and (4.27).

Proof Corollary 4.1 implies that (4.28) is a necessary condition for existence of
trilinear operation. To prove that this condition is sufficient, we apply the polynomial
criterion given in Theorem 4.1.

Forn = 3, my = 1, mz = 1, there exists two polynomials D, corresponding to
u = xpx3 and u = x3xy, see (4.5). We note that Dy, appears from D,,,, by appli-
cation of the permutation (23) to all indices. Therefore, let D;; and D(,3, denote the
polynomials D), related to u = xpx3 and u = x3x; respectively. If (4.28) is valid, then

Dia = (P35 — p1a)xaxixs + (0503, — P13paz)xsxixa,
D3y = (P57 Py — Prap3)xaxixs + (p3) — pi3)xsxixs.

If one of the inequalities (4.29) holds (let it be py3p3; # 1 for definiteness), then

(P31 —p12)®3! —p13) = (031 P3 — P13p23) (P2 Pys — P1ap3).
and hence

_ P3'P% —Pi3pas

Dijq =
P31 — P13

D(23) =0.
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Here, D(>3y # 0; that is, the space generated by D;; and D(»3) is one-dimensional.
By Theorem 4.1, there exists the unique trilinear operation up to a scalar factor

-1, -1
P31 P3p — P13P23
[[x1. 2], 23] — 22—y, x3), 1) (4.30)
P31 — P13

If all products pyp;i, i # j are equalto 1, then D;y = D(23) = 0; that is, there exist
exactly two linear dependences between D;; and D »3). Hence, there are exactly two
linearly independent operations. In this case, on the other hand, all the three values,
[x1, x2], [x1,x3], and [x2, x3], of the main bilinear operation are defined. Moreover,
since g, = gigj and yFl =y x| we see that yF9(g) y* (gp,.1) = 1 holds
for k # i,j; that is, all possible superpositions, too, are defined. Among them, by the
above argument, only two may be linearly independent (for example, those specified
in the theorem), and the rest are expressed via them using (4.26) and (4.27). O

Note that if exactly one of the inequalities (4.29) fails, say, piop>1 = 1, then
the superposition [x3, [x;,x2]] will be defined; hence, the unique (by Theorem 4.5)
quantum operation will equal that superposition. This circumstance allows us to
define the principle trilinear operation thus:

5 —p .
[[avb]vc] - W[[avc]sb]s if l_[ Pis = 17 andpispsi 7é 1,
[a, b, c] = LE 1<its<3

undefined, otherwise,

where pia = x“(g»). P13 = x“(g). etc.

The principle trilinear operation applies to arbitrary, not necessary normalized,
skew-primitive elements as well. The existence conditions remain the same, or they
may be written in more symmetric form

l—[ qis = l_[qi/s’ and  qisqsi # qilsqs/i fori # s,
i#s i#s

where, as usual, 1o = x“(h), q{, = x*(b). q13 = x*(he). q13 = x*(f.). etc.

The operation being unique has an implication that if we rename the variables
X; = Xx(;), then the value of the main operation on x;(1), Xx(2), X=(3) (of course, it is
defined on that sequence since (4.28) is invariant under such substitutions) should
be linearly expressed via its value on xi, xp, x3, that is,

[x2(1), Xz 2), X2 3)] = 0t [x1, 22, x3]. (4.31)
If we compare the coefficients at x(1)Xz(2)Xx3) on the right- and left-hand sides

of (4.31), we see that oy = y7_ | =y, ! where y, are precisely coefficients in the
expansion

[x1,x2, x3] = Z VaXa()Xr(2)Xx(3)}
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or by routine computations,

_ __ P31 _17131 __ D31 _17131 _
g =1, 0123) = ——7» %13 = 7> %13) = pPa1pP3x2psi,
P12 — Py P23 — P13y
. P31 —P131 _ P31 —P131
O(12) = P2aP3P1B3 1> %23 = P12P32P13——— -
P23 — D3y P12 — Py

4.4 Quadrilinear Operations

We pass to the case n = 4. Denote by S4 the permutation group on the set {1,2, 3, 4},
and by Si its subgroup consisting of all permutations leaving 1 fixed. For our goals,
both a functional and an exponential notation for the action of S4 on the index set
might seem convenient, while we assume that i) = (i")” = v(n(i)). Write 7 to
denote the permutation

1234
T = (4 15 1) = (14)(23). 4.32)

For brevity, we make the convention to write 7 (A) or A” for the permutation 7z and
for an arbitrary expression A, meaning that 77 (A) is obtained from A by applying 7
to each index occurring in A at letters p;; or at variables x;. In so doing, we do not
require that S4 acts on the ground field. For instance, it might be the case that, in k,
the equality p12 = p»3 is satisfied but p§1223) = p%z?’) is not, that is, this is merely a
notational convention, which is used only unless it leads to confusion. An arbitrary
quadrilinear polynomial, in accordance with the above conventions, can be written
in the form

W(x1, x2, X3, X4) = Z o T (X1X2X3X4), otr € k. (4.33)

TESy

To that conventions we add the following:

df -1 — _
{Pyui - - - Prs} = Pipra -+ Prs — Py P -+ Py (4.34)

and for the word A depending on p;;, denote by A a word obtained from A by

replacing all letters p;; with pj;, so that {A} = A — A", These are again merely
notational conventions: the equality pjop3s = pi13ps in K not necessarily implies
p2_11pZ3l = p3_11p2_3l in k.

Lemma 4.2 Let C, D, and E be some words in pjj. Then

{CE}{DE} — {C}{D} = {CDE}{E}. (4.35)
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Proof Using (4.34), we rewrite the left- and right-hand sides of (4.35) in this way:

{CEWDE} — {C}{D} = (CE~ CE ')(DE — (DE)™' = (C~C )(D-D )
— CEDE—C 'E 'DE—CED 'E™!
+C'E'D'E'-cD+C 'D+CD ' —-C D!
= CEDE + CED 'E™'—CD-CD
{CDEME} = (CDE—CD 'E"WE—-E
— CDEE—CD ' —CD+CDE 'E™'.

O

Note that the existence condition for the trilinear operation (4.28) can be written

via braces thus: {pop13p23} = 0, whereas the existence condition for the bilinear

operation takes the form {p;,} = 0. It might be useful to point out the following
properties of the braces:

{C} =0 — {CD} = C{D}, (4.36)

{C} =0&{CD} =0 — {D} =0. 4.37)

Theorem 4.6 For quantum variables x1, x», X3, X4, a nonzero quadrilinear quantum
operation exists if and only if

D12P21P13D31P14P41P23P32P24P42D34P43 = 1. (4.38)

If this equality holds, and there is a pair of indices i, j such that

i} # 0 & pipapiit # 0 & {piipispsy # 0, (4.39)

where i,j, k, s are distinct indices, then there exist exactly two linearly independent
quadrilinear operations. If condition (4.39) fails for all i # j, then all quadrilinear
operations are expressed via bilinear and trilinear principle operations.

Proof Corollary 4.1 implies that (4.38) is a necessary condition for existence of
quadrilinear operations. We stress that (4.38) is equivalent to each one of the
following 24 equalities

{xX12X13%14X23x24%34}" = 0, 7 € Sy. (4.40)
To prove that this condition is sufficient, we apply the polynomial criterion given in

Theorem 4.1. Forn = 4, my = 1, ms = 1, my = 1, there exists six polynomials
D, corresponding to different permutations of the word xx3x4, see (4.5). Let D,
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corresponds to the word u = X7 (2)X7(3)Xx(4), Where € Si. Due to our conventions
in notations, we have D, = w(D;;). We seek an element D;; in an explicit form.
Expanding the skew commutators in (4.5) yields

Diy = —{p12}x2x1X3X4 — {P13P23 }X3X1X0X4 — {P14P24P 34} X4X1X2X3
+{p12p13p23}X3x2x1%4 + {P12P14P24P34 }XaX2X1X3
+H{P13P23P14P24P34 X aX3X1 X2 (4.41)

Now assume that 8, are unknown parameters. Consider the linear combination
> B2 7(D;y) and the coefficients at its distinct words. Setting that combination equal
to zero, we obtain a homogeneous system of 12 equations (equal to the number of
distinct words not beginning with and not ending in x;) with six unknowns. We have
to demonstrate that, under conditions (4.38) and (4.39) fori = 1,j = 4, that system
has two linearly independent solutions.

Consider the coefficient at x,xx3x4. If we apply 7 € S‘{ to (4.41), the element x;
will be left fixed; therefore, the word x,x;x3x4 arises in 7w (D;4) only from the first
three summands of (4.41). If it arises from the second, then 7(3) = 2, 7(2) = 3,
and 7t (4) = 4; thatis, 7 = (23). If it arises from the third, then 7 (4) = 2, 7(2) = 3,
and 7(3) = 4; that is, # = (234). Therefore, the whole coefficient at x;xx3x4 is
equal to

— P12} Bia — {p12p32}B23) — P12P32P 42} B 234y - (4.42)

In a similar way, if we compute coefficients at other six words 7 (xpx1x3x4), T € s
with x; holding second place, we obtain the first group of six equations

[—{P12}Bia — {P12p32} Bazy — {p1apsepaa} Bssy]” = 0, w € S;. (4.43)

At this point we use the conventions made at the beginning of Sect. 4.4, assuming
in addition that permutations y act on the indices at 8 by right multiplications:
[.Br )= Bap...

In perfect analogy, we consider the coefficient at x4x3xx,. This word arises in
7(D;q) from the last three summands of (4.41) only. If it arises from the last but
one summand, then 7(4) = 4, 7(2) = 3, and 7 (3) = 2; thatis, # = (23). If it
arises from the fourth summand, then 7(3) = 4, 7(2) = 3, and 7(4) = 2, that is,
7w = (234). Therefore, the coefficient is equal to

{P13023P14P24P34 s Bia + {P13P14P34D24 3 B23) + {P13P 1434}, B 234y, (4.44)

and we obtain yet other six equations

[{P13D23p1ap2aP34} Bia + {P13P14P3aP24} B23) + {P13p1ap3a} Psay] = 0. (4.45)
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Consider two Eqgs. (4.42) and (4.44). Let us check that under condition (4.38), all
three minors of that system of two equations equal zero. First, using Lemma 4.2 with
C < p12; D < p13p1ap3ap2s; and E < p3p, we compute the minor corresponding
to the variables B;; and B23):

— {p2HP13p1ap3ap24} + {P12P323{P13P23P14P 2434} = {P12P13P14P34D24P23 P32}
(4.46)

The first factor of the latter product is zero due to (4.40) with # = id. Then, by
Lemma 4.2 with C < pip; D < pi3piapss; and E < pspsr, we compute the
minor corresponding to the variables B;; and B(234):

— P12 H{P13p1ap3a} + {P12p32P 42 1 {P13P23P 14D 24P 34}
= {p12p13p14p3ap213P2a{p3par} = 0. (4.47)

Next, for the minor corresponding to the variables B(»3) and B(234), We again apply
Lemma 4.2 with C < p1ap32; D < p13p1apsa; E < pan:

— {P12P32 1P 13P14P34} + {P12P32P 42 AP 13D 14D34P 24} = {P12P32P13P14P34D24 P42}
(4.48)

The first factor of the latter product is zero due to (4.40) with & = (23).

Besides, if some coefficient in (4.42) equals zero, then by (4.37), the corre-
sponding coefficient in (4.44) equals zero and vise versa. Therefore, Eq. (4.42) is
equivalent to (4.44).

Applying u € Si to all of the expressions (4.42), (4.44), and (4.46)—(4.48), we
obtain that the whole system of 12 equations is equivalent to the six in (4.43).

We order elements of the group S} in this way: id, (23), (234), (34), (24), (243).
The matrix of the system then has the form

P12} \p12pn}  P12pnpa} 0 0 0
{p13p23} {p13} 0 {p13p23paz} 0 0
0 0 P13} 0 {pispast  {p13paspas}
0 0 0 P12} Apwpwpsnt {puopo}
0 {P1ap3sp2s}  Aprapsa} 0 {p14} 0
{P14p2ap3a} 0 0 {P1ap24} 0 {p1a}

If, in this matrix, we delete the first two columns and the third and fourth rows, we
obtain a triangular submatrix with the diagonal {p12p32p42}, {P13P23P43}, {P14}. Let
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us check that under condition (4.39) for i = 1, j = 4, no one of those elements is
Zero.

Condition (4.39) for i = 1, j = 4 includes {p14} # 0. Remark (4.37) with C «
P12p32p42 and D <— piapi3pas implies {p1apaopaz} # 0, for otherwise {p1ap13pas} =
0. Similarly, (4.37) with C <= p13p23ps3 and D <— piap12pa4 implies {p13prpas} #
0, for otherwise {p14p12p24} = 0.

Thus, the corresponding minor is nonzero and the whole system has not more
than two linearly independent solutions. Put B;; = 1 and B3y = 0, and find one
solution for the system of the first two and last two equations:

{p12} {p13p23}
Bia=1, Bp3 =0, By =——, By = ————,
@) @9 {P12p32par} G4 {P13p23pas}
{p12}{p1apaa} _ {pa3H{P14p2ap3ap13P23}

(4.49)

Boy = —————, Bew) =
@4 {P1a}{p12paopa} @) {P1a{p13p2spas)

Using Lemma 4.2, we verify if these values are solutions for the third equation:

{P12} {P12H{p1apas) a3 P 1aD24D3aP 13D 23 }
- {p13}{P12P32P42} * {p13p43}{P14}{P12P32P42} ~ WPrapapn} {P1ap13p23pa3}
_ P12} _ _ {Pa3}AP14P24p3ap13P23 }
= —{p12p32p42}{p14} (p13Hp1a} — {p13pa3}ip1apaa}) ra)
= #‘mapn}@nmwm} — {P12P32P 42} {P14P24P34P13P 23 })
_ _{P43}{P12P13P14P34P23P24}{P32P42} -0
{P1apnpoiipia) '
Likewise for the fourth equation (with the “—" sign):
{P13p23} _ {PH{p1apss} {P43}{P14P24p34P13P23 }
{pu}{P13pz3p43} {p12p32p42}{17121732p42}{1714} T {piapa) {p1a}{p1ap23pas}
= #jﬂmﬂ{l’lw%}@u} — P13p23p43P1ap34}) + - ..
_ _{Plz}{P13P23P14P34}{P43} T }{p43}{P14P24P34P13P23}
{P1adpi3ppas} b {p1a}{p13p23pas}
= Lﬂ(—{mz}{PBPBPMPM} + {P12Pa2}{P14P24p34P 13023 })
{Paiipi3papss}

_ P43 1P12P13D23P14P3aP24 P42} _

{P1a}ip 3PP} 0
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Thus, by Theorem 4.1, the computed values of B, determine a quadrilinear
operation

[x1, x2, x3, x4] = Z Brlllx1. Xz )], X2 (3))s X (a)]- (4.50)

ﬂES}‘

Since Bis = 1, B3 = 0, and the word 7 (x1x2x3x4) in (4.50) occurs only in the
summand corresponding to the permutation 7, we see that the coefficient at x| xpx3x4
in the expansion (4.33) of the polynomial [x;, x, x3, x4] equals 1, and the coefficient
at x| x3xx4 1S Zero.

Consider a sequence of quantum variables y; = X[, y2 = X3, y3 = X, and ys =
x4. This sequence satisfies both conditions (4.38) and (4.39) fori = 1, j = 4; hence,
by the above, there exists a quantum operation [y, y2, ¥3, y4] = [x1,x3, x2, x4] such
that the coefficient at x;x3x,x4 equals 1 and the one at x;xx3x4 equals 0. In this
way [x1,x3, X2, x4] supplies the second solution for the system under consideration,
which proves the first part of the theorem.

Now assume that no one pair i # j satisfies condition (4.39).

We call a pair x;,x; (respectively, a triple x;, x;, x¢) of variables conforming if
the existence condition for bilinear (trilinear) operation is satisfied: {p;} = 0
(respectively, {p;pipj} = 0). The failure of condition (4.39) for i, j will mean, then,
that the variables x; and x; enter some two- or three-element conforming subset.
If the pair x;, x; is itself conforming, then the value [x;, x;] is defined, and the set
[xi, x;], xk, x; too is conforming. Therefore, one of the superpositions [[x;, x;], xx, x]
or [[[x:, x;], xx], x;] is determined. Similarly, if the triple x;, x;, x; is conforming, then
either [[x;, x;, x¢], x;] or [[[x:, x;], xc], x:] is defined.

We turn on to consider the possible cases where the six conditions (4.39) fail.

1. All two-element subsets are conforming. The system (4.43) has only zero coeffi-
cients, and by Theorem 4.1, we then find six linearly independent operations:

m([[lx1, %20, 3], x4]), 7 € S

2. All four three-element subsets are conforming. In view of the above, we can
assume that one of the two-element subsets is not conforming. Suppose {pi»} #
0. Then the system (4.43) splits into three pairs of equations: id, (23); (243),
(24); (34), (243). Here, the first and third pairs have rank 1 and the second has
rank < 1. Thus, if at least one of the inequalities {p14} # 0, {p13} # O, or
{pa3} # 0 holds, then the whole system has exactly three solutions, and these, in
accordance with Theorem 4.1, yield the following three operations:

[Eer, x2, %30, xals [lxr, x3, x4l %005 [t x2, x4]’, x3]-

Here, [J' denotes the ternary operation whose uniqueness is asserted by The-
orem 4.5, that is, it is either the principle operation or a superposition of the
form [[ ], ] There then exists one more superposition [[[xz, x3, x4], x; ], which
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should be linearly expressed in terms of the solutions that we have found.
Consequently, using the fact that the bilinear (4.26) and trilinear (4.31) operations
are symmetric, we arrive at an analog of the Jacobi identity

3

> ot ([l x2. 53] x1]) =0, 4.51)
k=0
where 0 = (1234) is a cyclic permutation, the coefficients & are uniquely

determined up to multiplication by a common scalar, and all values of the
principle operation are assumed determined.

If {p1a} = {p13} = {pa3} = 0, then the second pair of equations disappears,
and instead of [[xi,x3,x4]’, x2], there appear two operations: [[[xi,x3]xs, Jx2]
and [[[x1, x4]x3, Jx2].

3. Three three-element subsets are conforming. Condition (4.38) then implies that
the fourth subset is also conforming.
4. Exactly two three-element subsets are conforming. To be specific, let

P12p14P24) = {P13p1ap3ay = 0, {p12p23piz} # 0, {pa3paapaa} # 0.

Because condition (4.39) for i = 2,j = 3 fails and the two triples involved
are not conforming, we have {p,;} = 0. If we write (4.38) in the form
{pP12P14aP2aP 132343} = 0, by formulas (4.36) and (4.37), we obtain 0 =
P13p23Pa3t = pa3tp13pasy, and similarly 0 = {piopsopaz} = paipiopa}. In
other words, {p13ps3} = {ppe2} = {p23} = 0, and again condition (4.38)
yields {p14} = 0. In the matrix of (4.43), in particular, the last two columns
will disappear, whereas the minor corresponding to the first four columns and
last four rows equals  —p?,{paap3a}*{p13}{p12}. Here {prap3s} # 0 due to

0 # {p23p2ap3s} = p23ipaapas}.
Now if {pi3}{p12} # O, then the whole system has rank 4 and its solutions

are determined by arbitrary values of B(»4) and B3, that is, we obtain two
operations:

0er . xallxs, Joealls [Mer s xalx2, Jxs]. (4.52)

in terms of which all other operations defined in the present case are expressible:

[lx1, x2, xal’, %3], [lx1, x3, xa]’s x2], [xrs [eas X3l xal, [lxr, xal, %2, %3]

If {p13}{p12} = 0, in view of the initial conditions being symmetric under
the permutation 2 <> 3, it suffices to consider the case {p;3} = 0. We have
{Pp2sa} = Api3} = {pi} = {p23} = {pas} = 0, {pa} # 0, {pu} # 0
(if not all pairs are conforming). And we face only one additional solution
M1 5 x3]%4, |x2] because the minor corresponding to the first, fourth, and sixth
rows and to the first, second, and fourth columns is {p12}{p12p32{P14pP24P34} =

(P12} {p2utpaopiapss # 0.
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5. Only one three-element subset is conforming. Let it be x;, x3, x4. Then the failure
of conditions (4.39) fori = 1,j = 2;fori = 1,j = 3;and fori = 1,j = 4
implies that {p1o} = {p13} = {p1a} = 0. In this case {p34} # 0, otherwise
the triple x1, x3, x4 would be conforming. Similarly, {p24} # 0 and {p3} # O.
These imply {p23p2a} # 0, {p23p34} # 0, and {pr4p34} # 0. Indeed, for instance,
equality {pr3pr24} = 0, combined with {p;} = 0,7 = 2,3, 4, and (4.38), yields
{p3s} = 0.

Under these conditions, the system splits into three pairs of rank 1 equations:
(23), (243); id, (24); (234), (34). The first pair agrees with the operation

[[[[Xl ,XZ]I,X3,X4]I,

and the two other operations result from it by permutations of indices (23) and
(24). All other superpositions defined in the present case are linearly expressed
via these three. Specifically, we have an identity of the form

Lxt, P2, x3, xa]] = &1llx1, %20, x3, xa] + &2lx2, [x1, x3], xa] + &3[x2, X3, [or, xa]]-

6. No one of the three-element subsets is conforming. Then two-element subsets
cannot all be conforming; therefore, one of the six conditions (4.39) is satisfied.
O

Under conditions (4.38) and (4.39) for i = 1, j = 4, the principle quadrilinear
operation is defined by

lai,az, a3, a4] = Z Brlllar. az@). ax3)], ax@). (4.53)

JTGS}‘

where a; are skew-primitive semi-invariants, p; = x“(g,), and the coefficients 8,
are given as in (4.49).

If no proper subset of the set xj,x;,x3,x4 is conforming, then six con-
ditions (4.39) are satisfied. Therefore, all possible 24 permutation variants
[xr(1)s X2 2)s X2 3), Xx(#], T € S4, are determined, and by Theorem 4.6, they all
are expressible via any pair of them. In order to find that representation, we write
the principle operation in the form

[x1, 22, x3, x4] = Zanxn(l)xn(z)xn(,z)xn(zt), (4.54)
where «; are particular rational functions in p;;, obtained by expanding the skew

commutators in definition (4.53). We have already mentioned that o;; = 1 and
a(23) = 0. Given an arbitrary replacement x; <— x,(;), 4 € S4, we obtain

B %21 X ] = Y (@) Xy (1)K 2) Xpa(e () K4
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On the right-hand side of the latter equality, the coefficient at xjx,x3x4 equals a:j _

m

and the one at x;x3x,x4 equals ¥23),—1-

the twisted symmetry in (4.31):

Therefore, we have a formula that replaces

Bxucty X2y X3y Xu@ ] = 065_1 [x1, x2, x3, x4] + “éS)u—‘ [x1,x3, %2, x4].  (4.55)

4.5 Chapter Notes

Linearization is a process commonly used in modern algebra, see, for example,
[210], [236, 1, § 5]. The Friedrichs criterion for Lie algebras was discovered in [80]
and then proven in three versions by Cohn [51], Lyndon [155], and Magnus [157]. D.
Finkelshtein published his criterion in [75]. The Specht—Wever condition, the form
with which we begin, appears in N. Jacobson’s book [104, Chap. V, Theorem 8].

A generalization of Lie algebras known as n-Lie algebras, with n-linear opera-
tions in place of the Lie brackets first appeared in a paper by Filippov [74], and
subsequently appeared under the name Nambu—Lie algebras in theoretical research
on generalizations of Nambu mechanics by Takhtadjian [223], Dito et al. [63].
Trilinear operation has been considered by Nambu [180], and in numerous papers
on generalization of quantum mechanics, see, for example, research on a trilinear
oscillator, or on a multilinear commutator by Yamaleev [231-233].

Another group of problems requiring the generalization of Lie algebras corre-
sponds to research on skew derivations of noncommutative algebras. A noncommu-
tative version of the fundamental Dedekind algebraic independence lemma states
that the algebraic structure of a Lie algebra and operators with “inner” action define
all algebraic dependencies in ordinary derivations (see [121, 122, Chap.2]). This
result was extended to the field of skew derivations by Chuang [49]. His fundamental
theorem may be interpreted in the same manner, i.e., the algebraic structure and
operators with “inner” action define all algebraic dependences in skew derivations.
Hence, the following question arises: which algebraic structure corresponds to
the skew derivation operators? This question requires the consideration of n-ary
operations that do note reduce to bilinear operations.

According to the Friedrichs criterion, Lie polynomials are characterized as
primitive elements of free associative algebra. In these terms, the logical idea to
consider spaces spanned by skew-primitive (or primitive, in the case of braided cat-
egories) elements was discussed by Larson and Towber [ 145], and Majid [158, 160].
However, Pareigis in [183—185] first regarded specific skew-primitive polynomials
as operations, now known as Pareigis operations, similar to how we are regarding
them in this book. Nonetheless, one should remember that multivariable operations
are the subject of investigation in the theory of algebraic systems located at the
interface between algebra and mathematical logic, the theory of algorithms and
computer calculations. See the books by Maltcev [164, 165]. The results presented
in this chapter are based on [123, 127].



Chapter 5
Multilinear Operations

Abstract In this chapter, we consider multilinear quantum Lie operations involving
more than four variables. Our main goal is to find a necessary and sufficient
existence condition to determine the number of linearly independent operations that
may exist and to define the principle n-linear operation. Additionally, we discuss
symmetric operations, i.e., operations that do not change their values in the context
of permutations of variables (up to a scalar factor). We also demonstrate that there
are (n — 2)! symmetric generic quantum Lie operations.

In this chapter, we consider multilinear quantum Lie operations involving more
than four variables. Our main goal is to find a necessary and sufficient existence
condition to determine the number of linearly independent operations that may exist
and to define the principle n-linear operation. Additionally, we discuss symmetric
operations, i.e., operations that do not change their values in the context of
permutations of variables (up to a scalar factor). We also demonstrate that there
are (n — 2)! symmetric generic quantum Lie operations.

5.1 The Basic System of Equations

We are remanded main concepts and notations. A quantum variable is a variable x,
with which an element g, of a fixed Abelian group G and a character y* : G —
k* are associated, where k is a ground field. A quantum operation in quantum
variables xi,...,x, is a non-commutative polynomial in these variables that has
skew-primitive values in every Hopf algebra H, provided H contains the group G as
a subgroup of the set of all group-like elements and every variable x; has a skew-
primitive value a; € H such that

Aa) =a;®1+ g, ®ai, g 'aig= x"(g)a

forall g € G.
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Definition 5.1 A set of quantum variables x|, x», .. ., X, is said to be conforming if
[T riten) =1. 5.1)
1<i#s<n

We are going to prove that there exists a nonzero multilinear quantum operation in
a set of quantum variables xi, ..., x, if and only if this set is conforming. Also we
will show that if the set xi, . . ., x, has not many conforming subsets (the intersection
of all conforming subsets is nonempty) then the dimension of the space of all
multilinear operations equals (n — 2)!.

Theorem 4.1 gives a way to construct all multilinear quantum operations by
means of an investigation of linear dependencies of the following polynomials

D, 4 (... [ x2]oxs], - coxa]) = (L [ X2 X)L X))

in a free associative algebra. Recall that here 7 is a permutation of the indices,
(1) = 1; an application of & to an expression of the above formula means its
application to all indices of p;; and x;. For every linear dependence ) 8,D, = 0
there exists an operation

Wi...x)= Y. BDf (5.2)

nES,, n(1)=1
where
D: = [... [[x1, x2] 23], ... 2] ™

Conversely, every multilinear quantum operation has a representation (5.2) where
the coefficients B, define a linear dependence of D,;.

We fix a set of different quantum variables x, ..., x, and the following notations
pis = X"(8x): qr = l_[pik- (5.3)
Let S, denotes the permutation group of the set {1, 2, ..., n}, whereas Sf;”’ """ "is a

subgroup{mw € S, | n(l) =, w(m) = m, ..., 7(r) = r}. If m < n, then we identify
the group S, with S"+1m+2.--1 We use both exponential and functional notations
for the action of S, on the set of indices. We consider exponential notation as the
basic one; that is, we assume ™) = (i")" = v(m(i)). In this case, permutations
are multiplied from the left to the right. For two arbitrary indices m, k, the symbol
[m; k] denotes a monotonous cycle starting with m up to k

(mm+1,...,k), ifm=<k

df
s k]= .
K= =1, k), ifm =k
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Clearly [m; k]™' = [k; m] in these notations.

If A is an arbitrary expression and 7 is a permutation, then by 7(A) or A", we
infer an expression which appears from A applying 7 to all indices of p;; and x;.
For example, p7. = pr(z(s) OF ¢ = ]_[i;1 Dx(i)z(k)> but not g7 = grx. We do not
suppose that the group S, acts on the ground field k. For instance, it is possible that

P12 = po3 while p(11223) # p%z?’) in the ground field k. According to this agreements

an arbitrary multilinear polynomial can be written in the following form:

W(xy,...,x,) = Z O (X1« -+ Xp).

TES,

For a given word A = pypu - - - prs, We define
{A} = pibuprs =P P Py (5.4)
If A, B are two words in p;, then we define a star product of braces
{A} » {B} = {AB].
Let #; ; denotes an element of k defined by the following formula
1 s = A (G127 (Gn13) - T(Gr=1x))} T €Sy, 1 <5 <n. (5.5)

In what follows, N'(s) denotes the set of all inverse s-shuffles from S!. According
to Definition 1.7, an element 7 belongs to N' (s) if and only if

) =1, 77'Q)<7a7'@) <...<a7s); 7' s+ <...<n '),

(5.6)
whereas Lemma 1.16 implies that
N () = {[2:ka][3: k3] - [s:ks] | | <hko <k3 <... <ks <n}, 6.7
in which case k; = n7'(i), 2 < i < s.
Theorem 5.1 If[[..,pi = 1, then ) B Dr = 0 holds if and only if
> Bauth, =0 (5.8)

TEN!(s)

forall u,s; u € S,ll, 1 < s < n, where tﬁ,x are defined by (5.5).

Proof Let us consider a process of developing of brackets [u, v] = uv — p(u, v) - vu
from the left to right in D}, = [...[[x1,x2], %3], ..., X,]. We obtain that the element
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D;} is a linear combination of the monomials Mk m = Xk, Xk, * * * Xk, X1Xm; Xy * * * Xomp,»
where

ki>ky>...>k and my <mp <...<nmy,. (5.9
Respectively, D" = m(Djy) is a linear combination of the monomials

Mymax = Xn(e) X (ko) * * * X (k) X1 X (my) X (mz) = ** X (my—y) »

where the sequences k and m satisfy (5.9).

Consider a coefficient at My = xgX;—| * + + X X4 1Xs42 * * + Xy in the sum Y B, D;.
The monomial M; equals My, onlyift = sand k] = s, k7 =s—1,..., k] =2,
m{ = s+ 1,..., m_; = n. Because the sequences k, m satisfy (5.9), we have
7 € N'(s), see (5.6). In this case M, appears in the decomposition of the long skew
commutator DJJ{ in the only case when x,, x3, ..., x; are moving to the left with
respect to x; and X;41, Xs42, ..., X, are moving to the right with respect to x;. By

the formula [u, x,,] = ux,, — p(u, x,,)x,,u we see that the coefficient at M equals

(=7(Gz—12) - (=7 (gr—13)) * -+ (=7(qr—1(5))- (5.10)

Here (5.10) equals the word in braces of t, ; up to the sign, see (5.5).

Analogously, consider M, ; = Xu()Xu(s—1) = * * X1Xu(s+ D) Xp(s+2) * * - Xu(n)» Where
p € S). This monomial appears in D only if # = s, and k] = s, k5§ = (s — 1)¥,
e KT =20 mT = (s+ D, ..., m'_, = n*. We have that 7;.~! belongs N'(s),

and the coefficient at M, ; equals the product in braces of tg s within the factor

(—1).

Thus, in the decomposition of ) B, D the coefficient at M,, ; equals

s—1 H
DY B
T~ LeN!(s)

1

If we replace the notation 4~ < 7, we will obtain relations (5.8). O

Consider (5.8) as a system of linear equations in B,. To find a basis of the linear
space of multilinear operations, it suffices to find a fundamental system of solutions
for (5.8). As all the coefficients 7y  belong the ring Z | Dpij), there exists a fundamental
system of solutions in the ring Z[p;;]. Thus we can confine ourself to an investigation
of solutions in the ring Z[p;;] or in the field F(p;) if it is necessary to normalize one
of the coefficients of a quantum operation. Here F is the minimal subfield of k.

Definition 5.2 The system (5.8) is said to be the basic system. Its subsystem
corresponding to a fixed number s is called an s-component.
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5.2 Interpretation of Operations in a Crossed Product

Consider a multiplicative Abelian group .%, freely generated by the symbols Py,
1 <i # t < n Let F[.%,] be a group algebra of this group over the minimal
subfield F of the ground field k. In other words, F[.%,] is an algebra of commutative
polynomials in variables P, P;l 1 < i # t < n with coefficients from the minimal
field F. Clearly, F[.%,] has a field of fractions that is isomorphic to the field of
rational functions F(P;). The action of the symmetric group S, is well-defined on
the ring F[.#,] and on the field F(P;;) by P} = Pr(x(). Thus, we can define a skew
group ring F(P;) * S,,. By Theorem 1.12 this skew group ring is isomorphic to the
algebra of all n! x n! matrices over the Galois field F(P;;), and it contains the skew
group ring F[.%,] * S,,. Recall that in a skew group ring, the permutations commute
with coefficients according to the formula Awr = wA”, see Sect. 1.3.3.

If the parameters p;, 1 < i # t < n are defined by the quantum variables
X1, ...,%, according to (5.3) then there exists a homomorphism

o :F[F]| -k oPy)=ps 1<i#t=<n (5.11)

If A € .%,, then A denotes a word appearing from A by replacing of all letters P;
with P,;. We call the words A and A conjugated. We define
(Ay=A-A .
This definition is compatible with (5.4) in the sense that p({A}) = {¢(A)}ifAisa
word of .Z,. In the same way, the formula p(A™) = (¢(A))” is valid if we assume
that ¢(A) appears from A by replacing P;; with p;;.
If A, B are words of .%, (possibly empty) then we set

{A} x {B} = {AB].

Note that {@#} = 0 if as usual the empty word is identified with 1. At the same time
the element {@#} x {A} = {A} can be nonzero.
If C,D, E € %#,, then by Lemma 4.2 the following equality is valid

{CEX{DE} — {C}{D} = {CDE}{E}. (5.12)

Lemma 5.1 The relation (5.1) is equivalent to each one of the relations {W} = 0,
where W is an arbitrary word in p;, 1 < i # t < n of length C*> = n(n— 1)/2 that
has neither double nor conjugated letters.

Proof The equality {W} = 0 is equivalent to WW = 1. The word WW is of the
length n(n — 1), and it has no double letters. Thus, it has all of the letters p;;, 1 <
i # t < n, whereas WW coincides with the left-hand side of (5.1) up to an order of
factors. O
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We fix the following notations: Q; = ]_[f:ll Pj, and

Tps = {”(Qn—l(z))”(Qn—l(,%))“‘”(Qn—l(s))}a T E Sllw s> L (5.13)

In this case, we have g, = @(Q) and thr;, = ¢(Tx), L € S, see (5.3) and (5.5).
Lemma 5.2 Let w € N'(s). If2 < k < s, then

T(Qr—11) = PP ... Pi—1k * Psy1 ikPs+2 k- .. Py, (5.14)

where | = w1 (k) —k > 0. If | = 0, the second factor of (5.14) is absent.

Proof By the definition 77(Q,-1) is equal to a word

PlkPﬂ(z) koo Pn(n_l(k)—l) k-

This word, as well as the right hand side of (5.14), is of a length 7~!(k) — 1. By
the first chain of inequalities (5.6), the inequality 7~!(i) < m~'(k) — 1 is valid
for i < k. This means that the sequence 7(2), 7(3), ..., n(w~"(k) — 1) contains
all of the indices 2,3,...,k — 1. Hence, n(Q,,—l(k)) has the first factor of (5.14).
Because 77 !'(i)) > n~'(k) — 1 for k < i < s, we see that among the indices
7(2), n(3), ..., w(zw~ (k) — 1) there is no one of the numbers k, k + 1, ..., s. Fur-
thermore, if in the sequence 2,3, ...,n we crossout 7' (2), 771 (3), ..., 7~ !(s),
then the elements 7' (s + 1), 7~ '(s + 2), ..., 7~ !(n) remain in the sequence.
By the second chain of (5.6), these elements are arranged in the sequence in
this very order. It follows that if in the sequence 2,3, ..., n_l(k) — 1 we cross
out 77'(2), #7'(3), ..., =~ '(k — 1), then the elements 7' (s + 1), 7' (s +
2), ..., w (s + I) remain in the sequence. Therefore, 7(Qr—1 ) has the second
factor of (5.14) as well. ]

Let us fix the following notations for particular elements of F[.%,] * S!:

Vi= > aTs, (5.15)

TENL(s)

where T ; are defined by (5.13). By Lemma 5.2 and decomposition (5.7), we have

Vs = Z [2: ko][3: k][4 Ka] - - - [5: Ks] Ttk

l<ky<ksz<...<ks<n

where

Tn,s = Tkz:k3:...:kx = {H(Pl m*"* 'Pm—l m* Ps—l—l m*"* 'Ps—m+km m)} (516)
m=2
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In particular, if s = 2, k, = [, then
Too =Ty ={P12-Px... P2}, Tppo =T = {P12}.

If a permutation 7 is written as a product of cycles (5.7), then the parameter s is
uniquely defined by both the number of factors and the beginning of the last cycle.
This fact allows us to use the notation 77, instead of 7% ;.

For an arbitrary sequence of elements 8, € Flp;], 7 € S
element of F[.%,] * S! defined by the formula

1

n

let B denotes an

B=Y B.n ' €F[F] x5,

TS}

where B, are some preimages of §, in F[.%,] with respect to ¢.
In this way every quantum Lie operation Y ,DF, B, € F[p;] is related to an
element B of the skew group algebra.

Theorem 5.2 If [[,.,pi = 1, then an element B € F[7,] x S! corresponds to a
multilinear quantum Lie operation if and only if

B-V, cker()S!, 2<s<n, (5.17)

where Vi are defined by (5.15).

Proof By Theorem 4.1, we have to prove that a sequence 8, € F[p;], = € S} is
a solution of the basic system if and only if the element B satisfies (5.17). Let us
rewrite the left-hand sides of these relations.

B-Vi=) Byr™'- Y wTy= Y Byw Wl

nes) VEN!(s) 7 €S VEN!(s)

=Y BT, =Y (Y B, TE)u

HESL veENI(s)

The latter sum belongs to ker(¢)S! if and only if all of its coefficients belong to
ker(¢). Since @(Th') = 1), it follows that (5.17) is equivalent to (5.8). O

Let X be an arbitrary multiplicative subset of F[.%,] that does not intersect
ker(¢). Consider a localization (a ring of quotients) X ~'F[.%,]. The homomorphism
¢ has a unique extension up to a homomorphism of X ~'F[.%,] into the field F(p;)
via

0(07'B) = ¢(0) '¢(B), 0 € ¥, BeF[%)] (5.18)

This allows one to normalize elements corresponding to the quantum Lie operations.
For these reasons the following variant of the above theorem is useful.
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Theorem 5.3 If ]_[#tpi, = 1, then an element B = ) .« B,nm7', B, €
Y~'F[.Z,] defines a quantum Lie operation’ " s ¢(B)D if and only if

B-V,e (X 'ker(p))S!, 2<s<n. (5.19)

Proof It suffices to multiply B by a common denominator o € X' of all coefficients
and to apply Theorem 5.2. O

The set ker(¢)S! is a right ideal and a left F[.%,] submodule of F[.%,] * S..
Inclusions (5.17) signify that B - V; equal zero in the quotient (F[.%,], F[.%,] * S))-
bimodule F[.%,] * S} / ker(¢)S!. In what follows, the symbol = denotes the equality
in quotient (F[.%,], F[.%,] * S!)-bimodules. This equality is stable with respect to
the right multiplications by elements from F[.%,] * S! and with respect to the left
multiplications by elements from F[.%,]. Of course, 1f ker(¢) is not invariant with
respect to the action of S!, then = is not stable with respect to left multiplications
by S!.

Slmllarly, (5.19) are equalities to zero in the (X ~'F[.%,], F[.%,] * S})-bimodule

(ZT'FLZDS/ (2 ker(9))S,.
This bimodule contains the former one because
(X " ker())S! NFLZ,] * S! = ker(p)S..

Hence, it is possible to use the same sign = in both cases.

Definition 5.3 A conforming ideal is an ideal I of the algebra F[.%,] generated by
all elements of the form {W}, where W is an arbitrary (semigroup) word in P;, 1 <
i # t < noflength C2 = n(n— 1)/2 that has neither double nor conjugated letters.

By Lemma 5.1, the variables xy, . . . , x,, are conforming if and only if the ideal ker(¢)
contains the conforming ideal. It is very important to note that the conforming ideal
I is invariant with respect to the action of the symmetric group S, (unlike the ideal
ker(¢p) itself). Therefore a two-sided ideal of F[.%#,] * S, generated by I coincides
the right ideal IS,,.

5.3 Co-set Decomposition

The set of transpositions {(2,n), (3,n), ..., (n — 1,n)} is a right transversal of the
subgroup S = S!_in S!. Indeed, if 7 € S., then 7 - (w(n),n) € S}, and
whence 7 € S! "(n(n) n). This implies that every element B € F[.%,] * S1 has a
decomposition
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where o € 2 % SM.
According to decomposition (5.7) a permutation 7 belongs to N'!(2) if and only
if 1 = [2;1], 2 < < n. Using commutation rule

Im,....r\ g =™, m",...,r"), (5.21)

we obtain

vz=i~efi(z‘,n)- > nl,
i=2

TEN!(2)
n n—l1
=Y > dili.m)[2: 0Ty + Zw(z n)[2; )T
=2 [=2 =2
n n—l1
= > 206 )Ty + Zd(z n)[2; 1] Ty
=2 [=2 =2

Let ¢, 2 < k < n be the permutation (k[”;2], n)[2; n](k, n); that is,

R:k—1][k;n—1],if2 <k <n,
= 5.22
{[2;11—1], ifk =n,2. ( )
In this case (k% n)[2; n] = t(k, n). Therefore
n  n—l1
B-Va=> O a2 1T + Awayay Ty k. ). (5.23)
k=2 =2

In particular, the inclusion (5.17) with s = 2 is equivalent to the following system
of n — 2 equalities in the quotient bimodule F[.%,] * S!"/ ker(¢)S!:

n—1

Z«!Zf[z A [2: l]T[z,] + 0w T [2 n] =0, 2<k=<n
=2

If 3 < k < n, then the above equality corresponding to k has the form
k=1
A Y 0TG5 + S (uT ) + Z 2:0T35)) = 0. (5.24)
=2
For k = 2, we have the equality

DS o0 — T[(22:]) + Z.;zf [2: l]T[(zzl’]” =0. (5.25)
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Let us introduce the following notations:

k—1 k—1
Vi = Z[z; I]T&? =id{P2} + Z[Z; {P2P3> ... P12}, 3<k=<n, (526)
=2 1=3
n—1
Dy = uThn + > 20Thy . 3<k<n. (5.27)
1=k

In this case, (5.23) take up the form

B-V,=Dy2.n) + Y (V) + F1Dpy) (k. n) (5.28)
k=3

whereas the relations (5.24) with 3 < k < n reduce to
JZ{/(V(/() + JZ{k_lD(k) =0, 3<k<n. (5.29)

In particular, the following statement is proven.

Lemma 5.3 The element (5.20) corresponds to a solution of the second component
of the basic system if and only if the equalities (5.29) and (5.25) are valid.

Proposition 5.1 Let X be a multiplicative S'"-invariant subset of F[.%,] that does
not intersect ker (¢). If Vi3), Vi), - .., Vin) are invertible in X~'F[.Z,] * S\, then
the dimension of the space of multilinear operations is less than or equal to (n—2)!.

Proof Let the element B = Y B,m~! corresponds to a quantum Lie operation,
@(By) = PBr. Then B - V, = 0. Consider the decomposition (5.20) of B.
Relation (5.29) imply

n k
B=dhy (D[ [PaVi)k.n).
k=2 i=3

Thus, the superposition

f> B> ah — F(p)SL”

is a linear transformation with zero kernel of the space of multilinear quantum Lie
operations into the space of left linear combinations Zu eshn Ouji Over F(pir). In
other words, the element B is uniquely defined by <% € S!* up to the relation =.
Therefore the dimension is less than or equal to the order of S} O
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5.4 Subordinate Sequences

In this section we are going to prove a number of auxiliary results which allows one
to harmonize some special elements of the skew group algebra.

Consider a sequence of integer numbers L = (/;, | u < i < v), where u, v are
some integer numbers, u < v.

Definition 5.4 For arbitrary indices k, r, u < k, r <wv, let(f = I, yr - =1+ 1.
Furthermore, define by induction cr,f’ ) ,J < kand y, ,j >k
- D1, if a@ <1
oV = g ) (5.30)
o, if cr ) > lj 1
G+ _ yd 4+ 1, if )/(')<l 531
Yy 0 (5.31)
Y if y > l;+1-
The sequence L' = (l;, u— 1 <j<v—1)defined by the following formula
=1, if 6 <y, j>u,
[y=130, ifod >y, j>u (5.32)

o —1,if j=u,

is called a subordinate sequence for L.
In the same way the sequence L* = (If, u + 1 <j < v + 1) is called inceptive
sequence for L if it is defined as follows:

lj+1+1 if ]/(/)<l+1, j<uv,
Ly = 4 Ly, if y0 > liv1, j<w, (5.33)
(v) if =
Vu s if j=v.
Definition 5.5 We say that at the point m, m > r, there is a jump during a motion of
1, to the right if y(m D < l,,. Analogously we say that at the point m, m < k, there

is a jump during a motion of Iy to the left if 0(m+1) <.

The elements o and y with indices are called right and left heads respectively;
that is, the right head traverses from the right to the left (with ;) and the left one
traverses from the left to the right (with /,). In parentheses, if necessary, we write
the name of the initial sequence: o,f’) =0 )(L) y y,y) (L).

Lemma 5.4 For each sequence L, we have '* = L = L*'. Forallj, u < j < v,
the following heads relations are valid:

c(L) =y W), (5.34)

oI W) = yO (). (5.35)
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Proof If j = u, then (5.34) has the form 05") (L) =/ _, +1. By the definition (5.32),
this equality is valid. We proceed by induction on j. Let (5.34) be valid for a given
Jj, u <j < v. Consider two cases.

If /" (L) > I, then I = I; and 0 (L) = V“’(L) Hence, y_)) (L)) > I.

By (5.33) and (5.31) this implies ()* = I/ = [;and y, (L") = y/7"(L'); that s,
(5.34) re;mams valid forj + 1.
If o "V (L) < [, then I/ = [; — 1 and 0 (L) = 07" (L) — 1. Using (5.34) for

the given j, we have y((b’;:ll))(L’) = o,ﬁ’H)(L) 1<[-1= l/ Definitions (5.33)

and (5.31) again imply (/})* = [, + 1 = [; and yul L) = yi’ 11)(L/) + 1; that is, in
this case (5.34) remains valid for j + 1 as well. This completes the proof of (5.34).
To prove (5.35), we shall use the downward induction on j. If j = v, then (5.35)
is valid by the definitions. Let (5.35) be valid for a given j. Consider two cases.
If y/ (L) > I, then I = [y and y (L) = y{"(L). By (5.35) for the given

J, we have G,E’rll)(L*) > l; = [f; that is, by (5.32) we obtain ()" = [;, whereas

by (5.30) we have av+1(L*) = (’H)(L*) Thus (5. 35) remains valid forj — 1.
1f /" (L) <, then I* = [; + 1 and yM(”(L) yI~D(L) 4 1. By (5.35) for the
given j, we have J,E’:ll)(L*) (’)(L) = )/u l)(L) +1=<L+1= l;‘. From here
by (5 32) we obtain (l*)’ = l* — 1 = [;, whereas by the definition (5.30) we have
U+1 (L*) = oyill)(L*) — 1; that is, the equality (5.35) remains valid forj— 1. O

Lemma 5.5 At the point m there is a jump during a motion of I, to the right if and
only if at the point r there is no jump during a motion of 1, to the left.

Proof Suppose that at the point m there is a jump during a motion of I, to the right;
thatis, """ < I, or, equivalently, """ < o™ Using the latter inequality as a

basis of induction on d, let us prove that
)/('” ) < a(’" D wherel <d <m—r. (5.36)
Ify(m d)  gm=d+1) then y(m —d=1) - y(m D) Glm=dtl) _ o p(m—d),
m=d) _ 5 (m— d+1)
> 1,_y. then O_(m d) = gmath J/r(m—d) > )/r(m—d—l)'
Ifo (m ) 1 then g™ = gmdtD

yim s = pmd- D can not be valid, because this equality requires that y,""~

l—q, implying that v > 1._4, which contradicts y,"? = o4t
Thus, y,m_d_l) = y,(m 9 _ 1, and the equality of the heads o and y is still valid.
This completes the proof of (5.36).
Now, if d = m —r, then (5.36) has the form y\” < o/ *": thatis, I, + 1 < o,/

or, equivalently, [, < o) The latter inequality means that at the point r there is
no jump during a motion of /,, to the left.

Therefore, suppose that )/
If o4+

— 1. In this case, the equality
d—1)
>

(r+1)
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Conversely, let I, < oY Then y,(r) < 6"V We shall use this relation as a

beginning of the downward induction on d, to prove the following inequality
ym D < gm=dtD gy > d > 1. (5.37)

It J/r(m—d) < Gr(rtm_d+l), then yr(m—d+1) < J/r(m—d) 1< ay(nm—d+l) +1< Gr(rtm_d+2)-

Therefore, it suffices to consider the case 3"~ * = g4,

If J/'fm—d) - lm—d-i—l, then )/r(m—d-i-l) — J/'fm—d) — UlSzm_d+l) < O_lslm—d+2)'
(m—d+1) __ y(m—d)
- r

If y,(m_d) < lLy—g+1, then y; + 1. In this case, the equality

oAt G m=d+2) 49 ot valid, because it requires that oD S e,
implying that olm=dth l—a+1, which contradicts y,(m_d) = "D Thys

—d+2 —d+1
QA+ n=d+1)

the proof of (5.37).
Ifd = 1, we have """ < o™ = 1,,; that is, at the point m there is a jump
during a motion of /, to the right. O

+ 1, and the equality of heads is still valid. This completes

Definition 5.6 Denote by % (s, f) with r > s > 3 a set of all sequences of integer
numbers (b, ..., [, ..., 1) that satisfy the following conditions:

n—=2>hb>...>2l>s-2, n—=2>[>j—2forj>s. (5.38)

Fort > s > 3, let # (s,t) denotes a set of all sequences of integer numbers
(w1, wa, ..., w,) that satisfy the following conditions

n=3>wi=2-1,n=3>2w>...2w,2s5—2;n—-3>w;>2j—2,j>s.

(5.39)
Lemma 5.6 Ift > s, then the following equality is valid:
(% (s,0)) = W (s,t—1).

Proof LetL = (Ip,...,l;) € % (s,1). Let us show that L’ € # (s,t — 1). Note that
for the head o, the following inequalities hold:

j—2<e(L)<n-2. (5.40)

Indeed, for j = ¢ this arise from the definitions. When the parameter j come down,
by one step, the head o, can only come down, but also no more than by one step.
Therefore, (5.40) is saved.

In particular, (5.40) with j = 2 implies 0 < 0,(2) <n—2and -1 < l’1 <n-—3,

because /| = o? —1.

Ifl; =n—2,then]; > J,UH); hence lj’. = n — 3. This means that in any case,
I < n—3,because [; < ;.
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Letj > 5. If [j = j— 2, then by (5.40) we have 6" > j — 1 > I;; that is, by
definition (5.32) we obtain l’ =L It >j-2, thenl >li—-1>j— 2 Therefore,
the conditions (5.39) are vahd prov1ded that w; = [; and Jj>s.

Iflhey > Ik = kg1 = ... = Iy = s — 2, then by inequality (5.40) we have
ot =51 >s—2;hencel§(_1 >l =..=l=s-2

Furthermore, if 2 < j < s and the strict inequality /; > /; is valid, then evidently
l’ > lj 11, since any member of the subordinate sequence can only be less than the
correspondlng member of the initial sequence but not by more than one. If [; = [;1
and I/ = L1, then 0" = 0P thatis, [ = [ = I . If [, = [ and
l/+1 = li;1 — 1 then cr(’ D < lix1 and o(’+l) (’+2) (’+1)
liy1 —1=1—1, and, still, lj = lj’

Thus the subordinate sequence satisfies all of the conditions (5.39). By
Lemma 5.4, different sequences have different subordinate ones. Therefore, it
suffices to show that the sets % (s,f) and # (s, — 1) have the same number of
elements:

— 1, from which o;

t t—1

Zsol=C []a—i+D=0-D-C- [[ m—p=1#(1-1)]

j=s+1 Jj=s+1

which can be easily verified by direct calculations. O

Definition 5.7 Denote by Z(i,f) with0 <t <i<n—2and 0 <t <iasetofall
sequences of integer numbers ([, [, ..., /), such that

1<h<i,2<bh<i....,t<[L<Ii. (5.41)
Note that the set .Z(i, 0) contains only one sequence, the empty one. However,
Z(i,0) is a nonempty set itself.
Let .“(i,t) denotes a set of all sequences of integer numbers (so, sy, .- ., S5r),
which satisfy the following conditions
O0<sp<i,1<s1<i,...,t<s<I. (5.42)
Lemma 5.7 For 1 <t <i < n— 2 the following equality holds:
(ZG.10) =G 1,t—1).
Proof The sets £ (i, f) and . (i — 1, — 1) have the same number of elements N =
i(i —1)---(i —t 4+ 1). Therefore it suffices to prove that if L € £ (i,r) then L’ €
Li—1,t—1).

The following inequality is valid, provided that 1 <j < r:

] < 0'(]) < 1. (543)



5.4 Subordinate Sequences 165

For j = t this inequality follows from the definition, 0,(’) = [,. If the parameter j is

decremented by one, then the right head can only be diminished, but not by more
than one. Therefore, the inequality is saved.

Inequality (5.43) with j = 1is 1 < 6.’ < i Hence sy = I), = o — 1
satisfies (5.42) with i — 1 in place of i.

If j < ; <1, then the inequalities [; — 1 < [/ < [;imply thatj <[} <i— 1.

Ifl; = i,then o/ ™" <i=lithatis, I = [, — 1 =i—1.

If | = j, then by (5.43) we have o " > j+ 1 > j = [jand [ = |; = j. O
Lemma 5.8 LetL = (j|lu<j<v)andS=(si|lu—1<j<v—-1)=L" Fora
givenk, u < k < v, at the point m, u < m < k, there is a jump during a motion of I
to the left if and only if at this point there is a jump during a motion of sy to the left.

If s = Iy — 1, then for all j, u < j < k, the following inequality holds:

o(L) <o (S). (5.44)

Proof Consider two cases when s; = [, and when s = [ — 1.

(A) sx = I. In this case Ulng)(L) > I, and we can write a chain Uék) L) =
alfk) (S) < oty (L) = o (L). We shall use this chain as a beginning of the
downward induction on j, 1 <j < k, to prove that

o (L) = a(S) < aV(L). (5.45)

Let us make the inductive step considering three possible cases.

1. O']?)(L) < liy. In this case 5,1 = /-1 — 1, and 05’_1)(L) = 0,5’)(L) -1
Furthermore, (5.45) demonstrates that at the point j there is a jump during
a motion of /; to the left; that is, a,fj_l)(L) = cr,ij) (L) — 1. For s; we have
0,5’)(8) = O']?)(L) < li1 — 1 = s;. Therefore, a jump also exists and in
particular, cr,fj_l)(S) = cr,fj) (S) — 1. Thus, in the passage of j to j — 1, all
members of (5.45) decremented by one, whereas this very condition remain
saved. ' ' .

2. cr,f’)(S) = a,f’)(L) <l < aé’)(L). In this case s;—1 = [j—1, oé’_l)(L) =
Uy) (L), 015/—1) L) = o,fj) (L) — 1. For the sequence S we have, o,fj) S) <
L1 = s;—1; that is, a jump also exists and a,fj_l)(S) = cr,fj) (S) — 1. Thus in
the passage of j to j — 1 the equal members of (5.45) were decremented by
one, whereas the biggest member remain unchanged; that is, (5.45) remain
saved. ' '

3.0 < cr,f’) S) = a,f’) (L) < aé’) (L). In this case there are no jumps and all
the parameters are saved.
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As in a motion to the left the heads are changing only at the points where
exist jumps, the equality of heads in (5.45) (and the certain induction also)
shows that in the case (A) the lemma is true.

(B) sx = Iy — 1. In this case a (et )(L) <l and oy )(L) ,Sk-H)(L) — 1. Therefore
we can write the following chain:

(k) (L) < O_(k) (S) — akk) (L)
Let us prove by a downward induction by j, 1 <j < k, that
o (L) <o’ (S) =0 (L) —1. (5.46)

For j = k the latter chain is written above. Consider three cases.

1. O'(j) (L) < ;. In this case U,Ej_l)(L) (j) (L) — 1. Using the inductive
supposition (5.46), one may write oy ? L) < l i—1. Therefore s; | = ;| —
and a,f’ l)(L) = lg’)(L)—l In addition, ak)(S) = a(’)(L)—l <l 1—1 =
si—1, and so U,y_l)(S) = (fk(’) (S) — 1. Thus in the passage of j to j — 1, all
three members of (5.46) decremented by one.

2. 6P(L) < Ii-; < 0(S). In this case still, s, = [ — 1, ov"”(L)

)(L)—l and by inductive supposition, (fk(’) (L) > I;_;; thatis, ol 1)(L)
¥ (L) For the sequence S we have s;—; = [j_; — 1 < ak)(S) Therefore

1)(S) = k(’) (S). Thus in the passage of j to j — 1 the left hand side
of (5.46) decremented, whereas the others remain unchanged; hence (5.46)
is saved.
3. < 0,5’) (L). In this case in the passage of j to j — 1 all members of (5.46)
remain unchanged.

Thus by the proved relation (5.46) in the motion to the left the difference in heads
o1 (L) and 0y (S) is always equal to one. Again taking into account that the heads are
changing only at the points where exist jumps, we obtain that in case (B) the lemma
is also true. O

Lemmas5.9 LetL = (j |u <j<v)andS = (sjlu—1<j<v—1) =L Let
u<m=<v—11Ifs, =1, then foreveryj v >j>m,

i (L) = 7, (S). (5.47)
If sy = Ly — 1 then for all j, v > j > m the following equality is valid:

yOL) =y (S) + 1. (5.48)
In both cases,

yOL) = y(S) + 1. (5.49)
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Proof Let us use the induction on j. For j = m the both Egs. (5.47) and (5.48) follow
from definition (5.31). By Lemma 5.5, at the point j there is a jump during a motion
of 1, to the right if and only if at the point m there is no jump in a motion of /; to
the left. By Lemma 5.8, this condition is equivalent to one in which at the point m
there is no jump during a motion of s; to the left. Again by Lemma 5.5 applied to
the sequence S, we see that at the point j there is a jump during a motion of /,, to the
right if and only if at this point there is a jump during a motion of s,, to the right.

Because the heads change values only by one and only at the points where exist
jumps, the equalities (5.47) and (5.48) are proved.

For equality (5.49) we have

W) + 1y VW) < 1

W) (1) =
Y (L) W), iy (L) > b,

By Lemma 5.5, the condition y,(nv_l) (L) < [,, which means that at the point v there

is a jump during a motion of /,, to the right, is equivalent to one in which at the point
m there is no jump during a motion of /, to the left; that is, [,, = s,,,. Now it remains
to use the equalities (5.47) and (5.48) withj = v — 1. O

5.4.1 Relations in the Symmetric Group

Let us turn to the symmetric group. For every index [, 0 < [ < n — 2, we fix the
following notations

[ = n—Lin=1,ifl<l<n-2,
1id, ifl =0;

] =[mn—1.

For 0 <i < n— 3 we also define

[2:m], if 2<m<n,
2;ml]; = . a1 . 5.50
[2:m] {[Z;n—z—l][z] Lif m=n. ( )
Clearly [/] and [2; m]; belong to S', whereas |/| belongs to S..
Direct calculations show that the following relations hold:
2in—(—-D]/-1],ifl <o <L
l[2;n—0] = . 5.51
L2in = o] %mn—onm ifl<o<n—2. (5-51)
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IfL = (] | u <j < v) is a sequence of integer numbers such that 1 </, <n—2
for all j, then (5.30) and (5.32) with (5.51) show that

i1 l[2in— 0] = [2in—oJ™ V1L, ).
The multiple application of this relation yields the following formula:
Lo L] L) 2in = ) = Rin = 0 WL L)oo L) (552)
By Lemma 5.4 this relation with L* in place of L takes up the form
2in— (U + Dllloga] -+ ) = gy ) - L) 2im = 5 ). (5.53)
Analogously, for 1 <1 < n — 2 the following relations are valid:

2in—(@—-D][l-1],if2 <0 <1
[2;n—o0] = 4 [2:n—0o][]], ifl<o<n-2; (5.54)
2;n—0]1[I—1], ifo=1.

Therefore if a sequence L belongs £ (i,t+ 1) with2 <i<n—1land1 <t+1 <1,
then the following relation holds, provided j > 2:

' i—1
l)(2in =0 2] = [2in — 03 10
(see inequalities (5.43)). The multiple application of this relation yields

2:n— o (L)lsi]-+-[si] = 1] (L2 — L),

where S = (s; | 0 < j < r) = L'. If we multiply this equality by [i] from the left,
then by the third line of (5.54) we can write

[2:n — soli—1[i — 1][s1] -+~ [s:] = [[L] -~ [L][2: m — Lyt (5.55)

5.5 Decreasing Modules

With the help of the definitions (5.22) and (5.50) one can note that [2; n]; = t,—; if
0 < i < n— 3. Therefore it is possible to rewrite the formula (5.27) with k = n — i
in the following way:

Diy = Y [2in—y)iTp,™. (5.56)
y=0
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Because for 2 < [ < k the permutation (k, n) does not change the element T, =
{P12P3; - -- P2}, we can also rewrite (5.26):

n—2

Vig= Y. [2in—0lTpu 0. (5.57)
o=n—k+1

Definition 5.8 A right module over F[.%,] * S\ is called a decreasing module if it
is generated by elements A, As, ..., A, such that

AV +Ar—1Dgy =0, 3<k=<n,

where V() and Dy, are defined by (5.57) and (5.56), respectively.

For example, if B satisfies (5.17) with s = 2, then 7, . . ., ¢, defined by (5.20),
generate a decreasing submodule of F[.%,] * S/ ker(¢)S1", see Sect. 5.3.

Theorem 5.4 Letn > 3 and
n—1 n—1
x=([] P ]rP)[]Pw- (5.58)
n>i>j>1 i=1 j=2
Every decreasing module satisfies the following relation:

n—3 n—3

n)[3; n—11F sn— n

Dy [ln— 1:21Viuy = Aol — 15 2 [ 120 2 + KV =t 1y,
k=0 k=0

(5.59)
where D, is defined by (5.25) by replacing <f with A.
Let us define a sequence of elements
Wo =Dy, Wi = W;[I’l — I;Z]V(n_t), 0<tr<n-3.
In this notations the left-hand side of (5.59) equals W,,_,.
Lemma 5.10 The element W; has a representation
t
We= Y Awilil Y (JTUDRin—URG. 4. 1), (5.60)

t<i<n—2 LeZ (i) k=1
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where L = (I1,...,1;). The following recurrence relations are valid:

RGi, 1y, ... L) = RUBABUG oy ) Ty

_ . —i41,m)[i—1][s1][s2][s—
— R[Vl 1,2] (l _ 1’ Slyvens ST_I)T[(anl_SO]”)[l 1Is11ls2][s1—1] . (561)
In these relations (s, S1, . . ., Si—1) is the subordinate sequence for L.
In addition, the elements R""V2(i 1, ... 1,) are invariant with respect to the

action of all cycles [k; [l with2 <k <l<n—1.

Proof If t = 0, then .Z(i,0) contains just the empty sequence. So the product
in (5.60) is empty, and (5.60) takes the form

Wo= 3 Awilil2in—1IRG).

0<i<n—2

The right-hand side of (5.25) is reduced to this form if we replace the index of
summation / with n — i and use the relation [{][2;n — 1] = [2;n — ] for i > 0. In this
case R(i) = T[(zzfi ;- Lemma 5.2 demonstrates that

2, —1;2
T[(Z;:i[:]l I = {PlnPZn e 'Pn—i—ln}‘

In particular, this coefficient commutes with all permutations [k;[] if 2 < k <[ <
n — i. We may proceed the induction on ¢.
Let the lemma be true for a given ¢ > 0. By (5.57) we obtain

i
Vo = Vi + Z 2:n =Ll Tpn—t, ), t<i<n-—2.
I =1+1

Therefore

Wirr = Y Acilil Y ([JBDR" G0, ... 1)

1<i<n—2 LeZ (i) k=1
i
(Ve + Y [2in =Lt Tmei)- (5.62)
L1=t+1

The elements T = {P12P3n---Pp}, | < n — i, are fixed with respect to the
action of all cycles [i], [/;], because n — [; > n —i > [ By the same reasoning
the cycles [2;/] commute with [i], [/]. Thus the element V(,_; commutes with
all of the permutations [i], [/;]. By the inductive suppositions all the cycles [k, ],
2 <k <1< n—i, commute with RI""1:2 @i, li,...,1;). Therefore V(,—; commutes
with this coefficient also. Hence we can continue (5.62) by taking into account that



5.5 Decreasing Modules 171

for i = ¢ the last sum in (5.62) equals zero and V(5 = O:

= > AcVaoll DY (DRG0

1<i<n—3 LeZ (i) k=1
t
+ > Al Yo ([EDR"HG .t
t+1<i<n—2 LeZ(it) k=1
S Uy Y | S (5.63)
L41=t+1

As the factor A,;V(,—; is located in (5.63) at the left margin position, we
may replace it with —A,_; 1D(,—; and use the relation (5.56). Every sequence
(y,hi, o, ..., 1) taking part in the obtained then expression belongs to .7 (i, 1),
because the index y in (5.56) is going from O to i. Therefore if in the first line
of (5.63) we replace the summation index i with i — 1, we obtain

i—1
—i1,
Wi = — Z An—i 2[2; n= sO]i_lT[(;;nl—so] "
Se.#(i—1,1) 50=0

x [i—1][s1] -+ [sJR" 75 — 1,51, ..., 8)

+ Y Al YD [ lR2in— k)

t+1<isn—2 LeZ(it+1)
x RUBABnled (g 1) T,y (5.64)
The formula 7w = #T™ allows us to shift all coefficients to the right margin

position. Lemma 5.7 and the relation (5.55) imply

Wier = Y Ailil Y (W] l2sn =l

+1<i<n—2 LeZ(i.t+1)
x R[n—1;2][2;n—lr+1](l-’ I,..., lt)T[Z;n—l,+1]

_ R[n—1;2] (l —1,s,..., s[)T[(Z”;;lj;)I]v”)[l_I][Sl]"'[h]).
This proves both (5.60) and (5.61), because [2;n — l41] = [L+1][2;n — 1].

Let us check, finally, that the found value of RIn—1:2] (i, Ly, ..., L1+1) is fixed with
respect to the actions of [; [], provided that 2 < k <[ < n—i. By (5.21) the equality
[n—1;2][k;]] = [k + 1;1+ 1][n — 1;2] is valid. The cycle [k + 1;/ + 1] commutes
with i — 1], [s1], ..., [s¢]], m =i+ 1,n), fors; <i—landn—s;>n—i+1>
[ + 1. In the same way [k; ] commutes with [/,+]. By this notes and the relation
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[2;n — li+1][n — 1;2] = [l;41] we can write

— 120k 0] —1:21k: . k+1;1+1][n—1;2
RUB2AKNG 1 Lyy) = RP 1,2][k’l][lt+l](l’ll’""lf)T[[Z;n—l,+1]][n ]
_ RIn=120k+ L+ 1][n—1;2) (i—1,5 st)T[[k+1;zn]Ll](n—i+1.n)[i—1][S1]~~~[s:][n—l;2]
> k] ) 2;"—5() *

By the inductive suppositions in the first factors of the both summands, it is possible
to delete [k;[] and [k + 1;1 4 1], respectively. In addition, the condition /;4; < i
demonstrates that n — ,+; > n—i > [+ 1 > k+ 1 > 3. In the same way,
n—so>n—({—1)>1+4+12>k+1 > 3. Therefore, the equalities Tp;,—y =
{P12P3Pyy -+ P,—s 2} with s = [,4; and s = 5o show that in the second factors of
the both summands it is possible to delete [k + 1;1 4+ 1]. O

Definition 5.9 For a sequence L = (/y, ..., 1), define

E(ll) = {Pn n—l};
(5.65
E(llaIZa"'alk) = {Pnn—la---aPn—k-l—m—l n—1s e« }a 2 5 kf ta )

where m runs trough a set of all indices such that at the point m there is a jump

during a motion of /; to the left or, equivalently (see Lemma 5.5), at the point k
there is no jump during a motion of /,, to the right.

By Lemma 5.8 we may claim that if S = L/, then forall k, 1 <k <r¢—1,
E(s1,82,...,80) = E(ly, b, ..., Iy). (5.66)
Furthermore, for 0 <t < i <n — 2, define

C(iallv“‘ﬁll‘) = {PlnPZn"'Pn—i—ln u Pn—tnPn—t-l—ln"'Pn—ln

Py 1P "'Pn—y,")(L) el u @
PrnaPin2P 0 gy, u Py

: : (5.67)
Pl n—rPZ n—r"'P 0] U Pn—r+l n—r"'Pn—l n—r

= (L)

Pl n—tPZn—t"'P u Pn—t+l n—t"'Pn—l n—t}-

n—ylm(L) n—t
In another words, a letter Py, takes partin C(i,/;, ...,/ if and only if

either y=nand (1 <x<n—iorn—t<x<n),
0rn—t§y§n—1and(1§x§n—)/}(,?_t+1_n(L)0ry<x<n).
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In particular, for = 0 this means
C(@) = {P1uPoy - Pprim1 n} = T[(zz;’,:li[;]’_lgz] = R (j), (5.68)

In the explicit form (5.67) of the element C(/y,.. ., ;) the top row is called the
zero row, the following row is called the first row and so on. In this way the rth row
corresponds to the value n — r of the second index.

Lemma 5.11 LetL € Z(i,t) andS=L". If1 <k <t— 1, then
El1 ;2]#%1[1’](11, ) =EM! 2 (S15. 0.0 5%).

Proof If a letter P,—j4mu—1 n—1 1s involved in the writing (5.65) of the element
1 - 0]t—k—1

E(li,....I), then PPV 00— p i Therewith [, > ¢ > ¢ — m, and

son—1Il <n—t+m < n—t+ k. Thus under an additional application of [/],

as well as under an application of [n — 1; 2], all of the indices decremented by one.

Thus EP=127 T W gy 1) = EPS27N (L L) By (5.66) we are done. O

Lemma 5.12 The coefficients of (5.60) have the following decomposition:
t
. At—k
RUUAG 1 L) = (=1)'CG. L, ... 1) ]_[ EPU2A70 0 D). (5.69)
k=1

Proof For t = 0 formula (5.69) is valid by (5.68). Assume that (5.69) is valid for
t—1,t> 1. Then by (5.61) and [2;n — [;][n — 1; 2] = [/;] we obtain

RPU2AG 1, L)
—1
. —1: _1-9t—k—1
= (D', ..., lr—l)T[[;;nl_’ﬂ HE[n BATH G, )
k=1

10, —it L) [i—1][s1]~[s1—1][n—1;2
+ (—l)rC[" 1’2](1 — 1.5, ’ST_I)T[(;;nl—to]n)[l lIs1]-+[si—1][n—152]

t—1
< [TEM"2 1. o) (5.70)
k=1

Using Lemma 5.11 and equality (5.66), we may factor out the product
(=D TTeZ!, EP=527(1y, ... ). Therefore it suffices to prove that

cl—12) (i—1,s1,... sSr—l)T[(;;;itol]’n)[i_l][sl]N[S’_l][n_l;2]

= CW G0, )T D+ Cll . E. ).
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This follows from (5.12) with {C} « Th '} {D} < CM(iy.... 1), and
{E} < E(l;,...,1), provided that the following three equalities are valid

Cr=12G — 1,51, ...,5-1) = CW G, 1y, .. L) x E(Ly, ... 1), (5.71)
(n—i+1n)[i—=1][s1]-[s;—1]ln—1:2] _ pln—1;2]

Toms b =T g * Er, .. ), (5.72)

Clilineoid) = CP9 G — 1si o sm) * TS (5.73)

Consider the first one. Because L satisfies (5.41), we have n — [, < n—1t + 1.
Therefore [[;] decreases by one all of he second indices of C(i, [y, ..., 1), but n.
This means that in (5.67), with t — 1 in place of ¢, all the rows, but zero row, are
shifted down by one step, so that the first row becomes empty.

Every first index of a letter located after a gap Ll in (5.67) is greater then the
second index of this letter. Therefore [/;] decreases these indices by one as well.
This means that all letters located in the rows after the gaps are shifted to the left by
one step.

Condition (5.41) implies n — i — 1 < n — [;. Therefore [/,] does not shift a part of
the zero row located before the gap. In particular, the last position of the zero row
of Clt] (i, 1, ..., l—1) is vacant. For letters located in nonzero rows before the gap
consider the following two cases.

If s,—r+1 = l;—,4+1 — 1, then at the point  — r 4 1 there is a jump during a motion
of /; to the left. By Lemma 5.5, at the point ¢ there is no jump in a motion of /,—,
to the right. Definition 5.5 shows that n — yt(:i_)l(L) < n — l;. Therefore [I;] does
not change the first indices of letters located in (r — 1)th row, r > 1, before the gap.
In this case the last position of the rth row of C g (I, ...,L,—1) is vacant, and the
length of the rth row located before the gap equals n — yt(:i_)l L)y=n- yt(:), (L),
see (5.31).

If s,—y41 = lL—r41, or, equivalently n — yt(:i_)l(L) > n — [, then the letter
Py, n—r+1 goes to P,_1 ,—, and occupies a position in the last column. The next
letter, P41 n—r+1, gO€S to Py, ,—», and so on. Thus in this case the length of the

rth row located before the gap is set by the same formula n — yt(i_ri)l(L) -1 =

n—y? . (L), see (5.31).

Furthermore, by the definition E(l,.... 1) = {Pu—ips.. s Pocl neidtm—1s-- -}
where at the point m there is a jump during a motion of /, to the left; that is, s, =
I, — 1. By replacing the index m with ¢ — r 4 1 in this definition, we get that the
letters of E(l1, . .., I;) occupy exactly the positions in the last column that are vacant
in C[Z’](ll, cey l,_l).

Thus the zero row of Cl(1;, ... 1,_;) » E(l;,...,1,) has the form

PlnPZn"'Pn—i—ln U Pn—rn"'Pn—ln; (574)
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the first row is vacant, and the rth row, r > 1, has the form

Pl n—rPZ n—r"" 'P”_yt(:)rJrl(L) —r ] Pn—r+l n—r"" 'Pn—l n—r-

Consider the left-hand side of (5.71). The permutation [n — 1; 2] shifts to the left
by one step all gaps of C(i — 1, 51, ..., 5—1). It also shifts down by one step all rows
(because n — (t — 1) > 2). Therefore the zero row of Cl—1:2] (i—1,s1,...,8—1) has
the form (5.74), the first row is vacant, and the rth row, r > 1, equals

Pl n—rPZ n—r"" 'Pn_yt(L—rjgl(S)_l n—r’ U Pn—r+l n—r"" 'Pn—l n—r- (575)

By (5.49) we have y,(i_r_lgl(S) +1= yt(i)rH(L). Thus (5.71) is proved.

As (5.75) coincides with the r-th row of (5.67), all rows of C(i, /1, ..., 1), but the
first one coincide with the same rows of C"=521(; — 1, sy, ..., 5_1). The first row of
C(i, ll, ey l,) equals T[[;,Zl—’lﬁ = {Pl n_1P2 n—1-" 'Pn—l,—l n—l} since )/,(t)(L) = lr"‘r‘ 1.
Thus (5.73) is proved.

Consider (5.72). The right-hand side has only one row (the first one)

PPro1Prp1-Pogina U o oPotmtint-. . Puna}s (5.76)

where m runs through the set of all indices with s,, = [,, — 1.
By Lemma 5.7 we have s) <i— 1; thatis,2 <n—i+ 1 < n—sp. Therefore

—it1,
T[(;;,,l_s()]n) ={Pi2 U P+ Pyj> U Ppoig22+-Pryy2 U Pp}.

From this we obtain

—i+1)[i—1
T[(;;nl—t()])[l P={Pp U Pypee-Prgmi2 U Pl

Because yéo) (S) = so + 1, we may start an induction on k to prove that

(n—i+1)[i—1][s1]-[s«]
[2;n—s0]

={P;p U P3p---P U oo Pyggmei2- U Pp},

n—y(S) 2
(5.77)

where m runs trough the set of all indices less than k with [,, = s, + 1.

If ly+1 = Sk+1, then by Lemma 5.4 and the definition (5.33) we have n—yék) S) <
n—sy+1. Therefore [s;41] does not shift the letters located in (5.77) before the second
gap. By (5.42) we have sp4+1 > kandn—k+m—1 > n— s;41 (as m > 1). This
implies that [sg41] shifts to the left by one step all letters (except P,,) located after
the second gap. Since in this case y(()k+l) S) = yék) (S), we may replace k with k + 1
in (5.77).
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If liy1 = Sg1 + 1, thenn — yék) (S) > n — sg+1. Therefore [si+1] shifts the letter
Py, 2totheplacen—1=n—(k+ 1) — (k+ 1) — 1, the next letter P, +12
to the place n — sx4, and so on. In particular, the segment before the second gap is
ended by a letter with the first index n — )/(gk) S)—-1= n- yék—H) (S). As above
[sk+1] shifts to the left by one step all letters (except P,;) located after the second
gap. Thus in this case in the formula (5.77) we may replace k with k + 1 as well.
Hence (5.77) is proved.

If we apply [n — 1;2] to the relation (5.77) with k = ¢ — 1 and note that the last
head yét_l) (S) equals I; (see (5.34)), then by (5.76) we obtain (5.72). O

Lemma 5.3 Ifasequencely,...,l; satisfies (5.41) witht = i, that is, L. € £(i, i),
then yj(l)(L) =i+ 1forallj1<j<i

Proof Let us use induction by i. If i = 1, then yl(l) =l +1=2,becausel <[; <

i = 1. Suppose that the lemma holds for all sequences of the lengthi — 1. If S =
L’, then by Lemma 5.7 we may apply the inductive supposition to the sequences
$1.52.. .. 8i-1. S0 ¥ (8) = iforall j, 1 <j < i— 1. The relation (5.49) with
t = i shows )/j(i) (L) = )/j(i_l)(S) + 1 = i+ 1, provided that j < i. If j = i, then
yO(L) = I + 1, herewith i < [; < i. O

Lemma 5.14 Let L = (L,...,1,) € Z(i,i) (and, in particular, t = I, = i). If
S = (s0,81,...,85-1) =L/, then

n— (1.n)[3;n—1]""2—1
i)+ [ BBy = T ] s, (5.78)

Proof The representations of E(/y,...,l;) and Tjp,91, 0 = i +2— 0,(1) (L) by means
of braces have the same number of letters. Indeed, by (5.65) the former element
contains 1 + ¢ letters, where ¢ is the total number of jumps in a motion of /; to the
left. As the heads are changing only at points where there is a jump and only by one
to the side of diminution, we may write ¢ = [, — cr,(l) L) =i- a,(l) (L). The element
Ty = {P12P32---Pg 2} has 0 — 1 letters,and 0 — 1 = i+2—0,(1) L)y—1= e+1.

Denote by 7 the permutation [s;]- - - [s,—1]. Then we may write 7A = A" o
Because permutations do not change the number of letters of words, it suffices to
show that the permutation

v=[2n— 1z n-1:3]""*"(1,n)

shifts each letter of E(/1, ..., [;) to aletter of T}p;4].

We have P, _| = P12, as pinqn_—lll — Pyaand[s]~!, [n— 1:3] do not move n o
2 (clearly, n —s; > n— (i — 1) > 3). Let us demonstrate that if s,, = ,, — 1, then
P, 1 n—1 = P, 7, where w = l+2_0r(nl)(S)

n—t+m—
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Evidently, P[2 - +L], 1\ ne1 = Pu—t+m 2. Using this relation as a beginning of the
downward inductlon onj, t > j > m, let us show that
St si]7!
PL rﬂm 2 B =Py jimos (5.79)
provided that for j = ¢ the product is empty. Let j — 1 > m, and assume that (5.79)
holds fora givenj. Thenn—j+m <n—landn—j+m>n—(j—1) > n—s5;_
because m > 1 and s;—; > j — 1. This implies that [s;—;]~! amplifies by one the first
index of the right-hand side of (5.79), and it does not change the second one. Thus
in (5.79) it is possible to replace j with j — 1.
Now by (5.79) with j = m 4 1 we have

P}[:t rimz[ﬁ'm] P["m] 12 = Pn oy 2

We may use this equality as the beginning of the downward induction by j to prove
the following general formula, provided that 1 <j < m:
—1 —1

P =P o (5.80)
Suppose that (5.80) holds for a givenj. If n —s; 1 < n — am)(S) that is, o S) <
sj—1, then [s;—1]~" amplifies by one the first index of the right-hand side of (5.80).
By (5.30) we have n — (an({) S)-1)=n- a,,({_l)(S). Therefore, we may replace j
with j — 1 in (5.80).

If oY (S) > sj—1, then [s;—1]~" does not change the first index, and again by (5.30)
this index equals n — oy (S). Therefore in this case it is possible to replace j with
j— 1 as well. Thus (5.80) is proved.

The heard o, (S) is equal to a difference of s,, with the total number of jumps
during a motion of s, to the left; that is, it is not less than s,, — (m — 1) > 1 and
not grater than i — 1 = n — 3. Thus the transposition (1, n) does not move the index
n— crm)(S) If we apply (1,n)[n — 1;3]" 27" = [n — 1;3]"27(1, n) to (5.80) with
j=1,weobtainw =i+ 2 — 0(1)(8). By (5.44) with j = 1, k = m we have
0,(,11)(8) > 0,(1)(L). Hence w < 0, and Py, 11 = Po2occursin Tpg). O

In Lemmas 5.10-5.14, we accumulated necessary information to start the proof
of Theorem 5.4.

Proof Let. = £ (n—2,n—2).Forevery L € £ define a chain of sequences L; =
L, L,,..., L, satisfying (5.41) withi =t =n—2,n—3,...,1, respectively.
LetL, = (Y, ..., 1%, _,) be defined, which satisfies (5.41) withi—=1=n—k—1.

IfS; = (sék), (lk) . ;k) o) is a subordinate sequence for Ly, then put Ly =
(k) R
(577, 8y s
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Denote by L° the following sequence

C=n—o L) - 1L.E=n—0c"M)—1,...., =n—0"(L,—n) — 1.

This sequence belongs to .Z. Indeed, we have an('l;lill)(L )= ln g =n—k—1.

Because at each step into the left a heard is decremented by not more than one, we
obtain

n—k—1>0" (L)>m—k-1)—(n—k-2)=1.

Therefore k <n—o,” k ((Ly)—1<n—-2andL° € .Z.
The sequence L can be restored in a unique way from L° by an inverse process.
Indeed, by (5.34) we know all the heads:

v = o (L) =n—1 —1.

Thus we know all zero terms of the subordinate sequences s(()k) = yéo) (Sy) — 1.
Therefore, starting with the sequence S,—3 = (sg’_”,s("_” ), where s(ln_3) =
l(" D = = 1, we may restore L,,_», L,—3,..., L; with the help of (5.33) in a unique
way, see Lemma 5.4.

Thus o : £ — £ is a one-to-one correspondence. In particular, in (5.60) we
may replace the summation index L € . with L° € .Z, that is,

Wiz = Agln = 1:2] 3 [h] -+ llhsl2in = Lio]RG D ). (5.81)
L°eZ

By Lemma 5.13 we have y"? (L) = n—2 forallj, 1 <j < n—2. Now (5.67)
demonstrates that C(n—2, 11, ...,1l,—3) = {X} does not depend on L. € .Z, herewith
the word X is defined by (5.58). Thus, replacing R(...) in (5.81) with the help
of (5.69), we may factor out {X}[>"~1(—1)" to the right-hand side. The rest part
of the sum in (5.81) can be rewritten with the help of (5.52):

T =) [2in—o,L)lsi] - [sas]EE (0L o)

Lee¥
n—3
An—k—3
< [TE"" ... 1.

Using Lemma 5.14, then (5.66), and the definition of (lgz) . l(z) ;), We obtain

g=Y [2;1‘;+1]T[(21;)+1][1(2’] JPNEAR, 12
L°e®

n—4
X l_[ E[n—l;Z]”*ki3 (1(12)’ o ll(f))‘
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Let us replace [12223] with an equal permutation [2;n — lilz)

by (5.52), (5.66), and the definition of L3 we obtain

;][n — 1;2]. Then again

o= Y@+ 0Ty 205+ I Y ERN AR D) - 1:2)

/, ;17 4+1]
L°e
n—4
—k—3
< TTE5 00,
k=1

By Lemma 5.14 we have

1,n 1,n)[3:n—1 3 3 3
r= Y 25+ 1]T[<2;1§3 28+ 1]T[<2;l§3][ WO 12 02en =19, ] = 12
Lee?

n—4

n—1:21"—k=3 (3 3
< [T a0,
k=1

Let us explore this process further, so that we can see that every new left-hand factor
does not depend on the whole sequence L°, but it depends up the only member of
L°. Therefore we have

n—2 n—2
— . (1.n)[3:n—1)~! An—2
L= H(Z[Z, l;) + 1]T[2;1j€’+2_j] ) [n— 121" (5.82)

j=1 1j?=j

Let us replace the summation index /7 with / = [? + 2 —j in all of the sums. Then
for a given j, the sum of (5.82) take up the form

n—j

c— 1V
5= - i
=2

As 21 +j—1] =[2:j + 1][3;n — 1]'"7[2; ][3;n — 1}, we may write

n—j

. n)[3:n—1Y~! . 1n)[3:n—1p~1

Ty = 2+ QR AT T = 2 v S
=2

Finally, it is sufficient to insert this value to (5.82) and replace the index j with
k = j— 1 in the product. |
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5.6 Second Components

For a given subset ¥ € {xj,x2,...,x,}, let W(Y) be the set of elements of the
form {W}, where W is a word in Py, x;,x; € Y of the length |Y|(|Y| — 1)/2 that
does not contain neither double nor conjugated letters. The set Y is conforming
if and only if W(Y) C ker(p). Let X' be a multiplicative set generated by W(Y),
where Y runs through subsets that do not contain x,. The set X' is invariant with
respect to the action of the subgroup S!”. Therefore, the group S!” acts on the
localization X ~'F[.%,], and we may define the skew group ring X~ 'F[.%,] » S}
that are contained in the crossed product.

Lemma 5.15 The elements V(,,, 3 < m =< n defined by (5.26) are invertible in
YF[.7,] * S}l’”.

Proof Let us use induction on n. If n > 2, then the set X' contains {P;,}. Therefore
V(§)1 = {Pp)7'-ide XT'F[.%,] * S}l’”.

Assume that Vi), 3 < k < m < n are invertible in ¥ ~!'F[.%,] x S}. Consider
the set of quantum variables xi, ..., x,. The element V, for this set coincides with
Vim+1). To apply results of previous sections to xi, ..., x,, we replace notations
n < N and m < n. So that now Vo = > |_,[2:|Tpy, whereas V(z), ...,V
are invertible in X' Py x S }V'N . By induction we define a sequence A,,...,A, €
PyE xSV Let

n—3
Ay = (=D)"] [In = 1:2]Vimpy
k=0
n—3 .
x ([n— 12 [ J12:2 + kvl =iy =t (5.83)
k=0

where X is given in (5.58). All of the factors in the parentheses are invertible in
YIF[%,] * SI": the V’s are by the inductive hypothesis, and {X} is because it
belongs to X. Furthermore, let

A= —Ak—lD(k)V(_k)l, 3<k=n,

where D), 3 < k < n are defined in (5.27). Right multiplication of the above
equality by V(i) demonstrates that A,, ..., A, generate a right decreasing submodule
over F[.Z,] * S By Theorem 5.4 we have relation (5.59). This relation with (5.83)
imply

n—3 n—3

Dy [ JlIn = 1:2Viuty = [ [In — 1:2Viumo.
k=0 k=0
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Since by inductive hypothesis all factors V,—) are invertible, the element D, defined
in (5.25) with A in place of .7 equals the identity permutation. Consider the element

B=Ay2.,n) +A3(3.n) + ...+ A,id.

Formula (5.28) and the definition of the A;’s imply

B-V, =Dy(2,n) + Z(Akv(k) + Ar—1Dwy) (k,n) = (2,n).

k=3
Therefore V;' = (2.m)B € £~ Py » 5. 0
Corollary 5.1 If the intersection of all conforming subsets of xi,xa, ..., X, is not

empty, then there exists not more than (n — 2)! linearly independent multilinear
quantum Lie operations.

Proof Without loss of generality we may assume that x, belongs to all conforming
subsets. If a subset Y does not contain x,, then this set is not conforming; that is,
@({W}) # 0 for each word W in Pj;, x;,x; € Y of the length |Y|(]Y|— 1)/2 that does
not contain neither double nor conjugated letters. As ¢ is a homomorphism into a
field, the multiplicative set X' generated by all {W}’s has no intersection with ker ¢.
It remains to apply Proposition 5.1. O

5.7 Components with s > 3

Theorem 5.5 Ifs > 3 then

n—1
Vo [m: 207 [ [ (Vi) [1:2]) € Vo - FZ,] % ) + IS},
1=s

where I is the conforming ideal, see Definition 5.3.

Define a sequence H,, s < t < n, as Hy = V,[n;2]*"\, H;y, = H\Vin—112)[n: 2].
We have to prove that H,, = 0 by modulo a right ideal ¥" generated by V, and /.

Lemma 5.16 The element H; has the following representation by modulo ¥

Hi= Y |bJls]--- LR (5.84)

Le% (s.t)

Therewith the coefficients R(L) satisfy the following recurrence relations

s—2

R(127 LR lY) = {l_[(Pl n—rPZ n—r"" 'Pn—(157,4+1) n—r"* Pn—‘v+2 n—r"" 'Pn—r—l n—r)}a
r=0



182 5 Multilinear Operations

where for r = s — 2 the second factor in the parentheses is absent;

Rl ) = R (o )T = R, owe) T,
(5.85)

where (W, wa, ..., w,—1) is a subordinate sequence for (L, .. ., ;).
Proof Consider the case + = s. By (5.15) we have V, = ZneNl(s) Ty, and
by (5.7), 1 = [2;k][3; k3] -+ - [s;ks] with 2 < ky < k3 < ... < k; < n. Evidently
this chain of inequalities is equivalent to the following:
2<kh<ks—1<k—-2<...<ki—s+2<n—s+2.
If we define
i=n—k+i-2, 2<i<s, (5.86)

then the above chain is equivalent to L = (L, ..., L) € Z (s, s), see (5.38).
Note that 7[n;2]°~" = [l] ---|I] because |/;| = [2;n — 1;][n; 2] and

;212 (2in — 1) = [isn— L 4+ i — 2][m; 272 = [i; k][n: 2]72,
see (5.21). Thus

2l = Y b)) LR,

LeZ (s.s)

os—1
where R(L) = Tj[f, ;2] . Consider representation (5.16) of T, withm = s —r.
Hs—1
{l_[(Pl s—r"" v r—1 s—r* Ps+l s—r""’ 'Pr+k37, S_r)}[n,Z]

= {l_[(Pl n—rPZ n—r*"* 'Pr+k57,—x+l n—r* Pn—s+2 n—r""* 'Pn—r—l n—r)}-
r=0

By (5.86) we have r + k;—, —s + 1 = n — [,—, — 1 and the required recurrence
relations for the coefficients R(L) are proved.

Suppose that (5.84) is valid for a given r. Let % (0) be a subset of % (s, ) of
all sequences (w2, ws, ..., w,) satisfying (5.39) without the condition on w;. Then
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by (5.57)and V, = Z;_:ZO [2;n — y]T{:n—y) We may write

n—2
Hii= Y |b]-LJRML) Y [2:n—o0]Tpyu—0ln:2]
Le (s.t) o=t—1
n—2
- Z[Z; n—y]Tpmn—y) - Z w2l -~ [we ] R(W)[n: 2].
y=0 We (0)

Note that the set of all sequences (L, o) such that L, 0 occur in the former line
equals % (s,t + 1). In the same way the set of all sequences (y — 1, W) such that
y, W occur in the latter line equals % (s, ). Let us move all of the coefficients to the
utterly right position and put 0 = 4y, = w; + 1. Then (5.85) for t + 1 arises
from Lemma 5.6, equality (5.53), and Lemma 5.4. O

Definition 5.10 For a sequence L = (L,..., ), define
F(lz,l3,...,lk) = {---an—k+mns--- }, s<k<t,

where m runs through the set of all indices such that at the point m there is a jump
during a motion of ; to the left (in particular, m > 2). By Lemma 5.8 we may
claim that if W = (wy,...,w,—) is a subordinate sequence for L, then for all £,
s < k < t— 1, the following equalities hold:

F(Wz,Wg,,...,Wk) =F(lz,l3,...,lk). (5.87)

Furthermore, for s <t < i < n, define

t—s—1

D(lz, s lt) = { 1_[ (Pl n—r*"* 'Pn—y,(t_),(L) n—r Pn—r+l n—r Py n—r) (588)
r=0
=2
X l_[ (Pl n—r*"* 'Pn—y,(t_),(L) n—r Pn—1‘+2 n—r""" Pn—r—l n—r

r=t—s

X |—|P‘v+n—t+1 n—r - Pu n—r)}‘

In another words, Py, x # y occurs in D(l, . .., [;) if and only if

eithern —t+2 <y<n—t+sand
(1fx5n—yy(_fit_n(L)orn—t+2§x<yorn—t+s<x§n), (5.89)
0rn—t+s<y§nand(1§x§n—yy(_2t_n(L)ory<x§n).
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A word corresponding to a value n — r of the second index in (5.88) is called r-th
row of the element D(; . .., I;). Respectively, a word in all letters of (5.88) with the
second index equal to n is called the last column.

Because yl.(") =[;+ 1 > [; provided that i < j < s, we have )/i(x) =/ +1and
D(ly,...I) =R(L, ..., 1L). (5.90)

Lemma 5.17 Let L = (L,...,l,) € %(s,1),t > s > 2, and W = L. Then for
eachk, s < k < t, the following equality holds

Fl2 Ly ..., ) = plm2 ™ (Wa,y .o, Wy).

Proof Let Py_j 4, occurs in F(lp, ..., I;). Then PL"_%};_;; = Py itmtl nethtl-
Wherewith [, > t—2>t—m—1,andson—, <n—t+m+1<n—t+k+1.
Thus with the additional application of |/,| as well as the application of [r; 2], all
the indices are decremented by one, that is,

ANt—k—1 At—k
Fr2A™ U, L) = FRA T (1, L),

and we may use (5.87). O

Lemma 5.18 The coefficients of (5.84) have the following representation

t
Rl 1) = (=)Dl 1) [ A" (o ).
k=s+1
Proof Letus use induction on t. If t = s, then the required equality turns into (5.90).

Assume that the required equality is valid for # — 1. Then by (5.85) we have

t—1
—1—s n; n: 1—k—
R(ly, ... 1) = (=17 =D @ty o1l T P )

k=s+1
1. . o |-+ L we—y |32
— (=)D, sWr—l)T[sz;,fJ—(»£T+1l)J][n ]
t—1
X plma™ (Wa, ..., wy).
k=s+1

Using Lemma 5.17 and (5.87), we may factor out

—1
0= I P . o).

k=s+1
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Therefore it suffices to prove that
n;2 [wa - lwi—1][n;2]
D' (w,, ... ’Wt—l)T[Z;rf—(Wl'f'll)]
=D ()T =D, )F(L. ).
This equality will arise from (5.12) with

(Cy =152 Dy =D (... ly). (B} =F(b.....1)

if we prove the following three equalities:

DAy, wimy) = DY (L, L) * F(l, ... L), (5.91)
Lwa ] lwi—1][m2] _ [m;2]

Tt = 1w Pl ), (5.92)

D(la.....1) = D" wy. . owiy) * Tk (5.93)

Let us start with the first one. As [, > t—2, we have n — [, < n—t + 3. Therefore
|| decreases by one all of the second indices of D(l,, ..., 1,—1). So |/;] shifts down
by one step all of the rows in (5.88) with # — 1 in place of .

Every first index of a letter located after a central point in the explicit form (5.88)
of D(l,, ..., l;—) is greater than or equal ton — (t — 1) + 2 = n — t 4 3. Therefore
|;] also decreases these indices by one. Hence all letters located in the rows after -
are shifted to the left by one step.

Consider letters that are located in the rows of the explicit form before the central
points. If w,—,_; = l,_,—; — 1, then by Lemma 5.5 at the point ¢ there is no jump
during a motion of /,_,_; to the right, that is, n — yt(i_ll_),(L) < n — ;. Thus with
application of |/;] the first indices of rth row located before - remain unchanged.
In this case the last position of (r + 1)th row of plil (L, ..., l,—1) became vacant,
whereas the length of a part located before - equals 1 — yr(:l)l (L)=n— y,(i)r_l (L),
see (5.31).

If w1 = Il,_,_1, then y,(i_ri)l (L) < I. Hence the letter P,—;, ,—, is shifted
by |l to P, ,——. It takes the last position of the (r + 1)th row. The next letter
Py, 4+1 n—r 1s shifted to the position of previous one, and so on. Thus the length of
a part located before - is decremented by one, and it can be set by the same formula
n—y" D@ —1=n-y"_ (L), see (531).

Furthermore, by Definition 5.10, we have

F(ZZs"'sl[):{"'5Pnn—1‘+m7"'}s

where w,, = [,, — 1. Replacing the index m with # — r — 1 in this definition, we see
that the letters of F(/y, ..., I;) occupy positions only in the last column and exactly
the positions which are vacant in pli (L, ... L—y).
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Thus the zero row of DL (L, ... L) * 17(12, ..., 1) is vacant, whereas the rth,
r > 0, one is equal to the rth row of (5.88).

Consider the left hand side of (5.91). The permutation [r; 2] shifts to the left by
one step all of the gaps with central points of D(w», ..., w,—) and shifts down by
one step all of the rows (because n — ((r — 1) — 2) > 2). Therefore the zero row of
DU (w,, ..., w,) is vacant while the rth one, r > 0, equals

Pro—rPrn—r-P a0 |, Ar
where A, denotes a part of the rth row of (5.88) located after the central point.
By (5.49) the equality (5.91) is proved.
By the above consideration all rows (but the zero one) of the explicit representa-

tion of D(ls, ..., 1;) coincide with the same rows of D2 (w,, ... w,_;), whereas
T[[;;fl—l,] = {P14P2n- - Pyp_j—1 ) coincides with the zero row of D(l,...,[),

because y,(t) (L) = I, + 1. Therefore (5.93) is valid.
Consider (5.92). Its right-hand side has the only row (a zero one)

{PlnPZn"'Pn—l,—ln toeen Pn—t+mn-'-}v

where m runs through all indices such that /,, = w,, + 1.
Let us prove the following formula

TI_WZJ"'I_WI(J — {P12P32 ...P

[2;n—(w1+1)] ttt Pn—k+m 2" }, (594)

. )
n—y (W) 2

where m runs through all indices less than or equal to &, such that /,, = w,, + 1. For
k = 1 the formula reduces to

Tsn—w +1)) = {P12P32 - P 0w N

which is valid by Definition 5.4. We may start induction on k.

If l+1 = wi+1, then because of definition (5.33) and Lemma 5.4 we have n —
yl(k) (W) < n — wiy1. Therefore |wi41| does not shift the letters of (5.94) located
before the central points. By (5.39) the inequality wy > k—2 is valid (for k < s still
Wit1 = s—2 > k—2),s0n—k+m > n—wy4+; (asm > 2). Hence | wi+1 | shifts to the
left by one step all of the letters located after the central point. Therefore in (5.94),
it is possible to replace k with k + 1, because in this case yl(kH)(W) = yl(k) (W).

If [+ = wir1 + 1, then by (5.33) we have n — y*' (W) > n — w41 Therefore
[Wi41] shifts the letter Py, 41 2 to aplace P, » at the last column, whereas it shifts
the next letter Py, +1 2 t0 Py—yy,, 2 and so on. Thus the segment located before

the central point is decremented by one n — yl(k) W)—1= n-— yl(k+l) (W). As
above, all letters located after the central point are shifted to the left by one step,
wherewith at the end of the row there arise the letter P, », the first index of which
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equals n — (k + 1) + m with m = k + 1. Thus in (5.94), it is possible to replace k
with k + 1 in this case also.
If we apply [n;2] to (5.94) with k = ¢t — 1 and use the fact that the last head

yl(t_l) (W) equals /,, see (5.34), then we obtain (5.92). O

Lemma 5.19 If a sequence L = (I, ...,1,) satisfies condition (5.38) with t = n,
then yj(") (L)y=n—1forallj2<j<n.

Proof Consider conditions (5.41) with n + 1 in place of n, and with i = n — 1. The
sequence A = (Ay,...,A,—1) with Ay = 41 + 1,1 < k < n — 1 satisfies these
conditions: k = (k+1)—2)+ 1 <ht1+1=A <n—1{ork+ 1 < sstill
l+1 > s—2 > (k+ 1) —2). Evidently, if all members of a sequence increase by one,
then all heads will increase by one as well. After this, it remains to use Lemma 5.13.

O

Now we accumulate sufficient information to prove Theorem 5.5.

Proof By Lemma 5.19 every word located at a row of (5.88) before the central point
has just one letter. The first product of (5.88) has

n—s—1

Y+ =@n-9n—s+1)/2

r=0
letters, the second one has

n—2

(Z m—r—1))+6—-1Dn—-s)=s(s—1)/24+ (s—1D(n—ys);

r=n—s

that is, the total number of letters in D(Ly, .. ., 1,) equals n(n — 1)/2 = C2.

If a letter P,, with x < y occurs in D(l»,...,1,), then by the definition (5.89)
eitherx = 1,0or2 <y < sand 2 < x <y, that is, the letter P,, appears in (5.88)
before the gap L. Definition (5.88) shows that the second index never equals one.
This definition also shows that if the first index is greater than the second one, then
it is greater than s. Thus the letter Py, with 2 <y < s and 2 < x < y does not occur
in (5.88). Hence D(ly, . .., I,) has no conjugated letters. By Definition 5.3 we have
D(ly,...,1,) € I. By Lemmas 5.16 and 5.18 we are done. O

5.8 Existence Condition

Theorem 5.6 There exists a nonzero multilinear quantum operation in a set of
quantum variables x, . . ., x, if and only if this set is conforming.

Proof Let us use induction on n. For n = 2,3, 4 this statement follows from
Theorems 2.5, 4.5, and 4.6. The necessity that xy, . .., x, conform to have a nonzero
multilinear operation is proved in Corollary 4.1.
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Letxy,...,x, be a conforming set of quantum variables. If this set have a proper
conforming subset, say, xi, ..., X, 2 < m < n, then by inductive supposition there
exists a nonzero multilinear quantum operation W(x, ..., x,,). The operation W as
an element of the free character Hopf algebra is a skew-primitive element with a
character y = y*™ x*--- y* and a group-like element g = g,, 8y, * - 8x,,; that is,

AW)=WR1l+g®@W, h'Wh= y(WW, heG.

Consider a new quantum variable z which is related to the character y and to the
group-like element g. For every nonzero multilinear quantum operation

Wiz, Xt 15 X2 -+, Xn)
we can define a superposition
Wl(W(xl, e ,xm),xm+1, e ,xn)

that does not equal to zero as a polynomial. By the inductive hypothesis the

operation W, exists if the set z, xX,+1, - . . , X, is conforming; that is,
[Tre) []rie - [ xiey) =1
i>m i>m m<i#j<n

The left-hand side of this formula differs from the left-hand side of (5.1) only by the
factor ]_[151.#5,” X (ng). Thus if both sets x1, ..., x, and x, . .., X, are conforming,
then z, X,y +1, . . . , X, does as well.

Therefore it suffices to prove the existence of an operation under additional
assumption that the given set of quantum variables has no proper conforming
subsets. In the next theorem we will prove a more general statement. O

Theorem 5.7 If each conforming subset of a conforming set xi, . . . , X, contains x,,
then the dimension of the space of all multilinear quantum Lie operations equals
(n — 2)!, during which there exists an operation [xi,...,x,] such that a basis of
the space consists of operations [xl,x’;, e ,xff_l,xn]l, where [ runs through the
symmetric group S}

Proof By Theorem 5.15 the elements Vi), 3 < k < n, defined by (5.26) are
invertible in X ~'F[.%,] x S!". This allows us for each permutation 1 € S!” to
define an element Bl € ¥~'F[.%,] * S! by the following formula:

B = A,(2,n) + A5(3,n) + -+ - + Ayid,

where A; are defined by induction

Ay=p, A= —Ak—lD(k)V(_k)l, 3<k=<n,
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or in the explicit form

B = ((2 n) + Z( 1 (]_[D(L)v(ﬂ)‘ )(k. n)) =Y Bl (595)

JTGS,II

Denote 5, = ¢(By), where ¢ is defined by (5.11) and (5.18). Let

Lol = Y Bel (ool 3], )™

wES)

Let us show that this is a quantum Lie operation.

By Theorem 5.3 we have to prove that Bl .y, =0, 2 < s < n. The element
BIM has the form (5.20) with <7 = A;. Therefore formula (5.28) holds. According
to the definition of the elements Ag, this formula implies

B . v, = D,(2,n),

where D, is defined by (5.25) with A in place of /. The elements A,,...,A,
generate a right decreasing module over F[.%,] * SI". Therefore we may apply
Theorem 5.4. Because {X} belongs to the conforming ideal, the product on the
right-hand side of (5.59) belongs to ker(¢)S., see (5.58) and Definition 5.3. A right
multiplication of (5.59) by (]_[Z;g[n — 1;2]V(u—k)) " shows that D, = 0; that is,
relation (5.19) with s = 2 holds.

If s > 3, then by Theorem 5.5 there exists a representation

n—1

Ve [ 21 [ [ (Vi [:2]) = Va - E+ F, (5.96)

1=s

where E € F[.%,] * S} and F € IS]. Let us multiply (5.96) from the left by BI*I.
Using Bl . vV, = 0 and BIM) - F € £71IS! € ¥~ ker(p)S!, we obtain

n—1

BYVy) - [n: 217 [ [(Virerra)[n:2]) = 0.

1=s

The second factor of the left-hand side of this equality is invertible. Thus BI*l . v, =
0, and by Theorem 5.3 the polynomial [xi, X», . .., x,], is a quantum Lie operation.

Formula (5.95) demonstrates that for 7 € S,ll*”(Z,n), only one of the B,’s
does not equal zero, that is, B,-1 = 1. As X{Xz(2)***Xz(s) is the only mono-
mial of [...[[x1,x2],x3]...,x,]" starting with x;, we obtain that just one mono-
mial of the type xix,--- of [x1,x2,...,x,] p! has a nonzero coefficient, that is,
xlxnxg‘ =z -xﬁf_lx’; , and this coefficient equals one. In particular, the polynomials
ES TR A= S17 are linearly independent.
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Corollary 5.1 states that the dimension of the space of multilinear operations is
less than or equal to (n—2)!. We have found (n—2)! linearly independent operations.
This implies that the operations [x;, x2, ..., x,],, % € S span the space.

Furthermore, for any permutation u € S!”, consider a new set of quantum
variables y; = x1, y, = x’;, cees Yn—1 = xif_l, ¥n = X,. This set is conforming
because the left-hand side of (5.1) for the y’s differs from the left-hand side for the
x’s by the order of factors only. Thus the following operation is defined:

df
D1 y2s e ooy Yot Yalia=Ix1, x5 5 oo X xlia-

As the coefficient at y1y,yu(3) - - Yo—1)Yv2) = X1XaXy X, = xo", v € SM does
not equal zero in the only case, v = id, we have

I[xl,x’;, e ,xif_l,x,,]]id = [x1, %2, ..., x0] 1

Thus the operation [[x1, x2, . .., X, ]ig satisfies all properties stated in the theorem.
0

5.9 Interval of Dimensions

Recall that a conforming ideal is an ideal I of the algebra F[.%,] generated by all
elements of the form {W}, where W is an arbitrary semigroup word in P;; of length
n(n — 1)/2 that has neither double nor conjugated letters. The variables xi, ..., x,
are conforming if and only if the ideal ker(¢) contains /. The conforming ideal
is invariant with respect to the action of S,. In particular, the two-sided ideal of
F[.%#,] * S, generated by I coincides with the right ideal IS,,.

Consider a field of rational functions K over F in (n(n — 1)/2) — 1 variables t;,
1 <i#s<n, (i,s) # (1,n),and put

tin = ( l_[ tks)_l-

(k.5)# (1)

Then the kernel of the homomorphism & : P; — t;; coincides with the conforming
ideal 7, and £ defines an embedding of F[.%,]/I in K.

Consider a new set of quantum variables X1, ..., X, with which free generators
Gi,...,G, of a free Abelian group are associated, whereas the characters over K
are defined by x*/(G)) = 1.

Definition 5.11 System (5.8) with #; in place of p;; is said to be the generic system.
Its solutions define generic quantum operations in X;, X», ..., X, with coefficients
from K.
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The parameters t; of the generic system are connected by relations that include
all parameters #;. Therefore the set of generic variables X, ..., X, has no proper
conforming subsets. By Theorem 5.7 there exists precisely (n — 2)! linearly
independent generic operations.

All coefficients of the generic system belong to a subalgebra F[t;] over the
minimal subfield F generated by #;, 1 < i,j < n. Hence there exists a fundamental
system of solutions in the field K = F(#;). Moreover, multiplying solutions by
suitable elements from F[z;], we can find a fundamental system of solutions that
belong to F1;]. If ¥, 7 € S} is a solution with y, € F[t;], then B, = ¢’(y.) are
solutions of the basic system (5.8), where ¢’ = ¢ o £~! is a natural homomorphism
from F[#;] to k. In this way, the generic operations define operations with arbitrary
values of p;;. Nevertheless, the homomorphism ¢’ not necessary (almost never) has
an extension up to a homomorphism of K = F(#;;). By this reason, there may exist
operations that do not appear from the generic ones in the above manner.

Theorem 5.8 If xi,...,x, is a conforming set of quantum variables, then the
dimension of the space of all multilinear quantum Lie operations in this set is greater
then or equal to (n — 2)! and less than or equal to (n — 1)!

Proof To prove the first part of the theorem, it suffices to demonstrate that the rank
of the basic system is less then or equal to

(n—1D!I—(n—-2)!=(n—2)(n—-"2).

This is equivalent to the condition that all minors of the order greater then or equal
to (n — 2)!(n — 2) are zero. Since the minors are integer functions in the matrix
coefficients, it suffices to show that this condition is valid for the generic system.
By Theorem 5.7 the generic system has precisely (n — 2)! solutions. Hence all the
minors are zero in F[z;]. Applying the homomorphism ¢’ : #; > p;;, we obtain that
the minors are zero in k as well.

The basic system has not more than (n — 1)! linearly independent solutions
because it has only (n — 1)! unknowns. O

Of course, if the dimension is grater than (n — 2)!, then there must be operations
that are not reduced to the generic ones. Nevertheless, it looks likely that if we
include superpositions of operations in lesser number of variables, than it would be
possible to construct all the operations from the generic ones. Moreover, the detail
analysis of the case n = 4 given in Theorem 4.6 provides a hypothesis that in this
case all the operations are linear combinations of superpositions.

Conjecture 5.1 If the dimension of the space of multilinear operations in conform-
ing set of quantum variables xy, . . ., x,, is not (n —2)!, then all multilinear operations
are linear combinations of superpositions of operations with lesser .
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5.10 Symmetric Operations

A quantum Lie operation [xi, ..., x,] is called symmetric (or skew symmetric) if for
every permutation € S, the following equality is valid

[[xn(l), e ,xﬂ(n)]] =0z |[x1 yeae ,xn]l, (5.97)

where a; € k. In the case of quantum operations, as well as in the case of arbitrary
partial operations, we have to explain what does it mean the left hand side of the
above equality. Strictly speaking, the left hand side is defined only if x,(; has the
same parameters y, g as x; does. By definition only in this case the substitution
X; < Xg(j is admissible. In other word, all parameters p;; should be equal each
other. This is very rigid condition. It excludes both the color super-brackets and the
above defined generic operations.

However, we may suppose that [xi, ..., x,] is a polynomial whose coefficients
depend on the quantization parameters, y“, g,,; that is, there are shown distin-
guished entries of p;; in the coefficients. Then a substitution x; <— y means not only
the substitution of the variable but also one of the parameters g; < gy, x* < x’.
In particular, the permutation of variables means the application of this permutation
to all indices: pir <= Pr(i)x(s)-

This interpretation of symmetry is not contradictory only if the application of
the permutation is independent of the way how the coefficients of [xi,...,x,]
are represented as rational functions in pit,pgl. The action of permutations is
independent of the above representation if (and only if) ker (¢) is invariant ideal
with respect to the action of S,,.

Definition 5.12 A collection of quantum variables xi, . .., x,, is said to be symmet-
ric if ker (¢) is an invariant ideal with respect to S,, or, equivalently, the action of S,
on the algebra F[p;| given by p? = p(i)=(y is well-defined.

The symmetry of a collection has nothing to do with the symmetry of the matrix
||pic||, while it means the symmetry of relations between the parameters p;;.

Thus, to impart a sense to the term “symmetric operation”, we should, first,
suppose that the coefficients of the operation belong to the field F(p;;), which does
not affect the generality; and, then, we should consider only symmetric sets of
quantum variables. Yet, this is a bounding condition. Nevertheless, this condition
excludes no one of the above examples. Moreover, the existence of the symmetric
set X; with generic parameters #;; is a key argument of the proof of both the existence
theorem and its corollaries. Therefore, the symmetric collections of variables are of
a special interest.

Consider a symmetric polynomial over F(p;):

fxr,...,x,) = Z VuXu(ly ** Xp(n)-
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Without loss of generality (if necessary by applying a permutation), we may assume
that the monomial x;x; ---x, has a coefficient 1. Let us compare coefficients at
Xz (1)X7(2) ** *Xx(n) 10 the both sides of (5.97). We have a; = y;,l. Afterwards the
equality (5.97) takes a form

Vit D Vit X = () Vit X))
HES, HES,

= Z )/Zx”(u(l)) .o ‘xn(u(n)) = Z yfn—lx\)(l) .o 'xv(n)‘
WES, VES,

This implies )/Zn_l = Y2 Vu. Let us replace v = 7~! and then apply v to both
sides of the latter equality. We see that the polynomial f is symmetric if and only if

Yuv = Vpye, with an =y =y ", (5.98)

In other words, the set of normed symmetric polynomials can be identified with the
first cogomology group H'(S,, F(p;)*) with values in the multiplicative group of
F(pu).

Now a natural question arises: does there exist a basis of the space of multilinear
quantum Lie operations consisting of the symmetric operations, provided that the
variables form a symmetric set?

We start with some counterexamples. Firstly we consider the case when the
variables are absolutely symmetric; thatis, p; = q,1 <i#t <n.

Lemma 5.20 If the set of variables is absolutely symmetric and n > 3, then the
basis consisting of symmetric operations does not exist. If n = 3, then the required
basis exists only if ¢ # +1. The bilinear operation is symmetric.

Proof If the set of variables is absolutely symmetric, then the group S, acts identi-
cally on the field F(p;;). Therefore there exists only two symmetric polynomials up
to a scalar factor:

S(Xl, ce sxn) = Z Xr(1) *** Xr(n)»

TES,
T(xl, e ,xn) = Z (—1)”)(],(1) ©Xr(n)-
TES,
On the other hand, if the existence condition, ¢""~" = 1, holds, then by

Theorem 5.8 the dimension of the space of multilinear operations can not be less
than (n — 2)!.

Thus if n > 4, or if n = 4 and the characteristic of the ground field equals 2, then
wittingly the basis consisting of symmetric operations does not exist.

If n = 4, then we may use the analysis from the proof of Theorem 4.6: the
dimension is 2 only if ¢'> = 1, ¢° # 1, ¢* # 1, or, equivalently, ¢* = —1,
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g*> # —1.If under these conditions the polynomials S, T are quantum operations,
then they should be expressed trough the quadrilinear operation given in (4.50) with
B, defined in (4.49). The coefficients of that expression are equal to the coefficients
at x1xx3x4 and x1x3x2x4 of § and T respectively:

S = [x1,x2, x3, x4] + [x1, %3, x2, x4],
T = [x1,x2, x3, x4] — [ox1, x3, %2, x4].

This implies that 2[x;,xp,x3,x] = S + T. In particular all coefficients of
[x1, X2, x3,x4] at monomials corresponding to odd permutations have to be zero.
The explicit formula (4.49) demonstrates that the coefficient at x;xx4x3 equals

{P13p23} ¢ —q?
- #

_ — 0.
{P13p23pa3} P —q3

for g* # 1. Thus in this case the symmetric basis neither exists.

If n = 3, then the existence condition takes the form ¢® = 1. If ¢ # =1,
then there exists only one trilinear operation up to a scalar multiplication, and this
operation is symmetric, see Theorem 4.5 and formula (4.31). More precisely, if
g® = 1, then (4.30) equals S, whereas if ¢> = —1, then it equals 7.

If ¢ = =1, then the space of operations is generated by two polynomials:
[[x1,x2], x3], and [[x}, x3], x2], while S + T is not a linear combination of them. O

Lemma 5.21 Let the quantization matrix of a symmetric quadruple of quantum
variables has the form

*pqs

xS
pall = | 2729,

qs *xp

s qgp*

where p, q, s are pairwise different and p*q*s* = 1.

1. Ifthe characteristic of the field K is not equal to 2, then there do not exist nonzero
quadrilinear symmetric quantum Lie operations at all.

2. If the characteristic is 2, then there exist not more then two linearly independent
quadrilinear symmetric operations.

3. In both cases the dimension of the whole space of quadrilinear quantum Lie
operations equals 3.

Proof If the parameter matrix has the form given in the lemma, then the action of
the group S, on the field F(p;) is not faithful. The kernel of this action includes the

following four elements

id; a = (12)(24); b = (13)(24); ¢ = (14)(23).
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These elements form a normal subgroup H <1 S4 isomorphic to Z; X Z,. Let

S = Z VX (1) X (2)%m (3) X (4)

TESY

be some symmetric quantum operation, yiq = 1. According to (5.98) withh = pu =
v € H we have ¥} = y;» = yia = 1; thatis, y, = £1 € F. Moreover, all of the
elements y,, h # id, h € H may not be equal to —1 because, again by (5.98), the
product of every two of them equals the third one. On the other hand, formula (5.98)

with h € H, g € S, implies that ys,l Ye = 1 and

— . he
ygflhg =V,-

o1 Vg = Vo1 Vi Ve = Vi = Vi

Therefore all of y;,, h € H equal each other and equal to 1.
Furthermore, the polynomial S, as well as any other quantum Lie operation, has
a commutator representation:

S = Z Bulllxt, xu ). xu3)]s X))

\)GS}‘

If we compare coefficients at monomials x;x,x3x4 and x4x3xx;, we obtain 1 =

Yia = Bia and 1 = yaue3) = Bia(—p12)(—p13p23) (—pupaupss) = —p*¢*s* = —1.

This completes the first statement.

In both cases, the condition p?>¢?s> = 1 implies that all three element subsets
of the given quadruple are conforming. If some pair of them does as well, say 1 =
prapa1 = p?, then by symmetry all others pairs are conforming too; that is, ¢> =
s> = 1. In this case p,gq,s € F. Thus p = p® = ¢ = ¢* = 5. This contradicts
to conditions of the lemma. Therefore by Theorem 4.6, see the second case in the
proof of the second part, the operations space is generated by the following three
polynomials

(W, xq]: W7, x1]: [Waz,xz],

where 0 = (1234) is the cyclic permutation, whereas W is the main trilinear
operation in xj, x», x3. By the definition of this operation, see (4.30), in the case
of the characteristic 2, we have

1

o
W = (x1x2x3 + x330x1) + b p_l
q+q

(or2x3x1 + X1X3X2)

s—}—s_1
q+q7!

(or3x1202 4 x2X1x3).



196 5 Multilinear Operations

Let
S = E[W,x4] + 6 (W2, x1] + £[W° xa).

If we compare the coefficients at the monomials x;xx3x4 and xx1x4x3, then we
obtaing + El = yiq = 1, 52 = Y12)(34) = 1. Therefore

S = E(W.xa] + W2 xi]) + (W] + W xa)).

Thus the symmetric operations span not more then two-dimensional subspace. O

Theorem 5.9 If x,x2,...,x, is a symmetric but not absolutely symmetric collec-
tion of quantum variables, then the space of multilinear quantum Lie operations is
spanned by symmetric operations with the only exception given in Lemma 5.21.

Proof Consider the skew group algebra M = F(p;) * S,. The permutation group
action defines a structure of right M-module on the set of multilinear polynomials:

D Vaay Xt - Y BV = Y BeVauay Kol
T v v, T

A polynomial f is symmetric if and only if it generates a submodule of dimension
one over F(p;). The space of quantum Lie operations is a right M-submodule,
provided that the collection of variables is symmetric.

Indeed, let the basic system, see (5.8), is fulfilled for the coefficients 8, of a
polynomial f represented by (5.2). The application of a permutation v € S! to the
basic system demonstrates that the coefficients of the polynomial f satisfy the same
system up to rename of the variables x; <— x,;). Therefore f, v € S,ll are quantum
Lie operations. If we replace the roles of indices 1 with 2, then we obtain that f”, v €
S2 are quantum Lie operations as well. As the subgroups S! and S? with n > 2
generate S, all multilinear quantum Lie operations form an M-submodule.

Assume that S, acts faithfully on the field F(p;). In this case, M is isomorphic
to the trivial crossed product of the field F(p;) with the Galois group S,. By
Theorem 1.12, the skew group algebra M is isomorphic to the algebra of n! by
n! matrices over the Galois subfield F; = F(p;). This implies that each right M-
module is a direct sum of simple submodules, whereas all simple submodules are
isomorphic to the n!-rows module over the Galois field F;, see Corollary 1.4. On the
other hand, the dimension of F(p;;) over F; equals n! too. Because every right M-
module is a right space over F(p;,), all irreducible right M-modules are of dimension
one over F(p;;). This proves the theorem in the case of a faithful action.

If n > 4 or n = 3, while the action is not faithful, then all even permutations act
identically. This immediately implies that the collection of variables is absolutely
symmetric, p;; = q.

Let n = 4. If the action is not faithful, then all even permutations, id; a =
(12)(24); b = (13)(24); ¢ = (14)(23), act identically. This implies that the
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parameter matrix has the required form. The existence condition for quantum Lie
operations is p*q*s* = 1. If p’¢®>s> = 1, then we obtain the example given in
Lemma 5.21. Therefore, assume that p?g%s®> = —1 # 1.

If p,q, s are pairwise different, then S‘{ acts faithfully on F(p, ¢, s). Therefore
M, = F(p,q,s) * S‘{ is the algebra of 6 by 6 matrices over the Galois field F;. This
is a central simple algebra. Thus, by Theorem 1.13 it splits in M as a tensor factor
M = M, ® Z;, where Z, is a centralizer of M in M. Let us calculate this centralizer.

First of all, Z; is contained in the centralizer of F(p, g, 5), that equals the group
algebraA = F(p, g, s)[id, a, b, c]. This group algebra has a decomposition in a direct
sum of ideals

A=F(@p,q, e ®F(p,q.5)e2®F (. q,5)e3 D F(p, q, s)ea,

where e; = %(id—}—a—}—b—i—c), e = %(id—}—a—b—i—c), ez = e(223), ey = e(234).The

stabilizer of e, in S} equals a two-element subgroup S}{S- LetFy = F(p, ¢ 5) 2 b

a Galois subfield of this subgroup. Then Z; equals the centralizer of S} in A. This
consists of the sums

aey + Be; +,3(23)e3 +,3(34)e4, ac€F, BeF,.

Thus, Z; >~ F| & F,. Consequently, M >~ (F)¢xs D (F2)6xs-

This result means that up to isomorphism there exists just two irreducible right
modules over M. One of them equals the 6-rows space over F;, whereas another
one equals the 6-rows space over F,. The dimensions of these modules over F,
are equal to respectively 6 and 18. Therefore, the first module is of dimension one
over F(p, g, s), whereas the second one is of dimension three. By Theorem 4.6 the
module of quantum Lie operations is of dimension two over F(p, ¢, s). Of course,
its irreducible submodules may not be of dimension three. Thus all of them are of
dimension one. O

Theorem 5.10 There exists a collection of (n — 2)! generic symmetric multilinear
quantum Lie operations that span the space of generic multilinear quantum Lie
operations.

Proof The set of generic variables is symmetric because the only defining relation,
]_[i# ;1 = 1,1s invariant with respect to the action of the symmetric group S,. Hence
the statement follows from the above theorem. In fact, S, acts faithfully on the field
F(t;). So we do not need the detail analysis of the exceptions: M is an algebra of
n! by n! matrices over the Galois field, and all irreducible right M-modules are of
dimension one over F(z;). O

A similar statement is valid for quantum variables considered by Paregis, see
Example 4.5. By definition the quantization parameters defined by the Pareigis
quantum variables are related by p;p; = ¢>, 1 < i # j < n, where { is a
nth primitive root of 1. These relations are invariant with respect to the action
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of the symmetric group. Moreover, the Pareigis quantum Lie operation given in
Example 4.5 is symmetric.

Corollary 5.2 The total number of linearly independent symmetric multilinear
quantum Lie operations for symmetric, but not absolutely symmetric, Pareigis
quantum variables is greater than or equal to (n — 2)!.

5.11 Chapter Notes

Pareigis quantum Lie operations appeared in [183—185]. The equality

1_[ piszl

1<i#s<n

as a necessary and sufficient condition for a set of quantum variables to possess a
nonzero multilinear quantum Lie operation was established in [125].

In [81, 82], Frgnsdal and Galindo determined that the dimension of the space of
multilinear constants for differential calculus defined by the diagonal commutations
rules, dx;-x; = pisXs - dx;, also equals (n—2)!, provided that the above equality holds
but that ]_[l.#s’ ises Pis 7 1 for all proper subsets J of {1,2, ..., n} containing more
than one element. Certainly, this fact implies that the operations and constants are
identical in this particular case.

The results concerning symmetric and generic operations are from [126, 130].



Chapter 6
Braided Hopf Algebras

Abstract The main goal of this chapter is a detailed construction of the free braided
Hopf algebra k(V) and the shuffle braided Hopf algebra Sk, (V) on the tensor space
of a given braided space V. Then we define a Nichols algebra (V) as a subalgebra
generated by V in Sk, (V) and provide some characterizations of it. Finally we adopt
the Radford biproduct and the Majid bozonization to character Hopf algebras. All
calculations are done in the braid monoid (not in the braid group), therefore in the
constructions there is no need to assume that the braiding is invertible.

The main goal of this chapter is a detailed construction of free braided Hopf algebra
k(V) and braided shuffle Hopf algebra Sh. (V) on the tensor space of a given braided
space V. We then define a Nichols algebra (V) as a subalgebra generated by
V in Sh.(V) and provide some characterizations of this algebra. Finally we adopt
the Radford biproduct decomposition and the Majid bozonization to the class of
character Hopf algebras. All calculations are performed in the braid monoid (not in
the braid group). Therefore, in the constructions, we are not required to assume that
braiding is invertible. In the final section, we discuss when a structure of a braided
Hopf algebra on a filtered space R induces that structure on the associated graded
space gr R.

6.1 Braided Objects

A linear space V is called a braided space if there is fixed a linearmap 7 : VQV —
V ® V (in general not necessary invertible) that satisfies the braid relation:

(t ®id)(id ® 7)(r ® id) = (id ® 7)(r ® id)(id ® 7). 6.1)

Example 6.1 1f x1,x,,...,x, is the basis of a linear space V, then for arbitrary
parameters g;; € k, 1 <i,s < n, the map

TIXi ®Xs > Gis - Xs @ X

satisfies the braid relation. This is the so called diagonal braiding.

© Springer International Publishing Switzerland 2015 199
V. Kharchenko, Quantum Lie Theory, Lecture Notes in Mathematics 2150,
DOI 10.1007/978-3-319-22704-7_6



200 6 Braided Hopf Algebras

Let V and V' be spaces with braidings t and 7’ respectively. A linear map ¢ : V —
V' is called a homomorphism of braided spaces (or it respects the braidings) if

e ®¢)=(p Q).

Let (@ ®b)t =) b ®a;, and (¢’ @ b')t = )_ b! ® a;. In this case the definition
of the homomorphism takes the form

Y o) @ pla) =Y ¢(b): ® ¢(a);,

or, informally, ¢(a;) = ¢(a);.
Proposition 6.1 Ifa linear map ¢ : V — V' is a homomorphism of braided spaces,
then W = ker ¢ satisfies

VOW+WRV)tCVW+WQRV. (6.2)

Conversely, if a subspace W satisfies (6.2), then the quotient space V/W has an
induced braiding such that the natural homomorphism ¢ : V. — V/W is a
homomorphism of braided spaces.

Proof To prove the statement, we need the following statement on kernels of tensor
products of maps.

Lemma 6.1 If¢ : V — V' is a linear map, then

ker(p ® ) =V Q®kergp +kerp ® V. (6.3)

Proof The required equality follows from (1.49) with ¢ = ¢. O

Let ¢ be a homomorphism of braided spaces. If w € W, v € V, then by definition
of the braided homomorphism we have

v ®wW)T(p ® ¢) = (p(v) ® p(W))7' = 0;
that is, (V ® W)t C ker (¢ ® ¢), and Lemma 6.1 applies. In a perfect analogy, we
have (W ® V)t C ker (¢ ® ¢).
Conversely, assume that W satisfies (6.2). The quotient space V/W is isomorphic
to a complement T of W to V. Let us define " on T via

U =1(n ®n),

where 7 is a linear projection : V. — T.
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We have (r — id)wr = 0, and therefore im(z —id) € W. Due to (6.2), the latter
inclusion implies

(im(zr —id) ® V)r(r @ ) = 0,
or in the operator form, ((7 — id) ® id)t(7r ® 7)) = 0, which is equivalent to
(rid)t(r @ w) = 1(7 @ ). (6.4)
In a perfect analogy, we have
(dem)t(r ®@r) =1(r @ 7). (6.5)

These two equalities imply
FeM'=@Emn(r@nr) =1(1 ® n),

andfor7] = ' ®id, 1) =1d® 7/, 1y = 1 ®1id, 1» = id ® 7, we have

11! [
LG =10t R®r Q@n) = nrh(n ® T ® ) = 1,71,

which is required. O

An algebra R with a multiplicationm : R ® R — R is called a braided algebra if
it is a braided space and

MmEid)t =nru(id®@m), (d®m)r=r1nmQ id). (6.6)

In these formulas, as above, we use the so-called “exponential notation” for actions
of the operators; that is, the operators in a superposition act from the left to the right.
For example, (m ® id)t actson V® V ® V via

x®y®2™IN = (xy®2)" = t(ry ®2),

whereas 77;(id ® m) actson V ® V ® V as follows

(x®@y®z)™2™ (id®m) _ (R (y®2)")" ([d®m) _ (Z(x(g)zi)r@yi)(id@m) = ZZij®xijyiv
i ij
where (y ® 2)° = (Y ® 27 = >,z @y and x ® )" = (x ® )T =
2252 ® Xij.
By definition, a homomorphism of braided algebras is a linear map that is both a

homomorphism of algebras and braided spaces.
A coalgebra (C, AP ¢) is called braided if it is a braided space and

1(e®id) = (([d® )7, 1([dQ¢) = (¢ ® id)T; 6.7)
1(id ® A") = (A’ @ id)nry, (A ®@id) = (id ® AY) 1110, (6.8)
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By definition, a homomorphism of braided coalgebras ¢ : V — V' is a
homomorphism of coalgebras,

A(gp(@) =) p@V) @ p(a?), &(p(a) = &(a), (6.9)
@

that respects the braidings.
A braided bialgebra is an associative braided algebra and a braided coalgebra H
(with the same braiding) where the coproduct is an algebra homomorphism

AY H — H®H. (6.10)

Here, H®H is the ordinary tensor product of spaces with a new multiplication

(a®b)(c®d) = Z(ac,-@b,-d), where (b ® ¢)t = Z ¢ ® b;. (6.11)

A homomorphism of braided bi-algebras is a homomorphism of coalgebras and
braided algebras.

By definition, a braided Hopf algebra is a braided bialgebra H with a linear map
o : H — H called a braided antipode that satisfies the usual identity

Ab(a) (0’ ®id)ym = AP(id®o’)m = g(a) - 1. (6.12)

A homomorphism of braided Hopf algebras is a homomorphism of braided bi-
algebras that satisfies

¢(0"(@) = 0”(¢p(a)). (6.13)

Definition 6.1 A subspace W C V of a braided Hopf algebra V is called a braided
Hopfideal if the following conditions are met:

. W is an ideal of the algebra V;

(VWA WRV)ITCVRIWHWRYV;
. e(W) =0;

LAWY CVRIWHWRYV;

.ob(w) cw.

[ I SO T \R

Lemma 6.2 [f the map ¢ : V — V' is a homomorphism of braided Hopf algebras,
then W = ker ¢ is a braided Hopf ideal of V. Conversely, if W C V is a braided
Hopf ideal, then the quotient algebra V/W has induced braiding, coproduct, and
braided antipode such that the natural homomorphism ¢ : V. — V/W is a
homomorphism of braided Hopf algebras.
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Proof We have to check all five conditions of Definition 6.1. The first one is evident.
To prove the second one, we may apply Lemma 6.1:

VeW+WR V)l ®9e) = [p(V) ®e(W) + o(W) ® p(V)]' = 0.

The third one follows from the second formula of (6.9), whereas the forth one
follows from the first formula of (6.9) and Lemma 6.1. Equality (6.13) implies the
fifth condition.

Conversely, let W satisfies all conditions of Definition 6.1. By Proposition 6.1 the
natural homomorphism of algebras ¢ : V — V/W is a homomorphism of braided
spaces. Formulas (6.9) inspire the definition of a counit and a coproduct on V/W:

AP(v+ W) = Z(a(” +W)® 2P + W), e(v+ W) =e).
(v)

In this way the counit and the coproduct are well-defined due to the third and fourth
properties. Because ¢(v) = v + W, the map ¢ is a homomorphism of coalgebras.
Due to the fifth condition, the braided antipode is well-defined by the formula

o’(v+ W) = ol () + W.

Again, the equality ¢(v) = v + W implies that ¢ satisfies (6.13). O

6.2 Free Braided Hopf Algebra

Let V be a linear space with a braidingt : V® V — V ® V. We fix some basis
X = {x;,i € I} of V. The free associative algebra k(X) generated by x;, i € I is
isomorphic to the tensor algebra T(V) = @i-, V®' of a linear space V with the
concatenation product (u®v)m = u ® v. By definition we set V&* = k- 1, where
1 is the empty word in X, so that ]| ® v = v ® 1 = v. Consider the following linear
maps

1 =1d® "V @ r@id® D vE S VO I <i<n (6.14)
Due to (6.1) the maps t; satisfy all defining relations of the braid monoid:
LTl = TGk, 1 <i<n—1; =gy, |[i—jl> 1 (6.15)

Therefore, u - s5; = ut; is a well-defined action on V®" of the braid monoid B,
generated by the braids s;, 1 < i < n. This action is called a local action.

Theorem 6.1 The braiding t has a unique extension on K(X) so that k(X) is a
braided algebra. Normally this extension has the same notation t.
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Proof Let 6,,0 < r < n be the linear map V®" — V& @V®") acting as follows
(122 ) 0 =212 @211+ Zn, 4 €X.

Consider a map v&" : V®" — y®" [k < r < n defined as a superposition of the 7;’s:

V= (o ) (T T T 1) o (T 1 T+ Tae = rbk)- (6.16)

The operator v*" has an alternative representation:

VR = (g T ) (T T Ta2) o (T T 1+ T 1= k) - (6.17)

Indeed, in (6.16), the first term of each factor commutes with all terms except the
first one of the previous factor. Hence, we have

Vo = (G ) s (Tt T (T T 1) o (T2 - Tae k) -

Continuation of this process yields (6.17). We extend the braiding on k(X) via
@) = V)" 0,_,, ueV®, ve vV, (6.18)
If » = 0 or r = n, then this definition reads: (1®v)7’ = v®1; W1)T = 1Qu.

Let us show that 7’/ is a braiding of k(X). If u € V®", v € V®" w ¢ V&=,
then

T (T'®id) = (U ® v @ W)+ 0, 04
T (id®T) = (U ® v @ W)V T 10,0,

where T, = (u®vQw). Similarly,

. . _ 1, r+m, m+1,n
T (7' ®1d) (1d®7") = (u ® v @ w)v, """ "6,,0,—,
T (id®T) (' ®id) = (@ v @ wyv/ L om0, 6,

and

T (7' ®1d) (A7) (7' ®id) = (u ® v @ wyv) Tyl ybn=rg, 6,

T (id®7) (7' ®id) (id®7') = (u @ v @ wyv/ L1 - plnm o ypmrmmtlng 6,

r n—m
Hence, the braid relation (6.1) for 7’ is equivalent to the operator equality

Ul'r+m . m—+1,n Ly ln—r _ r+1,n Ly ln—m Un—r—m-i—l.n
r r+m m — Ur+m r n—m .
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Taking into account definition (6.18), we obtain

1,r+m m+l,n _ 1.n 1,n—m n—r—m=+1,n _  1l,n
v, vt =v " and vy, v =" (6.19)

n—m

Therefore the braid relation for v/ reduces to

vl,n . Ul,n—r _ Ur+l.n . Ul.n' (620)

r m — Urtm r

We shall prove this equality using commutation rule (1.33) of Lemma 1.13. By
(6.17), the operator v-" is the following superposition:

(Trfr-i-l e Tn—l)(fr—lfr e Tn—Z) e (‘51‘52 e Tn—r)~

At the same time by definition (6.16), we have

U’}n,n—r = (Tmfm—l Tt fl)(fm—l—l T 7:2) e (Tn—r—l Tp—r—2""" Tn—r—m)'

Applying Lemma 1.13 totally n — r — m times, we have

1,n— 2, n—r+1
(7:1 T e fn—r) VU = Um+1 : (7:1 Ty Tn—r)'
Similarly,
2,n—r+1 __  3,n—r+2
(T Tt 1) "V = Vyan (0T Taept).

Continuation of this process results in (6.20). Thus, the map 7’ is a braiding.
Let us check identities of braided algebra (6.6). The concatenation product m of
the free algebra satisfies (u®@v)m = u ® v. Therefore,

Tu(M@id)T = (U ® V)OW)T = U v @ W)V, fu—r.
At the same time
Tt (ld®m) = @ v ® w)v:j_"il'" ALY N

To prove the first identity of braided algebra (6.6), it remains to demonstrate the
following relation

r+1,n lLn—m __ _ 1,n
vy = (6.21)
We have
L, JA—m
U:—tm " Url = (Tr—i—m Tr4-m—1""" fr-l—l)(fr-l—m—i—l Tr4m=**" Tr+2) T (fn—l Tp—2" " fn—m)

><(‘L’r"f’r—l e fl)(fr—l—l Ty 7:2) e (Tn—m—lfn—m—Z e Tn—r—m)'
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Using relations 7;7; = 7, |i — j| > 1, we can move the first factor (z,7,—; -+ 71) of
v1nm to the left until the first factor of v:j_' " Next, we move the second factor of

v,1~”_’" to the left until the second factor of v:::_"il’", and so on. In this way we obtain

the product
L,
(TrmTrm—1 - T (Trmt1 T T2)  (Ta—1 Ta2 *** Tumrmm) = Vr_:m-

This completes the proof of (6.21).

In the perfect analogy, the second identity of braided algebra (6.6) reduces to the
equality v)-" = pl.rm. v:'i:";"', which was mentioned in (6.19).

Finally, the uniqueness of 7/ follows from each one of (6.6) considered as a

recurrence relation. O

Theorem 6.2 The free braided algebra k(X) has a natural structure of a braided
Hopf algebra where the free generators are primitive with respect to the braided
coproduct:

AP =x @1+ 1®x. (6.22)

Proof Because by definition a braided coproduct is a homomorphism of associative
algebras, equality (6.22) uniquely defines A’. We have to verify that A’ is
coassociative, has a counit ¢, a braided antipode o, and satisfies identities of braided
coalgebra (6.8). Our fundamental idea is to reformulate each of these axioms in
terms of the local action of the braid monoid B,, and then to make calculations in
the monoid algebra k [B,]. To this end, we need the braided coproduct in an explicit
form in terms of the local action. We fix the following notation

o = > [kl + ko] [rs ke ] (6.23)

t<ki<ky<..<k,—y1=n
where by definition
[k; k] = id; [m;k] = Tr—1Tk—2Th—3 * * * Tt 1 Ty M < K. (6.24)

Lemma 6.3 In terms of the local action, the braided coproduct has the form

APy = "[u- "] 6, ue Ve (6.25)
r=0

Proof Without loss of generality we may assume that u is a word, u = 7122+ -+ 2,
7 € V,or,equivalently,u = 21 @2, ®---®z, € V. LetA = {k; <k < ... <k}
be an r-element subset of indices. Denote by €(A, i) its characteristic function:

+ ifi€eA,
— otherwise.

e(A,i) = {



6.2 Free Braided Hopf Algebra 207
Letus put (z)" = (z;®1) and (z;)~ = (1®z;). Then by definition

A@z ) = Y ) (@) WD () - (7).
r A

To prove (6.25), it suffices to check that
w- (1 ki][25 ko) - [ri k] 6, = (20)° DD (22)* A2 - - (2,) A, (6.26)

We may do it by induction on the lexicographically ordered pairs (r, n). If r = 0,
then A = @; hence, £(A, i) = —, whereas (6.26) reduces to

1Qu=2z1-+2,60 = (18z1) - -- (18z,) = 1Qu.

Suppose that (6.26) is valid for all pairs (r,n1) < (r,n). If k, # n, then e(A,n) =
—, that is (z,)*@" = 1®z,, and we may use the induction supposition:

u- [1;k1]"'[r;kr] Gr =21 Zn—1" [1;/(1]"'[}";/{,] 9r(1@2n)

= (@)Y (e AV (182,),

which is required.
If k. = n, then (z,)*“" = zx®1, and by means of (1.36) we have

u-[L;k][2; k2] - - [r; k] 6,
= (Zl e Zn—1-" [1a kl] e [r - 1; kr—l] Zn) Tp—1Tp—2"""Tr er- (627)
Formula (6.11) and the method for extension of the braiding (6.18), (6.16) imply
WO,—1)(2a®1) = (W2,) Tue1 Tz -+ T, 0, w € VEOTD,
Hence we may continue (6.27) using the induction supposition
= (21 zn—1 - [LKa] -+ [r = 1 kp]) 0,-1(za®1)
= (ZI)S(AJ) ... (Zn—l)g(A’n_l)(Zn@U,

which is required. O

Coassociativity By the above lemma, we have

n

AP(u) = Y uy®uy = Y [u- "] 6.

(u) r=0
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Let us fix nonnegative numbers r, m, such that » + m < n. The sum of all terms of
AP (u) that belong to V& +m g y®@t=r=m akes the form u - @r(:;l) 6,+m, whereas the
sum Ry, of all terms of Y, AP(u(1)) ®u(z) that belong to V&' QVE"@VE*" is

1,
Rim = [u- @4 - @177 6,16,

Similarly, the sum of all terms of A”(u) that belong to V&' ®V®"~") takes the form
u - 45,(1’") 0,, and the sum R, of all terms of Z(M) u(l)@A”(u(Z)) that belong to

k,m

Ve QVenQy®—rm takes the form
R,, = [u g q)r(;tj’")] 0,0, 1m.

It remains to check that Ry ,, = R ..

Lemma 6.4 In K[B,] the following equality is valid

L) llrtm — gl gt (6.28)
Proof We have
r+m r
1, . .
Py - B = > [lww)- > e
1<ki<ky<..<ky4p,=<n i=1 I<n<p<..<t,<r+m i=1

Let us analyze an arbitrary term of the above product
(L ki][2ika] - [r 4 mi k] - [ 01][2522] - - [ 1] (6.29)

The relations 7;7; = j7;, i > j+ 1 imply that [i; k;][1; 11] = [1; 11][i; k;] provided that
i > t1, whereas for i = t;, we have [t1; k;,][1; 1] = [1; k,,]. This allows us to remove
the factor [1; #;] from (6.29) replacing [ ; k;, | with [1; k;,]. Further, the commutation
rule (1.34) under substitution ¢ <= k;, — 1, k <= 1, r <= k;, m < i + 1 demonstrates
that

ikl k] = [kl + Lk + 10 1<i<n

because 1 < i < k; < k;, — 1 holds (we stress that 1 < k; < k» < ... < ky
implies i < k;, and i < t; implies k; < k;,). Hence, we may move the new factor
[1; k] to the left margin position of (6.29) replacing each factor [i;k;], 1 < i < 1
by [i + 1; & + 1].

If after that we do the same with the factor [2; 1], then in the left margin position
of (6.29) appears to be [1; k,][2; k], and each factor [i;k;], | < i < ¢#; is replaced
with [i4-2; k;+2], whereas each factor [i; k], t; < i < t, isreplaced with [i+1; k;+1].
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Applying this procedure further to the factors [3; 3], [4; t4], . . ., [r; t,], we transform
(6.29) thus:
rot—l
[k [2:k] - [k ] - TTCTT i+ 7= s ki 7=, (6.30)
5=0 i=t;+1

where we postulate 7o = 0, #,4-1 = r + m + 1. Let us replace the summation index i
of the elementary product II; in the parenthesis with j = i 4+ r — 5. We have

typ1—1 o1 +r—s—1
df . ;
I, = 1_[ i+r—ski+r—sl= l_[ [, kj—rys + 1 —s].
i=ty+1 J=tytr—s+1

The upper limit, j = t,4; + r — s — 1, of Il and the lower limit, j = t,4; + 7 —
(s + 1) 4+ 1, of 1,4, are consecutive integer numbers. The smallest value of j is
to +r—0+4 1 = 1, whereas the biggestoneis t,y| +r—(r+ 1)+ 1 =r+m.
Therefore, if we set kj’. = kj—r45 + r — s, then

rotepr—l r+m
[TCT]li+r=ski+r—sh= [] ikl
s=0 i=t;+1 j=r+1

In which case, we have r < k| < k) < ... <k, < n, so that the above term occurs
in

r+m

o= 2 lssk

r<si<s<..<sy;y<n i=r+1

In formula (6.30), we have 1 < k;, < k;, < ... < k;, < n. In particular, the product
[1;k,][2; ky,] - - - [r; ki, ] Occurs in

o = > ﬁ[i; 5.

1<si<sr<..s,<n i=1

Thus, each transformed term of @} - &+ occurs in & - ®*!" Because
different terms are transformed to different ones (the above described transformation

is invertible) and both sums have the same number of elements,
(.)()-00)
r+m r N r m '

wehave @42 0174 = g gt ;
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Counit The counit is defined in a standard way as a homomorphism e(x;) = 0,
e(e-1) = a. The kernel of e is A = Y oo, V®'. Evidently A satisfies (6.2) so that
¢ is a homomorphism of braided algebras. Further,

@10, . (e®id) = @0, - (Id®Qe) =0, 0<r<n,

whereas @' = @' = id. This implies the counit properties (1.53):

Y euuey = Y ups(ue) = u,
) @)

Similarly, we have
(l nG,_, - (e®id) = v(l ”)9 -(id®e) =0, 0<r<mn,

and v(l " = " = id. This implies (6.7) connecting the braiding and counit:

' (e®id) = (1d®e)7r’, 7/(1d®e) = (¢®id)T’.

Identities of Braided Coalgebra Let us check (6.8) by connecting the braiding and
coproduct:

(A’ ®id) = ([d®A") 17, T(d®AY) = (A’®id)7T|. (6.31)

If u € VO, v € V®"" then by definition, we have

u®v)t' (A’ ®id) = (u ® v)v,"0,— (A’ ®id) = (u ® v)v!" Z o!"9,0,_,,

m=0

whereas

Q) (AR A")T|7) = (u ® v) Z o' 6, 46,117

n—r
=(u®v) Z @:_T;nl " rl rkm g 1Ot T

m=0

(M®U)Z¢r(f:nln) r1r+m :nni-'}ng 0,
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Due to (6.19), we have vrl*’+’"v,':irl’” = v, Therefore, the result follows from the
next lemma.

Lemma 6.5 In K[B,], the following commutation rule holds

vl @l = gUtIm L (6.32)
Proof By (6.17), we have
U;},n = (Trfr-l—l oo ‘Cn—l)(fr—lfr ce Tn—2) e (fl T Tn—r)7 (633)

and definition (6.23) reads:
o, = > (H[i; ki]) :
1<k)<ky<...<kp<n—r \i=1

Conditions 1 < k; < ky < ... < ky imply i < k;. In particular, the chain of

inequalities 1 ; i < ki—1 < n—rholds unless k; = i. Because [i;i] = id, the
latter chain of inequalities allows us to apply commutation rule (1.33) under the
substitutionk <— 1, t<n—r,r<ki—1,m<«1i:

(- k] =i+ Lk + (ti2 - Ty).
This implies
(Tl Ty Tn_r)ér(nl,n—r) — ®,(nz_i_n1_r+l)(fl Ty Tn—r)-

In the same way, we have

@n—r+1) GBu—r+2) 5 (2.n—r+1)
(13 Tt 1) Py =Py Pupi .

Continuation of this process ends with the required commutation formula (6.32).
|

Similarly we shall check the second of identities (6.31). We have,
@) ([d®A") = (u ® v)v,"6,—,(Id®A")

r
—r+1,
= (M X U)V,}'n Z ¢n(’lr_r|_m ") 9n—r+m9n—rv

m=0
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and

@) (A’ Qid)rjr) = U@ v) Y D" 0,6,7)7]

m=0

,
= u®v) Z @) ymtlng o nOnt,

m=0

,
= uUQv) Z gDy(nl,r) V:n-H,n vrln,n—r-i-m Bpp—r Ot
m=0

Taking into account representation (6.17), we obtain v 17 plLn=rtm — ) ln Hence,

it remains to apply the commutation rules of the next lemma.

Lemma 6.6 In K[B,], the following commutation rules hold

vrl,n q>(n—r+l,n) — qilsll,r) v},n' (6.34)

n—r+m

Proof By definition (6.16), we have

V}’n = (Trfr—l ce tl)(tr-i-lfr T TZ) T (‘Cn—lfn—Z T Tn—r)v

whereas the definition (6.23) states
U — > (H[n —r+i ki]) :
n—r+1<k|<ky<...<kp<n \i=1
Conditionsn —r + 1 <k} <k < ... < ky, imply n —r + i < k;. In particular, the
following chain of inequalities holds: n —r < (n—r+1i)—1 < k;— 1 <n—1. This

chain allows us to apply commutation rule (1.34) proven in Lemma 1.13 under the
substitutiont <~ n— 1, k< n—rr<k—1,m<n—r+i:

(Tt Taz Tl = 1+ 55k = = r 4 i = Lk = 11Tz = Ty,

This implies
(Ta—1Ty—2 - tn—r)d),(lri_rf;nl " = 05,,('1_,;?,,__15 (Ta—1Tn—2 "+ Tu—y).
Similarly,
(Thi—2Tn—3 " "Tn—r—l)¢n(’l_r_r|:nm__lf = 05,,('1_,;_,,}’_'12_ D (T2 Ty - Taere1).

In this way, after n — r steps, we obtain the required commutation rule. O
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Braided Antipode We define ¢”(u) = (—=1)"u - p,,ll u € V®" where the mirror
operators 1!, 1 <t < n are set up thus:

phy = (0T ) (GTg1 oo Tim2) - (T T ) T (6.35)
Ifu =a-1 €V, then o®(u) = u; that is, the restriction of ® on V®? is the identity.
Lemma 6.7 The mirror operator has another representation:
1
My = (Ta1 T2 T 1 T) (T Tz =+ T2 T 1)+ (Tam1Tu2) * Tnmt = (Uppeyi 1)’

where 1 : T; &> T,—; is an automorphism of B,; see Sect. 1.4.

Proof The latter equality follows from definitions of the mirror operator and . To
check the former, we use induction on n :

n—2
wo=(TTg1 - T = (TT41 - Tue1) l_[[i;n —1], (6.36)
i=t

where, as above, [i; k] = 74— Tx—2 - - - T;. By definition, 7, [i; n—1] = [i; n], whereas
the commutation rule (1.34) under the substitution t < n— 1,k < i, r < s + 1,
m < s + 1 reads: 7,[i; n] = [i; n]ty+1, provided that i < s < n — 2. These relations
allow us to continue (6.36):

n—2
= (tht+1 . ‘Cn_z)l’n_l[t;n — 1] l—[ [i;n — 1]
i=t+1
n—2
= (ute1 - ) Enna i+ Lin—1] [T lin—1]
i=t+42
n—2 n—1
= (4T+1--- =)t n][t + 1;n]T—1[t + 250 — 1] l_[ [iin—=1]1=...=| |[i;n].
=143 i=t

O

Let us check the properties of the antipode, (6.12). If u € V®©, the properties are
clear. Because (1 ® v)m = u ® v, the sum Z(u) a”(u(l))u(z) withu € V®" n >0
takes the following form:

w-y (=1yo!M"0,(0" @idym = u- Y (=1)’ &My,
r=0 r=0
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whereas Z(u) u(l)o” (#(2)) reduces to
u-y (1 D6,(d@ o’ )m = u- Y (=1t
r=0 r=0

Hence, the required equalities follow from the lemma below. O

Lemma 6.8 Ifn > 0, then

Yyl =0 = (1ot
r=0 r=0
Proof Let Ty = id, and for 1 < r < n define
r—1
T=o"u = > [LhZkl- k- [[@o.. ).
i=1

1<k)<ky<...<k,<n

The operator t; commutes with all operators [s; k], s > j + 1. Therefore
r—1 r—1
2ika] - [rik] - [ [(mima. . 1) = (k) R2iks] - [r = L] - [ [(ima - 1)
i=1 i=2

r—1
= [1;k2][1;k3]"'[”—2;kr]'H(Tlfz---fr—i) =...= [Lk][l;ks]---[1: k],
i=3

which implies

o= ) [Lkllik] [kl

1<k)<ky<...<ky<n

We shall prove by induction on s the following equality

DT =1 Y (LRl [k] (6.37)

r=0 1<k)<ky<...<ks<n

If s = 0, then Ty = Ty = id, whereas the set of sequences of length s = 0 contains
the only sequence—the empty one. At the same time, the empty product of operators
by definition is the identity operator. This explains (6.37) with s = 0.

If s > 1, we have the following partition:

{1<ki<ky<...<ks;<n}

={l=k <k <..<k<nfU{l <k <ky<...<ks<n}.
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Because [1; 1] = id, this implies

o= Y [Gkl-Lkl+ Y [Lkllkl--[k]

l<ky<...<ks<n <k <ky<...<ks<n

By the induction supposition the first sum equals (—1)*~! Z,_O( 1)'T,, whereas

D > [Lkik] (1A

l1<ki<ky<...<ks<n

s—1

= ()'T,— (=)' (=)' Y (- 1>T—Z( T,

r=0 r=0

which completes the proof of (6.37).
If n > 1, then the set {1 < k; < ky < ... < k, < n} is empty; hence, (6.37)
implies

Z( 100y Z( 1)'T, = 0. (6.38)

r=0 r=0

r+1 _—

Further, by Lemma 6.7, we have u/t! = (u)_,)", where by definition 7/ = 7,

Lemma 1.14 claims that
[l;kl][Z; k2] e [r;kr] = [n; in—r][n - 1; in—r—l] e [r + 2; iZ][r + 1; il]s

where {ij < i < ... < i,—,} is the complement of {k; < k; < ... < k,} to
the set {1,2,...,n}. Considering that [k;m]' = [n —k 4+ 1;n — m + 1], we have
o' = (cp“ - ’))l This implies

n

Z(_l)n—rér(l ) r+1 (Z( l)n rq>(1 n— r)’un r)l =0

r=0 r=0

due to (6.38) with n <— n — r. Theorem 6.2 is completely proved. O

Proposition 6.2 The braided antipode o” of the free braided Hopf algebra k{X) is
a braided antihomomorphism:

mo’ = r(c’®c’) m. (6.39)

Proof Letu € V&, v € V®"=") Using (6.18) and the representation of Lemma 6.7,
we have

n—r—1 n—1

V)T (6°®0”)m = (u ® v)v!"(=1)"" ]_[ [i;n—r] x (=1)" ]"[ [izn).

i=1 i=n—r+1
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By definition, [n — r;n][i;n — r] = [i;n], 1 <i < n — r, whereas the commutation
rule (1.34) under the substitution t <~ n— 1,k < i,r < j+ r, m < j+ 1 takes
the form [j;r + jl[i;n] = [i;n][j + 1;7 +j + 1] provided that i < j <n—r— 1.
Applying these relations and definition (6.16) of v!", we obtain

n—r—1 n—r n—r—1

v [T En=r=TJlir+4x [] lin—1
i=1

i=1 j=1

n—r—1 n—r—1

= [l Usr+idxn=rnllin—rx [] lin—r]
j=1 i=2
n—r—2 n—r—1

= [] UGir+ixtinlln—rnl2in—rx ] lin—r]
j=1 i=3

n—r—3
= [] Uir +i < [t:nl2:nln = rin][3:n — 7]
j=1

n—r—1 n—r
X l_[[z,n—r]z = | |li;n]
i=4 i=1
This implies
n—r n—1
@) (0"®0")m = @ v)(—1)"[[lin] x [] lin] = @®v)mo”,
i=1 i=n—r+1
which is required. O

6.3 Differential Calculi and Constants
Consider the following commutation rules for differentials

xidxy = E adxsx,, where (x; ® x)T = E ayxs @ x;, aff € k.
st st

In other words, the operators A} are defined on generators by

Axy), = Zaf,ﬁx,,
t
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and they are extended on k(X) by formula (1.78):

Alw) = Y A@®)AW);. (6.40)

Proposition 6.3 The above commutation rules define a right coordinate differential
calculus on kK(X), which is connected with the coproduct of K(X) as follows:

Aw)=1Qu+ Zx,-@% (mod A @ k(X)), (6.41)

where as above A = ker ¢ is the ideal generated by x;, i € I. The partial derivatives
are connected with the coproduct A®(u) = Z(u) u1)Qu) as follows:

9 d
Ab ( ”) =" 20 gy, (6.42)
(u)

B_xi 3xi
Proof Let us demonstrate that the operators A} are related to the braiding thus:

M Q@x)t = Zx,-@A(u)j;. (6.43)

Because by definition A}; are linear maps, it suffices to prove this equality when u is
a word in the x;’s. We perform induction on the length of u. If u = x;, then

(6 ®)T = ) olhr ®x = ) BAC);.
it i

Let u = vw, where v, w are nonempty subwords. Using the axioms of braided
algebra, the induction supposition, and (6.40), we have

(WwRx)T = (VA®WRx)(Mid)T = (VO w R x¢) 7271 (id @ m)

=(0® ) x@AWPuEdem) = () x®A®); ®AW);)(id ® m)

8,0

=) xQO) AWIAW}) =Y xi @AW

This completes the proof of (6.43).
Because all monomials are linearly independent in k(X), for each u the elements
@'(u) such that A’(u) = 1 @ u+Y ;x; ® ¢'(u) (mod A? ® k(X)) are uniquely defined.
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Of course ¢'(x,) = §i. We have

1®uv + Zx,-@(pi(uv) = AP(u)

i

=(1Qu+ Y xQeW)(1®v+ Y xu®¢'(1v)
i k

1 Quv + in@goi(u)v + Z f(M@xk)U@‘/’k(U))
i 3

1®uwv + > 1@ (@' v + Y A" (v).
i k

Hence ¢’ (uv) = ¢'(w)v+ Y, AL (u)p*(v); that is, the Leibniz formula (1.79) holds
and ¢' are precisely the partial derivatives. This completes the proof of (6.41).
Thus we have

8
Ab(u)— l®u+2x, —I— Z uy Q u).

u() € A2

This implies

ou ou
b2 () —
(A"W) w) =18 1®Qu+ Ei x,-@l@a—xi+§i 1@xi@8_)c,~

+ Y Ay Qu).

u( € A2

Since the coproduct is coassociative, it follows that

ou
A @)’w = 1@1Qu+) 1@u@7-+18® Z gy B .

He A?

+Zx,®Ab (ax ) Y U ®ue Qug).
1

u() € A2

Considering that (6.41) is already proved, we have

A"(u(l))—l®u<1>+2x1 B0 (mod 42 @ K(X).

ox;



6.3 Differential Calculi and Constants 219

Therefore, the coassociativity implies

In a perfect analogy, there exists a left coordinate differential calculi on k(X)
defined by the commutation rules

d*x v = ZB(U)‘;( ~d*xy,

where B(x;); = Y, af and B(uv)] = ), B(u){B(v)!. This calculus is connected
with the coproduct similarly:

Aw)y=uxl+ Z ; (mod k(X) ® A%); (6.44)

A (%) =S un® r ”(2’ (6.45)

Recall that a polynomial u € k (X) is a d-constant (d*-constant) if du/dx; = 0,
i € I (respectively, 0*u/dx; = 0, i € I); see Definition 1.16 .

Corollary 6.1 All primitive elements from A? are constants for both calculi.

Proof Wehave u® 1 + 1Qu = 1®u (mod A? ®k (X)); hence, (6.41) implies
du/dx; = 0. Similarly, (6.44) implies 0*u/dx; = 0.

O
Corollary 6.2 The algebra C of all d-constants is a right coideal; that is, A*(C) C
CQK (X). The algebra C* of all d*-constants is a left coideal: A"(C*) <
k({X)®C*.

Proof If du/dx; = 0, then by (6.42) we have ), (du()/0x;) ® up) = 0. This

implies du(;)/dx; = O because without loss of generality one may suppose that
the set {u(y)} is linearly independent. In a perfect analogy, d*u/dx; = 0 implies
a*u(z)/axi =0. o

In view of the fact that the space of all constants is a subalgebra, the following
note demonstrates that the constants are far from always being primitive

Lemma 6.9 A product uv of two primitives is primitive only if U @ V)T = —u @ v.

Proof AP(uv) —uv®1—1Quv =u®v + (u®v)t. O
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6.4 Categorical Subspaces

The free braided Hopf algebra allows one to construct braided Hopf algebras as its
quotients. To this end, we have to find a way to construct braided Hopf ideals, see
Lemma 6.2.

Lemma 6.10 If a subspace W C K (X) satisfies conditions 2, 3, 4, and 5 of
Definition 6.1, then the ideal I(W) generated by W is a braided Hopf ideal.

Proof We have to demonstrate that /(W) satisfies conditions 2 — 5. For short, let §
denote the space k (X). Using identities of braided algebra (6.6), we obtain

(S®SW)T = (S®S®W)(id®m)T
= (S®S®W) 71> (m®id) € (SRS®W)1,(mKid)
C (SRSQW + SOW®S)(mRid) C SQW + SWRS.

Applying the obtained inclusion, we have

(SRSWS)T = (SRSWRS)([d®m)T = (SRSWRS)T7,(mRid)
C (SQWRS + SWRSRS) o (m®id) € (SWRS + SQW) + SWSRS.

The resulting inclusion takes the form
SR/AW))T CIW)RS + SQW. (6.46)
Similarly,

SWRS)T = (SAWRS)(MRid)t = (SQWRS) 1271 (1d®m)
= (SQW®S)7)1(Id®m)
C (S®SQW + SQW®S)1(id@m) C S®SW + SQWS + WRS,

and

(SWS®S)T = (SWRS®S)(mRid)r = (SWRS®S)1,7 (id®m) < (SWRS®S)T (id®m)
C ((SRSW + SQWS + WRS)®S)(id®m) C SRSWS + SQWS + WRS.

Therefore
I(W)®S)t € SRI(W) + WRS. (6.47)

This completes the proof of the second property.
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The third one is evident, for ¢ is a homomorphism of algebras. To check the
fourth one, we remember that A” is also a homomorphism of algebras:

AP(SWS) S (SRS)(SRW + WRS)(S®S),

where the product on S®S is defined via (6.11). Using (6.46) and (6.47), we obtain
the required inclusion,

Ab(L(W)) C I(W)®S + SRI(W). (6.48)

The fifth condition follows from the fact that ¢* is a braided anti-homomorphism;
see Proposition 6.2:
(SW + WS)o? = (S@W + WRS)mo? = (S®W + WRS)t(6”®c’) m
C (S®W + WRS)(0?®a”)m C (S@W 4+ WRS)m C SW + WS,

and

(SWS)a? = (SWRS)mo? = (SWRS)r(c?®c?) m
C (S®SW + SQWS + WRS)(6*®0?) m
C (SR(SW + WS) 4+ SR(SW + WS) + WRS)m C SWS.

|

Definition 6.2 A subspace W of a braided space V is called right categorical if
(V@ W)t C WQ V.I1tis left categorical it (W ® V)t CV ® W. A left and right
categorical subspace is called categorical.

Every categorical subspace is a braided subspace, 7(W @ W) € W ® W, but
not vice versa: A sum of two (right) categorical subspaces is (right) categorical,
but a sum of two braided subspaces is not necessary braided. If W is a categorical
subspace, than it satisfies (6.2), and by Proposition 6.1, the quotient space V/W has
induced braiding.

The simplest examples of categorical subspaces in k (X) are V®". The local
action provides more examples.

Lemma 6.11 Let R be an arbitrary subset of the monoid algebra K[B,] of the braid
monoid B.. IfA C V® is a (right) categorical subspace, then so is A - R.

Proof Because a sum of (right) categorical subspaces is (right) categorical, we may
suppose that R has just one element, Z. Let v € V®™", a € A. We have

(U@Cl)f = Zaj@vj, a; € A.
J
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We identify the braid monoid B, with the submonoid of B,,, generated by the braids
S1,82,...,8—1, whereas by B, we denote the submonoid generated by $y+1, Sm+2,
.+ Sm4r—1. Certainly, the map ¢ : s; — s,+; defines an isomorphism between B,
and B,.. We have

1VQ(a-E) =(v®a) ¢(&)0,, and (g;- E)Qv; = (g @ v)) - & 0,.
Consider in B, the following element, cf. (6.16), (6.17):
r 1

v = lm + i = [ [(ss1 - si0-0)- (6.49)

i=1 j=m
Commutation rules (1.33) under the substitution
k<—jt<—j+r—1r<i+j—1, m<«<i+j—1

hold provided thatj < i+j—1 <i+4j— 1 <j+ r— L. The latter inequalities are
equivalentto 1 < i < r. Hence,

(8iSj1 * * Sjr—1)Sipjm1 = Sigj(8i8j1 - Sjpr—1), 1 =i<r, 1 <j=m.
Therefore, decomposition (6.49) implies the commutation rule

Lmtr Lmtr _ Lm+ .
v, "Ts = SV, = (s v, T, 1 <i<r.

In particular ¢ (&) v\ = vlm+r 5 Thus we obtain
(W®(a- &)t = (v®a)-p(E)v,"*" 6,

=W®a)v," 56 =) au-56,=) (4 5)Q;:
j j
(6.50)

Hence, A - & is right categorical. In a perfect analogy, one may demonstrate that

((a- E)®v)T = ka@(ak - B), (6.51)
k

where (a®v)t = ), vx®ax. Thus, A - Z is left categorical as soon as A is. O
Lemma 6.12 The left annihilator in V®" of any subset R C K[B,] is categorical.
Proof This follows from equalities (6.50) and (6.51). ]

Corollary 6.3 The space C of all d-constants and the space C* of all d*-constants
are categorical.
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Proof Comparing the coproduct formula (6.25) and decomposition (6.41), we see
that u € V®" is a constant for the right calculus if and only if u - @1(1’") = 0. By

the above lemma, each homogeneous component C, = C N V®" is categorical.

Hence, so is C. Similarly, u € V®" is a constant for the left calculus if and only if
(1.n)

u-®,77" =0. O

6.5 Combinatorial Rank

In this section, we adopt the concept of the combinatorial rank—see Sect. 1.5.6—to
braided Hopf algebras.

Theorem 6.3 Let H be a braided Hopf algebra generated by a braided subspace
V of primitive elements. Every nonzero coideal C of H contains a nonzero primitive
element.

Proof Let {a;|i € I} be a basis of V. Consider the free braided Hopf algebra k(X)
introduced in Theorem 6.2, and let us fix a natural homomorphism

gk(X) — H, S(Xi) = a;, iel.

We are reminded that a constitution (multidegree) of a word u in X = {x;|i € I}
is a family {m;|i € I} such that u has m; occurrences of x;. A total degree of u is
> ;m;. A total degree d,(f) of a polynomial f is the maximum of total degrees of its
monomials.

Let us choose a polynomial f € k(X) of minimal total degree such that £(f) € C,
&(f) # 0. We claim that £(f) is a primitive element.

The coproduct of a monomial has a decomposition A?(u) = )" u(1) ® u() where
u(1y, Uy are monomials such that d;(u) = d,(uq)) + di(u)). This implies that
AP(f) —f®1 — 1 ®f has a decomposition Y, fi ® fi, where the total degree of
each f, f3 is less than the total degree of f. Our aim is to show that

Y fi ®fi € k(X) ® ker§ + keré @ K(X).

Therefore, we may assume that the f3’s are linearly independent modulo ker . Let
C = £71(C). As & is a homomorphism of coalgebras, C is a coideal of k(X). Hence,

Y fi®fie COKX) +k(X)®C. (6.52)

Consider an arbitrary linear map 7 : k(X) — Kk such that 7(C) = 0. Applying
7 ®id to (6.52), we obtain Y, w(f})fs € C. The total degree of the latter sum is
less than that of f. Hence Y, w(f})fi € ker&, which implies 7(f{) = 0 for all i.
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Inasmuch as 7 is arbitrary, this implies f; € C. Because the total degree of f; is less
than the total degree of f, we have the required inclusion f; € ker&. O

Denote by J the kernel of £ : G(X) — H. By Theorem 6.3, J contains nonzero
primitive elements. Let J; be an ideal generated by all primitive elements of J.
Clearly J; is a Hopf ideal. Consider the Hopf ideal J/J; in the quotient Hopf algebra
k(X)/Jy. By Theorem 6.3, either J; = J or J/J; has nonzero primitive elements.
Let J,/J; be an ideal generated by all primitive elements of J/J;, and J, be its pre-
image with respect to the natural homomorphism k(X) — k(X)/J;. In this way, we
find a strictly increasing chain of Hopf ideals

0O=JcJiclhpC...CJ;C.... (6.53)

In this chain, the ideal J;/J,—; of k(X)/J,—; is generated by primitive elements.

Definition 6.3 The length x(H) of chain (6.53) is called a combinatorial rank of
the braided Hopf algebra H with respect to the primitive generators a;, i € 1.

Lemma 6.13 Let k(X); be a subspace spanned by all polynomials of total degree
less than or equal to s. The following inclusion holds: K(X); N J C J41.

Proof We use induction on s. If s = 0, the required inclusion is evident.

Assume that k(X);NJ C Jo4 for a given s. Consider the natural homomorphism
& : k(X) — k(X)/Js41. For each polynomial f of total degree < s such that £(f) €
J/Js+1 we have £(f) = 0. This means that all elements from k(X);41 N J/Jy41 are
primitive. In particular, K(X),+1 N Js41 C Jy42, which is required. O

In view of the fact that J = | o2, (k(X)sNJ), the above lemma implies | )2, J; = J.

6.6 Braided Shuffle Hopf Algebra

In this section, as above V is a braided space with a basis X = {x;,i € I}. The
tensor space T(V) = Y °2  V®" has another structure of braided Hopf algebra,
Sh.(V), called a quantum shuffle algebra or a braided shuffle Hopf algebra. To
distinguish between elements of Sh (V) and k(X), a word u = x;x; - x;,
considered as an element of Sh (V) is designated by (1) = (x;x;,--- x;,). The
expression (x;x;, -+ x;,) is called a co-monomial. We extend the map u +— (u)
to an isomorphism of linear spaces () : k(X) — Sh.(V). The coproduct on the
co-monomials is the co-concatenation:

A() =Y @MW) = () u-6,), (6.54)
s=0

u=vw
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where, as above,
(i Xiy o X, - 65) = (% 0+ X)) @ (i Xy 0 X, )

We stress that both the co-concatenation coproduct and the concatenation product
are independent of the braiding.
The product of co-monomials is defined as the shuffle product:

W) =uev-(@")*), ueV®, ve Ve, (6.55)

where the operators QDV(""), 1 <t < r < nare defined in (6.23), and * : k[B,] —
K[B,] is the involution of the monoid algebra k[B,] such that

(Til Tiy* " ‘L—i.r)* =T Ty
In particular, the operator (<1§r(1’") )* takes the following explicit form

(@1M)* = > (ks Allkr—1sr — 1] ... [kas 2] (kg 1],

1<ki<ky<...<k,<n
where due to (6.24), we have
[k:k] = id; [kim] = [m;k]* = TuTng1 -+ T3 T2Th1, m < k. (6.56)

Due to equality (1.43) proven in Lemma 1.14, there is another representation

(@1M)* = > liv;r + 1liz; r + 2] -+ [in—ri n). (6.57)

1<ii<ip<...<ip—p<n
The braiding is extended on co-monomials by the same formula (6.18):
WRW) - t=w®v-v"-0,_,), ueV®, ve v, (6.58)

where due to (6.16), (6.17), we have

Vrl'n = (o1 T TG1T 0 T2)  (Ta—1 T2+ Tuer)
= (41 e )(To1 T Tu2) o (T T2 e+ Taer) = (0)0) . (6.59)

The counit and the braided antipode on co-monomials remain unchanged also:

(W) = e), o"(w) = (6"W) = (u- u,), ueve"

In view of (6.55), it looks much more natural to define the antipode by the equality
a?((w) = (- (u})*), u € V®". In fact, it leads to the same definition.
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Lemma 6.14 (u)* = pu!, 1<t <n.

Proof We shall perform induction on n. By definition we have

(N;)* = E(Tr+lft)(fr+21't+lfr) (T2 Tu—3 0 T W) (Tn—1 T2 * Tr1T)-

Using relations 7,7, = 1,7,, |a — b| > 1, we may move all underlined operators to
the left margin position. This transformation and the induction supposition imply

()™ = (g1 2T ) ()™ = (TTa1 -+ T2 Tam1) (M) = H.

|

Theorem 6.4 The tensor space T(V) = Sh.(V) with the braiding (6.58), the co-
concatenation coproduct (6.54), the shuffle product (6.55), the counit ¢, and the
braided antipode o" is a braided Hopf algebra.

Proof We are going to verify all axioms step by step.

1. The co-concatenation coproduct is coassociative. Evident.
2. The counit properties (1.53) are evident.
3. Identities of braided coalgebra (6.8). Letu € V&, v € V®"=) We have

W) T(d®A) = (Y u®vv!"0,,6) = () u®v-v"6,,6p r1:).

i=n—r i=0

and

) ® (v) (A’ ®id)nr = ) (u-6)® (v) - 1oy
i=0

,
i+1,
= (Z U - U£+ M i) T
i=0

,
= (Z U - v;'-H,n Vil’n_r-‘” : en—r en—r-‘ri)'
=0

r+1,n 1,n—m

The equality (6.21) proven in Theorem 6.1 reads: v, " - v, = vr1+”m Under
the substitutions » < i, m < r — i, it reduces to v!"* = pitln» vil'"_r+i. This
completes the proof of the first of braided coalgebra equalities (6.8).

Similarly,

W) (A ®id) = (3 u®v v 6, 6.

m=0
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and
W) -([d@A)nn =W ® Z(v On)T1 T2
m=0
= (Z U - vrl”+m9m9,+m)rz
m=0
Zu@v VR
It remains to apply the already proven equality vrl’ =yplrtm v:'fml " see (6.19).

4. The shuffle product is associative. If u € V&, v € V®’”, w e V®u—r—m (hep
(@I = (18 0 @) o) = (u@ v @ w- (@) @),
whereas
@] = @ (v w - @5")) = (ko v@w - @4 @)

The equality (&, ")* (@) = (@ F1")*(@"")* follows from (6.28)

stated in Lemma 6.4 applying the involution .
5. Identities of braided algebra (6.6). Let u € VO y e VO g Y®t—m=r) We
have

W)W -mgid)r = [(u@v - (&)%) ® (W)«
= (u Rv@w - (@TTMy*plr 6, m_r) :
whereas
WRWOMW) nuid@m =weWew v," " bpy) -7(id@m)
= (u®v @w -vthre, W,) - 71(id ® m)
= (u®v®w 'v,::},"vrl” "0 —m—r On— ) (id ® m)

— (M QUOW - v;:{—_lr,n v},n—m(¢’;1:rr:—r+l,n)* Gn—m—r) )

Equality (6.21) reads: v;:_lr'" pla=m — vr |- Therefore, it remains to check that

(Q}l,r+m))* Url_,an _ vr+m (®n m—r+1, n) .
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The commutation rule v @'~ = &+, 1 proven in Lemma 6.5 reduces

to the required form after the replacements » <— n—r—m, m < r and application
of the involution *, taking into account (6.59).
In a perfect analogy, we analyze the second equality of (6.6). We have

W ® W - ([dem)T =) ®©&w - (@) 1
=@evew-(&)f")0) -«

=uURUVRW - (@,(,::rl’n))* V" Ger),

and

WR®W) QW) -tnmeid) = @®v -6, ® (W) - n(mid)
= (u®v®w RS ’+mv:'fml"9 Op— ) - (m ®id)

:(u®v®w cpbrbm AL (g lnrys 0_,).

Equality (6.19) states that v, "™ v 1" = 1" hence, it suffices to check that

+1, -
(@ Eyxpln =yl (@lonryx,

The commutation rule v & "* 1" — @i ! proven in Lemma 6.6 reduces

to the required form after the replacement r < n — r and application of the
involution x, taking into account (6.59).
6. Antipode. If u € V®", n > 0, then Lemmas 6.14 and 6.8 imply

3P (W) - we) =Y - uk @y = w- Qe b =0

((w) r=0 r=0

Similarly,

Y way) o ((um))—Zu W@ = - O o wth*) = o.
((w) r=0

|

Remark 6.1 Let V be finite dimensional On the dual space V* = Hom(V k), one
may define a braiding x’, ®x5, — Zkr iy X5 ®x,, where x; ®x; — Zkroz X ®x, 18
the initial braiding of V, and {x’ |i € I} is the dual basis of V*, so that x/, (x;) = §'.
In this case, the map

Ar y®Uktm) _, 8k o 1/®s
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dual to the (k, s)-component of the coproduct of the free braided Hopf algebra
k(V*),

Ak,x . (V*)®(k+s) — (V*)(X)k ® (V*)(X)x’

is precisely the (k, s)-component of the shuffle product of Sh. (V). Similarly, the
map

m/:y . V®k ® V®s N V®(k+m)
dual to the (k, s)-component of the concatenation product,
my (V) @ (V9)® — (v)BEH),

is precisely the (k, s)-component of the co-concatenation coproduct of Sk, (V).
This clearly explains why relations of k[B,,] that are responsible for k(X) being a
braided Hopf algebra are responsible for Sk, being a braided Hopf algebra too.

6.7 Nichols Algebra

In this section, we consider a very important construction of the Nichols algebra
(or, equivalently, guantum symmetric algebra or braided symmetric algebra) A(V)
related to a braided space V with a basis {x;|i € I}. This braided Hopf algebra
appeared independently in various articles with different definitions. In fact, each
rediscovering may be considered a demonstration of a new property of that object.
According to one of a myriad of characterizations, this is a subalgebra of the
quantum shuffle algebra.

Definition 6.4 A subalgebra (V) generated by V in Sh.(V) is called a Nichols
algebra related to a braided space V.

The Nichols algebra is a braided Hopf subalgebra of Sh.(V) and a homomorphic
image of the braided Hopf algebra k(V). The epimorphism

2 K(V) > BV)

has a lot of nice characterizations. We consider just two of them. Additionally we
prove fundamental properties of the Hopf ideal ker £2.

For each permutation 7 € §,, we fix an element 7° € B, as follows. If 7 €
So = {1}, then 7* = 1. Assume that 7" is already defined for all # € S,—;. If
7 € Sy \ Sp—1, then the permutation 7wty () fr(n)+1* * * thi—2tn—1 belongs to S,—;, where
as usual ¢ is the elementary transposition i <> i + 1. We put

b

nt = (”tn(n)trr(n)-l-l te tn—2tn—l)b Tn—1Tn—2 " Ta(n)+1Ta(n)- (6.60)
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Proposition 6.4 Ifu € V®", then

Q) = (Z u-n’). (6.61)

TES,
Proof We use induction on n. If n = 1, the equality takes a form £2(x) = (x),x € V.

Letu = v®ux, v € V"D x e V. Using the induction supposition, representation
(6.57), and definition (6.60), we have

Qu =2WRW= () va)®)=() v-a"®x ) [in)

TES;—1 TES,—1 1<i<n
b b
= E E U T Ty—1Tp—2 T, = E E u'(ﬂtn—ltn—Z"'ti) .
TES,— 1<i<n TES,—1 1<i<n

For a given i the set ¥; = S,—i#,—1t,—> -+ t; consists of all permutations v € S,
such that v(n) = i. Hence the union of X;, 1 < i < n equals S,,. O

Lemma 6.15 The Hopf ideal ker §2 is equal to the sum of all coideals C such that
C C A2, where A = Kere is the ideal of kK(X) generated by x;, i € I. In particular,
ker §2 is the biggest Hopf ideal contained in A>.

Proof Iff = ap + Y., aix; + a, a € A%, then 2(f) = ap + Y. ai(x;) + 2(a),
and 2(a) € (£2(A))?> € (A?). By definition of Sh,, the elements 1, (x;), i € I are
linearly independent modulo the space (A?) spanned by all (u), where u is a word
of length greater than 1. Therefore if f € ker £2, then op = o; = 0, i € [; that is,
ker 2 C A2,

If C € A? is a coideal, then £2(C) is a coideal of Sh.(V) such that 2(C) <
(A?). If 2(C) # 0, then by Theorem 6.3 there exists a nonzero primitive element
a € £2(C). However, the definition of the co-concatenation coproduct shows that no
one element from (A?) is primitive. Hence £2(C) = 0, and C C ker £2. O

The next characterization of £2 is related to the coordinate differential calculi.

Theorem 6.5 The Nichols algebra has a right differential calculus such that §2 is a
homomorphism of differential algebras. The partial derivatives with respect to (x;),
i € I connect the calculus on (V) with the coproduct via

9(u)

()(mﬂmf@%w» (u) € BV),

b
AP () =1® (u) + Z(x,)@ 3

(6.62)
where, as usual, A = ker ¢ is an ideal generated by x;, i € I.

Proof By Lemma 1.25 we have to show that the kernel J of §2 is a differential ideal.
Letu € J. Because J is a Hopf ideal, we have

Ab(u)—1®u+2x,®a—;‘+ e JRK(V) +k(V) ®J. (6.63)
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Let 7r° be alinear map * : k(V) — k, such that 7 (1) = 0, 7°(x;) = &}, 7(A?) = 0.
Applying 7* ®id to both sides of (6.63), we obtain du/dx, € J because due to
Lemma 6.15 the inclusion J € A? holds. O

Proposition 6.5 (M. Grafia) The homomorphism 2 : k(V) — B(V), x; — (x;)
has the following representation in terms of the above defined differential calculus:

Q@) = Z axnaxn al(x,lx,z . x;,), ue Ve, (6.64)

i1,02,..., iy n

Proof Let us define linear maps D' : k(V) — k(V), i € I such that D'(1) = 0,
Di(x,u) = §iu. The equality

E uD"D? . .-D"x; Xy -+ Xiy_ Xi,-
01,0240, iy

is evident if u is a monomial of length n > 0, and by linearity it is valid for arbitrary
u € V®" n > 0. Considering that u D' D - - - D' are scalars, we obtain

)= Y uD'DD"(x;x;, - X, X;,) (6.65)

i1,02,..s in
Definition of the co-concatenation coproduct and decomposition (6.62) imply

a(w) ;
) = D), (w)e BYV). (6.66)

Let 2(v) = (w), w € k(V). By Theorem 6.5 the map §2 is a homomorphism of
differential algebras. Therefore it commutes with partial derivatives. Using (6.65)
and (6.66), we have

2w) = (w) Z wD' D2 - D" (x; xpy -+ Xi,_,Xi,)

(S

= Z a(x,l)a(x,z) a(x; )(xllxtz . Xi,)

- anQ(v) - X .
= Z , 003 . a(Xin)(x,lx,z...x,”)

"u
- Z 2 (Bxil axiz . axi,,) (xil-xiz cee xin)’

1,020, in

which proves (6.64) because in the latter expression £2 acts on scalars. O
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In a perfect analogy, there exists a left coordinate differential calculus on Z(V)
defined by the commutation rules

d*x; v = ZB(v)i -d*xy,

where B(x;); = >, o and B(uv); = ), B(u);B(v)!. This calculus is connected
with the coproduct in a similar way; see (6.44):

® (x;) (mod B(V) ® (A)%), (6.67)

a*
A(W) = w1+ 5 )(C”))

( .

where, as above, A = ker €. The same reasoning shows that the homomorphism 2
has a representation in terms of d* as well:

(a*)nu Qn
QW) = Z a*x,-la*x,-z...a*xin(xi”x"”*""xi‘)’ ue Ve (6.68)

S

The combinatorial rank of a Nichols algebra is an invariant related to the braiding
7. By Lemma 6.15 it has a maximal value among all Hopf homomorphic images of
k(X) when the images of the generators x;, i € I are linearly independent modulo the
space spanned by values of words of length > 1. The following statements shows
that the combinatorial rank is finite if (V) has a finite dimension.

Proposition 6.6 (A. Ardizzoni) The combinatorial rank of a finite dimensional
Nichols algebra is finite.

Proof If dimension of Z(V) is finite, then, of course, so is the dimension of V.
Because Z(V) is a homogeneous subalgebra of Sh., the ideal A generated by V in
A(V) is nilpotent; that is, V®s C ker £2 for a suitable s > 0. Using Lemma 6.13,
we have V® C k(X),NJ C Joy,, where J = ker 2. Therefore k(X)/J,11 is a
finite dimensional algebra. This implies that the chain J;+| C Jy4, C ... is not
infinite. O

6.8 Radford Biproduct

In this section, we focus on the relations between character Hopf algebras and
braided Hopf algebras. Consider first the free character Hopf algebra G(Y) gen-
erated by skew-primitive variables y;, i € I

A) =yi®hi+f,®yi. vig=x'(Q)gvi. hif.geG, i€l (6.69)
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see Sect. 1.5.3. Let x; = hi_l vi, I € I be the normalized skew-primitive variables,
and let V be a linear space spanned by the x;’s equipped by a diagonal braiding

(x; ® x,)T = py;' (x; ® x;).
Consider the free subalgebra k(X) as the free braided Hopf algebra defined by the
braided space V in Sect. 6.2.

Lemma 6.16 I[fu, v are polynomials in X homogeneous in each x;, i € I, then

(” ® U)-C = Xv(gu)_l(v ® u)s

where as usual g, = gr(u) is a group-like element that appears from each monomial
of u under the substitutions x; < g; = hi_lf,-, i €1, and y' is a character that
appears from each monomial of v under the substitutions x; < x', i € I.

Proof Tt suffices to demonstrate the formula for monomials u,v. We perform
induction on the sum of lengths of # and v. If u, v are the generators, there is nothing
to prove. Applying the axioms of braided algebra (6.6), we have
(ux; ® )T = (U x;, @x;)(M ® id)T = (4 Q@ x; ® x;) 1271 (id ® m)
= 7'(8) 7 (4 ®x; ® x;)71(id ® m)
= 1(g) " X ()7 (v ® u ® x)(id ® m)
= Xi(guxx)_l(xi ® uxy).

Similarly

@)t = u®vex)(id® mr=u®vx)nnm ® id)
= 7"(g) "' (v @ u® x)2(m ® id)
= x"(8) ' X' (g) (v ® x; ® w)(m ® id)
= x"(g) " (v ® u).

|

Theorem 6.6 If u is a polynomial in X homogeneous in each x;, i € I and A(u) =
Z(u) u(y @ u) is the coproduct of u in G(X) with homogeneous u(y, u), then

Ab(u) = Z u(l)gr(u(z))_l Qu). (6.70)
()

In other words, u(bl) = ua)gr(u) ! and u(bz) = u(). The antipode o of H and the
braided antipode o” of k(X) are related by o (u) = g,0 ().
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Proof 1t suffices to check the formulas for monomials. We use induction on the
length of u. If u = x;, the formulas are clear. We have

Aux;) = (Z un ®ue)xi® 1+8i®x;) = Z uyXi @ u) + Z u1)8i ® U)X;.
(u) (u)
Using induction supposition, we obtain
A(uxy) = O uer(ue) ™ @ua)Ei® 1+ 18x)
(u)

= > X (er(ue))  unyer(ue) T @ ue) + Y uaer(ue) ! @ ueyx
(u) ()

= D uyxigr(ue) ™ @uey + Y uay g gr(upx) T @ U,
() (u)

which is required. Similarly, we have o (x;) = —gix;, 0°(x;) = —x;. By Proposi-
tion 6.2, the braided antipode ¢ is a braided anti-homomorphism. Therefore, using
induction supposition, we have

ol (ux)) = W@ x)mo’ = (u® xi)r(obgob)m
= 1) (5 @ ) (0" ®0")m = ' (g.)7" (=x)0” ()
= _Xi(gu)_lxigua(”)‘

Considering that the antipode o is an anti-homomorphism, we may develop

g,,x,.(f(uxi) = —g,,x,-o(u) = _Xi(gu)_lxiguo—("t) = o-b(’/mi)-

O

Proposition 6.7 The partial derivatives 9;(u) and 9} (1) defined in Proposition 1.8
and Proposition 1.9 are related to the partial derivatives defined on the free braided
Hopf algebra K(X) as follows:

*

_,0*u
0i(u) = p("hxi)P,'il F

0 w) = pCxsupy! 2
8x,~

Proof Using relation (6.70) between coproduct A of G(X) and braided coproduct
Ab of k(X), we may compare decompositions (1.80) and (6.44). We obtain

* *

_0%u _10%u
0i(w) = g7 —gi = plu Xy —.
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In the same way, we may compare decompositions (1.85) and (6.41). This yields

0*u

28 ' xigr(9f () ® 9f (u) = x5 ® PR

We have gr(d¥ (1)) = gr(u)g; ! provided that u depends on x;. Otherwise, both the
required relations reduce to 0 = 0. O

Let H be an arbitrary character Hopf algebra generated by normalized skew-
primitive semi-invariants a;, i € I and group G. There exists a Hopf algebra
homomorphism

£:G(X) > H, §x)=a;, £E(g) =g, i€l, geC. (6.71)

Let A be a subalgebra of H generated by the elements a;, i € I. Recall that H has a
grading by the character group G: see Lemma 1.17. At the same time, the grading by
the group G defined on the free character Hopf algebra by (1.92) not always retains
on the Hopf algebra H. For example, the relations [x;, x;] = 1 — g;g; connecting
positive and negative components of a quantization are not homogeneous with
respect to the grading by G, so that the quantizations do have grading by G but
do not have grading by G.

Lemma 6.17 If keré& C GA, then both H and A are bigraded algebras; that is,
the gradings by G and G retain on H and A. Here, as above, A is the ideal of K(X)
generated by x;, i € I.

Proof The gradings retain on H due to Lemmas 1.17 and 1.26. The subalgebra A
generated by a;, i € I is homogeneous because all generators are. O

We stress that each word in the @;’s is homogeneous with respect to both
gradings. Consequently, all expressions homogeneous in each a; are homogeneous
with respect to both gradings but not vice versa in general.

Theorem 6.7 If keré C GA, then subalgebra A generated by a;, i € I has a
structure of a braided Hopf algebra such that the restriction of & on K(X) is a
homomorphism of braided Hopf algebras. In particular, the braided coproduct and
the braided antipode on A and the coproduct and the antipode on H are related by

AP(a) = " apgr(ap) ' ®ap). 6"(a) = g.o(a), (6.72)
(@)

where a € A is an arbitrary homogeneous element with respect to both gradings.

Proof By Lemma 6.2, it suffices to demonstrate that W = ker £ N k(X) is a braided
Hopf ideal of k(X). Let us check all five conditions of Definition 6.1.

1. W is an ideal of the algebra k(X) because ker £ is an ideal of G(X).
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2. k(X)W + WRk(X))t € k(X)W + WQKk(X) as W is homogeneous
and due to Lemma 6.16, we have (k(X) ® W)r € W k(X), W k(X))t <
kX)®@W.

. €(W) = 0 is evident.

4. AP(W) Ck(X) @ W + WRK(X). We have

(O8]

AP (W) C keré ® G(X) + G(X) ® ker&

by virtue of the fact that ker £ is a coideal of G(X). If T is a complement of the
linear space W to ker &, then T Nk(X) = 0. Let U be a complement of 7 & k(X)
to G(X). Consider a linear map 7 : G(X) — G(X) such that

N(U@ T) = 0, le(x) = id.

We have 7(G(X)) € k(X), and w(ker&) € W because G(X) = U & T @ k(X),
and T @ W = ker. Considering that by definition A’(W) C k(X) ® k(X), we
obtain the required inclusion:
AW) = AW (x @ 7) € mker€) 8 w(G(X) + m(G(X)) @ 7 (ker )
=k(X) @ W + WRKk(X),

5. 6?(W) € W because 6 (W) € Gkeré = ker €, and o?(k(X)) € k(X). O

The proven theorem and Lemma 6.17 demonstrate that A is a bigraded braided
Hopf algebra in the sense of the definition below.

Definition 6.5 A braided Hopf algebra L is said to be a bigraded braided Hopf
algebra with respect to an Abelian group G if L is graded by G x G,

L= @ Lt pfcry. Aaehc P LfFsLf.
¢€G. y€G fh=g. X' x"=x
and the braiding is defined by the grading as follows:
tiu®ve (@) -(v®u), uel’, vel, geG, yeb.

In the above theorem, one may reconstruct H from A as a Radford biproduct
H = K[G] ~ A. Let L be an arbitrary bigraded braided Hopf algebra generated by
homogeneous primitive elements a;, AP (@) =a;®1+1Qa;, i €l. Asanalgebra
the Radford biproduct H = k[G] » L is a skew group ring with commutation rules

ag = x(g)ga, acl”’, gegG, (6.73)
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whereas the coproduct, the antipode, and the counit are defined by

A(ga) =) galy er(aly) ® galy. o(ga) =g, '¢"'0"(a). &(ga) = £"(a),
@

(6.74)

where « is an arbitrary homogeneous element with respect to both gradings, a € L,
and A%(a) = 3, a(y) ® apy with afy, € L, ag,) € L . h = gr(ag,). ,

Theorem 6.7 in terms of the Radford biproduct states that H = k[G] x A provided
that ker§ € G A. The converse statement is also valid.

Proposition 6.8 If L is a bigraded braided Hopf algebra generated by homoge-
neous primitive elements a;, i € I, then H = K[G] x L is a character Hopf algebra
and ker§ C GA, where £ : G(X) — H is a natural homomorphism & (x;) = aj,
iel

Proof Consider a space spanned by x;, i € I as a braided space with a braiding
T4 ®x) = (*(8) ' (xs ® x;), where a; € Ly, a5 € L,

By Theorem 6.7, we have G(X) = K[G] » k(X). The map x; — a; defines an
isomorphism between V and a braided space spanned by the a;’s. Therefore, it has
an extension to a homomorphism of braided algebras ¢ : k(X) — L. Let§ = id x ¢
be a linear map such that £ (gu) = ge(u), g € G, u € L. In this case, ker§ = Gkerg
is a Hopf ideal of G(X) because ker ¢ is a braided Hopf ideal of k(X). Consequently,
there is a Hopf algebra structure on H = K[G] * L such that ¢ is a homomorphism
of Hopf algebras. Comparing the braided Hopf algebra structure on k(X) defined
in Theorem 6.6 with (6.72), we see that the induced coproduct, counit and antipode
coincide with that given in (6.74). This proves that k[G] * L is a character Hopf
algebra.

As kerp C ker e® = A, we have keré = Gkerp C GA, which is required. O

Remark 6.2 In the general case, the decomposition of a Hopf algebra H in a
Radford biproduct H = F %A, where F is a Hopf subalgebra and A is a braided Hopf
algebra, exists if and only if there is a Hopf algebra homomorphism (projection)
w:H— F,n|p =id. Inour case F = K[G], andthemap 7 : a; > 0, m : g+> g
is a Hopf algebra projection if and only if ker§ € GA. If GA does not contain ker &
but there exists a Hopf algebra projection v : H — k[G], then we may replace the
generators a; by a; = a; — v(a;). In this case ker £ € GA, where &' (x;) = a’.

Lemma 6.18 The space Prim (L) of all primitive elements of a bigraded braided
Hopf algebra L and a space Prin (G x L) spanned by all normalized skew-primitive
elements (see (1.59)) of the character Hopf algebra G x L are related as follows:

Prin (G « L) = Prim (L) & @D (1 - g)k.

g€G
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Proof The proof follows from the coproduct formula (6.72) and Lemma 1.19. O

We conclude this section with a useful particular formula for products of
comonomials. Let, as above, G(X) be the free character Hopf algebra with com-
mutation rules ug, = x“(gv)gvit, p(u, v) = x*(gy). Then, we have a decomposition
in Radford biproduct G(X) = Kk[G] * k(X), where k(X) is the free braided Hopf
algebra with the braiding defined on X via (x; ® ;)T = p;.lxs ® x;. In this particular
case the product of comonomials in the shuffle algebra Sh(X) takes the form

W) = Y pla ) waw). @) = Y plux) ™ wav). (675

uv=w uv=w

6.9 Filtrations and Subalgebras of the Free Braided Hopf
Algebra

We are reminded that a filtration on a linear space R is an increasing chain
{0} =R(—oo) ERp)SERHCS ... SRy S ...,

of linear subspaces such that (_J; R = R. The related degree function is defined by
d(x) = min{i|x € R(;}. A tensor product R ® T of two filtered spaces is a filtered
space with a filtration (R ® T)() = D _;4,—, Ri) ® T(s). A linear map ¢ : R — T is
filtered if ¢(R(y)) € T(n); see details in Sect. 1.6.

Definition 6.6 A braided Hopf algebra H is said to be filtered if on the space H
a filtration is fixed so that the braiding, the product, the unit map ¢« — « - 1, the
coproduct, and the braided antipode are filtered linear maps. We always consider
the ground field as a filtered space with k(,) = k, n > 0. In particular, the counit

is automatically a filtered map, whereas the rest of the maps are filtered if and only
if:

1. (H(i) ® H(J))t < Zk+m=i+s H(k) ®H(W1)7 i, s>0;
2. HyH() € Hits). 1 € Hgy, i, 5> 0;

3. Ab(H(n)) - ZH_,-:"H(,) ® Hiy, n>0;

4. 6"(Hw) S Hu, n>0.

With each filtered space R a graded space gr R is associated as follows:

o0
grR = @griR,
i=0

where gr; R, i > 0 is the quotient space R(;/R(i—1). A filtered linearmap ¢ : R —> T
induces a linear map gr ¢ of associated graded spaces:

gro i u+ Ru—1y— o)+ Tp—1), u € Rg).
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In particular, if (H, T, m, A®, ¢, 6?) is a filtered braided Hopf algebra, then there are
defined linear maps gr 7, grm, gr A”, gre, and gr o® related to the associated graded
space gr H.

Theorem 6.8 If H is a filtered braided Hopf algebra, then gr H with the braiding
gr t, the product gr m, the coproduct gr A, the counit gr e, and the antipode gro is
a braided Hopf algebra.

Proof Recall that the operator gr is a functor of tensor categories; that is, it
satisfies

1. gr(p-§&) = gre-gré (Lemma 1.29);

2. gr(R®T) = grR® grT (Lemma 1.32);

3.gr(p®§&) =gro ®gré (Lemma 1.33).

Therefore, to check that gr H satisfies the braided Hopf algebra axioms, it suffices
to write down those axioms as operator equalities and apply the functor gr. O

Proposition 6.9 Let R, T be filtered braided Hopf algebras. If ¢ : R — T is a
filtered homomorphism of braided Hopf algebras, then gro : grR — grT is a
homomorphism of braided Hopf algebras.

Proof The condition that ¢ is a homomorphism of braided Hopf algebras can be
written in the operator form as follows: 7- (¢ @ ¢) = (¢ ® @) - T; Mm@ = (P ® ) m;
AP - (¢ ® ) = ¢ - AP. It remains to apply the functor gr. O

We conclude this section by considering subalgebras of the free braided Hopf
algebra.

Theorem 6.9 If a subalgebra U of a free braided Hopf algebra K(X) is a right
categorical right coideal, that is

A"(U) CURK(X),  (k{X)® U)t € U k(X),

then U is a free subalgebra.

Proof Let Sh denote the tensor algebra T'(V) of the space spanned by X considered
as a coalgebra with co-concatenation coproduct

Ay, ® - ®x;) = Zx,-l ® ®x B, B ... DX, (6.76)
k=0
We fix a natural non-degenerate paring (—, —) on k(X) x Sh:

N S S
(i Xiy =+ Xy Xy @ Xy ® +-+ @ xg,) =, 8i118i22 8i:‘
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In this case, the following relation is valid

(wv.h) = (. hV) (. ), u v e k(X), heSh. (6.77)
(h)

Define a measure (action) of S& on k(X) as follows:

u—h= Z(M(bl)’h>u(bZ)’ u € k(X), he Sh. (6.78)
(u)

Let U be a right categorical right coideal subalgebra of k(X). According to
Theorem 1.9, to demonstrate that U is a free subalgebra, it suffices to check that
U has the weak algorithm with respect to the formal degree d(x;) = 1. Suppose first
that U is homogeneous, U = gr U.

Let us show that U is left closed in k(X); see Definition 1.22. Consider a left
linearly independent over k(X) homogeneous elements u,, uy, ..., u, € U. Suppose
that

Y rui=ueU rek(X). (6.79)

i=1

We have A’(u;) = Zufl)@ul@, AP(w) = Zu(l)@u(z) with u®D, ugl) € U, and
Ay =Y rfl) @rl@. Since U is right categorical, it follows that

(rfz) ® u?l))r = Z Uis @ 15, Uiy € U. (6.80)

s

WD

Without loss of generality, we may suppose that all elements u;s,u; uV are

homogeneous. Obviously, this is a finite set; hence, the space

D= Zumk + Zugl)k + Zu(l)k

spanned by these elements has a finite dimension. Let T be a subalgebra generated
by D, whereas Ty, k > 0 are its homogeneous components.

Denote Jy = {h € V& (T, h) = 0} 4 T{. Because dim(7y) < oo, we may
write

JE L e VO (u 1) = 0} = Th.

By definition, T is a subalgebra. Therefore, its annihilator with respect to the pairing,
Zizo Ji, is a coideal. Thus for every h € Jy+1 we have the following inclusion:

k k
AP(h) — 1®@h — h®1 € (Y J)®Sh + Sha (Y _ ). (6.81)
i=0 i=0
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Let us prove by induction on k, starting with k = 0, thatr; — J; = 0,1 <i < n;
that is (see (6.78)), if deg "’ = k. then " € JL = T,. We shall show first that
under the induction supposition for k and smaller values the following equality is
valid

riu; — h = (V,' “— h)u,-, he Jk+l- (682)

Indeed, by means of (6.80) we have

riu; — h = Z((riui)(l),h)(riui)(z) = Z(rfl)uis,h)risuf»z)

1 2
= 3 0t RO (g, KOy

Formula (6.81) and the induction suppositions (with the definition of 7') demonstrate
that in the above sum, all summands are equal to zero with the exception of two
types, where hV) = 1, h® = h, or KV = h, h® = 1. Moreover (u;, h) = 0
because either u;; € Ty4+; or deg u;; # k + 1. Thus, we have got just the sum

Z(rfl)v h) (Ml'sv 1>risul('2)'

Again (u;, 1) is not zero only if degu;; = 0. By (6.80) this is equivalent to
deg u(ll) = 0; hence, ufz) = U, riy = rfz), which proves (6.82).
Let us apply < & to both sides of (6.79). We have u < h = 0 because all u") of

degree s by definition belong to 75 = J| AJ- Therefore (6.82) implies

Z(r,- “— h)u, =0.

1

Because uy, uy, . .., u, are left linearly independent over k(X), we getr; — h = 0,
which completes the induction step.

In particular we have proved that r;, < J,, = 0 with m = degr;. This implies
(ri,Jm) = 0; thatis r; € Jt = T,, C U. Thus U is left closed in k(X).

If U is not necessarily homogeneous, we consider associated graded algebra gr U
with respect to the induced filtration. In this case, gr U is a homogeneous subalgebra
of grk(X) = k(X). Moreover, gr U is a right categorical right coideal:

A (grU) = gr(A"(U)) € gr (U@ k(X)) = gr U @ k(X);
k(X)® grU)grt = gr[(k{(X) @ U)r] C gr (U k(X)) = grU ® k(X).
By the above arguments, the space gr U as a homogeneous subalgebra is left closed

in k(X) = grk(X). It remains to apply Proposition 1.14. O

Corollary 6.4 The subalgebra C of all constants for the right calculus d and the
subalgebra C* of all constants for the left calculus d* are free.
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Proof By Corollary 6.3, the spaces C and C* are categorical. By Corollary 6.2, the
spaces C and C* are left and right coideals, respectively. Hence the above theorem
applies. O

In the proof of the above theorem, we see that an arbitrary weak basis of U is a set
of free generators. The construction of the weak algebra basis given in Lemma 1.38
has an important freedom in choosing a transversal. Sometimes it is possible to use
this freedom to make the generators primitive.

Definition 6.7 A subcoalgebra A of a coalgebra C with a distinguished element 1
is said to be conservative in C if for u € C the inclusion

2°) L APu) — 1®u — u®1 € AQA (6.83)

implies that there exists a € A such that u—a is a primitive element; that is, A?(u) =
A°(a).

Lemma 6.19 Let A be a subcoalgebra of k(X). If gr A is conservative in grk(X) =
K(X), then A is conservative in kK(X), and the element a € A from the above
definition can be chosen so that d(a) < d(u), where d is the formal degree d(x;) = 1.

Proof Let A°(u) € AQA. We shall use induction on d(u). By definition of the
coproduct in the associated graded algebra we have

A°(u) € grA ® grA,

where u = u + K(X)@w)—1) may be identified with the leading component of u.
Because grA is conservative, we may choose a € grA such that u — a is primitive.
Let a € A be such that a is the leading component of a.

If d(u) = d(a), thend(u — u — a + a) < d(u), and

A’w—a—u+a) = A(u—a) €ARQA.

By the induction supposition there exists a; € Asuchthatv =u—a—u+a—a,
is primitive and d(a;) < d(u). Therefore u —a —a; = v + (4 — a) is primitive as a
sum of two primitives, and d(a + a;) = d(u).

If d(u) # d(a), then u itself is primitive (because k(X) is graded), hence, we may
repeat the above argument with a = 0. O

Lemma 6.20 Let A be a braided subbialgebra of the free braided Hopf algebra
Kk(X) equipped with filtration d(x;) = 1. If for each primitively generated braided
subbialgebra A) C A the subcoalgebra gr A, is conservative in K(X), then A has a
weak algebra basis of primitive elements.

Proof Recall that the weak algebra basis may be constructed as follows. For each
n > 0 denote by R(/n) the subspace of R, spanned by the products ab, where a, b €
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R—1) and d(a) + d(b) < n. Choose a minimal set X, spanning R, (modR(’n)) over
k, and put X = UX,,.

Because 1 € A, we may choose X; € V. Suppose that each of Xj, k < m consists
of primitive elements. The subalgebra U generated by all X;, k < m equals the
subalgebra generated by A(,,). Since the filtration is compatible with the braiding, it
follows that the subalgebra U is a braided subbialgebra, and thus gr U is conservative
in k(X). We replace X+ with aset X) ., of the primitive elements in the following
way.

For each w € X,11, we have A°(w) € A®@A S UQU. By Lemma 6.19
there exists u; € Ugy1) such that u — u; is primitive. In X,, | we replace u with
u — u;. By induction on m, the lemma is proved. O

Remark 6.3 We do not claim that the weak algebra basis is a braided subspace.

Definition 6.8 A coideal J of a coalgebra C with a distinguished element 1 is said
to be conservative in C if for each u € C the inclusion

A%(u) € JQC + CRJ (6.84)

implies that there exists a € J, such that u — a is primitive.

Lemma 6.21 Let J be a coideal of K(X). If grJ is conservative in grk(X) = k(X),
then J is conservative in k(X).

Proof The proof will literally coincide with that of Lemma 6.19, if one replaces
A®Aby JQKk(X) +k(X) ®J and grA @ grA by (grJ) @ k(X) +k(X) ® (grJ).
O

6.10 Chapter Notes

The notion of a braided Hopf algebra is one of the basic features of braided monoidal
categories defined by Joyal and Street in [109], although braided Hopf algebras
appeared first, before their formalization within category theory, in the famous
paper by Milnor and Moore [175], as graded Hopf algebras. They appeared also
as universal enveloping algebras of color Lie algebras introduced by Scheunert
[203, 204]. A standard method of obtaining a braided monoidal category is to
consider all modules over a quasitriangular Hopf algebra or all comodules over
a coquasitriangular Hopf algebra: Lyubashenko [156], Drinfeld [66, 67], Larson
and Towber [145], Schauenberg [201]. In the book [142, Chap. 10], Klimik and
Schmiidgen expound this approach to the construction of braided Hopf algebras.

A slightly different but essentially equivalent approach is to consider categories
of Yetter—Drinfeld modules over Hopf algebras. This approach was proposed by
Andruskiewitsch and Grafia [2] and Andruskiewitsch and Schneider [3]. It provides
an effective tool in the classification of pointed Hopf algebras using the lifting
method theorized by Andruskiewitsch and Schneider [3, 4] because the main
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invariant, the diagram of a pointed Hopf algebra, is a Hopf algebra in a Yetter—
Drinfeld category.

In [221], Takeuchi surveys the progress of braided Hopf algebra theory using
a noncategorical framework in which braided bialgebras are formulate as algebras
and coalgebras with a Yang—Baxter operator (alongside compatibility conditions).
This approach is actually more general and convenient than the others approaches,
which why we adopt it here.

In [8], Ardizzoni considered the combinatorial rank of graded braided bialgebras
by investigating conditions guaranteeing that the combinatorial rank is finite.
However the following question remains unresolved: is the combinatorial rank of
a finitely generated braided bialgebra is finite? Whether the combinatorial rank of
a Nichols algebra defined by a finite dimensional braided space is finite is also
unknown.

In constructing of the Nichols algebra, we mainly follow Rosso [196, 197]. Using
a similar construction, one of the braided bitensor algebra has been introduced
independently by Schauenberg [202] in terms of braided categories. Before this,
Nichols [181] used a similar construction applied to Hopf bimodules over a
bialgebra to provide examples of bialgebras of type one. S.L. Woronowicz used
(6.61) up to changing T by —t to define the external algebra [230, pp. 154-155],
whereas Schauenberg [201] proved (6.61) to demonstrate that the external algebra
is a braided bitensor algebra [201, Theorem 2.9]. Andruskiewitsch and Graa [2]
proposed another approach to constructing the Nichols algebra based on braided
pairings. The same object appeared as an optimal algebra for noncommutative
differential calculi conditioned by Yang—Baxter commutation rules [129]. Some
additional general properties of the Nichols algebras appear in [77, 78, 222]. Finite-
dimensional Nichols algebras have been widely studied over the past several years,
with approximately 100 preprints on the arXiv concerning this topic.

The decomposition of a Hopf algebra with a projection in the biproduct as a
purely mathematical statement was discovered by Radford [190]. Majid [159, 160]
subsequently advanced a physical interpretation of the inverse process as a bosoniza-
tion of fermions.

The filtrations undoubtedly provide a fundamental tool for all modern mathemat-
ics. In the area of Hopf algebras and quantum groups, N. Andruskiewitsch lifting
classification method includes the classification of associated graded braided Hopf
algebras as a first step. Recently, Ardizzoni and Menini [11] investigated the notion
of associated graded (co)algebra within the framework of abelian braided monoidal
categories.



Chapter 7
Binary Structures

Abstract In this chapter, we consider binary generalizations of Lie algebras
appeared in modern mathematics and mathematical physics. We consider recent
developments and remaining problems on the subject. The chapter discusses Lie
superalgebras, color Lie algebras, and Lie algebras in symmetric categories, free
Lie r-algebras.

In this chapter, we consider binary generalizations of Lie algebras appeared in
modern mathematics and mathematical physics. We consider recent developments
and remaining problems on the subject. The chapter discusses Lie superalgebras,
color Lie algebras, and Lie algebras in symmetric categories, free Lie t-algebras.

7.1 Lie Superalgebras

By definition, a Lie superalgebra is a graded linear space L = Ly @ L; endowed
with a bilinear operation [, | : L®? — L that satisfies the following graded versions
of the antisymmetry and the Jacobi identity:

[, v] = — (=) [v, u], (7.1)
([, v], w] + (= D)D) ] 4 (1) WFEDM Ry ) 0] = 0, (7.2)

where u, v, w are homogeneous elements u € Ly, v € L, w € Lj,|, while |u|[v]
means the product of integer numbers |u| and |v|.

A fundamental example of a Lie superalgebra appears from an associative
superalgebra (that is, graded associative algebra R = Ry @ R;) when in place of
the bilinear operation one considers the superbracket:

[, v] = u-v— (=DPly g, (7.3)

where, as above, u € L, v € Ly, |u|,|v| € {0,1}. In line with the Lie algebra
theory tradition, this Lie superalgebra is denoted by R™). The super version of the
Poincaré-Birkhoff-Witt Theorem holds: every Lie superalgebra L is a subalgebra of
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the universal enveloping associative superalgebra U(L). Here, the algebra U (L) may
be defined in perfect analogy with the classical case

U(L) = K(L) /{u-v = [u,v] + (=D)“Ply .y}, (7.4)

where u, v run through a fixed homogeneous basis of L, and [u,v] is a linear
combination of that basis elements, whereas k(L) is a free associative algebra
generated by that basis (in the invariant form, this is the tensor algebra of the linear
space L). The super structure on k(L), and hence on U(L), is defined in a natural
way via

lu-v-...-wl =lul+ |v|+- -+ W

In particular, U(L) is a quadratic algebra; that is, it is defined by relations of degree
two.

Recall that if L is an ordinary Lie algebra, then U(L) has a structure of a Hopf
algebra with the coproduct A(x) = 1 @ u + u ® 1, u € L. In general case, the same
formula defines a structure of Hopf superalgebra on U(L). By definition a Hopf
superalgebra is the braided Hopf algebra related to the following diagonal braiding:

tw®v) = (D) @ u),

see Example 6.1. More precisely, we may define a braided coproduct A? as a
homomorphism of associative algebras

AP UL — UWL)RU(L)

setting A®(u) = 1®u + u®1, u € L. Here U(L)®QU(L) is the space U(L) ® U(L)
with the product

@Rv) - (wer) = (=DM @wevr).

In this case, the Radford bi-product construction G » U(L) is an ordinary Hopf
algebra, see Sect. 6.8. Here G is a two element group G = {1, g|g> = 1} with the
action u$ = (—1)“lu, u € Ly, . Respectively, in G x U(L) the following commutation
rules holds: ug = (—1)"lgu, u € Ly, whereas the coproduct is defined via

A(u)=u®1+g|“|®u.

Of course, G * U(L) is a character Hopf algebra. Let x;, x2, ..., x; be a basis of L
and let xxy1,Xt42,...,%, be a basis of L;. Then the parameters p;; related to this
character Hopf algebra are

(-l ifk<ij<n
Py = 1, otherwise.
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In particular, p;jp; = 1, 1 < i,j < n. By this reason the principle bilinear
quantum Lie operation [-, -] introduced in (4.25) is almost well-defined on the set of
normalized skew-primitive elements Prin U(L) of G x U(L), see Sect. 4.3 for details.
More precisely, if characteristic of the ground field is zero, then the general formula
of Lemma 6.18 takes the form

PrinU(L) = (1 -9k @ L,

and the operation [-, -] of Lie superalgebra given on L coincides with [-, -]. We shall
prove this statement in a more general context of color Lie algebras. Now we only
stress that the whole of Prin U(L) with the brackets [-, -] is not a Lie superalgebra.
Indeed, let xo = 1 — g. Then xog = gxo, so that po, = 1 if n > k. The equalities
A(xo) = x0 ® 1 + g ® xo and x,g = —gx,, imply po,p,0 = —1 # 1. In particular
[xo, x.] is undefined provided that n > k.

7.2 Color Lie Algebras

Let G be an Abelian group and let @ : G x G — k* be its bicharacter:

a(f-g.h) =a(f,mag.h), alf.g-h) =alf galf.h),

where, as usual, k* denotes the multiplicative group of nonzero elements of the
ground field k. Suppose additionally that « is multiplicatively antisymmetric:

a(g.h) = a(h.g)™"

In this case, a linear space L = ®gecL, graded by G is said to be a color Lie algebra
if it is endowed with a bilinear operation [ , | : L®? — L which satisfies the color
versions of the antisymmetry and Jacobi identities:

[u,v] = —a(f, [, u], (7.5)
([, v], w] + a(f, gh)[[v. w], u] + a(fg. h)[[w. u]. v] = 0, (7.6)
where u, v, w are homogeneous elements u € Ly, v € L, w € Ly, f, g, h € G.
If G = {0, 1} is the two-element group, then there exists just one nontrivial
bicharacter: «(0,0) = «(0,1) = «(1,0) = 1, a(1, 1) = —1; that is,
a(ful, Jo]) = (=DM,

Hence, the Lie superalgebras are precisely the color Lie algebras when the group G
(of colors) has just two elements.
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It is very important that any associative G-graded algebra

R=EDR,. Ry Ry SRy,
g€G

defines a color Lie algebra when in place of the bilinear operation we consider the
following color bracket:

[, v]=u-v—a(f,gv-u, (7.7)

where, as usual, u € Ly, v € L, f, g € G. This color Lie algebra is denoted by RO
as well.

The G-graded universal enveloping algebra U(L) is defined quite similarly to the
“super” case

UL) = K({L)/{u-v = [u,v] + a(f, g)v - uj, (7.8)

where again u € Ly and v € Lg run through a fixed homogeneous basis of L, and
[u,v] = Y B, is a linear combination of basis elements ;. The grading on the
tensor (free) algebra k(L), and on U(L), is defined in a similar way

lu-v-...-wl=f-g-...-h

In particular, U(L) is still a quadratic algebra.
The “color” version of the Poincaré-Birkhoff-Witt Theorem was proven by
Scheunert in [202].

Theorem 7.1 (M. Scheunert) Ifx; € Ly, i > 1 is a basis of a color Lie algebra
L = ®g4ecLy, then the following products form a basis of U(L):

n n2___ m
X1 X s

where n;, 1 < i < m are nonnegative integer numbers with n; < 1 provided that
a(gi, g) = —1 # 1. In particular every color Lie algebra L is a subalgebra of the
color Lie algebra U(L)™.

This theorem may be easily proved using the Composition Lemma (Theorem 1.2).

The formula A”(u) = 1®u + u®1, u € L defines a structure of a color Hopf
algebra on U(L). By definition a color Hopf algebra is the braided Hopf algebra
related to the following diagonal braiding

Tu®v)=a(f.g)lv®u, uclk, vel,
The braided coproduct A” is a homomorphism of associative algebras

AP UL — UL)QU(L),
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where U(L)®U(L) is the space U(L) ® U(L) with the product
@®v) - (Wwt) = a(g, H)(uwQut), v € L, w € L. (7.9

Lemma 7.1 Ifthe characteristic of the ground field is zero, then Prim (U(L)) = L

Proof By M. Scheunert theorem each element @ € U(L) has a unique representation

M

a=Y Bl A Biek. (7.10)

i=1

Without loss of generality we may suppose that n{ > 0, B; # 0. We have to show
that if a is primitive, then n]’ = O unless i = j = 1. By definition of the braided
coproduct we have

M
A(a) =) B ®1+18x1)" (@1 +1®x)" -+ (1, @1+ 1@x,)"™.  (7.11)
i=1

The latter formula and definition (7.9) imply that the braided coproduct of the
summand w = xrf‘x;2 . -xnm;” is a linear combination of tensors w* @WA, where A

appears from w by deleting of some letters, while w” appears from w by deleting of
all letters remaining in w”. According to M. Scheunert theorem all different words
that appear from summands of a given in (7.10) deleting some letters are linearly
independentin U(L). In particular, the resultlng coefficient of the linear combination
of all tensors of the form x; (X)xl lx;’z xm’” that appear under developing the
productin (7.11) has to be zero. Applying (7.9), we see that this coefficient equals

ot df .
1+ a(grg) +a(gg) + - +algg)" ™" = alggn)™.

Because o is multiplicatively skew symmetric, we have a(gj, g1)2 = 1; that is,
a(gr,g1) = 1. I a(gr,g1) = 1, then a(gy, g)™ = n #0ink. If (g, g1) =
—1, then by M. Scheunert theorem n; = 1, and a(g;. g1)" =1 # 0. O

The Radford bi-product G * U(L) is an ordinary Hopf algebra, see Sect. 6.8. In
G * U(L) the following commutation rules hold:

ug =oa(f,g)gu, ucls, gegG,
whereas the coproduct is defined via

Aw) =u®1+g®@u, ucl,.
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In particular all elements of L are normalized skew-primitive in G x U(L), and G *
U(L) is a character Hopf algebra. Let {x; | 1 <i < n} be a homogeneous basis of L,
X; € Lg;, 1 < i < n.The parameters p;; related to this basis are

pij = (8, g)),

where x; € Ly, x; € Ly, Since the form « is multiplicatively skew symmetric, we
have pyp;; = 1, 1 < i,j < n. Further, due to (6.18), we have

Prin (G * U(L)) = L& @D (1 - g)k. (7.12)
g€CG

and the operation [-, -] of color Lie algebra given on L coincides with the principle
bilinear quantum Lie operation [-, -], see (4.25) of Sect. 4.3.

7.3 Lie Algebras in Symmetric Categories

A more general concept of a “Lie r-algebra” related to a symmetry t (a braiding
such that t? = id) was introduced by Gurevich [88].

We are reminded that a linear space V is a braided space if there is fixed a linear
map 7 : V® V — V ® V which satisfies a braid relation t,1,t) = 157,72, Where

1 =id®V @ ®id®" D vE Ve 1 <i<n.

An algebra R (associative or non associative) with a multiplicationm : R® R — R
is a braided algebra if it is a braided space and

(m®id)t = 111(id ® m), (id®@m)t = 11(m ® id), (7.13)

where as above we use the exponential notation; that is, the operators act from the
left to the right: (¥ @ v @ w) - (M ® id)t = (uv @ w)* = T(Uv @ w).

A braided algebra L is said to be a Lie t-algebra if the braiding is involutive
(% = id) and if it is connected with the multiplicationm : L ® L — L thus:

m+tm=0, antisymmetry; (7.14)
(id + 1i1» + ©11)(m ® idym = 0, Jacobi identity. '
First of all, we note that this concept generalizes the above notion of the color
Lie algebra. Indeed, if L is a color Lie algebra with the multiplicationm = [, ], and
with the bicharacter «, then we define a symmetry t as follows:

@@v)t=a(f,9)v®u, uclk,velL,. (7.15)
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Since « is multiplicatively skew symmetric, we have
®v)e* = @(f, Qv @t = a(f, )a(g.NU® v) = u® v;
that is, 7 is involutive. To check (7.13), we have
uM®vewmQgid)r = (u, v] @ w)t = a(fg, Hh)w ® [u, v].
At the same time,

M@ vwW nr(idem) =a(g,h)(u®w® v)r(id ® m)
= a(g. ha(f. H(wu® v)(id ® m)
= a(gf,Hw Q [u, v],
which proves the first of (7.13). The second of (7.13) is quite similar. Hence (L, [, ])
is a braided algebra.
The antisymmetry identity (7.14) applied to L coincides with the antisymmetry
identity (7.5). To check the Jacobi identity (7.14), we note that
(u®v®w) (mQidm = [[u, v],w],
u®vwrnnmidm = a(f, gh)([v, w], 4],
u®vwnn(m idm = a(gf, h)[[w, u], v],

hence (7.14) follows from (7.6).

Lemma 7.2 If A is an associative braided algebra with a multiplication
m:u®uv — uv,

then the braided space A with a new multiplication, [-,-] = m — tm,

[u,v] = uv — Z viu;, where (u® v)t = Z v; ® u;, (7.16)

is a Lie T-algebra provided that > = id.

Proof We have to check the axioms of braided algebra (7.13) and the axioms of a
Lie r-algebra (7.14) with m — tm in place of m. Applying the first of the axioms
(7.13), we have

(m—mm) ®id)r = (M id)t — 11 (M id)t = 17(id ® M) — 717271 (id ® m).
This implies the first of (7.13) with [-, -] in place of m because 7;7,7; = 7,772 and

72(id ® m) = id ® Tm. The second of (7.13) with m < [-, -] can be checked quite
similar.
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The antisymmetry identity takes the form

2

m—tm+t(m—tm) =m—7"m=0.

To check the Jacoby identity, we note that the associativity of the algebra A may
be written as an equality:

(id® m)m = (m ® id)m. (7.17)
The Jacobi identity with m <« [-, -] reads:
(d+un + nu)(- -] ®id[-,-] = 0.
We have

(-1 ®id)[-.-] = (m — tm) ® id)(m — Tm) = (M ® id — 7;(n ® id))(m — 7m)
=mMmidm—-7(mQidm — (m ® id)tm + 7;(m ® id)Tm.

If we apply (m ® id)t = 7,7;(id ® m) and the associativity (7.17), then the latter
expression reduces to

(ld — 71— ToT] + ‘L'1‘L’2‘L’1)(m ® 1d)m
It remains to note that the equalities 77 = 77 = id and 71727] = 72772 imply
d+tun+nu=>0{d+nn+nn)nn = (0d+ 1n + n)ttn,

and therefore (id + 7172 + 1) (id — 71 — 27y 4+ T1T271) = 0. |

The Lie t-algebra constructed in the above lemma has a standard notation: A(t_).

7.3.1 Universal Enveloping Algebra

Definition 7.1 Given a Lie t-algebra L, one constructs the universal enveloping
algebra as follows: Let k(L) = @72, L®" be the free associative algebra. Let J C
k(L) be the ideal generated by

{a®b—(a®@b)t—[a,b]|a,belL}, (7.18)

where [a, b] is the product in L. Then U(L) is the quotient algebra k(L) /J.

Of course, this definition generalizes the same definition for color Lie algebras and
Lie superalgebras. We see that in general U(L) is still a quadratic algebra.
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Theorem 7.2 The algebra U(L) has a natural structure of a braided Hopf algebra.
In which case, the braiding of U(L) is involutive, and

Al(a) = I®a +a®l, ace€lL.
The map 1 : a — a+ J, a € Lis a homomorphism of Lie t-algebras, 1 : L —
U(L)™.

Proof Consider k (L) as the free braided Hopf algebra described in Theorems 6.1
and 6.2 with V < L. We note, first, that the extended on k (L) braiding is still
involutive. Indeed, if u € L®", v € L®"~") then according to definition (6.18), we
have

(u@v)t2 =u® v)vrl'"é’n_rt =u® v)vrl’”vnlfré’, = u®v

because decompositions (6.16) and (6.17) with conditions 2 = id, I <i < nimply

V,}’n an;rlr = (Trfr—l te Tl)(fr-l—lfr T 72) te (Tn—l Tp—2*"" Tn—r)

X (Tn—rfn—r+l T ) (Tpmr—1 Tamr * ** Tam2) -+ - (1 T2+ - 7)) = id.

Further, we shall prove that J is a braided Hopf ideal. Due to Lemma 6.10, it
suffices to verify that the generating space W = {a®b—(a®b)t—[a, D] | a,b € L}
satisfies conditions 2—5 of Definition 6.1.

Letm : LQL — L be the 7-Lie multiplication of L, and let m’ : LL — L ® L
be the concatenation product of k (L) restricted to LQL. In this case, the space W
coincides with the image of the operator 2 = (id — 7) m’ — m.

Ifuel®" abeLandw=a®b— (a®b)t — [a,b] = (a®b) - §2, then

(uQw)T = (uQa®b) - [(id — 1) (id®m’)t — (id® m)z].
As both m and m’ are braided products, we have (id®@m)r = 7,72(m®id), and
(id®m’)t = 7,7, (m’'®id). The braid relation implies (id— ) 7172 = 11 (id—17).

Hence, we obtain

u@w)t = (u®a®b) - 111:[(id — 71)(M'Rid) — (MR id)]
= (u®a®b) - 1112 (2®id) € (LRLILE™) (2 id)
= im 2QQL®" = WQL®";

that is, W is right categorical. In perfect analogy, we have
wWRu)t = (a®bRu) - ,11[(id — 1) (iId®mM’) — (id® m)] € L¥"®im 2.

Thus, W is a categorical space, and the second condition fulfills.
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Consider anelementu = a®b— (a®b)t = (a®@b)(id—7). Lemma 6.3 implies
Ay = Y7, u-®"? 6., where according to (6.23) we have 05(()1’2) = q§§1’2) = id,
and 451(1’2) = [1;1] +[1;2] = id+ . In particular (id — t)@l(l’z) = 0, and therefore
u is primitive.

The element [a, b] is primitive too, because it belongs to L. As the set Prim k(L)
of all primitive elements is a linear space, we obtain W € PrimKk(L). At the same
time, every primitive element w satisfies £(w) = 0, 6”(w) = —w. Hence, W satisfies
third fourth and fifth conditions as well.

Finally, the productin U(L)™ of elements a, b equals a @ b— (a ® b)t. In k (L),
the latter element equals [a, b] modulo W. Hence a @ b — (a ® b)t = [a, b] in U(L),
and the map 1 is a homomorphism of r-Lie algebras. O

7.3.2 Embedding into the Universal Enveloping Algebra

Our next goal is to understand when the map 1 is injective. Because the braiding t is
involutive, 72 = id, Theorem 1.4 implies that the local action of the braid monoid
B,, on L®" is reduced to an action of the symmetric group S,, so thatu - s; = u - t;,
where 1; = (i,i + 1) is the transposition of indices i <> i + 1. Givenr, 1 <r <n,
we fix the notations

1 1
— (r —
e, = " E T, e’ = =) E T, (7.19)

TES, . esilr)

where by definition sV s a subgroup of all permutations that leave fixed each one
of the indices 1,2, ...,r.

Lemma 7.3 The left annihilator of (1 — t,)eV) in k[S,] equals

n—1
K[S,J(1 + 1) + K[S,)(1+ ity + tat1) + Y K[S,](1 —1,). (7.20)
i=3
Proof We have, first,
n—1 n—1
D K[S)(1 =) (1 =)™ = K[S, )1 — 1) (1 = 1)e™ = 0;
i=3 i=3

then,

1
(1+tit + ) (1 —1)e™) = (1 + 11ty + r1y)(1 - t1)§(1 + 1)) =0
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because (1411, +1211)(1—t; +12—t112) = 0; and next, K[S,](14+1,)(1—1;)eV) =0,
fort} = 1.

Conversely, denote by I the left ideal (7.20). In the left module Kk[S,]/I we have
the following relations

XH = —X, XHih = —X—xbht] = —Xx+xt, xt; =x, [ > 2, (7.21)

where x € K[S,]. Using these relations, let us demonstrate that each & € K[S,] has a
representation

n—1
E =) af2i+1] (mod]). o€k, (7.22)
i=1
where [2;i+ 1] = (2,3,...,i+ 1) is acyclic permutation2 -3 — ... > i+1 —

2.

Relations (7.21) allow one to reduce the length of some words in #;, i > 1. Letw
be an irreducible by (7.21) word. If w is not empty then it ends by #,. The second
relation of (7.21) shows that before 7, may stand only 73 since otherwise this letter
commutes with #, and the last relation of (7.21) reduces the length. Let k be the
maximal number such that w ends with #;ty—1 - - - 1352; that is, w = ... Lilyty—1 - - - 1310,
k > 3,s # k+ 1.If s > k + 1, then t, commutes with all followed it
factors and the last of (7.21) applies. If s < k then we may move #; to the
right so that we get w = ... #t—1 - - - tits+1t5t5—1 - - - 13tr. The braid relation yields
W= ... lkt—1 * L1 tstsp1t—1 - - 131 Now we may move the underlined ¢, to the
right and apply the last of (7.21). Thus all irreducible words are w = f3ty—1 - - - 13t =
[2;k 4+ 1], 1 < k <n— 1, which proves (7.22).

Finally, if £ (1 — t;)e!V) = 0 with & given in (7.22), then

n—1

n—1 n—1
0= Za,-[Z; i+ 111 —1)eV = (Z Q) — Zai[2; i+ 1teW.

i=1 i=1 i=1

All elements 1, [2;i+ 1]t = [1;i+ 1], 1 < i < nbelong to the different left co-sets

of the decomposition given in Corollary 1.2 with » = 1, whereas e(!) € StV Hence
weobtaino; = 0,1 <i<n,and & € I. O

Theorem 7.3 If L is a Lie t-algebra over a field k of zero characteristic, then the
natural homomorphism1 : L — U(L)\7) is injective.

Proof Denote by m;, 1 < i < n the linear map

m; = id® D @ m ® ig ®"—iD . 1O 80D, (7.23)
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Then axioms (7.13) imply the following commutation rules:

(a) mjt; = t;my, ifj>i+1;
(b) myy1t; = fitimy;

(c) mt; = tip 1ty y;

(d) m;f; = ti41my, lfj <.

The Jacoby identity also provides some sort of commutation rules for m;’s:

() mm; = mm;_,, ifj>i+1;
(f) mipm; = (1 — f4.)mmy;
(&) mm; = (1 —1;)m;y m;;
(h) mjm; = m;; m;, ifj <1,
whereas the skew-symmetry yields
fjm; = —m;.
If/ € L and 1(I) = 0, then in k (L) we have a representation
= Z vi(ai — ;T — a; m)wi, a; € L®2, V; € L®ni, w; € L®ki.

We have

vi(ai —ait —am)w; = u- (1 —ty41) —umy,4q,

(7.24)

(7.25)

(7.26)

(7.27)

where u = v; ® a; ® w; € LB"Tkt2 Because u - (1 — ty,41) € LOOitki+2
and um,,; € L®®Th+D the equality (7.27) splits into the following system of

homogeneous equations.

n—1

Doy (1=1) = 0;
i=1

n—1 n—2

Zuﬁlmi + Zu;_l (1—1;)=0;

i=1 i=1

n—2 n—3
ol mi+ ) u (1) =0
i=1 i=1

u%ml + u%mz + u% -(1—-1)=0;

uiml = l,

(7.28)

(7.29)

(7.30)

(7.31)
(7.32)
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where n = max(n; + ki +2),ul € L®, 1 <r<n, 1 <s<r.

In order to show that [ = 0, we are going to perform induction on n. If n = 2 we
have two equalities: ué(l —11) = 0,and [ = ulm;. According to the skew-symmetry
axiom u}(1 — #;)m; = 2ulm,, hence [ = 0.

We make the inductive step by downward induction on k = min{i | u} # 0}. If
k = n — 1 then Eqgs. (7.28) and (7.29) take up the form

W (1 =t,my) = 0;

n—2
wym, o+ Y Ul - (1—1) = 0. (7.33)

i=1

The skew-symmetry axiom yields 2u"~'m,—; = "' - (1 — t,_1)m,—; = 0. Thus,
we may apply the inductive supposition to Egs. (7.30)—(7.33).
Let k = min{i | u’, # 0} < n—1,n > 3.1f a set of elements

{wf;EL®5|1<s§n, 1 <i<s}
satisfies the system of Egs. (7.28)—(7.31) and wéml = 0, then the set
{ui—w§|1 <s<nl<i<s}

still satisfies (7.28)—(7.32) because all operators are linear. Therefore, to complete
the inductive step of the downward induction, it remains to find a solution {w'} of
(7.28)—~(7.31) with wim; = 0, such that wt = uk, wh1 = wk=2 = . =0.

Recall that we have fixed the notation

1
k) —
e = n—h)! Z 7.

T ESi,k)

Since (1 —;)e® = 0, k < i < n, Bq.(7.28) implies u* - (1 — f)e® = 0. By
Lemma 7.3 applied to S%V the left annihilator 7 of (1 —1)e® in k[Sﬁlk_l)] equals

n—1
K[SEDNA 4+ 1) +KSEVNA + tetirr + i) + Y KISEV(1—r).  (7.34)
i=k+2

As a left ideal of a semisimple algebra, this annihilator has the form I = k[Sflk_l) 17,
where f € [ is an idempotent. In this case, (1 — #,)e@k[SY V] = (1 — Hk[SE].

Therefore, ut - (1 — £)K[SS "] = 0: that is, uk = u¥ - . Let

n—1
f=n+ )+ n1(1 + tfili1 + fr1te) + Z r(1—1t), e k[SE].
i=kt2
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We have received the following decomposition

n—1
up = ul (1 + 1) + - rer (1 ttigr + e te) + Z y-ri(1=1). (7.35)
i=k+2
Let us put
Wﬁ == Mﬁv
Wit = b (1 + Bt + B ),
wh=—ul-r(l—t), k+2<i<n (7.36)

Since 1 — #; commutes with all 1 —#;, k + 2 < i < n, and

(I + titeg1 + tir1t) (X — 1) = (1 + tate1 + ter1te) (1 — trg1),

Eq. (7.35) implies

n—1
> wi(1—1) =0, (1.37)
i—k
and

n—1 n—1

szmi = g1 (1 + ity + o) my + Z ul - (1 — t;)my

i—k i=kt+2

n—1
—uf g (1 + filr + i1ty — Z ub - (1 — t)m.
=42
(7.38)

Let us define

w_. =0, j<k

n—1
n—1
k k .
Wy =y~ ( Z rim; — rir (1 + i1 + 1) my);
i=k+2
wil =k ormy, k+2<i<n—1. (7.39)

The defining relations in #; imply

(I + kg1 + ettt = (1 + et + e 1li),
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while axiom (7.13) yields #;4#xmy; = my#;. Hence, we have
(1 + tititr + et (M — My 1) = (1 + felggr + Gt me (1 — 7).
By means of this formula and the commutation rules
(I =tmy = (1 —1,—1), (1 —g)m; =m;(1—15), k+2<i,

equality (7.38) implies
n—1 n—2
D owimi+ Y wi o (1—1) =0. (7.40)
i=1 i=1
The Jacobi identity and mym,_; = m;my, k + 2 < i < n provide the equality
n—2
> owhom; = 0. (7.41)
i=1

Therefore, if we put wf; =0,1 <s<n-2,1<i<s,thenequalities (7.37), (7.40),
and (7.41) demonstrate that the set {le} is a solution of (7.28)—(7.31) that satisfies

n n’ n

If n > 3 then wym; = 0 because wy = 0. If n = 3 then (7.41) says wym; = 0. O

7.3.3 PBW Isomorphism

In order to understand the relation between L and U(L), it is important to consider
the simplest Lie r-algebra L defined on the same braided space L. This is the Lie
t-algebra with the zero multiplication: [u, v]y = 0. Certainly, the algebra U(L°) is
uniquely defined by the symmetry t. For example, if 7 is the ordinary flip (#®v)* =
v ® u, then U(L") is nothing more than the algebra of commutative polynomials in
a basis of L or, in invariant terms, this is the symmetric algebra of the space L. If L
is a color Lie algebra then U(L°) is generated by variables x;, i € I which are related
to a homogeneous basis /; € L,, of L, and commute according to the rule

XiXs = QisXsXis  qis = (8, &s)-
This is the so called algebra of quantum polynomials (of course, here ¢;;qs; = 1).

By these reasons, in general, the algebra U(L’) may be regarded as an algebra of
“commutative” polynomials in a given symmetric category.
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In the general case of Lie t-algebras, the Poincaré-Birkhoff-Witt Theorem in
its constructive form is not valid any more; that is, U(L) not always has a basis

u'uy’ - - - ulm defined by an ordered basis u; < up < -++ < u,, < --- of L.

Example 7.1 The simplest example is given by the Lie t-algebra with zero
multiplication and T = id ® id. In this particular case, the ideal J generated by

{u®v—w®v)t —[u,v]|u,vel}

is zero. Hence, U(L) is the free associative algebra k(L) which certainly has no basis

of the form u'u5” - - - ullm, where {u;} is an ordered basis of L.

Evenif Lis a color Lie algebra, the M. Scheunert theorem demonstrate that some
of the basis elements of L are of height 2 in U(L), see Theorem 7.1.

Nevertheless, two invariant (independent of a fixed basis) forms of the Poincaré-
Birkhoff-Witt Theorem are known which may be generalized to the Lie t-algebras
over a field of characteristic zero. The PBW-theorem in one of these forms provides
an isomorphism of coalgebras U(L) = U(L") where, as above, L° is the Lie -
algebra with the zero multiplication defined on the same space L.

Theorem 7.4 If the characteristic of the ground field k is zero, then the linear map
n: U(L") — U(L) defined as

n:e°uw) — o(u-e,), uelL®,
is an isomorphism of coalgebras. Here ¢° : k(L) — U(L®) and ¢ : k(L) —

U(L) are the natural homomorphisms appearing in the definition of the universal
enveloping algebra, and

1
en = Y 7w ek[S,)

" nes,

Proof Let us demonstrate, first, that in K [S,/] the following inclusion holds:

n—1
1—e, €Y K[S,)(1—1). (7.42)
i=1
For each 7 € §,, we have nt; = —n(l — ;) + m = © (mod A), where A is the

right hand side of (7.42). Every element of the symmetric group is a product of
transpositions #;, 1 <i < n.Hence v = 1 (mod A), whereas

1 n-1
,,:—E = — dA).
e . b/d " (mod A)

TES,

This is equivalent to (7.42).
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Next, we have to demonstrate that 7 is a well-defined linear map. By definition,
ker(¢?) is generated by the space

W ={a®b—(a®b)t|abelL}=L%(id—1).

In particular, ker(¢®) (but not ker(¢)) is a homogeneous ideal, whereas its nth
component takes the form

n—1
ker(¢), = ker(¢®) N L®" =) " L®"(id — 7).
i=1

At the same time, (id — 1;)e, = 0, 1 < i < n. Thus, goo(u) = 0, u € L®" implies
u-e, =0and¢(u-e,) = 0.Hence, n is a well-defined linear map.
Inclusion (7.42) implies that

n—1 n—1
L¥(1—e,) € Y L¥K[S,](1 —w) € ) L%"(1 — ) = ker(¢"),.

i=1 i=1
Therefore, for each u € L®”, we have

(po("‘) = (po("‘ ceptu-(l1—ey)) = 900(“ “en).

As both ¢° and ¢ are coalgebra maps, 1 : ¢°(u - e,) = @(u-e,), u € L®" is so too.
Let us check that 7 is an epimorphism. To this end, it suffices to show that

PLE") S p(L¥e)).

i=1

If n = 1, then e; = 1 and the inclusion is evident. In general case, for each u € 1"
we have u — ut; = u - m;(mod J), whereas u - m; € L8 Here as above m; =
id™!' ® m ® id"""" and m is the t-Lie multiplication of L. Now, inclusion (7.42)
yields

n—1
u—u-e,=u(l—e,) €Yy L K[S,J(1—1) SL®"D  (mod ).

i=1

Therefore ¢(u) — @(u - e,) € @(L2"~D), and evident induction applies.
It remains to demonstrate that the kernel of 7 is zero. Because ¢°(x) = 0, u € L®’
implies u-e; = 0, it suffices to check that the intersection of ker(g) with Y o L®'e;
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is zero. By induction on n, we shall prove that

ker(p) N ZL‘X’iei =0.

i=1

When n = 1, this is precisely the statement of Theorem 7.3.

Letn > l,andletw =) ' u;- e, u; € L®, u,-e, # 0. By Lemma 6.3, taking
into account equalities e; - 1 = ¢; with m € §;, and counting the number of terms of
the operator CDV(U) defined in (6.23), we have

i

Ab(u,-'e,-):Zu~ei~q§r(l'i)0,:Z() u-¢ 0, uel®.

r=0 r=0

Clearly, the idempotents e,, e, 1 < r < i defined in (7.19) satisfy e; = eje, =
e;e”) . Therefore if p(w) = 0, then

0= A (p(w)) — 1@p(W) — p(W)®1

=Y Z () ui - ¢; 0,(e,8e") (p®9). (7.43)

i=1 r=1

By the inductive supposition the restriction of p®¢ on Y '_} L®e,® Y'_| L®e, is
injective. Hence

n n

0-35 () uraniesr =35 ()

i=1 r= i=1 r=1

Applying the concatenation product, we obtain Y 1, (2'—2)u;e; = 0, which implies
(2" = 2)uye, = 0. A contradiction. O

Corollary 7.1 If the characteristic of the ground field is zero, then Prim (U(L)) =
L.

Proof Letw = >, u; - e;, u; € L®". If ¢(w) is a primitive element, then equality
(7.43) is valid, which implies > (2" — 2)u;e; = 0. Hence (2" — 2)ue; = 0,
l<i<n,andw = w; € L. O

The proven theorem does not provide a basis for U(L) in an explicit form, but
it shows that in order to construct such a basis it is sufficient to find a basis of
the algebra U(L"), the algebra of T-commutative polynomials. In particular, we see
that the basis of U(L) is independent of the Lie operation on L and, instead, it is
completely defined by the symmetry t.
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Corollary 7.2 If the characteristic of the ground field is zero, then U(L') is
isomorphic to the Nichols algebra (L) as a braided Hopf algebra.

Proof The set of defining relations (7.18) for U(L’) consists of homogeneous
quadratic polynomials uv — ) v,u;, where (u ® v)T = ) _; v; ® u;. By Theorem 7.2
there exists a natural homomorphism of braided Hopf algebras ¢ : k(L) — U(L").
The kernel of ¢ is contained in the ideal A2, and whence, due to Lemma 6.15,
kerop C ker §2. Therefore there exists a braided Hopf algebra homomorphism
£: UL’) — P(L). In this case ker£ N L = 0. By the above corollary, we have
Prim (U(L")) = L. In particular, ker £ has no nonzero primitive elements. Thus,
Theorem 6.3 implies ker § = 0. O

Another invariant form of the PBW theorem claims that the graded algebra
associated with U(L) is isomorphic to the algebra of T-commutative polynomials.

Theorem 7.5 If the characteristic of the ground field is zero, then the graded
algebra associated with U(L) filtered by

k-1Ck-1+LC(k-14+L>C---C(k-1+L)"C---CUL) (7.44)

is isomorphic to U(L®) as a braided Hopf algebra.

Proof Let {a;|i € I} be a basis of L. Consider the natural homomorphism ¢ :
k(X) — U(L), where X = {x; |i € I} and x; > q;. Filtration (7.44) is precisely the
filtration defined by the formal degree d(x;) = 1, see Sect. 1.6. Due to Definition 7.1
the kernel J of ¢ is generated by polynomials

§ : k.m
XiXg — ai,s XkXm — [xia xs]7

k.m

where (x; ®x,)T = ), afj:” Xx @ x,,. The leading components of these polynomials
are the defining relations of U(L"). Hence epimorphism (1.104) takes the form

7: U1’ — grU(L). (7.45)

If kerg # 0, then by Theorem 6.3 it contains a nonzero primitive element.
Corollary 7.1 applied to L° states that Prim U(L’) = L. At the same time,
the embedding theorem (Theorem 7.3) implies that kerp N L = 0, whereas
Proposition 1.12 shows that kergp N L = kerg N L = 0. A contradiction. O

7.4 Free Lie t-Algebra

Along this section we shall assume that the characteristic of the ground filed k
is zero. We shall consider more thoroughly the free Lie t-algebra L(V) freely
generated by a braided space V with an involutive braiding. In particular, we prove
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that its universal enveloping algebra is the free braided Hopf algebra k(V) and
L(V) as a subalgebra of k(V)™) coincides with the space of all primitive elements,
L(V) = Primk(V)™). Recall that the Lie t-algebra k(V)(™) by definition is the
space k(V) with multiplication [u, v] = uv — ) vu;, where (u @ v)t = Y, v; Q u;,
see Lemma 7.2. The following lemma demonstrates that the space Primk(V) is
closed with respect to the bracketing.

Lemma 7.4 [f u, v are primitive polynomials, then [u, v] is so as well.

Proof By definition of braided coproduct we have
Ab(uv) = @1+ 10u)(v&1 + 18v) = w1l + 1Quv + u®v + (uQV)t.

This implies

AP([uv)) = AP =) " vay)

= [u,v]®1 + 1Q[u, v] + u®v + (V)T — Z v Qu; — (Z Vi ®u;i)T

= [u,v]®1 + 1Q[u, v]

because (), v;:Qu;)T = (UQV)T> = Uv. O
We are reminded the definition of the free object.

Definition 7.2 A Lie t-algebra L(V) generated by a braided subspace V is said to
be free Lie T-algebra if every homomorphism of braided spaces ¢ : V — L' into a
Lie t-algebra L’ extends to a homomorphism of Lie t-algebras ¢ : L{V) — L’

The main idea of the proofs below is that the local action of the braid monoid on
the n-fold tensor product V®" by Theorem 1.4 reduces to the action of the symmetric
group. This allows us to formulate the following general principle:

If a theorem is valid for ordinary Lie algebras and its statement may be
interpreted as a property of the group algebra K[S,] under the local action, then
this theorem is valid for an arbitrary generalized Lie algebra.

Therefore once we have an interpretation, we need to check the validity of
a theorem only for multilinear (noncommutative) polynomials. Somehow this
provides the linearization process applied to an arbitrary involutive braiding.

Of course the above principle does not allow us to generalize all the theorems
since there exist some important properties of Lie algebras that are not valid
for generalized ones. For example, the PBW-theorem in constructive form, see
Example 7.1.



7.4 Free Lie 7-Algebra 265

Theorem 7.6 (t-Friedrichs Criteria) The algebra Primk(V)™) is generated by V
as a generalized Lie algebra. More precisely, an element v € V®" is primitive if and
only if it has a representation

v = Z o[- [y, xi ] xig)s oo xg, ], oa €K, (7.46)

i=(i1.i2.....in)

where X = {x; | i € I} is a fixed basis of V.
Proof By Lemma 6.3 the braided coproduct has the form

AP(u) = Z [u- &) 6, uev®, (7.47)
r=0

where (1 ® v)0, = uQu, u € V®" and the operators 05,(1’") are defined in (6.23):

o= N [Lk]2ik]- k]

1 <ki <ky<...<ky<n
with

[k; k] = id; [m;k] = Tr—1Tk—2Th—3 * * * Tt 1 Ty M < K.
Therefore an element v € V®” is primitive if and only if u - o' —0,1<r<n.

We claim that the left annihilator in K[S,] of all 05,(1’"), 1 < r < nequals the left
ideal generated by the following element:

¥, = (id — [1:2])(id — [1:3]) - - (id — [1: n]). (7.48)

Indeed, let =& - QDV(I’") = 0, 1 < r < n. Consider a linear space Z of dimension n. In
the classical case, when t is the ordinary flip u® v > v ® u, the local action of K[S),]
is a faithful action on the subspace of all multilinear (noncommutative) polynomials
of Z%®",

2122 .. .Zn'Q = Z (X;-[anl(l)zﬂfl(z) .. .Zﬂfl(n), 2 = Z(Xﬂﬂ (S k[Sn] (749)

TES,

Now we have (21222, - &) - QDV(I’") = 0,1 <r < n. Hence z120--+2, - &
is a primitive multilinear polynomial of Z®". By the classical Friedrichs criteria

2122+ + 2y + & 1s a linear combination of the form (7.46) with ordinary commutator.
In terms of the local action this means

U B = Z (2122 20 - W)Wy
TES,



266 7 Binary Structures

Thus & = (3,5, %z 7) - Wa, which proves the claim.
By Maschke theorem, K[S,] is a semisimple algebra, whence by Lemma 1.39
there exists an idempotent e € K[S,]¥, such that K[S,|¥, = K[S,]e, whereas

>, ®"K[S,] = (1 — e)K[S,]. In particular, if # € V®" is a primitive element,
then u - @,(1’") =0, 1 <r < n, and therefore u - (1 — ¢) = 0; that is, ue = u. Hence
u € u - K[S,] ¥,, which implies representation (7.46). O

Theorem 7.7 The space of primitive elements Prim k(V) with the brackets [u, v] =
u®v— (u®v)rt is the free Lie t-algebra freely generated by V.

Proof By Theorem 7.6 the Lie t-algebra Prim k(V)(™) is generated by V as a Lie t-
algebra. Let L be an arbitrary Lie t-algebraand ¢ : V — L alinear map that respects
the braiding. The map ¢ has an extension up to a homomorphism of braided Hopf
algebras ¢ : k(V) — U(L). The restriction of ¢ on Primk(V)(™) is the required
homomorphism of Lie r-algebras ¢ : Primk(V)™) — 1(L) because (L) = L due
to Theorem 7.3. O
Now we are going to prove a number of auxiliary statements in order to show
that every braided Hopf subalgebra of k(V) is generated by primitive elements.
Recall that the free braided Hopf algebra k(X) has a right and a left coordinate

differential calculi, see Sect. 6.3. Let as above C and C* denote the subalgebras of
constants for the right and left calculi, respectively.

Lemma 7.5 If t> =id, then C = C*.

Proof Comparing coproduct formula (7.47) and decomposition (6.41), we see that
ue VO N Cifand only if u- @ = 0, where

@fl’") = Z[i; n=Tt-1t—2- 00 + ...+ 1y + 11 +1id. (7.50)

i=1

Similarly, (7.47) and decomposition (6.44) imply that u € V®" N C* if and only if
(1,n) o
u-® where by definition

n—1 >

o) = > [ k][2: ko] -+ [n = 15 K]

1<ki<ky<...<kp—1<n

Lemma 1.14 allows one to replace the area {1 < k; <k, < ... < k,—1 < n} by its
complement {1 < i; < n}, so that Q&Y) = Y""_,[n;i]. Since 7 =id, it follows that
[7:i][1;n] = [1;i], which implies @;Erf) [1:n] = @1(1’"). In particular the kernels of
qb,ji’;) and @1(1’") coincide. O

Lemma 7.6 The operator @, = <1>1(1’") satisfies an equation of the following form

D= +a3 D + -+, P, o <k (7.51)
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Proof We prove the statement in two steps.

Step 1. We show that @; € ®ZK[S,]. Suppose in contrary that ®; ¢ @7 K[S,].
Then by Corollary 1.3 there exists & € K[S,], such that & @, # 0, & ¢} = 0.

Consider a linear space Z of dimension n with ordinary flip u @ v = v ® u.
As we have mentioned before, the local action (7.49) of K[S,] is a faithful action on
the subspace of all multilinear polynomials of Z®". We have z;z5 . E @ #£0.
Hence u = z1z5 ...z, - & is not a constant, see (7.50).

By (6.41) and (7.47) applied to k(Z), we have (u - ®)0; = Y, z;®(u/0z).
Therefore the element

c= Zz, 5 (7.52)

satisfies ¢ = u - @, whereas ¢ - &1 = u - & @12 = 0. Thus c is a constant.
Differentiating the equality (7.52) by zx, we obtain

aZk ; 8z, 8Zk

Starting with this equality we may prove by induction

"u am+1
O e—— (7.53)
0240z, - - 0z, Z aZ, 07,0z + - - 02,
Indeed, in order to move from m to m + 1 it suffices to differentiate (7.53) by z, and
remember that in the classical case the partial derivations commute.

As u € Z®", all its partial derivatives of order n + 1 are zero. Hence recurrence
formula (7.53) by downward induction shows that all partial derivatives, including
the first ones, are zero; that is u is a constant. A contradiction.

Step 2. The element @; as an element of a finite dimensional algebra is a root of
some polynomial

o +a1q§1+a2q§f+a3¢f+---+amq§1’”=0.

If a9 # 0, then we may multiply this equation by o5 ' @; in order to get (7.51). Let
k be the minimal number with o 7# 0. We have

(o + g1 Py + -+ + @, @) Df = 0.

In the first step we have seen that @ = @ E for a suitable & € K[S,]. Hence the
multiplication by Z¥~! from the right ylelds

(ot + 1P + -+ Oém@lm_k)@l =0,

which required. O
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Theorem 7.8 The set C of all constants of K(X) is a free algebra freely generated
by a categorical subspace of homogeneous primitive elements of degree > 2. In
particular, C itself is a free braided Hopf algebra K(Y).

Proof By Corollary 6.3 the space C and all of its homogeneous components
are categorical subspaces. Moreover C = C* is a right and left coideal due
to Corollary 6.2. Thus C is a homogeneous categorical Hopf subalgebra. By
Theorem 6.9 it satisfies the weak algorithm.

By Proposition 1.9, it remains to check that C has a categorical weak algebra
basis of primitive elements. In line with the construction of the weak algebra basis
(see Lemma 1.38), it suffices to find a decomposition

n—1
Ci=Y,® ) CiCi. (7.54)

i=1

where Y, is a suitable categorical subspace of primitive elements.

First, we prove that C coincides with the subalgebra A generated by all primitive
elements of degree > 2. Every primitive element of degree > 2 is a constant due to
Corollary 6.1, whence A € C.

By Theorem 7.6 the algebra A is generated by all long skew commutators
[.. [, x5), ... x,], £ = 2. A product of the long skew commutators,

[ Beixindooooxild Lo By Xio b o oxi ] oo [ g Xl -,
may be written in terms of the local action as follows:
XiyXiy =+ Xy * VWt 15 Ve
where
W,p = (id —[aia 4+ 1])(id — [a;a + 2]) -+ - (id — [a; b]).

Thus in terms of the group algebra the required statement says that the left
annihilator of @; in K[S,] equals the left ideal of K[S,] generated by all products
U1 ikW%+1.s - Yit1.0- According to the principle, it suffices to check that C € A for
the particular case when V' = Z has the trivial braidingu @ v = v ® u.

In the classical case, k(Z) is the universal enveloping algebra of the Lie algebra
Primk(Z)®). By the PBW-theorem every element has a unique representation

2: i i i
u = aizllzzz...zzl".ci,

i=(i1.02,...1m)
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where ¢; are words in primitive elements of degree > 2; that is ¢; € A. In particular
¢i are constants, hence we have

du . i1 i
= X wid g eda o
i=(1.02,000,lm)
provided that i; # 0. Thus if u is a constant, then iy = i, = ... = i,, = 0, and

u € A, which proves that C = A.
Next, consider the left ideal E generated in K[S, ] by all proper products

lI/l’klI/k_H!s"'lI/rJ,_l’n, l<k<...<t<n, k;én,

and let E be the left ideal generated by ¥, given in (7.48). Since K[S,,] is semisimple,
it follows that £ + E; = E @ E, with E; C Ej; that is, there exist orthogonal
idempotents e, f such that £ = K[S,]e, E; + E = K[S,](f + ¢),f € E;. Thus we
arrive to a decomposition

Ay =V®" (E,+E) =V®.feV®.c

This provides the required decomposition (7.54) since C = A, and V®" - f is a
categorical (Lemma 6.11) subspace of primitive elements (f € E}). O

Theorem 7.9 Every braided subbialgebra of K(V) is generated by the primitive
elements, and it is a conservative coalgebra in k(V).

Proof By Lemmas 6.19 and 6.20 it suffices to check that each braided subbialgebra
A is conservative in k(V) as a coalgebra; that is A°(u) € A ® A implies that there
exists a € A such that u — a is a primitive element.

We will prove this statement by induction on the formal degree dy (), with
dy(x;) = 1. More precisely, the induction supposition is the following:
For every involutive braided space W, and for every braided subbialgebra A C
K(W), if A°(u) € A®QA and dw(u) < n, then u — u’ € A for some primitive u’ €
k(W).

By Lemma 6.19 we may suppose that both u and A are homogeneous, u € V&".
Formula (7.47) demonstrates that u - @, € A because u - @; appears from [u - @16,
by replacing ® with the multiplication in A. Lemma 7.6 implies

[u- @110 = |:[u . (Z aiQf_l)]®1:| 0.

i=2

Therefore u —w is a constant, where w = >, au - @i~' € A. By Theorem 7.8 the
element # — w belongs to C freely generated by a categorical subspace of primitive
elements of degree > 2. The formal degree of u — w with respect to free generators
of C is smaller than that with respect to x;. Although u — w may be inhomogeneous
in the new free generators, we may apply the induction supposition to u — w and
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subbialgebra C N A € C. Thus there exists u; € C N A such that u — w — u; is
primitive. Since w 4 u; € A, the theorem is proved. O

Theorem 7.10 Every biideal of K(V) is conservative in K(V) as a coideal.

Proof The proof is quite similar to that of Theorem 7.9. We start with the induction

supposition:

For every involutive braided space W, and for every biideal J € k(W), if A%(u) €

JRK(W) +k(W)®J and dw(u) < n, then u—u’ € J for some primitive u’ € k(W).
By Lemma 6.21 we may suppose that both u and J are homogeneous, u € V&".

Then we shall note that formula (7.47) implies J - @; C J, and next almost literally

follow the above proof of Theorem 7.9. O

Now we are ready to describe subalgebras of free Lie t-algebras. Recall that
according to Theorem 7.7 every free Lie r-algebra has a form Prim k(V)).

Theorem 7.11 Every right categorical Lie t-subalgebra L of a free Lie t-algebra
Primk(V)) has a subspace W C L such that L = Primk(W)), where k(W)
is a right categorical associative subalgebra freely generated by W in K(V). If the
subspace W may be chosen to be braided, then L itself is a free Lie t-algebra.

Proof Let U denotes an associative subalgebra generated by L in k(V). Since L is a
right categorical and braided subspace of primitive elements, it follows that U is a
right categorical subbialgebra of k(V). By Theorem 6.9, the algebra U satisfies the
weak algorithm, whereas by Theorem 7.9 and Lemma 6.20 it has a weak algebra
basis of primitive elements. Proposition 1.9 implies that U is freely generated by
a subspace W of primitive elements. It remains to show that L = Prim U. The
inclusion L C Prim U is evident.

Consider a free associative t-algebra k(L) freely generated by the braided space
L. The identical map L — L has an extension up to an epimorphism of associative
r-algebras ¢ : K(L) — U. Since elements from L are primitive both in k(L) and in
U, it follows that ¢ is a homomorphism of braided bi-algebras. By Theorem 7.10,
the kernel of ¢ is a conservative coideal in k(L). Therefore every primitive element
u € U has a primitive pre-image w € Primk(L), ¢(w) = u. According to the
Theorem 7.6, the element w has a representation

w= Y [.[gn gl 8] g €L® CK(L).
i=(i1,i2.....0n)
If we apply ¢ to both sides of this equality, then we obtain
u=gpw) = [..[0@&) @) 0] €L,

whence Prim U C L.
If W appears to be braided, then by Theorem 7.7, L is a free Lie t-algebra. O
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Corollary 7.3 (A.A. Mikhalev, A.S. Shtern) Every subalgebra of the free color
Lie superalgebra is free.

Proof We need to check that the space W in Theorem 7.11 is braided. Every
homogeneous subspace with respect to the grading defined by the coloring group
G is braided. Since every graded subspace has a graded complement in any graded
overspace, it follows that we may suppose that all W, in the construction of the weak
algebra basis are G-homogeneous, hence W is braided. O

7.5 Chapter Notes

The first generalization of Lie algebras appeared in a famous paper by Milnor and
Moore [175] who demonstrated that each connected graded Hopf algebra over a
field of characteristic zero is isomorphic with the universal enveloping algebra of a
graded Lie algebra. The Lie algebras graded by the additive two-element group G =
{1,0}, 1 + 1 = 0 were later renamed “Lie superalgebras” due to the development
of “supermathematics” that arose from certain demands by quantum mechanics
and nuclear physics [25-27]. The monograph The Theory of Lie Superalgebras by
Scheunert [204] provides an algebraic introduction to the subject.

One of the most important achievements in this respect is the Kac classification
of simple finite-dimensional Lie superalgebras [113-115, 117]. More recent devel-
opments of infinite-dimensional Lie superalgebras can be found in the works by
Bahturin et al. [14, 16]. The most recent book Lie Superalgebras and Enveloping
Algebras by Ian M. Musson [179] was published in 2012.

Scheunert introduced color Lie algebras in [202]. Notably, each color Lie algebra
may be obtained from a superalgebra using a cocycle deformation of the bracket.
The process involves changing the bracket of a color Lie algebra by replacing
[x,y] with [x,y], = o(g, h)[x,y], where o is a nonzero scalar that depends on the
degrees of x and y. If o(g, 1) is a 2-cocycle of the group G, then the new bracket
also satisfies the anticommutativity property and Jacobi identity, although with a
different commutation factor. By selecting a suitable o, one can always ensure that
the new bracket satisfies the identities of a Lie superalgebra. This process is known
as a “discoloration” technique as proposed by Scheunert.

The concept of a Lie r-algebra was introduced by Gurevich [88]. It later appeared
in a geometrical context in a paper by Manin [166]. Lie algebras in symmetric
monoidal categories are the Lie r-algebras as defined by D. Gurevich. A standard
method of obtaining a symmetric monoidal category is to consider all modules
over a triangular Hopf algebra or all comodules over a cotriangular Hopf algebra.
Hopf algebras and Lie algebras in distinct symmetric categories were studied in
[15, 17, 18, 50, 76, 131, 132, 144, 215]. In [143], Kochetov extended Scheunerts
“discoloration” technique to Lie algebras for the categories of (co)modules over
(co)triangular Hopf algebras. Certain works by Etingof and Gelaki [68—70, 85] are
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dedicated to the classification of finite dimensional triangular and cotriangular Hopf
algebras.

The category of Lie r-algebras over a field of characteristic zero is equivalent
to the category of the connected r-cocommutative braided Hopf algebras through
the enveloping construction [132]. This statement generalizes the classical Kostant-
Cartier-Milnor-Moore Theorem [220, Theorem 3.10]. In [167], Masuoka general-
ized two classical category equivalences: formal groups with finite-dimensional Lie
algebras, and unipotent algebraic affine groups with finite-dimensional nilpotent
Lie algebras. He proved that over a field of characteristic zero, the category of
Lie t-coalgebras is equivalent to the category of complete r-commutative Hopf
algebras and that the category of locally nilpotent Lie t-coalgebras is equivalent
to the category of connected r-commutative Hopf algebras. In [13], Ardizzoni et al.
considered braided bialgebras of Hecke type in a similar manner.

Ion investigated PBW isomorphisms for symmetrically braided Hopf algebras
(not necessarily t-commutative or t-cocommutative). He demonstrated that in
characteristic zero, for any connected symmetrically braided Hopf algebra, the
associated graded algebra with respect to the coradical filtration is T-commutative,
and therefore it is a Nichols algebra [103].

The proof of the embedding theorem in the book is credited to the author
[132]. The Gurevich theorem [89] states that U(L?) is a Koszul algebra. Based on
this theorem, the embedding theorem may be derived from a PBW theorem for
quadratic algebras of the Koszul type [132]. This PBW-type theorem was obtained
by Braverman and Gaitsgory [42] using algebraic deformation theory. It also appears
in a new book by Polishchuk and Positselsky [189, Chap. 5], which focuses on the
finite-dimensional case.

Gomez and Majid [86] proposed axioms of a left quantum Lie algebra g with
binary brackets [,] and braiding t that appear logically within the context of
Woronowicz’s bicovariant differential calculi over a Hopf algebra [230]. The Jacobi
identity remains essentially unchanged:

(id®@m)m = (m ® id)m + 7;(id ® m)m.
The antisymmetry condition becomes a conditional identity (quasi-identity):
Ur=U = Um=0, Ueg®.

The second axiom of braided algebra (7.13) remains unchanged, whereas the first
axiom is transformed as follows:

mQ®id)t — »71(id ® m) = (M ® id) — 71 (id ® m)7.

If t2 = id, then these axioms are equivalent to the axioms of Lie tr-algebra (7.13),
(7.14); however, in general, the braiding is not supposed to be involutive. In this
case, the embedding problem remains unsolved. See the detailed discussion in [131,
Sect. 5].
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Ardizzoni [7, 9, 10] proposed a further modification of axioms postulating
the embedding of g into U(g). The latter axiom plays the role of an implicit
Jacobi identity. The general theory of algebraic systems states that the conditions
for the embedding have generally assumed the form of quasi-identities, i.e., the
implications of the form

(as Gomez-Majid antisymmetry is), but not the form of identities. One should
remember that the quasi-varieties, the classes of algebras defined by quasi-identities,
are not closed with respect to the homomorphic images.

Ardizzoni and Stumbo [12] applied this approach to investigate the structure
of primitively generated connected braided bi-algebras whose braided vector space
of primitive elements defines a quadratic Nichols algebra, but t is not necessarily
involutive or of Hecke type.

The investigations of the subobjects of free objects were inspired by the
famous Nielsen-Schreier theorem [182, 205]: every subgroup of a free group
is free. Shirshov [209] and independently of him Witt [229] proved that every
subalgebra of a free Lie algebra is free. This result was later generalized to Lie
superalgebras by Shtern [214] and to color Lie algebras by Mikhalev [170, 171].
To some extent, Theorem 7.11 is a t-version of the Shirshov-Witt theorem. As
previously mentioned, Lie algebras in the braided category of left (co)modules over
a (co)triangular Hopf algebra are important examples of Lie t-algebras. Each Lie
subalgebra in a category is automatically categorical. Hence, Theorem 7.11 applies
to free Lie algebras in those braided categories.

The Shirshov-Witt Theorem, as well as its generalization to color Lie superal-
gebras, remains valid for the field k of positive characteristics. It is also valid in
the restricted version [172, 229]. Therefore, it would be insightful to understand
the extent to which Theorem 7.11 and other results (for example, the t-Friedrichs
criterion) remain valid for positive characteristics.

The free braided algebra with an involutive braiding has the structure of a
twisted algebra as introduced by Barratt [20], or the structure of a kX,-algebra
[217]. The free algebra with the braided coproduct is not a kX,-coalgebra. The
theory of twisted Lie algebras in the category of tensor species (kX .-Lie algebras)
has been subject to a similar conceptual development. Barratt’s main theorem in
[20] is that a free ZX-Lie algebra (in this case, k = Z is the ring of integer
numbers) is embedded in its enveloping ZX,-algebra. Joyal [108] established
the Poincaré-Birkhoff-Witt theorem for enveloping algebras. Stover proved that a
Kostant-Cartier-Milnor-Moore Theorem also holds [217]. The problem regarding
whether any kX.-subalgebra of a free Lie kX.-algebra is free has not been
considered yet.



Chapter 8
Algebra of Primitive Nonassociative Polynomials

Abstract In this chapter, we consider nonassociative primitive polynomials as
operations for nonassociative Lie theory in a similar manner as how we considered
the skew-primitive polynomials as operations for quantum Lie theory in Chaps. 4
and 5. Many of the well-known generalizations of Lie algebras involve only one
or two operations. For instance, Malcev algebras have one binary bracket; Lie
triple systems have one ternary bracket; Bol and Lie-Yamaguti algebras have one
binary bracket and one ternary bracket; and Akivis algebras have two operations,
an antisymmetric binary bracket and a ternary bracket (related to commutator and
associator), with only one identity that relates the two operations and generalizes
the Jacobi identity. The notion of Akivis algebra initially appears to be a proper
analog to Lie algebras for the theory of nonassociative products. However, the
question raised by K.H. Hofmann and K. Strambach of whether the commutator
and associator are the only primitive operations in a nonassociative bialgebra was
answered negatively. If true, it would have corroborated the fundamental role of
Akivis algebras for nonassociative Lie theory. In 2002, I.P. Shestakov and U.U.
Umirbaev discovered infinitely many independent operations, thus proving the theo-
rems considered in this chapter. These results demonstrate that Shestakov-Umirbaev
operations together with the commutator form a complete set of nonassociative Lie
operations, whereas Theorem 8.3 is a PBW basis theorem for the Lie theory of
nonassociative products.

In this chapter, we consider nonassociative primitive polynomials as operations for
nonassociative Lie theory in a similar manner as how we considered the skew-
primitive polynomials as operations for quantum Lie theory in Chaps.4 and 5.
Many of the well-known generalizations of Lie algebras involve only one or
two operations. For instance, Malcev algebras have one binary bracket; Lie triple
systems have one ternary bracket; Bol and Lie-Yamaguti algebras have one binary
bracket and one ternary bracket; and Akivis algebras have two operations, an
antisymmetric binary bracket and a ternary bracket (related to commutator and
associator), with only one identity that relates the two operations and generalizes
the Jacobi identity. In 2002, I.P. Shestakov and U.U. Umirbaev discovered infinitely
many independent operations. Theorems considered in this chapter demonstrate that
Shestakov-Umirbaev operations together with the commutator form a complete set
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of nonassociative Lie operations, whereas Theorem 8.3 is a PBW basis theorem for
the Lie theory of nonassociative products.

8.1 Nonassociative Polynomials

Recall that a nonassociative word is a word where the parenthesis are arranged to
show how the multiplication applies. Sometimes it is more convenient to variate
a designation of the parenthesis, for example instead of (xy)z one may write
xy - z, whereas ((z(xy))f)v takes the form {(z - xy)t}v. Besides this, a right-normed
nonassociative word,

u=((.. ((x1x2)x3)...)x2),
has a simplified notation without parenthesis,
U = X1X2X3 ... Xj5.
In the theory of nonassociative algebras, the commutator [x, y] 4 xy — yx and the
. df e
associator (x,y,z) = xy - z — x - yz play distinguished role.

Lemma 8.1 In each (nonassociative) algebra the following identities hold:

[)Cy, Z] —X[y, Z] - [xv Z]y =(x,y, Z) - (-xv Z, y) + (Zs-xs y)v (81)
(x,y,2t) =(x,yz,1) — (xy, 2, 1) + x(y, 2, 1) + (x,y, 2)t. (8.2)

Proof We have
[y, 2l = x[y. 2] = e 2ly =xy-z—z-xy—x-yz+x-zy —xz-y+zx-y
=(y-z—x-y2) = (z-xy—zx-y) + (x-2y —x2-y)
=(x,5,2) — (x,2,9) + (2, x,9),

and

(x.yz, 1) — (xy.2,0) + x(v, 2, 1) + (x5, )t
= (x-y2)t —x(yz- 1) — (xy - 2)t + (xy)(21)
+x(yz-1) —x(y-zt) + (xy - 2)t — (x - y2)t
= (y)(@) —x(y-z1) = (x,y.20).
O

A free nonassociative algebra kK{X} in variables X = {x; |i € I} is the algebra
of nonassociative polynomials in X with the concatenation product. By definition
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each nonassociative polynomial is a linear combination of nonassociative words.
On k{X} we fix a coproduct A : k{X} — k{X} ® k{X}, which is a homomorphism
of algebras, such that the variables are primitive:

A(x,-) :x,-® 1 + 1 ®X,'.

In this chapter, our aim is to understand the algebraic structure of the space 2 of all
primitive nonassociative polynomials,

A={fekiX} | A(H)=fR1+1Qf}.

Lemma 8.2 The space U is closed with respect to commutators and associators.

Proof We have to check that commutator and associator of primitive elements are
primitive. Let u, v are primitive nonassociative polynomials. We have

A(fu, v]) =AW A(v) — A(v) A(u)
=(1u+u®@DN(1IQv+v®1N—-(1v+v@N(1Qu+u®l)
=lQuv+vQ@ut+u@vt+uv®1

-1 Qu+u@v+vQu+u®l
= —vu) @1+ 1Q® uv—vu) =[u,v] @1+ 1Q [u,v].

Similarly, if w is another primitive polynomial, then

Awv -w—u-vw) =AW)AW) - A(w) — A(u) - A(v)A(w)
=1Quu+v@u+uRv+uw NI Jw+wel)
—(1Qu+u)(1QQuw+wv+vQw+iw®l)
=lQuu-w+uw - w@l-1Qu-vw—u-vw®1
=1Q® (u,v,w) + (u,v,w) ® 1.

|

Definition 8.1 A vector space is called an Akivis algebra if it is endowed with an
anticommutative bilinear operation [x, y] and a trilinear operation (x, y, z) that satisfy
the following nonassociative Jacobi identity:

[,y 2] + [[y. 2. ] + [[z.x], y]
= (X,y,z) + (y,Z,X) + (stsy) - (y,x,z) - (X,Z,y) - (Zsysx)-

Lemma 8.3 The commutator and associator of an arbitrary nonassociative alge-
bra satisfy the nonassociative Jacobi identity.
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Proof We have [[x,y],z] = [xy —yx,z] = xy-z—2z-xy —yx-z+ z- yx. Therefore
(b5} 2] + [y 2o o+ [l )] =@y -2~z 7] = yx-2 +275%)
+ (VX Xy =TI+ X 2y)
+ (—m—xz-y+w).

Combining similarly marked terms, we obtain the required equality. O

Lemma 8.2 demonstrates that 2 has the commutator as an anticommutative
bilinear operation and the associator as a trilinear operation. By Lemma 8.3 the
space of all primitive nonassociative polynomials is an Akivis algebra with respect
to associator and commutator. Nevertheless, these two operations do not exhaust the
algebraic structure of 2(. The following lemma provides a simplest example of an
unary operation that can not be expressed in terms of commutator and associator.

Lemma 8.4 The polynomial
f=x*—x*x*—2x(x,x,x), xeX

is primitive, but it does not belong to the Akivis subalgebra of 2 generated by X.

Proof Here, in line with our conventions, x* stands for a right-normed nonassocia-
tive word (((xx)x)x), whereas x? - x> = (xx)(xx). It is easy to prove by induction on
length that a Newton formula for right-normed nonassociative words in one variable
holds,

Ay =" () @k,
k=0 K

In particular, we have
A =x" @1 +4° Qx+ 6 X +4x@x° + 1 ® x*.
The equality A(x*) = x> ® | + 2x ® x + 1 ® x* implies

AW A=A =2 @1+ 6202+ 1822 2
F2UARE + 2R x + 2 Qx+x- X R x.

Considering that (x, x, x) is a primitive polynomial, we obtain

A, x,x) = x(6,x,x) @ 1 +x® (x,x,x) + (x,x,x) @ x+ 1 ® x(x,x,x).
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Taking into account the equality (x,x,x) = x> — x - x?, we see that almost all terms

in the decomposition of A(f) cancel, sothat A(f) =f @1+ 1Qf.
There exists only one superposition of degree four, p(x) = [(x, x, x), x], of the
Akivis operations in one variable. Certainly, f is not proportional to p. O

8.2 Shestakov-Umirbaev Operations

The latter example is a particular case of Shestakov-Umirbaev operations that we
are going to define on the primitive nonassociative polynomials.

Givenm,n > 1,letU = (u1, up, ... ,uy,)and V = (vy, v, ... , v,) be sequences
of nonassociative polynomials, and let U = wujup--- uy, V. = vivy--- v, be
the corresponding right-normed products. The Shestakov-Umirbaev operations are
defined inductively as follows:

p(U; Viw) = (U, V,w) = > UV - p(Ugy; Vs w), (8.3)

where (U, V,w) is the associator. Here Sweedler’s notation is extended so as to
mean that the sum is taken over all partitions of the sequences U and V into pairs of
subsequences, U = Uy U Uy and V = V(3y U V(3 such that [Uy| + V()| > 1,
Up) # 9, Vo) # 9; the expressions Uy and V(yy are the right-normed products of
the elements of U(j) and V ;) respectively.

For instance, the operation which corresponds to m = 2, n = 1 is the associator.
The operations correspondingtom = 2,n = landm = 1, n = 2 are

plur, up;v;w) = (uiuz, v, w) — uy(uz, v, w) — uz(uy, v, w)
and, respectively,
p(u; vy, va;w) = (u, vV, w) — V1 (4, V2, w) — V2 (1, V1, W).

If we put by definition p(d; V; w) = p(U; @; w) = 0, then definition (8.3) reduces
to a decomposition of the associator:

(U, V,w) = Z UnVay -p(Ug): Vioyiw), (8.4)

where the sum is taken over all partitions of the sequences U and V into pairs of
subsequences (including empty ones), in which case as usual Uy = @, V) = 0
imply Uy = 1, V(1) = 1 as products of empty sets of factors. This decomposition
is convenient due to the following statement, where f o g stands forf ® g + g ® f,
so that a polynomial f is primitive if and only if A(f) = 1of.
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Lemma 8.5 [f the polynomial w and all polynomials in the sequences U, V are
primitive, then the following equalities hold:

1) A(U) =2 Uny ® Upy:

2) AUV) =X UnyV) ® UV

3) AUVW) =3 UnyVay © (U Vioyw);

4) AU -Vw) =3 UnyVay o Uy - Voyw):

5) AU, V,w)) = > UV o (U, Vg, w),

where the sums are taken over all partitions of U and V into pairs of subsequences.

Proof We demonstrate equality 1) by induction on the length of the sequence U.
If the sequence has just one element, u;, then there are two possible partitions:
Uqy = (u1), Upy = @ and Uy = @, Up) = (u1). Respectively equality 1) reduces
to a correct equality A(u)) =u; @ 1 + 1 ® uy.

Assume that equality 1) is valid for all sequences of length m. Consider an
arbitrary sequence W = (uy, up, ..., Up, y+1) of length m + 1. Each partition U
= U1y UU(y) of the subsequence U = (uy, uy, . .., u,,) defines two partitions of W :

Wy = Uny U {upmsi1}, Wy = Uy, and Wy = Uqy, W) = Uy U {1}

For the former partition W1y = Uqyup+1, W2y = U(2), whereas for the latter one
Wy = Uqy, W) = U)um+1. Using induction supposition, we obtain the required
equality:

A(Uxn41) =AU A1) = (Y Uty @ Up) (1 @ 1+ 1 @ thy1)

)

= Z Unytm+1 ® Uy + Z Un ® Uyum+1 = Z Wiy ® We.
) ) (W)

The second statement of the lemma follows immediately from 1) because A
is a homomorphism of algebras. To check 3), we note that the coproduct in 2) is
cocommutative

AUV) =Y UV ® UnViy = Y UanyVia) ® Uy Vi)
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because each partition U = A U B defines a partition U = B U A and vice versa.
Thus

A(UVW) =AUV)A(w) = AUV)(1 @ w) + A(UV)(w® 1)
= Z UnVa) @ Ug)Voyw + Z UaVow @ UnVa
= Z UnyVay o Ug)Viyw,

which gives 3). In perfect analogy, one gets 4). Equality 5) follows immediately
from 3) and 4) by linearity. O

Theorem 8.1 If nonassociative polynomials
up, Uz, ..., Up, V1, V2, ..., Uy, W
are primitive then so is the polynomial

plur U, .o Uy V1, V2, U W),

Proof We perform induction on m + n. If either m or n is zero, then by definition
p(U; V;w) = 0 and we have nothing to prove. Assume that for all sequences U, V’/
of lengths m’, n’, respectively, with m’ + n’ < m + n, the element p(U’; V/; w) is
primitive. By definition p(U; V;w) = (U, V,w) — f, where

f= UnyVay - pUey: Vi w)

and the sum is taken over all partitions of the sequences U and V into pairs of
subsequences such that [U)| + |[V(y| = 1. In the above formula the elements
p(U(2); V(2);w) are primitive by the induction assumption. Using equality 3) of
Lemma 8.5 with w <= p(U(2); V(2); w), we obtain

A =Y UnnVaom © (UnaVoerUe;: Ve w)
=Y UV o (Ue)VorUe): Vi w). (8.5)
where the latter sum is taken over all partitions of the sequences U and V into

triples of subsequences, U = Uy U Uy U Ug), U = V(4 U V(3 U V3, such
that |Uqy| + [Vyl + Ul + |Vl = 1. Let us distinguish the partitions with
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Uq) = V() = 0. In this case sum (8.5) splits as follows:

= Z Lo UnyVayp(Uw): V)i w))

Uy [+Vayl=1
+ ) UnVe( Y, UonVeurUee: Voe:w).
(U [+IVyl=1 (U). (Vo)

Now the definition of f and representation of the associator (8.4) with U < Uy,
V <« V(o) imply

A(fy=Tlof+ Y UnyVa o (UpVaw.
[Oy[+IVyl=1

Applying equality 5) of Lemma 8.5, we obtain

AU,V w) =Y UnVay o (U, Viay, w)

=lo(U,V,w)+ Z UnVuy o (U Viyw)-
Uy l+IVy =1

Consequently,
A(p(U,V,w)) = AU, V,w)) —A(f) =10 (U,V,w)—1lof =1op(U,V,w);

that is, p(U, V, w) is primitive. O

8.3 Lie Algebra of Nonassociative Products

In this section we prove a fundamental result of Shestakov and Umirbaev that the
defined in the above section primitive operations together with the commutator form
a complete set of nonassociative Lie operations. The proof includes a some sort of
PBW basis construction for free nonassociative algebra over primitive polynomials
which is formulated in Theorem 8.3.

Theorem 8.2 If the characteristic of the ground field is zero, then the space 2
of all primitive nonassociative polynomials is generated by X as an algebra with
operations py.n,, m,n > 1 and [u, v].

We shall derive this theorem from the following statement.

Proposition 8.1 Let P be the minimal subspace of kK{X} that contains X and is
closed with respect to all operations p,, ,, m,n > 1 and [u, v]. Consider an arbitrary
completely ordered basis B = {ey | € A} of B. If the characteristic of the ground
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field is zero, then the set of all right-normed words of the type
erex- - ei—1e, € <e <-<e-1<e€ e€EB 1<k=i (8.6)

forms a basis of the algebra k{X}.

Proof Let C;, i > 1 denotes the space spanned by all words (8.6) of length less than
or equal to i.

Lemma 8.6 The spaces C;, 1 < i satisfy the following conditions:

(Ci, Cs, Ck) SCigsti—2s (8.7
[Ci, Cs] SCiys—1, (8.8)
Ci : Cs gCH—s- (89)

Proof We perform inductiononn = i + s + k. If n = 3, then (8.7) follows from
the fact that each associator (e,, ey, e,) belongs to C; = *B. Inclusion [Cy, C1] € Cy
is evident due to the fact that B = C is closed with respect to the operation [u, v].
If ¢; < e, then by definition e; - e, € C,, whereas e; - ¢; = e - e; + [e2,¢€1] €
C, 4+ C; C C,. Thus, we have the base of induction.

Assume that inclusions (8.7)—(8.9) fulfill for i + s + k < n. Let u, v, w be words
(8.6) of lengths i, s, k respectively and i + s + k = n.

If k = 1; that is, w = ey, than formula (8.4) and the induction assumption imply
that (u, v, w) = (u,v,ey) € Cp—s.

If k > 1, then w = wjeg, where w is a word (8.6) of length k— 1. By Lemma 8.1
identity (8.2) with x <— u, y < v, 7 < wy, t < ¢ is valid:

(u,v,w) = (u,vwy, ex) — (v, wy, ex) + u(v, wy, ex) + (u, v, wi)eg. (8.10)

By induction supposition (8.9), we have vw; € Cs4r—1, uv € Cits. These two
inclusions and already considered case k = 1 imply

(u,vwy, ex) € Ch—z,  (uv,wy,e) € Cps.

Induction supposition (8.7) yields (v,wy,er) € Cyyr—z, and (u,v,w;) € Cy—3.
Hence, again by induction supposition (8.9), we have

u(v,wi,er) € CiCsyi— € Ch—a,  (u,v,wr)ex € C,—3C; S Cys.
Thus, all terms of (8.10) belong to C,—,, which completes the proof of (8.7).

Consider inclusion (8.8). Because [u, v] = —[v, u], without loss of generality we
may suppose that i > 1; thatis, u = uje;, u; € Cj—;. Identity (8.1) with x < uy,
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y < e;, 7 < v yields
[u, v] = wife;, v] + [ur, vle; + (u1,ei,v) — (ur, v, e) + (v, u1, e).
In this decomposition, all associators belong to Ciys—» due to already proven
inclusion (8.7). Induction assumption (8.8) implies [e;, v] € Cy and [uy, v] € Ciys—2,
whereas induction assumption (8.9) yields
uile;, v] € Ci—1Cs € Ciyy—1 and [ur, vle; € Cips—2C1 C Cigs—1.
This completes the proof of (8.8).
Let us turn to (8.9). Consider firstly the case s = 1. Letu = ejes ... e;, v = ey.
If ¢; < e, then the word uv = ue, is a word of type (8.6), and by definition it
belongs to C;y1. If ¢ is a minimal number such that e, < e¢;, then by the same
reason eje; ... e;—1€q4¢; ... ¢; € Ciy1. Hence, it suffices to demonstrate that for all
t, 1 <t < ithe following relation is valid:
u =ejey... e1€4¢ ... ¢ (modC;). (8.11)
We perform downward induction on . If t = i, then u = uye;, u; € C;—; and
uv = uie; - eq = uy - eieq + (U1, e, eg).
The latter associator belongs to C;—; € C; due to (8.7). Further,

ui - ejeq = ui(eqe; + lei, eg)).

in which case u;[e;, 4] € C;—1C; € C; due to induction assumption (8.9). Hence,
taking into account (8.7), we have

uwv = uy - eqe; = ureg - e; — (U, eq, ;) = ureg - ¢; (mod Cy),

which completes the proof of (8.11) with t = i. If # < i, then already proven (8.11)
with i < t reads:

eley...e1ee,=c¢erer... e_1e4¢; (mod Cy).
This implies

eley... e €461 ...ei=eiey... e 1€ ...¢; (modC; CiCy---Cy).
~———

it
Induction assumption on ¢ yields

uv =ejey... e_1eeq... ¢; (modCy).
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It remains to note that C,C,C;---C; € C; due to induction assumption (8.9).
——

i—t
Relation (8.11) and, hence, (8.9) with s = 1 are proven.
If s > 1,then v = vyes, v; € Cs—1, e, € B. We have

uv = u-vie; = uvy - es + (1, vy, €).

The latter associator belongs to Ciys—» € Ciys due to (8.7), whereas uvy € Ciys—
by the induction assumption. Finally, uv; - e¢; € Ciy5—1C; € Cits due to already
considered case “s = 1”. O

Let us return to Proposition 8.1. Inclusion (8.9) demonstrate that | J,., C; is
closed with respect to the concatenation product. Because | ., C; contains X, we
have | J,.., Ci = k{X}; that is, the words of type (8.6) span k{X}.

It remains to show that words of type (8.6) are linearly independent. We perform
induction on length. The words of length one are linearly independent by definition.
The word of length 0 (the empty product) equals 1. If

(X'1+Z(Xi€i=(), eiEB, Oé,()[iEk,

then « - 1 is a primitive element. Hence
a-1®1l=A4A-N=1a-1+ua-1x®1.

This implies & = 0, and therefore o; = 0 for all i.

Assume that words of type (8.6) with length < n are linearly independent. In this
case the tensors u ® v € B ® ‘B, where u, v are words of type (8.6) with length < n,
are linearly independent as well. Consider an arbitrary linear combination of words
with length < n:

f=a- 1+Zae,+ Z Qo ok €12, (8.12)
ki.ka..
where the latter sum is taken over all sequences (k;, ks, ..., k) such that

l<ki+k+- +k <n,
and {ey,es,...,¢ey,...} = Bis the basis of 8 = Cj. In this case,

Af)—fR1I-1Qf=—al®1

§ E : ki—1 k
+ é; ®( Ok ko, ks kt gl 6‘2 . erf ess)

ki, ko, .

+ Z,B,v, ®w, =0, (8.13)
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where w, are words of type (8.6) with length < n— 1, and v, are words of type (8.6)
with 1 < |v,| < n. Because by the induction supposition all tensors are linearly
independent, f = 0 implies

a=0, > o kelley el =0, (8.14)

ki ko, ... ks
Again by the induction supposition, the latter equality yields o, «, .« &k = 0. As
chark = 0, we obtain o, 4, ..x, = 0. Thus, the linear dependence reduces to
> ;aie; = 0. A contradiction. O

Now we are ready to demonstrate Theorem 8.2. We have to show that B = 2;
that is, each primitive polynomial f € k{X} belongs to *8 = C,. By Proposition 8.1
the element f has a representation (8.12). As f is primitive, we have equality (8.13),
which implies (8.14). Consequently, all coefficients oy, «,. .., in (8.12) are zero,

and representation (8.12) reduces to f = ), a;e;, which is required.
The proven equality B = 2( allows us to reformulate Proposition 8.1 thus:

Theorem 8.3 Each basis of the space 2 of all primitive nonassociative polynomials
forms a set of PBW generators for the free nonassociative algebra kK{X}.

8.4 Chapter Notes

Lie theory for nonassociative products appeared as its own subject in the works of
Malcev, who constructed the tangent structures corresponding to Moufang loops.
For some time Akivis algebras were considered possible analog of Lie algebras for
nonassociative products. Although the definition of an Akivis algebra involves only
two operations and is quite elegant, the category of Akivis algebras is not equivalent
to that of formal loops. Hence, it is not suitable as a basis for nonassociative Lie
theory.

A motivation for the development of the machinery of nonassociative Hopf
algebras was the question of whether the commutator and associator are the only
primitive operations in a non-associative bialgebra. It appeared as a conjecture in the
paper by Hofmann and Strambach [100]; if true, it would imply an important role
for the Akivis algebras in nonassociative Lie theory. This conjecture was refuted by
Shestakov and Umirbaev in [208], where they demonstrated the theorems included
in this chapter.

An important advancement in the Lie theory of nonassociative products was the
introduction of a hiperalgebra by Mikheev and Sabinin, now called a Sabinin
algebra, which is the most general form of the tangent structure for loops, see
[169, 198, 199]. Lie, Maltcev, Bol, Lie- Yamaguti algebras, and Lie triple systems are
specific instances of Sabinin algebras. Sabinin algebras have an infinite set of inde-
pendent operations. There are three different natural constructions of operations in a
Sabinin algebra. Two of those constructions were devised by Sabinin and Mikheev.
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The third set of operations is the Shestakov-Umirbaev operations considered in
this chapter. However, the complete set of axioms for Sabinin algebras in terms
of Shestakov-Umirbaev operations remains unknown.

Malcev algebras have universal enveloping algebras that have highly similar
properties as typical cocommutative Hopf algebras [188]. Moreover, a similar
construction can be completed for Bol algebras [186] and, more generally, for all
Sabinin algebras [187]. The role of nonassociative Hopf algebras in the fundamental
questions of Lie theory, such as integration, was clarified in [177]. We refer the
reader to a recent survey of developments in the Lie theory for nonassociative
products [178] which describes the current understanding of the subject in relation
to recent works, many of which use nonassociative Hopf algebras as the main tool.

To our knowledge, the quantum aspects of the nonassociative Lie theory, such
as the structure of primitive nonassociative polynomials in symmetric categories or
the structure of skew-primitive polynomials in free nonassociative character Hopf
algebras, have not been elaborated.
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