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Preface

This book is the second edition of the book Lectures on nonlinear evolution equations.
Initial value problems [150] from 1992. Additionally, it now includes a new Chapter 13
on initial-boundary value problems for waveguides, addressing more advanced students

and researchers.

Several people contributed helpful comments on the first edition and on the new Chap-
ter 13. In particular I would like to thank Dipl.-Math. Karin Borgmeyer, Dr. Michael
Pokojovy, Dipl.-Math. Marco Ritter, and Dipl.-Math. Alexander Schéwe. For typing
Chapter 13 I thank Gerda Baumann. I am obliged to Birkh&user, in particular to

Clemens Heine, for the interest in publishing this book.

Konstanz, April 2015 Reinhard Racke

Preface to the first edition:

The book in hand is based on lectures which were given at the University of Bonn in
the winter semesters of 1989/90 and 1990/91. The aim of the lectures was to present
an elementary, self-contained introduction into some important aspects of the theory of
global, small, smooth solutions to initial value problems for nonlinear evolution equa-
tions. The addressed audience included graduate students of both mathematics and
physics who were only assumed to have a basic knowledge of linear partial differential
equations. Thus, in the spirit of the underlying series, this book is intended to serve as
a detailed basis for lectures on the subject as well as for self-studies for students or for

other newcomers to this field.

The presentation of the theory is made using the classical method of continuation of local
solutions with the help of a priori estimates obtained for small data. The corresponding
global existence theorems have been proved mainly in the last decade, focussing on fully
nonlinear systems. Related questions concerning large data problems, the existence of
weak solutions or the analysis of shock waves are not discussed. Also the question of
optimal regularity assumptions on the coefficients is beyond the scope of the book and

is touched only in part and exemplarily.

Most of the material presented here has only been previously published in original pa-
pers, and some of the material has never been published until now. Therefore, I hope
that both the interested beginner in the field and the expert will benefit from reading the

book. In addition, a long list of references has been included, although it is not intended



vi Preface

to be exhaustive. Of course the selection of the material follows personal interests and
tastes.

Several colleagues and students helped me with their comments on earlier versions of this
book. In particular I would like to thank R. Arlt, S. Jiang, S. Noelle, P. P. Schirmer,
R. P. Spindler, M. Stoth and F. Willems. Special thanks are due to R. Leis who also
suggested writing first lecture notes in 1989 (SFB 256 Vorlesungsreihe Nr. 13, Univer-
sitdt Bonn (1990), in German). I am obliged to the Verlag Vieweg and to the editor of
the “Aspects of Mathematics”, K. Diederich, for including the book in this series. The
major part of typing the manuscript was done by R. Miiller and A. Thiedemann whom
I thank for their expert work. Last, but not least, I would like to thank the Deutsche
Forschungsgemeinschaft, Sonderforschungsbereich 256, for generous and continuous sup-
port.

Bonn, August 1991 Reinhard Racke
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Introduction

Many problems arising in the applied sciences lead to nonlinear initial value problems

(nonlinear Cauchy problems) of the following type
Vi+ AV = F(V,...,V?V), V(t=0)=V"

Here V = V(t, ) is a vector-valued function taking values in R* (or C*), where ¢t > 0,
z € IR", and A is a given linear differential operator of order m with k, n, m € IN. F'is
a given nonlinear function of V' and its derivatives up to order |3| < m, and V denotes
the gradient with respect to z, while V° is a given initial value. In particular the case
|B] = m, i.e. the case of fully nonlinear initial value problems, is of interest.

An important example from mathematical physics is the wave equation describing an in-
finite vibrating string (membrane, sound wave, respectively) in R' (IR?, IR?, respectively;
generalized: R"). The second-order differential equation for the elongation y = y(¢, z)

at time ¢ and position z is the following:

Y — A vy =
V1+[VyP

where V'’ denotes the divergence. This can also be written as

v/
yy — Ay =V’ y — Ay =: f(Vy, V).
\/1 + | Vy|?

We notice that f has the following property:
fW)=0(W[* as|W|—o0.
Additionally one has prescribed initial values

y(t=0)=yo, w(t=0)=u.

The transformation defined by V' := (y;, Vy) turns the nonlinear wave equation for y into
a first-order system for V' as described above. The investigation of such nonlinear evo-
lution equations has found an increasing interest in the last years, in particular because
of their application to the typical partial differential equations arising in mathematical
physics.

We are interested in the existence and uniqueness of global solutions, i.e. solutions
V = V/(t, ) which are defined for all values of the time parameter t. The solutions will
be smooth solutions, e.g. C*'-functions with respect to ¢ taking values in Sobolev spaces
of sufficiently high order of differentiability. In particular they will be classical solutions.

Moreover we wish to describe the asymptotic behavior of the solutions as t — co.

© Springer International Publishing Switzerland 2015 1
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2 Introduction

It is well known for the nonlinear wave equation, the first example above, that in general
one cannot expect to obtain a global smooth solution. That is to say, the solution may
develop singularities in finite time, no matter how smooth or how small the initial data
are. This phenomenon is known for more general nonlinear hyperbolic systems and also
for many other systems from mathematical physics, biology, etc., including the systems
which are mentioned below. Therefore, a general global existence theorem can only be
proved under special assumptions on the nonlinearity and on the initial data. The result
will be a theorem which is applicable for small initial data, assuming a certain degree
of vanishing of the nonlinearity near zero. The necessary degree depends on the space
dimension, being a weaker assumption for higher dimensions. This is strongly connected
with the asymptotic behavior of solutions to the associated linearized system (F' = 0
resp. f =0 in the example above) as t — oo, which gives a first insight into the means
used for the proof.

Further examples of nonlinear evolution equations which can be written in the general
first-order form after a suitable transformation are the following. They will be discussed

in more detail in Chapter 11.

e Equations of elasticity:

(9,2UZ = Z C’"n]k(VU)amakU‘77 1= 17 NN N

m,j,k=1
Ult=0)=U" Uft=0)=U"

We shall discuss the homogeneous, initially isotropic case for n = 3 and the homo-

geneous, initially cubic case for n = 2.
e Heat equations:

uy — Au = F(u, Vu, V2u), u(t = 0) = up.
e Equations of thermoelasticity:

RU; = Y Cimje(VU,0)00,00U; + Cina(VU,0)0,0, i =1,2,3,

m,j,k=1
(0 + Tp)a(VU,0)8,0 = V'q(VU,0,V0) + tr{Crm(VU, 0)... - (3:0:U,.)rs }(0 + Tp),
Ut=0)=U°"% Ul(t=0)=U" 6@=0) =0
The homogeneous, initially isotropic case will be discussed here.

e Schridinger equations:

up —1Au = F(u, Vu), u(t=0)= up.
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e Klein-Gordon equations:
Yt — Ay + my = f(y7 Yt, Vya Vyt: sz)7 m > 07

y(t=0) =vo, w(t=0)=u.
e Maxwell equations:

thVXH =
B,+VXxE =

D(t=0)=D" B(t=0)=B°
VD=0, V'B=0,
D =¢(E), B=uH).

e Plate equations:

n

Yu + A% = fye, V) + D bilye, V)0,

i=1
y(t=0)=wo, w(t=0)=uy.

In order to obtain existence theorems to these systems, we shall apply the classical
method of continuing local solutions (local with respect to t), provided a priori estimates
are known. The proof of the a priori estimates represents the non-classical part of
the approach. It requires ideas and techniques which mainly have been developed in
the last years, in particular the idea of using the decay of solutions to the associated
linearized problems. These new techniques were essential to overcome the difficulties in
the study of fully nonlinear systems, i.e. systems where the nonlinearity involves the
highest derivatives appearing on the linear left-hand side. We remark that in this sense
the Schrodinger equations and the plate equations above are not fully nonlinear. The
highest derivatives that appear in the nonlinearity can still directly be dominated by the
linear part in the energy estimates, see Chapter 11.

The general method by which all the systems mentioned before can be dealt with (cum
grano salis) is described by the following scheme.

We discuss the system

Vi+ AV = F(V,...,V°V), V(t=0)=V",
where F is assumed to be smooth and to satisfy

FW)=0(W[*™) as|W|—0, forsome a € IN.
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The larger « is, the smaller is the impact that the nonlinearity will have for small values
of |W|, i.e. the linear behavior will dominate for some time and there is some hope that
it will lead to global solutions for sufficiently small data if the linear decay is strong
enough. This will depend on the space dimension.

The general scheme consists of the following Steps A-E.

A: Decay of solutions to the linearized system:

A solution V to the associated linearized problem
Vi+ AV =0, V(t=0)=V"

satisfies
IV (O)llg < e(X+ )~V Inp,

where 2 < ¢ < oo (or2 < ¢ < o0), 1/p+1/g=1; ¢,d > 0and N € N are
functions of ¢ and of the space dimension n.  (E.g. for the wave equation above:
d= ”51(1 — 3)) This is usually proved by using explicit representation formulae

and/or the representation via the Fourier transform.

B: Local existence and uniqueness:
There is a local solution V' to the nonlinear system on some time interval [0, 77,

T > 0, with the following regularity:
Ve ([0, 7], w**) N CH([0, T], W*2),

where s, § € IN are sufficiently large to guarantee a classical solution. The proof of
a local existence theorem is always a problem itself. We shall present the proof of

the corresponding theorem for the wave equation in detail.

C: High energy estimates:
The local solution V satisfies

t
IV(®)lls2 < ClIV sz - exp {C/ IV (r)lf e dr}7 te[0,T].
0

C only depends on s, not on T or V°. b is independent of s, that is, the exponential
term does not involve higher derivatives in the L*>-norm (which allows to close the
circle in Step E). This inequality is proved using general inequalities for composite
functions (see Chapter 4).

D: Weighted a priori estimates:

The local solution satisfies

sup (L+6)" [V(t)lls.q < Mo < 00,
0<t<T
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where My is independent of T, sy is sufficiently large, ¢; = ¢;(«) is chosen appropri-
ately for each problem and d; = d(g,n) according to A, provided V? is sufficiently
small (in a sense to be made precise later; roughly, high Sobolev norms of V' are
small).

In this step the information obtained in A is exploited with the help of the classical

formula

t
V(t) = VO [ DR 9 (rr,
0

where e~*4V0 symbolically stands for the solution to the linearized problem with
initial value V0.

E: Final energy estimate:

The results in C and D easily lead to the following a priori bound:

IV(©)lls2 < K[V°

|s,27 0 St §T7

s € IN being sufficiently large, V° being sufficiently small and K being independent
of T. This a priori estimate allows us to apply now the standard continuation
argument and to continue the local solution obtained in Step B to a solution
defined for all ¢ € [0, 00).

The method described above immediately provides information on the asymptotic be-
havior of the global solution as ¢ — oo in Step D and in Step E.

This general scheme applies to all the above systems mutatis mutandis; for example,
there may appear certain derivatives with respect to ¢ of V' in the integrand of the
exponential in Step C. Moreover the nonlinearity may depend on ¢ and x explicitly.
Nevertheless, difficult questions can arise in the discussion of the details for each specific
system. Particularly interesting are the necessary modifications that have to be made for
the equations of thermoelasticity. This system cannot directly be put into the framework
just described because it consists of different types of differential equations (hyperbolic,
parabolic), and also different types of nonlinearities appear which exclude for example
a uniform sharp estimate as in Step A. Instead different components of V' have to be
dealt with in different ways. Altogether however, global existence theorems will again
be proved in the spirit of the Steps A—E.

This underlines the generality of the approach. Of course, this generality prevents the
results from being optimal in some cases. We shall discuss this in detail for the following

general wave equation:

v — Ay = [y, Vy, Vg, V),

y(t=0) =wo, y:(t=0)=u.
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For this we shall go through the Steps A—E in Chapters 1-8. Moreover, a more or
less optimal result is presented, the proof of which uses invariance properties of the
d’Alembert operator 87 — A under the generators of the Lorentz group. The other
examples will be studied in Chapter 11. In several of the cases there, these subtle
invariances are not available.

To underline the necessity of studying conditions under which small data problems allow
global solutions we shall shortly describe some blow-up results — results on the devel-
opment of singularities in finite time even for small data — in Chapter 10. In Chapter 9
a few other methods are briefly mentioned and Chapter 12 tries to outline some recent
developments and future projects going beyond the main line of this book.

The scheme described above can be found in [94]. Similar ideas are present in [117, 119,
158, 178].

One may think of the global existence results as a kind of stability result for small per-
turbations of the associated linear problems. Of course it is of great interest to study
solutions for large data but this is beyond the scope of this book. We refer the interested
reader to the literature [138; 179, 180, 186]. We also remark that there are much more
results on semilinear systems. The emphasis in this book lies on fully nonlinear systems.

In the second edition, we shall treat in the new Chapter 13 linear and nonlinear initial-
boundary value problems in waveguides, giving insight into the impact of the geometry
of domains with boundaries, and, simultaneously, demonstrating that following the steps

A—E also here applies, mutatis mutandis.



1 Global solutions to wave equations —

existence theorems

We shall start with the formulation of a global existence theorem for solutions of a class
of nonlinear wave equations. The first theorem, Theorem 1.1, is typical for the kind of
existence theorems that will be obtained for other evolution equations in Chapter 11.
The second theorem, Theorem 1.2, optimizes in some sense the result for wave equations.
We shall conclude this section with giving a few examples characterizing the behavior of
solutions to nonlinear wave equations in general, thus pointing out the crucial parts of
the assumptions in the existence theorems.

The nonlinear wave equations which shall be considered here are

v — Dy = f (i, Vy, Vi, VZy) = f (Dy, VDy), (1.1)

with prescribed initial data

y(t=0)=yo, w(t=0)=uy. (1.2)
The following notation is used:
y=y(t,z) € R, t >0, z € R", n € N arbitrary.
A= 2”:0227 al :a/ax’hi:lw'wna Z/t:atyu ytt:(‘)?y at:8/8t7
i=1

0,
D(vf), V=(8,...,0,)

Let

u = Dy:(aty761y7~~-78ny)7 VUZVDy:(81U7~~-7anU)7

(y1, Vo), (as column-vectors).

Uo

We assume that the nonlinear function f satisfies

f c O R(71+1)27R 7
S 13)
Joe N:  f(u,Vu) = O ((Jul + [Vu])*™) as |u]+|Vu| — 0,

where C'* (]Rm7 IRk) is the space of infinitely differentiable functions from IR™ into R*,
m, k € IN. Let us introduce some more notation:

WP = W™P(IR"): usual Sobolev spaces, m € Ny, 1 < p < oo, with norm || - ||,
(see R.A. Adams [1]) (Sergei L vovich Sobolev, 6.10.1908 — 3.1.1989).

LP ;= WO with norm || - ||, 1 < p < c0.

C*(I, E) := space of k times continuously differentiable functions from an interval

© Springer International Publishing Switzerland 2015 7
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8 1 Global Solutions to Wave Equations — FEzistence Theorems

I C R into a Banach space E, k € Ny (Stefan Banach, 30.3.1892 — 31.8.1945).

Now we are ready to formulate the first existence theorem.

Theorem 1.1 We assume (1.3) with ;(1 + ;) < ";'. Then there exist an integer
so > 5+ 1 and a 6 > 0 such that the following holds:

If up = (y1, Vo) belongs to W2 N WP with s > sy and p = ggﬁ and

[[wolls.2 + [luolls.p <0,

then there is a unique solution y of the initial value problem to the monlinear wave
equation (1.1), (1.2) with

(yh Vy) c " ([07 OO).‘ W8,2) not ([O7 OO), W371’2> .

Moreover, we have

|
//~
-
3
SN
L
°
o
S——

| (@2 V) O)lloo + 1| (We: V) () [|20+2

| (v, Vy) (D)]ls2 = O(1) as t— occ.

The proof of Theorem 1.1 will be presented in Chapter 8 based on results that will be
obtained in Chapters 2-7.
By Sobolev’s imbedding theorem the solution y obtained in Theorem 1.1 is a classical
solution:

y € C?([0,00) x R™).

The L?**2-decay rate given above is optimal, but the L>®-decay rate is not optimal. This
results from the decay rate for sufficiently many derivatives of (y;, Vy) in the L?**2-norm
just by Sobolev’s imbedding theorem (see Chapter 7). The optimal decay rate for the
L>*-norm is ;" (instead of " 1), see Theorem 1.2 below.
As far as the regularity assumption on f is concerned, we remark that the C'*°-assumption
can be weakened, cf. the remarks in Chapters 5 and 8.
Theorem 1.1 was given by Klainerman & Ponce in [94]. It provides sufficient conditions
for the global existence of small, smooth solutions to the nonlinear wave equation (1.1).
Moreover, the asymptotic behavior of the solution as t — oo is described with decay
rates.
The condition . . )
n—

)<, (1.4)
obviously connects the space dimension and the degree of vanishing of the nonlinearity
near zero. The larger o and/or n are, the better the situation is.
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For the example from the introduction,

v
Y — V' v =
1+ [Vyl?

or

Vy

Y — Ay =V’ - A
V1+1VyP
we have

1 1
1] +VvyV
Vi1+1VyE Y1+l
3
O ((Ivl+19%1)°) as 1Vyl+ V2] 0,

f(Dy,VDy) = Ay(

i.e. we have o = 2 and the condition (1.4) turns into: n > 5/2, i.e. n > 3.

In general we can express the relation between o and n as given in Table 1.1.

a= 1 2 3,4, ...
n > 6 3 2

Table 1.1: Sufficient conditions in Theorem 1.1

Quadratic nonlinearities (o = 1) require n to be at least 6. This is not optimal. Since
the method leading to Theorem 1.1 is very general, being applicable to hyperbolic,
parabolic and many other equations, it is not surprising that it is not sharp in all cases
— although it is sharp in many cases! The optimal condition here being necessary is
n > 4 for quadratic nonlinearities. To prove this result one has to use rather special
properties of the operator 32 —A. The corresponding result is stated in the next theorem.
It is optimal in the sense that quadratic nonlinearities in R? in general tend to develop
singularities in finite time, see below and Chapter 10.

Let the initial data yg, y; be given in the form

y(t=0)=yo=cp, wt=0)=y =e, (1.5)

where @, € C§° = C{°(IR™) (test functions) and € > 0 is a (small) parameter. Let
T (e) denote the life span of a solution to the initial value problem (1.1), (1.5), i.e.
T (e) equals the supremum of all times 7" > 0 for which there exists a C'*°-solution to
(1.1), (1.5) forallz e R", 0 <t < T.

We assume that f satisfies (1.3) with o = 1. Then we have
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Theorem 1.2 (i) Letn > 3. Then there is an o > 0 such that for all e with 0 < e < g
we have
Too(e) = o0,

where gy depends on at most (2n+3) derivatives of f and ) and on at most (2n+4)
derivatives of p. The global solution y satisfies
(., Vy) € o ([07 00), W2n+3,2) not ([07 ), W2n+2,2) )

Moreover, we have

(e, Vi) (B)lloo = O(tfn?),
(e, Vy) () llans2 = O(1) as t— oo.

(ii) Let n = 3. There exist an o > 0 and an A > 0 such that for all ¢ with 0 < & < &g
we have
Twole) 2 e,

where €9 and A depend on at most 9 derivatives of f and v and on at most 10

derivatives of .

If f vanishes of order o 4+ 1 near zero, a > 1, then the proof of Theorem 1.2 in Chapter
8 will show that the following condition would replace the condition (1.4):
1 - 1
@ 2

Since this only changes the value for n in Table 1.1 if & = 1, Theorem 1.2 has been

(1.6)

formulated for this case. The reason for having the improved relation (1.6) is that
a precise analysis of the invariance properties of 97 — A allows to replace an L!'-L°°-

estimate for solutions to the linear wave equation by an L?-L*®-estimate of a general

n—1.
2

The L°-decay rate of (y,, Vy) given for the global solution y in Theorem 1.2, (i) is

Sobolev type with the same decay rate see Chapter 8.

optimal.

Theorem 1.2 was given by S. Klainerman in [88]. The result is optimal with respect to the
relation between «v and n in the following sense. It is known that quadratic nonlinearities
(e = 1) in R? in general tend to develop singularities in finite time. Examples have been
given by F. John (Fritz John, 14.6.1910 — 10.2.1994) in [68, 70]; see Chapter 10.

The following two examples illustrate typical situations. The first example is a special
quadratic nonlinearity in IR®. It shows that global solutions may exist but also singular-
ities may develop depending on the size of the data.

Example 1: (cf. [86, pp. 45-46])

Y — Ay = |Vy|2 - ?/?7 (1~7)
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y(t=0)=0, w(t=0)=heC*(R’), (1.8)
where y = y(t,z), t € R, = € R3; further conditions on h are given below. If y is a
solution to (1.7), (1.8), y € C*(R x R?), then v defined by v := e¥ satisfies

U=y, vw = vyn +oyp, Vo =0Vy, Av=uvAy+u|Vy]?
which implies

v —Av = w (ytt — Ay + ytz - \Vy|2) =0,

v(t=0) = 1, w(t=0)=h.

Thus v is explicitly given by
oy
ta) =1 /h 16)de,
) =1 [t

S? being the unit sphere in IR?, (see Chapter 2 for this formula).
If v > 0 we obtain y as

y(t,z) = log (1 n 4’; / h(x+t§)d£) : (1.9)
SQ

Hence it is always possible to find a function h € Cg°(IR?) such that the corresponding
solution y develops a singularity not later than at time ty at the position xg, where ¢y

and x( are arbitrary. h only has to satisfy the following relation:
to
h to&)dé = —1.
A S/2 (zo + to)d€

On the other hand we can find conditions on h such that y is defined globally. For this
let
h(z) =0 (|z\71> as |z| = oo,
IVA||, < 4m, ;e < 1.

Then we have for ¢t > 1:

¢ / hz + t€)de

52

t

5/2 7 dcih(x + s6)dsdg

tf 7 i |(Vh)( + s¢)|dsde

<
$2
1

< Vh

< Il
4

< .
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This implies

<1 for t>1.

4t7rs[h(x T+ ) de

Analogously for t < —1. For |[t| < 1 we have

<[t [Alloe < 1.

t
4%/211(95 T+ ) de

Therefore, v(t,z) > 0 for all (t,2) € R x IR® and y is defined globally in (1.9).

Remark: The nonlinear wave equation (1.7) is a special case of the differential equation
Yo — Ay = a|Vy|* + by, a,b€R fixed.

For this the following holds: Global solutions always exist for sufficiently small data if
and only if @ + b = 0. The if-part has just been shown by the example above (taking
v := e in general). The only-if-part was proved by Hanouzet & Joly in [43]. In the
case a + b = 0 the nonlinearity satisfies the so-called null condition which is a sufficient
condition for quadratic nonlinearities in IR? to allow small, global solutions, see [90] and
Chapter 9.

The second example is an example in one space dimension which shows that the solution
itself and its first derivatives may stay bounded but that second derivatives may develop
singularities in finite time. This is also a typical phenomenon observed for nonlinear
wave equations.

Example 2: (cf. [65, pp. 649-650])

ytt = (1 + Z/:z;)Qym (110)
or equivalently

Yt — Yoa = 2yzyzz + ygyzw
yt=0)=H, y({t=0)=-1(H)-H, (1.11)

where y = y(t,x), t > 0, x € R, ypp = affzy. H is a given function with H € C§°(IR)
and
h:=min H"(z) < 0
zeR

(H"(z) = (2 H(x)).
We construct a solution y € C? ([0, —1/h) x R) which becomes singular as t — —1/h,
more precisely:

y.’l::l;(trn '7“0) — —00

for a sequence (t,), C [0,—1/h), t, — —1/h, and for some z, € RR.
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For this purpose let 8 € C' ([0, —1/h) x IR) be implicitly defined by
0(t,x) = H (x — (14 0(t,x))t).

This is possible by the implicit function theorem because for ¢ € [0, —1/h) there holds
H'(z—(14+0)t)(-t)—1#£0

which implies

d

g '@ = (1+0)1) =) 0.

Let y be defined by
Yt ) = 292@, 2)+ H (e — (1460t 2))t).
CLAIM: y solves (1.10), (1.11) (for (¢,z) € [0,—1/h) x R).
ProoFr: y(t =0) = H is obvious.
w(t,z) = ;92(t, z) +t0(t, 2)0, (¢, x) + H' (x — (1 + 0(¢, 2))t) (=1 — 0(t, x) — t0(t, )
_ —;92(@ ) — 0(t, ).

This implies

and
yu(t,x) = —0,(t,2)0(t,x) — 0,(t,x) = —0,(t,x) (1 + 0(¢,z)) .

Moreover
yu(t, ) = t0(t,2)0,(t,x) + H (x — (L +0(¢,x))t) (1 — t0,(t, x))
= 0(t,x)
which implies

Yo (b, T) = 0, (L, ).

On the other hand we have

0.(t,x) = H" (x — (1 + 0(t,2))t) (1 — t0,(t,2))
which yields - ol
bltw) = | th(ff @ ! (+1 -1—(9(??16)))75)

Analogously we obtain

—H"(xz — (14 0(t,2))t) (1 + 0(¢, x))

Qt(t, 7]) = 14+ tH" (CL _ (1 + 9(237 CL))t)
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This implies
Ou(t,x) = — (1 +0(t,2)) 0o (t, )

and finally
Yu(t,x) = (L+0(t,2))70,(t,2) = (1 + y.(t,2))* you(t, ).
Q.E.D.
Cram: There are sequences (tn)n C [0,—1/h) with lim ¢, = —1/h, and (z,), C R

with nh_I){.lo x, = xg for some z¢ € R such that

nhl& ymx(trnzn) = —OQ.
PRrROOF: Let & € R with H"(€) = h, (t,), C [0, —, ), arbitrary with lim ¢, = —1/h.
Since 6 is bounded we conclude

VneN Tz, eR: z,— (14+0(tn,x,))t, =&

Hence there is a subsequence which converges to some xy € R. We obtain

H"(€)

= 14 th”(f) — —00 as n — Q.

Q.E.D.
By the definition of y and the derived formulae for y; and y, it is obvious that y, 3, and

Yz stay bounded in [0,—1/h) x RR.

More examples will be given in Chapter 10.



2 [P-Li-decay estimates for the linear wave
equation

For the proof of Theorem 1.1 simple decay properties of solutions to the linear wave
equation play an important role (see Chapter 7). The decay rates of Li-norms are
typically of polynomial order in IR” depending on the space dimension n and on q.

We consider the solution of the linear initial value problem
yu — Ay =0, (2.1)

y(t=0)=0, w({t=0) =g, (2.2)
where y = y(t, x) is a real-valued function, ¢ > 0,2 € IR” and ¢ is assumed to be smooth
for the moment.

Let the operator w(t) be defined through

(w(t)g)(z) = y(t, ).
Remark: The assumption y(t = 0) = 0 is made without loss of generality because the

function y; defined by
it x) == Op(w(t)g)(x)
solves the initial value problem
Oy — Ay =0
y(t=0)=g, du(t=0)=0(w(t)g)(t=0)=Aw(t=0)g=0.

(Cf. the representation of solutions in Chapter 7 and the considerations in Section 11.5.)
Theorem 2.1 Jc=¢(n) >0 Vge C Vt>0:

(@) Dw(t)gll = lgll2,

(i) [Dw(t)gllo < c(1+8)"2" |Igllns-

IN

PROOF: Let g € C§°. Then y = w(:)g € C(|0,00) x R*) and Dw € C°([0, 00), L?)
for @« € INj. (Cf. Chapter 3 or the book of R. Leis [98].) ¢ will denote various positive
constants at most depending on n.

Multiplying both sides of (2.1) with ;(¢,-) in L? (inner product denoted by (-,-)) and

dropping the parameter ¢, we obtain

0 = (W, y) + (Vy, V)

1d

= o Ul + 19y13)

1d

2
TGN
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This proves (i).

(i) will be proved here for n = 1 and n = 3 to give some main ideas. For odd space
dimensions n > 3 or even space dimensions see Section 11.5 and the paper of W. von
Wahl [187], respectively.

n = 1: The solution y is given by d’Alembert’s formula:

y(t,x) = ; / g(r)dr

(Jean Baptiste Le Rond d’Alembert, 16.11.1717 — 29.10.1783).

We have
wltx) = (oe 1) + glo— 1),
peltr) = (ow ) — gle—1)

whence it is obvious that y solves the initial value problem (2.1), (2.2). Moreover
Vi>0:  [[Dw(t)glle < llgllee < ellgllin

by Sobolev’s imbedding theorem. This proves (ii) for the case n = 1.
Now let n = 3: Kirchhoft’s formula says that y defined by

t
y(t,x) == dr / g(z +tz)dz, (2.3)
S2
is the solution, where S? = 9B(0,1) denotes the unit sphere in R® (Gustav Robert
Kirchhoff, 12.3.1824 — 17.10.1887). This is easily checked. From (2.3) we obtain

y(t=0) = 0,
Ay, (t,z) = /g(z—&—tz)dz + t/(Vg)(.r—l—tz)z dz,
52 52

u(t=0) = g

Moreover
AnVy(t,z) =1t /(Vg)(x +tz)dz,
52

hence

Ay, (t,x) = 2/(Vg)(x+tz)zdz +t /V{(Vg)(x+tz)z}zdz
S? S2

= 3t / (Ag)(x +t2)dz + t* / (VAg)(z + tz)zdz,

B(0,1) B(0,1)
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drAy(t,x) = t/(Ag)(x +tz)dz = t/{(Ag)(;L’thz)z}zdz
S2 S2

= 1 / (VAg)(z +tz)zdz + 3t / (Ag)(z +tz)dz.

B(0,1) B(0,1)
This implies
— Ay = 0.
Now we shall prove (ii).
First let ¢t > 1:
1.
f/g(x+tz)dz = // g(xz+ sz dsdz—//Vq (x + sz)zdsdz
52 g2t ds S2 t
= // 5 T + sz)szdsdz
s
52t
= / |2| (V) (z + 2)zdz.
|z]>t

This implies
|/g T+ t2)dz| <172 / (Vo) + 2)| dz <t~
|z|>t
2. Analogously one obtains
1t [ (V)@ + t)2dz] <t gl
52
and
1t [ Vgl +12)dz] < gl
SZ
Hence we get for ¢t > 1:
[Dw(t)gllos < (47 8)7|g]l2,1- (2.4)
3. Nowlet 0<t<1l:

— /g(:v—&—tz)dz = // jg(;c—i—sz)dsdz
. . s
52
= —// g(x + sz)dsdz
S22t

& (s — t)2 &3
= // 5 9(x + s2)dsdz
A 2 ds

(B
- / 2|25 > 2%7(0:0;0k9) (x + 2)dz.
|z|>t i,5,k=1
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This implies

| [oa+t)del < X [ 100509+ Dldz < lgllsa.
S2

iyj,k:1|z|>t

Analogously for the terms discussed in 2. Thus we have obtained for 0 < t < 1:

[Dw(t)gllee < cllgllsi- (2.5)
(2.4) and (2.5) prove (ii).
Q.E.D.

Remarks: For g € W™! there is still a distributional solution y to the initial value

problem (2.1), (2.2). Since W™ is continuously imbedded into L? we have
y € C°([0,00), W) N C([0, 00), L?)

(see e.g. [98]).
Moreover one can define a trace on 9 for g € W'P(Q2),1 < p < oo, where € is a
smoothly bounded domain in IR"® (Lipschitz boundary is sufficient); namely, there is a

continuous map B,
B W (Q) — LF(09)

with
Bg =g if geW"(Q)NnC’(Q)

(see e.g. the book of HW. Alt [6]), (Rudolf Otto Sigismund Lipschitz, 14.5.1832 —
7.10.1903). Therefore Kirchhoff’s formula (2.3) makes sense for g € W3t — Wh? (—
denotes the continuous imbedding).

Thus we obtain the corresponding results for g € W™! by approximation with (gi.), C

C§°, expressed in the following theorem.

Theorem 2.2 Je=c(n) >0 VYge W' Vt>0:

(@) [Dw)gl: = gl

.. _n—1
(@) [Dw®)gllec < c(T+8)" 2 igllns

In other words, the operator T;, defined by
Tig == Du(t)g
maps as follows:

T, : W™t — L™ with norm M < ¢(1 + t)fn‘;l,



2 LP-L9-Decay Estimates for the Linear Wave Equation
T, : L> — [? withnorm M, = 1.
By interpolation we obtain
Ty o W™ L%y — [L®, L%y, 0<6<1,

with norm My < cMg~"M?, ¢ =c(0,n).

The interpolation spaces [+, ]s are described in Appendix A. We have
1<q,q <oo = [L* L"]p=L",

where ¢y is defined by the relation

1 1-46 0
= +
do do a1
In particular we get
2
[L>®, L%y = L% with ¢ = o

19

(2.6)

The proof of (2.6) is not very difficult after having given an appropriate meaning to [-, -Jo.

This is possible for example in general Banach spaces. The proof uses the Three-Line-
Theorem of J. Hadamard (Jacques Hadamard, 8.12.1865 —17.10.1963). The interpolation
of W™ and L? is much more difficult. For this purpose Besov spaces and Bessel potential
spaces are used (Friedrich Wilhelm Bessel, 22.7.1784 — 17.3.1846). We refer the reader
to Appendix A for a survey and to the books of Bergh & Lofstrom [11] and H. Triebel

[181] for details. One special result suitable for our purposes is:
Whee s W™ L2, if N> (1—0)n,

where
1 1
+ =1
Po do

defines py (see Theorem A.10 in Appendix A).
Remark: For 6 € {0, 1} we may allow N = (1 — 0)n.

Thus we obtain the following theorem on the LP—L9-decay of solutions to the linear wave

equation.

Theorem 2.3 Let2<g<oo,1/p+1/¢=1, N, >n(l—2/q). Then

Je=clg,n) >0 Yge WP Vt>0: |Dw(t)gl,<c(l+t) "2 =D

Remarks: N, = n(1 —2/q) is possible if g € {2, 00}.
Since
Np-p>n(l=2/q)p=n(2—p)

191N,
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we have
Whep —y 12

and hence
Dw(-)g € C°([0,00), L?).

If (gm)m C Cg° converges to g in WP then (Dw(t)gy)m converges in L? to Dw(t)g.
Several sharper results for solutions to linear wave equations are contained in Section
11.5 and in the paper of W. v. Wahl [187] respectively. Another method of proving
LP—L9-decay estimates (at least for ¢ < 0c0) is to use the Fourier representation of the
solution (Jean-Baptiste-Joseph Fourier, 21.3.1768 — 16.5.1830). This has been carried
out by H. Pecher in [138] and the result is essentially expressed in Lemma 11.16 in
Section 11.7.



3 Linear symmetric hyperbolic systems

Let u = u(t,x) = (uyg,...,uyn)(t,z), t > 0,2 € R", N € N, and let the formal linear
differential operator L be defined by

Lu = A°(t,2)0u + Y A(t,x)0;u+ B(t,z)u. (3.1)
j=1
Here A%, A',... A" and B are complex N x N-matrices depending on ¢ and z. A7,
for 0 < j < n, is assumed to be hermitian and A° is assumed to be positive definite,
uniformly with respect to ¢ and to « (Charles Hermite, 24.12.1822 — 14.1.1901).
With these assumptions L is a symmetric hyperbolic differential operator and the (for-

mal) system of equations
Lu = f, (3.2)

u(t=0) =ug (3.3)

is a symmetric hyperbolic system with data
f=/ftx) and wug=ue(z).

Every scalar hyperbolic equation of second order can be transformed into a symmetric
hyperbolic system. Let
n n
Fu=">" a;(t,x)9;0;v + > _bi(t,x)9v + c(t, )0 + d(t,z)v,

ij=1 i=1
where all functions are real-valued and (a;;(t, ));; is a symmetric positive definite n x n-
matrix, uniformly with respect to ¢ and x. (We do not care about differentiability
questions for the moment.)
Let

U = O, .o Uy 2= OV, Upr1 = OpU, Upyo i= V.

Then we obtain the following system of differential equations for the N := n+2 functions

ULy ooy Uy
iaij(t, x)Opu; — i a;;(t,x)0jun1 =0, 1=1,...,n, (3.4)
=1 i=1

Oty — Xn: a;;(t, x)0ju; — Zb tyax)u; — c(t, ) upyr — d(t, ) upy2 = 0, (3.5)
ij=1
Oypra — Upsy = 0. (3.6)

(3.4) — (3.6) are equivalent to a symmetric hyperbolic system
Lu=0
© Springer International Publishing Switzerland 2015 21
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of the type (3.1) with

ayjp - Aip 0 0 0 te 0 0 0
A= | q, 4w 00|, B=| 0 . 0 0 0
0 0 10 —by b, —c —d
0 0 01 0 0 -1 0
0 s 0 —(11]' 0
A= 0 0 —Qpj 0 y  J = 17 y 1
—Q1j 0 0
0 0 0 0

We shall prove in this section an existence theorem for the system (3.2), (3.3). This
will be done first for analytic data, then an approximation will be carried out. For this

purpose a priori (energy) estimates are required.

3.1 Energy estimates

We assume
AP A AT e CF, B e CY,

where CF denotes the space of k-times continuously differentiable functions with bounded
derivatives up to order k, k € INy U {o0}.

Let
ap = min A%t,x)v-v >0,
v,t,z;|v|=1
a; = max |A(t,x)v-v] >0,
vtmgifol=1
Qg
= . 3.7
P = hay (3.7)

Let K* = K*(to) be the truncated cone

K :={(t,z) |z € K;,0 <t <t} (3.8)
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where T
K, = B(O, 0_5> CR', 0<s<T,
p
and tg, Ty are arbitrary but fixed, satisfying
0 <ty < Tp.

The boundary 0K* of K* consists of three parts:
bottom: {0} x Ky; top: {to} X K;,; lateral surface: M; see Figure 3.1.

To

M

/

To/p

Figure 3.1: Characteristic cone

The cone K”, or more precisely, p has been chosen in a way such that for integrals of

the type:
Lu-u
Kr
the terms
ZZ

arising through partial integration, have an appropriate sign (cf. (3.11) below). In this
situation M is called space-like for L.
We introduce the following notation:

1/2

lu(t)|x, = /Ao(t,.r)u(t, @) - ult, ¥)dz

With the assumptions made for A° we have
Jag >0 V€ [0,To] ¢ aollu(®)lZzk,) < [ult)lF, < apllul)lizge,-

(We write u(t) short for u(t,-) in most places.) The first basic energy estimate is given

in the next theorem.
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Theorem 3.1 Let K? = K*(to) and let u € C'(K?(Ty)) be a solution to
Lu= | € CORY(Ty),

u(t =0) = uy € C°(Ky).

Then
Je = c(||(A°, BA%, 4 AL, ... 0, A", B)lcoxeqmy) >0Vt € [0,Ty) :
To
[u(®)li, < efluolic, + ([ 1£) i dr) /2o
0
PROOF:

Re Lu-u=TRe(A°u-u + > A'0ju-u+ Bu-u)=Re f - u.
j=1

This implies

hE

1 .
) (0;A )u - u
J

1 1 12 .
Re{Q@t(AOu cu) — 2(8tA0)u U+ ) > 0;(Au-u) —
j=1

1
+ Bu-u}=Ref-u

or
Ay -y
Alu - u n _
D’ =Re{0,A° +> 0,47 —2B}u-u+2Re f-u.
: j=1
AMu - u
Let .
H = 0,A°+> 0;A) —2B.
j=1
Then we obtain by integration over K7,
/ (A% u+ Y vAu-u) = /(Re Hu-u+2Re f-u), (3.9)
K P J=1 Ke
where
(v, v1, V9, .. ) =1V

denotes the exterior normal vector on 0K°”.
We have

v = (—=1,0,0,...,0) on {0} x Ko,
v = (-‘rl,O.‘O, .. 0) on {to} X th (0 <ty < To)
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The lateral surface M of K? can be parametrized in the following way:
M={(t,z) | t=n(z):=To—plz| z € Ky 0<t <t}

Then the normal vector v is given by

1 1 px
v= (177v7) = (17 )
1+ V1tp? |zl
Thus, (3.9) turns into
/ A(to, z)ulto, ) - u(to, v)dx — /AO(O7 x)ug(x) - ug(z)dz (3.10)
Ky, Ko
1 " .
+\/1+p2 /(AUU'U*;(GJ"}/)A]U'U) = /(Re Hu-u+2Re f-u).
M J Kr
By the definition of v and p (see (3.7)) we obtain
> (0MAu-u] < Y |9y|aiu-u < |Vynau-u (3.11)
i i=1

= qou-u< A% - u.

Hence we see that the integrand in [ --- is pointwise nonnegative.
M

Using (3.11) we obtain from (3.10)

A

to to
ulto)li, < ol + [ [ 1Hu-wl(r)dzdr+2 [ [(flul)(r,2)dwdr
0 K, 0 K,

IN

to to
Juoli, + ¢ [l dr+e [ 170, ulr) xdr.
0 0

where
c=c([(A°0,A° 0%, 0, A", B) || corcormy)) -

The assertion of Theorem 3.1 now follows from an application of Gronwall’s inequality,
Lemma 4.1.

Q.E.D.

We shall now prove a corollary with the corresponding estimates for higher derivatives.
Let

Ju(t)

1/2
s, Kt +— <Z |V"‘u(t)|§(t> , SE IN().

laf<s
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Corollary 3.2 Let s € N, A% Al ... A" B € C; and let u € C*T(K*(Ty)) be a solu-
tion to

Lu= f e C*(K"(Ty)),
u(t = 0) = ug € C*(Ky).

Then
Je= C(H(A07A17 o A" B)losemy) > 0 VE€ [0, To) :

To
u(t)]sre, < e {]uols o + (/ ()2, dr)' /2 et
0
ProOF: Differentiating the equation for u:

A9+ > Adju+ Bu = f, (3.12)

j=1

with respect to xx, k= 1,...,n, we obtain

Aoataku + 2 Ajajaku + Boyu

j=1
+ (A" + D (0 ANu + (B B)u = f, k=1,...,n
j=1
Using (3.12) we may express J,u in terms of dyu, ..., d,u and u. So we get a differential

equation for V := (u, dyu, ..., d,u) of the following type:

At 2)0V + 3" Al(t,2)0,V + BV = Fi, (3.13)
j=1
with initial value
V(t = 0) = (UO, Bluo, ey Bnuo), (314)
where
A° 0 AJ 0
A(l) = ) ‘:jl :: b j = ]'7 7n7
0 A° 0 A

B is a matrix composed of B, 0, A%, 0,A7 and 0, B, j, k = 1, ...,n the detailed structure

of which does not matter, and

]:1:]:1(f>81f7"'78nf)'
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An application of Theorem 3.1 to (3.13), (3.14) yields the assertion of Corollary 3.2 for

s = 1. Analogously one obtains the assertion for s > 1.

Q.E.D.

Remark: Using the differential equation (3.12) we also obtain estimates for
|0Fu(t)|k,, 1 <k <s.

We notice that Theorem 3.1 implies properties of propagation of signals. Let f = 0.
Then we may conclude the finite propagation speed. Theorem 3.1 says that the solution
u at time t only depends on values of the initial datum ug in Ky. In particular, if wug
has compact support then u(t) has compact support (with respect to ) for each t > 0
(“finite propagation speed”); see Figure 3.2.

u(to,z) =0 e u(to, ) =

slope p

sSupp o

Figure 3.2: Finite propagation speed

This phenomenon is typical for hyperbolic problems. In contrast to this we see that the

parabolic initial value problem

w; — Aw

w(t=0) = wy,

I
o

for a real-valued function w = w(t, z),t > 0,z € R", is solved for wy € C§° (for
simplicity) by
|2
w(t,x) = (471'26)7”/2/ S wo(y)dy.
Rn

This shows that we have infinite propagation speed (cf. Section 11.2).
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3.2 A global existence theorem

Let L be given as in the introduction to this chapter.

Theorem 3.3 Let s € N, s > n/2+ 1, let A°, A',... A", B € C;™' [C5°] and let ug €
W2 [NC®]. Then there exists a unique solution u € C*(]0,00) x R™) [C*°(]0, o) x R™)]
to the initial value problem Lu = 0,u(t = 0) = uo.
Moreover

u € C'O([O7 00), W5’2) N C*([0, o), Ws’l’z)‘

PRrROOF: The uniqueness immediately follows from the energy estimate in Theorem 3.1
applied to the difference of two solutions.

The existence will be proved in four steps. For this purpose let p be defined by (3.7), and
let 0 < B < p. If M? denotes the lateral surface of K#, K? defined via (3.8), then M?
is space-like for all L with coefficients A%, A!, ... A" which are close to A%, A, ... A"
respectively (in K7).

Step 1: We assume that the coefficients of L, denoted by A°, A ... A" B, are analytic.
Correspondingly we shall write L instead of L. For a fixed but arbitrary T, > 0 we
approximate 1 in Ky by a sequence of polynomials (uf), in W*2(Ky). M? is assumed
to be space-like for L. By the theorem of Cauchy-Kowalevsky (Theorem B.1 in Appendix
B) there is a local solution u™ to the initial value problem Lu™ = 0, ™ (t = 0) = u§" in

a truncated cone K (9) with
K(6) = K n{(t,z)|t <&}

for some § with 0 < § < Ty. (Sophie von Kowalevsky, 15.1.1850 — 10.2.1891; Augustin
Louis Cauchy, 21.8.1789 — 23.5.1857).
We have

§ = 0((A°AY,... A", B) ks, To/B)
= 5(("407*’417'"7Aan)/K57T0/5)

if A% A ... A" B are approximations of A%, A, ... A" B respectively.
Using Corollary 3.2 we obtain for k,m € IN:
[ (2) = u™ () w2y < cllug — ug lweeexo),

where ¢ only depends on Ty. Hence (u™(t)),, converges in W*2(K,),0 <t < 4. Let u(t)
be the limit in W*2(K,).

The convergence of (u™(t)),, is uniform with respect to t. This implies

u e C°[0, 8], WH2(Kj))
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and
u € C°([0,0] x Kjs)

because s > n/2.
The following identity holds in W*=12(Kj):

¢
u™(t) = ug' + /@um(r)dr, 0<t<o. (3.15)
0

Since

dum(t) = Az (— ; Aoum(t) — Bu™(t))

we see that (Qu™(1)),, converges to some v(t) € W 12(Kj), again uniformly with

respect to t, i.e.
v € C°([0, 6], W*12(Ky)).

Using this information in (3.15) we get

which implies

u € C°([0,0], W*(Ks)) N C*([0, 8], W 1*(K5)),

in particular

u € C*([0,0] x Ks)

and u satisfies the system of differential equations Lu = 0 with initial value u(t = 0) = ug
(in [0, 4] x Kj). Considering ¢’ with 0 < ¢’ < 0 instead of 0 we finally obtain

Lu=0,u(t=0)=uy in K(5).
Now we may consider a new initial value problem in ¢ = ¢ and we obtain an extension
of winto K(0 + ¢;) where

5= 61((A° AL A" B) ks, To/B) = 0.

(0 = &; does not depend on the specific polynomial approximation, cf. Appendix B.)
Thus we obtain a solution in K# successively.

Step 2: Let A%, A', ..., A", B € C;™ as in the assumption above, but let uy € W12,
We approximate A% Al,... A" B by analytic functions (A)x, (ADk, -, (AN, (Br)k
respectively, uniformly with respect to all the derivatives up to order s 4+ 1 in K? and

such that M? is space-like for each operator Ly, where

Ly == A, + Y AL; + By.

=1
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The problem
Liu® =0, u*(t =0) = u,

can be solved according to Step 1. We have
ub € C°([0, T], W*T2(K 7)) n C([0, T), W*2(K7)),

where
0<T<ty<Ty.

Corollary 3.2 implies
[ (®)llw=+r2(c) < clltollsrrz, 0 <t < Ty, (3.16)

where ¢ depends only on Tj.

k —uf satisfies

A difference u
Lk(uk —w) = — Ly’ = Ljuj — L = (L; — L)’ =: fris
(u* —u?)(t =0) = 0.

Applying again Corollary 3.2 we obtain

A

t
() = W (B) o,y < C/IIfkj(r)llivs.z<K,.>dT
0

IN

t
o A TG I
0

where ¢ depends only on Ty and 0 < ei; — 0 as k,j — oo.
Observing (3.16) we conclude that (u*(t)), converges in W*2(K,) to some u(t) € W*2(K,).

With the same arguments as in Step 1 we obtain
Lu=0, u(t=0)=uy in K7

u € CU0, T], WS (K1) N CH[0, T], W H4(K7p)), 0<T <t. (3.17)

Moreover
lu(®)lws2xy < clluollwszxy < clluollse, 0 <t <t (3.18)

where ¢ depends only on Tj.

Step 3: Let A%, A', ..., A" B € C;™' and ug € W*2. There is a sequence (uf), C W12
approximating ug in W52

According to Step 2 there are solutions u* of Lu* = 0,u*(t = 0) = uk, k € N, in K” and
they satisfy (cf. (3.18))

sup [[u®(t) — @ () [weagy < cllug — |l
0<t<to
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This implies the existence of a solution u satisfying (3.17) in K?.

[Under the additional assumption A% A',... A" B € C;°,uy € C™, we obtain u €
C>=(K?) (consider e.g. W*?(K7r),s € N arbitrary).]

Step 4: The coefficients are assumed to be uniformly bounded. Therefore, for every
truncated cone which is congruent to K? and which is obtained by translation at any
place in [0,00) x R™ we can find a local solution. Using the uniqueness properties for

overlapping cones we can construct this way a global solution
u € CY([0,00) x R") [resp. u € C*°([0,00) x R™)].
It remains to prove
u € C°([0, 00), W*?) N C*([0, oc), W512),

This easily follows by a triangle inequality, e.g. let € > 0,t1,ts € [0,00) be given, t;,ts <
T for some T > 0. Then it follows for R > 0:

lu(ty) —u(t2)llse < [lulty) — w(ta)llws2mo.r) + lulti) — ulta) lws2@\5Bo.7)
= [1 + IQ.

We have
[u(t)) lws2mBo.8) < clludllws2@mso.ry, §=1,2 (3.19)

where ¢ depends only on 7" and
Ry = Rl(ﬁR) <R

with
Ry —00 as R — .

This is a consequence of Corollary 3.2. Now (3.19) implies that Io < ¢/2 if R > Ry(¢)
independent of ¢;,t,. If R is fixed then [; < £/2 for sufficiently small |t; — ¢5| according
to the local continuity properties of u we already know. This completes the proof of
Theorem 3.3.

Q.E.D.

3.3 Remarks on other methods

(References: F. John [71], Courant & Hilbert [23], K.O. Friedrichs [34, 35], T. Kato
79, 80, 81, 82, 83]).

The method used above is called the method of Schauder (Pawel Juliusz Schauder,
21.9.1899 — September 1943). (Cf. also [157].)
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1. A “weak” solution v € L2([0,T] x R®),T > 0 arbitrary but fixed, is easily ob-
tained with the Riesz representation theorem in a suitable Hilbert space (Friedrich Riesz,
22.1.1880 — 28.6.1956; David Hilbert, 23.1.1862 — 14.2.1943).

Without loss of generality we assume ug to be zero and we wish to solve the inhomoge-

neous system

Lu=f in Ry :=[0,T]xR"

Let
CY(Ry) == {ve CYRy) | o(T)=0,suppv(t) CCR", 0<t<T}

(CC denotes compactly supported in.)

We have

u € CYRy) isasolution of Lu = f&C%Ryp),u(t=0)=0 (3.20)

< You S él(RT) . <f, U>L2(RT) = <u, L’U>L2(RT).

Here L denotes the formal adjoint operator to L which appears through partial integra-

tion. An inner product in C'(Ry) is defined by
(v, why = <Ev,iw)L2(RT).
The positive definiteness is a consequence of
Je=¢(T) >0 YveCYRyp) : lvllz2(rpy < € ||[~/U||L2(R,T)- (3.21)

(3.21) follows from Theorem 3.1 applied to L instead of L.
Let H denote the completion of C'(Ry) with respect to the norm induced by (-,-)3. The
relation (3.21) implies that F' defined by

F:H—C

v Fo = <'U7 f)LQ(RT)’

is a continuous, linear function and thus we get by the Riesz representation theorem that

there exists a u; € ‘H with the property

YvoeH: <’U7 f>L2(RT) = <U,u1>7.l = <LU, i/u1>L2(RT)
= (Lv,u)2(py), where wu := Lu,.

Looking at (3.20) we call u a weak solution to Lu = f,u(t =0) = 0.

The difficulty now consists in proving regularity of u (for regular f), catchword “weak”
= “strong”, see the papers of K.O. Friedrichs, [34, 35] or the related papers of T. Kasuga
[77] and Meyers & Serrin [125].
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2. For f with compact support in « (for each t) we also mention the difference method.
There, derivatives are replaced by quotients of differences, then discrete “energy esti-
mates” are proved and the limit “mesh width — 0” is studied (see for example [71]).

3. Another important approach is that of T. Kato using the theory of semigroups and

evolution operators respectively, see [79, 80, 81, 82, 83]. Formally we have

and

— f A(r)dr
0

u(t) =e U

represents the solution of Lu = 0, u(t = 0) = up. In order to make this precise in Banach
spaces or Hilbert spaces, an enormous technical set up is required. On the other hand
it provides a general abstract theory and — with respect to our application — detailed
results on the existence and the regularity of the solution u under weaker assumptions on
the coefficients. Of course this would also have consequences for corresponding existence
theorems to nonlinear hyperbolic systems, cf. the remarks at the end of Chapter 5.

Moreover, this approach works for parabolic and other problems, cf. Appendix C.



4 Some inequalities

We start with Gronwall’s inequality (Thomas Hakon Gronwall (orig.: Hakon Tomi Gron-
wall), 16.1.1877 — 9.5.1932):

Lemma 4.1 Let a > 0, p,h € C°([0,a]), h >0, and g : [0,a] — R increasing.
If

Ve e [0,a]:  o(t) <g(t)+ / h(r)o(r)dr

then

Vit e[0,a]: o(t) < g(t) exp{'/t- h(r)dr}.
0
PROOF: Let ¢ > 0 and 1. given by
P(t) = exp{/t h(r)dr} (/tg’(r) GXP{*/Th(S)dS}dT+g(O) +5) .
0 0 0
Then 1. solves Y. = ¢’ + hp. (a.e.), 1-(0) = g(0) + £, and hence
bult) = +9(0)+ / B ) (r)dr.
0

We have

©(0) < g(0) < g(0) + & = 1(0).
We prove that p(t) < 1.(t) for all ¢ € [0, a]. Namely, let ¢y € (0, a] be the first point with
©(to) = ¥:(to), in particular p(t) < ¥.(t) for 0 < t < .

Then
Plts) < glto) + [ h(r)e(r)dr < =+ g(to) + [ hr)e(r)dr

to

< etglto) + [ h(r)Y(r)dr = vlto),

which is a contradiction.

Hence the inequalities

¢ <1
and
t
0.(t) < exp{ [ h(r)dr}(g() + ¢)
0
© Springer International Publishing Switzerland 2015 34
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complete the proof by letting ¢ tend to zero.
Q.E.D.

The proofs of the inequalities for composite functions below require some facts about
the Friedrichs mollifiers which we present first (see [1]) (Kurt Otto Friedrichs, 28.9.1901
- 31.12.1982).

Let j : R"» — IR be given by

jla) =

" e V=) 2| < 1,
0 it |z > 1,

where k is chosen in a way that

/j(x)dx =1

RL
holds.
For a given ¢ > 0 the Friedrichs mollifier j. is defined by

Je(x) == e "j(x/e), zeR’
and J. denotes the corresponding convolution operator

(Jau)(w) = [ Jele = y)u(y)dy = (- < u)(@)
i

for u € Llloc(IRn)'
Remark: Instead of the special j from above one may take any j € C§° with j(z) =0
if || > 1, j > 0and [ j(z)dz = 1.

R?

Lemma 4.2 Let 1 < p < oo and let u € LP. Then
(7) Jou € C™,

Jeullp < [lullp,
(7it) lgljl}]l [|Jeuw — ul|, =0,
(iv) VYm e Ny Vg >p: Joue W,

PRroor: Since j. € C§° we have

Vo (a)(a) = [ V3jile = yuly)dy (4.)

R?

for every multi-index a. Thus (i) is obvious.
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Let 1 < p < 00,9 := p/(p —1). Then by Hélder’s inequality (Ludwig Otto Hélder,
22.12.1859 — 29.8.1937)

@) = | [ il =yuly)dy)
i
< { [ il =gy { [ e = pluly)Payy
= {[ o = y)luty) Payy .
2
Hence
|y < [ [ e = p)luty)Pdyds

R Re

/W@W@/ﬁufmm=umg

R? R

This proves (ii) for 1 < p < oo; the case p = 1 follows right from the definition of J.u.
Let n > 0 be given. Since Cg° is dense in L?, there is a ¢ € C§° with

[l = ¢ll, <n/3 (4.2)

which implies
[ Jew — Tl < /3 (4.3)

by (ii).

[ Jep(x) = ()]

| [ 3w =)o) — ola))dy]
R

< sup |p(y) — @(z)]

|ly—z|<e

Since ¢ is uniformly continuous, the last term tends to zero as € | 0. Hence we have
[Je = ollpy <n/3 (4.4)
for sufficiently small ¢, and for these ¢ we obtain from (4.2) — (4.4)
[ Jeu = ull, <.

This proves (iii).

(iv) follows from (4.1) and the convolution inequality

Ve * ullg < Vel llullp (4.5)
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where r € [1,00] is given by

(see [46, p. 117]).
Q.E.D.

A possible rate of convergence in (iii) from Lemma 4.2 is obtained by making a stronger
assumption on u.

Lemma 4.3
Veo >0 3c > 0 Ve € (0,20) Yu € W21 || Jou — ul|a < cellull12.

PROOF: First let ¢ € C§°. Then

(@) = Jep(@)| = | [ e = p)(e(@) — o)y

1
< [ita—y) [ Vel + sty = 2))dsle — yldy
B 0
1
< 5//15 Y)|Vo|(x + sy — z))dyds
0 i
1
= 5//] 2)|Vo|(x — z)dzds
0 R
1
= & [(IVel) w)ds
0
This implies
1
oo = ¢l < 52/0 15| Vel |13 ds < €*[[Veoll3, (4.6)

where we have used Lemma 4.2, (ii).
Now let u € W2, Without loss of generality let ||ul|;2 = 1. For a given £ > 0 there is a
¢ € C with
lu—¢lh2 <e,
hence

HSDHLQ <l+e.
Thus, we obtain from (4.6), using Lemma 4.2, (ii), that

[Jew—ully < [[Je(u =)z + lu—@ll2 + [[Jop — @l < e(3+¢) < ce
with  c¢:= 3+ ¢o.
Q.E.D.

In the sequel we shall prove some inequalities (of Sobolev type) for composite functions.
First we present an interpolation inequality due to E. Gagliardo and L. Nirenberg. This
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inequality holds under more general assumptions, namely in domains  # R”, see [36,
136] or the book of A. Friedman [33] to which we also refer for a proof for bounded
domains.

Notation: ||Viw]|, := (IZ [Vew||T)7, i € Ny, 1 <7 < oo (7= o0 as usual).
Theorem 4.4 Let 1 <r, p < oo, m € N. Then there is a constant ¢ > 0 such that for
allwe W™P N L" the inequality

IV wllg < el V™ w]l/™|awlf; /™ (4.7)
holds, where j € {0,1,...,m} and
1 i1 i1
=7 hra-7y
qg mp m’r
The theorem will be proved in detail in a series of estimates first for the mollified function
Jow. This is done succesively for the case n = 1 and m = 2, then for m = 2 and n

arbitrary and finally for n and m arbitrary by induction on m. The last step will be to

let € tend to zero in the estimate for J.w.

Case A: Let € > 0 be fixed and let v := J.w. We shall prove (4.7) for v.

Lemma 4.5 Let —0o < a <b< oo, f € C*([a,b]), 1 <p, 7 <o00,2/q=1/r+1/p, and
q # oo. Then

£ N oy < 186 = @)y + (b= @)L )

PRrooF:
(i) Assume p,r # oco.

By the mean value theorem we have

e INE @ v b FOIS,” (1F6- ] + Ife+ o)l

This implies for « € [a,b] that

@<, (il +1ia +¢}+/\f” )t

Integration over [0, b;a]Q with respect to 7 and ¢ yields

2 b _a2 b
oo i+ O [ipwlar

o 1@l

IN

(b— a)2+p;1
9

IN

r—1
[fllzr(apy (b —a) » + £ 1 £ ((a.b)) -
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Hence

[/ (@)]7 < 207 H{99(b — a) "+ 2 + (0= )" " oy}

and because of 1 —q —gq/r = —(14+q—q/p) :

1 ey < 18{(b— a’)_l_q+q/p“f“qT((a,b)) +(b— G)Hq_wp“f”||%p((a,b))}~

(ii) p = o0 or r = oo. The proof is analogous to the above.

Q.E.D.

Lemma 4.6 Let1 <p,r < oo, f € C](R)NL"(R), f" € L’(R), 2/q = 1/p+1/r. Then
we have f' € LY(IR) and there is a constant ¢ = ¢(q) > 0 such that

17 q < el 121172

ProOF: Without loss of generality we assume || f”||, = 1. The proof shall be divided into

two cases, ¢ = oo and g # 0.

(1) g # oo.

Lemma 4.5 implies for —co < a < b < 00 :

1 T aapy < 18{T1(a,b) + To(a,b)} (4.8)
where
Ti(a,b) = (b—a)Hq_q/p||f”||%p((a,b))v
Lab) = (b=a) o g

Ty = Ty would imply T} + T = 2+/T1v/Ty and the assertion would follow immediately.
Now, for any given interval [—L, L], L > 0, we can find a covering such that on each

subinterval [a;_1, a;] the inequality
Ti(ai-1,a;) > To(ai-1, a;)

holds. This is done as follows. Let ap := — L, a} := — L + sz7 k € IN arbitrary but
fixed.
If

Ti(ag, ay) > Ty(ag, ay)

then set
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Then (4.8) implies

9N Ha—a/p
) P TR (49)

17 oy < 2-28°

If
jjl(a()7 a'l) < TZ(a07 a’ll)

then we choose a; > a} sufficiently large such that
Tl(a07 al) = TQ(a07 a1)~

This implies
2 2
1 1o amanyy < 2 18Nt gy 1N (4.10)
Proceeding in the same way for i = 2,...,k, k' < k, with a;_; replacing ay and a :=

a;—1 + I replacing ay, as long as a;_; < L holds, we obtain from (4.9), (4.10)

2 2
1 1 gy < 2 18‘12\|f”||%4<a“% O ey TR (4.11)

where a;r > L and

9N Ha—a/p ¥ .
R::2-18q( k) lef 1% (51 ,00))

. . K 11119/2
) Claim: S5 17712 0

2
18 s ey < N8/ F 11272
PROOF:

(a) 7 # 00,p # oo
The relation
2p/q=1+p/r>1

implies
q/2 q/2
Z [ 1~ .

<{Z / " @) Pday @ {Z / (@)l dar /)

7041 70«;1

< IF 182112,
(8) r =00 or p=o0. Analogously.

(Q.E.D.)

(ii) Claim: R — 0 as k — oo.
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PROOF: Let ¢y := 2-189(2L)'*9-4/P,

(@) p=oc:
k!
R = cok™ D3 oy ay < Coll f NIRRT
i=1
—0 as k — oo.
(B) p# oo
(a) plg>1:

Holder’s inequality yields

R

IN

cok:’(”q’q/p)||f”||g (Kl

IN

cok™*|L/"II3

— 0 as k — oo.

() p/a<l:
Since
[ 1wl <=1,
we get

([ 1rwpaer < [P <

which implies
R< Cok—(1+q—q/p)

—0 as k — oo.

(Q.E.D.)
(4.11), (i) and (ii) imply

o rmyy < 2 187 F7 121112,

which yields the assertion of Lemma 4.6 (for ¢ # oo) by letting L tend to infinity.

(2)g=o00 (ie. p=r=o00).
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Applying Lemma 4.5 with r = 0o, p/ # 00, —00 < a < b < 00, we obtain

1Ny < 187 L= @) T
+(b— a) e =a/P) Hf”%loo((a,b))}v
where
q =2 > 1.
This implies
1 e oy < 18{0 = a) "V £ )

(b = a)" VI £ a9 }-

In the limit ¢ — oo, p’ = ¢'/2 — oo we get

1/ oo ayy < 18{(b = @) [l f"ll oo (ayy + (0 — @) | fll oo () -
Since
VeeR Ja,beR:ae (a,b), b—a=(||fle/lf]le)?

(without loss of generality: ||f”||o # 0)
we obtain

1 llse < 36ILFI2 7132,

which completes the proof of Lemma 4.6.

Q.E.D.
Now we shall prove Theorem 4.4 for v = J.w by induction on m. Without loss of
generality we assume m > 2 and j € {1,...,m — 1}.

(1) Basis of the induction (m = 2):

(i) rp# oo
IVl —Z / /|8v ) d, di,
Rn 1R
with
i’i = (I17...,$i_1,$i+1...,In).

This implies by Lemma 4.6 (with constants ¢, ¢; > 0)

[Voli < / CZ{/‘az )[Pdz; Yo/ @) {/|v e}/ 2D,

Rn 1

CZ 1Ol llv 122
i=1

IN

IN

c| V2ol o]l 2.
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(ii)r=o00,p#o0 or r#oo, p=0c0:
Analogously to (i), observe ¢ = 2p and q = 2r respectively.

(ili) r=p=o00: Analogously.

(2) Induction step (m — m+1) :
(i) Claim:
V™0l < el 7o/ [l =/,

where
. m 1 1 1

g m+lp m4+1r
PROOF: We notice that either

holds.
Let 7’ be given by

The induction hypothesis yields
m— m m—1)/m m
IV ol < el V™ olly ol

where
1 m—11 11

! m p mr

43

(4.12)

(4.13)

(4.14)

Notice that we may apply the induction hypothesis because ¢ = p’ by the definition of

q" and p', and because v € W™ The latter follows from (4.13) which yields

(@) p<gd (£ <r) or (B) r<r" <d(<p).

Since
Vk € Ny Vr>min(p,r): veWhr

this implies
vewmd

(by Lemma 4.2, (iv)).

Remark: This is the part of the proof in which we cannot argue directly with w instead

of v = Jow.

Applying part (1) (“case m =2") to V*w, || =m — 1, and using (4.14) yields

IV™olly < e V| Y2Vt

IN

IN

m m m—1)/(2m m
2 P M T ERs
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Since ¢’ = p’ we arrive at
970l < el ol 2ol e

which gives the assertion (4.12).
(Q.E.D.)
(ii) Claim:
Vel < v ol o -3/
for any j € {1,...,m},
Lo a- j ) 1
q m-+1p m-+1"r
PROOF: The induction hypothesis yields

V70|, < e ™o |3/™ o]/,

where ) - -
q:épﬁ(lf{?’l)r. (4.15)
The inequality (4.12) with ¢’ = p’ yields
IVoully S cl[9m ol sl i-sim
= e e,
where ) . L
" (4.16)

1% :m+1p+m+1r‘
The relations (4.15), (4.16) imply

1 j m 1 1 1 7.1
= )+(1=")
q m m+1p m+1lr m’r

j 1 ( J )1
T om+1lp m+1"r

as desired in Theorem 4.4. This completes the induction step and the proof of Theorem
4.4 for v = Jow.

(Q.E.D.)

In order to complete the proof of Theorem 4.4 we finally have to consider
Case B: Assumptions as in Theorem 4.4.

For ¢ > 0 let w, := J.w. According to the previous discussion in case A we know

”vjwqu <c

Vmwslli/m [|we |‘11n7j/m7
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where ¢ is independent of e. Without loss of generality: m > 2,5 € {1,...,m — 1}.
Notice: g =00 <= p=r=o00.

(1) pr#oo:
By Lemma 4.2, (iii) we have

w, —»w in L"
V™w, - V™w in LP
and hence {V7w,}. converges in L?, necessarily
Viw, - Viw in L9

Letting ¢ | 0 we obtain the desired inequality (4.7) for w.
(2) p#oo,r=00 or p=o0, r#00:

Since
lwelloo < wllos, 1V Weloo < [V w]|o0 (4.17)

and
V"™w, = V™w in LP (resp.w. — w in L")

we may argue in the same manner as in (1); the inequality still holds in the limit as
el 0.
(3) g=p=r=o0:

We have by (4.17)
IV loo < el V™ w20 o]l 357/

This means that (V"wel)gl:i7 || = j, is a bounded sequence in L*. Since balls in L™
are weak® sequentially compact (see e.g. [6, p. 140]), there is a subsequence (V*w.)
and a w € L™ such that

Wey — W weak-* in L™ as [ — oo.

Moreover

0loe < lim inf ||V wg oo < el V" w][22" w57,

(see e.g. [6, p. 139] for the first inequality.) It remains to prove
W= V%w
which is an easy consequence of the following identities:

Vo e C5° : /V”wcp = (fl)j/wvacp (4.18)
Rn Rn
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= (71)]. lﬁj&/wszvll@ = l]gg/vawgﬁﬁ
R

= /u?ap.
Rn

(The second identity holds because ¢ € C§° and we; — w in L%(supp ).) This completes
the proof of the Gagliardo—Nirenberg inequality, Theorem 4.4.

Q.E.D.
Remark: The proof of Theorem 4.4 shows that the assumption “w € W™P” can be
replaced by “w € LP and V™w € LP”.

The following first inequality on composite functions is given for smooth functions.

Lemma 4.7 Let r,m,n € N,1 < p < o0,h € C"(R™), B := ||hl| o 50,09
Then there is a constant ¢ = c(r,m,n,p) > 0 such that for all w = (wy,...,wy) €
WrP(IR") N C™(IRY) with |w]|« < 1 the inequality

[V"h(w)|lp < eB|[Vwl|, (4.19)
holds.

Remark: This cannot be extended to the case r = 0 as the example h = 1 shows.

ProOF: Without loss of generality we assume m = 1. Let 8 € INj}, |3| = r. Then

nw) =3 O LD ST (D SR

k=1 a(k,r) =1 ~yeNg,|y|=i

T
where 3 means summation over all & € INj with || = k and Y ia; = 1.
a(k,r) =1

{Example: r =4, = (4,0,...,0):

O*h(w) PBh(w)
ow*

ow3
0?h(w) Oh(w)
+ o2 {3(w)? + 4 (01w)Fw} + P

The only coefficients C, which are different from zero are the following:

a; (h(w)) (O1w)* + 6 (O1w)*dw

otw

Cua000 = 1, C52,100 = 6, Ca0,2,0,0 = 3,
Cono10 = 4, Cropon = 1.}

Abbreviation: (Viw)® := ¥ (V7w)®

YENG, |y|=i
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Using Holder’s inequality we obtain

IVh)l, < eBY S I TL(Viwy ], (4.20)

k=1 a(k,r) i=1

eBY> 3 TLIViw)"

IN

pr

eBY S 11 IVl

k=1 a(k,r) i=1

IN

The inequality of Gagliardo—Nirenberg (4.7) yields

IV 5wl15 < e[ Vrwly” w20 < e[ Vully (4.21)

((r,p, m, 4, q) in Theorem 4.4 corresponds to (co,p,r,4,pr/i) here.) This implies

IVPh@)ll, < eB Y 3 T IV wly < B[V,

k=1 a(k,r)i=1

Q.E.D.

Remark: If the assumption “|w|ls < 17 is replaced by “||w|s < T for some I" > 17
and “B” is replaced by “Br := ||h]lo, ()~ then the corresponding estimate (4.19)
follows with “c B” replaced by “c BrI'™~!” which can easily be seen from the inequality
(4.21).

The C"-assumption on w shall be replaced by an L>-assumption, which we show to be
true if 1 < p < oo.

Lemma 4.8 Let r,m,n € N, 1 <p < oo, h € C"(R™), B := ||hll¢r g1y Then there
is a constant ¢ = c(r,m,n,p) > 0 such that for all w = (wy,...,w,) € WHP(R") N
L°(R") with ||w]|e < 1 the inequality

IV h(w)lp < e B[V wll,

holds.

PROOF: Let wy, := Jypw. Then wy, € WP(IR") N C*°(IR") and
wy > w in WP(RY) as k— oo,

lwillo < JJw|lo <1 forall k€N
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Without loss of generality we may assume
wy = W a.e.
(Take a suitable subsequence and denote it by wy again.) Lemma 4.7 yields
IV h(wi)llp < ¢ B[V wgllp.

Thus, (V"h(wy)) is a uniformly bounded sequence in LP(IR™).
(1) l<p<oc:

LP(IR™) is reflexive. This implies
Ve Ng, B =r 3geL'(R") : VPh(wy) =g

(weak convergence in LP(IR") for a subsequence which is denoted with the same symbol.)
Analogously to (4.18) it follows that

VPh(w) — g = VPh(w)
whence

IV h(w)ll,

IN

liminf [[VZh(wy)ll, < ¢ B lim [V,

¢ B ||V'wl|,.

@) p=oo
The result follows with the arguments of the proof of Theorem 4.4, case B, (2) (¢ =p =

r = oo there) using the weak* sequential compactness of balls in L>(IR").

Q.E.D.

The last two inequalities and the following inequalities in Lemma 4.9 often are quoted

as “Moser inequalities” or also “Moser-type inequalities”.

Lemma 4.9 Let m € IN. Then there is a constant ¢ = c(m,n) > 0 such that for all
f,g € W™2NL*® and a € Ny, |a| < m, the following inequalities hold:

(1) IV (Fllz < el f el V™ gll2 + 1V Fll2llglloo)
(@) IV (fg) = Vol < clIVIlllV™ gl + V" fll2llglloo)-
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PRroOF: Part (i) follows from Lemma 4.8 with

W,y) = zy, w = (f/flloc: 9/ I9ll0)-

We shall give an alternative proof which can be carried over to part (ii) directly.
Proof of (i): Without loss of generality we assume « # 0.
First let F':= J.f, G := J.g. Then

IV*(FG)ll2 < ¢ 3 [[V'FV’Gy

B+y=a
< e Y IVIF) 2 VPG 2
B+y=a &l 18]
-7 I 1181 18]
< ¢ > |Flee [V FIS |Gl ™ V1G5,
B+y=a

where we have used the inequality of Gagliardo-Nirenberg, Theorem 4.4, (with

(r,m, j,p, q) from Theorem 4.4 replaced by (oo, ||, |v|(resp.|]), 2, 2”;‘ (resp. QI‘;“)) here).
Since 8| + |7y| = |@| we obtain

]
al

IV ED < 3 (I IV2IG]2) 5 (17 F ]l [ Glloo)

By=a
5 o
<oy ( 1l Vel + v Flel. )
Br=a |a o

where we used Young’s inequality ( William Henry Young, 20.10.1862 — 7.7.1942).
This implies
[VHFG) |2 < e Flloe IV Gll2 + (V" Fll2[|Gllo0)

which is the desired result for

F=JFf G=Jy.

Now, let € | 0 and the result follows for f,g. (Notice again that ||J. f]loo < ||f]l0)-
Proof of (ii): The proof is analogous to that of part (i) observing

IVH(FG) = FV°Gllo < Y. [VI(VIF)VIG
y+f=a—ailol=1

Q.E.D.

The inequalities given in the previous Lemmata are perfectly suitable for the proof of
Theorem 1.1 (the first global existence theorem for the wave equation) and for the proof
of the corresponding theorems for the evolution equations to be studied in Chapter 11.
For the proof of Theorem 1.2, which is an optimal theorem with respect to the relation
between the space dimension and the degree of vanishing of the nonlinearity near zero,
we have to exploit special invariance properties of the d’Alembert operator 0 = 92 — A.
This is reflected in the following Lemmata, which are also of interest in themselves.
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We consider the Minkowski space IR X IR™ with co-ordinates zq = t, 2 = (x1,...,x,) and
the metric
-1 0 0 0
0 1 0 0
7= (Nab)a,p=01,..n. = 0 0 0
0o 0 - 0 1

(Hermann Minkowski, 22.6.1864 — 12.1.1909).
The d’Alembert operator [ is given by

n
0n=0,:=-— Z nabaaab:ag—af—...—a,‘i
a,b=0
with 80 = —at.
This operator is invariant under the action of the generators of the (inhomogeneous)

Lorentz group which are given by
00,01y, 0n
and
Qup = 240y — 1p0,, a,b=0,1,...,n.
(Hendrik Antoon Lorentz, 18.7.1853 — 4.2.1928).

In particular we use

QO = %0, —x;0;, i,7=1,...,n,
L; = Qo = to;i+z0, 1=1,...,n.
Moreover, let
Lo := i NapTaOp = 10y + x101 + . .. + x,0,. (4.22)
a,b=0

The (inhomogeneous) Lorentz group consists of isometries of flat space-time. In R x R?
these are the four translations d,,a = 0, 1,2, 3, and the rotations in space-time Qg, 0 <
a < b < 3, which generate the ten-parameter Lorentz group.

Remark: We have called 0, a translation adopting the usual notation. Actually, 0; is

the infinitesimal generator of the group of translations {7} (h)}rer
(T3(h)f)(x) := f(x + he;),
where e; is the unit vector in the direction of the co-ordinate x;, (f taken in suitable

function spaces). In the same sense €, is called a rotation, e.g. for n = 2,Qy; is the

infinitesimal generator of the group of rotations {7 (h)}ner given by

1 0 0 .
(T (R)f)(t, ) == f 0 cosh sinh ( x )

0 —sinh cosh
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The Q;;,4,5 = 1,...,n, can be expressed in terms of angular co-ordinates only, hence
they represent tangential vectors on the unit sphere S"~* C IR*. We shall prove this for
n=3.

Let polar co-ordinates be given by

T = 1 cosp sinf,
To = rsing sind,
r3 = rcosb,
where
0<f<m and 0<p<m,
respectively
ro=lzf,
T2
¢ = arctan °,
Ty
Z3
0 = arccos

(on appropriate branches of arctan, arccos).

Lemma 4.10 Let n = 3. Then the operators €);

co-ordinates by

i1 <@ < j <3, are giwen in polar

Ql? = 8«;17
Q13 = —cosp0y+ cotlsinypd,,
3 = —sinpdy — cot O cosp O,

Moreover
0p = — sin p oz — cos v (3,

_ 0 _ 9
where 0, = 0> 0o = 59

PROOF: Expressing the z-derivatives in polar co-ordinates we have

or 00 Oy )
0; = (%JOT + 8%_80 + 8;5]-8“” ji=1,2,3,
with
or € j .
ax] - r I j - 172737
O —I3 p Ty dp

= -0
ox, 224123 Oxy 2P +23 Owz
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o0 XT3 1 T;T3 1 .
e = L= =12
; r \/r2 — 23 r3 sin
2 .
a0 \/7“2 —x3  —sinf
Oxs r2 ro
Hence we obtain
T vy 1 To
81 = 87" + 3 . 90— 9 2 a@a
r r3 sinf T+ T35
) Tol3 1 I
0y = or + 3 h+ 5 Oy,
r r3 sinf i+ 23
T3 sin 0
03 = 0r — Op,
r r
and finally
2 2
T x
ng = ( L 2 ) - 5
(2 ©r
at+a3 ot + a3
Lol Ty sin 0 Ty 2279 T3
Qg = Or — Op — T 3 0~ o 9 Yo
r r r r3sin 6 T+ 25
—x9(22 + r?sin” 0) 103
= { 3 q Yo — 5 7,0,
r3sin 6 x1 + x5
To T1T3

- g -
rsind 23 a3 7

= —sinpdy — cotfcospd,.

Analogously:
Qi3 = — cos p Oy + cot Osin ¢ O,,.

From the representations of {293 and ;3 we immediately get

Op = — sin oz — cos @ 3.

Q.E.D.

The invariance of the d’Alembert operator under the Lorentz group is described by the
commutator [2,,0] where the bracket [-, -] is defined by

[A,B]Yp := ABY — BAY
for two operators A, B and a function 1.

Lemma 4.11
Q] =0, a,b=0,1,...,n.
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Proor:
OQ = c’)fxaab - afx,,aa — Ax,0p + Axy0,
= J:a(f?b(?f - xb&l@f — T A + 10,A + R
= Qu0+ R,
where

R = Q(Gtxa)(‘)t(‘)b — 2(8txb)8t8a — Z 2{(8kxa)8k8b — (8kxb)8k8a}

k=1
()ab#0 = R= 3 20000 — dudhda} = 0,
k=1
(ii) a = 0 or b = 0. The proof is similar.

Q.E.D.

We have the following commutator relations, the proof of which is as easy as that of the

previous Lemma and we omit it.

Lemma 4.12 Let a,b,c,d € {0,1,...,n}.

(1) [Lo,0] = —20,

(@) [Lo,Qa] = O,

(i) [Lo,0s] = —0a,

(@) [Qub, Qeal = MeQad + MadQe — MaQac — Macbd,
()[R, O] = Do = Thacb-

We introduce three families of first-order operators:
Q= (Qj)i<icjzn, (4.23)
0= (Slab)oga<b§n7
I:= (L(), Q, 80, ey 8n)

The commutator relations imply that the R-linear span of each of the families is a
Lie-algebra with bracket [, ] (Sophus Lie, 17.12.1842 — 18.2.1899).

In the same way as the family d = (0y,...,0,) generates the usual Sobolev norm in
WkP(IRY) by

1/p
l[ullokp = (Z |3"U||’£p(m>> ;

o<k

where a = (ay, ..., q®,) is a multi-index,

0¥ =01 -...- 0, k€ Ny, 1 <p<oo, (p=oo interpreted as usual),
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we may define generalized Sobolev norms for functions u = u(t, x) which are smooth and
which decay sufficiently rapidly as || — oo for each fixed . For this we use the families
0,0,T.

If A= (A)i<ico is one of them, (0 = """V if A=Q, o=""Nif A =0, o=
1+ "<"2+1) +n+1if A=T), we define for k € Ny, 1 < p < o0:

1/p
()l akp = (ZM“ LPR") :

|a| <k

where A~ = H (A7), « being a multi-index, a = (aq, ..., q,).

Because of the commutator relations any two different orderings of the operator A will
produce equivalent norms.

The estimates on composite functions which we proved in Lemma 4.7 (resp. Lemma 4.8)
and Lemma 4.9 have their counterparts in terms of the family T

Lemma 4.13 Letr,m,n € N,h € C"(R™), B := ||h]| ov(p(o.1))- Then there is a constant
¢ = c(r,m,n) > 0 such that for all w = (wy,...,wy) € C*(R x R"),w(t,-) having
compact support in x € R" for any fived t € R, with [|wl|r 7100 <1, the inequality

[T*R(w(®)]l2 < ¢ Bllw(®)|rr2
holds for any multi-index o = (a1, ..., 0,),0 =1+ "(";1) +n+1, with || =r.

PROOF: The proof is analogous to that of Lemma 4.7 observing the following:

(i) Ti(fg) = (Tif)g + f(Tig) and Ti(f(v)) = % (v)T;v holds for any T; € T' and any
smooth functions f, g, v.

(ii) We do not have a corresponding sharp Gagliardo—Nirenberg type estimate. Instead,
we use the coarser but more elementary estimate

k-1
Jor - ollz < TT villoollvgll2-
i=1
v; represents a derivative of w appearing in formula (4.20) (cf. the example preceding
that formula). At most one factor is a derivative of w of order greater than [7] and then
all other terms involve derivatives of at most order []. With (i) and (ii) in mind we

obtain the proof in analogy to that of Lemma 4.7.
Q.E.D.

With the same arguments we can prove the following analogue to Lemma 4.9.

Lemma 4.14 Let m € IN. Then there is a constant ¢ = ¢(m,n) > 0 such that for all
u,v € C®°(R x R™) having compact support in x € R for any fivred t € R the following

inequalities hold for any multi-index o = (aq,...,0,),0 = 1+ "("+1> +n + 1, with
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laf =

(@) ITo)®ll: < e (lu®lrpgioeolv® lrme + la®lrmzlv®) )

(id) 0% (uv)(t) — u(t) T (t) |2 <
e (POl 51-100lloO 12 + N el ®l310) -

Finally we present a Sobolev inequality on the unit sphere S"~! ¢ R*,n € IN. We shall

give a proof for n = 3.

Lemma 4.15 There is a constant C = C(n) > 0 such that for all smooth functions
w: 8"t — R the inequality
1/2

lu(§)| < C Yo I%ullZaeny

lof<["; 1]+
holds for each € € S™~1.
PRrROOF: (n = 3):
Step 1: We prove the desired inequality for £ in a fixed neighbourhood U of the great cir-
cle {x3 = 0}. Then the factor sin § appearing in the volume element in polar co-ordinates
can be uniformly bounded from below by, say, ¢; since 6 varies in a neighbourhood of
/2.
Introducing polar co-ordinates we use the notation
u(§) = u(e,0),
(p,0) e M = [0,2n] x neighbourhood of 7/2.
The classical Sobolev inequality for % in IR? yields
e > 0V(p,0) € M : |u(p, 0)] < c{llall 2wy + Voot 2an + ||V520’911|\L2(M)}4

Now we have

_ Lo .
lallZan = [lale.0)Pde.0) < [ lale,0)sinod(e,0)
C1
M M
1

/ €)|2de < /|u )|2de.

Using Lemma 4.10 we obtain

IN

105272 ar)

1 _ .
/ 10,1 (, 0)|* sin Od (i, 0)
ClM

;JWM@V%S;/MMQW&
52
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and

2
190|720y < o U/(IQ%U(@I2 + [Qusu(§)[?)de.

Analogously:
V2 ol 2ary < ¢ D 190 Fll sy

o <2
This proves the Lemma (n = 3) for £ € U.
Step 2: Let & € S2\ U, & = (o, 0) in polar co-ordinates.
There is an orthogonal transformation P — a rotation orthogonal to the great circle

{z3 = 0} with angle ¢t — such that
P& =6 €U,

in polar co-ordinates
(00, b0 + 1) = (p1,01) € M.

If wy is defined by
ur(€) = u(P7'¢)

respectively
(g, 0) :=u(e, 0 — p)
the results from Step 1 imply

lu(€o)| = lur(&0)] < e{lltnllz2an) + Vot ll 2y + 1VE gl 2an }-

Since
(Optn)(,0) = (0p,u)(p,0 — ),

(Gpur) (0, 0) = (Gpu)(,0 — p),

and because P is an orthogonal transformation from S? onto itself, we obtain, as before

in Step 1,

u()]

IN

Nl 2any) + I Vgotall2an + I1V2 gt ll 2 }

IN

c{||u||L2(52) + ”QUHLZ(SQ) + HQ2UHL2(52)}~

Q.E.D.



5 Local existence for quasilinear symmetric

hyperbolic systems

Theorem 1.1 and Theorem 1.2 will be proved in detail for the initial value problem

yuw — Ay = f(Dy, VDy), (5.1)
with N
f(Dy,VDy) = Z az’j(Dy)aiaj% (5-3)
ij=1
where
(7] :ZL]'Z' S COO(IRn+1), Z,j = 1,...,7’L7 (54)
a;(0)=0 , 4j=1,...,n (5.5)

(The latter assumption corresponds to the case a = 1.)
The assumptions (5.3), (5.4) are made without loss of generality, see the remarks in

Chapter 8 (“quasilinearization”). The assumption (5.5) implies
Im>0 In>0 VeeC" Ywel™™ | |<n: (5.6)
€17+ D ay(v)&€; > mlgf.
ij=1

In analogy to the procedure in Chapter 3 we may now write the initial value problem
(5.1), (5.2) for the function y as a first-order quasilinear symmetric hyperbolic system

for the vector u := Dy = (O, D1y, - . ., Ony):

A (w)opu+ 3" A (u)d;u = 0, (5.7)
j=1
u(t =0) = o, (5.8)
where
ug = (y1, Vo),
1 0 - 0 0 by - by
e s R B P R R
0 by -+ bu by 0 - 0
with

(0;; : Kronecker delta (Leopold Kronecker, 7.12.1823 — 29.12.1891)).
© Springer International Publishing Switzerland 2015 57

R. Racke, Lectures on Nonlinear Evolution Equations,
DOI 10.1007/978-3-319-21873-1_6



58 5 Local Existence for Quasilinear Symmetric Hyperbolic Systems

The initial value problems (5.1), (5.2) for y and (5.7), (5.8) for wu, respectively, are
equivalent for smooth functions. A°(u) will be positive definite for small u according
to (5.6). This will be no restriction of generality since we are looking for global small
solutions later.

In this chapter we shall prove a local existence theorem in a more general situation,

namely for the following initial value problem.

A’ (w)ou+ Y A (w)dju + Blu)u = 0, (5.9)
j=1
u(t = 0) = o, (5.10)
where u = (uy,...,uy) € C¥, u=u(t,z), t € R, z € R". The following assumption is
made:
AP AL . A" B are complex N x N- matrices and C*®-functions of
their arguments v € CN. A7(v),j = 0,1,...,n is hermitian and A°(v) (5.11)

is positive definite, uniformly in each compact set with respect to v.

By ks we shall denote the Sobolev constant characterizing the continuous imbedding of

W#?2 into the space of uniformly bounded, continuous functions if s > n/2, i.e.
lw(z)] < Kollwl]s.2

for w € W*? and almost all z € R".

In this chapter we shall use the following additional notation:
lulsz == sup [u(t)[sz
0<t<T

if u e L®([0,T],W*?), T >0, s € Ny.

The two main theorems of this chapter will be Theorem 5.1 and Theorem 5.8.
Theorem 5.1 Assume (5.11) and let ug € W2, s € N, s > I + 1. Let g1 = ki ||uo||s 2
and gy > g1 arbitrary but fived.

Then there is a T > 0 such that there exists a unique classical solution u € CF([0, T]xIR™)
of the initial value problem (5.9), (5.10) with

sup  |u(t,z)| < g2
(t,z)e[0,T]xR™

and
w e ([0, T], W*2) 0 O ([0, T), W 12),

T is a function of ||uol|s2 and g.
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In order to prove the existence of a solution we shall state and prove a series of Lemmata.

First we show the uniqueness in the following class of functions U,
U = C°0,T), W) n C*([0,T], L*) N L>=([0, T], W*2). (5.12)

Let uy,us € U be two solutions of (5.9), (5.10) (in the strong sense with respect to the
derivatives which appear). Then we have

Ao(uk)azuk + Z Aj(uk)ajuk + B(ug)ug =0,
j=1

and
up(t=0) =ug, k=12

This implies
A° (u2)0(ug — uy) Z A] (u2)0;(ug — ur) + B(uz)(uz — uq)

= (A%w1) — A%(uz2))dpur + _X:I(Aj(ul) — A (u2))djur + (B(wr) — B(us))ur,
=
that is, v, defined by v := us — uq, satisfies
AC(t, 2)dw + i Al(t,2)0;v + B(t,x)v = F(t, ), (5.13)
j=1
v(t=0)=0,

where the notation is obvious: A°(t, ) := A°(uy(t, z)) ete.
We take the inner product of both sides of equation (5.13) with v in L*(IR™) and we
obtain (cf. Chapter 3):

0p. 5 (0,4 - 5 L AN T — Bu-T P
2dt /A U= 2R/n (0, A")v v+2R/n (]Z::IGJA Y- Reﬁl Bv U—&—Reﬁ/ﬂF v. (5.14)

All coefficients in the preceding equation are bounded by Sobolev’s imbedding theorem

because we have by assumption
lur|sr + uslsr < ¢ < o0.

(¢ will denote various constants which do not depend on ¢, T', ug, but at most on s or

n.) Therefore, we obtain from (5.14), using the positive definiteness of A°,

d - _ .
dt/A°v-17§c/A°v-17+c/|F|\v|.
R" R" R"™
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The last term may be estimated as follows:

IN

|F| |Opur| + ...

1
. d o
b/ drA (rug + (1 = r)ug)dr

IN

1
/ ’(VUAO)(Tul +(1- r)uz)‘ dr |Opuq | |ug — ug| + ...
0

IN

clvl.

This implies
d -~ _
/on~1')§c/AOv~T}7
dt
Rn Rn
whence v = 0 follows with Gronwall’s inequality, Lemma 4.1, because v(t = 0) = 0.

This proves the uniqueness (in the larger class U).

Q.E.D.

Now we turn to the proof of ezistence. The proof is a slight modification of that outlined
by A. Majda in [114].
Let

eri=2"Fe, keNy, 0<ego<1,

where ¢ is arbitrary but fixed.
Let
u’g = Jug, k€ Ny,

denote the smoothed initial value, where J;, denotes the convolution with the Friedrichs
mollifier j.,, cf. Chapter 4.

Then, according to Lemma 4.2, we have
Vk,m € Ny : uf € W20 o>,

g2 < [letollm.2-
Let
WOt x) == ub(z), t>0, ze€RY

and let 1 = u**1(¢, 2) be defined by iteration for k € INy as the solution of the linear
initial value problem
A (M) Gt 4+ 3 AT (W) 9;uf T + BuM)uF ! = 0, (5.15)
j=1
,uk+1(t _ 0) _ ué“,

k € N,.
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By Theorem 3.3 u**! is well-defined (inductively) and we have
Vk,m € No: o e %[0, 00), W™2) N CH([0, 00), W™12) 0 C*(]0, 00) x R™).

(Observe that all coefficients in the equation (5.15) belong to C7"**.)
Our aim will be to show that a subsequence of (u*); converges towards a solution. For
this purpose we first prove some boundedness properties of (u*);, namely boundedness

in high norms.

Lemma 5.2 There are R, L, T, > 0 such that for all k € Ny we have:

(i) |
(i) |0ty am, <L,

(i) Y(t,z) € [0,T.) x R™*:  |uf(t,2)] < ga.

s, T < R7

R. L and T, are functions of ||uol|s2 and gs.

In the following proof cy(go) will denote a constant for which
Vo,we CN, w| < gr: gt (go)v]? < A%w)v - v < cplge)|v]?

holds. ¢(g2) will denote various constants, which depend only on g and on values of
the coefficients A%(w), ... for |w| < ga, respectively. We shall not write all parameters

t,x,...in each place.
PROOF of Lemma 5.2 (by induction on k):

0 = uf, hence we obtain

For k = 0 we have u
luglls2 < lluollse < R, (5.16)
which is to be read as a first condition on R.
o’ =0,
L is still arbitrary. By Sobolev’s imbedding theorem we have

[u’(t, 2)] < Falluglls < Aslluollsz = g1 < o,

T, is still arbitrary.
Induction step, k — k + 1:
Step 1: “(i) = (i)":

Using Lemma 4.9 we obtain

10" 12 (5.17)

Ao(uk)71 (zn: Aj(uk)ajuk+1 +B(uk)uk+1)

c(g2)lu* M2 < e(g2) (R + R?) =: L.

s—1,2

A
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(5.17) is the condition which defines L = L(R).

Step 2: “(il) = (iii)”:

t
W) < 0, + [ 0wt )l
i

IN

t
alluolsa + o[ 100 (7)1 adr
0

S %1 + K/sflLT*
< 9
if
92— 1
T.<T =T g2, R) = .
< Ty = (ol 0. ) = %~
(5.18) is the first condition on 7.
Step 3: Proof of (i), determination of R.
For simplicity we abbreviate as follows:
T

Let a € N}, |o| < s.

The differential equation for v = u*+1,

A% 8w+ZAJ )0;v + B(u)v = 0,
j=1

implies

o =—A(u (i uav+B())

and

+ A%u)” En: Al (u)9; Vv — V* (AO(U)1 zi: Al (U)ij)
+ A(uw)'B(u) Ve — V*(A%(u) "t B(u)v),

or, equivalently,

A (u )GV"U+ZAJ )0,V + B(u)Vov = F,,

j=1

(5.19)
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where
i {[ W) A ()3, Vo — VO (Aw) A (w)d)]  (5.20)
A () B(w) Ve — V”(Ao(u)’lB(u)v)}.

Taking the inner product in L?(IR™) of both sides of (5.19) with V*v and summing up for

0 < |a| < s, we obtain (cf. the proof of uniqueness above and Chapter 3, respectively)

c;lt > / A(u) Vo - Vou = (5.21)

la]<s gn
Re S [(D'A(u) — 2B(u))V°u - Vou + 2 Re /Fa Vo,

la|<s gn

where A is short for (A%, AL, ... A").
Using the induction hypothesis and Step 1 we obtain for ¢ € [0, T.]:

ult, Moo < go,
IVu(t, Moo < Kslulsr < KR,
[Ou(t, oo < cg2)R.
This implies for all (¢,z) € [0,7,] x R™
D' A(u(t,2))] < clga) R, (5.22)
1 B(u(t, z))| < c(ga)- (5.23)
Remark: We notice the following relation:
B(0)=0 = V(t,z)€[0,T.]xR": |B(u(t,z))| < c(g2)R. (5.24)

In particular, the condition B(0) = 0 is fulfilled in our application to nonlinear wave
equations.
If « =0 we have F, = 0. Let ' := |a| > 0, V* as in Chapter 4. An application of

Lemma 4.9 implies

3

1Fall2 < { V(A )~ 47 ()| [V 02 (5.25)

Jj=1

+ [V (A () A () ]| 9] o

+ [IV(A°(w) " B(w)) || V¥ 0]l + ||vs’<A°<u>*1B<u>>||2|\vnoo]}
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< clg) \“Hs2{ Z [IV(A° ()™ A () [l oo + |V (A () 7 A7 () o
VA ()7 B ()]l + I\V""/(AO(U)AB(U))Ilz}
< c(g)llvlls {z [e(g2) R+ e(go)llullss] + clg2) R + ¢ gz>|u||s,z}
(according to Lemma 4.7 and the remark following the proof
there (g2 may be larger than 1))
< cg2)|vlls2B-

Let rhs denote the right-hand side of equation (5.21). From (5.22), (5.23), (5.25) we
conclude
[rhs| < c(g2) (R + 1)[Jv]2. (5.26)

Remark: (Cf. (5.24))
B(0)=0 = |[rhs| < c(g2)R|v]2,. (5.27)

Integration on both sides of (5.21) from 0 to ¢ yields

[0@)12 < colge) o [ AV Vo

|a|<s gn

< colg2){ 3 A(ult = 0)V"u(t = 0) - Vou(t = 0) + c(gn) (R + 1 /Hv I o}
af<s

< c5(g2)[[voll25 + colg2)elg2) (R + 1) / [o(r)1Z odr-

Gronwall’s inequality, Lemma 4.1, implies

lo@®llsz < colga)llug™ s et D" (5:28)

IA

c(g2)(R+1)T% )

A

< colga)lluolls 2 €

Now we choose R such that

R > co(ge) Juo|2¢"
holds.
Observing the condition on R postulated in (5.16) we choose

R = HUOHS,Q Hla,X{l, CO(QQ)QC(gQ)} ,
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in particular we have
R = R([uolls.2, g2)-

Moreover, we choose T such that

1

T, < To = To(|luolls,2, 92) = R4l

holds.

Observing the condition on 7T} postulated in (5.18) we require
T, :=min(Ty,T5) > 0
which means in particular that

T. = T.(JJuol

8,2y (]2)
With these choices for R and T, we obtain from (5.28)

W1, = |v]sp. < R.

This proves (i) and completes the proof of Lemma 5.2.

Q.E.D.

Remark: If g, is fixed we have

|lwollse =0 = R+L—0, Ty= P79
' lisflL
If, additionally, B(0) = 0 we have
1
T2 = R
and hence
lugllse =0 = Th—o0 , T,— .
More precisely, it holds
Vluol2s + ol

that is to say, if ug = e, € > 0, o € W*2, then

T, > c(gp,gg)s’l as e€10.

65

(5.29)

Having proved the boundedness of (u*); in high norms we turn now to the investigation

of convergence of subsequences in appropriate low norms. Note that our estimates are

not strong enough to prove convergence in the high norms. The idea to prove convergence

only in lower norms goes back to P.D. Lax [97] and T. Kato [81]; compare the remarks

in [114].
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Lemma 5.3 There are nonnegative real numbers T,c, By, o, ... with 0 < a < 1,
> B < oo and 0 < T < T, such that
k=1

Vk e N [t —uFlor < aluf —uFor + Bre

PRrROOF: Let 0 <t < T < T,, T still arbitrary with 0 < T < T,. From the differential

equations for u**! and u*, respectively, we obtain

AP (M) o (Pt — k) + i AT (uM)0;(uM T — b)) + B(uP) (T — ub) (5.30)

= (A - AR+ (A () — Ao+ (B — Bt

j=1
= Fk

F), satisfies

F, = /{(VUAO)(uk*1 +r(uf — w1 (W = uF)ouk
+ zn:(vuAj)(uk_l +r(u® — P ) (WP — uF)oput
+ (VuB)(uF !+ r(ub — 1)) (Wbt — uk)uk}dr.

This implies
”FkH? < 0(927R)||uk - ukil||27

where

c(ga, R) = c(g2, ||uol|s2) =0 as R — 0.

Taking the supremum for ¢ € [0, 7] we get

|Frlox < c(ga, R)|u" —u*or. (5.31)

The technique of proving energy estimates — which we multiply used above — finally
leads to

bt — ko < \/C(gz, R) oclo2, )T (”ulgﬂ —ulls + \/T|uk _ ukil‘O,T> ) (5.32)

Using Lemma 4.3 we get the following inequalities:

lug™ =gl < flug™ —uoll2 + luo — ug|l2
< ce02 Vw12 + c027F Juol]1 2
< a2’
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where ¢ = ¢(||uol/12) is a positive constant.
Choosing 0 < T < T, such that

\/c(gg, R)T el < 1
holds, we see that (5.32) implies
[t — ¥ < alu® — "oz + B,

with
Bri=c27% and a:= \/c(gg, R)Tec<92’R)T < 1.

Q.E.D.

The constant ¢(g2, R) appearing in the proof of Lemma 5.3 satisfies
(g2, R) >0 as R —0,
hence if
T.— Ty €(0,00] as R —0,

then
T—1T, as R —0.

More precisely, we have

(g2, R) < c(g2) R
Let M = M(go) be defined by the equation
1

2\/0(!12)

Meclo2)M? _

I

and let 5
T="T(g2, R) := R

With this choice we have o« < 1 and

T> (g2) (provided T <T,).
l[ol]s,2

As an easy consequence of Lemma 5.3 we get

67

(5.33)

Corollary 5.4 There exists a u € C°([0,T],L*) such that (u*); converges to u in

C([0, 7], L?).

PROOF: It is an elementary observation that

0<apyr <aae+ P, >0, keN,0<a<1, > f<oo
k=1
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implies

oo
Z ap < o0.
k=1

N
< Prove the boundedness of (ay), and then of (2 ak)N.)
k=1

With ay, = |[u*! — uF|or we conclude that (u¥), is a Cauchy sequence in the Banach
space C°([0,T1], L?).
Q.E.D.

Lemma 5.2 means in particular:
Vk S ]N(] : |uk|57T S R.
The inequality of Gagliardo-Nirenberg, Theorem 4.4, implies

[u¥ —u™gr < cuf—u é}sl/s|uk - um\i{ps

uF =m0 komeNo, s €{0,1,...,s}).

IN

C

Therefore (u*); is a Cauchy sequence in C([0,T],W*"?) for 0 < &' < s, s/ € Ny. This
implies
u e CO([0,T), w*?), klim luF —ulg =0, (5.34)
—00

for all s € Ny with 0 < s’ < s.

Remark: If Theorem 4.4 is used in Sobolev spaces with fractional derivatives, i.e. for
s € ]0,00) arbitrary then it would immediately follow by Sobolev’s imbedding theorem
for s’ with s > s > n/2+ 1 that

u e C%0,T],C) and du € C°([0,T],CP).

In particular,
u € CH[0,T] x R™)

and v is a classical solution. Since we do not work with fractional derivatives we shall
use different arguments. (See the book of R. A. Adams [1] for a discussion of fractional
derivatives and associated Sobolev spaces.)

Taking s’ := s — 1 > n/2 we obtain, using Sobolev’s imbedding theorem,
ub* —wu in C°[0,T],CP) as k— oo,
which implies, together with Lemma 4.3,

sup |u(t, z)| < go.
(t,2)€[0,T] xR™
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The equation

atulﬁ»l _ _AO(uk)—l (Z Aj(uk)ajuk+1 +B<uk)uk+1)
j=1

now implies that (9,u**1), converges in C°([0, T], W*~12) which is continuously imbed-
ded in C°([0,T], L?) . Hence
ue C'([0,T], L%

and the differential equation
A (w)dpu =" A (u)dju + B(u)u
j=1
is satisfied (being an equality in C°([0, T], L?)).
Lemma 5.5 u € L=([0,T], W*?), |u|sr < R.
PROOF: From Lemma 5.2 we obtain for all ¢ € [0,77], k € INy,

[ (®)lls2 < R

Thus, for ¢t € [0,7] fixed, there is a subsequence (again denoted by (u*(t)),) and a
w, € W52 such that

uF(t) = w, in W2 as k— oo,
[[wills2 < R.

For h € L?
g— Fg = / gh
R
defines a continuous linear map on W*?2, hence, by the Riesz representation theorem, we
have
VheL*, Fp=p(h) e W Yge W*?: Fug=(g,0(h))s,

where (-, -), denotes the inner product in W*2. Consequently, we get for all h € L?

Jwh = Fuw) = {we (b)) = Jim (0 (2), w(R). (5:35)

k—o0
Rr"

k—o0
R" R"

= lim Fu(u*(1) = lim [ () = / u(t)h.

The last equality follows from (5.34).
From (5.35) we obtain

u(t) = wy,
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which completes the proof of Lemma 5.5.

Q.E.D.

Since each subsequence of (u*(t)), in the proof of Lemma 5.5 will converge to the same

limit u(t) we conclude
Yt [0,T]: wf(t) = wu(t) in W2 (5.36)

Let C([0,T], E) {and Lip([0, T, E)} denote the space of weakly continuous {resp. Lip-

schitz continuous} functions from [0, T into a Banach space E.

Lemma 5.6 u € C,([0,T], W*?) N Lip([0, T], W*=12).
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Proor:
L. Let (t.)n C [0,1], lim ¢, = to. Since u € C°([0, 7], W*~"?) we have

Jim [t [ls—12 = [Ju(to)[s—12

and because
futn)lls2 <R

we get (cf. the proof of Lemma 5.5)
u(t,) — u(ty) in W*? as n— oo.

This proves u € C,, ([0, T], W*2).

to
Uk(tg) - uk(tl) = /atuk(r)dr for 0<t; <ty <T.

t1
Hence we obtain using Lemma 5.2
||Uk(t2) - Uk(h)HstQ < Lty — t4].
By the help of (5.34) this implies in the limit as k — oo that u € Lip([0, T'], W*=12)
(with the Lipschitz constant L having been defined in the proof of Lemma 5.2).

Q.E.D.

In order to prove Theorem 5.1 it remains to show that
u € G0, T), W) nC([o,T), W12
(which implies
u € CH][0,T) x R™)

by Sobolev’s imbedding theorem).

For this purpose three reduction steps will be made first.
Step 1: It is sufficient to prove that u € C°([0, 7], W*?2). Then the differential equation
for u implies dyu € C°([0,T], W*=12), hence u € C1([0, T], W*=12).

Step 2: It is sufficient to prove the continuity on the right of ¢ € [0, T), because we may
consider v where
o(t):=u(T—t) for 0<t<T.

v satisfies

A%(v)0pw + zi:l(fAj(v))ﬁjv + (—=B(v))v =0,
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v(0) = u(T).

Then the continuity of v on the right in ¢ € [0,7") implies the continuity of u on the left
of t € (0,7].

Step 3: It is sufficient to prove the continuity on the right of ¢ = 0, because for t =, €

(0,T) we may consider the initial value problem

A (w) 0w + i Al (w)0;w + B(w)w = 0, (5.37)
w(t = to) = u(lo), (5.38)

for a vector-valued function w = w(t, z), t > to, x € R™. From what we have proved

above we know that there is a (unique) solution w of (5.37), (5.38) with

we COL W) N CY(I, L?) N Oy (1, W*2) A Lip(1, W*~2) A L= (1, W*?)

where
I = [ty,T},), for some Ty, > to,
Ty = Ti(lluto)lls2: 2),
G = Kllu(to)lls2 < Go-

w(t) coincides with u(t+tg) on [0, min(T — tg, T3, )] because of the uniqueness of solutions
in the class U defined in (5.12). Therefore the continuity on the right of w at the initial
time ¢ = ¢, implies the continuity on the right of w in ¢.

After these three reductions we turn to the proof of the continuity on the right of u in
t = 0. For this purpose we introduce the norm || - || 00y, 0 < ¢t < T, which will be

equivalent to the norm || - |52 on W*2:

1/2
||U||5,A0(t) = ( Z /Ao(t)vav . Vav) ,

la|<s gn
where
A(t) == A%u(t,-)) for te€[0,T].
Since
cotw-w < AHw - w < cow - W
we obtain

cg ' ollz2 < Mvl2 ag < collvll?

for all t € [0, 7.
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The inequalities

[lu(t)]

20 — Hu(t)Hg,AO(O)’

< > sup A(u(t, x)) —AO(UO(”JU))‘ IVeu(t)]l3

lal<s T€
< s / |(VuA®) (o) + 7 (ult, ) — uo(x)))| dr [u(t, #) — uo(@)| [[u(t)]?,
< elg) R ||u(t) — uolls-1.2

imply

lim sup |[u(t)] iAU(t) = lim sup ||U(t)||iAU(0)‘
L0 40

Since u € C,,([0,T], W*?) (by Lemma 5.6) it now suffices to prove

l[uol|? 00y > lintlﬁ)up (@12 00 - (5.39)
( Observe that in a Hilbert space H with norm || - || one has:

w, =~ winH asn — oo
— <wn — win H as n — 00 < |Jwly > limsup ||wn||7-l> )
n—oo

The inequality (5.39) immediately follows from the following Lemma which remains to

be proved.

Lemma 5.7 There is a constant ¢ = ¢(go, R) > 0 such that for allt € [0,T] the inequal-
ity
[w()]I2 a0qy < o]l o) + ct

holds.

PRrROOF: From the proof of Lemma 5.2 we know that

ST AP Veurtt . ekt < (5.40)

|a|<s gn

¢
A (B YVouktt ekttt 4 [ eR
0 0 0
0

lo|<s gn

holds, where ¢ = ¢(ga, R).
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We have
/140(1/8)V”‘u(’§Jrl Vot — /AO(YI,())va’lJ,O - Ve
R" R"
< | [ (A%h) = A%(uo)) Vg - Foug
B
+ / A (uk) (V“u’é“ - V“uo) Vet
Br
+ /Ao(ug)vo‘u() . (VO‘USH — Vo‘u(]) .
Rn
Since

. E_ _
Jim fJug —uolls2 =0
we now obtain

: 0(, by, k+1 | Ta, k+l _ 2 5
’}ggo‘(ggs J A’ (ug)Voug™ - Voug lluolls,40(0)- (5.41)

From (5.36) (in W*? with respect to || - ||s. 40)) We get
LA (1)
(®llavgy < liminf 041 (0)]. o (5.42)
The relations (5.40) — (5.42) imply

(@)1 a0y < lluoll? aogo) + ct-

Q.E.D.

This also completes the proof of Theorem 5.1.

Q.E.D.

In the case B(0) = 0 (in particular for the application to nonlinear wave equations) we

can choose T such that
c(g2)

l[wolls2’

(according to (5.33), (5.29)). This means that the life span T, of a classical solution can

T>

be estimated from below by

> 9 (5.43)
l[uolls,z
in particular if uy = e, € > 0, p € W*2, we get
T =Ty(e) >c et (5.44)

where
c= 6(927 90) > 0.



5 Local Existence for Quasilinear Symmetric Hyperbolic Systems 75

This elemantary life span estimate can be sharpened in space dimensions n > 2, e.g. for
n =3 to

lime log T () > 0.

€l0
This result is contained in Theorem 1.2, see also the papers by F. John [72] or John &
Klainerman [75] and Section 10 for further results.

Theorem 5.1 can be improved with respect to the length T of the interval of existence:

The dependence on |ug||s2 and g2 can be weakened as follows.

Theorem 5.8 Assume (5.11) and ug € W*?, s,m € N with s > m > n/2 + 1. Let
g := Kml|tol|me and g5t > g arbitrary but fived.

Then there is a T > 0 such that there exists a unique classical solution u € CL([0, T]xR™)
to the initial value problem (5.9), (5.10) with

sup |u(tﬁ)‘ < gy
(£,2)€[0,T]x R"

and
u € C°([0, T], W) nCY([0, T), Ws2).

T depends only on ||uollmz2 and on g3
ProOF: First we obtain a solution
ue C°([0,T,], W) nC'([0,T,,), W™= ?)
according to Theorem 5.1, where
T = Tn(lluollm.2, 95")

is determined in the proof of Lemma 5.3.
Now we show that the approximating sequence (u*)y is still bounded in high norms. We

prove:
3R, L,>0 3T €(0,T,] VkeNy: [uf,r <R, |0uf|s1r < L, (5.45)

and T depends only on ||ug||m,2 and g5
For this purpose we only have to look at the proof of Lemma 5.2 once more.
The basis of the induction (k = 0) yields the condition

Ry > |luol|s,2- (5.46)
Since
[D'A(u) = 2B(u)] < e(gy")(Bm + 1),
[V'B(u)llz < c(g5")Rs,
[olliee < Am-tllvllm.2,
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where u = uF, v := v+t (cf. (5.19), (5.20)), we obtain

[Fall2 < c(g5") (R 0]

5,2 + Rs””“mj)-
Denoting by rhs the right-hand side of (5.21) again we get
[rhs| < e(g8") (B + D[v]25 + BoRon0]]s2) -

This implies

O, < elg) {Ilvo||§,2+/((1?m+ 1)||v(7“)||§,2+R3Rm|v(r)lls,z)dr}

A

t t
< e(gy) {||vo||§,2 [ R+ Do) 2 dr + R Ry 4+ B [ 0(r) 2, dr} .
0 0

Gronwall’s inequality, Lemma 4.1, implies

m

@)1, < e(g5) ([lvoll2s + TR2R,,) et (020t
or, equivalently,

o(8)ls2 < c(g) <||v0|\s,2 + /TR, R5> (1528

which implies

‘U oT S C(ggn) <||U0Hs,2 + \/TRmR9> eC(gén)(1+2Rm)T.
We choose T' € (0,T,,] such that

. 1
c(g;n)\/TRm o935 ) (1+2Rm)T ) (5.47)

and R (observing (5.46)) such that
Ry > 2¢(g5")||vo| e 20T,
Then
|U‘3,T S Rs

and
|at/U|sfl,T < C(g;n)Rs = Ls

This proves (5.45).
T is determined by (5.47) and depends only on ||ug|m,2 and g5*. The remaining consid-
erations are literally the same as those in the proof of Theorem 5.1. This completes the
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proof of Theorem 5.8.

Q.E.D.
In the case B(0) = 0 we have for the life span Tt
7> 9
||u0||m,2

(cf. (5.43), (5.44)).

We conclude this chapter with some remarks on the regularity assumption (C°) on the
coefficients. This assumption was made for simplicity in order to be able to give a self-
contained proof of the local existence theorems above only using the elementary results
from Chapter 3. It was already mentioned there that these assumptions can be weakened
in remarkable ways, for example using the theory of T. Kato culminating in a local
existence theorem for quasilinear hyperbolic systems with less restrictive requirements
on the coefficients, see [81, 82] and the paper of Hughes, Kato & Marsden [51].



6 High energy estimates

In this chapter we shall prove an energy estimate for the local solution u = (9,y, Vy) of
the initial value problem (5.7), (5.8), where y solves (5.1), (5.2) with the assumptions
(5.3) — (5.6) on the nonlinearity (case @ = 1). Without loss of generality for further
investigations we assume the constant g5* appearing in the local existence Theorem 5.8
to be sufficiently small as it will be needed in the proof of the next theorem.

Theorem 6.1 There is a constant ¢ > 0 which is independent of T and uy such that the

local solution u satisfies

vt e [0,T] :  |ju(¢)

ls2 < cllug

t
< cluolloz exp e [ |Du(r)llr). (6.1)

0
The proof below literally works for s > n/2+2 and only in this case we shall make use of
Theorem 6.1. If one uses the Gagliardo—Nirenberg inequality, Theorem 4.4, in Sobolev
spaces W2 where 7 € [0,00) is not necessarily an integer, then the proof below also
works for arbitrary s > n/2 + 1. Otherwise one can get the result for the remaining
case s = [4]+2 by considering u® := J.u (the convolution with the Friedrichs mollifier
Je, cf. Chapter 4), then proving the energy estimate for ¢ and finally letting e tend
to zero. For this purpose corresponding commutator estimates for the nonlinear terms
are needed. These considerations are carried out e.g. by F. Willems [198], see also S.
Kawashima [84].
Now let s > n/2 + 2.
PROOF of Theorem 6.1:
Let (uf)r € W*L2 be a sequence that approximates ug in W2 as k — oo and let u* be
the solution to (5.7) with initial value u*(t = 0) = uf.
We have

Ve N : uf €0, Ty), W) n ([0, Ty], W),

where
T, := inf{length of the existence interval for u* and u according to Theorem 5.8, k € IN}.
Without loss of generality we may assume

0<Ty =T.

(Observe that ||ufllme — |[tollmze as k — oo, from Theorem 5.8, s > m > n/2 + 1).

Remark: Theorem 5.1 would not have been sufficient because
k as : 5+1,2
lluglls+12 = 00 as k—oo ifuy g W%
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Since
ub € ([0, T], W*?)
we have for y* with
u’f = atyk7 ug = alyk, ce U]:L+1 = 8nyk,
the property
yr € C°([0,T), W*2).
We apply V2,0 < |a| < s, on both sides of the differential equation for y*:

yh — AyF = > ai;(Dy") 009",

i,5=1

79

and then take the inner product in L? with V¥yF. For simplicity we omit the index k

for y* and we assume without loss of generality that all functions are real-valued. Then

we obtain, dropping the parameter ¢ most of the time,

1 d n
th{HVaytHg + IVeVylls} = D (ay(Dy)8:0; VY. Vu)
=1
+ > (V¥ai;(Dy)d0;y} — ai;(Dy)0i0;Vy, V)
=1
=1+4+1L

Integrating by parts in I we obtain

n

S (B (DY) Y, Vo) — 3 {4y (Dy) VoD, VD)

=1 i,j=1

I

= [.1 +12.

The term 1.1 can be estimated directly by

n

L1 < > 1(Vuaig) (DY) Dyl (IV0ylls + [Vuil3)

ig=1

IN

el Duf oo W32,

(6.2)

(6.3)

(6.4)

where ¢ denotes here and in the sequel (various) positive constants not depending on T’

or uop.

The term 1.2 is split as follows.

1d &
L2 = —_ > {a;(Dy)oVy,0;,V°y)

2dt 2,
1 n
o > (Deai(Dy))0V *y, 8,V y)

ig=1

= [.2.a+1.2.b.
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The term 1.2.b is estimated in the same way as 1.1, see (6.4):

[L2:b] < | Du o 2. (6.6)
For the term 1.2.a we obtain
¢

1 n
> [12a()dr =~ 3 Y (s (Dy)aoy, ,9°) (1) (6.7)
la|<s la|<s d,5=1

1 = (e} (0%
*y > D {ai(Dy(t = 0))a;Vy(t = 0),0;Vy(t = 0)).
|a|<s i,5=1

The first term on the right-hand side of equation (6.7) can be incorporated into the
left-hand side of equation (6.2) (after integration with respect to ¢ there) due to the
assumption (5.6) if g4* is sufficiently small.

Now we consider the term II from equation (6.2). We have

=0 if a=0,

hence let o € INjj with |o| > 1. Then we get

< > 1V*¥{ai;(Dy)idy} — ai(Dy) V9,012 V|2 (6.8)
ij=1
< e Y AV (DY)l IV 10,059 ll2 + [ Vas; (Dy) |12110:09 100 HIVvel2
ij=1
(according to Lemma 4.9)
< AIVDY[lolVylls2 + 1DYlls 2l V2Y oo HIV G2

(according to Lemma 4.8)
< cllDut o[22
Combining (6.2) — (6.8) we obtain
[t ()12 2 < cllugllZ, + C/IIDU'“(T)Hoo\lu'“(r)\li,zdr
and Gronwall’s inequality, Lemma 4.1, implies the desired energy estimate for u*:

¢
[ (®)lls.2 < elluglls.2 exp{C/ [Du*(r)llocdr}, 0 <t <T. (6.9)
0
It remains to investigate the limit £ — co. For this purpose we notice that
A%(u) 0, (u — u) —|—ZA] d;(u — uk)
= (A%uF) — Au))ou” + Z(Aj(uk) — Al (u))ojut

j=1
= Fk
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(The zero-order coefficient B is zero here.)

With the help of the arguments already used in the proof of Lemma 5.3 this implies:

IN

(| Fll2

I(u* = w) (@113

cllu® —ull2,

t
¢ <|u§ —wlf + [ —u)(r)H%dr)
0

IN

and then

I(u* = uw)(®)]l2 < cllug — uoll2 e

Hence we obtain:
W > u in C°[0,T),L* as k— oo

The Gagliardo—Nirenberg inequality, Theorem 4.4, implies (cf. Chapter 5 for similar

arguments)
u* —u in CO0,T), WTH?) (6.10)
and
ok — o in OO0, T],W* %%, as k— oo. (6.11)
Moreover we have for each ¢ € [0, T7:
ub(t) = u(t) in W as k— oo (6.12)
(Cf. the proofs of the Lemmata 5.5, 5.6.)
(6.12) implies
[lu(t)]]s2 < li]?linf " ()] s.2 (6.13)
—00

(cf. [6, p. 139]) and from (6.10), (6.11) and Sobolev’s imbedding theorem we conclude
Du* — Du in  C0,T], L®). (6.14)

Here we used the fact that s > n/2 + 2 holds. Combining (6.9), (6.13) and (6.14) we
obtain

[u(®)l]s2

IN

t
climint uf|.2exp{e [ 11Du"(r)]|dr}
c— 00
0

i
clluollsz exple [ 1Du(r)ldr}.
0



7 Weighted a priori estimates for small data

Besides the energy estimate which we proved in Chapter 6 the following a priori estimate
is essential for the proof of the global existence theorem (Theorem 1.1). As a new
ingredient it takes advantage from the decay estimates that were obtained in Chapter 2
for solutions of the linearized equation.

Let u again be the local solution as in Chapter 6 (case o = 1). Then we shall prove the

following weighted a priori estimate.

Theorem 7.1 Letn > 5 and sy, s1 € N satisfy

51+ Nyys

S1 >
! 2

}7So>51+N4/3+1~

Let
ug € 502 O T/ 81+ Nays4/3.

Then there are My > 0 and §; > 0, both independent of T and g, such that the following
holds:
If
[uollso2 + [[wollsi+n, 5473 < 01
then

n—1
Mo (1) 2= sup (1405 fu(®)lo < Mo,

Remarks: The condition n > 5 comes from the condition ";* > !(1+ !) in Theorem

1.1 for « = 1. Nyj3 = N, from Theorem 2.3 for p = 4/3. We have

This implies
s1 > N4/3 > ?’l/2

and hence
so>81+Nys+1>n+1>n/242 since n> 5.

The nonlinearity is given as in Chapters 5 and 6 by
n
flu, Vu) = > ag(u)0jus.
ij=1
¢ will denote various constants not depending on 7" or ug.

Lemma 7.2
1S (u, V)58, 5,073 < cllullsyallullso,2 (7.1)
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(Observe that W2 — W14 gince sq > 1 + n/4.)

PROOF:

llaij(llq = llag(w) = ai;(0)]lq (7.2)

1
| /(Vuaij)(W)udTHq < cllullg < eflulls,2
0

foralli,j =1,---,n and all ¢ € [2,00].

Using the special form of f we obtain

A

1f(u, V) sy 48, a8 <D > IVay(@)djui)llays
i,7=1 OS\(1|§51+N4/3
cy > (Vi (1) VPOt 41 | a/3-

i,j=1 0<|al+|B|<s1+Ny/3

IN

First let |o| > s;. Then 8] 4+ 1 < Nyj3 < s1.
This implies

(Vs (u)VP0usallazs < [V¥ai(u) |2l V7 0juis [la (7.3)
< dllVullaflulspira
(using Lemma 4.8 and (7.2))
< cllullso2llulls, a-

Now let |5] + 1 > s;. Then |a| < s; and

[V (ai; (W) VPOuiallas < [V ai(@)|al| VP Ojutia 2 (7.4)
< o Vlullflull 2
< cllulls, allwllso.2-

Finally let || < s; and |B]| +1 < s;. Then we obtain

N

IV (i (1)) VP Outia [las3 IV ai; () 2Vl (7.5)

IN

cllullso 2llellsy.a-
From (7.3) — (7.5) we conclude the claim of Lemma 7.2.
Q.E.D.
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Let w(t)g be defined as in Chapter 2 as the solution v of the linear initial value problem
vy —Av=0,0(t=0)=0,v(t=0)=g.

Remember that
u(t =0) = uy = (y1, Vo).
Writing f(t) short for f(u(t,-), Vu(t,-)) we have the following representation for the local

solution w:
Lemma 7.3

u(t) = Dw(t)y + Douw(t)yo + / Duw(t—r)f(r)dr, 0<t<T.
0
PROOF: Since u = Dy it is sufficient to prove
t
y() = wty + iy + [wt—r)fr)dr (7.6)
o

= ’Ul(t) -+ Ug(t) + ’Ug(t).

We have, using the definition of w(t),

vy — Avy =0, vi(t =0) =0, Gy (t =0) = yy, (7.7)
O}y — Avy = 0, va(t = 0) = yo, Dva(t = 0) = 0. (7.8)
Moreover
t
8?/111(1‘—7‘)]"( Ydr = 0 {w(0) /@w (t—r)f(r)dr}
0

t

- at/atw(t—r)f(r)dr = (D)t = 0)f(t) + /afw(t—r)f(r)dr

0 0
This implies
831)3 - A’Ug = f7 Ug(t = 0) = 0, atl}3(t = 0) =0. (79)
(7.7) — (7.9) yield (7.6) (uniqueness of solutions).

Q.E.D.

Now we come to the PROOF of Theorem 7.1.

We write

0 =20
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according to Lemma 7.3.
Let

Then u' satisfies

N

' Ollas < e 07" gl s (7.10)
(according to Theorem 2.3)
< (1 +1)7%,.
Writing u? as
W*(t) = Doww(t)yo = (Fw(t)yo, Vw(t)yo)

— (Dw(t)ye, Vo) = (3 85(w(t)d;u0), du(w(t) Vo))

J=1

we obtain by Theorem 2.3

IN

[ (8) 1.4 e[| Dw(t) Vol 4 (7.11)

IN

C(l + t)7d|‘Vy0H51+N4/3v4/3
< c(1+t) .

Applying once more Theorem 2.3 and using Lemma 7.2 we get

t
@ loa < e [+ Ul assdr
0

t
< o [t a0
0

Using Theorem 6.1 we see that u® satisfies

t

t
[ ()]0 < C/(l +t = 1) fulr)llspallwollse.2 eXP{C/ [1Du(T)||ocdr}dr — (7.12)
0 0

< cd oxp{c/ HDU(T)HOOdT}/(l +t =) Y u(r)|s,adr
< 6, exp{c/HDU(T)HOOdT}MSI(t)u+t)*d/(1+t)d(1+t—r>*d(1+7~)*ddr.
0 0

Now we make use of the following general estimates which will be proved at the end of

this chapter.
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Lemma 7.4 Let o, 3,7 > 0 satisfy
atf-v=21 azy, f=27,

and
a>yif f=1, and >~ if a=1.

Then we have

@) sup [ (8714t =) (L + ) Pdr < oo,
0

0<t<oo

(1)  sup ?O A+t (1+t+7r)" (1 +7r)Pdr < co.

0<t<oo 0

Applying Lemma 7.4, (i), with o = f = = d > 1 we obtain from (7.12)

(8 v < 811+ 0)~ My, (t) exple [ [|Du(r) i},

Sobolev’s imbedding theorem yields
[Vulloo < cllulls,
and from the differential equation for v we conclude
[Orulloo < | Vi co-

This implies

t t
[1Dum)lndr < e [(U47) (14 7 ()], adr
0 0
t
< M) [(+7)
0
< ¢ M, ().

From (7.13) and (7.14) we conclude

[ ()11 < ebi (1 + )M, (1) exp{eMy, (1)}

Combining (7.10), (7.11) and (7.15) we get the following estimate for u:

lw(t)]sp.a < cor(1+ )% 4 oy (14 )M, (t) exp{cM,, (t)}.

This implies
M, (t) < cdy (14 My, (t) exp{cM,, (t)}), 0<t<T.

(7.13)

(7.14)

(7.15)

(7.16)
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Without loss of generality we assume that ¢ is larger than the imbedding constant & in
Wee2 e et
Let
¢ :[0,00) — R

be defined by
o(x) == co(l +ze™) —a.

We have
©0(0) = cby, ¢'(0) = by — 1.

¢ has a first positive zero at xo with ¢'(zg) < 0 if ¢; is sufficiently small (§; = d;1(c)).

0= (xg) = o1 (1 + zee™) — xo

implies
) Zo
0 = <
T (1 + zgeso) e
whence
M, (0) = [luolls;.a < Flluollso2 < Rd1 < 20 (7.17)

follows. The relation (7.16) implies
e(M, (1)) >0, 0<t<T

which together with (7.17) and a continuous dependence argument leads to
M, (t) <z, 0<t<T,

which yields the claim of Theorem 7.1 with

MO = Ty = 1'0((51).

Q.E.D.

It remains to prove Lemma 7.4.
PROOF: (ii) is an easy consequence of (i). Let ¢ denote various constants not depending

on t. Then
t/2 t

/t(l+t)”(1+t—r)"(1+r)ﬂdr_/...+/..,

0 t/2
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and

t/2

¢ [+t +H7 1+ ) dr

o =
A

/2
_ -8
= 1+ta70/1+7n dr

log(1 +t/2) if 8 =1,
<
B 1+tf” (L4+t/2)7P 41 ifB#1
< ¢

because « > yif f=landa>~yand a+ 5 —~v > 1.

Analogously we conclude

t

//2 - (1+i)ﬂﬂ /(1+t—r)fadr

t t/2
t/2
= ¢ /(1 + ) Ydr
1+

< ¢

because § >yifa=1land f >~yand a+ 5 —~v > 1.
Q.E.D.



8 Global solutions to wave equations — proofs

8.1 Proof of Theorem 1.1

We are now able to give a proof of Theorem 1.1, first again for the case

a=1, f(Dy,VDy)= > ai;(Dy)d,0y (8.1)
ij=1
as discussed in the previous chapters.
Let 01, T, So, $1, u be given as in Theorem 7.1, and let s > sq.
By successively using Theorem 6.1, formula (7.14) and Theorem 7.1 we obtain the fol-

lowing sequence of inequalities, where u(t) = u(t,-):

[u@)ls2 < CIIUoHs,zeXp{C/HDU(T)HoodT} (8.2)

IN

clluolls2 exp {cM,, (1)}

IN

c|luolls,2 exp {cMo}

IN

KHUOHS,Q?

for 0 <t < T and with
K := cexp{cMo}

being independent of T" and of u.
If we choose § such that

o1

0<d
<0<

we obtain
[u(T)ls2 < Klluolls2 < Ké < d1.

Applying the local existence theorem, Theorem 5.8 (at initial time 7"), we conclude that
there exists a continuation of w onto [T, T + T1(d;)] for some positive number 7} only

depending on ;. The inequality (8.2) applied for
0<t<T+Ti(d1)

implies
[u(T + T1(61))]

s2 < Kluol

5,2 < 1.

Hence we may apply the same argument once more to conclude that we can continue u
onto [T'+ T3 (61), T + 211(01)]. Proceeding in this way we prove the existence of a global
solution

u € C°([0, 00), W) N C([0, 00), W*~12).
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In particular, we obtain
VO<t<oo: |u(t)lse<Kd<d

and, with Sobolev’s imbedding theorem and Theorem 7.1,

Vo<t<oo: [u)lew < clul®)llsa < eMy, (1 +8)~ DA
< eMy(1 4 1)~ (=074,

This proves Theorem 1.1 (for the case given in (8.1)).

Q.E.D.
The general case (f, « as given in Theorem 1.1) is proved in the same way. The following
remarks point out the differences and show that the restriction to f, @ as in (8.1) in the
previous chapters were made without loss of generality.
First let f again have the form given in (8.1) but let & € IN be arbitrary, i.e.

a;;(u) = O(Ju|*) as |u| — 0.

Then the calculations in the proof of Theorem 6.1 show that the inequality (6.1) claimed

in this theorem can be replaced by the following inequality.

Ve [0,T]:  Jlu(®)lls2 < clluo

lszexpfe [ | Du(r)|%dr}. (8.3)

The estimate (7.1) for the nonlinearity f now reads as

I1f (w, V) lsyinp < cllullg, gl so.2, (8.4)

where s; is sufficiently large and g, p satisfy the relations

1 1 1 1
4+ =1 and ‘4= (8.5)
q p ¢ 2 p
(the latter simply arising from an application of Hélder’s inequality in the proof of (8.4)).

The relations (8.5) for p and ¢ are equivalent to

_ 2a+2

D S0+ 1 and ¢ (v +1), (8.6)

which are just the conditions on p and ¢ given in Theorem 1.1.
With the help of the inequality (8.4) the analogue of Theorem 7.1 is proved in the same
way by estimating the corresponding term M, (T'), namely

M, (T) = sup (L+1)"2 0= |fu(t)]l,, 4 (8.7)

0<t<T
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(g is given in (8.6)), s; € IN is chosen appropriately large enough).

To carry over the proof of Theorem 7.1 we only mention that the integration exponent

d appearing in the formulae (7.13) and (7.15), respectively, having to be larger than 1,

d:an_l 172 . « n—l_
2 q a+1 2

This is an immediate consequence of the relations in the formulae (8.3) and (8.4).

now is the following:

The necessary condition d > 1 explains the condition

1 1 n—1
(1 + > <
« « 2
in Theorem 1.1.

With the definition M, (T) in (8.7) it is obvious how the decay rate claimed in Theo-

rem 1.1, namely "glail,

The considerations up to now demonstrate that higher-order nonlinear terms can be

arises.

handled even easier. Moreover, the method of differentiating the original differential
equation (1.1) leads to a quasilinear differential equation for y and its derivatives. Hence

the special form
n

f(Dy,VDy) = Z az‘j(Dy)aiajy

ij=1
can be assumed without loss of generality (see also the corresponding remarks in Section
11.2 between the formulae (11.58) and (11.59)). This completes the proof of Theorem
1.1.

Q.E.D.

We remark that the regularity assumptions on f (“C*”) can be weakened using the
theory of evolution operators by Kato, see [51, 79, 80, 81, 82, 83]. Another idea would
be to approximate a less regular f by C*°-functions f,,, m = 1,2,..., and to prove the
convergence of the associated solutions u,,, for which energy estimates like those proved
in Chapter 5 are needed.

The only reason for having studied C'*°-nonlinearities f was to be able to present a local
existence theorem, the proof of which is as simple as possible. See the remarks at the
end of Chapter 5.

Theorem 1.1 can be regarded as a kind of stability result which expresses that the solution
u behaves asymptotically for large ¢ like a solution of the linearized equation. This means
that there should be a function u, which is a solution of a linear wave equation (more
precisely: uy = Dy, for some function y, and y; solves the linear wave equation), and
u(t) behaves like u (t) as ¢ tends to infinity.

We define uy by

uy(t) == u(t) + /W(t —r)F(u(r), Vu(r))dr, (8.8)
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where F(u(r), Vu(r)) = (f(u(r), Vu(r)),0) and where V(t) := W (¢t)H solves the linear
initial value problem

Vi+AV =0, V(t=0)=H
for all t € (—o0, 00) — not only for ¢ > 0. Here A denotes the linear differential operator
with symbol

0o -V
-V 0
which naturally arises by a change from y with
yu — Ay =10

to V = (0,y, Vy) with
V,+ AV = 0.

uy is well-defined in W*? with sy, ¢ as in Theorem 1.1 since
JIW G = ) F (), V)i < e(1+2)72 070,
t

This follows, using (8.4) and Theorem 1.1, from the inequalities:

]OIW(L‘ — 1) F(u(r), Vu(r)) s, q dr (8.9)
< ¢ :,0(1 =) D Fu(r), Vu(r) i, p dr
< ¢ 7 (=)™ D)5, () a2 dr

= c A(l + r)fngl(lfi)(l +r+ t)fa”El(l*Z)dr

O —__

< (141" 070
(using Lemma 7.4).
By the definition of u, we obtain
Quy(t) = Owu(t) — F(u(t), Vu(t)) —l—/at(W(t — $)F(u(s), Vu(s)))ds
t

— —Au(t) - / AW (¢ — 8)F(u(s), Vau(s))ds

t

= —Auy(t),
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hence u solves the linearized equation and we obtain the following Corollary to Theo-

rem 1.1.

Corollary 8.1 Using the notation of Theorem 1.1 and the definition of uy in (8.8), one
has that u behaves in L?, asymptotically as t — oo, like u,, where u . is the solution of

the linearized equation to the initial value

More precisely,

PRroor:
Ju(t) —u @2 < C7||F(U(T),VU(T))I\Sl,da
¢
< c(1+t)17””51(173)—>0 as t— oo.
Q.E.D.

We observe that the formulation of the result in scattering theory in Corollary 8.1 requires
the solvability of the linearized problem for all real £, not only on the positive time axis.
This solvability will not be given for example for the heat conduction problems in Chapter
11.

Up to now we have only considered wave equations. However, we shall see in Chapter 11
in the discussion of other evolution equations that there is a common structure underlying
the proofs leading to similar theorems as Theorem 1.1. In particular we mention the
paper of J. Shatah [158] where similar results are obtained in a more general functional
analytic setup. We have taken the presentation given by Klainerman & Ponce [94].
Now we turn to the proof of Theorem 1.2. This improvement of Theorem 1.1 strongly
relies on special properties of the wave equation and does not have counterparts (up to
now) for each of the other systems which shall be studied in Chapter 11; however, for
Klein—Gordon equations see [89], for Schrodinger equations see [22], for the equations of
elasticity see [73]. Hence this underlines the necessity of studying each system in detail

to obtain specific optimal results; see also the remarks at the end of this chapter.

8.2 Proof of Theorem 1.2

The proof of Theorem 1.2 will follow from a sequence of Lemmata. Let

n

0,:=% "o (8.10)

= |
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Lemma 8.2 There is a constant C > 0 such that for any smooth function y = y(z) in
R, being compactly supported (or vanishing sufficiently rapidly at infinity), the following
inequality holds for all v € R"™ \ {0}:

n—1

1 2 1 1
)l < C (M) I O 1
(where Q was defined in (4.23)).

ProOOF: We introduce polar co-ordinates:

r=r€, r=lz, £eSh
Then we have .

v = = [ 2709ay()ax,
This implies '

26 < 2 [l0olay0oNa,

hence
[ weoiac< 2 llblowl
Sn—l
Observing that {2 — containing only angular derivatives — commutes with 0,., we obtain
the same inequality for Q%y. Summing up for 0 < |a| < [”;1} + 1, we get

: C
1 1
[Zl} / \Qay(rf)IZdi < o Hyné,[";l]+1,2||6Ty|‘§22,[”;1}+1,2’
lo<["51]+1 gni-t

which yields the proposition with the help of Lemma 4.15.
Q.E.D.

Remark: All constants in this section naturally depend on the space dimension n.

The estimate in Lemma 8.2, applied to a function y = y(¢,z) in R x R", already
gives us the desired kind of L?-L>-estimate in a part of the exterior of the light cone
(=A{(t,z) | t = |z|}), namely for (t,z) with 2|z| > ¢, see below. To get an estimate for

(t,x) with t > 2|x|, we use the following representation for 0,.:
Oy = 2 (tL, —rLy), (8.11)

where
L;. (8.12)
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It follows from the definitions of 9,, L., Lo, in (8.10), (8.12), and (4.22) respectively,
that

L, =10, +1t0,, Ly=1t0+r0,,

which immediately implies (8.11).

Lemma 8.3 For all k € IN there is a constant C' = C'(k) > 0 such that for all smooth
functions y in R x R™ the following inequality holds for all (t,z) with t #r = |x| # 0,
t>0:

|0Fy(t, )| < Z |L%y(t, x)

|a\<k

where Ly denotes the vector (Loy, L1y, . .., Lyy).

PRrROOF: The proof follows by induction on k.
k=1

Oyt x) = (t Z Liy(t,x) — rLoy(t, x)) .

This implies

1
el < L (IS + )
< e
1<k—k+1:
1
oy = ak{tz (Lr—rLo)y} (8.13)
_ oy (f af{ ! }ak’j{(tL Loy}
= 2\ v g O U ol
We have . .
' <C- , <j<k 14
o) <€ =it £r)y OSTSE (8.14)

(which may be easily proved by induction again).

By the induction hypothesis we obtain

C

|0F 7 {(tL, — rLo)y(t,x)}| < = rft—d S |L(tL, — rLo)y(t,x)|  (8.15)
la|<k—j
C a
= It — |k > L (tL, — rLo)y(t, z)|
lal<k
Clt+r N
- |t(_r‘k—)j Z |L%y(t, z)].

|oo| <k+1
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Combining (8.13) — (8.15) we get

t+r

o y(t2)| < C : . |Loy(t, )|
[t — r[7+E(t + )|t — |k ‘a‘gﬂ
1 «
= C|t T > Ly(t, ).
|a]<k+1

Q.E.D.

The estimate in Lemma 8.3 will lead to the desired L?-L>-estimate for an arbitrary
smooth function y = y(¢, ) as we shall show now.
Let v = v(t,7,&) be defined by

o(t,r, &) = (t —r)ky(t, re),

k€N fixed, 0 <r = |z| <t, £ € S" ! x =r&. Since by the definition of v we have
o

8ij(tar7§)\r:t:0a j:Ow“ak*L

we obtain the representation

1)k b ok
ot = oy [ e gan
Applying Lemma 8.3 we get

U(t, )‘7 f) < CMk(t7 /\7 6)7

ak

where

My (t,X,8) = > |Loy(t, )|, 2=\

o<k

This implies
1

lo(t,r, €)| < CL(t,r) (/ A”‘lM,f(t,A,f)d/\> :
where )
Ip(t,r) == (/()\ — r)%_Z/\l_”d)\) .

Integrating & — |v(t,r, )| with respect to & € S*~ 1 yields

( / ng)pdg) SO L), IV

Sn—1

1
(t—r)
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Applying Lemma 4.15 and observing that Ly, Ly, ..., L, are contained in the family I'
defined in Chapter 4 we obtain

lyt,2)* = lyt,rOP <C 3 [9%ll72(sn
lof<["5"]+1
< C OB, 2 L7y (1)]13
lol<["5']+1 |BI<k
1
< Cllz(tvr)(t_,r,)gkHy(t)H%‘_’]H,[";l]#,Lg'

If n is odd we take k := "J* for which

Lt r) = (/ <1 _ :)de) o (t— )b

If n is even we take k := ”;2 for which

IMLT)—-(](X—7Q(1—-:>H1dk>2§ (/Adx)Z—-j2u2—rﬂ5

In both cases we conclude for t > 2|x|:

ly(t,2)| < C 2y e 2, (8.16)
because we have ) )
for odd n : n +[n7 }—i—l:n—f—l,
2 2
and )
A (t=r)?=(t—r)"2 <ct™?,
while 5 1
for even n : ne {n— ]+1:n+1
2 2
and
1 1

(t )n+2 \/2 (t2 _ 7,2)1/2 < \/Q(t _ ,,,)—n/? < Ct_n/2
—7r) 2

(observe t > 2r).

Lemma 8.4 There is a constant ¢ > 0 such that for any smooth function y = y(t,x) in
R x R", y being compactly supported with respect to x € R" (or vanishing sufficiently
rapidly as |x| — oo) for each fized t > 0, the following inequality holds for allt > 0 and
allz € R":

ly(t,2)] < e+ )" 2]y ez
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PROOF: First let t > 1.
By (8.16) we have for ¢ > 2|x|

ly(t,2)] < ety (Bt < (1 + 6" 2 ly (@) lrnrre (8.17)

By Lemma 8.2 we get for ¢ < 2|z|

IN

1 1
ly(t, x)]| C\x|’(”’1)/2Hy(t)\|é7[n;1]+172|\3ry(t)||é7[n;1]+172 (8.18)

IN

ct= (=02 <||y(t)||g,["';1}+1,2 + Hary(t)HQ,[”;l]JrLQ)

IN

A"y () e a1z < L+ 672y [l e

Now let 0 <t < 1.

By Sobolev’s imbedding theorem we conclude

IN

Dl < Ol < AyOl (19)

IN

cly@)llrnere < e(1+6)~"D2 |y (1)

|F,n+1,2-

Combining (8.17) — (8.19) we obtain the proof of Lemma 8.4.

Q.E.D.

Remark: The number n + 1 appearing on the right-hand side in the term ||y(¢)|/rn+1,2
can be replaced by the optimal value [n/2] + 1 — in analogy to the classical Sobolev
inequalities. This is shown by L. Hérmander [47] and S. Klainerman [91].

Now we shall prove Theorem 1.2 with the help of the last lemma. One remarkable
fact is that in Lemma 8.4 y is not necessarily a solution of the linear wave equation.
Nevertheless a kind of decay rate (t~("~1/2) is obtained in a special L*~L*®-estimate.
The price for this, namely the occurence of the || - ||rn+12-norm of y(¢) on the right-hand
side, is still good enough — better to say, it is perfectly suitable — for solutions of
nonlinear wave equations.

To prove Theorem 1.2 we shall again assume for simplicity that the nonlinearity has the

form
n

f(Dy,VDy) = > a;;(Dy)d:0;y,

ij=1

where a;; = aj; is smooth, a;;(0) =0, 1 < 4,5 < n, and also without loss of generality

that > [a;;(u)| < ) for all u with |u| < 1 (cf. the proof of Theorem 1.1 for these
ij=1

assumptions).

In analogy to Theorem 6.1 it is proved that there is a constant C' = Cy > 0 depending

only on (at most s derivatives of) f and on s € IN, s > % 4 1, such that we have for the
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local C*-solution y on [0, 7] (cf. Theorem 5.8)

t
Ve 0,T): [IDy(O)lsn < CallDy(O) .o exp{cs / |Dy<7>|r,[g]ﬂ,@od7} (8.20)
0

where we have assumed the following relation without loss of generality:

vt € [OvT] : HDy(t)HF,[;]Jrl,oo <L

(Observe that Dy(0) = (¢, Vy) and ¢ will be small.) The analogy to the proof of The-
orem 6.1 consists in multiplying the differential equation for y with Ty (¢) in L*(IR™)
(instead of multiplying with V®y,(¢)) and using the Lemmata 4.13, 4.14 as well as the
commutator relations for the operators of the family I" given in the Lemmata 4.11, 4.12.
This requires more calculations than the proof of Theorem 6.1 but it is still straightfor-
ward, (compare John & Klainerman [75]). In analogy to the considerations in Chapter 7
we define for the local solution y and for ¢t € [0, T7:
My(y) := sup (1+7)""2[ Dy(7) e, vo,005

0<r<t

where Ny € IN will be fixed below. (That is, we are interested in proving an a priori
L*-bound.)
By Lemma 8.4 we conclude that

My(y) < ¢ sup [[Dy(7)[r.no4nt1.2 (8.21)
0<7<t

Combining (8.21) and (8.20) we obtain

t
Mi(y) < gt | DY (0) Iy, €xp {0N0+n+1 / |Dy(¢>||r,[wn;n+l]+mdr} L (8.22)
0

If
NO 2 n -+ 2
we have N L
[ 0+2n+ }+1§No.
Hence we define
NO =n-+ 2

(and Cnyint1 becomes Copig).
With this choice of Ny, the form of the initial data, the definition of M,(y) and (8.22)

we obtain

M,(y) < Ceexp {0/ M, (y)(1+ T)—<"—1>/2dr} , (8.23)
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where C' is a constant depending on at most 2n + 3 derivatives of F, Vi and .
The inequality (8.23) implies
for n >3

My(y) < Ceexp{CM,(y)}, 0<t<T,

and for n =3
M,(y) < Ceexp {CM,(y)log(1+1t)}, 0<t<T. (8.24)

As in Chapter 7 we conclude now that for n > 3:
VO<t<T: My) <M< oo,
with a constant My being independent of T, which implies via (8.20)
VOSEST: [IDy®)llee < Cx |l DYO)lnee

and hence allows a continuation of the local solution for all ¢ € [0,00) with the same
arguments as in the proof of Theorem 1.1, (cf. (8.2) and the arguments following there).
This proves part (i) of Theorem 1.2.

To prove part (ii) we define

log 2
To(e) := sup {O <t<oo ’ There is a smooth solution in [0,¢) and M, (y) < Clog(gl 1) }

(C equals that C' which appears in (8.24).)
By the definitions of Ty(e) and Tt () (cf. Chapter 1) it follows that

To(e) = To(e),
hence, if Ty(g) = oo then
To(e) = 0o > /% for all A, > 0.
If To(g) < 0o we have

either
(a) The solution does not exist for t > Ty(e)
or

log 2
(b) Mz, (y) = Clog(1+ Ty(e))

In case (a) we conclude that

log 2

f <t<T
C'log(1+1) or 0st<Tp
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which implies
My(y) < Ceexp{CM(y)log(1+1t)} <2Ce

by (8.24) and thus allows a continuation beyond Ty(e) with the arguments from above
(case n > 3), which is a contradiction.
In case (b) we obtain from (8.24)

log 2
Clog(1+ Ty(e)) —

log 2
Clog(1+ Ty(¢))

A

Ceexp {c log(1 +To(e>>}

= 2Ce.

This implies

log 2
Ty() > exp {QOCgZE} — 1>t

with A :=log2/(4C?) if € < gy := 1/(2C?). This completes the proof of Theorem 1.2.

Q.E.D.
The proof of Theorem 1.2 followed the paper [88] by S. Klainerman.

In the proof of Theorem 1.1 and of Theorem 1.2 it was important that the nonlinearity
did not depend on y explicitly, but only on derivatives of . This is connected to the fact
that one might get L>°-L!-estimates for y similar to those for Dy in Chapter 2 by using
again the given representation formulae (Kirchhoff’s formula, ...), but that it is not easy
to find appropriate estimates for the L>norm [|y(¢)||2. To overcome this difficulty Li &
Chen [104] use a global iteration scheme (global with respect to time t) instead of using
a continuation argument for a local solution. The a priori estimates they need also use
the invariance properties of 92 — A and corresponding Sobolev type estimates as we did
in the proof of Theorem 1.2. The result is a global existence theorem for small data as

in the Theorems 1.1, 1.2 for the nonlinearity

—
I

f(y, Dy, VDy),

fW) = o(w|*) as |[W|—=0,

under the condition that the following relation between « and the space dimension n

holds:
1 n-1 2
< 1-— ,
« 2 an

see Table 8.1.

(Compare this to Table 1.1 in Chapter 1.) In a recent paper by Li & Zhou it is stated
that a > 3 is sufficient for n = 2, see [106].
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a= 1 2,3 4,5, ...
n > 5 3 2

Table 8.1: f depending on y

Remarks on the optimality of the results:

We shall see in Chapter 11 that the method to prove Theorem 1.1 can be carried over
almost literally to many other initial value problems of mathematical physics. This great
generality of the approach nourishes the expectation that the results will not be optimal
results in each special case — although they are optimal in many cases. Here we do not
have in mind optimality with respect to the regularity assumptions on the coefficients
and on the data; the results will always be theorems for sufficiently smooth coefficients
and data without striving for minimal regularity. What we have in mind addressing the
question of optimality is the relation between the space dimension n and the order of
vanishing of the nonlinearity characterized by the natural number «.

The general method applied to nonlinear wave equations (1.1) leads to Theorem 1.1 and
the relation between n and « is expressed in Table 1.1 in Chapter 1. It is determined
through the condition

1 1 n—1
1 . 2
a<+a)< 2 (8.25)

Theorem 1.2 shows that the following condition is the optimal one

The condition (8.25) is in general sufficient but not necessary. We have for cubic non-
linearities (o = 2) that n > 5/2, i.e. n > 3, is sufficient. It is also known that quadratic
nonlinearities (o« = 1) in three space dimensions may lead to the development of sin-
gularities, see John [68] and also Chapter 10. In this sense the result is optimal with
respect to a in the case (n, ) = (3,2).

Remark: A similar situation is given for the equations of elasticity in the initially
isotropic case (cf. Section 11.1) following S. Klainerman [87] (existence for cubic nonlin-
earities in IR?) and F. John [69] (development of singularities in the quadratic case).
On the other hand the condition on n, namely n > 6, which arises in the quadratic case
(a =1) from (8.25), is only sufficient, not necessary, as we have shown in Theorem 1.2.
To prove this optimal result special properties of the wave equation were used. These
special effects are not obviously given for the systems which will be studied in Chapter
11. The results obtained for nonlinear heat equations by the general method (see Section
11.2) will also give us optimal results in many cases but not in all cases; see Table 11.3 in

Section 11.2. In particular, if the nonlinearity does not depend on u, the general method
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does not take into consideration the special form of the heat equation, i.e. the dissipative
term —Au, well enough.

This emphasizes that the general method leads to optimal results in many cases, but for
each system it may be necessary to exploit its special structure — besides the evolution-
ary structure needed for the general method — to get optimal results in some special
cases.

In this spirit it is interesting to mention other methods for proving global existence
theorems which have been developed for special situations. This will be briefly done in
the next Chapter.
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As we have pointed out in the preceding section, the classical method used in the proof
of Theorem 1.1, which we shall call energy method in the sequel, does not lead to optimal
results in each case neither for wave equations nor for all the systems in Chapter 11.
Special ansétze have turned out to be more efficient for particular systems. Before giving
some ideas of such methods we shall first present a method, which historically precedes
the energy method concerning general existence results on nonlinear evolution equations;
this is the Nash-Moser-Hormander scheme.

Remark: We have called the energy method classical because the basic idea (to prove
a nice a priori estimate in order to be able to continue a local solution) is classical. The
ingredients of proving the a priori estimate (see Chapters 2, 4, 6, 7) have been developed
to their full strength in the last decade.

1. The Nash—Moser-Hormander scheme

The first general global existence theorems (small, smooth solutions) for nonlinear wave
equations, later on also for other evolution equations, were obtained by S. Klainerman
1980 and 1982 respectively in his papers [86, 87]. He used a global iteration scheme for
solutions of the linearized equations in [0, 00) x IR™ instead of continuing local solutions
of the nonlinear problem.

Roughly speaking, this means for the initial value problem

yu — Ay = f(Dy, VDy),

y(t = 0) = Yo, Ut(t = O) =Y,
that first the function §"*! is computed from a given function y" with the natural

iteration:
gt = Ay = f(Dy", VDy"), gt =0) =yo, g7 (t=0) = 1. (9.1)

Here decay properties of solutions to the linearized problem are of importance again.
This naive iteration leads to a loss of regularity, in particular because of the occurence
of the highest-order derivatives in the nonlinearity. To overcome this difficulty a kind of
a Nash—Moser—-Hormander scheme is used; for this purpose a smoothing operator S = .S,

is introduced and the iteration is y” — y"*! where

yn+1 = ngn-%—l.
y" ™! does not solve the differential equation in (9.1) exactly, but the error produced by S,
only has a quadratic character (compare the classical Newton-iteration (/saac Newton,
25.12.1642 — 20.3.1727)), the smoothing effect provided by S, compensates for the loss

of regularity in the simple iteration (9.1).

© Springer International Publishing Switzerland 2015 104
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This method is technically complicated (and actually much more sophisticated than out-
lined in the coarse scheme above), but has also been applied to nonlinear wave equations
in exterior domains (by Shibata & Tsutsumi [167]). In general this method provides less
sharp regularity and decay results (see [86, 87, 94, 167]).

Remarks: Concerning the origin and the name of this method we remark that the
crucial loss of regularity, which occurs in the naive iteration, has its counterparts in
the so-called “small divisor problems” in celestial mechanics and in isometric imbedding
problems in differential geometry. Mainly there are two ways out of the difficulties. The
first one was developed by J. Nash in his paper [135] on isometric imbeddings and further
developed by L. Hormander, for example for problems in physical geodesy, see [45]. The
second one is based on a modification of the classical Newton-iteration; see for example
the paper of J. Moser [133].

It should be mentioned that the main problems for which this method was used to our
knowledge essentially have been dealt with by other, simpler methods: the initial value
problems by Klainerman & Ponce [94] (instead of [86, 87]) as discussed in the previous
chapters, the geodetic problem of Hérmander by K.-J. Witsch in [199] using the Legen-
dre transform (Adrien-Marie Legendre, 18.9.1752 — 10.1.1833), wave equation problems
in exterior domains with the energy method by Shibata & Tsutsumi [167], and even the
starting result of J. Nash was proved by M. Gunther in [41] with different methods. But

there are certainly other fields of applications for this original method.

2. The method of invariant norms

This method, developed by S. Klainerman for the study of linear and nonlinear wave
equations, was used to prove Theorem 1.2. It exploits the invariance properties of 97 — A
under the inhomogeneous Lorentz group (also called the Poincaré group, consisting of
translations and rotations, the transformations of the homogeneous Lorentz group, cf.
Chapter 4) (Henri Poincaré, 29.4.1854 — 17.7.1912). As described in Chapter 4 one can
define generalized Sobolev norms with the generators of the Poincaré group replacing the
usual differential operators 0, ..., d,, which define the classical Sobolev norms. Gen-
eralized Sobolev inequalities as in Lemma 8.4 then allow to obtain optimal results for
the wave equation in the quadratic case (o = 1), namely the result from Theorem 1.2.
Moreover, it is possible to get further information in the case & = 1,n = 3, where in gen-
eral a blow-up, a development of singularities in the function or in one of its derivatives,
may occur (cf. Chapter 8 and see Chapter 10 for blow-up results). It turns out, with the
help of the method of invariant norms, that a so-called “null condition” imposed on the
nonlinearity is sufficient for the existence of a global, small solution also in the quadratic

case in IR%; see [90].
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The null condition for a function

F = F(y,w) = Q(w) + O(|(y,w)[),

where w = (Dy, D), Q(w) = O(Jw|?) as |w| — 0, reads

>’Q(w) -
a(aay)a(aby) & = 0,
P*Q(w) B
D(0,9)0(0s0.y) 66 = 0,
P’Q(w) B
3(0,0py)0(0.0qy) E66ly = 0,

for all
£=(&,6,6,8) e Rx R with & =& + & + &

and arbitrary w, and it has to be summed up over all integer indices from 0 to 3.

A typical example for a nonlinearity F' satisfying the null condition is
F=|Vy* -y,

which was studied in the Example 1 in Chapter 1.

For formulations of the null condition see also F. John [72] and W. Strauss [179].

The null condition has been recognized as being a sufficient condition for quadratic
nonlinearities in IR* by D. Christodoulou in [18] too; see paragraph 3. The method of
invariant norms has also been applied with appropriate modifications to Klein—Gordon
equations by S. Klainerman in [89] (see Section 11.5), to Schrodinger equations by P.
Constantin [22] (cf. Section 11.4), and by F. John to the equations of elasticity in [73]
(having less invariances at hand and proving an “almost global existence result”; see
Section 11.1).

To have a rough idea of the action of the null condition one should notice that the decay
of solutions to nonlinear wave equation in ¢ and x in general is better away from the
boundary of the light cone (cf. e.g. Lemma 8.3 and [90]). The null condition assures

that it can not become too bad on the boundary = {£ € R x R¥| €2 = & + & + £2}.

3. The method of conformal maps

The wave equation is conformally invariant. D. Christodoulou uses in [18] a special
conformal map due to R. Penrose, which maps IR x IR™ into a bounded set in R x S™. In
this sense it is called a “conformal compactification” (see the notes in [179]). Hence the
problem of global existence is carried over to a local problem which has to be solved up
to the possible boundary. This method had been applied before to Yang—Mills equations,
see [18].
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4. The method of normal forms

In order to deal with a quadratic nonlinearity F in IR? for the nonlinear Klein-Gordon
equation
(0f = A+m)y = fly. Dy, VDy), m >0,

(see Section 11.5), J. Shatah applies in [159] a change of the dependent variable, which
essentially transforms the quadratic nonlinearity into a cubic one, which may be dealt
with by the energy method after some appropriate easy modifications. The name of the
method is connected with Poincaré’s theory of normal forms appearing in the theory of
ordinary differential equations, see V.I. Arnold [7] or Chow & Hale [17].

The ansatz of Shatah can be described as follows. In order to solve
v+ Av = k(v),

where k vanishes up to a certain order near v = 0, one applies a change of variables of
the type
w = v+ h(w).

Now h has to be determined in a way such that w solves the equation
wy + Aw = g(w),

where g vanishes near w = 0 of one higher order than k near v = 0. This means that
h has to solve a special differential equation which actually can be solved by Shatah for
the case of the Klein-Gordon equation.

We remark that the last three methods are discussed in more detail by W. Strauss in
[179]. Of course there are more methods for special systems with specific difficulties, see

for example the discussion of parabolic problems in the survey article [10].



10 Development of singularities

The theorems in Chapter 1 are results for small data. The necessity for dealing with
small perturbations of the linearized equations is underlined in the sequel by examples
which show that, in general, one has to expect the development of singularities in finite
time. In particular neither the smallness of the initial data nor the smoothness of data
including the coefficients can prevent a solution from blowing up. We shall not go into
the details here but we just present an illustration of the typical hyperbolic phenomenon
that the solution and/or derivatives of the solution become singular after some time.
This will mean in general that norms like the L>-norm of the local regular solution or
of its derivatives become infinite. The only way to avoid a blow-up are smallness of
the data in connection with a sufficiently strong vanishing of the nonlinearity near zero
and a sufficiently high space dimension. This is the message of the Theorems 1.1 and
1.2. Moreover we have learned from Theorem 1.2 that a solution of the nonlinear wave
equation with a quadratic nonlinearity in IR® lives at least exponentially long, although
the examples below show that in general a blow-up occurs. Nevertheless this result
justifies the notion of “almost global existence” in this case (cf. the paper of John &
Klainerman [75]). We mention that for large data a blow-up may occur also in the
cases where one has global existence for small data, see Example 1 in Chapter 1 and the
remarks below.

In this chapter we are only concerned with wave equations (or rather hyperbolic equations
and systems). One should however notice that similar results also hold for heat equations
and the other systems which are discussed in the next chapter. A few further examples
and hints are given there.

The following survey first recalls the simple case of an equation of first order in one space
dimension. Already there it will become clear that smoothness and smallness of the data
in general cannot assure the existence of global smooth solutions.

Let u be the solution to the following initial value problem:
u+a(u)u, =0, u(t=0)=uy, (t,2)€R? (10.1)

where a is a smooth function satisfying

a > 0.
If the equation for u is in conservation form, i.e. a is the derivative of some function h,
then this assumption means the convexity of h.

We have an implicit representation for u:

u(t, z) = uo(z — ta(u(t, x))), (10.2)
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and the derivatives u, and u; are given by

wy' (x — ta(u(t, x)))

) = 4wt ) (o — talu(t ) ¢

_alu(t, z))ug (z — ta(u(t, z)))
1+ a'(u(t, z))ug (z — ta(u(t,z))) t

It is now obvious that u, and u; become singular in finite time if uy’ is negative some-

w(t, z) =

where. This happens independently of the smoothness or the smallness of the datum .
If

“'O('T) = ng)(.r), ¢ € Cgo(]R)v €>0,

then we have for the maximal length 7' = T'(¢) of an interval of existence
liﬁ)l eT'(e) >0 (10.3)

in the so-called “genuinely nonlinear” case ’(0) # 0. If a’(0) = 0 but a is not constant
in a neigbourhood of u = 0, then

lim £*T() >0

<10
holds, see F. John [74].
These are typical nonlinear phenomena. In the linear case, where a is constant, the
solution of (10.1), given by (10.2), exists globally, also for large data.
F. John [64] and also T.-P. Liu [112] proved a corresponding blow-up result for systems
of first order in one space dimension. This is also useful for the treatment of plane waves
in higher dimensions, see for example the discussion of elastic waves in [64, 144].
Remark: There is much less known for general systems in higher dimensions even if
they are in conservation form. This concerns both the question of existence and the
study of singularities. For large data we mention a result of T.C. Sideris [172]. Consider

a system of m conservation laws in n space dimensions of the form
w+ f(u)e =0, u(t=0)=u,

where f : R™ — R" x R™, f(0) = 0, z € R". If B;(u) denotes the matrix with

i

coefficients S
u,

(u), then one of the following two conditions 1. or 2. shall hold, where

1. n =1, Bj(u) has only real eigenvalues with corresponding eigenvectors which span

the whole space;

2. Bi(u) = Ay'(u)A;(uv) with symmetric matrices A;(u), i = 1,...,n, Ag(u) positive
definite.
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Then it is proved (under certain additional assumptions which correspond to the genuine
nonlinearity condition a’(0) # 0 for the system (10.1)) that there are no global smooth
solutions for (too) large data.

Now we turn to the type of wave equations that were studied in the previous chapters,
ie.

u — Au = f(Du, VDu).

F. John studied radially symmetric solutions. He proved in [70] for the equation
uy = 2 (u)Au (10.4)

in R?, with ¢(0) = 1 and if ¢(0) # 0 (without loss of generality > 0) that there will

always appear singularities in the derivatives of u. If
w(t=0)=c¢p, w(t=0)=cy,

then
1

d0)K’
(K > 0 is determined from the data). Actually, equality holds in (10.5).
Also the following quadratic case in R* was studied by F. John [68]:

11%1 elogT'(e) < (10.5)

Ut — Au = 2ututt.

Again the development of singularities in finite time is proved. More precisely, there is

no global C2-solution (for smooth data with compact support) if

[ J(0,2) — w0, 2)) dr > 0.

This kind of results was extended to radially symmetric quadratic nonlinearities involving
the radial derivatives by T.C. Sideris [171].
The special case of nonlinearities of the type f = f(u) is not subject to considerations
here; we refer the reader to F. John [74] and W. Strauss [179]. We only remark that in
IR? the quadratic nonlinearity f(u) = u? leads to a development of singularities; more
generally one can try to characterize the critical exponent p in f(u) = u? depending on
the space dimension n; see for example F. John [67], H. Pecher [139].
Having realized that, in general, singularities will develop in finite time, that for example
quadratic nonlinearities lead to singularities in IR® but allow global small solutions in
R™, n > 4, it is natural to ask for the life span of smooth solutions in dependence of the
initial data. We have already given a first result in this direction for the one-dimensional
case in (10.3) and for the special equation (10.4) in (10.5).
For the equations

uy — Au = f(Du, VDu),
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u(t=0)=c¢, w(t=0)=cy, (£>0),
|fW)| = O(W|**h),  for |[W| — 0 and some o € N,

we summarize results on estimates for the length 7' = T'(¢) of the maximal interval of
existence of a smooth solution in Table 10.1, see L. Hérmander [48], F. John [74], Li &
Yu [105], H. Lindblad [109, 110]. (For the case f = f(u) we refer to [74, 105] and the
references there.)

a n Lower bounds for T'(¢)
1 1 Ae™!

1 2 Ae?

1 3 exp(Ae™1)

2 2 exp(Ae?)

1 >4

2 >3 Global solutions

3 >2

Table 10.1: (Almost) global existence results

In Table 10.1 A denotes a constant which only depends on ¢, and f. The statements
are to be understood for sufficiently small €.

The proofs of the relations in Table 10.1 partially use the generalized Sobolev estimates,
arising from the invariance of 92 — A under the Lorentz group, cf. Chapters 4,8,9. The
results in the case of non-global existence are named almost global existence results (at
least in the exponential case, see Table 10.1).

We conclude this chapter with the (as obvious as important) hint at the fact that the
previous results require an investigation of weak solutions which might exist globally.
One should be aware of the observation that derivatives of smooth solutions may develop
singularities but that still a global continuous solution might exist. Here further studies
are necessary, in particular on the propagation of discontinuities — shock waves —, see
for example the books of A. Majda [114] and J. Smoller [176].

For extensive surveys on initial value problems for nonlinear wave equations we refer to
L. Hormander [48], F. John [74] and W. Strauss [179].
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It has been anticipated in the introduction that the proof of the first global existence
theorem, Theorem 1.1, follows a general principle which will lead to similar results for
the systems of evolution equations in this chapter. The common structure of the proof
of global existence of small, smooth solutions can be described as follows.

We consider a system of the type
Vi+ AV = F(V,...,V°V), V(t=0)=V", (11.1)

where V = V (t,z) is a vector-valued function taking values in R¥ (or C*), ¢ > 0, z € R™.
A is a linear differential operator of order m € IN, k,n,m € IN. F is a smooth linear
function of V and its derivatives up to order || which may be equal to m, and V° is a
given initial value.

It is assumed that the nonlinearity F' = F'(WW) behaves near W = 0 as follows:
FW)=0(W|**") as |[W|]—0 (11.2)

for some a € IN.

Remark: F may also depend explicitly on t and z, F = F(t,z,V,...,VV). In that
case the condition (11.2) is to be read uniformly in ¢ and z.

A global existence result is proved along the following steps A—E.

A: Decay of solutions to the linearized system (F' = 0):
One proves that
VOl < e+ 1)~V vy, (11.3)

where 2 < g < o0,1/p+1/qg=1,¢,d >0and N € N are functions of ¢ and of
the space dimension n. (Cf. Chapter 2 for the wave equation: d = ", (1 2).)

B: Local existence and uniqueness theorem:
The existence of a unique local solution V to (11.1) has to be shown. V shall
satisfy:
Ve C([0,T],w**) n C([0,T], W*?),

s,5 € N, T > 0 appropriately chosen. (Cf. Chapter 5 for the wave equation:
§=s-1)

C: High energy estimates of the following type should hold:
t.
IV (#)s,2 < ClIVO|ls2 exp{C / V(5o dr}, (11.4)
0
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t € [0,T]. C depends only on s, not on T or V°, and b is independent of s (which
will allow us to close the circle later in Step E). (Cf. Chapter 6 for the wave
equation: b =1.)

D: Weighted a priori estimates should hold:
With the help of A and the standard representation formula

t
V(t) = e V0 / AR, VPV (r)dr,
0

where e 4TV is the solution to the linearized problem with initial value W, one
proves that the following inequality holds for sufficiently small V° (small in a sense

to be made precise later)

sup (1+ )" |V (#)]ls00 < Mo < o0,
0<I<T

where My is independent of T, s; is sufficiently large, ¢; = ¢1(«) is chosen appro-
priately, and dy = d(q1,n) according to A. (Cf. Chapter 7 for the wave equation:

g1 = 2o + 27 d1 = ail n;l)

E: The results in C and D will lead to the desired final (classical a priori) energy estimate

for the local solution:
IV (O)llse < K[[V|ls2, 0<t<T, (11.5)

5 being sufficiently large, V° being sufficiently small, K being independent of T'
(and of V). The estimate (11.5) allows the continuation of the local solution to
the whole time axis [0, c0) with standard arguments. (Cf. Chapter 8 for the wave

equation.)

The examples in the subsequent sections demonstrate the wide range of applicability of
the scheme A—E, in particular the discussion of the system of thermoelasticity in Section
11.3. There the scheme A—E has to be modified because there are different types of
nonlinearities, i.e. the assumption (11.2) has to be replaced by a more complicated one,
and also there are different decay rates for different components of V, i.e. (11.3) will
split into several different estimates. Thus it is clear that also the Steps B—E will have
to be modified. But since this will be done in the spirit of the scheme above, the example
of thermoelasticity is a good demonstration for the applicability of the ideas that are
underlying the general scheme.

We shall go through the steps A—E for each of the following examples in the Sections
11.1. — 11.7, but we shall not go into all details as we did it discussing the wave equation
in the Chapters 2-8. Instead we shall point out the essential results and if necessary, we

give further references.
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We also remark that most of the systems are studied in their linearized form in the book
of R. Leis [98], hence several of the aspects concerning Step A are illustrated there.
The proof of Theorem 1.2, in particular the use of certain invariance properties of the
d’Alembert operator, does not have counterparts for all the following examples. There
exist already similar considerations for the equations of elasticity, for Schrodinger equa-
tions and for Klein—Gordon equations, cf. the remarks in the corresponding Sections
11.1, 11.4 and 11.5 respectively.

11.1 Equations of elasticity

In this section we consider first the initial value problem for a homogeneous, initially
isotropic hyperelastic medium in IR and then the initial value problem for a homoge-
neous, initially cubic hyperelastic medium in IR?. It is not the different space dimension
but the different elastic behavior (isotropic or cubic) that will produce different interest-
ing effects. This illustrates that there are many interesting unknown or even unexpected
features in these equations as soon as one leaves the most simple situation. This might
hold for other equations as well and underlines the necessity of further research on each

of these systems.

11.1.1 Initially isotropic media in R?

Let U = (U, Us, Us) = U(t, ) be the displacement vector of a three-dimensional elastic
medium filling the whole of IR?, i.e. ¢t > 0, x € IR®. The equations of motion for a

homogeneous medium in the absence of external forces are

AU = Z Cimj(VU)0,0U;,  i=1,2,3, (11.6)

m,j,k=1

where the Cj,,;, are smooth nonlinear functions, the so-called elastic moduli, which are
given by
(V)

Cimjk(VU) = A(0U;)0(0,,Us)

with a given smooth potential .

Remark: The assumption of the existence of 1 which is mostly made (cf. F. John
[66]) corresponds to the assumption that the underlying medium is “hyperelastic”, cf.
J.M. Ball [8], P.G. Ciarlet [21]. If one does not neglect heat conduction effects then the
existence of a corresponding 1 is guaranteed, compare Section 11.3.

The equations (11.6) arise from the classical law of balance of momentum, see the deriva-
tion of the equations of thermoelasticity in Section 11.3, where we have assumed in our

homogeneous case that the mass density p satisfies o = 1 without loss of generality.
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For a derivation of the equations from basic physical principles see Gurtin [42], and for
the following transformation to a first-order system see F. John [66]. In addition to the
differential equations (11.6), the initial values U(t = 0) and U;(t = 0) are prescribed:

Ult=0)=U° U(t=0)=U" (11.7)

The equations (11.6) are rewritten as

3

Z Comik(0)0mOU; = 3 (Cimjt(VU) = Climj(0))0mkU;  (11.8)

m,j,k=1 m,j,k=1

= £i(VU,V?U), i=1,23.
We assume that the medium is initially isotropic, meaning
Cimgn(0) = (¢ = 263)0imbjk + ¢5(6i50km + Gjmik), (11.9)
i7m7j7k - 17273,

where the constants cy, ¢ satisfy
¢ >c > 0. (11.10)

With the Lamé constants A, i (Gabriel Lamé, 22.7.1795 — 1.5.1870) one has

= A+2pu, 5= (11.11)
Then (11.10) is equivalent to
>0, A+ p>0. (11.12)
With this notation and
Ti=X+2u
the equations (11.8) become
Ui +pV x V x U —7VV'U = f(VU,V?U), (11.13)

(f = (f17f27f3)/)'

The transformation of the second-order system (11.13) to a first-order system in ¢ is

given through defining the vector V' by
Vi=(0.U)y, r=0,1,2,3;i=1,2,3 (11.14)

with 0y := 0, i.e.
V - (80U17 a0[]27 sy 813U3)7
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and the 12 x 12-matrix A"(VU), r =1,2,3, by

A"(VU) = (A5 . (VU))imji, 4,7 =1,2,3;mk=0,1,2,3,

imjk
where 7, m count the rows and j, k count the columns. The element A;m]-k(VU ) is given
by
A"

imjk

(VU) = ir]'k(VU)(smo(l - (Sk()) + 5k05rm5ij~ (1115)

With these notations the differential equation (11.13) resp. (11.8) can be written as the

following equation for V:
Vi+ AV = F(V,VV), (11.16)

with initial value

where

3
AV = =3 A(0)9,V,
r=1
F arises canonically from f, and
V0= (0,0, (t = 0) = (U', VU").

In particular we see that V0 is given in terms of VU and U,
With (11.16) we have transformed the original equations (11.6) into the general form
(11.1). Now we proceed by looking at the general Steps A—E which will lead to a global

existence theorem for small data under certain assumptions on the nonlinearity.

A: Decay for FF =0:
If U solves for ¢t > 0

Ui +pV xVxU—-7VV'U=0, Ult=0)=0, U(t=0)=U", (11.17)

then we can use explicit representation formulae for the solution U in analogy to the

situation in Chapter 2 and one obtains (see F. John [66]):
(U, VU)o < C(L+ ) U 31, 0<t < 00 (11.18)

Here and in the sequel C' denotes a constant that does not depend on ¢ or on the initial
data.

The energy is conserved which is expressed by

1d

o 105+ ulV x Ul + VU3

= (U, Uy +pV x V x U —7VV'U)

= 0.
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We naturally assumed all functions to be real-valued and we dropped the parameter ¢ in
U (t,-) etc.

Since 7, 4 are positive and

IV x U2+ |VU|2 = (VxVxU-VVU,U)

= (=AU, U)
= [IVUIE5,
where AU = (AU, AU,, AU3), we obtain
(U, VU)(B)]l2 < C U o (11.19)

Interpolation between (11.18) and (11.19) gives the following estimate for V:
V@I, < C O+ VO, 20, C=Clg) (11.20)

where 2 < ¢ < o0, 1/p+1/¢ =1, and N, is not greater than 3.
Remark: In order to describe the decay it would also be possible to make the following

ansatz:

L>=VW12 @ D, (VW12 closure of VW2 in L2) (11.21)
is an orthogonal decomposition of L? = (L*(IR?))? with
VI = (V| e W2},

and
Dy:={W el | Vpely: (Ve,W)=0}

is the space of vector fields having (weak) divergence zero. (The decomposition (11.21)

easily follows from the projection theorem.) The corresponding decomposition of U into
U=U0"+U*"

(UP°: potential part; U®: solenoidal part) leads to a decomposition of (11.17) into the

two systems
UR — 1AUP = Ul — VV'UP =0, UP(t = 0) = (U°)P°, UP°(t = 0) = (U")P°,
and
Use — pAU*° = U +puNV x V x U =0, U*(t = 0) = (U°)*, U°(t = 0) = (U")*.

Now one could apply the results from Chapter 2 for the linear wave equation, at least
for 2 < ¢ < co. (In order to derive the final decay result (11.20) from the result for U*°

and UP° one has to know that the projections P, and P;,

Py L* — VW12, P, : [* — Dy,
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have the property that
[1PoW Iy < CHIW Iy, [1PoWlp < C W], (11.22)
which follows from the explicit representation
PW = F'(&& - FW),
PsoW - ]:_](_&()XéOXFW)a

¢ € R? being the variable in Fourier space and & = él' The estimates (11.22) then

follow from known theorems on multipliers in Fourier space, see for example Theorem
1.4 in [44].)

B: Local existence and uniqueness:
A change from Ci,j5(VU) to Cipnyji(VU) with

Cimjn(VU) := Cimjr(VU) + & (6imik — Oirjm)

leaves the differential equation (11.6) invariant but this change will be important for
the matrix A° (which will be defined below) to be positive definite. We shall write
Cimji(VU) again instead of Cnj,(VU).
Let the matrix A° be given by its elements

AO

imjk»

i7j = 172a37 m7k 207172737
where
A?m]k = (1 - 5m0)(1 - 6kO)Cz7n]k(VU) + 5ij57n05k07

i.e. A° essentially depends on V, (formally define Cypjn(VU) := 0 if m = 0 or k = 0).
Then the differential equations (11.6) (resp. (11.16)) turn into

Ao,V + i AY(V)AT(V)D,V =0,

r=1

with initial value V(¢ = 0) = V° and the matrices A°(V) and A°(V)A"(V), r = 1,2,3
are symmetric and A%(V) is positive definite (uniformly with respect to V in each com-

pactum). Hence we can apply Theorem 5.8 and we obtain a unique local solution
V e OO0, 1, W) N C1 ([0, 7], W 2)

for some T > 0, if s > 3 and V° € W52,
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C: High energy estimates:
The desired energy estimate of the type (11.4) and the subsequent a priori estimates in D
and E, as well as the final global existence theorem (Theorem 11.1 below) are connected
to the behavior of the nonlinearity F = F(W) near W = 0. Essentially, F' consists of
the terms f;, i = 1,2,3, where
3
f(VU,V2U) = Z Cimjk(VU) = Cimjr(0)) 0,,0,U;
m,j k=1
according to (11.8). Hence F' vanishes at least of order 2 (a = 1) near W = 0.
F. John has demonstrated that in the general quadratic case, more precisely, in the so-
called “genuinely nonlinear” case, solutions will develop singularities in finite time; see
[69] for radially symmetric solutions and also [64] for plane-wave solutions. Recently
he investigated in [73] the life span Ty, of local solutions for the quadratic case and he
proved a lower bound for T, in analogy to the situation known for scalar nonlinear wave
equations (“almost global existence”, cf. Chapter 10 and Theorem 1.2). He used the
method of invariant norms adapted to the equations of elasticity, cf. Chapter 9.
In order to obtain a general global existence theorem we therefore assume that, for
i,m,j, k=123,

holds, whence we have
FW)=0(W]) as|W|— 0.

Cubic nonlinearities turned out to be appropriate for the existence of global solutions
to nonlinear wave equations in three space dimensions, see Theorem 1.1. Since the
decay behavior of solutions to the linearized equations of elasticity is the same as that
of solutions to linear wave equations — compare (11.20) and Theorem 2.3 —, we obtain
the corresponding result in this Step C and in the following Steps D, E in complete
analogy to the considerations in the Chapters 6-8. (See also Section 11.3, where the
equations of elasticity appear as a special case.)

First we have the following high energy estimate for the local solution:
13
IV (®)llsz < CIVOls2 eXp{C/ IDV (r)ll%dr}, te[0,T],C=C(s).
0

D:  Weighted a priori estimates:
We have
sup (1+ )2V (2, )lsr.6 < Mo < 00,

0<t<T

where My is independent of T, s; is sufficiently large and

[VOls2 + HVOHs,ﬁ/s
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is sufficiently small (s > s; being sufficiently large).

E: Final energy estimate:

The following inequality is now easily obtained.
IVOlo < KIVOlzr 0<t<T,

s being sufficiently large, V° being sufficiently small, K being independent of 7' (and
Vo).

Remark: The minimal value of s can be given explicitly as it was done for the wave
equation in Chapters 5-8.

Altogether we obtain the following global existence theorem.

Theorem 11.1 We assume (11.23). Then there exist an integer so > 3 and a § > 0
such that the following holds:
If VO = (U', VU°) belongs to W2 N W55 with s > sy and

Volls2 + IV

$,6/5 < 67

then there is a unique solution U of the initial value problem to the nonlinear equations
of elasticity in the initially isotropic case in R (11.6), (11.7), with

(U, VU) € C°([0, 00), W**) n C*([0, 00), W 12).
Moreover we have

(U, VO)(®)lle + |(T, VU)B) s = O,

(U, VU)(2)

[s2 = O(1) as t— oo.

Remarks: We also have
(U, VU) () ||ler6 = O%3) ast — oo,

with s; given in Step C, but we shall not stress this and the corresponding results in the
theorems in the following Sections 11.2 — 11.7.

In Theorem 11.1 the smoothness of the nonlinearity, i.e. Cj,,;, being C*°, was assumed,
the reason being the applicability of Theorem 5.8. But this can be relaxed as we men-

tioned in Chapter 5 and in Chapter 8 discussing the wave equation.
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11.1.2 Initially cubic media in R?

As a second example from elasticity we study (initially) cubic media, which are the
next more complicated ones following the (initially) isotropic media. This will be done
for media filling the whole of R?. Considering two dimensions provides a technical
simplification compared to the three-dimensional case, but nevertheless the essential
features are shown as well. There will appear greater differences to the isotropic case
than might be anticipated. This is of course expressed in the main theorem, Theorem
11.4 below, but is mainly given by the different rates of decay of solutions to the linearized
problem. These decay rates will not be obtained using explicit representation formulae
in terms of surface or volume integrals (as it was done for isotropic elasticity or for the
wave equation). There exist such kinds of representations, see G.F.D. Duff [28], but
they are rather complicated and do not seem to be appropriate for calculating decay
rates. Instead, we shall apply the Fourier transform with respect to € R? and the
solution will be given as a Fourier integral, essentially an integral over the characteristic
manifold (wave cone). The proof of the decay rates follows H. Pecher, see [138], and relies
on L>*-L>-estimates of oscillatory integrals over manifolds going back to W. Littman
[111]. In case of n space dimensions and at most & vanishing principal curvatures of the
characteristic manifold of the differential operator the decay rate ¢t~ " (173), 2 < g < o0,
is obtained. This leads to the known decay rates for isotropic elasticity or for the wave
equation where k = 1 (other examples: k& = 0 for the Klein-Gordon equation (compare
Section 11.5) and for the plate equation (compare Section 11.7)).

In the case of cubic media in IR? there are flat points on the wave cone, i.e. points where
all principal curvatures vanish. Hence the method mentioned above does not directly
lead to a decay result since n = k = 2. This requires a refined analysis of the method
of stationary phase, which has been done by M. Stoth [177] and which will be roughly
described below. The set of flat points is a one-dimensional submanifold on the two-
dimensional wave cone. The order of vanishing of the principal curvatures at the flat
points determines the decay rates which can be obtained by this method. For example
we shall get 75072 for nickel and copper, and 2070 for aluminium, 2 < ¢ < oc.
Remark: To our knowledge there has not yet been given a physical explanation of these
kinds of (weaker) decay rates; it still might be hidden in the mathematical technique.
A similar phenomenon has been observed by O. Liess in [107, 108] in connection with a
system from crystal optics, where singular points and flat points appear (n = 3, k = 2).
The equations for the displacement vector U = (U, Us) = U(t,z), t > 0, x € R?, are
the same as those in (11.6) from Subsection 11.1.1, now with the indices running from 1

to 2, i.e.

2
KU = > Comu(VU)OOU; , i=1,2, (11.24)

m.j k=1
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with prescribed initial values
Uit=0)=U°% Ul(t=0)=U"

They are written as

2

(11.25)

Z Cimik(0)0,0,U; = Y (Cinmjr(VU) = Cinjn(0)) 0,0, U; (11.26)

m,j,k=1 m,j,k=1

= fi(VU, V), i=1,2.

If we assume that the medium is initially cubic, then we have that (Cin;x(0));,,;, is

characterized by three constants A\, p and 7:

T 0 0 A

0 p p O
Cim" 0)) i = )
( Jk( ))zm]k 0 Lo 0

A0 O 7

(i,m: rows, j,k: columns)

Remark: The isotropic case is characterized by
T =21+ A,
(cf. (11.11) — (11.13), and a weakly coupled system by
==X\
(cf. R. Leis [98]). The transformation to a first-order system

Vi+ AV = F(V,VV), V(t=0)=V"

is analogous to the procedure in the previous subsection (compare (11.14) —

with ,
—ZAT(O)(?V
r=1

where
0 0 (Cu(VU))y,
0 0 (Coyx(VU))j
10 0 0

ANVU) =

0 1 0 0
00 0 0
00 0 0

(11.27)

(11.16))
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0 0 (Coru(VU))yy,

0 0 (Cajr(VU))
e = |00 0o |

0 0 0 0

10 0 0

01 0 0

and F arises from f = (fi, f2) canonically.

Now we shall follow the general steps A—E as before, mainly discussing part A, in which
the essential differences to the isotropic case appear. (For details not presented here see
177).)

The nonlinearity is at least quadratic. We shall assume
|Cimiu(VU) = Cimjx(0)] = O(|IVU|*)  as [VU| =0, i,m,j,k=1,2, (11.28)
for some v € IN, hence we have
FW)=0(W|**) as |[W|—0.

A: Decay for F'=0.
If U solves the linearized equations ((11.26) with f = 0), then U satisfies

U, — D'SDU = 0, (11.29)

Ut=0)=U" Ul(t=0)=U",

where the matrix S is given by

S should be positive definite, i.e.
T, >0 . 7> A (11.30)

(cf. [98]).
The formal differential symbol D is given by

o 0
D .= 0 82
dy O

Hence we may rewrite (11.29) as

Utt - AlU - 07 (1131)
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where
A s W2 L2 — 2

2 2
AU = T0; + oy (p —&2— )\)81% U
(L+ X002 pdi + 705

is a self-adjoint operator.
Applying the Fourier transform, U(y) = (FU)(y), we have

Un(y) + Ai(y)U(y) =

Ut=0)=0° U(t=0)=U",

where

Avy) = [ TV it Ny
(+ Ny i +7y5

A (y) is symmetric and positive definite, so

Aly) = B ) Pu(y) + B3 (y) Paly),

where ﬁ?(y), j = 1,2, denote the positive eigenvalues ofAl(y) and P;(y), j = 1,2, denote
the corresponding projections into the eigenspaces.
U = U(t,y) is then given by

Z{ sasrmem + " Bmem) e

and

Ut,z) = (F7U(t,-))(z).

In order to be able to describe the asymptotic behavior of U(t, -) as t — oo it is necessary
to discuss the eigenvalues and the characteristic manifolds.
It holds, for j = 1,2,

1/2

282(y) = (v} + ) (u+7) + (=1 (W — 93 (n — 2 + i+ w)?) . (11.33)

In particular we have the following cases:
isotropic media (7 = 2+ A): B(y) = ulyl?, B3(y) = Tlyl

weakly coupled (u=—X):  B(y) = pyf + 73, B3(y) = 77 + 3,

T = B (y) = Tlyl> — (A + e, B3(y) = Tlyl> + (A + pw)yys -
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The eigenvalues J;(-), the projections P;(-), and the corresponding eigenfunctions v;(-),
j = 1,2, are functions (of their argument ) in C*(IR?\ {0}) and the following homo-
geneity relations hold:

Let s >0,y € R? j =1,2. Then

Ai(sy) = s*Ai(y), (11.34)
Bi(sy)

|
»
=
s

Pi(sy) = Fy),

(VBi)(sy) = (VB)(y)-

The characteristic manifold (wave cone) is given by
K= {(yby%T) e R’ | p(yr,y2,7) = 0}7
where p is the characteristic polynomial of Ay, given by
Py1,y2, @) 1= det (Ai(y) — a?id) = o* = [y (u47) = gLy (X +20u—72) + (v +u3) 7.
The Fresnel surface S is the intersection of K with the plane {« = 1}, given by
S = {1, 12) € R | p(y1, 2, 1) = 0}

(Augustin Jean Fresnel, 1.5.1788 — 14.7.1827). Since it is a curve in two space dimensions,
it will also be called the Fresnel curve.

By definition, S is also given by
S={yeR*|B(y)=1,j=1, or j=2}.

The wave cone is a two-sheet hypersurface and Vj;(y) # 0 for y # 0. The two sheets
intersect only in the weakly coupled case (A = —p) or if 7 = pu. The Fresnel curve S is

the union of the two curves S;, j = 1,2, where

i {sz(/y) ‘ vl = 1}’

hence a regular parametrization is given by

d:[0,2r] — TR (11.35)
B msﬁd)' ?)
¢ H j COb' Zln

Bj(cos ¢,sin ¢)
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O O

Figure 11.1: A = —1 (weakly coupled) A=-038
Figure 11.2: A= +/12 — 3 =0.464. .. A =1 (isotropic medium)

Since d is analytic and because d is not a straight line, the curvature may vanish in
at most finitely many points; moreover, the curvature vanishes at most of order two
(compare the definition of d via a fourth-order polynomial).

The Figures 11.1 — 11.3 (cf. [177]) show typical examples of the Fresnel curves for the
cases: T =3, u =1 and increasing .

The curvature of the inner Fresnel curves never vanishes, neither that of the outer Fresnel
curve in the isotropic case or in the weakly coupled case.

The cases A = v/6 — 1 and A = 2 are shown in Figure 11.3 in enlarged form where
those points are easy to find where the curvature vanishes. In general one has that the
curvature of the outer Fresnel curve vanishes of second order only if it vanishes for ¢ = 0
or ¢ =m/4.

We distinguish the following three cases:
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Figure 11.3: A =+1/6 —1=1.449. .. A=2

#1: The curvature of S never vanishes.
#2: There are points where the curvature of S vanishes and it vanishes of order 1.

#3: There is a point where the curvature vanishes of order 2.

For example in the isotropic or in the weakly coupled case we are in case #1, also for
cubic media which are sufficiently close to the isotropic ones, namely for which X is
sufficiently close to (7 — 2u).

Going back to the definition of d in (11.35) and the explicit representation for §; in
(11.33), one can easily obtain characterizations of the cases #1, #2, #3 in terms of the
derivatives of d and the coefficients A, p, 7, respectively.

As examples we have:

Case #1: isotropic (7 = 2u + A) or weakly coupled (A = —p)

Case #3: 7 =3, u=1, A= —1+ /6 = 1.449 ... (compare Figure 11.3).

For aluminium we have case #1 and for nickel and copper we have case #2, which can

be shown with the help of Table 11.1 taken from Miller & Musgrave [126].

T A b

aluminium 9.5 4.9 28
nickel 25.5 154 12.2
copper 17 123 7.55

Table 11.1: Typical elastic moduli

The decay rates for the derivatives of U will follow from the following two Lemmata.
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Lemma 11.2 Let v € C(R?), suppv C {z € R* | 1/2 < |2| < 2}, and P €
C™ (neighbourhood of suppv); let § = f;, j = 1 or 2, be one of the eigenvalues of
Ay(y), B=B(y). Then we have for all t > 0:

177 (0()) oo < ct=22|[]]1,00,

where the constant ¢ may depend on bounds on the derivatives of B on suppwv, and o is
given by
1 in case #1,
0=13 2/3 in case #2,
1/2 in case #3.

This Lemma is a modified version of the corresponding Theorem by W. Littman [111].
We sketch the PROOF of Lemma 11.2.

In order to estimate

. 1 7.
F Y e®0y())(y) = , /Cl(zyﬂﬁ(z))v(z)d:p
™
R,Q

we observe that for y, ¢t with

1
lyl -

f )| =2
t 4 {1/21<I\1x\<2} IVA(z)] £ >0,

(implicitly defining £o; without loss of generality, ey < 1/2) a partial integration yields

; ¢
IFH(ePOu())(y)] < (Mol ce. (11.36)
To deal with the points y, ¢ with
[yl
> 2
t = €0,

a transformation into distorted polar co-ordinates is used, namely

T:(0,00) x [0,27) — TR\ {0},

ﬂ(xo)

[ cosg
w0 sin ¢ ’
_r

BQ

Zo,

where

Then we get
det (VT'(r, ¢))
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and the Fourier integral turns into
Cos ¢

0o 27 Y1
- sin ¢ . T'To r
//cxp s i ytz v (5(%)) ﬁQ(IO)dngdr.

We may assume that the Fresnel curve S, which is parametrized by (cos¢,sin@)/s
according to (11.35), is parametrized with the arc length as parameter and we denote
the new parametrization by d.

With the notation

Y1
d
2= 1 R B 51:i 2 | @5(3):—( (s))é
t

we have to estimate the integral

o b

/r /em“"f(s)w(r, s)dsdr

0 a
where w stands for all the terms that appear behind the exponential term (v,1/3?, a
term from the transformation to arc length).
Since w vanishes outside a fixed interval, say [a,b] C (0,00), we are now interested in
the asymptotic behavior of

b
[=1(z) = /eiz“"ﬁ(s)w(s)ds . we C2([a,b)
a

as z — 00, uniformly in &. & varies in the set

Mi={€€ 8 & >0, |(En&)| 2 2> 0}.

The behavior of the integral I is determined by the behavior of ¢, in its points of
stationary phase: ¢;(s) = 0, and hence it is determined by the behavior of the curvature
of d.

The sets

Fy

{s[d"(s) =0,d"(s) # 0},

F o= {s|d"(s)=d"(s) =0}
characterize the cases #1, #2, #3, namely
Case #1: o =F=0.
Case #2: Fy #0, F,=1.

Case #3: I #0.
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In case #1 one knows that

1 or  \"°
BT (e R T (11.37)
2172 \inf |t(s)]

holds, where the infimum is to be taken over the points of stationary phase (see e.g. B.R.
Vainberg [185]). (Observe that |¢f(s)| > eold”(s)].)

In case #2 one has to consider a neighbourhood V; of a point where the curvature
vanishes. The integral over [a, b] \ V; leads to a behavior like that in (11.37), the integral
over V; denoted by I; has to be discussed separately. An expansion of ¢¢(s) into powers

of s and appropriate partial integrations give the estimate

1
Lo (V1)

where the power 2/ naturally arises by the possible expansion around the point of

stationary phase. Similarly, one obtains the estimate

1

‘[2(2)| = (1 + H “,H ) Hw||1,00~, (1139)
L= (1)

where 5 denotes the integral over a neighbourhood V3 of a point where ¢'(s) = ¢”(s) =
©"(s) = 0. The estimates (11.36) — (11.39) prove Lemma 11.2.

Q.E.D.
Having proved the L*-L*-estimate in Lemma 11.2 we may now apply the following
Lemma which is a slightly modified version of Theorem 2.2 from H. Pecher [138] (see
also Lemma 11.16 in Section 11.7).

Lemma 11.3 Let v >0, m € N. Let §,Q € C°(R" \ {0}) satisfy

Vs >0 YyeR": B(sy)=s"8y), Qlsy) =Qy).

Assume that for this 8 an L —-L*>-estimate like in Lemma 11.2 is given with correspond-
ing 0. Then there is a constant ¢ > 0 such that for all v € CP(R"™) and all t > 0 the
estimate

n(l_1
<cl+8) b o],
q

Hf—l (e_”if;@c)(fv)(-))

holds, provided
l<p<2<q<oo, 1/p+1/qg=1,1/p—1/q = (2my)/n, (1/p—1/2)(2n—me) < 2m.

The last two Lemmata easily lead to the following LP—Li-estimate (for 1 <p <2 <g¢ <

00, no estimate for the L*°-norm).
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Theorem 11.4 Let U be a solution to the linearized equation (11.81) with initial values
Ut=0)=0, Ut =0)=U"e€ WN? where

l<p<2<g<o , 1l/p+1/¢g=1 and
2(1/p—1/g) <N <2(1/p—1/g) +1
Then there is a constant ¢ > 0 such that U satisfies
l
IDUB)ly < (14 8)7 2672 |U"|lw,

where
1 in case #1,

0=19 2/3 in case #2,
1/2 in case #3.
The constant ¢ depends only on q, 7, u, and X.

PRrROOF: By (11.32) we have

atﬁ(tJJ) = Z (tﬁj( )) ()Ul(y)>

Ay = % y’“s;f(tg(y))zaxy)ﬁl(y),

and hence all terms in the components of the vector DU (t, ) are of the form

wt,z) = F ("0Q()4(-)) (x).

B equals B or B and is in C®°(IR? \ {0}) and it is homogeneous of order m = 1.
The scalar function @ is either a component of P; or Q(y) = PI™(y)iyx/B;(y) for some
l,m,j,k € {1,2}, where ij is a component of the matrix P;. In any case @ is in
C>(IR*\ {0}) and it is homogeneous of order 0. (For the homogeneity assertion see
(11.34).) g essentially equals a component of U*.

Therefore we may apply Lemma 11.3 in the following way (with v = s to be defined

below, m =1, n = 2):

) eitB()
ot )l = |7 (@0Q0a0)], = H (ol a0)

(11.40)

q

- | (T"‘tiij@(-)f(wg)(o)

q

—2(1/p—1/q)+2s |A%gll, (by Lemma 11.3)

IN

—2(1/p—1/q)+2s

IN

ct 19113
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where
2s < N < 2s+ 1.

The application of the last Lemma is possible if s satisfies

<1_1><2_g>§5§1_1
p 2 2 P q

1(11)<2g>§8§11_
2\p ¢ 2 P q

or equivalently

1
s=, (2 — g) 0
where )
0= — .
P q
This implies for the exponent of ¢ in (11.40):
26+ 25 = =07
hence
lw(t, g < ct™llgllar, (11.41)
where

0 0
2— "< M< (2 — ) 0+1.
< 2) = 2) "
For 0 <t <1 we choose the largest possible s, s := 6 , and arrive at

w(t, g < cllgllnp (11.42)
with

20 < N <20+ 1.
The estimates (11.41) and (11.42) prove the theorem.

Q.E.D.
Remark: In (11.40) the Laplace operator A in IR? is used with possibly real powers

(Pierre Simon Laplace, 28.3.1749 — 5.3.1827). Essentially we only used the property

F(A°g()(y) = ly[*(Fa)(y)

— which can be regarded as a definition for A* — and that ||A%g||, can be estimated by
lgllvp if N > 2s. We refer to the Besov spaces in Appendix A for these questions and
we mention that the proof of Lemma 11.3 as given in [138] also relies on the theory of

Besov spaces.
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We finish Step A of the general scheme with the remark that the situation for cubic
media in three space dimensions will essentially show the same difficulties. To demon-
strate this we present a picture of the outer Fresnel surface on page 136 (there are two
more hidden inside) for cubic media in IR® with parameters 7 = 1, p = A = 0.7; see

Figure 11.4 (cf. [177]). One may guess where flat points are located.

B: Local existence and uniqueness:
A local existence result is obtained in the same way as that in isotropic elasticity in the
previous subsection. Changing C;ix(VU) to CTL-,,LJ-;C(VU ) with

Cimit(VU) = Cinjt(VU) + v(8im0jk — ditdjm),
i,m,j,k=1,2 |, v eI, arbitrary, fixed,
leaves the differential equation (11.24) invariant and we write Cj,,;x(VU) again instead
We choose v with
0 <v<min(u,7—X)

which is possible because of the relations (11.30). Then the following matrix A° =

ANVU) = A%(V),

10
50 01 00
1l oo '
00 (Cimjk)imjk

is positive definite and the differential equation (11.24) (resp. (11.27)) turns into

AY(V)a,V + i AY(V)A™(V)8,V =0,

r=1
with initial value
V(t=0)=V"
The matrices A°(V) and A°(V)A™(V), r = 1,2, are symmetric and A°(V) is positive
definite (uniformly with respect to V' in each compact set). Thus we can apply Theorem

5.8 and we obtain a unique local solution
Ve C°0,T], w=2)n ([0, T], W*=12)
for some T > 0, if s > 2 and V° € W*2,

C: High energy estimates:
Analogously to the result in Chapter 6 we obtain

t
IV(t)lls2 < CIVO|ls2 exp {C/IIDV(T)II&W} t€[0,7], C=C(s).
0
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D: Weighted a priori estimates:
We have

sup (1+ t)g/z(lfz/Q)HV(t)Hshq < My < o0,

0<t<T

where M, is independent of T, and p is given in Theorem 11.4, provided

q=2a+2,
1 1

<1+ )<Q,
a « 2

IVOlls2 + VOl 202

$12a+41

s1 is sufficiently large and

is sufficiently small (s > s; being sufficiently large).

This is proved in analogy to the proofs in Chapter 7.

E: Final energy estimate:

As in Chapter 8 we now easily obtain the inequality
IV(O)llsz < KIVO|ls2, 0<t<T,
s being sufficiently large, V° being sufficiently small, K being independent of T (and

V).

Summarizing we obtain the following global existence theorem.

Theorem 11.5 We assume (11.28) with [11 (1 + (11) < 2, where ¢ is given in Theorem

11.4. Then there exist an integer so > 2 and a 6 > 0 such that the following holds:
If VO = (UL, VU°) belongs to W2 N W*P with s > sy and p = ggﬁ and
VOls2 + 1V0llsp <6,

then there is a unique solution U of the initial value problem to the nonlinear equations
of elasticity in the initially cubic case in R* (11.24), (11.25), with

(U, VU) € C°([0, 00), W**) N C*([0, 00), W= 12).
Moreover, we have

|0 VO W)l + U VO Dleasz = O (17551,

(U, VU))|s2 = O(1) as t— oco.
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#1  #2 #3
o 1 2/3 1)2
a 3 4 5
p /7 10/9 12/11
qg 8 10 12

Table 11.2: Typical parameter values

The parameter p takes three different values corresponding to the three cases #1, #2,

#3 (see Theorem 11.4); then « has a corresponding minimal value determined by the

1 1
<1+ )<Q.
« « 2

Table 11.2 shows the values of o, the minimal values of o and the corresponding values

condition

of p and gq.

The discussion of (initially) isotropic and cubic media demonstrates that many inter-
esting problems appear already in the step of the simplest to the next more difficult
situation. This underscores the necessity of a lot of further research on these problems

despite the general scheme that is available.
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11.2 Heat equations
We consider the following type of initial value problems:

— Au = F(u,Vu, Vu),
u(t =0)

Up,

137

(11.43)
(11.44)

for a real-valued function u = u(t,x), t > 0,2 € R". F is a smooth function satisfying

F(w) = O(lw|*™) as |w|—0 forsome o€ N.
We now cover the steps for this problem.
A: Decay for F =0:
The linear initial value problem
— Au=0, u(t=0) = uy,

is solved by

u(t,z) = (4nt)” /2/ L y)dy  (t>0)

B
"/2/6 4u0x7\/tz) (t>0)
R’Vl

(for appropriate ug, e.g. up € C°).
We obtain from (11.46)

d
dt”u(t)Hg + 2[[Vu(t)|3 =0
or
¢
lu(@)I +2 [ Ivu)l3dr = lluol?,
0
which implies
lu(®)]]2 < [Juglla  for all ¢ > 0.

For t > 0 we obtain from (11.47)
lu(t,z)] < ct™2|ugl|;.

¢ will denote various positive constants not depending on ¢ (or wuy).
Let k; be defined as

ky(z) = (4mt)™2 7 2P/040),
Then

Ihell = (am)= [ ety =1,
R®

(11.45)

(11.46)

(11.47)

(11.48)

(11.49)

(11.50)

(11.51)
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This implies, using Sobolev’s imbedding theorem,

[u@lloe < Nkellilluolloe < [luollee < elluolln,y- (11.52)
From (11.51) and (11.52) we conclude
lu(®)lloe < e(1+ )" uollna, 20, (11.53)

¢ = ¢(n) being independent of ¢.
By interpolation we get from (11.50) and (11.53):

2
lu(®llg < (1 +1)7 20 Juglln, p, ¢ >0,¢=clg,n),

where
2<q¢<o0,1/p+1/g=1 and

N,>n(l—-2/q) (N,=n(l-2/q) if g€ {2,00}).

Remark: Solutions of the linear heat equation have the property that the L?-norm
decays with a rate too, that there hold L?-L*-decay estimates, and that derivatives
decay with a faster rate. This is expressed in the following lemma. The corresponding
interpolated versions also hold but they are not recorded here.

Let uy belong to C§° for simplicity.
Lemma 11.6 Let m € INy. There is a constant ¢ only depending on m and n such that
the following estimates hold for all t > 0:

@ IVru@®lls < e+ ol g1 mas
(@) [V™u®)lle < e+ ol ig)414m,2-

(@1) [V u®lleo < (X +8) "2 gl smi-

PROOF: First let m = 0.

For t > 0 we have

A

lu®llz < kellalluolls  (cf. inequality (4.5))

IN

et |ug|y

because
k413 = (47rt)7"/efé‘;tl2dz = ct™2.
R?l
For ¢ > 0 we get from (11.50) and Sobolev’s imbedding theorem

[u(@)ll2 < lluoll2 < ¢ lluolliz)11- (11.54)
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Combining (11.53) and (11.54) we have proved (i) (for m = 0).
Let t > 0 again. Then using the representation (11.47) we obtain

oyl2
e, o) < [ o dy ol < et~ ol (11.55)
Rr
For t > 0 we get
[u(®ll < elluolle < ol (11.56)

Combining (11.55) and (11.56) we have proved (ii) (for m = 0).
For m = 0 the assertion (iii) is given in (11.53).
The assertions (i), (ii), (iil) now easily follow for m > 1 observing that each differentiation

1/2 which essentially follows from

z—y|? _(le—y
Vef“ 42,‘ = til/Z{g?/:e (‘2\/t|)2}‘

yields a factor ¢~

Q.E.D.

B: Local existence and uniqueness:

Theorem 5.8 does not apply here. Parabolic equations like the heat equation have
smoothing properties. (The solution u to the linearized equation is C* for ¢t > 0 even if
ug € L' only, cf. the representation (11.47).) But there is no finite propagation speed,
cf. the remarks at the end of Section 3.1. This is a feature standing in contrast to the
situation encountered for hyperbolic systems; see Section 3.1. The results there cannot
be used here. For a local existence theorem we refer to Theorem C.4 in Appendix C
yielding a solution

u € C°([0,T], W=2)n C*([0, T], W22

if up € W*2 for some T > 0, if s > [n/2] + 3, and |Ju(t)||l2.o < 7 < 1 holds for all
t € 10,77 if |Juolls2 < 0 is sufficiently small (6 = d(n)).

C: High energy estimates:
The local solution satisfies

[u()ls.2 < clluo

|S,Qexp{c/|\u(r)\|g;mdr}, te0,7),c=c(s). (11.57)
0

We shall give a short proof for the case a = 1 because there is an additional consideration

necessary compared to those in Chapter 6. Namely, terms of the type

t
. [ I9u()]2dr,
0

which arise on the right-hand side in considering the highest derivatives in the nonlin-
earity, must have sufficiently small factors c. in order to be able to be compensated with

terms being present on the left-hand side.
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Let u be the local solution to

— Au = F(u, Vu, Vu), (11.58)
u(t =0) = uy,
or
F(0) = =
=0 % ©=0,

where
w = (u, Vu, Vu).

We write F' in the form

1

/ F(rw)dr = F°(w u+ZF 8u+z w)0;0;u,
0 ij=1
where
P = [
0
e = [
F(w) = 1 ggfgi)) dr, i,j=1,...,n,
and

F(0) = F}(0) = F2(0) =0, i,j=1,...,n

Remark: This kind of expansion emphasizes that the choice of the special nonlinearity

in the proof of Theorem 1.1, f = Z a;;(Dy)0;0;y, is no essential restriction.
i,j=1

Differentiation (V#) of both sides of (11.58) and taking the inner product in L? with
VAu(t), we obtain for 0 < |f] < s

s SIVPu(®)I + IV Tu)]3 = (VPR (), VPu)(t)
This implies

t t
IVou@l3 + 2 [ IV Va3 dr = V7ul} + 2 [ (V2 F(w), Vou)(rydr.  (11.59)
0 0

We shall drop the parameter ¢ mostly and we only consider the most difficult terms of
the type
(VPFE (w)0:05u, Vi),
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where i,j € {1,...,n} are arbitrary but fixed in the sequel (the lower-order terms can
be handled as in Chapter 6).
First let |8| = 0. Then

[(F5(w)0:d5u, w)] - < || F (w)l|oc 10050l ull2 (11.60)
< cllwlloollullaull2
< cllullzuollullZ,

(¢ denotes various constants not depending on ¢ or w).
Now let k := |8| > 0. Then, writing V* symbolically, we obtain

(VH(E (w)0i05u), Viu) = — (VU (FE(w)d,05u), VEF ) (11.61)
= —<F£(w)vk718ﬁ]u, V’Hlu) +
(FA(w)V* 10,05 — VP E] (w)didju), V)
I+1I

The first term [ is estimated as follows:

1]

IN

cllwllocllVull?, < ellullzel Vull, (11.62)

IN

cnl|Vull?

where 7 is small if T" resp. |lug||s2 is chosen appropriately small (according to Step B).
The second term 17 is estimated with the help of the Lemmata 4.8, 4.9:

111 < c(IVE()lllIV*20i05ulls + IV FE (w) [210:05ull ) [V ull - (11.63)
J J
< cllullseollullselVullse + e[V wllaflulla.col Vaulls,s
< cllullseollullzs + el VullZ,.

The inequalities (11.60) — (11.63) imply (together with the easier estimates for the lower-

order terms which we omit)

2 / (VOF(w), VPu)(r)dr

0

3,00 ()12 5 dr (11.64)

< o I

t
terln) [IVu(r)|2ydr,
0

where 1, ¢a(n) are positive constants depending at most on 7.
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Choosing 7 (resp. T or ||ugl|s,2) — once — sufficiently small we can achieve that

ca(n) <1
holds.
Therefore we obtain, combining (11.59) and (11.64),

t t
@)%, + / V()12 5 dr < lluollZ, + C/ () lls.c0lu(r)|[2 o i
0 0

The desired estimate (11.57) now follows immediately using Gronwall’s inequality,

Lemma 4.1.

D: Weighted a priori estimates:
We have

sup (1+8) 20D |u(t)||syq < Mo < 00,
0<t<T
where M, is independent of T, provided

q =20+ 2,
1 1

<1+ )<n,
« « 2

l[uolls,2 + HUOHS,ggﬁ

s1 is sufficiently large and

is sufficiently small (s > s; being sufficiently large).

This is proved in analogy to the proof of Theorem 7.1 and uses the representation
t
u(t) = e Mug +/07A(t7T)F(w(r))dr.
0

Here A is the Laplace operator realized as a self-adjoint map from W2 C L? into L%

A

e "y is the solution to the linear initial value problem (11.46) (given explicitly by the

representation (11.47)).

As an easy consequence we then conclude:
E: Final energy estimate:
[u()]ls2 < Klluolls2, 0<t<T,

s being sufficiently large, ug being sufficiently small, K being independent of 7' (and wy).

Altogether we obtain the following existence theorem.
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Theorem 11.7 We assume (11.45) with (1 + 1) < . Then there exist an integer
S0 >n/2+3 and a § > 0 such that the following holds:

If ug belongs to W*> N W*P with s > so and p = 3213 and

l[uolls2 + [luollsp <9,
then there is a unique solution u of the initial value problem to the nonlinear heat equation
(11.43), (11.44) with
u € C°([0, 00), W=2) N C*([0, 00), W*22).

Moreover, we have
Hu(t)”OO + ||u(t)||2a+2 = O(t_2a+1)7
lu(t)|ls2 = O1) as t— oo.

It was already mentioned in Chapter 1 and in Chapter 8 that the general framework
does not lead to optimal results in each case. Here it is possible to use the better decay
results expressed in Lemma 11.6 and the dissipation expressed in the energy equality
(11.49) (or (11.59)) to improve the result in Theorem 11.7. Actually this will be done in
connection with the equations of thermoelasticity in Section 11.3.

We mention that for dissipative systems the technique of A. Matsumura is especially

appropriate. This technique consists in considering the differential equation for v*, where
Rt x) = (1+t)ku(t,z), ke,

and then deriving the classical energy estimate for v*, which turns into a weighted a
priori estimate for u, see [118] or the paper of S. Zheng [203]. The sharp small data
results for solutions of the nonlinear heat equation (11.43) are collated in Table 11.3 (see
S. Zheng [203] or G. Ponce [141]).

n 1 2 3 4 5 6

= W NN =D
\

Table 11.3: Global existence for nonlinear heat equations

According to Theorem 11.7 global solutions exist for combinations («, n) where a “+” is

“_»

written. A “x” indicates that the improved methods lead to global solutions and a “—
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means that one has to expect the development of singularities. In Section 11.3 quadratic
x” in Table

13

nonlinearities in IR* are discussed. The arguments there justify the cases
11.3.

In the case that F' does not depend on u, i.e. F = F(Vu, V?u), global small solutions
exist for all a,m € IN. For the discussion of blow-up results in the semilinear case
F = F(u) we refer the reader to the paper of H.A. Levine [103] and the references

therein.

11.3 Equations of thermoelasticity

The equations of thermoelasticity describe the elastic and the thermal behavior of elastic,
heat conductive media, in particular the reciprocal actions between elastic stresses and
temperature differences. They are a coupling of the equations of elasticity discussed in
Section 11.1 and of the heat equation which was discussed in Section 11.2. Hence we have
to deal with a hyperbolic-parabolic coupled system for which indeed both hyperbolic and
parabolic effects are encountered. We shall consider the initial value problem in IR® for a
homogeneous, initially isotropic medium, but also one-dimensional models are reviewed.
The differential equations are equations for the displacement vector U = U (¢, x) (compare
Section 11.1) and for the temperature difference 6 = 0(t, x) := T,(t,z) — Ty, where T,
denotes the absolute temperature and Ty is a fixed reference temperature. The interesting
question which arises is whether the behavior will be predominated by the hyperbolic
part — mainly the equations of elasticity for U plus coupling terms — or by the parabolic
part — mainly a heat equation for 6 plus coupling terms. We know from Section 11.1
that in the case of pure elasticity there are global, small solutions if the nonlinearity
degenerates up to order two, i.e. if the nonlinearity in the final setting is cubic. Moreover,
F. John has shown that in the general “genuinely nonlinear” case a blow-up has to be
expected; this was proved for plane waves and for radial solutions, cf. [64, 69]. On the
other hand we know from the previous section that quadratic nonlinearities in R? still
lead to global, small solutions of the heat equation. The question remains whether the
dissipative influence through heat conduction is strong enough to prevent solutions from
blowing up at least for small data.

The answer to this question will be positive if one excludes purely quadratic nonlinearities
in the displacement. This perfectly corresponds to the fact that for these nonlinearities
one has to expect a blow-up as was shown in [144]; see below. Thus, we admit all possible
cubic nonlinearities (in the final setting) or those quadratic terms which involve 6, which
guarantees that a damping effect (dissipation) is present in each equation.

We mention that for one-dimensional models global, small solutions always exist. This
was shown for the Cauchy problem by Kawashima & Okada in [85, 84]. They proved a

global existence theorem for small solutions only using the L?-energy method. A similar
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theorem was obtained by Zheng & Shen in [208] with the method studied here. Again
with the L?-energy method Hrusa & Tarabek proved an existence theorem in [50]. More-
over, important results are found in the initial paper of M. Slemrod [175] for a bounded
domain with special mixed boundary conditions, corresponding results by S. Zheng [202],
the investigations of S. Jiang [56] for the half-axis, the treatment of the Dirichlet prob-
lem for a bounded domain by Shibata & Racke [151] and the improvement of this result
by Shibata, Zheng & Racke [152] (Johann Peter Gustav Lejeune Dirichlet, 13.2.1805 —
5.5.1859). The Dirichlet problem for the half-axis was discussed by S. Jiang [60] and
the Neumann problem for a bounded domain by Y. Shibata [164] and S. Jiang [61], who
also discussed the half-line (Carl Neumann, 7.5.1832 — 27.3.1925). Periodic solutions
are studied in [31] by E. Feireisl and in [152]. Large data lead to the development of
singularities which was shown by Dafermos & Hsiao in [24] (for special nonlinearities)
and by Hrusa & Messaoudi in [49].

For small initial values the one-dimensional model is predominated by the heat conduc-
tion, and there is only one type of elastic waves. In three space dimensions there are two
types of elastic waves and the coupling is more complicated. It is interesting to notice
that there is a significant difference between the problem treated here and the case of
compressible viscous and heat conductive fluids considered by Matsumura & Nishida in
[119]; this is the decay of solutions to the linearized system. In [119] the decay of all
variables was similar to the pure parabolic linear case. In our situation this is not the
case. In fact, the divergence-free part U*® of the displacement U in the linearized system
behaves asymptotically like solutions of the linear wave equation and does not experience
any damping.

We shall now derive the equations of thermoelasticity and then transform to a suitable
first-order system. The results presented in this section are taken mainly from our results
in [143, 144] and from the joint work with G. Ponce [142].

The equations describing the thermoelastic behavior of a three-dimensional body B with
reference configuration IR® are those of balance of linear momentum and balance of

energy, given by
0Xy = V'S + b, (11.65)

05y = tr {gFt} +V'q+ or, (11.66)

where we use the following notation:
X;, i = 1,2,3, are the co-ordinates at time ¢, 0 < ¢ < oo, of that material point of
B which has co-ordinates x;, ¢ = 1,2,3, when B is in the fixed undistorted reference

configuration. The deformation gradient F' is given by

Fi(t,x) = o
J
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o is the material density, S is the PiolaKirchhoff stress tensor, (Gabrio Piola, 15.7.1794

9.11.1850), b is a specific extrinsic body force, € is the specific internal energy, —q
is the heat flux vector, r is a specific extrinsic heat supply, and tr denotes the trace
operator (cf. D.E. Carlson [15] for extended considerations). Furthermore, we denote by
71 the specific entropy, by 7, the absolute temperature, and by ¥ = ¢ — T,n the specific
Helmbholtz free energy (Hermann Ludwig Ferdinand Helmholtz, 31.8.1821 — 8.9.1894).
Remark: ¢ is also called Helmholtz potential and its existence in relation to the elastic
moduli Gy, below is assured (cf. [175]). If one neglected the heat conduction effects
this would imply that the medium is hyperelastic; compare section 11.1.
X75',577],Ta7q,1/),b7 and r are understood to be smooth functions of ¢ and z. For a
homogeneous medium which we consider we may take o = 1 without loss of generality.
The constitutive assumption in thermoelasticity is now that S ,q,% and n are functions
of the present values of F,T,, and VT,. The Clausius-Duhem inequality implies the
relations (cf. [15])

ov(E, T,
’(/J:Z/)(F7Ta), 77:77(F7Ta):— Q/(GT )a
& & 3¢(F7Ta)
- - >
§=smry=""00) v 20

(Rudolf Julius Emanuel Clausius, 2.1.1822 — 24.8.1888; Pierre Maurice Marie Duhem,
10.6.1861 — 14.9.1916).

We introduce the displacement vector
U=X—-=x

and the temperature difference
0= Ta - To.
For simplicity we assume the forces r» and b to be zero.

Changing variables from (F,T,) to (VU,#) we obtain from (11.65), (11.66)

3
U = Z Cimi(VU,0)0,0:U; + Z m(VU,0)0,0, i=1,2,3, (11.67)

m,j,k=1 m=1

(YU, 0)9,0 — f(le) V'g(VU,0,50) + tr{(ékm(VU, 0). (6t85UT)m} o (11.68)
where . .

Cimjr. = a?aSkij Cim = 826 ) (11.69)

gm_ W _& >ay>0 (11.70)

00U’ 99
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for some positive constant ag. f is an arbitrary C°°-function such that f(0) = 6 + Ty for
0] < To/2 and 0 < f1 < f(0) < fo < o0 for —o0 < 0 < oo with constants fi, fo. The
equation (11.68) is derived from (11.66) for small values of |0|, i.e. for |0] < Ty/2 which
is a posteriori justified by the smallness of the solution which will be obtained later.

Additionally, one has prescribed initial conditions
Ut=0)=U°% Uf(t=0)=U" 0t=0)=06. (11.71)
The medium is assumed to be initially isotropic, that is (compare (11.9) in Section 11.1)
Cimir(0,0) = (3 = 263) dimj + 63 (3ij0km + Ojmdix) ,  i,m, j, b = 1,2,3,

where the constants c;, ¢, satisfy
c1 > cp > 0.

They are related to the Lamé constants A, p by
=A+2u, c=p.
Moreover, we assume
Cim(0,0) = =70, with  ~v € R\ {0},

(v = 0: linearly uncoupled case),

aqa(((;j(;,)()) = kd;;, K >0 (heat conduction coefficient).
94i(0,0,0)  9qi(0,0,0) o
= =0 =1,2,3.
a(amUJ) 89 ) Z7j7m ) )
The equations (11.67), (11.68) are now written as
3
RU; — > Cimgi(0,0)0,0,U; — Z Cim(0,0)0,,6 (11.72)
m,j,k=1 m=1

= fH(VUVU,0,90), i=1,23,

00 — 50— 1 {(Crn(0,0))},, - (00.0,),.} (11.73)
= (YU, VU, V*U,0,V0,9%),
where

fH (VU vU,0,v0) : = (Cimje(VU, 0) — Cimsi(0,0)8,0,U;  (11.74)

m, 1

+ 3 (Ci(VU,0) = Cipn(0,0))9,,0, i=1,2,3

1 707+

1

3
I
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and
2 (VU, VU, V?U,0,V6,V%0) =
1 { 3. 9¢'(VU,0,V0)
O0m0;U;
a(VU,Q)f(Q) i,j,;:l a(amUj) !
3. 0q( VU 6,V0) 3 <8qi(VU,9,V9) 8qi(0,0,0)>
+ 0,0 + - 0;0;0
; ]2231 9(9,9) 9(9,9) !

+ (1= a(VU,0)£(0)sA0 + £(0) tr {(Chom(VU, 0) — Cin(0,0)
+ Cin(0,0) — a(VU, 0)Cn(0,0)),,, - (atasUT)m}].
Introducing f}! = (f}, f3, f4) and the formal differential symbol D with

g 0 0
0 & 0
0 0 0
0 05 0,
Js 0 O
0 01 0

as well as the matrix S containing the elastic moduli with

2+A A A 000
A 2u+X X 00 0
6. A A 2u+XA 000
0 0 0 u 0 0|’
0 0 0 p O
0 0 00 p

assuming S to be positive definite, i.e.

w>0, 2u+3X>0,

(11.75)

we arrive at the following simpler representation of the differential equations (11.72),

(11.73):
Uy —D'SDU +~V0 = f! (VU, VU, 9, ve) ,

0 — KAO+ VU, = f*(VU, VU, VU,0,V0,9%),

(11.76)

(11.77)
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where we shall assume without loss of generality in the sequel that Ty = 1 and a(0,0) = 1.

The assumption on the nonlinearity will be

There are no purely quadratic terms only involving VU, VU, V2U
and additionally one of the following two cases is given:
Case I.  Only quadratic terms appear. (11.78)
Case II:  Only at least cubic terms appear and one quadratic
term of the type A6.

Remark: The specific quadratic nonlinearity of the type A6 arises from the term
(1 —a(VU,0)f(0))xA0 in (11.75) and is due to the special function f. This quadratic
term cannot be assumed to vanish by any assumption on the general nonlinearities.
(See Step C below for the typical nonlinearities that may arise; the terms excluded are
typically VUV2U and VUVU;.) As mentioned above the appearance of purely quadratic
terms in VU, VU, V2U may lead to the development of singularities.

The transformation to a suitable first-order system is given by
V(t) = (SDU, U, 0) (t) = (V1 V2, V?) (1),
VO=V(t=0)= (SDU°7 UH@O) .
This transformation has turned out to be very useful for the — in general non-homo-

geneous and anisotropic — linear case, cf. [98].
To recover VU from a known function V! = SDU, we define the operator BJ by

B SDW'Y? — [2, B'Z:=0,(SD)'Z, j=1,2,3,

where SDW? .= {SDZ|Z € W2},
By Korn’s first inequality (cf. [98]) B’ can be continuously extended to a bounded
operator

BI: SDW12 — L2
(Arthur Korn, 20.5.1870 — 22.12.1945)
Let BY := (B!, B B?). Observe that V¥, k € IN, commutes with BY. The system of
equations (11.76), (11.77) now turns into

Vi+ AV = F (v, vV, V3V BV, Vval) ,

with the nonlinearity

F(V, vV, v2V3,BVV1.,VBVV1) = f! BVV1,VBVV17V37VV3)
F2(BYVL, YV, VBYVEL V3, VY2, V2V ?)
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and A is the differential operator formally given by

0 -SD 0
Af = -D 0 '}/V
0 V' —kA

—A is the generator of a contraction semigroup in the Hilbert space H := SDW12 x
L?> x L* (6 4+ 3 + 1 components) with domain D(A) := {V € H | A;V € L?}, see [98].
The inner product in H is a weighted L?-inner product:

(W, Z)y = (STWH ZY + (W2, Z%) + (W3, Z%).

Remark: In the sequel we shall write V', VV!, ... instead of BYV! = VU, VBVV! =
V2U, ..., i.e. we shall not distinguish between VU and SDU; that is, we shall not
distinguish between V (t) and V(¢) := (BYV'(t),V*(t),V3(t)). This is justified since

(i) we have from the representation formula for V,
t
V(t) = e V0 4 / ARV, ) (s)ds
0
that V satisfies
t
V(t) = BYe 410 / BYe IRV, ) (s)ds

0

and
(ii) the decay properties in Step A below for V,
IVO)lly < e (L+8)VOlng

carry over to V,
IVOlly < e L+ VO n,p

To understand the latter argument one should notice that the operator V o D=1 on
DW 2 turns into a bounded multiplication in Fourier space and hence does not change
the arguments in Step A.

We shall now go through the Steps A—E as before, of course with necessary modifications
due to the hyperbolic-parabolic coupled type of the system. At the very end this example

underlines the power of the general method.

A: Decay for F'=0:

Let V be a solution of
Vi+ AV =0, V(t=0)=V"
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where V° = (SDU°, U, 6°).
We use a decomposition of U into its curl-free part UP° and its divergence-free part U*°

according to the decomposition (11.21)
L = VW42 @ D,,
U = U"+U0%,
which implies a decomposition of V' into
V=vrive
where
vre = (SDU™, U, 0),
Ve = (SDU*,U;*,0).
The linear system for (U, 0) (cf. (11.76), (11.77)) is
Up+ (pV XV x —(2u+ N)VV')U +~V0 = 0,
0, — kA + VU, = 0,
hence
UL — (21 + NAUP + V0 = Ul — (2u + \)VV'UP + V0 = 0,
Uy — pAU* = U + pV x V x U* = 0.
That is, the linearized system for (U,#) decouples into a simpler coupled system for

(U?°,0) and a wave equation for the components of U*°. U*° is no longer coupled to 6.

We know the asymptotic behavior for V*° from Chapter 2:
V2Bl < e+ )OIVt = 0) e t 20, c=c(a), (11.79)

where 2 < ¢ < o0, 1/p+1/¢g =1 and N, is not greater than three.

The asymptotic behavior of V?° which satisfies
VI LAV =0, VP(t=0) = VO = (SDU e U, ¢°)

will be described with the help of the Fourier transform. It turns out that V?° behaves
like a solution to the heat equation, i.e. here the damping effect of # is apparent.
For the discussion of the Fourier representation of V?°, the following elementary proper-

ties of the Fourier transform will be frequently used (“*” denoting the Fourier transform):

o, < | 00 @ yee), s
rasl, < |20, 1 0 vse)l, s
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(j € Ny, g1, g2 such that norms appearing are finite).

One major difference to the previously treated equations is that we shall not only make
use of the LP—Li-estimates for 2 < ¢ < oo with 1/p+ 1/¢ = 1. Here we shall also
prove L?>~L>- and L'-L?-estimates for V?° which is possible since V? is a solution of
a dissipative system. This will finally allow us to treat the different nonlinearities — in
particular the mixed quadratic ones — satisfactorily.

For this purpose we shall also make use of the following elementary inequalities (with

J» g1, g2 as above):

= aanl, < |20 Jasryaol, (1152
7 @, < ‘uiﬁ) o] 1 7ee0] (11.83)

For simplicity we shall write V' instead of V7° until we have found the decay estimate
for VP°. Then V satisfies

Vi(t,&) + AQV(t,€) =0, V(t=0)=V", (11.84)

where A(€) is the Fourier symbol of A.
The solution of (11.84) can be written as

V(t, &) =Gt HV(©),

where G(t,€) is described in the following (cf. [98]).

Let
& 00

0 & 0
0 0 &
0 & &
&0 &
& & 0

One has
det(A(€) — B) = —*(B + nl€?)’As(B,€) (11.85)
with
Ai(B,€) = =5 + B7wIE] — B2u+ A+ )€ + K(2p + N[

The factor 8 in (11.85) corresponds to the null space of A considered in H = L? instead
of H = SDW12x L?x L2, and the factor (824 u|¢[?)? corresponds to the U*°-component.
For V' = VP° the third factor is of interest.
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Let 1(¢), B2(€), B3(§) be the zeros of Ay(f,€) and
_y 1 ~5;()t
”“”ﬁ(m#w&wﬂwm)e |

(taking limits for 5;(£) = 5;(€), cf. Lemma 11.8)

dF

Denoting by Idy, k = 1,3, 6, the identity on C*, we obtain that é(t, €) has the following

structure (cf. [98], we omit the pair of parameters (¢, ) for simplicity):

(Jo + &lEPT + Y2 |E12T)Idg  (Jy + k[E]2T)iSE JySEE
G= (1 + k|€[27)i=! (Jo + K|E[21) Idy Jying
JE'E! —Jying’ (Jo +T|E2T) 1d,

For the discussion of the asymptotic behavior we need the facts below about the eigen-
values (3;(&), which we take from Zheng & Shen [208] (cf. also R. Leis [98] for similar
results).

Remark: It is interesting to notice that the calculations from [208] for the one-dimensional
case are of importance here. The reason is that the behavior of the part V?° which is
determined through a coupling of the curl-free component UP° and the temperature dif-
ference 6 is in principle one-dimensional while the behavior of the part V*°, which only
consists of derivatives of U*°, is really three-dimensional. By “in principle” we mean
that the damping effect of the heat conduction part (dissipation) predominates in V*°
— just as in the one-dimensional case where no term “U*®” appears — while there is
no damping for U*®°, a typical elastic behavior. This kind of coupling and splitting will
become of interest for blow-up questions; see below.

Let 7 := 2p + A. From Lemma 2.1 and Lemma 2.2 in [208] we have

Lemma 11.8
(i) As [¢] > 0:
RT 3
5O = T LIeP+ OGeP)
2
Bo€) = gL o) P EiT el + O,

2
i) = mlel?=" ="l + o),

2
Basl€) = 3+ e+ 00 % (Ve + Flel™ + 0l ),
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where , ,

wim ), ayin A=)
(i) Except for at most two values of |£| > 0: B;(€) # Br(€), j # k.
(iii) For any value of € #0: Re8;(¢) >0, j = 1,2,3.

(iv) There are positive constants ry, r2 and C; (j = 1,2,3,4) depending on ry, v such

that
€] <y = —C1l¢]? < —Re () < —Colél?,
<< = —Re g (§) < —Cs,
T2 S |§| = 7Rcﬁj(€) S 7047 (.] = 17273)
We shall write G(t,€) = (G” (t, 5))19,,]_53 with

G(t,€) = (Jo(t,€) + €[ 1(t, ©) + 1€ (£,€)) 1ds

and so on. We proceed similarly to [208].

Consider
Gt = §M(t€) - Tds :
gll(t7 6 = all(é')e*lgl(&)t + bn(g)e’ﬁ?(@t + 011(5)67/33(6)3

One has from Lemma 11.8 (we shall mostly omit ¢ in the coefficients and the eigenvalues)

as ] = 0:
2
a1l = 7-172 + O(|§|2)a b = 2(7‘1“/2) + O(‘SD
‘i = 2(7-172) + O(|§|)v
as |¢] = oo
a1 = O(|5|74)7 by = ; + O(|5|72)7 ‘= ; + O(|£|72)‘
(11.86)
Let
~ +2
Iy = e 2" cos(V/TIE[t),
2 2
. o 0% - Tl T (ot €2t
Zn = 742’ T+ - 2 cos(y/ +420gt),

h11 = j11 + 211.
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To prove the L?>-L2-estimate we notice that for

Wis(t) = F~H (G (VO ()

one has
Wa(t) = FHGM(E) = hut, V) + F (hu(t, V) (11.87)
= Ti(t) + Tx(t),
and
1Tl < (G ) = har(t) /A + ] Dol (14 - DFVOLE)] 2
< Gl (GM(t ) = () /A + T D loellVOH a2,k € No.

(Cy being a constant depending only on £.)

Let ¢t > 1. Without loss of generality we assume r < 1 < rs.

a) [¢ <

‘G“(t,f) — hu(t,6) < |Gt €) — I (1, 6)] (11.88)

(1+ gy
< c{IGM(t.€) = Zu(t. &) + [Iu(t.€)[}

2
Y —Bat
<a11—7_+’y2>e 1

r
+ {11 — e Pt 4
< o(r+ 72)>

IN
o

.
+ (b1 — e P2t
‘( T+ 72)>

2
T+ 72

_RT g2
e—ﬁlt —e T2 €%t

K 2 .
+ ! 2 Ciﬂzlf — 07<2(7—172) ‘5\2+z\/7—+72‘§|>t
2(r+7%)
2 ‘
! —fst 7(2(:1 2)|§‘27i\/7+72|£\>t .
) Tt + (o)l
2(T+7%) i (4.)

the first term in (11.88) we get by Lemma 11.8 and (11.86)

2
v —pit
a — e
( ! T+72>

< o1+ 1) gl

<c(l+t)7h
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(c will denote various constants in the sequel which do not depend on ¢ or V°, but

possibly on k.) For the second term we obtain

_
by — —Bat
( " 2<r+72>)e

and analogously the third one is treated.

< (1 +t)_1/2 (\/t|£|e—c(\/t|§\)’l) < el +t)_1/2

The fourth term is estimated by Lemma 11.8 in the following way:

e—ﬂlt —e 7_:_;2 13 Ce—c|§\2t|£|3t

IN

IN

e(1+1)7%

similarly for the fifth and sixth term.

The last term is estimated by
(1, €)] < ce™.
Thus we obtain for |£] <

A s

GH(t.€) hl;(tag)’ <c(1+H)72, keN,
(1 + &)

b) 1 < [¢| < re: By Lemma 11.8 we obtain

‘éﬂ(m €) — hu(t, g)‘
(1+]e)"

<ce ™ ke N,.

= )

¢) I€] > ry:
G —hy = GYM =1, —Zy (11.89)
—Bit 1 —Bot 1 —Bit
= ajie 4 bllf e 72 4 C11 — e 7t
2 2
+1 (e*ﬁzt — e(fw2/2+i\/7\§\)t>
2

Jr; (6*53’5 — e*(wz/(%%i\/ﬂﬂ)t) — 2117

)ane_ﬂlt <clé| e < e

by (11.86), analogously for the second and the third term in (11.89).

2
- - (3 £ivrie)e ~
e Bazt e (zn S ce ct7
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|1 Zu(t,€)] < ce .
That is:

‘Gll(t7 5) - il’ll(t7 ‘5)‘ <ec- efut ke INO

(1+ e B 7
and we obtain
Tt €) — hyy (4, -
Vt>1 VkeNg: HG ((f) | lL)lkl( ’ )‘ <c- (14172 (11.90)
+1- -

For 0 <t <1 we get
A1 s
‘G (t7§) hl]i(t{) <ec
(1+1¢])
Thus we have estimated the term 73 (¢) from (11.87) by

Ty (t))l2 < (1 +8) "2 VO ke, >0, ke Ngarbitrary. (11.91)

For all t > 0 one has

IT2(8)]2 1 (£ VO Ol A 1200t VOOl

IN

IN

e[V, + ¢ - [|ecAtVOL 5.
e/ 91 is the solution of the heat equation
Wi —cAW =0, W(t=0)=V""
Thus by the known results for the heat equation (cf. Section 11.2) we conclude
IT2(®)ll2 < e[Vl (11.92)
From (11.91) and (11.92) we conclude the L?-L2-behavior for the first component:

Wi (@®)]l2 < V&2, > 0. (11.93)

Remark: The factor (14 |¢])" — which could have been omitted up to now — will
become important later on for similar calculations for the remaining estimates. Since we
do not carry out all of the details we already wanted to point out how weighting factors
are incorporated.

We now turn to the study of the L'-L>-estimate. Notice that by (11.87) we get

GH(t,-) — hn(t,")
L+]-D"

With similar calculations as in (11.88) — (11.90) we get for ¢ > 1 and k£ > 3

IO < H VOl e, k€ No.

1

‘éll(t ) — iln(t ) < Ck(l + t)72

(L))"

1
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e.g.
T 2
biy(€) — Bt ge < / —cle’tg
N P
€]y []<r
- . / t’1/2|n|e’“‘"‘2t’3/zdn
n|<ryt1/2
< cl41)7
oPalE)t _ (Gt rlel )t -
k g < ce® L€

IN

ce™ if k> 3.
For 0 <t <1 we obtain . .
HG“(t, ) = hi(t, )
L+

1
Thus we have estimated 77 (t) by

1Ty ()l < c(L+ 1)V lka, k>3, t>0.

For T5(t) we have (cf. the estimates for the heat equation in Section 11.2 or [206])

iLH(t, )

70 < |

”VOJHk,lv k € Ny
1

and with the previous arguments

o

<c(1+0)732if k> 4.
1], =Y

1

Thus we have obtained the L'-L>-behavior of Wi;:

W ()l < e(1+8)722(V!

li1, t>0. (11.94)

For the contributions of G'2, ..., G similar lengthy but straightforward calculations are

omitted, and we just state the following results:

For G'2 (analogously for G?'):
G2(t,€) = §*2(t,£)iSZ. For the estimates we consider a typical term

97(t,6) = ng®(t¢)
= am(f)eiﬂl(ot + blz(f)ei&(g)t + 012(5)6%3@2 n € {&, &, &1
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As |¢] — 0:
aiz = O(§]), bia=0(1), c12=0(1),

as [¢] — oo:
ara = O(E]%),  bia = O(1), e12 = 0O(1).

L?-L?-estimate, L'~L>®-estimate:

Wa(t)llz < cllVO2[l2, ¢ =0,

(11.95)
Wia(t)lle < c(1+8)722[VO?|y, t20.
(Analogously for Way(¢)).
G'3 (analogously for G31):
Consider
GUB(t,€) = g°(t, € )vS=/[€)?
and the typical term
913(t7£) = 771772913(t7§)
= alg(t,ﬁ)efﬁl(@t + bls(é“)efﬁz(f)t Jrcls(g)efﬁs(ﬁ)t7
—— {51 & 53}
7 &1 1€17 1€]
As €] — 0:
a1z = O(l), b13 = O(l), Ci3 = O(l)/
as [¢] — oo:
ai3(§) = O(|§|72)7 biz = O(|§|71)’ C13 = O(|5|71)~
L2 L*-estimate, L'~ L*®-estimate:
Wis(t)ll2 < VO3, t>0,
[Was ()]l V2 (11.96)

[Wis(®)llee < c(1+8)722VO3]4q, >0,

(Analogously for Wi, (t)).

o
N
n

I~

Il

97 (t,€)1ds,
(125(€)e 1O | by (€)e 2O 4 ¢y (£)e PO

@

¥

™
—~ —~
~ T
Iy
—

As [¢] — 0: . .
ag = O(E]%), by = ot O(l€]), e = ot o€,



160 11 More Evolution Equations

as |£] — oo:
—92 1 -1 1 -1
az(§) = O([§]%), bn= o T O§l™), c= o T o(€l™).
L?>-L?-estimate, L'~L>®-estimate:

[Waz ()2

IN

CHVO’ZH% >0,
(11.97)

War(t)lloo < c(146)">2[VO|gy, ¢ >0

G2 (analogously for G32):
GP(t,€) = §7(t, )i,
Consider the typical term
GH(1,) = 1g*(t.€)
= ag(£)e O 4 by (e O 4 cp3()e Oy e {6, 6,8)

As [€] — 0:
azs = O([§]), bz =O(1), ca3=0(1),

as |§] — oc:
azs = O(€]7™), bas = O], o3 = O(€]™).

L? L2-estimate, L'~ L>®-estimate:

Was(®)ll2 < ellVO2]l2, 20,

(11.98)
[Was(t)leo < (14 8)*2VO¥u, ¢>0.
(Analogously for Wy (¢).)
GP(t,6) = §°(t.€)1d:.
3(t,8) = ag(€)e 1O 4 by (£)e O 4 cg5(€)e O,
As €] = 0:
2
KT oy 9
33 = T+’}/2 + O(‘é‘)? b33 - 2(T+72) + O(|§|)7 C33 = 2(T+’Y2) + O(‘é“)?
as |&] — oc:
azs =1+ O(¢]7Y), by = O(I¢]7?), ez = O(I¢] 7).
L?-L2-estimate, L'-L>®-estimate:
Was(@)]z < c|[V*2 ¢ 20,
(11.99)
Was(O)llo < c(Q+8)32[VO3ay, >0
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Summarizing (11.93) — (11.99) we obtain

VF @)l

IN

cl[ Vol

V@)l < (L +6) 2 VOPlyy,

and by interpolation the corresponding LP—L%-estimate. Since a differentiation of order
|| yields a factor of order |£]l*l in Fourier space we can prove in the same way for
a e INg:

IV P(0)ly < (1 + £)3atlela oo (11.100)
where t > 0, c = c(q,a), 2 < ¢ <00, 1/p+1/g =1 and N is not greater than 4 + [a|.
With the help of the differential equation one also obtains a decay rate for [[V6,()|,
of order (2 — 3/q + |a|/2). Taking the results for V*° in (11.100) and for V*° in (11.79)
together we have proved

Lemma 11.9 Let1/p+1/g=1,2 < q< oo, a € N3. Then there exist N, € N, N, < 4,
and ¢ = c(q, ) such that for all t > 0 and all (U°,UY,6°) with VO = (VU°, U, 0%) €
WhNetlel? the following estimates hold:

@) VDU, < c1+6 " HVOy, o),
(@) (VeO)lly < o1+t CRHRVO Iy o)y,

(i) IVoB0)ll, < c(1+6) DV s

(Observe that we do not distinguish between SDU® and VU?°.)

We have used the elementary properties of the Fourier transform given in (11.80), (11.81)
to prove Lemma 11.9. If we use the inequalities given in (11.82), (11.83) we immediately
obtain the following L*-L*- resp. L'-L?- decay estimates.

Lemma 11.10 Let a € INJ. There exist a constant ¢ = c(a) and integers Ny, Ny < 4
such that

(i) Vt >0 VVO e WhNitlal2;

IVO(t) |0 < (1 + £) A2V 0,
(if) Vt >0 VYVO e WhNitlall,

IVO(t)]l2 < (1 + &) AT VO 14,
(iii) Vi >0 WV e WNitalt22,

V20 () oo < (1 + )~ /A0 o)

N3 +|al+2,25
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(iv) V£ >0 VVO e WNiHal21,

V20 ()2 < e(1+ )~ HTDDNVO .

B: Local existence and uniqueness:

Applying to the hyperbolic part of the differential equations the transformation which
we used in Section 11.1.1 to obtain a symmetric hyperbolic system, we end up here with
a symmetric hyperbolic-parabolic coupled system for which a local existence theorem is
given in Appendix C. We obtain a local solution V' = (VU, U, 6) in some time interval
[0, 7] with 0 < T < 1 provided V° € W*? with s > 4 and ||V°||s2 < § is small enough
yielding

| DU ()]0 + [10(t)]]2,00 <m < 1 for all t € [0,T]

(6 = d(n), n arbitrary).
V' satisfies
DU e C°0,T],Ww**)nC*([0,T], W*1?),
6 € C°0,T),W=*nC[0,T], W 22).
Remark: T. Mukoyama directly investigated the second-order system for (U,#) and
obtained a similar result, see [134].

C: High energy estimates:

We shall prove the following estimate for the local solution provided 7 is small enough.

I(DU,0)(#)[l.2 < C||(VU°, U, 6°))| (11.101)

5,2

t
exp {c J(IDUIR . + 1812 + 16uloc) <r>dr} :
0

tel0,T], C=C(s)

The crucial point is to obtain the quadratic term || DU||7 , in the exponent, a linear term
[IDU||1,00 would not be sufficient because of the weak decay rates for DU. The energy
estimates in the previous sections in their simple form lead to a linear term ||DU||; o
since there are quadratic nonlinearities involving DU. Here the elementary estimate
€ 1
abc < _a*+ | b’
-2 2e

for positive real numbers a, b, ¢,e will produce the quadratic term ||[DU|[} .. One may
think for example of a being a 6-term, b being the DU-term and ¢ being a DU- or §-term.
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Then the term ea? can be incorporated into the left-hand side of the inequality to which

abc denotes the right-hand side. In the previous section abc was just estimated by
b
abe < Q(a2 + ).

Due to our assumption (11.78) the following typical nonlinearities appear (up to unessen-
tial constants), cf. (11.74), (11.75):

f!' = quadratic terms f9 4 cubic terms f1¢+ higher-order terms

where

1 =0V*U + VOVU + 0V0,
(OV?U is to be read symbolically for a typical term 09;0,,Uy, and so on),

F1e = (VU)V2U + VUOIVPU + 60°V2U + (VU)2VO + VUOVH + 0°V0.  (11.102)

Analogously
f? = f27+ >4 higher-order terms,

where

f2 = OVPU + VOVAU + VUV + V6

+VOVO + V2OVU + 0V + VOV?0 + VU,

£2¢ = (VU)PV2U + VUOV2U + 0°V2U + VUVOV2U
+(VO)2V2U + 0VOV2U + (VU)20 + VUV
+62V0 + VUVOVE + (VH)>V0 + (VU)*V
H(VU)IV?0 + 6°V20 + VUVOV2 + (V0)>V20

+OVOV20 + (VU)2VU, + VUOIVU, + 6°VU,.

The terms of higher order will be neglected in the sequel since they are always easier
to deal with than the quadratic and cubic terms. We take V® on both sides of (11.76),
(11.77) and multiply (11.76) by VeU, and (11.77) by V0 in L?, |a| < s. Now we have
to discuss 3 4+ 6 + 9 + 20 terms numbered from (1) to (38). Since a lot of calculations
recur we shall pick out the characteristic ones.

We get from (11.76) (dropping the argument ¢)

1d

0t (HV”Utng + (VSDU, VoDU)) +4(VV0, V°U,) (11.103)

Z ), VeUy),
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(V(1),VU) = (V*(OV?U),VU,) = (0V*V°U,V°U;)

H(V(OV2U) — OVOV2U,VU,) = Ry + Ry,

R, = —(VOV®VU,VU,) — (V°VU, VVU,)

1d
~(VOVVU.VU,) — , o (0V"VU. V*VU)

1
+y (0, VYU, VVU).
The second term in the last right-hand side will be incorporated into the left-hand side of
(11.103) after integration with respect to ¢ using sup ||6(t)|| < n and Korn’s inequality
0<t<T

for (V*SDU,V*DU). Using the inequalities on composite functions from Chapter 4 we

obtain

IN

Bol < (V0| VOVU 2 + [ V2U oo V20]]2) | VTil |2

IN

1
e (IV0ll (192 U1+ IV°U3) + 2l 013 + _ IVUILITUil3).

where €, > 0 is arbitrary.

Without loss of generality we assume |o| > 0 because Ry = 0 for a = 0. The term
€1[|V20||2 can be incorporated into the left-hand side choosing £, > 0 small enough after
adding the left-hand side arising from (11.77), where the term x||V*V#)|3 will appear;
see the following formula.

We obtain from (11.77)

1 d 38
- V205 + ]| VEVO|2 + 1 (VOV'U, VoO) = (V2 (i), VOO). (11.104)
Y =10

(V2(10),V20) = (V*(OV2U),V0) = (0V*V2U, V°6)

H(V(OV2U) — OV2V°U, Vo) = Rs + Ry,

IRs| = [(VOVVU, V) + (0V°VU, VV0)|

IN

1
V61|, (IVVUI3 + [V26113) + &1 V*Vol5 + EIIIHHioHV“VUH%

| Ryl

IN

¢ (IVOll VYU l2 + [IV?U [l [[V*6]12) | V261>

IN

(e} « ]' «
¢ (IV0ll (I92VUI3 + [9°013) + e 2013 + _ IV2UII97015 )
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(VY(18), V) = (V*OVU,), V)

(OVVeU,, Vo0) + (V(OVU,) — OVVU,, V°6)

= R5+R6,
|Rs| = [(VOVeU,, V*0) + (6V°U,, VV*0)|
« « (o3 1 «
< IVl (IV°TRIE + IV7018) + ea 729815 + | 8190l
ol < eIVl VUl + VUl 7]2) V702
1
< (I8l (IV°UE + 1 9°618) + <0l Vo615 + _ VU IV2013 )

Up to now we have considered typical quadratic terms. The remaining quadratic terms

can be handled in a similar fashion. We shall now deal with two typical cubic terms.

(Ve(4), VU, (VA((VU)V?U), VU,

= (VU V*V?U,VU,) + (V*((VU)2V2U) — (VU)2VV2U, V°U,)

R; + Rs.

R, = —(V(VU)’V°VU,V°U,) — ((VU)*V°VU, V*VU,)

1d

- 27w @ o
(V(VUPVVU.VT) ~

(VU)2VeVU, VoVU)
HO,(VU)2VOVU, VOV U).

The second term in the last right-hand side is again incorporated into the left-hand side

(compare R; above) and the inequality
IV(VU)?|loe + [10:(VU)? e < || DU o

leads to the desired quadratic term in the exponent.

IN

Rs| < c(IV(VUP |l VOV 2 + [ V2U [V (VO)22) VT2

IN

¢ (IDUI2 IV DU + V20 || VU o [V U 2] 92T )

IN

c| DU VDU 5.
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(V(22),V°0) = (V(VUVOV2U), V°0)
= (VUVOVV2U, V0) + (V*(VUVOVU) — VUVOIV®V2U, V0)

= Rg + R107

|Ro| = |[(V(VUVH)VVU, V) + (VUVOVVU,VV6)|
< [ VO]1oo (IV2VUIE + [IV0]3) + 21| VEVO3 +  [[VO]|oo | VAV

1
€1

| Riol

IN

¢ (IV0lLaellVEVU 2 + V2V [ V(VUTH) |2) |76

IN

1
e (V010 (I9°FUIE +19°618) + 20l V2615 + _ VU1 V2015

The remaining cubic terms are handled in a similar fashion. Adding (11.103) and
(11.104), summing over all |a| < s, and integrating with respect to ¢, we obtain the
desired special energy estimate (11.101) using Gronwall’s inequality, Lemma 4.1, and
choosing 7 (from Step B) and ¢; sufficiently small. (Observe that the third terms on the
left-hand side of (11.103) and (11.104), respectively, cancel.)
D: Weighted a priori estimates:
According to the assumption (11.78) on the nonlinearity we first discuss case I (no cubic
terms).
Let sg, k, k', | be arbitrary integers satisfying [ > 6, ¥’ > 1+ 1, k >k +7, s > k+7
and let 0 < ¢ < 1/8. We define for the local solution:

MAT) = sp {1 T s (10 00

0<t<T
(4O VOOas 1+ 0718 as (14 D700 oo
(4 D00 s (14O DU) e .

We shall use the integral equation for V:
t.
V(t) = e V0 & / e~ EDAR( ) (r)dr, (11.105)
0

(F = (0, f', f%). We first estimate terms involving 0, then the term in M, involving U.
These estimates use two basic technical ingredients.

First of all we shall of course use the decay estimates obtained in Lemma 11.9 and Lemma
11.10, in particular we shall use the L>-L>- resp. L'-L%-estimates in Lemma 11.10 for
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¢
6 and if necessary we shall split integrals for an L*-estimate, { L?-estimate} || [ ... [|oof2}
0

t/2 t
into || [ ...+ J ... ||ocqzy Where the L'-L>-estimate {L'-L*-estimate} is used in the
0 t/2

first integral and the L?*-L*°-estimate {L?>-L?-estimate} is used in the second integral.
The second idea is to rewrite the nonlinear term F'in the following form. The quadratic
terms in which V@ or V26 appear remain unchanged, and the terms where only 8 appears,
i.e. 0V2U and VU, will be written as V(0VU)—VOVU and V(0U,)—VOU,, respectively.
This has the advantage that either the better decay rate of V@ is available or a V can
be put in front of the semigroup also leading to better decay (for 6-terms). Thus the
quadratic terms F7 in F can be expressed as F4 = F{ + F{ where F{/ =V(#...) = VE/
and FY = VO(...)+ V20(...). The integral equation (11.105) then turns into

t
V(t) = e VO [N (VI + F) (r)dr.
0

The initial data VO will be assumed to satisfy
VO llso2 + 1V llso.1 <6,

where ¢ will be chosen sufficiently small leading to the desired uniform bound for M. (7).
According to the Lemmata 11.9 and 11.10, and, with the technique outlined above, we
obtain the following sequence of estimates. (C' denotes various constants not depending
on T or V0.)

t
IVl < CO+0720+C [+t
0

DT s0,210()ll2,00 + 1 DU ()]

1,0<>H9(7")H50,2] dr.

Analogously,
t
[V3(t) e < COA+1)"%5+ C/(1 )R
0

[IDUE) sy 2l10r)

200 + [1DUT)[[1.00 (10) 122 + [|V20()[12) ] dr-

In the following estimates the technique described above becomes relevant for the first

time.

t/2
[VO@®)|12 < CO+1)" G425 4 / (14t —r)~ @A,
0

[IDUE) a2 (100) 22 + [V200)[12)] dr
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+C /(1 +t =) HIDU () s0.210(r) |20

t/2

+ DU e (106 22+ 1V°0(r) |1 2) ] dr

+C [ (Ut =) OB [ DUG) sy (1900 12 + 19700 lw2)] .

0

10(t)l2,2

IN

t
O+ 1)1 + o/(1 Gt )G
0

DU a2 (100 122 + [V°0() 12) ] dr

t

+C [t =) IDUE) |z (1960 12 + 1V°00) e2) | dr.

0

t/2
C(14+t)3%54+C /(1 +t— ) G2
0

A

10(t)]]2.00

DU a2 (1100) 122 + V200) [12)] dr

t
+C [+t =) S DU 020 2.0
t/2
+ DU 100 (100122 + IV20(r) [l 2)] dr
t/2

+C [+t =) IDUE) o (190012 + 1900 2)] dr

+C [+t =) [IDUG) oo (1960 12 + IV°00) 2) dr

t/2

Since .

+/ gte@—”AF(. ()

3rdcomp. 0

o.(t) = 2 ety

d
ot "

3rdcomp.

we obtain

16:D)lloe < CL+8)" 2D 4 Cl0(#) |00 | DU #) 1,00
t

+C/(l +t = 1) YD [DU 1) | 2]10(r) |20
0

HIDU ()10 (100r)l]22 + V°0(r)[12) ] dr-
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Summarizing the estimates above, using the definition of M.(T") and the high energy
estimate from Step C, inequality (11.101), we obtain

M(T) < €8 + CO((M(T))? + M(T)) exp {C((Mc(T))? + M(T))}. (11.106)

¢
The integrals of the type sup [(1+¢)(1+t—7)"%(14r)"Pdr, which naturally appear in
0<t<T 0

proving (11.106) are unifo;rﬂly bounded according to Lemma 7.4. The decay exponents
in the definition of M,(T") and & have been suitably chosen such that the assumptions of
Lemma 7.4 are satisfied (which is shown by a lengthy but easy calculation).

As in Chapter 7 we are now able to conclude that M. (7") is uniformly bounded, i.e.
M.(T) < My < oo, (11.107)
where My = My(e) is independent of T', provided § is sufficiently small.

Now we deal with case IT in assumption (11.78) (no quadratic terms besides 6AG).
Let
M(T) = sup {(1+6°[DU®)||., 072
0<t<T

(L4 )72 (10(0) 11372 + [IV20(0)]

55,26/11 T+ |‘V29(t)

35,18/7)}7

where s1, s3, S5 are sufficiently large such that

{51 +2N9/7- +4 < min{sy,s3}, 514+ Nyjr < s5,
(55 + J2V13/11_ +4 < min{sy,ss}, 83+ Mg/ < 55,
:35 + 12\718/11: +4 < min{sy, sz},
55+ ;\726/15_ +4 < min{sy,ss},

(N from Lemma 11.66, N < 4).

The initial data V° will be assumed to satisfy again
VN2 + 1V llso.1 <6,

where ¢ will be chosen sufficiently small such that M (¢) will be uniformly bounded; sq
has to be sufficiently large, at least so > max{s; + Ng/7 + 3, s3 + Nizj11 + 3, s5 + 4}.
Using Lemma 11.9 we conclude

t
IDU@)[s1.02 < C(1+t)_5/95+c/(1+f—T)_S/QHF(Vw-~)(7“)||s1+N9/7,9/7d7’7
0
t
105252 < C(1+t)_27/265+0/(1+t—7“)_27/26||F(V»--~)(7”)|\S3+N13m,13/11 dr.
0
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Let
P = 9/77 q1 = 9/27 51 = 187

P2 = 13/117 qa ‘= 13/27 QQ = 26/5
Then
1/p;

18 = ql>dg>QQ>Q1:9/2.

1/2+1/qj+1/q]7 j:1727

This implies the validity of the following inequality (N € IN):

Ifihobsllng, < C{lLAln2lfallinaing|

falliv/2eg, (11.108)

FH full vz | foll vzl fallivy2+1.6;

il sz foll vz ||f3\|N,2}~

Remember that F' has the form F = (0, 1, f?) (cf. (11.76)). Typical terms in f! = fl¢
have the form given in (11.102).
Using (11.108) we get

1F Vi Msitnrom < CIV llso2 (1611531872 + 16112, 1572 + VU2, 72) -

The typical cubic terms in f? are dealt with similarly. For the quadratic term A6 we

obtain
H6A€||81+N9/7,9/7 < CHG‘|81+N9/7+2,9/7 Hv20||81+N9/7,18/7'

Thus we conclude
IE (V. ) si-Noyr9/7 (11.109)
< OV ls2 <H9||33,13/2 + ||‘9H§3,13/2 + HVU||§1,9/2 + Hv29||55,18/7) .
Analogously
IE (Vs ) sgt-Nysyar13/11 (11.110)
< OV llnz (10saisr2 + 1012, g2 + IVU I g2 + 92612611

Finally we notice that the integrands ||F(V,...)||.. appearing in the estimates for
[V20(1)]]55,18/7 and |[[V20(¢)]|s5,26/11 can be estimated by the same right-hand sides in
(11.109) and (11.110), respectively. (Observe for example that the following inequality
holds:

A

1020|554 Ny5)0y 1811 < C|\9\|s5+ng/n+2,2|9\|rs+m/n]
2

+3,13/2

IN

CllONlso.21101]55,13/2-)
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Summarizing these estimates we get
M(T) < C6 + C((M(T))? + M(T)) exp {C((Z\/[(T))2 + M(T))} .

This is the same inequality as that obtained for M. (T) in (11.106). Analogously, M (T)
is bounded by M, if § is sufficiently small, M, being independent of T

M(T) < My < oo. (11.111)

(11.107) and (11.111) are the desired weighted a priori estimates and now lead as usual

to the desired energy estimate.

E: Final energy estimate:
IVO)lls2 < K[VO]ls2, 0<t<T,

s> 50 (so from Step D), § small enough as given in Step D, K being independent of 7.

Altogether we have proved the following global existence theorem.

Theorem 11.11 Let the nonlinearity satisfy (11.78). Then there exist an integer sq and
a 6 > 0 such that the following holds:
If (VU UL, 0% € W2 N W™ with s > sy and

(VU UL 00 sz + (VU UL 00) s <,

then there is a unique solution (U, 0) of the initial value problem to the nonlinear equa-
tions of thermoelasticity (11.67), (11.68), (11.71) in R® with

(VU7 Uf,) S OO([O, 00)7 WS,Z) N Cl([o7 OO), stl,Q)_/

0 € CO0,00), W*2) N C([0, 00), W522).

Moreover, the asymptotic behavior can be described as follows.
Case I (no cubic terms): There exist integers | < k' < k < s such that for e < 1/8 we

have
(VU U, 0)(D)lls.2 = O1),
V2002 + (VU U) O lioo = O@*),
IV20(D)llwe = O@*2%),
IVO®) 12+ 10:(B)llee = O,

1622 = O/,
10t)]l200 = OF¥**€) as t — o0
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Case II (no quadratic terms but OAf): There exist integers s, S3, S5 < s with
H(VU» Utve)(t)HSQ = 0(1)7
||(VU7 Ut)(t)Hslﬂ/? = O(t_5/9)7

10t)lss13/2 + 1V20(E) lss 2611 + V2O |ls5187 = OE*7*) as t— 0.

We remark that beyond the previous theorem there are only local existence theorems
for initial-boundary value problems in three space dimensions. These cover also non-
homogeneous, anisotropic media and both bounded and unbounded domains, see A.
Chrzeszezyk [20] and Jiang & Racke [62].

This section will be concluded by an example that shows that one has to expect the
development of singularities in finite time if there are purely quadratic nonlinear terms

only involving derivatives of the displacement, not involving the temperature, as
VUV2U, VUVU,.

The idea of proving a blow-up is that the hyperbolic part predominates and that solutions
to the nonlinear equations of elasticity in general develop singularities in three space
dimensions if there are quadratic nonlinearities, see Section 11.1.

The ansatz that we make comes from the observation that solutions (U, 6) to the lin-
earized equations can be decoupled into (U*°,0) 4 (UP?, §) where the divergence-free U*°
is no longer coupled to # and solves a linear wave equation, see Step A above. That
is, for U%° £ 0 or U*° #£ 0 there is always a non-trivial purely hyperbolic part in the
(linear) equations which does not involve # and hence does not experience any damping.
Remark: U*° = 0 in one space dimension, i.e. the ansatz below cannot work there.
Indeed, we know that in one dimension global solutions always exist if the data are
sufficiently small without further restrictions on the nonlinearity; see the discussion of
one-dimensional models at the beginning of this section.

In the (three-dimensional) nonlinear case it will now be the aim to obtain a decomposition
of U for a plane wave U into some divergence-free part U? and a curl-free part U7,
compatible with the special nonlinearity that we shall choose, which has to be determined

such that U7 satisfies

3
RU? — > Comjr(VU?,0)0,0,U7 =0, i=1,2,3,

m,j,k=1
U(t=0)=U%, U(t=0)=U"".
Actually, U? will be a function of z; only (plane wave) and U7 will satisfy

3
RUY =" Bi(aUN)OU7, i=1,2,3

=1
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for some B;;, and this will be a genuinely nonlinear strictly hyperbolic system. Then
the general results from T.-P. Liu [112] {or F. John [6 ]} will imply that there are
nonlinearities which on one hand satisfy at least the basic (physical) properties — as
they are given for instance in the global existence theorem above (of course besides
the degeneracy requirement (11.78)). On the other hand, the nonlinearities are such
that for compactly supported (in z;), non-vanishing smooth data (U%°,U%7), which
are sufficiently small, a plane-wave solution cannot be of class C? {resp. 03} for all
positive .

The components (Us, Us) will develop the singularities. The coefficients in the differential
equations (11.67), (11.68) for (U, 0) are — besides the heat flux vector ¢ — given by a
free Helmholtz energy (Helmholtz potential) ¢ = ¢(VU, ), see (11.69), (11.70) where

in particular we should have
a>ay >0 for some constant a, (11.112)
(Cim)im # 0 (“really coupled”). (11.113)
We consider plane waves
Ult,z) =U(t,7-x), 7R fixed.

We also assume 0(t,z) = 0(t, 7 - z) and we write U and 6 again instead of U and 6

respectively. For simplicity we choose
7:=(1,0,0),
that is U and 6 become functions of z; (and t) only. We may decompose U into
U=(0,Us,U3) + (U1,0,0) =U + U™,

where U?, U™ satisty
VU =0, VxU" =0.

In this sense it is again a decomposition into divergence-free, respectively, curl-free parts,
but this decomposition is no longer in L.

Let P? denote the corresponding projection
U~ P°U:=U".

As indicated above the aim is to obtain the relation

3
0 = a?UU - { Z Cnn/k VU 6 anLak Z an VU 6 87”9} (11114)

m,j,k=1 m=1 i=1,2,3

3
U7 — { S Cimir(VU?, 0)8m8kU]f’} :
i=1,2,3

m,j,k=1
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where the coefficient Cj;,,;1(VU, 0) does not depend on 6. For this purpose we require at
first

3
P { > Cim(VU, 9)8,”9} =0. (11.115)
m=1 i=1,2,3
In order to have a nonlinear dependence of Cj,ji, in 0 we additionally require
8Cimjk . .
20 # 0 at least for one quadrupel (i, m, j, k). (11.116)

To obtain (11.114) we now have to postulate

3
P { > Cimiu(VU, e)amakUj} = (11.117)
i=1,2,3

m,j,k=1

3
{ 3 Cimjk(VU"70)(9m8kUJ‘-’} .
1=1,2,3

m,j,k=1

Since we are considering plane waves the final system for U? should be

3
RUT = > Bi(aUN)RU =0, i=1,2,3, (11.118)

Jj=1

Uo(t=0)=0%, Uf(t=0)=U"7,

where
Bij(0U%) = Cujn(VU?,0), i,j=1,2,3. (11.119)
Let
a; 0 0
V)=v¢ || a 0 0 |,0], a€cR? (11.120)
as 0 0
and
a; 0 0
Vijl@) :=Bjj || az 0 0 (11.121)
as 0 0

Then the system (11.118) is strictly hyperbolic if
the matrix (V;;(a)),; has only positive distinct eigenvalues (11.122)

and it is genuinely nonlinear if

d*(V(sp))

p # 0 for any right eigenvector § of (Vi;(a)), ..
s

L)

(11.123)
5=0

(For the notion of “strictly hyperbolic” and “genuinely nonlinear” see [64].) Then the
following theorem will follow from the general result in [112, p. 107] {resp. [64, p. 387]}
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if there is a nonlinearity 1 satisfying all the conditions gathered in the following formula
(11.124):

(11.112), (11.113), (11.115), (11.116), (11.117), (11.122), (11.123) (11.124)
(at least in a neighbourhood of zero).
Theorem 11.12 There exist nonlinearities satisfying (11.124) such that for compactly

supported non-vanishing smooth data (U%", UY7) which are sufficiently small, i.e.

sup ’31 (31Ug,31U3(,),U217U31) (1’1)‘

z1€ER

{resp. sup ’8% (31U§),81U3?7U217 U?}) (331)’}

r1€R
is sufficiently small, a plane-wave solution of the nonlinear equations of thermoelasticity
(11.67), (11.68), (11.71) in R?® cannot be of class C* {resp. C3} for all positive t.

PrOOF: We choose the following function ):
V(VU,0) = 3(0U1)% + (01U,)? + (8,U3)? + (0,U,)(8,Us)
+a111(O1UL)? + a0 (01Us)? + assz(0,U3)?
+a223(01U2)*(01U3) + ags3(01Us) (01U3)?

3
H(OU1)%0 + 40 (9,U;) — 6

Jj=1
with coefficients satisfying
111, G2, G333, G293, A3z, Y € R\ {0}, (11.125)
299 + G333 + Q23 + agsz # 0, (11.126)
G922 — 333 — Qg3 + Qo33 7 0. (11.127)

Now it has become a more or less simple algebraic task to check whether this 1 satisfies
the conditions (11.124).

By the definition of Cy,,jx, and Cj,, the relations required in (11.112), (11.113), (11.115),
(11.116) are immediately clear. It remains to show (11.117), (11.122) and (11.123).

We have

Cimji(VU,0) =0 for (m,k)#(1,1).
The relation (11.117) is then equivalent to

3
0="> Cun(VU%,0)0{U7 (11.128)

=1
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and ; s
> Capn(VU,0)0U; = Cujn (VU 000707, i =2,3. (11.129)
j=1 j=1

The relation (11.128) holds because

U7 =0 and Chii91 = Ciiz1 =0.

We have
(Cijn(VU,0)),; = (11.130)
6+6CL111((91U1)+20 0 0
0 2+ 60’222(81(]2) + 204223((()1(]3) 1+ 2a223(81U2) + 2&233((91(]3)
0 1 + 2@223(81[]2) + 2&233(81(]3) 2 + 6@333(61[]5) =+ 2&233(811]2)
and

C’iljl(VU7 0) = C’iljl(VU7 0) for (Z/j) 7é (17 1)
Let i € {2,3}. Then we obtain from (11.130) and the definition of U°:

Mo:

Cajn(VU,0)0:U; = ZCM (VU,0)0}U;

Jj=2

<.
Il
N

|
Mw

Cinjn (VU, 0)2U; = ZOM (VU?,0)0%U;

j=2

<.
I|
)

I
Mw

Cinjn1 (VU7 )anJ‘-T = ZC“ﬂ(VU”.,O)an]‘-’
j=1

.
||
¥

which yields (11.129) and thus (11.117).
By (11.119) — (11.121) we obtain

6 + 6&111&1 0 0
(‘/i]'(a))ij = 0 2 -+ 6&2220(2 + 2@223(13 1 + 2&2230(2 + 2&233(13
0 1+ 2ag30 + 2a933003 2 + Gazzzaz + 2ag3302

and it is clear that (V;;(0)),; has the three positive distinct eigenvalues
M=6, A=3 X=1

Hence (11.122) is satisfied in a neighbourhood of zero. Moreover,

3V (sB . . .
(s5) = 6a1113} + 6asea B3 + 6asss B3 + 6agms 33 B3 + 6asss Baf33
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where § = () is a right eigenvector of (Vj;(a)),.. For @ = 0 we have the three right

i
eigenvectors

/81 = (17070),7 52: (0v171)17 63: (0717_1)l
and we obtain from (11.125)

H(B') = 6any #0, (11.131)
and from (11.126), (11.127)
H (%) = 6(az + asss + asoz + azss) # 0, (11.132)
and
H (%) = 6(ass — asss — g3 + ag33) # 0. (11.133)

A combination of the relations (11.131) — (11.133) yields (11.123) in a neighbourhood of

zero which completes the proof of Theorem 11.12.

Q.E.D.

We remark that with the results in this section the nonlinear equations of thermoelasticity
were basically understood, but there are many interesting remaining problems such as
problems with anisotropic media (cf. Section 11.1) or boundary value problems in three
space dimensions or large data problems. (This remark applies mutatis mutandis to the
other systems in Chapter 11, too.)

11.4 Schroédinger equations

(Erwin Schrodinger, 12.8.1887 — 4.1.1961)
The following type of differential equation

uy — i1Au = F(u, Vu), (11.134)
with initial value
u(t = 0) = u, (11.135)

for a complex-valued function u = u(t, z),t > 0,2 € R*,i = \/—1, will be studied. (In
quantum mechanics u describes the state of a particle in a quantum mechanical system.)

The smooth function F' is assumed to satisfy

F(w) = O(|lw|**t") as|w| — 0 for some a € N, (11.136)
and OF
a(a(;); isreal, j=1,..,n, we R, (11.137)

It is apparent that F' does not depend on the second derivatives of u. One reason for

this is that there seems to be no local existence theorem covering general second-order
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nonlinearities, see Step B below and Section 11.7, where a similar situation is given for
nonlinear plate equations. In connection with this one should notice that if u is a solution
of the linear Schrodinger equation, u = uy + iug, with real-valued functions uy, ug, then

u; and uo are solutions of the linear plate equation
Ofuj+ A%u; =0, j=1,2
which easily follows from
Oy = —Auy and  Oyus = Auy.

On the other hand, if the real-valued function v solves

vy + A% =0
then u defined by

u = v; +iAv

solves the linear Schrodinger equation,
Ut — 1Au = 0,

a fact which will be used in Section 11.7. This elementary but important relation is
expected to have implications for the relation between the corresponding nonlinear sys-
tems too.

Now we start following the general Steps A—E.

A: Decay for F'=0:
The linear equation
uy —iAu =0 (11.138)

can formally be obtained from the linear heat equation (11.46) by the transformation
t — it and indeed, the solution formula corresponding to that for the heat equation,

formula (11.47), now becomes

ile—y|?

u(t,x) = (4mwit) "> / e wug(y)dy, (11.139)

R
which solves (11.138) for a suitable class of initial data uy. (The class of admissible data
ug such that (11.139) defines a classical solution is smaller than the corresponding one
for the heat equation due to the regularizing properties of the heat kernel which decays

exponentially.) As in Section 11.2 we immediately obtain from (11.139)

[u®)]loo < (14" |ugllny1, n1>n, (11.140)
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t > 0,c¢ > 0 being independent of t.
Moreover we get from (11.138)

Re L/utu—ki/VuVu} =0
a RTL
(z denoting the complex conjugate of z € C),
which implies

d

Sl =0 (11.141)
or

lu(®)||2 = Juolla for all &> 0. (11.142)

By interpolation we obtain from (11.140), (11.142):
lu®lly < e(@+ 6720 fugllx, . (11.143)
t>0,c=c(g,n), where 2 < g <o0,1/p+1/¢g=1and
N,>n(l—-2/q) (N,=n(1-2/q) ifqe{2,00}).

In contrast to the situation in Section 11.2 where we discussed the (linear) heat equation,
derivatives of solutions to the linear Schrodinger equation do not decay with a larger de-
cay rate as do solutions to the linear heat equation. Also the L?-norm |[u(t)||» of u here
does not decay at all. In addition, one should observe the difference between the en-
ergy equation (11.142) and the corresponding energy equation (11.49). The dissipative
integral term in (11.49) is missing in the non-dissipative but conservative Schrodinger

energy equation (11.142).

B: Local existence and uniqueness:
The nonlinear system (11.134), (11.135) is neither covered by the local existence theorem
for symmetric hyperbolic systems, Theorem 5.8, nor by that on symmetric hyperbolic-
parabolic coupled systems in Appendix C' (although a similar proof to that for Theorem
C.4 used in Appendix C' gives a unique local solution to the nonlinear Schrédinger
system).
A local solution

u € C°[0,T], W**) n C*([0, T], W*=%?)

for some T > 0 is provided by T. Kato in [83, pp. 70,71] if ug € W*2. If s is odd, s has
to be at least 2["1?] + 3; if 5 is even, s has to be at least 2[7] 4 4. These restrictions arise
in [83] in studying boundary value problems. In [83] special second-order nonlinearities

are also dealt with. For recent developments see the references in Chapter 13.2.
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C: High energy estimates:

t
[u@)s2 < clluolls. exp{C/ [u(r)|5.0dr}, ¢ €[0,T], ¢ = e(s).
0

We shall give a proof for the case a = 1 in order to point out where the second assump-

tion on the nonlinearity F', (11.137), plays a role.

F'is written as

F(u,Vu) = Fo(w)u + Y Fl (w)du, w:= (u,Vu),
j=1

where
1

Fo(w) := /8F8(;w) dr,

1

Flw) = /%?é::))dr, j=1,...,n.

The first assumption on F', (11.136), implies

F0) = F}(0) =0, j=1,..n.

Let € INi, 0 < |f] < s. We have for the local solution the identity

1d
2 dt
which follows directly from the differential equation. Dropping the parameter ¢, we shall

IV7u(t)ll; = Re (VPF(w), V7u)(t)

investigate the most difficult terms
Re (V(F} (w)o;u), VFu),
Jj€{1,...,n} arbitrary but fixed in the sequel.
1. |g|=0:
Re (Fjl(w)aju,m =— Re(((‘?ijl(w))u7 u) — Re (F'jl(w)u,aju>.
The assumption (11.137) says that F}}(w) is real which implies
Re (Fj1 (w)dju,u) = Re (Fj1 (w)u, Oyu)

and hence

J

Re (F!(w)dju,u) = f;Re<(8ijl(w))u,u)

IN

el eollull3

IN

|lullz.sollullz .
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2. 0<|f|<s—1
Rc(Vﬂ(Fjl(w)aju), VAu) = Re (Fjl(w)Vﬁaju, VAu)

+Re (V(F}(w)0ju) — F}(w)V 0u, VPu)) = Ry + R,.

In analogy to the case 1 (|5| = 0) we obtain

|B1| < cllullzecllullfs 2 < cllullzcollull? -

The second term Ry is estimated with the help of the commutator estimates in Lemma 4.9:

[Rol < cIVE} ()]l V10l + VP (w) 2| 05ulloo) |Vl
< cllullaoollulliy 2 + el (u, Va)llig 2l yoollulls
< cllullaoollulliy 2 + cllullaoollullisirrallullis,2
< cllullaoollull? -
3. |Bl==s:

The critical term in case 2 was ||ul||g/+1,2 which stemmed from Re (V*F(u, Vu), V®u).
According to the cases 1,2 only the term with the highest derivatives is critical. This
term has the form

Re (a(u, Vu)V°*Vu, Vou)

with
a(u, Vu) € R

because of the assumption (11.137). Thus we obtain (as in case 1 where s = 0) that
Re (a(u, Vu)V*Vu, Viu) < cf|ullzeolul?,.
This proves the desired high energy estimate.

D:  Weighted a priori estimates:

The following estimate is proved in the standard manner.

sup (1+8)"2072D[u(t)|;, 4 < Mo < o0,
0<t<T

where M is independent of T, provided
q=2a+2,

1 1 n
1 <
a( +0z) 2’
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s1 is sufficiently large and

[[uo]s.2 + lJuoll 5, 202
a1
is sufficiently small (s > s; being sufficiently large).
E: Final energy estimate:
[u)ls2 < Klluolls2, 0<t<T,

s being sufficiently large, ug being sufficiently small, K being independent of 7" (and wy).

Summarizing, we obtain the following global existence theorem.

2
exist an integer so and a 6 > 0 such that the following holds:

If ug belongs to W2 N WP with s > sy and p = 331? and

Theorem 11.13 We assume (11.136) with (1 + 1) < % and (11.137). Then there

l[uolls2 + lluollsp < 4,

then there is a unique solution u of the initial value problem to the nonlinear Schrédinger
equation (11.134), (11.135) with

u € C°([0,00), W*?) N C([0, 00), W*22).
Moreover, we have
[(®)lloo + [[u(t)l|2ase = O 241),

[[u(?)

s = O(1) as t— oo.

Remark: The semilinear case where F' = F(u) does not depend on derivatives of wu,
has found a wide interest and there are already many more results; see for example the
papers of Ginibre & Velo [38], Y. Tsutsumi [182] or the book of W. Strauss [179] and
the references there.

In analogy to the wave equation (cf. Chapter 4 and the proof of Theorem 1.2 in Chapter
8) invariance properties of the Schrodinger equation have been investigated and optimal

L>-decay rates have been obtained, see P. Constantin [22].

11.5 Klein—Gordon equations

(Oskar Benjamin Klein, 15.9.1894 — 5.2.1977; Walter Gordon, 3.8.1893 — 24.12.1939)
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The equations of the type
u — Au+ mu = f(u, Du, DVu), (11.144)
with initial values
u(t=0) =wug, w(t=0)=u, (11.145)

for a real function u = u(t, z), t > 0,z € R",
where

m >0 isa constant (“mass”),

and where f is smooth and satisfies
fW)y=0( W*th) as |W|—0, for some o € N, (11.146)

are covered to a large extent by the considerations already made for the nonlinear wave
equations — by which we denoted the corresponding equations with m = 0 — in the
Chapters 5-8. Here we find better decay rates and the L2-norm of u(t) can be estimated
easily (cf. the remarks in Chapter 8 for the case f = f(y,...) there), which leads to a
global existence result with weaker assumptions on the relation between o and n.
Remarks: The nonlinear Klein-Gordon equation (11.144) is a relativistically invariant
(in contrast to the Schrodinger equation (11.134)) equation describing the wave function
of a particle with spin zero. Also, the only difference with the discussion on the nonlinear
wave equation will be the derivation of better LP—L9-decay estimates.

The canonical transformation to a first-order system in ¢ is given by
Vo= (ug, Vu,vmu), VO := (u1, Vug, vVmug).

Then V satisfies
Vi+ AV = F(V), V(t=0)=V"

where A is given elementarily and
F(V) = (f(u, Du, DVu),0,0)"

A: Decay for F'=0:

Let u solve in [0, 00) x R
U —Au+mu=0, u(t=0)=uy w(t=0)=u, (11.147)

Ug, U1 € Cgo(an)
Then v defined by

Ot 1, Tpg) = VIt a1, (11.148)
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solves
’Utt—A'U = 07 (11149)
U(Ouxlv"'7xn+l) eii\/mwn-ﬂuo(xla"wl‘n% (11150)
(0,21, ... Tpyy) = e V™I (2, 2y) (11.151)

in [0, 00) x R™"'. Therefore, we shall first study decay rates for solutions to the linear
wave equation and then we have to check how the factor e=*V™n+1 affects the calcula-
tions.

The following brief estimates for ¢ > 1 are taken from W. von Wahl’s paper [187] and lead
to another proof of Theorem 2.3 (which we proved in Chapter 2 even more elementarily
for n = 3).

The two cases of odd respectively even space dimensions have to be discussed separately.

Case 1: n odd, n > 3. (For n =1 cf. Chapter 2.)
n—1

Let o € C " (R™), ¢ € C 2 (IR") be compactly supported and let v solve
vy —Av=0 in [0,00)x R", (11.152)

v(t=0)=¢p, v(t=0)=1. (11.153)

Then v is given by the classical formula

(n—3)/2 ) Bj
o(t,z) = Y (G4 Dat! (atf Q1> (t,z) (11.154)
3=0
(n—3)/2 ) i+l &
w2 ot (g @) o+ (5 ) 02),
where the coefficients a;,j = 0,..., (n — 3)/2, are constants depending only on n, and
@1, Qo are given by
Qi(t,x) = " o(x + t€)dE, (11.155)
" gn-1
1
Quta) = [ wla+ie)de, (11.156)
" ogn—1

where w,, denotes the surface measure of the unit sphere S"~* in IR", (see [187] resp.
Courant & Hilbert [23, pp. 681-691]).

Example: For n = 3 and ¢ = 0 one has ap = 1 and we obtain

o(t,z) = 4’; [ ot +1)de
S2
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This is Kirchhoff’s formula which we used in Chapter 2.
Using the elementary formula

| Gfteas=e 0 [ (@)@
Sn—1 K(0,t)
for f € CY(K(0,t)),t >0, K(0,t) = {z € R* | |z| <t}, we obtain for j > 1:

o 1 :
s QD) = 3 [ ()t
" lal=j Sn—1
1 —|a— ' a a—
< XX el [ (vt ) et
" Jal=j 1B1=1a28 it
1
= Z t—la=Bl=(n-1) / (Vo‘Vﬁtp)(ery)y’rﬁdy
“n Ja=j,|8l=La>p {0
1
= > =Dl (Vo) (z +y)y'dy|,
“n Jaj=j+1,r|=lal-2 k{08

analogously for Q.
Thus we get from (11.154)

ot o) < c{|Qit )] (11.157)
(n=3)/2
T S I SRSl (N A e
j=1 lal=j+1,|v|=la] -2 K(0,t)

+t] [ (V)@ + )yl +HQu( 2)]

K(0,t)

(n=3)/2 ) .

+ > ey > / (Vo) +y)y'dyl},
j=1 lo|=5+2,[v|=]al -2 K(0,t)

where ¢ denotes a constant which at most depends on n (the symbol ¢ will also be used
in the sequel).

Moreover we have

Q1 (¢, )

IN

tw, ‘ Z / (z + t§)t€;€;d¢| (11.158)

c
" (x +y)ydy|,

U<\a‘<l 0<]y|<1 K(O )

IN

Wn
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analogously for Qs.

In order to estimate the right-hand side of (11.157) we consider the typical term

e[ (Ve yydy.
K(0,t)

Let A\, x> 0 be such that
p<l, A+p<l.

Since
A= +0=2=1+0=-A=p)
we may apply the convolution inequality (4.5) to get

[ /(V"SD)('+y)y”dy\|L1/<1—A—u>(Rn) (11.159)
K(0,0)

< Vel pra-meeyt ™I l/0-% K 0)
< Ctn(li/w||Vag0HL1/(17“)(Rn).

The inequalities (11.157) — (11.159) imply for v(t) = v(t,-) and t > 1:
n—1 n—1
@l arm@e < et™VE {772 ol o,

_n-3
+ > Vel prra—mmey 17 2 19l prro-m @
1<]o|<(n—3)/2+2

+ > IV prra-u gn) }-

1<]a|<(n—-3)/2+1

In particular we have for =0, A = 1:

-1
[o(®)lloo < ct™ 2 {llp

which is the desired L'-L*-decay estimate for ¢ > 1 and for n odd.

SR Rl |G| EFSIE 2 (11.160)

Case 2: n even.

In this case the solution v of (11.152), (11.153), is explicitly given by

(n—2)/2 ) 8‘7
v(t,z) = Z:U+U@ﬂQMGJGJ) (11.161)

Jj=0

(n=2)/2 i+l o
)
+1 2; bjt (<aﬂ+g%>(nx)+<aﬁ(5>(ux0,
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where the b;, j =0,...,(n —2)/2, are constants depending only on n, and Gy, G, are

given by
Gi(t,x) = /cp x1 &, +tE,)dE, (11.162)
wn+15n
Galt, z) /¢ T1 L, 1E)dE. (11.163)
Wn+1

@, 1 are here assumed to satisfy ¢ € C" 3 (]R"), ¢ € C2(IR"), both having compact
support.
Using the representations

¢ n—1

2r("3t) r

Gilt:a) = ) pdns 0/%@2_#)1/2 S/ ol + r€)de dr, (11.164)
F(n+l) t 7""_1

Gy(t,z) = AT [ 2)%1 O/ (12— 12)1/2 S,,,/1 Y(a +ré)dé dr, (11.165)

¢ t—e ¢
and dividing the integral [...into [ ...+ [ for 0 < e < t, one obtains after a lengthy
0 0 t—e
but straightforward calculation similar to that in case 1 above for ¢ > 1:

_n-1
lo@)llee < ct™ 2 {llllng2 1 + 191150} (11.166)

This is the desired L'-L*®-decay estimate for ¢ > 1 and n even.
It remains to get estimates for ||v(t)||e if 0 <¢ < 1. Let 0 <¢ < 1.

Case 1:  nodd, n > 3.
Looking at the representations (11.154), (11.155), (11.156), we consider the typical term

v+ g de,
Sn—1
where |o| =k —1,0< k< (n—23)/2for h=9¢ and |o| =k, 0 <k < (n—3)/2+1 for

h=¢.
We have for m € IN,

//S_t ar Voh(z + s€)€ds de

dsgm+1

[ (Vb e de| = ¢

= D Lo () (6 TR ) de

Sn—1 t (m+1) times m+1 t1me§
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k _\m |a|+m+1
1 / t5(|z] — )™ I( V..V L) (z + 2)|dz

‘Z|\a|+m+n ~ )
|z|>t m+1+|a| times

|Z‘m+k
< ¢ / o (T T WG+ 2l
|z|>t m+1+|a| times

Choosing m :=n — 1 — k we obtain

i (V“h)(mt&)gadag{ Follas, 3=,

gn—1 12,15 if h=e.
(Observe that m > 0 since k < (n — 3)/2+ 1.)
Thus we have proved
[v®)lloe < c{llellng + 1Ulln-1,1} (11.167)

for 0 <t <1and e C"(IR"),v € C" 1(IR") having compact support.

Case 2:  n even.
Looking at the representations (11.161), (11.164), (11.165) we obtain in the same way

as in case 1, using

¢ - 1
ds < o0,
0/<> \/t2—r2 0/\/1—325 o

[o(®)lloe < ¢ {ll@llny + 19lln-1.1} (11.168)

for 0 <t <1and g e C"R"),v € C" 1(IR") having compact support.
Summarizing the estimates (11.160), (11.166), (11.167), (11.168) we have obtained the

following L'-L*>-estimates for solutions of the linear wave equation

the estimate

lo(®)lloo < (L4 6)7"2 {l@llna + [lln-1a}, ¢ >0.

Now we consider a solution u of the linear Klein-Gordon equation in [0, 00) x IR* with
initial values u(t = 0) = ug, w(t = 0) = wy, i.e. u is a solution to (11.147). v defined
by (11.148) solves the linear wave equation (11.149) in [0, 00) x R™"! with initial values
(11.150), (11.151).

Since the factor e~*V™n+1 disturbs the integrability properties of the initial data one has
to show directly that this factor does not affect the estimates above. This is carried out
in detail in [187] for ¢ > 1 and goes along the lines of the considerations above. (11.160),
(11.166) then lead to the following estimate for ¢ > 1:

lu@loe < et {lfuollmyrr , + sl (11.169)
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where
N, = n+ 2, ?f n ?s odd,
n+1, if n is even.
For 0 <t <1 we use the representation for v in (11.154) resp. (11.161) and the reduction
argument for reducing an integral over S**1 k € IN, to an integral over S* described in
the formulae (11.162), (11.163), (11.164), (11.165), and we obtain

[ oo < ¢ {Hluollny + llualln-1.1} - (11.170)

Combining the formulae (11.169), (11.170) we have found the following L'-L>-estimate

for solutions to the linear Klein—-Gordon equation:

u(t)lloo < e (1 4+)""" {Jluol| ot + l[uallvo-11} (11.171)
where
ifn>2
Nyo={ o =S (11.172)
2 ifn=1.

Remarks: Further more detailed estimates may be found in the papers by S. Klainerman
[89, 92], J. Shatah [158] and T.C. Sideris [173].

uy is also a solution of the linear Klein—Gordon equation with initial values
w(t=0)=uy, uu(t=0)=Auy—mup;
hence we obtain
e (®)lloo < e (14 )"2 {||u]|np1 + lltiol| wos1,1} - (11.173)
Analogously, for Vu with initial values
Vu(t =0) = Vug, Vu(t =0) = Vuy,

we have
IVu(t)loo < e(1+ )7 {[luoll v 411 + lluall g} - (11.174)

Summarizing (11.171), (11.173), (11.174) we obtain the following L'-L>-decay estimate
for V = (uy, Vu, u) with V(¢ = 0) = V° = (uy, Vg, ug):

V() loo < c(1+) 2|V n1, t2>0, (11.175)
where
ifn > 2
N={¢ " hnr=s (11.176)
2 ifn=1.

The corresponding L?—L2-estimate for V easily follows by multiplication of the differen-

tial equation for u with u; in L?(IR") leading to

d
{3 + 19613 + mllu®)3} =0,
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whence we conclude
V@)l =1V t>0. (11.177)

The estimates (11.175) and (11.177) give us the LP—L%decay estimates by interpolation:
IV@)llg < e+ 872DVl 5, >0, ¢ =clgn),

where 2 < ¢ < o0, 1/p+1/g=1and N, > N(1 —2/q), N being defined in (11.176)

(N, = N(1—2/q) if g € {2, 00}).

B: Local existence and uniqueness:

Transforming the nonlinear Klein-Gordon equation (11.144) in the standard way to a
first-order symmetric hyperbolic system (cf. Chapters 3, 5) for V, we obtain a unique
local solution by Theorem 5.8,

Ve C°0,T], w=*)yn ([0, T], W12

for some 7" > 0, if s > n/2+ 1 and V0 € W2,

The following Steps C—E are analogous to those for the wave equation. We obtain

C: High energy estimates:
t
IV (®)lls2 < ClIVO|ls2 exp {C /IIDV(T)HSO d?'}7 t€[0,7], C=C(s).
0

D: Weighted a priori estimates:

sup (14 6)2 DYV (E, )lsq < Mo < 00,

0<t<T

where My is independent of T, provided

q=2a+2,
1 1

(1+ ><n7
«a @ 2

VOl + VO 220

sy is sufficiently large and

is sufficiently small (s > s; being sufficiently large).

E: Final energy estimate:
IVt sz < KIIVOlls2, 0<t<T,

s being sufficiently large, V° being sufficiently small, K being independent of 7' (and
V).

Altogether we obtain the following global existence theorem.
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Theorem 11.14 We assume (11.146) with }(1+ ) <. Then there exist an integer
s0> 5 41 and a 6 > 0 such that the following holds:

If VO = (uy, Vug, /muy) belongs to W2 N WP with s > sy and p = ggﬁ and

VOllaz + 1V°llp <,

then there is a unique solution uw of the initial value problem to the nonlinear Klein—
Gordon equation (11.144), (11.145) with

(ug, Vu,u) € C°([0,00), W) N CH([0, 00), W 12).

Moreover, we have

n o«

(e, Vi, u) ()lloo + [[(we; Vi, u) ()ll2are = O 2 @41,

|(we, Vu,u)(t)]|s2 = O(1) as t— oo.

In analogy to the situation for the wave equation (“m = 0”) one can use the special
invariance properties of 9> — A to improve the foregoing result, namely it is possible to
obtain global solutions for the cases & = 1 and n = 3 or n = 4 (while Theorem 11.14
would require n > 4); see S. Klainerman [89]. This may also be obtained with different
methods, see the papers by J. Shatah [159] and T.C. Sideris [173]. (For the former see
also the remarks in Chapter 9.)

11.6 Maxwell equations

(James Clerk Maxwell, 13.6.1831 — 5.11.1879)

The Maxwell equations in IR? are given by

oD -V xH=0, (11.178)
0B+ V x E=0. (11.179)
Additionally one has the initial conditions
D(t=0)=D" B(t=0)=DB" (11.180)
and the restriction
VD=0, V'B=0. (11.181)

The following notation is used:
D: dielectric displacement, D = (Dy, Dy, D3) = D(t,z) € R3¢t > 0,7 € R?,
H: magnetic field, H = (Hy,Hy, H3) = H(t, ),
B: magnetic induction, B = (By, B, B3) = B(t, ),

E: electric field, E = (E\, Es, E3) = E(t, ).
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Remark: D ist not used for (0, V) in this section.
Electric and magnetic currents are assumed to be zero. Then (11.178) — (11.181) describe
electro-magnetic waves without damping, i.e. the electric conductivity is assumed to be
Z€10.
The unknown fields are

D=¢(E) and B = u(H)

(respectively E = ¢~}(D) and H = p~1(B)), where we assume that
epn: R —R

are smooth bijections and the derivatives de/OF, du/OH are uniformly positive definite
with respect to their arguments in each compact set.

The main assumptions on the nonlinearities are
e(E)=eoE+O(EP) as |E|—0 (11.182)

and
w(H) = poH + O(|H*) as |H|— 0, (11.183)

where &g, 1o are positive constants (g¢: dielectric constant; g: permeability).

The inverse relation
e (D)=¢,"D+O(ID]*) as |D|—0 (11.184)

and
wH(B)=ug'B+O(|B)*) as |B|—0 (11.185)

follows immediately. Thus we may write (11.178), (11.179) in the following form:
D; — uy'V x B=V x F(B),

B; +¢,'V x D=V x Fy(D),

where Fy, Fy are smooth vector-valued functions. The relations (11.184), (11.185) imply
F(W)=0(W[*) as [W|—=0, j=12
Without loss of generality we assume
€0 = po = L.
A: Decay for Fy, F, =0:
From the linearized initial value problem

D,—VxB=0, (11.186)
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B, +VxD=0, (11.187)
D(t=0)=D" B(t=0)= DB,
V'D=0,VB=0, (11.188)
we obtain by differentiation

Dtt+VXVXD =
Btt—|—V><V><B =

o o

Using the formula
A=VV' -V xVx

and (11.188) we obtain the equations

Dtt - AD - 07
Btt - AB = 0

Therefore we can apply the same technique as in Chapter 2 (cf. also Section 11.4) leading
to
(D, B)(t)l|oo < c(1+ ) [(D%, B)[l3n, >0, (11.189)

where ¢ is independent of ¢.

In contrast to Section 2 it is now easy to get an L2 L?-estimate for D and B. Multiplying
both sides of (11.186) with D in L? and both sides of (11.187) with B in L? we end up
with

1d ,

LD~ (v xB.D) =0,
Vg + (v DBy =0
2 dt 2 LT

Adding the last two equations we get
1D, BYO)lz = (D%, B, ¢ 0. (11.190)
By interpolation we obtain from (11.189), (11.190)
1D, BYO)lly < (1 + &)~ 02/ (D0, B, (11.191)
t>0,c=c(q), where 2<qg<oo,1/p+1/g=1 and

Np>3(1-2/q) (N, =3(1-2/q) if qe{200}).

Further estimates similar to those obtained for solutions of the wave equation using
invariance properties (cf. Chapter 8) are proved by D. Christodoulou and S. Klainerman
in [19].
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B: Local existence and uniqueness:
We want to apply Theorem 5.8. For this purpose we write the equations (11.178),
(11.179) in the form

0z(E) B
OF OF -V xH = 0, (11.192)

Op(H) _
oH OH+VxE = 0. (11.193)

Introducing
U:=(E H)
Oe/OE 0
AU =
0 ou/OH

Al =

A% .=
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and

A% =

00 0 0 00

we may rewrite (11.192), (11.193) as

3
A"U)OU + > Ao;U = 0. (11.194)

Jj=1

The initial condition for U is given by
Ut =0)= (1D, u~'(H")). (11.195)

Theorem 5.8 can be applied to the initial value problem (11.194), (11.195).
Using the assumption that (E, H) and (D, B) are mapped into each other by smooth
bijections we conclude that there is a unique local solution

V= (D,B) € C%[0,T),W**)nC"([0,T], W*'?)
for some T' > 0, if s > 3/2+ 1, i.e. if s > 3, and V° € W*2. The relation
V'D(t,z) =0, V'B(t,z)=0
follows for all t € [0,T], 2 € R? from the differential equations for D and B which yield
OV'D=9V'B=0
(provided V'D° = V/B? = 0, which is of course assumed to assure compatibility).
In analogy to the considerations made for nonlinear wave equations we obtain succes-
sively:
C: High energy estimates:

t
IV (®)lls2 < clVO]lsz2 exp{e / V)i dr}, t€[0,T]c=cls),
0

where
VO =V(t=0)=(D"B".
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D: Weighted a priori estimates:

sup
0<t<t

L+ D2V ()16 < Mo < 00,
where My is independent of T, provided s; is sufficiently large and
IV llso,2 + 1V lls0,6/5

is sufficiently small (sp > s; being sufficiently large).

E: Final energy estimate:
VOlls2 < KV [z, 0<t<T,

s being sufficiently large, V? being sufficiently small, K being independent of 7' (and V°).
Remarks: In the Steps D, E a representation of V' of the type
¢
V(t) = W)V +/W(t P F(V)(r)dr
0

is used (cf. the beginning of Chapter 11 and Chapters 7,8). The estimates for the linear
part, (11.191), can be used for the integrand since the nonlinearity F' = (V x F}, V x F)
has divergence zero too: V/(V x F;) =0, j = 1,2. Details may be found in the paper of
F. Klaus [95].

Summarizing we have obtained the following global existence theorem.

Theorem 11.15 We assume (11.182), (11.183). Then there exist an integer sy > 3
and a 0 > 0 such that the following holds:
If (D°, B%) belongs to W2 N W*5/> with s > sy and

I(D%, B a2 + (D%, BY) |5 < 9,

and if
V'Dy=V'By=0,

then there is a unique solution of the initial value problem to the nonlinear Mazwell
equations (11.178) — (11.181) with

(D,B) € CO([O, 00), WSQ) N Cl([O, ), st1,2)‘
Moreover, we have
(D, B)(®)lls + I(D, BY()]ls = O Y3),

H(DvB)(t)Hs,Q = O(l) as t— oo.
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Remark: Initially anisotropic models, replacing o in (11.182) by £(0)E, where £(0)
is a diagonal matrix but not necessarily a multiple of the identity, have been studied
by O. Liess [107, 108] in the context of crystal optics. There phenomena appear similar
to those discovered for the equations of elasticity in the initially cubic case (in R?), cf.
Subsection 11.1.2; the decay rate which could be proved up to now is weaker than that

in the initially isotropic case.

11.7 Plate equations

In this section we are concerned with perturbations of the linear plate equation

Y+ A%y =0
of the type
Y + D% = fys, V2y) + D biys, V) (11.196)
i=1
with smooth nonlinear functions f and b;, i =1,..., n.

y = y(t,z) is a real function of ¢ > 0 and x € IR” with prescribed initial values
y(t=0)=vyo, w(t=0)=uy. (11.197)

The assumption on the nonlinearities near zero will be

FV) =o(wW|*™h), b;(W) = O(|W|*), i=1,...,nas |W| — 0, (11.198)
for some o € IN.

The obvious difference in the equation (11.196) in comparison to those in the Sections
11.1 - 11.3, 11.5, 11.6 is that the nonlinearity does not contain the highest-order deriva-
tives. This is a similar situation to that in Section 11.4 where we discussed Schrodinger
equations. (Actually there is a close relation between the linear Schrodinger equation
and the linear plate equation, see below.) The reason for only admitting semilinear
nonlinearities is that the proof of the energy estimates given in [198] requires that the
nonlinear terms on the right-hand side of equation (11.196) have to be controlled by

those on the left-hand side. For example, a term like

n
> aii(ye, V2y)0;0;00y
1,4,k=1
cannot be controlled there. Partial integrations in the typical L2-inner products with
this term generate derivatives of y; because the term is not symmetric; but derivatives
of y; cannot be handled with the information one gets from the left-hand side.
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Remarks: This difficulty with third-order terms already arises in proving a local exis-

tence theorem. We mention that there is a local existence theorem by P. Lesky which

admits certain symmetric fourth-order nonlinearities, see [100] and also one by W. v.
Walhl for the nonlinear clamped plate [188, 189]. The system (11.196), (11.197) has been

discussed by F. Willems in [198] where those details which are omitted in the sequel may

be found.

The transformation to a first-order system is given as follows. Let
V = (atyv VQy)

With the notation

S i Lt (i) = (k0 L Pikl=1. . m,
0 if (i,5) # (k. 0)

and m := n? + 1 we define the m x m-matrices A;; and B; = B;(V) by

0 (—0ijhe) ke

Ai]' =
(04 k0) ke 0
and
b; 0 0
0
B,,; = A
: 0
0
fori,j=1,...,n.

Then V satisfies " n
Vi= 3 4,00,V + 3. B{(V)oV + f(V),

ij=1 i=1
and
V(t=0)=V"= (1, V),
where
FV) = (f(V),0)

Defining

AW) == 3 4,00, — 3 BV

ij=1 i=1

and

A= A(0)
we obtain from (11.199) that V' satisfies

Vi+ AV = F(V), V(t=0)=V",

(11.199)

(11.200)
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where

F(V):= f(V) + (A0) — A(V)) V,

and the assumption (11.198) implies that F satisfies
F(V)=0(V|**Y) as |V]—0. (11.201)

Hence we have the desired general structure again and we shall continue going through

the Steps A—E of the general scheme.

A: Decay for F'=0:
Let y solve

g+ A% =0, yt=0)=yo, wu(t=0)=uy.

We shall first obtain decay rates for y; and Ay.
Let
w =y + 1Ay.

Then w satisfies

wy — iAw =0

with initial value

w(t =0) =y, + iAyp,

i.e. w is a solution of the linear Schrodinger equation, which we discussed in Section

11.4. The decay of w expressed in formula (11.143) yields

(e, Ay)Dllg < ¢ X+ 2 (g1, Ayo)l| v, (11.202)

t>0,c=c(q), where 2< ¢ < o0, 1/p+1/¢g=1, and N, > n(l —2/q).

It is also possible to use a Fourier representation in order to obtain decay rates for
1(ye, Ay) ()4, 2 < g < o0, similarly to the procedure in Section 11.1.2. Let yo = 0, h :=
y1. Then

ui(t, )  (cos(| - POR()) (),

F
F (sin(| - [PHA()) (2),

Ay(t, z)

i.e. it is sufficient to study
u(t,x) = F 1 ("h() (). (11.203)

We have the following version of Theorem 2.2 from H. Pecher’s paper [138] (see also
Lemma 11.3 in Section 11.1.2).
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Lemma 11.16 Let v > 0, m € N and

n if m>2.

n—1 if m=1,
0=

Then there is a constant ¢ > 0 such that for all v € CP(IR") and all t > 0 the estimate
et a1
1= (|, (fv)(~)> ly < et o,
holds, provided
l<p<2<qg<oo,1/p+1/g=1,1/p—1/q > 2m~vy/n,

(1/p—1/2)(2n — mo) < 2my.
(c only depends on q,n,m and ~.)
An application of Lemma 11.16 to n defined in (11.203), with v = s (to be defined below)

and m = 2, leads to the following estimates:

it|-|?

eitl .
- (| ol |4Sh<->) Iy

l[u(t, -)llq

—1 e’ 25p(.
_F (|.|4SF<A DOl

nl

ct 3G A%,

IN

et 2 b |y,

IN

where
4s < N < 4s+ 1.

The application of the last Lemma is possible if s satisfies

1(1 1>(2 %) < <n<1 1)
— n—20) <s< — .
4\p ¢ 4\p ¢

The left-hand side of the last inequality equals zero by the definition of p.

For t > 1 we choose the smallest s which is possible, s := 0. This implies

lu(®)ly < et 20D ||A] - (11.204)
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For 0 <t <1 we choose the largest s which is possible,

n<1 1>
s = — ,
4\p ¢

lu@®llq < cllbllnp (11.205)

2 2
n(l— >§N<n<1— )—0—1,
q q

Combining (11.204) and (11.205) we obtain

which leads to

with

(e, Ay) () lg < e(1+8)7 20 [l (11.206)

(y(t = 0) is assumed to be zero, h = y,(t = 0).)

Remarks: Observe that (11.206) has been obtained now only for ¢ which is strictly less
than infinity. Using Lemma 11.16 it would also be possible to estimate ||y(t)|,, with
further restrictions on q.

There is also a representation of y in terms of Fresnel integrals which is obtained from
the Fourier representation

sin(] - 1)

) =7 (0] o)

Wit 1 sin(elt)
S1n

we may write y as
y(t2) = FLF )] (e =),
where [...] denotes the distribution generated by ... (applied to h(z — -) € C5°(IR?)).
Let n = 3.
With the Fresnel integral W defined by

1
/(cos s —sin s?)ds

W(z) = Vo J

we obtain for ¢ > 0:

e =| )|

(cf. R. Leis [98], F. Willems [198]); hence we have
I2]
2Vt

1
] /(COSSQ*SiIISQ)deZ. (11.207)
z

0

1
)= o [e=2)

R



202 11 More Evolution Equations

Remark: The regularity of h should be asssumed appropriately such that the integrals
n (11.207) converge, e.g. h € C§° as above.
From (11.207) we obtain

o 4-3/2 | I |2[?
Ay(t,x) = h(x cos(' . )+sin( ) ]dz
4t 4t
whence we conclude
1 1
Ay(t)]loo < t=32||n|l;, t>0. 11.208)
12yl <, Jor? |Allx (

We also get from (11.207)

Ayltw) = [ -2)

R

= at [(dn)(z ~2vi2) L w12 dz

K

= 4t/7“W / (Ah)(z — 2V/trw)dw dr

= 4t/rW /{— / (AR)(z — sw)ds}dw dr

52 2V/tr
= 4t/rW / /.(VAh)(z — sw)wdw ds dr
2\7”32
This implies
T w(r
1@l < el [ N ar (11.209)
0
< Cth|3,17 (t20)7

because there exists ¢, > 0 such that [W(r)| < crif r <rgand W(r) < e tifr >rg
(cf. [98, p. 226]).
With (11.208) and (11.209) we have an L'-L*®-estimate for Ay

JAY(0) o < 1+ ) |hllan, 0. (11.210)
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From (11.207) we obtain

yilt,x) = — i \/2173 t*?’/z/h(x — ) (cos ('i;) —sin <|ZL2>> dz.

}{3
This implies
1
lye(t) oo < t732||h|ls,  (t > 0). 11.211
|y (2] 2 jor? IAll3,1 ) ( )
For 0 < ¢ <1 we have the coarse estimate
@ lloe = 1F " (cos(]- POFR))) oo (11.212)
1
< sllcos(] - *6)(Fh) ()|l
\/27rd '
1 m .
< s+ PY™FR)Ollsoll (14T )™ [l
\/27r
< CLIF+ A e i m>3/2
\/27'!'
S CHhHQM,,l
< cllhfla

(The last estimate is called coarse because the known optimal order of derivatives (known
from (11.202)) appearing on the right-hand side should be three instead of four.)
By (11.211) and (11.212) we have an L!'-L>-estimate for y,

lye (oo < (1 + )72 h]la. (11.213)

The two L'-L>®-estimates for Ay and y, in (11.210) and (11.213) respectively can now
be combined with the following L?-L2-estimates

lye@)llz = [F " (cos(| - P£)(FR)()) Il2 (11.214)
= cos(| - POFR) )2 < 1]
1Ayt 2 = [ F* (sin(] - [*)Fh()) |2 (11.215)

Isin(l - PO(FR) (2 < [1Al2,

to an LP—L9-decay estimate for 1 < p < ¢ < oo as usual by interpolation.
Remark: The estimates (11.214), (11.215) follow without using the Fourier transform

from the equations

wat A% =0, y(t=0)=y(=0), w(t=0)=yp
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by multiplication with 3, in L? which yields
Ve> 00 [y + 1Ay O3 = llynllz + 1 Ayoll2.

The inequality
V2wl < el Awll,

which is valid for all w € W24, 2 < ¢ < oo, with a constant ¢ = ¢(n,q) > 0 (compare
Dunford & Schwartz [29, pp. 1044ff] for the necessary tools), together with (11.206),
finally yields the LP—L9-decay estimate for V = (y;, V2y) (with y(t = 0) = 0, hence
Vo= (ylv 0)):

_ngq_2
Hv(t)Hq S C(l + t) 2(1 q)H VOHvaP? t Z 07 c= C(”? q)7

where 2 < g < o0, 1/p+1/g=1,and n(l —2/q) < N, <n(l—-2/q) + 1.

B: Local existence and uniqueness:
The existence of a unique solution V' to the nonlinear system (11.200) or, equivalently,
to

Vi+AV)V = f(V), V(t=0)=V",

follows from the general results on nonlinear evolution equations given by T. Kato,
see [82]. For fixed w € W*? the operator —A(w), canonically defined on its domain
D (A(w)) C L?, is the generator of a so-called Cy-semigroups of type (1,8), i.e. the

operator norm of the corresponding semigroup can be bounded as follows:

”e—tA(w)H S €Bt7

for some B > 0, for all ¢t > 0. To show that the general assumptions from [82] are
satisfied will be omitted here, see [198] for details.

The result is the existence of a unique, local solution
Ve ([0, T, w=*)n C*([0,T], W*=2?)

for some 7' > 0, if s > n/2+ 1 and V0 € W*2,

Remark: There is also a local existence theorem contained in the paper [100] by P. Lesky.
His approach works for a larger class of nonlinearities admitting certain fourth-order
nonlinearities, but no third-order nonlinearities. W. von Wahl gives a local existence
theorem for the nonlinear clamped plate in [188, 189).

The following Steps C—E now are obtained in the same way as the corresponding ones

for the wave equation in the Chapters 6-8. We summarize:
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C: High energy estimates:
¢
V®)s2 < CHVUHsﬁzeXp{C/IIV(T)II?,oodT}, t€0,T], ¢ =Cf(s).
0

D: Weighted a priori estimates:

sup (1+ )20V (1), < My < 00,
0<t<T

where M, is independent of T', provided

q=2a+2,

n

1 1
1 <
a( +a) 2’

sy is sufficiently large and
IV lls2 + 1Vl 2o
12a+1

is sufficiently small (s > s; being sufficiently large).

E: Final energy estimate:
V(©)llsz < KIVs2, 0<t<T,

s being sufficiently large, V° being sufficiently small, K being independent of T (and
Vo).

Summarizing we obtain the following global existence theorem.

Theorem 11.17 We assume (11.198) with }(1+ ') < . Then there exist an integer
s0> 5+ 1 and a 6 > 0 such that the following holds:

If VO = (y1, V%) belongs to W2 N WP with s > so and p = gZﬁ and
VO ls2 + IVOlsp <6,

then there is a unique solution y of the initial value problem to the monlinear plate
equation (11.196), (11.197) with

(yi, V2y) € C°([0, 00), W) N C*([0, 00), W*22).

Moreover, we have

o

(e V29) (& loo + 15 V2Y)(E ) lase = Ot 2eb),

H(yt7 VQy)(t, )

s = O(1) as t— oo
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Remark: Concerning the regularity assumptions on the coefficients f and b;,i = 1,...,n
in the equation (11.196) the same holds as for the systems discussed before. The smooth-

ness assumption f,b; € C* can be weakened, namely in this case to the requirement
fecs, vy ect

(cf. [198]).



12 Further aspects and questions

We have considered a set of initial value problems of different kinds and we have found
common structures and common starting points for proving global existence theorems
for small data. It is natural to carry over the methods to other evolution equations
from mathematical physics or from other branches of the applied sciences. We shall not
pursue this here. It is also obvious that in view of the breadth of the subject of nonlinear
evolution equations we have only dealt with a very specific part. In this section we wish
to point out some related questions and current research problems.

We start with looking at initial-boundary value problems, where x varies in an exterior
domain 2 or an interior domain €. Then boundary conditions have to be prescribed for
the unknown function V' on the boundary 0€2. The difficulties arising from the presence
of 00 are enormous. This starts with the simple fact that differentiating the equation
with respect to x is not compatible with the boundary conditions in general. Also we
do not have explicit representation formulae at hand (unless €2 has special symmetries)
preventing us from carrying over the linear part, Step A in the general scheme, directly.
In order to illustrate these problems a little bit and to illustrate some of the methods
which lead to related results we shall give a short outline of some ideas involved in

discussing boundary value problems.
Exterior domains.

Let Q C R be an exterior domain, i.e. for n > 2, Q is a domain with non-empty,
bounded complement, and for n = 1, Q := (0, 00). Let 992 be smooth.

There are results concerning special equations, e.g. for the equations of heat-conductive,
compressible, viscous fluids in three space dimensions by Matsumura & Nishida [120]
or for the incompressible Navier—Stokes equations by H. Iwashita [54], who also proves
LP—L%-estimates for the linearized problem (Claude Louis Marie Henri Navier, 15.2.1785
— 23.8.1836; George Gabriel Stokes, 13.8.1819 — 1.2.1903). General results e.g. for fully
nonlinear wave equations have been obtained by Y. Shibata [163] and by Shibata &
Tsutsumi [167].

In order to obtain decay rates for solutions to the associated linearized problems we

mention two methods.
The approach using the Laplace transform.

This method applies the Laplace transform with respect to ¢, discusses the resolvent, of
the resulting stationary equations in detail and then uses the information just obtained

in the inverse transform. As an example we consider the system

UtthU = 0 in ]RXSL
R x 09,

Il
o
.
S|

u

© Springer International Publishing Switzerland 2015 207
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u(t=0) = 0, u(t=0)=wu; inQ.

If .
alk,) = / e~y (¢, )dt,
0
then
(A + kQ)ﬂ/(k7 ) = 7u1(')a
hence

a(k, z) = —(R(k*)u1)(z),

where R(k?) denotes the resolvent (A + k?)~'. At first R(k?) is only defined for k? €
C\ [0,00). u is then given by

oco—ic

1 )
u(t,x) = 5 / e*(k,x)dk, ¢ > 0 arbitrary,
ﬂ- Vel
or _
1 oo—1c )
ult,a) = - / et (R(K?)uy) () dk.
s -

The asymptotic behavior of u as t — oo can be described if the behavior of R(k?)
near k = 0 and for |k| — oo is known well enough. B.R. Vainberg [184, 185] proved
that R(k?) can be holomorphically extended to k* € [0,00) as an operator from L?2-
functions with compact support in R* into H2 () (= space of functions u which are
locally in W22(£2) and for which el'VAu(-) is in L*(Q2) for |3] < 2 ). Moreover, R(-) can
be estimated as follows.

1. k| — o0
[[|R(K?)]|| ~ |k|~! (operator norm in L2 ) if  is “non-trapping” (see the definition

loc
below).

2. k| —0:
R(K?*) can be developed in a Laurent series. (Pierre Alphonse Laurent, 18.7.1813
~2.9.1854))

This leads to a decay rate for the local L2-norm of Du (local energy decay) and can be
combined with cut-off techniques to a global LP—L%-estimate, see Shibata & Tsutsumi
[167). We remark that the minimal rate of decay is determined through the part 2:
“|k| — 0” where the condition “Q non-trapping” is not needed.

An (exterior) domain ( is called non-trapping if the following holds.

Va>0 3T=T(Qa)>0 Yu € L2(Q):ue C([T,00) x Q,),



12 Further Aspects and Questions 209

where
LA(Q) == {f € L*(Q) | supp f C 2 (= 2N B(0,a))} .

Remark: The convexity of R" \ © implies that  is non-trapping, see R.B. Melrose
[122], K. Yamamoto [201]. For further geometrical interpretations, like “all rays which
hit 02 and which propagate according to the laws of geometrical optics move away from
0N in finite time; no ray is trapped, even not asymptotically”, see Morawetz, Ralston &
Strauss [131].

The advantage of the approach above consists of its great generality in applications, e.g.
for damped or for undamped problems, for self-adjoint or non-self-adjoint problems; see
[16, 30, 59, 167, 183]. For damped problems the assumption “Q is non-trapping” is not
needed. A small disadvantage consists in the complexity of the arguments used for the
study of R(k?). Moreover one usually obtains a local energy decay, not directly global
LP—L9-estimates.

For damped problems and star-shaped obstacles IR\ 2 we present a simple method using
generalized eigenfunctions which is also directly applicable to operators with variable

coefficients.
Ansatz via generalized eigenfunctions.

We observe that the decay of solutions to the heat equation u; — Au = 0 in R™ can easily
be obtained by using the Fourier transform and exploiting the fact that the kernel of
this transform, namely (27)~/2 e*¢ is uniformly bounded with respect to z and &. This
leads to the following ansatz.

Let Q C IR" be an exterior domain, n > 3, with smooth boundary 0f2, and let

A o D(A) C L¥Q) — L*(Q),

D(A) = {veW,*(Q) | > O (-)0kv(+) € L*(Q)},
m,k=1
Av(:) == — %ﬁlamamk(-)akvb) where a,,, = ai;, is a real-valued, smooth function of

z € Q, apmp(z) = Oy for |z| > 7o, for some fixed ry > 0, with 9Q C B(0,79),m, k =

1,...,n. We assume

n

VeeQ YEER': Y am(@)n & > aglé)?,

m,k=1

with some fixed constant ag > 0.
It is well-known that there is a generalized eigenfunction expansion (also called general-
ized Fourier transform) F : L?(2) — L?(IR"), F, being unitary, with the property

Frlp(Aw)(§) = @(|€*)(Frw)(©) (12.1)
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for functions p(A) of A defined by the spectral theorem for the self-adjoint operator A
(see R. Leis [98], C.H. Wilcox [197]).
Moreover, we have
(Fow)(€) = / (i, € w(z)dr = (€
Q

and

(Frao)e) = [ o i),
4

The kernel %) is uniquely determined by the following conditions (12.2) — (12.6).
Let j € C®°(R"),j >0, j(r) = 0 for r < 7y, and j(r) = (27)~"/2 for r > r; + 1, where
r1 > 1o is fixed. Then

v(@,) = j(le]) € + v'(x,6), (12.2)
VEER" : (1—j(|-) (- €) € D(A), (12.3)
VEER" Wr>0: (] ol €) € WHA(Q,), (12.4)
VEER" : mz (Omami (D0 + [E2) /() = = (A+16) (31 - e™),  (12.5)
N3 e R @ ¢'(-,€) satisfies the outgoing radiation condition: (12.6)
O (x, )

— il (z, &) = Oz~

V(&) = Oz

9|z|

Remarks: Such a generalized eigenfunction expansion was given first for the Schrodin-
ger operator in IR? by T. Ikebe [52]. Later on this was extended to higher dimensions
and to perturbations of the Laplace operator, also for exterior domains; see the papers of
S. Agmon [3], Alsholm & Schmidt [5], A. Majda [113], K. Mochizuki [127], N.A. Shenk
[160] and Shenk & Thoe [161].

For the proof of the existence of 9’ one can use the principle of limiting absorption, see
[98, 197]. This principle holds for a larger class of operators e.g. for certain Maxwell
operators. In view of (12.5) (-, &) is called a generalized eigenfunction and the name
generalized eigenfunction expansion is justified. In view of (12.1) and the remarks at the
beginning we are interested in pointwise estimates on ¢ and 1’ respectively.

If Av =—Aw, i.e. apmp = Ok, and R™ \ Q is star-shaped, n > 3, we have
ImeN Je>0 Ve VEeR' : |[¢(x, &) <c(l+ €)™, (12.7)

see Morawetz & Ludwig [130] and [153]. Using (12.1), the factor (1 + |£|)™ appearing in
(12.7) will finally turn into a differentiation of the initial data. As an application one can
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prove a global existence theorem for small data to the following fourth-order nonlinear

parabolic initial-boundary value problem (see [153]).

w + A% = f(u, Vu, Vi, Vi, Vi)  in [0,00) x Q,
u=Au = 0 in [0,00) x 09,
u(t=0) = uw in

where
f issmooth, f(w) = O(|w]*) near w =0,

R\ Q is star-shaped, n > 4.

In the case that the operator A really has variable coefficients one has the following.
If R?\ Q is star-shaped and if

3
min (2 min Y am(2)6née — 9m71]1ﬂ:al)7<2’3 |V () x) >0 (12.8)

e [€]=1 m,k=1

holds, then we have
Vr>0 3e>0 VoeeQ, VEeR : ¢z, 6)| <c(l+[¢f), (12.9)

see C.0O. Bloom [13] and [146]. The local character (with respect to ) of the estimate
(12.9) still leads to global LP—L%-estimates since it allows one to prove a local energy
decay result which is sufficiently strong to combine it with the corresponding initial value
problem (here A = —A in IR?) using cut-off functions.

Remark: The approach of Vainberg should directly lead to a removal of the star-
shapedness assumption.

As an application of (12.9) one can prove a global existence theorem for small data to

the following non-homogeneous second-order damped wave equation (see [147]).

3
Uy — Z OmGmiOptt  + Uy = h(u,uz,Vu,Vut,Vzu) in [0,00) x €,

m,k=1

u = 0 in [0,00) x 99,
u(t=0) = wug, w(t=0) =uy in €
where
h s smooth, h(w) = O(Jw|*) near w = 0,
R\ Q is star-shaped,
(@mi)mr  satisfies  (12.8).

We remark that the method of Vainberg also works for problems with variable coeffi-

cients; see Iwashita & Shibata [55] for systems of second-order.
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Interior domains.

We notice that the decay of solutions to the linearized system was essential in the proofs
of the global existence theorems in exterior domains including IR”. This is not always
given in bounded domains. For heat equations the decay is even stronger, namely expo-
nentially, but for wave equations with Dirichlet or Neumann boundary conditions there
is no decay at all, but oscillations appear. Therefore we shall concentrate in considering
the following nonlinear wave equation for a real-valued function u = u(t, z):
uy — Au = f(u,u, Vu, Vg, V) in R x Q,
u(t =0) = ug, w(t =0) =uy in Q,

0
ulyg =0 or Y=o (v : outer normal),
| 4q
fw) = O(Jw|*™) nearw =0, for some o € IN.

2 C IR" is bounded with smooth boundary 92 and f is assumed to be smooth.
One known result on the formation of singularities for bounded domains is that of Klain-

erman & Majda [93] in one space dimension for the initial-boundary value problem
uy = (K (uy))e, (12.10)
ut=0)=co, w(t=0)=cey, (12.11)
x varying in the bounded interval [0, L], L > 0, with boundary conditions
u(t,0) =u(t,L) =0, (12.12)

Uy (t,0) = ug(t, L) = 0. (12.13)

Let K’(0) =1 and let o € IN be the first integer with
K©@t(0) #0.

Then there is a constant C = C(¢,1)) and an gy > 0 such that a C?-solution of (12.10)
~ (12.12) develops singularities at the time T = Ce™*, provided € < gq. If K is an odd
function the same conclusion holds in case that we replace the Dirichlet condition (12.12)
by the Neumann condition (12.13).
This includes the equation for a nonlinear vibrating string where
Ku)= , " .

\/ 142

On the other hand, if the boundary conditions are of dissipative type, namely

K(ug(t,0)) — Tue(¢,0) =0, w(t, L) =0, (12.14)
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0 < 7 < oo fixed, then there is again a global solution for small data as was shown
by Greenberg & Li [40]; see also Alber & Cooper [4], and Shibata & Zheng [169] for a
corresponding result in higher dimensions.

We remark that the existence of global small solutions to nonlinear wave equations in
bounded domains is also known if there is a damping term appearing in the equations,
i.e. if a term "cu,”, with a positive constant ¢ > 0, is added to the left-hand side of the
differential equation for u, cf. Y. Shibata [162, 163].

In order to illustrate the effect that boundary conditions a priori might have we recall

the fact that solutions to the nonlinear parabolic equation
uy — Au = u? (12.15)

in a bounded domain Q C R™ will exist globally for a small initial value u(t = 0) = ug in
the case of the Dirichlet boundary condition, cf. Zheng [205], but the solution in general
blows up in finite time in case of the Neumann boundary condition which can easily be
seen from studying .
o(t) = /u(t7 x)dx.
Q
Namely, v satisfies

jtv > Mv?,  with M = (volume(Q))~".

Hence there is a blow-up if vy := v(0) > 0 as t approaches (voM)~!, cf. Zheng [204].

The formation of singularities can also be seen directly from the example
u(t,z) == (Ty —t)~', Ty > 0 given.

w solves (12.15) with Neumann boundary condition in any space dimension and blows up
as t approaches T although u(t = 0) is small if Tj is large. This example is of course very
special and connected with the fact that constants are solutions of the (linear) stationary
Neumann problem while the first blow-up observation holds for rather arbitrary data (but
satisfying v(0) > 0, a requirement also being related to the constant function).
The last two examples can be carried over to the wave equation too, namely for « € IN
the function

of 4 4 (2

u(t,x) = 6/(:7 T0;27

(x varying in a bounded domain 2 C R", n € N arbitrary), solves

1o > 0 given,

wy — Ay = u®tt

with Neumann boundary condition and with data u(t = 0), u(t = 0) which are small for
large Ty. u is smooth as long as t is less than Tj, and u tends to infinity as ¢ approaches
Ty.
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Also the former example can be carried over to nonlinear wave equations with Neumann

boundary condition. For o € N, let u be a C?-solution to

ug — Au = uH

with initial values
w(t =0) =up, w(t=0)=u,

satisfying the Neumann boundary condition

0
‘o=
W lpq
We assume that the following holds:
Bi= /uo =0, = /u1 > 0. (12.16)

Then v, with

satisfies
v’ > Mot with M = M(volume(Q), a). (12.17)

From the assumption (12.16) it follows that
>0 and v >0.

Now we conclude from (12.17) that

1 M

1
/t27
P O

v(t)*? > 21/(0)2

M
- 0)*+2 = P.
0t2’©

Thus we conclude that
M
/ t) > 2 u(t a+2 2P.
vz 2 M o+
Hence if u is a solution on [0, 7] then necessarily
v(T) oo

T = / dw < / dw < 00.
o2 M w2 2P T ) 2 M ower2 4 2P
(See R.T. Glassey [39], Payne & Sattinger [137] and Zheng & Chen [207] for further
examples of blow-up for semilinear wave equations.)

The last two examples show that neither the magnitude of n nor the magnitude of
the degree of vanishing of the nonlinearity near zero (= « + 1) in connection with the
smallness of the data may prevent a local smooth solution from developing singularities

in finite time.
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In contrast to the parabolic problem the study of the Dirichlet problem for the wave
equation is expected to lead to similar blow-up phenomena. To show this we shall present
fully nonlinear blow-up examples for radially symmetric solutions both for Dirichlet and
Neumann boundary conditions. The radial symmetry will reduce the space dimension
to one and we shall apply the above mentioned result of Klainerman & Majda [93]. This

is not an immediate consequence for arbitrary wave equations since the equation
Ut — Au=0

turns into .
n—
ﬂtt - ﬂT’r - ﬂr = 07 (1218)
r

and this is not in conservation form that would be needed to carry over the arguments of
the proof in [93]. Moreover the trick of using a periodic extension (being antisymmetric
for the Dirichlet case resp. symmetric for the Neumann case) of a solution in Q = (0, L)
to Q = R! does not work because of the term 4, /r appearing in (12.18). Hence we shall
apply an appropriate transformation first.

Here is the precise statement of the result. Set Q3 := {z € R* | 1 < |z] < 2}.

Theorem 12.1 For every o € IN there are (smooth) nonlinearities f = f(x,u, Vu, V>u),
f(z,w) = O(Jw|*™) near w = 0, uniformly in x, such that there is no global C*-solution

to the initial-boundary value problem

uy — Au = f(-,u, Vu, V2u) in R x Q3, (12.19)
u(t=0)=cp, w(t=0)=c (radially symmetric)in Qg, (12.20)
ulpo, = 0, (12.21)

e > 0 small, no matter how smooth the data ¢ and 1) are or how small € is or how large
a is. Namely, there is a constant C = C(¢,v) > 0 and an g9 = €o(¢, ) > 0 such that

—

the solution develops a singularity as t approaches Ce™®, provided € < €.

The same conclusion holds under the boundary condition

ou

o =0 (v: outer normal). (12.22)

o003

The nonlinearities are given by

4xVu
|z[?

fz,u, Vu, V) = ( + Au) (K'(u+ 2Vu) — 1), (12.23)

where K is an arbitrary smooth function (being odd in the case of the Neumann boundary
condition (12.22)) which satisfies

K'(w) =1+ 0O(w|*) nearw = 0.
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Remarks: A local solution exists and is necessarily radially symmetric (cf. the remarks
following the proof of Theorem 12.1). Global solutions exist for small data if the Dirichlet
(resp. Neumann) boundary condition (12.21) (resp. (12.22)) is replaced by the dissipative
boundary conditions (cf. (12.14))

K(a(t,1) + a(t, 1)) — ra,(t, 1) = 0, @,(t,2) =0, (12.24)

where 0 < 7 < o0 is a fixed parameter, u(t,r) = u(t,z), r = |z| and u, denotes the
radial derivative.

PROOF of Theorem 12.1:

We are looking for transformations v(¢,r) = ® (¢,r,@(t,r)) which carry over the differ-

ential equation for @, namely

U — Upp — a'r:f()

into a differential equation for v of the type

Vgt — Upp :f()‘

then admitting the application of [93].
Let us start with a general nonlinearity g, and we consider 2 C R" instead of Q3 for a

moment, n not necessarily being equal to 3,
uy — Au = g(-,u, Vu, V2u).

We assume that there is a local, smooth, radially symmetric solution u(t, x) = u(t,r), r =

x|. Making the ansatz
vo(t,r) = p(r)u(t,r).
we have
Vg = PUgt, Up = plﬂ + Py, Vpp = Pﬁﬂ + 2plﬂr + piyr,
hence
_ B n—1_ n—1 AE o

Vi — Upp = P | Ut — Upyr — r Uy + p r - 210 Uy + D u.
With the requirement in mind that we wish to end up with a nonlinearity that is at
least quadratic, we require p” = 0, i.e. p(r) = ar + b with some a,b € R and also
p" =2 =0, ie (ar +b)(n— 1) — 2ar = 0, whence necessarily b = 0 and n = 3
follows, a € R arbitrary, (without loss of generality a = 1).

That is, p(r) = r and v with v(¢,r) = ra(t,r) satisfies (in Q3 now)
(0= )
Vg — Upp =T | Ut — Upyp — Uy == 7’9~
r
We would like to have that v satisfies

vy — (K (v,))r =0,
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or, equivalently,
Vgt — Upp = UTT(K/(U’V‘) - 1)
Since v, = 4 + 1y, Vpp = 2U, + U, the right-hand side reads in terms of
(24, + rt,) (K (a + ra,) — 1).

Hence we have to choose g as

2 o ~

g = < U, + uw) (K'(a+ ru,) —1).

r

Since

’a(t./?") = u(t,x), r= |$|, Uy =

-1 2
* Vu; tyy = " < . Vu>+Au = < * Vu>+Au,
|z [\ =] || \ ||
we see that g in terms of u equals f as defined by (12.23) in Theorem 12.1.
Consequently, if u satisfies (12.19), (12.20), (12.21) (resp. (12.22)), then v satisfies — as
long as it exists and for 1 < r < 2 — the relations

vy — (K(v)), =0, (12.25)

v(0,7) =reg(z), v (0,r) =rev(x), |z =r, (12.26)
v(t,1) = v(t,2) =0, (12.27)

(resp.  v.(t,1) = v.(¢,2) =0). (12.28)

It follows from Klainerman & Majda [93] that v develops a singularity in the second

derivatives at time 7' = Ce™® which gives the desired result for w.

Q.E.D.
The simple ansatz v(t,r) = p(r)u(t,r) only works in three space dimensions, while a
more general dependence v(t,r) = ®(r,u(t,r)) leads to difficulties for n # 3.
The reason why the polynomial ansatz v = ru works in three space dimensions is that
the fundamental solution f,, = f,,(r) to the equation
n—1

fir)+ falr) =0

r

has the property that the following recursive formula holds (up to constants which are

not essential in the sequel):

furar) = P,

r
This implies that

fi(r) =rfs(r)

and we observe that f] satisfies the same differential equation as fj.
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Of course one could recursively derive similar formulae for the higher order fundamental

solutions in terms of the derivatives of f;, for example
n=5: f'(r)=3rfs(r) +r2fi(r)

or
n="1: [O0)=15rf(r) + 92 fo(r) + L (r),
but these formulae are not appropriate for our problem because there appear derivatives
of f5 and f7 respectively on the right-hand side. This would imply, e.g. for n = 5, that,
if u satisfies
ﬂtt 77]7? - Ur =9,
r
then v, defined by
v = 3ra + r’a,
satisfies
Vg — Upp = 379 + TZgrv
hence
3rg + 129, = v (K'(v,) — 1)

should hold, while it is not clear how to define g depending on at most second derivatives
of u. This becomes even worse for n = 7,8, ... due to the appearance of higher derivatives
of g.

The existence of a local solution to (12.19), (12.20), (12.21) (resp. (12.22)), is obvious
by construction since a local solution to (12.25), (12.26), (12.27) (resp. (12.28)), exists.
Independently, the existence of a unique local solution to (12.19), (12.20), (12.21) would
follow from the general local existence theorem by Shibata & Tsutsumi [168], observing
that the solution to radially symmetric data necessarily must be radially symmetric for
all times. The latter follows from the uniqueness of the solution and the fact that if u
is the local solution, then w with w(t, z) := u(t, Px), P € O(3) = orthogonal group in
R?, satisfies the same differential equation, initial conditions and boundary conditions,
and hence w must coincide with v which means that u is radially symmetric.

The remark following the statement of Theorem 12.1 concerning dissipative boundary

conditions is now obvious since

“u satisfies the boundary conditions (12.24)”
is equivalent to

“v satisfies the boundary conditions (12.14)”,

and then v globally exists for small data according to Greenberg & Li [40].
We would like now to close the section by listing a few related questions and to point

out some open problems.
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e Necessary conditions for the global existence of small, smooth solutions:

Most of the theorems in Chapter 1 and Chapter 11 only provide sufficient condi-
tions. Here sharp results are required, which means an investigation of possible

blow-up situations.

e Non-homogeneous media, variable coefficients:

In the previous Chapters the operators A appearing in the linear main part had
constant coefficients, corresponding for example to homogeneous media in elas-
ticity. The fact that constant coefficients were considered was essential for the
derivation of decay rates. The simple reason is the availability of appropriate rep-
resentation formulae for solutions to the linearized system. Here are many open
questions, cf. the discussion above where a non-homogeneous example was treated

in an exterior domain.

e Weak solutions:

In the case that there are no global smooth solutions it is natural to ask whether
there are global weak solutions. This question has been answered only in rather

specific situations, e.g. in one space dimension, in general.

e Arbitrary domains:

As far as we have studied boundary value problems in this section, the boundary
was assumed to be smooth. This is important for the regularity theory which plays
an important role in proving the global existence theorems for smooth solutions.

Besides the typical interior and exterior boundary value problems mentioned above
there are domains with other geometries of interest, for example domains with an
infinite boundary like half planes, waveguides or unbounded cylinders, the latter

two categories being of the type
Q=R""x, cCcR"bounded, 1 <m < n.

Here there are already new phenomena arising in the linear theory, for example
the principle of limiting amplitude being not valid in certain cases (see P. Werner
[195]). This principle allows statements on the asymptotic behavior of solutions
to linear wave equations assuming a time-periodic force as ¢ — oo and is always

satisfied in exterior domains if n > 3.

We shall consider waveguides in Chapter 13.

e Boundary conditions:

Often it is necessary to investigate initial-boundary value problems for each set

of boundary conditions separately. In contrast to this it turns out that for linear
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and for nonlinear wave equations one obtains corresponding results for both the
Dirichlet and the Neumann boundary condition. But this is not self-evident. For
example, looking at the homogeneous, isotropic equations of elasticity outside a ball
in IR®, one finds that for the Dirichlet boundary condition the local energy (local
L2-norms of derivatives of the displacement vector) decays exponentially, but it
does not decay with a rate for the corresponding Neumann boundary condition
due to the presence of surface waves. The local energy even grows if one assumes a
suitable mixed boundary condition (see Ikehata & Nakamura [53]). These problems

hence require new ansatze.

Individual equations:

It was mentioned at several places throughout this book that the common structure
which was found for all the systems discussed here does not mean putting all the
features under one cover. Specific properties of specific equations lead to sharp

results. Here further research is required for each individual system.

Numerical investigations:

Last, but not least, we wish to emphasize that numerical investigations deserve a
great interest, e.g. for the shock wave analysis for hyperbolic problems. This is
important not only with regard to the applications, e.g. in gas dynamics, but also

because interesting hints for further theoretical, analytical research are expected.



13 Evolution equations in waveguides

Now we extend the considerations to initial-boundary value problems for waveguides Q2 C
R"™. In the main part, we consider nonlinear wave equations and Schrodinger equations
as well as step A for the equations of elasticity and the Maxwell equations in flat or

classical waveguides. These are domains €2 of the type
Q=R'xB> (+,2”), BcCR"" bounded, (13.1)

where 1 <[ <n — 1. Typical examples are provided in the following Figures 13.1-3:

Q
z/
Figure 13.1: n = 2,1 = 1: infinite strip
Q
Figure 13.2: n = 3,1 = 2: infinite plate
///
\\ \
/ Q

Figure 13.3: n = 3,/ = 1: infinite cylinder

In the last part, we shall also look at generalized waveguides, see Figure 13.4.
The combination of bounded and unbounded parts makes the situation in waveguides

different from the Cauchy problem, but also different from bounded or exterior domains.
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/\

Figure 13.4: n = 2,1 = 1: generalized waveguide

13.1 Nonlinear wave equations
We consider the fully nonlinear equations
uy — Au+mu = f(u, uy, Vu, Vuy, V2u) (13.2)

for a function u = u(t,x),t > 0,z € Q@ C R",m > 0 being a constant, with initial
conditions

u(t =0) =ug, w(t=0)=u, (13.3)

and Dirichlet boundary conditions
u(t,-) =0 on 0. (13.4)

1 is a flat waveguide as in (13.1) with smooth boundary 0€2. For m = 0 we have wave
equations, whereas m > 0 corresponds to Klein-Gordon equations. In contrast to Cauchy
problems we also consider a dependence of the smooth nonlinear function f on u, for the

case m = 0.

13.1.1 Linear part

Following the general steps A—E, we first characterize the asymptotic behavior of solu-

tions to the linearized equations

uy —Au+mu = 0 in [0,00) x Q, (13.5)
u = 0 in[0,00) x 0, (13.6)
w(0,) = ug, u(0,-) = wy; in Q. (13.7)

The idea will be to use an eigenfunction expansion in the bounded part B of Q = R! x B,
and exploit the known behavior of functions defined in [0, 00) x R
For x € Q we write

r=(2,2") witha' € R} 2" € B,
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n 1 n
A=X 0 N=38 A=Y 4
j=

j=1 j=l+1

and, analogously,

v, V., V"
Let
A:D(A) C L*(Q) — L*(Q),
D(A) := W>2(Q) N Wy*(Q),  Ap:= —Ap,
and

A" DA) c AR — LAWY,
D(A) = W2>3(RY, Ayp:=—-Ng,
A" D(A") ¢ L*(B) — L(B),

D(A") == W>2(B) N Wy *(B), A’y :=—-A"p.

A" is self-adjoint, having a complete orthonormal set (w;);en of eigenfunctions corre-

sponding to eigenvalues (););en satisfying
O< A <A< <A =00 asj— oo
The spectra of A" and A, respectively, are
o(A) =[0,00), o(A) =[A,00)

and are purely continuous, cp. [99].
The L'-L*-decay of solutions to (13.5) — (13.7) is described as follows.

Theorem 13.1 Let
Ky = m + {”q A, Ky o= {123} Y141,

and
uy € D(AK/?) nyietietllg)

uy € D(AF=D/2) npyietKa=11q)
Then the unique solution u to (13.5) — (18.7) satisfies

c
[ (u(), welt), V() [| L0y < (1 + 1) (letollwrezres1.1y + Nl oo 11y )

where the positive constant ¢ depends at most on m.
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Remarks:

1. Of course, ¢ may also depend on the fixed n and B.

2. The decay rate [/2 is the same for wave equations (m = 0) and for Klein-Gordon
equations (m > 0), wheras it is different for the Cauchy problem in R”, where we have
(n—1)/2 for m = 0 and n/2 for m > 0. For the case m = 0 one notices the interesting
behavior for I = n — 1 where one has the same decay as for the Cauchy problem. This
holds, for example, for an infinite strip in IR? or for the region between two parallel
planes in R

3. In general, for fixed n, the decay becomes weaker as the number of bounded dimensions
increases.

PROOF of Theorem 13.1:

Case 1:  t> \/A

Expanding u = u(t, ', 2”) for fixed (t,2’), one has

u(t, 2’ 2" Z@jfzw] ")

with
v;(t,2") = (u(t, 2/, ), w;5) 128)-
By (13.5) we obtain

oo
0=uy — Au+mu="> (v — Avj+ Ajv; +mv;)w;
j=1
Denoting
vj,0(2") = (uo(2’, ), w2y, vj1 = (w2, ), wy)r2s)

we conclude that v; satisfies
v — Av;+ (m+Xj)v; = 0 in [0, 00) x R/, (13.8)
v;(0,-) =vj0, v;,4(0,°) = vj1 in R, (13.9)
that is, both for m = 0 and for m > 0, v; satisfies a Klein-Gordon equation in all of R
For v; we can exploit the decay of solutions to a Cauchy problem for the Klein-Gordon

equation, but we need a version describing the behavior of the mass which is depending

on J; in our situation.

Lemma 13.2 Let
I+ 3}

K1 = |: 9
and let M > My > 0, vy € WKLH(R!), v; € WEKI=LY(RY). Then the unique solution v to
vy —ANv+ My = 0 in[0,00) x R,
U(Oa ) = Yo, Ut(ov ) = v n

Rl
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satisfies for t > \/IM

C 1 1—2
o)y < o (M Bl sy + M5 onlhraos )
¢ > 0 being a constant depending at most on My.

PROOF: Let

o(t,2") =v ! v
) . \/M ) \/M .
Then v satisfies

’l‘}tth/i)‘i”U:O,
/

f}(O,x’)—v()(jM) — (), B(0,47) = ZW v1<fM> — (o).

By the known estimates for Klein-Gordon equations from Chapter 11.5, we have for
t>1

. C - -
ot )] < (I5ollywsr, 2ty + 19 lya-1 ey ) - (13.10)
A substitution y’ = lew’ dr' = (VM)ldy', yields

9ol 1oty = Ml/2||UOHL1(Rl)‘

Since )
o) = 0w ) S
we obtain
HﬁOHWKl’l(Rl) < CMI/QHUOHWKM(RI), (13.11)
and
Hﬁlnwkrhl(nl) < CM(I?I)/Q||01HWK1—1,1(R1), (13.12)

where ¢ = ¢(Mp). Combining (13.10) — (13.12) we get

lw(t,2)] = [o(VMt, VM)

(\/M t)l/? (Ml/2HUOHWK1,1(Rl) + M<l71)/2||1)1“WK1*1(R1)) .
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Corollary 13.3 Let
vy € WETLYRY, v € WERHIRY).

Then we have for t > !

VM
C —
HVIU(t)HLOC(Rl) < 4/ (]\/[l/4||1}0||WK]+1,1(R1) + M 2>/4H’U1”WK1,1(R1)>7
C
HUt(t)HLoo(Rl) < tl/2 (M(l+2)/4HUQHWK1+1,1(RL) + Ml/4HU1||WK1,1(Rl)) 5

where ¢ > 0 depends at most on M.

PROOF: h; := 0jv, j € {1,...,1}, satisfies the same Klein-Gordon equation as v, now
with initial data
hJ(O) = 8]-1)0, hj,f,(()) = ajvl

yielding the first claimed estimate by using Lemma 13.2.

h := v, also satisfies the same differential equation, but with initial data

R(0) = w1, hu(0) = (A — M)up.

Again using Lemma 13.2, we have

~ C —
)l <, (Mol v gy + MDA A = Mo llysei-1 )
C
S tl/2 (]Wl/4||1}1||wkl,1(Rl> + Af(l+2)/4||1)0”WK1+1,1(Rl)> .
Q.E.D.

Now we return to the proof of Theorem 13.1. By Sobolev’s embedding theorem and

elliptic regularity, we have

\u(t,z',z")P + \V"u(t,m',x”)ﬁ

IN

cflu(t, 2, ')H?/VK@?(B) (13.13)
At 2 ) 2,

IN

where

n—1

Concerning elliptic regularity we have for A; € {A, A"}, with (-, )2 and || - || .2 denoting
the inner product in L?(§2) respectively the norm in L?(B),

Mllellze < (Aip, 0)i2 = [Vl (13.14)

implying .
2 < A2
H90HL2 = \//\1 H 1 SaHL2
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and

lell2: + IVoll2: < | A%¢)2., v € D(AY?). (13.15)

Now we use the elliptic regularity expressed in

Lemma 13.4 Let j € N,p € D(A1), 1 < p < o0, p € LP(Q) resp. LP(B),A1p €
WiP(Q) resp. WHP(B). Then o € WIit22(Q) resp. WiT2P(B) and

lellwa+ir < cllArllwin
holds, where ¢ is a positive constant at most depending on j and p.

The proof of Lemma 13.4 is given for bounded domains in [174, Chapter II, Theorem
9.1.]. Tt carries over to a flat waveguide € since it has a bounded cross section, and hence
the Poincaré inequality can be used.

Applying Lemma 13.4 successively, we obtain

Corollary 13.5 Let j € N,p € D(A]), 1 < p < o0, and ¢, Ay, ---, Alp € LP(Q) resp.
LP(B). Then we have
lellwair < cll Aol Ls,

¢ at most depending on j and p.

Combining Lemma 13.4 and (13.15) we conclude for j € N and ¢ € D(AX /2

lpllwzne = lellwaieos < cllAvpllware < ... (13.16)
i j+1
cllAfpllwre < cll A7 2| 2.

A

Corollary 13.5 and (13.16) yield for any j € N, € D(AI/?)

lellwsz < c(i)I ATl L. (13.17)

This last estimate has been used in the inequality in (13.13). We proceed in the pointwise

estimate (13.13) and obtain, using Lemma 13.2,

oo
lu(t, o, 2" )P + [V ult, o, 2" )P < e N foy(t, 2|
j=1

IN

3 k.

o 2N (4 ) P vl s
j=1

(4 A2 (5B )

C X Kstl)2

i 2N o, ) 2 s
j=1

Ks+1/2—1
+A;

IN

et w07) 228y [y a1 -
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Observing
1 Ka/2
<u07wj>L2(3) = 2\ [2/2 <(AH) ! uo’wj>L2(B)’
J
1 M (Kq—1)/2
<u17wj'>L2(B) = /\(_Kg—l)/2 <(A )< 2=/ Ul,wj>L2(B)7
J
we conclude
[/ (t, o', ")) + |V'ult, ', 2")|? (13.18)
< 5121 AK2—11<5—1/2 (H<(A”)K2/2u07wj>L2(B)||%/VK1v1(R’)
- J

+ ||<(A”)(K2_1)/2u17wj>L2(B)H€VK171.1(Rl)> .
To obtain the convergence of ]i; \ fr}{s,, ,» we need some information on the asymptotic
behavior of the eigenvalues \; as j — oo.
Lemma 13.6 The eigenvalues (\;); of A” satisfy
N >cjnt, jeEN,
where ¢ > 0 is independent of j (but depends on B).

ProOF: This kind of estimate goes back to early work of Weyl'. We use [2, Theorem 14.6]
yielding for the number N(\) of eigenvalues satisfying A; < A,

NA) =cA2 +O\"2), as A = oo,
with ¢ = ¢(B) > 0. Hence
N\ <Xz for A> A,
implying the assertion since N(A;) > j.
Q.E.D.

Lemma 13.6 implies

1 .
)\JKZ’K5*2 > Cj(KszS—l/Z) W )

By the choices of Ky and K5 we have

[, 2

Ky — K5 — > 1

(F ° 2)n—l ’

hence,
> 1
> o < 0. (13.19)
J=1 A5

'Hermann Weyl, 9.11.1885 — 9.12.1955
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Moreover,
AT 2, 0) o) < (A" 2 o) (13.20)
< dlJuollwra2 s
S CHUO||W}(2+1L—Z+1,1(8),
similarly

(A0 R0y w)) 2| < elluflwrain- ). (13.21)

Combining (13.18) — (13.21) and observing the definition of K3, we obtain
c
lu(t, ', 2")|? + |V"u(t,z,2")|* < " (HuOH%/vKﬁKsJ(Q) + ”ulH?/VKz*-K:x—ZJ(Q)) - (1322)

Analogously, we get

Vult. ol )< (ATt o) (13.23)
= cz)\f571‘<v/u(taxl7')>wj>L2(B)|2
j=1

< rhs. of (13.22).

The time derivative is estimated by

lue(t, ', 2™)|? < cfjug(t, o, ~)H€VK571,2(B) (13.24)
c
< 4 (Hu0||2I/VK2+K3+1v1(Q) + Hu1||%/VK2+K3*1«1(Q)>'
1
Case 2 nggm.
Let
n

Then ug € D(AK1/2) uy € D(AK+=Y/2) since K, < Ky. Let (Py)aer denote the spectral
family of A. Then

u(t) = /Cos(\/mJr At)dPyug + / sin(\;/T;n:/\)\t)

A1

dP)\Ul.

1

This implies for ¢t > 0,z € Q, using (13.17),

u(t, )| + [Vult,z)| < cllult,)lwrizo) < A%t )w (13.25)

- 1/2

c /)\K4 COSQ(\/m+)\t)d||P)\U0||%2(Q)

Al

IN

1/2
A

n /m Ly St (Vm A P[0

A1
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IN

¢ (1A% || 2y + | A2 | 1200y )

IN

¢ (luollwreszioy + s lwrese)

IN

&
(1 n t)l/2 (HUOHW}(2+K3+1,1(Q) + ||U1HWK2+K3—1,1(Q)) s

observing 0 <t < \/1/\1. Analogously, we have

|u.(t, x)| < right-hand side of (13.25). (13.26)

Combining (13.25), (13.26) with (13.22) — (13.24) completes the proof of Theorem 13.1.
Q.E.D.

We obtain the L*-L%-estimate from multiplying the differential equation (13.5) by u; in
L*(Q), yielding
I DIk Vu(t)|} )17 =0
i Ue@lEa) + [Vu)[Z20) + mlu()llz2) = 0.
Integrating in time ¢ and using Poincaré’s inequality (cp. (13.14))
[u®)ll2@) < cllVu(d)l 2@,
we have proved

Theorem 13.7 Let ug € D(A),u; € D(AY?). Then the solution u to (13.5) — (13.7)
satisfies fort >0

() lwrqoy + lue(®)ll 2o < ¢ (luolwra) + i) -
where ¢ depends at most on m (and B).
The LP—L9-decay we conclude from Theorems 13.1 and 13.7 by interpolation.

Theorem 13.8 Let the assumptions of Theorem 13.1 be satisfied, let u be the unique
solution to (13.5) — (18.7), and let 2 < g < o00,1/p+1/q=1.

(i) If uop =0, then u satisfies for t > 0

C
[l (w, we, Vi) () || Lag) < a2 lwallw e (),

(1+1)

where

(1= 2)(Ky + K3 — 1), if q € {200}

(1= 2)(Ky+ Kz —1)]+1, if 2<q< oo,

and ¢ depends at most on q and m.
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(ii) If additionally u; € D(AF2=V/2) N WKL) then u satisfies fort >0
c
(w0, wr, Vo) ||

<
(| (w, ue, V) ()| o) < (14404

WP (Q)

where

(1- 3)(-’(2 + K3), if ¢ € {2,00}
N, =
(1= 2Ky + K3)] +1, if 2<q< oo,

and ¢ depends at most on q and m.
One can also treat other boundary conditions than the Dirichlet one (13.6), e.g. Neumann

boundary conditions

ou

oy = 0 in [0,00) x 09, (13.27)

where v = v(z) denotes the exterior normal in x € 9€2. Of course, there is the eigen-

function of —A”| say wy, corresponding to the eigenvalue Ao = 0. Then the coefficient
vo(t,2") == (u(t, o', ), wo) L2(5)
only satisfies a wave equation for m = 0, not a Klein-Gordon equation,
vou(t, ') — Alvg(t, z') = 0.

Hence, the L*>°-decay is of order =5 (instead of =2 ). Indeed, if @ = a(t, 2') is a solution
to
Uy —A'd = 0 in[0,00) x R,
a(0,:) = ¢ inR,
(0, -) ¢ in R,

with ¢, # 0, then

u(t, o', 2") = a(t, 2" )we(x")

solves the linear wave equation ((13.5) with m = 0) in [0,00) x Q and satisfies the
Neumann boundary condition (13.27), together with nonvanishing data. The decay in
L™ is only of order =2, On the other hand, if the initial data g, u; are orthogonal to

the eigenfunctions wy (= constant),

/uo(as',:c”)das” =0= /ul(x',x")dx",
B B
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for 2/ € R!, then the better decay of oder =2 follows again.

In the next step we consider right-hand sides f = f(¢,z) in

uy — Au+mu = f in  [0,00) x €, (13.28)
u =0 in  [0,00) x 99, (13.29)
w(0, ) = ug, uy(0,-) =y in Q. (13.30)

A simple use of a variation of constants formula would require a set of boundary condi-
tions for f = f(¢,-) for fixed ¢; cp. the conditions on ug, uq in Theorem 13.1. In view of
the application to the nonlinear problem (13.2) — (13.4) we take a different approach.
Let B:= A+ m, ie.,

Uy + Bu = f,

u(0) = ug, u(0) = uy.

Then B! exists since o(B) = [A\; +m, 00) with A; > 0,m > 0, and
v i= Bilutt

satisfies

Vit + Bv = Bilftt =9,
v(0) = Bilutt(o)v v (0) = Bilum(oﬁ

i.e., v satisfies the same differential equation, but with a right-hand side g that belongs
to D(B), hence it satisfies certain boundary conditions.

In this way, a higher regularity of f in ¢ is needed and replaces the generally missing
boundary conditions. The desired estimates for v will then be obtained from those for v
via

u=B"1f—w.

Let T € (0,00] and K € INg be arbitrary but fixed. We look for solutions u to

un(t) + But) = f(t), ©>0, (13.31)
u(t) € D(B), t>0, (13.32)

w(0) = ug, u(0) = uy, (13.33)

we jfrj; Ci ([0, T, W2H+2-32(). (13.34)

Let

0y = ((i)%) (0) = du(0)
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for j =0,1,...,2K + 2. Then

i1

S (A —m)FfU=2=20(0) + (A — m)§1LO7 j > 2 even,
E=0

J

;1_1 . j—1
> (A —m)F U222 (0) 4 (A —m) 2wy, j >3 odd,
E=0

where j =2,3,...,2K +2, and f(™ = dy f, m € IN,.
Exemplarily,

] =2: utt(O) =

(

7=3: uw(0) = (A—m)us+ f(0),
j=40 dhu) = (
(

233

(13.35)

Theorem 13.9 Let f € C*([0,7], L*(Q)). If u is the solution to (13.51) — (13.34),

then

K-1
V= u+ Z (_B)*(J'*l)f@j)
j=0

1s the solution to
vy + Bv = (=B) K fCR) ¢ >0,
v(t) € D(B), t>0,
v(0) = (=B) Muar, v:(0) = (=B) Fuar i1,
ve ]-éo Ci([0,7), W*2(0)),

and

v=(-B) K& u.
PROOF: Let

0= (-B) *d¥* u
then

(d;+ By = (=B) "&"(d} + BJu
_ (_B)—Kf(ﬂ()7

hence v solves (13.37) — (13.40). Defining

K-1 _ _
U:=7— Z (=B)~UtD §@),

=0

<.

(13.36)
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we have
(> + B)u = (d?+ B)v — K:(CF + B)(—B)~U+D £
— (=B) K e __ Kf(_B)—(Hl)f(sz) _ K_l(_B)—jf@j)
=0 i=0
- f
H0) = 70~ 3 (-B) VS0

— (=B) Fupi — 21(_3)—(j+1>f<21>(0)

= ) (A w0 4 (8 )
_ %1(_3)—(j+1>f<2j>(0)

= o 3 (B R ) 3 By 0 )

= U,

and, analogously,
ﬂt(O) = Uq.
Hence @ satisfies (13.31) — (13.33), so by uniqueness we get & = u, hence

K-1
7 o= u+ (,B)*(ﬂl)f(?j)

<.
(==l

= u+ (_B)—(J'+1)f(2j)
J

=

Il
o

= ’[)7

ie.,
v=(=B)X d*u
solves (13.37) — (13.40).
Q.E.D.

Before stating a general result on the LP-L9%-decay, we formulate necessary compatibility

conditions for the data.

Definition 13.10 Let K € Ng. Then (uo, u1, [) satisfies the “compatibility condition of
order 2K” if, for j =0,1,... 2K + 1,

u; € Wy (Q) N W2EF23.2(Q) 0 W2E+2-31(Q), (13.42)
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and
Ugre 2 € L*(9). (13.43)
Theorem 13.11 Let
KRR pe (o (o) w) nw @),
§=0

and let (ug,uy, f) satisfy the compatibility condition of order 2K. Let 2 < q < oo and
1/p+1/q =1. Let u be the solution to (13.28) — (13.50) satisfying (15.34). Then we

have
[lu(t), ue(t), Vu(t)| La)

2K—2
C .
< (1 IL)(172>£ (|(u07u1, vu0)||n}2K+l,p(Q)+ Z |f(])(0)|wzi<j,p(g))
+ L q’:

Jj=0
t 1 (2K)
T f Y L E
0 -T)
2K—-1

e X IO lwer-1-50(0),
=0

where the constant ¢ > 0 depends at most on m (and q).

PROOF: 1. According to Theorem 13.9, the function v defined by (13.36) solves (13.37)
— (13.41). We observe

Uz € Wol’Q(Q) NW?*(Q) = D(B), uak41 € W()LQ(Q) = D(B'?),

and
vo = v(0) = (=B) Kugr € D(B*HY) ¢ W2ET22(Q),
vr = 1(0) = (=B) Kuggy1 € D(BEH2) ¢ WEHLE(Q),
g(t) = (=B) %f*K@t)e D(BY) c W*2(Q), t>0.

‘We conclude for the solution ¢ to
7}“ + By = 0, ’lA}(O) = Vo, @t(O) =1
from Theorem 13.8 (ii) that

~ ~ ~ C
[ (0(t), 0e(t), VO (1)) | oo < -2y (o, v, Veo) | (13.44)

(1+1)

Whpp(Q)
holds. The solution ¥ to

Oy +Bo=g, 0(0)=0, 0(0)=0
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is given by )
B(t) = / v (t — 7)dr,
where v™ solves, for fixed 0 < 7 < ¢, 0
v+ BvT =0, v(0)=0, v/(0)=g(7).

Using Theorem 13.8 (i) we conclude, since g(7) € D(BX),

/ 1

I (506, 56), 950 oy < / ot IOt (1345

Combining (13.44), (13.45) we get for v =0 + 0

1(v(t), vet), Vo))l o) <

C

(14 00D I1(vo, v1, Vo) |y apr (g (13.46)

¢
1
+c/ o1 lg() e, p o dT-
P L [T
2. Since p > 1 we can apply Corollary 13.5 to conclude, using N, < Ky + K3 — 1 < 2K,

lg()lwxr0) < ellBXg(D)lney = el S ()| o)

We also have Np < 2K + 1 and get

0,01, V)5, 0y < €(luzcllwenca) + uzicsalwrae)-

Hence (13.46) turns into

C
1(v(®), vi(t), Vo)) lzaey < (m)(lj)é(|\u2K||Wz.p(m+||u2K+1||WLp<Q>) (13.47)
f 1
tef P Il PRz
0 (T+t—7) a2

K-1 . .
3. By (13.36), i.e., v=u+ > (=B)"UFV %) we have
j=0

I (u(t), ue(t), V) sy < [(0(8), 0et). Vo 1)) oy (13.48)
K—-1

+ 30 (1B W) agey + B~ FEI ) 1o
j=0

+ [IVB=TD FD (1) )
Since n < 2K we conclude

1B Oy < BV Dy (18.49)
cll P () lwar-2i-10(0)

IN
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and, analogously,
1B~ fED(@)|| Laggy < el FEHD (@) w220 (0)- (13.50)

Combining (13.48) — (13.50) we obtain

(), uelt), Va(t) )@ < [I(v(t), vilt), Vo))l (13.51)
“+c 2;) Hf(J) szK 1—jp.

4. Finally, see (13.35), we have

K-1

Z Hf@K_Q_%) (O)'lek:+2,p(Q) + ||UOHW2K+2.;> (Q) (1352)
k=0

K-1 )

= £ (0) w2100y + lluollwe2 (),

=0

IA

HU2KHW?4’(Q)

AN
MT

2k 1 llwrre) 1FEET2(0) lwaneragy + llullwarcsnn () (13.53)

k:O
K—

1
= 2B lwer-2i1a) + lur[[warcsra ($2)-

7=0
Combining (13.47), (13.51) — (13.53), the assertion of the Theorem follows.

Q.E.D.
We conclude the linear part with optimality considerations. The following example will

show that the decay rates proved above are optimal. This will be done in looking for a

solution to the linear problem

u(t, ) — Au(t,z) + mu(t,z) = 0 in [0, 00) x , (13.54)
u(t,z) = 0 in [0, 00) x 09, (13.55)
w(0,2) = ug(x), u(0,2) = wuy(x) in Q, (13.56)

m = const. > 0, which has, as t — 0o, exactly the L®-decay O (t~"/?). For this purpose
let (w;)jen denote again the orthonormal system of eigenfunctions to the eigenvalues
(A\j)jen of —A” in B. Let vy € Cg°(R!) and

up(z) = wuo(z',2") = wvo(2') wi(a") for z € Q,
uy = 0.
For u with these data to be a solution to (13.54) — (13.56) it is sufficient and necessary

to have
u(t,z) = v(t,z’) wi(z") (13.57)
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with v satisfying

v (t, 2) — Aot ') + (m+ M)v(t,2') =0 in [0,00) x R, (13.58)
v(0,2') = wvo(a'), v(0,2)) =0 inR" (13.59)

For this we observe for u satisfying (13.57)
—Au(t,z) = (A" = A") (v(t,2') wi(2")) = (A" + X\y) v(t, 2") wi(z").

For the solution v to the Klein-Gordon system (13.58), (13.59), the asymptotic behavior
is known to be (cp. [101])

, (m + M)V cos(tv/m+ M+ 7)) 1
o) = 0 A [l do’ + O<t<z+l> /2> (13.60)

Rl
as t — oo, for any fixed 2/ € R!. So we get the sharp L®-decay O(t~"/?) for u(t,z) =
o(t,a’) wy(z").
13.1.2 Nonlinear part

We turn to the fully nonlinear system, i.e., we look for the existence and for the asymp-

totic behavior of solutions u to

g — Au+mu = f(u,us, Vu, Vug, V) in [0,00) x €, (13.61)
u=0 in [0, 00) x 09, (13.62)
u(0,+) = ug, u(0,-) =uy in Q, (13.63)

where m > 0 as before.

In [167] nonlinear wave equations (m = 0) were studied in ezterior domains Q (i.e. R™\Q
is bounded), which are non-trapping. Nonlinearities of the type fi(t, z, us, Vu, Vu, V>u)
not involving u were considered there. The dependence on ¢t and x could also be dealt
with here but is just replaced by f as in (13.61) for simplicitiy. The methods from [167]
also apply to the case m > 0 in exterior domains. Here, we can also treat f = f(u,...)
depending on u because of Poincaré’s estimate which allows to estimate in each place

norms of u by the corresponding norms of Vu. The strategy in [167] consists in
(i) having a local existence theorem available,
(i) proving LP—L%-estimates for the linearized system, and

(iii) proving a priori estimates for the local solution exploiting (ii).
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This coarse description (i) — (iii), of course, reminds of the general scheme A — E from the
Cauchy problem but part (ii) in section 4.1 in [167] uses the local energy decay property
for non-trapping domains which is not available in our case. But we have already proved
the general LP—L9-decay result in Theorem 13.11, and we can proceed getting a priori
estimates as in sections 6 and 7 in [167].

A local existence theorem can be taken from Theorem 1.1 of [100].

Let
K MeN, M>Ky+Ks+1, K >2M, (13.64)
and suppose that
f e TR f(W)] = O( W) as [W] = 0, (13.65)
where
3, ifi=1,
a > a(l) =42 if2<1<4, (13.66)
1, ifl>5.
Let
2a(l) + 2
q(l) == 2a(l) +2, p(l) == 20[8 +1 (13.67)

3/8, ifl=1,
2/3, ifl=2
ay = (1 2 )L o el L /1’ ?fl—37 (13.68)
- a))2 = al)+12 " B = '
4/3, ifl=4,
1/4, ifl>5.

The number d(1) is the decay rate of the L¢®-norm ||u(t)|| ;o for the linearized problem,

a = «(l) is determined by the condition

1 1 l
1 < _, 13.69
« ( + oz) 2 ( )
and then g resp. p by
1 1 1 1
=1 and ‘4=, (13.70)
q p g 2 p

as in the Cauchy problem. Denoting by D" all derivatives of v in ¢ and z up to order

k, we have

Theorem 13.12 Suppose that Q@ = R' x B, where B ¢ R™™" is bounded with smooth
boundary 0B, and that (13.64) — (13.68) hold. Then there is 0 < € < 1 such that if
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ug € W2E2(Q)NW2E-LrO(Q) uy € WHEL2(Q)NW2E=220(Q) and (ug, uy, f) satisfies
a compatibility condition corresponding to (13.42), (13.43) of order 2K, and

HUOHWZK.Z(Q) + ||’LL0||W2K_1,p(1)(Q) + HU1HW2K—1,2(Q) + Hulﬂwzx—z,pa)(m < g,

then there exists a unique solution

ue 2(11( C7([0,00), WK72(Q)) € €2 ([0,00) x Q)
=0
to (15.61) — (13.63) satisfying

K-M

u(t) |L<I(’)(Q)) < (13.71)

K
sup (HD u(t)ll 2 + (1L + )| D
>0

where the constant ¢; depends at most on [, m and Q.

PROOF: Since the local existence theorem guarantees that the local solution

2K _
ue ()¢ ([O, T), W2K71’2(Q)) for some 7" > 0,
j=0
can be continued with respect to ¢ > T as long as u is sufficiently small, it suffices to

prove (13.71). The (lengthy) details in the spirit of our general scheme can be found in
[101] or [12].

Q.E.D.
Looking at the Cauchy problem or at the case of exterior domains, one might expect
sharper results for a few (unbounded) spatial dimensions [ = 1,2,3,4 — sharper with
respect to the admissible a = a(l), ¢p. (13.66). This cases have been investigated in part
by Metcalfe, Sogge, Stewart and Perry in [123, 124].

13.2 Schrodinger equations

For Schrodinger equations
w — 1Au = f(u, Vu), (13.72)

where u = u(t,z) € C,t > 0,z € Q C R", Q a waveguide as before, with initial condition
u(0, ) = uy, (13.73)

and Dirichlet boundary condition
u(t,) =0 on 99, (13.74)

we can argue as for nonlinear wave equations, cp. [14]. We assume for the smooth

nonlinear function f, that

isreal, 1<j<n, (13.75)
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and
|FW)[=0o(W[*h) as [W| =0 (13.76)

hold for some o € IN.
The decay of solutions to the linearized problem, where f = f(¢, ), is first given for
f=0.

Theorem 13.13 Let

n—1+1
Ky=2(n— 1) +4, KQ::Z+1+[H 2+ }

and
uy € D(AF/2) n Wi+,

Then the unique solution u to (13.72) — (13.74), with f = 0, satisfies for 2 < q < oo,
1/p+1/qg=1, and fort > 0:

C
l[w(®)l| 2oy < )(1*3)5 llwollw s @),

1+t
where
(1=2)(Ky + Ky) =1, if q€{2,00},
N, :=
(1= 2)(Ki+ K)l,  if 2<g< oo

The positive constant ¢ depends at most on q.

Considering linearized equations with f = f(¢,z), the compatibility condition of order

K € Ny for (ug, f) is given by requiring
u; € WHH220) Ny ?(Q), j=0,1,... K, (13.77)

ug1 € L*(Q), (13.78)
where .
uj = (du)(0,) = (iA)ug + > (1A)F FU1P(0, ).
k=0
The LP-L%decay for the linearized equations with right-hand side f = f(¢, x) is then
given by
Theorem 13.14 Let K, Ky be given as in Theorem 13.13,
K> Ky KQ,
- 2
f c ﬂ cv <[0’ 00)7 WQK*Q*QJ,Z(Q) ) W2K72723’1(9)>7

Jj=0
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f e CR([0,00), LX) N L}(9)),

and let (ug, f) satisfy the compatibility condition (13.77), (18.78) of order K. Let 2 <
q < oo and 1/p+ 1/q = 1. Then the unique solution u to (13.72) — (13.74), with

f=f(t,x), satisfies

[u®llvw <

t
1 (K)
+CJ (14— "2 I (@) e dr

K-1
+e 2 D@ lwarain (),
j=
where the constant ¢ > 0 depends at most on q.

For the nonlinear system (13.72) — (13.76) we assume

3, it =1,
a>a(l)=9 2, if 2<1<4,
1, if 1>5,
2a(l) + 2

and

cp. (13.66) — (13.68). Let

K, M €N, Mzﬂﬁ+?+w

where K7, K5 are given in Theorem 13.13.

K-1 X
(lollworcsgy + X 1£9(0) lwar-2-)
P

+1, K>2M,

(13.79)

(13.80)

(13.81)

(13.82)

Theorem 13.15 Suppose that Q = R' x B, where B € R™ is bounded with smooth
boundary OB, and that (15.79) — (15.82) hold. Then there is 0 < ¢ < 1 such that if
ug € WH2(Q) n W2Kr0(Q) and (ug, f) satisfy a compatibility condition corresponding

to (13.77), (13.78) of order K, and

HUOHWZK.Q(Q) + HUOHWZKTp(l)(Q) <&,

then there exists a unique solution
K

we () 0([0,00), WH22(0)),

j=0
to (13.72) — (13.76) satisfying

stg%) (HDKu(t)HLz(Q) +(1+ t)(i(l)||DK7Mu(t)||Lq(l)<§2> < cl),

where the constant ¢; depends at most on | and Q.
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We recall that for Cauchy problems we have local existence theorems for more general,

quasilinear Schrodinger equations, see [115, 116]. For Theorem 13.15 we may use [83].

13.3 Equations of elasticity and Maxwell equations

We consider, following [102], the equations of (homogeneous, isotropic) elasticity for the
displacement vector u,
U — pAu — (p+A)Vdiv u = f, (13.83)

where u : [0,00) x @ — R", n = 2,3, with the Lamé constants A, u satisfying p >
0, 2+ nA > 0, cp. [63], and where
Q=R'xB, BcR"' bounded,

is a waveguide as before. f:[0,00) x Q — R" is a given function, and Au is to be read
in each component. In contrast to the situation with the Laplace operator appearing in
wave equations,

A=A+ A

the operator of elasticity
E=pA+ (p+ \)Vdiv
does not split up into £ = E'+ E”, where E' and. E” only acts on 2’ and x”, respectively,
since, for example for n = 2,
PA+ (u+ N7 (u+ A)010a
B =
(e + X) 020 UA + (11 + N)O3
We shall consider the equations (13.83) together with initial conditions
u(0,-) =u’,  u(0,-) =u', (13.84)
and with Maxwell type boundary conditions
vxu(t,-)=0, divu(t,-)=0 on 99, (13.85)
or
vou(t,)) =0, vx(Vxu-)=0 ond (13.86)

Below, we shall see that the boundary conditions (13.85) resp. (13.86), which are typical
for Maxwell equations, can be read for waveguides as common Dirichlet or Neumann
type boundary conditions. The reason for choosing these boundary conditions is con-
nected with the problem of non-splitting £ into E' + E” mentioned above and the idea

of overcoming this difficulty by projection techniques. To understand this we think for
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a moment of the Cauchy problem with Q = IR?, where we have the orthogonal decom-

position of L?-vector fields,
(L(R?))” = VIWI2(R?) @ Dy(R?), (13.87)

with Dy(IR®) denoting the fields with divergence zero; and VIW12(IR?) is the L*closure

of gradients of functions in W2(IR*). Decomposing the displacement vector
u = uP’ + u®

correspondingly, we obtain a decomposition of (13.83) into

uly — (2p+ M)A = 20w, — uAu® = f°. (13.88)
For this we use

V xu”® =0, divu®=0,
and the formula
A =Vdiv-V x Vx (13.89)

turning (13.83) into
Uy — 2+ AN Vdive +puV XV xu=f

yielding
(ufto — (2u+N)Vdiv upo> + (uf, + pV x V xu®) = fP°+ f%

or (13.88).

Unfortunately, the decomposition (13.87) and its variants in domains with boundaries
are not compatible with the usual Dirichlet boundary conditions (similar for the cor-
responding elastic Neumann boundary conditions). But it turns out that the Maxwell
boundary conditions (13.85) or (13.86) are compatible with the following variants of
(13.87).

Before specifying these decompositions, we remark that we also have corresponding de-
compositions in two space dimensions, as well as formula (13.89), if we define for a vector
field H : R* — R? and a scalar function h : R> - R

V x H:=0Hy— H;, Vxh:= Db
—Oh

Now () being a waveguide again, we use the following orthogonal decomposition in case

we consider the boundary conditions (13.85):

(22()" = Vg () @ Do(%), (13.90)
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which follows from the projection theorem. Decomposing u correspondingly, we have
u=u" +ud, uP(t,-) € VW A(Q), w(t,-) € Do(Q).

The compatibility of the boundary conditions (13.85) with the decomposition (13.90) is
reflected in a decomposition of the boundary conditions as follows.
u® satisfies

up, + pV x Vxu®=f* dive® =0,

ué‘(O? ) = uO,S’ Uf(07 ) = u1,87
vxu®(t,-) =0 on O (13.91)

The boundary condition (13.91) will be satisfied in the weak sense,
us(t7 ) € RO(Q)v
where RY(Q) generalizes the classical boundary condition as usual, for n = 3:

R(Q) = {ve (13)"|Vxve (L))" and

VF e (I2Q)", V x F e (I2@)": /u(v X F) = /(v X v)F} :
Q

Q
for n = 2:

RY(Q) :== Wy*(Q).

We remark that R°(€2) equals the completion of C°-fields with respect to the norm (cf.
[98])

1/2
-l s= (I 32+ 1V x <172)

uP? satisfies
ufy — (2u+ N)Vdivur® = 7, u® € VIV *(Q),

UPO(O, ) — u07p07 uf”((), ) _ ul,po7
v X uPO(t, ) =0, divupo(t7 ) =0 on 9.

The boundary condition vxu®(t, -) = 0 is automatically satisfied since u?® € VW, () C
RY(€)). Thus, we obtain both for 8 = po and 3 = s that

upy — AU’ = f7, (13.92)

u?(0,-) = u®?,  Wl(0,-) = u'’, (13.93)

vxul(t,)=0, dive’(t,-) =0 on 9Q, (13.94)
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with

{ 2u+ A, for B = po,

T3 =

1 for B =s

being positive.

The initial-boundary value problem (13.92) — (13.94) is of Maxwell type corresponding
to the second-order equation for the electric field with so-called electric boundary con-
ditions, see [98, 190, 191, 192]. The existence theory is well-known.

Turning to the boundary condition (13.86), we use the orthogonal decomposition

(Z2(Q)" = Ro() & V x RO(Q), (13.95)
where Ry(2) denotes the fields with vanishing rotation. u is now decomposed into
u=u"+u’, u(t,-) € Ry(), u’(t,-) € V x ROY(Q).
Similar agreements as above yield (13.92), (13.93) and now, for 5 € {po, s},
x (Vxu’(t,) =0, v-u’(t,-)=0 on Q. (13.96)

The first part of the boundary conditions is interpreted in the sense V x u®(t, -) € R%(Q).
The second part is formulated weakly by saying u® € D°(Q) where

D(Q) = {1} € (L2(Q)>n ’ dive € L*(Q) and : Vg € W1’2(Q) v(Vg) = / (divv) g} .
Q

The space D°(€2) equals the completion of C§°-fields with respect to the norm (cf. [98])

. 1/2
-l o= (1 122 + N div-12) .

The initial-boundary value problem (13.92), (13.93), (13.96) is of Maxwell type corre-
sponding to so-called magnetic boundary conditions, and the existence theory is well-
known too.

Consequently, in order to finally obtain decay rates for the displacement vector, we will
look at the Maxwell equations under electric and magnetic boundary conditions, respec-
tively.

Before proceeding in this direction, we examine the electric boundary condition (13.85)
and the magnetic boundary condition (13.86) for the displacement vector u in a wave-
guide. It turns out that, in many cases, these boundary conditions in waveguides have
a meaning in terms of natural Dirichlet or Neumann type boundary conditions for the
components of the displacement vector.

First, we consider the two-dimensional case, where we have essentially only one situation,

namely € being a strip with cross section (0, 1) without loss of generality,

Q=R x (0,1).
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The first boundary conditions are (13.85), which are in two space dimensions equivalent
to

—luU + Uy = 0, 81u1 + 82’1,62 =0 on 09.
Since v = (0,+1)" and 9/0v = +0,, this is equivalent to

7]

v uy =0  on JN.

Uy =

Hence it represents a free movement in the normal direction and no shear movement.

The second boundary conditions are (13.86) or, equivalently,
V1uq + VoUo = 0, VQ(*agul + 81’1,62) = O, V1(82u1 — 8111/2) = 07

which is, in view of v = (0, £1)’, equivalent to

uy =upy =0 on J9,

ov

representing a free shear movement.
Second, we consider the three-dimensional case n = 3 with [ = 2, where €, essentially,

represents the region between two planes, i.e. without loss of generality
Q=1R?x (0,1).

The first boundary conditions (13.85) are now equivalent to

oty — Vg = 0,
s = 0
ratin T s ’ (13.97)
Vs — oy = 0,
O1ug + Oug + O3uz = 0.
Observing v = (0,0, £1) and 9/0v = £33, we obtain
0
u=up = Uz = 0 on 09, (13.98)
v

with a, now, obvious interpretation. The second boundary conditions (13.86) are

viuy + voug + r3ug = 0,
vo(Orug — Opun) — v3(0suq — Dyug) = 0, (13.99)
v3(Oyuz — Oguy) — 11 (Ohug — Douy) = 0,
v1(03uy — Oyuz) — va(Oaug — dsuz) = 0,
or, equivalently,
9 U = 0 uy=u3 =0 on IN. (13.100)

v 19,%
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Third, we have the three-dimensional infinite cylinder, n = 3,1 =1,

Q=R x B,
where B C IR? is a bounded domain.
Observing v = (0,15,13)", we obtain for the first boundary conditions (13.85) from
(13.97)
Uy = 0, Vg — V3lUg — 07 (92112 + 83U3 =0. (13101)

For the second boundary conditions (13.86) we get from (13.99)

Voug + 3ug3 = 0,
V2(81U2 — 82U1) — V3(83U1 — (91713) = 07 (13102)
0.

82U3 — 837,62

The boundary conditions (13.101) and (13.102), respectively, become more transparent
for cylindrically symmetrical domains B, where €2 is a classical cylinder, and this means
for B that

2" eB=Ra"€B

for all R € O(2), the set of orthogonal real 2 x 2 matrices. Typical examples for B are
balls or annular domains.

We call a vector field u : Q — R?® cylindrically symmetrical if we have for all 2; €
R, 2" = (x9,23) € Band R € O(2) :

(g, Re") = uy (1, 2"),  (ug,u3) (z1, R2") = R(ug, uz)'(x1,2").

That is, u is cylindrically symmetrical if, for fixed 21, the first component wu;(zy,-) as a
scalar field, and the second and third components together as a vector field (uq, uz)'(x1, )
are radially symmetrical in B. Therefore, we have the following characterizations, cp.
[63],

Lemma 13.16 u: Q — R® is cylindrically symmetrical < there exist functions
h,g: RxRf =R

such that for all (xq1,2") € Q

uy(xy, 2") = h(zy, 1),  (uz,u3) (z1,2") = ¢(xy,r)x"

holds, where r := |2"| = \/x% + 3.

Our initial-boundary value problem (13.83) — (13.85), resp. (13.83) — (13.86), turns out

to be cylindrically invariant, i.e. we have
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Lemma 13.17 Let Q be cylindrically symmetrical. If the data u®,u' are cylindrically
symmetrical, then the solution u(t,-) to (13.83) — (15.85), resp. (13.83) — (13.86), with
f =0, is cylindrically symmetrical for all t > 0.

PROOF: Let R = (Tjk)lgj,kSQ € 0(2), and let

1 0 0
R = 0 T11 T12
0 721 722

Then R is an orthogonal 3 x 3 matrix. For ¢t > 0 and z = (1, 2") € Q let
v(t, ) == R'u(t, Rz).
Since
vy(t,z) = Ruy(t, Rz), Auv(t,z) = R'(Au)(t, Rz), Vdivu(t,z)= R'(Vdivu)(t, Rz),

we conclude that v satisfies the same differential equation as v and has the same initial
values. By uniqueness of solutions it only remains to show that v satisfies the same
boundary conditions as w, that is, the invariance of the boundary conditions under
cylindrical symmetry.

For the first boundary conditions (13.85) this can be seen as follows. First note that

vo(x1, Ra") _R vy, x")
v3(x1, Ra") vs(xy,2”) |’

v(Rz) = Ru(z).

and thus, using v; = 0,

This implies

v(z) x Ru(t,Rz) = (R/ﬁilj(l’)) x R'u(t, Rx)

= det(R)R'(v(Rz) X u t,Rx))
= 0 on 09
since v X u(t,-) = 0 on 0. Hence
vxuv(t,)=0 on 5. (13.103)

A short calculation shows

div (R’u(t, Rz)) = (divu)(t, Rx).
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Therefore, we have
divo(t,-) =0 on 99, (13.104)

since divu(t,-) = 0 on 0Q. By (13.103), (13.104), v satisfies the same boundary condi-
tions (13.85) as u. For the second boundary conditions (13.86) one has on OS2

v(z) v(t,z) = (é V(.E)) u(t, Rz) = v(Rx)u(t, Rr) = 0. (13.105)
Using
V x (Ru(t, Re)) = (det R)R/(V x u)(t, Rx)
we obtain in the same way
v(w) x (V xo(t,z)) = R (v(Rz) x (V x u)(t, Rz)) =0 (13.106)
on 0f). By (13.105), (13.106), v satisfies the same boundary conditions (13.86) as .
Q.E.D.

For a cylindrically symmetrical solution

AN h(tvxlvr)
ult 21, 27) = ( o(t, x1,r)a” ) '

according to Lemma 13.16, we can now write the first boundary conditions (13.85) as

h=0, 20+4+r¢p.=0 on 0,

cp. (13.101).
The second boundary conditions (13.86), resp. (13.102), can be rewritten as
hy =0, ¢=0 ondQ, (13.107)
since
Volly + V3liz = 1
and

1/2(81UQ — 32141) — Vg(agul — 31u3) = T((b;“ — hr)

In terms of v we have from (13.107)

cp. (13.98).
Concerning the boundary conditions we remark that the case (13.85) was already studied
for elasticity by Weyl? [196].

2Weyl gave a motivation as follows: “Sie [the boundary condition (13.85)] wird fiir uns dadurch
wesentlich, dass sie nach dem Schema < FElastischer Kérper — FRESNELS elastischer Aether —
elektromagnetischer Aether > den Ubergang von der Elastizititstheorie zur Potentialtheorie zu Wege
bringt.”



18.8  Equations of Elasticity and Mazwell Equations 251

Now, coming back to the Maxwell initial-boundary value problems (13.92), (13.93),
(13.94) resp. (13.96), we define the two Maxwell operators M, My with

M, D(My) < (L))" — (L2(Q)", j=1.2,
by
D(My) = {u € (LA(©Q))"| u € R(Q), divu € Wi*(Q), Au € (L2())"},

D(My) = {u € (L*(©))"| u € D°(Q),V x u € R(Q), Au € (L*())"},

and
Mju = —1Au,

where 7 = presp. 7 = 2u+ A. It is known ([193, 194]) that M is a positive self-adjoint

operator with purely continuous spectrum
o(M;) = [5,00), j=1.2

where § satisfies

5{ - } 0 if { j =1 and B is simply connected } .

j =2 or B is multiply connected

The following assertion on LP-regularity for the Maxwell operators is an extension from

[96], where the case of a bounded domain is studied.

Lemma 13.18 Let m € No,u € D(M;),j=1orj=2,1<p < oo, u € (LP(Q)>n,
Mju € (Wm*P(Q)>n. Then u € (Wm”*P(Q))n and

[ullwmszri) < ell(M; + 1D)lwma@),
where ¢ > 0 is a constant at most depending on m and p (and j).

To apply again the methods used for the classical wave equation with Dirichlet boundary
conditions in Chapter 13.1, we need knowledge of the eigenvalue distribution for the
different operators acting on the bounded cross section B.

We have the following six cases:
I-1IV: n=2,3 and [ = n — 1, boundary conditions (13.85) or (13.86),
V: n = 3,1 =1, boundary conditions (13.85),

VI: n = 3,1 =1, boundary conditions (13.86), cylindrical symmetry.
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Lemma 13.19 The eigenvalues (0 )m for the Laplace operator studied in the cross sec-

tion B under the different boundary conditions arising in the cases I — VI satisfy
2
Om 2 cnL,
where ¢ > 0 is independent of m € IN.

PRrROOF: For the cases I — IV and VI, the boundary conditions reduce to Dirichlet or
Neumann type boundary conditions, and we refer to Chapter 13.1. For case V we refer
to [121].

Q.E.D.

There arise zero eigenvalues of the operators, for Neumann type boundary conditions
in cases I — IV, VI, but also in case V, here with one-dimensional eigenspace arising
from Ry(B) N R°(B) N Dy(B). Initial values living in these eigenspaces lead to smaller
decay rates. In the following we consider the part in the orthogonal complement of these

eigenspaces.

Definition 13.20 w° satisfies condition (N) if the projection of w°(x’,-), for every fived

' € RY, onto the null space of the operator’s part in the cross section vanishes.

Now, we can carry over the methods from Chapter 13.1 to the Maxwell systems for
z=z(t,x) € R",

2y — TAzZ = f, (13.108)
2(0,-) =2 2(0,)) =2, (13.109)
with either, on 052,
vxz(t,)=0, divz(t,-) =0, (13.110)
or
v-z(t,) =0, vx(Vxzt,-)) =0, (13.111)

where 7 > 0.

Theorem 13.21 Let
w25 ]+)
, and let 20 21, f(t,-) satisfy, for t > 0, condition (N), and let (2° 21, f) satisfy the
compatibility condition of order 2K € IN, i.e.
47
dti”

where M is either M, or Ms. Moreover assume

(0,-) € D(M) forj=0,1,...,2K, z**'c D(MY?),

ZO c W2K+2,2(Q) N W2K+2"1 (Q) Zl c W2K+1,2(Q) ) W2K+1,1(Q)
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f e C7([0,00), WHK2(Q) NIV (Q)).

=0
Then the unique solution z to (13.108), (13.109) and (15.110) resp. (13.111) satisfies
for2<g<ooandl/p+1/qg=1

H(Z(t., ')7 zt(tv ')7 Vz(tv ’))HL‘Z(Q)

2K -1

c )
< (2,25, V20) lwerwe) + D I1F9(0) lwer-1-sm ()
(l—l—iﬁ)(l_g)é ( =0 )
t 1 2K _ 2K—1 )
e f oo T sy ds+¢ 3 17V lwsrrinie
o (L+t—s)""> =0 =0

where the constant ¢ > 0 does not depend on 2°, 2%, f ort.

Finally, we obtain the LP-L4-decay results for the elastic system (13.83), (13.84), (13.85)
resp. (13.86) in decomposing v and f into

w=wt e, f=
with corresponding decomposition
(22(@) =17 o we.
Let P? 3 € {po, s} denote the projection operator
PP (1A()" —» . (13.112)

Theorem 13.22 Assume that the projections PPu’, PPoul, PP f(t,-), and Pu®, P*ul, P*f(t,-),
fort >0, satisfy condition (N). Let

k> (f] [ ]+0).

W0 € WAKF22(Q) A WAKA2L(Q), ol € WRKHL2(Q) 0 W2K+LL(Q)
2K
fe N ¢/(]0,00), WHET2(Q) N IWHKIL(Q)).
j=0
Suppose that (u°,ut, f) satisfy the (corresponding) compatibility condition of order 2K .
Then, for 2 < g < oo, 1/p+1/q =1, the unique solution u to (13.83), (13.84), (13.85)
resp. (13.86) satisfies
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||(U(t, ')7 ut(t7 ')7 Vu(t7 '))HL‘I(Q)

C

(141)
2K—1

+ Z H Pof J) PSf(]')(())HWZK—l—J.p(Q)>
7=0
t

+c/ . (IJ)Q Z (P POf(J) (), Psf(j)(s))HLP(Q) ds

0

=9 (I(PPou®, Prowt, V PPou®, Pou®, Pout, ¥ Pu) |y

2K —
Z 1P f9E), PO ) [war-1s0 0,

where the constant ¢ > 0 does not depend on u®,u, f ort.

In order to remove the projection operator P9, for 3 € {po, s}, in the estimates, one has

to know the continuity of P8 given in (13.112) in Sobolev spaces WN¥P(Q), i.e.
1PPv ]l < erllvllwya(€),

where ¢ is independent of v. For bounded domains, we could refer to [96] where the case
N = 0 is discussed in detail. For the waveguides considered here, we refer to [102] for
the decomposition (13.90) used for the boundary conditions (13.85), both for n = 2 and
n = 3, and also for the decomposition (13.95) used for the boundary conditions (13.86)

if n = 2 (the case n = 3 remains open here).

13.4 General waveguides

The flat waveguides of the type
Q=R'xB

which we studied in the previous chapters, will now be generalized to repulsive waveg-

uides, typically domains like in Figure 13.5, where (z/,2") € R" x R™.

Definition 13.23 Let Q be an open subset of R™ x R™ with Lipschitz boundary O and
n,m > 1. Let v denote the exterior normal.

Then 2 is called repulsive with respect to the x'-variables if we have for all (z',2") € 0
v(z',2") - (2',0) <0.

A non-repulsive domain is shown in Figure 13.6.
We remark that 2 being a repulsive domain implies that the cross sections of € for fixed
.’E” c Rﬁl

{z' e R" | («/,2") € Q},
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Figure 13.5: repulsive generalized waveguide

.ZJI

Figure 13.6: non-repulsive generalized waveguide

are non-trapping exterior domains.

The LP-Li-decay estimates proved for different equations in flat waveguides in the previ-
ous chapters are often called dispersive estimates. This kind of estimates has also been
obtained by Dreher [27] for wave equations in unbounded conical sets. We shall not
obtain analogous estimates in the non-flat case below. However, Schrodinger equations
in all of R"™™™ satisfy weaker but more general estimates called Strichartz estimates
(Robert S. Strichartz, *: 14.10.1943), which can be extended to our situation of repulsive
waveguides.

In addition, we prove smoothing estimates for Schrodinger equations as well as for wave
and for Klein-Gordon equations. It will be possible to allow an additional real-valued
potential

V=V, a").

It
Hi=-N—-A'+V
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denotes the associated Schrodinger operator, then, for example, smoothing for a solution
u=u(t,-) € D(H) to
iug+ Hu=0, u(0,-)=u,

will mean that for ¢ > 0 and some constant ¢ > 0 the estimate
') =27 (A ullarae) < elluolliz.
holds, by which we gain half a derivative. Here we use the notation
(@) = (L4 [Pz,
and
LILA(Q) := L*((0,00), L*()).
Of course, the potential V' will have to satisfy certain conditions:
V>0, —a'Vy (2[V(,2") > 0. (13.113)

Condition (13.113) is, for example, satisfied for some potentials 0 < V = V(2| 2"

decaying at least as 1/]2’| as |z/| — oo, because (13.113) turns into

_ 9 ~
V), V') <0
implying N
1/ V(]-a )
V(?”,7 ) < r!
Examples are given by
rooaN g(l‘”)
V(.I' y L ) - |I/|m17

for my > 1 and functions g > 0.

As an immediate consequence of the smoothing estimates we will deduce that there
are no eigenvalues of H, since the presence of bound states would contradict the L2-
integrability in time of the solution.

For flat waveguides we have a purely continuous spectrum. This is also true for certain
locally perturbed waveguides, in particular for any local perturbation Q of (0,1) x R"*,
for which v(x)-(2’,0) < 0 holds for any z € 9, see [132]. On the other hand, going back
to [155, 76] one can easily construct local perturbations where the Dirichlet Laplacian has
eigenvalues below its essential spectrum. But there may also exist eigenvalues embedded
into the essential spectrum, see for example [200], where the following example is given.
Let D C IR? be bounded, star-shaped with respect to the origin and invariant under the
orthogonal group. Let o € C°(IR¥) be positive, o(z) = 1 for large |z| and max g > 1.
Then the perturbed waveguide

Q= ) ({z} x e(x)D)

z€RF
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has an unbounded sequence of multiple eigenvalues embedded into the continuous spec-
trum.

Thus we see that suitable conditions on the shape of the domain, like repulsivity, are
essential in order to exclude eigenvalues and to ensure dispersion. Conversely, in the
presence of bumps in the wrong direction, we expect, in general, concentration of energy
and disruption of dispersion.

The method to obtain the smoothing estimates will be to prove estimates for the resol-

vent operator

for z ¢ R of the type
IV R()f %, + IR %, + 12l IR() 1%, < 500007 f]%-, (13.114)

and then to apply the concept of H-smoothing introduced by Kato [78] (Tosio Kato,
25.8.1917 - 2.10.1999) in the context of scattering theory. The norms used in (13.114) are
called Morrey-Campanato norms (Charles Bradfield Morrey Jr., 23.7.1907 — 29.4.1984,
Sergio Campanato, 17.2.1930 — 1.3.2005) and are given by

_1 _3
[ fllx, :=sup B2 fll2ari< ry)s  1fllxs = sup R 2| fll 2 (qar1<ry) s
R>0 R>0

/]

xe = 3 22|\ flliaeimr <o,
jel
see [37]. We also need
1fllxz := sup R7Y| fll 2 (iar =y
R>0

Lemma 13.24 (i) |[fgllo1@) < [|f]x:[lg]

X*y
(i1) | f9llLronireiai<ery < 4RP(|fllx ll9llxs,

(iti) (| fghllLre) < 2[|flx.llgl
() 1 f9llcr@ngiei<ry) < 28| fllxsllgllx

(0) [fllxs < 1 fllx-
PROOF: Let 2, := QN {2771 < |2/| < 27}

x+[l[#' Al L0,

@) Mol = D Nfalle) < 30 I1fllze) l9ll2@y)
je jeZ
1 J
< > @) 2 lleaqen< 2p22 9]l 20y
jel
J
< Ml X 22 llgllzeey
je
< fllx gl x-
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(@) [Ifgllronireie|<2ry)

IN

_1 1 3 _3
(2R) ™2 || fll 2 (gar1< 2ry) (2R)2 (2R) 2 (2R) "2 ||| 2210 < 2R))
< R fllx Mgl xs-

f
(ii) = | fghllpie = ||‘x,|9\iﬂ'|h||u(m
i, f j
< Y2 M|\L2(Qj)22||9||m<9_,)|| 2|l Lo (@)
jel
51 j
< 22 M lewi<en 22 19l 0, 2|l
jel
< 2fllxs X 22Mlgllz@p 1Pl Lo
jel
= 2/ fllx; gl 2 [Pl oo -

iv): Follows from (iii) using h := Yy < gy (characteristic function).
g X{|z'| <R}

R
2 —3 £)2 -3 2
V) , = supR 2(( |t =sup R / 2—on @
(v) £, R>p0 Hf”LZ({\ |<R}) R>p0 / ||f||L2({| |=op @0

R
< su R73R2/ ~2| |3 Nneond
= R>I[J] / 4 ||f||L2({ |2/|=0}) 42
R

S supRA sup Q72|‘f|‘%2({|z’\zg}) /1dQ

R>0 0<0<R J
= [Ifl%.

Q.E.D.
A comparison to standard weighted L2-norms will be useful, with weights of the form
’ |xl‘2 !
(Vg = (R+ R )2, for R >0. (13.115)

Observing
'] ']
R+ R > max < R, R (

we obtain for all s > 0, after extending u as zero outside (2,

. /2 —5
[ (DY wparar < m [ wper [ oWt gsae)
RAtm \z’[gR |2'|> R
S R / |u|2+RS Z / |l,l|—23|u|2
‘zllgR JZJR {21715|x’\<23}

I+11,
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where jg := [log, R].

II < RS 2720-0s / Jul? (13.117)
JZiR {Qj—lg‘z/|<2j}
_ Rs 225 Z 2—js (2—]')5 / ‘UlQ
J2JR {2]71S‘x/|<2j}
< Reo% Z 277 | sup o~* / lul?
izin >0 e
1 1
< sup gfs |u|2 R® 2s ] B
250 rs 1 — 275
[z']<e
. 3s
< |suwpo / w2 | 2
0>0 1 2-s
[2'|<e

since 2% > . By (13.116), (13.117) we have

235
[ @hasepards < fswom [oj| (14 7
0>0 1-— s

2
Rt la'|<e
< (14 > = P
su ul”.
= 95— 1) b
|2'|<e
In particular, we get for s =1
1(2") & ull 20y < VIT|ullx,,
and for s =3
{z") RPullz2) < 25]jul xs- (13.118)
By a similar proof, we obtain
flul|x+ < 16[[(z") g u|lL2(0)- (13.119)
Finally, we notice that for any v > 0 and ¢ > 0
12"y ™2 Ful| 20) < C sup [{(z") 7" ull 20)» (13.120)

where C' > 0 is a constant depending on v and e. To prove (13.120) we write

[yl = [

Q |z'|<1 |z'|>1

TSRS SR R e

320 fai<jar|<2i41}

IN

o<1
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1 .
< su / ul24 Y 27i0+2e) / ul?
sup o [+ u

lz/|<R j=0 {20 <|a/|<29+1}
1 g . 1 g
< sup / lul>+ Y 27%0 27 / |u)?
Y . G+ .
w0 720 2 2oy
1 1
< s 2 (1+27
= (Elipo R / [ul ) < * 1225>
/<R
27
< <1+ | — 92 )2 sup (@)l
[2'|[<R
the last inequality arising from
1 2
R < P2 for |2'] < R.
R+,

1

Thus, (13.120) is proved with C := (27 + 1f§125)2.

Now we can state the main resolvent estimate.

Theorem 13.25 Let Q be a domain which is repulsive with respect to the x'-variables.
Assume n > 3 and that the real-valued potential V' satisfies (13.113). Then, for A\,e € R
and u € W,*(Q) satisfying

—Au— (A +ic)u+ Vu=f, (13.121)

we have

IVarullk, + llulli, + (A + leDllulk, < 5000n% -

Sketch of the PROOF: (cp. [26]) We consider two real-valued piecewise smooth functions
=), ¢ = ¢(2'), being independent of z”, such that

Vb, Ay, VA, ¢, Vé are bounded for |z'| — oo, (13.122)
and
VoV <0 on 9. (13.123)

Later on, 9 and ¢ will be given explicitly, the choice depending on the sign of X\. They
will be functions only depending on |z|. Then condition (13.123) turns for ¢ = h(|z'|)
h = h(r), into

0> v(a',a") - V(') = v+ (2',0) - 2|7 he(|2'])

which is, since € is repulsive, equivalent to the condition that h, or the radial derivative

of 1) is non-negative,

2'V ) > 0.
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Asin [9, 129] we will use a multiplier method. Multiplying the resolvent equation (13.121)
by
(AY —@)u+2Vy - Vau

and taking the real part, we obtain the identity
1
Vu - (2V%) — ¢Id)Vi + 2A(¢ — AY) |ul® + pA|ul? (13.124)

—(VV -V + ¢V)|ul* + div Re Qy
=divReQ + Re f(2VY - Vu + (AyY — ¢)u) — 2e Im(Vyp - Vau),

where
Q = (A0)aVu— L (VAP — (V = )(T)luf* + L (Vo)ul ~ 6uVu

and

Q1 == V|Vul* — 2Vu(Vy) - V). (13.125)

Finally, we shall integrate over 2 and we estimate the last term on the right-hand side
of (13.124) as follows. Multiplying (13.121) by @, we obtain

Im div((Vu)a) + e|u* = — Im(fa) (13.126)

and
Rediv(—(Vu)a) + |[Vul® = (A — V) |u|* + Re(fa),

implying, with A* := max{}, 0},

el [Vul?

IN

le| AT |ul? + |e| Re(fa) + Rediv(|e| Vua)
—s: AT Im(fa) + div (s Im(AtuVa) + Re(||(Vu)a)) + || Re(fa),

where we used the non-negativity of V and (13.126), and s. denotes the usual sign of e.

Hence
lellVul> < (A + [e])| £l + div (5. Im(A*uVa) + Re(|e|Vua)). (13.127)

Using
2leuvial < [e](AF + [e])? [uf® + [e|(AT +|e) 2 [Vaul?

and (13.126), (13.127), we get
2leuval <2 (y/|e| + VA+)|fal + div A,

where
e[ Re(Vua) + (s:2A" + [e]) Im(Vuu)

A L
(AT + el)2
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Inserting this into the basic equality (13.124), we obtain

V- (292 — ¢Id)Vii + ;A(¢ — AG) [u]? + SAJuf? (13.128)
—(VV -V + V) |ul? + divRe Q,
< 2|V Val + | f(AY — §)a| + 2|V [ (lel + VA*) | ful + divRe P,

where P := Q + ||Vt 1= A.
The next goal is to estimate the integral over  of the right-hand side of (13.128).
For this, we need an additional estimate, obtained by multiplying (13.121) by xu, with

choosing x as a radial function of z’ satisfying for some arbitrary, but fixed R > 0
1, if [2/| < R,
X(m’) = 07 lf |CLI| > 2R7
21 if R<|a/| <2R.

We get
se Im (div(xVuﬁ)) + el x| [ul* = —s. Im(xfa) — s. Im(Vy - V).

Integrating over €2, not producing boundary terms thanks to the Dirichlet boundary

conditions, we arrive at
9 i 1
[ owPs [ a0 Vel
Qn{|z’|<R} Qn{|a’|<2R} QN{R<|a’|<2R}

since x only depends on z’. The right-hand side is estimated using Lemma 13.24 (ii),
(iv), leading to
€] 22y 4|v
lul® < 4| fllx-llullxs + 41V arullx o]l x,-
an{|a’|<R}

Hence, taking the supremum over R, we get
el llullk, < 40 fllxs + [Varullx)llullx,- (13.129)
Using Lemma 13.24 (i) and (13.129), we may estimate

1 1
ullx, + A= ALl + I Varullx) 2 flull%,
< Ol + IVaruli, + lullk,) + 557 11

2(VAF+ Il Ifal < 2Vt ]

X*

for all § € (0,1). This inequality will be used to estimate the third term on the right-
hand side of (13.128).
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Integration over Q2 of the term div Re P gives zero. This can be seen as follows. Let Cr
denote the cylinder
Cr:={(',2")| || < R, 2" € R"}.

We integrate div P on QN Cg and let R — oo. The boundary of QN Cr is the union of
the two sets S; and Sy given by

Sl =00N 0}17 Sg = GCR nQ = {(.I/,.Z'U) € Q| |l'/| = R}

The surface integral over S; vanishes due to the boundary conditions. For the surface

integral [ v - P we have, by assumption (13.122) on the boundedness of v, ¢, and since

Sa
u € WhH2(Q),
liminf [ v- P =0. (13.130)
R—o0
Sa2
This proves
/ div P = 0.
Q

Concerning the first and the second term on the right-hand side of (13.128), we estimate
their integrals using Lemma 13.24 (i) and (iii):

2 [11V - Val < 2|98 ]| flx- | Vorulx,
Q

and

usz

[0 = )l < 20 11 (A = 6) 1= 1x-|
Q
Summarizing, the integral over  of the right-hand side of (13.128) is bounded by
C (¢, )SNF[lullk, + [ Varullk, + [lullk,) + C (6, 0)07 I fll%- (13.131)

with

C (¢, ) == 10[[Ve]| L + 10]| |2 [(AY — )| o~ (13.132)
Now we consider the left-hand side of (13.128). The term in divergence form, div Re @1,
with @ given in (13.125), can be handled as above by integrating first on the cylinder
Cr and then letting R — oo. The integral over Sy = dCr N satisfies an analogous
estimate to (13.130). On S; = 9Q N Cg we notice that Vu = gzu holds because of the
Dirichlet boundary condition, implying

ou

V’lei(y'vdj) v

Thus the integral over S; can be written as

P
In = —/(y.w) 8;‘
S1
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Using assumption (13.123) on ¢, we obtain Iz > 0 for all R. Hence we can drop I in

the sequel, and we get the basic inequality

/ (Vu(2V21/J — ¢Id)Vu + ; (A(p — AY)) [u* + pA|u* — (VV - Vo + ¢V)\u|2) (13.133)
Q
< C(0,9) ST Nullk, + IVarullk, + llullk,) + C (6, 0)8 [ k-

It remains to choose the functions ¢, 1) in an appropriate way. For A > 0 we make the

following choice inspired by [9]:

B2 = &), i |l 2 R, o ") = 0, if [2'| > R,
o Ry iml, if 2| <R, ’ Lo o] < R

Then the assumptions (13.122), (13.123) are satisfied. We compute

—nl o f |2 < R,

¢ —AyY =

and, in the distributional sense,

w2’ > R,

‘IIIV‘??

n—1
Alp — Ay) = I 5|x'—R+{ 0 it ] < R

where
pin = (n = 1)(n = 3).
Moreover,
IVl =1, [12'[(AY = §)l|L~ =n -1,
implying
C(¢,¢) = 10n.
Denoting zf, := ﬁj‘, we have

2V — (Vo afatf?, i || 2 R,
2 Varul?, if |2'| < R.

(Vu)(2V2) — 6)Vii = {

The terms in (13.133) containing the potential V' are non-negative thanks to assumption
(13.113), hence we can drop them. Thus (13.133) implies

1 9 n—1 9 A 9
RHVz'U”L?(m{ng}) o {/| Y |ul ) + RHUHLQ(m{\z/\gR})
N{|z'|=

< 10nd(A[[ull%, + Vel + [lullky) + 10067 £1%-,



13.4  General Waveguides 265

and taking the supremum over R > 0 we obtain

n—1
IVl + 5 [, + Alull,

< 10nd(AJullk, + IVarullk, + [lulk,) + 1006 [ f]%--

Recalling Lemma 13.24 (v) and choosing § := (20n)~!, we finally obtain for the case
A>0

IVarull%, + lull%, + Mull, < 400n2] £]f%. (13.134)

In the case A < 0 we choose different weights. Following [25] we simply take ¢ = 0 and

v e’ = [ (), (13.135)
0
where
1 1 Rl .
) n T 2n(n+2) 1o if 7> R,
01(7_) = 1 T 1 3 i R
2n + 2nR ~ 2n(n+2) R%’ iU 7< hi.
Then
Ay SR if [/ > R,
= n— 2! 2 .
21R + 2n\11’| - 2‘n1|{3a if |xl| < R,

1 1
IVl = (2] AY |l e < 1=,
n n

implying C(¢,v) < 10.
For n = 3 we have

4
3” So(2'),

where yz is the characteristic function of the set Z, and dg(z") denotes the Dirac distri-
bution in the variable &’ (Paul Adrian Maurice Dirac, 8.8.1902 — 20.10.1984).

For n > 4 we have

1
—A%) = s Xla'l<R) +

1 Hn Hn n—3
_AQ — ) ) " ) ” 590, )
¥ (Rs + 2n|x,|5>><{| <REH s XU12REF o o Olaf 2R

In all cases n > 3 we conclude
5 1
—A%)p > s XleI<R}-

Proceeding as above we obtain

n—1

2 2 2 2 -1 2
nn 1 2 V=l + el < 108(IVully, + frully,) + 108711
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and, choosing ¢ := (40n)~!, we conclude for A <0
192l + ), < 800023 (13.136)
Combining (13.134), (13.136) we obtain for all A € R
Il + lulld, + Xl < 80082 £I3. (13.137)

As a last step, the factor AT in (13.137) is improved to |A| + |¢|. Recalling (13.129) and
using (13.137), we get

el llull%, < 4(11fllx + 1 Varullx ) lullx < 33200%) £ (13.138)

Assuming A\~ := —X > 0 we multiply the resolvent equation (13.121) by @ and take real
parts, obtaining
1
[Vul? + A7 |ul? + V]u|* = Re(fa) + 2A(\u|2).

Taking ¢ as in (13.135), multiplying by A, using

1
Ay > o g X{le/I<R}: | 2| A <1,

and recalling Lemma 13.24 (iii), we get

1 _
(IVul? + A~ [ul?) < 2]l fllx ],

Qn{|a’|<R}

Taking the supremum over R > 0 gives

IVullk, + A llullk, < 4l fllx-llullx, < 120n] fI%-, (13.139)

where we used (13.137). Combining (13.137), (13.138) and (13.139), Theorem 13.25 is

proved.

Q.E.D.
Using (13.118), Theorem 13.25 and (13.119) we conclude for z in the resolvent set of

H=-A+V, u=R(z)f =(H-2)""f,
1(2") 2° R(2) fll T2y < T29||ull%, < 3645000n%||F|[%. < 256 - 3645000n°(|(z")s f |70
for any R,S > 0, that is,
1{z")&* R(2) fllz2@) < enll{a)s Iz (13.140)

with some positive constant depending only on n, denoted here and below by ¢,. Thus,
the operator
Ty = (&) R(2) (25" : L*(Q) — L*(Q)
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has a bounded adjoint operator Tj, implying that
Ty = () R(2)(a")5°
is continuous on L?(£2), hence

1a)7 R e < eall@)ef . (13.141)
By (13.140), (13.141) we have P := R(z) as a bounded operator
P, X, =Y,
for « =0, 1, where

72 72
Xo:i= L, Yoi= L},

R

72 72
Xi= Ly, Yii= L

Denoting L? := {h | oh € L*(Q)}, we obtain by complex interpolation that
Pa : [X07X1]a — [%7}/1](1
is bounded for any « € [0, 1]. Since (cp. [11])
2 72 2
[Lm’ L@J& = Lgi’o‘ %3

we conclude the boundedness of
T = () R )52 2 12(9)  LA(9)

for any « € [0,1], in particular for a = |

K=" 5* R(2) ()5 flla < eall fllzao- (13.142)

Lemma 13.26 Let v > 0. If a bounded linear operator A satisfies for all R, S > 0 the
estimate

') e A2} s ull 2@y < Collull 2@, (13.143)

with a positive constant Cy being independent of R, S,u, then it also satisfies, for all
€ > 0, the estimate

()27 A ") "2 ull 20y < CoO(y: ) lull 2,

where C(7,€) > 0 denotes a constant depending at most on v and ¢.
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PROOF: Decomposing
[ee)
7 _
vi= () 2 Fu =g+ Y vy,

Jj=1

where v; has support in {2771 < |2/ < 29} for j > 1, and vy has support in {|2| < 1},

we get

Av = Avg + Z Avj,

j=1

and, applying (13.143) to v; with S := 27,

1) R vl < )R Avollze) + D (@) 5" Avill 20

Jj=1

Coll{x") voll L2y + Co Y I{x") 3,05l 2 (@)
j=1

IN

Since, for j > 1 and 2771 < |2/| < 27,

23
2'y+1 27|x/|7 S 227+1 225 2—253‘|xl|'y+257

N2y il ! V(937 1 907 Y+1ojy
@ = (24 0T) <21@ 427 = 212

IN

we get

Coll(@') ol 2y + Co2*0H I 3T 2|2 05l 120
j=1

1) %" Avll L)

IN

< Gl o)) 2 0l 0y
Using (13.120) we obtain
") ™32 Avll 2@ < C(:2) sup [|@) " Av]2(0)-
A combination of (13.145), (13.144) completes the proof.

Q.E.D.
Applying Lemma 13.26 to (13.142) we have

[{a) = R(2) (@) flliz@) < cnell fllzze,
where ¢, . > 0 depends at most on n and e. Similarly, one gets
1 1
") 727 Vo R(2)(2) 2 fllr2@) < cnell fllz2@

and
|2]2[[{2") 72T R(2) () "2 fllz@) < cnell fllzz@)-

(13.144)

(13.145)

(13.146)

(13.147)

The concept of smoothing introduced by Kato [78] in scattering theory appearing the

following theorem turned out to be useful for dispersive equations as revealed in [156],

cp. [154], [128).
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Theorem 13.27 Let K be a self-adjoint operator in a Hilbert space H. Let R(z) :=
(K —2)7! for z € C\ R be the resolvent operator, let A be a densely defined closed
operator from D(A) C H to another Hilbert space Hy with D(K) C D(A). Assume that
there is co > 0 such that for all f € D(A*) C Hy with R(z)A*f € D(A) one has

sup [AR(2)A* fllw < 3l fllw- (13.148)
Then we have for all f € H

HAeithHLle < col| fl34:-

Choosing
H:=H,:=L*Q), K:=H=-A+V, A:=(2')""° (multiplication operator),

the estimate (13.146) gives condition (13.148) and hence the claim (13.149) in the fol-

lowing

Theorem 13.28 Let Q be a domain which is repulsive with respect to the x’-variables.
Assume n > 3 and that the real-valued potential satisfies (13.113). Assume also that
H = —A+V with Dirichlet boundary conditions is self-adjoint in L?(Q)). Then, for any
e > 0, we have the smoothing estimates

H<QUI>_1_E eitHfHLgLZ(sz) < el fllz2@), (13.149)

1 i L
(@) =275 Var € fll121200) < Cnelll Dot fllz2(e)- (13.150)

Here
[Dol2glaa’) = (2m)7% [ 1¢124(€ ") ag!,
i
where §(-, ") denotes the Fourier transform of 2/ — g(z/, 2").
PrOOF: For (13.150) see [26].

Q.E.D.

If we consider for m > 0
Hy,=H+m=-A+V+m (13.151)

and the associated wave equation (m = 0) or Klein-Gordon equation (m > 0) with
potential V',

Ugy + Hmu = 07 (13152)
then we have the following theorem. It is obtained from an adaptation of the above

results observing that Z := (u,u,)’ satisfies for Zy := (ug, u1)" := (f, VHf)

eVt f _ 0 —i
Z(t) = , =7, with K :=
i/ H,y, ¢V f iH 0
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Theorem 13.29 Let the assumptions of Theorem 185.28 be fulfilled and H,, as in (13.151).
Then the flow associated to wave or Klein-Gordon equations (13.152) satisfies

_1_

[ICoNE

€ ez’t\/Hm f

l2r2(@) < enell fllzee)-
ProOOF: We choose

H:=DWH)x L*(Q), H,:=1L*Q), H:=-A+V( ")
and A : H — L*(Q) defined by

—1/27,\—1/2—¢
A ( ! ) = (x) Y2 EHY2f implying  A*g = ( " (ag 9 ) .
g

Then the resolvent Ry (z) := (K — z)™! can be written in terms of the resolvent R(z) =
(H—2)"tas
Ra(s) = ( ;R(z‘z) —iR(2?) ) .
—iHR(2?) 2R(z?)
Thus we see that, in order to apply the theory of Kato in Theorem 13.27, we need to
prove that the following operator is bounded on L?(Q2), uniformly in z ¢ IR:

ARg(2)A* = (2) V22 R(22) () V2=
This is precisely what is expressed by estimate (13.147).
Q.E.D.

Finally and without proof (cp. [26]) we state Strichartz estimates for simpler waveguides
which are compactly supported perturbations of flat waveguides. We assume that there
is M > 0 and a bounded domain w C IR such that

Qn{(,2") 2| > M} = (R x w) N {(z,2") | |2'| > M}. (13.153)
We have

Theorem 13.30 In addition to the assumptions of Theorem 13.28 let (15.153) be satis-
fied. Then we have for all f € W012(Q)

11, o, < ene (T 1)V VI gzz, ) (I£1lz20) + Dot 2 Fll 2y ) -
It seems natural to apply these estimates to investigate the existence of global small
solutions for nonlinear Schrodinger wave or Klein-Gordon equations on non-flat wave-
guides.
We abandon giving further references in this daily expanding field with recalling the
last words of T. Fontane’s father Briest, [32, p. 354] (Theodor Fontane, 30.12.1819 —
20.9.1898):

“...das ist ein zu weites Feld.”



Appendix

To assure a more or less self-contained presentation we have compiled some of the basic
results which were used in the previous chapters. The proofs are sketched (at least in
the Appendices B,C).

A Interpolation

First, we state some general definitions and results on interpolation spaces. For details
and proofs we refer the reader to the books of Bergh & Léfstrom [11] and H. Triebel

[181]; sketches of the proofs are here given for the relevant applications:

Definition A.1 (Xo, X1) is called an interpolation couple : <= Xy, X1 are Banach

spaces which are continuously imbedded into a topological Hausdorff space.

(Feliz Hausdorff, 8.11.1868 — 26.1.1942)
Lemma A.2 Let (Xo, X1) be an interpolation couple. Then

(i) XoN X, is a Banach space with norm
%l xonx, = max{|[z]|x,, [[#]lx,},
(i) Xo + X3 is a Banach space with norm

2l xo+x: = inf{|[zollx, + [[21]|x, | @0 € Xo, 71 € X1, 20 + 21 = 7}

The proof of Lemma A.2 is straightforward.

Definition A.3 Let (Xo, X1) and (Yo, Y1) be interpolation couples and let X and Y be

Banach spaces.

(1) X is called an intermediate space between Xo and X : <= XoNX; — X < Xo+ X

(continuous imbedding),

(ii) X,Y are called interpolation spaces for (Xo, X1), (Yo, Y1) :<= X is an intermediate

space between Xg and X1, Y is an intermediate space between Yy and Yy and

T : X; — Y, s continuous for j =0,1 = T : X —Y s conlinuous.

By an interpolation method two interpolation couples are attached to interpolation
spaces. We consider the so-called complex interpolation method.

Let (Xg, X1) be an interpolation couple,
Z:={z€C | 0<Rez <1},
© Springer International Publishing Switzerland 2015 271
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and Z(Xg, X) := {f :Z — Xo+ X1 | fis continuous and bounded in Z, analytic in
the interior of Z; t — f(j +4t) maps R into X, continuously, and tends to zero as
lt| = o0, j = 0,1}.

Then the following theorem can be proved:
Theorem A.4 Z(Xy, X)) is a Banach space with norm
1fllzx0,x0) := max{sup || f(in) ]| x,, sup [[f (1 +in)llx, }-
neR neR
For # € [0,1] let

[Xo, Xa]o == {f(0) | f € Z(Xo, X1)}
and for z € [Xo, X1]p let

|lo == nt{[| fllzxo,x) | f € Z(Xo, Xa), f(0) =}
[Xo, X1]o has the following properties.
Theorem A.5
(1) [Xo, X1]g with norm |- |g is an intermediate space between Xy and X7,
(il) XoN X is dense in [Xo, X1]g-

In this abstract setting we finally quote the following general interpolation theorem.

Theorem A.6 Let (Xo, X1), (Yo, Y1) be interpolation couples, let
T: Xo+X, — Y +Y;

be linear with

Ty o Xo — Yy is bounded with norm My,

X

Tyy, + X1 —> Y1 is bounded with norm M.

X1

Then we have for all 0 € (0,1)

T, ¢ [ Xo, Xalo — [Yo, Ya]o is bounded with norm M,

[X0,X1lp
and

My < My MY.

Now we turn to specific applications, the first being the interpolation theorem of Riesz
& Thorin (Marcel Riesz, 16.11.1886 — 4.9.1969):
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Theorem A.7 Let 0 € (0,1), po,p1 € [1,00]. Then
[LPn7 Lp1]0 — Lpa7
where

Do Po V41 '

Proor: Without loss of generality we assume py # p;. It suffices to show
lalo = llally,

for all real-valued continuous functions a with compact support because the set C§ of
those functions is dense in P and also in LP° N L' (and hence in [LP, LP'], according

to Theorem A.5).
Step 1:
CLamM: |alg < ||alp,-

ProOF: Without loss of generality we assume ||al|,, = 1. For z € Z,z €¢ R*, and ¢ > 0

let 1
1—2 z\
p(z) = ( + ) )
Po P
=g () [Po/PRa(x) /|a(x)| if alz) £0
fe(@,2) =
0 if a(z)=0.
Then
f. € I(LPO, LPl)’ fg(.’e) = a.
Since
1ty <1 MG L+t <, for teR

we conclude from Hadamard’s Three-Line-Theorem

erHI(LPo,Lm) < e’.

Letting ¢ tend to zero we get
‘alg S 1.

(Q.E.D.)

Step 2:

CLAIM: |alg > ||al|p,-
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ProOF: Without loss of generality we assume |a|p = 1. It has to be shown that
llallp, = sup{|{{a, b))| | b € Cg, [[bll, =1} =1,

where
(a, b)) = / a(x)b(z) de
s

denotes the dual product. Here a € LP?,b € LPs, and pp is the dual Holder exponent,

Let p/(z) be the dual Hélder exponent to p(z) and let f-(z, z) be defined for b, pj, p/(z)
in the same way as f.(z, z) is defined for a, pg, p(z) above.

By the definition of | - |,, we obtain
V6 >0 3 eT(Lr LMY f5(0) = a, || £ llzzro oy < 146
For z € Z let
F2(2) = {(f*(2), (-, 2)))-
Then F? is continuous and bounded in Z, analytic in the interior of Z and we have for

sufficiently small §
[F2(it)] < o, [F2(1+it)] < e,

whence
|F2(0 +it)] < *

follows by Hadamard’s Three-Line-Theorem. In particular we get
[{{a. )] < [F2(0)] < €.
Letting ¢ tend to zero we conclude

Ha”pa <1l

(Q.E.D.)

This completes the proof of Theorem A.7.
Q.E.D.

Remark: The interpolation theorem in LP-spaces holds in more general measure spaces
(U, ) replacing (IR", Lebesgue measure) (Henri Lebesgue, 28.6.1875 — 26.7.1941).

In order to interpolate in Sobolev spaces we introduce the so-called Besov spaces and
Bessel potential spaces. Among other features these spaces provide an interpretation of

fractional derivatives.
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Let S denote the usual space of C*°-functions of rapid decrease and let S’ denote its
(topological) dual space, i.e. the space of tempered distributions.
Let ¢ € § with
1
suppp C{E € R" | | <[] <2}
and

P€)>0 it L <ldl<2

S et =1 it €40,

k=—oc0
(See [11, p. 136] for the existence of such a ¢.)
Let o and v be defined by

Fou(€) = ©(27%¢), kK an integer,
Fpe) = 1= 3 ¢(27),
k=1

where F denotes the Fourier transform.
Definition A.8 Let 1 <p<g<o00,s>0.
(i) The Besov space By, is defined by

By, ={fes | I/l

pq °

Byq < OO}’
where
[ee] 1/q
s, o= {0 g+ 32 o s}
k=1
(with the usual convention for ¢ = co; x denotes convolution,).
(ii) The Bessel potential space H is defined by
Hy={fe8 | |flluy < oo},

where

£l = 1F @+ 1P)2F £l

The spaces B;, and H, are Banach spaces with respect to the norms || - [[ps, and || - || g
respectively. The spaces B,, are independent of the choice of the special function ¢.
For m € INy we have (cf. [11, pp. 141,152])

By = H'=Wm"2 (A1)
H = W™ if 1<p<oo, (A.2)
Hye = ;;Eax{pa} if s>0,e>0,1<p<oo. (A.3)
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Theorem A.9
(i) If m € Ny, 1 <p < o0, then

By — W™,
(i) If s>0, 1<p<oo, 1 <qg<o0, >0, then

s+e S
Hp > qul

(iii) If so # s1, 1 < po,qo.p1, 1 < 00, 8 € (0,1), then

[BSU B }9 — B0

P0q0’ T P1q1 Poqo’

where
se:= (1 —0)sg + Osy,

(1—9 9)1
Do = + )
Po D1

(1—9 9)1
Qo = + .
qo0 T

Proor: (i): For 1 <p,q < oo, m € N there is the following norm on By, which is

equivalent to || - || gy

> IV llsg,

la|<m

(see [181, p. 59]).

Moreover we have, defining ¢q := 1,
£l = 11" eux Fllp < > llow * fllp = £ 11y, -
k=0 k=0
(Q.E.D.)

(ii):  The imbedding
s+e s+e
Bpmax{p,2} - Bpoo
is obvious.

The inequalities

(o]
15, = S Hgp x £,
k=0
oo
< sup (2Kl £,)7 30 27
keNg k=0
~ ~ -
=!cCeyq
<

Ceall
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yield the imbedding
By By,

and hence the assertion follows with the help of (A.3).

(Q.E.D.)

(ili):  The assertion (iii) is reduced to the statement
(a0 (L7), €y (LP)]o = L5 (L7)

(see [11, p. 153]). Here £3(A) is defined for a given a Banach space A with norm || - [|4
as follows:
(y(A) = A{a = (ap)ken, | ar € A, [la

q

t5(4) < 00},

where

la

[e'e) 1/’1
sy = {Z (kamq} |

k=0
Using the equivalence of ¢, and L?(dp), p a pure point measure, Theorem A.7 yields the

assertion.

Q.E.D.

Finally we present the interpolation theorem which was used in Chapter 2.
Theorem A.10 Let the linear operator T satisfy
T W™ — L™ bounded with norm Mo,

T:L? — L? bounded with norm M,.

Letl<p<2<g<oo, 1/p+1/g=1, 0:=2/q, N € N with N > n(l1—86). Then

there is a constant ¢ = ¢(p,n) such that
T:WNP — L9, with norm M,

and
M < cMy M.

PROOF: According to (A.1) and Theorem A.9, (i), T maps as follows:
T : B}y — L*, bounded with norm ¢My (¢ = ¢(n))

and
T : BY, — L* bounded with norm M.
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Theorem A.6 then implies
T : B}y, ByyJo — [L*°, L?]p, bounded with norm M,

and
M < (e M) MY

By Theorem A.7 we know
(L, L%y = L = L.

Moreover we conclude from Theorem A.9, (iii), (ii):

(B3, Bl = B3 = o

2—62—6 pp

and from (A.2) and (A.3):
”rNip N —0)n+e
= H[) = H’](]l ) — BPI)

for e := N — (1 — 0)n > 0. This completes the proof.
Q.E.D.

B The Theorem of Cauchy—Kowalevsky

The proof of the local existence theorem of Cauchy-Kowalevsky follows the presentation
as in the book of F. John [71]. (Among the various spellings of the name of Sophie von
Kowalevsky we chose that one which is used in her first paper in Crelle’s Journal, volume
80 from 1874 (August Leopold Crelle, 11.3.1780 — 6.10.1855).)

The following initial value problem shall be solved (locally):

af,ujzzz w(t T, u)0uy + bi(t,z,u), j=1,...,N,

i=1 k=1
(0, x) = ug(z).
Here u = (uq,...,uy) = u(t,z) is the unknown vector-valued function of ¢ € R and
z € R aé.k,bj are real-analytic functions of their arguments, i = 1,...,n;j,k =
1,...,N € NN, and wuy is real-analytic in x.

Without loss of generality we may assume that ug = 0 (otherwise consider @ := u — wg)
and that aé.k and b; do not depend on ¢ (otherwise introduce uyyy with duyyr = 1,

un+1(0,2) = 0). With these simplifications the following theorem will be proved.

Theorem B.1 Let a} S and by be real-analytic functions of z = (z,u) in a neighbourhood
of zero in R™N i =1,... n; j,k=1,...,N. Then the system of differential equations

Opuj = ZZ (2)0uy +bi(z), j=1,...,N, (B.1)

i=1 k=1
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with initial conditions
uw(0,2) =0, x€R", (B.2)

has a solution u in a neighbourhood of zero in R™™ which is real-analytic there. The

solution is unique in the class of real-analytic functions.

Proor: Without loss of generality we assume n = 1 and we write aj; instead of a}k.

The proof uses the fact that the coefficients i, in the Taylor expansion of a solution wu,

ui(t,z) = Y ciytat, (B.3)

£k=0
are necessarily determined by the differential equations (B.1) (Brook Taylor, 18.8.1685 —
29.12.1731). It is shown then that the series with these coefficients converges. For this

purpose a majorant will be constructed. We have

; 1 Oyt x)
Cop = .
0k ottort |,
Then we get successively
o™,
N =0 from (B.2),
dz™ |,_,
du; :
(;; N using (B.1),
which yields
82u2~
otdx|,_,

Differentiation of the differential equations (B.1) with respect to ¢ then yields

%u
ot2

t=0

and so on, thus determining i, for all i = 1,..., N and £, k € IN,.
If

00
aj(2) = D gi'="
|ae|=0

and

bi(z) = > hlz*

la|=0

for all |z| < r for some fixed r > 0, then

cin = Pir (02 ajms (h)ay )
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where P}, is a polynomial with nonnegative coefficients. This is obvious by the definition
of ciy.. The chain rule and the rule for differentiating products only contribute positive
coefficients.
Now we construct majorant coefficients Cf,. Then u defined by (B.3) will automatically
be the (unique) solution of (B.1), (B.2). We show that there is a (local) solution v =
(v1,...,UN),

oo
vit,z) = > Cpt'ar

£,k=0

of the initial value problem
N 0
oy = Ap(2) PR + Bj(z),
k=1 z

v;(0,z) =0,
where Aj;, and B; have to be determined such that

Ajp(z) = Z Gikza, Bj(z) = Z HI 2z~

|ar|=0 |ar|=0
with the property
g2F) < GIF, |W| < HI.
Then it follows
Cir = Pi (G agms (HD)ag) = | P95 Daajoms (112 ])ay)|

= |C2k|

V

Hence we have found the desired majorant.

Now it only remains to determine Aj;, B; and v appropriately.

With
Myi= | max ()
the estimates v My Jal!
ik 1 L AL
|ga | S 7,,|a‘ S T"a‘ Oé! *' Goz )
hold, analogously with
My = b; :
2 = max 1)l
. M2 M2 |O[|' .
J . i
|h0‘| S r|0¢‘ S 7"|0“ ol o Ha.

Without loss of generality we assume

My =My, =: M.
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Let
[e] ) o] | a
Aj(z) = Y GlFr=M Y ‘Z" (i)
|a|=0 |a|=0 :
1 .
= Ml_::1+m+z1v+1 if |z + .. 4 avg] <
and analogously
.- e’ 1
Bj(z) = Z H(szz = ‘le _ 3 s o7 N
|a]=0 T

Since the chosen coefficients A;; and B; are independent of j and k we make the following
ansatz for v:
vi(t, ) =w(t,x), i=1,...,N.

Then we have to solve

Mr 0
ow = 1+ N
Wt~ Nw ( + B:Ew>’

w(0,2) =0 (lz] + Nw| < 7).

This is explicitly solvable by

w(t,z) = 2?\7 (r—x—\/(r—z)2—4MNrt>

in a neighbourhood of zero in R'*™, e.g. where

r T
lz| < ., ¢

) < L6MN = T(M,r) for N,n fixed, (B.4)

holds and there also u is analytic.

Q.E.D.

For the application in Chapter 3 the following remarks on the linear case are important:
Let

Lu:=A(t,2)0u + > Al(t,x)du+ B(t,z)u=0,
j=1

u(0,2) = P(z), x € R,

with analytic N x N-matrices A% A!,... A" B in a cylinder Z := {(t,z)|0 < t <
T,|z| <r} = ZF5, for some T,r > 0.
Let A° be positive definite in Z and P be a polynomial. Then v defined by

vi=u—P
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should solve

O = =3 (A") ' A00 — (A°) "By — (A°)'LP,

=1

According to Theorem B.1 there exists a solution v in Z;/(ih) where T (M, r) is given in
(B.4).

If P is replaced by P, := P/c with a sufficiently large constant ¢ > 0, then M, computed
from (A%)71AJ (A°)71B,j =1,...,n, is already a corresponding bound for (A°)~1LP;.

Hence the solution U corresponding to the initial value P; exists in Z;/ﬁ\“) with
M = M(((A°)~'A%);,(A°) ' B).

But then also u = ¢U exists there and this implies that T'(M, r) does not depend on the

special polynomial P.

C A local existence theorem for hyperbolic-parabolic

systems

In this appendix we present a local existence theorem for quasilinear hyperbolic-parabolic
coupled systems, essentially taken from the paper of S. Kawashima [84, Chapter IIJ,
together with sketches of the proof.

We consider the initial value problem for a system of quasilinear differential equations

of the form

3

1

AYu,v)uy + A{l(’u,v)aju = fi(u,v, Vo), (C.1)

<

M= L

AS(u,v)vy — BiF(u, v, Vv)d;0pv = folu, v, Vu, Vo), (C.2)

J 1

where ¢t > 0,2z € R", n € N. w = u(t,x) and v = v(t,z) are vectors with m’ and
m/” components, respectively, m/,m” € INg, one being different from zero. The pair
(u,v)(t, z) takes its values in an open convex set U € R™ (m :=m’ +m” > 1). A} and
Al (j=1,...,n) (resp. A} and B (j,k = 1,...,n)) are square matrices of order m’
(resp. m”), and f; (resp. f2) is a R™-valued (resp. R™" -valued) function.

The initial data are prescribed at ¢ = 0 by
(u,v)(0,2) = (ug, vg)(z). (C.3)

We assume that the system (C.1), (C.2) is symmetric hyperbolic-parabolic in the follow-

ing sense:
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Condition C1: The functions A(u,v), AY(u,v) and Al (u,v) (j = 1,...,n) are suffi-
ciently smooth in (u,v) € U and Bi¥(u,v,€) (j,k = 1,...,n) is sufficiently smooth in
(u,v,6) €U :==U x R™", and

(i) AY(u,v) and AS(u,v) are real symmetric and positive definite for (u,v) € U,

(ii) A, (u,v) is real-symmetric for (u,v) € U,
(iii) ng(u, v, &) is real-symmetric and satisfies
B3 (u,v,€) = By (u,v,€)

for (u,v,€) € U;
n
Z B%k(uw,ﬁ)ijk is (real-symmetric and) positive definite for all (u,v,&) € U
k=1
and w = (wy, ...,w,) € R* with |w| = 1.
Let n € R™ denote a vector corresponding to Vu.

Condition C2: The functions fi(u,v,&) and fo(u,v,n,&) are sufficiently smooth in (u, v, &)
eU x R™ and (u,v,m,€) €U x R™, respectively, and

fi(u,v,0) = fo(u,v,0,0) =0

for some constant state (u,v) € U.

Remark: The results in this appendix hold in particular for m” = 0 (symmetric hyper-
bolic systems, cf. Chapter 5) and for m’ = 0 (parabolic systems).

First we study solutions of the linearized equations

A(u,v)i + Y Al (u,0)0a = fi, (C.4)
j=1
A (u,0)0 — > ng(u,v,Vv)ﬁj(?ka = fo. (C.5)
k=1

Let Qr := [0,T] x R* (T >0 arbitrary but fixed), ,s € Ny with 0 < ¢ < s.

Theorem C.1 Assume Condition C1 and s > [}] + 3. Let (u,v) satisfy
u—u € L>([0,T], W*?), u, € L>([0, T], W*~12), (C.6)

v—v € L¥([0, T, W*?), v, € L=([0,T], W) n L*([0, T], W*~"?), (C.7)

Y(t,z) € Qr : (u,v, Vu)(t,x) € Uy, (C.8)
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where Uy is a bounded, open, convex set in R™ ™™ satisfying Uy C U x R™.
Let

M = ess sup [[(u—u,v—0)(t)]s2,
0<t<T
T 1/2
My = (/|at<u,v><t>|z_1,2dt)
0
Let 0 < 0 < s be an integer and let fi, fo satisfy:
fre L2([0, 7], w2 n L2([0, T], W*?), (C.9)
f2 € Loo([(), T]7 WZ?LZ)'
(i) Assume that @ is a solution of (C.4) satisfying
a e L=([0,T), W5, 4, € L=([0, T], W*12). (C.10)

Then we have @ € C°([0,T),W*%?). Furthermore there exist constants C; =
Ci(th) > 1 and Cy = Co(Uy, M) > 0 such that the following energy inequality
holds for t € [0,T1:

t
la()lfz, < € {Iﬁ(O)IZQ + Czt/ 1A ()22 dr} exp{Cy(Mt + Mit'?)}. (C.11)
0

(i) Assume that v is a solution of (C.5) satisfying
o€ L>([0,T],W"?), & € L>([0,T], W' >?).

Then we have © € C°([0,T], W%%) n L2([0, T], W*L2) and the following energy
inequality holds fort € [0,T] (with the constants Cy,Cy from (i)):

t
19O+ [ 19(r) 34 (C.12)
0

t
<Y {II@(O)IZQ + G / If2(r) 171 2 d?“} exp{Cy(t + Mt'/?)}.
0

Proor: (i)

1.  Assume

v—wv € L>([0,T), W*?), v, € L=([0, T], W) (C.13)
fi € L=([0,T], Wh?), (C.14)

@ e L=([0,T), W2 g, € L([0,T], Wh?). (C.15)

I
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(Cf. the conditions (C.7), (C.9), (C.10).)
Applying V* to the system (C.4), integrating by parts as usual, and summing up for
0 <k </, we arrive at

;i (By(@))? = Cor(M + [|0y(u, v)||s-1.2) (Br(@))? < Cooll frlle2Br (@) + CoaM (B (@))?,
where
P 1/2
Ey(a)(t) = (};(A?(um)vkﬁ, V’%)(t))
and

Co1 = Co1(Uh), Coo = Coo(Us, M)
are positive constants. Gronwall’s inequality, Lemma 4.1, now yields (C.11).

2. Let (u,v), f1, 4 satisfy (C.6), (C.7), (C.14), (C.15).
This case is reduced to the situation in case 1 by using the Friedrichs mollifier js,d > 0

(cf. Chapter 4). Consider vs := js * v and let ¢ tend to zero.

3. Let (u,v), f1, 4 satisfy the assumptions of the theorem. Apply js* to the system
(C.4) and thus reduce it to the situation in case 2, then let § tend to zero.
4

. 1€ C%0,T]),W*?) follows by considering the system (C.4) for @5 — g instead of
@, us = j5 * u. We have g € C°([0,T], W*?). Then let 6,6’ tend to zero.

(i) is proved analogously. First assume that (u,v), fa, ¥ satisty (C.6), (C.13) and
fo € L>([0,T], W"?),
o€ L>([0,T]), W2), 5, € L=([0,T], W"?),
then regularize.

Q.E.D.

An existence result for the system (C.4), (C.5) is given by the following theorem.
Theorem C.2 Assume Condition C1 and s > [5] + 3. Let (u,v) satisfy
u—u € C[0,T),W*?), u, € C°([0, T], W12, (C.16)
v—ov € C%0,T), W%, v, € C°([0, T], W33 n L*([0, T], W*~12),
(C.8).
(1) Let 1 << s be an integer and let fi satisfy
f1€C[0, T, W)y LA([0, T, Wh?).

If the prescribed initial data satisfy ©(0) € W52, then the system (C.4) has a unique
solution @ € C°([0, T], W52) N CL([0, T], W =12) satisfying the estimate (C.11).
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(i) Let 2 <€ < s be an integer and let fo satisfy
f? € CO([07 TL WZ_LZ)'

If the prescribed initial data satisfy ©(0) € W42, then the system (C.5) has a unique
solution © € C°([0, T), W) n CL([0, T], W*=22) N L2([0, T], WL2) satisfying the
estimate (C.12).

PROOF:  (i): The system (C.4) is written in the form
i+ Ay(t)a(t) = filt), t €[0T,

where

AW = 3 (A o®) " A ) 0

j=1
At = (Awo)m) " A,
Then the results of T. Kato on linear evolution equations can be applied, see [79] (with
S(t) = S := (1 — A)*? there, cf. also [80]).
(i): (By induction.) Let £ =2: ¥ satisfies

U+ As(8)0(t) = falt),

where

n

As(t) = = > <Ag(u,v)(t))7lng(u,v,Vv)(t),

Rt) = (A0w0)®) " falb).

Then the results from [79] can be used again (with S(t) = Ay(t) + 3, B > 1 sufficiently
large).

Q.E.D.

Now we consider the linearized equations arising from (C.1), (C.2):

A?(u,v)ﬂt+ZA{1(u,v)8jﬂ = fi(u,v,Vv), (C.17)
j=1
AS(u, ), — > ng(u7v,Vv)8jakﬁ = fo(u,v, Vu, Vv), (C.18)
k=1

with initial data

(@,0)(0,z) = (u,v)(0,2) = (ug, vo)(x). (C.19)
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Let s > [3] +3, T > 0 and let X3 (U, M, M;) be the set of functions (u,v) satisfying
(C.16),

v—wv e C%0,T], W*2)n L3([0, T], Wst12),
vy € CO[0, 7], Ws=22) 0 L2([0, T], Ws=12),
(C.8),

0<r<t

13
e ] s llu—uo— o))yt [ = o)) pdr < M2, (C20)
0

t
vee (0,7 [0 v)(n)lE g dr < M2,
0

The following existence result holds:

Theorem C.3 Assume conditions C1 and C2. Let s > [543 and (ug—u,vo—v) € W*?
satisfy

Vo € R* : (ug, vo, Vo) () € Uy, (C.21)
where Uy is a bounded, open, convex set in R™"™™" satisfying Uy C U x R™" .
Then there exist a positive constant Ty, only depending on Uy, ||(ug — u,v9 — v)||s2 and
dy, where dy is an arbitrary positive number being smaller than the distance from Uy to
the boundary of U x R™" | such that if (u,v) € X3 (U, M, My) then the problem (C.17),
(C.18), (C.19) has a unique solution (@,v) € X3, (U, M, My).
Here

U, = dy-neighbourhood of Uy,
(C.22)
]\/[ = 201||(U0 —U,Vy — U)||3,2~, M1 = QCgﬂf,

where Cy = Cy(Uy) from Theorem C.1, and Cs = Cs(Uy, M) is given from the valid
relation

t
VO<t<T: / 104 (1, 8) ()| o dr < C2(M? + (M2 + M2)1), (C.23)
0

(M = M(@,9) as M = M(u,v) in (C.20)).
PRrROOF: The proof follows from Theorems C.1, C.2.

Q.E.D.

Remarks: 1. (C.23) follows from the differential equations (C.17), (C.18) and from

the inequality

| fi(u, v, Vo) |[s—12 + || fo(u, v, Vu, Vo) |[s212 < C(Uy, M)M,
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(which is obtained using Condition C2).
2. The proof requires at least Ty < 3/2.
The solution of the nonlinear system (C.1), (C.2), (C.3) can now be constructed by
successive approximation in the following way. Let L be the operator which maps (u,v)

to (@, D) according to Theorem C.3. A sequence (u™,v"™),en, is defined by

W, ) (t,z) = (u,v),

(un+l’vn+1) = L(un7,()1z).

Consider the differential equations (C.1), (C.2) for (u"™! —u,v"* —v) instead of (u,v).
Using the preceding theorems it can be shown that (u" —u, v™ —v),, is a Cauchy sequence
in C°([0, T3], W*~12) and for a subsequence we have the following:

(v — ), tends to zero weakly in L2([0, Ty], W*+12), (u(t) —u, v"™(t) —v), tends to zero
weakly in W*? for each ¢ € [0,T1] if T} € (0,Tp] is sufficiently small. The limit (u,v) is
the desired solution of (C.1), (C.2), (C.3).

Thus, the following local existence theorem holds.

Theorem C.4 Assume the Conditions C1, C2, s > [3] + 3, (up — u,v9 — v) € W*?
and (C.21). Then there is a positive constant Ty, only depending on Uy, di and on
[(uop — u,v0 — v)||sz2, such that the quasilinear symmetric hyperbolic-parabolic initial
value problem (C.1), (C.2), (C.8) has a unique solution (u,v) € X3, (Ur, M, M), where
Uy, M, M, are defined by (C.22).

In particular the solution satisfies
u—u e C0, 1], W) n CY([0, 1], W*=12),

v—v e CO[0, ], W) N CH([0, Th), W*>2) 1 L*([0, T3], W*+12),

sup (= w0 = 0)(r)2+ [ (1w =)@y + 1= )00 ) dr

0<r<t
< CEH(UO—U, UO_U)H?,% te [OleL

where Cy > 1 is a constant which only depends on Uy, dy and ||(ug — u,v9 — v)||s2
(uniformly bounded for fixed Ty and all (ug,vo) with ||(ug — u, vo — v)||s2 < 1).
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Notation

a.e. almost everywhere

B(zo,r) closed ball in IR* with center zy and radius r > 0

Ck CHIRY)

C*(D) k-times continuously differentiable functions from D C R™ into R
(or RY,C,C%); k€ NyU {oo}; m,j € N

Cy Cy(R")

CF(D) C*(D)-functions with bounded derivatives up to order k, k € Ny U {oo}

CHI,E) space of k-times strongly differentiable functions from an interval I C R
into a Banach space F, k € INy U {oc0}

o ()

Cy*(D) C>(D)-functions with compact support

Cw(I,E)  space of weakly continuous functions from an interval / C R into a Banach
space

0 Kronecker delta

0; 0/0x;

O 0/0t  (also indicated by a subindex t)

D (O, 01,...,0,)  (in Section 11.6: symbol for the displacement current)

D~ (00,00, ..., 0, a=(ag,,...,0p) € Ng"T, n €N

det determinant

ess sup essential supremum

exp -+ o

F Fourier transform

Im imaginary part

() inner product in L?

K Sobolev constant in the imbeddding W*2 « C° s € IN

Lip(I, E)  space of Lipschitz continuous functions from an interval I C R into a Banach
space E

log natural logarithm

L LP(IR™)

LP(I,E) space of strongly measurable functions from I C R into a Banach space F, the
p-th powers of which are integrable (essentially bounded if p = 00), 1 < p < 00

Ly set of functions being locally in L”

LP(QY) Wor(Q)

\Y (Ory...,0n)

A% (o, ...,00), a=(a,...,a,) €Ny, neN

I lle norm in the Banach space E

I lmp norm in WP
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H : Hp

|u

s, T

1D ull,
1D ull,
V™ ull,

IV ull,
Re
Sn—l

supp
e
W (Q)

Wo(2)

L

TE

Notation 303

norm in LP

SUPo<t<T () ls,2

1/p
( > ||Dau||g) |

|a|=m

1/p
( > |D“u||’;;) 7

0<[a|<m

1/p
( > ||vau||z) ,

ol 1p
( > |Vau|§> , meN;, 1 <p<oo (p=oc as usual).
0<[af<m
real part
unit sphere in R”
support
Wmp(IRM)
usual Sobolev space, m € Ny, 1 < p < oo, (see R.A. Adams [1]); several
copies are denoted with the same symbol
usual Sobolev space generalizing zero boundary values, see [1]
continuous imbedding
weak convergence
largest integer which is less than or equal to x, v € R
used for transposition, e.g. for the divergence V', for one-dimensional
derivatives, for indexing, and, in Chapter 13, for denoting parts of space

variables
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dispersive estimates, 255

Banach, S., 8 dissipation, 143, 144, 152, 153, 179, 212,
Besov space, 275 213, 216
Bessel potential space, 275 domain
Bessel, F.W., 19 bounded, 172
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boundary condition non-repulsive, 254
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conformal map, 106 generalized

conservation form, 108, 109, 215 eigenfunction, 209, 210
conservation law, 109 eigenfunction expansion, 209, 210
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crystal optics, 121 Fourier transform, 209
cylindrically symmetrical, 248 Sobolev inequality, 105

Sobolev norm, 54, 105
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