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1 Introduction to Differential Equations

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)4

3. Fourth order; linear

4. Second order; nonlinear bccausc of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2

6. Second order: nonlinear bccausc of R~

7. Third order: linear

8. Second order; nonlinear because of x2

9. Writing the differential equation in the form x(dy/dx) -f y2 = 1. we sec that it is nonlinear in y 

because of y2. However, writing it in the form (y2 — 1 )(dx/dy) + x = 0, we see that it is linear in x.

10. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu wc see that it is linear in 

v. However, writing it in the form (v + uv — ueu)(du/dv) + u — 0, we see that it, is nonlinear in ■Ji­

l l .  From y = e-*/2 we obtain y' = — \e~x'2. Then 2y' + y =  —e~X//2 + e-x/2 = 0.

12. From y = | — |e-20* we obtain dy/dt = 24e-20t, so that

%  + 20y = 24e~m  + 20 - |e_20t) = 24.
clt \ 'o 5 /

13. R'om y = eix cos 2x we obtain y1 =  3e^x cos 2x — 2e3* sin 2a? and y” =  5e3,x cos 2x — 12e3,x sin 2x, so 

that y" — (k/ + l?>y = 0.

14. From y = — cos:r ln(sec;r + tanrc) we obtain y’ — — 1 + sin.Tln(secx + tana:) and 

y" = tan x + cos x ln(sec x + tan a?). Then y" -f y = tan x.

15. The domain of the function, found by solving x + 2 > 0, is [—2, oo). From y’ = 1 + 2(x + 2)_1/2 we
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Exercises 1.1 Definitions and Terminology

have

{y -  x)y' = (y -  ®)[i + (20 + 2)_1/2]

= y — x + 2(y - x)(x + 2)-1/2 

= y - x  + 2[x + 4(z + 2)1/2 - a;] (a: + 2)_1/2 

= y — x + 8(ac + 2)1;/i(rr + 2)~1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, oo) because y

defined at x = —2.

16. Since tan:r is not defined for x =  7r/2 + mr, n an integer, the domain of y = 5t£v.

An interval of definition for the solution of the differential equation is (—7r/10,7T/10 . A:, 

interval is (7r/10, 37t/10). and so on.

17. The domain of the function is {x \ 4 — x2 ^  0} or {x\x ^  —2 or x ^  2}. Prom y' — 2.:: -= - 

we have

An interval of definition for the solution of the differential equation is (—2,2). Other 

(—oc,—2) and (2, oo).

18. The function is y — l/y/l — s ins. whose domain is obtained from 1 — sinx ^  0 or . = 1 T

An interval of definition for the solution of the differential equation is (tt/2. 5tt/2 A:.. . 

is (57r/2,97r/2) and so on.

19. Writing ln(2X  — 1) — ln(X — 1) = t and differentiating implicitly we obtain

2 dX 1 dX 

2 X - 1  dt X - l  dt

{a; | 5x ^  tt/2 + 7i-7r} or {;r | x ^  tt/IO + mr/5}. From y' — 25sec2 §x we have

y' = 25(1 + tan2 5x) =  25 + 25 tan2 5a: = 25 + y2.

the domain is {z | x ^  tt/2 + 2?i7r}. From y' =  —1(1 — sin x) 2 (— cos.x) we have 

2y' = (1 — sin;r)_ ‘?/’2 cos# = [(1 — sin:r)~1//2]3cos:r - f/3cosx.

(2X  - 1)(X  - 1) dt

IX
—  = -C2X - 1)(X - 1) =  (X - 1)(1 - 2X .

2X  - 2 - 2X  + 1 dX  _

2



Exercises 1.1 Definitions and Terminology

Exponentiating both sides of the implicit solution we obtain

2 X - 1

x

----- = el
X - l

2 X - 1  = Xel - ef 

(e* - 1) =  (e‘ - 2)X

ef' — 1

- 4  - 2

X  =
e*- 2  '

-2

- 4

Solving e* — 2 =  0 we get t = In2. Thus, the solution is defined on (—oc.ln2) or on (In2, oo). 

The graph of the solution defined on (—oo,ln2) is dashed, and the graph of the solution defined on 

(In 2. oc) is solid.

20. Implicitly differentiating the solution, we obtain y

—x2 dy — 2xy dx + y dy — 0 

2 xy dx + (a;2 — y)dy = 0.

Using the quadratic formula to solve y2 — 2x2y — 1 = 0 for y, we get 

y = (2x2 ± V4;c4 +4)/2 =  a’2 ± vV 1 + 1 . Thus, two explicit 

solutions are y\ = x2 + \A'4 + 1 and y-2 =  x2 — V.x4 + 1. Both 

solutions are defined on (—oo. oc). The graph of yj (x) is solid and 

the graph of y-2 is daalied.

21. Differentiating P  = c\?} } ( l + cie^ we obtain

dP _  ( l + cie*) cie* - cie* • cie* _  Cie« [(l + cie‘) - cie4]

(1 + cie*)"eft

Ci

1 + CI&-

CiC

1 + ci ef

1 + cief

=  P( 1 - P).

1 + cie(

2 PX ,2 ,2
22. Differentiating y = e~x / e: dt + c\ e~x we obtain

Jo

* f X *2 -r.2
/ e dt — 2c\xe = 1  
Jo

/ -*2 r2y = e e
___ 2  r x  J 2

2xe 2xe
2 rx +2

x e dt — 2cixe 
Jo

—X

Substituting into the differential equation, we have

y' + 2xy = l — 2xe x I e* dt — 2cixe x +2xe x [ e* dt 4- 2cio;e x = 1.
Jo Jo
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Exercises 1.1 Definitions and Terminology

23. From y — ci e2x+c.2 xe2x we obtain ^  - (2c\ +C2 )e2x -r2c2xe2x and —| = (4cj + 4c;2)e2x + 4c2xe2j'.

so that

— 4 ^  + Ay = (4ci + 4co - 8ci - 4c2 + 4ci)e2x + (4c2 — Sc2 + 4e2)xe2x — 0.
n.T. d:rdx2 dx

24. From y — Cix-1 + c^x + c%x ]n x + 4a;2 we obtain

^  = —c\x 2 + C2 + c$ + C3 In x + 8rc,
dx

= 2cix,_3 + C3;r_1 -f 8.
d2y

and 

so that

dx'3 _r “J/ dx2 J' dx

dx2

= —6cix-4 - c3a r2,

+ 2a'2 ~ X + V ~ _̂6ci + 4ci + Cl + Cl x̂ 3 + _̂ °3 + 2cs ~~ 02 ~ C3 + C2̂ X

t  (—C3 + cz)x In a; + (16 - 8 + 4)x2 

= 12x2.

( —x2, x < 0 , f —2x, x < 0
25. From y =  < ' we obtain y' =  < ^ ^ „ so that - 2/y = 0.

t x . x > 0 {2x, x > 0

26. The function y(x) is not continuous at x = 0 sincc lim y(x) =  5 and lim y(x) = —5. Thus. y’(x)
x —>0“  x —>0+

does not exist at x =  0.

27. From y =  emx we obtain y' =  mernx. Then yf + 2y — 0 implies

rnemx + 2emx = (m + 2)emx = 0.

Since emx > 0 for all x} m =  —2. Thus y =  e~2x is a solution.

28. From y = emx we obtain y1 = mernx. Then by' — 2y implies

brriemx = 2e"lx or m =
5

Thus y = e2:c/5 > 0 is a solution.

29. From y =  emx we obtain y' = memx and y" = rn2emx. Then y" — 5y' + Qy = 0 implies

m2emx - 5rnemx + 6emx = (rn - 2)(m - 3)emx = 0.

Since ema! > 0 for all x, rn = 2 and m = 3. Thus y = e2x and y = e3:r are solutions.

30. From y = emx we obtain y1 = rnemx an<l y" = rn2emx. Then 2y" + 7y/ — 4y = 0 implies

2m2emx + 7rnemx - 4ema: =  (2m - l)(m  + 4)ema' = 0.



Exercises 1.1 Definitions and Terminology

Since emx > 0 for all x, rn ~ | and m = —4. Thus y — ex/2 and y =  e ^  are solutions.

31. From y = xm we obtain y' = mxm~1 and y" = m(m — l)xm~2. Then xy" + 2y' = 0 implies

xm(m, — l)xm~2 + 2mxm~l = [m(rn -1)4- =  (m2 + m)xm_1

- rn(m + l).xm_1 = 0.

Since a:"'-1 > 0 for ;r > 0. m = 0 and m = — 1. Thus y =  1 and y — x~l are solutions.

32. From y = xm we obtain y' =  mxm~1 and y" = m(m — l)xm~2. Then x2y" — 7xy' + 15y — 0 implies

x2rn{rn — l)xrn~2 — lxmxm~A + 15:em = [m(m — 1) — 7m + 15]xm

= (ro2 - 8m + 15)a,m = (m - 3) (to - 5)xm = 0.

Since xm > 0 for x > 0. m = 3 and m = 5. Thus y — x  ̂and y =  xa are solutions.

In Problems 33-86 we substitute y = c into the differential equations and use y' — 0 and y" — 0

33. Solving 5c = 10 we see that y ~ 2 is a constant solution.

34. Solving c2 + 2c — 3 = (c + 3)(c — 1) = 0 we see that, y = —3 and y = 1 are constant solutions.

35. Since l/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6c = 10 we see that y =  5/3 is a constant solution.

37. From x — e~2t + 3ec< and y — —e~2t + 5ew we obtain

^  =  —2e~2t + 18e6* and = 2e~2t + 30e6*. 
dt dt

Then

x- + 3y = (e~2t + 3e6t) + 3(-e '2* + oe6t) =  -2e"2* + 18e6t = ^
\Jub

and

5:r + 3y = 5(e~2* + 3eet) + 3(-e~2* + 5e6') = 2e~2t + 30e6* = ^  .
at

38. From x = cos 21 + sin 21 + and y — — cos 21 — sin 21 — we obtain

—  = —2 sin 2t -f 2 cos 22 + and ^  =  2 sin 22 — 2 cos 2t — -e* 
d.t 5 dt 5

and
d2:r , „ . . ^ 1  ̂ , ^2V , 1 /

= —4 cos 2t — 4 sm 22 + re and -r-̂- = 4 cos 2t + 4 sin 22-- e .
dt2 Id d22 5

Then

1 1 cPx
4 y + et =  4(— cos 21 — sin 21 — pef) + el — —4 cos 21 — 4 sin 22 + -el =  -7-̂

0 o dt
and

5



Exercises 1.1 Definitions and Terminology

4x — ef = 4(cos 21 + sin 21 -I- ^e*) — e* = 4 cos 2£ + 4 sin 2t — \ef —

39. (t/ )2 + 1 = 0 has no real solutions becausc {y')2 + 1 is positive for all functions y = 4>(x).

40. The only solution of (?/)2 + y2 = 0 is y = 0, since if y ^  0, y2 > 0 and (i/ ) 2 + y2 > y2 > 0.

41. The first derivative of f(x ) =  ex is eT. The first derivative of f{x) = ekx is kekx. The differential 

equations are y' — y and y' = k.y, respectively.

42. Any function of the form y = cex or y = ce~x is its own sccond derivative. The corresponding 

differential equation is y" — y = 0. Functions of the form y =  c sin x or y — c cos x have sccond 

derivatives that are the negatives of themselves. The differential equation is y" -+- y =  0.

43. We first note that yjl — y2 = \/l — sin2 x = Vcos2 x = | cos.-r|. This prompts us to consider values 

of x for which cos x < 0, such as x = tt. In this case

%

dx i {sklx) =  c o s x l ^ , .  =  COS7T =  — 1.
X=7T

but

\/l - y2\x=7r =  V 1 - sin2 7r =  vT = 1.

Thus, y = sin re will only be a solution of y' - y l — y2 when cos x > 0. An interval of definition is 

then (—tt/2, tt/2). Other intervals are (3tt/2, 5tt/2), (77t/2, 9tt/2). and so on.

44. Since the first and second derivatives of sint and cos t involve sint and cos t, it is plausible that a 

linear combination of these functions, Asint+B cos t. could be a solution of the differential equation. 

Using y' — A cos t — B sin t and y" =  —A sin t — B cos t and substituting into the differential equation

we get

y" + 2y' + 4y = —A sin t — B cos t + 2A cos t — 2B sin t + 4A sin t + 4B cos t 

=  (3A — 2B) sin t + (2A + 3B) cos t =  5 sin t.

+ TT7« ^ITirl A --  ---
13Thus 3A — 2B = 5 and 2A + 3B = 0. Solving these simultaneous equations we find A =  j# and

B = — . A particular solution is y =  sint — ^  cost.

45. One solution is given by the upper portion of the graph with domain approximately (0,2.6). The 

other solution is given by the lower portion of the graph, also with domain approximately (0.2.6).

46. One solution, with domain approximately (—oo, 1.6) is the portion of the graph in the second 

quadrant together with the lower part of the graph in the first quadrant. A second solution, with 

domain approximately (0,1.6) is the upper part of the graph in the first quadrant. The third 

solution, with domain (0, oo), is the part of the graph in the fourth quadrant.
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Exercises 1.1 Definitions and Terminology

47. Differentiating (V1 + y^)/xy = 3c we obtain

xy(3x2 + 3y2y') - (a?3 + y*)(xi/ + y)

x?y2
= 0

3 x3y + 3 xy^y' — x'̂ y' — x% — xy^y’ — yA — 0

(3:ry3 - xA - xyz}i/ = -3x3y + xi y + y4

, = y4 - 2x3y _  y(y[i - 2x3)

^ 2.ry3 — x4 rt:(2y3 — a:3)

48. A tangent line will be vertical where y' is undefined, or in this case, where :r(2y3 — x3) =  0. This 

gives x = 0 and 2y3 = a:3. Substituting y?J — a;3/2 into ;r3 + y3 = 3xy we get

x 3+ h 3 = 3x { w x )
-x3 =  — r2
2 2V3a

a:3 = 22/ V  

z2(.x - 22/3) = 0.

Thus, there are vertical tangent lines at x = 0 and x = 22/3, or at (0,0) and (22/3,21'/3). Since 

22/3 ~ 1.59. the estimates of the domains in Problem 46 were close.

49. The derivatives of the functions are ^(.x) — —xf a/25 — x2 and ^{x) = x/\/25 — x2, neither of 

which is defined at x = ±5.

50. To determine if a solution curve passes through (0,3) we let 2 = 0 and P  = 3 in the equation 

P  = c-ie1/ (1 + eye*). This gives 3 = c j/(l + ci) or c\ = — | . Thus, the solution curve

(—3/2)e* = —3e*

1 - (3/2)eL 2 - 3e{

passes through the point, (0,3). Similarly, letting 2 =  0 and P = 1 in the equation for the one- 

parameter family of solutions gives 1 = ct/(l + ci) or ci = 1 + c-|. Since this equation has no 

solution, no solution curve passes through (0. 1).

51. For the first-order differential equation integrate f(x). For the second-order differential equation 

integrate twice. In the latter case we get y = f ( f  f(x)dx)dx + cja: + C2 -

52. Solving for y’ using the quadratic formula we obtain the two differential equations

y> = — ^2 + 2\J 1 + 3ar®̂  and y1 = — ^2 — 2y 1 4-3a?̂  ̂ , 

so the differential equation cannot be put in the form dy/dx = f(x,y).

7



Exercises 1.1 Definitions and Terminology

53. The differential equation yy'—xy = 0 has normal form dy/dx = x. These are not equivalent because 

y = 0 is a solution of the first differential equation but not a solution of the second.

54. Differentiating we get y' = c\ + 3c2%2 and y" =  602x. Then C2 - y"/(>x and ~ 1/  — xy"f 2, so

v=iy'-^-)x+{t)x3=xy' - r v
and the differential equation is x2y" — 3xy' + Sy = 0.

2
55. (a) Since e~x is positive for all values of x. dy/dx > 0 for all x, and a sohition. y(x), of the

differential equation must be increasing on any interval.

(b) lim ^  = lim e~x‘ = 0 and lim ^  = lim e~x =  0. Since dy/dx approaches 0 as x 
v ' x^-cc dx x-+-x dx

approaches —oc and oc, the solution curve has horizontal asymptotes to the left and to the 

right.

(c) To test concavity we consider the second derivative

d2y d (dy\ d { *\ _  2

\dr.)-dx\e'

Since the sccond derivative is positive for x < 0 and negative for x > 0, the solution curve is 

concave up on (—00.0) and concave down 011 (0.00). x

56. (a) The derivative of a constant solution y — c is 0, so solving 5 — c =  0 we see that, c — 5 and so

y = 5 is a constant sohition.

(b) A solution is increasing where dyjdx = 5 — y > 0 or y < 5. A solution is decreasing where 

dy/dx = 5 — y < 0 or y > 5.

57. (a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y =  0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a — by) = by(a/b — y) > 0 or 0 < y < a/b. A solution 

is decreasing where dy/dx = by(a/b — y) < 0 or y < 0 or y > a/b.

(c) Using implicit differentiation we compute

= y(-by') + y'{a - by) =  y'(a - 2by).

Solving d2y/dx2 = 0 we obtain y = a/2b. Since dly/dx2 > 0 for 0 < y < a/2b and d2y/dx2 < 0 

for a/26 < y < a/b, the graph of y =  <p(x) has a point of inflection at y = a/26.

8



Exercises 1.1 Definitions and Terminology

(d)

58. (a) If y = c is a constant solution I lien y' = 0. but c2 + 4 is never 0 for any real value of c.

(b) Since y* =  y2 + 4 > 0 for all x where a solution y = o(x) is defined, any solution must be 

increasing on any interval on which it is defined. Thus it cannot have any relative extrema.

59. In Mathematica use

Clear [y]

y[x_]:= x Exp[5x] Cos[2x]

y[xl
y""[x] — 20y’"[x] + 158y"[x] — 580y'[x] +84 ly[x]//Simplify

The output will show y{x) = e0Xx cos 2x. which verifies that the corrcct function was entered, and

0, which verifies that this function is a solution of the differential equation.

60. In Mathematica use

Clear [y]

y[x_]:= 20Cos[5Log[x]]/x — 3Sin[5Log[x]]/x

y (x 3
x~3 y'"[x] + 2x~2 y"[x] + 20x y'[x] — 78y[x]//Simplify

The output will show y(x) = 20 cos(o In x)/x—Z sin(5 In x)/x. which verifies that the correct function 

was entered, and 0, which verifies that this function is a solution of the differential equation.

x
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Exercises 1.2 Initial-Value Problems

. problems

1. Solving —1/3 = 1/(1 + ci) we get c\ — —4. The solution is y = 1/(1 — 4e~x).

2. Solving 2 = 1/(1 + c\e) we get c\ = - ( l/2)e_1. The solution is y — 2/(2 - e "^-1)) .

3. Letting x =  2 and solving 1/3 =  1/(4 + c) we get c = —1. The solution is y — 1 / (x2 — 1). This 

solution is defined on the interval (l,oc).

4. Letting x =  -2 and solving 1/2 = 1/(4 + c) we get c =  —2. The solution is y = 1/(.:;;2 — 2). This 

solution is defined on the interval (—oo, —y/2).

5. Letting x =  0 and solving 1 = 1/e we get c — 1. The solution is y = l/(a;2 + 1). This solution is 

defined on the interval (—oo, oo).

6. Lotting x = 1/2 and solving —4 =  l/ ( l/4  + c) we get c = —1/2. The solution is y = lj(x 2 — 1/2) =  

2/(2x2 — 1). This solution is defined on the interval (—l/y/2 , l/\/2 )-

In Problems 7-10 we use x — c\ cos t + 0 2 sin t and x' — —c\ sin t + C2 cos t to obtain a system, of two

equations in the two unknowns ei and C2 ■

7. From the initial conditions we obtain the system

C2 =  8.

The solution of the initial-value problem is x = — cost + 8sint.

8. From the initial conditions we obtain the system

0 2  = 0

-ci - 1.

The solution of the initial-value problem is x = — cos t.

9. From the initial conditions we obtain

\/3 1 I
-7 T  C] +  -  C2 =  -
VS

Solving, we find c\ =  V3/4 and C2 =  1/4. The solution of the initial-value problem is 

x = (a/3/4) cost + (1/4) sin t

10
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10. From the initial conditions we obtain

\/2 \/2 r -

T  Q T  2 =
\ / 2

2~ ~2~ =

Solving, we find ci =  — 1 and c>2 = 3. The solution of the initial-value problem is x = — cost+3 sin t.

Problems 11-14 we use y = c\ax + C2 e~x and if — c\e£ — C2 e~x to obtain a system of two equations 

the two unknowns c\ and 0 9 -

11. From the initial conditions we obtain

Ci + C2 =  1

ci - c2 =  2.

Solving, wo find c\ = ^ and C2 =  — 5 . The solution of the initial-value problem is y =  |ex — ^e~x.

12. From the initial conditions we obtain

ec\ + e-1C2 =  0 

ec\ — e~lC2 = e.

Solving, we find ci = \ and C2 = — ̂ e2. The solution of the initial-value problem is 

:j = \ex - \e2e~x = \ex - \e2~x.

13. From the initial conditions we obtain

e-1ci 4- ec2 = 5 

— ec2 =  —5.

Solving, we find ci = 0 and C2 =  5e 1. The solution of the initial-value problem is y = -5e 1e x =
-  — 1 — t*Of -

14. From the initial conditions we obtain

ci + C2 =  0 

Cl - c2 = 0.

Solving, we find ci = C2 =  0. The solution of the initial-value problem is y =  0.

15. Two solutions are y = 0 and y = x%i.

I ' .  Two solutions are y — 0 and y =  x2. (Also, any constant multiple of x2 is a solution.)

d f  2 /
1 For fix, y) = y2/3 we have ~ Thus, the differential equation will have a unique solution

ay 3'

any rectangular region of the plane where y ^  0.

11
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18. For f'(x,y) = yjxy we have d f /dy - \\jx/y ■ Thus, the differential equation will have a unique 

solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

? d f l
19. For fix. y) = — we have = —. Thus, the differential equation will have a unique solution in

x ay x
any region where x ^  0.

20. For f(x,y) = x + y we have =  1. Thus, the differential equation will have a unique solution in 

the entire plane.

21. For f(x, y) - x2/{& — y2) we have d f /dy — 2x‘1y/(A. — y2)2. Thus the differential equation will have 

a unique solution in any region where y < —2, —2 < y < 2, or y > 2.

d f _3 x2y2
22. For f(x. y) ~ —-—* we have -1- *- ----- h- . Thus, the differential equation will have a unique

V J> 1 + y3 dy (l + y3)2

solution in any region where y ^  — 1.

y2 d f 2x^y
23. For f(x, y) = —tt--rr we have —  = ---- :— k . Thus, the differential equation will have a unique

M x2 + y2 dy (x2 + y2)2

solution in any region not containing (0,0).

24. For / (x, y) = (y + x)/(y — x) we have df/dy = —2x/(y — x)2. Thus the differential equation will 

have a unique solution in any region where y < x or where y > x.

In Problems 25-28 we identify f{x,y) = \jy2 — 9 and df/dy = y/\jy2 — 9. We see that f  and 

df/dy are both continuous in the regions of the plane determined by y < — 3 and y > 3 with no 

restrictions on x.

25. Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique 

solution through (1,4).

26. Since (5,3) is not in cither of the regions defined by y < —3 or y there is no guarantee of a 

unique solution through (5,3).

27. Since (2, —3) is not in either of the regions defined by y < — 3 or y > 3, there is no guarantee of a 

unique solution through (2, —3).

28. Since (—1,1) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee of a 

unique solution through (—1, 1).

29. (a) A one-parameter family of solutions is y = ex. Since y' = c, xy' =  xc = y and y(0) = c ■ 0 =  0.

(b) Writing the equation in the form y' — y/x, we see that R cannot contain any point on the y-axis. 

Thus, any rectangular region disjoint from the y-axis and containing (xq, ijq) will determine an

12
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interval around xg and a unique solution through (so- yo). Since ;i’o =  0 in part (a), we are not 

guaranteed a unique solution through (0.0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution sincc it is not differ­

entiable at x - 0.

(I 9 9
30. (a) Since —  tan (a; + c) = sec-(a: + c) = 1 + tan"(x -i- c), we see that y = tan(x + c) satisfies the

L lX
differential equation.

(b) Solving y(0) = tan <: — 0 we obtain c =  0 and y = tan x. Since tan:r is discontinuous at 

x — ±7t/2; the solution is not defined on (—2,2) because it contains ±tt/2.

(c) The largest interval on which the solution can exist is (—tt/2, 7t/2).

d  1 1 1
31. (a) Since —  (-----) = 7---- = i f . we see that y = ------- is a solution of the differential

v '  r .A - r J  ( r .A -  X - h  Cdx ̂  x + <y (x + c)"‘ 
equation.

(b) Solving y(0) =  —1 jc =  1 we obtain c =  — 1 and y — 1/(1 — x). Solving y(0) = —1/c =  — 1 

wc obtain c — 1 and y =  —1/(1 + x-). Being sure to includc x = 0, we see that the interval 

of existence of y — 1/(1 — x) is (—oc, 1), while the interval of existence of y =  —1/(1 + x) is 

( 1, oc).

(c) By inspection we see that y = 0 is a solution 011 ( —00, 00).

32. (a) Applying y(l) =  1 to y =  —l/(x -f c) gives

1
1 =

1 + c
or 1 + c =  —1.

Thus c = —2 and
1

y
x — 2 2 — x 

(b) Applying y(3) = — 1 to y = — 1/ (;r + c) gives

1
-1 =

Thus c =  —2 and

y

or 3 + c = 1.

x — 2 2 — x

(c) No, they are not the same solution. The interval I  

of definition for the solution in part (a) is (—00,2); 

whereas the interval I  of definition for the solution 

in part (b) is (2. 00). See the figure.

, 1

}  ; 
/  \

(1,1)

(3, -1) --- 4 ‘

13
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33. (a) Differentiating 3x2 — y2 = c we get 6x — 2yyf =  0 or yy' = 3a;.

(b) Solving 3a:2 — y2 = 3 for y we get

y =  ©1 (a:) =  \/3{x2 - 1). 

y = <h(x) = - \‘3(x- - 1)

y =  M x) =

1 < a; < oo, 

1 < x < oo. 

—oc < x < —1. 

—oo < x < —1.y =  <?4 (x) = ~\j3{x2 - 1),

(c) Only y =  <pz{x) satisfies y{—2) = 3.

34. (a) Setting x = 2 and y = —4 in 3;r2 — y2 = c we get 12 — 16 = —4 = c, 

so the explicit solution is

y = —y 3a:2 + 4, —oo < x < oo.
(b) Setting c. =  0 we have y = \/3a: and y =  — \/3̂ , both defined on

(—oo;oc).

y
i4:

Jn Problems 35-38 we consider the points on the graphs with x-coordinates xq =  —1. xq =  0, a 

;Z*0 =  1. 77?,e slopes of the tangent lines at these points are compared with the slopes given by y'(xo)

(a) through (f).

35. The graph satisfies the conditions in (b) and (f).

36. The graph satisfies the conditions in (e).

37. The graph satisfies the conditions in (c) and (d).

38. The graph satisfies the conditions in (a).

39. Integrating y' = 8e2x + 6x we obtain

y = j  (8e2x’ + Qx)dx = 4e2x + 3x2 + c.
Setting x =  0 and y — 9 we have 9 = 4 + c so c =  5 and y — 4e2x -f 3a:2 + 5.

40. Integrating y" — 12x — 2 we obtain

y' =  j (12a; - 2)dx = dx2 - 2x + ci.

Then, integrating y! we obtain

y = / (6x2 — 2x + ci)dx =  2x?J — x2 + Cix + oi-

14
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- 1 the y-coordinate of the point of tangency is y =  —1+5 = 4. This gives the initial condition 

= 4. The slope of the tangent line at x =  1 is y'(l) =  —1. From the initial conditions we 

n

6 — 2 + ci = —1 or Ci ~ —5.

. ci =  —5 and oi =  8, so y = 2a'3 — x2 — 5ir + 8.

l x = 0 and y =  ̂, y' =  — 1, so the only plausible solution curve is the one with negative slope

solution is tangent to the .i’-axis at (rro, 0), then y' = 0 when x - xq and y =  0. Substituting 

values into y' + 2y = 3x — G we get 0 + 0 = 3-I'q — 6 or :co = 2.

heorcm guarantees a unique (meaning single) solution through any point. Thus, there cannot

o distinct solutions through any point.

2) = ^ (16) =  1. The two different solutions are the same on the interval (0, oo), which is all 

h required by Theorem 1.2.1.

= 0. dP/dt = 0.15P(0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at a 

.■f 3.500 individuals per year.

population is 500 at time t = T then

2 — 1 + ci + C2 =  4 or ci + c-2 — 3

5 ), or the black curve.

—  = 0.15P(r) +*20 = 0.15(500) + 20 = 95. 
dt t=T

. at this time, the population is increasing at a rate of 9,500 individuals per year.



Exercises 1.3 Differential Equations as Mathematical Models

r  . ..... ..................................... : . 7 T ' " „  >. r;; ; ;*:* : ;

- Differential Eqti^feioiis

dP dP
1. —— — kP + r; — kP — r 

dt dt
2. Let b be the rate of births and d the rate of deaths. Then b - k]_P and d = k^P- Since dPjdt — b—d, 

the differential equation is dP/dt =  k\P — k̂ P-

3. Let b be the rate of births and d the rate of deaths. Then b — k\P and d = k^P'2. Since dP/dt = b—d. 

the differential equation is dP/dt — kiP — I^P2.

d.P
4. —— — h P  - k2P 2 -h, h >  0 

dt
5. From the graph in the text we estimate To = 180° and Tm = 75°. We observe that when T =  85, 

dT/dt «  — 1. From the differential equation we then have

k = t m _  =  ^ i _  =  _ 0 1

' T - Tm 85-75

6. By inspecting the graph in the text we take Tm to be Tm(t) = 80 — 30 cos nt/12. Then the 

temperature of the body at time t is determined by the differential equation

dT 
—  — k  
dt

T -  80 - 30 cos5*)] t > 0.

7. The number of students with the flu is x and the number not infected is 1.000 — x, so dx/dt — 

fcc(1000 - a:).

8. By analogy, with the differential equation modeling the spread of a disease, we assiune that the rate 

at which the technological innovation is adopted is proportional to the number of people who have 

adopted the innovation and also to the number of people, y(t), who have not yet adopted it. Then 

x + y — n. and assuming that initially one person has adopted the innovation, we have

d r
— kx(n — a?), x(0) = 1.

(a*L

9. The rate at which salt is leaving the .tank is

( A  \ 4 
Rout (3 gal/min) • lb/gal j  = —  lb/min.

Tims dA/dt = — A/100 (where the minus sign is used since the amount of salt is decreasing. The 

initial amount is A(0) = 50.

10. The rate at which salt is entering the tank is

Riu = (3 gal/min) • (2 lb/gal) = 0 lb/min.

16
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Since the solution is pumped out at a slower rate, it is accumulating at the rate of (3 — 2)gal/min 

1 gal/min. After t minutes there are 300 + 1 gallons of brine in the tank. The rate at which salt is 

leaving is R„t =  (2 gal/min) • lb/gal) =  ^ -  lb/miu.
The differential equation is

dA „ 2A 
=  6

dt 300 + 1

11. The rate at which salt is entering the tank is

R in  = (3 gal/min) • (2 lb/gal) = 6 lb/min.

Since the tank loses liquid at the net rate of

3 gal/min — 3.5 gal/min = —0.5 gal/min.

after t minutes the number of gallons of brine in the tank is 300 — \t gallons. Thus the rate at 

which salt is leaving is

/ A \ 3 5 4 7/4^  = lb/gal) ' (3'5 gal/min) =  soS^tT Slb/min =  6 0 0 ^7 lb/mi,L

The differential equation is

dA „ 7A dA 7

~dt= 600^-i °r M + 600^1 A = 6'

12. The rate at which salt is entering the tank is

R in  = {('in lb/gal) • (rin gal/min) = cinrin lb/min.

Xow let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine in the tank 

at time t. The concentration of salt in the tank as well as in the outflow is c(t) = x(t)/N(t). But 

'he number of gallons of brine in the tank remains steady, is increased, or is decreased depending 

:m whether r*n = rQUt, n n > rout. or r.,;n < rou*. In any case, the number of gallons of brine in the 

:ank at time t is N(t) = Nq + (r?:n — rout)i. The output rate of salt is then

Rout =  ( v  , , A---- rr lb/gal J • (rout gal/min) = rmt A---- - lb/min.
+ (nn - rout)t J M  + (rin - rout)t

The differential equation for the amount of salt,-dA/dt =  Rin — R0Uf, is

dA A dA Tout ,
i, — (%nr in  r out . r  . , _ o r ,, +  AT , A  — ^HnXin

dt  A q  H- yTin Tovt/t  d t  A q  i [Tin Touf ) t

The volume of water in the tank at time t is V = Awh. The differential equation is then

d,h _  1 dV _  1 / \ cAft f
V 2 g h .

17
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{ 2 \ ~ 7r
Using Aft = 7T ( —— ) — — , Aw = 102 = 100, and g = 32. this becomes

12J 36

dt 100 450

14. The volume of water in the tank at time t is V = ^wr2h where r is the radius of the tank at hcig;.'

h. Prom the figure in the text we see that r/'h - 8/20 so that r = ‘lh  and V = |tt (jJ i) h = 

Differentiating with respect to t, we have dVjdt = ^ n h 2 dh/dt or

dh 25 dV 

dt A-nh2 dt

From Problem 13 wc have dV/dt =  —cA}ly/2gh where c = 0.6, .4/,. = tt , and g = 32. Thu- 

dV/dt = — 2tt\//i/15 and

dh _  _25_ (  2tr\/h.\ _____ 5 _

dt 4tt/j2 y 15 )  6/i3/2

15. Since i =  dq/dt and Ld2q/d,t2 + Rdq/dt =  E(t), we obtain Ldi/dt + Ri =  E(t).

16. By KirchhofFs second law we obtain R ^  + ~q = E(t).

do *17. From Newton’s second law we obtain m— - —kv2 + mg.
dt

18. Sincc the barrel in Figure 1.3.16(b) in the text is submerged an additional y feet below its equilibrium 

position the number of cubic feet in the additional submerged portion is the volume of the circular 

cylinder: 7rx (radius)2 x height or ix{s/2)2y. Then we have from Archimedes’ principle

upward force of water on barrel = weight of water displaced

= (62.4) x (volume of water displaced)

= (62.4)-7r(6'/2)2jt/ =  15.67rs2y.

It then follows from Newton’s second law that

w d2u , „ „ o d2y 15.67r,s2o
-  - f  =  —15.67TS y or - £  + ----- £ y = 0,
g dt1 dtr w

where g = 32 and w is the weight of the barrel in pounds.

19. The net force acting on the mass is

_ (f2x , .
F  = ma = m = —k{s + x) + mg =  —kx + mg — ks.

Since the condition of equilibrium is mg - ks, the differential equation is

c£2x

m d P = ~kX'

18
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20. From Problem 19. without a damping force, the differential equation is rnd2x/dt2 = —kx. With a 

damping force proportional to velocity, the differential equation becomes

d2x , ,.dx 
rn —7T = —kx — p—  

dt2 ’ dt

d2x Ax
o r  m ~37> +  f t —  +  k'x  =  0 . 

dt/ dt

21. From g — k/R2 we find k = gli2. Using a = d2r/d,t2 and the fact that the positive direction is 

upward wc get

gR2
i  1 f  -----------  —I—  ----

r2

kc f r = _ ___

dt2 a r2

d2r gR?or *5+1̂ =a
22. The gravitational force on m is F = —kMrm /r2. Since Mr = 4irSr^/3 and M  = 47r5i ?3/3 wc have 

Mr = i:iM j R3 and

F  = -k
Mrm

=  - k = -k
m.M

Now from F = rria = d?7'/dt2 we have

d-r , rnM d~r
m —w = —k ——r- r or —=•

dt2 R* dt2

dA

R *  

kM

r .

r .

23. The differential equation is —- = k(M — A).
dt
dA

24. The differential equation is =  ki(M  — A) — k^A.
dt

25. The differential equation is x'(t) =  r — kx(t) whore k > 0.

26. By the Pvthagorcan Theorem the slope of the tangent line is y — ,—

27. We see from the figure that 29 + a = tt. Thus

V 2 tan 9
—- = tan a = tan(7r — 29) = — tan 2$ = ------ .
-x v ; 1 — tan2 9

Sincc the slope of the tangent line is ?/ - tan 0 we have y/x = 2y'/[l — {yr)2]

or y — y(y')‘2 = 2xy', which is the quadratic equation y(y')'2 + 2xy' — y — i)

in y'. Using the quadratic formula, we get

f —2x± ^4x2 + 4y2 —x ± ijx2 + y2 

V 2 y y

Since dy/dx > 0, the differential equation is 

dy _  -x + ^x 2 + y2

dx y
or

dy

dx

.lie differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, P ~ eki, and a 

e-paramcter family of solutions is P =  cekt.
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29. The differential equation in (3) is dT/dt = k(T — Tm). When the body is cooling, T > Tm, so 

F Tm > 0. Since T is decreasing, dT/dt < 0 and k < 0. When the body is warming. T <Tm. so 

T — Tm < 0. Since T is increasing. dT/dt > 0 and k < 0.

30. The differential equation in (8) is dA/dt — 6 — .4/100. If A(t) attains a maximum, then dA/dt = 0 

at this time and A — 600. If A(t) continues to increase without reaching a maximum, then A'{t) > 0 

for t > 0 and A cannot exceed 600. In this case, if A'(i) approaches 0 as t increases to infinity, we 

see that A(t) approaches 600 as t increases to infinity.

31. This differential equation could describe a population that undergoes periodic fluctuations.

32. (a) As shown in Figure 1.3.22(b) in the text, the resultant of the reaction force of magnitude F

and the weight of magnitude mg of the particle is the ccntripctal force of magnitude muJ2x.

The centripetal force points to the center of the circle of radius x on which the particle rotates 

about the y-axis. Comparing parts of similar triangles gives

33. Frorn Problem 21, d~r/dt2 — —gR?/r2. Since R is a constant, if r =  R + s, then d?r/dt? = d2s/dt? 

and, using a Taylor series, we get

Thus, for R much larger than s, the differential equation is approximated by cPs/dt2 = —g.

34. (a) If p is the mass density of the raindrop, then m — pV and

If dr/dt, is a constant, then dm/dt =  kS where pdr/dt =  k or dr/dt = k/p. Since the radius is 

decreasing, k < 0. Solving dr/dt — k/p we get r = (k/p)t + co- Since r(0) = ro, co — and 

r = kt/p + ro.

F cos 9 — mg and F sin 6 =  moj2x.

(b) Using the equations in part (a) we find

muj2x u>2x

mg g

(b) From Newton’s sccond law. -r[rmi\ = mg, where v is the velocity of the raindrop. Then
LL'L

dv dm 
rn — + v —— ~ mg or 

dt dt

Dividing by 4p7rr3/3 we get

dv 3 k dv | 3k/p
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35. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the 

time in hours after noon, x(t) the depth in miles of the snow at time t, and y(t) the distance the 

plow has moved in t hours. Then dy/dt is the velocity of the plow and the assumption gives

dy . 
w x -  = k,

where w is the width of the plow. Each side of this equation simply represents the volume of anow 

plowed in one hour. Now let to be the number of hours before noon when it started snowing and 

let s be the constant rate in miles per hour at which x increases. Then for t > —to, x = s(t + to). 

The differential equation then becomes

dy _  k 1 

dt ws t + to

Integrating, we obtain

y =  —  [ln(t + io) + c]
ws

where c is a constant. Now when i = 0,y = 0 so c=  — Into and

y = i- ln ( l  + f ) .
W S \ t o J

Finally, from the fact that when t — 1, y =  2 and when t =  2, y = 3, we obtain

2 \ 2
IV

1 + t0) V1 + t0J

Expanding and simplifying gives tg + to — 1 =  0. Since to > 0. we find to ~ 0.618 hours 

37 minutes. Thus it started snowing at about 11:23 in the morning.

36. (1): =  kP is linear 
dt

dT
(3): —  = k(T - Tm) is linear

j  y

(6): = k(a — X)(,3 — X) is nonlinear 
dt

(10): y/2gh is nonlinear

(12): =  —g is linear

d?s . ds . ..
(15): m-rrr + k— = mq is linear 

' dt2 dt

(16): linearity or nonlinearity is determined by the manner in which W  and T\ involve x.

A-h

dA
(2): —  = kA is linear 

dt

dx
(•5): —  = kx(n + 1 — a;) is nonlinear 

dt

d A  „  A  . ,

(8): l i  = 6 “  Too 18 Unear

I11): + R 'j-t + ,̂'1 =  E (t) is linear

dv
(14): m,—~ = mg — kv is linear 

dt

21



Chapter 1 in Review

Chapter 1 in Review . * „t tr. -litJ? Si ..
': ~!:v ‘ vf r \:: .........*r”‘' c .........• r “• “ •“ ,7 5' r‘ j :v. .*» . ;f/

1. 4- ci el0x = 10cie10x: ^  = 10y
dx ax

2. -y-(5 + cie~2x) = —2cie~2x = —2(5 + cie_2;C — 5); ^  = -2{y - 5) or ^  = -2y + 10 
dx ax ax

3. —  (c\ cos 4- C2 sin A:.X') = — A;ci sin fcr + fcc? cos kx: 
dx

d2 9
(ci cos fcrc + C2 sin kx) =  —k2c\ cos kx — fc2C2 sin fcx =  —k?{c\ cos kx + 0 2 sin kx);

dx2

d2y ,2 d%lJ , ,2 n
* 3  =  - ^  or 5 ?  + A:!' = 0
d

4. —  (ci cosh A~;r + co sinh kx) ~ kci sinh kx + kca cosh kx: 
dx

d2
(ci cosh fcc + C2 sinh kx) = k2c\ cosh kx + k2c:-2 sinh kx = k2{c\ cosh kx + C2 sinh kx);

dx2

^  = k2y 01 ^ ~ k2y=0
5. y = c\ex + C2 xex; y' — c\ex + C2 xex + C2 ex; y" = c\ex + C2 xex + 2c2(?;

y" + y = 2(ciex + C2 xex) + 2c2ex = 2(ciex + C2 xex + C2 ex) = 2 y'; y" — 2yr + y = 0

6. y' — —c\ex sin x + c\ex cos x + C2 &x cos x 4- C2 CX sin x;

y" = — c\ex cos x — c\ex sinx — c\ex sin x + c\ex cos x — &2 (tx sin x 4- C2 &x cos x 4- C2 ex cos x + C2 ex sin 

= —2ciex sin x + 2 c2 ex cos x: 

y" — 2y' — —2ciex oosx — 2 c2 ex sinx =  —2y; y” — 2y' + 2y = 0

7. a,d 8. c 9. b 10. a,c 11. b 12. a,b;d

13. A few solutions are y = 0, y = c, and y = e1'.

14. Easy solutions to see are y =  0 and y = 3.

15. The slope of the tangent line at (x. y) is y'. so the differential equation is tj — x2 + y2.

16. The rate at which the slope changes is dy'fdx — y", so the differential equation is y" = —y' c 

y” 4- y' = 0.

17. (a) The domain is all real numbers.

(b) Since y' = 2j'ix1̂ .  the solution y = x2̂  is undefined at x — 0. This function is a solution ■ 

the differential equation on (—oo,0) and also on (0, oo).
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IS. (a) Differentiating y2 — 2y = x2 — x + c we obtain 2yy' — 2y' =  2x — I or (2y — 2)y' = 2x — 1.

(b) Setting :r = 0 and y = 1 in the solution wc have 1 — 2 = 0 — 0 + corc = —1. Thus, a solution 

of the initial-value problem is y2 — 2y = x2 — x — 1.

(c) Solving y2—2y— (x2—x—1) = 0 by the quadratic formula we get y =  (2±^/4 + 4(.x2 — x — 1) )/2 

= 1 ± V:r2 — x = 1 ± \Jx(x — 1). Since x(x — 1) > 0 for x < 0 or x > 1, we see that neither 

y = 1+ \Jx(x — 1) nor y = 1 — ^x(x — 1) is differentiable at x = 0. Thus, both functions are 

solutions of the differential equation, but neither is a solution of the initial-value problem.

1?. Setting x = a?o and y = 1 in y = —2/x + x, we get

2 -

Z1

1 = -----------h X0
X Q

or Xq - ;ro - 2 = (x-0 - 2)(xq + 1) = 0.

Thus, xq =  2 or xq =  —1. Sincc x = 0 in y = —2/x + x. we see that y = —2jx + x is a solution of 

■he initial-value problem xy' + y = 2x, y(—1) =  1. on the interval (—oo. 0) and y - —2/x + x is a 

? jlution of the initial-value problem xy' + y = 2x. y(2) = 1. on the interval (0, oc).

From the differential equation. y'( 1) = l 2 + [y(l )]2 =  1 + (—l )2 = 2 > 0, so y(x) is increasing in 

;:me neighborhood of x = 1. From y" = 2x + 2yy' we have y"( 1) = 2(1) + 2(—1)(2) = — 2 < 0, so 

.. .r) is concave down in some neighborhood of x = 1.

a)

2 3

y — X i j r  Cl y = -x2 + C2

b) When y = x2 + ci, y’ = 2x and (y')2 = 4x2. When y = —x2 + C2, y' - —2x and (y')2 = 4.x2.

oc 0 
2' ’ ~

x > 0.

_ he slope of the tangent line is y! !(_L4)= 6\/4 + 5(—l)a = 7.

I  ifferentiating y = x sin x + x cos x we get

y = x cos x 4- sin x — x sin x + cos x

y = —x sin x + cos x + cos x — x cos x — sin x — sin x 

= —x sin x — x cos x + 2 cos x — 2 sin x.
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Thus

y" + V = ~x sin x — x cos x + 2 cos x — 2 sin x + x sin x + x cos x =  2 cos x — 2 sin x.

An interval of definition for the solution is (—oo, oc).

24. Differentiating y — x sin x + (cos x) In (cos x) we get

/ • / —sina:\ , . X1 / ,
y = x cos x + sm x + cos x ----  — (sin x) In (cos x)

\ cos a: /

= x cos x + sin x — sin x — (sin x) ln(cos x)

= x cos x — (sin a:) ln(cos.,r)

and

y" =  —.xsinx + cosx — sin;r ( —SmX ) — (cosx) ln(cos.r)
V cos a; /

sin2 x
= —x sin x + cos x H----— — (cos x) ln(cos x)

cos X

1 — COS2 x
= —xsin:r + cos a: H---- ■ — (cosx) ln(cosa:)

cos x

= —x sin x + cos x + sec x — cos x — (cos a;) ln(cos a;) 

= —x sin x + sec x — (cos x) ln(cos x).

Thus

y" + y = —x sin x + sec x — (cos ,r) ln(cos a;) + x sin x + (cos x) ln(cos x) — sec x.

To obtain an interval of definition we note that the domain of In a; is (0,oc). so we must hart 

cos a; > 0. Thus, an interval of definition is (—tt/2, tt/ 2 ) .

25. Differentiating y — sin (In a:) we obtain y' ~ cos(lna;)/a: and y" = — !sin(lna;) + cos(lna:)]/a;2. Thei:

o if , o f  sin(ln x) + cos(ln x) \ cos (In x) . 
x y + xy' + y = x2 ( --- --- -------- - J + x --K-— - + sin (In a;) =  0.

An interval of definition for the solution is (0, oo).

26. Differentiating y =  cos(ln x) ln(cos(ln a:)) + (In x) sin(ln x) we obtain

, , 1 (  sin(ln.r)\ / sin(lna;)\ cos(lna;) sin(ln.r)
y' =  cosfln a;)— -— r --- --- - + ln(cos(ln.x))--- i + In a:— -̂- - H--- -̂- -

cos (In a;) \ x J \ " 'a; x x

ln(cos(lna;)) sin(lna;) (lnx) cos(hi.x)

a;
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and

y" = -x
. . . .005(111:/;) . . 1 / sm(lna;)\
In (cos (In re))-- --- - + sin(hi;r)-- -— -(--- --- -

x cosllna;)' x ' x-2

+ In (cos (In a')) sin (In a:)—x + x
x-

(In (

(In x)

sin(In x) \ cos (In x)

x x
— (lna:) cos (In x)

x

„,2
sin2 (In x)

■ ln(cos(ln a;)) cos(ln ar) H--- — - + ln(cos(lna;)) sin(ln j :)
cos (In x)

— (lna;) siii(ln;r) + cos(ln:r;) — (lna;) cos(lna:)

Then

x2y" + xy' + y =  — In (cos (In x)) cos (lna;)
sin2 (In a;)

+ ln(cos(lna;)) sin (In x) — (lna;) sin (In ;r)
cos(lna;)

f  cos (In x) — (In x) cos (In x) — ln(cos(ln a;)) sin (In x)

+ (In x) cos(ln x) + cos(ln x) ln(cos(ln x)) + (In x) sin (In x)

1sin2(In#) . sin2(Inx) -f cos2(Ina:)
v ’ +cos(lna;) = — v v ’ = sec (In a;).

cos (In a;) ' cos(lna:) cos(lnu;)

To obtain an interval of definition, we note that the domain of lna; is (0.oo), so we must have 

:os(lna;) > 0. Since cos a; > 0 when —7r/2 < x < tt/2, we require —tt/2 < lna: < tt/2. Since ex 

an increasing function, this is equivalent to e_,r/2 < x < e*^1. Thus, an interval of definition is 

,,-71/2 _e?r/2). (Much of this problem is more easily done using a computer algebra system such as 

'.lathematica or Maple.)

p-oblems 27 ~ 30 we have y' ~ 3c\(?x — 0 2.e~x — 2.

The initial conditions imply

ci + c2 = 0 

3 c i -  C2 -  2 =  0 ,

-a  c i

The initial conditions imply

Cl +  C2 =  1

3 c i  — C2 — 2 =  —3, 

- j ci = 0 and C2 =  1. Thus y = e~x — 2x.
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29. The initial conditions imply

3cie‘5 — C2e-i — 2 = —2,

cie3 + C2e 1 — 2 = 4

so ci = §e 3 and C2 - f e. Thus y = |e3a' 3 + f e X+1 — 2a;.

30. The initial conditions imply

c ie -3 +  C26 +  2 =  0

3cie-3 — c-2e — 2 =  1, 

so ci - |e3 and ox = — |e_1. Thus y = ie3-TK? — \e~x~l — 2,t.

31. From the graph we see that estimates for yo and yi are yo : —3 and yi =  0.

32. The differential equation is
dh cAq

y f c h .
dt Aw

Using Ao =  7r(l/24)2 =  7r/576, Aw = tt(2)2 = 4tt, and g — 32, this becomcs

^  =  _ £ ^ 0 v ® ;  =
(it 4tt 288

33. Let F(t) be the number of owls present at time t. Then dP/dt = k(P — 200 + lOt).

34. Setting A7(i) = —0.002 and solving A'(t) = —0.0004332A(£) for A(t), we obtain

A ' ( f ) - ° - 002  

‘  ̂ “  -0.0004332 ~ -0.0004332 ~ ' gramS'
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2 First-Order Differential Equations
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Exercises 2.1 Solution Curves Without a Solution
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Exercises 2.1 Solution Curves Without a Solution

i. he isoclines have the form y = —x + c. which are 

straight lines with slope —1.

The isoclines have the form x2 + y2 = c. which are 

circles centered at the origin.

I" a 1 When x = 0 or y = 4, dy/dx = —2 so the lineal elements have slope —2. When y — 3 or y = 5, 

dy/dx =  x — 2. so the lineal elements at (x, 3) and (x, 5) have slopes x — 2.

b ■ At (0, yo) the solution curve is headed down. If y —> oo as x increases, the graph must eventually 

turn around and head up, but while heading up it can never cross y = 4 where a tangent line 

to a solution curve must have slope —2. Thus, y cannot approach oo as x approaches oo.

1" "'.".'.on y < \x2, y' = x2 — 2y is positive and the portions of solu- 

curves “outside” the nullcline parabola are increasing. When 

> jx 2, y' =  x2 — 2y is negative and the portions of the solution 

::-ves "inside” the nullcline parabola arc decreasing.

-3-2-10  1 2 3

a ) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the nullclincs 

are x2 — y1 — 0 or y — ±x. In Problem 3 the nullclines are 1 — xy = 0 or y — l/x. In Problem

4 the nullclines are (sina;) cosy ■ 0 or x - rwr and y — 7r/2 + rm, where n is an integer. The 

graphs on the next page show the nullclines for the differential equations in Problems 1,3, and

4 superimposed on the corresponding direction field.

y
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Exercises 2.1 Solution Curves Without a Solution

(b) An autonomous first-order differential equation has the form y' =  f(y). Nullclines have tli- 

form y = c where /(c) =  0. These are the graphs of the equilibrium solutions of the differentia 

equation.

19. Writing the differential equation in the form dy/dx = y(l — y)(l + y) we see that critical 

points arc located at y =  — 1, y = 0, and y — 1. The phase portrait is shown at the right.

(a) (b)

(c) (d)

20. Writing the differential equation in the form dy/dx = y2(l — y)(l + y) we see that critical 

points are located at y =  — 1. y — 0, and y = 1. The phase portrait is shown at the right.

(a) (b)

- i

o--
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ic) (d)

Solving y2 — ‘3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the phase 

portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable (repeller).

jiving y2 - yz =  y2(l — y) = 0 we obtain the critical points 0 and 1. From the phase 

jrtrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

: jiving (y — 2)4 = 0 we obtain the critical point 2. From the phase portrait we see that 

is semi-stable.

' jiving 10 + 3y — y2 = (5 — y)(2 + y) — 0 we obtain the critical points —2 and 5. From 

::.e phase portrait we see that 5 is asymptotically stable (attractor) and —2 is unstable v 

:\'-peller). s--

A
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25. Solving y1{ 1 — if) =  y2( 2 — y)(2 + y) = 0 we obtain the critical points —2, 0, and 2. From
 ̂I

the phase portrait we see that 2 is asymptotically stable (attractor), 0 is semi-stable, and 

—2 is unstable (rcpeller).

o

- 2 -

26. Solving y { 2 —y ) ( 4 — y )  =  0 we obtain the critical points 0, 2. and 4. From the phase portrait

we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable (repellers). a
4 ~ -

2 -  -  

A
0

V

27. Solving yln(y -f 2) = 0 we obtain the critical points —1 and 0. From the phase portrait

we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller). a

o- 

u 

- i  ■

A 

-2 -

28* Solving yey — 9y = y(eJJ — 9) = 0 we obtain the critical points 0 and In 9. From the phase

portrait we see that 0 is asymptotically stable (attractor) and In 9 is unstable (repeller). a

In 9 -

u

0

A

29. The critical points are 0 and c because the graph of f(y) is 0 at these points. Since f(y) > 0 ft: 

y < 0 and y > c, the graph of the solution is increasing on (—oo,0) and (c, oc). Since f(y) < 0 fc:

0 < y < c. the graph of the solution is decreasing on (0, c).

Exercises 2.1 Solution Curves Without a Solution
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:e critical points are approximately at —2,2. 0.5, and 1.7. Since f(y) > 0 for y < —2.2 and 

: < y < 1.7, the graph of the solution is increasing on (—oc, —2.2) and (0.5,1.7). Since f(y) < 0 

: —2.2 < y  < 0.5 and y > 1.7, the graph is decreasing on (—2.2,0.5) and (1.7, oc).

y

1.7

0.5

- 2 . 2

. :r, the graphs of 2 =  t t / 2  and z  — sin y  we see that

2 y — sm y  = 0 has only three solutions. By inspection 

're that the critical points are —t t / 2 .  0, and t t / 2 .

:::: the graph at the right we see that

2 f  <  0  fo r  y  <  —tt/ 2— y  — s in y <
7T \  >  0  fo r  y  >  t t / 2

2 f > 0 for
— — sm y <
7T I < 0 for

r/2 < y < 0 

0 < y < 7r/2.

o --

. _> -nables us to construct the phase portrait shown at the right. From this portrait we see that

• 1 :.::d — 7r/2  are unstable (repellers), and 0 is asymptotically stable (attractor).

dx = 0 every real number is a critical point, and hence all critical points are nonisolated.

that for d y / d x  =  f ( y )  we are assuming that /  and f  are continuous functions of y  on

33



Exercises 2.1 Solution Curves Without a Solution.

some interval I. Now suppose that the graph of a nouconstant solution of the differential equation 

crosses the line y = c. If the point of intersection is taken as an initial condition we have two distinct 

solutions of the initial-value problem. This violates uniqueness, so the graph of any nonconstant 

solution must lie entirely on one side of any equilibrium solution. Since /  is continuous it can only 

change signs at a point where it is 0. But this is a critical point. Thus, f(y) is completely positive 

or completely negative in each region Rt. If y(x) is oscillatory or has a relative extremum, then 

it must have a horizontal tangent line at some point (xo, yo)- In this case yo would be a critical 

point of the differential equation, but we saw above that the graph of a nonconstant solution canno: 

intersect the graph of the equilibrium solution y =  yo-

34. By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must b-r 

monotone. Sincc y'{x) =  f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded abo\v 

by C2; lim:E_>0o y{x) — L. where L < 0 2 ■ We want to show that L = c-2 . Since L is a horizonta. 

asymptote of y(x), lim3._»0c y!(x) — 0. Using the fact that f(y) is continuous we have

f(L) = f Q ^ v ( x)) = J™ c/(y(^)) =  = °-

But then L is a critical point of /. Since ci < L < C2, and /  has no critical points between ci an..

02, L = 02.

35. Assuming the existence of the second derivative, points of inflection of y(x) occur where- 

y"(x) - 0. From dy/dx = f(y) we have d2y/dx2 = f(y ) dy/dx. Thus, the ^-coordinate of 

point of inflection can be located by solving f'(y) = 0. (Points where dy/dx =  0 correspond 

constant solutions of the differential equation.)

36. Solving y2 — y — 6 = (y — 3)(y + 2) = 0  we see that 3 and —2 arc critical a

points. Now d2y/dx2 = (2y — 1) dy/dx = (2y — l)(y — 3)(y + 2). so the only ______ + ___

possible point of inflection is at y = \ , although the concavity of solutions \f \

can be different on cither side of y = —2 and y =  3. Since y"(x) < 0 for -s1 1 1 11 1 '\1 1 j ̂

y < —2 and | < y < 3, and y"{x) > 0 for —2 < y < ^ and y > 3, we +

see that solution curves are concave down for y < —2 and \ < y < 3 and ~5 - |

concave up for — 2 < y < ^ and y > 3. Points of inflection of solutions of

autonomous differential equations will have the same y-coordinat.es beeausc between critical poi:.' -

they are horizontal translates of each other. !

37. If (1) in the text has no critical points it has no constant solutions. The solutions have neither 

upper nor lower bound. Since solutions are monotonic, every solution assumes all real values.
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The critical points are 0 and b/a. From the phase portrait we see that 0 is an attractor 

and b/a is a repeller. Thus, if an initial population satisfies Po > b/a, the population 

becomes unbounded as t increases, most probably in finite time, i.e. P(t) —► oo as t —> T. 

I: 0 < Po < b/a, then the population eventually dies out, that is, P(t) —> 0 as t —► oo. 

Since population P > 0 we do not consider the case Pq <0.

The only critical point of the autonomous differential equation is the positive number h/k. A 

phase portrait shows that this point is unstable, so h/k is a repeller. For any initial condition 

P 0) =  Po < h/k.dP/dt < 0; which means P(t) is monotonic decreasing and so the graph of P(t) 

:;:ust cross the 2-axis or the line P  =  0 at some time t,\ > 0. But. P{t\) = 0 means the population 

it extinct at time t,\.

Writing the differential equation in the form

dv k / mg \

dt m V k )

see that a critical point is mg/k. ^

From the phase portrait we see that mg/k is an asymptotically stable critical
it

" I'int. Thus, lim^oc v = mg/k.

■ riting the differential equation in the form

see that the only physically meaningful critical point is y jmg/k.

From the phase portrait we see that yrng/k is an asymptotically stable 

:i:ical point. Thus, lim^oc v =  yjrng/k.

a) From the phase portrait we see that critical points are a and ,3. Let X(0) =  Xq.

If Xo < a, we see that X  —> a as t —► oo. If a < X q < /3, we see that X  —> a as 

t —> oc. If Xq > B, we see that X(t) increases in an unbounded manner, but more 

specific behavior of X(t) as t —> co is not known.

[mg
V 'k
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(b) When a =  0 the phase portrait is as shown. If X q < a, then X(t) —»■ a as t —► oc. j 

If X q > a, then X(t) increases in an unbounded manner. This could happen in a a 

finite amount of time. That is, the phase portrait does not indicate that X  becomes
a ■■■■

unbounded as t —► oc.

(c) When k = 1 and a = 3 the differential equation is dXf dt =  (a — X)'2. For X(t) = a — l/(t + c] 

we have dXjdt = l/(t + c)~ and

1 M 2 1 dX
(a - X ?  =

For X(0) =  a/2 we obtain

For A"(0) = 2a we obtain

a — [a —
t-rC (t + c)2 dt

X  (t) = a — 

X(t) =  a~

1

t + 2j a 

1

t — 1/a ’ 

x
f/j ! fl 

: 11 
2a|/

a --- a:

!j

... _^a ‘•3
.........

.........

i f .....*
II

For X q > a, X(t) increases without bound up to t = 1/a. For t > 1/a., X(t) increases bu: 

X  —► a as t —► oo
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Exercises 2.2
Separable Variables

■ v of the following problems we will encov,nter an expression of the form, In j<7(y)| = f(x) + c. To 

d(y) we exponentiate both sides of the equation. This yields |<7(y)| = eAx)+c = e,:e / ^  which

- 9iy) — ±ece.f(x\ Letting ci =  we obtain g(y) = c\ĝ x\

:; :n dy =  sin 5.x dx we obtain y — — | cos 5x + c.

;:m dy = (x + l )2 dx we obtain y ~ j(x  -f 1)  ̂+ c.

: : m dy =  —e_3x dx we obtain y =  |e-3x + c.

1  J  7 i x  • 1  1. m ----—p dy = dx we obtain-----= x + cory =  l —
{y - 1)2 y -  1 ' x + c

1 4
':m - dy = — dx we obtain In \y\ = 4 In I#I + c or y = c\x4.

y %

l i . i
: .in —~dy = —2x dx we obtain —  - —x2 + c or y — —7;

c.

y* y “ z2 + ci

,':>m e~2ydy = e?xdx we obtain 3e~‘2y + 2(/jX = c.

: jiii yevdy — (e~x + e~'ix̂  dx we obtain yey — eu + e~x + = c.

:: :n (y + 2 + - J dy =  x2 hi x dx we obtain 7- + 2y + In |yj = ~r- In jx| — i;r'
V V J 2 3 9

1 ;  1 u+ . 2 1
: 7̂ ---TT7> dy — 7---- —77 dx we obtain ----- = ----- h c.

(2y + 3)2 J (4* + 5)2 2j/ + 3 4x + 5

1 1
' :m i---dy = ----h— dx or sin ydy = - cos2 x dx = — i ( l  + cos2x) dx we obtain

csc y ’ scc^x z

:-os y =  — \x — | sin 2x + c or 4 cos y = 2x + sin 2x + ci. 

s m  3 'v
•C'in 2y dy = --- 17—  dx or 2y dy = — tan 3x sec2 3.x dx we obtain y2 — —I  sec2 3.x + c.

cos'13.x ' 0

ey —ex
j in ----- k dy = ------o fix wc obtain — (e,J + 1) = A (ex + 1) + c.

(ev + l Y (ex + 1) 2V

V x 7 1 ( 9\ V2 / o\ 1/2
:: „-m--- :— 7777 dy = ------^  dx we obtain 1 + y =  (1 + x ) + c.

(1 + y2) (l+.x2)1/2 V } . V }

r: .'in — dS = A'dr we obtain S = cekr.

1 :an n   ̂ 7 n ^  = ^ we °^ta^L h1 IQ — 70| = kt + c or Q — 70 = ciefct.v̂>r / U
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17. From p   ̂j^ d P  — ^   ̂ ^ dP = dt we obtain In |P| — In |1 — P\ = t + c so that In 

t + c or --- — = ci e(. Solving for P we have P =

1 - P

1 - P  1 b l+ c ie* '

18. From c/Ar = ffe*"1"2 — l) dt we obtain In |Ar| = £ef+2 — e<+2 — t + c or Ar = Cie1

y ~~ 2 :e — 1 / 5 \ / 5 \
19. From --- - dy =  ---- dx or 1---- - dy = (1 ----- - ) dx we obtain y — 5 In \y + 31 =

y + Z x + 4 V y + 3/ V x + 4/

' z  +  4 x  0

x — 5 In |x + 4| + c or I - — j  = c\ex y.

20. From dy =  ^ dx or ( 1 H-- ■) dy = (l-{---- \ dx we obtain y + 2 In \y — 11 =
y — 1 ' x - 3 \ y — l j  \ x - 3 Jy- 1  x — 3 \ y - 1

x 4- 5 In Lt — 31 + c or ~ — ^  = c\ec~v.
(a: — 3)°

1 ■ _ fx 2 \
21. From x dx = j  ̂  ̂dy we obtain 5 a;2 = sin-1 y + c or y = sin + c i j .

1 1 ex 1 1
22. From — dy = —---— dx - 7— — r dx we obtain —  - tan-1 ex + c or y =

y2 ex + e x (ex)2 + 1 y ' tan 1 ex + c '

23. From - — dx = Adt we obtain tan-1 x =  At + c. Using x(tt/A) =  1 we find c = — 3ir/A. The
•1 | 1

solution of the initial-value problem is tan-1 x =  At — or x = tan (̂ At —

1 , 1 , 1 / 1  1 \ , 1 / 1  1 \ ,24. From — - ay — —̂— - dx or - --------- - \ dy = - ---------- dx we obtain
y2- l  :r2 — 1 2 \y-] y + 1 /  2 Var — 1 x + l j

In (y — 1| — hi |y + 1| = In |a: — lj — In la: + 11 + In c or ^ | = — — — • Using y(2) =  2 we find
y  i 1 ,X r  J-

y — 1 x — 1
c = 1. A solution of the initial-value problem is ~ ̂  ^  - or y = x.

25. From - dy = -—rj— dx = dx we obtain In \y\ =  — i  — In |x] = c or xy = cie~1/x. Using
l j J/ \  <!■ iX J »./;

y(—l) = —1 we find c\ ~ e-1. The solution of the initial-value problem is xy =  or

y = jx.
I26. From --- — dy =  dt we olrf.ain —g In |1 — 2y| = t  + c or 1 — 2y =  c\e~2t. Using y(0) =  5/2 wc fine

i — Zy

c-j = —A. The solution of the initial-value problem is 1 — 2y = —4e-2* or y -- 2e~ 2t + ^ .

27. Separating variables aud integrating we obtain

dx dy . _! . _ j
- () and sin x — sm y = c.

V l- X 2 y/l - y2
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Exercises 2.2 Separable Variables

Setting x =  0 and y =  V3/2 we obtain c — — 7r/3. Thus, an implicit solution of the initial-value 

problem is sin-1 x—sin-1 y = — tt/3. Solving for y and using an addition formula from trigonometry, 

we get

. 7T x \/3 V 1 — x2(* —i \ r  o *  ̂ ^
;y =  s m ^ s in  x  +  -  j  =  X cos -  +  y  1 -  x /  s in  -  =  -  +

—x
From --- ——77 dy = ------~ dx we obtain

1 + (2y) J 1 + (*2)2

^ tan-1 2y = — ̂  tan" 1 :c2 + c or tan-1 2y + tan- 1 x2 =  ci. 
z  z

Using y(l) = 0 we find c\ = 7r/4. Thus, an implicit solution of the initial-value problem is 

tail-1 2y + tan-1 z2 = tt/4 . Solving for y and using a trigonometric identity we get

2y = tan — tan ;r

1 /  7t _ i  9\
y — - tan I — — tan x J

1 tan | — tan(tan-1 x2)

2 1+ tan ̂  tan(tan_1 x2)

1 1 — x2

2 1 + x2 '

Separating variables, integrating from 4 to and using t as a dummy variable of integration gives

J 4 y dt Ja

lny(̂ f4 = J4 e~ t2(it

\ny(x) — lny(4) = j  e~r dt 
Ja

Using the initial condition we have

lny(a:) =  lny(4) +  jf e"f2dt =  In 1 +  e^'dt =  eT^ dt.
Thus,

y(x) =  eh e 1

9
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Exercises 2.2 Separable Variables

30. Separating variables, integrating from —2 to x, and using t as a dummy variable of integration gives

r /‘starts
y-2 jr at J-2

—y(t)~1 2 =  J  sint2dt

y(x)_1 + y(-2)_1 = J  ^ m t2d,t

—//(x)-1 = —y(—2)_1 + J  sint2dt 

y(x)~] =  3 — j  ^sint2dt.

Thus

= 3 - J ? 2 sin t2dt ‘

31. (a) The equilibrium solutions y(x) = 2 and y(x) =  —2 satisfy the initial conditions y(Q) = 2 and

y(0) - —2, respectively. Setting x = | and y = 1 in y =  2(1 + ce4x)/( 1 — ce4x) wc obtain

1 = 2
1 + ce 

1 — ce
1 — ce =  2 + 2ce, —1 = 3 ce, and c =  —— .

3e

The solution of the corresponding initial-value problem is

1 _  ! p4 a?-l o _  fi4x— 1

y =  2— A - -r = 2- C
1 + 3 + e‘

(b) Separating variables and integrating yields

i  In |y — 2| — ^ In |y + 2| + In ci = x
4  4

In \y — 2\ — In \y + 2j + In c = 4x

c (y  -  2 )
In

y + 2
y -

= 4.x

=  e
y + 2

Solving for y we get y =  2(c + e4a:)/(c — e4x). The initial condition y(0) = —2 implies 

2(c+ l)/(c — 1) = —2 which yields c = 0 and y(x) = —2. The initial condition y(0) = 2 does 

not correspond to a value of c, and it must simply be recognized that y(x) =  2 is a solution or 

the initial-value problem. Setting x = | and y — 1 in y =  2(c + e4x)/(c — e4x) leads to c = — 3f. 

Thus, a solution of the initial-value problem is

_ 3e +  e4^ 3 — e4 x - i
y  =  2 — ----------—  =  2

—3e — e4a: 3 + e4-14;r— 1
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Exercises 2.2 Separable Variables

32. Separating variables, wc have

dy dx

y2 - y x 

Using partial fractions, wc obtain

dy = hi lar| + c

In Jy — lj — In jy| =  In |.?;| + c

Solving for y we get y = 1/(1 — cix). Wc note by inspection that y =  0 is a singular solution of the 

differential equation.

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 — 0), which is true for all values of c\. Thus, 

solutions passing through (0, 1) are y =  1/(1 — cix).

(b) Setting x =  0 and y = 0 in y = 1/(1 — c\x) we get 0 =  1. Thus, the only solution passing 

through (0,0) is y = 0.

(c) Setting x =  \ and y = \ we have | = 1/(1 — 5 ci), so c\ — —2 and y — 1/(1 + 2x).

I'd) Setting x = 2 and y = { wc have | = 1/(1 —2ci), so ci = -| and y = \/(l + '^x) = 2/(2 + 3x).

I-;. Singular solutions of dy/dx = xy 1. — y2 are y = — 1 and y =  1. A singular solution of 

_|_ Q-x'jdyjdx = y2 is y =  0.

14. Differentiating In (x2 + 10) + csc y = c we get

x2 + 10

x2 + 10 sin y sin y dx

2x 1 cos y dy _

2x sin y dx — (x2 + 10) cos ydy = 0.

iting the differential equation in the form

dy 2x sin2 y

dx (x2 + 10) cosy

see that singular solutions occur when sin2 y = 0, or y = km, where k is an integer.
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35. The singular solution y = 1 satisfies the initial-value problem.

Exercises 2.2 Separable Variables

y
1,0 1

- 0 . 0 0 4 - 0 . 0Q2

0.9 8

0 .0 0 2  0 .0 0 4

36. Separating variables we obtain
dy

(V - I )2
= dx. Then

1 x + c — 1
= x + c and y =

y - 1 x - r e

Setting x =  0 and y =  1.01 we obtain c = —100. The solution is

x -  101
y = x — 100

37. Separating variables we obtain
dy

{ y -  l ) 2 +  0 .0 1
=  dx. Then

1 x + c
10 tan 10(y — 1) = x + c and y =  1 + — tan ^  

Setting x =  0 and y — 1 we obtain c = 0. The solution is

v = 1 + i tmTo-
38. Separating variables we obtain

dy
= dx. Then,

(y - l )2 - 0.01

from (11) in this section of the manual with u = y — 1 and 

a = 4  , we get

5 In
lOy - 11

= x + c.
lOy — 9

Setting x =  0 and y = 1 wc obtain c = 5 In 1 = 0. The solution 

is

5 In
lOy - 11

lOy - 9
= x.

Solving for y we obtain

y1.02?

- 0 . 0 0 4 - 0 . 0 0 2 0 .0 0 2  0 .0 0 4

0 .9 8

1 .0004

1.0002

0.9996?

0 .9 99 6
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Exercises 2.2 Separable Variables

l l  + ge^ 5 

V~ 10 + 10ex/5 '

Alternatively, we can use the fact that

/  (y _  o.oi =  -oT “ l lr l  IT T  = - 10t“ h_110fe - !)•

(We use the inverse hyperbolic tangent becausc \y — lj < 0.1 or 0.9 < y < 1.1. This follows from 

the initial condition y(0) = 1.) Solving the above equation for y wc got y — 1 + 0.1 t,anh(x/10).

39. Separating variables, we have

dy = dy (1 _l/2_ _  JV 2_\

y - y 3 i/(i-y)(i+y) \y ' i - y  i + y )  v <x'

Integrating, we get
1 '1 

ln \y\ -  9111 |i -  y\ -   ̂in |i + y\ =  % + c.

When y > 1, this becomes

\n y - J ln(y - 1) - ^ ln(y + 1) =  In J?-. = x + c.

2 2 y / y *  - 1

Letting x = 0 and y = 2 we find c = ln(2/\/3). Solving for y we get yi (x) = 2c®/V4e2x — 3. where 

.r > ln(-\/3/2).

When 0 < y < 1 we have

lny - | ln(l - y) - ^ ln(l. + y) =  In ■■ , —.. =  :c + c.2 2 V1 - y
Letting x = 0 and y = | we find c = ln(l/\/3). Solving for y we get yi{x) — ex/y/e2x + 3, where 

—OO < X < oo.

When — 1 < y < 0 we have

In(-V) “  5 !“ ( !- » ) -  5 l" (l + V) =  to , V =  x + c.2 2 VT-y
Letting x = 0 and y — — \ we find c = ln(l/\/3). Solving for y we get ys(x) = —ex/sj~e2x + 3 , 

where — oc < x < oo.

When y < — 1 wc have

H ~ y )  - \ M 1 - y ) - \  M - 1 - v) = ln , „ y  = x  + c.
2 2 \ / y 2 - 1

43



Exercises 2.2 Separable Variables

Letting rr =  0 and y — —2 we find c = ln(2/\/3). Solving for y we get Vi(x) =  —2ex/y/A.e?x — 3. 

where x > ln(\/3/2).

Y

4}i
I T " T " 3  4 5

-2]

-41

-4 -2  : 2 4 
- 2;

-4

-41

40. (a) The second derivative of y is

d2y dy/dx l/(y — 3)

dx2 ( y - i) 2 (y-3)2 (y-3)3 '

The solution curve is concave down when d2y/dx2 < 0 or 

y > 3, and concave up when d2y/dx2 > 0 or y < 3. Prom 

the phase portrait wc see that the solution curve is decreasing 

when y < 3 and increasing when y >  3.

/"■
1 2 3 4 5

(b) Separating variables and integrating we obtain

(y — 3) dy — dx

2 V~ ~ 3V = x + c 

y2 - 6y + 9 =  2x + c\

(y ~ 3)" = 2x + ci

y = 3 ± y/2x + c i.

The initial condition dictates whether to use the plus or minus sign. 

When yi (0) =  4 we have c\ = 1 and y\(ar) = 3 4- y/2x + 1.

When j/2(0) = 2 wc have ci = 1 and 2/2 (s) — 3 — \/2x + 1 .

When 1/3(1) = 2 we have cj = — 1 and yz(x) = 3 — y/2x — 1 .

When y±(—1) = 4 we have c\ = 3 and 2/4(x) = 3 + y/2x + 3.

41. (a) Separating variables we have 2ydy = (2x + 1 )dx. Integrating gives y2 = x2 + x + c. Whci. 

y(—2) -- —1 we find c — — 1. so y2 = x2 + x — 1 and y =  —\/x2 + x - l .  The negative squar-. 

root is chosen because of the initial condition.
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Exercises 2.2 Separable Variables

(b) From the figure, the largest interval of definition appears to be y

approximately (—oc. —1.65).
2

(c) Solving x2 + x — 1 = 0 we get x = — | ± |\/5, so the largest interval of definition is 

(—oo, — | — g\/5)- The right-hand endpoint of the interval is excluded becausc y = 

~Vx2 + x — 1 is not differentiable at this point.

(a) From Problem 7 the general solution is Se~2y + 2e3x = c. When y(0) =  0 we find c =  5. so 

Se~2y + 2e3x = 5. Solving for y we get y = In ^(5 — 2e3x).

(b) The interval of definition appears to be approximately (—oc,0.3). y
2

- 2_

-1

-2

(c) Solving 5(5 — 2e3x) = 0 we get x = g ln(|), so the exact interval of definition is (—00, | In §).

;3. (a) While 1 1 2 (3:') =  — \/25 — x2 is defined at x = — 5 and x = 5, y^x) is not defined at these values, 

and so the interval of definition is the open interval (—5,5).

(b) At any point on the z-axis the derivative of y(x) is undefined, so no solution curve can cross 

the .x-axis. Since —x/y is not defined when y =  0, the initial-value problem has no solution.

=4. (a) Separating variables and integrating we obtain x2 —y2 = c. For c ^  0 the graph is a hyperbola 

centered at the origin. All four initial conditions imply c =  0 and y = ±.r. Since the differential 

equation is not defined for y = 0, solutions are y — ±x, x < 0 and y =  ±x, x > 0. The solution 

for y(a) = a is y = x. x > 0; for y(a) — —a is y = —x; for y(—a) =  a is y = —x. x < 0; and for 

y(—a) = —a is y = x, x < 0.

(b) Since x/y is not. defined when y = 0, the initial-value problem has 110 solution.

(c) Setting x = 1 and y — 2 in x2 — y2 = c we get c =  —3, so y2 = x2 + 3 and y(x) = Vx2 + 3, 

where the positive square root is chosen because of the initial condition. The domain is all real 

numbers since x2 + 3 > 0 for all x.
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45. Separating variables we have dy/{\j\ + y2 sin2 y) = dx which 

is not readily integrated (even by a CAS). We note that 

dy/dx > 0 for all values of x and y and that dy/dx =  0 

when y =  0 and y — tt: which are equilibrium solutions.

46. Separating variables we have dy/ (y/y+y) =  dx/(y/x+x). To integrate f  dx/(y/x + x) we substitute 

u? = x and get

/ 2u f 2 
--- ~~2 du = / ----du = 2 hi 11 -i- u| + c =  2 ln(l + yfx) + c.

(it | ’ (/- J  1  1

Integrating the separated differential equation we have

2 ln(l + y/y) = 2 ln(l + y/x) + c or ln(l + y/y) ‘ ln(l + ) + In c\.

Solving for y we get y = [ci(l + y/x-) — l]2.

47. We are looking for a function y(x) such that

Using the positive square root gives

dy_ 

dx

dy
= dx sin 1 y = x + c.

\/l - v 2

Thus a solution is y =  sin(;c + c). If we use the negative square root we obtain

y =  sin(c — x) = — sin (2; — c) =  — sin(.x + ci).

Note that when c: — e.\ — 0 and when c = cj = 7t/2 we obtain the well known particular solution
I

y = sin a-, y =  — sin®, y =  cosx, and y = — cosx. Note also that y — 1 and y =  — 1 are singuis 

solutions.
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(b) For |a;| > 1 and |yj > 1 tlie differential equation is dy/dx = y'y2 — 1 /■y/x1 — 1. Separating 

variables and integrating, we obtain

dy dx , , _i , _i
... = ,  ̂ = and cosh y =  cosh x + c.

Setting x =  2 and y =  2 wc find c ■ cosh-1 2 — cosh-12 =  0 and cosh-1 y =  cosh-1 x. An 

explicit, solution is y = x.

49. Since the tension T\ (or magnitude T\) acts a,t. the lowest point of the cable, we use symmetry 

to solve the problem on the interval [0, L/2). The assumption that the roadbed is uniform (that 

is. weighs a constant p pounds per horizontal foot) implies W  - px, where x is measured in feet 

and 0 < x < L/2. Therefore (10) in the text becomes dy/dx =  {p/T\)x. This last equation is a 

separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the 

initial condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (p/2T\)x‘1 + a. 

In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that 

y(L/2) =  h + a. By applying this last condition to y(x) - (p/2T\)x2 + a enables us to express 

p/2T\ in terms of h and L: y(x) — (Ah/I?)x2 + a. Since y(x) is an even function of x, the solution 

is valid on —L/2 < x < L/2.

50. (a) Separating variables and integrating, we have (3y2 + 1 )dy =

— (8a; + 5) cite and y3 + y — —4a.-2 — 5x + c. Using a CAS we show 

various contours of f(x, y) =  y3 + y+ 4a;2 + 5a'. The plots shown 

on [—5,5] x [—5.5] correspond to c-values of 0, ±5, d=20, ±40,

±80, and ±125.

(b) The value of c corresponding to y(0) = —1 is /(0. — 1) = —2; to 

y(0) = 2 is /(0.2) = 10; to y(—1) = 4 is / (—1,4) = 67: and to 

y(—1) = —3 is —31.

51. (a) An implicit solution of the differential equation (2y + 2)dy — (4a:3 + 6x)dx = 0 is

y2 + 2y — a:4 — 3a:2 + c =  0.

y
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The condition y(0) =  —3 implies that c = —3. Therefore y2 + 2y — x4 — 3x2 —3 =  0.

(b) Using the quadratic formula we can solve for y in terms of x:

—2 ± a/4-1-4(x4 + 3x2 + 3)

y  = ------------~-----------2-------------------------'

The explicit solution that satisfies the initial condition is then

y — — 1 — \Jx4 + 3x3 + 4 .

(c) Prom the graph of f(x) — x4 + 3x3 + 4 below we see that f(x) < 0 on the approximate inter'.-- 

—2.8 < x < —1.3. Thus the approximate domain of the function

y — —1 — \fx'̂  + Zx̂  + 4 =  — 1 — \J f(x)

is x < —2.8 or x > —1.3. The graph of this function is shown below.

£ (x)

(d) Using the root finding capabilities of a CAS, the zeros of /  are found to be 

—2.82202 and —1.3409. The domain of definition of the solution y(x) is then 

x > —1.3409. The equality has been removed since the derivative dy/dx does 

not exist at the points where f(x) = 0, The graph of the solution y — <p(x) is 

given on the right.

52. (a) Separating variables and integrating, we have 

(—2 y + y2)dy = (x — x2)dx

-1 -V f  (x;

and
9 1 1 1 ^

- V + 3 V = 2 X - r + C -

Using a CAS we show some contours of f(x, y) = 2yi— 

6y2 + 2x3 — 3x2. The plots show on [—7,7] x [—5, o] 

correspond to c-values of —450, —300, —200, —120, 

-60, -20, -10, -8.1, -5, -0.8, 20, 60, and 120.
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(b) The value of c corresponding to y(0) = 3 is /(0, | ) =

—̂  . The portion of the graph between the dots cor­

responds to the solution curve satisfying the intial con­

dition. To determine the interval of definition we find 

dy/dx for 2y3 — 6y2 + 2a:3 — 3:r2 — . Using implicit 

differentiation we get yf =  (x — x2)/(y2 — 2y), which 

is infinite when y — 0 and y = 2. Letting y = 0 in 

2y:i — 6y2 + 2x'i — 3x2 =  — ̂  and using a CAS to solve

for x we get x - —1.13232. Similarly, letting y = 2, we find x - 1.71299. The largest interval 

of definition is approximately (—1.13232,1.71299).

(c) The value of c corresponding to y(0) = —2 is /(0, —2) =  y 

—40. The portion of the graph to the right of the dot 

corresponds to the solution curve satisfying the initial 

condition. To determine the interval of definition we find 

dy/dx for 21/3 — 6y2 + 2xi — 3a:2 =  —40. Using implicit 

differentiation we get y' = (x — x2)/(y2 — 2y), which 

is infinite when y = 0 and y = 2. Letting y — 0 in 

2y?) — 6y2 + 2a:3 — 3a:2 =  —40 and using a CAS to solve

for a: we get x — —2.29551. The largest interval of definition is approximately (—2.29551, oo).

Exercises 2.3

1. For y — by — 0 an integrating factor is e J ocix = e ox so that —  [e oxy
dx L J

—oo < x < oo. There is no transient term.

2. For y1 + 2y — 0 an integrating factor is eJ 2 dx = e2x so that

—oo < x < oo. The transient term is ce 2x.

A
dx

<-2xy

= 0 and y = ceox for 

= 0 and y — ce~2x for

d
3. For y' + y — eix an integrating factor is eJ dx = ex so that —  [e'Ty] -- and y - ie3* + ce~x for

dx * 4
—oo < x < oo. The transient term is ce x.

4. For y' -f- Ay = 4 an integrating factor is eJ 4 dx == e4x so that [e4x
dx L

for — oo < x < oo. The transient term is ce~4x.

V = |e4x and y =  A + ce -4x
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5. For y'+3x2y = x2 an integrating factor is eJ ,ix dx — e*3 so that
dx

-3
e y =  x2ef3 and y =  |+o.

for — oo < x < oc. The transient term is ce—X

6. For y' + 2xy = x:i an integrating factor is eJ 2xdx — ex so that -r~
dx

t 9 O
\x? — ^ + CC~X~ for — oo < x < oc. The transient term is ce~x~.

j *
e y = £3e* and .. =

1 1  d 1 1
7. For y' + — y =  —~ an integrating factor is — x so that —  [xy] = — and y = — In x

x xL dx x x
for 0 < x < oo. The entire solution is transient.

8 .  For y' — 2y = x2 + o an integrating factor is e /  2 dx =  e 2x so that y -  fe 2xy
(JLJL

and y =  —^x2 - - j  + ce2x for — oo < x < oc. There is no transient term.

=  x V 2*  +  O f'

1 1 d 
9. For i f ---y = x sin x an integrating factor is e~JO/;r)rf3: =  — so that —

•// CLXX
y — cx — x cos x for 0 < x < oo. There is no transient term.

2 3

x ' x

for 0 < x < oo. The transient term is cx~2.

1 1 
- yx .

=  sin a:

10. For i/  + —y = — an integrating factor is eJ (2/a:)rfx = x2 so that x2y| - dx and y =  § + c:: t  * t  ri'r L * J zdx

4 dt
11. For y' + — y = :r2 — 1 an integrating factor is eJ (4i*)<lx = x 4 so that —  xAy

x ' dx 1 ■

y  — — ix  + cx-4 for 0 < x < oo. The transient term is cx~4.

= x6 — x4 &:

12. For y'-
x d

y = x an integrating factor is e~Nx,/(1+x̂ dx = (x+l)e-a; so that —  (x + 1 )e~xy 
(1 + x) dx l

{̂X | 3
x(x + l)e~x and y = —x — —— — H---—  for —1 < x < oo. There is no transient term.

v ' J x + 1 x + 1

( 2 \ €>x ■ d 
H —  ) y = —? an integrating factor is e-l t1+(2/*)]^ _  X2ex so \x2exy

x j xz dx L ' J

2xe a:

1 ex c.e~x

2 x2
+ t-2 for 0 < x < oo. The transient term is

ce

x2

14. For y' + (\ + ~') ?/ = —e x sin 2.x an integrating factor is =  xex so that [xexy_
x x

1 ce
sin 2x and y — — r—e x cos 2x +

2x x
for 0 < x < oo. The entire solution is transient.

15. For ~  — -x = 4yD an integrating factor is e J(4̂ dy — elny 4 =  y 4 so that -7- \y 4x =  Ay a:.:
rht fn " ' dy l Jdy y

x =  2y 6 + cy4 for 0 < y < 00. There is no transient term.
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^  + -x = ev an integrating factor is eĴ '2̂ dy — y2 so that -7“ 
dy y ' dy

2 2 . c c
r = -- H— s-e2' + for 0 < y < 00. The transient term is .

y y2 ir ' yz

r d
For y+(tan.x)?y = sec a; an integrating factor is eJ tan x (lx = sec a* so that —  [(sec.*) y\ =  sec2 x and

dx
j =  sin x + c cos x for —tt/2 < x < tt/2. There is no transient term.

For 2/  + (cot x)y - sec2 x csc x an integrating factor is eJ cot x dx = eln-smxl =  sin a; so that
d - o

[(sin x) y) — sec x and y = sec a; + ccsc x for 0 < x < tt/2. There is no transient term.

T  -1- 9  0'T .P~X r fl.
For yf + -— ~ y = -—-—  an integrating factor is eJ [(x+2)/(x+̂ )]dx — (x + l)ex. so —  \(x + l)exy] = 

x + 1 ' x + 1 dx
x2 c

2.r and u = ---- e x ---- - e x for — 1 < x < 00. The entire solution is transient.
x + 1 x + 1

For y'-\--y - ^  an integrating factor is eJiA/(x+2)\dx — (x + 2)4 so that ~  [(a; + 2)4yl =
x + 2 (x + 2)2 0 v J dx Lv 1

~v.x + 2)2 and y - ^(a; + 2)_1 + c(x + 2)~4 for —2 < x < o o .  The entire solution is transient, 
o

dv
For — + r see 6 — cos 9 an integrating factor is eJ s<]c()d0 = ein |seen-tan_  sec q _|_ tan/9 so that 

dt)

~  [(sec 9 + tan 6)r] — 1 + sin 9 and (sec 9 + tan 9)r = 9 — cos 9 + c for —tt/2 < 9 < 7t/2 . 
i d

For + (21 — 1 )P — 4t — 2 an integrating factor is g/(2t-1)rff = so that 
dt dt

■it — 2)et and P = 2 + cei_ r  for —oc < t < 00. The transient term is ce*-t .

For 1/+  ( 3 + — ̂  y = --- an integrating factor is e-/ [•i+(1/T)i,il: =  xc*x so that —  [xe3:ryj - 1 and
V xJ x dx L ' J

o ,  >
.7 = e H----- for 0 < x < oo. The entire solution is transient.

x

For 1/  + ^  y = £ J lJ : an integrating factor is e/i2/ ^ '-1)]*' = -— 1 so that —  
x* - 1 x - 1 x + 1 dx

and (:/: — 1 )y = x(x + 1) + c(x -f 1) for — 1 < x < 1.

For y' + - y = — ex an integrating factor is e f^ ^ :)dx — x so that ~  \xy\ - ex and y = —ex + — 
x x dx ' ’ x x

1 2 — e
:or 0 < x < oc. If y(l) =  2 then c = 2 — e and y = —ex H---- -.

x x

For ~  x = 2y an integrating factor is e~ }(l/y)dy _  i  so that —  ̂
dy y y dy

° f - l P

x — 1
X  +  1 .

=  1

—X
y

- 2 and x = 2y2 + ay
49

for 0 < y < 00. If y( 1) = 5 then c = —49/5 and x ■ 2y2 — — y.
5

For f-j- + y  I = T~ an integrating factor is eJ dt =  eRt/L So that — \eRt' L i] — —eRt/L and 
dt L L dt 1 1 L
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E

R

dT

i  =  ^ -  +  ce Rt/L for —oc <  t <  oc. If v'(0) =  tQ then c =  i o — E/R  and i  =  —  +  ( i $  — — 'j  
R R. \ R J

E  

R  

d  r - i28. For —-- kT = —Tmk an integrating factor is k̂ dt =  e kt so that 4- fe kiT] - —Trnke kt an:
(it dt

T - Tm. + cekt for —oo < t < oo. If T(0) - To then c =  7q — Tm and T =  Tm + (To — Tm)ekt.

29. For ?/ H-- —rV = —— r an integrating factor is = x + 1 so that ~-\(x + l)y| =
x +1 x +1 dx

X X c
lnx and y = ——— In a,’ --- —- H---—  for 0 < x < oc. If y(l) =  10 then c = 21 and

&- + 1 x + 1 x + 1

21X _ xy = ---- hi x -
x + 1 x + 1 ' x + 1

30. For i/+(tana)y =  cos2 x an integrating factor is e-ltanx<ir = ein|secx| — sec x so that —  [(seex) y] =
f.AtJU

cosx and y = sin x cos x + a cos x for —tt/2 < x < tt/2. If y( 0) = —1 then c = —1 and y = 

sin x cos x — cosx.

31. For y' + 2y =  f(x) an integrating factor is e2x so that

e2x = { ie2x + ci, 0 < x  < 3  

W  x > 3.

If y(0) - 0 then c\ = —3/2 and for continuity we must have 

C2 — |e6 — | so that

| i ( l  -e~2x), 0 < x < 3

V [ |(e6 - l)e~2a\ x > 3.

32. For y' -f y = f(x) mi integrating factor is ex so that

ex + ci, 0 < x < 1 

—ex + C2, x > 1.

If y(0) = 1 then cj. =  0 and for continuity wc must have C2 = 2e 

so that

1 * - -

y e x  =

1. 0 < x < 1
y =

2e1~x - 1, x > 1.

33. For y' + 2xy = /(x) an integrating factor is ex so that

2 f  \ex~ +  c\, 0 <  x <  1 
ye: =

{ 02,  X >  1.

If y(0) =  2 then cj = 3/2 and for continuity we must have 

C'2 = + 5 so that
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4 . For

, 2x

y + T T * y

v

X

i  + fe - L, 

(he +1) 0 < x < 1 

x > 1.

1 +  X2 '
—x

1 +  X2 '
'ii integrating factor is 1 + x2 so that

0 < x < 1 

x > 1,

-1  —

( l + x2) y =
0 < x < 1\x? + ci,

~ lx 2 + C2, X >  1.
y(0) = 0 then ci =  0 and for continuity wc must have C2 =  1 so that

r i i

y -
2 2(1 + x2) ’

0 < x < 1

[ 2 (1 + x2) 2

1: . *.Ve first solve the initial-value problem y' + 2y = 4a:. y(0) = 3 on the interval 

j. 1]. The integrating factor is cJ 2dx = e2x. so

4-[e2xy} = ixe2x 
dx

i2xy - j  4xe2xdx - 2xe2x — e2x + C\

- 2 xy = 2x — 1 + c\e

Vsing the initial condition, we find y(0) = — 1 + c\ = 3, so c\ = 4  and 

, = 2x — 1 + 4e-2x, 0 < x < 1. Now, since y(l) = 2 — 1 + 4e~2 = 1 + 4e~2, 

-re solve the initial-value problem y' — (2fx)y =  4a;, y( 1) = 1 + 4e-2 on the 

interval (1. oo). The integrating factor is eJ(-‘2/x)eix - c-2in* _  x-2̂  s0

d . i _o 4 
- [*  t i = 4 x X - = -

-2 f 4
* y = I ~ dx = 4 In a: +

7 a:

y = Ax2 In x + C'yx2.

C2

We use In a; instead of In |a;| because x >1.) Using the initial condition wc find y(l) = — l+4<? 2, 

' ij = 4:r;2 In a: + (1 + 4e_2).x2, x > 1. Thus, the solution of the original initial-value problem is
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( 2x — 1+ 4e~2x. 0 < x < 1

^ \ 4.r2 In x + (1 + 4e_2)a;2. x > 1.

See Problem 42 in this section.
x  ___36. For y' + exy = 1 an integrating factor is ee . Thus

d  r - ,.X , . X  f  X t
—  [( ' y\ = e and e y = / e dt + c. 
dx ' Jo

From 2/(0) =  1 we get a =  e, so y = e-6* Jq ee dt + e1-̂ .

When y' + exy = 0 we can separate variables and integrate:

— = —ex dx and In lyj = — ex + c.
V

Thus y =  c\e~ .̂ Prom y(0) =  1 we get ci =  e, so y = e1-e .

When if + exy = ex we can see b,y inspection that y = 1 is a solution.

37. An integrating factor for y' — 2xy = 1 is e~x . Thus

2 rx ,2 \Fir 
e~x y = / e d i =  ~̂- erf(z) + c

*/ 0 a

y = ~~ex crf(x) + cex .
&

From y(l) = (v/7r/2)e erf(l) + ce = 1 we get c = e-1 — ^  crf(l). The solution of the initial-va/: 

problem is

y = ^e^erffa) + (e~l - ^ e r f ^ e * 2

=  ex -1 -r ex~(erf(x) — erf(l)). 
z

38. We want 4 to be a critical point, so we use y' = 4 — y.

39. (a) All solutions of the form y = x°ex — x4ex 4- cx4 satisfy the initial condition. In this caf-

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied and t: 

initial-value problem does not have a unique solution.

(b) The differential equation has no solution satisfying y(0) = (jq . yo > 0.

(c) In this case, since .-eo > 0, Theorem 1.2.1 applies and the initial-value problem has a unic 

solution given by y =  x^ex — x4ex + c.r4 where c : vq/xq — XQex° + ex°.

40. On the interval (—3,3) the integrating factor is

ej  x d x / ( x 2—9) _  e -  f  x d x / ( 9 - x 2) _  g £ ln ( 9 - x 2) _  ^ /g  _  ^.2
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and so
d

dx
v'o" x2y - 0 and y =

V9 —a:.2

We want the general solution to be y =  3x — 5 4- ce x. (Rather than e x, any function that 

approaches 0 as x —>• oo could be used.) Differentiating we get

y' = 3 — ce-* = 3 — (y — 3a: + 5) = —y -f- 3x — 2, 

so the differential equation y1 + y = 3x — 2 has solutions asymptotic to the line y = 3.x — 5.

The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1 is

1 — 1/e. Thus, y is not differentiable at x =  1.

(a) Differentiating yc = c/a:3 we get

3cy'c X41
so a differential equation with general solution yc =  e/.r3 is xy' + 3y =  0. Now

xy'p -f 3yp = x(3x2) + 3(.x3) = 6a:3

so a differential equation with general solution y — c/x3 + z3 is xy' -j- 3y = 6a:3. This will be a 

general solution on (0, oo).

(b) Since y( 1) = l 3 — l / l 3 =  0, an initial condition is y( 1) = 0. Since 

1/(1) = l 3 + 2/13 = 3, an initial condition is y(l) = 3. In each 

case the interval of definition is (0, oc). The initial-value problem 

xy' + 3y = 6a:3, y(0) = 0 has solution y = a:3 for —oo < x < oo.

In the figure the lower curve is the graph of y(x) — a;3 — 1 /a:3.while 

the upper curve is the graph of y =  x3 — 2/a:3.

(c) The first two initial-value problems in part (b) are not unique. For example, setting 

1/(2) = 23 - 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to 

the solution y = a:3 — 1/a:3.

Sincc ef  p(x)dx+c = ec€f  P(z)dx _  CieJ P{x)dX' we wou](j have

cie-f p(x)dxy = C2 + J ^ ^ m d x  and e^p^ dxy — cz + J  eJ p^ cla: f(x) dx, 

which is the same as (6) in the text.

We see by inspection that y = 0 is a solution.

The solution of the first equation is x =  eie_Al*. From a;(0) = x q  we obtain ci = x q  and so 

x — X Q e~ X l t . The second equation then becomes

dy
4r =  c — A-2y 
dt
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which is linear. An integrating factor is e*2*. Thus

y  [ex'2ty] = xoAie = aroAie^2 ^
Cot*

M y  =  ^ Ai  e(A2-Ai)f + ^

A2 - Ai 

.x'oAi
. e“Ajt_|_c g  A'2<_

A2 -Al

From y(0) = yo we obtain C2 =  (yoAa — yoAi — £oA])/(A2 — Ai). The solution is

_  sqAi e_Alt + ypA2 - ypA] - rcpA] ^_Aa/,

A2 — Ai A2 — Aj

d.E 1
47. Writing the differential equation as —— h jE7 = Q we see that an integrating factor is et/Rl

do J- i-O
Then

A[el:/RCE} = 0 
dt

ef!RCE = c

E =  ce~t/RC.

From E(4) = ce~4/ Rc =  Eq w c  find c: =  Eoe^Rc. Thus, the solution of the initial-value problem

E = E0e^RCe ^ RC = E^ - ^ RC.

48. (a) An integrating factor for y' — 2xy = —1 is e~x2. Thus

d r _ r 2 2
" v\ = ~e 

ypK
e x y = — J  e 1 dt = — erf (z) + c.

From y(0) = v/tt/2, and noting that crf(0) = 0, we get c = a/ tt/ 2. Thus

V = e’ ! orfM  + I f )  =  T f  - el{(x»  =  X  e' 2 erfo(a:)'

(b) Using a CAS wc find y(2) 0.226339.

49. (a) An integrating factor for
, 2 10sin:r

y + - y  =
a; .T

56



Exercises 2.3 Linear Equations

is x2. Thus

o „. rx sin t , 
x y = 10 ---dt + c

J Jo t

y = 10# 2Si(;r) + ex 2.

Prom y(l) = 0 we get c = — 10Si(l). Thus

y = 10.x“2Si(#) - 10x_2Si(l) = 10a.r2(Si(ir) - Si(l)).

( b )  y

r x >
-1
-2

-3
-4
“5

(c) From the graph in part (b) we see that the absolute maximum occurs around x — 1.7. Using 

the root-finding capability of a CAS and solving yf(x) = 0 for x we sec that the absolute 

maximum is (1.688,1.742).

so y = 7*x)m Using 5(0) — 0 and y(0) = c\ — 5 we have y =

2

1

r X  . 9

( a) The integrating factor for y' — (sinx2)y = 0 is e~Jo . Then

y = CleJosint2dt
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(c) From the graph wc see that as x —► oc, y(x) oscillates with decreasing amplitudes approaching 

9.35672. Since limx-̂ oo 5S(x) = \ , linij;-*^ y(x) — 9.357, and since lima;_i._oc S(x) = 

—̂  , lim ^-^c y(x) = 5e-v/̂ /8 & 2.672.

(d) From the graph in part (b) we see that the absolute maximum occurs around x =  1.7 and tlic- 

absolute minimum occurs around x =  —1.8. Using the root-finding capability of a CAS anc 

solving y'(x) = 0 for we see that the absolute maximum is (1.772,12.235) and the absolute 

minimum is (—1.772,2.044).

1. Let M  = 2x — 1 and N = 3y+7 so that My = 0 = Nx. From fx = 2x— 1 we obtain /  ~ x2—x+h(y

h\y) = 3y -j- 7. and h(y) = §y2 + 7y. A solution is x2 — x + ^y2 + 7y = c.

2. Let M  = 2x + y and N — —x — 6y. Then My = 1 and Nx = —1, so the equation is not exact.

3. Let M  = 5.7; + 4y and N — 4x — 8y3 so that My — 4 = N:r. From fx = ox + 4y wc obtai: 

/  ■ |:/:2 + 4xy + h(y), h'(y) — —8y3, and /i(y) = —2y4. A solution is |:t'2 + 4a;y — 2y4 = c.

4. Let M  = siny — ysinx and JV = cosx + a; cosy — y so that My ~ cos y — sin a; = Nx. Fro:; 

fx = siny — y sin x we obtain /  = xsiny+ ycosx-^h^y). h\y) — —y, and h(y) =  —\y2- A solutic 

is x sin y -j- y cos x — \y2 = c.

5. Let M  = 2y2x — 3 and N  = 2yx~ + 4 so that M tJ =  4xy = Nx. From fx = 2y2x — 3 we obta:: 

/  = x2y2 — 3x + h.(y), h'(y) = 4. and h(y) — Ay. A solution is x2y2 — 3x 4- 4y = c.

6. Let M  = Axd — 3y sin 3x — y/x2 and N  = 2y — 1/x + cos 3x so that My = —3 sin 3a; — 1 jx2 ai. 

Nx — 1 jx2 — 3 sin 3a;. The equation is not exact.

7. Let M  = x2 — y2 and N = x2 — 2xy so that My = —2y and Nx — 2x — 2y. The equation is n " 

exact.
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Lot M  — 1 + In x + y/x and N = — 1 -f In x so that My — 1/x = Nx. From fy = — 1 + In x we obtain 

= —y + y Inx + h(y), h'(x) = 1 + lna:, and h(y) =  a:lux. A sohition is —y + yInx + x Inx = c. 

Let M  = y3 — if  sin x — x and N  = 3xy2 + 2y cos x so that My = 3y2 — 2y sin x =  Nx. From 

= y3 — y2 sin x — x we obtain /  =  a:y3 + y2 cos x — \x2 + h(y). h'(y) =  0, and h(y) = 0. A solution 

xy3 + y2 cos x — ^x2 = c.

Let M  = xs + y3 and N =  3xy2 so that My = 3y2 = Nx. From fx = x3 + y3 we obtain 

■’ = jf.r4 + xy3 + h(y), h'(y) =  0, and h(y) = 0. A solution is |a:'* + xy3 = c.

Let M  = ylny — e~xy and N  = 1/y + xlny so that My = 1 + lny + xe~xy and Nx = lny. The 

equation is not exact.

Let M  = 3x2y + el! and N = x3 + xey — 2y so that My = Zx* + ev = Nx. From fx = 3x2y + ey we 

:btain /  = x3y -j- xev -f- h(y), h'{y) = —2y. and h(y) = —y2. A solution is x3y + xey — y2 = <:.

Let M  = y — 6x2 — 2xex and N = x so that My = 1 — Nx. From f x = y — 6a-2 — 2xex we obtain 

= xy — 2x3 — 2xex + 2ex + h(-y), h!{y) = 0. and h(y) ~ 0. A solution is xy — 2x3 — 2xex + 2ex = c.

Let M  =  1 — 3jx + y and N = 1 — 3jy + x so that My = 1 =  Nx. From fx =  1 — 3/x + y
3

-.vc obtain f  =  x — 3In |:r| + xy + h(y), h!(y) = 1 — and h(y) =  y — 3In |;y|. A solution is 

-r y + xy-3  In \xy\ = c.

Let M  = x2y3 — 1 /( l + and N = x3y2 so that My ■ 3xzy2 = Nx. From

V = x2y3 — 1/ (̂1 + 9:c2) wo obtain /  = ^x^y3 — ^ arctan(3a:) + h(y), h.'(y) = 0, and h(y) =  0. 

A solution is x3y3 — arctan(3a:;) = c.

Let M  = —2y and N = by — 2x so that My = — 2 = Nx. From fx = —2y wc obtain /  = —2xy+h(y). 

V(y) = 5y, and h(y) = |y2. A solution is —2xy + %y2 = c.

Let M  = tana; — siuicsiny Mid N  = cosx cosy so that My = — sin.rcosy = Nx. Rrom 

tx -- tanx — sin a: siny wc obtain /  = In | sec a* | + cos x sin y + h(y), h'(y) = 0, and h(y) =  0. A 

solution is In | seca;| + cos a: siny = c.

Let M  = 2y sin x cos x — y + 2y2exy~ and N = — x + sin2 x + 4xyexy~ so that

My = 2 sin a: cos .x — 1 + 4xy3exy2 + 4yexy2 — Nx.

t o 2
From fx = 2ysinaj cos a; — y + 2y2exy~ we obtain /  =  y sin x — xy + 2exy + h(y), h'(y) = 0. and 

h(y) = 0. A solution is y sin2 x — xy + 2exy2 — c.

Let M  — 4t3y —15̂ 2 — y and N =  t4 + 3y2 — t so that M tJ = At3 — 1=  Nt. From ft = At3y — 1512 — y 

wc obtain /  = t4y-bt3 —ty + h(y), h?(y) = 3y2, and h(y) — y?>. A solution is tS j-ot3-ty+y3 = c.

Let M  = 1/t + l/ t2 — y/ (l2 + y2j and N  = ye!/+tf (t2 + y2j so that My = (y2 — t2̂j j  (t2 + y2̂  = 

-Yf. From f) = 1/t + I ft2 — yj (t2 + y2̂  we obtain /  = In\t\ — ^ - arctan + h(y), h'(y) =  yey,
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and h(y) — yey — ey. A solution is

In \t\ — ^ — arctan + yey — ey = c.

21. Let M  =  x2+2xy+y2 and N = 2xy+x2 — 1 so that My = 2(x+y) = Nx. From fx =  x2+2xy+y2 w-.1 

obtain /  =  ^£3+x2y+xy2+/?. (y), h\y) — —1, and h(y) — —y. The solution is ^xli+x2y+xy2—y - c 

If 2/(1) =  1 then c = 4/3 and a solution of the initial-value problem is + x2y + xy2 — y = | .

22. Let M  — ex + y and N  = 2 + x + ye?; so that- My = 1 = Nx. From fx = ex + y we obtair. 

f  =  ex + xy + h(y). h'(y) =  2 + ye1', and /i(y) =  2y + yey — y. The solution i- 

ex + xy + 2y + yev — ev = c. If y(0) = 1 then c = 3 and a solution of the initial-value prob­

lem is ex + xy + 2y + yey — ey = 3.

23. Let M  = Ay + 2t — 5 and N = 6y + At — 1 so that My = A = Nt- From ft =  Ay + 2t — 5 we obtai:. 

f  = Aty+t2— ht+h(y). h'(y) — 6y — 1, and h(y) =  3y2 — y. The solution is Aty+t2 — 5t+3y2 — y = < 

If y(—1) = 2 then c = 8 and a solution of the initial-value problem is Aty + t2 — bt + 3y2 — y = 8.

24. Let M  = £/2y4 and N  = (3y2 — i2) /y° so that My =  —2t/y5 = Nt. From ft = t/2y4 wc obtai:.

t2 3 3 t2 3
+ % ) , h\y) = p ,  and h(y) = ■ The solution is 4^4 “  2̂ 2

_____3 _ _ _ 5

4y4 2y2 A

25. Let M  = y2 cos x — 3x2y — 2x and N = 2y sin a;- — £3 + In y so that My = 2y cos x — 3:r;2 = Arx- Fror.. 

fx =  y2 cos a: — 3x2y — 2ar we obtain /  = y2 sin x — x^y — x2 + h(y). h!(y) =  In y, and h(y) =  y In y — t. 

The solution is y2 sin x — x^y — x2 + y In y — y = c. If y(0) = e then c = 0 and a solution of tl:- 

initial-value problem is y2 sin x — x^y — x2 + y lny — y = 0.

26. Let M  = y1 + y sin x and N = 2xy — cos x — 1/ 1̂ + y2̂  so that My = 2y + sinrr = Nx. Fron. 

fx = y2 + ysin.x we obtain /  =  xy2 — ycosx + h(y), h'(y) =   ̂ 9 , and h(y) = — tan-1 y. Tk-

solution is xy2 — ycosx — tan_1y = c. If y(0) = 1 then c =  — 1 — 7t/4 and a solution of tli-
7r

initial-value problem is xy2 — ycosx — tan-1 y = -1 — - .

27. Equating My = 3y2 -I- 4toy3 and Nx = 3y2 + 40:cy3 we obtain k = 10.

28. Equating My = 18xy2 — siny and Nx = Akxy2 — siny we obtain k — 9/2.

29. Let M  =  —x2y2 sin x + 2xy2 cosx and N  = 2x2y cos x so that My = —2x2ysm x + Axy cos x — A' 

From fy = 2x2y cos x we obtain /  =  x2y2 cos x + h(y), h'(y) = 0, and h(y) =  0. A solution r  

the differential equation is x2y2 cos x = c.

30. Let M  = (x2 + 2xy — y2) / (x2 + 2xy + y2) and N = [y2 -f- 2xy — x2̂  / [y2 + 2xy + x2̂ j so thtf 

My - —4xy/(x + y)3 = Nx. From fx = (x2 + 2xy + y2 — 2y2̂) / (x + y)2 we obtain

f  =  + h (y)-, ti(v) =  7^ and Kv) =  -7^2 ■ The solution is o  _ 0̂ 2 = c- y(!) = 1 the:

c = —5/4 and a solution of the initial-value problem is 4 2
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f  = x H------ (- A(y), =  —1, and /i(y) = —y. A solution of the differtiiria. -r >
x + y

x2 + y2 = c(x + y).

31. We note that (My — A^/AT = 1/a:, so an integrating factor is eJ dx/x = x. Let M  = — ; * 

and N = 2x2y so that My = Axy — Nx. Prom fx — 2xy2 + 3x2 we obtain /  = — .r; — . 

h'(y) - 0, and h(y) = 0. A solution of the differential equation is x2y2 + :r3 = c.

32. We note that (My — Nx)/N  = 1, so an integrating factor is e fdx = ex. Let M  = xyex — y-*~ — .. ? 

and N = xex + 2yex so that My — xex + 2yex + ex = Nx. Prom fy — xex + 2yex we ::

/  — xyex + y2ex + h(x), h!(y) - 0, and h(y) =  0. A solution of the differential equa:: .:. > 

xyex + y2ex = c..

33. We note that (A^ ■ My)/M  = 2/y, so an integrating factor is e f2dy/y — y2. Let M  = 6 .nr'

N  = 4y3 + 9x2y2 so that My = 18xy2 = Nx. From fx = 6xy3 we obtain /  = 3x2y3 — : - 

h!(y) - 4y3. and /i(y) =  y4. A solution of the differential equation is 3x2yA — y4 = c.

34. We note that (My — Nx)/N  = —cota;, so an integrating factor is e- J cotxdx = escx. 1 .' 

Af = cos x csc x = cot x and N  =  (1 + 2/y) sina;csca: =  1 + 2/y. so that My = 0 =  A*r. F: ::;. 

fx — cot a.- we obtain /  =  hi (sin x) + h(y). h?(y) =  1 + 2/y, and /?<(y) = y + lny2. A solution of t..- 

differential equation is In (sin a:) + y + lny2 = a.

35. We note that (My — Nx)/N  = 3, so an integrating factor is eJ3(lx — e3x. Let

M  = (10 — 6y + e-3a:)e3:![: = lOe3® — 6ye3x + 1

and

N = —2e3x,

so that My = —6e3x — Nx. From fx =  10e3a: — 6ye'ix + 1 we obtain /  =  -ye3* - 2ye3x + x + h\ y . 

h!(y) = 0, and h(y) = 0. A solution of the differential equation is ™e,ix — 2ye3x + x =  c.

36. We note that (A^ — My)/M  = — 3/y, so an integrating factor is e~3f dy/y = 1/y3. Let

M  = (y2 + xy3)/ys =  1/y + x

and

= (5y2 - xy + y3 sin y)/y3 = 5/y - x/y2 + sin y,

so that A/jy = —1/y2 = A^. From fx = l/y + x we obtain /  = x/y + |a;2 + /t(y), /i;(y) = 5/y + sin y. 

and h(y) = 5In |yj — cosy. A solution of the differential equation is x/y + \x2 + 5 In |y| — cosy = c.

37. We note that (My — Nx)/N = 2x/(4 + x2), so an integrating factor is e~2J xdx!(A+x~) =  1/(4+ x2;. 

Let M  = x j(4 + a:-2) and N = (x2y + 4y)/(4 + a;2) =  y, so that My = 0 = Nx. From fx = x(4 + a;2 i 

we obtain /  =  j  ln(4 + x2) + h(y), h?(y) = y, and h(y) =  \y2. A solution of the differential equation 

is \ In(4 + a:2) + \y2 = c.

Exercises 2.4  ̂ ;::-‘

2v2
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Exercises 2.4 Exact Equations

38. We note that (My — Nx)/N = —3/(1 +&), so an integrating factor is e_3/ <i'r/(1+x') = 1 j (1+$)^. L-' 

M  = (x2+y2-l5)/(l+x)3 and N  = -(y-rxy)/(1+x)3 — —y/(l+x)2, so that My = 2y/(l+x)3 - V 

From fy =  —y/( 1 + x)2 wc obtain /  — —\y2/{\ + x)2 + h(x). h'(x) = (x2 — 5)/(l + x)3, a:. 

h(x) = 2/(1 + x)2 + 2/(1 + x) + In 11 — x\. A solution of the differential equation is

yr
ro + ro + + In |1 + d  =  c.

2(1 + x)2 (1+x)2 (l + z)

39. (a) Implicitly differentiating x3 + 2x2y + y2 = c: and solving for dy/dx we obtain

. 9  ~ dy , „ dy , dy 3x2 + Axy

3x~+ 2x fa  + 4x1 + 2y d i  = 0 “ d S  =

By writing the last equation in differential form we get (4xy + 3x2)dx + (2y + 2x2)dy =  0.

(b) Setting x = 0 and y = —2 in ;c3 + 2x2y + y2 = c we find c =  4, and setting x =  y =  1 we air- 

find c = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving x3 + 2x2y + y2 = 4 for y we get

yi(x) = —a;2 - yj4 — x3 + x4

and

•y2(̂ ‘) = -x2 + \/A —x3 + x4 . 

Observe in the figure that y-\ (0) = — 2 and y2(l) =  1-

40. To see that the equations are not equivalent consider dx = —{x/y)dy. An integrating factor 

/.i(x. y) = y resulting in ydx + xdy = 0. A solution of the latter equation is y = 0, but this is not 

solution of the original equation.

41. The explicit solution is y ~ y (3 + cos2a:)/(l — .x-2) . Since 3 — cos2 x > 0 for all x we must hav 

1 — x2 > 0 or —1 < x < 1. Thus, the interval of definition is (—1,1).

42. (a) Sincc fy =  N(x,y) - xexy + 2xy + 1/x we obtain /  =  exy + xy2 -f- — + h(x) so the.-
X

,.2 y i ut/~\ t a ........ xy i „,2___y_
,2fx = yexy + y - ^2 + h'(x). Let M(x, y) = ycxy + - 3  •

- 1

(b) Since f £ — M(x, y) =  yi>l2x 1,11 + x (x2 + yj we obtain /  =  2yl^2x1-'2 + ^ In |.x2 + y\ -+- g{i
£

so that fy = y~1/2xl/2 + ^ (.r2 + y) 1 + g'{x). Let N(x, y) = y~1’2x1/"2 + ^ (x 2 + yj 

43. First note that
/ f—--- - \ x

: dx +d [ Jx 2 + y2 =
y

yxz -I- yz
■ dy.
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Exercises 2.4 Exact Equations

Then x dx + y dy = \Jx2 + y2 dx becomes

, dx A— r~y — dy = d ( J x 2 +y2\ — dx.
j x 2 + y2 j x 2 + y2 ' Vv J

The left side is the total differential of \jx2 + y2 and the right side is the total differential of x + c.

Thus \Jx2 + y2 = x + c is a solution of the differential equation.

To see that the statement is true, write the separable equation as —g(x) dx+dy/h(y) = 0. Identifying

M  = —g(x) and N  = l/h(y), we see that My = 0 = Nx. so the differential equation is exact.

(a) In differential form we have (v2 — 32x)dx + xv dv =  0. This is not an exact form, but fi(x) — x 

is an integrating factor. Multiplying by x we get (xv2 — 32x2)dx -j- x2v dv = 0. This form is 

the total differential of u = \x2v2 — 4j=.r3. so an implicit solution is \x2v2 — = c. Letting 

x = 3 and v = 0 we find c = —288. Solving for v we get

V3
v = 8̂

(b) The chain leaves the platform when x — 8, so the velocity at this time is

. 3 64

(a) Letting

M(x,y) =  02xy, 9 and N(x,y) = 1 + V X
(x2 + y2)2 ' ’ ‘ (x2 + y2)2

we compute

_  2x3 - 8xy2 _
(xz -+- yA)6

so the differential equation is exact. Then we have

%  =  M<*. V) = p f w  = 2xp(x2 + s,2)“ 2

/ O ,y) =  -v(x2 + v2) 1 + 9(y) =  - 2T 9i2 + sfo)

d f y2 - x2 , y2 - x2
+ 9 (y) =  ^  («, y) =  i  + T

dy (x2 + y2)2 ' * (x2 + y2)2 '

V
Thus, g'(y) = 1 and g(y) = y. The solution is y — x2 _^, o = c■ When c = 0 the solution is 

x2 + y2 =  1-
(b) The first graph below is obtained in Mathematica using f(x, y) —y — y/(x2 + y2) and 

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3},
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Exercises 2.4 Exact Equations

Axes—>True, AxesOrigin—>{0, 0}. AxesLabel—> (x, y}, 
Frame—>False, P lotPoints—> 100, ContourShading—>False, 

Contours—>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

x = —
yz -  <ni2 - y

c- y
and x —\

•y3 - cy2 - y 

c - y

In this ease the x-axis is vertical and the y-axis is horizontal. To obtain the third graph. ' 

solve y — y/(x2 + y2) =  c for y in a CAS. This appears to give one real and two coni};. 

solutions. When graphed in Mathematica however, all three solutions contribute to the gra:: 

This is because the solutions involve the square root of expressions containing c. For so:, 

values of c the expression is negative, causing an apparent complex solution to actually be i-

\ / ' "7 \ ~ } V;'' f- ‘ v.: ::j~; V- ”~ : r r l " : - ”. Vj;>r ^ y  

ScilMiojas by Siibstittttloris
'"'J' . '' v *'* ' * .• -V j - . ' ”, »7~ ' * .

\ *; •/.: -V** \ . \... r ; . /V:; ;; ;:/r ,;r

1. Letting y — ux we have

(x — ux) dx + x(u dx x du) - 0

dx + x du = 0 

dx
---1- du — 0
x

111 l-xl + u =  c 

x In |a;| + y =  ex.
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Exercises 2.5 Solutions by Substitutions

2. Letting y = ux we have

(x + ux) dx + x{u dx + x du) = 0 

(1 + 2-u) dx + x du = 0

dx du
-- h ---—
x 1 + 2u

= 0

In |x| + - In |1 + 2u\ = c 

rr2 ( l  + 2| ) =  C

x1 + 2 xy = ci.

3. Letting x = vy we liavc

vy{v dy + y dv) + (y - 2vy) dy = 0

vy2 dv + y (y2 - 2v + l) dy = 0 

vdv + rfy = ()

In

In \v — 1| 

x

(u - l )2 y 

1

y

v - l

1

x/y-  1

+ In \y\ = c 

+ lny =  c

(x - y) In \x -y\-y = c(x - y).

4. Letting x = vy wc have

y(v dy + ydv) — 2 (vy + y) dy =  0

y dv — (t> + 2) dy = 0

dv _  dy ^  0 

v + 2 y

In \v + 2| — In \y\ = c

In
x

+ 2; - In \y| = c

x + 2y = ciy
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Exercises 2.5 Solutions by Substitutions

5. Letting y = ux wc have

(u?x2 + ux2̂j dx — x2(u dx -r x du) = 0

u2 dx — x du = 0

dx d u _
9 uX v>

In |.t | +  — =  c
u

In Irrl + — = c
V

y In \x\ + x = cy.

6. Letting y - ux and using partial fractions, we have

(̂ u2x2 + ux2'} dx + x2 (u dx + x du) = 0

x2 (v? + 2 it} dx + x3du = 0

dx du
—  + “ 7---= 0x u(u + 2)

In |jc| + ^ In | w[ — ^ In \u + 2| = c

ci

X \ x
,2„ _

7. Letting y =  ux wc have

xry = c\ (y + 2x).

(ux — x) dx — (ux + x) (udx + x du) =  0

(u2 + l) dx + x(u + 1) du = 0

dx u + 1 ,
—  + -s— - du = 0 
x u2 + 1

In jx| + ^ In (u2 + l) + tan-1 u = c 

lnx2 + 1  ̂+ 2 tan-1 - = c±

In fa;2 + y2) + 2 tan 1 — = c\.
' ' x
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Exercises 2.5 Solutions by Substitutions

(a; + 3ux) dx — (3a- -+■ ux) (u dx + x du) = 0 

('u2 — l) dx + x(u + 3) du = 0 

dx it + 3
---h 7---—rz--- r r  du = 0
X  (u — l ) ( l l + l )

In |.-r) + 2 In \u — 1| — In |u + 1) = c 

x(u — l) 2

Letting y = ux we have

u 4- 1
=  Cl

(y - x f  = c.i{y -+ x).

Letting y =  ux we have

—ux dx + (x + \fu X') (u dx + x du) = 0

(x2 + ) du + xu^'2 dx = 0 

1\ , dx(V3/2 + i U + * = 0
V u) x

—2w-1/2 + In \u\ + In |x| = c

In \y/x\ + In |xj = 2\jxfy + c 

y(ln \y\ - c)2 = 4x.

Letting y = ux we have

(uz + \jx2 — (ux)2 ) da: — x(udx + xdu) du = 0

\/x2 — u2x2 dx — x2 du = 0

x\j 1 — u2 dx — x2 du — 0, (x > 0) 

dx du
=  0

X  V l  -  ti 2

In x — sin-1u = c

sin 1 u = In x + ci



S il l  ' —  =  111 X  +  C2
X

y . ,, N
— = sm(in x + c'2 ) 

y = x sin (In x + C2 ).

See Problem 33 in this section for an analysis of the solution.

11. Letting y — ux we have

(x3 — w3x3) dx + u2x^(u dx + x du) — 0 

dx + u2x du = 0 

dx 9 , 
 h u du =  0
x

, , < 1 3 In |x| + -u = c
o

3.x3 In | x | + y3 = cix3.

Using y(l) = 2 we find c\ = 8. The solution of the initial-value problem is 3x:i In |x| + yi — 8x3.

12. Letting y — ux we have

(x2 4- 2u?x2)dx — ux2(udx -f xdu) = 0 

x2(l + u2)dx — ux3 du = 0 

dx u du

X 1 + u2

In |x[ — ^ ln(l -f u2) =  c

Exercises 2.5 Solutions by Substitutions

x2
=  C l

1 + u2

X 4 - ci(x2 + y2).

Using y(—1) = 1 we find ci — 1/2. The solution of the initial-value problem is 2x4 = y2 + x2.

13. Letting y = ux we have

(x + uxeu) dx — xe“(u dx + x du) = 0

dx — xeu du = 0 

dx
zz _  eu du =  0
x
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Exercises 2.5 Solutions by Substitutions

In |a*| — eu = c 

In \x\ - eyfx = c.

Using y(l) = 0 wc find c = —1. The solution of the initial-value problem is In |.x[ =  ey,lx — 1. 

Letting x =  vy we have

y(v dy + y dv) + vy(In vy — In y — 1) dy = 0

y dv + v In v dy — 0

dv dy 
+ — = 0

v In v y 

In | In I'l.'H + In |y| = c

y In = ci.

Using y(l) “  e we find ci = —e. The solution of the initial-value problem is y In
X\

= — e.
y

r- / 1 1 - o  o . dw 3 3 . , o
From y H— y — —y “ and w = y we obtain —— |- —w — — . An integrating factor is x so that 

x' x' dx x x

x3w = x3 + c or t/3 =  1 + cx~A.

(I’ZU
From y' — y — exy2 and w =  y~l we obtain —— I- w = —ex. An integrating factor is ex so that

dx
f:xw ~ — Ie2x + c. or y~l =  — \ex + ce~x.

From y' + y = xy4 and w = we obtain — ■ — 3u> = —3x. An integrating factor is e~ix so that
dx

e~'ixw = xe~‘ix + + c or ;ty_a = x + ^ -i- cejx.

From y — y = y2 and w - y~l we obtain ^  + ^1 + w = —1. An integrating factor is

1 f*
xex so that xexw = — xex + ex H- c or y-1 =  — 1 + — + — e~x.

x x

/ 1 1 o , _i , . dto 1 1
rrom y — -y = — -^y“ and w = y wc obtain —  + —w = • An integrating factor is t so that

1 t- 
tw — In i -|- c or y~l — - Inf + Writing this in the form - = hit + c. we see that the solution

t t y ’

can also be expressed in the form e^y =  cit.

/ 2 2t a , _■> . . dw 2t —21
From y + 3 (1 + ^ */ =  3 (1 + t2)y ai W = V W° 0 am ~dt ~ l + f iW = TT f5 ’ mtcgratmg

-|  ̂* X
factor is 80 that 1 ^ 2  = + c or y~* = 1 + c ( l + t2).
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Exercises 2.5 Solutions by Substitutions

/ 2 3 4 . _o , . dw 6 9 . . . . .  .
21. Prom y -- y = — and w = y we obtain —— h —w = —  ̂. An integrating factor is x° so tha:

x x *  ' dx x xz

x6w = —§x5 + c or y~3 =  — §x_1 + cx~b. If y( 1) =  ^ then c =  ^  and y~3 =  — fx -1 + ^ x -6.

dtxi. ■ 3 3
22. From if + y = y~1//2 and w =  y3/2 we obtain —  + -w = - . An integrating factor is e3x-/2 so tha:

fix z z
eixl2w — (?x>2 + c or y3/2 =  1 + ce~iX/'2. If y(0) = 4 then c =  7 and ,(/}/2 =  1 + 7e~^xt2.

23. Let u =  x -f'« + l  so that du/dx = 1 + dy/dx. Then ^  — 1 = u2 or — —-x du = dx. Tlni-
dx 1 + tr

tan-5 u = x + c or u =  tan(x + c), and x + y + 1 = t.an(x + c) or y — tan(x + c) — x — 1.

24. Let u ~ x + y so that du/dx = 1 + dy/dx. Then ~  — 1 = ---- or u du = dx. Thus Aw,2 = x + .
dx u

or u2 = 2x + ci. and (x + y)2 =  2x + cj.

25. Let u = x + y so that du/dx = 1 + dy/dx. Then ^  — 1 = tan2 u or cos2 udu = dx. Thu?
\JfJU

^«+ |sin2u = x+c or 2«+sin2u = 4x+ei, and 2(x+y)+sin2(x+y) : 4x+ci or 2y+sin2(x+y) = 

2x + ci.

26. Let u — x + y so that du/dx = 1 + dy/dx. Then — 1 =  sin u o r-- —  du =  dx. Multiplying
ctcc 1 sm *?/

1 sin ̂
bv (1 — sin if)/(1 — sin u) we have ---~— du = dx or (sec2 u — secu taiiu)du = dx. Thu-

coŝ  u

tan u — sec u = x + c or tan(x + y) — sec(x + y) = x + c.

27. Let u = y — 2.x + 3 so that du/dx = dy/dx — 2. Then ^ + 2  = 2 + v/^ or ~t= du =  dx. Thu-
ax y  w

2-y/w = x + c and 2^/y — 2x + 3 = x + c.

Let u = y — x + 5 so that du/dx = 

—e~u = x + c and — ey~x+5 =  x + c.

du
28. Let u = y — x + 5 so that du/dx = dy/dx — 1. Then -— I- 1 = 1 + eu or e~udu = dx. Thi;.-

dx

ctu 1
29. Let u = x + y so that du/dx = 1 + dy/dx. Then --- 1 — cos u and----:-- du. = dx. Now

fix 1 + cos u

1 1 — cos u 1 — COS u O 
----------------------------------------—  —  =  CSC u — CSC u cot u
1 + cos u 1 — cos2 u sin2 u 

so we have f  (csc2 u-c.sc u cot u)du = /  dx and — cot w+csc u =  x+c. Thus — cot(x+y) +csc(x+y) - | 

x + c. Setting x = 0 and y = tt/4 we obtain c =  a / 2  —  1 .  The solution is

csc(x + y) - cot(x + y) = X + V2 — 1.

30. Let u =  3x + 2y so that du/dx =  3 + 2 dy/dx. Then ^  = 3+ — - =  ~r~ and ^ du — d.i 
y ' Jl dx u + 2 u + 2 5 u + 6

Now bv long division
u + 2 1 4 

— ^ +
5 u + 6 5 25u + 30
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+ ~ ^  ) du =  dx
2 bu + 30,

~o we have

Id
and ^  In |25?i + 30| = x + c. Thus

1 4
~(3x + 2y) -f- — In |75x + 50y + 30| = x  + c.
D 2 d

Setting x = — 1 and y = — 1 we obtain c = ^  In 95. The solution is

1 4  4
-(3a: + 2y) + — In \7ox + 50 y + 30| =  x + — In 95
o 25 2o

Jl'

5 y — 5x + 2 In |75.x + 50y + 30) = 2 In 95.

We write the differential equation M(x, y)dx + N(x, y)dy = 0 as dy/dx — f(x, y) where

f u  v) =
/ l  ,W N(x. y) '

The function fix, y) must necessarily be homogeneous of degree 0 when M  and N are homogeneous 

jf degree a. Since M  is homogeneous of degree a, M(tx7ty) = taM(x,y), and letting t = 1/x we 

have

M (l,y/x) = M(x, y) or M (x, y) = xaM (1, y/x).

Thus

iy  =  f(T = rf*M{l,y/x) M (l,y/x) fy\ 

dx xaN(l,y/x) N(l,y/x) \x)

Rewrite (5:r2 — 2y2)dx — xy dy = 0 as

^  = 5*2-25,*
dx

and divide by xy, so that

We then identify

dy „ x ^y 
-r = 5 - - 2 - .
dx y x

X/ \x -)■X J
(a) By inspection y = x and y =  —x are solutions of the differential equation and not members of 

the family y ~x sin (In a; + 02)-

(b) Letting x = 5 and y =  0 in sin-1 (y/x) = In x + 0 2 we get sin-1 0 =  In 5 + c or c =  — In 5. Then 

sin-1 (y/x) =  In x — In 5 = ln(,x/5). Because the range of the arcsine function is [—7r/2, tt/2] we
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must have
7T x  -k

—— < ln - < —
2 ~ 5 ~ 2

e-7r/2 < - < e*-/2 
5

5e_ ^/2 < a: < 5ew/2.

The interval of definition of the solution is approximately 

[1.04,24.05].

34. As x —*• —oc. —► 0 and y —*• 2x + 3. Now write (1 -I- ce6*)/(l — ce6x) as (e~bx + c)/(e~6x — 

Then, as x —> oo, (?~fxT —> 0 and y —> 2x — 3.

35. (a) The substitutions y — yi + u and

dy _  clyi | du 

dx dx dx

lead to

+ y- = P + Q(tli + u) + R(yi + u)2
dx dx

= P + Qy\ -j- Ry'i + Qu + 2y\ Ru + Ru2

or

~ ~ { Q  + 2yi R)u = Ru2. 
dx

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

div
—— h (Q + 2y\ R)tv — —R 
dx

bv the substitution w = u

(b) Identify P(x) = -4/x2, Q{x) = - 1/x, and R(x) = 1. Then ~  -f - + - )w = - 1. .-j

-l

dw

dx

■\x + cx~3

1 4

x x,
- l  2  

. Thus, y ~ — h u. 
x

integrating factor is a’3 so that x^w = —|x4 + e or u =

36. Write the differential equation in the form x(y'/y) — Inx+Iny mid let u — lny. Then du/dx = y' j 

and the differential equation becomes x(du/dx) =  lnx -j- u or du/dx — u/x = (lnx)/x. which j  

first-order and linear. An integrating factor is e~J dx/a: = 1/x. so that (using integration by par:-

d_

dx

lnx u
u ! = —7T and - =

x J r/ x

1 lnx

x x
+ c.

The solution is

In y = — 1 — In x -r cx or y =
X

37. Write the differential equation as

- - v =  32v
dx x
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; ::d let u = v2 or v =  u1̂ . Then
dv _  1 _xj 2 du 

dx 2 d x '

.-.lid substituting into the differential equation, wc have

1  i / o  dlli 1 i / o -1/9 d<u 2
-u — I- - u < = 32u /_ or —  + - u = 64.
2 dx x dx x

The latter differential equation is linear with integrating factor cJ 'x̂ dx = x2. so

-y- [x2,u] — 64x2 
dx

-.nd
9 64 o 0 64 c

x"u =  — x° + c or v~ = — x + —r
3 3 :rJ

".'. rite the differential equation as dPjdt — aP = —bP2 and let u = P  1 or P  = u

dp _9 du
—  =  — u  —  , 
dt dt

}.::A substituting into the differential equation, wc have

_2 du _9 du
—u —--au = —bit " or —  + au = b.

dt dt

The latter differential equation is linear with integrating factor eJ 11 dt — cat, so

d  r .a t„ ,  1 _  t ^ a i

:id

\e m = be 
dt ■- J

eatu =  - eal — c 
a

ea lp ~  I =  b eat +  c 
a

P ~ l  =  -  +  ce- at 
a

P =  1
b/a + ce at b-\-C\e~al

-1. Then
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■'h Num erical-M ethod
' w, kc: ..

' "r -

-*•£,'  ' -\-5 .,S J s C„, „„ . „ „ , „„ „
1 . ,J'.'i :* \' w" ; ......I ......v'c. 't,„ %y' ; /

1. We identify f(x, y) = 2x — ?>y + 1. Then, for h =  0.1,

Vn+1 = Vn 4" 0.1 (2.x7l 3y;; + 1) = 0.2xw + 0.7y-a ~\~ 0.1,

and

For h = 0.05.

and

2/(l.l) »  yi =  0.2(1) 4- 0.7(5) + 0.1 = 3.8 

y( 1.2) «  y2 =  0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.

Vn—i — Vn + 0.05(2.rn — 3 yn + 1) = 0. l.xn + 0.85'//n + 0.05,

y( 1.05) «  yi =  0.1(1) + 0.85(5) + 0.05 = 4.4 

y (l.1) »  2/2 =  0.1(1.05) + 0.85(4.4) + 0.05 =  3.895 

2/(1.15) «  yA = O .l(l.l) + 0.85(3.895) + 0.05 = 3.47075 

2/(1.2) »  y4 =  0.1(1.15) + 0.85(3.47075) + 0.05 = 3.11514. 

2. We identify f(x,y) = x + y2. Then, for h = 0.1,

V n + l = V n  + 0.1(xn +  yl) =  0.1 Xn +  Vn +  O .lt /^ ,

and

2/(0.1) «  2/i =  0.1(0) +  0 +  0.1(0)2 =  0 
y(0.2) «  2/2 =  O.l(O.l) + 0 4- 0.1(0)2 =  0.01.

For h = 0.05.

and

yn+1 = yn + 0.05(.i‘n + yi) =  0.05a; +  yn + 0.05y2,

2/(0.05) «  yi = 0.05(0) + 0 + 0.05(0)2 =  0 

y(0.1) «  2/2 = 0.05(0.05) + 0 + 0.05(0)2 = 0.0025 

2/(0.15) «  2/3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)2 = 0.0075 

2/(0.2) »  y4 = 0.05(0.15) + 0.0075 4- 0.05(0.0075)2 = 0.0150.
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= dx and In I y\ = x H- c.

separating variables and integrating, we have

dy

y

rims y = C[ cx and. using y(0) = 1, we find c = 1, so y =  ex is the solution of the initial-value 

problem.

/:=0.1 ft— 0.05

0.00
0. 10
0 . 20

0.30

0.40

0.50

60

70

80

90

1.00

Actual
Value

Abs.
Error

1.0000
1.1000
1.2100
1.3310

1.4641

1.6105

1.7716

1.9487

2.1436

2.3579

2.5937

1.0000
1.1052

1.2214

1.3499

1.4918

1.6487

1.8221

2.0138

2.2255

2.4596

2.7183

%ReI.
Error

0.0000
0.0052

0.0114

0.0189

0.0277

0.0382

0.0506

0.0650

0.0820

0.1017

0.1245

0.00
0.47

0.93

1.40

1.86
2.32

2.77

3.23

3.68

4.13

4.58

*71 yn Actual
Value

Abs.
Error

% Rel. 
Error

0.00 1.0000 1.0000 0.0000 0.00

0.05 1.0500 1.0513 0.0013 0.12

0.10 1.1025 1.1052 0.0027 0.24

0.15 1.1576 1.1618 0.0042 0.36

0.20 1.2155 1.2214 0.0059 0.48

0.25 1.2763 1.2840 0.0077 0.60

0.30 1.3401 1.3499 0.0098 0.72

0.35 1.4071 1.4191 0.0120 0.84

0.40 1.4775 1.4918 0.0144 0.96

0.45 1.5513 1.5683 0.0170 1.08

0.50 1.6289 1.6487 0.0198 1.20

0.55 1.7103 1.7333 0.0229 1.32

0.60 1.7959 1.8221 0.0263 1.44

0.65 1.8856 1.9155 0.0299 1.56

0.70 1.9799 2.0138 0.0338 1.68

0.75 2.0789 2.1170 0.0381 1.80

o . 00 o 2 .1829 2.2255 0.0427 1.92

0.85 2.2920 2.3396 0.0476 2.04

0.90 2.4066 2.4596 0.0530 2.15

0.95 2.5270 2.5857 0.0588 2.27

1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have

— = 2x dx and In \y\ — x2 + c.
y

Thus y — ciex'2 and. using y(l) =  1. we find c — e~l , so y = e**-1 is the solution of the initial-value 

problem.
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h=0.1
xn yn Actual

Value
Abs.
Error

%ReI.
Error

1.00 1.0000 1.0000 0,0000 0,00

1.10 1,2000 1.2337 0.0337 2.73

1.20 1.4640 1,5527 0,0887 5.71

1,30 1.8154 1.9937 0.1784 8.95

1.40 2.2874 2.6117 0.3243 12.42

1.50 2.9278 3.4903 0.5625 16.12

fr—0.05

Xn yn Actual
Value

Abs.
Error

% ReJ. 
Error

1.00 1.0000 1.0000 0.0000 0.00

1.05 1.1000 1.1079 0.0079 0.72

1.10 1,2155 1.2337 0.0182 1,47

1.15 1.3492 1.3806 0.0314 2.27

1.20 1.5044 1.5527 0.0483 3.11

1.25 1.6849 1.7551 0.0702 4.00

1.30 1.8955 1.9937 0.0982 4.93

1.35 2.1419 2.2762 0.1343 5.90

1.40 2.4311 2.6117 0.1806 6.92

1.45 2.7714 3.0117 0.2403 7,98

1.50 3.1733 3.4903 0.3171 9.08

5. h=0.1 /i=0.05

Xn y»
0.00 0.0000

0.10 0.1000

0.20 0.1905

0.30 0.2731

0.40 0.3492

0.50 0.4198

Xn yn

oo«o

0 .0000

0.05 0.0500

o
 

«—i

o

0 ,0976

0.15 0.1429

0.20 0,1863

0.25 0.2278

0.30 0.2676

0.35 0.3058

0.40 0.3427

0.45 0.3782

oo

0 .4124

/i—0.1 h = 0.05

Xn yn

ooo

0 ,5000

0.10 0,5250

0,20 0.5431

0.30 0.5548

oO

0.5613

0.50 0.5639

Xn yn
0.00 0.5000

0.05 0.5125

0.10 0.5232

0.15 0.5322

0.20 0.5395

0.25 0.5452

0.30 0.5496

0,35 0.5527

0.40 0.5547

0.45 0.5559

0.50 0,5565

6. /i=o.i ft=0.05

yn

ooo

1,0000

0.10 1.1000

0.20 1,2220

0.30 1.3753

0.40 1.5735

oino

1.8371

8 . h = o.i

Xn yn
0,00 1.0000

o i—
1 

o 1.1000

0.20 1.2159

0.30 1.3505

0.40 1.5072

0.50 1.6902

i Xn yn
; o .oo 1.0000

i 0 .05 1.0500

0.10 1.1053

0.15 1.1668

0.20 1.2360

0.25 1.3144

0.30 1.4039

0.35 1.5070

0.40 1.6267

0.45 1.7670

0.50 1.9332

^=0.05

Xn y n
0.00 1.0000

0.05 1.0500

0.10 1.1039

0.15 1.1619

0.20 1.2245

0.25 1.2921

0.30 1.3651

0.35 1.4440

0.40 1.5293

0.45 1.6217

0.50 1.7219
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9. ft=o.i

Jn
| 1.00 1.0000

: 1.10 1.0000

1.20 1.0191

1.30 1.0588

1.40 1.1231

1.50 1.2194

h = o m

1 . 0 0  
1.05 

1.10 
1.15 

1.20 
1.25 

1.30 

1.35 

1.40 

1.45 

1.50

10.y*
1.0000

1.0000
1.0049

1.0147

1.0298

1.0506

1.0775

1.1115

1.1538

1.2057

1.2696

Exercises 2.6 .  .1..

ft=0.1 h=0.jo
yn v»

0.00 0.5000 0.00 0.500D

0.10 0.5250 0.05 0.5125

0.20 0.5499 0.10 0.5250

0.30 0.5747 0.15 0.5375

o

.
O

0.5991 0.20 0.5499

0.50 0.6231 0.25 0.5623

0.30

0.35

0.40

0.45

0.50

0.5746

0.5868

0.5989

0.6109

0.6228

. 1. Tables of values were computed using the Euler and RK4 methods. The resulting points were pic: 

and joined using ListPlot in Mathematica. A somewhat simplified version of the code used 

this is given in the Student Resource and Solutions Manual (SRSM) under Use of Computers 

Section 2.6.

h = 0,1h = 0.25 h = 0.05

2. See the comments in Problem 11 above. 

h = 0.25 h = 0.05

"Eule
RK4

E u le r
RK4

1 2 3 4 5

.3. Tables of values, shown below, were first computed using Euler’s method with h =  0.1 and h = 0. ’ 

and then using the RK4 method with the same values of h. Using separation of variables we nr. 

that the solution of the differential equation is y = 1/(1 — a;2), which is undefined at x = 1. whd 

the graph has a vertical asymptote. Because the actual solution of the differential equation becoir.- 

unbounded at x approaches 1, very small changes in the inputs x will result in large changes in 

corresponding outputs y. This can be expected to have a serious effect on numerical procedures.
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=0.1 (Euler) 

** yn

ft—0.05 (Euler) 

Xn yn

/?—().! (RK4) 

Xn yn

ft =0.05 (RK4) 

Xa yn

O O o 1.0000 1 0.00 1*0000 | 0.00 1.0000

Ooo

1.0000
o o 1.0000 ! 0 .05 1.0000 | 0.10 1.0101 o o U1 1.0025

0.20 1.0200 ! 0 .10 1.0050 0.20 1.0417 0.10 1.0101

oCT)
o

1.0616 0.15 1.0151 0.30 1.0989 0.15 1.0230

oo

1.1292 0.20 1.0306 0.40 1.1905 j 0 .20 1.0417

0.50 1.2313 1 0.25 1.0518 0.50 1.3333 ! 0.25 1.0667

oVOo

1.3829 i 0.30 1.0795 j 0.60 1.5625 ! 0.30 1.0989

0,70 1.6123 : 0.35 1.1144 | 0.70 1.9607 j 0.35 1.1396

0.80 1.9763 : 0.40 1.1579 o 00 o 2.7771
oO

1.1905

0.90 2.6012 I 0.45 1.2115 j 0.90 5.2388 • 0.45 1.2539

1.00 3.8191 0.50 1.2776 o o 42.9931 j 0.50 1.3333

0.55 1.3592 | 0.55 1.4337

0.60 1.4608 | 0.60 1.5625

0.65 1.5888 j 0.65 1.7316

0.70 1.7529 j 0.70 1.9608

0.75 1.9679 j 0.75 2.2857

. 0.80 2.2584 | 0.80 2.7777

; 0.85 2.6664 j 0.85 3.6034

i 0 .90 3.2708 | 0.90 5.2609

0.95 4.2336 | 0.95 10.1973

| 1.00 5.9363 ! 1 . 0 0 84.0132

The graphs below were obtained as described above in Problem 11.

h = 0.25 y h = 0.1

14. (a) The graph to the right was obtained as described above >• 

in Problem 11 using h — 0.1.
0 . 5  { 

0 . 4 j  

0 . 3 -  

0.2- 

0.1
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(b) Writing the differential equation in the form 1/  + 2xy = 1 we see that an integrating factor is

.....  ~2, / 2 xdx =  ex-_ SQ

(I  2 2 
-rlex V\ =
dx

and
.,2 t'x  i l  , _..,2 

dt + ce .y =  (-*2 f  
JO

This solution can also be expressed in terms of the inverse error function as

y = e“x"erfi(a:) + ce_ar.

Letting x = 0 and y(0) — 0 we find c = 0. so the solution of the initial-value problem is

J2 l‘x ,2
y = e x e1 dt = —y  e z erfi(.r).

(c) Using either F indRoot in Mathematica or f  so lve  in Maple we see that y'(x) =  0 when 

x = 0.924139. Since //(0.924139) 0.541044. we see from the graph in part (a) that 

(0.924139.0.541044) is a relative maximum. Now. using the substitution u = —t in the in­

tegral below, we have

y(—x) =  e~<K~x̂  j dt = a~x j  e*--^  (—du) = —e~x J  du du = —y(x).

Thus. y(x) is an odd function and (—0.924139. —0.541044) is a relative minimum.

Writing the differential equation in the form y' = k(y + A/k) we see that the critical point —A/k 

is a repeller for k > 0 and an attractor for k < 0.

1. Separating variables and integrating we have

^  = A dx
y x

In y = 4 In x -r c — In a’4 + c 

y = cix4.

We see that when x =  0. y =  0. so the initial-value problem lias an infinite number of solutions for 

v = 0 and no solutions for k ^  0.

:. True; y =  k-2 /k-i is always a solution for k\ 0.

79



Chapter 2 in Review

4. True; writing the differential equation as a\{x)dy + (i2 (x)ydx = 0 and separating variables yield-

7. When n is odd, xn < 0 for x < 0 and xn > 0 for x > 0. In this case 0 is unstable. When n is eve: 

xn > 0 for x' < 0 and for x > 0. In this case 0 is semi-stable.

When n is odd, —xn > 0 for x < 0 and —xn < 0 for x > 0. In this case 0 is asymptotically stab’: 

When n is even, —xn < 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

8. Using a CAS we find that the zero of /  occurs at approximately P  = 1.3214. From the gra; ... 

we observe that dPjdt > 0 for P  < 1.3214 and dPjdt < 0 for P > 1.3214. so P =  1.3214 is : i 

asymptotically stable critical point. Thus, lim.*-^ P(t) = 1.3214.

9.  ............ v..............

5. s?

6. ^  =  y(y - 2f(y - 4)

10. (a) linear in y. homogeneous, exact

(c) separable, exact, linear in x and y

(e) separable

(g) linear in x

(i) Bernoulli

(b) linear in x

(d) Bernoulli in x

(f) separable, linear in x, Bernoulli

(h) homogeneous

(j) homogeneous, exact, Bernoulli

(k) linear in x and y. exact, separable, homogeneous

(1) exact, lineai' in y (m) homogeneous

(n) separable

11. Separating variables and using the identity c.os2x = 5(1 + cos 2a:), we have

and
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2x + sin 2x = 2 In (jj2 + l) + c.

12. Write the differential equation in the form

y In - dx = ( x In — — v I dy.
' y \ y ' J

This is a homogeneous equation, so let x = uy. Then dx = udy + y du and the differential equation 

becomes

y In u(u dy + y du) — (■uy In u — y) dy or y In u du = —dy.

Separating variables, we obtain

lr iu  du = - —
V

a hi \ u\ — u. = — In |y| + c

-In

13. The differential equation

y

.r(ln.x — In y) — x = —yin |y| + cy.

dy 2 3.x-2 _2
V =  ~ 7 -— r r vdx 6x + 1' 6x + 1 

is Bernoulli. Using w = if’, we obtain the linear equation

dw 6 9x2 
— I- ----- « ■ =

dx 6a; + 1 6x -4- 1

An integrating factor is Gx + 1. so

4- [(6* + l)w] = -9.x2,
dx

3a"3 c. 
w = ~ ~---r +

6.x + 1 6.x + 1 ' 
and

(Qx + l)y^ = —3.x'3 + c.

Note: The differential equation is also exact.)

14. Write the differential equation in the form (3y2 + 2x)dx + (4y2 + 6xy)dy = 0. Letting M  =  3y2 + 2x 

and N  = 4y2 4- 6xy wc see that My = 6y = Nx, so the differential equation is exact. From 

fx = 3y2 + 2x we obtain /  = 3xy2 + x2 + h(y). Then fy =  6xy + h'(y) = 4y2 + 6xy and h'(y) = 4y2 

50 h(y) = |y3. A one-parameter family of solutions is

3xy2 -f x2 + ^y’3 = c.
O
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15. Write the equation in the form

An integrating factor is eln< = t, so

dQ 1 o

a + -t Q = t l n t

| [ tQ i= t4ln(

tQ = -t !ii t + c
Zo 0

and

Q = - k t i+ \t lh u + -f

16. Letting u = 2x + y + 1 we have

—  =  • ?  +  <f y .  

dx dx ’

and so the given differential equation is transformed into

( du , du 2 u +1“U “2j = 1 or Tx = —  ■
Separating variables and integrating we get

du = dx
2u 1

1 1 1

2 2 2 u + 1
du = dx

•̂u - ^ In |2u + 1| = x + c

2 u — In |2 u + 1| —2x + c\. 

Resubstituting for u gives the solution

4x + 2y + 2 — In \4x -j- 2y + 3| = 2x + c\

or

2x + 2 y + 2 — In |4rc + 2 y —1— 3| = ci- 

17. Write the equation in the form

dy . 8x 2x

dx ' x2 + 4^ x2 + 4'

An integrating factor is (a.’2 + 4  ̂ , so

;§ [ ( :,;’ + 4 ) \ ] = 2 ^  + 4) 3
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>.nd

y

(;X2 + 4̂ 4 y = 2  (x‘2 + 4)4 + c

=  \ + c(x* + 4) - \4

1. letting M  = 2r2 cos 0 sin 0 + r cos 0 and N  =  4r + sin 6* — 2r cos2 0 we see that Mr = 4r cos 0 sin 0 + 

::>s0 =  j¥(9, so  the differential equation is cxact. From fo =  2 r 2 cos 6 sin 9 +  r  cos 9 we obtain

* = —r2 cos2 0 + r sin 9 -j- /i(r). Then f r — —2r cos2 # + sin 0 + ///(7') = 4 r + sin 9 — 2r cos2 0 and 

:.' r) =  4r so /i(r) = 2r2. The solution is

—r2 cos2 0 + r sin 9 + 2r2 = c.

*. The differential equation has the form (d/dx) [(sina:)y] = 0. Integrating, we have (sin x)y = c or 

. = c/ sinx. The initial condition implies c = — 2sin(77r/6) =  1. Thus, y — 1/ sin a:, where the 

interval 7r < X < 2tt is chosen to include x = 7n/6.

. separating variables and integrating we have

= -2(t + 1) dt
y2

- i  = -(« + l)2 + c
y

y ~ z/ t  'iL  i—  > where ~c = Cl-(t + ly  + ci

The initial condition y(0) — —| implies ci =  — 9, so a solution of the initial-value problem is

1 1

V (i H-l)2 -9  01 V *2 + 2*_ s ’

"•here — 4 < * < 2.

.. i a) For y < 0. y/y is not a real number.

i b) Separating variables and integrating we have

dy , . . _
—— =  dx and 2 ̂ /y =  x + c.

Letting y(xo) = yo we get c = 2v/yo - x0, so that

2\py = :r + 2v/yo — xq and y =  ^{x + 2^/y^ - xo)2.

Since ^Jy > 0 for y ^  0. we see that dy/dx =  \(x + 2 /̂yo ~ -̂o) must be positive. Thus; the 

interval on which the solution is defined is (xq  — 2y/yo, oo).
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22. (a) The differential equation is homogeneous and we let y - ux. Then

(x2 - y2) dx + xy dy = 0 

(a:;2 ■ u2x2) dx + ux1 (u dx + x du) = 0

dx + ux du =  0

dx
udu = ---

x

^ u2 = - In |x| + c 

y2
= —2 In |xj + ci.

The initial condition gives ci =  2. so an implicit solution is y1

( b )  Solving for y in part (a) and being sure that the initial condi­

tion is still satisfied, we have y — — \/2 |.x’|(l — In \x\)1!2, where 

—e <  x < c so that 1 — In |rcj > 0. The graph of this func­

tion indicates that the derivative is not defined at x = 0 

and x — e. Thus, the solution of the initial-value problem 

is y = —y/2x(l — In a:)1/2, for 0 < x < e.

23. The graph of yi(x) is the portion of the closed black curve lying in the fourth quadrant. Its inter'' J 

of definition is approximately (0.7.4.3). The graph of JJ2 {^) is the portion of the left-hand bl;- i 

curve lying in the third quadrant. Its interval of definition is (—oo,0).

24. The first step of Euler’s method gives y (l.l) ~ 9 -r 0.1(1 + 3) =  9.4. Applying Euler’s method :: ■? 

more time gives y(1.2) ~ 9.4 + 0.1(1 + l.l\/9^4) ~ 9.8373.

25. Since the differential equation is autonomous, all lineal elements on a 

given horizontal line have the same slope. The direction field is then 

as shown in the figure at the right. It appears from the figure that the 

differential equation has critical points at —2 (an attractor) and at 2 (a 

repeller). Thus, —2 is an aymptotically stable critical point and 2 is an 

unstable critical point.

= x2(2 - 21n|x|).
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2t>. Since the differential equation is autonomous, all lineal elements on a 

given horizontal line have the same slope. The direction field is then 

as shown in the figure at the right. It appears from the figure that the 

differential equation has 110 critical points.

- 4  - 2  0 2 4

v
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3 Modeling with First-Order 
Differential Equations

lin e a r M odels: v. •/

1. Let P  = P(t) be the population at time t. and Po the initial population. From dP/dt — kF 

obtain P — P^eM. Using P{5) = 2Po w c  find k = | ln2 and P  = Poe(ln2)|t/'5. Setting P(t) = 

we have 3 = gO112)*/0. so

, o O 2)* , 5 In 3
In3 = — -—  and t = — «  r.9 years.

5 In 2

Setting P(t) = 4P0 wc have 4 =  e ^ 2)*/5, so

, , (In 2)*
In 4 = — -—  and t fa 10 vears.

5

2. From Problem 1 the growth constant is k =  i  In 2. Then P = P0ê 1,/5̂ ln2'f and 10,000 = Poê 3/' 

Solving for Po we get Pq - 10,000e“ ^ / 5̂ ,n2 = 6,597.5. Now

P(10) = poe(1/5)(|n2)(i°) =  0>597i5e2in2 = 4Fq = 26,390.

The rate at which the population is growing is

P '(10) =  fcP(10) = ^(ln2)26,390 = 3658 persons/vear.
5

3. Let P = P(t) be the population at time t. Then dP/dt, = kP and P = cekt. From P (0) =  c = 

we see that P = 500efct. Since 15% of 500 is 75, we have P (10) =  500elofc =  575. Solving for ; 

get k = In ^  In 1.15. When t = 30.

P(30) = 500e(1/lo)(ln 1,15)30 = 500e3 In1-15 = 760 years

and

P'(S0) = kP(30) = -^(ln 1.15)760 = 10.62 persons/year.

4. Let P = P(t) be bacteria population at time t and Po the initial number. From dP/dt = kF 

obtain P = Poe**. Using P(3) = 400 and P(10) = 2000 we find 400 = Poe3fc or ek = (400/P 

From P(10) = 2000 we then have 2000 = Poelofe = Po(400/P())10'/3, so

2000 _ _ 7 /3 , „  (  2000 \ ~ 3/7 ^
——177777 = Pn and Po = (-- 7777z ) ~ 201.
40010/ j 0 V40010/3/
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le t A = A(t) be the amount of lead present at time t. From dA/dt = kA and .4 (0) =  1 we obtain

4 _  eU Using A(3.3) = 1/2 wc find k =  ^  ln (l/2). When 90% of the lead has decayed, 0.1 grams

“'ill remain. Setting A(t) =  0.1 we have (-/(1-/̂ -i)ln(1/2) — 0.1, so

* , 1 i , 3.3In0.1
—  In - — In 0.1 and t = —-—r—- ps 10.96 hours.
3.3 2 hi(l/2)

lot A =  A(t) be the amount present at time t. From dA/dt = kA and ,4(0) = 100 we obtain

- 100ett. Using ,4(6) - 97 we find k =  J hi 0.97. Then .4(24) =  100e(i/6)(hl°-97)24 = 100(0.97)4 ss

iS.o mg.

Writing A(t) = 50 in Problem 6 we obtain 50 = lOOe*'*, so

i 1 i In (l/2)
kt — m - and t = . . .——— ~ 136.5 hours.

2 (1/6) In 0.97

* a) The solution of dA/dt = kA is A(t) = Aoeki. Letting A = ^Aq and solving for t we obtain the

half-life T = - (In2)/k.

b ) Since k = —(In2)/'I7 we have

A(t) = A oe-^W 7 =  A02~t/T.

c) Writing |4o ~ Aq‘2~L/"1 as 2-3 = and solving for t we get t =  3T. Thus, an initial 

amount Aq will decay to | 4 q in three half-lives.

* !:•: 7 = I(t) be the intensity, t the thickness, and 7(0) = 7o- If dl/dt =  k l and 7(3) = 0.257o, then 

: = hek\ k =  \ In 0.25, and 7(15) =  0.000987o.

7:::n dS/dt — rS wc obtain S — Sqc'1 where 5(0) — Sq.

a) If 5b = $5000 and r = 5.75% then 5(5) = $6665.45.

b) If S(t) =$10,000 then t = 12 years.

:« 5 «  $6651.82

-_"'ime that A = Aoekt and k = -0.00012378. If .4(<) =  0.145-4o then t ^15,600 years.

1. 7:.m Example 3 in the text, the amount of carbon present at time t is A(t) =  ,4ne_0'000123'8*. 

L-::ing t — 660 and solving for Aq we have A(660) = 4 0e-0 000l237(660) = 0.92 1553̂ 4o- Thus,

■::: roxirnately 92% of the original amount of C-14 remained in the doth as of 1988.

-.“ time that dT/dt = k(T— 10) so that T = 10 + ce^. If T(0) =  70° and T (l/2) =  50° then c = 60 

k = 21n(2/3) so that T( 1) = 36.67°. If T(t) = 15° then t =  3.06minutes.

--“ ■.une that dT/dt = k(T — 5) so that T = 5 + cekt. If T(l) = 55° and T(5) = 30° then k =  — j  In 2 

1 c =  59.4611 so that T(0) = 64.4611°.
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15. We use the fact that the boiling temperature for water is 100° C. Now assume that dT/dt = 

k(T - 100) so that T = 100 + cekt. If T(0) = 20° and T(l) =  22°, then c =  -80 and k = 

ln(39/40) —0.0253. Then T(t) =  100 — 80e-0 0253t, and when T =  90, t =  82.1 seconds. 

T(t) =  98° then t = 145.7 seconds.

16. The differential equation for the first container is dT\jdt = k](Ti — 0) =  k\Ti, whose solution 

Ti(t) = cieklt. Since Xj (0) =  100 (the initial temperature of the metal bar), we have 100 - c\ an 

Ti(t) -- 100efclf. After 1 minute, T i(l) = lOOe*1 =  90°C, so h  =  In0.9 and l\(t) =  100e'hl° 

After 2 minutes, T\(2) = 100e21ll° 9 = 100(0.9)2 = 81°C.

The differential equation for the second container is dT^jdt = hi (Th — 100), whose solution 

T2(t) - 100+C2.efc2<. When the metal bar is immersed in the second container, its initial temperatir. - 

is T2(0) = 81, so

T2(0) = 100 + c2ek' ^  =  100 + c2 = 81

and e2 = —19. Thus, T2(i) = 100 — I9ek2t. After 1 minute in the second tank, the temperature 

the metal bar is 91°C. so

jT2( 1) = 100 - 19e*2 = 91

efca = JL
6 19

and 72(f) =  100 — 19ef lnC9/19). Setting T^it) - 99.9 we have

100 - 19enn(9/19) = 99.9

f  111(9/ 19) _
~ 19

t  =  M E M . 7 ,0 2 .
ln(9/19)

Thus, from the start of the “double dipping” process, the total time until the bar reaches 99.9; 

in the second container is approximately 9.02 minutes.

17. Using separation of variables to solve dT/dt — k(T — Trn) we get T(t) - Tm + cekt. Using T(0) - ' 

we find c =  70 — Tm, so T(t) = Tm + (70 — Tm)ekt. Using the given observations, we obtain

r ( i )  =  Tm + (70 -  Tm)ekl2 = 110 
T ( l ) = T m + ( 7 0 - T m)e* =  145.
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Then, from the first equation, ek/2 — (110 — Tm)/{70 — Tm) and

110 -Tm 

70 -Tm

(110 -Tmf  

70 - Tm.

145 -Tm 

70 - Trn

= 145-Ti„

12100 - 220Tm + T2, = 10150 - 215T,
_  rpZ  

Til ' J-m

Tm = 390.

The temperature in the oven is 390°.

(a) The initial temperature of the bath is Tm(0) — 60°, so in the short term the temperature of the 

chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath 

will increase toward 100° since e-tUf decreases from 1 toward 0 as t increases from 0. Thus, 

in the long term, the temperature of the chemical should increase or warm toward 100°.

;b) Adapting the model for Newton’s law of cooling, we have T

dT
= -0.1(T- 100 + 40e-(m), T(0) = 80.

dt

Writing the differential equation in the form 

dT
^  + 0.1T =  10-4e“ait
dt

we sec that it is linear with integrating factor e^Q'ldt = eQ lt. Tims

d , o.nT\ = i 0eo.u _ 4 

dt1 1

and

eo.uT =  iooeau - 4 t + c 

T(t) = 100 - Ue~0At + ce~0M.

Now T(0) =  80 so 100 + c — 80. c = —20 and

T(t) =  100 - 4«e-0-lt - 20e_o lt = 100 - (At + 20)e_(Ut.

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The 

wider curve shows the temperature Tm of the liquid bath.

" .Ti.tifying Tm = 70, the differential equation is dT/dt = k{T — 70). Assuming T(0) =98.6 and 

-..rat.ing variables we find T(t) = 70 + 2S.9ekt. If t\ > 0 is the time of discovery of the body, then

T(t1) =  70 + 28.6ektl = 85 and T(tr + 1) = 70 + 28.6efĉ 1+1) = 80.
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Therefore ektl — 15/28.6 and = 10/28.6. This implies

k 10 _hu 10 28.6 2 

e "  28.6 C _  2&6 ' ~15~ _  3 ’

so k = In | ~ —0.405465108. Therefore

t\ = 7 hi «  1.5916 «  1.6. 
k 28.6

Death took place about 1.6 hours prior to the discovery of the body.

20. Solving the differential equation dT/dt = kS(T — Tm) subject to T(0) = To gives

T(t) = Tm + (To - Tm)ekSt.

The temperatures of the coffee in cups A and B are, respectively,

Ta (t) = 70 + 80efc5* and TD(t) =  70 + 80e2kSt.

Then T4(30) =  70 + S0em s = 100, which implies e30kS = §. Hence

Tb (.30) - 70 + 80ae()kS = 70 + 80 (em 9 ) 2

= 70 + 80 ( J )  = 70 + 80 = 81.25°F.

21. From dA/dt = 4 — A/50 we obtain A — 200 + ce-*/50. If -4.(0) = 30 then c. = —170 

A = 200 - 170e-t/50.

22. From dA/dt = 0 — .4/50 we obtain A — ce~t//o°. If A(0) = 30 then c =  30 and A = 30e-t/5l).

23. From dA/dt = 10 — A/100 wc obtain A = 1000 + ce-*/100. If .4(0) = 0 then c = —1000 

A(t) = 1000 - lOOOe-*/100.

24. From Problem 23 the number of pounds of salt in the tank at time t is A(t) = 1000 — 1000e-( 

The concentration at time t is c(t) =  Aft)/500 = 2 — 2e“*/100. Therefore c(5) = 2 — 2e_1/" 

0.0975 lb/'gal and lim* _>00 c(t) — 2. Solving c(t) = 1 =  2 — 2e-*/100 for t we obtain t =  100 hi

69.3 min.

25. From
dA _  10A 2A

dt ~ 500 — (10 — 5)£ _  100 - t

we obtain A = 1000 — lOt + c(100 — t)2. If A(0) = 0 then c = — ̂  . The tank is empty in 

minutes.

26. With Cin(t) =  2 + sin(£/4) lb/gal, the initial-value problem is

^  + I5o '4 =  6 + 3sini ’ '4(°) = 5a
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differential equation is linear with integrating factor eJ dt/im = ef/ll,t\ so

:[e‘/ ,0<U(*)] = (e + S sm j) ^ ’00
_d 

dt1

e>tm A(t) = 600//1”  + ^2 e »/100 sin *-
313 4

3750

313
,//1 oocos - + C.

. 1 5 0  . t 3750 t _/./inn 
A(t) =  600 + —  sm-4 - —  caS-+ce-'' .

ing t = 0 and A = 50 we have 600 — 3750/313 + c = 50 and c = —168400/313. Then

4/^ 150 • * 3750 *
A m = m  + 3 i3Sm4 - l i u CX4

168400

313

graphs on [0,300; and [0,600] below show the effect of the sine function in the input when 

pared with the graph in Figure 3.1.4(a) in the text.

am

dA _  o 4A

~dt ~ _  100 + (6 - 4)i
= 3

2A

50T t

jbtain A = 50 + 1 + c(50 + 1)~2. If A(Q) - 10 then c = -100.000 and A(30) =  64.38 pounds.

Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of

3 gal/min and the mixture is pumped out at a rate of 2 gal/min. the net. change is an increase 

of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.

The differential equation describing the amount of salt in the tank is A'(t) = 6 — 2^4/(300 4- t) 

with solution

A{t) = 600 + 21- (4.95 x 107)(300 + 1)~2, 0 < t <  100,

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the 

tank when it overflows is

4(100) = 800 - (4.95 x 107)(400)~2 = 490.625 lbs.

When the tank is overflowing the amount of salt in the tank is governed by the differential
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equation

^  = (3 gal/min)(2 lb/gal) - lb/gal) (3 gal/min)

— 6 —
3A

400’
A(100) =  490.625.

Solving the equation, we obtain A(t) =  800 -I- ce 3*/400. The initial condition yields 

c = —654.947, so that

A{t) = 800 - 654.947e_3t/400.

When t =  150, A(150) =  587.37 lbs.

(d) As t —> oo, the amount of salt is 800 lbs, which is to be expected since 

(400 gal) (2 lb/gal) =  800 lbs.

(e) a

29. Assume Ldi/dt + Ri =  E(t), L =  0.1, R  =  50, and E(t) =  50 so that i =  | + ce 500t. If i(0) = 

then c =  —3/5 and lim^oo i(t) =  3/5.

30. Assume L di/dt + Ri =  E(t), E(t) =  Eq sinu>t, and i(0) = io so that

EoR .... , EqLu ____, , ^-Rt/L
i ==

L2u2 + R2
sin cot —

L2oj2 + R2
cos art + ce

o* */r\\ • i • E0Lu>
Since ?(0) =  *o we obtain c =  %o + To-o--^

Lzu)z + Rz

31. Assume Rdq/dt + (1 /C)q — E(t), R =  200, C =  10 4, and E(t) =  100 so that q =  1/100 + ce 50 

If <?(0) =  0 then c — —1/100 and i =  |e_50t.

32. Assume Rdq/dt+(l/C)q = E{t), R  =  1000, C = 5x 10-6, and E(t) =  200. Then q = i^jj+ce-20 

and i = —200ce~200t. If i(0) .= 0.4 then c = — ggg, #(0.005) = 0.003 coulombs, and «(0.005) i

0.1472 amps. We have q 1000 as t oo.

33. For 0 < t < 20 the differential equation is 20 di/dt + 2i — 120. An integrating factor is e*/10, s 

(d/(2£)[e*/10i] = 6e*/10 and i =  60 + cie~^10. If i(0) =  0 then c\ = —60 and i =  60 — 60e-^* 

For t > 20 the differential equation is 20 di/dt + 2i = 0 and i =  C2 e~t/10. At t =  20 we wai
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:;t ■ = 60 — 60e 2 so that c2 =  60 (e2 — l) . Thus

J 60 - eOe"^10, 0 < t < 20 

*(t) =  \60(e2- l)e - ‘/ll», t > 20.

l~. '-i-jjarating variables, we obtain

dg dt

Eq — q/C k\ + k2 t-

I Q
-C\r]Eq-± 

\ - C

— — In | k\ + 
*2

(£b ~ q/C)-
( k i  +  h o t )  l '/}'2 2

String q(0) = go we find C2 =  (Eq - qo/C)~c /k\/k2 , so

(Ep - q/C)~c (E0 -q0/C)-c 

(ki + kit)1̂  k\ / k 2

C ) \ C ) \k + k2t j

* - § = ( * - § )  (* t k i ) ' /Cb

/ k \ 1/Ck'2 

« = £»c + ( « - A»c ) ( ^ J

i a) Prom mdv/dt =  mg — kv wc obtain v — mg/k + ce~kt-rn. If v(0) = t’o then c = t’o — mg/k and 

the solution of the initial-value problem is

b) As t —> oo the limiting velocity is mg/k.

I c) Prom ds/dt ~ v and s(0) =  0 we obtain

. . m g, m ( mg\ _kt/rr] m ( mg\

fa) Integrating d2s/dt2 = —g we get v(t) = ds/dt = —gt + c. From t’(0) =  300 wc find c = 300, 

and we are given g = 32, so the velocity is ?.;(*) =  —32* + 300.

■ b) Integrating again and using s(0) = 0 we get s(t) =  —16*2 + 300*. The maximum height is 

attained when v = 0, that is, at ta = 9.375. The maximum height will be 5(9.375) =  1406.25 ft.
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37. When air resistance is proportional to velocity, the model for the velocity is rn dv/dt ~ 

—mg — kv (using the fact that the positive direction is upward.) Solving the differential equa­

tion using separation of variables we obtain v(t) - —mg/k + ce.~kt/m. From t?(0) = 300 wc get

v(t) =  + (300 +

Integrating and using s(0) = 0  we find

, (t) _ _ ^ ( + “ (300+ ^ ) ( l
Setting k — 0.0025. m = 16/32 = 0.5, and g — 32 we have

s(t) =  1,340.000 - 6,400* - l,340,000e_a0°5t

and

v(t) = -6,400 + 6,700e-0'005*.

The maximum height is attained when v =  0, that is, at ta = 9.162. The maximum height will 

s(9.162) = 1363.79 ft, which is less than the maximum height in Problem 36.

38. Assuming that the air resistance is proportional to velocity and the positive direction is downwo.. 

with .s(0) = 0, the model for the velocity is m dv/dt = my — kv. Using separation of variahl- 

to solve this differential equation, we obtain v(t) =  mg/k + ce~kt,/'m. Then, using v(0) = 0. 

get -u(£) — (mg/k)( 1 — e~kt/m). Letting k — 0.5, m - (125 + 3o)/32 - 5, and g =  32, wc hi-"- 

v(t) = 320(1 — Integrating, we find s(t) =  3201 -f 3200e"'°-1i + c\. Solving ,s(0) = 

for ci we find ci =  —3200. therefore s(t) — 3201 + 3200e“°-1* — 3200. At t =  15, when 

parachute opens, i?(15) =  248.598 and s(15) =  2314.02. At this time the value of k change? • 

k - 10 and the new initial velocity is vo — 248.598. With the parachute open, the skydiv-. - 

velocity is vp(t) - mg/k + C2 (~kL/m, where t is reset to 0 when the parachute opens. Letr:..; 

rn — 5. g — 32, and k = 10, this gives vp(t) =  16 + c.2 &~2i. From v(0) - 248.598 wc r.. i1

0 2  — 232.598, so vp(t) =  16+232.598e-2t. Integrating, we get sp(t) = 16£—116.299e_2t+C3. Solv:. 

<%(0) =  0 for C'3, we find c» = 116.299. so sp(t) = 16i — 116.299e~2/ +116.299. Twenty seconds " 

leaving the plane is five seconds after the parachute opens. The skydivers velocity at this tin:- ’ 

'^(5) =  16.0106 ft/s and she has fallen a total of $(15) + sp(5) = 2314.02 + 196.294 = 2510.31 " 

Her terminal velocity is limt-Kc vp(t) = 16, so she has very nearly reached her terminal vek. ' 

five seconds after the parachute opens. When the parachute opens, the distance to the groin: -

15,000 — s(lo) = 15,000 — 2.314 = 12,686 ft. Solving sp(t) =  12,686 we get t — 785.6 s = 1 

min. Thus, it will take her approximately 13.1 minutes to reach the ground after her parachute . f 

opened and a total of (785.6 4- 15)/60 = 13.34 minutes after she exits the plane.

39. (a) The differential equation is first-order and linear. Letting b =  k/p, the integrating fact..
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e j 3 b d l / ( b t + r 0) =  ( rQ +  b t ^  T h e n

-̂ [(?'o + bt)3v] = g(r0 -t- bt)3 and (r0 + bt)3v - J^(r0 + bt)4 + c.

The solution of the differential equation is = (y/46)(?’o + bt) + e(ro + bt)~3. Using v(0) =  0 

we find c — —gr^/Ab. so that

=  +  “ > -  •

(b) Integrating dr/ dt — k/p we get r = Atf/p+c. Using r(0) = ryj we have c = ro, so r(t) = /tf/p+ro.

(c) If r =  0.007 ft when t = 10 s. then solving -r(10) =  0.007 for k/p, wTe obtain &/p =  —0.0003 and 

•r(i) = 0.01 — 0.0003t. Solving r(t) = 0 wc get t =  33.3, so the raindrop will have evaporated 

completely at 33.3 seconds.

Separating variables, we obtain d-P/P = k cos t dt, so 

In \P\ = k sin t + c and P  = ciefcaint.

If P (0) = P0, then ci = P0 and P = PQeks'mt.

(a) From dP/dt = (&i — k})P we obtain P =  .p0e^1_fe2̂  where Po = P(0).

(b) If k-\ > k‘2 then P —» oo as t —> oo. If k\ = % then P = Po for every t. If k\ < k,2 then P  —> 0 

as t > oo.

(a) The solution of the differential equation is P(t) = c\ekl + h/k. If we let the initial population 

of fish be Po then P(0) = Po which implies that

ci = Pq - j± and P(t) =  ^P ()- j^ jekt+ y

•b) For Po > h/k all terms in the solution arc positive. In this ease P(t) increases as time t 

increases. That is, P(t) —► oc- as i —► oc.

For Pq =  h/k the population remains constant for all time t:

For 0 < Po < h/k the coefficient of the exponential function is negative and so the function 

decreases as time t increases.

c) Since the function decreases and is concave down, the graph of P(t) crosses the t-axis. That 

is, there exists a time T > 0 such that P(T) — 0. Solving
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for T shows that the time of extinction is

T = k ln (ft -A:P0) '

43. (a) Solving r — kx = 0 for x we find the equilibrium solution x = r/k. When x < r/k , 

dx/dt > 0 and when x > r/k , dx/dt < 0. From the phase portrait we see that 

lim^oo x(t) = r/k.

k

(b) From dx/dt = r — kx and ir(0) =  0 wc obtain x =  r/k, — (r/k)e ^  :

so that x —*■ r/k as t —> oc. If x(T) =  r/2k then T — (In2)/k.

r/k

44. (a) Solving ki(M  — A) — k?A = 0 for A we find the equilibrium solution 

A = k\M/(k\ + k^). From the phase portrait we see that A(t) =

k\M/(k\ + k-2 ). Since k-z > 0; the material will never be completely memo­

rized and the larger k̂  is; the less the amount of material will be memorized over

time. Mki
ki + k2

(b) Write the differential equation in the form dA/dt+(ki+A’2)A = 

k\M. Then an integrating factor is e^1+fc2̂ , and

d = klMe(h+k2)t
dt

e(ki+k2)t̂  _  k-lM c(ki+k-2)t _j_ c 
ki + k2

A =
kiM

k\ + k2
+ ce -(ki+k2)t
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v-r . . /~\ r. i k\M , . A’liU 
Using .4(0) = 0  wc find c = — ----— and A =

h  m  

k-i + h

k] + k‘2 k\ + k2
(l - e-(h+k-2 )ty As OC,

45. (a) For 0 < t < 4. 6 < t. < 10 and 12 < t < 1C, no voltage is applied to the heart and E(t) = 0. At 

the other times, the differential equation is dE/dt =  —E/RC. Separating variables, integrating, 

and solving for e. we get E = . subject to i?(4) = i?(10) =  i?(16) = 12. These intitial

conditions yield, respectively, k = 12e4/'RC, k =  \2el<il'RC. k = l2e16‘RC, and k =  I2e?2//Rc. 

Thus
0, 0 < t < 4 ,  Q < t <  10, 12 < t < 16

12e(i-0/*C 4 < t < 6 

12e(io-t)/nc io < t < 12

1 2 e(i6 -i)/RC i 6 < t < ig
E(t) =

(b)

10

1 L I J
4 6 10 12 1 6  1 8 2 2  2 4

4-. (a) (?) Using Newton’s second law of motion, F  = ma = mdvjdt, the differential equation for the 

velocity v is
dv .

m — = mg sm 9 
dt

or
dv

dt
= g sin/9,

where mg sin0, 0 < 9 < tt/2, is the component of the weight along the plane in the direction 

of motion.

(ii) The model now becomes

dv .
m, — = mg sm 9 — fimq cos a, 

dt

where fimg cos 0 is the component of the force of sliding friction (which acts perpendicular 

to the plane) along the plane. The negative sign indicates that this component of force is a 

retarding force which acts in the direction opposite to that of motion.

(Hi) If air resistance is taken to be proportional to the instantaneous velocity of the body, the 

model becomes

77? —  = mg sin 9 — fimg cos 9 — kv.
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where k is a constant of proportionality.

(b) (i) With m ~ 3 slugs, the differential equation is

, dv 1 dv
3 —  =  (96) • - or — = 16. 

dt. 1 2 dt

Integrating the last equation gives v(t) =  lQt + c\. Since d(0) =  0, we have c\ — 0 and ^

v(t) = m .

(ii) With m = 3 slugs, the differential equation is

« dv , . 1 \/3 _ . \/3 do
3 —  = (96) • - - -V • (96) ~  or “77 = 4. 

dt v ; 2 4 v ' 2 dt

In this case v(t) = At.

(Hi) When the retarding force due to air resistance is taken into account, the different: ... 

equation for velocity v becomes

-.dv 1 y/3 -\/3 1 _dv „  1 i

3 * = ( 96) ' 2 - T ' (i,6) ' T - 4 (' 01 df = 4 

The last differential equation is linear and has solution v(t) = 48 + ci<rf/12. Since t’(0) = 

wc find ci =  —48, so v(t) = 48 — 48e_i/12.

47. (a) (i) If s(t) is distance measured down the plane from the highest point, then ds/dt — v. In: 

grating ds/dt =  16t gives s(t) — 8t2 + Using s(0) = 0 then gives ci = 0. Now the lent.'

L of the plane is L =  50/ sin 30° =  100 ft. The time it takes the box to slide completely dc 3 

the plane is the solution of s(t) =  100 or t2 =  25/2, so t «  3.54s.

(ii) Integrating ds/dt = At gives s(t) = 2t2 + C2. Using s(0) = 0 gives c-2 ~ 0, so s(t) = 21? f : 

the solution of s(t) =  100 is now t ta 7.07s.

(in) Integrating ds/dt = 48 — 48e-^ 12 and using s(0) =  0 to determine the constant 

integration, we obtain s(t) =  ASt + 576e_<//12 — 576. With the aid of a CAS we find that 

solution of s(t) = 100. or

100 = 481 + 576e_t/12 - 576 or 0 = 48i + 576e~^12 - 676,

is now t «  7.84 s.

(b) The differential equation to dv/dt — mg sin (9 — ftmg cos 6 can be written

m = mg cos (9(tan 6 — fx).
LLL

If tan# = ji, dv/dt =  0 and v(0) = 0 implies that v(t) = 0. If tan 0 < // and ?;(0) =  0. : 3 

integration implies v(t) =  geos0(tan<9 — fi)t < 0 for all time t.

(c) Since tan 23° = 0.4245 and /i = y/Z/A = 0.4330, we see that tan23° < 0.4330. The differs: 

equation is dv/dt = 32 cos 23°(tan 23° — y/Z/A) = —0.251493. Integration and the i>
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the initial condition gives v(t) =  —0.251493t + 1. When the box stops. v(t) =  0 or 0 = 

—0.251493i+l or t =  3.976254s. From s(t) = -0.125747t2+i we find s(3.976254) =  1.988119 ft.

( d )  With t*o > 0. v ( t )  = —0.251493i + v q  and s(t) =  —0.125747f ?  +  v o t .  Because two real positive 

solutions of the equation s(t) =  100, or 0 = —0.125747£2 + vot — 100, would be physically 

meaningless, we use the quadratic formula, and require that b2 — Aac = 0 or Vq — 50.2987 — 0. 

From this last equality we find r'o ~ 7.092164 ft/s. For the time it takes the box to traverse 

the entire inclined plane, we must have 0 = —0.125747i2 + 7.092164t — 100. Mathematica gives 

complex roots for the last equation: t =  28.2001 ± 0.0124458'i. But, for

0 = —0.125747*2 + 7.09216469li - 100,

the roots are t - 28.1999 s and t — 28.2004 s. So if t’o > 7.092164, we are guaranteed that the 

box will slide completely down the plane.

4*. (a) We saw in part (b) of Problem 36 that the asccnt time is ta =  9.375. To find when the 

cannonball hits the ground we solve s(t) = —16t2 + 300t = 0, getting a total time in flight of 

t = 18.75 s. Thus, the time of descent is = 18.75 — 9.375 = 9.375. The impact velocity is 

Vi = i;(18.75) = —300. which has the same magnitude as the initial velocity.

i b) We saw in Problem 37 that the ascent time in the case of air resistance is ta = 9.162. Solving 

s(t) = 1,340,000 — 6,400/: — l,340,000e-O'OOM = 0 we see that the total time of flight is 18.466s. 

Thus, the descent time is td = 18.466 —9.162 = 9.304. The impact velocity is Vi — u(18.466) — 

—290.91, compared to an initial velocity of vq =  300.

.... Ntadtairat.Models... .................. .......
; ; !; v? I  •

’ ' ‘ "In.;:- TO'

a) Solving jV(l — 0.0005iY) = 0 for N wc find the equilibrium solutions N = 0 and 

N = 2000. When 0 < N  < 2000, dN/dt > 0. From the phase portrait we see that 

lim*—oo N(t) =  2000. A graph of the solution is shown in part (b).

o-1
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(b) Separating variables and integrating we have

dN (1 1 \ T _

(/\T ~~ N - 2000) 1' ~ ( tN{1 - 0.0005A') \N N - 2000

and

In Ar- ln(iV -  2000) =  t + c.

Solving for N  we get N(t) =  2000cc+t/ ( l + ec+f) = 2000creV(l -f e'V). Using A7(0) =  1 e.: 

solving for ec we find ett = 1/1999 and so N(t) =  2000e'/(1999 + eL). Then JV(10) = 1833.' 

so 1834 companies are expected to adopt the new technology when t =  10.

2. From dN/dt = N(a — bN) and Ar(0) — 500 we obtain

... 500a
A' =

5006 + (a — 5006) e at

Since l i m ^  Ar = a/b =  50,000 and Ar(l) - 1000 we have a = 0.7033, b = 0.00014, a:.. 

N = 50.000/(1 + 99e-°-7033<) .

3. From dP/dt = P (l0 _1 - 10_7P) and P(0) =  5000 we obtain P = 500/(0.0005 + 0.0995e-°JJ '3

that P —> 1.000,000 as I —>■ oo. If P(t) = 500:000 then t — 52.9 months.

4. (a) We have dP/dt = P(a — bP) with P(0) = 3.929 million. Using separation of variable?

obtain
3.929a a/b

p(t) =
3.9296 + (a - 3.929f>)e-“' 1 + (a/3.929b - l)e~“

c

1 + (c/3.929 - 1)e~at ’ 

where c = a/b. At t =  60(1850) the population is 23.192 million, so

93 loo ■_________ -_________
1 + (c/3.929 - l)e-60°

or c = 23.192 + 23.192(c/3.929 - l)e“60a. At t = 120(1910),

91.972 =
1 + (c/3.929 - l)e-120a 

or c =  91.972 + 91.972(c/3.929 — l)(('_60a)2. Combining the two equations for c we get

(c - 23.192)/23.192>\2 (  c \ _  c - 91.972

V c/3.929- 1 j  V 3.929 ) 91.972

or
\2 _  /oo -irv~>\291.972(3.929)(c - 23.192)2 = (23.192)2(c - 91.972)(e - 3.929). 

[uation i 

p(t) =

The solution of this quadratic equation is c = 197.274. This in turn gives a =  0.0313. Then:

197.274

1 + 49.21e-°-0313t '
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•b) Year
Census

Population
Predicted

Population Error
%

Error
1790 3.929 3,929 0.000 6.00
1800 5,308 5.334 -0.026 -0.49
1810 7.240 7.222 0.018 0.24
1820 9.638 9.746 -0.108 -1.12
1830 12.866 13.090 -0.224 -1.74
1840 17.069 17.475 -0.406 -2.38
1850 23.192 23.143 0.049 0.21
1860 31.433 30.341 1.092 3.47
1870 38,558 39.272 -0.714 -1.85
1880 50.156 50.044 0.112 0.22
1890 62.948 62.600 0.348 0.55
1900 75.996 76.666 -0.670 -0.88
1910 91.972 91.739 0,233 0.25
1920 105.711 107.143 -1.432 -1.35
1930 122.775 122.140 0,635 0.52
1940 131,669 136.068 -4.399 -3.34
1950 150.697 148.445 2.252 1.49

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970. The 

census populations for these years were 179.3 and 203.3, respectively. The percentage errors 

are 12.8 and 21.2. respectively.

: . i a) The differential equation is dP/dt = P (5 — P) — 4. Solving P(5 — P) — 4 = 0 for P p 

we obtain equilibrium solutions P  = 1 and P = 4. The phase portrait is shown on the 

right and solution curves arc shown in pari: (b). We see that for Pq > 4 and 1 < Po < 4
4 * -

the population approaches 4 as £ increases. For 0 < P  < 1 the population decreases to

0 in finite time. i —
v

b) The differential equation is

dP

dt
=  P(5 - P) - 4 =  - (P 2 - 5P + 4) = - (P  - 4)(P - 1).

Separating variables and integrating, we obtain

dP

(P - 4 )(P - 1 ) 

1/3 1/3

= -d t

P — 4 P -  1 

1 P — 4

3 hl

dP = —dt

P -  1 

P — 4 

P - l

= -t + c

- c\e -31

Setting I =  0 and P = Po we find ci = (Po — 4)/(Po — 1). Solving for P  we obtain

4(P0 - l ) - ( P 0 -4)e-3*
P(t) =

(P0 - l ) - ( P 0 -4)e-3/' •
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(c) To find when the population becomes extinct in the case 0 < Pq < 1 we set P  = 0 in

P - 4 = By-4 ,t 

P - 1 F o - 1 '  

from part (a) and solve for t. This gives the time of extinction

3 P0 -4

6 . Solving P (5 — P) — ^  =  0 for P we obtain the equilibrium solution P = | . For P ^  | . dP/dt < 0. 

Thus, if Pq < | , the population becomes extinct (otherwise there would be another equilibrium 

solution.) Using separation of variables to solve the initial-value problem, wc get

P(t) = [4P0 + (lOPo ~ 25)t]/[4 + (4Pa - 10)t].

To find when the population becomes extinct for Pq < % we solve P(t) =  0 for t. We see that the 

time of extinction is t = 4Po/5(5 — 2Po).

7. Solving P (5 — P) — 7 = 0 for P  we obtain complcx roots, so there are no equilibrium solutions. 

Since dP/dt < 0 for all values of P, the population becomes extinct for any initial condition. Usku 

separation of variables to solve the initial-value problem, we get

_! (2Pq — 5'
tan

V3

Solving P(t) =  0 for t we see that the time of extinction is

t — ^(\/3tan 1 (5/^3) + V3 tan 1[(2Po — 5)/\/3]).

8. (a) The differential equation is dP/dt = P( 1 — InP), which has the equi­

librium solution P  =  e. When Po > e, dP/dt < 0, and when Pq < e, 

dP/dt > 0.

(b) The differential equation is dP/dt = P( 1 + InP), which has the equilib­

rium solution P = 1/e. When Po > 1/e. dP/dt > 0, and when Po < 1/e, 

dP/dt < 0.

(c) From dPjdt = P(a — bInP) we obtain —(1/6)In |a — 61nP| = t + c\ so that P = ea/t)e ce 

If P (0) =  Pq then c =  (a/b) — In Po-
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Let X  = X(i) be the amount of C at time t and dX/dt = k( 120 — 2A')(150 — X  >. If A" 0 = j a:.c 

A(5) =  10. then

_  150 — 150e18OW 

l-2 .5e180** ’

■."here k = .0001259 and A (20) =  29.3 grams. Now by L;H6pital's rule. X  —► 60 as t —> oo, so that 

the amount of A —> 0 and the amount of B —► 30 as t —> oc.

From dXjdt =  A:(150 — A’)2, A"(0) =  0, and X(5) = 10 we obtain X  = 150 — 150/(150H + 1) where 

= .000095238. Then X (20) =  33.3 grains and A' —»• 150 as t —* oo so that the amount of A —» 0 

and the amount of B —> 0 as t —► oc. If X  (t) = 75 then t = 70 minutes.

i.a) The initial-value. problem is dh/dt = —&AhVh/Aw< 10̂  

h.(0) = H. Separating variables and integrating we 

have

= aad 2 Vh = - ^ ~ t  + c.
y/h Aw A.w

Using h(0) = H  we find c =  2y/H , so the solution of

the initial-value problem is \Jh(t) = (Aw\fH — 4Aht)JAw, where Awy/H — 4,4/,t > 0. Thus.

ft(*) =  (Atov/ff - A A htf!/^  for 0 < t < A.wy/~H/4Ah.

b) Identifying H = 10. Aw = 4tt, and Ah =  tt/576 we have h(t) =  £2/331.776 — (y 5/2 /144)t +10. 

Solving ft,(i) - 0 we see that the tank empties in 576\/l0 seconds or 30.36 minutes.

To obtain the solution of this differential equation we use h(t) from Problem 13 in Exercises 1.3. 

Then h(t) =  (Aw'/H  — AcA^t)2 jA2W. Solving h(t) =  0 with c =  0.6 and the values from Problem 11 

■ve see that the tank empties in 3035.79 seconds or 50.6 minutes.

a) Separating variables and integrating gives

6 h?^dh = —5 dt and ~ h b/2 =  —51 + c.
5

Using h(0) =  20 we find c = 1920\/5. so the solution of the initial-value problem is h(t) = 

(800\/5 — j §i)2/J. Solving h(t) =  0 we see that the tank empties in 384\/5 seconds or 14.31 

minutes.

b) When the height of the water is h, the radius of the top of the water is r =  h tan 30° =  h , \ 3 

and Aw = irh2/Z. The differential equation is

^ = _o.6^ ( ^ | ! v 6S = — L .
dt Aw v y trh2/S 5ft3/2
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Separating variables and integrating gives

5h:i' 2dh — —2 dt and 2/?5/2 = —21 + c.

Using h(0) 9 we find c, =  486. so the solution of the initial-value problem is h(t) =  (243—£)2'" 

Solving h(t) = 0 we see that the tank empties in 243 seconds or 4.05 minutes.

14. When the height of the water is h, the radius of the top of the water is |(20 — h) ar. 

Aw = 4tt(20 — h)'2/25. The differential equation is

dh Ah p y j tt(2/ 12)2 ^  5 Vh.
-  = - c j - ^ g h  =  - 0 - \ w{20_ h)2/25^ =  - g  poTftjJ •

Separating variables and integrating we have

(20 — ft)2 5 4nA /r 80,,,., 2
dh =  --dt and 800VTi — ^~h3/2 + -ft0/2 = — -t + c. 

yfh 6 3 5 6

Using /).(0) = 20 we find c =  2560\/5/3, so an implicit solution of the initial-value problem is

3 b 6 3

To find the time it takes the tank to empty wc set h = 0 and solve for t. The tank empties 

1024\/5 seconds or 38.16 minutes. Thus, the tank empties more slowly when the base of the cc:. 

is on the bottom.

15. (a) After separating variables we obtain

m dv

mg — kv2 

1 dv

= dt 

— dt
g 1 - (y/kv/y/mg)2

y/mg yf k/mg dv _  

Vk g 1 - (Vkv/y/mg )2

!m  , _i y/kv 
1 —- tanh _ = t + c. 
kg s/mg

taah-’ ^  = M t  + C i .
Jm g V rn

Thus the velocity at time t is

Setting t = 0 and v = t’o wc find c\ = tanh“”1 (yfk. ?;q/ y / r n g ).
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b) Since tanh t —> 1 as t —* oo, we have v —► yjmgfk as t —> oc.

c) Integrating the expression for v(t) in part (a) we obtain an integral of the form f  du/u:

[kg \ m ,
cosh | y' — t + ci

rn
+ C2.

Setting i = 0 and s = 0 we find c<i = —(m/k) ln(coshci), where ci is given in part (a), 

rhe differential equation is m, dv/dt. =  —mg — kv2. Separating variables and integrating, we have

dv dt

mg + hiP- m

1 _i f  Vkv\ 1
tan - = -- 1 + c

■\/mgk \y/mg J m

_i ( Vkv\ jgk 
tan ,__  = — \ —  t + ci\y/rng) V m

Sotting t!(0) = 300, m = \ , g =  32, and k — 0.0003, we find v(t) = 230.94 tan(ci — 0.138564£) 

'lid Ci = 0.914743. Integrating

,;(*) = 230.94 tan(0.914743 - 0.138564*)

v:e get

s{t) = 1666.67In | cos(0.914743 - 0.138564*) | + c2.

"."sing ,s(0) = 0 we find c-i =  823.843. Solving v(t) = 0 we see that the maximum height is attained 

-•hen t = 6.60159. The maximum height is s(6.60159) = 823.843 ft.

I", t a) Let p be the weight density of the water and V the volume of the object. Archimedes’ principle 

states that the upward buoyant force has magnitude equal to the weight of the water displaced. 

Taking the positive direction to be down, the differential equation is

dv , 2
m — = mg — kv — pv. 

dt

( b) Using separation of variables we have

m dv

(mg — pV) — kv2

m Vk dv

\/k (s/mg — pV )2 — (Vkv)2

= dt 

= dt

TO 1 i- l ySk'v _±

y/k V m 9 -  pV  tan  1 V ’̂ g  -  pV  + c
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Thus

. . imq - pV , , (\Jknig — kpV  ̂ .

v(f) - \! ~ ^ r —  tanh I -— "—  * + ci I •TO

(c) Since tanh t —> 1 as t —► oo, the terminal velocity is y' (rng — pV )fk .

18. (a) Writing the equation ill the form (x — yjx2 + y2 )dx + y dy = 0 we identify M  = x — y/x2 + , - 

and N  = y. Since M  and N are both homogeneous functions of degree 1 we use the substitutk 

y = ux. It follows that

{̂x- — \jx2 — u2x2 ̂  dx + ux(udx + xdu) = 0 

x 1 — \j\ + ifi + u2 dx + x2u du — 0

u du dx

1 - f  U 2 — \ / l  +  U2 X

■udu _  dx

‘ xV l + u2 (l — v i  + t? ) 

Letting w =  1 — v T T t?  we have dw = —udu/V l + u2 so that

— In 1 — \J 1 + u2 — In jz| + c 

1
Cjx

1 — V l 4- u2 

1 - y/l +u2 = (-C2 - l/'ci)

1+? = V1+S
2 C‘2 , A y

Solving for y2 we have

1 H-- 11 H— | — 1 H— 2 •X X* x z

y2 =  2c2x + 4  = 4 x +
C2

which is a family of parabolas symmetric with respect to the x-axis with vertex at (—1‘2/2,C 

and focus at the origin.

(b) Let u — x2 + y2 so that

du n n dy 

T x ~ 2x + 2ydi-
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Then
dy 1 du

and the differential equation can be mitten in the form

1 du 1 da
_ _ _ I = _X.+V^  or - Tx = ^ .  

Separating variables and integrating gives

du .
——7= =  dx
2  y/u 

y/u =  X + C

u = x2 + 2 cx + c,2

x2 + y2 = x2 + 2cx -j- c2 

y2 = 2cx + c2.

.9. (a) From 2W 2 - W 3 =  W 2{2 - W) = 0 we see that W = 0 and W = 2 are constant solutions.

( b )  Separating variables and using a CAS to integrate we get

-- = dx and — tanh-1 f ̂  \/ 4 — 2W ) = x + c.
WV4 - 2 W y2 t

Using the facts that the hyperbolic tangent is an odd function and 1 — tanh2 x = sech2 x wc 

have

—\/4 — 2W — tanh(—x — c) =  — tanh(x + c)
z

i(4  - 211’) =  tanh2 (a: + c)

1 — \-W = tanh2 (a; + c)
z

^ 11' = 1 — tanh2 (a: + c) =  sech2 (a; + c).

Thus. TTr(rc) = 2 sech2 (re + c).

(c) Letting x =  0 and W = 2 we find that sech2(c) = 1 and c = 0.

a) Solving r2 + (10 — h)2 =  102 for r2 we see that r2 = 20/i — ti2. Combining the rate of input of 

water, ir, with the rate of output due to evaporation.; hnr2 = kir(20h — /i2), wc have dV/dt =
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7T — kir(20h — h2). Using V — IOtt/i2 — vh3, we see also that dV/dt = (20tt/x — ixh?')dhjd: 

Thus.

/ , , ‘>\dh , , , 9a . rf/i l  — 2()kh + kh2
(207r/i — tr/i )—  = 7T — &7r(20/?- — /r) and —  = --——-- --- .
v 1 dt v dt 20h - h

(b) Letting k — 1/100, separating variables and integrating (with the 

help of a CAS), we get

100h(h — 20) „ , , 100(fr2 - 10ft + 100)

(A -  10)» d h  =  d t  “ d 10-fc------  = f  + C'
Using h(0) = 0 we find c = 1000, and solving for h. we get 

h(t) =  0.005(\/t2 + 4000i — t), where the positive square root is 

chosen because h > 0.

(c) The volume of the tank is V = |tt(10)3 feet, so at a rate of nr cubic feet per minute, the ta: 

will fill in §(10)3 «  666.67 minutes ~ 11.11 hours.

(d) At 666.67 minutes; the depth of the water is ft(666.67) =  5.486 feet. From the graph in (b ' 

suspect that linv_>cc h(t) — 10, in which case the tank will never completely fill. To prove '1 

we compute the limit of h(t):

t2 + 4000t - t2
lim h(t) = 0.005 lim ( J t 2 + 4000t - 1) =  0.005 lim
t— >00 f—>OC V / t— >OCt-400

n  V  4 0 0 0 t= 0.005 lim — , --
^ ° °  tyj 1 + 4000/t + 1

t-*00 Vt2 + 4000t + 1 

O.OOS = 0.005(2000) =  10.

21. (a) t P(t) Q(t)
0 3.929 0.035
10 5.308 0.036
20 7.240 0.033
30 9.638 0.033
40 12.866 0.033
50 17.069 0.036

60 23.192 0.036
70 31.433 0.023
SO 38.558 0.030
90 50.156 0.026
100 62.948 0.021
110 75.996 0.021
120 91.972 0.015
130 105.711 0.016
140 122.775 0.007
150 131.669 0.014
160 150.697 0.019
170 179.300
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b) The regression line is Q =  0.0348391 — 0.000168222P. 

Q

0.035*

0.03!

20 40 60 80 100 120 140

c) The solution of the logistic equation is given in equation (5) in the text. Identifying a == 

0.0348391 and b =  0.000168222 we have

aPQ

bPo -f (a — bP(\)e~at'

d) With P0 = 3.929 the solution becomes

P(f) =
0.136883

0.000660944 + 0.0341781fi-° o34839u '

e)

f ) We identify t =  180 with 1970, t =  190 with 1980, and t, ~ 200 with 1990. The model predicts 

P(180) = 188.661, P(190) = 193.735, and P(200) = 197.485. The actual population figures 

for these years are 203.303, 226.542, and 248.765 millions. As t —► oc, P(t) —> a/b =  207.102.

a) Using a CAS to solve P (1 — P) + 0.3e_jP = 0 for P we see that P  = 1.09216 is an equilibrium 

solution.

b) Since /(P ) > 0 for 0 < P  < 1.09216, the solution P(t) of f

dP/dt =  P (1 - P) + Q.3e~F, P (0) = P0,

is increasing for Po < 1.09216. Since f(P ) < 0 for P > 1.09216. the 

solution P(t) is decreasing for Po > 1.09216. Thus P = 1.09216 is 

a.n attractor.
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(c) The curves for the second initial-value problem are thicker. The 

equilibrium solution for the logic model is P = 1. Comparing 

1.09216 and 1, we see that the percentage increase is 9.216%.

23. To find id we solve

dv 2
m — = ni,q — kv . 

dt J

using separation of variables. This gives

*(0) = 0

kg

Integrating and using ,s-(0) =  0 gives

s(t) =  y  In ( cosh \j —  t j .____
k \ V m

To find the time of descent we solve s(t) =  823.84 and find t(i = 7.77882. The impact velocity 

v(td) =  182.998; which is positive because the positive direction is downward.

24. (a) Solving vt = yjmg/k for k we obtain k = rngjvj. The differential equation then becomes

dv mg . 2
m —  =  mg - - ^  

dt vf

Separating variables and integrating gives

dv (  1 2\

dt

vt tanh-1 — = at + c\.
vt

The initial condition v(0) = 0 implies c\ = 0, so

v(t) =  Vt tanh — .
vt

We find the distance by integrating:

s(t) = j  vt tanh — dt = — In ( cosh — \ -f 0 2 ■ 
J vt. 9  V vt J

The initial condition s(0) =  0 implies C2 = 0, so

S(t) =  i  In (cosh
9  V vt )
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In 25 seconds she has fallen 20,000 — 14,800 = 5.200 feet. Using a CAS to solve

5200 = (v2 /32) In |cosh ^

for vt gives vt ~ 271.711 ft/s. Then

s(t) =  -^-ln ^cosh — ^ = 2307.08 ln(cosh 0.117772*).

(b) At t - 15, s(15) = 2.542.94 ft and t/(15) = /(W ) = 256.287 ft/sec.

While the object is in the air its velocity is modeled by the linear differential equation mdv/dt = 

'ng — kv. Using m - 160, k = \ , and g ~ 32, the differential equation becomes dv/dt + (l/640)v =

32. The integrating factor is eJ d t / 6 4 0 =  e*/G40 an(j ^1C soiution of the differential equation is 

i t/Q4av = J 32el/tii0dt = 20,480e</640 + c. Using t;(0) =  0 we see that c = —20,480 and v(t) = 

20,480 - 20,480e_t/640. Integrating we get s(t) =  20,4801  + 13,107.200e~t/64° + c. Since s(0) = 0, 

;■ = -13,107,200 and s(t.) = -13,107,200 + 20,480* + 13,107,200e"</640. To find when the object 

hits the liquid we solve s(t) = 500 — 75 = 425, obtaining ta =  5.16018. The velocity at the time 

jf impact with the liquid is va = v(ta) = 164.482. When the object is in the liquid its velocity is 

modeled by the nonlinear differential equation mdv/dt ~ mg — kv2. Using m = 160, g =  32, and 

= 0.1 this becomes dv/dt - (51.200 — i ’2)/1600. Separating variables and integrating we have

v - 160\/2 1dv dt \ / 2

51,200 — v2  1600 aU 640 Q v) + 160\/2 1600
t + C.

Solving v(0) = t'a =  164.482 we obtain c =  —0.00407537. Then, for v < 160\/2 =  226.274,

v 160\/2

v + 160\/2 

Solving for v we get

_  ev ’2t/5—1.8443 or _  v ~  160\/2 _  eV2f/5_i.8443

V +  160V2

, , 13964.6 - 2208.29e^/3 
v(t) =

61.7153 + 9.75937e^/5 '

Integrating we find

s(i) = 226.2751  - 16001n(6.3237 + e ^ 5) + c.

S jiving ,s(0) =  0 we see that c =  3185.78, so

s(*) = 3185.78 + 226.275* - 16001n(6.3237 + e^2tr°).

Tj find when the object hits the bottom of the tank wc solve s(t) = 75, obtaining = 0.466273. 

The time from when the object is dropped from the helicopter to when it hits the bottom of the 

*.::.nk is ta +tb =  5.62708 seconds.
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26. The velocity vector of the swimmer is

v = Vs + v.r =  (—v8 cos$, —vs sin0) + (0. vr) = (-vs cos 0. -va sin^ 4- vr) = ~jfj

Equating components gives

so

Thus.

dx . . dy . .
—  = — vs cos 0 and — = —vv sm 0 + vr 
dt " dt

dx x dy y
—  =  - v a r~.------ —  a n d  “ 77 “  ~ V s  r ---------=  +  tv -

JX 2 + IJ2 dt /,};2 y2

dy _  dy/dt _  -vHy -i- vryjx2 + y2 _  vsy - vryjx2 + y2 
dx dx/dt —vsx V/fX

27. (a) With k = vr/vs,

dy _  y ~ kyjx2 + y2 

dx x

is a first-order homogeneous differential equation (see Section 2.5). Substituting y = ux int:

the differential equation gives

du 7 r r du , r I
■u + x—  = u — kv 1 + vr or —  = —k\j 1 + uz. 

dx dx

Separating variables and integrating we obtain

j   ̂ = — J  k dx or In + \j 1 + u2 j  =  — k In x + In c.

This implies

y  ( v / x 2 +  y 2 ' f =
In xk + yj 1 + u2 ^ =  In c or xk I — +

X

The condition y( 1) =  0 gives c =  1 and so y + \jx2 + y2 — x^~k. Solving for y gives

J/(*) =  \ {*l~k ~ a;1+fc) •

(b) If k =  1, then vs = vr and y = ^(1 — x2). Since y(0) = 5, the swimmer lands on the we*' 

beach at (0. ^). That is. I  mile north of (0,0).

If k > 1. then vr > vs and 1 — k < 0. This means lim;t._>0+ y(x) becomes infinite, sin-.- 

liinx_>0+ xl~lc becomcs infinite. The swimmer never makes it to the west beach and is swe:' 

northward with the current.

If 0 < k < I, then vs > vr and 1 — k > 0. The value of y(x) at x = 0 is y(0) = 0. The swimm- 

has made it to the point (0,0).
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28. The velocity vcctor of the swimmer is

Equating components gives

so

29. The differential equation

dx , dy
—  = -va and -7- = vr 
dt dt

dy _  dy/dt _  vr __ vr 

dx dx/dt —Vs va'

dy 30 a.-(1 — x) 

dx 2

separates into dy — lo{—x + x2)dx. Integration gives y(x) = — •y.T2 + ox3 + c. The condition 

7/(1) =  0 gives c =  | and so y(x) = ^(—l-5x2 + l().r3 + 5). Since y(0) = |. the swimmer has to walk 

2.5 miles back down the west beach to reach (0,0).

30. This problem has a great many components, so we will consider the case in which air resistance is 

assumed to be proportional to the velocity. By Problem 35 in Section 3.1 the differential equation 

is

and the solution is

dv
m—- = mg — kv, 

dt

If we take the initial velocity to be 0, then the velocity at time t is

v(t) = ^
n.- rC

The mass of the raindrop is about m = 62 x 0.000000155/32 «  0.0000003 and g =  32, so the 

volocitv at time t is
0.0000096 _  0.0000096 333333*  

k k

If we let k = 0.0000007, then v(100) ~ 13.7 ft/s. In this case 100 is the time in seconds. Since

7 mph m 10.3 ft/s, the assertion that the average velocity is 7 mph is not unreasonable. Of course, 

this assumes that the air resistance is proportional to the velocity, and, more importantly, that 

the constant of proportionality is 0.0000007. The assumption about the constant is particularly 

suspect.

:■!. (a) Letting c = 0.6. A/,. = tt(^  Aw = tt • l 2 =  it, and g = 32. the differential equation

in Problo 12 becomes dh/dt. =  —0.00003255\/ft • Separating variables and integrating, we get

2y/h =  -0.00003255* + c, so h = (ct - 0.00001628t)2. Setting h(0) = 2, we find c =  y/2, so 

h(t) = (V ^ - 0.00001628i)2, where h is measured in feet and t in seconds.
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(b) One hour is 3.600 seconds, so the hour mark should be placed at

/i(3600) = [V2 - 0.00001628(3600)]2 «  1.838 ft- «  22.0525 in.

up from the bottom of the tank. The remaining marks corresponding 

to the passage of 2. 3, 4. ... . 12 hours are placed at the values shown 

in the table. The marks are not evenly spaced because the water is not 

draining out at a uniform rate; that is, h(t) is not a linear function of 

time.

time (seconds ) height (inches)
0 24* 0000
1 22«0520
2 20 .1 86 4
3 18 .4 03 3
4 16 .7 02 6
5 15 .084 4
6 13 .5 485
7 12 .0952
8 10 ,724 2
9 9 . 4357

10 8 . 2297
11 7 .1060
12 6 .0648

32. (a) In this case Aw = tt/i2/4 and the differential equation is

dh 1

dt 7680 

Separating variables and integrating, we have

h-V2.

h3/2dh = - — rdt
7680

^5 /2  _____— t + ci
0 7680 +Cl'

Setting h(0) = 2 we find c\ = 8\/2/5, so that

5 7680 5

/i5/2 = 4 y/2
3072

t,

and

(b) In this case h(4 hr) = /i(14,400 s) = 11.8515 inches and h(5 hr) = ft(18,000 s) is not a r- 

number. Using a CAS to solve h(t) = 0. we see that the tank runs dry at t ~ 17,378 s ~ 4 

hr. Thus, this particular conical water clock can only measure time intervals of less than 4. 

hours.
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33. If we let r/( denote the radius of the hole and Aw — tt[/(/i)]2, then the 

differential equation dh/dt — —k /̂h.. where k — cA  ̂\/2gjAv,. becomes

d h  C n r j.  v/2g r- 8cr?\fh.

^  =  - W W vh = - W W -1

For the time marks to be equally spaced, the rate of change of the height must be a constant; that 

is. d h / d t  = — a .  (The constant is negative because the height is dccrcasing.) Thus

_  Scr^vTi

~a = ~ J f W  ’

Solving for h. we have

[ m f  = 8crâ
and r = f ( h )  = 2r/,, y ^  h 1^4 .

h  =
a

Uc2rft

The shape of the tank with c =  0.6, a = 2 ft/12 hr =  1 ft/21,600 s, and >7,. = 1/32(12) — 1/384 is

shown in the above figure.

:-k. : This is a Contributed, Problem and the solution has been provided by the authors of the problem.)

(a) Answers will vary

(b) Answers will vary. This sample data is from Data from "Growth of Sunflower 

Seeds" by H.S. Reed and R.H. Holland, Proc. Nat. Acad. ScL, Volume 5,1919, 

page 140. as quoted in http://math.arizona.edu/~dsl/bflower.htm

day height
7 17.93
14 36.36
21 67.76

28 98.10

35 131.00
42 169.50

49 205.50
56 228.30
62 247.10
"0 250.50

253.80
-?4 254.50
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(d) In the case of the sample data, it looks more like logistic growth, with C = 255 cm. C 
is the height of the flower when it is fully grown.

(e) For our sample data:

day height dH/dt k estimate
7 17.93 2.633 0.000619
14 36.36 3.559 0.000448
21 67.76 4.410 0.000348
28 98.10 4.517 0.000293
35 131.00 5.100 0.000314
42 169.50 5.321 0.000367
49 205.50 4.200 0.000413
56 228.30 2.971 0.000487
63 247.10 1.586 0.000812
70 250.50 0.479 0.000425
77 253.80 0.286 0.000938
84 254.50 0.100 0.000786
We average the k values to obtain k « 0.000521. An argument can be made for dropping 
the first two and last two estimates, to obtain k * 0.000432.

255
(f) The solution is y - — ^  _ — . We use the height of the sunflower at day 42 to

obtain y =
255

1+133.697<T'133' '
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>5. (This is a Contributed Problem and the solution has been 'provided by the author' of the problem.)

(a) Direction field and the solution curve sketch together:
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(b) The solution is P(t) — ekt, k = 1/12. with graph:

Exercises 3.2 Nonlinear Models

(c) the DE has the constant zero function as equilibrium.
(d) The population grows to infinity.
(e) If the initial population is Po then the resulting population would be 
P(t) = P0ekt,k = 1/12,
(f) The solution would change from constant to exponential.
(g) Direction field with solution sketch.
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(h) The solution to the IVP is

125
P =

3 + 122e-{/12 

and the graph is

c ao 4o

i) the constant solutions to the DE are the zero function and the 125/3 
function.
j) solutions tend to 125/3.
k) If the initial population is Po then the resulting population could be 

expressed by
125

P =
3 + l25Ce~f/12 

inhere
=  JL

Po 125'

1 the solution would no longer be constant but tend to 125/3.
m) there would be little change...the new solution would still tend to 125/3.
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(n) Direction field with solution sketch.

50

Exercises 3.2 Nonlinear Models

40

(o) the zero function is the only constant solution.
(p) The solution is slowly approaching 0; a change to P(0) would still result 
in a solution curve which tends to 0.

• r.

„„ " ; J 5 w'v - :y- ~

*'*:'! -'!; " '-11̂  : yi „ ...<;;  ̂ .

1. The linear equation dx/dt = —Xyx can be solved, by either separation of variables or by a: 

grating factor. Integrating botli sides of dx/x =  —X\dt we obtain In |x| = —X\t + c from wh: 

get x — cie_A|t. Using ;r(0) = xq we find ci =  xo so that x = xoe~XlL. Substituting this resr. 

the second differential equation we have

dy

dt
+  M y  =  Aiaroe Xlt

which is linear. An integrating factor is e^2t so that

_d

dt
eX2ty (A a -A i)* + C2

y
Ai.T0 3(A2 —Aj )tr>—\2t -A 2t-

A2 - Ai

Using y(0) = 0 we find C2 =  — Aixo/(A2 — Ai). Thus

A2 — Ai

Ai#. C2e-A  2*
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dz _  A1 A2 .ro / Xlf _  -x2t\
dt A2 -A 1 V' " ^

Integrating wc find

* = - J S t * - * *  + + c;i.

Substituting this result into the third differential equation wo have

A2 — Ai

Using z(0) = 0 we find C3 — xq. Thus

A2 - Ai

A2 — Ai A2 — A]

We see from the graph that the half-life of A is approximately 

4.7 days. To determine the half-life of B we use t = 50 as a base,

înce at this time the amount of substance A is so small that 

:t contributes very little to substance B. Now we see from the 

graph that y(50) «  16.2 and 2/(191) ~ 8.1. Thus, the half-life of 

B is approximately 141 days.

The amounts x and y are the same at about t ~ 5 days. The amounts x and 2 are the same at 

about t = 20 days. The amounts y and s arc the same at about t = 147 days. The time when y 

and 2 arc the same makes sense because most of A and half of B are gone, so half of C should have 

>ocn formed.

Suppose that the scries is described schematically by W = >  — XiX = >  —A2Y =>■ —A3Z where 

-Ai, — A2, and —A3 are the decay constants for W. X  and Y . respectively, and Z is a stable element, 

let w(t), x(t), y(t). and z(t) denote the amounts of substances W, X , Y. and Z, respectively. A 

model for the radioactive series is
dw

m  = - Ai“’

dx

dt
= Aj w — X2 X

'he system is

<ty , »
n  = - X3V

dz

h  = X z v -

/ = 2 - 3 4  = - ^  + 1 * 3 + 6
i 1 1 1 1 , 2  2

= 50X1 • 4 “  50*2 - 5012 • 3 =  25*1 ~ 2512'

•T
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6. Let £]. X2 - and .7:3 be the amounts of salt in tanks A, B. and C, respectively, so that

1

100*

7. (a) A model is

ioo;/'2 • 2 -
100:j=l*6 = ^ 2 - 3

50:tl
Too2,1 •6 + iooa73- B o " 2 ’2 “ lOÔ 2 '

. 3O = --Xa -50 1 'I5o*2 +
i i r 2 • 5 — 1

ioori.3 -  • 4 1 _
“ 20X2 “

1—X'3. 20
dx 1

=  3- x2 0 Xl ®i(0) = 100
dt 100 - 1 100 + 1'
dx2 = 2- XI X2 *2(0) = 50.
dt 100 + 1 ' 100 - t ’

(b) Since the system is closed, 110 salt enters or leaves the system and x i ( t ) + X 2( t )  =  100+50 =  1' 

for all time. Thus x\ =  150 — x2 and the second equation in part (a) becomes 

dx2 _  2(150 - x2) _  3x2 _  300 _  2x2 _  3x2 

dt
or

100 + t

dx 2
+

100 - t  100 + t 100 + 1  100 - t

3002 3
+ x2 =

dt V100 + t 100 - t )  * 100-M ’

which is linear in x2. An integrating factor is

e 21n(100+t)-31n(100-t) =  ^ q q  +  _  fyZ
SO

A
dt

[(100 + i)z(100 - i)_;ix2] =  300(100 + i)(100 - 1)~3.

Using integration by parts, we obtain

(100 + i)2(100 - t)~*x2 = 300 ^(100 + i)(100 - t)~2 - -(100 - t)~l + c

Thus
300

X2 =
(100 + 1)2 

300

c(100 - t f  - ^(100 - t f  + ^(100 + *)(100 - t)
Z; Zi

- d o o  + t ^ 1” -*) + 4(100- ‘M-

Using :c2(0) =  50 we find c =  5/3000. At t =  30, ,r2 -  (300/1302)(703c + 30 • 70) w 47.4 11 -

8 . A model is

^  = (4 gal/min) (0 lb/gal) - (4 gal/min) ( ^ j * i  lb/gal^ 

dx 2
df = (4 gal/min) ( 7 ^*1  lb/gal) - (4 gal/min) ( ^ * 2  lb/gal 

^  =  (4 gal/min) ( ^ * 2  lb/gal) - (4 gal/min) ( ^ * 3  lb/gal)
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dx i 1

~W “  _ 50;)

dx 2 1 2

dt

£IS
II

~ 75

dx 3 2 1

Ht = 75*2 “  25

Over a long period of time wc would expect x\, X2 • and x$ to approach 0 because the entering pure 

water should flush the salt out of all three tanks.

Zooming in on the graph it can be seen that the populations are 

rlrst equal at about, t =  5.6. The approximate periods of x and y 

•>.re both 45.

a) The population y(t) approaches 10,000, while the population 

x(t) approaches extinction.

b) The population x(t) approaches 5,000, while the population 

(/(/;) approaches extinction.

x,yk
10--

5-

__
10 20

The population y(t) approaches 10.000, while the population 

x(t) approaches extinction.

*■>* 10

10
H-- 1-- h

20
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(d) The population x(t) approaches 5.000. while the population 

y(t) approaches extinction.

x’yk 
10

10 20

(b) 10-

5-b

20 40

<C) I?*!
i

1 0 -
y

5 - r

-L i

a

» i i i. 1 L w .
t20 40

In each case the population x(t) approaches 6.000, while the population y(t) approaches 8.000.

12. By KirchhofFs first law we have i\ = i-2 + h- By KirchhofF’s second law, on each loop we hav 

E(t) = Li[ + R \% 2 and E(t) = Li\ + + qjC so that q = CR\i-2 — CRzh- Then i$ =  q' = 

CRii .<2 — CR2h  so that the system is

Li’2 R\i‘z ~ E(t)

—R\if2 + R‘2hi + ^*3 =  0.

13. By Kirchhoffs first law we have i\ = %2 + h- Applying Kirchhoff’s second law to each loop r  

obtain

E(t) = i lR 1 + L)^  + i2R.2 
at

and

E(t) =  i1Ri + L2-£+isR3- 

Combining the three equations, we obtain the system

L i—^ + (Ri -f R2)i2 + R\h =  E

■̂2~7T + -̂ 1*2 + (-̂ 1 + -̂ 3)*3 =  E. 
at
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14. By KirehhofFs first law we have i\ = i<i + h- By KirchhofFs second law, 011 each loop we have 

E(t) — Li\ + Rio and E(t) — Li[ + qfC so that q = CRi2. Then *3 = q' = CRif2 so that system is

Li1 + R i’2 = E(t)

CR'Iq t- 2̂ — 1̂ = 0.

15. We first note that s(t) + i(t) + r(t) =  n. Now the rate of change of the number of susceptible 

persons, .s(t), is proportional to the number of contacts between the number of people infected and 

the number who are susceptible; that is, ds/dt =  —k-isi. We use — k\ < 0 because s(t) is decreasing. 

Next, the rate of change of the number of persons who have recovered is proportional to the number 

infectcd; that is. dr/dt — k^i where k-2 > 0 since r is increasing. Finally, to obtain di/dt wc use

d / . n d
_ ( s + ! + r) =  _ r; =  o.

This gives

di dr ds 7 .

i t  =  - J t - J t  =  -h t+ k ,s ’ •

The system of differential equations is then

ds , 

j t =  ~h s '

di .
1 — 1̂2̂  I ST* 
dt

dr .

Tt = h l-

A reasonable set of initial conditions is i(0) =  io, the number of infected people at time 0, s(0) =

— to? and r(0) =  0.

1* a) If we know s(t) and i(t) then we can determine r(t) from s + i + r = n.

b) In this case the system is

ds
— = — 0.2s?, 
dt

di
-- = —0.7i + 0.2 si. 
dt

We also note that when i(0) =  io, s(0) = 10 — io since r(0) =  0 and i(t) + s(t) + r(t) = 0 for 

all values of t. Now fo/fci — 0.7/0.2 =  3.5, so we consider initial conditions s(0) =  2, i(0) =  8; 

,s(0) = 3.4, i(0) = 6.6; s(0) = 7, i(0) =  3; and a(0) =  9, i(0) = 1.
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Wc see that an initial susceptible population greater than A'a/A'i results in an epidemic in the se: 

that the number of infected persons increases to a maximum before decreasing to 0. On the ot; 

hand, when .s(0) < fo/A'i, the number of infected persons decreases from the start and there is 

epidemic.

17. Since xo >  yo >  0 we have x(i) >  y(t) and y — x <  0. Thus dx/dt <  0 *,>•* 

and dy/dt > 0. We conclude that x(i) is decreasing and y(t) is 

increasing. As t —> oc we expect that x(t) —* C and y{i) —> C, where x(° V 

C is a constant common equilibrium concentration. c
y(0)

18. We write the system in the form | - ‘■to-.)
where k\ - k/Va and k-2 — k/Vb• Letting z{t) = x(t) — y(t) we have

ft = h{~Z) ” hZ
— -t- (ki + ^2 )z — 0.

This is a linear first-order differential equation with solution z(t) = . Now

^  = - fa(y - x) = -k\z = -fcicie"(*1+fc2)*

and

X ( t )  =  Cl e ~ ( k^ + k^ )1 -)- co.
k i + k-2
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Since y(t) = x(t) — z(t) wc have

y(t) = -ci-
k'2 (/.'l+AroU

ki + A’2

The initial conditions ;r(0) =  x q  and y ( 0) = yo imply

C9-

Ci  =  X q

The solution of the system is

x{t)

yo and c2 =

fa) ~ Vo)h „ -(k  
hi + h’2

{ki+k2)t- +

v(t) =
(yo -  *o)k'2 _

+

Xf)k2 + yoki

k\ + A’2

xpk‘2 -j- ypki 

ki + k'2 

- yoh

k] + ko

As t —> oc, x(t) and y(t) approach the common limit

xoka + yoh xqk/Vb + jjqk/Va

k\ + k’2 

x q V a  +  y o V n

ki + k-2 k/Va + k/Vb 

Va

Va + VB

+yo77
VB

x l&
30 -

i

20 -
- \ x l

10 - ^ * 2
i— t— r t i — r t i t i

50 100

Va + Vb Va + VB

This makes intuitive sense because the limiting concentration is seen to be a weighted average of 

the two initial concentrations.

Since there are initially 25 pounds of salt in tank A and 

none in tank B, and since furthermore only pure water is 

'.eing pumped into tank A, we would expect that xi(t)

~ould steadily decrease over time. On the other hand.

'■’ice salt is being added to tank B from tank A, we would 

xpect X2 (t) to increase over time. However, since pure 

"“ftter is being added to the system at a constant, rate and

- mixed solution is being pumped out of the system, it makes sense that the amount of salt in both 

‘ .•:iks would approach 0 over time.

” •> assume here that the temperature, T(t). of the metal bar does not affect the temperature, TA(t).

.: ihe medium in container A. By Newton's law of cooling, then, the differential equations for T^t) 

■:.:i T(t) are

^  =  kA(TA - Tli), kA < 0

f  = W - T a ), * < 0,

;ect to the initial conditions T(0) = Tq and TA(0) =  TV Separating variables in the first 

v.i'ition. we find T'A(t) = Tq + ciek’At. Using 7^(0) =  T\ wc find c\ = Ti — TB, so

TA(t) = TB + (Ti - TB)ek-*1.
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Substituting into the second differential equation, we have

^  = k(T - Ta) = kT - kTA = kT~ k[TB + (Tx - TB)ek̂ } 

d T  
—  - kT = -kTB - k(T\ - TB)eM.

This is a linear differential equation with integrating factor e-/ “ kdt =  e~kt. Then

~[e 'klT) =  -kTBe 'kt - k{Ti - TB)e^A~k> 
at 

e~ktT = TBe~kt - 7—^ - ^  - TB)ê kA~k)t + c2
k-A - k

T = Tb - - TB)ekAt + c2ekt.
k.A - k

Using T(0) = To wc find c-2 =  To - Tb + ———  (?i - Tg), so
k-A - k

T(t) =T b - -— r(7i - TB)ekAt +
k-A. —

7h-T c + - i- T(T1 - r s )
A ;  4 —  k

ekt.

21. (77ws is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) In the short term there is a mixing of an ethanol solution. In the long 
term, the system will contain a 20% sohition of ethanol.

(fa)
100P" = — P - --Q - P1 

50 10^

(c) First write Q = 50P'—30+P/2 and then it’s straightforward substitution 
into the equation in (b).

(d) From equation in (19) we find P'(0) = 6/10 + 7/50 — 200/100 = —63/50. 
The solution is

p (t) = e“t/400 s i n ( )\/95 - 100e-^40°cos(|^) + 100

(e) The solution is

m  + 20 +
(f) In both cases, the there is a concentration of 20% in each tank; P(t) —» 100 
and Q(t) —» 20.
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I. The differential equation is dP/dt — 0.15P.

True. From dA/dt — kA. .4(0) ■ Aq, we have A(i) = A$ekt and A'(t) — kAoekt, ho .4/(0) = kA^. 

At T = -(In 2)*.

I. irrom —  = 0.018P and P(0) — 4 billion wc obtain P =  4e0018i so that P(45) = 8.99 billion. 
dt

4. Let A = A(t) be the volume of CO2 at time t. From dA/dt = 1.2 — A/4 and A(0) =  16 ft3 we 

jbtain A = 4.8 + 11.2<?-i/4. Since A(10) =  5.7 ft3, the concentration is 0.017%. As t —> 00 we have 

.4 -»• 4.8 ft3 or 0.06%.

Separating variables, we have

A'(-(\n2)/k) = M(-(ln2)/Jfc) =  kA()ek̂ hl2^'^ = k.A0erln2 = ^kAQ

y

Substituting y = s sin 6, this becomes

\js2 — s2 sin2 0
(s cos 9)dQ = —dx

s sin 6

s

s In | csc 9 + cot 0\ + s cos 6 — —x + c

y/s2 - y 2' yj s2 — y2
------  + s ------ = — X + c.= —x + c.

y y

Letting s =  10, this is

-10 hi -
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Letting x =  0 and. y = 10 wc; determine that c. =  0, so the solution is

10+ ^/100- 1,2 /— — -
----*------- + ^/100 - y2 = -x

or

-10 In

x = 10 In

y

lo + yioo” r
\/l00 - y2.

6. From VdC/dt = kA(C, - C) and C(0) = C0 we obtain C = Ca + (Co - Cs)e~kAt/v.

7. (a) The differential equation

l-  = k(T- Tm) =  k[T - T2 - BIT, - T)]

= i[(l + B)T - (BTi + r 2)] = *(1 + b ) ( t - — ^ f 2)

is autonomous and has the single critical point (BT\ + T2)/(l + B). Sincc k < 0 and B 

by phasc-linc analysis it is found that the critical point is an attractor and

BT\ + T2
lim Tit) = 
t^oo w  1 + B

Moreover.

lim Tm(t) =  lim [T2 + B(Ti - T)] = T2 + B (t, -t—>OC t—>OC \  1 -1- £>
BTi + T2 

B

(b) The differential equation is

(IT 

dt
= k(T - Tm) = k(T -T2 ~ BTi + BT)

or
dT
—  - k( 1 + B)T =  —k(BT\ + T2).
(/• 6

This is linear and has integrating factor e~ f  K1+-D)dt _  e-k{i+B)i  ̂ Thus,

y[e_&(1+s^T] - -k(BTi+T2)e-k<1+B̂
U (

& J "  1 +  J? 6 ' 6

T(i) =  + cek{'+B)t.

Since k is negative, lim^oc T(t) = (BT\ -f 2^)/ ( l + B).

(c) The temperature T(t) decreases to the value (BT\ + T2 )/(l + B), whereas Tm(t) incrcas. 

(BTi+T2)/(1 +B) as t —► oc. Thus, the temperature {BT\ +T2)/{1 + B), (which is a. wei<_. 

average

B Ti + — l—  T2
1 + B 1 + B
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of the two initial temperatures), can be interpreted as an equilibrium temperature. The body 

cannot get cooler than this value whereas the medium cannot get hotter than this value.

S. By separation of variables and partial fractions.

In
'-rnt - t,;

T + Tm

Then rewrite the right-hand side of the differential equation as

- 2tan 1 ( —  ) =  4T^kt + c.

dT
~ = k(T* - T4) = [(Tm + (T - Tm) f  - T4 ]
dt

=  kT:rn 1 +
Tn

\ + i ^ k  + 6 ' t ~ t '
m

2
-  1 binomial expansion

-Lm \ * 771

When T — Tm is small compared to Tm, every term in the expansion after the first two can be 

ignored, giving
dT
- & h ( T -  Tm). where fci =  AkT* .
at

We first solve (1 — t/10)di/dt + 0.2i =  4. Separating variables we obtain 

■7/'/(40 — 2i) =  dt/(10 — t). Then

— - In 140 — 2i\ =  — In 110 — + c or y/AO — 2% - ci(10 — t).

Since i(0) =  0 we must have c\ -- 2/\/l0. Solving for i wc get i(t) = At — I t2,

■,* f 4 t - U .  0 < t < 1 0
z(t) =  < a '

I 20, t >  10.

The graph of i(t) is given in the figure.

From y 1 + (y')2 - k we obtain dx =  (■s/y/y/k — y)dy. If y = A: sin2 9 then

dy = 2k sin 9 cos 9 d-9. dx = 2k Q  — ^ cos 29j d9, and x = k9 — ^ sin 29 + c. 

I: ,r = 0 when 9 = 0 then c =  0.

Trom dx/dt. — k\x(a — x) we obtain

/ 1/a  + J / a \ ^  =

\ x a — x J

- '■ that, x = Q.cieaklt/ (I + cj eQ&l/). From dy/dt = k^xy we obtain

k-2
In |y| = ~  In |l + cieakltj +c or y =  c2 ( l + cie"*1*)*2' ** .

131



Chapter 3 in Review

12. In tank A the salt input is

v mm J \ gal J \ rainy
'x2_ _lb '' 

100 gal

i i .  1 \ lb

100 J min

The salt output is

f i l M  - ( 5 &L) ( i l  =  A . .
J min J y 100 gal j + \ min J \̂100 gal J 25 *1 min

In tank B the salt input is

The salt output is

B f i l
nun,

' Jb_\

,100 galj

lb

20 min

gal \ ( X2 lb 

min/ 1100 gal
H- 4

gal

min J V100 gal J 20  ̂inin

x2 lb \ 1 lb
— r = ™ x2

The system of differential equations is then

dxi 1 2

- M = 1 4 + m X2-25* '

dX'2 1 

~dt

1

20 X l 20 a’2 '

13. From y = —x — 1 + c\ex we obtain 1/  =  y -f x so that the differential equation of the ortho,t 

family is

dy 1 dx
-f- = -- —  or —~+x = -y.
dx y + x dy

This is a linear differential equation and has integrating factor e-ldy — ey, so

Tv [e"x] =  ~ve’

eyx = —yev + ey + C2  

x = — y + 1 + C2?~v-
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.4. Differentiating the family of curves, we have

1
V

(x + ci)2 y2 '

The differential equation for the family of orthogonal trajectories is 

then y' ~ y~. Separating variables and integrating we get

r

i
----- =  X +  Cl

y

l
y = X  +  Cl

This 'is a Contributed Problem and the solution has been provided by the author of the problem.)

1
(a) p(x) = -p(x)g ( y + x  j  Q(x) dx]

(b) The ratio is increasing. The ratio is constant.

(c) p(z) = \

1 .
VWx
\\\\\

ft*

d) When the pressure p is constant, but the density p is a function of x then

/ x ________ Kp

P[X) 9 (Ky + f  q(x) dx) ’

When the Darcy flux is proportional to the density then

p = \!
Kp

V 2{CKp - 3gx) '

where C is an arbitrary constant.

e) As the density and Darcv velocity decreases, the pressure in the container initially increase- 

but then decreases. The density change is less dramatic than the drop in the velocity and lias 

a greater initial effect on the system. However, as the density of the fluid decreases, the effec: 

is to decrease the pressure.
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S i>5 -

im

0.95 “

GM -

J ----1— 1----I— !----i— (----L . A  I. t > I 1 1  I__ i----»—1 » » * » * < 1  <
I 2 S 4 5 A

1 6 . ( T /iis  is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) D irection fie ld and the solution curve sketch together: (b) The solution is P (t)  — efci\  k =  1/12, w ith  graph:

(c) the JDE lias the constant zero function as equilibrium .
(d) The population grows to in fin ity.
(e) I f  the in itia l population is Po then the resulting population would be 
>(t)^P0e^A;-l/12,
(f) The solution would change from constant to exponential.
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(g) D irection field w ith  solution sketch.

70

601

(h ) The solution to the IV P  is

P  =

and the graph is

125

0 20 4C SO 80 100

(i) the constant solutions to  the DE are the zero function and the 125/3 
function.
(j) solutions tend to  125/3,
(k ) I f  the in itia l population is Pq then the resulting population could be 
expressed bv

125

where

3 + 1 25C'e-£/J2

Po 125-

(1) the solution would no longer be constant but tend to 125/3.
(m ) there would be little  change...the new solution would s till tend to  125/3.
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(n) Direction field with, solution sketch*

(o) the zero function is the only constant solution.
(p) The solution is slowly approaching 0; a change to P(0) would s till result 
in  a solution curve which tends to 0,
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4 Higher-Order Differential Equations

1 rrom y — c\ex + C2 e x we find y' = ciex — c-ie x. Then y(0) = c\ + C2 =  0, y'(0) ~ c.\ — oi = 1 so 

_:iat c\ — | and c-2 = The solution is y = ^ex — \e~x.

I From y = cielx + c.2 e~x we find y' ~~ 4cif;4x — C2e-X. Then y(0) =  c\ + 0 2 =  1. ;t/(0) =  4ci — c*2 =  2 

that- ci =  | and oi =  §. The solution is y = le4* + ge-*.

:. From y = c\x + C2X In ® we find y' - ci + C2(l + In a?). Then y(l) =  Ci = 3, y'(l) = c\ + C2 = — 1 so 

‘hat ci = 3 and C2 ‘ —4. The solution is y = 3x — Ax In a;.

4. 7:om y — a  + oi cos x + C3 sinx we find y' — —oi sinx 4- c$ cos x and y" — —C2 cos x — C3 sin®. Then 

. :r) = ci - C2 =  0. y'(7r) = — C3 — 2, it/'(7r) — C2 = -1 so that ci =  -1. C2 = -1, and C3 — -2. The 

i:-lution is y = — 1 — cosx — 2sin®.

! From y = c 1 + cjx2 we find y' =  2c9®. Then y(0) = ci =  0, 2/ (0) =  2c2 -0 = 0 and hence y'(0) =  1 

i' not possible. Since 02(2:) =  x is 0 at x = 0, Theorem 4.1 is not violated.

: In this case we have y(0) = c\ = 0, y'{0) — 2c2 • 0 = 0 so ci =  0 and C2 is arbitrary. Two solutions 

:-:e y = x2 and y = 2x2.

From ®(0) = ®o = ci wc see that x(t) =  .rocos urt + 02 sin art and x'{t) = -®o sin art + oivcoswt. 

Then :c'(0) =  ®i = C2ui implies 0 2 =  ®i fu. Thus

, . ®i . 
x(t) =  xq cos u>t H-- sm u>t.

U)

* ' jiving the system

x(to) =  c\ cosutfo + 0 2 sin ujto — ®o

=  — c i u ; s i n ^ o  +  c 2 u > c o s a t f o  =  x l

::r ci and C2 gives

ujxq cos ujt,Q — x\ sin cos u>to + coxq sin toto 
ci = ----------------- and C2 = -----------------.

UJ UJ
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Thus
. , cuxq c o s  uito — £1  sin uto x’i cos ujIq + uixq sin u>to .

x[t) — -----------------cos u)t-\-------------------sin a;*
to C0

Xy
= xq (cos a)t cos u)t-o + sin cut sin u^o) ~i-- (sin uit, cos ojIq — cos tot sin coto)

= xq cos 'jj(t — to) + — sin(j(t — t-o).
iO

9. Sincc (1 2 (x) =  x — 2 and x'o = 0 the problem has a unique solution for — oo < x < 2.

10. Sincc o q ( x )  = tana; and xq = 0 the problem has a unique solution for —tt/2 < x < 7r/2.

11. (a) We have 7/(0) = c.\ + c2 - 0, y(l) - cie + C2 e~1 = 1 so that ci - ej (e2 — l)

C2 — —ej (e2 — l). The solution is y =  e (ex — e-'*) / (e2 — l).

(b) We have y(0) = C3 cosh 0 + C4 smb. 0 = C3 — 0 and y(l) =  03 cosh 1 + c\ sinh 1 =  C4 sinh 1 - 

so C3 = 0 and 04 = 1 /sinh 1. The solution is y = (sinh x)f (sinh 1).

(c) Starting with the solution in part (b) we have

1 . , 2 ex — e~x ev - e~x e . _
V — . : „ sinh x =  ---- r -- --- = ----- 1— = -s---(e — e ).

smhl el — e-i 2 e —1/e e2 — 1

12. In this ease we have t/(0) = cj =  1. y'( 1) = 2c2 =  6 so that c\ ~ 1 and 0 2 = 3. The solutic 

y =  1. + 3a:".

13. From y ~ aex cosx + c2ex sin a: wc find y' =  cic!C(— sin a; — cos a?) + C2e*(cosa: + sinx).

(a) We have y(0) = c\ = 1, yj(ir) = —en(ci + c2) = 0 so that c\ = 1 and c2 — —1. The solutic:. 

y = ex cos x — ex sin x.

(b) We have y(0) =  c\ = 1, j/(tt) =  — ex = —1, which is not possible.

(c) We have y(0) =  c\ = 1, y(iif2) = C2e7r/2 = 1 so that ci = 1 and 0 2 =  e_7r/2. The solutic:. 

y — cx cos x + e_7r/2ex sin x.

(d) We have (0) =  c\ = 0. y(it ) — C2e7rsiii7r =  0 so that c\ = 0 and C2 is arbitrary. Solutions 

y = c2ex sin a:, for any real numbers C2 .

14. (a) We have y(—1) =  cy + c2 + 3 = 0, ty( 1) = c\ + 0 2 + 3 = 4, which is not possible.

(b) We have y(0) = ci ■ 0 + c2 • 0 + 3 =  1, which is not possible.

(c) We have y(0) = c\ ■ 0 + C2 • 0 + 3 = 3, y(l) = ci + 0 2 + 3 = 0 so that c\ is arbitrary 

c2 =  —3 — c\. Solutions are y =  c\x2 — (ci + 3)x4 + 3.

(d) W7c have ;</(!) = c\ + C2 + 3 =  3, y(2) =  4ci + I 6C2 + 3 = 15 so that c\ = —1 and c2 =  1. - 

solution is y = —x2 + :r4 + 3.

15. Since (—■4)a: + (3)x2 + (l)(4:r — 3;c2) = 0 the set of functions is linearly dependent.
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Since (1)0 + (0)x + (0)e;<: = 0 the set of functions is linearly dependent. A similar argument shows 

that any set, of functions containing /(:r) = 0 will be linearly dependent.

Since (1) cos2;r + (1)1 + (—2) cos2 x = 0 the set of functions is linearly dependent. 

Since (—4)x + (3)(x — 1) + (l)(a~ + 3) = 0 the set of functions is linearly dependent.

Suppose ci (1 + x) + C2 X + csx2 = 0. Then ci + (ci + cz)x + c-sx2 = 0 and so ci — 0. ci + c-2 — 0, and 

.•3 =  0. Since ci =  0 we also have C2 =  0. Thus, the set of functions is linearly independent.

Since (—l / 2)e;<! -I- ( l/2)e-x + (1) sinh.r = 0 the set of functions is linearly dependent.

The functions satisfy the differential equation and are linearly independent since

The functions satisfy the differential equation and are linearly independent, since

Hr(cosh 2.t\ sinh 2x) = 2 

: r — 00 < x < oc. The general solution is

y = ci cosh 2x + a  sinh 2x.

The functions satisfy the differential equation and are linearly independent since

W (ex cos 2.7;, ex sin 2x) =  2e2x 0

::r —00 < x < oc. The general solution is y = ci e‘t: cos 2a; + C2 PX sin 2x.

The functions satisfy the differential equation and are linearly independent since

Since (—1/5)5 + (1) cos2 x + (1) sin2 x =  0 the set of functions is linearly dependent.

From the graphs of fi(x) =  2 + x and fiix) — 2 + |ar| 

we see that the set of functions is linearly independent 

>ince they cannot be multiples of each other.

for — oc < x < oc. The general solution is

::r — oc < x < oc. The general solution is

y = Cl( ^ 2 + c2xex/'2.
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27. The functions satisfy the differential equation and are linearly independent, since

W (x3, xd) = x6 + 0 

for 0 < x < oc. The general solution on this interval is

y = cix3 + C2 X1.

28. The functions satisfy the differential equation and are linearly independent since

W (cos (lnx). sin (lnx)) =  1/x ^ 0  

for 0 < x < oo. The general solution on this interval is

y = ci cos(lnx) + C2 sin(lnx).

29. The functions satisfy the differential equation and arc linearly independent since

W (x, x~2,x~2 lnx) = 9x-6 7̂  0 

for 0 < x < oc. The general solution on this interval is

_n _n
y = ci x + c2x_ + C3X lnx.

30. The functions satisfy the differential equation and are linearly independent since

W (l, x, cos x, sinx) =  1 

for - 00 < x < 00. The general solution on this interval is

y = ci + C2X + C3 cos x + c-i sin x.

31. The functions yi = a2x and ij2 =  e5* form a fundamental set of solutions of the associated home. - 

neous equation, and yp - 6ex is a particular solution of the rionbomogeneous equation.

32. The functions y\ = cosx and ij2 = sinx form a fundamental set of solutions of the associated ho:. ■ 

geneous equation, and yp =  x sinx + (cosx) ln(cosx) is a particular solution of the nonhomogene, 

equation.

33. The functions y\ = e2x and ys =  xe2x form a fundamental set of solutions of the associr 

homogeneous equation, and yp — x2e2x + x — 2 is a particular solution of the nonhomogent 

equation.

34. The functions tji = x-1/2 and ij2 =  x-1 form a. fundamental set of solutions of the associ;-' 

homogeneous equation, and yp — j=x2 — |x is a particular solution of the nonhomogeneous equat:

35. (a) We have y'pi =  6e2x and y"} = 12e2x, so

ypi ŷ'pi "I” V̂pi. = 12eja" — 36e2x + 15e2'1 = —i)€2x.
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Also. y'po — 2x + 3 and y"̂  — 2. so

y'p2 ~ 6 Vp2 + -5 yP2 — 2-  6(2;r + 3) + 5(x2 + 3x) = 5x2 + 3x - 16.

(b) By the superposition principle for nonhomogeneous equations a particular solution of 

y" — 6]/ + 5y = 5x2 + 3a’ — 16 — 9e2x is yp =  x2 + 3.x + ?>e2x. A particular solution of 

the second equation is

Up =  -2yP2 - - -2x2 - Gx - ^e2x.

(a) yPl = 5

(b) yP2 = —2x

(c) yP = Up I + yP2 = 5 - 2x

(d) yP = \yPx - 2yP2 - § +■ 4x

(a) Since D 2x = 0. x and 1 are solutions of y" =  0. Since they arc linearly independent, the 

general solution is y = c^x + c%

(b) Since. DAx2 = 0. x2, x, and 1 arc solutions of y'" ■- 0. Since they are linearly independent, the 

general solution is y = cix2 + c^x + <?:{.

(c) Since D 4x a — 0, X s . x2, x. and 1 are solutions of y(-4> = 0. Since they are linearly independent, 

the general solution is y — c\ + 0 2 x2 + c$x + C4.

id) By part (a), the general solution of y" = 0 is yc = c\x + 0 2 - Since D2x2 = 2! = 2, yp = x2 is a 

particular solution of y" = 2. Thus, the general solution is y = cyx + C2 + x2.

ie) By part (b). the general solution of y"' — 0 is yc = cyx2 + c^x + C3. Since D3x3 = 3! =  6, 

yp = x'3 is a particular solution of y'" — 6. Thus, the general solution is y — cyx2+c2 x+cs +x3.

(f) By part (c), the general solution of =  0 is yc = c i a r * + C 3X+C4. Since DAx4 = 4! = 24, 

yp - x4 is a particular solution of y ^  =  24. Thus, the genera,1 solution is y = cix3 + C2 X2 + 

C3X + C4 + x4.

By the superposition principle, if ij] =  ex and ij2 = e~x are both solutions of a homogeneous linear

■.'ifferential equation, then so are



Exercises 4.1 Preliminary Theory Linear Equations

39. (a) From the graphs of y\ = .r5 and y-2 = we see 

that the functions are linearly independent sincc they 

cannot be multiples of each other. It is easily shown 

that yi = x3 is a solution of x2y" — 4xy' + 6y = 0. 

To show that y-2 =  is a solution let y2 = x3 for 

x > 0 and let y-2 = —x* for x < 0.

(b) If x > 0 then y2 = and

xW{yi ,y2) = \
I 3ar

x-

3x2

i
3-

t * i ,

? !- j y=x3

J\ 1 1 w7i \ r 1 
3*

/  -
/ -

=  0 .

If a: < 0 then y2 — — x* and

-:r3
= 0.

3a,’2 — 3x2

This does not violate Theorem 4.1.3 since a2(x) = x2 is zero at x - 0.

(c) The functions Yi = x'* and Y2 = x2 arc solutions of x2y" — 4xyf + 6y — 0. They are line ] 

independent sincc W  (.r3, :r2) — :c4 ^  0 for —oo < x < oo.

(d) The function y = x:i satisfies y(0) — 0 and //(0) =  0.

(e) Neither is the general solution on (—oo, oc) since we form a general solution on an interva.: 

which

a2(x) ^  0 for every x in the interval.

40. Sincc e1-3 = e~'iex = (e~°e2)ex — e~5ex+2, we see that ex~* is a constant multiple of ex+2 and ' 

set. of functions is linearly dependent.

41. Since 0-j/i + ()y2 H--- 1- 0j/k + lyt+i = 0, the set of solutions is linearly dependent.

42. The set of solutions is linearly dependent. Suppose n of the solutions are linearly independei:’ 

not. then the set of n +1 solutions is linearly dependent). Without loss of generality, let this sr

yi, i/2 • • • • ; yn- Then y = c\y\ -f- c2y2 H--- 1- CnVn is the general solution of the nth-order differe:/

equation and for some choice, cf, c2, . . . ,  c*. of the coefficients yn+i = cfyi + c2y2 H--- 1- c*yn. .

then the set y\, y2, . . . ,  yn, yn+i is linearly dependent.
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Reduction o f Order

Problems 1-8 we use reduction of order to find a second solution. In Problems 9-16 we use formula 

' from the text.

1. Define y = u(x)e2x so

y' =  2ue2x -j- u'e2x, y" — e2xu" + Ae2xu' + Ae2xu. and y" ~ Ay'+ 4y = c2xu" =  Q.

Therefore u" = 0 and u =  c±x + c-2 - Taking c\ = 1 and c<i — 0 wc see that a second solution is

—  ze .

Define y = u(x)xe~x so

y' =  (1 — x)e~xu + xe~xu', y" =  xe~xu" + 2(1 — x)e~xu’ — (2 — x)e~xu,

Hiid

y" + 2y' + y — e~'x(xu" + 2 u') =  0 or u" + ^ v! = 0.

2
w — u! we obtain the linear first-order equation w' H—  w — 0 which has the integrating factor

Jb
,2fdx/x= x 2' Now

—  = 0 gives x2w = c.
d,x

Therefore w = it' = c/x2 and u = c\/x. A second solution is ih = —xe~x = e~x.
x

- Define y = u(x) cos Ax so

y = —4 u sin 4x + u! cos 4x. y" = u" cos 4x — 8 u! sin 4x — 16u cos 4x

-::.d

y" + 16y =  (cos 4x)u" — 8(sin4 x)v! = 0 or u" — 8(tan Ax)u' =  0.

I: iv = u! we obtain the linear first-order equation w' — 8(tan 4:r)'u; = 0 which has the integrating 

:.-:Tor lan dx = cos2 4;c. Now

y- [(cos2 4x’)w] =  0 gives (cos2 4x)w = c.
C/.X

Tiierefore w = u' =  c sec2 4:c; and u — c\ tan4:r. A second solution is y<2 = tan Ax cos Ax ~ sin 4.x.

■r I -fine y = u(x) sin 33? so

y1 = 3 u cos 3x + u! sin 3x, y" = u" sin 3x + Qv! cos 3x — 9w sin 3.x.
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and

y" + 9y = (sin 3x)un + 6 (cos 3 z)v! =  0 or u" + 6(cot 3 x)u' = 0.

If w = u' we obtain the linear first-order equation w1 + 6 (cot 3x)w ~ 0 which has the integrati:.. 

factor e(i J cot'ixdx = sin2 3x. Now

-̂ -[(sin2 3x)w] — 0 gives (sin2 3.t)m-! =  c.

Therefore w = v! =  ecsc2 3.x and u =  c\ cot 3.x. A second solution is y-2 =  cot 3x sin 3a: = cos 3x.

5. Define y = u(x) cosh x so

y' = u sinh x + u' cosh x, y" = u" cosh x + 2u' sinh x u cosh x

and

y" — y = (cosh x)u" + 2(sinli x)u' =  0 or un + 2(tanh.r)u/ — 0.

If w = v! we obtain the linear first-order equation w' + 2 (tanh x)w = 0 which has the integrati:.- 

factor e2 f Tanh x dx = cosh2 x. Now

[(cosh2 x)w\ - 0 gives (cosh2 x)w — c.
LJLJb

Therefore w == u- — csech2 x and u =  c tanh x. A second solution is t/2 — tanh a; cosh x = sinh x.

6. Define y = u(x)e0X so

y1 — 5 e5xu + e5xuf, y" = e5xu" + 10 e?xul + 25 eaxu

and

y" - 25y = (?x{u" + 10u') = 0 or u" + 10u' =  0.

If w = v! we obtain the linear first-order equation w1 + 10«; = 0 which has the integrating fac:
e io  f d x  =  e i 0x_ N o w

4~ [e10;rU’] = 0 gives e10xw = c. 
dx

Therefore w = uf = a?-10* and u = cie-10x. A second solution is y2 — e- ^x(̂ x — ( ~ox,

7. Define y =  u(x)e2x̂  so

y — -e2x/3u — e2x''^ur. y" = + -̂e2xi'Aii' -1- |e2x'/3u
O O i/

and

9y" - Yly + Ay = 9e2:c/V  = 0.

Therefore u" = 0 and u =  cyx + c-2 - Taking c\ = 1 and C2 = 0 we see that a second solution 

ij2 =  xc2*'1̂.

8. Define y ~ -u(x)ex̂  so

y — ^ex̂ u  + ex̂ u ' < y" = + ^ex̂ 'iul + ^e:S/,5w
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Qy" + y' — y — ex/'i (6u/> + 01/) = 0 or u" + -v* =  0.

x = uf we obtain the linear first-order equation it/ + §tt! =  0 which has the integrating factor 

. r 1 I  dx = e'W<>, Now

4-[e5x/6w] = Q gives e ^ w  = c.
dx

Therefore w = ur = ce-5x/6 and u = cie_5;j:-/K. A second solution is 2/2 = e_ox/6ex/3 — e_x/2. 

‘ .iTiitifying P(x) = —Ijx  we have

4 f e - ^ - y ^  J 4 f l  , 4l , ,
2/2 = x J  --- ~8---  = x j - dx = x In |x|.

second solution is y2 = x4 In |x|.

" -.-ntifying P(x) =  2/x we have

o r e~ o f — r 1
2/2 =  ar j --- -j---dx = x j  x dx — —-x .

A second solution is y2 =  x-3.

I ntifying P(x) = 1/x wc have

w *  = lnx/  = ^  ( " i ^ ) = _1-
A second solution is y2 = 1.

! Gratifying P(x) = 0 we have

/-— f  Odx  /  1 \
dx — x1,/2 lnx ) =  -x!/2.

xtlnx)"5 V In x j

A second solution is y2 = xl,!'2.

Identifying P(x) = — 1/x we have

r e- J-dx./x r x
y2 =  x sin(lnx) / , 2 — -dx = xsin(lnx) / , 2 — -dx J x2snr(lnx) J x2 sm (In x)

= xsin(lnx) [ (hix) ^  [_ cot(lnx)] = — xcos(lnx).
J x

A sccond solution is y2 = x cos (lnx).

’ :’:entifying P(x) = —3/x we have

/ g -  J - 3  d x / x  ~ ,^3
—i-- 777:— - dx — x2 cos(lnx) / — '-7T7-,— r dx

x'1 cosJ(lnx) J x4 cos2 (lnx)

0 ,, . /“sec2 (lnx) , 9  /, \ /, \ 0 . N 
= x“ cos(lnx) I -------dx =  x“ cos(lnx) tan(ln x) =  x“ sm(ln x).
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A second solution is ij2 = x 2 sin (In a;).

15. Identifying P(x) - 2(1 + x ) j  ( l  -  2a; -  x2) we have

e -  / '2(1 -Hr)d x / { l —2x—x 2) (} n { \ - 2 X- . r 2)

1)2 =  {X +  1 ) j  - -------------, ---------------d x  =  (X +  1 ) j  — -------  d x

= ( . + i ) /

( x  + 1 ) 2

1 — 2a’ — x 2 
(* + l)2 

2 1

(a: + 1)>

dx = (x + 1) J
{x + iy

- 1 d x

. x  +  1
— X = -2 - r- - x.

In
1 +  X

1 — X

— (x + 1)

A second solution is 1/2 =  x2 + x + 2.

16. Identifying P(x) — —2xj ( l — x2} we have

y 2 =  I  e ~  f  -2xdx/(i-a?)dx =  je - H '- ^ d x  = j  Y ^ 2 d x  = 1

A second solution is y2 = ln|(l + x)/(l — x)\.

17. Define y = u{x)e~‘2x so

y' - -2ue_2x + u'e~'2x, y" = i"e~2x - 4u'e~'2x + 4ue~2x

and

y" - 4y = e~2xu" - 4e“2:V  = 0 or u" - 4v! = 0.

If w = it! wo obtain the linear first-order equation w' — 4w = 0 which has the integrating 

e~4f dx = e~4x. Now

-~[e~4xw] = 0 gives e~4xw = e. 
dx

Therefore w — v! — ce4x and u — cieix. A second solution is y2 — e~2xe4x = e2x. We 

observation that a particular solution is yp — —1/2. The general solution is

—2x , 2 r 1 
y = cle + c2e —

18. Define y =  u(x) ■ 1 so
y' = u', y" = v" and y" + tj =  u" + u = 1.

If w = u' we obtain the linear first-order equation w' + w = 1 which has the integrating 

eJ dx = ex. Now
d_

d x [ex w]  =  e x  g iv e s  e x w  =  e x +  c.

Therefore w = u' =  1 + ce x and u  = x  + e.\e x + r;2 . The general solution is

y  = u  = x  + c\e~x + c2.
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Define y = ».(a:)eT so

y = u,(f -i-iiex. y" = u"ex + 2u'ex + uex

and

y" - 3y' + 2y = exu" - exu = 5e3*

If «; = u' we obtain the linear first-order equation w1 — w = 5e2;r which has the integrating factor 

r~J dx = e~x. Now

= oex gives e~xw ~ 5e'1 + ci.
dx

Therefore w — u' — 5e2x + C]_ex and u = |e2a: + cie,T -r C2- The general solution is

y = uex = ^e3x + cie2u: -i- c2ex. 
z

Define y =  u(x)ex so

y> = uer + u'ex, y" =  u"e* + 2u'ex + ue*

r.l'A

y" — 4 y1 + 3 y =  e1:u" — exu' =  x.

I: u: = v! we obtain the linear first-order equation wf — 2w ~ xe~x which has the integrating factor
J 2 , l x  =  e - 2x_ N q w

d r _0,. , _ ‘<-r • _ Ot  1 1 _ ‘ir
- ~ ie  w  =  ice g iv es  c - J ' w — — - x e  - - c  -| c i .  
axL 3 9

Therefore it? = u' = —|rre_ ‘x' — $e~x + c\elx and u =  ̂xe~x + -j- C2fi2,r + C3. The general 

-: ’ ittion is

y = uex = -  a; + -  + C2e3:p + £36*.O J
a I For mi constant, let y\ = emiX. Then y[ =  ?niemiX and y'{ =  mfe"11*. Substituting into the 

differential equation we obtain

ay 1 + by[ + cy \ = amjemiX + bni\emiX + cemrx

= e,nix(aml + bmi + c) = 0.

Thus, yi =  emi* will be a solution of the differential equation whenever + lmi\ + c = 0. 

Since a quadratic equation always has at least one real or complex root, the differential equation 

must, have a solution of the form y i  =  e n l l X .

b 1 Write the differential equation in the form

// b . c
V +~V + -V =  Q-. 

a a
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p —b x /a

-  (, m i x  j  e - { b l a ^ r 2 m \ ) x ^ x

1 em , x e - ( b / a ^ 2 m i )x  (mi ± -b/2a)

and let. yi = emyX be a solution. Then a second solution is given by

b/a + 2mi

^ — (b/a—m  i )x

b/a + 2m\

Thus, when m-j ^  —b/2a, a second solution is given by 1/2 - em'2'x where m2 = —b/a — 

When m-i — —b/2a a second solution is given by

U2 = em'lX J dx - xenilX.

(c) The functions

sin a; = ~(ev:r — e iX) cos® =  ^(ew + e lx)£  /■ z

sinh 2; = — e_;i;) cosh./: = ^ (ex + e~x)
£ £

are all expressible in terms of exponential functions.

22. We have y[ — 1 and y'{ =  0, so xy'[ — xy\ -f yi =  0 — x + x — 0 and yi(x) — x is a. solution of : 

differential equation. Letting y = u(x)yi(x) = xu(x) we get

y1 = xn!(x) + u(x) and y" =  xu"{x) + 2u'{x).

Then xy" — xy' + y = x2u" + 2xu' — x2v? — xu + xu = x2u" — (x2 — 2x)u' = 0. If we make *. 

substitution w = -u'. the linear first-order differential equation becomes x2wf — (x2 — x)w =  0. wh: 

is separable:

d w  / .  1 '
|U'

- = ( l — — )dx 
x xJ

dx v x ' 

dw 

w

hi w = x — In x + c 

ex
W  — C] —  .

x

Then v' - ciex jx and u - c\ j  exdx/x. To integrate ex/x we use the series representation for
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a second solution is

f c
(J‘2 =  xu(x) =  C-\X j  — dx

=ClX J s (x+1+1*2+kl3+" )dx 
= c ' x . l ( l  + 1 + ^ x + h l 3 + " ) dx 

=cKln x+x+w f3+m x3+"
= C l( x lu x + x 2 + w /  + W f i  +

interval of definition is probably (0. oc) because of the lri;c term, 

a Y\ c have y’ = y" = ex. so

xy" — (x + 1.0)y' -r 10y = xex — (x + 10)ea: + lOe* = 0.

and y — ex is a solution of the differential equation, 

b i By (5) a second solution is

r e~ I  p(x)dx (■ ef  dx r e/(i+io.Ac)rfx
V2 = V iJ --- J 2---dx = c?J - e2;), - dx = ex j --- ----- dx

r -r+lna;10 r
=  ex j  -—^ —  dx — ex J  x10e~x dx

= ea;(—3,628,800 - 3,628.800a: - 1,814,400a:2 - 604,800a;3 - 151,200a:4

- 30,240a:5 - 5.040a:6 - 720x7 - 90a:8 - 10a:9 - x10)e~x

= -3,628,800 - 3,628,800a: - 1,814,400a;2 - 604,800a;3 - 151,200.x4

- 30,240a'5 - 5,040a;6 - 720a:7 - 90.r8 - 10.x9 - a:10.

1 10 1
c) By Corollary (A) of Theorem 4.1.2. ——  y2 — — xn is a solution.

101 ' ^ o nl
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Homogeneous Linear Equations with Constant CoefScieir ■

1. From 4rri2 + rn = 0 we obtain rn = 0 and rn =  —1/4 so that y = cj + c^e"3'-̂4.

2. From m2 — 36 = 0 wc obtain m — 6 and m = — 6 so that y =  c\ eQx + C2 e~&x.

3. From rn1 — rn — 6 = 0 we obtain m =  3 and rn = —2 so that y = cie3* + c.2 e~2x.

4. From rri2 — 3?n + 2 =  0 we obtain rn = 1 and rn = 2 so that y = ciex + C2 ?2x-

5. From m2 + 8m + 16 = 0 wc obtain m = —4 and m = —4 so that y = cie~‘lx + C2 xe~'lx.

6. From rn.? — 10m + 25 = 0 we obtain rn — 5 and rn -■ 5 so that y = c\eox + c^xe™.

From 12m2 — 5m — 2 = 0 we obtain m = —1/4 and m = 2/3 so that y — eie~x/4 +

S. From m2 + 4m — 1 =  0 wc obtain rn = —2 ± Vo so that y = cie(~2~^a}x + C2e(_2~v̂ ) r.

9. From m2 + 9 =  0 we obtain m = 3i and m = —3? so that y = c\ cos 3:r + c,2 sin 3x.

10. From 3m2 + 1 =  0 we obtain m =  if \/3 and m = —i/\/3 so that y = ci cos(x/\/3) + c-2 (sin x j \ ’■

11. From rn2 — 4m + 5 =  0 we obtain rn = 2 ± i so that y = e2x(cj cosx + C2sinx).

12. From 2m2 + 2rn +1 = 0 we obtain rn = —1/2 ± i/2 so that

y - e~x!'2[ci cos(x/2) + C2sin(x/2)].

13. From 3m2 + 2m +1 = 0 we obtain m = —1/3 ± y/2i/ 3 so that

y =  cos(v/2,r/3) + c-2 sin(\/2a:/3)].

14. From 2m2 — 3m + 4 =  0 wc obtain m = 3/4 ± \/23 i/4 so that

y _  009( ̂ /23.7;/4) 4- c:2 sin(\/23a:/4)].

1-5. From — 4m2 - 5m ■ 0 we obtain m = 0, rn = 5, and m =  —.1 so that

y = ci + C2 eax + C3e_:';.

16. From m3 — 1 = 0 we obtain m = 1 and m = —1/2 ± y/Zi/2 so that

y = 6ie x + e~x/2[c2 cos(VSx/2) + 03 sin(v/3a;/2''l.

1". From m3 — 5m2 + 3m + 9 =  0 we obtain rn = — 1. m = 3. and m = 3 so that

y =  c\e~x + C2 e'ix + Oixeix.

15. From m3 + 3m2 — 4m — 12 = 0 we obtain m = —2, m =  2, and rn =  —3 so that

y = c-ie-2x + C2C2a: + cge-33’’.
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From m3 + to2 — 2 =  0 we obtain rn =  1 and rn = — 1 ± i so that

u =  Ci e* + e-* (c2 cos t + c% sin t).

From m3 — m2 — 4 = 0 we obtain m = 2 and m = —1/2 ± a/7 i/2 so that

x = c\e2t + e~^2[c2cos(V7t/2) + C3sin(\/7t/2)].

From to3 + 3m2 + 3m + 1 =  0 wc obtain to = —1, m = —1. a,nd m = — 1 so that

y =  c\e~x + C2 xe~x + c3 X2e~x.

From to3 — (im2 + 12m — 8 = 0 we obtain m, =  2, rn =  2. and to = 2 so that

V =  cic2x + C2.xe2'r + c’3.T2e2;r.

From m4 + m3 + to2 =  0 we obtain m - 0, m = 0. and m = —1/2 ± \[3i/2 so that

y = ci + C2X + e_3:'/2[c3 cos(\/3£-/2) + C4 sin(%/3a:/2)].

From m4 — 2m2 + 1 = 0 we obtain m = 1. to = 1. rn = —1, and rn = — 1 so that

y =  ciex + C2 xe'r + c^e~x + c,\xe~x.

From 16m4 + 24m2 + 9 = 0 we obtain m = ±\/3?'/2 and m = ±\/3*/2 so that

y = ci cos(-'/3ir/2) + C2 sin(\/3:r/2) + C3X cos(V3a;/2) + 04.eesin(\/3ar/2).

From m4 — 7m? — 18 = 0 we obtain rn =  3, rn = — 3, and m = ±\/2 i so that

y = c\e?x + C2 e~ix + C3 cos y/2x + C4 sin \/2x.

From m° + om4 — 2m3 — 10m2 + m + 5 =  0 we obtain m = —1. m = —1, m — 1, and rn =  1, and 

= — o so that

u — cie~r + c2re~r + cza’’ + C4 rer + C5e_or.

From 2m5 — 7m4 + 12m3 + 8m2 = 0 we obtain rn = 0, m = 0. m = —1/ 2, and m = 2 ± 2t so that

x =  ci + C2 s + C3fi“ 's/2 + e2,s(c4 cos 2s + C5 sin 2s).

From to"2 + 16 = 0 we obtain m = ±4? so that y = c\ cos 4:r + C2 sin 4x. If y(0) = 2 and y;(0) = —2 

■'-'.en ci =  2. C2 = —1/2. and y = 2cos4:c — \ sin4x.

From m2 + 1 = 0 we obtain rn =  ±i so that y =  c\ cos# + c-2 sin 0. If y(7r/3) =  0 and y\n/3) =  2 

'I'-tU
1 >/3
50. + T <* = 0

\/3 1
-^-Ci + ~C2 = 2,
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so ci =  —a/3; C‘2 = I, and y =  —v/3 cos9 + sin#.

31. From m2 — 4m — 5 = 0 we obtain rn — —1 and m — 5, so that y = c:\e~1 + c.2 e5t. If y{ 1} = 

and y\ 1) =  2, then cie-1 + C2e5 = 0, — cie-1 + 5c2e° = 2, so c\ = —e/3. C2 =  e-5/3.

y = + ^e0*-0.

32. From 4m2 — 4m — 3 = 0 we obtain m — —1/2 and m = 3/2 so that y = cie-* '2 + C2e3x'/2. If ;t/(0 = 

and y'(0) = 5 then a+ c -2 =  1. — |ci + |e2 — 5, so ci = —7/4. C2 — 11/4, and y = —je~x/2+^€ ’

33. From m2+m-1-2 =  0 we obtain m = —1/2±\/7if 2 so that y = e-x/2[ci C0s(\/7x/2)+C2 sin(\/7.r _ 

If y(0) = 0 and y;(0) = 0 then ci = 0 and 0 2 = 0 so that y =  0.

34. Prom nr — 2m + 1 =  0 we obtain m =  1 and rn — 1 so that y = ciex + c.2 xex. If y(0) = 5 

y'{0) = 10 then c\ — 0, C\ + C2 =  10 so c\ = 5, 02 — 5, and y = 5ex + 5xea\

35. From m3+12rn2+36m =  0 we obtain m — 0, rn = —6, and m = —6 so that y - C[+C2e~6s;+C3.rfr“ 

If y(0) = 0. y'{0) =  1, and y"(0) = —7 then

ci + C2 =  0, — 6c*2 + C3 =  1. 36c2 — 12c‘3 — — 7.

so ci =  5/36; C2 = —5/36. C3 = 1/6. and y = — j^e-6a: + gxe_6:r.

36. From m3 -I- 2m2 — 5m - 6  =  0 we obtain rn = — 1, m =  2, and m = — 3 so that

y =  cie_;c + C2 e2x + C3(5_3x.

If y(0) = 0, j/(0) = 0, and y"(0) = 1 then

Ci + C2 + C3 =  0, —Ci + 2c2 — 3C3 = 0, Cl + 4C2 + 9c3 = 1, 

so C] =  —1/6, C2 =  1/15. C3 = 1/10. and

y = -~e~x + — e2x + — e~3x. 
y 6 15 10

37. From m2 — 10m + 25 = 0 wc obtain m = 5 and m = 5 so that y — cicM + C2 xer>x. If y(0) ~ 1 

y(l) =  0 then c\ = 1, cie° + C2e5 =  0, so ci = 1. C2 = — 1, and y = e5* — xe5x.

3S. From m2 + 4 =  0 we obtain rn = ±2i so that y = c\ cos 2x -F (>2 sin 2x. If y(0) = 0 and y(-K = 

then ci = 0 and y — C2 sin 2x.

39. From m2 + 1 = 0 wc obtain in — ±i so that y = c\ cosx + (‘2 sinx and y' — — c\ 81113; -4- C2 c. 

From y'(0) =  ci(0) + 0*2(1) =  C2 =  0 and t/(-w/2) = — ci(l) = 0 we find ci =  C2 =  0. A solutk: 

the boundary-value problem is y = 0.

40. From m2 — 2m + 2 = 0 we obtain m = 1 ± i so that y = ex(c.\ cosx + C2sinx). If y(0) =  1 

i / :~ )  =  1 then ci =  1 and y ( i t ) =  e * c m i r  =  —e1T. Since —en  ^  1, the boundary-value probloir. 

110 solution.

152



Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

The auxiliary equation is rn2 — 3 = 0 which has roots —y/S and \/3. By (10) the general solution 

is y =  c i ^  + C2e-v3:c. By (11) the general solution is y — c ico shy ^  + C2Sinh\/3tf- For 

y =  c\e^x + the initial conditions imply ci + c% =  1. \/3ci — \/3('2 = 5. Solving for c-\ and

c-2 we find c\ — ^(1 -+5\/3) and c-j = |(1 — 5\/3) so y = ^(1 + 5v/3)ev̂ ;r — ^(1 — oVS)e~'^x. For 

y - ci cosh '/3x + c? sinh y/Sx the initial conditions imply c\ = 1. \fZc2 - 5. Solving for c\ and C2 

we find ci = 1 and C2 == |V3 so y =  cosh \/3x + |\/3sinh VSx.

The auxiliary equation is m2 — 1 = 0 which has roots —1 and 1. By (10) the general solution is 

.;/ = ciex + C2 C~X■ By (11) the general solution is y =  ci cosh x + C2 sinh x. For y = c,\ + oic-rx the 

boundary conditions imply Ci + C2 — 1. cie — r^c" 1 = 0. Solving for c\ and C2 we find ci — 1/ (1+ e2) 

and C‘2 = e2 /(1 + e2) so y = ex/(1 + e2) + e2e~x/(l + e2). For y =  c\ cosh x + o>. sinhx the boundary 

conditions imply ci = 1. C2 ‘ — tanh 1. so y ■ cosli x — (tanh 1) sinh x.

The auxiliary equation should have two positive roots, so that the solution has the form 

y = ci&klX + coek-x. Thus, the differential equation is (f).

The auxiliary equation should have one positive and one negative root, so that the solution has the 

form y = c\eklX + c-2 e~k2X. Thus, the differential equation is (a).

The auxiliary equation should have a pair of complex roots a±/3i where a < 0. so that the sohition 

has the form eaa(ci cos 3x + c*2 sin,&t). Thus, the differential equation is (c).

The auxiliary equation should have a repeated negative root, so that the solution has the form 

;j - C\e~x + C2 'xe~x. Thus, the differential equation is (c).

The differential equation should have the form y" + k2y = 0 where k =  1 so that the period of the 

solution is 2tt. Thus, the differential equation is (d).

The differential equation should have the form y" + k‘2y - 0 where A; = 2 so that the period of the 

solution is 7r. Thus, the differential equation is (b).

Since (m—4)(m+5)2 - m3+6m2- 15m—100 the differential equation is y/"+6y/f — 15yr — lOOy = 0. 

The differential equation is not unique sincc any constant multiple of the left-hand side of the 

differential equation would lead to the auxiliary roots.

A third root must be m3 = 3 — i and the auxiliary equation is

(rn + ^  [m - (3 + i)][m - (3 - i)} = (m  + ^  (rn2 - 6;r + 10) =  rn* - ~^rn2 + 7rn + 5.

The differential equation is

/ '  -  y /  + V  + %  =  0.

From the solution yi = e~ix cos x we conclude that mi = —4 + i and m2 = — 4 — i are roots of the 

auxiliary equation. Hence another solution must be y2 = e-4xsin.r. Now dividing the polynomial
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1 r 1 , 
=  - 5 «-  -- 2

m3 + 6m2 -f m — 34 by [ m — (—4 + x)] [m - (—4 - •*')] = m2 + 8m + 17 gives m - 2. Therefore m? -~ 

is the third root of the auxiliary equation, and the general solution of the differential equation ■

y = cie-4x cos x -+ cae-4* sin x + c^e2*.

52. Factoring the difference of two squares we obtain

m4 + 1 = (rn2 + l)2 — 2 m2 — (m2 + 1 — \/2 m)(m2 + 1 + V2m) = 0.

Using the quadratic formula on each factor wc get m = ±\/2/2 ± \/2 i j 2 . The solution o: 

differential equation is

/ \ \/2r/2 /  . a/2 \ —v/2:r/2 /  . y/2 \
y(;r) = e', / I ci cos —  a- + c-2 sin —  x \ + e % I C3 cos x -r C4 sm —  x 1 .

53. Using the definition of sinh x and the formula for the cosine of the sum of two angles, we liav

•y = sinh.x — 2 cos(x 4- tt/6)

(cosx) ^c o s^  — (sin a;) ^sin ^

1 r 1 _ r „ (V3 1 . \
- -(•;■-- e — 2 cos x — - smx

2 2 \  2 2 J 
1 1

= -e'!: — -e~x — V3c(xsa; + sinx.
2 2

This form of the solution can be obtained from the general solution y = c\ex + c^e~x + c$ c >

C4 sin x by choosing ci =  5 , c-2 =  — £ ; c.3 — — \/3, and C4 = 1.

54. The auxiliary equation is m2 + a — 0 and we consider three cases where A = 0, A = or2 > •’

A = —a 2 < 0:

Case I When a = 0 the general solution of the differential equation is y = o\ + C2 X. The bor.:. 

conditions imply 0 = y(0) = c\ and 0 = y(ir/2) = cxk/2 . so that ci = c-2 = 0 and the p: 

possesses only the trivial solution.

Case I I  When A = —a2 < 0 the general solution of the differential equation is y — c- 

C2 e~Qx. or alternatively, y - c'i cosh ft x + <>2 sinh a. x. Again, y(0 ) =  0 implies ci =  0 * 

y = ( ‘2 sinh ft x. The second boundary condition implies 0 = y(ir/2) = 0 2 sinh a tt/2 or c-2 = 

this case also, the problem possesses only the trivial solution.

Case I I I  When A = oi2 > 0 the general solution of the differential equation is y = c\ cor- 

r -2 sinftx. In this case also, y(0) = 0 yields c\ — 0, so that y = 0 2 sin a- x. The second bov.. 

condition implies 0 = (>2 sin a tt/2. When an/2 is an integer multiple of 7r, that is. when -- 

for k a nonzero integer, the problem will have nontrivial solutions. Thus, for A = a2 = -• " 

boundary-value problem will have nontrivial solutions y = C2sin2A;:/;. where k is a nonzero
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.:: the other hand, when «  is not mi even integer, the boundary-value problem will have only the

• ::vial solution.

’."•ring a CAS to solve the auxiliary equation m3 — 6m2 + 2m + 1 we find m i = —0.270534,

": = 0.658675, and m3 = 5.61186. The general solution is

-0.270531:;: , „ J).658(i7S.x , „ Oo.61186xy = c\c + C-2 G + c$e

".'.'ing a CAS to solve the auxiliary equation 6.11m3 + 8.59m2 -I- 7.93m + 0.778 = 0 we find 

■_ = —0.110241. m 2 = -0.647826 + 0.857532i, and m3 = -0.647826 - 0.8575321 The general 

'; lut-ion is

y = Cie-0.110241X + e-0-647826ar(C2COsa857532a. + C3 sin 0.857532.7;).

’.’sing a CAS to solve the auxiliary equation 3.15m4 — 5.34m2 + 6.33m — 2.03 = 0 we find 

.: =  —1.74806. m2 = 0.501219, m3 = 0.62342 + 0.588965*, and m4 - 0.62342 - 0.588965't. The 

..eneral solution is

y =  cie-1-™06* + c2ea5012mr + e°-62342a?(c3 cos 0.588965® + c.i sin 0.588965,?;).

Vsing a. CAS to solve the auxiliary equation m4 + 2m2 — rn + 2 — 0 we find mi - 1/2 + \/3i/2. 

-\2 = 1/2 — \/Z i/ 2 . m3 =  —1/2 + -\/7i/2, and m.4 = —1/2 — y/li/2. The general solution is

, 1 2  (  Vs . v/3 \ _r/0( V7 . s/ 1  \
y =  e‘7 I ci cos — x + c2 sm — x I + e '" I C3 cos — x + C4 sm — a; 1 .

From 2m4 + 3m3 — 16m2 + 15m — 4 = 0 we obtain m = —4, rn = | . m — 1, and m = 1, so that 

j  = cie_4x + c2 ex ! 2 + c$ex + c,\xex. If y{0) = —2. y'{0) = 6, ^(O ) — 3, and y"'(0) = \ , then

Ci + C'2 + 03 = —2

—4 c i +  — C2 +  C3 +  (’4 =  6 

1
16cx + —C-2 + C3 + 2c4 = 3 

-64ci + ^c2 + C3 + 3c4 =  ^ ,

„ _  4 _ _116 - _  918 __ 58 „„ j
sO Cl — 7Q . C2 — 3 ' ~ 25 ■ “  5 > al1̂

4 _ ir 116 ,/ , 918 _ 58 „
y = ~— e u -- 7r e + ~^rex --- xeJ\

Yb 3 25 5

From m4 — 3m3 + 3m2 — rn =  0 we obtain m = 0, m — 1. m = 1. and m = 1 so that 

y = ci + C2 ex + C3 xex + C4 £ 2 e*. If y(0) = 0. y'(0) — 0. y"{0) =  1, and y'"(0) = 1 then

Cl + C2 = 0, C2 + C3 = 0, C2 + 2c3 + 2c4 = 1, C'2 + 3cg + 6C4 =  1,
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so ci = 2. c-2 — —2, c-3 = 2. c-4 — —1/ 2. and

y =  2- 2ex + 2xex - \xi€e.
Z

Undetermined Coefficients — Superposition Approach

1. From rri2 + 3m + 2 = 0 we find mi = — 1 and m2 = —2. Then yc =  cie-* + C2 e~2x and we assum. 

yp = A. Substituting into the differential equation we obtain 2A = G. Then A =  3. yp = 3 and

y — cie x + C2C' ~'2* + 3.

2. From 4rri2 + 9 =  0 we find mi = — § i and m 2 — | i. Then yc = c\ cos |.t + C2 sin and we assnn:-. 

yp = A. Substituting into the differential equation we obtain 9A = 15. Then A = | , yv = | and

3 . 3 5
■y = ci cos -x + C‘2 sin -x + - .

Z t-t o

3. From rri2 — 10m + 25 =  0 we find mi =  m2 =  5. Tlicn yc = + ojxe™ and we assun. 

yp = Ax + .13. Substituting into the differential equation we obtain 25.4 =  30 and —10.4 + 25B = •: 

Then A = | . B = i  , yv = |x + § , and

y =  cie " + C2 xe + -x + - .
5 5

4. From m2 + rn — 6 = 0 we find m i =  —3 and m2 = 2. Then yc — cie~'ix + C2 e2x and we assui:. 

yp — Ax + B. Substituting into the differential equation we obtain —6.4 =  2 and A — 6B = 0. Th. 

.4 = - § , B = , yp = ^  , and

—3 r 2 x  ^ ^y = cie 'ix +c2e l - -x - — .

o. From ^m2 + m + 1 = 0 we find mi =  m2 =  —2. Then yc = C\ e~2x + c.2 xe~2x and wc assui:. 

yp = Ax2 + Bx + C. Substituting into the differential equation we obtain A = 1, 2A + B = —. 

and \A + B + C = 0. Then A = 1, B = —4, C = 5 . yp = x2 — 4x + | , and

y =  cie~2x + C2 xe~2x + x2 — 4x + -̂.

6. From m2 — 8rn + 20 =  0 we find m i =  4 + 2i and m2 =  4 — 2i. Then yc = eix(ci cos 2x + C2 sin2. 

and we assume yp = Ar2 + Bx + C + (Dx + £J)ex. Substituting into the differential equation r
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; otain
2A - SB + 20C = 0 

-6D + 1SE =  0 

-16,4 + 20 B = 0

132? = -26 

204 = 100.

Then A =  5; B =  A. C = ^  , D =  —2, E = — , yp =  5x2 + Ax + jjj -+ (—2x — ex and

y = e4x(c\ cos 2a: + eg sin2z) + 5a:2 + Ax + ^  2x — ex.

From m2 + 3 = 0 we find m\ =  y/3i and m2 = —a/3 i. Then yc =  ci cos V3 + C2 sin \/3 .x 

and we assume yp =  (Ax2 + Bx + C)e3x. Substituting into the differential equation we obtain

2-4 + 6B + 12C = 0, 12A + 12B = 0, and 12A = -48. Then A = -A, B =  4, C =  - § , 

:jp =  (—4:r2 + 4x — e3x and

y = c\ cos \/3x + C'2 sin y/% x + 4.t2 -t- 4ar — ^  e?x.

5. From 4m2 — 4m — 3 = 0 wc find mi =  5 and m2 =  — 5 . Then yc =  c\eix’2 + C2e_a:/2 and we assume 

ijp = A cos 2a; + Bsin 2x. Substituting into the differential equation we obtain —19 — 8B = 1 and 

SA — 19£? =  0. Then A = — ̂  , B = — |̂g . yp =  —̂  cos 2x — |̂g sin 2rc, and

y = ^ie3x'/2 + c2e~x-2 - ^  cos 2« - —  sin 2x.

9. From rn2 — m =  0 we find rn-i =  1 and m2 = 0. Then yc =  c\ex + c2 and we assume yp = Ax. 

Substituting into the differential equation we obtain —A = —3. Then A = 3. yp = 3x and 

y =  ciex + C2 + 3x.

-0. From m2 + 2rn - 0 we find m\ = —2 and m2 =  0. Then yc = ci e~2x + c2 and we assume 

yp = Ax2 + jB.t + Cxe~2x. Substituting into the differential equation we obtain 2A + 2B = 5, 

4A = 2, and — 2C = — 1. Then A = \ , B = 2, C =  | = 5.T2 + 2x + ijxr;-2*, and

y = cie_2-T + c2 + + 2x + i;re_2a:.

.1. From m2 — rn +  ̂ = 0  we find m i =  m2 =  5 • Then yc =  c\ex!2 -f o2xex-'2 and we assume 

yp = A + Bx2ex'2. Substituting into the differential equation we obtain | A = 3 and 2B = 1. Then 

A = 12, B = i  , = 12 + \x2ex'2, and

y = c,\ex‘2 + C2 Xext2 + 12 + ^x2e^2.
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12. From rn2 — 16 = 0 wc find mi = 4 and m,:2 = —4. Then yc == c\e4x + o2e~4x and we ass... 

yp - Axe4x. Substituting into the differential equation wc obtain 8.4 = 2. Then A = | , yp = 

and

y = c\e4x + C2 (~4x + 7«e4;);.
4

13. From m2 + 4 = 0 we find m\ = 2i  and m 2 = —21 Then yc — c\ cos 2;r + <12 sin 2:r and we as?' 

yp = Ax cos 2x + Bx sin 2x. Substituting into the differential equation we obtain 4B =  0 

—4A = 3. Then .4 =  — | , B =  0. yp = —\xc,os2x.: and
3

y = ci cos 2x + ( ‘2 sin 2x — -x cos 2x.
4

14. From m2 — 4 = 0 we find mi =  2 and m2 = —2. Then yc = c\e2x + C2 e~2x and wc assume ' 

y.p = (A t2 + Bx + C) cos 2x + (Dx2 + Ex + F) sin 2x. Substituting into the differential equa.ti( 

obtain
-8A = 0 

-SB + 8D = 0 

2A - 8C + 4E = 0 

-8 D = 1 

-8A -8E  = Q 

-4B + 2D -  8F = -3.

Then A = 0; B = — £ , C = 0, D = — | . E — 0, F = , so yp = a.-cos2;r + (—| x2 - I - • 

and
1 „ / 1 o 13'9 r —2r r\ ( l

y = c\e + C2 e - - x cos 2x + ( —- x -I- — I sm2x.

15. From rn2 + 1 =  0 we find mi = i and m2 — —i. Then yc = c\ cos x + c? sin x and wc a.-- 

ijp = (Ax2 + Bx) cosx -r (Cx2 -j- Dx) sinx. Substituting into the differential equation we •;

4C = 0, 2A + 2D = 0, -4A = 2, and -2B + 2C = 0. Then A = -5 , B = 0, C = 0, D = 

Up = ~^%2 cos a; + Resins, and

1  9  1  .
y — ci cos x + 0 2 sm x — ~x~ cos x + -x sin x.

16. From m2 — 5m - 0 we find mi = 5 and m2 = 0. Then yc = cie5x + c-2 and we a-- 

ijp = .4a:4 + BxA + Cx2 + Dx. Substituting into the differential equation we obtain -20.-' =

12.4 - 155 = -4, 6B - 10C = -1, and 2C - 5D = 6. Then A = - ± , B  =  i j £ ,C  = ■
D  _  _697  _  _ J _  4 , 14 .3 , 53. 2 _  697 d  
^  — 625 ’ yp — 10x  ^  75 ^  250 6 2 5 ddm

5̂ . 1 a 14 y 53 2 69/V =  c,e -+C2 - - X  ■ +  - * • + — *
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From rri2 — 2m + 5 = 0 we find m i = 1 + 2i and m-2 = 1—21 Then y(. = ex(ci cos 2x + 0 2 sin 2x) and 

v.*e assume yp = Axex cos 2x + Bxex sin 2x. Substituting into the differential equation we obtain 

-B = 1 and —4A = 0. Then A =  0. B = | , yp = |xe:,; sin2x, and

y =  ex(ci cos 2x + co sin 2x) + sin 2x.
4

From m2 — 2m + 2 = 0 we find mi = 1 + i and m 2 = 1 — i. Then y(. = e:c(cicosx + C2sinx) 

r.nd we assume yp = -4e2'r cos x + Be2x sinx. Substituting into the differential equation we obtain 

A — 2B = 1 and —2,4 + B = —3. Then A = ± . B = — i  . y„ = ie2x cos x — ie2x sin x and0 ' O O O
J 1

y =  ex(ci cos x + c-2 sin x) + ~e2x cos x — -c2x sin x.
0 0

From m2 + 2 m + 1 =  0 we find m\ = m2 = —1. Then yc =  c\e~x + C2xe~x and we assume 

.• = A cosx + B sin x + C cos 2x + D sin 2x. Substituting into the differential equation we obtain 

2B = 0, -2.4 = 1: -3C + 4D = 3, and —4C - 3D = 0. Then A = , B = 0, C = , D = §  . 

- =  —5 cosx — ^  cos 2x + sin2x. and

-t 1 9  ̂ 12 .
y = c\ e + (>2 xe — - cos x — — cos 2x + —: sin 2x.

2 25 25

From rn2 + 2m — 24 = 0 we find m\ = —6 and m2 = 4. Then yc =  cie~6x + C2e4x and we 

-."Sume yp — A + (Bx2 + Cx)e4x. Substituting into the differential equation wc obtain —24.4 = 16, 

1B+1QC = - 2, and 20B = -1. Then A = - ^  B = C = - ^  ,yp =  Q }*2 + ^ x )  e4a\

y = * ,«- * + «</•' - | - ( I f  + £ L X)  e«

From m.3 — 6m2 = 0 we find mi = m2 — 0 and m3 = 6. Then yc = ci + c2x + and we assume 

. = Ax2 + B cos x + C sin x. Substituting into the differential equation we obtain —124 = 3, 

■IB - C = - 1. and B + 6(7 = 0. Then A = , B = — ̂  , C — ^  , yP =  — Jx2 - ^  cosx + ^  sinx, 

-nd
6a- 1 2 6 1 .

V =  Cl + c2x + c3e - - X  - — cos x + — sm x.

From rn* — 2rn2 — 4m +8 = 0 we find m\ = m2 =  2 and m3 = —2. Then yc = Ci e2x + -rC3e_2a: 

;-.:id we assume yp = (Ax3 + Bx2)e2x. Substituting into tlie differential equation we obtain 24A =  6 

r.:id 6A + 8B = 0. Then A = \,B = - ^ , y p = (Jx3 - ^ x 2) elx, and

y =  c.ie2x + C2 X(ilx + C3e_2a; + Q x 3 - e2x.

From m3 — 3m2 + 3m — 1 = 0 we find m-i = rn2 = m3 =  1. Then yc = ciex + C2 XCX + cyx2ex and 

~’e assume yp = Ax + B + Cx*ex. Substituting into the differential equation wc obtain — A = 1,

159



Exercises 4.4 Undetermined Coefficients - Superposition Approach

3.4 — B = 0. and 6(7 = —4. Then A = —1, B =  —3, C - —| . yp = — x — 3 — ^x^e1, and

9
y = ciex + C2.'rex + C3X2ex — x - 3 - -̂ x3ex.

O

24. From m3-m 2 —4m+4 =  0 vve find mi =  1, m2 = 2. and m3 =  —2. Then yc = c\ex+ c2e2x+c$e~' 

and we assume yp = A+Bxex+Cxe2x. Substituting into the differential equation we obtain 4A = ' 

—■SB - - 1, and 4 C =  1. Then A = \, B = =\,yp = \ + ±;rex + \xe2x, and

y = c\?x + c2elx + cse~2x + 7 + \xex + ^xe2x.
4 o 4

-5. From m '1 + 2m2 + 1 = 0 we find mi = m3 =  i and m2 = m.4 =  —i. Then yc = ci cos a? + C2sin; - 

-V cos :r + C4X sin x and wc assume yp = Ak2 + Bx + <7. Substituting into the differential equat: 

"v obtain A = 1. B = —2. and 4.,4 + (7 =  1. Then A =  1. B =  —2, (7 = —3, yp = x2 — 2x — 3,

y = ci cos x + Co sin ;c + c^x cos x + c\x sin x + x2 — 2x — 3.

26. From m4 — m2 = 0 we find m i = m2  = 0. m3 =  1, and 7*14 =  —1. Then yc = ci + C2« + 036* + C4-" 

.Mid we assume = Ax6 + B.t2 + (Cfr2 + Dx)e~*. Substituting into the differential equation • 

brain -6A = 4. -2B =  0, 10(7 - 2D = 0, and -4(7 = 2. Then A = - § , £  =  0. C =

^  » S/p =  - §*3 - (s*2 + |*) «“*. and

x2 + e~x.

2~. We have yc = ci cos 2x + c2 sin 2.x and we assume yp = A. Substituting into the differential cquar. 

v.t find A = — ̂  . Thus y = ci cos 2a: + C2 sin 2;k — ^ . From the initial conditions we obtain c\ - 

c2 ~ V2. so y =  y/2 sin 2x —  ̂.

25. We have yc = cje-2x + c2eX/'2 and we assume yp = Ac2 + Bx + C. Substituting into the differe:.' 

-.;uation we find A = —7. B = —19, and C = —37. Thus y =  c\e~2x + c2ex,!2 — 7x2 — 19a: — 

From the initial conditions we obtain ci =  — r} and c.2 = , so

1 _9a. 186 ,. /n _ 9 - „ _
y/ : — -a -I— — e ' - 7a:" — 19rr — 37.

0 5

29. We have yc =  ae~'x/5+C2 and we assume yp = Ax*+Bx. Substituting into the differential eqiu'

”'e find A = —3 and B =  30. Thus y = cie-r/0 + c.2 — 3x2 + 30a:. From the initial conditio:.- 

:btain c\ = 200 and <;2 = —200, so

y = 200e_x/5 - 200 - 3a:2 + 30.x.

30. We have yc =  c\e~2x + c2xe~2x and we assume yp = (A®3 + Bx2)e~2x. Substituting int 

.arferential equation we find A = | and B =  %• Thus y =  c\e~2x + c2xe"2x + Q ®3 + |x‘2) 

From the initial conditions we obtain c\ - 2 and c2 =  9, so

y = 2e_2a: + 9xe~2x + e~2x.

y = c\ + c2x + csex + C4 e x - :X' - -
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31. We have yc = e~2x(ci cos x + c2 sin ;r) and we assume yp = Ae~4x. Substituting into the differential 

equation wc find A = 7. Thus ■;/ = e_2:!’(ci cos x + c-i sin x) + 7e~'ix. From the initial conditions we 

obtain c± = —10 and C2 — 9. so

■y = e~2x(—lOcosa; + 9sin,r) + 7e~4x.

12. Wc have yc = c\ cosh x + c-2 sinh x and we assume yp = Ax cosh x + Bx sinh x. Substituting into the 

differential equation we find A = 0 and B = \ . Thus

y = ci cosh x + c‘2 sinh x + ^x sinh x.

From the initial conditions we obtain ci =  2 and C2 = 12, so

1
y = 2 cosh x + 12 sinh x + —x sinh a;.

z*

. We have xc — c\ cos u;t + 0 2 sin uit and we assume xv = At cos cot + Bt sin u>t. Substituting into the 

differential equation wc find A = — Fq/2-uj and B = 0. Thus x = c\ cosutf+C2 sincjf—(Fo/2u)/ cos cot. 

From the initial conditions we obtain ci =  0 and C2 =  Fo/2ui2, so

x = (Fq/2u2) sinwt — (Fo/2uj)tcosujt.

:4. Wc have xc =  ci cos u>t+C2 smart and we assume xp = A cos'yt+B&m'yt, where 7 ^  u). Substituting 

into the differential equation we find A = Fo/(lo2 — 72) and B = 0. Thus

F0
x = ci cos urt + c-2 sin cvt H— -̂--k cos71 .

U!‘i — 7Z

From the initial conditions we obtain ci = — Fo/(u>2 — 72) and c‘2 = 0, so

Fo Fo
x = -- -̂--r> cos u>t H— =---» cos 71 .

— 7  ̂ u>1 — 7^

:•!. Wc have yc: = c\ + c2ex + c$xex and wc assume yp = Ax + Bx2ex + Ceox. Substituting into the 

differential equation we find A = 2, B = —12, and C = J?. Thus

1
y = ci + c2ex + c‘sxex + 2x — I2x2ex + - e ox.

From the initial conditions we obtain ci = 11, c2 = —11, and C3 =  9, so

y =  11 - lie* + 9.Tex + 2x- 12x V  + *e5a\

We have yc = cie 2x + ex(c2 cos \/3a: + C3 sin \/3x) and we assume yp = Ax + B + Cxe 2x. 

Substituting into the differential equation we find A — | , B = — | , and C =  | . Thus
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From the initial conditions we obtain c\ = — . C2 = — . and 03 = . so 

23 _ / 59 17 \ 1 5 2
y

23 _9r 7’ ( 59 f— 1 I r~ . /— \ 1 O 2 — 2t 
= - — e + e‘ — jtt cosvix  — — v3sm V 3x ) + -x - - -!- -xe . 

12 V 24 (2 / 4 o o

37. We have yc = c\ C0SX — C2 sinx and wc assume yp = Ax? + Bx+C. Substituting into the differei:' 

equation wc find A = 1. B =  0. and C = —1. Thus y = c.\ cosx + c-2 sinx + x2 — 1. From y(0) = 

and y( 1) = 0 we obtain

ci -1 = 5

(cosl)ci + (sinl)c2 = 0.

Solving this system we find ci = 6 and C2 = — 6cot 1. The solution of the boundary-value pro!:' 

is

y — 6 cos x — 6(cot 1) sin x + x2 — 1.

38. We have yc = ex(c\ cosx + C2 sinx) and we assume yp = Ax + B. Substituting into the differeiv 

equation we find A — 1 and B = 0. Thus y = ex(ci cosX + C2 sinx) +x. From y(0) = 0 and y(tt; = 

we obtain

ci = 0 

tt — enci = 7r.

Solving this system we find ci =  0 and C2 is any real number. The solution of the boundary-v;. 

problem is

y = C2 (::c sin x + x.

39. The general solution of the differential equation y" + 3y = 6x is y = ci cos a/3x + 02 sin\/3x — - 

The condition y(0) — 0 implies c\ = 0 and so y = C2 sin \/3x + 2x. The condition ;t/(l) + y'( 1 - 

implies c2 sin y/3 + 2 + C2\/3 cos \/3 + 2 = 0 so 0 2 = —4/(sin \/3 + VS cos \/?>). The solution is

—4 sin y/Sx
V — --- 7=— 7=--- 7= + 2x.

sin V3 + V3 cos V3

40. Using the general solution y — c\ cos \/3x+C2 sin y/3x+2x, the boundary conditions y(0)+j/(0 = 

y(l) = 0 yield the system

c\ + a/302 + 2 = 0 

c\ cos \/3 + (>2 sin V3 + 2 = 0.

Solving gives

2(—y/3 + sin\/3) , 2(1 —cos\/3)
ci =  —1=--- -j=-- ;— 7= ana 02 =

yf?i cos V3 — sin \/3 \/3 cos \/3 — sin \/3
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Thus,

2(—\/3 + sin \/3) cos \/3x 2(1 — cos V3) sin y/3x
y — —----------- ------- -j- —-—------------- -— -j- 2x.

\/3 cos \/3 — sin \/3 \/3 cos \/3 — sin \/3

-41. We have yc = C; cos 2x +  02 sin 2x and wc assume yp = A cos x + D sinx on [0 . tt/2]. Substituting 
into the differential equation we find A =  0 and B =   ̂. Thus y = c\ cos 2x + C2 sin 2x + |  sin x on 
0. vr/2j. On (7t /2 , o o ) we have y = c% cos 2x +  04 sin 2x. From y(0) =  1 and y'(0) =  2 we obtain

ci =  1 

i +2c2 =  2-

Solving this system wc find ci =  1 and C2 = g . Thus y =  cos 2x +  | sin2.r +  |  sin a; on [0, tt/2'. 

Xow continuity of y at £ =  tt/2  implies
5 , 1 . 7T

cos 7r +  -  sm  7T +  -  sm  — =  C3 COS 7T +  C4 sm  7T

:<r —1 +  |  =  —C3. Hence C3 — | . Continuity of 1/  at x — 7t /2  implies
5 1 7T .

—2 sm 7T + -  cos 7T + -  cos — = —2c3 sm tt +  2c4 cos 
o o ^

:>r — |  =  —2c4. Then C4 — |  and the solution of the initial-value problem is
( cos 2x +  |  sin 2x +  |  sin x, 0 < x < tt/2 

y(x) = <[ |  cos 2x + § sin 2x, x > tt/2 .
■il. We have yc = ex(c\ cos 3a; +  C2 sin 3x) and we assume yv =  A 011 [0 , 7r], Substituting into the 

differential equation we find A = 2. Thus, y =  ex (ci cos 3a; + C2 sin 3a;) +  2 on [0,7r]. On (71% 00) we 
have y = ex(cz cos 3a; +  c,\ sin 3a;). From y(0) = 0 and f/(0) = 0 wc obtain

ci - —2 , c\ +  3c2 =  0.
Solving this system, we find ci =  —2 and (>2 =  § • Thus y - ex(—2 cos3a; -h § sin3x) +  2 on [0 , tt]. 
Xow, continuity of y at x =  tt implies

2
en (—2 cos 3tt + - sin 37r) + 2 = e" (as cos 3tt + C4 sin 3?r)

O

r 2 + 2(f — —036  ̂ or C3 =  —2e_7r(l +  eir). Continuity of 1/  at tt implies 
20—e* sin 3% =  e’r[(c3 +  3 4̂) cos 3ir +  (—303 -h C4) sin 3tt]
O

.r — C3e7r — 3c4e7r =  0. Since C3 =  —2e~ff(l +  e71-) we have C4 - | e _7r(l +  e7r). The solution of the 
initial-value problem is

y(x) =
ex(—2 cos 3a; + | sin 3z) 4- 2, 0 < x < 1r

(1 + e7r)e:K_"(—2 cos3a: +  § sin3a;), x > tt.
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43. ' a) From yp = Aekx we find y'p = Akekx and yp =  Ak2ekx. Substituting into the different:

equation we get

aAk2ekx + bAkekx + cAekx = (ak2 + bk -j- c)Aekx = ekx,

so (ak2 + bk + c)A = 1. Since k is not a root of am2 + brn + c =  0, A = 1 /(ak2 + bk + c).

i b) From yv = Axekx we find y'p — Akxekx 4- Aekx and yp : Ak2xekx + 2Akekx. Substituting i:.' 

the differential equation we get

aAk2xekx + 2aAkekx + bAkxekx + bAekx + cAxekx

= (ak2 4- bk + c)Axekx + (2ak + b)Aeltx 

=  (0 )Axekx + (2 ak + b)Aekx =  (2ak + b)Aekx = ekx

where ak2 + bk + c = 0 because k is a root of the auxiliary equation. Now, the root' 

the auxiliary equation are —bf 2a ± Vb2 — 4ac /2a, and since k is a root of multiplicity 

k 7̂  —bf 2a and 2ak + b ^  0. Thus (2ak + b)A = 1 and A = I f  (2ak + b).

Ic) If A" is a root of multiplicity two, then, as wc saw in part (b), k — —b/2a and 2ak + b = 

From yp = Ax2ekx we find y'p =  Akx2ekx + 2Axekx and y" = Ak2x2ekx + 4Akxekx — 2.4- 

Substituting into the differential equation, we get

aAk2x2ekx + 4 aAkxekx + 2aAekx + bAkx2ekx + 2 bAxekx + cAx2ekx

= (ak2 + bk + c)Ax2ckx + 2(2 ak + b)Axekx + 2aAekx

= (0)Ax2ekx + 2(0 )Axekx + 2aAckx = 2 aAekx = ekx.

Since the differential equation is second order, a ^  0 and A = l/ (2a).

44. Ysing the double-angle formula for the cosine, we have

sin x cos 2x =  sin x(cos2 x — sin2 x) =  sin a:(l — 2 sin2 re) — sin x — 2 sin3 x.

fr::.ce sin® is a solution of the related homogeneous differential equation we look for a part:

-' .utioii of the form yp = Ax sin x + Bxcosx -t- C sin'5 a;. Substituting into the differential equ? " 

“■e obtain

2 A cos x + (6(7 — 2B) sin x — SC sin3 x = sin x — 2 sin3 x.

Equating coefficients we find .4 =  0, C =  \ , and B = \. Thus, a particular solution is

1 1 . 3 
yp = -x cos x + - sm x.

45. a) f ir )  — ex sin®. We see that yp —> oo as x —>■ oc and yp —>• 0 as x —» —oo.

■■ b ) f(x) = e~x. We see that yp ^  x  as a: -> oo and yp —»• oo as x —> —oo.
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(c) f(x) — sin2.x\ We see that yP is sinusoidal.

i'd) f(x ) = 1. Wro see that yp is constant and simply translates yc vertically.

The complementary function is yc =  e2x(ci cos 2.x- + c-i sin2.r). Wre assume a particular solution of 

:he form yp — (Aa:3 + Bx? 4- Cx)e2l: cos2 x + (Da:3 + Ex2 + F)e2x sin2 x. Substituting into the 

differential equation and using a CAS to simplify yields

[1 2 Dx2 + (6A + 8 E)x + (2 B + A F))e2x cos 2x

+ [-12 Ax2 + (-8 B + 6 D)x + (-AC + 2 E)]eZx sin 2x

= (2a:2 — 3x)e2x cos 2x + (10a:2 — x — l)e2a; sin 2.x.

This gives the system of equations

121? =  2. 6A + BE = —3. 2 B + AF = 0.

—12 A = 10. —SB + QD = - 1, —AC t 2  E = - 1,

:rom which we find A = — ̂  , B = ^ , C = % , D = ^ , E =  ̂. and F = — | . Thus, a particular 

-elution of the differential equation is

yp ■ ( —j.xA + 7X2 + |aAe2a’cos2a: + x3 + \x2 — e2xsin2 x.
V o  4 8 / Vo 4 8 /

The complementary function is yc = ci cos x + 0 2 sin x+C3 X cos x+c.\x sin x. We assume a particular

solution of the form yp = Ax2 cos x + Bx* sin a;. Substituting into the differential equation and using

a CAS to simplify yields

(—8A + 2AB) cos x + 3 Bx sin x = 2 cos x — 3x sin x.

This implies —8A + 24S — 2 and —2 AB — —3, Thus B = | , A = | , and yp = ^x2 cos x -f |x3 sin x.

• * * ' ' '... . ' * - V-
. ' Undetermined QgHefflcietits ^ \ [J

9D2 - A)y = [3D - 2) (3D + 2)y = sin a:

D2 — 5)y = (D — y/E)(D + y/5 )y = x2 — 2a: 

D2 - AD - 12)y — (D - 6)(D + 2)y = x - 6 

2D2 - 3 D -  2 )y = (2D + 1 )(D - 2 )y = 1 

D3 + 10D 2 + 25 D)y =  D(D + 5)2y = e*

D* + AD)y = D (D2 + A )y = rrr cos 2a:
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7. (D3 + 2D2 - 13D + 10)y =  (D — 1)(D — 2)(D + 5)y =  ze'®

8. (Da + 4D2 + 3D)y = D(D + 1)(D + 3)y =  x2 cos a: — 3x

9. (D4 + 8D)y =  D (D + 2)(D2 - 2D + 4)y = 4

10. (D4 - 8D 2 + 16)y = (D - 2)2(D + 2f y  = (x3 - 2z)e4x

11. £>4?/ = D4(10x3 - 2x) =  Da(30x2 - 2) = D2(60.x) =  D(60) =  0

12. (2D - l)y = (2D - l)4ex/2 =  8DexI2 - 4ex/2 = 4exI2 - 4ex/2 =  0

13. (D-2)(D+5)(e2x+3e-5x) =  (JD-2)(2e2x-15e-5l+5e2x+15e-5a:) =  (D-2)7e2x = 14e2*-U- -

14. (D2 + 64) (2 cos 8x — 5 sin 8x) =  £>(—16 sin 8a; — 40 cos 8a;) + 64(2 cos 8a: — 5 sin 8a:)

=  —128 cos 8x 4- 320 sin 8;r + 128 cos 8a: — 320 sin 8x = 0

15. D 4 because of a;3 16. D :y because of x4

17. D(D — 2) because of 1 and e2x 18. D 2(D — 6)2 because of x and xe^x

19. D2 -i- 4 because of cos 2a: 20. D (D2 + 1) because of 1 and sin a;

21. D^(D2 + 16) because of a:2 and sin Ax

22. D 2(D2 + 1)(£>2 + 25) because of x, sin a:, and cos 5a;

23. (D + 1 )(D — l )3 because of e~x and x2ex

24. D(D — 1)(jD — 2) because of 1, ex, and e2x

25. D (D2 — 2D + 5) because of 1 and ex cos 2x

26. (D2 + 2D + 2)(D2 — 4D + 5) because of e~x sin x and e2x cos x

27. 1, x, x2, x3, x4

28. D2 + 4D = D(D + 4); 1, e~4x

29. e6x, e~Zx!2

30. D2 — 9D — 36 = (D — 12)(D + 3); e12x, e"3*

31. cos \/5 x, sin \/5 x

32. D2 - 6D + 10 = D 2 - 2(3)D + (32 + l 2); eax cosx, e3x sinx

33. D3 - 10D 2 + 25D = D(D - 5)2; 1, e5*, xe5x

34. 1. x, e5x, e7x

35. Applying D to the differential equation we obtain

D(D2 - 9)y = 0.
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lj = cie3x + C2C 3x + C‘3

Vc

and yp = A. Substituting yp into the differential equation yields —9A — 54 or A = —6. The general 

solution is

y = cie'ix t  C2 e~Sx — 6.

:t. Applying D to the differential equation we obtain

D(2D2 -7D  + 5)y = 0.

Then

y =  c ie 0* /2 +  C2ex +  C3

Vc

and yp = A. Substituting yp into the differential equation yields 5.4 = —29 or A = —29/5. The 

general solution is

y = c\eoxZ2 + c<2 ex — — .
5

I". Applying D to the differential equation we obtain

D (D2 + D)y = D2(D + 1 )y = 0.

Then

y  =  C j +  C2C X +  C3.X'

Vc
r.nd yp = Ax. Substituting yp into the differential equation yields A = 3. The general solution is

y = ci + C2 e~ix + 3a;.

. Applying D to the differential equation we obtain

D(D3 + 2D2 + D)y = D2(D + 1 )2y = 0.

Then

y = Cl + + C[]X(~x + C4 X
v - -.................-v  ■ ■ - —........ v

yc

-nd yp = Ax. Substituting yp into the differential equation yields A = 10. The general solution is

y = ci + c2e~x + C‘ixe~x + 10ar.

- Applying D2 to the differential equation we obtain

D2(D2 + W  + 4 )y =  D2(D + 2 )2y =  0.
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Then

y  =  -4- C 2 xe ~ 2a +  C3 +  c ± x
v V

yc

and y-p = Ax + B. Substituting yp into the differential equation yields AAx + (4/4 + 4B) = 2, - 

Equating coefficients gives

AA — 2

AA + AB = 6.

Then A = 1/2. Z? =  1. and the general solution is

y  =  c i e _2a ' +  C 2 xe ~ 2x +  +  1.

40. Applying D 2 to the differential equation we obtain

D 2 {D2 + 3 D)y = DS(D + 3 )y =  0.

Then
— ’V r 9

y = ci + C2e “ ' + c3x + C4 X
'--- v----/

yc

and yp =  Ax'2 + Bx. Substituting yv into the differential equation yields 6Ax -f (2A 4- 3B) =  - 

Equating coefficients gives

6A =  4

2A + 3B = -5.

Then A = 2/3, B — —19/9. and the general solution is

—3x  ̂ 2 ^
y =  ci + C2C + 3^ -

41. Applying D3 to the differential equation we obtain

D 3 (D 3 + D2)y = £>5(£> + l)y = 0.

Then

y = ci + C2Z -r C3e~J + C4 X4 + Cr,x3 + c&x2 
yc

and yp = Ax1 + Bx3 + Cx2. Substituting yp into the differential equation yields

12 Ax2 + [2AA + 6B)x + (6£  + 2 C) = 8z2.

Equating coefficients gives

12A = 8

24 A + 6B = 0 

6B + 2C =  0.
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Then A — 2/3, B = —8/3, C = 8, and the general solution is

—t 2 a 8 o o
y = ci + C2& + cge + -x - -ar + 8x .

t j

Applying D4 to the differential equation wc obtain

D\D2 -2D  + 1 )y = D i (D - 1 f y  = 0.

Then

y = ciea: + C2 xex + C3X3 -h c^x2 + c$x + cq
'----V----'

yc

r.,ixd ijp — Ax? + Bx2 + Cx + E. Substituting yv into the differential equation yields 

Ax3 + (B — 6A)x2 + (6A — 4B + C)x + (2 B — 2C + E) =  x3 + 4x. 

Equating coefficients gives

4 = 1

B - 6A = 0

6A-4B  + C = 4

2B -2C  + E = 0.

Then A = 1, B = 6. C =  22, ,E = 32 . and the general solution is

y = c\ex + C2 xez + x3 + 6x2 4- 22x + 32.

Applying D — 4 to the differential equation we obtain

(D — 4)(D2 - D — 12 )y =  (D -  4 f (D  + 3 )y = 0.

Then

y =  cie4i: + c^e-3* + c$xe4x
'---- v—---'

Vc

>.nd ijp =  Axe4*. Substituting yp into the differential equation yields 7Ae4x = e41. 

. j efficients gives A =  1/7. The general solution is

y = cie4x + C2 e~'ix + ^xe4x.

Applying D — 6 to the differential equation we obtain

(D — 6)(D2 + 2D + 2)y = 0.

Then

y = e~x(ci cosx + 0 2 sinx) + c-̂ ê  
v ^

Vc
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and yp = Aebx. Substituting yp into the differential equation yields 5(Me6a: = 5e&x. Ecr. 

coefficients gives A =  1/10. The general solution is

y = e~x(c\ cos x 4- c-2 sin x) +

45. Applying D(D — 1) to the differential equation we obtain

D(D - 1)(£>2 - 2 D -  3 )y = D(D - 1 )(D + 1 )(D - 3 )y = 0.

Then

y = C\e*x + oie~x + C3 ex + c.4
s v y

Vc

and yp =  Aex + B. Substituting y.p into the differential equation yields —4Aex — 3B = 4- 

Equating coefficients gives A = — 1 and B =  3. The general solution is

y = cie3x + c2e~x - ex 4- 3.

46. Applying D2(D + 2) to the differential equation we obtain

D 2(D + 2 )(D2 + 6D + 8)y = D2(D + 2 f{D  + 4 )y = 0.

Then
_,9'r zL-'t* _9/ti

y =  c\e + c-2 e •' + c$xe + c^x + eg

yc

and yp = Axe~2x + Bx + C. Substituting yp into the differential equation yields

2Ae “x + SBx + (6B + 8C7) = 3e 2x + 2x.

Equating coefficients gives

2A = 3 

SB =  2 

6B + SC = 0.

Then A =  3/2, B =  1/4, C = —3/16 , and the general solution is

y = <v-2* + c2e-41 + Ive-2* + \x -
2 4 16

47. Applying D2 + 1 to the differential equation we obtain

(D2 + 1 )(D2 + 25 )y = 0.

Then

y = ci cos 5x + C2 sin 5x + C3 cos x -+ C4 sin x

yc

Exercises 4.5 Undetermined Coefficients - Annihilator Approach
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and yp = A cos x + B sin x. Substituting yv into the differential equation yields

24/1 cos x + 24 B sin x = 6 sin x.

Equating coefficients gives A =  0 and B — 1/4. The general solution is

1 .
y = ci cos ox + C2 sin ox + - sin x.

Applying D (D2 + 1) to the differential equation wc obtain

D(D ‘2 + l)(D'2 + 4)y = 0.

Then

y = c\ cos 2x + o>. sin 2x + c» cos x + c% sin x + cr>
'------ V------ '

yc

and yv = A cos x + B sin x + C. Substituting yp into the differential equation yields

3 A cos x + 3B sin x + 4C = 4 cos x + 3 sin x — 8.

Equating coefficients gives A = 4/3. B = 1. and C ~ —2. The general solution is

4
y - ci cos 2x + c-2 sin 2x + - cos x + sin x — 2.

o

Applying (D — 4)2 to the differential equation we obtain

(D - 4 f ( D 2 + 6D + 9)y =  (D - 4 f (D  + 3 f y  =  0.

Then

y - cie~'ix + C2 xe~3x + c^xeix 4- c±eAx v „ ✓
Vc

-nd yp - Are4* + Beix. Substituting yp into the differential equation yields

49 Axe4* + (14A + 49 B)e4x = -zeix.

Equating coefficients gives

49A = -1 

14A + 495 = 0.

Then A = —1/49, B =  2/343. and the general solution is

y  =  c i e " 3;K +  c 2x c ~ 3x  -  +  ^ e 4:K.

Applying D2(D — I )2 to the differential equation wc obtain

D2(D - 1 f(D~ +3D -  10)1/ = D2(D - 1 f{D  - 2){D + 5)y = 0.
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Then

=  C[62X +  C26 0X +  C;yX,eX +  C±eX +  C$X +  CQ
yc

and ijp — Axe£ + Bex + Cx + E. Substituting yp into the differential equation yields 

-6Axex + (5A - 6B)ex - 10Cx + (3C - 10£ ) = xex + x.

Equating coefficients gives

-6A = 1 

5A — 6B = 0 

- 10C = 1

3 C - 10£  =  0.

Then A =  —1/6, B = —5/36, C = —1/10. E  — —3/100. and the general solution is

y - c\^x + C2 e~̂ x -- xex — — e* — —x -- — .
y 6 36 10 100

51. Applying D(D — I )3 to the differential equation we obtain

D(D - 1 f{ D 2 - 1)|/ = D(D - 1 )4(£> + 1 )y = 0.

Then

y — c\ex + C2 e~x + C3 X'iex + C4 X2ax + c^xex + ce
'----V----'

y<:

and yp = Ax3ex + Bx2ex + Cxex + E. Substituting yp into the differential equation yields 

GAx2ex + (6A + 4B)xex + (2J3 + 2C)e:c ~ E  = x2ex + 5.

Equating coefficients gives

6A = 1 

6A + AB = 0 

2B + 2C = 0 

- E  = 5.
Then A — 1/6. B =  —1/4, C = 1/4, E = —5, and the general solution is

y =  c±ex -f C2 e~x + ~x3ex — \x2ex + \xex — 5.
6 4 4

52, Applying {D + l )3 to the differential equation we obtain

(D + 1 )3(D2 + 2D + 1 )y = (D  + 1 f y  = 0.
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Then

y — c\e x + C2 xe x + c;ix4e x + c ^ e  x + c$x2e x

yc

and yp = Ax4e~x + Bx:ie~x + Cx2e~x. Substituting yp into the differential equation yields

12Ax2e~x + 6Bxe~x + 2Ce~x - x2e~x.

Equating coefficients gives A = B = 0. and C = 0. The general sohition is

y = c\erx + C2 xe~x + ~-x4e~x.
JL Z

Applying D2 — 2D + 2 to the differential equation wc obtain

(D2 -2D  + 2)(D2 - 2D + 5)y = 0.

Then

y = ex (ci cos 2x + C2 sin 2x) + ex(ĉ  cos x + C4 sin x)
'--------v--------'

yc

r. ud yv = Aex cosx + Bex sinx. Substituting yp into the differential equation yields

3 Aex cos x + 3 Bex sin x =  ex sin x.

Equating coefficients gives A = 0 and B = 1/3. The general solution is

1
y = ex(a  cos 2x + 02 sin 2x) + ~e3, sin x.

o

Applying D2 — 2D + 10 to the differential equation we obtain

(D2 -2D  + 10) (d 2 + D + £ ) y =  (D2 - 2D + 10) ( d  + - J  y = 0.

'lien

y — c\e x-2 + C2 xe 'T//2 + czex cos 3x + C4 ex sin 3x

yc

■-.ad yp = Aex cos3x + Bex sin3x. Substituting yp into the differential equation yields 

(9B — 21A/A)ex cos 3x — (9.4 + 27B/A)ex sin 3x = —ex cos 3x + ex sin 3x. 

Equating coefficients gives
27

-~~A + 9B = -1
4

27
- 9 A - — B = 1.

4

Then A =  —4/225, B ~ —28/225. and the general solution is

-,/9 4 ,  „ 28 rr
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55. Applying D 2 + 25 to the differential equation we obtain

(D2 + 2b) (D2 + 25) = (D2 + 25)2 = 0.

Then

y = a  cos oar + co sin 5.t + C3 X cos 5.x + C4 X cos 5x 
s : '

Vc

and yp = Ax cos bx + Bx sin ox. Substituting yp into the differential equation yields

10 B cos bx — 10 A sin 5a’ =  20 sin ox.

Equating coefficients gives A = — 2 and B = 0. The general solution is

y — ci cos 5x + C2 sin 5x — 2x cos bx.

56. Applying D2 + 1 to the differential equation we obtain

(.D2 + 1)(£>2 + 1) =  (D2 + l )2 =  0.

Then

y — ci cos x + C2 sin x + c$x cos x + C4 X cos x

Vc

and yp =  Ax cosx + Z?xsinx. Substituting yp into the differential equation yields

2 B cos x — 2 A sin x — 4 cos x — sin x.

Equating coefficients gives A = 1/2 and B — 2. The general solution is

y — ci cos x + C2 sin x + \x cos x — 2x sin x.
z

57. Applying (D2 + l )2 to the differential equation we obtain

{D2 + 1)2(D2 + D + 1) = 0.

Then

3/ = e x/2 V3 ^  . Vz
d  cos —  x + C2 sin —  x + C3 cos x + Ci1 sin x + c$x cos x + c q x  sin x

Vc

and yp — A cos x + B sin x + Cx cos x + Ex sin x. Substituting yp into the differential equatio:.

(B + C + 2E) cos x + Ex cos x + (—A — 2C + E) sin x — Cx sin x = x sin x. 

Equating coefficients gives

B + C + 2E = Q 

E  = 0

- A - 2 C + E = 0 

- C =  1.
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Then A = 2, D =  1, C = —L and E = 0, and the general solution is

y =  e - x /2 V3
ci cos —  x + Co sm —— x 

2 2
2  cos x + sin x — x cos x.

5 S. Writing cos2 a; = |(1 + cos 2 x) and applying D(D 2 + 4) to the differential equation we obtain

Then

D(D2 + 4)(D2 + 4) - D(D2 + 4)2 = 0. 

y = ci cos 2 x + C‘2 sin 2 x + c%x cos 2 x + C4 X sin 2 x + 0 5

V<:

and yp — Ax cos 2 x + Bx sin 2 x + C. Substituting yp into the differential equation yields

1 1
—4A sin 2x + 4B cos 2 x + AC = - + - cos 2 x.

Equating coefficients gives A = 0 . B — 1/8. and C = 1/8. The general solution is

1 1
y = ci cos 2 x + c‘2 sin 2 x + -x sin 2 x + -.

8 8

Applying D3 to the differential equation we obtain

£>3(D3 + 8 D2) = D5(D + 8) = 0.

Then

y — c\ + C2 X + cze~8x + c,\x2 + c$xs + c^x4
s------------------ v ------------------ /

yr.

and yp = Ax2 + Bx:3 + Cx4. Substituting yp into the differential equation yields

16A + 6 B + (A&B + 24(7):/: + 96Cx2 = 2 + 9x- 6 x2.

Equating coefficients gives

ISA + 6 B = 2 

ASB + 2AC = 9 

96 C = -6.

Then A = 11/256, B = 7/32, and C = —1/16, and the general solution is

y =  ci + c2x + c3e Sx + — x‘ + — x° - — x*.
2o6 32 16

Applying D(D — I ) 2 (D + 1 ) to the differential equation we obtain

D{D - 1 f{D  + 1)(D3 - D 2 + D - 1) = D(D - 1 f ( D  + 1 ){D2 + 1) = 0.

11 7 „3 1 .4

i hen

y =  cie* + C2 cos x + C3 sin x + C4  + c&e x + cqxex + c^x^e

yc
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and yv = A + Be~x + Cxex + Ex2 ex. Substituting yp into the differential equation yields

4Exex + (2C + 4E)ex - 4Be~x — A = xex - e~x + 7.

Equating coefficients gives

4E = 1 

2C + 4E = 0 

-4 B = -1 

-A = 7.

Then A = —7. B = 1/4, C = —1/2, and E = 1/4. and the general solution is

y =  c\ex + C2 cos a; + C3 sin a: — 7 + -e~x — -̂xex + \x2ex.
4 2 4

61. Applying D 2(D — 1) to the differential equation we obtain

D\D - 1  )(D3 - 3D2 + 3D - 1) = D2(D - l )4 =  0.

Then

y = ciex + C2 xex + czx2 ex + C4 + c$x + cqx^c*

yc

and yp = A + Bx + C'x*ex. Substituting yp into the differential equation yields

{-A + 3B) -B x  + 6 Cev = 16 - x + e*.

Equating coefficients gives

-A + 3 B = 16 

—B = -1 

6 C = 1.

Then A — —13, B — 1 . and C = 1/6, and the general solution is

y = c\ex + C2 xex + c-iX?ex - 13 + x + \xAex. 
6

62. Writing (ex + e~x)2 = 2 + e2x + e~2x and applying D(D  — 2)(D + 2) to the differential equa: 

obtain

D(D - 2)(D + 2)(2D3 - 3D2 - 3D + 2) = D(D - 2)2(D + 2)(D + 1)(2D - 1) = 0.

Then

y - ci< ~:r + C2 <?x + czex ! 2 + 0 4 + c$xe2x + c<;e~2*

Vc

Exercises 4.5 Undetermined Coefficients - Annihilator Approach
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and ijp - A + Bxe?x -j- Ca 2x. Substituting yp into the differential equation yields

2A + 9.Be2* - 20Ce-2;f =  2 + e2* + e-2*.

Equating coefficients gives A ~ B — 1/9. and C = —1/20. The general solution is

y = Clerx + c2e2x + c3ê 2 + 1 + ^ e 2* - ±-e~2x.
y 20

Applying D(D — 1) to the differential equation we obtain

D{D - 1 )(£>4 - 2DS + D 2) = D 3{D - l )3 = 0.

Then

y — ci + C‘ix + c.zex + C4xe* + c~,x2 + c§x2ex
S " ■ "Nr ■' "I y

Vc

and yp =  Ax'2 + Bx2ex. Substituting yp into the differential equation yields 2A + 2Bex = 1 + ea 

Equating coefficients gives A = 1/2 and B = 1/2. The general solution is

y =  ci + c-2 a: + c$ex + C4 Xex + ^a;2 + ^x2ex.
& &

Applying D ?>(D — 2) to the differential equation we obtain

D3(D - 2)(£>4 - 4D2) = D 5(D - 2)2{D + 2) =  0.

Then

V = ci + c-2 X + cge2* + a e '2* + c$x2 -+- C6»3 + ojx4, + cgxe2*
'-------- --------- '

Vc

and yp = Ax2 + Bx3 + Cx4 + Exe2x. Substituting yp into the differential equation yields

(—8*4 + 24(7) - 24Bx - 48Cx2 + 16£e2x = 5a:2 - e2a;.

Equating coefficients gives

-8A + 24C = 0 

-245 = 0 

-48C = 5 

16̂ 7 = - 1.

Then A = —5/16, B = 0, C = —5/48. and E  = —1/16, and the general solution is
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65. The complementary function is yc — c\eSx + &x. Using D to annihilate 16 we find yp = 

Substituting yp into the differential equation we obtain —64A = 16. Thus A — —1/4 and

y = cxeSx + c2e-8x - J

8x o .̂ 8a;

The initial conditions imply

Thus ci =  C2 =  5/8 and

y' =  8cie — 8c2e .

5
C l+ C 2 =  -

8ci - 8c2 — 0.

5 5 _g2. 1

» - i ^ + 8e I '

66. The complementary function is yc =  c\ + C2 (‘~x. Using D 2 to annihilate x we find yp — Ax - - 

Substituting yp into the differential equation we obtain (A + 2B) + 2Bx — x. Thus A = - - 

B = 1/2. and

—r 1 2y =  ci + c2e " - x + -x
Zi

y1 = —C2 e~x — 1 + x.

The initial conditions imply

ci + c2 = 1

-C-2 =  1.

Thus ci =  2 and c2 =  —1, and

1 2y =  2 — e — ir +  - x  .
Zi

67. The complementary function is yc — ci+c2eox. Using D2 to annihilate x — 2 we find yp = Ax - - 

Substituting yp into the differential equation we obtain (—5A+2S )—lOSx = —2+x. Thus A = 

and B — —1/10, and

Kr 9 1 o 
y =  Cl + C,e- + - X - - X

y' = 502^ + £  - k

The initial conditions imply

25 5

ci + c2 = 0 

41

C 2 = 125
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Thus ci = —41/125 and C2 =  41/125, and

41 41 =T 9 1 o

y =  -Jro + m e' "  + 25x -Toz'-

The complementary function is yc =  c\ex + C2 C~()X. Using D — 2 to annihilate 10e2x we find 

yp = Ae2x. Substituting yp into the differential equation we obtain 8Ae2x = 10e2x. Thus A =  5/4 

and

y = ci ex + C2 e~6x + ^e2as 

y' = aex - 6c2e~6x + ~e2x.

The initial conditions imply

Cl + C2 =  -\

r 3
Cl - 6 C 2  -  - -  .

Thus ci = —3/7 and C2 = 5/28, and

y = —~ex + — e~6x + -e2ic 
y 7 28 4

• The complementary function is yc = c\ cos x + C2sinx. Using (D2 + 1 )(D2 + 4) to annihilate 

8 cos 2x — 4 sin x we find yp =  Ax cos x + Bx sin x + C cos 2x + E sin 2x. Substituting yp into the 

differential equation we obtain 2B cos x — 3C cos 2x — 2A sin x — 3E sin 2x = 8 cos 2x — 4 sin x. Thus 

.4 = 2, B = 0, C = —8/3, and E =  0, and

g

y = c\ cos x + c'2 sin x + 2x cos x — - cos 2x
O

16
y' =  — ci sin x + C2 cos x + 2 cos x — 2x sin x -|- — sin 2x.

o

The initial conditions imply

8

C 2 + 3 = _1

—Cl — 7T = 0.

Thus Ci = —tt and 0 2 =  —11/3, and

11 • ^ 8 y = —7r cos x — -sina: + 2x cos x — - cos 2x.
O O

The complementary function is yc = Ci + c2ex + czxex. Using D(D — l )2 to annihilate xex + 5 

we find yp = Ax + Bx2ex + CxAex. Substituting yp into the differential equation we obtain
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A 4- (2B + 6C)eT + QCxex = xe:r + 5. Thus A — b ,B  =  -1/2, and C = l / 6; and

y = ci + C2ea; + C3>i'e'r + 5.x — ^.r2e:r 4- ^.r’3ex

y' = 026* + c$(xex + ex) + 5 — xex +

y" =  c.2 ex 4- cz(xex 4- 2ex) — ex — xe* 4- ^x2̂  4- ^x3e*.

The initial conditions imply

Cl + C2 =  2

C2 + C3 + 5 = 2 
C2 + 2cg — 1 =  —1.

Thus ci =  8, C2 = —6. and C3 =  3, and

y = 8 — Qex + 3xe;t’ + ox — ]-x2ex + ^x3ex.2 6

"1. The complementary function is yc = e2x(ci cos 2x + C2sin2x). Using Z?4 to annihilate .. 

find yp =  A + Bx 4- Cx2 + Ex3. Substituting yp into the differential equation we t 

i 8.4 - AB + 2C) 4- (SB - 8C + 6£)x  4- (8C - 12E)x2 + 8Ex3 = x3. Thus A = 0, B = 

C = 3/16, and E  = 1/8, and

3 3 1 
y = e2x(ci cos 2x 4- C2 sin2x) 4- — x 4- — x2 + -x3

62, lb o

3 3 3
y’ = e2x [ci (2 cos 2x — 2 sin 2x) 4- C2 (2 cos 2x 4- 2 sin 2x)] + ™ -r  ̂£ 4- x■x2.

32 8 8

The initial conditions imply

ci = 2

2ci 4- 2c2 4- ~  =  4.

Thus ci =  2, C2 = —3/64. and

2t/« « 3 . „ , 3 3 2 1-1 
y = e/-l (2 cos 2x - — sm2x) 4- — x + — x2 + -x3.

’2. Tiie complementary function is yc =  ci 4- c^x 4- C3X2 4- C4ex. Using D2(D — 1) to anni'

— ex we find yp =  A x a + Bx4 + Cxex. Substituting yp into the differential equation we ■
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—6A + 245) — 24Dx + C'ex = x + ex. Thus A - —1/6, D = —1/24, and C = 1, and

y — C1 + C2 X + C3 X2 + c4(f - ~x3 - J-x4 + xex0 z 4

y' = c-2 -f 2C3X + aiex - ^a;2 - ^a?3 + ex + xex

y" = 2 C3 + C4ex — :c — ^x2 + 2 ex + xex.
£

y'» = cAex -\ -x + 3e;c + are*

The initial conditions imply

ci + — 0

C2 + C4 + 1 =  0 

2-C3 + C4 -j- 2 =  0 

2 + 04 =  0.

Thus c 1 = 2, C2 = 1, c3 =  0, and c.4 — —2, and

y = 2  + x -  2 ex - lx 3 - x4 + xex.
6 24

To see in this case that the factors of L do not commute consider the operators (xD — l)(D  + 4) 

-.r.d (D + 4)(xD — 1). Applying the operators to the function x we find

(xD - 1 )(D + A)x = (xD2 + AxD - D -  4)x

— xD2x + 4 xDx — Dx — Ax 

= x(0) + 4x(l) — 1 — Ax — —1

-.ad

(D + A)(xD — l)a: =  (D + 4)(arDa: — x)

=  (D + 4) (x - l~ x) =  0.

7:;us, the operators arc not the same.
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Variation of Parameters

The particular solution. yp — u\y\ + u-2 y-2 - in the following problems can take on a variety of 

especially where trigonometric functions are involved. The validity of a particular form can 

checked by substituting it back into the differential equation.

1. The auxiliary equation is m? + 1 = 0, so yc =  ci cos x + c2 sin a: and

cos x sin x
W =

sm a; cos x
= 1.

Identifying fix) = sec a; we obtain

u\
sm x sec x

1

cos x sec x
Uo

1

= — tan x

= 1.

Then uj = In | cosx|. U2 = x, and

y = c\ cos x + C2 sinx + cosx In | cosx| + x sin x.

2. The auxiliary equation is m2 + 1 = 0, so yc =  c\ cos x + c2 sinx and

W =
cos x sm x

— sin x cos x
=  1.

Identifying f(x) = tanx we obtain

u[ = — sin x tan x =
cos" x — 1

cosx
= cos x — sec x

u2 = sin x.

Then ui =  sin x — In | sec x + tan x|, u2 = — cos x, and

y =  ci cos x + C2 sin x + cos x (sin x — In | sec x + tan x|) — cos x sin x 

=  ci cos x + C2 sin x — cos x In | sec x + tan x|.

3. The auxiliary equation is m2 + 1 = 0, so yc = c\ cos x + c2 sinx and

W =
cos x sm x 

-sinx cosx
-  1.
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Identifying f(x) =  sinx we obtain

u'i - — sin2 x

u2 =  cos x s in  x.

Then

l . r t l 1 . 1
u\ — - sm 2x — -x - - sinx cosx-- x

4 2 2 2

1
"U2 =  — -  cos x.

z

and

1 • 2 1 1 2y = ci cos x -f C2 sin x + - sm x cos x — -x cos x — - cos x sin x

=  Cl COS X -r C2 sm x — —x  cos x .
£

4. The auxiliary equation is rn.2 + 1 =  0; so yc = C] cos x -f c-2 sin x and

cos x sm x

— sin x cos x
: 1.

Identifying f(x )=  sec x tan x we obtain

« i - — sin x(sec x tan x) = — tan2 x =  1 — sec2 x 

«2 = cosx(secxtanx) = tan x.

Then ui =  x — tanx. u2 = — In | cosx), and

y = ci cos x + C2 sin x + x cos x — sin x — sin x In | cos x|

- ci cos x + C3 sin x + x cos x — sin x In I cos x|.

•5. The auxiliary equation is m +1 = 0, so yc — ci cosx + c2 sinx and

cos x sin x
W =

— sm x cos x
= 1.

Identifying f(x) = cos2 x we obtain

u'i = — sin x cos2 x

u2r2 =  co s3 X  — COS X  ( l  — s i l l2 x )  .
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Then u\ =  | cos3 x, «2 — sin x — | sinJ x, and

y = ci cos x + C2 sin x + ^ cos4 x + sin2 x — ^ sin4 x
0 o

= ci cos x + c-2 sin x + ^ (cos2 x + sin2 .xj (cos2 x — sin2 xj + sin2

1 9 ^ • 2 
= ci cos x + c2 sm x + - cos" x + - sin x

0 o

1 1 • 2= ci cos x + C2 sm x + - + - sm x.
o o

6. The auxiliary equation is m2 + 1 — 0. so yc =  ci cos x + c2 sin x and

cos x sin x

X

W =
— sm x cos x

= 1.

Identifying f(x) =  sec2 x we obtain

u[
sinx 

cos2 x

Then

u2 = sccx. 

1
U i  = = — sec x

cosx

u2 =  In I secx + tan x\

and
y =  ci cos x + C2 sin x — cos x sec x + sin x In | sec x + tan x| 

= ci cos x + C2 sin x — 1 + sin x In | sec x + tan x|.

7. The auxiliary equation is m2 — 1 =  0, so yc = ciex' + C2 ?~x and

W  =
ex e~x

ex —e x
= -2.

Identifying f(x) =  coshx = |(e x + ex) we obtain
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-.::d

y = Clex + c2e~x - ^e~x + ^xex - ^ex - ^xe~s

= c3ex + c4e~x + \x(ex - e~x)
4

1
= c$ex + c±e x + -a? sinhx.

£

The auxiliary equation is to2 — 1 = 0. so yc =  c,\ex + C2 e~x and

I e* e~x !
W = I = - 2.

ex —e x

identifying f(x) =  sinh2.r we obtain

_ r.en

1
: — T<

,-3* + * *
4 4

1
= -e * - -e3a\
4 4

1 -3s + I  x

12 4

1
--- P -x 1 J3<x

4 12

-.r.d

y = cie* + e*r*  + i e -21 + ^  ^  - ~e

= c1ex + c2e-x + U e 2x-e-21)

= ciex + c2e~x + ^ sinh 2a;.
O

i 7;-.e auxiliary equation is m2 — 4 = 0, so yc - c\e2x + C2 e~2x and

W =
! e2x e~2x

= -4.
2e2x —2e 2x

’ iriitifying f(x) =  e2x/x wc obtain u[ = l/4x and u'2 = —eAx/4x. Then

•u\ — J  In |ar|.

1 fx e , u2 = - -  / — dt
4 J X(j t

y = c\e?x + c.2 e~2x + \ (e2x In |x| — e~2x f
4 y Jx,

- d t
XQ t )

,2x

XQ > 0.
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10. The auxiliary equation is m2 —9 = 0. so yc = c\e6x -+ c2e 6X and

w = \ e'ix e 3ar
=  - 6 .

13e3x -Se~3x

Identifying f(x) =  9x/e3x we obtain u[ =  ^xe_(ix and Then

1 -e* 1xe

and

Ul =  “ 2i e

3 2
“ 2 =

V =  c1(>  +  C2 e - 31  -  -  ?  A “ 3*
24 4 4

1
= cie3* + cse-te - ^ ^ ( l  - 3®).

11. The auxiliary equation is m,2 + 3m + 2 = (m + l)(m  + 2) =  0, so yc =  c\e~x + c.2 e~2x and

„ —x  2x !

w =
—e x —2e 2x j

i = —e -3x

Identifying f(x) =  1/(1 + e*) we obtain

cx
«! =

■u2 —

l + ex

2xer

1 4- ex 1 + ex 

Then u\ =  ln(l + ex), u2 — ln(l + ex) — ex, and

ex.

y =  Cle~x + c2e~ + e-* ln(l 4- ex) + ln(l + ex) - e~x 

= C3e_x + c2e~2x 4- (1 4- e~x)e~x ln(l 4- e31).

12. The auxiliary equation is to2 — 2m + 1 =  (m — l )2 =  0, so yc =  c\ex + c2xex and

W =

Identifying f(x) = ex/ ( l + x2) we obtain

ex xex 

ex xex 4- ex
= e2x

ui =
xexex

e2x (1 + x2) 1 4- x2

u2 ■
exex 1

e2x( l+ x 2) 1 + x2'
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Then u\ = —-5 In ( l + x2j , u.2 = tan 1 x, and

y = ciex + C2 xex — ^ ex In ( l + :r2j  + xex tan-1 x.

II. The auxiliary equation is m2 + 3m + 2 = (to 4- l)(m  + 2) =  0. so yc = c\e~x + c2e~2x and
2x

w  =

Identifying f(x) = sin ex we obtain

—e

e x e 

x -2e~2x
—e—3x

, e 2x sin ex .
* 1 =  „ - 3 x  = e a l I l e

v!2
e x sin ex

_p 3x = —e2x sin ex.

Then u\ = — cose35, u2 = excosex — sinex, and

y — c\e x + c2e 2x — e x cosex + e x cos ex — e 2x sinex

= c\e x + C2e 2x — e 2x sin ex.

The auxiliary equation is m2 — 2in + 1 =  (rn — l )2 =  0, so yc ~ cie* + c2tet and

1 j  tet
W=\

j el te1 + ef’
= e21

lientifying f(t) = ef tan 11 we obtain

«i =
ieV tan 1t

e21 — —t tan t

u2 =
tan 11
12T = tan t.

_ lien

u\ 1 + t' * -1 * * —  tan t+ -

U2 =  t tan-11 — - In ( l + 12)

-.nd

y = c\e + c2te +
1 + t

2 tan t+-\e'

= cief' + cstc* -I- ^e* ĵ £2 — l j  tan 11 — In ( l + i2)] .

The auxiliary equation is rn2 + 2m + 1 = (to + l )2 =  0. so yc — c\ + C2 te~t and

?._t te~l
W = = e— 2t

187
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Identifying /(i) = e In t we obtain

te te *lni 
<>-2t —tin t

Then

and

, e te t hit .
Kg =  e_2i = h lt

1 2, 1 5
u\ = — -t In i + -i 

U2 =  t In t — t

1 1
y = cie_i + c^te-1 — -i2e_:t In i + -i2e~L + i2e_* In i — i2e_t

2 4

= cia~l + C2te~t + In i — ^ i2e_<.
2 4

16. The auxiliary equation is 2m2 + 2m + 1 = 0, so yc = e x/2[c\ cos(x/2) + c2 sin(x/2)j and

W =

e x/2 cos — 2 e ^ 2sin

1 —r l 9 X’ 1 — -r/9  . X  1  — -r/9  X' 1 W 9  • X'
—-e '" cos - — -e ' - sm - -e *C/ ̂  cos - — -a ' sin -2 2 2  2 2  2 2  2

26

Identifying f(x) = 2^/x we obtain

= _ e- ^ s iu ( x / 2)2y £  = /2 £

1 e_x/2 2

, e x/2 cos(x/2)21/x 
«2 = ---

X*

Then

ui = —4 I e*'12\ft sin ̂
t/LL‘0 2

/■X , £
U2 = 4 / et/2^  cos - d

'Atq 2

di

and

y =  e x'/2(ci cos  ̂+ C2 sin — 4e :r/2 cos  ̂ j  sin  ̂dt + 4e x/2sin^ f  et/2\/ico?
v 2 27 2 7xo 2 2 ja?o

17. The auxiliary equation is 3m2 — 6m. + 6 = 0, so yr. — ex(ci cosx + C2sinx) and

W =
ex cos x ex sin x

j ex cos x — ex sin x ex cos x + ex sin x
= e2x
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Identifying f(x) = |exsecx we obtain

, (ex sin x) (ex sec x) /3 1 

« i = ------------- —  =  ' 3  tan*

, _  (ex cos x) (ex sec x) j 3 _  1
u2 - - 3 •

Then u\ = iln(cosx). U2 =  lx , and

1 , 1
y = C\ex cosx + C2ex sinx + - ln(cos x)ex cosx + -xex sin x.

3 3

W = = ex.

IS. The auxiliary equation is 4m2 — 4m + 1 = (2m — l )2 =  0. so yc = c\ex/2 + C2 xex/2 and

ex /2  x e x /2

l ex /2  L x e x /2  +  eX /2

Identifying f(x) = jex/2V l — x2 we obtain

xex/2ex/2̂ /i ~ x2 1
«! =

u2 =

Aex
ex/2 ex!2 \/l — x2 1

x2

46®

To find i6i and «2 we use the substitution u - l —x2 and the trig substitution x = sin (9, respectively:

« i

1 2  — -r \/l — a;2 + ^ sin 1 x.
“2 = 8 V- " ' 8

Thus

y = cie*/2 ■+• C2 xex' 2 + -̂ -e'r/2 ( l — x2) 3/* + \x2eXf2\j\ - x2 + \xex'2sin 1 x.
12  ̂ ' o 8

1 f. The auxiliary equation is 4m2 — 1 =  (2rn — l)(2m + 1) =  0, so yc = c\exl2 + C2C-X/2 and

VT =
,3/2 -,—x/2

I  x (2  _ l p - x f 2  
i 2 2fc

= - 1.

Identifying /(x) =  xex/2/A we obtain = x/4 and '<4 = —xex/A. Then ui =  x2/8 and 

2 = ~xex/A + ex/4. Thus

1/

-aid

=  c\ex̂  +  coe x̂  +  \x2eX' 2 ~ \xex!2 + - e x/2
8 4 4

= C3,ex''2 + C2 (:~X/2 + \x2er' 2 — \xex' 2
8 4

if = \csexf2 - \c2e x/2 + ̂ px2ex/2 + ~xax̂2 - ~ex̂2. 
2 2 lo o 4
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The initial conditions imply

Tims C3 =  3/4 and c2 = 1/4, and

3 wo 1
y - -ex!2 + ® / 2  _i_ L r 2f>x/2 -  -xex/2

4 ”  ' 4 "  ■ 8 '  -  4 ”

20. The auxiliary equation is 2 m " + rn — 1 = (2m — l)(m  + 1) =  0. so yc = Cjex'2 + C2 C~X and

ex /2  e - x

w =
^(f /2 —e *

Identifying f(x) = (x + l )/2 we obtain

Then

Thus

and

The initial conditions imply

u\ — x/2(x + 1)
O

u2 = _ 2e''0,; + 1 )'

U1 =  - e-"/2 - 2

1 T
U2 = ~2xe ■

y = c\ex/2 + axe. x — x — 2 

lj' = ^ci.ex/2 - c2e~x - 1.

ci — C2 — 2 = 1

Thus ci = 8/3 and c2 = 1/3, and

- C l  -  C2 -  1 =  o.

y =  ^ex/2 +  x - x -  2.

21. The auxiliary equation is m2 + 2m — 8 — (m — 2)(m. + 4) =  0. so yc = c\e2x + c2e 4a: and

W =
e2x e~4x

-4x>/x —4e
= —6e -2a?
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Identifying f(x) = 2e 2a: — e x we obtain

ut =  L ;; -t* _  le-3® 
3 6

1 3x ,2x

Then

“J = 6e 

“ * = +

U2 =  i , > _ ^ .

= cie2* + C2C,-4® _  l p-2a; + l g-x

.-.nd

j/ - 2c1e2'*' - 4c2e“4a: + V 2a 1
z

. he initial conditions imply

9

Cl+ °2 _  36 = 1

2ci — 4c2 + — = 0.

:hus ci =  25/36 and c2 =4/9, and

25 o, 4
y = ^ e2* + -e~4* - -e-2x +

36 9

1 1

9

he auxiliary equation is m2 - Am + 4 = [m — 2)2 = 0, so yc = cie2* + coxe2x and

■2x

W =
2r

2e2iC 2,'ce2* + e2x 

ientifying /(&•) = (12a;2 — e2x we obtain

v\ = (rx2 - 12x3 

«2 = 12.r“ — 6x.

Then

til =  2x3 — 3rr4 

'«2 = 4x’3 — 3x2.

= a4x
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Thus

y = Cle2x + c2xelx + (2:r3 - 3x4) e2a! + (4x3 - 3x2) xe‘ 

— ci e2x + c2xe2x + e2x (x4 - x3)

and

y' — 2c\e2x + c2 (2xe2x + e2x) + e2x (4x3 - 3x2) + 2e2x (xA - x3) . 

The initial conditions imply

Ci = 1

2ci + C2 = 0.

Thus ci = 1 and c2 = —2: and

y — e2x - 2xe2x + e2x (x4 - x3) = e2x (x4 - x3 - 2x -f l)  .

23. Write the equation in the form

/  +  i v ' + ( 1 _ _ L ) y  =  x - i /2

and identify f(x) = x-1/2. From yi = x-1/2 cosx and y2 - x-1/2 sinx we compute

W{yi,y2) =
- 1/2.X / COSX

-X

x 1/2sinx ; 1

_1/2 sin x - 5X-3/2 cos x x-1/2 cos x - ^x-3/2 sin x j x ’

Xow

and

Thus a particular solution is

«1 = — sinx so « i = cosx,

u2 — cos x so u2 — S111.T.

yp = x 1//2 cos2 x + x 1/2 sin2 x,

and the general solution is

y =  cix_1//2 cosx + C2X-1/2 sinx + x~1/2 cos2 x + x-1/2 sin2 x

=  cix_1/2cosx + c2x_1/2 sinx + x“1/2.

24. Write the equation in the form
,, 1 , 1 sec(lnx)

y + - y + — y =  \ J
X X L X L

and identify f(x) =  sec(lnx)/x2. From ij\ = cos (lnx) and y2 = sin(lnx) we compute

W  =

cos (lnx) sin (lnx) 

sin(lnx) cos(lnx)

x x

1

x
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Xow

and

, tan(lna’) 
iiq = -------  so = In ! cos(lnx)|.

x

1
u'o = — so u-2 =  In x.

x

Thus, a particular solution is

yp =  cos(ln x) In | c.os(ln a;) J + (In x) sin(ln x),

and the general solution is

y = ci cos(ln x) + e2 sin(ln :r) + oos(ln a;) In | cos(ln :r) | + (In x) sin(ln x). 

The auxiliary equation is m3 + m = m(rn2 + 1) = 0, so yc = ci + c-2 cos x + c% sin x and

1 cos x sin x

W = 0  — sin x cos x
i
I 0 — cos x — sin x

Identifying f(x) =  tan x we obtain

0 cos x sin x

u[ = W-\ = 0 — sin x cos x = tan x 

tan x — cos x — sin x

= — sin x

= 1.

!1 0 sin x

«2= W2 = 0 0 COS X

0 tan x — sin x

1 C08 X 0

«3 = w:i = 0 — sin x 0
0 “  COS X tan x

= — sm x tan x —
cosw x — 1

cosar
= cos x — sec x.

Then

and

Hi =  — In | cos a; |

U2 =  cos x

«3 = sin x — In | see x + tan .r|

y = ci + C2 cos x + C3 sin x - In | cos x| -r cos2 x 

+ sin2 x — sin x In j sec x + tan x \

= 0 4 + C2 cos x + C3 sin x — In | cos xj — sinx In | sec x + tan x\
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for — tt/2 < x < 7r/2.

26. The auxiliary equation is m 3 + 4m =  m (rn2 + 4) = 0. so yc — a  + co cos 2x + C3 sin 2x and

W =

1 cos 2 x 

0 —2 sin 2 x 

0 -4 cos 2x

sin 2 x 

2 cos 2 x 

-4 sin 2x

=  8.

Identifying f(x) = sec 2x we obtain

= lw'= i i
0 cos 2 x sin 2 x

0 —2 sin 2 x 2 cos 2 x

I sec 2 x —4 cos 2 x —4 sin 2a' 

0 

0

— - sec 2 x 
4

! 1 0 sin 2 x

U2 =  l W2 =  l\°
| 0 sec 2 x —4 sin 2 x j

2 cos 2 x \ — —

u’s =  iw 3 = i

1 cos 2rc 0 

0 -2 sin 2 x 0 

0 —4 cos 2x sec2x-

— — - tan 2 x.
4

Then

•iti =  - In | sec 2 x + tan 2 x\
o

1
«2 =  —AX

«3 =  - 111 | cos 2 x\ 
8

and

1 . . 1  1 
y =  ci + C2 cos 2 x + C3 sin 2 x + - In | see 2 x + tan 2 x\ — -x cos 2 x + - sin 2 x In | cos 2 x

8 4 8

for —7r/4 < x < 7r/4.

27. The auxiliary equation is 3m2 — 6to + 30 — 0, which has roots l± 3i. so yc — ex(ci cos3x + c-± s. 

\\’e consider first the differential equation 3y,r — 6 1/  + 30y =  15sinx-, which can be solve . 

undetermined coefficients. Letting ypx =  A cosx + B sin x and substituting into the difr-: 

equation we get

(27A — QB) cosx + (6A + 27B) sinx =  15 sinrr.

Then

27A - 6 B =  0 and 6A + 27B = 15,
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'O A =  Yj and B = jL . Thus, yPl — ^  cosx + ^  sinx. Next, we consider the differential equation 

■j/' — 6yr + 30y, for which a particular solution yP2 can be found using variation of parameters. The 

’Yronskian is
ex cos 3x ex sin 3x

ex cos 3x — 3ex sin 3x 3ex cos 3x + ex sin 3x
W =

identifying /(x) — jex tanx we obtain

t 1 . n 1 ( sitt2 3x \
u-, = — - sm 3x tan-3x =  — - -- —  — —
1 9 9 \ cos 3x J

1 ( l  - cos“3x\ l / o  o \
- ---- ---  = -~(sec3x — cos3a)
9 I cos3x / 9 1

'"ext

iiius

1 1
u\ = — — In ! sec 3.x + tan 3x1 + — sin 3x. 

2y 1 27

/ 1 • . 1Uo = - sm3x so u-2 = — — cos 3.x. 
2 9 27

1 ,
Vp2 = ~ 2 j e’X cos On I sec 3x + tan 3x| — sin 3x) — — ex sin 3x cos 3x

=  —— ex (cos 3x) In | sec 3x + tan 3x|
Zi {

27

.-nd the general solution of the original differential equation is

y — e*(ci cos3x + o2 sin3x) + yPx{x) + yn {x).

The auxiliary equation is m2—2m+l = (m—l )2 =  0, which has repeated root 1, so yc = cicr+C2 xex. 

’.Ye consider first the differential equation y" — 2yr + y = 4x2 — 3, which can be solved using 

undetermined coefficients. Letting yPl =  Ax2 + Bx + C and substituting into the differential 

t:; nation wo get

Ax2 + (-4A + B)x + (2A - 2B + C )=  4x2 - 3.

. Hen

A = 4, -4 A + B = 0, and 2A-2B + C = -3,

i~j A = 4, B =  16, and C = 21. Thus, yPl = 4x2 + 16x + 21. Next we consider the differential 

-quation y" — 2y' + y =  x-1ex, for which a particular solution yP2 can be found using variation of 

arameters. The Wronskian is

W  =
er xe 

ex xex + ex
=  e2x

:!entifying f(x) = ex/x we obtain u\ — - 1 and u'2 = 1/x. Then u\ =  —x and u2 — lnx, so that

yP2 =  —xex + xex In x,
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and the general solution of the original differential equation is

y = yc + Vpi + Vp-2 ~ cie',: ~ C2 xex + 4x2 + 16:r 4- 21 — xex + xex lux 

=  ci (f + c%xex + 4a;2 + 16a; + 21 + xex In x

29. The interval of definition for Problem 1 is (—tt/2. tt/2), for Problem 7 is (—oo, oo), for Pro 

is (0, oo), and for Problem 18 is (—1, 1). In Problem 24 the general solution is

y = ci cos(ln.x) + c-2 sin(ln x) + cos (In x) In | cos (In x) | + (In a;) sin (In x)

for —tt/2 <\nx < 7t/2 or e_7r/2 < x < e?!2. The bounds on In a: are due to the presence of sc 

in the differential equation.

30. We are given that y\ =  x2 is a solution of xi y’1 + x3y' — Ax2y = 0. To find a second solution 

reduction of order. Let y = x2u(x). Then the product rule gives

y' — x2u! + 2xu and y" =  x2u" + 4xuf -f- 2u,

so

x4y" + x?y' — 4x2y — x5(xu" -f- bit) = 0.

Letting w = u’. this becomes xw' + 5w = 0. Separating variables and integrating we have

—  — — - dx and In M  = —5In:/; + c. 
w x

Thus, w — x~:> and u = —^x~4. A second solution is then tj2 =  x2x~4 = 1/x2, and the - 

solution of the homogeneous differential equation is yc = c\x2-\-Oi/x2. To find a particular 

i/p, we use variation of parameters. The Wronskian is

n‘'2 1/x2 | 4 

2x —2/x31 x
W =

Identifying f(x) =  1/x4 wc obtain u[ = !> and u(2 = — \x l . Then u\ — — 

U2 = - jlna;, so

Vv =  ~  =  ~ x ~ 2 -
The general solution is

2 oi 1 1 ,
V = ClX + ? - T 6 ? - 5 5 hl3:-

31. Suppose yp(x) = ui(x)yi(x) + U2 (x)y2(x), where tti and u-2 are defined by (5) of Section 4.1
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rext. Then, for x and xq in I,

yT(X) - Vl(x) £  *  + !*(*) £

=  r  -y\(x)y2 (t)f(t) df + rx yi(t)y2(x)f{t) ^

Jxo TV (£) Jxf)

- rJxq

W(i) Jx o W(t)

yi(*)^(g)/ft) ^  - 2/i(aQfft(*)/(*) 

W'W W(t)
dt

r  yi{t)V2 {x)f(t) - y\{x)y2 {t)f{t) ^  

Jxo W(t)

= r  m i t
Jxo It [tj

= f G(x, t)f(t) dt.
J xn

In the solution of Example 3 in the text we saw that y\ = ex, yo =  <-: x, f(x) = 1/x, and W(y\. y-2) - 

—2. From (13) the Green’s function for the differential equation is

ptp x __ pj-' p  ̂ (*£
G(xtt) = 1---- = sinh (a; - t).

The general solution of the differential equation on any interval [a:o, xj not containing the origin is

Men
,r _T fx sinh(x — t) ,

■y = c\e + c2e + / ------- - dt.
Jx o t

We already know that yp(x) is a particular solution of the differential equation. We simply need to 

show that it satisfies the initial conditions. Certainly

l‘X o 

/xo

Vsing Leibniz’s rule for differentiation under an integral sign we have

d f  G ( x , t ) f ( t ) d t =  r d
Ixo J x ()

7rom (13) in the text, G(x,x) = 0 so

d rx

'.To

.-.ud

y(xo) = I  ° G(x,t)f(t)dt =  0.Jx 0
it ion under an integral sign we 

y'p(x) = - ^ jT G (z> t)f(t)dt = j  ̂ -^G(x. t)f(t)dt + f(t)G(x, x) • 1 - f(t)G{x0, x) ■ 0.

V>p̂  = Ix  /t0

= it L ° ĜX"’ f̂ ^dt = °‘
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yp(x) = ( G(x, t)e2tdt,
J  0

where G(x,t) =  sinh (a; — t). Then

34. From the solution of Problem 32 we have that a particular solution of the differential equation

yp(x) — e2t sinh(x — t)dt =  j~ e 

= - T  \ex+t - e~x+:it:
2 Jo L

dt

d t  =  \ x+ t  1 -x+3t,
2 3

= 1 2x _  1 2« _  1 « + 1 -* =  l a *  _  1 + 1
2 6 2 6 3 2 6

Exercises 4.7
I-' ■ •: ■ <v:’: • SVivIw ;;
1 . . . .
'■ . ■ • '• ; '. .7 • h;!:

1. The

2. The

3. The

4. The

5. The

6. The

7. The

8. The

9. The

10. The

11. The

12. The

13. The

,,2auxiliary equation is m2 — m — 2 = (m + l)(m  — 2) =  0 so that y = c\x~x + c<ix 

auxiliary equation is 4m2 — 4to + 1 =  (2m — l )2 =  0 so that y = cix1/2 + C2X1/2 In x 

auxiliary equation is to2 =  0 so that y =  c.\ + c2 In x. 

auxiliary equation is m2 — 4m = m(m — 4) = 0 so that y =  c\ + c2x4. 

auxiliary equation is m2 + 4 = 0 so that y = ci cos(2lnx) + C2 sin(2In x). 

auxiliary equation is m2 + 4m + 3 = (m + l)(rn + 3) — 0 so that y — cix-1 + C2X-3, 

auxiliary equation is rri2 — 4-rn — 2 = 0 so that y =  cix2-'/® + c2x2+v̂ . 

auxihary equation is to2 + 2m — 4 = 0 so that y =  c\x~l+ŝ > -f c2x~1_v^. 

auxiliary equation is 25m2 + 1 = 0 so that y = ci cos Q  In xj + c2 sin ( l  lnx).

auxiliary equation is 4m2 — 1 =  (2m — l)(2m + 1) = 0 so that y =  cix1'2 + c^x-1-'2. 

auxiliary equation is m2 + 4m 4- 4 = (m + 2)2 = 0 so that y =  c\x~2 + c-2 X~2lnx. 

auxiliary equation is m2 + 7m + 6 = (to + l)(m  + 6) =  0 so that y = c\x~l + c2x-6. 

auxiliary equation is 3m2 + 3rn + 1 = 0 so that

f >/3 \ . fy/S ' 
c\ cos [ In x + C2 sin —— In x

14. The

6 ~~) ' 6

auxiliary equation is to2 — 8rn + 41 = 0 so that y = x4 [ci cos(51nx) + C2 sin(51n.x)].
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m(m — l)(m  — 2) — 6 =  m3 — 3m2 + 2m — 6 = (in, — 3)(m2 + 2) = 0.

Thus

y — c\X3 4- C‘2 cos (V2 In x̂ j + 03 sin (y/2 In x) .

Assuming that y == xm and substituting into the differential equation we obtain

m(m — l)(m  — 2) + m — 1 ~ m3 - 3 m2 + 3m - 1 =  (m - l )3 =  0.

Thus

y = c\x + C-2'X In x 4- C3x(lna;)2.

Assuming that y =  xm and substituting into the differential equation we obtain

■n(m — l)(m  — 2 )(m — 3) + 6 m(m — l)(m. — 2) =  m4 — 7m2 + 6m = m(m — 1) (??7 — 2 )(m + 3) = 0.

Thus

y — c\ + cox 4- c$x2 + C4 X~'i .

Assuming that y = xm and substituting into the differential equation we obtain

■■Am — 1) (m — 2) (m — 3) 4- 6 m(m — 1) (m — 2) 4- 9rn(rn — 1) 4- 3m +1 = m4 + 2 m2 4-1 = (m2 +1)2 = 0.

Thus

y = ci cos(ln x) 4- C2 sin (In x) + oj (In x) cos (hi :r) 4- C4 (In x) sin(ln x).

The auxiliary equation is m2 — 5m =  m(m — 5) = 0 so that yc =  c\ 4  C2 Xr> and

1 a:5

0 5a;4

Assuming that y — xrn and substituting into the differential equation we obtain

K 4 = oar.

Identifying f(x) =  a;3 we obtain u[ = - lxA and u'2 = 1/5*. Then ui = - ^ x 5, 112 = Aina;, and

y = ci + C2X0 — Jr .r ’ 4- \a:5 Ins = ci 4- c$xa 4- ln.r.
2b 5 5

The auxiliary equation is 2m2 + 3m + 1 = (2m + l)(m  + 1) =  0 so that yc = cyxr1 + c-2X~ 1 '2 and

W{x-X,x-V2) =
a; ■ a - 1/ 2,,-1

- :r - 2 -Js-3/2
=  r f- 5/2.

! ::?ntifying f(x) — \ we obtain a[ = 1: - X1 and u'2 = x3 2̂ — x1/2. Then u\ = lx 2 — kx3;

. = 2^/2  _  p / 2, and

—1 —1 / 2 ^  1 - 2 ^ 2 ^  —I —1/2 1 1 2
y = CiX + C-2X + -x- -x + -X - = ClX + Ĉ x ' - -x + — X -

2 3 b 6 6 lt>
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Exercises 4.7 Cauchy-Euler Equation

2
X  X.

1 2x
= x2.

21. The auxiliary equation is m? — 2m -f 1 = (m — I )2 =  0 so that yc — C\x + c2x In x and

la; xlna; I 
I-v (x.xlnx) = j ; = x.

v ' ' |l 1 + In a; j

Identifying /(x) = 2/x we obtain Uj =  —21nx/x and u'2 - 2/x. Then u\ - —(lna;)2, U2 = 2

and

y =  C\x + C2 X In x — x(ln x)2 + 2x(ln a;)2 

=  cix + cox lna; + a.'(In x)2, x > 0.

22. The auxiliary equation is m2 — 3m + 2 = (m — 1 )(m — 2) =  0 so that yc - cyx -+ c2x2 and

W{x,x2) =

Identifying f(x) = x2ex we obtain - —x2ex and u'2 — xex. Then u\ = —x2ex + 2xex - 

= xex — ex, and

y = c\x + C2 X2 — x3ex + 2x2ex — 2xex + x3ex — x2ex 

— cix + C2 X2 + x2ex — 2xex.

23. The auxiliary equation m(m — 1) + m — 1 = rn2 — 1 = 0 has roots m i = —1, = -

- - ci a;-1 + C2 X. With y\ = a;-1. y2 =  x, and the identification f(x) — lux/x2, we get

W  = 2a;-1, W\ =  — hi x/x, and W2 = In xfx3.

Then u[ = W\fW = —(lnx)/2, =  W2/W  = (lna;)/2x2, and integration by parts gives

u\ = ^x — -̂x 111 x 
£ z

1 - ll 1-1 
U2 = —~x In x — -x .2 2

yp = uryi + U2V2 =  Qa; - ^xlnx^ x_1 + ( - ^ -1 lnx - x = - lnx

y =  yc +  y-p — e j x - 1  -f- c^x -  l n x ,  x  >  0.

24. T .e auxiliary equation m(m — 1) + m — 1 =  m2 — 1 = 0 has roots rm = —1, =

. • = f ix-1 + C2X. With yi =  x_1. y-2 =  x, and the identification /(x) = l/x 2(x + 1), we get

W = 2x“\ Wi =  -1 fx(x + 1), and = l/x 3(x + 1).
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Exercises 4.7 Cauchy-Euler Equation

Then u'i =  W\/W =  —l/2(x + 1), u2 =  W2 /W  — lj2x‘1(x + 1), and integration (by partial 

fractions for u2) gives

50

and

m

U2

~2 + 1)

^lnrr + ^ln(a: + l),

Vp =  U-m +  U-2V2 =
1

ln(a; + 1) x 1 + 1 -1 1 , /
~ 2 X — 2 9

X

1 1 , 1 , , ln(.-r + 1) 1 1 / 1\ ln(x + l)
= ~  -  -2x ln x + ^x \n (x  + 1) - ^ — 11 = __  + _,;ln (1 + _)

2x

- 1  1 1 , ln(x+l)
=  Vc + Vp = ci a: + e2x - - 4- -xln 1:1 + - J ----—— x > 0.

The auxiliary equation is m2 + 2m = rn(m + 2) = 0, so that y =  c.\ + c2x 2 and 

/  = —2c2-'E~3. The initial conditions imply

ci + C2 =  0 

- 2 c 2 =  4 .

Thus, ci = 2. c2 = —2, and y — 2 — 2a;-2. The graph is given to the right.

yn

-1.0 —

-20

-K

rhe auxiliary equation is m2 — 6m + 8 = (m, — 2)(m — 4) =  0, so that 

y =  Cix2 + c2x4 and y' =  2cix + 4c2.t3.

Tae initial conditions imply

4ci -i- 16c2 =  32 

4ci + 32c2 =  0.

. :ius, ci = 16. c*2 = —2, and y =  16a;2 — 2x4. The graph is given to the right.
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Exercises 4.7 Cauchy-Euler Equation

27. The auxiliary equation is m2 + 1 =  0. so that

y = ci cos (In x) + c-2 sin(ln x)

and
1 1

y' = —ci — sin (In x) + Oz~ cos (In a;).
it .2/

The initial conditions imply ci =  1 and C2 = 2. Thus 

j  = cos (In x) + 2 sin (In x). The graph is given to the right.

J*

l\H .l-f -!-l-
50

2S. The auxiliary equation is m2 — 4m + 4 = (in — 2)2 =  0, so that

y =  c\ x2 + C2 X2 hi x and y' = 2c\_x + (x + 2x In a;).

The initial conditions imply ci =  5 and (>i -t-10 = 3. Thus y = bx2 — 7x2 lu x. The 

graph is given to the right.

y 

5 --/
■

- i o  —

-20

-30 -r

W (l, ln;r) =

29. The auxiliary equation is rri2 = 0 so that y<: = c\ + C2 hi a; and

1 In ;r | 1 

0 l/x\ x

Identifying f(x) = 1 we obtain u[ = —x hi a; and ih = x. Then 

?./i = j  a:2 — \x2 In x. U2 =  ?x2, and

y = ci + C2 In x + -x2 — ^a;2 In x + -̂x2 hi x = c\ + C2 In x + ^.t2.

The initial conditions imply ci + 1 =  1 and cj + ^ . Thus, ci = | , C2 = 

and y = | — In a; + |a:2. The graph is given to the right.

- 1,

yi 
15 —

10

5 —

3U. The auxiliary equation is rri2 -  6rn + 8 =  ( m  — 2)(777. — 4) = 0, so 

that ijc = C] x2 + C2 X4  and

W =
x2 a;4

= 2x°.

0.05

2a; 4a;3

Identifying f(x) = 8x4 we obtain u\ = —4xA and u!2 = 4a;. Then 1 

i': — —a;4, U‘i — 2a;2. and y — cyx2 + c^x4 + x6. The initial conditions imply
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Exercises 4.7 Cauchy-Euler Equation

1 1 1
7C>1 Tr°2 ~ ~ 714 16 64

1 3

C, + 2C2 - “ lG-

Thus ci =  ^  , 0 2 =  — \, and y = j^x2 — + £6. The graph is given above.

Substituting x = a1 into the differential equation we obtain

The auxiliary equation is m2 + 8m — 20 = (m + 10) (m — 2) = 0 so that

y = cie~m  + C2e2* = ci£-10 + c2:r2.

Substituting x =  into the differential equation wc obtain

The auxiliary equation is m2 — 10m + 25 = (m — 5)2 = 0 so that

y — cie5< + C2 teu = ei&'° + C2.x5 lnx.

Substituting x = e* into the differential equation wc obtain

i l  +  g'JV +  g , ( ,  = e2< 
d t?+ dt “

The auxiliary equation is m2 + 9rn + 8 =  (m + l)(m  + 8) = 0 so that yc = cie_< + C2e~84. Using 

undetermined coefficients we try yp = Ae2t. This leads to 30_4e2t == e2t, so that A — 1/30 and

y =  cier* + C2 e~8t + ^<?2/' = cix-1 + o2x~8 + ^ r :2.

Substituting x = et into the differential equation we obtain

d2y rdV , P _ o +
+ % _ 2 t

The auxiliary equation is to2 — 5m + 6 = (rn — 2)(to — 3) = 0 so that yc ■ cic2t + c^e*1'. Using 

undetermined coefficients we try yp = At + B. This leads to (—5.4 + (SB) + 6At = 2t, so that 

.4 =  1/3. B = 5/18, and

9/ 0+ 1  5 o o 1 , O 
y =  cie + c2e + 3 t + J g = CrX~ + °2X + 3 lllx‘ + ^8 '

Substituting x =  el into the differential equation we obtain
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Exercises 4.7 Cauchy-Euler Equation

The auxiliary equation is to2—4to+13 = 0 so that y,- = c2t{c\ cos3i+C2 sin 31). Using undetenr. 

coefficients we try yp = A + Be*1. This leads to 13.4 + 10Be} = 4 -+■ 3e*, so that A = 4/13, B — c 

,r.d

y = e2<(ci cos 3£ + C2 sin 3t) + — + z—e*
I t j  1U

, ,  . 4 3

56. troni

follows that

= ar [ci cos(3 In x) + c2 sin(3 In x)} -+- — + — x.
1 o 1U

d2y _  l_ (<Py_ _  dy\ 

dx2 x2 \ dt2 dt J

d?y __ 1 d ( d2y dy\ 2 / d2y dy\

dx3 a:2 \ dt? dt J x3 \ dt2 dt)
I d  /  d2;t/\ I d /  dy\ 2 d2t/ 2 dy 

x2 dx \ dt? J x2 dx \ dt) x3 dt2 xs dt

1 d3t/ / 1\ 1 d2y / 1\ 2 d?y 2 dy 

x2 dt3 Vx/ x2 dt? \av x3 dt2 x3 dt

_  1 /d3y d2y 

^■.ib.'titiiting into the differential equation we obtain

A _ 3 ^ + 2 ^ _ 3 ( ' ^ V _ ^ + 6 f6 !_6v  = 3 + M
dt3 dt2 dt y dt2 dt)  dt

<Py e d2y , - i i dV r, Q.-I*
* 5 ' " 6 ^  + 11* “ 6!/“ 3 + 3f'

7 :.r auxiliary equation is to3 — 6to2 + 11to—6 = (to— l)(m  —2)(m —3) = 0 so that yc =  c\et+c  ̂

Using undetermined coefficients we try yp = A + Bt. This leads to (11B — 6A) — 6Bt = - 

::iat A = -17/12, B = - 1/ 2, and

t 21 ‘M 1 1 j. 9 3 I* 1 iy - c\e + c2e + c3e‘ ' - — - ~t = c-[X + c2x' + c3xJ - — - - In x.

":?xt two problems we use the substitution t = — x since, the initial conditions are on the ir~- 

x. -| . In this case
dy dy dx dy 

dt dx dt dx

d2y d ( dy\ _  d f dy\ d . ,, __ dy' dx d2y dx d?y 

dt? dt\ dtj dt\ dx J dt ^ dx dt dx2 dt dx2 '
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Exercises 4.7 Cauchy-Euler Equation

The differential equation and initial conditions become

+ V = 0; y(t)
t=1

= 2, y'(t) =  -4.
i=l

The auxiliary equation is 4m2 — 4 m + 1 = (2m — l )2 =  0, so that

y — cit1/2 + C2 t1/2 In i and y' =  ^c ii-1^2 + C2 ^ i_1/2 + ^  •

The initial conditions imply ci = 2 and 1 + C2 =  —4. Thus

y = 2t1/2 - 5i 1/2 In i = 2(-x)1/2 - 5(—a?)1/2 ln(-.x), * < 0.

The differential equation and initial conditions become

,2 c,2y 

dt2 t=2
= 8, ;v'(i) =  0 .t=2

The auxiliary equation is rri2 — 5m + 6 = (m — 2)(m — 3) = 0, so that

y =  c i i 2 +  C2i 3 a n d  y' =  2c i t  +  3c2i 2 .

The initial conditions imply

4ci + 8c2 =  8

4ci + 12c2 = 0 

from which we find ci =  6 and C2 = —2. Thus

y = 6i2 — 2i3 = Gx2 + 2a:3. x < 0.

Letting u =  x + 2 we obtain dy/dx — dy/du and, using the Chain Rule,

d2y d f dy\ d2y du rl2y ,  ̂ d2y 

dx2 dx yciuy du2 dx dw2 du2 

Substituting into the differential equation we obtain

o d2y du 
u2 - + u ~ - + y  = 0 . 

du2 d,u

The auxiliary equation is rn2 + 1 = 0 so that

y =  ci cos (hi u) ■+• c'2 sin (In u) =  ci cos [In (a; + 2)] + C2sin[In(x H- 2)].

If 1 — i is a root of the auxiliary equation then so is 1 + i, and the auxiliary equation is 

(m — 2) [rn — (1 + ?)] [777 — (1 — ?)] = m3 — 4m2 + 6m — 4 = 0.

We need to3 —4 m2 + 6m —4 to have the form m(m — 1) (m — 2) + brn (rn — 1) + cm+d. Expanding this 

last expression and equating coefficients we get b = — 1, a = 3, and d = —4. Thus, the differential 

equation is

x\f - x V  + 3xy' - Ay = 0.
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Exercises 4.7 Cauchv-Euler Equation

41. For x2y" =  0 the auxiliary equation is m(m — 1) = 0 and the general solution is y = c\ + c--_ 

initial conditions imply c,\ — yo and c2 — y i, so y = yo + yi.x. The initial conditions are ' 

:or all real values of yo and y\.

For x2y" — 2xy' + 2y =  0 the auxiliary equation is rn2 — 3m + 2 = (m — l)(m  — 2) = 0 a:, 

general solution is y = cix + C2»2. The initial condition y(0) =  yo implies 0 =  t/o and the co:.

;/ 0) =  yi implies c\ = yi. Thus, the initial conditions are satisfied for yo = 0 and for all real -

■ -yi-

F.'i’ ,r2yw — 4x;</ + 6y = 0 the auxiliary equation is to2 — 5m + 6 = (m — 2)(m — 3) = 0 

i '-iieral solution is y = c\X2 4-c2x3. The initial conditions imply y(0) = 0 = yo and y'(0) = 0. . 

■h- initial conditions are satisfied only for yo =  yi = 0.

42. 7hv function y(x) =■ — -y/x cos(ln x) is defined for x > 0 and has ^-intercepts where lna; = 77 _ -  

::r k an integer or where x — en/'2+k7r. Solving tt/2 + kir = 0.5 we get k ~ —0.34, so e,r//2+A'~

:: v all negative integers and the graph has infinitely many x-intercepts in the interval (0,0.”

43. The auxiliary equation is 2m(m — l)(m  — 2) — 10.98m,(m — 1) + 8.5m + 1.3 = 0, ~.

=  —0.053299, m2 =  1.81164, m3 = 6.73166, and

y =  dX-0 0532"  + CSX1’81164 + C3X6’73166.

44. Thr auxiliary equation is m(m — 1 )(m — 2) -f 4m(m — 1) + 5m — 9 =  0, so that m i =  1.4061.

two complex roots are —1.20409 ± 2.22291i. The general solution of the differential eqiuv..

y = ci.-r1'10819 + x_1:20409[c2 cos(2.22291 In x) + C3sin(2.22291 lnx)].

45. Fhv auxiliary equation is m(m — l)(m  — 2) (m — 3) + 6m(m — 1) (m — 2) + 3m(m — 1) — 3m — -= = 

?: :hat mi =  m2 =  V2 and m3 = m,4 — — \/2 . The general solution of the differential equat:

y = c jx ^  + C2 x ^ ln x  + csx-" ^  + C4x_v^lnx .

46. 7hr auxiliary equation is m(m—l)(m —2)(m—3) —6m(m—l)(m —2)+33m(m—1) —105m+l<: - 

-. :hat mi = m2 = 3 + 2i and m3 =  ni4  = 3 — 2i. The general solution of the differential ecv.

y =  x* [a cos(2 In x) + c2 sin(2 In x)] -1- x3 In x[c% cos(2 In x) + C4 sin(2 In x)].

4“. F;.t auxiliary equation

m(m — l)(m- — 2) — m(m — 1) — 2m + 6 = m3 — 4m2 + m + 6 = 0

roots mi =  —1, m2 = 2, and m3 =  3, so yc = cjx-1 + c2x2 + C3X3. With yi == x-1, y-2 =

. — and the identification f(x) =  1/x, we get from (11) of Section 4.6 in the text.

W != x 3, W2 = -4, W3 = 3/x, and W = 12x.
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Then u[ =  W\/W = :r2/ 12, u? = W^jW = — l/3x, U3 = 1 /4r2. and integration gives

a?3 1 1
u\ = U‘2 =  -- In®. and u3 =

36 3 4,t

so

and

Vp =  u m  +  U2V2 +  u m  =
36

-1 +.„* +  I » ( _ _ L )  =  _ 2x2 _  l x 2 ] n I i

y = Vc + yp = Cix 1 + c2.'T2 + c3a;3 - jj.r2 - ^x2lnx, x > 0.

Exercises 4.8 • : : ■ ; ~ ' '  • • : ? L ;  “ L i  

.Solving.Systems Linear'BE&'by; ® r:;-:s I:?- 1'T;’  ̂■ 
’ '•••; V'v  c' v; • ;:v:".- ^' ..... ' * ' - ' -, ' ' - « ; .j i ' - « » . ...

From Dx = 2x — y and Dy = x we obtain y = 2x — Dx. Dy = 2Dx — D2x, and (D2 — 2D +1)* = 0. 

The solution is

x = Cie1 + C2'tel 

y =  (ci - C2 )el + c2te*.

From Dx — Ax + 7y and Dy = x — 2y we obtain y =  ^Dx — ix. Dy — \D2x — ^Dx, and 

D2 — 2D — 1 5 )z  = 0. The solution is

x =  cie5t + c2e~3t

1 Kf _Q+
y = -cic - c2e .

From Dx = —y -ft and Dy = x — i we obtain y = t — Dx, Dy = 1 — D 2x, and (D 2 + l)x = 1 + t. 

The solution is

X =  C l COS t +  C2 s i l l  t+ l+ t  

y = ci sint — c2 cost -+-1 — 1.

From Dx — 4y = 1 and x + Dy = 2 wc obtain y = \Dx — | , Dy = \D2x. and (D2 + l)x = 2. The

- jlution is

x = c\ cos t + C2 sin t + 2



Exercises 4.8 Solving Systems of Linear DEs by Elimination

5. From (D2 + 5 ) x — 2 y =  0 and — 2x + (D '2 + 2 )y = 0 we obtain y = ^(D 2 + 5)a,\ D2y = ^(D 4  + 5. 

and (Z?2 + 1)(Z)2 + 6)x* = 0. The solution is

x =  ci cos t -f- c-2 sin t + C‘3 cos VC t + C4 sin \/61 

y =  2 c\ cos t + 2 c.2 sin t — ^ 3  cos V(i 4 sin \/61.

6. From (D + l)x + (D — 1  )y = 2  and 3.r + (D + 2 )y =  —1 we obtain x =  — | - 

Dx = — \{D2 -f 2D)y, and (D2 + 5)y — —7. The solution is

7

y = ci cos \/51 + C2 sin V5 f — -
0

/  2 Vo \ /V5 2 \ . /- 3
a; = I - -ci. — — C2 I cos vo t + I "g-ci — ^°2 j sm 5 '

7. From D2x =  Ay + ef and D2y - Ax — e* we obtain y — \D2x — ^el . D2y = \DAx — \el, and 

(D 2 + A)(D — 2)(D + 2)x = —3e{. The solution is

x - ci cos 21 + C2 sin 21 + ĉ e2t + 04c:_2f -h ^ef
5

y =  —ci cos 21  — C2 sin 2 t + c^e21 + 04c-2* — -̂e*.
5

From (D 2 + b)x + Dy = 0 and (D + l)a? + (D — A)y - 0 we obtain (D — 5)(D 2 + 4)x = 

D — 5)(D 2 + 4)y = 0. The solution is

x =  C] eot + C2 cos 21  + C3 sin 21

y =  c.4 eot + c-y cos 21  + c.q sin 21 .

Substituting into (D + l)<r + (D — A)y =  0 gives

(6ci + c±)eot + (02 + 2c3 - 4c5 + 2cq) cos 21  + (-2c2 + C3 — 2c’5 - 4ce) sin 2 t = 0 

50 that 04 =  — 6ci, cr} =  5 C 3 , cq - —\ c i .  and

r 1 1
y = — 6cie + -C3 cos 21  — ~C2 sin 21

Zi £i

?. From Dx + D2y = irit and (D + l)x + (D — 1 )y = Ae'il wc obtain D (D 2 1)* =  34t;- 

D D 2 + 1 )y =  - 8 e:it. The solution is

4
V = ci + c2 sm t + C3 cos t — — e

lo

17 o,
X  =  C4 +  C5 S ill t  - r  C(i cos t  +  —  e .

15

.r instituting into (D + l);r + (D — 1 )y = 4e'w gives

(c,-i — cj) + (cs — C(; — C3 - C2) sin t + (eg + cr, + C2 - c3) cos I =  0
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so that C4  = ci, c'5 =  c.3 . cq = — C2- find

17
x = ci — co. cos t + ca sin t + ^-e3t.

15

lit. From D2x — Dy = i and (D + 3)& + (D + 3)y =  2 we obtain D(D + 1)(D -f- 3)x =  1 + St and 

D(D + 1 )(D + 3);;/ =  —1 — 31. The solution is

x = ci + c-2e_t + c%e~M -t+ \ t2

1
y — C4 -+- Coe f + cgc + £ — — t2.

Substituting into (D + 3)x + (D + 3)y = 2 and D2x — Dy — t gives

3(ci + C4) + 2(c<2 + cj)e  ̂=  2

and

(c2 + cs)e_i 4- 3(3c3 + C6)e_,it = 0 

so that C4 = — ej, eg = — C2, c& =  S C 3 . and

y = —cj — C2e-f — 3c3e~’̂  + i — ^f2.

11. From (D2 — l)x — y = 0 and (D — l)x + Dy = 0 we obtain y =  (D2 — l)x, Dy =  (D* — D)x, and 

1D — 1)(D2 + D + l)x = 0. The solution is

x = cie4 + e il 1
a/3 . \/3 ' 

C'2 cos — t + c3 sm — t

( 3 a/3 \ _ ,/2 A  (yft 3 \ _ t/9 .

» = ( - 5« - T e» j e C0ST t + ( T C2' H e lnT

I I . From (2D 2—D —l)x —(2D+l)y = 1 and (D— l)x+Dy - —1 we obtain (2D+1)(D—l)(D+ l)x = —1 

and (2D + 1)(D + 1 )y = —2. The solution is

x = cie~f/2 + C2 e~t + eje1 + 1

y = C4e_f,/2 + cr,e_< — 2.

Substituting into (D — l).r + Dy =  — 1 gives

(~ 5c;i ~ \°4) c~t/2 + _̂ 2 °2 ~ Cr̂ e~# = 0

so that 04 =  — 3ci. Cf, =  — 2c2, and

y = — 3cie —2c‘ie~t - 2.
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13. From (2D—5)x+Dy = e1 and (D—l)x+Dy =  5ef we obtain Dy = (5—2D)x+et and (4—D)x = 

Then

u  4  t x = cieu + -e
O

and Dy = — 3ci<34* -f 5e1 so that

y =  -~Ac\eu + C2 + 5e*.

14. From Dx+Dy = ct and (—D'2 +D+l)x+y =  0 we obtain y = (D 2 — D — l)x, Dy = (D?‘ — D 2 — . 

and D2(D — l)x =  ef\ The solution is

x — Ci + C2 t + c^e1 -r te4 

y = -ci — c-2 — cat - cze*' - tet + ef.

15. Multiplying the first equation by D + 1 and the second equation by D2 + 1 and subtractir.: 

obtain (D4 — D2)x — 1. Then

x =  ci + C2 t + c%el + C4 e~f’ — 12.

Multiplying the first equation by D + 1 and subtracting we obtain D2(D + 1 )y =  1. Then

-/ 1y =  c5 + cet + c7e -  -t-.
J-t

Substituting into (D — l)x + (D2 + l)y = 1 gives

( — C i +  C2 +  C5 —  1) +  ( — 2C4 +  2 C f ) e  * +  ( — 1 —  C-2 +  — 1 

so that = ci — c2 + 2. c$ =  C2 + 1, and Cf = 0 4 . The solution of the system is

x — ci + C2t + c^e1 + c.ie_t — ]-t2
.z

y = (ci - c2 + 2 ) + (c2 + 1 )t + c4e~1 - ^ t2.

16. From D2x — 2(D2 + D)y = sin t and x + Dy = 0 we obtain x - —Dy, D 2x — — D 3;. 

D (D2 + 2D + 2 )y = — sin t. The solution is

1 2
y — c\ + C2 e~t cos t + cge-* sin t + - cos t+ - sin t

0  5

x = (c2 + 03)6 4 sin t + (02 - 03)6 1 cos t + - sin t — - cos t.
0 0

17. From Dx = y, Dy — z. and Dz = x we obtain x — D2y = D^x so that (D — 1)(D2 + D + 1

t -t/i . V s '
x = cie + e C2SUI —  t + C3 cos —-t

Z Z1

210



Exercises 4.8 Solving Systems of Linear DEs by Eliminatio::

t . (  1 \ / 3  
y = cje'+ I -~c2 - — c;

and.
t (  1 \/3 

s = ce- + I — <* + -

3j  '• 4/2 sm + ( y U  - h '3 j  <- ,/2 cos 

<*) c-^2 sin ^  + (-  ̂ c 2 - ic 3) <r</2 cos

IS. From .Dx + z = e*, (D — l)ar + Dy + Ds = 0; and x + 2y + Dz = e) we obtain z = —Dx + f . 

Dz = —D2x + et, and the system (-D2 + D — l)x + Dy = —ef and (-D2 + l)x + 2y = 0. The:: 

y =  \{D2 — l)a\ Dy - ^D(D2 — \)x, and (D — 2){D2 + l)x = — 2e* so that the solution is

9/ /
x =  c\ e + c-2 cos t + C3 sin t + <r 

y = jjcie2* — C2 cost — C3 sin t
Li

z = —2cie2* — C3 cos t + C2 sin t.

-1-. Write the system in the form

Dx - 6y = 0 

x — Dy + z = 0 

x + y - Dz = 0.

Multiplying the second equation by D and adding to the third equation we obtain 

D + l)x — (D2 — l)y = 0. Eliminating y between this equation and Dx — 6y =  0 we find

{D3 - D - 6 D -  6)x = (D + 1)(D + 2)(D - Z)x = 0.

Thus

x = c\e~f + C2 &~2t + c^e3t7

and, successively substituting into the first and second equations, wo get

1 -t 1 -n 1 vV = —xcie - ~c2.e u + -c3e'
6 3 2

^ — t 1 —21 1 3f
z =  ~fcie ~ r>C2 e 2t + -c-ieM.

6 3 2

- "A rite the system in the form

(D -)■ — z — 0 

{D + l)y - z  = Q 

x — y + Dz = 0.

Multiplying the third equation by D + 1 and adding to the second equation wTe obtain 

D + l)x + (D2 + D — 1 )z = 0. Eliminating z between this equation and (D + l)x — z = 0
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--■= find D(D + l)2.r = 0. Thus

X =  Cl  4- C2<?- t  +  c$te~l, 

successively substituting into the first and third equations, we get

y = cj + (c2 - cs)e-t + c3te_< 

z = c\ + C‘ie~l.

!1, 7r::n (D + 5)x + y = 0 and 4x — (D + l)y = 0 we obtain y — — (£> + 5):r so that Dy = —(D2-K- 

T;-:: 4 j + (D2 + 5D)x + (D + o)x =  0 and (D + 3)2x = 0. Thus

x = cic~M + C2 te~M

y = —(2ci + c2)e~u - 2c2te~3t.

V 'i-i .r(l) = 0  and y(l) = 1 we obtain

Cl 6 ~l~ C2C 3 — 0 

—(2ci + c2)e~3 — 2 c2 C~3 =  1

Cl + C‘2 =  0

2ci -j- 3c2 = —e3.

=  e* and c2 =  —c?. The solution of the initial value problem is

x = e_3t_r3 - te~3t+3 

y = —e-3t+3 + 2 te~3t+'\

2. Dx — y ~ —1 and 3a; + (D — 2)y - 0 we obtain x =  —1(£> — 2)y so that Dx = —\{D2 — -

| i D2 — 2D)y = y - 1. and (D2 -2D  + 3)y = 3. Thus

y = et (ci cos V2 i + C2 sin \/2 + 1

1 2 
x = -ef‘ [(ci — V2 C2) cos \/2 i + (V2 ci + c2) sin \/2 + -.

'..'-i .• 0) = y(0) - 0 wc obtain

ci + 1 =  0

1 (C1- V 2 C2) + | = 0.
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Thus ci =  — 1 and c2 — V2/2. The solution of the initial value problem is

x = e* cos \/2t — ^  sin \/2tj

y = (>}■ cos y/2t -I- ^  sin \/2 + 1.

--3. Equating Newton's law with the net forces in tlie x- and ^-directions gives m d2 xjd£ 2 = 0 and 

md2 y/dt2 — —mg. respectively. From mD2x = 0 we obtain x(t) — Cit+Co., and from mD2y = —mg 

or D2y = —g we obtain y(t) =  —\gt2 + c$t + C4.

24. From Newton’s second law in the .r-direction we have

d2x 1 dx . . dx
m-r-n — —kcosv =  —Ar— — = — c —  

dt2 v dt 11 dt

In the y-direction we have

<Py , • a , ld V 1 I dy
m-r* ~ —mg — k sm 6  = —mg — k— — =  —mg — c —  . 

dt2 J y vdt ' 'dt

From mD 2 x+ \c\Dx = 0 we have D(mD + \c\)x — 0 so that (mD + |c|)x =  ci or (D + \c\jm)x — . 

This is a linear first-order differential equation. An integrating factor is ef = elclt/m so that

^ elcl^/m^] =  \t/m

and e\c\l/mx = (c2m/|c|)e:Cl^m + C3. The general solution of this equation is x(t) = 0 4 + .

From (mD 2 + \c\D)y = —mg we have D(mD + \c\)y — —m,g so that (mD + |c|)y = —mgt + c\ 

or (D + \c\/m)y ~ —gt + 02- This is a linear first-order differential equation with integrating factor

eJ\c\dt/m  =  e \c\t/m.' Thus

d
— =  (-gt + c2)e|c|t/jl
(JL 1/

e c\t/m.y =  _ ^ 9  te\c\t/m + 7 ^ 9  e\c\t/m + t/m + ^
ci

and

s'M = “ T ? (+  ~ r  + c3 + C4«_ ic',/m-|c| cz

Z5. Multiplying the first equation by D + 1 and the second equation by D we obtain

D(D + l)x - 2D(D + 1 )y =  2t + t2  

D(D + \)x — 2 D(D + 1 )y =  0.

This leads to 2t + t2 = 0, so the system has no solution.
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26. The FindRoot application of Mathematica gives a solution of x\(t) — x2,{t) as approximate: 

t = 13.73 minutes. So tank B contains more salt than tank A for t > 13.73 minutes.

27. (a) Separating variables in the first equation, we have dx\/x\ = —dtj50, so xi = Fr.

Xi(0) =  15 we get ci =  15. The second differential equation then becomes

=  - f /5 0  _  2 o r  +  _ L C9 =  A e -« /5 0
dt 50 75 2 ° dt + 75 2 10

This differential equation is linear and has the integrating factor cJ 2dt/'° =  e2̂ '5. Then

_^r 2f/75 1 _  j* -t/50+2t/75 _  $ t / 1 5 0

dt[C X21 - 10 - 10e

so

e 2 l f7 5 X2 =  4 5 e t/ 150 +  C2

and

*2 =  45e-,/5° + c2e-2,',re.

From x2(0) =  10 we get c.% = —35. The third differential equation then becomes

_  ? ® p -t /5 0  _  ™  -2 t /7 5  _  J _
dt ~ 75 75 25

or

^  + i * ,  ... t  -i/50 _  l i e-21/75
dt 21> 5 lo

This differential equation is linear and has the integrating factor ef dt>2̂  = e*/2°. Then

^ .f  t/25 1 _  6 -t/b0+t/2b _  11-24/75+^/25 _  6 t/50 _  14 */75 

dt1* *3 j _ 5 15 “ 5 15 !

so

and

et/25:i'3 = 60e*/50 — 70ei//,a + 03

a* = 60c-*/m  -  70e-2f/75 + cac-*/25.

From ;x’3(0) = 5 we get C3 = 15. The solution of the initial-value problem is

xi(t) = 15e-f/50

,-r2(£) - 45e"*/50 - 35e~2l'>7b

X3 (t) = 60e_t-/o° — 7Qe~ 2 1 ' 10 + 1 Se-^ 2'’.
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I b) pounds sa lt

c) Solving xi(t) — t} , X2 (t) = | . and X3(t) = | . F iadRoot gives, respectively. t\ = 170.06min, 

t-2 = 214.7min, and = 224.4min. Thus, all three tanks will contain less than or equal to 0.5 

pounds of salt after 224.4 minutes.

Exercises 4.9 Nonlinear Differential Equations

"V? have y[ = y'{ = ex. so

(:v " f  =  (erf  = e21 =  v l

Also. y'2 =  — sinx and y'{ — — cosx. so

{lh? ~ (- cosx)2 =  cos2x = y i

H:-wever, if y =  c\y\ + ĉ y-i- we have (y,r)2 =  {c\ex — C2Cosx)2 and y2 =  (c\ex + 0 2 cosx')2. Thus 
" 0 / 2

" have ŷ  = y" = 0. so

yiy" = i-o = o = i(o)2 = ifej)2.
’.so. ŷ  =  2x and y'l =  2, so

V2 V2 - ®2(2) =  2.r2 = ^ (2x)2 = ^(y£)2.

H.~ever. if y — c\y\ -f C2V2, we have yy" = (ci • 1 + c2x2)(ci ■ 0 + 2c2) = 2c2(ci + c2x2) and 

: - Jfci • 0 + c2(2x)]2 =  2c|x2. Thus yy" ^  TjCy')2-

y = ?/ so that w/ = yw. The equation becomes vf =  —u2 — 1 which is separable. Thus

du

-  + 1
= —dx = >  tan « =  —x -!-ci =>- y' = tan(ci — x) =>■ y = In | cos(ci — x)| + C2-

t/ = yf so that v! = y". The equation becomes u' — 1 + u2. Separating variables we obtain 

du

1 + u‘
=  dx tan 1 u = x + ci u = tan(x + ci) = 4> y = — In | cos(x + ci)| + C2.
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5. Let u =  y' so that u' = y". The equation becomes x2u' + n? = 0. Separating variables we obtai:

du dx 1 1 _  cix + 1 _  1 / x \ _  1 / 1

u2 x2 « x Cl x 1 Ci ^x + l/c i/  ci \ci;r + l

=*> y = \ In |cix + 1|---x + Co.
Cj_ Ci

6. Let 'u = y' so that y” =  udu/dy. The equation becomes (y + 1 )udu/dy = «2. Separating vark 

we obtain
du dy

■u y + 1
In \u\ = In \y + 1| + In ci =>• u = c\(y + 1)

= ,  £  =<*(,+  !) =*. - $ ?  =  * « *ax y +1

In \y + 1| ~ c\x — C‘2 = »  y + 1 = C3Cqx.

7. Let u =  y; so that y" — udu/dy. The equation becomes udu/dy + 2yu3 =  0. Separating vari 

we obtain

du . , 1 o 1 / I
—  + 2y dy = 0 =► —  + r  = d  « = —---  =►  y = -o---
w2 u yl - ci y1 - ci

= »  (y2 - ci) dy = dx =*• - ciy = x + c2.

S. Let. u = y' so that y" = udu/dy. The equation becomes y2udu/dy = u. Separating variab".:- 

obtain

du = —  = »  u = -- + ci =^> ?/ = Ci;iy ~ 1 : y dy =  fa  
y2 y '■ y cry - 1 '

1 / 1 \ 1 1 .
— H ----- - dy = dx (for ci 7̂  0) =£• —y + — In I y — 1| = x + ĉ .
ci\ c j y- l J  Ci q  1

If ci =  0, then y dy - —dx and. another solution is |y2 = —x + C2-
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(b) Let u - y' so that y" = udu/dy. The equation bccomcs udu/dy+yu — 0 . Separating variables 

we obtain

du = —ydy =

When x — 0, y = 1 and y' = —1 so —1 = —1/2 + c\ and c.\ = —1/2. Then

1 2 , 1 ,
U =  ~2V + 01 ^  V = + 01'

dy _  1 2 1 

dx 2V 2
tan 1 y — --x + C-2

1

When x = 0, y =  1 so 1 = tanc2 and co, = tt/4. The solution of the initial-value problem is

y = tan ( I  - ±x) .

The graph is shown in part (a).

(c) The interval of definition is —tt/2  < tt/4 — x/2 < tt/2  or —tt/2  < x < 3tt/2.

Let u - y' so that u' = y". The equation becomes (u1)2 + u2 = 1 

which results in v! = ±\/l — u2. To solve u! = V l — «-2 we 

separate variables; 

du
- dx sin 1 u =  x + c u =  sin (a; + ci)

V l^ u ?

=► y' = sin (a: + ci).

When x = tt/2, y — \/3/2, so \/3/2 = sin(7r/2 -j- c\) and c\ — 

—tt/6 . Thus

-y = sm \x — — j  i 6
7T

V = - COS ( ; £- - )  + C2.

When a; = tt/2, y = 1/2. so 1/2  =  — cos (tt/2 — 7t/6) + ca = —1/2 + C2 and C2 = 1. The solution of 

’ lie initial-value problem is y = 1 — cos (a; — 7r/6).

J S'solve u' =  — \/l — u2 we separate variables:

fill -i

\/l — u2
= —dx = >  cos ‘ u = x + ci

=*►  'ii =  COs(,T +  C l) = = ^  ? /  =  CO s(;r +  C l ).

Hien x =  n/2, i/ : s/3/2, so \/3/2 = cos(tt/2  + c\) and ci = — tt/3. Thus

y =  cos (a: - -
7T

y = Sill ( X - - ) + C-2.

"nen x = t t / 2, y =  1/2 , so 1/2 =  sin(7r/2  — -tt/3) + c2 = 1/2 -{- c2 and C2 = 0. The solution of the 

_::ial-value problem is y =  sin (a; — tt/3).
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11. L->: a — y' so that v! =  y". The equation becomes v! — (1 jx)u - which is Bernoulli.

. = t_r2 we obtain dw/dx + (2/x)w = —2/x. An integrating factor is x2, so

-j-[x2w] - —2x = >  x2w = — x2 + ci =£• w = — 1 + ■% 
dx xz

—2 -[ , __ %
u — — 1 -?— = >  a =

X 2 y / c \  — X 2

dy x
y  =  - \ j c i  -  X 2 +  C2

dx \fc\ — x2 

=*■ C l-  x2 =  (C2 -  y f  =*> X2 +  (C2 -  y f  =  Cl.

12. Lot u — y' so that v! = y". The equation becomes v! — (1 jx)u — u2, which is a Bernoulli differ: 

rcuation. Using the substitution w - u_1 we obtain dw/dx 4- (l/x)w = —1. An integrating

..r. so

d . 1 1  1 c-[ — x2 2x , !
—  xw\ =  - X  = >  W  =  -~X-i— c = *  -  =  — ----- = >  U  = -------X = »  y =  -  111 j Cl -  x- -
cx • 2 x u 2x c\ — x1 1

?"obhms 13-16 the thinner curve is obtained using a numerical solver, while the thicker curve 

of the Taylor polynomial.

13. We look for a solution of the form

x) = i/(0) + y'(0)x + ^y "( 0)z2 + ^-j/ff/(0)x3 + ^ l / 4)(0)®4 + ^ y (o)(0)z°- 

From y"{x) = x + y2 wc compute

y"'(x) =  1 + 2 yy' 

y(4)(a;) =  2yy" + 2 {y’f

y(°\x) = 2 yy’" + 6y'y".

Using y(0) = 1 and y'(0) = 1 wc find

2/"(0) =  l, y'"(Q) = 3. 2/(4)(0) =  4, y^(0 ) = 12.

An approximate solution is

/ \ i  1 o ^ 3 ^ 4 I t
y(x) =  1 + x + -x* + -x6 + -x4 + — a:0.
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14. We look for a solution of the form 

y(x) =  y{0) + y'{0)x + ^ / ( 0)x2 + ^
4!’ 5!'

From y"(x) =  1 — y2 we compute

y’"{x) = -2 yy' 

yW(x) = -2yy" - 2(y'?

y^(x ) = - 2yy1" - fy/y".

Using y{0) = 2 and y'(0) = 3 we find

y"( 0) = —3, y"\0) = —12. t/4)( 0) =  —6; 2/<5>(0) = 102. 

An approximate solution is

y(x) =  2 + 3x~ ~x2 - 2:c3 - \x̂  +
2, 4 2i)

15. Wre look for a solution of the form

y(x) = y{ 0) + j/(0)x + ̂  y"{Q)x2 + i / ' ( 0)a;3 + ^ y {W (0).x'1 + ^?/{5) (0).*5.

From y"(x) =  x2 + y- — 2y' we compute

ym(x) = 2x + 2yy' -2y"

y^(x) = 2 + 2{y')2 + 2yy" — 2y'"

y ^ ix ) - 6y'y" + 2yy'" - 2i/ 4K 

Using y{0) = 1 and y'(0) = 1 we find

i/"(0) = - l, y"'{ 0 )=4 , ?/4)( 0) =  - 6, y(5>(0) = 14.

An approximate solution is 0.5  1 1.5 2 2 .5  3 3.5

y(x) =  1 + x - -z1 + j *3 - jx 4 + - x 5.
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16. We look for a solution of the form

y(x) = y(0) + ■/fiij.r + j,y"(0)x2 +

+ I* M (0)*5 + i !,<<i>(0)z<’.

From y"{x) = ey we compute 

y'"{x) = c V  

y(4\x) = ey{yr)2 + eyy" 

yW(x) = ey{y'f + 3evy'y" + eyym

y(6\x) =  e»(j/ )4 + 6e V ) V  + + Aeyy'y'" + eyy(4).

Using y(0) = 0 and ?/(0) =  — 1 we find 

/ ( 0 )  =  1, y '" (Q ) =  — 1, y (4)(0) =  2, y ^ (0 )  =  —5, 2/<6>(0) =  16.

An approximate solution is

/ S 1 9 1 ‘J  ̂ '1  ̂ S 1 fjy ( x )  =  _ x  +  - x -  _  _ r  +  +  _ r * +  _ x < ,

IT. We need to solve [1 + (y02l3̂ 2 =  v"■ Let u =  y’ so that u’ =  >/'■ The equation bee 

U + «2)3/2 =  u' or (1 + u2)3/2 =  du/dx. Separating variables and using the substitution u = 

we have

du

(1 + n2f 2
=  dx I

I
sec2 6 r sec2 9

( l + tan2*)372''
<M=x

cos Odd =  x =>• sin 9 ~ x
u

y/\ + u2
= a;

_ _ = i ^ ( ! / 0 2 = i 2 [ i + m 2 ]  =  _

(for x > 0) =£- y =  —\J 1 — x2 .

~2

18. When y =  sinx, y' — cosx, y" = — sinx, and

(y7/)2 — y2 = sin2 x — sin2 x =  0. 

When y - e~x, j/ = —e"x. y" — e~x, and

(■y")2 — y2 = e~2x — e~2x = 0.
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From {y" ) 2 — y2 = 0 we have y" - ±y, which can be treated as two linear equations. Since linear 

combinations of solutions of linear homogeneous differential equations are also solutions, we see that 

:< = C]ex + C2 &~x and y = C3 cosx + c.4 sinm ust, satisfy the differential equation. However, linear 

combinations that involve both exponential and trigonometric functions will not be solutions since 

:he differential equation is not linear and each type of function satisfies a different linear differential 

equation that is part of the original differential equation.

Letting a - y", separating variables, and integrating we have

du r r du
—  = \/l + uz — 
dx

Then

dx. and sinh 1 u =  x + Ci.
v/1 + u2

u =  y" =  s in h ( x  +  c i ) ,  y — co sh  (.7; 4- c i )  +  c.%, a n d  y =  s in h ( x  +  c \ )  - f  c^ x  +  C3.

2*;. If the constant, — cf is used instead of cf, then, using partial fractions.

y = - f  =  --L  f  ( — ------ — ) dx = In
J x2 — Ci 2ci J \x — ci x + c\) 2ci

3; + C l  

X  —  Cl
+ C 2 .

Alternatively, the inverse hyperbolic tangent can be used.

21. Let u — dx/dt so that d?x/dt2 = udu/dx. The equation becomes udu/dx = —k2 /x2. Separating

variables we obtain

k
u du = — 7; dx 

x

1 9 k2
-vr =  — + c 
2 x

1 2 k2 

r  = T +c-

"Alien t = 0, x = .to and v = 0 so 0 = (k2/x0) + c and c = —k?/xq. Then

L 2 =  i?  ( i  - - )  and ^  =
2 \x x q J  dt \ x x q

separating variables we have

—, /- XX° dx = kV2 dt = >  t 
V X() - x

".’sing Mathematica to integrate we obtain

-  _I 1̂ 9. ffcV 2 J
x

dx.
x

t =  - l  ^  
fcV 2

_  1 [xq

~  f c V T

j \ xQ 2 x) j x
- yj x (xq - x) - — tan ------  1---

\/x
■7-----v , a?o . -1 a?o - 2x
:(x0 - x) + — tan ; f_

2 x \l X q  — x

-2 x 

2 ylx(xo - x)
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22.

For d2x/dt2 + sinx = 0 the motion appears to be periodic with amplitude 1 when x\ 

amplitude and period are larger for larger magnitudes of xi.

xi 

1 -

k

1

1 1 
1

xl =0
10 *

I

1 -

1 w

-1 - ■11 
} I **

10 '

xi 
1 -

-1  - xl = -2.5

For d?x/dt2 + dx/dt + sin x =  0 the motion appears to be periodic with decreasing amplitu 

dx/dt term could be said to have a damping effect.

1. y =  0

2. Since yc = c.\ex + c-ic~x, a particular solution for y" — y — 1 + ex is yp = A+ Bxex.

3. It is not true unless the differential equation is homogeneous. For example, y\ = x is a sol'.'.' 

y" + y = x, but tj2 = 5.x is not.

4. True

5. The set is linearly independent over (—oc, 0) and linearly dependent over (0, oo).

6. (a) Since f 2 (x) =  2 lnx =  2/i(x). the set of functions is linearly dependent.

(b) Since ,ru+1 is not a constant multiple of xn. the set of functions is linearly independei.'

(c) Since x + 1 is not a constant multiple of x, the set of functions is linearly independent

(d) Sincc/j(x) = cos x cos (tt/2) — sin x sin(-7r/2) =  —sinx = — fzix). the set of functions is ... 

dependent.

(e) Since fi(x) = 0 • /2(x), the set of functions is linearly dependent.

(f) Sincc 2x is not a constant multiple of 2. the set of functions is linearly independent.
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(g) Since 3(:t2) + 2(1 — x2) — (2 + x2) = 0, the sot of functions is linearly dependent.

(h) Sincc xex+l + 0(4x — 5)ex — exex = 0, the set of functions is linearly dependent.

(a) The general solution is

y =  c ie ix  +  C2 e~ ox +  csx e~ 0X +  c±ex +  c~,xex 4- cqx2c x .

(b) The general solution is

y  =  c ix 3 +  C2X~* 4- <%x~° ln x +  c±x +  c sx ln x  4- c%x(\nx)2.

Variation of parameters will work for all choices of g(x), although the integral involved may not 

always be able to bo expressed in terms of elementary functions. The method of undetermined 

coefficients will work for the functions in (b), (c), and (e).

From rn2 — 2m — 2 =  0 we obtain m =  1 ± a/3 so that

s =  (.ie(i+v1 )I  + C2e(i-vS)*

From 2m2 + 2m + 3 = 0 we obtain m = —1/2 ± (y/E/2)i so that

-x/2 ( \/5 . . \/5 \
V = e ' I ci cos — x + C-2 sm —  x I .

From ra3 + 10m2 + 25m = 0 we obtain m = 0, rn = — 5. and m =  —5 so that

y =  ci + c%e °* + (%xe ae.

From 2m3 + 9m2 + 12 m + 5 = 0 we obtain m = —1, rn = —1. and m = —5/2 so that

y =  cie~Tyx'2 +  C2e~x +  C3xe~x.
From 3m3 + 10m2 + 15m. + 4 =  0 we obtain m = —1/3 and m = —3/2 ± [\/l/2)i so that

y = c\e~xf* + e~*x/2 ^2  cos ̂ -a; + c3 sin -^:r^ .

From 2m4 + 3 m3 + 2m2 + 6m — 4 =  0 we obtain rn =  1/2. m = —2, and rn =  ±y/2i so that

y = c\ex' 2 + C2 e~2x + C3 cos V2 x  -f- C4 sin a/2 x.

Applying DA to the differential equation we obtain D ‘1(D2 — 3D + 5) = 0. Then

ox/2 (  \/n . vT i \ ?. 3
y = e ■> I ci cos —̂ -x + C2 sm —̂ -x j + C3 + ax  + cgar + eg a;

y<:

and yp = A + Bx + Ca:2 + Dx*. Substituting yv into the differential equation yields

(5.4 - 3 B + 2C) + (5B - 6C + 6D)x + (5C - 9D)x2 + 5Dx* = -2x + 4a-3.
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Equating coefficients gives A = —222/625, D — 46/125, C — 36/25, and D = 4/5. The gei 

solution is
W 2 (  V l i  . V ll \ 222 46 36 2 4 o 

y = e: ^  cos _ *  + c2 sm — x j - —  + — * + - x  + -*•.

16. Applying (D — l )3 to the differential equation we obtain (D — 1)3(Z> — 2D + 1) = (D — l )5 

Then

y = ci<f + C2 xex + c$x2ex ■+• c ^ e *  + c$x4ex
 ̂ ....  v ^

Vc

and yp =  Ax2ex + Bxi ex + Cx4ex. Substituting yp into the differential equation yields

12 Cx2ex + QBxex + 2Aex = x2ex.

Equating coefficients gives A = 0; B = 0, and C = 1/ 12. The general solution is

y - cje* + C2xex + ~^x4ex.

17. Applying D(D'2 + 1) to the differential equation we obtain

D (D2 + 1 )(D3 - 5D2 + 6D) = D2(D2 + 1 )(D - 2)(D - 3) = 0.

Then

y ~ pi + c%e + c.3e‘ ' ̂  + c±x + C5 cos x + cg sm x v r ̂  / 
yc

and yv =  Ax + B cos x + C sin x. Substituting yp into the differential equation yields

6A + (SB + 5C) cos x + (—5B + bC) sin x = 8 + 2 sin x.

Equating coefficients gives A = 4/3, B = —1/5, and C = 1/5. The general solution is

S*r 4 1 1
y =  C\ + C2e“'' + C3<r + -x — - cos a: + - sinx.

3 5 5

IS. Applying D to the differential equation we obtain D (D i — D2) =  D3(D — 1) = 0. Then

y = ci + c2x + csex + C4X2
s - v-----'

Vc

and yp — Ax2. Substituting yp into the differential equation yields —2A — 6. Equating coeff.: 

gives A = — 3. The general solution is

y = ci + C2:r + C3ex - 3x2.

19. The auxiliary equation is rn2 — 2m + 2 = [m— (l + «)][m— (1 —«)] = 0, so yc = c\ex sinx + cm 

and
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Identifying f(x) = ex tan x we obtain

, (ex cos x)(ex tan x)
'"1 = ---- z-e-----= sin*

. (e:r sin x) (ex tan x) sin x 
112 =  ------------------ itz----- = ----- = COS x — sec X.

—elx cos x

Then u\ =  — cos x, u2 = sin x — In | sec x + tana?|, and

y - cicx sin x 4- onf cosx — ex sin x cos x + ex sin x cosx — ex cos x In | secx + tan ar| 

= c\cx sin x + C2 ex cos x — ex cos x In | see x + tan x\.

The auxiliary equation is to-2 — 1 = 0, so yc =  aex + C2 e~x and

W =
e x e  x
e x —e  x

- -  - 2 .

! identifying f(x) = '2ex/ (ex + e x) we obtain

U l e x  +  e ~ x 1 +  e 2x
03x

u2 — oX J_ p - X = —e"1 -t- e2x " ‘ l+ e2x'

Then ui =  tan-1 ex, U2 =  —ex + tan-1 e:r, and

y = c\ex + C2 e~x + ex tan-1 ex — 1 + e~x tan-1 ex.

The auxiliary equation is 6m2 — m — 1 = 0 so that

y — c\x1>/2 + C2 X~1/3.

The auxiliary equation is 2m3 + 13m2 + 24m + 9 = (to + 3)2(to + 1/2) = 0 so that

y = c\x~3 + C2 X~3 In x + czxr1'2.

The auxiliary equation is to2 — om + C =  (m — 2) (to — 3) =  0 and a particular solution is 

.. = x4 — x2 In x so that
cy i )  a

y = c:\x C2 X + x — x~ In x.

The auxiliary equation is to2 — 2to + 1 - (rn — l )2 =  0 and a particular solution is yp = ^x3 so that

i  ̂ 3y =  C\x + c.'ix In x + -x‘ .
4

a) The auxiliary equation is to2 + J 1 = 0, so yc = c.\ cos ujx + oi sinuix. When u ^  a> 

yp - A cos ax + B sin ax and

y = C] cos ivx + c‘2 sin ux + A cos ax + B sin ax.
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When u = a, yp =  Ax cos oat + Dx sin ujx and

y — c\ cos iox + ci sin uix + Ax cos cox + Bx sin ux.

b) The auxiliary equation is rri2 — J 2 =  0, so yc — cie^x + C2 e~xx. When u ^  «, yp =  Ae°'r

y = Clew* + c%e~wx + Aeax.

When u = a, yp = Axe°x and

y =  cieMX + C2 e~u,x + Axeux.

26, (a) If y =  sinx is a solution then so is y - cosx and rri2 + 1 is a factor of the auxiliary eqv.

m4 + 2m3 + 11m2 + 2m + 10 =  0. Dividing by rri2 + 1 we get m2 + 2m + 10, which has : 

—1 ± 3i. The general solution of the differential equation is

y = cj cos x + C2 sin x + e~x (r% cos 3x + c.4 sin 3x).

(b) The auxiliary equation is m(m + 1) = m2 + m =  0. so the associated homogeneous differ-, 

equation is y" + y' — 0. Letting y = ci + c2 e~x + \x2 — x and computing y" + yf we - 

Thus, the differential equation is y" + 1/  = x.

27. (a) The auxiliary equation is m4 — 2m2 + 1 = (■rn2 — l )2 =  0, so the general solution .:

differential equation is

y =  ci sinh x + c2 cosh x + C3X sinh x + C4X cosh x.

b ) Since both sinh x and x sinh x are solutions of the associated homogeneous differential eqv. ■ 

a particular solution of — 2 y" + y = sinh x has the form yp — Ax2 sinh x + Bx2 cosi;

25. Since y{ =  1 and y'[ =  0, x2y" — (x2 + 2x)y[ + (x + 2 )yi = —x2 — 2x + x2 + 2 x = 0, and y\ = 

-olution of the associated homogeneous equation. Using the method of reduction of order. " 

= ux. Then y' = xu' + u and y" = xu" + 2v!. so

x2 y" — (x2 + 2 x)y' + (x + 2 )y = x3 u" + 2 x2 u! — x3 u' — 2 x2v! — x2u — 2 xu + x2u + 2 x.

= x:iv" — xsv? = xs (u" — uf).

Tj find a second solution of the homogeneous equation we note that u =  ex is a solu::

'' — u' = 0. Thus, yc =  cjx + c-rxex. To find a particular solution wc set x:i(u" — u') = 

u" — u' =  1. This differential equation has a particular solution of the form Ax. Substr 

■"o find A = —1, so a particular solution of the original differential equation is yp - —x2 

iviioral solution is y = c\x -j- C2xex — x2.

2 9. The auxiliary equation is m2 — 2m + 2 = 0 so that m — 1 ± i and y - ex (c\ cos x + c2 sin x). S 

. - 2) =  0 and y(n) = —1 we obtain ci - e_7r and C2 - 0. Thus, y = e*-,rcosx.
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The auxiliary equation is m2+2m+l = (m+1)2 = 0, so that y = cie~x+c2xe~x. Setting y(—l) = 0 

and y'(0) = 0 we get cie — c2e =  0 and —ci + c? = 0. Thus c\ = c-2 and y = c\{e~x + xe~x) is a 

solution of the boundary-value problem for any real number ci.

The auxiliary equation is m? — 1 =  (m — l)(w  + 1) = 0 so that m = ±1 and y =  c.\ex + c2 e~x. 

Assuming yp =  Ax + B + C sin x and substituting into the differential equation we find A = — 1,

5  = 0, and C — . Thus yp — —x — \ sin® and

y = c\ex + c2 e~x — x — - sin x.
z

Setting y(0) = 2 and y'(0) = 3 wc obtain

ci + c-2 =  2

3 „
Cl -  C2 - - =  3.

Solving this system we find ci =  -x and c2 =  — § - The solution of the initial-value problem is

V
13 5

4(
ex — -e~x x — - sin®.

z*

The auxiliary equation is rn2 + 1 = 0, so yc — c\ cosx + c2 sin® and

cos x sin x
W =

— sm x cos x
= 1.

Identifying f(x) =  sec3 x we obtain

, . o sm x
ux - — sin x sec x =

cos3 X

u'2 = cosx sec3 x = sec2 x.

Then
1 1

ui = = —-sec ®
2 cos2 x 2

Thus

u,2 = tan®.

y = ci cos ® + C2 sin x — - cos x see x + sin x tan x
z

1 1 — COS2 X
— ci cos x + c2 sm x — - sec ® H--------

2 cos x

aid

1
= C3 cos x + (>2 sm ® + - sec ®.

Zi
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/ • 1
V = ~c3 sm x + c-2 cos x + - see x tail x.

initial conditions imply

:•! = C2 = 1/2 and

C3 + 2 =  1

1

C2 = 2-

y = - cos x + - sin x + - sec x.
Z Z Z

13 1-" = y' so that u' — y". The equation bccomes u du/dx = 4x. Sepai'ating variables we obt

u du = 4x dx = >  l~v2 — 2x2 + c\ = >  u2 = 4x‘2 + c2. 
z

x = 1, y' = u = 2, so 4 =  4 4- 0 2 and c.2  =  0. Then

u2 = 4e2 =*• = 2x or ^  = -2 *
ax

=£► y =  x2 +  C3 or y =  —x2 + C4.

~ = 1. y =  5, so 5 =  1 + eg and 5 = —1 + o\- Thus eg = 4 and c& = 6. Wc have y = . 

= — x2 + 6. Note however that when y =  —x2 + 6. y' =  —2x and y'{ 1) = —2 ^ 2. Thv.- 

~ 1:::::: of the initial-value problem is y = x2 + 4.

k  1-' = so that y" = udu/dy. The equation becomes 2udu/dy = 3y2. Separating varial...

2u du = 3y2 dy =r- u2 = if1 + ci.

’ ' : = 0. y = 1 and y1 = u = 1 so 1 = 1 + c\ and c\ = 0. Then

2
/  = ,  ( ^ )  = J. f x =yV 2 1r V2dv =  dx

= >  -2 i/_1/2 = * + C2 =*• y 4
(x + c2)2 '

= 0. y =  1, so 1 =  4/c2 and c2 = ±2. Thus, y =  4/(re + 2)2 and y - 4/(rc — 2)-.

. that when y — 4/(x + 2)2, if =  - 8/(r» + 2)3 and y'{0) =  - 1 ^ 1 . Thus, the so'.".' 

.r. value problem is y = 4/{x — 2)2.

T’:;f auxiliary equation is 12m4 + 64m3 + 59m2 — 23m — 12 =  0 and has roots —4. - - 

r : 7=. The general solution is

y = ci(T<lx + C2 e~?>x' 2 + C‘ze~x,''i + c ^ x'2.
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I b) The system of equations is

27

IF

Cl + C-2 + ('3 -+- C'4 - -1

3 1 1
= 2

2C2
- 3 C3 +

2C4

9 1 1

4C2+ 9°3
+

4C4
0

t 1 1
= 0.■02 -

’ 27C3
+

8C4

Using a CAS we find c\ = — ̂ , c2 = ^ , 03 =  - 7̂ ,  and c.\ = 

initial-value problem is

V
-  4. IN  -3*72 _  3726 -*/3 +  257 /2-e H--- e

495 35 385 + i r “

Consider xy" + y' =  0 and look for a solution of the form y — xm. 

Substituting into the differential equation we have

xy" + y’ - m(m — l).rTH'- 1  + rnxm~] =  m2xm~].

Thus, the general solution of xy" + yf = 0 is yc =  c\ -f c2 lnx. To find a 

particular solution of xy" + 1/  - — \/x- we use variation of parameters. 

The Wronskian is

W =

Identifying

*0 that

Then

1. In x

0 1/x 

= — a1-1/2 we obtain 

x ’^ ln x

1

x

-1

-2

- 3

-4

- 5

« i =
1/x

-X~l/2
=  \/x. In x  and xL =  — — —  = — y / x .

1/x

U'> =ui = In x — and

yv = x,i/2(^ lnx — — ^x3/2ln x = —
k3 9 3 

and the general solution of the differential equation is

y — c\ + c2 In x — ^x3/2.

The solution of the
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The initial conditions are y( 1) = 0 and i/(l) =  0. These imply that c\ = | and C2 — 

solution of the initial-value problem is

4  2 1 4  3/9

The graph is shown above.

S~. From (D — 2)x -f (D — 2)y = 1 and Dx + (2D — 1 )y = 3 we obtain (D — 1 )(D — 2)y = —6 

Dx = 3 - (2D - 1 )y. Then

3
y =  c\e2t + C2e* — 3 and x = —c^e1 — -cie2t + C3.

z

Substituting into (D — 2)x + (D — 2)y = 1 gives 03 = § so that

t 3 2t 5
x = —coe-- cie H—  .

2 2

3S. From (.D — 2)x — y =  t — 2 and — 3x + (D — 4)y — —At we obtain (D — 1)(Z? — 5)rc = 9 — 81 T

t 5, 8, 3 
x =  aeS + c2e™ - -t - —

5 25
:-L :i cl

1 c* 11
y = (D — 2)x — t + 2 = + 3c2e5j!: + — 4- — t.

zo I d

39. From (D — 2)x — y = —el and —Sx + (D — 4)y =  — 7et we obtain (D — 1 )(D — 5)x = —4e* so ‘

x = c\et + C2 <?yt + teK

Then

y — (.D — 2)x + e* = —ci 6̂ + 3c2G  ̂— tc*' + 26̂ .

40. From (D + 2)^ + (D + l)y = sin2i and 5x + (D+3)y = cos2£ wc obtain (D2 + 5)y = 2cos2i — T



5 Modeling with Higher-Order 
Differential Equations

Exercises 5.1 Lmear Modelst Initial-Value Pwjblenits
:r'.' “ ' ' ”' V - V;V: 'r.

; \ '' W , ” ' '' ; " ' V w,\ wJ\

1. From |x" + 16a: = 0 wc obtain

x — c\ cos 8\/21 + C-2 sin 8\f21 

so that the period of motion is 2tt/8\/2 = \/2tt/8 seconds.

2. From 20a:'7 -f- kx = 0 we obtain

1 ik. . 1 [k

so that the frequency 2/tt = 5 y / 5 vr and k - -320 N/m. If 80a,’" -t- 320.x = 0 then

x = ci cos 21 + C2 sin 21 

so that the frequency is 2/ 2tt = 1/tt cyclcs/s.

3. From ^x" + 72x = 0, a:(0) - —1/4. and ^(O) =  0 we obtain x =  — ̂  cos4v61.

4. From |a:;/ + 72x = 0, ;r(0) = 0, and o/(Q) = 2 we obtain x = sin4\/6£.

!. From |;r" + 40a: = 0, a:(0) =  1/2. and a/(0) =  0 wc obtain x = | cosSi.

(a) x (tt/12) =  —1/4, x(tt/8) = -1/2, x(7r/6) = -1/4, j;(7t/4) =  1/2, ^(9tt/32) = \/2/4.

(b) x' - —4sin81. so that ^(Stt/IG) =  4 ft/s directed downward.

(c) If x = cos 8t. — 0 then t — (2n -f 1)tt/16 for n = 0. 1, 2. . . . .

5. From 50a/' + 200x = 0. ;i‘(0) = 0. and x'(0) = —10 we obtain x = —5sin2t and x! = —10 cos 21

'• From 20:c// •+ 20a; =  0, a~(0) = 0, and aj'(0) =  —10 we obtain x = —10 sin t and x/ = —10cost

(a) The 20 kg mass has the larger amplitude.

(b) 20 kg: x'(tt/A) =  -by/2 m/s, 2/ (tt/2) = 0 m/s; 50 kg: :r'(7r/4) =  0 m/s, x'('x/2) - 10 m/s

(c) If —0 sin 21 =  —10 sin t then sint(cos t — 1) = 0 so that t =  nn for n — 0, 1. 2, ..., placing both 

masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is 

moving upward when n is even and downward when n is odd.
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8. From x" + 16x =  0. x(0) = —1, and a/(0) =  —2 we obtain

x — — cos4t — ^ sin4t =  sin(4t — 4.249).

The period is tt/2 seconds and the amplitude is \/5/2 feet. In 4tt seconds it will make 8 cor... 

cycles.

9. From \x" + x = 0, x(0) — 1/2, and a/(0) =  3/2 we obtain

1 3 \/l3 ,
x = - cos2t + - sin2t = —— sin(2£ + 0.588).

2 4 4

10. From 1.6x/; + 40.r = 0, z(0) = —1/3, and x''(0) = 5/4 we obtain

1 1 5  
x = — - cos 5t + - sin 51 =  — sin(5t — 0.927).

3 4 12

If x = 5/24 then t = g (| + 0.927 4- 2rwr) and t =  i  + 0.927 + 2mrj for n = 0, 1, 2, ... .

11. From 2x" + 200a; = 0. x(0) = —2/3, and a/(0) = 5 we obtain

(a) x = —| cos lOt + sin lOt = | sin(10t — 0.927).

(b) The amplitude is 5/6 ft and the period is 2tt/ 10 = tt/5

(c) 37t =  -irk/b and k = 15 cycles.

(d) If x = 0 and the weight is moving downward for the second time, then 10£ — 0.927 = -' 

t = 0.721 s.

(e) If x' =  f  cos(lOt - 0.927) = 0 then lOt - 0.927 = t t / 2  + mr or t =  (2n + 1)tt/20 + 0.0.' -' 

n = 0. 1, 2, ... .

(f) x{3) =  -0.597 ft

(g) a/(3) — —5.814 ft/s

(h) ar"(3) = 59.702 ft/s2

(i) If x =  0 then t = ^(0.927 + mr) for n =  0, 1, 2 ,__The velocity at these times is

x' = ±8.33 ft/s.

(j) If x = 5/12 then t = j^(7r/6 + 0.927 + 2mr) and t = (57t/6 + 0.927 + 2wr) for n = 0. 1. . 

(k) If x — 5/12 and xf < 0 then t =  ^(5tt/6 + 0.927 + 2nir) for n = 0, 1. 2, ... .

12. From x,f + 9x = 0. .x(0) =  —1, and x'(0) = —\/3 we obtain

, V3 - n 2 •x =  — cos 3 t-- — sm 3t = —= sm
3 VS

and x' =  2\/3cos(3i + 47r/3). If x' = 3 then t = —77r/18 + 2mr/3 and t =  — t t / 2  + 2r~ 

n =  1, 2, 3, ... .

13. From k\ = 40 and k-2 = 120 we compute the effective spring constant k = 4(40) (120)/It -- 

Now, rri = 20/32 so k/m = 120(32)/20 = 192 and x" + 192a? = 0. Using a;(0) = 0 and a/(L 

obtain x(t) = ^  sin8-\/3t.
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Let m be the mass and k\ and ko the spring constants. Then k =  Ak\k2 i'(ki + k2) is the effective 

spring constant of the system. Since the initial mass stretches one spring | foot and another spring 

75 foot, using F =  ks, we have = ^k2 or 2k\ — 3k2. The given period of the combined system 

is 2t/uj = tt/15, so lo = 30. Since a mass weighing 8 pounds is 3 slug, we have from w2 = k/rri

302 = T^- =  4fc or k = 225.

We now have the system of equations

1/4 

4A:i A’2
= 225

k\ + k‘2

2k\ ~ 3k2.

Solving the second equation for k\ and substituting in the first equation, we obtain

4(3fc2/2)A~2 _  12A| _  12k2 ^

3fc2/2 -j- k2 5/c2 5

Thus, k2 = 375/4 and ki = 1125/8. Finally, the weight of the first mass is

fci 1125/8 375 
32m = — = — —!— = — - «  46.88 lb.

o 3 8

I :  For large values of t the differential equation is approximated by x" — 0. The solution of this 

equation is the linear function x = c\t + c2. Thus, for large time, the restoring force will have 

iecayed to the point where the spring is incapable of returning the mass, and the spring will simply 

’-:?ep on stretching.

->i As t becomes larger the spring constant increases; that is, the spring is stiffening. It would seem 

■hat. the oscillations would become periodic and the spring would oscillate more rapidly. It is likely 

:hat the amplitudes of the oscillations would decrease as t increases.

1“ a) above ( b )  heading upward

!> a) below ( b )  from rest

11* a) below ( b )  heading upward

X. a) above ( b )  heading downward

H 7:om + x' + 2x =  0, x(0) = —1, and ^ ( 0) =  8 we obtain x = 4te~4t — e~‘lt and 

= 8e_4f — 16te~4t. If x = 0 then t =  1/4 second. If x' — 0 then t = 1/2 second and the 

•::treme displacement is x = e~2 feet.

1. ?:::>m \x” + \f2x' + 2x = 0, ,t(0) =  0, and ://(0) =  5 wc obtain x = 5te-2v2< and
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x' = be 2'^2 t( l — 2y/2tj. If x' =  0 then t — \/2/4 second and the extreme displacemcr.' 

x =  5\/2 e_1/4 feet.

23. (a) From x" + 10;r' 4- 16a: = 0, x(0) = 1, and ^(0) - 0 we obtain x = — je -8*-

(b) From x" 4  x' 4  16x =  0. x(0) =  1, and ^'(O) — —12 then x =  — §e_2t + ^e~st.

24. (a) x =  |e-8* (4e6* — l)  is not zero for t > 0; the extreme displacement is :/;(0) = 1 meter.

l b) x = (5 — 2e6*) =  0 when t =  ^ln| w 0.153 second; if x' — fe-8* (e6< — 10) =  0 *. 

t — | In 10 ~ 0.384 second and the extreme displacement is x = —0.232 meter.

25. (a) From O.Lz" 4  O.4.:?/ 4  2x — 0, x-(0) = —1, and x'(0) =  0 we obtain x =  e~2t [ — cos4£ — 3 sir. -

\/K
■ b) x = -~-e~2t sin(4£ 4  4.25)

z

(c) If x = 0 then 41 + 4.25 = 2tt, 3tt; 4tt, ... so that the first time heading upward is 

t = 1.294 seconds.

26. ■ a) From |x" 4  x' 4  bx = 0, x(0) =  1/2, and ^(O) = 1 we obtain x = e~2t Q  cos At 4  5 sin4~

b) x =  - L e- 2‘ siB(4f +  £ ) .
c ) If x = 0 then At+n/A — 7r. 2tt. 37r, ... so that the times heading downward are t =  (7+8n '  

for n = 0, 1, 2, ... .

d) x 
ii
1 \ 
j \

!/
-If

2 7. rrom ffrxll+3x'+bx = 0 we find that the roots of the auxiliary equation are m = — §/3±|y4 J- -

a) If A32 - 25 > 0 then 0 > 5/2.

• b) If A32 - 25 = 0 then ,3 =  5/2.

• c) If A32 - 25 < 0 then 0 < (3 < 5/2.

2S. From 0.75a;" 4  3x' 4  6;r =  0 and 3 > 3\/2 we find that the roots of the auxiliary equation
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rn = — 13 ± \\j3? — 18 and

x = e~2̂ 3 c\ cosh ^ \J0- — 18t + C-2 sinh ̂  \/i32 — 181
3 v ' 3

If .r(0) = 0 and x'(0) = —2 then ci = 0 and oi =  —3/\J32 — 18.

If \x" + \x' + 6.x =  10cos3f, r/;(0) = 2, and .x'(0) = 0 then

—i 12 (  V47 . . ^ }Xc  =  e ' Cl COS — t  -i- C2 Sill — t2
and xp =  ^(cos 3t + sin 3t) so that the equation of motion is

, / 4 \/47 64 . V47 \ 10, 0 „
* = e 72 f - - cos —  £ - ^ j =  sm —  f J + — (cos 3£ sin 3t).

(a) If x" + 2x' + bx = 12 cos 2t + 3 sin 21, ;c(0) = 1, and ay(0) =  5 then xc = e *(ci cos 21 + ci2 sin 21) 

and xp = 3 sin 21 so that the equation of motion is

x =  e~l cos 2t + 3 sin 21.

(c) x

From x" + 8xf + 16:r = 8 sinAt. .2(0) = 0, and a/(0) = 0 wc obtain ;rr = c.\e 'u + ctfe u and 

?p = — j  cos 41 so that the equation of motion is

x — \e~il + te~ — 7 cos4i.
4 4

From x" + 8x' + I62.’ = c_ tsin4i. x(0) = 0, and 2r'(0) = 0 we obtain xc = c-]_e~4t + C2 te~4i and 

cos 41 — sin At so that

x =  ^ g e_'U(24 + 100*) - ^ e_f(21cos4t + 7sin4t)- 

As I —*■ oc the displacement x —»■ 0.

From 2x" + 32x = 68e~21 cos 4/;. x(0) =  0, and a/(0) = 0 we obtain x(: - cicos4t + C2sin4t and 

n — \e~2i cos 41 — 2e~2t sin At so that

1 9 1
x = —- cos At + - sin4t + -e~2t cos At — 2e~2t sin At.

2 4  2

'ince x = :sL̂ L sin(4t — 0.219) — sin(4i — 2.897), the amplitude approaches \/85/4 as t —» 0 0 .
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35. i a)

■ b'l

By Hooke’s law the external force is F(t) =  kh(t) so that mx" + fix' + kx — kh(t).

—  /  /■.,From \x" + 2x' + Ax = 20cost, ;.?;(0) = 0, and .^(O) = 0 we obtain xc = e (c\ c o s + co
32 
13

x — e

and xp = y| cos t + sin t so that

-2tl 56 ^  72 . \ 56 32 .
’ 1 — - cos 2t -- - sm 2t) + — cos t H— -sin 1

13 13 13 13

From 100a;// + 1600x = 1600 sin 81 x(Q) = 0, and x'(0) = 0 we obtain xc = c\ cos4£ + c; 

and xp = — g sin 8t so that by a trig identity

2 1 2  2 
x =  - sin At — - sin 81 = -  sin At — - sin At cos 41

3 3 3 3

If x =  5 sin4t(2 — 2 cos 4£) =  0 then t =  nn/A for n =  0, 1, 2, ... .

I: x' — | cos4t—| cos8t = §(1—cos4£)(l-r2cos4£) = 0 then t =  7r/3+n7r/2 and t, = tt/6- 

for n — 0, 1, 2. ... at the extreme values. Note: There are many other values of t for 

j 7 = 0.

d i .n ~/6 + n-jr/2) =  \/3/2 cm and x(-k/3 + rwr/2) — —\/3/2 cm 

i e I x

b ■ 

C.i

3". rr::ir. x" + Ax = —5sin2t + 3cos2£, .r(0) = —1, and x;(0) =  1 we obtain xc =  c\ cos21 + 

= jt sin 21+ |£ cos 21, and

1 3 5
x — — cos 2t — - sin 2t + —t sin 21 + -t cos 21.

8 4 4

35. r::,:n x" + 9:i: =  5sin 31 x(0) = 2, and x'(0) = 0 we obtain xc = c\ C0s3t + C2sin3t, xp =  —

5 5
x — 2 cos 3t + — sin 31 — '-t cos 31 

18 6

3r>. a) From x!’ + u)2x = Fq cos7I  x(0) =  0, and x/(Q) — 0 we obtain xc - ci cosuji + C2si:: 

xp = (Fq cos 7t)f (co2 — 72) so that

F0 Fo 
x —--~---» cos ut H— k---$ cos 71 .

u)z — 7Z — 7^

, , Fq —F()t sin j t  Fq . 
b 1 Inn ---t(cos ''ft — cos tot) = lim --- ---- = — tsmcot.~—JJ — ryA x ' -f'—»u; - 2 7  2d
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40. From x" + urx =  Fo cos u>t< x(0) = 0, and af'(0) =  0 we obtain xc = C\ cos art + ci sin u?i and 

xp = (Fot/2u))smijjt so that x = (FqI/'Iuj) siii^'t.

41. (a) From cos(« — v) =  cos-tt cost1 + sinu sinv and cos(« + v) =  cos u cos t’ — sinu sinv wc obtain

sin w sin t1 =  ^[cos(w — v) — cos(« + ?,’)]• Letting u =  3(7 — u)t and v — 5(7 + a;)£, the result 

follows.

(b) If t = ^(7 — cv) then 7 ~ u> so that x - (Fo/2ey) sin ct sin jt.

42. See the article ‘‘Distinguished Oscillations of a Forced Harmonic Oscillator” by T.G. Procter in The 

College Mathematics Journal, March, 1995. In this article the author illustrates that for Fq = 1. 

A = 0.01, 7 = 22/9. and cu = 2 the system exhibits beats oscillations 011 the interval [0. 9tt], but 

that this phenomenon is transient as t —»• 00.

43. (a) The general solution of the homogeneous equation is

xc(t) = c\e Xt cos(\juj2 — A21) + C2« Xtsin(ya;2 — A2 /;)

= Ae ^  sin[\/u 2 — A21 + 0},

where A = yc2 + c2, sin<p = c\jA, and cos0 - 0 -2/A. Now

•%(*) = J ^ 2 ~2 sin^  + p  ^ J ) 22^ 4A2-72 co87* = ^sin(7i + 9),

where

(u2 - 72)2 + 4A272

Fo(-2A7)
sin (9 =

(u)2 — O'2)2 + 4A272 -2A7

and

cos 0 =

yjcu2 -  72 + 4A272 

■Fq(o;2 — 72)

(a;2 —  7 2)2 +  4 A 27 2

/(^2 _  72)2 + 4A272

,.,2 - o,2

\ J  ( c j 2  — 7 2)2 -f- 4 A 27 2
y P T  .,,2)2 + 4A2,2

(b) If </(7) = 0 then 7 7̂2 + 2A2 — a)2) =  0 so that 7 = 0 or 7 =  s/u)2 — 2A2. The first derivative 

test shows that g has a maximum value at 7 = v^ ’2 — 2A2 . The maximum value of g is

g ( V ^ -  2A2 ) =  F0/ 2A\/\j - - A2.
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(c) Wc identify oj2 = k/m = 4, A = ,3/2. and 71 = Vu;2 — 2A2 = -̂ 4 — &2/2 . As /? —> 0. 

and the resonance curve grows without bound at 71 = 2. That is, the system approach 

resonance.

p yi 9
2.00
1.00
0.75
0.50
0.25

1.41
1.87
1.93
1.97
1.99

0.58
1.03
1.36
2.02
4.01

44. (a) For n = 2, sin2 7'i =  5(1 — cos 2^t). The system is in pure resonance when 2̂ \(2tt 

when 71 = uj/2.

(b) Note that

Now

sin3 7'i = sin 71  sin2 71  — ^ [sin 71  — sin 7i  cos 2rfi\.

sin (A + B) + sin(/l — B) =  2 sin A cos B

so

and

sin 7!t cos 271  =  - [sin Sjt — sin 71 ]

sin3 'yt - ^ sin -ft. — - sin 371
1

Thus

3
x" + urx = - sin 71 — t  sin 371.

1

4

The frequency of free vibration is lo/2it. Thus, when 7i/27r - u;/27r or 71 = 

372/ 2^ = u;/27r or 372 = a; or 73 = cj/3, the system will be in pure resonance.

anc
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(c)

Solving jQq” + 2q' + 100<? = 0 we obtain q(t) — e 20t(c \  cos 4 0 1 + C 2 S in 4 0 t ) .  The initial conditions 

r /(0 )  =  5 and r / ( 0 )  =  0  im p ly  c \  =  5 and o i  =  5/2. Thus

q(t) = e~20t (5cos40i + | sin 40^ = v/25 + 2-5/4 e_20tsin(40t + 1.1071)

and g(0.01) rj 4.5676 coiilombs. The charge is zero for the first time when 40t + 1.1071 = tt or 

t «  0.0509 second.

Solving \q" + 20q' + 300^ = 0 we obtain q{t) — cie-20* + C2 e~m . The initial conditions q(0) =  4 

and c/(0) =  0 imply C\ =  6 and c-2 =  — 2. Thus

q(t) =  6e~20t - 2e~m .

Setting q = 0 we find e40* =  1/3 which implies t < 0. Therefore the charge is not 0 for t >  0. 

Solving ^q!/ + 10q' + 30q = 300 we obtain q(t) =  e_3<(ci cos 3t 4- c-2 sin 3£) +10. The initial conditions 

?(0) - q'(0) = 0 imply Ci — C2 = —10. Thus

q(t) — 10 — lOe-^ (cos 31 + sin 3t) and i(t) = 60e~6t sin 31.

Solving i(t) =  0 we see that the maximum charge occurs when t = tt/3 and q(ir/3) 10.432. 

Solving q" + 100^ + 2500g = 30 we obtain q(t) =  cie*00* + C2 te~M  + 0.012. The initial conditions 

j'0) =  0 and q'(0) =  2 imply c\ =  —0.012 and C2 = 1.4. Thus, using i(t) =  q'(t) we get

q{t) = —0.012e-50* + lAte~m  + 0.012 and i{t) = 2e~50t - 70te~50t.

Solving i(t) =  0 we see that the maximum charge occurs when t = 1/35 sccond and <7(1/35) ~ 

.01871 coulomb.

Solving q” + 2q' + 4q = 0 we obtain qc = e-< (cos \/3t + sin s/Stj. The steady-state charge has the 

:jrm qp = .4cost + Bsint. Substituting into the differential equation we find

(3A + 2B) cos t + (3B — 2A) sin £ = 50 cos t.

Thus, A =  150/13 and B = 100/13. The steady-state charge is

■::d the steady-state current is

, , 150 100 .
qvv) = “j j  cos * + “j j  sm *

150 . 100 

* * * '  =  — 1 3 “  s m  £  +  U  C 0 S
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. Eq (R  . X

w )  =  y \ z  s m 7  “  ~ z COS7

Z — y/X2 + R2 we see that the amplitude of ip(t) is

- ■ i - y - p - - r - p - - i 5 v « + a  - T .

'.iforential equation is -j- 2(}g' +  lOOOg =  100 sin 60*. To use Example 10 in the te: 

£q =  100 and 7 = 60. Then

Z = \fx2 + R? = \jX'2 -f 400 «  24.0370.

f  = ^ * 4 .1 6 0 3 .Z Z
Problem 50, then

ip(t) ta 4.1603sin(60* + <j>)

: .-in o = —X jZ  and cos <p - R jZ . Thus tan <5 =  —X jR  ~ —0.6667 and d> is a fourth qu 

’ Now o ~ —0.5880 and

ip(t) =  4.1603 sin (GO* - 0.5880).

•::.i + 20q' + IOOO5 = 0 we obtain qc(t) = e~m {c\ cos40t + C2sin40t). The stoac’ 

\c-:- has the form qp(t) = A sin 60/; + B cos 60* + C sin 40* + D eos 10*. Substituting iir 

::-:rj.ial equation wo find

(—1600A - 24005) sin 60* + (2400/1 - 16005) cos 60*

+ (400C - 1600D) sin 40* + (1600C + 400D) cos 40*

= 200 sin 60* + 400 cos 40*.

;:-.ting coefficients we obtain A =  —.1/26. B = —3/52, C = 4/17, and D = 1/17. The

- :harge is

1 3  4 1
qp(t) - — — sin 60* - —• cos 60* + — sin 40* + — cos 40*

ZO OA 1/

steady-state current is

30 45 160 40
b(t) = — ttt cos GO* -I— - sin 60* -I--— cos 40*-- - sin 40*.

’ 13 13 17 17
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3. Solving j q" + 10q' -(-100$ = 150 we obtain q(t) = e 10i(ci cos lOt + C2sin 101) + 3/2. The initial 

conditions g(0) = 1 and q'(0) = 0 imply f'i — c2 = —1/2. Thus

q(t) = — ̂ e_uv(cos 101 + sin lOi) + ^ .

As t —> oc. q(t) —> 3/2.

4. In Problem 50 it is shown that the amplitude of the steady-state current is Eq/Z , where 

Z = \J X 2 + R? and X  = L j — 1 /C 7 . Since Eq is constant the amplitude will be a. maximum when 

Z is a minimum. Since R. is constant. Z will be a minimum when X  - 0. Solving £7 — I/C 7 = 0 

for 7 we obtain 7 = l/V L C . The maximum amplitude will be Eq/R..

5. By Problem 50 the amplitude of the steady-state current is Eq/Z. where Z = V X2 + R2 and 

X  = £7  — I/C 7 . Since Eq is constant the amplitude will be a maximum when Z is a minimum. 

Since R is constant, Z  will be a minimum when X  = 0. Solving L7 — l/C '7 = 0 for C we obtain 

C = I/L 72.

-j. Solving 0.1 q" + 10q - 100sin7/ wo obtain

g(f) = ci cos lOt + c-2 sin 10< + qp(i) 

where qp(t) = A sin yt -i- B cos ~d. Substituting qp(t) into the differential equation we find

(100 — 7'2).-4 sin -it + (100 — y2)B cos = 100 sin -'■/t.

Equating coefficients wc obtain A - 100/(100 —72) and B = 0. Thus, qp(t) = :— sin7t. The
.I.UU j'*

initial conditions r/(0) = c/(0) =  0 imply cy = 0 and Co = —10-7/(100 — 7^). The charge is

10
q(t) = M ~ Z 2(10sin7i - 7 sin 100

and the current is

= inn00' o(cos 7̂  - cos 101).
1UU — 7"

In an LC-series circuit there is no resistor, so the differential equation is

_ d2q 1 ,

W  + c 9 =

Then q(t) = c.\ cos [i,/\JLC ) -j-c2 sin (t/y/LC ) + qp(i) where qp(t) =  A sin 7't^-B cos 7t. Substituting 

into the differential equation we find

^  - I 72) A sin -r - L-/2̂  B cos yt = E() cos 71 .

Equating coefficients we obtain A = 0 and B = EqC/(1 — LC72). Thus, the charge is

1 . 1  E qC



The initial conditions g(0) — qo and f/(0) =  io imply ci — qo — EqC/(1 — LC72) and 0 2 = L 

The current is i(t) = q'(t) or

C1 1 * , C2 1 + EqCj  .

, ( )  = ~ 7 L c sm7 L S  7 W cos7 I S  T = Z c ? sm 7*

1 , 1 { B«C \ . 1  ̂ E0C j . ^

= vw Vlc r ■ T̂ icRi rvm *- rrsv “7t
5 5. When the circuit is in resonance the form of qp(t) is qp(t) =  At cos kt + Bt sin kt where k — 1 

Substituting qp(t) into the differential equation we find

q'p + k2(lp = —2kA sin kt + 2kB cos kt =  ^  cos kt.

Equating coefficients we obtain 4̂ = 0 and B = Eo/2kL. The charge is

Eo
q(t) = ci cos kt + r,2  sin kt + — — t sin kt.

IkL

The initial conditions g(0) = qo and q'(0) =  io imply c\. ~ % and c-2 — U)/k. The current is

E
i(t) =  —cik sin kt + 0 2 k cos kt + ——(kt cos kt 4- sin kt)

2/c L

Eq \ Eq
go A') sin kt + io cos kt + —  t cos kt.

Exercises 5.1 Linear Models: Initial-Value Problems

2kh 1U J ' 2L

Linear Modelst Bottndary-^Value ProBliKffls!:

1. (a) The general solution is

/ \ . , 2 , 3 , w 0 4
■y(x) = ci + c-2x + csx + C4 X + ■

The boundary conditions are y(0) = 0, ;</(0) = 0, y"(L) = 0, y'"(L) = 0. The £: 

conditions give c\ = 0 and C2 = 0. The conditions at x — L give the system

2 c3 +  6c4L + ^ j L 2 = 0

r , W() t a6 c 4 +  — L  =  0.
E l

Solving, we obtain C3 — wqL2/ iE I  and C4 = —woL/6 E I. The deflection is

y(x) = ^ y ( 6L2x2 - 4Lx3 + .t4).
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(b)
0 .4  0 .6  0 .8  1

3? Y

2. (a) The general solution is

, N '•) 'J WQ 4
y(x) = ci + c2x + ciyx + c4.x" + —— x .

The boundary conditions are -t/(0) = 0, y"(0) — 0, y(L) — 0, y"(L) = 0. The first two conditions 

give ci =  0 and 03 = 0. The conditions at x = L give the system

+ 231714 = 0
^ L + l t i L2 = °-

Solving, we obtain C2 = wqL?/24EI and C4 = — w q L /Y2EI. The deflection is

y(x) = ^ j ( L \ .- 2 L X>+x*).

(b)

fa) The general solution is

y(x) = ci+ o2x + c3x2 + C4 X3 -f -

The boundary conditions are y(Q) = 0, y'(0) = 0. y(L) =  0, yf,(L) = 0. The first two conditions 

give ci — 0 and c-2 = 0. The conditions at x =  L give the system

C«I? + C4 I?  + - ^ - L l = 0 
24EI

2C3 +  6C4L  +  ^ - I 2 =  0.
2Jbl

Solving, we obtain C3 = w q L 2/ 1 GEl and C4 = —■5u,qL/48£//. The deflection is

*(*) = J | 7 ( 3 lV  - 5^ 3 + 2*4)-

243



Exercises 5.2 Linear Models: Boundary-Value Problems

(b)
iTra^ui  o ♦ 6 JL-8>1

x

4. (a) The general solution is

/ \ 9 ‘1 wqL 4 . 7T
y(x) = ci + c-ix + c$x- + c4x + — —r sin —x.

£j 1 7T L

The boundary conditions are y(0) = 0, ?/(0) = 0, y(L) = 0, y"(L) = 0. The first two conu 

give c.\ — 0 and c? =  —wqLs/E Itts. The conditions at x =  L give the system

c s L ^ c ^  + ^ L ^ O  

2 c 3 +  6 C4 L  =  0 .

Solving, we obtain C3 =  3wqL'2 and C4 - — w q L ^ E I^  . The deflection is

WqL
y{x)

2EIn*
—2L2x + 3Lx2 — x6 4- —

7r ’ 
—  sm —x 
t t  L  ,

(c) Using a CAS we find the maximum deflection to be 0.270806 when x = 0.572536.

5. (a) The general solution is

y(x) = ci + C2 X + czx2, + C4<r' 120£J
The boundary conditions are y(0) = 0, y"(0) = 0, y(L) 0, y"(L) = 0. The first two cond: 

give cj =  0 and C3 =  0. The conditions at x = L give the system

c 2 L  +  C 4 I 3  +  =  0

6c4i+̂ i3=a
244



Exercises 5.2 Linear Models: Boundary-Value Problems

Solving, we obtain o> = 7wqL4/360EI and C4 — —wqL2/3QEI. The deflection is

y(x) =  — (7L4;r — l()L2;c3 + 3a:0).
m E i

(b) . 0 . 2  0 . 4  0 . 6  0 . 8 / 1

*? y

(c) Using a CAS we find the maximum deflection to be 0.234799 when x = 0.51933.

6. (a) '(/max = y{L) = wqLa/8E I

(b) Replacing both L and x by L/2 in y(x) we obtain wqL4/12SEI, which is 1/16 of the maximum 

deflection when the length of the beam is L.

(c) ?A„ax = y(L/2) = 5wqL4/3SAEI

(d) The maximum deflection in Example 1 is y(L/2) - {wq/24:EI)L4/16 = wqL'1 /3S4EL which is 

1/5 of the maximum displacement of the beam in part (c).

7. The general solution of the differential equation is

/ P . I P wo v wqE I
y =  ci cosh V ^ j x + °2 sinh d —  x + —  x~ + .

Setting y(0) = 0 we obtain c\ = —wqEI/P2, s o  that 

_  iuqEI x 1 P  , ■ x I P  , w0 2 , WQE I

W  V 571 2 V 57 2P * + p̂5“
Setting y'(L) — 0 we find

_  (  l~P wqE I , i P

02 = 1 ] l % I ^ sh±i E I L - - ^  1 7 ^ c o s h , / ^ .

w0L )  / f T  j P  , 
T ) \iEIC°Sh\'EI

*. The general solution of the differential equation is

Vp , -? '«.'o ■> wo E l 
y = ci cos y —  x + c2 sm ] j ^ j x + ^ p x + ~p 2~ •

Setting y(0) =  0 we obtain c\ =  —wqE I/P 2, so that

pp . / P WQ 0 wqE I

y ~ — p2-C0Sv i 7 a: + ':26U1V l 7 :i' + 2P!r + _ p5“ '
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Setting y'{L) — 0 we find

, j P w0E I . j P r u\)L\ /  / P  I P  T

C2 = 1 ~p~J /

9. This is Example 2 in the text with L = tt. Tlie eigenvalues are \n = nPn2/*2, =  ri2, n = 1. - 

and the corresponding eigenfunctions are yn — sin(tt7r;r/7r) = sin nx, n = 1, 2, 3, ... .

10. This is Example 2 in the text with L — tt/4. The eigenvalues are Xn — n27r2/(7r/4)2 ~

2, 3, ... and the eigenfunctions are yn = sin{iittx/ (tt/4)) =  sin4n.T. n — 1, 2. 3, ... .

11. For A < 0 the only solution of the boundary-value problem is y =  0. For A = a2 > 0 we h :'

y = ci cos ax + c-2 sin ax.

Now

y'{x) = —ci a sin ax + c2a cos ax

and </(0) =  0 implies ci = 0, so

y(L) = ci cos aL = 0

gives

(2 n — l)?r 2 (2rt — l)27r2
a.L = ------- or A = a- = ---— -̂--. n = 1, 2, 3 ,... .

2 4

The eigenvalues (2n — 1)2tt2/4L2 correspond to the eigenfunctions cos.- -----— for

/i =  1, 2, 3: ... .

12. For A < 0 the only solution of the boundary-value problem is y = 0. For A = a2 > 0 we 1.

y = ci cos ax + c% sin ax.

Since y(0) = 0 implies c\ = 0. y =  c2 sm;r dx. Now

/ f ‘K\ t*
y ( - 1 = c2a cos a-  = 0

gives

* (2 n - i)*  or A = q2 = (2„ _  1)2, „  =
Z* z

The eigenvalues A„, = (2n — l)2 correspond to the eigenfunctions yn = :'".(2n — l).r.

13. For A = —a2 < 0 the only solution of the boundary-value problem is y =  0. For A = 1 

y = cyx + c-2 - Now y' = ci mid y'(0) = 0 implies ci =  0. Then y — co and y'{n) = 0. Tim- 

an eigenvalue with conesponding eigenfunction y = 1.

For A = a2 > 0 we have

y — ci cos ax -f o2 sin ax.
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Now

;{/(&•) = —CiO: sin ax + c-2 a cos ax

and y'(0) =  0 implies c-2 = 0, so

y'(n) = — ci a sin cwr = 0

gives

an = Tin or A = a2 = n2. n = 1, 2, 3 ,... .

The eigenvalues n? correspond to the eigenfunctions cos nx for n — 0. 1. 2........

For A < 0 the only solution of the boundary-value problem is y = 0. tor A = o:2 > 0 we have

y = ci cos ax + oi sin ax.

Now t/(—tt) = y(n) = 0 implies

ci cos an — Co sin air = 0

(1)
Ci cos an + c-2 sin an = 0.

This homogeneous system will have a nontrivial solution when

cos an — sin an 

cos an sin an
— 2 sin an cos an = sin 2att = 0.

Then
2

2an = nn or A = a?" = — ; n = 1. 2. 3, ... .
4

When n = 2k — 1 is odd, the eigenvalues arc (2/,; — l)2/4. Since cos(2k — l)n/2 = 0 and 

'in(2k — l)n/2 ^  0. we sec from either equation in (1) that C2 — 0. Thus, the eigenfunctions 

orresponding to the eigenvalues (2k — l)2/4 are y =  cos(2k — l)x/2 for A: = 1. 2, 3, ... . Similarly, 

-.vhen n =  2k is even, the eigenvalues are A:2 with corresponding eigenfunctions y = sin kx for 

v = l, 2, 3 , . . . .

The auxiliary equation has solutions

m = i  (-2 ± \Ji — 4(A + 1)^ = -1 ± q:.

For A = —a’2 < 0 we have

y = a~x (ci cosh ax -1- q  sinh a:c).

The boundary conditions imply

y(0) = ci =  0

y(5) =  C2 e~° sinh 5a = 0

- c,\ = c-2 = 0 and the only solution of the boundarv-value problem is y = 0.
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7 A = 0 we have

y = c\e~x + C2 xe~x 

-:-d the only solution of the boundary-value problem is y = 0.

7 . A = «2 > 0 we have

y =  e~x (ci cos aa: + 02 sin cm : ) .

X i/(0) = 0 implies c\ = 0, so

y( 5) = C2e-5 sin 5oi = 0

772 7T2
5a = nn or A = a2 = “ , n = 1 .2 ,3 ,... .

Zo
9 2

— T n~7T* r _r . U7T
i ::e eigenvalues An = correspond to tlic cigcnfunctions yn = e " sin —  x tor n =  1, 2.

25 ' 5
1-; . A < —1 the only solution of the boundary-value problem is y = 0. For A =  — 1 v- 

. — c\X + c2. Now y' — ci and ?/(0) = 0 implies ci =  0. Then y = c2 and y'( 1) = 0. Thus, ,• - 

an eigenvalue with corresponding eigenfunction y =  1.

T'.r A > —1 or A + 1 = a2 > 0 we have

y = ci cos (xx + c-2 sin ax.

Xow

y1 — —cio: sin ax + c2a cos ax

</(0) = 0 implies 0 2 =  0. so

y'(l) = —cia sin a = 0

V'r'S

a =  nn, A + 1 = a2 =  n2n2, or A = n2n2 — 1, n =  1,2 ,3 ,... . 

eigenvalues n2n2 — 1 correspond to the eigenfunctions cosnirx for n — 0, 1, 2, ... .

1”. I- A  = q2 > 0 a general solution of the given differential equation is

y = c\ cos(ct In ai) + C2sin(alna:). 

rir.ce In i = 0, the boundary condition y( 1) =  0 implies c.\ = 0. Therefore

y =  c2 sin(a In x).

V'ing In cJ = n wc find that y (e*) = 0 implies

c2 sin «7r =  0

:: = Tin, n — 1, 2. 3, ... . The eigenvalues and cigcnfunctions are, in turn,

9 9
A = a" = 7T, n = l ,2 ,3 , . . .  and y — sin(nlna;).
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For A < 0 the only solution of the boundary-value problem is y =  0.

18. For A = 0 the general solution is y = c\ + c2 lna;. Now y' = c^fx, so y'(e~l ) = c2e = 0 implies 

C-2 = 0. Then y =  c\ and y(l) =  0 gives c\ = 0. Thus y(x) = 0.

For A = —a2 < 0. y = c\x~a + c2xa. The boundary conditions give co = c\,e2a and c\ =  0. so that 

C2 = 0 and y(x) = 0.

For A — a2 > 0. y = c\ cos (a In x) + C'2sm(alii.r). From y(l) =  0 we obtain c\ = 0 and y = 

co sin(o: In.?;). Now 1/  = C2.{a/x) cos(et lna;). so y'(e~l) = o2ea cos a =  0 implies cos a — 0 or 

a =  (2n — 1)tt/2 and A = a2 = (2n — l)2n2/4 for n = 1, 2. 3. ... . The corresponding eigenfunctions 

arc
• ( 2n ~ 1 1yn = sm ( — -— ix lna; J .

19. For A = of1. a: > 0, the general solution of the boundary-value problem

y(4) - Ay = 0. y(0) = 0, / (0 )  = 0, y(l) = 0, y"(l) = 0

is

y =  C] cos ax + 02 sin ax 4- (‘‘i cosh ax + <74 sinh ax.

The boundary conditions y(0) - 0, y"(0) = 0 give ci + C3 = 0 and — c.\a2 + c$a2 = 0, from which 

we conclude ci =  C3 =  0. Thus, y = C2sina;r + 04 sinh ora. The boundary conditions y( 1) = 0. 

yir( l) = 0 then give

C2 sin a + C4 sinh a =  0

ey
—coa sin a + cja sinh a =  0.

In order to have nonzero solutions of this system, we must have the determinant of the coefficients 

equal zero, that is,

sin a- sinh a 

-a2 sin a a 2 sinh a

But since a > 0, the only wav that this is satisfied is to have sin a- = 0 or a = nn. The system 

is then satisfied by choosing 0 2 7̂  0, C4 =  0, and a — nn. The eigenvalues and corresponding 

eigenfunctions are then

An = O'* = (twt)'1, n = 1,2. 3 ,... and y — sin nnx.

- . For A = a4, a > 0, the general solution of the differential equation is

y =  ci cos ax + c2 sin ax + C3 cosh ax + 0 4 sinh ax.

The boundary conditions y'(0) = 0. y'"(0) = 0 give + ĉ a. = 0 and —c2a3 + C4C/ = 0 from which 

we conclude C2 = c.\ = 0. Thus, y = ci cos ax + C3 cosh cm;. The boundary conditions y(n) ~ 0,

= 0 or 2 a2 sinh a sin a = 0.
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'/''(tt) = 0 then give

C2 COS Q7T + C4 cosh G:7T = 0

0 9
—Cq\ COS Q'TT + Cl A cosh Q:7T = 0.

The determinant of the coefficients is 2a2 cosh a cos a = 0. But since a > 0. the only way 

:his is satisfied is to have cos an = 0 or a =  (2n — l)/2, n = 1, 2, 3. ... . The eigenvalues :. 

corresponding eigenfunctions are

. 4 (2n — 1\4 , f2 n —\\
Xn = a = I — -— J . n = 1,2,3.... and y — cos I — -— J x.

21. If restraints are put on the column at =  L/4. x = L/2, and x = 3L/4, then the critical 

load will be P4.

(a) The general solution of the differential equation is

I p  j p

y =  ci cos yj-£jx + c‘2 sin \j -gj x + S.

Since the column is embedded at x — 0. the boundary conditions arc y(0) =  j/(0) =  0. If < 

this implies that ci =  C2 = 0 and y(x) = 0. That is, there is no dcflcction.

i b) If S 0, the boundary conditions give, in turn, ci = —5 and C2 = 0. Then

I p
y = d I 1 - cos y —  x I .

In order to satisfy the boundary condition y(L) =  S we must have

FT \ FT
d = i  | l- coey  —  I  or cosy—  L =  0.

Tliis gives J P /E IL  =  utt/2 for n = 1. 2, 3, ... . The smallest value of Pn. the Euler loai

then ___

!P\ T ir „ 1 fir2EI\V E l  ~ 2 °r 1 “  4 ( L2 j '
23. I: A = a2 =  P /E I. then the solution of the differential equation is

y =  ci cos ax + C2 sin a® -1- c$x + c4.
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The conditions y(0) = 0, y"(0) - 0 yield, in turn. c\ -j- c,\ — 0 and c\ = 0. With c\ =  0 and c4 = 0 

the solution is y = c2 sin am + c&x. The conditions y(L) = 0, y"(L) = 0. then yield

C2 sin aL + c^L = 0 and c2 sin aL = 0.

Hence, nontrivial solutions of the problem exist only if sin aL = 0. From this point on, the analysis 

is the same as in Example 3 in the text.

(a) The boundary-value problem is

0  + A 0 - O ,  y(0) =  0,s/'(0) =  0, y(L) = 0,y'(L) = 0,

where A = a2 = P /E I. The solution of the differential equation is y = c\ cos am + c2 sin ax + 

c-iX + C4 and tlie conditions y(0) - 0. y"(0) =  0 yield c\ — 0 and c.4 =  0. Next, by applying 

y(L) — 0, y\L) = 0 to y = co sin ax + c%z we get the system of equations

0 2  sin aL + c^L =  0 

ac2 cos aL +■ eg = 0.

To obtain nontrivial solutions 0 2 , 03, we must have the determinant of the coefficients equal to 

zero:
sin aL L

= 0 or tan 3 = .0,
a cos aL 1

where 8  =  aL. If 8 n denotes the positive roots of the last equation, then the eigenvalues are 

found from 3n = anL = \fKh L or \n = (.8 n/L )2. From A = P /E I we see that the critical loads 

are Pn = d^E I/L2. With the aid of a CAS we find that the first positive root of tan 8  ~ ,[3 

is (approximately) 8 1  = 4.4934, and so the Euler load is (approximately) P\ •= 20.1907E lf  I?. 

Finally, if we use C;s =  —c.0.a cos aL . then the deflection curves are

yn(x) - c2 sina„,r + c$x = c2 sm
'Pn

-x
'0n '

—  COS p n  j  X

(b) With L = 1 and c2 appropriately chosen, the general shape of the first buckling mode,

'4.4934
?yi(;r) = c2

4.4934 
sm I — -— x cos(4.4934)} x

is shown below.
yi

0.4
The general solution is

IP
y = c:i cos y — ux c>2 sin */= ux.

V t '
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From ;i/(0) =  0 we obtain c,\ = 0. Setting y(L) = 0 we find \[p(TuL = mr, n — 1, 2. 3. ... . 

critical speeds arc Co1-/}. — ??.7T yT  j  L^fp, n = 1. 2. 3. ... . The corresponding dcflection curves

" c-2 sin ~  x, n — 1.2,3, ... ,

where C2 ^  0.

26. (a) When T(x) =  x1 the given differential equation is the Cauchy-Euler equation

x2y" + 2xy' + p J2y z 0.

The solutions of the auxiliary equation

rnfjn — 1) + 2 m + pJ2 = m2 -r in + p:J 2 = 0

are

mi = - - - - sjApuS2 - 1 i. rn2 - - -  + - \/ApJ2 - 1 i 

when p'J2 > 0.25. Thus

y =  ci a; 1/2 cos (A In x) + c2x 1/2 sin(Aln.r)

where A - \^Ap,jj‘2 — 1. Applying y( 1) = 0  gives ci =  0 and consequently

y — C2X-1/2sin(Alnx-).

The condition y(e) — 0 requires C2e~1'/2sinA = 0. Wc obtain a nontrivial solution “ 

An = mr, n =  1, 2, 3, ... . But

Solving for ion gives

=  W (4n27T2 + 1 )/p .

The corresponding solutions are

V n { x )  = 0 2 X~]’2 sui(mr In a:).

-l!

27. The auxiliary equation is m2 + m = m(m + 1) = 0 so that u(r) - c:\r 1 + c-2- The bound: 

conditions it (a) = uq and u(b) ~ u\ yield the system cic"1 +C2 - uq, cife-1 + 0 2 = u\. Solving g:_

'UQ-Uy\ u\b — uq(i
ci =  1 —---- ab and C2 :

b — a b — a
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Thus
/«o - «i\ ab Uib-UQO.u(r) = —---  — + —:---- •
V b — a J r b — a

2 S. The auxiliary equation is rrr =  0 so that u(r) - ■ + C2I11 r. The boundary conditions u(a) — uq 

and u(b) — ui yield the system ci -I- C2 In a = «o, ci + 02 In b =  «i. Solving gives

1/1 111 a — Uq 111 b Uq — U,i

CI = — k(V 6j—  “ad C 2 = h^/io-

Thus
. . Ui In a — u-o hi b 1/0 — u-\ . u.q ln(r/6) — «i ln(r/a)

“ (r) =  M a / i )  + W i , )  h ‘ r = -------------------- '

-It. The solution of the initial-value problem

x" H- U2x = 0; .t(0) = 0, x'(Q) = vo, co2 = 10/m

is x(t) — (vo/uj)smuit. To satisfy the additional boundary condition .7.(1) = 0 we require that 

u — ni\, n — 1. 2. 3, ... . The eigenvalues A = u;2 — n2TT2 and eigenfunetioris of tlie problem 

arc then x(t) =  (vu/nir) smnnt. Using J 2 — 10/m we find that the only masses that can pass 

through the equilibrium position at t = 1 me m„. = 10/yr?r2. Note for n 1, the heaviest mass 

mi = 10/tt2 will not pass through the equilibrium position 011 the interval 0 < t < 1 (the period 

of x(t) =  (vo/tt) sin Tit is T = 2. so 011 0 < t < 1 its graph passes through ;*■ = 0 only at i = 0 and 

f = l). Whereas for n > l. masses of lighter weight will pass through the equilibrium position n — l 

times prior to passing through at t =  l. For example, if n = 2. the period of x(t) =  (vq/2ir) sin2-7r/; 

is 2tt/2tt — 1. the mass will pass through x = 0 only once (t =  | ) prior to t =  1; if n = 3. the 

period of x(L) =  (t’o/37r) sin37rt is | , the mass will pass through x =  0 twice (t = ?5 and t =  |) 

prior to t = 1: and so on.

I ". The initial-value problem is

x" + —x! + —x = 0, .rfO) =  0. a/(0) = ■(.?(>. 
m rn

With k = 10. the auxiliary equation has roots 7 = — 1/mzk \/l — 10m/m. Consider the three cases:

(i) rn = -pj. The roots arc 71 = 72 = 10 and the solution of the differential equation is

x(t) = The initial conditions imply ci — 0 and C2 =  (’0 and so x(t) = uote”10*.

The condition x(l) = 0 implies t'ofi-10 =  0 which is impossible because t'o 7= 0.

ii) 1 — 10??? > 0 or 0 < rn < ^  . Tlic roots arc

1 \ ________  \ 1 ________
"7i = ------ V l — 10 m and 72 = ----1-- V l — 10m

rn rn rn rn

and the solution of the differential equation is x(t) = c.ie7lt — C2 C72t. The initial conditions imply

Ci + C2 = 0

0 l c l  +  l2 c2 =  t - 'o
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so Cl =  t'o/ (71 - 7-2); C2 =  - t’o/(71 - 72), and

x-(t) = — —— (e'llt - e^1).
71 -  72

Again, x(l) = 0 is impossible because vo ^0 .

(Hi) 1 — 10m < 0 or m > . The roots of the auxiliary equation are

71 = — —---— \/10m — 1 i and 'v? —----1- — \f 10m — 1 i
m rn m m

and the solution of the differential equation is

x(t) = c\e~̂ m cos — x/lOm — I t  + 0 )e~f'!m sin — \/l0m — It. 
m " m

The initial conditions imply Ci = 0 and C2 =  mvo/ y/lQm — 1, so that

x(t) = e~t/msin ( — y/lOrn — 1A .
v J y/lQm - 1 \m )

The condition .t(1) =  0 implies

rnVQ

y/10m -  1 m

1

2 sin— y/\Qm — 1 — 0

sin — \/l0m — 1 = 0771
— y/ 10m  — 1 =  T17T 
m

10m — 1
--- ~—  = n  tt . 7i =  1,2.3,. ..7nz

(n"n )m “ — 10m -*-1 = 0

10V100 - 4ri27r2 5 ± \/25 — n?n2 
m = ----= ----- 2 ----•

2 n Z7T- 71 7T

Since m is real. 25 — n2n2 > 0. If 25 — a2tv2 = 0; then n2 =  25/tt2, and n is not an integei . 

25 — n27T2 = (5 — ri7r)(5 + 7 11r) > 0 and sincc n > 0. 5 + nn > 0. so 5 — nn > 0 also. Then n < 

and so n = 1. Therefore, the mass m will pass through the equilibrium position when t — 1 :

5 + V25 - n2 , 5 - V25-7T2
mi = ----- -̂--- and m29  9

TT" TT

31. (a) The general solution of the differential equation is y = c\ cos 4a:+02 sin Ax. Prom yo — y{\ 

we see that y = yo cos Ax + 0 2 sin Ax. From yi — y(7t/2) =  yo we see that any solutioi. 

satisfy yo — Vi- We also see that when yo =  yi, y = yocosAx + c2sin4;c is a solution 

boundary-value problem for any choice of 0 2 . Thus, the boundary-value problem docs no- 

a unique solution for any choice of yo and y\.

(b) Whenever yo = y\ there are infinitely many solutions.
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(c) When ijq /  y\ there will be no solutions.

(d) The boundary-value problem will have the trivial solution when yo = yi = 0. This solution 

will not be unique.

'.2. (a) The general solution of the differential equation is y — C] cos4r + C2sin4.T. From 1 =  ;y(0) =  c\ 

we see that y = cos4:r + C2sin4;r. From 1 = y(L) = cos 4L + 0 2 sin4L we sec that 

C2 =  (1 — cos4L)/ sin 4L. Thus,

will be a unique solution when sin 4L 7̂  0; that is, when L ^  A’tt/4 where A: = 1, 2, 3, ... .

(b) There will be infinitely many solutions when sin4L = 0 and 1 — cos 4L — 0; that is, when 

L =  &7t/2 where k =  1, 2, 3, ... .

(c) There will be no solution when sin4L 7̂  0 and 1 — cos4L 7̂  0; that is, when L = kn/4 where

: d) There can be 110 trivial solution since it would fail to satisfy the boundary conditions.

M ! a) A solution curve has the same ^-coordinate at both ends of the interval [—tt, tt] and the tangent 

lines at the endpoints of the interval are parallel.

b) For A =  0 the solution of y" = 0 is y = cix + c% From the first boundary condition we have

or 2citt = 0. Thus, ci =  0 and y = 0 2 - This constant solution is seen to satisfy the boundary- 

value problem.

For A =  —a? < 0 we have y =  c\ cosh ax + 0 2 sinh ax. In this case the first boundary condition 

gives

or 2c‘2 sinh ott = 0. Thus C2 = 0 and y = c\ cosh ax. The second boundary condition implies in 

a similar fashion that c\ = 0. Thus, for A < 0. the only solution of the boundarv-value problem 

is y = 0.

For A = a2 > 0 we have y = c\ cosax + casinos. The first boundary condition implies

y(-7r) =  C'lTT + c2 = t/(? r) = Ci-n - c2

y(—tt) = ci cosh(—a7r) + C2sinh(—air) 

= ci cosh air — c<2 sinh ottt 

= y('n) = ci cosh cv7T 4- c-2 sinh air

y(—tt) =  ci cos(—c*7r) + C2 sin(—a7r)

=  C\ COS tt7T — C‘2 S in  Q7T

y(ir) — ci cos air + C2 sin a%
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or 2c2sinmr = 0. Similarly, the second boundary condition implies 2c.ia sin an = ( 

a  — C2 = 0 the solution is y — 0. However, if ci ^  0 or C2 /  0, then sinaTr = 0, which in:; 

that a must be an integer, n. Therefore, for ci and (>2 not both 0, y = c\ cos nx + 0 2 sinn., 

nontrivial solution of the boundary-value problem. Since cos(—nx) =  cos nx and sin(—?;

— sin nx, we may assume without loss of generality that the eigenvalues are Xn = a2 — n~ 

n a positive integer. The corresponding eigenfunctions are yn = cos nx and yn = sin nx.

■ c

y = 2 sin 3x’ y = sin 4a; - 2 cos Sx

34. A = a2 > 0 the general solution is y = ci cosy/ax + C2 sin /tvx. Setting y(0) = 0 we . 

: = 0. so that y =  c-j sin y/ax. The boundary condition y(l) + y'( 1) = 0 implies

C2 sin y/a -f C2 y/a cos y/a = 0.

7:-.king t'2 ^  0, this equation is equivalent to tan y/a =  —y/a. Thus, the eigenvalues are An = 

r( = 1, 2, 3, ... , where the xn are the consecutive positive roots of tan y/a = —y/a.

35. ’.Vt sec from the graph that tanx = —x has infinitely many roots. 

r An = a2, there arc no new eigenvalues when an < 0. For A = 0, 

differential equation y" =  0 has general solution y — C\x+C2 - The 

: : \;ndary conditions imply c\ = C2 =  0, so y = 0.

So. Vring a CAS we find that the first four nonnegative roots of tana; =  —x are approxinic-.'

1.! 2576.4.91318,7.97867. and 11.0855. The corresponding eigenvalues arc 4.11586,24.1: 

: S.'3591. and 122.889, with cigenfunctions sin(2.02876:r)5 sin(4.91318.'E), sin(7.97867;r).

*::: 11.0855a;).

tan x
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In the case wlien A = — a2 < 0. the solution of the differential 

-::uation is y = c\ cosh ax 4- co sinh ax. The condition y(0) - 0 

;ives ci = 0. The condition y(l) — J>(/(1) = 0 applied to 

. = c-2 sinh ax gives C2(sinh a — |a: cosh a) =  0 or tanh a =  ^a. As 

::-.n be seen from the figure, the graphs of y — tanh a: and y - in- 

irvscct at a single point with approximate x-coordinate a i =  1.915.

7'r.us, there is a single negative eigenvalue Ai =  —af ~ —3.667 and 

'I:-- corresponding eigenfuntion is y\ = sinh 1.915.x.

r :r A = 0 the only solution of the boundary-value problem is y = 0.

A =  q2 > 0 the solution of the differential equation is y - c\ cos ax 4- c-2 sin ax. The condi: 

. 0 = 0 gives ci =  0, so y =  C2 sin ax. The condition y(l) — ̂ i/(l) =  0 gives C2(sin a —^a cos a =

- • the eigenvalues are An — a 2 when an, n = 2, 3. 4. . . . ,  are the positive roots of tan« =  ^Q. I ’?

- CAS wc find that the first three values of a are a2 - 4.27487. 0:3 = 7.59655, and a4 =  10.SI 

TI.e first three eigenvalues are then A2 = a^ = 18.2738, A3 = q| =  57.7075, and A4 = a2 = 116. 

—i"Ii corresponding eigenfunctions yi =  sin 4.27487a;. ys = sin 7.59655a;, and 2/4 =  sin 10.8127.".

7.:' A = a4, a > 0; the solution of the differential equation is

y = ci cos cvx + C2 sin ax + C3 cosh ax 4- c4  sinh ax.

T_t boundary conditions y(0) =  0. y'(0) = 0; y( 1) = 0. yf( 1) =  0 

in turn,

ci + C3 = 0 

a (>2 4  0 0 4  =  0, 

ci cos a 4  0 2 sin a 4  C3 cosh a: + c4  sinh a =  0

—Ci a sin a 4  oioc cos a 4  c%a sinh a- + c,ta: cosh a = 0.

T I . t  first two equations enable us to write

ci (cos a — cosh a) 4- C2(sin a — sinh a) = 0

ci(— shift — sinh a) 4  C2(cos a — cosh a) = 0.

determinant
| cos a — cosh a sin a — sinh a 

| — sin a — sinh a cos a — cosh a  j 

:_.::Iifies to cos a cosh a =  1. From the figure showing the graphs of 1/ cosh a: and cosx. --

=  0
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that this equation has an infinite number of positive roots. With the aid of a CAS the first, for.. 

arc found to be ai = 4.73004, CV2 = 7.8532, 0:3 — 10.9956, and 0.-4 =  14.1372. and the oorres,: 

eigenvalues arc Ai = 500.5636, A2 = 3803.5281, A3 = 14,617.5885, and A.i = 39,944.1890. IV . 

third equation in the system to eliminate 02, we find that the eigenfunctions arc

yn — {—sinavt + sinh an)(cos anx — coshanx) + (cosan — cosh an)(sin anx — sinh a,,.

Exercises 5.2 Linear Models: Boundary-Value Problems

Nonlinear Models

1. Tlie period corresponding to z(0) = 1. x'(Q) = 1 is approxi­

mately 5.6. The period corresponding to .i'(0) = 1/2. a/(0) = — 1 

:=■ approximately 6.2.

2. llic solutions are not periodic.
10f

5;

f i . 1  0 . 2  0 . j

The period corresponding to ;.r(0) =  1. ay(0) = 1 is approx­

imately 5.8. The second initial-value problem does not have 

h periodic solution.
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joth solutions have periods of approximately G.3.

From the graph we see that |j i | ~ 1.2.

rrorn the graphs we sec that the interval is approximately 

-0.8.1.1).

nice

xe0,°ix = x[l + 0.01a; + ^y(O.Olx)2 + 

d?x
r small values of x. a linearization is — + x = 0.

a t /

1
x

:>r :i’(0) =  1 and 3 (̂0) = 1 the oscillations are .symmetric about the line x =  0 with amplitude 

ightly greater than 1.
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7 : r .r(0) = —2 and a/(0) --- 0.5 the oscillations are symmetric about the line x — —2 wir. 

-.:.:piitude.

7 .r 0) = and a/(0) = 1 the oscillations are symmetric about the line x = 0 with amp. 

greater than 2.

r - r  .O .) =  2 and ;r'(0) = 0 .5  the oscillations are symmetric about the line x = 2 wit', 

r/.itude.

7 : (j) = —2 and ay(0) =  0 there is no oscillation; the solution is constant.

7 : r 0) =  — V2 and x'(0) — —1 t.lie oscillations arc symmetric about the line x = 0 with an.

l::tle greater than 2.

T‘:i' is a damped hard spring, so x will approach 0 as t x

.v: "roaches oo.

Exercises 5.3 Nonlinear Models

I I .  . /.is is a. damped soft, spring, so we might expect no oscillatory solutions. x 

. v.-ever. if the initial conditions are sufficiently small the spring can oscillate. 5:

7

-2



Exercises 5.3 Nonlinear Model?

kl = 0.01 kl = 1

kl = 20

j-

2 -

10

'•VV.en k\ is very small the cffect of the nonlinearity is greatly diminished, and the system is 

:: pure resonance.

ai x

The system appears to ho oscillatory for —0.000465 < ky < 0 and nonoseillatory

< -0.000466.

o>
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The system appears to be oscillatory for —0.3493 < k\ < 0 and nonoscillatory for A"i < - 

.3. For A2 — a-'2 > 0 we choose A = 2 and u; =  1 with ,r(0) =  1 

;-::d 1r/(0) = 2. For X2—̂ j2 < 0 we choose A = 1/3 and uj =  1 

~'ith x(0) = —2 and x'(0) = 4. In both eases the motion 

'..rresponds to the ovcrdainped and underdamped cases for 

~: 'ling/mass systems.

.4. a) Setting dy/dl = v. the differential equation in  (13) becomes d,v/dt - —gR2/y2. But 

chain rule, dv/dt = (dv / dy)(dy / dt) =  v dv/dt. so vdv/dy = —gR?/y2. Separating •

and integrating we obtain

,2 dv ...., i ,2 _  yti1
v dv — — o/?w —k- and -v = :--- r c.

V 2 y

Setting v = vq and y = R we find c = —gR + j t ’o and

f>2
v2 =  2g—  - 2gR + vjj.

b ) As y —> co we assume that, v —»0+. Then t’o “ 2gR and ?,’o : y/2gR.

< c ) Using g = 32 ft/s and R = 4000(5280) ft we find

t'0 =  ^2(32) (4000) (5280) «  36765.2 ft/s «  25067 mi/hr.

d) c{) = ^/2(0.165)(32)(1080) «  7760 ft/s «  5291 mi/hr

:a) Intuitively, one might expect that only half of a 10-pound chain could be lifted by a 

vertical force.

■ b ) Since x - 0 when t = 0. and v = dx/dt = yTOO — 64;r/3, we have u(0) = \/l60 ~ 12.L

■ c) Since x should always be positive, we solve x(t) =  0, getting t =  0 and t = f y'5/2 *

Since the graph of x(t) is a parabola, the maximum value occurs at trn = |y/5/2. (~ 

also be obtained by solving xr(t) =  0.) At this time the height of the chain is x(t): 

ft. This is higher than predicted becausc of the momentum generated by the force. Y\ 

chain is 5 feet high it. still has a positive velocity of about. 7.3 ft/s, which keeps it goin 

for a while.

• d ) As discussed in the solution to part (c) of this problem, the chain has momentum g- 

by the force applied to it that will cause it. to go higher than expected. It will then : 

to below the expected maximum height, again due to momentum. This, in turn, will 

to next go higher than expected, and so on.
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(a) Setting dx/dt = v. the differential equation becomes (L — x)dvjdt — v~ - Lg. But. by the 

Chain Rule, dv/dt =  (dv/dx) (dx/dt) =  vdv/dx, so (L — x)v dv/dx — v2 = Lg. Separating 

variables and integrating we obtain

1 1 
dv = ---- dx and - ln(i’2 4- Lg) = — ln(L — x) + In c,

v2 + Lg L - x

so \Jv2 + Lg = c/(L — x). When x - 0, v = 0, and c = LyfLg. Solving for v and simplifying 

we get

dx _  jL jj$ L x - 3 ? )

dt ~ ~ L - i

Again, separating variables and integrating wc obtain

L - x  y/2 Lx - a;2
:dx - dt a n d --- ==—  = t + c i.

yjLg(2Lx-x2) .........  VLg

Since ;r(0) = 0. we have = 0 and \/2Lx — x2/ \fLig =  t. Solving for x we get

dt \/L - gt2
x(t) =  L — \JL"2 — Lgt'2 and v(t) = -77 = - •

b) The chain will, be completely on the ground when x(t) = L or /; =  y L /g .

(c) The predicted velocity of the upper end of the chain when it hits the ground is infinity,

(a) Let (x,y) be the coordinates of S2 on the curve CJ. The slope at (x.y) is then

dy/dx = (i'i t - y)/( 0 - x) =  (y - vi i)/x or xy' - y  =  -vtf.

ib) Differentiating with respect to a; and using r = t’i/ t ’2 gives

1 1 1 1  dt
xy +y -  y = - t ’i -7 - 

dx

„ dt ds
xy ■ — t1! — —  

ds d.x

- (- V i + W )
V-2

xy" =  r\j 1 + (yf)2.
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Letting u = ?/ and separating variables, we obtain

du 

dx

du r 2 
= r y l ^ 2

du r

7 T + 7  = ;

sinh-1 u — r In x + Inc =  ln(c.r')

u = sinh(ln cxr) 

dy 1 / _ 1

At t =  0. dy/dx = 0 and x =  a. so 0 = car — 1 jcar. Thus c = 1/7/ and

dy

dx
- )' - ( “-
a j \x

If r > 1 or r < 1. integrating gives

1 + r \aj

X\1+r

1 — r

1—r'
+ Cl.

When t = 0, y = 0 and x = a, so 0 = (a/2)[1/(1 + r) — 1/(1 — 7-)] + c\. Thus ci = arj 

and
1 x y + , . _ 1

1 - r

1—r
+

ar
r2 ■1 + r V a J

To see if the paths ever intersect we first note that if r > 1, then v\ > v2 and y —> oo as. . 

In other words. S? always lags behind Si. Next, if r < 1. then < v2 and y = ar. 

when x =  0. In other words, when the submarine’s speed is greater than the ship's, thc-i. 

will intersect at the point (0, arj(\ — r2)).

Finally, if r = 1. then integration gives

V
x? 

2a
■ In x + c2.

When t = 0, y =  0 and x = a, so 0 = (l/2)[a/2 — (1/a) In a] + c2. Thus C2 =  —(1 - 

1 7/)Inal and

V =
1 r*2 1 n 1 1 'a 1 1 '

-----Ill x ----111 a
2 a a ~ 2 .2 a “  2 .t e

2\ . 1 1 a a J H—  In — 
a x

Since y —> oo as x —*• 0+, S2 will never catch up with Sy.

ai Let (>\9) denote the polar coordinates of the destroyer Si. When Si travels the 6 n_;’

■ 9. 0) to (3,0) it stands to reason, since S2 travels half as fast as S i, that the polar co. - 

of S~2 axe (3,02); where 02 is unknown. In other words, the distances of the ships fr .
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are the same and r(t) = lht then gives the radial distance of both ships. This is necessary ii' 

S] is to intercept S-2 -

b) The differential of arc length in polar coordinates is (ds)2 = (rdff)2 + (dr)2, so that

'ds

dt
= r~

dd"

dt

Using ds/dt =  30 and dr/dt = 15 then gives

dt 

875

de

dt

V3

t

$(t) =  V3 In t + c = \/3 In ~  + c.
JLO

When r = 3. 0 =  0. so c = — \/31n i  and

Thus r =  3 e ^ 3: whose graph is a logarithmic spiral,

c) The time for Si to go from (9,0) to (3.0) = g hour. Now Si must intercept the path of S-2 

for some angle Q, where 0 < ,Q < 2ir. At the time of interception to we have 15̂ 2 = 3ed/v '3 or 

t =  The total time is then

( = I + 1 8/vf< l (1 + (!2,/V5).
5 5 5

rir.ee (dx/dt)2 is always positive, it is necessary to use \dx/dt\(dx/dt) in order to account for the 

: that the motion is oscillatory and the velocity (or its square) should be negative wrhen the 

-Ti'ing is contracting.

From the graph we see that the approximations appears 

to be quite good for 0 < x < 0.4. Using an equation 

solver to solve sinx — x = 0.05 and sinx — x = 0.005. we 

find that the approximation is accurate to one decimal 

place for 6\ = 0.67 and to two dccimal places for 6\ —

0.31.
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(b)
e

if

21. (a) Write the differential equation as

ci2# 2 • a 
-^2 + w sm 0 — 0,

where u>2 =  g/l. To test for differences between the 

earth and the moon we take I = 3, 0(0) = L and ̂ (0) =

2. Using g — 32 on the earth and g = 5.5 on the moon 

we obtain the graphs shown in the figure. Comparing

the apparent periods of the graphs, we see that the pendulum oscillates faster on the 

than on the moon.

(b) The amplitude is greater on the moon than on the earth.

(c) The linear model is

where u>2 — g/l. When g — 32, I =  3, 0(0) =  1, and 

0;(O) = 2. the solution is

0(t) =  cos 3.266£ + 0.612 sin 3.2661

When g = 5.5 the solution is

6(t) = cos 1.3542 + 1.477 sin 1.3541

As in the nonlinear case, the pendulum oscillates faster on the earth than on the moc:. 

still has greater amplitude on the moon.

22. (a) The general solution of

is 9(t) =  ci cos t + c-2 sin 1 From 0(0) = 7r/12 and 0'(0) = —1/3 we find

0(£) = (7t/12) cost — (l/3 )s in l
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I b) We set 9(t) = 6(0) + O'[0)t + ^ " ( 0)*2 + ^d"1 (Q)ts H-- and use 9"(t) = — sin 6(1) together wiri.

0(0) =  7 r /1 2  and <?'(0) =  — 1 /3 .  Then 

0 " (O )  =  - s i n ( 7 r / 1 2 )  =  -y/2 (>/3 - l)/4

and

f l " '( 0 )  =  -  cos 0(0) • 0'(O) =  -  c o s ( t t / 1 2 ) ( — 1 / 3 )  =  V 2 ( V $  +  1 ) / 1 2 .

Setting $(t) = 0 we have tan* = tt/4 which implies = tan 1 (tt/4) ~ 0.66577.

Thus

m 12 3 8 72

(c) Setting tt/12 — i/3 = 0 we obtain tj - tt/4 «  0.785398. 

id) Setting

12

1 V 2 (V 3 - l) ,

8
fz =  0

and using the positive root wc obtain t\ tv 0.63088.

(e) Setting

n 1 V2(\/3— 1) .2 , V2 (\/3 + 1) 3 

12 3 8 ' 'r 72

we find with the help of a CAS that t\ ~ 0.661973 is the first positive root.

(f) From the output we see that y(t) is an interpolating function on 

the interval 0 < * < 5, whose graph is shown. The positive root 

of y(t) = 0 near * = 1 is — 0.666404.

lg) To find the next two positive roots we change the interval used in 

NDSolve and P lot from {t,0,5} to {t,0,10}. We see from the 

graph that the second and third positive roots are near 4 and 7, 

respectively. Replacing { t,l}  in F indRoot with {t,4} and then 

{t.T} we obtain *2 - 3.84411 and *3 =  7.0218.

From the table below we see that the pendulum first passes the vertical position between 1.7 . 

1.8 seconds. To refine our estimate of 11 we estimate the solution of the differential equation 

i.i. 1.8] using a step size of h = 0.01. From the resulting table wc see that t\ is between 1..76 a:..' 

1.77 seconds. Repeating the process with h =  0.001 we conclude that t\ ~ 1.767. Then the period 

the pendulum is approximately 4*i =  7.068. The error when using t\ = 2tt is 7.068 — 6.283 = 0.7>” 

and the percentage relative error is (0.785/7.068)100 = 11.1.
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h=0.1 h=0.01

tn en
0.00 0.78540
0.10 0.78523

0.20 0.78407
0.30 0.78092
0.40 0.77482

0.50 0.76482

0.60 0.75004

0.70 0.72962
0.80 0.70275

0.90 0.66872

1.00 0.62687
1.10 0.57660
1.20 0.51744
1.30 0.44895
1.40 0.37085
1.50 0.28289
1.60 0.18497

1.70 0.07706
1.80 -0.04076
1.90 -0.16831
2.00 -0.30531

1̂1 en

1.70 0.07706
1.71 0.06572

1.72 0.05428
1.73 0.04275
1.74 0.03111

1.75 0.01938
1.76 0.00755

1.77 -0.00438
1.78 -0.01641

1.79 -0.02854

1.80 -0.04076

h=0.001
1.763 0.00398
1,764 0.00279
1.765 0.00160
1.766 0.00040

1.767 -0.00079
1.768 -0.00199
1.769 -0.00318

1.770 -0.00438

U . V; is is a Contributed Problem and the solution has been provided by the author of the problem.)

: a) The auxiliary equation is m2 4- g/t =  0, so the general solution of tlie differential equation

0(f) = ci cos t + oi sin ^  1 1.

The initial condtiou 0(0) = 0 implies ci =  0 and $'(0) = wq implies 0 2 =  . Thus.

&(t) = sin \/f

b) At 0njax, sin J g / i t  — I, so

a ___ It _  m> Vb ![ _  "lb Vb
max ^)\i g + y ^ /n,a, + TOft

and

t'6 =
mw + m.b 

nib
\j% 0inax-

• c) Wc have cos 0max = (£ — h)/f. = I — h/L Then
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Thus

m-w + vn, f— i 2h m.w + mb 
Vb= ■/«-. .

mb

(d) When ro/, = 5g, mw = 1kg. and h - Gem. wc have

1005

% n r 7nw - t m h r ~ r

vb =  -T"V/2(980)(6) ~ 21,797 cm/s.

S ft, since k =  4

2tt/5. since \x" + 6.25x = 0

5/4 m, since x = — cos 4/: -f | sin 4£

True

False; since an external force may exist

False; since the equation of motion in this case is x(t) = e~^(ci + ctf) and x(t) = 0 can have at

most one real solution

overdamped

From ;r(0) = (\f2/2) sin 6 - —1/2 we see that sin<J> = —l/y/2, so is an angle in the third or

fourth quadrant. Since x'(t) =  y/2cos(2t + <p)f x'(0) = \/2cos0 = 1 and cos 6 > 0. Thus <j> is in the

fourth quadrant and 6 = —tt/4.

y = 0 because A = 8 is not an eigenvalue

;j = cos 6x because A =  (6)2 =  36 is an eigenvalue

The period of a spring/mass system is given by T — 2tt/u; where J 1 =  k/m =  kg/W, where k is the 

spring constant, IF is the weight of the mass attached to the spring, and g is the acceleration due 

U) gravity. Thus, the period of oscillation is T — (2-ivj\/kg)\/W. If the weight of the original mass 

is W, then (2ir/y/Icg)VW - 3 and (2n/^/kg)VW ^S = 2. Dividing, we get V W /y /W ^8  = 3/2 

)i' W =  f (TT7 — 8). Solving for W  we find that the weight of the original mass was 14.4 pounds.

(a) Solving + 6:r = 0 subject to x(0) - 1 and .^(O) = —4 we obtain

x =  cos 41 — sin At = V2 sin (41 + Sn/4).

(b) The amplitude is \/2. period is tt/2, and frequency is 2/tt.
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(c) If x = 1 then t — rin/2 and t = — tt/S + mr/2 for n = 1, 2, 3, ... .

i. d) If x — 0 then t  = tt/16 + mr/4 for n — 0, 1. 2, .... The motion is upward for n eve:, 

downward for n odd.

i e) = 0

if) If x' = 0 then 41 3tt/4 = tt/2 + rar or t = 37r/lG + mr.

13. We assume that he spring is initially compressed by 4 inches and that the positive direction 

.r-axis is in the direction of elongation of the spring. Then. from, ^x" + |a/ + 2x = 0, a?(0) = -• 

e,r.d .r'(0) =  0 we obtain x =  -|e“2/ + ±e"4*.

14. From x" + fix' + 64a? = 0 we see that oscillatory motion results if (32 — 25C < 0 or 0 < ,8 < 1l

15. From mx" -f 4a/ + 2x = 0 we see that nonoscillatory motion results if 16 — 8m > 0 or 0 < m

I*?. From ja;/; + x! + x = 0. .r(0) = 4. and 2/(0) = 2 we obtain x = 4e-2t + 10te~2t. If xf(t) =  0. '

■ = 1/10. so that the maximum displacement is x = 5e-0,2 ss 4.094.

1". ‘Anting |a/' + |a: =  cos7* + sin7* in the form x" + T̂a? =  8cos7it + 8sin7* we identify J 1 = 

The system is in a state of pure resonance when 7 =  0/=  ^64/3 =  8/\/3.

15. C’.early xp =  A/uP suffices.

19. From ga/' + x' + 3x = e-t. x(0) = 2, and a?r(0) =  0 wc obtain xc = e~4i (ci cos2\/2i -f- C2sin2\ . 

- = Ae~l . and1 I

21. ■■ a) Let k be the effective spring constant and .ri and X2 the elongation of springs ki and ■

: b) From ki = 2W and k2 = 417 we find 1/A: - 1/2VF-M/4W = 3/4VF. Then k =  AW/3 = 4??;. 

The differential equation mx" + kx ~ 0 then becomes x" -j- (4g/3)x = 0. The solution is

restoring forces satisfy k\xi = ^ 2  so a?2 =  (k\/k‘2)xi. PVom k(x\ + ^2) =  k\Xi we have

A-i + k2 

1 1 1

k k 1 k2
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The initial conditions x(0) =  1 and x'(0) = 2/3 imply _ = 1

(c) To compute the maximum speed of the mass wc compute

x'{t) = 2y| sin 2^|  t + ~ eos2y'| t and |.r'(i)| =  y ■4 | + ^ | 3; - 1

From q" + 104g = 100 sin 501 g(0) = 0. and c/(0) = 0 we obtain qc = c-\ co* 1 — 

jy = i  sin 501 and

(a) q =  — sin lOOt + 4$ sin 501

(b) i =  — | cos 1002 + | cos 501 and

( c) q = 0 when sin 50t(l — cos50t) =  0 or t = nnjoQ for n = 0, 1, 2, ... .

i a) By Kirchhoff's second law.

L w +Rdl J r b q = m -

Using q'(t) = i(t) wc can write the differential equation in the form

L S  + Ri + d g - B(th

Then differentiating we obtain

_ d2i di 1 .. ,

L d f i+ R dt + C , =  E{t)-

lb) From Li'(t) + Ri(t) + (1 /C)q(t) = E(t) we find

Li' (0) + Ri( 0) + (1/C)q(0) = E{ 0)

or

Li'(0) + Ri0 + (l/C)q0 = E(0).

Solving for i'(0) we get

i'(0) =  ~ [fi(O) - i  go - Rio .

For A = a2 > 0 the general solution is y = ci cos ax + c-2 sin ox. Now

2/(0) — ci and y(27r) = ci cos 2itck + 0 2 sin 27ra. 

< 0 the condition ,y(0) =  y(2n) implies

C] = c\ cos 27ra + c% sin 2ttq- 

which is true when a = \f\ = n or A = n2 for n = 1, 2, 3, ... . Since

y - — ac\ sin ax + ac% cos ax : —nc\ sin nx 4- nc2 cos nx,
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wc see that ;i/(0) — nc-i = 2//(2tt) for n = 1, 2, 3. ... . Tims, the eigenvalues are n2 for n = 1. - 

3. ... , with corresponding eigenfunctions cos nx and sinn;/;. When A — 0, the general solution 

i) = cyx + C'2 and the corresponding eigenfunction is y = 1.

For A = —a2 < 0 the general solution is y =  cj cosh ax + C2 sinh ax. In this case y(0) ~ ci a 

7(2tt) = c\ cosh2-7ra -t- C2sinli27ra\ so y(0) - y(27r) can only be valid for a: = 0. Thus, there are . 

eigenvalues corresponding to A < 0.

(a) The differential equation is d?r/dt2 - J 2r = —g siii^'i. The auxiliary equation is m2 — J 2 = 

so rc -- c\ewt + A particular solution has the form rp = A sin -jjt + B cos u)t. Sub-'

tuting into the differential equation we find —2Aco2 sin cut — 2Bco2 cos cot = —gsiucot. TL' 

Z? = 0, A — g/2'J2< and rp = (g/2ui2) smcot. The general solution of the differential ec 

lion is r(t) = + C‘)€~xt + (g/2oj2) sm^t. The initial conditions imply ci + c-2 = ro 

g/2u> — cuci +ujc2 =  t’o ■ Solving for c,\ and C2 we get

ci = (2cj‘2rQ + 2-jjvq — g)/4co2 and c-2 =  (2J2ro — 2lovq + g)/4u>2,

so that
2uj2r0 + 2covq - g M  2u2r0 - 2wvq + g

C t" +
9

sin cot.
4!j02 ' 4i02 ' 2co2

(b) The bead will exhibit simple harmonic motion when the exponential terms are missing. So/ 

Ci = 0, c? =  0 for r\) and t’o wc find ro = 0 and vq = g/2d .

To find the minimum length of rod that will accommodate simple harmonic motion we t:-‘ 

mine the amplitude of r(t) and double it. Thus L = g/oJ2.

(c) As t increases. ew/ approaches infinity and e ~ ,jSt approaches 0. Sincc sin cot is bounded, 

distance. r(t), of the bead from the pivot point increases without bound and the distai- 

the bead from P  will eventually exceed L/2.

(d)

fe) For each vq we want to find the smallest value of t for which r(t) = ±20. Whether we L. 

r(t) — —20 or r(t) = 20 is determined by looking at the graphs in part (d). The tota. 

that the bead stays on the rod is shown in the table below.
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Chapter 5 in Review

Vo 0 10 15 16 .1 17

r -20 -20 -*20 20 20

t 1.55007 2.35494 3.43088 6.11627 4.22339

When t'o = 10 the bead never leaves the rod.

Valike the derivation given in (1) of Section 5.1 in the text, the weight, mg of the mass m does not- 

appear in the net force since the spring is not stretched by the weight of the mass when it is in the 

T-quilibrhun position (i.e. there is no mg — ks term in the net force). The only force acting on the 

::iass when it is in motion is the restoring force of the spring. By Newton's second law,

(fx k
■m —it =  —kx or —T -I-- x = 0.

dt dt1 m

The force of kinetic friction opposing the motion of the mass in /.iN, where /i is the coefficient of

sliding friction and N  is the normal component of the weight. Since friction is a force opposite to

:he direction of motion and since N is pointed directly downward (it. is simply the weight of the

mass). Newton’s second law gives, for motion to the right (V > 0) ,

2 , „

:-nd for motion to the left (V < 0).

d*x
m —tit = —kx — imiq. 

dt*

d?x

.traditionally, these two equations are written as one expression

d2x r / A
m + ^  sgn(x ) + kx =

where //,. = ftmg and

, j  1. x/ > 0 

Sgn(" ) =  i- 1 , z' < 0.
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6 Series Solutions of Linear Equations
Solutions About Ordinary Points

1. lim
2u+lx"-l /(n + 1)

2nxn/n
lim

2 n
-|z| = 2\x\

n->oc n -\-

The series is absolutely convergent for 2|x| < 1 or |:cj < The radius of convergence is R 

At x — — the series l)n/n converges by the alternating series test. At x = 3, the h

Y.^=i 1/n is the harmonic series which diverges. Thus, the given series converges 011 [—5,5).

100n+1(x + 7)n~l/(n + 1)!
lim

100” (x + 7)n/u\ n -I-11

The radius of convergence is R =  0 0 . The series is absolutely convergent 011 (—00,00).

3. Bv the ratio test.

lim
k—>DC

(x - 5)fc+1/10fc+i 1 .
= hm — \x

(x - 5)k/10k k—>3C 10
5| = ~ 5|.

The series is absolutely convergent for — 5| < 1. j;?: — 5| < 10. or on (—5,15). The rad: 

convergence is R. = 10. At x = —5, the series (—l) fc(—10)&/10& = 1 diverges by tli-.- 

term test. At x =  15, the series HfcLi(—l)A10fc/10fc =  £feLi(—l) fc diverges by the nth term 

Thus, the series converges on (—5.15).

00. x 7̂  14. lim.. I (k + l)!(x — l)k+l
lim ---tt;----tt--
.v—rsc-j k\(x — l)k

The radius of convergence is R = 0 and the series converges only for x = 1.

= lim (k + l)|.r - li =
k—>00 I (}. x = 1

:r3 xQ x‘
5. sm*cosa:= . r - - +12Q ^

;r4 ■v.6
1 - - - - --  -|-

2 24 720

x.2 X4
~X COS X — 1 — X -S- ^ ----- ~  +  T T  —

I 2 6 24

x2 a:4 \ x'* x4

Y + 24- '" j = 1 - x  +  T ~ T

2x’Jj 2 x 4.r 

= X 3~~ + ”l5"~~ 31T

+ . . .

1 1 5.r4 61a:6

COS X 2 4 6 
1 x , ar x" ,
1  -  T  +  I T  _  6 T  +

■ 1" Y  + '4T + 6!

Since c o s ( tt/ 2 ) = cos(—tt/ 2 ) = 0, the series converges on (—tt/2, tt/2).

274



Exercises 6.1 Solutions About Ordinary Points

. 1 — x 1 3 3 2 3>, ---------- — -----------T -I------ r  — -----
2 + x 2 4‘ 8 16''

Sinco the function is undefined at x = — 2, the series converges on (—2.2). 

/. Let k — n — 2 so that n = k — 2 and

nc„x"+2 = '52(k- 2)ck_-2:rk.
«=1  A—3

. I . Let k =  n — 3 so that n =  + 3 and

£  (2n - l)c„.x«-3 = £  (2k + 5)ck^ v k.
n=3 fe=0

^  2nc„xu 1 + ]T 6c„xTt+1 =  2 • 1 • c ^ 0 + 2ncnxn ~1 + j r  6cn;crt+1
■i=l n-=0 n=2 «-=0

A.-— n— 1 k=n+\

OC oc= 2ci + £  2(A< + l)cA-+iarfe + ^  6cfc_irc/>'
ft=i  A— l

— 2ci + [2 (k + l)c/|._i + Gcfr-i]^ 
fc=i

£  ra(ra - l)cnxn + 2-J2 n(n - l)c„xn-2 + 3 ]T nc-Tl.?;n
■;=2 n=2 «=1

OC- oo oc
ncnxn

r i= 2 r/,=4  n=2
= 2-2-lc.2.r° + 2 • 3 - 2c3;ia + 3 • 1 • Clx' + £  n(n - l)c„xn +2 ]T n(n - l)c„,xn-2 +3 £

fc ~-n. fe=n—2 At—??-

oc oc oc
= 4c2 + (3ci + 12cs):r + ^  fc(fc - l)cA.:r/,: + 2 + 2)(k + l)cfc+2xfc + 3 fccfc.xfc

k=2  k=2  h=2
oc

k— 4c*2 -+- (3ci + "1 2c;3)x + [(fc(fc — 1) + ik)C}- + 2(A- -r 2)(fc + l)Cju_2]̂
hi=2

= 4c2 + (3ci + 12^3)x + [A?(A; + 2)q. 4- 2(fc + 1)(A; + 2)cJiu_|_2ĵ ^
k=2

oc

£  (- l)n+1:rn“\ /  =  2  (-1)?<+1 (« - l)a?K
ri~ 1 n=2
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Exercises 6.1 Solutions About Ordinary Points

(* + 1 ) /  + y’ =  (x + 1) £ )  (- l)"+1(n - 1)*"“2 + E  (-1)”+V *“ ‘
n=2 n=1

OC oc oc

= E t - 1)" " 1̂ - - + E ( - 1)"+1(n- - l )x1l~2 + £ ( - i ) n+,®n_1
n=2 ■n=2 n =  1

oc DC OC
= —;c° + ,t° + (- l)n+1(n - l)xn_1 + £  (—l)n+1(n - I)®”" 2 + £  (- l)n+1.

U = 2  7 7 . - 3  ? ? , =  2

fc=n—1 k=n— 2

oc DC

h=n—1

- £ ( - l ) * +2fcc* + E ( - l ) fe+3(fc + l)a’fr + 53 (- l)*+2a?A

oc

k=1 A-=l

= £  [(-l)&+2fc - (-1 )k+2k - (- l )k+2 + (- l)A'+2j xk =
k=1

1 , / _  y -' (—1)”'2ti 2??.—l // _  y -  (—l ) ” 2n (2n  — 1) o»-2  

_  i= i 22,1()i!)2 * * - ........... .

xy" + y' + xy = £
(__l )K2n (2n  1) v 2 n - i  j_  v '  ( l ) ft2n ^ 2n -i y -  ( l ) n ^Sn+i

x
y .   ̂ 2«-l , y-

22”(n!)2 +ir o 22nN )2

k .= n k=n A:=n—'l

=  E
fc=l

oc

= E
fc=l

(—l) fc2fc(2fc - 1) (—l) fc2A’ (- 1)
fc—l

22A(A*!)2 

(—1)*‘(2A;)2

22*(fc!)2 1 22*-2[(Jfe - l)!]2 

(- 1)*

;r, 2 f c -

= £ ( - D
fc=1

22*(fc!)2 22fc-2[(fc-i)!]5 

(2A;)2 - 22A;2

^ - 1

o2A.-a.n2 .r2fc“ ' = 0

15. The singular points of (x2 — 2b)y" + 2xy' + y = 0 are —5 and 5. The distance from 0 to e::.. 

these points is 5. The distance from 1 to the closest of these points is 4.

16. The singular points of (x2 — 2x + 10)yw + xy' — Ay =  0 are 1 4- Zi and 1 — 3i. The distance 

to either of these points is \/IO. The distance from 1 to cither of these points is 3.

IT. Substituting y = Y^Lq cnXn into the differential equation we have

y" ~  xy - £  n(n -  l)cna;,t 2 - £  cnx'l+l = £  [k + 2)(A: + l)ck+2xk -  £  ck- \ x :
71=2 n=0 A’=0 k=l

k = n —2 

oo

k=n+1

=  202 +  E  [(* + 2)(A. + l)c*+2 -  Ck-i]xk =  0. 
fe=i
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Thus

O2 = 0

( k  +  2 )( fc  +  l)C fc j-2 — (:k—1 =  0

Exercises 6.1 Solutions About Ordinary Points

and

Choosing cq =  1 and ci = 0 we find

C3 = 6

C4. =  =  0

06 = ISo

and so on. For co = 0 and ci = 1 we obtain

C3 =  0 

1

C i  ~  12 

Cs =  Cq =  0

°7=  504

and so on. Thus, two solutions are

W = 1 + r 3 + IiOlli + '" “ d W = 1' + ^ +  554i7 + " "
Substituting y = (‘nxn into the differential equation we have

OO OO oc OO

y" + x2y =  n(n - l)cnxn~2 + c , , ^ 2 =  J ]  (A- + 2)(* + 1)^+2-/ + c*-2**
n=2  n= 0 fc=0  A-=2

A:=n— 2 fc=n+2

oc

=  2c-2 +  6C3X  +  ^  [(k +  2)(k +  l)cft+2 +  c/j_ 2]xfc =  0. 
k=2

Thus

C2 = C3 = 0 

(A: + 2)(& + l)c:fc+2 + ck~ 2 =  0

and

Ĉ 2 =  _ (A; +  2)(A: +  l ) Cfc~ 2! ^  =  2 ’3 ’4 ’- ■ • •
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Exercises 6.1 Solutions About- Ordinary Points

C'lioosing c:q — 1 and c\ = 0 we find

C ,= _ l2

C5 =  Cq =  C 7 =  0

C8 =  672

and so oil. For co = 0 and c.\ = \ we obtain

c.\ — 0

1

C5 =  “ 20

CQ =  C7 =  eg =  0 

1

1440

and so on. Thus, two solutions are

*  =  a , ld  3/2= *  -  s * 5 +  l a o *9 -  ■ ■ ■

9. Substituting y = Y,n=l) cn%n into the: differential equation we have

y" - 2xy' + y = J 2  n(n - l)c„xn_2 - 2 £  ncnxn + £  ctkxn
n= 2  i i — 1 0

...  J  ̂ v “ ^
k = n —2 h = n  k—n

OC oo oc
= + 2)(̂ ': + l)ck+2xk ~ 2 k.CkXk + ^  Ĉ iT̂

A.=0 A:=l fe=0

=  2c.‘2 +  l ) efc-i-2 — (2A- — l)cfc]:r* =  0.
A-=l

Thus

111(1

2c2 + Co = 0 

(* +  2)(fc +  l)cA:+2 - (2A;-l)c* =  0

1
C2

2k — 1

C,0+2 =  (fc + 2)(fc + l) Ck> k =  1? 2’3>'' 
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Exercises 6.1 Solutions About Ordinary Poii:>

~";:oosing co = 1 and ci = 0 we find

c'4 =  "8

1

7
co =

240

:-::d so on. For cq = 0 and c\ = 1 we obtain

C2 =  c  4 =  ce =  • • ■ =  0

1

1 

I  

1

C 7 = m

C3 6

C5 24

-;vd so on. Thus, two solutions are

w = 1 _  - X -  - g* - — x - • • • and y2 = X + -X + -X- + — *•

. Substituting y -; I^Lo  cnZn iuto the differential equation wc have

u" - xy' + 2y - Y , n(n - l)cnXn~2 - ncnxn + 2 cnxn
n=2 n=l n—0^  ̂  ̂ >• V >•

. :ius

.-.nd

k —n —2 k = n  fc=n

(A* + 2) (A- + l)cjfc+2s* - J2 kck'xk + 2 S  c‘fe;rfc
A;=0 A;=l Jfe=0

OC

2c2 + 2cq + 5Z [(̂  2) (A; ■*" ^)cA;+2 — (A’ — 2)ĉ ]:cfc = 0. 
fc=l

2c2 +  2co =  0 

(A- + 2) (A- + l)c>+2 ~ (A' — 2 )(■:/,, = 0

C2 =  -C o

Ck+2 =  {k + 2)(k + l) Cfc’ k = 2; 3? • • • •
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Exercises 6.1 Solutions About Ordinary Points

Choosing cq = 1 and c\ = 0 we find

For cq = 0 and c\ — 1 wc obtain

C'2 = --1

C3 = C'5 =  C7 = • • • = 0 

('4 — 0

<"'6 ”  8̂ = CJ.0 = ’ ' ’ = 0. 

C‘2 ~  C4 =  Cq =  • ■ • =  0

cr, = 120
and so on. Thus, two solutions are

2 1 * 1 -  
yi = l - x  and y2 = x -  ~x' - — ar°--- .

21. Substituting y — cnxn into the differential equation we have

y" + x2y’ -f- xy = ]T n (n ~ nCnXn+1 + £  c„,rri+1
n—2 n — 1 n =0

Thus

k —/ —2 A.’—71 ~I— 1 k‘—f 1

= + 2)(k + l )ck+2Zk + Y .(k ~ 1)(‘k-rxk + J2  Cfe_i:xk 
k=0 k=2 A;—1

— 2c-2 + (6c‘3 + c‘o)it’ + ^ 2 [(A’ + 2)(k + 1)(-a-+2 + A:c _̂i]a,fc =  0 .
k=2

C-2 — 0 

6c;j + C() =  0

(k + 2)(k + l)c/~+2 + k-c'k l = 0

and

C-2 =  0

C3 = ~ rc0
6
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1

C* = -6 

C.'l -  C5 = 0 
1

- -7Z
4o

and so on. For co = 0 and ci = 1 we obtain

c3 = 0

1

C1 = " 6

Exercises 6.1 Solutions About Ordinary Points

Choosing co = 1 and c\ = 0 wc find

cr, =  cq = 0

CJ 252

•aid so on. Thus, two solutions are

i  ^ H , 1 6 i ^ 4 • ^  7

+ 45* - -  and w = ^ 252*

Substituting y = c"x" ^lto differential equation we have

OC OO OC

y" -I- 2:ry' + 2y = £  n (n — l)cnxn~2 + 2 £  ncnxn + 2 £  °nXn
n=2 n=l n=0

A:=n—2 k=n k—?7.

"Xi oc oc

= £  'r 2)(A’ + l)cfc+2^ + 2 £  kc.kXk + 2 £  CfcE*
A;=0 fc=l fc=0

= 2c2 + 2co -r £  C(̂  2)(A: + l)c^_2 + 2(A- + l)cfc]:û  = 0. 
fc=l

Thus
2c2 + 2co = 0 

(.k + 2 )(k + l)cfc+2 + 2(k + l)c* = 0

C-2 = —Oo

c/,--r2 —  ̂9 Cfc, A: = 1.2,3,... .
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Exercises 6.1 Solutions About Ordinary Points

Choosing co = 1 and c\ = 0 we find

02 = -1

— Cf, =  C-7 — • • • =  0 

1

C1 = 2
1

6

and so on. For Cq = 0 and c\ = 1 we obtain

c2 =  c4 = ce = • ■ ■ = 0

C3 =  - 3

c'5 15

C7

2
4-

4

8

105

and so on. Thus, two solutions arc

1 4 1 6 i 2 o 4 x 8 <r
yi = 1 - ar + -x4 - -x6 + •• • and y2 = x - -xA + — xa - —  x‘ + - • • .

2 6 3 15 105

23. Substituting y = Z)nLo cnxn into the differential equation we have

OC OC OG

(x - 1 )y" + y' = Y I n (n - l)<vrr'_1 - £  n{n - 1 )cnxn~2 + ^  nc-nX71-1
n—2 n—2 7i=l

r?, — 1 k = n —2 A:= 77- — 1

=  5 3  (fe +  l)Acjfe+ia:* -  j^ (k  + 2)(k +  +  X ) ( fc +

Thus

and

— —2c‘2 + ci + 52 [{k + 1) A- 1 — (k + 2)(fo + l)c*;+2 + {k + 1)c/h-i 
fc=i

—2c-2 + ci = 0  

(k + l)2Cfc+i — (k + 2) (A: + l)qu+2 =  0

1
C2 = -Cl

k + 1 , 1 0 0 
°k =  /■> _(_ 9 c*^l> k ~ lj 3... . •

282



Exercises 6.1

Choosing co = 1 and a  = 0 we find C2 = C3 = c.\ — • • • = 0. For c,. = •! : : =

1 1
> =

-nd so on. Thus, two solutions are

C2 =  C3 =  C4 =
2 3 4'

yi = 1 and yo = x + -̂x2 + + ^a;4 H-- .
2 o 4

Substituting y = X ^ o  cn^n into the differential equation we have

DC OC OC- OC

(x + 2)t// + xy' - y = J 2  n(n - l)cnxn_1 + ]T 2n(n - l)c„2;n_2 -f 53 ncn®n - X] c"r "
n= 2 •n= 2  n=.l n=0>------ v------ ' '------- -̂------' v-------/ v-- v-- /

k = n — 1 k = n —2 k = n  k —n

O C O C OO X

“ 5 3 + l)Acfc+ia:fc + 53 2(A; +  2)(A: + l)c*;+2®fc + 53 — XI '
fc=i fc=0 fc=l A-=m

=  4^2 —  co + 53 + l)A"Cfc+j + 2{k 4- 2){k + l)cfc+2 + (k — 1 ) c.‘a- .t" ; 

k-i

. :;us

4c2 — co =  0

(k -f l)fccfe+i + 2(k + 2)(k + l)cfe-i-2 + (A — l)cfc =0 , k = 1, 2, 3, ...

1
02 = 4C0

(ft +  l)fec&+1 +  (fc -  l)cfc 0 

°*+ 2 ---- 2(* + 2)(* + l)--- ' -.........

nosing co = 1 and ci =  0 we find

c i= 0, C2 = -, C3 = — 24-’ C4 =  0’ C5 =  480 

. i so on. For co = 0 and c\ = 1 wc obtain

C2 = 0

cs = 0

C4 =  C5 =  cG =  • • • =  0.

:.7.s. two solutions are

1 « 1 1 . i
and 1/2 =  c\x.V\ = co

1 1 9 I 'i 1 r>
1 + 4r - 5 ^  + m x +
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Exercises 6.1 Solutions About. Ordinary Points

25. Substituting y =  cn'̂ n into the differential equation we have

OC OC1 o c  o c
y" -  (x + 1 )y' - y = ]T n(n - 1 )cnxa~2 - ]T ncnxn - ncnxn_1 - £  CnXn 

71=2- n=l n= 1 /?•—0 V ^ V s ------ ' >--- -'

Thus

and

k = n —2 k —n k ~ r i— 1 k = n

Y ,  ik +  2) (k +  l)ck+2xk ~  J2  ***** ~ J 2 (k +  1 )cfc+i xk -  E  ckx>'
k -  0 A—l k= 0  k=D

2C2 — c i  — co +  £  [(A; 4- 2 ) ( k  +  l)c / ._ 2  — ( k  +  l ) c ^ + i  — (A: +
k=l

2C2 — Cl — Co =  0

(A’ + 2)(A: -j- l)c*+2 — (k + l)(c*;+i + c&) = 0

Cl f  co
C-2 = 2

_ C&+1 ”1” j 1 O o
“ +2 - k + 2 ■- k = L2 ’ i .......

Choosing cq = 1 and ci =  0 we find

1 1 1

°2 ~~ 2’ -  q-.
01 = 6

1 we obtain

1 l 1

C’2 ”  2'
C3 =  2 ,

°4 ~  4

and so on. Thus, two solutions arc

1 9 1 -j 1 a 1 2 1 , 1 4
y1 = l + -x‘J 4- -ar + -af H---- and y2 = x + -x2 + -x* -x4 +

26. Substituting y = 2 ?̂Lo cnx11 into the differential equation we have

•oo -oc oc-(V2 + l) y" - 6y = J2 n(n - l)cnxn + £  n(n - l)cnxn~'2 -  6  £  cuxn
71=2 71=2 71=0

k=n k=n—2 k=n

= Y . H k - t)ck.xk + £  (* + 2)(k + - 6 5Z ckxh 
k=2 k~ 0 k= 0

oc

=  2c2 -  6c*o +  ( 6c*3 -  6c i)rc  +  £  [(V2 -  k  -  6)  ck +  ( k  +  2 ) ( k  +  l j c ^ l  .*
k.= 2



Exercises 6.1 Solutions About Ordinary r

Thus

2 c 2 . —  6 c o  =  0  

6c3 — 6ci = 0 

(k — 3)(k + 2)c& + (k + 2) (ft 4- l)c -̂+2 = 0

and

02 = 3co 

C3 =  Cl

ck+2 = - ■T̂ry fc = 2 .3,4,... .
Choosing co =  1 and ci = 0 we find

C2 =  3

C3 =  Co =  C7 =  • • ■ =  0 

C4 =  1

1
C6 — T

o

And so on. For cq — 0 and c\ = 1 we obtain

C2 = C-4 = C6 =  • • • =  0

C3 =  1

C5 =  67 = 09 =  • • ■ = 0.

Thus, two solutions are

1
Vi — 1 + 3x2 + rc4 — -x6 H--  and y2 = x + x*.

5

I". Substituting y =  X^Lo cn.rn into the differential equation we have

(x2 + 2)y" + Sxyf — y = 52 n(n — 1 )cnxn + 2 52 n (n ~ l)cnXn~2 + 3 52 ncn^n — 52
n=2 n=2 n-=] n=:‘

/c=??, k = n —2 At=/a

00 00 OC- 00

=  52 - i)cfc£c* + 2 53 (& + 2)(* + + 3 13 kckzh - 53 ckxk
k=2 &=0 fc=l A;=0

OC

fc=2
— (4c2 — cq) + (12c*j 4- 2ci)x 4- + 2)(& + l)c/-_j_2 — 1̂  * x ' —‘ 2
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Thus

4c2 — co =  0 

12c3 + 2c\ = 0 

2{k + 2)(k + l)ck+2 + (jfe2 -i- 2k - l) ck =  0

and
1

0 2  =  j C Q  

1
Cs =  -~c 1 

6

i„2 0 7._ 1

Cfc+2 = ~2(fc + 2)(fc + 1) fc =  2-M .......

Choosing co = 1 and ci =  0 we find

1

fl2 = I

C3 = C5 = C7 =  • • • =  0

_ _ 7 _

04 ~ _  96

and so on. For co =  0 and c\ =  1 we obtain

C2 — C4 =  C(j =  • • • =  0 

1
03 =  - g  

°5 =  120

and so on. Thus, two solutions arc

, 1 9 7 4 , 1 , 7 5

»' =  1 + i x' ~ w x + ' "  and V2 = x ~ r '  + m x' -■■■■

2S. Substituting y =  cn%n into the differential equation we have

oc oc 00 oc
(ar2 - l) y" + xy' - y =  53 n(n - 1 )cnxn - 53 n(n - l)cnxn~2 + £  ncnxn - £  cnxn

77-=2 n= 2  n = \  n = 0

k—n k —n —2 k —n k—n

oo oc oo oo

= 5 3  _  - 5 3  (fc + 2) (a + 1)ck+2xk + 5 3  kckxk - 5 3  Cfca-*'
fc=2 k=0 &=1 fc=0

k
=  ( - 2C2 -  co) -  6c3x  + 53 [“ (* + 2)(k + l )ck+2 + (k2 -  l) ck

2
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Exercises 6.1 Solutions About Ordinary Points

Thus

and

—2c2 — Co = 0 

—6C3 - 0

— (k -+- 2)(k + l)Cfe+2 + (k — l)(k + = 0

C2 = — 2C()

C3 =  0

k ~ 1 ,
C*+2 = ^ 9  Ck'‘ k = 2’ 3? 4;

Choosing co =  1 and ci =  0 we find

1
C2 -  —2

C3 =  (‘5 ~  c7 — ‘ ‘ • =  0 

1

Q = “ 8

and so on. For cq — 0 and ci =  1 we obtain

c-2 = c,i =  ce =  • ■ • — 0

C3 = C5 = C7 =  • • • = 0.

Thus, two solutions are

1 1
2/1 = 1 — -x2 - -x4---  and jfe = s.

Substituting y = Y.^=q cr,xn into tlie differential equation we have

•oc oc oc oc

(x - 1 )y" -xy' + y =  Y  n (n ~ 1 )cn®"_1 - Y  n(n ~ )̂(-'nXn~2 - Y  ncnxn + Y  cnx
,n

__
n=2 n=2 n=1 n—0

fc=7i—1 k-n—2 k~7i k~n
OC OO OO o o

= Y  _  53 + 2)(^ + 1)ck+2Xk - Y  kck%k + Y  ckxk
k—i k=0 k= 1 k~0

o c
— —2c2 + co + Y  (k + 2)(k + 1)^+2 + (k + l)kck+i — (k — 1 )ch\xk = 0. 

fc=l

Thus

—2c2 + co = 0
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—(k + 2)(k + l)cfc-i.2 -f- {k + l)/ccfe+i — (k — l)cfc = 0

Exercises 6.1 Solutions About Ordinary Points

and

C 2 = 2Co

_  kck+1 _  (k - l)ck 

k+2 k + 2 (jfc + 2)(fc + l) ’

Choosing cq — 1 and C] = 0 we find

1 1
C2 =  j ,  C3 =  z , C4 =

and so on. For cq = 0 and ci = 1 we obtain c2 = C3 =  C4 =  • • • =  0. Thus;

y = Ci ^1 + ]̂ x2 + jU '3 H-- j  + C2x

and

1/  = Ci '̂x + -x2 + • • + C2.

The initial conditions imply C-\ — —2 and C2 — 6, so

y = — 2 ^ x2 + ^.r3 + • • + 6x = 8x — 2ex .

30. Substituting y = cnxn into the differential equation we have 

(x+l)yH - (2 - x)y' + y

O C O C O C OO OO

- Y  n (n - l)cn^n-1 + Y  n(n - l)cnxn~2 - 2 Y  ncnxn~l + Y  ncnxn + Y
n=2 n=2 n= 1 n= 1 ri=0
s------ v------ ' '------ V------ ' v--- -

k=n~l k—n—2 k=n—1 k—n k=n

O C OC OO o c  oc

= Y  + l)h ck+ixk +  Y i f t  + — 2 £  (fc -f l)cjk+ixfc + Y  kckXk + Y
k= 1 fc=0 A;=0 fc=l k= 0

oc-

= 2c2 — 2cj + co + £  [(A; + 2)(A: + l)cfc_j-2 — (^ + l)c^+i + (k + 1 )c^xk = 0. 
fc=i

Thus

2c2 — 2ci + Co = 0 

(k -j- 2) (A; + l)cfcj-2 — (k + 1 )cfc_|_i + (A; + l)c£ = 0

and
1

C-2 = Cl ~ jCq

c*+2 = ^ T 2 ':*+1“ fcT2c'!• * = 1 -2' 3.......
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Choosing co = 1 and c\ — 0 wc find

02 = - 2 ’ C3 =  " 6 : C'1 = 12'

and so on. For cq = 0 and c\ — 1 we obtain

oi = 1, C3 = 0. C4 =  —
4

and so on. Thus,

y = C\ (1 - ~.x2 - + ~.'c4 H-- j  + C-2 (a + x2 - ^x4 + ■

and

l/ = C i(- z- | .T 2 + ^c3 + ---) i-C2(l + 2x-x3 + •••). 

The initial conditions imply C\ =2  and C2 =  — 1, so

y = 2 {l ~\x2-\x* Jr ^ ;r4 + ‘ " )  ~ (x + x 2 -\x4+---

= 2 - x - 2 x 2 - + ^-a:4 H-- .
O 1Z

Substituting y = X ^ o  cnXn into the differential equation we have

00 00 oc

y "  -  2x y '  +  8y  =  5 3  n (n  ~  l ) cn.£n_2 -  2 5 3  n c ux n  +  8 5 3  c /i .'Cn
j?.=2 /t—1 n=0

Thus

And

k —n —2 A’—rt fc=rc

53 (fc + 2) (fc + l)cjfc+2.x& - 2 53 *Cfcit:fc + 8 53 Cfc®*
fc=0 Ar—1 /c=0

OC
2c2 + 8co + 51 [(k + 2)(* + l)ck+ 2  + (8 - 2k)ck]xk = 0. 

fc=i

2C2 "I- 8co — 0 

(fc + 2)(fc + l)Cjfc+2 + (8-2fc)C* = 0

C-2 =  —4Co

2(fe - 4) t  =  1 9 o
'*+2 (A: + 2)(k + 1) 'fc: 1>2>3--
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Choosing cq = 1 and c\ = 0 we find

C2 =  “ 4

c3 =  C5 =  C7 =  • • • =  0

4
3

C6 = C8 = CiQ = • • • =  0.

C4 =  —3

For cq =  0 and c\ =  1 we obtain
C2 =  C4 =  c6 =  • • • =  0

C3 =  -1 

1

05 ~  10
and so on. Thus.

and
y — Ci ^1  -  4 x 2 +  ^ x 4 j  +  C-2 ( x  -  x 3 +  ^ x 5 H-------^

y' = Ci 8x + y x 3) + C2 ( l  - 3x2 + ^x4 + ■••).

The initial conditions imply C\ =  3 and C2 = 0 , so
y =  3 ( l  -  4x2 + f*<) =  3 -  12x2 +  Ax4.

32. Substituting y = CnXn into the differential equation we have
OC OC OC'

(x2 +  1 )y" +  2xy' =  52 n(n ~ l)cn^n +  52 n(n ~ l)cV̂ ' n_2  +  52 2ncnx7
n=2 n=2 n= 1 
 ̂ ..  ̂■■■ —.....  ̂ N ------ ' s--- ----

Thus

k—n k=n—'2 k—n
OC 'OC o c

= 52 k(k - 1 )ckxk + 5 2 (A: + 2)(k + 1 )c ^ 2xfe + 52 2kckxk
k= 2 fc=0 A;=l

00
= 2c2 +  (6C3 +  2ci)x +  5 2  +  1)CA: -r (  ̂+  2)(fc + l)cfc+2]x  ̂=  0 .

fc=2

2c2 =  0 

603 2c.t =  0 

k(k +  1 )ck + {k, +  2)(k + l)ck+2 =  0
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and

c2 = 0

C3 =  - 3C1

Ck+2 —
k

Ic + 2
ck: k = 2, 3, 4, ... .

□loosing Co = 1 and ci =  0 we find C3 =  C4 = eg = • • • = 0. For co = 0 and c\ — 1 we obtain

1
03 - -3

C4 =  cq =  eg =  • • • =  0 

1
C5 =

5

C7
1

-.rid so on. Thus

y = Co + C\ (ar -  | x 3 +  gar5 -  ± x 7 +

y' =  ci ( l — x2 + ar4 — x6 H-- ) .

The initial conditions imply Co = 0 and ci =  1, so

1 o 1 er 1 7
y = *  -  r +  s 1 ' ■  r + ' " -

Substituting y — Y,^=q cnxn into the differential equation we have

QO / I  ”1
y" + (sin x)y = £  n(n - l)c„.xn_2 + (re - -x3 + — a;5 - • co +  C \X  +  C2X '

+ cox +  Ciar +  ( c2 -  -cq ) X' -t-=  2c2 +  6C3X +  12c4X 2 +  2OC5X3 H-------

=  2c2 + (6c3 -f- Cq)x + (12C4 + Ci)x2 + ( 2OC5 + C2 -  ^Co^ x3 H---=  0.

_ r.us

2c2 — 0

603 + co = 0 

12c4 + ci = 0

20c5 +  C2 -  ^ c o  =  0
6
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and C2 = 0

1
C3 - -gC0

1
C4

= “ I2 C1

1 1
C5

=  “ 20C2 + 120C°‘

Choosing cq =  1 and c\ = 0 we find

1
C‘2 — 0. C*3 = — —. C'4 =  0. C-} =

6 120
and so on. For cq =  0 and ci = 1 we obtain

C2 =0, e3 = 0, c4 = - — , c5 = 0

and so on. Thus, two solutions are

1 o  ̂ 5
V\ = 1-- z -I--- x° +y 6 120

1 4
and y2 = x-  — x* +

34. Substituting y — 2i£Lo °n^n into the differential equation we have

OC

» n -2y" + exy! - y = £  n(n - l)cnxr
n = 2

i i

n=0
+ ^1 4- x + —x2 + —a;0 + • • • j  ^ci + 2e2&‘ 4- 3c3£2 + 4c*4X̂  + • • •'j —

]
2” ' 6

2c2 + 6c3.r + 12c4.-r2 + 20cr);r'{ + •

+
1

C\ + (2c2 + Ci)x -f ( 3C3 + 2c2 + ~ci) x2 H-- -  [cq -f Cl X + (>2X2 +

= ( 2c2 + c i  — cq) + (6c3 + 2c2)x + ^ 12c4 + 3c3 + C2 + = 0.

Thus

2c2 + Cl — Cq = 0 

6c3 + 2c2 = 0

12C4 +  3C3 +  C2 +  ~C\  = 0
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and

C 2 =

2C0" 2
Cl

1
C 3 =

“ 3C2

1 1 1
C 4 = - 5 C 3  +

12C2“*24C1

Choosing cq = 1 and c\ = 0 we find

1 1 n
2 6

and so on. For co = 0 and cj =  1 we obtain

1 1 1 
C2 =  - 2 '  C3 = 6 ’ C“ ”  _  24

and so on. Thus, two solutions are
1 9 1 3 I 0 I 3 I 4

yi = 1  + 2® -g® +*•• and m = x ~2 ^  2A

The singular points of (cos x)y" + 1/  + 5y = 0 are odd integer multiples of tt/2. The di> 
J to either ±7t/2 is tt/2. The singular point closest to 1 is tt/2. The distance from 1 to 

singular point is then tt/2  — 1 .
Substituting y = On%n hito the first differential equation leads to

OC- OC OO o c
y" -  xy =  Y  n ( n  -  1 )cnxn~'2 -  ] T  cn * n + l  =  Y ( k  +  2 ) ( k  +  l ) ck+'2Z k ~  Y

n—2______ ^ ^  n-0 k=0 k=l

k—n—2 /c=n+l

oc-
=  2c2 + Y  P  + 2)(fc + l ) c k+2 - ck-i]xfc =  1. 

k=1

j. mis

r.lid

2C2 = 1

(A: + 2)(ft + l)cjfc+2-cA-_] =0

1

C 2= 2

Cfc+2= (* + 2)(fc + l ) ’ fc = 1*2.3----
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Let cq and ci be arbitrary and iterate to find

C2 2
C3 = tQ)6

C<= 12Cl

C'5 20C2 40

and so on. The solution is
1 2 1 3 1 4 1 

y = c0 + c\x + -x + qCqx + ~ cix  + — c5 + • • •

=  C0( l + l I 3 + . . . ) + c l( I  + ^ , c-1 + . . . ) + l a:2 + ^ 5  +

Substituting y =  cn'xn into the second differential equation leads to
OO OC o c

y" - 4xy' - 4;y = 53 »(« - l)cnxn-2 - 53 4ncnxn - 53 4cnxn
n = 2  n = l  n = 0s------  ------ " "--- -̂-- ' >-- -'

k—n—2 k = n  k—n

OC o c

= 5 3 0  + 2)(k + 1)ofc+2̂ fc - 5 1 4kckxk - 53 Ackxk fc=0 fe=l k = 0

= 2c2 - 4c0 + f )  [(k + 2) (k + l)ck+2 - 4 (k + l)c*]z*
k = \

o o 1

= t

Thus

and

2c2 - 4co = 1 

(k + 2) (ft — l)cj;.|_2 4{k + l)c& = —

2̂ — 2 + 2co

c‘ +2 =  (jfcT2)T + kT 2 Ck' ,£= 1 ' 2^
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let co and ci bo arbitrary and iterate to find

1
C2 =  ^  +  2 c0

1 4  1 4  

C3“ 3! + 3C l“ 3! + 3Cl

1 4  1 1 ,  13

C4 = 4! + 4C2 “  4! + 2 + 0 “  ¥  + 0

1 4  1 4 16 17 16
C5 — 77 + -C3 — fT + z— 7̂ + ttC i — T7 + — Ci

5! o -5! 0 • 3! lo o! 15

1 4 1 4-13 8 261 4 

C6 “  6! + 6Cl _  6! + 6^4! + 6°° “  ~Sf + 3 ^

1 4 1 4-17 64 409 64 

C7 - 7! + 7C'5 - 7! + 5^5! + Ws"1 “  I T  + MS*

-:id so on. The solution is

V = co + C1X + ( i  + 2 m y  + ( |  + ic ,) * 3 + ( |  + + ( i[  +

/261 4 \ 6 /  409 64 . ,

+ ( lT  n i T  + IM *1'*  +

= CO 1 + 2x2 + 2x4 + +
O

+  C1
64

X  +  — T3 +  —  ~7
l " 15 105

x +

1 9 1 3 13 4 17 5 261 6 409 7 
+ 2'T' + 3Tt + 4!* + 5T + lT 'r + 1T :C +

*Ve identify P(x) = 0 and Q(.r) == siiix/x. The Taylor series representation for sin.r/$ is 1 — rr2/3! + 

. ’ ''5! — • • •. for |x| < oo. Thus, Q(x) is analytic at x = 0 and x = 0 is an ordinary point of the

i.ffercntial equation.

1: x > 0 and y > 0. then y" = —xy < 0 and the graph of a solution curve is concave down. Thus, 

■viiatever portion of a solution curve lies in the first quadrant is concave down. When x > 0 and 

. < 0 , y" = —xy > 0, so whatever portion of a solution curve lies in the fourth quadrant is concavc

"-D.
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39. (a) Substituting y =  Y^^=q ̂ nXn into the differential equation we have

OO CK) OC'

y" + xy + y = 53 n(n ~ l)cnxn~2 + 53 ncnxn + 53 CnXn
n = 2 n = l  n =l} ^

k—n—2 k—n k=n

oc oc oc

= J2(k + 2)(k + l)ck+2xk + 53 kckxk + J2 ckxk 
k= 0 A:=l fc—0

OC
=  (2c2 +  co) +  5 3  I(^  +  2)(fc +  1)c/-4-2 +  (k +  l)cfc]xfe =  0. 

k= 1

Thus

and

2c2 + co =  0 

(k + 2)(k + l)Q;+2 + (k 1 )c£ = 0

C2 = ~ 00 

Cfc+2 =  k = 1-2,3,... .

Choosing cq =  1 and c\ — 0 we find

C2 = "2

C3 =  C5 =  Cq =  • • • =  0

l ( 1
04 4V 2) 22 • 2

___ L _
°6 6 2̂-2 • 2' 23 - 3!

and so on. For cq = 0 and c\ = 1 we obtain

c2 =  c4 =  c6 =  ■ • • =  0

Cs~ ~ 3 ~  ~3!

I f  I n  1 4 - 2

05 “  “ 5^ 3' _  5 • 3 ~ ~5T 

1 / 4 - 2 n 6 - 4 - 2  

°7 ~~7^~5i~^ ~ 7!
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and so on. Thus, two solutions are

k=Q ■2k ■ kl
and

oc ,9Jk+1

(•>) For y\, S3 = S2 and S5 ~ S4 , so wc plot 5V S4, Sq, S&, and Siq.

The graphs of y\ and y2 obtained from a numerical solver arc shown. We see that the partial 

sum representations indicate the even and odd natures of the solution, but don’t really give a 

very accurate representation of the true solution. Increasing N to about 20 gives a much more 

accurate representation on [—4.4].

(d) From ex — Y,bLtiXk/kl we see that e~x2/!2 ■ £j£L0(—:r2/2)fc/&! = Y3?=o(—])k3?‘k/2kk\ . From 

(5) of Section 4.2 we have
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»- h / t * " ^  ^  f ^  =

_  y  (- 1)* 2 k [ y~ _ J_  2 t d = ( y  (~1)t ( y  [ —  x2!-dx

~ h **« J k ^  Is 2 *« )  \ t J  ,

X,2fc+li £ w ^ t ? 0 (2 ,+i»«
= (1 - 5-t2 + W~2xl - P ^ 1’6 + • • ')  (X + 3V  + 5 ^ 2 x5 + 7 ^ 3 ! 17 + '

2 3 4-2 5 6-4-2 7 ~ (-
= x - ^  + — x' - — =i~x +-" = T .T ‘ X2k+l

3!" -5! *' 7! " £To (2/c +1)!

0. (a) We have

y" + (cos x)y =  2c2 + 603,7: + 12c±x2 + 20csrr3 + 30ce^4 -t- 42c7£5 -1--

9 4

+ (1 - + ĵ- - ^  H---) (co + CiX + C2X2 + C3Z3 + G[X4 +  Cr>X5 +

=  (2c2 + co) + (6C3 + ci)a? + (1204 + C2 -  ^co)*2 + (20c5 + c3 - ^ci):r3

1 1  1 1  
+ (30ce + C4 + — cq — -C2)^4 + (42c7 + C5 + — cj — H-- •

Then

30cg + Cl + ^co  - -C2 =  0 and 42c7 + eg + ^ c i  - ^c3 =  0, 

which gives cq = —co/80 and c7 = — 19ci/5040. Thus

i«W  = i - ^ 2 + ^ 4 - ^ e + ---

and
, , 1 3 1 , 19 7

■mix) = x — -x + — x — ■ -x + • • • . 
y w  6 30 5040

(b) From part (a) the general solution of the differential equation is y = c\y\ + 0 2 1)2 - 

y(0) = ci + C2 • 0 =  Ci and y’(0) =  ci • 0 + C2 =  C2, so the solution of the initial-value prob



Exercises 6.2 Solutions About Singular Po::::?

fd) y

Irregular singular point: x = 0
Regular singular points: x =  0 , —3
Irregular singular point: x =  3; regular singular point: x =  — 3
Irregular singular point: x =  1: regular singular point: x =  0
Regular singular points: x = 0, ± 2z
Irregular singular point: x = 5 ; regular singular point: x =  0
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7. Regular singular points: x = —3, 2

8. Regular singular points: x = 0, ±%

9. Irregular singular point: x — 0; regular singular points: x — 2. ±5

10. Irregular singular point: x — —1; regular singular points: x = 0, 3

11. Writing the differential equation in the form

// 5 , x

*  + 'J + 7 T I 'J  =  0

we see that xq =  1 and xq = — 1 are regular singular points. For xo = 1 the differential cquati 

can be put in the form

(x - 1)V  + 5(* - IV  + s(* - ' )2 y =  0.
X +  1

In this case p(x) = 5 and q(x) = x(x — I )2/(x + 1). For xq = —1 the differential equation can 

put in the form

(x + 1 )2y" + 5(x + 1)X + ] y' + x(x + 1 )y = 0.
x — 1

In this case p(x) — 5(x + l)/(x — 1) and q(x) =  x(x + 1).

12. Writing the differential equation in the form

y" + y' + 7 xy = 0
x

we see that xo =  0 is a regular singular point. Multiplying by x2. the differential equation ca:. 

put in the form

x2y" + x(x + 3 )y' + 7x3y — 0.

We identify p(x) = x + 3 and q[x) = 7x3.

13. We identify P(x) ~ -5/3x + 1 and Q(x) =  —l/3x2, so that p(x) = xP(x) = | + x and q\. 

x2Q(x) = — g • Then ao = | , bo =  — | , and the indicial equation is

r(r _  1) +  _  I  =  r 2 +  _  I  =  i ( 3r2 +  2r -  1) =  ^(3r -  l)(r +  1) =  0 .
The indicial roots are j  and —1. Since these do not differ by an integer we expect to find two - 

solutions using the method of Frobenius.

14. We identify P(x) = 1/x and Q(x) = 10/x, so that p(x) =  xP(x) =  1 and <?(x) = x2Q(x) = 

Then ao = 1- bo = 0. and the indicial equation is

r(r — 1) +  r = r2 =  0 .
The indicial roots are 0 and 0. Since these are equal, we cxpect the method of Frobenius to y: 

single series solution.
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Substituting y — cnxn+r into the differential equation and collecting terms, we obtain

OO

2xy" - y' + 2y = (2r2 - 3r) c0:r'r_1 + 53l2(*' + r ~ l )(k + r)ck - (k + r)ck + 2cfc_1]xfc+r_i = 0.
fc=i

which implies

2r2 -  3r =  r(2r -  3) =  0

and

(k + r) (2 k + 2r — 3 )ck + 2c£—i =  0.

The indicial roots are r =  0 and r =  3/2. For r =  0 the recurrence relation is

_  2Cfc_i

C,!_ k(2k~3)'-

-.nd
4

Cl =  2C(). C2 =  —2co, C3 =  -Co,

.-.nd so on. For r = 3/2 the recurrence relation is

:-.::d

Ci =  - i 00’ C2 = 1 " ° ’ c» = “ d s ’’'0’

-„:.d so on. The general solution on (0, oo) is

4V
r.ibstituting y — en.xn+r into the differential equation and collecting terms, we obtain

2xy" + 5y' -r xy = (2r2 + 3r) cq.t7'-1 + (2r2 + 7r + -5j ci:rr

OC

+ 53[2(fc + r){k + r -  1 )ck -r 5(k + r)ck + ck-2]xk+r 1 
k=2

—i ch implies

2r2 + 3r =  r(2r + 3) = 0,

(2r2 + 7r + 5) a  =  0,

(k + r)(2k + 2 r + 3 )ck + cfc_2 = 0. 
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The indicial roots axe r — — 3/2 and r = 0, so c\= 0 . For r =  —3/2 the recurrence relation i

Ck-2

(2k -  3)k k = 2.3A.
and

1 n 1 
C 2  =  - p C Q ,  C * 3  =  0 ,  C l  =  — C o ;

and so oil. For r = 0 the recurrence relation is

Cfc-2

k(2k + 3)
. k =  2 ,3 ,4 ,...,

and

C2 = “ 77c0: C3 = 0. C4 =  7^7 Co;
14 616

and so on. The general solution on (0, oo) is

v = Cyx-V* ( l  -  i * 2 + + . . . ) +  C2 ( l  -  + J j x *  + . . . )  .

17. Substituting y = cn..xn4"'r into the differential equation and collecting terms, we obtain

oci / 7 \ . 00 r i
4 ^ /  + + V = ( 4r2 - - r ) c0xr~1 + ]T 4(fc + r)(k + r -  1 )ck + -(k + r)ck + c*_i

fc=i
a;

= 0,

which implies

and

4r* _  r — r { 4r _  ] — o

-(k + r)(Sk + 8r - 7)ck + ck-i = 0.

The indicial roots are r = 0 and r = 7/8. For r = 0 the recurrence relation is

2cfc-i
Cfc =

fc(8fc - 7)
k =  1.2 ,3 , . . . ,

and

ci =  -2co,

and so on. For r = 7/8 the recurrence relation is

Co,
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and so on. The general solution on (0, oc) is

9 = C1 ( l- 2 ^  + ^ 2- ^  + . . ) + C 2̂ 8 ( l - | ;C + s| x 2- i ^ x 3 +

IS. Substituting y =  2Zj£=o Cn%n+r into the differential equation and collecting terms, we obtain 
2x2y" — xy' + (z2 + l) y = (2r2 — 3r + l) cqxt 4- (2r1 + r) c\xr+1

+ Y [2 (fc + r)(k +  r -  l)cfc -  (fc +  r)ck +  ck + ck- 2}% 
k=2

fc+r

= o,

which implies
2 r2 — 3r + 1 =  (2 r — l)(i—  1) =  0, 

(2r2 + r) ci = 0,

and
[(k + r)(2k + 2r - 3) + 1 }ck + ck-2 = 0.

The indicial roots are r =  1/2  and r  =  1, so ci =  0. For r =  1/2  the recurrence relation is
*  =  y  *= 2 .3 .^ .- - .

and
1 n 1

c2 = —pQ), C3 = 0, C4  — -r̂ zCO,
6 168

and so on. For r =  1 the recurrence relation is 

and
C2 =  -^C0, CS =  0, ^  = 3̂ 0, 

and so on. The general solution on (0,00) is
y =  ClX' »  ( l  - ix-2 + 4 ' 4 + " ') +  ( J - ^  + 3̂ 4 + " ' )  '

1 Substituting y = cnxn+T into the differential equation and collecting terms, we obtain
3xy" +  (2 -  x)t/ -  y =  (3r2 -  r) c\yxr~1

+  Y (3(fe + r - l) ( k  + r)ck + 2(k + r)ck -  (k + r)cfc_ i]x"1 ’ 
fc=i

fr-rJ-1

= 0,
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which implies 

and

3 r'2 — r =  r(3r — 1) =  0

(k + r)(3k + 3r - 1 )ck - (k + r)ck_i =  0.

The indicial roots arc r = 0 and r = 1/3. For r = 0 the recurrence relation is

Ck
Qfc-i 

3k — 1
k = 1 ,2 ,3 ,...,

and

ci = -cq. C2 =  - c o ,

and so on. For r =  1/3 the recurrence relation is

and

ci =  ^ cq, C3 162co,
1 1 1
3C0, C, =  - C Q ,

and so on. The general solution on (0. oc) is

» = c1(i + 5 * + ̂  + ̂  + -) + ĉ l/3(i + i:c + Bl 2  + ikI, + -)-
20. Substituting y =  cnxn+r into the differential equation and collecting terms, we obtain

x2y" - (x - - )y = [ r

=  0,

which implies

and

2 \  00 r 2
2 -  r +  -  ) c.q x t + J2 (k + r)(k + r -  1 )c& + ^ ck - c*_i

r2 _ r + i = ( , . _ | ) ( r _ i ) = 0

X
,/c-hr

(k + r)(k + r — 1) + - Ck ~ Ck-1 = 0.

The indicial roots are r = 2/3 and r = 1/3. For r — 2/3 the recurrence relation is

3cfc_ i

and

Ck. =

Cl =  |Cq ,

3 k2 + k
, k = 1 ,2 ,3 ,...,

9

C2 = 56°"’ C3 560Q)’

and so on. For r =  1/3 the recurrence relation is

3cfc_i
Ck =

3 k2 — k
, k — 1 ,2 ,3 ,...,
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and

C1 = 2°“’ C2 = 20CO' C3 = 160°°’

and so on. The general solution on (0. oc) is

,  = C ^ '3 (l + \t + | * 2 + ^  + . . . )+  C2*>/3 (l + §x + | * 2 + JL*  -  ■
Substituting y = cnxn+r into the differential equation and collecting terms, we ob

•OC

2xy" - (3 + 2x)y' + y = (2r2 - 5rj c0xr~l -f 5^[2(ft -h r)(k + r - l)ck
k=i

- 3(ft + r)ck - 2(ft + r - l)cfc_ i + cfc_ 1]:rA'+r_1

= 0,
which implies

and

2r2 - 5r =  r(2r - 5) = 0

(ft + r)(2ft + 2r - 5)c* - (2ft + 2r - 3)c*_i =  0.

The indicial roots are r = 0 and r =  5/2. For r = 0 the recurrence relation is

r _  (2 ft 3)cfc_i 12 3
ft(2ft — 5) !

and

ci ■ -co, C-2 =  -rQ): C3 == --co,
3 6 6

and so on. For r = i5/2 the recurrence relation is

2(ft + l)c*;_
cjb =

and

. _  2(ft + i;cfc_i , _  7 9 „ 

* k(2k + 5) ’

Cl =  C2 =  - c ,  C3 =  —  op,
39

! =  7 ^ c0> c3 =

and so on. The general solution on (0. oo) is

\ „ q/9 4 4 o 32
: Xy = C\ ( l  + \x - \x2 - -i-- ) + C‘2 Xbf2 f  1 + ^x + ^-x2 + ^  ~’5 '

3" 6 6 ) - \ 7 21" 693

Substituting y = c„.a-rH‘r into the differential equation and collecting terms, we ob

x2y" + xy' + (x2 ~ ^ j y =  (V2 - ^ j  coxr + (r2 + 2r + 0  cia.,r+1

+ J2 ik + T)(k + r ~ + (k + r)ck ~ Qck + Ck-2 | 
k~2 L y

= 0 .
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which implies

r2 - 5 =(r+D(r-!)=o’
r2 + 2r + - ) Cl = 0,

and

(k + r)2 -
9J

Ck + Ck-2 = 0.

The indicial roots arc r = —2/3 and r = 2/3, so c\ = 0. For r =  —2/3 the recurrence relation >

9c/c-2

; 4)

and
3 ^ 9

C2 = — C3 - 0; C4 = yTjgCOj

and so on. For r = 2/3 the recurrence relation is

9Cfc-2 

" 3k(3k + 4)
Ck /c =  2.3,4.......

and

6'2  = “ Sj"0’ C3 =  ° ’ C4 = d i o " 0’
and so on. The general solution on (0, oc) is

* -  ( '  ~ r 2+ i s * ‘ + - ) + c - 2/31 1 - 1 * 2+ m **+ ■ •) ■•

23. Substituting y = I^Lo cn^rt+r into the differential equation and collecting terms, we obtain 

9x2y" + 9x2y' + 2y — (9r2 — 9r + 2) coxr

+ £ +  r)(^ + r ~ l)cfc + 2ck + 9(fc + r — l)ct_i]xfc+r 
fc=i

= 0,

which implies

and

9r2 — 9r + 2 = (3r — l)(3r — 2) =  0

[9(k + r)(k — r - 1) + 2]ck + 9(k + r - l)cfc_i = 0.

The indicial roots are r = 1/3 and r = 2/3. For r =  1/3 the recurrence relation is

(3A - 2)e*_1
ck —

k(3k - 1)
, k — 1,2,3,
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Cl = “I <So’ C2 = r ° ’ C3 = ' I S " 0'

and so on. For r = 2/3 the recurrence relation is

(3fc - l)cfc_i 

t(3fc + l) ’

and

and

ci - — ttCo, c2 =  — co- c3 =  - — co,
2 - 28 ° 21 

and so on. The general solution on (0, oo) is

= c,***fl - l-t + - tL*3 + ...UC*&*(l-i* + - i*3 +
?y V  2~ ' 5" 120" ' J ' V  2" ' 28” 21

-4 .  Substituting y = cnxn+r into the differential equation and collecting terms, we obtai:. 

2:r2y" -f 3;r*/ + (2x — 1 )y = ^2r2 + r — l) co.xr

OC

+ 5 3 l2(fc + r ) ( k + r  _  + 3(fc + r )c^ -  Cfc + 2cjt_i;.r'- 
fc=l

= 0,
■vhich implies

2r2 + r -  1 = (2r -  l)(r + 1) = 0
.^d

[(& + v){2k + 2r + l) — ljCfc -j- 2cfc__i = 0.

The indicial roots are r = — 1 and r = 1/2. For r =  — 1 the recurrence relation is

C* = ~ k(2k — 3) 5 * = 1’2>3’ ---

\r_d
4

ci - 2co; C2 =  — 2co, C3 =  —r?o,

d so on. For r = 1/2 the recurrence relation is

Cfc =  ~k(2k + 3) : fe=1>2’3*--*’

2 2 4
Cl =  “ CO; C2 =  — Co- C3 =  - — Co,

5 3o 94o

::.i so on. The general solution on (0, oo) is

y = Ci;r_1 f 1 + 2x - 2a;2 + ^a:3 H-- ) + C2a;1/2 f l  - ~ +
\ 9 / V 0 35 94-5
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25. Substituting y = cn%n+r into the differential equation and collecting terms, we obtain 

xy" + 2y' — xy = (r2 + r) coX'r_1 + (r2 -1- 3r + c\xr

Exercises 6.2 Solutions About Singular Points

+  Y  P  +  rKk +  r  “  iJcjfe +  2(k +  r)°k - Ck-2]x 
k—2

k-rr—1

= o,

which implies

r2 + r = r(r +1) =  0. 

(r2 + 3r + 2) c\ — 0,

and

(fc + r)(k + r + 1 )ck - cfc_2 = 0.

The indicial roots are r\ =  0 and r2 = —1, so c\ — 0. For r\ — 0 the recurrence relation is

and

k = 2 ’ ^

°2 = 2[Co

C3 =  Co — C7 =  • • •  =  0

1
C4 — —.CQ 

o!

C2n ~ (2n + l) !Co'

For r‘2 =  — 1 the recurrence relation is



The general solution 011 (0.00) is

1

x

1

oc 1

,t=6(2n + i)! + C2 Z
1 .,2/;

r^(2™)f

=  — [Ci sinh x + C2 cosh a:].
x

. Substituting y =  Y1̂ =q cnxn+r into the differential equation and collecting terms, we obte.::

2„// _i_ _i_ (  ̂  ,, _  f r2 _  C();rr _j_ fr2 + 2r + 7^ ci2'r+1x*y" + xy' + ( x- - - ) y

which implies

and

X  r 1
+ Y , (k + r)(ft + r -  1 )ck + (ft + r)ck - -ck + ck._2 .r 

fc=2 L
=  0,

r2 “ s = (r“§)(r+i ,=0’
r2 + 2r-h 0  ci = 0,

(ft + r f  - Ck + ck-2 — 0.

The indicial roots are r\ = 1/2 and r2 = —1/2, so ci — 0. For ri =  1/2 the recurrence relat

Cfc-2

and

C4 =  ^ 0

(_l)n 
c2n = ,n__ , -mQ)-

(2n + 1)!

For T'2 = —1/2 the recurrence relation is

ck — ~TTT~~̂7\ ’ ft = 2,3,4,.
ft(fc - 1)
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and

C2 = -yCQ

C3 =  Cg =  Cf =  • ■ • =  0

C4 =

—
(-1)"
(2n)!

C o -

The general solution on (0, oc) is

V = £
(- 1)" 

(2« +1)!

oc /_i\ n

= CiT-1/2 V  __
1 k c n  + iy.

X2n +  C 2Z-l/ 2 £
(- d >

n=0 (2^ )!

*2”+i + C2*-1/2£
( - ! ) * >

(2w)!

=  x~1/2 [Ci sin x  + C2 cos :r].

27. Substituting y = cn^n+r into the differential equation and collecting terms, we obtain

OC

x y "  - x y '  + y =  ( r 2 - r) Co;cr_1 +  £ ] [(k + r  + 1 )(fc  +  r ) c *:+1 - (fc +  r ) c k +  c k] x k + r  =  0 

which implies

k=0

r 2 — r  =  r ( r  — 1 ) =  0

and

(k + r + l)(k -j- r)cfc-|-i — (k + r  — l)c& = 0.

The indicial roots are r\ = 1 and t 2 =  0. For ri =  1 the recurrence relation is

kck

Ck+1 (k + 2){k + l ) 

and one solution is y \  =  cq x .  A second solution is 

- J - l d x

, * = 0 ,1 ,2 ,...,

y2 = xJ ̂ 2 --dx = XJ ̂ 2 dx = xj  ̂ 2 + x + \x* + ̂  ’ ’) dx
r (  1 1 1 1 1 9

=  X j  ( —  H---------h -  +  7Tix  +  — X" -f------- ) d x  =  Xx 2 x  2 3! 4!

x ia x - i + l xi + ± x* + ± x*

1 9 1 3 +  In x  — —x  +  — x" +  — x  +
1

2* 12 72

The general solution on (0, oc) is

y = Cix + C2y2 {x).
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Substituting y = X T̂=o cn^,n+r into the differential equation and collecting terms, we obtain 

y" -f —y' — 2y =  (V2 + 2r) cor/;7 _2 + (r2 + 4r + 3) C]_xr~1

OC-

+ S  P  + r)(fc + 7’ - + 3(fc + r)cfc - 2cfe—2]5c*'*"r“2
k=2

Exercises 6.2 Solutions A .'. :.- S :

= 0,

“'liich implies

r2 + 2r =  r(r + 2) =  0

(r2 + 4r + 3) cj =  0

(k + r)(A' -+■ t + 2)ck — 2c^_2 =  0.

riie indicial roots are ri =  0 and r?. = —2, so ci ~ 0. For ri =  0 the recurrence relation is

2Cfe-2
c-k =

k ( k  -|- 2)
, A: = 2,3,4.

C2 = -gCo

C3 = C5 = C7 =  • • • =  0

C4 = 48 C°

<‘6
1.152

Cq-

"_1t result is

ircond solution is

/■ e~ f (3 / x )d x dx

f  I f  -i 1 9 ^ 4  6 \= " J *T(T+Jx~+ A 4 ‘ / 3 (* " r  + 48" + 57<f +-J■)

I / 1 1 7 19 3 i ,
= y i l { J j - T X + T&X -576X +■"]<** = !«

1 M n r + V  19 ,r ^
~~ 2a^ _  2 96 _ 2^04i  T

= “ 2^11 w  + y
1 7 2 19 4
-a + - rrz^x  +

2a:2 96' 2.304
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y = Ciy](x) + Ckwix).

29. Substituting y = cnxn+r into the differential equation and collecting terms, we obtain

Exercises 6.2 Solutions About Singular Points

The general solution on (0. oo) is

xy11 + (1 - x)y - y = r2c0xr 1 + [(A: + r)(k + r -  1 )ck + (k + r)ck - (k + r)c*_i]x'
;,—i

which implies r2 — 0 and

(k + r)2cfr - {k + r)ck-i = 0.

The indicial roots are n  = =  0 and the recurrence relation is

<* =  -y 1 , fc =  1,2,3.......
k

fc+r—1

One solution is

Vi = cq (1 + x + -x + H-- ) — (%ex.

A second solution is

- f ( l / x - l ) d x  f e T . / x  .  1 ^

S/2 = V i J --- ----- dx = e J -jSrdx =  e J  xe dx

da;

- e* I In x — re + - g T g j Z 3 +  • • • = e* In x - ex £
00 f _]_)«+1 

n • n!. *“■
n = l

The general solution on (0, oo) is

4- d o t *  ( In r -  V  {
n • tt!

l_1 VH-1 >

ln ;r- E  3;n
n= l

30. Substituting y — cnxn+r into the differential equation and collecting terms, we obtain

OC

xy" + y' + y = ■r2coxr~1 + [(& + r)(k + r - l) cfc + (* + r)ck + cfc-i]xfc+r_:l = 0
*=i

which implies r2 =  0 and

(k + r )2cj~ + Ck-i = 0.

The indicial roots are ri = =  0 and the recurrence relation is

* = 1,2,3,

One solution is



Exercises 6.2

■ /(l/.E)<£r
dx = vt I — 

dx

A sccond solution is

/• e' J ' f a.r
y-2 =  y\ / --------2—  dx =  vi / —------------ ;----------:---------------5

' x f 1 — ;r + i r 2 —

^  x (l — 2x + if.r2 — |;r3 + ^ . r ’1 — • • •) 

f 1 /, n 5 o 23 .. 677 4 \ ,
=  y iJ - ( l  + 2x + -x + T *-+ 288* + " 7 dT

y/1  5 23 <) 677 3 \ ,

= n j { * + 2 + 2x + -93r + ™ *  + '- ')d*

= yi
5 9 23 3 677 4 

lna: + 2x + -ar + — x’ + j j ^ x + ■ 

* ^ 2 , 23 3 , 6 7 7  4
= yi In x + yi ^2a; + -x + — x* + 3^52 + ‘ " )  ‘

The general solution 011 (0. oc) is

V = Ciyi{x) + C2?/2(*)- 

Substituting y = SjSzO c«rr”’+r i11̂0 the differential equation and collecting terms, we obtaii.

OO
xy" + (x - 6)y' - 3y = (r1 - 7r)co.xr_1 + ^  [(A- + r)(A~ -f- r - l)cA; -f- (k + r - 1 )q._:

fe=i

- 6(fc + r)cfc - 3c&_ 1]x-fc+r"~1 = 0,

which implies

r2 - 7 r =  r(r - 7) =  0

and

(fc + r)(Ai + r - 7)c* + (A- + r - 4)c*_i =  0.

The indicial roots are ri = 7 and ro — 0. For ri = 7 the recurrence relation is

(A* -j- ()kc,k -r (fc + 3)c£_i =  0, /c — 1,2 ,3 ,... ,
or

Ck = ~ W V T )ct~1' k =  1’2’3’ - --
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Taking cq 7̂  0 we obtain

ci = --co

C‘) =  — Cn 
18 U

C3 =  — 77CO.
6

and so on. Thus, the indicial root r\ = 7 yields a single solution. Now, for =  0 the recurrci: 

relation is

- 7)ck + (k - 4)cfc_x =0 , k = 1 ,2 ,3 ,....

Then

and

—6ci — 3co = 0 

-10C2 - 2a = 0

— 12C3 — C‘2 =  0

-12C4 + 0C3 = 0 = *  C4 =  0
— IOC5 "I” C.'l : 0 Cg = 0

—6cg + 2co - 0 Co = 0 

Oct + 3q> = 0 ==>■ C7 is arbitrary

c t  =  ~ k ( r = j ) c t - ' ’ * - 8 - 9 - 1 0 -

Taking cq 7̂  0 and 07 = 0 we obtain

1

1
<

1 

2(

c-4 = c5 =  ce = ■ ■ ■ = 0.
314
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ci =  02 =  Oi =  C4 =  C5 =  Cq =  0

C8 = ~\c,

Taking co = 0 and c? 7  ̂0 we obtain

C 9= 36°7

do =  - 3JO7, 

and so on. In this case wc obtain the two solutions

Vl — 1 — + ~ x 2 — — x3 and y2 = x' — ^or8 + ~ x 9 — -^zX10 -- .
y 2 10 120 ,y 2 36 36

12. Substituting y = cn '̂n+r into the differential equation and collecting terms, we obta:

x(x - l)y" + 3?/ - 2y

OC

—  ^4r _  coXr~ L +  £  [(ft +  r -  l)(k +  r —  12)cjt_i -  (ft +  r)(k. +  r —
fc=1

+ 3(k + r)cf. ■ 2c^_i]a:A' ' r 1

= 0,

viiich implies

and

4 r — r1 = r( 4 — r) = 0

—(Ar + r)(ft + t — 4)ck +  [(A; +  r — l)(ft + r — 2) — 2]c£_ 1 — 0. 

The indicial roots are r\— A and r2 = 0. For ri = 4 the recurrence relation is

— (ft + 4) Are*; +  [(ft -i- 3)(ft + 2 ) — 2 ]c ^ _ i  = 0

or

Taking co 7̂  0 we obtain

Ofc =  — 7— C jfc-i, ft =  1 ,2 .3 ,... .

ci 2co 

c2 ~ 3c0 

C3 = 4c0;
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and so on. Thus, the indicial root ri =  4 yields a single solution. For r? = 0 the recurrence relt 

is

—k(k — 4)c/p + k(k, — 3)ck_i =  0, k — 1 ,2 ,3 ,...,

—(k — 4)cft (k — = 0, k = 1,2 .3 .... .

or

Then

and

3 c i  — 2 c q  =  0  

2c2 -  c i  =  0

C3 H- 0c‘2 = 0 =£• C3 = 0

Oc‘4 + C3 = 0 =i> c-4 is arbitrary

ct =  (* 7 % -‘ , * - 5 ,6 ,7 ,. .. .
k-A

Taking co 7̂  0 and c.\ =  0 we obtain

2
ci = -co 

1
C2 =  3C0

c/i =  ('4 =  C5 =  • • • =  0.

Taking cq = 0 and C4 /  0 we obtain

Cl =  C2 =  C3 - 0

Co =  2 c4

Cq =  3C4

c- = 4c4,

and so on. In this case we obtain the two solutions

2 1
yi = 1 + -x + -x2 and y% = x4 + 2xa + 3rc6 + Ax7 +

33. (a) From t = 1/x we have dt/dx = — 1/x2 = —t2. Then

and

dy _  dy dt ^  dy 

dx dt dx dt

ify  _d_ ( dy\ _d_ / 2 dy\ = 2 Sy  dt̂  _  dy f  dt\ _\&y_ 9 3 dJ l

dx1 dx I dx) dx I d t) dt2 dx dt \ dx) dt2 dt
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Exercises 6.2

4 d2y . \ 1 (ri d<2y 10+3 dv\ , * _  d2y , 2dy , \  _  n
1 d7‘ +Xy~ ¥  * d f i+2t d i ) +Xy~ W  + ~tdi.+Xy~ 0

becomes

(b) Substituting y = SjJLo cntn+r into the differential equation and collecting terms, we obtain 

t + 2 -rjj; + Aty =  (r2 + ?’)c(jtr 1 + (•/•“ + 3r 4- 2)ci£r

+ 1(̂  + '̂ )(A- -i- r — l)c-fc + 2(k + r)cfc + Aq._2]*'’’H 
k=2

k~\-v—1

= 0.

which implies

r2 + r = r(r -f 1) = 0. 

(r2 + 3r + 2) d  = 0,

and

(k + r)(fc -+- r + 1) Cfc + Ac^_2 — 0.

The indicial roots are rj =  0 and r2 =  — 1, so c\ = 0. For r\ - 0 the recurrence relation is

°k =  ~k{k+\) ‘ fc = 2’3*4*---

and
A

c2 = - ^c °

3̂ =  C5 = c7 = ' • • = 0 

A2
C4  = ttCq 

0!

\n

C2n= (- 1 )” ( 5 m ) ! <:o'

For r2 =  — 1 the recurrence relation is
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(

34. (.

and
A

02 = -jjCD

03 =  C5 = C7 = • • • = 0

A2
C4 =

The general solution on (0, oo) is

v ( t ) = C 1 5  (£^('/It)2”+C2rl S w (Vl‘)!'

= -[Ci sinVXt + C2 C0sVAt]. 

z) Using t — 1/a;, the solution of the original equation is

y(x) =  CiX sin + Cox cos
x x

ji) Prom the boundary conditions y(a) =  0, y(b) =  0 we find

„  . V a „  Va
Ci sin--- h Co. cos —  = 0

a a

„  . V\ vx .
Ci sm —— I- C2 cos =  0. 

b b

Since this is a homogeneous system of linear equations, it will have nontrivial solutions for 

and C2 if

. V a V a
sm —  cos —

a a

V a Va
sm cos ——

0  b

. Va Va Va . Va
sin--cos —---cos---sm ——

a b a b

. ( Va VA\ . (  r-b-a
= 0.
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Exercises 6.2 Solutions About Singular Points

This will be the case if

or

or. if

An —

/— mccib rnrab ,
v A = ;---= ——- . n = 1, 2,

b — a L

•n27r2a262 Pnb4

L2 E l '

The critical loads arc then Pn = n2w2{a/b)2EIo jT?. Using C2 — — C\ sin(\/A/a)/cos(\/A/«) 

we have
. v f t  s i n ( \ / A / a )  a/ A '

y = Cia; sm - cosyr—‘ V̂V-ZO
£ cos (v A/a) ^

= C3/

= C3X sin a/A ( — — ,

Va Va Vx . >/a
sm —  cos----cos —  sm---

x a x a

x a

and

yn(x) = Csx sin
nnab / I 1 \ . rnrab (a  \ . mrab /\ a=  C 3 X S ill — —  ( -------1 J =  C 4 X sm — ;—  I 1

L \x a La \x

b) When n =  1, b =  11, and a = 1, we have, for 

C4 = 1,

yi(x) = resin I.Itt (\ — —
\ x

T.. express the differential equation in standard form:

y’" + P(x)y" + Q(x)y‘ + R(x)y = 0.

r.;pposc xq is a singular point of the differential equation. Then we say that :ro is a regular singular 

■ ylnt if ( x  — x q ) P ( x ), (x  — xq) 2Q ( x ),  and (x — .ro)'!i? ( .r )  are analytic at x =  x q .
>. v.:bstituting y — Y^=o cn^n^ r into the first differential equation and collecting terms, we obtain

x^y" + y = c\)XT + 53 [CA: + {k + r ~ !)(& + r ~ 2)ck. 1]xk+i = 0. 
fe=i

1: follows that co =  0 and

Ck = -(* + r -  l)(k + r -  2)cfc_i.

T’.-.o only solution we obtain is y(x) = 0.

restituting y — H ^ - q cnxn+r into the second differential equation and collecting terms, we obtain

x2y" + (3x - l);i/ +y = -rco + 53[(* + r + l f ck ~(k + r +
k—0

xk+r =  0 .
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which implies

—rco = 0

(k + r + 1 )2ck — (k + r + l)cfc+1 = 0.

If co = 0. then the solution of the differential equation is y = 0. Thus, we take r =  0. from wh: 

wo obtain

cfc+i = (k + A- = 0. 1. 2. ... .

Letting cq =  1 we get ci = 2. c2 = 3!. C3 = 4!, and so 011. The solution of the differential equat: 

is then y =  X)^=o('̂  + l)!xn, which converges only at x =  0.

37. We write the differential equation in the form x2 y" + (b/a)xy' + (c/a)y = 0 and identify ao = : 

and bo — c/a as in (12) in the text- Then the indicial equation is

b c
r(r — 1) + - r + - = 0 or ar2 + (b — a)r + c = 0, 

a a

which is also the auxiliary equation of ax2)/' + bxy! -i- cy = 0.

Spieeiai'Bkmctioin^, V -• '{i

1. Since v2 = 1/9 the general solution is y = ciJi/n(x) + c^J^ j^x ).

2. Since v~ = 1 the general solution is y = c\J\ (:/:) + c2 Yi (x).

3. Since v2 = 25/4 the general solution is y = ci J5/2(.7;) + c2J_ 5/2(2)-

4. Since u2  = 1/1C the general solution is y — c iJ 1 /4 (x) + c2J_ 1/4 (a;).

5. Since v2 = 0 the general solution is y =  ciJq(x) + c2Yo (■*’)•

6. Since v2 =  4 the general solution is y =  c iJ2(ir) + C2 Y2 (x).

7. We identify a = 3 and u = 2. Then the general solution is y =  c\ J2(3a;) + ^>^(3^:).

8. Wc identify a = 6 and u = ^ . Then the general solution is y =  ciJ-\/2 (6 x) + C2«/_i/2(6.x).

9. We identify «  = 5 and v = | . Then the general solution is y = ^1J 2 /3 (5.x) -f c2 J_2/3(5.x).

10. We identify a = \/2 and v = 8. Then the general solution is y = c\J&(>/2x) + C2 Ys(\/2 x).

11. If y = x~^t2 v(x) then

y1 — x~ll 2v'{x) — -̂x~']/2 v(x),

y" = x~lt2 v"(x) — x_3/jV(a:) + ^:r_i>/\’(:r),

320



Exercises 6.3 Special Functions

x2y" 4- 2xy' 4- a2x2y = x ^ 2v"(x) 4- xl^2x/(x) 4- (a 2.?;3/2 — v(x) — 0.

Multiplying by x1/2 wc obtain

x2v"(x) + xv'(x) 4- (« 2;r2 — ^  v(x) = 0,

whose solution is v =  c\Ji/2 {olx) + c2J_ i/2(a.T). Then y = cixrll2Ji/-2{ax) 4- C2̂ “1//2 J _ j/2(cxx). 

If y =  y/xv(x) then

and

=  x°l2v"{x) + x ^ 2v'(x) + (a2x°'/2 — i/2x1//2)i;(a:) =  0.

Multiplying by x~li2 we obtain

x2v"(x) + xv'(x) + (a2x2 — v2)v(x) = 0 ,

whose solution is v(x) = C]_Ju{ax) 4- C2 Yv(o:x). Then y = c\ t/x Jv{ax) + C2 y/xYv(ax).

Write the differential equation in the form y" + (2/x)yf 4- (4/x)y = 0. This is the form of (18) in 

the text with a =  — | . c = i j , 6 =  4, and p = 1, so, by (19) in the text, the general solution is

y =  x“1/2[ci J\ (4xx̂ 2) 4- C2Yi(4:rli/2)\

Write the differential equation in the form y" + (3Jx)y' 4- y = 0. This is the form of (18) in the text 

with a =  — 1, c =  1. b = 1, and p — 1. so. by (19) in the text, the general solution is

V = x- 'lcM x ) + c2Fi(x)].

Write the differential equation in the form y" — (1 /x)y' 4- y = 0. This is the form of (18) in the text 

with a =  1, e = 1, h = 1, and p = 1, so, by (19) in the text., the general solution is

y = x\c\ Ji{x) + 02* 1(0;)].

Write the differential equation in the form y" — (5 fx)y' + y — 0. This is the form of (18) in the text 

with a = 3, c =  1, b = 1, and p =  2, so, by (19) in the text, the general solution is

y = X3[ciJ3(x) + C2Ys(x)].
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17. Write the differential equation in the form y" + (1 — 2/x2)y = 0. This is the form of (18) i:. 

text. with a = 5 . c = l ,6  =  l. and p = | . so, by (19) in the text, the general solution is

y  =  X ^ 2 [ c i J s / 2( x )  +  C2Y V 2{ x ) )  =  x h '2 { c i j 3/ 2( x )  +  C 2 J _ 3 /2 ( x ) ] .

18. Write the differential equation in the form y" + (4 + l/4;r2)y = 0. This is the form of (18) i:. 

text with a — | . c =  1, b = 2, and p =  0. so. by (19) in the text, the general solution is

y =  a;i/2[ci M2x) + C2*o(2a;)].

19. Write the differential equation in the form yn + (3jx)y' + x2y = 0. This is the form of (18) i:. 

text with a =  —1, c =  2, b = 5 , and p =  \ . so, by (19) in the text, the general solution is

or

V = x

y = x 1

..-1
Cl-h/2 [ 2 ^ )  + C2yi/2 ( j ;;

1 *5
-ar

C l 'h l2 { ^ )+ C 2 J - Xl2{^X

20. Write the differential equation in the form y" + (l/x)y' + (|x4 — 4/x2)y = 0. This is the for:. 

(18) in the text with a = 0,c = 3. & = § .  and p =  | , so, by (19) in the text, the general solut:..

s/ =  c iJ2/3 (5 i:i)+ c2 r2/3( i i 3)

or

21. Using the fact that i2 = —1. along with the definition of Jv(x) in (7) in the text, we have

I„{x) = i vJv{ix) = i v E
i- iy IX

= E
(-1  r

^ n !  r ( l + u + n)

OO

rj, n!F(l + u + n) V 2 /

/ ,vv \ 2 n+v•2n+p—v j x \

V

(-1 f  ,,2y, ^ ^ 2n+I/
^ n ! F ( l  + v + n y  ’ \2.

OC

= £
(-D 2 n

^  n!F(l -I- u -t- n) V 2 J

n=0 » !r ( l + + n) { 2J

which is a real function.
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1

a = 2
l- 2 a  = 0 =

2C-2  = 2 c =  2

, 2  2  -j 2 2 ibe = —p c  = — 1 =

2 2 . (a) The differential equation has the form of (18) in the text

8=\  and b =
2 2

a2 — p2c2 = 0

Then, by (19) in the text.

V — x
1/2

C ]

In terms of real functions the general solution can be written

y = a;1/* CVV4 Q * 2) + C ^ 1/4 Q * 1

( b )  Write the differential equation in the form y" + (1 fx)y' — 7 x2y = 0 . This is the form o: 

the text with

1 — 2a = 1 a =  0

2c - 2 =  2 c = 2

b2c2 -- —Q2c2 - —7 3 = ^V7 and b = i\/7v

a2 — p2e* =  0 p =  0.

Then, by (19) in the text,

y = ci Jo Q-\/7 irr2̂  + c2lo ( \'ft •
In terms of real functions the general solution can be written

= C il0 + C2K q •

-3. The differential equation has the form of (18) in the text with

1 - 2a, = 0 

2c -2 =  0

b2c2 = 1

a2 — p2c2 = 0

1
a - - 

c = 1

6= 1

1

P = 2-
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Then, by (19) in the text,

y = z1/2[ci J1/2(.t) + c2 J_ i/2(:c)] = ^
1 2 .  j 2 

ci\l —  sm;r + C‘2 \i —  cosxV 7XX V KX
— Ci sin x + C‘2 cos x.

24, Write the differential equation in the form y" + (4/x)y' + (1 + 2fx2)y = 0. This is the form of 

in the text with
3

1 - 2a = 4 

2c - 2 = 0

b2 c2 = 1

a2 - p2c2 = 2 

Then, by (19), (23), and (24) in the text,

V = X_3/2[ci./i/2(;c) + C2./_ 1/2 (•*•')] =

^  1 . _ 1
= Oi 7y sin x + C2 — 5  cos x.

a =  — 

c = 1

b = 1 

1
P = 2

x -3/2 (~2~ . [ T
ci i / —  sm x + C2 \j —  cos x 

V TTX V

X 1 X*

25. Write the differential equation in the form y" -+- (2/x)y' + (j$x2 — 3/4x2)y — 0. This is the fo:: 

.18) in the text with

1-2  a = 2 a =
1

~ 2

2c-2 = 2 c = 2

b2 c2 =
1

: 16
b =

1

8

p2 c2 = 1 1 C
O

p =
1 

2 '

Then, by (1.9) in the text,

y - x 1/2 ^ i/ 2 ( ^ 2) + c2J_1/2Q * 2

= x- 1/2 Cl<
16

V nx* 8

r w
sin I —x -r c2\/ — k cos

TTX* I*2)
= C\x 3//2 sin + C2.x 3/2 cos ^ ,x 2

26. Write the differential equation in the form y" — (1 jx)y'-f (4 + 3/4.x2 )y = 0. This is the form c:
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1 -2a =  -1 

2c - 2  = 0 

b2c? - 4

a2 — p2c? =  -
4

Then, by (19) in the text,

y =  :r[clt/1/2(2.r) + c2 J _ 1/2( 2x)j = a;

= Ci x1/2 sin 2x + Chx1' 2 cos 2.x.

in the text, with

c = 1

b = 2

1

P = 2-

a = l

2 / 2
ci \ / — sin 2x -r c2 \ / —— cos 2x

V 7r2x

27. (a) The recurrence relation follows from

(- l)V  f x \2n+l/OC

- uJv(x) + xj^-^x) = - 53 -
^) n.!r(l + // + n) \2v (-iyv _

i o  + v + n)

( - i f

£ 0  n !r(I/ + n) © 2w+i/-l

■oo

rS )n !r(1 + i/ + n)

■oc= „  (- l)'‘(2n + W = ,

n!I’(I + v + n) \2/ " A ' >'

(b) The formula in part (a) is a linear first-order differential equation in Jv(x). An integrating 

factor for this equation is x’\ so

^ { x v Jv{x)\ = z"J„-i(x).

-S. Subtracting the formula in part (a) of Problem 27 from the formula in Example 5 we obtain

0 = 2u jv(x) - xJv+i{x) - xJy—i(x) or 2vJv{x) = xJv̂ (x ) + xJv-i(x).

29. Letting u — 1 in (21) in the text we have

xJ0(x) =  -^[xJi(x)] so ^  rJ0(r) dr =  r Ji(r) xJ\(x).

jQ. From (20) wc obtain Jq(x) = — Ji(x), and from (21) wo obtain Jq(x) = J_i(x). Thus J()(x) — 

J_i(x) =  -Ji(x).

: 1. Since F(^) = y/ir and
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we obtain

OC

= £
(- i)n 'x\ 2'n—1/2 1

n = ,) « !r ( l-  ± + re) V2,

fW oc

r(|) V2; ?i!(2n — l)!22n-1/2v/7r

= ± J1  + Y  (-1)"21/2»~1/'2 .2.  = l± ^  ,/A  y- i z l ) ! T2„ = (/jL 
V ^  2n.(2n - l)!v/?r ' V 7r:r; V tt.c “  (2n)! ' V

cosx.

32. (a) By Problem 28. with i/ = 1/2. we obtain J i/20t) — xj-^^ix) + x J_ ij2(x) so that

2 /sinx

7TX V X
cos x ;

with v — -1/2 we obtain - J_ 1/2 (.t) =  .r J i/2(x) + x,/_3/2(x) so that

T / s I 2 /cosx . \

■7-3/2(I) =  ~V«i~r+smi);
and with 1/ =  3/2 we obtain 3./3/2(x) =  + x Ji/2(x) so that

2 /3 sinx 3cosx 
£) =  a / —  — n---------- sm x

7TX V X2 X

(b)
1

0.5

-0.5

-1

if
0.5

-0*5;

\ 1/ = - 1/2

v =  —3/2 v = 5/2

33. Letting

we have

2 / k.<9 =  —

Of V m

dx

dt

dx ds dx 

ds dt dt

2 /_fc 

or V to
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and

d?x d ( dx\ _d x  (a  j~k -at/2 | d ( dx''

dt2 dt y dt J d.s y 2 \l m 6 J ^  dt \ ds j

= H i r~<*t A  + ( - j l  f-cd/2\
ds y 2 V m J ds2 dt y y m ' J

t
^  - a t / 2

rn ''

ds [ 2 V
— e -at

TO ds2 \ to

Then
d2x . _n1 , . 

to -T7T + ke x : ke
-fW i -at d x ma / k dc

, a t „ _ ke Ql — + -- \ — e at/* —  + ke atx = 0.
ds- 2 V to

Multiplying by 22 ja 2ni we have

ds

A e~at ^  x + r-at/2d% _j_ p-at^ : 
a 2 to ds2 a  V

f — e + —k — e -"'x = 0
i' ?n as q to

or, since s = (2/a)yJk/me at/2.

9 d r  dr 9 
s — j + s —  + s-x = 0. 

ckr as

:4. Differentiating y = x]’/2w (|cu.’3,/2) with respect to |a.x3/2 we obtain

y' =  xl^w' ^oke3/2̂  ere1/2 + ^x~l!2w {^ax2’/2

and

y" =  axw" ( ^ax^-2̂  ax1̂ 2 + aw1 ^ a i ,i/2

+ ^ocw' ^ a x 3/2̂  — ^x 3/2u- ^q i.t3j/2

Then, after combining terms and simplifying, we have

t/; + a2xy =  a ax ^2w,/ + \w' + ( ax'^2----:
2 V Aa:,4tt:c3/2 7

-1 w = 0.

Letting t = la.-;;3/2 or ax3/2 =  this differential equation becomes

i2«/'(f) + + ( t2 - - ) w(t) =  0, t > 0.

(a) By Problem 34. a solution of Airy’s equation is y = x^/2w(^axA/2), where

W(t) = Ci J }/Z(t) + C2J_ i/3(t) 

is a solution of Bessel’s equation of order | . Thus, the general solution of Airy’s equation

x > 0 is

y = x1/2w |«-V2) = C,X^ J V3 (JaxV 2) + c2x1/2J_V3 (jccr3'2) .
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(b) Airy’s equation, y" + a'-xy — 0, has the form of (18) in the text: with

1 — 2a = 0 ==$■ a = ^
2

2c — 2 = 1 = >  c = ^
2

b2c2 = a2 =$■ b =
o

2 2 2 ,\ 1 a — p c = 0 p = - .
O

Then, by (19) in the text,

y = xl/2 c iJ1/3 + oiJ-i.fi (J< n

36. The general solution of the differential equation is

y{x) ~ c1Jo(ax) + c2Vb(«x).

In order to satisfy the conditions that lining- y(x) and liinI._!.Q+ y'(x) arc finite wc arc forced 

define C2 =  0. Thus, y(x) = ci Jo(ax). The second boundary condition, y(2) =  0, implies ci = ( 

Jo (2ft) — 0. In order to have a nontrivial solution we require that Jo(2a) =  0. From Table 6.1. ' 

first three positive zeros of Jo are found to be

2oi = 2.4048, 2ol2 = 5.5201, 2a3 = 8.6537

and so a.\ = 1.2024, =  2.7601, ct3 = 4.3269. The eigenfunctions corresponding to the eigenva.'. 

Ai =  ci'2, A2 — a|> ^3 — <*1 are Jo (1-2024#), Jo(2.7601a;), and Jo(4.3269rr).

37. (a) The differential equation y" + (A/x)y = 0 has the form of (18) in the text with

1 - 2a = 0
1

a = 2

2 c- 2 = -1
1

C~ 2

62c2 = A II to S
i

a2 - /A;2 =  0 p = 1.

Then, by (19) in the text,

y = x1'/2[c iJ i(2 v ^ ) + C2 Yi(2 y/\x)].

(b) We first note that y = Jj (t) is a solution of Bessel’s equation, f?y" + ty1 + (j2 — 1 )y = 0. 

v =  1. That is,

t2J'/(t) + tJ[{t) +  (t2 -  1) Ji(t) =  0,
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or, letting t — 2-y/x.

4xJ'l(2y/x) + 2yfxJ[(2y/x ) + (4x - l)J i(2 V i) = 0. 

Now, if y = y/xJi(2y/x), we have

and

Then

yr =  2v ^ )4 =  + ttt j i(2vS ) =  J i(2VS) + 5 i _ 1/aJ i(2vS )2\/x z

/  =  x-I/2y;'(2V i) + ^  /;(2vS ) - ix - :,''2j1(2V5).

xy/f + y =  V 5 J"2 V1 + 77̂ 1(2\/r ] - i J;-|''2J 1(2v'x) + \/xJ(2y/x)
2 4

= ^ [ 4 » J f ( 2 v ^ )  +  2v ^ J [(2Vx) -  Ji(2Vx) +4xJ(2V®)]
= 0,

and ?/ = J i (2\/x ) is a solution of Airy’s differential equation.

We see from the graphs below that the graphs of the modified Bessel functions are not oscillatory, 

while those of the Bessel functions, shown in Figures 6.3.1 and 6.3.2 in the text, arc oscillatory.

h

Ko

;a) We identify rn — 4. k =  1, and nr. =  0.1. Then

x(t) =  Ci Jo(10e_O'°D*) + C2io (10e_0'05t

and

*2
5

4

3

2
1

1 2  3 4 5

)

x'(t) = — O.ociJo(10e 00ot) — 0.5c2Vo(10e °-05*).
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Now ;x(0) — 1 and x'(0) = —1/2 imply

C1JO(10)+ C 2̂ )(l0) =  l 

c1^(10) + c2̂ o/(10) = l-

Using Cramer's rule we obtain

y0'( io )- r 0(io)

and

ci =

C-2 -

j 0(io)F0'(io) - ^ (io )y 0(io)

Jo(10) -  Jo(10)
Jo ( i0 )^ ( i0 )- ^ (i0 )y o( i0 ) ‘

Using Yq — —Yi and Jq - —J\ and Table 6.2 -we find c\ = —4.7860 and c2 = —3.1803. Tlr 

x(t) = —4.7860,/q(10e_0105<) - 3.1803Fo(10e“005*).

40. (a) Identifying a = | , the general solution of x" + == 0 is

'1 /'l S/2x(t) = cix1/2.J1/3 ( j * 3/2J + C2X 1/2J _ 1/3  

Solving the system x(0.1) - 1, x'(O.l) - — \ we find c\ — —0.809264 and c2 = 0.782397.

(b) *A

41. (a) Letting t = L — x, the boundary-value problem becomes

0'(O) = 0, 0(L) =  0,

where a2 = 5g/EI. This is Airy’s differential equation, so by Problem 35 its solution is

2 •} /o\ 1 /o _ / 2

d2d o „
-pr + a tO = 0. 
at1

y -- Clt1/2J IJ3 Q o *372) + C2t1/2J- l/3  ( 3a i3 /2 )  =  +  02^2W-
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( b )  Looking at the series forms of 9\ and #2 we sec that #i(0) ^  0. while 6 -2(0 ) — 0. Thus, 

boundary condition #'(0) = 0 implies a  = 0, and so

'2 ,3/2̂

Exercises 6.3 Special Functi':

6(t) = c2Vf. ./-1/3

From 6{L) = 0 we have

c2v/E,7_1/3 ( j a £ 3/2) =  0,

so either C2 = 0. in which case 0(t) = 0. or J ^ ^ ^ a L ^ 1'2) = 0. The column will just star 

bend when L is the length corresponding to the smallest positive zero of J_ i/3- 

(c) Using Mathematical the first positive root of J_ 1/3(0:) is x\ as 1.86635. Thus §a2/*/2 = l.SC 

imphes

9EIL _  ^3(1.86635) y2/3

2a 4 fig
(1.86635)2

1/3

9(2.6 x 107)tt(0.05)4/4 r\2(1.86635)

1/3
76.9 in.

4(0.28)tt(0.05)2

(a) Writing the differential equation in the form xy" + (PL/M)y — 0, we identify A = PL 

From Problem 37 the solution of this differential equation is

y = Ciy/x J\ ( 2 ^/PLx/M j  + c^y/xYi ( l^P L x /M  ̂  .

Now Ji(0) =  0. so y(0) = 0 implies 0 1  =  0 and

y = ci v/S Ji (2sJPLxjM ) .

ib) From y(L) — 0 we have y = J\ (2L y P M ) = 0. The first positive zero of J± is 3.8317 so. sol-

2Ly/Pi/M =  3.8317, we find Pi = 3.6705M/L2. Therefore.,

^  T . /3.6705# \ T /3.8317yi[x) = ci V# J a | 2y — - —  1 = c^ x  J\ \ -—j= -\ /x j  .

shown.

a) Since J/ = v, we integrate to obtain l(t) =  vt + c. Now 1(0) = Iq implies c — so l(t) = vt

331



Exercises 6.3 Special Functions

Using sin $ & 9 in i d‘29/dt2 + 21' dOj dt + g sin 0 = 0 gives

, d20 n d.9 „ „
(k + tJ0 ~̂ 2 ~dt~̂

(b) Dividing by v. the differential equation in part (a) becomes

^ ^  + 2 ^  + ^  =  0.
v dt2 dt v

Letting x = (/q + vt)/v = t + Iq/v wc have dx/dt = 1, so

d # _ d B d x _ d £  

dt dx dt dx

and
(fO _  d{de/dt) _  d,(d9/dx) dx _  d2$

dx dt dx2 'dt2 dt 
Thus, the differential equation becomes

d2e n dB g „ n
x-r ^ - 2 - -  + -e = 0

dx dx v

d2o 2 d9 g „ n
or ~j~o --- 1— -̂- —dx* x dx vx

(c) The differential equation in part (b) has the form of (18) in the text with

1 — 2a = 2 =
1

a =  ~2

2 c- 2 = -1

b2c2 = 9-

a2 — p2c2 =  0

C 2

i=2vl
p = 1.

Then, by (19) in the text 

0(x) = x-W

or

m  =
V

\/ h) + vt 

(d) Tb simplify calculations, let

qJi(2 v/!xI/2)+C2y,(2 v'̂ 1/2)]
+ I1*) j  + rai'i i^\Jg(k+vt)

=  9 .! l  ,1/2U= ~\/s(k) + Vt) =2yJ'-XX .

and at t = 0 let '«o ■ 2y/glo/v. The general solution for 9{t) can then be written

9 = C\u~1J\(u) + C2u-'Yl(u).

Before applying the initial conditions, note that

d9 __ dB du 

dt du dt
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£  =  c I l i„-V l(«)] + c 2| ;i«- y lW i

which, in view of (20) in the text, is the same as

(10
^  = -C'iW-1./2(«) - C2U~lY2{u).

Now at t = 0, or u = Mo, (1) and (2) give the system

Ci'Uq1 J i (uq) + C2'Uq1Yi (uo) = &o 

Cyu.Q1 J2(«o) + C2Uq 1y2(uo) = 0 

whose solution is easily obtained using Cramer’s rule:

uq9qY2(uq) n  —uqi9o J2(yo)

so when dd/dt — 0 at t = 0 we have dd/du — 0 at u =  uq. Also.

Ci = C2 —
J i {tM))Y2(uo) - J2{uo)Y\(uo) " Jl(t<o)>2(wo) -

In view of the given identity these results simplify to

Ci =  --UqBqY2 (uq) and C? =  -'Uq(9qJ2('Uo).

The solution is then

, r ,  , Ji(tt) ,Yi(u) 
->2(^0)-----^2(^0)u u

Returning to u = (2jv)^Jg(lo + vt) and uq = (2/v)y/gl(), we have

'2

,v

V

Ji (-^/gik + vt)

- *2 1;  )  — j t = m — + v * J  - V h  +  vt.

(e) When Iq =  1 ft., #0 = tTj radian, and v - tAj ft/s, the above function is

m  = —1.69045 _  2.79381 r i(«0 V 5 (l + */“ ))
sJT+tJm

The plots of 0{t) 011 [0,10], [0,30], and [0,60] are

\J 1 4- i/0 0

m
0.1

0 . 05!

-0 .05
-0.1
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(f) The graphs indicate that d(t) decreases as I increases. 

The graph of 6(t) 011 [0.300] is shown.

44. (a) From (26) in the text, wc have

Pq(x) = co

where

6-7 2 4 • 6 • 7 • 9 , 2 • 4 • 6 • 7 ■ 9 • 11 6 
1-- tt- x H---- r.---$ = ------^----- x

2! ~ ' 4! 

co = (-1)

6 !

3 l-3-5 

2-4-6

0

16

Thus,

P6(x) = ( l  - 21#2 + 6-3#4 - ^  - t^(231#6 - 315a:4 + 10-5#2 - 5). 
16 V 5 / 1 6

Also, from (26) in the text we have

where

V(x) = ci ( x - -gp x +

ci =  (-1)

6-9 3 4-6-9-11 5 2-4-6-9-11-13

5!

3 1 • 3 • 5 • 7 

2-4-6

x  —
7!

x‘

35

16

Thus

P7(x) = (x - 9#3 + ^ X = -^(429#' — 693#° + 315#3 — 35#). 
35 / 16

(b) Pq{x) satisfies ( l — ;?:2) y" — 2xy1 + 4‘2-y = 0 and P7{x) satisfies ( l — y" — 2xy' -4- 56y

45. The recurrence relation can be written

k

k = 1: P2 (X)

k = 2: P M

A-= 3: p40)

/,’ = 4:

9k 4- 1
f t f . w - y n - x f t w -  i + 1

2 5 o 3

Pfc_ i(z ); k = 2, 3. 4, ... .

_  3 2 ^
“  2Ur' 2

_  5
r ( -X2

1

“  3"r' \2 _  2

_  7 3

“  43C K2X 2

_  9 , f 35T-1 :
“  5'1l [ j X

/ o -j

3'X' =  2X 2‘

3
8) 5 v2"

3 \ 63 r 35 , 15

2X) =  - T *  + Y x
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* - * < * > = f **+f *h (f ** - f  +1 ) - 231. 6 315 4
x — — x + —r-.r“ — •

k =  Q: Pi(x) =  — X  I ------— X~ ~r ~ rz rX
6 /6313;c /231x6 _  315^4 + 105^ _  _5_V r  ( ^

7 V 16 16 16 16/ 7 V 8 ' 4 8

16 16 

35 3 15

105 ,

16

429 7 693 * 315 ./ 35

=  le "*  “  I T '  + 16 ^  "  16*

46. If x =  cos 6 then

dy . Qdy 

d2y . 2 ad2y dy
_  =  sm » c J

and

sin + cos (9^ + n(n -f l)(sin#)y = sin# ( l - cos'2 9 ) ~ ^ - 2  cos 0^  + n(n + 1 )y =  0.

That is.

(1 ~ x2' ) U ' 2xt + n{n+1)v=0-

4". The only solutions bounded on [—1.1] are y = cPn(x), c a constant and n = 0, 1, 2 ,___ By

of the properties of the Legendre polynomials, ?/(0) =  0 or Pn(0) =  0 implies n must be odd. Thus 

the first three positive eigenvalues correspond to n : 1, 3, and 5 or Ai = 1 • 2, A2 =  3 • 4 =  12, and 

A3 =  5 • 6 =  30. We can take the eigenfunctions to be y\ = P\(x), y*z ~ Pz{x), and y% = P${x).

Using a CAS we find

1 d

2 dx

1 d2
- t x~ — 1 r  =

Pi(z

P2(x

P3(x

P a {x

Pk{x

P(i(x

(x2 - l) 1 - X

222! dx2

1 d3

(.t2 - l)2 = i(3x2 - 1)

1

- 233! -fa* ^  “  1)3 = 2 (5i:‘ ~ 3:C)

= ^ 2 ^ - V i  = \ ^ - ' 30x'l + V

1 rP 1

=  S  i ?  (X2 ~  1)5 =  8 (6 3 l ‘  ~  70x3 +  I 5 l )

= 2 ^f (l2 - ^ = i b 31*6 - 31 fe l+ 10512 - 5>

1 cl~ < ~ 1 
Pi{x) - ^ 7  (®2 ~ 1)' =  ^(429x-' - 693x° + 315x>3 - 35x)
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49. p i P2 P3

P5 P6 P7

50. Zeros of Logendre polynomials for n > 1 are

P-2

h i

x) 

x) 

x)

0

±0.57735

0. ±0.77460

P4(x) : ±0.33998, ±0.86115 

P${x) : 0, ±0.53847. ±0.90618

: ±0.23862, ±0.66121, ±0.93247 

P-[x) : 0, ±0.40585; ±0.74153 , ±0.94911 

P1Q(x) : ±0.14887, ±0.43340, ±0.67941, ±0.86506, ±0.097391

The zeros of any Legendre polynomial arc in the interval (—1.1) and are synunctric with res:: 

TO 0.

Chapter 6 in Review ; . ; ; ; ^  ̂ lv* * • 7;'f; ;; " 7 
»' -c4 " ' - .....

"  7  / - - s .  '5 \  V  . '  . ' ......................' “ r  •' - «  ~  5 < “ «  -  -  - { -  «  ...................................,.......J ' ; r “ « s j.r.p ; ; ..
c ;c --.'-W li' T ,w ,

1. False; J\(x) and J-i(:r) are not linearly independent when u is a positive integer. (In this 

v = 1). The general solution of x2y" + xy' + (x2 — 1 )y = 0 is y = c\J\(x) + 0 }X\ (re).

2. False; y = x is a solution that is analytic at x = 0.

3. .r = — 1 is the nearest singular point to the ordinary point x = 0. Theorem 6.1.1 guarantees 

existence of two power series solutions y — cnxn of the differential equation that convert
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least for — 1 < x < 1. Since —\ < x < \  is properly contained in —1 < x < 1, both power series 

must converge for all points contained in — ̂  < x < | .

4. The easiest way to solve the system

2c2 + 2oi + Cq = 0 

6cn +  4  C‘2 +  ci  = 0

12C4 + 6O3 - -Cl + C2 =  0
o

20cs + 8C4 — -02 -T 03 = 0
o

is to choose, in turn, cq 7̂  0, ci = 0 and cq = 0. ci ^  0. Assuming that cq 7  ̂ 0. c\ = 0, we have

C2 = - gOO

03

1

2*

2
3(

1

1

3*

1

=  - 2 *  12°2 = “ 8C0

2 1 
or, = - 7 C4 + 7J7-S2

o 30 20C3 = 60C01

whereas the assumption that cq = 0 . ci ^  0 implies

o2 = -ci

2 1 1

3C2 6Cl -: 2Ci

1 1 1 5

2C3
+

3GC1‘~ 12C2 ~ 36 C

2 1 1 1

5 ° 4
+

30°2 '
- 2q03 -

360
ci.

five terms of two power series solutions are then

and
yy(x) - cq 

y2(x) = ci

1 -

1 3 

" 3

1

~  8X

A 1 1
H-- x'

60

- ±r3 -
0

36 ?2 360

The interval of convergence is centered a.t 4. Since the series converges at —2. it converges at least 

mi the interval [—2.10). Since it diverges at 13, it converges at most on the interval [—5,13). Thus, 

-t —7 it docs not converge, at 0 and 7 it does converge, and at 10 and 11 it might converge.
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6. We have

a:3 x 5

/ ( * • )  =  — =  X 6 , +  124°---------- - =  X +  Y  +  ^  +cosx „ x x* 3 15
1 — —“• -]-■ ■— — • ■ ■

2 24

7. The differential equation (x3 — x2)y" + y' + y =  0 has a regular singular point at x = 1 and ; 

irregular singular point at x = 0.

8. The differential equation (x — l)(x + 3}y" + y = 0 has regular singular points at x — 1 and x = -

9. Substituting y =  cnx"'+r i^to the differential equation wc obtain

OC

2xy" + yr + y =  (2r2 -  r) coxr_1 +  Y \ 2(k + r)(k + r -  1 )ck + {k -f r)ck +  c/c_i]xft+r_1 = 0
k= 1

which implies

2r2 - r =  r(2r - 1) = 0

and

(k + r)(2k + 2r - 1 )ck + ck_]_ = 0.

The indicial roots are r = 0 and r = 1/2. For r = 0 the recurrence relation is

c‘ =  - fc (S ^T )■ * =  1' 2' 3.......

so

1 1 
C l  =  - C O ,  C 2  =  - C O ,  C 3  =  - g p C 0 .

For r = 1/2 the recurrence relation is

v  k = w .......

SO

Cl = - 500, c2 =  ic „ , c3 = - ic o .

Two linearly independent solutions are

and

V2
=  i .V2 f 1 _  1 + 1 2 _  1 3 + . . . V

V 3 30 630 )
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.0. Substituting y = cnxn into the differential equation we

OO OO X
,n~̂  'nr„. Tn  — V  r-../  -xyf -y=Yl  n (n ~  x)°n^ ~  YI nĉ xtl 

n=2 n=l
k=n- 2

oc oc

= Y ( k + 2)(A- + l)Ck^-2'J'k -  Y  kckXk -  S  ckXk 
k=0 fc=l fc=0

oc

= 2c2 - Co + ]£[(& + 2)(fc + l)cjfe+2 - (k + l)cfc]«fr = 0. 
k=i

2 C<2 — Co =  0 

(k + 2)(k + l)cfz+2 ~ (k + l)cjb = 0

C2 = ^

1
Cfc+2 = ^ X 9 Cfci Ar =  1,2,3,... .

Thus

and

Choosing cq =  1 and C] =  0 we find

1

C2 =  2

C3 = C5 =  cr = ■ ■ ■ = 0 

1

*‘ =  8

a s  =  i
and so on. For co = 0 and c\ = 1 we obtain

C2 =  C4 =  c% =  ■ ■ ■ =  0

1 

j

1

5

°7 = 105

C 5 = 15

and so on. Thus, two solutions are

1 9 1 4 1 g

w = 1 + 2r ' + r + 4?c + - -
and
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1 3 1  5 1  7
* - * + ?  + « *  + M5* + " "

11. Substituting y =  c‘nXn into the differential equation we obtain
oc

(x — 1 )y" + 3y — (—2c2 + 3co) + 53 [(̂  + — (k + 2)(k + l)c^+2 + ^ck[x. — 0
fe=i

which implies c2 = 3co/2 and

(k + !)kck+i + 3 Ck 

C*+2 = (* + 2){fe + 1) ' k = 1' 2’3-'--

Choosing cq = 1 and cj. =  0 we find

3 1 5

2'

and so on. For cq = 0 and c\ = 1 w e obtain

C2 = 2' °S = 2' C4

C2 — 0, C‘3 = C'4 — ~
1

2* 4
and so on. Thus, two solutions are

» “ i+ 2* + r + ? + ' "
and

i 3 i  ̂ 4 i 
1/2 =  X  +  - X  + j X  H--- .

12. Substituting y = Y,^Lq cnxn into the differential equation wo obtain
OC

y" — x?y' + xy =  2(>2 + (603 + co)x 53 [(̂  + 3)(fc + 2)c^+3 — (/c — l)cfcj3:,‘’+i = 0
k=1

which implies c-i = 0, C3 = — c q / 6 ,  and

k — 1

° ^ 3 = (fc + 3)(fc + 2)C*' 2> 3> • * • •

Choosing co = 1 and ci = 0 we find

1

C3 _  6

(■4 =  C7  =  6*10 =  • • • =  0

CJ5  =  c 8  =  =  • • •  =  ()

c6 = _ 90
and so on. For co = 0 and c\ = 1 wc obtain

C3 = Cg = CA) = ■ ■ • = 0

C4 =  C7 =  C1 0  =  ■ • * =  0

05 = Q3 = Cl 1 = • • • = 0
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yi =  1 - \xz - -J-x6 ---  and y2 = x.
6 90

3. Substituting y = CnXn+r into the differential equation, we obtain

OC
xy" - (x + 2)y' + 2y = (r 2  - 3r)eoxr _ 1  + Y  [(fc + r)(fc + r ~ %)ck

k—l

— (k + r — 3)cA,_i]xfc'Hr_1 = 0:

which implies

r2 - 3r =  r(r - 3) = 0

and

(k + r)(k + r -  3)cfc — (fc + r — 3)c^_i = 0.

The indicial roots arc n  = 3 and r-i =  0. For r2 =  0 the recurrence relation is

k(k - 3)ck - (k - 3)cfc_1 =0 , k =  1, 2, 3, ... .

Then
ci - c0 = 0 

2c2 - ci = 0

0c;j — 0c2 = 0 =^- c‘3 is arbitrary

and

Cfc = -Cfc_i, fc =  4, 5, 6 , . . .  .

Taking co 7̂  0 and C3 = 0 we obtain

ci =  Cq

and so on. Thus: two solutions are

1 

2‘

c3 =  C.4 =  C5 =  • • • =  0 .

Taking cq = 0 and C3 ^  0 we obtain
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and so on. In this case wc obtain the two solutions

1  9
yi =  1 + x + -xr

and

2/2 =  X 6 +  ^ x °  +  ^-X -6 H-------=  6ex -  6 ^ 1  +  z  +  .
4! 5! 6! V 2 /

14. Substituting y =  cn^n into the differential equation we have

(cos x)y" + y - ^1 - ^x2 + ~ x j - H-- j  (2c2 + 6C3X + 12c4::r2 + 20c$x3 + 30c6;r4 +

+ £  c„z"
n=0

= 2r>2 + 603;!' + (12C4 - C2)x2 + (20c5 - 3c3)x3 + ^30q; - 6c,t + a;4 H--

+ [co + cja: + C2.T2 + 03a;3 + C4.T4 H-- j

= (co + 2c2) + (ci -r 60-3)0: + 12c4;r2 4- (20c,5 - 2cs)x'i + ^30c(j - 5c4 + ^ c 2 j  x4 H--

= 0.

Thus

and

co + 2C2 = 0

ci +  6c;? =  0 

12c4 = 0 

2 0 c5  -  2 c3  =  0  

30c6 - 5c/| + -̂ C2 = 0

C 2  =  ~ 2 C 0

C 3  =  - 7 C 1
6

C4 =  0

C o  -  10C 3

ce 604 36002 ‘

Choosing cq = 1 and cj =  0 we find

c2 = — x , C3 = 0, C4 =  0, C5 =  0. cq —
2' ’ ”  7 " ' u 720
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and so 011. For cq =  0 and c\ — 1 we find

C2 0, C3 , ( * 4  0* •

0 ’jL

and so on. Thus, two solutions are

Lo.

Thus

and

1 1 2 1 6 , 1 3 1 -Vi = 1 — - I + ——:i H--  and y2 =  x — -x — —x" — • • ■.
2 720 6 60

y" + xy' + 2y = 53 n(n “  l)e»£n-2 + 53 ncn^n + 2 53 cH-r"
w=2 __________  ̂ n = l  n=U  ^

k ~ n - 2  k = n  k = n

oc oo oc

= 5 3  (fe + 2)(fc + i)Q :+2'i'fc + 53 + 2  5 3  
fc=0 &.=1 fc=0

0 0

= 2c2 + 2cq + 53 [(̂  + 2)(A: + l)cfc+2 + (& + 2)cj;ja/ = 0. 
k=1

2c2 + 2eo =  0 

(fc + 2)(A: + l)cfc4-2 + (k -j- 2)c^ = 0

C2  “ —Co

Cfc+2 - Ck- k = 1,2,3,... .

Choosing co = 1 and C\ = 0 wc find

c-2 =  -1

c3 = c5 = c7 = • ■ • =  0

Ci =  3

1

C6 =  ” 15
and so on. For cq =  0 and ci =  1 we obtain

C2 =  C4 =  eg =  • • • =  0

C3 = -2

1

1

Cs 8
C? 48
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and so on. Thus, the general solution is

1 , 1 « . \ „  f 1 , 1 ,  1
„ = f t  ( l  - *» + j**  - + ■••)+ C, ( ,  - j * 3 + ^  + .. .)  

y' =  a , (-2,, + |tf> - I * 5 + . . . ) + C ,( l- § * *  + |*4- 5 * *  + - ) .

Setting y(0) = 3 and y'(0) = —2 we find co = 3 and ci =  —2. Therefore, the solution 

initial-value problem is

y = 3 - 2s - 3x2 + x3 + x4 -  - \x*  -t- ± -x7 + ■■■.
4 o 24

16. Substituting y =  cn£n into the differential equation we have

OC
n

(x + 2)y" + 3j/ = 53 n(n - 1 )cnxU 1 + 2 £  n (n — ty'nX" 2 + 3 53 cn®’
7 1 = 2  7 1 = 2  T i= 0

Thus

and

k—n —l k—n —2 k = n

OG OC OC
53 (k + l)^ cfc+ia-/" + 2 53(fc + 2) (A’ + l.)cfc+2;t'fc + 3 53

— 4c.‘2 + 3co + 53 [(k + l)fecfc4-i + 2(fc + 2)(A: + 1 )c&+2 + 3c*;]:cfc — 0. 
fc=l

4c2 + 3co = 0 

(fc + l)fccfej_i + 2(A; + 2)(fc + l)c/--j_2 + 3c/,; : 0

3
C2 : --C0

Ch+2 = ~ 2(A + 2) Cfc+1 “ 2(A: + 2) (A + 1) Ck> * = 1'2’3’
Choosing Co =  1 and ci = 0 we find

3
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and so on. For Co = 0 and c\ = 1 we obtain

C2 = 0

1

1 

Lf

c5 = 0

Ci = 7F 16

and so on. Thus, the general solution is

1 , 1 ,  9
y =  C0 { l-- ,x ‘  + ^  + ~ x ' - ^  + ---)+Cl ( x - - x ^ - x i +

and

y/ = C o (- ^ + 5 x 2 + i :c9 - ^ ‘' + .. . )+ C I ( l - ^  + i a:3 + . . . ) .

Setting y(0) = 0 and ?/(0) = 1 we find cq =  0 and a  = 1. Therefore, the solution of the initial-value 

problem is
1 ‘3 1 4

y = x ~ i x i$x -■■■■

The singular point of (1 — 2 sin x)y" + xy = 0 closest to x — 0 is tt/6. Hence a lower bound is 7r/6. 

'.S. While we can find two solutions of the form

Vi = co[l + ■ • • ] and i/2 — c\[x H-- ],

the initial conditions at x — 1 give solutions for co and c\ in terms of infinite series. Letting t = x — 1 

the initial-value problem becomes

lit? + ^  + ^  eft + V = ° : = _6, y/^  =  3'

Substituting y = °ntn into the differential equation, we have

j 2 ?/ j } o c  o o  o c  o c
j  + (£+1) —  + ?/ =  53 n (n ~ l)cntn 2 + 53 ncntU + 53 ncnta 1 + 53

n—2 n= 1 n=l ;?~0

k = n —2 k—n k—n- -1 k = n

oc oc oc- oc-

= 53 (^ + 2)(fc+ i)ck+2 tk + 53 kcktk + 53 + ^)ck+itk + 53 
k= 0 fc= 1 k=0 fc= 0

oc-
=  2 c2 +  Ci +  co -+- 5 3  [(^  +  2 )(fc  +  l ) c ^+2 +  ( k  +  l ) c ^ + i  +  ( k  +  l)c jt ] t^  =  0 . 

k= 1

Thus 2c2 + ci + co = 0

(k + 2)(k + l)c^+2 + {k + l)cfc+i + (& 4- l)c& = 0
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and c 2 = --
ci + CQ 

2

Ck̂-2 -- - C~tLV - , k = 1,2,3.......k + 2
Choosing cq = 1 and c\ = 0 we find

c2 —  ~  x  • C‘i  =  ~  . C4 =  —  
2 6 12

and so on. For co = 0 and cj = 1 we find

C2 = , ca = -

and so on. Thus, the general solution is

V = c0
1 1 , 1

6 ’

ci

C4 =  7 ,

1 1 1

6 62’ ' 6' ' 12

The initial conditions then imply co = —6 and ci = 3. Thus the solution of the initial-value prc' 

is

y = -6 1 - - l)2 + - l)3 + ^(.x  - l)4 +

+ 3

19. Writing the differential equation in the form

and noting that

„  / l  — c o s . t \  . 

y + ( — -—  h/ + xy 0,

1 — COS X X Xs X 5

x = 2 ~ 24 + 720

is analytic at x = 0, we conclude that x = 0 is an ordinary point, of the differential equation. 

20. Writing the differential equation in the form

x
v" +

ex - 1 - x
y = 0

and noting that

a-2x 2 2 x

ex — 1 — x ~ x ~ 3 + 18 + 270

we see that x = 0 is a singular point of the differential equation. Since

•2 f xx
.x3 x42x2 _

—  O <7> 1 I
e* - 1 - x j ~ ~ ~Y 18 "r 270

we conclude that x =  0 is a regular singular point.
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1. Substituting y = °nxn into the differential equation we

OO OC OC
y" + x2y' + 2xy =  £  n(n - l)c„a;n_2 + 53 + 2 53 cn-̂

?7~2 n= 1 n=0

k—n—2 k=n+l k=n+1

OC o o  o c

= + 2)(k + !)cfc+2 ^  + £  (k - l)cfc_jx* + 2  5 3  c*-i-rA’ 
fc—0 Ar=2 fc=l

OC
= 2c-2 + (6C3 + 2co):e + 53 i(k + 2)(fc -t- l)Cfc_-2 + (k + l)c/j_i]:i.̂  = 5 — 2.:' —

k = 2

Thus, equating coefficients of like powers of x gives

2C2 = 5

6C3 + 2co = — 2

12c’4 + 3ci = 0 

20cs + 4c2 =  10 

(A' + 2)(k + l)c%+2 + (k + l)cfc_i =  0, k — 4 .5 ,6 ,...,

and

C2 =  2

63 = ~3C0 "  3

. _  1 1 . _  1 1 f 5\ _n
C° 2 5°2 2 5 V2 j

1

"  ~k

Using the recurrence relation, we find

Cft+2 k + 2 Ck~1'
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CJ.2 =  -T7Tc9 = CQ +
12 34 • 4! 34 • 4!

1 1
C13 =  ~ T ^C0

13 v 4 • 7 • 10 • 13
Cl

and so on. Thus

V = co
1 3  1 g I n  1 19

1  ~  7;% +  T o — r ; «  — t , — TTiC +  — -------77 X —

+  C1

3’' 32 -2f' 33 • 3!' 34 • 4!"

1
-x10

11 4 1 7 

x ~ l x + 4^7X ~ 4 • 7 • 10" ‘ 4 -7-10 -13
x 13 -

+ 5 2 1 3 1 6— 7 — —7 ----J — -
2 3 32 • 2! 33 • 3! 34 -4!

*9 + *12-

, . _ 1 du ,
22. (a) From y ------— we obtain

u dx

dy 1 d?u 1 / dll' 

dx u dx2 u2 \ dx ,

Then dy/d.x =  .t2 + y2 becomes

1 d2u 1 ( dux 2
2

1 — 2 I { du \ 

u dx2 w2 i cfo j X u2 1 dx J

d2u 2 
so + x u  =  0.

(b) The differential equation u" + x2u =  0 has the form of (18) in Section 6.3 in the text wit:

1 - 2a =  0 a =

2c —2 = 2 c = 2

1
b2c2 =  1 b =

P = A
a 2 — p 2c2 =  0 =

Then, by (19) of Section 6.3 in the text,

J/2  C 1 J 1/4 Q z 2 )  + C 2J _ i /4 Q x 2 )  .U =  X
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(c) We have

1 du d
u dx xl/'2w(t) dx

x1/2w(t)

1

xWw

1

xll'\v

1

2xw

" dt <lr, 2"

3/2 a wdw
+

dt 2.x1/2

o eiti!
2ar—  + w 

dt 2xiu

, , dw
At —— |- w 

dt

Now

At —  + -ir — — (ci J-i/4(t) + c2J_ i/4(i)] + c\Ji/4{t) +
dt

=  U
1

so

C1 ^-3/4 (*) _  4t'^1/4^ )  0 1 ( “ 4̂ - V 4^) — 3̂/M

+ C lJ l/S )  + °2J-l/^{t)

= 4cit J_3/4(«) - 4c2f J3/4(£)

=  2cin’2 J_3/4 Q;j;2) - 2c2x2Jy 4 Q.x2) ,

2cix2 J_3/4(^r2) ~ 2c2:r2J3/4(lx 2)
y =

2x[ci J 1/4(ix 2) + c2J_ 1/4( i« 2)]

—ci J-3/4( ^ 2) + c2J3/4(^ e2)

Cl J i/4( ^ 2) + c2 J _ i/4(|j;2)

Letting c = c,\fc2 we have

_Jm ( ^ ) - c J _ m (±x2) 

cJx/A{\x2) + J_1/4(^C2)

a) Equations (10) and (24) of Section 6.3 in the text- imply

cos f  J 1/2{x) - J _ 1/2{x) i 2
1 /2 (*x‘) = - y —  COSX
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( b )  From (15) of Section 6.3 in the text

I , /2(x) = r ' / 2J1/2(ix) and I . i n (x) =  !1/2./_1/2(!x)

SO

and

11 /-){x) — W—  53 7̂ ——777 2,1+1 =  — sinli.r
V z- (2n + 1)! V nx

/_! /2(-J’) = \/—  53 7o\i :c2” — \ l~coshx. 
V7ra’ ^ 0 (2n)! V ^

(c) Equation (16) of Section 6.3 in the text and part (b) imply

~ , N tt /-1/2W  - A/2(*) 
A i/2(® )= 2 — —  ----sin

1 / —  cosh x — \j —  sinh x
V nx V 71

ea: + e“x e* - e"*

2

24. (a) Using formula (5) of Section 4.2 in the text, we find that a second solution of (1—x2)y' 

is

er ( J ' ^ d x / n - x 2)
3/2(x) = 1 • j  ---- p ---- dx -  j  e~ĥ - 'x > rfa:

f dx

J  1 — x2

dx 1, f l+ x  
In

2 VI - x ) ‘

where partial fractions was used to obtain the last integral.

(b) Using formula (5) of Section 4.2 in the text, we find that a second solution o 

(1 — x2)y" — 2xy' + 2y = 0 is

. ef  2x d x / ( l- x 2) . e- ln ( l—in2)
mix) = x - j ----^ ----dx =  x J ---^ -- dx

= x f  dx =  x \lh i( l ± £ ) . l
J x2(l — x2) L2 \l~xJ x

= £ ln f I ± £ W
2 VI - x

where partial fractions was used to obtain the last integral.

-2 xy1 =
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25. (a) By the binomial theorem we have

,—1/2
1+ (t2 — 2xt^ 1 = 1 — ^ (t2 — 2xtj +

( 1/2) ( 3/2) 

2!
(t2 — 2 xty

+ ( -1/ 2K-3/2X-5/2)  (t2 _  ^ 3  +
ui

=  1 - - 2a’*) + f (*2 - 2-^)2 - 77^2 - 2a;i)3 +16'

1 1
= 1 + xt + ^(3a^ — l)t2 + ^(5«t3 — 3:r)i3 H--

= Z  Pn(^)in■
n = 0

(b) Letting x = 1 in (1 — 2xt + t2)_1//2, we have

(1-21 +12)~1/2 = (1 - 1r 1 = —^  = 1 + < -f i2 + i3 + ... (|*| < 1)
X “ t/

oc-
= £  «"•n=0

From part (a) we have

Pn(l)tn =  (1 -2 t + t2Y 1/2 = £  tn.
n =0 n = 0

Equating the coefficients of corresponding terms in the two series, we see that -PM(1) 

Similarly, letting x =  — 1 we have

(1 + 2< + 12)~1!2 =  (1 + 1)"1 = 7——7 = 1 — t+ t2 — 3t3 + . . . (|t|<l)
1 —r~ t

•DC OC

n=0 7i=0

so that Pn(—1) =  (—1)".
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7  The Laplace Transform

1. y {/(()}  =  fa
DC 1

(-stdt = -e 
s

2

1 1
— - e -s t  

o s 1

= -e"" -  -  -  (o - -e"*) = -e“* - - . s > 0
6‘ S \ S J  S S '

2. i ? { /'(£)} =  [ te~*ldb = --&-* =  — (e-2 * -  1), s >  0
Jo 6- o s

3. l£{f{t)} = j^te~ stdt +

1 _ e  1

30 e ̂ d t  = (--te-* - \e~st 
s

1

1 1 DC
- V *

o s

= [-~e~s - ^e~ s ) - f 0 - 4  ) - -(0 - e~8) = ~(1 - e~% s > 0
s2 j  s

4. X{f(t)} = £ (2 t  + l)e-stdt — te 
s

— s t st 1 -st

2 _ s  2 _a 1 
— e -- 7 > e -- e •Q C - O

2

5̂  6‘

2 1\ 1

2 = -(1 - 3e lS) + (1 - e 5), 6* > 0

5. = I  (shlt)e s t ' d t  = 8i*in t~ ' ^ P i t-e st cos t

=  (0 + ^ - e - ^ - A )  1
■s2 + 1

cub i i e '
/2'

1

6'2 + U  ,S‘2 + 1
(e_7rs + 1), s > 0

6. J£{f(t)}=  I / (cost)e std t— ( — 2S e ,stcos/; +
Jir/2 \ 5 + 1 ! 2 t 1

e st sm t
t t / 2

= 0 - 0 4
•S + 1 *2 + r

tts/2 s > 0

7. /(t) =
0, 0 < t < 1 

t  t > 1

—.sf 00 1 1 
=  — € ~\~ “rr 6 S > 0

1 S S Z

8- fit) =
0 < t < l

2t-2. t > 1
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Exercises 7.1

^{/W} = 2 {X(t-l)e-«dt = 2 f = 1J 1 \  S Sz J I I  A

, ,  r i - t, o < t < i
9. The function is f (t) =  < so

Jy ; 10. t >  1

= f  (1 — t)e dt+ I Oe st dt = I (1 — t)e 8t dt =  ( —-(1 — t)e st + 4
J 0 J 1 J 0 \  <9 S*

io.  m  =

= \c-* + - - \ . s > 0
s s sz

0, 0 < t < a

c, a < t < b ; {/(£)} =  [ ce
Ja

, 0. t > b

—st dt =  — - e 
s

= ~(e~sa - e-**), a
a 5

/•OC /’OO
12.2 { f ( t ) }  =  J  e-2t~5e-*tdt =  e-5 j  e~^+2̂ dt =

1GII11-----------------------------------------1
e7

10 1 — s s

.,—5
. r-(«+2)t

o° g -5

s +  2 0 3 +  2

■fet4-)* , 1
(4 — *O2 J

s ?

, s > 4
(4 — s)2

14. # { / ( * ) } =  r  t2e-2te~8td t=  r f e r ^ ^ ' d t
v o 0

=  f---£2e~(s+2)tV s + *2 2 te_ (s+2)i _____-___^-(«+2)A 1°°— 2

-0.

(,9 + 2)2^  (s + 2)3

#{/(*)} = f 00 e~t(smt)e~stdt — f°° (s in ^e ^+ ^d t
•j 0 */ 0

o (.9 + 2)3 ’

=  ( ' ^ s + iL e-(«+iKs in (_
\(s + l)2 + l

1 1

(s + l)2 + 1 

, s > — 1

e 0s • l)* cos f

(s + 1)2 + 1 s2 + 2,s + 2 

16. ^ { /( i)}  = I* et (cos t)e~st dt = f  (cos i j e ^ ^ ’dt

1 — s

(1 — s)2 + 1

1 — S

s(l r-nscosi +

S — 1

( l- s )2 + l
e ( 1  »)t g j n  i

oc

(1 -  A-)2 +  1 A-2 -25 + 2
.  s > 1

> 0

s > 1 

- - 2

s >
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Exercises 7.1 Definition of the Laplace Transform

17. if{ /(t)}  = j  t(cost)e s'

st

~sldt 

s2- 1

+ 1 (s2 + 1)"
(cost)e- + ( ^  4- (sint)e-sf

OC

s2- l
s > 0

2 s

s2 + 1 (s2 + 1)
2 . (cost)e - ( 3 ^ 7  + 717— ^ 2)  (sini)e

y + i  (s-2+ ir ,

OO

2s

(*2 + 1) ’

.4!

.9 > 0

19. if{2t4} = 2 j

4 10
21. i f  {4t - 10} = ^  - —

23. i f  {t2 + 6 i-3} =  -^ + - ^- -
5 s

3 13[ 2_ _

s4 s3 s2 + s

27. if { l + eAt} =  - +
1

29. if{ l + 2e2i + e4t} = - + ——7: +

s s — 4

1 2

31. if{4£2 — 5 sin 31\ = 4^- — 5-=— - 
1 J s3 s2 + 9

33. if{sinhfci} = ^ if{ e fct — e~kt} =  ^
Zt £

20. ^  = $

22. ¥{7t + 3} = + -

24. if{ —4tf2 + im + 9} =  -
, 2 It 

_4?  + ?

26. i f  {8t3 —12£2+6f—1} = OO
 

*1
1 

£2
 

1 to 1

28. if{ i2 - e"* + 5} = |
1

5 + 9 "*

30. X{e21 2 + e~2t} =
s

1 2 

-2

32. i'-Jcos 51 + sin 2t} =
8

+ 25 ' A’

s — k s + k. s2 — k‘2

34. i f  {cosh kt} = 1 2 {eu  + eH} =
s2 - k2

35. if{e‘ sinhi} = y  |e* - i }  =  - ±

36. ^ - ‘ oosh t) = 2  |e-‘ = X  {5  + je " 2'}  =  ^  + ~

1 9
r H—

,s

2 6 

J* 5'

5

s

1

A1 + - 

2

^+4
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Exercises ".1 I - : . . . .

7. {sin 21 cos 2t} = j ̂  sin 4i j =  g2~ Tfg 

5. ^f{cos2t } = if  |^ + ^cos2i| =  ^  + ^ 6
s2 + 4

9. From the addition formula for the sine function, sin(4i + 5) = (sin 4i)(cos o i — cu? 4~

^{sin(4t + 5)} =  (cos 5) i f  {sin At) + (sin 5) i f  {cos 4/}

4 s
=  (cos5) V ,  ~-,r + (s in5 ) 9 7 Tr + 16 sl + 16

4 cos 5 -f (sin 5) s 

=  s2 +16 ‘

0. From the addition formula for the cosine function,

( tt\ tt . . 7T \/3 1 .
cos £ — - J =  cos t cos - + sin t sm — = cos t -i- - sin t 

\ 6 / 6 6 2 2

so

!£ | cos (t - ^  | = —  % {cos t} + ^ {sin t}

_  y/Z s 1 1 _ 1 ^ S  + 1 

“  T  s2 + l  + 2 s2 + l ~ 2 ~ ! ? ^ T '

1. (a) Using integration by parts for a > 0.

T(a + 1) = j tae~t dt =  —tae~i ĵ  + a j  dt = ar(ai).

(b) Let u = st so that du = s dt. Then

***“> = r  e~"ed t ~ r  e_“ i *■= ? ^ r (a + j) ’ a > ~L

,  w

(b) X {tm } = ^ ^

(c) ^  ^

i. Let F(t) =  tl-! i . Then F(t) is of exponential order, but f(t) =  F'(t) =  gi_2/3 is unborn 

t = 0 and hence is not o.f exponential order. Let

f(t) =  2tet cost/ = ~  sinef2.
JK dt
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This function is not of exponential order, but we can show that its Laplace transform exists. Usi:.. 

integration by parts we have

i£{2t,el2 cose4"} =  [ e st ( -7 - sine* ) dt =  lim e~'stsine£ + s (  e~stsinef dt
1 1 Jo \dt J [ 0 Jo

= — sin 1 + s j  e~st sin e* dt — s^£ {sin e* } — sin 1.

Since sine* is continuous and of exponential order. {sine* } exists, and therefore !£■{2tel cose 

exists.

44. The relation will be valid when s is greater than the maximum of c\ and o>.

45. Since et is an increasing function and t2 > In M + at for M  > 0 we have ef > eln M+ct = Mect :
2

r sufficiently large and for any c. Thus, e* is not of exponential order.

46. Assuming that (c) of Theorem 7.1.1 is applicable with a complex exponent, we have

v/>+«>)n = 1 = 1 (* ~ °) + ib =
s — (a 4- ib) (s — a) — ib (s — a) 4- ib (s — a)2 + b2 

By Euler’s formula, c1'0 =  cos 0 + i sin Q, so

y { c(a-N6)i} = ^ { e«V w} = «Sf {eat(cos bt + ism bt)}

= {eai cos bt} + iX {eat sin bl}

s — a . b
+ i

(s — a,)2 + b2 (s — a)2 + b2 '

Equating real and imaginary parts we get

¥{eat cos bt} = -— - v>a—-k and &{ealsmbt} = ^ — p? .
(s — a)2 + bz (.9 — a)z + \r

47. We want f(ax + dy) — atf(x) 4- ,8f(y) or

m(ax 4- By) 4- b — a(rnx 4- b) 4- ff(my -- b) — m(ax + j3y) + (a + d)b

for all real numbers a and 0. Taking a =  l3 — 1 we see that b =  2b, so b = 0. Thus, f(x) =  m.. 

will be a linear transformation when 6 = 0.

45. Assume that ^£{in~]} — (n — l)\/sn. Then, using the definition of the Laplace transform 

integration by parts, wc have

&{tn} =

=  0 + - <f un'
s

-L oc n /,cc
-e t _ + - /
s

0

n ( n — 1)! n!

s sn sn~i •
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Exercises 7.2 Inverse Transforms and 1;

,s3J 2 Is 3/ 2

o ^f-i/J_\  — — I^3«  « C s 6 '  1 1 1  “  -  A i  /  —  _ 1/U4 J 6 I *4 I 6

« . „ - . { ! ^ 2 } . | } . . * . * » ■

S. + ---- }= if~ 1 (4-i + I . ^ - - i - l = 4 + ^ 4-e-8t
Is  s° s + 8 J [ s 4 5° .9 + 8 J 4

9 -  ^ {sriK M rT iT iH ^ 4
10- ^ ‘ { ^ - ^ “ { s - r i T s } - ^

n - ■sf" 1{ ? T « }  =  i f “ , { ? - ? T 4 9 }  = ? sin7t

12. -| =  10cos4<
I s2 + 16 J

:3- ^ " 1{ 4? ? l }  = ^ 1 { ? T w } =cos5t 

:4- ^ ' ' { 5 5 T l } = ^ " 1 { 5 '? T 1 7 l}  = 5 si4 *

ives
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Exercises 7.2 Inverse Transforms and Transforms of Derivatives

15. if '

16. se­

t t .  i f  

IS. if '

19. i f

20. if ' 

21. if '

2 2 . i f '

23. if "

24. i f

25. Jf-

26. i f '

27. ^

28. i f

l {% — >FT I  =  i f _ 1 12 • “  2 • “9 ^ 1  =  2cos31 - 2sin31
ls 2 + 9J I  s2 + 9 s2 + 9j

= y “ ‘ { ? T 2 + 7=2 - ^ h }  = “ s ^  + f sinv^

-1 f 1 i =  y - i  r i . i  _  i . J _ \  = I  _  1 -a
I s2 + 3<s J 13 s 3 s + 3 / 3 3

* { ?

1 1 5  1 1  1 5 4#
7 + 7 e 4 4

_  1 ^  3 _3t 

+ 2s — 3J ~ U  s- 1  ' 4 S + 3J ”  4e 1 46

-5t- 1  ( 1 1 =  i f -1 / i . — ___ 1 ___ -_\
I s 2 +  s — 2 0  /  1 9  5 -  4  9  5 +  0 J

1 \_
-4

3 1

4

CO-1-

1 1

9 ’ S + 5

1

s -0.1

-e - -e 
9 9

- if «-  3 1 ( a  *  V3=  ?£  1 < - 5- — -  — Vs * -o — -  > =  co sh  \/3 i  — Vs s in h  Vz t
[s - y/3)(s + V3) J U 2-3  -  s2 — 3

-1 / ____________£____________\  =  < f - l  / 1  . ___^_________ L _  _|_ I  .  ̂ 1  _  I  e2f _  ‘St _1_ 1  6/.
S-6)J  12 s - 2  s - 3  2 ,8-6/ 2 '  ' ' 2 '(s-2)(s-3)(s

s2 + l  ) ,„_r ( 1 1  1 1 1 5  1

.s(.s — l)(s + l)(s — 2)
=  i f -

.1 f 1 1 1 1 1  5 1 "j 

12 .8 s- 1  3 ‘ 8 + 1 + 6 ’ 5 - 2 /

2 3 6

f 1 •'i r 1
-1

-1

-XI = * - - 7 t M  = * - 7 008>/5t
I.s + 5s J [s(s2 + 0) j 15 s 5 s2 + 0 ) 0  5

f S \ co-l f l s  1 2  1 1 1  1 ^ 1 . ^

t(?T 4 )(S + 2)| = ^  \4'?T4 + 4 ' ? T 4 _ 4-7f2/  = 4 0082<+45m2i_

f 2a-4 1 _  v-i  [ 2« - 4  ) t f _ ! f  4 3 s 3

1(s2 + 6-)(6-2 + 1)/ ' \s(s+l)(s2- l . ) j  I S + S ^ l  + S2 -r l  + ? - T

— — 4  H- 36  ̂ H-  cos £ +  3 s in  t

11 1  ̂ n I  =  ^  117~r ' ---7= ‘ 2 ^ q 1 = ~ 7= sin^ V3 f ---sin Vs t
U l -9J  [6y/3 ,s2- 3 6-\/3 s2+3j 6^3 6\/3
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Exercises 7.2 Inverse Tra::?:

y - i / ______ 1______ \ = * - i  ( I . _ J _____I . _ i _ l
[ (s2 + l)(s2 + 4) J 13 s2 + l 3 »2- 4 j

= ___ -____ - • -7-̂ ___i
13 s2 + 1 6 s2 -r 4 J

1 • 1 . «
=  - sm t- -  sin

3 6

ff-i I 6.9 + 3 \ _  ^>-112 ____£___ |___ _̂___ 9

| (s2 + l)(s2 + 4) J I s2 + l s2 + l "

.9 1 2

s2 + 4 2 s2 + 4.

= 2 cos i + sin t — 2 cos 2i — ^ sin 2i
Zj

The Laplace transform of the initial-value problem is 

Solving for i?{y} we obtain

.9 5 — 1

Thus

! / = - l  +  e‘ .

The Laplace transform of the initial-value problem is

2s i f {y} - 2y(0) + i?{y} =  0.

5:’;ving for if{y} we obtain

v r ,  1 6 _  3

~  25 +  1 ~  5 +  1 / 2  ‘

7::us

y =  3 e-t'/2.

T..- Laplace transform of the initial-value problem is

- !/(0) + = 1
.9 — 4

' :lv:ng for Z£{y} we obtain

oj f 1 1 2 1 1 19 1
T u r. ^  + m  = 77; ■ 7 + ^(.9 —4)(s + 6) 5 + 6 10 5 — 4 10 s + 6 -

v =  — e4t -1- — e~6i 
y 10 ' 10 '

Laplace transform of the initial-value problem is

^ « - * W  = ? T 25-
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? living for Z£\y\ we obtain

vr  ̂ _  2s 1 1 1 s 5 5
lM i  ~  /„ , oc> — 10  ' „ i 19 „2 I o c '* '  io(s - l)(s2 + 25) 13 s - 1 13 s2 + 25 13 s2 + 25 '

TI'/.is
1 1  0 

i, =  i3 '’‘ “ T3COs5t + S 5inM- 

Ti.f Laplace transform of the initial-value problem is

s2̂ {y} -  n/(0) -  1/(0 ) + 5[<Jf{»} -  y(o)] + 4if{»} = o.
ving for l£{y} we obtain

s + 5 4 1 1 1

s2 + 5s + 4 3 s + 1 3 s + 4 

Tims
^ —t 1 —At

y = ?  ~ r  •

36. The Laplace transform of the initial-value problem is

s2 2{y} - sy(0) - </(0) - 4 !.S Z{y} - 3,(0)] =  6 3
5- 3  5+1

5 T.ving for 1£ {y} we obtain

< rr l 6 3 5 - 5
^{y} ~~ 77.— 5T772--7^ ~ 77TTu72 +(s — 3)(s2 — 4s) (s + l)(s2 —4s) S2 — 4,s

5 1 2 3 1 11 1
+ ~r~r

2 5 5-3  5 5 + 1 10 5 - 4

Tims
® -> Sf 3  ̂ 11

V = 2 ~ 2c ~ r  + K e ■

\ The Laplace transform of the initial-value problem is

2
s2X{y} - sy(0) + % {?/} = -n

s2 + 2 ‘ 

jiving for i f  {y} we obtain

2 105 10s 2 2

(s2  + l)(s2  + 2) 52  + l S2 +  l s2  +  l  s2  +  2 ’ 

Thus

y = 10 cos t + 2 sin t — a/2 sin \[21.

35. The Laplace transform of the initial-value problem is

=,2 y /„ i _i_ 0 y/,A _  ls ^ { y }  + 9^{y} = —
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1 1 1

Solving for if{y} we obtain

0 - l ) ( s 2 + 9) 10 s - l  10 52 + 9 10 52 + 9 

Thus

39. The Laplace transform of the initial-value problem is

2 [s^{y }  - s2y(0) - V (0 ) - /(0)]^3[52^{y}-5|/(0)-y,(0)j-3[5^{y}-y(0)j-2y{|/-}

Solving for i f  {y} we obtain

, 2s+ 3 1 1 5 1 8 1 1 I
- f~. 7 i\ /Z  iV/oT T  T\Fr -  o TTT + To 7 T ~  n T i~7n +(s + 1)(*9 — l)(2s l)(s t  2) 2 .? +1 18 s — 1 9-9 4" 1/2 9 s — _ 

Thus
1 _/ 5 * 8 —i/‘> 1 —9̂

V~ 2 e + l8 e' - 9 e "  + 9e "•

■4*3. The Laplacc transform of the initial-value problem is

,93 i?{y} - s2(0) - sy'(0) - y"(0) + 2[s2 if{y} - 6>y(0) - y'(0)] - [s i?{y} - 2/(0)] - 2 if{y} =

Solving for i f  {y} we obtain

52 + 12

(s - l)(s + 1)(,9 + 2)(s2 + 9)

13 1 13 1 16 1 3 s 1 3

60 s - l  20 s + 1 ‘ 39 .9 + 2 130 52 + 9 65 52 + 9 '

Thus
13 f 13 _t 16 _2f 3 0 1 . , 

V = 60e - 20e + 39 + 130 C°S 65Hln 

=1. The Laplace transform of the initial-value problem is

s -J- 3
s2{y} + ¥{y} =

32 + 6s +13 

Solving for .if {y} we obtain

5+3 1 1  1 5+1
*{v} = (5 + 1)(52 + 65 + 13) 4 s + 1 4 52 + 65 + 13

1 1  1 / 5  + 3 2 \

4 5 + 1 4 \ (5 + 3)2 + 4 (5 + 3)2 + 4/

Thus
1 _f 1 _oy 1 _94

y = -e — -e cos 2 t + --e sin2f.
4 4 4
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i2. The Laplace transform of the initial-value problem is

- s ■ 1 - 3 - 2[.s %{y} - 1] + 5 %{y} = (a2 - 2s + 5) %{y} - 3 - 1 = 0 .

Solving for 0£{y} we obtain

s +1 a - 1 + 2 s- 1  2

s* — 2 s + o (s — l)2 + 22 (s — l)2 + 22 (s — l)2 + 22«2 

Thus

y = ef cos 2f + e* sin 21.

43. (a) Differentiating /(f) =  teat wc get /'(f) - ate0* + eat so ££{a,teat + eat} ■ ■ s^£{teat}1 where 

have used /(()) = 0. Writing the equation as

a¥{teat} + X  {ent} =  sl£{teai}

and solving for ££{teat} wc get

2{teat} = — X{eat} =  1
s — a 1 J (s — a)2 

(b) Starting with /(f) =  t sin ki we have

f i t )  — kt cos kt + sin kt 

f i t )  = — k2t sin kt 4- 2k cos kt.

Then

^ { —k2t sin t + 2k cos kt} = s21£ {f sin kt} 

where we have used /(()) = 0 and /'(0) =  0. Writing the above equation as 

—k2l£{t sin kt} + 2k 0£ {cos kt} = s2 Z£{t sin kt,}

and solving for ^f {t sin kt} gives

2k (rc . , 2k s 2ks
^{tsmkt} = ~2 —^ ^ ( COskt} - ^2 ^ 2  - (.,2 + *2)2 *

44. Let /i(f) =  1 and /2(f) = j  ^  J, f ^  1 Thcn ^ { f^ t )}  = % {/2(f)} =  1/s, but /i(f) ^

45. For y" — Ay' = 6e3t — 3e~( the transfer function is W(s) = l/(s2 — 4s). The zero-input respon-

"<*> - ^ “ {i- ;■- i ' 7 ^ }  - i  - ~ /1’
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and the zero-state response is

6 3
yi{t) =5£ 1-

[ (s — 3)(-s2 — 4s) (s + l)(s2 — 4s) j

= i f -1 <f — __-______ 2 i 5 1 3 1 ]
120 s — 4 s — 3 4 s 5 s + 1J

27 a* n ~ 5 3 _t 

“ 20e “ 2e + I “ 5C '

From Theorem 7.2.2, if /  and f  arc contiimous and of exponential order. =  sF(s) — /

From Theorem 7.1.3. = 0 so

lim [sF(s) - /(0)] =  0 and lim F(s) = /(0).o *\JG & *

For /(t) = cos Ai,

lim sF(s) = lim s 9 * 9 = 1 = /(0).S->O C  V ’  8 —>OC A>2 £ 2  J \  /

<>pwati<?na| Frop«rties I "irf:;
'• j' -V \ s' L s' - : - ~... '' 2 ~ “ •'* 5 '•...\ *“v” » *“ “j

s. i:v ;•£;

-  (s _  10)2 

* { *■ * }  -  j r t w

=  ( J W

{ t(ef + e!t) | = if{ le 2< + 'lteM + te4'} = ^  _  ,-,,2 , (s _  3 ) 2  1 (s _ 4 ) 2

jf  {e2«(f - 1)2} = i f  {tV> - 2(e2‘ + e21} = ^ - 4 ^  - + 1

2 1
+

(s - 2)3 (s - 2)2 s - 2

= (s _1)2 + 9

jf{e-2f cos4f) =  -—
*■ J (s + 2)2 + 16
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9. J. {(1 — et + 3e ) cos 5#} = i f  {cos bt — ef cos 51 + 3e 4< cos 51}

_  $ 5 —  1 3 (5  4- 4 )

,s'2+ 25 (s — l)2 + 25 (s + 4)2 + 25

9 4
+

3 (s - 3)2 (s - 3)‘2 + 1 /•;
10. if  je 3f 9̂ — At + 10s i n ^ | = i f |9e^ — A te + lOe^sin^|= - 

11 -/_1(  - \ = i f —1 / — - 1 = - f 2p~2/
~  I  ( « +  2)3 /  *  \ 2  (5 +  2)3 /  2

“  l ( ^ - l ) 4 J 6 ^  l ( 5 - l ) 4 /  6 t e

13- - 1  + 10} = { (« - 3)2 + 12 } = ^  Sin*

14' *  ‘ { S2 + 2s + o } = ,y  ^ 2  (s-H I)2 -H 22} = 2e >Sm2t

- i f  S \ _ V - l j  5 +  2 1 1 ___ —2t ____ r >- 2t.15. i f  M —r-- ----- f =  i f  < -----r~— — 2----—~— -k > = e “ cost — 2e sint
ls 2 + 4s + 5j \(5 + 2)2 + l 2 (s  + 2)2 + l2 J

16, —-V~ J— } =  i f - 1  / 2-— r2 — ~ — 3 } = 2e_,%cos51 — ^e_3tsinof 
152 + 65 + 34 j \ (s + 3)2 + 52 5 (s + 3)2 + 52 J 5

( W ) =' i  A  * 5 ^ 1  ■
,0  r - i f  25-1 1 t, ,  [5 1 5 4 3 2 ) -f -t
19. i f  < -K-,— — so > = £  \----o --- —r — 7---tt? — - 7-----To r = 5—t—5e —Ate —

5 (5 +1) J \s 5 5 + 1 (5 + 1)2 2 (5 + l )3 J

o0 y - J  (6~ + 1I 2l  =  ^ - 1/ _____________ -___+ 1 ___ -__ \ = f ( - x _ t 2e-2t + -t3(-'2tJ- x l ( 5  + 2)4/  x \(5 + 2)2 (5 + 2)3 + 6 (5 + 2)4j tC te 6

21. The Laplace transform of the differential equation is

1
5if{y} - y(0) + 4if{y}

5 + 4

Solving for if{y} we obtain

1 2
V\ = 7 . +

(5 + 4)2 s + 4 ’ 

Thus

y = te~if’ + 2e~4t.
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22. The Laplace transform of the differential equation is

s (s — l)2 ' 

Solving for i f {y} we obtain

v r i 1 . 1 1 1  1
° £ { y }  —  ~ ( -------------- T T  1 "  7 -------------- T y T  — ----------------!--------------------7  +

s(s — 1) (s — l)3 s s — 1 (s — l)3 ’ 

Thus

y = - l  +e‘ + itV .

23. The Laplacc transform of the differential equation is

s2if{y} - <*(()) - y'(0) + 2[sX{y} - j,(0)) + ^{j/} =  0. 

Solving for ?£{y} we obtain

<c r 1 s + 3 1 2
£  iv} = TTV^v} = TTT +(s + l)2 s 4- 1 (s + l)2 ‘

Thus

y = e-* + 2te~l.

:4. The Laplace transform of the differential equation is

S2 X { y ]  - Sy(0) - y'{0) - 4 (S X { y )  - y(0)] + iZ {y )  = 6
(s-2) 4 *

Solving for 2 {?;} we obtain ¥{y} = ^  6 . Thus, y = ^ t 5e2t.

25. The Laplace transform of the differential equation is

s2 X{y} -  51/(0) -  j/(0) -  6 [ ^ { y }  -  s,(0)] +  92{y} =  i  .
Solving for i?{y} we obtain

. 1 + s 2 2 1 1 1  2 1 10 1
s2{s - 3)2 27 s 9 s2 27 s - 3 9 (s - 3)2 ' 

Thus 2 1 2 v  10 «
V = — 4- - t--- e6t H---te .
* 27 9 27 9

2o. The Laplace transform of the differential equation is

s2 %{y} - sy(Q) - ?/(0) -4[s¥{y} - 2/(0)] + 4¥{y} = .
s

Solving for if{y} we obtain

,rr . .s5 — 4.s4 4- 6 3 1 9 1 3 2 1 3! 1 1 13 1 
y} = — 7ZT - 7 7 + o72 + 7 3  + 774 + 7l(s - 2)2 4 s 8 s2 4 s3 4 s4 4 s — 2 8 (s - 2)2 ‘
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Thus
3 9 3 9 1 o 1 <>/ 13 ->t 

+ + ?  - ¥ te

27. The Laplace transform of the differential equation is

s2 <£{y} - sy(0) - y'(0) - 6 \s%{y} - y(0)] + 13 2{y} = 0.

Solving for ££{y} we obtain

Vt —
,s2 - C)5 + 13 2 (5 - 3)2 + 22 '

Thus
3 v

y = — (r sin 21.J 2

2S. The Laplace transform of the differential equation is

2|V2if{y} - 5y(0)] + 20[s%{y} - y(0)j + 51 if{y} = 0.

Solving for i f  {y} we obtain

(„f 1 4s + 40 25 +  20 2 (5  +  5 ) 10
i on,, i ci („ i C\2 i i/o  i rt\2 i 1 /o2s2 + 20s + 51 (s+ 5)2 + 1/2 (5 + 5)2 + l/2 (5 + o)2 + 1/2 ' 

Thus

y = 2e~ot cos(t/\/2) + 10 V 2  e~ot sin(t/y/2-).

29. The Laplace transform of the differential equation is

- s»(°)-J/'(0) - -»(0)] =  4 1
(«-1)2 + r

Solving for if{y} we obtain

f. r , 1 1 1 1 5 -1 1 1
2 o» 1 o \ o  ̂ o ( „  i \ 2  1 1 <15(s2 - 2s + 2) 25  2 (5 - I)2 + 1 2 (5 - l)2 + 1 ‘ 

Thus
1 1 * 1 1 ■y = - — -e cos t + -e sm t. 
z z z

30. The Laplace transform of the differential equation is

s2 %{y} - 5y(0) - y'(0) - 2 [s£{y} - 2/(0)] + 5 %{y} = 7 + -  ̂•
s &

Solving for if{y ) we obtain

^  r 4a’2 + 5 + 1 _  7_ 1 ^  1 1_ , -75/25 - 109/25

^ 52(s2 — 2s + 0) 25 5 ' 5 s2 T 52 — 25 + 5

7 1 1 1  7 5-1 51 2
<-»- I- _ 7 TTo ! 4"
25 5 5 52 25 (5 - I)2 + 22 25 (5 - I)2 + 22 '
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Thus

31. Taking the

7 i 7 . -

V = 25 + 5t '2 S '  ' “ '- '~ ^ :

obtain

Tercnuai eq:iaT:>_>:; a::;:

Z{y"}+ ¥{2y '}+ Z{y} =  0 

sz!£{y} - sy(0) - y'{0) - 2s if{y} - 2y(0) + if{y} =  0 

,92if{y} — cs — 2 + 2s if{y} — 2c + i f {y} =  0

(s2 + 2,9 + 1 j  i f  {y} = cs + 2e + 2

t^r i cs 2c — 2
~£{y} =  7 ~ . +(.9+1)2 ( ^1-2

_ ^ s _ + l - l  . 2c * 2

(s + l)2 ■ (s - 1 - 

c c + 2

s + .1 (s + 1)

Therefore.

y{t) = c% 1{j^T [} + (c + 2) ^  ^ ( I+ l ) 2} = CC t + (c + 2)te

To find c we let y(l) = 2. Tlion 2 = cfi-1 + (c + 2)e_1 =  2(c + l)e_1 and c = e — 1. Thu.'

y(t) = (e - l)e-' + (e + l)te_ i.

:2. Taking the Laplacc transform of both sides of the differential equation and letting c =

obtain

^ { / }  +^{8y'} + i f  {20 y} =  0 

s2Z{y} - y'{0) + 8.9 2{y} + 20if{y} = 0 

s2if{y } — c + 8.9 i f  {;{/} + 20if{y} = 0 

(<92 -I- 8.9 + 20) i f  {y} = c

2(v\ = s2 + 8s + 20 (* + 4)2+4

Therefore.

1 { Is + ' i f  +'4 } = I C" 41 ™  2t ~ C,e 4,Sill2('
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To find c we let y'(ir) — 0. Then 0 =  y'(^) =  ee'"47r and c = 0. Tims, y(t) = 0. (Since 

differential equation is homogeneous and both boundary conditions arc 0. wc can see immedia" 

that y(t) = 0 is a solution. Wc have shown that it is the only solution.)

33. Recall from Section 5.1 that mx" =  —kx — fix'. Now m = W/g — 4/32 = | slug, and 4 =  2- 

that k =  2 lb/ft. Thus, the differential equation is x" + 7x! + 16x = 0. The initial conditions 

,r(0) = — 3/2 and 3/(0) = 0. The Laplace transform of the differential equation is

+ -s + 7 s«C{x} + ^  + 16if{:r} = 0.

Solving for we obtain

-3s/2 — 21/2 3 .s + 7/2 7/L5 \/l5/2

s2 + 7s + 16 2 (,<? + 7/2)2 + (\/l5/2)2 10 (5 + 7/2)2 + (vT5/2)2 ‘ 

Thus

3 _7(/2 7\/l5 _7f/2 . 
x = — -e 1 cos——  t ----- e ' sin—— i.

jl.- Z JL U Zi

34. Tlic differential equation is

S  + 2077 + 20°1 =  150' «(°) = f/(° ) = °- at* at

The Laplace transform of this equation is

I RO
s2£{q} + 20sX{q} + 200^{q} = .

Solving for i f  {<7} we obtain

150 3 1 3 s +10 3 10
%{q} =

s{s2 + 20s + 200) 4 s 4 (s + 10)2 + 102 4 (s + 10)2 -  1()2 ’ 

Thus

q(t) = 7 — \e~U)t cos 10i — 7e_ 10*sinl0f 
w  4 4 4

and

i(t) = </(/•) = 15e_10/sin lOf.

35. The differential eciuation is

| f + 2A § + c ^ = § ,  ?(0 )= , '(0 )= 0 .

The Laplace transform of this equation is

s2X{q} + 2As¥{q} + u>22{q} =  -
L/ 8

or
Eq 1

(s'2 + 2 As + w2) i f  {<?} = - .
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_  E0 (1 /u2 [1/lv2)s + 2X/lv2\ = Eq f l  s + 2A \

W  L \ a s2 + 2As 4- (v2 )  Lu2 \x s2 + 2Xs + (v2) '

For A > u> we write s'2 + 2A-s + J 2 =  (s + A)2 — (A2 — u;2), so (recalling that io2 — 1/LC:

opr p* s-i( 1 s + A A \
X\_q) = E0C y- - (s + A)2 _ ( A2 _ u;2) - (s + A)2 -(A2 -c.’2) J  '

Solving for and using partial fractions we obtain

Thus for A > u

<?(*) = 1 — e I cosh \/A2 — oj2 t —
A

: sinh \/ A2 — ll?2 t

For A < w we write s2 + 2As + iv2 =  (5 + A)2 + (a;2 — A2) , so

%{q} = £*)C^- - (s + A)2 + ^ .2 _ A2) - (S + A)2 + (W2 _ A2) )  •

Thus for A < tv.

q(t) - E0C 1 _  e At /̂ cos J w2 _  A2 f ---^  sin v/u/2 — A2
\ v w2 — A2 J _

For A = cv, s2 + 2A + J 2 =  (s + A)2 and

AEp 1 £ p / l / A 2 1/A2 1/A N J5b / l  1_____________

L s(.s + A)2 L y s s + A (s + A)2/ LA2 s + A (s + A -

Thus for A = ui,

lo. The differential equation is

The Laplace transform of this equation is

q(t) = EqC(i — e ^  — At e  .

Rs2{q} + ^ 2 { q }  = E o j ^

Solving for i£ {5} we obtain

=
£ 0<? Eq/R

{s + k)(RCs + l) {s + k){s + l/R C ) ' 

When 1 /R,C /  k we have by partial fractions

r„ f ■ E0 ( l / ( l /R C - k )  1/(1 /RC-k)\  E0 1 (  1

i?, V s + fc

Thus

«(*) =

s + 1 jR C  J R 1 IR C  -k\ s + k s + I IRC  I '
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When l/R C  = k we have

Thus

<sr i _  ^  1
(? ! H (s + fc)2 '

9W = f f c - “  = f t e - ‘/BC

38 . if{e2“* (f - 2)} =  i f  {e-(t_2> *1/ (* - 2)} =  -̂
+ 1

39. if{t9i(t-2)} = ^ { ( i - 2 ) ;W ^ - 2 )+ 2 ^ ( i- 2 ) }  = ^
<5 ^

Alternatively, (16) of this section in the text could be used:

/ 1 2'
i f{t V (t - 2)} = e~2s ¥ {t + 2} - e_2s + -) •

Q — <S 1

40. if{(3t + 1)% (i — 1)} =  3if{(£ — I ) 3?/ ( t— 1)} + 4 i f { ^  (t — 1)} = '-̂—  + ~
6 tS

Alternatively, (16) of this section in the text could be used:

if{(3 i + 1) °U- (t - 1)} = e-*Z{3t + 4} = e~* ( ^  ^  ^ ) •

S€~vs
41. i f  {cos 2 t LU(t — tt )} = if{cos2(i — x)''U(t — 7r)} = 2 t 

Alternatively, (16) of this section in the text could be used:

if{cos2t £W (t - 7r)} =  e-7™ i f  {cos 2(t + tt)} =  e~xs if{cos2t} =  e~

42. v  u - z w - - ~ " ' 227 J ~  y  27 " V 27J s2 + l 
Alternatively, (16) of this section in the text could be used:

if-fsint (t — ^  } =  e~vst2 i f  (sin (t + ^  1 =  e~™/2 ^{cosi} =  e

e~*a
45. i?  1 < ~2 > = sin(i — 7r) ~V, (t — tt) = — sint °U (t — tt)

■fi

s2 + 4 ’

-tt.s/2 *
,S2 + 1
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C / ? - l  . se -Trs/2

4 8 . i f

4 9 . ( c)

,s’ 2 +  4 j

iSiil
' p - 2s

= i f

= if- x

•(-a

= ~m (*- 2) “  (t - 2)^  (* - 2) + et_2fiM (t - 2)

j  =<U(t- 1) - e " ^  92 (* - 1)

2*s 2 s p—2<s

50. (e) 51. (f) 52. (b) 53. (a) 54. (d)

oo.

56 .

35.

59.

i f {2 - 4 s?/ (* - 3)} =  - - -e~3s
s s

if{ l —°1l (t - 4) +S1Z (£ - 5)} =  - - —  + —
s s s

%{t2cU (t- l)}  = if{ [ ( i-  l)2 + 2t- l] °U (t-  1)} =  i f  j [(£ - l)2 + 2(t — 1) + l] M (t-  1)}

/ 2 2 1\

- ( ?  + P  + l ) e

Alternatively, by (16) of this section in the text,

2 { t2 %\t -  1)} =  e-s i f { f 2 + 2t + 1} =  eT* ( 4  + 4  + - )  •
\ S S S /  

se-37rs/2
i f  | sin t ~U ~ ) } - 4 cos t

s2 + 1

%{t-t<U{t-2)} = 2 { t - ( t -  2) W (t - 2) - 2oil (t - 2)} =  \ ^
qA qZ

oO. i f  {sin i — sinf °U. (t — 27r)} = i f  {sinf — sin(f — 2tt) cU (t — 27t)} =

sA s* 

1

s

—2 tts

s2 + 1 S2 + 1

51. if{ /(f)}  = i f  {9/ (t — a) — % (t — b)} =
e-as e-b*

1 e~
52. + + — + — + ^  + . —  ,

6‘ s s s 1 — e~s

53. The Laplace transform of the differential equation is

s i f  {y} - y(0) + if{y}

Solving for i f {y} we obtain

.s s + 1
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Tims

y = 5 ’V(t — 1) — 5e-^-1) 'tt (t — 1). 

64. The Laplacc transform of the differential equation is

So'-ving for ^{y} we obtain

x{v} =
2e~H

■s(s + 1) .9(5 + 1) ,9 .9 + 1
— 2e"

s s + 1.

Thus

y =  l- e ~ i - 2 [1 - - 1).

65. The Laplace transform of the differential equation is

S y{8,} - 1,(0) + 2 Z{y} = I  - e - £ ± i

Solving for 

•*{»} =

Tims

we obtain

1 $ + 1

,92 (,9 + 2) ,92 (.9 + 2)

11 1 1  1 1_ _ _ I _
'4 ,9 T 2 ,92 ■ 4 .9 + 2

11 1 _1

4 s + 2 ss

1 1 1

» — i + 5t + i « _ a - L4 2

66. The Laplace transform of the differential equation is

S 2 {y }-3y (P )- ,/(p )+ 4  2 { y} =
1 e

Solving for ¥{y} we obtain

1 — s 

s(s2 + 4)

I l l s 1 2

s(.92 + 4) 4 .9 4 .92 + 4 2 s2 + 4

1 1 

4 s

Thus
1 1  „ 1 • „y = - — - cos 21 — - sm 2t — 
4 4 2

^ - i c o s 2 ( « - l )  ^ ( i- 1 ) .

6 7. The Laplace transform of the differential equation is

s2 if{y} - *2,(0) - t/(0) + 4 ^{i,}  = .
s* + 1

Solving for if{ y} we obtain

Thus

VY = 8 + e_27r,s

y — cos 2t +

.s2 + 4 

'1

1 1 1 2

.3 s’2 + 1 6 s2 + 4.

sin(t — 2tt) — - sin2(£ — 2-tt) 
o u

—  27r).

1 1 1 

4 s + 2.

1 s ~

4 s2 + 4.
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The Laplace transform of the differential equation is

s2 ̂ { j,}  - «y(0) -  w'to) - 5 [« i f {»} - »(())] + 6 X{y\ = e—  .

Solving for ¥{y} we obtain

vy — e

= e

—s +
1

s(s — 2)(s — 3) (s — 2)(.s — 3) 

1 1 1 1  1 1 1  1
+

Thus

V L6 2

6 s 2 s - 2  1 3 s - 3 j  s - 2  s - 3 

U{t - 1) - e2t t- e3*.
3

IS

S2^ f o } - S<,(0)-y'(0)+ .S%} =
g—K8 e-271"*

Solving for i f  {t/} we obtain

i% }  = e"™
n

s s2 + 1
— e—2tt$

s s'2 + 1
+

s2 + l

Thus

y = [ 1 — co s(t — 7r)]°M(i — tt) — [1 — cos(it — 2ir)]^(i — 2;r) + sin t.

is

1 e~2s e~*3 e~i>ss2 %{y} -  3J/(0) -  l/(0) + 4[s if{t/} - y(Q)] -  3 &{y] =
s s

+

Solving for if{y} wc obtain

!£{v\ = - - - - _-___ l  - _-__
XJt 3 s 2s + l  ' 6s + 3

,̂—4.9

-2s
1 1 1 1  1 1

+
3 8 2 8 - 1 6 s -f 3

1 1 1 1  1 1  
+

3 s 2 s -j- 1 6 s + 3
+ e.—G.s- 1 1 1 1  1 1

L ilUS

1 1 -t 1 -3ty =  - - -e f + -e M 
J 3 2 6

1 _  i e-a-2) . I^-3(£-2)
3 2 6

I  _  i p- ( < - 4) , I p - 3( / - 4)' 
3 2 ' 6 '

3 s 2 s + 1 6 s + 3J

ni(t- 2)

1 ....... n«(t-6)._ _  i _ p-3(i-0)
3 2 6

7 -call from Section 5.1 that nix” = —kx + f(t). Now m = W/g = 32/32 -  1 slug, and 32 = 

r: that k = 16 lb/ft. Thus, the differential equation is x" + 16a1 = f(t). The initial conditions 

j) = 0, a/(0) = 0. Also, since

m  =
201, 0 < t < 5 

0, t > 5
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and 201 = 20(f — 5) + 100 we can write

/(f) = 201 - 20f ;l/(i - 5) = 201 - 20(f - 5)9/(f - 5) - 100 sU{t - 5). 

The Lapla,ce transform of the differential equation is

9 <7"r 1 -in <7~f 1 2 0  2 0  1 0 0
+ 16<£{;?:} =  -s--- s - e ----e 0i.

ŝ  $*•

Solving for l£ {;r} we obtain

20 20
.S2 (S‘2 + 16) S2 (.S2 + 16)

5 1 5

e-°* -
100

s(s2 + 16)

_  e-5^ _  ^  I  _  ^  S 
■1 s2 16 s~ +16/ 6 \4 s 4 6'2 + 16

Thus
f1̂ ‘S 1 rOtt ŝ: n
^ (f - 5) - ^  sin 4(f - 5), ̂  (f - 5) - ^  cos 4(f - 5) ^  (f - 5

= ~t — sin4f — ^H/ (f — 5) + sin 4(f — 5) JU(t — 5) + ^  cos4(t — 5) ,Jtl(t — 5).
4 16 4 16 4

72. Recall from Section 5.1 that nix" =  —kx + /(f). Now rn = W/g - 32/32 = 1 slug, and 32 = . 

so that k = 16 lb/ft. Thus, the differential equation is x" + 16:r — /(f). The initial conditions 

,r(0) = 0, ^(O) = 0. Also, since
f sinf, 0 < t < 27r 

^  ~ { 0r t > 2tt

and sin f = sin(f — 2tt) we can write

/(f) = sinf — sin(f — 27ryu(t — 2tt).

The Laplace transform of the differential equation is

s2̂ }  + 16 ̂ {:r} = -
1

Solving for if{x} we obtain

2 W  =

s2 + 1 s2 + 1 

1

(s’2 + 16) (s2 + 1) (s2 + 16) (s2 + 1)

-1/15 1/15

S2 4- 16 s2 + 1

-1/15 1/15

s2 + 16 s2 + 1

,—2irs

- 2 tts

Thus

x(t) =  sin4f + ~  sinf + -^-sin4(f - 2tt)^ (£ — 2tt) — sin(f — 27r)^(f - 2?r)
DU 10 DU 10

— ̂  sin4f + y= sinf. 0 < £ < 2tt

0, f > 2tr.
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The Laplace transform of this equation is

'3. The differential equation is

2.5 ~  + 12.5# =  5 (£ — 3).
LtC

8̂ {q} + 5̂ {q} = -e~3a.
s

Solving for ¥{q} we obtain

x {^} =  _ L  e-3» = ( ' ? . ! _ ? .  -J— '] e_a's.
s(s + 5) \5 s 5 s + 5/

Thus

q(t) =  \ 'JU(t — 3) — JU(t — 3).
O 0

'4. The differential equation is

10 ^  + 10q = 30el - 30enli(i - 1.5). 
dt

The Laplace transform of this equation is

3 3e‘-a , 5,
s2{q ) - ®  + y  {?} =  —  - J— e

Solving for ¥{q} we obtain

_  /  3\  1 3  1 v, L5 /  2/5 2/5 \ 

- ( «  - 2 j ■ IT T  + 2 ' 7 ^ 1  - 3c + e ■

Thus

?(<) = (so - 5) + 2e‘ + j* 1-3 (<rC-’-5> -  ei-5{i-i.s)) CU ( ( _  L 5 ) .

"5. (a) The differential equation is

~  + lOi =  sin t + cos (t - , '<(0) = 0.

The Laplace transform of this equation is

I  „ „ - 3 tt.s / 2

4y {i} + io * W  = ? T T  + ^ T r .

Solving for i?{/} wc obtain

= ----- •------ -I------------ 3«.s/2
W  (s2 + 1 )(s + 10) (s2 +1 )(s + 10)

1 / 1  s 10 \ 1 / -10 10s10 \ 1 / -10 , 10s 1 \ ;

101 Vs + 10 s2 + 1 + s2 + 1J + 101 \s + 10 1 s2 + 1 + s2 + l j  ^
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Thus

i(t) =  -!- (e 10f — cost + lOsin*)

+ m

- 0 . 2

The maximum value of i(t) is approximately 0.1 at t = 1.7, the minimum is approximately - 

at 4.7. [Using Mathematica we see that the maximum value is i(t) is 0.0995037 at t =  1.67C 

and the mininum value is i(37r/2) ~ —0.0990099 at t = 37t/2.]

76. (a) The differential equation is

50Tt + oTil9 = Ea[* {t ~ !) ~M{t ~ 3))' 9(c) = 0

50 ̂  + 100q =  £„( :ll(t - ! ) - « ( ( -  3)], 5(0) =  0.

or

The Laplace transform of this equation is

50s i f  {9} + 100 %{q\ = Eq (- e~s - V 3*
Vs s

Solving for if{#} we obtain

-3s

Thus

s(s + 2) s(s + 2)

q{t:> = W0 K 1 _  - 1) - ( l - f (t - 3)] •

Eo

50

1 / l 1 / I

2 Vs s + 2
-3 s

( b )  q

Assuming E q — 100, the maximum value of q(t) is approximately 1 at t =  3. [Using AI 

matica we see that the maximum value of q(t) is 0.981684 at t =  3.]
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Tlie differential equation is

Taking the Laplace transform of both sides and using y(0) =  y'(0) = 0 we obtain

s4X{y} - sy"(0) - / '(0 ) =  H  i  ( i - .

Letting y/r(0) = ci and y"'(0) = C2 we have

Ci C2 , wo 1

so that

,  .  1 9 1 o 1 M)o
y(x) =  -cix 4- -c2rr‘ + — —

2"‘~ ' 6 

To find ci and c*2 we compute

24 E l ‘H )
//, N 1 wo

.(/ (x) = c 1 + c2a: + - — a:2 — (a: — - ) %( a; — —

and
two

a:

Then y"(L) = y"'{L) = 0 yields the system

1
Cl + <**+ 5 1 7 i 2 - ( i

3 wqL2

= Ci+C2i"-8“g r = 0

wo /L\ 1 wo-t n

°2 E I\ 2) 02 2 E l

Solving for c.\ and we obtain c\ = I wqL2 j  E l and C2 =  —\w$ L /E I. Thus

y(x) =
wo

E l
1 T2',-2 
16LX

_ he differential equation is

E I& * = -°U(X ~ 2Xr/3)].

Taking the Laplace transform of both sides and using y(0) = y'(0) = 0 we obtain

- i/ (0 )  - / '(0 ) =  H  I  (e-i»/3 _  e-21*/3) .

Lotting yw(0) =  ci and y’"{0) =  C2 wc have

^  =  ?  + ?  + I ? ( e' i , / 3 - e-2W3)
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so that

1
y(x) - ^c\x2 + ^C2X6 + -

1 ,3 1 tiu

2“L~" ' ‘ 24 E I

To find ci and c2 we compute

t t / \  i i ^ 
y (x) = ci + C2 X + - —

and
u?0/// / \ , u

y (s) = c2 + — LW  L
* - 3 W l

2L\ / 2L

Then y"(L) = ym(L) = 0 yields the system

r , 1 Cl + C2i + -  — = ci + co.L + I  = 0

Co
wq \2L L

e I 3J

6 E I

1 WqL

3 E I
=  0 .

Solving for ci and c2 we obtain ci = \ w§L2 j  E I  and c2 = —\wqL /E I. Thus

E I \12

79. The differential equation is

24

dAy _  2w{)
Oil --7 — -“—

dx4 L

Taking the Laplace transform of both sides and using y(0) = r/(0) =  0 we obtain

2wq
si Z{>j}-sy"( 0 )- / ' ( 0 )  =

Letting y"(0) = ci and y"'(0) =  c2 we have

Cfir x ci c2 2 w q

+ 7  + 571

EIL
£ _ ! .  + !_  P-W2 
.2 s s2 s2

J L  _  JL 1 ,
2s5 s& s(i t

-L s f  2

so that

/ \ 1  9 1  2 «'o
!,(*) = - „ r  + -<**• + —

‘K * - ?

To find ci and c2 we compute

y"(:r) = a  + c2x +
W q

60 E IL
30Lx2 - 20:r3 + 20 (x - * 3U (.x -
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and

y"'{x) =  C2 +
too

W EIL

Then y"{L) = ym(L) = 0 yields the system

wo

&)Lx - 60x2 + 60 (z - ~ j ~V. (.t

Cl +  C'2 L +
60 E IL

30L3 - 20L3 + ^L3 

w0

C2+6 o ik [ 60L - 60L + 1 5 L  ] = ^ + 4 i i = 0 -

Solving for ci and C2 we obtain ci = wqL?/24EI and c2 = —wqL/AEI. Thus

„w  = +
48.E7 24EV 60EIL

Wq 5L

r

The differential equation is

Taking the Laplacc transform of both sides and using y(0) = ?/(0) = 0 we obtain

wp 1 

E l s

Letting y"(0) = ci and y''\0) = 02 wc have

so that

2~‘“ ' 6 

To find C] and C2 we compute

/ \ 2 , 1  3 - 1 u;0
</(*) = -Cl* +-c2:r + -  —

u ,  ,  1 IL'o
J/ (s) =  Ci + C2X + - —

..2

Then y(L) = y"(L) = 0 yields the system

1 r2 1 ,.•< 1 WQ

2C + 6C + 24l7
r 4 

L , - ' 2
= I Ci L2+ 1 C2£3+ 5®° .4

2 12SEI
L = 0

, r , 1 U!°
Cl+C2i+2 l7 i 2 -

21
3wo

— t‘i + C2L + L — 0. 
8 E l

Solving for c\ and 0 2 we obtain c\ = wqL1 /E l and c‘i =  wqL/El. Thus
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SI. (a) The temperature T of the cake inside the oven is modeled by

dT
C—  = k(T - Tm)

where Trn is the ambient temperature of the oven. For 0 < t < 4, we have

Tm = 70+ 3-̂ 0— t = 70 + 57.51

Hence for t > 0.
( 70 + 57.5*. 0 < t. < 4 

m ~ \ 300, t > 4.

In terms of the unit step function,

Tm = (70 + 57.5£)[1 - SU (t - 4)] + 300^  (f - 4) = 70 + 57.51 + (230 - 57.5<) ^  (t - 4).

The initial-value problem is then
j r p

—  = fc[r - 70 - 57.5t - (230 - 57.5<) V (t - 4)1. T(0) =  70. 
dt

(b) Let t(s) = i f  (T(t)}. Transforming the equation, using 230 —57.5f =  — 57.5(f — 4) and 

Theorem 7.3.2, gives

,/ N , (*' s 70 57-5 57-5 -4A
st(s) - ({) = k \ t{s)------ 2̂“ + ~g2~ e J

or
70 _  70/;; _  57.5k ^  57.5k _4s 

s — k s(s — k) s2(s — k) ' s2(s — k )6 

After using partial functions; the inverse transform is then

T(t) = 70 + 57.5 + i - ^  ekt) - 57.5 + 1 - 4 - i  efe(i_4))  % (t - 4).

Of course, the obvious question is: What is A;? If the cake is supposed to bake for, sa; 

minutes, then T(20) = 300. That is,

300 =  70 + 57.5 Q  + 20 - ^  e20̂  - 57.5 ( i  + 16 - i  e16k̂ j .

But this equation has no physically meaningful solution. This should be no surprise sine- 

model predicts the asymptotic behavior T(t) —► 300 as t increases. Using T(20) =  299 ins' 

we find, with the help of a CAS, that k «  —0.3.

82. Wc use the fact that Theorem 7.3.2 can be written as

if{ /(t -«)-»((- a)} =  <T" *{/(()} .

(a) Indcntifying a = 1 we have

i f {(21 + 1 )% t - 1)} = i f  {[2(/; - 1) + 3]CM(£ - 1)} = e~s ¥{2t + 3} =  e-* ( ^  + ^ ) •
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if{(21 + 1) % t - 1)} = e~5 i?{2[t + l) + 1} = e-s &{2t + 3} =  e 's ( ^  + ; )  •

(b) Indentifying o =  5 we have

—5(.?—:
2{etcU(t - 5)} = i f  {ct_5+5;tt(t - 5)} = e5if{e t-5itt(f - 5)} =  e5e~5s i?{e‘} =  1 T-.

S j-

Using (16) in the text we have

£{e tJil(t - -5)} = e-r°s£ {e t+5} = e-5*e5 i?{e*} =  - -- .
& J.

(c) Indentifying a = tt we have

Exercises 7.3 Operational Properties I

Using (16) in the text we have

se 7rs
J£{cost°U(t — tt)} = — if{cos(i — tt) — tt)} =  —e 71,5 if{cosi} =  — — -•

s “H 1

Using (16) in the text we have

se-™
if{cos£ c12/(£ — tt)} =  e ^ if'lc o s^  + 7r)} = —e ir*if{cost} = — -̂--.

A' + 1

(d) Indentifying a = 2 we have

if{(£2 - 3t)°i/(* - 2)} {[(i - 2)2 + At - 4 - 3t] % t - 2)}

= i f  {[(t - 2)2 + (t - 2) - 2] °ll(t - 2)}

= e

Using (16) in the text we have

¥{(t2 - St) % t - 2)} =  e~2s if{(* + 2)2 - 3(i + 2)}

I a) From Theorem 7.3.1 we have if{£ete} = 1 f(s — ki)1. Then, using Euler’s formula.

t£{teku} = i f  {£ cos kt + it sin kt} = i f  {t cos kt} + i i f  {t sin kt}

1 (s 4- ki)2 s2 — k2 . 2ks
- K ' - + 1 •

(s — A;?)2 (.s2 + A:2)2 (s2 + fc2)2 (,s2 + A*2)2 

Equating real and imaginary parts we have

s2 — k2 , 2ks
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(b) The Laplace transform of the differential equation is

Solving for Z£{x) we obtain = sj(s2 + u?)2. Thus x = (l/2u>)tsmut.

Exercises 7.4
.s r̂"l:vl“ 'a''■<.... '

>':..Vk.L-; iKv¥̂ ; ' • ;:S?r"r-tiSifiiSi i w S I S i W i i i
i .

2. 2 { tV }  = (-1)3|

3. i?{tcos2£} =

4. i?{isinh3i} = — ̂

J2
5. i?{f2sinht} =

' 1 1
1

+ 10/ _  (5 + 10)2

~ ( 1 ■\ - 6
:« U - l . / (s - l)4

( 6 ^
s2 - 4

Vs2 + 4/ (s2 + 4)2

( 3 '
\ 6 s

; vs2 — 9.' (s2 — 9)2

r . 1 'i
6,s2 + 2

ds2 Vs2 — 1/ (,§2 _  i)3

d? / s \ _  d (  1 — s2 \ _  2s (s2 — 3̂

ds2 Vs2 + l7  d.9 ^(s2 + l)2,/ (,s2 _|_ 1)3 

d (  6 \ 12(s-2)
7. ^ { tA m 6 *}  = V(8_ 2)2 + 36y -  |(s_ 2)2 + 36]2

8. ^{te-3‘ cos3t} =  ~  f — * + 3— )  = (s + 3)2 ~ 9,
I J ds \(s + 3)2 + 9/ [(5 + 3)2 + 9]

9. The Laplace transform of the differential equation is

sX{y} + X{y} =
2s

(s2 + 1)
2 -

Solving for i?{y} we obtain

2 s 1 1  1 1  I s
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Thus
1 - t  1 • 1 1 / • x 1

y[t) = --e — - sin £ + - cos t + - (sm t — t cos t) 4- -t sin t
Zi Li Zj Ai

1 - / 1  1 1 •
=  — -e + -cost —-t cost + -tsmt. 

z z z z

0. The Laplace transform of the differential equation is

2 (s -1)

( ( s- l )2+ l )2 

Solving for i?{y} we obtain

( ( » - 1)2+ 1)2 ' 

Thus

y = eL sin t — tet cos t.

1. The Laplace transform of the differential equation is

s2£{y} - -sy{0) - y'(0) + 9 ¥{y} =
s2 4- 9

Letting y(0) = 2 and z/(0) = 5 and solving for Z£{y} we obtain

f .. . 2s3 -|- 5s2 -(- 19s 4- 45 2s 5 s
= ---- („2 ,-^2----  = ~jr~7n + 7iTT~n +(s2 + 9)2 ,s‘2 + 9 s2 + 9 (<s2 4- 9)2

Thus
5 1

y = 2 cos 3£ + - sin 31 + -t sin 31.
3 6

2. The Laplace transform of the differential equation is

.2  <r,( ■> //" s . T, 1
%{v} - 52/(0) - 1/(0) +Z£{y} =

s + 1

Solving for i?{y} we obtain

on r ■> s3 - s2 + s s 1 1
= -7:5". .'2 = ^ T T  - ^TTT +(s2 4-1)2 s2 + 1 s2 + 1 (s2 + l)2 ’

Thus

y =  cos t — sin 14- f - sin t — -t cos t ] =  cos t — - sin t — -t cos t.
\Z Li J Zi Zi

i. The Laplace transform of the differential equation is

s2i?{y} - sy(0) - z/(0) + 16if{y} = !£ {cos4£ - cos4t°U(t - 7r)} 

or bj' (16) of Section 7.3.

(s2 + 16) X{y} =  1 + - C-" if{cos4(t + *)}
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Thus

and

1 s
+

s2 + 16 0 2 + 16)2 (s2 + 16)2

1 1 1
y = - sin4i + -tsin4t — -(t — tt) sin4(£ — tt)^ (t — 7r).

4 8 8

14. The Laplace transform of the differential equation is

s2g {y }- sy (0 )- y '(0 )+ % { y } = g [ l- eu (t-  0  + sintc?/(f - -0 j

or

Thus

and

15.

(s2 + l)y{s,} =  s +
s s

~ s —  
5

— s +

I  e-™/2 + e-ir</2 <£ |sin (t + | ) } 

I e-W2 + e- W 2 ^{COS t}

e-**/2 + e-w/2
s2 + 1

*{y} =
.S 1

+ -e
s2 + 1 s(s2 + 1) s(s2 + 1)

S i  .s / I  s

^  + 1 + S s2 +1 \s s2 + 1

1 f 1 8 \r-^/2 S 
S \  5 S 2 +  1

+ 5 e~*8/2
(s2 + 1)2

- ( - --- -— ^ e_7rS//2 H---
\a s2 +1) (s'(s2 + l)2

5—tt-s/2

+ -T T tf/ 2

J/ = 1 - 1 — cos {t —
7T

(s2 + l)2 '

" H H K M ’- f h H
= 1 — (1 — sin i) ̂  — \ ( t — ^  ) cos t cV,(t
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!

From (7) of Section 7.2 in the text along with Theorem 7.4.1.

= ~ fs X{y“} = |s2y(s) ~ sy(0) ~ ^  =  _ *2 ~ 2sy+!' (0)' 

so that the transform of the given sccond-order differential equation is the linear first-order differ­

ential equation in Y(s):

s2Y! + 3.sK =  - 4  or Y' + - Y  = - t .
s6 s s°

The solution of the latter equation is Y(s) = 4/s4 + c/s'K so 

From Theorem 7.4.1 in the text

{t!/} = “ I  x lv '} = ~ l lsY{s) ~ v(0)1 = ~s d~h _  y

so that the transform of the given sccond-order differential equation is the linear first-order differ­

ential equation in Y(s):

‘A — 2
Using the integrating fa,ctor s e s , the last equation yields

I/-/ x 5 C „2 

y (S) -  ^3 + ^3 e‘ •

But if Y(s) is the Laplace transform of a piccewise-continuous function of exponential order, we 

must have, in view of Theorem 7.1.3, l im ^ ^  Y (,s) = 0. In order to obtain this condition we require 

c = 0. Hence

I J C o4 ooS S'*

2
\2

<9—1
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22. ¥\e2t*sm t) =  7---  *
*- J (s — 2)(s2 + 1)

23. A  f* eTd r )  = - ¥ { 6 * } =  . 1[Jo J s s(s - 1)
24. Z£< [ cos r  dr 1 =  -i?{cos t} — —— = 9 1[Jo J 6* + 1) 5̂  + 1

25. * { j V c o e r d r }  = \ if  {a cco st} = +  + 1 = 5(s2++2i + ^

26. i f j  f  T s m r d r \  =  -  i?{£sin£} =  -  ( —j~  T T t )  =  7~o— =  T T ~—\2
{JO J a 8\ dss2 + l j  f l( s2 + 1)“ (s2 + l) 2

27‘ * { £ Tê dT} = m * {* } = * ( 7 :T )

28. /  sinr cos(t — r) dr| = if{sint}if{cos£} = 2 _|_

29. J f { * j f - n r d r }  =  (± ^

30. * { * £  „ - * }  =  - I  * { £  r e * * }  ( I  -  ^ 3

32- = j y  - d * = ^  -1

3 3 ' 2 ' l { ? ( r r i j }  = y _ 1  {iZ£!T ^ i } =  i y

34. Using i f -1 i 7— rTj 1 =  teai, (8) in the text gives
I (s ~ a) J

* ~ l { j ( ^ } = i ‘ Te“T d T = i (ate
=  —y ( a t e  -  e  + 1). 

az

35. (a) The result in (4) in the text is i? " 1{F(s)C?(s)} =  /  * g, so identify

f W  = ( ? f p ) 2  “ d ° ^  = ^ T ¥ -
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f(t.) = sin kt — kt cos kt and g(t) = 4 cos kt

so

i F (s)G(s)} =  f  * 9 =  * J0 f(r)g (t- r)d t

= 4 (sin kr — kr cos kr) cos k(t — r)dr.

Using a CAS to evaluate the integral we get

Then

c - . r  ,8 ^ ;
(s2 + A:2)3i f  1 ^   ̂=  t sin kt — kt1 cos kt.

(b) Observe from part (a) that

i f  {£(sin kt — kt cos kt)} =
8 fc3s

(s2 + fc2)3 ’

and from Theorem 7.4.1 that i f  {£/(£)} - —F'(s). We saw in (5) in the text that

ifjs in  kt — kt cos kt} - 2k3/ (s2 + k2)2,

so
, 7 m d 2fc3 8kzs2{t(sm kt - ktcoskt)} =  - -  .

The Laplace transform of the differential equation is

1
~£{y} + y} — f  2 “ i \ +

2s
(s2 + 1) (s2 + l)2

Thus

= , . -1 + 2s(s2 + l ) 2 (s2 + l )3 

and, using Problem -35 with k = 1,

y = 7r(sint — tcost) -f- -^(tsini — i2cosi).
£ "A

The Laplace transform of the given equation is

Solving for if{ /}  we obtain if{ /}  =  -9 7- . Thus, f(t) =  sini.

1. The Laplace transform of the given equation is

if{ /}  = i f  {2 i} — 4 if{s in i} if{ /} .
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Solving for if{ /}  we obtain

.s/f, _  2s2+ 2 _ 2 1 8 V5
J _  ^1! rfl I c\ — c „2 +s2(,s2 + 5) 5 s2 5\/5 52 + 5 

Thus
2 8 

/(£) = -t + 7-7= sin V51.
o oVo

39. The Laplace transform of the given equation is

<t{f} = y{te‘} +y{t}i?{/}.
Solving for i?{/} we obtain

=  7— T^TTTY = I A  +  7 1 1 2(.9 — l)3(<s + 1) 8 s — 1 4 (s — l )2 ' 4 (.9 — l )3 

Thus
1 + 3 * 1 o t 1 _t

m  = + -4tel + - -e-‘

40. The Laplace transform of the given equation is

if{ /}  + 2 if{cosi}if{/} = 4if{e"*} + ^{sint}. 

Solving for if{ /}  we obtain

^ { / }  = 4f .+ *+ 5 = J -  - + 4- 2
(s + l )3 s + 1 (s + l )2 (s + l )3 

Thus

f(t) =  4e_* - 7te '1 + 4i2e_<.

41. The Laplace transform of the given equation is

i ? { / } + i f { l } n / }  =  i f { l } .

Solving for i f  {/} we obtain if{ /}  =  — . Thus, f(t) = e_t.
5 + 1

42. The Laplace transform of the given equation is

X { f }  =  2{c<xt} + 2{e rt}Z { f} .

Solving for i f  {/} we obtain 

Thus

j(t) =  cost + sini.

1 1 

8 7+ 1 '
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43. The Laplace transform of the given equation is

y{/> = y  {1} + y  {i} -  y  {jj J ‘(t - r)3/M *  J
1 1 8 cr rj.3i <v*c /0 1 1 16
- + "2 + o %{f} = - + ~2 + T ’S .9 3 S S S4

Solving for if{ /}  we obtain

s2(a + l) 1 1  3 1 1 2  I s
„4 i c  o „ > o q o ^  /i „2 i /< os4 — 16 8 s + 2 8 s - 2 4 s2 + 4 2 s2 + 4 

Thus

f(t) = ^e-2< + ^e2t + i  sin2t + ^ cos 21.

44. The Laplace transform of the given equation is

y{(} - 2  y {/>  = y  {e* -  e-‘}y{/> .
Solving for i f  {/} we obtain

f \ -- - = - —____L ^1
U i  2s4 2 s2 12 s4 '

Thus

f(t) =  - t-  — t*. 
J w  2 12

45, The Laplace transform of the given equation is

s2{y}-y(0) =  i f{ l}  - if{s in i}  - if{ l} if{y } .

Solving for if{ /}  we obtain

y, ( 1 _  s2 - s + 1 _  1 1 2s 

iV) ~ (s2 + l)2 '  “  2 (s2 + l)2 ‘

Thus

y — sint — ^ tsini.

-6. The Laplace transform of the given equation is

»y(s) -  i/(o) + e y w  + 9y{i}y{j,} = y{i>.
Solving for if{ /}  we obtain if{y} = -— • Thus, y =  ie~3t.

(s + 3)
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47. The differential equation is 

di _  1 f1

or

0.1 + 3i + —  jf ' i(r)dr = 100[-K(t - 1) - % (( - 2)]

di
— + 30i + 200 / i(r)dr = 1000[^(i - 1) -0/ (t - 2)], 
dt Jo

20j
!

io!

3°|
1

; 0 .5  1 1 * 5 ;! 2 7 5 3  -

-10\

where i(0) = 0. The Laplace transform of the differential equation is -20j

-30'

sX{i} - y(0) + 30 2{i}  + = ^ ( e ~ s - e~2s).

Solving for ^£{i} we obtain

1000e-s - 1000e~2s
*{*} = s2 + 30s + 200

100 100
s 10 s -I- 20

(e~s - e~2s).

Thus

i(t) =  100(e_1°^_1) - <r20(t_1)) <m(t - 1) - 100(e_10{*_2) - e~20(t_2)) °V.(t - 2).

48. The differential equation is 

,di . 1 /■*
0.005^ + i + —  J0 ‘(T)dT = 100[t - (t - - 1)]

or
rt

— + 200i + 10,000 / %{r)dr = 20,000[* - (t - 1) °U(t - 1)], 
dt Jo

2

1.5

1

0.5

where z(0) = 0. The Laplacc transform of the differential equation is J— .
0 *5 1 1.5

sg{ i} + 200 i?{*} + = 20,000
1 1

Solving for Jz?{i} we obtain

200
.s s + 100 (s + 100)2J

(1 - c- ).

Thus

■i(t) = 2- 2e~im  - 200te~im  - 2 sU (t- l)+  2e-10°(t-1) % t - 1) + 200(i - l)e_100(*~1)5tf(i -

1 - e~2as

/2ci
-St̂ u I e-stdt

pa rZ
/ e~stdt —

Jo Ja

1 — e—as(1 _  e-^)2 

s(l - e_2as) “  s(l + e_as)

50. %{f(t)\ = ---P  e~stdt =  — — -̂------ r
1 - e~2as Jo .s(l + e~as)
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Using integration by parts.

* { / « }  = T r W o V 1*  = J ( s  -  '

I '  te~"*dt + / ( ' 2 - *)«"’**
1  — e—s

,s2(l — e"2s)

. I -st - 7 1 eW2 _|_ e—Jrs/2 2 5TS
; ------  / e smtdt — -7y— r • --^  = -s— r coth —

XJ WJ 1 - e-™ 7o s2 + 1 e™/2 - e~ns'2 s2 + 1 2

if  {/(£)} =  --- s— [ e~stsmtdt = -9 • -— ----u WJ 1 -  e '2™ Jo s2 + 1 1 -  e ~ * *

The differential equation is L di/dt + Ri =  E(t), where i(0) = 0. The Laplace transform 

equation is

Ls¥{i}+ RZ{i\  = &{E{t)}.

From Problem 49 we have i f {£(<)} =  (1 — e~s)/s( 1 + e~s). Thus

1 -  e ~ ' s
(Ls + R )X{i} =

-s(l + e"s)

and

1 1 1-c-
n  = -T

L 5(5 R f -£')(! 6 s) L s(s "h R/L) 1 + c s

- s G - rrk)(1 - 0(1 - e“+e_2* - ^ +c_4’ -  ■ >
“ sG - 7Tr/l) ̂  ~ 2<r'+2*~2‘ ~ 2c~3“+2e~" -  •

therefore.

m  = i  ( l - e-v/L) - i  (1 - e-««-*)/i) %(t - DR y  > r
+ 1  (1 _  e-*«-2)/i) *  (t _  2) - |  ( l  - e - « ‘-»)/i) K (i - 3) +

•I o  OC
=  ^  ( l - e~RtfL'\ + 4  V ( - l f  ( l  - e- ^ t-n)/L) ̂  (t - n).

“  n = l
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The graph of i(t) with L =  1 and R = 1 is shown below.

56. The differential equation is Ldifdt + Ri = E(t), where 'i(O) = 0. The Laplace transform of 

equation is

LsZ{i} + R £ { i)  =  2{E(t)}.

From Problem -51 we have

1 1 1
,.2 $ es — 1

Thus

uid

(.Ls + R )2 { i]
1 1 1

s 2 s  es _  ]_

L s2{s + R/L) L s(s + R/L) es - 1

_ W 1 _  1
e — e

Therefore

R\s2 R s  R s  + R/LJ  R\s s + R/L

- -i (l - e-W-‘Z)/L'} % (t _  2) - ^  ( l - e- ^-3 )/^ % (t _  3) ---

“ 5 (* ■- 5 ■+ F "R</i) " 5  S (1 -  «(*-»>■
The graph of i(t) with L = 1 and R = 1 is shown below.
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57. The differential equation is x" + 2x' + ltte = 20f(t), where f(t) is the meander function in Probl 

49 with a — n. Using the initial conditions x(0) =  2/(0) = 0 and taking the Laplace transform 

obtain
on i

(s2 + 2s + 10) =  -^(1 - e— ) _ i - j j

20 .

s

20

s

= — (1 - e-7rs)(l - e~ns + e~27!$ - e-37r's + • • •)

= — (1 - 2e-*B + 2e~2lTS - 2e~Zws + • • •)

20 40 00

T  + t E ( - 1 ) Vs s „ in =  1

Then

20
+

40 OO

s(s2 + 2s + 10) s(s2 + 2s + 10)

2s+ 4 OC

s s2 + 2s + 10 
2 2(s + 1) + 2

n— 1

oc-

4s+ 8

s s2 + 2s + 10. 

1 (s + l) + l

s (s + l)2 + 9
-rms

and

/ 1 \ 00 r
x(t) =  2(1 — e~l cos 31 — sin 3t J + 4 ^  (—l)n 1 — e-(*-rwr) COs 3(t — mr) 

' 3 / n=1 L

— sin3(£ — mr) °U,(t — niT).

rhe graph of x(t) on the interval [0,27r) is shown below.

'lie differential equation is x" + 2x' + x = 5f(t), where f(t) is the square wave function with a — ~.
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Using the initial conditions x(0) — x'(Q) = 0 and taking the Laplace transform, we obtain

(.s2 + 2s +1) y{i(t)} = -s = 5(1 - e-”  + e■ITS I —27rs _  3tt6‘ ~̂̂ '7rs

IT -DO
- - V ( - l) ne“n™.

S n=0

Then

OC

* ( * »  -  ^ "  5S (' i r  U  -  JTT -  (TTIP.

and
C5C

x(t) = 5 £  (- l)n(l - e-^~n^  - { t-  n.7r)e-^"n7r)) % t - nn).
n=0

The graph of x(t) on the interval [0, An) is shown below.

-riTTS

M- =- H s w  - 3) - Ms+1)!} - (e3‘ -*")
60. The transform of Bessel’s equation is

- sj/(0) -  j/(0)] + sY(s) - j,(0) -  1 Y («) = 0

or. after simplifying and using the initial condition, (s2 + 1)1"' + sY =  0. This equation ir­

reparable and linear. Solving gives y(s) — c/x/s1 + 1. Now Y(s) = '<£ { Jo(i)}> where Jr 

derivative that is continuous and of exponential order, implies by Problem 46 of Exercises 7.1

1 =  Jo(0) = Urn sY(a) =  cHm ^ - c

so c =  1 and

Vs2 + 1 Vs2 + 1
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[s2Y  - sy(0) - 1/(0)] + sY - y(0) + ^  [sY - y(0)] + nY

= -4- [»2Y] + sY + — [sY] + nY 
as as

= - s2( f ) - 2sK+*y + < f ) + y + " y  

= ^ (lla) + (1 + n ~ s)y  =  °- 

Separating variables, we find

■51. (a) Using Theorem 7.4.1. the Laplace transform of the differential equation is

dY 1 + n• — s , ( n 1 + n\ , 
ds = ---------- ds

Y s2 — s ' Vs — 1 s 

In Y = nln(s — 1) — (1 + n) In s + c 

($ - 1)»
Y = c i sl+n

Since the differential equation is homogeneous, any constant multiple of a solution 

be a solution, so for convenience we take ci = 1. The following polynomials are sol'. 

Laguerre’s differential equation:

n = 0 : Lo(t) = i f -1 j- j  = 1 

» = l :

- a :

c> 2 o 1 ,
= 1 - 4t + 3t? - -13 + — t4.

3 24

(b) Letting fit) = tne t we note that f k\G) = 0 for k =  0, 1, 2, . . . ,  n — 1 and /  ;; =
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Now, by the first translation theorem.

H ^ tner' } = =  l—

- i[ s n y{t"e-*} - »”-'/(0) - s"-2/ '(0 )-----/<’*-1>(0)] i ;; t

^  1 Ln n! 1 _  (g - *)" ■ y
n !L  (s +  l ) n+J J « - s- i  sn+1

where F  {Ln(t)}. Thus

= n = 0 ,1 :2 , . . . .

62. The output for the first three lines of the program are

9y[t] + §y'{t] + y"[t] ==  t sin[£]

1 - 2s + 9Y + s2Y + 6(—2 + sY) - (1 + s2)2 

_  / - l l  - As - 22s2 - 4s3 - 11s4 - 2s5\

\ (14- s2)2(9 + 6s + s2) J
The fourth line is the same as the third line with Y —> removed. The final line of output shov- 

solution involving complex coefficients of eu and e~%t. To get the solution in more standard : 

write the last line as two lines:

euler={E', (It)->Cos[t] +  I Sin[t], E~(-It)->Cos[t] - I Sin[t]} 
InverseLaplaceTransform[Y, s, t]/.euler//Expand

We see that the solution is

(487 947 \ 1
—— + -^rt) e~3t + — - (13cos£ — 15£cosi - 9sin£ + 20tsin£).
2 o 0  5 0  /  25 0

63. The solution is

V(t) =  L ‘ - L —‘/2 cos ^ 1  _  V p  e-m sin V i51.
yw 6 6 6

64. The solution is

q(t) = 1 — cos t + (6 — 6 cos t) ‘JU (t — 37r) — (4 + 4 cos t) (t — tt).

9

Exercises 7.4 Operational Properties II
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Exercises 7.5

1. The Laplace transform of the differential equation yields

i f {y} = —2s
S —  3

so that
y  =  ^ - 2 ) ^  _  2 )_

2. The Laplace transform of the differential equation yields

, , ,  , 2 e“s

-  i n  + i n

so that

y = 2e t + e ^ (t — 1).

3. The Laplace transform of the differential equation yields

^ «  =  j r n ( 1 + < rW )

so that

y = sini + sin t ,:U(t — 2n).

4. The Laplace transform of the differential equation yields

in = -1
4 ,s2 + 16

- ‘2ns

so that

y = ^ sin4(t — 2%)°U(t — 2ir) = ^sin4t °U(t — 2-k).

:. The Laplace transform of the differential equation yields

^ “ p s T I  («~” /2 + «‘ 3” /2)

so that

v=sin (f “ I)* (‘_ I)+ sin (*- f)* (*_ f)
= — cos t % (t — + COS t (t. — ) .

The Laplace transform of the differential equation yields

s 1
VY = +

32 + 1 S2 +
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Exercises 7.5 The Dirac Delta Function

so that

y = cost +  sinif5?/^ — 2 tt) +  °U(t — 4?r)].

The Laplace transform of the differential equation yields

=
1

so that

s2 + 2.9 

1 1

(1 + 0  =
ri l i i

y = 2 ~ 2 e~* +

12 s 2 s + 2J

n iit- i) .

(i + O

.2 2

5. The Laplace transform of the differential equation yields

3 1 3 1 1 1
%sv\ _  3 + 1 + -- _-- e~^

m  s2(s — 2) s(s — 2)
+

n  i i  n 2s

so that

4 s - 2 4 s  2 s2

°U(t- 2).

2 s — 2 2 s.

L2 2J

9. The Laplace transform of the differential equation yields

1

(s + 2)2 + 1
— 2tt s

so that

y ^  e-2̂ -2vh m tcU(t - 2tt).

10. The Laplace transform of the differential equation yields

2{y} =
i

(s + 1)

so that

y = { t- l ) e ~ ^ % { t- l ) .

11. The Laplace transform of the differential equation yields

n y ]  = , 4 t ‘ . +

e-7TS‘ e-37T5

s2 + 4s + 13 s2 + 4s + 13

3 (s + 2)2 + 32 + (s + 2)2 + 32 ' 3 (s + 2)2 + 32 

y =  ^e_2t sin31 + e~2t cosSt + ie _2^_7r̂ sin 3(t — tr) JU(t — tt)
O o

+ ~e_2(i_37r) ain 3 (t — 3iv)°V*(t — 3tt).
o

8 + 2 1
+ - (e-™ + e_37r'

so that

s)

398



Exercises 7.5 The Dirac Delia r

12. The Laplace transform of the differential equation yields

1
+

e~2s + e~4s

(s - 1 )2(s - 6) (s - l)(s - 6)

1 1  1 1
^  ~ +

25 s — 1 5 (s — l )2 25 s — 6

1 1  1 1  
+

so that

y =  e* - -te* + — e6i + 
y 25 5 25

1

~5e

5 s — 1 5 s — 6.

2)i-2 + I e6(*-2)
5

+ --e*-4 + i e6(t" 4)
. 5 ' '5

°U(t- 4).

13. The Laplace transform of the differential equation yields 

so that

V = JiA O )*2 + i»'"(0)x3 + i  (x - \)  k (x  - § )  . 

Using y"(L) = 0 and y"'{L) = 0 we obtain

1 * 1 Po 3 . 1 -fb / L\\,( L \

~ l m x + I T A x - V  ‘T ’ - j J

Po f  L 2 1 3
—- —x — -X
E l \4 6
PoL2 (1 L 

-x

0 < x < ~ 

LL\ L
— ), — < x < L. 
12/ ' 2 ~ ~I 4E l  \2

14. From Problem 13 we know that

V = j / ( o y  + i / ' t o ) * 3 + i  ^  (s - § ) • » ( * -  | )  .

Using y(L) = 0 and ?/(£) = 0 we obtain

16 E l

L o 1
— r 3

EJ Vl6‘ 12‘

1
0 < x < —

2

—  ( — x2 - — rr3̂  ( t.- - ') 3 - < x < L
. E l  V16' 12 / 6  E l V 2 ) ! 2 “  '

You should disagree. Although formal manipulations of the Laplace transform lead to y[t = 

|e_< ain 3t in both cases, this function does not satisfy the initial condition y'(O) =  0 of the sect:::: 

initial-value problem.
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Exercises 7.6 *vrr hi >

* ;;''V>'rV r ~ , O :-; ,v *: /;'.;'-";;';r vr- ; rv;r:: rr:r,.;• r : v:Jv“3 rJZxlS. 
i'l')..'. ; : ~ ?;"';'r ..!'..: 1"**. 'i lIl'X; J17 ?. I V *‘> !*>»«;• ;:r ';L'p:Ii"

1. Taking the Laplace transform of the system gives

s%{x} = -%{x} + 2{y}

sX{y} — 1 = 2X{x}

so that

and

_  1 _  1 1 1 1  

' X* ~ (s — l)(s + 2) “  3 s - l  ~ 3 7+2

a>f , 1 2 2 1 1 1
%{y} = 7 + 1u",-o-v = o — T + o

Then

s 5(5 —l)(s + 2) 3s —1 3s  + 2

1 f 1 —Of -, 2 + 1  _Of
a: = -eL — -e and y = -e + -e .

3 3 y 3 3

2. Taking the Laplace transform of the system gives

1
s X{x} — 1 = 2 X{y} +

s — 1

s2 {y }-  l =  SX {x}-\
52

so that

f/,f , s3 + 7s2 — s + 1 1 1 8 1 173 1 53 1
% { y )  =  ,» .2  ^  t  -  7;  — 7 +

and

Then

s{s - l)(s2 - 16) 16 s 15 s - 1 96 5 - 4 160 s + 4

1 8 f  173 ^  53 _ 4 f
y = -------e ^---- e ----- e .
J 16 15 96 160

1 , 1 1 1 t 173 4f 53 _4f 

I = 8I , + 8f = 8t - i 5 e' + i « e ' + 320e '•

3. Taking the Laplace transform of the system gives

sX{x} + 1 =  X{x} - 2X{y} 

s2{y}-2 = 52{x}-X{y}

so that

oj f -> _ s 5 _ s 5 3

W  “  ^ T 9  “  “ ? + 9  "  3 ^ + 9
and
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5
x = — cos 31—~ sin 3f.

O

Then
1 1  7

y =  -x — — 2 cos 3t — - sin 31. 
y 2 2 3

Taking the Laplace transform of the system gives

1
(5 + 3) i f  {x} + s if {?/} —

s

so that

and

Then

(s - 1) £?{x} + (,s - 1) i?  {£,} =

, 56--1 1 1 1 1  4 1
2{v} = O,/ -- TT2 = - o 7 + o — T + O3s(s - l)2 3 6- 3 s - 1 3 (5 - l)2

1 - 2s 1 1 1 1  1 1 

3s(a - l)2 “  3 s ~ 3 s- 1  “  3 (s - l)2 ‘

1 1 t t j 1 1 t 4. t
x = 3 ~ r ' - 3 t€ and y = ~ 3 + r + 3te -

Taking the Laplace transform of the system gives

1
(2s — 2) if{;r;} + sif{y} =

s

so that

and
s(s — 2)(s — 3) 2s 2s — 2 s — 3

, 3 s - 1 1 1 5  1 8 1
*{»>  = = - ; : - s r ^  + ;

Then

s(s — 2)(s — 3) 6s 2 s — 2 3 s - 3'

X = - i  + |e2‘ - 2e»  and y =  - 1- - \e2* + |e3‘ .

Taking the Laplace transform of the system gives

{s + l ) 2 { x } - { * - \ ) 2 { y }  = - \
s i f  {x} + (s + 2) i f  {y} = 1

so that

s H- 1/2 s "h 1/2
%{v} = s2 + S + 1 (s + 1/2)2 + (v/3/2)2 

and
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2?(x\ : ^  = -y/%_______ \/3/2_______
' 1 s2 + s + 1 ‘ (s- + 1/2)2 + (\/3/2)2 '

7:ien

y = e-^ 2 cos and x = —VSe~^2 sin

Taking the Laplace transform of the system gives

(s2 + \)%{x}-!£{y} = -2

+ (s2 + 1) %{y} =  X

so that

crr ^ _  -2s2 -1 1 1 3 1 

W  “  s4 + 2s2 2 s2 2 s2 + 2
and

1 3 .

Then
// 1 3 . r- 

y =  x +x = --t + ^-j=smV2t.

?. Taking the Laplace transform of the system gives

(s + l)X{x} + 2{y} = l

4 # { * } - (*  + l)2 {y }  =  l

so that

and

v ? r i _  -s + 2 _  s + 1 1 2

W  "  s2 + 2s + 5 “  (s + l)2 + 22 2 (s + l)2 + 22

OJ r _  ~s + 3 __ s +1 2
‘2 , o„ I e I 1N2 I 02 2-

Then

s2 + 2s + 5 (s + l)2 + 22 (s + l)2 + 22 '

x =  e~f cos 21 + ^ e~* sin 2t and y = — e“* cos 2t + 2e-< sin 2i.

9. Adding the equations and then subtracting them gives

d2x 1 o

W = 2t 2‘

^  = i / 2 - 2<
dt2 2

Taking the Laplace transform of the system gives

1 1 4 ' 13'

^ >  = 8; + 2 4 ?  + 3 7  
and
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1 4f l 31

so that
o 1 4 1 1 , 1 4 1 O

I  =  8 + 24t ' + 3t ^  V = T4f - f -

10. Taking the Laplace transform of the system gives

(*-4) *{*}  + »»:*{!,} = 2^

(s + 2) %{x} - 2s32{y} = 0
so that

and

Then

and

so that

Then

:id

*{»}  = 4 4 1 4 , 8 1
(s-2 )(s2 + l) 5 5 - 2  5 s2 + 1 5 s2 + 1

r 1 2s + 4 1 2 0 2 _ 1 1 6 s
* {y} = ^ 7T~on/-9 , ^  = - - - o - 2 z*  + cs3(s — 2)(s2 + 1) s s2 s3 5 s —2 5 s2 + 1

4 of A 8 .
x — -e — - cos t — - sm t

5 5 5

0 1 w 6 8
y = 1 — 2t — 2tr + ye — - cos t + - sin£.

gives

s2i f  {.x} + 3(s + {y} =  2

s*2{x} + Z2{y} = 1
(s + I f  

2s+ 1 1 1  1 2

s3(s + 1) s '  s2 ' 2 s3 s + 1 '

x = 1 + t -f -12 — e 1
Zi

1 _f 1 „ 1 _f 1 _f 1 

y = 3te ’ ~ r  = 3te + 3e - 3

faking the Laplace transform of the system gives

( * - 4 ) * { s } + 2 i f { ! , } = ^

- 3 i? M  + (s+ l)if{ !,}  =  i  + ^
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so that

1

(s - 1 )(s - 2) 

1 1  1 1

(s - l)(s - 2)

and
2 s — 1 2 s — 2

<u> r -I e ~ S 5/4 — 1
■5%} = —  +

+ e~
1 1

+

s (s — l)(s — 2) 

3 1 1 1

+ e

I s- 1  s - 2

s / 2  + 2

( s- l ) (s-2 )

1 3  1 1

Then

and

s 2 s — 1 ‘ s — 2j '

ar = ie* - + [—e*-1 + e2̂ 1)] ^  (i - 1)

y =  je* — ^e2t + [l — ^  (t — 1).
4 2 L 2 J

13. The system is

x'l =  —3»i + 2 (x2 - xi)

A  = -2(x2 - ®i)

zj (0) = 0 

•xi (0) = 1 

a?2(0) = 1

4 (° )  =  0.

Taking the Laplace transform of the system gives

(s2 + -5) <£{x i}-2X{x2} =  1

—2 + (s2 + 2) if{ » 2} =  s

so that

and

Then

and

s2 + 2s + 2 2 s 1 1  2 s 4 v/6
} s4 _j_ ŝ2 _|_ g 5 s2 + 1 5 s2 + 1 5 s2 + 6 5\/6 s2 + 6

# { * 2} =
2 V6s3 + 5s + 2

(s2 + l)(s2 + 6) 5 s2 + 1 ' 5 s2 + 1 ' 0 s2 4-6 5\/6 s2 + 6

2 1 2 ^ - 4  n
xi =  - cos i H—  sin t -- cos v 61 H--- 7= sin v 61

5 5 5
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4 2 1 ,_i —
Xo = - cos t + r sin t + - cos y/61---^  •. •;'.

o o 5 5\ o

4. In this system x\ and x2 represent displacements of masses m \ and m* from v.: 

positions. Since the net forces acting on mi and m2 are

—kix 1 + k‘2 (x2 — .xi) and — k2 {x2 — ^i) — ksX2 - 

respectively, Newton’s second law of motion gives

mix'{ = — k\x\ + k2(x2 ~ %i) 

rri2X2 = -k2(x2 — xi) — kzx2.

Using k\ = k>2 =  A:a = 1. mi = m2 =  1, 2:1(0) =  0, a’i(0) =  — 1, £3(0) = 0. and Xo .O = 

taking the Laplace transform of the system, we obtain

(2 + s2) X{xi} - X{x2} =  -1 

¥ { x } } - ( 2  +  s 2) ¥ { x 2}  =  - 1

so that

“ d = 52^ 3 -

Then

Si = ---p. sin \fz t and x2 = —7= sin VSt.
y/3 V3

5. (a) By KirchhofFs first law we have «i = i2 + 1 3 . By Kirchhoff’s second law. on each loop

E(t) = R i] +Lii '2 and E(t) = R ii+L 2 i{] or Lii^+Rh+R-h = E(t) and L2 î -\-Ri2-\-Riz 

(b) Taking the Laplace transform of the system

0.01*2 + 5 i2 + 5*3 = 100 

0.0125̂ 3 + 5 i2 + 5 i3 =  100

g iv e s

(s + -500) X { i2} + 500i?{i3} =

so that

s

8,000
s

8.000 80 1 80 1

400if{i2} + (s + 400) #{*3} =  

¥ {h}  =

Then

s2 + 900s 9 s 9 s + 900 

and *, =  2 0 - 0 .0 0 2 5 ^

405



Exercises 7.6 Systems of Linear Differential Equations

(c) Z;l = i-2 + h  =  20 — 20e 9004

16. (a) Taking the Laplace transform of the system

*2 + *3 + 10»2 = 120 - 120 - 2)

—10^2 “1" 5^3 +  0'/-3 — 0

gives

(s + 10) i f  {*2} + si?{*3} — —~  ( l  — c 

-10s^f{*2} + 0(3 +  1) % { ; h }  -  0

so that

and

Then

and

120(s +1)

(3s2 + 118 + 10)5 

240

48 60 12 
+ —

3s2 + 11s + 10

3  + 5/3 s + 2 s 

240 240

s + 5/3 8 + 2

i2 =  12 + 48e~5t/3 - 60e~2t - [l2 + 48e_5(t_2)/3 - 60e_2(‘_2)] *ll(t - 2)

i3 = 240e~5t/3 - 240e~21 - [240<T5(t~2)/3 - 240e~2(t-2)]cK(t - 2).

(b) h = %2 + «3 =  12 + 288e_5i/3 - 300e“2t - [l2 + 288e_5(*_2)/3 - 300e_2(*~2)l (t - 2)
L J

17. Taking the Laplace transform of the system

«2 + 11*2 + 6*3 =  50 sin t

?3 + 6i2 + 6*3 = 50 sin t

50
(s + 11) if fe }  + 6 i f  {23} =  2

S ~ r JL

50
6 if {i2} + (s + 6 )if{ i3} =

>2 + l

so that

^{*2} = 

Then

50s 20 1 375 1 145 s 85 1
— — ~  -:—~ + TT7TX -. - _ + TTX — +

(s + 2)(s + 15) 0 2 + 1) 13 8 + 2 1469 8 + 15 113 s2 + 1 113 s2 + 1

and

20 _2, 375 _ l5f 145  ̂ 85 .

,2 = “ l3 c + T w e "  + TT3C0&t+m smt

406



Exercises 7.6 Systems of Linear Differential Equatioi:

25 . 1 . 11. 30 _2t 250 _15f 280 810 .

Taking the Laplace transform of the system

0.5?; + 50?:2 = 60

O.OOS  ̂+ *2 — *i =  0

gives

sJf{?:1} + ioo^{i2} = —
s

-200 ̂ { n }  + (s + 200) $ {*2} =  0
so that

tff 24,000 _  6 1 6 s + 100 6 100 

' ™  “  s(s2 + 200s + 20,000) “  5 s _  5 (s + 100)2 + 1002 “  5 (s + 100)2 + 1002

Then

*2 = 1 -  |<rlootcosl00f - ?e-1TOsin lOOt
5 5 0

and
f' c

i\ =  0.0054 + h  = r — -e“ i00< cos lOOt.
5 5

Taking the Laplace transform of the system

2 i' + 50*2 = 60

2ives

so that

0.005*2 + *2 -*i = 0

60
2.s^{ii} + 50i?{z2} = — 

- 200#  {*1} + (s -!- 200) 2{h} =  0

6,000
s(s2 + 200s + 5,000) 

6 1 6 s + 100 6\/2 50\/2

Then

.ind

os 5 (s + 100)2 - (50v^ )2 5 (5 + 100)2 - (50\/2 )2 

° 6 - I”“ --sh50 
5 

?‘i =  0.005^ + *2 =  r  — ^e_100f cosh50\/2i — ^-^e-100* sinh50\/2t. 
5 5 10

i ‘2 = -- — -e 10fW cosh 50V21---—-e 100t sinh 50\/2 £
5 5 5
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20. (a) Using Kirchhoff’s first law we write ii =  %i + 1 3 . Since 1 2  =  dq/dt we have i\ — 13 — dq 

Using Kirchhoff’s second law and summing the voltage drops across the shorter loop giver

so that

Then

and

E ( t )= iR l + ±q, 

h  =  j r E {t) -
JX 1 JrtiL/

dq 1 1

+ #1*3 = E(t)- 

Summing the voltage drops across the longer loop gives

E ( t ) = n R 1 + L ^  + R 2 h.

Combining this with (1) we obtain

„ r di-3 ^ „ 1 
%lR\ + L—  + R 2 1 3  =  *lR} + ^q

or

l g  + J W , - i ,  = °.

(b) Using L = i?i =  R 2 = C = 1, E(t) =  50e~t3il{t - 1) = - 1), ?(°) = *3(0 =

and taking the Laplace transform of the system we obtain

c;np—1
(s + 1) * {« }  + X {i3} = + -r e ~ ‘

S | -L

(» + 1)^{«3} - ^ { « }  = 0,

so that

Jf{g} =
(.9+1)2 + 1

and

q(t) = 50e-1e-^~1̂ si n(t — 1 )°il(t — 1) =  50e“* sin(t — 1 )°U(t — 1).

21. (a) Taking the Laplace transform of the system

40" + $2 + 80i = 0 

9" + $ 2  +202 = 0
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gives

4 (s2 + 2 ) ££{0i} + .52if{02} = 3s 

s2X{01}+ (s2 + 2 )# { ^ }  = 0

so that

(3s2 + 4 ) (s2 + 4 ) ¥{92} = -3s3

0r

^ }  =  i ? T 4 7 5 - 5 ? T I '

Then

@■2 = 7: cos ^ cos 21  and 0 '{ = —&'{ - 26*2
2 y 3 2

so that
1 2  3

6\ = -  COS — + - cos 21..
4 y/ 3  4

Exercises 7.6 Systems of Linear Differential Ecua::.:.-

Mass m2 has extreme displacements of greater magnitude. Mass mi first passes tlr-vul. ;> 

equilibrium position at about t =  0.87, and mass m2 first passes through its equ:l:\ 

position at about t = 0.66. The motion of the pendulums is not periodic since cos(2f \ 0 .. .■ - 

period cos 21 has period tt. and the ratio of these periods is \/3, which is not a

number.

(c) The Lissajous curve is plotted for 0 < t < 30.
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d ) t=='o' ~ t= l /

“ ■ A -  " 1

t=2 /

t-5 j

//

t 0i 02
1 -0 .2111 0.8263
2 -0*6585 0.6438

3 0 .4830 -1.9145

4 -0.1325 0.1715

5 -0.4111 1.6951

6 0.8327 -0.8662

7 0 .0458 -0.3186

8 -0.9639 0.9452

9 0.3534 -1.2741

10 0.4370 -0.3502

<T
t=9 t=10

!e) Using a CAS to solve 9\(t) = 02(i) we see that =  $ 2  (so that the double 

pendulum is straight out) when t is about 0.75 seconds.

t=o.

f ) To make a movie of the pendulum it is necessary to locate the mass in the plane as a func 

of time. Suppose that the upper arm is attached to the origin and that the equilibrium posi' 

lies along the negative y-axis. Then mass mi is at (x, (t),yi(t)) and mass m2 is at (x2(t), yz 

where

x\(t) =  1.6sin0i(£) and Vi(t) = — 16cos0i(t)

and

X2 (t) = xi(t) + 16 sin 8 2  (t) and y2(t) =  yi(t) — 16 cos 02 (t)-

A reasonable movie can be constructed by letting t range from 0 to 10 in increments c: 

seconds.
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Chapter 7 in Review
*'*JS i v /\ :*

- * 'v. ~r„, d̂'ViTlL::: -
.................  c.“ '; ; *c /; ; c* Lc; d .A- u ; ‘.....

- i "̂ pv ~if; .T"
J: tT~sRTy€zt4 ̂

..................... * s‘"s"'.;"'\ S ........... CJ, K!” c: ,w\ '\l„ '

oe«2

3.

4.

i£{/(i)} ~ j  te stdt + (2 — t)e stdt =

% {f(t)j =  f\ -stdt = - (e~2s - e~As)
•/2 6

False; consider f ( t )=

False, since f(t) = (e*)10 = e10i.

True, since lims_>oo F(s) = 1^0 .  (See Theorem 7.1.3 in the text.) 

False; consider f(t) = 1 and g(t) = 1.

X{e~7t} = 1
s + 7

* { * ' " }  = ( r h

^{s in2*} = ^ 4  

if{e-3‘ sm2i} = (s + 32)2 + 4

i?{£sin2t} = — 
ds s + 4.

4s

(s2 + 4)2

.2. X{sin2tcU(t — 7r)} =  if{sin2(t — Tr)°U-(t — tt)} =

X - 1 =  X ~ l 1 ^ 4 1  = I t 5

s2 + 4

6 s6 f 6

i f -1/ __-__— -— 1 = -e*/3
‘ 13s — 1J 1 3 s — 1/3 j  3

<£ = -&-
(s - 5)3 J 2

= ( -- 1-=— ^ =  + -^7= — 1~ r \ = -- U “ v̂  + ^ ( e v̂
I s2 - 5 J \ 2Vo s + VE 2\/5 s - V E j 2^5 2a/5
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17.

IS.

19.

20.

21 .

22 *

23.

24.

•'I z 
-  J .

26-

27.

25.

29-

10.s + 29} = ^  { (» -5)2 + 22 + I  (7 -1)^ + ^ } = c5<c“s2f + F * ™ 2*

^ _1{ ^ e“5S} = (<-5)^(«-5)

I  S^ + 7T2 J IS  + 7T S2 + 7r2 J

= cos7r(f — l ) Jl/(t — 1) +sin.7r(f — l)'M(t — 1)

Jg-11 1 , , 1 = -L -L ^ -J , nlr/^__r\ = - i-s in ^ ,
l L2s2 + n27T2 J L2 7i7T i s2 + (n27r2)/L2 J Lmr" L 

exists for s > —5.

X{te“ f(t)} = - ± F (S- 8).

#{ea4/(* - fc) ̂  (t - A;)} = e~ks if{fia<t+fc) /(f)} = e~ks(fk £{eaLf(t)} = e-*^-°)F(s - a) 

X { / ear/(r) dr| = - if{eaV(t)} = — — , whereas
/o $ s

' I { e a‘ j  f ( T ) d r ) = x \  [ ‘ { ( t ) , I t \  -  F (s ) -  F (s  a)
±s—a S Cl0

/(f) - to)

.'(*) - / ( f ) ^ ( i- f o )  

f( f- to )^ ( t- to )

•'!'0 - / ( f )^ ( f  - fo) + f(t)°H(t - h)

*Vf) = t - [(i - 1) + 1 ] -  1) + % t - l)- °U (t-4 ) =  t - ( t -  1 )°U(t - 1) - %(t - 4)

-f{/(<)}=\- V *  -
S2 S Z S

-4s

(s - l)2 (s - l)2 s- 1

■' t) — sint°U(t — tt) - sintM{t — 3tt) =  -sin(f - 7r)%(t - n) + sin(f - 3Tr)';U(t - 3tt)

4 * m )  -  - ( i ^ T T«-’ (s-1) +

■' t) =  2 - 2^(t - 2) + [(f - 2) + 2]-U(f - 2) =  2 + (f - 2)^/(t - 2)
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* { m = \+ ? e~2'

32. f(t) =  t - t°U(t - 1) + (2 - tyu(t - 1) - (2 - ty:U(t - 2 )= t- 2 ( t-  1 )°U(t - 1) + (:t - 2)->( i - 1

* { / « }  = ^  - j s - ‘ + ^ _2'

= -- -------- ---p-t*"1) J------- ~-2(s-l)
'e'n t ) } ~ (s _ l )2  (,S- l ) 2 e ‘ + (5 - l )2e

33. Taking the Laplace transform of the difibrential equation we obtain

5 1 2 
+

(s — l)2 2 (s — I)3 

so that

y = + ^ V .
Zi

34. Taking the Laplace transform of the differential equation we obtain

1
%{y} = (s — I)2 (s2 — 8s + 20)

6 1 1 1  6 s - 4
+ tt: ^  — 7--- .xn . +

169 5- 1 13 (s - 1)2 169 (s - 4)2 -  22 338 (s - 4)2 + 22

so that

y =  w / + h te‘ - 4 e4‘ 005 2 t+ S ' " sin 2t

I d. Taking the Laplace transform of the given differential equation we obtain

s3 + 6s~ + 1 1 _•>. 2
-- ------ --  e -- ;---—r---— e

s2(s + l)(s + -5) 6,2(-9 + 1)(^ r  5) s(s + l)(.s + 5)

_  6 1 1 J ^ 3  1 13 1
~  ̂T * “H ~Z n ~ X

25 s ' 5 s2 2 .9 + 1 50 s + 5

/ 6 1 . 1 1  1 1 1 1 ^ - 2 ,

V 25 s ' 5 ’ .92 + 4 ’ .9 + 1 100 ' s + 5/ 6

2 1 1 1  1 1
+ • — r  ) e-2*

so that

5 s 2 s + l  10 s + 5

» ‘= ■- I  •+ s* ■* k '  - l e_5‘ - - 2) - i (t - 2 m  ~ 2)

+ ±e-(t-2)ou(t - 2) - ^  e"5**-2^  - 2).
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36. Taking the Laplace transform of the differential equation we obtain 

vr . s3 + 2 2 + 2s + s2 _s
3/ r\ ^si1(s — 5) s (s — 5)

2 1 2 1 1 2  127 1

125 8 25 s2 5 s3 125 s - 5

so that

37 1 12 1 1 2  37 1
7^ ~o ~ r ~T +

125 s 25 s2 5 s3 125 s - 5.
e s

2 2 1 9 127 5t
y ~ --------1-- tT H--- e

125 25 5 125 125 25v ' 5V ' 125 

ST. Taking the Laplace transform of the integral equation we obtain

c/>r ! 1 1 1 2

i j  that

y(t) — 1 + t + -£2.

5*. Taking the Laplace transform of the integral equation we obtain

( ^ { / } )2 = 6 . ^  or X { /}  =  ±6-±

that f(t) =  ±6t.

■5 9. 7r.king the Laplace transform of the system gives

sif-fz} +  i f  {j/} =  —x +  1 
si

4 i f  {a;} + sif{y} =  2

:hat

vr , s2 — 2s +1 11 1 1  9 1

s(s — 2)(s + 2) 4 s 8 s —2 8 s + 2 '

1 1 of 9 _2/ i / 9 _Of 1 Of
x = -- + -e2t + -e u and y = -x' + 1 = -e 21 - -e2t + 1.

4 o o 4 4

41. T:-I-iing the Laplace transform of the system gives

J X {*} + Ŝ { y }  =  1
8-2

2s if{ :r}  + s2if{ y }  =  1
8-2

:hat

c/>r i  2  1 1 1 1  1
g{*}  =  7T. 0̂ 2 = 0 7 - 0 — ^  +8(8 - 2)2 2 s 2 8-2  (a - 2)2
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—s — 2 3 1 11  3 1
+ T

s2(s — 2)2 4 s 2 s2 4 s — 2 (s — 2)2
Then

The integral equation is

10* +  2 j ‘ * T ) d T  = 2t + 21.

Taking the Laplace transform wc obtain

, 4  2 \ s
« =  K  +

s + 2 9 2 45 9

s3 ' s2J 10s 2 s2(5s + 2) 8 + a* + 5s + 1 s ;

Thus

The differential equation is

i(i) = -9 + 21 + 9e~V5.

i §  + 10s  + 1009=10- 10‘" (‘ - 5)'

Taking the Laplace transform we obtain

20
% {q } =

s(s2 + 20s + 200)
( l- e - 5*)

1 1 1 8 + 10 10

10 8 10 (s + 10)2 + 102 10 (s + 10)2 + 102 ( !-

so that

=  Yo~Toe m  cos 10i I5 R 1W sin m

~ Y6~ cos 10(i - 5) - JLe-'W-s) sin i 0(t _  5)

Taking the Laplace transform of the given differential equation we obtain

*{y} =

so that

2w0 ( L  4! 1 5 !+ ^ 5 ! e_ ,L/2\+ ci _ 2! +

E IL  148 s5 120 s6 120 s6 2 s3

y -
2wo

E IL

where y,f(0) =  ci and y"'(0) = C2. Using y"(L) = 0 and y'"{L) = 0 we find

c‘i =  wqL2/24EI. C‘i  =  —wqL/AEI.

Hence

V =  T*
IVQ

Y2 EIL
1 5 L 4 I?  3 I 3 2 1 / L\* ,

- r ' + r  ~~2x +  t s + 5 r  2 )  ‘® | 1 -

2 9

32 8 + 1/5

— 5).

C2 3!

6 ’ s4
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Chapter 7 in Review

44. (a) In this case the boundary conditions are y(0) = y"{0) — 0 and y(7r) =  y"{7r) = 0. If we 

ci = y'(0) and c2 = y’"{0) then

s4X{y} - s3y(0) - s2y'(0) - sy(0) - y'"(0) + 4£{y} =%  {w0/E I}

and

s — I s + 1 \cfiS i  ci 25 . c2
^{y} = — ■ t t - :  + —

2 s4 + 4 4 s4 + 4 8£J \s (s - l)2 + 1 (5 + l)2 + 1 /  '

From the table of transforms we get

C\ C‘2 Wo
y = — (sin x cosh x + cos x sinh x) + — (sin x cosh x — cos x sinh x) + (1 — cos x cosh x

Using y(tt) = 0 and y"(n) = 0 we find

ci
4 E I

(1 + cosh 7r) csch TT, c2 =
WQ

2 E I
(1 + cosli7r) csch 7T.

Hence

V =
W q

8EI
(1 + cosh tt) csch 7r(sin x cosh x + cos x sinh x)

— -^-(1 + cosh tt ) csch tt (sin x cosh x — cosx sinh®) + 7777(1 — cos x cosh x).
oEI AEl

(b) In this case the boundary conditions arc y(0) =  y'(0) = 0 and y(?r) = y'(n) = 0. If we 

ci =  y/;(0) and c2 =  y"'(0) then

s4X{y} - s3y(0) - s2y'(0) - sy(0) - y"’{0) + 4£{y] = (£  {S(t - tt/2)}

and
c,( 1 Cl  2s c2 4 wo 
%{y} =  TT • ~ ” + -— — t +2 s4 + 4 4 s4 + 4 4 E I  s4 + 4 

From the table of transforms we get

y = ~  sin x sinh x + — (sin x cosh x — cos x sinh x)
2 4

2

+
m  

4 E I
sin [ x — cosh ^  | — cos | x I )  sinh (a:- I ) ] 5# ( z - | )

Using y(ir) =  0 and y'(7r) =  0 we find

ci = C2 =
W q  COsh j

E I sinli7r

Hence

V - T-=-z — :—— sm x smii x — —— — -—— (sin x cosh x — cos x sinh x) 
y 2EI sinh7r 4£Isinh7r^ ’

Wq smh £ . Wq cosh % . .
V - zrzrz — r-=- sm x smh x — — —: — —^(sn

4E I sinh n

5 ) cosh ( x ~ I )  - 008 (x -  5 ) sinh (* -  f ) M x - 1) •
wq

4EI
sm x
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Chapter 7 in Review

45. (a) With 'J1 =  g/l and K  = k/m the system of differential equations is

+ = -AT(0i-02)

9 i '  +  u 2 d 2  =  K ( 0 1 - e 2 ) .

Denoting the Laplace transform of 0(t) by 0(s) we have that the Laplace transform of the 

system is

(a2 +o;2)0i(s) = -KSi(s) + KG2(s) + s0o

(s2 + u2)92(s) = KQi(s) - A 0 2(s) + # 0- 

If we add the two equations, we get

© 1 (s) + 02 (s) = (00 + i>o) 2 f 2
Sz + UT

which implies

#i 00 + 02 (0 = (Oo + ip o) cos ut.

This enables us to solve for first, say, B\(t) and then find 02(O from

02(0 = “ 01 (0 + (00 + '00) cosuit.

Now solving

(s2 + ‘J 2 + K)Q\_(s) - A'02(.s) = s0q 

- kQi(s) + (s2 + J 1 4- A')02(s) = sijjQ

gives

[(s2 + co2 + K )2 - K 2]©i(,<5) — s{s2 + J 2 + K)Oo + Kstpo.

Factoring the difference of two squares and using partial fractions we get

z _  s(s2 + u2 -+- A)0o + lisipo _  0o + s 0o — '̂ o 5

~' /„2 , , I ,.2 ! r,Ts\ — n „2 I , ,2(s2+cj2)(s2+cu2-t2K) 2 s2+ u2 2 s2 + u2 + 2 K ’

so

01 (0 =  ~l> cos -f — cos \/uj2 + 2K t.
A Zi

Then from 02(O = —0i (i) + (0o + ^’o) coa cot we get

n / ,\ 0o + Vo , 00-^0 / 9 , +
02(0 = — ^—  cos ----^—  cos y w H  2A t.

(b) With the initial conditions 0j(O) = 0o, (0) — 0, 02(O) = 0y, 02(O) = 0 we have

01 (0 =  costotf, 02(O = 00 coswt.

Physically this means that both pendulums swing in the same direction as if they were free 

since the spring exerts no influence on the motion (0\(t) and 02(i) are free of K).
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Chapter 7 in Review

With the initial conditions 0i(O) =  8q. 6*1(0) = 0. 02(0) =  ~$0: &'2(0) = 0 we have 

6i(t) = $o cos + 2 K  t. $2 (t) =  —0o cos + 2K t.

Physically this means that both pendulums swing in the opposite directions, stretching 

compressing the spring. The amplitude of both displacements is |0o|- Moreover, 0i(t) ~ do r 

@2(t) =  —0o at precisely the same times. At these times the spring is stretched to its maxim '.
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8  Systems of Linear First-Order 
Differential Equations

fx\ , (4  —7 \
2. Let X  = I . Then X  = X.

\y Vs o j

( x \ / —3 4 —9 \

3. Let X = y . Then X' = 6 - 1 0 X.

W
OO1 —

1

f x \ / I  - 1 0 ^

4. Let X = y . Then X' = 1 0 2 X

w l - i  0 1,

/.x^ / 1 -1 IN
0 ^

!, Let X = y . Then X' - 2 1 -1 x  + - tt2 + 0 + 0

U / 1 1 1  1, t2 J V-*J I  2 /

I’ X  \ 1 CO 0 ( e f sin 2t N

-I . Let X = y . Then X; = 5 9 0 x  + 4e_* cos 21

U J I  0 1 6 / \ -e
t

>. -j- = 7x -i- 5y — 9z — 8e 2f: ^  = 4x + y + z + 2e5f; — = — 2y + 32 + — 3c 2fat ' dt at

>. = x — y + 2z + e_< — 3t: = 3x — 4y + z + 2e~f + t: ^  = —2,t + 5y + 62 + 2e~* — t 
at dt dt 

’ . ^  =  3x — 7ty + 4sint + (t — 4)e4*; ^  = :r + y + 8 sin£+ (2t + l)e4t
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Exercises 8.1 Preliminary Theory—Linear Systems

11. Since

X ' =  - t o 5t and : : ; > - o -51

we see that

X ' = C - r ) X -

12. Since
/ 5 cos t — 5 sin t \ ,

X ' = e and
\ 2 cos t — 4 sin t J

—2 5\ / 5 cost — 5sini\ ,

' x - 1 r-2 4 \ 2 cos t — 4 sin £ y

we see that

13. Since

D x -

X ' = ( 3_/2W  and ( - 1

we see that

M ' i 1 - i4) x '

14. Since

X' =  ̂e* + ( te1 and
2 ) X = i - 1 0 /  V-l

5\ t ( 4 
e‘ +

-4

we see that

x ' = (- i
15. Since

X ' =

/OX

0

U /

1

and

1\

6 - 1 0  

V-l  -2 - i ;

x =
/0\

0

\o/
we see that

1

X ' =

1 \

6 - 1 0  

V-l  -2 -1/

X.

16. Since

X' =

/ cos t 

^ sin t — 5 cos t 

 ̂ — cos t — sin t /

and

1 0 1\ 

1 1 0 

[-2  0 -l)

X  =

/ cos t 

^ sin t —  ̂cos i 

V — cos i — sin t J

we see that

X ' =

i  o n  
1 1 0 

V—2 0 - I J

X.
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Exercises 8.1 Preliminary Theory—Linear Systems

17. Yes, since W (X i ,X 2) = —2e ^  0 the set X i ,  X 2 is linearly independent on —00 < t <  oc.

IS. Yes, since IF(X i, X 2) = Se2t 7̂  0 the set X i, X 2 is linearly independent on — oc < t <  oc.

19. No, since I4''(X i, X 2, X 3) = 0 the set X i , X 2, X 3 is linearly dependent on —00 < t < 00.

10. Yes, since VF(Xi,X2,X;3) = —84e~* ^  0 the set X i, X 2, X 3 is linearly independent or. 

—00 < t < 00.

21. Since

we see that

^ = ( 3  2 l Xp +
t +

22. Since

we see that

and
1 -1

x K i  - i h +

13. Since

X i = e* +

we see that

te and
'2 1' 

3 4
et =

^ = ( 3 ef'.

el +
-1

teS

14. Since

* ;  =

3 cos St \ 

0

—3 sin ‘it  J

we see that

and
1 2 3\ 

-4 2 0

\—6 1 0/

X.D +

/ —1\ 

4 

3 /

sin St =

1 2 3\ 

-4 2 0 

—6 1 0 /

X« +
(~1\ 

4

V 3 /

sin St.

3 cos St \ 

0

—3 sin St J

■:. Let

X i =

6 \ 

-1 

V-5/

X 2 =

/ —3\ 

1 

1 /

„ -2 t X ,  =

/  2 \ 

1

VI/

‘it. and A  =

/ 0  6 0 \ 
1 0 1 

V1 1 0 y
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Exercises 8.1 Preliminary Theory—Linear Systems

Then

xi =

X '2 =

x; =

/-6\

i

5 /

6 \ 

- 2  
1-2 /

/ 6 \

e~l = A X i,

e~2t = A  X 2,

3

V 3 /
e3t = A X 3,

and Wr(X i ,X 2, X 3) = 20 ^  0 so that X i, X 2, and X 3 form a fundamental set for X ' = AX 

—oc < t < 00.

26. Let

■fit

and

Then

-yftl

iv +r-nt+/i
0

A =

4 j  

-1 -1'

o r

X i = [ . ^ i e
' V2 '

- 2 - A

' -V2 ' 

, _ 2 + \/2,

v/5t =  A X 1;

- \ /2 1 _= a x 2;

1 ) - A X .  + ( i j ! l +

and W (X i,X 2) =  2V2 ^  0 so that X P is a particular solution and X i and X 2 form a fundair.- 

set on —oc < t < 00.
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••' .....:'w - : «* / . / -Exercises 8.2

1. The system is

x,=C l ) x

and det(A — AI) = (A — 5) (A + 1) = 0. For Ai — 5 we obtain

/ —4 2 

V 4 -2 

For A2 =  — 1 we obtain

/  2 2 

\4 4

Then

2. The system is

O'

0.

0^ 

0 J

'1 —1/2 

,0 0

'1 1 

,0 0

so that K i

so that K -2 =

* - ( !  >

and det(A - AI) = (A - 1)(A - 4) = 0. For A] = 1 we obtain

For A2 =  4 we obtain

Then

'1 2

,1 2 j 0,

-2  2

1 -1

'1 2

,0 0 0.
so that Ki =

O'

0.

-1 1 ! 0

0 0 0
so that K 2 =

1

3. The system is

X  =  ct | i )<?+c2 r  )eit .

X' = ( - " i  l ) X

and det(A - AI) = (A - 1)(A + 3) = 0. For Ai = 1 we obtain

-5 2

-5 /2  1 j 0 .

'-5 2 

. 0 0 0
so that K i
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Exercises 8.2 Homogeneous Linear Systems

Ao = —3 we obtain

f " 1 2 V —5/2 5

O'

0.

- 1  2 
0 0

so that K 2

system is

X ' =  (  5/2 2 ~) X  
V 3/4 —2/

iet(A — AI) = ^(A 4- 1)(2A 4- 7) = 0. For Ai = —7/2 we obtain

/ I  2 ! O' 

V 3/4 3/2 | 0, 

Ao = — 1 we obtain

'1 2 

0 0

O'

0,

-3/2 2 

3/4 -1

-3 4 0

0 0

so that K i =

so that K 2

rll

system is

+ C2 I I e
-t

x ' - ( “  - 12) x

'.:;i det(A — AI) =  (A — 8) (A 4-10) = 0. For Ai = 8 we obtain

/ 2 -5 

V8 -20 

A? =  —10 we obtain

20 -5 

8 -2

O'

0,

0 ’

0 .

'1 -5/2

-0 0

'1 -1/4

,0 0

0,

O'

0 ,

so that Ki

so that K 2

X  = C lQ ) e * + c2 Q ) < r “ ‘.

_ :.e svstem is

X '= ( - 3  l ) X

det(A — AI) = A(A 4- 5) = 0. For Aj — 0 we obtain

-6 2 

-3 1

1 -1/3 

.0 0
so that K i
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Exercises 8.2 Homogeneous Linear Systems

For = — 5 we obtain

- 1  2

-3 6

O'

0.

1 - 2

0 0|0 .
so that K 2 =

Then

The system is

x  =  c , ( M + c2 P , e — 5t

/ l  1 -1\

X' = X0 2 0 

V0 1 - 1/

and det(A — AI) = (A — 1)(2 — A)(A + 1) = 0. For Ai = 1, A2 = 2. and A3 = —1 we obtain

Ki =

/ 1\ /2\ / 1 \

0 , k 2 = 3 , and K 3 = 0

W U U /

so that

X  = ci

/1\

0

\o)

eL + c-2

/ 2\ 

3

V I/

e2t + C3

/1\

0

V2/

i. The system is
2 -7 0\

X' = X5 10 4

Vo 5  2 /

and det(A - AI) = (2 - A) (A - 5)(A - 7) = 0. For At = 2. A2 =  5. and A3 = 7 we obtain

/ 4\ —7\ / —7\

K, = 0 , k 2 =

V-5/

and K 3 —

-o that

X  = ci

4\ 

0

V-5/

5 /

/ —7\

5 /

e2t + C2

—7 \ 

5 

W

"Ae have det(A — AI) = —(A + 1)(A — 3)(A + 2) = 0. For Ai = —1. A2 = 3, and A3 = —2 we obt

/ —1 \ /1 \ / 1\

Ki = k 2 = 4

V3/

and K 3 = -1

3 /
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Exercises 8.2 Homogeneous Linear Systems

so that
( - 1\ 

0 

1 /

e 1 +  C2

/1 \

4

W

e3t + c3

1 \

-1

3 /

2i

10. We have det(A — AI) = —A(A — 1)(A — 2) = 0. For Ai = 0, A2 =  1, and A3 = 2 we obtain

/  1\ /0\ /1\

K i = 0v-i; k 2 =

so that

X  =  ci

n

0

v - i /

1

Vo/

/o\

1

U J

, and K 3 = 0

V I/

e1 +  C3
/1 \ 

0

w

„2t

We have det(A 

~e obtain

AI) =  -(A + 1)(A + 1/ 2)(A + 3/2) = 0. For Ai = -1, A2 = - 1/ 2, and A3 = -

K] =

X  = ci

( 4 \
/-12\

0 IIO
l 6

1- 1/ s j

4 N f —12\

0 e_t + c2 6

V-l> V 5J

, and K 3 -

4 \ 

2

V-i /

e t/2 + c3

4 \ 

2

v - i /

■-‘■it/ 2

have det(A — AI) =  (A — 3) (A + o)(6 — A) = 0. For Ai = 3, A2 =  —5, and A3 =  6 we obtr.i

/1\ / 1 \ 2\

K i = 1

Vo/

-1 

0 /

, and K 3 2

V11 /

50 that

X  = ci

m

1

vo/
eM  +  c2 -1

0 /

+ C3

2 \

- 2
V 11 /

Jyt

.3. We have det(A — AI) =  (A + 1/2) (A — 1/2) = 0. For Ai = —1/2 and A2 =  1/2 we obtain

K l =  ( “ )  and K 2 = Q V

50 that

x=fil  ( i ) e' ,/2+C2( i ) et/2-
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Exercises 8.2 Homogeneous Linear Sy:

If

X(0) =
'3'

then ci = 2 and c2 = 3.

'A. We have det(A — AI) = (2 — A) (A — 3) (A 4-1) = 0. For Ai = 2, A2 =  3, and A3 -1 we ob:

5 \ 2\ / —2\

Ki = -3 : K2 = 0 B w CO 11 0

I 2J [ l j W

so that

X  = ci

5 \ 

-3

2 /

e2* + c2

/2\

0

W

eM + cs

/ —2 \ 
0 

1 /

If

X (0) =

/i\

3

w

then ci =  —I, C2 = 5/2, and C3 = —1/2.

X  = ci

/ 0.382175 \ 

0.851161 

0.359815/

e8.58979t +  C2
0.405188 \ 

-0.676043 

V 0.615458 /

e2-25684* +  C3
/-0.923562^ 

-0.132174 

V 0.35995 /

-0.(M66321f

X  = Ci

0.0312209 \ 

0.949058 

0.239535 

0.195825 

V 0.0508861 /

-0.280232 \ 

-0.836611 

-0.275304 

0.176045 

0.338775 /

.4.095614 , „  e + 6*3

0.262219 \ 

-0.162664 

-0.826218 

-0.346439 

0.31957 /

-2.923fi2t

+C4

0.313235 \ 

0.64181 

0.31754 

0.173787 

V-0.599108/

-0.301294 \ 

0.466599 

0.222136 

0.0534311 

-0.799567 /

e—0.1o5338£
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Exercises 8.2 Homogeneous Linear Systems

/  \/ / /
f  / /  

!  /  // /

(b) Letting ci = 1 and. Ci = 0 we get x = 5e8i, j/ =  2e8*. Eliminating the parameter we ~ 

y = x > 0. When c\ = —1 and ci — 0 we find y = x < 0. Letting cj =  0 and C2 = ' 

get x = e-10t, y = 4e-10<. Eliminating the parameter we find y = 4x, x > 0. Letting ci = 

and C2 = —1 we find y — Ax, x < 0.

(c) The eigenvectors K i =  (5,2) and K 2 = (1,4) are shown in the figure in part (a).

18. In Problem 2, letting c\ — 1 and C2 — 0 we get x = —2et,

y — el. Eliminating the parameter we find y = — ̂ x, x < 0.

When ci — —1 and — 0 we find y =  —%x, x > 0. Letting 

ci — 0 and C2 = 1 we get x = e4*, y =  e4t. Eliminating the 

parameter we find y =  x, x > 0. When ci = 0 and C2 = — 1 we 

find y = x, x < 0.

In Problem 4, letting ci =  1 and C2 = 0 we get x — —2e~7t/2, 

y =  e-7</2. Eliminating the parameter we find y — —̂ x, x < 0. 

When ci = — 1 and C2 = 0 we find y = —^x, x > 0. Letting 

Cl = 0 and C2 = 1 we get x = 4e~l , y = 3e_*. Eliminating the 

parameter we find y = x > 0. When ci =  0 and C2 = — 1 we 

find y — ^x. x < 0.

19. We have det(A — AI) =  A2 = 0. For Ai =  0 we obtain

A solution of (A — AiI)P =  K is

X  N

^ ^
\

\
/  \
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Exercises 8.2 Homogeneous Linear Syst

We have det(A — AI) = (A + 1 )“ = 0. For Ai = — 1 we obtain

A solution of (A — AiI)P = K is

K  =

P =

\lj

0 ’ 

. 1 / 5.
so that

X  = c, I 1 I <;-'+«
1 , 1 / 5 ,

We have det(A — AI) = (A — 2)2 =  0. For Ai =  2 we obtain

1\
K =

A solution of (A — AiI)P =  K  is

P =

,1 / ’ 

-1/3'

so that

X  =  c i( i 1 e2* + c2
1

te2t +
-1/3'

We have det(A — AI) = (A — 6)2 = 0. For Ai = 6 we obtain

3\

A solution of (A — AiI)P =  K is

K  =

P =

so that

x = c i U r +C2

\2J

1/ 2 '

Ac have dct(A — AI) =  (1 — A)(A — 2)“ = 0. For Ai = 1 we obtain

/1\

Ki =

':>r A2 = 2 we obtain

\i/

fl\ / 1 \

k 2 = 0 and K 3 = 1

\1) \o)
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Exercises 8.2 Homogeneous Linear Systems

Then

X  = Cl

/1 \ 

1

V i/

e + C2

/ 1\ 

0

V i/

e2t + c3

/1\

1

U /

e2i.

24. We have det(A — AI) = (A — 8) (A + l )2 = 0. For Ai = 8 we obtain

K i =

/2\

1

V2 /

For A2 =  — 1 we obtain

K 2 =

Then

X  = d

/2\

1

w

0\

-2  
1 /

e8* + C2

and K 3 =

1\

- 2
0 /

°\

- 2
1 /

1\ 

-2  
0 /

25. We have det(A — AI) =  — A(5 — A)2 = 0. For Ai = 0 we obtain

Ki =

For A2 = 5 wc obtain

K =

A solution of (A — A2I)P = K  is

P =

/ —4\ 

-5 

2 /

/ —2\

0 . 

1 /

5/2 \ 

1/2 

0 /

so that
/ —4\ / —2\ / —2\ / 5/2\

X  = ci -5 + c2 0 e5t + C3 0 teu + 1/2 e5*

I  l ) V l j o j

26. We have det(A — AI) = (1 — A)(A — 2)2 =  0. For Ai = 1 we obtain

/1 \

K i = 0

Vo/
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Exercises 8.2 Homogeneous Linear Systems

For A2 = 2 we obtain

K  =

A solution of (A — AaI)P = K is

P =

0\

-1

1 /

0\

-1

0 /

so that
m

(
0\ 0\

X  =  ci 0 e* C2 -1 e2t + C3 -1 te2t + -1 e2t

U J 1 J I  i j I  o j

1". We have det(A — AI) = — (A — l)3 =  0. For Ai = 1 we obtain

W

Solutions of (A — AiI)P = K and (A — AiI)Q = P are

/ 0 \ 1/2 \
P = 1

Vo /

and Q _ 0 

0 /

so that

/0\ /0\ /0\ (0\
t2 1 
2 C +

/()\ ( W )

X  = ci 1 el + C2 1 1 e* + C3 1 1 t(3̂ -\- 0 e*

U j U J U J U J
Li

U J I  o j

1* We have det(A — AI) = (A — 4)3 =  0. For Ai =  4 we obtain

/1\

K  = 0

V O /
ii jlutions of (A — AiI)P = K  and (A — AiI)Q = P are

/0\

P - I

Vo/

and Q =

/0\

0

VI/
that

m m /OX (1\ j.2 /0\ /0\

X  = ci 0 e4t + C2 0 t.eu + 1 e4i + C3 0
t Af 

2 6 +
1 teu + 0 e4t

U J U J U J U J
Zi

U J U J
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29. We have det(A — AI) = (A — 4)2 =  0. For Ai =  4 we obtain

'2\

A solution of (A — AiI)P = K  is

K  =

P =

so that

If

X  = ci( ; |e4* + c2

X(0) =

1/

'V-

'2
te4t + A t

-1'

then ci =  —7 and C2 = 13.

30. We have det(A — AI) =  —(A + 1)(A — l)2 — 0. For Ai = —1 we obtain

/-1\

K, = 0 

1

For A2 = 1 we obtain

K 2 = and K 3

/ U  \

1

VO/

so that

X  = C1

/-1 \ 

0 

1 /

+ c2

If

X(0)

/ ! \ 

0

/i\

2

VW

el + c3

/0\

1

V o /
e*.

then ci =  2. c2 = 3, and C3 =  2.

31. In this case det(A ~ AI) = (2 — A)5, and Ai = 2 is an eigenvalue of multiplicity 0. L::. 

independent eigenvectors are

Ki =

/ 1 \ 0\ /ON

0 0 0

0 k 2 = 1 , and K 3 = 0

0 0 1

W w
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In Problem 20 letting c\ = 1 and c2 — 0 we got x =  ef\ y = e*. Eliminating the parameter we fh 

y = x, x > 0. When c\ = — 1 and c,2 = 0 we find y = x, x < 0.

In Problem 21 letting ci = 1 and co - 0 we get x =  e2t, y = e2t. Eliminating the parameter we fz: 

y = x. x > 0. When c\ = — 1 and c2 = 0 we find y = x, x < 0.

/
/ /

y / 1/ /  
/  / /  /  

/ / /  / /  
/ /  /  //■ / //  .c.. r .

/  /  /  
/ /  /  ; /  /  / / / ■  

y /  / s //  *7  /  ■r 
v

\ 
\ \ 

N 
>s

\

Phase portrait for Problem 20

f t .

... .. ...........--

/  /  /
/ /  ^
V
/ i 
> o  / / .

I V *
/

/
/

/ /

/  7  /  

. / / /

V // /
Phase portrait for Problem 21

Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For exam:. 

Problem 33, if K[ is chosen to be (  _ . ] the solution has the form
2 - i J  

cos t sin t
X  — Ci I e'u + c2 \e

V 2 cos t + sin t j V 2 sin t — cos t

it

Wc have det(A - AI) = A2 - 8A + 17 = 0. For Ai = 4 + i we obtain 

so that

X i =  f 2 + * ) e(4+î  = ( 2 €OS * ~~ Sln e4t^  i ( co*t + 2 sin f ̂  e4t

Then

X  = ci

5 cos t J 5sint

2 cos t — sin t \ A4 { cos t + 2 sin t
eu + C2

5 cos t

We have det(A — AI) = A2 + 1 = 0. For Ai = i we obtain

. V 1)
x1=('“1“i)e-'=fsillt"cos‘) +,: 

\ 2 I V 2cos( I

r-o that

j L “I- & o,

\ 5 sin t
eAt.

Ki =

— cos t — sin t ' 

2 sin t
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Then
/sint — cos t\ ( — cos t — sint ' 

X  =  C , l  2 cos? J + H  2 sin t

35. We have det(A — AI) =  Az — 8A + 17 = 0. For Ai = 4 + % we obtain

V 2 /

so that

Then

X, = I ' 1 e<4+i>! = ( ‘5in1 ~ m ''‘ ') e11 + i (  - Si"  ‘ - 008 ‘ ' 
\ 2 J \ 2 cost J \ 2 sin t

( sin t — cos t \ (  — sin t — cos t \ M
X  =  c, , I e*° + C2 „ . e4\

\ 2 cos t / \ 2 suit /

e4*.

36. We have det(A — AI) = A2 — 10A 34 = 0. For Ai =  5 + 3i we obtain

( I  -3?:' 
Kt = I

‘ \ 2 .

so that

Then

/1 — 3 i\ { cos 31 -f 3 sin it  \ -t / sin 3t — 3 cos it  \

\ 2 )  V 2 cos 31 J \ 2 sin 3t /

/ cos 31 + 3 sin 3i \ 5t ^  ( sin it  — 3 cos 3f \ 5f

1 \ 2cos3t )  2 \ 2 sin 3t J

37. We have det(A — AI) = A2 + 9 =  0. For Ai = 3i we obtain

/4  + 3i\

so that

Then

/ 4 + 3i \ / 4 cos it  — 3 sin it  \ / 4 sin it  + 3 cos i t '

\ 5 J \ 5cos3t / ~*~ \ 5sin3f

/ 4 cos 3t — 3 sin 31\ ( 4 sin 3t + 3 cos it  \ 

X _ C 1 V 5 cos 3t / V o sin St ) '

38. We have det(A — AI) = A2 + 2A + 5 — 0. For Ai = — 1 + 2i we obtain

/2 + 2i\H  i )
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so that

Xi =
2 -I- 2 i 0(-l+2i)t

Then

' 2 cos 2t — 2 sin 2t \ _t

cos 21 \e + l

(  2 cos 2t — 2 sin 21 \ ,
X  = Ci ) e + c2

V cos 2t J

' 2 cos + 2 sin 2t \

sin 21 J

/ 2 cos 2t + 2 sin 2t \ 

sin 2t I ("

3 3. Wc have det(A — AI) = —A (A2 + l) =0. For Ai = 0 we obtain

/1\

K i =

For A2 =  i we obtain

K 2 =

0

Vo/

f-i\

i

l )

<o that

X 2 =

Then

X  =  Ci

f-i\

i

1/

/1\ 

0 

Vo/

sin t\

+ i— sin t

V cost J

sin t\ — cos t \

— cos t  ̂

cos t 

sin t /

+  C2 — sint 

cos t J

+ C3 cost

V sin t J

-=-!. We have det(A — AI) = — (A + 3) (A2 — 2A + -5) = 0. For Ai = —3 we obtain

( 0\

Ki =

ror X2 = 1 + 2i we obtain

i-j that

X 2 =

K 2 =

/ — 2 cos 2t + sin2i\

3 sin 21 

v 2 cos 21 )

- 2
V 1/

(~2-i\  

-3*

2 /

e + i

(  — cos 2t — 2 sin 2f X 

—3 cos 2t

2 sin 2t )

e*.
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Then
0\ 

- 2  
1 /

—2 cos 21 + sin2i \

e _3 t +  c2 3 sin 21 

2 cos 21

— cos 2t — 2 sin 2i \

e + C3

/

—3 cos 2t 

2 sin 2t

41. We have det(A - AI) =  (1 - A) (A2 - 2A -f- 2) = 0. For Ai = 1 we obtain

/0\

K i =

For A2 =  1 + i we obtain

K 2 =

2

V I/

m

%

w

so that

X 2 =

/1\

i

\i /

Then

X  = ci

/0\

2

V1/

e + C2

/ cos t \ 

— sin t 

\ — sin t j

cos t \

— sin t

— sin t /

e + i

el + C3

sin t \ 

cos t 

cos t )

sin t \ 

cos t 

cos t )

42. We have det(A - AI) = -(A - 6)(A2 — 8A + 20) = 0. For Ai = 6 we obtain

/0\

K i =

For A2 = 4 + 2i we obtain

K 2 =

1

Vo j

0

2 /

so that

X 2 =

(~i\ 

0 

2 J

,(4+2i)t

Then

X  = ci

(0\

1

U /

/ sin 21 y 

0

 ̂2 cos 21) 

sin 2t \

eu + i

ea  + c2 0

2 cos 2t J

e4t + c3

— cos 2t N 

0

 ̂2 sin 21 j

f — cos 21 \ 

0

 ̂2 sin 2t )

At

At

e*.
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Wo have det(A — AI) =  (2 — A) (A2 -h 4A -f-13) = 0. For X\ = 2 we obtain

/  28

K i =

For A2 = —2 -f- 3i wo obtain

-5 I . 

\ 25

( 4 -j- 3i ̂  

-5 

0

so that

X 2 =

Then

/4 + 3A 

-5

0 J 

(  28 \

4 cos 3t — 3 sin 31 \
a(-2+3i)t = -5 cos 31 

0

e~2i + i

4 sin 3t + 3 cos 31' 

—5 sin3i 

0

,-2t

X  = ci -5

V 25 /

e2t 4- c2

4 cos 3t — 3 sin 31 \ 

—5 cos 31 

0

e 21 + ca

4 sin 3i + 3 cos 31 \ 

—5 sin 3t 

0

.-21

We have det(A — AI) = — (A + 2) (A2 + 4) =  0. For Ai = —2 wc obtain

( o\

K i = -1

For A2 =  2i we obtain

Ko =

/ —2 —2i\

1 7

so that

X 2 =

Then

/ —2 — 2A  

1

1 /

( 0

—2 cos 2i + 2 sin 21 \
e2U = cos 21, 

cos 2£

—2 cos 2t — 2 sin 2t \

/

sin 21 

sin 2t /

X  = c-

/ —2 cos 2t + 2 sin 2t \

'1 I 6 4" c2

1

cos 2t 

cos 2 /,

+ c3

—2 cos 2t — 2 sin 2t \ 

sin

sin 2i /

We have det(A — AI) = (1 — A) (A2 + 25) = 0. For Ai = 1 we obtain

/ 25 \

K , = -7

6 /
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For A2 - 5i we obtain

so that

Then

If

K 2 =

V 1 )

1 + oi \

1

x, =
1 + 5?' \ cos 5i — 5 sin 51 \ 

cos 51

cos bt J

+ i

25 \ 

-7 

6 /

er + 0 2

cos 5t — 5 sin bt \ 

cos 51 

cos 51 J

- f  c3

sin 5t. + 5 cos 51, \ 

sin 51 

sin 51 /

sin ot + 5 cos 51 \ 

sin 51

sin 51 J

X(0) =

4 \ 

6

\ -v

then ci = C‘2 =  — 1 and C3 = 6. 

c6. We have det(A - AI) = A2 - 10A + 29 =  0. For Ai =  5 + 2% we obtain

K i =
1 - 2 i

so that

X ! = (54 2-i)* _

1-2*

cos 21 

cos 2t + 2 sin 21
+ i

sin 21 

sin 2t — 2 cos 2t

and

( cos 21 \ ( sin 21
X  = ci eJ* + c-3 I e

\ cos 2t + 2 sin 21J \ sin 2t — 2 cos 21

51

If X(0) = f j . then ci = —2 and (>2 =  5.
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Phase portrait for Problem 38

tS. (a) Letting xi =  y\. x[ = 1/2 -, X'l =  V z and =  va we have

y<2 = x'[ = —lOaSl -r iX‘2 = — lO'jt/i

'</4 = -4 = 4-ci -  4*2 = Ay] _ 4y3‘
The corresponding linear system is

2/1 =  Vi

y'2 — -10yi + 4̂ 3 

?/3 = ?/t

t/4 = 4yi -

or

Y ' =

/  0 1 0 0\

-10 0 4 0 

0 0 0 1

V 4 0 - 4 0 /

Using a CAS. we find eigenvalues ±y/2i and ±2y/2i with corresponding eigenvectors

and

+\f2i(4\ ( 0 ^ /=fV2/4 \

1/2 1/2 0

q=\/2i/2 0
+

=fV2/2

1 ) \ 1 > 0 /

f ±\/3i/3 ̂
( °\

( ±\/3/3\

—2 -2 0

+V3i/6 0
+ i

+V3/6

1 > J  ̂ 0 ;
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Thus

YCO = Cl

■ 0 \ f- V 2/4 \

1/2

0
cos y/21 —

0

-V2/2
sin V21

I  1 J \ 0 J

+ C2

(~y/2/A\ 

0

-\/2/2 

0 /

cos \/2t +

0 \

1/2

0
sin V21

1 )

0\ V3/3\

+ C3
-2

0
COS 2V 31 —

0

—a/3/6
sin 2\/3i

1 I  0

V5/3N
( ° )

+ c4
0

-V3/6
cos 2V3£ +

-2

0
sin2\/3i

1 0 J l j

The initial conditions yi(0) ■ 0, ^(O) = 1, 2/3(0) =  0, and 2/4(0) =  —1 imply c\ = — ̂  

C3 =  — | . and C4 =  0. Thus,

F> \P\
rci(i) = yi(t) = —^  sin \pl1 + -y- sin2\/31

/2 a/3
•^2(0 = 3/3 (£) = — — sin \/2t — —  sin2\/3t.

O 1U

(b) The second-order system is

or

x'{ = -lOx] + 4.̂ 2 

x'2 =  4x\ — Ax?

J ) *
Wc assume solutions of the form X  = V  coscot and X  = Vsincji. Since the eigenvalues t: 

and —12, = ^j—(—2) = \/2 and cjo = ^ —(—12) =  2\/3. The corresponding eigenv-
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Then, the general solution of the system is

X  = ci (  j cos \f2t + C2 j sin \pit + C3 (  ' J cos 2y/3t + 0 4  (  ^ J sin 2\/31.

The initial conditions

X ( 0 ) = Q  and X'(0) =  (  _ 1)

imply ci = 0, C2 = —y/2/10, C3 = 0. and C4 =  -\/3/10. Thus

/2 /3
a?i(t) = ——  sin \f2t + sin2\/31

10 5

£2(0 = - ̂ r- sin V21 - ~  sin 2\/31.
5 10

(a) From det(A — AI) = A(A — 2) = 0 we get Ai = 0 and A2 =  2. For Ai = 0 we obtain

P  1 °)VI 1 0 ;

For A2 =  2 we obtain

/ - I  1 | O'

V i  -1 | 0,

Then

'I  1 

,0 0
so that K i =

-1'

-1 1 O'

0 0
so that K 2 =

X  = C]
-1'

1 , e
21

The line y = —x is not a trajectory of the system. 

Trajectories are x = —c\ + C2 e2t. y = C\ — c^e1 1  or 

y =  x + 2ci. This is a family of lines perpendicular 

to the line y — —x. All of the constant solutions 

of the system do, however, lie 011 the line y = —x.

(b) From dot (A — AI) = A2 =  0 we get Ai =  0 and

::)■
A solution of (A — AiI)P = K  is

P =

K  =

"0

so that

X  = ci
-1

- 02
-1’

t +

/ X  /■■ . \  /
/  X/

/  / V

i• y

/
/

/  /
*•

/■

/  /
/

A. / ”

\ /
X/

./  \
/  \

-1
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All trajectories are parallel to y =  —x, but 

y =  —x is not a trajectory. There are constant 

solutions of the system, however, that do lie 

on the line y =  —x.

50. The system of differential equations is

X \  WX; \ W \  \ x-\ \  xx x _ \ w \ J
hw  , \ \ \  x v ,x\  > V \

X X\  \ V1 "
' \X \\  \ W \
X X X

x 'i = 2X \ + .X‘2

4  = 2x2 

£3 =  2.T3 

£4 =  2a:4 +  35

4  = 2x5.

We see immediately that X2 — C2 e2f\ X3 =  cse2t, and X5 =  c$e2t. Then

x ' l  =  2 x i  +  C2&,21

and

so X \  =  C2te2t +  c i e 21

X4 =  2x4 + ĉ e21 

The general solution of the system is

so

C2^e2^ +  c\e2t \  
2t

X =

C2.er

c$e2t

ĉ te'2t + c.±e2t

ĉ e2t

X 4 =  c $ te 2t +  c ^ e 21.
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Exercises 8.2 Homogeneous Linear System:

= ci

/1\ (1 ) m

0 0 i

0 _L_e + (‘2 0 te2t + 0 e2f

0 0 0

UJ UJ UJ

+ t'3

(  0\ /0\ m fo\

0 0 0 0

1 v 2t _L_e + c,\ 0 e2* + C5 0 tt* + 0 e2t

0 1 1 0

UJ UJ UJ UJ

= C]Kie.24 C2 K i te2t +

/0\

1

0 e2*

0

UJ

+ CsK-2e2t + C4K^ezt + eg•2t

There arc three solutions of the form X  = Ke21. where K  is an eigenvector, and two solutions o: 

the form X  = K te2t + Pe2t. See (12) in the text. From (13) and (14) in the text

/0\

0

K 3ic;2t + 0 e2t

0

UJ

and

This implies

(A - 2I)Ki = 0 

(A - 2 I )K 2 = Ki.

o o o f  Pl\ / i \

0 0 0 0 0 P2 0

0 0 0 0 0 PS = 0

0 0 0 0 1 Pa 0

ooooo

U s / UJ
so p2 - 1 and = 0. while p\. p%, and are arbitrary. Choosing p\ = p$ — p4 = 0 we have
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Therefore a solution is

Repeating for K 3 wc find

so another solution is

X  =

X  =

m

0

p - 0

0

U ;

(l\ / 1 \

0 0

0 «e2,+ 0

0 0

\0/ w

/°\

0

p — 0

0

w

/0\ /°\

0 0

0 te2t + 0

1 0

w v v

..21

,,2i

1. From x = 2 cos 2t — 2 sin 2t, y = — cos 21 wc find x + 2y = —2 sin 21. Then

(x + 2y f  = 4 sin2 21 = 4(1 - cos2 21) = 4 - 4 cos2 2t = 4 - Ay2

and

x2 -f 4,ry + Ay1 = A — Ay2 or x2 + Axy + 8y2 = A.

This is a rotated conic section and. from the discriminant b2 — 4ac = 16 — 32 < 0; we see th*'.: 

curve is an ellipse.

>2. Suppose the eigenvalues are a ± i@, ,8 > 0. In Problem 36 the eigenvalues are 5 ± 3i, in 

Problem 37 they are ±3i, and in Problem 38 they are — 1 ± 2%. From Problem 47 we deduc 

the phase portrait will consist of a family of closed curvcs when a = 0 and spirals when a ^  

origin will be a repcllor when a > 0, and an attractor when a < 0.
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N Ohhombgeneoug |4oe& Systems

Solving

dot (A - AI) =
2 - A 3 

-1 - 2 -A
A2 - 1 = (A - 1)(A + 1) = 0

we obtain eigenvalues Ai = — I and A2 = 1. Corresponding eigenvectors are

K , =  ( ~ i )  K 2= ( “ lJ ) '

Thus

X c = ci
—3'

Substituting

into the system yields

X„ =
ai

A

2ai + 3fri = 7

—o,\ — 2bi — —5, 

from which we obtain a\ = — 1 and 61 — 3. Then

Solving

det(A - AI) =
5 - A 9 

-1 11-A
= A2 - 16A -r 64 = (A - 8)2 =  0

~.'e obtain the eigenvalue A =  8. A corresponding eigenvector is

3\

Solving (A — 81)P =  K  we obtain

K  =

P =

,1

'2 s

. hus

Xc = Cl ( l ) e8t + C2

'3'
leu  + r  1 eat
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Substituting

into the system yields

Xp =
ai

M

5oi + 9&i = -2

—d\ 4“ 1 lfô  =  —6, 

from which we obtain ai = 1/2 and bi = —1/2. Then

X(t) = c1 l \ e Bt + c2
„8iS +

1/ 2 '
-1/2,

3. Solving

det(A - AI) =
1 - A 3 

3 1 - A
= A2 - 2A - 8 =  (A - 4) (A + 2) = 0

we obtain eigenvalues Ai == —2 and A2 =  4. Corresponding eigenvectors are

* = ( _ ; )  and K , - ( ; ) .

Thus

Substituting

x c = o I ( _ ii ) e- +C2( ; ) e«

:: m z  - :
into the system yields

a3 4- 363 = 2 a2 4- 362 =  2ag ai 4- 3&i = a2

3a3 + 63 =  0 3(12 4- fa + 1 = 263 3ai 4- &i 4- 5 =  &2

from which we obtain G3 = —1/4, =  3/4, a2 = 1/4, 62 = —1/4, fl| — —2. and 61 = 3/4. Tl:

X »  = *  (  ( 1 )  + (  3/4 )  *2 + ( —1/4 )  ‘ ■+ (  3/4 )  '

4. Solving

det(A - AI) =
1 - A -4 

4 1 - A
= A2 - 2A + 17 = 0

we obtain eigenvalues Ai = 1 4- 4£ and A2 = 1 — 4i. Corresponding eigenvectors are
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Thus

Xc = cj ^ I cos At + ( ) sin At 
1 \ 0

(‘} + C2

( — sin4t\ , / — cos 4A  , 
=  ci 1 e  + C2 , e-

V cos At I V — sm At J

Substituting

ki b2 h

into the system yields

a,3 — 463 =  —A (22 — 4&2 = —5ai — 46i = —9

4a3 + 63 =  1 4a2 + £>2 — &3 4a 1 — bb\ = — 1 

from which we obtain a% = 0, 63 =  1, a-2 =  4/17, 62 =  1/17, a\ — 1, and 61 = 1. Then

X(i) =  ci
- sin At 

cos At
ez + o>

Solving

det(A — AI)
4 A 1/3

9 6 - A
=  A2 - 10A + 21 = (A - 3)(A - 7) =  0

we obtain the eigenvalues Ai =  3 and A2 =  7. Corresponding eigenvectors are

» , . ( • )  -  k , =  ( M .

Thus

substituting

* = u r
into the system yields

3ai + -61 — 3

9 -I- 56i —10

:rom which we obtain a\ = 55/36 and b\ = —19/4. Then

e .
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6. Solving

det(A — AI) =
-1 - A 5

= A2 + 4 = 0
-1 1 - A

we obtain the eigenvalues Ai = 2i and A2 =  —2i. Corresponding eigenvectors tire

' 5 \ . { 5 '

Thus

Substituting

K i = I I and K 2 = ,VI+ 2*7 V 1 — 2*
/  5 cos 21 \ / 5 sin 21 

c Cl I cos 2t — 2 sin 2t J 2 I 2 cos 21 + sin 21

X , - ( £ ) « . * + r M - n t

into the system yields

—a2 + 5bo — 0,1 = 0 

—02 + h  - h  - 2 =  0 

—<zi + 5bi (12 1 = 0 

-at + b\ + 62 =  0

from which we obtain a,2 = —3, 62 = —2/3, a\ = —1/3, and b\ = 1/3. Then

/ 5 cos 21 \ / -5 sin 2t 

Cl I cos 2t — 2 sin 2t ) °2 \ 2 cos 2t + sin 2t

-3 \ / —1/3'
cos t + I , 

-2/3J \ 1/3,

Solving

det(A - AI) = = (1 - A)(2 - A)(5 - A) = 0

1 - A 1 1 

0 2 - A 3 

0 0 5 - A

we obtain the eigenvalues Ai — 1, A-2 =  2, and A3 = 5. Corresponding eigenvectors are

/ 1\ /1\ /1\

K i = 0

V O J
k 2 =

Thus

X c =  Ci

/1 \ 

0

W

e' + C*

Substituting

(a\\ 

bi 

Vci /

At

sin t.
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—3&i + bi + C\ = —1 

—2b\ 3 C\ = 1 

d  = -2

from which we obtain ci =  —2. b\ =  —7/2, and ai = —3/2. Then

into the system yields

X(i) =  Ci

/1\

0

/1 \

+ C*2

/ 1\

e2t + C3 e5t +

( —3/2\ 

-7/2 At,

S. Solving

Vo/ W W  -2 /

-A 0 5

det(A - AI) = 0 5 - A 0 = —(A — 5)2(A + 5) =  0

5 0 -A

wc obtain the eigenvalues Ai = 5, A2 =  5, and A3 = —5. Corresponding eigenvectors are

/1\ / 1\ / 1\

Ki - 0

VO/
, K 2 = 1

V i/

and K :} = 0

V —1 /

Thus

X c =  Ci

/1\

0

V I/

e5t + C2

/1 \ 

1

V i/

e5* + Qi

1 \

0

V - i /

—5t

Substituting

X p =

fa A

h

V-i)

into the system yields

5ci = -5

5 h  = 10 

5ai = -40

: jm which we obtain c\ — —1. b\ = 2, and a\ — —8. Then

/1 \ /1\ ( 1\

X(t) = Cx 0

V I /

e5t + C2 1

VI/

+ Ca 0

V - i /

e-5i +

/ - 8\

2
1-1/
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9. Solving

det(A - AI) =
-1 - A -2 

3 4 - A
= A2 - 3A + 2 = (A - 1 )(A - 2) = 0

we obtain the eigenvalues Ai = 1 and A2 =  2. Corresponding eigenvectors are

-  k , = ( - * ) .

Thus

Substituting

X p =
a 1

61.

into the system yields

—ai — 2b\ =  —3 

3ai + 4&i =  —3

from which wc obtain a y  = —9 and i>i = 6. Then

X(t) =  ci
-1

jetting

'■.'e obtain

x«» = ( 5j
ci — 4c2 — 9 = —4 

—ci + 6C2 + 6 =  5.

"hen ci — 13 and Co —  2  s o

e2* +
-9'

10. ;a) Let I  =

and

*2

M .
so that

X :
Ie =  c1 ( _ 2i )e - ‘ + c J 12 \e-6t

If Ip
ai

6 1 .
then Ip =

'30'
so that
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i  =  C lf _ 2i ) „ - , + O2( ^ c-<«+ V 0

'O'
For 1(0) = ( j we find c\ = —12 and c-2 — -

(b) «i(t) =  i2(t) + k(t) = - U e ^  - lSe~GL + 30. 

.1. From

- 6.

we obtain

Then

so that

and

x ' = ( 3 3 ) x+.
2 -2 / V-l

$
1 3e

, 1 2e* ,

u = / * - * *  =

and $  1 =
e f — e~

-11

5e“*
dt =

- l i t  '

—Qe~f'

x P = * u = ( : ; ; ) t + ( : ; ^

12. From

we obtain

Then

so that

and

From

Xc = c;iGy + c2G)e-‘.
$  =

“ d * _ i = ( " 5 * .

■2te~t \ _  (Zte-' + frr*' 

2te} J Ct ~ [ 2tel - 2ef

, - . . 0
X- = $ U  = )t + 

p [ 8 V-4

* - ( i  : > ( >
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wc obtain

Then

so that

10\ „/o ( 2'
>.c =  ci I . „

1 3 /  VI
X c =  ci [ 7  )e3</2 + c2 ' e*/2.

/ 10e3t/2 2e^\ , (  \ e ^ 2 - h ^ 2'

* - [  3 ^ /2  eif t )  “ d * "  “ (- §«- /»  ,

U = / * - 1P *  = / ( _  J u

3„—i \

t

and

14. From

x ;

we obtain
/ — sin 2£ \ 0+ / cos 2t \ 0, 

X c = ci ( e^ + ca I e .
V 2 cos 2*7 \ 2 sin 2t )

Then

so that

and

15. From

we obtain

Then

sc that

/ —e2tsin2t e2*cos21\ , f ~ke 2tsm21 \e 2

U e 2‘ cos2« 2e2‘ Sin 2 ( j “  (, I c-2*cos2t \e~2

U = / * - > F  * = / ( * “ * ) , * _ (  f Sin4tN)
./ J \  ̂sin it J \ — | cos 4f /2 1

/ — A sin 2t cos i t  — | cos 2t cos At \
X„ =  * U =  8 8 )e* .

\ | cos 21 sin 4i — | sin 2£ cos /

t

e */ 2e « \ _1 / e
& — * O-f an(i #  = I O, r>j

\ e* e2t I \ —e u 2e 21

1 cos 2t 

1 sin 2i
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and

16. From

we obtain

Then

so that

and

I". From

we obtain

Then

so that

and

H'om

~e obtain

X p = $ U  = [ _ ] tef +
'3'

2 V 3
et.

X ' = ( -1 3) X + ( e -

f  2ef e2t\ , (  e t -e

* -  e< «“ J ^  =  -e-2‘ 2.-*

f . t (  2e~t -e-‘u \ ( -  2e-t + \e-4t'

/ 3t - 3

* - ( !

Xc = Cl ( i )  e3t + C2 ( l ) e 3‘-

_ 2e-3n , lc-3« J e -

I  «* e-3‘ \ - le *  !« »  .

/■ , /■ / 6£e 3£ \ / —2te 'il — 4e

= ete* ) * - (  2 ^ - P  .

Xp =  * U =  ( “ 12W  ^ _4/3Ni
0 J V—4/3,

x ...,
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Then

so that

and

$  = ' 4e;tt -2 e3* and $  1 =

U =  /  3>_1F dt —

1 r-Zl I e>-'it -
6 3

_Lo3t 2 3*
6 3

Je”4f +  3fe"2*'
- 5 * “ +

eft ~
- . ± e-i t -  U e- *  -  1 p -2*

24 6 12*'
_ i p2t , 1^4* _  _Lp4t 

12 +  <rf' 24e'

Xp = $ u  = —ie* — W
- I . -  - V

19. From

wc obtain

Then

so that

and

X' =
-2 - l ) X + ( l ) e' '

X c — ci
- 1

et

ei — c2

er te 
—e} be* — tef and $  1 =

e_t - 2te“* -2te, - t  ■

2e 2e~t

U Fdt = ' 2e'2t - 6te-2f \ ^  ^ ̂ e"2* + 3te~2t—'21

XP =  « U =

20. From

we obtain

Then

so that

and

* - ( - 2  _ 2X
i \  * /  o

te +X c = c-i |  ̂ | e1, +  C2
- 1

$  =

U

e  te}
—e} ~ ,

= J ®~1F d t =  I

and $  1 -

1/2/

e~f - 2ie“* -2te~*' 

2e“* 2c-f .

3e_i +  4£e-t \
2e-i dt =

-2e-

X„ = $ U  = - 5
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21. From

we obtain

Then

so that

and

22 . From

we obtain

Then

so that

and

-i. From

we obtain

Then

/ cos t\ (  sin t '  
X c =  Ci + C‘2 IV sm t I \ — cos t

/cos t s in £ \ f  cost sint=  I and $  — IV sin t — cos t j V sin t — cos t

U = f $ - 1F d t = [ (  1 f
J J \tan  t) \  — In | cos t|

/ tcost — sintIn | cosi| \
—  i  U —— I 1\  t sin t + cos t In | cos t \ J

/  — sin A  t ( cos A  t X c = ci e + c 2 e .V cos t ) V sm t }
/ - s i n t  cos A  , , , / - s i n  t. cos A  <& — j e and <& 1 = I eV cost sint J \ cost sint )

f i / 7 —3 sin i- i-3 cos AU =  /  $ ~ 1F d t =  i =
J J \ 3 cos t + 3 sin t J

3 cos t +  3 sin t ' 
3 sin t — 3 cos t

i w s y
/  — sin A  t / cost \  t Xc = Ci I + K  + c2 . e*. \ cos t j \ sm t j

/ - s i n t cost \  , , , / - s i n t cosA  t <p = e and 3> = eV cos t sin t j  \ cos t sin t
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so that 

and

24. From

w e  obtain 

Then

so that 

and

25. From

A_e obtain 

Then 

so that

and

26. From

x ' - f i  : « ) x + G ) r “

Xc =  Cl ( 2 } e~2t + c-2 t e ~^  + 1 ) e_ 2)  V1/ 2 /
-21 21

$  = ■ 2t and $  1 = -it -  1 2t +  1 '

/  2t +  In t — 21 In t  \  9#. X p = $ U  = I e .1 \ At + 3 In f — 4t In t )

X f = ( 0 M x + f  0 'V —1 0 / \ sect tan i

'21

2t + 21n A
—21n£ J

X c = C! COS t  \
— sin 11 + 02

sin A
cos t ■

(  cos t sin t \  _i3> = ) t  and\ — sin t cos t J

U = /  * _1F dt = /  lefttan t
cos t \  f — sin t 

\  sin t tan t

' cos t — sin t \  
(sin t cos t J
/  t — tan t \
\  — In | cost| /

7 ) t +sm t )
sin t \  
cost / In | cost|.

x ' = ( - ° i  l ) x + L u
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we obtain

Then

so that

and

From

we obtain

Then

so that

.■ind

(  cos t \  /sin  t' X c =  c\ I . , +  c2 (V — sm t J \ cos t.
i  cos t «in t \  i /  cos t — sin t$  = and =V — sin t cos t V sin t cos t

U  =  /  = [ (  ° \ d t = (  °J J \  csc t J \  In | csc t — cot 11

/  sin t In | csc t — cot t\ \X p =  $ U  =  ( .V cos 1111 | CSC t — cot 11 J

X ' = (  1 2 W\  —1/2 1 /  \sec t J
(  2 sin t \  i (  2 cos t \  ,X ,  =  c , (  e‘ + c2 e*.\  cos t )  \  — sm t )

( 2 sint 2 cost \  t , /^ s in t c o s i\$  =  ) e* and =  ( ' e_tV cosi - s i n t )  V^cosi - s i n t j

U = f ^ - 1F d t = f (  2 2<J \  i  cot i — tan i / j In | sin £ j +  In | cos £| /
, 3 sin t \  . (  cos t \  t , /  2 cos t \  f , , .

X" =  * U =  l l c 0si j  te +  ( - l - t j e la |sin(| +  \  -  sin t J C ln|C0S(|'
:rom . / I  —2 \  /tan  A

* “ ( i  - J x + ( i )
_'e obtain /  cos t — sin t \  (  cos t +  sin t '
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and
/  3 sin t cos t — cos21 — 2 sin21 +  (sin t — cos t ) In | sec t +  tan 11 
\  sin21 — cos21 — cos i(ln | sect +  tant\)

29. From

we obtain

Then

so that

and

X' =
1 1 o\ 
1 1 0 

\0  0 3 /

f  ef \
X + _2t

tes t )

Xc =  ci
1 \  

-1 

0 /
+ C2

1 \
1

Vo /
e2t +  eg

/ 0 \
0

VM

$  =

1

— 1 e
V o o

2t

21 0 \  
0

e3*/

U = j $ ~ 1'Fdt =  J
\

l e - t  + 1 
2 + 2

i /

„3t

-e 2t |e  2t2 
0

dt —

0 \
0

-at0 e-'w/

Je* -  |e 2t \
— 5e_' +  5* 

¥ 2 ■

Xp =  $ U
-J e 2* + ite2t: \  

-e* + ±e2i +  ±te2f 
±t2eM

30. Jrrom

we obtain

Then

X' =
3 - 1  - 1 \  
1 1 - 1  

U  - i  i /
x  +

° \  
t

W )

/ 1 \
x c — c\

( 1 \
e +  C2

/ 1  \
e2t + c3

„2t
V i / V o/ V l/

( e4 e2* e2,: N /-e" * e~f e“* \
$  = ft2i

0 and = ( -2t.
0 - e ~ 2t

U* o e2t) \ e~2t - e - 2t o y
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so that

and
U = j$~lFdt = j - t—2e -te~2i dt = -te~l - 

2e
\ie

Xp = $ U = / —i / 2 \  
- l  

\ —1/ 2 /
t +

—3/4 \  
-1 

V -3 /4  y
+

/  2 \  
2

\ o /
e* +

we obtain
and

X' = ( - l  _3)X+(S)
e2T 

e4t e2/. = J e -

i c “»  ie-

X =  $ $

'2
1(0)X(0) + $ J* Q̂Fds = & ■
te2< + ( X>\ e2t +  ̂ 2 £e,4t

+ $

.At.

trom
~e obtain
Mid

X 'J1 -Mx+flA' u  - i ;  y i/* ,

x =

Lot I  = so that
I '= -11  3' 

3 - 3
/100 sin t \ I+( 0 )

1 '
Ic — Cl ( g J 6 2t + C2 - 121

e~l + 21\

2 \
2 te*.\2/

e_2t + 2t - 1 \ e2* + 2t. — 1 /
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Then
$  -

3e- 21 _ e- 121 = _Lp2l 
10 eS_A21 
10t

_3_ ‘2f • 
10 €

106 ‘

U = / * - * * = / ( 10e2t sint \  /  2e2t(2sint -  cost) \  
30e12* sint /  * \  Jjg12iC(12siiif -  cost) j  ’

ind

?o that
1

^  sin t — cos t ' 
—  sin t — cos t ,29 29

I = M 3 K *  + c2 — 1 e + 1 p .

O'If 1(0) — ( n ) then ci =  2 and e2 =
S4. Write the differential equation as a system

y’ =  v or
v' -  -Q y  -  Pv +  f

rrom (9) in the text of this section, a particular solution is then X?, =  <1>(.t) /  $ _1(a;)F(.x) dx
' u i \

0 1 ' 
- Q  - p .

_ hen
# ( * ) = r ;  *

V 2/1 Vz.

*~\x) =
and

yiy2 -  V2y[

X p =

y2 -y-2

U2.

X, = [ — ( *  
J w  V-yi

V ~ y \ y\

y2\  / o '
yi y i f . dx

ciid W ~  yit/2 -  y2X/i- Thus
•ui - I

~V2f(x)
w ~~ 2 J wdx and dx,

“iiicli are the antiderivative forms of the equations in (5) of Section 4.6 in the text. 
3 5 . i a) The eigenvalues are 0; 1. 3, and 4, with corresponding eigenvectors

/  —6 \ /  2 \ /  3 \ /  —1 \
- 4 1 1 1, and

1 0 2 0

2 J VV u J 0 /
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- 6 2e* 3e3* —e4*\ ( 0 0 1
3

* 'l-4 e* e3* e4* A-1 —
i e-t 
3 c

l e~L
3 - 2e_t 8 ^-* 

3 e

1 0 2e3* 0 ; ^  — 0 0 2 —3t
3 e

_ I  P-3t 
3

2 0 e3t o ) \ - - L P-41 
3 e' 2 _-4*

3 e 0 | e - 4* /

(c) 4>-‘ («)F(<) =

2   JL
3 3 e

|  e-2* +  |  e- * — 2ef’ +  j  t 
3 e : +  h~*

V | e  5t + ^ei .-4* _  l te-3i

j  $ _ 1(t)F(t)dt
_ i Pa , _

6 +  3
1 p-2 t  
6 e |  e“* -  2e* ±f26 L

\ _____________________________ L  p -

V 15 e 12 e

1 *-3t
9 6

-4t

2 e-t 
3 e

+ 27 e

X„(*) = *(<) f* -\ t)F (fid l  =

/  —6ci +  26*26* + Scjje3* — C4e4t \

—5e2* — |  e * -  ^  e* -  ± te* +  ± t2e* — 4t — f |  \
_ 2e2t -  A «-* +  JLft +  / V  _  8/ _  M

•6e 1 0 °  ^  27 t 9 te  +  6 “  3 36_ 3 e2* , 2 , ,  2 
2 c t j i t  9

_ e2t i |  + _ 1  e t  o o Q

X c(t) =  &(t)C = -Aci +  c2e* +  C3e3i +  c êAt
ci +  2C3C3<
2ci +  j

X{t) =  #(t) C + $(t) j <&_1(t)F(t)dt

id) X(t) = ci

—6ci +  2c2e* + 3c3e3t — c±e4t \  
—4ci +  c2e* + ese3* -f- C4e4* 

ci +  2c3e3*
2ci +  C3e3t )

/ —6 \  / 2 \
1

+

—5e2t —  ̂e * — ^  e* — g te* + g t2e* — 4t - 
- 2e2* -  & e“* +  ^e* +  ± te* +  ± f2e* -  ft

_ 3 e2 t + 2 < + 2

—e2* + 11 — A

-4 

1 

2 /  

+

+ C2
0

voy
e +  C3

/ 3 \
1

2

v iy
e3* +  C4

/ - 1  \  
1 

0 

o y

„4t

_ 9 p 2f - i p - ^ x  J-p* + I f(!i + I  +2 t _ 8 f _ 9 oAt, ^  c T 27l  T 9 1/1 T 6 ^
4* ■
3*

59 \  
12

36- 2 e2i +  2 f +  2 
2 e ^  3 6 ' 9_+ 4 * 1e -f  3 c g
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Matrix Exponential

/ I  0 \
1 . For A = we naveVO 2

A 2 = 1 0 \  f l  0

,0  2 M o  2

A3 = AA2 =

1 O' 
0 4.

1 0 W 1 0

0 2 J I 0 1

A i = AA3 =
1 0 \  / I  0

0 2 J lo  8

1 0 \  
0 8 j
1 0 ' 
0 16

and so on. In general
A* = '1  0 

0 2k
for k =  1, 2, 3, . . .  .

Thus
A+ _ A A2 2 A3 ■, eA i = i  + _ t + _ t 2 +  _ t3 +

1 O'
o i ) + M o  2 ) * + i u  I r + ^>u s j *

/ 1

1 + t + 2! +  3! +

and

0

, 0 (2 t f  (2 t)3 
1 +  2t +

e - Ai =
2!

-f 0

\

. . . j

„-21

2. .tor A 0 1 ’
1 0

we have

A = 'o in /o in _ / i  o'
i o J u  o J “  v o 1

= i

a 3 = a a 2 = ( !  J ) i = ( i o) = a
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A4 =  (A2)2 =  I 
A 5 =  AA4 =  AI =  A,

and so on. In general,
A K =

Thus

k _  j A, k =  1, 3, 5, . . .  
I. k =  2, 4  6 ........

and

Af T A A 2 2 A 3 o e*‘ = i + _ t + — ^ + —

=  I +  A« +  i f t 2 +  i A r ’ + .- .

= I ( 1 + 5!i2 + i ! i4 + - ) + A (*+ l <3+5if5 +

/  cosli t sinh t \=  I cosh t +  A sinh t = \  sinh t cosh t J

1. ror

- A t  (  C0SM—0  sinh(—t) 
\  sinh(—t) cosh (—i)

A =
1 1 1 \  
1 1 1 

V -2 - 2  —2 /

cosh t — sinh t ' 
— sinh t cosh t

1 I 1 \ / 1 1 i \ / 0 0 ON
a 2 = 1 1 1 1 1 i = 0 0 0

-2 - 2 - V V- 2 - 2 - 2 J u 0 0)
.us, A3 =  A4 =  A 5 =  • • • 0 and

/ I 0 0 \ ( t A  ̂t + 1 t t \
eAt =  I +  At = 0 1 0 + t t t = t t + 1

u 0 l j \ - 2 t - 2 1 ~2t { - 2 t - 2 1 -21 -j-1 J

A =
/O 0 0 \  

3 0 0
U  1 o )
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.ve have

(0 0 0 ^ (0 0 0 \ (0 0 ON
A 2 = 3 0 0 3 0 0 = 0 0 0

u 1 0 ) U 1 o j u 0 0 )
(0 0 0 \ (0 0 ON (0 0 ON

A 3 = AA 2 = 3 0 0 0 0 0 = 0 0 0

u 1 o j u 0 o j u 0 0 /
Thus, A 4 =  A 5 =  A 6 =  • • • =  0  and

sAt = I +  At  + -  A2f2

1 0 0 \ 
= 0 1 0  

\0 0 1 /
5. Using the result of Problem 1,

X =

6 . Using the result of Problem 2 ,

/  0 0 0 \  
3f 0 0 

t 0 /

0 0 ON f  1 0 ON
0 0 0 — st 1 0

l 'it2 \  2 1 0 0 ) \  '̂ t" +  51 t 1 /

er ( 
0 e

ci
c2

=  Cl + C-2

/  cosh t sinh t \  f ci \  (  cosh t \  /  sinh t \  
\  sinht cosh t J \C2 J \  sinht J \cosh t J

7. Using the result of Problem 3.
/  t + l t t \  / c A

X = t t -1- 1 

- 2t - 2 t
t

-2t 1 J
C-2 

VC3 /
=  Cl

( t  + w  
t

- 2 1 j
+ C-2

t \  
t + l  
- 21 J

+ C3

t \  
t

V —21 +  1 /
S. Using the result of Problem 4.

1

X = 3f
0 0 \  
1 0

'̂ t2 + 5t t IJ

fc,\
c2 
C3 /

Cl

1

31
\%t2 + 5 t /

+ C2

/ 0 \
1

\ t /
+ c3

/ 0 \
0

V i/
9. To solve

x ' ^ 1 QN) x  +Vo 2 / v - l
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we identify to = 0, F (t) =  ( J, and use the results of Problem 1 and equation (5) in the t

X(t) =  eAtC + eM f  e-AsF(s) ds
Jtf)

0

~ -2 s
- 1

ds

, To solve

C]_eot
21coe

C\ec
21c-2e

c\eL
C2e21

el 0 \  
0 e2t)

0 \
0 e2t)
—3 -i- 3e*
1 _  l p2t2 2 -

m :I p —2s 
2

—3e_t +  3'
Ip -2*_  1 
2 2 /

c3 | 0 I e +C4

X ' = ( o  l ) X  +

„2i

we identify to =  0, F(i) =  f 4i I. and use the results of Problem 1 and equation (5) in the

X(t) = eAtC + eAt t  e_AsF(s) ds•ftn
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11 . To solve

x ' = ( "  i ) x + ( i

we identify to =  0, F(t) =  ̂^ . and use the results of Problem 2 and equation (5) in the tex:

X(t) =  eAtC + eAt /* e_AsF(s) ds Jto
f  cosh t sinh t \  /  ci \  /  cosh £ sinh t \  rt /  cosh s — sinh s \  / 1 \  ^
\  sinh t cosh t j  \  c-2 )  \  sinh t cosht /  -A) \  — sinh s cosh s j  \ 1 /

nh t  \  rt

3sh t ) Jo

inh t \  /  cosh t sinh t \  /  sinh s — cosh s 
Dsh t J \  sinh t cosh t J \  — cosh s + sinh s

' ci cosh t +  C2 sinh A  /  cosh t sinh £ \  rt /  cosh s — sinh s \  
ci sinh t +  C‘2 cosh t J \  sinh t cosh t J Jo \  — sinh s +  cosh s )
ci cosh t + c-2 sinh £ 
ci sinh £ +  C2 cosh;

/  Ci cosh t + C2 sinli i \  /  cosh t sinli t \  /  sinh t — cosh t + 1 

\  ci sinh t +  C2 cosh t J \  sinh t cosh t J \  — cosh £ + sinh H I
/ Ci cosht +  C2 sinht \  ( sinh21 — cosh2 t +  cosht +  sinht \
\  cj sinh t +  c-2 cosh t j  \  sinh21 — cosh21 +  sinh t +  cosh t J

/  cosh t \  /  sinh t \  /  cosh t \  /  sinh t \  / 1  \
1 \ sinh t J~*~2 \ cosli t j  \ sinh t J \ cosh t,)  \1/

/  cosh t \  (  sinh t \  / 1  \
=  CSV sm h (J+C4 lc o s h ( J ’ l>l j '

1 2 . To solve
x '= (° 1N) x + f coshtN)

\1 0 / V srnhi/

we identify to =  0 , F(i) =  ( S }, and use the results of Problem 2 and equation (5) inV sinh t J
X(f) =  eAtC +  eA t l '  e~AsF(s) ds

J t.Q

( cosh t sinh t \  f Ci \  (  cosh t sinh t \  rt /  cosh s — sinh s \  /  cosh
\sin ht cosht )  \C2 J \sin ht cosht /  Jo \  — sinh,s cosli.s /  \  sinli.*
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c\ cosh t + c-2 sinh t \  /  cosh t sinh t \  /■* / 1  \  
Ci sinh t + c.2 cosh t /  \  sinh t cosh t )  Jo \  0 /

/  ci cosht +  C2 sinht \  ( cosht sinht \  /  s \  *
\  ci sinh t +  C2 cosh t J \  sinh t cosh t J \  0
/  ci cosh t + C2 sinh t \  /  cosh t sinh t \  f t
\  ci sinh t, + C2 cosh t J \  sinh I cosh t J \  0
/  ci cosh t 
\  ci sinh t +  C2

+ C2 sinht \  ( t cosht \  ( cosht \  f  sinht \  f cc 
+ C2 cosh t ) \ t  sinh t J 1 I sinh t j  2 \ cosh t ) I si

cosh t ' 
sinhf

We have

X(0) =  ci

/ 1 \
0

Vo/
+ C2

/ o \
1

V O /

/ 0 \
+  C-3 0

V I/
_ hus, the solution of the initial-value problem is

f t  +  l \  (  t \
X  = t

V - 21 )
t +  1 

V - 2  t j
+ 6

(<*\
c2.

\<%)

t

1 \  
- 4  

6 /

"-4. have
X (0) =  c3 f ^ + c 4 f ^  +  f

"-US. C3 =  7 and C4 =  | , so
0

X  =  7

1

C3 — 3 
, c4 +  5 .

ic: e2t + -3 '
• 3 -

"4'

-:: ui 51 — A  =
' s - 4

s +  4 we find
3/2 1/2 3/4 3/4

s — 2 -I- 2 s — 2 s -j- 2

eAt =
_  1 - 2i 

2 2

—e2< + e_2t
3*2t _  3,-2* 4e 4

, 3 .-2 i 
2 ^ 2

- iriieral solution of the system is then
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X =  eAtC =
lp 2 t _  1 . - 21 3 '2 t  _  3 - 2 1 
2 2 4 4

—e2t + e- 2t _ l e2* +  3e-2* / Vc2.

d  1 

^ 2 “  ' 4 (
=  (~ c1 +  7^2 3 ) e21 +  ( 1 _ S  ) /  1

( s - A  2 \16. From «sl — A = we find
V - 1  5 - 1 7

/
(si -  A )-1 =

and
eAt =

s — 3  s — 2 s — 3  s — 2
1  1  ~ l  2Vs- — 3 s — 2 s — 3  ’ s — 2  y  

' 2 e 3/' — e 2* — 2 e 3f +  2 e 2i \

V e3/ -  e2* —e3f +  2e2t J 
The general solution of the system is then

X = eAiC = '2ei t - e ? t - 2e3* +  2e2f
e3/ -  e2* — e3t + 2e3f , r>*2t c2 .

e2‘

=  (Cl -  C2) I I e M +  ( - C l  +  2 c2)
~2t

17. From s i — A = s — 5 9 ' 
- 1  ,s + 1

wc find

/ 3

(.si-A )-1 = s - 2  (s — 2)2 

1

V (J--"2?
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Exercises 8.4 Matrix Exponential

and
eA* =

' e2t + 3 te2t - 9  te2t
2t e2t -  3te2*te

The general solution of the system is then

X = eAtC = e2t +  3 te21 -9 te2t Cl
te21 021— 3te2t J I co

ci [ * 1  e2t + ci te2* + c2 f  ̂  e2t + c2 te'it

( s  - 1  \From s i — A = we findV 2 s + 2 /

( s i - A ) -1 =
/  s + 1 + 1  1

{s +  l )2 + 1 (s + 1)2 +  1
- 2  s +  1 -  1

and
eA* =

V(s + 1)2 +  1 (s +  l )2 +  1 /  
' e~f cos t + e~L sin t e~f’ sin t

e t cos t — e r sin t
The general solution of the system is then

X =  eA*C = ’ e * cos t + e * sin t e f sint
-2e * sin t e * cos t — e * sin t :

=  ci e * cos t +  c\ e t sin t +  co a 1 cos t + c-2 e *sinf

(  cos t +  sin t \ci sin t -t• I c " + c2 I \e \\  — 2 sint /  \co st — sint

det(A — AI) — 2 - A 1 

- 3  6 - A = A2 -  8A + 15 = (A -  3)(A -  5) =  0
find eigenvalues Ai =  3 and A2 =  5. Corresponding eigenvectors arc

K , = n  md K2 = n .
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Then

so that
P = 'i r

1 3
3/2 -1 /2  \  /  3 O'and D ^
- 1/2  1/2 0 5

2 1 ' 
-3 6

2 0 . Solving
2 - A 1 

1 2 - A
we find eigenvalues Ai =  1 and A2 ‘ 3. Corresponding eigenvectors are

det(A -  AI) = =  A2 — 4A +  3 =  (A -  1)(A — 3) =  0

K i =  (  1 )  and K 2  =  ( 1

Then

so that

-1 1

1 1

—1/2  1/ 2 ' 
. 1/2  1/ 2 ,P  =  I 1 , P -1 =  I ] , and D = 1 O' 

0 3

P D P -1 = '2 1 ' 
1 2

2 1 . From equation (3) in the text
e tA  =  g fP D P  1 =  !  +  t ( P D P - i )  +  I ^ P D P - 1 ) 2 +  ^ ( P D P * * 1) 3 +

Zl o!

= p I + iD  +  i ( t D )2 +  i ( « D )3 +3! p -1 = PetuPiD r»— 1

2 2 . From equation (3) in the text
( 1  0 

0 1

yo 0

0 \
0

1 J
+  t

(M  0

0 A2

Vo 0

0 \  
0

An )

/A? 0
1 0 

+ s ‘-

0 • 0 \
Af • . .  0

0 A2J
A3 0 • • • 0 \

- 13 3!
0 A3 . . .  0

1 0  0 A l )
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1 + Ai* +  2t(Ai£)2 +  • • • 0

0 1 + A2t +  ^(Aat)2 +
0

0

( e\  it 
0

0 0

0 0 \  
0

gAnt JVo o

23. From Problems 19, 21, and 22, and equation (1) in the text
X = etAC =  Pe*DP -1C

„te

3 JH 
2

3 ~3t

e5> \ .f e3t 0

3eu J Î 0 eS:
U5 i 1„3t~ 2 ~2e -
'iJ>l 1-31~ 2 ~2e -

-4, From Problems 20-22 and equation (1) in the text
X =  etAC =  PefDP _1C

—e t e3/-\ / e*
e f c'V  \ 0

I  et 2 C + 1P912 —

_ 1  J2 + 1 p9t
2

IT. If det(sl — A) =  0, then s is an eigenvalue of A. Thus s i — A has an inverse if 5 is not an cige:_ 

of A. For the purposes of the discussion in this section, we take s to be larger than the Ij 
eigenvalue of A. Under this condition s i — A has an inverse.
Since A3 = 0 , A is nilpotent. Since

eAt =  I +  A t +  A 2l~ H------ j- A k + • • •,
2! k\

:f A is nilpotent and A m =  0 , then A k =  0  for k > m  and
t2=  I + At +  A2 — +  . . .  +  A'771— 1_f_____

(m -  1)!
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In this problem = 0. so
of*eAt =  I +  At +  A2 — =

1 0 o\ ( - 1 1 i \ / - I 0 1\
0 1 0 + - 1 0 1 £ + 0 0 0

\o 0 i j v - i 1 V l - l 0 1 /
(1 — t - t 1/2 t t +  t 2/ 2 \

2

- t  1 t  
- t - t 2/ 2  t  1 +  t  +  t'2/ 2 )

and the solution of X! =  AX is

X(t) = eAtC = e- A t
f c i \

C*2
c i ( l - t - t 2/2) + C2t +  Oi(t + t2/2) \

-Cit  +  C2 +  C3̂
\C3 /  \ c i ( —£ — £2/ 2) +  a t  +  3̂(1 + 1 + tl j 2) /

27. (a) The following commands can be used in Mathematical 
A = {{4 , 2 },{3 , 3 }} : 
c = {c l , c2}; 
m=MatrixExp[A t]; 
sol=Expand[m.c]
Collect [sol, {c l , c2}]//M atrixForm

The output gives

K() = c, ( _ 3 e. +  3e6t) + , 2 ( 3 el +  | e6t) .
The eigenvalues are 1 and 6 with corresponding eigenvectors

(1) w,d (O'
so the solution of the system is

fit
or

x(t) = —2b\e} + b‘2eQt 

y(t) =  3 î ef +  b‘2^yt.
If we replace 61 with — ic i +  I a  and b2 with |c i  +  Ic2, we obtain the solution found u-x '.) o o o *
matrix exponential.
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IJ
(b) x(t) = c\e~2tcost — (ci + C2)e~2tsint  

y(t) =  C2e~2t cos t +  (2ci + c-2)e~2t sint
S. x(t) = ci(3e_2t — 2e- t ) +  cs(—Qe~2t + 6e_t) 

y(t) =  C2(4e-2f — 3e_i) + C4(Ae~2t — 4e- t )
2 (i) =  ci(e_2t — e- *) +  C‘i(—2e~’2t +  3e_t) 
w(i) =  C2(—3e-2t +  3e- *) +  Ci(—3e~2t +  4e_t)

Chapter 8 in Review

Chapter 8 in Review ':y Tt; i  !).........S“ , ^ jr y -r ...................

.7' : ~ Sr .-v ^ ...,...... -.r: vzuz: .\:^: :• v
<r;~h ’fi-lv'::;:.:X:: L- r ........ r.A ̂ rXiZZS'i d̂-

1 . If X  =  k I J, then X' = 0 and

k
: ) ■ €

'8 ' O'

We see that k =  | .
2 . Solving for c\ and c? we find c\ =  — § and C2 =  |  •
i. since 4 6 6 \ 3 \  

1

/ 12 \ 
4

V - 4 /
-  4

3 \  
1

V - i /V - l  ~4 - 3 /  \ - \ }
we see that A =  4 is an eigenvalue with eigenvector K3. The corresponding solution is X 3 — K; f’’

-L The other eigenvalue is A2 =  1 — 2i with corresponding eigenvector K 2 =   ̂ The g-ns:.-.!
solution is __ , v (  cos21\ t /s ill 21 \  f

— sin 21
1We have det(A — AI) = (A — l )2 = 0 and K = I  ̂ ]. A solution to (A — AI)P = K is P =

that
X =  ci 1 el + C-2 — 1' V + f 0 '

"•e have det(A — AI) — (A + 6)(A + 2 ) =  0 so that
1 1

X = Ci I 1 I e~6t + C2 I 1 le-21

473



Chapter 8 in Review

7. We have det(A -  AI) =  A2 -  2A +  5 =  0. For A =  1 + 2i we obtain Ki = and

X, = ,(l+2£)f _  /  co»2t\e, + ,
\  — sin 21J \  cos 2t )

Then /  cos 21 \  f (  sin 21\ f X = ci . n ef +C2 n I e . V — sin 21 j  V cos 21 J

S. We have det(A — AI) =  A2 — 2A + 2 = 0. For A = 1 +  i we obtain Ki = ( j and

Xl =  ( 3 ; ! , e (U i)t _  /^cosf-i-sint^  ê + 1 cos t  +  3 sin t \  
2 sin t  )

Then
\  2 cos t

( 3 cost ~ sint \  t (  — cost +  3 sint \  . 
=  Cl( 2 cosf ) ' -  + <*{ 2 sm« ) e '

e*.

9. We have det(A — AI) =  —(A — 2)(A — 4)(A + 3) = 0 so that
/ —2 \  / 0 \  /  7 \

X = ci 3
i y

e2i + C2 1
VI /

e4t +  C3 12 
V- 1 6 /

-3 t

.0 . Wc have det(A — AI) = —(A + 2)(A2 — 2A +  3) = 0. The eigenvalues are Ai =  —2 , A2 = 1 
and A2 =  1 — y/2i, with eigenvectors

/  —7 \ (  1 ^ / 1 \
K i = 5 , k 2 = V2i/2 , and K3 = -y /2 i / 2

v 4 J 1 J V 1 /
i hus

/  —7 \ /1\
( ° ^X = ci 5 e~2t + c2 0 cos a/2t — y/2/2 sin V21v 4 ) UJ \  0 )

d

+ C3

/ —7\

5
4 /

/  ° \ 
V2/2 

LV 0 /
cos V21 +

( 1 \
0

w
sin \ [ 2 t

e 2t +  c2

cos \f2t \  
-|\/2 sin \ / 2 t  

cos y/21 )
e -I- C3

/  sin V2t \  
5 \/2 cos y/2 t  

\  sin \ / 2i /
c*.
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We have

Then
x c = CI( ; V + c 2( * y ‘.

$  = ' e2t Aeu  
n tA t

-21 -4e—2t'
-41 f ’

and
U = j  $ _1F dt =  J ' 2e~2i -  64£e_2t \  _  /  15e~2t +  32te -‘it, '

16£e' -44 ,-4t 4ie-4t
so that

11 +  16£' 
- 1-4 £

We have

Then

and

so that

/  2 cos t \  . (  2 sin t \  ,
X c =  o, . , e‘ + c2 M .V — sin £ j  V cos £ )

2 cos £ 2 sin £' 
— sin £ cos £ e‘, = |  cos £ — sin £ \  _ 

.5  sin £ cos £ /

/■ -i /• /  cos £ — see £ \  /  sin £ — In j sec £ +  tan £|
u = y ™ = / (  sin( ) * = ( cost

—2 cos £ In | sec£ -f- tan£| \  f 
-1 +  sin£ln | sec£ + tan£| /

We have

Then

and

(  cos £ +  sin t \  (  sin £ — cos i '
X(: =  Cll 0 v +  C'2 \ o • +\  2 cos £ /  \  2 sin £

$ cos £ +  sin £ sin £ — cos £' 
2 cos £ 2 sin £ S - 1 =

sin t  ̂cos £ —  ̂sin £' 
— cos £ \  cos £ +  |  sin £,

[ 1 1 t , / /  s s  in £ — i  cos £ +  i  csc £ \U = / * " 1F i t=  i \  2. 2. *J \  — 5 sm t — A cos £ +  A csc £ /
cos £ — |  sin £ +  5 In | csc £ — cot £|' 

 ̂cos £ — |  sin £ +  |  In | csc £ — cot £ j .
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?o that
X« = $ U  = sin t

1 In I csc t — cottl. sin t + cos f /
14. We have

Then
X c = c, j )e2t + c2

- 1
te2t +

$  =
e2t te2t + e2t\  _x /  - t e  2t - t e  2t -  e 2t 

_ e2* _ te2t j * *  =  1 g- 2f e- 2t

-aid
U - i

f - l \  , / i t 2 — t dt =  ‘ - t
so that

15. (a) Letting
1

K =
( h \

h
\ h )

we note that (A — 21)K =  0 implies that 3fci +  3k2 +  3% = 0, so k-\ = —(k'2 + k )̂. Ch 
k‘2. =  0 . A'3 — 1 and then k2 — 1 , fc.3 = 0  we get

/ —1 \  / - 1 \
Ki = 0 

1 /
and K2 =

respectively. Thus,

X i =
/ - 1 \  

0 

1 /
e2t and Xo

1 

0 )

/ - 1 \
1

0 /
,.2t

are two solutions.
(b) From det(A — AI) =  A2(3 — A) =  0 wc see that Ai = 3, and 0 is an eigenvalue of mu/

/ * i \
two. Letting

K = k2
\ h l
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as in part (a), we note that (A — 0I)K = AK = 0  implies that k\ +  k2. +  ks — 
ki =  —(k'2 +  ks). Choosing k-2 =  0, k;$ — 1, and then k2 = 1, kz — 0 we get

/ - 1 \  / —1 \
K , -- 0 

1 /
and K3 1 

0 /
respectively. Since the eigenvector corresponding to Ai = 3 is

n \
Ki =

the general solution of the system is
/ 1 \

X  = ci 1

V I )

est +  C2

1

V I/

i - l \  
0 

1 /
+  .̂3

/  —1 \  
1

V o y

Cl16. For X =  I ^  J ef we have X' =  X = IX.
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9  Numerical Solutions of 
Ordinary Differential Equations

Euler Methods and Error Analysis

3.

sr 1! p i—
1

Xn
1.00 5 .0000

1 .10 3 .9900

1.20 3 .2546

1.30 2 .7236

1.40 2 .3451

; 1.50 2 .0801

fc=0.1

Xn y n
0.00 0.0000
0.10 0 .1005

0.20 0 .2030

0 .30 0 .3098

0 .40 0 .4234

0 .50 0 .5470

h =0.05

yn
1.00 5 .0000

1 .05 4 .4475

1. 10 3 .9763

1 .15 3 .5751

1.20 3 .2342

1 .25 2 .9452

1 .30 2 .7009

1 .35 2 .4952

1 .40 2 .3226

1 .45 2 .1786

1 .50 2 .0592

ft—0.05

Xn
0.00 0.0000
0 .05 0 .0501

0.10 0.1004

0 .15 0.1512

0.20 0 .2028

0 .25 0 .2554

0 .30 0 .3095

0 .35 0 .3652

0 .40 0 .4230

0 .45 0 .4832

0 .50 0 .5465

/?.—0.1 ĥ =0.05

Xn yn Xn yn
0.00 2.0000 0.00 2.0000
0.10 1 .6600 0 .05 1.8150

0.20 1 .4172 0.10 1.6571

0 .30 1 .2541 0 .15 1.5237

0 .40 1 .1564 0.20 1.4124

0 .50 1 . 1 12 2 0 .25 1.3212

0 .30 1.2482

0 .35 1 .1916

0 .40 1 .1499

0 .45 1.1217

0 .50 1.1056

h - 0.1 ĥ 0.05

yn Xn yn
0.00 1.0000 0.00 1.0000
0.10 1 . 1 1 1 0 0 .05 1.0526

0.20 1.2515 0.10 1.1113

0 .30 1.4361 0 .15 1.1775

0 .40 1 .6880 0.20 1.2526

0 .50 2 .0488 0 .25 1.3388

0 .30 1.4387

0 .35 1.5556

0 .40 1.6939

0 .45 1.8598

0 .50 2.0619

478



Exercises 9.1 Euler Methods and Error Ati£.L"=;

o. h=o.l fv= 0.05 6 . h= 0.1 ft=0.05

Xn
0 .00

0 . 1 0
0.20
0.30

0.40

0.50

A=0.1

ft=0.1

yn
0 .0000

0.0952

0.1822

0.2622

0.3363

0.4053

y»
0.00 0.5000

0.10 0.5215

0.20 0.5362

0.30 0.5449

0.40 0.5490

0.50 0.5503

y«
1.00 1.0000

1.10 1.0095

1.20 1.0404

1.30 1.0967

1.40 1.1866

1.50 1.3260

yn
0.00 0.0000
0.05 0.0488

0.10 0.0953

0.15 0.1397

0.20 0.1823

0.25 0.2231

0.30 0.2623

0.35 0.3001

0.40 0.3364

0.45 0.3715

0.50 0.4054

/i=0.05

Xn yn
0.00 0.5000

0.05 0.5116

0.10 0.5214

0.15 0.5294

0.20 0.5359

0.25 0.5408

0.30 0.5444

0.35 0.5469

0.40 0.5484

0.45 0.5492

0.50 0.5495

fc=0.05

Xn y n
1.00 1.0000
1.05 1.0024

1.10 1.0100

1.15 1.0228

1.20 1.0414

1.25 1.0663

1.30 1.0984

1.35 1.1389

1.40 1.1895

1.45 1.2526

1.50 1.3315

10.

Xn yn

0.00 0.0000

0.10 0.0050

0.20 0.0200

0.30 0.0451

0.40 0.0805

0.50 0.1266

h=0.1

Xa yn

0.00 1.0000

0.10 1.1079

0.20 1.2337

0.30 1.3806

0.40 1.5529

0.50 1.7557

fc=0.1

Xtt yn

0.00 0.5000

0.10 0.5250

0.20 0.5498

0.30 0.5744

0 .40 0.5986

0.50 0.6224

xn y n

oo9O

0 . 0000

0.05 0.0013

0.10 0.0050

0.15 0.0113

0.20 0.0200

0.25 0.0313

0.30 0.0451

0.35 0.0615

0.40 0.0805

0.45 0.1022

0.50 0.1266

/t—0.05

Xn y n
0 .00 1.0000

0.05 1.0519

0.10 1.1079

0.15 1.1684

0.20 1.2337

0.25 1.3043

0.30 1.3807

0.35 1.4634

0.40 1.5530

0.45 1.6503

0.50 1.7560

/i=0.05

Xn y n
0 .00 0.5000

0.05 0.5125

0.10 0.5250

0 .15 0.5374

0.20 0.5498

0.25 0.5622

0.30 0.5744

0.35 0.5866

0.40 0.5987

0.45 0.6106

0.50 0.6224
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11. To obtain the analytic solution use the substitution u = x + y  — 1. The resulting differential equat: 
in u(x) will be separable.

fi.=0.05h=0.1

Xn y tt ActualValue
0 .0 0

0.10
0.20

0 .30

0 .40

0 .50

2.0000
2 .1 2 2 0
2.3049

2.5858

3.0378

3.8254

2.0000

2 .1230

2 .3085

2 .5958

3 .0650

3 .9082

Xn yn
Actual
Value

0.00 2.0000 2.0000
0 .05 2.0553 2 .1230

0.10 2.1228 2 .3085

0 .15 2 .2056 2 .5958

0-20 2 .3075 3 .0650

0 .25 2 .4342 3 .9082

0 .30 2 .5931 2 .5958

0 .35 2 .7953 2 .7997

0 .40 3 .0574 3 .0650

0 .45 3 .4057 3 .4189

0 .50 3 .8840 3 .9082

12. (a) y (b)
20
15

10
5

1.1 1.2 1.3 1.4

Xn Euler Im p. Euler

1.00 1.0000 1.0000
1.10 1.2000 1.2469

1.20 1.4938 1.6430

1.30 1.9711 2.4042

1.40 2.9060 4.5085

13. (a) Using Euler’s method we obtain ;t/(0.1) m y\ =  1.2.
(b) Using y" — 4e2x we see that the local truncation error is

y“(c) %  =  (° ' 1)2 =  0 .02e2c.
2 "  2

Since e2x is an increasing function, e2c < e2 0̂1) = e0-2 for 0 < c < 0.1. Thus an upper 
for the local truncation error is 0.02e0,2 = 0.0244.

(c) Since ?/(0.1) — e02 =  1.2214, the actual error is y(0 .1) — y\ =  0.0214, which is less than 1

(d) Using Euler’s method with h — 0.0-5 we obtain 2/(0 .1) ~  y-2 — 1.21.
(e) The error in (d) is 1.2214 — 1.21 =  0.0114. With global truncation error 0(h ), when T:; 

size is halved we expect the error for h =  0.05 to be one-half the error when h =  0.1. Con/
0.0114 with 0.0214 we see that this is the case.

14. (a) Using the improved Euler’s method we obtain y(0 .1) «  y\ =  1.22 .
(b) Using y"' =  8e2a: we see that the local truncation error is

y"'(c) y  =  8e2f: =  0.001333e2c.
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Since e2;r is an increasing function, e2c < e2(G1) =  e0,2 for 0 < c < 0.1. Thus an upper bn 
for the local truncation error is 0.001333f;(l'2 =  0.001628.

(c) Since y(0.1) =  e0,2 =  1.221403, the actual error is y(0 .1) — y\ =  0.001403 which is less
0.001628.

(d) Using the improved Euler's method with h =  0.05 we obtain ?/(0.1) ~  y-2 =  1.221025.
(e) The error in (d) is 1.221403 — 1.221025 =  0.000378. With global truncation error 0(h~ . v 

the step size is halved we expect the error for h = 0.05 to be one-fourth the error for h = 
Comparing 0.000378 with 0.001403 we see that this is the case.

(a) Using Euler’s method we obtain |/(0.1) ~  y\ =  0.8.
(b) Using y" =  5e-2x we see that the local truncation error is

5e-2 c =  o.025e_2c.
Since e~2x is a decreasing function, e~2r < e° — 1 for 0 < c < 0.1. Thus an upper bounc 
the local truncation error is 0.025(1) =  0.025.

(c) Since y(0.1) =  0.8234, the actual error is y(0.1) — y\ =  0.0234, which is less than 0.025.
(d) Using Euler’s method with h =  0.05 wc obtain y(0.1) rs yi =  0.8125.
(e) The error in (d) is 0.8234 — 0.8125 = 0.0109. With global truncation error 0(h ), whe:: 

step size is halved we expect the error for h — 0.05 to be one-half the error when h = 
Comparing 0.0109 with 0.0234 wc see that this is the case.

(a) Using the improved Euler's method we obtain y(0 .1) ~  y\ — 0.825.
(b) Using y'" =  — 10e-2z we see that the local truncation error is

l 0e- 2c (0^  =  o.001667e_2c.
6

Since e""2x is a decreasing function, e-2c < e° =  1 for 0 < c < 0.1. Thus an upper bouiK 
the local truncation error is 0.001667(1) =  0.001667.

(c) Since y(0.1) =  0.823413, the actual error is y(0.1) —y i =  0.001587, which is less than 0.001
(d) Using the improved Euler’s method with h, — 0.05 we obtain y(0.1) ~  y-2 =  0.823781.
(e) The error in (d) is |0.823413 — 0.82371811 = 0.000305. With global truncation error O 

when the step size is halved we expect, the error for h =  0.05 to be one-fourth the error v 
h =  0.1. Comparing 0.000305 with 0.001587 we see that this is the case.

(a) Using y" =  wc sec that the local truncation error is
/ ( , . )  ^  =  S f e - 3'0- 1 ) %  =  19

Exercises 9.1 Euler Methods and Error Anal;.
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(b) Since e ^ is a decreasing function for 1 < x < 1.5, e 3<-c ^ < e ^ =  1 for 1 < c < 1 

and
/ ( c )  y < 1 9 ( 0 . 1 ) 2( l ) =  0.19.

(c) Using Euler’s method with h =  0.1 we obtain y(1.5) «  1.8207. With h =  0.05 we obt;: 
2/(1.5) «  1.9424.

(d) Since y(1.5) =  2.0532, the error for h = 0.1 is Eq\ =  0.2325, while the error for h =  0 .0” 
Eo.(m — 0.1109. With global truncation error 0(h) we expect EJq.i/E q.Oo ~  2 . We actually h?/
Eqa/E q.qo =  2 .10.

18. (a) Using ym — —114e_3^ -1  ̂ we see that the local truncation error is
h3 =  u r ' i - - 1) -  =

6

(b) Since e ^ is a decreasing function for 1 < x < 1.5. e 3'c ^ < e ^ =  1 for 1 < c < 
and

y'"(c) y  < 19(0.1)3(1) =  0.019.
(c) Using the improved Euler’s method with h =  0.1 we obtain y( 1.5) ~  2.080108. With h = 

we obtain y(1.5) ~  2.059166.
(d) Since f/(1.5) - 2.053216, the error for h =  0.1 is £?o.i =  0.026892. while the error for h =  0..' 

■̂o.05 =  0.005950. With global truncation error 0(h2) we expect jBo.i/^o.os ~  4. We actv. 
have Eq.i/Eq.os =  4.52.

19. (a) Using y" = — l j{x +  l )2 we see that the local truncation error is
"< \ h2\ y (c)-d =

i  h2

2 I (c -r I)'2 2

(b) Since l / (x  +  l )2 is a decreasing function for 0 < x < 0.5, l/(c  +  l )2 < 1 /(0  +  1)2 _
0 < c < 0.5 and

h2\y"(c) ^  < (1) =  0.005.

(c) Using Euler’s method with h — 0.1 we obtain y(0.o) ~  0.4198. With h =  0.05 we c 
y{0.5) w 0.4124.

(d) Since y(0.5) =  0.4055, the error for h = 0.1 is Eo.i — 0.0143, while the error for h — C 
Eo.oo =  0.0069. With global truncation error 0(h) we expect ^o.i/^o.os ~  2. We actually 
Eq.i /EQ'Qo =  2.06.
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h3 i yfi fit / \ 11 L n

y “  ( c + 1)3 T ‘

20. (a) Using y'" = 2/(x + 1) we see that the local truncation error is

(b) Since l / (x  + l )3 is a decreasing function for 0 < x < 0.5, l / ( c +  1) 3 < 1 /(0  + l )3 = 1 for
0 < c < 0.5 and

/' ( c )  ^  < (1) =  0.000333.
0 o

(c) Using the improved Euler’s method with h =  0.1 we obtain t/(0.5) «  0.405281. With h =  0.05 
we obtain 2/(0 .5) «  0.405419.

(d) Since y(0.5) =  0.405465. the error for h — 0.1 is E$,\ — 0.000184. while the error for h =  0.05 is 
■Eb.05 =  0.000046. With global truncation error 0(h2) we expect Eq^/Eq.os ~  4. We actually 
have Eq,i/Eq.q5 =  3.98.

21. Because j/*+1 depends on yn and is used to determine yn+1. all of the y* cannot be computed at one 
time independently of the corresponding yn values. For example, the computation of t/| involves 
the value of y%.

1. yn Actual
Value

0*00 2.0000 2.0000

0.10 2.1230 2.1230

0.20 2.3085 2.3085

0.30 2.5958 2.5958

0.40 3.0649 3.0650

0.50 3.9078 3.9082
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2 . In this problem we use h = 0.1. Substituting W2 — |  into the
equations in (4) in the text, wc obtain

2

3 5

,  1 1wi =  1 -  W2 = -  , a =  - —  4 2u'2 and .3 = 2w2
2
3

The resulting second-order Runge-Kutta method is

Xn Second -Order 
Runge -Kutta

Improve:

Euler

0.00 2.0000 2 . 00c :

0.10 2.1213 2 . 122:

0 .20 2.3030 2.3043

0.30 2.5814 2.583:

0.40 3.0277 3.03~:

0.50 3.8002 3.825.

Un+1 — Un +  h +  ^ ’2) — I-1” 4 ^ 1 ' '̂2)
where

k l  — f  {'Xn . Vn)

X r ,

2 2 y-n + ^hkih  =  f
The table compares the values obtained using this second-order Runge-Kutta method wit:, 
values obtained using the improved Euler’s method.

*n !

0 0 5.0000 |

1.10 3.9724 |

1.20 3.2284

1.30 2.6945 |

1.40 2.3163 [

1.50 2.0533 j

Xn
y■

0.00 2.0000 1
0 0 1.6562 |

0.20 1.4110 j

0.30 1.2465 j00

1.1480 [

0.50 1.1037 |

5. x„ J*

OOO

0.0000

0.10 0.1003

0.20 0.2027

0.30 0.3093

0.40 0.4228

0.50 0.5463

Xn
O o r."oooo

0 ♦ h-
* 0 1.1115

0.20 1.2530

0.30 1.4397

0.40 1.6961

0.50 2.0670

7. Xn

0.00 0.0000

0.10 0.0953

0.20 0.1823

0.30 0.2624

0.40 0.3365

0.50 0.4055

yn
| 0.00 0.0000

1 0.10 0.0050

1 0.20 0.0200

j 0.30 0.0451

| 0.40 0.0805

| 0.50 0.1266
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Xn yn
0 . 0 0 0 . 5 0 0 0
0 , 1 0 0 . 5 2 1 3

o ro o 0 . 5 3 5 8
0 . 3 0 0 . 5 4 4 3oo 0 . 5 4 8 2
0 . 5 0 0 . 5 4 9 3

10.

Xn

1 . 0 0 1 . 0 0 0 0
1 . 1 0 1 . 0 1 0 1
1 . 2 0 1 . 0 4 1 7
1 . 3 0 1 . 0 9 8 9
1 . 4 0 1 . 1 9 0 5
1 . 5 0 1 . 3 3 3 3

12.

xn

o o o 1 . 0 0 0 0
0 . 1 0 1 . 1 0 7 9
0 . 2 0 1 . 2 3 3 7
0 . 3 0 1 . 3 8 0 7
0 . 4 0 1 . 5 5 3 1
0 . 5 0 1 . 7 5 6 1

Xn ooo 0 . 5 0 0 0
0 . 1 0 0 . 5 2 5 0
0 . 2 0 0 . 5 4 9 8
0 . 3 0 0 . 5 7 4 4
0 . 4 0 0 . 5 9 8 7
0 . 5 0 0 . 6 2 2 5

(a) Write the equation in the form 
dv-  =  3 2 -  0.025v* = f(t,v).
CL L

(b)

and

*n Vno»o 0 . 0 0 0 0
1 . 0 2 5 . 2 5 7 0
2 . 0 3 2 . 9 3 9 0
3 . 0 3 4 . 9 7 7 0
4 . 0 3 5 . 5 5 0 0
5 . 0 3 5 . 7 1 3 0

(c) Separating variables and using partial fractions we have

2^32 ( \ / 3 2 -  +  V32 + \ / 0 2 f v )  dV ~ <U

2 ^ ^ /0 1 2 5  ^ ,V/^  + v/^ t '1 _  ln 1̂  -  V 0l25v |) =  t +  
Since v(0) =  0 wc find c = 0. Solving for v we obtain

v(t) = 16 v/5 (■ 1)e\/&2t + i
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and u(5) ~  35.7678. Alternatively, tho solution can be expressed as

(a) rj t (days) | 1 2 3 4 5

j A (observed) j 2.78 13.53 36.30 47.50 49.40

j A (iapproximated ) | 1.93 12.50 36.46 47.23 \D O O

lb) From the graph wc estimate A(l) «  1 .68 , A(2) ~  13.2, 
A(3) ^  36.8, A(A) «  46.9, and A(5) ss 48.9.

c) Let a =  2.128 and 6 — 0.0432. Separating variables we obtain
dA

A{a -  pA)
P

=  dt

- ( -  +  a a — pA
1

dA ~ dt

a [In A — 1ii(q' — &A)\ = t + c

In a - p A
A

— a(t +  c)
_  e<x(t+c)

Thus
A(t) =

a  -  PA
A = aea{l+c) -  pAea(t+c)

' l+ P e a^ } A  = a ^ {t+c\

<yea(t+c') a a
1 +  /?ea(*+c) P -I- p + e ~ a c c ~ a t  '

From A(0) =  0.24 we obtain
0.24 = a

p  +  e~ac
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A{t)
so that e ac =  a /0.24 — /? ^  8.8235 and

2.128
0.0432 + 8.8235c-2-128*

] t {days ) 1 2 3 4 5
| A (observed) 2 . 7 8 1 3 . 5 3 3 6 . 3 0 4 7 . 5 0 4 9 . 4 0
| A (actual) 1 . 9 3 1 2 . 5 0 3 6 . 4 6 4 7 . 2 3 4 9 . 0 0

(a) h~0.05 h=0.1

1.00 

1 . 0 5  
1 . 1 0  
1 . 1 5  
1.20  
1 . 2 5  
1 . 3 0  
1 . 3 5  
1 . 4 0

1.0000 

1 . 1 1 1 2  
1 . 2 5 1 1  
1 . 4 3 4 8  
1 . 6 9 3 4  
2 . 1 0 4 7  
2 . 9 5 6 0  
7 . 8 9 8 1  

1 . 0 6 0 8  x 1015

1.0000

1 . 2 5 1 1

1 . 6 9 3 4

2 . 9 4 2 5

9 0 3 . 0 2 8 2

(b) y

(a) Using the RI<4 method wc obtain 2/(0 .1) ~  yi = 1.2214.
(b) Using t/ 5) (.r) — 32e2x wc see that the local truncation error is

„<5>w  
y W 120 ~  J 120 = 0.000002667^.

Since e2x is an increasing function, e2c < e2(0-1) — e0,2 for 0 < c < 0.1. Thus an upper b>:' 
for the local truncation error is 0.000002667e°‘2 = 0.000003257.

(c) Since f/(0.1) =  e0,2 =  1.221402758, the actual error is 2/(0 .1) — y\ =  0.000002758 which is 
than 0.000003257.

(d) Using the RK4 formula with h = 0.05 we obtain 2/(0.1) ~  ;</2 = 1.221402571.
(e) The error in (d) is 1.221402758 -  1.221402571 = 0.000000187. With global truncation e: 

0(h4), when the step size is halved wc expect the error for h =  0.05 to be one-sixteenth 
error for h =  0.1. Comparing 0.000000187 with 0.000002758 we see that this is the case.

(a) Using the RK4 method we obtain y(0 .1) ~  yi =  0.823416667.
(b) Using (a;) — —40e 2x we sec that the local truncation error is

120

Since e 2x is a decreasing function, e 2c < e° =  1 for 0 < c < 0.1. Thus an upper bound 
the local truncation error is 0.000003333(1) =  0.000003333.
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(c) Since y(0 .1) =  0.823413441, the actual error is |y(0.1) — y i \ =  0.000003225, which is less tht.
0.000003333.

(d) Using the RK4 method with h ~ 0.05 we obtain y(0 .1) ~  y-2 = 0.823413627.
(e) The error in (d) is |0.823413441 — 0.823413627| =  0.000000185. With global truncation cr: 

0(/i4), when the step size is halved we expect the error for h =  0.05 to be one-sixteenth i. 
error when h — 0 .1. Comparing 0.000000185 with 0.000003225 wc see that this is the case.

18. (a) Using y ^  =  —1026e~3̂ ’~1̂ we see that the local truncation error is
h5(c)J K } 120 = 8.55 /?5e ' 3(c_1).

(b) Since e '̂ x ^ is a decreasing function for 1 < x < 1.5. e 3(-c ^ < e 3^ ^ =  1 for 1 < c < 1 

and
i / 5\c )  —  < 8.55(0.1)5 (1) =  0.0000855.L

(c) Using the RK4 method with h, =  0.1 we obtain y( 1.5) ~  2.053338827. With h - 0.05 we ol):.. 
y(1.5) «  2.053222989.

19. (a) Using t/5) =  24/(x +  l )5 we see that the local truncation error is
(5W \ hb 1 * 5V ^  120 _  (c +  l )5 5 ‘

(b) Since l / (x  +  l )5 is a decreasing function for 0 < x < 0.5, l/(c  + l ) 5 < 1 /(0  +  l )5 =  1

0 < c < 0.5 and
y(5) (c) ^  < (1) =  0 .000002 .O 0

(c) Using the RK4 method with h — 0.1 wc obtain t/(0.5) ~  0.405465168. With h =  0.05 we o%‘ 
y(0.5) «  0.405465111.

20. Each step of Euler’s method requires only 1 function evaluation, while each step of the imp: 
Euler's method requires 2 function evaluations -  once at (xn,yn) and again at (xn+i,j/*+1:. ” 
second-order Runge-Kutta methods require 2 function evaluations per step, while the RK4 n>'. 
requires 4 function evaluations per step. To compare the methods we approximate the soluti.. 
y' — (x + y — l )2, y(0) =  2 . at x — 0.2 using h =  0.1 for the Runge-Kutta method, h =  0.05 ::: 
improved Euler’s method, and h =  0.025 for Euler’s method. For each method a total of 8 fu:. ' 
evaluations is required. By comparing with the exact solution wc see that the RK4 method a::; 
to still give the most accurate result.
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Xn Euler
h=0.O25

Im p. Euler 
h=0.O5

RK4
h-0.1

Actual

0.000 2.0000 2.0000 2.0000 2.0000

0.025 2.0250 2.0263

0,050 2.0526 2.0553 2.0554

0.075 2.0830 2.0875

0.100 2.1165 2.1228 2.1230 2.1230

0.125 2.1535 2.1624

0.150 2.1943 2.2056 2.2061

0.175 2.2395 2.2546 j

0.200 2.2895 2.3075 2.3085 2.3085 j

(a) For y' + y =  10 sin 3x an integrating factor is ex so that
d 5— [exij] =  10e'T sin 3x = >  exy = ex sin 3x — 3ex cos 3x + c dx

=r- y — sin 3;e — 3 cos 3x + ce~x. _
When x =  0, y =  0. so 0 =  — 3 +  c and c = 3. The solution is

y =  sin 3a: — 3 cos 3x + 3e~x.
-5

Using Newton:s method we find that x =  1.5323-5 is the only positive root in 
[0 , 2].

(b) Using the RK4 method with h = 0.1 we obtain the table of values shown. These values 
to obtain an interpolating function in Mathematica. The graph of the interpolating fui 
shown. Using Mathematical root finding capability we see that the only positive root 
is x = 1.53236.

Xn

0 . 0 0.0000

0 . 1 0 . 1 4 4 0
0 . 2 0 . 5 4 4 8
0 . 3 1 . 1 4 0 9
0 . 4 1 . 8 5 5 9
0 . 5 2 . 6 0 4 9
0 . 6 3 . 3 0 1 9
0 . 7 3 . 8 6 7 500•o 4 . 2 3 5 6
0 . 9 4 . 3 5 9 3
1 . 0 4 . 2 1 4 7

Xn 3^
1 . 0 4 . 2 1 4 7
1 . 1 3 . 8 0 3 3
1 . 2 3 . 1 5 1 3
1 . 3 2 . 3 0 7 6
1 . 4 1 . 3 3 9 0
1 . 5 0 . 3 2 4 3
1 . 6 - 0 . 6 5 3 0
1 . 7 - 1 . 5 1 1 700•r*“f - 2 . 1 8 0 9
1 . 9 - 2 , 6 0 6 1
2 . 0 - 2 . 7 5 3 9
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This is a Contributed Problem and the solution has been provided by the author of the problem.)

The answers shown here pertain to the case F (), i.e. answers to question (h). Answers t
questions (a) - (g) are obtained by setting F — 0.
(a) Divide both sides of the equation given in the text by the quantity (M /2) to obtain

(d) Graphically, we observe (this can also be shown analytically) that the solution y(t) stav 
the intitial point yo =  increases almost linearly until it reaches 1 at time

* tt /  2 — arcsinyo t — (J
and remains at 1 afterwards. The numerical solution is described hv

where lj = yjk/M.
(b) Set C =  1 to obtain

Upon completing the square in the above equation we have

If we let u = ujx Ff (Mu ) then this equation reduces to
du V 
! i  = ~

Finally, with y =  MuP/y/F2 + M2u)2u, equation (1) reduces to

(c) Use Euler’s method with F — 10. k =  48, and M =  3 to solve

sin(cot +  arcsinyo) if 0 < t < t*;
1
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Figure 1: Plot of y(t) versus time for N=5000
Therefore, the numerical solution docs not seem to capture the physics involved after : 
since there are no oscillations. Note that the constant solution y =  1 is a solution 
initial-value problem. However, the solution is not physical.

(e) First separate variables and integrate
I ■— — = j  Lodt J \ / l - y 2 '

to obtain
arcsiny =  ojt -I- Cq.

Upon using the initial condition, we find
y(t) =  sin(u;t + arcsin y )̂.

The analytic solution does capture the oscillations of the spring.
(f) Differentiate both sides of equation (2) with respect to time to obtain

d j l  dy \  1 

dt2  ̂ Vd t)  v/i  _  y2 !
and then use the fact that dy/dt =  wy'l — y2 .
From equation (2), we have y(Q) = yo and from equation 2 again, we have

y'{0 ) =  a;^/l — yg .
(g) First create the following function file (name it spring2.m)

function out=spring2 (t ,v);
omega=4;
out(l)=y(2);

491



Exercises 9.2 Runge-Kutta Methods

out(2)=-o;2 * 2/(1); 
out=out?;

then in the Matlab window, type the following commands:

»  M = 3; k =  48: a; =  Jk/M:  F =  10 :
»  y() =  F/yJ(M2£J2 +  F2)
»  2/1 =  w y  1 -  2/0

>> [t, y] =  ode45('spring? , [0 ,pz/2], [yo, 2/i] : 
»  plot (t .y(:, 1))

where y\ -  dy/dt at t =  0. The resulting plot is shown in figure 2 . The graph is consist:: 
with the analytical solution y(t) =  sin(o>t +  arcsinyo) from part (e).

Time

Figure 2 : Plot of y(t) versus time using ODE45

The second-order differential equation has constant coefficients. The analytic solutio:. 
easily be obtained,

, . VF2 + M 2oj2 ( , , yi , F
x(t) = — —  (,»cos^ )  + tr sm(a,t)J "  ■
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Multistep Methods
r V . •; ' " ; ... • •: :: /•

the tables in this section £:ABM‘> stands for' Adams-Bashforth-Moulton.

1 . Writing the differential equation in the form y1 — y = x — 1 we see that an integrating factor is
e -  J dx _  g0

-ie-'y] =  (x - 1)<T*

and
y = ec(—xe~x + c) =  — x + cex.

From y(0) =  1 we find c =  1, so the solution of the initial-value problem is y = —x + ex. Actual 
values of the analytic solution above are compared with the approximated values in the table.

Xn Actualoo 1 .00000000 1.00000000 i n i t .  cond.
0 .2 1.02140000 1.02140276 RK4
0 . 4 1.09181796 1.09182470 RK4
0 .6 1.22210646 1.22211880 RK4COo 1 .42552788 1.42554093 ABM

2 . The following program is written in Mathematica. It uses the Adams-Bashforth-Moulton method 
to approximate the solution of the initial-value problem y' =  x + y — 1 , y(0 ) = 1, on the interval 
[0 , 1].

Clear[f, x, y, h, a, b, yO];
f[x_, y_]:= x +  y - 1 ; (* define the differential equation *)
h =  0 .2 ; (* set the step size *)
a = 0 ; y 0  =  l ; b  =  l; (* set the initial condition and the interval *)
f[x, y] (* display the DE *)
Clear[kl, k2, k3, k4, x, y, u, v] 
x =  u[0 ] — a; 
y  =  v[0] =  yO; 
n =  0 ;
W hile[x < a +  3h, (* use RK4 to compute the first 3 values after y(0) *)

n =  n 4- 1;
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(* use Adams-Bashforth-Moulton *)

k l =  f[x, y];
k2  =  f[x +  h /2 , y +  h k l / 2 ]; 
k3 =  f[x +  h / 2 , y  +  h k2/2]; 
k4 =  f[x +  h, y  +  h k3]: 
x  =  x +  h;
y =  y +  (h /6 )(k l -f 2k2 +  2k3 +  k4); 
u[n] =  x; 
v[n] =  y];

W hile [x < b,
p3 =  f[u[n - 3], v[n - 3]]; 
p2 =  f[u[n - 2], v[n - 2 ]]; 
p i =  f[u[n - 1], v[n - 1]]; 
pO =  f[u[n], v[n]];
pred =  y +  (h /24)(55p0 - 59pl +  37p2 - 9p3): (* predictor * 
x =  x  +  h; 
p4 =  f[x, pred];
y =  y 4 - (h/24)(9p4 +  19p0 - 5p l +  p2); (* corrector *
n =  n +  1 ; 
u[n] =  x; 
v[n] =  y]

(*display the table *)
TableForm[Prepend[Table[{u[n], v[n]}, {n, 0, (b-a)/h}], {"x(n)", "y(n)"}

3. The first predictor is y% — 0.73318477.
xn J n
0 .0 1.00000000 i n i t .  cond.
0-2 0.73280000 RK4
0.4 0.64608032 RK4
0.6 0.65851653 RK4
0 .8 0.72319464 ABM

4. The first prcdictor is y\ =  1.21092217.
Xn yn ! i* ....... 50 .0 2.00000000 ! i n i t .  cond. 1i0 .2 1.41120000 j RK4
0 .4 1.14830848 RK4 |
0 .6 1.10390600 ! RK4 |
0 .8 1.20486982 j ABM !
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5. The first predictor for h = 0.2 is y% = 1.02343488.
Xn h=0.2 h=Q.l
0 .0 0.00000000 i n i t .  cond. 0.00000000 i n i t .  cond.
0 .1 0.10033459 RK4
0.2 0.20270741 RK4 0.20270988 RK4
0 .3 0.30933604 RK4
0.4 0.42278899 RK4 0.42279808 ABM
0 .5 0.54631491 ABM
0.6 0.68413340 RK4 0.68416105 ABM
0.7 0.84233188 ABM00o 1.02969040 ABM 1.02971420 ABM
0 .9 1.26028800 ABM
1.0 1.55685960 ABM 1.55762558 ABM

6 . The first predictor for h — 0.2 is y% — 3.34828434.
i h=0.2A- .............. h=0.1oo 1.00000000 i n i t .  cond. 1.00000000 i n i t .  cond.

i o . i !s 1 .21017082 RK4
0 .2 1.44139950 RK4 1.44140511 RK4
0 .3 | 1 .69487942 j RK4

j 0 .4 | 1 .97190167 RK4 1.97191536 ABMino I 2 .27400341 ABM
0.6 [2.60280694 RK4 2.60283209 ABM

! 0 .7 S! 2 .96031780 ABM00o | 3 . 3 4 8 6 0 9 2 7 ABM 3.34863769 ABM
0 .9 ij 3.77026548 ABM
1.0 | 4 . 2 2 7 9 7 8 7 5 ABM 4.22801028 ABM

The first predictor for h  =  0.2 is y l  =  0.13618654.
Xn cr 1! O: h=0.1

o
.

o 0 .00000000 i n i t .  cond . 0.00000000 i n i t .  cond.

0 .1 0.00033209 RK4
0.2 0.00262739 RK4 0.00262486 RK4
0.3 0.00868768 RK4
0.4 0.02005764 RK4 0.02004821 ABM

0 .5 0.03787884 !ABM

0.6 0.06296284 RK4 0.06294717 ;ABM

0.7 0.09563116 ABM

COo 0.13598600 ABM 0.13596515 ABM

0.9 0.18370712 ABM

1.0 0.23854783 ABM 0.23841344 ABM
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S. The first predictor for h — 0.2 is y\ — 2.61796154.
Xn h-0.2 h=0.1
0 .0 1.00000000 i n i t .  cond. 1 .00000000 i n i t .  cond.
0-1 1.10793839 RK4
0 .2 1*23369623 RK4 1.23369772 RK4
0.3 1.38068454 RK4
0-4 1.55308554 RK4 1.55309381 ABM
0.5 1.75610064 ABM
0.6 1.99610329 RK4 1.99612995 ABM
0.7 2 .28119129 ABM
0.8 2 .62136177 ABM 2.62131818 ABM
0.9 3.02914333 ABM
1.0 3 .52079042 ABM 3.52065536 ABM

1 . The substitution y' = u leads to the iteration formulas
Un+ 1  =  Vn h t t j t, u n + 1  =  Un h ( 4 u n 4 y n ).

The initial conditions are yo =  —2 and uo =  1. Then
Pi - I/O +  O.lwo = - 2  +  0.1(1) = -1 .9
ui = uq +  0.1(4tto — 4yo) =  1 +  0.1(4 +  8 ) =  2.2

V2 =  yi + O.ltti = -1 .9  -f- 0 .1(2 .2) = - 1.68 .
The general solution of the differential equation is y =  c\e?x +  C2xe?x. Prom the initial con.:: 
we find ci =  —2 and C2 =  5. Thus y =  —2e2a? + 5xe2x and ?y(0.2) «  —1.4918.

2 . The substitution y' — u leads to the iteration formulas
Vn+ 1 =  Vn "t" hum  ^n+ 1  =  Un +  h Un Vn ĵ •

The initial conditions are yo = 4 and uq =  9. Then
S/i = 2/0 +  0.1-uo = 4 +  0.1(9) - 4.9
ui =  uo +  0.1 Q wo — ^ 0)  =  9 + 0.1[2(9) — 2(4)] =  10
V‘2 =  Vi +  O.ltti =  4.9 +  0.1(10) =  5.9.
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The general solution of the Cauchy-Eulor differential equation is y = C\x + c^x2. From the ir.i'i 
conditions we find ci =  — 1 and 02 =  5. Thus y — —x + 5x2 and 7/(1.2) — 6 .

3. The substitution y' = u leads to the system
y ~ u. u' =  4u — 4y.

Using formula (4) in the text with x correspond­
ing to t. y corresponding to x. and u correspond­
ing to y, we obtain the table shown.

1
Xn

h-0.2 h=0.2
Un

h=0.1

y n
h=0.1

0O

-2.0000 1.0000 \ -2.0000 i . o c : :

0 .1 -1.8321 2.442*'

0 . 2 - 1 . 4 9 2 8 4*4731 1 - 1 . 4 9 1 9 4 . 4 ~ 3 5

4. The substitution y' = u leads to the system
, 2 2

y =  u - u — -  u — T̂ y. x x.
Using formula (4) in the text- with x correspond­
ing to t. y corresponding to x. and u correspond­
ing to y. we obtain the table shown.

Xn h—0«2y n h-02Un j h=0.1yn h=CM
1.0 4 .0000 9 .0000 j 4 . 0 0 0 0 9 . 0 : : :
1 .1 1 4 .9500 1 0 . oc::
1 .2 6.0001 11.0002 | 6 .0000 11. 0c::

5. The substitution 1/  =  u leads to the system
y' =  u, u' =  2u — 2y -j- ef‘ cos t.

Using formula (4) in the text with y correspond­
ing to x and u corresponding to y. we obtain the 
table shown.

I xn h=0*2 h—0.2 h=0.1 h=0.1

“a

0 .0 1.0000 2.0000 1.0000 ; 2 . c : :•:

0.1 1-2155 ! 2 .31 3 :
0 .2 1.4640 2.6594 1 .4640 : 2 .6554

6 . Using h =0.1,  the RK4 method for a system, and a numerical solver, we obtain
4 h=0.2 h=0.2tn tin hn
d.o 0.0000 0 . 0 0 0 0
0 . 1 2 .5000 3 .7500
0 . 2  j 2 .8125 5 .7813
0 . 3  i 2 .0703 7.4023
0 . 4  j 0 .6104 9.1919
0 . 5  ; -1 .5 6 1 9 11.4877

*27!
ej
5}
4
f

' 1...2 ... 3...4... 5 1 1 2 3 4  5 J
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tn
h=0-2

Xn

h=0.2 h=0.1 h=0.1

oo 6 . 0 0 0 0 2 . 0 0 0 0 6 . 0 0 0 0 2 . 0 0 0 0
0 . 1 7 . 0 7 3 1 2 . 6 5 2 4
0 . 2 8 * 3055 3 . 4 1 9 9 8 . 3 0 5 5 3 *4199

x,y

tn
h-0 .2

Xn

h=0 2
y n

h~0.1
Xn

h=0,l
y noo 1*0000 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0

0 . 1 1 . 4 0 0 6 1 . 8 9 6 3
0 . 2 2 . 0 7 8 5 3 . 3 3 8 2 2 . 0 8 4 5 3 . 3 5 0 2

tn
h=0a IXji h = 0 2y» h=0.1 !

Xn |
h=0.1

0.0 - 3 . 0 0 0 0 5 . 0 0 0 0 - 3 . 0 0 0 0  | 5 . 0 0 0 00.1 | - 3 . 4 7 9 0  ] 4 . 6 7 0 70.2 - 3 . 9 1 2 3  | 4 . 2 8 5 7 - 3 . 9 1 2 3  | 4 . 2 8 5 7
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j h=0^
I xni

h-0.2
y n

h“0.1
Xn

h=0.1

oo I 0.5000 0.2000 0 .5000 0 .2000
i o.i 1 .0207 1.0115
! 0*2 2 .1589 2 .3279 2 .1904 2.3592

II. Solving for xf and y' we obtain the system
x' = —2x + y + ht
y' — 2x +  y — 2t.

tn
h=0.2

Xn

h=0,2 fa-0.1
Xn

h=0.1
0 .0 1 . 0 0 0 0 - 2 . 0 0 0 0 1 . 0 0 0 0 - 2 . 0 0 0 0
0 .1 0.6594 - 2 . 0 4 7 6
0 .2 0.4179 I - 2 . 1 8 2 4 0 .4173 -2 .1 8 2 1

II. Solving for x1 and y' we obtain the system
/ 1 9x =  - y  — 31 + 2t — 5 

y =  jV H" 3t2 +  2t. +  5.

oToo .i
0-2

h - 0  2
Xn

h=0 2  \yn h-0.1
Xn

h=0.1y»
3.0000 -1.0000 3 .0000 -1.0000

2 .4727 -0 .4 5 2 7
1.9867 0.0933 1.9867 0 .0933

x'y

x,y

-60j
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Second-Order Boundary-Vetlue Problems

1 . We identify P{x) =  0. Q{x) =  9. f(x) =  0. and h — (2 — 0)/4 =  0.5. Then the finite differenc 
equation is

Vi+i +  0-25yi -r yi-1 - 0 .
The solution of the corresponding linear system gives

0 . 0  0 . 5  1 . 0  1 . 5  2 . 0
4 . 0 0 0 0  - 5 . 6 7 7 4  - 2 . 5 8 0 7  6 . 3 2 2 6  1 . 0 0 0 0

2 . We identify P(x) ~ 0, Q(x) =  —1. f(x) =  x2. and h =  (1 — 0)/4 =  0.25. Then the finite differed, 
equation is

y-t+i _  2.0625?/* + tji-i = 0.0625a;?.
The solution of the corresponding linear system gives
X 0 . 0 0  0 . 2 5 oino 0 . 7 5 1.00

y 0 , 0 0 0 0  - 0 . 0 1 7 2 - 0 . 0 3 1 6 - 0 . 0 3 2 4 0.0000

3. We identify P{x) =  2 , Q(x) =  1, f(x) — 5.x, and h = (1 — 0)/5 = 0 .2 . Then the finite differ-::. 
equation is

1.2-t/i+i — 1.96 yi + 0.8tji-i =  0.04(5xj).

The solution of the corresponding linear system gives
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0

0 . 0 0 0 0  - 0 . 2 2 5 9  - 0 . 3 3 5 6  - 0 . 3 3 0 8  - 0 . 2 1 6 7  0 . 0 0 0 0

4. We identify P(x) =  —10. Q(x) =  25, f(x) =  1. and h =  (1 — 0)/5 =  0.2. Then the finite diffc: -. 
equation is

—yi + 2yj_i =0.04.

The solution of the corresponding linear system gives
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0

1 . 0 0 0 0  1 . 9 6 0 0  3 . 8 8 0 0  7 . 7 2 0 0  1 5 . 4 0 0 0  0 . 0 0 0 0

5. We identify P(x) =  —4, Q(x) =  4, f(x) =  (1 +  x)e2x, and h = (1 — 0)/6 =  0.1667. Then the r 
difference equation is

0.6667y,;+i -  1.8889^ + 1.3333y*_i =  0.2778(1 + a*)e2a*.
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The solution of the corresponding linear system gives
X 0.0000 0 . 1 6 6 7 0 . 3 3 3 3 0 .5 0 0 0 0 . 6 6 6 7 0 . 8 3 3 3 1-0000

Y 3 . 0 0 0 0 3*3751 3 .6 3 0 6 3 .6 4 4 8 3 . 2 3 5 5 2 . 1 4 1 1 0.0000

Wc identify P(x) =  5. Q(x) — 0, f(x) =  4v/x . and h =  (2 — l ) /6  — 0.1667. Then the finite 
difference equation is

1.4167^+1 -  2Vi +  O.o833j/i_i =  0 .2 7 7 8 (4 ^ ).
The solution of the corresponding linear system gives
X 1 .0 0 0 0 1 .1 6 6 7 1 .3 3 3 3 1 . 5 0 0 0 1 .6 6 6 7 1 .8 3 3 3 2 . 0 0 0 0
y 1 , 0 0 0 0 - 0 . 5 9 1 8 - 1 . 1 6 2 6 - 1 . 3 0 7 0 - 1 . 2 7 0 4 - 1 . 1 5 4 1 - 1 . 0 0 0 0

We identify P(x) =  3/x. Q(x) =  3/a:2, f (x ) =  0, and h — (2 — l ) /8  = 0.125. Then the finite 
difference equation is

„ 0.1875 \  (  n 0.0469\ (,  0.1875 \
1 + ~ i r ) m + i + 1 - 2  ~ w ~ ) V i + (  W _ 1  _

The solution of the corresponding linear system gives
X 1 . 0 0 0 1 .1 2 5 1 . 2 5 0 1 * 375 1 .5 0 0 1 . 6 2 5 1 . 7 5 0 1 . 8 7 5 2 . 0 0 0
Y 5 . 0 0 0 0 3 . 8 8 4 2 2 . 9 6 4 0 2 . 2 0 6 4 1 .5 8 2 6 1 .0 6 8 1 0 . 6 4 3 0 0 . 2 9 1 3 0 . 0 0 0 0

We identify P(x) = —1/x, Q(x) =  x 2, f(x) =  lnx/x2, and h =  (2 — l ) /8  =  0.125. Then the finite
difference equation is

, 0.0625 \  /  „ 0.0156 \  /  0.0625\1 ------) Vi+1 + I - 2  + 2— l yi +  (1 +  — ) yi-1 =  0.0156 In a:,;.
î i / y J  V X'l /

The solution of the corresponding linear system gives
X 1 . 0 0 0 1 . 1 2 5 1 . 2 5 0 1 .3 7 5 1 .5 0 0 1 . 6 2 5 1 .7 5 0 1 . 8 7 5 2 . 0 0 0
y 0 . 0 0 0 0 - 0 . 1 9 8 8 - 0 . 4 1 6 8 - 0 . 6 5 1 0 - 0 . 8 9 9 2 - 1 . 1 5 9 4 - 1 . 4 3 0 4 - 1 . 7 1 0 9 - 2 . 0 0 0 0

We identify P(x) =  1 — x, Q(x) = x, f(x) =  x, and h =  (1 — 0)/10 = 0.1. Then the finite difference 
equation is

[1 + 0.05(1 -  xi)]y^i +  [-2 +  0.0l3i]sfi +  [1 -  0.05(1 -  a*)]w-1 =  O.Olar*.
The solution of the corresponding linear system gives

0 . 0  0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  ] 
0 .0 0 0 0  0 . 2 6 6 0  0 .5 0 9 7  0 .7 3 5 7  0 .9 4 7 1  1 .1 4 6 5  1 . 3 3 5 3  |

i 0 . 7  0 . 8  0 . 9  1 . 0  
j 1 .5 1 4 9  1 .6 8 5 5  1 .8 4 7 4  2 . 0 0 0 0

We identify P(x) — x, Q(x) — 1, /(a:) =  x. and h = (1 — 0)/10 = 0.1. Then the finite difference 
equation is

(1 + 0.05a;7;)t/j+i — 1.99?/; + (1 — 0.05;r.,)t/t_i =  0.01x4.
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The solution of the corresponding linear system gives
x  0 . 0  0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  j 
y  I 1 .0 0 0 0  0 . 8 9 2 9  0 . 7 7 8 9  0 . 6 6 1 5  0 .5 4 4 0  0 .4 2 9 6  0 . 3 2 1 6 ;

j 0 . 7  0 . 8  0 . 9  1 . 0  
I 0 .2 2 2 5  0 .1 3 4 7  0 .0 6 0 1  0 . 0 0 0 0

11 . We identify P(x) =  0. Q(x) = —4, f(x) -- 0. and h = (1 — 0 )/8  =  0.125. Then the finite differe

12 . We identify P(r) =  2jr. Q(r) =  0, f(r) = 0 . and h =  (4 — l ) /6  — 0.5. Then the finite differ- 
equation is

is the same as equation (8 ) in the text. The equations are the same because the derivation 
based only on the differential equation, not the boundary conditions. If we allow i to : 
from 0 to n — 1 we obtain n equations in the n +  1 unknowns y-i ,  yo. yi, . . . ,  yn- \ . Si1.:: 
is one of the given boundary conditions, it is not an unknown.

(b) Identifying yo = y{0), y_i =  y(0 — h), and y\ = y(0 + h) we have from equation (5) in tlv

equation is
1 — 2.0625yi -r }ji-\ — 0 .

The solution of the corresponding linear system gives
X  0 . 0 0 0  0 . 1 2 5  0 . 2 5 0  0 . 3 7 5  0 . 5 0 0  0 . 6 2 5  0 . 7 5 0  0 . 8 7 5  1 . 0 0 0  
y  j 0 . 0 0 0 0  0 .3 4 9 2  0 . 7 2 0 2  1 .1 3 6 3  1 .6 2 3 3  2 . 2 1 1 8  2 . 9 3 8 6  3 . 8 4 9 0  5 . 0 0 0 0

The solution of the corresponding linear system gives
r  1 . 0  1 . 5  2 . 0  2 . 5  3 . 0  3 . 5  4 . 0
u 5 0 .0 0 0 0 - 7 2 ; 2 2 2 2  8 3 . 3 3 3 3  9 0 . 0 0 0 0 - 9 4 . 4 4 4 4 - 9 7 > 6 1 9 0  1 0 0 .0 0 0 0

13. (a) The difference equation

The difference equation corresponding to i =  0.
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or
2yi + (-2 + h2Qo)yo =  h2f o + 2h -  PQ.

Alternatively, we may simply add the equation y\ — y-i =  2h, to the list of n difference equ; 
obtaining n +  1 equations in the n - f 1 unknowns y - i . yo,2/1 > • • • > ?M-i-

(c) Using n =  5 we obtain
0.0  0 .2  0 .4  0 .6  0 . 8  1 .0  

-2 .2755 -2 .0755 -1 .8589 -1 .6126 -1 .3275 -1.0000

Using h =  0.1 and, after shooting a few times, y'(0) =  0.43535 we obtain the following tabi-> 
the RK4 method.

0 .0  0 . 1  0 .2  0 .3  0 .4  0 .5  0 .6  j
1.00000 1.04561 1.09492 1.14714 1.20131 1.25633 1.31096 1

0 .7 0.8 0 .9 1 . 0
« 1.36392 1.41388 1.45962 1.50003

Chapter 9 in Review n> s'j|rpc. P'<-~
..........., c-

Euler
h=0.1

Euler
h=0.05

m p. Euler 
h=0.1

Im p. Euler 
h 30.05

RK4
h=0,l

RK4
h “ 0.05

1.00 2.0000 2.0000 2.0000 i 2.0000 2.0000 2.0000

1.05 2.0693 2.0735 2,0736

1.10 2.1386 2.1469 2.1549 2.1554 2.1556 2.1556

1.15 2.2328 2.2459 2.2462

1.20 2.3097 2.3272 2.3439 2.3450 2.3454 2.3454

1.25 2.4299 2.4527 2.4532

1.30 2.5136 2.5409 2.5672 2.5689 2.5695 2.5695

1.35 2.6604 2.6937 2.6944

1.40 2.7504 i 2.7883 2.8246 2.8269 2.8278 2.8278

1.45 2.9245 2.9686 2.9696

1.50 3.0201 3.0690 3.1157 3.1187 3.1197 3.1197 !
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Xn Euler
h-0.1

Euler Im p. Euler
h=0.05 l| h~0.1..... h........

Im p . Euler 
h=O.05

RK4
h-0.1 n 

&
 

8
*

0 .00 0.0000 0.0000 I 0.0000 0.0000 0.0000 0.0000

0.05 0.0500 II 0.0501 0.0500

0.10 0.1000 0.1001 II 0.1005 0.1004 0.1003 0.1003 j

0 .15 0.1506 | 0.1512 0.1511

0.20 0.2010 0.2017 | 0.2030 0.2027 0.2026 0.2026

0.25 0.2537 | 0.2552 1 0.2551

0.30 0.3049 0.3067 | 0.3092 0.3088 0.3087 0.3087

0.35 0.3610 )l 0.3638 ! 0.3637

0.40 0.4135 0.4167 |j 0.4207 0.4202 0.4201 0.4201

0.45 0.4739 1 0.4782 0.4781

0.50 0.5279 0.5327 | 0.5382 0.5378 0.5376 0.5376

xn
Euler
h=0.1

Euler
h=0.O5

Im p . Euler 

h-0.1

Im p . Euler 

h=0.05
RK4
h=0.1

RK4
h=0,05

0.50 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.55 0.5500 0.5512 0.5512

0.60 0.6000 0.6024 0.6048 0.6049 0.6049 0.6049

0.65 0.6573 0.6609 0.6610

0.70 0.7095 0.7144 0.7191 0.7193 0.7194 0.7194

0.75 0.7739 0.7800 0.7801o00o

0.8283 0.8356 0.8427 0.8430 0.8431 0.8431

0.85 0.8996 0.9082 0.9083

o o 0.9559 0.9657 0.9752 0.9755 0.9757 0.9757

0.95 1.0340 1.0451 1.0452

1 . 0 0 1.0921 1,1044 1.1163 1.1168 1.1169 1.1169

Euler
h=0*l

Euler
h~0.05

m p. Euler 

h=0.1

Im p. Euler 

h=0.05
i| RK4
! b=0.1st

RK4
h=0.05

1.00 1.0000 1.0000 1.0000 1,0000 il 1.0000 1,0000

1.05 1.1000 1.1091 i| 1.1095

1.10 1.2000 1.2183 1.2380 1.2405 |j 1.2415 1.2415

1.15 1.3595 1.4010 1.4029

1.20 1.4760 1.5300 1.5910 1.6001 i| 1.6036 1.6036

1.25 1.7389 1.8523 Ij 1.8586

1.30 1.8710 1.9988 2.1524 2.1799 l| 2.1909<1 2,1911

1.35 2.3284 2.6197
u

2.6401

1.40 2.4643 2.7567 3.1458 3.2360 : 3,2745•i 3,2755

1.45 3.3296 4.1528
i

4.2363

1.50 3.4165 4.1253 5.2510 5.6404 || 5.8338 5.8446

5. Using
Vn+ 1 = 'Un-T-hun, 2/0 =  3
Un I 1 — Un + h(2xn 1) Un' UQ =  1
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we obtain (when h - 0.2) y\ = y(0.2) =  yo + hv,Q — 3 +  (0.2)1 =  3.2. When h =  0.1 we have
Vi =  Vo + O.ltio =  3 +  (0.1)1 =  3.1
ui = u0 + 0.1 (2.1:0 +  1)2/0 =  1 + 0.1(1)3 =  1.3
y2 -  y i +0.1ui =  3.1 +  0.1(1.3) =  3.23.

6. The first predictor is =  1.14822731.
x n yn

\\

0
! i

2 . 0 0 0 0 0 0 0 0 i n i t .  cond. |
0 .1 1.65620000 RK4 |
0 .2 1.41097281 RK4 |
0 .3 1.24645047 RK4 |
0 .4 1.14796764 ABM |

7. Using rro =  1. yo =  2 . and h = 0.1 we have
,ti =  .to + h(x,Q + yo) =  1 +  0.1(1 +  2) =  1.3 
Vi =  yo + h{x0 -  yo) = 2 + 0.1(1 -  2) = 1.9

and
x2 =  x1 + h(x! + yi) =  1.3 + 0.1(1.3 + 1.9) =  1.62 
V i =  y\ +  h{x 1 -  yi) =  1.9 +  0.1(1.3 -  1.9) =  1.84.

Thus, x(0.2) «  1.62 and ;f/(0 .2) «  1.84.
S. We identify P(x) — 0, Q(x) =  6.55(1. + x). f(x) =  1, and h =  (1 — 0)/10 = 0.1. Then thfr ~ ■ 

difference equation is
yi+l + [-2 +  0.0655(1 +  Xi)]yi +  yi- 1 =  0.001

or
■yi hi +  (0.0655:i',; -  1.9345)y/ + y,- \ =  0.001.

The solution of the corresponding linear system gives 
x 0T0 oTi 0T2 0T3 0T4 0T5 oTi j
y I 0.0000 4.1987 8.1049 11.3840 13.7038 14.7770 14.4083 1

i 0T7 oTs oTi TTo
j12.5396 9.2847 4.9450 0.0000

505


