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1 Introduction to Differential Equations
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Second order; linear

Third order; nonlinear because of (dy/dz)*

Fourth order; linear

Second order; nonlinear because of cos(r + u)

Second order; nonlinear because of (dy/dz)? or /1 + (dy/dx)?
Second order: nonlinear because of R2

Third order; lincar

Second order; nonlinear because of 42

Writing the differential cquation in the form z(dy/dx) + 42 = 1, we sec that it is nonlincar in y

hecause of 2. However, writing it in the form (y? — 1)(dz/dy) + 2 = 0, we see that it is linear in .
Writing the differential equation in the form u(dv/du) + (1 + u)v = ue* we see that it is linear in
v. However, writing it in the form (v + wv — ue*)(du/dv) + u = 0, we see that it is nonlinear in u.
From y = ¢~*/2 we obtain y = —%e“'c—/g. Then 2y +y = —em2 4 em/2 =,

From y = & — 8e72% we obtain dy/dt = 24c72, so that

B | oy = 2462 4 90 (9 - ge‘z”t) =24,
dt 5 5

3z

From y = ¢ cos 22 we obtain 3’ = 3¢ cos 22 — 2e3% sin 22 and v = 5¢3* cos 2z — 12¢3* sin 2z, $0

From y = — cosz In(sec x + tan z) we obtain 3’ = —1 + sinz In(sec z 4 tan ) and
y" =tanx + cosxln(secx + tanz). Then 3’ + y = tanz.
The domain of the function, found by solving @ +2 > 0, is [~2,00). From 3’ = 14 2(z +2)"1/2 we



Exercises 1.1 Definitions and Terminology

have
-2y =y -2)[1+2=+2)7"7

=y—z+2y—2)(z+2)7"/?
—y—z+2r+4z+2)? —zl(z+2)7V2

—y—z+8z+2Y@+2) V2 =y-z+8
An interval of definition for the solution of the differential cquation is (—2,00) because y' ::
defined at z = —2.

16. Since tanz is not defined for @ = /2 4+ nw, n an integer, the domain of y = 5tax-
{x |52 #7/2+nr}or {x|x#7/10+nr/5}. From y = 25sec? 5z we have

y = 25(1 + tan? 5z) = 25 + 25 tan® 5z = 25 + 3.

An interval of definition for the solution of the differential equation is (—7/10.7/10 . -~z
interval is (7/10, 37/10), and so on.

17. The domain of the function is {x |4 — 2?2 #0} or {x |z # —2o0r z #2}. Fromy/ =2: - -
we have

, 1 V2
Yy =22 (m) = 2zy.

An interval of definition for the solution of the differential equation is (—2,2). Oticr tio-o-
(—oc, —2) and (2, oc).

18. The function is y = 1/4/1 — sinz, whose domain is obtained from 1 —sinz # 0 or =i~ = _
the domain is {z | 7 # /2 + 2nx}. From y' = —1(1 — sinz)™/2(— cos x) we have

2y’ = (]. — gin .?1')_3'/2 cosr = [(1 - sinx)‘1/2]3 COS T = y3 COS T.

An interval of definition for the solution of the differential equation is (7/2,57/2". A ..
is (57/2,97/2) and so on.
19. Writing In(2X — 1) — In(X — 1) = ¢ and differentiating implicitly we obtain

2 dX 1 dx
2X -1 dt X —1dt

(o - ) e
2X -1 X-1/ dt

2X —2-2X+1dX _

X —1)(X-1) dt
dX
dt

=—(2X -1)(X -1)=(X-1){1-2% .



20.

21.

22.

Exercises 1.1 Decfinitions and Terminology

Exponentiating both sides of the implicit solution we obtain X
4
=e
X -1 2
92X — 1= Xet — ¢t —— - .
S R U T
T N
(e"—1)=(e" = 2)X 2t
t
e —1 |
X = . -4
et —2 |

Solving et — 2 = 0 we get t = In2. Thus, the solution is defined on {(—oc,In2) or on (In2,00).
The graph of the solution defined on (—oc,In 2) is dashed, and the graph of the solution defined on
(In2, oc) is solid.

Implicitly differentiating the solution, we obtain y
5 dy dy ‘ /
202 2 —dgy +2y— =0 4
v dx Ty oy dx
—2?dy — 2zydz +ydy =0 2
2zy dz + (22 — y)dy = 0. ~3 _r\f//z‘ X
Using the quadratic formula to solve y? — 222y —1 = 0 for y, we get -2
y = (202 £ Vidzi +4)/2 = 22 £ V2? + 1. Thus, two explicit

solutions are y; = 22 +v2%+1 and yo = 22 — V2t + 1. Both
solutions arc defined on (—oc, oc). The graph of y;(2) is solid and
the graph of y» is dashed.

Differentiating P = c1¢t/ (1 + cle‘) we obtain

dp (1 + clet‘) cret — et - o el cret [(1 + cle") - clet]
dt (1 + cret)? C 14cet 14 cret

¢ t
c1€ c1e
1+4ciet [ 1+ c:let} ( )

- . g2 [T g2 a2 .
Differentiating y = e™* /0 ¢ dt + c;e”* we obtain

2 2 T2 2 2 [T 2 .2
y =e Tt —2ze* / e'dt —2cize™® =1—2ze " / et dt — 2cize™" .
0 40
Substituting into the differential equation, we have

! —? -:1: t2 —z? 2 a: + —a?
¥y +2zy=1—2ze™" /0 e’ dt —2cize™™ + 2ze /0 e dt +2cize”™™ =1

3



Exercises 1.1 Definitions and Terminology

23.

24.

25.

26.

27.

28.

29.

30.

o, , . dy . d% . o
From y = ¢1e?® +coze®® we obtain z{—‘;{ = (2¢ +(.:2)c—:21' +2cpze®® and Eriz = (4(:1—|—4(':2)ezm—|—4c:2:1:ez"",
so that h
d2:l/ dy 2z . Q 1, 2
2 40.’:1: + 4y = (4e1 + 4ca — 8c1 — 4eg + 4¢1)e”™ + (deg — 8cp + deo)ze™ = 0.

From y = 1z~ + cox +c3zlnz + 422 we obtain
Yy 2 3

di .

d_i!‘ = —ci 2+ g+ 3 +c3lnz + 8,
24
—‘?) =92z 3 + gz 1+ 8,
da*

and ,
d°y _4 _9
—= = —6c127 " — c3x” 4,
da3 ! 3 ’

so that

3 2
3 d%y 9 d7y dy . , 1
=42 — —x-"+y=(—6c1+4dci+c1+c)xr " +(—c3+203—-cr—c3+c)r
P R o R (=6ex 1Fata) (—es 3=~ et )
—(—c3+e3)zlnz + (16 — 8 4 4)z?
= 1222
,
—z°, =<0 —2r, z<0
From y = ’ we obtain 3’ = ‘ so that zy’ — 2y = 0.
Y {Jﬂ >0 YTl 220 yo
The function y(z) is not continuous at x = 0 since 11151 y(z) =5 and 111})1+ y(z) = —5. Thus, ¥/(z)
c—U™ T

does not exist at z = 0.

From y = e™® we obtain 3y’ = me™®. Then y' + 2y = 0 implies
me™ + 2™ = (m + 2)e™* = 0.

Since €™ > 0 for all #, m = —2. Thus y = ¢~?* is a solution.

From y = ™% we obtain y' = me™®. Then 5y’ = 2y implics

5me™ = 2™ or m =

ol o

Thus y = €2%/5 > 0 is a solution.
From y = ™ we obtain ¢ = me™ and " = m2e™, Then y” — 5y’ + 6y = 0 implies
7n2€m:z: _ 57nean + 6677117 — (,’n _ 2) (7" — 3)6771'17 — 0.

3T are solutions.

Since ¢™* >0 forall z,m=2and m=3. Thus y = e?* and y = e
From y = €™ we obtain y’ = me™* and 3" = m2e™®, Then 2y” + 7y’ — 4y = 0 implics

om2e™ + Tme™ — 4e™ = (2m — 1)(m + 4)e™ = 0.

4



Exercises 1.1 Definitions and Terminology

z/2 4 are solutions.

Since ™ > 0 for all x, m = % and m = —4. Thus y =e*“ and y = e~
31. From y = 2™ we obtain y = mz™ ! and ¢/ = m(m — 1)2™ 2. Then zy” + 2y = 0 implies
zm(m — 1)2™ 2 4 2ma™ ™ = [m(m — 1) + 2m]a™ "t = (m? + m)2™!
=m(m+1)z™ =0

1 are solutions.

Since 2™ ' >0forz >0, m=0andm=—1. Thusy=1and y =2~
32. From y = 2™ we obtain v/ = ma™"! and y” = m(m — 1)z™ 2. Then 22y" — 7zy/ + 15y = 0 implies
2¥m(m — 1)2™ 2 — Tema™ ! + 152™ = [m(m — 1) — Tm + 15]z™
= (m? — 8m +15)2™ = (m — 3)(m — 5)z™ = 0.

Since z™ > 0 for >0, m =3 and m = 5. Thus y = 2° and y = 2:° are solutions.

In Problems 83-36 we substitute y = c into the differential equations and use y’ =0 and y"” =0

33. Solving 5¢ = 10 we sce that y = 2 is a constant solution.
34. Solving ¢? +2c—3 = (c+3)(c— 1) = 0 we sce that y = —3 and y = 1 are constant solutions.
35. Since 1/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6¢c = 10 we see that y = 5/3 is a constant solution.

37. From z = ¢~ 4+ 3¢% and y = —e~% + 5¢% we obtain

du dy

o= —2¢7% 4 18¢8*  and == 2e™ % 4 30e%.
Then
. . dx
v+ 3y = (7 + 36%) + 3(—e ™ + 5e%) = —2¢ 7% + 1865 = d—‘:
and p
52 + 3y = 5(e % + 3e%) + 3(—e™H 4 5e8) = 27 4 305 = :11; :
38. From x = cos 2t +sin 2t + %(’t and y = — cos 2t — sin 2¢ — %ct we obtain
dr , 1 d; . 1
P = —2sin 2t + 2cos 2t + get and Ei_ = 2sin 2t — 2 cos 2t — 5et
and 0 )
d°x 1 d= 1
E—t.—i = —4cos2t — 4dsin 2t + get and aéi = 4¢0s 2t + 4sin 2t — get.
Then
, 1 1 d’x
4y + ' = 4(—cos 2t — sin 2¢ — get‘) + et = —dcos 2t — 4sin 2t + ge‘ = d—;-
and '



Exercises 1.1 Definitions and Terminology

39.
40.
41.

42,

43.

44.

45.

46.

Li_ @
4z — ¢t = 4(c:os,2f+sm2t——e*)—€—4(’032”4“2* 5° =71t'g‘

()2 +1 = 0 has no real solutions becausc (/)2 + 1 is positive for all functions y = ¢(x).

The only solution of ()2 +y? =0is y =0, since if y # 0, y? > 0 and (/)2 + 4% > y*> > 0.

The first derivative of f(z) = ¢® is €®. The first derivative of f(z) = €*® is ke**. The differential
equations are ¥’ = y and 3’ = ky, respectively.

Any function of the form y = ¢e® or y = ce™7 is its own sccond derivative. The corresponding
differential equation is y” —y = 0. Functions of the form y = c¢sinz or y = ccosz have sccond

derivatives that are the negatives of themsclves. The differential equation is y” +y = 0.

We first note that /1 —y2 = sln 2 = Vcos? z = | cosz|. This prompts us to consider values
of z for which cosx < 0, bllCh as z = 7. In this case
di d !
J’ =—-(SlIl£L‘) =cosz|, . =cosm = —1,
dz: dz o

but

P
V1= 42lser =1 —sinr=vI=1.

Thus, y = sinz will only be a solution of ¥ = /1 — 42 when cosz > 0. An interval of definition is
then (—m/2,7/2). Other intervals are (37/2, 57/2), (7m/2,97/2), and so on.
Since the first and second derivatives of sint and cost involve sint and cost, it is plausible that a
linear combination of these functions, A sint+ B cos £, could be a solution of the diffcrential equation.
Using ¢/ = Acost—Bsint and 3y’ = —Asint— B cost and substituting into the diffcrential equation
we get

y"' 4+ 2y +4y = —Asint — Beost +2Acost — 2Bsint + 4Asint + 4B cost

= (34 —2B)sint + (2A + 3B) cost = 5sint.
Thus 3A — 2B =5 and 24 + 3B = 0. Solvmg theae simultancous equations we find A = and
B = -1 A particular solution is y = 13 sint — 13 cost.

One solution is given by the upper portion of the graph with domain approximately (0,2.6). The
other solution is given by the lower portion of the graph, also with domain approximately (0, 2.6).

One solution, with domain approximately (—oc, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution, with
domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The third
solution, with domain (0, 00), is the part of the graph in the fourth quadrant.

6



Exercises 1.1 Definitions and Terminology

47. Differentiating (z° + y*)/zy = 3c we obtain

48.

49.

50.

ry(32” + 3y%y) — (2 +¢*)(xy + y)

722 =0

323y + 32y — a2ty — 2By — 2ty — ' =0
(3zy® - 2* —2y’)y = =3Py + 2Py + ¢

_ yt — 223y _ y(y® — 22°)
2w —2t s 2P =)

[}

A tangent line will be vertical where y' is undefined. or in this case, where z(2y> — 23) = 0. This

gives £ = 0 and 2y3 = z3. Substituting y? = 23/2 into 13 + y® = 32y we get

. 1 . 1
3, L3 ,
v+ 5.1. =3z (—21/3 r)
33 3 o
2% T oip®

1:3 — 22/31:2

2 (x — 213 =0.
Thus, there are vertical tangent lines at z = 0 and x = 2%/3, or at (0,0) and (2%/3,21/3). Since
22/3 2 1.59, the estimates of the domains in Problem 46 were close.
The derivatives of the functions are ¢} (z) = —2/v/25 —2? and é4(x) = z/v25 — 22, neither of
which is defined at x = 5.
To determine if a solution curve passes through (0,3) we let ¢ = 0 and P = 3 in the cquation
P = ciet/(1 + c1€t). This gives 3=c1/(1 +c1) or ¢y = —% . Thus, the solution curve

p_ (—3/2)et _ —3et

1—(3/2)et 22— 3et

passes through the point (0,3). Similarly, letting ¢ = 0 and P = 1 in the equation for the one-

parameter family of solutions gives 1 = ¢1/(1 +¢1) or ¢ = 1+ ¢;. Since this cquation has no

solution, no solution curve passes through (0, 1).

. For the first-order differential equation integrate f(z). For the second-order differential equation

integrate twice. In the latter case we get y = [([ f(z)dz)dz + ¢z + c2.

. Solving for 3/ using the quadratic formula we obtain the two differential equations
g Y g q

1 . 1 I ae
y’=—<2+2-\/1—|—3:1:6> and y'=5 (2—2\/1-&-3:1:")’

so the differential equation cannot be put in the form dy/dz = f(xz,v).

7



Exercises 1.1 Definitions and Terminology

53.

54.

55.

56.

57.

The differential equation 43’ —xy = 0 has normal form dy/dz = x. These arc not equivalent because
y = 0 is a solution of the first differential equation but not a solution of the second.

Differentiating we get i = ¢1 + 3cpz? and 4 = 6caz. Then 3 = 3 /6z and ¢; = i/ — 2y"/2, so

" "
Y ¥y.3_ r Loy
v= (y 2 )x+ (63:) wy 3.1: Y

and the differential equation is z%y” — 32y’ + 3y = 0.

(a) Since e is positive for all values of z, dy/dz > 0 for all z, and a solution, y(z), of the

differential equation must be increasing on any interval.

2
x

(b) lim & = lim ¢ =0 and Jim %y_ = lim e™® = 0. Since dy/dx approaches 0 as z

r——0C & T—— x T—=o¢
approaches —oc and oc, the solution curve has horizontal asymptotes to the left and to the
right.

(c) To test concavity we consider the second derivative

d2y d {dy d 2 .2
@—E(E})_%(e )——2:06 .

Since the second derivative is positive for z < 0 and negative for > 0, the solution curve is

concave up on (—oo, 0) and concave down on (0,00). x

(d)

(a) The derivative of a constant solution y = ¢ is 0, so solving 5 — ¢ = 0 we see that ¢ = 5 and so
y = b is a constant solution.

(b) A solution is increasing where dy/dx = 5 —y > 0 or ¥ < 5. A solution is decreasing where
dy/dr =5-y <0ory>5.

(a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and
y = a/b are constant solutions.

(b) A solution is increasing where dy/dz = y(a —by) = by(a/b—y) > 0or 0 <y < a/b. A solution
is decreasing where dy/dz = by(a/b—y) <0 ory <0 or y > a/b.

(c) Using implicit differentiation we compute

d2y Y, , L
7 =u(=b) +v'(a— by) =y/(a — 2by).
Solving d*y/dx? = 0 we obtain y = a/2b. Since d*y/dz? > 0 for 0 < y < a/2b and d’y/da® < 0

for a/2b < y < a/b, the graph of y = ¢(x) has a point of inflection at y = a/2b.

8
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Exercises 1.1 Definitions and Terminology

(@ )

____,_-/ y=0
\ X

. (a) If y = cis a constant solution then y' = 0, but ¢ + 4 is never 0 for any real value of c.

(b) Since 3’ = y? + 4 > 0 for all x where a solution y = @(z) is defined, any solution must be
increasing on any interval on which it is defined. Thus it cannot have any rclative extrema.

(c) Using implicit differentiation we compute d?y/dr? = 2yy’ = 2y(y? +4). Setting d?y/dz? = 0
we see that y = 0 corresponds to the only possible point of inflection. Since d%y/dz? < 0 for
y < 0 and d?y/dz? > 0 for y > 0. there is a point of inflection where y = 0.

(d)

. In Mathematica usc

Clear[y]
y[x]:= x Exp[5x] Cos[2x]
yIx]
y''[x] — 20y [x] + 158y [x] — 580y [x] +841y[x]//Simplify
The output will show y(ix) = €>*x cos 22, which verifies that the correct function was entered, and

0, which verifies that this function is a solution of the differcntial equation.

. In Mathematica use

Clear[y]

y[x-]:= 20Cos[5Log[x]]/x — 3Sin[5Log[x]]/x

ylx]

X3y [x] +2x"2 y[x] + 20x y'[x] — T8y[x]//Simplify

The output will show y(x) = 20 cos(5nz)/z—3sin(5lnz) /2, which verifies that the correct function

was entered, and 0, which verifics that this function is a solution of the differential equation.

9



Exercises 1.2 Initial-Value Problems

- Exercises 1.2

1. Solving —1/3 =1/(1+¢;) we get c; = —4. The solution is y = 1/(1 — 4e™%).

2. Solving 2 = 1/(1 + c1e) we get ¢; = —(1/2)e~ L. The solution is y = 2/(2 — e~ @),

3. Letting = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(2? — 1). This
solution is defined on the interval (1, oc).

4. Letting z = —2 and solving 1/2 = 1/(4 + ¢) we get ¢ = —2. The solution is y = 1/(z% — 2). This
solution is defined on the interval (—oo, —v/2).

5. Letting z = 0 and solving 1 = 1/¢ we get ¢ = 1. The solution is y = 1/(z? + 1). This solution is
defined on the interval (—o0, oc).

6. Letting 2 = 1/2 and solving —4 = 1/(1/4+c¢) we get ¢ = —1/2. The solution is y = 1/(2? — 1/2) =
2/(22% — 1). This solution is defined on the interval (—=1/v2,1/v2).

In Problems 7-10 we use © = ¢y cost + cgsint and £’ = —c¢ysint + cacost to obtain a system of two
Y ,

equations in the two unknowns ¢ and ca.

7. From the initial conditions we obtain the system

5

cy = 8.
The solution of the initial-value problem is £ = — cost + 8sint.

8. From the initial conditions we obtain the system

Co = 0
—cy = 1.
The solution of the initial-value problem is x = — cost.
9. From the initial conditions we obtain
V3 1 1
—c+ -0 ==
2 1T 2%
1 3

3 ¢+ —\g—_ co = 0.

Solving, we find ¢; = v/3/4 and c2 = 1/4. The solution of the initial-value problem is
x = (v/3/4) cost + (1/4) sint.

10



Exercises 1.2 Initial-Value Problems

10. From the initial conditions we obtain

Cz=\/§

c +

(2—2\/_

Solving, we find ¢; = —1 and ¢o = 3. The solution of the initial-value problem is z = — cost+3sint.

¢+

SERNS
o[ [

7 Problems 11-14 we use y = c1¢* + coe™* and y = cre* — c9e™ to obtain a system of two equations
Y 1 Y

. the two unknowns ¢y and ca.

1

1

1.

[

[Nl

AN

. Two solutions are y =0 and y = x

From the initial conditions we obtain

c1+cp=1
¢ —co = 2.
Solving, we find ¢ = 5‘ and cp = —% . The solution of the initial-value problem is y = %em — %e“’” .

. Trom the initial conditions we obtain

eci1 +e leg =0

ec) — e_lcg = e.

Solving, we find ¢; = 3 and co = —%e?. The solution of the initial-value problem is
— )_
1= Je - e e o e

From the initial conditions we obtain
e"lcl +ecmp=5

el — ey = —5.

Solving, we find ¢; = 0 and ¢ = 5e~!. The solution of the initial-value problem is y = 5¢”le™® =
= —1-x
3 T

. From the initial conditions we obtain

c1+co=0

¢1—co=0.
solving, we find ¢; = ¢o = 0. The solution of the initial-value problem is y = 0.

3

Two solutions are y = 0 and y = «2. (Also, any constant multiple of 22 is a solution.)

_ . 0 2 _ . . X .
= f(z,y) = y*/® we have of = Zy~1/3_ Thus, the differential equation will have a unique solution

Oy 3

. any rectangular region of the plane where y £ 0.

11



Exercises 1.2 Initial-Value Problems

18.

19.

20.

21.

22.

23.

24.

For f(z,y) = /Ty we have 0f/0y = %VI x/y. Thus, the differential equation will have a unique
solution in any region where z > () and y > 0 or where x < 0 and y < 0.

0 1 . . . . . .
For f(x,y) = Y e have O—f = Thus, the differential cquation will have a unique solution in
x y T

any region where z # 0.

For f(x,y) = +y we have —5; = 1. Thus, the differential equation will have a unique solution in
7Y

the entire plane. ‘
For f(z,y) = 22/(4—y?) we have 0f /0y = 2z%y/(4—y?)%. Thus the differential equation will have

a unique solution in any region where y < —2, =2 <y < 2, or y > 2.

a2 af  —32% . . . )
For f(z,y) = 3 we have =~ = ————= . Thus, the differential equation will have a unique
14y Oy (143
solution in any region where y # —1.
Y of 2z%y e o .
For f(z,y) = —5——— we have =~ = ———— . Thus, the differential cquation will have a unique
ety 0y (22 +y?)

solution in any region not containing (0, 0).

For f(z,y) = (y 4+ z)/(y — x) we have 0f /0y = —2x/(y — x)?. Thus the differential equation will

have a unique solution in any region where y < z or where y > .

In Problems 25-28 we identify f(zx,y) = \y?>—9 and Of/0y = y/\/y> — 9. We see that f and
Of /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on x.

25.

26.

27.

28.

29.

Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

Since (5,3) is not in cither of the regions defined by y < —3 or y > 3, there is no guarantee of a

unique solution through (5, 3).

Since (2, —3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee of a
unique solusion through (2, —3).

Since (—1,1) is not in cither of the regions defined by y < —3 or y > 3, there is no guarantec of a
unique solution through (—1,1).

(a) A one-parameter family of solutions is ¥ = cz. Since y = ¢, xy/ = ¢ =y and y(0) =¢-0=0.

(b) Writing the equation in the form 3’ = y/z, we see that R cannot contain any point on the y-axis.

Thus, any rectangular region disjoint from the y-axis and containing (g, yo) will determine an

12



30.

31.

32.

(c)

(b)

(c)

(b)

(c)

(2)

(b)

(c)

Exercises 1.2 Initial-Value Problems

interval around zy and a unique solution through (zg, yo). Since 2o = 0 in part (a), we are not

guaranteed a unique solution through (0. 0).

The piccewise-defined function which satisfies y(0) = 0 is not a solution since it is not differ-

entiable at x = 0.

Since % tan(z + ¢) = sec’(z + ¢) = 1 + tan®(z + ¢), we see that y = tan(z + ¢) satisfics the
differential equation.

Solving y(0) = tanc¢ = 0 we obtain ¢ = 0 and y = tanx. Since tanx is discontinuous at
@ = %7 /2, the solution is not defined on (—2,2) because it containg +/2.

The largest interval on which the solution can exist is (—7/2,7/2).

d 1 1 1 .
Since —(—- ) = 5 = y?, we see that y = — is a solution of the differential
dz\ z+c¢ (z+c) r+c
equation.
Solving y(0) = —1/¢ = 1 we obtain ¢ = —1 and y = 1/(1 — z). Solving y(0) = —1/c = —-
we obtain ¢ = 1 and y = —1/(1 + z). Being sure to include 2 = 0, we sce that the interval
of existence of y = 1/(1 — ) is (—oc, 1), while the interval of existence of y = —1/(1 + ) is
(-1, 00).

By inspection we see that y = 0 is a solution on (—o0, o).
Applying y(1) =1 toy = —1/(x + ¢) gives

l=— or 14+¢=-1.

1+c¢

Thus ¢ = —2 and
1 1

y=_1¢—2=2—:v'

Applying y(3) = =1 to y = —1/(x + ¢) gives

Thus ¢ = —2 and

No, they are not the samc solution. The interval 1 T 1 /
e . . . £ Pm ey (35, 2)
of definition for the solution in part (a) is (—o0,2); I /

whereas the interval I of definition for the solution 1’»——~""?1, 1

H
B e e
i

in part (b) is (2, 00). See the figure. -1+ (%/‘”’”’4

13



Exercises 1.2 Initial-Value Problems

33. (a) Differentiating 3x% — 3 = ¢ we get 6z — 2yy’ = 0 or yy’ = 3z.
(b) Solving 322 — y? = 3 for y we get

y=oé1(z) = /3(z2 — 1), 1<z < oo, d /

=3 —2/! PR G
y = ¢3(x) = /3(22 - 1), —oc < & < —1, -

y=o4(z) =—/3(@2-1), —oo<z<-L
(c) Only y = ¢3(z) satisfies y(—2) = 3.

34. (a) Settingz =2andy = —4in 3z —y? =cweget 12-16 = -4 =, ¥

so the explicit solution is

y=—13224+4, —oc <z <00.

(b) Setting ¢ = 0 we have y = +/3z and y = —+/3z, both defined on e RN
(—20, 00). 7
-
In Problems 35--38 we consider the points on the graphs with x-coordinates xg = —1, 29 = 0, a

zg = 1. The slopes of the tangent lines at these points are compared with the slopes given by y' (o)
(a) through (f).
35. The graph satisfics the conditions in (b) and (f).
36. The graph satisfies the conditions in (e).
37. The graph satisfics the conditions in (c) and (d).
38. The graph satisfies the conditions in (a).
39. Integrating y’ = 8¢%* 4 62 we obtain
Y= / (862:& + 6z)dz = 4¢** + 322 +c.

Settingr =0and y =9 wehave 9 =4+ cso ¢ =5 and y = 4e?* 4 322 + 5.

40. Integrating y” = 12z — 2 we obtain
y = f(l?a: — 2)dz = 62% — 2z +¢1.
Then, integrating 3 we obtain

Y= /(6552 -2z +4c)dr = 22° — 2% + 12 + ¢

14



Exercises 1.2 Initial-Value Problems

. 2 = 4. The slope of the tangent line at z = 1 is ¢/(1) = —1. From the initial conditions we

== > = 1 the y-coordinate of the point of tangency is y = —1+45 = 4. This gives the initial condition

coezin

2—-14+ci+e=4 or c1+ec=3

6-2+c=-1 or ] = —5.

Tl =-3and g =8, 50y =23 — 2 — 5z + 8.

2 Vimr=0andy = -%— .y’ = —1, so the only plausible solution curve is the one with negative slope
RN % ), or the black curve.

£2 -7 solution is tangent to the z-axis at (zg.0), then ¥/ = 0 when ¥ = z¢ and y = 0. Substituting

-oz2 values into ' + 2y = 3z — G we get 0+ 0 = 3z — 6 or zp = 2.

Tz shreorem guarantees a unique (meaning single) solution through any point. Thus, there cannot

= ~wo distinet solutions through any point.

Loty = %11173 = a:(%:z:z) =zy'/?, and y(2) = %6(16) = 1. When

= iy =Tty
0, <0
y= 1]—'6;174, >0

1

, 0, z <0 0. <0 12

vy = 311133, z>0 =T %.’1:2, xEO—xy
L) = %(16) = 1. The two differcnt solutions are the same on the interval (0, oo), which is all
*_:" iz required by Theorem 1.2.1.

I -1~ =0.dP/dt = 0.15P(0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at a

-

2:7+ of 3.500 individuals per yvear.

- - population is 500 at time £ = T then
dP |
dt |iop

5. at this time, the population is increasing at a rate of 9,500 individuals per year.

= 0.15P(T) +20 = 0.15(500) + 20 = 95.

15



 Exercises 1.3

Exercises 1.3 Differential Equations as Mathematical Models

at

10.

dr dpr

. —=kP+r, — =kP—r

dt dt
Let b be the rate of births and d the rate of deaths. Then b = k) P and d = ko P. Since dP/dt = b—d,

the differential equation is dP/dt = k1 P — ko P.
Let b be the rate of births and d the rate of deaths. Then b = ki P and d = ko P2. Since dP/dt = b—d.
the differential equation is dP/dt = k1 P — ko P2.

P .
‘fi—t =kP—kP?—h, h>0
. From the graph in the text we estimate Ty = 180° and Ty, = 75°. We observe that when 7' = 85,

dT'/dt ~ —1. From the differential equation we then have
dT'/dt -1
k= /dt _

= = =—0.1.
T-1, 8 -75 !

By inspecting the graph in the text we take T, to be T, (¢t) = 80 — 30cosat/12. Then the
temperature of the body at time ¢ is determined by the differential equation

drI’ ) o
E—A[T~ (80~30005 12t)}’ t> 0.

The number of students with the flu is z and the number not infected is 1000 — z, so dz/dt =
k(1000 — x).

By analogy, with the differential equation modeling the spread of a disease, we assume that the rate
at which the technological innovation is adopted is proportional to the number of people who have
adopted the innovation and also to the number of people, y(t), who have not yet adopted it. Then
« + vy = n, and assuming that initially one person has adopted the innovation, we have

%—;— =kz(n—z), z(0)=1

The rate at which salt is leaving the tank is

Rouz (3 gal/min) - ( ,;(;10 b/ gal) = ﬂ]% Ib/min.

Thus dA/dt = —A/100 (where the minus sign is used since the amount of salt is decrecasing. The
initial amount is A(0) = 50.

The rate at which salt is cntering the tank is

Riy, = (3 gal/min) - (2 Ib/gal) = G 1b ‘min.

16



11.

Exercises 1.3 Differential Equations as Mathematical Models

Since the solution is pumped out at a slower rate, it is accumnulating at the rate of (3 — 2)gal/min =
1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank. The rate at which salt is

leaving is

Rout = (2 gal/min) - (

The differential equation is

24
Ib/ga ) 300 5 lb/ min.

300 +1¢

dA 6 2A
dt 300+t
The rate at which salt is entering the tank is

Rin = (3 gal/min) - (2 Ib/gal) = 6 1b/min.

Since the tank loses liquid at the net ratc of
3 gal/min — 3.5 gal/min = —0.5 gal/min,

after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate at
which salt is lecaving is
A 3.5A TA
Rout = (m b/ gal) - (3.5 gal/min) = ﬁi—t‘/_z Ib/min = 500 =1 lb/mm
The differential equation is

dA 7A dA 7

7 060t & @ Tewn—4=6

. The rate at which salt is entering the tank is

Rin, = (cin b/gal) - (14, gal/min) = ¢jnrin 1b/min.

Now let A(t) denote the number of pounds of salt and N (¢) the number of gallons of brine in the tank
at time ¢. The concentration of salt in the tank as well as in the outflow is ¢(t) = z(t)/N(¢). But
~he number of gallons of brine in the tank remains steady, is increased, or is decreased depending
om whether ry, = Touts Tin > Tout: OF Tin < Tout- IN any case, the number of gallons of brine in the
ank at time ¢ is N(t) = Ny + (rin — rout)t. The output rate of salt is then

Rout = ( Not (T:_ rom)t b/ gal) - (Tout gal/min) = ryy No T (7':— — 1b/min.
The differential equation for the amount of salt, dA/dt = R;;, — Rous, is
dd = CinTin — Tout A or A + Tout A=cir.
dt ' No+ (Tin — rowe)t d No + (i — Tout)t CinTin

. The volume of water in the tank at time ¢ is V' = A, k. The differential equation is then

dh _ 1dV _ 1 (A/,
N V2
dt Ay dt < cAny29h ) 2gh.

’ll

17



Exercises 1.3 Differential Equations as Mathematical Models

14.

15.
16.

17.
18.

19.

2

Using Ay, =7 (%) = % . Ay = 102 = 100, and ¢ = 32, this becomes
dh cm /36 cm
@~ 100 VoM =T vV

The volume of water in the tank at time tis V' = %m'zh where r is the radius of the tank at heig:
h. From the figure in the text we see that r/h = 8/20 so that r = %h and V = %w (%hf h= :%T.] :
Differentiating with respect to ¢ we have dV/dt = %ﬁhz dh/dt or

dh_ % dv

dt — 4mh? dt
From Problem 13 we have dV/dt = —cAp+/2gh where ¢ = 0.6, A = 7 (%)2, and g = 32. Thu:
dV/dt = —2mv/h/15 and

dh 25 ( 2nvR\ _ 5
dt — 4wh2 15 | 6h3/2’

Since i = dg/dt and L d?q/dt? + Rdg/dt = E(t), we obtain Ldi/dt + Ri = E(t).

Za=E(®).

- , X dv .
From Newton’s second law we obtain ma = —kv? +myg.

Since the barrel in Figure 1.3.16(b) in the text is submerged an additional y feet below its equilibriun:

By Kirchhoff’s second law we obtain R% +

position the number of cubic feet in the additional submerged portion is the volume of the circular

cylinder: 7 x (radius)?xheight or (s/2)%y. Then we have from Archimedes’ principle
upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)
= (62.4)7(5/2)%y = 15.675%y.

Tt then follows from Newton’s second law that

% %i—;/ = —15.6%.5'23/ or 2273 + 15—6;”3‘2 y =0,
where ¢ = 32 and w is the weight of the barrel in pounds.
The net force acting on the mass is
F=ma= mfﬁ'i = —k(s+z) +mg = —kx +mg — ks.

dt? '

Since the condition of equilibrium is mg = ks, the differential equation is
2.
m %t_; = —kzx.

18



20.

21.

Exercises 1.3 Differential Equations as Mathematical Models

From Problem 19, without a damping force, the differential equation is m d2:1:/ dt? = —kz. With a
damping force proportional to velocity, the differential equation becomes
d?x d d’x dx
m-— = —kx — 83— or m—s + — + kr=0.
de? T dt dr?2 T dt
From g = k/R? we find k = gR% Using a = d®r/dt? and the fact that the positive direction is

upward we get
d*r k gR? d*r  gR?
a2 2 r =
The gravitational force on m is F' = —kM,m/r?. Since M, = 476r3/3 and M = 47wSR3/3 we have
M, =r3M/R3 and

= (.

Mym i r3Mm/R? _ g mM
r2 " r2 - YRS

Now from F' = ma = d?r/dt*> we have
d?r mM d?r kM

Mm—m=—k—pr o — = :
e B e &

F=—k

T.

L]

. The differential equation is — = k(M — A).

dt

dA
. The differential equation is = ki(M — A) — kA,

. The differential equation is 2/(t) = r — kx(t) where & > 0.

—Y

By the Pythagorcan Theorem the slope of the tangent linc is ' =

. We see from the figure that 20 + @ = 7. Thus

2tand
Y - tan a = tan(m — 26) = —tan 20 = ——12— .
—a 1—tan“6 n

Since the slope of the tangent line is ' = tan # we have y/z = 2y'/[1—(v')?]
or y —y(y')? = 2xy’, which is the quadratic cquation y(y')?> 4+ 2z —y =0 /

‘n y'. Using the quadratic formula, we get

—2r £ \/42? + 4y  —z £ /2?4y (x99 L .

/

1
o / [k
since dy/dz > 0, the differential equation is / 3 e
d +f2? +y? d
1Y —X x Y Y /2—5
= = r Y —— — /s +xz=0.
dz y © Yz VaRtyt e
The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, P = e, and a

»z-parameter family of solutions is P = ce¥t.
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Exercises 1.3 Differential Equations as Mathematical Models

29.

30.

31.

32.

33.

34.

The differential equation in (3) is dT/dt = k(T — T,,). When the body is cooling, T > Tj,, so
T — T;n > 0. Since T is decreasing, dT'/dt < 0 and k£ < 0. When the body is warming, T' < T, so
T — Ty < 0. Since T is increasing, dT/dt > 0 and k < 0.

The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then dA/dt =0
at this time and A = 600. If A(t) continues to increase without reaching a maximum, then A’() > 0
for ¢ > 0 and A cannot exceed 600. In this case, if A'(t) approaches 0 as ¢t increases to infinity, we
see that A(t) approaches 600 as ¢ increases to infinity.

This differential equation could describe a population that undergoes periodic fluctuations.

(a) As shown in Figure 1.3.22(b) in the text, the resultant of the reaction force of magnitude F
and the weight of magnitude mg of the particle is the contripetal force of magnitude mw?z.
The centripetal force points to the center of the circle of radius  on which the particle rotates
about the y-axis. Comparing parts of similar triangles gives

Fcos@=mg and Fsinf = mw’z.
(b) Using the equations in part (a) we find
Fsind mw?z o’z dy 2z

tanf = = = or — = —
. Fcosf mg g ' dx g

From Problem 21, d?r/dt? = —gR?/r?. Since R is a constant, if r = R+ s, then d?r/dt? = d?s/dt?
and, using a Taylor series, we get
d?s R? ; ng
= —g———— = —gR}*(R+s) 2~ —gR})R? - 2sR3 + ..
Thus, for R much larger than s, the differential equation is approximated by d?s / dt2 = —g.
(a) If p is the mass density of the raindrop, then m = pV and
dm av d 4 .3 odr dr
o _ 2 = ol dmr? =
i =P = Pals™) p(vd) P
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the radius is
decreasing, £ < 0. Solving dr/dt = k/p we get r = (k/p)t + ¢o. Since 7(0) = rg, ¢g = rg and

r=kt/p+ro.

d
(b) From Newton’s sccond law, %[m'u] = mg, where v is the vclocity of the raindrop. Then

dv am _ ] 4 dv 4
Tna-l-?j%m?'ﬂ:g or p(3 )df +U(k4’ﬂ')‘ ) p(g,‘f] )g
Dividing by 4p7r3/3 we get
dv 3k i dv 3k/p ‘
df+ v=g or dt+krt/p+rgv_g’ k <O0.



Exercises 1.3 Differential Equations as Mathematical Models

35. We assume that the plow clears snow at a constant rate of & cubic miles per hour. Let ¢t be the
time in hours after noon, z(¢) the depth in miles of the snow at time ¢, and y(t) the distance the
plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption gives

dy
Tt
where w is the width of the plow. Each side of this equation simply represents the volume of snow

=k,

plowed in one hour. Now let £y be the number of hours before noon when it started snowing and
let s be the constant rate in miles per hour at which x increases. Then for ¢ > —#g, x = s(t + tp).
The differential equation then becomes

dy k 1

dt - ws t +tg

Integrating, we obtain

(t+to) +c]

where ¢ is a constant. Now when ¢t =0, y = 0 so ¢ = — Inty and
k t
y= 1 (1 —) |
y ws G to
Finally, from the fact that when ¢ = 1, y = 2 and when = 2, y = 3, we obtain
) 2 1 3
1+ —) = (l + —) .
( to to

Expanding and simplifying gives t% +tp — 1 =0. Since £y > 0, we find £y =~ 0.618 hours ~
37 minutes. Thus it started snowing at about 11:23 in the morning.

36. (1): %l; = kP is linear (2): C(li—f = kA is lincar
(3): (g = k(T —Tpn) is linear (5): ((li—'; = kz(n+1—2) is nonlinear
(6): d{;;( = k(o — X)(8 — X) is nonlinear (8): (Z} 1 3 5
(10): 2—? = —-A—h—\/2gh is nonlinear (11): Ztg + qu éq = E(t) is linear
(12): %25 = —¢ is linear (14): m%;— = mg — kv is lincar
(15): = d% + Ai- =mg is linear

T T
(16): lincarity or nonlinearity is determined by the manner in which W and Ty involve .

21



Chapter 1 in Review

Chapter 1 in Revie

d
1. i c1eX%% = 10c;e!0%: 9 _ 10y
dz dx

d 2; or . dy _ d
2. 5(5 + (:16_22:) = —2616_2”1: =-2(5+ (:16_2’lc —3); d—i =-2(y—35) or % =2y +10
l -
3. d(—(C‘I cos kz + cosinkz) = —key sin kx + ke cos ku;
——(e1 cos kw + cgsin kz) = —k%c; cos kz — k*cy sin kz = —k?(c1 cos kz + cp sin kz);
dx?
d’y 2 Py o
a2 = TRy o ga Ry =0

d
4. a—;(cl cosh kz + co sinh kxz) = ke sinh kz + kcg cosh kz;

2
d— cycoshkx + cosinh kx) = k201 cosh kx + k202 sinh kz = k2 ¢y cosh kx + ¢osinh ka);
dz?

d%y d%y

—Z =Ky or ——ky=0

dx? y dz? Y

5. y=c1e® + coxe;  y = c1e¥ + caxe” +cae®; 4" = cre® + core® + 2¢96%;

V' +y = 2(c1e® + caze®) + 2¢2¢% = 2(c16” + coze® +ce®) =2y; ¥ -2 +y =0

6. ¥ = —c1e%sinz + c1e® cos T + c9e® cos T + coe® sin
Yy = —c1e¥ cosx — c1e¥ sinx — c1€¥ sin x + ¢1€% cos  — coe® sin x + cae® cos z + cge? cos x4 cae% sin -
= —2c1e¥sinx + 2coe® cos x;
Yy — 2y = —2cie®cost — 2cpe¥sinz = —2y; Yy -2 +2y =0
7. ad 8. ¢ 9. b 10. ac 11. b 12. a,b.d

13. A few solutions are y =0, y = ¢, and y = €.

14. Easy solutions to see are y =0 and y = 3.

15. The slope of the tangent line at (z,%) is 3/, so the differential equation is y' = x2 + 2.

16. The rate at which the slope changes is dy’/dz = y”, so the differential equation is y” = —y'
v +y =0

17. (a) The domain is all real numbers.
(b) Since ¢’ =2/ 3z1/ 3 the solution y = 2%/3 is undefined at 2 = 0. This function is a solution

the differential equation on (—o0,0) and also on (0, 00).
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Chapter 1 in Review

%, (a) Differentiating y? — 2y = 2 — & 4 ¢ we obtain 2yy’ — 2y’ =2z — 1 or (2y — 2)y/ = 2z — 1.
(b) Setting r = 0 and y = 1 in the solution wc have 1 —2=0—0+ c or ¢ = —1. Thus, a solution

2 —1.

of the initial-valuc problem is y? — 2y =z
(c) Solving y?—2y—(22—x—1) = 0 by the quadratic formula we get y = (2+ \/ 4+4(x2—1-1))/2
=1+vVa2—az=1% \/.r(:c —1). Since #(x — 1) > 0 for < 0 or z > 1, we see that neither

—_
y=1+ \/r(x — 1) nor y =1 —y/w(x — 1) is differcntiable at = 0. Thus, both functions are

solutions of the differential equation, but neither is a solution of the initial-value problem.

5 Settingz=mxp and y = lin y = —2/2 + x, we get

2

Io
Thus, zg =2 or 29 = —1. Since 2 = 0 in y = —2/2 + x, we see that y = —2/z + z is a solution of
-2ie initial-value problem xy’ + y = 2z, y(—1) = 1, on the interval (—00,0) and y = —=2/z+x is a

:zlution of the initial-value problem 2y’ + y = 2z, y(2) = 1, on the interval (0, oc).

2. Trom the differential equation, y'(1) = 12 + [y(1)]2 = 1 + (—1)2 = 2 > 0, so y(x) is increasing in
:-me neighborhood of z = 1. From y” = 2z + 2yy’ we have y"(1) = 2(1) + 2(-1)(2) = -2 < 0, s0
. 1) is concave down in some ncighborhood of z = 1.

-y=m2+cl 'y=—1172+62
b) When y =22 + ¢1, ¢ = 27 and ()% = 42?. When y = —2% 4¢3, ¢/ = —22 and (y')? = 422.
2
. . -z¢, <0
¢) Pasting together 22, £ > 0, and —22, z < 0, we get y = { . -
P2 )
x4, x>0,
2. "z slope of the tangent linc is 3/ l-19= 6v4+5(-1)% =7.
23 iferentiating y = xsinx + x cosz we get
y = zcosz+sinz —zsinz + cosz
y" = —xsinz + cosx + cosx — xcosx — sinz —sinx

= —xsinz —xcosx + 2cosx — 28in .
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Chapter 1 in Review

Thus

y'+y=—zsinz —zcosz+2cosx —2sinx + rsinz + zcosx = 2cosz — 2sin .

An interval of definition for the solution is (—o0, oc).
24. Diffcrentiating y = zsinx + (cosz) In(cos z) we get

—gingz

Y =zcosz+sinz +cosx ( > — (sinz) In(cos z)

Cos z
= zcosx + sinz —sinx — (sinz) In{cos )
= zcosz — (sinz) In(cos z)

and

" —sinx

y' = —zsinx + cosx —sinzx (

—(cosz)In(cosz
cos I ) ( ) In( )

sin® 2

= —xsinz + cosx + — (cos z) In{cos z)

08 !

. 1—cos’z
= —zsinz 4 cosx + ————— — (cos z) In{cos x)
Cos T
= —zsinz + cosz + secz — cosx — (cosz) In(cos z)
= —zsinz +secx — (cosz) In{cosx).
Thus

Y +y=—xsinz +secz — (cosz)In(cosx) + zsinx + (cosz) In(cos x) = sec .

To obtain an interval of definition we note that the domain of Inz is (0,0c), so we must have

H

cosz > 0. Thus, an interval of definition is (—7/2, 7/2).

25. Differentiating y = sin(ln z) we obtain 3’ = cos(lnx)/z and y” = —[sin(lnx) + cos(ln z)]/22. Ther

2

2y +ay +y=2" (—

sin{ln z) + cos(In .L)) N xcos(l‘n )

S 1 1) = 0.
p +sin(lnz) =0

An interval of definition for the solution is (0, c0).

26. Differentiating y = cos(ln z) In(cos(In z)) + (Inz) sin(in z) we obtain

sin(ln x sin(ln os(lnz)  sin(lnz
y' = cos(ln ) 1 _sin(lnx) + In(cos(ln z)) _sin{lnz) n lnxcoq(ln ) N sin(In )
cos(ln x) T - z p

__In(cos(Inx)) sin(ln z) 4 (Inz) cos(lux)

r x
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Chapter 1 in Review

and
"__ A Toe o cos(ln z) sin(ln x)
y =~z [ln(coa(ln J,))—-— + sin(ln x) cos(ln Py ( . ) "

1
i (Inz) cos(In x)q—z

1T os{ln &
+ln(cos(ln:v))mn(lnx) ! +z [(lnr)( bln(’lcnl)) N Coq(mnz)}

sin?(In ') o
cos(lnz) + In(cos(Inz)) sin(ln x)

1
=3 [— In(cos(In z)) cos(lnz) +

— (Inx)sin(lnz) + cos(ln ) — (Inz) cos(ln 'L')J :

Then

sin?(In z)

cos(In ) + In(cos(In z)) sin(lnz) — (In z) sin(In )

22y + 2 +y = — In(cos(In z)) cos(In ) +
+ cos(lnz) — (Inz) cos(lnz) — In(cos(In ) sin(In )
+ (Inz) cos(Inz) + cos(lnz) In(cos(In z)) + (In z) sin(ln z)

sin?(In x) -+ cos* *(Inz) _ 1 = see(ln z).

_ sin’(Inz)
cos(ln z) ~ cos(lnx)

~ cos(Inz)

+ cos(lnz) =

To obtain an interval of definition, we note that the domain of Inz is (0,0c), so we must have
:os(lnx) > 0. Since cosz > 0 when —7/2 < z < 7/2, we requirc —7/2 < Inz < 7/2. Since ¢*
‘s an increasing function, this is equivalent to e™™/2 < z < ¢™2. Thus, an interval of definition is

=7/2 ¢7/2). (Much of this problem is more easily done using a computer algebra system such as

“lathematica or Maple.)

Zoblems 27 - 80 we have y' = 3c1¢3% — cpe™% — 2.

Lhe initial conditions imply
c1+e=0

3(:1—(’,2—2=0,
)¢ = % and ¢y = —%‘ Thus y = 563:‘” — 56""’ — 2.

The initial conditions imply
c1+co=1

361 — C9 —2= —3,

<ycp=0and co =1. Thus y = ™% — 2.
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29.

30.

31.
32.

33.
34.

The inifial conditions imply

cle.‘j + 029._1 —2=4

o3 ,—1 _
3c1e° — e — 2= -2,

S0 €] = -%e and co = ,c Thus y = ,e”‘ 34 ge‘“"“ - 2z.

The inifial conditions imply
cle_'3 +coe+2=0
3(316_3 — e —2 =1,

1

s0 ¢p = 1e? and ¢p = . Thus y = ;e3+3 ie‘*_l -2z,

From the graph we see t.hat. estimates for yo and y; are yg = —3 and y; = 0.

(lh cAo \/ég‘

The differential cquation is

Using Ay = 7(1/24)? = /576, Ay = 7(2 ) 4/” cmd g = 32, this becomes
dh (7r/ 576 ~—-
E{' 64h = 2—8§ h.

Let P(t) be the number of owls present at time ¢. Then dP/dt = k(P — 200 + 10t).
Setling A’(t) = —0.002 and solving A’(t) = —0.0004332A(¢) for A(t), we obtain

A —0.002

Alt) = 50004332 = —0.0004332

~ 4.6 grams.
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2 Tirst-Order Differential Equations
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Exercises 2.1 Solution Curves Without a Solution
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Exercises 2.1 Solution Curves Without a Solution

2 The isoclines have the form y = —x + ¢, which are
straight lines with slope —1.

= The isoclines have the form z? + 42 = ¢, which are ¥

vircles centered at the origin.

a+ When 2z =0 or y =4, dy/dx = —2 so the lincal clements have slope —2. When y =3 or y = 5,

dy/dz = = — 2, so the lincal clements at (z,3) and (z.5) have slopes @ — 2.

2+ At (0, yo) the solution curve is headed down. If y — o0 as x increases, the graph must eventually
turn around and head up, but while heading up it can never cross y = 4 where a tangent line

to a solution curve must have slope —2. Thus, y cannot approach oo as z approaches oco.

Leny < %:r?, Y = 1?2 — 2y is positive and the portions of solu- v
‘ ' ' . ‘ ; A i g :
oonocurves “outside” the nullcline parabola are increasing. When o '8 !
. . . .. . . P Vi 11
> 122 o = 2? — 2y is negative and the portions of the solution e, N i
2 H \ 1
. s - 53 [ k o N 1t +f
~-ves “inside” the nullcline parabola arc decreasing. Lidis ViR 711
P frt % RN
[ - d——f—i—— X
St sl (AR EE
P e s st
1 ift bt r gy IR NN
R A A AN /o A A B
IR A ARV A A A N N )
Vi3 IR B B N R S N B B O B A B B
i lu/;:u//:iurvlf
O SR N N A A ) N R B O O B N ]
-3; I!lllll}!llili!!l!
1 2 3

1
w
|
LY
1
[
(=)

a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the nullclines
are 22 —y? = 0 or y = +x. In Problem 3 the nullclines are 1 —zy =0 or y = 1 /z. In Problem
1 the nullclines are (sinz) cosy = 0 or 2 = nw and y = 7/2 + nw, where n is an integer. The
graphs on the next page show the nullclines for the differential equations in Problems 1, 3, and

4 supcrimposed on the corresponding direction field.
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-2 0 2
Problem 4

An autonomous first-order differential equation has the form 3’ = f(y). Nullclines have th-

form y = ¢ where f(c¢) = 0. These are the graphs of the equilibrium solutions of the differentia.

cquation.

19. Writing the differential equation in the form dy/dz = y(1 — y)(1 + y) we see that critical

points arc located at y = —1, y = 0, and y = 1. The phase portrait is shown at the right.

(a) f (b)

[

20. Writing the differential equation in the formn dy/dz = y?(1 — y)(1 + y) we see that critical

points arc located at y = —1, y = 0, and y = 1. The phase portrait is shown at the right.
Y
(a) (b) Y
4
3
1
. 2 1 1 7 *
1 2

30
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Exercises 2.1 Solution Curves Without a Solution

-2 -1

-~ x ﬂ

-3

~4

-5:

Il Sulving ¢ - 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the phase
mortrait we see that 0 is asymptotically stable (attractor) and 3 is unstable (repeller). A
y
0-
A
I Solving y? — 4 = 2(1 — y) = 0 we obtain the critical points 0 and 1. From the phase
1 ortrait we see that 1 is asymptotically stable (attractor) and 0 is scmi-stable. l
0
Suiving (y — 2)* = 0 we obtain the critical point 2. From the phasc portrait we see that
~ i3 serni-stable. A
2 .
A
<:lving 10 + 3y — y% = (5 — 4)(2 +y) = 0 we obtain the critical points —2 and 5. From
= phase portrait we see that 5 is asymptotically stable (attractor) and —2 is unstable Y
zopeller). 5|
A
~2
Y
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Exercises 2.1 Solution Curves Without a Solution

25. Solving y*(1 —3?) = %(2—y)(2+y) = 0 we obtain the critical points —2, 0, and 2. From
the phase portrait we sec that 2 is asymptotically stable (attractor), 0 is semi-stable, and
—2 is unstable (rcpeller).

2
0
-2

26. Solving y(2—y)(4—y) = 0 we obtain the critical points 0, 2, and 4. From the phase portrait

we sec that 2 is asymptotically stable (attractor) and 0 and 4 are unstable (repellers).
4

j

27. Solving yln(y + 2) = 0 we obtain the critical points —1 and 0. From the phase portrait }

we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller).

-1

-2

28. Solving ye¥ — 9y = y(e¥ —9) = 0 we obtain the critical points 0 and In9. From the phase
portrait we see that 0 is asymptotically stable (attractor) and In 9 is unstable (repeller).

iIn 9

4]

29. The critical points are 0 and ¢ becausc the graph of f(y) is 0 at these points. Since f(y) > 0 fc=
y < 0 and y > ¢, the graph of the solution is increasing on (—oc,0) and (¢, oc). Since f(y) < 0 fe-
0 < y < c. the graph of the solution is decreasing on (0, ¢).
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Exercises 2.1 Solution Curves Without a Solution

W Tie critical points are approximately at —2,2, 0.5, and 1.7. Since f(y) > 0 for y < —2.2 and
.7 <y < 1.7, the graph of the solution is increasing on (—oc, —2.2) and (0.5,1.7). Since f(y) <0
10 =22 <y <05 and y > 1.7, the graph is decreasing on (—2.2,0.5) and (1.7, 00).

iZ I . the graphs of z = 7/2 and z = siny we see that
- 2y —siny = 0 has only three solutions. By inspection

-~ :ze that the critical points are —7/2, 0, and /2.

T1: the graph at the right we see that

2 ) <0 for y<—m/2 z
—y—sin
7Y 10 for y>7/2
0
2 , >0 for —-7/2<y<0
— ¢ — sin; i
. N<o for O<y<m/2 "7

~_.~ =nables us to construct the phase portrait shown at the right. From this portrait we sce that
- 2 =ud —7/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

. dx = 0 every real number is a critical point, and hence all critical points arc nonisolated.

.- that for dy/dz = f(y) we are assuming that f and f’ are continuous functions of ¥ on
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Exercises 2.1 Solution Curves Without a Solution

some interval I. Now suppose that the graph of a nonconstant solution of the differential cquation
crosses the line y = ¢. If the point of intersection is taken as an initial condition we have two distinct
solutions of the initial-value problem. This violates uniqueness, so the graph of any nonconstant
solution must lie entirely on one side of any equilibrium solution. Since f is continuous it can only
change signs at a point where it is 0. But this is a critical point. Thus, f(y) is completely positive
or completely negative in each region R;. If y(z) is oscillatory or has a relative extremum, thew
it must have a horizontal tangent line at some point (zo,y0). In this case yp would be a critica
point of the differential equation, but we saw above that the graph of a nonconstant solution canno-

interscect the graph of the cquilibrium solution y = yo.

34. By Problem 33, a solution y(z) of dy/dx = f(y) cannot have relative extrema and hence must b-
monotone. Since y'(x) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded abov:
by c2, limy—oo y(z) = L, where L < ¢. We want to show that L = ¢o. Since L is a horizonte:

asymptote of y(x), limy— o ¥'(z) = 0. Using the fact that f(y) is continuous we have
f(L) = f(Jim y(z)) = lim f(y(z)) = lim y'(z) =0.

But then L is a critical point of f. Since ¢; < L < ¢, and f has no critical points between ¢; ar .

¢, L = co.

35. Assuming the existence of the second derivative, points of inflection of y(z) occur wherc
y'(z) = 0. From dy/dz = f(y) we have d?y/dz? = f'(y)dy/dz. Thus, the y-coordinate of :
point of inflection can be located by solving f'(y) = 0. (Points where dy/dz = 0 correspond .
constant solutions of the differential equation.)

36. Solving y? —y — 6 = (y — 3)(y + 2) = 0 we see that 3 and —2 arc critical

4
points. Now d?y/dx? = (2y — 1) dy/dz = (2y — 1)(y — 3)(y + 2), so the only 1 L
possible point of inflection is at y = ]5 , although the concavity of solutions ;.‘E"ij
can be different on cither side of y = —2 and y = 3. Since y’(z) < 0 for ??‘“’""th S
y<—2and 3 <y<3 andy’(z) >0for 2<y<gandy>3 we 1
see that solution curves are concave down for y < —2 and % <y < 3and -5:

concave up for —2 < y < % and y > 3. Points of inflection of solutions of ‘

» » . . - . . . i
autonomous differential equations will have the same y-coordinates becausc between critical poi:-|
|

they are horizontal translates of each other.

37. If (1) in the text has no critical points it has no constant solutions. The solutions have neither ..

upper nor lower bound. Since solutions are monotonic, every solution assumes all real values.
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The critical points are 0 and b/a. From the phase portrait we see that 0 is an attractor

and b/a is a repeller. Thus, if an initial population satisfies Py > b/a, the population
~ecomes unbounded as ¢ increases, most probably in finite time, i.e. P(t) — oc ast — T. B
I 0 < By < b/a. then the population eventually dies out, that is, P(£) — 0 as t — .

~ince population P > 0 we do not consider the case By < 0.

e only critical point of the antonomous differential equation is the positive number h/k. A
whase portrait shows that this point is unstable, so h/k is a repcller. For any initial condition
P 0)= Py < h/k.dP/dt < 0, which means P(t) is monotonic decreasing and so the graph of P(¢)
wnst cross the t-axis or the line P = 0 at some time #; > 0. But P(#1) = 0 means the population
2 extinct at time 7.

“Ariting the differential equation in the form

dv B k (@ fv) 4'
dt  m\ k

== sce that a critical point is mg/k. 2L

From the phase portrait we see that mg/k is an asymptotically stable critical
- aint. Thus, limg—se v = mg/k. l

““riting the differential equation in the form

dv _ k (mg _k fing )(/
dt_m(lf b) m(/ v +) !

~-= see that the only physically meaningful critical point is /mg/k. vE
From the phase portrait we sec that Vg /k is an asymptotically stable 4
“vizical point. Thus, limy o v = ymyg k.

a) From the phase portrait we sce that critical points are o and 5. Let X(0) = Xj.
If Xo < a, we see that X — a ast — oo. If o < Xg < 3, we see that X — a as \
t — oc. If Xo > 3, we see that X (¢) incrcases in an unbounded manner, but more F
specific behavior of X (¢) as t — oo is not known. \
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(b)

When o = 3 the phase portrait is as shown. If Xo < o, then X(¢t) — a as t — oc.

If Xo > «, then X(¢) increases in an unbounded manner. This could happen in a J
finite amount of time. That is, the phasc portrait does not indicate that X becomes ‘
unbounded as ¢ — oc. 1

When k = 1 and o = 3 the differential equation is dX/dt = (o — X)2. For X(¢) = a—1/(t+c;
we have dX/dt = 1/(t + c¢)* and
: 1 \]? 1 dX
00 fo- - - e
(&= X) aT\ (t+c)2 dt
For X(0) = a/2 we obtain

1
) = o —
X() =a t+2/a
For X (0) = 2 we obtain
1
X(1) a_t—-l/oa
X X
/
//

For Xy > «, X(¢) increascs without bound up to ¢ = 1/a. For £ > 1/a, X(¢) increases bu:
X —=aast— o0
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Exercises 2.2 Separable Variables

=+ of the following problems we will encounter an expression of the form lnjg(y)| = f(z) +¢. To

: = g(y) we exponentiate both sides of the equation. This yields |g(y)| = e/ He = /&) which

s gty) = +ecel/ @) Letting c; = +e¢ we obtain g(y) = c1e!@.

217l

::m dy = sin 5z dx we obtain y = —1 - COS O + c.

~m dy = (z 4 1)? dz we obtain y = %(a: +1)® te.

m dy = —e~3% dx we obtain y = 3¢™¥ +-c.
1 1 1
Tl ——5dy =dr weobtain —— =r+cory=1-— .
(y —1)2 Y -1 Y T+c
1 4 . 4
m - dy = — dz we obtain In|y| =41nlz| + ¢ or y = c12™.
y x
. —Qdy = —2zdx we obtain —— = —z“+cory = 5 .
Y Y r“ +c1

m e~ 2dy = ¢3dz we obtain 3e™¥ + 2% = ¢,

) . . . 1 .
Trom yeVdy = (e‘*” + e“’”’) dz we obtain ye¥ — e¥ + e % + Ze 7 = ¢,

3

2 23
1 1
s (2/ +2+ ) dy = 2*Inz dz we obtain ~jz— +2y+Injy] = ?ln | — 61"% +ec.
d dx we obtain 2 1 +
Tam we O = C
(2y—|—3) V= (4.l-|- 5)2 2y+3 4z +5
Tum sy dy = T o? s dz or sinydy = — cos? xdy = —%(1 + cos 2x) dx we obtain
MY = —%:c - %sin 2r4+c¢ or 4dcosy=2x+sin2z + ¢;.
in 3z

mom 2y dy = _:;nd 3 dz or 2y dy = — tan 3z sec? 3z dz we obtain y> o sec? 3z + c.
— . e¥ du — —eT Iz we obtai v 41 -1 _ 1/ 1 -2
Trin ———— dy = ———g dr we obtain — (e + 1) = 5 (" + 1) +¢

@+ T et

—— (1 ___127 - . ot E .2 1/'2_ ) 1/2 )
Tl = e veobtan (1407)" = (1449 e

_ 1 -
Svoan 5 dS = kdr we obtain S = ce¥’

-oom

dQ = kdt we obtain In |Q — 70| = kt + c or Q — 70 = ¢yt

1
Q—10
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17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

1 1
From o PzdP (P + ITJB) dP = dt we obtain 1n1P[ —In|1— P| =t+cso that ln' — P
t+cor 1 5= c1¢'. Solving for P we have P = ] f;et .

. , : . t+2 t+2
From T AN = ( =2 _ ) dt we obtain In |N| = te!t?2 —et*?2 —t f cor N =crel® ¢ 1,

1(11 or [1-— > dy = (1—-—5—)d1‘ we obtain y — 5lnly + 3] =
+3 v = T " y v B

. y—2
From *——dy =
or ” y = y+3 +4

+4
- l'-r4. r—
x—5lnjxr+4+¢ o —cle' Y.
2

; +1 2 5 .
From dy = (lzz, or dy = [ 1+ dr we obtain y + 2lnjy — 1| =
~1 y—1 ~3
—1 '
z+bln|z—3|+¢ or %T_g%_o =c1e“7Y.
> 1 T B IS | [
From z dz = ——==dy we obtain 52° =sin™" y+cor y = sin - teal
AR T “
1 1 S 1 , 1
From —dy = ——dz = —%— dr we obtain —= =tan e+ ¢ or y= ——g
y? et +e* (e®)2+1 Yy tan™" e* 4 ¢
1 -
From —; ] dr = 4dt we obtain tan"lz = 4t + ¢. Using z(n/4) = 1 we find ¢ = —37/4. The

L . _ 3 3r
solution of the initial-value problem is tan™' 2 = 4¢ — Zl or r = tan (4 - ?l)

1 1 1 1 1 1 1 1
From o1 dy = o dz or — (y——_] - y_ﬁ) dy = 3 (m s 1) dx we obtain
Injly -1 —-Injy+ 1 =jz -1} -Inle+ 1] +Inec or y-1_ dz—1) . Using y(2) = 2 we find
’ ' y+1 z+1
} . . Cy—1 -1
¢ = 1. A solution of the initial-value problem is = ory =u.
y+1 z+1
1 1—=2 1 1 . 1 —1/x .
From ;j—dy =3 dx = (}5 — ;) dx we obtain ln |y| = - In|z| = ¢ or 2y = c;e~ /%, Using
y(—1) = —1 we find ¢; = e~!. The solution of the initial-value problem is zy = e~'~Y% or
y =e (151/2) /.
1 , .
From Ty dy = dt we obtain —%— In|l —2y|=t+cor1—2y=cre . Using y(0) = 5/2 we finC
¢; = —4. The solution of the initial-value problem is 1 — 2y = —4e™% or y = 2¢~ % + % .
Scparating variables and integrating we obtain .

dz dy

=0 and sin"lz—sin"ly=c
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Exercises 2.2 Separable Variables

Setting z = 0 and y = /3/2 we obtain ¢ = —7r/3. Thus, an implicit solution of the initial-value

1

problem is sin™! 2 —sin~!y = —7/3. Solving for y and using an addition formula from trigonometry,

we get

| =

T _1‘_._'_\/3\/1—:1:2

. . m i /. .
y= sm(sm Ve + —-) =zcos -+ 1—x2sin- 5 5

3

w3
wo

[ ]
£

. From

x
dy = dr we obtain
1+ (2y)2 1+ (22)°

1 1
;2~tan_1 2y = —5 tan"lz? 4+ ¢ or tan "2y +tan'a2? =¢.

Using y(1) = 0 we find ¢ = w/4. Thus, an implicit solution of the initial-value problem is
tan~! 2y + tanlz? =7 /4. Solving for y and using a trigonometric identity we get

2y = tan (IZ‘ — tan™! .’L‘2>

[N A

y= 4

_ 1 tan 7 — tan(tan"! %)
2 1+tan% tan(tan—! z2)

T
tan (— —tan~! :c2)

| =

_11-2?
21422

-3. Separating variables, integrating from 4 to z, and using ¢ as a dummy variable of integration gives

Tl X &
f—ﬁﬂ=fe*ﬁ
4 ydt 4

my@®) = [ ePat

0 = [

Iny(z) —lny(d) = A : et dt

a.

Using the initial condition we have

\ T2 L2 r 2
Iny(z) =my(4) +/4 e dt=Inl —I—/1 edt = /4 e dt.

Thus,

s 2
T
e 2

y(o)=elie
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Exercises 2.2 Separable Variables

30. Separating variables, integrating from —2 to z, and using ¢ as a dummy variable of integration gives

T 1 d; x
/ —2—ydt=/ sint2dt
—2 Yy« dt -2
RN | S
y(¢) !_2 = /_2 sint“dt
A % )
—y(z) T+ y(-2)"t = / 25int2dt

x
—y(z) = —y(=2)"L + / sint?dt

1 Yo g2
ylz)y™ = 3—/osint dt.

Thus
@)= 5
VW =35z [Tysint2dt
31. (a) The equilibrium solutions y(z) = 2 and y(z) = —2 satisty the initial conditions y(0) = 2 and
y(0) = =2, respectively. Setting z = % and y = 1 in y = 2(1 + ce*®) /(1 — ce**) we obtain
¢ 1
1=21+€6, l—ce=2+2ce, —1=3ce, and c=——.
1—ce 3¢

(b)

The solution of the corresponding initial-value problem is
_ 1 4Axr—1 _ Lda—1
1—ge 3—e

vy= 21 + et - 23+e4x-1 :

Separating variables and integrating yields
1 1
Zln]y—Z! — Zlnly-i—Q[ +Inc ==

nly—2[—Inly+2|+1lnc=4z

(y — 2
In ’ y—2) ‘ =4z
y+2
A 2 _ et
y+2
Solving for y we get y = 2(c + €**)/(¢c — €*¥). The initial condition y(0) = —2 implies

2(¢+1)/(c — 1) = —2 which yields ¢ = 0 and y(x) = —2. The initial condition y(0) = 2 does
not correspond to a value of ¢, and it must simply be recognized that y(z) = 2 is a solution of
the initial-valuc problem. Setting = § and y = 1 in y = 2(c+¢€%®)/(c— €*%) leads to ¢ = —3e.

Thus, a solution of the initial-value problem is
—3¢ + ¥ 3 — etz—d

y=2 = .
O 34 ede—1
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Exercises 2.2 Separablc Variables

32. Separating variables, wec have

d: dx d;
5 ¥ = — or / L || + c.
vy oow y(y—1)

Using partial fractions, wc obtain

1 1
— —Z\ldy=Ilz
/(y—l y)dy niz

njy—1 —Injy|=In|z|+¢

+c

y—1
i=c

zy |

y—1 _ .0
=€ =1q.
ry

In

Solving for y we get y = 1/(1 — c1z). We note by inspection that y = 0 is a singular solution of the

differential cquation.

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 — 0), which is true for all values of ¢;. Thus,
solutions passing through (0,1) are y = 1/(1 — q1z).

(b) Settingz =0and y =0iny = 1/(1 — c12) we get 0 = 1. Thus, the only solution passing
through (0,0) is y = 0.

(c) Setting x = % and y = -12- we have % =1/(1- %cl), so¢1 =—2and y=1/(1+ 2z).

(d) Settingz =2andy =4 wehave 2 =1/(1-2¢1), 501 = —3 and y = 1/(1+3 z) = 2/(2+3x).

I, Singular solutions of dy/dx = a:«\/m are y = —1 and y = 1. A singular solution of
T4 e dy/dr = y? is y = 0.

i+ Differentiating In(z? + 10) + cscy = ¢ we get

2z dy
: —cscy coty — =0,
210 VY T
2x 1  cosydy 0

22+ 10 siny siny dz

2z sin’ y dz — (:1-2 + 10) cos'y dy = 0.
“riting the differential equation in the form

dy 2z sin? y
dr (22 +10)cosy

-+ see that singular solutions occur when sin?y = 0, or y = kxr, where k is an integer.
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Exercises 2.2 Separable Variables

35. The singular solution y = 1 satisfies the initial-value problem.

-—dl—— = dx. Then

36. Scparating variables we obiain G- 17

———=z+c and y= :v_—l—_(_—_l
y—1 T+c
Setting z = 0 and y = 1.01 we obtain ¢ = —100. The solution is
z - 101
V=100
37. Separating variables we obtain dy = dx. Then

(y— 1)2+0.01

1 Tr+c
10tan 1 10(y— 1) =2+c and y=1+ =
Otan " 10(y—1)=x+c and y 1+10tan 15

Setting = 0 and y = 1 we obtain ¢ = 0. The solution is

Is

1 €T
— tan —

y=1 .
y=1+1"0

dy
(y—1)2 —0.01
from (11) in this section of the manual with v =

38. Separating variables we obtain = dz. Then,
y — 1 and

=1 w
a = 75. We get

10y — 11
Shh|————|=z+c
11!1011_9! T+ C
Setting © = 0 and y = 1 we obtain ¢ = 5Inl = 0. The solution
is
d =z.
10y -9

1 I

Solving for y we obtain

42

Y
1.01

-0.004-0.002 T

0,062 0.604  *

1.0004

1.0002

T 0.00270.004

0.9998

0.9996

y
1.0004!

1.0002

—_—

0.00Z 0.004

£0.004-0.002

0.9998

0.9996

x



39.

Exercises 2.2 Separable Variables

S 114 9e"/0
Y= 10+ 1075

Alternatively, we can use the fact that

dflj ]. -1 y_l » ,

(We use the inverse hyperbolic tangent because |y — 1| < 0.1 or 0.9 <y < 1.1. This follows from
the initial condition y(0) = 1.) Solving the above equation for y we get y = 1+ 0.1 tanh(z/10).
Separating variables, we have

] d 1 1/2
(ygz Y =(_+£__/_)dy=dm.
y—y* y(1-91+y) \y 1-y 14y

Integrating, we get

1 1
ln|y|—§1n|].—y[—§ln|1—!-y| =z-+e

When y > 1, this becomcs

1
lny—§ln(y—1)—%111(y+1)=ln =z+c

V2 —1
Letting 2 = 0 and y = 2 we find ¢ = In(2/+/3 ). Solving for y we get y1(z) = 2¢*/v4e2* — 3, where
z > In(v/3/2).

When 0 < y < 1 we have

Y
1—y2
Letting z = 0 and y = 1 we find ¢ = In(1/+/3). Solving for y we get ya(x) = €*/Ve?® + 3, where

-0 < < oC.

1
lny—éln(l—y)—%lrl(l,—l—y):ln =z+ec

When -1 < y < 0 we have
—Y

1 1
In(—y) —=In(l—y)-zIn(1+y)=In =z+c
2 ) 2 1 — 2
Vi—y

Letting = 0 and y = —% we find ¢ = In(1/v/3). Solving for y we get y3(x) = —e¥/Ve?* + 3,
where —oc < x < 0.

When y < —1 wc have

—¥

¢

y—1

1 1
In(—y) - ﬁln(l —y) — 5111(—1 —y)=In =zr+c
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Exercises 2.2 Separable Variables

Letting ¢ = 0 and y = —2 we find ¢ = In(2/ V3). Solving for y we get y4(zx) = —2%//4e2% — 3,
where 2 > In(v/3/2).

¥ Y Y %
§ 4 4 4
2 2 2
; S A B ST e S B S :2\\3__4 x |
-2 -2 -2
-4§ _4 -4

40. (a) The second derivative of y is

dy  dyfde  1/(y-=3) 1
da? — (y—12 (y-32  (y—3)3°

The solution curve is concave down when d?y/dz? < 0 or

y > 3, and concave up when d?y/dx? > 0 or y < 3. From

the phase portrait we sce that the solution curve is decreasing

when y < 3 and increasing when y > 3.

(b) Separating variables and integrating we obtain
(y—=3)dy =dx
Lo .
5Y —3y=xz+c

Y -6y +9=2x+c

(y—3)2=2w+c1
y=3EtV2zr+cr.

The initial condition dictates whether to use the plus or minus sign.
When y1(0) = 4 we have ¢; = 1 and y3(x) =3 ++2zx + 1.
When y2(0) =2 we have ¢; = 1 and yo(z) =3 — 2z + 1.
When y3(1) = 2 we have ¢; = —1 and y3(z) =3 — /22 — 1.
When y4(—1) = 4 we have ¢; = 3 and ya(z) =3+ 22 + 3.
41. (a) Separating variables we have 2ydy = (2 + 1)dz. Integrating gives 32 = 22 + z 4+ c¢. Wheo

y(—2) = —-1wefindc=—1,50 9> =22 +2 — 1 and y = —v22 + £ — 1. The negative squar.
root is chosen because of the initial condition.

44



(b)

(¢)

[V
—
[o¥)
e’

(b)

(c)

:3. (a)

(b)

1. (a)

(b)
(c)

Exercises 2.2 Scparable Variablcs

From the figure, the largest interval of definition appears to be ¥

approximately (—oc, —1.65). if
5 -3 -3 <7 -1 i z*

-1

-2

..3}

-4

-5
Solving 22 + 2z — 1 = 0 we get © = —% + % 5, so the largest interval of definition is
(—o0, ——% - % 5). The right-hand endpoint of the interval is excluded becausc y =

—/x2 + z — 1 is not differentiable at this point.

From Problem 7 the general solution is 3¢~ % + 2¢%® = ¢. When y(0) = 0 we find ¢ = 5, so
3e™2 L+ 2¢3% = 5. Solving for y we get y = —-% In %(5 — 2637),

The interval of definition appears to be approximately (—oc, 0.3). Y

-1

-2

Solving é(5 —2e3%) =0 we get * = %In(%), so the exact interval of definition is (—oo0, %- In3).
While y2(z) = —v/25 — 22 is defined at z = —5 and x = 5, y(z) is not dcfined at these values,
and so the interval of definition is the open interval (—5,5).

At any point on the z-axis the derivative of y(x) is undefined, so no solution curve can cross
the z-axis. Since —z/y is not defined when y = 0, the initial-valuc problem has no solution.
Scparating variables and integrating we obtain 22 —y% = ¢. For ¢ # 0 the graph is a hyperbola
centered at the origin. All four initial conditions imply ¢ = 0 and y = £z. Since the differential
equation is not defined for y = 0, solutions arc y = =z, r < 0 and y = =z, z > 0. The solution
fory(a) =aisy=2a, 2 >0; for yla) = —aisy = —z; for y(—a) =aisy = —z, < 0; and for
y(—a)=—aisy==2a,2 <0.

Since z/y is not defined when y = 0, the initial-value problem has no solution.

Sctting © = 1 and y = 2in 2?2 — y%? = ¢ we get ¢ = —3, so y? = 22 + 3 and y(z) = Va2 + 3,
where the positive square root is chosen because of the initial condition. The domain is all real

numbers since 22 + 3 > 0 for all 2.
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Exercises 2.2 Separable Variables

45.

46.

47.

48.

Separating variables we have dy/(1/1 + 42 sin® y) = dz which y
3.5
is not readily integrated (even by a CAS). We note that 3 e

dy/dx > 0 for all values of 2 and y and that dy/dz = 0 2‘2
when y = 0 and y = 7, which are equilibriumn solutions. 1.5
1
I =

S S 2 T8 e T *

Separating variables we have dy/(\/y +y) = dz/(y/z+x). To integrate [ dz/(y/x +x) we substitute

2

u® = x and get

2u 2
/ % -l-“u2 du = / 14+wu du=2In[l+ul+c=2m(1+Vz)+ec

Integrating the separated differential equation we have

2In(1++y)=2In(l+vz)+c or In(l+y)=I(1++vz)+Ing.
Solving for y we get y = [c1(1 + /T ) — 1]2,

We are looking for a function y(z) such that

Using the positive square root gives
dy

V1-9?

Thus a solution is y = sin(x + ¢). If we use the negative square root we obtain

by _

=4/1—9y2 = 1
dx Yy

=dzr = sin""y=z+c

y =sin(c — a) = —sin(z — ¢) = —sin(z + ¢1).

Note that when ¢ = ¢; = 0 and when ¢ = ¢; = 7/2 we obtain the well known particular solutio: s
|
y =sinz, y = —sinz, y = cosz, and y = —cosx. Note also that y = 1 and y = —1 are singuis]

solutions.

(a)
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30,

a1,

Exercises 2.2 Separable Variables

(b) For || > 1 and |y| > 1 the diffcrential cquation is dy/dz = \/y? —1/vz? — 1. Separating
variables and integrating, we obtain
dy dx

— g wah~L o — enah ™! .
\,,'/:172—1 = and cosh™ "y =-cosh™ "z +c.

Setting z = 2 and y = 2 we find ¢ = cosh™ 2 — cosh™'2 = 0 and cosh 'y = cosh ™' z. An
explicit solution is y = .

Since the tension 77 (or magnitude T7) acts at the lowest point of the cable, we use symmetry

to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that

is, weighs a constant p pounds per horizontal foot) implies W = px, where z is measured in feet

and 0 < x < L/2. Thercfore (10) in the text becomes dy/dx = (p/T1)x. This last equation is a

separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the

initial condition 4(0) = a shows that the shape of the cable is a parabola: y(z) = (p/2T1)z? + a.

In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that

y(L/2) = h 4 a. By applying this last condition to y(z) = (p/2T1)x? + a enables us to express

p/2T in terms of h and L: y(x) = (4h/L?)z? 4+ a. Since y(z) is an cven function of z, the solution

is valid on —L/2 <z < L/2.

(a) Scparating variables and integrating, we have (3y% + 1)dy =
—(8z 4 5)dz and y® +y = —42? — 5+ c. Using a CAS we show
various contours of f(z,y) = y® +y+ 422+ 52. The plots shown
on [—3,5] x [—3,3] correspond to c-values of 0. &5, +20, +40,
£80, and +125.

(b) The value of ¢ corresponding to y(0) = —1is f(0,-1) = —2; to y
y(0) = 2 is £(0,2) = 10; to y(—1) =4 is f(=1,4) = 67; and to 4

y(-1) = -3 is =31 2][ /;:
AN\

(a) An implicit solution of the differential equation (2y + 2)dy — (43 + 6x)dz = 0 is

y?+2y — 2t~ 322 +¢c=0.
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Exercises 2.2 Separable Variables

The condition y(0) = —3 implies that ¢ = —3. Therefore 32 + 2y — 2! — 322 -3 =0.
(b) Using the quadratic formula we can solve for y in terms of 2:

~24 /4 +4(xt + 322 + 3)
y = 2 *
The explicit solution that satisfies the initial condition is then

y=—1—yat+323+4.

(c) From the graph of f(z) = z*+ 323 + 4 below we scc that f(x) < 0 on the approximate inter+-.
—2.8 <z < —1.3. Thus the approximate domain of the function

= 1 T3 1 = 1= @)

is £ < —2.8 or x> —1.3. The graph of this function is shown below.

£(x) ~1-yf (x)
| pov g 3 X

; -4
—3 e 3
| -6
-2!

y / 1: \

(d) Using the root finding capabilities of a CAS, the zeros of f are found to be — -1-VE(x

—2.82202 and —1.3409. The domain of definition of the solution y(z) is then 2%
x > —1.3409. The equality has been removed since the derivative dy/dz does &
not exist at the points where f(x) = 0. The graph of the solution y = ¢(z) is -4
given on the right. _g
-10
52. (a) Separating variables and integrating, we have y
(=2y + y°)dy = (x — z%)dx 4
and . ) ) 2
2 .3 T2 3 .
-y~ + gy = 511 — g.’.l, + ¢ 0 -
Using a CAS we show some contours of f(z,y) = 23— -2
6y? + 223 — 322, The plots shown on [—7,7] x [=5,5] -4
correspond to c-values of —450, —300, —200, —120,

—60, —20, —10, —8.1, —5, —0.8, 20, 60, and 120.
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Exercises 2.3 Linear Equations

(b) The value of ¢ corresponding to y(0) = 3 is f(0, 3) = y
—2—47 The portion of the graph between the dots cor- 4\.
responds to the solution curve satisfying the intial con- 2' >
dition. To determine the interval of definition we find o :C x
dy/dzx for 2% — 6y + 228 — 322 = —217 . Using implicit = -2-

differentiation we get v/ = (z — 2?)/(y? — 2y), which -«

>
N

is infinite when y = 0 and y = 2. Letting ¥y = 0 in -2 ° 2
2% — 6y% + 223 — 31% = —'—241 and using a CAS to solve

for z we get x = —1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval
of definition is approximately (—1.13232,1.71299).

(c) The value of ¢ corresponding to y(0) = —2 is f(0, —2) = y
—40. The portion of the graph to the right of the dot 4 -
corresponds to the solution curve satisfying the initial Z} i}
condition. To determine the interval of definition we find 5 N |
dy/dz for 2y3 — 6y? + 223 — 322 = —40. Using implicit -+ |
differentiation we get 3’ = (x — z%)/(y? — 2y), which :: .
is infinite when y = 0 and y = 2. Letting ¥y = 0 in 42 0 2 46 8 0
2y3 — 6y® + 22° — 322 = —40 and using a CAS to solve
for  we get = —2.29551. The largest interval of definition is approximately (—2.29551, o).

Exercises 2.3

W

1. For y + 4y = % an integrating factor is ef 4dr — 4T o that

. For 4/ +y = €37 an integrating factor is el 4 — ¢ 50 that —— [yl =€

. : 5 . d [ _gp 1 S
. For 4/ — 5y = 0 an integrating factor is e~ /34 = ¢=5% 5 that — [e ™%yl = 0 and y = e for
- y| y

dx
00 < 2 < 00. There is no transient term.

21

. For o/ + 2y = 0 an integrating factor is ef 248 — 2 5o that . [cz'”y] =0 and y = ce”?* for

—00 < 2 < 00. The transient term is ce 2%,

" and y = 1e37 4 ce™® for
dx

—00 < r < 00. The transient term is ce™%.

/) s
— [e‘“y] = %64“” and y = % + ce™4®
x <)

for —o0 < x < 00. The transient term is ce™4*.
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Exercises 2.3 Lincar Equations

2 j 322 dx

d [ .3 9 43
— ¢ 50 that — [ e’ y] = z%¢* andy = -lg—i-c

an integrating factoris e -
dx

5. Fory +32%y =z

) ) _.3
for —oo < z < oc. The transient term is ce™% .

: . . . ' . 2 d 2 2
6. For ¢ + 22y = 2> an integrating factor is el 2247 — &° 55 that I [ez y} = z°e* and . =
i x

2

.2 . . .2
%9: — % +ce™¥ for —oo < & < oc. The transient term is ce™% .

1 1 Nz d 1 1 .
7. For ¢/ + = V=g integrating factor is el (1/2)ds — 5 5o that ar [zy] = o and y = p Ina — -

for0 <z < 20. The entire solution is transient.

.. . . 2d , d g _ -
8. For v — 2y = 2% + 5 an intcgrating factor is e=J 248 — g=2v 4o that . [e zmy] =272 £ 57
( »

and y = —%:1:2 - %x - 1—11 + ce?® for —oo < 2 < oc. There is no transient term.
: 1 . : . (1 1 d i _ ,
9. For ¢y — —y = xsinz an integrating factor is e JO/mdz . Z o5 that Iz [— y] = sinx &
x* 7 xlz’

y=cx —xcosx for 0 < x < oc. There is no transient term.

2 d
10. For y/ + 'y = — an integrating factor is e 2/)dr — 22 oo that Tz
x

['r u] =3z and y = 3 S 4o

for 0 < z < 00. The transient term is ¢z~ 2.

6 4

. . [/ d ,
22 — 1 an integrating factor is e (/28 = 24 5o that . [l"ly] = 2% — 1% ol

4
11. For o + ~y =

y = tx% — tx +cz™* for 0 <z < oo. The transient term is cz ™.

-

x (] d
12. For yy ————— y = z an integrating factor is e~ Jl/(+a)lde _ rz+1)e~ % sothat — |(z + 1)e Ty =
V=ara? grating (z+1) da:[( Je "ty
2¢ 4+ 3 ce”
rz+ e andy=—x — i + for -1 < z < 0o. There is no transient term.
r+1 z+1
’ 2 e : s of [1H(2/2)jde _ .2 d 2 .
13. Fory' + 1+ Y= 2 an integrating factor is e. N = z%e” so that e [x e’ z/J = et an:
1e* (‘e"’ ce™ ™
y=5—5+—5 for 0 <z <oo. The transicnt term is —
27z T
' 1 1 e ; : v of 14+ (1/7)dz z d Z,
14. For ¢ + (1 + ;) y=_€ sin 2z an integrating factor is e FTNGE = ze® so that Iz [ze®y =
] x T :
1 _, ce™ @
sin 2z and y = _2_:1‘6_1 cos 2z + " for 0 < z < oo0. The entire solution is transient.
dr 4 - : i o— J (4/y)ds Iny* —4 dro_4 :
15. For — — —z = 4y an integrating factor is e VW =¥ =y * 50 that — [y J,} =4y a:
dy y ay

z=2y%+cy* for 0 <y < 0co. There is no transient term.
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LY

[ ]

ey

: an. d
2=, Fory/+(tanx)y = scc z an integrating factor is eJ tnTdT _ g0z 56 that . [(secz) y] = sec

. For ¢/ + (cotx)y = sec’zcscz an integrating factor is e

dr 1 . . . 1 d
. For — — — 2 = 2y an integrating factor is e~ JA/mdy — 4o that —

Exercises 2.3 Linear Equations

de 2 _ ) . . . d .
L For — + 24 = ¢ an integrating factor is eJCldy — y? so that — [y%] = y%¢¥ and
dy vy dy
. g C X . ¢
r=eY——e¥+ eV + —5 for 0 <y < 0o. The transicnt term is —; .
Y Y Y Y

2 ¢ and

J4=sinz +ccosz for —7/2 < & < w/2. There is no transient term.
Jeotzdr _ pnlsinz| = giny g0 that

d
f—l [(sin z) y] = sec?

R

x and y =secx + cescx for 0 < z < /2. There is no transient term.

z + 2 2xe " ' 1) , d
. Fory/ +- il Y= r:,- 1 an integrating factor is eJ ((@+2)/(z+1)]ldz _ (z+1)e®, so - [(z+ 1)e®y] =
2rand y = P e "+ = i 7 e ® for —1 < z < 0o0. The entire solution is transient.
: 5 : ; : f"4/(:1:+2)]d:r 4 d . oV
. Fory'+- 32V ( P an integrating factor is eJ ¢ "= (z+2)" so that ™ [(ac +2) y] =

Jix+2)? and y = —(a: +2) 4 e(x+2)"" for —2 <z < 00.  The entire solution is transient.

dr
. For — 4+ rsecd = cosf an integrating factor is efsecddd _ oIn|secrttans] — yo0g + tan @ so that

de

;]9 [(secd + tand)r] = 1 +sinf and (secf + tanf)r = § — cos@ + ¢ for ~w/2 < < 7/2 .

v integrati e _ e dip,
For s + (2t — 1)P = 4¢ — 2 an integrating factor is e it — ot so that ” [e P] _
1t —2)e " and P =2 + ce!t for —oc < t < 00. The transient term is cet™* .
-3

1 e . d ,
. Fory' + (3 + ) Y= © an integrating factor is eJBHU/mde — 037 4o that e [we&ry} =1 and
z
5 (,6_35 )
i=e "+ - for 0 < z < oc. The entire solution is transient.
2 z+1 o i (m2 r—1 d [x—1
. For = an integrating factor is e/ 2/ —Dldx = L7 = oo 4hap & [— ] 1
v | e Srating T+ 1 dvlz +1°

and (z —1)y—a:(;r+1)+c(x—.‘—1) for -1<z <1

1 1 , ) d 1, ‘
T Fory' + Y= e an integrating factor is e/ /942 — 4 4o that ™ [zy] = € and y = —€* + <

2—¢
€T

: 1
or0 <z <oo. Ify(l )—2thenc—2—<=dndy——g;e +

1
[—v} =2and 2 =2y + ¢y

dy y y ay |y
for 0 <y <oc. If y(1) =5 then ¢ = —49/5 and z = 2y? — %y
E - . /
ror j—; + % = 7 an intcgrating factor is e] ®IL)dt — RE/L o thag i [th/L z] = %eRt/ L and
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Exercises 2.3 Linear Equations

i==+ce B/l for —oc < t < co. Ifi(0) = ig then ¢ =ip — E/R and i = — (ig - E) e~ it

R R R
dT , . v o (=R)dE okt d . ki Kt
28. For = kT = —T,,k an integrating factor is e = e " s0 that 7 [e™MT) = —Tpke™™ ar:
dt
T =T, + ce for —co < t < co. If T(O)=Tythene=Ty— Ty, and T =Ty, + (Tp — Tm)e"'t.
1 Inz . [/ (z=1))de d
cor i = an integratine fac ,'.1‘[1/(:1?#1)](1..);:__, at —{x 1yl =
29. For y + 1Y T T an integrating factor is ¢ z + 1 so that d:z:[(J' + 1)y]
x T ¢, )
Inz and y = po] Inx — 1 + o for 0 < z < oc. If y(1) = 10 then ¢ = 21 anc
z Inz T 4 21
Y= 1T — .
v z+1 z+1 x4+1

f tanxrdr

It

- d
30. Fory/+(tanz)y = cos? z an integrating factor is ¢ = e lsecasl — goe 1 g0 that o [(scea) ]
cosz and y = sinzcosz + ccosz for —7/2 < x < 7/2. If y(0) = —1 then ¢ = —1 and y =

S Z COS & — COS I.

31. For ¢/ + 2y = f(x) an integrating factor is €2 so that
e = {%62“:4‘01,. 0<z<3
) €2, x> 3.

If y(0) = 0 then ¢ = —1/2 and for coutinuity we must have
6

1) %e — % so that

{%(1—6—2“-'), 0<z<3
y:

38 -1, 2 >3

32. For ¥ +y = f(x) an integrating factor is % so that 1y4}
T ¢ +c, 0<z<1 4
ye =4
“'6'1'+C23 > 1. 1 5%

If y(0) =1 then ¢; = 0 and for continuity we must have ¢ = 2¢ 4 :;

so that

1, 0<z<1
Y V26t -1, z>1.

33. For ¢ + 2zy = f(z) an integrating factor is e*” so that

1z° 2’
o2 s +¢, 0<z<1
et = { 2
2, x> 1.
If y(0) = 2 then ¢ = 3/2 and for continuity we must have
— Lo 3 ant} i
Cy = 5€ + 5 80 that i + S a,‘
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. Ve first solve the initial-value problem ' +2y = 4z, y(0) = 3 on the interval

Exercises 2.3 Linear Equalions

Iide™'  0<z<1
2 T3¢ z
Y= : 2
(%e+%)e‘” r >
. For N y
. 0<z<1 1
Y + 2 Y= bhott mT T N
27 -« S
1+=x 1+JT2: > 1, 1 L p
- -1

;1 integrating factor is 1 + z2 so that

@+xﬂy={

2 y(0) =0 then ¢ = 0 and for continuity we mmst have ¢z = 1 so that
1 1

«-%:1:2 4+, x> 1

0<x<1
2 2+ T
v= 3 L
2(1+22) 2 *

1.1, The integrating factor is ef 297 = ¢27_so
d

i [e%%y] = dae?®

9 i Qe > 2
¢y = / dre*dr = 2ze®® — e** + 1

y=2c—14ce 2,

sing the initial condition, we find y(0) = =14+ ¢1 = 3, s0 ¢1 = 4 and
C =2 —1+4e™%* 0 <z <1 Now, since y(1)=2—-1+4e 2 =1+ 4072,
e solve the initial-value problem ¢ — (2/2)y = 4z, y(1) = 1+ 4e~2 on the

J(=2/z)dzx e~ 2Inz 2

aterval (1, 00). The integrating factor is e =17% 50

d _, 4
—lz %yl =4 = —
da;[l, v T =

: 4
Ty = /— dr=4lnz+cy
x
y = 42?Inz + eya?.

Ve use In z instead of In || because x > 1.) Using the initial condition we find y(1) = ¢p = 1+4e~2,
say=Ar%Inz + (14 4e?)22. x > 1. Thus, the solution of the original initial-value problem is
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Exercises 2.3 Linear Equations

36.

37.

38.
39.

40.

[ —144dem 0<z<l1
v= {4:1:2 Inz+ (14+4e72)z?, 2> 1.
See Problem 42 in this section.
For 4 + %y = 1 an integrating factor is e¢ . Thus
d .= . o o T
d—x—[z y|=e€° and e y=/(}c'dt+c.
From y(0) =1weget c=¢, 50y = e~ Iy e dt + !¢
When v + e*y = 0 we can separate variables and integrate:
dy _
Y
Thus y = c1e™ . From y(0) =1 we get c; = ¢, 50y = ¢

—e¥dzr and Injy|=—-e"+c

l—c“’_

When 3/ + %y = e we can see by inspection that y = 1 is a solution.

An integrating factor for y — 2zy = 1 is e=%". Thus

d . _.2 g
y / dt~———erf(r)+c
y= \/_ & erf(x )-l—ce

From y(1) = (y/7/2)eerf(1) + ce = 1 we get ¢ = 1 lzﬁ erf(1). The solution of the initial-va:

problem is
2

NG

V=5 ewzerf(:z:) + (e‘l _ VT

5 erf(l)) e*

el \/— s (erf(z) — erf(1)).

We want 4 to be a critical point, so we use ¢ = 4 — .

(a) All solutions of the form y = x%e™ — z%e® + cx? satisfy the initial condition. In this cas
since 4/z is discontinuous at 2 = 0, the hypotheses of Theorem 1.2.1 are not satisfied and 1:
initial-value problem does not have a unique solution.

(b) The differential equation has no solution satisfying y(0) = yo, yo > 0.

(c) In this case, since zg > 0, Theorem 1.2.1 applies and the initial-value problem has a unic

solution given by y = 29¢% — z%e® + cx* where ¢ = yq /fral — x2pe®0 + %0,

On the interval (—3,3) the integrating factor is
ef:z:(lar/(xz—g) _ e—f:t:dx/(?)—mz) - 6%111(9——:1:2) _ \/9 _ 2
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~. We want the general solution to be y = 32 — 5 + ce™%.

Exercises 2.3 Linear Equations

and so

% [\/9—;7:23/] =0 and y= ﬁ

%. (Rather than e™*  any function that
approaches 0 as 2 — oo could be used.) Differentiating we get
Y =3-ce"=3-(y—3z+5) =—-y+3r-2,

so the differential equation 3’ +y = 3z — 2 has solutions asymptotic to the line y = 3z — 5.
The left-hand derivative of the function at © = 1 is 1/e and the right-hand derivative at = 1 is
1 —1/e. Thus, y is not differentiable at = 1.

. (a) Differentiating y. = c¢/z3 we get

, 3¢ 3¢ 3
4 z x3 2 Ve
so a differential equation with general solution y, = ¢/23 is zy’ + 3y = 0. Now
iy + 3yp = 2(32%) + 3(z%) = 62°
so a differential equation with general solution y = ¢/23 + 2 is z1/ + 3y = 62%. This will be a
general solution on (0, co).

b) Since y(1) = 1% — 1/13 = 0, an initial condition is y(1) = 0. Since
Y

A
y(1) = 13 4+ 2/1% = 3, an initial condition is y(1) = 3. In each 3t
case the interval of definition is (0,0c). The initial-value problem T
zy’ + 3y = 623, y(0) = 0 has solution y = 3 for —00 < z < oc. T
In the figure the lower curve is the graph of y(z) = 23 — 1/23,while [ R T
the upper curve is the graph of y = 2% — 2/ : {

34

(c) The first two initial-value problems in part (b) are not unique. For example, setting
y(2) = 23 — 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to
the solution y = 23 — 1/2°.

Since ef P@dete — gepf Plr)dz clef P@)dr we would have

crel P (€)doy = oo + / cef Pl@)dz f(x)dz and e/ P @)z, — o 4 / e P (x)dx,f(x) dx,
which is the same as (6) in the text.

Ve see by inspection that y = 0 is a solution.

The solution of the first equation is @ = c;e™™?*. From z(0) = zo we obtain ¢; = zy and so

r = zge~ Mt The second equation then becomes
dy Mt dy ~ At
— =xzgA1e" " — X or — 4+ Aoy = 2gA1e”
gt 0A1 2y pr + A2y = ToA1
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Exercises 2.3 Linear Equations

which is linear. An integrating factor is e*2t. Thus

d . e
[ /\ﬂ,y] _ 10/\16 A]ie)\zt — xo)\le(}\g A1)t

dt
Ao — AL
oAl gt ~Aat
Yy=—- I+ ege™ 720,
y= Ay — )\1

From y(0) = yo we obtain e2 = (yoA2 — yoA1 — zoA1)/(A2 — A1). The solution is
TOAL ne, Y0A2 — %ods — BoAs

- Ao — A1 A2 — A
E 1 - N . t/R('
47. Writing the differential equation as + O E = 0 we sce that an integrating factor is e/
Then ;
_d_t[eﬁ/RCE] =0
et/RCE =c
E = ce'/EC,

From E(4) = ce™¥8C = Ey we find ¢ = Ege*EC. Thus, the solution of the initial-value problen ::
E = Eye"/HC=t/RC _ [ o~(t—4)/RC

48. (a) An integrating factor for ¢/ — 2zy = —1 is ¢~ Thus

9 x -
ey = __/ et gt = ..i()-'_ erf(z) + ¢

From y(0) = /7 /2, and noting that crf(0) = 0, we get ¢ = \/7/2. Thus
Y= e —ﬁ erf(z) + ﬁ = vr 6”2(1 —erf(z)) = vr e erfe(x).
2 2 2 2
(b) Using a CAS we find y(2) ~ 0.226339. \ %

—1 M- +
= ‘{—
‘L )

49. (a) An integrating factor for

2 10sinx
Y
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N>

is <. Thus

sin

a5
—[z*yl =10
dz (=] x
9 T sint
2y — 10 / S b 4e
z7y 0 1 + ¢
y = 102~2Si(z) + cz 2.

From y(1) = 0 we get ¢ = —108i(1). Thus

y = 10272Si(x) — 10x728i(1) = 10272(Si(z) — Si(1)).

{c) From thc graph in part (b) we see that the absolute maximum occurs around z = 1.7. Using
the root-finding capability of a CAS and solving y/'(z) = 0 for z we scc that the absolute
maximum is (1.688,1.742).

. L [T 2
. (a) The integrating factor for ¢/ — (sinz?)y =0is e Josini®dt Then

d L) ,
Zz_[e—-fo sin ¢ dty] -0

y = (‘1615“ sin t2dt

Letting ¢t = \/7% u we have dt = 1/7/2du and

s (5[ (5o ()
/Osmt dt = > Jo sin 2u d'u,—v2S \/ﬂx

s0 y = c1eV™/25(V2/72)  Using S(0) = 0 and y(0) = ¢; = 5 we have y = 5eV™/25(/2/72)
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Exercises 2.3 Linecar Equations

(b)

| {
T ey T _g_
X
~5 5 10

T
Y

(c) From the graph we see that as x — oo, y (x) oscillates with decrcasing amplitudes approaching
9.35672. Since limg_,o0 55(x) = 3, limy—o y(x) = 5B 9.357, and since lim,,,_ S(x) =
—3 limy e y() = 56 V/8 x 2,672,

(d) From the graph in part (b) we sec that the absolute maximum occurs around x = 1.7 and the
absolute minimum occurs around r = —1.8. Using the root-finding capability of a CAS anc

solving y/(z) = 0 for z, we see that the absolutc maximum is (1.772,12.235) and the absolut¢
minimum is (—1.772,2.044).

1. Let M =2z—1and N = 3y+7so that A, = 0 = N;. Irom f; = 2—1 we obtain f = 2 —x+h(y
h'(y) = 3y + 7, and h(y) = %y2 + 7y. A solution is 22 — z + %yz + 7y =c.

V]

. Let M =2x+yand N = —z — 6y. Then M, =1 and N, = —1, so the equation is not exact.

3. Let M = 5z + 4y and N = 4z — 8y so that My = 4 = N;. From f; = 5z + 4y wc obtal.
= %:1:2 + 4zy + h(y), M'(y) = —8y3, and h(y) = —2y*. A solution is 2t dry — 2t =c

4. Let M = siny —ysinz and N = cost + xcosy — y so that M, = cosy —sinz = N,. Frow
fz =siny —ysinz we obtain f = rsiny+ycosz+ h(y), M (y) = —y, and h(y) = —%yQ. A solutic.
is rsiny +ycosx — %y2 = c.

5. Let M = 2y%z — 3 and N = 2yz? + 4 so that My = Ary = Ng. Irom f, = 2y%z — 3 we obta®

f =222 -3z + h(y), K'(y) = 4, and h(y) = 4y. A solution is 22y% — 32 + 4y = ¢.

Let M = 4z® — 3ysin3z — y/z% and N = 2y — 1/z + cos 3z so that M, = —3sin3z — 1/2% ar

N; = 1/2? — 3sin 3z. The equation is not exact.

=

7. Let M = 22 — 4% and N = 2? — 22y so that y = —2y and N; = 2z — 2y. The equation is n~

cxact.
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Exercises 2.4 Exact Equations

2 Let M =1+Inz+y/r and N = —1+Inzx so that A, = 1/z = N;. From f, = —1+Inz we obtain
“=—y+ylnz+hy). (x)=1+1nz, and h(y) =zinz. A solution is —y +ylnz +zlnz = c.
3 Let M = y3 —y?sinz — 2 and N = 3xy? + 2ycosz so that My, = 3y?2 — 2ysinz = Np. From

fe =y —y?sina —z we obtain f = zy®+y? cosz— 522 +h(y), B'(y) = 0, and A(y) = 0. A solution

i3 ;zfy“J' + yz CosT — %1."2 =c

olet M = 23 4+ 43 and N = 3xy® so that M, = 3y? = N;. From f, = 2% + % we obtain

£ = %:134 +2y® + h(y). K (y) = 0, and h(y) = 0. A solution is T2 + zy* = c.

et M =ylny—e ™ and N = 1/y +xlny so that My, =1+ 1Iny+2ze™™ and N; = lny. The

zquation is not exact.
Lot M =322y +¢¥ and N = 23 + xe¥ — 2y so that My = 322 + ¥ = N,. From fz = 322y + ¥ we
“brain f = 3y + xe¥ + h(y), K (y) = =2y, and h(y) = —y?. A solution is 23y + ze¥ — y? = c.

. Let M =y — 622 — 2ze® and N = z so that M, =1 = N,. From f; = y — 622 — 22¢% we obtain
Y y Y

<= gy — 227 — 2xe® 4+ 2¢5 + h(y), W' (y) =0, and h(y) = 0. A solution is @y — 223 — 2xe® + 2e* = ¢.
Let M =1-3/x+yand N =1-3/y+axsothat My =1=N,. From f =1-3/z+y
we obtain f = « — 3ln|z| + zy + h(y), h'(y) = 1 — g and h(y) = y — 3lnly|. A solution is
rry+ay—3hn|ryl =c.

Let M = 2%t -1/ (1 +9;zt2) and N = 23%? so that M, = 32%? = N,. From

o=yt -1/ (1 + 9:52) we obtain f = %ﬁy‘g — %arctan(?)m) + h(y), A'(y) =0, and h(y) =0.

A solution is #%y® — arctan(3z) = c.

. Let M = —2y and N = 5y —2z so that M, = —2 = N,. From f, = —2y we obtain f = —2zy+h(y),

H(y) = 5y, and h(y) = %yz. A solution is —2xy + %yz =c.

. Let M = tanx —sinzsiny and N = coszcosy so that M, = —sinzcosy = N,. From

fr = tanz — sinwsiny we obtain f = In|secz| + coszsiny + h(y), K'(y) = 0, and A(y) = 0. A

solution is In|sec x| 4+ cosxsiny = ¢.

2 . o2
. Let M =2ysinzcosx —y + 252%™ and N = —z +sin® x + dxye™ so that

. 3 go 2
My =2sinzcosz — 1+ 4ryPe™ + dye*Y = N,.

From f, = 2ysinzcosz —y + 23/2(35”-”2 we obtain f = ysin® ¢ — 2y + 267" R(y), K (y) = 0, and
h(y) = 0. A solution is ysin® z — zy + 27" = ¢.

> Let M = 4t3y — 15t —y and N = t* + 3y? — ¢ s0 that My, = 4t3 —1 = N;. From f; = 483y — 15¢2 —y

we obtain f =ty — 583 —ty+h(y), K (y) = 3y?%, and h(y) = 3>. A solution is t*y — 5% —ty +1° = c.

o Let M = 1/t+1/t?—y/ (L2 + y2) and N = ye¥ +t/ (1.‘2 + yz) so that Ay, = (3/2 — t2> / (tz + 112)2 =

. : : . 1 t ,
Np. From f, = 1/t + 1/t2 —y/ (tz + yz) we obtain f = In [¢| — T arctan (5) + h(y), W' (y) = ye¥,

59



Exercises 2.4 Exact Equations

24.

25.

26.

27.
28.
29.

30.

and h(y) = ye¥ — e¥. A solution is
1 t ,,
ln|t| — =~ —arctan | — | +ye¥ —e¥ =c.
t Y
Lot M = 2% +22y+y® and N = 2zy+x%—1 50 that My, = 2(z+y) = N;. From f, = 22+ 2zy+y? w:

obtain f = %m3+x2y+xy2+h,(y), K(y) = =1, and h(y) = —y. The solution is %:1::3+m2y+:1:y2—y =
If (1) = 1 then ¢ = 4/3 and a solution of the initial-value problem is %.’173 + 22y ay? —y= % .

. Let M =e¢*+yand N =2+ 2 + ye¥ so that My = 1 = N;. From f; = ¢® + y we obtai

f = & +ay+ hy), Ky = 2+ ye¥ and h(y) = 2y + ye¥ — y. The solution i-
e +xy+ 2y +ye¥ —e¥ = ¢ If y(0) = 1 then ¢ = 3 and a solution of the initial-value prol-
lem is ¢ + zy + 2y + ye¥ — ¥ = 3.

Let M =4y +2t — 5 and N = 6y + 4t — 1 so that M, = 4 = N;. From f; = 4y + 2t — 5 we obtai:.
f = 4ty +t2—5t+h(y), K'(y) = 6y—1, and h(y) = 3y*>—y. The solution is 4ty+12—5t+3y% —y = ¢
If y(—1) = 2 then ¢ = 8 and a solution of the initial-value problem is 4ty + t2 — 5t + 3y* — y = 8.

Let M = ¢/2y* and N = (3y2 — t2) /y> so that M, = —2t/y5 = N;. From f; = t/2y* we obtai:
12 , 3 | 3 23 -
f= @ + h{(y), ' (y) = y—3, and h(y) = —@. The solution is A_l—yz — ~2-?-j-§ =c. If y(1) =1 the.
2 : K
¢ = —5/4 and a solution of the initial-value problem is 3 —_2

4t 22 47
Let M = y?cosz — 3z%y — 2z and N = 2ysinz — 2% + Iny so that | L, = 2ycosx — 322 = N,. Fror.
fo = y? cos x — 322y — 2z we obtain f = y?sinz — 23y — 22 +h(y), ¥ (y) = Iny, and h(y) = ylny—.
The solution is y?sinz — 23y — 2% + ylny —y = ¢. If 4(0) = e then ¢ = 0 and a solution of tl-
initial-value problem is y?sinz — 23y — 22 + ylny —y = 0.

Let M = y? + ysinz and N = 2zy — cosz — 1/ (1 + yz) so that M, = 2y +sinz = N;. Fron
. ., -1
fe = y? + ysinz we obtain f = zy? —ycosz + h(y), h'(y) = 72 and h(y) = —tan—'y. Tk
solution is zy? — ycosz —tan~ly = ¢. If y(0) = 1 then ¢ = —1 — 7/4 and a solution of th-
T
initial-value problem is 2y — ycosz — tan™'y = —1 — Zl .

Equating My = 3y? + 4kzy® and N, = 3y? 4 402> we obtain k = 10.

Equating M, = 18zy? — siny and N = 4kzy? — siny we obtain & = 9/2.

Let M = —2%y?sinz + 22y cosz and N = 222y cosz so that My = —22%ysinx + dxycosz = N,
From f, = 2z%ycosz we obtain  f = z%y?cosz + h(y), '(y) = 0, and h(y) = 0. A solution -
the differential equation is z?y? cosz = c.

Lot M = (m2 + 2zy — y2) / (:1:2 + 2zy + y2) and N = (-y2 + 2zy — :z:2) / (y2 + 22y + :1:.2) so the-
My, = —dzy/(z +y)® = N;. From f, = (:t:2 + 2zy + y? — 2y2) /(z + y)? we obtain
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31.

33.

34.

36.

37.

2

f=z+ + h(y), W' (y) = —1, and A(y) = —y. A solution of the differexzicl = -2l -

rT+y
22+ 4% =c(z +y).
We note that (M, — N;)/N = 1/x, so an integrating factor is ef 48/t — 4 Tet A[ =205 — 1 -
and N = 222y so that My = 4zy = Ny. From f; = 27y? + 322 we obtain f = 127 — 2 =7 .
K (y) =0, and h(y) = 0. A solution of the differential equation is z%y? + 2* = c.

. We note that (M, — N;)/N =1, so an integrating factor is eJde = er Let M = ayet — e — 2

and N = ze” + 2ye” so that M, = ze® + 2ye® + e = N;. From f, = ze® + 2ye’ we 77:00
f = zye® + 3% + h(z), K'(y) = 0, and h(y) = 0. A solution of the differential equa~: = o
rye® + y%e = c.

We note that (N, — M,)/M = 2/y, so an integrating factor is ef 2y — y? Let M = 6ry" =2°
N = 43 + 922 so that M, = 181y> = N,. From f, = 6zy® we obtain f = 3z%% — * .
W(y) = 433, and h(y) = y*. A solution of the differential equation is 3z%y® ~y* = c.

We note that (M, — N;)/N = —cotz, so an integrating factor is emJootzde — ooy
M = coszcscxr = cotz and N = (1 + 2/y)sinzcsce = 1+ 2/y, so that M, =0 = N,. Friz
fe = cotz we obtain f = In(sinz) + h(y), K'(y) = 1 + 2/y, and h(y) = y + Iny?. A solution oZ ==
differential cquation is In(sinz) + y + Iny? = c.

. We note that (M, — N,)/N =3, so an integrating factor is ef3dr = 32 [et

M = (10— 6y + e'3m)63“’ = 10e%® — 6ye®® + 1
and
N = —2(333“,

so that My = —6e3* = N,. From f; = 10e3 — 6y’ + 1 we obtain f = 0% — 2ye® + 2+ hiy .
K'(y) = 0, and h(y) = 0. A solution of the differcntial equation is e3* — 2ye® + x =c.
We note that (N, — My)/M = —3/y, so an integrating factor is e=3Sdyly = 1 Jy3. Let

M= +2’) )y’ =1/y+z
and
N = (5y2 —zy+y° Siny)/y3 =5/y— :C/y2 + siny,

so that M, = —1/y? = N. From f, = 1/y+z we obtain f = z/y + %:)32 +h(y), M (y) =5/y+siny.
and h(y) = 51n|y| — cosy. A solution of the differential equation is z/y + 222+ 51n|y| — cosy = c.
We note that (M, — N;)/N = 2z/(4+ 2?), so an integrating factor is e=2[wdz/(1+2%) _ J(4+22;
Let M = z/(4+ 2?) and N = (2%y + 4y)/(4 + 2%) = y, so that M, = 0 = N,. From f, = z(4+ 2%
we obtain f = 4 In(4+2z%) +h(y), ¥'(y) = y, and h(y) = 3y°. A solution of the differential equation
is 2ln(4+22) + 32 =c.
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38.

39.

40.

41.

42.

43.

We note that (M, — N;)/N = —3/(14z), so an integrating factor is ¢3S dx/(+e) — /(1+z)3. L--
M = (22+9y?-5)/(1+z)3 and N = —(y+ay)/(1+z)? = —y/(1+2)?, so that M, = 2y/(1+2)® = \
From fy = —y/(1 + x)? we obtain f = —1y?/(1 + z)% + h(z), K (z) = (22 - 5)/(1 + 2)3, a-
h(z) =2/(1+z)2+2/(1+ ) +In|l +z|. A solution of the differential equation is

y? 2

ToirazE T Arap '

) +Inll+z =c

(a) Implicitly differentiating z° + 222y + y? = ¢ and solving for dy/dz we obtain

@ __3x2+4:vy
dr 22242

. d d
3x3+2x2d—i+4xy+2y£ =0 and

By writing the last equation in differential form we get (dzy + 322)dz + (2y + 222)dy = 0.

(b) Setting = 0 and y = —2 in > + 222y + 32 = ¢ we find ¢ = 4, and setting z =y = 1 we a’»
find ¢ = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving 2* + 222y + y? = 4 for y we get Py
. .
y(z) = —a® — /4 — 23 + 2

and

yo(w) = —2? + /4 — 23 4 24,

Observe in the figure that y1(0) = —2 and yo(1) = 1.

To see that the cquations are not equivalent consider dz = —(z/y)dy. An integrating factor :-
w(z,y) = y resulting in ydx + 2 dy = 0. A solution of the latter equation is y = 0, but this is not

solution of the original equation.

The explicit solution is y = \/ (3+cos?2)/(1 —22). Since 3+ cos?z > 0 for all z we must hav-

1—-x22>00r —1 < x < 1. Thus, the interval of definition is (-1, 1).

(a) Since f, = N(z,y) = ze®¥ + 22y + 1/2 we obtain f = €% + 4y + % + h(z) so the
fo=ye™ +9% - % + K(2). Let M{x.y) = ye™ + % — % :

\ 1 /e -1 / 1
(b) Since f, = M(z.y) =y 212 42 (.cr;2 + y) we obtain f = 2y 3 In ’x2 + y] + 90

] 1/ . -1 ; 1 -1
so that f, = y‘lf‘z.'icl/2 + 3 (xz + y) +¢'(z). Let N(z,y) = y‘1/2:z:1/2 + = (x.2 + y) i

2

V2t + 42 V2 + 4

First note that
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Then xdz+ydy = Va:2 + y2 dr becomes

T Y ; ;
S P :d( 22 2):.1::.
V’x2+y2 T ver?ﬂ Y \/l + vy dux

The left side is the total differential of V/:z:f2 + 32 and the right side is the total differential of x + c.

Thus V/a:2 +y2? = z + c is a solution of the differential equation.

+1. To see that the statement is true, write the separable equation as —g(z) dz+dy/h(y) = 0. Identifying
M = —g(z) and N = 1/h(y), we see that M, = 0 = N, so the differential equation is exact.

+5. (a) In differential form we have (v? — 322)dz + xv dv = 0. This is not an exact form, but u(z) = =

is an integrating factor. Multiplying by z we get (zv? — 3222)dx + 2?vdv = 0. This form is

the total differential of u© = ﬁa%z %aﬁ, so an implicit solution is é,rz?,z 3{32 23 = ¢. Letting

2 =3 and v = 0 we find ¢ = —288. Solving for v we get

z 9
N e
v \/ 3 x2
(b) The chain leaves the platform when = = 8, so the velocity at this time is
8 9
v(8) = 8y/= — — =~ 12.7 ft/s.
v8) =83~ & /s
:3. (a) Letting
y 2zy , y? — o
Mo =grrpe =t Mew=irernp
we compute
— 8xzy?
My = ——5——5 =Ny,
! (9«“2 +y?)P
so the differential cquation is exact. Then we have
of 2zy 2, 2\-2
P = M(z,y) = 1P = 2zy(z” + y*)
2 1,21
Y) = —ylx + 5 +
Flz.y) = —y(@" + 977 +90y) = — 5= ” 9(v)
of y2 — z? ’ y — 2
e /W) =Ny =1+
oy~ @y YW =N (2 +y?)?
Thus, ¢’'(y) = 1 and g(y) = y. The solution is y — 'r?:/- 5 = ¢. When ¢ = 0 the solution is
2 +y

?+y?=1
(b) The first graph below is obtained in Mathematica using f(z,y) =y — y/(z? + y?) and

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3},
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Axes—>True, AxesOrigin—>{0, 0}, AxesLabel—>{x, y},
Frame—>False, PlotPoints—>100, ContourShading—>False,
Contours—>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

In this casc the x-axis is vertical and the y-axis is horizontal. To obtain the third graph. -
solve y — y/(22 + %) = ¢ for y in a CAS. This appears to give onc real and two comy.
solutions. When graphed in Mathematica however, all three solutions contribute to the gra: ..
This is becausc the solutions involve the square root of expressions containing ¢. For sci.-

values of ¢ the expression is negative, causing an apparent complex solution to actually be r- ...

y
3

H
|
H
H

_ Exercises 2.5

1. Letting y = uz we have
(z —ux)dz + z(udr +xdu) =0

dv+xdu=0
@-l-duzo
T

|zl +u=c

cln|z| +y=cr.
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2. Letting y = ua we have
(x +ux)der + r(udzx +zdu) =0
(1+2u)der+xdu=0

dz du B
T 142

, 1
Iniz|+ 5111 |1+ 2u|=c
22 (1 + 22) =
x

% + 2zy = cy.

3. Letting x = vy we have

vy(edy +ydv) + (y — 2vy)dy =0
vy dv +y (u2 —2v+ 1) dy=20

vdu dy

. 1
Injv—1] — " +Injyl=c
Q-

X
111——1‘— +hy=c¢

x/y—1

(@—y)nlz —y| -y =c(z —y).

4. Letting 2 = vy we have
y(vdy +ydv) — 2(vy +y)dy =0
ydv—(v+2)dy=0

dv dy
A
v+2 oy

Injv+2|~Inlyl=c
1n‘§+2!—ln!y|=c
y i

T+ 2y= clyz.
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5. Letting y = ux wc have
(uzazz + uxg) dr — 2*(udz + x du) =0

wdr —2du=0

K d
@__Zzo
T u

1
Injzi+ - =c¢
U
1n|a:|+E=c
Y

yln|z|+ 2z = cy.
6. Letting y = vz and using partial fractions, we have
(u2:c2 + u:z2) dr + 22 (udz ~ xdu) = 0
z? (u2 + 2'11.-) dr + 23 du =0

dx N du
z  u(u+2)

1
ln|:1:|+%1n]u|—§ln|u+2| =c

z2u
== Cl
U+ 2
o1
J)Z-‘i = (g +2>
T €T

Ty = ¢1(y + 2z).
7. Letting y = uz we have
(ur —z)dr — (uz +x)(udz + xzdu) =0
(u2 + 1) de+z(u+1)du=0

d_r u+1

x u2+1du:0

1 ‘
Infx| + 3 In (uz + 1) +tan " lu=¢

.2 .

In 2 (y—-,- + 1) +2tan~'Y = ¢t
€ z
‘ 1Y

In(z? +42) +2tan~' < = ¢1.

(2 +47) s =o
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(¥ 2]

. Letting y = ux we have
( + 3ux)dr — 3z + uz)(udz + xdu) =0
(w* = 1) dz + z(u+3)du =0

dz uw+3

bt du —
z +(u—1)(u+l) u=0

lnjz{+2lnju—1|—Inju+ 1 =c

z(u—1)?2
ut+1

9
T (y——l) = (g-l-l)
T T

(y—2)* =caly~z)

=

o

. Letting y = uz we have
—uzdr + (z + Vuz)(udr + 2 du) =0

(22 + 2%Vu) du + zu*? de =0

o 1 da;
(-u_?’/z + —) du + (—:1 =0

u
—2u™Y2 flnju| +In|z| = ¢
In|y/z|+In|z] = 2\/az—/y+ c
y(ln|y| — ¢)? = 4z.
Z.. Letting y = ux we have
(u:r- + \//:1:2——(1“)3) dr — z(udr + rdu) du = 0
0

vzt —ulz?dz — 22du=0

21— u2dz — 22 du = 0, (z > 0)
d_’l du _
z  V1-—?

Inz—sin"‘u=c

0

snlu=Iz+c

67
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sin™!Z =Inz+ co

@ =

= sin(In = + e2)

>

3

y = xsin(lnz + ¢2).
See Problem 33 in this section for an analysis of the solution.
11. Letting y = ux we have
(13 - uqﬁ) dr +us*(udz + zdu) =0
dr + vz du=0

d”
-f+-u2du=0

1 .
In || + gus =c

323 In || + y® = e123.

Using y(1) = 2 we find ¢; = 8. The solution of the initial-value problem is 32° In |z| + ¢* = 823,
12. Letting y = ux we have
(z? + 2u*2?)dz — ua?(ude + 2z du) = 0
22(1 4 v?)dz — uzd du = 0

@ w du .
r  14+wu2

1
In|z| — 5 In(1+u?)=c
r?
14 u?

2t = ey (2 + 7).
Using y(—1) = 1 we find ¢; = 1/2. The solution of the initial-valuc problem is 2z* = y% + 2.

13. Letting y = uz we have
(x + uze*)dr — xze"(udz + xdu) =0
de —ze*du =10

dx
— —e'du=0
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Injz| —e"=¢
Injz| — e¥/* =c.

Using (1) = 0 we find ¢ = —1. The solution of the initial-value problem is In |z| = e¥/* — 1.

Z+. Letting 2 = vy we have

0

i1

ylvdy +yde) +vy(lnvy —Iny — 1)dy =0
ydv+uvilnedy =0

It :

vine y

In|njv|| +Inly| =¢

xr
yln|—| =¢.
Y
Using y(1) = e we find ¢; = —e. The solution of the initial-value problem is yln|—| = —e.
Y
1 1 _. . dw 3 3 . . o
5. From i + —y = ~y~% and w = y® we obtain — + “w = >. An integrating factor is 23 so that
T x dv =z x '
Pu=a+coryd =14cz3
. o _ . dw A ) X .
<. From 3 —y = ¢*y® and w = y~! we obtain iz +w = —e®. An integrating factor is ¢ so that
x
fw=—Lte* +cory ! = —1e® + ce™?.
- _ . dw : e N
. From ¢/ +y = zy* and w = y~> we obtain e 3w = —3x. An integrating factor is e~3% so that
dux:
£y = g3 + %6_3‘” +coryS=z+ % + e,
o 1 . dw 1 . ) )
i, From y' — (1 + —) y=y? and w = y~! we obtain o + (1 + —) w = —1. An integrating factor is
xr axr £

. > " — 1 >
re® so that xefw = —ze* + e +cory =—1+ z + Ce2,
"y £
1 1 . o odw 1 1 . . .
. From ¢ — ;y = —E—jyg and w = y~! we obtain = + U= An integrating factor is ¢ so that
: 1 & . . t .
tw=Int+cory = 7 Int + e Writing this in the form ; = Int + ¢, we see that the solution
can also be expressed in the form etV = ¢;t.
2t . 5 dw 2t —2t
. Fromy/ = y* and w = 33 we obtain — — —w = ~ . An integratin
YtaareyY T3a+e)? Y @ 1+ "1y e grating
o thar & _ L o =3 — 2
factor is 58 50 that T2 148 +cory = 1+c(1—|—t )
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21.

22.

23.

24.

26.

27.

28.

29.

30.

2 3 dw 6 9 . e .6
From 3/ — V= 9y and w = y~3 we obtain Z:— + Sw=—g. An integrating factor is z° so the-
b= -2 +cory 3 =-2z+ex S Ify(l) =3 thenc= £ and y 3 = —Jz71 + 6.
. . dw 3 3
From 3 +y =y~ /2 and w = y*/? we obtain d_qi + W=7 . An integrating factor is 3%/2 so tha-
&3/ 2y = 3%/2 4 cor 432 = 14 ce™3%/2, If y(0) = 4 then ¢ = 7 and y>/2 = 1 4 7e=3%/2,
. d 1

Let u = z +y + 1 so that du/dz = 1+ dy/dz. Then d—:c —1=4u%or T du = dz. Thu-
tan~'u =2+ coru=tan(z +¢), and x + y + 1 = tan(z + ¢) ory=tan(a:+c) —z—1.

d 1-
Let u = z + y so that du/dx = 1 + dy/dx. Then ;]_’111? -1= - or wdu = dz. Thus 21,112 =+

U

or u? =2z + ¢, and (z +9)? = 2z + ¢;.

di . .
. Let u = z + y so that du/de = 1+ dy/dz. Then % _ 1 = tan?u or cos®udu = dr. Thu

dz
Ju+}sin2u = z+cor 2u+sin 2u = 4z+cy, and 2(z+y)+sin 2(z+y) = dz+cy or 2y+sin 2(z+y) =

2z + cy.

du 1 .
Let w = 2 + y so that du/dx = 1 + dy/dz. Then I 1=sinuor 1T snn du = dz. Multiplyin:

1 —sinu 9

by (1 — sinu)/(1 — sinu) we have mdu = dz or (sec®u — secutanu)du = dzr. Thu-

tany —secu = + cor tan(z +y) —sec(z +y) =z +c.

Let v = y — 2z + 3 so that du/dz = dy/dz — 2. Then — du

dz
2y/u=z+cand 2y/y—2xr+3=zxr+ec

du
Let u = y — z + 5 so that du/dz = dy/dx — 1. Then Zi% +1=14¢€"or e %du = dr. Thu:

+2=2+4+/uor ——du-dx: Thu:-
Vu

—e =g+ cand —e¥ Tt =z 4 ¢

d
Let u = x + y so that du/dx = 1 + dy/dz. Then €% 1 = cosu and _r du = dx. Now

dz 14+ cosu
1 l—cosu 1—cosu 9
5 5 =csc“u—cescucotu
1+ cosu 1 —cos?u  sin?u

so we have [(csc? u—cscucot u)du = [ dz and — cot u-+cscu = z+c¢. Thus — cot(z+y)+cse(z+y) =
z + ¢. Setting = = 0 and y = 7/4 we obtain ¢ = v/2 — 1. The solution is
cse(z +y) —cot(z+y) =z +v2 - 1.

du 2u Su+ 6 w+2
Let © = 32 -L 2y so that du/dx = 3+ 2dy/dz. Tt — =3 = du = d.;
et u = 32+ 2y so that du/dx +2dy/dz. Then i +u+2 I and 5u+6(u d

Now by long division
u+2 1 n 4
5u+6 5 25u+ 30
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<) we have

1 4
/ (3 + 25u+30) du = dz

and fu+ —215 In |25u + 30] = = + ¢. Thus
4
%(3:1: + 2y} + % In |75z + 50y + 30| = = + c.

Setting x = —1 and y = —1 we obtain ¢ = 2—45 In 95. The solution is

1 4 4
- il 5 y - 30| = — 1n 95
5(33:+2;1,:)—|— % In |75z + 50y + 30| = = + 55 In 95

5y — 5z + 21n |75z + 50y + 30| = 2In 95.

3. We write the differential cquation M (z, y)dx + N(z,y)dy = 0 as dy/dz = f(z.y) where

oy _Mz,y)
f(.r,y) - N(:L',y) '

The function f(z,y) must necessarily be homogencous of degrec 0 when M and N are homogeneous
»f degree a. Since M is homogencous of degree a, M(tz,ty) = t*M(z,y), and letting ¢t = 1/z we
aave

1
—M@y) or M(z,y)=z"M(Ly/z)

M(1,y/z) =

Thus
dy . z®M(ly/z)  MQy/z) _ (y)
dr fzy) = =oN(1,y/z) ~  N(Ly/z) F\z)-

22, Rewrite (52 — 2y%)dz — xydy = 0 as

(l’y .2 9
rY — = 04 2
Vs y
and divide by zy, so that
d, . ;
dy _ = Ly
dzx Y x

We then identify

r(2)-o(2)" 22

- 3. (a) By inspection y = = and y = —z are solutions of the differential cquation and not members of

the family y = zsin(Inz + ¢2).
(b) Letting z =5 and y =0 in sin" (y/z) =Inz+cy we get sin 0 =In5+4cor ¢ = —In5. Then
sin"!(y/x) =Ilnz —1n5 = In(x/5). Because the range of the arcsine function is [—7/2,7/2] we
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34.

must have

T x W
—5<Ilnf <5 H
2 57 2
20:
6—7‘/2 i < err,;Z
-5~ 15
5e /% < g < Be™/? 10
. . . . . . " 5
The interval of definition of the solution is approximately
= T4 10 26 *
[1.04,24.03]. - '

Asz — —oc, €9 — 0 and y — 2z + 3. Now write (1 + ce8%)/(1 — ce%%) as (7% + ¢) /(e 6% —
Then, as 22 — oo, e7% — 0 and y — 2z — 3.

35. (a) The substitutions y = y; + u and

36.

dy _ dyr | du
de  dr = dr

lead to ; :
1 du
42 = P+ QU +u) + Ry + 0
dr  dx
= P+ Qu + Ry} + Qu+2y1 Ru+ Ru’
or i
au 9
— — (@ + 2y1 R)u = Ru”.
7 (@ + 2y R)u 1
This is a Bernoulli equation with n. = 2 which can be reduced to the linear equation
dw
i—‘: +(Q@+2yR)w=—-R
ar

by the substitution w = «~!.

. f dw 1 4 ,
(b) Identify P(z) = —4/x2, Q(z) = —1/z, and R(x) = 1. Then - + (—— + ;) w=—1. -1
dax T oz
. - , . -1 ,
integrating factor is 2 so that z3w = 2%+ coru= [—ﬁ:c + 017_3] . Thus, y = — + .

x

Write the differential equation in the form z(y'/y) = Inz+Iny and let «w = Iny. Then du/dz =y .

and the differential equation becomes z(du/dx) = Inz +u or du/dz —u/2z = (Inz)/z, which 3

first-order and linear. An integrating factor is ¢ Jde/e = /z, so that (using integration by par:-

drl 1 Inx U 1 Inz
—[—ui=——2 and - = —— — — +o¢.
dely T x T €T
The solution is
e(:.’l:-l

hy=-1—-Inaz+cr or y=

37. Write the diffcrential cquation as

de 1

—_—— —y =

32071,
dr = v
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o let w = v2 or v = /2. Then
dr 2 dr’

z2:d substituting into the differential equation. we have

1 _q0du 1 4 _ du 2

Sum M I M2 = 32y or — + - u = 64.

2 dr = dr x
J— . - . . . . . . "9/ <
_ae latter differential equation is linear with integrating factor oJ@fn)dr — 2 g,

d 200 Al
o [27u] = 642

-nd
. 64 . p 64 .
:z:zu = ? a:"3 + ¢ or -zrz = ? 4+ % )

% “Arite the differential equation as dP/dt — aP = —bP? and let u = P! or P = «~!. Then

dp = —u? @
a  dt’

:nd substituting into the differential equation, we have

_p du _1 _9 du
—uc— —qu - = —bu or — +tau=="b.
dt dt

T ze latter differential equation is lincar with integrating factor el adt - e 50

d r
— le%y] = be™
dt -
=ad
b
eMu=—e™ +¢
a

C blatce® b4 et
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Exercises 2.6 A Numerical Method

1. We identify f(z,y) = 22 — 3y + 1. Then, for h = 0.1,

Yn+1 = Yn + 0-1(2-'1771 —3yn +1) = 0.2z, + 0.7y, + 0.1,

and
y(1.1) =y =02(1) +0.7(5) + 0.1 = 3.8
y(1.2) = yo = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.
For h = 0.05.
Yn-1 = Yn + 0.05(22y, — 3yn + 1) = 0.1z, + 0.85y5, + 0.05,
and

y(1.05) ~ y1 = 0.1(1) + 0.85(5) + 0.05 = 4.4

)
y(1.1) = yo = 0.1(1.05) + 0.85(4.4) + 0.05 = 3.895
y(1.15) =~ y3 = 0.1(1.1) + 0.85(3.895) + 0.05 = 3.47075
y(1.2) = y4 = 0.1(1.15) + 0.85(3.47075) 4 0.05 = 3.11514.
2. We identify f(z,y) = 2 + y%. Then, for h = 0.1,

Yn4+1l = Yn + 0'1(31771 + yf?z) =01z, + yn + 0'1y72u

and
y(0.1) =~ y1 = 0.1(0) + 0+ 0.1(0)2 = 0
4(0.2) = yg = 0.1(0.1) + 0 + 0.1(0)* = 0.01.
For h = 0.05,
Y1 = Yn + 0.05(2y +y2) = 0.052,, + yn + 0.0592,
and

(0.05) = 1 = 0.05(0) + 0+ 0.05(0)> = 0
(0.1) = ya = 0.05(0.05) + 0 + 0.05(0)% = 0.0025
4(0.15) = y3 = 0.05(0.1) 4 0.0025 + 0.05(0.0025)2 = 0.0075

4(0.2) & y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)% = 0.0150.
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3. >zparating variables and integrating, we have

Thus y = ¢16” and, using y(0) = 1, we find ¢ = 1, so y = ¢

dy

[y

=dux

and

In

Exercises 2.6 A Numerical Mecthod

xI

is the solution of the initial-value

zroblem.
2=0.1 h=0.05
x - Actual Abs.  %Rel. X y Actual Abs.  %Rael.
Value Error Error " » Value Error Error
0.00 1.0000 1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
0.10 1.1000 1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 0.0114 0.93 0.10 1.1025 1.1052 0.0027 0.24
6.30 1.3310 1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 1.4641 1.4918 0.0277 1.86 0.20 1.2155 1.2214 0.0059 0.48;
0.50 1.6105 1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0C77 0.60
0.60 1.7716 1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
.70 1.9487 2.0138 0.0650 3.23 0.35 1.4071 1.4191 0.0120 0.84
0.80 2.1436 2.2255 0.0820 3.68 0.40 1.4775 1.4918 0.0144 0.96
0.90 2.3579 2.4596 0.1017 4.13 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 2.7183 0.1245 4.58 0.50 1.6289 1.6487 0.0198 1.20
a 0.55 1.7103 1.7333 0.0229 1.32
0.60 1.7959 1.8221 0.0263 1.44
0.65 1.8856 1.9155 0.0299 1.56
0.70 1.9799 2.0138 0.0338 1.68
0.75 2.0789 2.1170 0.0381 1.80
0.80 2.1829 2.2255 0.0427 1.92
0.85 2.2920 2.3396 0.0476 2.04
0.90 2.4066 2.4596 0.0530 2.15
0.95 2.5270 2.5857 0.0588 2.27
1.00 2.6533 2.7183 0.0650 2.39 |

<. Separating variables and integrating, we have

Thus y = ¢1e* and. using y(1) =1, wefindc =e

problem.

dy

Y

2xdx

and

1

75

Inly| = 2%+
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, 50 y = ¥ 1 is the solution of the initial-value




Exercises 2.6

A Numerical Method

h=0.1 h=0.05
Xn In Actual Abs. % Rel. x, P Actual Abs.  %Rel.
Value Error Error Value Error Error
1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0006 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72
1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 1.47
1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27
1.40 2.2874 2.6117 0.3243 12.42 1.20 1.5044 1.5527 0.0483 3.11
1.50 2.9278 3.4903 0.5625 16.12 1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08
5. h=01 h=0.05 6. h=0.1 h=0.05
Xn Yn Xn Yu Xn Yn Xn In
0.00 0.0000 0.00 ©0.0000 06.00 1.0000 0.00 1.0000
0.16 0.10600 0.05 0.0500 0.10 1.1000 0.05 1.0500
0.20 0.1905 0.10 0.0976 0.20 1.2220 . 0.10 1.1053
0.30 0.2731 0.15 0.1429 0.30 1.3753 0.15 1.1668
0.40 0.3492 0.20 0.1863 0.40 1.5735 0.20 1.2360
06.50 0.4198 0.25 0.2278 0.50 1.8371 0.25 1.3144
0.30 0.2676 0.30 1.4039
0.35 0.3058 0.35 1.5070
0.40 0.3427 0.40 1.6267
0.45 0.3782 0.45 1.7670
0.50 0.4124 0.50 1.9332
7. R=0.1 h=0.05 & r=01 h=0.03
Xn Yn Xn Yn Xn Yan Xn Yr
0.00 0.5000 0.00 0.5000 0.00 1.0000 0.00 1.0000
0.10 0.5250 0.05 0.5125 0.10 1.1000 0.05 1.0500
0.20 0.5431 0.10 0.5232 0.20 1.2159 0.10 1.1039
0.30 0.5548 0.15 0.5322 0.30 1.3505 0.15 1.1619
0.40 0.5613 0.20 0.5395 0.40 1.5072 0.20 1.2245
0.50 0.5639 0.25 0.5452 0.50 1.6902 0.25 1.2921
0.30 0.5496 0.30 1.3651
0.35 0.5527 0.35 1.4440
0.40 0.5547 0.40 1.5293
0.45 0.5559 0.45 1.6217
0.50 0.5565 0.50 1.7219
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. Tables of values, shown below, were first computed using Euler’s method with A =0.1 and A = 1.7

Exercises 2.6 - 1 ool

h=0.1 h=0.05 10. r=0.1 F=0000
C o Xp ¥n Xn Yn Xn Yn Xp ¥n
1.00 1.0000 1.00 1.0000 0.00 0.5000 0.00 0.5003
1.10 1.0000 1.05 1.0000 0.10 0.5250 0.05 0.5125
1.20 1.0191 1.10  1.0049 0.20 0.5499 0.10 0.5250
1.30 1.0588 1.15  1.0147 0.30 0.5747 0.15 0.5375
1.40 1.1231 1.20 1.0298 0.40 0.5991 0.20 0.5499
1.50 1.2194 1.25 1.0506 0.50 0.6231 0.25 0.5623
1.30 1.0775 0.30 0.5746
1.35 1.1115 0.35 0.5868
1.40 1.1538 0.40 0.5989
1.45 1.2057 0.45 0.6109
1.50 1.2696 0.50 0.6228

. Tables of values were computed using the Euler and RK4 methods. The resulting points were pic-7+:

and joined using ListPlot in Mathematica. A somewhat simplified version of the code usec = =.
this is given in the Student Resource and Solutions Manual (SRSM) under Use of Computers -
Section 2.6.

h =025 h=01 h =0.05

Y

RRA4 RK4
ulgr
* y i 10 * p; i 3 8 10~

-t
<

S LB W
BN W oe U N
<]

A
o
=N WS W N

. Sce the comments in Problem 11 above.

h=0.25 h=20.1 h =0.05

y ¥y ¥y
6§ §
RR4 RE4
5 Buler e 5 Buler
4 4
3! 3
2; 2
Y 1

i 2 3 ] 5 S U T e S TR T T 5

and then using the RK4 method with the same values of h. Using separation of variables we : &
that the solution of the differential cquation is y = 1/(1 — 2?), which is undefined at z = 1, whes:
the graph has a vertical asymptote. Because the actual solution of the differential equation becon.-:
unbounded at x approaches 1, very small changes in the inputs 2 will result in large changes in -

corresponding outputs y. This can be expected to have a serious effect on numerical procedures.
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Exercises 2.6 A Numecrical Method

h=0.1 (Euler) h=0.05 (Euler) h=0.1 (RK4) h=0.05 (RK4)
T - . N e
0.00 1.0000' 0.00 1.0000 0.00 1.0000; | 0.00 1.0000
0.10 1.0000 | 0.05 1.0000 0.10 1.0101! | 0.05 1.0025
0.20 1.0200: 0.10 1.0050 | 0.20  1.0417| | 0.10  1.0101
0.30 1.0616 0.15 1.0151 . 0.30  1.0989 . 0.15  1.0230
0.40 1.1292 0.20 1.0306 0.40  1.1905! | 0.20  1.0417
0.50 1.2313° 0.25 1.0518| . 0.50  1.3333| | 0.25 1.0667
0.60 1.3829: 0.30 1.0795! i 0.60  1.5625| | 0.30  1.0989
0.70 1.6123° 0.35 1.1144  ; 0.70  1.9607| . 0.35 1.1396
0.80 1.9763° 0.40 1.1579 | } 0.80  2.7771| | 0.40  1.1905
0.90 2.6012: 0.45 1.2115 | 0.90 5.2388! . 0.45  1.2539
1.00 3.8191 0.50 1.2776 | 1.00 42.9931] i 0.50  1.3333
T 0.55 1.3592 { 0.55  1.4337
0.60 1.4608 | 0.60  1.5625
0.65 1.5888 0.65  1.7316
0.70 1.7529 0.70  1.9608
0.75 1.9679 0.75  2.2857
0.80 2.2584 0.80  2.7777
0.85 2.6664 0.85  3.6034
0.90 3.2708 0.90  5.2609
0.95 4.2336 0.95 10.1973:
1.00 5.9363 1.00 84.0132

The graphs below were obtained as described above in Problem 11.

h=0.25 , h=0.1
10

Eu

0.2 0.4 0.6 9.8 T 0.2 0.4 0.6 0.8 1

14. (a) The graph to the right was obtained as described above ¥

in Problem 11 using h = 0.1.
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(b) Writing the differential cquation in the form 3y’ + 22y = 1 we sce that an integrating factor is
Pf 2zdr _ emz. S0
‘ d 2.
£t 1 £
—lety =e
(1;1?[ Y

2

and
g2 [E g g2
y=e* / e dt+ce " .
0

This solution can also be expressed in terms of the inverse error function as

2

Ty ., .
~ eV erfi() + ce"

y=-

&

Letting 2 = 0 and y(0) = 0 we find ¢ = 0. so the solution of the initial-value problem is

N

e " erfi(z).

22 [
y=e¢e " / e dt =
Jo

i¢c) Using cither FindRoot in Mathematica or £solve in Maple we see that ¢/(2) = 0 when
z = 0.924139. Since y(0.924139) = 0.541044, we see from the graph in part (a) that
(0.924139.0.541044) is a relative maximum. Now, using the substitution w = —t in the in-
tegral below. we have

e

. A2 7T 2 22 [T a2 2 w?
y(—z) = e~ (=) L Fdt =e™" /0 e~ (—du) = —e7 /0 e duy = —y(z).

Thus, y(z) is an odd function and (—0.924139. —0.541044) is a relative minimum.

~. Writing the differential equation i the form ¢ = k(y + A/k) we see that the critical point —A/k
s a repeller for & > 0 and an attractor for & < 0.
-. Separating variables and integrating we have

ly 4
Yol
y x

lny =4dlnz+c=1Inz!+¢

y = ¢t

We see that when 2 = 0, y = 0, so the initial-value problem has an infinite number of solutions for
~ = 0 and no solutions for £ # 0.

. True; y = ko/ky is always a solution for k1 #£ 0.
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4.

10.

11.

True; writing the differential equation as a1(x) dy + a2(z)y dr = 0 and separating variables yiclc-

dy az(x)
_— = — d o
Y ay ()

d’lj 9 9

% — (y— 1)y — 3)2

Iy~ Wy =3)

dy 9

YWy —2)2(y— 4

Ir y(y —2)°(y —4)

When n is odd, 2™ < 0 for x < 0 and 2™ > 0 for = > 0. In this case 0 is unstable. When n is ev=:

"> 0 for x <0 and for r > 0. In this case 0 is semi-stable.

When n is odd, —2™ > 0 for z < 0 and —z™ < 0 for = > 0. In this case 0 is asymptotically stal:.-

When n is cven, —x™ < 0 for z < 0 and for > 0. In this case 0 is semi-stable.

Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the gra: ..
we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is :-
asymptotically stable critical point. Thus, lims_.~ P(¢) = 1.3214.

TR AL R RN R AT 230 hhiakdr d
- emmh LAV R ENNA N
—awanssnsaFLiANLLNL NN
TR RN 3

IR R XL ]
PR RN R -

pPe sl sommaNN
Fevore—wnnn
TR T RST L LY
FE 777N NN

R A R e TR EEN T A
RN TEEERELY TR X XN XY
wammm AN VNS AAVN AN e -
TELAL A RAR AL LR AR R RN

(a) linear in y, homogeneous, cxact (b) linear in

(c) separable, exact, lincar in x and y (d) Bernoulli in

(e) scparable (f) separable, linear in @, Bernoulli
(g) linear in z (h) homogeneous

(i) Bernoulli (j) homogeneous, exact, Bernoulli

(k) linear in z and y. exact, scparable, homogencous
(1) exact, lincar in y (m) homogencous
(n) separable

Separating variables and using the identity cos®z = %(1 + cos 21), we have

cosxdr =

11, 1,
5:1:+Zsm2m— §ln(y +1) +c,
and
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22 +sin2x = 2In (y2 + 1) +c.

-2. WiTite the differential equation in the form

yln 1 dx = (;1: In r_ y) dy.
Yy Y

This is a homogeneous equation, so let x = uy. Then dx = udy + y du and the differential equation
becomes

ylnu(udy + ydu) = (wyhhu—y)dy or yhudu= —dy.

Separating variables, we obtain

d
Inudu = _Y
Yy

wlnfu| —u=—=Inly|+¢

X

I n —~==—Inly|+ec
Y

y ;

Y

r(lnz —Iny) —z = —yln|y| + cy.

_3. The differential equation

dy =~ 2 322 -
dr 6:U+1y_ 6:1:—{-1‘/
is Bernoulli. Using w = °, we obtain the lincar equation
duw 6 _ 942
de  6z+1  6x+1°

An integrating factor is 6z + 1. so

d .
— [(6z + D)w! = —922,
o [(6z 4+ 1)w! T
o 323 n c

- 6r+1 6+l

and

(6 4+ 1)y° = =32 +¢.
.Note: The differential equation is also exact.)
.. WWrite the differential equation in the form (3y? + 2x)dx + (dy% + 6zy)dy = 0. Letting M = 3y% + 2z
and N = 43 + 6xy we sce that M, = 6y = N, so the differential cquation is exact. From
fr = 3y% + 2z we obtain f = 32y? + 2% + h(y). Then f, = 62y + K (y) = 4y* + 6zy and K/ (y) = 4y?
50 h(y) = —iy‘i A onc-paramcter family of solutions is

. 5 4
3:11‘}}2 + 2+ g’yg = (.
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15. Write the equation in the form
dQ
o + Q =t3Int.

Int

An integrating factor is e™? = t, so

g[tQ] = t*Int

tQ = —gfj 5t5lnt+c
and .
—_tp Ly t+ S
@= 25 *5 5 . t’
16. Letting u = 22 + y + 1 we have
du _ ., 4y
dr dx’

and so the given differential equation is transformed into

du du 2u+1
u{——2]=1 or — = .
dx dx U

Separating variables and integrating we get

du = dx

2u,J—1

1 1 1
(_2‘_52u+1>du_d°b

1 1
§u—zln|2u-:-1[—:l:+c

2u—In|2u+1| =2z + ;.

Resubstituting for u gives the solution

dr+2y+2—Injdz+2y+3|=22r+¢

or

20 +2y+2—Inldz + 2y + 3| = ¢1.

17. Write the equation in the form
dy . 8z 2z

dr  2+d’ T 24

An integrating factor is ( x

-4)", 50
;—1[(1 +4 y]—?a J: +4)
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(:L'2+4)4 +c

el

4

(332 + 4) Yy =
zand | )

— - 2 /] —
¥y=7 +c (:c + —1) .

Zetting M = 2r2 cosfsinf + r cos§ and N = 4r +sind — 2r cos® § we see that M, = 4r cosfsin b +
2330 = Np, so the differential equation is cxact. From fy = 2r2cosfsiné + rcosé we obtain
“ = —r2cos?f + rsind + k(r). Then f. = —2rcos?§ +sind + K (r) = 4r + sin — 2rcos?# and
="r) = 4r so h(r) = 2r2. The solution is

—r2cos? +rsind +2r? = ¢.

. The differential equation has the form (d/dx) [(sinz)y] = 0. Intcgrating, we have (sinx)y = ¢ or

. = ¢/sinz. The initial condition implics ¢ = —2sin(77/6) = 1. Thus, y = 1/sinz, where the
terval m < x < 21 is chosen to include x = 77 /6.

_. Separating variables and integrating we have

dy _

— =20+ 1)dt
y
L =—(t+1)2+c
)
! L here
Y= where —c¢ = ¢;.
Y (t+1)2 4’ !
The initial condition y(0) = —% implies ¢; = —9, so a solution of the initial-value problem is
= L or = !
YT+ 12o9 (I -y

~here —4 <t < 2.
ra) For y <0, \/y is not a real number.

ib) Scparating variables and intcgrating we have

Letting y(wo) = 4o We get ¢ = 2,/yg — %o, so that

1 .
2y=x+2yo —zo and y=:l(m+2\/y_—:ro)2.

Since /y > 0 for y # 0, we see that dy/dz = %(:z: + 24/y0 — xo) must be positive. Thus, the
interval on which the solution is defined is (zo — 2,/40, 00).
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22.

23.

24.

25.

(a) The differential equation is homogeneous and we let y = ux. Then
(2 —y®)da + zydy =0
(2% — u?2?) do + ur(ude + 7 du) = 0

dr+uzxdu=0

dx
udu = ——

T
Lo
—u*=—In|z|+¢
5 |z] + ¢

2

~z
'_j—2 =-2In|z| + .

The initial condition gives ¢; = 2, so an implicit solution is y? = 22(2 — 21In |z]).

(b) Solving for y in part (a) and being sure that the initial condi- ¥

tion is still satisficd, we have y = —v/2|z}(1 —In |z|)1/2, where 2

—e < x < esothat 1 —In|z| > 0. The graph of this func- !
tion indicates that the derivative is not defined at « = 0 -2 -1 2 *

and z = ¢. Thus, the solution of the initial-value problem -1

-2

isy=—2z(1-Inz)"/? for 0 <z < e

The graph of y) () is the portion of the closed black curve lying in the fourth quadrant. Its inte: «
of definition is approximately (0.7,4.3). The graph of y2() is the portion of the left-hand bl- :

curve lying in the third quadrant. Its interval of definition is (—o0,0).

The first step of Euler’s method gives y(1.1) = 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method -:: -
more time gives y(1.2) ~ 9.4+ 0.1(1 + 1.1v/9.4) = 9.8373.

Since the differential cquation is autonomous, all lineal elements on a
given horizontal linc have the same slope. The direction field is then

as shown in the figure at the right. It appears from the figure that the

differential equation has critical points at —2 (an attractor) and at 2 (a

repeller). Thus, —2 is an aymptotically stable critical point and 2 is an
¥

unstable critical point.
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Since the differential equation is autonomous. all lincal clements on a
ziven horizontal line have the same slope. The direction field is then
as shown in the figure at the right. It appears from the figure that the

differential equation has no critical points.
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3 Modeling with First-Order
Differential Equations

1. Let P = P(t) be the population at time ¢, and Py the initial population. From dP/dt = k-
obtain P = Dye*. Using P(5) = 2P we find k = £1n2 and P = Ppe™®2¥5. Setting P(t) =

we have 3 = e(In2)t/5

, 8O
In2)t 5ln3

In3 = (In2) and t=2 ~ 7.9 years.

In ‘

Sctting P(t) = 4Py we have 4 = e(n2t/5 4o
In2)¢
Ind = (—Ir—) and t =~ 10 years.
5

2. From Problem 1 the growth constant is & = %111 2. Then P = Ppe(/5H 02}t 51,110,000 = Ppel®/~
Solving for Fy we get Py = 10,000e~(3/5 M2 — ¢ 597 5. Now
P(10) = Byel1/8)In2)(0) — 6 597 562102 — 4 By = 26.390.
The rate at which the population is growing is

1
P'(10) = kP(10) = 5(1112)26,390 = 3658 persons,/year.

3. Let P = P(t) be the population at time t. Then dP/dt = kP and P = ce!. From P(0) =¢ ="
we sce that P = 500ert. Since 15% of 500 is 75, we have P(10) = 500e'%% = 575. Solving for :
get k= 15 1n 2% =} 1n1.15. When ¢ = 30.

P(30) = 500e(/10n115)30 _ 5003115 — 760 years
and _
P'(30) = kP(30) = %(ln 1.15)760 = 10.62 persons/year.

4. Let P = P(t) be bacteria population at time ¢ and Fy the initial number. From dP/dt = k-
obtain P = Pyeft. Using P(3) = 400 and P(10) = 2000 we find 400 = Pye®* or ¥ = (400/P,
From P(10) = 2000 we then have 2000 = Pyel®% = Py(400/ Py)19/3, so

2000 /3 2000 \ 737
400—10/5 =1 and P(] = (4—00‘-1073'> =~ 201.
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Lt

. 2t A = A(t) be the amount of lead present at time ¢. From dA/dt = kA and A(0) = 1 we obtain
4= e Using A(3.3) = 1/2 we find k = 55 In(1/2). When 90% of the lead has decayed, 0.1 grams

=1 remain. Setting A(t) = 0.1 we have ¢/(1/3-31(1/2) = 0.1 50

ol ool and ¢ 3301

=220 10.96 hours.
332 m(1/2) - 10-96 hours

(AN

. Lot A = A(t) be the amount present at time ¢. From dA/dt = kA and A(0) = 100 we obtain
= =100e*. Using A(6) = 97 we find k = 1 1n0.97. Then A(24) = 100¢(H/6)M09N24 = 100(0.97)% ~

.5 mg.

~. Z:ting A(t) = 50 in Problem 6 we obtain 50 = 100, so

kt = 111% and t= a}gﬁ% = 136.5 hours.

ry

a) The solution of dA/dt = kA is A(t) = Age*. Letting A = 1 Ao and solving for ¢ we obtain the
half-life 7' = —(In2) /k.

b) Since k = —(In2)/7" we have

A(t) — Aoe—(ln‘Z)t/T — A02_t/T.

c) Writing %Ao = Ag2~ T as 273 = 2747 and solving for t we get t = 3T. Thus, an initial
amount Ag will decay to %Ao in three half-lives.
: L= I=1I(t) be the intensity, ¢ the thickness, and I(0) = Iy. If dI/dt = kI and I(3) = 0.251;, then

D= IpeM, k= 11n0.25, and I(15) = 0.000981.
T7im dS/dt = rS we obtain S = Sye™ where S(0) = S.

a) If Sy = $5000 and r = 5.75% then S(5) = $6665.45.

oy If S(t) =$10.000 then ¢ = 12 years.

1 S~ $6651.82

.. ~:sume that A = Agef and k = —0.00012378. If A(t) = 0.145A then ¢ ~13,600 years.

"2 - m Example 3 in the text, the amount of carbon present at time ¢ is A(t) = Ape0-00012378¢
_:-ing t = 660 and solving for Ag we have A(660) = Age~0-0001237(660) — () 9215534,. Thus,
-mzroximately 92% of the original amount of C-14 remained in the cloth as of 1988.

-<s:ume that dT/dt = k(T — 10) so that T = 104 ce**. If T(0) = 70° and T(1/2) = 50° then ¢ = 60
Lk =21n(2/3) so that T'(1) = 36.67°. If T(¢) = 15° then t = 3.06 minutes.

~=same that d7'/dt = k(T —5) so that T = 5+ ce*. If T(1) = 55° and T'(5) = 30° then k = —in2
.1 c=59.4611 so that T(0) = 64.4611°.
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15.

16.

17.

We use the fact that the boiling tempcerature for water is 100° C. Now assume that d7'/dt
k(T — 100) so that T = 100 + ce. If T(0) = 20° and T(1) = 22°, then ¢ = —80 and &
In(39/40) ~ —0.0253. Then T(¢) = 100 — 80e~"92%% and when T = 90, ¢ = 82.1 seconds.
T(t) = 98° then t = 145.7 seconds.

Il

The differential equation for the first container is d71/dt = ki(Ty — 0) = k171, whose solution :-
T1(t) = c1¢™?. Since T7(0) = 100 (the initial temperature of the metal bar), we have 100 = ¢ at-
Ti(t) = 100e*1t. After 1 minute, T3(1) = 100" = 90°C, so0 k1 = In0.9 and 73(t) = 100e*™"
After 2 minutes, T1(2) = 1002209 = 100(0.9)2 = 81°C.

The differential equation for the second container is dTa/dt = k(T2 — 100), whose solution :-
To(t) = 1004coe®2t. When the metal bar is immersed in the second container, its initial temperati: -
is T(0) = 81, so

T5(0) = 100 4 220 = 100 + ¢ = 81
and ¢3 = —19. Thus, Ty(t) = 100 — 19¢*2%. After 1 minute in the second tank, the temperature
the metal bar is 91°C, so
Ty(1) = 100 — 19¢F2 = 91

. 9
ko -
© 719
9
k2 =In E

and Ty(t) = 100 — 19et120/19) Setting To(t) = 99.9 we have
100 — 19¢!O/19) = 99,9

(m(oy19) _ 01

19
_In(0.1/19)

= ~ 7.02.
In(9/19)

Thus, from the start of the “double dipping” process, the total time until the bar reaches 99.¢"
in the second container is approximately 9.02 minutes.

Using separation of variables to solve dT'/dt = k(T — Tp,) we get T(t) = Ty, +ce®. Using T(0) =~ ;
we find ¢ =70 — Ty, s0 T'() = Ty + (70 — Tm)ek‘t. Using the given observations, we obtain

1 ,
T(E) = Tpn + (70 — T )e/? = 110

T(1) = T + (70 — T,p)e* = 145.
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Then, from the first equation, */2 = (110 — T},,)/(70 — Tp,) and

& — (/22 = (110 — T.,,,_)z _ 145-T,

70 - Tm N 70 - Trn
(110 — Tpp)?
Mo T 145 -1,
0T, T Im

12100 — 2207, + T2, = 10150 — 2157}, + T2,

T = 390.

The temperature in the oven is 390°.

s (a)

:b)

The initial temperature of the bath is 7;,(0) = 60°, so in the short term the temperature of the
chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath
will increase toward 100° since e~91¢ decreases from 1 toward 0 as ¢ increases from 0. Thus,

in the long term, the temperature of the chemical should increase or warm toward 100°.

Adapting the model for Newton’s law of cooling, we have r
dT . 100
— =0T - 100+ 40018 T(0) = 80. N
Writing the differential equation in the form NS
T 70 §
4L 01T = 10 — 4e~01 /
dt y :

we see that it is linear with integrating factor ef 0-1dt — 0.1t Thyg
d

d{_ [60.1tT] — 1060.1t —1

O = 100e™Y — 4t + ¢
and
T(t) = 100 — 4te™ """ + ce 01,

Now T(0) = 80 s0 100 + ¢ = 80, ¢ = —20 and
T(t) = 100 — 4t6_0'1t _ 2063_0'1t =100 — (4t + 2())6_0'1t,

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The

wider curve shows the temperature 7, of the liquid bath.

- zurtifying 1o, = 70, the differential equation is d7'/dt = k(T — 70). Assuming T7'(0) = 98.6 and
--= zrating variables we find T'(t) = 70 +28.9¢*. If t; > 0 is the time of discovery of the body, then

T(t1) = 70+ 28.6¢"" = 85 and T(t; + 1) = 70 + 28.6¢*(1+1) = g
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Therefore e**1 = 15/28.6 and e*(11) = 10/28.6. This implies
b 19 ke 10 286 2

“© =386 ~ 986 15 3’

so k= ln% ~ —0.405465108. Thercfore

1 15

~ 1.5916 ~ 1.6.
Death took place about 1.6 hours prior to the discovery of the body.
20. Solving the differential cquation dT'/dt = kS(T — T,y,) subject to T'(0) = Ty gives
T(t) = Ton + (To — Tn)e*™".
The temperatures of the coffee in cups A and B are, respectively,
Ta(t) = 70 + 80"t and  Tp(t) = 70 4 802+,
Then T4(30) = 70 + 80¢*%% = 100, which implies ¢*°*¥ = 3. Hence
Tp(30) = 70 + 8059 = 70 4 80 (£045)

— 70 + 80 (-‘5)2 = 70 + 80 (3) — 81.25°F
- 8) ~ 6a) Ot

21. From dA/dt = 4 — A/30 we obtain A = 200 + ce™¥/50. If A(0) = 30 then ¢ = —170 &
A =200 — 1704/,

22. From dA/dt =0 — A/50 we obtain A = ce™*/%0. If A(0) = 30 then ¢ = 30 and 4 = 30e~/%0. |

23. From dA/dt = 10 — A/100 we obtain A = 1000 + ce~#/1%, If A(0) = 0 then ¢ = —1000 : i
A(t) = 1000 — 1000e~%/100,

24. From Problem 23 the number of pounds of salt in the tank at time ¢ is A(¢) = 1000 — 1000e™" -
The concentration at time ¢ is c(t) = A(t)/500 = 2 — 2¢=*/100_ Thercfore ¢(5) = 2 — 2¢~1/* ;
0.09751b/gal and lims ., ¢(t) = 2. Solving c(t) = 1 = 2 — 2¢7/1% for ¢ we obtain ¢ = 100In? :

69.3 min.
25. From A {04 24
@ 5T ooy 100 ,
we obtain A = 1000 — 10t + ¢(100 — t)2. If A(0) = 0 then ¢ = —5;. The tank is empty in . ¥
minutes.

26. With ¢;p,(t) = 2 + sin(t/4) Ib/gal, the initial-value problem is

dA 1 Lt
a+100‘4—6+35111:1, A(0) = 50.
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Tre differential equation is linear with integrating factor e 44/100 — ot/100 g4

_,f-/100 — (@ 2an B\ /100
S GA0) <6+3bln4>c

150 t 3750
£/100 4(4) — gO0e!/ 100 (17100 /100
| e U A(t) = 600e + — 313° 51114 313 ¢ cos o +(
o Z T /
A(t) = 600 + %—;—g sin — — % cos 2 + ce~'/100,

_=ting £ = 0 and A = 50 we have 600 — 37-50/313 + ¢ =50 and ¢ = —168400/313. Then
150 sin t 3700 t 1684006{_,,/100.

313°M1 T 313 ‘1 313

“=e graphs on [0,300; and [0,600] below show the effcet of the sine function in the input when

A(t) = 600 +

:apared with the graph in Figure 3.1.4(a) in the text.

A() AD)
600} 600
500! 500
400- 400
300 300
200- 200
100} 100
50 100 150 308 250 300' ""i00 36077300 400 500 600’
Tt om
dA 44 24

g = 3 2
dt 100 + (6 — 4)t 50+t
- .btain A = 50 + ¢+ ¢(50 + )72, If A(0) = 10 then ¢ = —100,000 and A(30) = 64.38 pounds.

= Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of
3 gal/min and the mixturc is pumped out at a rate of 2 gal/min, the net change is an increasc
of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.

= The differential equation describing the amount of salt in the tank is A'(t) = 6 — 2A4/(300 + t)

with solution
A(t) =600 + 2t — (4.95 x 107)(300 + £)™2, 0 < ¢ < 100,

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the

rank when it overflows is
A(100) = 800 — (4.95 x 107)(400) 2 = 490.625 Ibs.

When the tank is overflowing the amount of salt in the tank is governed by the differential
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equation
94 _ (3 gal/min) (2 Ib/gal) — (-A Ib/gal) (3 gal/min)
i~ 8 B~ \q0 /)08
34
—6- 0, A(100) = 490.625.

Solving the equation, we obtain A(t) = 800 4 ce~3t/400, The initial condition yields
¢ = —654.947, so that

A(t) = 800 — 654.947¢3¢/400,
When t = 150, A(150) = 587.37 Ibs.

(d) Ast — oo, the amount of salt is 800 lbs, which is to be expected since
(400 gal)(2 1b/gal)= 800 lbs.

(e) =a

800

600

400

200

200 400 600 t

29. Assume Ldi/dt+ Ri = E(t), L = 0.1, R = 50, and E(t) = 50 so that ¢ = 3 + ce=50%. If §(0) =
then ¢ = —3/5 and lim; , i(t) = 3/5.

30. Assume Ldi/dt + Ri = E(t), E(t) = Egsinwt, and i(0) = ig so that

2=m81ﬂ0)t—m'0080)t+66 / .
Eblxd
ince (0) = 39 we obtain ¢ =49 + P2 2

31. Assume Rdg/dt+ (1/C)q = E(t), R =200, C = 1074, and E(t) = 100 so that ¢ = 1/100 + ce~
If ¢(0) = 0 then ¢ = —1/100 and i = 2e~%0.

32. Assume Rdg/dt+(1/C)q = E(t), R =1000, C = 5x107%, and E(t) = 200. Then q = 1355 +ce”
and i = —200ce™20%, If 5(0).= 0.4 then ¢ = —zl5, ¢(0.005) = 0.003 coulombs, and 4(0.005)
0.1472 amps. We have ¢ — ﬁ as t — oo.

33. For 0 < t < 20 the differential equation is 20di/dt + 2¢ = 120. An integrating factor is et/10,
(d/dt)[e/*%] = 6€*/10 and i = 60 + c;e~*/10. If §(0) = O then ¢; = —60 and i = 60 — 60e~/
For t > 20 the differential equation is 20di/dt + 2i = 0 and i = cpe¥/10. At t = 20 we w
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=272 = 60 — 60e~2 so that ¢y = 60 (ez — 1). Thus

® 60 — 60e=*/10, 0<t<20
i(t) =
( 60 (62 - 1) et ¢ > 90,
i+ >oparating variables, we obtain
dq o dt
Ey—q/C Ky + kot
| ' 1
~Cln By~ é{- = okt kot + o
(Bo—a/C)¢ _
(k1 + kgt)l/""‘z

~=:ting ¢(0) = ¢o we find co = (Ep — qO/C)‘O/k%/k? , SO
(Eo—q/C)~C  (Eo—qo/C)™“

(k1 + kgt)l/k2 - k‘ll/’”

-C -C . —1/k2
q _ QD ky
(E" N E) - (E" c) (k + kzt)

E—g=(E—q—0) k1 1/Cks
C 07 C) \k+ kot

g\ YOk
k+ kgt)

q=EOO+(QO—EOC)(

'z 1a) From mduv/dt = mg — kv we obtain v = mg/k + ce™*/™_ If v(0) = vg then ¢ = vg — mg/k and

the solution of the initial-value problem is

v(t) = % + (vo - ng-> e~kt/m,

-b) As t — oo the limiting velocity is mg/k.

ic) From ds/dt = v and s(0) = 0 we obtain

:TE —m ) __@ ;_k't'//m -Tz(',! -—.Trﬂ)
s(t) p t p (bo p )(, + A

7. {a) Integrating d?s/dt? = —g we get v(t) = ds/dt = —gt + ¢. From v(0) = 300 we find ¢ = 300,
and we are given g = 32, so the velocity is v(t) = —32t + 300.

'b) Integrating again and using s(0) = 0 we get s(t) = —16¢2 + 300¢t. The maximum height is
attained when v = 0, that is, at t; = 9.375. The maximum height will be (9.375) = 1406.25 ft.
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37.

38.

39.

When air resistance is proportional to velocity, the model for the velocity is mdv/dt =
—mg — kv (using the fact that the positive direction is upward.) Solving the differential equ:-
tion using separation of variables we obtain v(t) = —mg/k 4+ ce */™. From v(0) = 300 wc get
()=~ 1 (300 4 ™)t/
v(t) =~ + (300 + : Jeke/m,
Integrating and using s(0) = 0 we find
myg my, mg —kt/m
s(t) = ——=t+ — (300 + — ) (1 — ™"/,
(0= 1+ 7 (8004 Z7) (1= e

Setting & = 0.0025, m = 16/32 = 0.5, and ¢ = 32 we have

5(t) = 1.340,000 — 6,400¢ — 1,340,000¢ 000"
and
v(t) = —6,400 + 6,700¢ ~0-005¢

The maximum height is attained when v = 0, that is, at ¢, = 9.162. The maximum hecight will ~-
5(9.162) = 1363.79 ft, which is less than the maximum height in Problem 36.

Assuming that the air resistance is proportional to velocity and the positive direction is downwe.: .
with $(0) = 0, the model for the velocity is mdv/dt = myg — kv. Using separation of varial -
to solve this differential equation, we obtain v(t) = mg/k + ce™*/™_ Then, using »(0) = 0. -
get v(t) = (mg/k)(1 — e */™). Letting k = 0.5, m = (125 4+ 33)/32 = 5, and g = 32, we h: -
v(t) = 320(1 — e %1t). Integrating, we find s(t) = 320¢ + 3200e """ 4 ¢;. Solving s(0) =
for ¢; we find ¢; = —3200, thereforc s(t) = 320t + 3200e~%1 — 3200. At ¢t = 15, when -.
parachute opens, v(15) = 248.598 and s(15) = 2314.02. At this time the value of &k changes -
k = 10 and the new initial velocity is vg = 248.598. With the parachute open, the skydiv-. -

velocity is vp(t) = mg/k + coe™/™ where t is reset to 0 when the parachute opens. Letr
m =5, g = 32, and k = 10, this gives 1,(t) = 16 + cae™?. From v(0) = 248.598 we =.
¢y = 232.598, 50 vp(t) = 16+232.598¢ . Integrating, we get s,(t) = 16t—116.299¢ > +¢3. Sol:.
sp(0) = 0 for ¢3, we find ¢z = 116.299, so s,(t) = 16t — 116.299¢~% +116.299. Twenty seconds a7
leaving the planc is five seconds after the parachute opens. The skydiver’s velocity at this tin:-
vp(5) = 16.0106 ft/s and she has fallen a total of s(15) + $,(5) = 2314.02 + 196.294 = 2510.3" -,
Her terminal velocity is limg .o () = 16, so she has very nearly rcached her terminal velc
five seconds after the parachute opens. When the parachute opens, the distance to the grour
13,000 — 5(15) = 15,000 — 2,314 = 12,686 ft. Solving s,(t) = 12,686 we get t = 785.6 s = _
min. Thus, it will take her approximately 13.1 minutes to reach the ground after her parachute . -
opened and a total of (785.6 + 15)/60 = 13.34 minutes after she cxits the plane.

(a) The differential equation is first-order and lincar. Letting b = k/p, the integrating fact ..
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o 3bdL/(bt+ro) — (ro + bt)?’. Then

%[(7'0 +6t)30) = g(ro + bt)> and (ro + bt)’v = %(7‘0 +bt)* + ¢
The solution of the differcntial equation is v(t) = (g/4b)(rg +bt) + c(ro +bt)~3. Using v(0) =0
we find ¢ = —gra/4b, so that

4 : 4
u(t) = < g _gpr ok 9pm
v(t) = 4b (ro+bt) db(ro + bt)3 4k (TO T pt) dk(ro - kt/p)3

(b) Integrating dr/dt = k/p we get r = kt/p+c. Using r(0) = ry we have ¢ = rq, so r(t) = kt/p+r.

(¢) If r = 0.007 ft when ¢ = 10s, then solving r(10) = 0.007 for k/p, we obtain k/p = —0.0003 and
r(t) = 0.01 — 0.0003¢. Solving r(t) = 0 we get ¢ = 33.3, so the raindrop will have evaporated
completely at 33.3 seconds.

1. Separating variables, we obtain dP/P = kcostdt, so v

In|P|=ksint+c¢ and P = ¢ et “:’ E : :
‘e

If P(0) = Py, then ¢; = Py and P = P()eksmt. 5 10

2. (a) From dP/dt = (k; — ko) P we obtain P = Pyel®¥1 =52}t where Py = P(0).

(b) If k1 > ky then P — oo ast — oo. If ky = kg then P = P for every ¢t. If ky < ky then P — 0

as t — o0.

. (a) The solution of the differential equation is P(t) = cie®* = h/k. If we let the initial population

of fish be Py then P(0) = Py which implies that

h h\ .. 1
=R~ and P(t)= (Po - ;’,) et

tb) For Py > h/k all terms in the solution arc positive. In this case P(t) increases as time ¢
increases. That is, P(t) — oc as t — oc.

For Py = h/k the population remains constant for all time ¢:

h h\ .+ h h

For 0 < Py < h/k the coefficient of the exponential function is negative and so the function
decreases as time ¢ increases.

c) Since the function decreases and is concave down, the graph of P(t) crosses the t-axis. That
is, there exists a time T' > 0 such that P(T) = 0. Solving
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for T shows that the time of extinction is

_ 1 h
T_Eln(h..—k:PO)'

43. (a) Solving » — kz = 0 for z we find the equilibrium solution @ = r/k. When z < r/k,
dz/dt > 0 and when x > r/k, dz/dt < 0. From the phase portrait we see that

lims o0 2(t) = 7/k.

A
(b) From dx/dt = r — kx and z(0) = 0 we obtain z = r/k — (r/k)e™* x
so that £ — r/k as t — oc. If 2(T) = r/2k then T = (In2)/k.
r/k:

44. (a) Solving k(M — A) — koA = 0 for A we find the equilibrium solution .
A = kiM/(ki + k2). From the phase portrait we sce that lims .. A(t) = '
kyM/(k1 + kg). Since kg > 0, the material will never be completely memo-
rized and the larger ko is, the less the amount of material will be memorized over '
time. Mk,

ki +ka

(b) Write the differential equation in the form dA/dt+ (k1 +k2)A =

kyM
k1M. Then an integrating factor is elki+k2)t ang K+ Ky
A [ (kysho)t Vo (k1 ka2)t
y le A] = ki Mc™
elkitke)t 4 — Me(k1+k2)t +e

ki + ko

ki M 3
A= o~ (kitk2)t
k1 + ko e
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k1M k1M otk
Using A(0) =0 we find ¢ = % 1+k2 and A = n 1+ kz (1 - e_(l"l""‘?)t). As t — oc,
k1M
A- kl + ]i:-z .

For 0 <t <4,6<t<10and 12 <t < 16, no voltage is applicd to the heart and E(f) = 0. At
the other times, the differential equation is dE/dt = —FE/RC'. Scparating variables, integrating,
and solving for e. we get F = ke “/5C subject to E(4) = E(10) = E(16) = 12. These intitial
conditions yield, respectively, k = 12e¥/FC, | = 12¢10/RC | = 12e16/8C and k = 12¢22/RC

Thus
0. 0<t<4 6<t<10, 12<t< 16

12e(-0/8C 4 <t <6

E(t) =< 1200-09/RC 0 10 <t < 12
12¢(16-0/RC 16 < ¢t < 18
[ 126(22-0)/RC 99 < ¢ < 24.

E
10 1 1 I 1
i i | i
i i | i
1 1 | H
i i | {
5 i { | i
i i | 1
§ i | f
i i | H
{ i | t
i ] 3 | l | : L ¢
4 6 10 12 16 18 22 24

(7) Using Newton’s second law of motion, £ = ma = m dv/dt, the differential equation for the

velocity v is

dv . dv )
mey = mgsin 4 or — =gsinéb,
L .

dt

where mgsind, 0 < 6 < /2, is the component of the weight along the plane in the direction
of motion.
(#4) The model now becomes

m % = mgsinf — pmgcos b,
where pumgcos is the component of the force of sliding friction (which acts perpendicular
to the plane) along the plane. The negative sign indicates that this component of force is a
rctarding force which acts in the direction opposite to that of motion.
(#14) If air resistance is taken to be proportional to the instantaneous velocity of the body, the
model becomes

dv ,
m pri mgsin @ — umg cosd — kv,
dt
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where k is a constant of proportionality.

(b) (7) With m = 3 slugs, the differential equation is

dv 1 dv
3— =1(96)- = — = 16.
z~ )3 ot dt
Integrating the last equation gives v(¢t) = 16t + ¢;. Since v(0) = 0, we have ¢; = 0 and ¢

v(t) = 16t.
(i1) With m = 3slugs, the differcutial cquation is

du 1 \/§ V3 dv
3—=(96) = — — - (96) - — — =4
d (96) (96) 2 o dt
In this case v(t) = 4t.
(%) When the retarding force due to air resistance is taken into account, the different: .

cquation for velocity v becomes

3%=(96)~1——\'——/§-(96)'\/7§—iv or 3%=12—iv.

The last differential equation is linear and has solution v(t) = 48 4+ ¢1¢™*/12. Since v(0) =

we find ¢] = —48, so v(t) = 48 — 48e~1/12.

47. (a) (4) If s(t) is distance measured down the planc from the highest point, then ds/dt = v. In" -~
grating ds/dl = 16t gives s(t) = 8t% + co. Using s(0) = 0 then gives ¢co = 0. Now the lcng_j‘j

L of the plane is L = 50/sin30° = 100{t. The time it takes the box to slide completely dc-

the plane is the solution of s(t) = 100 or t? = 25/2, s0 t = 3.54s.
(i) Integrating ds/dt = 4t gives s(t) = 2t2 4+ ¢o. Using s(0) = 0 gives ¢p = 0, 50 s(t) = 2t% ¢ |
the solution of s(¢) = 100 is now ¢ ~ 7.07s.
(#ii) Integrating ds/dt = 48 — 48¢%12 and using s(0) = 0 to determine the constan: |
integration, we obtain s(t) = 48t + 576e~4/12 — 576. With the aid of a CAS we find that -
solution of s(¢) = 100, or

100 = 48t + 576¢ 1% — 576 or 0 = 48t + 576e~4/12 — 676,
isnow t~ 7.84s.

(b) The differential equation mdv/dt = mgsinf — pmg cosf can be written
dv
m - =mgcos f(tand — p). |
If tanf = p, dv/dt = 0 and v(0) = 0 implies that v(t) = 0. If tand < g and v(0) = 0. -
integration implies v(t) = gcosf(tanf — )t < 0 for all time ¢.
(c) Since tan23° = 0.4245 and pu = v/3/4 = 0.4330, we see that tan 23° < 0.4330. The differ¢:
equation is duv/dt = 32c0s23°(tan23° — /3/4) = —0.251493. Integration and the 1-
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the initial condition gives v(t) = —0.251493t + 1. When the box stops, v(t) = 0 or 0 =
—0.251493t+1 or t = 3.976254s. From s(t) = —0.125747¢2+t we find 5(3.976254) = 1.988119 ft.

(d) With vg > 0. v(t) = —0.251493t + vg and s(t) = —0.125747¢? + vot. Because two real positive
solutions of the equation s(t) = 100, or 0 = —0.125747t% + vot — 100, would be physically
meaningless, we use the quadratic formula and require that b?> —dac =0 or 7;8 — 50.2987 = 0.
From this last cquality we find vy =& 7.092164ft/s. For the time it takes the box to traverse
the entire inclined plane, we must have 0 = —0.125747t% 4 7.092164¢ — 100. Mathematica gives
complex roots for the last equation: ¢ = 28.2001 £ 0.0124458:. But, for

0 = —0.125747t> + 7.092164691¢ — 100,

the roots are ¢t = 28.1999s and t = 28.2004 s. So if vg > 7.092164, we are guaranteed that the

box will slide completely down the plane.

<%, (a) We saw in part (b) of Problem 36 that the ascent time is ¢, = 9.375. To find when the
cannonball hits the ground we solve s(t) = —16t2 + 300t = 0, getting a total time in flight of
t = 18.75s. Thus, the time of descent is tg = 18.75 — 9.375 = 9.375. Thc impact velocity is
v; = v(18.75) = —300, which has the same magnitude as the initial velocity.

1b) We saw in Problem 37 that the ascent time in the case of air resistance is ¢, = 9.162. Solving
5(t) = 1,340,000 — 6,400t — 1,340,000 =909 = () we see that the total time of flight is 18.466s.
Thus, the descent time is t; = 18.466 —9.162 = 9.304. The impact velocity is v; = v(18.466) =
—290.91, compared to an initial velocity of vg = 300.

Exercises 3.2

~ a) Solving N(1 — 0.00056N) = 0 for N we find the equilibrium solutions N = 0 and N
N = 2000. When 0 < N < 2000, dN/dt > 0. From the phase portrait we see that o0 ]
limy .00 N(t) = 2000. A graph of the solution is shown in part (b).
|
0..

99



Exercises 3.2 Nonlinear Models

(b) Separating variables and integrating we have N
dN 1 1
=(=———)dN =dt
N(1 - 0.0005N) (% ~ 7 —zm00)4N =
and
In N — In(N —2000) =t +c. - SR T N R M

Solving for N we get N(t) = 2000eTt/(1 + ¢“T*) = 2000e“et/(1 + ee’). Using N(0) = 1 &x:
solving for ¢¢ we find e® = 1/1999 and so N(¢) = 2000e’/(1999 + ¢!). Then N(10) = 1833.7.
g0 1834 companies are expected to adopt the new technology when ¢t = 10.

2. From dN/dt = N(a —bN) and N(0) = 500 we obtain
300a
" 500 + (a — 500b)e—at
Since limoc N = a/b = 50,000 and N(1) = 1000 we have a = 0.7033, b = 0.00014, a:..
N = 50.000/(1 4 99070331
3. From dP/dt = P (107" — 107P) and P(0) = 5000 we obtain P = 500/(0.0005 + 0.0095¢~01"

N

that P — 1,000,000 as ¢t — oco. If P(¢) = 500,000 then ¢t = 52.9months.
4. (a) We have dP/dt = P(a — bP) with P(0) = 3.929 million. Using separation of variables 4

obtain
P(t) = 3.929q B a/b
T 3.920b 4 (¢ — 3.929b)e=9t 1+ (a/3.920b — 1)e—@
C

T 1+ (/3929 — 1)eo’
where ¢ = a/b. At t = 60(1850) the population is 23.192 million, so

C
23.192 = -
3192 = 1 /3,020 — 1)eo06

or ¢ = 23.192 +23.192(c/3.929 — 1)e~ %%, At ¢ = 120(1910),

¢
g - '
91.972 1+ (¢/3.929 — 1)e—120a

or ¢ = 91.972 + 91.972(¢/3.929 — 1)(¢~%%¢)2, Combining the two equations for ¢ we get

(¢ — 23.192)/23.192\ > ( c ) - 91972
¢/3.920 — 1 3920 ) 91972

or
91.972(3.929) (¢ — 23.192)% = (23.192)%(c — 91.972)(c — 3.929).
The solution of this quadratic equation is ¢ = 197.274. This in turn gives ¢ = 0.0313. Ther:: -
197.274
P(t) = 1 + 49.21¢—0.0313¢ -
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' b) Census Predictea %

' Year Population  Population Error Error
1790 3.929 3.929 0.000 0.00
1800 5.308 5.334 -0.026  -0.49
1810 7.240 7.222 0.018 0.24
1820 9.638 9.746 -0.108  -1.12
1830 12.866 13.090 -0.224 -1.74
1840 17.069 17.475 -0.406 -2.38
1850 23.192 23.143 0.049 0.21
1860 31.433 30.341 1.092 3.47
1870 38.558 39.272 -0.714  -1.85
1880 50.156 50.044 0.112 0.22
1890 62.948 62.600 0.348 0.55
1900 75.996 76.666 -0.670 -0.88
1910 91.972 91.739 0.233 0.25
1920 105.711 107.143 -1.432 -1.35
1930 122.775 122.140 0.635 0.52
1940 131.669 136.068 -4.399 -3.34
1950 150.697 148.445 2.252 1.49

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970. The
census populations for these ycars were 179.3 and 203.3, respectively. The percentage errors
are 12.8 and 21.2, respectively.
I. ia) The differential equation is dP/dt = P(5 — P) — 4. Solving P(5 — P)—4 =0 for P ®

we obtain equilibrium solutions P =1 and P = 4. The phase portrait is shown on the
right and solution curves arc shown in part (b). We see that for Py >4 and 1 < Py < 4
the population approaches 4 as ¢ increases. For 0 < P < 1 the population decrcases to
0 in finite time.

+b) The differential equation is

P
1P .
((7=P(5—P)—4:—(P"‘—5P+4)=—(P—4)(P——1). 4
Separating variables and intecgrating, we obtain 1 I \: } o
dP L :
(P-4)(P-1)
1/3 /3y o
(P—4_ P_l)d,P——dt
1111 P-4 _ t+c
37P—11 '
P_ 4 . —3t
P——l = (1€

Setting ¢ =0 and P = Py we find ¢; = (Py —4)/(Py — 1). Solving for P we obtain

_ AP 1) — (P —4)e™
P(t) = (Po—1)—(Py—4)e3t
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(¢) To find when the population becomes extinct in the case 0 < Py < 1 we set P =0 in

P-1 B-1°
from part (a) and solve for ¢. This gives the time of extinction
1. 4(Ph—1)
t=—-ln————=.
3 . Py-4

6. Solving P(5— P)— 2 = 0 for P we obtain the equilibrium solution P = 5. For P # 2, dP/dt < (.
Thus, if Py < % , the population becomes extinct (otherwise there would be another equilibriun:
solution.) Using separation of variables to solve the initial-value problem, we get

P(t) = [4Py + (10Py — 25)t}/14 + (4P — 10)z].
To find when the population hecomes extinct for Py < g we solve P(t) = 0 for t. We see that the
time of extinction is t = 4Py/5(5 — 2F).

7. Solving P(5 — P) — 7 = 0 for P we obtain complex roots, so there are no equilibrium solutions.
Since dP/dt < 0 for all values of P, the population becomes extinct for any initial condition. Usin:
separation of variables to solve the initial-value problem, we get

5 3 2P -5\ 3
P(t) == ——t.[t “( )———t].
(t) 5 + an|tan 7 5

2
Solving P(t) = 0 for t we sec that the time of extinction is

t= g(\/gtan_l(S/\/g) +V3tan~'[(2R) — 5)/v3]).

8. (a) The differential equation is dP/dt = P(1 — In P), which has the cqui- 2
librium solution P = e. When Py > e, dP/dt < 0, and when Py < e, '
dP/dt > 0.

(b) The differential equation is dP/dt = P(1 + In P), which has the equilib- ?

rium solution P = 1/e. When Py > 1/e. dP/dt > 0, and when Py < 1/e, /
dP/dt < 0.

(c) From dP/dt = P(a — bln P) we obtain —(1/b)In|a — bln P| =t + ¢; so that P = et/be=ce™"
If P(0) = Py then ¢ = (a/b) — In F.
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. Let X = X(t) be the amount of C' at time ¢ and dX/dt = k(120 - 2X)(150 — X . EX 0 = 1 and
X(5) = 10. then

_ 150 — 15080k

T 1 — 2.5¢180kt

where k = .0001259 and X (20) = 29.3 grams. Now by L’Hopital's rule, X — 60 as t — oo, so that

X(t)

~he amount of A — 0 and the amount of B — 30 as t — oc.

-, Trom dX/dt = k(150 — X)?, X(0) =0, and X (5) = 10 we obtain X = 150 — 150/(150kt + 1) where
= = .000095238. Then X (20) = 33.3grams and X — 150 as ¢ — oc so that the amount of A — 0
and the amount of B — 0 as t — oc. If X(t) = 75 then ¢ = 70 minutes.

_2. 1a) The initial-value problem is dh/dt = —8A4,Vh JAu, 10{’
h(0) = H. Separating variables and integrating we ;
have

dh 8 8Ay

o B and VR = —

N/ Aw
Using h(0) = H we find ¢ = 2V/H , s0 the solution of
the initial-value problem is \,/% = (Ay VH - 4At)/ Ay, where A VH - 4Apt > 0. Thus,

h(t) = (ApVH — 4Ap1)2 /A2, for 0 <t < AyVH/4A.

i+ c.

t

500 1000 1500

b) Identifying H = 10, A, = 4, and A, = 7/576 we have h(t) = £2/331,776 — (,/5/2 /144)¢ + 10.
Solving h(t) = 0 we see that the tank empties in 5764/10 seconds or 30.36 minutes.
-2 10 obtain the solution of this differential equation we use h(t) from Problem 13 in Exercises 1.3.
Then A(t) = (AwVH — 4cApt)? /A2, Solving h(t) = 0 with ¢ = 0.6 and the values from Problem 11
e gee that the tank empties in 3035.79 seconds or 50.6 minutes.
a) Separating variables and integrating gives
¢ 12 - L
6h%/2dh = —5dt and 5 512 = 5t +¢.
Using h(0) = 20 we find ¢ = 1920/5. so the solution of the initial-value problem is h(t) =
(8005 — %%t)z/ 5, Solving h(t) = 0 we see that the tank empties in 384+/3 seconds or 14.31
minutes.
b) When the height of the water is A, the radius of the top of the water is © = htan30° = A, \ &

and A, = wh?/3. The differential equation is

dh An 7(2/12)% — 2
- = —C—F 2 } == _()-6_—.——_ L = T a A -
dt “Ay v2gh wh?/3 6k 5h3/2
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Separating variables and integrating gives
5h32dh = —2dt and 2R5/? = —2t +c.

Using R(0) = 9 we find ¢ = 486, so the solution of the initial-value problem is h(t) = (243—1)%"
Solving h(t) = 0 we sce that the tank cmpties in 243 seconds or 4.05 minutes.

14. When the height of the water is h, the radius of the top of the water is %(20 — h) av
Ay = 47(20 — h)?/25. The differential equation is

2 4
dh _ A fagh=—06 n(212" o 5_Vh

dt Ay dn(20 — h)2/25 6 (20 — h)?°
Separating variables and integrating we have
2 0 =
(—O—\/—Eﬂdh = —adt and  800Vh — 83 h3/2 +z 15/2 = —%t +e.

Using h(0) = 20 we find ¢ = 2560+/5/3, so an implicit solution of the initial-value problem is

800V 1 ——hW+ h’/2 —6t 2369?‘/_

To find the time it takes the tank to empty we set A = 0 and solve for t. The tank empties .
1024+/5 seconds or 38.16 minutes. Thus, the tank emptics more slowly when the basc of the cc:.
is on the hottom.

15. (a) After separating variables we obtain

p—
%

g1 \/_fu/\/——)
VMg v k/mgdv _
Vig 1= (Vkv/ymg)?
L VR

tanh =t+c

lug \/_

tanh ™! \/— t+cy.

fl'l

Thus the velocity at time £ is

[,
v(t) = ,/% tanh (\/ %’t + (:1) .

Setting ¢t = 0 and v = vy we find ¢ = tanh_l(\/Evg /v/myg ).
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b) Since tanh¢ — 1 as t — oo, we have v — V‘mg/k as t — oc.

c) Integrating the expression for (¢) in part (a) we obtain an integral of the form [ du/u:

s(t) = \;/_“ /tanh (V ﬂ7‘ + (’1> dt = = ™ [cosh (\’ Eb—qi‘ + c1)

Setting t = 0 and s = 0 we find ¢o = —(m/k) In{cosh ¢;), where ¢; is given in part (a).

+ ¢o.

The differential equation is m dv/dt = —mg — kv?. Separating variables and integrating, we have
dv _dt
mg+kv2 m

1 kv 1
tan~! (\/—b> =——t+4+cC

vmgk /Mg m
VEv ok
o=l [ VEUY
tan ( mg) mt-l- 1
_ [mng B ’%
v(t) = Vg tan (01 \/m t) :

Setting v(0) = 300, m = 35 = 3, g =32, and k = 0.0003, we find v(t) = 230.94 tan(c; — 0.138564¢t)
znd ¢; = 0.914743. Intcgrating
v(t) = 230.94 tan(0.914743 — 0.138564¢)
e get
s(t) = 1666.67In | cos(0.914743 — 0.138564¢)| + ca.
“sing 8(0) = 0 we find ¢y = 823.843. Solving v(t) = 0 we see that the maximum height is attained
~hen ¢ = 6.60159. The maximum height is s(6.60159) = 823.843 ft.

27. 1a) Let p be the weight density of the water and V' the volume of the object. Archimedes’ principle

states that the upward buoyant force has magnitude equal to the weight of the water displaced.
Taking the positive dircction to be down, the differential equation is

(;: —mg—l.v —pV.
(b) Using separation of variables we have
mdv
=dt
(mg — pV') — kv?
m Vkd _ i
VE (Vmg=pV )2 = (VEv)2
— tanh ™! —— : =t+ec

Vimg = pV
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Thus

img — pV kmag — koV
l'(t) = V’ w‘“‘k/—' t‘dl'lh (—ngnkp A + 01) .

T <. 14
(c) Since tanht — 1 as t — oo, the terminal velocity is /(g — pV)/k.
18. (a) Writing the equation in the form (z — /22 +y2 )dz + y dy = 0 we identify M = z — 4/ 2+ .-

and N = y. Since A and N are both homogeneous functions of degree 1 we use the substituti: .

y = ux. It follows that

(r—\/zz L2y )dz—i—ur(udl—l-ldu)—o

[1—\/] u—}—u} dz = 2%udu =0

wdu _ d_.r
l+u? —vV1+u? =z
udu dx

Vit (1-vVi+td?) =z
Letting w = 1 — V1 + u? we have dw = —udu/V1 + u? so that

5 :
—111’1—\/1+-u,2l =Injz|+¢

1 r
€
1 —v1+u? .
C ,
1-yl+ud=-" (=2 =1/c1)
. —
2 / Y
1+—=yl+ =
r VT2
2¢; 2 y?
1+ 24+ 2 =142
X T e

Solving for y? we have

. e C
@/2 = 2c91 + (35 =4 (72) (.l + ;)

which is a family of parabolas symmetric with respect to the z-axis with vertex at (—c2/2,C
and focus at the origin.

(b) Let u = 2% + y? so that
dx
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Then

@ 1 du

=—-— -z
y dr 2 dw
and the differential cquation can be written in the form

1 du 1 du
—— = U or ——
2 dz +Vu 2 dr
Separating variables and integrating gives
du
— =dx
2\/u
Vu=z+c

w=1242cx + ?
2%+ y2 = 12 + 21 + ¢

yz = 2cx + 2.

Exercises 3.2 Nonlinear Models

V.

22, (a) From 2W?2 — W3 = W2(2 — W) = 0 we see that 17" = 0 and W = 2 arc constant solutions.

(b) Separating variables and using a CAS to integrate we get
dW _ 4
Wyv4a-—2w

1
r and —tanh7! (5\/ 4— QPV) =z +c.

Using the facts that the hyperbolic tangent is an odd function and 1 — tanh? z = sech®z we
have

5V 4 — 2W = tanh(—2z — ¢) = — tanh(z + ¢)

ll(—l — 21) = tanh®(z + ¢)

1 .
1-sW = tanh?(z + c)

Thus, W (z) = 2sech?(z + ¢).

{c) Letting z =0 and W = 2 we find that sech?(c) = 1 and ¢ = 0.

a) Solving r? + (10 — k)2 = 10? for 2 we see that 7> = 20h — h2. Combining the rate of input of

water, 7, with the rate of output due to evaporation, kxr? = Em(20h — h,z), we have dV/dt =

107
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7 — kn(20h — h?). Using V = 107h? — $mh?, we see also that dV/dt = (20xh — wh?)dh/d"

Thus,
dh dh 1 —20kh + kh?
— 7 2 —_— =T K A /2 ¢ VW =
(20mh — mh®)— =7 — kn(20h — A7) and — 20h — B2

(b) Letting k = 1/100, separating variables and integrating (with the — »

help of a CAS), we get o //
o 100(h% — 10h + 1
100h(h =20) o o 100(A% —10R+100) _ ‘

(h — 10)2 10—h /
Using h(0) = 0 we find ¢ = 1000, and solving for h we get
h(t) = 0.005(v/t2 4+ 4000t — t), where the positive square root is
chosen hecause A > ().

| " 2006 4000 ‘6000 800G 101"

will fill in £(10)% ~ 666.67 minutes ~ 11.11 hours.

(d) At 666.67 minutes, the depth of the water is h(666.67) = 5.486 feet. From the graph in (b* -~
suspect that limy_, 2(t) = 10, in which case the tank will never completely fill. To prove -_.1

we compute the limit of h(t):

o t2 + 4000t — ¢
lim A(t) = 0.005 lim (\/ t2 + 4000t — t) = 0.005 lim + 400
t—00 t—00 t—00 /12 1+ 4000t + ¢

— 0,005 lim ——2%% 4,005 29% _ 4 005(2000) = 10.

=00 ¢ /1 + 4000/ + ¢ 1+1

21. (a) t P(t) Q(t)

0 3.929 0.035
10 5.308 0.036
20 7.240 0.033
30 9.638 0.033
40 12.866 0.033
50 17.069 0.036
60 23.192 0.036
70 31.433 0.023
80 38.558 0.030
90 50.156 0.026

100 62.948 0.021
110 75.996 0.021
120 91.972 0.015
130 105.711 0.016
140 122.775 0.007
150 131.669 0.014
160 150.697 0.019
170 179.300
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The regression line is @ = 0.0348391 — 0.000168222P.

30 40 60 80 1001207140 P

The solution of the logistic equation is given in cquation (5) in the text. Identifying a =
0.0348391 and b = 0.000168222 we have

al
- bPy + (a — bPy)e—et ’

P(t)

With Py = 3.929 the solution becomes

p(t) = 0.136883
7 7 0.000660944 + 0.0341781¢—0-0348391¢ *

175
150
125
100
75}
50}
25

t

2577507577100 125 150

We identify ¢ = 180 with 1970, ¢t = 190 with 1980, and ¢ = 200 with 1990. The modecl predicts
P(180) = 188.661, P(190) = 193.735, and P(200) = 197.485. The actual population figures
for these years are 203.303, 226.542, and 248.765 millions. As t — oc, P(t) — a/b = 207.102.
Using a CAS to solve P(1 — P) 4 0.3¢™T = 0 for P we see that P = 1.09216 is an equilibrium

solution.

Since f(P) > 0 for 0 < P < 1.09216, the solution P(t) of £
dP/dt = P(1— P)+0.3e~%, P(0) = P, 2
1

is increasing for Py < 1.09216. Since f(P) < 0 for P > 1.09216, the
solution P(t) is decreasing for Fy > 1.09216. Thus P = 1.09216 is

an attractor.
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(c) The curves for the second initial-value problem are thicker. The P
equilibrium solution for the logic model is P = 1. Comparing
1.5

1.09216 and 1, we sce that the percentage increase is 9.216%.

23. To find t; we solve
m ?l% =mg — kv?, ¢(0)=0

using separation of variables. This gives

—
IE {1
v(t) = \’/ rr;g tanh \/ % t.

Integrating and using s(0) = 0 gives

. [1.

m kg
S = — 208 I' —_— .
s(t) k In (COth - t)

To find the time of descent we solve s(t) = 823.84 and find t; = 7.77882. The impact velocity §

v(tg) = 182.998. which is positive because the positive direction is downward.

24. (a) Solving v = \/ mg/k for k we obtain k = mg/vZ. The differential equation then becomes
dv mg o dv 1 4
m—=mg——5u o —=gl|ll-—v"].
dt g vf I ( 2

Separating variables and integrating gives
1

v
vetanh ™ — = gt + ¢y
v
The initial condition v(0) = 0 implics ¢; = 0, so
4
©(t) = v, tanh i
Vg

We find the distance by integrating:

gt v} t
s(t) = / ¢ tanh LTgp="t1 (coshg—> + 2.
v g vt

The initial condition $(0) = 0 implies ¢y =0, so

2
t
s(t) = %1 (cosh Q_) .
g Ut
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In 25 seconds she has fallen 20,000 — 14,800 = 5.200 fect. Using a CAS to solve

5200 = (v7/32) In (coqh 32(25) >
vy

for v; gives vy & 271.711 ft/s. Then

s(t) = “1n (cosh gy _ 2307.08 In(cosh 0.117772t).
g v

(b) At t =15, s(15) = 2,542.94 ft and v(15) = §'(15) = 256.287 ft/sec.

23. While the object is in the air its velocity is modeled by the linear differential equation m dv/dt =
ng—kv. Using m = 160, k = % , and g = 32, the differential equation becomes dv/dt + (1/640)v =
32. The integrating factor is e/ #/640 — (/610 and the solution of the differential equation is

640y — [32¢M/6104t = 20,480et/640 4 ¢. Using v(0) = 0 we see that ¢ = —20,480 and v(t) =
20,480 — 20,480¢~4/640, Integrating we get s(t) = 20,480t + 13,107,200¢ /640 1 ¢. Since $(0) = 0,

= —13,107,200 and s(t) = —13,107.200 + 20,480t + 13,107,200e~*/%40. To find when the object
zits the liquid we solve s(t) = 500 — 75 = 425, obtaining ¢, = 5.16018. The velocity at the time
of impact with the liquid is v, = v(t,) = 164.482. When the objcct is in the liquid its velocity is
nodeled by the nonlinear differential equation m dv/dt = mg — kv, Using m = 160, g = 32, and
> = 0.1 this becomes dv/dt = (51,200 — v?)/1600. Separating variables and integrating we have

dv dt V2 | — 1602 1
- = and In \— +c.
51,200 —v2 1600 640 | v+ 160v/2 1600

solving v(0) = v, = 164.482 we obtain ¢ = —0.00407537. Then, for v < 160v/2 = 226.274,

" v — 160v/2 _ V51843 v 160\/_ oV2/5-1.8443
v+ 160v/2 v+ 160v2

~olving for v we get
13964.6 — 2208.29¢V2t/5

v(l) = .
Q 61.7153 + 9.75937V2t/5

“ategrating we find
s(1) = 226.275t — 1600 In(6.3237 + eV%/5) 4 ¢
~alving s(0) = 0 we see that ¢ = 3185.78, so
s(t) = 3185.78 + 226.275¢ — 1600 In(6.3237 + ¢V2!/5),

-5 find when the object hits the bottom of the tank we solve s(¢) = 73, obtaining ¢, = 0.466273.
"ae time from when the object is dropped from the helicopter to when it hits the bottom of the
sank is tg + ty = 5.62708 seconds.
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26. The velocity vector of the swimmer is

v =v,+ v, = (—vsc088, —vgsinb) + (0, 1) = (—vscosb. —vgsinf + vp) = (d% dy) )

dt’ dt

Equating compouents gives

C(Il—i = —ugcosl and z—i{ = —vesinf + vy
S0
de = —’L‘SL and dy = —vs,_L + vp.
dt Va2 +y? dt Va2 +y?
Thus,.
dy _dy/dt  —vsy /a4 vy - /el y?
dr  dx/dt —UsX Vsl )
27. (a) With k = v, /uvs,
dy y— l‘\/m
dax x

is a first-order homogeneous differential equation (see Section 2.5). Substituting y = ux int:
the differential equation gives

d ; ( / ;
u+ :vﬁ =u—kyl+u? or @ _ —ky1+ u2.
dr dz

Separating variables and integrating we obtain

du /
——=— [ kdz or In (u—l— 1 -|—~u2) =—-klnz+Inc
f V1+ u?
This implies

X

i /2% + y?
In 2" ('u-+~ 1+u2) =lnc or =z (g—l—\'—-—'—j) = C.
T

The condition y(1) = 0 gives ¢ =1 and so y + {/x% + y2 = z'7%. Solving for y gives

y(z) = % (;rl_k - fl3l+k) .
(b) If & = 1, then vs = v, and y = (1 — z2). Since y(0) = 3, the swimmer lands on the we<
beach at (0, 3). That is, 5 mile north of (0, 0).
If kK > 1, then v, > vs and 1 — k& < 0. This means lim,_,o+ y(x) becomes infinite, sin--
lim,_,g+ 2'~* becomes infinite. The swimmer never makes it to the west beach and is swe; -
northward with the current.
If0 < k <1, then vy > v, and 1 —k > 0. The value of y(z) at x = 0 is y(0) = 0. The swimn:-
has made it to the point (0, 0).
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Exercises 3.2 Nonlinear Modcls

The velocity vector of the swimmer is

dxr d
V=V 5V = (—0.0) + (0.vr) = (7{ 'ﬁ.) .

Equating components gives

dx dy
T = —u, and pn = 1y
S0
dy dy/dt v
do — dxfdt —vs  wg
The differential equation
dy  302(l —x)
dc 2
separates into dy = 15(—xz + z2)dz. Integration gives y(z) = ——lﬁimz + 52 + ¢. The condition

5

y(1) = 0 gives ¢ = 2 and so y(z) = 1(—1522 + 1023 + 5). Since y(0) =

[ 413

, the swimmer has to walk
2.5 miles back down the west beach to reach (0, 0).

This problem has a great many components, so we will consider the case in which air resistance is
assumed to be proportional to the velocity. By Problem 35 in Section 3.1 the differential equation
is

da i
m— =myg — kv,
dt

and the solution is

v(t) = % + (‘Uo - %) e kt/m

If we take the initial velocity to be 0, then the velocity at time ¢ is
1 _ mg ﬁg —kt/m
v(t) T P .
The mass of the raindrop is about m = 62 x 0.000000155/32 =~ 0.0000003 and ¢ = 32, so the

volocity at time ¢ is ‘ .
o(t) = O.(]()(;OOQG B ().0()(;()096 o—3333333kt

If we let & = 0.0000007. then ©(100) = 13.7 ft/s. In this case 100 is the time in seconds. Since
7 mph ~ 10.3 ft/s, the assertion that the average velocity is 7 mph is not unreasonable. Of course,

this assumes that the air resistance is proportional to the velocity, and, more importantly, that

the constant of proportionality is 0.0000007. The assumption about the constant is particularly

suspect.

(a) Letting ¢ = 0.6, A, = ’:‘T(% . 1—12)2, Ay =712 = 7, and g = 32, the differential equation
in Proble 12 becomes dh/dt = —0.00003255v/h . Separating variables and integrating, we get
2vh = —0.00003255¢t + ¢, so h = (c1 — 0.00001628t)2. Sctting h(0) = 2, we find ¢ = V2, so

h(t) = (v/2 — 0.00001628t)2, where h is measured in feet and # in seconds.
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(b)

32. (a)

(b)

One hour is 3,600 seconds, so the hour mark should be placed at
h(3600) = [v2 — 0.00001628(3600)]? ~ 1.838 ft ~ 22.0525 in.

up from the bottom of the tank. The remaining marks corresponding
to the passage of 2, 3, 4, ..., 12 hours are placed at the values shown
in the table. The marks are not evenly spaced because the water is not

draining out at a uniform rate; that is, A(t) is not a lincar function of

time.

In this casec A, = wh?/4 and the differential equation is
dh _ 1 B—3/2
dt 7680 '

Separating variables and integrating, we have

p 1
32 — 4
he’' < dh 7680dt
2 1
LI B S
3 7680 T &

Setting h(0) = 2 we find ¢; = 8/2/5, so that

2 g5 1 8v2
50 et T
1
RS2 — 42— ¢
V2 3072
and
\/— 1 2/5

g (4 3072t>

time height
(seconds ) (inches )
0 24,0000
1 22.0520
2 20.1864
3 18.4033
4 16.7026
5 15.0844
6 13.5485
7 12.0952
8 10.7242
9 9.4357
10 8.2297
11 7.1060
12 6

.0648

In this case h(4 hr) = h(14,400 s) = 11.8515 inches and A(5 hr) = A(18,000 s) is not a r-
number. Using a CAS to solve h(t) = 0, we see that the tank runs dry at ¢ =~ 17,378 s = 4.:

hr. Thus, this particular conical water clock can only mcasure time intervals of less than +.:

hours.
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33. If we let 7, denote the radius of the hole and A, = =[f (h.)]zg then the

i 2".- |
differential equation dh/dt = —kv/h, where k = ¢Ap+/2g/A. becomes “\\ /'f
.\\‘\ 1-— '/l
dh _ _cm’,{«?g N _SCT%JE \\ /
& =~ e T e %
For the time marks to be equally spaced, the rate of change of the height must be a constant; that
is, dh/dt = —a. (The constant is negative because the height is decrcasing.) Thus
8crivh 2 8crivh [2¢ 14
—a = ——1— f(R]F = —2—, and 7= f(h) = 2r;\/— h'/*
O YV

Solving for k. we have
2
a P
= s T
34 2.l
Gdesry

The shape of the tank with ¢ = 0.6, a = 2 ft/12 hr = 1 {t/21,600 s, and ry = 1/32(12) = 1/384 is
shown in the above figure.

:=. ' This is a Contributed Problem and the solution has been provided by lhe authors of the problem.)

(2) Answers will vary

(b) Answers will vary. This sample data is from Data from "Growth of Sunflower
Seeds" by H.S. Reed and R.H. Holland, Proc. Nat. Acad. Sci., Volume 5, 1919,
page 140. as quoted in http://math.arizona.edu/~dsl/bflower.htm

day height
7

) 17.93
14 3636
21 6776
28  98.10
35 131.00
12 169.50
+9  205.50
36 228.30
53 247.10
0 250.50
7 253.80
4 254.50
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©

300

i
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10 0

50¢

0 20 40 80 80 100

(d) In the case of the sample data, it looks more like logistic growth, with C=255cm. C
is the height of the flower when it is fully grown.

(e) For our sample data:

day height dH/dt k estimate
7 17.93 2.633 0.000619
14 3636 3.559 0.000448
21  67.76 4410 0.000348
28  98.10 4517 0.000293
35 131.00 5.100 0.000314
42 169.50 5.321 0.000367
49  205.50 4.200 0.000413
56 22830 2.971 0.000487
63  247.10 1.586 0.000812
70 250.50 0.479 0.000425
77  253.80 0.286 0.000938
84 25450 0.100 0.000786

We average the & values to obtain & ~ 0.000521. An argument can be made for dropping
the first two and last two estimates, to obtain & = 0.000432 .

255

(f) The solution is y = m

. We use the height of the sunflower at day 42 to

255

btain y= — >
Y = 133,697

116



Exercises 3.2 Nonlinear Models

406
300
] P
] x/ ELS
¥ 200 0
- ﬁ;
E zf{
9‘1
1m] 2 s,.«f
: IS ,.'.:
e x"/
° -
o
G i?[—! T 1 ¢ 1T I r3y17r{rr1rr&7r1r1rrrrrqro
20 48 60 80 100

33. (This is a Contributed Problem and the solution has been provided by the author of the problem.)

(a) Direction field and the solution curve sketch together:
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(b) The solution is P(t) = e, k = 1/12, with graph:

5:

0 2 4 6 8 10 12 14 16 18 20

(c) the DE has the constant zero function as equilibrium.

(d) The population grows to infinity.

(e) If the initial population is Py then the resulting population would be
P(t) = Pyef k= 1/12,

(f) The solution would change from constant to exponential.

(g) Direction field with solution sketch.

70

60

y{x)

o 20 40 60 80 100
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(h) The solution to the IVP is

125
b= 3+ 122¢-t/12
and the graph is
< 20 49 8¢ 80 160

i) the constant solutions to the DE are the zero function and the 125/3
function.

'j) solutions tend to 125/3.

‘k) If the initial population is P, then the resulting population could be

expressed by 195
5

P =5 mscem

where

1: the solution would no longer be constant but tend to 125/3.
m} there would be little change...the new solution would still tend to 125/3.
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(n) Direction field with solution sketch.

30 |

y(x>

20 1.

o] 2o a0 60 80 100 120 140
x
(o) the zero function is the only constant solution.

(p) The solution is slowly approaching 0; a change to P(0) would still result
in a solution curve which tends to 0.

1. The linear equation dxz/dt = —A12z can be solved by either separation of variables or by a:.
grating factor. Integrating both sides of du/x = —A1dt we obtain In |z| = —Ait + ¢ from wli .

get x = cie~ Mt Using 2(0) = wp we find ¢1 = g so that z = zpe ML, Substituting this resi..
the second differential equation we have
dy

== 4 Ay = Azoe™ M
7 + A2y 120

which is linear. An integrating factor is €' so that
d ol 9 — A
7 [e’uy] = \mpeP2mA 4 ¢y
o /\]:lto
R VY
Using y(0) = 0 we find ¢» = —A120/(A2 — A1). Thus

A1Zg _
= 2 M e

Aot
Ao — X\

ehe=Ate=ot 4 o= Aat

)\].’170 (

ny — —Art —Azt)
= € — € .
Y Ao — A1
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Substituting this result into the third differential equation we have

Integrating we find

dz  AiAaexg (F—)‘lf _ (3—/\26)

dt X — M
=M e Ly,
Ao — M Ao — A1 k

Using 2(0) = 0 we find ¢3 = 2. Thus

. We see from the graph that the half-life of A is approximately
1.7 days. To determine the half-life of B we use ¢t = 30 as a base,
since at this time the amount of substance A is so small that
it contributes very little to substance B. Now we see from the
zraph that y(50) = 16.2 and y(191) ~ 8.1. Thus, the half-life of
B is approximately 141 days. ;

zbout ¢ = 20 days. The amounts y and z arc the same at about ¢ = 147 days. The time when y

zud z are the same makes sense because most of A and half of B are gone. so half of C should have

seen formed.

suppose that the scries is deseribed schematically by W = — A\ X = —\Y = —\37Z wherc
—A1, —Ag. and —)3 are the decay constants for . X and Y. respectively, and Z is a stable element.
Zet w(t), z(t), y(t). and =(t) denote the amounts of substances W, X, Y, and Z, respectively. A

.. The amounts 2: and y are the same at about { = 5 days. The amouuts z and = are the same at

odel for the radioactive series is

~he system is

dw

i —Aw

(ji—; = A\jw — Agw

% = daT — A3y

Z—; = Azy.
T} =2-3+5—10;71:2—%1?1 4= —525:1;1+5i0w2+6
TH = %1;1 o4 — 316.1:2 — %mg 3= ;;51:1 - %332.
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Exercises 3.3 Modeling with Systems of First-Order DEs

6. Let xy. w9. and 23 be the amounts of salt in tanks A, B, and C, respectively, so that

| 1 1 3
1= 100™2 100717 T 5072 5ot
27 100" 10072~ 1007 10072°° T 50" T 10072 T 1007
o Lo 1 1 1.1
3= 100%% 0 T 1007 T 10048t T 302 T g%
7. (a) A model is
dry 9 1 _
@ STt o mO=100
dxo B 1 . 9 i B
@ 2104t S0 (0=50

(b) Since the system is closed, no salt enters or leaves the system and @1 (¢)+22(t) = 100+50 = 1°

for all time. Thus 1 = 150 — 2y and the second equation in part (a) becomes

dza 2(150 — x2) _ 3z 300 _ 229 _ 3z9
dt ~ 100+t 100—¢ 100+t 100+t 100 —¢
or
dzy ( 2, 3 ) 300
di 100+¢  100—2/) 2 100+¢

which is linear in 29. An integrating factor is

50
%[(100 +£)%(100 — ) "3z5] = 300(100 + £)(100 — t) =3

Using integration by parts, we obtain

(100 + £)2(100 — ¢) 3z = 300 [1 (100 + )(100 — £)~2 — %(100 — )"t + c] :

Thus 300 : 1
300 IR PNV | )
T2 = 100+ 0)2 [(100 )* — (100 — £)? + 5(100 + 1)(100 t)}
300
M[C(lOO—t) + (100 — t))].

Using z2(0) = 50 we find ¢ = 5/3000. At t = 30, 2y = (300/130%)(703¢c + 30 - 70) ~ A7.4 11 -
8. A model is

dry .

- = (4 gal/min)(0 Ib/gal) — (4 gal/min) <)00 x) lb/gal)

d?g 1 1

— = (4 gal/min) ( 56051 b/ gal) (4 gal/min) ( ¢ a.l)
dzs _ (4 gal/min) (i Ib/ ‘l) (4 gal/min) ( b/ dl)
o = e o2 b/ea min To0% 1b/e
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. Zooming in on the graph it can be seen that the populations are

Exercises 3.3 Modeling with Systems of First-Order DEs

or
dxy I
E = —%;Ll
dry 1 2
E = %.’E] - 751152
dxy 2 1

—_— = —q9 — —I3.
dt 7572 25"

Over a long period of time we would expect 2. 2:3. and x3 to approach 0 because the entering pure

water should flush the salt out of all three tanks.

Zrst equal at about t = 5.6. The approximate periods of x and y
zre both 45.

a) The population y(¢) approaches 10,000, while the population 3&1
1
x(t) approaches extinction.
5
= ——t;
10 20

b) The population x(t) approaches 5,000, while the population

y(t) approaches extinction.

=+ The population y(¢) approaches 10,000, while the population LY

»(t) approaches extinction.
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12.

13.

(d) The population z(t) approaches 5.000, while the population lg:v

y(t) approaches extinction.

20 40 20 40

In each case the population x(t) approaches 6,000, while the population y(t) approaches 8,000.

By Kirchhoff’s first law we have i3 = i9 + 73. By Kirchhoff’s second law, on each loop we ha
E(t) = Li{ + Riie and E(t) = Li} + Raiz + q/C so that ¢ = CRyig — CRaiz. Then i3 = ¢ =
C Ryt — CRai3 80 that the system is

Liy + Lig + Ryip = E(2)
1
—Ryih + Roiy + i =0.

By Kirchhoff’s first law we have i3 = i2 + i3. Applying Kirchhoff’s second law to cach loop v

obtain
. di .
E)=0uR;1+ L, Etz + 1ol
and
dig
E(t)=141R + Lod— + i3 R3.
Combining the three equations, we obtain the system
di
Ll—;% + (R1+ Ro)is + Ryis=F

dig
LQHT + Ryio+ (R1 + R3)is=FE.
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By Kirchhoff’s irst law we have i; = ig + 3. By Kirchhoff’s second law, on each loop we have
E(ty = Li} + Riy and E(t) = Li} + ¢/C so that ¢ = CRis. Then i3 = ¢’ = CRi} so that system is

Li' + Riy = E(t)

CR'i.'g +1i9—41 =0.

We first note that s(t) + i(¢t) + r(f) = n. Now the rate of change of the number of susceptible
persons, s(t), is proportional to the number of contacts between the number of people infected and
the number who are susceptible; that is, ds/dt = —k1si. We use —k1 < 0 because s(f) is decreasing.
Next, the rate of change of the number of persons who have recovered is proportional to the number
infected; that is. dr/dt = ksi where kg > 0 since r is increasing. Finally, to obtain di/dt we usc
d d
r)=—n=40.
p —(s+i+71)= o
This gives
di dr ds ko + ket i
— =——— — = —kot + kyst.
dt~  dt dt a2

The system of differential equations is then

ds .
yri —k184

% = —kot + k157
dr

— = kg

a2

A reasonable set of initial conditions is #(0) = 4y, the number of infected pcople at time 0, s(0) =
~ —1g, and 7(0) = 0.

a) If we know s(t) and i(t) then we can determine r(¢t) from s +i+r = n.

b) In this case the system is

@ = —0.2s17

dt

i

d—l = —0.7i + 0.2si.

We also note that when (0) = i, $(0) = 10 — i since r(0) = 0 and (¢) + s(¢) + r(¢) = 0 for
all values of t. Now kg/ky = 0.7/0.2 = 3.5, so we consider initial conditions s(0) = 2, 7(0) = 8;
5(0) = 3.4, i(0) = 6.6; s(0) = 7, i(0) = 3; and s(0) =9, i(0) = 1.
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17.

18.

r3 S,' S,i .
i L
51 5 X

Ve see that an initial susceptible population greater than Ay /k; results in an epidemic in the se..~

.,

that the number of infected persons increases to a maximum before decreasing to 0. On the ot’-
hand. when s(0) < ko/k1, the number of infected persons decreases from the start and there is
cpidemic.

Since zg > yo > 0 we have z(t) > y(t) and y —x < 0. Thus dz/dt < 0 x¥)
aud dy/dt > 0. We conclude that z(t) is decreasing and y(t) is

increasing. As ¢ — oc we expect that z(t) — C and y(¢t) — C, where  %(0)
C' is a constant common equilibrium concentration. k
y(0) ‘

We write the system in the form
dx:
= = kily —2)
dy
li‘ = ko(z — ¥),
where k1 = k/V4 and ka2 = x/Vp. Letting z(t) = x(t) — y(¢t) we have
dr _dy W
E - —]7 = ]1:1 (Zj 7') ]1,_2(3.. — l})
dz
=k koz
@ =)k
dz
k14 ko)z = 0.
= T (k1 ka)z
This is a linear first-order differential equation with solution z(t) = ¢je~®1+*2), Now
dx
- = —fizx=—}ic 3—(k1+k2)t
o ka(y — z) k1 kicie
and "
() = M ——(L1+k2)t
’l( ) 1 K T+ ]i) + ¢2.
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Since y(t) = z(t) — =(t) we have
ult) = —c e~ (h1tka)t 1 co.
y(t) = —a1 o 2
The initial conditions 2(0) = zgp and y(0) = o imply

: and . roka + yok1
Cl1 = T — AT = —
1 0— Yo 2 kl +k~2

The solution of the system is

2(t) = (zo — yo)k1 o= (kutha)t zok2 + Yok

B+ ke + ky+ k2
y(t) = (o = z0)ka (ki thaye | Tokz + yoks
u ki +k k1 + ko

As t — oc, z(t) and y(t) approach the common limit

xoks + yok1 _ 7ok/Ve +yor/Va _ 20Va+ yoVi

ki+ky  s/Vat+w/Vg — Va+Vp
V4 Vi
= rg—— + Yp———.
Vatve PVitvp

This makes intuitive sense because the limmiting concentration is seen to be a weighted average of
-he two initial concentrations.

. Since there are initially 25 pounds of salt in tank A and xlx2
wone in tank B, and since furthermore only pure water is 30

“eing pumped into tank A, we would expect that x1(t) 20
—-suld steadily decrease over time. On the other hand, 10

ince salt is being added to tank B from tank A, we would

e
zpect zo(t) to increasc over time. However, since pure I 50 i I(I)g '
“ater is being added to the systemn at a coustant rate and
- :nixed solution is being pumped out of the system, it makes sense that the amount of salt in both
:1ks would approach 0 over time.

"7 assume here that the temperature, T'(¢), of the metal bar does not affect the temperatsure, Ta(t),
.2 the medium in container A. By Newton’s law of cooling, then, the differential cquations for 74 (¢)
-1 T'(t) arc

dT

d_;zkA(TA_TB): ka <O
dT _ _ .

Fri BT —-Ta). k<O,

-"‘ect to the initial conditions T(0) = Tp and T4(0) = T). Separating variables in the first
iztion, we find Ty (t) = T 4 c1eX4t. Using T4(0) = Ty we find ¢ = Ty — Ty, 50
Ta(t)=Tp + (11 — TB)ek“‘t.
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Substituting into the second differential equation, we have

ildlt =k(T-Ta) =kl —kTa=kT —klTp+ (T — TB)ekf"t]
) :
%%—%T=—%Z — k(Ty — T)ekat.
This is a linear differcntial equation with integrating factor ef ~kdt — o=kt Then
$r4ﬁﬂ ~kTpe ™™ — k(T1 — Tg)elka=P!
G_ktT — T.Be—kt _ k (T] - TB)e(I"'A—k')t + ¢y
ka—k

T=Ty-

fin = k(Tl - TB)(ikAt + ot

Using T(0) = Ty we find eo =Ty — T + -(Ty = TB), s0

ka—Fk

T(t) =T —

-(Ty — Tg)ef4t + [Ty — T +

¢ _ kt
Fa—k o)) e

ka
21. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) In the short term there is a mixing of an ethanol solution. In the long
term, the system will contain a 20% solution of ethanol.

(b)

mwwnﬁpan P

(c) First write Q@ = 50P’—30+ P/2 and then it’s straightforward substitution
into the equation in (b).

(d) From equation in (19) we find P'(0) = 6/10+ 7/50 — 200/100 = —63/50.
The solution is

—604 1400 \/— 5¢ /00 V95t
P(t) = 3¢ 2000)\/_ 100e co8{ = 2000) + 100

(e) The solution is

_ 270 o—1/400 V95t 130 _yu00 . V95t 25 i/
QL) = (2000) TR (2000)‘/~+20+ 19°

(f) In both cases, the there is a concentration of 20% in each tank; P(¢) — 100
and Q(t) — 20.
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Chapter 3 in Revie

Chapter 3 in Review

_. The differential cquation is dP/dt = 0.15P.

-

_. True. From dA/dt = kA, A(0) = Ag, we have A(t) = Agef and A'(t) = kAger, so A'(0) = kA,.
At T = —(In2)k,

A(—(In2)/k) = kA(—(n2)/k) = kAge" =02/ = A e_l“)—%kAo,

. From % = 0.018P and P(0) = 4 billion we obtain P = 4e0-018¢ 50 that P(45) = 8.99 billion.

Let A = A(t) be the volume of COs at time ¢. From dA/dt = 1.2 — A/4 and A(0) = 16ft> we
sbtain A = 4.8 + 11.2e7%/4. Since A(10) = 5.7 t3, the concentration is 0.017%. As t — oo we have
A — 4.8ft3 or 0.06%.

. Scparating variables, we have

dy = —dzx.

Substituting y = $sind, this becomes

] . 9
52 — s2sin* @

ssin @

(scos8)dd = —dx

2
s [ d @ =~ [ de
J siné

,_s/ Losin®d 0 oy
sin @

s /(csc& —sinf)dfd = —x+c

—sln|cscf+ cotb| + scosf = —x+¢

2 _ .2
52 — §2 —
—5,111{E u-{—s\/—y:—m—l—c.
y s

Letting s = 10. this is

~10In |—

/100 — 2
10 —y_‘ + /100 - y2 = -z + .

Y Y
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Letting £ = 0 and y = 10 we determine that ¢ = 0, so the solution is

]0+\/1(]0—y2|+ VW:—T

|
y !

— 22
10+\/;lj00 Yy _\/m

6. From V dC/dt = kA(Cs — C) and C(0) = Cy we obtain C = Cy + (Cy — Cs)e FAVV.
7. (a) The differential equation

dT
— = BT —Tp) =kl - Ty — B(Ty = T)]

— k[(1+ BT — (BTy + T3)] = k(1 + B) (-:r _

—101n

or

z=10In

Bh+1Ts
75 )
is autonomous and has the single critical point (BT1 + T2)/(1 + B). Since k < 0 and 5
by phasc-linc analysis it is found that the critical point is an attractor and
N BTy + T3
A, T = " 1+B
Moreover,

flinvlc T(t) = tlim [To+ BTy —T)=T>+B (Tl _ BT + T'Z) _ BTy + 7o '
s SN

1+ B 1+B
(b) The differential equation is

IT ‘
%;=MT—RJ=MT—B—Bﬂ+Bm
or fT
‘(‘7 — k(1 + B)T = —k(B1} + To).
This is linear and has integrating factor e~ J KA+B)dt — (—h(1+B) Thys
SleHEPIT] = _k(BT; + Ty)e H0+2)
k(4B _ BIi+ 13 kB .
1+ B L
_BNi+1T> | ra+By
T(t) = T B +ce :

Since k is negative, limy_ T(t) = (BT1 + T)/(1 + B).
(c) The temperature T'(t) decreases to the value (BTy + T2)/(1 + B), whereas T, (¢) increca-.
(BTh1+T3)/(1+ D) as t — oc. Thus, the temperature (BTy +73)/(1+ B), (which is a weig.

average
B 1
: T
1B tT1 "2
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of the two initial temperatures), can be interpreted as an equilibrium temperature. The body

cannot get cooler than this value whereas the mediuim cannot get hotter than this value.

3. By separation of variables and partial fractions,
i T - TTTI; _1 ( T 3
In _ 2tan —) — 4T3kt +c.
T + T‘TII- . m m

Then rewrite the right-hand side of the differential equation as

= = k(T* = T3) = (T + (T = T))* = T3]

T _ T4
=kﬂﬂ@+ Tﬂﬂ —4

m

=A:T;§,[(1+4T_T"‘+6<T_Tm

11”2
When T — T, is small compared to T;,, every term in the expansion after the first two can be

2
) - ) - 1} + binomial expansion

m

ignored, giving
dT . 3
- = k(T —Ty), where ky = 4kT;,.

2. We first solve (1 — ¢/10)di/dt + 0.2i = 4. Separating variables we obtain
4i/(40 — 2i) = dt/(10 — t). Then

1
—5ln|c10—~2i|=—ln|10—tl+c or V40— 2¢ = ¢1(10 —¢t).

Since §(0) = 0 we must have ¢ = 2/v/10. Solving for i we get i(t) = 4t — 1¢2,
+ <t < 10. For ¢t > 10 the equation for the current becomes 0.2i = 4 or 4 = 20. Thus
i) = {47:—%{2, 0<t<10
20, t > 10.
“he graph of i(t) is given in the figure.
L. Tromy [1 + (y'):’] = k we obtain dz = (,/5/vk — y)dy. If y = ksin® 6 then

dy = 2ksinfcos0do. dz = 2k (% - %cos 29) 6, and z =k — gsin 2+ c.

“r=0when § =0 then ¢ = 0.

-1 Trom dx/dt = kjz{a — ) we obtain

(M+ /o )d:n = ky dt

T  a-x
-~ that = = ac1e®1t/(1 + c;e®1!). From dy/dt = kexy we obtain

k: 3 ) ka/k
In|y| = i In {1 + cle"‘klt!I +c or y=c (1 + clcaklt) 2
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12. In tank A the salt input is

gal Ib '\ gal 2o b ( 1 ) ib
— 12— |+ {12 |[—=— =144+ ——22 ) —.
(7 min) (Z gal) ( min / \ 100 gal 1+ 1[]0:12 min

The salt output is

geal)fm by (ogal) fa by 2 b
“min / \ 100 gal min/ \100 gal ) ~ 25 ' min

In tank B the salt input is

peal)fo by 1 - 1b
min / \ 100 gal 20" min

The salt output is
c! ) y J.
gl (a2 b)) f eal) (22 by 1 b
min / \ 100 gal min / \ 100 gal 20 “ min
The system of differential equations is then

dr 1 2

— =44+ —a9— —x
@ T 100% T
dixg 1 . 1 .
a 2070 207"
13. From y = —x — 1 + c1e* we obtain ¢ = y + x so that the differential equation of the orthog.
family is
W _ _ or e + =i
dr  y+=x dy v

This is a linear differential cquation and has integrating factor el = eY, so
d
Yol = y
—le¥a] = —ye
oM =y

¥z = —ye¥ +e¥ + o

r=—y+1+ce Y.
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_4. Differentiating the family of curves, we have
e 1 1
v (i + c1)? y?

The differential equation for the family of orthogonal trajectories is

9 . . . .
then 1/ = y°. Separating variables and integrating we get

(-g—=d-r.
Y2
1
——=x+tc
Y
1
y=— .
Y T+

_3. 1 This is o Contributed Problem and the solution has been provided by the author of the problem.)
l »
(a) () = —plwg (v + 7 [ alx)d)

(b) The ratio is increasing. The ratio is constant.

(c) p(z) = ke’ (ooplK

5 &gm-n——m

d) When the pressure p is constant but the density p is a function of x then
Kyp

9(Ky+ [q(x)de)

When the Darcy flux is proportional to the density then

p(z) = —

P = :‘,I[ I&rp
\,‘ 20CKp— 8gx)’

where C is an arbitrary constant.

e) As the density and Darcy velocity decreases, the pressure in the container initially increascs
but then decreascs. The density change is less dramatic than the drop in the velocity and has
a greater initial ceffect on the system. However, as the density of the fluid decreases, the effec:
is to decrease the pressurc.
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16. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)

(a) Direction ficld and the solution curve sketch together:

(c) the DE has the constant zero {unction as equilibrium.
{d) The population grows to infinity.

(b) The solution is P(t) = e®, k = 1/12, with graph:

5

O "2 4 6 B8 10 12 14 16 18 20

t

(e) If the initial population is P, then the resulting population would be

P(t) = Byekt k= 1/12,

(f) The solution would change [rom constant to exponential.,

134



Chapter 3 in Review

(g) Direction field with solution sketch. (h) The solution to the IVP is
12
" T 3} 122e4/2
01 and the graph is
% l
"
yix)

,0,»)-)-.- - - = T
; 20 40 60 80 160

(i) the constant solutions to the DE are the zero function and the 125/3
function.

(3) solutions tend to 125/3.

(k) If the initial population is Py then the resulting population could be

expressed by
P 125
34 125Ce—t/12
where 1 3
=R 1%
(1) the solution would no longer be constant but tend to 125/3.
{m) there would be little change...the new solution would still tend to 125/3.
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(n) Direction field with solution sketch.

50 1,
40 |

30 ; -

y(x)}

20 i

(o) the zero function is the only constant solution.
{(p) The solution is slowly approaching 0; a change te P(0) would still result
in a solution curve which tends to 0.
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4 Higher-Order Differential Equations

Exercises 4.1

T Tromy = c1e? + e ¥ we find i = c1e® — e, Then y(0) =c1+c2=0,9(0) =¢c; — ez =150

“aat ¢ = % and ¢ = —%. The solution is y = %e“’ — Jje_”’.

Trom y = e1e® + e~ we find i = dc1e*® —coe™™. Then y(0) =c1 +co =1, ' (0) =4de; —co =2

i ¢ . . ; o D
-~ that ¢; = 2 and ¢ = % The solution is y = %e‘“‘ +ze %

ITomy=cax+crlnrwefindy =c+ceo(l+1nz). Theny(l)=c¢ =3,y (1) =c1+cx=-150
-zat ¢p = 3 and ¢o = —4. The solution is y = 3z — 4z Inz.

L Tromy =cp+cpcosx+cysing we find ¥ = —cosinz +¢zcosz and ¥’ = —cycosx — ¢y sinz. Then
LT =c—c=0,y(r)=-c3=2,y"(r) =cpg = —1sothat ¢; = -1, ca = —1, and ¢3 = —2. The

iiution is y = —1 — cosz — 2sinz.

Trom y = ¢1 + cox® we find ¢ = 2c92. Then y(0) = ¢ =0, ¥/(0) = 2¢2 - 0 = 0 and hence 3/ (0) =1

‘s not possible. Since aa(z) = z is 0 at 2 = 0, Theorem 4.1 is not violated.

- = this case we have y(0) = ¢; =0, ¥/(0) = 2¢2- 0 =0 s0 ¢; = 0 and ¢ is arbitrary. Two solutions
ey =x2 and y = 2%

Srom z(0) = o = ¢1 we see that z(t) = zgcoswt + cysinwt and 2'(t) = —x¢sinwt + cow cos wi.

Zuen &' (0) = z1 = cow implies ¢o = 21 /w. Thus

Ty
z(t) = xg coswt + — sinwt.
w

+ ::iving the system
x(ty) = ¢y coswiy + cosinwty = g
x'(t(]) = —crwsinwiy + cow coswipg = 1
2 ¢1 and ¢y gives

wxo coswty — X1 sin wity 21 cos wiy + wxg sin wiy
1= and ¢ = .
w w
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Thus
, wirg cos wty — 1 s wiy X1 coswity + wrgsinwly .
z(t) = coswt + sin wt
w w

= xq(cos wt cos wig + sinwtsinwty) + %(sin wt coswity — cos wt sin wip)
=z cosw(t — t9) + ‘:—1 sinw(t — o).
9. Since ag(z) = z — 2 and xg = 0 the problem has a unique solution for —oco < z < 2.
10. Since ao(z) = tanz and z9 = 0 the problem has a unique solution for —7/2 < z < 7/2.
11. (a) We have y(0) = ¢+ = 0. y(1) = cie + cee™! = 1 s0 that ¢; = ¢/ (62 — 1)
ey = —ef (62 - 1). The solution is y = e (e‘” - e“"”) / (62 - 1).
(b) We have y(0) = ¢3cosh0 + ¢gsinh0 = ¢3 = 0 and y(1) = ¢gcosh 1 + ¢gsinh1 = ¢ysinh1 =
so ¢3 = 0 and ¢4 = 1/sinh 1. The solution is y = (sinhz)/(sinh 1).
(c) Starting with the solution in part (b) we have
2 et —e¢F  ef —e7F

1 ! e
y=——ginhz = = = —
Y= sinn 1 el —e 1 2 e—1/e e2—1

(em _ G—;r:)_

12. In this case we have y(0) = ¢ = 1, y'(1) = 2¢2 = 6 so that ¢ = 1 and ¢ = 3. The solutic:.
y =1+ 322
13. From y = c1e” cos = + ce sinz we find y' = ¢1e¥(—sinz - cos z) + coe¥(cos x + sinz).
(a) We have y(0) =c¢1 =1, y/(7) = —€™(¢1 + ¢2) = 0 so that ¢; = 1 and ¢2 = —1. The solutic:.
y=e"cosx — c"sinz.
(b) We have y(0) =¢; = 1, y(7) = —e™ = —1, which is not possible.

() We have y(0) = ¢1 = 1, y(x/2) = c2¢™? = 1 s0 that ¢; = 1 and ¢y = e~™/2. The solutic..

—/2

y=c*cosxr+e e*sin .

(d) We have y(0) = ¢1 =0, y(7) = coe™ sinm = 0 so that ¢; = 0 and ¢y is arbitrary. Solutions

y = cae¥ sinz, for any real numbers co.
14. (a) We have y(-1)=c¢; +c2+3 =0, y(1) = ¢1 + 2 + 3 = 4, which is not possible.

(b) We have y(0) = ¢1 -0+ ¢z -0+ 3 =1, which is not possible.

(c) We have y(0) = ¢1-0+c2-0+3 =3, y(1) = ¢; + 2 +3 = 0 so that ¢; is arbitrary
¢2 = —3 — ¢1. Solutions are y = c12? — (¢y + 3)a? + 3.

(d) Wehavey(l) =c1+c2+3=3,9y(2) =4de; + 16ca+3=15sothat c; = —land co = 1. ~
solution is y = —z2 + z* + 3.

15. Since (—4)z + (3)2? + (1)(4xr — 322) = 0 the set of functions is lincarly dependent.
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.. From the graphs of fi(z) = 2+ z and fo(z) = 2 + |z

Exercises 4.1 Preliminary Theory —Linear Equations

. Since (1)0 4 (0)x + (0)e* = 0 the set of functions is lincarly dependent. A similar argument shows

that any sct of functions containing f(x) = 0 will be linearly dependent.

=, Since (—1/5)5 + (1) cos®> z 4 (1) sin® 2 = 0 the set of functions is lincarly dependent.
%, Since (1) cos 2z + (1)1 + (=2) cos? v = 0 the set of functions is linearly dependent.

. Since (—4)z + (3){x — 1) + (1)(z + 3) = 0 the set of functions is linearly dependent.

we see that the set of functions is linearly independent

since they cannot be multiples of each other.

. Suppose ¢;(1+z) + gz +c322 = 0. Then ¢1 + (c1+ )z +c3x? =0 and so ¢ = 0, ¢1 +¢c2 = 0, and

= = (). Since ¢ = 0 we also have co = 0. Thus, the set of functions is linearly independent.
Since (—1/2)e" + (1/2)e™* + (1) sinh 2z = 0 the set of functions is linearly dependent.
T he functions satisfy the differential equation and are lincarly independent since
W (6_3'7:. f.:i"l‘") =Te"#£0
or —oc < & < oc. The general solution is
y = c1e 5 4 coe?”
The functions satisfy the differential equation and are lincarly independent since
W (cosh 2z, sinh 22) = 2
r—o0 <z < o¢. The general solution is
y = ¢y cosh 22 + ¢o sinh 2x.
_he functions satisfy the differential equation and are lincarly independent since
W (e® cos 2, €% sin 2z) = 2¢%° £ 0
i —o0 < & < o¢. The general solution is y = ¢je* cos 2z + ¢9e® sin 2x.
~ae functions satisfy the differential cquation and arc linearly independent since
W (cs"”/Q, zet! 2) =e" #£0
i1 —oc < x < oc. The general solution is

y = cr6%? + coze/2.
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27.

28.

29.

30.

31.

32.

33.

34,

33.

The functions satisfy the diflcrential cquation and are linearly independent since
W (:1:3, :‘1.:4) =20 40
for 0 < & < <. The general solution on this interval is
Yy = c1;z:3 + cg:r;‘l.
The functions satisfy the differcential equation and are linearly independent since
W (cos(Inz),sin(lnz)) =1/ #0
for 0 < < 00. The general solution on this interval is
y = ¢y cos(Inz) + ¢ sin(ln z).
The functions satisfy the differential equation and arc linearly independent since
W (:1,:, 72, 27%In :l:) = 946 # 0
for 0 < 2 < oc. The general solution on this interval is
y=cx+ c:grz:_2 + (:31?_2 Inzx.
The functions satisfy the differential equation and are linearly independent since
W(l,z,cosz,sinz) =1
for --oc < & < oc. The general solution on this interval is

y=-c1+ ez +c3cosT + ¢qsinz.

. 9y K . A 3
The functions y; = e2* and yo = €°® form a fundamental sct of solutions of the associated homc : - A

ncous equation, and y, = 6e® is a particular solution of the nonhomogeneous equation.

The functions 4 = cos z and y9 = sin x form a fundamental st of solutions of the associated ho:. -}

geneous equation, and y, = 2 sinx+ (cos ) In(cos z) is & particular solution of the nonhomogene.
equation.

The functions y; = €®* and yo = we®® form a fundamental set of solutions of the associz
Lomogencous cquation. and y, = 22e?® + ¢ — 2 is a particular solution of the nonhomogen¢

equation.

The functions 33 = =2 and yo = ! form a fundamental set of solutions of the associc”

2_ %Jf is a particular solution of the nonhomogeneous equat:

‘ Coaration and o — L.
homogencous equation, and y, = =z

X7n e Y-S SN TN | S 2r
(a) We have y,, = 6¢** and y,, = 12e“*, s0

y},’l — 6y, + 5y, = 1262 — 36e%* + 15e%% = —9e??.
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Also, yp,, = 22+ 3 and y,,, = 2. s0

Ypy — O, + Sypy = 2 — 6(2x + 3) + 5(z° + 3x) = 522 + 32 — 16.

(b) By the superposition principle for nonhomogencous cquations a particular solution of
y" — 6y + 5y = 5z + 3z — 16 — 9¢* is y, = 2% + 32 + 3¢?*. A particular solution of
the second equation is

1

Yp = —2p, — Glp = —20" = 6z —

1

- 62:1:.

L(a) yp =3

(b) Ypy, = —27
(€) Yp="Yp, +Ypo =5— 21

(d) yp = 3Yp — 2Wpy = 5 +42

. (a) Since D%z = 0, z and 1 are solutions of 3’ = 0. Since they arc lincarly independent, the
A ! A \ P

general solution is y = ¢z + co.

(b) Since D*z? =0, 22, , and 1 are solutions of 3 = 0. Since they are linearly independent, the

general solution is ¥y = ¢4 + oz + c3.

(c) Since D*z® =0, 2, 22, x. and 1 are solutions of ¢4 = 0. Since they are lincarly independent,
the general solution is y = ¢ 73 + com? + 3% + c4.

id) By part (a). the general solution of ¥ = 0 is y, = c12 + ¢2. Since D?2*> =21 =2, y, =22 is a

particular solution of 4 = 2. Thus, the gencral solution is y = ¢z + 2 + 2.

ie) By part (b), the general solution of " = 0 is y. = c12? + c2x + ¢3. Since D323 = 3! = 6,

-3 "

Yp = 2 is a particular solution of ¢/ = 6. Thus, the general solution is y = 1?4+ cax+ez+23.

{f) By part (¢), the general solution of y™ = 0 is y. = c123+cor?+c3x+cq. Since D'zt = 41 = 24,
yp = x* is a particular solution of ¥ = 24. Thus, the general solution is y = ¢12% + coz? +
Yp I g Y
e3z + cq + 22

- 3y the superposition principle, if y1 = €* and y3 = ¢™% are both solutions of a homogencous linear

zifferential cquation, then so are

1 e —e
=cosha and §(y1 — ) = ———— =sinhz.

Z

1 _ et + e "
2
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39.

40.

41.

42,

(a) From the graphs of y; = z3 and 3o = |2® we see
that the functions are linearly independent since they
cannot be multiples of each other. It is casily shown
that y; = 23 is a solution of 2%y’ — 4y’ + 6y = 0.
To show that yo = || is a solution let y» = z® for
x>0 and Iet yo = —23 for = < 0.

b) If 2 > 0 then y2 = 2% and
(b) y

n-’(. ) B | 3 3 4
v = 1322 322|
If < 0 then y2 = —z3 and
W ) PR 0
{1 3 — . = ().
Y1, Y2 | 3:1:2 —3%2

This does not violate Theorem 4.1.3 since ag(x) = x? is zero at x = 0.

(c) The functions Y7 = #3 and Y5 = 22 arc solutions of 22y” — 42y’ + 6y = 0. They are linc-

independent since 17 (333, :cz) =% #£0 for —o0 < < 0.
(d) The function y = z* satisfies y(0) = 0 and ¢/(0) = 0.

(e) Ncither is the general solution on (—o0, oc) since we form a general solution on an interva. :
which
as(z) # 0 for every « in the interval.

. o —_ -5 -5 x+2 r—3 : 4 "
Since €773 = e3¢ = (e7%e?)e® = e72c¥+? we see that ¢™ % is a constant multiple of e**2

set of functions is lincarly dependent.
Since Oy; + Oyg + -+ - + Oyg + lype1 = 0. the set of solutions is linearly dependent.

The set of solutions is linearly dependent. Suppose n of the solutions are linearly independer:
not, then the set of n+ 1 solutions is linearly dependent). Without loss of generality, let this s¢-
Yl, Y2+ « -2 Yp. Then y = c1y1 = coy2 + - - - + cryn is the general solution of the nth-order differe:.
equation and for some choice, ¢}, ¢3. ..., ¢, of the cocfficients y, 11 = cfy1 + Sy2 +- - -+ yn- -

then the set y1, o, .- ., Yn, Yn+1 is linearly dependent.
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Exercises 4.2 Reduction of Order

Problems 1-8 we use reduction of order to find o second solution. In Problems 9-16 we use formula

from the text.

Define y = u(z)e?* so
y = 2ue™ +/e®®, Y’ =P + 46¥y + 4%y, and Y — 4y + 4y = ¥ = 0.
Therefore v’ = 0 and u = c1z + ¢o. Taking ¢; = 1 and ¢3 = 0 we sce that a second solution is
4o = x€%%.
Define y = u(x)ze™" so
Y =1 —zle"u+xe™u, ¥ =z +2(1 —z)e U — (2 — ),

and 0
V' +2 +y=c(zu" +2)=0 or v+ éu' =0.

w =1 we obtain the linear first-order cquation w’ + —w = 0 which has the integrating factor

x
2Jdzz 22 Now

d . . _
— %] =0 gives 2%w=c
dx
-3 / 2 . : ; 1 -z -z
“herefore w =« = ¢/x” and u = ¢1/x. A second solution is yo = —ze T =€ ".
z
Define y = u(z) cos 4z so
! . .
y = —dusindr + v cos 4z, " = u” cosdax — 8u'sin 4z — 16u cos 4z

and
y" + 16y = (cos4x)u” — 8(sindx)u’ =0 or u” — 8(tandx)u’ = 0.

2w = ' we obtain the lincar first-order equation w’ — 8(tan4x)w = 0 which has the integrating
otor e 8 tendzds - o652 40 Now

d 2, . 2

— [(cos“dz)w] =0 gives (cos“dz)w = c.

dz
Trerefore w = ' = csec? 4 and u = ¢; tan4z. A second solution is yy = tan 4 cos 4z = sin 4z.
Z=ine y = u(x)sin 3z so

y = 3ucos3r +u'sin3z, ¢’ =" sin 3z + 64’ cos 32 — Yusin 3z,
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and
y" + 9y = (sin3z)u” + 6(cos3z)u’ =0 or u” 4 6(cot3z)u’ = 0.

If w = « we obtain the lincar first-order equation w’ + 6(cot 3z)u: = 0 which has the integrati:..

factor €8 0t37dr — 41232 Now

d ., . ; . .9
—[(sin? 3z)u] =0 gives (sin®3x)u = c.
dx
Therefore w = 1 = ccsc? 3z and u = 1 cot 3z. A sccond solution is yo = cot 3z sin 3z = cos 3.
5. Define y = u(x)coshz so
o) — o inh a2 cagh " — o cosh r 4+ 24/ sinh ¢ 2
y =wusinha +u coshz, 3" =" coshx+ 2u'sinhx + ucoshz
and
Y —y = (coshr)u” + 2(sivh2)u’ =0 or u” + 2(tanhz)u’ = 0.

If w = v’ we obtain the lincar {irst-order equation v’ + 2(tanh z)u: = 0 which has the integrati:

factor ¢2J bz de — oih2 ¢ Now
d . 9 |
— [(cosh? 2)w] =0 gives (cosh®z)w = c.
dz
Therefore w = v’ = csech” x and u = ctanh 2. A sccond solution is y5 = tanh 2 coshz = sinh .
6. Dcfine y = u(x)e? so
e ,r:’ 7 A f 2 3
y = 5eu+ %, o = U + 1065y + 25e>u
and
e e
"5y =W + 10 =0 or u +10u =0

If w = «' we obtain the linear first-order equation w’ + 10w = 0 which has the integrating fac:

emj dz _ o102 Now

10z

d
['%w] =0 gives %%w=c.

dz
Therefore w = u' = ce™19% and u = ¢;e™19%. A sccond solution is Yo = ¢€

7. Define y = u(z)e?*/? so

1016,;7 =¢ or

y — gf,Zc/d 621/31/: y// o2/ /3. W+ §e7,q/gu . 46%’/3"&
and

9y" — 12y + 4y = 9>*/34" = 0.
Thercfore v = 0 and v = ¢1x + ¢o. Taking ¢; = 1 and ¢y = 0 we see that a second solution:
Yy = 117(’.2:”/3.

8. Define y = u(x)e*/? so

y = %c’;/3zb+em/3'u’, Y = 3y 4 36 w3y 4 ;e”‘s
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—n

e

.. =4
6y +1y —y=e"6u" +5u)=0 or v+ %u’ =0.

v = u/ we obtain the linear first-order equation ' + %w = ( which has the integrating factor
Tt fdn _ 57/6 Now .
. [€52/8w] =0 gives /8y = ¢

Thevefore w = u' = ce~5%/8 and u = c1e7 /6. A second solution is yp = e~5%/6¢%/3 = ¢=3/2.

~ mtifying P(z) = —7/x we have

- f(=7/z) de 1
Yo = x4/Tda: = ;7:4/:;(1:6 = 2tIn|z|.

= zecond solution is y2 = z* In|z|.

Jizatifying Pz) = 2/x we have

o= [(2/x) dx .
Yo = .-rg/ ¢ = a:z/:zz‘sd:r = —

-3
4

1
51’

= second solution is yp = 273

Ci=mifying P(z) = 1/z wce have

¢~ /e dx 1
o=lnz [$ de=lnz [ 2 =lnz(-—)=-1
& lnr/ (Inzx)?2 de hl:r/:z(lmt)2 nz:( lnfzr)

A second solution is yp = 1.

- Z=ntifying P(z) = 0 we have

yo =22z /F——O—dﬁdfc =27 g (——1——) = —z1/2,
' (Inz)? Inz

= second solution is yp = /2.

Z:=ntifying P(z) = —1/x we have

e—f —dr/z z

dr = zsin(lnz) /——— dx

yo = x sin(lnx) / 22 sin?(In z)

z? si112(ln x)

1 -
ST gy = frsin(n 2)] [ cor(lnz)] =~ cos(lna).

= zsin(ln z) /

= second solution is y2 = z cos(In .12)

.= _ientifying P(z) = —3/x we have

.3
dr = COS(].II IE) / m dz

e—f ~3dz/x

2 {1y -
= eos(ind) [ S

1
= z° cos(In ) / Ei(ln—ﬁc) dz = 22 cos(Inz) tan(In z) = z>sin(In z).
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Exercises 4.2 Reduction of Order

A second solution is yo = z? sin(Inz).

15. Identifying P(x) = 2(1 + )/ (1 — 20— 12) we have

Cre [20+z)dz/(1—22—2* ) n(1~22-22)
p=(+1) | e :1:+1)/—d:z:
1= 2z — a2 2
=(z+1) [—%—l}] = —2-—x—2

A sccond solution is yp = 2% + z + 2.

16. Identifving P(x) = —22/ (1 — 'rz) we have
apey — —f —dem/‘(l—ag) Iz = / In(l —z? d _ / 1 '1 +x
Y2 /e dz =1 TZ .

l—=x

A second solution is yo = In |(1 + z)/(1 — ).
17. Define y = u(z)e™%* so

y/ — —2’11-6_% +u’6_2x, y// — u//e—2a; _ 4u/e—2a: + 41&6_2w

and

Y —dy =" — 47 =0 or o — 4 =0.
If w = «' we obtain the lincar first-order equation w’ — 4w = 0 which has the integrating -
e~ifdz = c—4z_ Now J

—[e W] =0 gives e Fw=c
x

Therefore w = u/ = ce®® and v = c1e*®. A second solution is yo = e 2% = 22, We -
obscrvation that a particular solution is y, = —1/2. The general solution is

y = cre 2% 4 oge?t —
18. Define y = u{x) - 1 so
’y’ _ u’? y// — " and y// +y’ — =1

If w = v/ we obtain the linear first-order equation w’ + w = 1 which has the integrating -
el & = ¢ Now

£ €T : X T
e"w =e° g@ves ew =¢€" +c
il
Therefore w =u' =1+ ce™® and u = x + cie~* + ¢». The general solution is

y=u=z+ce *+cy.
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Exercises 4.2 Reduction of Order

19. Define y = u(x)e™ so
y =uc® e, Y =u"e" + 20" + ue”
and
o0 @, A X,/ €
y" = 3y + 2y = ¥ — e’ = e

If w = v we obtain the linear first-order cquation v’ — w = 5¢2® which has the integrating factor

e~ 4 — o= Now

d . _. . . o )
[e™Tw] = 3e*  gives e Yw = 5e* + ¢;.
dx
D) - [~ . ' . .
Therefore w = v = 5¢** + ¢1e* and u = %em + ¢1€* + ¢2. The general solution is
y=ue® = 3% 4 1€ - oo

2
27, Define y = u(z)e® so
"

T ! " ! z
Yy =ue" +u'e”, Y =u"e" + 2" + ue®
and
y// _ 4y/ + 3y — e:l‘,u// _ e:l.‘uAl = .
27 = o we obtain the linear first-order equation w' — 2w = z¢~* which has the integrating factor
— 19 _ -
L2 — o=22 Now

d . _o., _a. . o 1 a1 _a.
—lem By = 2eT gives o Fw = —Z eI - 2o ey
3 9
Tiereforc w = W = —% e — %e‘“’ + 1% and uw = %:1:6""“ + %c“"’ + e?® 4+ ¢3. The general
-:_ution is
€z 1 4 3 x
Yy=ue" = -+ =+ e +egen.
3 9

¥ -

12 a) For mj constant, let y; = ¢™. Then yj = me™* and yf = m% T Substituting into the
differential equation we obtain
14 / p T 7. 1L
ay} + b’yl +oy = a_mjlzemlz‘ + b?n]emlv + ce™*

= ™ (am} 4+ bmy + ¢) = 0.

Thus, y1 = €™% will be a solution of the differential equation whenever am? + by + ¢ = 0.
Since a quadratic equation always has at least one real or complex root, the differential equation
must have a solution of the form y; = "%,

= Write the differential equation in the form

I/

b a
y v+ Sy=o0.
[¢2

a
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Exercises 4.2 Reduction of Order

and let y) = €™ be a solution. Then a second solution is given by

ebafa
oy = T
Yp=c¢ / ST da

- c-mlzz‘:/e—(b/a-'.—?n‘z.l)mdm

1

" bla+2my ¢
____1___ (,—(b/a.Lm,l)rc
bla+2m; ‘

mym

e—(b/a=2my)z (m1 # —b/2a)

Thus, when my # —b/2a, a second solution is given by ya = €™2* where my = —b/a — -

When m1 = —b/2a a second solution is given by

yg = "7 / dx = xe™".

(c) The functions

1., . 1, . o

sinx = 2—1(6” —e ') cos T = 5(({“ +e™H)
: 1 o —a Lo« -
sinhaz = 5(6 —e ") coshz = 5(8 +e7%)

are all expressible in terms of exponential functions.

22. Wehave y =land yf =0, s0 zy] —2y] + y1 =0 —z + 2 = 0 and y;(z) = x is a solution of -
differential equation. Letting y = u(z)yi(z) = 2u(z) we get

Y =ad/(z) +u(z) and 3 =au’(2) + 20/ ().

Then ay” — 2y +y = 22" + 220’ — 2% — 2u + 2u = 220" — (2 — 2z)’ = 0. If we make °

substitution w = u’, the linear first-order differential equation becomes z%w’ — (22 — 2)w = 0, wk:

is separable:

dw ) 1
- = ( 1— ;)da:

Ihw=r-Inz+c

8.’1.’

w=cy—.
i

Then v/ = ¢16*/x and u = ¢1 [ ¢*dr/x. To integrate €*/x we use the series representation for -
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Exercises 4.2 Rcduction of Order

T 5 a second solution is

em
y2 = zu(z) = C]l’/; dx

-—01‘1,/ (""““57 —l—3 --~>(.z,

1 1 1
=c1:1"/( +1+5r+§1 ->da:

1 1
— —L— .
q;z,(lnr-o-x 2(2]) +3(5T)$ +- )

1 . 1
— i Ty e 2 3 o ST
—c1<a,ln,1,+a, +2(21)J. +3(3!).L + )

- nterval of definition is probably (0, oc) because of the Inx term.
a We have ¢ = ¢" = €7, so
ry’ — (. +10)y' + 10y = ze® — (x + 10)e* + 10e™ = 0,
and y = ¢* is a solution of the differential equation.

=1 By (5) a second solution is

o~ J Ple)de . o [e [ 20 dg ; - of (14+10/z)dx
:2=’1/—— l’=@“/—,,.-(ﬂ?=e“ ——dx
Y y ,y% . e2u ] e

r+ln.z .
=c* / 5 dr =¢ / 210 da
e ¥y

= ¢*(—3,628,300 — 3,628.800x — 1,814,4002% — 604,80023 — 151,2002*

— 30,240z° — 5.0402% — 72027 — 9028 — 102° — £'0)e ™2
= —3,628.,800 — 3,628,800z — 1,814.4002” — 604,800z — 151,200x*

— 30.2402° — 504025 — 72027 — 903 — 1029 — 210,

1 1
¢) By Corollary (A) of Theorem 4.1.2, — 101 ¥2 =) " is a solution.
n=0 "¢
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Exercises 4.3 Homogeneous Linear Equations with Constant Cocfficients

[Rv]

ov e WO

[w5]

%

. From 4m? +m = 0 we obtain m = 0 and m = —1/4 so that y = ¢; + cpe™

. From m2 +4m — 1 =0 wc obtain m = —2 4+ /3 so that y = rzle(_z;"/'s)m + coe

z/4

From m? — 36 = 0 wc obtain m = 6 and m = —6 so that y = ¢1e5% 4 ¢pe76%.

2

From m? — m — 6 = 0 we obtain m = 3 and m = —2 so that y = 13 + coe ™27

. From m? — 3m + 2 = 0 we obtain m = 1 and m = 2 so that y = ¢1e% + coe?®.

From m? + 8m + 16 = 0 we obtain m = —4 and m = —4 so that y = ¢je™% + coze™2%.
Y

2 - : - - 32 5
Fromm m”* — 10m + 25 = 0 we obtain m = 5 and m = 5 so that y = ¢1€°* 4 co2e™®.

. From 12m2 — 5m — 2 = 0 we obtain m = —1/4 and m = 2/3 so that y = cje™%/* 4 ¢¢?*/3.

(-2—vB)x.

From m? + 9 = 0 we obtain m = 3¢ and m = —3i so that y = ¢ cos 3x + ¢z sin 3x.

3. From 3m2 -+ 1 = 0 we obtain m = i/v/3 and m = —i/+/3 so that y = ¢ cos(z/v3) + ca(sinz/+ B
/ Y / ) /

. From m? — 4m + 5 = 0 we obtain m = 2 + i so that y = ¢**(c cosz + c2sin ).

From 2m? 4+ 2m 4+ 1 = 0 we obtain m = —1/2 £+ 1/2 so that
y = e~/2[c; cos(z/2) + casin(x/2)).

. From 3m? + 2m + 1 = 0 we obtain m = —1 /3£ V2i /3 so that

y = ¢"*3[e; cos(v/2x/3) + casin(+v/22/3)].

. From 2m? —3m +4 = 0 we obtain m = 3/4 £ 1/23i/4 so that

y = 3/[¢1 cos(V23z/4) + ez sin(v/23z/4)).

B 9 - . -
. From m3 — 4m? — 5m = 0 we obtain m = 0, m = 5, and m = —1 so that

y = c1 + cee®® L+ cze””.

-2, “rom m® — 1 = 0 we obtain m = 1 and m = —1/2 £ v/34/2 so that

y = c16” + e /2 [cy cos(V/31/2) + c3sin(vV3x/2)].

. Trom m® — 5m2 4+ 3m + 9 = 0 we obtain m = —1, m = 3, and m = 3 so that

Yy = cre © + Czedic + 031:(5.537

“eom m® + 3m? — dm — 12 = 0 we obtain m = —2, mn = 2, and m = —3 so that

y= c_le—Qa: + (:2621" + 036_33".
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Exercises 4.3 Homogeneous Lincar Equations with Constant Coefficients

. From m? 4+ m2 —2 =0 we obtainm = 1 and m = —1 & ¢ so that

u=cie' + e *(cacost + cgsint).

. Trom m3 —m? — 4 = 0 we obtain m = 2 and m = —1/2 £ /7i/2 so that

z = c1e® + e 2 [eg cos(VT[2) + easin(VTE/2)).

From m3 + 3m? +3m + 1 = 0 we obtain m = —1, m = —1, and m = —1 so that
y = c1e % + coze ™ + eaze .

I's

. Trom m3 — 6m? 4+ 12m — 8 = 0 we obtain m =2, m = 2, and m = 2 so that

Y = 1627 + coze® + e3xle?”.

©orommt +miP+m2 =0weobtainm=0,m=0, and m=—1/2+ v/31/2 s0 that

y = c1 + ez + e~ %[z cos(v/3x/2) + cq sin(vV3z/2)).
Zrom m? = 2m? +1 =0 we obtain m =1, m =1, m = —1, and m = —1 so that
y=cie” + coxe™ + cze™ T + cyre” 7.

“rom 16m? 4+ 24m? 4+ 9 = 0 we obtain m = +/3i/2 and m = +v/3i/2 so that
y = ¢1 cos(V3z/2) + ez sin(v/3z/2) + czz cos(V3x/2) + cax sin(v/3z/2).

. Trom m?* — Tm? — 18 = 0 we obtain m = 3, m = —3, and m = £v/2¢ so that
Yy = c]_e’gg‘ + 026”3’& + c3 cos V2 + ¢4 8in Voz.
Trom m® + 5mt —2m3 — 10m? + m+5=0weobtain m=—1,m = -1, m =1, and m = 1, and

~ = —3 so that

u=cre  +cyre " +cse” +ceqre’ + cse 0.

Trom 2m5 — Tm? + 12m3 4+ 8m® = 0 we obtain m =0, m =0, m = —1 /2, and m = 2 &£ 2i so that
r=cC1+ cs+ 036_"'/2 -+ 623(64 ¢0s 25 + ¢35 sin 2s).
=wom m? + 16 = 0 we obtain m = 24i so that y = ¢; cos 4z + cpsinda. If y(0) = 2 and 3/(0) = —2
iene; =2, 0 =—1/2, and y = 2cosdx — %sin4x.
Trom m? 4+ 1 = 0 we obtain m = %1 so that y = c1 cos§ + cosin 0. If y(x/3) = 0 and y'(7/3) = 2
1 V3

501 +7C2 =0

V3 1
—761 + _—2-(:2 =2,

S
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Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

31.

32.

33.

34.

35.

36.

10,

soci=—3.co=1,and y = —V/3 cosd + sinb.

From m2 —4m — 5 = 0 we obtain m = —1 and m = 3, so that y = ¢je™t + ¢, If y(1) =
and /(1) = 2, then cie™! + c2e® = 0, —cre7! + bege® = 2, 80 1 = —¢/3, ca = e7°/3.

y = —lelt 4+ Ledt=s,

From 4m?—4m—3 = 0 we obtain m = —1/2 and m = 3/2 so that y = c1e™%/2 4+ ¢2e3%/2. If y(0 =

and (0} = 5 then ¢1+¢ = 1, —%cl—f—%cg =5,80¢c; =—-7/4, ca=11/4, and y = —%e_"‘/2+ %e‘"

From m2+m-+2 = 0 we obtain m = —1/24+/7i/2 so that y = e~%/?[¢; cos(VT £/2)+cosin(v/Tx .
If y(0) = 0 and /(0) = 0 then ¢; = 0 and ¢ = 0 so that y = 0.

From m? — 2m + 1 = 0 we obtain m = 1 and m = 1 so that y = c1e® + coze®. If y(0) =:
y'(0) = 10 then ¢; = 3, ¢1 +¢2 = 10 80 ¢1 = 5, ¢p = 5, and y = 5e” + Sxe®.
From m3+12m2+36m = 0 we obtainm = 0, m = —6, and m = —6 so that y = ¢1+coe™ % +-c3e~
If y(0) = 0, ¥/(0) = 1, and 3”(0) = —7 then
c1+ec=0, —6cg+cz=1 36cr—12¢5=-7,
80 ¢1 =5/36, ¢y = —5/36, c3 =1/6, and y = % - %e'ﬁ‘” + %:1:(3_6”‘.
From m3 + 2m? — 5m — 6 = 0 we obtain m = —1, m = 2, and m = —3 so that
y = cre™" + c2e® + c3e 77

If 4(0) = 0, ¥'(0) = 0, and ¥”(0) = 1 then

c1+cecot+c3=0 —c1+20—3c3=0, c1+4ca+9c3=1,
s0 ¢; = —1/6, ca = 1/15, ¢c3 = 1/10, and

1.1 .
g — X el i ,l-d.r,‘
¥y="6¢ T T

. From m? — 10m 4 25 = 0 we obtain m = 5 and m = 5 so that y = 1€’ + coze®®. If y(0) = 1

y(1)=0then¢; =1, 1P +e2¢® =0,50 ¢1 = 1. ¢g = —1, and y = AT et
Y : : ) Yy

. From m? + 4 = 0 we obtain m = 42i so that y = ¢1 cos 2z + ¢zsin2z. If y(0) = 0 and y(7 =

then ¢; = 0 and y = cosin 2z,

. From m? + 1 = 0 we obtain m = i so that y = ¢;cosx + ¢ysing and y = —¢psinz + .-

From ¢/(0) = ¢1(0) + ¢a(1) = ¢o = 0 and ¥/ (7/2) = —¢1(1) = 0 we find ¢; = c3 = 0. A soluti.:
the boundary-valuc problem is y = 0.

From m? — 2m + 2 = 0 we obtain m = 1 £ i so that y = e*(cy cosx + cosinz). If y(0) = 1

7)) =1then ¢; =1 and y(w) = €™ cosm™ = —¢™. Since —e™ # 1, the boundary-value problei:

10 solution.
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. From the solution y; = €

Exercises 4.3 Homogeneous Lincar Equations with Constant Coefficients

Z. The auxiliary equation is m? — 3 = 0 which has roots —v/3 and v/3. By (10) the general solution

sy = c1eV3 + e V3, By (11) the general solution is y = ¢; coshv/32 + cosinhv/3z. For
Yy = cle‘/‘_“” + 026_\/39; the initial conditions imply ¢1 +c2 = 1. v/3¢1 — v3c2 = 5. Solving for ¢; and
sy wefind ep = 1(1+5v3) and ep = $(1-5v3)soy = J(1 + 5v/3)eV3e = 21— 5v3)e~ V3, For
4 = ¢ cosh V32 + ¢o sinh v/3x the initial conditions imply ¢; =1, V3ey = 5. Solving for ¢; and ¢
wefindep =1 and ¢ = % 3 so y = cosh v3z + %\/gsinh V3ir.

. The auxiliary cquation is m2? — 1 = 0 which has roots —1 and 1. By (10) the general solution is

v =c1e¥+cge™™. By (11) the general solution is y = ¢; coshz + ¢o sinh 2. For y = ¢1e* + coe™ the

soundary conditions imply ¢ +¢2 = 1. cre—epe™™ ! = 0. Solving for ¢; and ¢; we find ¢; = 1/(1+¢2
J P S /

and cp = e2/(1+c?) soy = e*/(1+€*) +e?e™"/(1+€?). For y = ¢1 coshiz + ¢y sinh z the boundary

conditions imply ¢) = 1. ¢g = —tanh 1, so y = cosha — (tanh 1) sinh 2.

Z. The auxiliary equation should have two positive roots, so that the solution has the form

4 = c1eM7 4 ¢pe®?®. Thus, the differential equation is (f).

. The auxiliary equation should have one positive and one negative root, so that the solution has the

‘orm y = ¢1M% + cpeF2%. Thus, the differential cquation is (a).

. The auxiliary equation should have a pair of complex roots «+ 37 where o < 0, so that the solution

nas the form e (cq cos 3z + ¢y sin 3x). Thus. the differential equation is (e).

. The auxiliary equation should have a repeated negative root, so that the solution has the form

4=c1e”® 4+ cpze™®. Thus, the differcntial equation is (c).

. The differential equation should have the form y” 4+ k?y = 0 where k = 1 so that the period of the

solution is 27. Thus, the differential equation is (d).

. The differential equation should have the form y” + k?y = 0 wherc k& = 2 so that the period of the

solution is 7. Thus, the differential cquation is (b).

. Since (m—4)(m+5)% = m®+6m2 —15m — 100 the differential equation is 4 +6y” — 15y’ — 100y = 0.

The differential equation is not unique since any constant multiple of the left-hand side of the
differential equation would lead to the auxiliary roots.

. A third root must be mg = 3 — ¢ and the auxiliary equation is

1 1 : 9 11 .
(m + 5) [m—3+1)|m-(3-14)]= (m + 3) (m? — 6z 4 10) = m3 — -Q—m2 +7m+5.

The differential equation is
11
y"’ . ?y// + 7?/' + 5y =0.

4 cos  we conclude that my = —4 + ¢ and my = —4 — i are roots of the

—4

auxiliary cquation. Hence another solution must be yy = e **sinz. Now dividing the polynomial
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Exercises 4.3 Homogeneous Lincar Equations with Constant Coefficients

m3 4+6m? +m — 34 by [m— (=44 1)][m — (=4 —1i)] = m% + 8m + 17 gives m — 2. Therefore m; =
is the third root of the auxiliary equation. and the general solution of the differential equatior -
4

4x 22

y=ocre cosx + g sing + ese

52. Factoring the difference of two squarcs we obtain
mitl=m?+ 12 —2m?=(m?+1-vV2m)(m? +1+v2m)=0.
Using the quadratic formula on each factor we get m = £v2/2 + V2 i/2. The solution ¢ -
differential equation is
N VB2 V2o V2N A V2o V2
y(zr) =e €108 -1 tesin—-z| te “lescos ozt egsim -z )

“ 4

53. Using the definition of sinh x and the formwla for the cosine of the sum of two angles, we hav

y = sinhz — 2 cos(z + 7/6)

1., 1_, ™
=—e' — e -2 [(cos x) (cos (—l> — (sinx) (sin %)J
D

2 2
1, 1_,. (V3 1.
=-—¢"——¢ " —2|-—cosx— csinx
2 2 2 2
1. 1 _., .
=—e' — ¢ ' — \/gcos 2+ s1n .
2 2
This form of the solution can be obtained from the general solution y = ¢1e® 4+ cae™ + ¢3¢ -
cysina by choosing ¢ = 5. c2=—3. c3=—v3, and ¢g = L.

54. The auxiliary equation is m? + o = 0 and we consider three cases where A = 0, A = a? > -
A=—a? <
Case I When o = () the gencral solution of the differential equation is y = ¢y +coz. The bor.
conditions imply 0 = y(0) = ¢; and 0 = y(7/2) = cow/2. so that ¢; = 3 = 0 and the pr
possesses only the trivial solution.
Case IT When A = —a? < 0 the general solution of the differential equation is y = -
coe” %% or alternatively. y = eyjcoshaz + copsinhaz. Again, y(0) = 0 implies ¢; = 0 <
y = cosinhax. The second boundary condition implics 0 = y(7/2) = casinhaw/2 or ¢ =
this case also, the problem possesses only the trivial solution.
Case III  When A = a? > 0 the general solution of the differential equation is y = ¢ co-
rysinez. In this case also, y(0) = 0 yields ¢; = 0, so that y = cagsinax. The sccond bo.
condition implies 0 = ¢ sina /2. When a:7/2 is an integer multiple of #, that is, when « =
for k a nonzero integer, the problem will have nontrivial solutions. Thus, for A = o? = =~

boundary-value problem will have nontrivial solutions y = ¢g sin 2k2:. where k is a nonzgero .-
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> From 2m?* 4+ 3m3 — 16m? 4+ 15m — 4 = 0 we obtain m = —4, m =

Exercises 4.3 Homogencous Linear Equations with Constant Coefficients

.= the other hand. when « is not an even integer, the boundary-value problem will have only the
-zivial solution.

sing a CAS to solve the auxiliary equation m3 — 6m? + 2m + 1 we find m; = —0.270534,

- =0.658675, and m3 = 5.61186. The general solution is

b — e n—0.27053 1 0.658675x | ,._5.61186z
Y = C10 + e + c3e .

““sing a CAS to solve the auxiliary equation 6.11m3 + 8.39m2 + 7.93m + 0.778 = 0 we find
- = —0.110241. mg = —0.647826 + 0.857532¢, and m3 = —0.647826 — 0.857532:. The general
- ution is
y = ce” OVHOMLE | o=0.64T8267 (1) 005 0.8575322 + ¢351n 0.8575322).
“xing a CAS to solve the auxiliary equation 3.15m* — 5.34m2 + 6.33m — 2.03 = 0 we find
= —1.74806. my = 0.501219, m3 = 0.62342 + 0.588965¢. and m4 = 0.62342 — (0.588965i. The

z#neral solution is

y = ¢ 1TI800% ) (08012102 | 0623432 () (05 (). 5889654 - ¢4 5in 0.5889652).

hFs

. Tsing a CAS to solve the auxiliary equation m* + 2m? —m 4+ 2 = 0 we find my = 1/2 4+ V/3i/2,
9 =1/2 —V/3i/2, mg = =1/2++/Ti/2, and my = —1/2 — v/7i/2. The general solution is
. 3 3 ; V7 7
Y= e'I‘/z (C| cos 12——’1 + ¢2 8In —\g—_a’) + e—x/z (03 CcOos %r + ¢4 8In gz) .

,m =1, and mm = 1, so that

N —

=167 4 et/ 4 oy + cqze®. If y(0) = =2, y'(0) = 6, ¥'(0) = 3, and y(0) = 1, then

a+eate=-2
1 \
—de¢y + 502 +c3t+eg =06
1
16¢c1 + j2tat 2c4=3

1 1
—064c1 + zco+eg3+3ca = =,

8 2
. ; 1 918 A
aocl=—%,02=—33—6,03=92—5,(:4=—%, and
4 _,, 116 22, 918 58
y=——o€ = —e"" 4+ —e — —xc”.
y 75 3 25 B)
23, From m? — 3m3 + 3m2 — m = 0 we obtain m = 0, m =1 m =1, and m = 1 so that

y = c1 + coe® + czue® L cqr?e®. If y(0) = 0, v'(0) = 0, ¥"(0) = 1, and y""(0) = 1 then

c1+ca=0. ca+ec3=0, co+2c3+2c4=1, c¢2+3c3+6¢cs=1,
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Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

soc1 =2, c0=-2,c3=2.¢c4=—1/2, and

4 1,
y=2- 2e* + 2ret — 5«’1’26'7:.

o

1]

(o2

. From m? 4+ 3m + 2 =0 we find my = —1 and mg = —2. Then y. = c1e™" + coe™ 2% and we assuni.

yp = A. Substituting into the differential equation we obtain 24 = 6. Then A =3, y, = 3 and
y=cie T+ e P+ 3.

From 4m* 4+ 9 =0 we find m; = —% i and mo = % i. Then y. = ¢ cos %’l‘ + ¢o sin %1 and we assun:-

yp = A. Substituting into the differential equation we obtain 94 = 15. Then A = % L Yp = % and
3 3
Y = €1 CO8 51? + ¢y sin 5% +

]

| Ot

(9%

: - % [ -
. From m? — 10m + 25 = 0 we find m; = mg = 5. Then Yo = 1677 + cowe®™ and we assuu

yp = Az + I3. Substituting into the differential equation we obtain 2564 = 30 and —10A+ 258 =

TlleILA——%?B——%yp—— %:ﬂ+%,aﬂd
0. . 6 3
y= cle""v + 02;1:6“"” + —5:1: + —5 .

From m? +m — 6 = 0 we find m; = —3 and mg = 2. Then y. = 1673 L 2¢2® and we assur.
yp = Az + B. Substituting into the differential equation we obtain —64 = 2 and A—6B = 0. Th-.

1 _ 1 ., _ _1, 1,
A=—3,B=~5.yp=—3¢~ g, and

Q4 b 1 1
-3z 2x
Y = C1€ + e — -3 — —.
Yy 1€ 2 3 18

. From }Tm2 +m+1 =0 we find my = mg = —2. Then y. = 1% + coze™?* and we assu.

yp = Ax? + Bz + C. Substituting into the differential equation we obtain A = 1, 244+ B = —.
7

and %A+B+C’=0. Than=1,B=—4,C=§:yp=x2—4m—|—%,and

o o 7
y=cire® 4 cyze 2"+:L'2—4:v+-2—.

. From m? — 8m + 20 = 0 we find m1 = 4 + 2 and mg = 4 — 2i. Then y, = ¥ (¢1 cos 2z + ¢ sin 2

and we assume y, = Az? + Bz 4 C + (Dz + E)e®. Substituting into the differential equation =
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(¥ 1)

o

. From m

Exercises 4.4 Undetermined Coefficients - Superposition Approach
otain
2A—-8B+20C =0
—6D +13E =0
—-16A+20B=10
13D = —26
204 = 100.
ThenA=5B=4C=1,D=-2E=—

c.olS

yp=5z2+dz+ H+ (-2 - 1) e and

. 11 12\ .
y:e4x(010032x+(:2sin2x)+5:v2—!-4:1:+Td-{»( 2L—T3—,) .

. From m?2 +3 = 0 we find mq = v3i and my = —/3%. Then y. = e1c0sv3z + cpsinv3z

and we assume yp = (Az% + Bz + C)e3®. Substituting into the differential cquation we obtain
24+ 6B+ 12C = 0, 124+ 12B = 0, and 124 = —48. Then A = —4, B = 4, C = %,

(4T+4.L )df«d

4
y=clc05\/§:c+C2sin\/§:r.—l—< —4z* -1—4:c—§) 3z

. From 4m? —4m—3 = 0 we find m; = % and mo = —--% . Then y, = 0163”/ 2+ ce %2 and we assume
= Acos2z + Bsin2z. Substituting into the differential equation we obtain ~19 — 8B = 1 and
3. —1 —19B =0. Then A = 412(’0 B = —4#83 Yp = 41){ cos 21 — 135 sin 2z, and
o 3z2 ., o —wj2 19 8
= (1€ 0@ 520 — ——=sin 2
] 1 + ¢ 420(0 4255m T.
From m? —m = 0 we find m; = 1 and mg = 0. Then y. = c1e¥ + ¢ and we assume yp = Ax.
Substituting into the differential equation we obtain —A = —3. Then A = 3, y, = 3z and

y=cie® +cy + 3z.

. From m2 4+ 2m = 0 we find my = —2 and ms = 0. Then Yo = c1e”% + ¢y and we assume

= Asz? + Bz + Cze™?%. Substituting into the differential equation we obtain 24 + 2B = b5,
1A =2, and ~2C = —1. Then A = % =2,C=5,y= 2’13 + 2+ 3 5Le” 2z and

1 1 .
yzczle +(g+2:r +2.v+-2-re 2z

2 1

- m—i—% = 0 we find m; = my = 5. Then y. = cet/? + z/2

coxe and we assume
yp = A+ Bz%®/?. Substituting into the differential equation we obtain 1A = 3 and 2B = 1. Then
A=12, B= % yYp =12+ %xzew/‘z, and

) . 1 .
Yy = cre/? ¢ coze®? 412 4 53:26””/ 2,
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Exercises 4.4 Undetermined Coefficients — Superposition Approach

12. From m?2 — 16 = 0 we find my = 4 and mg = —4. Then y. = c1e®® + e and we ass..
Yp = Aze?®. Substituting into the differential equation we obtain 84 = 2. Then A = }1 yUp = %
and ]

y = 01641' + (:2(3—f1zv + Zaze“’”.
13. From m? + 4 = 0 we find m; = 2¢ and mg = —2i. Then y, = ¢1 cos2x + cysin 2z and we ass™.
= Az cos2x + Bxsin2x. Substituting into the differential equation we obtain 48 = (
—4A = 3. Then A = —% . B=0,y,= —%:1; cos 2z, and
_ 3
Yy = ¢1 €08 2x + ¢ 8in 2z — 1:1: COS 2.

14. ¥rom m2 — 4 = 0 we find m; = 2 and mg = —2. Then y,. = c1€** + coe™?* and we assume -
yp = (422 + Bz + C) cos 2z + (Dz? + Ex + F)sin 2z. Substituting into the differential equatic -
obtain

-84 =0
—8B+8D =0
2A-8C+4E =0
—8D =1
—8A—-8E =0
—4B +2D — 8F = -3.
Then A=0, B = —é ,C=0,D= —% E=0Q F= —2 SO Yp = —%:}:COSQ.’IJ-F (—%1’2+ «1;—3)~
and . ) 13
0t e e 20 e~ 2L T aeye O _ - "
Yy = c1e”" + coe 3 rcos2x + ( 3 % + 39) sin 2.

15. From m? +1 = 0 we find m; = ¢ and mg = —i. Then y. = ¢1cosz + cosinz and we as-
yp = (A2? + Bx)cosx + (Cx? + Dx)sinz. Substituting into the differential cquation we <
10 =10,24+2D =0, ~4A =2, and 2B+2C =0. Then A= -4, B=0,C=0,D =
Up = —%:‘1:2 cosx + %:I.? sinz, and

1 1
Y = €1 COST + CoSinx — —chos T+ §L%1n x.
16. From m? — 5m = 0 we find m; = 5 and mg = 0. Then y. = 1% + ¢y and we a--

Up = = Az? + Bz® + Cx? + Dz. Substituting into the differential equation we obtain —20- -
12A — 15B = —4, ()B -10C = -1, and 2C —5D = 6. Then A = -, B =& C ="
D = —% s Yp = O:Z by 1‘.}1‘ 20)301' - (’gi.t, and

14 4 33 o 69{

1
y=ae™ o= guat 4 ope ot ~ one
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Exercises 4.4 Undetermined Cocflicients — Superposition Approach

From m2—2m+35 =0 we find mj = 1+ 2i and mg = 1 —2i. Then Yo = €%(c1 cos 22 + ¢c2 8in 2z) and
e assume yp = Awe® cos2z + DBre®sin2z. Substituting into the differential equation we obtain
iB=1land —4A=0. Then A=0.B=1%,y, = %:z:e“’ sin 2z, and

. i I ..
y = % (e c08 2z + ¢osin 27) + 1:1:(3"’ sin 2z.

“rom m? —2m+2 =0 we find m; = 1+ and my = 1 —4. Then y. = ¢*(cycosx + casinz)

:nd we assume y, = Ae? cosx + Be* sin . Substitutil‘lg into the differential equation we ohtain

: G ) T D
A-2B=1and 2A+B=-3. Then A=£. B=— re ?cosw — +e* sinx and
5° Yp = 5
: : 75 1 oy .
y=c€e"(cicosx + czsine) + —e** cos v — 502" sin z.
8}

Crom m2+2m+1 = 0 we find mp = my = —1. Then y, = c1e”% + coxe™® and we assumc

.= Acosz + Bsinx 4+ Ccos2r + Dsin 2¢. Substituting into the differential equation we obtain
"B = 0, —24=1, —3C+LD—3 and —4C - 3D =0. Then A=—-},B=0,C=~3, D=2,

= —%cos:r 2?. Cos 22 + <;1n 2z. and

y=cre ¥+ coxe T — lcoe T — 9 cos 2z + 12 sin 2z,
ymae et Ty 25 25
Zrom m? 4+ 2m — 24 = 0 we find m; = —6 and my = 4. Then y, = c1¢™% 4 ce®® and we
<sume yp = A+ (Bur? + Ca)et®. Substituting into the differcn‘rial equation wc ohtain ——94A = 16,
B410C = —-2,and 20B = —1. Then A = —% .B= .C= 100 Yp = —% (201‘ + 100 )04”,
= 5 19
: 1. 1
-0 Ax 2 4r
=cje et — = — .
y=ae THact g (20 + 100“) ¢
Trom m3 — 6m? = 0 we find my = my = 0 and ms3 = 6. Then y. = ¢1 + cox + 3% and we assmne

o= Ax? + Beosx + Csing. Substituting into the diﬁ'erentia,l equation we obtain —124 = 3,
“B-C=-1,and B+6C =0. Then A = —,1 , B = ;7 ,C= 3—17 yYp = —%:1:2— 3—67-cosx+%sin:r:?
=nd

1 + cox + 357 1:12 6(: :L—l—lg'
y=c1+ o+ cze™ — -2 — — cos sina.
4 37 37
Trom m® —2m2 —4m+8 = 0 we find my = my = 2 and mg = —2. Then Yo = 1% 4 come®® + g2

:1d we assume y,, = (AzS + ]3’:1:2)62“’. Sub%htuhng into the differential cquation we obtain 244 = 6
:1d 6A+8B =0. Then A = 11 .B=  Yp = ( x3 — 1%1’2) e*®. and
. o 1 3 5\ o
y = 1% + coxe®™™ + c3e ¥ + (ng — E:rz) e,

Srom m® —3m2 +3m —1=0 we find my = mg =m3 = 1. Then Ye = c1€% + coe® + c3z2e® and
~re assume ¥y, = Az + B + Cx3e®. Substituting into the differential equation we obtain —A4 = 1,
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|}

Va
r-L.l

.-
S,

¥ 4]

34— B=0,and 6C = —4. Then A=—-1,B=-3,. (' =— %1/-:—;)3—3—3" and

2
x— 3 — —a5¢e,

3
FrommP—m2—4dm+4 =0 we find m; = 1, mg = 2, and m3 = —2. Then Yo = c1€¥ + 962 4 cye™"
and we assume y, = A+Bue“+C xe®™ Substituting into the differential equation we obtain 44 =

y=ce® + coxe” "I'Q}I' et

5 =1 =1 =5 4 Yo ¢ Lo 2n
—3B=-l,and4C' =1 Then A=3, B=35,C =3,y =7+ gre’ + 32¢**, and
, 9. o 1 1
y=c16® + 6% + e + S 4 Zxe® + Sxe®®
4 3 4
Trom mt 4+ 2m? + 1 = 0 we find my = m3 =i and mg = my = —i. Then y, = ¢ cosx + o sin s -

‘32 CO8 2 + cax sinz and we assume yp = Az? + Bz + C. Substituting into the differential equat:
weobtain A=1. B=-2 and44+C=1. Then A=1.B=-2,C= -3,y = 2 — 2 -3,

Y =C1COST + CasiN + 3 cosT + cyzsiny + 22— 27— 3.

Fromm*—m?2 =0 wefind m; =mo =0, m3 =1, and mg = —1. Then y, = ¢ + oz +c3e¥ +cy-~
zud we assume y.p = Az3 4 Ba? + (Cx® + Dx)e™™. Substituting into the differential equation: -
Dhrain —GA =4, 2B =0,10C-2D =0, and —4C = 2. Then A= -3, B=0,C = —-
D==3,9Yp= 2 3 (%;172 + %;z:) ™", and

. 2 1 5} —
y=c|+cx+czet et — gt~ (22 + -z )e "~
Y 3 )

2
“Ve have y, = (*1 ¢0s 22 + ¢o sin 2¢ and we assume yp = A. Substituting into the differential cqua=:
""" = find 4 = —— . Thus y = ¢y cos 2.1 + ¢osin 2x — — . From the initial conditions we obtain ¢; =

2ud 02 = /2, 80 y = V2 sin 2z — § .
We have ye = 167" 4 cpe®/? and we assume y, = Az” + Bz + C. Substituting into the differe: -
=nation we find A = —7, B = —19, and C = —37. Thus y = cie™2* + cpe®/2 — 722 — 19z —

Srowm the initial conditions we obtain ¢; = —1 and ¢p = 35‘5 , S0
1 o, 186 v/
y=—=c T+ —eY v/2 _ 722 — 19z — 37.
5) 5

We have g, = c1e™%/5 + ¢y and we assume Yp = Az? 4 Br. Substituting into the differential equ: -
w2 find A = -3 and B = 30. Thus y = c1¢™* /5 4 ¢y — 322 + 302. From the initial conditio:-
smrain ¢ = 200 and ¢ = —200, so

y = 200e~/5 — 200 — 322 + 30z.

We have y. = c1e”%% + cpze 2% and we assume Yp = (Az® + Ba?)e 2", Subsrituting int
tiferential equation we find A = % and B = % Thus y = c1e7%% + cowe™ 2% + ( +5 3 2 i

=-om the initial conditions we obtain ¢y = 2 and ¢ = 9, so

1 3 o
2%+ —2—:1,2) e 2%,

y = 2”2 4 Qe 4 (6
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31. We have y. = e~ %(¢; cosz + ¢z s5in x) and we assume y, = Ae™4_ Substituting into the differential

equation we find A = 7. Thus y = ¢~?%(¢1 cos  + casinz) + 7e~ 1. From the initial conditions we

obtain ¢; = —10 and ¢2 = 9, s0

y =€ 2%(=10cosz + 9sinz) + 7e %,

32, We have y. = ¢1 coshx + ¢g sinh ¢ and we assume y, = Ax cosh z + Bxsinh z. Substituting into the

differential equation we find A =0 and B = % . Thus
. | -
y = cpcosha + ¢osinhx + 5:1: sinh 2.
From the initial conditions we obtain ¢; = 2 and ¢ = 12, so

1
y = 2coshx + 12sinh » + 37 sinh 2.

33. We have 2, = ¢1 coswt + cpsinwt and we assume z, = Afcoswt + Btsinwt. Substituting into the

differential equation we find A = —Fy/2w and B = 0. Thus 2 = ¢; coswt+cp sinwt—(Fy/2w)! cos wt.

From the initial conditions we obtain ¢; = 0 and ¢o = Fy/ 2w?, 50

r = (Fy/2w?) sinwt — (Fy/2w)t cos w.

2+ We have z, = ¢ coswt+cesinwt and we assume z, = A cosyt+ Bsinyt, where v # w. Substituting

e

into the differential cquation we find A = Fy/(w? — %) and B = 0. Thus

. Fy
T = ¢ coswt 4 ey sinwt + ——— cosyt.
W22
From the initial conditions we obtain ¢; = —Fy/(w? —+?) and ¢z = 0, so
3 FO \ 0 VD A
T=——5— coswt + —5——— cosyt.
w? — w? — 7y

We have y. = ¢1 + ce® + cgae” and we assume y, = Az + Bz?e* + C¢d*. Substituting into the
differential equation we find A =2, B = —12, and C = % Thus

y = c1 + e® + cyxe®™ + 2z — 127%e" + §cr"” .
From the initial conditions we obtain ¢; = 11, ¢ = —11, and ¢3 = 9, so

z : > 2 1 5
y =11 — 11e* + 9ze* + 2z — 122%€* + 5@"‘” :

We have y, = ¢ + e*(cpcosV3z + c3sin v3x) and we assume y, = Az + B + Cre 2%,

Substituting into the differential cquation we find A = ;11 , B= —% cand C = % . Thus
2% ., & f; . " 1 5 2 —9g
y = c1e”% + e"(cacos V3 + cysin V3 a2) + i 3 + 3%e &
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Exercises 4.4 Undetermined Coefficients Superposition Approach

From the initial conditions we obtain ¢; = —% , Co = —;’—2 .and ¢g = %—g V3. s0
23 o, & ( 59 17 ) 1 5 2
y=——e “+e"'|——cosV3T+ — 3sn\/§x) - — - L —xe ",
Y= 31 €08 V3T T 5 V3si T TR 3

37. We have y. = ¢ cosx+czsinz and we assume y, = Az? + Bz +C. Substituting into the differer -
cquation we find A =1. B=0, and C = —1. Thus y = ¢, cos £ + cosinz + 22 — 1. From y(0) =
and y(1) = 0 we obtain

¢ci1—1=5
(cos1)ey + (sinl)ey = 0.
Solving this system we find ¢; = 6 and ¢o = —6cot 1. The solution of the boundary-value prot .
is
y = 6cosz — 6(cot 1) sinz + 2% — 1.

38. We have y. = (¢ cosx + casin2) and we assume y, = Az + B. Substituting into the differe:
equation we find A = 1 and B = 0. Thus y = ¢*(¢; cosx+cosinz)+ 2. From y(0) = 0 and y(7' =
we obtain

¢ = 0
T—e"c1 = 7.
Solving this system we find ¢; = 0 and ¢ is any real number. The solution of the boundary-v:.
problem is

y = coesing + 2.

39. The general solution of the differential equation 3 + 3y = 6 is y = ¢1 cos vV3z + cosin/3z — -
The condition 4(0) = 0 implics ¢; = 0 and so y = ¢z sinv/3z + 22. The condition y(1) +3'(1 =
implies co8inv/3 4+ 2 4+ cav/3cos V3 +2 =050 ¢ = —4/(sin /3 + V3cosv3 ). The solution ix

—4 sin \/§a:
Yy=——= + 2.
sSin \/§ -+ \,/3 COSs \/§

10. Using the general solution y = ¢ cos v/3z+¢z sin v/3z+2z, the boundary conditions y(0)+¢/ (0 =

y(1) = 0 yield the systcm
¢+ '\/§(32 +2=0

c1¢08V3 + easin V3 + 2 =0.

Solving gives

o= 2(—/3 4 sin/3) ond o= 2(1 — cos/3)
L /3cos V3 —sin V3 . 2 V3cos V3 —siny3'
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Exercises 4.4 Undetermined Coefficients — Superposition Approach

Thus,
_ 2(=V3+sinv3)cosv3z | 2(1— cos \/§)Sin\/§.’b‘ 49

v= V3cosV/3 —siny/3 + V3cos V3 — sin/3 o
We have y, = ¢ cos 2z + ¢z sin 2z and we assume y, = Acosz + Bsinz on [0,7/2]. Substituting
into the differential equation we find A =0 and B = % . Thus y = ¢1 cos 2z + cosin 2% + %Sin 2 o1
0.7/2]. On (7w/2,00) we have y = c3 cos 22 + ¢4 sin 2z. From y(0) = 1 and ¢/(0) = 2 we obtain

-

Cl=1

1
— =4+ 2c9 = 2.
Solving this system we find ¢; = 1 and ¢p = % . Thus y = cos2z + %sin 2z + %—sin:t: on [0,7/2i.

Now continuity of y at © = w/2 implies

3 . 1.« .
cos7r+gsm7r—,!—§sm§=(:3<3057r-|—(:4sm7r

o —1+ % = —¢3. Hence ¢3 = % Continuity of 3’ at z = 7 /2 implies
. 5 1 T .
—2sin7w + 3 cos T + 3 cos 5= —2¢38in® + 2¢4 COS T
o —% = —2¢4. Then ¢y = % and the solution of the initial-value problem is

cos 2x + %sin 2z + %sin x, 0<xz<m/2
y(z) = .
%cos 2z + g sin 2z, x> /2.
+2. We have y. = e"(c1cos3z + cpsin3z) and we assume y, = A on [0,7]. Substituting into the
Zifferential equation we find A = 2. Thus, y = e*(¢1 cos 3z + ¢2sin3x) + 2 on [0, 7]. On (m, 00) we
save y = e¥(e3 0832 + ¢4 sin 3z). From y(0) = 0 and ¥'(0) = 0 we obtain
c1 = —2, c1 + 3¢y = 0.
Solving this system, we find ¢; = —2 and ¢ = % . Thus y = €*(—2cos 3z + %Sin 3z) + 2 on [0, 7.
Now, continuity of y at £ = 7 implies
2
e"(—2cos 37 + 3 sin 37) 4+ 2 = €™ (¢3 cos 3w + ¢4 8in 37)
w24 2™ = —cze” or ¢g = —2e"(1+ ¢™). Continuity of ¥ at 7 implies
20 , . o -
—€™sin3m = ™ [(c3 + 3eq) cos 37 + (—3c3 + ¢4) 8in 37
.t —cge™ — 3cqe™ = 0. Since ¢z = —2¢7(1 + €™) we have ¢4 = %e‘”(l + €™). The solution of the

nitial-value problem is
(2) e“‘(—2cos3:v+§sin:3x)—:—2= 0<z<m
c/ = N e -~ ¢ o
(14+e™)e™ " (—2cos 3z + § sin3z), = > 7.
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3. ta) From y, = Aef® we find 3, = Ake*® and 3] = Ak%¢*®. Substituting into the different:
equation we get
aAk?e®® + bAke* + AP = (ak? + bk = ¢) AeF® = e,
so (ak? 4 bk + ¢)A = 1. Since k is not a root of am? 4+ bm + ¢ = 0, A = 1/(ak? + bk + ¢).
'b) From y, = Aze*® we find y, = Akzer® + Aek” and y) = Ak?ze*™ + 2Ake*®. Substituting i
the differential equation we get
a AR 2e"T + 2aAke™® + bAkze*® + A + cAzer®
= (ak® + bk + c) Aze*™ + (2ak + b) Aer?
= (0)Aze*™ + (2ak + b)Ac® = (2ak + b) Ae*® = &+

where ak® + bk + ¢ = 0 because k is a root of the auxiliary equation. Now, the root:
the auxiliary equation are —b/2a + vb® — dac /2a, and since k is a root of multiplicity «:
k# —b/2a and 2ak +b # 0. Thus (2ak +b)A =1 and A =1/(2ak +b).
te) If k is a root of multiplicity two, then, as we saw in part (b), &k = —b/2a and 2ak + b =
From g, = Az?e* we find Yp = Akz?eb® 4 2 Azek® and Yp = Ak22%e** 4 4Akxek® = 2.4
Substituting into the differential equation, we get
a Ak 2P + 4o Akwe™® + 20AeFT + bAkz?e*® + 20 Aze™® + cAz?et®
= (ak? 4 bk + ¢) Az?e™ + 2(2ak + b) Aze*® + 20 Aek®
= (0)Az2e"® 4+ 2(0)Azer® + 20 Ak = 2046 = F®.
Since the differential equation is second order, a # 0 and A = 1/(2a).
<+, sing the double-angle formula for the cosine, we have
sin x cos 2z = sin z(cos? ¢ — sin® z) = sinz(1 — 2sin z) = sinz — 2sin® z.

siirce sina is a solution of the related homogencous differential equation we look for a part:
- _ution of the form y, = Axsinz + Brcosz + C sin® z. Substituting into the differential equ:-
- obtain

2Acosz + (6C — 2B) sinx — 8Csin® z = sinz — 2sin’ 2.

11

_~aating cocfficients we find A =0, C = i— ,and B = i . Thus, a particular solution is

= —11‘00‘3 T —1 S1 3
! CoS T + n .
Yp 1 |

‘a) fir) = e®sinz. We see that y, — oo as & — oc and yp, — 0 as r — —oc.

‘b)) f{r) =e™". We see that y, — 00 as ¢ — 00 and yp — 00 as ¥ — —o0.
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(c) f(z)=sin2z. We see that y, is sinusoidal.
{d) f(z) =1. We see that y, is constant and simply translates y. vertically.
. The complementary function is y. = €*(cy cos 2t + cpsin22). We assume a. particular solution of
-he form y, = (A23 + Ba® + Ci)e* cos2z + (Dx3 + Ea? + F)e** sin22. Substituting into the
Adifferential equation and using a CAS to simplify yvields
[12D2? 4+ (6A + 8E)z + (2B + 4F))e* cos 2z
+ [~1242° + (=8B + 6D)x + (—4C + 2E),e** sin 2z
= (227 — 32)e®® cos 2z + (102? — x — 1)e* sin 2u.

This gives the system of equations

12D =2, 6A +8E = —3, 9B 4+ 4F =0,
~124=10. —8B+6D=-1, —4C+2E=—1,
rom which we find A = -%, B = % C = %, D = %—., = %? and F = —%. Thus, a particular

solution of the differential equation is

5 1 3 1 5 1 1
Yp = (—g-x +;—r2—|—81) 22X c052x+(6:13+4x2—§1> 22 sin 2.

==, The complementary function is ¥y, = ¢1 cos + ¢a 8inz+c3z cos © +cyx sin . We assume a particular
2 3

solution of the form y, = Az? cosz+ Bx? sinz. Substituting into the differential equation and using
= CAS to simplify yields

(—8A+ 24B)cosx + 3Bz sinz = 2cosz — 3z sin .

This implies —8A+24B = 2 and —241 = —3, Thus B = % A= % and y, = 812(051 + 1 g4 23 sin z.

0D? — 4)y = (3D — 2)(3D + 2)y = sinx

D? —5)y=(D~VB)D+V5)y=ux?—-2
D*—4D - 12)y=(D—6)(D+2y=2—6
2D? —3D -2y =(2D+1)(D—-2)y =1
D3 4+10D? + 25D)y = D(D + 5)%y = ¢*

D3 +4D)y = D(D?* 4 4)y = ¢ cos 2
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Exercises 4.5 Undetermined Cocfficients - Annihilator Approach

1z

. D?4+4D=D(D+4); 1, e*

(D3 +2D? - 13D +10)y = (D — 1)(D = 2)(D + 5)y = ze™®
(D% +4D%+3D)y = D(D +1)(D +3)y = z?cos z — 3z

. (D*+8D)y=D(D+2)(D*—2D +4)y =4
10.
11.
12.
13.
14.

(D*—8D? 4+ 16)y = (D — 2)%(D + 2)%y = (2% — 22)e?®

Dy = D*(10z® — 2z) = D3(3022 — 2) = D?(60x) = D(60) = 0

(2D — 1)y = (2D — 1)4e%/2 = 8De?/2 — 4¢%/2 = 4¢%/2 — 4c7/2 =

(D—=2)(D+45)(c**+3e7%%) = (D—2)(2e%* —15¢ 5" 4-5e2% +-15¢79%) = (D—2)7e?* = 14e22— 1+~
(D? + 64)(2 cos 8z — 5sin 8z) = D(—16sin 8z — 40 cos 8z) + 64(2 cos 8z — 5sin 8z)

= —128 cos 8z + 320sin 8x + 128 cos 8 — 320sin8x =0

. D* because of z° 16. D°® because of z*

. D(D - 2) because of 1 and ¢?* 18. D?(D - 6)? because of z and zeb*
. D? + 4 because of cos 2z 20. D(D? +1) because of 1 and sinz

. D3(D? + 16) because of 22 and sin 4z

. D*(D? 4 1)(D? + 25) because of z, sinz, and cos 5z
. (D +1)(D — 1)3 because of ¢~% and z2e®

. D(D - 1)(D — 2) because of 1, €%, and =

. D(D? — 2D + 5) because of 1 and e” cos 2z

(D? + 2D + 2)(D? — 4D + 5) because of e *sinz and €2" cosz

2 g3 4

G 6—3:1:/2

. e’
. D?—9D -36=(D-12)(D+3); el%® 32

. cosV5z, sinvba

. D? —6D+10=D?-2(3)D + (32 +12); €% cosz, e¥sing
. D3 —10D2 4+ 25D = D(D - 5)2; 1, €5, zed®

.1z, 5%, e

. Applying D to the differential equation we obtain

D(D? - 9)y =0.
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Then
y =163 + c¢73% 4¢3
Ye
and y, = A. Substituting y, into the differential equation yields —9A4 = 54 or A = —6. The general
solution is

y =1’ + e — 6.

12, Applying D to the differential equation we obtain

D(2D? —7D +5)y = 0.

Then
52/2 + coe” +c3
Ye

and yp = A. Substituting y, into the differential equation yields 54 = —29 or A = —29/5. The

Yy =ci1e

zeneral solution is
. 2
+ e’ — =
5

y = ¢5%/2

:7. Applying D to the differential equation we obtain

D(D? + D)y = D*(D + 1)y = 0.
Then

y=ci+ce " +cs3z
N, e’
Ye
:nd yp = Az. Substituting y, into the differential cquation yiclds A = 3. The gencral solution is

Y =c1+ coe 3% + 3.

+%. Applying D to the differential equation we obtain

D(D? +2D? + D)y = D*(D + 1)%y = 0.
“hen
y=rc1+ce ¥4 (_53.‘1:(3_11 + ¢4
Yo
:nd yp = Az. Substituting y, into the differential equation yields A = 10. The general solution is

y=c1+cee" +cyre™ 4 10z
Applying D? to the differential equation we obtain

D*(D? + 4D + 4)y = D*(D + 2)%y = 0.
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40.

411.

Then
y= 916—21: L CQ:lre_Zm +c3 + cax

——

Ye

and y, = Az + B. Substituting ¥, into the differential equation yields 4Ax + (4A+4B) =2 -

Equating coefficients gives
4A =2

4A+ 4B =6.
Then A = 1/2, B = 1. and the general solution is

|
y=cre” % 4 core % + 5% + 1.

Applying D? to the differential equation we obtain
D*(D? +3D)y = DD + 3)y = 0.
Then

y=c14 e 4oyt +
)
————
Ye

and y, = Ax? + Bz. Substituting Yy into the differential equation yields 6Az + (24 +3B) = -

Equating coefficients gives

6A=14
2A+3B = 5.
Then A =2/3, B=-19/9, and the general solution is
3z, 2 19
Yy =cy +coe 3”—}—511:2— 3:1’

Applying D? to the differential cquation we obtain
D¥(D3 4+ D%y =D5(D + 1)y =0.
Then

y=c+cr+cze " + cazt + 5z + cga?

Ye

and yp = Az + Bz? + Cz?. Substituting yp into the differential equation yields
12A47% + (244 + 6B)z + (6B + 2C) = 82°.

Equating cocflicients gives

124 =8
24A+6B =0
6B +2C =0.
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Exercises 4.5 Undctermined Coefficients - Annihilator Approach

Then A =2/3, B=—-8/3. C = 8, and the general solution is
2 8 . .
y=oc) +coxr+cze” T+ ga:‘l — gmé + 872

. Applying D* to the differential equation we obtain

o=
]

DYD?*-2D+1)y=D*D -1)*)y=0.

Then
y = 1% + cone® + c32° + car® + 5T + g
—
and yp = Az?® 4+ Bz? 4+ Cx + E. Substituting Yy into the differcntial cquation yields

Az’ + (B - 6A)2® + (6A - 4B+ C)z + (2B —2C + E) = &® + 4a.

—quating coefficicnts gives
A=1

B—-6A=0
6A—4B+(C =4

2B-2C+FE=0.
“nen A=1,B=6,C =22, F =32, and the general solution is

y = c1€% + coxe® + 23 + 62% + 222 + 32.

¢

Applying D — 4 to the differential equation we obtain
(D —4)(D* - D —12)y = (D —4)*(D+3)y = 0.

~hen
y=c1e®® + ce™3 + cyze®
—
ad y, = Aze®™. Substituting Yp into the differcntial equation yields 74e* = e**. Equating
sefficients gives A = 1/7. The gencral solution is

, _a 1 4
y=c1e®® + e ?51764'.5.

— ~oplying D — 6 to the differential equation we obtain
(D —6)(D* +2D + 2)y = 0.
aen

y=e"%(crcosz + casinx) + c3e®

ye
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Exercises 4.5 Undetermined Coefficients - Annihilator Approach

and y, = Ae%. Substituting y, into the differential equation yields 504e6% = 5¢57. Eq
cocfficients gives A = 1/10. The general solution is

_ ) 1 &
y=e “(crcosx +casina) + 1—06"‘”.

45. Applying D(D — 1) to the differential equation we obtain
D(D —1)(D*—-2D —3)y = D(D — 1)(D + 1)(D — 3)y = 0.
Then
y=c1e" + coe™® + c3e” + cy
—_———
Ye
and y, = Ae® + B. Substituting y, into the differential cquation yields —4A4e* — 3B = 4-

Equating coefficients gives A = —1 and B = 3. The general solution is
y =165 + cpe ™" — % + 3.
46. Applying DQ(D + 2) to the differential equation we obtain
D*(D +2)(D?* + 6D + 8)y = D*(D + 2)%(D + 4)y = 0.
Then

-2 —d -
y=c1e" " +cpe™ +esze™ + cuz + ¢
Ye

and y, = Aze~?* + Bz + C. Substituting y, into the differential equation yields
24¢™%* 4 8Bz + (6B + 8C) = 3¢™%% 4 2z.

Equating coefficients gives

24=3
8B =2
68 +8C =0.
Then A =3/2, B=1/4, C = —3/16 , and the general solution is
e 9 1 3
y=cie 2% 4 oge ¥ 4 5.’1}6_2'7: + Za: TS

17. Applying D? + 1 to the differential cquation we obtain
(D? +1)(D? + 25)y = 0.
Then

Y = €1C089T + €8N BT + c3CO8T + ¢q8inx

Ye

170



Y

1 -

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

and yp, = Acosz + Bsinx. Substituting y, into the differential equation yields
24Acosx + 24Bsing = 6sin .
Equating coefficients gives A = 0 and B = 1/4. The general solution is

e 1.
Yy = 10852 + ¢cosindx + 1 sin .

. Applying D(D? + 1) to the differential equation we obtain
D(D? +1)(D? + 4)y = 0.
Then

Yy = 100822 + ¢28in2x +cycosx + ¢48inx + ¢

Ye

and yp = Acosz + Bsinz + C. Substituting y, into the differential equation yiclds
3Acosz +3Bsinz +4C = 4cosx + 3sinz — 8.
Equating coefficients gives A = 4/3. B =1, and C = —2. The general solution is

. 4 .
Y = €1 CO8 22 + ca8in 2x + — cos T + sinx — 2.

3

::. Applying (D — 4)? to the differential cquation we obtain

(D —4)%(D*+6D + 9y = (D — 44D +3)%y =0.
Then

Y= gle_dw + 02:1;6_3f + esze™ + cpe®®

Y

«nd y, = Azel® + Be*®. Substituting y, into the differential equation yields
49Aze® 4 (144 + 49B)e® = —ze'™®
—quating coefficients gives
494 = -1
14A+49B = 0.
Then A= —1/49, B =2/343, and the general solution is

« Q. ]- ‘)
.31 —3x Aa ~ Ax
y=ce "+ are T — —xeT + ——e.
y ! ke 49 ‘ 3436

Applying D?(D — 1)? to the differential equation we obtain

D*(D —-1)4(D? +3D - 10)y = D*(D - 1)%(D - 2)(D + 5)y = 0.
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Then

—az

y = c1e%® + coe + cgre® + c4e® + 5z + g

Ye
and y, = Axe® + Be® + Cxz + E. Substituting y, into the differential equation yields
p p

—6Aze® + (5A — 6B)e” — 10Cz + (3C — 10F) = ze* + z.

Equating cocfficients gives

—6A=1
5A—-68=0
-10C =1
3C - 10E = 0.
Then A= —-1/6, B=-5/36, C = —-1/10, E = —3/100, and thc general solution is
y = c1e%® + coe ™% — l:L'c"" - ie“’ — iz _ 3

6 36 10 100
51. Applying D(D — 1)? to the differential cquation we obtain
D(D—1)3(D* - 1)y =D(D - 1)*(D + 1)y = 0.
Then
y = c1e” + coe ™" + c32°e% + caz?e® + cxze® + cg
e —
Ye

and y, = Az3e® + Bz?e® + Cze” + E. Substituting yp into the diffcrential equation yiclds
6Az%e” + (6A + 4B)ze” + (2B + 2C)e® — E = z2¢* + 5.

Equating coeflicients gives

6A=1
6A+4B =0
2B+2C =0
—E =5.

Then A=1/6, B=-1/4, C =1/4, E = -5, and the general solution is

. 1 1, 1
Yy =cie¥ +cge” " + -6—5336Z - szex + Z:cex — 5.

o
"

. Applying (D + 1)® to the differential equation we obtain
(D+1)3(D?*+2D+1)y=(D+1)°y =0.
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Then

z 3 2

J

y=cire "+ coze™® +ezrle ™ + cqxde” + cude”

ve

and y, = Az'e™® + Brle™® + Ca?e . Substituting y, into the differential equation yields
124z%¢ % + 6Bre ™ 4+ 2Ce™ = 2272,
Equating cocfficients gives 4 = ﬁ, B =0, and C = 0. The general solution is

1
y=cie " +coze T+ ﬁm4c_“’.

. Applying D? — 2D + 2 to the differential equation we obtain

(D? — 2D +2)(D* - 2D + 5)y = 0.
Then

y = e*(c1 cos2x + cosin2xz) + e*(c3cosz + cqsin z)

o —

Ye
znd y, = Ae® cosz + Be®sinz. Substituting y, into the differential equation yields

3Ae* cosx + 3Be*sinz = €*sin z.
Zquating coefficients gives A = 0 and B = 1/3. The general solution is
1, .
y = €"(c1 0082z + cpsin2z) + é—e‘” sin z.

Applying D? — 2D + 10 to the differential equation we obtain

y 1 1 2
(022D +10) (D*+ D+ )y = (D* 20 +10) (D +5) y=0.

“hen

y= cr1e” %2 ¢ eope™ ™% 1 cze” cos 3z + c4e” sin 3z

- i

e

=d yp = Ae”® cos 3z + Be®sin3z. Substituting y, into the differential equation yields

(9B — 27TA/4)e® cos 3z — (9A + 27B/4)e” sin 3z = —e” cos 3z + €” sin 3z.

—quating coeflicients gives

2 44 9p =1
1

27
—94-2'B=1.
94—~ FB=1

“hen A = —4/225, B = —28/225, and the general solution is

—z/2 —-x/2

) 28 .
e’ cos3r — —¢" sin 3z.

=C1€e
y=a 225 9225

+ coxe
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55. Applying D? 4+ 25 to the differential equation we obtain
(D? +25)(D? +25) = (D? +25)2 = 0.
Then
Yy = ¢1€08 5T + c28in b5z + c3x co8 BT + ¢4% o8 5
Ye

and yp, = Az cosbz + Brsindx. Substituting y, into the differential equation yields

108 cos 32 — 10A sin b = 20 sin 5.
Equating cocfficients gives A = —2 and B = 0. The general solution is
Yy = ¢1 €08 5 + co sin bz — 22 cos dz.
56. Applying D? 41 to the differential equation we obtain
(D?> +1)}(D?*+1) = (D? +1)? = 0.
Then

Y = C1COSL + CosINT 4 C3T COST + C4X COST

Ye
and y, = Az cosx + Bxsinx. Substituting g, into the diffcrential equation yields

2Bcosx — 2Asinx = 4cosx — sin x.

Equating coefficients gives A = 1/2 and B = 2. The general solution is
. 1 .

Y =C1COST + casinz + §~x cos T — 2z sin .

57. Applying (D? 4+ 1)? to the differential cquation we obtain
(D! +1))(D* +D+1) =0.
Then

—z/2 3 . V3 : :
x/2 1 COS —2~ I+ ¢cosin ? x| +eC3C080 + CqSINT + C3LCOST 4 gL SIN T

AN —
~
Ye

and y, = Acosz+ Bsinz+ Cxzcosz + Ezsinx. Substituting y, into the differential equatic:.

y=e

(B+C+2E)cosx + Excosz + (—A - 2C + E)sinz — Crsine = zsin.

Equating coefficients gives

B+C+2E=0
E=0
-A-2C+E=0(
-C=1.
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Then A=2, B=1,C = -1, and E =0, and the general solution is

y==e 010057.7:-1-6251117513 2cosx 4+ singy — X COSI.

Writing cos? ¢ = %(l + cos 2z) and applying D(D? + 4) to the differential equation we obtain

D(D? +4)(D? +4) = D(D*+4)?=0.
Then

Y = €] €08 2x + ¢ 8in 22 + €32 CO8 2T + ¢4 SIn 27 + ¢5

Ye
and y, = Az cos 2z + B sin2z + C. Substituting y, into the differential equation vields

1 1
—4Asin2x + 4B cos 2z + 4C = 5 + 5 Cos 2.

Equating coefficients gives A =0, B = 1/8, and C = 1/8. The general solution is

. 1 . 1
Y = €1 €08 2T + cosin 2z + g:z: sin 22 + 3

=3, Applying D3 to the differential equation we obtain

D3(D?® +8D% = D%(D +8) = 0.

Then

y=cy+cox+ c;;e‘s"i + caz?® + gz + et

and yp, = Ax? + Bx? + Cx*. Substituting yp into the differential equation yields
16A + 6B + (488 + 24C)x: + 96Cz? = 2 + 9z — 62°.

Equating cocfficients gives

16A+6B =2
48B +24C' =9
96C = —6.

Then A =11/256, B = 7/32, and C = —1/16, and the general solution is

—8z 2 3 4
=t + T+C~‘€' +_—fL' +_z- — —F,
Y “l 2 3 256 32~L 161

Applying D(D — 1)%(D + 1) to the differential equation we obtain
DD -1 D+1)(D*-D*+D~1)=DD-1)3D+1)(D*+1) =0.
Then

y=c1e® + cocosx + c3sinx + ¢g + cse” % + cgre” + ezt

Ye
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61.

and y, = A+ Be™™ + Cze™ + Ez?e”. Substituting y, into the differential equation yields
4FEre® + (2C + 4E)e" —4Be™ ™ — A=xe® — e * 4+ 7.

Equating coefficients gives

4F =1
20+4E =0
—4B = -1
—-A=T.

Then A= -7, B=1/4, C = —1/2, and F = 1/4, and the general solution is

2 @

) . . T ., 1,5,
y=cre® +cacosz+czsine — 7+ —e ¥ — —xet + Zae”.

4 2 4
Applying D?(D — 1) to the differential equation we obtain
D*D —1)(D*-3D? +3D - 1) = D*D —1)* =0.
Then

y = cre” + cowe” + 03:762@“; + ¢4 + ¢5T + cerSCc”

Ye

and y, = A + Bz + Cz3e®. Substituting y, into the differential equation yields
(—A+3B) — Bz +6Ce* =16 —x + €.

Equating coefficients gives

—~A+3B=16
—B=-1
6C = 1.

Then A =—13, B =1, and C = 1/6, and the general solution is

, 1 4.
y = cre® + coze® + cgr’e® — 13+ 7 + gzr‘*e”.

2. Writing (e* +e7%)2 = 24 €2 4 2% and applying D(D — 2)(D + 2) to the differential equa:

obtain
D(D -2)(D+2)2D%—-3D? —-3D+2)=D(D - 2)2(D+2)(D+1)(2D — 1) = 0.
Then

y=ce " + 26 + c3*? + ¢4 + c5ze® + cge”

V)

Ye
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and ¢, = A+ Bze*® + C'e 2%, Substituting yp into the differential equation yields
24 + 9Be™ — 20Ce™ =2 4 %% 4 72,
Equating coefficients gives A =1, B =1/9. and ' = —1/20. The general solution is

- oz 2 1 1
y=cre™® + cpe® + e3¢ 2+ 1+ —éa:e% -~ '2—06—2:8-

I, Applying D(D — 1) to the differential equation we obtain
D(D - 1)(D*—2D% + D*) = D3(D - 1)* = 0.
Then

. : 9
y = c + cox + czet + cyzre® + cs2® + cgr’e”

Ye

ind y, = Az? + Br?e”. Substituting y, into the diffcrential equation yields 24 + 2Be® = 1 + ¢%.
Zquating coefficients gives A = 1/2 and B = 1/2. The general solution is

= 1 < 1
Yy =c1 + e + cze’ + cyze” + 5:1:2 + 51'26"‘.

i=. Applying D?(D — 2) to the differential equation we obtain
D3(D — 2)(D* — 4D?) = D¥(D — 2)*(D + 2) = 0.
Then

Y =) + oz + c36% + cae™E + c30? + o2 + crat + cgze®

Ye

and y, = Ax? + Bz + Cz? + Eze®®. Substituting y, into the differential equation yiclds
(—8A 4 24C) — 24Bz — 48Cz* + 16 Ee** = 522 — &2*,

—quating coefficients gives

—8A+24C =0
—-24B =10}
—48C' =5

16F = —1.

Then A =-5/16, B =0, C = —5/48. and E = —1/16, and the gencral solution is

4 |24
PR N I B S

— T —

2z
Y =1+ Cor + c3e” +cue ; —x
y=at+arte ! 67 " 18° " 16
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65. The complementary function is y. = c1e%% + cpe™®. Using D to annihilate 16 we find yp, =

Substituting y, into the differential equation we obtain —64A = 16. Thus A = —1/4 and

1
4
y = 8c1€%% — 8cpe 82,
The initial conditions imply
5
c1+ecy=-—
1 2 4
8(‘1 — 8(:2 =0.
Thus ¢; = ¢p = 5/8 and
5 8x 5 -8z 1
= % 4+ 7% — -,
Y70 TE 1

66. The complementary function is y. = ¢1 + c2e~%. Using D? to annihilate = we find Yp = Az — -
Substituting y, into the differential equation we obtain (A + 2B) + 2Bz = 2. Thus A =
B =1/2, and

, 1
y=c+ce " —z+ 5:52
y = —coe™® — 1+
The initial conditions imply
c1t+e=1
—co = 1.
Thus ¢y =2 and ¢ = —1, and
1
y:2—e‘*—m+-2—:r.2.

67. The complementary function is y. = ¢1 +c2¢>. Using D? to annihilate z—2 we find y, = Av—-
Substituting yp into the differential equation we obtain (-5A+2B8)—10Bz = —2+z. Thus A =
and B = —1/10, and

1
=c1 + cpe™ — g2
y=ataet gt T R”
. 9 1
/ =4 2T
= 5coe — — 1.
Y =oart o T 5T
The initial conditions imply
c1+c=0
L _4
2T 125"
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Exercises 4.5 Undetcrmined Coefficients - Annihilator Approach

Thus ¢; = —41/125 and ¢g = 41/125, and

A M 0 1,
125 125 25 107

y:

The complementary function is y. = c1€® + coe %%, Using D — 2 to annihilate 10e** we find
yp = Ae®®. Substituting y, into the differential equation we obtain 84¢%® = 10e?®. Thus A = 5/4
and

6z , O -

4
/ T —6x 5 2z
y =cre” — 6ege +§e .
The initial conditions imply
1
c1+cec= ~1
3
¢ —6ey = —5-
Thus ¢; = —3/7 and ¢y = 5/28, and
_ 3 T 5 —6zx 2x
Y= 7e + 5 86 + 46

. The complementary function is y. = cjcosx + cpsinz. Using (D? + 1)(D2 + 4) to annihilate

3cos2z — 4sinz we find y, = Azcosz + Brsinz + Ccos 2z + Esin2z. Substituting g, into the
differential cquation we obtain 2B cosx — 3C cos 2z —2Asinz — 3E sin 2x = 8 cos 2z — 4sinz. Thus
A=2 B=0,C=-8/3,and F =0, and

. 8
Yy =c1co8T + cosinx + 2rcosxr — —?;cos‘2x

; . . 16 .
Yy = —ci18inz +cocosz + 2cosx — 2xsinx + ?smlr.

The initial conditions imply

8
co + 3= -1
—c1—7=0
Thus ¢ = —7 and ¢p = —11/3, and
11 . 8
Y= —TCOSL — gsmm—i—Q-xcos:n - 5003233.

- The complementary function is y. = ¢1 + c2¢® + csze®. Using D(D — 1)? to annihilate ze® + 5

we find y, = Az + Bz?e* + Cz3e”. Substituting y, into the differential equation we obtain
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Exercises 4.5 Undetermined Coefficients - Annihilator Approach

A+ (2B +6C)e” + 6Cre™ =z + 5. Thus A=5, B=—1/2, and C =1/6, and

. 4 1, 1 ..
y = ¢y + coe” + cgre” + bx — 53:'6'*" + 6:1:3e"

) ‘ ; 1.
Y = coe” + cz(ze” +€°) + 5 — ze” + gx%x

. ) " 15, 14,
y" = coe® + ca(we® + 26%) — e — 1e® + Zx?e® 4 Zade”,

2 6
The initial conditions imply
c1+cg=2
co+c3+5H=2
o+ 2c3—1=-1.
Thus ¢; =8, ¢ = —6, and ¢3 = 3, and
y =8 — 6e® + 3ze* + 5r — %xze‘” + %aﬁe‘".

T1. The complementary function is y, = e?®(¢ycos2x + cosin2z). Using D* to annihilate .
find y, = A+ Bz + Ca? + Ex3. Substituting y, into the differential cquation we ¢
184 — 4B + 2C) + (8B — 8C + 6E)z + (8C — 12E)2? + 8Ex% = 23, Thus A = 0, B =
C'=3/16, and £ = 1/8, and

. 3 1.

2x : 2 3
y=e"(c1co82x 4 cosin2zx) + —ax + —zr° + -z
y = e“"(c1co82z + ¢ J")-I-32,L-I 16 3

. . 3 3 3
Y = €*® [c1(2c0s 22 — 2sin 2¢) + co(2 cos 2z + 2sin 2x)] + = + 3% + gmz.
The initial conditions imply
G = 2

3
2c1+202+§§=4.

Taus ¢y = 2, ¢ = —3/64, and

2% 3 . : 1.
y = (2 cos 2 — 61 5™ 2z) + %’v + -1%;1:2 + ga:'s.

-9

2, The complementary function is y. = ¢ + cox + c32% + c4¢®. Using D2(D — 1) to anni.
— ¢ we find y, = Ax3 4+ Br* + Cx¢®. Substituting Yp into the differential equation we
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Exercises 4.5 Undetermincd Coefficients - Annihilator Approach
~6A+24B) —24Bx + Ce* =z + €®. Thus A =-1/6, B = —1/24, and C =1, and

. 1. 1 ”
Y = c1 + ez + 32 + cac® — gm‘s - 513;4 + ze*

. 1 1. .
y’ = ¢ + 232 + c1e” — 5:1:2 — 6:1:5 +e® + xe®

) 1 , .
y" = 23+ c4e® — v — 51'2 + 2e% + z¢*.

Y =cie® — 1 — 2+ 3" + 2e®

The initial conditions imply
¢i+e¢q4=0
(8] + Cy + 1 = 0

2c3+c4+2=0

2+c¢cy=0.
Thus e =2,¢0=1,¢3=0, and ¢y = —2, and
| 1 -
y=2+z—2" — 6153 - 511:1:4 + ze®.

~5 see in this case that the factors of L do not commute consider the operators (zD — 1)(D + 4)
nd (D +4)(xD — 1). Applying the operators to the function x we find

(zD —1)(D + 4)z = (xD? + 42D — D — 4)z
= zD%t 4 4xDx — Dz — 4z
=z(0)+4z(l) -1 -4z = -1
-ad
(D+4)(xD — 1)z = (D +4)(zDx — z)

=(D+4)(z-1-x2)=0.

_us, the opcrators arc not the same.
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Exercises 4.6

The particular solution, yp = uiyr + uy2. in the following problems can take on a variety of -
especially where trigonometric functions are involved. The validity of a particular form can :
checked by substituting it back into the differential equation.

1. The auxiliary equation is m? + 1 =0, so y. = ¢1 cos T + casinz and

cosT SInx
W = ) =
—sinz cosz
Identifying f(z) = secx we obtain
, SN & Sec &
U = ————— = —tanz
1
COS T Sec
uy = SO8TSCT_ ¢

1

Then u; = In|cos x|, ug = z, and

y=-c1cosz + cgsinz + coszIn|cosz| + rsinz.

2. The auxiliary cquation is m2 + 1 =0, s0 y. = ¢1 cosz + ¢z sinx and

cosz sinz
W = ) =
—sinxr cosx
Identifying f(z) = tanz we obtain
, . cos?x —1
u; = —sinrtanr = ————— = cosT —secT
COS T
/ .
Uy = sin z.
Then u; = sinz — ln|secz + tanz|, ug = — cos z, and

y=c1cosz + cpsinx + cosx (sinz — In|secr 4 tanz|) — cosrsinz

=c¢rcosx + cosinz —cosxln | secx + tanx

3. The auxiliary equation is m? +1 =0, s0 ¥, = ¢1 c0sz + ¢z sinz and

cosT sinz

H’:‘

—sinz cosz
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Exercises 4.6 Variation of Paramecters

Identifying f(x) = sinz we obtain
u) = — sin? ¢

uhp = COS T Sin .

Then
1. 9 1
Uy = -8in2z — —x = —sinxrCosT — -
4 2 2 2
1 5
Uy = ——= COS~ I,
2
and

2 1 1 o

. 1. ; :
Y= cosa:+czs1nat+§s1na;cos x—§$0(>s:r—§cos rsinzx

, 1
=€ COST + cosing — 551: COS L.

4. The auxiliary equation is m?2 +1 =0, 50 ye = ¢; cos T + casinz and

‘ cosz sinx

w , =1
| —sinz coszx,
Identifying f(z) = secztanz we obtain
= _ ain ol fan ) — — fan2 p — 2 .
uy = —sinz(secrtanz) = —tan“z = 1 —sec”

uh = cosx(secxrtanz) = tan .

Then u) = z — tan 2, uy = —In|cos z|, and
y=crcosz+cpsinz + xcosz —sinz — sinx In | cos x|
=¢1co8T + c3sine + xcosx — sinz In | cos z|.

5. The auxiliary equation is m? + 1 = 0, so Yo = €1 COS T + ¢osinz and

_| cosT sinw|

W= . = 1.
| —sinz cosx |
Identifying f(z) = cos? z we obtain
uj = —sing cos® x
uh = cos®z = cosz (1 — sin? .If) :
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Exercises 4.6 Variation of Parameters

Then u; = %cos‘*} x, up =sinx — %sin

: 1 .
Y =C1COST+ Ccosinr + 3 cos* 2+ sin

. 1 .
=¢1€0ST + co8inx + 3 (0032 7 + sin® T) (cos

3

x, and

L.
2z — Zsintz

24 — sin? :c) + sin® z

. I 2 .
=c1c:osa:+0231n.1:+5cos*w+§sm €

. 1
= €] COSZ 4 CosINT + § +

1,
—8In” .
3

6. The auxiliary equation is m?+1=0, so Yo = €1 COS T + cg sinz and

W= ’

Identifying f(z) = sec? z we obtain

Then

and

u

U9

cosz sinz

—sinx cosz

sin x
cos? z

=~
! .
Uy = 8CC .

1
cos T

= —8eCcxr

In|secz + tanz|

C1COSZ + Cy8inT — COS L Sec T —|—sina:1n|secx+tan:v|

c1cosT + cosinz — 1 +sinzln|secr + tanz|.

7. The auxiliary equation is m2 — 1 =0, so y. = c1€% + coe™® and

W=

1

Identifying f(z) = coshz =

Then

et e~ %

= —2.
& —e %

5(e™" + ) we obtain

u’l = 36—2:1: + %
u'z = —i - -[116213
up = ée"zx + -z
Ug = —%e% - i’c



Exercises 4.6 Variation of Parameters

znd
y=cre’ +cpe™" — le' +—ze" — c€" — —ze "
8 4 8 4

] . 1 . -
=c3e” +cqe™" + Z;z:(ex —e™)

. 1
=c3e” +cye” " + 3% sinh z.

¢ The auxiliary equation is m? — 1 =0, so y, = c16% + c2e” % and

et e T
W= =2
| e —e &
-Zentifying f(x) = sinh 2z we obtain
1 .1
ull — 16—31 + Zex
1 1
/ —x 3z
Uy = —e * — ¢
2 4
“len ! )
up = Tée_:”’ + Ze‘”
1 -z 1 3x
(7] —Ze - EB
o . . . .
= et o™ _-_e—2w - 12;7: S22z 2z
ymaetae thpe T T TRt
, 1 "
= Clegc + 02(?—‘1: + _é (62;2 — 8&2'1')
X —& 1 :
=c1e’ + e F + gsmh 2.
} The auxiliary equation is m? — 4 =0, 50 Yy = 1% + cpe7 %% and
| e2ar 6—21: i
W= 1282"3 e~ | T -
“iantifying f(x) = €2®/z we obtain u} = 1/4% and u) = —e*®/4z. Then
1
w1 = — In |z,
1= 7 lnlal,
1 peet
up=—- [ —dt
2T T4y ¢
- "
1 %
y=c1e®® + e 4 1 (62’” Injz| - 6_2“’/ it— dt) . zo > 0.
&0
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Exercises 4.6 Variation of Parameters

10. The auxiliary equation is m2 — 9 = 0, 50 9o = c1€3% + c9e¢75% and

N 4 —3r
e e
W= E 3z o -3z | —6.
3¢ —3e
Identifying f(z) = 92/€3% we obtain u} = gm‘e‘e‘” and uh = —%:z:. Then

1 6 1 —6x

Uy =——=e - — —=zxe

17 Ty 4 ’
3 2

Uy = ——2

277y
and
3z -3z 3x 1 3y 3 9 _3
= ¢c1e”" + e — —e — —z€ — —x‘e
y=a 2 2 4 4

. __. 1 _a.
= 163 + c3e™F — 1€ (1 — 3x).

—2x

11. The auxiliary equation is m? + 3m +2 = (m+ 1)(m +2) = 0, s0 y. = c1e™* + cpe™2* and

-2 |
€ € | a,
I/I‘r — i = _6—3.7/‘
—x —2x ’

—e —2e”

Identifying f(z) = 1/(1 + ) we obtain

T
o = ¢
S
2z :
dy=—t T
2 1+e* 1+e”

Then u; = In(1 + €*), ug = In(1 + €*) — €%, and
y=cre ¥+ e +efIn(l+c®) +e Fln(l4e%) —e®
=c3e" +coe” " + (1 +e %) " In(l + €).

12. The auxiliary equation is m? — 2m + 1 = (m — 1)2 =0, so y. = c1€% + cvze® and

w=|" T =
et ze* +e”
Identifying f(z) = %/ (1 + x2) we obtain
o — ze"e’ T
L7 e (1442)  1+a?

o = ete* 1
27 e (1442) 1422

186



¢t

Exercises 4.6 Variation of Parameters

Then u1 = —% In (1 + .772), ug = tan~ !z, and

" | .
y = c1e* + coxe” — 56’ In (1 + .7:2) + ze*tan ! z.

The auxiliary equation is m? + 3m +2 = (m +1)(m + 2) = 0. 50 ye = c167% + cpe™>% and

- —2z
. € € _
W= e _op | = —€ 3z,
—e™ v —2e74%
Identifying f(x) = sine® we obtain
, e Tgine® T . T
Uy = —— 3y~ — €'sme ’
e ¢ T
e *sine L
Uy = ——— = —*“sine”.
—e— ¥
Then u) = —cose®, ug = e® cose” — sine¥, and
y=cre ¥+ e — e Tcose” + e Feose® — e P sine”
2x

— - 9 -
=cie T+ e " — e Fsine”.

The auxiliary equation is m? — 2m + 1 = (m — 1)2 = 0, s0 y. = c1e! + cote? and

t
w=1° o o
(el et eot| O
e te"te

“lentifying f(¢) = e’ tan"! ¢ we obtain

o, tefe'tan't 1
U = —‘T = —ftan "¢

tt pam—1
cettan™ ¢ _
Up = ———— =tan L.

o2t
“hen )
14+t t
Uy = — tan~'t + =
2
uy = ttan~" Lt — lln (1 + t2)
o 2
=nd

2

141¢ t 1
y = c1et + eotel + (— + tan~1t 4 5) el + (t tan "1t — 5 In (1 + t2>) te'

= cre’ + egtet + %et [(t2 — 1) tan"'¢ —In (1 + t2)] .

The auxiliary cquation is m2 +2m +1 = (m +1)2 =0, so ¥, = c1e~t + cotet and
et te

W=
—et —te7t4 et

— e—Zt.
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Identifying f(t) = et Int we obtain

te te tInt
/ _— e
U = s tint

e~ te tlnt

/
uh =
2 e—2t

=Int.
Then

1 1.
Uy = —§t2 Int+ th

ug =thnt—t
and

-

1. ‘
y=cre "t +cote™ — Zt2e T Int + the"’ + 27t Int — t?e

N

1 3.
= ¢t + oot + ;tze_t Int — ~t?e~t

16. The auxiliary equation is 2m? 4 2m 4+ 1 = 0, s0 y. = e~*/?[¢; cos(x/2) + ca sin(x/2)] and
e=%/2 cos < e *?sin % 1
W= 1 r 1 z 1 z 1 x|~ 56_:8'
e 20057 _ Zem 260 T e 205" — —¥ 24in 2
| 28 CoS 5 e Sin 26 Cos 5 _.(' s 2
Identifying f(z) = 2/z we obtain
—2/2 3o e ;
p €% sin(@/2)2/T o LT
up = — gy = —4¢"%y/x sin 3
e~/ cos(z/2)2y/T A T
2 = — A.2/2 L
= 75 = 4e*/*\/x cos 5
Then
4 t
Uy = —4/ et/2\/tsin — dt
g 2
z t
ug =4[ e*Vtcos= dt
Jaxg 2
and
4 x .z —_ T [ .t _ Y A Y
y=¢e ”/2(01005— + cosin —) — 472 cos—/ e2\/tsin = dt + de "”/251ni/ et/2\/t co- -
2 2 2 Jug 2 2 Jag N
17. The auxiliary equation is 3m? — 6m + 6 = 0, so y, = €%(¢; cos + ¢ sin z) and
e*cosz 2T sinx .
W ¢® sin _

e cosxz —e¥sine e*cosw +e“sing
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Identifying f(z) = %e‘T‘ sec x we obtain

U sinz)(e® secx 1
bo CmAEweD)s_ 1,
,  (eFcosz)(e®secx)/3 1
Ug = e2 —g'

Then uy = %ln(cos T), up = %:r and

1 1
y = c1e” cosx + ce” sinx + - In(cos z)e” cosz + —ze®sinz.
d

5. The auxiliary equation is 4m? — dm +1 = (2m — 1)2 = 0, 50 y. = ¢16%/?
6.1:/2 :ma,/z |
Lew/2 Lyer/? +e;17/21 =
Identifying f(z) = %e“’/ 2\/1 — 22 we obtain
y xe®/2er/2y/1 < 22 1

/ 2
1 1oz = —-va 11—z

+ coze®’? and

W =

Il

;L e%/26%/2\/T <22 . 1\/——2‘
Uy = =—y1 -2

4e® 4
To find u; and us we use the substitution v = 1—z2 and the trig substitution z = sin @, respectively:
1 2\ 3/2

1224 Lt
ug—S\,1~m +§91n z.

Thus

</ N R 32 1 1 i
y=c1e%? + core™? + 561'2 (1 — m2) 2 + SI 11’2\/ z2 + gwem/z sin”! z.
. The auxiliary equation is 4m? — 1 = (2m — 1)(2m 4+ 1) =0, 30 y. = ¢1€%/% + cpe™%/2 and
ez/2 e~ /2 {

1/2 l —:r/2|

W=

|

Identifying f(z) = xc*/?/4 we obtain u} = x/4 and uy = —ze®/4. Then u; = 22/8 and
ug = —we® /4 + e®/4. Thus

y=c16%% + e %% 4 é:z:ze'”a — }1 22 4 ic /2
= e5e®/? 4 e T/? 4 % 22t/ _ lx oo/2
and
y = -;—036'7:/2 - %cze_""/g + 1163: /2 + é—xe‘”/z - ie 2,
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The initial conditions imply

c3 =+~ €2 =1
1 1 1
“2-(,43 - 562 — Z = 0
Thus ¢z = 3/4 and ¢z = 1/4, and
3 . 1 . 1 5 1 .
y = 16,:1,/2 + Ze—.zr/z + gx2€z/2 N ‘_Lme.r/z_

20. The auxiliary equation is 2m% +m — 1= 2m —1)(m+ 1) = 0, 50 Y, = ¢1e%/2 + ce™ and

3

/2 S|
e N _ 3 ap

W=

%e'f/ 2 e
Identifying f(z) = (x + 1)/2 we obtain

1 .
uy = ge“‘/z(m +1)

Uy = —=e“(z +1)
Then 0
=2 (2, 2)
o= e (L
1 X
Ug = ——xe*.
>T 73
Thus
y = c1e™? 4 g —x — 2
and )
y = —2-(;],63;/2 — e ¥ — 1.

The initial conditions imply

cr—c—2=1

—¢c1—cg—1=0.

2
Thus ¢; = 8/3 and ¢2 = 1/3, and
8 4 1 _,
y= 561'/24-36_1‘—11}—2.
21. The auxiliary equation is m? +2m — 8 = (m — 2)(m + 4) = 0, s0 y, = c1%* + cxe™** and
L2 ,—4dx
c [

W = = —6e”2*,

262:1: _46—4:1:
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Tdentifying f(z) = 2¢~%*

Then

“hus

-nd

Exercises 4.6

— e~ 7 we obtain

_he initial conditions imply

Variation of Parameters

r_ e _6—33‘.
Y 6
1 . 1
Uy = e — Ze?®
1 1 1 ~3ux
U1 = ——¢ L e
METRE TS
_ 1 3u 1 2z
Uy = 186 66
1 1 1
2 — 2z SO I S T i S
Y =cCre”" + e 126 + 186’ + 186 €
. ) 1 _.
— C]ez:r +028—4z _ _(,——2:1: + 56—'L
4y 1 _ 1 _.
Y = 2c1e** — dege 4J’+_—2—6 2”’—6(3 *,
5
¢+ CQ—% =1
7
2c1 —4eos+ — =10.
C1 Co + 13
Thus ¢; = 25/36 and cg = 4/9, and
0y 25 2z 4 —dx 1 ,—2x 1 -
Y= 366 —I—gf., 4(, +96 .

“ne auxiliary cquation is m? — dm + 4 = (m — 2)? = 0, 50 ¥, = 162" + cpze?® and

e ze2®

_ JAx
2621' 21,.62:13 + 621:

W=

¢

ientifying f(x) = (12:E2 ~ 617) ¢?* we obtain

Tlen

vy = 622 — 1223
! 2 3
Uy = 1227 — 6.

U = 273 — 324

Uy = 4z3 — 322,
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Thus
y = c1e®® + cpre®™ + (2;1:3 — 3:1.:4) X+ (4:1?3 - 31?2) ze®®

= c1e* + coze®™ + &> (:zr4 - ;7;3)
and
Y =212 + ¢ (Qer‘” -+ 62”‘) + &% (4a:3 — 31:2) + 2% (:1:4 = x?’) .
The initial conditions imply
c1 =1

2¢1 4+ ¢3 = 0.

Thus ¢; =1 and ¢g = —2, and
y = e — 2pe®® 1 2 (.’.6'4 - x3) = ¥ (.274 —a3 -2z + 1) .

23. Write the equation in the form

1 1
nooto _ — p—1/2
vt 27 * ( 41?2) y=

1/2 cos z and Yo =T

and identify f(z) = £~1/2. From y1 =1 1/2 5in & we compute

-1/2

W ) z Y2 cosz z sinz P
n,y2) = _ . - - - L=
’ —z Y2sing — 227 2cosz 27V %cosz — 1273 2sinz| <
Now

uy = —sinz s0 U] =cosz,
and

Up = COST SO Uy =sinz.

Thus a particular solution is

1/2 2 wins2

Yp =2 cos? 7 + z /2 sin z,

and the general solution is

1/2 1/2

— —1/2 . - ) — .. 2
y=cz cosT + Cox ging +x cos? x4+ 27 2sin%z

=iz Y2 cosz + cor 2 sinz + 2~ 1/2,
24. Write the equation in the form

S ly’ + %y _ sec(l;l )
T T z
and identify f(z) = sec(Inz)/z?. From y; = cos(Inz) and g9 = sin(lnz) we compute
cos(lnz) sin(Inzx) 1
sin(lnz) cos(lnz) |~ 2
oz z
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Now

tan(lnz

uy = _tan(lnz) so w1 = In|cos(lnr),
x

and

L1

Uy =— s0 ug=Inzx.
T

Thus, a particular solution is
yp = cos(Inz)In|cos(lnz)| + (Inz) sin(ln z),
and the gencral solution is
y = c1cos(lnz) + cpsin(lnz) + cos(lnz) In| cos(Inz)| + (Inx) sin(ln z).

The auxiliary cquation is m3+m = m(m2 +1)=0,80 y. = ¢1 + cacosx + czsinz and

l 1 cosz  sing
W=10 —sinz cosz| =L
|0 —cosx —sinz|
Identifying f(x) = tanz we obtain
0 Cos sin x \
wp=Wi=| 0 —sinz cosz|=tanz
tanx —cosr —sinx
10 sin
uy=Wo=0 0 cosz | = —sinz
0 tanz —sinz|
1 COS T 0 5
ufg =W3=10 —sinz 0 |=—sinztana = M = 08T — SeC L.
cos &
0 —cosx tanw

Then

w1 = —In | cos z|

Up = COS X

uz = sinz — In | sccx + tan 2|
and

Yy=c1+cacosx+czsiny — In I cos :L] +cos?

+sin®2 —sinzln|sece + tanz

= ¢4+ cpcosz + cgsine — In|cosxf — sinz In | secx + tan 7|
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Exercises 4.6 Variation of Parameters

for —m/2 <z < m/2.
26. The auxiliary equation is m3 +4m =m (m2 + 4) = 0. 80 Y. = ¢1 + ¢ c08 22 + ¢y sin 22 and

1 cos 2 sin 2z
W=|0 -=2sin2z 2cos2r| = 8.
0 —4cos2z —4sin2z

Identifying f(x) = sec 2z we obtain

1 . 0 cos 2 sin 2
u = gﬁﬁ = gi 0 —2sin2r  2c082z| = Zsech
Isec2r —4cos2z —4sin2z
1 0 sin 2z |
, 1! 1
11,2=—E'V2=§{0 0 200829;!:—1
10 sec2z —4sin2z |
[1 cos 2z 0
= 1W _ L 0 —2sin2z 0 ——ltanQ:r
Uz = 3 3= 3 =~1 ..
—4cos 2z sec 2y
Then
1
u =g In|sec 2z + tan 2z|
1
Uy = ——1
277y
1
us =g In | cos 2]
and

. 1 1 1.
Yy =¢1 + o cos2x + cgsin 2z + 3 In|scc2x + tan 2z| — ZT cos 2z + 3 sin 2z In | cos 22

for —m/4 <2 < 7/4.

27. The auxiliary equation is 3m? —6m 430 = 0, which has roots 1434, so y, = €* (crcos3z+cas
We consider first the differential equation 3y” — 6y’ + 30y = 15sinx, which can be solve .
undetermined coefficients. Letting y,, = Acosz + Bsinz and substituting into the dif:-:
equation we get

(27A —6B) cosz + (6A + 27B) sinz = 15sin .
Then
2TA—6B =0 and 6A+27B =15,
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S ]l — l < —_— i — 1 23 2 1 Pz T4 3 <7 AP 3 n 16 at]
24 =17 and B = =. Thus, yp, = 75 cosx + {5sinz. Next, we consider the differential equation
54" — 6y + 30y, for which a particular solution yp, can be found using variation of parameters. The

“Nronskian is
, e® cos 3z e¥ sin 3z

— 392:3
e*cos3z — 3e*sin3x  3e®cos 3z + e¥sindz

Zientifying f(z) = %em tan z we obtain

1 1 (sin®3a 1 (1—cos?3z 1
up = -9 sin 3z tan3r = —— (qm L) =—-c (ﬂ> = —'9‘(39(33117_005333)

9 \ cos3z 9 cos 3z
| _ 1 In|sec3x + tan 3z| + 1 sin 3z
ul = 5 Infsec3z + tar 5 :
Tvext
uh = E sindr so wug = _L cos 3z
9 = 9 L) = 27 D I,
Thus
1, : 1 .
Ypo = —Ee" cos 3z(In | sec 3z + tan 3z| — sin 3z) — o e* sin 3z cos 3z

1
=~ e*(cos 3z) In | sec 3z + tan 3z

-nd the general solution of the original differential equation is
y = €%(c1 cos 3z + ¢p8in 3z) + yp, () + yp, ().

The auxiliary equation is m?—2m+1 = ('m—l)2 = 0, which has repeated root 1, so y. = ¢1¢* +coze®.
"Ve consider first the differential equation y” — 2y +y = 422 — 3, which can be solved using
ndetermined coefficients. Letting y,, = Ax? + Bz + C and substituting into the differential
=ination we get
Az? 4+ (—4A+ B)z 4+ (2A - 2B+ C) = 4z% — 3.
~hen
A=4, —-4A4+B=0, and 24—-2B+C = -3,

3 A=4, B=16, and C = 21. Thus, yp, = 42% + 16z + 21. Next we consider the differential

=juation y” — 2y’ +y = x~1e®, for which a particular solution Yp, can be found using variation of
~arameters. The Wronskian is

X i
e re :
W= ="
e" ze” +ev
“lentifying f(z) = e®/z we obtain u}] = —1 and uy = 1/z. Then u; = —x and uz = Inz, so that
Ypp = —26*° + xe”Inz,
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29.

30.

31.

and the general solution of the original differential equation is
Y = Yo+ Ypy + Ypy = C16" = cove” + 422 + 161 + 21 — ze* + 2e* Inz
= c16* + cgze® +42% + 162 + 21 + ze®Inz

The interval of definition for Problem 1 is (-7 /2, 7/2), for Problem 7 is (—o0, 20), for Pr¢’
is (0,00), and for Problem 18 is (—1.1). In Problem 24 the general solution is

y = crcos(Inz) + cpsin(Inx) + cos(lnx)In | cos(In )| + (Inz) sin(ln )

for —n/2 <Inz < 7/2 or e”™/2 < x < ¢™/2. The bounds on Inz are due to the presence of s
in the differential cquation.

A, 0 3,0

We are given that y; = 22 is a solution of 2*y” + 2%y — 422y = 0. To find a sccond solution -

reduction of order. Let y = z%u(x). Then the product rule gives
y =z + 2z and " = 22 + 4z’ + 2w,

S50

ey + 23y — 4oy = 25 (@ + 5u') = 0.

Letting w = 2/, this becomes 2w’ + 5w = 0. Separating variables and integrating we have

dw 5
— =——dr and lnlw|=-5lnz+ec
w x
Thus, w = z7° and u = —%:z:"". A second solution is then yo = z?x~* = 1/22, and the _

solution of the homogeneous differential equation is g, = ¢12%+ e / 22. To find a particular s:

yp. we use variation of parameters. The Wronskian is

2% 1/2? l 4
W = g =—=.
P2 —2/x°) &
ifving ) = 1/47 w tain o = L0, = _1..—I Mg e l,.—
Identifying f(x) = 1/2% we obtain w) = zr™ and uhy = —zz~™'. Then uy = —yza
Uy = —-ﬁln z, SO
1 45 1 ) , 1
- ~2 ~2 -2
Yp=——2 2" —=(lnz)e™" = ——a7" - —27"Inzx.
The general solution is
5 €2 1 1
Y= ari+ = - — - —nz.

x?2 1622 42

Suppose yp(x) = u1(x)y1(x) + ua(x)y2(x), where u; and ug are defined by (5) of Section 4.
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sext. Then, for x and xg in I,

yp(x) = y1(x) [r; :—%};@ dt + ya(x) /m: Ql%)é)ﬂ dt
=)@ f(©) 9 (E)ya(z) £(1)
- /zo W(t) di + o W@ dt

_ /‘” [yl(t)yz(w)f(t) . —yl(w)yz(t)f(t)} di
. W (t) ‘ W(t)

Zo

dt

_ /” y1()ya(z) f(E) — yi(z)ya(t) £ (E)
0 W (t)

P n®)ye(r) — ni(x)y(t)

= ) 0 f(ydt
= [ Gla.t)(2) dt.

2. In the solution of Example 3 in the text we saw that y; = €%, y2 = ™%, f(z) = 1/z, and W(y1,y2) =

—2. From (13) the Green’s function for the diffcrential equation is

b~ _ oFo—t g ’-—(.’I:—t)
G(z,t) = £ _; . 20 = sinh(z — ¢t).

The general solution of the differcntial equation on any interval [xg, 2] not containing the origin is

~1en

) T ginh(x — ¢
y=cre’ + e + / sinh(z —#) dt.
0 t

“Ve already know that y,(z) is a particular solution of the differential equation. We simply need to
0w that it satisfies the initial conditions. Certainly

y(zg) = /wo G(x,t) f(t)dt = 0.

xo
~sing Leibniz’s rule for differentiation under an integral sign we have
d (= © d
@) == [ Glf®dt= [ —Gle.)f®)dt+ [OGC@,) -1 - F(E)G(m0,2)-0.
dx Zy X dzx
=rom (13) in the text, G(z,z) =0 so

d =
v = 32 [ Gl nf

d o
(o) = 7 [ Gla 0 f 1)t = 0
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34. From the solution of Problem 32 we have that a particular solution of the differential equation
a2
yp(z) = /0 Gz, t)e?dt,

where G(z,t) = sinh(z — ). Then

z—t _ o—(z—-1)

&€ &
T ot €
Yp() = ; *mhzc—tdt:/ e dt
Yp () /06 sinh( ) Jo 5
Lor®r abt w43t 1[ b1 ]
= — —c dt = = L+ N .B-I-»,t]
2 Jo [e ¢ ] 2 ¢ ¢ lo
1 2z 1 2z :1:_,_1 -z 1 2z lx 1 -
= R Ry e T
26 6( 2€ AGe 36 2( oe

Exercises 4.7

1. The auxiliary equation is m? —m — 2 = (m + 1)(m — 2) = 0 so that y = c;z™! + cp22.

The auxiliary equation is 4m? — 4m + 1 = (2m — 1)2 =0so0that y = c1z'/2 + cza:l/ 2Inz.

!\J

The auxiliary equation is m? = 0 so that y = ¢; + ¢z Inz.

The auxiliary equation is m? — 4m = m(m — 4) = 0 so that y = ¢ + coz?.

bow

(S]]

The auxiliary equation is m? +4 = 0 so that y = ¢j cos(2Inz) + ¢z sin(2In z).

The auxiliary cquation is m? + 4m +3 = (m + 1)(m + 3) = 0 so that y = c;z~" + cpz™5.

&

-

The auxiliary equation is m? — 4m — 2 = 0 so that y = clxz_‘/g + cza:2+‘/g.

The auxiliary equation is m2 + 2m — 4 = 0 so that y = ¢z~ 1+V3 + oz =15,

o

9. The auxiliary equation is 25m2 + 1 = 0 so that y = ¢; cos (% In .D) + cosin (% In x)
10. The auxiliary equation is 4m? — 1 = (2m — 1)(2m + 1) = 0 so that y = 1212 + oz~ /2,
11. The auxiliary equation is m? + 4m + 4 = (m +2)2 = 0 so that y = 1272 + ez 2 Inz.
12. The auxiliary equation is m? + 7m 4+ 6 = (m + 1)(m + 6) = 0 so that y = c1z™" + ¢z~ 5.

13. The auxiliary equation is 3m? + 3m + 1 = 0 so that

y = 77172 [(—‘1 cos (%—?: ln:v) + cosin (\/Tg Ino:)} .

14. The auxiliary equation is m? — 8m + 41 = 0 so that y = 2% [¢; cos(5Inz) + cosin(51n2)].

198



Exercises 4.7 Cauchy-Euler Equation

Z3. Assuming that y = 2™ and substituting into the differential equation we obtain
m(m — 1)(m—2) — 6 =m* — 3m? 4+ 2m — 6 = (m — 3)(m? + 2) = 0.

Thus
y = c12° -+ 2 cO8 (\/ﬁln :1:) + ¢3sin (\/511‘1 :L) .

~7. Assuming that y = 2™ and substituting into the differential cquation we obtain
mim—1)(m=2)+m—1=m>=3m?+3m—-1=(m—-17>=

Thus
y=c12 +cxlnz + czx(ln :z:)z.
Z7. Assuming that y = 2™ and substituting into the differential equation we obtain
n(im — 1)(m = 2)(m — 3) + 6m(m — 1)(m — 2) = m* — 7m? + 6m = m(m — 1)(m — 2)(m + 3) = 0.
Thus
Y =C+coxr+ c51 24 C4 -3,
23, Assuming that y = 2™ and substituting into the differential equation we obtain

n{m—1)(m—2)(m—3)+6m(m—1)(m—2)+9m(m—1)+3m+1=m*+2m?+1= (m?+1)? = 0.

Thus

y = c1cos(Inz) + cosin(ln ) + es(Inz) cos(lnx) + e4(In z) sin(ln ).

_: The auxiliary cquation is m2 — 5m = m(m — 5) = 0 so that y. = ¢; + ¢22° and
.1 b
W(l,2°) = = 5z,
0
“ientifying f(z) = 2% we obtain u} = —1z? and w} = 1/52. Then u; = — 520, ug = $Inz, and
1 1 1 4
y=cl+c~2:.z‘ — =’ + 2 Inz =c¢; +e32° + 2P n 7.
25 5 5
2 The auxiliary equation is 2m2 + 3m + 1 = (2m + 1)(m + 1) = 0 so that ye = cyz™ ! + coz™ Y2 and
1 2172
o=l =12y | ¥ ‘ £=5/2
W(z™ a4 = 2 _%/z .
aptifuing Fla) — L _ _ 3/2 _ 1/2 - _1,2_ 1.3
wntifying f(x) = 5 — 2:r we obtain u} = z — z? and uf = 2 / — 2/2. Then u; = 57% — 577,
o= %:1:5/2 - _:%173/2? and
-1 e 1 15 25 2 1 ~1/2 2
y=c1z " +cor +o— S+ o1t - =cu HerT Nt — e+ —x”.
/ 273" T8 T3 6 ' 15
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21. The auxiliary equation is m? — 2m + 1 = (m — 1)?> = 0 so that y. = c1z + coz Inz and

lz  zlnz |
nz

o -

Lientifying f(z) = 2/z we obtain v} = —2Inz/z and vy = 2/z. Then w3 = —(Inxz)?, up = 2=
and

=z +czrnz — z(lnz)? + 2z(lnz)?

=1z + cozlnz + z(In r)2 x> 0.

22, The auxiliary equation is m? — 3m + 2 = (m — 1)(m — 2) = 0 so that y, = ¢12 + cp2? and

X 1[22

1 2z

_ 2

W(z,z%) =

Identifying f(z) = z2e® we obtain v} = —z2e® and v, = ze®. Then u; = —a2e® + 226 — -
ymg 1 2

o= xeT —e®, and

y=cz+ com® — 236 + 20%e% — 2xe® + 2%e® — 22
9 o
=& + cx” + x2e® — 276",

23. Tre auxiliary equation m(m — 1) + m —1 = m? — 1 = 0 has roots my = —1, mg = .

1

- =c1z 4+ coz. With 43 = 271, 42 = z, and the identification f (z) = Inz/z?%, we get

W =2z"", Wiy =—-Inz/z, and Wo=Inz/ 23

Tren v} = Wi /W = —(Inx)/2, up = Wy/W = (Inx)/222, and integration by parts gives

p 1 1.1 .
] = 2.1:— 2.L n

1 _ 1
Uy = —5:1; 'Inz - 59:_],

11 -1 11 1 1 :
Yp = uy1 + Ul = (5:1, — 51: ln:z:) T+ (—5.'): Inz — 5.1 ) z=-—Inz

yzyc+yp=c]r_l-i—02a:—1nx, x> 0.

2 _

<. _:o= auxiliary equation m(m — 1)+ m—1 = m 1 = 0 has roots my = —1, map =

LI

c=10107 4 egz. With 41 = 271, yo = z, and the identification f(z) =1 Jz?(z + 1), we ger

W=2z"" Wi=-1/z(z+1), and Wo=1/sz+1).
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7. The auxiliary equation is m? + 2m = m(m + 2) = 0, so that iy = ¢; + coz ™2 and

Exercises 4.7 Cauchy-Euler Equation

Then uj = Wi/W = —1/2(z + 1), uh = Wo/W = 1/22%(x + 1), and integration (by partial
fractions for uh) gives

U = —% In{z + 1)

1, 1 1
u2=—§:1;_1—§lna:+§1n(x+1)¢
SO
1 1 1 1
Yp = UIY1 + Uy = [—5 In(z + I)J 7+ [—533_1 -3 Inz + 5 In(z + 1)] x
1 1 1 In(z + 1) 1 1 1 In{z +1)
=———-——zhe+-zln(z+1) - ————=—-= —:;l(~:‘——)—————
5~ 3¢ 11¢+2x111(1 1) o 2—|—21nl = o
and
1 1 1 In(z + 1)
yzycﬁ—yp:clw‘]+czm—§;‘—§xhl(1+;)———n(’;z—-i_), x> 0.

.= —2¢9x~3. The initial conditions imply
c1+c=0
—2¢y = 4.
Thus, ¢; = 2, o = ~2, and y = 2 — 2272, The graph is given to the right.

“he auxiliary cquation is m? — 6m + 8 = (m — 2)(m — 4) = 0, so that
Y= (:1:(;2 + c:25c4 and y’ = 2017 + 462.’1:3.
~ne initial conditions imply
4e1 + 16¢9 = 32

dcy + 32¢9 = 0.

Thus, ¢ = 16, ¢g = —2, and y = 162? — 22%. The graph is given to the right.
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27. The auxiliary equation is m? + 1 = 0, so that

y = ¢ cos(lnz) + ey sin(lnz)

and A

1 ‘ 1
1y = —c1=sin(lnz) + co— cos(ln x).
© T

The initial conditions imply ¢; = 1 and ¢ = 2. Thus
+=cos(lnz) + 2sin(lnz). The graph is given to the right.

2%, The auxiliary equation is m? — dm +4 = (m — 2)? = 0, so that A
y=cz?+er’lng and 3 =22+ cp(z+ 2xlnz). 5 ia
The initial conditions imply ¢; = 5 and ¢3 + 10 = 3. Thus y = 522 — 7z2Inz. The +
graph is given to the right. 10
—20 +
-30 4+
29. The auxiliary equation is m? = 0 so that Yo =¢1 + e lnzx and v i
. (1 Inz| 1 s
W(l,lnx) = 1=
0 1/z| =
Identifying f(z) =1 we obtain uj = —zln2 and wh = 2. Then 10
= ;2% — $22Inz, up = 22, and
5
1 1. 1 1.
y=c1+chz+ 22?2 - Z@’lnz+ —2’lne = c1+clnz+ Zz2. _
4 2 2 4 i
The initial conditions imply ¢ +% =1and ¢ —|—% = —;1} . Thus. ¢y = % ,co=—1, -

and y = 3 — Inz + 122. The graph is given to the right.
Yy=74 1 grap g g

30. The auxiliary equation is m? — 6m + 8 = (m — 2)(m —4) = 0, so

-hat ye = ¢12? + co2* and

2 4
©
W= 5| =270
2¢ 4z -
Identifying f(r) = 8z we obtain v = —423 and w) = 4. Then  ~
v = —at, ug = 222, and Y= c122 + coxt + 26, The initial conditions imply
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1 1 1
1716727 Ta
1 3
c + 5(;2 = TR
Thus ¢; = iﬁ o = ~% cand y = i.azz — l;‘c4 + 8. The graph is given above.

2. Substituting z = ¢ into the differcntial equation we obtain

d?y dy
=L 20y =0.
a2 Pog TP
The auxiliary equation is m? + 8m — 20 = (m + 10)(m ~ 2) = 0 so that

y =cre U 4 epe® = ez 10 + o2,

. Substituting z = ¢! into the differential equation we obtain
2,

d*y dy

—= — 10— + 25y = 0.

a’t2 dt v=

The auxiliary equation is m2 — 10m + 25 = (m — 5)? = 0 so that
[ [ S [
y = cre” + cpte™ = c12° + epx® Inz.

. Substituting = = €! into the differential equation we obtain

d*y oW
dt? dt
The auxiliary equation is m? +9m 48 = (m + 1)(m + 8) = 0 so that Ye = c1¢7t + cpe™8. Using

+ 8y = &%,

undetermined coefficients we try y, = Ae?. This leads to 304e% = €% so that A = 1/30 and

]. Q 1 ¢

—t —8¢ 21 -8 el

Yy =c1e "+ e + —e” = + X + €.
‘ ! 2 30 ! 2 30

.. Substituting 2 = ! into the differential equation we obtain

d?y - dy
— —5—=+ 06y =2t
a2 " oy

The auxiliary equation is m? — 5m + 6 = (m — 2)(m — 3) = 0 so that y. = c1e® + cpe?. Using
undetermined coefficients we try y, = At + B. This leads to (=54 + 6B) + 6At = 2t, so that
4=1/3. B=15/18, and

. 1 5
y=(:1(52t+(12€3t+ T+——(1L —|—c21 +—hu+—.

18 3 18
_I. Substituting = = ¢’ into the differential equation we obtain
&y dy
——4— 13y = 4 + 3¢t
72 7 + 13y + e
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-:oefﬁcuents we try yp, = A+ Bet. This loads to 13A—|— 10Bet = 4+3¢t, so that A =4/13, B=1:

ard
y = ¢**(cy cos 3t + cgsin 3t) + % + %
= z° [c1 cos(3Inz) + czsin(3ln )] + 4 + _2.’_
37107
36, from

1 (B _dy
dz?2 — 22 \ dt2  dt
o1 (B a2 (Py_d
ded ~ 22 de \df2  dt 3 \dt2 dt

d (Y 1d () 2dy 2a
22 dx \ dt? 22 dx \ dt 23 dt2 23 dt
_M‘*._v(l) _i@(l) _2dy 2dy
N 22 dt2 \z/) 23 d2  zd dt
1 d3 d2 ,

_y —3 _y + 2= dlj

d3 dt? dt
Suostituting into the differenmal cquation we obtain

By _dy  _dy Py dy dy
Rt +22Y
i Pa T ra N\ )

= “hllows that

—by=3+3t

3, 2
‘itf,)’ —6‘;?“1 ‘2 6y =3+ 3t.
Ti= auxiliary equation is m? —6m? +11m—6 = (m—1)(m—2)(m—3) = 0 so that y. = c1e* +¢:
~.+%". Using undetermined coefficients we try y, = A+ Bt. This leads to (11B—6A4) — 6Bt = :
st mnat A= -17/12, B = —1/2, and

. 17 1 17 1
Yy = clet +62€2t + (:36‘“ I ~2-t =1+ (zm + 03:1:3 - 1—; - Elnm
-2 et two problems we use the substitution t = —x since the initial conditions are on the ir~
—x. . In this case

@ _dy d_a: dy
dt  dz dt  dr

@ _d(dyy _df dy i( ) = _éii, d_’z:- dzy dx dzy
dt?  dt \dt) dt\ dz T dr dt  dz dt  dx?’
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. The differential equation and initial conditions become

(12

The auxiliary cquation is 4m? — 4m + 1 = (2m — 1) = 0, so that

J. I ] o
—clt_l-'/2 + ¢2 (t_l/z + Et_l/z In t) .

4t° —

y=ct"? +cot?Int and o = 3

The initial conditions imply ¢; = 2 and 1 4+ ¢cp = —4. Thus

y=2t1/2 —5t/2In¢ = 2(—z)/? - -5(—17)1-/2 In(—z), 2<0.

The differential equation and initial conditions become
d%y dy ,
tz——lt—-l-61=0: yt) | =8 Y| =0

The auxiliary equation is m? — 5m + 6 = (m — 2) (m —3) =0, so that
y= cltz + (.:21‘..3 and y = 2c1t + 3(:2t2.

The initial conditions imply
4c1+8co =8

4cp + 12¢0 =0
from which we find ¢y = 6 and ¢9 = —2. Thus

y=6t2— 23 =62° + 225, z<0.

. 2. Letting u = 2 4+ 2 we obtain dy/dx = dy/du and, using the Chain Rule,

il bl Rl b el Ol v

Substituting into the differential cquation we obtain

Py d (dl/> CdPydu By, dYy

d%y dy
2 —
du? ud—+y_0

The auxiliary equation is m? + 1 = 0 so that

y = ¢y cos(Inu) + cpsin(Inu) = ¢; cos[In(z + 2)] + cosin{In(z + 2)].

. If 1 —1iis a root of the auxiliary equation then so is 1 + 4, and the auxiliary equation is

(m—2)m—1+)|[m—(1—-9]=m>—4m?> +6m —4=0.

We need m?—4m? +6m — 4 to have the form m(m—1)(m—2)+bm(m—1)+em+d. Expanding this
last expression and cquating coefficients we get b = —1, ¢ = 3, and d = —4. Thus, the differential
>quation is

3 /// — 2 y”+31*y — 4y =0.
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Exercises 4.7 Cauchy-Euler Equation

z1. For r?y” = 0 the auxiliary equation is m(m — 1) = 0 and the general solution is y = ¢; + ¢-
initial conditions imply ¢; = yg and ¢ = y1, s0 ¥y = yo + y1z. The initial conditions are x:-
zor all real values of yy and y;.

Tor 22" — 22y’ + 2y = 0 the auxiliary equation is m? — 3m + 2 = (m—1)(m—2) =0z
zeneral solution is y = ¢y + co2?. The initial condition 3(0) = yy implies 0 = yo and the cc:.
2 0) =y implics ¢1 = y1. Thus, the initial conditions are satisfied for yg = 0 and for all rea. -
Ty

T 2%y — day’ + 6y = 0 the auxiliary equation is m2 — 5m + 6 = (m — 2)(m —3) = 0 &=
ssreral solution is y = c12% + coz®. The initial conditions imply y(0) = 0 = y and 4/(0) = 0. ~
-= initial conditions arc satisfied only for yo = 1 = 0.

<2, T function y(z) = —v/z cos(Inz) is defined for z > 0 and has z-intercepts where Inz = = Z -
2= I an integer or where 2 = ¢™2tA7 Solving /2 + k= = 0.5 we get k &~ —0.34, so /25"
oo all negative integers and the graph has infinitely many z-intercepts in the interval (0, 0.7

=3, The auxiliary equation is 2m(m — 1)(m — 2) — 10.98m(m — 1) + 85m + 1.3 = 0, =

- = —0.053299, mo = 1.81164, m3 = 6.73166, and

— 0053299 o 1.81164 . .0.73166
Yy=cx + cox + ¢32 .

= auxiliary equation is m(m — 1}(m — 2) +4m(m — 1) + 5m — 9 = 0, so that m; = 1.403_.

]
-

-2 Two complex roots are —1.20409 £ 2.22291:. The general solution of the differential eque”.

y = ¢ 110819 4 5—1.20400 [c2 c0s(2.22291 In o) + 3 sin(2.22291 In z)].

Tio auxiliary equation is m(m — 1}(m —2)(m —3)+6m(m —1)(m-2)+3m(m —1) -3m—- =
+1 that my = me = v/2 and m3 = mg = —v/2. The gencral solution of the differential equar:

Y= c;lzv‘/§ + (:2:1:‘/§ Inx + c;;a:—‘/5 + (34:r,_‘/§ Inz.

-
i

- = auxiliary equation is m(m—1)(m—2)(m—3)—6m(m—1)(m—2}+33m(m—1)—105m+1¢ " =
~. Taat mp =mo = 3 + 2 and mg = my = 3 — 2¢. The general solution of the differential ec

y = 2% cos(2In ) + cosin(2Inz)] + 2° In z[es cos(2In z) + ¢4 sin(2In z)].
=7, "= auxiliary equation
mim—1)(m—-2)—-mm—-1)—2m+6=m> —4m?+m+6=0

Lrrrootsmy = —1, mg = 2, and m3 = 3, 50 Y. = 12 + cox? + c32®. With gy = 271, 2 =
= r*. and the identification f(x) = 1/, we get from (11) of Section 4.6 in the text

Wy=a%, Wy=-4  Ws=23/z, and W =12z
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

Then u} = Wi /W = 22/12, uh = Wa/W = —~1/3x, uy = 1/42%, and integration gives

z 1111 r and g !
Uy = o, Uy = —=lInx. ar Uz = —-—,
S A T T ar
$0
3
e : 1 ‘ 1 2 1
Yp = WY1 + UY2 + U3y3 = 3—6-1 14 a? (—g 1113;) +a? (—5) = —61‘2 — _—341:2 Inz,
and

2 . 1 .
Y=y +yp=crz '+ cox® + c3a® — 51?2 - §:v2 Inz, x>0.

Exercises 48 i

. From Dz = 2z —vy and Dy = & we obtain y = 22— D2, Dy = 2Dx — D?z, and (D2 —2D+ 1)z =0.
The solution is

T = clct + Ctht

y = (c1 — cz)et + eotel.
- From Dz = 42 + 7y and Dy = x — 2y we obtain y = %Da: - %I Dy = %Dga: — %D:L‘, and
D? —2D — 15)z = 0. The solution is

z = c1e® + cpe™ 3
1 & _
y= ?(:10'” — cpe™ %,

I, Trom Dz = —~y+t and Dy =z —t we obtain y = t — Dz, Dy = 1 — D?z, and (D? + Hz=1+¢
“The solution is
r=crcost+cosint+1-+41¢

y=oc1sint —cgcost +1 — 1.

Zzom D2 — 4y =1 and ¢ + Dy = 2 we obtain y = 1Dz — }, Dy = 1D?r, and (D? + 1)z = 2. The

=

<alution is
r=cjcost+cosint + 2

1
y = chcost -4 sint — 1
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

ot

. From (D?+5)z -2y = 0 and —2x+ (D2 +2)y = 0 we obtain y = $(D?+5)z, D%y = $(DY+5C
and (D? + 1)(D? + 6)z = 0. The solution is
T =ocycost+cosint + c;;cosx/ét + ¢4 8in V6t

1 1
y = 2¢cycost+ 2¢gsint — 5€3 CO8 Vot — §C4 sin V6 ¢t.

6. From (D + 1)z + (D — 1)y = 2 and 3z + (D + 2)y = —1 we obtain x = —1 — 3(D — .
Dz = —1(D*+2D)y, and (D?* + 5)y = —7. The solution is

) 7
y=a cos V5t + cosin Vbt — —
)

2
2= (—%01 - —\g—_cz) cos V5t + (\/7561 - 562) sinV3t+ = ]

5
T. From D%z = dy + €' and D%y = 4a — ¢! we obtain y = 1D%z — Le!, D¥y = 1Dz — e, and

{D? +4)(D — 2)(D + 2)z = —3¢*. The solution is

. , . _op . 1
T = ¢y 0082t + cpsin 2t + C362t +cye 2 gef
. ; _ 1
Yy = —¢1 €082t — co8in 26 +- 636'21' + ¢y a_ get.

From (D? 4+ 3)z + Dy = 0 and (D + 1)z + (D — 4)y = 0 we obtain (D — 5)(D? + 4)z =
D — 5)(D? 4 4)y = 0. The solution is

o

T = c1e7" + ¢ cos 2t + ¢3sin 2t
y = ca€® + ¢35 o8 2t + ¢ sin 2t.
Substituting into (D + 1)z + (D — 4}y = 0 gives
(6¢1 + c4)e™ + (o + 203 — des + 2¢q) €08 2 + (=209 + €3 — 25 — 4cg) sin 2t = 0
s0 that ¢ = —6¢1, ¢5 = %03, cg = —%02. and
y = —6cre + %c;; cos 2t — —;—CQ sin 2.

Zrom Dx + D%y = 3 and (D + 1)z 4 (D — 1)y = 43 we obtain D(D? ~ 1)z = 34¢
D-D? + 1)y = —8¢3. The solution is

i

4
y=c1+cesint +c3cost — Igejt
17
T =4+ cysint + cgcost + 1—regt

S-:bstituting into (D + 1)z + (D — 1)y = 4e3 gives
(ea—c1)+ (5 —eg — ey —co)sint + (ce + 5 + o — e3) cost =0
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Exercises 4.8 Solving Systems of Linear DEs nv £liziinztiin

so that ¢4 = ¢y, ¢5 = ¢3. g = —¢o. and

) 17 54
T =1¢1 —Ccocost+ ¢ysint + Ige

. From D?z — Dy =t and (D + 3)a + (D + 3)y = 2 we obtain D(D + 1)(D + 3)z = 1 + 3t and
D(D + 1)(D + 3)y = —1 — 3t. The solution is

_ s 1
T =cC1 + e t4 cae 3t _ t+ §t2

. 1.
y=cy+ese g 4t~ -2—t2.
Substituting into (D + 3)z + (D + 3)y = 2 and D%z — Dy = ¢ gives

3(c1+ ) +2(ca+c5)e” =2
and
(co+cs)e ™t +3(3es +cg)e™F =0

50 that ¢y = —¢j, ¢5 = —¢2, ¢g = —3¢3. and

; 1
y=—c; —cpe "t = 3cge M 1 - §t2.

21 From (D? = 1)z —y =0 and (D — 1)z 4+ Dy = 0 we obtain y = (D? — 1)z, Dy = (D? —~ D)z, and

1D —1)(D? + D + 1)z = 0. The solution is

iy V3 . V3
= clet +e /2 [c:g cos ~3_15-4—c3 sin Tt

< <

3 \/‘_3- —t/2 \/§ \/g 3 -1/2 \/§
Y= (—-2—(,2 - —2—6,5) e cos —2-13 + —2—62 - —2~03 e Sin —E—t.

. From (2D?*-D-1)z—(2D+1)y = L and (D~1)z+Dy = —1 we obtaiu (2D+1)(D-1)(D+1)z = —1

and (2D + 1)(D + 1)y = —2. The solution is

—t/2

T =ce + cze“t + c;;et +1

—t/2 + 656"1' — 2.

y = cge
Substituting into (D — 1)z + Dy = —1 gives
3 1 _ _
(-—Ecl - 504) e~t? 1 (—2co —¢c5)et =0
0 that ¢4 = —3c1. ¢5 = —2¢9, and

Y = —3c1e‘t/2 — 2yt — 2.
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

13. From (2D-5)z+ Dy = €' and (D—1)z+Dy = 5¢’ we obtain Dy = (5—2D)z+e! and (4—D)x = -

Then

z=cpelt + 2t

3
and Dy = —3c;e¥ + 5¢ so that

3 .
Y= —1616# + cg + 5et.
14. From Dz+Dy = ¢! and (~D?+D+1)x+y = 0 we obtain y = (D>~ D—1)z, Dy = (D?—D?-
and D?(D — 1)z = ¢!. The solution is
r=c +ct+ c;;et + tet

= —¢] — ¢y — Cat — ¢3! — tel + et
Y

15. Multiplying the first equation by D + 1 and the second cquation by D? + 1 and subtractiz.:
obtain (D* — D)z = 1. Then

t —t+_ 1o
T=c1+ct+cge +ceue — 5t .
Multiplying the first equation by D + 1 and subtracting we obtain D?(D + 1)y = 1. Then
4 —t 2
Yy = c5 + cet + cre ~5t .
Substituting into (D — 1)z + (D? + 1)y = 1 gives
(—e1teates— 1)+ (—2ca+2cr)e P+ (—1—cotce)t =1
so that s =¢1 — 2 + 2, ¢ = ¢c2 + 1, and ¢7 = ¢4. The solution of the system is

1.

r=ec1+ ct+ c;;et + (.:/,|e_t — ~2-t2
—t 1
y=(ci—a+2)+(co+1)t+cge™" — §t .

16. From D%z — 2(D? + D)y = sint and & + Dy = 0 we obtain z = —Dy, D%z = —D?.
D(D? + 2D + 2)y = —sint. The solution is

_ —t . 1 2 .
Y =c1+ e teost + cae tsint + —cost + - sint
) 5

—t —t 1 2
z = (co+c3)e”"sint + (cg —c3)e” " cost + —sint — — cost.
5 5

17. From Dz =y, Dy = z. and Dz = & we obtain z = D%y = D3z so that (D — 1)(D* + D +1

3 ;
\é_t + ¢35 cos -\—g—ét ,

—t/2

z=cret+e Co 8in
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Exercises 4.8 Solving Systems of Linear DEs by Eliminatio:

y = cre’ - ( L, Y3 ) ﬂt + (\/gcz 1(’3) e~ cos .\/gz‘
y=cCce — | —=— - — —_— — = = '.,f—,.’
2277 2 2 2
and
1 3 3 3 1 . 3
z=ciet + (—502 + \/?—(:3> ~/2gin \é_t + (—%czg — 503) ¢*12 cos \/7—1
3 From Dr+z=¢, (D~ 1)z+Dy+ Dz =0, and 2 + 2y + Dz = ¢! we obtain z = —Dz +¢".
Dz = —D%z + ¢, and the system (—D? + D — 1)z + Dy = —¢ and (—D? + 1)z 4+ 2y = 0. Thex

= é(D‘ — 1)z, Dy = 1D(D2 Da, and (D — 2)(D? 4+ 1)z = —2¢" so that the solution is
= cle‘?t + ¢pcost + ezsint + ef

2t

Yy = 5(:1(5 " —cycost — cgsint
z=—2¢16% — cycost + cosint.
2=, Write the system in the form
Dx—6y=0
r—Dy+z2z=0
x+y—Dz=

Multiplying the second equation by D and adding to the third cquation we obtain
D + 1)z — (D? — 1)y = 0. Eliminating y between this equation and Dz — 6y = 0 we find
(D¥ =D —6D —6)z = (D +1)(D +2)(D — 3)z =0.
Thus
z=cre "t + ce 2 + ¢33,

and, successively substituting into the first and second equations, we get

| S A S
Yy =-——=C10 — —C9e 7 —c3et"
Y 6 1 3 2 +2 3

R SN TR S
2= —=C1e ~— —C€ T+ <cge’.

6 372 9"

= "ATite the system in the form
D+lxr—2=0

(D+1y—z2=0

r—y+Dz=
siultiplying the third cquation by D + 1 and adding to the second equation we obtain
D+ 1)z + (D*+ D — 1)z = 0. Eliminating z between this equation and (D + 1)z — z = 0
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

== find D(D + 1)?z = 0. Thus

r=c + c2(:'t + c;;te—t,
-7 successively substituting into the first and third equations, we get
y=cy + (ca—c3)e™t +cate™

z=q0 + c:;e_".

1. Zrim (D+5)z+y = 0and 42— (D+ 1)y = 0 we obtain y = —(D+5)z so that Dy = —(D?+ .
Themda+ (D2 +5D)z + (D +3)z =0 and (D + 3)%z = 0. Thus
z = cre”% + cote™¥
y=—2c1 + cz)e_:“ — 2cote ™3,
“sinz (1) = 0 and y(1) = 1 we obtain
c:1e_3 + (:2@‘3 =

—(2¢1 + 62)6_3 — 20‘3@_3 =1

c1+ep=0
2¢1 + 3co = —é3.
sy = e3 and ¢y = —e3. The solution of the initial value problem is
— o33 _ 4, —3t+3

xr

y = —e 33 | 9pe3t+3,

4

2 Dy —y=—1and 32+ (D —2)y = 0 we obtain z = —3(D —2)y so that Dz = —}(D? - _~
L-n —$D?=2D)y =y —1and (D? -~ 2D + 3)y = 3. Thus

1
vl

y=eé (clcosx/ﬁt+ozsin\/§t)+1

T = %ef' {(cl - \/5(’2) cos V2t + (\/501 -+ cz) sin\/§t] + %

“anz o0 =y(0) = 0 we obtain
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

Thus ¢; = —1 and ¢ = v/2/2. The solution of the initial value problem is

2 2 2
z=c¢l <—§cosx/§t—%_sin\/§t) +§

2
y=ct (mcosx/it—l- 4Sin\/§t) + 1.

Equating Newton's law with the net {orces in the x- and y-directions gives md?z/dt? = 0 and
md%y/dt* = —myg, respectively. From mD?r = 0 we obtain z(t) = eit+cq, and from mD?y = —rng
or D%y = —g we obtain y(t) = —5gt* + cat + cu.

From Newton’s second law in the a-direction we have

d2 l1dz da
= — =—k-—— = —|c|5;.
mog kcosf = o |e| pm
In the y-direction we have
d? .
m?;/ = —mg — ksinf = —mg — A_W —mg — |c|%

From mD?%x + |c| Dz = 0 we have D(mD +|c|)x = 0 so that (mD + |c|)z = ¢; or (D + |c|/m)z = ca.
This is a linear first-order differential equation. An integrating factor is eJ Idldt/m —_ clelt/m g that

d, . el /1
_.telc|t/mx] _ 026.(..|t/m

tfm iclt/m

and el9t/My = (com/le|)e + ¢3. The general solution of this equation is z(t) = ¢4 + cze~|0H™,

From (mD? + |¢|D)y = —mg we have D(mD + |c|)y = —mg so that (mD + |¢|)y = —mgt + 1
or (D + |c|/m)y = —gt + ¢2. This is a linear first-order differential equation with integrating factor
6f|c|dt/-m. — elelt/m  Thus

%[elolt/nzy] = (—gt+ (:2)c|c|t/m

mq

62C|f-/'777'y — | l té,lclt’m_‘_ €,|<|t/m+c elelt/m + ¢

and

mg m iy
y(t) = —|—c'|-t + 2.] + €3 + cq€ ~let/m

Multiplying the first equation by D + 1 and the sccond equation by D we obtain
D(D + 1)z —2D(D + 1)y = 2t + t*
DD+ 1)z —-2D(D+ 1)y =0.

This leads to 2t + t2 = 0, so the system has no solution.
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Exercises 4.8 Solving Systems of Linear DEs by Elimination

26. The FindRoot application of Mathematice gives a solution of x1(t) = x9(t) as approximate-
+ = 13.73 minmutes. So tank B contains more salt than tank A for ¢ > 13.73 minutcs.
27. {a) Separating variables in the first equation, we have dz1/z) = —dt/50, so z1 = cre~t/%0. Fr.

21(0) = 15 we get ¢; = 15. The second differential equation then becomes

da: 15 . 2 dz 2 3
092 _ 050 _ Zh or E2 4 = DU,
dt 50 75 dt 75 10

This differential equation is linear and has the integrating factor oJ 24t/T5 — g2¢/T5 Then

d (275 55) — 3 —t/s042t/75 _ 3 t/150
dt 10 10
80
2T — 45et/150 4 ¢,
and
o = 45750 4. e 2/,
From x3(0) = 10 we get ¢z = —35. The third differential equation then becomes
% — %).e_tl’so — Ec_gt/75 —_ '];‘.'L"}
dt 75 75 25
or . _
drg 1 S0 _ 14 vz
a 257 5 15 '

This differential equation is linear and has the integrating factor ef /25 — ¢t/2% Then

a (/25 — 6 ~ty50+t/25 _ 14 _otjzsiees _ 6 0 _ 14 o7
dt 5 15 5 15 ’
SO
! f - 175
et z5 = 60e/50 — 70et ™ + ¢4
and

g = 60e™/50 _ 70e=2/T5 | pye=t/25,
From z3(0) = 5 we get c3 = 15. The solution of the initial-value problem is
21(t) = 15675
2a(t) = 4570 — 3524/

23(t) = 60e 4% — 702 4 156725,
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Exercises 4.9 Nonlinear Differential Equations

I‘b) pounds salt
1}
12;
1

=

LI A

time

50 166" 77150 200

c) Solving z1(t) = 3, z2(t) = 1. and z3(t) = 3. FindRoot gives, respectively, t1 = 170.06 min,

to = 214.7min, and t3 = 224.4min. Thus, all three tanks will contain less than or equal to 0.5

pounds of salt after 224.4 minutes.

Exercises 4.9

L »have y) =y =€*, so

W IN2 N2 . J2x 2
()" = (") =€ =y
20, yh = —sinz and ¥4 = —cosx, sO

(y)? = (— cosz)? = cos® = = 3.

Zawever, if y = c1y1 + caya, we have ()2 = (c1e¥ — cacosx)? and y? = (¢1€® + ¢ cos ;7,,')2. Thus
2 2
#y.

have ¢ =9 =0, so

~-0. yh =2z and y§ =2, so
yoys = 2°(2) = 22° = %(2@2 = %(yé)g'
= wever, if y = c1y1 + coy2, we have yy’ = (c1 - 1+ cez?)(er - 0 + 2¢2) = 2co(c1 + ¢22?) and
s 2= %[cl -0+ ¢2(22)}? = 2322, Thus yy” # %(y’)Q.
_-- u =1y so that ' = y”. The equation becomes v’ = —u? — 1 which is separable. Thus
du
41
“: u =14 so that ¥/ = y”. The equation becomes v’ = 1+ u2. Separating variables we obtain
du,
1+u?

=—dr = tanlu=—-2+c¢ = y =tan(c; —x) = y =In|cos(c; — z)| + ca.

—dr = tanlu=2+c¢ = u=tan(zr+c) = y=—In|cos(z+c1)| + ez
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Exercises 4.9 Nonlinear Differential Equations

5. Lel u =3 so that ¥/ = ¢”. The equation becomes 224’ + u? = 0. Scparating variables we obta
du dx

1 1 cixr+1 1 z 1 1
T p=—— | —2 ) == ~1
u? x2 T x 1 \z+ 1/ el \epz+1

1 1
= y=shlaz+1——z+c.

6. Let u = 5/ so that 3/ = wdu/dy. The equation becomes (y + 1)udu/dy = u?. Separating varic
we obtain
du  dy

v 1 = Ijuj=hnjy+1+ng = v=c(y+1)

dy
= 7 =cay+1)

4
- —— =cdz
y+1
— lnly + 1| =Cr=Cc = Y+ 1= (:3(3(:1"7,
7. Let u =14/ so that y” = udu/dy. The equation becomes u du/dy + 2yu® = 0. Separating var::
we obtain

da

. 1
u,_f-i-2ydy=0 - ——a+y2=cl = u=

¥ - TR
1.
= (yz—CI)dy=d‘J: - gyd—cly=~’”+c2~

3. Let uw = ¢ so that ¢ = wdu/dy. The cquation becomes y?udu/dy = u. Separating variab. -
obtain

d 1y — 1 ‘
y y Yy cy—1
= ! 1+ ! dy = dx (for ¢; #0) = l1+l111i*—1|—'z:+c~
c1 ay—1)%7 ! o’ c Y ST
If ¢; =0, then ydy = —dxr and another solution is %y2 = —I + ¢2.
9. (a) ; M
19+
i
VL
A
------ et
~t/2 ‘3\n/2
T
)
q0+ |
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Exercises 4.9 Nonlinear Diffcrential Equations

(b) Letu =3 so that y” = udu/dy. The cquation becomes u du/dy+yu = 0. Separating variables
we obtain
Ly y_ Lo
du=—ydy = u= 5V +o = Yy = —3¥ +c1.
When z=0,y=1andy = —1s0 —1=—-1/2+4¢; and ¢; = —1/2. Then

d'u ]. 2 1 dy 1 . 1
A —_— T :——-—d"‘ = t'c» = ——z "
d:(: 2‘ 2 y.z _i'__ 1 2 X A1l y 21/ + (2

= y =tan (—-—;—;: + 02> .
When 2 =0,y =180 1=tancs and ¢3 = 7/4. The solution of the initial-value problem is
7 1
y = tan (1 - 57) .
The graph is shown in part (a).
(¢) The interval of definition is ~7/2 < 7/d — /2 < w/2 or —7w/2 < & < 3mw/2.

Let w = 3/ so that v’ = y”. The equation becomes (u/)? + > =1

y
which results in v = £vV1—4?2. To solve v/ = V1 —u2 we 2
separate variables:
du . 1 : \
———=dr = sinTu=z+ca = u=sin(zx+cy) LA S B s s
~2n 2n

1 —u?

= 3 =sin(z + ¢1).

When z = /2, ¥’ = V/3/2, s0 V/3/2 = sin(7/2 + ¢;) and ¢ =

—x/6. Thus
y =sin (z‘ - E) — 9 = —cos (:z; —- —ﬂ—-) + ¢o.
) 6 ‘ 6
“Vhen x =7/2, y =1/2, 80 1/2 = —cos(n/2 — 7/6) + o = —1/2 + ¢9 and ¢2 = 1. The solution of
“=e initial-value problem is y = 1 — cos(2 — 7/6). 1}}
Ty solve ' = —+/1 — u? we separate variables: : /,\ L AJ L/

TN LENY BN B I
du -1 . ~2s

—— = —dr = cos” u=x+

v1—u -1

= u=cos(r+c1) = y =cos(x+c1).

“Vhen = 7/2, ¥ = v3/2, 50 v/3/2 = cos(m/2 + ¢1) and ¢; = ~7/3. Thus

—

71

y' = cos (x-—;) = y = sin (a:—g) + co.
Thenx =7/2, y=1/2,50 1/2 =sin(n/2 — 7/3) + c2 = 1/2 + ¢ and ¢3 = 0. The solution of the

..I“lal-value problem is y = sin(z — 7/3).
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Exercises 4.9 Nonlincar Differential Equations

“1. ot u =y sothat u’ = ¢”. The equation becomes w' — (1/z)u = (1/z)u®, which is Bernoulli.
= u~? we obtain dw/dx + (2/z)w = —2/z. An integrating factor is 2, so
[’1‘220:.| = -2r = :L‘z'w = —;z:z +c = w=-14+ %
dz x

- 1
= U 2:—1-L— > Uy =

T
2 Ve — a2

dz x —
Y = y=—Ja—z2+o

_ = ———
de /ey — x2

= ¢ —z° (cz—y) =>x2+(02—y)2=c1.

12. Lot u =y so that ' = . The equation becomes u' — (1/z)u = u?, which is a Bernoulli diffe-:

zzuation. Using the substitution w = u~! we obtain dw/dzx + (1/z)w = —1. An integrating :-
.80

3 2

A 1 1 1 ¢—=z 2z ! -
— W=~y = W= —-T+—C = — = = u= 5y = y=—Injc —a” -
2 =z u 2z 1 — T

Problems 13-16 the thinner curve is obtained using a numerical solver, while the thicker curve
o0 of the Taylor polynomial.

13. We look for a solution of the form y
. 1 1
) =4(0) 4y O+ 1 (0% + 3O+ Ly OO + O 0)”

From y"(x) = 2 + y% we compute
y'(x) =1+2yy

y @ (z) = 29" + 2(y/')?

"l i

v (x) = 20" + 6y'y".

Using y(0) = 1 and 3/(0) = 1 we find
'O =1 ¢"0)=3 yD0)=4 yO0)=12

An approximate solution is 0L T1VETE 2.8

y(z) 1+x+]7 +11+:c+1
T) = _
2" T T Tt
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Exercises 4.9 Noulinear Differential Equations

14. We look for a solution of the form
1 . 1 1 1 5 ‘
y(@) = 5(0) +9/ 0z + 53" (0)a® + 59" (0)2” + [y (O)a* + (02|

From y"(x) = 1 — y? we computc
y"(x) = -2y

y (@) = —2uy" — 2/’

¥ (z) = —2yy" — 6y'y".

Using y(0) = 2 and /(0) = 3 we find

y///(0> = —12. y("l)(()) = — y(-’)(()) = 102.

y"(0) = -3.
An approximate solution is
3 14 1
ylx) =2+ 3z - §:zf2 — 223 — _—1.14 + 5%.L5

LT

~5. We look for a solution of the form
34 2y (o) + 51,3/(5)(0)m5~

1
=y(0)+ O+ 51" (0)2" + 59/"(0)2° +

y(z)
“ — 29/ we compute

From y"(z) = 2® +y
y"(x) = 2z + 24y’ — 24"

y (@) =2+ 20/)° + 299" — 2y
/" zy(4)

7

y®(2) = 6y'y" + 2yy

Using y(0) = 1 and %/(0) = 1 we find
yW(0) =—6. yO(0)=14

y"(O) = -1, y”l(o) =4,
.5 11.522.53 3.5°

An approximate solution is
1 5 24 1 7
yzy)=14+2— =-x —r’ — —
y(z) ezt 4 4.L +601
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Exercises 4.9 Nonlinear Differential Equations

16. We look for a solution of the form

-y(m)=y(0)+y’(o)m+2l,y"<0) 2+ 2y (0)2° + 7y (0)e?

1 (6) 6
+5'1/ 5(0)a® + 6'y (0)z°.

From y"(z) = e¥ we compute

y"(z) =
<4)( ) =e') +ely”
( ) = e¥(y)® + 3eYyly" + Yy
©)(z) = ¥ (y)* + 6e¥(y') %" + 3e¥ ()2 + de¥y/y" + ¥y @),

Using y(O) =0 and ¥/(0) = —1 we find

Y0)y=1, y"0)=-1, y*®0)=2. y®0)=-5 yO(0)=16.

An approximate solution is
1, 1,4 1 1,

y(z) = —z+ 2" - 228+ So'+ 2+ —g

2 6 12 24

17. We need to solve [1 + (¢)4%/2 = ¢/, Let u = ¢/ so that o’

/i

10

-4

(.

The equation bec

1+4?)3? =o' or (1 +u2)3/? = du/dz. Separating variables and using the substitution u = -

we have
—ﬂT/i dr = / sec? 2(]9—:1* = s?—e(;;—ed9=a:
(14 ) (1 + a0 0)’ L
= /cos@dt9=:r — sinf=1r = —\/1_1—7—2=:7:
= Flgpr = O -
= y’:—-l—ig (forz>0) = y —m
18 When y =sinz, ¥ =cosz, ¥y’ = —sinz, and

(‘yl’)z - 312 =gin?z —sin’z = 0.

/! - M —-2

Wheny=e™7, ¢y =—-e™™ ¢y’ =¢7% and

(y//)2 _ y2 — 6—29: _ 6—2:1: = 0.
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Exercises 4.9 s Tomaieniil Tt e

From (y” )2 — y? = 0 we have y" = +y, which can be treated as two linear equarions. Since linear
combinations of solutions of linear homogencous differential equations are also solutions. we sce that
o= c1e¥ + coe™¥ and y = cgcosx + ¢y sinx must satisfy the differential equation. However, linear
combinations that involve both exponential and trigonometric functions will not be solutions since
-he differential equation is not lincar and each type of function satisfies a different linear diffcrential
squation that is part of the original differential equation.

5. Letting u = 3", separating variables, and integrating we have

i \,/'1 +u?, T =dz, and sinh'u=z+c.
w?

Then

u=19y" =sinh(z+c1), ¥ =cosh(x+c1)+ce, and y=sinh(x+c1)+ oz + 3.

2. If the constant —c? is used instead of 3, then, using partial fractions,

1——/ dz ——1/(1 1>d:1‘—lln
y= 22— 20/ \z-c z+a/ 2q

Alternatively, the inverse hyperbolic tangent can be used.

r+c)
rT—QC

‘ +ca.

21, Let u = dz/dt so that d?z/dt? = udu/dx. The equation becomes udu/dz = —k?/2?. Separating
ariables we obtain
L2 9 kz 1 .2

1 : k
ndu———d.z = —u'=—4+c = —v°'=—+4c
22 2 T 2 z

Vhent =0, z =g and v = 0 s0 0 = (k?/zg) + ¢ and ¢ = ~k*/z. Then

. l / —_
l,uz = k? (—1~ - —) and (-— —i.\/:v/ U
T Lo

T=parating variables we have

LI = kBt = = "0/ |2 dz.
V;r:o—:r, kV‘Z \,0—:1:

" sing Mathematica to integrate we obtain

/ N h e _21.) ! —I
i = / :,::—.,_ﬂ .—1(-L0
L\/ 9 \/1”(10 1) 9 tan o

Iro—%

_1 Xo—2x

= %V/%_O \/:zt(;z:o —1)+ 20 tan ——
2y x(zo — )

2
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Exercises 4.9 Nonlincar Differential Equations

22.
)

AWA

VAR

x1=0

i\/

For d%x/dt* + sinz =

[
=
t

XA |
2— 2 I
AUTA f\ I AUVANANN
) \/ EVARCEEE BVIVARS

0 the motion appears to be periodic with :

amplitude and period are larger for larger magnitudes of zj.

A

v

-1 L

e
10
xI=1

-1

For d?x/dt* 4 dx/dt + sinz = 0 the motion appears to be periodic with decreasing amplitu*-

dz/dt term could be said to have a damping effect.

Chapter 4 in Review |

1. y=0

2. Since y. = c1e” + cpe™*

", a particular solution for ¢/ —y =1+ ¢" is y, = A + Buae®.

3. It is not true unless the differential equation is homogencous. For example, y; = z is a sol-

y" +y = z, but y2 = 5z is not.

4. True

5. The sct is linearly independent over (—oc, 0) and linearly dependent over (0, oo).

6. (a)
(b)
(c)
(d)

Since "1

dependent.
(e)
(f)

Since fi(x) = cosz cos(m/2) —sinxsin(n/2) =

222

Since fa(x) = 2Inz = 2f;(x), the set of functions is linearly dependent.
is not a constant multiple of 2™, the set of functions is linearly independe:.-
Since x + 1 is not a constant multiple of z, the set of functions is linearly independen:

—sinz = — fa(x), the set of functions i _..

Since fi(z) = 0- fo(x), the set of functions is linearly dependent.

Since 2z is not a constant multiple of 2, the set of functions is linearly independent.



i,

e

Chapter 4 in Review

(g) Since 3(x2) +2(1 — 2?) — (2 + z?) = 0, the sct of functions is lincarly dependent.

(h) Since xe**! + 0(4x — 5)e¥ — exe® = 0, the set of functions is linearly dependent.

. (a) The general solution is

y= 167 + o€ + c3me ™ + ¢y + cyret + cgrle®.

(b) The general solution is

-5

y= 1z’ + e + c3x”?Ina + eqr + czrInx + cgz(ln :)’:)2.

. Variation of parameters will work for all choices of g(z). although the integral involved may not

always be able to be expressed in terms of clementary functions. The method of undetermined
cocfficients will work for the functions in (b), (¢). and (e).
From m? — 2m — 2 = 0 we obtain m = 1 £ /3 so that

Y= (:16(]+\'!§)$ -+ (326(1—«5)1.

1. From 2m? 4 2m + 3 = 0 we obtain m = —1/2 % (v/5/2)i so that

/2 5 YL
y=e "/ clcos—2—x+czsm——:n .

2
. From m3 + 10m? + 25m = 0 we obtain m = 0, m = —3, and m = —5 so that
y=oc1+ 6326—5;); + c:;;x(3'5'”.
. From 2m3 + 9m? + 12m 4+ 5 = 0 we obtain m = —1, m = —1, and m = —5/2 so that

59 [P e
Y =cr1e %2 £ ege™ + eyze .

5. From 3m3 + 10m? + 15m <+ 4 = 0 we obtain m = ~1/3 and m = —3/2 & (v/7/2)i so that

/3 V7 V7
Yy =cie o3 4 e 3z/2 ((:2 cos —2—;7; + ¢3sin —2—:1: .
From 2m* + 3m® + 2m? + 6m — 4 = 0 we obtain m = 1/2. m = =2, and m = £+/21 so that
Y = 16%? + c9e” % + 5 co8 V21 - cysinV2z.

Applying D? to the differential cquation we obtain D1(D? — 3D + 5) = 0. Then

q, /e V11 V1l
Y = e'”‘/ 2 ((51 €oS —2——1’ + ¢9 sin ——2—;1:) + 3+ cqr + 6511;2 + 06;113

Ye:

and yp, = A+ Bx + Cz? + Dz?. Substituting yp into the ditferential equation yields

(54 — 3B + 2C) + (5B — 6C + 6D)x 4 (5C — 9D)x? + 5D2% = —2u + 42°.
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Chapter 4 in Review

Equating coeflicients gives A = —222/625, B = 46/125, C = 36/25, and D = 4/5. The ger.:
solution is

——+ ==

T\ 222 46 L 36,
625 125" 25" 5

Yy = %12 [ ¢ cos ﬂ:z: + cosin —zx

2 2

16. Applying (D — 1)? to the differential equation we obtain (D — 1)*(D —2D +1) = (D —1)® =
Then

46,:1:

T . 9 v ; T )
y = c16” + cane® + ear’e® + cazde® + csx
N———— e
Ye

and y, = Az2e® + Bx3e® + Cxte®. Substituting y, into the differential equation yields
12C2%e® + 6Bre” + 2Ae™ = 2%®.
Equating coefficients gives A =0, B =0, and C = 1/12. The general solution is

) 1
y = c1€¥ + cpze® + —ate.

12
17. Applying D(D? + 1) to the differential equation we obtain
D(D? +1)(D* = 5D% +6D) = DY(D* + 1)(D — 2)(D — 3) = 0.
Then
y=c+ c-gez‘” + 0363’;” + ¢y + c5co8x + ¢ SinT

v

and y, = Az + Bcosx + C'sinz. Substituting y, into the differential equation yields

6A+ (5B +5C)cosz + (=5B + 5C) sinz = 8 + 2sinx.

Equating coefficients gives A = 4/3, B = —1/5, and C = 1/5. The general solution is
1

5 . 4 1 .
y=c1+ce”* + c;;(ﬁ?"“ + gm — 5 COST + - SIn .
0

. Applying D to the differential equation we obtain D(D3 — D?) = D3(D — 1) = 0. Then

=
¥ ¢

y =c1 + cor + cze” + caz?

Ye

gives A = —3. The general solution is
y = c1 + cot + c3e® — 322,

19. The auxiliary equation is m? — 2m+2 = [m — (1+4)]fm— (1 —4)] = 0, 50 Yo = 1% sin & + ca-

and
VT ol T e s
W e®sinx e’ cosx _ e
iefcosz+e*sine —e®sinz+eFcosz
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Identifying f(z) = e® tanx we obtain

; __(e“cosz)(e’tanz)

Uy = — sinx
1 —e2x
,  (e%sinz)(e” tanx) sin z

uh = : =— = COS T — Sec T.
2 —e2® COS

Then uy = —cosx, up = sinz — In|secz + tanz|, and

y=cie’sing + e’ cosz — ¢“sinzcosx + e sinw cosz — e coszIn | secz + tan 2|
= 1e”sine + cpe” cosx — e cosrIn{sccz + tanz|.

The auxiliary equation is m? — 1 =0, 50 y. = c1€® 4 cge™* and

) ( (?'1’ 6'—:1)
w=|_ °_|=-2
et —e .z-l
“Zentifying f(x) = 2¢*/(e® + e™*) we obtain
; 1 et
Uy = = o

Vo et pemr T 142

2¢ 3z &L

e e e

/ = —¢

Uh=————— = —— =
2 e +e% 1+ e2®

Then up = tan" ! e%, ug = —e +tan~!e?, and

y=cie® +cpe " +etan" ¥ — 1 + e T tan el
Y

. . . . s 2
The auxiliary equation is 6m* —m — 1 = 0 so that

1/2 -1/3

y=cax"’" + ez

The auxiliary equation is 2m? + 13m? + 24m + 9 = (m + 3)*(m + 1/2) = 0 so that

- - —1/5
y=ci1z 3+ cpr 3 Inz + ez 2.

The auxiliary equation is m? — 3m + 6 = (m — 2)(m — 3) = 0 and a particular solution is
. =x2%—2%Inz so that
« ) i l)
Yy = c12® + e’ + 2t — 22 Inz.
The auxiliary equation is m? — 2m+1 = (m —1)? = 0 and a particular solution is Yp = %:1:3 so that

y=cix+crne+ IL

a) The auxiliary equation is m? + w? = 0, 80 y. = cicoswz + copsinwz. When w # a,
Yp = Acosax + Bsinax and

Yy = ¢ coswi + ¢osinwx + Acosar + Bsinaz.
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When w = a, yp = Az coswz + Brsinwr and

Yy = ¢1 coswx + cosinwr + Az coswr + Basinwz.

b} The auxiliary equation is m? —w? = 0, 50 ye = €16*® + coe™**. When w # a, Yp = AeT
y = 1™ + coe™VF 4+ At
When w = a, yp = Aze*® and
y = 16 + coe™ U + Axe”,
26. (a) If y = sinz is a solution then so is y = cosx and m? + 1 is a factor of the auxiliary eq: -
m* + 2m3 + 11m? + 2m + 10 = 0. Dividing by m? + 1 we get m? + 2m + 10, which has -
—1 % 3i. The general solution of the differential equation is
y=c¢1008Z + casinz + e~ “(c3 cos 32 + ¢4 511 37).
ib) The auxiliary equation is m(m + 1) = m? +m = 0, so the associated homogencous differ--
cquation is y” 44/ = 0. Letting y = c1 + cse™® + 122 — z and computing 3" + ¢’ we -
Thus, the differential equation is ¥” + 3 = .
27. {a) The auxiliary equation is m* — 2m? +1 = (m? — 1)2 = 0, so the general solution
differential equation is

y = ¢1 sinh & + ¢o cosh x + c3z sinh x + ¢4 cosh z.

‘b) Since both sinh x and x sinh z are solutions of the associated homogeneous differential eq: -

a particular solution of y¥) — 2/ 4 y = sinh z has the form y, = A2?sinhz + Ba? cosi:
Snceyl =land yf =0, 2%} — (2® +22)yi + (2 +2y1 = —22 —2x + 22 + 22 =0, and y; =

— i

: solution of the associated homogeneous equation. Using the method of reduction of order. -

[ )
3.4

- =ur. Then 3 = 2v/ + v and ¢ = zu” + 2u/, so

" : 2 : 52 ; : ,
22y — (2% + 22)y + (z + 2)y = 230" + 227 — 234 — 2070 — 2P — 20w + 2%+ 20
= %" — 2 = 23 (" — ).

T2 find a sccond solution of the homogencous equation we note that 4 = ¢* is a solus:

3

"—u = 0. Thus, y. = ciz + caze®. To find a particular solution we set z3(u” — /) =
at u” — o' = 1. This differential equation has a particular solution of the form Az. Substi-

v find A = -1, so a particular solution of the original differential equation is y, = —z? &

zeneral solution is ¥ = 1z + cpze® — 22
Tae auxiliary equation is m2 —2m +2 = 0 so that m = 144 and y = e%(c; cosz + ¢z sinz). *

.7 2)=0and y(m) = —1 we obtain ¢; = e~ " and ¢g = 0. Thus, y = ¢* " cos z.

M.
[}
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The auxiliary equation is m2+2m+1 = (m+1)% = 0, so that y = cje *+caze™®. Setting y(—1) = 0
and y'(0) = 0 we get c1e —cpe =0 and —c;1 +¢2 =0. Thus¢; = cp and y = cy(e7% + z¢7%) is a
solution of the boundary-value problem for any real number ¢;.

. The auxiliary equation is m? — 1 = (m — 1)(m + 1) = 0 so that m = +1 and y = c1€® + cye™%.

Assuming y, = A2z + B + Csinz and substitut<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>