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Preface

This book is the second edition of the book Lectures on nonlinear evolution equations.

Initial value problems [150] from 1992. Additionally, it now includes a new Chapter 13

on initial-boundary value problems for waveguides, addressing more advanced students

and researchers.

Several people contributed helpful comments on the first edition and on the new Chap-

ter 13. In particular I would like to thank Dipl.-Math. Karin Borgmeyer, Dr. Michael

Pokojovy, Dipl.-Math. Marco Ritter, and Dipl.-Math. Alexander Schöwe. For typing

Chapter 13 I thank Gerda Baumann. I am obliged to Birkhäuser, in particular to

Clemens Heine, for the interest in publishing this book.

Konstanz, April 2015 Reinhard Racke

Preface to the first edition:

The book in hand is based on lectures which were given at the University of Bonn in

the winter semesters of 1989/90 and 1990/91. The aim of the lectures was to present

an elementary, self-contained introduction into some important aspects of the theory of

global, small, smooth solutions to initial value problems for nonlinear evolution equa-

tions. The addressed audience included graduate students of both mathematics and

physics who were only assumed to have a basic knowledge of linear partial differential

equations. Thus, in the spirit of the underlying series, this book is intended to serve as

a detailed basis for lectures on the subject as well as for self-studies for students or for

other newcomers to this field.

The presentation of the theory is made using the classical method of continuation of local

solutions with the help of a priori estimates obtained for small data. The corresponding

global existence theorems have been proved mainly in the last decade, focussing on fully

nonlinear systems. Related questions concerning large data problems, the existence of

weak solutions or the analysis of shock waves are not discussed. Also the question of

optimal regularity assumptions on the coefficients is beyond the scope of the book and

is touched only in part and exemplarily.

Most of the material presented here has only been previously published in original pa-

pers, and some of the material has never been published until now. Therefore, I hope

that both the interested beginner in the field and the expert will benefit from reading the

book. In addition, a long list of references has been included, although it is not intended

v



vi

to be exhaustive. Of course the selection of the material follows personal interests and

tastes.

Several colleagues and students helped me with their comments on earlier versions of this

book. In particular I would like to thank R. Arlt, S. Jiang, S. Noelle, P. P. Schirmer,

R. P. Spindler, M. Stoth and F. Willems. Special thanks are due to R. Leis who also

suggested writing first lecture notes in 1989 (SFB 256 Vorlesungsreihe Nr. 13, Univer-

sität Bonn (1990), in German). I am obliged to the Verlag Vieweg and to the editor of

the “Aspects of Mathematics”, K. Diederich, for including the book in this series. The

major part of typing the manuscript was done by R. Müller and A. Thiedemann whom

I thank for their expert work. Last, but not least, I would like to thank the Deutsche

Forschungsgemeinschaft, Sonderforschungsbereich 256, for generous and continuous sup-

port.

Bonn, August 1991 Reinhard Racke

Preface
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Introduction

Many problems arising in the applied sciences lead to nonlinear initial value problems

(nonlinear Cauchy problems) of the following type

Vt + AV = F (V, . . . ,∇βV ), V (t = 0) = V 0.

Here V = V (t, x) is a vector-valued function taking values in IRk (or Ck), where t ≥ 0,

x ∈ IRn, and A is a given linear differential operator of order m with k, n, m ∈ IN. F is

a given nonlinear function of V and its derivatives up to order |β| ≤ m, and ∇ denotes

the gradient with respect to x, while V 0 is a given initial value. In particular the case

|β| = m, i.e. the case of fully nonlinear initial value problems, is of interest.

An important example from mathematical physics is the wave equation describing an in-

finite vibrating string (membrane, sound wave, respectively) in IR1 (IR2, IR3, respectively;

generalized: IRn). The second-order differential equation for the elongation y = y(t, x)

at time t and position x is the following:

ytt −∇′ ∇y√
1 + |∇y|2

= 0,

where ∇′ denotes the divergence. This can also be written as

ytt −Δy = ∇′ ∇y√
1 + |∇y|2

−Δy =: f(∇y,∇2y).

We notice that f has the following property:

f(W ) = O(|W |3) as |W | → 0.

Additionally one has prescribed initial values

y(t = 0) = y0, yt(t = 0) = y1.

The transformation defined by V := (yt,∇y) turns the nonlinear wave equation for y into

a first-order system for V as described above. The investigation of such nonlinear evo-

lution equations has found an increasing interest in the last years, in particular because

of their application to the typical partial differential equations arising in mathematical

physics.

We are interested in the existence and uniqueness of global solutions, i.e. solutions

V = V (t, x) which are defined for all values of the time parameter t. The solutions will

be smooth solutions, e.g. C1-functions with respect to t taking values in Sobolev spaces

of sufficiently high order of differentiability. In particular they will be classical solutions.

Moreover we wish to describe the asymptotic behavior of the solutions as t→∞.

© Springer International Publishing Switzerland 2015 
R. Racke, Lectures on Nonlinear Evolution Equations, 
DOI 10.1007/978-3-319-21873-1_1 

1



2 Introduction

It is well known for the nonlinear wave equation, the first example above, that in general

one cannot expect to obtain a global smooth solution. That is to say, the solution may

develop singularities in finite time, no matter how smooth or how small the initial data

are. This phenomenon is known for more general nonlinear hyperbolic systems and also

for many other systems from mathematical physics, biology, etc., including the systems

which are mentioned below. Therefore, a general global existence theorem can only be

proved under special assumptions on the nonlinearity and on the initial data. The result

will be a theorem which is applicable for small initial data, assuming a certain degree

of vanishing of the nonlinearity near zero. The necessary degree depends on the space

dimension, being a weaker assumption for higher dimensions. This is strongly connected

with the asymptotic behavior of solutions to the associated linearized system (F ≡ 0

resp. f ≡ 0 in the example above) as t→∞, which gives a first insight into the means

used for the proof.

Further examples of nonlinear evolution equations which can be written in the general

first-order form after a suitable transformation are the following. They will be discussed

in more detail in Chapter 11.

• Equations of elasticity:

∂2
tUi =

n∑
m,j,k=1

Cimjk(∇U)∂m∂kUj, i = 1, . . . , n,

U(t = 0) = U0, Ut(t = 0) = U1.

We shall discuss the homogeneous, initially isotropic case for n = 3 and the homo-

geneous, initially cubic case for n = 2.

• Heat equations:

ut −Δu = F (u,∇u,∇2u), u(t = 0) = u0.

• Equations of thermoelasticity:

∂2
tUi =

n∑
m,j,k=1

Cimjk(∇U, θ)∂m∂kUj + C̃im(∇U, θ)∂mθ, i = 1, 2, 3,

(θ + T0)a(∇U, θ)∂tθ = ∇′q(∇U, θ,∇θ) + tr{C̃km(∇U, θ)′km · (∂t∂sUr)rs}(θ + T0),

U(t = 0) = U0, Ut(t = 0) = U1, θ(t = 0) = θ0.

The homogeneous, initially isotropic case will be discussed here.

• Schrödinger equations:

ut − iΔu = F (u,∇u), u(t = 0) = u0.
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• Klein–Gordon equations:

ytt −Δy +my = f(y, yt,∇y,∇yt,∇2y), m > 0,

y(t = 0) = y0, yt(t = 0) = y1.

• Maxwell equations:

Dt −∇×H = 0,

Bt +∇× E = 0,

D(t = 0) = D0, B(t = 0) = B0,

∇′D = 0, ∇′B = 0,

D = ε(E), B = μ(H).

• Plate equations:

ytt +Δ2y = f(yt,∇2y) +
n∑

i=1

bi(yt,∇2y)∂iyt,

y(t = 0) = y0, yt(t = 0) = y1.

In order to obtain existence theorems to these systems, we shall apply the classical

method of continuing local solutions (local with respect to t), provided a priori estimates

are known. The proof of the a priori estimates represents the non-classical part of

the approach. It requires ideas and techniques which mainly have been developed in

the last years, in particular the idea of using the decay of solutions to the associated

linearized problems. These new techniques were essential to overcome the difficulties in

the study of fully nonlinear systems, i.e. systems where the nonlinearity involves the

highest derivatives appearing on the linear left-hand side. We remark that in this sense

the Schrödinger equations and the plate equations above are not fully nonlinear. The

highest derivatives that appear in the nonlinearity can still directly be dominated by the

linear part in the energy estimates, see Chapter 11.

The general method by which all the systems mentioned before can be dealt with (cum

grano salis) is described by the following scheme.

We discuss the system

Vt + AV = F (V, . . . ,∇βV ), V (t = 0) = V 0,

where F is assumed to be smooth and to satisfy

F (W ) = O(|W |α+1) as |W | → 0, for some α ∈ IN.

Introduction



4 Introduction

The larger α is, the smaller is the impact that the nonlinearity will have for small values

of |W |, i.e. the linear behavior will dominate for some time and there is some hope that

it will lead to global solutions for sufficiently small data if the linear decay is strong

enough. This will depend on the space dimension.

The general scheme consists of the following Steps A–E.

A: Decay of solutions to the linearized system:

A solution V to the associated linearized problem

Vt + AV = 0, V (t = 0) = V 0,

satisfies

‖V (t)‖q ≤ c(1 + t)−d‖V 0‖N,p,

where 2 ≤ q ≤ ∞ (or 2 ≤ q < ∞), 1/p + 1/q = 1; c, d > 0 and N ∈ IN are

functions of q and of the space dimension n. (E.g. for the wave equation above:

d = n−1
2
(1 − 2

q
).) This is usually proved by using explicit representation formulae

and/or the representation via the Fourier transform.

B: Local existence and uniqueness:

There is a local solution V to the nonlinear system on some time interval [0, T ],

T > 0, with the following regularity:

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s̃,2),

where s, s̃ ∈ IN are sufficiently large to guarantee a classical solution. The proof of

a local existence theorem is always a problem itself. We shall present the proof of

the corresponding theorem for the wave equation in detail.

C: High energy estimates:

The local solution V satisfies

‖V (t)‖s,2 ≤ C‖V 0‖s,2 · exp
⎧⎨⎩C

t∫
0

‖V (r)‖αb,∞ dr

⎫⎬⎭ , t ∈ [0, T ].

C only depends on s, not on T or V 0. b is independent of s, that is, the exponential

term does not involve higher derivatives in the L∞-norm (which allows to close the

circle in Step E). This inequality is proved using general inequalities for composite

functions (see Chapter 4).

D: Weighted a priori estimates:

The local solution satisfies

sup
0≤t≤T

(1 + t)d1‖V (t)‖s1,q1 ≤M0 <∞,
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where M0 is independent of T , s1 is sufficiently large, q1 = q1(α) is chosen appropri-

ately for each problem and d1 = d(q1, n) according to A, provided V 0 is sufficiently

small (in a sense to be made precise later; roughly, high Sobolev norms of V 0 are

small).

In this step the information obtained in A is exploited with the help of the classical

formula

V (t) = e−tAV 0 +

t∫
0

e−(t−r)AF (V, . . . ,∇βV )(r)dr,

where e−tAV 0 symbolically stands for the solution to the linearized problem with

initial value V 0.

E: Final energy estimate:

The results in C and D easily lead to the following a priori bound:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s ∈ IN being sufficiently large, V 0 being sufficiently small and K being independent

of T . This a priori estimate allows us to apply now the standard continuation

argument and to continue the local solution obtained in Step B to a solution

defined for all t ∈ [0,∞).

The method described above immediately provides information on the asymptotic be-

havior of the global solution as t→∞ in Step D and in Step E.

This general scheme applies to all the above systems mutatis mutandis; for example,

there may appear certain derivatives with respect to t of V in the integrand of the

exponential in Step C. Moreover the nonlinearity may depend on t and x explicitly.

Nevertheless, difficult questions can arise in the discussion of the details for each specific

system. Particularly interesting are the necessary modifications that have to be made for

the equations of thermoelasticity. This system cannot directly be put into the framework

just described because it consists of different types of differential equations (hyperbolic,

parabolic), and also different types of nonlinearities appear which exclude for example

a uniform sharp estimate as in Step A. Instead different components of V have to be

dealt with in different ways. Altogether however, global existence theorems will again

be proved in the spirit of the Steps A–E.

This underlines the generality of the approach. Of course, this generality prevents the

results from being optimal in some cases. We shall discuss this in detail for the following

general wave equation:

ytt −Δy = f(yt,∇y,∇yt,∇2y),

y(t = 0) = y0, yt(t = 0) = y1.

Introduction



6 Introduction

For this we shall go through the Steps A–E in Chapters 1–8. Moreover, a more or

less optimal result is presented, the proof of which uses invariance properties of the

d’Alembert operator ∂2
t − Δ under the generators of the Lorentz group. The other

examples will be studied in Chapter 11. In several of the cases there, these subtle

invariances are not available.

To underline the necessity of studying conditions under which small data problems allow

global solutions we shall shortly describe some blow-up results — results on the devel-

opment of singularities in finite time even for small data — in Chapter 10. In Chapter 9

a few other methods are briefly mentioned and Chapter 12 tries to outline some recent

developments and future projects going beyond the main line of this book.

The scheme described above can be found in [94]. Similar ideas are present in [117, 119,

158, 178].

One may think of the global existence results as a kind of stability result for small per-

turbations of the associated linear problems. Of course it is of great interest to study

solutions for large data but this is beyond the scope of this book. We refer the interested

reader to the literature [138, 179, 180, 186]. We also remark that there are much more

results on semilinear systems. The emphasis in this book lies on fully nonlinear systems.

In the second edition, we shall treat in the new Chapter 13 linear and nonlinear initial-

boundary value problems in waveguides, giving insight into the impact of the geometry

of domains with boundaries, and, simultaneously, demonstrating that following the steps

A–E also here applies, mutatis mutandis.



1 Global solutions to wave equations —

existence theorems

We shall start with the formulation of a global existence theorem for solutions of a class

of nonlinear wave equations. The first theorem, Theorem 1.1, is typical for the kind of

existence theorems that will be obtained for other evolution equations in Chapter 11.

The second theorem, Theorem 1.2, optimizes in some sense the result for wave equations.

We shall conclude this section with giving a few examples characterizing the behavior of

solutions to nonlinear wave equations in general, thus pointing out the crucial parts of

the assumptions in the existence theorems.

The nonlinear wave equations which shall be considered here are

ytt −Δy = f
(
yt,∇y,∇yt,∇2y

)
≡ f (Dy,∇Dy) , (1.1)

with prescribed initial data

y(t = 0) = y0, yt(t = 0) = y1. (1.2)

The following notation is used:

y = y(t, x) ∈ IR, t ≥ 0, x ∈ IRn, n ∈ IN arbitrary.

Δ =
n∑

i=1
∂2
i , ∂i = ∂/∂xi, i = 1, . . . , n, yt = ∂ty, ytt = ∂2

t y ∂t = ∂/∂t,

D =

⎛⎝ ∂t

∇

⎞⎠, ∇ = (∂1, . . . , ∂n)
′.

Let

u := Dy = (∂ty, ∂1y, . . . , ∂ny) , ∇u = ∇Dy = (∂1u, . . . , ∂nu) ,

u0 := (y1,∇y0), (as column-vectors).

We assume that the nonlinear function f satisfies

f ∈ C∞
(
IR(n+1)2 , IR

)
,

∃α ∈ IN : f(u,∇u) = O ((|u|+ |∇u|)α+1) as |u|+ |∇u| → 0,

⎫⎪⎪⎬⎪⎪⎭ (1.3)

where C∞
(
IRm, IRk

)
is the space of infinitely differentiable functions from IRm into IRk,

m, k ∈ IN. Let us introduce some more notation:

Wm,p := Wm,p(IRn): usual Sobolev spaces, m ∈ IN0, 1 ≤ p ≤ ∞, with norm ‖ · ‖m,p,

(see R.A. Adams [1]) (Sergei L’vovich Sobolev, 6.10.1908 – 3.1.1989).

Lp := W 0,p with norm ‖ · ‖p, 1 ≤ p ≤ ∞.

Ck(I, E) := space of k times continuously differentiable functions from an interval

© Springer International Publishing Switzerland 2015 
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8 1 Global Solutions to Wave Equations — Existence Theorems

I ⊂ IR into a Banach space E, k ∈ IN0 (Stefan Banach, 30.3.1892 – 31.8.1945).

Now we are ready to formulate the first existence theorem.

Theorem 1.1 We assume (1.3) with 1
α

(
1 + 1

α

)
< n−1

2
. Then there exist an integer

s0 >
n
2
+ 1 and a δ > 0 such that the following holds:

If u0 = (y1,∇y0) belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2
2α+1

and

‖u0‖s,2 + ‖u0‖s,p < δ,

then there is a unique solution y of the initial value problem to the nonlinear wave

equation (1.1), (1.2) with

(yt,∇y) ∈ C0
(
[0,∞),W s,2

)
∩ C1

(
[0,∞),W s−1,2

)
.

Moreover, we have

‖ (yt,∇y) (t)‖∞ + ‖ (yt,∇y) (t)‖2α+2 = O
(
t−

n−1
2

α
α+1

)
,

‖ (yt,∇y) (t)‖s,2 = O(1) as t→∞.

The proof of Theorem 1.1 will be presented in Chapter 8 based on results that will be

obtained in Chapters 2–7.

By Sobolev’s imbedding theorem the solution y obtained in Theorem 1.1 is a classical

solution:

y ∈ C2 ([0,∞)× IRn) .

The L2α+2-decay rate given above is optimal, but the L∞-decay rate is not optimal. This

results from the decay rate for sufficiently many derivatives of (yt,∇y) in the L2α+2-norm

just by Sobolev’s imbedding theorem (see Chapter 7). The optimal decay rate for the

L∞-norm is n−1
2

(instead of n−1
2

α
α+1

), see Theorem 1.2 below.

As far as the regularity assumption on f is concerned, we remark that the C∞-assumption

can be weakened, cf. the remarks in Chapters 5 and 8.

Theorem 1.1 was given by Klainerman & Ponce in [94]. It provides sufficient conditions

for the global existence of small, smooth solutions to the nonlinear wave equation (1.1).

Moreover, the asymptotic behavior of the solution as t → ∞ is described with decay

rates.

The condition
1

α

(
1 +

1

α

)
<

n− 1

2
(1.4)

obviously connects the space dimension and the degree of vanishing of the nonlinearity

near zero. The larger α and/or n are, the better the situation is.
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For the example from the introduction,

ytt −∇′ ∇y√
1 + |∇y|2

= 0

or

ytt −Δy = ∇′ ∇y√
1 + |∇y|2

−Δy

we have

f(Dy,∇Dy) = Δy

⎛⎝ 1√
1 + |∇y|2

− 1

⎞⎠+∇y∇′ 1√
1 + |∇y|2

= O
((
|∇y|+ |∇2y|

)3)
as |∇y|+ |∇2y| → 0,

i.e. we have α = 2 and the condition (1.4) turns into: n > 5/2, i.e. n ≥ 3.

In general we can express the relation between α and n as given in Table 1.1.

α = 1 2 3, 4, . . .

n ≥ 6 3 2

Table 1.1: Sufficient conditions in Theorem 1.1

Quadratic nonlinearities (α = 1) require n to be at least 6. This is not optimal. Since

the method leading to Theorem 1.1 is very general, being applicable to hyperbolic,

parabolic and many other equations, it is not surprising that it is not sharp in all cases

— although it is sharp in many cases! The optimal condition here being necessary is

n ≥ 4 for quadratic nonlinearities. To prove this result one has to use rather special

properties of the operator ∂2
t −Δ. The corresponding result is stated in the next theorem.

It is optimal in the sense that quadratic nonlinearities in IR3 in general tend to develop

singularities in finite time, see below and Chapter 10.

Let the initial data y0, y1 be given in the form

y(t = 0) = y0 = εϕ, yt(t = 0) = y1 = εψ, (1.5)

where ϕ, ψ ∈ C∞
0 ≡ C∞

0 (IRn) (test functions) and ε > 0 is a (small) parameter. Let

T∞(ε) denote the life span of a solution to the initial value problem (1.1), (1.5), i.e.

T∞(ε) equals the supremum of all times T > 0 for which there exists a C∞-solution to

(1.1), (1.5) for all x ∈ IRn, 0 ≤ t < T .

We assume that f satisfies (1.3) with α = 1. Then we have

1 Global Solutions to Wave Equations — Existence Theorems
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Theorem 1.2 (i) Let n > 3. Then there is an ε0 > 0 such that for all ε with 0 < ε ≤ ε0

we have

T∞(ε) =∞,

where ε0 depends on at most (2n+3) derivatives of f and ψ and on at most (2n+4)

derivatives of ϕ. The global solution y satisfies

(yt,∇y) ∈ C0
(
[0,∞),W 2n+3,2

)
∩ C1

(
[0,∞),W 2n+2,2

)
.

Moreover, we have

‖(yt,∇y)(t)‖∞ = O
(
t−

n−1
2

)
,

‖(yt,∇y)(t)‖2n+3,2 = O(1) as t→∞.

(ii) Let n = 3. There exist an ε0 > 0 and an A > 0 such that for all ε with 0 < ε ≤ ε0

we have

T∞(ε) ≥ eA/ε,

where ε0 and A depend on at most 9 derivatives of f and ψ and on at most 10

derivatives of ϕ.

If f vanishes of order α+ 1 near zero, α ≥ 1, then the proof of Theorem 1.2 in Chapter

8 will show that the following condition would replace the condition (1.4):

1

α
<

n− 1

2
. (1.6)

Since this only changes the value for n in Table 1.1 if α = 1, Theorem 1.2 has been

formulated for this case. The reason for having the improved relation (1.6) is that

a precise analysis of the invariance properties of ∂2
t − Δ allows to replace an L1–L∞-

estimate for solutions to the linear wave equation by an L2–L∞-estimate of a general

Sobolev type with the same decay rate n−1
2
; see Chapter 8.

The L∞-decay rate of (yt,∇y) given for the global solution y in Theorem 1.2, (i) is

optimal.

Theorem 1.2 was given by S. Klainerman in [88]. The result is optimal with respect to the

relation between α and n in the following sense. It is known that quadratic nonlinearities

(α = 1) in IR3 in general tend to develop singularities in finite time. Examples have been

given by F. John (Fritz John, 14.6.1910 – 10.2.1994) in [68, 70]; see Chapter 10.

The following two examples illustrate typical situations. The first example is a special

quadratic nonlinearity in IR3. It shows that global solutions may exist but also singular-

ities may develop depending on the size of the data.

Example 1: (cf. [86, pp. 45–46])

ytt −Δy = |∇y|2 − y2t , (1.7)
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y(t = 0) = 0, yt(t = 0) = h ∈ C2(IR3), (1.8)

where y = y(t, x), t ∈ IR, x ∈ IR3; further conditions on h are given below. If y is a

solution to (1.7), (1.8), y ∈ C2(IR × IR3), then v defined by v := ey satisfies

vt = vyt, vtt = vytt + vy2t , ∇v = v∇y, Δv = vΔy + v|∇y|2

which implies

vtt −Δv = v
(
ytt −Δy + y2t − |∇y|2

)
= 0,

v(t = 0) = 1, vt(t = 0) = h.

Thus v is explicitly given by

v(t, x) = 1 +
t

4π

∫
S2

h(x+ tξ)dξ,

S2 being the unit sphere in IR3, (see Chapter 2 for this formula).

If v > 0 we obtain y as

y(t, x) = log

⎛⎝1 +
t

4π

∫
S2

h(x+ tξ)dξ

⎞⎠ . (1.9)

Hence it is always possible to find a function h ∈ C∞
0 (IR3) such that the corresponding

solution y develops a singularity not later than at time t0 at the position x0, where t0

and x0 are arbitrary. h only has to satisfy the following relation:

t0
4π

∫
S2

h(x0 + t0ξ)dξ = −1.

On the other hand we can find conditions on h such that y is defined globally. For this

let

h(z) = O
(
|z|−1

)
as |z| → ∞,

‖∇h‖1 < 4π, ‖h‖∞ < 1.

Then we have for t > 1:

∣∣∣∣∣∣t
∫
S2

h(x+ tξ)dξ

∣∣∣∣∣∣ = t

∣∣∣∣∣∣
∫
S2

∞∫
t

d

ds
h(x+ sξ)dsdξ

∣∣∣∣∣∣
≤ t

∫
S2

∞∫
t

s2

t2
|(∇h)(x+ sξ)|dsdξ

≤ 1

t
‖∇h‖1

<
4π

t
.

1 Global Solutions to Wave Equations — Existence Theorems
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This implies ∣∣∣∣∣∣ t

4π

∫
S2

h(x+ tξ)dξ

∣∣∣∣∣∣ < 1 for t > 1.

Analogously for t < −1. For |t| ≤ 1 we have∣∣∣∣∣∣ t

4π

∫
S2

h(x+ tξ)dξ

∣∣∣∣∣∣ ≤ |t| ‖h‖∞ < 1.

Therefore, v(t, x) > 0 for all (t, x) ∈ IR× IR3 and y is defined globally in (1.9).

Remark: The nonlinear wave equation (1.7) is a special case of the differential equation

ytt −Δy = a|∇y|2 + by2t , a, b ∈ IR fixed.

For this the following holds: Global solutions always exist for sufficiently small data if

and only if a + b = 0. The if-part has just been shown by the example above (taking

v := eay in general). The only-if-part was proved by Hanouzet & Joly in [43]. In the

case a + b = 0 the nonlinearity satisfies the so-called null condition which is a sufficient

condition for quadratic nonlinearities in IR3 to allow small, global solutions, see [90] and

Chapter 9.

The second example is an example in one space dimension which shows that the solution

itself and its first derivatives may stay bounded but that second derivatives may develop

singularities in finite time. This is also a typical phenomenon observed for nonlinear

wave equations.

Example 2: (cf. [65, pp. 649–650])

ytt = (1 + yx)
2yxx (1.10)

or equivalently

ytt − yxx = 2yxyxx + y2xyxx,

y(t = 0) = H, yt(t = 0) = −1
2
(H ′)2 −H ′, (1.11)

where y = y(t, x), t ≥ 0, x ∈ IR, yxx = ∂2

∂x2y. H is a given function with H ∈ C∞
0 (IR)

and

h := min
x∈IR

H ′′(x) < 0(
H ′′(x) = d2

dx2H(x)
)
.

We construct a solution y ∈ C2 ([0,−1/h)× IR) which becomes singular as t → −1/h,
more precisely:

yxx(tn, x0)→ −∞
for a sequence (tn)n ⊂ [0,−1/h), tn → −1/h, and for some x0 ∈ IR.
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For this purpose let θ ∈ C1 ([0,−1/h)× IR) be implicitly defined by

θ(t, x) = H ′ (x− (1 + θ(t, x))t) .

This is possible by the implicit function theorem because for t ∈ [0,−1/h) there holds

H ′′ (x− (1 + θ)t) (−t)− 1 
= 0

which implies
d

dθ
(H ′(x− (1 + θ)t)− θ) 
= 0.

Let y be defined by

y(t, x) :=
t

2
θ2(t, x) +H (x− (1 + θ(t, x))t) .

Claim: y solves (1.10), (1.11) (for (t, x) ∈ [0,−1/h)× IR).

Proof: y(t = 0) = H is obvious.

yt(t, x) =
1

2
θ2(t, x) + tθ(t, x)θt(t, x) +H ′ (x− (1 + θ(t, x))t) (−1− θ(t, x)− tθt(t, x))

= −1
2
θ2(t, x)− θ(t, x).

This implies

yt(t = 0) = −1
2
(H ′)2 −H ′

and

ytt(t, x) = −θt(t, x)θ(t, x)− θt(t, x) = −θt(t, x) (1 + θ(t, x)) .

Moreover

yx(t, x) = tθ(t, x)θx(t, x) +H ′ (x− (1 + θ(t, x))t) (1− tθx(t, x))

= θ(t, x)

which implies

yxx(t, x) = θx(t, x).

On the other hand we have

θx(t, x) = H ′′ (x− (1 + θ(t, x))t) (1− tθx(t, x))

which yields

θx(t, x) =
H ′′ (x− (1 + θ(t, x))t)

1 + tH ′′ (x− (1 + θ(t, x))t)
.

Analogously we obtain

θt(t, x) =
−H ′′(x− (1 + θ(t, x))t) (1 + θ(t, x))

1 + tH ′′ (x− (1 + θ(t, x))t)
.

1 Global Solutions to Wave Equations — Existence Theorems
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This implies

θt(t, x) = − (1 + θ(t, x)) θx(t, x)

and finally

ytt(t, x) = (1 + θ(t, x))2 θx(t, x) = (1 + yx(t, x))
2 yxx(t, x).

Q.e.d.

Claim: There are sequences (tn)n ⊂ [0,−1/h) with lim
n→∞ tn = −1/h, and (xn)n ⊂ IR

with lim
n→∞xn = x0 for some x0 ∈ IR such that

lim
n→∞ yxx(tn, xn) = −∞.

Proof: Let ξ ∈ IR with H ′′(ξ) = h, (tn)n ⊂ [0,− 1
h
), arbitrary with lim

n→∞ tn = −1/h.
Since θ is bounded we conclude

∀n ∈ IN ∃xn ∈ IR : xn − (1 + θ(tn, xn)) tn = ξ.

Hence there is a subsequence which converges to some x0 ∈ IR. We obtain

yxx(tn, xn) = θx(tn, xn) =
H ′′(ξ)

1 + tnH ′′(ξ)
−→ −∞ as n→∞.

Q.e.d.

By the definition of y and the derived formulae for yt and yx it is obvious that y, yt and

yx stay bounded in [0,−1/h)× IR.

More examples will be given in Chapter 10.



2 Lp–Lq-decay estimates for the linear wave

equation

For the proof of Theorem 1.1 simple decay properties of solutions to the linear wave

equation play an important role (see Chapter 7). The decay rates of Lq-norms are

typically of polynomial order in IRn depending on the space dimension n and on q.

We consider the solution of the linear initial value problem

ytt −Δy = 0, (2.1)

y(t = 0) = 0, yt(t = 0) = g, (2.2)

where y = y(t, x) is a real-valued function, t ≥ 0, x ∈ IRn and g is assumed to be smooth

for the moment.

Let the operator w(t) be defined through

(w(t)g)(x) := y(t, x).

Remark: The assumption y(t = 0) = 0 is made without loss of generality because the

function y1 defined by

y1(t, x) := ∂t(w(t)g)(x)

solves the initial value problem

∂2
t y1 −Δy1 = 0

y1(t = 0) = g, ∂ty1(t = 0) = ∂2
t (w(t)g)(t = 0) = Δw(t = 0)g = 0.

(Cf. the representation of solutions in Chapter 7 and the considerations in Section 11.5.)

Theorem 2.1 ∃c = c(n) > 0 ∀g ∈ C∞
0 ∀t ≥ 0:

(i) ‖Dw(t)g‖2 = ‖g‖2,
(ii) ‖Dw(t)g‖∞ ≤ c(1 + t)−

n−1
2 ‖g‖n,1.

Proof: Let g ∈ C∞
0 . Then y = w(·)g ∈ C∞([0,∞) × IRn) and Dαw ∈ C0([0,∞), L2)

for α ∈ INn
0 . (Cf. Chapter 3 or the book of R. Leis [98].) c will denote various positive

constants at most depending on n.

Multiplying both sides of (2.1) with yt(t, ·) in L2 (inner product denoted by 〈·, ·〉) and
dropping the parameter t, we obtain

0 = 〈ytt, yt〉 + 〈∇y,∇yt〉

=
1

2

d

dt
(‖yt‖22 + ‖∇y‖22)

=
1

2

d

dt
‖Dw(t)g‖22.
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This proves (i).

(ii) will be proved here for n = 1 and n = 3 to give some main ideas. For odd space

dimensions n ≥ 3 or even space dimensions see Section 11.5 and the paper of W. von

Wahl [187], respectively.

n = 1: The solution y is given by d’Alembert’s formula:

y(t, x) :=
1

2

x+t∫
x−t

g(r)dr

(Jean Baptiste Le Rond d’Alembert, 16.11.1717 – 29.10.1783).

We have

yt(t, x) =
1

2
(g(x+ t) + g(x− t)),

yx(t, x) =
1

2
(g(x+ t) − g(x− t))

whence it is obvious that y solves the initial value problem (2.1), (2.2). Moreover

∀t ≥ 0 : ‖Dw(t)g‖∞ ≤ ‖g‖∞ ≤ c‖g‖1,1
by Sobolev’s imbedding theorem. This proves (ii) for the case n = 1.

Now let n = 3: Kirchhoff’s formula says that y defined by

y(t, x) :=
t

4π

∫
S2

g(x+ tz)dz, (2.3)

is the solution, where S2 = ∂B(0, 1) denotes the unit sphere in IR3 (Gustav Robert

Kirchhoff, 12.3.1824 – 17.10.1887). This is easily checked. From (2.3) we obtain

y(t = 0) = 0,

4πyt(t, x) =
∫
S2

g(x+ tz)dz + t
∫
S2

(∇g)(x+ tz)z dz,

yt(t = 0) = g.

Moreover

4π∇y(t, x) = t
∫
S2

(∇g)(x+ tz)dz,

hence

4πytt(t, x) = 2
∫
S2

(∇g)(x+ tz)zdz + t
∫
S2

∇{(∇g)(x+ tz)z}zdz

= 3t
∫

B(0,1)

(Δg)(x+ tz)dz + t2
∫

B(0,1)

(∇Δg)(x+ tz)zdz,
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4πΔy(t, x) = t
∫
S2

(Δg)(x+ tz)dz = t
∫
S2

{(Δg)(x+ tz)z}zdz

= t2
∫

B(0,1)

(∇Δg)(x+ tz)zdz + 3t
∫

B(0,1)

(Δg)(x+ tz)dz.

This implies

ytt −Δy = 0.

Now we shall prove (ii).

First let t ≥ 1:

1.

−
∫
S2

g(x+ tz)dz =
∫
S2

∞∫
t

d

ds
g(x+ sz)dsdz =

∫
S2

∞∫
t

(∇g)(x+ sz)zdsdz

=
∫
S2

∞∫
t

s2

s3
(∇g)(x+ sz)szdsdz

=
∫

|z|>t

|z|−3(∇g)(x+ z)zdz.

This implies

|
∫
S2

g(x+ tz)dz| ≤ t−2
∫

|z|>t

|(∇g)(x+ z)| dz ≤ t−2‖g‖1,1.

2. Analogously one obtains

|t
∫
S2

(∇g)(x+ tz)zdz| ≤ t−1‖g‖2,1

and

|t
∫
S2

∇g(x+ tz)dz| ≤ t−1‖g‖2,1.

Hence we get for t ≥ 1:

‖Dw(t)g‖∞ ≤ (4π t)−1‖g‖2,1. (2.4)

3. Now let 0 ≤ t < 1:

−
∫
S2

g(x+ tz)dz =
∫
S2

∞∫
t

d

ds
g(x+ sz)dsdz

= −
∫
S2

∞∫
t

(s− t)
d2

ds2
g(x+ sz)dsdz

=
∫
S2

∞∫
t

(s− t)2

2

d3

ds3
g(x+ sz)dsdz

=
∫

|z|>t

(|z| − t)2

2|z|5
3∑

i,j,k=1

zizjzk(∂i∂j∂kg)(x+ z)dz.

2 Lp–Lq-Decay Estimates for the Linear Wave Equation
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This implies

|
∫
S2

g(x+ tz)dz| ≤ ∑
i,j,k=1

∫
|z|>t

|∂i∂j∂kg(x+ z)|dz ≤ ‖g‖3,1.

Analogously for the terms discussed in 2. Thus we have obtained for 0 ≤ t < 1:

‖Dw(t)g‖∞ ≤ c‖g‖3,1. (2.5)

(2.4) and (2.5) prove (ii).

Q.e.d.

Remarks: For g ∈ W n,1 there is still a distributional solution y to the initial value

problem (2.1), (2.2). Since W n,1 is continuously imbedded into L2 we have

y ∈ C0([0,∞),W 1,2) ∩ C1([0,∞), L2)

(see e.g. [98]).

Moreover one can define a trace on ∂Ω for g ∈ W 1,p(Ω), 1 ≤ p < ∞, where Ω is a

smoothly bounded domain in IRn (Lipschitz boundary is sufficient); namely, there is a

continuous map B,

B : W 1,p(Ω) −→ Lp(∂Ω)

with

Bg = g/∂Ω if g ∈ W 1,p(Ω) ∩ C0(Ω)

(see e.g. the book of H.W. Alt [6]), (Rudolf Otto Sigismund Lipschitz, 14.5.1832 –

7.10.1903). Therefore Kirchhoff’s formula (2.3) makes sense for g ∈ W 3,1 ↪→ W 1,2 (↪→
denotes the continuous imbedding).

Thus we obtain the corresponding results for g ∈ W n,1 by approximation with (gk)k ⊂
C∞

0 , expressed in the following theorem.

Theorem 2.2 ∃c = c(n) > 0 ∀g ∈ W n,1 ∀t ≥ 0:

(i) ‖Dw(t)g‖2 = ‖g‖2,
(ii) ‖Dw(t)g‖∞ ≤ c(1 + t)−

n−1
2 ‖g‖n,1.

In other words, the operator Tt, defined by

Ttg := Dw(t)g

maps as follows:

Tt : W n,1 −→ L∞ with norm M0 ≤ c(1 + t)−
n−1
2 ,
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Tt : L2 −→ L2 with norm M1 = 1.

By interpolation we obtain

Tt : [W n,1, L2]θ −→ [L∞, L2]θ, 0 ≤ θ ≤ 1,

with norm Mθ ≤ cM1−θ
0 Mθ

1 , c = c(θ, n).

The interpolation spaces [·, ·]θ are described in Appendix A. We have

1 ≤ q0, q1 ≤ ∞ ⇒ [Lq0 , Lq1]θ = Lqθ , (2.6)

where qθ is defined by the relation

1

qθ
=

1− θ

q0
+

θ

q1
.

In particular we get

[L∞, L2]θ = Lqθ with qθ =
2

θ
.

The proof of (2.6) is not very difficult after having given an appropriate meaning to [·, ·]θ.
This is possible for example in general Banach spaces. The proof uses the Three-Line-

Theorem of J. Hadamard (Jacques Hadamard, 8.12.1865 – 17.10.1963). The interpolation

ofW n,1 and L2 is much more difficult. For this purpose Besov spaces and Bessel potential

spaces are used (Friedrich Wilhelm Bessel, 22.7.1784 – 17.3.1846). We refer the reader

to Appendix A for a survey and to the books of Bergh & Löfström [11] and H. Triebel

[181] for details. One special result suitable for our purposes is:

WN,pθ ↪→ [W n,1, L2]θ if N > (1− θ)n,

where
1

pθ
+

1

qθ
= 1

defines pθ (see Theorem A.10 in Appendix A).

Remark: For θ ∈ {0, 1} we may allow N = (1− θ)n.

Thus we obtain the following theorem on the Lp–Lq-decay of solutions to the linear wave

equation.

Theorem 2.3 Let 2 ≤ q ≤ ∞, 1/p+ 1/q = 1, Np > n(1− 2/q). Then

∃c = c(q, n) > 0 ∀g ∈ WNp,p ∀t ≥ 0 : ‖Dw(t)g‖q ≤ c(1 + t)−
n−1
2

(1− 2
q
)‖g‖Np,p.

Remarks: Np = n(1− 2/q) is possible if q ∈ {2,∞}.
Since

Np · p > n(1− 2/q)p = n(2− p)

2 Lp–Lq-Decay Estimates for the Linear Wave Equation



20 2 Lp–Lq-Decay Estimates for the Linear Wave Equation

we have

WNp,p ↪→ L2

and hence

Dw(·)g ∈ C0([0,∞), L2).

If (gm)m ⊂ C∞
0 converges to g in WNp,p, then (Dw(t)gm)m converges in L2 to Dw(t)g.

Several sharper results for solutions to linear wave equations are contained in Section

11.5 and in the paper of W. v. Wahl [187] respectively. Another method of proving

Lp–Lq-decay estimates (at least for q < ∞) is to use the Fourier representation of the

solution (Jean-Baptiste-Joseph Fourier, 21.3.1768 – 16.5.1830). This has been carried

out by H. Pecher in [138] and the result is essentially expressed in Lemma 11.16 in

Section 11.7.



3 Linear symmetric hyperbolic systems

Let u = u(t, x) = (u1, . . . , uN)(t, x), t ≥ 0, x ∈ IRn, N ∈ IN, and let the formal linear

differential operator L be defined by

Lu := A0(t, x)∂tu+
n∑

j=1

Aj(t, x)∂ju+B(t, x)u. (3.1)

Here A0, A1, . . . , An and B are complex N × N -matrices depending on t and x. Aj,

for 0 ≤ j ≤ n, is assumed to be hermitian and A0 is assumed to be positive definite,

uniformly with respect to t and to x (Charles Hermite, 24.12.1822 – 14.1.1901).

With these assumptions L is a symmetric hyperbolic differential operator and the (for-

mal) system of equations

Lu = f, (3.2)

u(t = 0) = u0 (3.3)

is a symmetric hyperbolic system with data

f = f(t, x) and u0 = u0(x).

Every scalar hyperbolic equation of second order can be transformed into a symmetric

hyperbolic system. Let

∂2
t v =

n∑
i,j=1

aij(t, x)∂i∂jv +
n∑

i=1

bi(t, x)∂iv + c(t, x)∂tv + d(t, x)v,

where all functions are real-valued and (aij(t, x))ij is a symmetric positive definite n×n-

matrix, uniformly with respect to t and x. (We do not care about differentiability

questions for the moment.)

Let

u1 := ∂1v, . . . , un := ∂nv, un+1 := ∂tv, un+2 := v.

Then we obtain the following system of differential equations for the N := n+2 functions

u1, . . . , un+2 :

n∑
j=1

aij(t, x)∂tuj −
n∑

j=1

aij(t, x)∂jun+1 = 0, i = 1, . . . , n, (3.4)

∂tun+1 −
n∑

i,j=1

aij(t, x)∂jui −
n∑

i=1

bi(t, x)ui − c(t, x)un+1 − d(t, x)un+2 = 0, (3.5)

∂tun+2 − un+1 = 0. (3.6)

(3.4) – (3.6) are equivalent to a symmetric hyperbolic system

Lu = 0

© Springer International Publishing Switzerland 2015 

DOI 10.1007/978-3-319-21873-1_4 

21

R. Racke, Lectures on Nonlinear Evolution Equations, 



22 3 Linear Symmetric Hyperbolic Systems

of the type (3.1) with

A0 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1n 0 0

...
...

...
...

an1 · · · ann 0 0

0 · · · 0 1 0

0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0

...
...

...
...

0 · · · 0 0 0

−b1 · · · −bn −c −d
0 · · · 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Aj :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 −a1j 0

...
...

...
...

0 · · · 0 −anj 0

−a1j · · · −anj 0 0

0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, j = 1, . . . , n.

We shall prove in this section an existence theorem for the system (3.2), (3.3). This

will be done first for analytic data, then an approximation will be carried out. For this

purpose a priori (energy) estimates are required.

3.1 Energy estimates

We assume

A0, A1, . . . , An ∈ C1
b , B ∈ C0

b ,

where Ck
b denotes the space of k-times continuously differentiable functions with bounded

derivatives up to order k, k ∈ IN0 ∪ {∞}.
Let

a0 := min
v,t,x;|v|=1

A0(t, x)v · v > 0,

a1 := max
v,t,x,j;|v|=1

|Aj(t, x)v · v| > 0,

ρ :=
a0
na1

. (3.7)

Let Kρ ≡ Kρ(t0) be the truncated cone

Kρ := {(t, x) | x ∈ Kt, 0 ≤ t ≤ t0}, (3.8)
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where

Ks := B

(
0,

T0 − s

ρ

)
⊂ IRn, 0 ≤ s ≤ T0,

and t0, T0 are arbitrary but fixed, satisfying

0 < t0 ≤ T0.

The boundary ∂Kρ of Kρ consists of three parts:

bottom: {0} ×K0; top: {t0} ×Kt0 ; lateral surface: M ; see Figure 3.1.
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t0

M

T0/ρ

Figure 3.1: Characteristic cone

The cone Kρ, or more precisely, ρ has been chosen in a way such that for integrals of

the type: ∫
Kρ

Lu · u

the terms ∫
M

· · · ,

arising through partial integration, have an appropriate sign (cf. (3.11) below). In this

situation M is called space-like for L.

We introduce the following notation:

|u(t)|Kt :=

⎛⎜⎝∫
Kt

A0(t, x)u(t, x) · u(t, x)dx
⎞⎟⎠

1/2

.

With the assumptions made for A0 we have

∃a′0 > 0 ∀t ∈ [0, T0] : a0‖u(t)‖2L2(Kt) ≤ |u(t)|2Kt
≤ a′0‖u(t)‖2L2(Kt).

(We write u(t) short for u(t, ·) in most places.) The first basic energy estimate is given

in the next theorem.



24 3 Linear Symmetric Hyperbolic Systems

Theorem 3.1 Let Kρ = Kρ(t0) and let u ∈ C1(Kρ(T0)) be a solution to

Lu = f ∈ C0(Kρ(T0)),

u(t = 0) = u0 ∈ C0(K0).

Then

∃c = c(‖(A0, ∂tA
0, ∂1A

1, . . . , ∂nA
n, B)‖C0(Kρ(T0))) > 0 ∀t ∈ [0, T0] :

|u(t)|Kt ≤ c{|u0|K0 + (

T0∫
0

|f(r)|2Kr
dr)1/2}ect.

Proof:

Re Lu · u = Re (A0∂tu · u +
n∑

j=1

Aj∂ju · u+Bu · u) = Re f · u.

This implies

Re{1
2
∂t(A

0u · u) − 1

2
(∂tA

0)u · u+
1

2

n∑
j=1

∂j(A
ju · u)− 1

2

n∑
j=1

(∂jA
j)u · u

+ Bu · u} = Re f · u

or

D′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0u · u
A1u · u

...

Anu · u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Re {∂tA0 +

n∑
j=1

∂jA
j − 2B}u · u+ 2 Re f · u.

Let

H := ∂tA
0 +

n∑
j=1

∂jA
j − 2B.

Then we obtain by integration over Kρ,∫
∂Kρ

(νtA
0u · u+

n∑
j=1

νjA
ju · u) =

∫
Kρ

(Re Hu · u+ 2 Re f · u), (3.9)

where

(νt, ν1, ν2, . . . , νn) =: ν

denotes the exterior normal vector on ∂Kρ.

We have

ν = (−1, 0, 0, . . . , 0) on {0} ×K0,

ν = (+1, 0, 0, . . . , 0) on {t0} ×Kt0 (0 < t0 < T0).
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The lateral surface M of Kρ can be parametrized in the following way:

M = {(t, x) | t = γ(x) := T0 − ρ|x|, x ∈ K0, 0 ≤ t ≤ t0}.

Then the normal vector ν is given by

ν =
1√

1 + |∇γ|2
(1,−∇γ) =

1√
1 + ρ2

(1,
ρx

|x|).

Thus, (3.9) turns into∫
Kt0

A0(t0, x)u(t0, x) · u(t0, x)dx−
∫
K0

A0(0, x)u0(x) · u0(x)dx (3.10)

+
1√

1 + ρ2

∫
M

(A0u · u−
n∑

j=1

(∂jγ)A
ju · u) =

∫
Kρ

(Re Hu · u+ 2 Re f · u).

By the definition of γ and ρ (see (3.7)) we obtain

|
n∑

j=1

(∂jγ)A
ju · u| ≤

n∑
j=1

|∂jγ|a1u · u ≤ |∇γ|n a1u · u (3.11)

= a0u · u ≤ A0u · u.

Hence we see that the integrand in
∫
M
· · · is pointwise nonnegative.

Using (3.11) we obtain from (3.10)

|u(t0)|2Kt0
≤ |u0|2K0

+

t0∫
0

∫
Kr

|Hu · u|(r, x)dx dr + 2

t0∫
0

∫
Kr

(|f ||u|)(r, x)dx dr

≤ |u0|2K0
+ c

t0∫
0

|u(r)|2Kr
dr + c

t0∫
0

|f(r)|Kr|u(r)|Krdr,

where

c = c
(
‖(A0, ∂tA

0, ∂1A
1, . . . , ∂nA

n, B)‖C0(Kρ(T0))

)
.

The assertion of Theorem 3.1 now follows from an application of Gronwall’s inequality,

Lemma 4.1.

Q.e.d.

We shall now prove a corollary with the corresponding estimates for higher derivatives.

Let

|u(t)|s,Kt :=

⎛⎝ ∑
|α|≤s

|∇αu(t)|2Kt

⎞⎠1/2

, s ∈ IN0.
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Corollary 3.2 Let s ∈ IN, A0, A1, . . . , An, B ∈ Cs
b and let u ∈ Cs+1(Kρ(T0)) be a solu-

tion to

Lu = f ∈ Cs(Kρ(T0)),

u(t = 0) = u0 ∈ Cs(K0).

Then

∃ c = c(‖(A0, A1, . . . , An, B)‖Cs(Kρ(T0))) > 0 ∀t ∈ [0, T0] :

|u(t)|s,Kt ≤ c {|u0|s,K0 + (

T0∫
0

|f(r)|2s,Kr
dr)1/2}ect.

Proof: Differentiating the equation for u:

A0∂tu+
n∑

j=1

Aj∂ju+Bu = f, (3.12)

with respect to xk, k = 1, . . . , n, we obtain

A0∂t∂ku +
n∑

j=1

Aj∂j∂ku+B ∂ku

+ (∂kA
0)∂tu+

n∑
j=1

(∂kA
j)∂ju + (∂kB)u = ∂kf, k = 1, . . . , n.

Using (3.12) we may express ∂tu in terms of ∂1u, . . . , ∂nu and u. So we get a differential

equation for V := (u, ∂1u, . . . , ∂nu) of the following type:

A0
1(t, x)∂tV +

n∑
j=1

Aj
1(t, x)∂jV + B1V = F1, (3.13)

with initial value

V (t = 0) = (u0, ∂1u0, . . . , ∂nu0), (3.14)

where

A0
1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
A0 0

. . .

0 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , Aj
1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Aj 0

. . .

0 Aj

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , j = 1, . . . , n,

B1 is a matrix composed of B, ∂kA
0, ∂kA

j and ∂k B, j, k = 1, ..., n the detailed structure

of which does not matter, and

F1 = F1(f, ∂1f, . . . , ∂nf).
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An application of Theorem 3.1 to (3.13), (3.14) yields the assertion of Corollary 3.2 for

s = 1. Analogously one obtains the assertion for s > 1.

Q.e.d.

Remark: Using the differential equation (3.12) we also obtain estimates for

|∂k
t u(t)|Kt, 1 ≤ k ≤ s.

We notice that Theorem 3.1 implies properties of propagation of signals. Let f = 0.

Then we may conclude the finite propagation speed. Theorem 3.1 says that the solution

u at time t only depends on values of the initial datum u0 in K0. In particular, if u0

has compact support then u(t) has compact support (with respect to x) for each t > 0

(“finite propagation speed”); see Figure 3.2.

�
�

�
��

�
�
�
��

slope ρ

supp u0

t = 0

u(t0, x) = 0 u(t0, x) = 0
��

t = t0

Figure 3.2: Finite propagation speed

This phenomenon is typical for hyperbolic problems. In contrast to this we see that the

parabolic initial value problem

wt −Δw = 0,

w(t = 0) = w0,

for a real-valued function w = w(t, x), t ≥ 0, x ∈ IRn, is solved for w0 ∈ C∞
0 (for

simplicity) by

w(t, x) := (4πt)−n/2
∫
IRn

e−
|x−y|2

4t w0(y)dy.

This shows that we have infinite propagation speed (cf. Section 11.2).
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3.2 A global existence theorem

Let L be given as in the introduction to this chapter.

Theorem 3.3 Let s ∈ IN, s > n/2 + 1, let A0, A1, . . . , An, B ∈ Cs+1
b [C∞

b ] and let u0 ∈
W s,2 [∩C∞]. Then there exists a unique solution u ∈ C1([0,∞)× IRn) [C∞([0,∞)× IRn)]

to the initial value problem Lu = 0, u(t = 0) = u0.

Moreover

u ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

Proof: The uniqueness immediately follows from the energy estimate in Theorem 3.1

applied to the difference of two solutions.

The existence will be proved in four steps. For this purpose let ρ be defined by (3.7), and

let 0 < β < ρ. If Mβ denotes the lateral surface of Kβ, Kβ defined via (3.8), then Mβ

is space-like for all L with coefficients Ã0, Ã1, . . . , Ãn which are close to A0, A1, . . . , An

respectively (in Kβ).

Step 1: We assume that the coefficients of L, denoted by Ã0, Ã1, . . . , Ãn, B̃, are analytic.

Correspondingly we shall write L̃ instead of L. For a fixed but arbitrary T0 > 0 we

approximate u0 in K0 by a sequence of polynomials (uk
0)k in W s,2(K0). Mβ is assumed

to be space-like for L̃. By the theorem of Cauchy–Kowalevsky (Theorem B.1 in Appendix

B) there is a local solution um to the initial value problem L̃um = 0, um(t = 0) = um
0 in

a truncated cone K(δ) with

K(δ) := Kβ ∩ {(t, x) | t ≤ δ}

for some δ with 0 < δ ≤ T0. (Sophie von Kowalevsky, 15.1.1850 – 10.2.1891; Augustin

Louis Cauchy, 21.8.1789 – 23.5.1857).

We have

δ = δ((Ã0, Ã1, . . . , Ãn, B̃)/Kβ , T0/β)

= δ((A0, A1, . . . , An, B)/Kβ , T0/β)

if Ã0, Ã1, . . . , Ãn, B̃ are approximations of A0, A1, . . . , An, B respectively.

Using Corollary 3.2 we obtain for k,m ∈ IN:

‖uk(t)− um(t)‖W s,2(Kt) ≤ c‖uk
0 − um

0 ‖W s,2(K0),

where c only depends on T0. Hence (um(t))m converges in W s,2(Kt), 0 ≤ t ≤ δ. Let u(t)

be the limit in W s,2(Kt).

The convergence of (um(t))m is uniform with respect to t. This implies

u ∈ C0([0, δ],W s,2(Kδ))
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and

u ∈ C0([0, δ]×Kδ)

because s > n/2.

The following identity holds in W s−1,2(Kδ):

um(t) = um
0 +

t∫
0

∂tu
m(r)dr, 0 ≤ t ≤ δ. (3.15)

Since

∂tu
m(t) = Ã−1

0 (−
n∑

j=1

Ãj∂ju
m(t)− B̃um(t))

we see that (∂tu
m(t))m converges to some v(t) ∈ W s−1,2(Kδ), again uniformly with

respect to t, i.e.

v ∈ C0([0, δ],W s−1,2(Kδ)).

Using this information in (3.15) we get

u(t) = u0 +

t∫
0

v(r)dr

which implies

u ∈ C0([0, δ],W s,2(Kδ)) ∩ C1([0, δ],W s−1,2(Kδ)),

in particular

u ∈ C1([0, δ]×Kδ)

and u satisfies the system of differential equations L̃u = 0 with initial value u(t = 0) = u0

(in [0, δ]×Kδ). Considering δ′ with 0 < δ′ < δ instead of δ we finally obtain

L̃u = 0, u(t = 0) = u0 in K(δ).

Now we may consider a new initial value problem in t = δ and we obtain an extension

of u into K(δ + δ1) where

δ1 = δ1((A
0, A1, . . . , An, B)/Kβ , T0/β) = δ.

(δ = δ1 does not depend on the specific polynomial approximation, cf. Appendix B.)

Thus we obtain a solution in Kβ successively.

Step 2: Let A0, A1, . . . , An, B ∈ Cs+1
b as in the assumption above, but let u0 ∈ W s+1,2.

We approximate A0, A1, . . . , An, B by analytic functions (A0
k)k, (A

1
k)k, . . . , (A

n
k)k, (Bk)k

respectively, uniformly with respect to all the derivatives up to order s + 1 in Kβ and

such that Mβ is space-like for each operator Lk, where

Lk := A0
k∂t +

n∑
j=1

Aj
k∂j +Bk.
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The problem

Lku
k = 0, uk(t = 0) = u0,

can be solved according to Step 1. We have

uk ∈ C0([0, T ],W s+1,2(KT )) ∩ C1([0, T ],W s,2(KT )),

where

0 < T ≤ t0 < T0.

Corollary 3.2 implies

‖uk(t)‖W s+1,2(Kt) ≤ c‖u0‖s+1,2, 0 ≤ t ≤ T0, (3.16)

where c depends only on T0.

A difference uk − uj satisfies

Lk(u
k − uj) = −Lku

j = Lju
j − Lku

j = (Lj − Lk)u
j =: fkj,

(uk − uj)(t = 0) = 0.

Applying again Corollary 3.2 we obtain

‖uk(t)− uj(t)‖2W s,2(Kt) ≤ c

t∫
0

‖fkj(r)‖2W s,2(Kr)dr

≤ c εkj

t∫
0

‖uj(r)‖2W s+1,2(Kr)dr,

where c depends only on T0 and 0 ≤ εkj → 0 as k, j →∞.

Observing (3.16) we conclude that (uk(t))k converges inW s,2(Kt) to some u(t) ∈ W s,2(Kt).

With the same arguments as in Step 1 we obtain

Lu = 0, u(t = 0) = u0, in Kβ,

u ∈ C0([0, T ],W s,2(KT )) ∩ C1([0, T ],W s−1,2(KT )), 0 < T ≤ t0. (3.17)

Moreover

‖u(t)‖W s,2(Kt) ≤ c‖u0‖W s,2(K0) ≤ c‖u0‖s,2, 0 ≤ t ≤ t0, (3.18)

where c depends only on T0.

Step 3: Let A0, A1, . . . , An, B ∈ Cs+1
b and u0 ∈ W s,2. There is a sequence (uk

0)k ⊂ W s+1,2

approximating u0 in W s,2.

According to Step 2 there are solutions uk of Luk = 0, uk(t = 0) = uk
0, k ∈ IN, in Kβ and

they satisfy (cf. (3.18))

sup
0≤t≤t0

‖uk(t)− uj(t)‖W s,2(Kt) ≤ c‖uk
0 − uj

0‖W s,2.
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This implies the existence of a solution u satisfying (3.17) in Kβ.

[Under the additional assumption A0, A1, . . . , An, B ∈ C∞
b , u0 ∈ C∞, we obtain u ∈

C∞(Kβ) (consider e.g. W s′,2(KT ), s
′ ∈ IN arbitrary).]

Step 4: The coefficients are assumed to be uniformly bounded. Therefore, for every

truncated cone which is congruent to Kβ and which is obtained by translation at any

place in [0,∞) × IRn we can find a local solution. Using the uniqueness properties for

overlapping cones we can construct this way a global solution

u ∈ C1([0,∞)× IRn) [resp. u ∈ C∞([0,∞)× IRn)].

It remains to prove

u ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

This easily follows by a triangle inequality, e.g. let ε > 0, t1, t2 ∈ [0,∞) be given, t1, t2 ≤
T for some T ≥ 0. Then it follows for R > 0:

‖u(t1)− u(t2)‖s,2 ≤ ‖u(t1)− u(t2)‖W s,2(B(0,R)) + ‖u(t1)− u(t2)‖W s,2(IRn\B(0,R))

≡ I1 + I2.

We have

‖u(tj)‖W s,2(IRn\B(0,R)) ≤ c‖u0‖W s,2(IRn\B(0,R1)), j = 1, 2, (3.19)

where c depends only on T and

R1 = R1(β,R) < R

with

R1 →∞ as R→∞.

This is a consequence of Corollary 3.2. Now (3.19) implies that I2 < ε/2 if R ≥ R0(ε)

independent of t1, t2. If R is fixed then I1 < ε/2 for sufficiently small |t1 − t2| according
to the local continuity properties of u we already know. This completes the proof of

Theorem 3.3.

Q.e.d.

3.3 Remarks on other methods

(References: F. John [71], Courant & Hilbert [23], K.O. Friedrichs [34, 35], T. Kato

[79, 80, 81, 82, 83]).

The method used above is called the method of Schauder (Pawel Juliusz Schauder,

21.9.1899 – September 1943). (Cf. also [157].)
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1. A “weak” solution u ∈ L2([0, T ] × IRn), T > 0 arbitrary but fixed, is easily ob-

tained with the Riesz representation theorem in a suitable Hilbert space (Friedrich Riesz,

22.1.1880 – 28.6.1956; David Hilbert, 23.1.1862 – 14.2.1943).

Without loss of generality we assume u0 to be zero and we wish to solve the inhomoge-

neous system

Lu = f in RT := [0, T ]× IRn.

Let

C̃1(RT ) := {v ∈ C1(RT ) | v(T ) = 0, supp v(t) ⊂⊂ IRn, 0 ≤ t ≤ T}.
(⊂⊂ denotes compactly supported in.)

We have

u ∈ C1(RT ) is a solution of Lu = f ∈ C0(RT ), u(t = 0) = 0 (3.20)

⇐⇒ ∀v ∈ C̃1(RT ) : 〈f, v〉L2(RT ) = 〈u, L̃v〉L2(RT ).

Here L̃ denotes the formal adjoint operator to L which appears through partial integra-

tion. An inner product in C̃1(RT ) is defined by

〈v, w〉H := 〈L̃v, L̃w〉L2(RT ).

The positive definiteness is a consequence of

∃c = c(T ) > 0 ∀v ∈ C̃1(RT ) : ‖v‖L2(RT ) ≤ c ‖L̃v‖L2(RT ). (3.21)

(3.21) follows from Theorem 3.1 applied to L̃ instead of L.

Let H denote the completion of C̃1(RT ) with respect to the norm induced by 〈·, ·〉H. The
relation (3.21) implies that F defined by

F : H −→ C,

v �→ Fv := 〈v, f〉L2(RT ),

is a continuous, linear function and thus we get by the Riesz representation theorem that

there exists a u1 ∈ H with the property

∀v ∈ H : 〈v, f〉L2(RT ) = 〈v, u1〉H = 〈L̃v, L̃u1〉L2(RT )

= 〈L̃v, u〉L2(RT ), where u := L̃u1.

Looking at (3.20) we call u a weak solution to Lu = f, u(t = 0) = 0.

The difficulty now consists in proving regularity of u (for regular f), catchword “weak”

= “strong”, see the papers of K.O. Friedrichs, [34, 35] or the related papers of T. Kasuga

[77] and Meyers & Serrin [125].
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2. For f with compact support in x (for each t) we also mention the difference method.

There, derivatives are replaced by quotients of differences, then discrete “energy esti-

mates” are proved and the limit “mesh width → 0” is studied (see for example [71]).

3. Another important approach is that of T. Kato using the theory of semigroups and

evolution operators respectively, see [79, 80, 81, 82, 83]. Formally we have

L = ∂t + A(t)

and

u(t) = e
−

t∫
0

A(r)dr

u0

represents the solution of Lu = 0, u(t = 0) = u0. In order to make this precise in Banach

spaces or Hilbert spaces, an enormous technical set up is required. On the other hand

it provides a general abstract theory and — with respect to our application — detailed

results on the existence and the regularity of the solution u under weaker assumptions on

the coefficients. Of course this would also have consequences for corresponding existence

theorems to nonlinear hyperbolic systems, cf. the remarks at the end of Chapter 5.

Moreover, this approach works for parabolic and other problems, cf. Appendix C.



4 Some inequalities

We start with Gronwall’s inequality (Thomas Hakon Gronwall (orig.: Hakon Tomi Grön-

wall), 16.1.1877 – 9.5.1932):

Lemma 4.1 Let a > 0, ϕ, h ∈ C0([0, a]), h ≥ 0, and g : [0, a] −→ IR increasing.

If

∀t ∈ [0, a] : ϕ(t) ≤ g(t) +

t∫
0

h(r)ϕ(r)dr

then

∀t ∈ [0, a] : ϕ(t) ≤ g(t) exp{
t∫

0

h(r)dr}.

Proof: Let ε > 0 and ψε given by

ψε(t) := exp{
t∫

0

h(r)dr}
⎛⎝ t∫

0

g′(r) exp{−
r∫

0

h(s)ds}dr + g(0) + ε

⎞⎠ .

Then ψε solves ψ
′
ε = g′ + hψε (a.e.), ψε(0) = g(0) + ε, and hence

ψε(t) = ε+ g(t) +

t∫
0

h(r)ψε(r)dr.

We have

ϕ(0) ≤ g(0) < g(0) + ε = ψε(0).

We prove that ϕ(t) < ψε(t) for all t ∈ [0, a]. Namely, let t0 ∈ (0, a] be the first point with

ϕ(t0) = ψε(t0), in particular ϕ(t) < ψε(t) for 0 ≤ t < t0.

Then

ϕ(t0) ≤ g(t0) +

t0∫
0

h(r)ϕ(r)dr < ε+ g(t0) +

t0∫
0

h(r)ϕ(r)dr

≤ ε+ g(t0) +

t0∫
0

h(r)ψε(r)dr = ψε(t0),

which is a contradiction.

Hence the inequalities

ϕ < ψε

and

ψε(t) ≤ exp{
t∫

0

h(r)dr}(g(t) + ε)
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complete the proof by letting ε tend to zero.

Q.e.d.

The proofs of the inequalities for composite functions below require some facts about

the Friedrichs mollifiers which we present first (see [1]) (Kurt Otto Friedrichs, 28.9.1901

– 31.12.1982).

Let j : IRn −→ IR be given by

j(x) := k

⎧⎨⎩ e−1/(1−|x|2) if |x| < 1,

0 if |x| ≥ 1,

where k is chosen in a way that ∫
IRn

j(x)dx = 1

holds.

For a given ε > 0 the Friedrichs mollifier jε is defined by

jε(x) := ε−nj(x/ε), x ∈ IRn

and Jε denotes the corresponding convolution operator

(Jεu)(x) :=
∫
IRn

jε(x− y)u(y)dy ≡ (jε ∗ u)(x)

for u ∈ L1
loc(IR

n).

Remark: Instead of the special j from above one may take any j ∈ C∞
0 with j(x) = 0

if |x| ≥ 1, j ≥ 0 and
∫
IRn

j(x)dx = 1.

Lemma 4.2 Let 1 ≤ p <∞ and let u ∈ Lp. Then

(i) Jεu ∈ C∞,

(ii) ||Jεu||p ≤ ||u||p,
(iii) lim

ε↓0
||Jεu− u||p = 0,

(iv) ∀m ∈ IN0 ∀q ≥ p : Jεu ∈ Wm,q.

Proof: Since jε ∈ C∞
0 we have

∇α(Jεu)(x) =
∫
IRn

∇α
xjε(x− y)u(y)dy (4.1)

for every multi-index α. Thus (i) is obvious.

4 Some Inequalities
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Let 1 < p < ∞, p′ := p/(p − 1). Then by Hölder’s inequality (Ludwig Otto Hölder,

22.12.1859 – 29.8.1937)

|Jεu(x)| = |
∫
IRn

jε(x− y)u(y)dy|

≤ {
∫
IRn

jε(x− y)dy}1/p′{
∫
IRn

jε(x− y)|u(y)|pdy}1/p

= {
∫
IRn

jε(x− y)|u(y)|pdy}1/p.

Hence

‖Jεu‖pp ≤
∫
IRn

∫
IRn

jε(x− y)|u(y)|pdydx

=
∫
IRn

|u(y)|pdy
∫
IRn

jε(x− y)dx = ‖u‖pp.

This proves (ii) for 1 < p <∞; the case p = 1 follows right from the definition of Jεu.

Let η > 0 be given. Since C∞
0 is dense in Lp, there is a ϕ ∈ C∞

0 with

‖u− ϕ‖p < η/3 (4.2)

which implies

‖Jεu− Jεϕ‖p < η/3 (4.3)

by (ii).

|Jεϕ(x)− ϕ(x)| = |
∫
IRn

jε(x− y)(ϕ(y)− ϕ(x))dy|

≤ sup
|y−x|<ε

|ϕ(y)− ϕ(x)|.

Since ϕ is uniformly continuous, the last term tends to zero as ε ↓ 0. Hence we have

‖Jεϕ− ϕ‖p < η/3 (4.4)

for sufficiently small ε, and for these ε we obtain from (4.2) – (4.4)

‖Jεu− u‖p < η.

This proves (iii).

(iv) follows from (4.1) and the convolution inequality

‖∇αjε ∗ u‖q ≤ ‖∇αjε‖r‖u‖p (4.5)
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where r ∈ [1,∞] is given by
1

r
= 1 +

1

q
− 1

p

(see [46, p. 117]).

Q.e.d.

A possible rate of convergence in (iii) from Lemma 4.2 is obtained by making a stronger

assumption on u.

Lemma 4.3

∀ε0 > 0 ∃c > 0 ∀ε ∈ (0, ε0] ∀u ∈ W 1,2 : ‖Jεu− u‖2 ≤ cε‖u‖1,2.
Proof: First let ϕ ∈ C∞

0 . Then

|ϕ(x)− Jεϕ(x)| = |
∫
IRn

jε(x− y)(ϕ(x)− ϕ(y))dy|

≤
∫
IRn

jε(x− y)

1∫
0

|∇ϕ|(x+ s(y − x))ds|x− y|dy

≤ ε

1∫
0

∫
IRn

jε(x− y)|∇ϕ|(x+ s(y − x))dyds

= ε

1∫
0

∫
IRn

jsε(z)|∇ϕ|(x− z)dzds

= ε

1∫
0

(Jsε|∇ϕ|)(x)ds.

This implies

‖Jεϕ− ϕ‖22 ≤ ε2
∫ 1

0
‖Jsε|∇ϕ| ‖22 ds ≤ ε2‖∇ϕ‖22, (4.6)

where we have used Lemma 4.2, (ii).

Now let u ∈ W 1,2. Without loss of generality let ‖u‖1,2 = 1. For a given ε > 0 there is a

ϕ ∈ C∞
0 with

‖u− ϕ‖1,2 < ε,

hence

‖ϕ‖1,2 < 1 + ε.

Thus, we obtain from (4.6), using Lemma 4.2, (ii), that

‖Jεu− u‖2 ≤ ‖Jε(u− ϕ)‖2 + ‖u− ϕ‖2 + ‖Jεϕ− ϕ‖2 ≤ ε(3 + ε) ≤ c ε

with c := 3 + ε0.

Q.e.d.

In the sequel we shall prove some inequalities (of Sobolev type) for composite functions.

First we present an interpolation inequality due to E. Gagliardo and L. Nirenberg. This

4 Some Inequalities



38 4 Some Inequalities

inequality holds under more general assumptions, namely in domains Ω 
= IRn, see [36,

136] or the book of A. Friedman [33] to which we also refer for a proof for bounded

domains.

Notation: ‖∇iw‖τ := (
∑

|α|=i
‖∇αw‖ττ)1/τ , i ∈ IN0, 1 ≤ τ <∞ (τ =∞ as usual).

Theorem 4.4 Let 1 ≤ r, p ≤ ∞, m ∈ IN. Then there is a constant c > 0 such that for

all w ∈ Wm,p ∩ Lr the inequality

‖∇jw‖q ≤ c‖∇mw‖j/mp ‖w‖1−j/m
r (4.7)

holds, where j ∈ {0, 1, . . . , m} and
1

q
=

j

m

1

p
+ (1− j

m
)
1

r
.

The theorem will be proved in detail in a series of estimates first for the mollified function

Jεw. This is done succesively for the case n = 1 and m = 2, then for m = 2 and n

arbitrary and finally for n and m arbitrary by induction on m. The last step will be to

let ε tend to zero in the estimate for Jεw.

Case A: Let ε > 0 be fixed and let v := Jεw. We shall prove (4.7) for v.

Lemma 4.5 Let −∞ < a < b <∞, f ∈ C2([a, b]), 1 ≤ p, r ≤ ∞, 2/q = 1/r + 1/p, and

q 
= ∞. Then

‖f ′‖qLq((a,b)) ≤ 18q{(b− a)1+q−q/p‖f ′′‖qLp((a,b)) + (b− a)−(1+q−q/p)‖f‖qLr((a,b))}.

Proof:

(i) Assume p, r 
=∞.

By the mean value theorem we have

∀ψ, η ∈ (0,
b− a

3
) ∃λ ∈ (a + ψ, b− η) : |f ′(λ)| ≤ 3

b− a
{|f(b− η)| + |f(a+ ψ)|}.

This implies for x ∈ [a, b] that

|f ′(x)| ≤ 3

b− a
{|f(b− η)|+ |f(a+ ψ)|}+

b∫
a

|f ′′(t)|dt.

Integration over [0, b−a
3
]2 with respect to η and ψ yields

(b− a)2

9
|f ′(x)| ≤

b∫
a

|f(t)|dt+ (b− a)2

9

b∫
a

|f ′′(t)|dt

≤ ‖f‖Lr((a,b))(b− a)
r−1
r +

(b− a)2+
p−1
p

9
‖f ′′‖Lp((a,b)).
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Hence

|f ′(x)|q ≤ 2q−1{9q(b− a)q(
r−1
r

−2) ‖f‖qLr((a,b)) + (b− a)q
p−1
p ‖f ′′‖qLp((a,b))}

and because of 1− q − q/r = −(1 + q − q/p) :

‖f ′‖qLq((a,b)) ≤ 18q{(b− a)−1−q+q/p‖f‖qLr((a,b)) + (b− a)1+q−q/p‖f ′′‖qLp((a,b))}.

(ii) p =∞ or r =∞. The proof is analogous to the above.

Q.e.d.

Lemma 4.6 Let 1 ≤ p, r ≤ ∞, f ∈ C2(IR)∩Lr(IR), f ′′ ∈ Lp(IR), 2/q = 1/p+1/r. Then

we have f ′ ∈ Lq(IR) and there is a constant c = c(q) > 0 such that

‖f ′‖q ≤ c‖f ′′‖1/2p ‖f‖1/2r .

Proof: Without loss of generality we assume ‖f ′′‖p = 1. The proof shall be divided into

two cases, q =∞ and q 
=∞.

(1) q 
=∞.

Lemma 4.5 implies for −∞ < a < b <∞ :

‖f ′‖qLq((a,b)) ≤ 18q{T1(a, b) + T2(a, b)} (4.8)

where

T1(a, b) := (b− a)1+q−q/p‖f ′′‖qLp((a,b)),

T2(a, b) := (b− a)−(1+q−q/p)‖f‖qLr((a,b)).

T1 = T2 would imply T1 + T2 = 2
√
T1

√
T2 and the assertion would follow immediately.

Now, for any given interval [−L, L], L > 0, we can find a covering such that on each

subinterval [ai−1, ai] the inequality

T1(ai−1, ai) ≥ T2(ai−1, ai)

holds. This is done as follows. Let a0 := −L, a′1 := −L + 2L
k
, k ∈ IN arbitrary but

fixed.

If

T1(a0, a
′
1) > T2(a0, a

′
1)

then set

a1 := a′1.

4 Some Inequalities
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Then (4.8) implies

‖f ′‖qLq((a0,a1))
≤ 2 · 18q

(
2L

k

)1+q−q/p

‖f ′′‖qLp((a0,a1))
. (4.9)

If

T1(a0, a
′
1) ≤ T2(a0, a

′
1)

then we choose a1 ≥ a′1 sufficiently large such that

T1(a0, a1) = T2(a0, a1).

This implies

‖f ′‖qLq((a0,a1))
≤ 2 · 18q‖f ′′‖q/2Lp((a0,a1))

‖f‖q/2Lr((a0,a1))
. (4.10)

Proceeding in the same way for i = 2, . . . , k′, k′ ≤ k, with ai−1 replacing a0 and a′i :=

ai−1 +
2L
k

replacing a1, as long as ai−1 < L holds, we obtain from (4.9), (4.10)

‖f ′‖qLq((a0,ak′ ))
≤ 2 · 18q

k′∑
i=1

‖f ′′‖q/2Lp((ai−1,ai))
‖f‖q/2Lr((ai−1,ai))

+R, (4.11)

where ak′ ≥ L and

R := 2 · 18q
(
2L

k

)1+q−q/p k′∑
i=1

‖f ′′‖qLp((ai−1,ai))
.

(i) Claim:
k′∑
i=1
‖f ′′‖q/2Lp((ai−1,ai))

‖f‖q/2Lr((ai−1,ai))
≤ ‖f ′′‖q/2p ‖f‖q/2r .

Proof:

(α) r 
=∞, p 
=∞:

The relation

2p/q = 1 + p/r > 1

implies

k′∑
i=1

‖f ′′‖q/2Lp((ai−1,ai))
‖f‖q/2Lr((ai−1,ai))

≤ {
k′∑
i=1

ai∫
ai−1

|f ′′(x)|pdx}q/(2p){
k′∑
i=1

ai∫
ai−1

|f(x)|rdx}q/(2r)

≤ ‖f ′′‖q/2p ‖f‖q/2r .

(β) r =∞ or p =∞. Analogously.

(Q.e.d.)

(ii) Claim: R→ 0 as k →∞.
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Proof: Let c0 := 2 · 18q(2L)1+q−q/p.

(α) p =∞:

R = c0k
−(1+q)

k′∑
i=1

‖f ′′‖qL∞((ai−1 ,ai))
≤ c0‖f ′′‖q∞k′k−(1+q)

→ 0 as k →∞.

(β) p 
=∞.

(a) p/q > 1:

Hölder’s inequality yields

R ≤ c0k
−(1+q−q/p)‖f ′′‖qp · (k′)1−q/p

≤ c0k
−q‖f ′′‖qp

→ 0 as k →∞.

(b) p/q ≤ 1:

Since
ai∫

ai−1

|f ′′(t)|pdt ≤ ‖f ′′‖pp = 1,

we get

(

ai∫
ai−1

|f ′′(t)|pdt)q/p ≤
ai∫

ai−1

|f ′′(t)|pdt ≤ 1

which implies

R ≤ c0k
−(1+q−q/p)

→ 0 as k →∞.

(Q.e.d.)

(4.11), (i) and (ii) imply

‖f ′‖qLq((−L,L)) ≤ 2 · 18q‖f ′′‖q/2p ‖f‖q/2r ,

which yields the assertion of Lemma 4.6 (for q 
=∞) by letting L tend to infinity.

(2) q =∞ (i.e. p = r =∞).

4 Some Inequalities
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Applying Lemma 4.5 with r =∞, p′ 
=∞, −∞ < a < b <∞, we obtain

‖f ′‖q′
Lq′((a,b)) ≤ 18q

′{(b− a)1+q′−q′/p′‖f ′′‖q′
Lp′((a,b))

+(b− a)−(1+q′−q′/p′)‖f‖q′L∞((a,b))},
where

q′ := 2p′ > 1.

This implies

‖f ′‖Lq′ ((a,b)) ≤ 18{(b− a)1/q
′+1−1/p′‖f ′′‖Lp′((a,b))

+(b− a)−(1/q′+1−1/p′)‖f‖L∞((a,b))}.
In the limit q′ →∞, p′ = q′/2→∞ we get

‖f ′‖L∞((a,b)) ≤ 18{(b− a)‖f ′′‖L∞((a,b)) + (b− a)−1‖f‖L∞((a,b))}.
Since

∀x ∈ IR ∃a, b ∈ IR : x ∈ (a, b), b− a = (‖f‖∞/‖f ′′‖∞)1/2

(without loss of generality: ‖f ′′‖∞ 
= 0)

we obtain

‖f ′‖∞ ≤ 36‖f‖1/2∞ ‖f ′′‖1/2∞ ,

which completes the proof of Lemma 4.6.

Q.e.d.

Now we shall prove Theorem 4.4 for v = Jεw by induction on m. Without loss of

generality we assume m ≥ 2 and j ∈ {1, . . . , m− 1}.

(1) Basis of the induction (m = 2):

(i) r, p 
=∞:

‖∇v‖qq =
n∑

i=1

∫
IRn−1

∫
IR

|∂iv(x)|q dxi dx̂i

with

x̂i := (x1, . . . , xi−1, xi+1 . . . , xn).

This implies by Lemma 4.6 (with constants c, ci > 0)

‖∇v‖qq ≤
n∑

i=1

∫
IRn−1

ci{
∫
IR

|∂2
i v(x)|pdxi}q/(2p){

∫
IR

|v(x)|rdxi}q/(2r)dx̂i

≤ c
n∑

i=1

‖∂2
i v‖q/2p ‖v‖q/2r

≤ c‖∇2v‖q/2p ‖v‖q/2r .
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(ii) r =∞, p 
=∞ or r 
=∞, p =∞ :

Analogously to (i), observe q = 2p and q = 2r respectively.

(iii) r = p =∞ : Analogously.

(2) Induction step (m→ m+ 1) :

(i) Claim:

‖∇mv‖q′ ≤ c‖∇m+1v‖m/(m+1)
p ‖v‖1−m/(m+1)

r , (4.12)

where
1

q′
=

m

m+ 1

1

p
+

1

m+ 1

1

r
.

Proof: We notice that either

(α) p ≤ q′ ≤ r or (β) r ≤ q′ ≤ p (4.13)

holds.

Let r′ be given by
2

q′
=

1

p
+

1

r′
.

The induction hypothesis yields

‖∇m−1v‖r′ ≤ c‖∇mv‖(m−1)/m
p′ ‖v‖1/mr , (4.14)

where
1

r′
=

m− 1

m

1

p′
+

1

m

1

r
.

Notice that we may apply the induction hypothesis because q′ = p′ by the definition of

q′ and p′, and because v ∈ Wm,q′. The latter follows from (4.13) which yields

(α) p ≤ q′ (≤ r′ ≤ r) or (β) r ≤ r′ ≤ q′ (≤ p).

Since

∀k ∈ IN0 ∀τ ≥ min(p, r) : v ∈ W k,τ

this implies

v ∈ Wm,q′

(by Lemma 4.2, (iv)).

Remark: This is the part of the proof in which we cannot argue directly with w instead

of v = Jεw.

Applying part (1) (“case m = 2”) to ∇αw, |α| = m− 1, and using (4.14) yields

‖∇mv‖q′ ≤ c‖∇m+1v‖1/2p ‖∇m−1v‖1/2r′

≤ c‖∇m+1v‖1/2p ‖∇mv‖(m−1)/(2m)
p′ ‖v‖1/(2m)

r .

4 Some Inequalities



44 4 Some Inequalities

Since q′ = p′ we arrive at

‖∇mv‖1−(m−1)/(2m)
q′ ≤ c‖∇m+1v‖1/2p ‖v‖1/(2m)

r

which gives the assertion (4.12).

(Q.e.d.)

(ii) Claim:

‖∇jv‖q ≤ c‖∇m+1v‖j/(m+1)
p ‖v‖1−j/(m+1)

r

for any j ∈ {1, . . . , m},
1

q
=

j

m+ 1

1

p
+ (1− j

m+ 1
)
1

r
.

Proof: The induction hypothesis yields

‖∇jv‖q ≤ c‖∇mv‖j/mp′ ‖v‖1−j/m
r ,

where
1

q
=

j

m

1

p′
+ (1− j

m
)
1

r
. (4.15)

The inequality (4.12) with q′ = p′ yields

‖∇jv‖p′ ≤ c‖∇m+1v‖j/(m+1)
p ‖v‖j/m−j/(m+1)+1−j/m

r

= c‖∇m+1v‖j/(m+1)
p ‖v‖1−j/(m+1)

r ,

where
1

p′
=

m

m+ 1

1

p
+

1

m+ 1

1

r
. (4.16)

The relations (4.15), (4.16) imply

1

q
=

j

m
(

m

m+ 1

1

p
+

1

m+ 1

1

r
) + (1− j

m
)
1

r

=
j

m+ 1

1

p
+ (1− j

m+ 1
)
1

r

as desired in Theorem 4.4. This completes the induction step and the proof of Theorem

4.4 for v = Jεw.

(Q.e.d.)

In order to complete the proof of Theorem 4.4 we finally have to consider

Case B: Assumptions as in Theorem 4.4.

For ε > 0 let wε := Jεw. According to the previous discussion in case A we know

‖∇jwε‖q ≤ c‖∇mwε‖j/mp ‖wε‖1−j/m
r ,
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where c is independent of ε. Without loss of generality: m ≥ 2, j ∈ {1, . . . , m − 1}.
Notice: q =∞ ⇐⇒ p = r =∞.

(1) p, r 
=∞ :

By Lemma 4.2, (iii) we have

wε → w in Lr,

∇mwε → ∇mw in Lp

and hence {∇jwε}ε converges in Lq, necessarily

∇jwε →∇jw in Lq.

Letting ε ↓ 0 we obtain the desired inequality (4.7) for w.

(2) p 
=∞, r =∞ or p =∞, r 
=∞ :

Since

‖wε‖∞ ≤ ‖w‖∞, ‖∇mwε‖∞ ≤ ‖∇mw‖∞ (4.17)

and

∇mwε → ∇mw in Lp (resp. wε → w in Lr)

we may argue in the same manner as in (1); the inequality still holds in the limit as

ε ↓ 0.
(3) q = p = r =∞ :

We have by (4.17)

‖∇jwε‖∞ ≤ c‖∇mw‖j/m∞ ‖w‖1−j/m
∞ .

This means that (∇αwεl)εl= 1
l
, |α| = j, is a bounded sequence in L∞. Since balls in L∞

are weak∗ sequentially compact (see e.g. [6, p. 140]), there is a subsequence (∇αwε′
l
)ε′

l

and a w̃ ∈ L∞ such that

wε′
l
→ w̃ weak-∗ in L∞ as l →∞.

Moreover

‖w̃‖∞ ≤ lim inf
l→∞

‖∇jwε′
l
‖∞ ≤ c‖∇mw‖j/m∞ ‖w‖1−j/m

∞ .

(see e.g. [6, p. 139] for the first inequality.) It remains to prove

w̃ = ∇αw

which is an easy consequence of the following identities:

∀ϕ ∈ C∞
0 :

∫
IRn

∇αwϕ = (−1)j
∫
IRn

w∇αϕ (4.18)

4 Some Inequalities
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= (−1)j lim
l→∞

∫
IRn

wε′
l
∇αϕ = lim

l→∞

∫
∇αwε′

l
ϕ

=
∫
IRn

w̃ϕ.

(The second identity holds because ϕ ∈ C∞
0 and wε′

l
→ w in L2(suppϕ).) This completes

the proof of the Gagliardo–Nirenberg inequality, Theorem 4.4.

Q.e.d.

Remark: The proof of Theorem 4.4 shows that the assumption “w ∈ Wm,p” can be

replaced by “w ∈ Lp and ∇mw ∈ Lp”.

The following first inequality on composite functions is given for smooth functions.

Lemma 4.7 Let r,m, n ∈ IN, 1 ≤ p ≤ ∞, h ∈ Cr(IRm), B := ‖h‖Cr(B(0,1)).

Then there is a constant c = c(r,m, n, p) > 0 such that for all w = (w1, . . . , wm) ∈
W r,p(IRn) ∩ Cr(IRn) with ‖w‖∞ ≤ 1 the inequality

‖∇rh(w)‖p ≤ cB‖∇rw‖p (4.19)

holds.

Remark: This cannot be extended to the case r = 0 as the example h ≡ 1 shows.

Proof: Without loss of generality we assume m = 1. Let β ∈ INn
0 , |β| = r. Then

∇β(h(w)) =
r∑

k=1

∂kh(w)

∂wk

∑
α(k,r)

Ckα

r∏
i=1

{ ∑
γ∈INn

0 ,|γ|=i

(∇γw)αi},

where
∑

α(k,r)
means summation over all α ∈ INr

0 with |α| = k and
r∑

i=1
iαi = r.

{Example: r = 4, β = (4, 0, . . . , 0) :

∂4
1(h(w)) =

∂4h(w)

∂w4
(∂1w)

4 +
∂3h(w)

∂w3
6 (∂1w)

2∂2
1w

+
∂2h(w)

∂w2
{3 (∂2

1w)
2 + 4 (∂1w)∂

3
1w}+

∂h(w)

∂w
∂4
1w.

The only coefficients Ckα which are different from zero are the following:

C4(4,0,0,0) = 1, C3(2,1,0,0) = 6, C2(0,2,0,0) = 3,

C2(1,0,1,0) = 4, C1(0,0,0,1) = 1.}

Abbreviation: (∇i
∗w)

αi
:=

∑
γ∈INn

0 ,|γ|=i
(∇γw)αi.
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Using Hölder’s inequality we obtain

‖∇βh(w)‖p ≤ cB
r∑

k=1

∑
α(k,r)

‖
r∏

i=1

(∇i
∗w)

αi‖p (4.20)

≤ cB
r∑

k=1

∑
α(k,r)

r∏
i=1

‖(∇i
∗w)

αi‖ pr
iαi

≤ cB
r∑

k=1

∑
α(k,r)

r∏
i=1

‖∇i
∗w‖αi

pr
i
.

The inequality of Gagliardo–Nirenberg (4.7) yields

‖∇i
∗w‖αi

pr
i
≤ c ‖∇rw‖

iαi
r

p ‖w‖αi(1−i/r)
∞ ≤ c ‖∇rw‖

iαi
r

p . (4.21)

((r, p,m, j, q) in Theorem 4.4 corresponds to (∞, p, r, i, pr/i) here.) This implies

‖∇βh(w)‖p ≤ cB
r∑

k=1

∑
α(k,r)

r∏
i=1

‖∇rw‖
iαi
r

p ≤ cB ‖∇rw‖p.

Q.e.d.

Remark: If the assumption “‖w‖∞ ≤ 1” is replaced by “‖w‖∞ ≤ Γ for some Γ ≥ 1”

and “B” is replaced by “BΓ := ‖h‖Cr(B(0,Γ))”, then the corresponding estimate (4.19)

follows with “cB” replaced by “cBΓΓ
r−1” which can easily be seen from the inequality

(4.21).

The Cr-assumption on w shall be replaced by an L∞-assumption, which we show to be

true if 1 < p ≤ ∞.

Lemma 4.8 Let r,m, n ∈ IN, 1 < p ≤ ∞, h ∈ Cr(IRm), B := ‖h‖Cr(B(0,1)). Then there

is a constant c = c(r,m, n, p) > 0 such that for all w = (w1, . . . , wm) ∈ W r,p(IRn) ∩
L∞(IRn) with ‖w‖∞ ≤ 1 the inequality

‖∇rh(w)‖p ≤ cB ‖∇rw‖p

holds.

Proof: Let wk := J1/kw. Then wk ∈ W r,p(IRn) ∩ C∞(IRn) and

wk → w in W r,p(IRn) as k →∞,

‖wk‖∞ ≤ ‖w‖∞ ≤ 1 for all k ∈ IN.

4 Some Inequalities
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Without loss of generality we may assume

wk → w a.e.

(Take a suitable subsequence and denote it by wk again.) Lemma 4.7 yields

‖∇rh(wk)‖p ≤ cB ‖∇rwk‖p.

Thus, (∇rh(wk))k is a uniformly bounded sequence in Lp(IRn).

(1) 1 < p <∞:

Lp(IRn) is reflexive. This implies

∀β ∈ INn
0 , |β| = r ∃g ∈ Lp(IRn) : ∇βh(wk) ⇀ g

(weak convergence in Lp(IRn) for a subsequence which is denoted with the same symbol.)

Analogously to (4.18) it follows that

∇βh(wk) ⇀ g = ∇βh(w)

whence

‖∇βh(w)‖p ≤ lim inf
k→∞

‖∇βh(wk)‖p ≤ cB lim
k→∞
‖∇rwk‖p

= cB ‖∇rw‖p.

(2) p =∞:

The result follows with the arguments of the proof of Theorem 4.4, case B, (2) (q = p =

r =∞ there) using the weak∗ sequential compactness of balls in L∞(IRn).

Q.e.d.

The last two inequalities and the following inequalities in Lemma 4.9 often are quoted

as “Moser inequalities” or also “Moser-type inequalities”.

Lemma 4.9 Let m ∈ IN. Then there is a constant c = c(m,n) > 0 such that for all

f, g ∈ Wm,2 ∩ L∞ and α ∈ INn
0 , |α| ≤ m, the following inequalities hold:

(i) ‖∇α(fg)‖2 ≤ c(‖f‖∞‖∇mg‖2 + ‖∇mf‖2‖g‖∞),

(ii) ‖∇α(fg)− f∇αg‖2 ≤ c(‖∇f‖∞‖∇m−1g‖2 + ‖∇mf‖2‖g‖∞).
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Proof: Part (i) follows from Lemma 4.8 with

h(x, y) := xy, w := (f/‖f‖∞, g/ ‖g‖∞).

We shall give an alternative proof which can be carried over to part (ii) directly.

Proof of (i): Without loss of generality we assume α 
= 0.

First let F := Jεf, G := Jεg. Then

‖∇α(FG)‖2 ≤ c
∑

β+γ=α

‖∇γF∇βG‖2

≤ c
∑

β+γ=α

‖∇γF‖ 2|α|
|γ|
‖∇βG‖ 2|α|

|β|

≤ c
∑

β+γ=α

‖F‖1−
|γ|
|α|∞ ‖∇|α|F‖

|γ|
|α|
2 ‖G‖

1− |β|
|α|∞ ‖∇|α|G‖

|β|
|α|
2 ,

where we have used the inequality of Gagliardo–Nirenberg, Theorem 4.4, (with

(r,m, j, p, q) from Theorem 4.4 replaced by (∞, |α|, |γ|(resp. |β|), 2, 2|α|
|γ| (resp.

2|α|
|β| )) here).

Since |β|+ |γ| = |α| we obtain

‖∇α(FG)‖2 ≤
∑

β+γ=α

(‖F‖∞ ‖∇|α|G‖2)
|β|
|α| (‖∇|α|F‖2 ‖G‖∞)

|γ|
|α|

≤ c
∑

β+γ=α

( |β|
|α| ‖F‖∞ ‖∇

|α|G‖2 + |γ||α| ‖∇
|α|F‖2‖G‖∞

)
,

where we used Young’s inequality (William Henry Young, 20.10.1862 – 7.7.1942).

This implies

‖∇α(FG)‖2 ≤ c(‖F‖∞ ‖∇mG‖2 + ‖∇mF‖2‖G‖∞)

which is the desired result for

F = Jεf, G = Jεg.

Now, let ε ↓ 0 and the result follows for f, g. (Notice again that ‖Jεf‖∞ ≤ ‖f‖∞).

Proof of (ii): The proof is analogous to that of part (i) observing

‖∇α(FG)− F∇αG‖2 ≤
∑

γ+β=α−σ;|σ|=1

‖∇β(∇σF )∇γG‖2.

Q.e.d.

The inequalities given in the previous Lemmata are perfectly suitable for the proof of

Theorem 1.1 (the first global existence theorem for the wave equation) and for the proof

of the corresponding theorems for the evolution equations to be studied in Chapter 11.

For the proof of Theorem 1.2, which is an optimal theorem with respect to the relation

between the space dimension and the degree of vanishing of the nonlinearity near zero,

we have to exploit special invariance properties of the d’Alembert operator −� = ∂2
t −Δ.

This is reflected in the following Lemmata, which are also of interest in themselves.

4 Some Inequalities
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We consider the Minkowski space IR× IRn with co-ordinates x0 = t, x = (x1, . . . , xn) and

the metric

η = (ηab)a,b=0,1,...,n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0

0 1 0 · · · 0

0 0
. . . 0

...
...

. . .
...

0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Hermann Minkowski, 22.6.1864 – 12.1.1909).

The d’Alembert operator −� is given by

−� ≡ −�n := −
n∑

a,b=0

ηab∂a∂b = ∂2
0 − ∂2

1 − . . .− ∂2
n

with ∂0 = −∂t.
This operator is invariant under the action of the generators of the (inhomogeneous)

Lorentz group which are given by

∂0, ∂1, . . . , ∂n

and

Ωab := xa∂b − xb∂a, a, b = 0, 1, . . . , n.

(Hendrik Antoon Lorentz, 18.7.1853 – 4.2.1928).

In particular we use

Ωij := xi∂j − xj∂i, i, j = 1, . . . , n,

Li := Ω0i = t∂i + xi∂t, i = 1, . . . , n.

Moreover, let

L0 :=
n∑

a,b=0

ηabxa∂b = t∂t + x1∂1 + . . .+ xn∂n. (4.22)

The (inhomogeneous) Lorentz group consists of isometries of flat space-time. In IR× IR3

these are the four translations ∂a, a = 0, 1, 2, 3, and the rotations in space-time Ωab, 0 ≤
a < b ≤ 3, which generate the ten-parameter Lorentz group.

Remark: We have called ∂a a translation adopting the usual notation. Actually, ∂j is

the infinitesimal generator of the group of translations {Tj(h)}h∈IR
(Tj(h)f)(x) := f(x+ hej),

where ej is the unit vector in the direction of the co-ordinate xj , (f taken in suitable

function spaces). In the same sense Ωab is called a rotation, e.g. for n = 2,Ω21 is the

infinitesimal generator of the group of rotations {T21(h)}h∈IR given by

(T21(h)f)(t, x) := f

⎛⎜⎜⎝
⎛⎜⎜⎝

1 0 0

0 cosh sin h

0 − sin h cosh

⎞⎟⎟⎠
⎛⎝ t

x

⎞⎠
⎞⎟⎟⎠ .
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The Ωij , i, j = 1, . . . , n, can be expressed in terms of angular co-ordinates only, hence

they represent tangential vectors on the unit sphere Sn−1 ⊂ IRn. We shall prove this for

n = 3.

Let polar co-ordinates be given by

x1 = r cosϕ sin θ,

x2 = r sinϕ sin θ,

x3 = r cos θ,

where

0 ≤ θ < π and 0 ≤ ϕ < π,

respectively

r = |x|,
ϕ = arctan

x2

x1
,

θ = arccos
x3

r

(on appropriate branches of arctan, arccos).

Lemma 4.10 Let n = 3. Then the operators Ωij , 1 ≤ i < j ≤ 3, are given in polar

co-ordinates by

Ω12 = ∂ϕ,

Ω13 = − cosϕ∂θ + cot θ sinϕ∂ϕ,

Ω23 = − sinϕ∂θ − cot θ cosϕ∂ϕ.

Moreover

∂θ = − sinϕΩ23 − cosϕΩ13,

where ∂ϕ = ∂
∂ϕ
, ∂θ =

∂
∂θ
.

Proof: Expressing the x-derivatives in polar co-ordinates we have

∂j =
∂r

∂xj
∂r +

∂θ

∂xj
∂θ +

∂ϕ

∂xj
∂ϕ, j = 1, 2, 3,

with

∂r

∂xj
=

xj

r
, j = 1, 2, 3,

∂ϕ

∂x1

=
−x2

x2
1 + x2

2

,
∂ϕ

∂x2

=
x1

x2
1 + x2

2

,
∂ϕ

∂x3

= 0,

4 Some Inequalities
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∂θ

∂xj

=
xjx3

r2
1√

r2 − x2
3

=
xjx3

r3
1

sin θ
, j = 1, 2,

∂θ

∂x3

= −
√
r2 − x2

3

r2
=
− sin θ

r
.

Hence we obtain

∂1 =
x1

r
∂r +

x1x3

r3
1

sin θ
∂θ − x2

x2
1 + x2

2

∂ϕ,

∂2 =
x2

r
∂r +

x2x3

r3
1

sin θ
∂θ +

x1

x2
1 + x2

2

∂ϕ,

∂3 =
x3

r
∂r − sin θ

r
∂θ,

and finally

Ω12 = (
x2
1

x2
1 + x2

2

+
x2
2

x2
1 + x2

2

) ∂ϕ = ∂ϕ,

Ω23 =
x2x3

r
∂r − x2 sin θ

r
∂θ − x2x3

r
∂r − x2

3x2

r3 sin θ
∂θ − x1x3

x2
1 + x2

2

∂ϕ

= {−x2(x
2
3 + r2 sin2 θ)

r3 sin θ
}∂θ − x1x3

x2
1 + x2

2

∂ϕ

= − x2

r sin θ
∂θ − x1x3

x2
1 + x2

2

∂ϕ

= − sinϕ∂θ − cot θ cosϕ∂ϕ.

Analogously:

Ω13 = − cosϕ∂θ + cot θ sinϕ∂ϕ.

From the representations of Ω23 and Ω13 we immediately get

∂θ = − sinϕΩ23 − cosϕΩ13.

Q.e.d.

The invariance of the d’Alembert operator under the Lorentz group is described by the

commutator [Ωab, −�] where the bracket [·, ·] is defined by

[A,B]ψ := ABψ −BAψ

for two operators A,B and a function ψ.

Lemma 4.11

[Ωab, −�] = 0, a, b = 0, 1, . . . , n.
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Proof:

−�Ωab = ∂2
t xa∂b − ∂2

t xb∂a −Δxa∂b +Δxb∂a

= xa∂b∂
2
t − xb∂a∂

2
t − xa∂bΔ+ xb∂aΔ+R

= Ωab−�+R,

where

R := 2(∂txa)∂t∂b − 2(∂txb)∂t∂a −
n∑

k=1

2{(∂kxa)∂k∂b − (∂kxb)∂k∂a}.

(i) a, b 
= 0 ⇒ R =
n∑

k=1
2{δka∂k∂b − δkb∂k∂a} = 0,

(ii) a = 0 or b = 0. The proof is similar.

Q.e.d.

We have the following commutator relations, the proof of which is as easy as that of the

previous Lemma and we omit it.

Lemma 4.12 Let a, b, c, d ∈ {0, 1, . . . , n}.
(i) [L0, −�] = −2 −�,
(ii) [L0,Ωab] = 0,

(iii) [L0, ∂a] = −∂a,
(iv) [Ωab,Ωcd] = ηbcΩad + ηadΩbc − ηbdΩac − ηacΩbd,

(v) [Ωab, ∂c] = ηbc∂a − ηac∂b.

We introduce three families of first-order operators:

Ω := (Ωij)1≤i<j≤n, (4.23)

Ω := (Ωab)0≤a<b≤n,

Γ := (L0,Ω, ∂0, . . . , ∂n).

The commutator relations imply that the IR-linear span of each of the families is a

Lie-algebra with bracket [·, ·] (Sophus Lie, 17.12.1842 – 18.2.1899).

In the same way as the family ∂ = (∂1, . . . , ∂n) generates the usual Sobolev norm in

W k,p(IRn) by

‖u‖∂,k,p :=
⎛⎝ ∑

|α|≤k

‖∂αu‖pLp(IRn)

⎞⎠1/p

,

where α = (α1, . . . , αn) is a multi-index,

∂α = ∂α1
1 · . . . · ∂αn

n , k ∈ IN0, 1 ≤ p ≤ ∞, (p =∞ interpreted as usual),

4 Some Inequalities
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we may define generalized Sobolev norms for functions u = u(t, x) which are smooth and

which decay sufficiently rapidly as |x| → ∞ for each fixed t. For this we use the families

Ω,Ω,Γ.

If A = (Ai)1≤i≤σ is one of them, (σ = n(n−1)
2

if A = Ω, σ = n(n+1)
2

if A = Ω, σ =

1 + n(n+1)
2

+ n + 1 if A = Γ), we define for k ∈ IN0, 1 ≤ p ≤ ∞ :

‖u(t)‖A,k,p :=

⎛⎝ ∑
|α|≤k

‖Aαu(t)‖pLp(IRn)

⎞⎠1/p

,

where Aα =
σ∏

i=1
(Aαi

i ), α being a multi-index, α = (α1, . . . , ασ).

Because of the commutator relations any two different orderings of the operator A will

produce equivalent norms.

The estimates on composite functions which we proved in Lemma 4.7 (resp. Lemma 4.8)

and Lemma 4.9 have their counterparts in terms of the family Γ.

Lemma 4.13 Let r,m, n ∈ IN, h ∈ Cr(IRm), B := ‖h‖Cr(B(0,1)). Then there is a constant

c = c(r,m, n) > 0 such that for all w = (w1, . . . , wm) ∈ C∞(IR × IRn), w(t, ·) having

compact support in x ∈ IRn for any fixed t ∈ IR, with ‖w‖Γ,[ r
2
],∞ ≤ 1, the inequality

‖Γαh(w(t))‖2 ≤ cB‖w(t)‖Γ,r,2

holds for any multi-index α = (α1, . . . , ασ), σ = 1 + n(n+1)
2

+ n+ 1, with |α| = r.

Proof: The proof is analogous to that of Lemma 4.7 observing the following:

(i) Γi(fg) = (Γif)g + f(Γig) and Γi(f(v)) = ∂f
∂v
(v)Γiv holds for any Γi ∈ Γ and any

smooth functions f, g, v.

(ii) We do not have a corresponding sharp Gagliardo–Nirenberg type estimate. Instead,

we use the coarser but more elementary estimate

‖v1 · . . . · vk‖2 ≤
k−1∏
i=1

‖vi‖∞‖vk‖2.

vj represents a derivative of w appearing in formula (4.20) (cf. the example preceding

that formula). At most one factor is a derivative of w of order greater than [ r
2
] and then

all other terms involve derivatives of at most order [ r
2
]. With (i) and (ii) in mind we

obtain the proof in analogy to that of Lemma 4.7.

Q.e.d.

With the same arguments we can prove the following analogue to Lemma 4.9.

Lemma 4.14 Let m ∈ IN. Then there is a constant c = c(m,n) > 0 such that for all

u, v ∈ C∞(IR× IRn) having compact support in x ∈ IRn for any fixed t ∈ IR the following

inequalities hold for any multi-index α = (α1, . . . , ασ), σ = 1 + n(n+1)
2

+ n + 1, with
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|α| = m :

(i) ‖Γα(uv)(t)‖2 ≤ c
(
‖u(t)‖Γ,[m

2
],∞‖v(t)‖Γ,m,2 + ‖u(t)‖Γ,m,2‖v(t)‖Γ,[m

2
],∞

)
,

(ii) ‖Γα(uv)(t)− u(t)Γαv(t)‖2 ≤
c
(
‖Γu(t)‖Γ,[m

2
]−1,∞‖v(t)‖Γ,m−1,2 + ‖u(t)‖Γ,m,2‖v(t)‖Γ,[m

2
],∞

)
.

Finally we present a Sobolev inequality on the unit sphere Sn−1 ⊂ IRn, n ∈ IN. We shall

give a proof for n = 3.

Lemma 4.15 There is a constant C = C(n) > 0 such that for all smooth functions

u : Sn−1 −→ IR the inequality

|u(ξ)| ≤ C

⎛⎜⎝ ∑
|α|≤[n−1

2
]+1

‖Ωαu‖2L2(Sn−1)

⎞⎟⎠
1/2

holds for each ξ ∈ Sn−1.

Proof: (n = 3):

Step 1: We prove the desired inequality for ξ in a fixed neighbourhood U of the great cir-

cle {x3 = 0}. Then the factor sin θ appearing in the volume element in polar co-ordinates

can be uniformly bounded from below by, say, c1 since θ varies in a neighbourhood of

π/2.

Introducing polar co-ordinates we use the notation

u(ξ) = ũ(ϕ, θ),

(ϕ, θ) ∈M := [0, 2π]× neighbourhood of π/2.

The classical Sobolev inequality for ũ in IR2 yields

∃c > 0 ∀(ϕ, θ) ∈M : |ũ(ϕ, θ)| ≤ c{‖ũ‖L2(M) + ‖∇ϕ,θũ‖L2(M) + ‖∇2
ϕ,θũ‖L2(M)}.

Now we have

‖ũ‖2L2(M) =
∫
M

|ũ(ϕ, θ)|2d(ϕ, θ) ≤ 1

c1

∫
M

|ũ(ϕ, θ)|2 sin θd(ϕ, θ)

=
1

c1

∫
U

|u(ξ)|2dξ ≤ 1

c1

∫
S2

|u(ξ)|2dξ.

Using Lemma 4.10 we obtain

‖∂ϕũ‖2L2(M) ≤
1

c1

∫
M

|∂ϕũ(ϕ, θ)|2 sin θd(ϕ, θ)

=
1

c1

∫
U

|Ω12u(ξ)|2dξ ≤ 1

c1

∫
S2

|Ω12u(ξ)|2dξ,
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and

‖∂θũ‖2L2(M) ≤
2

c1

∫
U

(|Ω23u(ξ)|2 + |Ω13u(ξ)|2)dξ.

Analogously:

‖∇2
ϕ,θũ‖L2(M) ≤ c

∑
|α|≤2

‖Ωαf‖L2(S2).

This proves the Lemma (n = 3) for ξ ∈ U .

Step 2: Let ξ0 ∈ S2 \ U, ξ0 = (ϕ0, θ0) in polar co-ordinates.

There is an orthogonal transformation P — a rotation orthogonal to the great circle

{x3 = 0} with angle μ — such that

Pξ0 = ξ1 ∈ U,

in polar co-ordinates

(ϕ0, θ0 + μ) = (ϕ1, θ1) ∈M.

If u1 is defined by

u1(ξ) := u(P−1ξ)

respectively

ũ1(ϕ, θ) := ũ(ϕ, θ − μ)

the results from Step 1 imply

|u(ξ0)| = |u1(ξ1)| ≤ c{‖ũ1‖L2(M) + ‖∇ϕ,θũ1‖L2(M) + ‖∇2
ϕ,θũ1‖L2(M)}.

Since

(∂ϕũ1)(ϕ, θ) = (∂ϕũ)(ϕ, θ − μ),

(∂θũ1)(ϕ, θ) = (∂θũ)(ϕ, θ − μ),

and because P is an orthogonal transformation from S2 onto itself, we obtain, as before

in Step 1,

|u(ξ)| ≤ c{‖ũ1‖L2(M)) + ‖∇ϕ,θũ1‖L2(M) + ‖∇2
ϕ,θũ1‖L2(M)}

≤ c{‖u‖L2(S2) + ‖Ωu‖L2(S2) + ‖Ω2u‖L2(S2)}.

Q.e.d.



5 Local existence for quasilinear symmetric

hyperbolic systems

Theorem 1.1 and Theorem 1.2 will be proved in detail for the initial value problem

ytt −Δy = f(Dy,∇Dy), (5.1)

y(t = 0) = y0, yt(t = 0) = y1, (5.2)

with

f(Dy,∇Dy) =
n∑

i,j=1

aij(Dy)∂i∂jy, (5.3)

where

aij = āji ∈ C∞(IRn+1), i, j = 1, . . . , n, (5.4)

aij(0) = 0 , i, j = 1, . . . , n. (5.5)

(The latter assumption corresponds to the case α = 1.)

The assumptions (5.3), (5.4) are made without loss of generality, see the remarks in

Chapter 8 (“quasilinearization”). The assumption (5.5) implies

∃m > 0 ∃η > 0 ∀ξ ∈ Cn ∀v ∈ Cn+1 , |v| < η : (5.6)

|ξ|2 +
n∑

i,j=1

aij(v)ξiξ̄j ≥ m|ξ|2.

In analogy to the procedure in Chapter 3 we may now write the initial value problem

(5.1), (5.2) for the function y as a first-order quasilinear symmetric hyperbolic system

for the vector u := Dy = (∂ty, ∂1y, . . . , ∂ny):

A0(u)∂tu+
n∑

j=1

Aj(u)∂ju = 0, (5.7)

u(t = 0) = u0, (5.8)

where

u0 := (y1,∇y0),

A0 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0 b11 · · · b1n
...

...
...

0 bn1 · · · bnn

⎞⎟⎟⎟⎟⎟⎟⎠ , Aj := −

⎛⎜⎜⎜⎜⎜⎜⎝
0 b1j · · · bnj

b1j 0 · · · 0
...

...
...

bnj 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ , j = 1, . . . , n,

with

bij = bij(u) := aij(u) + δij, i, j = 1, . . . , n,

(δij : Kronecker delta (Leopold Kronecker, 7.12.1823 – 29.12.1891)).
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The initial value problems (5.1), (5.2) for y and (5.7), (5.8) for u, respectively, are

equivalent for smooth functions. A0(u) will be positive definite for small u according

to (5.6). This will be no restriction of generality since we are looking for global small

solutions later.

In this chapter we shall prove a local existence theorem in a more general situation,

namely for the following initial value problem.

A0(u)∂tu+
n∑

j=1

Aj(u)∂ju+B(u)u = 0, (5.9)

u(t = 0) = u0, (5.10)

where u = (u1, . . . , uN) ∈ CN , u = u(t, x), t ∈ IR, x ∈ IRn. The following assumption is

made:

A0, A1, . . . , An, B are complex N ×N - matrices and C∞-functions of

their arguments v ∈ CN . Aj(v), j = 0, 1, . . . , n is hermitian and A0(v)

is positive definite, uniformly in each compact set with respect to v.

⎫⎪⎪⎬⎪⎪⎭ (5.11)

By κs we shall denote the Sobolev constant characterizing the continuous imbedding of

W s,2 into the space of uniformly bounded, continuous functions if s > n/2, i.e.

|w(x)| ≤ κs‖w‖s,2

for w ∈ W s,2 and almost all x ∈ IRn.

In this chapter we shall use the following additional notation:

|u|s,T := sup
0≤t≤T

‖u(t)‖s,2

if u ∈ L∞([0, T ],W s,2), T > 0, s ∈ IN0.

The two main theorems of this chapter will be Theorem 5.1 and Theorem 5.8.

Theorem 5.1 Assume (5.11) and let u0 ∈ W s,2, s ∈ IN, s > n
2
+ 1. Let g1 := κs‖u0‖s,2

and g2 > g1 arbitrary but fixed.

Then there is a T > 0 such that there exists a unique classical solution u ∈ C1
b ([0, T ]×IRn)

of the initial value problem (5.9), (5.10) with

sup
(t,x)∈[0,T ]×IRn

|u(t, x)| ≤ g2

and

u ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2).

T is a function of ‖u0‖s,2 and g2.
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In order to prove the existence of a solution we shall state and prove a series of Lemmata.

First we show the uniqueness in the following class of functions U ,

U := C0([0, T ],W 1,2) ∩ C1([0, T ], L2) ∩ L∞([0, T ],W s,2). (5.12)

Let u1, u2 ∈ U be two solutions of (5.9), (5.10) (in the strong sense with respect to the

derivatives which appear). Then we have

A0(uk)∂tuk +
n∑

j=1

Aj(uk)∂juk +B(uk)uk = 0,

and

uk(t = 0) = u0, k = 1, 2.

This implies

A0(u2)∂t(u2 − u1) +
n∑

j=1

Aj(u2)∂j(u2 − u1) +B(u2)(u2 − u1)

= (A0(u1)−A0(u2))∂tu1 +
n∑

j=1

(Aj(u1)− Aj(u2))∂ju1 + (B(u1)− B(u2))u1,

that is, v, defined by v := u2 − u1, satisfies

Ã0(t, x)∂tv +
n∑

j=1

Ãj(t, x)∂jv + B̃(t, x)v = F̃ (t, x), (5.13)

v(t = 0) = 0,

where the notation is obvious: Ã0(t, x) := A0(u2(t, x)) etc.

We take the inner product of both sides of equation (5.13) with v in L2(IRn) and we

obtain (cf. Chapter 3):

1

2

d

dt

∫
IRn

Ã0v · v̄ =
1

2

∫
IRn

(∂tÃ
0)v · v̄+ 1

2

∫
IRn

(
n∑

j=1

∂jÃ
j)v · v̄−Re

∫
IRn

B̃v · v̄+Re
∫
IRn

F̃ · v. (5.14)

All coefficients in the preceding equation are bounded by Sobolev’s imbedding theorem

because we have by assumption

|u1|s,T + |u2|s,T ≤ c <∞.

(c will denote various constants which do not depend on t, T , u0, but at most on s or

n.) Therefore, we obtain from (5.14), using the positive definiteness of Ã0,

d

dt

∫
IRn

Ã0v · v̄ ≤ c
∫
IRn

Ã0v · v̄ + c
∫
IRn

|F̃ | |v|.

5 Local Existence for Quasilinear Symmetric Hyperbolic Systems
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The last term may be estimated as follows:

|F̃ | ≤
∣∣∣∣∣∣

1∫
0

d

dr
A0(ru1 + (1− r)u2)dr

∣∣∣∣∣∣ |∂tu1|+ . . .

≤
1∫

0

∣∣∣(∇uA
0)(ru1 + (1− r)u2)

∣∣∣ dr |∂tu1| |u1 − u2|+ . . .

≤ c|v|.

This implies
d

dt

∫
IRn

Ã0v · v̄ ≤ c
∫
IRn

Ã0v · v̄,

whence v = 0 follows with Gronwall’s inequality, Lemma 4.1, because v(t = 0) = 0.

This proves the uniqueness (in the larger class U).
Q.e.d.

Now we turn to the proof of existence. The proof is a slight modification of that outlined

by A. Majda in [114].

Let

εk := 2−kε0, k ∈ IN0, 0 < ε0 ≤ 1,

where ε0 is arbitrary but fixed.

Let

uk
0 := Jεku0, k ∈ IN0,

denote the smoothed initial value, where Jεk denotes the convolution with the Friedrichs

mollifier jεk , cf. Chapter 4.

Then, according to Lemma 4.2, we have

∀k,m ∈ IN0 : uk
0 ∈ Wm,2 ∩ C∞,

‖uk
0‖m,2 ≤ ‖u0‖m,2.

Let

u0(t, x) := u0
0(x), t ≥ 0, x ∈ IRn,

and let uk+1 = uk+1(t, x) be defined by iteration for k ∈ IN0 as the solution of the linear

initial value problem

A0(uk)∂tu
k+1 +

n∑
j=1

Aj(uk)∂ju
k+1 +B(uk)uk+1 = 0, (5.15)

uk+1(t = 0) = uk+1
0 ,

k ∈ IN0.
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By Theorem 3.3 uk+1 is well-defined (inductively) and we have

∀k,m ∈ IN0 : uk+1 ∈ C0([0,∞),Wm,2) ∩ C1([0,∞),Wm−1,2) ∩ C∞([0,∞)× IRn).

(Observe that all coefficients in the equation (5.15) belong to Cm+1
b .)

Our aim will be to show that a subsequence of (uk)k converges towards a solution. For

this purpose we first prove some boundedness properties of (uk)k, namely boundedness

in high norms.

Lemma 5.2 There are R,L, T∗ > 0 such that for all k ∈ IN0 we have:

(i) |uk|s,T∗ ≤ R ,

(ii) |∂tuk|s−1,T∗ ≤ L ,

(iii) ∀(t, x) ∈ [0, T∗]× IRn: |uk(t, x)| ≤ g2.

R,L and T∗ are functions of ‖u0‖s,2 and g2.

In the following proof c0(g2) will denote a constant for which

∀v, w ∈ CN , |w| ≤ g2 : c−1
0 (g2)|v|2 ≤ A0(w)v · v̄ ≤ c0(g2)|v|2

holds. c(g2) will denote various constants, which depend only on g2 and on values of

the coefficients A0(w), . . . for |w| ≤ g2, respectively. We shall not write all parameters

t, x, . . . in each place.

Proof of Lemma 5.2 (by induction on k):

For k = 0 we have u0 ≡ u0
0, hence we obtain

‖u0
0‖s,2 ≤ ‖u0‖s,2 ≤ R, (5.16)

which is to be read as a first condition on R.

∂tu
0 = 0,

L is still arbitrary. By Sobolev’s imbedding theorem we have

|u0(t, x)| ≤ κs‖u0
0‖s,2 ≤ κs‖u0‖s,2 = g1 < g2,

T∗ is still arbitrary.

Induction step, k → k + 1:

Step 1: “(i) =⇒ (ii)”:

Using Lemma 4.9 we obtain

‖∂tuk+1‖s−1,2 =

∥∥∥∥∥∥A0(uk)−1

⎛⎝ n∑
j=1

Aj(uk)∂ju
k+1 +B(uk)uk+1

⎞⎠∥∥∥∥∥∥
s−1,2

(5.17)

≤ c(g2)‖uk+1‖s,2 ≤ c(g2)(R
4 +R2) =: L.

5 Local Existence for Quasilinear Symmetric Hyperbolic Systems
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(5.17) is the condition which defines L = L(R).

Step 2: “(ii) =⇒ (iii)”:

|uk+1(t, x)| ≤ |uk+1(0, x)|+
t∫

0

|∂tuk+1(r, x)|dr

≤ κs‖u0‖s,2 + κs−1

t∫
0

‖∂tuk+1(r)‖s−1,2dr

≤ g1 + κs−1LT∗

≤ g2

if

T∗ ≤ T1 = T1(‖u0‖s,2, g2, R) :=
g2 − g1
κs−1L

. (5.18)

(5.18) is the first condition on T∗.

Step 3: Proof of (i), determination of R.

For simplicity we abbreviate as follows:

u := uk, v := uk+1, v0 := uk+1
0 .

Let α ∈ INN
0 , |α| ≤ s.

The differential equation for v = uk+1,

A0(u)∂tv +
n∑

j=1

Aj(u)∂jv +B(u)v = 0,

implies

∂tv = −A0(u)−1

⎛⎝ n∑
j=1

Aj(u)∂jv +B(u)v

⎞⎠
and

∂t∇αv = − A0(u)−1

⎛⎝ n∑
j=1

Aj(u)∂j∇αv +B(u)∇αv

⎞⎠
+ A0(u)−1

n∑
j=1

Aj(u)∂j∇αv −∇α

⎛⎝A0(u)−1
n∑

j=1

Aj(u)∂jv

⎞⎠
+ A0(u)−1B(u)∇αv −∇α(A0(u)−1B(u)v),

or, equivalently,

A0(u)∂t∇αv +
n∑

j=1

Aj(u)∂j∇αv +B(u)∇αv = Fα, (5.19)
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where

Fα :=
n∑

j=1

A0(u)
{ [

A0(u)−1Aj(u)∂j∇αv −∇α
(
A0(u)−1Aj(u)∂jv

)]
(5.20)

+A0(u)−1B(u)∇αv −∇α(A0(u)−1B(u)v)
}
.

Taking the inner product in L2(IRn) of both sides of (5.19) with ∇αv and summing up for

0 ≤ |α| ≤ s, we obtain (cf. the proof of uniqueness above and Chapter 3, respectively)

d

dt

∑
|α|≤s

∫
IRn

A0(u)∇αv · ∇αv = (5.21)

Re
∑
|α|≤s

∫
IRn

(D′A(u)− 2B(u))∇αv · ∇αv + 2Re
∫
IRn

Fα · ∇αv,

where A is short for (A0, A1, . . . , An).

Using the induction hypothesis and Step 1 we obtain for t ∈ [0, T∗]:

‖u(t, ·)‖∞ ≤ g2,

‖∇u(t, ·)‖∞ ≤ κs|u|s,T∗ ≤ κsR,

‖∂tu(t, ·)‖∞ ≤ c(g2)R.

This implies for all (t, x) ∈ [0, T∗]× IRn:

|D′A(u(t, x))| ≤ c(g2)R, (5.22)

|B(u(t, x))| ≤ c(g2). (5.23)

Remark: We notice the following relation:

B(0) = 0 =⇒ ∀(t, x) ∈ [0, T∗]× IRn : |B(u(t, x))| ≤ c(g2)R. (5.24)

In particular, the condition B(0) = 0 is fulfilled in our application to nonlinear wave

equations.

If α = 0 we have Fα = 0. Let s′ := |α| > 0, ∇s′ as in Chapter 4. An application of

Lemma 4.9 implies

‖Fα‖2 ≤ c(g2)
{ n∑

j=1

[
‖∇(A0(u)−1Aj(u))‖∞‖∇s′−1∂jv‖2 (5.25)

+ ‖∇s′(A0(u)−1Aj(u))‖2‖∂jv‖∞
]

+
[
‖∇(A0(u)−1B(u))‖∞‖∇s′−1v‖2 + ‖∇s′(A0(u)−1B(u))‖2‖v‖∞

]}
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≤ c(g2)‖v‖s,2
{ n∑

j=1

[
‖∇(A0(u)−1Aj(u))‖∞ + ‖∇s′(A0(u)−1Aj(u))‖2

]

+ ‖∇(A0(u)−1B(u))‖∞ + ‖∇s′(A0(u)−1B(u))‖2
}

≤ c(g2)‖v‖s
⎧⎨⎩

n∑
j=1

[
c(g2)R + c(g2)‖u‖s,2

]
+ c(g2)R + c(g2)‖u‖s,2

⎫⎬⎭
(according to Lemma 4.7 and the remark following the proof

there (g2 may be larger than 1))

≤ c(g2)‖v‖s,2R.

Let rhs denote the right-hand side of equation (5.21). From (5.22), (5.23), (5.25) we

conclude

|rhs| ≤ c(g2)(R + 1)‖v‖2s,2. (5.26)

Remark: (Cf. (5.24))

B(0) = 0 =⇒ |rhs| ≤ c(g2)R‖v‖2s,2. (5.27)

Integration on both sides of (5.21) from 0 to t yields

‖v(t)‖2s,2 ≤ c0(g2)
∑
|α|≤s

∫
IRn

A0(u)∇αv · ∇αv

≤ c0(g2)
{ ∑

|α|≤s

A0(u(t = 0))∇αv(t = 0) · ∇αv(t = 0) + c(g2)(R + 1)

t∫
0

‖v(r)‖2s,2dr
}

≤ c20(g2)‖v0‖2s,2 + c0(g2)c(g2)(R + 1)

t∫
0

‖v(r)‖2s,2dr.

Gronwall’s inequality, Lemma 4.1, implies

‖v(t)‖s,2 ≤ c0(g2)‖uk+1
0 ‖s,2 ec(g2)(R+1)t (5.28)

≤ c0(g2)‖u0‖s,2 ec(g2)(R+1)T∗ .

Now we choose R such that

R ≥ c0(g2)‖u0‖s,2ec(g2)

holds.

Observing the condition on R postulated in (5.16) we choose

R := ‖u0‖s,2max
{
1, c0(g2)e

c(g2)
}
,
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in particular we have

R = R(‖u0‖s,2, g2).
Moreover, we choose T∗ such that

T∗ ≤ T2 = T2(‖u0‖s,2, g2) := 1

R + 1

holds.

Observing the condition on T∗ postulated in (5.18) we require

T∗ := min(T1, T2) > 0

which means in particular that

T∗ = T∗(‖u0‖s,2, g2).

With these choices for R and T∗ we obtain from (5.28)

|uk+1|s,T∗ = |v|s,T∗ ≤ R.

This proves (i) and completes the proof of Lemma 5.2.

Q.e.d.

Remark: If g2 is fixed we have

‖u0‖s,2 → 0 =⇒ R + L→ 0, T1 =
g2 − g1
κs−1L

→∞.

If, additionally, B(0) = 0 we have

T2 =
1

R

and hence

‖u0‖s,2 → 0 =⇒ T2 →∞ , T∗ →∞.

More precisely, it holds

B(0) = 0 =⇒ T∗ ≥ c(g2)√
‖u0‖2s,2 + ‖u0‖4s,2

(5.29)

that is to say, if u0 = εϕ, ε > 0, ϕ ∈ W s,2, then

T∗ ≥ c(ϕ, g2)ε
−1 as ε ↓ 0.

Having proved the boundedness of (uk)k in high norms we turn now to the investigation

of convergence of subsequences in appropriate low norms. Note that our estimates are

not strong enough to prove convergence in the high norms. The idea to prove convergence

only in lower norms goes back to P.D. Lax [97] and T. Kato [81]; compare the remarks

in [114].
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Lemma 5.3 There are nonnegative real numbers T, α, β1, β2, . . . with 0 < α < 1,
∞∑
k=1

βk < ∞ and 0 < T ≤ T∗ such that

∀k ∈ IN |uk+1 − uk|0,T ≤ α|uk − uk−1|0,T + βk.

Proof: Let 0 ≤ t ≤ T ≤ T∗, T still arbitrary with 0 < T ≤ T∗. From the differential

equations for uk+1 and uk, respectively, we obtain

A0(uk)∂t(u
k+1 − uk) +

n∑
j=1

Aj(uk)∂j(u
k+1 − uk) +B(uk)(uk+1 − uk) (5.30)

= (A0(uk−1)−A0(uk))∂tu
k +

n∑
j=1

(Aj(uk−1)− Aj(uk))∂ju
k + (B(uk−1)− B(uk))uk

=: Fk.

Fk satisfies

Fk =

1∫
0

{
(∇uA

0)(uk−1 + r(uk − uk−1))(uk−1 − uk)∂tu
k

+
n∑

j=1

(∇uA
j)(uk−1 + r(uk − uk−1))(uk−1 − uk)∂ju

k

+ (∇uB)(uk−1 + r(uk − uk−1))(uk−1 − uk)uk
}
dr.

This implies

‖Fk‖2 ≤ c(g2, R)‖uk − uk−1‖2,
where

c(g2, R) = c(g2, ‖u0‖s,2)→ 0 as R→ 0.

Taking the supremum for t ∈ [0, T ] we get

|Fk|0,T ≤ c(g2, R)|uk − uk−1|0,T . (5.31)

The technique of proving energy estimates — which we multiply used above — finally

leads to

|uk+1 − uk|0,T ≤
√
c(g2, R) ec(g2,R)T

(
‖uk+1

0 − uk
0‖2 +

√
T |uk − uk−1|0,T

)
. (5.32)

Using Lemma 4.3 we get the following inequalities:

‖uk+1
0 − uk

0‖2 ≤ ‖uk+1
0 − u0‖2 + ‖u0 − uk

0‖2

≤ cε02
−(k+1)‖u0‖1,2 + cε02

−k‖u0‖1,2

≤ c2−k,
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where c = c(‖u0‖1,2) is a positive constant.

Choosing 0 < T ≤ T∗ such that √
c(g2, R)T ec(g2,R)T < 1

holds, we see that (5.32) implies

|uk+1 − uk|0,T ≤ α|uk − uk−1|0,T + βk,

with

βk := c2−k and α :=
√
c(g2, R)T ec(g2,R)T < 1.

Q.e.d.

The constant c(g2, R) appearing in the proof of Lemma 5.3 satisfies

c(g2, R)→ 0 as R→ 0,

hence if

T∗ → T∞ ∈ (0,∞] as R→ 0,

then

T → T∞ as R→ 0.

More precisely, we have

c(g2, R) ≤ c(g2)R.

Let M = M(g2) be defined by the equation

Mec(g2)M
2

=
1

2
√
c(g2)

,

and let

T = T (g2, R) :=
M2

R
.

With this choice we have α < 1 and

T ≥ c(g2)

‖u0‖s,2 (provided T ≤ T∗). (5.33)

As an easy consequence of Lemma 5.3 we get

Corollary 5.4 There exists a u ∈ C0([0, T ], L2) such that (uk)k converges to u in

C0([0, T ], L2).

Proof: It is an elementary observation that

0 ≤ ak+1 ≤ αak + βk , βk ≥ 0 , k ∈ IN , 0 < α < 1 ,
∞∑
k=1

βk <∞
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implies
∞∑
k=1

ak <∞.

(
Prove the boundedness of (ak)k and then of (

N∑
k=1

ak)N .
)

With ak := |uk+1 − uk|0,T we conclude that (uk)k is a Cauchy sequence in the Banach

space C0([0, T ], L2).

Q.e.d.

Lemma 5.2 means in particular:

∀k ∈ IN0 : |uk|s,T ≤ R.

The inequality of Gagliardo–Nirenberg, Theorem 4.4, implies

|uk − um|s′,T ≤ c|uk − um|1−s′/s
0,T |uk − um|s′/ss,T

≤ c|uk − um|1−s′/s
0,T , k,m ∈ IN0, s′ ∈ {0, 1, . . . , s}.

Therefore (uk)k is a Cauchy sequence in C([0, T ],W s′,2) for 0 ≤ s′ < s, s′ ∈ IN0. This

implies

u ∈ C0([0, T ],W s′,2), lim
k→∞
|uk − u|s,′,T = 0, (5.34)

for all s′ ∈ IN0 with 0 ≤ s′ < s.

Remark: If Theorem 4.4 is used in Sobolev spaces with fractional derivatives, i.e. for

s′ ∈ [0,∞) arbitrary then it would immediately follow by Sobolev’s imbedding theorem

for s′ with s > s′ > n/2 + 1 that

u ∈ C0([0, T ], C1
b ) and ∂tu ∈ C0([0, T ], C0

b ).

In particular,

u ∈ C1
b ([0, T ]× IRn)

and u is a classical solution. Since we do not work with fractional derivatives we shall

use different arguments. (See the book of R. A. Adams [1] for a discussion of fractional

derivatives and associated Sobolev spaces.)

Taking s′ := s− 1 > n/2 we obtain, using Sobolev’s imbedding theorem,

uk → u in C0([0, T ], C0
b ) as k →∞,

which implies, together with Lemma 4.3,

sup
(t,x)∈[0,T ]×IRn

|u(t, x)| ≤ g2.
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The equation

∂tu
k+1 = −A0(uk)−1

⎛⎝ n∑
j=1

Aj(uk)∂ju
k+1 +B(uk)uk+1

⎞⎠
now implies that (∂tu

k+1)k converges in C0([0, T ],W s′−1,2) which is continuously imbed-

ded in C0([0, T ], L2) . Hence

u ∈ C1([0, T ], L2)

and the differential equation

A0(u)∂tu =
n∑

j=1

Aj(u)∂ju+B(u)u

is satisfied (being an equality in C0([0, T ], L2)).

Lemma 5.5 u ∈ L∞([0, T ],W s,2), |u|s,T ≤ R.

Proof: From Lemma 5.2 we obtain for all t ∈ [0, T ], k ∈ IN0,

‖uk(t)‖s,2 ≤ R.

Thus, for t ∈ [0, T ] fixed, there is a subsequence (again denoted by (uk(t))k) and a

wt ∈ W s,2 such that

uk(t) ⇀ wt in W s,2 as k →∞,

‖wt‖s,2 ≤ R.

For h ∈ L2

g → Fhg :=
∫
IRn

gh̄

defines a continuous linear map on W s,2, hence, by the Riesz representation theorem, we

have

∀h ∈ L2 , ∃ψ = ψ(h) ∈ W s,2 ∀g ∈ W s,2 : Fhg = 〈g, ψ(h)〉s,
where 〈·, ·〉s denotes the inner product in W s,2. Consequently, we get for all h ∈ L2

∫
IRn

wth̄ = Fh(wt) = 〈wt, ψ(h)〉s = lim
k→∞
〈uk(t), ψ(h)〉s (5.35)

= lim
k→∞

Fh(u
k(t)) = lim

k→∞

∫
IRn

uk(t)h̄ =
∫
IRn

u(t)h̄.

The last equality follows from (5.34).

From (5.35) we obtain

u(t) = wt,

5 Local Existence for Quasilinear Symmetric Hyperbolic Systems
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which completes the proof of Lemma 5.5.

Q.e.d.

Since each subsequence of (uk(t))k in the proof of Lemma 5.5 will converge to the same

limit u(t) we conclude

∀t ∈ [0, T ] : uk(t) ⇀ u(t) in W s,2. (5.36)

Let Cw([0, T ], E) {and Lip([0, T ], E)} denote the space of weakly continuous {resp. Lip-
schitz continuous} functions from [0, T ] into a Banach space E.

Lemma 5.6 u ∈ Cw([0, T ],W
s,2) ∩ Lip([0, T ],W s−1,2).
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Proof:

1. Let (tn)n ⊂ [0, 1], lim
n→∞ tn = t0. Since u ∈ C0([0, T ],W s−1,2) we have

lim
n→∞ ‖u(tn)‖s−1,2 = ‖u(t0)‖s−1,2

and because

‖u(tn)‖s,2 ≤ R

we get (cf. the proof of Lemma 5.5)

u(tn) ⇀ u(t0) in W s,2 as n→∞.

This proves u ∈ Cw([0, T ],W
s,2).

2.

uk(t2)− uk(t1) =

t2∫
t1

∂tu
k(r)dr for 0 ≤ t1 ≤ t2 ≤ T.

Hence we obtain using Lemma 5.2

‖uk(t2)− uk(t1)‖s−1,2 ≤ L|t2 − t1|.

By the help of (5.34) this implies in the limit as k →∞ that u ∈ Lip([0, T ],W s−1,2)

(with the Lipschitz constant L having been defined in the proof of Lemma 5.2).

Q.e.d.

In order to prove Theorem 5.1 it remains to show that

u ∈ C0([0, T ),W s,2) ∩ C1([0, T ),W s−1,2)

(which implies

u ∈ C1
b ([0, T )× IRn)

by Sobolev’s imbedding theorem).

For this purpose three reduction steps will be made first.

Step 1: It is sufficient to prove that u ∈ C0([0, T ],W s,2). Then the differential equation

for u implies ∂tu ∈ C0([0, T ],W s−1,2), hence u ∈ C1([0, T ],W s−1,2).

Step 2: It is sufficient to prove the continuity on the right of t ∈ [0, T ), because we may

consider v where

v(t) := u(T − t) for 0 ≤ t ≤ T.

v satisfies

A0(v)∂tv +
n∑

j=1

(−Aj(v))∂jv + (−B(v))v = 0,
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v(0) = u(T ).

Then the continuity of v on the right in t ∈ [0, T ) implies the continuity of u on the left

of t ∈ (0, T ].

Step 3: It is sufficient to prove the continuity on the right of t = 0, because for t = t0 ∈
(0, T ) we may consider the initial value problem

A0(w)∂tw +
n∑

j=1

Aj(w)∂jw +B(w)w = 0, (5.37)

w(t = t0) = u(t0), (5.38)

for a vector-valued function w = w(t, x), t ≥ t0, x ∈ IRn. From what we have proved

above we know that there is a (unique) solution w of (5.37), (5.38) with

w ∈ C0(I,W s−1,2) ∩ C1(I, L2) ∩ Cw(I,W
s,2) ∩ Lip(I,W s−1,2) ∩ L∞(I,W s,2)

where

I := [t0, Tt0 ], for some Tt0 > t0,

Tt0 = Tt0(‖u(t0)‖s,2, g̃2),

g̃1 := κs‖u(t0)‖s,2 < g̃2.

w(t) coincides with u(t+t0) on [0,min(T − t0, Tt0)] because of the uniqueness of solutions

in the class U defined in (5.12). Therefore the continuity on the right of w at the initial

time t = t0 implies the continuity on the right of u in t0.

After these three reductions we turn to the proof of the continuity on the right of u in

t = 0. For this purpose we introduce the norm ‖ · ‖s,A0(t), 0 ≤ t ≤ T , which will be

equivalent to the norm ‖ · ‖s,2 on W s,2:

‖v‖s,A0(t) :=

⎛⎝ ∑
|α|≤s

∫
IRn

A0(t)∇αv · ∇αv

⎞⎠1/2

,

where

A0(t) := A0(u(t, ·)) for t ∈ [0, T ].

Since

c−1
0 w · w̄ ≤ A0(t)w · w̄ ≤ c0w · w̄,

we obtain

c−1
0 ‖v‖2s,2 ≤ ‖v‖2s,A0(t)

≤ c0‖v‖2s,2
for all t ∈ [0, T ].
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The inequalities

∣∣∣‖u(t)‖2s,A0(t) − ‖u(t)‖2s,A0(0)

∣∣∣
≤ ∑

|α|≤s

sup
x∈IRn

∣∣∣A0(u(t, x))−A0(u0(x))
∣∣∣ ‖∇αu(t)‖22

≤ sup
x∈IRn

1∫
0

∣∣∣(∇uA
0)(u0(x) + r(u(t, x)− u0(x)))

∣∣∣ dr |u(t, x)− u0(x)| ‖u(t)‖2s,2

≤ c(g2)R
2‖u(t)− u0‖s−1,2

imply

lim sup
t↓0

‖u(t)‖2s,A0(t) = lim sup
t↓0

‖u(t)‖2s,A0(0).

Since u ∈ Cw([0, T ],W
s,2) (by Lemma 5.6) it now suffices to prove

‖u0‖2s,A0(0) ≥ lim sup
t↓0

‖u(t)‖2s,A0(t). (5.39)

(
Observe that in a Hilbert space H with norm ‖ · ‖H one has:

wn ⇀ w in H as n→∞

=⇒
(
wn → w in H as n→∞⇔ ‖w‖H ≥ lim sup

n→∞
‖wn‖H

)
.
)

The inequality (5.39) immediately follows from the following Lemma which remains to

be proved.

Lemma 5.7 There is a constant c = c(g2, R) > 0 such that for all t ∈ [0, T ] the inequal-

ity

‖u(t)‖2s,A0(t) ≤ ‖u0‖2s,A0(0) + ct

holds.

Proof: From the proof of Lemma 5.2 we know that

∑
|α|≤s

∫
IRn

A0(uk)∇αuk+1 · ∇αuk+1 ≤ (5.40)

∑
|α|≤s

∫
IRn

A0(uk
0)∇αuk+1

0 · ∇αuk+1
0 +

t∫
0

cR

holds, where c = c(g2, R).
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We have ∣∣∣∣∣∣
∫
IRn

A0(uk
0)∇αuk+1

0 · ∇αuk+1
0 −

∫
IRn

A0(u0)∇αu0 · ∇αu0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
IRn

(
A0(uk

0)− A0(u0)
)
∇αu0 · ∇αu0

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
IRn

A0(uk
0)

(
∇αuk+1

0 −∇αu0

)
· ∇αuk+1

0

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
IRn

A0(uk
0)∇αu0 ·

(
∇αuk+1

0 −∇αu0

)∣∣∣∣∣∣ .
Since

lim
k→∞
‖uk

0 − u0‖s,2 = 0

we now obtain

lim
k→∞

∑
|α|≤s

∫
IRn

A0(uk
0)∇αuk+1

0 · ∇αuk+1
0 = ‖u0‖2s,A0(0). (5.41)

From (5.36) (in W s,2 with respect to ‖ · ‖s,A0(t)) we get

‖u(t)‖s,A0(t) ≤ lim inf
k→∞

‖uk+1(t)‖s,A0(t). (5.42)

The relations (5.40) – (5.42) imply

‖u(t)‖2s,A0(t) ≤ ‖u0‖2s,A0(0) + ct.

Q.e.d.

This also completes the proof of Theorem 5.1.

Q.e.d.

In the case B(0) = 0 (in particular for the application to nonlinear wave equations) we

can choose T such that

T ≥ c(g2)

‖u0‖s,2 ,

(according to (5.33), (5.29)). This means that the life span T∞ of a classical solution can

be estimated from below by

T∞ ≥ c(g2)

‖u0‖s,2 , (5.43)

in particular if u0 = εϕ, ε > 0, ϕ ∈ W s,2, we get

T∞ = T∞(ε) ≥ c · ε−1, (5.44)

where

c = c(g2, ϕ) > 0.
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This elemantary life span estimate can be sharpened in space dimensions n ≥ 2, e.g. for

n = 3 to

lim
ε↓0

ε log T∞(ε) > 0.

This result is contained in Theorem 1.2, see also the papers by F. John [72] or John &

Klainerman [75] and Section 10 for further results.

Theorem 5.1 can be improved with respect to the length T of the interval of existence:

The dependence on ‖u0‖s,2 and g2 can be weakened as follows.

Theorem 5.8 Assume (5.11) and u0 ∈ W s,2, s,m ∈ IN with s ≥ m > n/2 + 1. Let

gm1 := κm‖u0‖m,2 and gm2 > gm1 arbitrary but fixed.

Then there is a T > 0 such that there exists a unique classical solution u ∈ C1
b ([0, T ]×IRn)

to the initial value problem (5.9), (5.10) with

sup
(t,x)∈[0,T ]×IRn

|u(t, x)| ≤ gm2

and

u ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2).

T depends only on ‖u0‖m,2 and on gm2 .

Proof: First we obtain a solution

u ∈ C0([0, Tm],W
m,2) ∩ C1([0, Tm],W

m−1,2)

according to Theorem 5.1, where

Tm = Tm(‖u0‖m,2, g
m
2 )

is determined in the proof of Lemma 5.3.

Now we show that the approximating sequence (uk)k is still bounded in high norms. We

prove:

∃Rs, Ls > 0 ∃T ∈ (0, Tm] ∀k ∈ IN0 : |uk|s,T ≤ Rs , |∂tuk|s−1,T ≤ Ls (5.45)

and T depends only on ‖u0‖m,2 and gm2 .

For this purpose we only have to look at the proof of Lemma 5.2 once more.

The basis of the induction (k = 0) yields the condition

Rs ≥ ‖u0‖s,2. (5.46)

Since

|D′A(u)− 2B(u)| ≤ c(gm2 )(Rm + 1),

‖∇sB(u)‖2 ≤ c(gm2 )Rs,

‖v‖1,∞ ≤ κm−1‖v‖m,2,

5 Local Existence for Quasilinear Symmetric Hyperbolic Systems
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where u := uk, v := uk+1, (cf. (5.19), (5.20)), we obtain

‖Fα‖2 ≤ c(gm2 )(Rm‖v‖s,2 +Rs‖v‖m,2).

Denoting by rhs the right-hand side of (5.21) again we get

|rhs| ≤ c(gm2 )
(
(Rm + 1)‖v‖2s,2 +RsRm‖v‖s,2

)
.

This implies

‖v(t)‖2s,2 ≤ c(gm2 )

⎧⎨⎩‖v0‖2s,2 +
t∫

0

(
(Rm + 1)‖v(r)‖2s,2 +RsRm‖v(r)‖s,2

)
dr

⎫⎬⎭
≤ c(gm2 )

⎧⎨⎩‖v0‖2s,2 +
t∫

0

(Rm + 1)‖v(r)‖2s,2 dr + tR2
sRm +Rm

t∫
0

‖v(r)‖2s,2 dr
⎫⎬⎭ .

Gronwall’s inequality, Lemma 4.1, implies

‖v(t)‖2s,2 ≤ c(gm2 )
(
‖v0‖2s,2 + TR2

sRm

)
ec(g

m
2 )(1+2Rm)t

or, equivalently,

‖v(t)‖s,2 ≤ c(gm2 )
(
‖v0‖s,2 +

√
TRmRs

)
ec(g

m
2 )(1+2Rm)t

which implies

|v|s,T ≤ c(gm2 )
(
‖v0‖s,2 +

√
TRmRs

)
ec(g

m
2 )(1+2Rm)T .

We choose T ∈ (0, Tm] such that

c(gm2 )
√
TRm ec(g

m
2 )(1+2Rm)T ≤ 1

2
(5.47)

and Rs (observing (5.46)) such that

Rs ≥ 2c(gm2 )‖v0‖s ec(g
m
2 )(1+2Rm)T .

Then

|v|s,T ≤ Rs

and

|∂tv|s−1,T ≤ c(gm2 )Rs =: Ls.

This proves (5.45).

T is determined by (5.47) and depends only on ‖u0‖m,2 and gm2 . The remaining consid-

erations are literally the same as those in the proof of Theorem 5.1. This completes the
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proof of Theorem 5.8.

Q.e.d.

In the case B(0) = 0 we have for the life span T∞

T∞ ≥ c(gm2 )

‖u0‖m,2

(cf. (5.43), (5.44)).

We conclude this chapter with some remarks on the regularity assumption (C∞) on the

coefficients. This assumption was made for simplicity in order to be able to give a self-

contained proof of the local existence theorems above only using the elementary results

from Chapter 3. It was already mentioned there that these assumptions can be weakened

in remarkable ways, for example using the theory of T. Kato culminating in a local

existence theorem for quasilinear hyperbolic systems with less restrictive requirements

on the coefficients, see [81, 82] and the paper of Hughes, Kato & Marsden [51].
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6 High energy estimates

In this chapter we shall prove an energy estimate for the local solution u = (∂ty,∇y) of
the initial value problem (5.7), (5.8), where y solves (5.1), (5.2) with the assumptions

(5.3) – (5.6) on the nonlinearity (case α = 1). Without loss of generality for further

investigations we assume the constant gm2 appearing in the local existence Theorem 5.8

to be sufficiently small as it will be needed in the proof of the next theorem.

Theorem 6.1 There is a constant c > 0 which is independent of T and u0 such that the

local solution u satisfies

∀t ∈ [0, T ] : ‖u(t)‖s,2 ≤ c‖u0‖s,2 exp {c
t∫

0

‖Du(r)‖∞dr}. (6.1)

The proof below literally works for s > n/2+2 and only in this case we shall make use of

Theorem 6.1. If one uses the Gagliardo–Nirenberg inequality, Theorem 4.4, in Sobolev

spaces W τ,2, where τ ∈ [0,∞) is not necessarily an integer, then the proof below also

works for arbitrary s > n/2 + 1. Otherwise one can get the result for the remaining

case s = [n
2
] + 2 by considering uε := Jεu (the convolution with the Friedrichs mollifier

jε, cf. Chapter 4), then proving the energy estimate for uε and finally letting ε tend

to zero. For this purpose corresponding commutator estimates for the nonlinear terms

are needed. These considerations are carried out e.g. by F. Willems [198], see also S.

Kawashima [84].

Now let s > n/2 + 2.

Proof of Theorem 6.1:

Let (uk
0)k ⊂ W s+1,2 be a sequence that approximates u0 in W s,2 as k →∞ and let uk be

the solution to (5.7) with initial value uk(t = 0) = uk
0.

We have

∀k ∈ IN : uk ∈ C0([0, T1], W
s+1,2) ∩ C1([0, T1], W

s,2),

where

T1 := inf{length of the existence interval foruk and u according to Theorem 5.8, k ∈ IN}.

Without loss of generality we may assume

0 < T1 = T.

(Observe that ‖uk
0‖m,2 → ‖u0‖m,2 as k →∞, from Theorem 5.8, s ≥ m > n/2 + 1).

Remark: Theorem 5.1 would not have been sufficient because

‖uk
0‖s+1,2 →∞ as k →∞ if u0 
∈ W s+1,2.
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Since

uk ∈ C1([0, T ], W s,2)

we have for yk with

uk
1 = ∂ty

k, uk
2 = ∂1y

k, . . . , uk
n+1 = ∂ny

k,

the property

yktt ∈ C0([0, T ],W s,2).

We apply ∇α, 0 ≤ |α| ≤ s, on both sides of the differential equation for yk:

yktt −Δyk =
n∑

i,j=1

aij(Dyk)∂i∂jy
k,

and then take the inner product in L2 with ∇αykt . For simplicity we omit the index k

for yk and we assume without loss of generality that all functions are real-valued. Then

we obtain, dropping the parameter t most of the time,

1

2

d

dt
{‖∇αyt‖22 + ‖∇α∇y‖22} =

n∑
i,j=1

〈aij(Dy)∂i∂j∇αy,∇αyt〉 (6.2)

+
n∑

i,j=1

〈∇α{aij(Dy)∂i∂jy} − aij(Dy)∂i∂j∇αy,∇αyt〉

≡ I + II.

Integrating by parts in I we obtain

I = −
n∑

i,j=1

〈(∂jaij(Dy))∂i∇αy,∇αyt〉 −
n∑

i,j=1

〈aij(Dy)∇α∂iy,∇α∂jyt〉 (6.3)

≡ I.1 + I.2.

The term I.1 can be estimated directly by

|I.1| ≤
n∑

i,j=1

‖(∇uaij)(Dy)∂iDy‖∞(‖∇α∂jy‖22 + ‖∇αyt‖22) (6.4)

≤ c ‖Duk‖∞ ‖uk‖2s,2,

where c denotes here and in the sequel (various) positive constants not depending on T

or u0.

The term I.2 is split as follows.

I.2 = −1
2

d

dt

n∑
i,j=1

〈aij(Dy)∂i∇αy, ∂j∇αy〉 (6.5)

+
1

2

n∑
i,j=1

〈(∂taij(Dy))∂i∇αy, ∂j∇αy〉

≡ I.2.a + I.2.b.

6 High Energy Estimates
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The term I.2.b is estimated in the same way as I.1, see (6.4):

|I.2.b| ≤ c‖Duk‖∞‖uk‖2s,2. (6.6)

For the term I.2.a we obtain

∑
|α|≤s

t∫
0

I.2.a(r)dr = −1
2

∑
|α|≤s

n∑
i,j=1

〈aij(Dy)∂i∇αy, ∂j∇αy〉(t) (6.7)

+
1

2

∑
|α|≤s

n∑
i,j=1

〈aij(Dy(t = 0))∂i∇αy(t = 0), ∂j∇αy(t = 0)〉.

The first term on the right-hand side of equation (6.7) can be incorporated into the

left-hand side of equation (6.2) (after integration with respect to t there) due to the

assumption (5.6) if gm2 is sufficiently small.

Now we consider the term II from equation (6.2). We have

II = 0 if α = 0,

hence let α ∈ INn
0 with |α| ≥ 1. Then we get

|II| ≤
n∑

i,j=1

‖∇α{aij(Dy)∂i∂jy} − aij(Dy)∇α∂i∂jy‖2‖∇αyt‖2 (6.8)

≤ c
n∑

i,j=1

{‖∇(aij(Dy))‖∞‖∇|α|−1∂i∂jy‖2 + ‖∇|α|aij(Dy)‖2‖∂i∂jy‖∞}‖∇αyt‖2

(according to Lemma 4.9)

≤ c{‖∇Dy‖∞‖∇y‖s,2 + ‖Dy‖s,2‖∇2y‖∞}‖∇αyt‖2
(according to Lemma 4.8)

≤ c‖Duk‖∞‖uk‖2s,2.
Combining (6.2) – (6.8) we obtain

‖uk(t)‖2s,2 ≤ c‖uk
0‖2s,2 + c

t∫
0

‖Duk(r)‖∞‖uk(r)‖2s,2dr

and Gronwall’s inequality, Lemma 4.1, implies the desired energy estimate for uk:

‖uk(t)‖s,2 ≤ c‖uk
0‖s,2 exp{c

t∫
0

‖Duk(r)‖∞dr}, 0 ≤ t ≤ T. (6.9)

It remains to investigate the limit k →∞. For this purpose we notice that

A0(u)∂t(u− uk) +
n∑

j=1

Aj(u)∂j(u− uk)

= (A0(uk) − A0(u))∂tu
k +

n∑
j=1

(Aj(uk)− Aj(u))∂ju
k

=: Fk.
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(The zero-order coefficient B is zero here.)

With the help of the arguments already used in the proof of Lemma 5.3 this implies:

‖Fk‖2 ≤ c‖uk − u‖2,

‖(uk − u)(t)‖22 ≤ c

⎛⎝‖uk
0 − u0‖22 +

t∫
0

‖(uk − u)(r)‖22dr
⎞⎠

and then

‖(uk − u)(t)‖2 ≤ c‖uk
0 − u0‖2 ecT .

Hence we obtain:

uk → u in C0([0, T ], L2) as k →∞.

The Gagliardo–Nirenberg inequality, Theorem 4.4, implies (cf. Chapter 5 for similar

arguments)

uk → u in C0([0, T ],W s−1,2) (6.10)

and

∂tu
k → ∂tu in C0([0, T ],W s−2,2), as k →∞. (6.11)

Moreover we have for each t ∈ [0, T ]:

uk(t) ⇀ u(t) in W s,2 as k →∞. (6.12)

(Cf. the proofs of the Lemmata 5.5, 5.6.)

(6.12) implies

‖u(t)‖s,2 ≤ lim inf
k→∞

‖uk(t)‖s,2 (6.13)

(cf. [6, p. 139]) and from (6.10), (6.11) and Sobolev’s imbedding theorem we conclude

Duk → Du in C0([0, T ], L∞). (6.14)

Here we used the fact that s > n/2 + 2 holds. Combining (6.9), (6.13) and (6.14) we

obtain

‖u(t)‖s,2 ≤ c lim inf
k→∞

‖uk
0‖s,2 exp{c

t∫
0

‖Duk(r)‖∞dr}

= c‖u0‖s,2 exp{c
t∫

0

‖Du(r)‖∞dr}.

Q.e.d.

6 High Energy Estimates



7 Weighted a priori estimates for small data

Besides the energy estimate which we proved in Chapter 6 the following a priori estimate

is essential for the proof of the global existence theorem (Theorem 1.1). As a new

ingredient it takes advantage from the decay estimates that were obtained in Chapter 2

for solutions of the linearized equation.

Let u again be the local solution as in Chapter 6 (case α = 1). Then we shall prove the

following weighted a priori estimate.

Theorem 7.1 Let n > 5 and s0, s1 ∈ IN satisfy

s1 >

[
s1 +N4/3

2

]
, s0 ≥ s1 + N4/3 + 1.

Let

u0 ∈ W s0,2 ∩W s1+N4/3,4/3.

Then there are M0 > 0 and δ1 > 0, both independent of T and u0, such that the following

holds:

If

‖u0‖s0,2 + ‖u0‖s1+N4/3,4/3 ≤ δ1

then

Ms1(T ) := sup
0≤t≤T

(1 + t)
n−1
4 ‖u(t)‖s1,4 ≤M0.

Remarks: The condition n > 5 comes from the condition n−1
2

> 1
α
(1 + 1

α
) in Theorem

1.1 for α = 1. N4/3 = Np from Theorem 2.3 for p = 4/3. We have

N4/3 > n(1 − 2/4) = n/2.

This implies

s1 ≥ N4/3 > n/2

and hence

s0 ≥ s1 +N4/3 + 1 > n + 1 ≥ n/2 + 2 since n > 5.

The nonlinearity is given as in Chapters 5 and 6 by

f(u,∇u) =
n∑

i,j=1

aij(u)∂jui+1.

c will denote various constants not depending on T or u0.

Lemma 7.2

‖f(u,∇u)‖s1+N4/3,4/3 ≤ c‖u‖s1,4‖u‖s0,2 (7.1)
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(Observe that W s0,2 ↪→W s1,4 since s0 > s1 + n/4.)

Proof:

‖aij(u)‖q = ‖aij(u) − aij(0)‖q (7.2)

= ‖
1∫

0

(∇uaij)(ru)udr‖q ≤ c‖u‖q ≤ c‖u‖s0,2

for all i, j = 1, · · · , n and all q ∈ [2,∞].

Using the special form of f we obtain

‖f(u,∇u)‖s1+N4/3,4/3 ≤
n∑

i,j=1

∑
0≤|α|≤s1+N4/3

‖∇α(aij(u)∂jui+1)‖4/3

≤ c
n∑

i,j=1

∑
0≤|α|+|β|≤s1+N4/3

‖(∇αaij(u))∇β∂jui+1‖4/3.

First let |α| > s1. Then |β|+ 1 < N4/3 ≤ s1.

This implies

‖(∇αaij(u))∇β∂jui+1‖4/3 ≤ ‖∇αaij(u)‖2‖∇β∂jui+1‖4 (7.3)

≤ c‖∇|α|u‖2‖u‖|β|+1,4

(using Lemma 4.8 and (7.2))

≤ c‖u‖s0,2‖u‖s1,4.

Now let |β|+ 1 > s1. Then |α| ≤ s1 and

‖∇α(aij(u))∇β∂jui+1‖4/3 ≤ ‖∇αaij(u)‖4‖∇β∂jui+1‖2 (7.4)

≤ c‖∇|α|u‖4‖u‖|β|+1,2

≤ c‖u‖s1,4‖u‖s0,2.

Finally let |α| ≤ s1 and |β|+ 1 ≤ s1. Then we obtain

‖∇α(aij(u))∇β∂jui+1‖4/3 ≤ ‖∇αaij(u)‖2‖∇|β|+1u‖4 (7.5)

≤ c‖u‖s0,2‖u‖s1,4.

From (7.3) – (7.5) we conclude the claim of Lemma 7.2.

Q.e.d.

7 Weighted A Priori Estimates for Small Data
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Let w(t)g be defined as in Chapter 2 as the solution v of the linear initial value problem

vtt −Δv = 0, v(t = 0) = 0, vt(t = 0) = g.

Remember that

u(t = 0) = u0 = (y1,∇y0).
Writing f(t) short for f(u(t, ·),∇u(t, ·)) we have the following representation for the local

solution u:

Lemma 7.3

u(t) = Dw(t)y1 + D∂tw(t)y0 +

t∫
0

Dw(t− r)f(r)dr, 0 ≤ t ≤ T.

Proof: Since u = Dy it is sufficient to prove

y(t) = w(t)y1 + ∂tw(t)y0 +

t∫
0

w(t− r)f(r)dr (7.6)

≡ v1(t) + v2(t) + v3(t).

We have, using the definition of w(t),

∂2
t v1 −Δv1 = 0, v1(t = 0) = 0, ∂tv1(t = 0) = y1, (7.7)

∂2
t v2 −Δv2 = 0, v2(t = 0) = y0, ∂tv2(t = 0) = 0. (7.8)

Moreover

∂2
t

t∫
0

w(t− r)f(r)dr = ∂t{w(0)f(t) +

t∫
0

∂tw(t− r)f(r)dr}

= ∂t

t∫
0

∂tw(t− r)f(r)dr = (∂tw)(t = 0)f(t) +

t∫
0

∂2
tw(t− r)f(r)dr

= f(t) +

t∫
0

Δw(t− r)f(r)dr = f(t) + Δ

t∫
0

w(t− r)f(r)dr.

This implies

∂2
t v3 −Δv3 = f, v3(t = 0) = 0, ∂tv3(t = 0) = 0. (7.9)

(7.7) – (7.9) yield (7.6) (uniqueness of solutions).

Q.e.d.

Now we come to the Proof of Theorem 7.1.

We write

u(t) ≡
3∑

j=1

uj(t)



85

according to Lemma 7.3.

Let

d :=
n− 1

4
.

Then u1 satisfies

‖u1(t)‖s1,4 ≤ c(1 + t)−
n−1
2

(1−2/4)‖y1‖s1+N4/3,4/3 (7.10)

(according to Theorem 2.3)

≤ c(1 + t)−dδ1.

Writing u2 as

u2(t) = D∂tw(t)y0 = (∂2
tw(t)y0, ∇∂tw(t)y0)

= (Δw(t)y0, ∇∂tw(t)y0) = (
n∑

j=1

∂j(w(t)∂jy0), ∂t(w(t)∇y0))

we obtain by Theorem 2.3

‖u2(t)‖s1,4 ≤ c‖Dw(t)∇y0‖s1,4 (7.11)

≤ c(1 + t)−d‖∇y0‖s1+N4/3,4/3

≤ c(1 + t)−dδ1.

Applying once more Theorem 2.3 and using Lemma 7.2 we get

‖u3(t)‖s1,4 ≤ c

t∫
0

(1 + t− r)−d‖f(r)‖s1+N4/3,4/3dr

≤ c

t∫
0

(1 + t− r)−d‖u(r)‖s1,4‖u(r)‖s0,2dr.

Using Theorem 6.1 we see that u3 satisfies

‖u3(t)‖s1,4 ≤ c

t∫
0

(1 + t− r)−d‖u(r)‖s1,4‖u0‖s0,2 exp{c
t∫

0

‖Du(τ)‖∞dτ}dr (7.12)

≤ c δ1 exp{c
t∫

0

‖Du(τ)‖∞dτ}
t∫

0

(1 + t− r)−d‖u(r)‖s1,4dr

≤ c δ1 exp{c
t∫

0

‖Du(τ)‖∞dτ}Ms1(t)(1 + t)−d

t∫
0

(1 + t)d(1 + t− r)−d(1 + r)−ddr.

Now we make use of the following general estimates which will be proved at the end of

this chapter.

7 Weighted A Priori Estimates for Small Data
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Lemma 7.4 Let α, β, γ ≥ 0 satisfy

α + β − γ ≥ 1, α ≥ γ, β ≥ γ,

and

α > γ if β = 1, and β > γ if α = 1.

Then we have

(i) sup
0≤t<∞

t∫
0

(1 + t)γ(1 + t− r)−α(1 + r)−βdr <∞,

(ii) sup
0≤t<∞

∞∫
0

(1 + t)γ(1 + t+ r)−α(1 + r)−βdr <∞.

Applying Lemma 7.4, (i), with α = β = γ = d > 1 we obtain from (7.12)

‖u3(t)‖s1,4 ≤ cδ1(1 + t)−dMs1(t) exp{c
t∫

0

‖Du(τ)‖∞dτ}. (7.13)

Sobolev’s imbedding theorem yields

‖∇u‖∞ ≤ c‖u‖s1,4
and from the differential equation for u we conclude

‖∂tu‖∞ ≤ c‖∇u‖∞.

This implies

t∫
0

‖Du(τ)‖∞dτ ≤ c

t∫
0

(1 + τ)−d(1 + τ)d‖u(τ)‖s1,4dτ (7.14)

≤ cMs1(t)

t∫
0

(1 + τ)−ddτ

≤ cMs1(t).

From (7.13) and (7.14) we conclude

‖u3(t)‖s1,4 ≤ cδ1(1 + t)−dMs1(t) exp{cMs1(t)}. (7.15)

Combining (7.10), (7.11) and (7.15) we get the following estimate for u:

‖u(t)‖s1,4 ≤ cδ1(1 + t)−d + cδ1(1 + t)−dMs1(t) exp{cMs1(t)}.

This implies

Ms1(t) ≤ cδ1 (1 +Ms1(t) exp{cMs1(t)}) , 0 ≤ t ≤ T. (7.16)
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Without loss of generality we assume that c is larger than the imbedding constant κ̃ in

W s0,2 ↪→ W s1,4.

Let

ϕ : [0,∞) −→ IR

be defined by

ϕ(x) := cδ1(1 + x ecx)− x.

We have

ϕ(0) = cδ1, ϕ
′(0) = cδ1 − 1.

ϕ has a first positive zero at x0 with ϕ′(x0) < 0 if δ1 is sufficiently small (δ1 = δ1(c)).

0 = ϕ(x0) = cδ1(1 + x0e
cx0)− x0

implies

δ1 =
x0

c(1 + x0ecx0)
<

x0

c

whence

Ms1(0) = ‖u0‖s1,4 ≤ κ̃‖u0‖s0,2 ≤ κ̃δ1 < x0 (7.17)

follows. The relation (7.16) implies

ϕ(Ms1(t)) ≥ 0, 0 ≤ t ≤ T

which together with (7.17) and a continuous dependence argument leads to

Ms1(t) ≤ x0, 0 ≤ t ≤ T,

which yields the claim of Theorem 7.1 with

M0 := x0 = x0(δ1).

Q.e.d.

It remains to prove Lemma 7.4.

Proof: (ii) is an easy consequence of (i). Let c denote various constants not depending

on t. Then
t∫

0

(1 + t)γ(1 + t− r)−α(1 + r)−βdr =

t/2∫
0

· · ·+
t∫

t/2

· · ·

7 Weighted A Priori Estimates for Small Data



88 7 Weighted A Priori Estimates for Small Data

and

t/2∫
0

· · · ≤ c

t/2∫
0

(1 + t)γ(1 + t)−α(1 + r)−βdr

=
c

(1 + t)α−γ

t/2∫
0

(1 + r)−βdr

≤ c

(1 + t)α−γ

⎧⎪⎨⎪⎩
log(1 + t/2) if β = 1,

(1 + t/2)−β+1 + 1 if β 
= 1

≤ c

because α > γ if β = 1 and α ≥ γ and α + β − γ ≥ 1.

Analogously we conclude

t∫
t/2

· · · ≤ c

(1 + t)β−γ

t∫
t/2

(1 + t− r)−αdr

=
c

(1 + t)β−γ

t/2∫
0

(1 + r)−αdr

≤ c

because β > γ if α = 1 and β ≥ γ and α + β − γ ≥ 1.

Q.e.d.



8 Global solutions to wave equations — proofs

8.1 Proof of Theorem 1.1

We are now able to give a proof of Theorem 1.1, first again for the case

α = 1, f(Dy,∇Dy) =
n∑

i,j=1

aij(Dy)∂i∂jy (8.1)

as discussed in the previous chapters.

Let δ1, T , s0, s1, u be given as in Theorem 7.1, and let s ≥ s0.

By successively using Theorem 6.1, formula (7.14) and Theorem 7.1 we obtain the fol-

lowing sequence of inequalities, where u(t) = u(t, ·):

‖u(t)‖s,2 ≤ c‖u0‖s,2 exp{c
t∫

0

‖Du(τ)‖∞dτ} (8.2)

≤ c‖u0‖s,2 exp {cMs1(t)}

≤ c‖u0‖s,2 exp {cM0}

≤ K‖u0‖s,2,

for 0 ≤ t ≤ T and with

K := c exp{cM0}
being independent of T and of u0.

If we choose δ such that

0 < δ <
δ1
K

,

we obtain

‖u(T )‖s,2 ≤ K‖u0‖s,2 ≤ Kδ < δ1.

Applying the local existence theorem, Theorem 5.8 (at initial time T ), we conclude that

there exists a continuation of u onto [T, T + T1(δ1)] for some positive number T1 only

depending on δ1. The inequality (8.2) applied for

0 ≤ t ≤ T + T1(δ1)

implies

‖u(T + T1(δ1))‖s,2 ≤ K‖u0‖s,2 < δ1.

Hence we may apply the same argument once more to conclude that we can continue u

onto [T + T1(δ1), T +2T1(δ1)]. Proceeding in this way we prove the existence of a global

solution

u ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).
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In particular, we obtain

∀0 ≤ t <∞ : ‖u(t)‖s,2 ≤ Kδ < δ1

and, with Sobolev’s imbedding theorem and Theorem 7.1,

∀0 ≤ t <∞ : ‖u(t)‖∞ ≤ c‖u(t)‖s1,4 ≤ cMs1(t)(1 + t)−(n−1)/4

≤ cM0(1 + t)−(n−1)/4.

This proves Theorem 1.1 (for the case given in (8.1)).

Q.e.d.

The general case (f , α as given in Theorem 1.1) is proved in the same way. The following

remarks point out the differences and show that the restriction to f , α as in (8.1) in the

previous chapters were made without loss of generality.

First let f again have the form given in (8.1) but let α ∈ IN be arbitrary, i.e.

aij(u) = O(|u|α) as |u| → 0.

Then the calculations in the proof of Theorem 6.1 show that the inequality (6.1) claimed

in this theorem can be replaced by the following inequality.

∀t ∈ [0, T ] : ‖u(t)‖s,2 ≤ c‖u0‖s,2 exp{c
t∫

0

‖Du(τ)‖α∞dτ}. (8.3)

The estimate (7.1) for the nonlinearity f now reads as

‖f(u,∇u)‖s1+Np,p ≤ c‖u‖αs1,q‖u‖s0,2, (8.4)

where s1 is sufficiently large and q, p satisfy the relations

1

q
+

1

p
= 1 and

α

q
+

1

2
=

1

p
(8.5)

(the latter simply arising from an application of Hölder’s inequality in the proof of (8.4)).

The relations (8.5) for p and q are equivalent to

p =
2α + 2

2α + 1
and q = 2(α+ 1), (8.6)

which are just the conditions on p and q given in Theorem 1.1.

With the help of the inequality (8.4) the analogue of Theorem 7.1 is proved in the same

way by estimating the corresponding term Ms1(T ), namely

Ms1(T ) := sup
0≤t≤T

(1 + t)
n−1
2 (1− 2

q )‖u(t)‖s1,q (8.7)
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(q is given in (8.6)), s1 ∈ IN is chosen appropriately large enough).

To carry over the proof of Theorem 7.1 we only mention that the integration exponent

d appearing in the formulae (7.13) and (7.15), respectively, having to be larger than 1,

now is the following:

d = α
n− 1

2

(
1− 2

q

)
= α

α

α + 1

n− 1

2
.

This is an immediate consequence of the relations in the formulae (8.3) and (8.4).

The necessary condition d > 1 explains the condition

1

α

(
1 +

1

α

)
<

n− 1

2

in Theorem 1.1.

With the definition Ms1(T ) in (8.7) it is obvious how the decay rate claimed in Theo-

rem 1.1, namely n−1
2

α
α+1

, arises.

The considerations up to now demonstrate that higher-order nonlinear terms can be

handled even easier. Moreover, the method of differentiating the original differential

equation (1.1) leads to a quasilinear differential equation for y and its derivatives. Hence

the special form

f(Dy,∇Dy) =
n∑

i,j=1

aij(Dy)∂i∂jy

can be assumed without loss of generality (see also the corresponding remarks in Section

11.2 between the formulae (11.58) and (11.59)). This completes the proof of Theorem

1.1.

Q.e.d.

We remark that the regularity assumptions on f (“C∞”) can be weakened using the

theory of evolution operators by Kato, see [51, 79, 80, 81, 82, 83]. Another idea would

be to approximate a less regular f by C∞-functions fm, m = 1, 2, . . ., and to prove the

convergence of the associated solutions um, for which energy estimates like those proved

in Chapter 5 are needed.

The only reason for having studied C∞-nonlinearities f was to be able to present a local

existence theorem, the proof of which is as simple as possible. See the remarks at the

end of Chapter 5.

Theorem 1.1 can be regarded as a kind of stability result which expresses that the solution

u behaves asymptotically for large t like a solution of the linearized equation. This means

that there should be a function u+ which is a solution of a linear wave equation (more

precisely: u+ = Dy+ for some function y+, and y+ solves the linear wave equation), and

u(t) behaves like u+(t) as t tends to infinity.

We define u+ by

u+(t) := u(t) +

∞∫
t

W (t− r)F (u(r),∇u(r))dr, (8.8)
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where F (u(r),∇u(r)) = (f(u(r),∇u(r)), 0) and where V (t) := W (t)H solves the linear

initial value problem

Vt + AV = 0, V (t = 0) = H

for all t ∈ (−∞,∞) — not only for t ≥ 0. Here A denotes the linear differential operator

with symbol ⎛⎜⎜⎝ 0 −∇′

−∇ 0

⎞⎟⎟⎠
which naturally arises by a change from y with

ytt −Δy = 0

to V = (∂ty,∇y) with
Vt + AV = 0.

u+ is well-defined in W s1,q with s1, q as in Theorem 1.1 since
∞∫
t

‖W (t− r)F (u(r),∇u(r))‖s1,qdr ≤ c(1 + t)−
n−1
2 (1− 2

q ).

This follows, using (8.4) and Theorem 1.1, from the inequalities:
∞∫
t

‖W (t− r)F (u(r),∇u(r))‖s1,q dr (8.9)

≤ c

∞∫
t

(1 + |t− r|)−n−1
2 (1− 2

q )‖F (u(r),∇u(r))‖s1+Np,p dr

≤ c

∞∫
t

(1 + |t− r|)−n−1
2 (1− 2

q )‖u(r)‖αs1,q‖u(r)‖s0,2 dr

≤ c

∞∫
t

(1 + |t− r|)−n−1
2 (1− 2

q )(1 + r)−αn−1
2 (1− 2

q )dr

= c

∞∫
0

(1 + r)−
n−1
2 (1− 2

q )(1 + r + t)−αn−1
2 (1− 2

q )dr

≤ c(1 + t)−
n−1
2 (1− 2

q )

(using Lemma 7.4).

By the definition of u+ we obtain

∂tu+(t) = ∂tu(t)− F (u(t),∇u(t)) +
∞∫
t

∂t(W (t− s)F (u(s),∇u(s)))ds

= −Au(t)−
∞∫
t

AW (t− s)F (u(s),∇u(s))ds

= −Au+(t),
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hence u+ solves the linearized equation and we obtain the following Corollary to Theo-

rem 1.1.

Corollary 8.1 Using the notation of Theorem 1.1 and the definition of u+ in (8.8), one

has that u behaves in L2, asymptotically as t→∞, like u+, where u+ is the solution of

the linearized equation to the initial value

u+(t = 0) = u0 +

∞∫
0

W (−s)F (u(s),∇u(s))ds.

More precisely,

lim
t→∞ ‖u(t)− u+(t)‖2 = 0.

Proof:

‖u(t)− u+(t)‖2 ≤ c

∞∫
t

‖F (u(r),∇u(r))‖s1,q dr

≤ c(1 + t)1−αn−1
2 (1− 2

q ) −→ 0 as t→∞.

Q.e.d.

We observe that the formulation of the result in scattering theory in Corollary 8.1 requires

the solvability of the linearized problem for all real t, not only on the positive time axis.

This solvability will not be given for example for the heat conduction problems in Chapter

11.

Up to now we have only considered wave equations. However, we shall see in Chapter 11

in the discussion of other evolution equations that there is a common structure underlying

the proofs leading to similar theorems as Theorem 1.1. In particular we mention the

paper of J. Shatah [158] where similar results are obtained in a more general functional

analytic setup. We have taken the presentation given by Klainerman & Ponce [94].

Now we turn to the proof of Theorem 1.2. This improvement of Theorem 1.1 strongly

relies on special properties of the wave equation and does not have counterparts (up to

now) for each of the other systems which shall be studied in Chapter 11; however, for

Klein–Gordon equations see [89], for Schrödinger equations see [22], for the equations of

elasticity see [73]. Hence this underlines the necessity of studying each system in detail

to obtain specific optimal results; see also the remarks at the end of this chapter.

8.2 Proof of Theorem 1.2

The proof of Theorem 1.2 will follow from a sequence of Lemmata. Let

∂r :=
n∑

i=1

xi

|x|∂i. (8.10)
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Lemma 8.2 There is a constant C > 0 such that for any smooth function y = y(x) in

IRn, being compactly supported (or vanishing sufficiently rapidly at infinity), the following

inequality holds for all x ∈ IRn \ {0}:

|y(x)| ≤ C

(
1

|x|
)n−1

2

‖y‖
1
2

Ω,[n−1
2 ]+1,2

‖∂ry‖
1
2

Ω,[n−1
2 ]+1,2

(where Ω was defined in (4.23)).

Proof: We introduce polar co-ordinates:

x = rξ, r = |x|, ξ ∈ Sn−1.

Then we have

y2(rξ) = −
∞∫
r

2y(λξ)∂ry(λξ)dλ.

This implies

y2(rξ) ≤ 2

rn−1

∞∫
r

|y(λξ)| |∂ry(λξ)|λn−1dλ,

hence ∫
Sn−1

|y2(rξ)|dξ ≤ 2

rn−1
‖y‖2‖∂ry‖2.

Observing that Ω — containing only angular derivatives — commutes with ∂r, we obtain

the same inequality for Ωαy. Summing up for 0 ≤ |α| ≤
[
n−1
2

]
+ 1, we get

⎛⎜⎝ ∑
|α|≤[n−1

2 ]+1

∫
Sn−1

|Ωαy(rξ)|2dξ
⎞⎟⎠

1
2

≤ C

r
n−1
2

‖y‖
1
2

Ω,[n−1
2 ]+1,2

‖∂ry‖
1
2

Ω,[n−1
2 ]+1,2

,

which yields the proposition with the help of Lemma 4.15.

Q.e.d.

Remark: All constants in this section naturally depend on the space dimension n.

The estimate in Lemma 8.2, applied to a function y = y(t, x) in IR × IRn, already

gives us the desired kind of L2–L∞-estimate in a part of the exterior of the light cone

(= {(t, x) | t = |x|}), namely for (t, x) with 2|x| > t, see below. To get an estimate for

(t, x) with t ≥ 2|x|, we use the following representation for ∂r:

∂r =
1

t2 − r2
(tLr − rL0), (8.11)

where

Lr :=
n∑

i=1

xi

|x|Li. (8.12)
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It follows from the definitions of ∂r, Lr, L0, in (8.10), (8.12), and (4.22) respectively,

that

Lr = r∂t + t∂r, L0 = t∂t + r∂r,

which immediately implies (8.11).

Lemma 8.3 For all k ∈ IN there is a constant C = C(k) > 0 such that for all smooth

functions y in IR × IRn the following inequality holds for all (t, x) with t 
= r = |x| 
= 0,

t > 0:

|∂k
r y(t, x)| ≤ C

1

|t− r|k
∑
|α|≤k

|Lαy(t, x)|,

where Ly denotes the vector (L0y, L1y, . . . , Lny).

Proof: The proof follows by induction on k.

k = 1:

∂ry(t, x) =
1

t2 − r2

(
t

n∑
i=1

xi

|x|Liy(t, x)− rL0y(t, x)

)
.

This implies

|∂ry(t, x)| ≤ 1

|t2 − r2|
(
t

n∑
i=1

|Liy(t, x)|+ r|L0y(t, x)|
)

≤ 1

|t− r| |Ly(t, x)|.

1 ≤ k → k + 1:

∂k+1
r y = ∂k

r

{
1

t2 − r2
(tLr − rL0)y

}
(8.13)

=
k∑

j=0

(
k

j

)
∂j
r

{
1

t2 − r2

}
∂k−j
r {(tLr − rL0)y} .

We have ∣∣∣∣∂j
r

{
1

t2 − r2

}∣∣∣∣ ≤ C · 1

|t− r|j+1(t+ r)
, 0 ≤ j ≤ k, (8.14)

(which may be easily proved by induction again).

By the induction hypothesis we obtain

|∂k−j
r {(tLr − rL0)y(t, x)} | ≤ C

|t− r|k−j

∑
|α|≤k−j

|Lα(tLr − rL0)y(t, x)| (8.15)

≤ C

|t− r|k−j

∑
|α|≤k

|Lα(tLr − rL0)y(t, x)|

≤ C(t + r)

|t− r|k−j

∑
|α|≤k+1

|Lαy(t, x)|.
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Combining (8.13) – (8.15) we get

|∂k+1
r y(t, x)| ≤ C

t + r

|t− r|j+1(t+ r)|t− r|k−j

∑
|α|≤k+1

|Lαy(t, x)|

= C
1

|t− r|k+1

∑
|α|≤k+1

|Lαy(t, x)|.

Q.e.d.

The estimate in Lemma 8.3 will lead to the desired L2–L∞-estimate for an arbitrary

smooth function y = y(t, x) as we shall show now.

Let v = v(t, r, ξ) be defined by

v(t, r, ξ) := (t− r)ky(t, rξ),

k ∈ IN fixed, 0 ≤ r = |x| < t, ξ ∈ Sn−1, x = rξ. Since by the definition of v we have

∂j

∂rj
v(t, r, ξ)|r=t = 0, j = 0, . . . , k − 1,

we obtain the representation

v(t, r, ξ) =
(−1)k
(k − 1)!

t∫
r

(λ− r)k−1 ∂k

∂λk
v(t, λ, ξ)dλ.

Applying Lemma 8.3 we get ∣∣∣∣∣ ∂k

∂λk
v(t, λ, ξ)

∣∣∣∣∣ ≤ CMk(t, λ, ξ),

where

Mk(t, λ, ξ) :=
∑
|α|≤k

|Lαy(t, x)|, x = λξ.

This implies

|v(t, r, ξ)| ≤ CIk(t, r)

⎛⎝ t∫
r

λn−1M2
k (t, λ, ξ)dλ

⎞⎠
1
2

,

where

Ik(t, r) :=

⎛⎝ t∫
r

(λ− r)2k−2λ1−ndλ

⎞⎠
1
2

.

Integrating ξ �→ |v(t, r, ξ)| with respect to ξ ∈ Sn−1 yields

⎛⎝ ∫
Sn−1

|y(t, rξ)|2dξ
⎞⎠1

2

≤ C · Ik(t, r) 1

(t− r)k
‖Mk(t, ·)‖2.
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Applying Lemma 4.15 and observing that L0, L1, . . . , Ln are contained in the family Γ

defined in Chapter 4 we obtain

|y(t, x)|2 = |y(t, rξ)|2 ≤ C
∑

|α|≤[n−1
2 ]+1

‖Ωαy‖2L2(Sn−1)

≤ C
∑

|α|≤[n−1
2 ]+1

I2k(t, r)
1

(t− r)2k
∑
|β|≤k

‖LβΩαy(t)‖22

≤ CI2k(t, r)
1

(t− r)2k
‖y(t)‖2

Γ,k+[n−1
2 ]+1,2

.

If n is odd we take k := n+1
2

for which

Ik(t, r) =

⎛⎝ t∫
r

(
1− r

λ

)n−1

dλ

⎞⎠
1
2

≤ (t− r)
1
2 .

If n is even we take k := n+2
2

for which

Ik(t, r) =

⎛⎝ t∫
r

(λ− r)
(
1− r

λ

)n−1

dλ

⎞⎠
1
2

≤
⎛⎝ t∫

r

λdλ

⎞⎠
1
2

=
1√
2
(t2 − r2)

1
2 .

In both cases we conclude for t ≥ 2|x|:

|y(t, x)| ≤ Ct−n/2‖y(t)‖Γ,n+1,2, (8.16)

because we have

for odd n :
n+ 1

2
+

[
n− 1

2

]
+ 1 = n + 1,

and
1

(t− r)
n+1
2

(t− r)1/2 = (t− r)−n/2 ≤ ct−n/2,

while

for even n :
n+ 2

2
+

[
n− 1

2

]
+ 1 = n + 1

and
1

(t− r)
n+2
2

1√
2
(t2 − r2)1/2 ≤ √2(t− r)−n/2 ≤ ct−n/2

(observe t ≥ 2r).

Lemma 8.4 There is a constant c > 0 such that for any smooth function y = y(t, x) in

IR × IRn, y being compactly supported with respect to x ∈ IRn (or vanishing sufficiently

rapidly as |x| → ∞) for each fixed t ≥ 0, the following inequality holds for all t ≥ 0 and

all x ∈ IRn:

|y(t, x)| ≤ c(1 + t)−(n−1)/2‖y(t)‖Γ,n+1,2.
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Proof: First let t ≥ 1.

By (8.16) we have for t ≥ 2|x|

|y(t, x)| ≤ ct−n/2‖y(t)‖Γ,n+1,2 ≤ c(1 + t)−(n−1)/2‖y(t)‖Γ,n+1,2. (8.17)

By Lemma 8.2 we get for t < 2|x|

|y(t, x)| ≤ c|x|−(n−1)/2‖y(t)‖
1
2

Ω,[n−1
2 ]+1,2

‖∂ry(t)‖
1
2

Ω,[n−1
2 ]+1,2

(8.18)

≤ ct−(n−1)/2
(
‖y(t)‖Ω,[n−1

2 ]+1,2 + ‖∂ry(t)‖Ω,[n−1
2 ]+1,2

)
≤ ct−(n−1)/2‖y(t)‖Γ,n+1,2 ≤ c(1 + t)−(n−1)/2‖y(t)‖Γ,n+1,2.

Now let 0 ≤ t < 1.

By Sobolev’s imbedding theorem we conclude

|y(t, x)| ≤ c‖y(t)‖[n2 ]+1,2 ≤ c‖y(t)‖n+1,2 (8.19)

≤ c‖y(t)‖Γ,n+1,2 ≤ c(1 + t)−(n−1)/2‖y(t)‖Γ,n+1,2.

Combining (8.17) – (8.19) we obtain the proof of Lemma 8.4.

Q.e.d.

Remark: The number n+ 1 appearing on the right-hand side in the term ‖y(t)‖Γ,n+1,2

can be replaced by the optimal value [n/2] + 1 — in analogy to the classical Sobolev

inequalities. This is shown by L. Hörmander [47] and S. Klainerman [91].

Now we shall prove Theorem 1.2 with the help of the last lemma. One remarkable

fact is that in Lemma 8.4 y is not necessarily a solution of the linear wave equation.

Nevertheless a kind of decay rate (t−(n−1)/2) is obtained in a special L2–L∞-estimate.

The price for this, namely the occurence of the ‖ · ‖Γ,n+1,2-norm of y(t) on the right-hand

side, is still good enough — better to say, it is perfectly suitable — for solutions of

nonlinear wave equations.

To prove Theorem 1.2 we shall again assume for simplicity that the nonlinearity has the

form

f(Dy,∇Dy) =
n∑

i,j=1

aij(Dy)∂i∂jy,

where aij = aji is smooth, aij(0) = 0, 1 ≤ i, j ≤ n, and also without loss of generality

that
n∑

i,j=1
|aij(u)| ≤ 1

2
for all u with |u| ≤ 1 (cf. the proof of Theorem 1.1 for these

assumptions).

In analogy to Theorem 6.1 it is proved that there is a constant C = Cs > 0 depending

only on (at most s derivatives of) f and on s ∈ IN, s > n
2
+ 1, such that we have for the
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local C∞-solution y on [0, T ] (cf. Theorem 5.8)

∀t ∈ [0, T ] : ‖Dy(t)‖Γ,s,2 ≤ Cs‖Dy(0)‖Γ,s,2 exp

⎧⎨⎩Cs

t∫
0

‖Dy(τ)‖Γ,[ s2 ]+1,∞dτ

⎫⎬⎭ (8.20)

where we have assumed the following relation without loss of generality:

∀t ∈ [0, T ] : ‖Dy(t)‖Γ,[ s2 ]+1,∞ ≤ 1.

(Observe that Dy(0) = ε(ψ,∇ϕ) and ε will be small.) The analogy to the proof of The-

orem 6.1 consists in multiplying the differential equation for y with Γαyt(t) in L2(IRn)

(instead of multiplying with ∇αyt(t)) and using the Lemmata 4.13, 4.14 as well as the

commutator relations for the operators of the family Γ given in the Lemmata 4.11, 4.12.

This requires more calculations than the proof of Theorem 6.1 but it is still straightfor-

ward, (compare John & Klainerman [75]). In analogy to the considerations in Chapter 7

we define for the local solution y and for t ∈ [0, T ]:

Mt(y) := sup
0≤τ≤t

(1 + τ)(n−1)/2‖Dy(τ)‖Γ,N0,∞,

where N0 ∈ IN will be fixed below. (That is, we are interested in proving an a priori

L∞-bound.)

By Lemma 8.4 we conclude that

Mt(y) ≤ c sup
0≤τ≤t

‖Dy(τ)‖Γ,N0+n+1,2. (8.21)

Combining (8.21) and (8.20) we obtain

Mt(y) ≤ CN0+n+1‖Dy(0)‖Γ,N0+n+1,2 exp

⎧⎨⎩CN0+n+1

t∫
0

‖Dy(τ)‖
Γ,[N0+n+1

2 ]+1,∞dτ

⎫⎬⎭ . (8.22)

If

N0 ≥ n+ 2

we have [
N0 + n+ 1

2

]
+ 1 ≤ N0.

Hence we define

N0 := n+ 2

(and CN0+n+1 becomes C2n+3).

With this choice of N0, the form of the initial data, the definition of Mt(y) and (8.22)

we obtain

Mt(y) ≤ Cε exp

⎧⎨⎩C

t∫
0

Mt(y)(1 + τ)−(n−1)/2dτ

⎫⎬⎭ , (8.23)
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where C is a constant depending on at most 2n + 3 derivatives of F , ∇ϕ and ψ.

The inequality (8.23) implies

for n > 3

Mt(y) ≤ Cε exp {CMt(y)} , 0 ≤ t ≤ T,

and for n = 3

Mt(y) ≤ Cε exp {CMt(y) log(1 + t)} , 0 ≤ t ≤ T. (8.24)

As in Chapter 7 we conclude now that for n > 3:

∀0 ≤ t ≤ T : Mt(y) ≤M0 <∞,

with a constant M0 being independent of T , which implies via (8.20)

∀0 ≤ t ≤ T : ‖Dy(t)‖N0,2 ≤ CN0‖Dy(0)‖N0,2

and hence allows a continuation of the local solution for all t ∈ [0,∞) with the same

arguments as in the proof of Theorem 1.1, (cf. (8.2) and the arguments following there).

This proves part (i) of Theorem 1.2.

To prove part (ii) we define

T0(ε) := sup

{
0 ≤ t <∞

∣∣∣There is a smooth solution in [0, t) and Mt(y) <
log 2

C log(1 + t)

}

(C equals that C which appears in (8.24).)

By the definitions of T0(ε) and T∞(ε) (cf. Chapter 1) it follows that

T∞(ε) ≥ T0(ε),

hence, if T0(ε) =∞ then

T∞(ε) =∞ > eA/ε for all A, ε > 0.

If T0(ε) <∞ we have

either

(a) The solution does not exist for t ≥ T0(ε)

or

(b) MT0(y) =
log 2

C log(1 + T0(ε))
.

In case (a) we conclude that

Mt(y) <
log 2

C log(1 + t)
for 0 ≤ t < T0
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which implies

Mt(y) ≤ Cε exp {CMt(y) log(1 + t)} ≤ 2Cε

by (8.24) and thus allows a continuation beyond T0(ε) with the arguments from above

(case n > 3), which is a contradiction.

In case (b) we obtain from (8.24)

log 2

C log(1 + T0(ε))
≤ Cε exp

{
C

log 2

C log(1 + T0(ε))
log(1 + T0(ε))

}

= 2Cε.

This implies

T0(ε) ≥ exp

{
log 2

2C2ε

}
− 1 ≥ eA/ε

with A := log 2/(4C2) if ε ≤ ε0 := 1/(2C2). This completes the proof of Theorem 1.2.

Q.e.d.

The proof of Theorem 1.2 followed the paper [88] by S. Klainerman.

In the proof of Theorem 1.1 and of Theorem 1.2 it was important that the nonlinearity

did not depend on y explicitly, but only on derivatives of y. This is connected to the fact

that one might get L∞–L1-estimates for y similar to those for Dy in Chapter 2 by using

again the given representation formulae (Kirchhoff’s formula, . . . ), but that it is not easy

to find appropriate estimates for the L2-norm ‖y(t)‖2. To overcome this difficulty Li &

Chen [104] use a global iteration scheme (global with respect to time t) instead of using

a continuation argument for a local solution. The a priori estimates they need also use

the invariance properties of ∂2
t −Δ and corresponding Sobolev type estimates as we did

in the proof of Theorem 1.2. The result is a global existence theorem for small data as

in the Theorems 1.1, 1.2 for the nonlinearity

f = f(y,Dy,∇Dy),

f(W ) = O(|W |α+1) as |W | → 0,

under the condition that the following relation between α and the space dimension n

holds:
1

α
<

n− 1

2

(
1− 2

αn

)
,

see Table 8.1.

(Compare this to Table 1.1 in Chapter 1.) In a recent paper by Li & Zhou it is stated

that α ≥ 3 is sufficient for n = 2, see [106].



102 8 Global Solutions to Wave Equations — Proofs

α = 1 2, 3 4, 5, . . .

n ≥ 5 3 2

Table 8.1: f depending on y

Remarks on the optimality of the results:

We shall see in Chapter 11 that the method to prove Theorem 1.1 can be carried over

almost literally to many other initial value problems of mathematical physics. This great

generality of the approach nourishes the expectation that the results will not be optimal

results in each special case — although they are optimal in many cases. Here we do not

have in mind optimality with respect to the regularity assumptions on the coefficients

and on the data; the results will always be theorems for sufficiently smooth coefficients

and data without striving for minimal regularity. What we have in mind addressing the

question of optimality is the relation between the space dimension n and the order of

vanishing of the nonlinearity characterized by the natural number α.

The general method applied to nonlinear wave equations (1.1) leads to Theorem 1.1 and

the relation between n and α is expressed in Table 1.1 in Chapter 1. It is determined

through the condition
1

α

(
1 +

1

α

)
<

n− 1

2
. (8.25)

Theorem 1.2 shows that the following condition is the optimal one

1

α
<

n− 1

2
.

The condition (8.25) is in general sufficient but not necessary. We have for cubic non-

linearities (α = 2) that n > 5/2, i.e. n ≥ 3, is sufficient. It is also known that quadratic

nonlinearities (α = 1) in three space dimensions may lead to the development of sin-

gularities, see John [68] and also Chapter 10. In this sense the result is optimal with

respect to α in the case (n, α) = (3, 2).

Remark: A similar situation is given for the equations of elasticity in the initially

isotropic case (cf. Section 11.1) following S. Klainerman [87] (existence for cubic nonlin-

earities in IR3) and F. John [69] (development of singularities in the quadratic case).

On the other hand the condition on n, namely n ≥ 6, which arises in the quadratic case

(α = 1) from (8.25), is only sufficient, not necessary, as we have shown in Theorem 1.2.

To prove this optimal result special properties of the wave equation were used. These

special effects are not obviously given for the systems which will be studied in Chapter

11. The results obtained for nonlinear heat equations by the general method (see Section

11.2) will also give us optimal results in many cases but not in all cases; see Table 11.3 in

Section 11.2. In particular, if the nonlinearity does not depend on u, the general method
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does not take into consideration the special form of the heat equation, i.e. the dissipative

term −Δu, well enough.

This emphasizes that the general method leads to optimal results in many cases, but for

each system it may be necessary to exploit its special structure — besides the evolution-

ary structure needed for the general method — to get optimal results in some special

cases.

In this spirit it is interesting to mention other methods for proving global existence

theorems which have been developed for special situations. This will be briefly done in

the next Chapter.



9 Other methods

As we have pointed out in the preceding section, the classical method used in the proof

of Theorem 1.1, which we shall call energy method in the sequel, does not lead to optimal

results in each case neither for wave equations nor for all the systems in Chapter 11.

Special ansätze have turned out to be more efficient for particular systems. Before giving

some ideas of such methods we shall first present a method, which historically precedes

the energy method concerning general existence results on nonlinear evolution equations;

this is the Nash–Moser–Hörmander scheme.

Remark: We have called the energy method classical because the basic idea (to prove

a nice a priori estimate in order to be able to continue a local solution) is classical. The

ingredients of proving the a priori estimate (see Chapters 2, 4, 6, 7) have been developed

to their full strength in the last decade.

1. The Nash–Moser–Hörmander scheme

The first general global existence theorems (small, smooth solutions) for nonlinear wave

equations, later on also for other evolution equations, were obtained by S. Klainerman

1980 and 1982 respectively in his papers [86, 87]. He used a global iteration scheme for

solutions of the linearized equations in [0,∞)× IRn instead of continuing local solutions

of the nonlinear problem.

Roughly speaking, this means for the initial value problem

ytt −Δy = f(Dy,∇Dy),

y(t = 0) = y0, yt(t = 0) = y1,

that first the function ỹn+1 is computed from a given function yn with the natural

iteration:

ỹn+1
tt −Δỹn+1 = f(Dyn,∇Dyn), ỹn+1(t = 0) = y0, ỹ

n+1
t (t = 0) = y1. (9.1)

Here decay properties of solutions to the linearized problem are of importance again.

This naive iteration leads to a loss of regularity, in particular because of the occurence

of the highest-order derivatives in the nonlinearity. To overcome this difficulty a kind of

a Nash–Moser–Hörmander scheme is used; for this purpose a smoothing operator S = Sn

is introduced and the iteration is yn −→ yn+1 where

yn+1 := Snỹ
n+1.

yn+1 does not solve the differential equation in (9.1) exactly, but the error produced by Sn

only has a quadratic character (compare the classical Newton-iteration (Isaac Newton,

25.12.1642 – 20.3.1727)), the smoothing effect provided by Sn compensates for the loss

of regularity in the simple iteration (9.1).
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This method is technically complicated (and actually much more sophisticated than out-

lined in the coarse scheme above), but has also been applied to nonlinear wave equations

in exterior domains (by Shibata & Tsutsumi [167]). In general this method provides less

sharp regularity and decay results (see [86, 87, 94, 167]).

Remarks: Concerning the origin and the name of this method we remark that the

crucial loss of regularity, which occurs in the naive iteration, has its counterparts in

the so-called “small divisor problems” in celestial mechanics and in isometric imbedding

problems in differential geometry. Mainly there are two ways out of the difficulties. The

first one was developed by J. Nash in his paper [135] on isometric imbeddings and further

developed by L. Hörmander, for example for problems in physical geodesy, see [45]. The

second one is based on a modification of the classical Newton-iteration; see for example

the paper of J. Moser [133].

It should be mentioned that the main problems for which this method was used to our

knowledge essentially have been dealt with by other, simpler methods: the initial value

problems by Klainerman & Ponce [94] (instead of [86, 87]) as discussed in the previous

chapters, the geodetic problem of Hörmander by K.-J. Witsch in [199] using the Legen-

dre transform (Adrien-Marie Legendre, 18.9.1752 – 10.1.1833), wave equation problems

in exterior domains with the energy method by Shibata & Tsutsumi [167], and even the

starting result of J. Nash was proved by M. Günther in [41] with different methods. But

there are certainly other fields of applications for this original method.

2. The method of invariant norms

This method, developed by S. Klainerman for the study of linear and nonlinear wave

equations, was used to prove Theorem 1.2. It exploits the invariance properties of ∂2
t −Δ

under the inhomogeneous Lorentz group (also called the Poincaré group, consisting of

translations and rotations, the transformations of the homogeneous Lorentz group, cf.

Chapter 4) (Henri Poincaré, 29.4.1854 – 17.7.1912). As described in Chapter 4 one can

define generalized Sobolev norms with the generators of the Poincaré group replacing the

usual differential operators ∂1, . . . , ∂n, which define the classical Sobolev norms. Gen-

eralized Sobolev inequalities as in Lemma 8.4 then allow to obtain optimal results for

the wave equation in the quadratic case (α = 1), namely the result from Theorem 1.2.

Moreover, it is possible to get further information in the case α = 1, n = 3, where in gen-

eral a blow-up, a development of singularities in the function or in one of its derivatives,

may occur (cf. Chapter 8 and see Chapter 10 for blow-up results). It turns out, with the

help of the method of invariant norms, that a so-called “null condition” imposed on the

nonlinearity is sufficient for the existence of a global, small solution also in the quadratic

case in IR3; see [90].

9 Other Methods
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The null condition for a function

F = F (y, w) = Q(w) +O(|(y, w)|3),

where w = (Dy,D2y), Q(w) = O(|w|2) as |w| → 0, reads

∂2Q(w)

∂(∂ay)∂(∂by)
ξaξb = 0,

∂2Q(w)

∂(∂ay)∂(∂b∂cy)
ξaξbξc = 0,

∂2Q(w)

∂(∂a∂by)∂(∂c∂dy)
ξaξbξcξd = 0,

for all

ξ = (ξ0, ξ1, ξ2, ξ3) ∈ IR× IR3 with ξ20 = ξ21 + ξ22 + ξ23

and arbitrary w, and it has to be summed up over all integer indices from 0 to 3.

A typical example for a nonlinearity F satisfying the null condition is

F = |∇y|2 − y2t ,

which was studied in the Example 1 in Chapter 1.

For formulations of the null condition see also F. John [72] and W. Strauss [179].

The null condition has been recognized as being a sufficient condition for quadratic

nonlinearities in IR3 by D. Christodoulou in [18] too; see paragraph 3. The method of

invariant norms has also been applied with appropriate modifications to Klein–Gordon

equations by S. Klainerman in [89] (see Section 11.5), to Schrödinger equations by P.

Constantin [22] (cf. Section 11.4), and by F. John to the equations of elasticity in [73]

(having less invariances at hand and proving an “almost global existence result”; see

Section 11.1).

To have a rough idea of the action of the null condition one should notice that the decay

of solutions to nonlinear wave equation in t and x in general is better away from the

boundary of the light cone (cf. e.g. Lemma 8.3 and [90]). The null condition assures

that it can not become too bad on the boundary = {ξ ∈ IR × IR3 | ξ20 = ξ21 + ξ22 + ξ23}.

3. The method of conformal maps

The wave equation is conformally invariant. D. Christodoulou uses in [18] a special

conformal map due to R. Penrose, which maps IR× IRn into a bounded set in IR×Sn. In

this sense it is called a “conformal compactification” (see the notes in [179]). Hence the

problem of global existence is carried over to a local problem which has to be solved up

to the possible boundary. This method had been applied before to Yang–Mills equations,

see [18].
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4. The method of normal forms

In order to deal with a quadratic nonlinearity F in IR3 for the nonlinear Klein–Gordon

equation

(∂2
t −Δ+m) y = f(y,Dy,∇Dy), m > 0,

(see Section 11.5), J. Shatah applies in [159] a change of the dependent variable, which

essentially transforms the quadratic nonlinearity into a cubic one, which may be dealt

with by the energy method after some appropriate easy modifications. The name of the

method is connected with Poincaré’s theory of normal forms appearing in the theory of

ordinary differential equations, see V.I. Arnold [7] or Chow & Hale [17].

The ansatz of Shatah can be described as follows. In order to solve

vt + Av = k(v),

where k vanishes up to a certain order near v = 0, one applies a change of variables of

the type

w = v + h(w).

Now h has to be determined in a way such that w solves the equation

wt + Aw = g(w),

where g vanishes near w = 0 of one higher order than k near v = 0. This means that

h has to solve a special differential equation which actually can be solved by Shatah for

the case of the Klein–Gordon equation.

We remark that the last three methods are discussed in more detail by W. Strauss in

[179]. Of course there are more methods for special systems with specific difficulties, see

for example the discussion of parabolic problems in the survey article [10].

9 Other Methods
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The theorems in Chapter 1 are results for small data. The necessity for dealing with

small perturbations of the linearized equations is underlined in the sequel by examples

which show that, in general, one has to expect the development of singularities in finite

time. In particular neither the smallness of the initial data nor the smoothness of data

including the coefficients can prevent a solution from blowing up. We shall not go into

the details here but we just present an illustration of the typical hyperbolic phenomenon

that the solution and/or derivatives of the solution become singular after some time.

This will mean in general that norms like the L∞-norm of the local regular solution or

of its derivatives become infinite. The only way to avoid a blow-up are smallness of

the data in connection with a sufficiently strong vanishing of the nonlinearity near zero

and a sufficiently high space dimension. This is the message of the Theorems 1.1 and

1.2. Moreover we have learned from Theorem 1.2 that a solution of the nonlinear wave

equation with a quadratic nonlinearity in IR3 lives at least exponentially long, although

the examples below show that in general a blow-up occurs. Nevertheless this result

justifies the notion of “almost global existence” in this case (cf. the paper of John &

Klainerman [75]). We mention that for large data a blow-up may occur also in the

cases where one has global existence for small data, see Example 1 in Chapter 1 and the

remarks below.

In this chapter we are only concerned with wave equations (or rather hyperbolic equations

and systems). One should however notice that similar results also hold for heat equations

and the other systems which are discussed in the next chapter. A few further examples

and hints are given there.

The following survey first recalls the simple case of an equation of first order in one space

dimension. Already there it will become clear that smoothness and smallness of the data

in general cannot assure the existence of global smooth solutions.

Let u be the solution to the following initial value problem:

ut + a(u)ux = 0, u(t = 0) = u0, (t, x) ∈ IR2, (10.1)

where a is a smooth function satisfying

a′ > 0.

If the equation for u is in conservation form, i.e. a is the derivative of some function h,

then this assumption means the convexity of h.

We have an implicit representation for u:

u(t, x) = u0(x− ta(u(t, x))), (10.2)
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and the derivatives ux and ut are given by

ux(t, x) =
u0

′ (x− ta(u(t, x)))

1 + a′(u(t, x))u0
′ (x− ta(u(t, x))) t

,

ut(t, x) = − a(u(t, x))u0
′ (x− ta(u(t, x)))

1 + a′(u(t, x))u0
′ (x− ta(u(t, x))) t

.

It is now obvious that ux and ut become singular in finite time if u0
′ is negative some-

where. This happens independently of the smoothness or the smallness of the datum u0.

If

u0(x) = εφ(x), φ ∈ C∞
0 (IR), ε > 0,

then we have for the maximal length T = T (ε) of an interval of existence

lim
ε↓0

εT (ε) > 0 (10.3)

in the so-called “genuinely nonlinear” case a′(0) 
= 0. If a′(0) = 0 but a is not constant

in a neigbourhood of u = 0, then

lim
ε↓0

ε2T (ε) > 0

holds, see F. John [74].

These are typical nonlinear phenomena. In the linear case, where a is constant, the

solution of (10.1), given by (10.2), exists globally, also for large data.

F. John [64] and also T.-P. Liu [112] proved a corresponding blow-up result for systems

of first order in one space dimension. This is also useful for the treatment of plane waves

in higher dimensions, see for example the discussion of elastic waves in [64, 144].

Remark: There is much less known for general systems in higher dimensions even if

they are in conservation form. This concerns both the question of existence and the

study of singularities. For large data we mention a result of T.C. Sideris [172]. Consider

a system of m conservation laws in n space dimensions of the form

ut + f(u)x = 0, u(t = 0) = u0,

where f : IRm −→ IRn × IRm, f(0) = 0, x ∈ IRn. If Bi(u) denotes the matrix with

coefficients
∂fij
∂uk

(u), then one of the following two conditions 1. or 2. shall hold, where

1. n = 1, B1(u) has only real eigenvalues with corresponding eigenvectors which span

the whole space;

2. Bi(u) = A−1
0 (u)Ai(u) with symmetric matrices Ai(u), i = 1, . . . , n, A0(u) positive

definite.

10 Development of Singularities
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Then it is proved (under certain additional assumptions which correspond to the genuine

nonlinearity condition a′(0) 
= 0 for the system (10.1)) that there are no global smooth

solutions for (too) large data.

Now we turn to the type of wave equations that were studied in the previous chapters,

i.e.

utt −Δu = f(Du,∇Du).

F. John studied radially symmetric solutions. He proved in [70] for the equation

utt = c2(ut)Δu (10.4)

in IR3, with c(0) = 1 and if c′(0) 
= 0 (without loss of generality > 0) that there will

always appear singularities in the derivatives of u. If

u(t = 0) = εφ, ut(t = 0) = εψ,

then

lim
ε↓0

ε log T (ε) ≤ 1

c′(0)K
, (10.5)

(K ≥ 0 is determined from the data). Actually, equality holds in (10.5).

Also the following quadratic case in IR3 was studied by F. John [68]:

utt −Δu = 2ututt.

Again the development of singularities in finite time is proved. More precisely, there is

no global C2-solution (for smooth data with compact support) if∫
IR3
[ut(0, x)− u2

t (0, x)] dx > 0.

This kind of results was extended to radially symmetric quadratic nonlinearities involving

the radial derivatives by T.C. Sideris [171].

The special case of nonlinearities of the type f = f(u) is not subject to considerations

here; we refer the reader to F. John [74] and W. Strauss [179]. We only remark that in

IR3 the quadratic nonlinearity f(u) = u2 leads to a development of singularities; more

generally one can try to characterize the critical exponent p in f(u) = up depending on

the space dimension n; see for example F. John [67], H. Pecher [139].

Having realized that, in general, singularities will develop in finite time, that for example

quadratic nonlinearities lead to singularities in IR3 but allow global small solutions in

IRn, n ≥ 4, it is natural to ask for the life span of smooth solutions in dependence of the

initial data. We have already given a first result in this direction for the one-dimensional

case in (10.3) and for the special equation (10.4) in (10.5).

For the equations

utt −Δu = f(Du,∇Du),
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u(t = 0) = εφ, ut(t = 0) = εψ, (ε > 0),

|f(W )| = O(|W |α+1), for |W | → 0 and some α ∈ IN,

we summarize results on estimates for the length T = T (ε) of the maximal interval of

existence of a smooth solution in Table 10.1, see L. Hörmander [48], F. John [74], Li &

Yu [105], H. Lindblad [109, 110]. (For the case f = f(u) we refer to [74, 105] and the

references there.)

α n Lower bounds for T (ε)

1 1 Aε−1

1 2 Aε−2

1 3 exp(Aε−1)

2 2 exp(Aε−2)

1 ≥ 4

2 ≥ 3 Global solutions

3 ≥ 2

Table 10.1: (Almost) global existence results

In Table 10.1 A denotes a constant which only depends on φ, ψ and f . The statements

are to be understood for sufficiently small ε.

The proofs of the relations in Table 10.1 partially use the generalized Sobolev estimates,

arising from the invariance of ∂2
t −Δ under the Lorentz group, cf. Chapters 4,8,9. The

results in the case of non-global existence are named almost global existence results (at

least in the exponential case, see Table 10.1).

We conclude this chapter with the (as obvious as important) hint at the fact that the

previous results require an investigation of weak solutions which might exist globally.

One should be aware of the observation that derivatives of smooth solutions may develop

singularities but that still a global continuous solution might exist. Here further studies

are necessary, in particular on the propagation of discontinuities — shock waves —, see

for example the books of A. Majda [114] and J. Smoller [176].

For extensive surveys on initial value problems for nonlinear wave equations we refer to

L. Hörmander [48], F. John [74] and W. Strauss [179].

10 Development of Singularities



11 More evolution equations

It has been anticipated in the introduction that the proof of the first global existence

theorem, Theorem 1.1, follows a general principle which will lead to similar results for

the systems of evolution equations in this chapter. The common structure of the proof

of global existence of small, smooth solutions can be described as follows.

We consider a system of the type

Vt + AV = F (V, . . . ,∇βV ), V (t = 0) = V 0, (11.1)

where V = V (t, x) is a vector-valued function taking values in IRk (or Ck), t ≥ 0, x ∈ IRn.

A is a linear differential operator of order m ∈ IN, k, n,m ∈ IN. F is a smooth linear

function of V and its derivatives up to order |β| which may be equal to m, and V 0 is a

given initial value.

It is assumed that the nonlinearity F = F (W ) behaves near W = 0 as follows:

F (W ) = O(|W |α+1) as |W | −→ 0 (11.2)

for some α ∈ IN.

Remark: F may also depend explicitly on t and x, F = F (t, x, V, . . . ,∇βV ). In that

case the condition (11.2) is to be read uniformly in t and x.

A global existence result is proved along the following steps A–E.

A: Decay of solutions to the linearized system (F ≡ 0):

One proves that

‖V (t)‖q ≤ c(1 + t)−d‖V 0‖N,p, (11.3)

where 2 ≤ q ≤ ∞, 1/p + 1/q = 1, c, d > 0 and N ∈ IN are functions of q and of

the space dimension n. (Cf. Chapter 2 for the wave equation: d = n−1
2

(1− 2
q
).)

B: Local existence and uniqueness theorem:

The existence of a unique local solution V to (11.1) has to be shown. V shall

satisfy:

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s̃,2),

s, s̃ ∈ IN, T > 0 appropriately chosen. (Cf. Chapter 5 for the wave equation:

s̃ = s− 1.)

C: High energy estimates of the following type should hold:

‖V (t)‖s,2 ≤ C‖V 0‖s,2 exp{C
t∫

0

‖V (r)‖αb,∞ dr}, (11.4)
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t ∈ [0, T ]. C depends only on s, not on T or V 0, and b is independent of s (which

will allow us to close the circle later in Step E). (Cf. Chapter 6 for the wave

equation: b = 1.)

D: Weighted a priori estimates should hold:

With the help of A and the standard representation formula

V (t) = e−tAV 0 +

t∫
0

e−(t−r)AF (V, . . . ,∇βV )(r)dr,

where e−tAW is the solution to the linearized problem with initial value W , one

proves that the following inequality holds for sufficiently small V 0 (small in a sense

to be made precise later)

sup
0≤t≤T

(1 + t)d1‖V (t)‖s1,q1 ≤M0 <∞,

where M0 is independent of T , s1 is sufficiently large, q1 = q1(α) is chosen appro-

priately, and d1 = d(q1, n) according to A. (Cf. Chapter 7 for the wave equation:

q1 = 2α + 2, d1 =
α

α+1
n−1
2
.)

E: The results inC andD will lead to the desired final (classical a priori) energy estimate

for the local solution:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T, (11.5)

s being sufficiently large, V 0 being sufficiently small, K being independent of T

(and of V 0). The estimate (11.5) allows the continuation of the local solution to

the whole time axis [0,∞) with standard arguments. (Cf. Chapter 8 for the wave

equation.)

The examples in the subsequent sections demonstrate the wide range of applicability of

the scheme A–E, in particular the discussion of the system of thermoelasticity in Section

11.3. There the scheme A–E has to be modified because there are different types of

nonlinearities, i.e. the assumption (11.2) has to be replaced by a more complicated one,

and also there are different decay rates for different components of V , i.e. (11.3) will

split into several different estimates. Thus it is clear that also the Steps B–E will have

to be modified. But since this will be done in the spirit of the scheme above, the example

of thermoelasticity is a good demonstration for the applicability of the ideas that are

underlying the general scheme.

We shall go through the steps A–E for each of the following examples in the Sections

11.1. – 11.7, but we shall not go into all details as we did it discussing the wave equation

in the Chapters 2–8. Instead we shall point out the essential results and if necessary, we

give further references.

11 More Evolution Equations
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We also remark that most of the systems are studied in their linearized form in the book

of R. Leis [98], hence several of the aspects concerning Step A are illustrated there.

The proof of Theorem 1.2, in particular the use of certain invariance properties of the

d’Alembert operator, does not have counterparts for all the following examples. There

exist already similar considerations for the equations of elasticity, for Schrödinger equa-

tions and for Klein–Gordon equations, cf. the remarks in the corresponding Sections

11.1, 11.4 and 11.5 respectively.

11.1 Equations of elasticity

In this section we consider first the initial value problem for a homogeneous, initially

isotropic hyperelastic medium in IR3 and then the initial value problem for a homoge-

neous, initially cubic hyperelastic medium in IR2. It is not the different space dimension

but the different elastic behavior (isotropic or cubic) that will produce different interest-

ing effects. This illustrates that there are many interesting unknown or even unexpected

features in these equations as soon as one leaves the most simple situation. This might

hold for other equations as well and underlines the necessity of further research on each

of these systems.

11.1.1 Initially isotropic media in IR3

Let U = (U1, U2, U3) = U(t, x) be the displacement vector of a three-dimensional elastic

medium filling the whole of IR3, i.e. t ≥ 0, x ∈ IR3. The equations of motion for a

homogeneous medium in the absence of external forces are

∂2
t Ui =

3∑
m,j,k=1

Cimjk(∇U)∂m∂kUj , i = 1, 2, 3, (11.6)

where the Cimjk are smooth nonlinear functions, the so-called elastic moduli, which are

given by

Cimjk(∇U) =
∂2ψ(∇U)

∂(∂kUj)∂(∂mUi)

with a given smooth potential ψ.

Remark: The assumption of the existence of ψ which is mostly made (cf. F. John

[66]) corresponds to the assumption that the underlying medium is “hyperelastic”, cf.

J.M. Ball [8], P.G. Ciarlet [21]. If one does not neglect heat conduction effects then the

existence of a corresponding ψ is guaranteed, compare Section 11.3.

The equations (11.6) arise from the classical law of balance of momentum, see the deriva-

tion of the equations of thermoelasticity in Section 11.3, where we have assumed in our

homogeneous case that the mass density � satisfies � ≡ 1 without loss of generality.
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For a derivation of the equations from basic physical principles see Gurtin [42], and for

the following transformation to a first-order system see F. John [66]. In addition to the

differential equations (11.6), the initial values U(t = 0) and Ut(t = 0) are prescribed:

U(t = 0) = U0, Ut(t = 0) = U1. (11.7)

The equations (11.6) are rewritten as

∂2
t Ui −

3∑
m,j,k=1

Cimjk(0)∂m∂kUj =
3∑

m,j,k=1

(Cimjk(∇U)− Cimjk(0))∂m∂kUj (11.8)

=: fi(∇U,∇2U), i = 1, 2, 3.

We assume that the medium is initially isotropic, meaning

Cimjk(0) = (c21 − 2c22)δimδjk + c22(δijδkm + δjmδik), (11.9)

i,m, j, k = 1, 2, 3,

where the constants c1, c2 satisfy

c1 > c2 > 0. (11.10)

With the Lamé constants λ, μ (Gabriel Lamé, 22.7.1795 – 1.5.1870) one has

c21 = λ+ 2μ, c22 = μ. (11.11)

Then (11.10) is equivalent to

μ > 0, λ+ μ > 0. (11.12)

With this notation and

τ := λ+ 2μ

the equations (11.8) become

Utt + μ∇×∇× U − τ∇∇′U = f(∇U,∇2U), (11.13)

(f = (f1, f2, f3)
′).

The transformation of the second-order system (11.13) to a first-order system in t is

given through defining the vector V by

V := (∂rUi)ir, r = 0, 1, 2, 3; i = 1, 2, 3 (11.14)

with ∂0 := ∂t, i.e.

V = (∂0U1, ∂0U2, . . . , ∂3U3),
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and the 12× 12-matrix Ar(∇U), r = 1, 2, 3, by

Ar(∇U) ≡ (Ar
imjk(∇U))imjk, i, j = 1, 2, 3; m, k = 0, 1, 2, 3,

where i,m count the rows and j, k count the columns. The element Ar
imjk(∇U) is given

by

Ar
imjk(∇U) := Cirjk(∇U)δm0(1− δk0) + δk0δrmδij. (11.15)

With these notations the differential equation (11.13) resp. (11.8) can be written as the

following equation for V :

Vt + AV = F (V,∇V ), (11.16)

with initial value

V (t = 0) = V 0,

where

AV := −
3∑

r=1

Ar(0)∂rV,

F arises canonically from f , and

V 0 := (∂rUi)ir(t = 0) = (U1,∇U0).

In particular we see that V 0 is given in terms of ∇U0 and U1.

With (11.16) we have transformed the original equations (11.6) into the general form

(11.1). Now we proceed by looking at the general Steps A–E which will lead to a global

existence theorem for small data under certain assumptions on the nonlinearity.

A: Decay for F ≡ 0:

If U solves for t ≥ 0

Utt + μ∇×∇× U − τ∇∇′U = 0, U(t = 0) = 0, Ut(t = 0) = U1, (11.17)

then we can use explicit representation formulae for the solution U in analogy to the

situation in Chapter 2 and one obtains (see F. John [66]):

‖(Ut,∇U)(t)‖∞ ≤ C(1 + t)−1‖U1‖3,1, 0 ≤ t <∞. (11.18)

Here and in the sequel C denotes a constant that does not depend on t or on the initial

data.

The energy is conserved which is expressed by

1

2

d

dt
(‖Ut‖22 + μ‖∇× U‖22 + τ‖∇′U‖22)

= 〈Ut, Utt + μ∇×∇× U − τ∇∇′U〉

= 0.
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We naturally assumed all functions to be real-valued and we dropped the parameter t in

Ut(t, ·) etc.
Since τ, μ are positive and

‖∇ × U‖22 + ‖∇′U‖22 = 〈∇ ×∇× U −∇∇′U, U〉

= 〈−ΔU, U〉

= ‖∇U‖22,
where ΔU ≡ (ΔU1,ΔU2,ΔU3), we obtain

‖(Ut,∇U)(t)‖2 ≤ C ‖U1‖2. (11.19)

Interpolation between (11.18) and (11.19) gives the following estimate for V :

‖V (t)‖q ≤ C (1 + t)−(1− 2
q
)‖V 0‖Np,p, t ≥ 0, C = C(q) (11.20)

where 2 ≤ q ≤ ∞, 1/p+ 1/q = 1, and Np is not greater than 3.

Remark: In order to describe the decay it would also be possible to make the following

ansatz:

L2 = ∇W 1,2 ⊕D0 (∇W 1,2 : closure of ∇W 1,2 in L2) (11.21)

is an orthogonal decomposition of L2 = (L2(IR3))3 with

∇W 1,2 := {∇ϕ |ϕ ∈ W 1,2},
and

D0 := {W ∈ L2 | ∀ϕ ∈ C∞
0 : 〈∇ϕ,W 〉 = 0}

is the space of vector fields having (weak) divergence zero. (The decomposition (11.21)

easily follows from the projection theorem.) The corresponding decomposition of U into

U = Upo + Uso

(Upo: potential part; Uso: solenoidal part) leads to a decomposition of (11.17) into the

two systems

Upo
tt − τΔUpo = Upo

tt − τ∇∇′Upo = 0, Upo(t = 0) = (U0)po, Upo
t (t = 0) = (U1)po,

and

Uso
tt − μΔUso = Uso

tt + μ∇×∇× Uso = 0, Uso(t = 0) = (U0)so, Uso
t (t = 0) = (U1)so.

Now one could apply the results from Chapter 2 for the linear wave equation, at least

for 2 < q <∞. (In order to derive the final decay result (11.20) from the result for Uso

and Upo one has to know that the projections Ppo and Pso

Ppo : L
2 −→ ∇W 1,2, Pso : L

2 −→ D0,
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have the property that

‖PpoW‖p ≤ C ‖W‖p, ‖PsoW‖p ≤ C ‖W‖p, (11.22)

which follows from the explicit representation

PpoW = F−1 (ξ0ξ
′
0 · FW ),

PsoW = F−1 (−ξ0 × ξ0 ×FW ),

ξ ∈ IR3 being the variable in Fourier space and ξ0 = ξ
|ξ| . The estimates (11.22) then

follow from known theorems on multipliers in Fourier space, see for example Theorem

1.4 in [44].)

B: Local existence and uniqueness:

A change from Cimjk(∇U) to C imjk(∇U) with

C imjk(∇U) := Cimjk(∇U) + c22(δimδjk − δikδjm)

leaves the differential equation (11.6) invariant but this change will be important for

the matrix A0 (which will be defined below) to be positive definite. We shall write

Cimjk(∇U) again instead of C imjk(∇U).

Let the matrix A0 be given by its elements

A0
imjk, i, j = 1, 2, 3; m, k = 0, 1, 2, 3,

where

A0
imjk := (1− δm0)(1− δk0)Cimjk(∇U) + δijδm0δk0,

i.e. A0 essentially depends on V , (formally define Cimjk(∇U) := 0 if m = 0 or k = 0).

Then the differential equations (11.6) (resp. (11.16)) turn into

A0(V )∂tV +
3∑

r=1

A0(V )Ar(V )∂rV = 0,

with initial value V (t = 0) = V 0 and the matrices A0(V ) and A0(V )Ar(V ), r = 1, 2, 3

are symmetric and A0(V ) is positive definite (uniformly with respect to V in each com-

pactum). Hence we can apply Theorem 5.8 and we obtain a unique local solution

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2)

for some T > 0, if s ≥ 3 and V 0 ∈ W s,2.
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C: High energy estimates:

The desired energy estimate of the type (11.4) and the subsequent a priori estimates in D

and E, as well as the final global existence theorem (Theorem 11.1 below) are connected

to the behavior of the nonlinearity F = F (W ) near W = 0. Essentially, F consists of

the terms fi, i = 1, 2, 3, where

fi(∇U,∇2U) =
3∑

m,j,k=1

(Cimjk(∇U)− Cimjk(0)) ∂m∂kUj

according to (11.8). Hence F vanishes at least of order 2 (α = 1) near W = 0.

F. John has demonstrated that in the general quadratic case, more precisely, in the so-

called “genuinely nonlinear” case, solutions will develop singularities in finite time; see

[69] for radially symmetric solutions and also [64] for plane-wave solutions. Recently

he investigated in [73] the life span T∞ of local solutions for the quadratic case and he

proved a lower bound for T∞ in analogy to the situation known for scalar nonlinear wave

equations (“almost global existence’’, cf. Chapter 10 and Theorem 1.2). He used the

method of invariant norms adapted to the equations of elasticity, cf. Chapter 9.

In order to obtain a general global existence theorem we therefore assume that, for

i,m, j, k = 1, 2, 3,

|Cimjk(∇U)− Cimjk(0)| = O(|∇U |2) as |∇U | −→ 0 (11.23)

holds, whence we have

F (W ) = O(|W |3) as |W | −→ 0.

Cubic nonlinearities turned out to be appropriate for the existence of global solutions

to nonlinear wave equations in three space dimensions, see Theorem 1.1. Since the

decay behavior of solutions to the linearized equations of elasticity is the same as that

of solutions to linear wave equations — compare (11.20) and Theorem 2.3 —, we obtain

the corresponding result in this Step C and in the following Steps D, E in complete

analogy to the considerations in the Chapters 6–8. (See also Section 11.3, where the

equations of elasticity appear as a special case.)

First we have the following high energy estimate for the local solution:

‖V (t)‖s,2 ≤ C‖V 0‖s,2 exp{C
t∫

0

‖DV (r)‖2∞ dr}, t ∈ [0, T ], C = C(s).

D: Weighted a priori estimates:

We have

sup
0≤t≤T

(1 + t)2/3‖V (t, ·)‖s1,6 ≤M0 <∞,

where M0 is independent of T , s1 is sufficiently large and

‖V 0‖s,2 + ‖V 0‖s,6/5
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is sufficiently small (s > s1 being sufficiently large).

E: Final energy estimate:

The following inequality is now easily obtained.

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, V 0 being sufficiently small, K being independent of T (and

V 0).

Remark: The minimal value of s can be given explicitly as it was done for the wave

equation in Chapters 5–8.

Altogether we obtain the following global existence theorem.

Theorem 11.1 We assume (11.23). Then there exist an integer s0 ≥ 3 and a δ > 0

such that the following holds:

If V 0 = (U1,∇U0) belongs to W s,2 ∩W s,6/5 with s ≥ s0 and

‖V 0‖s,2 + ‖V 0‖s,6/5 < δ,

then there is a unique solution U of the initial value problem to the nonlinear equations

of elasticity in the initially isotropic case in IR3 (11.6), (11.7), with

(Ut,∇U) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

Moreover we have

‖(Ut,∇U)(t)‖∞ + ‖(Ut,∇U)(t)‖6 = O(t−2/3),

‖(Ut,∇U)(t)‖s,2 = O(1) as t→∞.

Remarks: We also have

‖(Ut,∇U)(t)‖s1,6 = O(t−2/3) as t→∞,

with s1 given in Step C, but we shall not stress this and the corresponding results in the

theorems in the following Sections 11.2 – 11.7.

In Theorem 11.1 the smoothness of the nonlinearity, i.e. Cimjk being C∞, was assumed,

the reason being the applicability of Theorem 5.8. But this can be relaxed as we men-

tioned in Chapter 5 and in Chapter 8 discussing the wave equation.
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11.1.2 Initially cubic media in IR2

As a second example from elasticity we study (initially) cubic media, which are the

next more complicated ones following the (initially) isotropic media. This will be done

for media filling the whole of IR2. Considering two dimensions provides a technical

simplification compared to the three-dimensional case, but nevertheless the essential

features are shown as well. There will appear greater differences to the isotropic case

than might be anticipated. This is of course expressed in the main theorem, Theorem

11.4 below, but is mainly given by the different rates of decay of solutions to the linearized

problem. These decay rates will not be obtained using explicit representation formulae

in terms of surface or volume integrals (as it was done for isotropic elasticity or for the

wave equation). There exist such kinds of representations, see G.F.D. Duff [28], but

they are rather complicated and do not seem to be appropriate for calculating decay

rates. Instead, we shall apply the Fourier transform with respect to x ∈ IR2 and the

solution will be given as a Fourier integral, essentially an integral over the characteristic

manifold (wave cone). The proof of the decay rates follows H. Pecher, see [138], and relies

on L∞–L∞-estimates of oscillatory integrals over manifolds going back to W. Littman

[111]. In case of n space dimensions and at most k vanishing principal curvatures of the

characteristic manifold of the differential operator the decay rate t−
n−k
2

(1− 2
q
), 2 ≤ q <∞,

is obtained. This leads to the known decay rates for isotropic elasticity or for the wave

equation where k = 1 (other examples: k = 0 for the Klein–Gordon equation (compare

Section 11.5) and for the plate equation (compare Section 11.7)).

In the case of cubic media in IR2 there are flat points on the wave cone, i.e. points where

all principal curvatures vanish. Hence the method mentioned above does not directly

lead to a decay result since n = k = 2. This requires a refined analysis of the method

of stationary phase, which has been done by M. Stoth [177] and which will be roughly

described below. The set of flat points is a one-dimensional submanifold on the two-

dimensional wave cone. The order of vanishing of the principal curvatures at the flat

points determines the decay rates which can be obtained by this method. For example

we shall get t−
1
3
(1− 2

q
) for nickel and copper, and t−

1
2
(1− 2

q
) for aluminium, 2 ≤ q <∞.

Remark: To our knowledge there has not yet been given a physical explanation of these

kinds of (weaker) decay rates; it still might be hidden in the mathematical technique.

A similar phenomenon has been observed by O. Liess in [107, 108] in connection with a

system from crystal optics, where singular points and flat points appear (n = 3, k = 2).

The equations for the displacement vector U = (U1, U2) = U(t, x), t ≥ 0, x ∈ IR2, are

the same as those in (11.6) from Subsection 11.1.1, now with the indices running from 1

to 2, i.e.

∂2
tUi =

2∑
m,j,k=1

Cimjk(∇U)∂m∂kUj , i = 1, 2, (11.24)
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with prescribed initial values

U(t = 0) = U0, Ut(t = 0) = U1. (11.25)

They are written as

∂2
tUi −

2∑
m,j,k=1

Cimjk(0)∂m∂kUj =
2∑

m,j,k=1

(Cimjk(∇U)− Cimjk(0))∂m∂kUj (11.26)

=: fi(∇U,∇2U), i = 1, 2.

If we assume that the medium is initially cubic, then we have that (Cimjk(0))imjk is

characterized by three constants λ, μ and τ :

(Cimjk(0))imjk =

⎛⎜⎜⎜⎜⎜⎝
τ 0 0 λ

0 μ μ 0

0 μ μ 0

λ 0 0 τ

⎞⎟⎟⎟⎟⎟⎠ ,

(i,m: rows, j, k: columns)

Remark: The isotropic case is characterized by

τ = 2μ+ λ,

(cf. (11.11) – (11.13), and a weakly coupled system by

μ = −λ

(cf. R. Leis [98]). The transformation to a first-order system

Vt + AV = F (V,∇V ), V (t = 0) = V 0, (11.27)

is analogous to the procedure in the previous subsection (compare (11.14) – (11.16))

with

AV = −
2∑

r=1

Ar(0)∂rV,

where

A1(∇U) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (C11jk(∇U))jk
0 0 (C21jk(∇U))jk
1 0 0 · · · 0

0 1 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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A2(∇U) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 (C21jk(∇U))jk
0 0 (C22jk(∇U))jk
0 0 0 · · · 0

0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and F arises from f = (f1, f2) canonically.

Now we shall follow the general steps A–E as before, mainly discussing part A, in which

the essential differences to the isotropic case appear. (For details not presented here see

[177].)

The nonlinearity is at least quadratic. We shall assume

|Cimjk(∇U)− Cimjk(0)| = O(|∇U |α) as |∇U | → 0, i,m, j, k = 1, 2, (11.28)

for some α ∈ IN, hence we have

F (W ) = O(|W |α+1) as |W | → 0.

A: Decay for F ≡ 0.

If U solves the linearized equations ((11.26) with f = 0), then U satisfies

Utt −D′SDU = 0, (11.29)

U(t = 0) = U0, Ut(t = 0) = U1,

where the matrix S is given by

S :=

⎛⎜⎜⎝
τ λ 0

λ τ 0

0 0 μ

⎞⎟⎟⎠ .

S should be positive definite, i.e.

τ, μ > 0 , τ > |λ| (11.30)

(cf. [98]).

The formal differential symbol D is given by

D :=

⎛⎜⎜⎝
∂1 0

0 ∂2

∂2 ∂1

⎞⎟⎟⎠ .

Hence we may rewrite (11.29) as

Utt − A1U = 0, (11.31)
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where

A1 : W 2,2 ⊂ L2 −→ L2,

A1U :=

⎛⎝ τ∂2
1 + μ∂2

2 (μ+ λ)∂1∂2

(μ+ λ)∂1∂2 μ∂2
1 + τ∂2

2

⎞⎠U,

is a self-adjoint operator.

Applying the Fourier transform, Û(y) = (FU)(y), we have

Ûtt(y) + Â1(y)Û(y) = 0,

Û(t = 0) = Û0, Ût(t = 0) = Û1,

where

Â1(y) :=

⎛⎝ τy21 + μy22 (μ+ λ)y1y2

(μ+ λ)y1y2 μy21 + τy22

⎞⎠ .

Â1(y) is symmetric and positive definite, so

Â1(y) = β2
1(y)P1(y) + β2

2(y)P2(y),

where β2
j (y), j = 1, 2, denote the positive eigenvalues of Â1(y) and Pj(y), j = 1, 2, denote

the corresponding projections into the eigenspaces.

Û = Û(t, y) is then given by

Û(t, y) =
2∑

j=1

{
cos(tβj(y))Pj(y)Û

0(y) +
sin(tβj(y))

βj(y)
Pj(y)Û

1(y)

}
(11.32)

and

U(t, x) = (F−1Û(t, ·))(x).

In order to be able to describe the asymptotic behavior of U(t, ·) as t→∞ it is necessary

to discuss the eigenvalues and the characteristic manifolds.

It holds, for j = 1, 2,

2β2
j (y) = (y21 + y22)(μ+ τ) + (−1)j

(
(y21 − y22)

2(μ− τ)2 + 4y21y
2
2(λ+ μ)2

)1/2
. (11.33)

In particular we have the following cases:

isotropic media (τ = 2μ+ λ): β2
1(y) = μ|y|2, β2

2(y) = τ |y|2,
weakly coupled (μ = −λ): β2

1(y) = μy21 + τy22, β2
2(y) = τy21 + μy22,

τ = μ: β2
1(y) = τ |y|2 − (λ+ μ)y1y2, β

2
2(y) = τ |y|2 + (λ+ μ)y1y2 .
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The eigenvalues βj(·), the projections Pj(·), and the corresponding eigenfunctions νj(·),
j = 1, 2, are functions (of their argument y) in C∞(IR2 \ {0}) and the following homo-

geneity relations hold:

Let s > 0, y ∈ IR2, j = 1, 2. Then

Â1(sy) = s2Â1(y), (11.34)

βj(sy) = sβj(y),

Pj(sy) = Pj(y),

(∇βj)(sy) = (∇βj)(y).

The characteristic manifold (wave cone) is given by

K :=
{
(y1, y2, τ) ∈ IR3 | p(y1, y2, τ) = 0

}
,

where p is the characteristic polynomial of Â1, given by

p(y1, y2, α) := det
(
Â1(y)− α2 id

)
= α4−α2|y|2(μ+τ)−y21y22(λ2+2λμ−τ 2)+(y41+y42)τμ.

The Fresnel surface S is the intersection of K with the plane {α = 1}, given by

S :=
{
(y1, y2) ∈ IR2 | p(y1, y2, 1) = 0

}
(Augustin Jean Fresnel, 1.5.1788 – 14.7.1827). Since it is a curve in two space dimensions,

it will also be called the Fresnel curve.

By definition, S is also given by

S = {y ∈ IR2 | βj(y) = 1, j = 1, or j = 2}.

The wave cone is a two-sheet hypersurface and ∇βj(y) 
= 0 for y 
= 0. The two sheets

intersect only in the weakly coupled case (λ = −μ) or if τ = μ. The Fresnel curve S is

the union of the two curves Sj , j = 1, 2, where

Sj :=

{
y

βj(y)

∣∣∣∣∣ |y| = 1

}
,

hence a regular parametrization is given by

d : [0, 2π] −→ IR2, (11.35)

φ �−→
⎛⎜⎝

cosφ
βj(cos φ,sinφ)

sinφ
βj(cos φ,sinφ)

⎞⎟⎠ .
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Figure 11.1: λ = −1 (weakly coupled) λ = −0.8

Figure 11.2: λ =
√
12− 3 = 0.464 . . . λ = 1 (isotropic medium)

Since d is analytic and because d is not a straight line, the curvature may vanish in

at most finitely many points; moreover, the curvature vanishes at most of order two

(compare the definition of d via a fourth-order polynomial).

The Figures 11.1 – 11.3 (cf. [177]) show typical examples of the Fresnel curves for the

cases: τ = 3, μ = 1 and increasing λ.

The curvature of the inner Fresnel curves never vanishes, neither that of the outer Fresnel

curve in the isotropic case or in the weakly coupled case.

The cases λ =
√
6 − 1 and λ = 2 are shown in Figure 11.3 in enlarged form where

those points are easy to find where the curvature vanishes. In general one has that the

curvature of the outer Fresnel curve vanishes of second order only if it vanishes for φ = 0

or φ = π/4.

We distinguish the following three cases:
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Figure 11.3: λ =
√
6− 1 = 1.449 . . . λ = 2

#1: The curvature of S never vanishes.

#2: There are points where the curvature of S vanishes and it vanishes of order 1.

#3: There is a point where the curvature vanishes of order 2.

For example in the isotropic or in the weakly coupled case we are in case #1, also for

cubic media which are sufficiently close to the isotropic ones, namely for which λ is

sufficiently close to (τ − 2μ).

Going back to the definition of d in (11.35) and the explicit representation for βj in

(11.33), one can easily obtain characterizations of the cases #1, #2, #3 in terms of the

derivatives of d and the coefficients λ, μ, τ , respectively.

As examples we have:

Case #1: isotropic (τ = 2μ+ λ) or weakly coupled (λ = −μ)
Case #3: τ = 3, μ = 1, λ = −1 +√6 = 1.449 . . . (compare Figure 11.3).

For aluminium we have case #1 and for nickel and copper we have case #2, which can

be shown with the help of Table 11.1 taken from Miller & Musgrave [126].

τ λ μ

aluminium 9.5 4.9 2.8

nickel 25.5 15.4 12.2

copper 17 12.3 7.55

Table 11.1: Typical elastic moduli

The decay rates for the derivatives of U will follow from the following two Lemmata.
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Lemma 11.2 Let v ∈ C∞
0 (IR2), supp v ⊂ {x ∈ IR2 | 1/2 ≤ |x| ≤ 2}, and P ∈

C∞ (neighbourhood of supp v); let β := βj, j = 1 or 2, be one of the eigenvalues of

Â1(y), β = β(y). Then we have for all t > 0:

‖F−1
(
eitβ(·)v(·)

)
‖∞ ≤ ct−�/2‖v‖1,∞,

where the constant c may depend on bounds on the derivatives of β on supp v, and � is

given by

� =

⎧⎪⎪⎨⎪⎪⎩
1 in case #1,

2/3 in case #2,

1/2 in case #3.

This Lemma is a modified version of the corresponding Theorem by W. Littman [111].

We sketch the Proof of Lemma 11.2.

In order to estimate

F−1(eitβ(·)v(·))(y) = 1

2π

∫
IR2

ei(xy+tβ(x))v(x)dx

we observe that for y, t with

|y|
t

<
1

4
inf

{1/2<|x|<2}
|∇β(x)| = 2ε0 > 0,

(implicitly defining ε0; without loss of generality, ε0 < 1/2) a partial integration yields

|F−1(eitβ(·)v(·))(y)| ≤ c

t
‖v‖1,∞. (11.36)

To deal with the points y, t with
|y|
t
≥ 2ε0,

a transformation into distorted polar co-ordinates is used, namely

T : (0,∞)× [0, 2π) −→ IR2 \ {0},
(r, φ) �−→ r

β(x0)
x0,

where

x0 :=

⎛⎝ cosφ

sinφ

⎞⎠ .

Then we get

det (∇T (r, φ)) = r

β2
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and the Fourier integral turns into

∞∫
0

2π∫
0

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ir

⎛⎜⎜⎜⎝
cosφ
β

sinφ
β

1

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎝

y1

y2

t

⎞⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ v

(
rx0

β(x0)

)
r

β2(x0)
dφdr.

We may assume that the Fresnel curve S, which is parametrized by (cosφ, sinφ)/β

according to (11.35), is parametrized with the arc length as parameter and we denote

the new parametrization by d.

With the notation

z :=
√
y21 + y22 + t2, ξ :=

1

z

⎛⎜⎜⎝
y1

y2

t

⎞⎟⎟⎠ , ϕξ(s) :=

⎛⎝ d(s)

1

⎞⎠ ξ

we have to estimate the integral

∞∫
0

r

b∫
a

eirzϕξ(s)w(r, s)dsdr

where w stands for all the terms that appear behind the exponential term (v, 1/β2, a

term from the transformation to arc length).

Since w vanishes outside a fixed interval, say [a, b] ⊂ (0,∞), we are now interested in

the asymptotic behavior of

I = I(z) :=

b∫
a

eizϕξ(s)w(s)ds , w ∈ C∞
0 ([a, b])

as z →∞, uniformly in ξ. ξ varies in the set

M :=
{
ξ ∈ S2 | ξ3 > 0, |(ξ1, ξ2)| ≥ ε0 > 0

}
.

The behavior of the integral I is determined by the behavior of ϕξ in its points of

stationary phase: ϕ′
ξ(s) = 0, and hence it is determined by the behavior of the curvature

of d.

The sets

F1 := {s | d′′(s) = 0, d′′′(s) 
= 0},

F2 := {s | d′′(s) = d′′′(s) = 0}
characterize the cases #1, #2, #3, namely

Case #1: F1 = F2 = ∅.
Case #2: F1 
= ∅, F2 = ∅.
Case #3: F2 
= ∅.
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In case #1 one knows that

|I(z)| ≤ 1

z1/2

(
2π

inf |ϕ′′
ξ(s)|

)1/2

‖w‖1,∞, (11.37)

holds, where the infimum is to be taken over the points of stationary phase (see e.g. B.R.

Vainberg [185]). (Observe that |ϕ′′
ξ(s)| ≥ ε0|d′′(s)|.)

In case #2 one has to consider a neighbourhood V1 of a point where the curvature

vanishes. The integral over [a, b] \V1 leads to a behavior like that in (11.37), the integral

over V1 denoted by I1 has to be discussed separately. An expansion of ϕξ(s) into powers

of s and appropriate partial integrations give the estimate

|I1(z)| ≤ c

z1/3

⎛⎝1 +
1

‖ϕ′′′
ξ ‖L∞(V1)

⎞⎠ ‖w‖1,∞, (11.38)

where the power z1/3 naturally arises by the possible expansion around the point of

stationary phase. Similarly, one obtains the estimate

|I2(z)| ≤ c

z1/4

⎛⎝1 +
1

‖ϕiv
ξ ‖L∞(V2)

⎞⎠ ‖w‖1,∞, (11.39)

where I2 denotes the integral over a neighbourhood V2 of a point where ϕ′(s) = ϕ′′(s) =

ϕ′′′(s) = 0. The estimates (11.36) – (11.39) prove Lemma 11.2.

Q.e.d.

Having proved the L∞–L∞-estimate in Lemma 11.2 we may now apply the following

Lemma which is a slightly modified version of Theorem 2.2 from H. Pecher [138] (see

also Lemma 11.16 in Section 11.7).

Lemma 11.3 Let γ ≥ 0, m ∈ IN. Let β,Q ∈ C∞(IRn \ {0}) satisfy

∀s > 0 ∀y ∈ IRn : β(sy) = smβ(y), Q(sy) = Q(y).

Assume that for this β an L∞–L∞-estimate like in Lemma 11.2 is given with correspond-

ing �. Then there is a constant c > 0 such that for all v ∈ C∞
0 (IRn) and all t ≥ 0 the

estimate ∥∥∥∥∥F−1

(
eitβ(·)

| · |2mγ
Q(·)(Fv)(·)

)∥∥∥∥∥
q

≤ c(1 + t)−
n
m
( 1
p
− 1

q
)+2γ‖v‖p

holds, provided

1 < p ≤ 2 ≤ q <∞, 1/p+1/q = 1, 1/p−1/q ≥ (2mγ)/n, (1/p−1/2)(2n−m�) ≤ 2mγ.

The last two Lemmata easily lead to the following Lp–Lq-estimate (for 1 < p ≤ 2 ≤ q <

∞, no estimate for the L∞-norm).
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Theorem 11.4 Let U be a solution to the linearized equation (11.31) with initial values

U(t = 0) = 0, Ut(t = 0) = U1 ∈ WN,p where

1 < p ≤ 2 ≤ q <∞ , 1/p+ 1/q = 1 and

2(1/p− 1/q) ≤ N < 2(1/p− 1/q) + 1.

Then there is a constant c > 0 such that U satisfies

‖DU(t)‖q ≤ c(1 + t)−
�
2
( 1
p
− 1

q
)‖U1‖N,p

where

� =

⎧⎪⎪⎨⎪⎪⎩
1 in case #1,

2/3 in case #2,

1/2 in case #3.

The constant c depends only on q, τ , μ, and λ.

Proof: By (11.32) we have

∂tÛ(t, y) =
2∑

j=1

cos(tβj(y))Pj(y)Û
1(y),

∂̂kU(t, y) =
2∑

j=1

iyk sin(tβj(y))

βj(y)
Pj(y)Û

1(y),

and hence all terms in the components of the vector DU(t, x) are of the form

w(t, x) = F−1
(
eitβ(·)Q(·)ĝ(·)

)
(x).

β equals β1 or β2 and is in C∞(IR2 \ {0}) and it is homogeneous of order m = 1.

The scalar function Q is either a component of Pj or Q(y) = P lm
j (y)iyk/βj(y) for some

l, m, j, k ∈ {1, 2}, where P lm
j is a component of the matrix Pj. In any case Q is in

C∞(IR2 \ {0}) and it is homogeneous of order 0. (For the homogeneity assertion see

(11.34).) g essentially equals a component of U1.

Therefore we may apply Lemma 11.3 in the following way (with γ = s to be defined

below, m = 1, n = 2):

‖w(t, ·)‖q =
∥∥∥F−1

(
eitβ(·)Q(·)ĝ(·)

)∥∥∥
q
=

∥∥∥∥∥F−1

(
eitβ(·)

| · |2s Q(·)| · |2sĝ(·)
)∥∥∥∥∥

q

(11.40)

=

∥∥∥∥∥F−1

(
eitβ(·)

| · |2s Q(·)F(Δsg)(·)
)∥∥∥∥∥

q

≤ ct−2(1/p−1/q)+2s‖Δsg‖p (by Lemma 11.3)

≤ ct−2(1/p−1/q)+2s‖g‖N,p
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where

2s ≤ N ≤ 2s+ 1.

The application of the last Lemma is possible if s satisfies(
1

p
− 1

2

)(
2− �

2

)
≤ s ≤ 1

p
− 1

q

or equivalently
1

2

(
1

p
− 1

q

)(
2− �

2

)
≤ s ≤ 1

p
− 1

q
.

For t ≥ 1 we choose the smallest possible s,

s :=
1

2

(
2− �

2

)
θ

where

θ :=
1

p
− 1

q
.

This implies for the exponent of t in (11.40):

−2θ + 2s = −θ�
2

hence

‖w(t, ·)‖q ≤ ct−θ�/2‖g‖M,p (11.41)

where (
2− �

2

)
θ ≤M <

(
2− �

2

)
θ + 1.

For 0 ≤ t ≤ 1 we choose the largest possible s, s := θ , and arrive at

‖w(t, ·)‖q ≤ c‖g‖N,p (11.42)

with

2θ ≤ N < 2θ + 1.

The estimates (11.41) and (11.42) prove the theorem.

Q.e.d.

Remark: In (11.40) the Laplace operator Δ in IR2 is used with possibly real powers

(Pierre Simon Laplace, 28.3.1749 – 5.3.1827). Essentially we only used the property

F(Δsg(·))(y) = |y|2s(Fg)(y)

— which can be regarded as a definition for Δs — and that ‖Δsg‖p can be estimated by

‖g‖N,p if N ≥ 2s. We refer to the Besov spaces in Appendix A for these questions and

we mention that the proof of Lemma 11.3 as given in [138] also relies on the theory of

Besov spaces.
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We finish Step A of the general scheme with the remark that the situation for cubic

media in three space dimensions will essentially show the same difficulties. To demon-

strate this we present a picture of the outer Fresnel surface on page 136 (there are two

more hidden inside) for cubic media in IR3 with parameters τ = 1, μ = λ = 0.7; see

Figure 11.4 (cf. [177]). One may guess where flat points are located.

B: Local existence and uniqueness:

A local existence result is obtained in the same way as that in isotropic elasticity in the

previous subsection. Changing Cimjk(∇U) to C̄imjk(∇U) with

C̄imjk(∇U) := Cimjk(∇U) + ν(δimδjk − δikδjm),

i,m, j, k = 1, 2 , ν ∈ IR, arbitrary, fixed,

leaves the differential equation (11.24) invariant and we write Cimjk(∇U) again instead

of C̄imjk(∇U).

We choose ν with

0 < ν < min(2μ, τ − λ)

which is possible because of the relations (11.30). Then the following matrix A0 =

A0(∇U) = A0(V ),

A0 :=

⎛⎜⎜⎜⎜⎜⎝
1 0

0 1

0 0

0 0

0 0

0 0
(Cimjk)imjk

⎞⎟⎟⎟⎟⎟⎠ ,

is positive definite and the differential equation (11.24) (resp. (11.27)) turns into

A0(V )∂tV +
2∑

r=1

A0(V )Ar(V )∂rV = 0,

with initial value

V (t = 0) = V 0.

The matrices A0(V ) and A0(V )Ar(V ), r = 1, 2, are symmetric and A0(V ) is positive

definite (uniformly with respect to V in each compact set). Thus we can apply Theorem

5.8 and we obtain a unique local solution

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2)

for some T > 0, if s ≥ 2 and V 0 ∈W s,2.

C: High energy estimates:

Analogously to the result in Chapter 6 we obtain

‖V (t)‖s,2 ≤ C‖V 0‖s,2 exp
⎧⎨⎩C

t∫
0

‖D̄V (r)‖α∞dr

⎫⎬⎭ , t ∈ [0, T ], C = C(s).
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D: Weighted a priori estimates:

We have

sup
0≤t≤T

(1 + t)�/2(1−2/q)‖V (t)‖s1,q ≤M0 <∞,

where M0 is independent of T , and � is given in Theorem 11.4, provided

q = 2α + 2,

1

α

(
1 +

1

α

)
<

�

2
,

s1 is sufficiently large and

‖V 0‖s,2 + ‖V 0‖s, 2α+2
2α+1

is sufficiently small (s > s1 being sufficiently large).

This is proved in analogy to the proofs in Chapter 7.

E: Final energy estimate:

As in Chapter 8 we now easily obtain the inequality

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, V 0 being sufficiently small, K being independent of T (and

V 0).

Summarizing we obtain the following global existence theorem.

Theorem 11.5 We assume (11.28) with 1
α

(
1 + 1

α

)
< �

2
, where � is given in Theorem

11.4. Then there exist an integer s0 ≥ 2 and a δ > 0 such that the following holds:

If V 0 = (U1,∇U0) belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2
2α+1

and

‖V 0‖s,2 + ‖V 0‖s,p < δ,

then there is a unique solution U of the initial value problem to the nonlinear equations

of elasticity in the initially cubic case in IR2 (11.24), (11.25), with

(Ut,∇U) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

Moreover, we have

‖(Ut,∇U)(t)‖∞ + ‖(Ut,∇U)(t)‖2α+2 = O
(
t−

�
2

α
α+1

)
,

‖(Ut,∇U)(t)‖s,2 = O(1) as t→∞.
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#1 #2 #3

� 1 2/3 1/2

α 3 4 5

p 8/7 10/9 12/11

q 8 10 12

Table 11.2: Typical parameter values

The parameter � takes three different values corresponding to the three cases #1, #2,

#3 (see Theorem 11.4); then α has a corresponding minimal value determined by the

condition
1

α

(
1 +

1

α

)
<

�

2
.

Table 11.2 shows the values of �, the minimal values of α and the corresponding values

of p and q.

The discussion of (initially) isotropic and cubic media demonstrates that many inter-

esting problems appear already in the step of the simplest to the next more difficult

situation. This underscores the necessity of a lot of further research on these problems

despite the general scheme that is available.
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Figure 11.4: A Fresnel surface for a cubic medium in IR3 , τ = 1, μ = λ = 0.7
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11.2 Heat equations

We consider the following type of initial value problems:

ut − Δu = F (u,∇u,∇2u), (11.43)

u(t = 0) = u0, (11.44)

for a real-valued function u = u(t, x), t ≥ 0, x ∈ IRn. F is a smooth function satisfying

F (w) = O(|w|α+1) as |w| → 0 for some α ∈ IN. (11.45)

We now cover the steps for this problem.

A: Decay for F ≡ 0:

The linear initial value problem

ut − Δu = 0, u(t = 0) = u0, (11.46)

is solved by

u(t, x) := (4πt)−n/2
∫
IRn

e−
|x−y|2

4t u0(y)dy (t > 0) (11.47)

= (4π)−n/2
∫
IRn

e−
|z|2
4 u0(x−

√
tz)dz (t ≥ 0)

(for appropriate u0, e.g. u0 ∈ C∞
0 ).

We obtain from (11.46)
d

dt
‖u(t)‖22 + 2‖∇u(t)‖22 = 0 (11.48)

or

‖u(t)‖22 + 2

t∫
0

‖∇u(r)‖22 dr = ‖u0‖22, (11.49)

which implies

‖u(t)‖2 ≤ ‖u0‖2 for all t ≥ 0. (11.50)

For t > 0 we obtain from (11.47)

|u(t, x)| ≤ c t−n/2‖u0‖1. (11.51)

c will denote various positive constants not depending on t (or u0).

Let kt be defined as

kt(z) := (4πt)−n/2 e−|z|2/(4t).

Then

‖kt‖1 = (4π)−n/2
∫
IRn

e−|y|2/4 dy = 1.
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This implies, using Sobolev’s imbedding theorem,

‖u(t)‖∞ ≤ ‖kt‖1‖u0‖∞ ≤ ‖u0‖∞ ≤ c ‖u0‖n,1 . (11.52)

From (11.51) and (11.52) we conclude

‖u(t)‖∞ ≤ c(1 + t)−n/2‖u0‖n,1, t ≥ 0, (11.53)

c = c(n) being independent of t.

By interpolation we get from (11.50) and (11.53):

‖u(t)‖q ≤ c(1 + t)−
n
2
(1− 2

q
)‖u0‖Np,p, t ≥ 0, c = c(q, n),

where

2 ≤ q ≤ ∞, 1/p+ 1/q = 1 and

Np > n(1− 2/q) (Np = n(1− 2/q) if q ∈ {2,∞}).
Remark: Solutions of the linear heat equation have the property that the L2-norm

decays with a rate too, that there hold L2–L∞-decay estimates, and that derivatives

decay with a faster rate. This is expressed in the following lemma. The corresponding

interpolated versions also hold but they are not recorded here.

Let u0 belong to C∞
0 for simplicity.

Lemma 11.6 Let m ∈ IN0. There is a constant c only depending on m and n such that

the following estimates hold for all t ≥ 0:

(i) ‖∇mu(t)‖2 ≤ c(1 + t)−(n+m)/4‖u0‖[n
2
]+1+m,1,

(ii) ‖∇mu(t)‖∞ ≤ c(1 + t)−(n+m)/4‖u0‖[n
2
]+1+m,2.

(iii) ‖∇mu(t)‖∞ ≤ c(1 + t)−(n+m)/2‖u0‖n+m,1.

Proof: First let m = 0.

For t > 0 we have

‖u(t)‖2 ≤ ‖kt‖2‖u0‖1 (cf. inequality (4.5))

≤ c t−n/4‖u0‖1

because

‖kt‖22 = (4πt)−n
∫
IRn

e
− 1

2
| z√

t
|2
dz = ct−n/2.

For t ≥ 0 we get from (11.50) and Sobolev’s imbedding theorem

‖u(t)‖2 ≤ ‖u0‖2 ≤ c ‖u0‖[n
2
]+1,1. (11.54)
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Combining (11.53) and (11.54) we have proved (i) (for m = 0).

Let t > 0 again. Then using the representation (11.47) we obtain

|u(t, x)|2 ≤ ct−n
∫
IRn

e−
|x−y|2

2t dy ‖u0‖22 ≤ ct−n/2‖u0‖22. (11.55)

For t ≥ 0 we get

‖u(t)‖∞ ≤ c ‖u0‖∞ ≤ c ‖u0‖[n
2
]+1,2. (11.56)

Combining (11.55) and (11.56) we have proved (ii) (for m = 0).

For m = 0 the assertion (iii) is given in (11.53).

The assertions (i), (ii), (iii) now easily follow form ≥ 1 observing that each differentiation

yields a factor t−1/2 which essentially follows from

∇e− |x−y|2
4t = t−1/2

{
y−x
2
√
t
e
−(

|x−y|
2
√

t
)2
}
.

Q.e.d.

B: Local existence and uniqueness:

Theorem 5.8 does not apply here. Parabolic equations like the heat equation have

smoothing properties. (The solution u to the linearized equation is C∞ for t > 0 even if

u0 ∈ L1 only, cf. the representation (11.47).) But there is no finite propagation speed,

cf. the remarks at the end of Section 3.1. This is a feature standing in contrast to the

situation encountered for hyperbolic systems; see Section 3.1. The results there cannot

be used here. For a local existence theorem we refer to Theorem C.4 in Appendix C

yielding a solution

u ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−2,2)

if u0 ∈ W s,2 for some T > 0, if s > [n/2] + 3, and ‖u(t)‖2,∞ < η < 1 holds for all

t ∈ [0, T ] if ‖u0‖s,2 < δ is sufficiently small (δ = δ(η)).

C: High energy estimates:

The local solution satisfies

‖u(t)‖s,2 ≤ c ‖u0‖s,2 exp{ c
t∫

0

‖u(r)‖α3,∞dr}, t ∈ [0, T ], c = c(s). (11.57)

We shall give a short proof for the case α = 1 because there is an additional consideration

necessary compared to those in Chapter 6. Namely, terms of the type

cε

t∫
0

‖∇u(r)‖2s,2dr,

which arise on the right-hand side in considering the highest derivatives in the nonlin-

earity, must have sufficiently small factors cε in order to be able to be compensated with

terms being present on the left-hand side.
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Let u be the local solution to

ut −Δu = F (u,∇u,∇2u), (11.58)

u(t = 0) = u0,

F (0) = 0,
∂F

∂w
(0) = 0,

where

w := (u,∇u,∇2u).

We write F in the form

F (w) =

1∫
0

d

dr
F (rw)dr = F 0(w)u+

n∑
j=1

F 1
j (w)∂ju+

n∑
i,j=1

F 2
ij(w)∂i∂ju,

where

F 0(w) :=

1∫
0

∂F (rw)

∂u
dr,

F 1
j (w) :=

1∫
0

∂F (rw)

∂(∂ju)
dr,

F 2
ij(w) :=

1∫
0

∂F (rw)

∂(∂i∂ju)
dr, i, j = 1, . . . , n,

and

F 0(0) = F 1
j (0) = F 2

ij(0) = 0, i, j = 1, . . . , n.

Remark: This kind of expansion emphasizes that the choice of the special nonlinearity

in the proof of Theorem 1.1, f =
n∑

i,j=1
aij(Dy)∂i∂jy, is no essential restriction.

Differentiation (∇β) of both sides of (11.58) and taking the inner product in L2 with

∇βu(t), we obtain for 0 ≤ |β| ≤ s

1

2

d

dt
‖∇βu(t)‖22 + ‖∇β∇u(t)‖22 = 〈∇βF (w),∇βu〉(t).

This implies

‖∇βu(t)‖22 + 2

t∫
0

‖∇β∇u(r)‖22 dr = ‖∇βu0‖22 + 2

t∫
0

〈∇βF (w),∇βu〉(r)dr. (11.59)

We shall drop the parameter t mostly and we only consider the most difficult terms of

the type

〈∇βF 2
ij(w)∂i∂ju,∇βu〉,
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where i, j ∈ {1, . . . , n} are arbitrary but fixed in the sequel (the lower-order terms can

be handled as in Chapter 6).

First let |β| = 0. Then

|〈F 2
ij(w)∂i∂ju, u〉| ≤ ‖F 2

ij(w)‖∞‖∂i∂ju‖2‖u‖2 (11.60)

≤ c ‖w‖∞‖u‖2,2‖u‖2

≤ c ‖u‖2,∞‖u‖2s,2,

(c denotes various constants not depending on t or u).

Now let k := |β| > 0. Then, writing ∇k symbolically, we obtain

〈∇k(F 2
ij(w)∂i∂ju),∇ku〉 = −〈∇k−1(F 2

ij(w)∂i∂ju),∇k+1u〉 (11.61)

= −〈F 2
ij(w)∇k−1∂i∂ju,∇k+1u〉+

〈F 2
ij(w)∇k−1∂i∂ju−∇k−1(F 2

ij(w)∂i∂ju),∇k+1u〉
≡ I + II.

The first term I is estimated as follows:

|I| ≤ c ‖w‖∞‖∇u‖2s,2 ≤ c ‖u‖2,∞‖∇u‖2s,2 (11.62)

≤ c η‖∇u‖2s,2

where η is small if T resp. ‖u0‖s,2 is chosen appropriately small (according to Step B).

The second term II is estimated with the help of the Lemmata 4.8, 4.9:

|II| ≤ c (‖∇F 2
ij(w)‖∞‖∇k−2∂i∂ju‖2 + ‖∇k−1F 2

ij(w)‖2‖∂i∂ju‖∞)‖∇k+1u‖2 (11.63)

≤ c ‖u‖3,∞‖u‖s,2‖∇u‖s,2 + c ‖∇k−1w‖2‖u‖2,∞‖∇u‖s,2

≤ c‖u‖3,∞‖u‖2s,2 + c η‖∇u‖2s,2.

The inequalities (11.60) – (11.63) imply (together with the easier estimates for the lower-

order terms which we omit)∣∣∣∣∣∣ 2
t∫

0

〈∇βF (w),∇βu〉(r)dr
∣∣∣∣∣∣ ≤ c1

t∫
0

‖u(r)‖3,∞‖u(r)‖2s,2 dr (11.64)

+c2(η)

t∫
0

‖∇u(r)‖2s,2 dr,

where c1, c2(η) are positive constants depending at most on η.
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Choosing η (resp. T or ‖u0‖s,2) — once — sufficiently small we can achieve that

c2(η) ≤ 1

holds.

Therefore we obtain, combining (11.59) and (11.64),

‖u(t)‖2s,2 +
t∫

0

‖∇u(r)‖2s,2 dr ≤ ‖u0‖2s,2 + c

t∫
0

‖u(r)‖3,∞‖u(r)‖2s,2 dr.

The desired estimate (11.57) now follows immediately using Gronwall’s inequality,

Lemma 4.1.

D: Weighted a priori estimates:

We have

sup
0≤t≤T

(1 + t)
n
2
(1− 2

q
)‖u(t)‖s1,q ≤M0 <∞,

where M0 is independent of T , provided

q = 2α + 2,

1

α

(
1 +

1

α

)
<

n

2
,

s1 is sufficiently large and

‖u0‖s,2 + ‖u0‖s, 2α+2
2α+1

is sufficiently small (s > s1 being sufficiently large).

This is proved in analogy to the proof of Theorem 7.1 and uses the representation

u(t) = e−Atu0 +

t∫
0

e−A(t−r)F (w(r))dr.

Here A is the Laplace operator realized as a self-adjoint map from W s,2 ⊂ L2 into L2.

e−tAu0 is the solution to the linear initial value problem (11.46) (given explicitly by the

representation (11.47)).

As an easy consequence we then conclude:

E: Final energy estimate:

‖u(t)‖s,2 ≤ K‖u0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, u0 being sufficiently small, K being independent of T (and u0).

Altogether we obtain the following existence theorem.
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Theorem 11.7 We assume (11.45) with 1
α
(1 + 1

α
) < n

2
. Then there exist an integer

s0 > n/2 + 3 and a δ > 0 such that the following holds:

If u0 belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2
2α+1

and

‖u0‖s,2 + ‖u0‖s,p < δ,

then there is a unique solution u of the initial value problem to the nonlinear heat equation

(11.43), (11.44) with

u ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−2,2).

Moreover, we have

‖u(t)‖∞ + ‖u(t)‖2α+2 = O(t−n
2

α
α+1 ),

‖u(t)‖s,2 = O(1) as t→∞.

It was already mentioned in Chapter 1 and in Chapter 8 that the general framework

does not lead to optimal results in each case. Here it is possible to use the better decay

results expressed in Lemma 11.6 and the dissipation expressed in the energy equality

(11.49) (or (11.59)) to improve the result in Theorem 11.7. Actually this will be done in

connection with the equations of thermoelasticity in Section 11.3.

We mention that for dissipative systems the technique of A. Matsumura is especially

appropriate. This technique consists in considering the differential equation for vk, where

vk(t, x) := (1 + t)ku(t, x), k ∈ IN,

and then deriving the classical energy estimate for vk, which turns into a weighted a

priori estimate for u, see [118] or the paper of S. Zheng [203]. The sharp small data

results for solutions of the nonlinear heat equation (11.43) are collated in Table 11.3 (see

S. Zheng [203] or G. Ponce [141]).

n 1 2 3 4 5 6 · · ·
α

1 − − ∗ ∗ + + · · ·
2 − + + · · ·
3 + + · · ·
4 + · · ·
...

...
. . .

Table 11.3: Global existence for nonlinear heat equations

According to Theorem 11.7 global solutions exist for combinations (α, n) where a “+” is

written. A “∗” indicates that the improved methods lead to global solutions and a “−”
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means that one has to expect the development of singularities. In Section 11.3 quadratic

nonlinearities in IR3 are discussed. The arguments there justify the cases “∗” in Table

11.3.

In the case that F does not depend on u, i.e. F = F (∇u,∇2u), global small solutions

exist for all α, n ∈ IN. For the discussion of blow-up results in the semilinear case

F = F (u) we refer the reader to the paper of H.A. Levine [103] and the references

therein.

11.3 Equations of thermoelasticity

The equations of thermoelasticity describe the elastic and the thermal behavior of elastic,

heat conductive media, in particular the reciprocal actions between elastic stresses and

temperature differences. They are a coupling of the equations of elasticity discussed in

Section 11.1 and of the heat equation which was discussed in Section 11.2. Hence we have

to deal with a hyperbolic-parabolic coupled system for which indeed both hyperbolic and

parabolic effects are encountered. We shall consider the initial value problem in IR3 for a

homogeneous, initially isotropic medium, but also one-dimensional models are reviewed.

The differential equations are equations for the displacement vector U = U(t, x) (compare

Section 11.1) and for the temperature difference θ = θ(t, x) := Ta(t, x) − T0, where Ta

denotes the absolute temperature and T0 is a fixed reference temperature. The interesting

question which arises is whether the behavior will be predominated by the hyperbolic

part — mainly the equations of elasticity for U plus coupling terms — or by the parabolic

part — mainly a heat equation for θ plus coupling terms. We know from Section 11.1

that in the case of pure elasticity there are global, small solutions if the nonlinearity

degenerates up to order two, i.e. if the nonlinearity in the final setting is cubic. Moreover,

F. John has shown that in the general “genuinely nonlinear” case a blow-up has to be

expected; this was proved for plane waves and for radial solutions, cf. [64, 69]. On the

other hand we know from the previous section that quadratic nonlinearities in IR3 still

lead to global, small solutions of the heat equation. The question remains whether the

dissipative influence through heat conduction is strong enough to prevent solutions from

blowing up at least for small data.

The answer to this question will be positive if one excludes purely quadratic nonlinearities

in the displacement. This perfectly corresponds to the fact that for these nonlinearities

one has to expect a blow-up as was shown in [144]; see below. Thus, we admit all possible

cubic nonlinearities (in the final setting) or those quadratic terms which involve θ, which

guarantees that a damping effect (dissipation) is present in each equation.

We mention that for one-dimensional models global, small solutions always exist. This

was shown for the Cauchy problem by Kawashima & Okada in [85, 84]. They proved a

global existence theorem for small solutions only using the L2-energy method. A similar
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theorem was obtained by Zheng & Shen in [208] with the method studied here. Again

with the L2-energy method Hrusa & Tarabek proved an existence theorem in [50]. More-

over, important results are found in the initial paper of M. Slemrod [175] for a bounded

domain with special mixed boundary conditions, corresponding results by S. Zheng [202],

the investigations of S. Jiang [56] for the half-axis, the treatment of the Dirichlet prob-

lem for a bounded domain by Shibata & Racke [151] and the improvement of this result

by Shibata, Zheng & Racke [152] (Johann Peter Gustav Lejeune Dirichlet, 13.2.1805 –

5.5.1859). The Dirichlet problem for the half-axis was discussed by S. Jiang [60] and

the Neumann problem for a bounded domain by Y. Shibata [164] and S. Jiang [61], who

also discussed the half-line (Carl Neumann, 7.5.1832 – 27.3.1925). Periodic solutions

are studied in [31] by E. Feireisl and in [152]. Large data lead to the development of

singularities which was shown by Dafermos & Hsiao in [24] (for special nonlinearities)

and by Hrusa & Messaoudi in [49].

For small initial values the one-dimensional model is predominated by the heat conduc-

tion, and there is only one type of elastic waves. In three space dimensions there are two

types of elastic waves and the coupling is more complicated. It is interesting to notice

that there is a significant difference between the problem treated here and the case of

compressible viscous and heat conductive fluids considered by Matsumura & Nishida in

[119]; this is the decay of solutions to the linearized system. In [119] the decay of all

variables was similar to the pure parabolic linear case. In our situation this is not the

case. In fact, the divergence-free part Uso of the displacement U in the linearized system

behaves asymptotically like solutions of the linear wave equation and does not experience

any damping.

We shall now derive the equations of thermoelasticity and then transform to a suitable

first-order system. The results presented in this section are taken mainly from our results

in [143, 144] and from the joint work with G. Ponce [142].

The equations describing the thermoelastic behavior of a three-dimensional body B with

reference configuration IR3 are those of balance of linear momentum and balance of

energy, given by

�Xtt = ∇′S̃ + �b, (11.65)

�εt = tr
{
S̃Ft

}
+∇′q + �r, (11.66)

where we use the following notation:

Xi, i = 1, 2, 3, are the co-ordinates at time t, 0 ≤ t < ∞, of that material point of

B which has co-ordinates xi, i = 1, 2, 3, when B is in the fixed undistorted reference

configuration. The deformation gradient F is given by

F ij(t, x) =
∂

∂xj
Xi(t, x).
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� is the material density, S̃ is the Piola–Kirchhoff stress tensor, (Gabrio Piola, 15.7.1794

– 9.11.1850), b is a specific extrinsic body force, ε is the specific internal energy, −q
is the heat flux vector, r is a specific extrinsic heat supply, and tr denotes the trace

operator (cf. D.E. Carlson [15] for extended considerations). Furthermore, we denote by

η the specific entropy, by Ta the absolute temperature, and by ψ = ε− Taη the specific

Helmholtz free energy (Hermann Ludwig Ferdinand Helmholtz, 31.8.1821 – 8.9.1894).

Remark: ψ is also called Helmholtz potential and its existence in relation to the elastic

moduli Cimjk below is assured (cf. [175]). If one neglected the heat conduction effects

this would imply that the medium is hyperelastic; compare section 11.1.

X, S̃, ε, η, Ta, q, ψ, b, and r are understood to be smooth functions of t and x. For a

homogeneous medium which we consider we may take � ≡ 1 without loss of generality.

The constitutive assumption in thermoelasticity is now that S̃, q, ψ and η are functions

of the present values of F, Ta, and ∇Ta. The Clausius–Duhem inequality implies the

relations (cf. [15])

ψ = ψ(F, Ta), η = η(F, Ta) = −∂ψ(F, Ta)

∂Ta
,

S̃ = S̃(F, Ta) =
∂ψ(F, Ta)

∂F
, q∇Ta ≥ 0,

(Rudolf Julius Emanuel Clausius, 2.1.1822 – 24.8.1888; Pierre Maurice Marie Duhem,

10.6.1861 – 14.9.1916).

We introduce the displacement vector

U := X − x

and the temperature difference

θ := Ta − T0.

For simplicity we assume the forces r and b to be zero.

Changing variables from (F, Ta) to (∇U, θ) we obtain from (11.65), (11.66)

∂2
tUi =

3∑
m,j,k=1

Cimjk(∇U, θ)∂m∂kUj +
3∑

m=1

C̃im(∇U, θ)∂mθ, i = 1, 2, 3, (11.67)

a(∇U, θ)∂tθ =
1

f(θ)
∇′q(∇U, θ,∇θ) + tr

{(
C̃km(∇U, θ)

)′
km
· (∂t∂sUr)rs

}
, (11.68)

where

Cimjk =
∂S̃im

∂(∂kUj)
, C̃im =

∂S̃im

∂θ
, (11.69)

S̃im =
∂ψ

∂(∂mUi)
, a = −∂

2ψ

∂θ2
≥ a0 > 0 (11.70)
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for some positive constant a0. f is an arbitrary C∞-function such that f(θ) = θ+T0 for

|θ| ≤ T0/2 and 0 < f1 ≤ f(θ) ≤ f2 < ∞ for −∞ < θ < ∞ with constants f1, f2. The

equation (11.68) is derived from (11.66) for small values of |θ|, i.e. for |θ| ≤ T0/2 which

is a posteriori justified by the smallness of the solution which will be obtained later.

Additionally, one has prescribed initial conditions

U(t = 0) = U0, Ut(t = 0) = U1, θ(t = 0) = θ0. (11.71)

The medium is assumed to be initially isotropic, that is (compare (11.9) in Section 11.1)

Cimjk(0, 0) =
(
c21 − 2c22

)
δimδjk + c22 (δijδkm + δjmδik) , i,m, j, k = 1, 2, 3,

where the constants c1, c2 satisfy

c1 > c2 > 0.

They are related to the Lamé constants λ, μ by

c21 = λ+ 2μ, c22 = μ.

Moreover, we assume

C̃im(0, 0) = −γδim with γ ∈ IR \ {0},

(γ = 0: linearly uncoupled case),

∂qi(0, 0, 0)

∂(∂jθ)
= κδij , κ > 0 (heat conduction coefficient).

∂qi(0, 0, 0)

∂(∂mUj)
=

∂qi(0, 0, 0)

∂θ
= 0 , i, j,m = 1, 2, 3.

The equations (11.67), (11.68) are now written as

∂2
tUi −

3∑
m,j,k=1

Cimjk(0, 0)∂m∂kUj −
3∑

m=1

C̃im(0, 0)∂mθ (11.72)

= f 1
i

(
∇U,∇2U, θ,∇θ

)
, i = 1, 2, 3,

∂tθ − κΔθ − tr
{
(C̃km(0, 0))

′
km · (∂t∂sUr)rs

}
(11.73)

= f 2
(
∇U,∇Ut,∇2U, θ,∇θ,∇2θ

)
,

where

f 1
i

(
∇U,∇2U, θ,∇θ

)
: =

3∑
m,j,k=1

(Cimjk(∇U, θ)− Cimjk(0, 0))∂m∂kUj (11.74)

+
3∑

m=1

(C̃im(∇U, θ)− C̃im(0, 0))∂mθ, i = 1, 2, 3
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and

f 2
(
∇U,∇Ut,∇2U, θ,∇θ,∇2θ

)
:= (11.75)

1

a(∇U, θ)f(θ)
[ 3∑
i,j,m=1

∂qi(∇U, θ,∇θ)
∂(∂mUj)

∂m∂iUj

+
3∑

i=1

∂qi(∇U, θ,∇θ)
∂θ

∂iθ +
3∑

i,j=1

(
∂qi(∇U, θ,∇θ)

∂(∂jθ)
− ∂qi(0, 0, 0)

∂(∂jθ)

)
∂i∂jθ

+ (1− a(∇U, θ)f(θ))κΔθ + f(θ) tr
{
(C̃km(∇U, θ)− C̃km(0, 0)

+ C̃km(0, 0)− a(∇U, θ)C̃km(0, 0))
′
km · (∂t∂sUr)rs

}]
.

Introducing f 1
i = (f 1

1 , f
1
2 , f

1
3 ) and the formal differential symbol D with

D :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂1 0 0

0 ∂2 0

0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
as well as the matrix S containing the elastic moduli with

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2μ+ λ λ λ 0 0 0

λ 2μ+ λ λ 0 0 0

λ λ 2μ+ λ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

assuming S to be positive definite, i.e.

μ > 0, 2μ+ 3λ > 0,

we arrive at the following simpler representation of the differential equations (11.72),

(11.73):

Utt −D′SDU + γ∇θ = f 1
(
∇U,∇2U, θ,∇θ

)
, (11.76)

θt − κΔθ + γ∇′Ut = f 2
(
∇U,∇Ut,∇2U, θ,∇θ,∇2θ

)
, (11.77)
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where we shall assume without loss of generality in the sequel that T0 = 1 and a(0, 0) = 1.

The assumption on the nonlinearity will be

There are no purely quadratic terms only involving ∇U,∇Ut,∇2U

and additionally one of the following two cases is given:

Case I: Only quadratic terms appear.

Case II: Only at least cubic terms appear and one quadratic

term of the type θΔθ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11.78)

Remark: The specific quadratic nonlinearity of the type θΔθ arises from the term

(1 − a(∇U, θ)f(θ))κΔθ in (11.75) and is due to the special function f . This quadratic

term cannot be assumed to vanish by any assumption on the general nonlinearities.

(See Step C below for the typical nonlinearities that may arise; the terms excluded are

typically ∇U∇2U and∇U∇Ut.) As mentioned above the appearance of purely quadratic

terms in ∇U , ∇Ut, ∇2U may lead to the development of singularities.

The transformation to a suitable first-order system is given by

V (t) := (SDU, Ut, θ) (t) =
(
V 1, V 2, V 3

)
(t),

V 0 := V (t = 0) =
(
SDU0, U1, θ0

)
.

This transformation has turned out to be very useful for the — in general non-homo-

geneous and anisotropic — linear case, cf. [98].

To recover ∇U from a known function V 1 = SDU , we define the operator B̃j by

B̃j : SDW 1,2 −→ L2, B̃jZ := ∂j(SD)−1Z, j = 1, 2, 3,

where SDW 1,2 := {SDZ|Z ∈ W 1,2}.
By Korn’s first inequality (cf. [98]) B̃j can be continuously extended to a bounded

operator

Bj : SDW 1,2 −→ L2.

(Arthur Korn, 20.5.1870 – 22.12.1945)

Let B∇ := (B1, B2, B3). Observe that ∇k, k ∈ IN, commutes with B∇. The system of

equations (11.76), (11.77) now turns into

Vt + AV = F
(
V,∇V,∇2V 3, B∇V 1,∇B∇V 1

)
,

V (t = 0) = V 0,

with the nonlinearity

F
(
V,∇V,∇2V 3, B∇V 1,∇B∇V 1

)
:=

⎛⎜⎜⎜⎝
0

f 1
(
B∇V 1,∇B∇V 1, V 3,∇V 3

)
f 2

(
B∇V 1,∇V 2,∇B∇V 1, V 3,∇V 3,∇2V 3

)
⎞⎟⎟⎟⎠
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and A is the differential operator formally given by

Af =

⎛⎜⎜⎝
0 −SD 0

−D′ 0 γ∇
0 γ∇′ −κΔ

⎞⎟⎟⎠ .

−A is the generator of a contraction semigroup in the Hilbert space H := SDW 1,2 ×
L2 × L2 (6 + 3 + 1 components) with domain D(A) := {V ∈ H | AfV ∈ L2}, see [98].

The inner product in H is a weighted L2-inner product:

〈W,Z〉H := 〈S−1W 1, Z1〉+ 〈W 2, Z2〉+ 〈W 3, Z3〉.

Remark: In the sequel we shall write V 1,∇V 1, . . . instead of B∇V 1 = ∇U,∇B∇V 1 =

∇2U, . . ., i.e. we shall not distinguish between ∇U and SDU ; that is, we shall not

distinguish between V (t) and V̄ (t) := (B∇V 1(t), V 2(t), V 3(t)). This is justified since

(i) we have from the representation formula for V ,

V (t) = e−tAV 0 +

t∫
0

e−(t−s)AF (V̄ , . . .)(s)ds

that V̄ satisfies

V̄ (t) = B∇e−tAV 0 +

t∫
0

B∇e−(t−s)F (V̄ , . . .)(s)ds

and

(ii) the decay properties in Step A below for V ,

‖V (t)‖q ≤ c · (1 + t)−d‖V 0‖N,p

carry over to V̄ ,

‖V̄ (t)‖q ≤ c · (1 + t)−d‖V 0‖N,p.

To understand the latter argument one should notice that the operator ∇ ◦ D−1 on

DW 1,2 turns into a bounded multiplication in Fourier space and hence does not change

the arguments in Step A.

We shall now go through the Steps A–E as before, of course with necessary modifications

due to the hyperbolic-parabolic coupled type of the system. At the very end this example

underlines the power of the general method.

A: Decay for F ≡ 0:

Let V be a solution of

Vt + AV = 0, V (t = 0) = V 0,
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where V 0 = (SDU0, U1, θ0).

We use a decomposition of U into its curl-free part Upo and its divergence-free part Uso

according to the decomposition (11.21)

L2 = ∇W 1,2 ⊕D0,

U = Upo + Uso,

which implies a decomposition of V into

V = V po + V so,

where

V po = (SDUpo, Upo
t , θ) ,

V so = (SDUso, Uso
t , 0) .

The linear system for (U, θ) (cf. (11.76), (11.77)) is

Utt + (μ∇×∇×−(2μ+ λ)∇∇′)U + γ∇θ = 0,

θt − κΔθ + γ∇′Ut = 0,

hence

Upo
tt − (2μ+ λ)ΔUpo + γ∇θ = Upo

tt − (2μ+ λ)∇∇′Upo + γ∇θ = 0,

Uso
tt − μΔUso = Uso

tt + μ∇×∇× Uso = 0.

That is, the linearized system for (U, θ) decouples into a simpler coupled system for

(Upo, θ) and a wave equation for the components of Uso. Uso is no longer coupled to θ.

We know the asymptotic behavior for V so from Chapter 2:

‖V so(t)‖q ≤ c(1 + t)−(1−2/q)‖V so(t = 0)‖Np,p, t ≥ 0, c = c(q), (11.79)

where 2 ≤ q ≤ ∞, 1/p+ 1/q = 1 and Np is not greater than three.

The asymptotic behavior of V po, which satisfies

V po + AV po = 0, V po(t = 0) = V 0,po =
(
SDU0,po, U1,po, θ0

)
,

will be described with the help of the Fourier transform. It turns out that V po behaves

like a solution to the heat equation, i.e. here the damping effect of θ is apparent.

For the discussion of the Fourier representation of V po, the following elementary proper-

ties of the Fourier transform will be frequently used (“ˆ” denoting the Fourier transform):∥∥∥F−1 (ĝ1ĝ2)
∥∥∥
2
≤

∥∥∥∥∥ ĝ1(·)
(1 + | · |)j

∥∥∥∥∥∞
∥∥∥F−1

(
(1 + | · |)j ĝ2(·)

)∥∥∥
2
, (11.80)

∥∥∥F−1 (ĝ1ĝ2)
∥∥∥∞ ≤

∥∥∥∥∥ ĝ1(·)
(1 + | · |)j

∥∥∥∥∥
1

∥∥∥F−1
(
(1 + | · |)j ĝ2(·)

)∥∥∥
1
, (11.81)
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(j ∈ IN0, g1, g2 such that norms appearing are finite).

One major difference to the previously treated equations is that we shall not only make

use of the Lp–Lq-estimates for 2 ≤ q ≤ ∞ with 1/p + 1/q = 1. Here we shall also

prove L2–L∞- and L1–L2-estimates for V po which is possible since V po is a solution of

a dissipative system. This will finally allow us to treat the different nonlinearities — in

particular the mixed quadratic ones — satisfactorily.

For this purpose we shall also make use of the following elementary inequalities (with

j, g1, g2 as above):

∥∥∥F−1 (ĝ1ĝ2)
∥∥∥∞ ≤

∥∥∥∥∥ ĝ1(·)
(1 + | · |)j

∥∥∥∥∥
2

∥∥∥(1 + | · |)j ĝ2(·)∥∥∥
2
, (11.82)

∥∥∥F−1 (ĝ1ĝ2)
∥∥∥
2
≤

∥∥∥∥∥ ĝ1(·)
(1 + | · |)j

∥∥∥∥∥
2

∥∥∥(1 + | · |)j ĝ2(·)∥∥∥∞ . (11.83)

For simplicity we shall write V instead of V po until we have found the decay estimate

for V po. Then V satisfies

V̂t(t, ξ) + Â(ξ)V̂ (t, ξ) = 0, V̂ (t = 0) = V̂ 0, (11.84)

where Â(ξ) is the Fourier symbol of A.

The solution of (11.84) can be written as

V̂ (t, ξ) = Ĝ(t, ξ)V̂ 0(ξ),

where Ĝ(t, ξ) is described in the following (cf. [98]).

Let

Ξ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1 0 0

0 ξ2 0

0 0 ξ3

0 ξ3 ξ2

ξ3 0 ξ1

ξ2 ξ1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One has

det(Â(ξ)− β) = −β3(β2 + μ|ξ|2)2Δ1(β, ξ) (11.85)

with

Δ1(β, ξ) := −β3 + β2κ|ξ|2 − β(2μ+ λ+ γ2)|ξ|2 + κ(2μ+ λ)|ξ|4.
The factor β3 in (11.85) corresponds to the null space of A considered in H = L2 instead

ofH = SDW 1,2×L2×L2, and the factor (β2+μ|ξ|2)2 corresponds to the Uso-component.

For V = V po the third factor is of interest.
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Let β1(ξ), β2(ξ), β3(ξ) be the zeros of Δ1(β, ξ) and

J(t, ξ) :=
3∑

j=1

(
1∏

k �=j (βk(ξ)− βj(ξ))

)
e−βj(ξ)t,

(taking limits for βk(ξ) = βj(ξ), cf. Lemma 11.8)

Jk(t, ξ) :=
dk

dtk
J(t, ξ), k = 1, 2.

Denoting by Idk, k = 1, 3, 6, the identity on Ck, we obtain that Ĝ(t, ξ) has the following

structure (cf. [98], we omit the pair of parameters (t, ξ) for simplicity):

Ĝ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(J2 + κ|ξ|2J1 + γ2|ξ|2J)Id6 (J1 + κ|ξ|2J)iSΞ JγSΞξ

(J1 + κ|ξ|2J)iΞ′ (J2 + κ|ξ|2J1)Id3 J1iγξ

Jγξ′Ξ′ −J1iγξ
′ (J2 + τ |ξ|2J) Id1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

For the discussion of the asymptotic behavior we need the facts below about the eigen-

values βj(ξ), which we take from Zheng & Shen [208] (cf. also R. Leis [98] for similar

results).

Remark: It is interesting to notice that the calculations from [208] for the one-dimensional

case are of importance here. The reason is that the behavior of the part V po which is

determined through a coupling of the curl-free component Upo and the temperature dif-

ference θ is in principle one-dimensional while the behavior of the part V so, which only

consists of derivatives of Uso, is really three-dimensional. By “in principle” we mean

that the damping effect of the heat conduction part (dissipation) predominates in V po

— just as in the one-dimensional case where no term “Uso” appears — while there is

no damping for Uso, a typical elastic behavior. This kind of coupling and splitting will

become of interest for blow-up questions; see below.

Let τ := 2μ+ λ. From Lemma 2.1 and Lemma 2.2 in [208] we have

Lemma 11.8

(i) As |ξ| → 0:

β1(ξ) =
κτ

τ + γ2
|ξ|2 +O(|ξ|3),

β2,3(ξ) =
κγ2

2(τ + γ2)
|ξ|2 ± i

√
τ + γ2|ξ|+O(|ξ|3),

as |ξ| → ∞:

β1(ξ) = κ|ξ|2 − γ2

κ
− α1

κ3
|ξ|−2 +O(|ξ|−3),

β2,3(ξ) =
γ2

2κ
+

α1

2κ3
|ξ|−2 +O(|ξ|−4)± i

(√
τ |ξ|+ α2

κ2
|ξ|−1 +O(|ξ|−3)

)
,
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where

α1 := γ2(γ2 − τ), α2 :=
γ2(4τ − γ2)

8
√
τ

.

(ii) Except for at most two values of |ξ| > 0 : βj(ξ) 
= βk(ξ), j 
= k.

(iii) For any value of ξ 
= 0 : Re βj(ξ) > 0, j = 1, 2, 3.

(iv) There are positive constants r1, r2 and Cj (j = 1, 2, 3, 4) depending on r1, r2 such

that

|ξ| ≤ r1 ⇒ −C1|ξ|2 ≤ −Re βj(ξ) ≤ −C2|ξ|2,
r1 ≤ |ξ| ≤ r2 ⇒ −Re βj(ξ) ≤ −C3,

r2 ≤ |ξ| ⇒ −Re βj(ξ) ≤ −C4, (j = 1, 2, 3).

We shall write Ĝ(t, ξ) =
(
Ĝij(t, ξ)

)
1≤i,j≤3

with

Ĝ11(t, ξ) = (J2(t, ξ) + |ξ|2J1(t, ξ) + γ2|ξ|2J(t, ξ))Id6
and so on. We proceed similarly to [208].

Consider

Ĝ11(t, ξ) = ĝ11(t, ξ) · Id6 :

ĝ11(t, ξ) ≡ a11(ξ)e
−β1(ξ)t + b11(ξ)e

−β2(ξ)t + c11(ξ)e
−β3(ξ)t.

One has from Lemma 11.8 (we shall mostly omit ξ in the coefficients and the eigenvalues)

as |ξ| → 0 :

a11 = γ2

τ+γ2 +O(|ξ|2), b11 =
τ

2(τ+γ2)
+O(|ξ|),

c11 = τ
2(τ+γ2)

+O(|ξ|),
as |ξ| → ∞ :

a11 = O(|ξ|−4), b11 =
1
2
+O(|ξ|−2), c11 =

1
2
+O(|ξ|−2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11.86)

Let

Î11 := e−
γ2

2κ
t cos(

√
τ |ξ|t),

Ẑ11 :=
γ2

τ + γ2
e
− κτ

τ+γ2
|ξ|2t

+
τ

τ + γ2
e

−κγ2

2(τ+γ2)
|ξ|2t

cos(
√
τ + γ2|ξ|t),

ĥ11 := Î11 + Ẑ11.
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To prove the L2–L2-estimate we notice that for

W11(t) := F−1
(
Ĝ11(t, ·)V̂ 0,1(·)

)
one has

W11(t) = F−1
(
(Ĝ11(t, ·)− ĥ11(t, ·))V̂ 0,1

)
+ F−1(ĥ11(t, ·)V̂ 0,1) (11.87)

≡ T1(t) + T2(t),

and

‖T1(t)‖2 ≤ ‖
(
Ĝ11(t, ·)− ĥ11(t, ·)

)
/(1 + | · |)k‖∞‖(1 + | · |)kV̂ 0,1(·)‖2

≤ Ck‖
(
Ĝ11(t, ·)− ĥ11(t, ·)

)
/(1 + | · |)k‖∞‖V 0,1‖k,2, k ∈ IN0.

(Ck being a constant depending only on k.)

Let t ≥ 1. Without loss of generality we assume r1 < 1 < r2.

a) |ξ| ≤ r1: ∣∣∣∣∣Ĝ11(t, ξ)− ĥ11(t, ξ)

(1 + |ξ|)k
∣∣∣∣∣ ≤ c|Ĝ11(t, ξ)− ĥ11(t, ξ)| (11.88)

≤ c
{
|Ĝ11(t, ξ)− Ẑ11(t, ξ)|+ |Î11(t, ξ)|

}

≤ c

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∣∣∣∣∣
(
a11 − γ2

τ + γ2

)
e−β1t

∣∣∣∣∣+
∣∣∣∣∣
(
b11 − τ

2(τ + γ2)

)
e−β2t

∣∣∣∣∣

+

∣∣∣∣∣
(
c11 − τ

2(τ + γ2)

)
e−β3t

∣∣∣∣∣ + γ2

τ + γ2

∣∣∣∣e−β1t − e
− κτ

τ+γ2
|ξ|2t

∣∣∣∣
+

τ

2(τ + γ2)

∣∣∣∣∣e−β2t − e
−
(

κγ2

2(τ+γ2)
|ξ|2+i
√

τ+γ2|ξ|
)
t
∣∣∣∣∣

+
τ

2(τ + γ2)

∣∣∣∣∣e−β3t − e
−
(

κγ2

2(τ+γ2)
|ξ|2−i
√

τ+γ2|ξ|
)
t
∣∣∣∣∣ + |Î11(t, ξ)|

}
.

the first term in (11.88) we get by Lemma 11.8 and (11.86)∣∣∣∣∣
(
a11 − γ2

τ + γ2

)
e−β1t

∣∣∣∣∣ ≤ c(1 + t)−1t|ξ|2e−c|ξ|2t

≤ c(1 + t)−1.
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(c will denote various constants in the sequel which do not depend on t or V 0, but

possibly on k.) For the second term we obtain∣∣∣∣∣
(
b11 − τ

2(τ + γ2)

)
e−β2t

∣∣∣∣∣ ≤ c(1 + t)−1/2
(√

t|ξ|e−c(
√
t|ξ|)2) ≤ c(1 + t)−1/2

and analogously the third one is treated.

The fourth term is estimated by Lemma 11.8 in the following way:∣∣∣∣e−β1t − e
− κτ

τ+γ2
|ξ|2t

∣∣∣∣ ≤ ce−c|ξ|2t|ξ|3t

≤ c(1 + t)−1/2;

similarly for the fifth and sixth term.

The last term is estimated by

|Î11(t, ξ)| ≤ ce−ct.

Thus we obtain for |ξ| ≤ r1∣∣∣∣∣Ĝ11(t, ξ)− ĥ11(t, ξ)

(1 + |ξ|)k
∣∣∣∣∣ ≤ c(1 + t)−1/2, k ∈ IN0.

b) r1 ≤ |ξ| ≤ r2: By Lemma 11.8 we obtain∣∣∣∣∣Ĝ11(t, ξ)− ĥ11(t, ξ)

(1 + |ξ|)k
∣∣∣∣∣ ≤ ce−ct, k ∈ IN0.

c) |ξ| ≥ r2:

Ĝ11 − ĥ11 = Ĝ11 − Î11 − Ẑ11 (11.89)

= a11e
−β1t +

(
b11 − 1

2

)
e−β2t +

(
c11 − 1

2

)
e−β1t

+
1

2

(
e−β2t − e(−γ2/2+i

√
τ |ξ|)t

)
+
1

2

(
e−β3t − e−(γ

2/(2κ)−i
√
τ |ξ|)t

)
− Ẑ11,

∣∣∣a11e−β1t
∣∣∣ ≤ c|ξ|−4e−c4t ≤ ce−ct

by (11.86), analogously for the second and the third term in (11.89).∣∣∣∣∣e−β2,3t − e
−
(

γ2

2κ
±i

√
τ |ξ|

)
t
∣∣∣∣∣ ≤ ce−ct,
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|Ẑ11(t, ξ)| ≤ ce−ct.

That is: ∣∣∣∣∣Ĝ11(t, ξ)− ĥ11(t, ξ)

(1 + |ξ|)k
∣∣∣∣∣ ≤ c · e−ct, k ∈ IN0,

and we obtain

∀t ≥ 1 ∀k ∈ IN0 :

∥∥∥∥∥Ĝ11(t, ξ)− ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
∞
≤ c · (1 + t)−1/2. (11.90)

For 0 ≤ t ≤ 1 we get ∣∣∣∣∣Ĝ11(t, ξ)− ĥ11(t, ξ)

(1 + |ξ|)k
∣∣∣∣∣ ≤ c.

Thus we have estimated the term T1(t) from (11.87) by

‖T1(t)‖2 ≤ c(1 + t)−1/2‖V 0,1‖k,2, t ≥ 0, k ∈ IN0 arbitrary. (11.91)

For all t ≥ 0 one has

‖T2(t)‖2 ≤ ‖Î11(t, ·)V̂ 0,1(·)‖2 + ‖Ẑ11(t, ·)V̂ 0,1(·)‖2

≤ ce−ct‖V 0,1‖2 + c · ‖ecΔtV 0,1‖2.

ecΔtV 0,1 is the solution of the heat equation

Wt − cΔW = 0, W (t = 0) = V 0,1.

Thus by the known results for the heat equation (cf. Section 11.2) we conclude

‖T2(t)‖2 ≤ c‖V 0,1‖2. (11.92)

From (11.91) and (11.92) we conclude the L2–L2-behavior for the first component:

‖W11(t)‖2 ≤ c‖V 0,1‖2, t ≥ 0. (11.93)

Remark: The factor (1 + |ξ|)k — which could have been omitted up to now — will

become important later on for similar calculations for the remaining estimates. Since we

do not carry out all of the details we already wanted to point out how weighting factors

are incorporated.

We now turn to the study of the L1–L∞-estimate. Notice that by (11.87) we get

‖T1(t)‖∞ ≤ c

∥∥∥∥∥Ĝ11(t, ·)− ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
1

‖V 0,1‖k,1, k ∈ IN0.

With similar calculations as in (11.88) – (11.90) we get for t ≥ 1 and k ≥ 3∥∥∥∥∥Ĝ11(t, ·)− ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
1

≤ ck(1 + t)−2,
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e.g. ∫
|ξ|≤r1

∣∣∣∣∣
(
b11(ξ)− τ

2(τ + γ2)

)
e−β2(ξ)t

∣∣∣∣∣ dξ ≤ c
∫

|ξ|≤r1

|ξ|e−c|ξ|2tdξ

= c
∫

|η|≤r1t1/2

t−1/2|η|e−c|η|2t−3/2dη

≤ c(1 + t)−2,

∫
|ξ|≥r2

∣∣∣∣e−β2(ξ)t − e(−γ2/(2κ)+i
√
τ |ξ|)t

∣∣∣∣
(1 + |ξ|)k dξ ≤ ce−ct

∫
|ξ|≥r2

|ξ|−1

(1 + |ξ|)k dξ

≤ ce−ct if k ≥ 3.

For 0 ≤ t ≤ 1 we obtain ∥∥∥∥∥Ĝ11(t, ·)− ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
1

≤ c.

Thus we have estimated T1(t) by

‖T1(t)‖∞ ≤ c(1 + t)−2‖V 0,1‖k,1, k ≥ 3, t ≥ 0.

For T2(t) we have (cf. the estimates for the heat equation in Section 11.2 or [206])

‖T2(t)‖∞ ≤ ck

∥∥∥∥∥ ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
1

‖V 0,1‖k,1, k ∈ IN0

and with the previous arguments∥∥∥∥∥ ĥ11(t, ·)
(1 + | · |)k

∥∥∥∥∥
1

≤ c(1 + t)−3/2 if k ≥ 4.

Thus we have obtained the L1–L∞-behavior of W11:

‖W11(t)‖∞ ≤ c(1 + t)−3/2‖V 0,1‖4,1, t ≥ 0. (11.94)

For the contributions of Ĝ12, . . . , Ĝ33 similar lengthy but straightforward calculations are

omitted, and we just state the following results:

For Ĝ12 (analogously for Ĝ21):

Ĝ12(t, ξ) ≡ g̃12(t, ξ)iSΞ. For the estimates we consider a typical term

ĝ12(t, ξ) := ηg̃12(t, ξ)

≡ a12(ξ)e
−β1(ξ)t + b12(ξ)e

−β2(ξ)t + c12(ξ)e
−β3(ξ)t, η ∈ {ξ1, ξ2, ξ3}.
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As |ξ| → 0:

a12 = O(|ξ|), b12 = O(1), c12 = O(1),
as |ξ| → ∞:

a12 = O(|ξ|−3), b12 = O(1), c12 = O(1).
L2–L2-estimate, L1–L∞-estimate:

‖W12(t)‖2 ≤ c‖V 0,2‖2, t ≥ 0,

‖W12(t)‖∞ ≤ c(1 + t)−3/2‖V 0,2‖4,1, t ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (11.95)

(Analogously for W21(t)).

Ĝ13 (analogously for Ĝ31):

Consider

Ĝ13(t, ξ) ≡ g̃13(t, ξ)γSΞξ/|ξ|2

and the typical term

ĝ13(t, ξ) := η1η2g̃
13(t, ξ)

≡ a13(t, ξ)e
−β1(ξ)t + b13(ξ)e

−β2(ξ)t + c13(ξ)e
−β3(ξ)t,

η1, η2 ∈
{
ξ1
|ξ| ,

ξ2
|ξ| ,

ξ3
|ξ|

}
.

As |ξ| → 0:

a13 = O(1), b13 = O(1), c13 = O(1),
as |ξ| → ∞:

a13(ξ) = O(|ξ|−2), b13 = O(|ξ|−1), c13 = O(|ξ|−1).

L2–L2-estimate, L1–L∞-estimate:

‖W13(t)‖2 ≤ c‖V 0,3‖2, t ≥ 0,

‖W13(t)‖∞ ≤ c(1 + t)−3/2‖V 0,3‖4,1, t ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (11.96)

(Analogously for W31(t)).

Ĝ22:

Ĝ22(t, ξ) ≡ ĝ22(t, ξ)Id3,

ĝ22(t, ξ) ≡ a22(ξ)e
−β1(ξ)t + b22(ξ)e

−β2(ξ)t + c22(ξ)e
−β3(ξ)t.

As |ξ| → 0:

a22 = O(|ξ|2), b22 =
1

2
+O(|ξ|), c22 =

1

2
+O(|ξ|),
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as |ξ| → ∞:

a22(ξ) = O(|ξ|−2), b22 =
1

2
+O(|ξ|−1), c22 =

1

2
+O(|ξ|−1).

L2–L2-estimate, L1–L∞-estimate:

‖W22(t)‖2 ≤ c‖V 0,2‖2, t ≥ 0,

‖W22(t)‖∞ ≤ c(1 + t)−3/2‖V 0,2‖4,1, t ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (11.97)

Ĝ23 (analogously for Ĝ32):

Ĝ23(t, ξ) ≡ g̃23(t, ξ)iγξ.

Consider the typical term

Ĝ23(t, ξ) := ηg̃23(t, ξ)

≡ a23(ξ)e
−β1(ξ)t + b23(ξ)e

−β2(ξ)t + c23(ξ)e
−β3(ξ)t, η ∈ {ξ1, ξ2, ξ3}.

As |ξ| → 0:

a23 = O(|ξ|), b23 = O(1), c23 = O(1),
as |ξ| → ∞:

a23 = O(|ξ|−1), b23 = O(|ξ|−1), c23 = O(|ξ|−1).

L2–L2-estimate, L1–L∞-estimate:

‖W23(t)‖2 ≤ c‖V 0,3‖2, t ≥ 0,

‖W23(t)‖∞ ≤ c(1 + t)−3/2‖V 0,3‖4,1, t ≥ 0.

⎫⎪⎪⎬⎪⎪⎭ (11.98)

(Analogously for W32(t).)

Ĝ33:

Ĝ33(t, ξ) ≡ ĝ33(t, ξ)Id1.

ĝ33(t, ξ) ≡ a33(ξ)e
−β1(ξ)t + b33(ξ)e

−β2(ξ)t + c33(ξ)e
−β3(ξ)t.

As |ξ| → 0:

a33 =
κτ

τ + γ2
+O(|ξ|), b33 =

γ2

2(τ + γ2)
+O(|ξ|), c33 =

γ2

2(τ + γ2)
+O(|ξ|),

as |ξ| → ∞:

a33 = 1 +O(|ξ|−1), b33 = O(|ξ|−2), c33 = O(|ξ|−2).

L2–L2-estimate, L1–L∞-estimate:

‖W33(t)‖2 ≤ c‖V 0,3‖2, t ≥ 0,

‖W33(t)‖∞ ≤ c(1 + t)−3/2‖V 0,3‖4,1, t ≥ 0.

⎫⎪⎬⎪⎭ (11.99)
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Summarizing (11.93) – (11.99) we obtain

‖V po(t)‖2 ≤ c‖V 0,po‖2
‖V po(t)‖∞ ≤ c(1 + t)−3/2‖V 0,po‖4,1,

and by interpolation the corresponding Lp–Lq-estimate. Since a differentiation of order

|α| yields a factor of order |ξ||α| in Fourier space we can prove in the same way for

α ∈ INn
0 :

‖∇αV po(t)‖q ≤ c(1 + t)−(3/2−3/q+|α|/2)‖V 0,po‖Nα
p,p

(11.100)

where t ≥ 0, c = c(q, α), 2 ≤ q ≤ ∞, 1/p+ 1/q = 1 and Nα
p is not greater than 4 + |α|.

With the help of the differential equation one also obtains a decay rate for ‖∇αθt(t)‖q
of order (2− 3/q + |α|/2). Taking the results for V po in (11.100) and for V so in (11.79)

together we have proved

Lemma 11.9 Let 1/p+1/q = 1, 2 ≤ q ≤ ∞, α ∈ IN3
0. Then there exist Np ∈ IN, Np ≤ 4,

and c = c(q, α) such that for all t ≥ 0 and all (U0, U1, θ0) with V 0 = (∇U0, U1, θ0) ∈
WNp+|α|,p the following estimates hold:

(i) ‖∇αDU(t)‖q ≤ c(1 + t)−(1−2/q)‖V 0‖Np+|α|,p,

(ii) ‖∇αθ(t)‖q ≤ c(1 + t)−(3/2−3/q+|α|/2)‖V 0‖Np+|α|,p,

(iii) ‖∇αθt(t)‖q ≤ c(1 + t)−(2−3/q+|α|/2)‖V 0‖Np+|α|+2,p.

(Observe that we do not distinguish between SDU0 and ∇U0.)

We have used the elementary properties of the Fourier transform given in (11.80), (11.81)

to prove Lemma 11.9. If we use the inequalities given in (11.82), (11.83) we immediately

obtain the following L2–L∞- resp. L1–L2- decay estimates.

Lemma 11.10 Let α ∈ IN3
0. There exist a constant c = c(α) and integers N∗

1 , N
∗
2 ≤ 4

such that

(i) ∀t ≥ 0 ∀V 0 ∈ WN∗
2+|α|,2:

‖∇αθ(t)‖∞ ≤ c(1 + t)−(3/4+|α|/2)‖V 0‖N∗
2+|α|,2,

(ii) ∀t ≥ 0 ∀V 0 ∈ WN∗
1+|α|,1:

‖∇αθ(t)‖2 ≤ c(1 + t)−(3/4+|α|/2)‖V 0‖N∗
1+|α|,1,

(iii) ∀t ≥ 0 ∀V 0 ∈ WN∗
2+|α|+2,2:

‖∇αθt(t)‖∞ ≤ c(1 + t)−(3/4+(|α|+1)/2)‖V 0‖N∗
2+|α|+2,2,
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(iv) ∀t ≥ 0 ∀V 0 ∈ WN∗
1+|α|+2,1:

‖∇αθt(t)‖2 ≤ c(1 + t)−(3/4+(|α|+1)/2)‖V 0‖N∗
1+|α|+2,1.

B: Local existence and uniqueness:

Applying to the hyperbolic part of the differential equations the transformation which

we used in Section 11.1.1 to obtain a symmetric hyperbolic system, we end up here with

a symmetric hyperbolic-parabolic coupled system for which a local existence theorem is

given in Appendix C. We obtain a local solution V = (∇U, Ut, θ) in some time interval

[0, T ] with 0 < T ≤ 1 provided V 0 ∈ W s,2 with s ≥ 4 and ‖V 0‖s,2 < δ is small enough

yielding

‖DU(t)‖∞ + ‖θ(t)‖2,∞ < η < 1 for all t ∈ [0, T ]

(δ = δ(η), η arbitrary).

V satisfies

DU ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2),

θ ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−2,2).

Remark: T. Mukoyama directly investigated the second-order system for (U, θ) and

obtained a similar result, see [134].

C: High energy estimates:

We shall prove the following estimate for the local solution provided η is small enough.

‖(DU, θ)(t)‖s,2 ≤ C
∥∥∥(∇U0, U1, θ0)

∥∥∥
s,2
· (11.101)

· exp
⎧⎨⎩C

t∫
0

(
‖DU‖21,∞ + ‖θ‖2,∞ + ‖θt‖∞

)
(r)dr

⎫⎬⎭ ,

t ∈ [0, T ], C = C(s).

The crucial point is to obtain the quadratic term ‖DU‖21,∞ in the exponent, a linear term

‖DU‖1,∞ would not be sufficient because of the weak decay rates for DU . The energy

estimates in the previous sections in their simple form lead to a linear term ‖DU‖1,∞
since there are quadratic nonlinearities involving DU . Here the elementary estimate

abc ≤ ε

2
a2 +

1

2ε
b2c2

for positive real numbers a, b, c, ε will produce the quadratic term ‖DU‖21,∞. One may

think for example of a being a θ-term, b being the DU -term and c being a DU - or θ-term.
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Then the term εa2 can be incorporated into the left-hand side of the inequality to which

abc denotes the right-hand side. In the previous section abc was just estimated by

abc ≤ b

2
(a2 + c2).

Due to our assumption (11.78) the following typical nonlinearities appear (up to unessen-

tial constants), cf. (11.74), (11.75):

f 1 = quadratic terms f 1,q + cubic terms f 1,c + higher-order terms

where

f 1,q = θ∇2U +∇θ∇U + θ∇θ,
(θ∇2U is to be read symbolically for a typical term θ∂i∂mUk, and so on),

f 1,c = (∇U)2∇2U +∇Uθ∇2U + θ2∇2U + (∇U)2∇θ +∇Uθ∇θ + θ2∇θ. (11.102)

Analogously

f 2 = f 2,q + f 2,c + higher-order terms,

where

f 2,q = θ∇2U +∇θ∇2U +∇U∇θ + θ∇θ

+∇θ∇θ +∇2θ∇U + θ∇2θ +∇θ∇2θ + θ∇Ut,

f 2,c = (∇U)2∇2U +∇Uθ∇2U + θ2∇2U +∇U∇θ∇2U

+(∇θ)2∇2U + θ∇θ∇2U + (∇U)2θ +∇Uθ∇θ

+θ2∇θ +∇U∇θ∇θ + (∇θ)2∇θ + (∇U)2∇2θ

+(∇U)θ∇2θ + θ2∇2θ +∇U∇θ∇2θ + (∇θ)2∇2θ

+θ∇θ∇2θ + (∇U)2∇Ut +∇Uθ∇Ut + θ2∇Ut.

The terms of higher order will be neglected in the sequel since they are always easier

to deal with than the quadratic and cubic terms. We take ∇α on both sides of (11.76),

(11.77) and multiply (11.76) by ∇αUt and (11.77) by ∇αθ in L2, |α| ≤ s. Now we have

to discuss 3 + 6 + 9 + 20 terms numbered from (1) to (38). Since a lot of calculations

recur we shall pick out the characteristic ones.

We get from (11.76) (dropping the argument t)

1

2

d

dt

(
‖∇αUt‖22 + 〈∇αSDU,∇αDU〉

)
+ γ〈∇α∇θ,∇αUt〉 (11.103)

=
9∑

i=1

〈∇α(i),∇αUt〉,
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〈∇α(1),∇αUt〉 = 〈∇α(θ∇2U),∇αUt〉 = 〈θ∇2∇αU,∇αUt〉

+〈∇α(θ∇2U)− θ∇α∇2U,∇αUt〉 ≡ R1 +R2,

R1 = −〈∇θ∇α∇U,∇αUt〉 − 〈θ∇α∇U,∇α∇Ut〉

= −〈∇θ∇α∇U,∇αUt〉 − 1

2

d

dt
〈θ∇α∇U,∇α∇U〉

+
1

2
〈θt∇α∇U,∇α∇U〉.

The second term in the last right-hand side will be incorporated into the left-hand side of

(11.103) after integration with respect to t using sup
0≤t≤T

‖θ(t)‖∞ < η and Korn’s inequality

for 〈∇αSDU,∇αDU〉. Using the inequalities on composite functions from Chapter 4 we

obtain

|R2| ≤ c
(
‖∇θ‖∞‖∇α∇U‖2 + ‖∇2U‖∞‖∇αθ‖2

)
‖∇αUt‖2

≤ c
(
‖∇θ‖∞

(
‖∇α∇U‖22 + ‖∇αUt‖22

)
+ ε1‖∇αθ‖22 +

1

ε1
‖∇2U‖2∞‖∇αUt‖22

)
,

where ε1 > 0 is arbitrary.

Without loss of generality we assume |α| > 0 because R2 = 0 for α = 0. The term

ε1‖∇αθ‖22 can be incorporated into the left-hand side choosing ε1 > 0 small enough after

adding the left-hand side arising from (11.77), where the term κ‖∇α∇θ‖22 will appear;

see the following formula.

We obtain from (11.77)

1

2

d

dt
‖∇αθ‖22 + κ‖∇α∇θ‖22 + γ〈∇α∇′Ut,∇αθ〉 =

38∑
i=10

〈∇α(i),∇αθ〉. (11.104)

〈∇α(10),∇αθ〉 = 〈∇α(θ∇2U),∇αθ〉 = 〈θ∇α∇2U,∇αθ〉

+〈∇α(θ∇2U)− θ∇2∇αU,∇αθ〉 ≡ R3 +R4,

|R3| = |〈∇θ∇α∇U,∇αθ〉+ 〈θ∇α∇U,∇α∇θ〉|

≤ ‖∇θ‖∞
(
‖∇α∇U‖22 + ‖∇αθ‖22

)
+ ε1‖∇α∇θ‖22 +

1

ε1
‖θ‖2∞‖∇α∇U‖22.

|R4| ≤ c
(
‖∇θ‖∞‖∇α∇U‖2 + ‖∇2U‖∞‖∇αθ‖2

)
‖∇αθ‖2

≤ c
(
‖∇θ‖∞

(
‖∇2∇U‖22 + ‖∇αθ‖22

)
+ ε1‖∇αθ‖22 +

1

ε1
‖∇2U‖2∞‖∇αθ‖22

)
.
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〈∇α(18),∇αθ〉 = 〈∇α(θ∇Ut),∇αθ〉

= 〈θ∇∇αUt,∇αθ〉+ 〈∇α(θ∇Ut)− θ∇∇αUt,∇αθ〉

≡ R5 +R6,

|R5| = |〈∇θ∇αUt,∇αθ〉+ 〈θ∇αUt,∇∇αθ〉|
≤ ‖∇θ‖∞

(
‖∇αUt‖22 + ‖∇αθ‖22

)
+ ε1‖∇α∇θ‖22 +

1

ε1
‖θ‖2∞‖∇αUt‖22.

|R6| ≤ c (‖∇θ‖∞‖∇αUt‖2 + ‖∇Ut‖∞‖∇αθ‖2) ‖∇αθ‖2
≤ c

(
‖∇θ‖∞

(
‖∇αUt‖22 + ‖∇αθ‖22

)
+ ε1‖∇αθ‖22 +

1

ε1
‖∇Ut‖2∞‖∇αθ‖22

)
.

Up to now we have considered typical quadratic terms. The remaining quadratic terms

can be handled in a similar fashion. We shall now deal with two typical cubic terms.

〈∇α(4),∇αUt〉 = 〈∇α((∇U)2∇2U),∇αUt〉

= 〈(∇U)2∇α∇2U,∇αUt〉+ 〈∇α((∇U)2∇2U)− (∇U)2∇α∇2U,∇αUt〉

≡ R7 +R8.

R7 = −〈∇(∇U)2∇α∇U,∇αUt〉 − 〈(∇U)2∇α∇U,∇α∇Ut〉

= −〈∇(∇U)2∇α∇U,∇αUt〉 − 1

2

d

dt
〈(∇U)2∇α∇U,∇α∇U〉

+〈∂t(∇U)2∇α∇U,∇α∇U〉.

The second term in the last right-hand side is again incorporated into the left-hand side

(compare R1 above) and the inequality

‖∇(∇U)2‖∞ + ‖∂t(∇U)2‖∞ ≤ c‖DU‖21,∞

leads to the desired quadratic term in the exponent.

|R8| ≤ c
(
‖∇(∇U)2‖∞‖∇α∇U‖2 + ‖∇2U‖∞‖∇α(∇U)2‖2

)
‖∇αUt‖2

≤ c
(
‖DU‖21,∞‖∇αDU‖22 + ‖∇2U‖∞‖∇U‖∞‖∇α∇U‖2‖∇αUt‖2

)
≤ c‖DU‖21,∞‖∇αDU‖22.
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〈∇α(22),∇αθ〉 = 〈∇α(∇U∇θ∇2U),∇αθ〉

= 〈∇U∇θ∇α∇2U,∇αθ〉+ 〈∇α(∇U∇θ∇2U)−∇U∇θ∇α∇2U,∇αθ〉

≡ R9 +R10,

|R9| = |〈∇(∇U∇θ)∇α∇U,∇αθ〉+ 〈∇U∇θ∇α∇U,∇α∇θ〉|

≤ ‖∇θ‖1,∞
(
‖∇α∇U‖22 + ‖∇αθ‖22

)
+ ε1‖∇α∇θ‖22 +

1

ε1
‖∇θ‖∞‖∇α∇U‖22.

|R10| ≤ c
(
‖∇θ‖1,∞‖∇α∇U‖2 + ‖∇2U‖∞‖∇α(∇U∇θ)‖2

)
‖∇αθ‖2

≤ c
(
‖∇θ‖1,∞

(
‖∇α∇U‖22 + ‖∇αθ‖22

)
+ ε1‖∇αθ‖22 +

1

ε1
‖∇U‖21,∞‖∇αθ‖22

)
.

The remaining cubic terms are handled in a similar fashion. Adding (11.103) and

(11.104), summing over all |α| ≤ s, and integrating with respect to t, we obtain the

desired special energy estimate (11.101) using Gronwall’s inequality, Lemma 4.1, and

choosing η (from Step B) and ε1 sufficiently small. (Observe that the third terms on the

left-hand side of (11.103) and (11.104), respectively, cancel.)

D: Weighted a priori estimates:

According to the assumption (11.78) on the nonlinearity we first discuss case I (no cubic

terms).

Let s0, k, k
′, l be arbitrary integers satisfying l ≥ 6, k′ ≥ l + 1, k ≥ k′ + 7, s0 ≥ k + 7

and let 0 < ε < 1/8. We define for the local solution:

Mε(T ) := sup
0≤t≤T

{
(1 + t)3/4−ε‖∇3θ(t)‖k,2; (1 + t)3/2−2ε‖∇3θ(t)‖k′,2;

(1 + t)5/4‖∇θ(t)‖1,2; (1 + t)3/4‖θ(t)‖2,2; (1 + t)3/2−ε‖θ(t)‖2,∞;

(1 + t)5/4‖θt(t)‖∞; (1 + t)3/4−ε‖DU(t)‖l,∞
}
.

We shall use the integral equation for V :

V (t) = e−tAV 0 +

t∫
0

e−(t−r)AF (. . .)(r)dr, (11.105)

(F = (0, f 1, f 2)). We first estimate terms involving θ, then the term in Mε involving U .

These estimates use two basic technical ingredients.

First of all we shall of course use the decay estimates obtained in Lemma 11.9 and Lemma

11.10, in particular we shall use the L2–L∞- resp. L1–L2-estimates in Lemma 11.10 for
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θ and if necessary we shall split integrals for an L∞-estimate, {L2-estimate} ‖
t∫
0
. . . ‖∞{2}

into ‖
t/2∫
0
. . . +

t∫
t/2

. . . ‖∞{2} where the L1–L∞-estimate {L1–L2-estimate} is used in the

first integral and the L2–L∞-estimate {L2–L2-estimate} is used in the second integral.

The second idea is to rewrite the nonlinear term F in the following form. The quadratic

terms in which ∇θ or∇2θ appear remain unchanged, and the terms where only θ appears,

i.e. θ∇2U and θ∇Ut, will be written as∇(θ∇U)−∇θ∇U and∇(θUt)−∇θUt, respectively.

This has the advantage that either the better decay rate of ∇θ is available or a ∇ can

be put in front of the semigroup also leading to better decay (for θ-terms). Thus the

quadratic terms F q in F can be expressed as F q = F q
1 +F q

2 where F q
1 = ∇(θ . . .) ≡ ∇F̃ q

1

and F q
2 = ∇θ(. . .) +∇2θ(. . .). The integral equation (11.105) then turns into

V (t) = e−tAV 0 +

t∫
0

e−(t−r)A
(
∇F̃ q

1 + F q
2

)
(r)dr.

The initial data V 0 will be assumed to satisfy

‖V 0‖s0,2 + ‖V 0‖s0,1 < δ,

where δ will be chosen sufficiently small leading to the desired uniform bound for Mε(T ).

According to the Lemmata 11.9 and 11.10, and, with the technique outlined above, we

obtain the following sequence of estimates. (C denotes various constants not depending

on T or V 0.)

‖∇3θ(t)‖k,2 ≤ C(1 + t)−3/2δ + C

t∫
0

(1 + t− r)−3/2 ·

· [‖DU(r)‖s0,2‖θ(r)‖2,∞ + ‖DU(r)‖1,∞‖θ(r)‖s0,2] dr.

Analogously,

‖∇3θ(t)‖k′,2 ≤ C(1 + t)−3/2δ + C

t∫
0

(1 + t− r)−3/2 ·

·
[
‖DU(r)‖s0,2‖θ(r)‖2,∞ + ‖DU(r)‖1,∞

(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k,2

)]
dr.

In the following estimates the technique described above becomes relevant for the first

time.

‖∇θ(t)‖1,2 ≤ C(1 + t)−(3/4+1/2)δ + C

t/2∫
0

(1 + t− r)−(3/4+1) ·

·
[
‖DU(r)‖s0,2

(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr
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+C

t∫
t/2

(1 + t− r)−1 [‖DU(r)‖s0,2‖θ(r)‖2,∞

+ ‖DU(r)‖∞
(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr

+C

t∫
0

(1 + t− r)−(3/4+1/2)
[
‖DU(r)‖s0,2

(
‖∇θ(r)‖1,2 + ‖∇3θ(r)‖k′,2

)]
dr.

‖θ(t)‖2,2 ≤ C(1 + t)−3/4δ + C

t∫
0

(1 + t− r)−(3/4+1/2) ·

·
[
‖DU(r)‖s0,2

(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr

+C

t∫
0

(1 + t− r)−3/4
[
‖DU(r)‖s0,2

(
‖∇θ(r)‖1,2 + ‖∇3θ(r)‖k′,2

)]
dr.

‖θ(t)‖2,∞ ≤ C(1 + t)−3/2δ + C

t/2∫
0

(1 + t− r)−(3/2+1/2) ·

·
[
‖DU(r)‖s0,2

(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr

+C

t∫
t/2

(1 + t− r)−(3/4+1/2) [‖DU(r)‖s0,2‖θ(r)‖2,∞

+ ‖DU(r)‖1,∞
(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr

+C

t/2∫
0

(1 + t− r)−3/2
[
‖DU(r)‖s0,2

(
‖∇θ(r)‖1,2 + ‖∇3θ(r)‖k′,2

)]
dr

+C

t∫
t/2

(1 + t− r)−3/2
[
‖DU(r)‖l,∞

(
‖∇θ(r)‖1,2 + ‖∇3θ(r)‖k′,2

)]
dr.

Since

θt(t) =
∂

∂t
e−tAV 0

∣∣∣∣∣
3rdcomp.

+

t∫
0

∂

∂t
e(t−r)AF (. . .)(r)

∣∣∣∣∣
3rdcomp.

dr

we obtain

‖θt(t)‖∞ ≤ C(1 + t)−(3/2+1/2)δ + C‖θ(t)‖2,∞‖DU(t)‖1,∞

+C

t∫
0

(1 + t− r)−(3/4+1/2) [‖DU(r)‖s0,2‖θ(r)‖2,∞

+‖DU(r)‖1,∞
(
‖θ(r)‖2,2 + ‖∇3θ(r)‖k′,2

)]
dr.
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Summarizing the estimates above, using the definition of Mε(T ) and the high energy

estimate from Step C, inequality (11.101), we obtain

Mε(T ) ≤ Cδ + Cδ((Mε(T ))
2 +Mε(T )) exp

{
C((Mε(T ))

2 +Mε(T ))
}
. (11.106)

The integrals of the type sup
0≤t≤T

t∫
0
(1+t)γ(1+t−r)−α(1+r)−βdr, which naturally appear in

proving (11.106) are uniformly bounded according to Lemma 7.4. The decay exponents

in the definition of Mε(T ) and ε have been suitably chosen such that the assumptions of

Lemma 7.4 are satisfied (which is shown by a lengthy but easy calculation).

As in Chapter 7 we are now able to conclude that Mε(T ) is uniformly bounded, i.e.

Mε(T ) ≤M0 <∞, (11.107)

where M0 = M0(ε) is independent of T , provided δ is sufficiently small.

Now we deal with case II in assumption (11.78) (no quadratic terms besides θΔθ).

Let

M(T ) := sup
0≤t≤T

{
(1 + t)5/9‖DU(t)‖s1,9/2;

(1 + t)27/26
(
‖θ(t)‖s3,13/2 + ‖∇2θ(t)‖s5,26/11 + ‖∇2θ(t)‖s5,18/7

)}
,

where s1, s3, s5 are sufficiently large such that[
s1 +N9/7

2

]
+ 4 ≤ min{s1, s3}, s1 +N9/7 ≤ s5,[

s3 +N13/11

2

]
+ 4 ≤ min{s1, s3}, s3 +N13/11 ≤ s5,[

s5 +N18/11

2

]
+ 4 ≤ min{s1, s3},[

s5 +N26/15

2

]
+ 4 ≤ min{s1, s3},

(N... from Lemma 11.66, N... ≤ 4).

The initial data V 0 will be assumed to satisfy again

‖V 0‖s0,2 + ‖V 0‖s0,1 < δ,

where δ will be chosen sufficiently small such that M(t) will be uniformly bounded; s0

has to be sufficiently large, at least s0 ≥ max{s1 +N9/7 + 3, s3 +N13/11 + 3, s5 + 4}.
Using Lemma 11.9 we conclude

‖DU(t)‖s1,9/2 ≤ C(1 + t)−5/9δ + C

t∫
0

(1 + t− r)−5/9‖F (V, . . .)(r)‖s1+N9/7,9/7 dr,

‖θ(t)‖s3,13/2 ≤ C(1 + t)−27/26δ + C

t∫
0

(1 + t− r)−27/26‖F (V, . . .)(r)‖s3+N13/11,13/11 dr.
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Let
p1 := 9/7, q1 := 9/2, q̃1 := 18,

p2 := 13/11, q2 := 13/2, q̃2 := 26/5.

Then

1/pj = 1/2 + 1/qj + 1/q̃j, j = 1, 2,

18 = q̃1 > q̃2 > q2 > q1 = 9/2.

This implies the validity of the following inequality (N ∈ IN):

‖f1f2f3‖N,pj ≤ C
{
‖f1‖N,2‖f2‖[N/2]+1,q̃j‖f3‖[N/2]+1,qj (11.108)

+‖f1‖[N/2]+1,qj‖f2‖N,2‖f3‖[N/2]+1,q̃j

+‖f1‖[N/2]+1,qj‖f2‖[N/2]+1,q̃j‖f3‖N,2

}
.

Remember that F has the form F = (0, f 1, f 2) (cf. (11.76)). Typical terms in f 1 = f 1,c

have the form given in (11.102).

Using (11.108) we get

‖f 1(V, . . .)‖s1+N9/7,9/7 ≤ C‖V ‖s0,2
(
‖θ‖s3,13/2 + ‖θ‖2s3,13/2 + ‖∇U‖2s1,9/2

)
.

The typical cubic terms in f 2 are dealt with similarly. For the quadratic term θΔθ we

obtain

‖θΔθ‖s1+N9/7,9/7 ≤ C‖θ‖s1+N9/7+2,9/7‖∇2θ‖s1+N9/7,18/7.

Thus we conclude

‖F (V, . . .)‖s1+N9/7,9/7 (11.109)

≤ C‖V ‖s0,2
(
‖θ‖s3,13/2 + ‖θ‖2s3,13/2 + ‖∇U‖2s1,9/2 + ‖∇2θ‖s5,18/7

)
.

Analogously

‖F (V, . . .)‖s3+N13/11,13/11 (11.110)

≤ C‖V ‖s0,2
(
‖θ‖s3,13/2 + ‖θ‖2s3,13/2 + ‖∇U‖2s1,9/2 + ‖∇2θ‖s5,26/11

)
.

Finally we notice that the integrands ‖F (V, . . .)‖... appearing in the estimates for

‖∇2θ(t)‖s5,18/7 and ‖∇2θ(t)‖s5,26/11 can be estimated by the same right-hand sides in

(11.109) and (11.110), respectively. (Observe for example that the following inequality

holds:

‖θΔθ‖s5+N18/11,18/11 ≤ C‖θ‖s5+N18/11+2,2‖θ‖[ s5+N18/11
2

]
+3,13/2

≤ C‖θ‖s0,2‖θ‖s3,13/2.)
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Summarizing these estimates we get

M(T ) ≤ Cδ + Cδ((M(T ))2 +M(T )) exp
{
C((M(T ))2 +M(T ))

}
.

This is the same inequality as that obtained for Mε(T ) in (11.106). Analogously, M(T )

is bounded by M0 if δ is sufficiently small, M0 being independent of T :

M(T ) ≤M0 <∞. (11.111)

(11.107) and (11.111) are the desired weighted a priori estimates and now lead as usual

to the desired energy estimate.

E: Final energy estimate:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s ≥ s0 (s0 from Step D), δ small enough as given in Step D, K being independent of T .

Altogether we have proved the following global existence theorem.

Theorem 11.11 Let the nonlinearity satisfy (11.78). Then there exist an integer s0 and

a δ > 0 such that the following holds:

If (∇U0, U1, θ0) ∈ W s,2 ∩W s,1 with s ≥ s0 and

‖(∇U0, U1, θ0)‖s,2 + ‖(∇U0, U1, θ0)‖s,1 < δ,

then there is a unique solution (U, θ) of the initial value problem to the nonlinear equa-

tions of thermoelasticity (11.67), (11.68), (11.71) in IR3 with

(∇U, Ut) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2),

θ ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−2,2).

Moreover, the asymptotic behavior can be described as follows.

Case I (no cubic terms): There exist integers l < k′ < k ≤ s such that for ε < 1/8 we

have

‖(∇U, Ut, θ)(t)‖s,2 = O(1),

‖∇3θ(t)‖k,2 + ‖(∇U, Ut)(t)‖l,∞ = O(t−3/4+ε),

‖∇3θ(t)‖k′,2 = O(t−3/2+2ε),

‖∇θ(t)‖1,2 + ‖θt(t)‖∞ = O(t−5/4),

‖θ(t)‖2,2 = O(t−3/4),

‖θ(t)‖2,∞ = O(t−3/2+ε) as t→∞.
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Case II (no quadratic terms but θΔθ): There exist integers s1, s3, s5 ≤ s with

‖(∇U, Ut, θ)(t)‖s,2 = O(1),

‖(∇U, Ut)(t)‖s1,9/2 = O(t−5/9),

‖θ(t)‖s3,13/2 + ‖∇2θ(t)‖s5,26/11 + ‖∇2θ(t)‖s5,18/7 = O(t−27/26) as t→∞.

We remark that beyond the previous theorem there are only local existence theorems

for initial value problems in three space dimensions. These cover also non-

homogeneous, anisotropic media and both bounded and unbounded domains, see A.

Chrzȩszczyk [20] and Jiang & Racke [62].

This section will be concluded by an example that shows that one has to expect the

development of singularities in finite time if there are purely quadratic nonlinear terms

only involving derivatives of the displacement, not involving the temperature, as

∇U∇2U, ∇U∇Ut.

The idea of proving a blow-up is that the hyperbolic part predominates and that solutions

to the nonlinear equations of elasticity in general develop singularities in three space

dimensions if there are quadratic nonlinearities, see Section 11.1.

The ansatz that we make comes from the observation that solutions (U, θ) to the lin-

earized equations can be decoupled into (Uso, 0)+ (Upo, θ) where the divergence-free Uso

is no longer coupled to θ and solves a linear wave equation, see Step A above. That

is, for U0,so 
= 0 or U1,so 
= 0 there is always a non-trivial purely hyperbolic part in the

(linear) equations which does not involve θ and hence does not experience any damping.

Remark: Uso ≡ 0 in one space dimension, i.e. the ansatz below cannot work there.

Indeed, we know that in one dimension global solutions always exist if the data are

sufficiently small without further restrictions on the nonlinearity; see the discussion of

one-dimensional models at the beginning of this section.

In the (three-dimensional) nonlinear case it will now be the aim to obtain a decomposition

of U for a plane wave U into some divergence-free part Uσ and a curl-free part Uπ,

compatible with the special nonlinearity that we shall choose, which has to be determined

such that Uσ satisfies

∂2
t U

σ
i −

3∑
m,j,k=1

Cimjk(∇Uσ, 0)∂m∂kU
σ
j = 0, i = 1, 2, 3,

Uσ(t = 0) = U0,σ, Uσ
t (t = 0) = U1,σ.

Actually, Uσ will be a function of x1 only (plane wave) and Uσ will satisfy

∂2
t U

σ
i −

3∑
j=1

Bij(∂1U
σ)∂2

1U
σ
j , i = 1, 2, 3

-boundary
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for some Bij , and this will be a genuinely nonlinear strictly hyperbolic system. Then

the general results from T.-P. Liu [112]
{
or F. John [64]

}
will imply that there are

nonlinearities which on one hand satisfy at least the basic (physical) properties — as

they are given for instance in the global existence theorem above (of course besides

the degeneracy requirement (11.78)). On the other hand, the nonlinearities are such

that for compactly supported (in x1), non-vanishing smooth data (U0,σ, U1,σ), which

are sufficiently small, a plane-wave solution cannot be of class C2
{
resp. C3

}
for all

positive t.

The components (U2, U3) will develop the singularities. The coefficients in the differential

equations (11.67), (11.68) for (U, θ) are — besides the heat flux vector q — given by a

free Helmholtz energy (Helmholtz potential) ψ = ψ(∇U, θ), see (11.69), (11.70) where

in particular we should have

a ≥ a0 > 0 for some constant a0, (11.112)

(C̃im)im 
= 0 (“really coupled”). (11.113)

We consider plane waves

U(t, x) = Ũ(t, τ · x), τ ∈ IR3 fixed.

We also assume θ(t, x) = θ̃(t, τ · x) and we write U and θ again instead of Ũ and θ̃

respectively. For simplicity we choose

τ := (1, 0, 0)′,

that is U and θ become functions of x1 (and t) only. We may decompose U into

U = (0, U2, U3)
′ + (U1, 0, 0)

′ ≡ Uσ + Uπ,

where Uσ, Uπ satisfy

∇′Uσ = 0, ∇× Uπ = 0.

In this sense it is again a decomposition into divergence-free, respectively, curl-free parts,

but this decomposition is no longer in L2.

Let P σ denote the corresponding projection

U �→ P σU := Uσ.

As indicated above the aim is to obtain the relation

0 = ∂2
tU

σ − P σ

⎧⎨⎩
3∑

m,j,k=1

Cimjk(∇U, θ)∂m∂kUj +
3∑

m=1

C̃im(∇U, θ)∂mθ
⎫⎬⎭

i=1,2,3

(11.114)

= ∂2
tU

σ −
⎧⎨⎩

3∑
m,j,k=1

Cimjk(∇Uσ, 0)∂m∂kU
σ
j

⎫⎬⎭
i=1,2,3

,
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where the coefficient Cimjk(∇U, 0) does not depend on θ. For this purpose we require at

first

P σ

{
3∑

m=1

C̃im(∇U, θ)∂mθ
}

i=1,2,3

= 0. (11.115)

In order to have a nonlinear dependence of Cimjk in θ we additionally require

∂Cimjk

∂θ

= 0 at least for one quadrupel (i,m, j, k). (11.116)

To obtain (11.114) we now have to postulate

P σ

⎧⎨⎩
3∑

m,j,k=1

Cimjk(∇U, θ)∂m∂kUj

⎫⎬⎭
i=1,2,3

= (11.117)

⎧⎨⎩
3∑

m,j,k=1

Cimjk(∇Uσ, 0)∂m∂kU
σ
j

⎫⎬⎭
i=1,2,3

.

Since we are considering plane waves the final system for Uσ should be

∂2
tU

σ
i −

3∑
j=1

Bij(∂1U
σ)∂2

1U
σ
j = 0, i = 1, 2, 3, (11.118)

Uσ(t = 0) = U0,σ, Uσ
t (t = 0) = U1,σ,

where

Bij(∂1U
σ) = Ci1j1(∇Uσ, 0), i, j = 1, 2, 3. (11.119)

Let

V (α) := ψ

⎛⎜⎜⎝
⎛⎜⎜⎝

α1 0 0

α2 0 0

α3 0 0

⎞⎟⎟⎠ , 0

⎞⎟⎟⎠ , α ∈ IR3, (11.120)

and

Vij(α) := Bij

⎛⎜⎜⎝
⎛⎜⎜⎝

α1 0 0

α2 0 0

α3 0 0

⎞⎟⎟⎠
⎞⎟⎟⎠ . (11.121)

Then the system (11.118) is strictly hyperbolic if

the matrix (Vij(α))ij has only positive distinct eigenvalues (11.122)

and it is genuinely nonlinear if

d3(V (sβ))

ds3

∣∣∣∣∣
s=0


= 0 for any right eigenvector β of (Vij(α))ij. (11.123)

(For the notion of “strictly hyperbolic” and “genuinely nonlinear” see [64].) Then the

following theorem will follow from the general result in [112, p. 107]
{
resp. [64, p. 387]

}
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if there is a nonlinearity ψ satisfying all the conditions gathered in the following formula

(11.124):

(11.112), (11.113), (11.115), (11.116), (11.117), (11.122), (11.123) (11.124)

(at least in a neighbourhood of zero).

Theorem 11.12 There exist nonlinearities satisfying (11.124) such that for compactly

supported non-vanishing smooth data (U0,σ, U1,σ) which are sufficiently small, i.e.

sup
x1∈IR

∣∣∣∂1 (∂1U0
2 , ∂1U

0
3 , U

1
2 , U

1
3

)
(x1)

∣∣∣
{
resp. sup

x1∈IR

∣∣∣∂2
1

(
∂1U

0
2 , ∂1U

0
3 , U

1
2 , U

1
3

)
(x1)

∣∣∣ }
is sufficiently small, a plane-wave solution of the nonlinear equations of thermoelasticity

(11.67), (11.68), (11.71) in IR3 cannot be of class C2 {resp. C3} for all positive t.

Proof: We choose the following function ψ:

ψ(∇U, θ) := 3(∂1U1)
2 + (∂1U2)

2 + (∂1U3)
2 + (∂1U2)(∂1U3)

+a111(∂1U1)
3 + a222(∂1U2)

3 + a333(∂1U3)
3

+a223(∂1U2)
2(∂1U3) + a233(∂1U2)(∂1U3)

2

+(∂1U1)
2θ + γθ

3∑
j=1

(∂jUj)− θ2

with coefficients satisfying

a111, a222, a333, a223, a233, γ ∈ IR \ {0}, (11.125)

a222 + a333 + a223 + a233 
= 0, (11.126)

a222 − a333 − a223 + a233 
= 0. (11.127)

Now it has become a more or less simple algebraic task to check whether this ψ satisfies

the conditions (11.124).

By the definition of Cimjk, and C̃im the relations required in (11.112), (11.113), (11.115),

(11.116) are immediately clear. It remains to show (11.117), (11.122) and (11.123).

We have

Cimjk(∇U, θ) = 0 for (m, k) 
= (1, 1).

The relation (11.117) is then equivalent to

0 =
3∑

j=1

C11j1(∇Uσ, 0)∂2
1U

σ
j (11.128)
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and
3∑

j=1

Ci1j1(∇U, θ)∂2
1Uj =

3∑
j=1

Ci1j1(∇Uσ, 0)∂2
1U

σ
j , i = 2, 3. (11.129)

The relation (11.128) holds because

Uσ
1 = 0 and C1121 = C1131 = 0.

We have

(Ci1j1(∇U, θ))ij = (11.130)⎛⎜⎜⎜⎜⎜⎜⎜⎝
6 + 6a111(∂1U1) + 2θ 0 0

0 2 + 6a222(∂1U2) + 2a223(∂1U3) 1 + 2a223(∂1U2) + 2a233(∂1U3)

0 1 + 2a223(∂1U2) + 2a233(∂1U3) 2 + 6a333(∂1U3) + 2a233(∂1U2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

Ci1j1(∇U, θ) = Ci1j1(∇U, 0) for (i, j) 
= (1, 1).

Let i ∈ {2, 3}. Then we obtain from (11.130) and the definition of Uσ:

3∑
j=1

Ci1j1(∇U, θ)∂2
1Uj =

3∑
j=2

Ci1j1(∇U, θ)∂2
1Uj

=
3∑

j=2

Ci1j1(∇U, 0)∂2
1Uj =

3∑
j=2

Ci1j1(∇Uσ, 0)∂2
1Uj

=
3∑

j=2

Ci1j1(∇Uσ, 0)∂2
1U

σ
j =

3∑
j=1

Ci1j1(∇Uσ, 0)∂2
1U

σ
j

which yields (11.129) and thus (11.117).

By (11.119) – (11.121) we obtain

(Vij(α))ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
6 + 6a111α1 0 0

0 2 + 6a222α2 + 2a223α3 1 + 2a223α2 + 2a233α3

0 1 + 2a223α2 + 2a233α3 2 + 6a333α3 + 2a233α2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and it is clear that (Vij(0))ij has the three positive distinct eigenvalues

λ1 = 6, λ2 = 3, λ3 = 1.

Hence (11.122) is satisfied in a neighbourhood of zero. Moreover,

d3V (sβ)

ds3

∣∣∣∣∣
s=0

= 6a111β
3
1 + 6a222β

3
2 + 6a333β

3
3 + 6a223β

2
2β3 + 6a233β2β

2
3

=: H(β),
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where β = β(α) is a right eigenvector of (Vij(α))ij . For α = 0 we have the three right

eigenvectors

β1 = (1, 0, 0)′, β2 = (0, 1, 1)′, β3 = (0, 1,−1)′

and we obtain from (11.125)

H(β1) = 6a111 
= 0, (11.131)

and from (11.126), (11.127)

H(β2) = 6(a222 + a333 + a223 + a233) 
= 0, (11.132)

and

H(β3) = 6(a222 − a333 − a223 + a233) 
= 0. (11.133)

A combination of the relations (11.131) – (11.133) yields (11.123) in a neighbourhood of

zero which completes the proof of Theorem 11.12.

Q.e.d.

We remark that with the results in this section the nonlinear equations of thermoelasticity

were basically understood, but there are many interesting remaining problems such as

problems with anisotropic media (cf. Section 11.1) or boundary value problems in three

space dimensions or large data problems. (This remark applies mutatis mutandis to the

other systems in Chapter 11, too.)

11.4 Schrödinger equations

(Erwin Schrödinger, 12.8.1887 – 4.1.1961)

The following type of differential equation

ut − iΔu = F (u,∇u), (11.134)

with initial value

u(t = 0) = u0, (11.135)

for a complex-valued function u = u(t, x), t ≥ 0, x ∈ IRn, i =
√−1, will be studied. (In

quantum mechanics u describes the state of a particle in a quantum mechanical system.)

The smooth function F is assumed to satisfy

F (w) = O(|w|α+1) as |w| → 0 for some α ∈ IN, (11.136)

and
∂F (w)

∂(∂ju)
is real, j = 1, ..., n, w ∈ IRn+1. (11.137)

It is apparent that F does not depend on the second derivatives of u. One reason for

this is that there seems to be no local existence theorem covering general second-order
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nonlinearities, see Step B below and Section 11.7, where a similar situation is given for

nonlinear plate equations. In connection with this one should notice that if u is a solution

of the linear Schrödinger equation, u = u1 + iu2, with real-valued functions u1, u2, then

u1 and u2 are solutions of the linear plate equation

∂2
t uj +Δ2uj = 0, j = 1, 2,

which easily follows from

∂tu1 = −Δu2 and ∂tu2 = Δu1.

On the other hand, if the real-valued function v solves

vtt +Δ2v = 0

then u defined by

u := vt + iΔv

solves the linear Schrödinger equation,

ut − iΔu = 0,

a fact which will be used in Section 11.7. This elementary but important relation is

expected to have implications for the relation between the corresponding nonlinear sys-

tems too.

Now we start following the general Steps A–E.

A: Decay for F ≡ 0:

The linear equation

ut − iΔu = 0 (11.138)

can formally be obtained from the linear heat equation (11.46) by the transformation

t → it and indeed, the solution formula corresponding to that for the heat equation,

formula (11.47), now becomes

u(t, x) := (4πit)−n/2
∫
IRn

e
i|x−y|2

4t u0(y)dy, (11.139)

which solves (11.138) for a suitable class of initial data u0. (The class of admissible data

u0 such that (11.139) defines a classical solution is smaller than the corresponding one

for the heat equation due to the regularizing properties of the heat kernel which decays

exponentially.) As in Section 11.2 we immediately obtain from (11.139)

‖u(t)‖∞ ≤ c(1 + t)−n/2‖u0‖n1,1, n1 > n, (11.140)
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t ≥ 0, c > 0 being independent of t.

Moreover we get from (11.138)

Re

⎡⎣∫
IRn

utu+ i
∫
IRn

∇u∇u
⎤⎦ = 0

(z denoting the complex conjugate of z ∈ C),

which implies
d

dt
‖u(t)‖22 = 0 (11.141)

or

‖u(t)‖2 = ‖u0‖2 for all t ≥ 0. (11.142)

By interpolation we obtain from (11.140), (11.142):

‖u(t)‖q ≤ c(1 + t)−
n
2
(1− 2

q
)‖u0‖Np,p, (11.143)

t ≥ 0, c = c(q, n), where 2 ≤ q ≤ ∞, 1/p+ 1/q = 1 and

Np > n(1− 2/q) (Np = n(1 − 2/q) if q ∈ {2,∞}) .

In contrast to the situation in Section 11.2 where we discussed the (linear) heat equation,

derivatives of solutions to the linear Schrödinger equation do not decay with a larger de-

cay rate as do solutions to the linear heat equation. Also the L2-norm ‖u(t)‖2 of u here

does not decay at all. In addition, one should observe the difference between the en-

ergy equation (11.142) and the corresponding energy equation (11.49). The dissipative

integral term in (11.49) is missing in the non-dissipative but conservative Schrödinger

energy equation (11.142).

B: Local existence and uniqueness:

The nonlinear system (11.134), (11.135) is neither covered by the local existence theorem

for symmetric hyperbolic systems, Theorem 5.8, nor by that on symmetric hyperbolic-

parabolic coupled systems in Appendix C (although a similar proof to that for Theorem

C.4 used in Appendix C gives a unique local solution to the nonlinear Schrödinger

system).

A local solution

u ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−2,2)

for some T > 0 is provided by T. Kato in [83, pp. 70,71] if u0 ∈ W s,2. If s is odd, s has

to be at least 2[n+2
4
]+3; if s is even, s has to be at least 2[n

4
]+4. These restrictions arise

in [83] in studying boundary value problems. In [83] special second-order nonlinearities

are also dealt with. For recent developments see the references in Chapter 13.2.
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C: High energy estimates:

‖u(t)‖s,2 ≤ c‖u0‖s,2 exp{c
t∫

0

‖u(r)‖α2,∞dr}, t ∈ [0, T ], c = c(s).

We shall give a proof for the case α = 1 in order to point out where the second assump-

tion on the nonlinearity F , (11.137), plays a role.

F is written as

F (u,∇u) = F 0(w)u +
n∑

j=1

F 1
j (w)∂ju, w := (u,∇u),

where

F 0(w) :=

1∫
0

∂F (rw)

∂u
dr,

F 1
j (w) :=

1∫
0

∂F (rw)

∂(∂ju)
dr, j = 1, . . . , n.

The first assumption on F , (11.136), implies

F 0(0) = F 1
j (0) = 0, j = 1, ..., n.

Let β ∈ INn
0 , 0 ≤ |β| ≤ s. We have for the local solution the identity

1

2

d

dt
‖∇βu(t)‖22 = Re 〈∇βF (w),∇βu〉(t)

which follows directly from the differential equation. Dropping the parameter t, we shall

investigate the most difficult terms

Re 〈∇β(F 1
j (w)∂ju),∇βu〉,

j ∈ {1, . . . , n} arbitrary but fixed in the sequel.

1. |β| = 0:

Re 〈F 1
j (w)∂ju, u〉 = − Re 〈(∂jF 1

j (w))u, u〉 − Re 〈F 1
j (w)u, ∂ju〉.

The assumption (11.137) says that F 1
j (w) is real which implies

Re 〈F 1
j (w)∂ju, u〉 = Re 〈F 1

j (w)u, ∂ju〉
and hence

Re 〈F 1
j (w)∂ju, u〉 = − 1

2
Re 〈(∂jF 1

j (w))u, u〉

≤ c ‖w‖1,∞‖u‖22

≤ c ‖u‖2,∞‖u‖2s,2.
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2. 0 < |β| ≤ s− 1:

Re 〈∇β(F 1
j (w)∂ju), ∇βu〉 = Re 〈F 1

j (w)∇β∂ju, ∇βu〉

+Re 〈∇β(F 1
j (w)∂ju) − F 1

j (w)∇β∂ju, ∇βu)〉 ≡ R1 +R2.

In analogy to the case 1 (|β| = 0) we obtain

|R1| ≤ c‖u‖2,∞‖u‖2|β|,2 ≤ c‖u‖2,∞‖u‖2s,2.

The second termR2 is estimated with the help of the commutator estimates in Lemma 4.9:

|R2| ≤ c(‖∇F 1
j (w)‖∞‖∇|β|−1∂ju‖2 + ‖∇|β|F 1

j (w)‖2‖∂ju‖∞)‖∇|β|u‖2

≤ c‖u‖2,∞‖u‖2|β|,2 + c‖(u,∇u)‖|β|,2‖u‖1,∞‖u‖|β|,2

≤ c‖u‖2,∞‖u‖2|β|,2 + c‖u‖2,∞‖u‖|β|+1,2‖u‖|β|,2

≤ c‖u‖2,∞‖u‖2s,2.

3. |β| = s:

The critical term in case 2 was ‖u‖|β|+1,2 which stemmed from Re 〈∇sF (u,∇u),∇su〉.
According to the cases 1, 2 only the term with the highest derivatives is critical. This

term has the form

Re 〈a(u,∇u)∇s∇u,∇su〉
with

a(u,∇u) ∈ IR

because of the assumption (11.137). Thus we obtain (as in case 1 where s = 0) that

Re 〈a(u,∇u)∇s∇u,∇su〉 ≤ c‖u‖2,∞‖u‖2s,2.

This proves the desired high energy estimate.

D: Weighted a priori estimates:

The following estimate is proved in the standard manner.

sup
0≤t≤T

(1 + t)n/2(1−2/q)‖u(t)‖s1,q ≤M0 <∞,

where M0 is independent of T , provided

q = 2α+ 2,

1

α
(1 +

1

α
) <

n

2
,
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s1 is sufficiently large and

‖u0‖s,2 + ‖u0‖s, 2α+2
2α+1

is sufficiently small (s > s1 being sufficiently large).

E: Final energy estimate:

‖u(t)‖s,2 ≤ K‖u0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, u0 being sufficiently small, K being independent of T (and u0).

Summarizing, we obtain the following global existence theorem.

Theorem 11.13 We assume (11.136) with 1
α
(1 + 1

α
) < n

2
and (11.137). Then there

exist an integer s0 and a δ > 0 such that the following holds:

If u0 belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2
2α+1

and

‖u0‖s,2 + ‖u0‖s,p < δ,

then there is a unique solution u of the initial value problem to the nonlinear Schrödinger

equation (11.134), (11.135) with

u ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−2,2).

Moreover, we have

‖u(t)‖∞ + ‖u(t)‖2α+2 = O(t−n
2

α
α+1 ),

‖u(t)‖s,2 = O(1) as t→∞.

Remark: The semilinear case where F = F (u) does not depend on derivatives of u,

has found a wide interest and there are already many more results; see for example the

papers of Ginibre & Velo [38], Y. Tsutsumi [182] or the book of W. Strauss [179] and

the references there.

In analogy to the wave equation (cf. Chapter 4 and the proof of Theorem 1.2 in Chapter

8) invariance properties of the Schrödinger equation have been investigated and optimal

L∞-decay rates have been obtained, see P. Constantin [22].

11.5 Klein–Gordon equations

(Oskar Benjamin Klein, 15.9.1894 – 5.2.1977; Walter Gordon, 3.8.1893 – 24.12.1939)
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The equations of the type

utt −Δu+mu = f(u,Du,D∇u), (11.144)

with initial values

u(t = 0) = u0, ut(t = 0) = u1, (11.145)

for a real function u = u(t, x), t ≥ 0, x ∈ IRn,

where

m > 0 is a constant (“mass”),

and where f is smooth and satisfies

f(W ) = O(| W |α+1) as |W | → 0, for some α ∈ IN, (11.146)

are covered to a large extent by the considerations already made for the nonlinear wave

equations — by which we denoted the corresponding equations with m = 0 — in the

Chapters 5–8. Here we find better decay rates and the L2-norm of u(t) can be estimated

easily (cf. the remarks in Chapter 8 for the case f = f(y, . . .) there), which leads to a

global existence result with weaker assumptions on the relation between α and n.

Remarks: The nonlinear Klein–Gordon equation (11.144) is a relativistically invariant

(in contrast to the Schrödinger equation (11.134)) equation describing the wave function

of a particle with spin zero. Also, the only difference with the discussion on the nonlinear

wave equation will be the derivation of better Lp–Lq-decay estimates.

The canonical transformation to a first-order system in t is given by

V := (ut,∇u,
√
mu), V 0 := (u1,∇u0,

√
mu0).

Then V satisfies

Vt + AV = F (V ), V (t = 0) = V 0,

where A is given elementarily and

F (V ) = (f(u,Du,D∇u), 0, 0)′.

A: Decay for F ≡ 0:

Let u solve in [0,∞)× IRn

utt −Δu+mu = 0, u(t = 0) = u0, ut(t = 0) = u1, (11.147)

u0, u1 ∈ C∞
0 (IRn).

Then v defined by

v(t, x1, . . . , xn+1) := e−i
√
mxn+1u(t, x1, . . . , xn) (11.148)
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solves

vtt −Δv = 0, (11.149)

v(0, x1, . . . , xn+1) = e−i
√
mxn+1u0(x1, . . . , xn), (11.150)

vt(0, x1, . . . , xn+1) = e−i
√
mxn+1u1(x1, . . . , xn) (11.151)

in [0,∞)× IRn+1. Therefore, we shall first study decay rates for solutions to the linear

wave equation and then we have to check how the factor e−i
√
mxn+1 affects the calcula-

tions.

The following brief estimates for t ≥ 1 are taken fromW. von Wahl’s paper [187] and lead

to another proof of Theorem 2.3 (which we proved in Chapter 2 even more elementarily

for n = 3).

The two cases of odd respectively even space dimensions have to be discussed separately.

Case 1: n odd, n ≥ 3. (For n = 1 cf. Chapter 2.)

Let ϕ ∈ C
n+1
2 (IRn), ψ ∈ C

n−1
2 (IRn) be compactly supported and let v solve

vtt −Δv = 0 in [0,∞)× IRn, (11.152)

v(t = 0) = ϕ, vt(t = 0) = ψ. (11.153)

Then v is given by the classical formula

v(t, x) =
(n−3)/2∑

j=0

(j + 1)ajt
j

(
∂j

∂tj
Q1

)
(t, x) (11.154)

+t
(n−3)/2∑

j=0

ajt
j

((
∂j+1

∂tj+1
Q1

)
(t, x) +

(
∂j

∂tj
Q2

)
(t, x)

)
,

where the coefficients aj, j = 0, . . . , (n − 3)/2, are constants depending only on n, and

Q1, Q2 are given by

Q1(t, x) :=
1

ωn

∫
Sn−1

ϕ(x+ tξ)dξ, (11.155)

Q2(t, x) :=
1

ωn

∫
Sn−1

ψ(x+ tξ)dξ, (11.156)

where ωn denotes the surface measure of the unit sphere Sn−1 in IRn, (see [187] resp.

Courant & Hilbert [23, pp. 681–691]).

Example: For n = 3 and ϕ = 0 one has a0 = 1 and we obtain

v(t, x) =
t

4π

∫
S2

ψ(x+ tξ)dξ.
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This is Kirchhoff’s formula which we used in Chapter 2.

Using the elementary formula∫
Sn−1

ξjf(tξ)dξ = t−(n−1)
∫

K(0,t)

(∂jf)(x)dx

for f ∈ C1(K(0, t)), t > 0, K(0, t) = {x ∈ IRn | |x| ≤ t}, we obtain for j ≥ 1:

∂j

∂tj
Q1(t, x) =

1

ωn

∑
|α|=j

∫
Sn−1

(∇αϕ)(x+ tξ)ξαdξ

≤ 1

ωn

∑
|α|=j

∑
|β|=1,α≥β

t−|α−β|
∣∣∣∣∣∣

∫
Sn−1

(∇αϕ)(x+ tξ)(tξ)α−βξβdξ

∣∣∣∣∣∣
=

1

ωn

∑
|α|=j,|β|=1,α≥β

t−|α−β|−(n−1)

∣∣∣∣∣∣∣
∫

K(0,t)

(∇α∇βϕ)(x+ y)yα−βdy

∣∣∣∣∣∣∣
≤ 1

ωn

∑
|α|=j+1,|γ|=|α|−2

t−(n−1)t−|γ|

∣∣∣∣∣∣∣
∫

K(0,t)

(∇αϕ)(x+ y)yγdy

∣∣∣∣∣∣∣ ,
analogously for Q2.

Thus we get from (11.154)

|v(t, x)| ≤ c
{
|Q1(t, x)| (11.157)

+
(n−3)/2∑

j=1

tj−(n−1)
∑

|α|=j+1,|γ|=|α|−2

t−|γ|{|
∫

K(0,t)

(∇αϕ)(x+ y)yγdy|

+ t |
∫

K(0,t)

(∇αψ)(x+ y)yγdy|}+ t|Q2(t, x)|

+
(n−3)/2∑

j=1

tj+1−(n−1)
∑

|α|=j+2,|γ|=|α|−2

t−|γ| |
∫

K(0,t)

(∇αϕ)(x+ y)yγdy|
}
,

where c denotes a constant which at most depends on n (the symbol c will also be used

in the sequel).

Moreover we have

|Q1(t, x)| ≤ 1

tωn
|

n∑
j=1

∫
Sn−1

ϕ(x+ tξ)tξjξjdξ| (11.158)

≤ c

ωn

t−n
∑

0≤|α|≤1, 0≤|γ|≤1

|
∫

K(0,t)

(∇αϕ)(x+ y)yγdy|,
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analogously for Q2.

In order to estimate the right-hand side of (11.157) we consider the typical term

t−|γ|
∫

K(0,t)

(∇αϕ)(x+ y)yγdy.

Let λ, μ ≥ 0 be such that

μ < 1, λ+ μ ≤ 1.

Since

(1− μ) + (1− λ) = 1 + (1− λ− μ)

we may apply the convolution inequality (4.5) to get

‖t−|γ|
∫

K(0,t)

(∇αϕ)(·+ y)yγdy‖L1/(1−λ−μ)(IRn) (11.159)

≤ ‖∇αϕ‖L1/(1−μ)(IRn)t
−|γ| ‖ | ·γ | ‖L1/(1−λ)K(0,t)

≤ c tn(1−λ)‖∇αϕ‖L1/(1−μ)(IRn).

The inequalities (11.157) – (11.159) imply for v(t) = v(t, ·) and t ≥ 1:

‖v(t)‖L1/(1−λ−μ)(IRn) ≤ c tn(1−λ)t−
n−1
2 {t−n−1

2 ‖ϕ‖L1/(1−μ)(IRn)

+
∑

1≤|α|≤(n−3)/2+2

‖∇αϕ‖L1/(1−μ)(IRn) + t−
n−3
2 ‖ψ‖L1/(1−μ)(IRn)

+
∑

1≤|α|≤(n−3)/2+1

‖∇αψ‖L1/(1−μ)(IRn)}.

In particular we have for μ = 0, λ = 1:

‖v(t)‖∞ ≤ c t−
n−1
2 {‖ϕ‖n+1

2
,1 + ‖ψ‖n−1

2
,1}, (11.160)

which is the desired L1–L∞-decay estimate for t ≥ 1 and for n odd.

Case 2: n even.

In this case the solution v of (11.152), (11.153), is explicitly given by

v(t, x) =
(n−2)/2∑

j=0

(j + 1)bjt
j

(
∂j

∂tj
G1

)
(t, x) (11.161)

+ t
(n−2)/2∑

j=0

bjt
j

((
∂j+1

∂tj+1
G1

)
(t, x) +

(
∂j

∂tj
G2

)
(t, x)

)
,
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where the bj , j = 0, . . . , (n − 2)/2, are constants depending only on n, and G1, G2 are

given by

G1(t, x) =
1

ωn+1

∫
Sn

ϕ(x1 + tξ1, . . . , xn + tξn)dξ, (11.162)

G2(t, x) =
1

ωn+1

∫
Sn

ψ(x1 + tξ1, . . . , xn + tξn)dξ. (11.163)

ϕ, ψ are here assumed to satisfy ϕ ∈ C
n+2
2 (IRn), ψ ∈ C

n
2 (IRn), both having compact

support.

Using the representations

G1(t, x) =
2Γ(n+1

2
)√

πΓ(n
2
)tn−1

t∫
0

rn−1

ωn(t2 − r2)1/2

∫
Sn−1

ϕ(x+ rξ)dξ dr, (11.164)

G2(t, x) =
2Γ(n+1

2
)√

πΓ(n
2
)tn−1

t∫
0

rn−1

ωn(t2 − r2)1/2

∫
Sn−1

ψ(x+ rξ)dξ dr, (11.165)

and dividing the integral
t∫
0
. . . into

t−ε∫
0
. . .+

t∫
t−ε

for 0 < ε < t, one obtains after a lengthy

but straightforward calculation similar to that in case 1 above for t ≥ 1:

‖v(t)‖∞ ≤ c t−
n−1
2 {‖ϕ‖n+2

2
,1 + ‖ψ‖n

2
,1}. (11.166)

This is the desired L1–L∞-decay estimate for t ≥ 1 and n even.

It remains to get estimates for ‖v(t)‖∞ if 0 ≤ t ≤ 1. Let 0 ≤ t ≤ 1.

Case 1: n odd, n ≥ 3.

Looking at the representations (11.154), (11.155), (11.156), we consider the typical term

tk
∫

Sn−1

(∇αh)(x+ tξ)ξα dξ,

where |α| = k − 1, 0 ≤ k ≤ (n− 3)/2 for h = ψ and |α| = k, 0 ≤ k ≤ (n− 3)/2 + 1 for

h = ϕ.

We have for m ∈ IN0

|tk
∫

Sn−1

(∇αh)(x+ tξ)ξα dξ| = tk

∣∣∣∣∣∣
∫

Sn−1

∞∫
t

(s− t)m

m!

dm+1

dsm+1
∇αh(x+ sξ)ξαds dξ

∣∣∣∣∣∣

=
tk

m!

∣∣∣∣∣∣∣∣
∫

Sn−1

∞∫
t

sn−1

sn−1

(s− t)m

s|α|+m+1
(sξ)α (sξ) · . . . · (sξ)︸ ︷︷ ︸

(m+1) times

(∇ · . . . · ∇︸ ︷︷ ︸
m+1 times

∇αh)(x+ sξ)ds dξ

∣∣∣∣∣∣∣∣
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≤ 1

m!

∫
|z|>t

tk(|z| − t)m|z||α|+m+1

|z||α|+m+n
|( ∇ · . . . · ∇︸ ︷︷ ︸
m+1+|α| times

h)(x+ z)|dz

≤ c
∫

|z|>t

|z|m+k

|z|n−1
|( ∇ · . . . · ∇︸ ︷︷ ︸
m+1+|α| times

h)(x+ z)|dz.

Choosing m := n− 1− k we obtain

|tk
∫

Sn−1

(∇αh)(x+ tξ)ξα dξ| ≤ c

⎧⎨⎩ ‖h‖n−1,1, if h = ψ,

‖h‖n,1, if h = ϕ.

(Observe that m ≥ 0 since k ≤ (n− 3)/2 + 1.)

Thus we have proved

‖v(t)‖∞ ≤ c {‖ϕ‖n,1 + ‖ψ‖n−1,1} (11.167)

for 0 ≤ t ≤ 1 and ϕ ∈ Cn(IRn), ψ ∈ Cn−1(IRn) having compact support.

Case 2: n even.

Looking at the representations (11.161), (11.164), (11.165) we obtain in the same way

as in case 1, using

t∫
0

(
r

t

)n−1 dr√
t2 − r2

=

1∫
0

sn−1

√
1− s2

ds <∞,

the estimate

‖v(t)‖∞ ≤ c {‖ϕ‖n,1 + ‖ψ‖n−1,1} (11.168)

for 0 ≤ t ≤ 1 and ϕ ∈ Cn(IRn), ψ ∈ Cn−1(IRn) having compact support.

Summarizing the estimates (11.160), (11.166), (11.167), (11.168) we have obtained the

following L1–L∞-estimates for solutions of the linear wave equation

‖v(t)‖∞ ≤ c (1 + t)−
n−1
2 {‖ϕ‖n,1 + ‖ψ‖n−1,1} , t ≥ 0.

Now we consider a solution u of the linear Klein–Gordon equation in [0,∞)× IRn with

initial values u(t = 0) = u0, ut(t = 0) = u1, i.e. u is a solution to (11.147). v defined

by (11.148) solves the linear wave equation (11.149) in [0,∞)× IRn+1 with initial values

(11.150), (11.151).

Since the factor e−i
√
mxn+1 disturbs the integrability properties of the initial data one has

to show directly that this factor does not affect the estimates above. This is carried out

in detail in [187] for t ≥ 1 and goes along the lines of the considerations above. (11.160),

(11.166) then lead to the following estimate for t ≥ 1:

‖u(t)‖∞ ≤ c t−n/2
{
‖u0‖N1+1

2
,1
+ ‖u1‖N1−1

2
,1

}
, (11.169)
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where

N1 :=

⎧⎨⎩ n + 2, if n is odd,

n + 1, if n is even.

For 0 ≤ t ≤ 1 we use the representation for v in (11.154) resp. (11.161) and the reduction

argument for reducing an integral over Sk+1, k ∈ IN, to an integral over Sk, described in

the formulae (11.162), (11.163), (11.164), (11.165), and we obtain

‖u(t)‖∞ ≤ c {‖u0‖n,1 + ‖u1‖n−1,1} . (11.170)

Combining the formulae (11.169), (11.170) we have found the following L1–L∞-estimate

for solutions to the linear Klein–Gordon equation:

‖u(t)‖∞ ≤ c (1 + t)−n/2 {‖u0‖N2,1 + ‖u1‖N2−1,1} (11.171)

where

N2 :=

⎧⎨⎩ n if n ≥ 2,

2 if n = 1.
(11.172)

Remarks: Further more detailed estimates may be found in the papers by S. Klainerman

[89, 92], J. Shatah [158] and T.C. Sideris [173].

ut is also a solution of the linear Klein–Gordon equation with initial values

ut(t = 0) = u1, utt(t = 0) = Δu0 −mu0 ;

hence we obtain

‖ut(t)‖∞ ≤ c (1 + t)−n/2 {‖u1‖N2,1 + ‖u0‖N2+1,1} . (11.173)

Analogously, for ∇u with initial values

∇u(t = 0) = ∇u0, ∇ut(t = 0) = ∇u1,

we have

‖∇u(t)‖∞ ≤ c(1 + t)−n/2 {‖u0‖N2+1,1 + ‖u1‖N2,1} . (11.174)

Summarizing (11.171), (11.173), (11.174) we obtain the following L1–L∞-decay estimate

for V = (ut,∇u, u) with V (t = 0) = V 0 = (u1,∇u0, u0):

‖V (t)‖∞ ≤ c(1 + t)−n/2‖V 0‖N,1, t ≥ 0, (11.175)

where

N :=

⎧⎨⎩ n if n ≥ 2,

2 if n = 1.
(11.176)

The corresponding L2–L2-estimate for V easily follows by multiplication of the differen-

tial equation for u with ut in L2(IRn) leading to

d

dt

{
‖ut(t)‖22 + ‖∇u(t)‖22 +m‖u(t)‖22

}
= 0,



190 11 More Evolution Equations

whence we conclude

‖V (t)‖2 = ‖V 0‖2, t ≥ 0. (11.177)

The estimates (11.175) and (11.177) give us the Lp–Lq-decay estimates by interpolation:

‖V (t)‖q ≤ c(1 + t)−
n
2
(1− 2

q
)‖V 0‖Np,p, t ≥ 0, c = c(q, n),

where 2 ≤ q ≤ ∞, 1/p + 1/q = 1 and Np > N(1 − 2/q), N being defined in (11.176)

(Np = N(1− 2/q) if q ∈ {2,∞}).

B: Local existence and uniqueness:

Transforming the nonlinear Klein–Gordon equation (11.144) in the standard way to a

first-order symmetric hyperbolic system (cf. Chapters 3, 5) for V , we obtain a unique

local solution by Theorem 5.8,

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−1,2)

for some T > 0, if s > n/2 + 1 and V 0 ∈ W s,2.

The following Steps C–E are analogous to those for the wave equation. We obtain

C: High energy estimates:

‖V (t)‖s,2 ≤ C‖V 0‖s,2 exp
⎧⎨⎩C

t∫
0

‖DV (r)‖α∞ dr

⎫⎬⎭ , t ∈ [0, T ], C = C(s).

D: Weighted a priori estimates:

sup
0≤t≤T

(1 + t)
n
2
(1− 2

q
)‖V (t, ·)‖s1,q ≤M0 <∞,

where M0 is independent of T , provided

q = 2α + 2,

1

α

(
1 +

1

α

)
<

n

2
,

s1 is sufficiently large and

‖V 0‖s,2 + ‖V 0‖s, 2α+2
2α+1

is sufficiently small (s > s1 being sufficiently large).

E: Final energy estimate:

‖V (t, ·)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, V 0 being sufficiently small, K being independent of T (and

V 0).

Altogether we obtain the following global existence theorem.
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Theorem 11.14 We assume (11.146) with 1
α
(1 + 1

α
) < n

2
. Then there exist an integer

s0 >
n
2
+ 1 and a δ > 0 such that the following holds:

If V 0 = (u1,∇u0,
√
mu0) belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2

2α+1
and

‖V 0‖s,2 + ‖V 0‖s,p < δ,

then there is a unique solution u of the initial value problem to the nonlinear Klein–

Gordon equation (11.144), (11.145) with

(ut,∇u, u) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

Moreover, we have

‖(ut,∇u, u)(t)‖∞ + ‖(ut,∇u, u)(t)‖2α+2 = O(t−n
2

α
α+1 ),

‖(ut,∇u, u)(t)‖s,2 = O(1) as t→∞.

In analogy to the situation for the wave equation (“m = 0”) one can use the special

invariance properties of ∂2
t −Δ to improve the foregoing result, namely it is possible to

obtain global solutions for the cases α = 1 and n = 3 or n = 4 (while Theorem 11.14

would require n > 4); see S. Klainerman [89]. This may also be obtained with different

methods, see the papers by J. Shatah [159] and T.C. Sideris [173]. (For the former see

also the remarks in Chapter 9.)

11.6 Maxwell equations

(James Clerk Maxwell, 13.6.1831 – 5.11.1879)

The Maxwell equations in IR3 are given by

∂tD −∇×H = 0, (11.178)

∂tB +∇×E = 0. (11.179)

Additionally one has the initial conditions

D(t = 0) = D0, B(t = 0) = B0, (11.180)

and the restriction

∇′D = 0, ∇′B = 0. (11.181)

The following notation is used:

D: dielectric displacement, D = (D1, D2, D3) = D(t, x) ∈ IR3, t ≥ 0, x ∈ IR3,

H: magnetic field, H = (H1, H2, H3) = H(t, x),

B: magnetic induction, B = (B1, B2, B3) = B(t, x),

E: electric field, E = (E1, E2, E3) = E(t, x).



192 11 More Evolution Equations

Remark: D ist not used for (∂t,∇)′ in this section.

Electric and magnetic currents are assumed to be zero. Then (11.178) – (11.181) describe

electro-magnetic waves without damping, i.e. the electric conductivity is assumed to be

zero.

The unknown fields are

D = ε(E) and B = μ(H)

(respectively E = ε−1(D) and H = μ−1(B)), where we assume that

ε, μ : IR3 −→ IR3

are smooth bijections and the derivatives ∂ε/∂E, ∂μ/∂H are uniformly positive definite

with respect to their arguments in each compact set.

The main assumptions on the nonlinearities are

ε(E) = ε0E +O(|E|3) as |E| → 0 (11.182)

and

μ(H) = μ0H +O(|H|3) as |H| → 0, (11.183)

where ε0, μ0 are positive constants (ε0: dielectric constant; μ0: permeability).

The inverse relation

ε−1(D) = ε−1
0 D +O(|D|3) as |D| → 0 (11.184)

and

μ−1(B) = μ−1
0 B +O(|B|3) as |B| → 0 (11.185)

follows immediately. Thus we may write (11.178), (11.179) in the following form:

Dt − μ−1
0 ∇× B = ∇× F1(B),

Bt + ε−1
0 ∇×D = ∇× F2(D),

where F1, F2 are smooth vector-valued functions. The relations (11.184), (11.185) imply

Fj(W ) = O(|W |3) as |W | → 0, j = 1, 2.

Without loss of generality we assume

ε0 = μ0 = 1.

A: Decay for F1, F2 = 0:

From the linearized initial value problem

Dt −∇×B = 0, (11.186)
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Bt +∇×D = 0, (11.187)

D(t = 0) = D0, B(t = 0) = B0,

∇′D = 0, ∇′B = 0, (11.188)

we obtain by differentiation

Dtt +∇×∇×D = 0,

Btt +∇×∇× B = 0.

Using the formula

Δ = ∇∇′ −∇×∇×
and (11.188) we obtain the equations

Dtt −ΔD = 0,

Btt −ΔB = 0.

Therefore we can apply the same technique as in Chapter 2 (cf. also Section 11.4) leading

to

‖(D,B)(t)‖∞ ≤ c(1 + t)−1‖(D0, B0)‖3,1, t ≥ 0, (11.189)

where c is independent of t.

In contrast to Section 2 it is now easy to get an L2–L2-estimate for D and B. Multiplying

both sides of (11.186) with D in L2 and both sides of (11.187) with B in L2 we end up

with

1

2

d

dt
‖D(t)‖22 − 〈∇× B,D〉 = 0,

1

2

d

dt
‖B(t)‖22 + 〈∇ ×D,B〉 = 0.

Adding the last two equations we get

‖(D,B)(t)‖2 = ‖(D0, B0)‖2, t ≥ 0. (11.190)

By interpolation we obtain from (11.189), (11.190)

‖(D,B)(t)‖q ≤ c(1 + t)−(1−2/q)‖(D0, B0)‖Np,p, (11.191)

t ≥ 0, c = c(q), where 2 ≤ q ≤ ∞, 1/p+ 1/q = 1 and

Np > 3(1− 2/q) (Np = 3(1− 2/q) if q ∈ {2,∞}) .
Further estimates similar to those obtained for solutions of the wave equation using

invariance properties (cf. Chapter 8) are proved by D. Christodoulou and S. Klainerman

in [19].
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B: Local existence and uniqueness:

We want to apply Theorem 5.8. For this purpose we write the equations (11.178),

(11.179) in the form

∂ε(E)

∂E
∂tE −∇×H = 0, (11.192)

∂μ(H)

∂H
∂tH +∇×E = 0. (11.193)

Introducing

U := (E,H),

A0(U) :=

⎛⎜⎜⎝ ∂ε/∂E 0

0 ∂μ/∂H

⎞⎟⎟⎠ ,

A1 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1
0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

A3 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we may rewrite (11.192), (11.193) as

A0(U)∂tU +
3∑

j=1

Aj∂jU = 0. (11.194)

The initial condition for U is given by

U(t = 0) = (ε−1(D0), μ−1(H0)). (11.195)

Theorem 5.8 can be applied to the initial value problem (11.194), (11.195).

Using the assumption that (E,H) and (D,B) are mapped into each other by smooth

bijections we conclude that there is a unique local solution

V := (D,B) ∈ C0([0, T ),W s,2) ∩ C1([0, T ],W s−1,2)

for some T > 0, if s > 3/2 + 1, i.e. if s ≥ 3, and V 0 ∈ W s,2. The relation

∇′D(t, x) = 0, ∇′B(t, x) = 0

follows for all t ∈ [0, T ], x ∈ IR3 from the differential equations for D and B which yield

∂t∇′D = ∂t∇′B = 0

(provided ∇′D0 = ∇′B0 = 0, which is of course assumed to assure compatibility).

In analogy to the considerations made for nonlinear wave equations we obtain succes-

sively:

C: High energy estimates:

‖V (t)‖s,2 ≤ c‖V 0‖s,2 exp{ c
t∫

0

‖V (r)‖21,∞ dr}, t ∈ [0, T ], c = c(s),

where

V 0 := V (t = 0) = (D0, B0).
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D: Weighted a priori estimates:

sup
0≤t≤t

(1 + t)2/3‖V (t)‖s1,6 ≤M0 <∞,

where M0 is independent of T , provided s1 is sufficiently large and

‖V 0‖s0,2 + ‖V 0‖s0,6/5
is sufficiently small (s0 > s1 being sufficiently large).

E: Final energy estimate:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, V 0 being sufficiently small, K being independent of T (and V 0).

Remarks: In the Steps D, E a representation of V of the type

V (t) = W (t)V 0 +

t∫
0

W (t− r)F (V )(r)dr

is used (cf. the beginning of Chapter 11 and Chapters 7,8). The estimates for the linear

part, (11.191), can be used for the integrand since the nonlinearity F = (∇×F1,∇×F2)

has divergence zero too: ∇′(∇× Fj) = 0, j = 1, 2. Details may be found in the paper of

F. Klaus [95].

Summarizing we have obtained the following global existence theorem.

Theorem 11.15 We assume (11.182), (11.183). Then there exist an integer s0 ≥ 3

and a δ > 0 such that the following holds:

If (D0, B0) belongs to W s,2 ∩W s,6/5 with s ≥ s0 and

‖(D0, B0)‖s,2 + ‖(D0, B0)‖s,6/5 < δ,

and if

∇′D0 = ∇′B0 = 0,

then there is a unique solution of the initial value problem to the nonlinear Maxwell

equations (11.178) – (11.181) with

(D,B) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−1,2).

Moreover, we have

‖(D,B)(t)‖∞ + ‖(D,B)(t)‖6 = O(t−2/3),

‖(D,B)(t)‖s,2 = O(1) as t→∞.
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Remark: Initially anisotropic models, replacing ε0E in (11.182) by ε(0)E, where ε(0)

is a diagonal matrix but not necessarily a multiple of the identity, have been studied

by O. Liess [107, 108] in the context of crystal optics. There phenomena appear similar

to those discovered for the equations of elasticity in the initially cubic case (in IR2), cf.

Subsection 11.1.2; the decay rate which could be proved up to now is weaker than that

in the initially isotropic case.

11.7 Plate equations

In this section we are concerned with perturbations of the linear plate equation

ytt +Δ2y = 0

of the type

ytt +Δ2y = f(yt,∇2y) +
n∑

i=1

bi(yt,∇2y)∂iyt (11.196)

with smooth nonlinear functions f and bi, i = 1, . . . , n.

y = y(t, x) is a real function of t > 0 and x ∈ IRn with prescribed initial values

y(t = 0) = y0, yt(t = 0) = y1. (11.197)

The assumption on the nonlinearities near zero will be

f(W ) = O(|W |α+1), bi(W ) = O(|W |α), i = 1, . . . , n as |W | −→ 0, (11.198)

for some α ∈ IN.

The obvious difference in the equation (11.196) in comparison to those in the Sections

11.1 – 11.3, 11.5, 11.6 is that the nonlinearity does not contain the highest-order deriva-

tives. This is a similar situation to that in Section 11.4 where we discussed Schrödinger

equations. (Actually there is a close relation between the linear Schrödinger equation

and the linear plate equation, see below.) The reason for only admitting semilinear

nonlinearities is that the proof of the energy estimates given in [198] requires that the

nonlinear terms on the right-hand side of equation (11.196) have to be controlled by

those on the left-hand side. For example, a term like

n∑
i,j,k=1

aijk(yt,∇2y)∂i∂j∂ky

cannot be controlled there. Partial integrations in the typical L2-inner products with

this term generate derivatives of yt because the term is not symmetric; but derivatives

of yt cannot be handled with the information one gets from the left-hand side.
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Remarks: This difficulty with third-order terms already arises in proving a local exis-

tence theorem. We mention that there is a local existence theorem by P. Lesky which

admits certain symmetric fourth-order nonlinearities, see [100] and also one by W. v.

Wahl for the nonlinear clamped plate [188, 189]. The system (11.196), (11.197) has been

discussed by F. Willems in [198] where those details which are omitted in the sequel may

be found.

The transformation to a first-order system is given as follows. Let

V := (∂ty,∇2y).

With the notation

δij,k� :=

⎧⎪⎨⎪⎩ 1 if (i, j) = (k, �)

0 if (i, j) 
= (k, �)

⎫⎪⎬⎪⎭ , i, j, k, � = 1, . . . , n,

and m := n2 + 1 we define the m×m-matrices Aij and Bi = Bi(V ) by

Aij :=

⎛⎜⎜⎝ 0 (−δij,k�)k�
(δij,k�)k� 0

⎞⎟⎟⎠
and

Bi :=

⎛⎜⎜⎜⎜⎜⎜⎝
bi 0 · · · 0

0
... 0

0

⎞⎟⎟⎟⎟⎟⎟⎠
for i, j = 1, . . . , n.

Then V satisfies

Vt =
n∑

i,j=1

Aij∂i∂jV +
n∑

i=1

Bi(V )∂iV + f̃(V ), (11.199)

and

V (t = 0) = V 0 := (y1,∇2y0),

where

f̃(V ) := (f(V ), 0).

Defining

A(V ) := −
n∑

i,j=1

Aij∂i∂j −
n∑

i=1

Bi(V )∂i

and

A := A(0)

we obtain from (11.199) that V satisfies

Vt + AV = F (V ), V (t = 0) = V 0, (11.200)
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where

F (V ) := f̃(V ) + (A(0)− A(V )) V,

and the assumption (11.198) implies that F satisfies

F (V ) = O(|V |α+1) as |V | −→ 0. (11.201)

Hence we have the desired general structure again and we shall continue going through

the Steps A–E of the general scheme.

A: Decay for F ≡ 0:

Let y solve

ytt +Δ2y = 0, y(t = 0) = y0, yt(t = 0) = y1.

We shall first obtain decay rates for yt and Δy.

Let

w := yt + iΔy.

Then w satisfies

wt − iΔw = 0

with initial value

w(t = 0) = y1 + iΔy0,

i.e. w is a solution of the linear Schrödinger equation, which we discussed in Section

11.4. The decay of w expressed in formula (11.143) yields

‖(yt,Δy)(t)‖q ≤ c (1 + t)−
n
2
(1− 2

q
)‖(y1,Δy0)‖Np,p, (11.202)

t ≥ 0, c = c(q), where 2 ≤ q ≤ ∞, 1/p+ 1/q = 1, and Np > n(1− 2/q).

It is also possible to use a Fourier representation in order to obtain decay rates for

‖(yt,Δy)(t)‖q, 2 ≤ q <∞, similarly to the procedure in Section 11.1.2. Let y0 = 0, h :=

y1. Then

yt(t, x) = F−1
(
cos(| · |2t)ĥ(·)

)
(x),

Δy(t, x) = F−1
(
sin(| · |2t)ĥ(·)

)
(x),

i.e. it is sufficient to study

u(t, x) := F−1
(
ei|·|

2tĥ(·)
)
(x). (11.203)

We have the following version of Theorem 2.2 from H. Pecher’s paper [138] (see also

Lemma 11.3 in Section 11.1.2).
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Lemma 11.16 Let γ ≥ 0, m ∈ IN and

� :=

⎧⎨⎩ n− 1 if m = 1,

n if m ≥ 2.

Then there is a constant c > 0 such that for all v ∈ C∞
0 (IRn) and all t > 0 the estimate

‖F−1

(
eit|·|

m

| · |2mγ
(Fv)(·)

)
‖q ≤ ct−

n
m
( 1
p
− 1

q
)+2γ ‖v‖p

holds, provided

1 < p ≤ 2 ≤ q <∞, 1/p+ 1/q = 1, 1/p− 1/q ≥ 2mγ/n,

(1/p− 1/2)(2n−m�) ≤ 2mγ.

(c only depends on q, n,m and γ.)

An application of Lemma 11.16 to n defined in (11.203), with γ = s (to be defined below)

and m = 2, leads to the following estimates:

‖u(t, ·)‖q = ‖F−1

(
eit|·|

2

| · |4s | · |
4sĥ(·)

)
‖q

= ‖F−1

(
eit|·|

2

| · |4sF(Δ
2sh)(·)

)
‖q

≤ c t−
n
2
( 1
p
− 1

q
)+2s‖Δ2sh‖p

≤ c t−
n
2
( 1
p
− 1

q
)+2s‖h‖N,p,

where

4s ≤ N < 4s+ 1.

The application of the last Lemma is possible if s satisfies

1

4

(
1

p
− 1

q

)
(2n− 2�) ≤ s ≤ n

4

(
1

p
− 1

q

)
.

The left-hand side of the last inequality equals zero by the definition of �.

For t ≥ 1 we choose the smallest s which is possible, s := 0. This implies

‖u(t)‖q ≤ c t−
n
2
(1− 2

q
)‖h‖p. (11.204)
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For 0 ≤ t ≤ 1 we choose the largest s which is possible,

s :=
n

4

(
1

p
− 1

q

)
,

which leads to

‖u(t)‖q ≤ c‖h‖N,p (11.205)

with

n

(
1− 2

q

)
≤ N < n

(
1− 2

q

)
+ 1.

Combining (11.204) and (11.205) we obtain

‖(yt,Δy)(t)‖q ≤ c(1 + t)−
n
2
(1− 2

q
)‖h‖N,p. (11.206)

(y(t = 0) is assumed to be zero, h = yt(t = 0).)

Remarks: Observe that (11.206) has been obtained now only for q which is strictly less

than infinity. Using Lemma 11.16 it would also be possible to estimate ‖y(t)‖q, with
further restrictions on q.

There is also a representation of y in terms of Fresnel integrals which is obtained from

the Fourier representation

y(t, x) = F−1

(
sin(| · |2t)
| · |2 (Fh)(·)

)
(t, x).

With

f(t, ξ) :=
1√
2π

n
sin(|ξ|2t)
|ξ|2

we may write y as

y(t, x) = F−1 [f(t, ·)] (h(x− ·)) ,
where [. . .] denotes the distribution generated by . . . (applied to h(x− ·) ∈ C∞

0 (IRn)).

Let n = 3.

With the Fresnel integral W defined by

W (z) :=
1√
2π

3

z∫
0

(cos s2 − sin s2)ds

we obtain for t > 0:

F−1 [f(t, ·)] =
[
1

| · |W (
| · |
2
√
t
)

]
(cf. R. Leis [98], F. Willems [198]); hence we have

y(t, x) =
1√
2π

3

∫
IR3

h(x− z)
1

|z|

|z|
2
√

t∫
0

(cos s2 − sin s2)ds dz. (11.207)
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Remark: The regularity of h should be asssumed appropriately such that the integrals

in (11.207) converge, e.g. h ∈ C∞
0 as above.

From (11.207) we obtain

Δy(t, x) = − 1

4

1√
2π

3 t
−3/2

∫
IR3

h(x− z)

(
cos(
|z|2
4t

) + sin(
|z|2
4t

)

)
dz

whence we conclude

‖Δy(t)‖∞ ≤ 1

2

1√
2π

3 t
−3/2‖h‖1, t > 0. (11.208)

We also get from (11.207)

Δy(t, x) =
∫
IR3

(Δh)(x− z)
1

|z|W (
|z|
2
√
t
)dz

= 4t
∫
IR3

(Δh)(x− 2
√
tz)

1

|z|W (|z|)dz

= 4t

∞∫
0

rW (r)
∫
S2

(Δh)(x− 2
√
trw)dw dr

= 4t

∞∫
0

rW (r)
∫
S2

{−
∞∫

2
√
tr

d

ds
(Δh)(x− sw)ds}dw dr

= 4t

∞∫
0

rW (r)

∞∫
2
√
tr

∫
S2

(∇Δh)(x− sw)wdw ds dr.

This implies

‖Δy(t)‖ ≤ c ‖h‖3,1
∞∫
0

|W (r)|
r

dr (11.209)

≤ c ‖h‖3,1, (t ≥ 0),

because there exists c, r0 > 0 such that |W (r)| ≤ c r if r ≤ r0 and W (r) ≤ cr−1 if r ≥ r0

(cf. [98, p. 226]).

With (11.208) and (11.209) we have an L1–L∞-estimate for Δy

‖Δy(t)‖∞ ≤ c(1 + t)−3/2‖h‖3,1, t ≥ 0. (11.210)
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From (11.207) we obtain

yt(t, x) = − 1

4

1√
2π

3 t
−3/2

∫
IR3

h(x− y)

(
cos

( |z|2
4t

)
− sin

( |z|2
4t

))
dz.

This implies

‖yt(t)‖∞ ≤ 1

2
√
2π

3 t
−3/2‖h‖3,1 (t > 0). (11.211)

For 0 ≤ t ≤ 1 we have the coarse estimate

‖yt(t)‖∞ = ‖F−1
(
cos(| · |2t)(Fh)(·)

)
‖∞ (11.212)

≤ 1√
2π

3‖ cos(| · |2t)(Fh)(·)‖1

≤ 1√
2π

3‖(1 + | · |2)m(Fh)(·)‖∞‖(1 + | · |2)−m‖1

≤ c√
2π

3‖F ((1 + Δ)mh) ‖∞ if m > 3/2

≤ c ‖h‖2m,1

≤ c ‖h‖4,1.

(The last estimate is called coarse because the known optimal order of derivatives (known

from (11.202)) appearing on the right-hand side should be three instead of four.)

By (11.211) and (11.212) we have an L1–L∞-estimate for yt

‖yt(t)‖∞ ≤ c(1 + t)−3/2‖h‖4,1. (11.213)

The two L1–L∞-estimates for Δy and yt in (11.210) and (11.213) respectively can now

be combined with the following L2–L2-estimates

‖yt(t)‖2 = ‖F−1
(
cos(| · |2t)(Fh)(·)

)
‖2 (11.214)

= ‖ cos(| · |2t)(Fh)(·)‖2 ≤ ‖h‖2,

‖Δy(t, ·)‖2 = ‖F−1
(
sin(| · |2t)Fh(·)

)
‖2 (11.215)

= ‖ sin(| · |2t)(Fh)(·)‖2 ≤ ‖h‖2,

to an Lp–Lq-decay estimate for 1 ≤ p ≤ q ≤ ∞ as usual by interpolation.

Remark: The estimates (11.214), (11.215) follow without using the Fourier transform

from the equations

ytt +Δ2y = 0, y(t = 0) = y0(= 0), yt(t = 0) = y1
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by multiplication with yt in L2 which yields

∀t ≥ 0 : ‖yt(t)‖22 + ‖Δy(t)‖22 = ‖y1‖22 + ‖Δy0‖22.

The inequality

‖∇2w‖q ≤ c ‖Δw‖q
which is valid for all w ∈ W 2,q, 2 ≤ q < ∞, with a constant c = c(n, q) > 0 (compare

Dunford & Schwartz [29, pp. 1044ff] for the necessary tools), together with (11.206),

finally yields the Lp–Lq-decay estimate for V = (yt,∇2y) (with y(t = 0) = 0, hence

V 0 = (y1, 0)):

‖V (t)‖q ≤ c(1 + t)−
n
2
(1− 2

q
)‖ V 0‖Np,p, t ≥ 0, c = c(n, q),

where 2 ≤ q <∞, 1/p+ 1/q = 1, and n(1− 2/q) ≤ Np < n(1− 2/q) + 1.

B: Local existence and uniqueness:

The existence of a unique solution V to the nonlinear system (11.200) or, equivalently,

to

Vt + A(V )V = f̃(V ), V (t = 0) = V 0,

follows from the general results on nonlinear evolution equations given by T. Kato,

see [82]. For fixed w ∈ W s,2 the operator −A(w), canonically defined on its domain

D (A(w)) ⊂ L2, is the generator of a so-called C0-semigroups of type (1, β), i.e. the

operator norm of the corresponding semigroup can be bounded as follows:

‖e−tA(w)‖ ≤ eβt,

for some β ≥ 0, for all t ≥ 0. To show that the general assumptions from [82] are

satisfied will be omitted here, see [198] for details.

The result is the existence of a unique, local solution

V ∈ C0([0, T ],W s,2) ∩ C1([0, T ],W s−2,2)

for some T > 0, if s > n/2 + 1 and V 0 ∈ W s,2.

Remark: There is also a local existence theorem contained in the paper [100] by P. Lesky.

His approach works for a larger class of nonlinearities admitting certain fourth-order

nonlinearities, but no third-order nonlinearities. W. von Wahl gives a local existence

theorem for the nonlinear clamped plate in [188, 189].

The following Steps C–E now are obtained in the same way as the corresponding ones

for the wave equation in the Chapters 6–8. We summarize:
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C: High energy estimates:

‖V (t)‖s,2 ≤ C‖V 0‖s,2 exp{C
t∫

0

‖V (τ)‖α1,∞dτ}, t ∈ [0, T ], C = C(s).

D: Weighted a priori estimates:

sup
0≤t≤T

(1 + t)
n
2
(1− 2

q
)‖V (t)‖s1,q ≤M0 <∞,

where M0 is independent of T , provided

q = 2α+ 2,

1

α
(1 +

1

α
) <

n

2
,

s1 is sufficiently large and

‖V 0‖s,2 + ‖V 0‖s, 2α+2
2α+1

is sufficiently small (s > s1 being sufficiently large).

E: Final energy estimate:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s being sufficiently large, V 0 being sufficiently small, K being independent of T (and

V 0).

Summarizing we obtain the following global existence theorem.

Theorem 11.17 We assume (11.198) with 1
α
(1 + 1

α
) < n

2
. Then there exist an integer

s0 >
n
2
+ 1 and a δ > 0 such that the following holds:

If V 0 = (y1,∇2y0) belongs to W s,2 ∩W s,p with s ≥ s0 and p = 2α+2
2α+1

and

‖V 0‖s,2 + ‖V 0‖s,p < δ,

then there is a unique solution y of the initial value problem to the nonlinear plate

equation (11.196), (11.197) with

(yt,∇2y) ∈ C0([0,∞),W s,2) ∩ C1([0,∞),W s−2,2).

Moreover, we have

‖(yt,∇2y)(t, ·)‖∞ + ‖(yt,∇2y)(t, ·)‖2α+2 = O(t−n
2

α
α+1 ),

‖(yt,∇2y)(t, ·)‖s,2 = O(1) as t→∞.
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Remark: Concerning the regularity assumptions on the coefficients f and bi, i = 1, . . . , n

in the equation (11.196) the same holds as for the systems discussed before. The smooth-

ness assumption f, bi ∈ C∞ can be weakened, namely in this case to the requirement

f ∈ Cs+1, bi ∈ Cs

(cf. [198]).



12 Further aspects and questions

We have considered a set of initial value problems of different kinds and we have found

common structures and common starting points for proving global existence theorems

for small data. It is natural to carry over the methods to other evolution equations

from mathematical physics or from other branches of the applied sciences. We shall not

pursue this here. It is also obvious that in view of the breadth of the subject of nonlinear

evolution equations we have only dealt with a very specific part. In this section we wish

to point out some related questions and current research problems.

We start with looking at initial value problems, where x varies in an exterior

domain Ω or an interior domain Ω. Then boundary conditions have to be prescribed for

the unknown function V on the boundary ∂Ω. The difficulties arising from the presence

of ∂Ω are enormous. This starts with the simple fact that differentiating the equation

with respect to x is not compatible with the boundary conditions in general. Also we

do not have explicit representation formulae at hand (unless Ω has special symmetries)

preventing us from carrying over the linear part, Step A in the general scheme, directly.

In order to illustrate these problems a little bit and to illustrate some of the methods

which lead to related results we shall give a short outline of some ideas involved in

discussing boundary value problems.

Exterior domains.

Let Ω ⊂ IRn be an exterior domain, i.e. for n ≥ 2, Ω is a domain with non-empty,

bounded complement, and for n = 1, Ω := (0,∞). Let ∂Ω be smooth.

There are results concerning special equations, e.g. for the equations of heat-conductive,

compressible, viscous fluids in three space dimensions by Matsumura & Nishida [120]

or for the incompressible Navier–Stokes equations by H. Iwashita [54], who also proves

Lp–Lq-estimates for the linearized problem (Claude Louis Marie Henri Navier, 15.2.1785

– 23.8.1836; George Gabriel Stokes, 13.8.1819 – 1.2.1903). General results e.g. for fully

nonlinear wave equations have been obtained by Y. Shibata [163] and by Shibata &

Tsutsumi [167].

In order to obtain decay rates for solutions to the associated linearized problems we

mention two methods.

The approach using the Laplace transform.

This method applies the Laplace transform with respect to t, discusses the resolvent of

the resulting stationary equations in detail and then uses the information just obtained

in the inverse transform. As an example we consider the system

utt −Δu = 0 in IR × Ω,

u = 0 in IR × ∂Ω,

-boundary
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u(t = 0) = 0, ut(t = 0) = u1 in Ω.

If

ũ(k, ·) =

∞∫
0

e−iktu(t, ·)dt,

then

(Δ + k2)ũ(k, ·) = −u1(·),
hence

ũ(k, x) = −(R(k2)u1)(x),

where R(k2) denotes the resolvent (Δ + k2)−1. At first R(k2) is only defined for k2 ∈
C \ [0,∞). u is then given by

u(t, x) =
1

2π

∞−ic∫
−∞−ic

eiktũ(k, x) dk, c > 0 arbitrary,

or

u(t, x) = − 1

2π

∞−ic∫
−∞−ic

eikt(R(k2)u1)(x) dk.

The asymptotic behavior of u as t −→ ∞ can be described if the behavior of R(k2)

near k = 0 and for |k| −→ ∞ is known well enough. B.R. Vainberg [184, 185] proved

that R(k2) can be holomorphically extended to k2 ∈ [0,∞) as an operator from L2-

functions with compact support in IRn into H2
loc(Ω) (≡ space of functions u which are

locally in W 2,2(Ω) and for which e|·|∇βu(·) is in L2(Ω) for |β| ≤ 2 ). Moreover, R(·) can
be estimated as follows.

1. |k| −→ ∞ :

|||R(k2)||| ∼ |k|−1 (operator norm in L2
loc) if Ω is “non-trapping” (see the definition

below).

2. |k| −→ 0 :

R(k2) can be developed in a Laurent series. (Pierre Alphonse Laurent, 18.7.1813

– 2.9.1854.)

This leads to a decay rate for the local L2-norm of Du (local energy decay) and can be

combined with cut-off techniques to a global Lp–Lq-estimate, see Shibata & Tsutsumi

[167]. We remark that the minimal rate of decay is determined through the part 2:

“|k| −→ 0” where the condition “Ω non-trapping” is not needed.

An (exterior) domain Ω is called non-trapping if the following holds.

∀a > 0 ∃T = T (Ω, a) > 0 ∀u1 ∈ L2
a(Ω) : u ∈ C∞([T,∞)× Ωa),
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where

L2
a(Ω) :=

{
f ∈ L2(Ω) | supp f ⊂ Ωa (= Ω ∩ B(0, a))

}
.

Remark: The convexity of IRn \ Ω implies that Ω is non-trapping, see R.B. Melrose

[122], K. Yamamoto [201]. For further geometrical interpretations, like “all rays which

hit ∂Ω and which propagate according to the laws of geometrical optics move away from

∂Ω in finite time; no ray is trapped, even not asymptotically”, see Morawetz, Ralston &

Strauss [131].

The advantage of the approach above consists of its great generality in applications, e.g.

for damped or for undamped problems, for self-adjoint or non-self-adjoint problems; see

[16, 30, 59, 167, 183]. For damped problems the assumption “Ω is non-trapping” is not

needed. A small disadvantage consists in the complexity of the arguments used for the

study of R(k2). Moreover one usually obtains a local energy decay, not directly global

Lp–Lq-estimates.

For damped problems and star-shaped obstacles IRn\Ω we present a simple method using

generalized eigenfunctions which is also directly applicable to operators with variable

coefficients.

Ansatz via generalized eigenfunctions.

We observe that the decay of solutions to the heat equation ut−Δu = 0 in IRn can easily

be obtained by using the Fourier transform and exploiting the fact that the kernel of

this transform, namely (2π)−n/2 eixξ, is uniformly bounded with respect to x and ξ. This

leads to the following ansatz.

Let Ω ⊂ IRn be an exterior domain, n ≥ 3, with smooth boundary ∂Ω, and let

A : D(A) ⊂ L2(Ω) −→ L2(Ω),

D(A) := {v ∈ W 1,2
0 (Ω) |

n∑
m,k=1

∂mamk(·)∂kv(·) ∈ L2(Ω)},

Av(·) := − n∑
m,k=1

∂mamk(·)∂kv(·) where amk = akm is a real-valued, smooth function of

x ∈ Ω, amk(x) = δmk for |x| > r0, for some fixed r0 > 0, with ∂Ω ⊂ B(0, r0), m, k =

1, . . . , n. We assume

∀x ∈ Ω ∀ξ ∈ IRn :
n∑

m,k=1

amk(x)ξm ξk ≥ a0|ξ|2,

with some fixed constant a0 > 0.

It is well-known that there is a generalized eigenfunction expansion (also called general-

ized Fourier transform) F+ : L2(Ω) −→ L2(IRn), F+ being unitary, with the property

F+(ϕ(A)w)(ξ) = ϕ(|ξ|2)(F+w)(ξ) (12.1)

12 Further Aspects and Questions
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for functions ϕ(A) of A defined by the spectral theorem for the self-adjoint operator A

(see R. Leis [98], C.H. Wilcox [197]).

Moreover, we have

(F+w)(ξ) =
∫
Ω

ψ(x, ξ)w(x)dx ≡ ŵ(ξ)

and

(F−1
+ ŵ)(x) =

∫
IRn

ψ(x, ξ)ŵ(ξ)dξ.

The kernel ψ is uniquely determined by the following conditions (12.2) – (12.6).

Let j ∈ C∞(IRn), j ≥ 0, j(r) = 0 for r ≤ r1, and j(r) = (2π)−n/2 for r ≥ r1 + 1, where

r1 > r0 is fixed. Then

ψ(x, ξ) = j(|x|) eixξ + ψ′(x, ξ), (12.2)

∀ξ ∈ IRn : (1− j(| · |))ψ(·, ξ) ∈ D(A), (12.3)

∀ξ ∈ IRn ∀r > 0 : j(| · |)ψ(·, ξ) ∈ W 2,2(Ωr), (12.4)

∀ξ ∈ IRn :
n∑

m,k=1

(
∂mamk(·)∂k + |ξ|2

)
ψ′(·, ξ) = −

(
Δ+ |ξ|2

) (
j(| · |)ei·ξ

)
, (12.5)

∀ξ ∈ IRn : ψ′(·, ξ) satisfies the outgoing radiation condition: (12.6)

∂ψ′(x, ξ)
∂|x| − i|ξ|ψ′(x, ξ) = O(|x|−(n+1)/2),

ψ′(x, ξ) = O(|x|−(n−1)/2).

Remarks: Such a generalized eigenfunction expansion was given first for the Schrödin-

ger operator in IR3 by T. Ikebe [52]. Later on this was extended to higher dimensions

and to perturbations of the Laplace operator, also for exterior domains; see the papers of

S. Agmon [3], Alsholm & Schmidt [5], A. Majda [113], K. Mochizuki [127], N.A. Shenk

[160] and Shenk & Thoe [161].

For the proof of the existence of ψ′ one can use the principle of limiting absorption, see

[98, 197]. This principle holds for a larger class of operators e.g. for certain Maxwell

operators. In view of (12.5) ψ(·, ξ) is called a generalized eigenfunction and the name

generalized eigenfunction expansion is justified. In view of (12.1) and the remarks at the

beginning we are interested in pointwise estimates on ψ and ψ′ respectively.

If Av = −Δv, i.e. amk = δmk, and IRn \ Ω is star-shaped, n ≥ 3, we have

∃m ∈ IN ∃c > 0 ∀x ∈ Ω ∀ξ ∈ IRn : |ψ(x, ξ)| ≤ c(1 + |ξ|)m, (12.7)

see Morawetz & Ludwig [130] and [153]. Using (12.1), the factor (1 + |ξ|)m appearing in

(12.7) will finally turn into a differentiation of the initial data. As an application one can
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prove a global existence theorem for small data to the following fourth-order nonlinear

parabolic initial-boundary value problem (see [153]).

ut +Δ2u = f(u,∇u,∇2u,∇3u,∇4u) in [0,∞)× Ω,

u = Δu = 0 in [0,∞)× ∂Ω,

u(t = 0) = u0 in Ω,

where

f is smooth, f(w) = O(|w|2) near w = 0,

IRn \ Ω is star-shaped, n > 4.

In the case that the operator A really has variable coefficients one has the following.

If IR3 \ Ω is star-shaped and if

min
x∈Ω

⎛⎝2min
|ξ|=1

3∑
m,k=1

amk(x)ξmξk − 9 max
m,k=1,2,3

|∇amk(x) · x|
⎞⎠ > 0 (12.8)

holds, then we have

∀r > 0 ∃c > 0 ∀x ∈ Ωr ∀ξ ∈ IR3 : |ψ(x, ξ)| ≤ c(1 + |ξ|2), (12.9)

see C.O. Bloom [13] and [146]. The local character (with respect to x) of the estimate

(12.9) still leads to global Lp–Lq-estimates since it allows one to prove a local energy

decay result which is sufficiently strong to combine it with the corresponding initial value

problem (here A = −Δ in IR3) using cut-off functions.

Remark: The approach of Vainberg should directly lead to a removal of the star-

shapedness assumption.

As an application of (12.9) one can prove a global existence theorem for small data to

the following non-homogeneous second-order damped wave equation (see [147]).

utt −
3∑

m,k=1

∂mamk∂ku + ut = h(u, ut,∇u,∇ut,∇2u) in [0,∞)× Ω,

u = 0 in [0,∞)× ∂Ω,

u(t = 0) = u0, ut(t = 0) = u1 in Ω,

where

h is smooth, h(w) = O(|w|3) near w = 0,

IR3 \ Ω is star-shaped,

(amk)mk satisfies (12.8).

We remark that the method of Vainberg also works for problems with variable coeffi-

cients; see Iwashita & Shibata [55] for systems of second-order.

12 Further Aspects and Questions
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Interior domains.

We notice that the decay of solutions to the linearized system was essential in the proofs

of the global existence theorems in exterior domains including IRn. This is not always

given in bounded domains. For heat equations the decay is even stronger, namely expo-

nentially, but for wave equations with Dirichlet or Neumann boundary conditions there

is no decay at all, but oscillations appear. Therefore we shall concentrate in considering

the following nonlinear wave equation for a real-valued function u = u(t, x):

utt −Δu = f(u, ut,∇u,∇ut,∇2u) in IR × Ω,

u(t = 0) = u0, ut(t = 0) = u1 in Ω,

u|∂Ω = 0 or
∂u

∂ν

∣∣∣∣∣
∂Ω

= 0 (ν : outer normal),

f(w) = O(|w|α+1) near w = 0, for some α ∈ IN.

Ω ⊂ IRn is bounded with smooth boundary ∂Ω and f is assumed to be smooth.

One known result on the formation of singularities for bounded domains is that of Klain-

erman & Majda [93] in one space dimension for the initial-boundary value problem

utt = (K(ux))x, (12.10)

u(t = 0) = εφ, ut(t = 0) = εψ, (12.11)

x varying in the bounded interval [0, L], L > 0, with boundary conditions

u(t, 0) = u(t, L) = 0, (12.12)

or

ux(t, 0) = ux(t, L) = 0. (12.13)

Let K ′(0) = 1 and let α ∈ IN be the first integer with

K(α+1)(0) 
= 0.

Then there is a constant C = C(φ, ψ) and an ε0 > 0 such that a C2-solution of (12.10)

– (12.12) develops singularities at the time T = Cε−α, provided ε < ε0. If K is an odd

function the same conclusion holds in case that we replace the Dirichlet condition (12.12)

by the Neumann condition (12.13).

This includes the equation for a nonlinear vibrating string where

K(ux) =
ux√
1 + u2

x

.

On the other hand, if the boundary conditions are of dissipative type, namely

K(ux(t, 0))− τut(t, 0) = 0, ut(t, L) = 0, (12.14)
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0 < τ < ∞ fixed, then there is again a global solution for small data as was shown

by Greenberg & Li [40]; see also Alber & Cooper [4], and Shibata & Zheng [169] for a

corresponding result in higher dimensions.

We remark that the existence of global small solutions to nonlinear wave equations in

bounded domains is also known if there is a damping term appearing in the equations,

i.e. if a term ”cut”, with a positive constant c > 0, is added to the left-hand side of the

differential equation for u, cf. Y. Shibata [162, 163].

In order to illustrate the effect that boundary conditions a priori might have we recall

the fact that solutions to the nonlinear parabolic equation

ut −Δu = u2 (12.15)

in a bounded domain Ω ⊂ IRn will exist globally for a small initial value u(t = 0) = u0 in

the case of the Dirichlet boundary condition, cf. Zheng [205], but the solution in general

blows up in finite time in case of the Neumann boundary condition which can easily be

seen from studying

v(t) :=
∫
Ω

u(t, x) dx.

Namely, v satisfies
d

dt
v ≥Mv2, with M = (volume(Ω))−1.

Hence there is a blow-up if v0 := v(0) > 0 as t approaches (v0M)−1, cf. Zheng [204].

The formation of singularities can also be seen directly from the example

u(t, x) := (T0 − t)−1, T0 > 0 given.

u solves (12.15) with Neumann boundary condition in any space dimension and blows up

as t approaches T0 although u(t = 0) is small if T0 is large. This example is of course very

special and connected with the fact that constants are solutions of the (linear) stationary

Neumann problem while the first blow-up observation holds for rather arbitrary data (but

satisfying v(0) > 0, a requirement also being related to the constant function).

The last two examples can be carried over to the wave equation too, namely for α ∈ IN

the function

u(t, x) :=
α

√
4
α2 +

2
α

α

√
(t− T0)2

, T0 > 0 given,

(x varying in a bounded domain Ω ⊂ IRn, n ∈ IN arbitrary), solves

utt −Δu = uα+1

with Neumann boundary condition and with data u(t = 0), ut(t = 0) which are small for

large T0. u is smooth as long as t is less than T0, and u tends to infinity as t approaches

T0.

12 Further Aspects and Questions
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Also the former example can be carried over to nonlinear wave equations with Neumann

boundary condition. For α ∈ IN, let u be a C2-solution to

utt −Δu = uα+1

with initial values

u(t = 0) = u0, ut(t = 0) = u1,

satisfying the Neumann boundary condition

∂u

∂ν

∣∣∣∣∣
∂Ω

= 0.

We assume that the following holds:

β :=
∫
Ω

u0 > 0, γ :=
∫
Ω

u1 > 0. (12.16)

Then v, with

v(t) :=
∫
Ω

u(t, x) dx,

satisfies

v′′ ≥Mvα+1, with M = M(volume(Ω), α). (12.17)

From the assumption (12.16) it follows that

v′ > 0 and v > 0.

Now we conclude from (12.17) that

1

2
v′(t)2 − M

α + 2
v(t)α+2 ≥ 1

2
v′(0)2 − M

α+ 2
v(0)α+2 ≡ P.

Thus we conclude that

v′(t) ≥
√
2

M

α + 2
v(t)α+2 + 2P.

Hence if u is a solution on [0, T ] then necessarily

T =

v(T )∫
0

dw√
2 M
α+2

wα+2 + 2P
≤

∞∫
0

dw√
2 M
α+2

wα+2 + 2P
<∞.

(See R.T. Glassey [39], Payne & Sattinger [137] and Zheng & Chen [207] for further

examples of blow-up for semilinear wave equations.)

The last two examples show that neither the magnitude of n nor the magnitude of

the degree of vanishing of the nonlinearity near zero (= α + 1) in connection with the

smallness of the data may prevent a local smooth solution from developing singularities

in finite time.
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In contrast to the parabolic problem the study of the Dirichlet problem for the wave

equation is expected to lead to similar blow-up phenomena. To show this we shall present

fully nonlinear blow-up examples for radially symmetric solutions both for Dirichlet and

Neumann boundary conditions. The radial symmetry will reduce the space dimension

to one and we shall apply the above mentioned result of Klainerman & Majda [93]. This

is not an immediate consequence for arbitrary wave equations since the equation

utt −Δu = 0

turns into

ūtt − ūrr − n− 1

r
ūr = 0, (12.18)

and this is not in conservation form that would be needed to carry over the arguments of

the proof in [93]. Moreover the trick of using a periodic extension (being antisymmetric

for the Dirichlet case resp. symmetric for the Neumann case) of a solution in Ω = (0, L)

to Ω = IR1 does not work because of the term ūr/r appearing in (12.18). Hence we shall

apply an appropriate transformation first.

Here is the precise statement of the result. Set Ω3 := {x ∈ IR3 | 1 < |x| < 2}.

Theorem 12.1 For every α ∈ IN there are (smooth) nonlinearities f = f(x, u,∇u,∇2u),

f(x, w) = O(|w|α+1) near w = 0, uniformly in x, such that there is no global C2-solution

to the initial-boundary value problem

utt −Δu = f(·, u,∇u,∇2u) in IR × Ω3, (12.19)

u(t = 0) = εφ, ut(t = 0) = εψ (radially symmetric) in Ω3, (12.20)

u|∂Ω3
= 0, (12.21)

ε > 0 small, no matter how smooth the data φ and ψ are or how small ε is or how large

α is. Namely, there is a constant C = C(φ, ψ) > 0 and an ε0 = ε0(φ, ψ) > 0 such that

the solution develops a singularity as t approaches Cε−α, provided ε < ε0.

The same conclusion holds under the boundary condition

∂u

∂ν

∣∣∣∣∣
∂Ω3

= 0 (ν : outer normal). (12.22)

The nonlinearities are given by

f(x, u,∇u,∇2u) :=

(
4x∇u
|x|2 +Δu

)
(K ′(u+ x∇u)− 1) , (12.23)

where K is an arbitrary smooth function (being odd in the case of the Neumann boundary

condition (12.22)) which satisfies

K ′(w) = 1 +O(|w|α) near w = 0.

12 Further Aspects and Questions
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Remarks: A local solution exists and is necessarily radially symmetric (cf. the remarks

following the proof of Theorem 12.1). Global solutions exist for small data if the Dirichlet

(resp. Neumann) boundary condition (12.21) (resp. (12.22)) is replaced by the dissipative

boundary conditions (cf. (12.14))

K(ū(t, 1) + ūr(t, 1))− τ ūt(t, 1) = 0, ūt(t, 2) = 0, (12.24)

where 0 < τ < ∞ is a fixed parameter, ū(t, r) = u(t, x), r = |x| and ūr denotes the

radial derivative.

Proof of Theorem 12.1:

We are looking for transformations v(t, r) = Φ (t, r, ū(t, r)) which carry over the differ-

ential equation for ū, namely

ūtt − ūrr − n− 1

r
ūr = f(· · ·)

into a differential equation for v of the type

vtt − vrr = f̃(· · ·),

then admitting the application of [93].

Let us start with a general nonlinearity g, and we consider Ω ⊂ IRn instead of Ω3 for a

moment, n not necessarily being equal to 3,

utt −Δu = g(·, u,∇u,∇2u).

We assume that there is a local, smooth, radially symmetric solution u(t, x) = ū(t, r), r =

|x|. Making the ansatz

v(t, r) := p(r)ū(t, r).

we have

vtt = pūtt, vr = p′ū+ pūr, vrr = p′′ū+ 2p′ūr + pūrr,

hence

vtt − vrr = p
(
ūtt − ūrr − n− 1

r
ūr

)
+

(
p
n− 1

r
− 2p′

)
ūr + p′′ū.

With the requirement in mind that we wish to end up with a nonlinearity that is at

least quadratic, we require p′′ = 0, i.e. p(r) = ar + b with some a, b ∈ IR and also

pn−1
r
− 2p′ = 0, i.e. (ar + b)(n − 1) − 2ar = 0, whence necessarily b = 0 and n = 3

follows, a ∈ IR arbitrary, (without loss of generality a = 1).

That is, p(r) = r and v with v(t, r) = rū(t, r) satisfies (in Ω3 now)

vtt − vrr = r
(
ūtt − ūrr − 2

r
ūr

)
= rg.

We would like to have that v satisfies

vtt − (K(vr))r = 0,
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or, equivalently,

vtt − vrr = vrr(K
′(vr)− 1).

Since vr = ū+ rūr, vrr = 2ūr + rūrr, the right-hand side reads in terms of ū

(2ūr + rūrr)(K
′(ū+ rūr)− 1).

Hence we have to choose g as

g :=
(
2

r
ūr + ūrr

)
(K ′(ū+ rūr)− 1).

Since

ū(t, r) = u(t, x), r = |x|, ūr =
x

|x|∇u; ūrr =
n− 1

|x|
(

x

|x|∇u
)
+Δu =

2

|x|
(

x

|x|∇u
)
+Δu,

we see that g in terms of u equals f as defined by (12.23) in Theorem 12.1.

Consequently, if u satisfies (12.19), (12.20), (12.21) (resp. (12.22)), then v satisfies — as

long as it exists and for 1 ≤ r ≤ 2 — the relations

vtt − (K(vr))r = 0, (12.25)

v(0, r) = rεφ(x), vt(0, r) = rεψ(x), |x| = r, (12.26)

v(t, 1) = v(t, 2) = 0, (12.27)

(resp. vr(t, 1) = vr(t, 2) = 0). (12.28)

It follows from Klainerman & Majda [93] that v develops a singularity in the second

derivatives at time T = Cε−α which gives the desired result for u.

Q.e.d.

The simple ansatz v(t, r) = p(r)ū(t, r) only works in three space dimensions, while a

more general dependence v(t, r) = Φ(r, ū(t, r)) leads to difficulties for n 
= 3.

The reason why the polynomial ansatz v = rū works in three space dimensions is that

the fundamental solution fn = fn(r) to the equation

f ′′
n(r) +

n− 1

r
f ′
n(r) = 0

has the property that the following recursive formula holds (up to constants which are

not essential in the sequel):

fn+2(r) =
f ′
n(r)

r
.

This implies that

f ′
1(r) = rf3(r)

and we observe that f ′
1 satisfies the same differential equation as f1.

12 Further Aspects and Questions
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Of course one could recursively derive similar formulae for the higher order fundamental

solutions in terms of the derivatives of f1, for example

n = 5 : f ′′′
1 (r) = 3rf5(r) + r2f ′

5(r)

or

n = 7 : f1
(5)(r) = 15rf7(r) + 9r2f ′

7(r) + r3f ′′
7 (r),

but these formulae are not appropriate for our problem because there appear derivatives

of f5 and f7 respectively on the right-hand side. This would imply, e.g. for n = 5, that,

if ū satisfies

ūtt − ūrr − 4

r
ūr = g,

then v, defined by

v := 3rū+ r2ūr

satisfies

vtt − vrr = 3rg + r2gr,

hence

3rg + r2gr = vrr(K
′(vr)− 1)

should hold, while it is not clear how to define g depending on at most second derivatives

of u. This becomes even worse for n = 7, 8, . . . due to the appearance of higher derivatives

of g.

The existence of a local solution to (12.19), (12.20), (12.21) (resp. (12.22)), is obvious

by construction since a local solution to (12.25), (12.26), (12.27) (resp. (12.28)), exists.

Independently, the existence of a unique local solution to (12.19), (12.20), (12.21) would

follow from the general local existence theorem by Shibata & Tsutsumi [168], observing

that the solution to radially symmetric data necessarily must be radially symmetric for

all times. The latter follows from the uniqueness of the solution and the fact that if u

is the local solution, then w with w(t, x) := u(t, Px), P ∈ O(3) ≡ orthogonal group in

IR3, satisfies the same differential equation, initial conditions and boundary conditions,

and hence w must coincide with u which means that u is radially symmetric.

The remark following the statement of Theorem 12.1 concerning dissipative boundary

conditions is now obvious since

“u satisfies the boundary conditions (12.24)”

is equivalent to

“v satisfies the boundary conditions (12.14)”,

and then v globally exists for small data according to Greenberg & Li [40].

We would like now to close the section by listing a few related questions and to point

out some open problems.
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• Necessary conditions for the global existence of small, smooth solutions:

Most of the theorems in Chapter 1 and Chapter 11 only provide sufficient condi-

tions. Here sharp results are required, which means an investigation of possible

blow-up situations.

• Non-homogeneous media, variable coefficients:

In the previous Chapters the operators A appearing in the linear main part had

constant coefficients, corresponding for example to homogeneous media in elas-

ticity. The fact that constant coefficients were considered was essential for the

derivation of decay rates. The simple reason is the availability of appropriate rep-

resentation formulae for solutions to the linearized system. Here are many open

questions, cf. the discussion above where a non-homogeneous example was treated

in an exterior domain.

• Weak solutions:

In the case that there are no global smooth solutions it is natural to ask whether

there are global weak solutions. This question has been answered only in rather

specific situations, e.g. in one space dimension, in general.

• Arbitrary domains:

As far as we have studied boundary value problems in this section, the boundary

was assumed to be smooth. This is important for the regularity theory which plays

an important role in proving the global existence theorems for smooth solutions.

Besides the typical interior and exterior boundary value problems mentioned above

there are domains with other geometries of interest, for example domains with an

two categories being of the type

Ω = IRn−m × Ω′, Ω′ ⊂ IRm bounded, 1 ≤ m < n.

Here there are already new phenomena arising in the linear theory, for example

the principle of limiting amplitude being not valid in certain cases (see P. Werner

[195]). This principle allows statements on the asymptotic behavior of solutions

to linear wave equations assuming a time-periodic force as t → ∞ and is always

satisfied in exterior domains if n ≥ 3.

We shall consider waveguides in Chapter 13.

• Boundary conditions:

Often it is necessary to investigate initial-boundary value problems for each set

of boundary conditions separately. In contrast to this it turns out that for linear

infinite boundary like half planes, waveguides or unbounded cylinders, the latter

12 Further Aspects and Questions
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and for nonlinear wave equations one obtains corresponding results for both the

Dirichlet and the Neumann boundary condition. But this is not self-evident. For

example, looking at the homogeneous, isotropic equations of elasticity outside a ball

in IR3, one finds that for the Dirichlet boundary condition the local energy (local

L2-norms of derivatives of the displacement vector) decays exponentially, but it

does not decay with a rate for the corresponding Neumann boundary condition

due to the presence of surface waves. The local energy even grows if one assumes a

suitable mixed boundary condition (see Ikehata & Nakamura [53]). These problems

hence require new ansätze.

• Individual equations:

It was mentioned at several places throughout this book that the common structure

which was found for all the systems discussed here does not mean putting all the

features under one cover. Specific properties of specific equations lead to sharp

results. Here further research is required for each individual system.

• Numerical investigations:

Last, but not least, we wish to emphasize that numerical investigations deserve a

great interest, e.g. for the shock wave analysis for hyperbolic problems. This is

important not only with regard to the applications, e.g. in gas dynamics, but also

because interesting hints for further theoretical, analytical research are expected.



13 Evolution equations in waveguides

Now we extend the considerations to initial value problems for waveguides Ω ⊂
IRn. In the main part, we consider nonlinear wave equations and Schrödinger equations

as well as step A for the equations of elasticity and the Maxwell equations in flat or

classical waveguides. These are domains Ω of the type

Ω = IRl × B � (x′, x′′), B ⊂ IRn−l bounded, (13.1)

where 1 ≤ l ≤ n− 1. Typical examples are provided in the following Figures 13.1–3:

x′

x′′

Ω

Figure 13.1: n = 2, l = 1: infinite strip

Ω

Figure 13.2: n = 3, l = 2: infinite plate

Ω

Figure 13.3: n = 3, l = 1: infinite cylinder

In the last part, we shall also look at generalized waveguides, see Figure 13.4.

The combination of bounded and unbounded parts makes the situation in waveguides

different from the Cauchy problem, but also different from bounded or exterior domains.

-boundary
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x′

x′′

Ω

Figure 13.4: n = 2, l = 1: generalized waveguide

13.1 Nonlinear wave equations

We consider the fully nonlinear equations

utt −Δu+mu = f(u, ut,∇u,∇ut,∇2u) (13.2)

for a function u = u(t, x), t ≥ 0, x ∈ Ω ⊂ IRn, m ≥ 0 being a constant, with initial

conditions

u(t = 0) = u0, ut(t = 0) = u1, (13.3)

and Dirichlet boundary conditions

u(t, ·) = 0 on ∂Ω. (13.4)

Ω is a flat waveguide as in (13.1) with smooth boundary ∂Ω. For m = 0 we have wave

equations, whereas m > 0 corresponds to Klein-Gordon equations. In contrast to Cauchy

problems we also consider a dependence of the smooth nonlinear function f on u, for the

case m = 0.

13.1.1 Linear part

Following the general steps A–E, we first characterize the asymptotic behavior of solu-

tions to the linearized equations

utt −Δu+mu = 0 in [0,∞)× Ω, (13.5)

u = 0 in [0,∞)× ∂Ω, (13.6)

u(0, ·) = u0, ut(0, ·) = u1 in Ω. (13.7)

The idea will be to use an eigenfunction expansion in the bounded part B of Ω = IRl×B,
and exploit the known behavior of functions defined in [0,∞)× IRl.

For x ∈ Ω we write

x = (x′, x′′) with x′ ∈ IRl, x′′ ∈ B,
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Δ =
n∑

j=1

∂2
j , Δ′ =

l∑
j=1

∂2
j , Δ′′ =

n∑
j=l+1

∂2
j ,

and, analogously,

∇,∇′,∇′′.

Let

A : D(A) ⊂ L2(Ω)→ L2(Ω),

D(A) := W 2,2(Ω) ∩W 1,2
0 (Ω), Aϕ := −Δϕ,

and

A′ : D(A′) ⊂ L2(IRl)→ L2(IRl),

D(A′) := W 2, 2(IRl), A′ϕ := −Δ′ϕ,

A′′ : D(A′′) ⊂ L2(B)→ L2(B),

D(A′′) := W 2, 2(B) ∩W 1, 2
0 (B), A′′ϕ := −Δ′′ϕ.

A′′ is self-adjoint, having a complete orthonormal set (wj)j∈IN of eigenfunctions corre-

sponding to eigenvalues (λj)j∈IN satisfying

0 < λ1 ≤ λ2 ≤ . . . ≤ λj →∞ as j →∞.

The spectra of A′ and A, respectively, are

σ(A′) = [0,∞), σ(A) = [λ1,∞)

and are purely continuous, cp. [99].

The L1-L∞-decay of solutions to (13.5) – (13.7) is described as follows.

Theorem 13.1 Let

K2 :=
[
n

2

]
+

[
n− l

2

]
+ 4, K3 :=

[
l + 3

2

]
+ n− l + 1,

and

u0 ∈ D(AK2/2) ∩WK2+K3+1, 1(Ω),

u1 ∈ D(A(K2−1)/2) ∩WK2+K3−1, 1(Ω).

Then the unique solution u to (13.5) – (13.7) satisfies

‖ (u(t), ut(t),∇u(t)) ‖L∞(Ω) ≤ c

(1 + t)l/2

(
‖u0‖WK2+K3+1, 1(Ω) + ‖u1‖WK2+K3−1, 1(Ω)

)
,

where the positive constant c depends at most on m.
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Remarks:

1. Of course, c may also depend on the fixed n and B.
2. The decay rate l/2 is the same for wave equations (m = 0) and for Klein-Gordon

equations (m > 0), wheras it is different for the Cauchy problem in IRn, where we have

(n− 1)/2 for m = 0 and n/2 for m > 0. For the case m = 0 one notices the interesting

behavior for l = n − 1 where one has the same decay as for the Cauchy problem. This

holds, for example, for an infinite strip in IR2 or for the region between two parallel

planes in IR3.

3. In general, for fixed n, the decay becomes weaker as the number of bounded dimensions

increases.

Proof of Theorem 13.1:

Case 1: t ≥ 1√
λ1
.

Expanding u = u(t, x′, x′′) for fixed (t, x′), one has

u(t, x′, x′′) =
∞∑
j=1

vj(t, x
′)wj(x

′′)

with

vj(t, x
′) = 〈u(t, x′, ·), wj〉L2(B).

By (13.5) we obtain

0 = utt −Δu+mu =
∞∑
j=1

(vj,tt −Δ′vj + λjvj +mvj)wj.

Denoting

vj, 0(x
′) := 〈u0(x

′, ·), wj〉L2(B), vj, 1 := 〈u1(x
′, ·), wj〉L2(B)

we conclude that vj satisfies

vj, tt −Δ′vj + (m+ λj)vj = 0 in [0,∞)× IRl, (13.8)

vj(0, ·) = vj, 0, vj, t(0, ·) = vj,1 in IRl, (13.9)

that is, both for m = 0 and for m > 0, vj satisfies a Klein-Gordon equation in all of IRl.

For vj we can exploit the decay of solutions to a Cauchy problem for the Klein-Gordon

equation, but we need a version describing the behavior of the mass which is depending

on λj in our situation.

Lemma 13.2 Let

K1 :=

[
l + 3

2

]
and let M ≥M0 > 0, v0 ∈ WK1,1(IRl), v1 ∈ WK1−1,1(IRl). Then the unique solution v to

vtt −Δ′v +Mv = 0 in [0,∞)× IRl,

v(0, ·) = v0, vt(0, ·) = v1 in

Rl,
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satisfies for t ≥ 1√
M

‖v(t)‖L∞(IRl) ≤
c

tl/2

(
M

1
4‖v0‖WK1, 1(IRl) +M

l−2
4 ‖v1‖WK1−1, 1(IRl)

)
,

c > 0 being a constant depending at most on M0.

Proof: Let

ṽ(t, x′) := v

(
t√
M

,
x′
√
M

)
.

Then ṽ satisfies

ṽtt −Δ′ṽ + ṽ = 0,

ṽ(0, x′) = v0

(
x′
√
M

)
=: ṽ0(x

′), ṽt(0, x
′) =

1√
M

v1

(
x′
√
M

)
=: ṽ1(x

′).

By the known estimates for Klein-Gordon equations from Chapter 11.5, we have for

t ≥ 1

|ṽ(t, x′)| ≤ c

tl/2

(
‖ṽ0‖WK1, 1(IRl) + ‖ṽ1‖WK1−1, 1(IRl)

)
. (13.10)

A substitution y′ = x′√
M
, dx′ = (

√
M)ldy′, yields

‖ṽ0‖L1(IRl) = M l/2‖v0‖L1(IRl).

Since

∂j ṽ0(x
′) =

1√
M

(∂j v0)

(
x′
√
M

)
,

1√
M
≤ 1√

M0

,

we obtain

‖ṽ0‖WK1, 1(IRl) ≤ cM l/2‖v0‖WK1, 1(IRl), (13.11)

and

‖ṽ1‖WK1−1, 1(IRl) ≤ cM (l−1)/2‖v1‖WK1−1,1(IRl), (13.12)

where c = c(M0). Combining (13.10) – (13.12) we get

|v(t, x′)| = |ṽ(
√
Mt,
√
Mx′)|

≤ c

(
√
M t)l/2

(
M l/2‖v0‖WK1, 1(IRl) +M (l−1)/2‖v1‖WK1−1(IRl)

)
.

Q.e.d.
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Corollary 13.3 Let

v0 ∈ WK1+1, 1(IRl), v1 ∈ WK1, 1(IRl).

Then we have for t ≥ 1√
M

‖∇′v(t)‖L∞(IRl) ≤
c

tl/2

(
M l/4‖v0‖WK1+1, 1(IRl) +M (l−2)/4‖v1‖WK1, 1(IRl)

)
,

‖vt(t)‖L∞(IRl) ≤
c

tl/2

(
M (l+2)/4‖v0‖WK1+1, 1(IRl) +M l/4‖v1‖WK1, 1(IRl)

)
,

where c > 0 depends at most on M0.

Proof: hj := ∂jv, j ∈ {1, . . . , l}, satisfies the same Klein-Gordon equation as v, now

with initial data

hj(0) = ∂jv0, hj,t(0) = ∂jv1

yielding the first claimed estimate by using Lemma 13.2.

h̃ := vt also satisfies the same differential equation, but with initial data

h̃(0) = v1, h̃t(0) = (Δ′ −M)v0.

Again using Lemma 13.2, we have

|h̃(t, x′)| ≤ c

t l/2

(
M l/4‖v1‖WK1,1(IRl) +M (l−2)/4‖(Δ′ −M)v0‖WK1−1, 1(IRl)

)
,

≤ c

t l/2

(
M l/4‖v1‖WK1, 1(IRl) +M (l+2)/4‖v0‖WK1+1, 1(IRl)

)
.

Q.e.d.

Now we return to the proof of Theorem 13.1. By Sobolev’s embedding theorem and

elliptic regularity, we have

|u(t, x′, x′′)|2 + |∇′′u(t, x′, x′′)|2 ≤ c‖u(t, x′, ·)‖2WK5,2(B) (13.13)

≤ c‖(A′′)K5/2u(t, x′, ·)‖2L2(B),

where

K5 :=

[
n− l

2

]
+ 3.

Concerning elliptic regularity we have for A1 ∈ {A,A′′}, with 〈·, ·〉L2 and ‖ · ‖L2 denoting

the inner product in L2(Ω) respectively the norm in L2(B),

λ1‖ϕ‖2L2 ≤ 〈A1ϕ, ϕ〉L2 = ‖∇ϕ‖2L2 (13.14)

implying

‖ϕ‖L2 ≤ 1√
λ1

‖A1/2
1 ϕ‖L2
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and

‖ϕ‖2L2 + ‖∇ϕ‖2L2 ≤ c‖A1/2
1 ϕ‖2L2, ϕ ∈ D(A

1/2
1 ). (13.15)

Now we use the elliptic regularity expressed in

Lemma 13.4 Let j ∈ IN, ϕ ∈ D(A1), 1 < p < ∞, ϕ ∈ Lp(Ω) resp. Lp(B), A1ϕ ∈
W j,p(Ω) resp. W j,p(B). Then ϕ ∈ W j+2,p(Ω) resp. W j+2,p(B) and

‖ϕ‖W 2+j,p ≤ c‖A1ϕ‖W j,p

holds, where c is a positive constant at most depending on j and p.

The proof of Lemma 13.4 is given for bounded domains in [174, Chapter II, Theorem

9.1.]. It carries over to a flat waveguide Ω since it has a bounded cross section, and hence

the Poincaré inequality can be used.

Applying Lemma 13.4 successively, we obtain

Corollary 13.5 Let j ∈ IN, ϕ ∈ D(Aj
1), 1 < p <∞, and ϕ,A1ϕ, · · · , Aj

1ϕ ∈ Lp(Ω) resp.

Lp(B). Then we have

‖ϕ‖W 2j,p ≤ c‖Aj
1ϕ‖Lp,

c at most depending on j and p.

Combining Lemma 13.4 and (13.15) we conclude for j ∈ IN and ϕ ∈ D(A
(2j+1)/2
1 )

‖ϕ‖W 2j+1,2 = ‖ϕ‖W 2j−1+2,2 ≤ c‖A1ϕ‖W 2j−1,2 ≤ . . . (13.16)

≤ c‖Aj
1ϕ‖W 1,2 ≤ c‖Aj+ 1

2
1 ϕ‖L2.

Corollary 13.5 and (13.16) yield for any j ∈ IN, ϕ ∈ D(Aj/2)

‖ϕ‖W j,2 ≤ c(j)‖Aj/2
1 ϕ‖L2. (13.17)

This last estimate has been used in the inequality in (13.13). We proceed in the pointwise

estimate (13.13) and obtain, using Lemma 13.2,

|u(t, x′, x′′)|2 + |∇′′u(t, x′, x′′)|2 ≤ c
∞∑
j=1

λK5
j |vj(t, x′)|2

≤ c

tl

∞∑
j=1

λK5
j

(
(m+ λj)

l/2‖〈vj,0‖2WK1, 1(IRl)

+ (m+ λj)
(l−2)/2‖〈vj,1‖2WK1− 1(IRl)

)
≤ c

tl

∞∑
j=1

λ
K5+l/2
j ‖〈u0, wj〉L2(B)‖2WK1, 1(IRl)

+λ
K5+l/2−1
j ‖〈u1, wj〉L2(B)‖2WK1−1,1(IRl).
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Observing

〈u0, wj〉L2(B) =
1

λ
K2/2
j

〈
(A′′)K2/2u0, wj

〉
L2(B) ,

〈u1, wj〉L2(B) =
1

λ
(K2−1)/2
j

〈
(A′′)(K2−1)/2u1, wj

〉
L2(B) ,

we conclude

|u′(t, x′, x′′)|2 + |∇′′u(t, x′, x′′)|2 (13.18)

≤ c
tl

∞∑
j=1

1

λ
K2−K5−l/2
j

(
‖〈(A′′)K2/2u0, wj〉L2(B)‖2WK1, 1(IRl)

+ ‖〈(A′′)(K2−1)/2u1, wj〉L2(B)‖2WK1− 1,1(IRl)

)
.

To obtain the convergence of
∞∑
j=1

1

λ
K2−K5−l/2
j

we need some information on the asymptotic

behavior of the eigenvalues λj as j →∞.

Lemma 13.6 The eigenvalues (λj)j of A′′ satisfy

λj ≥ cj
2

n−l , j ∈ IN,

where c > 0 is independent of j (but depends on B).
Proof: This kind of estimate goes back to early work of Weyl1. We use [2, Theorem 14.6]

yielding for the number N(λ) of eigenvalues satisfying λj ≤ λ,

N(λ) = cλ
n−l
2 +O(λn−l

2 ), as λ→∞,

with c = c(B) > 0. Hence

N(λ) ≤ cλ
n−l
2 for λ ≥ λ1,

implying the assertion since N(λj) ≥ j.

Q.e.d.

Lemma 13.6 implies

λ
K2−K5− l

2
j ≥ cj(K2−K5−l/2) 2

n−l .

By the choices of K2 and K5 we have

(K2 −K5 − l

2
)

2

n− l
> 1,

hence,
∞∑
j=1

1

λ
K2−K5−l/2
j

<∞. (13.19)

1Hermann Weyl, 9.11.1885 – 9.12.1955
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Moreover,

|〈(A′′)K2/2u0, wj〉L2(B)| ≤ ‖(A′′)K2/2u0‖L2(B) (13.20)

≤ c‖u0‖WK2, 2(B)

≤ c‖u0‖WK2+n−l+1,1(B),

similarly

|〈(A′′)(K2−1)/2u1, wj〉L2(B)| ≤ c‖u1‖WK2+n−l,1(B). (13.21)

Combining (13.18) – (13.21) and observing the definition of K3, we obtain

|u(t, x′, x′′)|2 + |∇′′u(t, x, x′′)|2 ≤ c

tl

(
‖u0‖2WK2+K3,1(Ω) + ‖u1‖2WK2+K3−2,1(Ω)

)
. (13.22)

Analogously, we get

|∇′u(t, x′, x′′)|2 ≤ c‖(A′′)(K5−1)/2∇′u(t, x′, ·)‖2L2(B) (13.23)

= c
∞∑
j=1

λK5−1
j |〈∇′u(t, x′, ·), ωj〉L2(B)|2

≤ r.h.s. of (13.22).

The time derivative is estimated by

|ut(t, x
′, x′′)|2 ≤ c‖ut(t, x

′, ·)‖2WK5−1,2(B) (13.24)

≤ c

tl

(
‖u0‖2WK2+K3+1,1(Ω) + ‖u1‖2WK2+K3−1,1(Ω)

)
.

Case 2: 0 ≤ t ≤ 1√
λ1
.

Let

K4 := [
n

2
] + 2.

Then u0 ∈ D(AK4/2), u1 ∈ D(A(K4−1)/2) since K4 ≤ K2. Let (Pλ)λ∈IR denote the spectral

family of A. Then

u(t) =

∞∫
λ1

cos(
√
m+ λ t)dPλu0 +

∞∫
λ1

sin(
√
m+ λ t)√
m+ λ

dPλu1.

This implies for t ≥ 0, x ∈ Ω, using (13.17),

|u(t, x)|+ |∇u(t, x)| ≤ c‖u(t, ·)‖WK4,2(Ω) ≤ c‖AK4/2u(t, ·)‖L2(Ω) (13.25)

≤ c

⎛⎜⎜⎝
⎛⎜⎝ ∞∫
λ1

λK4 cos2(
√
m+ λ t)d‖Pλu0‖2L2(Ω)

⎞⎟⎠
1/2

+

⎛⎜⎝ ∞∫
λ1

λK4

m+ λ
sin2(
√
m+ λ t)d‖Pλu1‖2L2(Ω)

⎞⎟⎠
1/2

⎞⎟⎟⎠
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≤ c
(
‖AK4/2u0‖L2(Ω) + ‖A(K4−1)/2u1‖L2(Ω)

)
≤ c

(
‖u0‖WK4, 2(Ω) + ‖u1‖WK4−1, 2(Ω)

)
≤ c

(1 + t)l/2

(
‖u0‖WK2+K3+1, 1(Ω) + ‖u1‖WK2+K3−1, 1(Ω)

)
,

observing 0 ≤ t ≤ 1√
λ1
. Analogously, we have

|ut(t, x)| ≤ right-hand side of (13.25). (13.26)

Combining (13.25), (13.26) with (13.22) – (13.24) completes the proof of Theorem 13.1.

Q.e.d.

We obtain the L2–L2-estimate from multiplying the differential equation (13.5) by ut in

L2(Ω), yielding

d

dt

(
‖ut(t)‖2L2(Ω) + ‖∇u(t)‖2L2(Ω) +m‖u(t)‖2L2(Ω)

)
= 0.

Integrating in time t and using Poincaré’s inequality (cp. (13.14))

‖u(t)‖L2(Ω) ≤ c‖∇u(t)‖L2(Ω),

we have proved

Theorem 13.7 Let u0 ∈ D(A), u1 ∈ D(A1/2). Then the solution u to (13.5) – (13.7)

satisfies for t ≥ 0

‖u(t)‖W 1,2(Ω) + ‖ut(t)‖L2(Ω) ≤ c
(
‖u0‖W 1,2(Ω) + ‖u1‖L2(Ω)

)
,

where c depends at most on m (and B).

The Lp–Lq-decay we conclude from Theorems 13.1 and 13.7 by interpolation.

Theorem 13.8 Let the assumptions of Theorem 13.1 be satisfied, let u be the unique

solution to (13.5) – (13.7), and let 2 ≤ q ≤ ∞, 1/p+ 1/q = 1.

(i) If u0 = 0, then u satisfies for t ≥ 0

‖(u, ut,∇u)(t)‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

‖u1‖WNp,p(Ω),

where

Np :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 2

q
)(K2 +K3 − 1), if q ∈ {2,∞}

[(1− 2
q
)(K2 +K3 − 1)] + 1, if 2 < q <∞,

and c depends at most on q and m.
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(ii) If additionally u1 ∈ D(A(K2−1)/2) ∩WK2+K3,1(Ω), then u satisfies for t ≥ 0

‖(u, ut,∇u)(t)‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

‖(u0, u1,∇u0)‖W Ñp,p(Ω)
,

where

Ñp :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 2

q
)(K2 +K3), if q ∈ {2,∞}

[(1− 2
q
)(K2 +K3)] + 1, if 2 < q <∞,

and c depends at most on q and m.

One can also treat other boundary conditions than the Dirichlet one (13.6), e.g. Neumann

boundary conditions

∂u

∂ν
= 0 in [0,∞)× ∂Ω, (13.27)

where ν = ν(x) denotes the exterior normal in x ∈ ∂Ω. Of course, there is the eigen-

function of −Δ′′, say w0, corresponding to the eigenvalue λ0 = 0. Then the coefficient

v0(t, x
′) := 〈u(t, x′, ·), w0〉L2(B)

only satisfies a wave equation for m = 0, not a Klein-Gordon equation,

v0,tt(t, x
′)−Δ′v0(t, x′) = 0.

Hence, the L∞-decay is of order t−
l−1
2 (instead of t−

l
2 ). Indeed, if ũ = ũ(t, x′) is a solution

to

ũtt −Δ′ũ = 0 in [0,∞)× IRl,

ũ(0, ·) = ϕ in IRl,

ũt(0, ·) = ψ in IRl,

with ϕ, ψ 
= 0, then

u(t, x′, x′′) := ũ(t, x′)w0(x
′′)

solves the linear wave equation ((13.5) with m = 0) in [0,∞) × Ω and satisfies the

Neumann boundary condition (13.27), together with nonvanishing data. The decay in

L∞ is only of order t−
l−1
2 . On the other hand, if the initial data u0, u1 are orthogonal to

the eigenfunctions w0 (= constant),∫
B

u0(x
′, x′′)dx′′ = 0 =

∫
B

u1(x
′, x′′)dx′′,
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for x′ ∈ IRl, then the better decay of oder t−
l
2 follows again.

In the next step we consider right-hand sides f = f(t, x) in

utt −Δu+mu = f in [0,∞)× Ω, (13.28)

u = 0 in [0,∞)× ∂Ω, (13.29)

u(0, ·) = u0, ut(0, ·) = u1 in Ω. (13.30)

A simple use of a variation of constants formula would require a set of boundary condi-

tions for f = f(t, ·) for fixed t; cp. the conditions on u0, u1 in Theorem 13.1. In view of

the application to the nonlinear problem (13.2) – (13.4) we take a different approach.

Let B := A+m, i.e.,

utt +Bu = f,

u(0) = u0, ut(0) = u1.

Then B−1 exists since σ(B) = [λ1 +m,∞) with λ1 > 0, m ≥ 0, and

v := B−1utt

satisfies

vtt +Bv = B−1ftt =: g,

v(0) = B−1utt(0), vt(0) = B−1uttt(0),

i.e., v satisfies the same differential equation, but with a right-hand side g that belongs

to D(B), hence it satisfies certain boundary conditions.

In this way, a higher regularity of f in t is needed and replaces the generally missing

boundary conditions. The desired estimates for u will then be obtained from those for v

via

u = B−1f − v.

Let T ∈ (0,∞] and K ∈ IN0 be arbitrary but fixed. We look for solutions u to

utt(t) +Bu(t) = f(t), t ≥ 0, (13.31)

u(t) ∈ D(B), t ≥ 0, (13.32)

u(0) = u0, ut(0) = u1, (13.33)

u ∈ 2K+2⋂
j=2K

Cj
(
[0, T ], W 2K+2−j,2(Ω)

)
. (13.34)

Let

uj :=

⎛⎝(
d

dt

)j

u

⎞⎠ (0) ≡ djtu(0)
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for j = 0, 1, . . . , 2K + 2. Then

uj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

j
2
−1∑

k=0
(Δ−m)kf (j−2−2k)(0) + (Δ−m)

j
2u0, j ≥ 2 even,

j−1
2

−1∑
k=0

(Δ−m)kf (j−2−2k)(0) + (Δ−m)
j−1
2 u1, j ≥ 3 odd,

(13.35)

where j = 2, 3, . . . , 2K + 2, and f (m) := dmt f, m ∈ IN0.

Exemplarily,

j = 2 : utt(0) = (Δ−m)u0 + f(0),

j = 3 : uttt(0) = (Δ−m)u1 + ft(0),

j = 4 : d4tu(0) = (Δ−m)utt(0) + ftt(0)

= (Δ−m)2u0 + (Δ−m)f(0) + ftt(0).

Theorem 13.9 Let f ∈ C2K([0, T ], L2(Ω)). If u is the solution to (13.31) – (13.34),

then

v := u+
K−1∑
j=0

(−B)−(j+1)f (2j) (13.36)

is the solution to

vtt +Bv = (−B)−Kf (2K), t ≥ 0, (13.37)

v(t) ∈ D(B), t ≥ 0, (13.38)

v(0) = (−B)−Ku2K , vt(0) = (−B)−Ku2K+1, (13.39)

v ∈ 2⋂
j=0

Cj
(
[0, T ], W 2−j,2(Ω)

)
, (13.40)

and

v = (−B)−Kd2Kt u. (13.41)

Proof: Let

ṽ := (−B)−Kd2Kt u

then

(d2t +B)ṽ = (−B)−Kd2Kt (d2t +B)u

= (−B)−Kf (2K),

hence ṽ solves (13.37) – (13.40). Defining

ũ := ṽ −
K−1∑
j=0

(−B)−(j+1)f (2j),
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we have

(d2t +B)ũ = (d2t +B)ṽ −
K−1∑
j=0

(d2t +B)(−B)−(j+1)f (2j)

= (−B)−Kf (2K) −
K−1∑
j=0

(−B)−(j+1)f (2j+2) −
K−1∑
j=0

(−B)−jf (2j)

= f,

ũ(0) = ṽ(0)−
K−1∑
j=0

(−B)−(j+1)f (2j)(0)

= (−B)−Ku2K −
K−1∑
j=0

(−B)−(j+1)f (2j)(0)

= (−B)−K

(
K−1∑
k=0

(Δ−m)kf (2K−2−2k)(0) + (Δ−m)Ku0

)

−
K−1∑
j=0

(−B)−(j+1)f (2j)(0)

= u0 +
K−1∑
k=0

(−B)−(K−k)f (2(K−k−1))(0)−
K−1∑
j=0

(−B)−(j+1)f (2j)(0)

= u0,

and, analogously,

ũt(0) = u1.

Hence ũ satisfies (13.31) – (13.33), so by uniqueness we get ũ = u, hence

ṽ = ũ+
K−1∑
j=0

(−B)−(j+1)f (2j)

= u+
K−1∑
j=0

(−B)−(j+1)f (2j)

= v,

i.e.,

v = (−B)K d2Kt u

solves (13.37) – (13.40).

Q.e.d.

Before stating a general result on the Lp-Lq-decay, we formulate necessary compatibility

conditions for the data.

Definition 13.10 Let K ∈ IN0. Then (u0, u1, f) satisfies the “compatibility condition of

order 2K” if, for j = 0, 1, . . . , 2K + 1,

uj ∈ W 1,2
0 (Ω) ∩W 2K+2−j,2(Ω) ∩W 2K+2−j,1(Ω), (13.42)
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and

u2K+2 ∈ L2(Ω). (13.43)

Theorem 13.11 Let

K ≥ K2 +K3 − 1

2
, f ∈

2K⋂
j=0

Cj
(
[0, T ],W 2K−j,2(Ω) ∩W 2K−j,1(Ω)

)
,

and let (u0, u1, f) satisfy the compatibility condition of order 2K. Let 2 ≤ q < ∞ and

1/p + 1/q = 1. Let u be the solution to (13.28) – (13.30) satisfying (13.34). Then we

have

‖u(t), ut(t),∇u(t)‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

⎛⎝‖(u0, u1,∇u0)‖W 2K+1, p(Ω) +
2K−2∑
j=0

‖f (j)(0)‖W 2K−j, p(Ω)

⎞⎠
+c

t∫
0

1

(1 + t− τ)(1−
2
q
) l
2

‖f (2K)(τ)‖Lp(Ω)dτ

+c
2K−1∑
j=0

‖f (j)(t)‖W 2K−1−j, p(Ω),

where the constant c > 0 depends at most on m (and q).

Proof: 1. According to Theorem 13.9, the function v defined by (13.36) solves (13.37)

– (13.41). We observe

u2K ∈ W 1,2
0 (Ω) ∩W 2,2(Ω) = D(B), u2K+1 ∈ W 1,2

0 (Ω) = D(B1/2),

and

v0 := v(0) = (−B)−Ku2K ∈ D(BK+1) ⊂ W 2K+2, 2(Ω),

v1 := vt(0) = (−B)−Ku2K+1 ∈ D(BK+1/2) ⊂ W 2K+1, 2(Ω),

g(t) := (−B)−Kf 2K(t) ∈ D(BK) ⊂ W 2K,2(Ω), t ≥ 0.

We conclude for the solution v̂ to

v̂tt +Bv̂ = 0, v̂(0) = v0, v̂t(0) = v1

from Theorem 13.8 (ii) that

‖ (v̂(t), v̂t(t),∇v̂(t)) ‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

‖(v0, v1,∇v0)‖
W Ñp, p(Ω)

(13.44)

holds. The solution v̌ to

v̌tt +Bv̌ = g, v̌(0) = 0, v̌t(0) = 0
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is given by

v̌(t) =

t∫
0

vτ (t− τ)dτ,

where vτ solves, for fixed 0 ≤ τ ≤ t,

vτtt +Bvτ = 0, vτ (0) = 0, vτt (0) = g(τ).

Using Theorem 13.8 (i) we conclude, since g(τ) ∈ D(BK),

‖
(
v̌(t), v̌t(t),∇v̌(t)

)
‖Lq(Ω) ≤ c

t∫
0

1

(1 + t− τ)(1−
2
q
) l
2

‖g(τ)‖
W Ñp, p(Ω)

dτ. (13.45)

Combining (13.44), (13.45) we get for v = v̂ + v̌

‖
(
v(t), vt(t),∇v(t)

)
‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

‖(v0, v1,∇v0)‖WNp, p(Ω) (13.46)

+c

t∫
0

1

(1 + t− τ)(1−
2
q
) l
2

‖g(τ)‖WNp, p(Ω)dτ.

2. Since p > 1 we can apply Corollary 13.5 to conclude, using Np ≤ K2 +K3 − 1 ≤ 2K,

‖g(τ)‖WNp, p(Ω) ≤ c‖BKg(τ)‖Lp(Ω) = c‖f (2K)(τ)‖Lp(Ω).

We also have Ñp ≤ 2K + 1 and get

‖(v0, v1,∇v0)‖
W Ñp, p(Ω)

≤ c
(
‖u2K‖W 2,p(Ω) + ‖u2K+1‖W 1,p(Ω)

)
.

Hence (13.46) turns into

‖
(
v(t), vt(t),∇v(t)

)
‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

(
‖u2K‖W 2,p(Ω) + ‖u2K+1‖W 1,p(Ω)

)
(13.47)

+ c

t∫
0

1

(1 + t− τ)(1−
2
q
) l
2

‖f (2K)(τ)‖Lp(Ω)dτ.

3. By (13.36), i.e., v = u+
K−1∑
j=0

(−B)−(j+1)f (2j), we have

‖
(
u(t), ut(t),∇u(t)

)
‖Lq(Ω) ≤ ‖

(
v(t), vt(t),∇v(t)

)
‖Lq(Ω) (13.48)

+
K−1∑
j=0

(
‖B−(j+1)f (2j)(t)‖Lq(Ω) + ‖B−(j+1)f (2j+1)(t)‖Lq(Ω)

+ ‖∇B−(j+1)f (2j)(t)‖Lq(Ω)

)
.

Since n ≤ 2K we conclude

‖B−(j+1)f (2j)(t)‖W 1,q(Ω) ≤ c‖B−(j+1)f (2j)(t)‖W 2K+1,p(Ω) (13.49)

≤ c‖f (2j)(t)‖W 2K−2j−1,p(Ω),
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and, analogously,

‖B−(j+1)f (2j+1)(t)‖Lq(Ω) ≤ c‖f (2j+1)(t)‖W 2K−2j−2,p(Ω). (13.50)

Combining (13.48) – (13.50) we obtain

‖
(
u(t), ut(t),∇u(t)

)
‖Lq(Ω) ≤ ‖

(
v(t), vt(t),∇v(t)

)
‖Lq(Ω) (13.51)

+c
2K−1∑
j=0

‖f (j)(t)‖W 2K−1−j,p .

4. Finally, see (13.35), we have

‖u2K‖W 2,p(Ω) ≤
K−1∑
k=0

‖f (2K−2−2k)(0)‖W 2k+2,p(Ω) + ‖u0‖W 2K+2,p(Ω) (13.52)

=
K−1∑
j=0

‖f (2j)(0)‖W 2K−2j,p(Ω) + ‖u0‖W 2k+2,p(Ω),

‖u2K+1‖W 1,p(Ω) ≤
K−1∑
k=0

‖f (2K−1−2k)(0)‖W 2k+1,p(Ω) + ‖u1‖W 2K+1,p(Ω) (13.53)

=
K−1∑
j=0

‖f (2j)(0)‖W 2K−2j−1,p(Ω) + ‖u1‖W 2K+1,p(Ω).

Combining (13.47), (13.51) – (13.53), the assertion of the Theorem follows.

Q.e.d.

We conclude the linear part with optimality considerations. The following example will

show that the decay rates proved above are optimal. This will be done in looking for a

solution to the linear problem

utt(t, x)−Δ u(t, x) +mu(t, x) = 0 in [0,∞)× Ω, (13.54)

u(t, x) = 0 in [0,∞)× ∂Ω, (13.55)

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω, (13.56)

m = const. ≥ 0, which has, as t→∞, exactly the L∞-decay O (t−l/2). For this purpose

let (wj)j∈ IN denote again the orthonormal system of eigenfunctions to the eigenvalues

(λj)j∈ IN of −Δ′′ in B. Let v0 ∈ C∞
0 (IRl) and

u0(x) = u0(x
′, x′′) := v0(x

′)w1(x
′′) for x ∈ Ω,

u1 := 0.

For u with these data to be a solution to (13.54) – (13.56) it is sufficient and necessary

to have

u(t, x) = v(t, x′) w1(x
′′) (13.57)
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with v satisfying

vtt(t, x
′)−Δ′ v(t, x′) + (m+ λ1)v(t, x

′) = 0 in [0,∞)× IRl, (13.58)

v(0, x′) = v0(x
′), vt(0, x

′) = 0 in IRl. (13.59)

For this we observe for u satisfying (13.57)

−Δu(t, x) = (−Δ′ −Δ′′) (v(t, x′) w1(x
′′)) = (−Δ′ + λ1) v(t, x

′) w1(x
′′).

For the solution v to the Klein-Gordon system (13.58), (13.59), the asymptotic behavior

is known to be (cp. [101])

v(t, x′) =
(m+ λ1)

l/4

(2π)

cos(t
√
m+ λ1 +

lπ
4
)

tl/2

∫
IRl

v0(x
′) dx′ +O

(
1

t(l+1)/2

)
(13.60)

as t → ∞, for any fixed x′ ∈ IRl. So we get the sharp L∞-decay O(t−l/2) for u(t, x) =

v(t, x′) w1(x
′′).

13.1.2 Nonlinear part

We turn to the fully nonlinear system, i.e., we look for the existence and for the asymp-

totic behavior of solutions u to

utt −Δu+mu = f(u, ut,∇u,∇ut,∇2u) in [0,∞)× Ω, (13.61)

u = 0 in [0,∞)× ∂Ω, (13.62)

u(0, ·) = u0, ut(0, ·) = u1 in Ω, (13.63)

where m ≥ 0 as before.

In [167] nonlinear wave equations (m = 0) were studied in exterior domains Ω̃ ( i.e. IRn\Ω̃
is bounded), which are non-trapping. Nonlinearities of the type f1(t, x, ut,∇u,∇u,∇2u)

not involving u were considered there. The dependence on t and x could also be dealt

with here but is just replaced by f as in (13.61) for simplicitiy. The methods from [167]

also apply to the case m > 0 in exterior domains. Here, we can also treat f = f(u, . . .)

depending on u because of Poincaré’s estimate which allows to estimate in each place

norms of u by the corresponding norms of ∇u. The strategy in [167] consists in

(i) having a local existence theorem available,

(ii) proving Lp–Lq-estimates for the linearized system, and

(iii) proving a priori estimates for the local solution exploiting (ii).
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This coarse description (i) – (iii), of course, reminds of the general scheme A – E from the

Cauchy problem but part (ii) in section 4.1 in [167] uses the local energy decay property

for non-trapping domains which is not available in our case. But we have already proved

the general Lp–Lq-decay result in Theorem 13.11, and we can proceed getting a priori

estimates as in sections 6 and 7 in [167].

A local existence theorem can be taken from Theorem 1.1 of [100].

Let

K,M ∈ IN, M ≥ K2 +K3 + 1, K ≥ 2M, (13.64)

and suppose that

f ∈ C2K−1 (IRn2+2n+2), |f(W )| = O(|W |α+1) as |W | → 0, (13.65)

where

α ≥ α(l) :=

⎧⎪⎪⎨⎪⎪⎩
3, if l = 1,

2, if 2 ≤ l ≤ 4,

1, if l ≥ 5.

(13.66)

Let

q(l) := 2α(l) + 2, p(l) :=
2α(l) + 2

2α(l) + 1
(13.67)

be associated Hölder exponents, and let

d(l) :=

(
1− 2

q(l)

)
l

2
=

α(l)

α(l) + 1

l

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3/8, if l = 1,

2/3, if l = 2,

1, if l = 3,

4/3, if l = 4,

l/4, if l ≥ 5.

(13.68)

The number d(l) is the decay rate of the Lq(l)-norm ‖u(t)‖Lq(l) for the linearized problem,

α = α(l) is determined by the condition

1

α

(
1 +

1

α

)
<

l

2
, (13.69)

and then q resp. p by
1

q
+

1

p
= 1 and

α

q
+

1

2
=

1

p
, (13.70)

as in the Cauchy problem. Denoting by D
k
v all derivatives of v in t and x up to order

k, we have

Theorem 13.12 Suppose that Ω = IRl × B, where B ⊂ IRn−l is bounded with smooth

boundary ∂B, and that (13.64) – (13.68) hold. Then there is 0 < ε < 1 such that if
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u0 ∈ W 2K,2(Ω)∩W 2K−1,p(l)(Ω), u1 ∈ W 2K−1,2(Ω)∩W 2K−2,p(l)(Ω) and (u0, u1, f) satisfies

a compatibility condition corresponding to (13.42), (13.43) of order 2K, and

‖u0‖W 2K, 2(Ω) + ‖u0‖W 2K−1, p(l)(Ω) + ‖u1‖W 2K−1, 2(Ω) + ‖u1‖W 2K−2, p(l)(Ω) < ε,

then there exists a unique solution

u ∈
2K⋂
j=0

Cj
(
[0,∞),W 2K−j,2(Ω)

)
⊂ C2

(
[0,∞)× Ω

)
to (13.61) – (13.63) satisfying

sup
t≥0

(
‖DK

u(t)‖L2(Ω) + (1 + t)d(l)‖DK−M
u(t)‖Lq(l)(Ω)

)
≤ c1, (13.71)

where the constant c1 depends at most on l, m and Ω.

Proof: Since the local existence theorem guarantees that the local solution

u ∈
2K⋂
j=0

Cj
(
[0, T ),W 2K−j,2(Ω)

)
for some T > 0,

can be continued with respect to t ≥ T as long as u is sufficiently small, it suffices to

prove (13.71). The (lengthy) details in the spirit of our general scheme can be found in

[101] or [12].

Q.e.d.

Looking at the Cauchy problem or at the case of exterior domains, one might expect

sharper results for a few (unbounded) spatial dimensions l = 1, 2, 3, 4 – sharper with

respect to the admissible α = α(l), cp. (13.66). This cases have been investigated in part

by Metcalfe, Sogge, Stewart and Perry in [123, 124].

13.2 Schrödinger equations

For Schrödinger equations

ut − iΔu = f(u,∇u), (13.72)

where u = u(t, x) ∈ C, t ≥ 0, x ∈ Ω ⊂ IRn,Ω a waveguide as before, with initial condition

u(0, ·) = u0, (13.73)

and Dirichlet boundary condition

u(t, ·) = 0 on ∂Ω, (13.74)

we can argue as for nonlinear wave equations, cp. [14]. We assume for the smooth

nonlinear function f , that

∂f(W )

∂(∂ju)
is real, 1 ≤ j ≤ n, (13.75)
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and

|f(W )| = O(|W |α+1) as |W | → 0 (13.76)

hold for some α ∈ IN.

The decay of solutions to the linearized problem, where f = f(t, x), is first given for

f = 0.

Theorem 13.13 Let

K1 := 2(n− l) + 4, K2 := l + 1 +

[
n− l + 1

2

]
,

and

u0 ∈ D(AK1/2) ∩WK1+K2,1(Ω).

Then the unique solution u to (13.72) – (13.74), with f = 0, satisfies for 2 ≤ q ≤ ∞,

1/p+ 1/q = 1, and for t ≥ 0:

‖u(t)‖Lq(Ω) ≤ c

(1 + t)(1−
2
q
) l
2

‖u0‖WNp,p(Ω),

where

Np :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− 2

q
)(K1 +K2)− 1, if q ∈ {2,∞},

[(1− 2
q
)(K1 +K2)], if 2 < q <∞.

The positive constant c depends at most on q.

Considering linearized equations with f = f(t, x), the compatibility condition of order

K ∈ IN0 for (u0, f) is given by requiring

uj ∈ W 2K+2−2j, 2(Ω) ∩W 1, 2
0 (Ω), j = 0, 1, . . . , K, (13.77)

uK+1 ∈ L2(Ω), (13.78)

where

uj :=
(
djtu

)
(0, ·) = (iΔ)ju0 +

j−1∑
k=0

(iΔ)kf (j−1−k)(0, ·).

The Lp-Lq-decay for the linearized equations with right-hand side f = f(t, x) is then

given by

Theorem 13.14 Let K1, K2 be given as in Theorem 13.13,

K ≥ K1 +K2

2
,

f ∈
K−1⋂
j=0

Cj
(
[0,∞), W 2K−2−2j,2(Ω) ∩W 2K−2−2j, 1(Ω)

)
,
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f ∈ CK
(
[0,∞), L2(Ω) ∩ L1(Ω)

)
,

and let (u0, f) satisfy the compatibility condition (13.77), (13.78) of order K. Let 2 ≤
q < ∞ and 1/p + 1/q = 1. Then the unique solution u to (13.72) – (13.74), with

f = f(t, x), satisfies

‖u(t)‖Lq(Ω) ≤ c

(1+t)
(1− 2

q ) l
2

(
‖u0‖W 2K,p(Ω) +

K−1∑
j=0
‖f (j)(0)‖W 2K−2−2j, p

)

+ c
t∫
0

1

(1+t−τ)
(1− 2

q ) l
2
‖f (K)(τ)‖Lp(Ω)dτ

+ c
K−1∑
j=0
‖f (j)(t)‖W 2K−2−2j, p(Ω),

where the constant c > 0 depends at most on q.

For the nonlinear system (13.72) – (13.76) we assume

α ≥ α(l) :=

⎧⎪⎪⎨⎪⎪⎩
3, if l = 1,

2, if 2 ≤ l ≤ 4,

1, if l ≥ 5,

(13.79)

q(l) := 2α(l) + 2, p(l) :=
2α(l) + 2

2α(l) + 1
, (13.80)

and

d(l) :=

(
1− 1

2q(l)

)
l

2
, (13.81)

cp. (13.66) – (13.68). Let

K,M ∈ IN, M ≥ 2
[
K1 +K2 + 1

2

]
+ 1, K ≥ 2M, (13.82)

where K1, K2 are given in Theorem 13.13.

Theorem 13.15 Suppose that Ω = IRl × B, where B ⊂ IRn−l is bounded with smooth

boundary ∂B, and that (13.79) – (13.82) hold. Then there is 0 < ε < 1 such that if

u0 ∈ W 2K,2(Ω) ∩W 2K,p(l)(Ω) and (u0, f) satisfy a compatibility condition corresponding

to (13.77), (13.78) of order K, and

‖u0‖W 2K,2(Ω) + ‖u0‖W 2K,p (l)(Ω) < ε,

then there exists a unique solution

u ∈
K⋂
j=0

Cj
(
[0,∞), W 2K−2j,2(Ω)

)
,

to (13.72) – (13.76) satisfying

sup
t≥0

(
‖D̄Ku(t)‖L2(Ω) + (1 + t)d(l)‖D̄K−Mu(t)‖Lq(l)(Ω) ≤ c1

)
,

where the constant c1 depends at most on l and Ω.
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We recall that for Cauchy problems we have local existence theorems for more general,

quasilinear Schrödinger equations, see [115, 116]. For Theorem 13.15 we may use [83].

13.3 Equations of elasticity and Maxwell equations

We consider, following [102], the equations of (homogeneous, isotropic) elasticity for the

displacement vector u,

utt − μΔu− (μ+ λ)∇ div u = f, (13.83)

where u : [0,∞) × Ω → IRn, n = 2, 3, with the Lamé constants λ, μ satisfying μ >

0, 2μ+ nλ > 0, cp. [63], and where

Ω = IRl × B, B ⊂ IRn−l bounded,

is a waveguide as before. f : [0,∞)×Ω→ IRn is a given function, and Δu is to be read

in each component. In contrast to the situation with the Laplace operator appearing in

wave equations,

Δ = Δ′ +Δ′′,

the operator of elasticity

E = μΔ+ (μ+ λ)∇ div

does not split up into E = E ′+E ′′, where E ′ and. E ′′ only acts on x′ and x′′, respectively,

since, for example for n = 2,

E =

⎛⎜⎜⎜⎝
μΔ+ (μ+ λ)∂2

1 (μ+ λ)∂1∂2

(μ+ λ)∂2∂1 μΔ+ (μ+ λ)∂2
2

⎞⎟⎟⎟⎠ .

We shall consider the equations (13.83) together with initial conditions

u(0, ·) = u0, ut(0, ·) = u1, (13.84)

and with Maxwell type boundary conditions

ν × u(t, ·) = 0, div u(t, ·) = 0 on ∂Ω, (13.85)

or

ν · u(t, ·) = 0, ν × (∇× u(t, ·)) = 0 on ∂Ω. (13.86)

Below, we shall see that the boundary conditions (13.85) resp. (13.86), which are typical

for Maxwell equations, can be read for waveguides as common Dirichlet or Neumann

type boundary conditions. The reason for choosing these boundary conditions is con-

nected with the problem of non-splitting E into E ′ + E ′′ mentioned above and the idea

of overcoming this difficulty by projection techniques. To understand this we think for
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a moment of the Cauchy problem with Ω = IR3, where we have the orthogonal decom-

position of L2-vector fields,(
L2(IR3)

)3
= ∇W 1,2(IR3)⊕D0(IR

3), (13.87)

with D0(IR
3) denoting the fields with divergence zero; and ∇W 1,2(IR3) is the L2-closure

of gradients of functions in W 1,2(IR3). Decomposing the displacement vector

u = upo + us

correspondingly, we obtain a decomposition of (13.83) into

upo
tt − (2μ+ λ)Δupo = f po, us

tt − μΔus = f s. (13.88)

For this we use

∇× upo = 0, div us = 0,

and the formula

Δ = ∇ div−∇×∇× (13.89)

turning (13.83) into

utt − (2μ+ λ)∇ div u+ μ∇×∇× u = f

yielding (
upo
tt − (2μ+ λ)∇ div upo

)
+ (us

tt + μ∇×∇× us) = f po + f s,

or (13.88).

Unfortunately, the decomposition (13.87) and its variants in domains with boundaries

are not compatible with the usual Dirichlet boundary conditions (similar for the cor-

responding elastic Neumann boundary conditions). But it turns out that the Maxwell

boundary conditions (13.85) or (13.86) are compatible with the following variants of

(13.87).

Before specifying these decompositions, we remark that we also have corresponding de-

compositions in two space dimensions, as well as formula (13.89), if we define for a vector

field H : IR2 → IR2 and a scalar function h : IR2 → IR

∇×H := ∂1H2 − ∂2H1, ∇× h :=

⎛⎝ ∂2h

−∂1h

⎞⎠ .

Now Ω being a waveguide again, we use the following orthogonal decomposition in case

we consider the boundary conditions (13.85):(
L2(Ω)

)n
= ∇W 1,2

0 (Ω)⊕D0(Ω), (13.90)
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which follows from the projection theorem. Decomposing u correspondingly, we have

u = upo + us, upo(t, ·) ∈ ∇W 1,2
0 (Ω), us(t, ·) ∈ D0(Ω).

The compatibility of the boundary conditions (13.85) with the decomposition (13.90) is

reflected in a decomposition of the boundary conditions as follows.

us satisfies

us
tt + μ∇×∇× us = f s, div us = 0,

us(0, ·) = u0,s, us
t(0, ·) = u1,s,

ν × us(t, ·) = 0 on ∂Ω. (13.91)

The boundary condition (13.91) will be satisfied in the weak sense,

us(t, ·) ∈ R0(Ω),

where R0(Ω) generalizes the classical boundary condition as usual, for n = 3:

R0(Ω) :=
{
v ∈

(
L2(Ω)

)n | ∇ × v ∈
(
L2(Ω)

)n
, and

∀F ∈
(
L2(Ω)

)n
, ∇× F ∈

(
L2(Ω)

)n
:
∫
Ω

v(∇× F ) =
∫
Ω

(∇× v)F

⎫⎬⎭ ,

for n = 2:

R0(Ω) := W 1,2
0 (Ω).

We remark that R0(Ω) equals the completion of C∞
0 -fields with respect to the norm (cf.

[98])

‖ · ‖R :=
(
‖ · ‖2L2 + ‖∇× ·‖2L2

)1/2
.

upo satisfies

upo
tt − (2μ+ λ)∇ div upo = f po, upo ∈ ∇W 1,2

0 (Ω),

upo(0, ·) = u0,po, upo
t (0, ·) = u1,po,

ν × upo(t, ·) = 0, div upo(t, ·) = 0 on ∂Ω.

The boundary condition ν×upo(t, ·) = 0 is automatically satisfied since upo ∈ ∇W 1,2
0 (Ω) ⊂

R0(Ω). Thus, we obtain both for β = po and β = s that

uβ
tt − τβΔuβ = fβ, (13.92)

uβ(0, ·) = u0,β, uβ
t (0, ·) = u1,β, (13.93)

ν × uβ(t, ·) = 0, div uβ(t, ·) = 0 on ∂Ω, (13.94)
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with

τβ :=

⎧⎨⎩ 2μ+ λ, for β = po,

μ, for β = s

being positive.

The initial-boundary value problem (13.92) – (13.94) is of Maxwell type corresponding

to the second-order equation for the electric field with so-called electric boundary con-

ditions, see [98, 190, 191, 192]. The existence theory is well-known.

Turning to the boundary condition (13.86), we use the orthogonal decomposition(
L2(Ω)

)n
= R0(Ω)⊕∇× R0(Ω), (13.95)

where R0(Ω) denotes the fields with vanishing rotation. u is now decomposed into

u = upo + us, upo(t, ·) ∈ R0(Ω), us(t, ·) ∈ ∇× R0(Ω).

Similar agreements as above yield (13.92), (13.93) and now, for β ∈ {po, s},

ν × (∇× uβ(t, ·)) = 0, ν · uβ(t, ·) = 0 on ∂Ω. (13.96)

The first part of the boundary conditions is interpreted in the sense ∇×uβ(t, ·) ∈ R0(Ω).

The second part is formulated weakly by saying uβ ∈ D0(Ω) where

D0(Ω) :=

⎧⎨⎩v ∈
(
L2(Ω)

)n ∣∣∣ div v ∈ L2(Ω) and : ∀g ∈ W 1,2(Ω) :
∫
Ω

v(∇g) = −
∫
Ω

(div v)g

⎫⎬⎭ .

The space D0(Ω) equals the completion of C∞
0 -fields with respect to the norm (cf. [98])

‖ · ‖D :=
(
‖ · ‖2L2 + ‖ div ·‖2L2

)1/2
.

The initial-boundary value problem (13.92), (13.93), (13.96) is of Maxwell type corre-

sponding to so-called magnetic boundary conditions, and the existence theory is well-

known too.

Consequently, in order to finally obtain decay rates for the displacement vector, we will

look at the Maxwell equations under electric and magnetic boundary conditions, respec-

tively.

Before proceeding in this direction, we examine the electric boundary condition (13.85)

and the magnetic boundary condition (13.86) for the displacement vector u in a wave-

guide. It turns out that, in many cases, these boundary conditions in waveguides have

a meaning in terms of natural Dirichlet or Neumann type boundary conditions for the

components of the displacement vector.

First, we consider the two-dimensional case, where we have essentially only one situation,

namely Ω being a strip with cross section (0, 1) without loss of generality,

Ω = IR × (0, 1).
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The first boundary conditions are (13.85), which are in two space dimensions equivalent

to

−ν2u1 + ν1u2 = 0, ∂1u1 + ∂2u2 = 0 on ∂Ω.

Since ν = (0,±1)′ and ∂/∂ν = ±∂2, this is equivalent to

u1 =
∂

∂ν
u2 = 0 on ∂Ω.

Hence it represents a free movement in the normal direction and no shear movement.

The second boundary conditions are (13.86) or, equivalently,

ν1u1 + ν2u2 = 0, ν2(−∂2u1 + ∂1u2) = 0, ν1(∂2u1 − ∂1u2) = 0,

which is, in view of ν = (0,±1)′, equivalent to
∂

∂ν
u1 = u2 = 0 on ∂Ω,

representing a free shear movement.

Second, we consider the three-dimensional case n = 3 with l = 2, where Ω, essentially,

represents the region between two planes, i.e. without loss of generality

Ω = IR2 × (0, 1).

The first boundary conditions (13.85) are now equivalent to

ν2u3 − ν3u2 = 0,

ν3u1 − ν1u3 = 0,

ν1u2 − ν2u1 = 0,

∂1u1 + ∂2u2 + ∂3u3 = 0.

(13.97)

Observing ν = (0, 0,±1) and ∂/∂ν = ±∂3, we obtain

u1 = u2 =
∂

∂ν
u3 = 0 on ∂Ω, (13.98)

with a, now, obvious interpretation. The second boundary conditions (13.86) are

ν1u1 + ν2u2 + ν3u3 = 0,

ν2(∂1u2 − ∂2u1)− ν3(∂3u1 − ∂1u3) = 0,

ν3(∂2u3 − ∂3u2)− ν1(∂1u2 − ∂2u1) = 0,

ν1(∂3u1 − ∂1u3)− ν2(∂2u3 − ∂3u2) = 0,

(13.99)

or, equivalently,
∂

∂ν
u1 =

∂

∂ν
u2 = u3 = 0 on ∂Ω. (13.100)
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Third, we have the three-dimensional infinite cylinder, n = 3, l = 1,

Ω = IR × B,

where B ⊂ IR2 is a bounded domain.

Observing ν = (0, ν2, ν3)
′, we obtain for the first boundary conditions (13.85) from

(13.97)

u1 = 0, ν2u3 − ν3u2 = 0, ∂2u2 + ∂3u3 = 0. (13.101)

For the second boundary conditions (13.86) we get from (13.99)

ν2u2 + ν3u3 = 0,

ν2(∂1u2 − ∂2u1)− ν3(∂3u1 − ∂1u3) = 0,

∂2u3 − ∂3u2 = 0.

(13.102)

The boundary conditions (13.101) and (13.102), respectively, become more transparent

for cylindrically symmetrical domains B, where Ω is a classical cylinder, and this means

for B that

x′′ ∈ B ⇒ Rx′′ ∈ B
for all R ∈ O(2), the set of orthogonal real 2× 2 matrices. Typical examples for B are

balls or annular domains.

We call a vector field u : Ω → IR3 cylindrically symmetrical if we have for all x1 ∈
IR, x′′ = (x2, x3) ∈ B and R ∈ O(2) :

u1(x1, Rx′′) = u1(x1, x
′′), (u2, u3)

′(x1, Rx′′) = R(u2, u3)
′(x1, x

′′).

That is, u is cylindrically symmetrical if, for fixed x1, the first component u1(x1, ·) as a
scalar field, and the second and third components together as a vector field (u2, u3)

′(x1, ·)
are radially symmetrical in B. Therefore, we have the following characterizations, cp.

[63],

Lemma 13.16 u : Ω→ IR3 is cylindrically symmetrical ⇔ there exist functions

h, φ : IR × IR+
0 → IR

such that for all (x1, x
′′) ∈ Ω

u1(x1, x
′′) = h(x1, r), (u2, u3)

′(x1, x
′′) = φ(x1, r)x

′′

holds, where r := |x′′| =
√
x2
2 + x2

3.

Our initial-boundary value problem (13.83) – (13.85), resp. (13.83) – (13.86), turns out

to be cylindrically invariant, i.e. we have
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Lemma 13.17 Let Ω be cylindrically symmetrical. If the data u0, u1 are cylindrically

symmetrical, then the solution u(t, ·) to (13.83) – (13.85), resp. (13.83) – (13.86), with

f = 0, is cylindrically symmetrical for all t ≥ 0.

Proof: Let R = (rjk)1≤j,k≤2 ∈ O(2), and let

R̃ :=

⎛⎜⎜⎝
1 0 0

0 r11 r12

0 r21 r22

⎞⎟⎟⎠ .

Then R̃ is an orthogonal 3× 3 matrix. For t ≥ 0 and x = (x1, x
′′) ∈ Ω let

v(t, x) := R̃′u(t, R̃x).

Since

vtt(t, x) = R̃′utt(t, R̃x), Δv(t, x) = R̃′(Δu)(t, R̃x), ∇ div v(t, x) = R̃′(∇ div u)(t, R̃x),

we conclude that v satisfies the same differential equation as u and has the same initial

values. By uniqueness of solutions it only remains to show that v satisfies the same

boundary conditions as u, that is, the invariance of the boundary conditions under

cylindrical symmetry.

For the first boundary conditions (13.85) this can be seen as follows. First note that⎛⎝ ν2(x1, Rx′′)

ν3(x1, Rx′′)

⎞⎠ = R

⎛⎝ ν2(x1, x
′′)

ν3(x1, x
′′)

⎞⎠ ,

and thus, using ν1 = 0,

ν(R̃x) = R̃ν(x).

This implies

ν(x)× R̃′u(t, R̃x) =
(
R̃′R̃ν(x)

)
× R̃′u(t, R̃x)

= det(R)R̃′(R̃ν(x)× u(t, R̃x)
)

= det(R)R̃′(ν(R̃x)× u(t, R̃x)
)

= 0 on ∂Ω

since ν × u(t, ·) = 0 on ∂Ω. Hence

ν × v(t, ·) = 0 on ∂Ω. (13.103)

A short calculation shows

div
(
R̃′ u(t, R̃x)

)
= (div u)(t, R̃x).
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Therefore, we have

div v(t, ·) = 0 on ∂Ω, (13.104)

since div u(t, ·) = 0 on ∂Ω. By (13.103), (13.104), v satisfies the same boundary condi-

tions (13.85) as u. For the second boundary conditions (13.86) one has on ∂Ω

ν(x) v(t, x) =
(
R̃ ν(x)

)
u(t, R̃x) = ν(R̃x) u(t, R̃x) = 0. (13.105)

Using

∇×
(
R̃′u(t, R̃x)

)
= (detR)R̃′(∇× u)(t, R̃x)

we obtain in the same way

ν(x)×
(
∇× v(t, x)

)
= R̃′(ν(R̃x)× (∇× u)(t, R̃x)

)
= 0 (13.106)

on ∂Ω. By (13.105), (13.106), v satisfies the same boundary conditions (13.86) as u.

Q.e.d.

For a cylindrically symmetrical solution

u(t, x1, x
′′) =

⎛⎝ h(t, x1, r)

φ(t, x1, r)x
′′

⎞⎠ ,

according to Lemma 13.16, we can now write the first boundary conditions (13.85) as

h = 0, 2φ+ rφr = 0 on ∂Ω,

cp. (13.101).

The second boundary conditions (13.86), resp. (13.102), can be rewritten as

hr = 0, φ = 0 on ∂Ω, (13.107)

since

ν2u2 + ν3u3 = rφ

and

ν2(∂1u2 − ∂2u1)− ν3(∂3u1 − ∂1u3) = r(φx1 − hr).

In terms of u we have from (13.107)

∂

∂ν
u1 = u2 = u3 = 0 on ∂Ω,

cp. (13.98).

Concerning the boundary conditions we remark that the case (13.85) was already studied

for elasticity by Weyl2 [196].

2Weyl gave a motivation as follows: “Sie [the boundary condition (13.85)] wird für uns dadurch

wesentlich, dass sie nach dem Schema � Elastischer Körper −→ Fresnels elastischer Aether −→
elektromagnetischer Aether  den Übergang von der Elastizitätstheorie zur Potentialtheorie zu Wege

bringt.”
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Now, coming back to the Maxwell initial-boundary value problems (13.92), (13.93),

(13.94) resp. (13.96), we define the two Maxwell operators M1,M2 with

Mj : D(Mj) ⊂
(
L2(Ω)

)n −→ (
L2(Ω)

)n
, j = 1, 2,

by

D(M1) :=
{
u ∈

(
L2(Ω)

)n| u ∈ R0(Ω), div u ∈ W 1,2
0 (Ω),Δu ∈

(
L2(Ω)

)n}
,

D(M2) :=
{
u ∈

(
L2(Ω)

)n| u ∈ D0(Ω),∇× u ∈ R0(Ω),Δu ∈
(
L2(Ω)

)n}
,

and

Mju := −τΔu,

where τ = μ resp. τ = 2μ+ λ. It is known ([193, 194]) that Mj is a positive self-adjoint

operator with purely continuous spectrum

σ(Mj) = [δ,∞), j = 1, 2,

where δ satisfies

δ

⎧⎨⎩ >

=

⎫⎬⎭ 0 if

⎧⎨⎩ j = 1 and B is simply connected

j = 2 or B is multiply connected

⎫⎬⎭ .

The following assertion on Lp-regularity for the Maxwell operators is an extension from

[96], where the case of a bounded domain is studied.

Lemma 13.18 Let m ∈ IN0, u ∈ D(Mj), j = 1 or j = 2, 1 < p < ∞, u ∈
(
Lp(Ω)

)n
,

Mju ∈
(
Wm,p(Ω)

)n
. Then u ∈

(
Wm+2,p(Ω)

)n
and

‖u‖Wm+2,p(Ω) ≤ c‖(Mj + 1)‖Wm,p(Ω),

where c > 0 is a constant at most depending on m and p (and j).

To apply again the methods used for the classical wave equation with Dirichlet boundary

conditions in Chapter 13.1, we need knowledge of the eigenvalue distribution for the

different operators acting on the bounded cross section B.
We have the following six cases:

I–IV: n = 2, 3 and l = n− 1, boundary conditions (13.85) or (13.86),

V: n = 3, l = 1, boundary conditions (13.85),

VI: n = 3, l = 1, boundary conditions (13.86), cylindrical symmetry.
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Lemma 13.19 The eigenvalues (�m)m for the Laplace operator studied in the cross sec-

tion B under the different boundary conditions arising in the cases I – VI satisfy

�m ≥ cm
2

n−l ,

where c > 0 is independent of m ∈ IN.

Proof: For the cases I – IV and VI, the boundary conditions reduce to Dirichlet or

Neumann type boundary conditions, and we refer to Chapter 13.1. For case V we refer

to [121].

Q.e.d.

There arise zero eigenvalues of the operators, for Neumann type boundary conditions

in cases I – IV, VI, but also in case V, here with one-dimensional eigenspace arising

from R0(B) ∩ R0(B) ∩ D0(B). Initial values living in these eigenspaces lead to smaller

decay rates. In the following we consider the part in the orthogonal complement of these

eigenspaces.

Definition 13.20 w0 satisfies condition (N) if the projection of w0(x′, ·), for every fixed

x′ ∈ IRl, onto the null space of the operator’s part in the cross section vanishes.

Now, we can carry over the methods from Chapter 13.1 to the Maxwell systems for

z = z(t, x) ∈ IRn,

ztt − τΔz = f, (13.108)

z(0, ·) = z0, zt(0, ·) = z1, (13.109)

with either, on ∂Ω,

ν × z(t, ·) = 0, div z(t, ·) = 0, (13.110)

or

ν · z(t, ·) = 0, ν × (∇× z(t, ·)) = 0, (13.111)

where τ > 0.

Theorem 13.21 Let

K ≥ 1

2

([
n

2

]
+

[
l + 1

2

]
+ n

)
, and let z0, z1, f(t, ·) satisfy, for t ≥ 0, condition (N), and let (z0, z1, f) satisfy the

compatibility condition of order 2K ∈ IN, i.e.

dj

dtj
z(0, ·) ∈ D(M) for j = 0, 1, . . . , 2K, z2K+1 ∈ D(M1/2),

where M is either M1 or M2. Moreover assume

z0 ∈ W 2K+2,2(Ω) ∩W 2K+2,1(Ω), z1 ∈ W 2K+1,2(Ω) ∩W 2K+1,1(Ω),
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f ∈
2K⋂
j=0

Cj
(
[0,∞),W 2K−j,2(Ω) ∩W 2K−j,1(Ω)

)
.

Then the unique solution z to (13.108), (13.109) and (13.110) resp. (13.111) satisfies

for 2 ≤ q <∞ and 1/p+ 1/q = 1

‖(z(t, ·), zt(t, ·), ∇z(t, ·))‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

(
‖(z0, z1,∇z0)‖W 2K,p(Ω) +

2K−1∑
j=0

‖f (j)(0)‖W 2K−1−j,p(Ω)

)

+ c

t∫
0

1

(1 + t− s)(1−
2
q
) l
2

2K∑
j=0

‖f (j)(s)‖Lp(Ω) ds+ c
2K−1∑
j=0

‖f (j)(t)‖W 2K−1−j,p(Ω),

where the constant c > 0 does not depend on z0, z1, f or t.

Finally, we obtain the Lp-Lq-decay results for the elastic system (13.83), (13.84), (13.85)

resp. (13.86) in decomposing u and f into

u = upo + us, f = f po + f s,

with corresponding decomposition(
L2(Ω)

)3 ≡ Hpo ⊕Hs.

Let P β, β ∈ {po, s} denote the projection operator

P β :
(
L2(Ω)

)n →Hβ . (13.112)

Theorem 13.22 Assume that the projections P pou0, P pou1, P pof(t, ·), and P su0, P su1, P sf(t, ·),
for t ≥ 0, satisfy condition (N). Let

K ≥ 1

2

([
n

2

]
+

[
l + 1

2

]
+ n

)
,

u0 ∈ W 2K+2,2(Ω) ∩W 2K+2,1(Ω), u1 ∈ W 2K+1,2(Ω) ∩W 2K+1,1(Ω),

f ∈
2K⋂
j=0

Cj
(
[0,∞),W 2K−j,2(Ω) ∩W 2K−j,1(Ω)

)
.

Suppose that (u0, u1, f) satisfy the (corresponding) compatibility condition of order 2K.

Then, for 2 ≤ q <∞, 1/p+ 1/q = 1, the unique solution u to (13.83), (13.84), (13.85)

resp. (13.86) satisfies
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‖(u(t, ·), ut(t, ·), ∇u(t, ·))‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

(
‖(P pou0, P pou1,∇P pou0, P su0, P su1,∇P su0)‖W 2K,p(Ω)

+
2K−1∑
j=0

‖(P pof (j)(0), P sf (j)(0)‖W 2K−1−j,p(Ω)

)

+ c

t∫
0

1

(1 + t− s)(1−
2
q
) l
2

2K∑
j=0

‖(P pof (j)(s), P sf (j)(s))‖Lp(Ω) ds

+ c
2K−1∑
j=0

‖(P pof (j)(t), P sf (j)(t))‖W 2K−1−j,p(Ω),

where the constant c > 0 does not depend on u0, u1, f or t.

In order to remove the projection operator P β, for β ∈ {po, s}, in the estimates, one has

to know the continuity of P β given in (13.112) in Sobolev spaces WN,p(Ω), i.e.

‖P βv‖WN,p(Ω) ≤ c1‖v‖WN,p(Ω),

where c1 is independent of v. For bounded domains, we could refer to [96] where the case

N = 0 is discussed in detail. For the waveguides considered here, we refer to [102] for

the decomposition (13.90) used for the boundary conditions (13.85), both for n = 2 and

n = 3, and also for the decomposition (13.95) used for the boundary conditions (13.86)

if n = 2 (the case n = 3 remains open here).

13.4 General waveguides

The flat waveguides of the type

Ω = IRl × B
which we studied in the previous chapters, will now be generalized to repulsive waveg-

uides, typically domains like in Figure 13.5, where (x′, x′′) ∈ IRn × IRm̄.

Definition 13.23 Let Ω be an open subset of IRn× IRm̄ with Lipschitz boundary ∂Ω and

n, m̄ ≥ 1. Let ν denote the exterior normal.

Then Ω is called repulsive with respect to the x′-variables if we have for all (x′, x′′) ∈ ∂Ω

ν(x′, x′′) · (x′, 0) ≤ 0.

A non-repulsive domain is shown in Figure 13.6.

We remark that Ω being a repulsive domain implies that the cross sections of Ω for fixed

x′′ ∈ IRm̄,

{x′ ∈ IRn | (x′, x′′) ∈ Ω},



13.4 General Waveguides 255

x′

x′′

Ω

(x̂′, 0)

(x̂′, x̂′′)
�

ν

Figure 13.5: repulsive generalized waveguide

x′

x′′

Ω

Figure 13.6: non-repulsive generalized waveguide

are non-trapping exterior domains.

The Lp-Lq-decay estimates proved for different equations in flat waveguides in the previ-

ous chapters are often called dispersive estimates. This kind of estimates has also been

obtained by Dreher [27] for wave equations in unbounded conical sets. We shall not

obtain analogous estimates in the non-flat case below. However, Schrödinger equations

in all of IRn+m̄ satisfy weaker but more general estimates called Strichartz estimates

(Robert S. Strichartz, *: 14.10.1943), which can be extended to our situation of repulsive

waveguides.

In addition, we prove smoothing estimates for Schrödinger equations as well as for wave

and for Klein-Gordon equations. It will be possible to allow an additional real-valued

potential

V = V (x′, x′′).

If

H := −Δ′ −Δ′′ + V
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denotes the associated Schrödinger operator, then, for example, smoothing for a solution

u = u(t, ·) ∈ D(H) to

i ut +Hu = 0, u(0, ·) = u0,

will mean that for ε > 0 and some constant c > 0 the estimate

‖〈x′〉− 1
2
−ε(−Δ′)

1
4 u‖L2

tL
2(Ω) ≤ c‖u0‖L2(Ω),

holds, by which we gain half a derivative. Here we use the notation

〈x′〉 := (1 + |x′|2) 1
2 ,

and

L2
tL

2(Ω) := L2
(
(0,∞), L2(Ω)

)
.

Of course, the potential V will have to satisfy certain conditions:

V ≥ 0, −x′∇x′
(
|x′|V (x′, x′′)

)
≥ 0. (13.113)

Condition (13.113) is, for example, satisfied for some potentials 0 ≤ V = Ṽ (|x′|, x′′)

decaying at least as 1/|x′| as |x′| → ∞, because (13.113) turns into

Ṽ (r′, ·) + r′
∂

∂r′
Ṽ (r′, ·) ≤ 0

implying

Ṽ (r′, ·) ≤ Ṽ (1, ·)
r′

.

Examples are given by

V (x′, x′′) =
g(x′′)
|x′|m1

,

for m1 ≥ 1 and functions g ≥ 0.

As an immediate consequence of the smoothing estimates we will deduce that there

are no eigenvalues of H , since the presence of bound states would contradict the L2-

integrability in time of the solution.

For flat waveguides we have a purely continuous spectrum. This is also true for certain

locally perturbed waveguides, in particular for any local perturbation Ω of (0, 1)× IRn−1,

for which ν(x) ·(x′, 0) ≤ 0 holds for any x ∈ ∂Ω, see [132]. On the other hand, going back

to [155, 76] one can easily construct local perturbations where the Dirichlet Laplacian has

eigenvalues below its essential spectrum. But there may also exist eigenvalues embedded

into the essential spectrum, see for example [200], where the following example is given.

Let D ⊂ IR2 be bounded, star-shaped with respect to the origin and invariant under the

orthogonal group. Let � ∈ C0(IRk) be positive, �(x) = 1 for large |x| and max � > 1.

Then the perturbed waveguide

Ω1 :=
⋂

x∈IRk

(
{x} × �(x)D

)
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has an unbounded sequence of multiple eigenvalues embedded into the continuous spec-

trum.

Thus we see that suitable conditions on the shape of the domain, like repulsivity, are

essential in order to exclude eigenvalues and to ensure dispersion. Conversely, in the

presence of bumps in the wrong direction, we expect, in general, concentration of energy

and disruption of dispersion.

The method to obtain the smoothing estimates will be to prove estimates for the resol-

vent operator

R(z) := (H − z)−1

for z /∈ IR of the type

‖∇x′R(z)f‖2X1
+ ‖R(z)f‖2X3

+ |z| ‖R(z)f‖2X1
≤ 5000n2‖f‖2X∗ , (13.114)

and then to apply the concept of H-smoothing introduced by Kato [78] (Tosio Kato,

25.8.1917 – 2.10.1999) in the context of scattering theory. The norms used in (13.114) are

called Morrey-Campanato norms (Charles Bradfield Morrey Jr., 23.7.1907 – 29.4.1984,

Sergio Campanato, 17.2.1930 – 1.3.2005) and are given by

‖f‖X1 := sup
R>0

R− 1
2‖f‖L2({|x′|≤R}), ‖f‖X3 := sup

R>0
R− 3

2‖f‖L2({|x′|≤R}),

‖f‖X∗ :=
∑
j∈ �Z

2
j
2‖f‖L2({2j−1≤|x′|≤ 2j}),

see [37]. We also need

‖f‖X2 := sup
R>0

R−1‖f‖L2({|x′|=R}).

Lemma 13.24 (i) ‖fg‖L1(Ω) ≤ ‖f‖X1‖g‖X∗,

(ii) ‖fg‖L1(Ω∩{R≤|x′|≤2R}) ≤ 4R2‖f‖X1‖g‖X3,

(iii) ‖fgh‖L1(Ω) ≤ 2‖f‖X3‖g‖X∗‖|x′|h‖L∞(Ω),

(iv) ‖fg‖L1(Ω∩{ |x′|≤R}) ≤ 2R‖f‖X3‖g‖X∗ ,

(v) ‖f‖X3 ≤ ‖f‖X2.

Proof: Let Ωj := Ω ∩ {2j−1 ≤ |x′| ≤ 2j}.
(i) : ‖fg‖L1(Ω) =

∑
j∈ �Z
‖fg‖L1(Ωj) ≤

∑
j∈ �Z
‖f‖L2(Ωj) ‖g‖L2(Ωj)

≤ ∑
j∈ �Z

(2j)−
1
2‖f‖L2({|x′|≤ 2j})2

j
2‖g‖L2(Ωj)

≤ ‖f‖X1

∑
j∈ �Z

2
j
2‖g‖L2(Ωj)

≤ ‖f‖X1‖g‖X∗ .
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(ii) : ‖fg‖L1(Ω∩{R≤|x′|≤2R})

≤ (2R)−
1
2‖f‖L2({|x′|≤ 2R})(2R)

1
2 (2R)

3
2 (2R)−

3
2‖g‖L2({|x′|≤ 2R})

≤ (2R)2‖f‖X1‖g‖X3.

(iii) : ‖fgh‖L1(Ω) = ‖ f

|x′|g|x
′|h‖L1(Ω)

≤ ∑
j∈ �Z

2−
j
2‖ f

|x′|‖L2(Ωj)2
j
2‖g‖L2(Ωj)‖ |x′|h‖L∞(Ω)

≤ ∑
j∈ �Z

2−
j
2

1

2j−1
‖f‖L2({ |x′|≤2j})2

j
2‖g‖L2(Ωj)‖|x′|h‖L∞(Ω)

≤ 2‖f‖X3

∑
j∈ �Z

2
j
2‖g‖L2(Ωj)‖ |x′|h‖L∞(Ω)

= 2‖f‖X3‖g‖X∗‖ |x′|h‖L∞(Ω).

(iv): Follows from (iii) using h := χ{ |x′| ≤R} (characteristic function).

(v) : ‖f‖2X3
= sup

R>0
R−3‖f‖2L2({ |x′|≤R}) = sup

R>0
R−3

R∫
0

‖f‖2L2({ |x′|=�})d�

≤ sup
R>0

R−3R2

R∫
0

�−2‖f‖2L2({ |x′|=�})d�

≤ sup
R>0

R−1 sup
0≤�≤R

�−2‖f‖2L2({ |x′|=�})

R∫
0

1d�

= ‖f‖2X2
.

Q.e.d.

A comparison to standard weighted L2-norms will be useful, with weights of the form

〈x′〉R := (R +
|x′|2
R

)
1
2 , for R > 0. (13.115)

Observing

R +
|x′|
R

2

≥ max

{
R,
|x′|
R

2}
,

we obtain for all s > 0, after extending u as zero outside Ω,∫
IRn+m̄

(
R +

|x′|
R

2)−s|u|2dx′dx′′ ≤ R−s
∫

|x′|≤R

|u|2 +Rs
∫

|x′|>R

|x′|−2s|u|2 (13.116)

≤ R−s
∫

|x′|≤R

|u|2 +Rs
∑
j≥jR

∫
{2j−1≤|x′|<2j}

|x′|−2s|u|2

≡ I + II,
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where jR := [log2R].

II ≤ Rs
∑
j≥jR

2−2(j−1)s
∫

{2j−1≤|x′|<2j}
|u|2 (13.117)

= Rs 22s
∑
j≥jR

2−js

⎛⎜⎝(2−j)s
∫

{2j−1≤|x′|<2j}
|u|2

⎞⎟⎠
≤ Rs 22s

∑
j≥jR

2−js

⎛⎜⎝sup
�>0

�−s
∫

|x′|<�

|u|2
⎞⎟⎠

≤
⎛⎜⎝sup

�>0
�−s

∫
|x′|<�

|u|2
⎞⎟⎠ Rs 22s

1

2jRs

1

1− 2−s

≤
⎛⎜⎝sup

�>0
�−s

∫
|x′|<�

|u|2
⎞⎟⎠ 23s

1− 2−s
,

since 2jR ≥ R
2
. By (13.116), (13.117) we have

∫
IRn+m̄

〈x′〉−2s
R |u|2dx′dx′′ ≤

⎛⎜⎝sup
�>0

�−s
∫

|x′|<�

|u|2
⎞⎟⎠(

1 +
23s

1− 2−s

)

≤
(
1 +

24s

2s − 1

)
sup
�>0

�−s
∫

|x′|<�

|u|2.

In particular, we get for s = 1

‖〈x′〉−1
R u‖L2(Ω) ≤

√
17‖u‖X1,

and for s = 3

‖〈x′〉−3
R u‖L2(Ω) ≤ 25‖u‖X3. (13.118)

By a similar proof, we obtain

‖u‖X∗ ≤ 16‖〈x′〉R u‖L2(Ω). (13.119)

Finally, we notice that for any γ > 0 and ε > 0

‖〈x′〉− γ
2
−εu‖L2(Ω) ≤ C sup

R>0
‖〈x′〉−γ

R u‖L2(Ω), (13.120)

where C > 0 is a constant depending on γ and ε. To prove (13.120) we write∫
Ω

〈x′〉−γ−2ε|u|2 =
∫

|x′|≤1

. . . +
∫

|x′|>1

. . .

≤
∫

|x′|≤1

|u|2 + ∑
j≥0

∫
{2j≤|x′|<2j+1}

〈x′〉−γ−2ε|u|2
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≤ sup
R>0

1

Rγ

∫
|x′|≤R

|u|2 + ∑
j≥0

2−j(γ+2ε)
∫

{2j≤|x′|<2j+1}
|u|2

≤ sup
R>0

1

Rγ

∫
|x′|≤R

|u|2 + ∑
j≥0

2−2εj 2γ
1

2(j+1)γ

∫
{|x′|≤2j+1}

|u|2

≤
(
sup
R>0

1

Rγ

∫
|x′|≤R

|u|2
) (

1 + 2γ
1

1− 2−2ε

)

≤
(
1 +

2γ

1− 2−2ε

)
2γ sup

R>0

∫
|x′|≤R

〈x′〉−2γ
R |u|2,

the last inequality arising from

1

R
≤ 2

R + |x′|2
R

for |x′| ≤ R.

Thus, (13.120) is proved with C :=
(
2γ + 22γ

1−2−2ε

) 1
2 .

Now we can state the main resolvent estimate.

Theorem 13.25 Let Ω be a domain which is repulsive with respect to the x′-variables.

Assume n ≥ 3 and that the real-valued potential V satisfies (13.113). Then, for λ, ε ∈ IR

and u ∈ W 1,2
0 (Ω) satisfying

−Δu − (λ+ iε)u+ V u = f, (13.121)

we have

‖∇x′u‖2X1
+ ‖u‖2X3

+ (|λ|+ |ε|)‖u‖2X1
≤ 5000n2‖f‖2X∗

Sketch of the Proof: (cp. [26]) We consider two real-valued piecewise smooth functions

ψ = ψ(x′), φ = φ(x′), being independent of x′′, such that

∇ψ,Δψ,∇Δψ, φ,∇φ are bounded for |x′| → ∞, (13.122)

and

ν · ∇ψ ≤ 0 on ∂Ω. (13.123)

Later on, ψ and φ will be given explicitly, the choice depending on the sign of λ. They

will be functions only depending on |x′|. Then condition (13.123) turns for ψ = h(|x′|)
h = h(r), into

0 ≥ ν(x′, x′′) · ∇ψ(x′) = ν · (x′, 0) · |x′|−1 hr(|x′|)
which is, since Ω is repulsive, equivalent to the condition that hr or the radial derivative

of ψ is non-negative,

x′∇x′ψ ≥ 0.
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As in [9, 129] we will use a multiplier method. Multiplying the resolvent equation (13.121)

by

(Δψ − φ)ū+ 2∇ψ · ∇ū
and taking the real part, we obtain the identity

∇u · (2∇2ψ − φId)∇ū+
1

2
Δ(φ−Δψ) |u|2 + φλ|u|2 (13.124)

−(∇V · ∇ψ + φV )|u|2 + div ReQ1

= div ReQ + Re f(2∇ψ · ∇ū+ (Δψ − φ)ū)− 2ε Im(∇ψ · ∇ūu),

where

Q := (Δψ)ū∇u− 1

2
(∇Δψ)|u|2 − (V − λ)(∇ψ)|u|2 + 1

2
(∇φ)|u|2 − φū∇u

and

Q1 := ∇ψ|∇u|2 − 2∇u(∇ψ · ∇ū). (13.125)

Finally, we shall integrate over Ω and we estimate the last term on the right-hand side

of (13.124) as follows. Multiplying (13.121) by ū, we obtain

Imdiv((∇u)ū) + ε|u|2 = − Im(fū) (13.126)

and

Rediv(−(∇u)ū) + |∇u|2 = (λ− V )|u|2 + Re(fū),

implying, with λ+ := max{λ, 0},

|ε| |∇u|2 ≤ |ε|λ+|u|2 + |ε|Re(fū) + Re div(|ε|∇uū)
= −sελ+ Im(fū) + div

(
sε Im(λ+u∇ū) + Re(|ε|(∇u)ū)

)
+ |ε|Re(fū),

where we used the non-negativity of V and (13.126), and sε denotes the usual sign of ε.

Hence

|ε||∇u|2 ≤ (λ+ + |ε|)|fū|+ div
(
sε Im(λ+u∇ū) + Re(|ε|∇uū)

)
. (13.127)

Using

2|εu∇ū| ≤ |ε|(λ+ + |ε|) 1
2 |u|2 + |ε|(λ+ + |ε|)− 1

2 |∇u|2

and (13.126), (13.127), we get

2|εu∇ū| ≤ 2
(√
|ε|+

√
λ+

)
|fū|+ divA,

where

A :=
|ε|Re(∇uū) + (sε2λ

+ + |ε|) Im(∇uū)
(λ+ + |ε|) 1

2

.
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Inserting this into the basic equality (13.124), we obtain

∇u · (2∇2ψ − φId)∇ū+
1

2
Δ(φ−Δψ) |u|2 + φλ|u|2 (13.128)

−(∇V · ∇ψ + φV ) |u|2 + divReQ1

≤ 2|f∇ψ · ∇ū|+ |f(Δψ − φ)ū|+ 2‖∇ψ‖L∞
(√
|ε|+

√
λ+

)
|fū|+ div ReP,

where P := Q + ‖∇ψ‖L∞A.

The next goal is to estimate the integral over Ω of the right-hand side of (13.128).

For this, we need an additional estimate, obtained by multiplying (13.121) by χū, with

choosing χ as a radial function of x′ satisfying for some arbitrary, but fixed R > 0

χ(x′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if |x′| < R,

0, if |x′| > 2R,

2− |x′|
R
, if R ≤ |x′| ≤ 2R.

We get

sε Im
(
div(χ∇uū)

)
+ |ε| |χ| |u|2 = −sε Im(χfū)− sε Im(∇χ · ∇ūu).

Integrating over Ω, not producing boundary terms thanks to the Dirichlet boundary

conditions, we arrive at

|ε|
∫

Ω∩{|x′|≤R}
|u|2 ≤

∫
Ω∩{|x′|≤2R}

|fū|+ 1

R

∫
Ω∩{R≤|x′|≤2R}

|∇x′u||u|

since χ only depends on x′. The right-hand side is estimated using Lemma 13.24 (ii),

(iv), leading to

|ε|
R

∫
Ω∩{|x′|≤R}

|u|2 ≤ 4‖f‖X∗‖u‖X3 + 4‖∇x′u‖X1‖u‖X3.

Hence, taking the supremum over R, we get

|ε| ‖u‖2X1
≤ 4(‖f‖X∗ + ‖∇x′u‖X1)‖u‖X3. (13.129)

Using Lemma 13.24 (i) and (13.129), we may estimate

2
(√

λ+ +
√
|ε|

)
‖fū‖L1 ≤ 2

√
λ+‖f‖X∗‖u‖X1 + 4‖f‖X∗(‖f‖X∗ + ‖∇x′u‖X1)

1
2‖u‖

1
2
X3

≤ δ(λ+‖u‖2X1
+ ‖∇x′u‖2X1

+ ‖u‖2X3
) + 5 δ−1‖f‖2X∗,

for all δ ∈ (0, 1). This inequality will be used to estimate the third term on the right-

hand side of (13.128).
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Integration over Ω of the term div ReP gives zero. This can be seen as follows. Let CR

denote the cylinder

CR := {(x′, x′′) | |x′| < R, x′′ ∈ IRm̄}.
We integrate divP on Ω ∩CR and let R→∞. The boundary of Ω ∩CR is the union of

the two sets S1 and S2 given by

S1 := ∂Ω ∩ CR, S2 := ∂CR ∩ Ω = {(x′, x′′) ∈ Ω | |x′| = R}.

The surface integral over S1 vanishes due to the boundary conditions. For the surface

integral
∫
S2

ν · P we have, by assumption (13.122) on the boundedness of ψ, φ, and since

u ∈ W 1,2(Ω),

lim inf
R→∞

∫
S2

ν · P = 0. (13.130)

This proves ∫
Ω

divP = 0.

Concerning the first and the second term on the right-hand side of (13.128), we estimate

their integrals using Lemma 13.24 (i) and (iii):

2
∫
Ω

|f∇ψ · ∇ū| ≤ 2‖∇ψ‖L∞‖f‖X∗‖∇x′u‖X1

and ∫
Ω

|f(Δψ − φ)ū| ≤ 2‖ |x′| (Δψ − φ)‖L∞‖f‖X∗‖u‖X3.

Summarizing, the integral over Ω of the right-hand side of (13.128) is bounded by

C (φ, ψ)δ(λ+‖u‖2X1
+ ‖∇x′u‖2X1

+ ‖u‖2X3
) + C (φ, ψ)δ−1‖f‖2X∗ , (13.131)

with

C (φ, ψ) := 10‖∇ψ‖L∞ + 10‖ |x′|(Δψ − φ)‖L∞ . (13.132)

Now we consider the left-hand side of (13.128). The term in divergence form, div ReQ1,

with Q1 given in (13.125), can be handled as above by integrating first on the cylinder

CR and then letting R → ∞. The integral over S2 = ∂CR ∩ Ω satisfies an analogous

estimate to (13.130). On S1 = ∂Ω ∩ CR we notice that ∇u = ∂u
∂ν
ν holds because of the

Dirichlet boundary condition, implying

ν ·Q1 = −(ν · ∇ψ)
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

.

Thus the integral over S1 can be written as

IR := −
∫
S1

(ν · ∇ψ)
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

.
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Using assumption (13.123) on ψ, we obtain IR ≥ 0 for all R. Hence we can drop IR in

the sequel, and we get the basic inequality∫
Ω

(
∇u(2∇2ψ − φId)∇ū+

1

2
(Δ(φ−Δψ)) |u|2 + φλ|u|2 − (∇V · ∇ψ + φV )|u|2

)
(13.133)

≤ C (φ, ψ) δ(λ+‖u‖2X1
+ ‖∇x′u‖2X1

+ ‖u‖2X3
) + C (φ, ψ)δ−1‖f‖2X∗ .

It remains to choose the functions φ, ψ in an appropriate way. For λ > 0 we make the

following choice inspired by [9]:

ψ(x′, x′′) :=

⎧⎨⎩ |x
′|, if |x′| ≥ R,

R
2
+ |x′|2

2R
, if |x′| < R,

φ(x′, x′′) :=

⎧⎨⎩ 0, if |x′| ≥ R,
1
R
, if |x′| < R.

Then the assumptions (13.122), (13.123) are satisfied. We compute

φ−Δψ =

⎧⎪⎨⎪⎩
−n−1

|x′| , if |x′| ≥ R,

−n−1
R

, if |x′| < R,

and, in the distributional sense,

Δ(φ−Δψ) =
n− 1

R2
δ|x′|=R +

⎧⎨⎩
μn

|x′|3 , if |x′| ≥ R,

0, if |x′| < R,

where

μn := (n− 1)(n− 3).

Moreover,

‖∇ψ‖L∞ = 1, ‖ |x′|(Δψ − φ)‖L∞ = n− 1,

implying

C (φ, ψ) = 10n.

Denoting x′
0 :=

x′
|x′| , we have

(∇u)(2∇2ψ − φ)∇ū =

⎧⎨⎩
2
R
|∇x′u− (∇x′u · x′

0)x
′
0|2, if |x′| ≥ R,

1
R
|∇x′u|2, if |x′| < R.

The terms in (13.133) containing the potential V are non-negative thanks to assumption

(13.113), hence we can drop them. Thus (13.133) implies

1

R
‖∇x′u‖2L2(Ω∩{|x′|≤R}) +

n− 1

2R2

⎛⎜⎝ ∫
Ω∩{|x′|=R}

|u|2
⎞⎟⎠ +

λ

R
‖u‖2L2(Ω∩{|x′|≤R})

≤ 10nδ(λ‖u‖2X1
+ ‖∇x′u‖2X1

+ ‖u‖2X3
) + 10nδ−1‖f‖2X∗ ,
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and taking the supremum over R > 0 we obtain

‖∇x′u‖2X1
+

n− 1

2
‖u‖2X2

+ λ‖u‖2X1

≤ 10nδ(λ‖u‖2X1
+ ‖∇x′u‖2X1

+ ‖u‖2X3
) + 10nδ−1‖f‖2X∗ .

Recalling Lemma 13.24 (v) and choosing δ := (20n)−1, we finally obtain for the case

λ > 0

‖∇x′u‖2X1
+ ‖u‖2X2

+ λ‖u‖2X1
≤ 400n2‖f‖2X∗. (13.134)

In the case λ ≤ 0 we choose different weights. Following [25] we simply take φ = 0 and

ψ(x′, x′′) :=

|x′|∫
0

α(τ)dτ, (13.135)

where

α(τ) :=

⎧⎨⎩
1
n
− 1

2n(n+2)
Rn−1

τn−1 , if τ ≥ R,
1
2n

+ τ
2nR
− 1

2n(n+2)
τ3

R3 , if τ < R.

Then

Δψ =

⎧⎨⎩
(n−1)

n
1
|x′| , if |x′| ≥ R,

1
2R

+ n−1
2n|x′| − |x′|2

2nR3 , if |x′| < R,

‖∇ψ‖L∞ =
1

n
, ‖|x′|Δψ‖L∞ ≤ 1− 1

n
,

implying C(φ, ψ) ≤ 10.

For n = 3 we have

−Δ2ψ =
1

R3
χ{|x′|<R} +

4π

3
δ0(x

′),

where χZ is the characteristic function of the set Z, and δ0(x
′) denotes the Dirac distri-

bution in the variable x′ (Paul Adrian Maurice Dirac, 8.8.1902 – 20.10.1984).

For n ≥ 4 we have

−Δ2ψ =
( 1

R3
+

μn

2n|x′|3
)
χ{|x′|<R} +

μn

n|x′|3 χ{|x′|≥R} +
n− 3

2nR2
δ|x′|≥R.

In all cases n ≥ 3 we conclude

−Δ2ψ ≥ 1

R3
χ{|x′|<R}.

Proceeding as above we obtain

n− 1

n(n + 2)
‖∇x′u‖2X1

+ ‖u‖2X3
≤ 10δ

(
‖∇x′u‖2X1

+ ‖u‖2X3

)
+ 10δ−1‖f‖2X∗,
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and, choosing δ := (40n)−1, we conclude for λ ≤ 0

‖∇x′u‖2X1
+ ‖u‖2X3

≤ 800n2‖f‖2X∗. (13.136)

Combining (13.134), (13.136) we obtain for all λ ∈ IR

‖∇x′u‖2X1
+ ‖u‖2X3

+ λ+‖u‖2X1
≤ 800n2‖f‖2X∗. (13.137)

As a last step, the factor λ+ in (13.137) is improved to |λ|+ |ε|. Recalling (13.129) and

using (13.137), we get

|ε| ‖u‖2X1
≤ 4

(
‖f‖X∗ + ‖∇x′u‖X1

)
‖u‖X3 ≤ 3320n2‖f‖2X∗. (13.138)

Assuming λ− := −λ ≥ 0 we multiply the resolvent equation (13.121) by ū and take real

parts, obtaining

|∇u|2 + λ−|u|2 + V |u|2 = Re(fū) +
1

2
Δ(|u|2).

Taking ψ as in (13.135), multiplying by Δψ, using

Δψ ≥ 1

2R
χ{|x′|<R}, ‖ |x′|Δψ‖L∞ ≤ 1,

and recalling Lemma 13.24 (iii), we get

1

2R

∫
Ω∩{|x′|<R}

(
|∇u|2 + λ−|u|2

)
≤ 2‖f‖X∗‖u‖X3.

Taking the supremum over R > 0 gives

‖∇u‖2X1
+ λ−‖u‖2X1

≤ 4‖f‖X∗‖u‖X3 ≤ 120n‖f‖2X∗, (13.139)

where we used (13.137). Combining (13.137), (13.138) and (13.139), Theorem 13.25 is

proved.

Q.e.d.

Using (13.118), Theorem 13.25 and (13.119) we conclude for z in the resolvent set of

H = −Δ+ V , u = R(z)f = (H − z)−1f ,

‖〈x′〉−3
R R(z)f‖2L2(Ω) ≤ 729‖u‖2X3

≤ 3645000n2‖f‖2X∗ ≤ 256 · 3645000n2‖〈x′〉Sf‖2L2(Ω)

for any R, S > 0, that is,

‖〈x′〉−3
R R(z)f‖L2(Ω) ≤ cn‖〈x′〉Sf‖L2(Ω) (13.140)

with some positive constant depending only on n, denoted here and below by cn. Thus,

the operator

T0 := 〈x′〉−3
R R(z)〈x′〉−1

S : L2(Ω)→ L2(Ω)
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has a bounded adjoint operator T ∗
0 , implying that

T1 := 〈x′〉−1
R R(z)〈x′〉−3

S

is continuous on L2(Ω), hence

‖〈x′〉−1
R R(z)f‖L2(Ω) ≤ cn‖〈x′〉3Sf‖L2(Ω). (13.141)

By (13.140), (13.141) we have P := R(z) as a bounded operator

Pα : Xα → Yα,

for α = 0, 1, where

X0 := L2
〈x′〉S , Y0 := L2

〈x′〉−3
R
,

X1 := L2
〈x′〉3S , Y1 := L2

〈x′〉−1
R
.

Denoting L2
� := {h | � h ∈ L2(Ω)}, we obtain by complex interpolation that

Pα : [X0, X1]α → [Y0, Y1]α

is bounded for any α ∈ [0, 1]. Since (cp. [11])

[L2
�1
, L2

�2
]α = L2

�1−α
1 �α2

we conclude the boundedness of

Tα := 〈x′〉−3+2α
R R(z)〈x′〉−1−2α

S : L2(Ω)→ L2(Ω)

for any α ∈ [0, 1], in particular for α = 1
2

‖〈x′〉−2
R R(z)〈x′〉−2

S f‖L2(Ω) ≤ cn‖f‖L2(Ω). (13.142)

Lemma 13.26 Let γ > 0. If a bounded linear operator A satisfies for all R, S > 0 the

estimate

‖〈x′〉−γ
R A〈x′〉−γ

S u‖L2(Ω) ≤ C0‖u‖L2(Ω), (13.143)

with a positive constant C0 being independent of R, S, u, then it also satisfies, for all

ε > 0, the estimate

‖〈x′〉− γ
2
−εA〈x′〉− γ

2
−εu‖L2(Ω) ≤ C0C(γ, ε)‖u‖L2(Ω),

where C(γ, ε) > 0 denotes a constant depending at most on γ and ε.
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Proof: Decomposing

v := 〈x′〉− γ
2
−εu = v0 +

∞∑
j=1

vj,

where vj has support in {2j−1 ≤ |x′| < 2j} for j ≥ 1, and v0 has support in {|x′| < 1},
we get

Av = Av0 +
∞∑
j=1

Avj,

and, applying (13.143) to vj with S := 2j,

‖〈x′〉−γ
R Av‖L2(Ω) ≤ ‖〈x′〉−γ

R Av0‖L2(Ω) +
∞∑
j=1

‖〈x′〉−γ
R Avj‖L2(Ω)

≤ C0‖〈x′〉γv0‖L2(Ω) + C0

∞∑
j=1

‖〈x′〉γ2jvj‖L2(Ω).

Since, for j ≥ 1 and 2j−1 ≤ |x′| ≤ 2j,

〈x′〉2γ2j =

(
2j +

|x′|2
2j

)γ

≤ 2γ(2jγ + 2jγ) = 2γ+12jγ

≤ 2γ+1 2γ|x′|γ ≤ 22γ+1 22ε 2−2εj|x′|γ+2ε,

we get

‖〈x′〉−γ
R Av‖L2(Ω) ≤ C0‖〈x′〉γv0‖L2(Ω) + C02

2(γ+ε)+1
∞∑
j=1

‖|x′| γ2+εvj‖L2(Ω) (13.144)

≤ C0C(γ, ε)‖〈x′〉 γ2+εv‖L2(Ω).

Using (13.120) we obtain

‖〈x′〉− γ
2
−εAv‖L2(Ω) ≤ C(γ, ε) sup

R>0
‖〈x〉−γ

R Av‖L2(Ω). (13.145)

A combination of (13.145), (13.144) completes the proof.

Q.e.d.

Applying Lemma 13.26 to (13.142) we have

‖〈x′〉−1−εR(z)〈x′〉−1−εf‖L2(Ω) ≤ cn,ε‖f‖L2(Ω), (13.146)

where cn,ε > 0 depends at most on n and ε. Similarly, one gets

‖〈x′〉− 1
2
−ε∇x′R(z)〈x〉− 1

2
−εf‖L2(Ω) ≤ cn,ε‖f‖L2(Ω)

and

|z| 12‖〈x′〉− 1
2
−εR(z)〈x〉− 1

2
−εf‖L2(Ω) ≤ cn,ε‖f‖L2(Ω). (13.147)

The concept of smoothing introduced by Kato [78] in scattering theory appearing the

following theorem turned out to be useful for dispersive equations as revealed in [156],

cp. [154], [128].
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Theorem 13.27 Let K be a self-adjoint operator in a Hilbert space H. Let R(z) :=

(K − z)−1 for z ∈ C \ IR be the resolvent operator, let A be a densely defined closed

operator from D(A) ⊂ H to another Hilbert space H1 with D(K) ⊂ D(A). Assume that

there is c0 > 0 such that for all f ∈ D(A∗) ⊂ H1 with R(z)A∗f ∈ D(A) one has

sup
z �∈IR
‖AR(z)A∗f‖H1 ≤ c20‖f‖H1. (13.148)

Then we have for all f ∈ H
‖AeitKf‖L2

tH1
≤ c0‖f‖H1 .

Choosing

H := H1 := L2(Ω), K := H = −Δ+ V, A := 〈x′〉−1−ε (multiplication operator),

the estimate (13.146) gives condition (13.148) and hence the claim (13.149) in the fol-

lowing

Theorem 13.28 Let Ω be a domain which is repulsive with respect to the x′-variables.

Assume n ≥ 3 and that the real-valued potential satisfies (13.113). Assume also that

H = −Δ+ V with Dirichlet boundary conditions is self-adjoint in L2(Ω). Then, for any

ε > 0, we have the smoothing estimates

‖〈x′〉−1−ε eitHf‖L2
tL

2(Ω) ≤ cn,ε‖f‖L2(Ω), (13.149)

‖〈x′〉− 1
2
−ε∇x′ eitHf‖L2

tL
2(Ω) ≤ cn,ε‖|Dx′|

1

2 f‖L2(Ω). (13.150)

Here

|Dx′|
1

2 g(x′, x′′) := (2π)−
n
2

∫
IRn

|ξ′|
1

2 ĝ(ξ′, x′′)eiξ
′x′
dξ′,

where ĝ(·, x′′) denotes the Fourier transform of x′ �→ g(x′, x′′).

Proof: For (13.150) see [26].

Q.e.d.

If we consider for m ≥ 0

Hm := H +m = −Δ+ V +m (13.151)

and the associated wave equation (m = 0) or Klein-Gordon equation (m > 0) with

potential V ,

utt +Hmu = 0, (13.152)

then we have the following theorem. It is obtained from an adaptation of the above

results observing that Z := (u, ut)
′ satisfies for Z0 := (u0, u1)

′ := (f,
√
Hf)′

Z(t) =

⎛⎜⎝ eit
√
Hmf

i
√
Hm eit

√
Hmf

⎞⎟⎠ = eitKZ0, with K :=

⎛⎜⎝ 0 −i
iH 0

⎞⎟⎠ .
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Theorem 13.29 Let the assumptions of Theorem 13.28 be fulfilled and Hm as in (13.151).

Then the flow associated to wave or Klein-Gordon equations (13.152) satisfies

‖〈x′〉− 1
2
−ε eit

√
Hmf‖L2

tL
2(Ω) ≤ cn,ε‖f‖L2(Ω).

Proof: We choose

H := D(
√
H)× L2(Ω), H1 := L2(Ω), H := −Δ+ V (x′, x′′)

and A : H → L2(Ω) defined by

A

⎛⎝ f

g

⎞⎠ := 〈x〉−1/2−εH1/2f, implying A∗g =

⎛⎝ H−1/2〈x〉−1/2−εg

0

⎞⎠ .

Then the resolvent RK(z) := (K − z)−1 can be written in terms of the resolvent R(z) =
(H − z)−1 as

RK(z) =

⎛⎝ zR(z2) −iR(z2)
−iHR(z2) zR(z2)

⎞⎠ .

Thus we see that, in order to apply the theory of Kato in Theorem 13.27, we need to

prove that the following operator is bounded on L2(Ω), uniformly in z 
∈ IR:

ARK(z)A
∗ = 〈x〉−1/2−εzR(z2)〈x〉−1/2−ε.

This is precisely what is expressed by estimate (13.147).

Q.e.d.

Finally and without proof (cp. [26]) we state Strichartz estimates for simpler waveguides

which are compactly supported perturbations of flat waveguides. We assume that there

is M > 0 and a bounded domain ω ⊂ IRm̄ such that

Ω ∩ {(x′, x′′) | |x′| > M} = (IRn × ω) ∩ {(x′, x′′) | |x′| > M}. (13.153)

We have

Theorem 13.30 In addition to the assumptions of Theorem 13.28 let (13.153) be satis-

fied. Then we have for all f ∈ W 1,2
0 (Ω)

‖eitHf‖
L2
tL

2n
n−2

x′ L2
x′′
≤ cn,ε

(
1 + ‖〈x′〉1+εV ‖Ln

xL
2
x′′

) (
‖f‖L2(Ω) + ‖ |Dx′| 12 f‖L2(Ω)

)
.

It seems natural to apply these estimates to investigate the existence of global small

solutions for nonlinear Schrödinger wave or Klein-Gordon equations on non-flat wave-

guides.

We abandon giving further references in this daily expanding field with recalling the

last words of T. Fontane’s father Briest, [32, p. 354] (Theodor Fontane, 30.12.1819 –

20.9.1898):

“. . . das ist ein zu weites Feld.”



Appendix

To assure a more or less self-contained presentation we have compiled some of the basic

results which were used in the previous chapters. The proofs are sketched (at least in

the Appendices B,C).

A Interpolation

First, we state some general definitions and results on interpolation spaces. For details

and proofs we refer the reader to the books of Bergh & Löfström [11] and H. Triebel

[181]; sketches of the proofs are here given for the relevant applications:

Definition A.1 (X0, X1) is called an interpolation couple : ⇐⇒ X0, X1 are Banach

spaces which are continuously imbedded into a topological Hausdorff space.

(Felix Hausdorff, 8.11.1868 – 26.1.1942)

Lemma A.2 Let (X0, X1) be an interpolation couple. Then

(i) X0 ∩X1 is a Banach space with norm

‖x‖X0∩X1 := max{‖x‖X0, ‖x‖X1},

(ii) X0 +X1 is a Banach space with norm

‖x‖X0+X1 := inf{‖x0‖X0 + ‖x1‖X1 | x0 ∈ X0, x1 ∈ X1, x0 + x1 = x}.

The proof of Lemma A.2 is straightforward.

Definition A.3 Let (X0, X1) and (Y0, Y1) be interpolation couples and let X and Y be

Banach spaces.

(i) X is called an intermediate space between X0 and X1 :⇐⇒ X0∩X1 ↪→ X ↪→ X0+X1

(continuous imbedding),

(ii) X, Y are called interpolation spaces for (X0, X1), (Y0, Y1) :⇐⇒ X is an intermediate

space between X0 and X1, Y is an intermediate space between Y0 and Y1 and

T : Xj −→ Yj is continuous for j = 0, 1 ⇒ T : X −→ Y is continuous.

By an interpolation method two interpolation couples are attached to interpolation

spaces. We consider the so-called complex interpolation method.

Let (X0, X1) be an interpolation couple,

Z := {z ∈ C | 0 ≤ Re z ≤ 1},
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and I(X0, X1) :=
{
f : Z −→ X0 +X1 | f is continuous and bounded in Z, analytic in

the interior of Z; t �−→ f(j + it) maps IR into Xj, continuously, and tends to zero as

|t| → ∞, j = 0, 1
}
.

Then the following theorem can be proved:

Theorem A.4 I(X0, X1) is a Banach space with norm

‖f‖I(X0,X1) := max{sup
η∈IR
‖f(iη)‖X0, sup

η∈IR
‖f(1 + iη)‖X1}.

For θ ∈ [0, 1] let

[X0, X1]θ := {f(θ) | f ∈ I(X0, X1)}
and for x ∈ [X0, X1]θ let

|x|θ := inf{‖f‖I(X0,X1) | f ∈ I(X0, X1), f(θ) = x}.

[X0, X1]θ has the following properties.

Theorem A.5

(i) [X0, X1]θ with norm | · |θ is an intermediate space between X0 and X1,

(ii) X0 ∩X1 is dense in [X0, X1]θ.

In this abstract setting we finally quote the following general interpolation theorem.

Theorem A.6 Let (X0, X1), (Y0, Y1) be interpolation couples, let

T : X0 +X1 −→ Y0 + Y1

be linear with

T/X0
: X0 −→ Y0 is bounded with norm M0,

T/X1
: X1 −→ Y1 is bounded with norm M1.

Then we have for all θ ∈ (0, 1)

T/[X0,X1]θ
: [X0, X1]θ −→ [Y0, Y1]θ is bounded with norm Mθ

and

Mθ ≤ M1−θ
0 Mθ

1 .

Now we turn to specific applications, the first being the interpolation theorem of Riesz

& Thorin (Marcel Riesz, 16.11.1886 – 4.9.1969):
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Theorem A.7 Let θ ∈ (0, 1), p0, p1 ∈ [1,∞]. Then

[Lp0, Lp1 ]θ = Lpθ ,

where
1

pθ
=

1− θ

p0
+

θ

p1
.

Proof: Without loss of generality we assume p0 
= p1. It suffices to show

|a|θ = ‖a‖pθ

for all real-valued continuous functions a with compact support because the set C0
0 of

those functions is dense in Lpθ and also in Lp0 ∩ Lp1 (and hence in [Lp0, Lp1 ]θ according

to Theorem A.5).

Step 1:

Claim: |a|θ ≤ ‖a‖pθ .
Proof: Without loss of generality we assume ‖a‖pθ = 1. For z ∈ Z, x ∈ IRn, and ε > 0

let

p(z) :=

(
1− z

p0
+

z

p1

)−1

,

fε(x, z) :=

⎧⎪⎪⎨⎪⎪⎩
eε(z

2−θ2)|a(x)|pθ/p(z)a(x)/|a(x)| if a(x) 
= 0

0 if a(x) = 0.

Then

fε ∈ I(Lp0 , Lp1), fε(·, θ) = a.

Since

‖fε(·, it)‖p0 ≤ 1, ‖fε(·, 1 + it)‖p1 ≤ eε, for t ∈ IR

we conclude from Hadamard’s Three-Line-Theorem

‖fε‖I(Lp0 ,Lp1 ) ≤ eε.

Letting ε tend to zero we get

|a|θ ≤ 1.

(Q.e.d.)

Step 2:

Claim: |a|θ ≥ ‖a‖p0.
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Proof: Without loss of generality we assume |a|θ = 1. It has to be shown that

‖a‖pθ = sup{|〈〈a, b〉〉| | b ∈ C0
0 , ‖b‖p′θ = 1} = 1,

where

〈〈a, b〉〉 :=
∫
IRn

a(x)b(x) dx

denotes the dual product. Here a ∈ Lpθ , b ∈ Lp′
θ , and p′θ is the dual Hölder exponent,

1

pθ
+

1

p′θ
= 1.

Let p′(z) be the dual Hölder exponent to p(z) and let f̃ε(x, z) be defined for b, p′θ, p
′(z)

in the same way as fε(x, z) is defined for a, pθ, p(z) above.

By the definition of | · |pθ we obtain

∀δ > 0 ∃f δ ∈ I(Lp0 , Lp1) : f δ(θ) = a, ‖f δ‖I(Lp0 ,Lp1) ≤ 1 + δ.

For z ∈ Z let

F δ
ε (z) := 〈〈f δ(z), f̃ε(·, z)〉〉.

Then F δ
ε is continuous and bounded in Z, analytic in the interior of Z and we have for

sufficiently small δ

|F δ
ε (it)| ≤ eε, |F δ

ε (1 + it)| ≤ e2ε,

whence

|F δ
ε (θ + it)| ≤ e2ε

follows by Hadamard’s Three-Line-Theorem. In particular we get

|〈〈a, b〉〉| ≤ |F δ
ε (θ)| ≤ e2ε.

Letting ε tend to zero we conclude

‖a‖pθ ≤ 1.

(Q.e.d.)

This completes the proof of Theorem A.7.

Q.e.d.

Remark: The interpolation theorem in Lp-spaces holds in more general measure spaces

(U, μ) replacing (IRn, Lebesgue measure) (Henri Lebesgue, 28.6.1875 – 26.7.1941).

In order to interpolate in Sobolev spaces we introduce the so-called Besov spaces and

Bessel potential spaces. Among other features these spaces provide an interpretation of

fractional derivatives.
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Let S denote the usual space of C∞-functions of rapid decrease and let S ′ denote its

(topological) dual space, i.e. the space of tempered distributions.

Let ϕ ∈ S with

suppϕ ⊂ {ξ ∈ IRn | 1

2
≤ |ξ| ≤ 2}

and

ϕ(ξ) > 0 if
1

2
< |ξ| < 2,

∞∑
k=−∞

ϕ(2−kξ) = 1 if ξ 
= 0.

(See [11, p. 136] for the existence of such a ϕ.)

Let ϕk and ψ be defined by

Fϕk(ξ) = ϕ(2−kξ), k an integer,

Fψ(ξ) = 1−
∞∑
k=1

ϕ(2−kξ),

where F denotes the Fourier transform.

Definition A.8 Let 1 ≤ p ≤ q ≤ ∞, s ≥ 0.

(i) The Besov space Bs
pq is defined by

Bs
pq := {f ∈ S ′ | ‖f‖Bs

pq
<∞},

where

‖f‖Bs
pq
:=

{
‖ψ ∗ f‖qp +

∞∑
k=1

(2sk‖ϕk ∗ f‖p)q
}1/q

,

(with the usual convention for q =∞; ∗ denotes convolution).

(ii) The Bessel potential space Hs
p is defined by

Hs
p := {f ∈ S ′ | ‖f‖Hs

p
<∞},

where

‖f‖Hs
p
:= ‖F−1(1 + | · |2)s/2Ff‖p.

The spaces Bs
pq and Hs

p are Banach spaces with respect to the norms ‖ · ‖Bs
pq

and ‖ · ‖Hs
p

respectively. The spaces Bs
pq are independent of the choice of the special function ϕ.

For m ∈ IN0 we have (cf. [11, pp. 141,152])

Bm
22 = Hm

2 = Wm,2, (A.1)

Hm
p = Wm,p if 1 < p <∞, (A.2)

Hs+ε
p ↪→ Bs+ε

pmax{p,2} if s ≥ 0, ε > 0, 1 < p <∞. (A.3)
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Theorem A.9

(i) If m ∈ IN0, 1 ≤ p <∞, then

Bm
p1 ↪→ Wm,p.

(ii) If s ≥ 0, 1 < p <∞, 1 ≤ q ≤ ∞, ε > 0, then

Hs+ε
p ↪→ Bs

pq.

(iii) If s0 
= s1, 1 ≤ p0, q0, p1, q1 ≤ ∞, θ ∈ (0, 1), then

[Bs0
p0q0

, Bs
p1q1

]θ = Bsθ
pθqθ

,

where

sθ := (1− θ)s0 + θs1,

pθ :=

(
1− θ

p0
+

θ

p1

)−1

,

qθ :=

(
1− θ

q0
+

θ

q1

)−1

.

Proof: (i): For 1 ≤ p, q <∞, m ∈ IN there is the following norm on Bm
pq which is

equivalent to ‖ · ‖Bm
pq
: ∑

|α|≤m

‖∇α · ‖B0
pq

(see [181, p. 59]).

Moreover we have, defining ϕ0 := ψ,

‖f‖p = ‖
∞∑
k=0

ϕk ∗ f‖p ≤
∞∑
k=0

‖ϕk ∗ f‖p = ‖f‖B0
p1
.

(Q.e.d.)

(ii): The imbedding

Bs+ε
pmax{p,2} ↪→ Bs+ε

p∞

is obvious.

The inequalities

‖f‖qBs
pq

=
∞∑
k=0

(2(s+ε−ε)k‖ϕk ∗ f‖p)q

≤ sup
k∈IN0

(2(s+ε)k‖ϕk ∗ f‖p)q
∞∑
k=0

2−εkq

︸ ︷︷ ︸
=: cε,q

≤ cε,q‖f‖qBs+ε
p∞
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yield the imbedding

Bs+ε
p∞ ↪→ Bs

pq

and hence the assertion follows with the help of (A.3).

(Q.e.d.)

(iii): The assertion (iii) is reduced to the statement

[�s0q0(L
p0), �s1q1(L

p1)]θ = �sθqθ(L
pθ)

(see [11, p. 153]). Here �sq(A) is defined for a given a Banach space A with norm ‖ · ‖A
as follows:

�sq(A) := {a = (ak)k∈IN0 | ak ∈ A, ‖a‖�sq(A) <∞},
where

‖a‖�sq(A) :=

{ ∞∑
k=0

(2ks‖ak‖A)q
}1/q

.

Using the equivalence of �q and Lq(dμ), μ a pure point measure, Theorem A.7 yields the

assertion.

Q.e.d.

Finally we present the interpolation theorem which was used in Chapter 2.

Theorem A.10 Let the linear operator T satisfy

T : W n,1 −→ L∞, bounded with norm M0,

T : L2 −→ L2, bounded with norm M1.

Let 1 < p < 2 < q < ∞, 1/p + 1/q = 1, θ := 2/q, N ∈ IN with N > n(1 − θ). Then

there is a constant c = c(p, n) such that

T : WN,p −→ Lq, with norm M,

and

M ≤ cM1−θ
0 Mθ

1 .

Proof: According to (A.1) and Theorem A.9, (i), T maps as follows:

T : Bn
11 −→ L∞, bounded with norm cM0 (c = c(n))

and

T : B0
22 −→ L2, bounded with norm M1.
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Theorem A.6 then implies

T : [Bn
11, B

0
22]θ −→ [L∞, L2]θ, bounded with normM,

and

M ≤ (cM0)
1−θMθ

1 .

By Theorem A.7 we know

[L∞, L2]θ = L2/θ = Lq.

Moreover we conclude from Theorem A.9, (iii), (ii):

[Bn
11, B

0
22]θ = B

(1−θ)n
2

2−θ
2

2−θ

= B(1−θ)n
pp

and from (A.2) and (A.3):

WN,p = HN
p = H(1−θ)n+ε

p ↪→ B(1−θ)n
pp

for ε := N − (1− θ)n > 0. This completes the proof.

Q.e.d.

B The Theorem of Cauchy–Kowalevsky

The proof of the local existence theorem of Cauchy–Kowalevsky follows the presentation

as in the book of F. John [71]. (Among the various spellings of the name of Sophie von

Kowalevsky we chose that one which is used in her first paper in Crelle’s Journal, volume

80 from 1874 (August Leopold Crelle, 11.3.1780 – 6.10.1855).)

The following initial value problem shall be solved (locally):

∂tuj =
n∑

i=1

N∑
k=1

aijk(t, x, u)∂iuk + bj(t, x, u), j = 1, . . . , N,

u(0, x) = u0(x).

Here u = (u1, . . . , uN) = u(t, x) is the unknown vector-valued function of t ∈ IR and

x ∈ IRn. aijk, bj are real-analytic functions of their arguments, i = 1, . . . , n; j, k =

1, . . . , N ∈ IN, and u0 is real-analytic in x.

Without loss of generality we may assume that u0 = 0 (otherwise consider ũ := u− u0)

and that aijk and bj do not depend on t (otherwise introduce uN+1 with ∂tuN+1 = 1,

uN+1(0, x) = 0). With these simplifications the following theorem will be proved.

Theorem B.1 Let aijk and bj be real-analytic functions of z = (x, u) in a neighbourhood

of zero in IRn+N , i = 1, . . . , n; j, k = 1, . . . , N . Then the system of differential equations

∂tuj =
n∑

i=1

N∑
k=1

aijk(z)∂iuk + bj(z), j = 1, . . . , N, (B.1)
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with initial conditions

u(0, x) = 0, x ∈ IRn, (B.2)

has a solution u in a neighbourhood of zero in IR1+n which is real-analytic there. The

solution is unique in the class of real-analytic functions.

Proof: Without loss of generality we assume n = 1 and we write ajk instead of a1jk.

The proof uses the fact that the coefficients ci�k in the Taylor expansion of a solution u,

ui(t, x) =
∞∑

�,k=0

ci�kt
�xk, (B.3)

are necessarily determined by the differential equations (B.1) (Brook Taylor, 18.8.1685 –

29.12.1731). It is shown then that the series with these coefficients converges. For this

purpose a majorant will be constructed. We have

ci�k =
1

�!k!

∂k+�ui(t, x)

∂t�∂xk

∣∣∣∣∣
t=0,x=0

.

Then we get successively

∂mui

∂xm

∣∣∣∣∣
t=0

= 0 from (B.2),

∂ui

∂t

∣∣∣∣∣
t=0

, using (B.1),

which yields
∂2ui

∂t∂x

∣∣∣∣∣
t=0

.

Differentiation of the differential equations (B.1) with respect to t then yields

∂2u

∂t2

∣∣∣∣∣
t=0

and so on, thus determining ci�k for all i = 1, . . . , N and �, k ∈ IN0.

If

ajk(z) =
∞∑

|α|=0

gjkα zα

and

bj(z) =
∞∑

|α|=0

hj
αz

α

for all |z| ≤ r for some fixed r > 0, then

ci�k = P i
�k

(
(gjmα )αjm, (h

j
α)αj

)
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where P i
�k is a polynomial with nonnegative coefficients. This is obvious by the definition

of ci�k. The chain rule and the rule for differentiating products only contribute positive

coefficients.

Now we construct majorant coefficients C i
�k. Then u defined by (B.3) will automatically

be the (unique) solution of (B.1), (B.2). We show that there is a (local) solution v =

(v1, . . . , vN),

vi(t, x) =
∞∑

�,k=0

C i
�kt

�xk

of the initial value problem

∂tvj =
N∑
k=1

Ajk(z)
∂

∂x
vk +Bj(z),

vj(0, x) = 0,

where Ajk and Bj have to be determined such that

Ajk(z) =
∞∑

|α|=0

Gjk
α zα, Bj(z) =

∞∑
|α|=0

Hj
αz

α

with the property

|gjkα | ≤ Gjk
α , |hj

α| ≤ Hj
α.

Then it follows

C i
�k = P i

�k

(
(Gjm

α )αjm, (H
j
α)αj

)
≥

∣∣∣P i
�k((|gjmα |)αjm, (|hj

α|)αj)
∣∣∣

≥ |ci�k|.

Hence we have found the desired majorant.

Now it only remains to determine Ajk, Bj and v appropriately.

With

M1 := max
j,k=1,...,N ;|z|=r

|ajk(z)|

the estimates

|gjkα | ≤
M1

r|α|
≤ M1

r|α|
|α|!
α!

=: Gjk
α ,

hold, analogously with

M2 := max
j=1,...,N ;|z|=r

|bj(z)| :

|hj
α| ≤

M2

r|α|
≤ M2

r|α|
|α|!
α!

=: Hj
α.

Without loss of generality we assume

M1 = M2 =: M.
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Let

Ajk(z) :=
∞∑

|α|=0

Gjk
α zα = M

∞∑
|α|=0

|α|!
α!

(
z

r

)α

= M
1

1− z1+...+zN+1

r

if |z1|+ . . .+ |zN+1| < r,

and analogously

Bj(z) :=
∞∑

|α|=0

Hj
αz

α = M
1

1− z1+...+zN+1

r

.

Since the chosen coefficients Ajk and Bj are independent of j and k we make the following

ansatz for v:

vi(t, x) = w(t, x), i = 1, . . . , N.

Then we have to solve

∂tw =
Mr

r − x−Nw

(
1 +N

∂

∂x
w

)
,

w(0, x) = 0 (|x|+N |w| < r).

This is explicitly solvable by

w(t, x) :=
1

2N

(
r − x−

√
(r − x)2 − 4MNrt

)

in a neighbourhood of zero in IR1+n, e.g. where

|x| < r

2
, t <

r

16MN
=: T (M, r) for N, n fixed, (B.4)

holds and there also u is analytic.

Q.e.d.

For the application in Chapter 3 the following remarks on the linear case are important:

Let

Lu := A0(t, x)∂tu +
n∑

j=1

Aj(t, x)∂ju+B(t, x)u = 0,

u(0, x) = P (x), x ∈ IRn,

with analytic N × N -matrices A0, A1, . . . , An, B in a cylinder Z := {(t, x) | 0 ≤ t ≤
T, |x| ≤ r} ≡ Zr

T , for some T, r > 0.

Let A0 be positive definite in Z and P be a polynomial. Then v defined by

v := u− P
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should solve

∂tv = −
n∑

j=1

(A0)−1Aj∂jv − (A0)−1Bv − (A0)−1LP,

v(t = 0) = 0.

According to Theorem B.1 there exists a solution v in Z
r/2
T (M,r) where T (M, r) is given in

(B.4).

If P is replaced by P1 := P/c with a sufficiently large constant c > 0, then M , computed

from (A0)−1Aj, (A0)−1B, j = 1, . . . , n, is already a corresponding bound for (A0)−1LP1.

Hence the solution U corresponding to the initial value P1 exists in Z
r/2
T (M,r) with

M = M(((A0)−1Aj)j, (A
0)−1B).

But then also u = cU exists there and this implies that T (M, r) does not depend on the

special polynomial P .

C A local existence theorem for hyperbolic-parabolic

systems

In this appendix we present a local existence theorem for quasilinear hyperbolic-parabolic

coupled systems, essentially taken from the paper of S. Kawashima [84, Chapter II],

together with sketches of the proof.

We consider the initial value problem for a system of quasilinear differential equations

of the form

A0
1(u, v)ut +

n∑
j=1

Aj
11(u, v)∂ju = f1(u, v,∇v), (C.1)

A0
2(u, v)vt −

n∑
j,k=1

Bjk
2 (u, v,∇v)∂j∂kv = f2(u, v,∇u,∇v), (C.2)

where t ≥ 0, x ∈ IRn, n ∈ IN. u = u(t, x) and v = v(t, x) are vectors with m′ and

m′′ components, respectively, m′, m′′ ∈ IN0, one being different from zero. The pair

(u, v)(t, x) takes its values in an open convex set U ∈ IRm (m := m′ +m′′ ≥ 1). A0
1 and

Aj
11 (j = 1, . . . , n) (resp. A0

2 and Bjk
2 (j, k = 1, . . . , n)) are square matrices of order m′

(resp. m′′), and f1 (resp. f2) is a IRm′
-valued (resp. IRm′′

-valued) function.

The initial data are prescribed at t = 0 by

(u, v)(0, x) = (u0, v0)(x). (C.3)

We assume that the system (C.1), (C.2) is symmetric hyperbolic-parabolic in the follow-

ing sense:
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Condition C1: The functions A0
1(u, v), A

0
2(u, v) and Aj

11(u, v) (j = 1, . . . , n) are suffi-

ciently smooth in (u, v) ∈ U and Bjk
2 (u, v, ξ) (j, k = 1, . . . , n) is sufficiently smooth in

(u, v, ξ) ∈ Ũ := U × IRnm′′
, and

(i) A0
1(u, v) and A0

2(u, v) are real symmetric and positive definite for (u, v) ∈ U ,

(ii) Aj
11(u, v) is real-symmetric for (u, v) ∈ U ,

(iii) Bjk
2 (u, v, ξ) is real-symmetric and satisfies

Bjk
2 (u, v, ξ) = Bkj

2 (u, v, ξ)

for (u, v, ξ) ∈ Ũ ;
n∑

j,k=1

Bjk
2 (u, v, ξ)ωjωk is (real-symmetric and) positive definite for all (u, v, ξ) ∈ Ũ

and ω = (ω1, . . . , ωn) ∈ IRn with |ω| = 1.

Let η ∈ IRnm′
denote a vector corresponding to ∇u.

Condition C2: The functions f1(u, v, ξ) and f2(u, v, η, ξ) are sufficiently smooth in (u, v, ξ)

∈ U × IRnm′
and (u, v, η, ξ) ∈ U × IRnm, respectively, and

f1(u, v, 0) = f2(u, v, 0, 0) = 0

for some constant state (u, v) ∈ U .

Remark: The results in this appendix hold in particular for m′′ = 0 (symmetric hyper-

bolic systems, cf. Chapter 5) and for m′ = 0 (parabolic systems).

First we study solutions of the linearized equations

A0
1(u, v)ũt +

n∑
j=1

Aj
11(u, v)∂jũ = f1, (C.4)

A0
2(u, v)ṽt −

n∑
j,k=1

Bjk
2 (u, v,∇v)∂j∂kṽ = f2. (C.5)

Let QT := [0, T ]× IRn (T > 0 arbitrary but fixed), �, s ∈ IN0 with 0 ≤ � ≤ s.

Theorem C.1 Assume Condition C1 and s ≥ [n
2
] + 3. Let (u, v) satisfy

u− u ∈ L∞([0, T ],W s,2), ut ∈ L∞([0, T ],W s−1,2), (C.6)

v − v ∈ L∞([0, T ],W s,2), vt ∈ L∞([0, T ],W s−2,2) ∩ L2([0, T ],W s−1,2), (C.7)

∀(t, x) ∈ QT : (u, v,∇v)(t, x) ∈ U1, (C.8)
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where U1 is a bounded, open, convex set in IRm+nm′′
satisfying U1 ⊂ U × IRnm.

Let

M := ess sup
0≤t≤T

‖(u− u, v − v)(t)‖s,2,

M1 :=

⎛⎝ T∫
0

‖∂t(u, v)(t)‖2s−1,2 dt

⎞⎠1/2

.

Let 0 ≤ � ≤ s be an integer and let f1, f2 satisfy:

f1 ∈ L∞([0, T ],W �−1,2) ∩ L2([0, T ],W �,2), (C.9)

f2 ∈ L∞([0, T ],W �−1,2).

(i) Assume that ũ is a solution of (C.4) satisfying

ũ ∈ L∞([0, T ],W �,2), ũt ∈ L∞([0, T ],W �−1,2). (C.10)

Then we have ũ ∈ C0([0, T ],W �,2). Furthermore there exist constants C1 =

C1(U1) > 1 and C2 = C2(U1,M) > 0 such that the following energy inequality

holds for t ∈ [0, T ]:

‖ũ(t)‖2�,2 ≤ C2
1

⎧⎨⎩‖ũ(0)‖2�,2 + C2t

t∫
0

‖f1(r)‖2�,2 dr
⎫⎬⎭ exp{C2(Mt +M1t

1/2)}. (C.11)

(ii) Assume that ṽ is a solution of (C.5) satisfying

ṽ ∈ L∞([0, T ],W �,2), ṽt ∈ L∞([0, T ],W �−2,2).

Then we have ṽ ∈ C0([0, T ],W �,2) ∩ L2([0, T ],W �+1,2) and the following energy

inequality holds for t ∈ [0, T ] (with the constants C1, C2 from (i)):

‖ṽ(t)‖2�,2 +
t∫

0

‖ṽ(r)‖2�+1,2dr (C.12)

≤ C2
1

⎧⎨⎩‖ṽ(0)‖2�,2 + C2

t∫
0

‖f2(r)‖2�−1,2 dr

⎫⎬⎭ exp{C2(t+M1t
1/2)}.

Proof: (i):

1. Assume

v − v ∈ L∞([0, T ],W s,2), vt ∈ L∞([0, T ],W s−1,2), (C.13)

f1 ∈ L∞([0, T ],W �,2), (C.14)

ũ ∈ L∞([0, T ],W �+1,2), ∂tũ ∈ L∞([0, T ],W �,2). (C.15)
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(Cf. the conditions (C.7), (C.9), (C.10).)

Applying ∇k to the system (C.4), integrating by parts as usual, and summing up for

0 ≤ k ≤ �, we arrive at

1

2

d

dt
(E1(ũ))

2 − C01(M + ‖∂t(u, v)‖s−1,2)(E1(ũ))
2 ≤ C02‖f1‖�,2E1(ũ) + C02M(E1(ũ))

2,

where

E1(ũ)(t) :=

(
�∑

k=0

〈A0
1(u, v)∇kũ,∇kũ〉(t)

)1/2

and

C01 = C01(U1), C02 = C02(U1,M)

are positive constants. Gronwall’s inequality, Lemma 4.1, now yields (C.11).

2. Let (u, v), f1, ũ satisfy (C.6), (C.7), (C.14), (C.15).

This case is reduced to the situation in case 1 by using the Friedrichs mollifier jδ, δ > 0

(cf. Chapter 4). Consider vδ := jδ ∗ v and let δ tend to zero.

3. Let (u, v), f1, ũ satisfy the assumptions of the theorem. Apply jδ∗ to the system

(C.4) and thus reduce it to the situation in case 2, then let δ tend to zero.

4. ũ ∈ C0([0, T ],W �,2) follows by considering the system (C.4) for ũδ − ũδ′ instead of

ũ, uδ := jδ ∗ u. We have ũδ ∈ C0([0, T ],W �,2). Then let δ, δ′ tend to zero.

(ii) is proved analogously. First assume that (u, v), f2, ṽ satisfy (C.6), (C.13) and

f2 ∈ L∞([0, T ],W �,2),

ṽ ∈ L∞([0, T ],W �+2,2), ṽt ∈ L∞([0, T ],W �,2),

then regularize.

Q.e.d.

An existence result for the system (C.4), (C.5) is given by the following theorem.

Theorem C.2 Assume Condition C1 and s ≥ [n
2
] + 3. Let (u, v) satisfy

u− u ∈ C0([0, T ],W s,2), ut ∈ C0([0, T ],W s−1,2), (C.16)

v − v ∈ C0([0, T ],W s,2), vt ∈ C0([0, T ],W s−2,2) ∩ L2([0, T ],W s−1,2),

(C.8).

(i) Let 1 ≤ � ≤ s be an integer and let f1 satisfy

f1 ∈ C0([0, T ],W �−1,2) ∩ L2([0, T ],W �,2).

If the prescribed initial data satisfy ũ(0) ∈ W �,2, then the system (C.4) has a unique

solution ũ ∈ C0([0, T ],W �,2) ∩ C1([0, T ],W �−1,2) satisfying the estimate (C.11).

C Local Existence Theorem for Hyperbolic-Parabolic Systems
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(ii) Let 2 ≤ � ≤ s be an integer and let f2 satisfy

f2 ∈ C0([0, T ],W �−1,2).

If the prescribed initial data satisfy ṽ(0) ∈ W �,2, then the system (C.5) has a unique

solution ṽ ∈ C0([0, T ],W �,2) ∩ C1([0, T ],W �−2,2) ∩ L2([0, T ],W �+1,2) satisfying the

estimate (C.12).

Proof: (i): The system (C.4) is written in the form

ũt + Ã1(t)ũ(t) = f̃1(t), t ∈ [0, T ],

where

Ã1(t) :=
n∑

j=1

(
A0

1(u, v)(t)
)−1

Aj
11(u, v)(t)∂j,

f̃1(t) :=
(
A0

1(u, v)(t)
)−1

f1(t).

Then the results of T. Kato on linear evolution equations can be applied, see [79] (with

S(t) ≡ S := (1−Δ)s/2 there, cf. also [80]).

(ii): (By induction.) Let � = 2: ṽ satisfies

ṽt + Ã2(t)ṽ(t) = f̃2(t),

where

Ã2(t) := −
n∑

j,k=1

(
A0

2(u, v)(t)
)−1

Bjk
2 (u, v,∇v)(t),

f̃2(t) :=
(
A0

2(u, v)(t)
)−1

f2(t).

Then the results from [79] can be used again (with S(t) = Ã2(t) + β, β > 1 sufficiently

large).

Q.e.d.

Now we consider the linearized equations arising from (C.1), (C.2):

A0
1(u, v)ũt +

n∑
j=1

Aj
11(u, v)∂jũ = f1(u, v,∇v), (C.17)

A0
2(u, v)ṽt −

n∑
j,k=1

Bjk
2 (u, v,∇v)∂j∂kṽ = f2(u, v,∇u,∇v), (C.18)

with initial data

(ũ, ṽ)(0, x) = (u, v)(0, x) = (u0, v0)(x). (C.19)
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Let s ≥ [n
2
] + 3, T > 0 and let Xs

T (U1,M,M1) be the set of functions (u, v) satisfying

(C.16),

v − v ∈ C0([0, T ],W s,2) ∩ L2([0, T ],W s+1,2),

vt ∈ C0([0, T ],W s−2,2) ∩ L2([0, T ],W s−1,2),

(C.8),

∀t ∈ [0, T ] : sup
0≤r≤t

‖(u− u, v − v)(r)‖2s,2 +
t∫

0

‖(v − v)(r)‖2s+1,2 dr ≤M2, (C.20)

∀t ∈ [0, T ] :

t∫
0

‖∂t(u, v)(r)‖2s−1,2 dr ≤M2
1 .

The following existence result holds:

Theorem C.3 Assume conditions C1 and C2. Let s ≥ [n
2
]+3 and (u0−u, v0−v) ∈ W s,2

satisfy

∀x ∈ IRn : (u0, v0,∇v0)(x) ∈ U0, (C.21)

where U0 is a bounded, open, convex set in IRm+nm′′
satisfying U 0 ⊂ U × IRnm′′

.

Then there exist a positive constant T0, only depending on U0, ‖(u0 − u, v0 − v)‖s,2 and

d1, where d1 is an arbitrary positive number being smaller than the distance from U0 to

the boundary of U × IRnm′′
, such that if (u, v) ∈ Xs

T0
(U1,M,M1) then the problem (C.17),

(C.18), (C.19) has a unique solution (ũ, ṽ) ∈ Xs
T0
(U1,M,M1).

Here

U1 := d1-neighbourhood of U0,
M := 2C1‖(u0 − u, v0 − v)‖s,2, M1 := 2C3M,

⎫⎪⎪⎬⎪⎪⎭ (C.22)

where C1 = C1(U1) from Theorem C.1, and C3 = C3(U1,M) is given from the valid

relation

∀0 ≤ t ≤ T :

t∫
0

‖∂t(ũ, ṽ)(r)‖2s−1,2 dr ≤ C2
3 (M̃

2 + (M̃2 +M2)t), (C.23)

(M̃ = M̃(ũ, ṽ) as M = M(u, v) in (C.20)).

Proof: The proof follows from Theorems C.1, C.2.

Q.e.d.

Remarks: 1. (C.23) follows from the differential equations (C.17), (C.18) and from

the inequality

‖f1(u, v,∇v)‖s−1,2 + ‖f2(u, v,∇u,∇v)‖s−1,2 ≤ C(U1,M)M,

C Local Existence Theorem for Hyperbolic-Parabolic Systems
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(which is obtained using Condition C2).

2. The proof requires at least T0 ≤ 3/2.

The solution of the nonlinear system (C.1), (C.2), (C.3) can now be constructed by

successive approximation in the following way. Let L be the operator which maps (u, v)

to (ũ, ṽ) according to Theorem C.3. A sequence (un, vn)n∈IN0 is defined by

(u0, v0)(t, x) := (u, v),

(un+1, vn+1) := L(un, vn).

Consider the differential equations (C.1), (C.2) for (un+1− u, vn+1− v) instead of (u, v).

Using the preceding theorems it can be shown that (un−u, vn−v)n is a Cauchy sequence

in C0([0, T1],W
s−1,2) and for a subsequence we have the following:

(vn
′−v)n′ tends to zero weakly in L2([0, T1],W

s+1,2), (un(t)−u, vn(t)−v)n tends to zero

weakly in W s,2 for each t ∈ [0, T1] if T1 ∈ (0, T0] is sufficiently small. The limit (u, v) is

the desired solution of (C.1), (C.2), (C.3).

Thus, the following local existence theorem holds.

Theorem C.4 Assume the Conditions C1, C2, s ≥ [n
2
] + 3, (u0 − u, v0 − v) ∈ W s,2

and (C.21). Then there is a positive constant T1, only depending on U0, d1 and on

‖(u0 − u, v0 − v)‖s,2, such that the quasilinear symmetric hyperbolic-parabolic initial

value problem (C.1), (C.2), (C.3) has a unique solution (u, v) ∈ Xs
T1
(U1,M,M1), where

U1,M,M1, are defined by (C.22).

In particular the solution satisfies

u− u ∈ C0([0, T1],W
s,2) ∩ C1([0, T1],W

s−1,2),

v − v ∈ C0([0, T1],W
s,2) ∩ C1([0, T1],W

s−2,2) ∩ L2([0, T1],W
s+1,2),

sup
0≤r≤t

‖(u− u, v − v)(r)‖2s,2 +
t∫

0

(
‖(u− u)(r)‖2s,2 + ‖(v − v)(r)‖2s+1,2

)
dr

≤ C2
4‖(u0 − u, v0 − v)‖2s,2, t ∈ [0, T1],

where C4 > 1 is a constant which only depends on U0, d1 and ‖(u0 − u, v0 − v)‖s,2
(uniformly bounded for fixed T1 and all (u0, v0) with ‖(u0 − u, v0 − v)‖s,2 ≤ 1).
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Notation

a.e. almost everywhere

B(x0, r) closed ball in IRn with center x0 and radius r > 0

Ck Ck(IRn)

Ck(D) k-times continuously differentiable functions from D ⊂ IRm into IR

(or IRj,C,Cj); k ∈ IN0 ∪ {∞}; m, j ∈ IN

Ck
b Ck

b (IR
n)

Ck
b (D) Ck(D)-functions with bounded derivatives up to order k, k ∈ IN0 ∪ {∞}

Ck(I, E) space of k-times strongly differentiable functions from an interval I ⊂ IR

into a Banach space E, k ∈ IN0 ∪ {∞}
C∞

0 C∞
0 (IRn)

C∞
0 (D) C∞(D)-functions with compact support

Cw(I, E) space of weakly continuous functions from an interval I ⊂ IR into a Banach

space E

δαβ Kronecker delta

∂j ∂/∂xj

∂t ∂/∂t (also indicated by a subindex t)

D (∂t, ∂1, . . . , ∂n)
′ (in Section 11.6: symbol for the displacement current)

Dα (∂α0
t , ∂α1

1 , . . . , ∂αn
n )′, α = (α0, α1, . . . , αn) ∈ IN0

n+1, n ∈ IN

det determinant

ess sup essential supremum

exp · · · e···

F Fourier transform

Im imaginary part

〈·, ·〉 inner product in L2

κs Sobolev constant in the imbeddding W s,2 ↪→ C0, s ∈ IN

Lip(I,E) space of Lipschitz continuous functions from an interval I ⊂ IR into a Banach

space E

log natural logarithm

Lp Lp(IRn)

Lp(I, E) space of strongly measurable functions from I⊂ IR into a Banach spaceE, the

p-th powers of which are integrable (essentially bounded if p =∞), 1 ≤ p ≤∞
Lp
loc set of functions being locally in Lp

Lp(Ω) W 0,p(Ω)

∇ (∂1, . . . , ∂n)
′

∇α (∂α1
1 , . . . , ∂αn

n )′, α = (α1, . . . , αn) ∈ IN0
n, n ∈ IN

‖ · ‖E norm in the Banach space E

‖ · ‖m,p norm in Wm,p
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‖ · ‖p norm in Lp

|u|s,T sup0≤t≤T ‖u(t)‖s,2
‖Dmu‖p

( ∑
|α|=m

‖Dαu‖pp
)1/p

,

‖Dm
u‖p

( ∑
0≤|α|≤m

‖Dαu‖pp
)1/p

,

‖∇mu‖p
( ∑
|α|=m

‖∇αu‖pp
)1/p

,

‖∇m
u‖p

( ∑
0≤|α|≤m

‖∇αu‖pp
)1/p

, m ∈ IN0, 1 ≤ p <∞ (p =∞ as usual).

Re real part

Sn−1 unit sphere in IRn

supp support

Wm,p Wm,p(IRn)

Wm,p(Ω) usual Sobolev space, m ∈ IN0, 1 ≤ p ≤ ∞, (see R.A. Adams [1]); several

copies are denoted with the same symbol

W 1,2
0 (Ω) usual Sobolev space generalizing zero boundary values, see [1]

↪→ continuous imbedding

⇀ weak convergence

[x] largest integer which is less than or equal to x, x ∈ IR
′ used for transposition, e.g. for the divergence ∇′, for one-dimensional

derivatives, for indexing, and, in Chapter 13, for denoting parts of space

variables

Notation
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Poincaré, H. , 105
principle

limiting absorption, 210
limiting amplitude, 219

propagation
of signals, 27
speed, 27, 139

regularity, 32, 33
regularity assumption, 77, 91, 102, 120, 206
regularity loss, 104, 105
repulsive, 254
Riesz, F., 32
Riesz, M., 272

scattering theory, 93
Schauder, P.J., 31
Schrödinger, E., 177
shock wave, 111

Index



306

singularities, see development of
smoothing estimates, 255
Sobolev, S.L., 7
solution

classical, 8
distributional, 18
radially symmetric, 110, 119, 144, 215,

216, 218
weak, 111, 219

space-like, 23, 28, 29
spectrum

essential, 256
purely continuous, 256

stability, 91
star-shaped, 209, 211
Stokes, G.G., 207
Strichartz, R.S., 255
strictly hyperbolic, 173, 174

Taylor, B., 279
trace, 18

variable coefficients, 209, 211

wave cone, 121, 125
waveguide

classical, 221
flat, 221
generalized, 221
locally perturbed, 256
repulsive, 254

Weyl, H., 228

Young, W.H., 49

Index


	Preface
	Preface to the first edition:

	Contents
	Introduction
	1 Global solutions to wave equations — existence theorems
	2 Lp–Lq-decay estimates for the linear wave equation
	3 Linear symmetric hyperbolic systems
	3.1 Energy estimates
	3.2 A global existence theorem
	3.3 Remarks on other methods

	4 Some inequalities
	5 Local existence for quasilinear symmetric hyperbolic systems
	6 High energy estimates
	7 Weighted a priori estimates for small data
	8 Global solutions to wave equations — proofs
	8.1 Proof of Theorem 1.1
	8.2 Proof of Theorem 1.2
	Remarks on the optimality of the results:


	9 Other methods
	1. The Nash–Moser–Hörmander scheme
	2. The method of invariant norms
	3. The method of conformal maps
	4. The method of normal forms

	10 Development of singularities
	11 More evolution equations
	11.1 Equations of elasticity
	11.1.1 Initially isotropic media in R3
	11.1.2 Initially cubic media in R2

	11.2 Heat equations
	11.3 Equations of thermoelasticity
	11.4 Schrödinger equations
	11.5 Klein–Gordon equations
	11.6 Maxwell equations
	11.7 Plate equations

	12 Further aspects and questions
	Exterior domains.
	The approach using the Laplace transform.
	Ansatz via generalized eigenfunctions.

	Interior domains.

	13 Evolution equations in waveguides
	13.1 Nonlinear wave equations
	13.1.1 Linear part
	13.1.2 Nonlinear part

	13.2 Schrödinger equations
	13.3 Equations of elasticity and Maxwell equations
	13.4 General waveguides

	Appendix
	A Interpolation
	B The Theorem of Cauchy–Kowalevsky
	C A local existence theorem for hyperbolic-parabolic systems

	References
	Notation
	Index

