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Preface

The topic of mass transfer has a long and distinguished history dating to
the 19th century, which saw the development and early applications of the
theory of diffusion. Mass transfer operations such as distillation, drying, and
leaching have an even earlier origin, although their practice was at that time
an art rather than a science, and remained so well into the 20th century. Early
textbook publications of that era dealt mainly with the topic of diffusion and
the mathematics of diffusion.

The development of mass transfer theory based on the film concept, which
began in the 1920s and continued during two decades of intense activity,
brought about a shift in emphasis. The first tentative treatments of mass
transfer processes dealing primarily with distillation and gas absorption
began to appear, culminating with the publication, in 1952, of Robert Trey-
bal’s Mass Transfer Operations. It was to serve generations of students as the
definitive text on the subject.

The 1950s and the decades that followed saw a second shift in emphasis,
signaling a return to a more fundamental approach to the topic. Mass transfer
was now seen as part of the wider basin of transport phenomena, which
became the preferred topic of serious authors. The occasional text on mass
transfer during this period viewed the topic on a high plane and mainly
within the context of diffusion. For the most part, mass transport was seen
as one of three players on the field of transport phenomena, and often a
minor player at that. In the 1980s and 1990s, it became fashionable to treat
mass transfer as part of the dual theme of heat and mass transfer. In these
treatments, heat transfer, as the more mature discipline, predominated and
mass transfer was usually given short shrift, or relegated to a secondary role.
This need not be and ought not to be.

The author has felt for some time that mass transfer is a sufficiently mature
discipline, and sufficiently distinct from other transport processes, to merit
a separate treatment. The time is also ripe for a less stringent treatment of
the topic so that readers will approach it without a sense of awe.

In other words, we do not intend to include, except in a peripheral sense,
the more profound aspects of transport theory. The mainstays here are Fick’s
law of diffusion, film theory, and the concept of the equilibrium stage. These
have been, and continue to be, the preferred tools in everyday practice. What
we bring to these topics compared to past treatments is a much wider,
modern set of applications and a keener sense that students need to learn
how to simplify complex problems (often an art), to make engineering esti-
mates (an art as well as a science), and to avoid common pitfalls. Such
exercises, often dismissed for lacking academic rigor, are in fact a constant
necessity in the engineering world.



Another departure from the norm is the organization of the material
according to mode of operation (staged or continuous contact), rather than the
type of separation process (e.g., distillation or extraction). Phase equilibria,
instead of being dispersed among different operations, are likewise brought
together in a single chapter. The reader will find that this approach unifies
and strengthens the treatment of these topics and enables us to accommo-
date, under the same umbrella, processes that share the same features but
are of a different origin (environmental, biological, etc.).

The readership at this level is broad. The topic of separation processes
taught at all engineering schools is inextricably linked to mass transport,
and students will benefit from an early introductory treatment of mass
transfer combined with the basic concepts of separation theory. There is, in
fact, an accelerating trend in this direction, which aims for students to
address later the more complex operations, such as multicomponent and
azeotropic distillation, chromatography, and the numerical procedures to
simulate these and other processes.

Mass transport also plays a major role in several other important disci-
plines. Environmental processes are dominated by the twin topics of mass
transfer and phase equilibria, and here again an early and separate intro-
duction to these subject areas can be immensely beneficial. This text provides
detailed treatments of both phase equilibria and compartmental models,
which are all-pervasive in the environmental sciences. Transport, where it
occurs, is almost always based on Fickian diffusion and film theory. The
same topics are also dominant in the biological sciences and in biomedical
engineering, and the text makes a conscious effort to draw on examples from
these disciplines and to highlight the idiosyncrasies of biological processes.

Further important applications of mass transport theory are seen in the
areas of materials science and materials processing. Here the dominant trans-
port mode is one of diffusion, which in contrast to other disciplines often
occurs in the solid phase. The reader will find numerous examples from
these fascinating fields as well as a considerable amount of preparatory
material of benefit to materials science students.

The text starts in an unconventional way by introducing the reader at
an early stage to diffusion rates and Fick’s law and to the related concepts
of film theory and mass transfer coefficients. This is done in Chapter 1, but
the topics are deemed of such importance that we return to them repeatedly
in Chapters 3 and 4, and again in Chapter 5. In this manner, we develop
the subject matter and our grasp of it in successive and complementary
stages. The intervening Chapter 2 is entirely devoted to the art of setting
up mass balances, a topic that is all too often given little attention. Without
a good grasp of this subject we cannot set about the task of modeling mass
transfer, and the many pitfalls we encounter here are alone sufficient reason
for a separate treatment. The balances include algebraic and ordinary dif-
ferential equations (ODEs). The setting up of partial differential equations
(PDEs) is also discussed, and some time is spent in examining the general
conservation equations in vector form. We do not attempt solutions of PDEs



but instead provide the reader with known solutions and solution charts,
which we use in Chapter 3 to solve a range of important problems. That
chapter also considers the simultaneous occurrence of mass transfer and
chemical reaction. 

Chapter 6 deals with phase equilibria, which are mainly composed of
topics not generally covered in conventional thermodynamics courses. These
equilibria are used in Chapter 7 to analyze compartmental models and
staged processes. Included in this chapter is a unique treatment of percola-
tion processes, which should appeal to environmental and chemical engi-
neers. Chapter 8 takes up the topic of modeling continuous-contact
operations, among which the application to membrane processes is given
particular prominence. Finally, in Chapter 9 we conclude the text with a brief
survey of simultaneous mass and heat transfer.

The text is suitable for a third-year course addressed to engineering stu-
dents, particularly those in the chemical, civil, mechanical, environmental,
biomedical, and materials disciplines. Biomedical and environmental engi-
neers will find topics of interest in almost all chapters, while materials science
students may wish to concentrate on the earlier portions of the text (Chapters
1 to 5). The entire text can, with some modest omissions, be covered in a
single term. The professional with a first-time interest in the topic or a need
for a refresher will find this a useful and up-to-date text.
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Notation

a specific surface area, m2/m3  
A area, m2

A raffinate solvent, kg or kg/s
B extract solvent, kg or kg/s
C concentration, mol/m3

C number of components
Cp heat capacity at constant pressure, J/kg K or J/mol K
d diameter, m
D diffusivity, m2/s
D distillate, mol/s
D′ cumulative distillate, mol
De effective diffusivity, m2/s
erf error function
erfc complementary error function
E effectiveness factor, dimensionless
E extract, kg or kg/s
E extraction ratio, dimensionless
E stage efficiency, dimensionless
Ea activation energy, J/mol
Eh enhancement or enrichment factor, dimensionless
f fraction distilled
F degrees of freedom
F feed, kg or mol, kg/s or mol/s

F force, N
ℑ Faraday number, C/mol
G gas or vapor flow rate, kg/s or mol/s
Gs superficial carrier flow rate, kg/m2 s
h heat transfer coefficient, J/m2 s K
h height, m
H Henry’s constant, Pa m3 mol–1 or kg solvent/kg adsorbent
H enthalpy, J/kg or J/mol



Ha Hatta number, dimensionless
HETP(S) height equivalent to a theoretical plate or stage, m
HTU height of a transfer unit, m
i electrical current, A
Jw water flux, m3/m2 s
k thermal conductivity, J/m s K
kC, kG, kL, kx, ky, kY mass transfer coefficient, various units
ke elimination rate constant, s–1

kr reaction rate constant, s–1

K partition coefficient, various units
K permeability, m/s or m2

Ko overall mass transfer coefficient, various units
� length, m
L length, m
L liquid flow rate, kg/s or mol/s
L liquid mass, kg
Ls superficial solvent flow rate, kg/m2 s
m distribution coefficient, various units
m mass, kg
M mass of emissions, kg, kg/s, or kg/m2 s
M molar mass, dimensionless
N mass fraction (leaching), dimensionless
N molar flow rate, mol/s
N number of stages or plates
NT number of mass transfer units
NTU number of transfer units
p pressure, Pa
P number of phases
Po vapor pressure, Pa
PT total pressure, Pa
Pw water permeability, mol/m2 s Pa
pBM log-mean pressure difference, Pa
Pe Peclet number, dimensionless
q heat flow, J/s
q thermal quality of feed, dimensionless
Q volumetric flow rate, m3/s
r radial variable, m



r recovery, dimensionless
R gas constant, J/mol K
R radius, m
R raffinate, kg or kg/s
R reflux ratio, dimensionless
R residue factor, dimensionless
R resistance, Ω
RO reverse osmosis
S amount of solid, kg or kg/s
S shape factor, m
S solubility, cm3 STP/cm3 Pa
Sc Schmidt number, dimensionless
Sh Sherwood number, dimensionless
St Stanton number, dimensionless
t time, s
T dimensionless time (adsorption)
T temperature, K or °C
u dependent variable
u velocity, m/s
U overall heat transfer coefficient, J/m2 s K
v velocity, m/s
vH specific volume, m3/kg dry air
V voltage, V
V volume, m3 or m3/mol
W bottoms, mol or mol/s
W weight, kg
x liquid weight or mole fraction, dimensionless
x raffinate weight fraction, dimensionless
x solid-phase weight fraction (leaching), dimensionless
X adsorptive capacity, kg solute/kg solid
X liquid-phase mass ratio, dimensionless
y extract weight fraction, dimensionless
y vapor mole fraction, dimensionless
Y humidity, kg water/kg dry air
Y gas-phase mass ratio, dimensionless
z distance, m
zFH heat transfer film thickness, m



zFM mass transfer film thickness, m
Z dimensionless distance (adsorption)
Z flow rate ratio (dialysis)

Greek Symbols

α relative volatility, dimensionless
α selectivity, dimensionless
α separation factor, dimensionless
α thermal diffusivity, m2/s
γ activity coefficient, dimensionless

 shear rate, s–1

δ film or boundary layer thickness, m
ε porosity, dimensionless
λ mean free path, m
µ viscosity, Pa s
ν kinematic viscosity, m2/s
π osmotic pressure, Pa
ρ density, kg/m3

σ liquid film thickness, m
σ st length of stomatal pore, m
τ shear stress, Pa
τ tortuosity, dimensionless
φ pressure ratio, dimensionless

Subscripts

as adiabatic saturation
b bed, bulk
c cold, molar concentration units (kc)
C cross section, condenser
db dry bulb
D distillate, dialysate

γ̇



e effective
f, F feed
g, G gas
h hot
i initial
i inside
i impeller
L liquid
m mean
o outside
OW octanol–water
p particle, pellet
p permeate
p pore
v vessel
w bottoms
w water

Superscripts

* equilibrium
o initial  
o pure component
′ cumulative
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1

1  
Some Basic Notions: Rates of Mass Transfer

We begin our deliberations by introducing the reader to the basic rate laws
that govern the transport of mass. In choosing this topic as our starting point,
we follow the pattern established in previous treatments of the subject, but
depart from it in some important ways. We start, as do other texts, with an
introduction to Fick’s law of diffusion, but treat it as a component of a
broader class of processes, which is termed gradient-driven transport. This
category includes the laws governing transport by molecular motion, Fou-
rier’s law of conduction and Newton’s viscosity law, as well as Poiseuille’s
law for viscous flow through a cylindrical pipe and D’Arcy’s law for viscous
flow through a porous medium, both of which involve the bulk movement
of fluids. In other words, we use as common ground the form of the rate law,
rather than the underlying physics of the system. This treatment is a depar-
ture from the usual pedagogical norm and is designed to reinforce the notion
that transport of different types can be drawn together and viewed as driven
by a potential gradient (concentration, temperature, velocity, pressure),
which diminishes in the direction of flow.

The second departure is the early introduction of the reader to the notion
of a linear driving force, or potential difference as the agent responsible for
transport. One encounters here, for the first time, the notion of a transport
coefficient that is the proportionality constant of the rate law. Its inverse can
be viewed as the resistance to transport and in this it resembles Ohm’s law,
which states that current transport i is proportional to the voltage difference
DV and varies inversely with the Ohmian resistance R.

Associated with the transport coefficients is the concept of an effective film
thickness, which lumps the resistance to transport into a fictitious thin film
adjacent to a boundary or interface. Transport takes place through this film
driven by the linear driving force across it and impeded by a resistance that
is the inverse of the transport coefficient. The reader will note in these
discussions that a conscious effort is made to draw analogies between the
transport of mass and heat and to occasionally invoke as well the analogous
case of transport of electricity.

The chapter is, as are all the chapters, supplemented with worked exam-
ples, which prepare the ground for the practice problems given at the end
of the chapter.



2 Mass Transfer: Principles and Applications

1.1 Gradient-Driven Transport

The physical laws that govern the transport of mass, energy, and momentum,
as well as that of electricity, are based on the notion that the flow of these
entities is induced by a driving potential. This driving force can be expressed
in two ways. In the most general case, it is taken to be the gradient or derivative
of that potential in the direction of flow. A list of some rate laws based on
such gradients appears in Table 1.1. In the second, more specialized case,
the gradient is taken to be constant. The driving force then becomes simply
the difference in potential over the distance covered. This is taken up in Section
1.2, and a tabulation of some rate laws based on such potential differences
is given in Table 1.2.

Let us examine how these concepts can be applied in practice by taking
up a familiar example of a gradient-driven process, that of the conduction
of heat.

The general reader knows that heat flows from a high temperature T, which
is the driving potential here, to a lower temperature at some other location.
The greater the difference in temperature per unit distance, x, the larger the
transport of heat; i.e., we have a proportionality: 

TABLE 1.1

Rate Laws Based on Gradients

Name Process Flux Gradient

1. Fick’s law Diffusion
  

Concentration

2. Fourier’s law Conduction
  

Temperature

3. Alternative 
formulation   

Energy 
concentration

4. Newton’s 
viscosity law

Molecular 
momentum 
transport

  
Velocity

5. Alternative 
formulation   

Momentum 
concentration

6. Poiseuille’s law Viscous flow in 
a circular pipe   

Pressure

7. D’Arcy’s law Viscous flow in 
a porous 
medium
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  (1.1)

The minus sign is introduced to convert DT/Dx, which is negative quantity,
to a positive value of heat flow q. In the limit Dx Æ 0, the difference quotient
converts to the derivative dT/dx. Noting further that heat flow will be pro-
portional to the cross-sectional area normal to the direction of flow and
introducing the proportionality constant k, known as the thermal conduc-
tivity, we obtain

    (1.2a)

or equivalently

  (1.2b)

These two expressions, shown graphically in Figure 1.1b, are known as
Fourier’s law of heat conduction. It can be expressed in yet another alterna-
tive form, which is obtained by multiplying and dividing the right side by
the product of density r (kg/m3) and specific heat Cp (J/kg K). We then
obtain (Item 3 of Table 1.1)

  (1.3)

where a = k/rCp is termed the thermal diffusivity. We note that the term
rCpT in the derivative has the units of J/m3 and can thus be viewed as an
energy concentration.

The reason for introducing this alternative formulation is to establish a
link to the transport of mass (Item 1 of Table 1.1). Here the driving potential

TABLE 1.2

Rate Laws Based on Linear Driving Forces

Process Flux or Flow Driving Force Resistance

1. Electrical current 
flow (Ohm’s law)

i = DV/R DV R

2. Convective mass 
transfer

N/A = kCDC DC 1/kC

3. Convective heat 
transfer

q/A = hDT DT 1/h

4. Flow of water due to 
osmotic pressure p

NA/A = PwDp Dp 1/Pw

q
T
x

µ - D
D

Heat flow J / sq kA
dT
dx

( ) = -

Heat flux J sm2q A k
dT
dx

/ ( / ) = -

q A
d C T

dx
p/
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= -a
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is expressed in terms of the molar concentration gradient dC/dx and the
proportionality constant D is known as the (mass) diffusivity of the species,
paralleling the thermal diffusivity a in Equation 1.3. Transport takes place
from a point of high concentration to a location of lower concentration.
Noting, as before, that the molar flow will be proportional to the cross-
sectional area A normal to the flow, we obtain

Molar flow N (mol/s) =  (1.4a)

and equivalently

FIGURE 1.1
Diffusive transport: (a) heat; (b) mass; (c) momentum.
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Molar flux N/A (mol/sm2) =  (1.4b)

These two relations, depicted in Figure 1.1a, are known as Fick’s law of
diffusion.

There is a third mode of diffusive transport, that of momentum, that can
likewise be induced by the molecular motion of the species. Momentum is
the product of the mass of the molecular species and its velocity in a partic-
ular direction, for example, vx. As in the case of the flow of mass and heat,
the diffusive transport is driven by a gradient, here the velocity gradient
dvx/dy transverse to the direction of flow (Figure 1.1c). It takes place from a
location of high velocity to one of lower velocity, paralleling the transport
of mass and heat. As the molecules enter a region of lower velocity, they
relinquish part of their momentum to the slower particles in that region and
are consequently slowed. There is, in effect, a braking force acting on them,
which is expressed in terms of a shear stress Fx/A = tyx pointing in a direction
opposite to that of the flow. The first subscript on the shear stress denotes
the direction in which it varies, and the second subscript refers to the direc-
tion of the equivalent momentum mvx. The relation between the induced
shear stress and the velocity gradient is attributable to Newton and is termed
Newton’s viscosity law. It is, like Fick’s and Fourier’s law, a linear negative
relation and is given by

  (1.5)

Equation 1.5 can be expressed in the equivalent form:

  (1.6)

where n is termed the kinematic viscosity in units of m2/s and the product
of density r and velocity vx can be regarded as a momentum concentration
in units of (kg m/s)/m3. This version of Newton’s viscosity law brings it in
line with the concentration-driven expressions for diffusive heat and mass
transport, Equation 1.3 and Equation 1.4. A summary of the relevant relations
appears in Table 1.1.

Table 1.1 contains two additional rate processes, which are driven by
gradients. The first is Poiseuille’s law, which applies to viscous flow in a
circular pipe, and a similar expression, D’Arcy’s law, which describes viscous
flow in a porous medium. Both processes are driven by pressure gradients
and both vary inversely with viscosity, which is to be expected.

We now proceed to demonstrate the use of these rate laws with three
illustrative examples. The first illustration examines several gradient-driven
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processes in which the gradient vanishes at a particular location of the
system, yet transport still takes place. Such zero gradients are important in
the solution of the differential equations of diffusion because they provide
boundary conditions that can be used in the evaluation of integration con-
stants. The second and third examples scrutinize diffusional processes that
take place in different geometries. The solutions here are all effected by
simple integration using the method of separation of variables. This proce-
dure is employed extensively throughout the text. Occasional use is also
made of the D-operator method, which is outlined in the Appendix.

Illustration 1.1: Transport in Systems with Vanishing Gradients

It frequently happens in transport processes that the driving gradient van-
ishes at some position in the system, without inhibiting the flow of mass,
heat, or momentum. There are two special situations that give rise to such
behavior:

First, the potential exhibits a maximum or a minimum at a point or axis
of symmetry. These locations can be the centerline of a slab, the axis of a
cylinder, or the center of a sphere. Figure 1.2a and Figure 1.2b consider two
such cases. Figure 1.2a represents a spherical catalyst pellet in which a
reactant of external concentration C0 diffuses into the sphere and undergoes
a reaction. Its concentration diminishes and attains a minimum at the center.
Figure 1.2b considers laminar flow in a cylindrical pipe. Here the state
variable in question is the axial velocity vx, which rises from a value of zero
at the wall to a maximum at the centerline before dropping back to zero at
the other end of the diameter. Here, again, symmetry considerations dictate
that this maximum must be located at the centerline of the conduit.

The second case of a vanishing derivative arises when flow or flux ceases.
Because the proportionality constants in the rate laws cannot themselves
vanish, zero flow must perforce imply that the gradient becomes zero. This
situation arises when flow or diffusional flux is brought to a halt by a physical
barrier. Figure 1.2c and Figure 1.2d depict two such cases. Figure 1.2c shows
a capillary that is filled with a solvent and is suddenly exposed to a solution
containing a dissolved solute of concentration C0. This configuration has
been used in the past to determine diffusivities. As the solute diffuses into
the capillary, a concentration profile develops within it, which changes with
time until the concentration in the capillary equals that of the external
medium. As these profiles grow, they maintain at all times a zero gradient
at the sealed end of the capillary. This must be so since N, the diffusional
flow in Equation 1.4, can only vanish if the gradient dC/dx itself becomes
zero. Figure 1.2d depicts a polymer extruder in which molten polymer enters
one end of a pipe and exits as a thin sheet through a lateral slit. Here the
barrier is the sealed end of the pipe, which prevents an axial outflow of the
polymer melt and forces it instead into the lateral channel. The only way for
flow to cease, Q/A = 0, is for the pressure gradient dp/dx to vanish at this
point. The resulting axial pressure profile is shown in Figure 1.2d.
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Comments:

These examples draw the readers’ attention to the appearance of zero gra-
dients in transport processes. Because these are confined to a specific loca-
tion, they can serve, along with boundary values of the dependent variable
itself, as boundary conditions in the solution of the model equations. Thus the
catalyst pellet shown in Figure 1.2a has two such conditions, one at the
center, where the flux vanishes, and a second at the surface, where the
reactant concentration attains a constant value. The pellet is encountered
again in Chapter 4 (Illustration 4.9) where the underlying model is found to
be a second-order differential equation. Such equations require the evalua-
tion of two integration constants, and must therefore be provided with two
boundary conditions.

FIGURE 1.2
Systems with vanishing gradients: (a) catalyst pellet; (b) viscous flow in a pipe; (c) diffusion
into capillary; (d) polymer extruder.
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Illustration 1.2: Diffusion through a Hollow Cylinder

The problem addressed here is the diffusional transport through a cylindrical
wall of substantial thickness shown in Figure 1.3. Such processes can occur,
for example, in the case of fluids contained in a cylindrical enclosure under
high pressure.

We consider two problems. The first, and more important one, is the
determination of the diffusional flux that results under these conditions. The
second problem is the derivation of the concentration profile and is of mainly
academic interest. Both problems involve the solution of a simple ordinary
differential equation by the technique of separation of variables.

1. Diffusional flow N

The starting point here is Fick’s law of diffusion, which is applied to a
cylindrical surface of radius r and length L (Figure 1.3). We obtain 

FIGURE 1.3
Diffusional flow from (a) a hollow cylinder; (b) a spherical cavity.
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  (1.7a)

where N = constant since we assume steady operation.
Separating variables and formally integrating between the limits of inter-

nal and external concentrations Ci and Co we obtain

  (1.7b)

and after evaluation of the integrals and rearrangement

  (1.7c)

where i and o denote the inner and outer conditions. This is the desired
relation, which expresses diffusion rate N in terms of a driving force Ci – Co

and the geometry of the system.
By multiplying numerator and denominator by (ro – ri), this expression can

be cast into the frequently used alternate form:

  (1.7d)

where Am is the so-called logarithmic mean of the inner and outer areas,
given by

  (1.7e)

and R is a resistance defined by 

  (1.7f)

The introduction of the resistance carries the advantage that one can, in
the case of a composite cylinder made up of different materials, describe the
system by simply adding resistances. This principle of adding resistances in
series is routinely applied in electrical circuits. For a cylinder composed of
three different materials, for example, one obtains
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  (1.7g)

where the resistances can be expressed respectively as

  (1.7h)

2. Concentration profile C = f(r)

We return to Fick’s law, Equation 1.7a and integrate again, but this time only
up to an arbitrary radius r and the concentration C at that point. We obtain

  (1.8a)

or, since N is a constant given by Equation 1.7c,

  (1.8b)

This equation expresses the concentration profile within the cylindrical wall.

Comments:

Of the various expressions presented, Equation 1.7c and its extension Equa-
tion 1.7g are the ones most frequently used in engineering applications. They
allow the desired calculation of the mass flow N, which is the quantity of
greatest practical interest. The concentration profile is not of immediate use,
but reveals the surprising fact that C(r) is independent of diffusivity. It is
these unexpected results that are the most rewarding feature of modeling.
One should never set aside a solution without scrutinizing it first for unusual
features of this type. We shall make frequent use of this maxim in subsequent
illustrations.

Illustration 1.3: Underground Storage of Helium: Diffusion through a 
Spherical Surface

The previous illustration considered the rate of diffusion through a cylindri-
cal wall and the resulting concentration profile within that wall. A similar
approach can be used to calculate these quantities for diffusion through a
spherical wall (Figure 1.3b). This case arises much less frequently, as it requires
the steady production of the diffusing species within the spherical cavity, or
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else assumes the diffusion rate to be sufficiently small so that the internal
concentration remains essentially constant.

The case to be considered here falls in the latter category and involves the
diffusional losses of helium from an underground storage facility. The back-
ground to this problem is as follows:

Helium is present in air at a concentration of about 1 ppm, which is far
too small for the economic recovery of this gas. It also occurs in natural gas
(methane CH4), where its concentration is considerably higher, of the order
of 0.1 to 5%, making economic extraction possible. Because helium is a
nonrenewable resource, regulations were put in place starting in the early
1960s that required all shipped natural gas be treated for helium recovery.
With supply by far outweighing the demand, ways had to be found to store
the excess helium. One suggested solution was to pump the gas into aban-
doned and sealed salt mines where it remained stored at high pressure.

The problem here will be to estimate the losses that occur by diffusion
through the surrounding salt and rock, assuming a solid-phase diffusivity
Ds of helium of 10-8 in.2/s, i.e., more than three orders of magnitude less
than the free-space diffusivity in air. The helium is assumed to be at a
pressure of 10 MPa (~100 atm) and a temperature of 30°C. The cavity is taken
to be spherical and of radius 100 m. Applying Fick’s law, Equation 1.4a, and
converting to pressure we obtain

  (1.9a)

Separating variables and integrating yields

  (1.9b)

and consequently

  (1.9c)

N = 0.05 mol/s (1.9d)

Comments:

We have here an example of some practical importance, which nevertheless
yields to a simple application and integration of Fick’s law. Two features
deserve some mention. The first is the formulation of the upper integration
limit in Equation 1.9b. We use the argument that “far away” from the spher-
ical cavity, i.e., as r Æ •, the concentration and partial pressure of helium
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tends to zero, i.e., we assume the cavity to be embedded in an infinite region.
The second point that needs to be examined is the assumption of a constant
cavity pressure. We compute for this purpose the yearly loss and show that
even over this lengthy period, the change in cavity pressure will be negligibly
small. Thus,

Yearly loss = 0.05 (mol/s) ¥ 60 ¥ 365 = 2.6 ¥ 104 mol/year

i.e., about 100 kg per year. By comparison,

Cavity contents: 

and therefore

% loss/year = 

Even if D were raised to that prevailing in free air (~10–4 m2/s), the losses
would still amount to only 1.5% per year. This justifies the use of our assump-
tion.

We shall have occasion to examine this problem again in Illustration 2.9.

1.2 Transport Driven by a Potential Difference: The Film 
Concept and the Mass Transfer Coefficient

In the gradient-driven procedure we considered previously, the operative
gradient varied in the direction of transport, as indicated in Figure 1.1. In a
number of important cases, however, the gradient either is constant or is
assumed to be of constant value.

Let us first consider a case where no such assumption is made. We turn,
for this purpose, to the familiar Ohm’s law, which relates the flow of electrical
current i (C/S or A) to the applied voltage:

i = DV/R (1.10a)

This is a linear law, involving a linear driving force DV and a proportion-
ality constant, which is the inverse of the electrical resistance R(W) of the
conductor. There is, at first sight, no gradient involved. Closer scrutiny of
the resistance R reveals, however, that it must vary directly with the length
of the conductor DL, and inversely with its cross-sectional area AC, which
we assume to be constant. We can then write
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R = RsDL/AC (1.10b)

where Rs is termed the specific resistance of the conductor in units of Wm.
Ohm’s law can then be expressed as follows:

(1.10c)

This equivalent form of the celebrated law shows that current is in fact
driven by a gradient, which does, however, turn out to be constant.

Items 2 and 3 of Table 1.2 concern what we term convective mass and heat
transfer. Let us illustrate these terms by making use of Figure 1.4a. This
figure  depicts turbulent flow of either a gas or liquid past a liquid or solid
boundary shown crosshatched on the left. That boundary can be the confin-
ing wall of a duct, or the interface separating two phases. Mass transfer is
assumed to occur from a concentration CA2 of the boundary to a lower
concentration CA1 in the bulk of the flowing fluid. This can come about if
the boundary consists of a soluble substance or if a volatile liquid evaporates
into a flowing gas stream.

These two operations, as well as the reverse processes of condensation and
crystallization, are shown in Figure 1.5. In all four cases shown, the concen-
trations and partial pressures in the fluid phase are in equilibrium with the
neighboring condensed phase. This condition is denoted by an asterisk.
Thus, p* is the equilibrium vapor pressure of the liquid, and C* is the equi-
librium solubility of the solid.

Mass transfer takes place initially through a laminar sublayer, or boundary
layer, which is located immediately adjacent to the interface. Transfer
through this region, also known as an “unstirred layer” in biological appli-
cations, is relatively slow and constitutes the preponderant portion of the
resistance to mass transport. This layer is followed by a transition zone where
the flow gradually changes to the turbulent conditions prevailing in the bulk
of the fluid. In the main body of the fluid we see macroscopic packets of
fluid or eddies moving rapidly from one position to another, including the
direction toward and away from the boundary. Mass transfer in both the
transition zone and the fully turbulent region is relatively rapid and contrib-
utes much less to the overall transport resistance than the laminar sublayer.
One notes in addition that with an increase in fluid velocity there is an
attendant increase in the degree of turbulence and the eddies are able to
penetrate more deeply into the transition and boundary layers. The latter
consequently diminish in thickness and the transport rate experiences a
corresponding increase in magnitude. Thus, high flow rates mean a greater
degree of turbulence and hence more rapid mass transfer.

Concentrations in the turbulent regime typically fluctuate around a mean
value shown in Figure 1.4a and Figure 1.4b. These fluctuations cannot be
easily quantified, nor do they lend themselves readily to the formulation of
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a rate law. This can be overcome by postulating the existence of an equivalent
linear concentration profile that extends from the boundary into the bulk
fluid. This postulate is enshrined in the concept known as film theory, and
the dimension of the film in question is termed the effective film thickness,
denoted as zFM in Figure 1.4a.

Let us see how this concept can be quantified into a rate law. We start with
Fick’s law, and applying it to the constant gradient of film theory we obtain

(1.11a)

The ratio of diffusivity to film thickness D/zFM is coalesced into a single
term called the mass transfer coefficient kC and we obtain

FIGURE 1.4
The effective film in the transport of (a) mass and (b) heat.
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  (1.11b)

as shown in Table 1.2.
A similar film theory can be postulated for the case of heat transfer, shown

in Figure 1.4b. The conditions here parallel those shown for mass transfer
with temperature replacing concentration as the driving potential. Starting
with Fourier’s law, Equation 1.2b, we then obtain

  (1.12a)

Coalescing the ratio k/zFH into a single term h then leads to

  (1.12b)

FIGURE 1.5
Four types of single-film mass transfer: (a) evaporation; (b) condensation; (c) dissolution; (d)
crystallization.

P*
Gas FlowEvaporating

Liquid
Cold
Wall

Condensing
Vapor

Pb

C*Dissolving
Solid

Cb

P*

Vapor Flow

Pb

Tb

Ti

Cold
Wall

Crystallizing
Solid

C*

Solution

Cb

Tb

Ti

a. b.

c. d.

Liquid Flow

N A
D

z
C C k CA A A C A/ ( ) ( )= - =

FM
2 1 D

q A k
dT
dz

k
T T

z
/

( )= - = -2 1

FH

q A
k

z
T T h T/ ( )= - =

FH
2 1 D



16 Mass Transfer: Principles and Applications

where h is now termed the heat transfer coefficient.
The effective film thicknesses for the two cases, zFM and zFH, are not in

general equal, but depend in a complex functional form on the physical
properties, the geometry, and the velocity of flow of the system. That func-
tional form will be explored in greater detail in Chapter 5. In addition, the
transport rate depends linearly on the potential difference, a feature that is
often referred to as a linear driving force. All three items 1 to 3 have this
characteristic in common.

A special type of driving force arises in Item 4 of Table 1.2. The process
here is the selective transport of water through a semipermeable membrane
from a dilute solution (high water concentration) to a more concentrated
solution (low water concentration). The driving force is in this case the
difference of the so-called osmotic pressure p, which makes its appearance
in transport through cell membranes as well as in industrial processes termed
reverse osmosis. We have occasion to take a closer look at osmotic-pressure-
driven processes in Chapter 8.

1.3 Units of the Potential and of the Mass Transfer Coefficient

In deriving the mass transfer rate law, Equation 1.11b, we started with Fick’s
law, which uses molar concentration C in units of mol/m3 as the driving
potential. This quantity was retained to describe the driving force in the final
expression (Equation 1.11b). It is a convenient quantity to use in many gas-
liquid operations and carries the advantage of imparting units of m/s to the
mass transfer coefficient. kC can thus be viewed as the velocity with which
the rate process proceeds. It frequently happens, however, that molar con-
centrations are inconvenient to use in the description of certain mass transfer
operations. In distillation, for example, the preferred concentration unit is
the mole fraction since the associated vapor–liquid equilibrium is commonly
expressed in liquid and vapor mole fractions (x, y). In the evaporation of
liquids, the vapor pressure is the potential of choice, and it then becomes
convenient to use a pressure difference as the driving force. Yet another
operation that calls for a change in concentration units is humidification, in
which the preferred concentration is the absolute humidity in units of kg
water/kg dry air. In each of these cases, the change in concentration units
carries with it a change in the units of the mass transfer coefficient. The
pertinent rate laws, driving forces, and mass transfer coefficients, together
with their units, are summarized in Table 1.3. Pressure heads the list of
driving potentials for gases and vapors, followed by mole fraction, moles/
volume, and mass ratio in the order of preference and frequency of use. For
liquid systems, molar concentration is the unit of choice, followed by mole
fraction.
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Also listed in Table 1.3 are conversion factors for the transformation of
mass transfer coefficients from one set of units to another. These are fre-
quently required to convert literature values of k given in a particular set of
units, to one needed in a different application. This type of conversion is
taken up in Illustration 1.4. Of note as well in Table 1.3 is the appearance of
the term pBM, the so-called logarithmic mean, or log-mean driving force,
defined by 

(1.13)

where the subscript B denotes the second component in a binary system; the
first is the component A being transferred. Derivation of this quantity, and
its appearance in the conversion factor, is addressed in Section 1.4.

Illustration 1.4: Conversion of Mass Transfer Coefficients

In a particular application related to air flowing over a water surface, the
following data were reported at T = 317 K:

pA1 =  2,487  Pa
pB1 = 101,300 – 2487 = 98,813 Pa

pB2 = PT = 101,300 Pa 
kCA = 0.0284 m/s

Water evaporates into the dry airstream at a total pressure PT = 101.3 kPa
and is denoted by the subscript A; B refers to the air component. kC is the mass

TABLE 1.3

Rate Laws and Transfer Coefficients for Diffusion through a Stagnant Film

Flux (mol/m2 s) Driving Potential Mass Transfer Coefficient

Gases

NA/A = kGDpA pA (Pa) kG (mol/m2 s Pa)
NA/A = kyDyA yA (mole fraction) ky (mol/m2 s mole fraction)
NA/A = kCDCA CA (mol/m3) kC (m/s)
WA/A = kYDYA (kg/m2/s) YA (kg A/kg B) kY (mol/m2 s DYA)

Liquids

NA/A = kLDCA CA (mol/m3) kL (m/s)
NA/A = kxDxA xA (mole fraction) kx (mol/m2 s mole fraction)

Conversion Factors

Gases  kG = kY/PT = kC/RT = kY/MpBM

Liquids kLC = kx

p
p p

p

p

B B

B

B

BM = -2 1

2

1
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transfer coefficient, here of water. We wish to calculate the corresponding value
for kY in units of kg H2O/m2 s DY. The conversion formula given in Table 1.3 is

(1.14)

where MB is the molar mass of air = 29 ¥ 10–3.
We obtain

and therefore

kY = 0.0312 kg H2O/m2 DY

1.4 Equimolar Counterdiffusion and Diffusion through a 
Stagnant Film: The Log-Mean Concentration Difference

So far our treatment has been confined to mass transfer due to diffusion
only. We have considered diffusion in a stationary or unmixed medium,
which has led to the use of Fick’s Equation 1.4. When a stirred or turbulent
medium was involved, we invoked film theory and the linear driving force
concept to describe transport in such situations. This led to the formulation
of the expression (Equation 1.11b).

Mass transport can, however, also come about as a result of the bulk motion
or flow of a fluid. To take this factor into account, we postulate the total flux
of a component A to be the sum of a diffusive flux term and a bulk flow
term. Thus, for a gaseous mixture

(1.15a)

            Flux of A     Diffusional Flux            Bulk Flow  

Here we have replaced the CA, which appears in Fick’s law, by the equiv-
alent term CyA where C = total molar concentration, assumed to be constant.

For ideal gases we have yA = pA/PT and C = PT/RT, where PT = total
pressure, so that Equation 1.15a becomes

k k
M

RT
pY C

B= BM

kY = ¥
¥

--

0 0284
29 10
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98 813 101 300
98 313
101 300

3

.
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,
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N A CD
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  (1.15b)

This is the form we wish to develop and simplify.
Two special cases of Equation 1.15a are to be noted: equimolar counter-

diffusion and diffusion through a stagnant film.

1.4.1 Equimolar Counterdiffusion

In this case we have

NA = –NB (1.16)

and Equation 1.15b reduces to Fick’s law. This situation arises in the inter-
diffusion of pure fluids of equal molar volume or in binary adiabatic distil-
lation processes of substances with identical molar heats of vaporization.
Straightforward integration of Fick’s law then leads to, for a gaseous system:

(1.17a)

or in short

NA¢/A = kG¢ DpA (1.17b)

where we use the prime symbol to denote equimolar counterdiffusion. Sim-
ilarly, for a liquid system, using mole fraction as the driving potential,

(1.17c)

or in short

NA  ¢/A = kx¢DxA (1.17d)

Because Dp/zM and Dx/zFM are constant, the concentration profiles in both
cases are linear. This is shown for a liquid system in Figure 1.6a. A summary
of the pertinent rate laws, transfer coefficients, and conversion factors that
apply to equimolal counterdiffusion appears in Table 1.4. 
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1.4.2 Diffusion through a Stagnant Film

Here the flux of the species B is zero and we have

NB/A = 0 (1.18a)

so that Equation 1.15b, after solving for NA/A, is reduced to the expression

(1.18b)

FIGURE 1.6
Two modes of transport: (a) equimolar counterdiffusion; (b) diffusion through a stagnant film.
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which can be integrated to yield

(1.18c)

Because of the logarithmic terms, the profiles for both component A and
component B are nonlinear. This is depicted in Figure 1.6b.

We now introduce a clever device to reduce the nonlinear terms in Equa-
tion 1.18c to the product of a linear driving force in the diffusing species A,
pA1 – pA2, and a constant mass transfer coefficient kG. This is done by writing:

  (1.18d)

Using the definition of the log-mean pressure difference pBM given by
Equation 1.13 and setting z2 – z1 = zFM as before, we obtain

TABLE 1.4

Rate Laws and Transfer Coefficients for Equimolar Diffusion

Flux (mol/m2 s) Driving Potential Mass Transfer Coefficient

Gases

NA¢/A = kG¢DpA pA (Pa) kG¢ (mol/m2 s Pa)
NA¢/A = ky¢DyA yA (mole fraction) ky¢ (mol/m2 s mole fraction)
NA¢/A = kCDCA CA (mol/m3) kC (m/s)

Liquids

NA¢/A = kL¢DCA CA (mol/m3) kC¢ (m/s)
NA¢/A = kx¢DxA xA (mole fraction) kx (mol/m2 s mole fraction)

Conversion Factors  

Gases  

Liquids

Conversion from Equimolal to Stagnant Film Coefficients

Gases

      

Liquids
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  (1.18e)

or in short

NA/A = kGDpA (1.18f)

We have thus reduced a complex nonlinear situation to one that fits the
linear driving force and film concepts and agrees with the tabulations of
Table 1.3.

Illustration 1.5: Estimation of Mass Transfer Coefficients and Film 
Thickness. Transport in Blood Vessels

It is of some interest to the practicing engineer to have a sense of the order
of magnitude both of the mass transfer coefficient and of its associated film
thickness. This would appear to be an impossible task, given the wide range
of flow conditions, geometrical configurations, and physical properties
encountered in practice. Surprisingly, we can arrive at some reasonable
estimates of upper and lower bounds in spite of this diversity. This is due
to three factors: First, it is common engineering practice to associate the
upper limit of normal turbulent flow with velocities of the order 1 m/s in
the case of liquids and 10 m/s for gases. This applies to industrial systems
(pipe and duct flow) as well as within an environmental context (wind, river
flow) and holds even in extreme cases. Hurricane-force winds, for example,
may range as high as to 30 m/s but are still within the order of magnitude
cited. Second, the diffusivities for a wide range of substances are, as we shall
see in Chapter 3, surprisingly constant. They cluster, in the case of gases,
around a value of 10–5 m2/s and for liquids around 10–9 m2/s. Third, if we
confine ourselves to flow over a plane as a representative configuration, it
will be found that mass transfer coefficients vary inversely with the 2/3
power of the ratio (m/rD) (see Table 5.5). That ratio, termed the Schmidt
number, Sc, is again surprisingly constant. It is of the order 1 for gases, and
some three orders of magnitude higher for transport of modest-sized solutes
in liquids.

Drawing on the correlation given in Table 5.5:

  

and noting the extremely weak dependence on the Reynolds number, Re,
we obtain the following order-of-magnitude estimates for turbulent flow
mass transfer:
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z RTp
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For gases: kC ~ 10–2 m/s
For liquids: skC ~ 10–5 m/s

For the effective film thickness, zFM = D/kC the corresponding values are

For gases:  zFM ~ 1 mm
For liquids: zFM ~ 0.1 mm

The kC values given here represent the order of magnitude of the outer limits
of what can be accomplished, i.e., the maximum rate of mass transfer obtain-
able or the minimum time required to achieve the transfer of a given mass
to or from a flat surface.

Mass transfer by molecular diffusion resides at the other end of the spec-
trum. It yields the lowest possible mass transfer rate and sets an upper limit
on time requirements. The solvent spill considered in Practice Problem 4.4,
for example, requires several days to complete evaporation by diffusion into
stagnant air. The same data applied to turbulent air flow at the same tem-
perature yield an estimate of several minutes, lower by three orders of mag-
nitude. The factor of 1000 can thus be viewed as separating the two extremes
of diffusive and turbulent mass transfer.

Transport in blood vessels presents another interesting subcase. Here the
species involved in mass transfer, typically proteins, have much lower
diffusivities than ordinary solutes, of the order 10–10 to 10–11 m2/s. Flow is
generally laminar, and of a pulsatile nature. A further departure from the
norm is the complex geometry of the vascular systems, which involves
multiple branchings, and constrictions in flow as well as expansions.
Because of these complexities, it has become customary to measure local
mass transfer coefficients confined to a typical wall area of 1 mm2. A host
of such measurements has by now been reported. The surprising fact that
has emerged from these studies is that irrespective of location or configu-
ration, the vast majority of kC values clusters around a value of 10–5 m/s.
Thus,

kC ~ 10–5 m/s

and for a protein with a diffusivity of 10–10 m2/s,

zFM ~ 10–2 mm

The studies referred to have been immensely helpful in analyzing the
progress of vascular diseases, which are often associated with the migration
of proteins to the vessel wall followed by an interaction with wall cells,
leading, for example, to blood coagulation. Mass transfer is also important
in the performance of vascular grafts and of controlled release devices (see
Practice Problems 1.7 and 1.10).
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1.5 The Two-Film Theory

Our considerations so far have been limited to transport through a single
phase; i.e., in postulating the film theory it was assumed that a single film
resistance was operative. This was the case for a pure liquid evaporating
into a gas stream, or when a solid dissolved into a solvent stream. We now
consider the extension of this process to encompass simultaneous transport
in two adjacent phases. This leads to the formation of two film resistances,
and brings us to the so-called two-film theory, which is taken up below.

Consider two phases, I and II, in turbulent flow and in contact with each
other, as shown in Figure 1.7a. Transport takes place in the first place, from
a high concentration yA through the effective film associated with Phase II
to the interface. Here the Phase II concentration y*Ai is assumed to be in
equilibrium with the Phase I interfacial concentration xAi, so that

y*Ai = mxAi (1.19)

FIGURE 1.7
The two-film concept: (a) mass transfer; (b) heat transfer.
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where m is the local slope of the equilibrium curve and the asterisk serves
to denote equilibrium conditions. Transport then continues from the inter-
face, through the second film to the bulk of Phase I of concentration xA. We
can write for the entire process:

NA/A = ky(yA – yAi) = kx(xAi – xA) (1.20)

These expressions, while valid under the constraints of two-film theory,
are nevertheless ill-suited for practical use, as neither of the interfacial con-
centrations xAi or yAi is generally known. We avoid this difficulty by postu-
lating an equivalent rate law, given by

NA/A = Koy(yA – yA*) (1.21a)

NA/A = Kox(xA* – xA) (1.21b)

where Koy and Kox are termed overall mass transfer coefficients and the
asterisked quantities are the concentrations in equilibrium with the bulk
concentration of the neighboring phase. These are generally known and are
displayed in Figure 1.8. It is shown in the following section that the equations
are valid provided the overall coefficients are related to the film coefficients
as follows:

FIGURE 1.8
The driving forces.
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  (1.22a)

  (1.22b)

The reciprocal terms appearing in these expressions may be regarded as
resistances to the mass transfer process. Thus, in Equation 1.22a, 1/ky is the
resistance due to the gas film, m/kx represents the liquid film resistance, and
the sum of the two yields the overall resistance 1/Koy. This is often referred
to as the law of additivity of resistances, which was previously encountered
in Equation 1.7g. Similar arguments apply to Equation 1.22b. Note that when
m is small compared to kx, we obtain the approximate relation

  (1.22c)

This implies that the gas is highly soluble and that most of the resistance
is likely to reside in the gas phase. We speak of the process as being gas-film
controlled. Conversely, if m is large, i.e., the gas is sparsely soluble, we obtain

  (1.22d)

and we refer to the process as being liquid-film controlled. Depending on
which resistance predominates, we choose either Equation 1.22a or Equation
1.22b to express the transfer process.

Overall coefficients are widely used to describe transport between two
flowing phases in contact with each other. They are usually determined
experimentally and reported as lumped averages over the span of equilibrium
constants m encountered in the operation. Alternatively and much less fre-
quently, empirical correlations of the film coefficients, if available, can be
used to compute K from Equation 1.25. Such correlations are discussed in
Chapter 5.

The two-film concept can also be applied to heat transfer operations, as
shown in Figure 1.7b. The process is similar to that of mass transport, but
differs from it in two important aspects. First, the two fluids (hot and cold)
are usually, but not always, separated by a solid partition. This is in contrast
to mass transfer operations where direct contact of the phases is the norm.
Second, no phase-equilibrium relation needs to be invoked at the interface.
Instead, convergence of the two temperature profiles on either side of an
interface leads to one and the same temperature at this point. No jump-
discontinuities in temperature occur at any location along an interface. We
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can consequently express the rate of heat transfer in the following alternative
ways:

  (1.23a)

Transfer from Transfer  Transfer
hot fluid through wall to cold fluid  

where the subscripts h and c represent hot and cold fluids, respectively, k is
the thermal conductivity, and L is the thickness of the partition. Note that
when the partition is curved, as it is for pipes, variations in the heat transfer
area have to be taken into account.

It is left to the exercises to show that the individual resistances can be
added to obtain an overall heat transfer coefficient U, given by

  (1.23b)

which is associated with an overall heat transfer driving force, i.e., we have

q/A = U(Th – Tc) (1.23c)

The corresponding mass transfer rate expression is given by Equation 1.25.
For the convenience of the reader we have summarized the various param-
eters that appear in the foregoing equations in Table 1.5.

1.6 Overall Driving Forces and Mass Transfer Coefficients

We embark here on the proof of the validity of Equation 1.21 and Equation
1.22, i.e., that of the rate law based on an overall driving force, and the law
of additivity of resistances. The procedure starts with an examination of the
diagram of Figure 1.8, which represents a plot of the gas-phase concentration
of the diffusing species, yA, against its liquid-phase counterpart, xA. It con-
tains an equilibrium curve, which is generally nonlinear, but is assumed to
contain a short segment BE, which is considered linear. Also indicated on
the diagram are the various operative film and overall driving forces. Thus,
for the gas phase, AC represents the film driving force yA – yAi, which we
have previously shown in Figure 1.7a, and the distance AE equals the overall
gas phase driving force yA – yA*.

We start by noting that the slope of the line AD is given by the ratio AC/
CD and hence, by virtue of Equation 1.20,
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  (1.24a)

Similarly, we have for the local slope of the equilibrium curve

  (1.24b)

Now, the overall driving force y – y* is given by the sum of the two
segments AC and CE so that from Equation 1.24a and Equation 1.24b

  (1.24c)

Further, since we had postulated an overall rate law of the form NA/A =
Koy(yA – yA*), it follows from Equation 1.20 and Equation 1.24c that

  (1.25a)

TABLE 1.5

Mass and Heat Transfer Parameters for Two-Phase Transport

Mass Transfera Heat Transfer

Driving force Dy, Dx DT
Single film coefficient kx, ky hh, hC

Overall coefficient Kox, Koy U
Single film resistance

    

Overall resistance
    

Single film rate of 
transfer

NA/A = ky(yA – y*A) = kx(xAi – xA) q/A = hh(Th – Tw2) = hC(Tw1 – TC)

Overall rate of 
transfer

NA/A = Koy(yA – yA*) = Kox(xA* – xA) q/A = U(Th – TC)

Equilibrium relation y* = mx —

a Items listed are based on mole fraction concentration units. For conversion to other units,
see Table 1.3.
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Consequently,

  (1.25b)

and therefore

  (1.25c)

This proves the validity of Equation 1.21a and Equation 1.21b. Similar
arguments can be used to verify the validity of the liquid phase counterparts.

Comments:

It will be recalled that this entire development arose from the need to replace
the interfacial concentrations in Equation 1.20, which are generally
unknown, by some other known or measurable quantity. Inspection of the
diagram in Figure 1.8 shows that there is only one such quantity for the gas
phase, mainly yA*, the mole fraction in equilibrium with the bulk liquid
concentration xA. Hence, it was natural to replace the film driving force by
an overall driving force yA – yA*.

This was accomplished by making clever use of the diagram and Equation
1.20 to relate the segments AC and CE to kx, ky , and m, and to establish that
the sum of the two equals the overall driving force yA – yA*. Introduction of
the rate law NA/A = Koy(y – y*) then culminated in the derivation of the law
of additivity of resistances, Equation 1.22a and Equation 1.22b. Thus, it was
possible to resolve, by a series of simple moves, a seemingly intractable
problem.

We pause at this point to take stock of the principles established so far and
to test our grasp of those principles with the following example.

Illustration 1.6: Qualitative Analysis of Concentration Profiles 
and Mass Transfer

The reader is here confronted with a series of hypothetical concentration
profiles near a gas–liquid interface, which are sketched in Figure 1.9. The
task to be addressed is twofold: We wish to establish whether in each of
these instances mass transfer does in fact take place and, if so, in which
direction it will proceed. The main principle we have to apply is that mass
transfer can only occur along a negative concentration gradient. With this fact
firmly in mind, we can proceed as follows:

Case 1: Here the concentrations in both the gas and liquid phase diminish
in the positive direction, causing solute to transfer from the gas to the liquid
phase. The fact that the interfacial liquid mole fraction is higher than the gas
concentration is no impediment. It is merely an indication of high gas solu-
bility, a perfectly normal and acceptable phenomenon.
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Case 2: The gas-phase concentration here increases in the positive direction
so that no transfer of solute from gas to liquid can take place. Neither can
there be any transfer in the opposite sense, because the liquid concentration
rises in the negative direction. Such profiles arise only in cases when solute
is generated by chemical reaction at the gas–liquid interface. The product
solute then diffuses from the interface into the bulk fluids. 

Case 3: This case involves decreasing concentrations in both phases, but
the decrease is in the negative direction. Solute will therefore desorb from
the liquid into the gas phase. Gas solubility is low because the interfacial
concentrations are nearly identical.

Case 4: The flat liquid-phase profile indicates that the liquid phase is well
stirred and shows no mass transfer resistance. Because the gas phase con-
centration diminishes in the negative direction, the transfer will be from
liquid to gas.

FIGURE 1.9
Hypothetical concentration profiles near a gas–liquid interface.
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Case 5: What was stated for Case 4 applies here as well, but the transfer
this time is from the gas. This follows from the fact that gas-phase concen-
tration decreases in the positive direction.

The question is now asked whether the results would still be the same if
the gas-phase profiles had in each case been located above the liquid-phase
counterparts. The answer is yes; transfer would still take place as indicated
before. The only change would be in the equilibrium solubility of the gas,
which would now be lower than before.

Comments:

The answers being sought here require a firm understanding of the principles
involved. There were several pitfalls to be avoided on the way. We may be
led to think, for example, that transfer from gas to liquid is not possible
because of the higher level of xB. That level, as we have seen, merely indicates
a high equilibrium solubility of the gas but does not preclude movement
from gas to liquid. A second pitfall lies in the tendency to focus on transfer
in the positive direction only. Evidently, movement in the opposite direction
is equally possible and should be kept in mind as an alternative.

We now make an abrupt departure from our theoretical deliberations to
introduce the reader to the practical task of making rough estimates from a
minimum of information. The need to do this arises quite frequently in a
real-world context when time constraints do not allow elaborate calculations
or a lengthy search for appropriate data to be made. This is often referred
to as a “back-of-the-envelope calculation” and the associated problem as a
“Fermi problem.” In contrast to Illustration 1.5, the estimates here are based
on personal observations and are therefore more subjective.

Illustration 1.7: Drying with an Air Blower: A Fermi Problem

Readers are familiar with the use of warm-air blowers for the purpose of
drying their hands. What we wish to do here is to estimate the associated
mass transfer coefficient kC in units of m/s. To do this, the following approx-
imate estimates will be needed: 1. the amount of moisture to be evaporated,
2. the drying time, and 3. temperature and corresponding vapor pressure of
the adhering moisture.

1. Amount of Moisture. Let us assume the thickness L of the moisture to be
0.1 mm. This leads to a rate of evaporation of

    (1.26a)

where A = surface area of both hands, r = density of water, M = molar mass
of water, and t = time. Note that the actual amount of water need not be
calculated, only the average thickness of the water film.
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2. Drying Time. A survey of various individuals who had made use of the
device led to an agreed average value of t = 100 s. We then obtain from
Equation 1.26a

  (1.26b)

3. Temperature and Vapor Pressure. The moisture temperature may vary
anywhere from 10 to 40°C, depending on whether hot or cold water was
used in washing the hands, and the effect of heat transfer from the hot air
as well as evaporative cooling. Let us assume that the temperature stabilizes
at 25°C and make use of a rule that states that in the range 5 to 40°C, the
value of the vapor pressure of water in millimeters of mercury equals that
of the corresponding temperature in degrees centigrade. Thus, at 25°C, the
vapor pressure, which we denote by p*, is approximately 25 mmHg. If we
assume water content in the hot air negligible, we obtain

  (1.26c)

and hence

  (1.26d)

This is in line with the order-of-magnitude estimates given in Illustration 1.5.

Comments:

How valid is the result? To answer this question, let us examine in turn the
effect of a change in each of the variables.

1. Raising the temperature of the moisture to 40°C or lowering it to
10°C will merely change the result by a factor of two; i.e., the order
of magnitude of the answer remains the same.

2. Water content of the air has a relatively minor effect. It would have
to rise to a value of 1/2 p*, i.e., to a relative humidity of 50% for the
result to increase by a factor of two. More about the concept of
humidity appears in Chapter 9, and it is seen there that for a given
water content, the relative humidity drops rapidly with an increase
in temperature. It is therefore reasonable to assume that at the tem-
perature of the drying air, typically of the order of 50°C, this relative
humidity level will be quite low.

3. The last variable to be examined is the average thickness L of the
moisture film, which we set at 0.1 mm. To see if this is reasonable,
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let us calculate the corresponding mass of water held by each hand.
Assuming a hand length of 15 cm and width of 10 cm, both sides
will hold a water mass of 2 ¥ 15 ¥ 10 ¥ 0.01 ¥ 1 g/cm3 = 3 g H2O or
3 ml per hand. This is clearly a reasonable amount.

In summary, if all three values erred by a factor of two in the same direction,
the result would change by a factor of 23 = 8, not quite an order of magnitude.
This is highly unlikely, and it is more reasonable to assume that the answer
is correct to within a factor of two to three. We feel content with this.

The type of problem addressed here is often referred to as a Fermi problem,
after the physicist and Nobel Laureate Enrico Fermi. Fermi used to regale
his student audiences by showing them how to estimate the number of
pianotuners in the city of Chicago. By using the same techniques that are
applied above, the estimated answer usually came within a factor of two of
the number of piano tuners listed in the local telephone book. Fermi was
also responsible for estimating the yield of the first atomic bomb immediately
after the explosion and long before the pertinent instrument recordings had
been analyzed. He did this by dropping small pieces of paper into the path
of the oncoming shock wave and measuring the distance over which they
were entrained. This allowed him to calculate the velocity of the shock, from
which he was able to deduce the energy produced by the explosion. His
estimate came remarkably close to the actual value of 10,000 tons of TNT.

1.7 Conclusion

We note in closing that this chapter has presented the reader with a first look
at the basic rate laws that govern mass transport. Chapters 3 and 4 address
these notions in greater detail and use is made of the relations presented
here in numerous subsequent situations.

Practice Problems

1.1. Gradient-Driven Processes

a. Do the flux relations listed in Table 1.1 apply to time-varying
processes?

b. Under what conditions is the concentration gradient in Fick’s law
a constant, and when does it become a variable?

c. Under what conditions does the diffusivity become a variable?
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d. The gradients that appear in Fick’s law and Fourier’s law, dC/
dx and dT/dx, are normally negative, because the potentials of C
and T diminish in the direction of increasing values of x. Do these
gradients ever become positive?

e. Under steady flow conditions in a cylindrical pipe, flow rate Q
and velocity vx in Poiseuille’s law are constants, and hence so is
the gradient dp/dx, which becomes Dp/Dx. This is the form com-
monly encountered in pipeline calculations. Can you envisage
conditions that would lead to a variable gradient?

1.2. More about Driving Forces and Transport Coefficients

a. Would you expect the effective film thickness to increase or di-
minish with an increase in velocity of the flowing fluid?

b. Liquid-phase diffusivities are some four orders of magnitude
smaller than the corresponding gas-phase diffusivities. Would
you therefore expect all gas–liquid operations to be liquid-film
controlled?

c. Gases with high solubility have a low slope m of the equilibrium
curve pA* = f(CA). Does this imply that the liquid phase driving
force is small? (Hint: Consult Figure 1.8.)

d. Consider evaporation from a falling water droplet. Would you
expect the local mass transfer coefficient to vary with angular
position j? If so, where would it be highest, and where would
it be the lowest?

1.3. Diffusion through a Stagnant Film

a. In Figure 1.6b, the stagnant component B exhibits a considerable
concentration gradient. Why, then, is there no Fickian diffusion
along it?

b. Show that the bulk-flow component xANA/A of the diffusing
species is given by

  

(Hint: Use the answer to Part a.)
c. Show that for dilute gas mixtures, i.e., low concentrations of the

diffusing species A, the log-mean pressure difference pBM tends
to the total pressure PT.

x N A D
dC
dzA A AB

B/ =
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1.4. Conversion Factors for Mass Transfer Coefficients
Prove the relation:

  

given in Table 1.4 and show that for dilute gases, .
1.5. Diffusional Concentration Profiles in a Spherical Geometry 

Derive the concentration profile C = f(r) in a spherical shell, which
arises when a solute with uniform internal concentration Ci diffuses
through the shell to an external medium held at a fixed concentration
Co.

Answer:  

1.6. Ohm’s Law Again 
State under what conditions the Ohmian resistance, usually taken
to be a constant, might become a variable for a conductor of fixed
length.

1.7. Effective Film Thickness Near a Controlled-Release Drug Delivery Device
In the conventional method of drug intake, the drug is administered
either orally or by injection, with the expectation that the blood
circulation will convey it to the site where it is required. This pro-
cedure is not the most efficient method of delivery because the drug
is diluted by the blood of the entire body. This carries with it the
risk of undesirable side effects if the drug concentration at the deliv-
ery site is to be high enough for optimal effectiveness. One method
of overcoming these drawbacks is by implantation near the desired
site of a wafer loaded with the medication. The drug is released at
a controlled rate into the bloodstream and conveyed by it to the
affected organ. Consider the following case: A particular implant has
been designed to release the drug at a constant rate of 0.5 mg/cm2

s. The drug has a solubility in blood of 10 g/l and a diffusivity of
10–6 cm2/s. The effective therapeutic concentration is one tenth of
the solubility. What is the effective film thickness in the blood?

Answer: 0.18 mm

1.8. Mass Transfer through a Membrane
In the most general case of mass transfer through a permeable mem-
brane, transport proceeds from an internal bulk concentration Cbi,
through an internal film resistance, to an internal membrane con-
centration Cmi, then passes through the membrane of thickness L to
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an external membrane concentration Cmo and from there through an
external film resistance to its final destination, Cbo (Figure 1.10). Note
that concentrations are continuous; i.e., no interfacial equilibrium
needs to be invoked. Using the principle of additivity of resistances,
derive the following relation:

  (1.27)

where KO = overall mass transfer coefficient and ki and ko are the
internal and external film coefficients.

1.9. Mass Transfer between Ocean Waters and the Atmosphere
The following have been determined for the transport of carbon
monoxide (CO) between ocean waters and air:

Overall Mass Transfer Coefficient: KOL = 20 cm/h
Equilibrium Constant H: = 62,000 atm/mol fraction
Global Ocean Surface Area: A = 3.6 ¥ 1018 cm2

Mean Concentration of CO in Air: 0.13 ppm by volume
Mean Concentration of CO in Water: 6 ¥ 10–8 cc STP/cc H2O

a. In what direction is the transfer of carbon monoxide?
b. What is the transfer rate in g/year? (Hint: Transform the carbon

monoxide concentrations to units of mol/cm3, and derive the
equilibrium concentration C*.)

Answer: 4.5 ¥ 1013 g/year

FIGURE 1.10
Mass transport through a membrane (Practice Problem 1.8).
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1.10. The Blood Coagulation Trigger
Blood coagulation, which takes place at the site of an injury or in
response to exposure to a foreign surface, is triggered by a series of
enzymatic reactions, which culminate in the production of the
enzyme thrombin. Thrombin is responsible for the formation of
fibrin, which together with the platelets present in blood is a key
ingredient of a blood clot. Most of these events take place at the
contact site. Assume that in response to an event requiring blood
coagulation, thrombin is produced in accordance with an overall
first-order rate krC. Its concentration in the flowing blood can be
taken as constant. Show that the likelihood of coagulation increases
dramatically as kr approaches a value of 10–5 m/s. (Hint: Consult
Illustration 1.5.) Note: To prevent coagulation, grafts are suitably
modified chemically or coated to render them “inert.”
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2
Modeling Mass Transport: The Mass Balances

Problems involving mass transport, and the solution and analysis of such
problems, almost always require the formulation of a mathematical model
of the process. The term model, as used here, refers to the equation, or set
of equations, that describe the physical system or process under consider-
ation. Such models were already encountered, at a modest level, in the
solution of Illustration 1.2, Illustration 1.3, and Illustration 1.5. In all three
of these examples, a single expression was applied to model the process,
which consisted of the fundamental law of diffusion represented by Fick’s
law. No other basic equations were required, and we were able to proceed
to a solution of the problem without invoking any additional principles.

This simple procedure, requiring only the application of a single and
established expression, is the exception rather than the rule in problems
involving mass transport. In the vast majority of cases we have to draw on
additional tools to complete the mathematical formulation of the process.
The tools required comprise various forms of the law of conservation of
mass, supplemented by what we term auxiliary relations. These latter relations
are largely empirical in nature and include the equations of transport seen
in the previous chapter, as well as expressions describing chemical reaction
rates and phase equilibria.

Not infrequently, we have to make use of more than one conservation law.
Thus, if mass transport is accompanied by heat effects, we may have to
invoke both the law of conservation of mass and the law of conservation of
energy. We will see some examples of this dual case in Chapter 9. The law
of conservation of momentum, on the other hand, is much more sparingly
used in mass transport problems and can, for the purposes of this book, be
set aside.
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2.1 The Compartment and the One-Dimensional Pipe

The question that has to be addressed now is how to cast these laws and
auxiliary relations into mathematical expressions, i.e., into mathematical
models. We consider, for this purpose, the two physical entities shown in
Figure 2.1, which are widely used to model transport of mass and energy,
and to a lesser degree that of momentum. Figure 2.1a represents a well-
stirred tank, also often referred to as a compartment. In the most general
case, mass or energy flow by bulk movement into and out of the tank is
generated or consumed by chemical reactions, or is exchanged with the
surroundings. Within the tank or compartments, concentrations, tempera-
ture, and the physical properties in general are uniform; i.e., they vary at
most with time, and not at all with distance. To apply the law of conservation
of mass to the system, we take an inventory of the mass of a particular
species, or make what is termed a mass or material balance. To do this, we
argue that, for mass to be conserved, the difference between input and output
must equal the change undergone by the tank contents. We include under
input the mass generated by a chemical reaction within the tank, or that
received from the surroundings, and under output the mass consumed by

FIGURE 2.1
Two basic physical models: (a) the stirred tank or compartment; (b) the 1-D pipe.
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reaction or that transferred to the surroundings. This leads to the general
scheme:

Rate of mass in – Rate of mass out =   (2.1)

   

A similar procedure can be applied to the device we call a one-dimensional
(1-D) pipe, shown in Figure 2.1b. In this configuration, the properties of the
system are time invariant, but vary with distance in the direction of flow.
The system is said to be at steady state and distributed in one spatial coor-
dinate. This is the exact reverse of the conditions that prevailed in a com-
partment. The physical phenomena that take place in the two cases, however,
are similar. Mass is again transported by bulk flow, enters and leaves the
device by exchange with the surroundings, and is generated or consumed
by chemical reaction. The only difference here is that mass can also enter
and leave by diffusion, which was not the case in the compartmental model.

To obtain an expression for the steady-state distribution of the system
variables, the mass balance must now be taken over an incremental element
extending from z to z + Dz. This is necessary to bring the distance variable
into the model. The increment Dz need not worry us here because we will
ultimately allow it to go to zero, thereby transforming the original difference
equation into the more familiar form of a differential equation. This leads to
the following representation of the mass balance:

Rate of mass in at z – Rate of mass out at z + Dz = 0 (2.2)

and over Dz and over Dz:

  

Expression 2.1 and Expression 2.2 are our principal starting tools for mod-
eling mass transport. We make extensive use of them in the sections and
chapters that follow. To convey to the reader a flavor of how these tools are
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applied in practice, we consider in the following two cases drawn from the
field of environmental engineering. The first involves a compartmental
model in which inflow and outflow of a substance take place, as well as its
transfer to the surroundings (Figure 2.2a). The second illustration considers
a 1-D distributed system, in which inflow and outflow are accompanied by
the uptake of substance from its surroundings (Figure 2.2b). Both of these
cases are frequently encountered as components of more elaborate environ-
mental models.

Illustration 2.1: Evaporation of a Solute to the Atmosphere

Consider a body of water such as a lake, which receives an inflow of Q m3/
s of water and discharges it at the same rate (Figure 2.2a). The volume of
water in the lake is consequently constant. Dissolved in the intake is a
pollutant, such as a pesticide, at a concentration level of Cf (kg/m3). The lake
is initially devoid of any contaminant.

During its passage through the basin, which is assumed to be uniform in
concentration, the pollutant is partially transferred to the atmosphere by
evaporation and leaves at the concentration C (kg/m3), which prevails in

FIGURE 2.2
Two environmental models: (a) evaporation from a basin; (b) reaeration of a river.
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the basin. The task here is to determine the time course of the pollutant
concentration.

Drawing on the scheme represented by Equation 2.1 and assuming the
basin contact to be well mixed, we write

Rate of pollutant in – Rate of pollutant out =  

QCf  –  [QC + N]       =   (2.3a)

If one assumes mass transfer to be controlled by the water phase, we can
write

N = KOLA(C – C*) (2.3b)

where A = surface area (m2), KOL = overall mass transfer coefficient (m/s),
and C* is the pollutant concentration in the water, which is assumed to be
in equilibrium with the concentration in the atmosphere (kg/m3). Equation
2.3a now becomes

    (2.3c)

which yields after separating variables and formally integrating the result:

  (2.3d)

and consequently

  (2.3e)

This expression can be written in the equivalent exponential form

  (2.3f)

which gives us the desired final result, the time dependence of the pollutant
concentration in the water basin.
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Comments:

Before setting aside the solution of a model, it is always useful to verify its
validity and to examine it for unusual features. This is done by first setting
time t = 0. This yields C = 0 as required. Next we allow t to go to infinity.
This reduces the exponential term to zero and we obtain

  (2.3g)

Equation 2.3g represents the ultimate steady-state value of the pollutant
concentration Css, which is attained after a long period of time. Note that
this result is also obtained by setting the time derivative in Equation 2.3c
equal to zero. The entire solution curve is shown in Figure 2.3a and demon-
strates the asymptotic approach to steady-state conditions as time goes to
infinity.

A third way of verifying the validity of the solution is to eliminate the
evaporative term N in Equation 2.3a or setting KOL = 0. Equation 2.3f and
Equation 2.3g then become

FIGURE 2.3
Time course of a pollutant concentration in a water basin: (a) with evaporative loss; (b) without
evaporative loss.
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  (2.4a)

and for the steady state, t Æ •,

Css = Cf (2.4b)

These last expressions represent the response of pollutant concentration
in the water basin to a jump increase in the inflow from C = 0 to C = Cf.
Here, again, there is an initial rapid increase in pollutant levels, which
diminishes with time and ultimately approaches the asymptotic steady-state
value of C = Cf. This is shown in Figure 2.3b. The difference in the two
responses lies principally in the time of approach to steady state. This can
be shown by computing the time required to attain 95% of the respective
steady-state values. For Figure 2.3a with evaporative loss we obtain by
division of Equation 2.3f and Equation 2.3g

  (2.5a)

and consequently:

  (2.5b)

For Figure 2.3b (no evaporative loss) we obtain by setting KOL = 0:

t0.95 = 3.0V/Q (2.5c)

The result shows that the approach to steady state is faster in Figure 2.3a
with evaporation loss than when there is none. This was not immediately
anticipated on intuitive grounds and demonstrates the power of models to
reveal the unexpected, or at least resolve uncertainties.

Equation 2.5b and Equation 2.5c reveal another interesting feature of sys-
tem behavior. To show this, we recast the equations in the form:
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Figure 2.3b

  (2.5e)

Because Qt0.95 equals the total volume that has passed through, it is appar-
ent that the ratio Qt0.95/V represents the number of volume changes, or
turnover, undergone by the basin in the course of attaining 95% of the steady-
state pollutant level. For Figure 2.3b, three volume changes are required
whereas for Figure 2.3a the turnover number is less than 3. Depending on
the size of the basin, this may take from days to weeks or even years.

A final question to be considered is the following: How realistic is the
model we have just presented in an environmental or “real-world” context
and what are its limitations, if any? We start by noting that the model
assumes uniform distribution of the pollutant within the basin. No account
is taken of the existence of dead-water zones where the rise in pollutant level
will be slow, or of portions of the flow that may proceed rapidly and with
little loss to the atmosphere from inlet to outlet, in effect short-circuiting the
mixing process. The best we can expect from the model, therefore, is that it
will give us the course in time of the average concentration in the basin,
ignoring local highs and lows. This is nevertheless useful information to
have, as it provides us with a semiquantitative time frame for the contami-
nation process.

A second limitation resides in the fact that we have confined pollutant
losses to those that occur by evaporation to the atmosphere. This ignores
the role played by bottom sediments as well as solids suspended in the
water of the basin in removing solute by adsorption, and of possible bio-
degradation of the solute by bacterial action. These are important mech-
anisms that add to the loss incurred by evaporation and have to be taken
into account in comprehensive models of pollutant fate. By ignoring these
processes, we have in effect set an upper limit to the pollutant concentra-
tion in the water. In other words, things will not be as bad as our model
predicts, at least as far as the aqueous phase is concerned, because a good
deal of the pollutant may disappear as a result of adsorption and biodeg-
radation.

We turn in the next illustration to an examination of the reverse process,
that of uptake of a substance of a body of water. The system considered
differs from the basin examined previously in two important ways: First, the
substance in question is a benign one, namely, oxygen, which is taken up by
the water from the atmosphere. This process is termed reaeration, and is a
highly desirable one as it helps maintain aquatic life and aids in the biodeg-
radation of objectionable substances. Second, the body of water is assumed
to be in steady flow, such as a river. The system is no longer considered to
be well mixed except in the vertical direction and we can therefore expect a
steady increase in oxygen concentration in the direction of flow. This calls
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for the use of what we termed a 1-D pipe model, i.e., one in which the mass
balance is performed over an increment Dz in the direction of flow (see Figure
2.1b). There are no variations with time, and distance z now becomes the
independent variable. The increment over which the mass balance is to be
performed is shown in Figure 2.2b, and the expression we use is Equation
2.2. Let us see how this works out in practice.

Illustration 2.2: Reaeration of a River

Consider a river that has, at a point we refer to as z = 0, an oxygen content
Co, which is below the saturation solubility of oxygen. This means that
oxygen concentration will steadily increase in the direction of flow due to
uptake from the atmosphere and will ultimately, as z Æ •, attain the equi-
librium solubility of oxygen, C*. Application of Equation 2.2 yields, in the
first instance

  –  = 0

(QCz + Navg) –  (QCz+Dz) = 0 (2.6a)

If we assume the liquid-phase resistance to be controlling, Navg will be of
the form

Navg = KOLA(C* – C)avg (2.6b)

where C* is the aqueous oxygen concentration that would be in equilibrium
with the atmosphere. Note that we have subscripted the driving force (C* –
C) with the term “avg” (average) to denote that C varies over the increment
Dz, and that one must consequently apply an average value of C* – C over
that distance. We need not concern ourselves with the exact magnitude of
this term since it will ultimately, when we go to the limit Dz Æ 0, shrink to
a point quantity (C* – C), which is everywhere well defined.

A second question concerns the definition of the interfacial area A. It is
relatively rare to find that this quantity coincides with the area of a flat
surface. More commonly, the river has surface ripples and waves of an
unknown interfacial area. The value becomes particularly uncertain in the
case of rapids in which air is entrained into the water phase in the form of
bubbles or foam, again, of an unknown interfacial area. It has become com-
mon practice in these cases to lump this unknown factor into the mass
transfer coefficient in the form of an average specific area “a” with units of
m2 interfacial area/m3 river volume. We write

N = KOLa(C* – C)avg (incremental river volume) (2.6c)
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or

N = KOLa(C* – C)avgACDz (2.6d)

where AC is the cross-sectional area of flow of the river, and KOLa is the so-
called volumetric mass transfer coefficient with units of reciprocal time (s–1).
The mass balance (Equation 2.6a) then becomes

QCz – QCz+Dz – KOLa(C* – C)avgACDz = 0 (2.6e)

Dividing by ACDz, and letting Dz go to zero, the difference quotient DC/
Dz is converted into a derivative and we obtain

  (2.6f)

Equivalently, since Q/AC equals the river flow velocity v, we can write

  (2.6g)

Integrating by separation of variables yields

  (2.6h)

and hence

  (2.6i)

Solving for C leads to the final exponential oxygen distribution

  (2.6j)

Comments:

Let us start by verifying the validity of this expression. For z Æ 0, the
equation reduces to C = Co, in agreement with the inlet condition we had
specified. For z Æ •, the exponential term vanishes and we obtain C = C*;
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i.e., the river is fully saturated with oxygen and is in equilibrium with the
atmospheric air. This is again as it should be.

Let us next consider the case where the river is initially devoid of all
oxygen, i.e., Co = 0. Equation 2.6j then reduces to the equation

  (2.6k)

This expression is identical in form to Equation 2.4a and one can therefore
expect the oxygen distribution to be of the form shown in Figure 2.3b, with
distance z replacing time t, and the equilibrium solubility C* taking the place
of the inlet concentration to the basin, Cf.

A number of underlying assumptions need to be noted. First, it was
assumed that the river cross section, and hence its flow velocity, was con-
stant. In general, there will be some variation in these factors, which can,
however, be easily incorporated into the model provided their functional
dependence on distance is known or can be estimated. One merely has to
recast Equation 2.6h into the form

  (2.6l)

Second, we neglected any consumption of oxygen in the river, i.e., the use
of oxygen by aquatic life and its consumption in the biodegradation of
dissolved substances. These two processes will act to delay the reaeration
process so that the result (Equation 2.6j) is to be regarded as a lower threshold
value. The consumption of oxygen by the above processes can be incorpo-
rated without undue difficulty into the reaeration model presented above.

2.2 The Classification of Mass Balances

The reader will have noted from the foregoing illustrations that there exist
a number of different types of mass balances, which are dictated by the type
of process under consideration. Thus, in Illustration 2.1, the mass balance
was taken over a finite entity, the water basin, and the balance space in
Illustration 2.2 was an incremental quantity Dz, which ultimately shrunk to
a point in space. A further distinction is the appearance of time in Illustration
2.1 and an absence of spatial coordinates. The reverse was the case in Illus-
tration 2.2. Clearly, both time and spatial geometry determine the type of
mass balance that has to be made.
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2.2.1 The Role of Balance Space

The space over which a mass balance is taken generally falls into two cate-
gories.

First, the space is finite in size. This occurs when the balance is taken over
a finite entity such as a tank or compartment, a finite length of pipe, a column,
or a sphere. We speak of the balance as being an “integral” or a “macro-
scopic” balance. Balances involving compartments are invariably of this type
and lead to either algebraic equations (AE) or ordinary differential equations
(ODE).

Second, the balance is taken over an incremental space element, Dx, Dr, or
DV. The mass balance equation is then divided by these quantities and the
increments allowed to go to zero. This reduces the difference quotients to
derivatives and the mass balance now applies to an infinitesimal point in
space. We speak in this case of a “difference” or “differential” balance, or
alternatively of a “microscopic” or “shell” balance. Such balances arise when-
ever a variable such as concentration undergoes changes in space. They occur
in all systems that fall in the category of the device we termed a 1-D pipe
(Figure 2.1b). When the system does not vary with time, i.e., is at steady
state, we obtain an ODE. When variations with time do occur, the result is
a partial differential equation (PDE) because we are now dealing with two
independent variables. Finally, if we discard the simple 1-D pipe for a mul-
tidimensional model, the result is again a PDE.

2.2.2 The Role of Time

When a process is time dependent, we speak of “unsteady,” “unsteady-
state,” or “dynamic” systems and balances. If, on the other hand, there are
no variations with time, the process is said to be at steady state. There are
several categories of unsteady balances depending on the balance space and
time framework we use. They are summarized below.

2.2.2.1 Unsteady Integral Balance 

Here the balance is taken over a well-stirred tank or compartment such as
the water basin we considered in Illustration 2.1. To describe the process,
we use the scheme Rate in – Rate out = d/dt contents, which was given by
Equation 2.1. It follows from this expression that all unsteady integral bal-
ances lead to first-order ODEs. When the time derivative in Equation 2.1 is
zero, the system reverts to a steady state and the result is an algebraic
equation (AE).

2.2.2.2 Cumulative (Integral) Balance

This is a special type of balance involving time as a variable, which is rarely,
if ever, singled out for discussion in textbooks. It consists of considering a
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finite time interval (0, t) and making an inventory using the mass of a species
present originally at time t = 0, the mass consumed, or lost to the surround-
ings over the time interval (0, t), and that left over at the end. We put this
formally as follows:

Mass initially present (t = 0) = Mass consumed or lost over (0, t) 
                             + Mass left over at t (2.7)

Cumulative balances invariably lead to algebraic equations. Paradoxically
and in spite of the occurrence of time in the statement (Equation 2.7), they
may arise in both steady- and unsteady-state processes. We shall have occa-
sion to demonstrate this in a number of illustrations and practice problems.

2.2.2.3 Unsteady Differential Balances 

It has previously been noted that, when the 1-D pipe model is applied to an
unsteady process, the mass balance will lead to a PDE. We generalize this
into the following statements: Whenever a variable is distributed in both
time and distance, i.e., varies with t and x (y, z), the resulting mass balance
will be a PDE.

We can summarize the results of the foregoing discussion as follows. A
mass balance can be time-dependent or time-independent, and it can be
applied over a finite entity or a differential increment of either time or
distance. It can further depend on a single space variable, or several such
variables, or none at all. Depending on which combination of factors applies
to a particular problem, this will result in an AE, or an ODE, or a PDE. These
features are summarized for the convenience of the reader in Table 2.1.

2.2.2.4 Dependent and Independent Variables 

Before concluding our discussion, we remind the reader of the distinction
that has to be made between dependent and independent variables. This

TABLE 2.1

Categories of Balances and the Resulting Equations

Type of Balance Equation

A. Integral Balances

1. Steady-state balance AE
2. Unsteady balance ODE
3. Cumulative balance AE

B. Differential Balances

1. Steady-state 1-D balance ODE
2. Unsteady 1-D balance PDE
3. Steady-state multidimensional balance PDE
4. Unsteady multidimensional balance PDE
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necessity arises in the context of differential equations, which for ODEs
generally lead to solutions of the form:

u = f(x) (2.8a)

or

u = f(t) (2.8b)

In the case of PDEs and rectangular coordinates,

u = f(x, y, z) (2.8c)

u = f(x, t)

and

u = f(x, y, z, t)

Here u is the dependent variable and x, y, z, and t are the independent
variables.

The dependent variable — also termed a state variable — is, for mass
transfer operations, usually represented by the concentration of a system, or
its total mass. Concentration can be expressed in a variety of ways, the most
common of which is kg/m3 or mol/m3, or in terms of mole and mass
fractions and ratios, whereas total mass is represented in terms of kg or mol.
The reader is reminded that the number of dependent variables equals the
number of unknowns. For a system to be fully specified, the number of
equations must therefore equal the number of unknowns, in other words,
the number of dependent variables. The model is then said to be complete.

The independent variables are usually represented by time t and distance
x, y, z, or, in the case of radial coordinates, by the radial distance variable r.
Occasionally and paradoxically, distance may depend on time and then
becomes the dependent variable. This is the case, for example, with spherical
particles, which undergo a change in size due to reaction, dissolution, or
deposition of material. The attendant change in mass is then expressed by
the derivative

Rate of change of mass =   (2.9)

where distance r is now the dependent variable.
Another departure from the normal definition of variables occurs when

two first-order differential equations are combined by division into a single
ODE.

dm
dt

= =r p r pp p

d
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r r
dr
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Consider, for example, the system

  (2.10a)

  (2.10b)

which may be the result of two unsteady integral balances.
Division of the two equations leads to the result

  (2.10c)

which, given suitable forms of f and g, can be integrated by separation of
variables. In the process of dividing the two equations (Equation 2.10a and
Equation 2.10b) we have eliminated the independent time variable t and
replaced it by the former dependent variable v. Such transformations are
frequently used to obtain partial solutions of systems of simultaneous ODEs.

Illustration 2.3: The Countercurrent Gas Scrubber: Genesis of Steady 
Integral and Differential Mass Balances

Gas scrubbers are widely used devices designed to remove impurities or
recover valuable substances from gases by contacting them with a suitable
solvent, such as water. A gas scrubber typically consists of a cylindrical shell
filled with plastic or ceramic particles designed to enhance the contact area
between the two phases (Figure 2.4a and Figure 2.4b). Solvent enters the
column at the top and trickles down through the packing where it contacts
the gas phase, which enters the scrubber at the bottom and flows upward
countercurrent to the solvent stream. The purified gas stream leaves the col-
umn at the top while used solvent containing the impurity exits at the bottom.

In the present illustration we use the gas scrubber as a vehicle to demon-
strate the genesis of steady-state integral and differential balances. Four such
balances are shown in Figure 2.4, with the balance space indicated by an
envelope drawn around it. Solvent enters the envelope with a flow rate Ls

(kg solvent/s) and a solute concentration X2 (kg solute/kg solvent) and
leaves with the same solvent flow rate but an increased concentration X1.
For the gas stream, the corresponding quantities are Gs (kg carrier gas/s)
and Y2, Y1 in units of kg solute/kg carrier gas. The term carrier denotes the
gaseous component, which is not absorbed by the solvent. Typically, that
component is air or some other inert gas, such as hydrogen or nitrogen.

We start by considering the two integral balances shown in Figure 2.4a
and Figure 2.4b.

The balance space in these two cases is a finite one, consisting either of a
part of the column (Figure 2.4a) or the entire column itself (Figure 2.4b). A
solute balance for the two cases then leads to the following expression:

du
dt

f u v= ( , )

dv
dt
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f u v
g u v
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Figure 2.3a

Rate of solute in - Rate of solute out = 0

(LsX2 + GsY) – (LsX + GsY2) = 0 (2.11a)

Figure 2.3b

Rate of solute in – Rate of solute out = 0

(LsX2 + GsY1) – (LsX1 + GsY2) = 0 (2.11b)

FIGURE 2.4
The packed gas absorber: (a), (b) types of mass balances leading to AE; (c), (d) types of mass
balances leading to ODE.
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These two expressions are processed further by casting them in the fol-
lowing difference form

  (2.11c)

and

  (2.11d)

We return to these expressions, and those that follow, for a more detailed
examination in Chapter 8, Illustration 8.1. It is shown there that Equation
2.11c and Equation 2.11d represent the so-called operating lines, which are
used in the graphical representation of scrubber performance. For our
present purposes we limit ourselves to the observation that these balances
resulted in algebraic equations, as predicted and stipulated in Table 2.1. We
note further that neither Equation 2.11c nor Equation 2.11d contains the
distance variable z. They can therefore tell us nothing about the concentration
variations as a function of column height nor help us establish the size of
column required to effect a reduction of solute content from Y1 to Y2.

We must, for those purposes, turn to differential balances which upon
integration will yield the desired functional dependence of solute concen-
tration as column height, i.e., Y = f(z). Two such balances are sketched in
Figure 2.4c and Figure 2.4d. To set up the corresponding equations, we write
for the case of the gas-phase differential balance (Figure 2.4c):

Rate of solute in – Rate of solute out = 0

(GsYz) – (GxYz+Dz + Navg) = 0 (2.12a)

For the liquid-phase balance (Figure 2.4d):

(LsXz+Dz + Navg) – (LsXz) = 0 (2.12b)

We must next formulate an expression for the mass transfer rate Navg and
here we encounter the same difficulty we had seen in Illustration 2.2 dealing
with the reaeration of rivers. In both cases the interfacial area is unknown
and we must therefore resort again to the use of a volumetric mass transfer
coefficient Koa where the unknown interfacial area a (m2/m3 column volume)
is lumped together with Ko. If the gas phase is assumed to be controlling,
we can write

Navg = – KoYa(Y – Y*)avgACDz (2.12c)
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where AC is the column cross-sectional area and Y* is the gas-phase solute
content in equilibrium with the liquid-phase concentration X.

Introducing this expression into Equation 2.12a and Equation 2.12b, divid-
ing by ACDz, and letting Dz go to zero, we obtain the twin result

  (2.12d)

and

  (2.12e)

where Gs and Ls are now the mass velocities of carrier gas and solvent,
respectively, with units of kg/s m2 column cross section.

Since the two equations, 2.12d and 2.12e, contain three dependent vari-
ables, X, Y, and Y*, we require a third relation to complete the model. This
will be given by the equilibrium relation, which can be written in the general
form

Y* = f(X) (2.12f)

The model, consisting of the three equations (Equation 2.12d, Equation
2.12e, and Equation 2.12f), can now be said to be complete. We return to it
in Illustration 8.1 where the solutions to this model are taken up. We also
examine the role of the integral balances (Equation 2.11c and Equation 2.11d),
which, at the moment at least, are seemingly adrift with no apparent use in
modeling the system.

Comments:

This example was intended to draw the reader’s attention to the multitude
of mass balances that can be applied even in cases of only modest complexity.
In fact, there are three additional balances that can be performed on the
scrubber:

Differential mass balance over both phases

Rate of solute in – Rate of solute out = 0

(LsXz+Dz + GsYz) – (LsXz + GsYz+Dz) = 0 (2.12g)

Integral mass balance over the gas phase

Rate of solute in – Rate of solute out = 0

(GsY1) – (GsY2 + NTot) = 0 (2.12h)

G
dY
dz

K a Y Ys oY+ - =( *) 0

L
dX
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K a Y Ys oY+ - =( *) 0
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Integral mass balance over the liquid phase

Rate of solute in – Rate of solute out = 0

(LsX2 + NTot) – (LsX1) = 0 (2.12i)

This profusion of balances will have made it clear that the choice of the
proper balances and balance space is often not a straightforward one and
calls for good judgment or leads to some trial-and-error work.

Illustration 2.4: Two Examples from Biology: The Quasi-Steady-State 
Assumption

In simple biological models the human or animal body is assumed to be
composed of a number of well-stirred compartments of uniform concentra-
tion. These compartments encompass body fluids (plasma, intercellular flu-
ids) as well as body tissues such as fat, muscle, and bones, and are described
by one or more first-order ODEs in time. The first example taken up below
is of this type, and is depicted in Figure 2.5a.

A second simple model assumes that the concentrations in one or more of
the compartments are distributed in one direction but vary only slowly with
time so that the time derivative of the concentration is very small and can
be neglected. This is referred to as the quasi-steady-state assumption and leads
to an ODE in distance. The second example taken up below belongs to this
category and is shown in Figure 2.5b.

1. Two Well-Mixed Compartments in Instantaneous Equilibrium

The first example considered involves a “well-mixed” tissue region sur-
rounding a blood vessel whose contents are likewise taken to be well mixed
and uniform in concentration. Blood entering and leaving the heart muscle
and conveying to it a drug dissolved in the blood can be considered repre-
sentative of this type of situation. If passage of the solute into the muscle
tissue is rapid enough, the two phases may be taken to be at equilibrium at
all times. It is common at the low concentrations involved to assume a linear
equilibrium relation of the form

CB = KCT (2.13a)

where K is termed the partition coefficient. The physical configuration and
pertinent variables for the present case are displayed in Figure 2.5a. We
proceed to write an integral mass balance over the entire system, as shown
in the figure, and obtain
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Rate of solute in – Rate of solute out =  

  (2.13b)

where CB in(t) is in general an arbitrary function of time, Q = volumetric flow
rate in cm3/s, and VB and VT are the blood and tissue volumes, respectively
(cm3). There are two equations (2.13a and 2.13b) in the two dependent vari-
ables or unknowns CB and CT. The model is consequently complete.

Substitution of Equation 2.13a into Equation 2.13b yields a single expres-
sion in either blood or tissue concentrations, which can be integrated in a
straightforward fashion by separation of variables. We obtain for CB in the
first instance

FIGURE 2.5
A well-mixed tissue region surrounding a blood vessel: (a) uniform concentration in blood; (b)
concentration in blood distributed and in quasi-steady state.
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  (2.13c)

For the case where a drug is suddenly introduced at a constant rate into
the blood, i.e., CB in goes from zero to a constant value CBo at t = 0, integration
results in

  (2.13d)

and consequently

  (2.13e)

or equivalently in exponential form

  (2.13f)

Comments:

The validity of the solution can be quickly established by letting t go to zero
and infinity, respectively. For the former case we obtain CB = 0, as required,
and for the latter CB = CBo; i.e., the concentration in the blood asymptotically
approaches the constant inlet value CBo. This behavior is identical to that
which was seen in Illustration 2.1: Evaporation of a Solute to the Atmosphere,
which shows the same asymptotic approach to a constant value, as displayed
in Figure 2.3. When evaporative loss is omitted, leading to Equation 2.4a,
the resemblance is even more pronounced, with only a slight change of
variables, from V and Q in Equation 2.4a to VB + VT and KQ in Equation
2.13f bringing about complete coincidence. Such a coincidence of solution
forms for different physical situations is a frequent occurrence in modeling
but does not come as a complete surprise because the original ODEs are in
these cases also identical in form. The lesson for the reader here is that if the
solution of a model appears to be intractable, we should look in other
disciplines that yield identical model equations for the possible existence of
a ready-made solution. This is both convenient and relieves us of the onus
of having reinvented the wheel.

A second comment concerns the use of the model solutions, Equation
2.13e and Equation 2.13f. We start by noting that a semilog plot of Equa-
tion 2.13e, ln(CBo – CB) vs. t, using measured values of the drug concen-
tration C, yields a slope with the value (VT + VB)/KQ. In many cases of
interest, the blood volume is much smaller than that of the surrounding
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tissue, VT >> VB, so that the slope becomes VT/KQ. The flow rate Q is
usually known from independent measurements (see Practice Problem
2.6), while the partition coefficient can often be determined in vitro, i.e.,
in the laboratory using extracted tissue. The value of the slope can then
be used to determine the unknown tissue volume VT. Conversely, if tissue
volume is known from independent measurements, the slope will yield
a value for the partition coefficient Ka. Note that the tissue concentration
is then given by

  (2.13g)

Once these parameters have been established from appropriate experi-
ments, we can use Equation 2.13g to establish the time required to attain a
desired therapeutic concentration.

2. A Well-Mixed Tissue Compartment in Contact with Flowing Blood with
a Varying Concentration

The case in question is sketched in Figure 2.5b, and involves the exchange
of a substance between a tissue region of uniform concentration and blood
flowing in a capillary along which concentration varies. The membrane
separating the two has a transport resistance represented by the mass trans-
fer coefficient km, which equals diffusivity divided by the thickness of the
membrane. Let us consider first the case of substance uptake by the tissue.
If that substance enters the capillary at a flow rate Q, we can write for the
difference element shown in Figure 2.5b

Rate of solute in – Rate of solute out = 0

  –  = 0 (2.14a)

or, using an explicit expression for Navg and setting CB* = KCT , as given by
Equation 2.13a,

  (2.14b)

where P = perimeter of capillary. Here, use has been made of the quasi-
steady-state assumption; i.e., the process was taken to be slow enough that
over a short finite period of observation (say, a few minutes) neither the
tissue nor the blood concentrations vary significantly.

Dividing by Dx and going to the limit Dx Æ 0 we obtain the ODE

C C K C K
QKt

V VT B Bo
B T

= = - -
+

Ê

ËÁ
ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

/ ( / ) exp1

Q CB z
( )Q C NB z z avg+

+
D

Q C Q C k P x C KCB z B z z m B T- - - =
+ D

D ( ) 0



Modeling Mass Transport: The Mass Balances 61

  (2.14c)

Integration by separation of variables then leads to

  (2.14d)

and consequently

  (2.14e)

or alternatively

Uptake:   (2.14f)

where A = interfacial area.
For the reverse process, i.e., when the substance is removed by blood that

enters the capillary devoid of it, we have

Clearance:   (2.14g)

This process is referred to as clearance of the tissue.

Comments:

A quick check for validity of solution gives CB = CBo for A Æ 0, as it should,
and CB = KCT for A Æ •. The latter is the result of equilibration of blood
and tissue that occurs as x, and consequently area A, goes to infinity.

Expression 2.14f and Expression 2.14g are used particularly for the deter-
mination of the mass transfer coefficient, assuming that values of K and Q
have been determined independently. This can be done in the usual fashion
by making a semilog plot of the concentration fraction in Equation 2.14e
against the reciprocal 1/Q, i.e., by running a series of experiments at different
volumetric flow rates Q. For clearance experiments, CBo is set equal to zero.
The slope of the plot then yields the product kmA. Because detailed anatom-
ical information for the determination of the interfacial area A is rarely
available, we must be content to deal with the product kmA itself. That
quantity, however, is still highly useful because it provides a measure of the
overall permeability of the tissue–capillary interface.
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Experiments of the type just described are critical in evaluating the effec-
tiveness of drugs designed to increase the passage of metabolically important
materials into tissue. Such drugs are referred to as vasoactive and they act by
increasing the area available for transfer, or by increasing the permeability
of the membrane itself. This is reflected in an increase in the slope of the
plot of Equation 2.14e.

Illustration 2.5: Batch Distillation: An Example of a Cumulative Balance

Batch distillation is practiced with considerable frequency both on a labora-
tory and an industrial scale for the purpose of separating and purifying
liquid mixtures.

A simple version of the process that comes close to that used in laboratory
practice is sketched in Figure 2.6. The still, shown on the left, is loaded with
a liquid mixture of composition xW

0  and total mass W0 and subsequently
brought to a boil by internal or external heating. The vapor produced at a
rate D mol/s is passed into a water-cooled condenser and the resulting liquid
condensate is collected in a receiver shown on the right of Figure 2.6. The
composition and total mass in the still at any instant are denoted by xW and
W and that in the receiver by xD¢ and D¢. We note that in industrial practice
a cylindrical column containing various vapor–liquid contacting devices
such as packing of the type used in gas absorbers (see Illustration 2.3) is
mounted on the still to promote additional fractionation of the vapor. The

FIGURE 2.6
A batch-distillation apparatus.
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liquid phase for this section is provided by diverting part of the liquid
condensate, termed reflux, to the top of the column. This type of operation
is discussed in greater detail in Chapter 7 (Illustration 7.10).

As is usual in systems of some complexity, a number of different balances
can be made depending on the choice of balance space. We may choose, for
example, to make an unsteady integral balance about the still, or to make a
similar balance about the receiver. They can be instantaneous or cumulative
in time and can involve total or component mass balances.

The balance considered here is the cumulative balance up to some point
in time t. We apply the scheme previously given in Equation 2.7 and write:

Mass initially present = Mass left in still + Mass in receiver

W0 = W + D¢ (2.15a)

and for the component mass, assuming a binary system:

xW
0W0 = xWW + xD¢D¢ (2.15b)

where the total mass is expressed in kg or in mol, and the compositions
represent mass or mole fractions. The receiver contents D¢ have been primed
to distinguish them from the rate of distillation (mol/s), which is commonly
given the symbol D.

Comments:

Cumulative balances such as the two simple expressions (Equations 2.15a
and Equation 2.15b) are often overlooked in modeling, or else written out
without much thought to their origin. It is important to note that they are
quite independent of the unsteady integral balances mentioned previously
and consequently serve as additional tools that can be used to supplement
the model equations. Typically, they are used as adjuncts to instantaneous
balances in batch distillation. We can, for example, solve for either still or
distillate composition and obtain

  (2.15c)

  (2.15d)

where f = 1 – W/W0 = fraction distilled.
Use of these equations is demonstrated in Illustration 7.10.
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2.3 The Information Obtained from Model Solutions

The reader will have noted that in several of the illustrations so far, the model
and its solution were used to extract a particular piece of information about
the underlying physical system or process. Thus, in the two biological exam-
ples given in Illustration 2.4, the suggested use of the solution was the
determination of tissue volume and permeability. We now wish to generalize
this aspect of modeling and ask the question: What types of information can
we expect to find in the solution of a model? This is evidently a question of
some importance because, without a priori knowledge of the information
contained in the solution, modeling would presumably not be undertaken
at all.

The question can be answered in a general way by stating that any of the
quantities appearing in the solution, including the dependent and independent
variables, can be the unknown or the information being sought. These solutions
generally take one of the following forms:

u = f(t, parameters) (2.16a)

u = g(z, parameters) (2.16b)

or

u = F(v, parameters) (2.16c)

Here, the dependent variable u, which is typically a concentration or a
mass related to the system, is seen to be a function of time t, distance z, or
another mass or concentration v plus a set of specific parameters pertinent
to the system.

Two additional forms make their appearance:

z = G(t, parameters) (2.16d)

and

u = H(x, y, z, t, parameters) (2.16e)

The first of these represents the special case where distance z becomes the
dependent variable and time the independent variable. Solutions of this form
arise, for example, in systems involving reacting particles, where particle
radius is now the dependent variable, which varies with time. The mathe-
matical expression that results has been given by Equation 2.9. The second,
Equation 2.16e, is a multidimensional one and arises from a PDE. Some
solutions to such PDE models appear in Chapter 3, and the models them-
selves are taken up in Illustration 2.6 and Illustration 2.7.
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We first note that in addition to u either t or z may be the unknowns being
sought. This is in fact the most common occurrence. We may wish, for
example, to determine the time or distance necessary to affect a prescribed
concentration change. Designing a scrubber, i.e., calculating its height z, falls
in the latter categories.

Next in importance as an unknown are the parameters, which we can
accommodate in the following broad categories:

1. Transport coefficients, such as diffusivities, film coefficients, overall
mass transfer coefficients, and permeabilities

2. Rate constants pertaining to chemical or biological reactions taking
place in the system

3. Flow rates, including those in and out of compartments, pipes and
columns; carrier and solvent flow rates

4. Volumes, in particular those in addition to concentration or mass
pertaining to a stirred tank or compartment

5. Parameters describing phase equilibria such as partition coefficients
and Henry’s law constants, relative volatilities, equilibrium solubil-
ities, and vapor pressures

6. Inlet concentrations to compartments, pipes, and columns

There is yet another type of information contained in the model that is
obtained by manipulation of the primary results. We call this derived infor-
mation. The manipulations involved typically consist of differentiation or
integration of the results. If these come in the form of concentration distri-
butions, we obtain the following derived quantities:

By differentiation

  Diffusional flow (2.16f)

By integration

  (2.16g)

or Average  concentrations
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Use is made of these expressions in Illustration 4.9 and Practice Problem
4.11 and again in Section 5.2. They can be regarded as part of the information
package provided by the model solution. We have summarized both the
model solutions and the information contained in them for convenient ref-
erence in Table 2.2.

2.4 Setting Up Partial Differential Equations

The mass balances that have been considered up to this point are confined
to cases involving a single independent variable, time or distance. We now
examine situations in which more than one such variable needs to be taken
into account. Suppose, for example, that diffusion takes place from an exter-
nal medium into a porous cylindrical or spherical particle, which is initially
devoid of the diffusing species. Concentrations will then vary both with time
and radial distance and, in the case of the cylindrical particle, with axial
distance as well. This is a system that is distributed in both time and distance
and that consequently leads to a PDE (see Table 2.1).

Let us assume that the variations are with respect to one distance
variable x and with time t. We have previously considered, at the ODE
level, distributions in time only, or in distance only. This has led to the

TABLE 2.2

Models, Model Solutions, and the Information Contained in Them

Model Model Solutions

A. Integral Balances

1. Steady-state balance u = f(v, parameters)
2. Unsteady balance u = F(t, parameters)
3. Cumulative balance u = g(v, parameters)

B. Differential balance

1. Steady-state 1-D balance u = G(z, parameters)
2. Unsteady-state 1-D balance u = g(z, t, parameters)
3. Steady-state multidimensional balance u = H(z, t, parameters)
4. Unsteady multidimensional balance u = k(x, y, z, t, parameters)

C. Parameters

1. Transport coefficients 2. Rate constants
3. Flow rates 4. Volumes
5. Phase equilibrium parameters 6. Inlet concentrations

D. Derived Information

1. Diffusional flow 
2. Average concentration 
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schemes represented by Equation 2.1 and Equation 2.2. To deal with
simultaneous variations in both time and distance, we superpose the two
expressions; i.e., we write

  –  

=  =  (2.17)

On occasion, mass will enter at x + Dx and leave at x, in which case the
scheme is adjusted accordingly.

This is the formulation that must be used when the system is distributed
over distance x and time t. When variations occur in more than one direction,
we merely add appropriate terms to the left side of Equation 2.17, for exam-
ple, “Rate of mass in at y and over Dy” and so on. For variations in the radial
direction, y and Dy are replaced by r and Dr. Note that the time derivative
in Equation 2.17 is now a partial derivative because we are dealing with more
than one independent variable. The following illustration provides an exam-
ple of the application of Equation 2.17.

Illustration 2.6: Unsteady Diffusion in One Direction: Fick’s Equation

Consider diffusion to be taking place into a rectangular slab, which is infi-
nitely wide in the y and z directions and of finite width L in the x direction.
The slab can be a stagnant gas or liquid, or a porous solid, and initially
contains the diffusing species at a concentration level C = Co. At time t = 0,
the two sides of the slab at x = L/2 and x = –L/2 are suddenly exposed to
a higher external concentration C = Ce. Diffusion into the slab commences,
with the diffusing species entering each face and moving simultaneously
toward the centerline. The resulting profiles and their development with
time are shown in Figure 2.7a. Initially, at t = to the profile is flat and uniform
at the level C = Co. As time progresses and solute penetrates into the interior,
the profile assumes a parabolic shape, which becomes increasingly flatter
until at time t = t• it has reached the level of the external concentration C =
Ce. Diffusion then comes to a halt.

To model this process, we choose a difference element to the right of x =
0 (see Figure 2.7b). Solute movement will then be from right to left, entering
at the position x + Dx and exiting at x. Applying the scheme of Equation
2.18, we obtain the following result:

  (2.18a)
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or, introducing Fick’s law of diffusion, Equation 1.4a

  (2.18b)

The reader is reminded that in the original formulation of Fick’s law,
concentration diminished in the direction of increasing x (see Figure 1.1a)
resulting in a negative gradient. The reverse is true here: Flow is in the
direction of diminishing values of x and C, yielding a positive gradient ¶C/
¶s. The need for a negative sign in Fick’s law is thus removed, and we simply
write N = DA¶C/¶x. This ensures that the diffusional flow will be a positive
quantity.

FIGURE 2.7
Diffusion into a slab: (a) development of concentration profiles; (b) difference element for the
mass balance.
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To obtain the final result, Equation 2.18b is divided by ADx and Dx is
allowed to go to zero. This yields

  (2.18c)

This is Fick’s equation in one dimension. Its solution yields the time-
dependent concentration profiles shown in Figure 2.7a. Illustrations dealing
with Fick’s law will appear in Chapter 3.

Comments:

Although we have confined ourselves to Fick’s law in one dimension, its
extension to three dimensions is straightforward. We merely have to extend
Equation 2.18a to three dimensions in the increments Dx, Dy, Dz, which now
represent the sides of a cube. The result is

  

    (2.18d)

On dividing by Dx, Dy, Dz and allowing the increments to go to zero, we
obtain the three-dimensional version of Fick’s law in rectangular coordinates:

(2.18e)

For radial, spherical, and cylindrical coordinates, the distance derivatives
are somewhat more complicated.

Although we do not, in this text, take up the actual solution of PDEs, it is
important to examine one of the tools needed for this purpose, the boundary
and initial conditions. The reader may recall that at the ODE level, the
number of boundary conditions required equals the order of the equation.
This concept can be extended to PDEs as follows: Each set of partial deriv-
atives requires a number of conditions equal to its highest order. Thus, the
1-D Fick’s equation (Equation 2.18c) requires two boundary conditions for
the distance derivative ¶2C/¶x2, and one condition, also called an initial
condition, for the time derivative ¶C/¶t. These conditions are obtained from
an examination of the physical system. Thus, from Figure 2.7a, we have the
following conditions:
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For the distance derivative
1. C = Ce at x = +L/2 and any time
2. C = Ce at x = –L/2 and any time
For the time derivative
3. C = Co at t = 0 and any position

These conditions can be placed in the following terse forms:

1. C(t, L/2) = Ce (2.18f)

2. C(t, –L/2) = Ce (2.18g)

3. C(0, x) = Co (2.18h)

These, and other boundary conditions, are encountered again in Chapter
4 where they are used for a number of different processes and geometries.
As noted, we do not undertake the actual solutions of the PDEs, but rather
present them in graphical or tabular form and use them to address a number
of practical problems. At this, the reader will wish to breathe a sigh of relief.

Let us next consider a process that is at steady state, but one in which the
dependent variable varies in two directions. This, too, leads to a PDE.

Illustration 2.7: Laminar Flow and Diffusion in a Pipe: The Graetz Problem 
for Mass Transfer

When a solute is released from a soluble tubular wall into a flowing fluid,
two cases need to be distinguished:

1. The fluid is in turbulent flow. This implies that the core is well mixed
and has a uniform concentration Cb(x), which varies in the direction
of flow. That bulk concentration is initially zero at the inlet if we
assume the feed to be pure solvent and gradually increases in level
as material dissolves into the flowing fluid. Ultimately, at long dis-
tances from the inlet, the fluid becomes fully saturated with solute
and the bulk concentration equals the equilibrium solubility, Cb =
C*. Mass transfer then comes to a halt. This situation is depicted in
Figure 2.8a and leads to an ODE when a mass balance is applied to
an increment Dx in the direction of flow. A situation similar to this
case has been encountered in Illustration 2.2, where oxygen from
the atmosphere entered and dissolved in a river that was in turbulent
flow.

2. When the fluid is in laminar flow, the core is no longer well mixed
and we see instead a gradual variation of concentration in the radial
direction as solute from the wall enters and dissolves in the flowing
fluid. The concentration profile assumes the shape of a parabola
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whose height gradually diminishes in the direction of flow until the
fluid is fully saturated. At this point the concentration has become
uniform (C(r, x) = C*), and mass transfer again ceases. This situation
is depicted in Figure 2.8b.

Because we are here dealing with concentration variations in two direc-
tions, r and x, the mass balance must be taken over an element with incre-
ments Dx and Dr. This leads to the doughnut shape shown in Figure 2.8c,
and ultimately yields a PDE.

Let us proceed to write a mass balance over this element. The volumetric
flow rate into and out of the element is given by the product of velocity and
area; i.e., [v(r)]avg 2prDr, where the bracketed term represents the local average
velocity. The mass of solute entering or leaving the element is then obtained
by multiplication by the solute concentration C at the two locations. Radial
transport is by diffusion and here we note that, once again, as in the previous

FIGURE 2.8
Solute dissolution into a flowing fluid: (a) turbulent flow; (b) laminar flow; (c) difference element
for laminar flow.
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illustration, flow is in the direction of diminishing values of the distance
variable and of C. The minus sign in Fick’s law is consequently dropped and
we use instead the form N = DA(¶C/¶r). With these expressions in place,
the mass balance becomes

  –  = 0

  –  = 0 (2.19a)

       Dividing by 2prDxDr and letting both increments go to zero, we obtain 
the PDE

  (2.19b)

or in expanded form

  (2.19c)

where [v(r)avg] has now become a point quantity. The boundary conditions
are again three in number, the radial derivatives requiring two such condi-
tions (highest order 2) and the axial derivative one. They are the following:

Condition at the wall: C(x, R) = C* (2.19d)

Condition at the axis:   (2.19e)

Condition at the inlet: C(0, r) = 0 (2.19f)

The condition at the axis is of a type encountered before in Illustration 1.1
(see Figure 1.2a and Figure 1.2b) and reflects the fact that the concentration
profile must be symmetrical about the central axis and its derivative must
consequently vanish there. This system of equations (Equation 2.19c through
Equation 2.19f) yields, on solution, the radial and axial concentration gradi-
ents shown in Figure 2.8b.
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Comments:

The Graetz problem, also known as the Graetz–Nusselt problem, was orig-
inally formulated for the corresponding heat transfer case, which is repre-
sented by the PDE

  (2.19g)

where a = thermal diffusivity.
In the original version, first put forward in the 1880s, two boundary con-

ditions were considered: constant wall temperature T(x, R) = Tw and constant
flux

    

Some initial results were given by Graetz, but it was not until 1956 that
the complete analytical solution became available.

Since its inception, the Graetz problem has been applied to a host of related
problems in both heat and mass transfer with a variety of boundary condi-
tions encompassing both Newtonian and non-Newtonian flow. In Chapter
5 we show how the solution profiles of the Graetz problem can be cast into
equivalent mass transfer coefficients, which can then be used to model the
process at the ODE level.

Illustration 2.8: A Metallurgical Problem: Microsegregation in the Casting 
of Alloys and How to Avoid PDEs

One method of casting alloys is to pour the molten charge into a mold and
allow it to cool in contact with the ambient air. The process of solidification
that results is a complex one involving the transport of heat to the external
medium and a simultaneous transfer of mass from the liquid to the solid
phase. The progress of the proceedings is best visualized by means of a plot
of temperature vs. liquid and solid compositions termed a phase or melting-
point diagram. A simple version of this diagram for a binary (i.e., two-com-
ponent) system appears in Figure 2.9a, and we shall see in Chapter 6 that
similar diagrams can be constructed for vapor–liquid systems (see Figure
6.17a).

The upper curve, referred to as the liquidus, represents a plot of liquid
composition vs. temperature, and the lower curve, termed the solidus, shows
the corresponding solid compositions. Horizontal lines drawn through the
diagram intersect the two curves at points representing liquid and solid
compositions in equilibrium with each other. The extremities of the diagram
denote the melting point of the metal components of the alloy, Tmp1 > Tmp2.
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On cooling, the liquid charge proceeds along the vertical line of constant
composition xF until it reaches the liquidus at point A. Here the first solid
crystals of composition xsF* are formed, which are in equilibrium with the
feed composition xF. On further cooling and solidification, a gradual shift of
these compositions along the liquidus and solidus curves takes place, result-
ing in ever-increasing concentrations of component 2 in the liquid and solid
phases. These two phases are at all times in equilibrium with each other,
with the two compositions located at the end points xS* and xL of a horizontal
line drawn through the diagram. These two concentrations gradually
approach each other and with further cooling ultimately converge to a single

FIGURE 2.9
Microsegregation in the casting of alloy: (a) phase diagram; (b) dendrite formation; (c) concen-
tration profile.
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point representing the pure metal component 2 with the lower melting point
Tmp2. Solidification is then complete.

The physical structure of the charge during this solidification process is
depicted in Figure 2.9b. Typically, the solid phase is initially confined to
narrow, fingerlike protrusions termed dendrites. These regions are sur-
rounded by small pools of liquid, which gradually diminish in size as solid-
ification progresses. Simultaneously, the concentration of component 2 in the
thickening dendrite increases until it peaks as pure metal 2. The resulting
concentration profile is a single dendrite shown in Figure 2.9c. These den-
drites form a repetitive pattern of microsegregation throughout the cast and
are an undesirable feature because they lead to non-uniform properties of
the material. To remove these nonhomogeneities, the cast is subjected to a
subsequent thermal treatment termed homogenization in which the concen-
trations are smoothed by a slow process of solid-phase interdiffusion. This
process is an unsteady one and is described by Fick’s equation (Equation
2.19c). We do not wish to address its solution, which is a fairly complex one,
here, but note that it requires as an initial condition the concentration profile
shown in Figure 2.9c. It is this distribution that initiates the homogenization
process and ultimately leads to a cast of uniform properties.

Although the process of solidification is a highly complex one requiring
in principle a set of PDEs, the derivation of the concentration distribution
in the dendrite is apparently amenable to a simple treatment. The literature
on the subject proposes the following differential equation for the description
of the process:

(xL – xS*)dfS = (1 – fS)dxL (2.20)

where fS is the local weight fraction of the solid, x is the weight fraction of
the component that crystallizes out, and xS* is the equilibrium weight fraction
at the solid–liquid interface.

Although superficially this expression resembles a mass balance, it is not
clear how it is arrived at. It does not contain time or distance as an indepen-
dent variable, which invariably appears when we model a compartment or
what we termed a 1-D pipe. We must also rule out a cumulative balance,
which is always algebraic in form. The question then arises whether a new
type of mass balance formulation is required to cover this case. Fortunately,
as is shown below, this does not turn out to be the case. The three mainstay
formulations æ compartmental, 1-D distributed, and cumulative æ are able
to cover this case as well.

Let us proceed to model the system using one of our formulations, the
compartmental model. To do this we assume the liquid to be well mixed
with a uniform concentration of xL. This is not an unreasonable assumption
as the size of the pool is quite small, typically 50 to 200 mm in width. The
solid phase, on the other hand, cannot be considered uniform because solid-
phase diffusivities are several orders of magnitude smaller than those
prevailing in the liquid (see Section 3.1 in the next chapter). Concentrations
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in the dendrite will consequently vary in the lateral direction, with the local
interfacial concentration xS* in instantaneous equilibrium with the uniform
liquid pool at all times (Figure 2.9c). Drawing an envelope around the liquid
pool we obtain the following mass balance:

Total mass balance

Rate of total mass in – Rate of total mass out =  

 0 – R =  (2.21a)

Component mass balance

Rate of solute in – Rate of solute out =  

 0 – xS* R =  (2.21b)

where R = rate of solidification (kg/s) and L is the total mass of liquid in
the pool (kg).

As expected, the time variable t makes its appearance, as does the
unknown variable R, the rate of solidification. Neither of these appears in
Equation 2.20, thus bringing the proceedings to a seeming impasse.

Some thought will reveal that both of these undesirable variables may be
eliminated by the simple device of dividing the two equations. We obtain

  (2.21c)

or, in expanded form,

  (2.21d)

This is beginning to look much more like the desired expression (Equation
2.20), and one final step will bring us to that goal. We invoke a cumulative
mass balance, which serves to convert liquid mass L to the solid weight
fraction fS. We have up to any time t

L + S = MTot (2.21e)

where S = mass of solid and MTot = total mass (liquid pool + half the dendrite
width). Consequently,
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  (2.21f)

and Equation 2.21d becomes, after some rearrangement,

(xL – xS*)dfS = (1 – fS)dxL (2.20)

which is the desired result. Because the fraction solidified fS, can be written
in the form

  (2.21g)

the solution of Equation 2.20 can be used to derive the concentration profile
in the dendrite, and thus establishes the initial condition required for the
homogenization process.

Comments:

• Two features stand out in the treatment of this problem. First and
foremost, we have reinforced our confidence in the three basic mass
balance formulations at the algebraic and ODE level: the compart-
mental, 1-D distributed, and cumulative balances. They are vindi-
cated as a comprehensive tool kit at this level of modeling.

• Second, we see here again the near-miraculous reduction of a highly
complex process to manageable proportions. This was accomplished
by assuming the liquid pool to be well mixed and in equilibrium
with the solid interface, both reasonable assumptions. We followed
this up with the neat “trick” of dividing the two mass balances,
thereby eliminating both the independent variable t and the
unknown R. This gave us the desired relation between the solid-
phase concentration and the fraction solidified.

• The analysis used here is not confined to liquid–solid systems. It can
be applied to any process in which a transfer of mass takes place
between two phases that are in constant equilibrium with each other.
It was first applied by Rayleigh to analyze equilibrium batch distil-
lation and to derive the attendant concentration changes as a func-
tion of the fraction distilled. This case as well as other batch processes
of the same type are taken up in Chapter 7 dealing with equilibrium
stage processes.

• Equation 2.20 as it stands cannot be integrated directly because it
contains more than two variables, i.e., f, xL, and xS*. A second equa-
tion will be required, which is given by the following equilibrium
relation:
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xS* = f(xL) (2.22a)

Many binary alloys have phase diagrams in which the ratio xS*/xL can be
approximated as a constant K, termed the partition coefficient. Combining
Equation 2.20 and Equation 2.22a, we obtain

[–(K – 1)xL]df = (1 – fS)dxL (2.22b)

which, after separating variables and formal integration, yields the result

  (2.22c)

Evaluating the integrals, we obtain

  (2.22d)

or alternatively

  (2.22e)

The corresponding solid-phase concentration is given by

  (2.22f)

where K < 1.
This form of expression, known as the Rayleigh equation, is encountered

again in Chapter 7 (Illustration 7.3 and Illustration 7.4).
The equation applies only over a limited concentration range, as it predicts

that xS* goes to infinity as fS attains unity. A more realistic representation of
the equilibrium is given by the expression

  (2.22g)
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  (2.22h)

with a > 1. At low concentrations a Æ 1/K.
Application of this expression is left to the exercises (Practice Problem

2.10).

2.5 The General Conservation Equations

The method we have described for setting up PDEs has a cumbersome
feature attached to it. It must be repeated each time there is a change in
geometrical configuration or in the process conditions. A switch from rect-
angular to cylindrical coordinates, for example, requires a new balance to
be made. So does the inclusion of reaction terms.

This drawback can be overcome by formulating the mass balances in a
generalized vectorial form, using the symbolism of vector calculus. These
symbols, or operators as they are termed, arise in a natural way in the for-
mulation of generalized transport equations. They are at first sight forbid-
ding, and the beginner will probably be best served by regarding them as a
convenient shorthand, without delving into their deeper origins. The symbol
—2u for example, which is termed the Laplacian of u (and pronounced “del
square u”) is shorthand for a collection of second-order partial derivatives.
The symbols —u and —•v, (“del u” and “del dot v”) serve the same purpose
for combinations of first-order partial derivatives. For example, in rectangular
coordinates, del dot of the velocity vector v is synonymous with the sum of
the first-order derivatives of the velocity components. Thus,

  (2.23a)

Similarly, we have for the Laplacian

  (2.23b)

Thus, both del dot and del square tend to be scalar expressions. Del u, on
the other hand, is a vector.

Some thought will lead us to the conclusion that del dot terms will likely
arise in flowing systems, whereas the Laplacian will most probably appear
in the description of diffusion processes. This is indeed the case.
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The use of these operators in the formulation of mass balances leads to
the following generalized conservation equations. We have, for the compo-
nent mass balance

v•—CA +  D—2CA ± rA =   (2.24a)

Flow  Diffusion  Reaction Transient

and for the total mass balance, also known as the continuity equation,

—•v = 0 (2.24b)

Two restrictions apply to these expressions. First, they are confined to
incompressible flow, i.e., systems in which density changes can be neglected,
such as liquid flow or gas flow involving low pressure drops. Second, the
formulation requires continuity of the concentration within the flow field.
Systems in turbulent flow in which CA undergoes an abrupt transition from
linear gradient in the film to a constant value in the fluid core cannot be
accommodated by these expressions. We must, in these cases, revert to the
use of the classical shell balance.

To aid the reader in the use of these equations, we have compiled a
“dictionary” of the operator symbols, which provides a translation into scalar
form for the three principal geometries (rectangular, cylindrical, and spher-
ical). We can use this dictionary, Table 2.3, to extract several important
subsidiary relations. For example, in the absence of flow and reaction, the
general conservation equation becomes

  (2.24c)

which is Fick’s equation in three dimensions, with the Cartesian represen-
tation (see Table 2.2)

  (2.24d)

This expression is identical to Equation 2.18d, which had been derived by
means of a shell balance. Its counterpart for heat conduction, known as
Fourier’s equation, is given by

  (2.24e)
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The Graetz problem can be accommodated in similar fashion. Here the
transient and reaction terms are dropped and we obtain

v•—CA = D—2CA (2.24f)

The dot product on the left is composed by the rules of vector algebra. In
other words, it equals the sum of the vector component products. Setting
vr = ¶CA/¶q = ¶2CA/¶z2 = 0 and using the tabulations of Table 2.3, we obtain

   (2.24g)

which is in agreement with Equation 2.19b.
Finally, when all but the reaction and transient forms are omitted, we are

led to the result

  (2.24h)

This will be recognized as a mass balance for a batch reactor of volume V.

Illustration 2.9: Laplace’s Equation, Steady-State Diffusion in Three-
Dimensional Space: Emissions from Embedded Sources

Steady-state diffusion has been considered in some detail in Chapter 1 at the
elementary level of 1-D transport. In Cartesian space the operative expres-
sion was Fick’s law (Equation 1.4), which can also be written in the equiv-
alent form:

  (2.25a)

The extension to three Cartesian dimensions is given by

  (2.25b)

or in a generalized vectorial form by

—2C = 0 (2.25c)

This is the classical and much-studied expression known as Laplace’s
equation. It can be obtained from Fick’s equation by omission of the transient
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term, or from the general conservation equation (Equation 2.24a) by omitting
transient, reaction, and flow terms.

A host of solutions of this problem are known from the analogous case of
heat conduction and are easily adapted by substituting concentration and
diffusivity for temperature and thermal conductivity. Many of these solu-
tions, particularly those dealing with finite geometries, are forbidding in
form and difficult to apply in practice. The intent here is to draw the reader’s
attention to some simple solutions, which are particularly useful in an envi-
ronmental and biological context.

TABLE 2.3

Dictionary of Vector Operators
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The geometry considered is a semi-infinite medium bounded by a plane
surface. An object of finite dimensions (sphere, disk, cylinder) is embedded
at a distance x from the surface and is assumed to have a constant surface
concentration C2. Solute diffuses into the surrounding space and ultimately
reaches the bounding surface, which is held at a constant concentration C1

(Figure 2.10). C1 is often near zero because of dispersion into a flowing fluid
or the atmosphere. The release rate when C1 = 0 exceeds that of any other
practical configuration and sets an upper limit to diffusion from a source of
constant concentration. It can therefore be used to estimate the maximum
performance to be expected in finite spaces.

Examples of such embedded objects are underground deposits of a toxic
or benign nature and artificial implants (see Practice Problem 2.13). The
situation described in Illustration 1.3 æ helium storage in an abandoned salt
mine æ is another example.

The primary information obtained from Laplace’s equation concerns the
three-dimensional concentration distributions, which are of no direct prac-
tical use. It is common practice to convert these results into an equivalent
rate equation based on a linear driving force. For conduction, it takes the
form

q(J/s) = kS(T2 – T1) (2.26)

and for diffusion

N(mol/s) = DS(C2 – C1) (2.27)

FIGURE 2.10
Diffusion from a sphere embedded in a semi-infinite medium.

x

Infinite Plane, C = C1 < C2

Sphere, C = C2
d
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These are, of course, precisely the type of simple expressions we wish to
have on hand to calculate the flux that results in these complex geometries.
Equation 2.27 requires knowledge only of the bounding concentrations and
the diffusivity. The geometry of the system is accounted for through the so-
called shape factor S, which has the dimensions of length and is extensively
tabulated in standard handbooks of heat transfer. A short version is given
in Table 2.4.

Let us use these tabulations to reexamine the helium storage problem of
Illustration 1.3. For distances from the surface x much larger than the cavity
dimension, we have, with C1 ª 0

N = DS(C2 – C1) ª D 2pd C2 (2.28a)

or equivalently

N = D 4pr p/RT (2.28b)

This expression is identical to Equation 1.9c, obtained by a spherical shell
balance, and represents diffusion into an infinite medium. 

When distance x is reduced, the result begins to be affected by the prox-
imity of the surface plane, but not by much. Suppose, for example, that the
center of the storage cavity is at a distance of only 100 m from the surface.
We then have

N = D[2pd/(1 – 100/400)]C2 (2.28c)

i.e., the losses increase by 33%.
The use of a spherical shell balance within an infinite medium is thus

justified at large depths but is only an approximation in the vicinity of the
planar surface. This is in agreement with physical reasoning.

Illustration 2.10: Lifetime of Volatile Underground Deposits

A shallow buried dump 100 m in diameter (d) contains dispersed in it an
estimated 100 mol of a toxic substance with a low vapor pressure of 10–2

TABLE 2.4

Shape Factors for Various Geometries Embedded in a Semi-Infinite Medium

Embedded Object Shape Factor S Conditions

1. Sphere, diameter d 2pd /(1 – d/4x) x > d/2
2pd x > d

2. Thin circular disk, diameter d 2d x = 0
4d x > d

3. Thin rectangular plate a < b pa ln(4a/b) x = 0
2pa ln(4a/b) x > a

4. Horizontal cylinder, length L, diameter d 2p L/ln(2L/d) x > d
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mmHg. It is desired to estimate the minimum time it takes for the charge to
evaporate and disperse into the surrounding space.

We assume the geometry to be that of a shallow disk with a maximum
shape factor S = 4d. Diffusivity is set at D = 10–8 m2/s. We then obtain from
Equation 2.27b

N = DSC2 = DSp/RT (2.29a)

                                                = 10–8 4 ¥ 100 (10–2/760)105/8.314 ¥ 298

N = 2.12 ¥ 10–9 mol/s

For a charge of 100 mol, the lifetime of the deposit works out to

    

 t = 6.69 ¥ 104 years 

On the other hand, for the same amount of the carcinogen benzene, which
has a vapor pressure of 95 mmHg, the lifetime drops to a value of

t = 6.69 ¥ 104 (10–2/95) = 7.4 years

Comments:

In either case, the evaporative disposal time is unacceptably high. The charge
to be disposed of is relatively small, 7.8 kg in the case of benzene or 100 kg
if we assume a molar mass of 1000 for the less-volatile substance.

Some relief may be found by adjusting diffusivity upward. Chapter 3
provides an expression for the rough estimate of diffusivity in porous media,
given by D = Doe/4. Do represents the free-space diffusivity, of the order 10–5

m2/s for gases, and e is the porosity of the medium. If we assume a highly
porous soil with e = 0.4, D is reduced by two orders of magnitude and the
lifetime of the benzene deposit drops to 0.074 years = 27 days. For the less
volatile substances, it remains unacceptably high, at 669 years.

Practice Problems

2.1. Compartmental Modeling in Pharmacokinetics
The subject of pharmacokinetics comprises the study of the fate of
an injected drug in the human or animal body. A typical exercise
involves the monitoring of the drug concentration in the blood after

t =
¥ ¥ ¥ ¥-

100
2 12 10 3600 24 3659.

years
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injection and extracting from the resulting time history relevant
kinetic or transport parameters. A favorite device for the interpre-
tation of the experimental findings is the one-compartment model
shown in Figure 2.11a. After the one-shot injection of the drug, the
drug concentration declines exponentially in the manner shown in
the accompanying diagram. That curve, determined experimentally,
is usually described by a first-order rate law, which is incorporated
in a mass balance around the compartment. We have

Rate of drug in – Rate of drug out =  

 0  – keCV =  (2.29a)

      with the solution

ln C/Co = –ket (2.29b)

where ke is the so-called elimination-rate constant, which can be
obtained from a semilog plot of the experimental concentration-time
data and which is often reported in terms of the half-life of the drug
t1/2 = ln 2/ke, i.e., the time required to reduce its concentration to

FIGURE 2.11
One-compartment models and the time course of drug concentration: (a) clearance following
injection; (b) steady infusion.

d
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one-half the initial level. Note that the injected dose does not enter
the mass balance directly but appears instead as the initial concen-
tration Co, which is obtained by extrapolation of the data to time t
= 0 (Figure 2.11). ke can then be used to determine the time course
of drug concentration during its steady infusion, or administration,
to a patient. Infusion follows the time course shown in Figure 2.11b.
It reaches a plateau value termed the effective therapeutic concentration
(ETC) when infusion and elimination rates are exactly in balance.
Consider the case of a patient who has undergone major surgery
and requires a slow, intravenous infusion of aminocaproic acid to
control hemorrhage. It is planned to infuse at the rate of 1 g/h, and
the drug is known to have a half-life of 3.9 h. If the drug is only
effective above 0.048 g/l, how long does it take to reach this level
after the start of infusion? Assume a fluid volume of 50 l.

Answer: 3.25 h

2.2. Solute Release from a Tubular Wall into a Stream in Turbulent Flow
A solute is released from a tubular wall into a fluid in turbulent flow.
Two cases are to be considered:
a. The substance is released at a constant rate N (mol/m2/s) all

along the length of a tube. This case arises in some medical
applications.

b. The solute concentration at the wall is constant and equal to its
equilibrium solubility C*. This leads to the type of profile devel-
opment we had seen in Figure 2.8a.

Derive for both these cases the variation in the axial direction of the
bulk concentration Cb of the solute.
Answer:

a.   

b. (C* – Cb)/C* = exp(–4kcx/vd)

2.3. Clearance of a Contaminated River Bottom Sediment
A toxic substance is released into a river at a constant concentration
and over a time interval Dt. The contaminant is adsorbed onto the
bottom sediment and, after contamination has ceased, is gradually
cleared into the river. It is desired to calculate the time necessary for
the sediment to be cleared of 95% of its contaminant. Assume the
concentration in the sediment and the water to be uniform in the
vertical direction but not in the direction of flow.

C
N

vd
xb = 4
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a. Is the process an unsteady one or can it be considered to be at a
steady state?

b. What are the dependent and independent variables for the sys-
tem?

c. Describe the space over which the mass balance has to be applied.
d. Describe the resulting model equations without actually deriving

them.
2.4. Performance of a Dryer

A batch of wet solids holding a total of 10 kg of water is to be dried
by passing hot air over it. The air enters with a humidity of 0.03 kg
H2O/kg air and leaves with a humidity of 0.10 kg H2O/kg air. The
(dry) airflow rate is constant at 0.05 kg/s. Calculate the time neces-
sary to evaporate 95% of the moisture. (Hint: Make a cumulative
balance.)

2.5. The Countercurrent Heat Exchanger
The countercurrent heat exchanger is the heat transfer analogue to
the countercurrent gas scrubber described in Illustration 2.3. Cold
fluid enters the central tube at a flow rate of Fc kg/s countercurrent
to a hot fluid, which enters the concentric shell on the right and with
a flow rate Fh kg/s. Heat is transferred to the cold fluid at a rate
q = UADT causing a change in the enthalpy Hc, and consequently
the temperature TC of the cold fluid. Enthalpy is related to temper-
ature through the expression H = FCp(T – Tref).
a. Make an integral heat balance over the entire exchanger. The

resulting expression corresponds to Equation 2.11b obtained for
the countercurrent gas scrubber.

b. Derive the thermal counterparts to the differential mass balances
(Equations 2.12d and 2.12e) but do not solve.

2.6. The Use of the Dye Dilution Method in Determining Flow Rates
Blood flow rates Q through an organ may be determined by adding
a dye or other tracer to the ingoing arterial bloodstream and moni-
toring the concentration of the (venous) outlet. Type and size of the
chosen tracer are such that we can assume it stays strictly in the
blood phase and does not permeate into the surrounding tissue.
Derive an expression for Q in terms of measurable quantities.

Answer:  

2.7. Unsteady Diffusion with a Chemical Reaction
Consider the case of a substance diffusing into a porous solid slab
(see Illustration 2.7) in which it is irreversibly bound to the solid

Q
m

C dtv
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substrate in accordance with a first-order rate law. Modify the result
obtained in Illustration 2.7 to describe this process.

2.8. Unsteady Diffusion from a Sphere into a Solution of Finite Constant
Volume
Soluble material is leached from a slurry of porous spherical particles
by suspending them in a well-stirred liquid solvent of constant vol-
ume. This type of operation finds frequent use in the leaching of
ores, and in the extraction of edible oils from seeds. Show that the
model for this system is made up of a single PDE for the spheres
and an ODE for the stirred tank. What are the relevant boundary
and initial conditions?
Solutions to this problem and an illustrative example are given in
Chapter 4.

2.9. A Total Mass Balance: The Continuity Equation in Three Dimensions
Show that the total mass balance for a flowing system with and
without chemical reactions in a rectangular coordinate system is
given by

  (2.30)

where r = density and vx, vy , vz are the velocity components in the
three directions. (Hint: Consider a cube with sides Dx, Dy, Dz.)

2.10. Use of the Separation Factor in Solidification Processes
Solve the differential Equation 2.20, using the equilibrium relation
represented by Equation 2.22h. Hint:

  

2.11. Eutectic Compositions and Solidification
The phase diagram shown in Figure 2.9a is an ideal case that occurs
with some frequency but not exclusively. A fairly common extension
of this case arises when the lenslike region shown in Figure 2.10a
extends only partway from zero weight fraction to some intermedi-
ate composition xSE termed a eutectic. It is joined there at its tip by
a second lens, which covers the remaining weight fraction range
from xSE to xS = 1. Similar diagrams arise in vapor–liquid equilibria,
where the eutectic composition is termed an azeotrope (see Figure
6.20a). Indicate how the separation factor of the preceding problem
should be modified to cover this case.
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2.12. Diffusion and Reaction in a Spherical Catalyst Pellet
Use the general conservation Equation 2.24a and Table 2.2 to derive
the differential equation for uniform diffusion and reaction in a
spherical catalyst pellet.

2.13. Controlled-Release Implants
Controlled-release devices consist in essence of encapsulated satu-
rated suspensions of a medication. The release proceeds through a
confining porous membrane into the surrounding tissue, ultimately
reaching the target area or organ where the medication is assimi-
lated. Estimate the maximum possible release rate, given the follow-
ing data:
Implant: 0.5 ¥ 0.5 cm cylinder
Saturation solubility: Cs = 1 mmol/l
Diffusivity: D = 10–5 cm2/s
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3
Diffusion through Gases, Liquids, and Solids

Chapter 1 introduced the reader to the notion of diffusional processes in
which mass transfer takes place by molecular motion only and is propor-
tional to the concentration gradient of the diffusing species. This proportion-
ality is enshrined in Fick’s law of diffusion and this introductory chapter
was used to acquaint the reader with some simple applications of that law
(see Illustration 1.2 and Illustration 1.3). The intent of the present chapter,
and the one that follows, is to amplify and expand the material on diffusion
presented in Chapter 1.

We examine in some detail the important diffusion coefficient, which,
when viewed mathematically, is the proportionality constant in Fick’s law.
It is also a material property that depends on the nature of the diffusion
species, the matrix through which diffusion takes place, as well as on tem-
perature, and, in the case of gases, on pressure. We consider in some detail
the diffusivities of gases within gases, within liquids, and within solids, and
the diffusivities associated with the interdiffusion of liquids and solids. These
coefficients are of considerable practical importance in various engineering
disciplines, in materials processing, and in the biological and environmental
sciences.

3.1 Diffusion Coefficients

3.1.1 Diffusion in Gases

The mechanisms by which diffusion in gases takes place are depicted sche-
matically in Figure 3.1a. Gas molecules move in space in random motion
with an average velocity u, repeatedly undergoing collision with other mov-
ing gas molecules, which causes them to be deflected into a new direction.
The average distance traveled by a molecule is referred to as the mean free
path l, where l is of the order 10–7 m at atmospheric pressure and is a direct
measure of the diffusivity of a substance. A selected list of diffusivities of
gases and vapors in air appears in Table 3.1. 
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A first simple expression for the diffusivity of gases was derived some 150
years ago based on the kinetic theory of gases. In this theory, the molecules
are regarded as point entities, which undergo elastic collisions with each

FIGURE 3.1
Diffusional mechanisms in (a) gases and (b) liquids and solids.

TABLE 3.1

Diffusivities in Air (P = 1 atm, T = 25°°°°C)

Diffusing Species Diffusivity, cm2/s

Hydrogen 0.78
Helium 0.70
Ammonia 0.22
Water 0.26
Oxygen 0.20
Ethanol 0.14
Acetic acid 0.12
Benzene 0.090
Toluene 0.086
n-Hexane 0.080
Carbon tetrachloride 0.083
Chlorotoluene 0.065
DDT 0.047
2,4,2¢,4²-Tetrachlorobiphenyl (a PCB) 0.052
Mercury 0.13

Diffusing
Molecule

Free Path

Vacancies
or Defects

a.

b.

Diffusing
Molecule
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other without the intrusion of intermolecular attractive or repulsive forces.
This simple model led to the expression

  (3.1)

where the average velocity u varies directly with the square root of absolute
temperature and the mean free path is inversely proportional to the molar
density n/V. This expression correctly predicts the order of magnitude of D
(see Practice Problem 3.1) and the dependence on gas pressure and molar
mass M, but gives a much less accurate representation of the variation with
temperature.

This first attempt at a prediction of D was followed by a series of more
elaborate theories, which took account of the finite size of the gas molecules,
as well as the effect of intermolecular forces. Probably the most popular
among current prediction methods is that due to Fuller, Schettler, and Gid-
dings, who proposed the following expression for the calculation of gas
diffusivities:

  (3.2)

Here DAB is in units of cm2/s, T is the absolute temperature (K), PT the total
pressure in atmospheres, and V are the atomic and molecular volume con-
tributions. These are empirical constants that correspond very approximately
to the molar volume of the substances in cm3/mol. They have been tabulated
and a partial list for use with organic molecules appears in Table 3.2. 

Illustration 3.1: Diffusivity of Cadmium Vapor in Air

Cadmium vapor is a toxic substance whose diffusivity in air is not readily
available in the literature. It is desired to calculate its diffusivity at its boiling
point of 1038 K and a pressure of 1 atm. Because an empirical atomic volume
is not available, we use the reported value for its liquid volume of 14 cm3/
mol for an atomic weight of 112.4. We obtain, using Equation 3.2:
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A data point for the diffusivity of Cd in N2 at 273 K is available for
comparison. Its value is 0.15 cm2/s and we obtain, by applying a temperature
correction in line with Equation 3.2,

This is in good agreement with the calculated value of 1.6 cm2/s.

Comments:

Some remarks are in order regarding the magnitude of gas phase diffusivi-
ties. We note from Table 3.1 that at 25°C and a pressure of 1 atm, most
diffusivities cluster around a value of 0.1 cm2/s. This includes metal vapors,
as well as medium-sized organic molecules such as DDT and the PCBs. The
reason for this lies in the relatively weak dependence of DAB on molar volume
and mass and the limited number of gaseous or volatile substances available.
The larger organic molecules such as polymers, proteins, and carbohydrates
that would lead to low diffusivity values do not exist in the vapor phase.
Thus, gas diffusivities lower than 0.01 cm2/s are unlikely to be encountered.
An upper ceiling is provided by the lightest molecules, hydrogen and
helium, which have a mutual diffusion coefficient of 1.35 cm2/s at 25°C and
1 atm. A reasonable order-of-magnitude estimate can therefore be arrived at
in most cases by starting with a value of DAB = 0.1 cm2/s and applying
temperature or pressure correction factors in accordance with Equation 3.2.

TABLE 3.2

Atomic and Molecular Volume Contributions for 
Diffusivity Calculations

Species Volume V (cm3/mol)

A. Gases (Fuller, Schettler, and Giddings Method)

C 16.5
H 1.98
O 5.48
N 5.69
Cl 19.5
Aromatic ring –20.2
Air 20.1

B. Liquids (Wilke–Chang Method)

C 14.8
H 3.7
O 7.4
O in high esters and others 11.0
O in acids (–OH) 12.0
Cl (terminal) 21.6
6-numbered ring –15
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Applying this procedure to the cadmium vapor of Illustration 3.1, we obtain
a value of

    

which is of the correct order of magnitude.

3.1.2 Diffusion in Liquids

Liquid densities exceed those of gases at normal atmospheric pressures by
a factor of about 1000. These differences are reflected in the intermolecular
distances that exist in the two phases. In gases under standard conditions
these distances are some three orders of magnitude greater than the molec-
ular dimensions. Liquid molecules are by contrast closely packed, with inter-
molecular distances of the same order as the molecular size.

Gas molecules spend most of their time in transit between collisions and
are only modestly affected by intermolecular forces. In liquids these forces
are the dominant factor that determines the mobility of the molecules. They
are notoriously difficult to quantify, and as a consequence, the prediction of
liquid diffusivities has lagged behind theories describing the motion of gas
molecules.

The Stokes–Einstein equation, one of the earliest theoretical expressions
for liquid diffusivities, viewed the diffusion process as a hydrodynamic
phenomenon in which the thermal motion of the molecules is resisted by a
Stokesian drag force. This theory, along with subsequent modification by
Sutherland and Eyring, established the following proportionality for the
diffusion coefficient:

    

This relation, which is most successful for large molecules (VA > 500 cm3/
mol), states that diffusivity varies inversely with the viscosity of the solvent
and the molecular dimension of the diffusion molecule. This agrees with our
intuitive grasp of the process.

Modern theories consider the diffusing particle to be contained in a cage
whose dimensions are constantly fluctuating. Local fluctuations in density
periodically open holes or vacancies large enough to allow the particle to
diffuse out of the cage (Figure 3.1b). Although this view has led to some
progress in the quantification of the diffusion process, we are at present still
constrained to using semiempirical expressions for the prediction of diffu-
sivities. One such relation, proposed by Wilke and Chang, has been
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Ë
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reasonably successful in predicting diffusion coefficients of small molecules
in aqueous and organic systems at normal temperatures. It has the form

  (3.3)

where MB and VA (cm3/mol) are the molar mass of solvent and volume of
the diffusing species and j is an empirical coefficient with a value of 2.6 for
water and 1.0 for unassociated solvents. For organic solutes VA is composed
of atomic and ring contributions, a partial list of which is given in Table 3.2B.
An example of the application of Equation 3.3 is given in Practice Problem
3.3.

Diffusivities in molten salts and metals are even more difficult to predict
and here we often resort to an Arrhenius-type relation to express the strong
temperature dependence of the diffusion coefficient, which is concealed in
the viscosity of Equation 3.2 and Equation 3.3:

DAB = D0 exp(–Ea/RT) (3.4)

This equation also finds use as a correlation for diffusion coefficients in
solids. Tabulations of D0 and the activation energy Ea for various species can
be found in the pertinent literature. An example of their application appears
in Practice Problem 3.10.

Given the uncertainties of current prediction methods for liquid diffusiv-
ities, it is clearly preferable to use measured values of DAB. Table 3.3 lists
diffusion coefficients in water at 25°C of a variety of solutes, including gases
(Part A) and ions (Part C), and solutes of a biological or toxic nature (Parts
D and E). In Table 3.4 we have reproduced a small selection of diffusivities
in liquid metals and molten salts at different temperatures.

The remarkable feature that emerges from these tabulations is the relatively
small numerical range of the diffusivities for a wide variety of different
substances. Most coefficients cluster around a value of 10–5 cm2/s, with the
lighter and smaller solutes (H2 and He) exceeding this benchmark by a factor
of 5 to 7, while very large molecules of a biological origin fall below this
value by factors of 2 to 20. Diffusivities in molten metals and salts, which
are quite different in nature from normal liquids, likewise fall in the range
10–5 to 10–4 cm2/s; the higher values are due mainly to the higher tempera-
tures involved. A rough initial estimate of D = 10–5 cm2/s when liquid
diffusivities are not known will therefore not be too far off the mark. The
corresponding average value for gases is, as was seen, 10,000 times higher
at D = 10–1 cm2/s. However, because gases are much less dense than liquids
and consequently have lower concentration gradients, the diffusion rates
themselves are only about 10 times higher than the corresponding values in
liquids.

D M
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TABLE 3.3

Diffusivities in Water (T = 25°°°°C)

Diffusing Species Diffusivity, cm2/s ¥¥¥¥ 105

A. Gases

Hydrogen 4.8
Helium 7.3
Methane 1.8
Ammonia 2.0
Carbon monoxide 2.17
Oxygen 2.42
Nitrogen 2.0
Hydrogen chloride 3.1
Carbon dioxide 2.0
Sulfur dioxide 1.7

B. Liquids

Methanol 1.28
Ethanol 1.24
Acetic acid 1.26
Acetone 1.28
Benzene 1.02

C. Ions

H+ 9.3
OH– 5.3
NH4

+ 2.0
Na+ 1.3
Mg2+ 0.71
Cl– 2.0
K+ 2.0
Fe3+ 0.60
Cu2+ 0.71
NO3

– 1.9
SO4

2– 1.1

D. Biological Substances Molar Mass

Urea 1.4 60
Glucose 1.3
Oxygen in blood 1.4 32
Oxygen in muscle tissue 1.7 32
Lysozyme (egg white) 1.0 14,000
Hemoglobin 0.69 68,000
Fibrinogen 0.2 330,000
Tobacco mosaic virus 0.044 40,000,000

E. Environmentally Toxic Substances

Chlorine 1.45
Chlorobenzene 0.91
1,2,4-Trichlorobenzene 0.76
Mercury 2.9
DDT 0.49
2,4,2¢,4-Tetrachlorobiphenyl 
(a PCB)

0.55
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To demonstrate the use of liquid-phase diffusivities, we turn to the some-
what unusual case of ion migration in an electrolytic process, and the elec-
trical current that results from it.

Illustration 3.2: Electrorefining of Metals. Concentration Polarization and 
the Limiting Current Density

The final processing in the production of high-purity metals is often carried
out electrolytically and is referred to as electrorefining. In this process the
metal to be refined, such as copper or silver, has a typical initial purity of
95 to 99% and the aim is to reduce the impurity level to less than 0.1%.
Conventional purification processes are often either inadequate or too expen-
sive for this purpose. In electrorefining, the impure metal, e.g., copper, is
placed in an electrolytic bath as an anodic plate that is paired with a cathode
on which the purified metal is deposited electrolytically. The electrolyte
typically consists of an aqueous solution of a salt of the metal to be purified,
for example, copper sulfate, and the electrolytic cell is composed of an array
of closely spaced alternating cathodes and anodes. A sample electrode pair
and the configuration of the electrolytic cell are shown in Figure 3.2a.

When a potential is applied to the electrodes, two processes take place. At
the anode, the metal, along with its impurities, dissolves as positive cations
into the electrolytic bath. These ions migrate to the negative cathode where
they are discharged as metal. The impurities, such as iron, usually require
a higher potential to be deposited, and consequently remain in solution.

As a result of the applied voltage and the attendant migration of ions, a
concentration gradient develops within the bath that ultimately leads to a
linear steady-state profile shown in Figure 3.2b. A distinction must be made
between the behavior of the cations, here exemplified by Cu++, and the
negative counterions represented by . For the former, the transport
rate is made up of two components that act in the same direction (Figure
3.2c). Diffusional transport with a rate N, and transport due to the applied
electrical potential, is represented by the rate FE. We can then write

TABLE 3.4

Diffusivities in Liquid Metals and Salts

T °°°°C Diffusing Species Melt D (cm2/s) ¥¥¥¥ 105

1270 Fe Fe (4.6%C) 10.0
40 Hg Hg 2.0

600 Zn Zn 5.0
450 Sn Pb 2.0
906 Na+ NaCl 14.2
933 Cl– NaCl 8.8
328 Na+ NaNO3 2.0
328 NO3

– NaNO3 1.36

SO4
--



Diffusion through Gases, Liquids, and Solids 99

  (3.4a)

                                       Diffusional flux         Electrostatic flux

For the anions, the two transport mechanisms act in opposite directions
(Figure 3.2c).  ions migrate toward the cathode by diffusion, as do the
copper ions, but they are repelled there and driven back into solution by the

FIGURE 3.2
Electrorefining and concentration polarization: (a) sample electrode pair and electrolytic bath;
(b) concentration gradients; (c) flux due to diffusion and electrostatic potential.
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negative charge of the electrode. The result is that there is no net flux of the
anions. Diffusional transport is exactly balanced by electrostatic transport
and we can write

  (3.4b)

We note that , and for electrical neutrality to be maintained,

we must have . Adding Equations 3.4a and 3.4b to eliminate

the electrostatic flux, we obtain

  (3.4c)

On integration by separation of variables there results

  (3.4d)

The maximum flux occurs when the concentration at the cathode has
dropped to zero. Noting that the concentration at the anode is then twice
the initial electrolyte concentration, , we can write

  (3.4e)

Let us apply this equation to a particular condition. Suppose that the
electrodes are spaced 1 cm apart and the initial concentration of copper
sulfate is 0.1 molar. Using the diffusivity for Cu++ listed in Table 3.3C we
then obtain

  (3.4f)

  (3.4g)

Comments:

Equation 3.4e gives a good semiquantitative description of the behavior of
electrolytic cells and their counterpart, the galvanic cells or batteries. It
shows, first and foremost, that there is a limit to the rate of electrolytic
deposition or production, which cannot be exceeded by increasing the
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applied voltage. Similarly, there is a limiting maximum current that can be
drawn from batteries. These limits are imposed by the diffusional processes,
which accompany all electrochemical processes, be they galvanic or electro-
lytic in nature. Equation 3.4e also shows the need for close electrode spacing
to achieve high production rates. In car batteries, for example, the plate
spacing is of the order of 1 mm.

Deviations from Equation 3.4e occur mainly as a result of the concentration
dependence of the diffusivities. This is the case particularly at high electro-
lyte concentration where electrostatic interactions reduce the ion mobility
below the values listed in Table 3.3C. The latter apply to conditions at infinite
dilution.

Equations of the form of Equation 3.4e can also be used to calculate the
current associated with electrochemical processes. To do this, we use the
conversion factor given by the so-called Faraday number ¡:

¡ = 96,520 C/mol electrons (3.5)

where C denotes coulombs or ampere-seconds.
Let us use this conversion and Equation 3.4e to calculate the current

associated with the electrorefining of copper. We assume the unit to be
composed of 20 cathodes and 20 anodes, each 1 ¥ 1 m in dimension and
spaced L = 2 cm apart. Diffusivity of the copper ions is 0.71 ¥ 10–5 cm2/s (see
Table 3.3C) and the concentration C is set at 10–3 mol/cm3. We obtain for the
current i

  (3.6a)

i = 2 ¥ 96,520 ¥ (20 ¥ 100 ¥ 100) ¥ 0.71 ¥ 10–5/2 ¥ 10–3 (3.6b)

This yields

i = 137 A (3.6c)

Note that while currents in these operations are considerable, the applied
voltage is quite small. Dissolution and deposition potentials almost exactly
cancel each other and the only voltage drop that occurs is due to the Ohmian
resistance of the electrolyte solution. This rarely amounts to more than a
fraction of a volt.

The reader is directed to Practice Problem 3.4, which deals with the cal-
culation of the size of an electrorefining plant.

3.1.3 Diffusion in Solids

In the diffusion through solids, several distinct cases arise that depend on
the nature of the diffusing species and of the solid medium. The diffusing

i A D C L= ¡ ¥ ¥ ¥+ +2
Cu

/
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species can be gaseous or liquid in form, or, surprisingly, can also be a solid.
For the solid medium, a distinction is made between consolidated media,
such as polymers, and those that have a porous structure. We limit ourselves
here to a discussion of three important cases of transport through solids,
which we take up in turn: diffusion of gases through polymers and metals
and through porous media, and the interdiffusion of solids.

3.1.3.1 Diffusion of Gases through Polymers and Metals

The diffusion of gases through polymers and similar consolidated media is
viewed as a three-step process (Figure 3.3): (1) At the high-pressure interface,
the gas dissolves or condenses in the solid matrix. (2) Following dissolution
or condensation, the gas diffuses along a solid-phase concentration gradient
dC/dx in accordance with Fick’s law to the low-pressure interface. (3) On
arrival at the low-pressure gas-solid boundary, the dissolved gas is desorbed
or released to the gaseous medium.

In Steps 1 and 3, the gas is assumed to be in instantaneous equilibrium
with the neighboring solid matrix. The solid-phase concentration C is related
to the gas pressure by a linear relation, given as

C = Sp (3.7)

where S is termed the solubility of the gas in the solid. The units used for
C are somewhat unconventional and are expressed as cm3 gas at STP/cm3

solid. Units for pressure p are either in atmospheres or Pa, both of which are

FIGURE 3.3
External gas pressures and internal solid-phase concentration in the diffusion of gases through
polymers.
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currently still in use. As a consequence of this dual usage, the solubility S is
reported either in units of cm3 (STP)/cm3 Pa or cm3 (STP)/cm3 atm.

A dual approach is also used in the formulation of the diffusional rate
laws. In the first version, Fick’s law is used with concentrations as defined
above; i.e., we have

  (3.8a)

where D is the diffusion coefficient in cm2/s.
The second and preferred version uses a pressure gradient and leads to

the rate law

  (3.8b)

Here P is the so-called permeability, which is most commonly expressed
in units of cm3 (STP) ¥ cm/cm2 s or cm3 (STP) ¥ cm/cm2 s Pa. Several other
additional units are still in current use and the translation from one set of
units to another is a frequent necessity. To ease this task, we have provided
in Table 3.5 a listing of the most commonly required conversion factors.

Permeability is related to the Fickian diffusivity D through the solubility
S. This is seen by substituting Equation 3.7 into Equation 3.8a and comparing
the result with Equation 3.8b. We obtain the relation

P = DS (3.9)

which can be used to calculate D from independent measurements of per-
meability and the equilibrium solubility S.

In contrast to the diffusivities in gases and liquids, which cluster around
values of 10–1 and 10–5 cm2/s, the diffusion coefficients and permeabilities
we encounter here are not confined to a narrow numerical range. They are
strongly material-dependent and range over several orders of magnitude.
This is shown in Table 3.6, which lists values of P and S for six common
gases and vapors in several commercial polymers.

Permeabilities typically vary over the range 10–17 to 10–10 cm3 STP ¥ cm/
cm2 s Pa, values for D = P/S over the somewhat narrower range of 10–9 to
10–5 cm3/s, with no apparent relation to species and material properties.

Even odder behavior is observed when we compare the mobility of dif-
ferent gases in the same material. Large molecules with a high molar mass,
which we would intuitively expect to be less mobile than their lighter coun-
terparts, can in fact have considerably higher permeation rates. Thus, in PVC,
water vapor with a molar mass 4.5 times that of helium and twice its molec-
ular size nevertheless has a permeability rate more than 100 times that of
helium. This reinforces the notion that the movement of gas molecules

N DA
dC
dx

( )ccSTP / s = -

N PA
dp
dx

( )ccSTP / s = -
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through polymers is a highly complex process, which does not exhibit the
simple inverse relation to molecular mass and size seen in diffusion through
gases and liquids. Much more elaborate theories, which are still in a state of
development, are required to quantify this process.

The following example provides some practice in the use of solubilities
and permeabilities.

Illustration 3.3: Uptake and Permeation of Atmospheric Oxygen in PVC

Consider a polyvinyl chloride sheet 0.1-mm thick with a one-sided area of
1 m2. Its density is 1.1 g/cm3 and it is exposed to atmospheric air at 100 kPa.
We wish to calculate (1) the uptake of oxygen from the air, and (2) the daily
rate of permeation that prevails when one face of the sheet is in contact with
the atmosphere, and the other is in contact with pure nitrogen at the same
total pressure of 100 kPa.

1. Uptake of Oxygen

We start with Equation 3.7 and convert from C (cc STP O2/m3) to mass
  of oxygen. This yields

  (3.10a)

TABLE 3.5

Conversion Factors for Gas Permeabilities in Solids

From Multiplication Factors to Obtain P in

      

  1 7.5 ¥ 10–4 6.57 ¥ 1010

  10–1 7.5 ¥ 10–5 6.57 ¥ 109

  1.32 ¥ 10–2 9.87 ¥ 10–6 8.64 ¥ 108
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Here  equals the partial pressure of oxygen in the air (Pa), VPVC is the
volume of the sheet (cm3), and and are the molar mass and volume
(STP) of the oxygen, respectively.

Using the values for solubility given in Table 3.6 we obtain

  

    (3.10b)

and consequently

  (3.10c)

i.e., approximately 1 mg.

2. Permeation Rate of Oxygen

The relevant expression for this case is Equation 3.8b, which after insertion
of the appropriate numerical values yields

TABLE 3.6

Permeabilities and Solubilities of Gases in Polymers 
(T = 25°°°°C unless otherwise indicated)

Polymer H2 He O2 CO2 N2 H2O

Polyethylene P 7.4 3.7 2.2 9.5 0.73 68
(low density) S 1.6 0.054 0.47 2.5 0.23
Polyethylene P 0.86 0.30 0.27 0.11 9.0
(high density) S 0.028 0.18 0.22 0.15
Polystyrene P 17 14 1.9 7.9 0.59 1350
(biaxially oriented) S
Polyvinyl chloride P 1.3 1.5 0.034 0.12 0.0089 206
(PVC-unplasticized) S 0.26 0.055 0.29 4.7 0.23 870
Polyvinyldene chloride P 0.233 0.0038 0.0022 0.00071 7.0
(Saran) S (30°C) (30°C) (30°C) (30°C)
Polytetrafluoroethylene P 7.4 9.0 3.2 7.5 1.0 6.8 (38°C)
(Teflon) S 4.9 1.1 2.1 9.2 1.2
Polychloroprene P 10 3.0 19.0 0.88 683
(Neoprene G) S 0.29 0.74 8.2 0.36
Cellulose hydrate P 0.0046 0.00038 0.0016 0.19 0.0024 18,900
(Cellophane) S
Vulcanized rubber P 34 15 98 5.3

S 0.40 0.69 8.9 0.35

Note:  P in [cm3 STP ¥ cm/cm2 s Pa]1013; S in [cm3 STP/cm3 Pa]106.  

pO2

MO2
VO2

mO2
0 29 10 6= ¥ ¥-. cm STP / cm Pa 21,000 Pa3 3

¥ ¥ ¥( . ) / ,100 0 01 32 22 4102 cm g / cm cc / mol3 3

mO2
8 7 10 4= ¥ -. g
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                                                               (3.10d)

N= 6.17 cc STP/day (3.10e)

or equivalently

  (3.10f)

Comments:

The permeation rate of atmospheric oxygen in PVC is seen to be quite low,
in spite of the considerable area of the sheet in question and its very small
thickness. PVC would consequently be a good packaging material in cases
where atmospheric oxygen is to be excluded.

Illustration 3.4: Sievert’s Law: Hydrogen Leakage through a Reactor Wall

Permeation of gases through metals initially follows the same mechanism
that applies to diffusion through polymeric materials; i.e., the gas dissolves
or condenses in the solid metal matrix. On dissolution, however, a number
of diatomic gases such as hydrogen, oxygen, and nitrogen undergo dissoci-
ation into their component atoms according to the scheme:

  (3.11a)

As a consequence of this process, the equilibrium solid-phase concentra-
tion C is no longer related linearly to gas pressure but depends instead on
the square root of p. The linear relation (Equation 3.7), C = Sp, must conse-
quently be replaced by the expression

C = Kp1/2 (3.11b)

where K is the equilibrium dissociation constant for the reaction (Equation
3.11a). A corresponding change must be effected in the definition of the
permeability. Whereas previously we had defined P as P = DS (Equation
3.9), we now write

P = DK (3.11c)

where P has the new units of cm3 STP cm/cm2 s atm1/2.
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Expression 3.11b is known as Sievert’s law and can be used to calculate
the permeation rate of diatomic gases through metals.

The example considered here involves a tubular reactor made of steel that
is to be used in the high-pressure hydrogenation of hydrocarbon vapor. The
vessel is 3 m long, has an internal radius ri of 5 cm, and is to be operated at
a pressure of 100 atm and a temperature of 450°C. The permeability P at this
temperature has a value of 8.4 ¥ 10–6 cm3 (STP) cm/cm2 s atm1/2.

We wish to calculate the wall thickness required to keep hydrogen losses
within reasonable bounds. The reader may recall that a similar configuration
and process had been considered in Illustration 1.2 to derive the diffusion
rate through a hollow cylinder. That rate was given by the expression

  (1.7c)

where the subscripts i and o refer to inside and outside conditions.
For the case at hand, we replace C by pressure using Equation 3.11b and

eliminate D by introducing the permeability P given by Equation 3.11c. This
leads to the result

  (3.11d)

Assuming negligible external hydrogen pressure (po = 0), we obtain

  (3.11e)

The resulting diffusion rates as a function of external radius ro are tabulated
below.

We note that, after an initial rapid drop, the diffusion rate tapers off
asymptotically with an increase in wall thickness ro – ri due to the logarithmic
dependence on external radius. A wall thickness of 0.5 cm is clearly insuf-
ficient, as it leads to substantial hydrogen losses at a level of 1.7 cc (STP)/s.
On the other hand, tripling the wall thickness from 5 cm to the inordinately

N[cm3 (STP)/s] ro (cm) ro – ri (cm)
1.7 5.5 0.5
0.87 6 1
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high value of 15 cm merely brings about a reduction from 0.23 to 0.11 cc
(STP)/s. A wall thickness of 5 cm therefore appears to be a reasonable
compromise value. Ventilation will nevertheless have to be provided to
prevent a dangerous buildup of hydrogen.

Illustration 3.5: The Design of Packaging Materials

The use of packaging materials is today all-pervasive. Virtually every prod-
uct that reaches the stores and the consumer is packaged at some stage
during its passage from the manufacturing plant to its ultimate destination.
Packaging in crates, cardboard boxes, or sacks and bags eases handling and
provides protection from damage during transportation.

Additional packaging may be provided to prolong shelf life. Food items
are often packaged to maintain freshness and prevent the loss of moisture.
In other cases, the opposite result is desired: Atmospheric moisture is the
enemy and must be excluded by a suitable protective barrier. This arises in
the packaging of moisture-sensitive items such as electronic components.
Both instances require a barrier with low water permeability.

Consider the case of a moisture-sensitive item that must be kept in an
atmosphere of less than 10% relative humidity. This means that the partial
pressure of moisture in the air cannot exceed 10% of the saturation vapor
pressure. To protect the item against accidental excursions of the humidity
of the surrounding air, it is proposed to package it in an appropriate material.
Inspection of Table 3.6 shows that high-density polyethylene has a suitably
low permeability to water vapor. We now stipulate that the thickness of the
packaging material should be sufficient to protect the item against the acci-
dental exposure to 95% humidity air of 1-h duration.

It is not immediately clear at the outset how this information is to be
obtained. Because the permeation process is an unsteady one, a good way
to start is to set up an integral unsteady moisture balance, in which the rate
of permeation into the package is balanced by the change in moisture content
of the interior air. Some further thought will then reveal that the thickness
L being sought resides in the permeation gradient Dp/L. We can consequently
write

Rate of moisture in – Rate of moisture out =  

  – 0 =  (3.12a)

where po and pi are the constant exterior and varying interior partial water
pressures and  equals the moles of water vapor contained in the pack-

Rate of change
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p p

L
o i- d
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nH2O
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age. As we have two dependent variables in pi and , a second expression
relating the two is required. This relation is provided by the ideal gas law

  (3.12b)

Combining Equations 3.12a and 3.12b and introducing the molar conver-
sion factor then yield

  (3.12c)

where the factor 22.410 is used to convert cm3 (STP) contained in the per-
meability to units of mole.

Integrating by separation of variables, we obtain

  (3.12d)

and consequently

  (3.12e)

where the superscripts o and f denote the initial and final moisture content
of the interior air. The desired packaging thickness is obtained by solving
for L:

  (3.12f)

We set temperature at 25°C, area-to-volume ratio A/V at 2, and the initial
interior humidity at zero. Using a permeability of 9 ¥ 10–13 cm3 STP cm/cm2

s Pa listed in Table 3.6 we obtain

  (3.12g)

L = 0.0061 cm (3.12h)
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Comments:

This thickness of less than 0.1 mm is not unduly large. In fact, we could
extend the exposure time to 10 h without exceeding acceptable thickness
limits.

3.1.3.2 Diffusion of Gases through Porous Solids

The permeation process considered in the previous section was somewhat
unusual. It required the prior dissolution of the gas in the solid matrix before
it could make its way through the medium by a process of solid phase Fickian
diffusion. A more conventional permeation process occurs when the solid
involved is porous or is composed of loosely packed particles. Here the
permeating gas enters the solid through the pore openings and continues its
way through the porous passages, all the while remaining in the gas phase.
Diffusion is strictly Fickian and no penetration of the solid matrix per se
takes place.

To describe this process, two factors need to be taken into account. The
first is the reduction in cross-sectional area available for diffusion, which
reduces the diffusion coefficient by a factor equal to the void fraction e of
the solid. Here e is expressed as the ratio of open cross-sectional area to total
cross-sectional area and ranges from 0 to 1. The second factor is due to the
tortuous nature of the porous pathway that is often associated with these
media. The gas molecules are made to zigzag their way through the solid,
rather than going straight through, occasionally coming to a complete halt
in so-called dead-end pores (Figure 3.4a and Figure 3.4b). The net effect is
to lengthen the diffusional pathway and consequently reduce the effective
diffusion rate. This lengthening of the path and the effect of dead-end pores
is accounted for through the so-called tortuosity factor t, which has a value
greater than unity. Both of these effects are lumped into the diffusion coef-
ficient, resulting in an effective and reduced diffusivity De; i.e., we have

  (3.13a)

where D remains the ordinary diffusivity applicable to free space. De is used
in conjunction with Fick’s law, which retains its original form; i.e., we have

  (3.13b)

Void fractions for many porous media typically vary over the range 0.1 to
0.5, with 0.3 a good average value. Tortuosity t has a range of 1.5 to 10, with
occasional excursions to higher values. A value of t = 4 gives a good initial
estimate in the absence of precise data. The combined effect of the reduction
in cross-sectional area and the lengthening of the diffusional pathway is to

D
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e = e
t
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reduce the free-space diffusivity by approximately one order of magnitude.
Thus, the diffusion of oxygen in air, previously set at 0.2 cm2/s (Table 3.1),
now drops by a factor of 10 to approximately 0.02 cm2/s.

We have up to this point assumed that permeation in the pores follows
the mechanism of gaseous diffusion in free space, i.e., that the gas molecules
undergo repeated collisions with each other as they progress through the
medium. However, when pore diameter drops below the value of the mean
free path l, the diffusional mechanism undergoes a change to what is termed
Knudsen diffusion. Here the impeding collisions no longer occur between gas
molecules, but rather between gas molecules and the wall of the pore itself.
The pathway is still a random one, but it now zigzags between the walls of
the pores, which deflect the gas molecules into a new direction (Figure 3.4d).
Equation 3.2, which was given for diffusivity in free space, no longer applies.
Although Knudsen diffusion still varies directly with temperature, and
inversely with molar mass M, it now also depends on the radius of the pore
itself. The relevant expression is given by

DK(cm2/s) = 9700rp(T/M)1/2 (3.14)

where rp is the pore radius in cm and T the absolute temperature in Kelvin.
Knudsen diffusivities can be several orders of magnitude smaller than
molecular diffusivities and are the controlling transport coefficient in many
diffusional processes through porous media.

FIGURE 3.4
Diffusion in a porous solid: (a) straight-through pores; (b) tortuous pores with branching; (c)
molecular diffusion; (d) Knudsen diffusion.
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c.

b.

d.

Dead End Pore
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To illustrate diffusion through porous media, we consider two examples.
The first deals with diffusion into and out of a leaf, which takes place through
tiny, straight-through pores in the underside of leaves. This illustration, and
the practice problem that accompanies it, introduces the reader to the fasci-
nating world of plant physiology and the biophysical processes that sustain
plant life, as well as our own. In the second example we consider diffusion
in a porous catalyst pellet. Here the pore structure is no longer “straight-
through” but becomes tortuous and often gives rise to Knudsen diffusion
because of the small dimension of the pores. Transport into and out of
catalyst particles plays an important role in determining the overall perfor-
mance of the catalyst, and is taken up in more detail in Chapter 4.

Illustration 3.6: Transpiration of Water from Leaves. Photosynthesis and 
Its Implications for Global Warming

The principal transport processes in a leaf, apart from the conveyance of
nutrients, are the uptake of carbon dioxide from the air, and the release of
oxygen and of water vapor to the atmosphere. The latter process is referred
to as transpiration.

The cell structure of a typical leaf is shown in Figure 3.5. Transport takes
place mainly through openings termed stomatal pores (stoma: Greek for
mouth), which are concentrated at the underside of the leaf. Stomata have a
typical length of 10 to 20 mm, an average radius of 5 to 10 mm and cover a
fractional area ranging from 0.002 to 0.02 (0.2 to 2%). The remainder of the
leaf surface is covered by a layer termed cuticle, which is essentially imper-
meable to gases (Figure 3.5).

The stomatal pores are flanked on either side by guard cells that control
the size of the pore opening by expanding or contracting in response to
external stimuli. In the dark, and at low external humidities, the guard cells
are triggered to expand, partially closing the stomatal pores. Under these
conditions, transport of gases through the pores is reduced or ceases entirely.
The movement of the guard cells, which causes the losses, is brought about
by a change in osmotic pressure of the cell fluids.

The interior of the leaves contains the mesomorphic cells, which are arranged
in either a loosely packed, “spongy” configuration or in the denser “pali-
sade” form. The intervening spaces are taken up by intercellular air. These
mesomorphic cells contain smaller cells termed chloroplasts, which in turn
carry chlorophyll, the principal substance responsible for photosynthesis,
i.e., the conversion of carbon dioxide into organic compounds and oxygen.
This process is addressed in greater detail in Practice Problem 3.7.

In the present illustration we consider the transport of water vapor from
the interior of the leaf through the stomatal pores into the surrounding
atmosphere. To obtain an assessment of the maximum possible moisture
loss, we assume the interior of the leaf to be saturated with water vapor.

In principle, the external resistance will depend on wind conditions, which
vary with time as well as with location. Extensive studies have shown that
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this resistance can be accounted for in an approximate fashion, by adding a
distance equal to the average stomatal radius, rst, to the length of the pore,
sst. The total effective length then becomes �st = sst + rst (Figure 3.5b).

Let us use these concepts to calculate the water loss from a typical garden
or city tree of modest size. We assume a stomatal length and radius of sst =
15 ¥ 10–6 m and rst = 7.5 ¥ 10–6 m, with a fractional open area of 1% (e = 0.01),
and set the leaf area at 25 cm2 and the leaf population at 10,000 leaves per
tree. External humidity is assumed to be 50% at a temperature of 25°C, with
a corresponding saturation water vapor psat pressure of 23.8 mmHg. Diffu-
sivity D of water vapor in air is 2.6 ¥ 10–5 m2/s (Table 3.1). The relevant
transport equation is then given by

FIGURE 3.5
Mass transport in a leaf: (a) leaf cell organization; (b) transport in a stomatal pore.
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  (3.15a)

We first calculate the saturation concentration Csat, which is given by

  (3.15b)

Substitution of this and other numerical values into Equation 3.15a then
yields

  (3.15c)

N = 0.185 mol/s (3.15d)

This is the maximum possible moisture loss under the stipulated conditions.
Actual losses may be considerably lower due to less than saturation values
in the interior and due to evaporative cooling, which lowers the interior
water vapor pressure and hence diminishes the driving force.

Comments:

The first impression of this model is its striking simplicity in the face of fairly
complex circumstances. The fact that the interior of the leaf was taken to be
at saturated water levels is acceptable in view of the larger surface area of
cells and capillaries from which water emanates. The use of an equivalent
resistance for the boundary layer equal to the radius of the stomata is not
immediately transparent but becomes more reasonable on closer scrutiny of
the configuration involved. Because no water vapor emanates from the leaf
except at the stomata, the humidity will be constant and equal to the external
level over the impermeable portion of the leaf. Concentration cannot change
abruptly to the level prevailing at the pore mouth, and we must therefore
expect that concentration contours in the form of humps will develop around
the opening (Figure 3.5b). Based on these concepts, early workers postulated
an equivalent resistance equal to the average pore radius. This was an
inspired approximation, which was later confirmed in more elaborate stud-
ies. These more refined results, while much closer conceptually to the actual
situation, nevertheless did not result in substantial changes in the original
approximation. The use of the equivalent length rst is now firmly entrenched
in the literature.

In Practice Problem 3.7 we examine the reverse process of CO2 uptake by
the leaf. The transport of carbon dioxide into the leaf interior is a more
complex phenomenon involving several resistances as well as the reaction
steps of photosynthesis. It is nevertheless possible to arrive at some simple
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results that illuminate this hugely important process with implications for
global warming. Practice Problem 3.9 balances these results against the daily
emissions of an average car.

Illustration 3.7: Diffusivity in a Catalyst Pellet

Catalysts almost invariably consist of porous particles with a substantial
internal surface area, which typically varies from a few square meters per
gram to a few tens or even 100 m2/g. For a reaction to occur, the reacting
species must diffuse into the interior of the particle to reach the reactive
surface. Conversely, the product gases, once formed, must in turn diffuse
out in order to maintain a steady state. Both the diffusional process and the
local reaction rate play a role in determining the overall rate of conversion
of reactants. When diffusion is fast, which is the case for small particles with
large pores, the reaction becomes the rate-determining step. Conversely,
when the particle is large and the pores small, the rate of diffusion becomes
the dominant factor. This interplay of diffusion and reaction is examined in
greater detail in Chapter 4 (Illustration 4.9). It is shown there that the imped-
ing effect of diffusional resistance can be expressed in terms of an effective-
ness factor E, which varies in value from zero to one. When diffusion is fast,
reaction is the dominant process and E approaches one. Conversely, low
diffusion rates and fast reactions lead to small values of the effectiveness
factor.

The evaluation of E requires a knowledge both of the diffusivity and the
reaction rate constants. Our task in the present illustration is to estimate the
diffusivity of a reacting species, given certain physical parameters of the
catalyst particle.

Let us consider the diffusion of oxygen in a silica-alumina cracking catalyst
with an average pore radius of 24 Å = 24 ¥ 10–8 cm and a void fraction e of
0.3 cm3/cm3. The tortuosity factor is not known, and we consequently use
an average value of t = 4. Because pore radius is much smaller than the
mean free path, which is of the order of 10–5 cm at atmospheric pressures, it
is suspected that Knudsen diffusion may be operative. We turn to Equation
3.14 and obtain, for a reaction temperature of 420 K,

(DK)pore = 9700 ¥ 24 ¥ 10–8 (420/32)1/2 (3.16a)

(DK)pore = 8.5 ¥ 10–3 cm2/s (3.16b)

This value is more than 10 times lower than the molecular diffusivities of
0.20 cm2/s. We conclude therefore that Knudsen diffusion is indeed the
operative mode of diffusion. To calculate the effective diffusivity for the
entire particle, we draw on Equation 3.13a and obtain

De = Dporee/t = 8.5 ¥ 10–3 ¥ 0.3/4 (3.16c)
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De = 6.4 ¥ 10-4 cm2/s (3.16d)

This is the effective diffusivity to be used in assessing catalyst performance. 

3.1.3.3 Diffusion of Solids in Solids

The diffusion of solid ions, atoms, or molecules through solid matrices, while
seemingly not possible, can and does in fact take place. It does so by a
mechanism akin to that which described liquid-phase diffusion: Local den-
sity fluctuations lead to a momentary opening or vacancy into which a
neighboring particle can displace itself (see Figure 3.1b). Thus, a diffusional
flow occurs, which follows Fick’s law, as do more conventional diffusional
processes.

A short compilation of important diffusion coefficients is presented in
Table 3.7. Several features are of note here. The first is the strong dependence
on temperature that we see in the diffusivities of boron in germanium, and
the self-diffusion of Si. A 10 to 20% increase in absolute temperature can
lead to a rise in diffusivity of several orders of magnitude. The temperature
dependence is clearly an exponential one and is commonly expressed by an
Arrhenius-type relation:

D = Do exp(–Ea/RT) (3.17)

where Ea is an activation energy and Do is a preexponential factor. The
implication here is that the solid-phase diffusion is to be viewed as an
activated process in which the diffusing particle has to attain a threshold
activation energy Ea before displacement can take place.

A second feature seen in Table 3.7 is the strong influence of impurities on
the magnitude of diffusivities. An impurity level of only 1% can result in a
dramatic increase in the diffusion coefficient of several orders of magnitude
(see the diffusion of carbon in iron). The reason for this lies in the local
change in packing of the molecules with an attendant increase in the prob-
ability of a vacancy opening up. While the magnitude of solid–solid diffu-

TABLE 3.7

Approximate Diffusivities of Solids in Solids

Diffusing Species Solid Matrix D (cm2/s) T (K)

C Fe 6 ¥ 10–6 1667
C Fe + 2% Cr 5 ¥ 10–5 1667
C Fe + 1% Mn 4 ¥ 10–4 1667
B Ge 1 ¥ 10–16 1000
B Ge 3 ¥ 10–14 1110
B Ge 4 ¥ 10–13 1176
Si Si 7 ¥ 10–15 1429
Si Si 3 ¥ 10–12 1667
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sivities generally falls below values of 10–10 cm2/s, much higher levels
comparable to those that prevail in liquids are also encountered. An example
of this is seen in the diffusion of carbon in solid iron (Table 3.7).

The reader may be puzzled about the relevance of solid–solid diffusional
processes. The low values that pertain and the universal nature of the system
would appear to make this a topic of mainly academic interest. In fact, the
diffusion of solids within solids is highly important in a number of disci-
plines. In metallurgy, solid-phase diffusion is induced to desegregate local
accumulations of alloy components and to relieve stresses caused during
casting. This is implemented by maintaining the cast form just below its
softening point for prolonged periods of time. The resulting diffusional
process is an unsteady one that uses as its initial condition the concentration
profile that was derived in Illustration 2.8.

Solid-state diffusion also plays an important role in the manufacture of
semiconductors. To produce the junctions needed in these devices, a dopant
such as boron is deposited on the surface of the semiconductor crystal, e.g.,
silicon or germanium, and is subsequently made to diffuse into the interior.
This process, termed drive-in diffusion, is again carried out at elevated tem-
peratures. An analysis of it and some relevant calculations appear in Chapter
4, Practice Problem 4.4. The diffusivity required in these calculations is
derived in the short illustration given below.

Illustration 3.8: Diffusivity of a Dopant in a Silicon Chip

We wish to calculate the diffusivity of the dopant boron in silicon at a
temperature of 1150°C, using tabulated values for the Arrhenius constants
of Do = 1.5 ¥ 10–4 m2/s and Ea = 357 kJ/mol.

We substitute these values and other pertinent numbers in Equation 3.17
and obtain

D = 5.1 ¥ 10–4 exp(–357 ¥ 103/8.314 ¥ 1383)

D = 1/6 ¥ 10-17 m2/s

Practice Problems

3.1. A Fermi Problem: Estimation of Gas Diffusivities
Make an order-of-magnitude estimate of the diffusion coefficient in
simple gases other than He and H2, given that the velocity of sound
at atmospheric pressure is of the order 300 m/s and the liquid to
gas densities for most gases are in the approximate ratio of 1:1000.
(Hints: Sound propagates approximately at the same speed as that
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of molecular motion. The diameter of a typical small molecule is of
the order of 1 Å = 10–8 cm.)

3.2. Pressure Dependence of Diffusivity in Gases

a. Explain why molecular diffusivity varies inversely with pressure.
b. Why is Knudsen diffusivity independent of pressure?
c. Is Knudsen diffusion more likely to occur at high pressures or

low pressures?
3.3. Estimation of the Diffusivity of DDT in Water

Use the Wilke–Chang equation (Equation 3.3) to estimate the diffu-
sion coefficient of DDT in water at 25°C. The viscosity of water at
this temperature is 0.894 cp (centipoises). Compare the result with
the value tabulated in Table 3.3E. (Hint: The formula for DDT is
given by 1-trichloro-2,2-bis(p-chlorophenyl)ethane. It contains two
phenol rings and five chlorine atoms.)

3.4. Electrorefining of Copper
Copper is to be refined electrolytically at the rate of 10 kg/h using
a cell with 2-cm plate spacing and a 1-molar CuSO4 electrolyte.
a. What is the minimum electrode area required to carry out the

process?
b. If the electrode dimensions are 2 m ¥ 2 m ¥ 1 cm, what is the

minimum length of the electrolytic cell?

Answer: a. 309 m2

3.5. Diffusivity in Polymers
Although permeability is the most commonly employed transport
coefficient for polymers, occasional use is also made of diffusivities.
a. Calculate the range of diffusivities for the substances listed in

Table 3.6. How do they compare with the diffusivity of gases in
liquids?

b. Repeat the calculation for Illustration 3.3, Part 2, using a diffu-
sivity and solid-phase concentrations instead of permeability and
a partial-pressure driving force.

3.6. Performance of Saran Wrapping
A package is made of three ears of corn by placing them on a
Styrofoam® tray and enclosing them with Saran Wrap® 0.01-mm
thick. The exposed area is 400 cm2. It is desired to keep moisture
losses below 1% of the total water content estimated at 100 g per
package for a shelf life of 10 days. Does the wrapping meet these
requirements? Assume a constant internal saturation vapor pressure
of 23.8 mmHg (25°C) and zero external moisture.
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3.7. Photosynthesis: CO2 Uptake by an Average Tree
Photosynthesis involves the uptake by plants of carbon dioxide from
the surrounding air and its conversion to organic compounds and
oxygen

  

It is the largest synthetic process on Earth and results in the fixing
of approximately 7 ¥ 1013 kg carbon per year. Transport of CO2 into
the leaves is considered to be the rate-determining process in this
chain of events and involves a series of steps, which are represented
as a sum of resistances. This is akin to the concept we used in Section
1.4 of Chapter 1 to represent transport according to the two-film
theory. The Fickian rate process is then expressed in the form

  (3.18a)

where DC is the concentration driving force and SR represents the
sum of resistances. In a leaf the major resistances are three in number
and are due to (1) the stomata, (2) the mesophyll cells, and (3) the
chloroplasts (see Figure 3.5). The range of values of resistances is
tabulated in Table 3.8. We wish here to calculate the maximum daily
CO2 uptake by the modest-sized tree used in Illustration 3.6. To this
end we choose the lower values of the resistances listed in Table 3.8
and set the chloroplast resistance at 200 sm –1. We further neglect the
carbon dioxide produced by the tree by respiration to maintain its
own life. This is usually less than 10% of the total carbon dioxide
uptake. Because photosynthesis is rapid compared with the trans-
port process, the carbon dioxide concentration within the chloro-
plasts is set at zero. These are the approximations we use to calculate
the carbon dioxide uptake.

Answer: 15 mol CO2/day 

TABLE 3.8

Representative Values of Resistances for CO2 Diffusion into Leaves

Component Resistance sm–1

Crops, open stomata 170–830
Trees, open stomata 500–2500
Mesophyll cells
Estimation 600
Measurements 200–800
Chloroplasts
Estimation <500
Measurements <400
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3.8. Choice of a Packaging Material
Packaging materials often come in the form of laminates, which are
composed of individual film barriers each of which is desired to
meet a particular requirement. These include the reduction of light
or heat transmission and the retention or exclusion of certain gases
and vapors. Most packaged foods continue, after packaging, to
undergo certain metabolic changes, including respiration. They are,
in a sense, still “alive.” These changes are usually undesirable and
packaging materials must be designed to reduce these effects to a
minimum. Consider the case of respiration, which is analogous to
breathing in humans and has to be minimized as far as possible.
Which of the materials listed in Table 3.6 would perform best in this
respect?

3.9. Carbon Dioxide Emissions from Cars: How Many Trees Will Compensate
the Output of One Vehicle?
The task in this problem is to compute the daily production of carbon
dioxide by a vehicle that is driven an average of 100 km daily (36,500
km per year) and has a gasoline mileage of 15 km/l. Assume the
fuel to be pure octane (C8H18) with a specific gravity of 0.8, which
is quantitatively burned to carbon dioxide. Compare the calculated
result with that given for Practice Problem 3.7.

3.10. Temperature Dependence of Solid–Solid Diffusivities
The self-diffusivities of sodium in solid sodium chloride were deter-
mined at two temperatures using radioactive sodium, with the fol-
lowing results:

Use these results to derive an analytical expression for the temper-
ature dependence of sodium diffusivity.

D, cm2/s T, K
4.5 ¥ 10–5 400
9.2 ¥ 10–5 667
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4
More about Diffusion: Transient Diffusion and 
Diffusion with Reaction

The process of diffusion is central to much of what we describe as mass
transfer. It manifests in a variety of ways and needs to be looked at repeat-
edly, even at this introductory level, in order to grasp its full ramifications.
This was done by first introducing the reader, in Chapter 1, to the notion of
the rate of diffusion, enshrined in Fick’s law, and to the linear driving force
mass transfer rates derived from it. In Chapter 2 we demonstrated how these
rate expressions are incorporated into mass balances leading to models of
various mass transfer processes. Chapter 3 took up the topic of diffusivities,
the all-important proportionality constants in Fick’s law, and examined them
both at the molecular and macroscopic level. 

This chapter returns to the subject of diffusion per se and examines what
happens when the rate of diffusion varies with both time and distance
(Section 4.1) and when diffusion occurs simultaneously with a chemical
reaction (Section 4.2). These are more advanced topics, which in the case of
Section 4.1 lead to partial differential equations, notably Fick’s equation
given in Chapter 2 (Equation 2.18c). We do not attempt to solve it here, which
would merely distract us from the main task, and confine ourselves instead
to a presentation of the more important results in either analytical or graph-
ical form. These are then used to solve a range of practical problems, a task
that is far from trivial in spite of the appearance it gives of applying a set
of convenient “recipes.” Section 4.2 is confined to steady-state processes in
which the state variable varies only with distance. Hence no partial differ-
ential equations arise here. We do, however, have to deal with ordinary
differential equations, which sometimes require going beyond the elemen-
tary separation-of-variables technique seen in previous chapters by using
the so-called D-operator method. This procedure is outlined in the Appendix
at the end of the text.
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4.1 Transient Diffusion

In transient diffusion, the concentration of a species varies, as we have seen,
with both time and distance. The underlying process of diffusion may take
place in isolation or it may be accompanied by a chemical reaction, by flow,
or by both reaction and flow. These more complex cases are not taken up
here, and we limit ourselves instead to the consideration of purely diffusive
processes. Furthermore, with one or two exceptions, the treatment is con-
fined to a single spatial coordinate represented by the Cartesian x- (or z-) axis
or by the radial variable r. The last is used in formulating diffusion in a
sphere, or in the radial direction of a cylinder. Fick’s equation for these three
cases can be deduced from the general conservation equation (Equation
2.24a) and Table 2.3. They are as follows:

Cartesian Coordinate in One Dimension

  (2.18a)

Spherical Coordinate

  (2.18b)

Cylindrical Coordinate (Radial Direction)

  (2.18c)

The alternative formulations given on the right are sometimes found useful
in the solution of steady-state problems.

Associated with these equations are a host of boundary and initial condi-
tions. One can, for example, specify the concentration on the surface, or the
flux prevailing there. Alternatively, there may be a film resistance at the
surface, in which case the rate of mass transfer must be equated to the rate
of diffusion at the surface.

Initial conditions may also be complex. Suppose, for example, that we wish
to solve Fick’s equation for transient diffusion into a sphere. The simplest
case here is to assume that the sphere is initially “clean,” i.e., contains no
solute. But what if it is not? We would then have to specify an initial con-
centration distribution Ct=0 = f(r,q,j) and this distribution would have to be
entered into the solution process as an initial condition. Evidently there are
an infinite number of such distributions; hence Fick’s equation for this case
will have an unlimited number of solutions.
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Yet another complication arises if the diffusion process is triggered by a
mass source. A puff of smoke emanating from a chimney, for example, con-
stitutes such a source. If it lasts for only an instant, we speak of an instanta-
neous source. If the emanation persists, we speak of a continuous source. The
existence of such sources must be incorporated into the Fickian model and
leads to what we term solutions of source problems. Because of their impor-
tance, particularly in an environmental context, we address this topic sepa-
rately in some detail.

This short discussion will have alerted the reader to the dismaying fact
that Fick’s equation has an unlimited number of solutions, which are inti-
mately linked to the initial and boundary conditions and to the presence of
sources. To keep our deliberation to manageable proportions, we propose to
address the following limited but, nevertheless, highly important and
instructive cases:

1. Diffusion due to instantaneous and continuous sources emitting into infi-
nite and semi-infinite domains. Both point sources as well as area
sources of infinite extent are addressed. These are referred to as
Source Problems.

2. Transient diffusion in a semi-infinite domain, into a solid bounded by
parallel planes, in a sphere, and in the radial direction of a cylinder. The
domain is assumed to be initially uniformly loaded or uniformly
clean, and to have a constant surface concentration. We term these
Nonsource Problems. Occasional departures from the stated assump-
tions are noted as they occur.

4.1.1 Source Problems

We start our deliberations by considering a source located at the origin of a
three-dimensional Cartesian coordinate system. At time t = 0, the source
releases a substance of mass Mp kg. The release is instantaneous, and leaves
immediately; i.e., it is of infinitesimally short duration. Thereafter the
released substance diffuses into the three-dimensional infinite space sur-
rounding the source, giving rise to time-dependent three-dimensional con-
centration profiles C (x, y, z, t). The three coordinates x, y, z can be combined
into a single radial distance r anchored at the origin, where r2 = x2 + y2 + z2.
The resulting concentration profiles are given by the following expression:

4.1.1.1 Instantaneous Point Source Emitting into Infinite Space

  (4.1)

where D is the diffusivity.
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TABLE 4.1

Solutions to Source Problems

1. Instantaneous Point Source Emitting into Infinite Space

2. Instantaneous Point Source on an Infinite Plane Emitting into Half Space

3. Instantaneous Infinite Plane Source Emitting into Infinite Space

4. Instantaneous Infinite Plane Source Emitting into Half Space

5. Continuous Point Source Emitting into Infinite Space

6. Continuous Point Source on a Semi-Infinite Plane Emitting into Half Space

7. Continuous Infinite Plane Source Emitting into Half Space
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Table 4.1 contains a number of solutions of both instantaneous and con-
tinuous source problems in infinite, semi-infinite, or half space. Let us exam-
ine two of these tabulated solutions.

The case of emissions into half space (see Item 2 of Table 4.1) can be
obtained from the fully infinite case by arguing that the mass that would
otherwise have gone into the lower half space is reflected upward, thus
doubling the concentration. We obtain the following:

4.1.1.2 Instantaneous Point Source on an Infinite Plane Emitting 
into Half Space

  (4.2)

The case of a continuous source is another example of interest. We would
expect intuitively that the solution to this problem could in principle be
obtained by integrating over time the result obtained for an instantaneous
source. This is indeed the case and leads to the emergence of a special type
of integral, termed the error function erf x, which is defined as

  (4.3a)

The error function can be viewed as a partial area under the Gaussian
distribution curve (2/p1/2)exp(-u2). It has the value 0 at x = 0, and a value
of 1 at x = •. The latter case corresponds to the full area under the distribution
curve. A related expression is the complementary error function erfc x, which
is defined as

erfc x = 1 – erf x (4.3b)

and has the values erfc(0) = 1 and erfc(•) = 0.
The error function integral has to be evaluated numerically and can be

found tabulated in texts on diffusion or conduction, or in mathematical
tables. An abbreviated listing appears in Table 4.2, and some important
properties of the function are summarized in Table 4.3. 

With these definitions in place, we can now proceed to present the solution
to the continuous point source problem. It is given by the following (see
Item 5 of Table 4.1).

C
M

Dt
r Dtp= -

4
43 2

2

( )
exp( / )/p

erf x u du
x

= -Ú2
1 2

0

2

p / exp( )



126 Mass Transfer: Principles and Applications

TABLE 4.2

Values of the Error Function

x erf(x)

0 0
0.05 0.05637
0.1 0.11246
0.15 0.16800
0.20 0.22270
0.25 0.27632
0.30 0.32863
0.35 0.37938
0.40 0.42839
0.50 0.52050
0.60 0.60386
0.70 0.67780
0.80 0.74210
0.90 0.79691
1.0 0.84270
1.2 0.91031
1.5 0.96611
2.0 0.99532
2.5 0.999593
3.0 0.999978
• 1.00000

TABLE 4.3

Properties of the Error Function

1. erf(0) = 0
2. erf(•) = 1
3. erf(-x) = –erf(x)
4. 1 – erf(x) = erf(x) (complementary error 

function)
5.

  

6.
  

7. Approximation for small x: erf x @ 2p–1/2x
8. Approximation for large x: 
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4.1.1.3 Continuous Point Source Emitting into Infinite Space

  (4.4)

For emissions into half space, the concentration given by Equation 4.4 is
again doubled (see Item 6 of Table 4.1).

To obtain a sense of the spreading concentration waves that result from
the emissions of sources, we have sketched the concentration profiles and
histories associated with point and continuous sources (Figure 4.1). In the
case of instantaneous point sources, the pulse emitted at t = 0 gradually
spreads about the origin and diminishes in strength; i.e., concentration
decreases with the passage of time (see Part 1 of Figure 4.1). Continuous
sources result in a similar spreading of concentrations about the origin,
but here there is a continuous increase in the level, which ultimately
reaches a plateau (see Part 4). Of interest is the appearance of maxima at

FIGURE 4.1
Concentration profiles and histories in source problems (infinite domain).
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a particular location of the domain. In the case of the instantaneous source,
this maximum occurs at finite times (see Part 2), while the concentrations
from continuous emissions attain their maximum only in the limit of t Æ
• (see Part 4 ). We address these maxima in Illustration 4.1 and in Practice
Problem 4.2.

Illustration 4.1: Concentration Response to an Instantaneous Point Source: 
Release in the Environment and in a Living Cell

The problem considered here involves calculating the concentrations that
arise when material released by an instantaneous point source diffuses into
a semi-infinite domain. In the environment, this could come about, for exam-
ple, when a tank containing pressurized liquefied gas is ruptured and
releases the contents, which instantly evaporate into the surrounding air.

Let us set Mp at 1 kg (e.g., a small propane cylinder) and assume a typical
diffusivity in air of 10–5 m2/s. We use the data to calculate the concentrations
that result at a distance of r = 100 m from the source after 10, 100, and 1000 days,
respectively. Substituting values into Equation 4.2, we obtain for t = 10 days

  

and similarly for t = 100 and 1000 days. The results are tabulated below:

The data show a very slow, gradual rise in concentration. A subsidiary
question, which we wish to address before commenting on the results,
focuses on the time it takes for the concentration to reach its maximum value.
That maximum occurs, as was shown in Figure 4.1a, Part 2, at some finite
point in time, which is independent of the amount released. This makes it a
convenient quantity for establishing the time scale of these events.

We write Equation 4.2 in the form

  (4.5a)

and require ¶C/¶t = 0 or, alternatively,

(du/dt)v – u(dv/dt) = 0 (4.5b)
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We obtain

  (4.5c)

and consequently

  (4.5d)

  

Substituting this value into Equation 4.2 then yields

CMax = 1.32 ¥ 10–7 kg/m3 (4.5e)

The striking feature of these results is the extremely slow progress of the
diffusion process. It takes almost 6 years for the concentration to attain its
maximum at the modest distance of only 100 m. Evidently, these numbers
do not give a realistic picture of what would happen in an actual accident.
Wind and other air currents would intervene to disperse the material at an
immensely higher rate. Quantifying the effect of wind, even when it is
unidirectional, is a more complex task, which we address in Illustration 4.3.

Let us next consider the instantaneous release from a point source at the
center of a living cell 100 mm in radius. Although the geometry here is a
finite one, the initial stages of the diffusion process can be viewed as taking
place into an infinite medium. If we assume D = 10–10 m2/s, typical of a
protein, then the time it takes for the maximum concentration to reach r =
10 mm equals one-half the value given by Equation 4.5d:

  

i.e., attainment is near-instantaneous in spite of the much lower diffusivity.
Note the vast difference in time scale for the two processes (6 years vs. less
than a second), which is entirely due to the quadratic dependence on r.

Illustration 4.2: Net Rate of Global Carbon Dioxide Emissions

The release of carbon dioxide into the atmosphere and its attendant effect
on global warming have been widely publicized in recent years. A warning
call came in the late 1980s and early 1990s when it was established that
carbon dioxide concentrations in the air, then at a level of 370 ppm, were
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growing at a rate of 2 ppm per year. What we wish to do here is to use this
information to calculate the net rate of global carbon dioxide emissions, i.e.,
the amount in excess of that consumed by plant life, which is a minimum
measure of the amount by which emissions would have to be reduced. (Why
minimum?)

The tools required for this task reside in Item 7 of Table 4.1; this information
describes the continuous emission from an infinite plane, here taken to be
the surface of Earth, into a semi-infinite domain, which is the atmosphere.

We start by noting that at ground level, x = 0, the expression given there
reduces to the form

  (4.6a)

where MCA is the rate of emission in kg/m2 s, the unknown being sought
here. The diffusivity D of carbon dioxide in air at 25°C is 2.2 ¥ 10–5 m2/s,
the air density 1.18 kg/m3.

We proceed as follows: Solving for t we obtain, for the interval of obser-
vation of 1 year,

    (4.6b)

The result can be recast in the form

  (4.6c)

where C1 and C2 are the concentrations at the start and the end of the year.
Before introducing numerical values, the data, given in ppm (m3 CO2/m3

air) must be converted to kg/m3. This is done by multiplying ppm values
by the density of carbon dioxide, which is 44/29 times that of air, i.e., 1.18
¥ 44/29 = 1.79 kg/m3. We obtain

  (4.6d)

MCA = 1.0 ¥ 10–10 kg/m2 s (4.6e)

The average radius of Earth is 6370 km. Hence the global net amount of
carbon dioxide emitted is given by

MTot = 1.0 ¥ 10–10 4p(6.37 ¥ 106)2 (4.6f)
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MTot = 5.1 ¥ 104 kg CO2/s (4.6g)

Comments:

This is still a staggering amount, considering that it only represents the excess
carbon dioxide produced over and above what is removed by photosynthe-
sis. The gross rate of carbon dioxide production is thus considerably higher.
Some measure of what plant life can accomplish to alleviate this effect was
given in Practice Problem 3.7.

Illustration 4.3: Finding a Solution in a Related Discipline: The Effect of 
Wind on the Dispersion of Emissions

It has been indicated in Illustration 4.1 that the effect of air currents on the
emissions from sources is considerably more difficult to quantify than purely
diffusional processes. The standard literature dealing with solutions to Fick’s
equation (Crank, 1978) contains no mention of this problem, and although
the solution may be lurking in the general literature, locating it is not an
appealing task. It is often more rewarding in these cases to consult the related
literature on conduction, which is considerably more voluminous and there-
fore a more promising source of solutions. It is the art of extracting such
solutions, and translating them back into the original context, that we wish
to practice here.

The analogy between diffusion and conduction rests on the fact that Fick’s
law of diffusion and Fourier’s law of conduction are identical in form (see
Table 1.1). When Fourier’s law is applied to transient conductions by means
of an energy balance, it results in the celebrated Fourier equation, which is
analogous in form to Fick’s equation (Equation 2.18c). Thus, for unsteady
conduction in one-dimensional Cartesian coordinates we have

  (4.7)

with T taking the place of concentration in Fick’s equation and D replaced
by thermal diffusivity a. We can consequently expect its solutions to be
likewise identical in form to those that apply to mass diffusion.

A search of the standard work on solutions to Fourier’s equation reveals
that it contains a section entitled “Moving Sources of Heat” (Carslaw and
Jaeger, 1959, p. 266). Described in this section is a problem in which “heat
is emitted at the origin for times t > 0 at the rate q heat units per unit time,
and that an infinite medium moves uniformly past the origin with a velocity
U parallel to the x-axis.” This situation corresponds to the case of a contin-
uous-point mass source emitting into half space in which the air moves in
the x direction with a velocity U.

The full solution to this problem is rather complex and is not reproduced
here. It does, however, reduce to a simple expression for the limiting steady
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state case t Æ •, which is of greater interest and which is given below in
the form presented by Carslaw and Jaeger:

  (4.8a)

where v = temperature (K), q = heat emitted (J/s), K = thermal conductivity
(J/sm2K), R2 = x2 + y2 + z2, and k = thermal diffusivity (m2/s).

Translation into the corresponding mass diffusion case is straightforward:
We replace v by C (kg/m3), q by Mcp (kg/s), and both K and k by diffusivity
D (m2/s). The result is then given by

  (4.8b)

and represents the maximum concentration attained at steady state in
response to the continuous point source.

A quick inspection of this equation shows that the wind velocity has an
enormous effect on the concentration response. With a modest wind velocity
of U = 10 cm/s, a typical diffusivity in air of 10–5 m2/s, and (R – x) of the
order 102 m, the exponential term immediately reduces to zero. Air move-
ment would have to be reduced to the order of the diffusivity, 10–5 m/s,
before any significant concentration levels arise.

The case of overriding interest here is the concentrations in the direction
of the wind and along the positive x-axis. This would represent locations of
maximum steady-state exposures. We have, in this case, R = x and hence

  (4.8c)

This simple relation shows that the steady-state concentrations diminish
in proportion to the downwind distance x from the point source and that
this decrease is the same, irrespective of the velocity of the wind.

Setting the emission rate Mcp at 10–3 kg/s, for example, and distance x at
100 m, we obtain for the concentration at that point

  (4.8d)

and 1/10 that value at a distance of 1 km. These concentrations drop off
sharply in the immediate vicinity of the x-axis because of the exponential
term in Equation 4.8b. The exposure zone is consequently confined to an
exceedingly narrow strip along the line of sight of the source and in the
direction of the wind.
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Comments:

Locating solutions in related disciplines is not an easy matter. It requires a
wide knowledge of what goes on elsewhere, but the results can be rewarding
and often lead to new insights.

4.1.2 Nonsource Problems

Nonsource problems are by far the most prevalent type of problem involving
diffusional processes, and almost all the material contained in standard
monographs on diffusion is devoted to this topic. A parallel situation exists
in the related field of heat conduction.

Mention was already made of the variety of geometries and boundary
conditions that can arise in these problems, and we proposed to limit our-
selves to the semi-infinite, parallel plane, spherical, and cylindrical geome-
tries subject to constant initial and surface concentrations. We start with the
simplest of these geometries, the semi-infinite medium, and follow this with
a discussion of the other three principal geometries.

4.1.2.1 Diffusion into a Semi-Infinite Medium

Consider the case of the semi-infinite medium x > 0 in which the concentra-
tion Co is uniform throughout and which is exposed at time t ³ 0 and the
position x = 0 to a constant surface concentration Cs. The solution to this
problem can be given as a terse analytical expression and takes the form

  (4.9a)

For a medium initially devoid of solute, Co = 0, the equation reduces to

  (4.9b)

Both of these expressions make frequent appearances in the literature.
They contain, as do some source problems, an error function, but lack the
preexponential factor we have seen there. As a result, the concentration
distributions that arise in this case are a function of only one dimensionless
parameter,  It follows from this that:

1. The distance of penetration of any given concentration is propor-
tional to the square root of time.
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2. The time required for any point to reach a given concentration is
proportional to the square of its distance from the surface and varies
inversely with the diffusivity.

We demonstrate the use of these simple relations with the following example.

Illustration 4.4: Penetration of a Solute into a Semi-Infinite Domain

1. Suppose a spill of a solvent has occurred (a) on land and (b) into a
water basin. How much longer will it take a particular concentration
to penetrate the same distance in water that it does in air? Since the
concentration is the same in both cases, we must have, in accordance
with Equation 4.9,

  (4.10a)

  (4.10b)

Now, diffusion in air is of the order 10–5 m2/s, that in water of the
order 10–9 m2/s (see Tables 3.1 and 3.3). Consequently, the time of
penetration in water is 10,000 times longer than that in air.

2. If it takes a particular concentration 100 h to penetrate a distance of
1 m, how long will it take the same concentration to advance 10 m?
Here again we are dealing with identical concentrations, which by
virtue of Equation 4.9 leads to

  (4.10c)

and consequently

  (4.10d)

or

  (4.10e)

Hence it takes 100 times longer to penetrate from a distance of 1 m
to a distance of 10 m.

x
Dt

x
Dt2 2

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇air water

t
D

D
twater

air

water
air=

x

Dt

x

Dt
1 2

2 2
=

t t
x
x2 1

2

1

2

=
Ê

ËÁ
ˆ

¯̃

t2

2
4100

10
1

10= Ê
Ë

ˆ
¯ = h



More about Diffusion: Transient Diffusion and Diffusion with Reaction 135

These simple examples show that the case of diffusion into a semi-infinite
medium can yield rapid answers in a relatively straightforward fashion.
Furthermore, the geometry is not trivial. It can often be used to approximate
finite geometries, particularly if the diffusion process is a slow one, as it is
in liquid or solid media. Penetration will then be confined to short distances
from the surface, at least initially, and the medium can consequently be
regarded as a semi-infinite one for the short period under consideration (note
the similarity to Illustration 4.1).

In diffusion problems, we often seek to calculate the cumulative amount of
material that has entered or left a medium, rather than a particular concen-
tration level or the time it takes to attain that level. In the case of accidental
spills, for example, it is often of greater interest to know the time required
for complete evaporation or dissolution of the material, rather than the
detailed concentration transients. To obtain this information, some mathe-
matical manipulations of the distribution Equation 4.9 are required, and
these are discussed in the following illustration.

Illustration 4.5: Cumulative Uptake by Diffusion for 
the Semi-Infinite Domain

Here we calculate the amount of material per unit area that has diffused into
a semi-infinite medium to a certain point in time t. We proceed in two steps
by first calculating the rate of diffusion at the base plane and then integrating
that rate over time.

Calculation of the rate requires taking the derivative of the error function
in Equation 4.9a. Let us consider the special (and usual) case of zero initial
concentration Co = 0. The need is then to evaluate

  (4.11a)

Now from Item 5 of Table 4.1 we have

  (4.11b)

and consequently

  (4.11c)

Combining Equations 4.11a and 4.11c we obtain, for this intermediate step,
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  (4.11d)

This is the expression that now must be integrated with respect to time.
We obtain immediately

  (4.11e)

where Mt is the desired total mass per unit area that has diffused into the
semi-infinite domain up to time t.

Note that Mt varies directly with the surface concentration Cs but only
with the square root of time. In Practice Problem 4.3, use will be made of
Equation 4.11e to estimate the time required for spilled solvent to evaporate
into the atmosphere.

4.1.2.2 Diffusion in Finite Geometries: The Plane Sheet, the Cylinder, 
and the Sphere

It has previously been indicated that the diffusion into finite geometries leads
to expressions of considerably greater complexity than was the case for the
semi-infinite medium. The solutions typically take the form of infinite series,
which not only are cumbersome to evaluate but also contain implicit param-
eters that cannot be conveniently extracted. It has become customary in these
cases to represent the results graphically, which allows any of several param-
eters to be read off with ease. We present several of these for the convenience
of the reader.

Figure 4.2 presents the concentration profiles that arise in a sheet of thick-
ness 2L, which is exposed to a surface concentration Cs at time t = 0 and
contains an initial concentration C1. We can use these plots to calculate, for
example, the time required for a certain concentration C to reach a particular
position x, or conversely, to calculate the prevailing concentration at a spec-
ified x after the lapse of time t. The position x = 0 is of particular interest as
it represents the midpoint of the sheet and is the farthest removed from the
imposed surface concentration Cg. Note that the sheet is infinite in extent;
i.e., there are no concentration variations in the y and z directions. The finite
three-dimensional case evidently leads to more complex distributions, which
cannot be plotted conveniently. 

Figure 4.3 dispenses with the display of detailed profiles and presents,
instead, the average concentration in the medium after the lapse of time. This
quantity, like the total uptake that can be derived from it, is again of greater
interest than the concentration distributions and can be used for a number
of calculations of practical interest. The plots of this quantity are given for
a slab or sheet of infinite extent, for an infinitely long cylinder, and for the
sphere.
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FIGURE 4.2
Concentration distributions at various times in the sheet –L < x < L with initial uniform
concentration Co and surface concentration CS. Numbers on curves are values of Dt/L2.

FIGURE 4.3
The relative change in average composition for the basic shapes.
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Finally, Figure 4.4 presents the cumulative uptake of material by a sphere
contained in a solution of limited volume. This case arises when material
must be deposited in a porous sphere or impurities are to be removed from
a solution by adsorption. The parameter shown expresses the ratio of vol-
umes of the sphere and the solution and also represents the amount of solute
taken up by the sphere. For adsorption, the parameter must be adjusted to
accommodate the partition coefficient, or Henry’s constant H. We note that
the plot can also be used for the reverse processes of leaching or desorption.
This is illustrated with a number of examples.

Illustration 4.6: Manufacture of Transformer Steel

To make a transformer steel with the proper hysteresis characteristics, it has
to be loaded with silicon up to a certain prescribed content. This is accom-
plished by exposing a steel sheet that is low in silicon content and of 2 mm
thickness to an atmosphere of SiCl4 that dissociates to Si(g) and Cl2(g). The
silicon gas dissolves in the steel up to 3 wt% at equilibrium. The treatment
is to be carried out at 1255 K. Silicon diffusivity in steel at this temperature
is 8.2 ¥ 10–13 m2/s.

The task here is to calculate the time necessary to achieve a target average
concentration of 2.85 wt% silicon in the steel. We draw for this purpose on
Figure 4.3, whose ordinate values contain the average concentration  being
sought.

We start by noting that we can set the initial concentration Co = 0 in view
of the low silicon content of the steel to be treated. The surface concentration

FIGURE 4.4
Fractional diffusional uptake and release in a sphere as a function of dimensionless time in a
well-stirred solution of limited volume.
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Cs required for the ordinate value is taken to be 3 wt%; i.e., it is assumed
that at time t = 0, the steel surface is at equilibrium with the surrounding
silicon atmosphere. We obtain, for the ordinate of Figure 4.3,

  (4.12a)

Linear extrapolation of the slab line of Figure 4.3 yields

  (4.12b)

from which there results

  (4.12c)

Thus, some 16 days are required for the target concentration to be attained.
This is entirely due to the low diffusivity of silicon in the steel, which is
some three orders of magnitude lower than typical diffusivities in liquids.
To reduce the inordinate length of treatment, the operation will likely have
to be carried out at a higher temperature. Since the diffusivity in solids varies
exponentially with temperature (see Equation 3.17) a modest increase in the
latter will quickly lead to substantially higher diffusivities and thus shorten
the duration of the treatment considerably.

Figure 4.3, which has been used here to calculate time t required to achieve
a certain concentration, can also be put to the task of extracting diffusivities
from experimental data. This is shown in the following illustration.

Illustration 4.7: Determination of Diffusivity in Animal Tissue

To determine the diffusivity of carbohydrates in animal tissue, a sample
specimen 1 mm in thickness is soaked in sugar solution for a lengthy period
of time, and then mounted on a holder and placed in a large, well-stirred
bath of water. After exposure for 1 h, the sample is removed and the residual
sugar content determined. It is found to have dropped to 20% of the initial
concentration. We wish to use the data to calculate the diffusivity of sugar
within the tissue.

The problem again calls for the use of Figure 4.3, with the ordinate value
now given by  The corresponding abscissa value is 0.54 so that

  (4.13a)
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and consequently

D = 0.54L2/t = 0.54(0.5 ¥ 10–3)2/3600 (4.13b)

D = 3.8 ¥ 10–11 m2/s

Illustration 4.8: Extraction of Oil from Vegetable Seeds

Vegetable oils can be extracted from their parent seeds by contacting them
with solvent in a well-stirred tank. External film resistance can in these cases
often be neglected and the principal events are confined to the interior of
the seeds. Figure 4.4 can then be used to carry out pertinent calculations.

Suppose we desire to calculate the time required to extract 90% of the oil
contained in oil-bearing vegetable seeds assumed to be spherical. The given
data are as follows:

R = 0.25 cm, D = 5 ¥ 10–6 cm2/s, VSol’n/VSolids = 2

so that 100 (1 + VSol’n/VSolids) = 33.3.
From Figure 4.4 we obtain, for Mt/M• = 0.9, Dt/R2 = 0.39. Hence

t = 0.39R2/D (4.14a)

t = 0.39 (0.25)2/5 ¥ 10–6 = 4.9 ¥ 103 s = 1.36 h (4.14b)

4.2 Diffusion and Reaction

Processes in which diffusion is accompanied by a chemical reaction arise
frequently and in a variety of different contexts. All catalytic reactions, in
which the catalyst resides within a porous matrix, are necessarily accompa-
nied by diffusional transport of the reactants and products into and out of
this catalyst particle. In noncatalytic gas-solid and liquid-solid reactions,
diffusion occurs not so much within the solid particle but rather through a
gas or liquid film, or through ash layers surrounding the reacting core. Here
again diffusion is coupled with reaction.

Reactions accompanied by diffusion also occur in fluid systems. The
atmosphere is one vast reacting reservoir in which gaseous pollutants such
as the nitrogen oxides (the famous Nox) or sulfur oxides (the equally
famous Sox) diffuse into the air and undergo reactions with atmospheric
oxygen. In gas-liquid systems, the liquid phase often contains a reacting
component that interacts with the gas diffusing into it. Here, too, reaction
is linked to diffusion.
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Evidently, in each of the systems mentioned, a host of different reactions
are possible. A reacting solid particle, for example, may involve the combus-
tion of a fuel or the calcining of calcium carbonate (limestone) to calcium
oxide and carbon dioxide. Reactants involved in catalytic reactions are
almost infinite in their variety, as are those participating in atmospheric
reactions.

To convey a flavor of these events without overwhelming the reader with
a mass of details, we limit ourselves to the following cases.

4.2.1 Reaction and Diffusion in a Catalyst Particle

In this example, we consider the diffusion of a reactant into a porous
catalyst particle where it undergoes a first-order reaction. The model here
is a second-order ODE, which is solved by the D-operator method given
in the Appendix and yields the concentration profile of the reactant within
the particle. This is interesting but not immediately useful information for
the design of catalytic reactors. To transform the result into a tool for
engineering use, we derive the overall rate of reaction in the pellet with
diffusional resistance and divide the result by the reaction rate that would
prevail in the absence of a diffusional resistance. This ratio, known as the
catalyst effectiveness factor E, can be viewed as the efficiency of the catalyst
in converting the reactant to product. When diffusion is very fast, or the
reaction slow, the interior reactant concentration will be nearly that pre-
vailing at the surface. The effectiveness factor will then be nearly 1 and
catalyst efficiency will be approximately 100%, the maximum it can attain.
With increasing diffusional resistance, the reactant concentration within
the particle begins to fall below that prevailing at the surface, causing the
reaction rate to decrease. This is reflected in a lower effectiveness factor E,
which is now below 1; the corresponding catalyst efficiency is less than
100%. We thus obtain a good sense, through the value of E, of how well
the catalyst is performing, in coping with the diffusional resistance. It also
enables us to take countermeasures to raise the efficiency, for example, by
increasing porosity or reducing particle size, both of which have the effect
of diminishing diffusional resistance.

There is a second important reason for introducing the concept of an
effectiveness factor. In the ordinary course of events, concentrations within
a catalytic reactor packed with catalyst particles will vary both axially in the
direction of flow and radially within the catalyst pellets. The model mass
balance for such a system would consequently lead to a PDE. By using an
effectiveness factor we reduce the PDE to an equivalent set of two ODEs,
one the pellet mass balance in the radial direction, and the other the reactor
mass balance in the direction of flow. The reaction rate, which previously
varied in two directions rA(r, z), is now a function of the axial distance only.
We replace rA(z, r) by ErAi(z); rAi is the so-called intrinsic reaction rate, which
is measured experimentally on a fine powder and excludes diffusional
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effects. The latter are lumped into the effectiveness factor, which now acts
as a fractional efficiency on the intrinsic rate rAi. It is this product of ErAi(z)
that is used in the reactor mass balance.

4.2.2 Gas–Solid Reactions Accompanied by Diffusion: 
Moving-Boundary Problems

The topic addressed in this example is that of a solid particle that undergoes
a continuous reaction with a gas, building up in the process a layer of porous
solid product, which we denote by the general term ash. Reactant diffuses
through a growing layer of ash to the surface of the shrinking particle where
the reaction takes place. Such systems of two phases, in which the phase
boundary undergoes a continuous movement due to some physical or chem-
ical event, are referred to as moving-boundary problems. Examples of this type
of behavior are numerous and important. In addition to reacting systems,
moving-boundary problems arise in operations involving phase change such
as evaporation, condensation, freezing and melting, crystal growth and dis-
solution, metal or polymer casting, and the freeze-drying of foods.

The state variables in these processes, such as temperature or concentra-
tion, are in principle functions of both distance and time, leading to PDEs
that are usually coupled and nonlinear. To reduce the model to a manageable
set of ordinary differential and algebraic equations, the following assump-
tions are made:

1. The “core” contained by the moving front, such as a burning fuel
particle, has uniform properties and can be treated as an unsteady
compartment.

2. The movement of the front itself is sufficiently slow that the transport
gradients outside the core attain a quasi-steady state. This condition,
which we have encountered before in Illustration 2.4, has the effect
of eliminating time as a variable, with a consequent simplification
of the model equation.

3. The processes involved æ transport and reaction æ are dominated
by a rate-controlling slow step.

Thus, although both time and distance are retained as variables, distance
(expressed through the changing size or mass of the core) becomes a depen-
dent variable for the core-unsteady balance but is retained as an independent
variable for the external, quasi-steady-state balance. Time is an independent
variable as well, but appears only in the core balance.

A systematic way of modeling these systems is to start with unsteady
balances about the core, followed by a consideration of the quasi-steady-
state process outside the moving boundary. It is good practice to keep track
of the number of dependent variables, which must ultimately be matched
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by the number of equations. These procedures are demonstrated in Illustra-
tion 4.10.

4.2.3 Gas–Liquid Systems: Reaction and Diffusion in the Liquid Film

It is not uncommon practice in gas-absorption operations to employ a solvent
that reacts with the solute being absorbed from the gas phase. The purpose
of this practice is to promote the solute removal rate and to enhance the
efficiency of the gas absorber. Acid gases such as H2S and CO2 are often
contacted with solvents containing an alkaline component such as potassium
or sodium hydroxide, or an ethanol amine. Conversely, the absorption of a
basic solute such as ammonia can be promoted by reacting it with an acidic
solvent.

The stoichiometry of these liquid-phase reactions can be represented in
the general form

A(g) + bB(�) Æ products (4.15)

B(�) may refer to pure liquid B, or, more commonly, to B dissolved in a liquid
solvent.

In Illustration 4.11 we take up the case of a first-order reaction taking place
in the liquid, which is fast enough to cause the reactant concentration to
drop to zero within a relatively short distance from the interface, i.e., within
what is conventionally regarded as a liquid film.

The resulting concentration profiles are shown in Figure 4.5. We note here
that because of the rapid reaction in the liquid film, the profiles are highly
nonlinear and can no longer be approximated by a linear driving force. We
must resort to a full diffusional mass balance. This is undertaken in Illustra-
tion 4.11.

Here again, as in the case of the catalyst particle, the resulting concentration
profile does not yield information of immediate interest, and is translated
instead into a quantity of greater engineering usefulness. The quantity in
question is the so-called enhancement factor Eh, which is defined as the ratio
of mass transfer with reaction to the mass transfer rate without reaction. In
contrast to the catalyst effectiveness factor, the value of E is above rather than
below unity. This is because the reaction continuously removes reactant, thus
sharpening its gradient and in consequence enhancing the mass transfer rate.

Illustration 4.9: Reaction and Diffusion in a Catalyst Particle. The 
Effectiveness Factor and the Design of Catalyst Pellets

We consider, in this example, the diffusion of a reactant A into a flat-plate
catalyst particle, where it undergoes a first-order reaction. The geometry, the
associated boundary conditions, and the resulting concentration profile are
shown in Figure 4.6a.
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Diffusion is assumed to take place unidirectionally through the largest
exposed area, while the edges of the plane are taken to contribute an insig-
nificant amount of flow. The surfaces of the particle are maintained at a
constant concentration CAs, leading to the parabolic concentration profile
shown in Figure 4.6a. The distribution is symmetric about the midplane and
has a vanishing derivative at that point.

These two conditions, prevailing at the surface and the center plane,
respectively, constitute the boundary conditions (BCs) for the model equa-
tion.

Figure 4.6b shows the difference element over which the mass balance is
taken. We obtain

Rate of A in - Rate of A out = 0

 -  = 0 (4.16a)

where De is the effectiveness diffusivity.
Dividing by ACDx and letting Dx Æ 0 we obtain

d2CA/dx2 – krCA/De = 0 (4.16b)

This equation can be cast in a convenient nondimensional form by defining

y = CA/CAs (4.16c)

FIGURE 4.5
Concentration profiles in a gas-liquid reaction; fast first-order reaction in the liquid film, with
reactant concentration dropping to zero at x = d.
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z = x/L (4.16d)

j = L(kr/De)1/2 (4.16e)

Equation 4.16b then becomes

d2y/dz2 - j2y = 0 (4.16f)

This is the expression that now has to be solved for the dimensionless
concentration ratio y. We draw for this purpose on the D-operator method
given in the Appendix, which yields the solution:

FIGURE 4.6
Diffusion and reaction in a flat-plate catalyst particle: (a) geometry and boundary conditions;
(b) difference element.
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y = C1 exp(jz) + C2 exp(–jz) (4.16g)

y(0) = 1 (4.16h)

y¢(1) = 0

The integration constants obtained from these two conditions are

C1 = exp(-j)[exp(j) + exp(-j)] (4.16i)

C2 = exp(j)/[exp(j) + exp(-j)}

On introducing them into the solution (Equation 4.16g) we obtain

  (4.16j)

or alternatively

  (4.16k)

where we have used the hyperbolic function cosh j = [exp(j) + exp(-j)]/2
listed in the Appendix.

j is called the Thiele modulus, after one of the pioneers in the field, and
expresses the combined effect of reaction rate constant kr and effective dif-
fusivity De on the concentration profile in the pellet. Large values of this
parameter are associated with larger pellets and low diffusivities, and imply
a strong pore diffusion resistance. This means that the reaction rate outpaces
the transport rate, which is unable to adequately replenish the consumed
reactant. A sharp drop in reactant concentration results and may in extreme
cases lead to a vanishing concentration at some location in the pellet. Small
values of j, on the other hand, imply a low reaction rate and high diffusiv-
ities. Concentration profiles under these conditions will be nearly flat, and
the pellet operates near its maximum effectiveness.

We now turn to the task of converting the concentration profile (Equation
4.16h), into the more useful effectiveness factor E, which had been defined
as the ratio of the reaction rate with diffusional resistance to the reaction rate
without diffusional resistance:

  (4.17a)
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Because the rate of reaction in the pellet must, at steady state, equal the
rate of supply of reactant, we have alternatively

  (4.17b)

or

  (4.17c)

where the derivative is obtained from Equation 4.16k.
The result, obtained after some manipulation, is given by

  (41.7d)

or alternatively

E = (tanh j)/j (4.17e)

A plot of this relation is shown in Figure 4.7. The important fact that
emerges from it is that up to values of j = 0.5, the pellet is very nearly at its
maximum effectiveness, E = 1. This is precisely the region in which we want
to operate and we can use this threshold value of j = 0.5 to establish some
of the properties a good catalyst pellet should possess.

Suppose it is desired to carry out a gas-phase reaction in a reactor packed
with catalyst pellets. A reasonable size for the pellets that balances low-
pressure drop and acceptable contact area is about 1 cm. Rate constants for
many important gas-phase catalytic reactions are of the order 10–3 s–1. The
question then arises whether a typical pellet diffusivity De satisfies the cri-
terion j £ 0.5 or whether it has to be adjusted, along with pellet size, to yield
an acceptable effectiveness. We have the requirement

j = L(kr/De)1/2 £ 0.5 (4.17f)

A rough estimate of pellet diffusivity assuming molecular rather than
Knudsen diffusion comes from the relation given in Chapter 3:

  (4.17g)
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where e = porosity. If we set e = 0.4 and use D = 10–1 cm2/s for the diffusivity
of a typical gas, we obtain

j = 0.5 (10–3/10–2)1/2 = 0.16 (4.18)

Thus our criterion is fully met. In fact, we can drop De by an order of
magnitude or raise the rate constant by the same amount without violating
the criterion. There is also some freedom to manipulate pellet size, if needed.
All of this is revealed in simple fashion by an inspection of the Thiele
modulus.

Illustration 4.10: A Moving Boundary Problem: The Shrinking Core Model

The reader had previously been introduced to the concepts that must be
applied in modeling the progress of a gas-solid reaction. They involve sep-
arating the system into a core, which reacts and continuously shrinks in size,
and an external layer, which grows with time but is assumed to be at a quasi-
steady state. This configuration is referred to as the shrinking core model and
has associated with it the assumption of a quasi- or pseudo-steady state.

We illustrate these concepts with the following example: Suppose a solid
particle undergoes a reaction according to the scheme

A(g) + bB(s) Æ Products  (4.19)

with rates rA and rB, which are related by the stoichiometry of the reaction
as follows

  (4.20)

FIGURE 4.7
Catalyst particle effectiveness factor E as a function of the Thiele modulus j for a flat plate
and isothermal first-order reaction.
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The rate of reaction is assumed to be fast enough that all the reactant
arriving at the surface of the particle is instantaneously consumed. Hence,

 (Figure 4.8). On the other hand, the movement of the core front
is, because of its high density, sufficiently slow that the external layer of solid
products can be taken to be at steady state. The oxidative degradation of
organic aerosols in the atmosphere is an example of such a reactor. The task
is to determine the time dependence of the particle radius rC and hence that
of its mass.

We start, as recommended, with an unsteady core balance and write

Rate of B in - Rate of B out =  (4.21a)

0 - rB =  

where we have placed the unknown reaction rate rB in the “out” column
and denoted particle density by rB.

This is followed by a quasi-steady-state mass balance in the product layer,
which is composed as follows:

Rate of A in at r - Rate of A out at rC = 0

 – rA = 0 (4.21b)

FIGURE 4.8
A reacting solid particle and its external ash layer.
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where De is the effective diffusivity of reactant A in the product layer. This
last expression can be immediately integrated by separation of variables to
yield

  (4.21c)

or

  (4.21d)

where ro = initial radius of particle.
We pause at this stage to take a brief inventory. We have, in Equation

4.20, Equation 4.21a, and Equation 4.21d, three equations in the three
dependent variables rA, rB, and the core radius rC. The model is conse-
quently complete and we can proceed with the elimination of the
unknown reaction rates rA and rB to arrive at the desired solution rC = f(t).

We obtain from the three aforementioned equations

  (4.21e)

which can again be integrated by separation of variables:

  (4.21f)

The final result is then

  (4.21g)

Comments:

The illustration demonstrates how the use of clever simplifying assumptions
and some inspired modeling can reduce the complexities of a process to
manageable proportions. The assumptions would be violated only if the
progress of core consumption were extremely rapid, in which case events in
the outer layer become both time- and distance-dependent, leading to a PDE.

The time required for the reaction to be complete is obtained from Equation
4.21g by setting rC = 0. This leads to
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  (4.21h)

where tTot is seen to vary inversely with the effective diffusivity De and the
external reactant concentration CA

o. 
This was anticipated on physical grounds, as both these factors increase

the rate of reactant consumption. Somewhat less expected is the direct depen-
dence on the square of the initial particle radius, ro

2. It might have been
argued that the time necessary for total consumption should vary with the
mass of the particle, i.e., with the radius cubed. That this is not so is neatly
revealed by the model, and this is the case because the rate of consumption
is dictated by, and hence proportional to, the surface area of the particle at
any instant.

It will also be noted that a knowledge of the reaction rates is not required
in this instance. This is a consequence of the assumption that the rate of
reaction is very rapid and as a result ceases to affect the overall rate of the
process. The rate-determining step here is the speed with which the core
front recedes, which is very low given the high density rb of the particle.
This, together with the low values of De and CA

o, leads to high values of the
consumption time tTot.

Illustration 4.11: First-Order Reaction with Diffusion in a Liquid Film: 
Selection of a Reaction Solvent

We consider the situation depicted in Figure 4.5, involving transport through
a gas film to a liquid interface, followed by diffusion and reaction in the
liquid film. The difference element over which the mass balance is taken is
the same as that for the flat-plate catalyst pellet, and leads to the same
differential equation and the same boundary conditions:

  (4.16a)

CA(0) = CAi (4.16b)

  

Where the treatment of the two cases differs is in the ultimate goal of the
solution. The catalyst pellet required us to derive the ratio of reaction rate
with diffusion to reaction rate without diffusion. For the liquid film the require-
ment is reversed: We compose the ratio of diffusion rate with reaction over
diffusion rate without reaction. The results are exact inverses of each other. We
obtain
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For the catalyst pellet:

  (4.16c)

For the liquid film:

  (4.16d)

where Eh is the enhancement factor and Ha = d(kr/DL)1/2 is the Hatta number,
named after one of the pioneers in the field. For the case of no reaction, Ha
= 0 and Eh = 1; that is to say, no enhancement occurs. Enhancement Eh rises
above 1 when Ha > 0 and continues to increase with further increases in the
reaction-rate constants kr. Values of Eh can be read off Figure 4.7 by setting
j = Ha and Eh = 1/E.

Details of the derivation of Equation 4.16d are left to the exercises (Practice
Problem 4.11). The intent here is to use the enhancement factor to make a
rational selection of a reactive solvent. Let us assume a typical turbulent-
flow film thickness of 0.1 mm (see Illustration 1.5) and a value of DL = 10–5

cm2/s, which is the commonly used order of magnitude of liquid-phase
diffusivities (see Chapter 3). To find out at which value of Ha enhancement
begins to exceed 1, we use the criterion Ha > 0.5, i.e., the inverse of that
proposed for the catalyst pellet, j < 0.5. We obtain, for Ha = 0.5

  

Some other values are listed below:

Thus, for the reaction to have a significant effect on mass transfer rate, the
rate constant must be in excess of 0.025 s–1. This is in fact the range of many
liquid-phase reaction rates. The requirements become less stringent with an
increase in film thickness. For d = 1 mm, for example, rate constants can be
lowered by a factor of 100 to achieve the same result.

Reactive solvents are routinely used in the scrubbing of acidic gases. An
idea of what can be accomplished is reflected in Table 4.4.

kr, s–1 2.5 10 25 100
Eh 5 10 50 100
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Practice Problems

4.1. Emissions from a Chimney
A 10-m-tall chimney emits a toxic substance at the rate of 10 kg/s.
Calculate the prevailing concentration at the base of the chimney
100 h after the start of the emissions, assuming a diffusivity in air
of 10–5 m2/s. (Hint: Use coordinates z – zo, where zo = chimney height.)

Answer: 2.48 ¥ 10–24 g/m3

4.2. A Simplified Model of a Nicotine Patch
A nicotine patch attached to the skin of a smoker releases 1 mg of
nicotine per second. The substance penetrates the skin and ulti-
mately enters the blood vessels assumed to be 1 mm beneath the
skin surface. Calculate the maximum concentration of nicotine
attainable at the point of entry into the blood. (Hint: Assume the
patch to be a continuous point source and set D = 10–9 m2/s.)

Answer: 160 mg/cm3

Note: Nicotine patches usually last no more than 24 h, so the maxi-
mum given here is unlikely to be approached.

4.3. Evaporation of a Solvent Spill
A load of solvent is spilled over a large area, resulting in a layer of
liquid with an area density of 1 kg/m2. The solvent has a vapor
pressure of 10 kPa and an average molar mass of 100. Diffusivity is
estimated at 10–5 m2/s. Calculate the time of evaporation in the
absence of any air currents. This is the maximum to be expected.

Answer: 136 h

TABLE 4.4

Enhancement Factor for the Absorption of Carbon Dioxide 
in Various Solvents

Solvent Eh

2N Potassium hydroxide 6.25
2N Sodium hydroxide 10.5
2N Ethanol amine 62.5
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4.4. Doping of a Silicon Chip with Boron
A junction in silicon is made by doping it with boron. This is done
by first depositing a layer of boron on the chip (predeposition),
followed by what is termed drive-in diffusion. If the deposition step
requires 5 min, at what distance from the surface is the concentration
of boron raised by 3 ¥ 1018 atoms/cm3 during this interval? The
density of pure boron is 5.1 ¥ 1020 atoms/cm3, its diffusivity 5.8 ¥
10–2 mm2/h.

Answer: 0.271 mm

4.5. Leaching of an Ore
The leaching of ores to recover valuable mineral components is a
commonly applied operation in the field of hydrometallurgy. The
extraction of gold with cyanide solution is a familiar example. Sup-
pose the finely ground ore can be thought of as plane flakes, and
that it is desired to carry the process to the point where no more
than 2% of the original material remains at the midplane of the flake,
which has a thickness of 2 mm. Diffusivity is estimated at 10–9 m2/
s. Estimate the time of leaching.

Answer: 0.417 h

4.6. Batch Adsorption of a Trace Substance
When a diffusing solute partitions or adsorbs onto a solid matrix,
we can often use standard solutions for nonsorbing solids to follow
the course of adsorption by suitably modifying one of the solution
parameters. For the case of adsorption by spherical particles from a
well-stirred solution of limited volume, for example, the parameter
VSol’n/VSpheres in Figure 4.4 is replaced by VSol’n/KVSpheres, where K is
the partition coefficient or Henry’s constant. Assume the following
parameter values: K = 10, VSol’n/VSpheres = 10, D = 10–5 cm2/s, R = 0.46
cm. What is the fractional saturation of the adsorbent after 1 h?

Answer: 0.74

4.7. The Catalyst Pellet under Nonisothermal Conditions
Derive the energy balance for a flat-plate catalyst pellet operating
under nonisothermal conditions (first-order exothermic reaction).
Give a plausible argument why the effectiveness factor can in this
case exceed unity.

4.8. Catalyst Pellets in the Form of Raschig Rings
Catalyst pellets are on occasion cast in the form of hollow cylinders
(Raschig Rings). Discuss the advantages and drawbacks of this
geometry. How would you define the dimension needed to define
the Thiele modulus?
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4.9. A Heat Transfer Counterpart to the Shrinking Core Model: 
Freeze-Drying of Food
In the process considered here, it is desired to derive a model that
would allow us to obtain relevant transport coefficients from freeze-
drying rate data. The food to be dried, i.e., a slab of frozen poultry
meat, has an initial (frozen) water content of mo kg. It is heated with
an electric heater and, in the experiment in question, provided with
thermocouples to measure surface temperature Tg (Figure 4.9). Sub-
limation of the ice takes place in a vacuum chamber, and water loss
is monitored by means of a spring balance. As sublimation
progresses, the core ice front, assumed to be at the constant temper-
ature Ti, recedes into the interior, exposing an ice-free matrix, which
increases in thickness with time. Heat conduction through this
matrix is assumed to be at a quasi-steady state so that a linear
temperature gradient prevails at any given instant. Start in the usual
fashion by first making mass and energy balances about the core,
followed by an energy balance on the ice-free matrix. Use the fraction
of ice removed, f, as the dependent variable.

Answer: t/f = af + b

4.10. More about Gas–Liquid Reactions with Diffusion
Show that for the system considered in Illustration 4.11, the rate of
reaction is given by the expression

  

where HA = Henry’s constant.

FIGURE 4.9
Freeze-drying of meat. 
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4.11. The Enhancement Factor Eh

Give a derivation of Equation 4.16d  for the enhancement factor,
using the procedure used to derive the catalyst effectiveness factor.



157

5
A Survey of Mass Transfer Coefficients

Chapter 1 introduced the reader to the notion of a mass transfer coefficient
and has shown the connection to what is termed film theory. In essence, this
approach assumes the resistance to mass transfer to be confined to a thin
film in the vicinity of an interface in which the actual concentration gradient
is replaced by a linear approximation. The result is that the rate of mass
transport can be represented as the product of a mass transfer coefficient
and a linear concentration difference, or concentration driving force. Thus,

NA/A = kCDC (5.1)

It was further shown that individual transport coefficients could be com-
bined into overall mass transfer coefficients to represent transport across
adjacent interfacial layers. The underlying concept is referred to as two-film
theory. Chapter 1 has been confined to simple applications of the mass
transfer coefficient which is either assumed to be known, or is otherwise
evaluated numerically in simple fashion.

This chapter seeks to enlarge our knowledge of mass transfer coefficients
by compiling quantitative relations and data for use in actual calculations
applied to practical systems. There are evidently a host of such systems, and
our aim here is to convey the coefficients pertinent to these systems in an
organized fashion.

When the system under consideration is in laminar flow, it is often possible
to give precise analytical expressions of the transport coefficients. In most
other cases, including the important case of turbulent flow, the analytical
approach generally fails and we must resort to semiempirical correlations,
arrived at by the device known as dimensional analysis, which involves the
use of dimensionless groups.

To represent these facts in an organized fashion, we start our deliberations
with a brief survey of the dimensionless groups pertinent to mass transfer
operations. We next turn to transport coefficients that apply to systems in
laminar flow and show how these coefficients are extracted from the solu-
tions of the pertinent PDE models. This is followed by an analysis of systems
in turbulent flow where the approach of dimensional analysis is used. We
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describe the method and present the results obtained for some simple geom-
etries, including flow in a pipe and around spheres and cylinders.

More complex geometries involving commercial tower packings are taken
up next. Such packings, used in separation and purification methods such
as gas absorption and distillation, have their own peculiar characteristics,
and our main source of information here is the data given in manufacturers’
catalogs. Even more complex conditions apply to mass transfer operations
carried out in stirred vessels. Configuration of the stirring mechanism and
the speed of stirring enter the picture here, leading to rather complex expres-
sions.

Finally, we turn our attention briefly to transport in an environmental
context. The methodology used by environmentalists in determining trans-
port coefficients has its own peculiarities, which are discussed and related
to the standard concepts used here.

5.1 Dimensionless Groups

The two principal dimensionless groups of relevance to mass transport are
the Sherwood and Schmidt numbers. They are defined as follows:

    (5.1a)

  (5.1b)

where � is some pertinent dimension of the system, such as the diameter of
a pipe or a sphere, and kc is the mass transfer coefficient in units of m/s.

The Sherwood number can be viewed as describing the ratio of convective
to diffusive transport, and finds its counterpart in heat transfer in the form
of the Nusselt number. The Schmidt number is a ratio of physical parameters
pertinent to the system, and corresponds to the well-known Prandtl number
used in heat transfer. Added to these two groups is the Reynolds number,
which represents the ratio of convective-to-viscous momentum transport
and serves in essence to describe the flow conditions.

Two additional dimensionless groups, the Peclet number and the Stanton
number, are also used, although with lesser frequency. Both of these numbers
are composites of other dimensionless groups, which frequently occur in
unison. Thus, the Reynolds and Schmidt numbers often crop up combined
as a product, which leads to the Peclet number:

Sh =
k

D
cl

Sc = m
rD
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  (5.1c)

The Stanton number is a combination of Sherwood, Reynolds, and Schmidt
numbers, which likewise often appear in unison. It is defined as

  (5.1d)

The result here is a particularly simple one, and in essence represents the
ratio of two velocities: the “velocity” of mass transfer kc in units of m/s and
the velocity of flow, likewise in units of m/s. Table 5.1 summarizes these
groups for both mass and heat transfer processes.

Illustration 5.1: The Wall Sherwood Number

In dialysis and similar processes through permeable membranes, it has
become convenient to replace the permeabilities, which were defined in
Chapter 3, by an effective mass transfer coefficient, termed kw, which equals
the ratio of membrane diffusivity over membrane thickness. Thus,

  (5.2)

where tm = membrane thickness.

TABLE 5.1

Summary of Dimensionless Groups Used in Mass and Heat Transfer 
Processes

Mass Transfer Heat Transfer

Sherwood number   Nusselt number  

Schmidt number  Prandtl number  

Reynolds number  Reynolds number  

Peclet number  Peclet number  

Stanton number  Stanton number  
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When flow in a tubular membrane device is laminar, with material diffus-
ing from the flowing fluid into and across the membrane, the transport
equations become distributed in both radial and axial directions and in
consequence lead to PDEs. One of the boundary conditions for this PDE is
given by the relation

  (5.3)

which in essence equates the rate of passage through the membrane to the
rate of arrival of the dissolved solute at the membrane wall. It has become
customary in models describing these events to combine the transport coef-
ficients kw and D with the tubular diameter d into a dimensionless group
termed the wall Sherwood number, Shw. Thus,

  

This number can be viewed as the ratio of membrane transport to transport
through the tubular fluid and has found extensive use in describing and
correlating membrane transport processes.

With typical membrane and liquid diffusivities of 10–7 and 10–5 cm2/s,
respectively, membrane thickness of 10–3 mm, and tubular diameter of 1 mm,
a typical wall Sherwood number becomes

  (5.4a)

  (5.4b)

i.e., of the order 100. We have occasion to discuss membrane processes
further in Chapter 8.

5.2 Mass Transfer Coefficients in Laminar Flow: Extraction 
from the PDE Model

Mass transport in laminar flow in a tubular geometry or around simple
submerged shapes is generally modeled by PDEs because there is more than
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one direction of diffusional flow involved. These PDEs have been solved
analytically for a number of cases and generally lead to fairly formidable
expressions representing the concentration and velocity profiles in the geom-
etries in question. As had been indicated on a number of previous occasions,
concentration profiles, which represent the primary information obtained
from the PDE model, are often not directly useful for engineering purposes.
We have shown this, for example, in the case of diffusion and reaction in a
catalyst pellet, Illustration 4.9, where the primary profiles were converted
into the more useful quantity known as the effectiveness factor. In the present
case the useful quantity we wish to extract from the primary information is
an equivalent mass transfer coefficient.

Let us demonstrate its derivation using transport in a tube as an example.
The situation here is one in which solute diffuses in the radial direction,
either as a result of release from the wall, or in consequence of transport to
and ultimately through a permeable wall. The model for this case has been
presented in Section 2.8 and there referred to as the Graetz problem in mass
transfer.

The concentration profiles that arise in this case are distributed in both the
radial and axial directions, as diffusion in one direction is superposed on
convective transport in the other direction. To obtain a mass transfer coeffi-
cient from this information, we perform a mass balance at the tubular wall,
equating diffusional transport rate to an equivalent “convective” rate
expressed by means of a mass transfer coefficient. Thus,

  (5.5a)

To evaluate kc, two quantities need to be obtained from the primary con-
centration profile. One is the derivative at the tubular wall given above,
which is obtained by differentiating the solution C(r,z); the second is the
mean integral concentration Cm in the flowing fluid. This latter quantity is
obtained from the expression

  (5.5b)

Note that both of these items are part of the “information package” con-
tained in a model that we had alluded to in Table 2.2. 

With these two quantities in place, Equation 5.5a can be solved for kc and
the latter tabulated. Similar calculations can be carried out for systems
involving flow around simple geometries.
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5.2.1 Mass Transfer Coefficients in Laminar Tubular Flow

In the case of tubular mass transfer coefficients, we distinguish between mass
transfer in the so-called entry or Lévêque region, in which concentration
changes are confined to a thin boundary layer d(x) adjacent to the wall, and
the so-called fully developed region, in which the concentration changes
have penetrated into the fluid core. The situation is depicted in Figure 5.1,
and represents a tubular wall coated with a soluble material of solubility Cs

dissolving into pure solvent.
Because of the thinness of the boundary layer, mass transfer in the entry

region is very rapid, with Sherwood numbers in excess of 1000 attained near
the tubular entrance (Figure 5.2). As we move away from the entrance in the
downstream direction, the boundary layer gradually thickens and the Sher-
wood number diminishes with the one-third power of axial distance x.
Eventually it levels off and attains a constant value as the fully developed
region is reached (Figure 5.2). Table 5.2 lists some of the relevant Sherwood
numbers obtained in ducts of various geometries and constant wall concen-
tration. 

For engineering calculations, it is often more convenient to deal with mass
transfer coefficients that have been averaged over the entire length of the
entry region. The result is expressed in terms of the dimensionless Reynolds

FIGURE 5.1
Mass transfer from a coated tubular wall into a flow of pure solvent.

TABLE 5.2

Mass Transfer Coefficients in Ducts of Various Geometries for Laminar Flow

Duct Geometry Entry Region Fully Developed Region

Cylinder         Sh = 3.66

Parallel planes         Sh = 7.54
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Triangular — Sh = 2.47
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and Schmidt numbers and takes the following form for laminar flow in
cylindrical tubes

  (5.6)

where L is the length of pipe in question. The mass transfer coefficient here
is a constant, rather than a function of distance, and can be directly incor-
porated in the usual tubular mass balances. This is shown in Illustration 5.2. 

Mass transfer in the entry region is far from a rare event. Transport in the
larger blood vessels lies entirely in the entry region, and so does mass transfer
in commercial reverse osmosis desalination plants and other membrane
processes (see Chapter 8). Entry lengths of many meters are not uncommon,
particularly for low-solute diffusivities. The only requirement is that flow
must be in the laminar regime (Re < 2000).

5.2.2 Mass Transfer Coefficients in Laminar Flow around Simple 
Geometries

In the case of mass transfer involving laminar flow about simple geometries,
no distinction is made between regions near the leading front of the particle
and portions farther downstream. Instead, we report transfer coefficients
averaged over the entire particle. The results are expressed as correlations
of the Sherwood or Stanton numbers as a function of Reynolds and Schmidt
numbers. 

FIGURE 5.2
Sherwood numbers for laminar flow in a cylindrical duct.
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The correlation for three simple geometries, the flat plate, the sphere, and
the cylinder, are tabulated in Table 5.3. The flat plate here is taken to be
positioned parallel to the direction of flow, whereas the cylinder has its axis
normal to the flowing medium.

Illustration 5.2: Release of a Solute into Tubular Laminar Flow: Transport 
in the Entry Region

Consider the transport from a tubular wall coated with a soluble substance
into a solvent in laminar flow. We set the diameter at d = 1 cm, velocity v at
1 cm/s, and the length x of the tube at 1 m. The solubility C* of the solute
is 10 g/l and its diffusivity D = 10–9 m2/s. The problems we wish to address
are the following:

1. What is the boundary layer thickness at the exit of the tube?
2. What is the mean concentration at that position?

To answer question 1, we draw on the definition of a mass transfer coef-
ficient, which was set out in the film theory given in Chapter 1, Equation
1.11b. The rearranged version of this expression has the form:

  (5.7a)

from which the boundary layer thickness d can be extracted.
To obtain d we start by calculating the mass transfer coefficient kc for which

we draw on Table 5.3. Note that, since (xD/vd2)1/3 = (1 ¥ 10–9/10–2 ¥ 10–4)1/3

= 0.1, the flow does in fact fall in the Lévêque region (Figure 5.2). We have

  (5.7b)

from which we obtain

  (5.7c)

TABLE 5.3

Mass Transfer Coefficients in Laminar Flow around Simple Geometries

Geometry Correlation Re

Flat plate St = 0.66(Re)–1/2 (Sc)–2/3 <105
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and consequently

kc = 1.08 ¥ 10–6 m/s (5.7d)

Substitution of this value into Equation 5.7a and solving for d yields the
boundary layer thickness:

  (5.7e)

Thus, the boundary layer thickness is approximately 10% of the tubular
diameter at the exit of a 1-m tube.

We next turn to the calculation of the concentration at the tubular exit.
This requires setting up a differential solute balance over a tube segment
and its subsequent integration over the entire length of the tube. For a finite
tubular increment Dx and volumetric flow rate Q, we can write

Rate of solute in - Rate of solute out = 0

 – QC1x+Dx               = 0 (5.8a)

where C is the tubular concentration averaged over the entire cross section.
Dividing by Dx and letting Dx Æ 0 yields

  (5.8b)

or

  

To keep the integration simple, we use the mean integral Sherwood num-
ber given by Equation 5.6, rather than the distance-dependent local coeffi-
cient listed in Table 5.2. We have

  (5.8c)
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  (5.8d)

  (5.8e)

This value is used in the solution of the ODE (Equation 5.8b) obtained by
separation of variables.

  (5.8f)

  (5.8g)

so that

1 – C/C* = 0.93 (5.8h)

and C = 0.7 g/l; i.e., the well-mixed solution is approximately 7% saturated
at the exit. Note that the core concentration itself remains constant and equal
to zero over the entire tube length, and average concentration changes very
slowly. We use this fact to simplify the model for reverse osmosis taken up
in Illustration 8.6.

5.3 Mass Transfer in Turbulent Flow: Dimensional Analysis 
and the Buckingham pppp Theorem

Both heat and mass transfer in turbulent flow are generally not amenable
to analytical treatment. It is customary in these cases to resort to what is
termed dimensional analysis. This device consists of grouping the pertinent
physical parameters of the system into a number of dimensionless groups,
thus reducing the number of variables that must be dealt with, and
evaluating the undetermined coefficients experimentally. It is a powerful
tool for arriving at a first qualitative description of complex systems and
eases enormously the experimental work required to quantify the rela-
tionship.
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5.3.1 Dimensional Analysis

The process of dimensional analysis can be carried out in three deceptively
simple steps. Some comments are necessary to ensure the proper application
of this scheme:  

Step 1. List all the variables that affect the system behavior. This is by far the
most important and difficult step and confronts the user with the
task of deciding which independent variables to include in the anal-
ysis. There is no easy recipe for carrying out this step, but the fol-
lowing suggestions may be found useful:
a. Apply physical reasoning to identify the pertinent variables.
b. Use experimental observations to amplify this list and to verify

the final result.
c. If no functional relationship of dimensional consistency results,

reexamine the situation by adding or omitting parameters.
d.   Make sure that only truly independent variables are included. 

Thus, if mass and acceleration are chosen as parameters, force
cannot be added to the list since it is related to the former through
Newton’s law.

Step 2. Write down the dimensions of these variables. The basic dimensions 
that are commonly chosen in dimensional analysis are those of mass
(M), length (L), time (q), and temperature (T). All other quantities
are expressed in terms of these fundamental dimensions. Thus, force
has the units of MLq–2 by virtue of Newton’s law. Joule (J) is not a
fundamental dimension but is instead expressed as ML2q–2.

Step 3. Combine the variables into a functional relationship involving dimen-
sionless groups or some other dimensionally consistent form. The ultimate
aim of this step, and of the analysis as a whole, is to express system
behavior in terms of the functional relationship:

F(p1, p2 … pp) = 0 (5.9a)

where p is the symbol commonly used for a dimensionless group. If x2 …
xp are independent variables, and x1 the dependent variable, the dimension-
less groups can be represented in the form

  (5.9b)

Often, it is convenient to solve this relationship for the dependent variable.
We then obtain

  (5.9c)
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To aid the reader in implementing this analysis, a short list of the dimen-
sions of important variables is presented in Table 5.4.

5.3.2 The Buckingham pppp Theorem

The application of dimensional analysis is relatively simple when the
number of independent variables equals the number of fundamental
dimensions. Straightforward application of Steps 1 through 3 then yields
a result expressed in terms of a single dimensionless group. This case,
however, is a relatively rare one. It is more common for the number of
variables to exceed the number of dimensions, which means that more
than one dimensionless group will be involved. The question then arises
regarding how many such groups are to be sought out, and how they are
to be composed. These problems were first addressed by Buckingham and
resolved in his famous p theorem. Simply stated, that theorem reads as
follows:

Given p variables,  x1, x2, … xp are related to a physical phenomenon that
can be expressed in terms of r fundamental dimensions. Then these variables,
which include the dependent variable, can be gathered into p - r dimension-
less groups p and cast in the functional form:

F(p1, p2,… pp-r) = 0 (5.10)

TABLE 5.4

Variables and Their Dimensions

Variable Symbol Dimension
1. Fundamental Mass m M

Length �, d L
Time t q
Temperature T T

2. Mechanical Velocity v Lq–1

Acceleration a Lq–2

Density r ML–3

Viscosity m ML–3q–1

Force F ML–1q–2

Pressure p ML–3q–2

3. Thermal Thermal conductivity k MLq–3T–1

Specific heat Cp L2q–2T–1

Heat transfer coefficient h Mq–3T–1

4. Diffusional Concentration C ML–3

Rate of mass flow N Mq–1

Diffusivity D L2q–1

Mass transfer coefficient kc Lq–1
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In other words, we have managed to replace a functional relation, which
involves p variables, with one that involves only p - r variables. This con-
stitutes a considerable saving.

To implement Buckingham’s p theorem, we retain the three steps we
formulated earlier but amplify Step 3 in the following fashion:

Step 3a: Select a set of variables that equals the number of dimensions r
and does not include the dependent variable. Raise each variable to
some unknown power a, b, … and form a product of the result. This
product is placed in the denominator of each dimensionless group p.

Step 3b: Place the remaining (p - r) variables, which now include the
dependent variable, in the numerators of the (p - r) dimensionless
groups. This results in the set of p terms shown in Equation 5.10.

Illustration 5.3: Derivation of a Correlation for Turbulent Flow Mass 
Transfer Coefficients Using Dimensional Analysis

The problem addressed here is that of expressing mass transfer coefficients
that apply to turbulent flow conditions in a tube in terms of appropriate
dimensionless groups. To implement Step 1, both fluid mechanical and trans-
port properties must be taken into account. The former determine the degree
of turbulence or ability to form eddies, and hence the rate at which mass is
transported to or from the tubular wall, whereas the transport parameter
determines the rate at which mass is conveyed through the film adjacent to
the interface. It is proposed to use velocity v, density r, and viscosity m as
the fluid mechanical properties, as each of these parameters either promotes
or resists the formation of eddies. Transport through the film is determined
by only one parameter, the diffusivity of the conveyed species. In addition
to these factors, we expect pipe diameter to play a role because it determines
the distance over which the mass is to be transported and plays a role as
well in the degree of turbulence generated in the system.

The reader will have noted that in choosing these parameters we had to
proceed in a somewhat intuitive fashion. This is the difficult and challenging
part of dimensional analysis we had alluded to in Step 1 of our outline. It
requires physical insight as well as some inspired guesswork.

We can now proceed to Step 2 of the procedure and list the dimensions of
these variables, making use of Table 5.4 for this purpose.

Variable Symbol Dimension

Velocity v Lq–1

Density r ML–3

Viscosity m ML–3q–1

Mass transfer coefficient kc Lq–1

Diffusivity D L2q–1

Diameter d L
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It is seen that there is a total of six variables, including the dependent
variable kc. Hence, by Buckingham’s theorem, there are 6 – 3 = 3 dimension-
less groups to be established.

As recommended in Step 3a and Step 3b we place r, v, d in the denominator,
and kc, m, D in each of the numerators. Thus,

  (5.11a)

  (5.11b)

  (5.11c)

We find by inspection, or by formally equating coefficients in the numer-
ator and denominator,

a1 = a3 = 0 a2 = 1 (5.11d)

b1 = b2 = b3 = 1 (5.11e)

g1 = 0 g2 = g3 = 1 (5.11f)

Hence, we obtain

p1 = f(p2, p3) (5.11g)

or

  (5.11h)

Table 5.1 shows that we have here a first grouping in terms of the dimen-
sionless Stanton, Reynolds, and Peclet numbers, i.e.,

St = F(Re, Pe) (5.11i)

or, since Pe = ReSc,

St = F(Re, Sc)
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A different set of dimensionless groups may be arrived at as follows:
We divide p3 by p2, p1 by p3 and invert p2, resulting in

  (5.11j)

or, equivalently,

Sh = G(Re, Sc) (5.11k)

This is the more common form of dimensionless grouping seen in the
literature and states that the Sherwood number Sh, which contains the mass
transfer coefficient as the dependent variable, is a function of both Reynolds
and Schmidt numbers.

Evidently, for relation 5.11k to be of practical use, it must be rendered
quantitative. This is done by assuming that the functional relation is of a
power form; i.e., we set

Sh = a Reb Scc (5.11l)

and evaluate the coefficients experimentally. This approach has proved itself
successful in most undertakings of this kind. It will be noted that the amount
of experimentation is considerably reduced by dimensional analysis, as the
original six variables are replaced by three dimensionless groups.

We have compiled a list of the most frequently used correlations and
tabulate them in Table 5.5. They include mass transfer correlations for
turbulent flow about simple geometries as well as in tubes and in packed
beds. The following illustration demonstrates the use of these correla-
tions. 

TABLE 5.5

Correlations for Mass Transfer Coefficients in Turbulent Flow

Range Correlation

1. Flat plate
    Re > 106 St = 0.036 (Re)–0.2 (Sc)–0.67

2. Sphere
    Unlimited Sh = 2.0 + 0.60 (Re)0.5 (Sc)0.33

3. Inside tubes
    Re > 20,000 Sh = 0.026 (Re)0.8 (Sc)0.33

4. Packed bed of spheres
    Re > 50 St = 0.61 (Re)–0.41 (Sc)–0.67
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Illustration 5.4: Estimation of the Mass Transfer Coefficient kY for the 
Drying of Plastic Sheets

It is desired to establish the mass transfer coefficient that needs to be applied
to estimate the time of drying of wet plastic sheets exposed to air in turbulent
flow.

It is customary in drying operations to use humidity Y as a driving force.
This calls for the use of the mass transfer coefficient kY, which has been
previously listed in Table 1.4. Because the correlations in Table 5.5 are given
in terms of the coefficient kc (m/s), a two-step procedure is used to arrive at
the desired result. In the first instance, we calculate kc from the correlation
for a flat plate given in Table 5.5. This value is then converted into kY using
the appropriate conversion factor given in Table 1.4. The following are the
data to be used in this connection:

Length of sheet L = 15.2 m
Width of sheet b = 1.52 m
Velocity of air v = 15 m/s
Density of air r = 1.12 kg/m3

Viscosity of air m = 1.93  ¥ 10–5 Pa s
Schmidt number Sc = 0.606
Vapor pressure at interface pA = 2487 Pa
Temperature of air TA = 44°C

We start by establishing that the flow conditions do in fact fall in the
turbulent range. The Reynolds number, which is the criterion here, is given
by

  (5.12a)

i.e., it is in excess of 106, which entitles us to use the correlation listed in
Table 5.5. We have

  (5.12b)

Substitution of numerical values gives

  (5.12c)
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from which there results

kc = 0.0284 m/s (5.12d)

This agrees with the order of magnitude estimate of 10–2 m/s derived in
Illustration 1.5.

Conversion to kY requires the following relation given in Table 1.4:

  (5.12e)

For the computation of pBM we note that, with water partial pressure pA

set at 2487 Pa, we have for the inert air component pB1 = 101300 – 2487 =
98813 Pa and pB2 = 101300 Pa so that

  (5.12f)

kY = 0.0313 kg H2O/m2s DY (5.12g)

This is the mass transfer coefficient to be used in modeling the air-drying of
plastic sheets.

5.4 Mass Transfer Coefficients for Tower Packings

To this point in our narrative, we have confined ourselves to mass transfer
in and around simple geometries such as channels of various types and
exterior flow about flat plates, cylinders, and spheres.

In this section we turn our attention to more complex shapes represented
by tower packings used in operations such as gas absorption, stripping, and
distillation. The operation of such columns is addressed in more detail in
Chapter 8.

Tower packings are used to fill the interior of large upright cylindrical
shells in which two phases, usually a gas and a liquid or two liquids, are
brought into intimate contact for the purpose of transferring or exchanging
certain components contained in these phases. In gas absorption, for exam-
ple, the aim is to remove an objectionable component from the gas stream
or to recover a valuable component contained in it by contacting it with an
appropriate liquid solvent. Both phases flow through the tower, usually in
countercurrent fashion.
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Packed towers and tower packings have been in use for more than 100
years. Some early examples of their application involve the production of
sulfuric acid and the purification of coke oven gas. Prior to 1915, these towers
were filled with coke, random-sized and -shaped quartz, broken glass, or
broken crockery. Tower performance was unpredictable and no two towers
would perform alike. The development in 1915 of the Raschig Ring made it
possible for the first time to impart a degree of predictability and depend-
ability to tower performance. These first uniformly shaped packings not only
improved tower performance but also enabled engineers to translate the
performance of one tower to others. Today, modern tower packings such as
the Super Intalox Saddle and the Pall Ring greatly exceed the capacity and
the efficiency of the early Raschig Ring. Figure 5.3 displays some of the
shapes in current use.

The mass transfer characteristics obtained on packings are reported in sev-
eral different ways. At the more fundamental level, we extract volumetric mass
transfer coefficients from the experimental performance data. These coeffi-
cients, which we have encountered before in Illustrations 2.2 and 2.3, consist
of the product of a film coefficient and the nominal specific surface area a of
the packing, expressed in units of m2 per m3 of packing. If we use the molar
concentration-based coefficient kc or kL, which has units of m/s, then the

FIGURE 5.3
Sample tower packings.

Plastic Pall Ring‚ Metal Pall Ring‚ Raschig Ring‚

Super Intalox‚Saddle Plastic Intalox‚Saddle Intalox‚Saddle
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volumetric coefficient given by the product kca or kLa will have units of recip-
rocal seconds, which is the same as that of a first-order reaction rate constant.

Table 5.6 lists values of kca and kLa extracted from the literature for four
systems and a range of conventional packings and superficial flow rates per
m2 column cross section. These are all based on experimental performance
data obtained over a range of gas and liquid flow rates.

The liquid flow rates listed in this table represent the range commonly
used in gas–liquid operations. They fall between the extremes of too low a
flow, which fails to thoroughly wet the packing, and an excessively high
flow, which causes the tower to flood. Neither of these conditions is desirable
and the range listed, typically L = 1 – 10 kg/m2 s, provides a guideline for
avoiding these extremes. The gas flow rates, which lie an order of magnitude
lower at G = 0.1 – 1 kg/m2 s, fall between two different extremes, that of
insufficient flow to force the gas through the column and an excessively high
flow, which would tend to entrain liquid out of the column. These two

TABLE 5.6

Mass Transfer Coefficients in Various Commercial Packings

Packing G, kg/m2 s L, kg/m2 s kca, s–1

System: CO2----aqueous NaOH (kCa)

1-in. Raschig ceramic 0.61–0.68 1.4–14 0.14–0.33
2-in. Raschig ceramic 0.61–0.68 1.4–14 0.09–0.31
1-in. Raschig metal 0.61–0.68 1.4–14 0.16–0.32
1-in. Pall plastic 0.61–0.68 1.4–27 0.16–0.33
2-in. Pall plastic 0.68 1.4–54 0.13–0.33
1-in. Pall metal 0.61–0.68 1.4–27 0.19–0.44
1-in. Intalox plastic 1.2 2.7–27 0.28–0.43
2-in. Intalox plastic 1.2 4.1–41 0.20–0.30
1/2-in.  Intalox ceramic 0.61–0.68 1.4–14 0.30–0.51
1-in. Intalox ceramic 0.61–0.68 1.4–14 0.17–0.36
3-in. Intalox ceramic 1.2 1.4–54 0.04–0.22

Packing G, kg/m2 s L, kg/m2 s kca or kLa, s–1

System: NH3----Water (kCa)

1-in. Raschig ceramic 0.54 0.68–6.1 1.3–5.2
2-in. Raschig ceramic 0.54 0.68–6.1 0.87–2.6
1-in. Berl ceramic 0.54 0.68–6.1 1.7–4.3
2-in. Berl ceramic 0.54 0.68–6.1 1.3–4.0
50-mm Pall plastic 0.45–2.5 4.2 2.0–7.0

System: CO2----water (kLa)

50-mm Pall plastic 0.4–2.0 4.2 11

System: O2----water (kLa)

1.5-in. Raschig ceramic 0.054–0.54 2.7 0.14–1.4
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undesirable conditions can be avoided by operating within the range indi-
cated in Table 5.6. The mass transfer coefficients listed can be used as a guide
for sizing packed columns.

Quantitative prediction methods for volumetric mass transfer coefficients
that rely on empirical coefficients for each particular packing and packing
size have been developed and can be found in the relevant literature. We do
not often resort to complete predictions of this type, and it is more common
to use relations that will extend known coefficients, such as those listed in
Table 5.6, to a different set of conditions. This can be done in an approximate
fashion using the following proportionalities:

For the gas film coefficient:

kca(s–1) µ DG
0.67(GrG)0.8(L/rL)0.5 (5.13a)

For the liquid film coefficient:

kLa(s–1) µ DL
1/2(L/rL)0.75 (5.13b)

In Illustration 5.5, we use these relations to extend existing data to a
different set of conditions.

A second and less fundamental way of expressing packing performance
is through the concept of the height equivalent to a theoretical plate, or HETP.
The theoretical plate, which is a concept we encounter in Chapter 7, is a
hypothetical gas-liquid contacting device in which the two phases are
brought into intimate contact and exit under equilibrium conditions. The
number Np of such theoretical plates required for a particular separation
performance is easily derived by means of graphical procedures to be
described in Chapter 7. The total height H of packed column needed is then
established by the product of Np and the equivalent height of the theoretical
plate; i.e., we have

H = Np ¥ HETP (5.14)

For rough estimates of the HETP, the following recommendations, given
in English units and nominal packing size dp, hold:

1. Pall Rings and similar high-efficiency random packings with low
viscosity liquids

HETP, ft = 1.5dp, in. (5.15a)

2. Absorption with viscous liquids in general

HETP = 5 to 6 ft (5.15b)
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3. Vacuum service

HETP, ft = 1.5dp, in. + 0.5 (5.15c)

4. Small-diameter columns, dT < 2 ft

HETP, ft = dT, ft, but not less than 1 ft (5.15d)

Illustration 5.5: Prediction of the Volumetric Mass Transfer Coefficient 
of a Packing

The mass transfer coefficient for the system ammonia–water using 50-mm
Pall Rings is known to have a value of 3.6 s–1 at a liquid flow rate of 1.2 kg/
m2 s. We wish to calculate the coefficient that prevails at the same gas flow
rate and a liquid throughput of 10 kg/m2 s. Then from Equation 5.13a we
have

  

and consequently

(kca)new = 3.6 ¥ 1.42 = 5.1 s–1

This compares with an experimental value of 5.3 s–1.

5.5 Mass Transfer Coefficients in Agitated Vessels

Mass transfer involving tower packings, which we have considered in the
previous section, is our first introduction to systems with complex and highly
irregular geometries. The approach we had to take there was to make direct
use of experimental data or else convert them by means of some simple
empirical rates for use in similarly structured systems.

Agitated vessels represent yet another example of an unusual and not
easily quantifiable geometry. The prominent irregularity here is the shape
and size of the impeller and the geometry of its blades. Internal baffles, which
are frequently used to enhance transport rates, are an additional unusual
feature.

Agitated vessels find their use in a considerable number of mass transfer
operations. At the simplest level, they are employed to dissolve granular or
powdered solids into a liquid solvent in preparation for a reaction or other
subsequent operations. The reverse process of precipitation or crystallization

( )

( ) .
.

. .k a

k a

L

L
c

c

new

old

new

old

=
Ê
ËÁ

ˆ
¯̃

= Ê
Ë

ˆ
¯ =

0 4 0 410
4 2

1 42



178 Mass Transfer: Principles and Applications

is likewise carried out in stirred vessels. Agitation is also used in leaching
operations, or its reverse counterpart, adsorption, which is used to remove
objectionable materials from a liquid solution or to recover valuable sub-
stances. Liquid extraction processes are often carried out in a batch mode
using agitated tanks, as are a host of heterogeneous “stirred tank” chemical
reactions. In all of these operations we are concerned with establishing mass
transfer coefficients that determine the rate of transport to the continuous
phase.

Fundamental work in this area dates to the 1940s and 1950s, and has been
refined in subsequent decades. These studies have revealed that mass trans-
fer coefficients in these systems can be correlated by the same combination
of Sherwood, Reynolds, and Schmidt numbers we have encountered in
simpler geometries, provided the former two are suitably modified to
account for the altered system geometry and operation. These modifications
are implemented as follows:

• For the Sherwood number, the dimensional length to be used is the
vessel diameter dv .

• For the Reynolds number, the dimensional length is represented by
the impeller diameter di and the dimensional velocity by the product
diN, where N represents the number of revolutions per unit time.
All other parameters are used in the same fashion as before; i.e., m,
r, and D are the viscosity, density, and diffusivity of the continuous
phase.

Using these modified dimensionless groups, it has been found possible to
correlate a host of experimental data for a wide range of operations. The
following correlations, tabulated in Table 5.7, have been found useful in
predicting transport coefficients in the continuous phase of the stirred tanks.

TABLE 5.7

Mass Transfer Coefficients in Agitated Vessels

System Correlation

Solid-liquid baffled vessel
Re = 104 - 106   

Solid-liquid unbaffled vessel
Re = 102 - 105   

Liquid-liquid   
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To illustrate the use of these equations, we consider the case of the disso-
lution of granular solids in a stirred tank. This is done in two steps: In
Illustration 5.6, we derive the appropriate model to describe the process. The
reader is then asked, in Practice Problem 5.7, to derive the mass transfer
coefficient for the particular case of the dissolution of potassium hydroxide
in a stirred tank and use it to compute the time of dissolution of the charge.

Illustration 5.6: Dissolution of Granular Solids in an Agitated Vessel

The assumption made at the outset is that the concentration at the surface
of the particles equals the saturation concentration Cs of the solid material
and that the mass transfer is driven by the linear potential (Cs – C), where
C is the prevailing concentration in the liquid at any particular instant.

An initial unsteady mass balance over the solid phase leads to the follow-
ing expression

Rate of solid in – Rate of solid out =  

0 – kcAs(Cs – C) =   (5.16a)

Note that both the surface area As and concentration in the liquid C vary
with time or indirectly with the remaining mass m. For the area, which can
be quite irregular, we stipulate that it varies with the two-thirds power of
volume, so that

  (5.16b)

where a is some shape factor and equals 4.83 for spherical particles.
To obtain an expression for the external concentration C, we apply a simple

cumulative mass balance, which reads

Initial solid = Solid leftover + Solid in solution

mo = m +  CV (5.16c)

and consequently

  (5.16d)

Substituting Equations 5.16b and 5.16d into the original mass balance
(Equation 5.16a), we obtain
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  (5.16e)

which yields, after integration by separation of variables

  (5.16f)

where A = kcb = kca/rs
2/3.

Evaluation of the integral is by numerical or graphical integration, which
we do not address here. We consider instead the case where vessel volume
V and solubility Cs are sufficiently high, that the term (mo – m)/V in Equation
5.16f can be neglected compared to Cs. This applies to the situation consid-
ered in Practice Problem 5.5. The result (Equation 5.16f) then becomes

  (5.16g)

where t is now the total dissolution time.

Comments:

There are several points of note in the final relation given. First, time of
dissolution varies inversely with the mass transfer coefficient kc and the
solubility Cs. This is in line with physical reasoning: High values of these
coefficients imply a high mass transfer rate, which results in shorter disso-
lution times. A more startling result is the one-third power dependence on
initial mass. This implies that an eightfold increase in the charge will increase
dissolution time only by a factor of two. This was certainly not anticipated
on physical grounds and is a direct consequence of the area-volume relation
introduced in Equation 5.16b. We see here yet another example of the power
of modeling to reveal the unexpected.

5.6 Mass Transfer Coefficients in the Environment: Uptake 
and Clearance of Toxic Substances in Animals: The 
Bioconcentration Factor

The last three decades have seen a dramatic increase in awareness of the
effect of various toxic substances on animal life, in particular that of aquatic
species. Among the identified culprits, the chlorinated hydrocarbons used
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in pesticides, the polychlorinated biphenyls (PCBs) and various organome-
tallic compounds stand out.

Research in this area has focused, on the one hand, on the physiological
consequences of exposure to these substances, and on the other, on tracking
their fate both in the environment and in the affected wildlife and their
specific organs. It is the latter aspect that is considered here.

The fate of toxic substances within an animal is monitored in two ways:
first, by measuring the concentration changes during uptake from a con-
trolled environment, and second by following the decline in concentration
after exposure has ceased. The latter process is termed clearance, elimination,
or depuration.

Interpretation of the experimental data is usually carried out by means of
compartmental models. The simplest of these, the one-compartment model,
yields the following results:

During uptake, the relevant mass balance over the animal body takes the
form

Rate of toxin in - Rate of toxin out =  

kcuAuCw  - kcdAdCa =   (5.17a)

where kcu and kcd are the mass transfer coefficients in units of m/s for uptake
and depuration, Au and Ae are the associated transfer areas, Cw denotes
concentration in the water or other medium, taken to be constant, and Ca is
the time-varying concentration within the animal or one of its organs.

Before integrating, it is customary to divide Equation 5.17a by volume,
with the results that kcu and kce are converted into volumetric mass transfer
coefficients ku = kcuAu/V and kd = kcdAd/V. Equation 5.17a consequently
becomes

  (5.17b)

The coefficients now have units of reciprocal time (s–1) and are precisely
of the same type encountered in Section 5.4 in connection with mass transfer
in packed towers. We have termed them kca and kLa, where a is the specific
surface area of the packing in units of m2 per m3 packing. The corresponding
term here is the ratio of transfer areas to body or organ volume A/V. The
advantage of this procedure is that both these factors, which are either
unknown or not known with precision, are lumped into a single empirical
transfer coefficient, which is determined experimentally.

The fact that these volumetric coefficients have units of reciprocal time has
led to the erroneous impression, and even statements, that the process is one
of chemical reaction, with ku and ke playing the role of first-order rate
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constants. The mechanism of uptake is clearly one of mass transfer and that
of elimination is probably a combination of reaction and transport. Mass
transfer is therefore the key phenomenon that dominates these processes.

We now turn to Equation 5.17a and obtain, by separating variables and
integrating,

Ca/Cw = (ku/kd)[1 – exp) - kdt)] (5.17c)

This result expresses the toxin concentration in the animal, Ca, as a function
of time. We note that as t Æ •, a balance between uptake and elimination
is obtained and a steady-state concentration ratio (Ca/Cw)ss results. This ratio
is termed the bioconcentration factor (BCF) and expresses the magnification
of toxic concentration in the animal over that prevailing in the surrounding
water. It equals the ratio of the two mass transfer coefficients and is given by

BCF = (Ca/Cw)ss = ku/kd (5.17d)

Turning next to the elimination process, a mass balance similar to that
performed for the uptake step leads to the following result

Rate of toxin in - Rate of toxin out =  

0 -  kCdAdCa  =   (5.18a)

or equivalently

  (5.18b)

which upon integration by separation of variables yields

Ca/(Ca)ss = exp(-kdt) (5.18c)

Here (Ca)ss is taken to be the steady-state concentration attained during
uptake.

The uptake and elimination coefficients ku and ke can in principle be cal-
culated by first extracting kd from Equation 5.18c using measured-clearance
histories, and then substituting it into Equation 5.17c and performing a
similar analysis of uptake-concentration histories. In actual practice, it is
more common to perform an independent evaluation of ku by using the initial
portion of the uptake process, which is unaffected by the relatively slow
elimination process. Equation 5.17b then assumes the reduced form
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  (5.19a)

which is integrated to yield

Ca = kuCwt (5.19b)

This expression is used to calculate ku from a linear plot of the initial uptake
data.

Table 5.8 presents uptake and elimination constants obtained on bluegill
fish, exposed to an aqueous environment containing anthracene and ben-
zopyrene, and ring doves, which were fed pellets containing various PCBs.
This is supplemented, in Table 5.9, by the BCF found in various organs of
the bluegill fish. Of note in the latter is the extraordinary magnification that
takes place particularly in the gallbladder of this species, which attests to
the dangerous effect of these toxins.

Illustration 5.7: Uptake and Depuration of Toxins: Approach to Steady 
State and Clearance Half-Lives

Two topics are addressed here. The first involves the calculation of the time
required to attain 95% of the ultimate steady state during toxin uptake. This
conveys a sense of the speed with which this process occurs. In the second
calculation, we seek to quantify the depuration process by calculating its
half-life, i.e., the time required for the toxin concentration to drop to one half
its original steady-state concentration. This again serves as an indicator of
the speed with which depuration proceeds. 

TABLE 5.8

Uptake and Depuration of Some Toxic Substances

Toxin ku (h–1) kd (h–1)

Bluegill fish Anthracene 36 0.04
Benzopyrene 49 0.01

Ring doves PCBs (0.3–4.4)103 0.094–0.24

TABLE 5.9

BCF in Various Organs of Bluegill Fish

BCF
Tissue Anthracene Benzopyrene

Gallbladder 1,800 14,000
Liver 561 1,600
Viscera 640 770
Brain 555 90
Carcass 42 30

k C
dC
dtu w

a=
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1. Approach to 95% of Steady State

Here we make use of Equation 5.17c and Equation 5.17d, which upon divi-
sion by each other yield

Ca/(Ca)ss = 1 – exp(-kdt) (5.20a)

and consequently

  (5.20b)

Applying this to the uptake of benzopyrene by bluegill fish listed in Table
5.8, we obtain

  (5.20c)

t + 300 h (5.20d)

2. Half-Life t1/2 of Depuration

The pertinent expression here is obtained from Equation 5.19c by setting Ca/
(Ca)ss = 0.5. Hence

0.5 = exp(-kdt) (5.21a)

and consequently

  (5.21b)

Applying this to the same data as before, we have

    (5.21c)

To obtain a more direct comparison with the uptake case, we allow Ca/
(Ca)ss to drop to 5% of its original value. This time there results

  (5.21d)

Comments:

The surprising fact that emerges from these calculations is that the uptake
and depuration processes proceed at the same speed. Both are long, drawn-
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out events taking place over a period of days. This is encouraging news for
the uptake step because it implies no harmful effects for brief exposure times
of, say, 10 min. The long depuration period, on the other hand, is disturbing
because the animal will require many days in a clean environment to recover
from its exposure. We have here a mix of good and bad news, which is often
the norm in environmental events.

The BCF mentioned above has its benign counterpart in the effective
therapeutic concentration (ETC), which has been encountered in Practice
Problem 2.1. Both result when the rate of inflow of the material is exactly
balanced by the rate of elimination. Thus, although the two substances are
at opposite poles, one, toxic, the other, therapeutic, the mechanism by which
they reach their plateau values are identical.

Practice Problems

5.1. The Heat Transfer Analogy
Derive the heat transfer counterpart for laminar entry flow and for
turbulent flow in a cylindrical pipe.

5.2. Mass Transfer Coefficients in Terms of Shear Rate 
In physiological flows, such as that of blood, it is customary to
replace velocity by the shear rate , which equals the velocity gra-
dient at the vessel wall. Show that the kC in the entry region is then
given by

  

(Hint: Use the parabolic velocity distribution for laminar flow as a
starting point and derive the relation  = 8v/d.)

5.3. Mass Transfer Regimes in Blood Flow: The Critical Blood Vessel Diameter
Shear rates  in physiological blood flow typically lie in the range
100 – 1000 s–1. Show that for proteins (D = 10–10 m2/s), mass transfer
in the “larger” blood vessels, d > 1 mm, falls entirely in the devel-
oping (Lévêque) region, while for d < 10–2 mm, the concentration
profile is fully developed. (Hint: Use the relation  = 8v/d.)

5.4. Mass Transfer in the Kidney: The Loop of Henle
The Loop of Henle is part of an intricate system of permeable chan-
nels that carry raw urine through the kidney and to the bladder.
During its passage, the urine exchanges water and solutes with the
surrounding tissue to ensure that not too much or too little of either
is withdrawn from the body. The total amount of salt reabsorbed into
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the tissue depends in a complex way on flow velocity, and early
workers attributed this to a flow-sensitive boundary layer within
the tube: Show that this is not the case and show also that we can
still have flow-sensitive reabsorption. Data: d = 2 ¥ 10–3 cm, D = 2 ¥
10–5 cm2/s, v = 10–1 cm/s, wall Sherwood number £ 2. (Hint: Show
that transport is in the fully developed region.)

5.5. Controlled Release of Anticoagulants from Artificial Blood Vessels
The use of artificial grafts to replace diseased blood vessels has by
now become a commonplace operation. The danger of blood clot
formation, which attends these replacements, can be largely elimi-
nated by incorporating an anticoagulant in the graft, which is slowly
released to the bloodstream. One such anticoagulant is the protein
heparin, which effectively prevents the onset of coagulation. It has
been estimated that to achieve this, a microenvironment with a hep-
arin concentration of Cs = 0.5 mg/cm3 must be provided at the blood
vessel surface. The problem to be addressed here is to calculate the
release rate N (mg/cm2 s) required to maintain this concentration
within 0.5 cm from the tubular entrance. Flow is laminar and mass
transfer resides entirely within the entry region. Shear rate is set at
1000 s–1 and the heparin diffusivity is 7.5 ¥ 10–7 cm2/s.

Answer: 5.2 ¥ 10–4 mg/cm2 s

5.6. Solution Mining of Potash
One proposed method for harvesting underground deposits of pot-
ash (KCl or sylvite) is the technique called solution mining. The pro-
cedure consists of cracking the deposit open by pumping high-
pressure water through an “injection well” drilled at one end of the
deposit (“hydrofracturing”). A second well, the so-called production
well, is drilled at the far end of the fracture. Water is then continu-
ously pumped into the deposit through the injection well, dissolving
potash as it passes through the open fracture and returning to the
surface through the production well as a KCl solution. It is desirable
in these operations to have an a priori estimate of the KCl concen-
tration in the effluent, as this will determine the production rate of
the mine. Consider in this connection the following data:
Fracture height d = 1 m
Fracture length L = 500 m
Fracture perimeter P = 500 m
Water velocity v = 0.1 m/s
As a result of the geothermal gradient, temperature near the fracture
is estimated to be 50°C. The following physical parameters have
been calculated with this factor in mind:
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Density r: 985 kg/m3

Viscosity m: 0.6 ¥ 10–3 Pas
Diffusivity D: 1.8 ¥ 10–9 m2/s
The problem we set ourselves is to calculate the degree of saturation
C/C* attained at the far end of the fracture. Simplifying assumptions:
We assume isothermal operation even though the endothermic
nature of the dissolution process will cause a drop in temperature
and consequently of the solubility C*. The variation in fracture height
that occurs with time is neglected, as are the variations in physical
properties due to the changing KCl concentration. The correlation
for tubular flow listed in Table 5.5 is assumed to hold, with fracture
height taking the place of tubular diameter.

Answer: C/C* = 0.047

5.7. Dissolution of Potassium Hydroxide in an Agitated Vessel
In preparation for carrying out a hydrolysis reaction, a 1-molar aque-
ous solution of KOH at 100°C is to be produced using a baffled
stirred tank. The vessel has a diameter dv of 4 m with 0.3-m-long
impeller blades di and a volume of approximately 50 m3. The
required amount of potassium hydroxide mo is 2500 kg (rs = 2000
kg/m3) and its saturated concentration 900 kg/m3. In addition, we
set the number of revolutions N at 1 s–1. Other data are as follows:

m = 0.28 ¥ 10–3 Pas

r = 1000 kg/m3

D = 2 ¥ 10–9 m2/s

Note: These are only approximate averages of the actual time-varying
values. It is desired to use this information to estimate the approx-
imate time of dissolution of the charge.
Calculate the dissolution time. 

Answer: 5380 s

5.8. Diameter of a Packed-Gas Scrubber
List some criteria you would use for choosing a packed tower diam-
eter. Where in this chapter can you find some guidelines?

5.9. Bioconcentration in a Two-Compartment Model
Consider the two-compartment model shown in Figure 5.4. Toxins
enter the first compartment from the water phase and are eliminated
from it with first-order rate constants of k1 and k2. Simultaneously,
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a reversible exchange of toxins takes place with an adjacent second
compartment with first-order rate constants of k3 and k4, respectively.
The first compartment may be viewed as the circulatory system; the
second compartment represents the tissue, which ultimately, at
steady state, equilibriates with the first unit. We define a relative
mass for the first compartment, given by

  

Show that with this definition in place the total BCF for the two
compartments is given by

BCFTot = CTot/Cw = f1(k1/k2) + (1 - f1)(k1/k2)(k3/k4)

(Hint: Set up the ultimate steady-state balances for the two compart-
ments.)

FIGURE 5.4
Two-compartment model for bioconcentration.
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6
Phase Equilibria

Throughout the preceding chapters, it is evident that, along with transport
coefficients, phase equilibria play a crucial role in determining overall mass
transfer rates. In processes involving single-film resistances, equilibrium
compositions or pressures constitute the anchor of the driving force respon-
sible for the transport of mass. This is shown most vividly in Figure 1.5. The
driving forces here are all of the form C* - C or p* - p, where the asterisked
quantities represent equilibrium compositions and partial pressure, and the
plain symbols denote the same quantities in the bulk fluid. Evidently, trans-
port will continue only as long as the two quantities are unequal, and will
come to a halt when C* = C and p* = p. The two phases are then said to be
in equilibrium.

Phase equilibria also appear in processes involving two-film resistances in
series, but their role here is somewhat more complex. They still appear as
one of the two partners constituting the driving forces in the individual films.
This comes about because, in two-film theory, the interface separating the
two phases is postulated to be at equilibrium (see Figure 1.7). The use of
individual coefficients and driving forces, however, is awkward because
conditions at the interface are generally unknown. It then becomes conve-
nient to express transport in terms of overall driving forces that bridge the
interface and extend from one bulk concentration to the other. Driving forces
still retain their previous form, C* – C and p* – p, but the asterisked quantities
are now hypothetical compositions and pressures denoting equilibrium with
the second phase at a particular point of the system. This is described in
detail in Section 1.5.

Yet another important aspect of phase equilibria rests on the fact that they
determine certain maximum or minimum quantities associated with the
process. Suppose, for example, that a liquid evaporates into an enclosure.
By allowing the process to proceed to equilibrium, i.e., to full saturation, we
are able to determine the maximum amount of liquid that will have evaporated,
or, conversely, the minimum mass of air that can accommodate that amount
of vapor. Suppose next that the same liquid, for example, water, adheres to
a solid that is to be dried by passage of air over it. Then by using very low
flow rates we can ensure that the air leaving the drying chamber is fully
saturated and that consequently the air consumption is at a minimum.
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The picture that emerges from this brief discussion is that the role of
equilibrium is a very considerable one. Equilibrium, or the departure from
it, determines the driving potential of the process and sets upper and lower
limits to the enrichment attainable and the material inventory involved.
Equilibrium can consequently be viewed as one of the two key players in
mass transport; the other is the transport coefficients themselves. Because
each of these factors has a distinct role to play, it has become customary to
examine the component factors separately and subsequently combine the
results for a complete description of the event. In this procedure we start by
first ignoring the effect of transport resistance and allowing the two phases
to come to equilibrium. The device in which this step is carried out is termed
an equilibrium or ideal stage. Concentration or pressure changes that result
from the procedure are noted and set aside. The effect of transport resistance
is examined next. In the case of staged operations, this involves an assess-
ment of stage efficiency, which is a measure of the effect of transport resistance
on the amount transferred. When resistance is negligible, the efficiency is
100% and the process proceeds to complete equilibrium. When efficiency is
50%, only half of the attainable enrichment is obtained. In the final step, the
results of this dual scrutiny are combined to arrive at an overall description
of the process. These steps, as well as the underlying concept of an equilib-
rium stage, are taken up in the next chapter.

While some of the topics in the present chapter will be new to the reader,
others may be known from previous courses in thermodynamics. They are
repeated to provide a refresher and a link to subsequent chapters.

6.1 Single-Component Systems: Vapor Pressure

Most pure substances that the reader will be familiar with can exist in the
solid, liquid, and vapor phases. The principal exceptions are high-molecular-
weight solid compounds such as proteins, carbohydrates, and polymers that
decompose before they can pass into the liquid or vapor phase. These will
not be of concern here. The wider class of substances, which are addressed
in this chapter, is capable of existing in all three phases. Their behavior is
best illustrated by means of a pressure-temperature phase diagram; a rep-
resentative example is shown in Figure 6.1a.

The diagram is divided into three regions representing the solid phase (S),
the liquid phase (L), and the vapor phase (V). The dividing boundaries
between these regions are the melting point or freezing point curve A, the
sublimation curve B, which separates the solid and vapor phases, and the
vapor pressure or boiling point curve C, which is the dividing line between
liquid and vapor phases. It is principally the latter curve and the relation
between vapor pressure and temperature that we are concerned with here.
Also marked on the diagram are four specific pressure-temperature pairs,



Phase Equilibria 191

which characterize the system. NMP and NBP are the “normal” melting and
boiling points, i.e., those that prevail at a pressure of 1 atm or 101.34 kPa.
The prefix normal is often dropped and the shorter version used to denote
conditions of 1 atm. The pair Pt–Tt marks the triple point and represents the
conditions under which all three phases can coexist. For water, the pressure
and temperature values are 0.006 atm and 0.01°C, respectively.

Suppose, now, that a liquid sealed in a container and in equilibrium with
its vapor is heated starting from room temperature. As the temperature is
raised, liquid passes into the vapor phase, thus increasing the density of the
latter, while the liquid itself undergoes expansion with an attendant decrease
in density (Figure 6.1b). A point is eventually reached where the densities
of the two phases become identical and the two phases merge into a single
entity. The specific condition (Pc–Tc) at which this occurs is termed the critical

FIGURE 6.1
(a) Phase diagram of a pure substance; (b) approach to the critical point.
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point of the system. Beyond it, i.e., above the critical temperature Tc, a
substance can exist only as a vapor and no liquefaction can occur, no matter
how high the pressure is raised. For water, this point is reached at a tem-
perature of 374.4°C and a corresponding pressure of 219.5 atm.

Note that while a substance can only exist as a gas above the critical
temperature, its density is nevertheless high enough that it can also qualify
as a quasi-liquid. This dual behavior has certain advantages, which are
exploited in a process termed supercritical fluid extraction, which is taken up
in Section 6.2.5.

We now turn to the consideration of the equilibrium between liquid and
vapor. The aim is to establish a quantitative relation for the curve C in Figure
6.1a, i.e., for the vapor pressure of the liquid in the interval between the
triple point Tt and the critical temperature Tc. The starting point is given by
the well-known Clapeyron equation, which is the thermodynamic expres-
sion of phase equilibrium for a pure substance:

  (6.1a)

Here DH and DV denote the molar enthalpy and volume changes that occur
during the passage from one phase to another. The equation is confined to
pure substances, but is otherwise quite general and capable of expressing
the transition between any two of the phases shown in Figure 6.1a. Thus,
for a passage from the solid to the liquid phase, DH will represent the latent
heat of fusion, while DV denotes the difference between liquid and solid
molar volumes. The derivative dP/dT, which appears on the left side of
Equation 6.1a, gives the slope at any point of the phase boundary curve A
shown in Figure 6.1a.

Equation 6.1a cannot be integrated in straightforward fashion since both
DH and DV depend on temperature in a complex fashion. However, when
one of the states is represented by the vapor phase, the exact Equation 6.1a
can be simplified by introducing the following two approximations:

1. The molar volume of the vapor phase is much greater than that of
the liquid or solid phase. Thus,

Vv >> Vs,� (6.1b)

and consequently

  (6.1c)

2. At low pressures, it may be assumed that the vapor phase behaves
ideally, so that

dP
dT

H
T V

= D
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  (6.1d)

On substituting these two simplifying relations into Equation 6.1a and
rearranging, we obtain

  (6.1e)

or alternatively

  (6.1f)

Equations 6.1e and Equation 6.1f are known as the differential forms of
the Clausius-Clapeyron equation. If we further assume that the latent heat
of vaporization DH is constant over the interval in question, we obtain by
integration

log Po = A – B/T (6.1g)

where A and B (= DH/2.302R) are constants.
Expression 6.1g, known as the Clausius-Clapeyron equation, provides an

excellent representation of the solid vapor pressure but is valid only over a
limited temperature range of the liquid vapor pressure. It breaks down, in
particular, near the critical point where vapor and liquid densities approach
each other in magnitude. Various semiempirical modifications have been
proposed as a result, among which the Antoine equation (1888) has proved
to be particularly successful. It takes the form

log Po = A – B/(T + C) (6.1h)

where Po is the liquid vapor pressure in mmHg, T the temperature in degrees
Celsius, and A, B, and C are empirical constants. Values of A, B, and C for
some common organic liquids appear in Table 6.1. They have been computed
from data measured up to several atmospheres and provide a precise rep-
resentation of the vapor pressure over this range and beyond. To demon-
strate the use of the Antoine equation, we consider the following, somewhat
unusual case.

Illustration 6.1: Maximum Breathing Losses from a Storage Tank

During a rise in ambient temperature, solvent-laden air in the headspace of
storage tanks expands and is partially expelled into the atmosphere through
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a vent pipe. When the temperature drops, the process reverses itself and
fresh solvent-free air enters the headspace. Subsequent cycles of rising and
falling temperature cause a cumulative loss in solvent. An accurate calcula-
tion for this loss would require a knowledge of the time- and space-depen-
dent concentrations and temperatures in the tank, and would thus call for
the solution of PDEs (mass and energy balances) along with the appropriate
equilibrium relation. The somewhat irregular geometry (tank and vent pipe)
and the possibility of both conductive and free convective transport, plus
uncertainties in the external heat transfer coefficient, make this a formidable
problem to solve.

In this first elementary treatment of this problem, these complications are
avoided by confining ourselves to the calculation of the maximum loss that
can occur in the course of a single temperature cycle. This is achieved by
assuming that the tank contents are well mixed and in thermal and phase
equilibrium at the maximum temperature attained in a cycle. The result is
an enormous simplification of the problem because we are now dealing
merely with algebraic expressions representing the vapor pressure of the
system and the appropriate gas laws.

Suppose that the stored liquid in question is benzene, and that the head-
space of the storage tank is 100 m3. We assume that the temperature rises
from 15 to 30°C in the course of a day and that, as a result, some 5% of the
headspace air is ejected. The task is to calculate the maximum amount of
solvent lost.

We start by computing the vapor pressure at the maximum temperature
of 30°C using the Antoine constants for benzene listed in Table 6.1. Thus,

TABLE 6.1

Antoine Constants for Various Liquids

Substance A B C

Methyl chloride 7.09349 948.582 249.336
Methylene chloride 7.40916 1325.938 252.616
Chloroform 6.95465 1170.966 226.252
Carbon tetrachloride 6.87926 1242.021 226.409
Acetone 6.11714 1210.595 229.664
Diethyl ether 6.92032 1064.066 228.799
Methanol 8.08097 1582.271 239.726
Ethanol 8.11220 1592.864 226.184
n-Hexane 6.88555 1175.817 224.867
n-Octane 6.91874 1351.756 209.100
Benzene 6.89272 1203.531 219.888
Toluene 6.95805 1346.773 219.693
o-Xylene 7.00154 1476.393 213.872
Water 7.96681 1668.210 228.000
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and consequently

Po = 119.3 mmHg

Substituting this value into the ideal gas law, we obtain

  

or

  

and therefore

m = 2.46 kg

Although this amount represents a theoretical maximum, more-refined
calculations have shown that these losses are indeed quite substantial and
would in most cases be considered unacceptable. Provision is therefore often
made to recover the escaping vapors by compression condensation or by
adsorption, or to cover the tank by a floating top. An attendant benefit of
this procedure is the avoidance of the adverse effect of such emissions on
the environment.

6.2 Multicomponent Systems: Distribution of a Single 
Component

We take up the topic of multicomponent equilibria by drawing a distinction
between systems in which several or all components are present in the two
equilibrated phases, and those in which only one component plays a key
role by distributing itself in significant amounts between the phases in ques-
tion. Vapor-liquid equilibria of mixtures and other similar multicomponent
systems involving the appearance of several solutes in each phase are the
prime example of the former, while distributions of a single component occur
in a number of different contexts, which we take up in turn below. They
include the equilibrium of a single gas with a liquid solvent, or a solid (gas
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absorption and adsorption), and the distribution of solutes between a liquid
solution and an immiscible solvent (liquid extraction) or solid (liquid-phase
adsorption). We note that although more than one component may be
present in both phases, their appearance does not affect the distribution of
the principal component under consideration. Thus, in gas absorption, sol-
vent vapor is inevitably present in the gas phase but does not interfere with
the distribution of the main solute in any way. Similarly, in liquid extraction,
the two solvents may not be perfectly immiscible, but this does not signifi-
cantly affect the distribution of the solute.

6.2.1 Gas----Liquid Equilibria

Examples of gas-liquid equilibria abound both in the physical world
surrounding us and within an industrial context. Gases of both a benign
and toxic nature are taken up or released by bodies of water. The example
of dissolved oxygen, which is essential to the sustenance of aquatic life,
immediately comes to mind. On the industrial scene both valuable and
objectionable gases are often selectively removed or recovered by gas
absorption or gas scrubbing. We have already alluded to this process in
Illustration 2.3 and Section 5.4, and more on this process appears in
Chapter 8.

The phase equilibrium between a gas and a liquid solvent is usually
expressed in terms of the amount absorbed or liquid-phase concentration as
a function of gas pressure. A diagram of this relation appears in Figure 6.2.
The concentration of the dissolved gas is seen to increase with pressure and
it does so indefinitely; i.e., no limiting saturation value is attained. This is
in contrast to gas-solid and liquid-solid adsorption equilibria in which the
solid surface ultimately becomes saturated with solute. An increase in tem-
perature, on the other hand, diminishes the solubility of the gas, and hence
its concentration. One notes in addition that at the lower end of these dia-
grams the plot becomes linear. The slope of this linear portion is termed the
Henry’s constant H and the phase equilibrium in this range is said to follow
Henry’s law, given by

p = HC  (6.2)

Here p is the gas pressure usually expressed in kPa and C the concentration
of the dissolved gas (mol/l or mol/m3). Henry’s constants at 25°C for some
common gases are displayed in Table 6.2. The validity of Equation 6.2 for
these gases extends to several atmospheres, and in the case of permanent
gases, such as H2, O2, and CO2, to several tens of atmospheres. A good deal
of useful information can therefore be gathered through the use of Henry’s
law and the associated Henry’s constants. We demonstrate this with the
following illustration.
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Illustration 6.2: Carbonation of a Soft Drink

It is common practice in the soft drink industry to carbonate drinks by
dissolving a fixed volume of carbon dioxide in the liquid, rather than by
applying a prescribed pressure to the contents. That volume is set at 3 to 5
times the volume of the liquid contents.

Consider a standard 1.5-l soft drink bottle with a headspace of 5%. The
task is to calculate the pressure in the bottle after carbonation and the con-
sumption of carbon dioxide in a plant bottling 10,000 containers per day. We
assume a CO2 charge equal to 5 l.

Taking account of the 5% headspace, and assuming a bottling temperature
of 298 K together with a molar volume of STP of 22.4 l, this leads to a carbon
dioxide volume of

FIGURE 6.2
Gas-liquid equilibrium isotherm.

TABLE 6.2

Henry’s Constants for Gases in Water at 25°°°°C

Gas H (kPa m3 mol–1)

Hydrogen 130
Helium 260
Carbon monoxide 100
Nitrogen 150
Oxygen 79
Carbon dioxide 2.9
Methane 71
Ethane 53
Propane 66
n-Butane 80

Slope = Henry's constant

T1

T1 > T2

Pressure p

Concentration
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    (6.3a)

or equivalently

C = (4750/22.4)(273/298) mol CO2/m3 (6.3b)

We apply this value to Henry’s law (Equation 6.2) and use a Henry’s
constant of 2.90 taken from Table 6.1 to obtain

p = H ¥ C = 2.9(4750/22.4)(273/298) (6.3c)

or

p = 563 kPa

To this value has to be added the initial air pressure of 100 kPa, which
brings the total pressure in the container to slightly above 6.5 atm.

To obtain this result in 10,000 bottles of 1.5 l each, one requires a CO2

volume of

  (6.3d)

where the headspace of 0.075 l has been subtracted from the total bottle
volume of 1.5 l. The corresponding mass of CO2 in the carbonated drink

 is given by

  (6.3e)

where M = molar mass of carbon dioxide = 44. Consequently

  (6.3f)

The amount of carbon dioxide in the headspace is a small fraction of this
value and is given by

  (6.3g)

  (6.3h)

Thus, a total of 135.5 kg of CO2 will be required in the daily operation of
the plant.
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6.2.2 Liquid and Solid Solubilities

A second example of a binary system in which one component is considered
to be confined to one phase only involves the solubility of liquids and solids
in a solvent. The confined species here is the solvent, which is in contact
with a second phase containing a pure liquid or solid. At equilibrium the
solvent phase has become saturated with the dissolved species or solute and
no further dissolution takes place. The concentration corresponding to this
state is termed the solubility of the liquid or solid in question.

The number of possible solute-solvent combinations is evidently quite
large, and the corresponding number of required measurements infinite if
temperature is considered an additional variable. It is customary therefore
to deal with only a small number of solvents, principally water, and to
perform measurements at a standard temperature of 25°C. Most reported
data have been obtained within this framework.

A listing of the solubility in water of a number of solutes, mostly organic
in nature, appears in Table 6.3. Sodium nitrate and glucose show high values
of close to 50%, as expected, while solubilities of DDT and mercury are
measured in parts per billion. The latter are nevertheless sufficiently signif-
icant to be of environmental concern. The reader will also note the relatively
high solubility of diethyl ether (~7.5%), which is generally thought of as
insoluble. Unusually high values are also shown by chloroform and benzene.
Some caution should therefore be exercised before declaring a solvent “insol-
uble” in water. The amounts dissolved may in fact be considerable, and their
presence in discharged process water must be duly accounted for. This is
illustrated in the following example.  

TABLE 6.3

Solubilities of Liquids and Solids in Water at 25°°°°C

Substance Solubility (g/l water)

Chloroform 11
Carbon tetrachloride 0.8
Diethyl ether 75
n-Hexane 0.15
n-Octane 6.6 ¥ 10–4

Benzene 1.8
Toluene 0.52
o-Xylene 0.18
Naphthalene 3.3 ¥ 10–2

DDT 1.2 ¥ 10–6

Glucose 820
Potassium chloride 360
Sodium chloride 360
Sodium nitrate 940
Mercury 3.0 ¥ 10–5
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Illustration 6.3: Discharge of Plant Effluent into a River

We consider here the case of process water saturated with benzene being
discharged into a river. The question to be addressed is whether the diluting
effect of the river flow is sufficient to reduce the effluent concentration to
within permissible limits and, if not, how much of the offending substance
has to be removed to meet environmental standards. A sketch depicting
effluent and river flow is shown in Figure 6.3.

Let us consider an effluent discharge of 150 l/min and a river flow that
varies seasonably from 23,000 to 50,000 l/s. Note that since the regulatory
limit has to be met at all times during the year, the lower summer flow rate
of 23,000 l/s must be used. The standard used here is that of the U.S.
Environmental Protection Agency, which has set the maximum permissible
level of benzene in drinking water at 0.05 mg/l or 5 ppb. The effluent is
assumed to be saturated with benzene at the solubility level of 1.8 g/l (1.8
¥ 106 ppb) given in Table 6.3.

We commence with a mass balance around the juncture of effluent and
river flow shown in Figure 6.3 and assume the contents of the envelope to
be well mixed and to have attained a steady state. Thus,

Rate of benzene in – Rate of benzene out = 0

QeCe – (Qe + Qr)Cr = 0 (6.4a)

where the subscripts e and r refer to effluent and river, respectively, and Q
denotes volumetric flow rates. Substituting the given data into this equation,
we obtain 

FIGURE 6.3
Discharge of a plant effluent into a river.

Plant EffluentPlant
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(150/60)1.8 ¥ 106 – [(150/60) + 23,000]Cr = 0 (6.4b)

Solving for Cr yields a downstream river concentration of

  (6.4c)

With the allowable concentration set at 5 ppb, the required fractional
removal R is given by

  (6.4d)

In other words, slightly more than 97% of the benzene in the plant effluent
will have to be removed to meet the aforementioned standard. It is likely
that an adsorption purification process using activated carbon can be used
to achieve this goal. Such a process is taken up in Illustration 6.4.

6.2.3 Fluid----Solid Equilibria: The Langmuir Isotherm

We previously, in Section 6.2.1, considered the case in which a gas is absorbed
into and comes into equilibrium with a liquid solvent. This process of absorp-
tion, in which the solute gas permeates the entire body of the liquid, differs
from adsorption, which is essentially a surface phenomenon. Here the solute
also penetrates the porous structure of the solid, and the process is therefore
initially at least akin to absorption. Ultimately, however, the solute molecules
come to rest on the walls of the porous structure and remain confined there
in dynamic equilibrium with the surrounding pore space. Thus, while per-
meation of the solid structure does take place, the solute molecules are not
uniformly dispersed but rather are localized on the internal surface of the
solid matrix. We show this, as well as the differences between adsorption
and absorption, in Figure 6.4.

There is a further distinction to be made between the two processes. A
liquid has in principle an unlimited capacity for dissolving a gas, although
that capacity diminishes asymptotically as gas pressure is increased (see
Figure 6.2). In adsorption, the surface area available for accommodating
solute molecules is limited and finite. Here an increase in pressure or solute
concentration will ultimately lead to complete coverage by a “monolayer”
or saturation of the surface. On reaching this state, no further adsorption
can take place. This is indicated by the asymptotic saturation capacity shown
by the isotherm in the phase diagram of Figure 6.5. An exception occurs
when the solute gas is within reach of a state of condensation. The solute
may then form multiple adsorbed layers or multilayers and ultimately fill
the entire pore space by condensation (“capillary condensation”). This less

Cr = ¥ =4 5 10
23002 5
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.
ppb
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frequent case leads to inflecting isotherm curves and is shown in Figure 6.6.
Most fluid-solid equilibria, however, lead to monolayer coverage and are
well-represented by the isotherms shown in Figure 6.5.

FIGURE 6.4
(a) Absorption: dispersion of solute molecules throughout a liquid solvent. (b) Adsorption:
localization of solute molecules on pore walls.

FIGURE 6.5
The Langmuir adsorption isotherm.

a.

b.

Solute

Solvent
or Carrier Gas

Pore

Solid Matrix

Slope = Henry's constant

T1

T2 > T1

Amount Adsorbed X

Xsat

Concentration C
or Pressure p



Phase Equilibria 203

One of the earliest attempts to derive a theoretical expression for these
isotherms, and to date also the most successful one, is that due to Langmuir.
In this derivation, Langmuir postulated that the adsorption equilibrium was
the result of two rate processes, equal in magnitude but opposite in direction:
The rate of adsorption, which was taken to be proportional to solute pressure
or concentration and the available free surface area, and a desorption rate,
which varied directly with the fractional surface coverage. The result of
equating these two rate expressions can be expressed, after some manipu-
lation, in the following form:

  (6.5a)

or

  (6.5b)

Here a¢ and b¢ are semiempirical constants, p and C are gas partial pressure
and solute concentration, respectively, and X represents the amount
adsorbed. For general engineering purposes, it is often more convenient to
replace p and C by a single fluid-phase concentration Y, expressed in units
of kg solute/kg inert gas, or kg solute/kg solvent. Equation 6.5a and Equa-
tion 6.5b can then be coalesced into a single expression of the form

  (6.5c)

where a¢ and b¢ are replaced by the new empirical constants H and b. The
amount adsorbed X is generally expressed in units of kg solute/kg solid, or
less frequently, as mol solute/g solid. Evidently, when dealing with pure
solute gases, the fluid ratio Y can no longer be used and we must revert to
Expression 6.5a. The need to do this rarely arises in practice because in most
practical applications the gas phase contains an inert, nonsorbable compo-
nent such as air.

Let us now examine the asymptotic behavior of the Langmuir isotherm:
At low values of the fluid-phase concentration Y, the term bY becomes small
compared to 1, and the Langmuir isotherm approaches the limiting linear
form

X = HY (6.5d)

Y Æ 0

X
a p

b p
= ¢

+ ¢1

X
a C
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+ ¢1

X
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The slope of this line is often referred to as Henry’s constant, and Expres-
sion 6.5d as Henry’s law for adsorption, in analogy to the corresponding
case of gas-liquid equilibrium (see Equation 6.2).

At the other extreme of high values of Y, bY becomes the dominant factor
and the Langmuir isotherm converges to the form

XYÆ0 = H/b = XSat (6.5e)

Both these limiting cases nicely accord with the features shown in Figure
6.5.

We note that high values of H correspond to high adsorbent capacities, in
contrast to gas absorption where large values of Henry’s constant are asso-
ciated with low solvent capacities.

Adsorption Henry’s constants are central to adsorptive purification pro-
cesses of dilute streams and also reach, as will be seen in the next section,
into areas of environmental concern. To acquaint the reader with their mag-
nitude, we have compiled values of H on carbon for some important trace
solutes in aqueous solution, which are displayed in Table 6.4. Of note here
is the extremely high value for PCBs, which dominates the table. The reader
should be reminded, however, that this is partly offset by the extremely low
solubility of PCBs.

Although the great majority of adsorbed solutes show Langmuir-type
behavior, a considerable number of substances exhibit inflecting isotherms.
This is particularly the case with vapors in the vicinity of saturation. Figure
6.6, which shows moisture isotherms on a variety of adsorbents, illustrates
this type of behavior. Zeolitic sorbents are the only ones among them that
display Langmuir-type behavior. They are most effective at low humidities
where they show a substantial uptake of water. Silica gel and activated
alumina have high uptakes at higher humidities, where they exceed zeolite
capacities by factors of two or more. Carbon, because of its hydrophobic
nature, has only a minimum affinity for water.

TABLE 6.4

Henry’s Constants for Aqueous Solutions on Carbon at 25°°°°C

Solute H (kg H2O/kg C)

Methyl chloride 6.6
Methylene chloride 14
Chloroform 74
Carbon tetrachloride 360
n-Pentane 2,200
n-Hexane 10,400
Benzene 400
Styrene 600
Chlorobenzene 500
PCBs (upper limit) 1.5 ¥ 108
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In what follows, we use the tabulations of Table 5.4 to explore a particular
and highly useful limiting case of the adsorptive purification of an aqueous
solution.

Illustration 6.4: Adsorption of Benzene from Water in a Granular 
Carbon Bed

The purification of both potable and wastewater by adsorption is a wide-
spread practice, which in the U.S. alone consumes over 100 million kg of
activated carbon a year. Typically in such an operation, the water is passed
through a fixed bed of the granular adsorbent, which becomes progressively
saturated with the impurities. In the course of this process, a concentration
profile develops within the bed, which takes the form of an S-shaped curve
ranging in level from full saturation qs to essentially zero impurity content.
This profile, which is shown in Figure 6.7a, progresses steadily through the
adsorber until it reaches the end of the bed. An observer stationed at this
position would at this point see the first traces of impurity break through.
It would then rise in level, again in the form of an S-shaped curve, until the
feed concentration YF is attained. This is, however, not allowed to happen
and the operation is instead terminated when the effluent concentration
reaches a prescribed maximum permissible level, YP. This level and the
associated concentration breakthrough curve are shown in Figure 6.7b. The

FIGURE 6.6
Moisture adsorption isotherms.
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operation is continued by switching the feed stream to a second clean bed,
held on hand while the spent adsorbent is either regenerated or replaced by
a fresh charge of the material.

Adsorption in a fixed bed is a complex system to model. Concentrations
evidently vary with distance, and although they ultimately attain a steady
form of distribution, they also vary with time. The model would conse-
quently consist of two mass balances, one for the fluid phase and a second
for the solid phase, and both of these would be partial differential equations
in time and distance, which generally have to be solved numerically. To
avoid this complication, a procedure has come into use in which mass trans-
fer resistance is neglected and the two phases are everywhere assumed to
be in equilibrium. The concentration then propagates in the shape of a
rectangular front, shown in Figure 6.7 and denoted “Equilibrium.” The

FIGURE 6.7
Adsorption in a fixed bed: (a) adsorbent concentration profiles; (b) fluid phase concentration
breakthrough curve.
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movement of this front and its dependence on flow rate and feed concen-
tration can be analyzed by means of a simple cumulative mass balance,
which takes the following form:

YFvrf ACt = XFrbACz +  YFrf ACz (6.6)
Amount introduced Amount retained Amount left

to time t by adsorbent in fluid  

Here v and AC are the fluid velocity and cross-sectional area of the bed,
respectively, and rf and rb are the fluid and bed densities.

The last term in this equation is generally negligible because the bulk of
the impurity will reside in the adsorbent. It would otherwise not be a very
efficient adsorbent. Equation 6.7a can then be recast in the form

  (6.7a)

where we have substituted Henry’s constant for the concentration ratio XF/
YF.

Equation 6.7a can be used to calculate the time t it takes the front to reach
a particular position or, conversely, the position attained after a prescribed
time interval. These quantities are, by necessity, limiting lower values
because full saturation will in fact be retarded by the mass transfer resistance.
However, in many instances the fluid flow is sufficiently slow that local
equilibrium is attained, or will be nearly attained, during the interval of
contact. We make use of this fact in Illustration 6.6 to analyze the contami-
nation of soil that results from polluted groundwater.

This illustration addresses the problem of sizing a carbon bed to be used
in the purification of a plant effluent. Our purpose here is best served by
recasting Equation 6.7a in a form suitable for the calculation of bed require-
ments. This is done by first cross-multiplying the expression and then divid-
ing and multiplying by the cross-sectional area AC. We obtain

  (6.7b)

or equivalently

  (6.7c)

Thus, the larger the Henry constant H, the smaller the required bed size.
Note, however, that this is a minimum requirement, since we have assumed
the phases to be in equilibrium.
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Let us see how this works out in practice. We refer to the preceding
example of an aqueous plant effluent saturated with benzene, 97% of which
has to be removed before being discharged. The rate of discharge was 150
l/min.

Suppose that we wish to size a bed of granular carbon, which will stay
on-stream for 6 months before breakthrough occurs. The amount of effluent
treated in this period comes to

G ¥ t = 150 ¥ 60 ¥ 24 ¥ 180 = 3.9 ¥ 107 kg (6.7d)

Using H = 400 for benzene, listed in Table 6.4, we obtain from Equation 6.7d

(Wb)Min = G ¥ t/H = 3.9 ¥ 107/400 = 9.8 ¥ 104 kg carbon (6.7e)

Now, the bed density rb for granular activated carbon is, typically, of the
order 500 kg/m3. If, therefore, a bed 3 m in diameter d is chosen, the packed
height h of that bed is given by

  (6.7f)

Since adsorbent beds typically range up to 10 m in height, this figure is
excessive. We therefore reduce the time on-stream to 1 month and arrive at
the more reasonable bed height of approximately 4.5 m. This allows some
slack for actual bed requirements, which will be somewhat higher because
of the neglected mass transfer resistance.

Illustration 6.5: Adsorption of a Pollutant from Groundwater onto Soil

Soils show a considerable sorptive affinity for pollutants that is principally
brought about by the soil’s carbon content (a result of decaying organic
matter). That content typically ranges from 1 to 2% of the total mass. Adsorp-
tive capacities per unit weight are consequently some 50 times lower than
the carbon values shown in Table 6.4, and this figure was used to compose
the Table 6.5 listing of Henry’s constants for soils. 

We consider here again an effluent saturated with benzene and assume
that seepage into the groundwater has occurred. The task will be to calculate
the stretch of soil that will have been contaminated after 10 days of exposure.
Groundwater velocity is set at 1 mm/s and soil density at 2500 kg/m3. Using
a Henry’s constant of 0.54 given in Table 6.5, we obtain from Equation 6.7a
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and consequently

z = 7.4 ¥ 10– 4 t = 7.4 ¥ 10– 4 ¥ 3600 ¥ 24 ¥ 10

z = 640 m

Comments:

The reader is reminded that the results obtained in both Illustration 6.4 and
Illustration 6.5 represent minimum values, i.e., minimum carbon bed require-
ments and minimum penetration into the soil. Because of the mass transfer
resistance, the concentrations on the percolating fluid run ahead of the rect-
angular front shown in Figure 6.6a, and penetrate deeper into the solid
matrix than predicted. The corrections that must be applied often amount
to no more than 20 to 30% of the ideal length, which is therefore a highly
useful engineering estimate for the situation at hand. Higher corrections are
needed in cases involving large particles or high fluid velocity.

Note that the rigorous PDE model would require, in addition to equilib-
rium data, the relevant transport parameter, i.e., the mass transfer coefficients
within both the solid particle and the liquid. The solid-phase coefficient, in
particular, requires fairly elaborate measurements and is usually unavailable
to the general practitioner.

6.2.4 Liquid–Liquid Equilibria: The Triangular Phase Diagram

Liquid-liquid equilibria deserve our attention principally because of their
widespread occurrence in industrial- and laboratory-scale extraction
processes. They also play a role in assessing the effect of accidental spills of
oil and organic solvents in lake and ocean waters.

On the industrial scene, the most prominent applications both in scale and
number are seen in the petroleum industry. Liquid extraction is used here

TABLE 6.5

Henry’s Constants for Aqueous Solutions on Soil at 25°°°°C

Solute H (kg water/kg soil)

Methyl chloride 0.033
Methylene chloride 0.071
Chloroform 0.37
Carbon tetrachloride 1.8
n-Pentane 11
n-Hexane 52
Benzene 0.54
Styrene 3.0
Chlorobenzene 2.5
PCBs, upper limit 7.3 ¥ 105
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to separate petroleum fractions selectively and to purify or otherwise refine
them. In the Edeleanu process, which is close to a century old, liquid sulfur
dioxide is used to extract aromatics from various feedstocks. The removal
of the ever-present sulfur compounds is accomplished by extraction with
sodium hydroxide solutions. In addition, a wide range of organic solvents
is used in the purification and refining of various lubricants.

Considerable use of liquid extraction is also made in the metallurgical indus-
try for the separation and refining of metals, and in the food industry for the
extraction of oils and fats and other edible products. The pharmaceutical
industry uses liquid extraction to recover their end products, such as penicillin,
from the reaction mixture. In general, whenever dealing with heat-sensitive
materials, extraction at low temperatures is often the process of choice.

A number of the traditional solvents used in these processes, such as the
chlorinated and fluorinated hydrocarbons, have in the last two decades come
under increasing scrutiny and criticism because of health and environmental
concerns. The effect of certain of these solvents on the ozone layer has
received a good deal of publicity, as has their role as potential carcinogens.
This has opened the door to the development of alternative processes, chief
among them supercritical fluid extraction. We address this topic in some detail
in Section 6.2.5.

Liquid-liquid equilibria differ from the previous cases we have considered
in that the two phases will, with an appropriate shift in the relative concen-
trations of the three components, merge into a single homogeneous phase.
Consider, for example, the two “immiscible” solvents, benzene and water,
to which the solute ethanol is added. Initially, at low solute concentrations,
two distinct phases are maintained, with ethanol distributed between them
in certain concentration ratios. As the ethanol content is increased, the two
solvents begin to show greater mutual solubility. This trend continues until
ultimately, at sufficiently high ethanol concentrations, the two phases coa-
lesce into a single homogeneous phase.

To obtain a valid representation of the entire domain of liquid-liquid phase
behavior, it is necessary to take account of the concentrations of all three
components. This is done by using the trilinear coordinate system, which
leads to a construction known as a triangular diagram, shown in Figure 6.8.

Each side of this diagram is scaled from 0 to 100%. The apexes of the
triangle represent the pure components A, B, and C, respectively. C is usually
taken to be the solute, and A and B represent the two mutually immiscible
solvents. Any point on the side of the triangle denotes a two-component
(binary) mixture, while the interior of the diagram represents the full com-
plement of three-component (ternary) mixtures. Thus, the point G on the
side AB represents 40% solute C and 60% solvent B, while the interior point
M signifies a mixture containing 30% A, 40% B, and 40% C. Compositions
are usually expressed as weight percent, or, less frequently, as mole percent.

Liquid-liquid equilibria are determined experimentally by equilibrating
the two phases having a total concentration M (Figure 6.9) and  recording
their compositions. These values are entered in the diagram and form the
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end points of what is termed a tie-line, shown in Figure 6.9. There is in
principle an infinite set of such tie-lines, only a few of which appear in the
diagram. They are ordinarily not parallel and change their slope slowly with
changing composition. As more solute C is added to such a mixture, the
mutual solubility of the two solvents A and B increases until the tie-line end
points merge at the point P, known as the plait point. The line connecting all
these points and passing through P is known as the binodal or solubility curve
and encloses all mixtures showing two-phase behavior. Compositions lying
outside this solubility curve represent homogeneous, single liquid-phase
solutions, while the end points D and E denote the mutual solubility of the
two solvents. When these are completely immiscible, D and E coincide with
the two apexes A and B.

FIGURE 6.8
The triangular diagram.

FIGURE 6.9
Representation of liquid-liquid equilibrium in trilinear coordinates.
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Representation of liquid-liquid equilibria in ternary diagrams is widely
used in the graphical solution of extraction problems. This topic is taken up
and discussed in considerable detail in the next chapter. Occasions arise,
however, when it becomes convenient to use an alternative representation
in rectangular coordinates, known as a distribution curve. This diagram,
shown in Figure 6.10, consists of a plot of the solute weight fraction in the
two phases against each other. Its construction is accomplished by transfer-
ring the compositions represented by the tie-line end points to rectangular
coordinate axes, as shown in Figure 6.10.

Clearly, this type of representation provides only a limited picture of the
entire domain of compositions. Neither of the two solvent weight fractions,
for example, can be deduced. Various other constructional features of the
triangular diagram, which will be taken up below, likewise cannot be trans-
lated into rectangular coordinates. The distribution diagram does, however,
convey several key features of two-phase behavior. It shows the maximum
solute concentration (xCB)Max beyond which no phase separation can take
place, and it locates the plait point on the 45° diagonal, which denotes
equality of phase concentrations. Compositions that lie above the diagonal
are richer in solute content than those of the companion phase, while points
below it denote a depletion in solute. The greater the distance from the
diagonal, the greater the degree of enrichment or depletion. By noting these
features we gain an immediate sense of the potential of a particular system
for extractive enrichment.

To quantify these properties, it is useful to define a quantity known as the
distribution coefficient m, which equals the solute mole-fraction ratio in the
two phases and is given by

  (6.8)

FIGURE 6.10
Translation from trilinear to rectangular coordinates: (a) triangular diagram; (b) distribution
curve.
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Values of m greater than unity denote solute enrichment in the B layer,
and those less than unity denote enrichment in the solvent A. In the limit of
low concentration, or infinite dilution of the B layer, the distribution curve
becomes linear and the distribution coefficient itself attains a maximum
value. This limiting coefficient, shown in Figure 6.10b, is akin to the Henry’s
constants, which we have seen in gas-liquid and fluid-solid equilibria, and
is sometimes denoted as such. An indication of its magnitude may be
obtained from the low-concentration distribution coefficients listed in Table
6.6 for a number of systems comprising aqueous and organic solutions. 

Illustration 6.6: The Mixture or Lever Rule in the Triangular Diagram

With this example, we wish to draw the reader’s attention to certain simple
geometric constructions, which can be carried out in a triangular diagram
to obtain important information in easy and rapid fashion. One such con-
struction, sketched in Figure 6.11, leads to what is known as the mixture rule,
or lever rule, for ternary liquid systems. Briefly stated, the rule asserts that
the composition that results when two liquid solutions are mixed lies on a
straight line connecting their compositions. Thus, if R kg of a mixture rep-
resented by point R is combined with E kg of a solution located at point E,
the resulting composition F will lie on a straight line connecting points R
and E. Furthermore, the location of F will be such that the line segments it
defines stand in the ratio of the weights of the parent solutions, i.e.,

     (6.8a)

TABLE 6.6

Low-Concentration Solute Distributions in Water–Organic Solvent Systems (25°°°°C)

Mole%

Solute Solvent
Aqueous 

Phase
Organic 

Phase
Distribution 
Coefficient

Acetic acid Carbon tetrachloride 5.088 0.916 5.56
Hexane 14.810 1.614 9.18
Toluene 7.850 2.440 3.22

Acetone Chloroform 16.07 0.959 16.76
Diethyl ether 1.519 5.446 0.279

Methanol Benzene 4.067 0.798 5.10
Toluene 5.945 0.286 20.79

Ethanol Chloroform 4.187 1.784 2.35
Diethyl ether 1.382 2.422 0.571
Toluene 4.621 0.398 11.61
Hexane 30.11 1.297 23.22
Benzene 0.994 1.177 0.845

R
E

EF
RF

=



214 Mass Transfer: Principles and Applications

We now proceed to present a proof of these statements. This is done by
composing total and component mass balances for the mixtures and relating
the resulting compositional changes to the line segments of Figure 6.11. Thus,
for the total mass balance

R + E = F (6.8b)

where F = mass of final mixture, and for the component mass balance

RxCB + ExCE = FxCF (6.8c)

Eliminating F from these equations yields

  (6.8d)

where xCF will be located somewhere on the straight line connecting E and
R. We now show that its location is such that it subdivides the line in the
ratio given by Equation 6.8a. From the diagram it follows that

  (6.8e)

and consequently

  (6.8f)

FIGURE 6.11
The mixture rule in a triangular diagram.
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where the last equality follows from the similarity of the two triangles FPR
and ESF. The proof is thus complete. Note that the closer the parent mixture
F is to E, the more R is formed, and vice versa. 

Comments:

It is seen from this discussion that the mixture or lever rule can be expressed
both algebraically and in geometrical form. The algebraic version, given by
Equation 6.8d, is the preferred tool for numerical calculation, while the
geometrical construction of Figure 6.11 serves to provide a quick visual
estimate of the quantities involved. Thus, if F lies midway between R and
E, the two parent solutions will be equal in weight, and vice versa. It also
follows that if an amount E with a composition located at the point E of
Figure 6.11 is removed from the mixture, the point R representing the residue
will lie on a straight line EF extended through F, and the above relationship
(Equation 6.8f) will apply.

The lever rule finds its most notable application in the use of tie-lines to
establish the compositions and relative proportions of the two solvent layers
in an extraction process. Suppose, for example, that two liquid solutions
with overall composition represented by M in Figure 6.9 are contacted and
allowed to settle into a two-phase equilibrium. The compositions will then
be given by the tie-line end points L and N, and the relative amounts of L
and N will be in the ratio . Here again the geometrical construction
serves to convey a quick visual notion of the events, which can then be
followed up by actual algebraic calculations.

6.2.5 Equilibria Involving a Supercritical Fluid

In Section 6.1 we have drawn the reader’s attention to the existence of a
threshold temperature known as the critical temperature, above which a
pure substance can exist only as a single phase. That phase possesses char-
acteristics of a dual nature: It behaves, on the one hand, like a dense gas that
does, however, still have a sufficiently open structure to allow rapid passage
of solute molecules by diffusion. The relatively short distance between neigh-
boring molecules, on the other hand, allows it to attract and hold substantial
amounts of solute material, thus acting for practical purposes as an efficient
solvent. These dual features have led to the use of supercritical fluids (SCF)
as solvents in a process known as supercritical fluid extraction (SCE). Its
advantages over conventional liquid extraction are twofold: It shortens the
required contact time because of the higher prevailing diffusivities, and it
replaces costly and potentially harmful liquid solvents with inexpensive and
benign gases such as carbon dioxide and the lower hydrocarbons. A number
of commercial processes have been developed that make use of this new
technology, and there is an ongoing intensive quest for new applications.

To acquaint the reader with the key features of SCE, we display the super-
critical region of interest (Figure 6.12) and a map of diffusivities in liquids

MN ML/
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and supercritical carbon dioxide (Figure 6.13), which clearly shows the supe-
rior transport properties of the latter. The increased extraction power of
carbon dioxide with temperature and pressure becomes evident in Figure
6.14. We note in particular that doubling the pressure from 70 bar (~70 atm)
to 150 bar at temperatures slightly above critical increases the solute con-
centration in the extracting medium by well over an order of magnitude. 

The earliest indication of this property of SCF is to be found in the work
of J.B. Hannay and J. Hogarth (1879), who reported that an increase in
pressure of supercritical ethanol caused increased dissolution of certain inor-
ganic salts such as potassium iodide, while conversely a relaxation in pres-
sure resulted in the precipitation of the salts as “a white snow.”

This early work was followed intermittently by a flurry of activity that
intensified during the 1970s and 1980s, partly as a result of environmental
concerns over the use of conventional solvents. Major commercial processes
currently in use are the SCE of caffeine from coffee and tea, the SCE of spice
aromas, and the fractionation and purification of polymers. Processes under
investigation include the treatment of wastewaters, activated carbon regener-
ation, and the SCE of edible oils and therapeutic agents from plant materials.

The scale of decaffeination processes is indicated by the extraction vessel
shown in Figure 6.15, which measures about 2 m in diameter and 20 m in
height. The operation is countercurrent, with CO2 passing upward and coffee
discharged intermittently at the rate of about 5000 kg/h. Operating pressure
is typically in the vicinity of 300 atm.

FIGURE 6.12
Temperature-pressure diagram for a pure substance and the region of SCE.
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FIGURE 6.13
Comparison of diffusivities in supercritical carbon dioxide and normal liquids. (From McHugh,
M. and Krukonis, V. Supercritical Fluid Extraction, 2nd ed., Butterworth-Heinemann, Boston,
1994. With permission.)

FIGURE 6.14
Solubility of naphthalene in supercritical carbon dioxide. (From McHugh, M. and Krukonis, V.
Supercritical Fluid Extraction, 2nd ed., Butterworth-Heinemann, Boston, 1994. With permission.)
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Illustration 6.7: Decaffeination in a Single-Equilibrium Stage

To gain an idea of the CO2 requirements in decaffeination, we consider a
hypothetical process in which the carbon dioxide is circulated through the
extraction vessel until it is in equilibrium with its charge of coffee. We term
this contact an equilibrium stage, a concept that is discussed more fully in
Chapter 7.

The equilibrium distribution of caffeine under a particular set of conditions
is shown in the log-log plot of Figure 6.16. The fitting of the data leads to
the expression

x = 1.24y0.316 (6.9a)

where x and y are the weight percentages of caffeine in the coffee and the
carbon dioxide.

Suppose the requirement is to reduce the caffeine content from 1 to 0.05%,
which is typical of commercial decaffeination processes. The task is to cal-
culate the ratio G/S kg CO2/kg coffee required to achieve this reduction.

FIGURE 6.15
Extraction vessel used in the Maxwell House® Coffee Company supercritical CO2 decaffeination
plant in Houston, Texas. (From McHugh, M. and Krukonis, V. Supercritical Fluid Extraction, 2nd
ed., Butterworth-Heinemann, Boston, 1994. With permission.)
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The carbon dioxide is assumed to be devoid of caffeine initially. The equi-
librium content in the gas at the end of the operation is given by

  (6.9b)

  (6.9c)

A caffeine mass balance for the process leads to the expression

Rate of caffeine in – Rate of caffeine out = 0
S ¥ 0.01 –  (Gy* + S ¥ 0.005)  = 0 (6.10a)

and consequently

  (6.10b)

  (6.10c)

FIGURE 6.16
Caffeine equilibrium distribution at 60˚C, 272 atm. (From McHugh, M. and Krukonis, V. Super-
critical Fluid Extraction, 2nd ed., Butterworth-Heinemann, Boston, 1994. With permission.)
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Comments:

This is clearly an inordinate amount of CO2 required, brought about by what
appears to be a rather unfavorable distribution of caffeine between the
extracting gas and the coffee. That seeming drawback can be overcome by
“staging” the extraction process, i.e., providing a continuous contact between
the two phases as is done in commercial countercurrent operations. This
type of operation is taken up in Illustration 8.4. It is shown there that the
gas requirements can be considerably reduced by adopting this type of
contact, a fact that has been a major contributor to the commercial success
of the process.

6.2.6 Equilibria in Biology and the Environment: Partitioning of a Solute 
between Compartments

In biology and the environment, the equilibria of interest are those of a
substance distributed or “partitioned” among the major compartments of
the system. In biology we usually seek to establish the distribution of a
substance between the circulating blood and the separate compartments of
fat or lipids, muscle and bone. The substances in question can be toxic or
benign (e.g., a drug).

In the environment, the major compartments of interest are air, water, and
soil, and the solute involved is usually toxic or objectionable. An interesting
confluence of biology and the environment occurs in the exposure of animals
to toxic chemicals contained in the air or in water. The question then becomes
one of establishing equilibrium concentrations between environmental and
body compartments. In fish, for example, the usual aim is to determine the
distribution of the solute between water and animal fat. A description of this
case is given in Illustration 6.8.

The equilibrium concentrations between various compartments are usu-
ally taken to be in a constant ratio termed the partition coefficient K. Thus, for
a substance distributed between blood and muscle, we have

  (6.11a)

or

CB = KBMCM (6.11b)

The relation is, in other words, a linear one, and the partition coefficient can
be viewed as the equivalent of a Henry’s constant, relating the two concen-
trations in question. These concentrations represent hypothetical maximum
levels, which may appear briefly during the initial period of exposure. There-
after, metabolic processes and excretion intervene to reduce the concentra-
tions to new steady-state values. These can still be substantial, as was shown
in Illustration 5.7.

C
C

KB

M
BM=
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Illustration 6.8: The Octanol----Water Partition Coefficient

In environmental work, extensive use is made of a special K value, the
octanol-water partition coefficient. It describes the distribution of a solute
between octanol and water; i.e., it is defined by

  (6.11c)

where KOW is in units of m3 water/m3 octanol.
Octanol, or more properly 1-octanol, was chosen as a correlating substance

because its carbon-to-oxygen ratio is similiar to that of lipids and, in general,
mimics the dissolution of solutes in organic matter. KOC is also a direct
measure of hydrophobicity, i.e., the tendency of a chemical to partition out
of water, and is consequently an inverse measure of the solubility of a
substance in water. The higher the KOC, the greater the effect of a chemical
on an animal. A short list of KOC values for various substances appears in
Table 6.7. 

The following serves as an example of the application of octanol-water
partition coefficients: Suppose it is desired to estimate the effect on fish of
the pesticide DDT dissolved in water. The lipid content of most fish clusters
about a value of 4.8%. We can then define a fish-water partition coefficient
KFW and relate it to KOC as follows:

KFW = 0.048KOW (6.12a)

This relation expresses the assumption that a fish is composed of 4.8% by
volume octanol. Using the value for DDT listed in Table 6.7, we obtain

  (6.12b)

TABLE 6.7

Octanol----Water Partition Coefficients for Various Substances

Solute KOC (m3/m3)

n-Hexane 13,000
Benzene 135
Styrene 760
Chloroform 93
Carbon tetrachloride 440
Chlorobenzene 630
DDT 1.6 ¥ 106

Range of PCBs 104 to 108

K
C
COW

o

w

=

K
C
CFW

F

W

= = ¥ ¥ = ¥0 0048 1 6 10 7 7 106 4. . .
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i.e., an almost 100,000-fold increase in concentration over that in the sur-
rounding water. Since DDT solubility in water is 1.2 ¥ 10– 3 mg/l, the con-
centration in the fish rises to 7.7 ¥ 104 ¥ 1.2 ¥ 10– 3 = 92 mg/l, or approximately
1/10 g in a fish of 1-l volume.

The reader is reminded that this is the maximum attainable in the absence
of metabolic degradation. The steady-state bioconcentration factors (BCF),
some examples of which appeared in Table 5.9, are considerably lower but
still sufficiently high to cause concern.

6.3 Multicomponent Equilibria: Distribution of Several 
Components

6.3.1 The Phase Rule

The reader will have noted that in the equilibria considered so far, temper-
ature was assumed to be constant or fixed. The wider question of how many
such variables have to be prescribed to define a particular state of equilib-
rium was not addressed. It was tacitly assumed that, once a temperature
and the concentration or pressure in one phase was chosen, a unique com-
position in the second phase was automatically assured. This approach
worked without difficulty in the simple equilibria we have considered so
far, but becomes somewhat tenuous when more complex systems are to be
dealt with. What is required here is a formalism that will tell us exactly how
many variables have to be fixed to assure a unique state of equilibrium. That
formalism is provided by the Gibbsian phase rule, which states that the
number of variables F to be prescribed equals the difference of the number
of components and phases C – P, plus 2. Thus,

F = C – P + 2 (6.13a)

F, which is also referred to as the degrees of freedom of the system, is a
measure of the latitude we have in arbitrarily assigning values to the inde-
pendent variables of the system. Let us see how this rule is applied in
practice.

Illustration 6.9:  Application of the Phase Rule

We start by examining several simple equilibria, which have been dealt with
previously.

1.  Pure Component Vapor-Liquid Equilibrium

Here the phases number 2 and the components 1. Hence
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F = C – P + 2 = 1 – 2 + 2 = 1 (6.13b)

and we are allowed only one degree of freedom. Thus, if we choose for water
a temperature of 100°C, a corresponding unique pressure of 101.3 kPa results,
which is set by the system itself. Note that in the supercritical region only
one phase exists and as a consequence arbitrary values can be assigned to
both T and P.

2. The Triple Point

Systems at the triple point contain three phases, solid, liquid, and vapor, all
in equilibrium with one another. Consequently,

F = C – P + 2 = 1 – 3 + 2 = 0 (6.13c)

and the degrees of freedom vanish. Thus, we cannot, for example, prescribe
a triple-point temperature and expect the system to respond with a particular
triple-point equilibrium pressure. The system itself sets the values of both T
and P, neither of which is controlled or set by the observer.

3. Binary Vapor-Liquid Equilibria

Consider next a two-component liquid solution that is in equilibrium with
its vapor. Here we have

F = C – P + 2 = 2 – 2 + 2 = 2 (6.13d)

Thus, we can fix, for example, temperature and the vapor composition,
and expect the system to set its own values of liquid composition as well as
total pressure. If, on the other hand, we choose to prescribe pressure and
vapor composition, the system will respond with a particular temperature,
i.e., its boiling point, as well as a particular liquid composition. A third
possibility is to fix both temperature and total pressure, in which case the
system will set its own values of both liquid and vapor composition. All
three cases are encountered in practice, and are expressed in terms of appro-
priate phase diagrams, which are taken up below.

6.3.2 Binary Vapor----Liquid Equilibria

In the phase equilibria considered so far, the principal focus has rested
on the distribution of a single key component, usually referred to as the
solute, between the constituent phases. Thus, in the gas-liquid and liquid-
solid equilibria taken up in Sections 6.2.1 and 6.2.2, our concern was with
only one of the components present, while the remaining bulk compo-
nents, such as liquid solvent or solid adsorbent, were left out of consid-
eration.



224 Mass Transfer: Principles and Applications

In vapor-liquid equilibria, all components participate in some measure in
determining equilibrium behavior. No single substance dominates the pic-
ture, and none is relegated to the status of a passive constituent. Although
these considerations apply to multicomponent vapor-liquid equilibria, our
discussions here are confined for illustrative purposes to binary systems.
These systems possess, as shown in Illustration 6.9,  two degrees of freedom,
and this fact has led to the development of several distinct phase diagrams.
In these diagrams, which are discussed in detail below, either temperature
or pressure have prescribed constant values, along with one of the phase
compositions. Once these two variables are fixed, the system is uniquely
defined and all other variables fall into place. The graphical representations
that result all have their own distinct features, which are exploited in differ-
ent ways to suit the needs of the user.

6.3.2.1 Phase Diagrams

The principal phase diagrams used to describe binary vapor-liquid equilib-
ria are three in number. In the first of these, total pressure and one of the
compositions are the prescribed variables. This leads to the boiling-point
diagram, shown in Figure 6.17a, and the compositional x–y diagram that
appears in Figure 6.17c. When total pressure is replaced by temperature as
the prescribed variable, a third type of diagram results: the vapor-pressure
diagram, shown in Figure 6.17b.

The boiling-point diagram of Figure 6.17a provides the best global repre-
sentation of binary vapor-liquid equilibria. It consists of a plot of tempera-
ture against both the vapor and liquid compositions, expressed as mole
fractions. The lens-shaped domain encompasses the two-phase region, while
the spaces above and below the lens denote single-phase vapor and liquid
behavior, respectively.

Consider first a point P below the lens. This point lies entirely in the liquid
region. The system is below the boiling point corresponding to the prescribed
total pressure PT and the vapor phase is completely absent. If we next move
up the vertical axis PQ, i.e., raise the temperature, a point A is eventually
reached where the first bubble of vapor is formed. That point, which lies on
the bubble-point curve, is in equilibrium with a vapor of composition A¢, which
is richer in the component A than the bulk composition of the parent liquid.
As more of the mixture is vaporized, more vapor forms at the expense of
liquid, giving rise, for example, to the liquid composition corresponding to
the point K and a vapor composition denoted by L. The line connecting K
and L, and similar horizontal lines connecting points on the two curves, are
termed tie-lines. They play the same role as the tie-lines we have seen in
liquid-liquid equilibria and obey the lever rule we have derived in Illustra-
tion 6.6. Thus, the moles vapor V and the moles liquid L present in the two-
phase mixture stand in the ratio of the corresponding line segments; i.e., we
have
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FIGURE 6.17
Binary vapor-liquid equilibria of ideal systems: (a) boiling-point diagram; (b) vapor-pressure
diagram; (c) x–y diagram.

Vapor

Liquid

PT = Constant

Q

P

Dew Points

LO

A

K

yAvs. T

Bubble Points
B.P. of A

PO
A

xAvs. T

B

A'

1.0Mole Fraction of xA, yA0

PT vs. xA

Temperature T

B.P. of B

PO
A

L

A'

yA = xA

PT = constant

B'

1.00 B K A

Mole Fraction yA

Liquid

T = Constant

pB vs. xA

pA vs. xA

1.0Mole Fraction xA

Mole Fraction xA

0

Pressure

PO
B

1.0

a.

b.

c.

B'



226 Mass Transfer: Principles and Applications

  (6.14)

Continuing our path along the PQ axis, a point B is eventually reached
where the last drop of liquid is vaporized. Further increases in temperature
result in superheated vapor. If the process is now reversed, i.e., the vapor
mixture is cooled, all the phenomena reappear in reverse order. Condensa-
tion, for example, starts at point B, yielding the first drop of liquid “dew.”
The upper curve of the lens where this occurs is consequently termed the
dew-point curve. The reader will note the similarity of this diagram to the
melting-point diagram for liquid-solid systems shown in Figure 2.9a.

When temperature replaces total pressure as one of the prescribed vari-
ables, the result is the vapor-pressure diagram, examples of which are shown
in Figure 6.17b and again in Figure 6.20b (see Section 6.3.3). The plot here
is one of vapor pressure at constant T against one of the liquid mole fractions.
Both the component partial pressures pA and pB and the total pressure PT are
plotted and result in straight lines or curves, depending on whether the
system is ideal or nonideal. Ideal behavior, and deviations from it, are taken
up in greater detail in the next section.

A third type of plot, the x–y diagram, is shown in Figure 6.17c as well as
in Figure 6.20c (see Section 6.3.3). The plotted quantities here are the vapor
and liquid mole fractions of a particular component, while total pressure is
held constant at a prescribed level. These diagrams play a dominant role in
the analysis of distillation processes and will be encountered in considerable
numbers in the succeeding chapters.

6.3.2.2 Ideal Solutions and Raoult’s Law: Deviation from Ideality

The prediction and, failing that, the correlation of vapor-liquid equilibria
are topics of considerable practical interest. In particular, we wish to address
the following question: Given a prescribed liquid composition and certain
standard physical properties of a system, is it possible to predict the corre-
sponding vapor composition? Evidently, if this could be done, an immense
amount of experimentation could be dispensed with. It turns out that this
is accomplished most easily if the system shows what is termed ideal behavior.
Such ideal systems, although relatively rare in practice, serve as a convenient
reference for vapor-liquid equilibria in general. This is reminiscent of the
concept of an ideal gas, which provides a similar yardstick against which
the behavior of gases in general can be measured. These two cases, although
similar in the approach used, differ in some important aspects.

For ideal gases, a total absence of intermolecular forces is assumed. Neither
attractive nor repulsive forces are taken into account and collisions between
molecules are taken to be entirely elastic in nature. These assumptions hold
well at low pressures because of the large distances between particles and
the vanishingly short time they spend in collision with each other. In liquids,
the molecules are closely packed and in constant intimate contact with each

V
L
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other. To neglect intermolecular forces in this instance would be grossly
unrealistic. What is done instead is to accept their existence and to assume
that they are uniformly constant and independent of concentration. Thus, if
in a binary solution a molecule A is replaced by a molecule B, the interaction
between neighboring particles remains the same. This will clearly be the case
only if the two species are similar in chemical structure and in size. The
important consequence of this assumption is that the partial vapor pressure
of a particular component is unaffected by the presence of other species and
is subject only to its own molar concentration. Thus, if the mole fraction xA

is doubled, the partial pressure pA of the component is similarly doubled.
Continuing this process, a linear increase of partial pressure with mole
fraction results until ultimately, at xA = 1, the partial pressure equals the full
pure component vapor pressure PA

o of the species. We can consequently write

pA = xAPA
o (6.15a)

where the product xAPA
o expresses both the linear increase in partial pressure

with mole fraction and the ultimate attainment of the full vapor pressure
PA

o. This expression is known as Raoult’s law, and systems obeying it are
said to be ideal solutions.

Several important subsidiary laws flow from this relation. In the first
instance, we can extend Raoult’s law to the second component of the binary
mixture and obtain

pB = xBPB
o = (1 – xA)PB

o (6.15b)

Adding the two expressions then yields

pA + pB = PT = xAPA
o + (1 – xA)PB

o (6.15c)

where PT is the total pressure.
All three of these expressions yield straight line plots of vapor pressure

vs. liquid mole fraction, which are displayed in Figure 6.17b. Systems that
obey these relations, i.e., ideal solutions, are relatively uncommon and are
usually confined to neighboring substances taken from a homologous series,
and to isomer and isotope mixtures. We address these in the context of the
so-called separation factor of the system, which is taken up in a subsequent
section.

Deviations from ideal behavior occur when there is a marked difference
in the molecular structure of the participating species. Typical combinations
that give rise to nonideal behavior are pairs of polar and nonpolar sub-
stances, in which the attractive and repulsive forces vary with compositional
changes. When repulsive forces predominate, the vapor pressures rise above
the values predicted by ideal solution theory and we speak of positive devi-
ations. Most vapor-liquid equilibria fall in this category. A predominance of
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attractive forces, on the other hand, leads to a lowering of the vapor pressure,
which is termed a negative deviation. The resulting nonideal vapor-pressure
diagrams are displayed in Figure 6.18.

We note two interesting limiting cases that arise in systems with both
positive and negative deviations: For low concentrations of a particular
component, its partial pressure becomes linear in the mole fraction of the
solution in question. This, in essence, is a Henry’s-law-type relation; i.e., we
can write

  (6.16a)

FIGURE 6.18
Vapor pressure diagrams for nonideal systems: (a) positive deviations from ideality; (b) negative
deviations.
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and

  (6.16b)

where HA and HB are the Henry’s law constants for the two components in
question. If, on the other hand, the mole fractions are allowed to tend to
unity, the partial pressure will, in the limit, approach the values given by
Raoult’s law. We have in this case

  (6.16c)

and

  (6.16d)

These two cases, which have been entered in the diagrams of Figure 6.18,
provide useful approximations in the limit of low-solute concentrations or
high-solvent content.

6.3.2.3 Activity Coefficients

The reader will recall that deviations from ideal gas behavior are often
expressed in terms of a correction factor referred to as a compressibility factor
z; i.e., we write

PV = z(Pr, Tr)RT (6.17)

where Pr and Tr are the so-called reduced pressure and temperature, defined
as the ratios of P and T to their critical counterparts PC and TC.

In much the same way we can define correction factors g, termed activity
coefficients, which describe deviations from Raoult’s law for ideal solutions.
The resulting expression, sometimes referred to as extended Raoult’s law,
has the form

pA = gA(xA)xA
oPA

o (6.18a)

and

pB = gB(xB)xBPB
o (6.18b)

where the correction factors are now functions of the binary mole fraction
x. That functional relationship, expressed in the form of plots of ln g vs. xA,
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is shown in Figure 6.19. Note that in the limit of high-solvent content, ln g
approaches zero, i.e., g Æ 1. At the same time, Equation 6.18a and Equation
6.18b revert to Raoult’s law. At the other end of the spectrum, i.e., at low-
solute content, the activity coefficients tend to constant limiting values and
Henry’s law results, where H = g po.

It is evidently of considerable interest to be able to predict activity coeffi-
cients without resorting to experimentation, and immense strides have in
fact been made in recent decades to accomplish this goal. Among a number
of promising approaches, an analytical expression known as the UNIQUAC
equation (UNIversal QUAsi Chemical equation) has received the most wide-
spread acceptance. In this model, the activity coefficient is decomposed into
two constituents, one of which, termed combinatorial (C), accounts for molec-
ular size and shape differences, while the other, denoted residual (R),
expresses effects due to molecular interactions. 

Thus,

ln g = ln gC + ln gR (6.19)

It has become possible to express gC and gR in terms of group contributions
due to molecular subunits such as CH3, CH2, CH2O, etc. This approach has
led to the successful prediction of vapor-liquid equilibria of a large number
of systems. There is evidently still an ongoing need for experimentation, but
this requirement is now at a much more subdued level than would otherwise
have been the case.

FIGURE 6.19
Activity coefficient for systems with positive deviations.
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6.3.3 The Separation Factor aaaa: Azeotropes

A convenient and consistent measure of separation is provided by the so-
called separation factor or relative volatility a, which is composed of the
product of two mole-fraction ratios. These ratios are defined in such a way
as to minimize changes in a with composition and are represented by the
following expression

  (6.20a)

Here x and y refer to the more volatile component, i.e., the constituent
with the higher pure-component vapor pressure or the lower boiling point.
In general, the higher the value of a above unity, the greater the degree of
separation or enrichment.

The reader will have noted that any decrease in y/x toward 1 as y and x
approach unity is neatly offset by the compensating ratio (1 – x)/(1 – y). Thus,
if y = 0.99 and x = 0.98, for example, a will still be considerably above unity.

  (6.20b)

Consequently, the use of a predicts, correctly, that there is still substantial
separation to be obtained even when the mole fractions are near unity.

The essence of the relative volatility is best understood by examining its
effect on the x–y diagrams shown in Figure 6.17c and Figure 6.20c. It turns
out that a bears a distinct and sensitive relation to the shape of these curves.
The following features in particular stand out:

1. Separation factors greater than unity result in x–y curves that lie
entirely above the 45° diagonal. The higher the value of a, the greater
the distance between the two lines. This implies that separation
becomes easier as the x–y curve bulges out and away from the
diagonal. Systems with x–y curves close to the diagonal are by con-
trast difficult to separate.

2. Separation factors that are constant, or nearly so, result in symmet-
rical x–y curves. Larger variations yield asymmetrical curves, with
some portions lying far above the diagonal while others are close to it.

3. When a = 1, vapor and liquid compositions become equal, i.e., x =
y, and the corresponding mole fraction lies on the 45° diagonal. This
condition is referred to as an azeotrope and is shown in Figure 6.20c.
The x–y curves for such systems will inflect across the 45° line, with
portions on either side of the azeotrope lying above and below the
diagonal, respectively. The portion below the line yields enrichment
in the less volatile component. Above the diagonal it is the more
volatile component that is enriched.
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Azeotropic behavior is a common occurrence in vapor-liquid equilibria
(VLE). Approximately one-third of all systems listed in standard VLE
handbooks exhibit azeotropes. In general, the more dissimilar the two
components, the greater the likelihood that such mixtures will be formed.
Combinations of polar-nonpolar substances and those with widely differ-
ing structural features are particularly prone to azeotropic behavior. Table
6.7, which lists some of the more conventional azeotropic pairs, conveys a
sense of the degree of dissimilarity that leads to the formation of azeo-
tropes.

Several additional features of these systems are to be noted. First and
foremost is the fact that mixtures that lead to azeotrope formation cannot be
separated into their constituent components by simple distillation. This is
best seen from the boiling-point diagram shown in Figure 6.20a, where we
indicate the pathway that results from a process of repeated vaporization
and condensation. Starting with a liquid feed at F, the mixture is brought to
a boil at K and the first vapor (L) collected and condensed. The cycle of
vaporization and condensation is then repeated until the azeotropic compo-
sition at A is reached. At this point no further enrichment by vaporization
is obtained, as the compositions in the two phases are the same. The mixture
continues to boil at a constant temperature, yielding a mixture of constant
composition, until the liquid charge is exhausted.

Azeotropic mixtures require special methods for their separation, which
usually consist of adding a third component that has the ability to “break”
the azeotrope. Perhaps the most famous case is that of ethanol-water,
which has an azeotropic mole fraction in ethanol of 0.8943 at atmospheric
pressure (Table 6.8). Here the added component is benzene and results, on
distillation, in the recovery of pure ethanol and a ternary azeotrope con-
taining benzene. That mixture, on condensation, results in two immiscible
aqueous and organic layers, which are separated and further processed by
distillation.

We now turn to the question of the behavior of a for ideal liquid solutions.
Here the Raoult’s law equations (Equation 6.15a and Equation 6.15b) provide
a quick answer. Dividing the two expressions, we obtain in the first instance

  (6.21a)

Replacing partial pressures by yPT yields

  (6.21b)

and after some rearrangement,
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FIGURE 6.20
Azeotropic systems: (a) boiling-point diagram; (b) vapor-pressure diagram; (c) x–y diagram.
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  (6.21c)

Thus, for ideal solutions, a stands in the simple ratio of the vapor pressure
of the more volatile component to that of its less-volatile counterpart. This
ratio varies somewhat with temperature but the variation is not severe and
is often accounted for by composing the arithmetic or geometric average of
the two end values at x = 0 and x = 1.

To provide the reader with a sense of the validity of Equation 6.21c, we
have composed in Table 6.9 a comparison of calculated values with the
experimental range of a values taken over the span of measured mole frac-

TABLE 6.8

Binary Azeotropes at 1 atm

System
Azeotrope Mole 
Fraction x1 = y1 Temperature T, °°°°C

Water (1)–Methanol (2) — —
Water (1)–Ethanol (2) 0.1057 78.15
Water (1)–Propanol (2) 0.5680 87.80
Water (1)–i-Propanol (2) 0.3187 80.16
Water (1)–n-Butanol (2) 0.75 92.95
Water (1)–Formic acid (2) 0.415 107.60
Water (1)–Acetic acid (2) — —
Water (1)–Dioxane (2) 0.525 87.75
Water (1)–Tetrahydrofurane (2) 0.18 63.5
Water (1)–Pyridine (2) 0.77 94.40
Methanol (1)–Acetone (2) 0.1980 54.40
Methanol (1)–Methyl acetate (2) 0.3280 53.80
Methanol (1)–Ethyl acetate (2) 0.287 62.1
Methanol (1)–Chloroform (2) 0.35 53.5
Methanol (1)–Carbon tetrachloride (2) 0.55 55.7
Methanol (1)–Hexane (2) 0.498 45
Methanol (1)–Heptane (2) 0.747 58.8
Methanol (1)–Benzene (2) 0.60 57.8
Methanol (1)–Toluene (2) 0.90 63.6
Ethanol (1)–Ethyl acetate (2) 0.48 72.1
Ethanol (1)–Chloroform (2) Yes
Ethanol (1)–Carbon tetrachloride (2) Yes
Ethanol (1)–Hexane (2) 0.345 58.0
Ethanol (1)–Heptane (2) Yes
Ethanol (1)–Benzene (2) 0.445 67.8
Ethanol (1)–Toluene (2) Yes
Acetone (1)–Chloroform (2) 0.3600 64.4
Acetone (1)–Carbon tetrachloride (2) 0.93 56.0
Acetone (1)–Carbon disulfide (2) 0.34 39.10
Acetone (1)–Pentane (2) 0.25 32
Acetic acid (1)–Octane (2) 0.675 105.1
Benzene (1)–Cyclohexane (2) 0.55 77.5
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tions. The systems involved are those that can be expected to behave ideally,
i.e., members of a homologous series, isotope pairs, and the like. For isotope
mixtures, experimental a values are rare and we have instead reported the
vapor-pressure ratio, which for these substances is nearly constant and equal
to the relative volatility. 

Illustration 6.10: The Effect of Total Pressure on aaaa
In principle, distillation can be carried out over a wide range of pressures,
spanning the extremes of near-total vacuum and the critical point. While
atmospheric distillation is the preferred mode of operation, reduced pres-
sures offer the advantage of lower temperatures and energy requirements.
They are often employed to avoid thermal degradation of heat-sensitive
materials (ethylbenzene/styrene distillation) or are forced on the operator
by the low vapor pressure of the charge (metal distillation). The drawbacks
of this mode of operation are the obvious cost and inconvenience of a vac-
uum process and the lowering of material throughput. Distillation above
atmospheric pressures is often employed with volatile charges containing
dissolved gases and is routinely used in refinery operations. It shows supe-
rior throughput but has higher operating temperatures and energy require-
ments than atmospheric distillation.

An important factor to be taken into account in any overall assessment is
the effect of total pressure on the separation factor a. We can explore this

TABLE 6.9

Separation Factors for Some Near-Ideal Systems at 1 atm

System
Experimental 

Range of aaaa Range of P1
o/P2

o

Homologues

Methanol (1)–Ethanol (2) 2.20–1.88 1.67–1.76
Methanol (1)–Propanol (2) 3.55–3.30 3.20–3.97
Methanol (1)–i-Propanol (2) 2.34–1.64 1.91–2.17
Ethanol (1)–i-Propanol (2) 1.15–1.21 1.17–1.27
Ethanol (1)–n-Butanol (2) 4.21–5.84 3.95–5.92
Ethanol (1)–sec-Butanol (2) 2.48–2.54 2.20–2.37
Ethanol (1)–1-Pentanol (2) 8.96–7.45 7.15–10.9
Formic acid (1)–Acetic acid (2) 1.65–1.41 1.62–1.72
Chloroform (1)–Carbon tetrachloride (2) 1.41–2.11 1.62–1.72
Acetone (1)–Methyl ethyl ketone (2) 1.56–2.23 1.71–2.22
Benzene (1)–Toluene (2) 2.23–2.26 2.36–2.60

Isotopes  T, K P1
o/P2

o

H2-HD 20.4 1.73
C12O-C13O 68.3 1.0109
O16O16-O16O18 69.5 1.01
CH4-CH3D 90 1.0025
N14O-N15O 109.5 1.032
H2O-HDO 373.1 1.026
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dependence for the simple case of ideal solutions by first drawing on Equa-
tion 6.21c

  (6.21c)

and then using the Clausius-Clapeyron equation (Equation 6.1g) to relate
Po to T:

  (6.22)

It is clearly seen from the latter that the vapor-pressure ratio and hence
the separation factor both increase with a decrease in boiling point or total
pressure. This result has sometimes been cast into a sweeping rule-of-thumb
that low-pressure distillation leads to improved separation. Many nonideal
systems follow this rule, but there are also numerous exceptions, particularly
in the azeotropic category. Nevertheless, low-pressure distillation is a worth-
while alternative to explore, provided some low-pressure equilibrium data
are available to confirm the expected results.

Comments:

Even ideal systems have been known to defy the rules. The isotope pair
CH4–CH3D, for example, has a separation factor of 1.001 at approximately
100 mmHg, which rises to 1.0035 at 1 atm. This anomaly led to the suggestion
that heavy water (D2O) might be produced economically by high-pressure
distillation of liquefied natural gas, which contains the isotope CH3D.
Because the capital cost of such a plant varies inversely with a – 1 (see
Illustration 7.9), even small increases in a can be hugely beneficial. Some
exploratory work took place in the 1960s, and although the results appeared
promising, market forces intervened to bring the proceedings to a halt. The
large-scale use of heavy water is nowadays confined to the CANDU nuclear
reactor, which faces an uncertain future.

Illustration 6.11: Activity Coefficients from Solubilities

Activity coefficients are generally either determined from Equation 6.18a and
Equation 6.18b using measured vapor- and liquid-equilibrium compositions
or are estimated from the UNIQUAC equation mentioned earlier. A third
method arises when the two components in question have low mutual
solubilities. g values are then confined to the Henry’s law regions near x =
0 and x = 1 (Figure 6.19) and cease to exist outside those regions. This
provides a way of calculating activity coefficients using classical chemical
thermodynamics.
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Suppose an organic solvent with a low solubility is equilibrated with water.
The aqueous phase will then contain small amounts of the solvent, while
water will appear in similar amounts in the organic phase. Because the
concentrations involved are vanishingly small, we can approximate the
chemical potential of each major constituent by its pure component chemical
potential mo (T.P). We can write:

  (6.23a)

and

  (6.23b)

This leads to the result

  (6.23c)

and

  (6.23d)

where xs represents the saturation solubility, expressed as a mole fraction.
We illustrate these results by examining the system carbon tetrachlo-

ride–water. The solubility of CCl4 in water is listed in Table 6.3 as 0.8 g/l @
800 ppm. The solubility of water in carbon tetrachloride is almost 10 times
lower at 84 ppm. Converting to mole fraction, we obtain

  

and

  

Taking the inverse of these results, we obtain for the activity coefficients:

In the aqueous phase:   

In the organic phase:   
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These are enormously high values, which indicate that the equilibrium vapor
mole fraction will by far exceed that of the liquid (see Practice Problem 6.13).

There is another simplification to be made: Since gxs is very nearly unity,
partial pressures will be closely approximated by the pure component vapor
pressures, which can be computed from the Antoine constants of Table 6.1.
We have

For the aqueous phase:

  

For the organic phase:

  

The results for CCl4 are particularly noteworthy in an environmental con-
text. The high partial pressure indicates that a water basin contaminated
with carbon tetrachloride will quickly lose most of the contaminant to the
atmosphere by evaporation. We return to this topic in Illustration 7.4.

Practice Problems

6.1. The Vapor Pressure of Ice and Snow
Ice has a substantial vapor pressure, which causes it to evaporate at
surprisingly high rates. Most of the disappearance of snow during
a lull in precipitation is due to evaporation rather than melting.
a. Suppose that a shallow puddle of water with a surface temper-

ature of 20°C evaporates in 2 h during a dry windy day. How
long would it take the same amount of ice at -5°C to evaporate
under identical wind and humidity conditions? The vapor pres-
sures of the water and the ice at their respective temperature are
17.5 and 3.0 mmHg.

b. Estimate the rate of evaporation of ice.

Answer: 11.7 h, 0.032 g/m2 s

6.2. Oxygen Content of Lake Waters
Calculate the maximum total oxygen content in a lake containing
107 m3 water.

Answer: 85.1 tons

p x P Ps
o o

CCl CCl CCl
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6.3. Water Intake of Fish
The oxygen required by a 2.5-kg fish amounts to approximately 50
g/day. Calculate the minimum water intake by the fish to supply
the necessary amount of oxygen.

Answer: 4.1 l/min

6.4. Sea Salt by Evaporation
Sea salt contains 454 mmol/kg NaCl and 9.6 mmol/kg KCl. What
percentage of the water has to be evaporated for the first crystals of
KCl to precipitate? The total solids content of sea water is approxi-
mately 2%. (Hint: Consult Table 6.3.)

Answer: 57.1%

6.5. More about Adsorption: The Toth Equation Applied to Air Purification
The Langmuir isotherm, while adequate for many purposes, has
since its inception been superseded by more refined equations with
a broader range of applications. One such equation is that due to
Toth, which is given by

  (6.24a)

Consider a factory air space of 105 m3, which is regularly contami-
nated with 10 ppm by volume of hydrogen sulfide, a toxic and foul-
smelling gas. It is proposed to use adsorption to purify the air.
Activated carbon does not lend itself to this purpose because of its
low capacity, but the zeolite mordenite has a suitably high loading
factor represented by the following Toth isotherm:

  (6.24b)

where p is in units of kPa, and q in mol/kg adsorbed. Calculate the
minimum weight of mordenite required to purify the air.

Answer: 561 kg

6.6. Ion-Exchange Resins
The process of ion exchange relies on the use of synthetic organic
resins, which carry ionic groups capable of exchanging cations or
anions with similar species in an aqueous solution. The resins come
in the form of small beads (2 to 3 mm) made up of a polymeric
skeleton into which the ionic groups are introduced by suitable
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chemical reactions. In one version of this process, styrene is poly-
merized in emulsion to provide the resin matrix, which is then
sulfonated, thereby introducing sulfonic acid groups –SO3

–H+ into
the polymer skeleton. We can describe this process in the following
form:

  (6.25a)

The hydrogen ion of this group can be readily released and its place
taken by another cation from a neighboring aqueous solution. Anion
exchangers use amine groups R3N+OH– to affect a similar exchange
of anions. Thus,

  (6.25b)

Ion-exchange resins find extensive use in the deionization of water
and in the recovery of valuable ions from aqueous solutions. In
water-softening processes, for example, calcium ions contained in
the hard water are exchanged for hydrogen ions released by the
sulfonic acid groups, while the anions are replaced by hydroxyl ions
provided by the amine groups. The net result is the replacement of
the calcium salts by water molecules and an attendant softening of
the process water. Ion-exchange resins behave in much the same
way as adsorbents, with ion uptake increasing in proportion to the
concentration in the contacting solution and ultimately leveling off
at a saturation value when all ions in the resin have been exchanged.
The phase equilibrium is consequently well-described by a Lang-
muir-type isotherm. To account for the ionic nature of the species,
it is customary to express both resin loadings and aqueous concen-
trations as milliequivalents rather than as the actual weight of ions.
Suppose that the uptake of copper ions Cu2+ by a particular resin is
described by the Langmuir form

  

where C is in meq Cu2+/l and X in meq Cu2+/g resin. Use this
equation to calculate the resin loading X for an aqueous solution
containing 0.01 by weight of copper ions.

Answer: 0.322 meq/g
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6.7. Special Types of Liquid-Liquid Equilibria 
Consider the following two cases:
a. A solute distributes itself between two partially soluble solvents

and is itself only partially soluble in one of these solvents. Draw
the triangular diagram for this case and locate the plait point.

b. A solute distributed between two partially soluble solvents re-
verses selectivity at some intermediate concentration level. Draw
the distribution curve for this case and identify the correspond-
ing behavior in vapor-liquid equilibria.

6.8. Decaffeination by Supercritical Extraction: The Freundlich Isotherm
The data of Figure 6.16 showing the equilibrium distribution of
caffeine between coffee beans and supercritical carbon dioxide can
be fitted by a power relation termed the Freundlich isotherm:

x = aym  (6.9a)

where x = kg caffeine/kg beans and y = kg caffeine/kg CO2. This
relation, an empirical one, is often used to fit adsorption equilibria
in the intermediate concentration range. Use the data of Figure 6.16
to derive the values for a and m.

6.9. Repartitioning of a Solute between Compartments
A solute is partitioned among three compartments with volumes of
V1 = 100, V2 = 50, V3 = 10 (arbitrary units) and partition coefficients
of K12 = 10–2 and K13 = 10–3. Degradation is extremely slow and the
system is considered to be at a quasi-equilibrium. If the concentra-
tion in compartment 1 undergoes a sudden increase from 10–3 to 10–2,
what will be the ultimate new equilibrium concentrations, assuming
no degradation takes place?

Answer: C1 = 2.13 ¥ 10–3

6.10. Vapor-Liquid Separation Factors for Light and Heavy Water
Monodeuterated water HDO has an abundance in natural water
of approximately 600 ppm. One of the methods used in early
attempts to separate the two isotopes was fractional distillation,
for which the separation factor at 1 atm was found to be 1.026.
Although this procedure was ultimately superseded by the more
efficient chemical-exchange processes for larger-scale production
of heavy water, distillation remains the separation method of
choice for upgrading small amounts of heavy water that have been
contaminated by atmospheric water vapor. Distillation is in this
case carried out at reduced pressure to take advantage of the higher
separation factor. Suppose we wish to carry out the distillation of
H2O-HDO at ambient temperatures, i.e., at subatmospheric
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pressures. Given that the separation factor at 40°C is 1.056, calcu-
late its value at a temperature of 25°C.

Answer: 1.069

Note: The actual distillation process at high D2O concentrations
involves the species HDO-D2O. Separation factors of this binary pair
are nearly identical to those for H2O-HDO.

6.11. More on Nonideal Systems
Consider the case of a nonideal liquid solution in which attractive
forces outweigh the repulsive. Describe how this changes the dia-
grams shown in Figure 6.18 and Figure 6.20.

6.12. Steam Distillation
It often happens, particularly in the food and pharmaceutical indus-
tries, that a heat-sensitive liquid has to be purified by distillation, or
a dissolved substance has to be concentrated by boiling off solvent
without risking thermal degradation. Vacuum distillation is one way
of lowering the boiling point but suffers from low production rates
and other disadvantages (see Illustration 6.10). A second method is
steam distillation, which involves passing live steam through the
solution and using it as a carrier gas to sweep off the evaporating
liquid or solvent. The charge consists of partially condensed steam
and a separate organic phase. The latent heat of vaporization is
provided by external heating.
a. Show that the normal boiling point is always less than 100°C and

increases with time.
b. Consider the steam distillation of a dilute solution of a heat-

sensitive substance in toluene. Estimate its initial boiling point
and the initial steam consumption in kg steam/kg toluene. (Hint:
Use Table 6.1.)

Answer: a. 84.3°C, b. 0.24

6.13. Transfer of Pollutants from a Water Basin to the Atmosphere
To obtain a sense of the magnification in concentration, which occurs
when a sparingly soluble substance evaporates into the atmosphere,
calculate the so-called K-factor, K = y/x, for carbon tetrachloride in
water using the data given in Illustration 6.11.

Answer: 8300
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7
Staged Operations: The Equilibrium Stage

Chapter 6 has laid the groundwork for the topic to be taken up here by
examining in considerable detail the various phase equilibria that enter into
the formulation of an equilibrium stage. The equilibrium stage, also termed
an ideal stage or theoretical stage, plays a central role in the analysis of an
important class of mass transfer operations termed staged processes. In these
operations, two phases are brought into intimate contact in a stirred tank or
its equivalent and the desired mass transfer process is allowed to take place.
The two phases are then separated, and the process is either repeated (mul-
tistage contact) or brought to a halt (single-stage contact). While there is only
one mode of single-stage contact, multistage operations can be arranged in
a variety of geometrical configurations. In co-current operations, the two
phases move through the stages and cascade parallel to each other and in
the same direction. When the phases move in opposite directions but still
run parallel, we speak of a countercurrent operation. Finally, when the two
phases move at right angles to each other, the process is termed a crosscurrent
operation. These three modes are sketched in Figure 7.1.

Analysis of these processes by the equilibrium-stage model proceeds in
two steps. In the first step, the two phases are visualized as entering a stirred
tank or its equivalent where they are allowed to come to equilibrium. The
two phases are then conceptually withdrawn and separated, and the con-
centrations in each phase are calculated by means of appropriate mass bal-
ances and equilibrium data. We practice this step extensively in this chapter
using both analytical expressions and specially designed geometrical con-
structions termed operating diagrams.

In the second step of the process, the two phases are contacted only for a
finite time interval leading to incomplete equilibrium. This step, which has
to be carried out experimentally, reflects conditions that prevail in an actual
operation. The resulting concentration changes, which differ from those
attained at equilibrium, are cast in the form of a fractional approach to
equilibrium or stage efficiency E. The value of this efficiency is then grafted
onto the results of the first step to arrive at an estimate of the actual prevailing
concentrations.

The concepts we have just described are illustrated in Figure 7.2. Figure
7.2a represents an equilibrium stage in which G kg of a carrier gas containing
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YF kg solute/kg carrier is contacted with L kg of a solvent carrying XF kg of
the solute/kg solvent. The solute transfers from the gas to the liquid phase
until equilibrium is attained. The phases are then withdrawn and separated,
with their concentrations at their respective equilibrium values X and Y*. In
Figure 7.2b, the same feed enters the stage but attains only partial equilib-
rium, with the exiting liquid concentration X¢ falling short of the equilibrium
value X. We express this through the stage efficiency E by writing

X¢ = EX (7.1)

Thus, when E = 1, the fractional approach to equilibrium is 1, and equili-
bration is consequently complete. When E is zero, no transfer takes place
and the concentration remains frozen at the level XF of the incoming feed.

FIGURE 7.1
Staged operations: (a) single stage; (b) co-current; (c) countercurrent; (d) crosscurrent.
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This chapter is divided into two parts: In the first, we take up the topic of
equilibrium stages in their various configurations and apply them to a num-
ber of different mass transfer operations. The second part, which is less
extensive, considers the effect of mass transfer resistance expressed through
an appropriate stage efficiency.

7.1 Equilibrium Stages

7.1.1 Single-Stage Processes

The single equilibrium stage is the key unit on which the more complex
configurations such as the crosscurrent and countercurrent cascades are
based. We use it here to introduce the reader to some basic notions of
equilibrium stage processes and to make a first presentation of a key tool,
the operating diagram.

Figure 7.3 shows the flow diagrams for two single-stage processes. In
Figure 7.3a, we display the streams entering and leaving a liquid phase
adsorption stage. S and L represent the mass of solute-free adsorbent and
solvent, and X and Y are the corresponding mass ratios in units of kg solute/
kg adsorbent and kg solute/kg solvent. Figure 7.3b shows a similar process
of single-stage liquid extraction. The principal difference here lies in the

FIGURE 7.2
Staged contact of two phases: (a) equilibrium stage; (b) non-equilibrium or actual stage.
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choice of units, with concentrations expressed as mass fractions x and y, and
the capitalized symbols expressing the total mass of each phase entering and
leaving. The symbol R denotes the raffinate, i.e., the solution being extracted,
and E stands for the extract containing the bulk of the solvent and the
extracted solute. Our considerations here are confined to finite amounts of
both phases. The case where differential amounts of one phase are continu-
ously withdrawn is taken up in Section 7.1.2.

For single-stage operations, the following questions are to be answered:

1. With the amount and concentration of feed fixed, what is the amount
of adsorbent or solvent needed to achieve a prescribed reduction in
solute content?

2. Conversely, and with feed conditions again fixed, what is the con-
centration in the effluent if we use a given amount of adsorbent or
solvent, with a known impurity level?

When dealing with multistage operations, the number of questions esca-
lates. We may then ask for the number of stages required to achieve a
prescribed concentration change, for example, or the most economic use of
adsorbent or solvent. These will be taken up at the appropriate time.

Let us now consider the tools needed to answer the single-stage questions.
In the first instance, we require a solute mass balance over the stage. For the
adsorption process shown in Figure 7.3a, it takes the form

FIGURE 7.3
Single-stage equilibrium processes: (a) adsorption from a liquid solution; (b) extraction.

a.

L, YF L, Y1

S, XO S, X1
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F, xF R, x1

B, yO E, y1
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Amount of solute in - Amount of solute out = 0
(LYF + SX0) - (LY1 + SX1) = 0 (7.2a)

Each term here is made up of the product of kg solvent L or kg adsorbent
S, which do not change during their passage, and the concentrations X (kg
solute/kg adsorbent) and Y (kg solute/kg solvent), which do. For the extrac-
tion process of Figure 7.3b, additional balances are required because we do
not have a convenient constant “carrier” mass available. This is taken up in
Illustration 7.2.

The second tool required is a statement that the concentrations X1, Y1

leaving the stage are in equilibrium with each other. These values are
obtained experimentally and are formally expressed by the relation

Y*i = f(Xi) (7.2b)

where the asterisk denotes equilibrium conditions.
Laboratory data of Xi, Yi are not always easily expressed in simple

analytical form, which leads to complications in attempting to solve Equa-
tion 7.2a and Equation 7.2b. This has led to the development of a graphical
construction termed an operating diagram, which is shown in Figure 7.4.
This diagram is in essence a graphical representation of both the material
balance and the equilibrium relation (Equation 7.2a and Equation 7.2b).
It displays in vivid form the interrelation of the operational variables and
enables the analyst to make various calculations of interest in rapid fash-
ion.

FIGURE 7.4
Operating diagram for single-stage equilibrium adsorption.
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Illustration 7.1: Single-Stage Adsorption: The Rectangular 
Operating Diagram

The first step in constructing the operating diagram is to plot the experimen-
tal equilibrium data obtained in the laboratory in the form of an equilibrium
curve. This curve is shown in Figure 7.4 and is of the Langmuir form, where
solid-phase concentration now appears on the abscissa instead of the ordi-
nate as previously shown in Figure 6.5. This is done for greater clarity of
construction.

The second step is to represent the mass balance, Equation 7.2a, which is
best achieved by rearranging it in the form

  (7.3)

This is the equation of a straight line termed the operating line, which has
a slope of –S/L. In this equation, the amount of solvent L and the initial or
feed concentrations XF, YF are known variables; the others are either pre-
scribed or unknown.

There are several features that the diagram conveys at a glance. For exam-
ple, the steeper the slope of the operating line, the greater the amount of
adsorbent used and hence the higher the fractional recovery of solute, here
given by the ratio (YF – Y1)/YF. Note that when the amount of adsorbent
becomes infinite, the recovery is not complete but instead stabilizes at the
value (YF – Y1¢)/YF. This is because of the residual impurity level X0, which
the incoming adsorbent carried with it. When an infinite amount of clean
adsorbent is used, the operating line drops to the origin and recovery
becomes complete.

Suppose now that, with the feed condition YF, XF, and L known and the
amount S prescribed, we wish to establish the resulting degree of recovery.
This becomes a simple matter of locating the point (YF, XF) on the diagram
and drawing a line of slope –S/L through it. Its intersection with the equi-
librium curve determines the concentrations of the exiting streams, Y1 and
X1, from which we can compute the recovery (YF – Y1)YF. If, on the other
hand, recovery is prescribed and the unknown is the amount of adsorbent
required, the procedure is reversed: A line is drawn through the two known
points (YF, XF) and (Y1, X1) and the unknown S calculated from its slope æ
S/L.

Let us turn next to the extraction process shown in Figure 7.3b. We start
by noting that in the case of mutually insoluble solvents, single-stage extrac-
tion can be analyzed in exactly the same fashion as the single-stage adsorp-
tion process described above. With A and B denoting the mass of raffinate
and extract solvent x, the operating diagram becomes identical to that shown
in Figure7.4, with the slope of the operating line now given by –B/A.

In most practical cases, the raffinate and extract solvents will show some
degree of mutual solubility, and the use of the X-Y diagram becomes less
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appropriate. We must turn instead to the triangular diagrams for a full
description of the extraction process. The initial tools are again two in num-
ber, i.e., a solute mass balance and a statement of solute equilibrium between
the two liquids. Here, however, we encounter an unexpected difficulty: Both
the amounts of raffinate and extract are new unknowns and require us to
introduce two additional equations. One such equation is the total mass
balance, which we did not require or have occasion to use in the adsorption
process. A second component balance would complete our requirements,
but the resulting escalation in equations is not welcome news. This compli-
cation is avoided by returning to our graphical tools and making use of some
of the properties of triangular diagrams. One such property, stated in Illus-
tration 6.6, was that when two solutions are combined, the resulting com-
position (F in Figure 6.11) is located on the straight line connecting the
concentrations of the parent solutions (points R and E). This rule, which was
not explicitly proved, springs from the requirement that the lever rule, Equa-
tion 6.8f, must hold for all three component substances. In other words, the
extract-to-raffinate ratio E/R must be the same, irrespective of which com-
ponent mass fraction is used in Equation 6.8f. The construction of Figure
6.11 shows that this is the case, and only the case, if F lies on a straight line
connecting R and E. In other words, all three component balances are silent
partners in the construction of Figure 6.11. The graphical construction con-
sequently provides the additional component balance to satisfy the algebraic
requirement we had confronted earlier. We amplify these points in the illus-
tration that follows.

Illustration 7.2: Single-Stage Liquid Extraction: The Triangular 
Operating Diagram

Consider the case of a feed with a composition located at F in Figure 7.5
being contacted with B kg of pure solvent, located at point B. M is the location
of the mixture that results when F kg feed are contacted with the solvent,
and  represents the equilibrium tie-line. Composing total and component
solute mass balances as previously stipulated, we obtain

Rate in           Rate out

F + B = M = R + E (7.4a)

xFF = xMM = xRR + yEE (7.4b)

It is desired to calculate the equilibrium compositions that result, as well
as the amounts of raffinate R and extract E produced. We first locate the
composition xM of the mixing point M by eliminating total mass M from the
left side of the two balances. Thus,

RE
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  (7.4c)

This composition is entered on the operating line connecting F and B.
Next a tie-line is drawn through M to establish the raffinate and extract

compositions at R and E. This requires some visual interpolation between
neighboring tie-lines obtained from experimental equilibrium data and com-
pletes the first part of the task. The second part is accomplished by again
eliminating M from the two balances, this time from the right side of Equa-
tions 7.4a and 7.4b. Thus,

  (7.4d)

and

  (7.4e)

Thus, the operating diagram, together with the two algebraic mass bal-
ances, has provided us with a complete answer to the problem. The reverse
task, that of calculating the solvent requirement for a prescribed solute
recovery, is solved by drawing both the tie-line (which is now known) and
the companion operating line, and, from their intersection, establishing the
value of xM. The solvent requirement is then obtained from the left side of
the two mass balances as

FIGURE 7.5
Operating diagram for single-stage equilibrium extraction.
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  (7.4f)

Comments:

Several additional interesting features may be deduced from the diagram:

1. Removal of the solvent from the raffinate and extract, which can (for
example) be accomplished by distillation, results in the solvent-free
compositions located at R¢ and E¢. These points lie on the straight-
line extrapolations of  and , as required by the mixing rule.
We note in addition that a maximum in the solute concentration
results when the product extract is located on the tangent drawn
through B to the solubility curve, leading to point E².

2. An increase in the amount of solvent used results in a movement of
the mixing point M toward G, while a reduction in solvent causes it
to approach the point D. When M coincides with D, the amount of
solvent is at a minimum and the amount of extract is infinitesimally
small. This follows from the lever rule, Equation 6.8f. Under these
conditions, any solvent present in the system resides entirely in the
raffinate phase. Conversely, the point G represents the maximum
amount of solvent we can use and is attended by an infinitesimally
small amount of raffinate. Evidently, the actual amount of solvent
will lie somewhere between the two extremes. Note that these two
limiting values are established from the intersection of the operating
lines with the solubility curve and do not require any tie-line data.

7.1.2 Single-Stage Differential Operation

A special type of single-stage contact arises when one phase, which is at all
times fully equilibrated with its partner, is slowly withdrawn in infinitesi-
mally small amounts while the second phase remains within the stage and
undergoes a correspondingly slow change in concentration. This process is
best visualized, and most easily implemented, in the case of distillation,
which is then referred to as simple distillation. The equations to be used
again involve integral mass balances, but they now contain an unsteady term
to reflect the slow changes in the contents of the stage.

Figure 7.6 shows the variables involved in a differential distillation process.
For a binary system, they are four in number: the moles liquid in the still or
boiler at any instant W and its mole fraction xB, the rate of vapor withdrawal
D (mol/s), and the instantaneous vapor composition yD. The mass balances
and the equilibrium relation y0* = f(xW) provide only three of the required
equations. For the fourth we must draw on an energy balance. This stands
to reason since the rate of vapor production D will evidently depend on the
energy input to the system. The temperature of the still will then come into

B
F x x

x
F M

M
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play as a fifth variable, and must be accounted for by an appropriate equi-
librium relation. This set of equations, which has to be solved numerically,
yields the changes with time of the five variables in question.

A reduced solution to the problem can be obtained if we eliminate time
as a variable and establish the instantaneous relation between the state
variables, for example, W = f(xW). This is still a highly useful result because
it can tell us how much of a given initial charge must be distilled to obtain
a desired enrichment xB. It also provides us with other items of interest
and falls short only by failing to establish the full time dependence of the
variables.

Illustration 7.3: Differential Distillation: The Rayleigh Equation

We start the derivation of the model by composing the unsteady integral
mass balances for the system:

Rate of moles in - Rate of moles out =  

  (7.5a)

and

  (7.5b)

FIGURE 7.6
Differential or simple distillation.
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This is supplemented by the equilibrium relation

yD* = f(xW) (7.5c)

To eliminate the time variable, we resort to a favorite trick of ours, one
that is frequently used and should be part of the analyst’s tool box: The two
mass balances are divided, thereby eliminating not only time as a variable
but also the unknown distillation rate D. Thus,

  (7.5d)

which can be combined with the equilibrium relation and expanded to yield

    (7.5e)

and consequently

    (7.5f)

Formal integration of this expression then leads to

  (7.5g)

where the superscript o denotes the initial conditions.
This expression is known as the Rayleigh equation and relates the amount

W left in the still at any instant to its composition xW.

Comments:

We start by noting, as we have done on other occasions, that any of the
variables appearing in Equation 7.5g may be regarded as an unknown. Thus,
for a given boiler content W, the equation will yield the corresponding
composition xW, and conversely we can calculate the fraction to be distilled
1 – W/Wo, by prescribing a desired enrichment (xW – xW

o)/xW
o. What is often

overlooked is that the equilibrium relation f(xW) can also be established from
experimental xW vs. W data. A particularly simple case arises when the f(xW)
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is linear in xW, which holds at low values of the mole fraction x (Henry’s law
region). We then have

  (7.6)

and consequently

  (7.7)

This expression can be exploited to derive isotope or isomer separation
factors, which here equal the Henry constant. Suppose, for example, that
95% of the charge has been boiled off, i.e., W/Wo = 0.05, and the isotope has
been depleted by 2%, i.e., xW/xW

o = 0.98. Then H – 1 = a - 1 = ln 0.98/ln 0.05
and a = 1.0067.

We can also use Equation 7.7 as an adjunct to the cumulative balances for
the process, which were derived in Illustration 2.5 and which we repeat here.
They are

Wo = W + D¢ (2.15a)

and

xW
oWo = xWW + xD¢D¢ (2.15b)

where D¢ = moles in the distillate receiver. These can be used to derive the
composite distillate concentration xD¢, which prevails at any given instant.
With W prescribed and the initial conditions known, we can calculate xW

from Equation 7.7 and by substitution into Equation 2.15b arrive at a value
for xD¢. Thus, with the exception of temperature and distillation rate D, both
of which require an energy balance, we have managed to establish all per-
tinent variables of the system. The reader will find all these equations applied
in Illustration 7.10 dealing with batch-column distillation.

Illustration 7.4: Rayleigh’s Equation in the Environment: Attenuation of 
Mercury Pollution in a Water Basin

We have shown in Illustration 6.10 that substances with low solubility in
water, such as hydrocarbons, chlorinated organics, and mercury, can still
have high partial pressures p because of their exceptionally high activity
coefficients g. The relevant relation is given by the extended Raoult’s law,
Equation 6.18a:
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p = gxPo (6.18a)

which can be recast in the form

  (7.8a)

The group gPo/PT can be viewed as a partition coefficient K, which for the
substances mentioned is generally quite high. The loss of even a small
amount of solution by evaporation could thus be expected to result in a
marked drop of pollutant concentration. This is small comfort for the envi-
ronment as a whole since the toxic substances are merely transferred from
one medium to another. Their fate nevertheless needs to be tracked.

We consider here a body of water containing dissolved mercury at the
saturation level and set ourselves the task of calculating the reduction in
mercury content that occurs when 0.01% of the contents is evaporated. It is
assumed that the vapor in question is at all times in equilibrium with a well-
mixed liquid, i.e., that Rayleigh’s equation applies.

The equilibrium relation (Equation 7.8a), which will be needed in the
model, contains the activity coefficient g, which is not usually known or
easily measured. The difficulty was circumvented in Illustration 6.10 by
relating g to solubility xs, using the chemical potentials of the respective
phases. We obtain

m°(T1P) = m°(T1P) + RT ln g xs (7.8b)

Mercury       Saturated solution

and hence

g = 1/xs (7.8c)

Substitution into Equation 7.8a yields

  (7.8d)

Here we must be careful to exclude the partial pressure of air from PT since
the equilibrium involved is one of the binary Hg-H2O vapor in equilibrium
with the liquid phase. We must therefore write
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  (7.8e)

where we have omitted mercury partial pressure since it is small compared
to the full vapor pressure of water .

Substituting Equation 7.8e into the Rayleigh equation (Equation 7.5g) and
integrating yields the following result:

  (7.8f)

The data to be introduced at this stage are as follows:

Mercury solubility (Table 6.3): 3 ¥ 10–2 mg/l = 2.7 ¥ 10–7 mole fraction
Mercury vapor pressure (25°C): 0.173 Pa
Water vapor pressure (25°C): 3.17 ¥ 103 Pa

Noting that W/Wo = 1 – (fraction evaporated) we obtain by substitution
into Equation 7.8f

  (7.8g)

Taylor series expansion of the logarithmic term then yields

ln (1 – 10–4) @ 10–4 (7.8h)

so that

  (7.8i)

and

xHg/xs = 0.133 (7.8j)

Thus, nearly 87% of the original mercury has been transferred to the
atmosphere, a phenomenal amount considering only 1/10,000th of the solu-
tion has evaporated.
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Comments:

It takes astuteness to overcome the difficulties and avoid the pitfalls of this
problem. The fact that g is unknown and could not be located in the literature
on vapor–liquid equilibria could have brought the proceedings to a halt.
Instead, it had to be realized that g could be related to solubility (which is
tabulated) and the relationship established by means of elementary thermo-
dynamics. These are considerable leaps of thought.

A second point concerns the calculation of yHg. The first instinct would be
to use the conventional relation y = p/PT and set total pressure equal to 1
atm. This would have led to the wrong result since the partial pressure of
air would have been included. It required some thought to realize that yHg

refers to the system H2O-Hg, not H2O-Hg-air.
It is of some interest to calculate the ratio or partition coefficient K = y/x,

which is a measure of enrichment in the vapor phase. Drawing on Equation
7.8a, we have

  

This value explains and confirms the astoundingly high depletion of mer-
cury in the water basin.

7.1.3 Crosscurrent Cascades

The linkage of several single-stage contacts leads to a composite array
termed a cascade. As mentioned earlier, the mode of contact in these
configurations results in three distinct types of cascades: crosscurrent, co-
current, and countercurrent. In the crosscurrent cascade, which is taken
up here, the two phases enter and leave in directions that are, at least
symbolically, at right angles to each other. This can take place in two
different ways: In one mode of contact, the extracting agent, i.e., the
solvent or adsorbent, is used in only one stage and is then removed for
processing before being reused. This mode of contact, shown in Figure
7.7a for the case of adsorption, is sometimes and not very accurately
referred to as co-current and has a high extraction efficiency, but also a
high inventory. In the second mode of contact, the extracting agent is used
repeatedly within the cascade before being withdrawn for regeneration.
This type of configuration is shown in Figure 7.7b and has the advantage
of low adsorbent or solvent inventory.

The model equations for the case shown in Figure 7.7a are now three in
number: one solute mass balance each for the two stages and a companion
equilibrium relation. We have
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Balance on Stage 1

Mass of solute in - Mass of solute out = 0
(LY0 + S1X0) -  (LY1 + S1X1) = 0 (7.9a)

Balance on Stage 2

Mass of solute in - Mass of solute out = 0
(LY1 + S2X0) - (LY2 + S2X2)  = 0 (7.9b)

Equilibrium Relation

Y* = f(X) (7.9c)

FIGURE 7.7
Two modes of crosscurrent adsorption processes: (a) use of fresh adsorbent in each stage; (b)
repeated use of the same adsorbent.
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Here again it is convenient to represent the equations in graphical form
by means of an operating diagram in much the same way as was done in
the case of single-stage operations. This is best done by rearranging the two
mass balances into the following form:

  (7.9d)

and

  (7.9e)

Suppose now that the amounts of adsorbent S1 and S2 entering each stage
have been prescribed and it is desired to determine the final effluent con-
centration Y2. The feed condition, comprising the impurity level in the incom-
ing adsorbent X0, the feed concentration Y0, and the solvent content L, is
known. The procedure for constructing the operating diagram, shown in
Figure 7.8, is then as follows:

1. Locate the feed point (X0, Y0) in the diagram.
2. Draw a line of slope –S1/L through the feed point. Its intersection

with the equilibrium curve fixes the concentrations (X1, Y1) leaving
stage 1.

3. Draw a second operating line of slope –S2/L through the point (X0,
Y1). Its intersection with the equilibrium curve defines the final
impurity level Y2.

It is clear from this construction that there exists an infinite number of
combinations of S1 and S2 that will reduce the feed-solute level Y0 to Y2. It
is also seen that if either S1 or S2 is set equal to zero, i.e., a single-stage contact
is used, the resulting operating line, which extends from (X0, Y0) to (X2, Y2),
will always have a slope –S/L greater than the combined slopes (S1/L + S2/
L) so that

Ssingle stage > (S1 + S2)2-stage cascade

i.e., the single stage always consumes more adsorbent for a given reduction
in solute content than a two-stage arrangement.

It follows that between the two extremes S1 = 0 and S2 = 0 there exists a
combination S1 + S2, which represents a minimum total adsorbent inventory
(ST)Min. This minimum amount can be determined by simple calculus for the
case of linear equilibrium. We show this in the following illustration.
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Illustration 7.5: Optimum Use of Adsorbent or Solvent in 
Crosscurrent Cascades

Consider a crosscurrent adsorption process in which the equilibrium is linear,
a condition that holds at low solute level. We then have

Xi = HYi   H > 1 (7.10a)

where H is the Henry’s constant.
Assume further that the adsorbent is initially clean, i.e., X0 = 0 (this is

frequently the case). Substitution of Equation 7.10a into the two mass bal-
ances (Equation 7.9a and Equation 7.9b) then yields

  (7.10b)

The condition dST/dY1 = 0 is now used to establish the optimum interme-
diate concentration (Y1)opt, which will yield the minimum value of ST. We
obtain

dST/dY1 = Y0Y1
–2 + Y2

–1 = 0 (7.10c)

and hence

(Y1)opt = (Y0Y2)1/2 (7.10d)

FIGURE 7.8
Operating diagram for a two-stage crosscurrent adsorption process using fresh adsorbent.
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In other words, the optimum solute level from the first stage that will
minimize ST is the geometric mean of the concentrations entering and leaving
the cascade. Let us see how this affects the amount of adsorbent to be used.

Backsubstitution into the material balances (Equation 7.9a and Equation
7.9b) yields

  (7.10e)

and

  (7.10f)

But

  (7.10g)

so that the bracketed terms in Equation 7.10e and Equation 7.10f are identical
and consequently S1 = S2. Hence it is seen that in this case of a two-stage
cascade with linear equilibrium, optimum operation calls for the use of equal
amounts of adsorbent given by either Equation 7.10e or Equation 7.10f.

It has been shown that this principle applies to any number of stages; i.e.,
the optimum use of adsorbent requires an equal division of that adsorbent
among the stages of a crosscurrent cascade. The same principle applies to
crosscurrent extraction of systems with mutually insoluble solvents. The
solute recovery or removal that results in such cascades is depicted graphi-
cally in Figure 7.9. In this plot, m represents the distribution coefficient for
extraction or Henry’s constant H for adsorption, E is the so-called extraction
factor mB/A or HS/L, and Yn or xn is the effluent concentration from the nth
stage of the solution being treated.

Let us apply this plot to a specific extraction process. We consider 100 kg
of a feed of 1% nicotine in water that is to be extracted in a three-stage
crosscurrent cascade employing 50 kg kerosene in each stage. The distribu-
tion has a slight curvature, with m varying over the range 0.80 to 0.90. We
choose a mean value of 0.85 and obtain the extraction factor:

  (7.11a)

Using Figure 7.9, this yields for solute-free kerosene (y0 = 0) the extraction
ratio
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  (7.11b)

and consequently

xn = 0.34 ¥ 0.010 = 0.0034 (7.11c)

The same value is obtained using the graphical construction of the operating
diagram.

Comments:

The optimization problem considered indicates that the best way to operate
a crosscurrent cascade is by equal subdivision of solvent or adsorbent. The
reader should be aware, however, that the complete optimization of a plant
must also consider the cost of the stages, the cost of solvent recovery, and
the value of the extracted solute itself. Thus, in addition to optimum solvent
use, we also need to determine the optimum number of stages, and this

FIGURE 7.9
Crosscurrent cascades using equal amounts of adsorbent or solvent.
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requires bringing in all of the above-mentioned factors. Still, equal subdivi-
sion of solvent or adsorbent is a good policy to pursue and comes close to
meeting the requirements of a global optimum for systems with linear dis-
tributions. When the equilibrium relation becomes nonlinear, the optimum
policy begins to deviate from this norm and has to be determined anew,
usually by numerical means.

Illustration 7.6: A Crosscurrent Extraction Cascade in 
Triangular Coordinates

We consider 1000 kg of a feed containing 50% by weight of acetone in water,
which is to be reduced to 10% by extraction with 1,1,2-trichloroethane in a
crosscurrent cascade; 250 kg solvent are to be used in each stage. Represen-
tative tie-line data are shown in Figure 7.10.

Solution of this problem calls for the repeated application of the methods
established for single-stage extraction in Illustration 7.2. We start by drawing
a line connecting the solvent at B to the feed located at F, and follow this by
locating the mixing point M, using Equation 7.4c. We obtain

  (7.12a)

The tie-line through this coordinate is shown in Figure 7.10 and yields
raffinate and extract concentrations corresponding to the end points of the
tie lines, i.e.,  and  These values can then be used to
calculate the amounts of raffinate and extract using Equation 7.4d and Equa-
tion 7.4e.

FIGURE 7.10
Operating diagram for Illustration 7.6.
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R1 = F + B – E1 = 1000 + 250 – 500 = 750 kg

The results of these calculations for four stages are given below:

From this tabulation it emerges that three stages are too few and four
stages too many to reduce acetone content in the raffinate to xR = 0.10. There
are three alternatives we can pursue:

1. Use three stages and slightly more solvent per stage, determining
the quantity to be used by trial and error until  

2. Use four stages and slightly less solvent, again with a trial-and-error
procedure.

3. Use four stages with the same amount of solvent and accept a lower
acetone content of  in the final raffinate.

The last alternative is the most convenient, as well as the most practical,
since the stage inefficiency will inevitably consume the margin provided by
the fourth stage.

7.1.4 Countercurrent Cascades

The countercurrent cascade is the most popular among the various existing
stage configurations. It combines economy of adsorbent or solvent consump-
tion with a high recovery of solute, but pays for it in part with a greater
number of stages than would be required in a comparable crosscurrent
cascade. Perhaps its largest application apart from distillation operations
occurs in the field of gas absorption, the flow sheet for which appears in
Figure 7.11a. A corresponding countercurrent adsorption cascade is sketched
in Figure 7.11b. The two assemblies are identical in concept but differ in the
implementation of the countercurrent contact. Gas absorbers usually consist
of vertical columns containing trays on which the two phases come into
intimate contact. The gas enters from below through openings in the plate
or tray and bubbles through the liquid, which flows across and down to the
next tray. Displays of various types of trays are shown in Figure 7.12. Adsorp-
tion cascades in contrast consist of a series of stirred tanks from which the

Stage xM xR yE E R

1 0.400 0.35 0.475 500 750
2 0.262 0.223 0.325 382 618
3 0.159 0.134 0.204 310 558
4 0.0925 0.075 0.120 305 503

E
F B x x

y x
M R

E R
1

1 1

1

1000 250 0 40 0 35
0 475 0 35

500=
+ -

-
= + -

-
=

( )( ) ( )( . . )
. .

kg

xR3
0 10= . .

xR4
0 075= .



Staged Operations: The Equilibrium Stage 265

two streams are withdrawn after allowing the two phases to separate by
settling.

In gas absorption, gas and liquid streams enter the bottom tray 1 and the
top tray N at opposite ends of the cascade, carrying with them the solute
concentrations Y0 and XN+1. They leave the same trays with concentration Y1

and XN. Note that the subscripts refer to the tray from which a particular
stream exits, with the subscripts 0 and N + 1 representing imaginary stages
numbered 0 and N + 1. Concentrations are expressed in mass ratios, and
flow rates GS and LS in kg/s of solute-free carrier gas and solvent. Similar
considerations apply to the adsorption cascade.

Our tools again comprise mass balances and equilibrium relations, which
are expressed graphically in the operating diagrams shown in Figure 7.13.
They contain an operating line that represents the solute material balances
and a staircase construction, which spans the interval between operating line
and equilibrium curve and represents the various stages or trays.

A material balance over the entire gas absorber leads to the equation

FIGURE 7.11
(a) Countercurrent gas adsorber and (b) countercurrent adsorption cascade.
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Rate of solute in - Rate of solute out = 0
(LSXN+1 + GSY0) - (LSX1 + GSYN) = 0 (7.13a)

Rearrangement then gives

  (7.13b)

Usually in the design of countercurrent absorbers, the solvent rate LS and
purity XN+1 as well as GS and Y0 are known, and the desired exit gas con-
centration YN is specified. Equation 7.13b can then be plotted in the operating
diagram by drawing a line of slope LS/GS through the point (XN, XN+1).

FIGURE 7.12
Types of trays: (a) bubble-cap tray: vapor rises through openings in the plate, reverses direction,
and escapes through the slots of an inverted cup; (b) sieve tray; (c) valve tray: tray openings
are adjusted by means of floating disks that rise and fall with the vapor flow rate.
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Consider next a solute balance on a single stage, for example, tray 1. We
obtain

Rate of solute in - Rate of solute out = 0
(LSX2 + GSY0) - (LSX1 + GSY1) = 0 (7.13c)

This equation can be represented in the operating diagram as follows: We
locate the point (Y0, X1), where the abscissa value X1 is obtained from the
intersection of the operating line with the horizontal ordinate value Y = Y0. We

FIGURE 7.13
Operating diagram for countercurrent cascades: (a) adsorption; (b) absorption.
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next drop a vertical line from this point to the equilibrium curve Y* = f(X). The
point of intersection will have the coordinates (Y1, X1), since these values rep-
resent the concentration levels leaving tray 1 and are known to be in equilibrium
with each other. This is followed by drawing a horizontal line through (Y1, X1)
all the way to the operating line. The point of intersection will have the coor-
dinates (Y1, X2). This is shown by rearranging Equation 7.13c to read

  (7.13d)

which is the expression of a line of slope LS/GS that passes through the points
(Y1, X2) and (Y0, X1). But Equation 7.13b, which has the same slope, also
passes through the point (Y0, X1). The two lines (Equation 7.13b and Equation
7.3d) must therefore coincide, and we have established the first step of the
staircase construction seen in Figure 7.13. This construction of alternating
vertical and horizontal lines between operating line and equilibrium curve
is continued until the known concentrations at the top of the column (YN,
XN+1) are reached. A count is then made of the number of trays between gas
inlet and outlet concentrations. That number represents the number of stage
contacts required to reduce the feed concentration Y0 to the prescribed value
of YN using a fixed solvent flow rate LS. A fractional step at the outlet end
of the staircase is usually rounded off to one stage.

We now note a number of features of this construction, which are of use
in both engineering calculations and analysis.

• The operating line in essence represents solute mass balances around
a single stage or an aggregate of stages. Its coordinate points (Yj,
Xj+1) establish the relation between concentrations entering a stage,
while the equilibrium curve relates concentrations leaving a stage.

• Reducing the amount of solvent LS (or adsorbent) lowers the slope
of the operating line and simultaneously increases the number of stages
required for a prescribed reduction in solute content. This process
can be continued until the operating line intersects the equilibrium
curve. At that point a “pinch” results at the high concentration end
(Figure 7.13) yielding an infinite number of stages and a correspond-
ing minimum flow rate of solvent or adsorbent. This is the lowest
flow rate that will achieve the desired solute removal and is a useful
limiting value to establish. Below that value, the prescribed effluent
concentration YN can no longer be attained, even if an infinite num-
ber of stages were used.

• An increase in solvent or adsorbent flow will reduce the number of
contact stages and consequently lower the capital cost of the plant.
This advantage is earned at the expense of an increase in operating
costs occasioned by the higher flow of solvent or adsorbent. There
consequently exists an optimum flow rate that will minimize the
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combined operating and capital costs. That optimum can only be
established with precision by a detailed economic analysis of the
process. It has been found in such studies, however, that the opti-
mum flow usually lies in the range 1.5 to 2 times the minimum value.
That range is commonly used to establish the flow of solvent or
adsorbent to be used, and hence the operating line, in preliminary
designs of the process.

• The reverse task to the design problem considered above, i.e., the
prediction of the effluent concentration of an existing or hypothetical
plant (number of stages N and feed conditions known) cannot be
achieved in the same direct fashion. We must resort instead to a trial-
and-error procedure by drawing a series of parallel operating lines
of known slope LS/GS or S/L until a staircase construction accom-
modating N stages reaches the known impurity level of the solvent
or adsorbent. This presents no undue difficulties and can be accom-
plished quite rapidly.

• The operating diagrams we have discussed are not only elegant in
their simplicity but are also capable of conveying important infor-
mation in rapid fashion. Thus, the effect of a change in flow rate,
concentrations, or the number of stages can be quickly assessed, at
least qualitatively, by visual inspection. Although in practice much
of this work is now dealt with using appropriate computer packages,
particularly in the case of multicomponent systems, the operating
diagram remains unsurpassed in conveying the essence of staged
operations and in providing a valuable educational tool.

Illustration 7.7: Comparison of Various Stage Configurations: The 
Kremser----Souders----Brown Equation

This example brings together the various stage arrangements discussed in
the preceding sections and compares their performances. We consider an
extraction process that is to be carried out, first in a single stage, and then
for comparison in two-stage crosscurrent and countercurrent cascades. The
two solvents involved are taken to be mutually insoluble, and the task is to
determine the quantity of extraction solvent required per unit mass of raffi-
nate solvent to reduce the solute content from a mass ratio of XF = 0.1 to X1

= 0.01. The distribution coefficient is constant at 3.0; i.e., the equilibrium is
linear. We obtain the following results.

1. Single Stage

The solute balance for this case is given by

Mass of solute in - Mass of solute out = 0
AXF – (BY1 + AX1) = 0 (7.14a)
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with Y1 given by the distribution coefficient m¢:

Y1 = m¢X1 (7.14b)

Combining the two equations and rearranging yields

  (7.14c)

and hence B = 3.3 kg solvent/kg raffinate solvent.

2. Two-Stage Crosscurrent Cascade

Here we make use of the plot of Figure 7.9 to compute the solvent quantity,
which is assumed to be divided equally between the two stages for optimum
operation. We have for the ordinate value, assuming pure solvent y0 = 0,

  (7.14d)

For N = 2, this yields the parameter value

E = mB/A = 3.3 (7.14e)

and hence from Figure 7.9

B/A = 3.3/3.0 = 1.1 (7.14f)

which is the quantity of solvent used in each stage. Multiplying by 2 we
obtain for the solvent total

BTot = 2 ¥ 1.1 = 2.2 kg solvent/kg raffinate solvent (7.14g)

3. Two-Stage Countercurrent Cascade

Here we make use of the fact that for systems with linear equilibria, an
analytical expression can be derived that relates the number of stages to the
operating parameters. That expression is known as the Kremser-Souders-
Brown equation (or Kremser equation for short), and is given by

  (7.15a)

or in rearranged form
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  (7.15b)

A plot of Equation 7.15b appears in Figure 7.14. By suitably defining the
parameters R and E the Kremser equation can be used for any countercurrent
cascade involving linear-phase equilibria. These parameter definitions are
listed in Table 7.1 and provide a convenient dictionary for use in a number
of important operations. 

FIGURE 7.14
Countercurrent cascade with linear equilibrium; graphical representation of the Kremser equa-
tion; for definition of the residue factor R and extraction ratio E, see Table 7.1.

N
R E E

E
=

- +log[ ( / ) / ]
log

1 1 1

1.0
0.8

0.6

0.4

0.3

0.2

0.1
0.08

0.06

0.04

0.03

0.02

0.01
0.008

0.006

0.004

0.001
0.0008

0.0006
0.0005

0.003

0.002

1 2 3 20 30 40 504 5 8 10

N = Number of Theoretical Stages

6

R

E
0.3

0.5
0.6

0.7

0.8

0.9

1.0

0.95

1.05

1.1

1.2

1.3
1.4

1.51.6

1.8
2.0

2.5
3.0

4.0
5.0E

E
0.3

0.5
0.6

0.7

0.8

0.9

1.0

0.95

1.05

1.1

1.2

1.3
1.4

1.51.6

1.8
2.0

2.5
3.0

4.0
5.0E



272 Mass Transfer: Principles and Applications

The parameter R, which we term the residue factor, is a direct measure of
the amount of residual solute leaving the cascade. The smaller the value of
R, the lower the effluent concentrations YN or XN , and hence the higher the
degree of solute recovery. The parameter E, on the other hand, is identical
to the extraction ratio we have defined for crosscurrent extraction (Equation
7.11a) and varies directly with the amount of solvent or adsorbent used and
its capacity. Large values of E lead to good recoveries and low effluent
concentrations, both desirable features.

With these definitions in place, we can calculate the solvent requirement
for the two-stage countercurrent process. We have for the residue factor R

  (7.15c)

and hence a solute recovery r = 1 – 0.10 = 0.9 or 90%.
The corresponding value of E, read from Figure 7.14, is 2.6. Hence

E = mB/A = 2.6 (7.15d)

and

B/A = 2.6/3 = 0.87

Therefore,

B = 0.87 kg solvent/kg raffinate solvent

TABLE 7.1

Operating Parameters for Use in the Kremser Plot

Operation R E Equilibrium

Gas absorption     Y (gas) = HX 
(liquid)

Liquid extraction     Y (extract) = mX 
(raffinate)

Liquid adsorption   X (solid) = HY 
(liquid)

Solids leaching   
Y (liquid) = mX 
(solid)
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This example shows the distinct advantage that the countercurrent process
holds, not only over the single-stage operation, which was expected, but also
over its crosscurrent counterpart: Consumption by the latter is higher by a
factor of 2.2/0.87 @ 2.5. The principal advantage of the crosscurrent cascade
is that it is more easily adaptable to batch processing, whereas the counter-
current cascade is by necessity continuous.

The Kremser plot, Figure 7.14, serves several additional useful purposes.
We illustrate this with the following examples:

Suppose that an existing gas absorber using clean solvent has its feed rate
G doubled over the previous design value. A quick scan of the Kremser plot
shows that to maintain the same effluent concentration YN or solute recovery
as before, the solvent flow rate L would likewise have to be doubled. Similar
considerations apply to adsorption, extraction, and leaching.

Consider next the same unit subjected to a twofold increase in feed con-
centration Yo. If no remedial action is taken, the residue ratio YN/Yo will
remain the same, but the effluent concentration YN will double. To bring it
down to its previous value, solvent flow rate and hence E would have to be
increased. The amount of adjustment needed can once again be determined
quickly through the use of Figure 7.14.

Finally, a closer examination of Figure 7.14 shows that at E values below
unity, the plots veer off and asymptotically approach a constant value of R.
This implies that we cannot, under these conditions, attain arbitrarily low
effluent concentrations, no matter how high we set the level of solvent or
adsorbent flow rate or indeed the number of stages. The value of E = 1
consequently represents an important watershed point, below which it
becomes impractical or impossible to attain a desired goal. The reasons for
this behavior are addressed more fully in Illustration 8.2.

7.1.5 Fractional Distillation: The McCabe----Thiele Diagram

The operation of a conventional tray fractionation column, and the associated
variables, is sketched in Figure 7.15. Although the process has most of the
standard properties of a staged countercurrent operation we have seen
before, it does display a number of new features that require special mention:

• The feed to be fractionated, which can be a liquid, a vapor, or even a
combination of both, enters the column at some central location rather
than at one of the ends of the cascade as had previously been the case.
This results in a division of the column into two parts, the rectification
or enriching section above the feed tray, and the stripping or exhausting
section below it. The upper section serves to enrich the vapor in the
more volatile components, a portion of which is ultimately withdrawn
as liquid “overhead product” or “distillate.” In the lower section,
residual volatile components are progressively stripped off the liquid
and conveyed upward as vapor, while the downward flow of liquid
becomes enriched in the heavier or less-volatile components.
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• The two streams entering the ends of the column are generated in
separate vaporizers or “reboilers” and in condensers located at the
two outlets. At the top, vapor leaving the column is condensed and
returned in part to the column as “reflux,” while the remainder is
withdrawn as distillate. At the bottom, the exiting liquid is partly
revaporized in a reboiler and the vapor is diverted back into the
column. The remainder of the stream is removed as “bottom prod-
uct” or residue.

FIGURE 7.15
The fractionation column.
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• In contrast to the processes we encountered previously, which were
largely or entirely isothermal in nature, distillation has substantial
heat effects associated with it. Consequently, we expect heat balances
to be involved in modeling the process, as well as the usual mass
balances and equilibrium relations. These balances are formulated
entirely in molar units because the underlying equilibrium relations,
such as Raoult’s law and its extension, or the separation factor a,
are all described in terms of mole fractions. Thus, the flow rates L
and G, which appear in Figure 7.16, are both in units of mol/s,
enthalpies H in units of J/mol, and the liquid and vapor composi-
tions are expressed as mole fractions x and y of a binary system.

• Column operation is usually taken to be isobaric, so that temperatures
within the column will vary and lie in the range between the boiling
points of the overhead and bottom products. The appropriate equi-
librium diagrams for this case are the boiling-point diagram (Figure
6.17a) and the x-y diagram (Figure 6.17c). The latter is used in the
construction of the operating diagram that is taken up further on.

7.1.5.1 Mass and Energy Balances: Equimolar Overflow 
and Vaporization

There are three balances for the binary system considered here: the total
mole balance, the component mole balance, and the heat balance. It is cus-
tomary to apply these in unison and in turn to three separate regions of the
fractionation column. One set each is used to describe conditions above and
below the feed tray, i.e., the rectifying and stripping sections. These balances
are taken over the entire upper and lower portions and include the reboiler
and condenser as well as the product stream. A third set of balances is
applied to an isolated stage, the feed tray, and includes the flow rates and
thermal condition of the incoming feed. Let us see how this works out in
practice. For the rectifying section, we have

Rate of total moles in - Rate of total moles out = 0
Gn+1 - (Ln + D)    = 0 (7.16a)

Rate of component moles in - Rate of component moles out = 0
yn+1Gn+1 -  (xnLn + xDD) = 0         (7.16b)

Rate of heat in - Rate of heat out = 0
Gn+1HG,n+1 - (LnHL,n + DHD + qC) = 0 (7.16c)

where qC is the heat removed in the condenser.
Elimination of D from the mass balances leads, after some rearrangement,

to the following expression:
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  (7.16d)

This is the operating line for the enriching section. It relates the vapor
composition yn+1 entering a tray and that of the liquid leaving, xn, and has
a slope equal to the ratio of liquid-to-vapor flow rates Ln/Gn+1.

The corresponding operating line for the stripping section is given by

FIGURE 7.16
Details of the rectifying (enriching) section: (a) flow diagram; (b) operating diagram.
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  (7.16e)

where the bar is used to indicate the position below the feed tray to distin-
guish these quantities from their counterparts in the rectifying section.

To this point it has been assumed that all quantities vary from tray to tray
and that consequently 3(N + 2) balances will be required to describe the
operation. Here N denotes the number of stages, with an additional 3 ¥ 2
equation needed to balance the flow of mass and heat about the condenser
and reboiler. These have to be further supplemented by expressions relating
each enthalpy to the key state variables x, y, and T. Evidently, we are dealing
with a model of considerable complexity and dimensionality, which would
require a numerical solution.

We now introduce the reader to a concept that avoids this complication
and drastically reduces the complexity of the model. We draw for this pur-
pose on the heat balance, Equation 7.16c, and rearrange it to read

  (7.16f)

where qC is the condenser heat load in J/s. A first simplification comes about
by noting that the sensible heat of the liquid on tray n, HL,n , is much smaller
than the term qC/D + HD, which involves the latent heat of condensation.
HL,n can, therefore, to a good approximation, be neglected in comparison to
this term. If we make the further assumption that the substances have very
similar molar latent heats of vaporization DHv , we can approximate the
numerator by the relation

  (7.16g)

so that the ratio of flow rates becomes a constant for all trays of the enriching
section. Similar arguments can be applied to the exhausting section, with
the result that

  (7.16h)
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Consider next a total mole balance about the nth tray:

(Ln-1 + Gn+1) – (Ln + Gn) = 0 (7.16j)

If we now substitute Equation 7.16h into this relation, there results

K1Gn + Gn+1 – K1Gn+1 + Gn = 0 (7.16k)

and consequently

Gn+1 = Gn (7.17a)

and

Ln–1 = Ln (7.17b)

We have, in other words, shown that if we assume latent heat to be the
predominant thermal quantity in distillation and that this property comes
close to being identical for the two components, the vapor and liquid flow
can, for practical purposes, be considered constant in the rectifying section.
A similar procedure applied to the stripping section leads to the conclusion
that here also the flow rates will remain practically constant although dif-
ferent in value from those of the enriching section because of the intervening
flow of feed.

What we have just derived is referred to as the principle of equimolal
overflow and vaporization.

7.1.5.2 The McCabe----Thiele Diagram

One immediate consequence of the principle of equimolal overflow and
vaporization is a drastic simplification of the operating lines (Equation 7.16d
and Equation 7.16e). Whereas previously these expressions had to be plotted
laboriously step by step from tray to tray, we are now dealing with a straight
line that can be drawn easily, knowing only its slope and the location of one
point or, alternatively, two points. The slope L/G of the enriching operating
line is referred to as the internal reflux ratio. It is not a convenient quantity
to deal with since it is usually neither known nor specified, nor can it be
easily manipulated in actual column operations. A more suitable parameter,
and one that is easily controlled by appropriate valve settings, is the external
reflux ratio, or reflux ratio R for short. This quantity represents the ratio of
liquid flow L returned to the column as reflux to the flow of distillate D
withdrawn as product, and is given by

R = L/D  (7.18a)

Thus, when R = 3, 3 moles of liquid product are returned to the column
for each mole withdrawn.
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We can now recast the operating line (Equation 7.16d) in terms of this new
parameter R by using a set of revised mole balances around the envelope
shown in Figure 7.16a. We have in the first instance

Rate of total moles in - Rate of total moles out = 0

G – (L + D) = 0 (7.18b)

and obtain after combining this expression with Equation 7.18a:

G = D(R + 1) (7.18c)

The corresponding component mole balance is given by

Gyn+1 – (Lxn + DxD) = 0 (7.18d)

or

  (7.18e)

Consequently, using Equation 7.18a and Equation 7.18c yields

  (7.18f)

This is the equation of a straight line with slope R/(R + 1), which has an
intercept on the ordinate of xD/(R + 1) and passes as well through the point
y = xD on the 45° diagonal. This point and the y-intercept, which are usually
known or prescribed, permit easy construction of the operating line, as
shown in Figure 7.16b. The concentration associated with the various trays
can then be derived using the “staircase” construction we employed for the
countercurrent gas absorber described in Section 7.1.4 and Figure 7.13a. Each
point on the curve y* = f(x) represents the concentrations leaving a particular
tray, (yn, xn), which are in equilibrium with each other, while those on the
operating line relate the entering vapor composition to that of the exiting
liquid.

Let us next consider the corresponding balances around the exhausting
section, shown in Figure 7.17a. Here there is no simple relation to the reflux
ratio R, but the operating line (Equation 7.16e) is nevertheless considerably
simplified because the flow rates are now constant throughout the entire
section, although they differ in magnitude from those of the rectifying por-
tion of the column. We have for the total and component mass balances,
respectively,
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Rate of moles in - Rate of moles out = 0

 –  = 0 (7.19a)

FIGURE 7.17
Details of the exhausting (stripping) section: (a) flow diagram; (b) operating diagram.
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and

  (7.19b)

so that

  (7.19c)

or alternatively

  (7.19d)

This is the equation for the straight operating line shown in Figure 7.17b,
which has a slope of and passes through the point y = x = xw on
the 45° diagonal. If the vapor entering the column yw is in equilibrium with
the residue composition xw, the reboiler can be taken to represent an addi-
tional equilibrium stage, and this is so indicated in the operating diagram
of Figure 7.17b. Once the operating line is established, the usual staircase
construction can be used to step off the number of stages, as shown in Figure
7.17b. It is not clear, however, how this is to be accomplished, because only
one point, y = xw on the diagonal, is known or prescribed and we have no
a priori knowledge of either a second point or the slope of the line. In other
words, the equation for the stripping operating line, as it stands, contains
too many undefined variables. Some reflection will show that this must
indeed be so. This follows from the fact that the liquid flow will be influenced
by what comes down from the feed tray, and we must consequently draw
on an additional balance, performed around that tray.

We first compose the total mole balance, and follow this with an energy
balance around the feed tray. We obtain

Rate in - Rate out = 0

 –  = 0 (7.20a)

and

  (7.20b)

These two equations can be combined and rearranged to yield the
expression
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  (7.20c)

The ratio of enthalpy differences, which appears in this equation and which
we have denoted q, represents the molar heat of vaporization of the feed
divided by the molar latent heat of vaporization of the binary system,
assumed to be constant. Suppose, for example, that the feed consists of either
saturated vapor or saturated liquid. Then the value of q will be 0 or 1,
respectively, and for a partially vaporized feed it will lie somewhere between
these two limits. The quantity q is therefore a dimensionless measure of the
thermal quality of the feed. It turns out that q also enters into the construction
of the locus of the points of intersection of the two operating lines of the
enriching and stripping sections. That locus is represented by the expression

  (7.20d)

which for a given q is the equation of a straight line of slope q/(q – 1) passing
through the point y = x = xF. A series of such lines for various thermal
conditions of the feed are shown in Figure 7.18. Proof of these relations is
somewhat lengthy and can be found in standard texts.

7.1.5.3 Minimum Reflux Ratio and Number of Plates

The reader will recall that in the discussion of the countercurrent gas scrub-
ber, Section 7.1.4, we mention the limiting case that arises when the slope of
the operating line and the associated solvent flow is progressively reduced
until it intersects the equilibrium curve. This results in a condition termed
a pinch and corresponds to a cascade with an infinite number of stages and
a minimum solvent requirement. Any solvent flow rate below this value
causes a rise in the effluent concentration and can therefore no longer meet
the specified solute recovery.

In distillation, the liquid reflux returned to the top of the column plays,
in a sense, very much the role of a solvent. In the course of its downward
flow, it dissolves residues of the heavy component contained in the vapor
phase and thereby contributes to its enrichment in the lighter, more volatile
component. A reduction of reflux, or of the reflux ratio, may therefore be
expected to result in an increase in the required number of stages in much
the same way as happens in the case of the gas scrubber. Ultimately, when
the operating lines simultaneously intersect the equilibrium curve, a pinch
results and the number of stages goes to infinity. This is shown in Figure
7.19a. The reflux ratio at which this occurs can be read from the intercept
xD/(R + 1) and represents the minimum required to achieve the desired separation.

Let us now proceed in the opposite direction and progressively increase
the reflux ratio. Both the logic of the preceding argument and Figure 7.19
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indicate that this will lead to a decrease in the number of theoretical trays
required. A limit is reached when no distillate is withdrawn and the entire
overhead product is returned to the column as reflux. The operation is then
said to be at total reflux. The reflux ratio becomes infinity, R = L/D = L/0 =
•, and the operating line assumes a slope of 1; i.e., it coincides with the 45°
diagonal. This is shown in Figure 7.19b.

These two asymptotic cases are immensely useful in conveying to the
analyst the lower limits of R and N, below which the desired separation will
no longer proceed. In an actual operation, these values evidently must be
exceeded and both R and N will assume finite values. The best or optimum
value of R and N to be used will be determined by economic considerations,
i.e., when the total cost consisting of fixed and operating costs is at a mini-
mum. Let us see how this minimum comes about.

FIGURE 7.18
The feed plate: (a) flow diagram; (b) feed quality and the q-line.
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Operating costs, consisting of condenser and reboiler loads as well as
pumping costs, are at their lowest value when R is at a minimum. As R is
gradually increased, these costs begin to rise in almost direct proportion and
ultimately tend to infinity as R Æ •. There is consequently no minimum in
this item. The fixed costs, on the other hand, are at first infinite at RMin because
of the infinite number of trays required. They then sharply drop as R is
slowly increased above its minimum value because the number of trays has
now become finite. As this process is continued, however, the size and cost
of the condenser, reboiler, and reflux pump begin to creep up, eventually
overtaking the cost reduction occasioned by the decrease in the number of
plates. The fixed costs consequently, and in contrast to the operating costs,

FIGURE 7.19
Two limiting conditions: (a) minimum reflux; (b) minimum number of trays.
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pass through a minimum and the sum of the two results in an optimum
reflux ratio, ROpt. It has been found in practice that this optimum lies close
to the minimum reflux ratio and is frequently, but not always, found in the
range 1.2 to 1.5 times RMin. This set of values is invariably used in the
preliminary design of fractionation columns.

The reader is referred to Figure 8.2 for a similar optimization problem,
which arises in the operation of gas scrubbers.

Illustration 7.8: Design of a Distillation Column in the 
McCabe----Thiele Diagram

The intent of this example is to acquaint the reader with the principal steps
involved in designing a distillation column and to demonstrate their imple-
mentation by means of the McCabe-Thiele diagram. We start by listing the
parameters, which in the usual course of the design are either prescribed or
known a priori:

1. Feed rate F and composition xF

2. Thermal condition of feed
3. Distillate composition xD and bottoms composition xw

4. Reflux ratio, usually specified as a multiple of the minimum reflux
ratio

5. Thermal condition of the overhead and bottoms product

The parameters or quantities to be calculated are as follows:

1. Number of theoretical stages
2. Heat load for the condenser and reboiler
3. Recovery of overhead product

We consider a hypothetical system with an x-y equilibrium relation as
shown in Figure 7.20. The feed, entering at the rate of 10 mol/s, is known
to have a composition xF = 0.38 and consists entirely of saturated liquid at
its boiling point. Overhead and bottoms compositions are specified at xD =
0.92 and xw = 0.01, respectively. A value 1.5 times the minimum reflux ratio
is to be used.

The first step in the procedure is to establish the q-line. This is a straight-
forward matter because the feed consists of saturated liquid and the q-line
is consequently vertical.

In the second step, an operating line is drawn from distillate composition
y = x = xD through the point of intersection of the q-line with the equilibrium
curve, which results in a pinch and represents minimum reflux conditions.
The intercept of this line on the ordinate is given by xD/(RMin + 1) and
establishes the minimum reflux ratio. We have
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  (7.21a)

and consequently

  (7.21b)

The actual reflux ratio to be used is 1.5 times this minimum; i.e., R = 1.5
¥ 0.6 = 0.9.

We now repeat the second step, but this time draw the line through the
new intercept, i.e., xD/(R + 1) = 0.92/(0.9 + 1) = 0.48. This is the actual
operating line to be used in stepping off the number of theoretical trays.

In step four, we start the staircase construction at the distillate composition
y = x = xD and proceed downward, alternating between equilibrium curve
and the enriching operating line. When the feed composition is reached, a
crossover is made to the exhausting operating line, with the feed tray 5
straddling the q-line. The construction is then continued until we reach the
bottoms composition y = x = xw = 0.01. This occurs after eight stages have
been stepped off. Since the liquid bottoms product and the vapor returning
to the column are usually at or near equilibrium, it is customary to consider

FIGURE 7.20
Operating diagram for Illustration 7.6.
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the reboiler an additional theoretical stage. The column will consequently
comprise eight theoretical stages plus the reboiler.

Let us next turn to the computation of condenser and reboiler heat loads.
We assume that the relevant enthalpies have been computed and are given by

HG = 50 kJ/mol, HL,D = 10 kJ/mol, HL,W = 12 kJ/mol

To compute the heat loads, we require the vapor flow rates into the con-
denser and out of the reboiler. These are obtained by a series of total and
component balances, starting with those taken over the entire column. Thus,

Rate of moles in - Rate of moles out = 0

F – (W + D) = 0 (7.21c)

and

xFF – (xWW + xDD) = 0 (7.21d)

or

10 - (W + D) = 0 (7.21e)

and

0.38 ¥ 10 – (0.01 W + 0.92 D) = 0 (7.21f)

from which

W = 5.93 mol/s and D = 4.07 mol/s (7.21g)

We then obtain from Equation 7.18c

G = D(R + 1) = 4.07(0.9 + 1) = 7.73 mol/s (7.21h)

Because the feed enters entirely as a liquid, the vapor flow rate will remain
constant over the entire column, so that .

We consequently have for the heat loads

qC = G(HG – HL,D) = 7.73 (50 – 10) (7.21i)

qC = 309 kJ/s (7.21j)

G G=
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and

  (7.21k)

qB = 294 kJ/s (7.21l)

The recovery r of overhead product is given by

  (7.21m)

Comments:

This example was used to illustrate to the reader the use of the McCabe−
Thiele diagram and the elegant and simple way in which it conveys the
design information. In practice, the systems tend to be more complex than
the simple binary example used here, and the computations are done using
appropriate computer packages. Today, these packages are quite powerful
and are able to handle mixtures of many components without recourse to
the simplifying assumption of equimolal overflow and vaporization. The
McCabe−Thiele diagram nevertheless remains a valuable tool for visualizing
the principal features of the fractionation process and for providing the
student an entry into the treatment of more complex systems.

Illustration 7.9: Isotope Distillation: The Fenske Equation

Vapor−liquid equilibria of isomeric or isotopic mixtures perhaps come closest
to showing perfect ideal behavior and a separation factor, which for all
practical purposes remains constant over the entire range of compositions.
Distillation is the most commonly used technique for the separation or
enrichment of several important isotopes. Both C13 and O16O18 are produced
by the low-temperature distillation of carbon monoxide and oxygen in small
commercial installations. Although these processes are generally carried out
in packed columns, all preliminary design questions are settled by deducing
the number of theoretical plates for a required separation, starting with the
minimum number needed to achieve the desired result. These values are
then translated into packing heights using the concept of the height equiv-
alent to a theoretical plate (HETP), which has been taken up in Chapter 5,
Section 5.4.

Suppose we wish to gain an idea of the requirements for distilling the
isotopic pair C12O–C13O, for which the value of α is 1.01 (see Table 6.9) with
the equilibrium curve very close to the diagonal, which represents total reflux
conditions. Here, a graphical construction on the McCabe−Thiele diagram
does not recommend itself, since the operating and equilibrium curves are
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too close together to allow a precise determination of the number of theo-
retical plates. Fortunately, for systems with a constant separation factor and
operating at total reflux, a simple analytical treatment is possible, which
leads to a relation between the minimum number of plates, the separation
factor a, and the product compositions. This expression, known as the Fenske
equation, is derived as follows.

We start by applying the definition of the separation factor, Equation 6.22a,
to the reboiler and obtain

  (7.22a)

At total reflux the operating line coincides with the 45° diagonal so that
yw = xN. Equation 7.22a becomes

  (7.22b)

A similar scheme can be applied to the Nth plate, yielding

    (7.22c)

Continuing the procedure up the column we ultimately obtain

  (7.22d)

or equivalently

  (7.22e)

This is the expression due to Fenske.
A further simplification results for separation factors close to 1, for then

we have by a Taylor-expansion of the denominator

ln a @ a – 1 a ª 1 (7.23a)

and consequently
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  (7.23b)

Let us apply this expression to the distillation of the carbon monoxide
isotopes, with the aim of obtaining products of xD = 0.9 and xw = 0.1. We have

  (7.24a)

and therefore

N + 1 = 439 (7.24b)

or

N = 438 (7.24c)

Thus, a minimum of more than 400 theoretical plates is required to achieve
the desired separation; this is an enormous number. Fortunately, high-effi-
ciency packings are now available with equivalent heights HETP of the order
of 1 cm. This limits the size of the column to heights that are not excessive
and can be implemented in practice.

Comments:

One feature of isotope distillation that may have been noted by the reader
is the extreme sensitivity of the number of plates N to the value of a. Suppose
that we manage by some means — for example, by a change in operating
pressure — to increase the separation factor of the CO isotopes from 1.01 to
1.02. This represents a rather modest increase of only 1% in the value of a,
which would normally have no more than a marginal effect on N. For
separation factors close to 1, however, the effect is dramatically enhanced as
a result of the appearance of the term a - 1 in the denominator of Equation
7.23b. The seemingly insignificant change in a of only 1% translates here
into a reduction of the number of plates from 438 to fully one half that value.
This will evidently result in a considerable reduction in both the size and
cost of the fractionation column. Any increase in a, no matter how small in
appearance, is therefore welcome in isotope or isomer distillation, and meth-
ods for achieving this increase should be fully explored before settling on a
particular process.

Illustration 7.10: Batch-Column Distillation: Model Equations and Some 
Simple Algebraic Calculations

Frequently, in the production of rare and valuable substances, the material
flow is too small to make continuous distillation for the purpose of separation
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or purification practicable. The intermediate or raw product is then accumu-
lated and held in storage before being fed to the fractionation column in
intermittent batches.

The distillation process, which is now an unsteady one, can be carried out
in two modes. In the first mode, we allow distillation to proceed without
outside intervention and at constant reflux until a prescribed fraction of the
charge has been boiled off or the still contents have been concentrated to
some desired value. In the course of the process, both the instantaneous and
cumulative distillation composition xD and xD¢, as well as the contents of the
still, undergo a slow and continuous change.

In the second mode of operation, which is more common, the reflux ratio
is continually and automatically adjusted to maintain a constant xD. The
boiler contents still change, as does the reflux ratio, but both the instanta-
neous and cumulative overhead compositions remain invariant with time.

We now introduce two assumptions that allow us to draw on the principles
and diagrams we have previously established and used to describe contin-
uous distillation. The first assumption presumes that the liquid content of
the trays, or hold-up as it is termed, is negligible compared to the still contents.
This allows us, in any material balance performed over the column, to ignore
the contribution due to hold-up. In the second assumption, we stipulate that
the process is sufficiently slow that the system has time to adjust to a quasi-
steady state at any instant of the operation. This highly important assump-
tion allows us to represent both modes of operation on a McCabe-Thiele
diagram, which was originally derived for steady-state operations. The dif-
ference here is that instead of dealing with a single operating line, we now
must deal with a continuous spectrum of such lines, which can, however,
be accommodated on a single diagram. This has been done in Figure 7.21,
which displays the two cases of constant and varying reflux we have
described.  The first case is displayed as follows:

Case 1: Constant xD, Variable R

1. Minimum Reflux Ratio. Here we are dealing with a single operating
line that extends from the desired overhead composition xD to the
batch-feed composition denoted xF. The line is drawn through the
points x = y = xD and xW

o,y*W, as shown in Figure 7.21b. The minimum
reflux ratio is then determined from the intercept xD/(RMin + 1).

2. Number of Theoretical Plates. An actual reflux ratio is set next, which
leads to an operating line with intercept xD/(R + 1), as shownin Figure
7.21b. The number of theoretical plates is then stepped off between
operating and equilibrium curves, as was done in the case of con-
tinuous fractionation, and yields a total of four stages between the
composition xD andxW

o. As the distillation proceeds, the reflux ratio
is gradually increased to maintain a constant overhead composition,
causing the bottoms mole fraction to diminish. The process can be
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stopped when a prescribed composition or recovery is reached, or
it can be continued until the column is at total reflux. xW is then at
its lowest point and fractional recovery at its maximum. We have
reached the final state shown in Figure 7.21b. 

3. Fraction Distilled and Recovery. Much of the time in actual operations,
we wish to determine the fraction f = 1 - W/Wo that needs to be
distilled to achieve a prescribed bottoms composition xW or recovery
r defined as r º 1 – xWW/xW

oWo = 1 – (1 – f)(xW/xW
o). Although it is

not immediately clear how we should proceed to obtain these quan-
tities, a good way to start is by composing total and component
material balances about the entire column. We have

FIGURE 7.21
The two types of batch distillation processes: (a) varying distillate composition with constant
reflux ratio; (b) varying reflux ratio with constant distillate composition.
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Rate of moles in - Rate of moles out =  

0 - D =  (7.25a)

and

  (7.25b)

These are the same equations, in form at least, as those we have seen
in the Rayleigh distillation of Illustration 7.3. The difference here is
that xD is not in equilibrium with xW but represents an independent
entity set by the operator. Proceeding as in Illustration 7.3, the two
equations are divided to eliminate D and dt, and we obtain, after
some manipulation, the result

  (7.25c)

Because xD is the prescribed and constant overhead composition,
Equation 7.25c can be immediately integrated to yield

  (7.25d)

After some rearrangement this becomes, for the volatile component,

WoxW
o = (Wo – W)xD + WxW (7.25e)
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Moles Distilled Left Over

In other words, what we have derived here is nothing but a cumu-
lative balance to time t of the volatile component, which could have
been obtained directly by algebraic means. It can be rearranged to
obtain the desired relation between fraction distilled f and recovery
r in terms of the known values of xD and xW

o This results in the
following simple expressions:
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or

  (7.25f)

Note that the first part of each expression represents the definition of
r, and the second part comes from the cumulative balance (Equation
7.25e). Of the host of equations available, Expression 7.25f is by far
the most fruitful and also the simplest to apply. It is quite generally
valid, subject only to the condition that xW cannot fall below the
minimum attained at total reflux. We demonstrate its use by return-
ing to Figure 7.20 of Illustration 7.8 and use the same prescribed
overhead composition xD = 0.92 and reflux ratio R = 0.9, but raise
xW

o to 0.55 so that exactly three plates are accommodated on the
operating diagram. To obtain the maximum recovery possible under
these conditions, we carry the process to total reflux and determine
the corresponding xW. The reader will verify that if we step off three
plates, starting at xD = 0.92 and using the diagonal as operating line,
we obtain xW = 0.175. To calculate rMax, we first solve Equation 7.25f
for fraction distilled f and then by backsubstitution for recovery r.
This yields

  (7.25g)

and by backsubstitution

  (7.25h)

rMax = 0.84 (7.25i)

Thus the maximum recovery we can achieve with three plates and
a reflux ratio of 0.9 is 84%. Let us next turn to the second case shown
in Figure 7.21a. 

Case 2: Constant R, Variable xD

This case, which is less frequently used, differs from the previous process in
several respects. We are here no longer dealing with a design problem, since
both xD and xW vary continuously and cannot be prescribed by the analyst
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as fixed design parameters. Rather than designing a column, we usually use
the model equations to predict the performance of an existing or hypothetical
unit with a given number of plates Np and a prescribed value of R.

We start by establishing the operating line that will accommodate the
existing number of plates and initial boiler composition xW

o. This involves a
trial-and-error procedure consisting of adjusting the operating line of con-
stant slope R/(R + 1) until it accommodates exactly Np plates. xD

o of this line
is the initial composition that emerges from the column (Figure 7.21a). The
operation continues, with overhead and bottoms compositions decreasing
steadily, until a final prescribed bottoms composition xW is reached. The
operational parameters for the entire process are then established as follows:

1. Fraction Distilled f. This item is obtained from Equation 7.25c, written
in the form

  (7.26a)

Here we can no longer evaluate the integral analytically because
both xD and xW vary in unrelated ways. Instead, values of xD and xW

must be read off the operating diagrams in pairs and the integral
determined graphically or numerically. This is tedious, but not over-
whelmingly so.

2. Average Distillate Composition xD¢. This is a new item that must be
addressed because the overhead composition is no longer constant.
It is obtained from the same cumulative balance equation (Equation
7.25e) that was used to describe the previous case of constant xD.
This equation applies here as well with xD¢ now taking the place of
xD. Solving Equation 7.25e for xD¢, we have

  (7.26b)

where xW is prescribed, and f drawn from Equation 7.26a. Note that
Equation 7.26b is identical to the cumulative composition we have
derived for the simple batch still in Illustration 2.9.

With both f and xW in hand, recovery r can then be calculated from Equation
7.25f.

Let us return to the same example considered above, with xD and xW
o set

at 0.92 and 0.55, and Np at 3. Reflux ratio R is the same as before at 0.9 but
is now kept constant. The aim is to calculate f and r for the same final bottoms
compositions xW = 0.175 used previously.
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We start by drawing a series of parallel operating lines and reading off
values of xD and xW, which are used in the graphical evaluation of the integral
in Equation 7.26a. The reader will verify that this leads to a value of -0.913
and hence a fraction distilled f of 0.60.

The next step is to evaluate the cumulative distillate composition xD¢ at
the end of the process. We have from Equation 7.26b

  (7.26c)

Using this value in Equation 7.25f yields the final result

  (7.26d)

r = 0.89 or 89% (7.26e)

Thus, although recovery has increased by 5%, the distillate composition
is lower by more than 10% over the previous case. Evidently, these results
can be manipulated in any number of ways by adjusting Np and R to achieve
more desirable results.

7.1.6 Percolation Processes

Percolation processes refer to operations in which a fluid stream is passed
through a bed of granular porous material and a transfer of mass takes place
between the two phases. Such processes are seen in the purification of gases
and liquids by adsorption and ion exchange, in the transfer of toxic sub-
stances from aqueous streams to surrounding soils or river beds, and in
general whenever a fluid percolating through or over a mass of stationary
porous solids exchanges material with it.

In Illustration 6.4, we introduced the reader to the notion of applying
equilibrium stage concepts to operations of this type. This is at first glance
a startling approach because none of the processes that fall in this category
remotely resembles a stirred tank or its equivalent. They are, in fact, distrib-
uted in both time and distance and generally require PDEs for a rigorous
description of the events. It has been shown, however, that if flow is suffi-
ciently slow, we can assume local equilibrium to be established, or at least
closely approached, at any point of the system. The process can then be
viewed as the composite of a continuous spectrum of equilibrium stages
and, therefore, that an algebraic representation becomes possible. This was
shown in Illustration 6.4 for the restricted case of a linear equilibrium
described by an appropriate Henry’s constant.
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We now extend this treatment to the more general case of a nonlinear
equilibrium case of the Langmuir type. Composing a cumulative solute
balance to time t, as was done in Illustration 6.4, we obtain

YFGbACt = XFrbACz  + eYFrfACz (7.27a)

Amount Amount Amount

Introduced   Retained by Solid  Left in Fluid  

which is identical in form to Equation 6.6a, but assumes a general nonlinear
relation between qF and YF. Neglecting the last term, as before, we obtain
after some rearrangement

  (7.27b)

where Gb is the mass velocity of the carrier fluid in kg/m2 s. When the solid
phase already contains some solute at a concentration level q0, Y0, we can
recast Equation 7.27b into the more general form

  (7.27c)

where DX/DY = (XF – X0)/(YF – Y0) and v = superficial velocity of the fluid.
An alternative form results if we solve Equation 7.27c for t and set z = L,

where L is a particular position downstream from the inlet to the system:

  (7.27d)

This confirms the intuitive notion that the greater the distance L and the
greater the adsorptive loading DX, the longer it will take the solute front to
reach position L. Conversely, the faster the fluid flow v, the shorter the time
required for the solute to “break through” at position L.

We can now construct a diagram that contains the equilibrium relation
X* = f(Y) as well as an operating line, the slope of which equals the ratio
DX/DY. This is shown in Figure 7.22 and leads to the two equivalent expres-
sions:

  (7.27e)
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The construction has the same attractive property as previous operating
diagrams in conveying at a glance the manner in which the system reacts to
changes in certain operating parameters. Thus, if the feed concentration is
increased, DY will likewise increase, lowering the slope of the operating line,
and thus leading to faster breakthrough. If, on the other hand, DX is
increased, for example, through the use of a more efficient sorbent, the
movement of the solute front will slow and breakthrough will occur much
later. In typical water purification processes, rb/rf is of the order 1, v of the
order 1 cm/s, and L ¥ slope of the order 107. The on-stream time is then of
the order 107 s @ 100 days under equilibrium conditions.

So far in our discussion, the movement of solute was assumed to be entirely
in one direction, i.e., from the flowing fluid to the stationary solid. This is
the case in adsorption processes or in the uptake step of ion-exchange oper-
ations. When the direction of transfer is reversed, we speak of desorption,
regeneration, or, in the case of environmental systems, of clearance. The theo-
retical treatment here becomes more complex, and requires a more profound
approach based on PDEs. We do not address this problem here and instead
present the final result that emerges from that analysis for the case of com-
plete desorption from a Langmuir-type isotherm under equilibrium condi-
tions. The relevant equation is completely analogous in form to that for the
adsorption step (Equation 7.27e), and reads

  (7.27f)

FIGURE 7.22
Operating diagram for Langmuir-type isotherm.
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Thus, the only change that has occurred in passing from adsorption to
desorption is the replacement of the slope of the operating line DX/DY by
the slope of the equilibrium curve at the origin, i.e., the Henry constant. Let
us now apply these two expressions to an environmental problem of interest.

Illustration 7.11: Contamination and Clearance of Soils and River Beds

When soils or sediments are exposed to contaminants contained in ground-
water or in the river flow, an important question arises: What is the length
of the recovery period required to restore the system to its original state once
contamination has ceased? Equation 7.27e and Equation 7.27f provide some
important guidelines that can be used to address this question.

We start by noting that in the general case of a nonlinear equilibrium
relation, the adsorption and desorption periods will always differ because
of the different values of Dq/DY and H (Figure 7.22). Because the latter
quantity is invariably the greater of the two, we conclude that for nonlinear
isotherms the adsorption step will proceed at a faster pace than the corre-
sponding desorption step. This difference becomes more pronounced, the
steeper the equilibrium curve at the origin.

Let us now turn to the case where the equilibrium is linear; i.e., the oper-
ation is entirely in the Henry’s law region. This is a common, although not
exclusive, occurrence in environmental systems. Inspection of Figure 7.22
shows that in this case the two relevant slopes become identical; i.e., we have

(DX/DY)ads = (DX/DY)des = H (7.28)

This leads to the surprising but also reassuring conclusion that, for linear
systems, the clearance period will always equal that for contamination. Long
recovery times arise, but only as a consequence of long exposure times. The
shorter the period of accidental contamination, the greater the prospects for
a fast recovery. This agrees, of course, with our physical understanding of
the process, but it requires the use of Equation 7.27e and Equation 7.27f to
establish that the contamination and recovery periods are in fact identical.

7.2 Stage Efficiencies

We turn now to the consideration of the second aspect of the equilibrium
stage, that of its efficiency. This is an area of much greater uncertainty than
we have previously seen. Evidently, the efficiency of a stage will be affected
in a complex manner by an array of variables whose precise influence on
the operation is difficult to quantify. In the case of trays used in gas absorp-
tion and distillation, we must consider the vigor of gas–liquid contact, the
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rate of liquid and gas flow, the mechanical design of the trays themselves,
as well as physical properties of the systems. For stirred tanks, the rate of
stirring and the design of the stirring mechanism itself, the contact time
allowed, and the physical properties of the systems all play a role.

There are two ways out of this dilemma. We can draw on information
provided by the equipment manufacturers, who frequently have test facili-
ties available for determining stage efficiencies, or we can make use of rough
correlations and guidelines for a first estimate in the preliminary design of
these units.

FIGURE 7.23
O’Connell’s correlations for bubble-cap trays: (a) distillation; (b) absorption. (From O’Connell,
H.E., Trans. Am. Inst. Chem. Engrs., 42, 741, 1946. With permission.)
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7.2.1 Distillation and Absorption

Two classical empirical correlations due to O’Connell can be used to obtain
a measure of the efficiencies of bubble-cap trays for distillation and absorp-
tion (Figure 7.23). The principal correlating parameters in both cases are the
viscosity of the liquid mL, and the relevant equilibrium constants, a for
distillation, and Henry’s constant H for absorption. High values of either of
these variables adversely affect the tray efficiency.

The correlation for distillation is based on limited data for systems of
hydrocarbons and chlorinated hydrocarbons, that for absorption on the
performance of hydrocarbon absorbers and the scrubbing of ammonia and
carbon dioxide with water. mL¢ is in units of centipoises, H¢ in units of
mole-fraction ratios, and rML is the molar density of the liquid solvent in
lb mol/ft3. Note that gas absorbers generally have much lower plate
efficiencies than distillation columns due primarily to their lower operat-
ing temperatures. 

7.2.2 Extraction

The extraction of solutes in agitated vessels is, at the very least, on a par in
complexity with that we have seen for gas-liquid contact on trays. Here
again the mechanical design of the system, this time that of the impeller,
enters the picture, as well as the physical properties to which we must now
add the surface tension of the dispersed phase. As a result, no clear-cut
correlation has emerged from the host of experimental studies reported in
the literature. The studies do, however, provide some guidelines that we
summarize for the convenience of the reader in Table 7.2. The parameter
values listed represent “safe” lower limits designed to achieve stage efficien-
cies of more than 80%. Much lower values do materialize on occasion. Thus,
contact times of as little as 1 minute have been known to result in efficiencies
of more than 75%. The table is therefore to be regarded as providing a
comfortable margin of safety for conservative first estimates.

7.2.3 Adsorption and Ion-Exchange

In mass transfer operations involving a solid porous phase, the resistance in
the majority of cases resides predominantly in the solid phase. This brings

TABLE 7.2

Conservative Parameter Values for Batch 
Extraction Efficiencies of E > 0.8

Residence Time t > 25 min
Speed of Agitation rpm > 200
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about a considerable simplification in the estimation of stage efficiency, as
neither the mechanical design nor the speed of agitation contributes signif-
icantly to the stage efficiency. A minimum rpm must, of course, be main-
tained to keep the slurry in suspension and keep the liquid film resistance
within reasonable bounds. This is usually achieved at a level of 50 to 100 rpm.

In principle, mass transfer in solid particles is distributed in both time and
distance, calling for the use of a PDE (Fick’s equation) for a rigorous descrip-
tion of the process. In an elegant study conducted in the 1950s, it was shown
by Glueckauf that the results of the formal treatment can be approximated
by a volumetric solid-phase mass transfer coefficient, given by

  (7.29a)

where DS = solid phase diffusivity, R is the particle radius, and a = surface
area per unit volume. Use of this transfer coefficient eliminates radial dis-
tance as a variable and results in a reduction of the model to the ODE level.
We show in the next illustration how this reduced model can be applied to
describe the efficiency of a liquid-solid contact in an agitated vessel.

Illustration 7.12: Stage Efficiencies of Liquid–Solid Systems

We start by noting that the use of a solid-phase mass transfer coefficient calls
for a driving force based on the internal concentration X (kg solute/kg solid).
A solute mass balance, performed about a single particle assumed to be a
sphere, leads to the expression

Rate of solute in - Rate of solute out =  

rpkSaVP(X* - X) - 0 =  (7.29b)

where VP is the particle volume and rP its density. Introducing Equation
7.29a we obtain

  (7.29c)

and after cancellation of terms and separation of variables

  (7.29d)
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Hence,

  (7.29e)

and

1 - X/X* = exp(-15DSt/R2) (7.29f)

Because X/X* is by definition the fractional stage efficiency E, we obtain
the following relation between E and the contact time t:

E = 1 – exp(-15DSt/R2) (7.29g)

Comments:

The success of Equation 7.29g in predicting stage efficiencies evidently
hinges on how well we can estimate the solid-phase diffusivity DS. Although
the complex interior geometry of porous particles makes this a difficult task,
reasonable first estimates of DS can be made using a relation previously
presented in Chapter 3, which is repeated here:

  (3.13a)

Here e is the interior pore volume fraction, typically of the order 0.3 to
0.4, while the tortuosity t is often given a representative value of 4. Thus,
with diffusivities in liquids being of the order 10–9 m2/s (see Chapter 3),
we can expect (DS)eff to have a typical value 10–10 m2/s. We make use of
these considerations in Practice Problem 7.10, which deals with the effi-
ciency of a column adsorption process. In general, however, it is more
fruitful to use Equation 7.29g to explore the effect of contact time t or
particle radius R. 

Suppose, for example, that for a given process it is proposed to double
radius R to improve the settling rate. We then have from Equation 7.29g

  (7.29h)

so that for Eold = 0.9, Enew drops to a value of 0.44. This is a drastic reduction
in efficiency for a mere doubling of particle radius.

15 2

D
R

t
X

X X
S =

-
ln

*
*

( )D
D

S eff = e
t

ln( ) ln( )1 1

2

- =
Ê
ËÁ

ˆ
¯̃

-E
R

R
Enew

old

new
old



304 Mass Transfer: Principles and Applications

7.2.4 Percolation Processes

In our preceding discussion of this topic, we managed to reduce the under-
lying model, which consists of two PDE mass balances, to a simple algebraic
cumulative balance joined to an appropriate continuous spectrum of equi-
librium stages. When this restriction is removed and the mass transfer resis-
tance is brought back into play, no alternative simplifications are possible
and we must return to the full PDE model. This model has been solved for
a number of different equilibrium relations, most notably the linear case
expressed by X = HY. The results for the latter can be expressed in terms of
the following two dimensionless parameters:

Dimensionless Distance Z

Z = kSa(z/v) (7.30a)

Dimensionless Time T

  (7.30b)

Solutions of the PDEs as a function of these parameters are given in Table
7.3 at concentration levels of 1% and 10% of the feed concentration at a
distance z from the inlet. These tabulated values of Z and T can be used to
calculate the time t it takes for a particular concentration level to reach the
position z (for example, the outlet of an adsorber) or, conversely, to calculate
the height of an adsorber or ion-exchange column needed for it to remain
functional over a prescribed period t.

TABLE 7.3

Parameters for Nonequilibrium Adsorption

T Efficiency E = T/Z
Z 1% of YF 10% of YF 1% of YF 10% of YF

1000 900 950 0.9 0.95
800 700 740 0.88 0.93
600 520 550 0.87 0.92
400 330 360 0.83 0.90
200 150 170 0.75 0.85
100 70 83 0.70 0.83

80 52 65 0.65 0.81
60 37 48 0.2 0.80
40 22 30 0.55 0.75
20 7.8 13 0.39 0.65
10 2.5 5.0 0.25 0.50

8 1.2 3.5 0.15 0.44
6 0.38 2.2 0.063 0.37
5 0.10 1.6 0.020 0.32
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The following example illustrates the use of the table. Suppose we are
required to reduce the level of pollutant in water to 1% of its existing level.
It is expected to keep the adsorber on-stream for 100 days before break-
through at the 1% level occurs. What should the height of the unit be?

Data: H = 104 v = 1 cm/s rf/rb ª 1

kSa is estimated from Equation 7.29a to be of the order 10–2 s–1. The corre-
sponding values of dimensionless time and distance are 

  

Z (Table 7.3) @ 21

Consequently,

  

z = 21 m

This is somewhat excessive, and would suggest the use of two 10-m col-
umns in series. Note that when we deal with multicomponent systems, the
substance with the lowest Henry constant breaks through first. It is this value
of H that must then be used in computing dimensionless time T.

Table 7.3 can also be used to calculate an efficiency for the percolation
process sometimes referred to as bed utilization and defined as the ratio of
the minimum mass of adsorbent required under equilibrium conditions to
the mass used in the actual operation (Wm/Wa). This is shown in the Illus-
tration that follows.

Illustration 7.13: Efficiency of an Adsorption or Ion-Exchange Column

We start the procedure by composing the ratio of the dimensionless distance
Z to dimensionless time T. We obtain in the first instance

  (7.31a)

We now multiply the numerator and denominator of this fraction by the
cross-sectional area of the column AC. This has the effect of transforming the
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ratio into an expression representing the actual mass of the stationary solid
per mass of fluid treated, which we term Wa.

  (7.31b)

But as seen in the last chapter, Equation 6.7c, the corresponding minimum
mass Wm is given by the inverse of the Henry constant H. Hence, H = 1/Wm

and we can write for the efficiency E of the process

  (7.31c)

Thus, the efficiency of a percolation process is given simply by the ratio
of dimensionless time to dimensionless distance. For the process considered
in the previous section, for example, we have T = 8.64 and Z = 21. Conse-
quently,

  

This implies that 59% of the adsorber is occupied by the mass transfer zone.
As we move up the columns in Table 7.3, efficiency improves dramatically.

At Z = 100, the efficiency becomes 70% and at Z = 1000, it becomes 90%, and
the percentage of the bed occupied by the mass transfer zone drops to 30%
and 10%, respectively. The penalty to be paid is an increase in bed height.

Practice Problems

7.1. The Operating Diagram
Describe what is represented in an operating diagram. What is the
meaning of an operating line or curve? How many operating lines
are required in crosscurrent cascades, and how many in a counter-
current operation? What are the requirements for fractional distilla-
tion?

7.2. Single-Stage Adsorption: The Freundlich Isotherm
The Freundlich adsorption isotherm is a special type of equilibrium
relation of the general form:
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Y = mXn (7.32a)

It is an empirical relation that does not converge to a saturation value
at high loadings, nor does it yield the required Henry’s constant at
low coverages. It does, however, in many cases provide an adequate
description of adsorption or ion-exchange equilibria over an inter-
mediate concentration range. Suppose that a particular liquid-solid
system is described by the following Freundlich isotherm:

Y = 8.91 ¥ 10–5 X1.66 (7.32b)

It is desired to reduce the impurity concentration in a given liquid
from Yo = 9.6 units/kg solvent to 10% of this value in a single stage.
Determine the minimum mass of adsorbent per 1000 kg solution
required to accomplish this.

Answer: 32.0 kg

7.3. Leaching of Solids: Extraction of Edible Oils
Leaching involves the intimate contact of particular solids with an
appropriate solvent for the purpose of removing undesirable com-
ponents or recovering valuable materials contained in the solid. The
phase diagram that describes this operation, displayed in Figure
7.24a, involves plots of dimensionless solid mass N against liquid
mass fractions x and y in the pore space of the solid and the free
liquid extract, respectively. We use the same symbols as used previ-
ously in extraction; i.e., B and C denote solvent and solute, and A is
the solid component that here takes the place of the raffinate solvent.
The liquid equilibrium compositions x and y are located as before,
at the ends of a tie-line connecting the curves (N, x) and (N, y), which
represent the solid content of the leached phase and residual partic-
ulate matter in the otherwise liquid extract phase. R and E denote
the mass (B + C) of liquid leaving with the leached solid and in the
liquid extract, respectively, and are subject to the same mixing or
lever rules we established for triangular diagrams in Chapter 6 (Illus-
tration 6.6). Suppose we wish to extract 1000 kg of an oil-bearing
seed containing 20% by weight of oil with 400 kg solvent. The extract
is assumed to be free of solids so that the (N, y) curve coincides with
the abscissa (Figure 7.24b). The tie-lines are slightly sloped, indicat-
ing a higher oil content in the solid phase due to adsorption. Make
the appropriate mass balances for this and construct an operating
diagram that will yield the concentration of oil in the extract and
the fractional degree of recovery. (Hint: Locate the mixing point M.)

Answer: y = 0.275, r = 0.41
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7.4. The Rayleigh Equation in Biotechnology: Ultrafiltration
Ultrafiltration is a membrane process in which a solution containing
a valuable solute such as a protein is concentrated by applying
pressure to it and forcing the solvent across a semipermeable mem-
brane, i.e., a membrane more permeable to the solvent than it is to
the solute. Some of the latter will usually leak through as well; that
is, the process is not 100% efficient. Efficiency is here defined as 1 –
Cp/CR, where Cp is the concentration at any instant of the solution
passing through æ the permeate æ and CR denotes the concentration
in the enriched solution left behind, termed the retentate. In a test
run of a batch ultrafiltration unit to determine leakage, it was found
that the retentate concentration had doubled after 53.7% of the solu-

FIGURE 7.24
Staged leaching process: (a) phase diagram; (b) phase diagram for oil-bearing seeds.

N vs. x F
x

M

Tie-Line

y N vs. y

0 1x, y, kg C/kg (B + C)

x, y, kg C/kg (B + C)

Pure Solute CPure Solvent C

N
kg A/kg (B + C)

N
kg A/kg (B + C)

a.

b.

2.0

1.0 Tie-Lines

N vs. x

0 0.2 0.4 0.6 0.8 1.0

N vs. y



Staged Operations: The Equilibrium Stage 309

tion had passed through the membrane. Show in the first instance
that the model is represented by the Rayleigh equation and then:
a. Determine the efficiency of the process.
b. Calculate the enrichment obtained, i.e., the ratio of final retentate

concentration to the cumulative concentration of the permeate.

Answers: a. 0.9; b. 14.5

Note: More about ultrafiltration appears in Chapter 8.
7.5. Countercurrent Washing of Granular Solids

Consider the case of a steady flow of granular solids that emerges
from a leaching operation with a fraction f of the final extract solution
still adhering to it (f = mass of adhering solution/mass of solids). If
the leached substance is considered sufficiently valuable, or con-
versely is too objectionable to leave behind, it may become necessary
to wash the leached solids for further recovery of solute. A counter-
current stages operation has the advantage of providing continuity
of operation while maximizing effluent concentration. Show that the
Kremser equation applies and provide the pertinent expressions for
residue factor R and extraction ratio E.

7.6. Design of a Countercurrent Cascade in the Linear Regime
A gas scrubber is to be used to reduce solute content in a dilute gas
feed entering at 104 kg/h to 1% of the incoming concentration. A
solvent with a Henry constant of 0.1 kg/kg is available.
a. What is the minimum solvent flow rate to be used?
b. What is the actual solvent flow rate you would propose, given

that the plate efficiency is 30%?
7.7. The Countercurrent Cascade in Triangular Coordinates

Figure 7.25 displays the operating diagram in triangular coordinates
for a countercurrent cascade. The point 0, which is located exterior
to the diagram, is termed the operating point, to which all operating
lines, such as , etc., converge. In a typical design problem,
feed parameters xF and F, the amount and purity of solvent B, and
the location of Ra, which defines the desired recovery, are known or
prescribed. The task is then to establish the number of stages
required to attain the reduction in solute content from the feed value
xF to that of the exiting raffinate, xn. This can be done using the
construction shown in Figure 7.25. Explain and justify the operating
diagram, drawing on the mixing rule and appropriate mass balances.
(Hint: Compose the differences of the streams Rm-1 – Em and show
that they all yield the same value 0, which is called the operating
point.)

R E R E1 2 2 3,
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7.8. Effect of Feed and Reflux on Column Performance
Consider the following changes in the operating conditions of the
fractionation column designed in Illustration 7.8.
a. Feed rate is doubled.
b. Feed concentration fluctuates ±10%.
c. The reflux rate is doubled.
Which variables are affected by these changes? Which remain
unchanged? Support your statements with actual calculations as far
as possible.

7.9. The Use of Open Steam in Fractional Distillation
When an aqueous solution is fractionated to give an organic com-
ponent as the distillate and the water is removed as the residue
product, the heat required may be provided by direct injection of
steam at the bottom of the tower. The reboiler is then dispensed but
this is done at the expense of a larger number of trays in the frac-
tionation tower. Revise the normal McCabe-Thiele diagram to reflect
this change in operating conditions.

7.10. Maximum Recovery in Batch Distillation
A batch still with 10 theoretical plates is used to fractionate a binary
mixture xW

o = 0.4 with a = 2 into an overhead product of constant
composition xD = 0.95.
a. Calculate the maximum recovery.
b. How would you proceed if the column, instead of having trays,

contains a high-efficiency packing?
(Hint: Use the Fenske equation.)

FIGURE 7.25
The countercurrent extraction cascade in triangular coordinates (see Practice Problem 7.7).
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7.11. Total Boil-Up in Batch Distillation
Derive an expression that will give the total amount of liquid boiled
up in a batch still operating at constant overhead composition xD.
(Hint: Make an unsteady balance over part of the still, then evaluate
ÚGdt in terms of the varying bottoms composition and reflux.)

Answer:  

Note: The varying value of xW and matching reflux ratios have to be
read off the McCabe-Thiele diagram.

7.12. Design of an Ion-Exchange Column
A synthetic ion-exchange resin in bead form is to be used for col-
lecting and concentrating the copper in a dilute waste stream. Veloc-
ity of the feed of concentration 13 meq/l is 4 cm/s, bed density rb

= 1200 kg/m3, and the specific gravity of the solution can be set at
1.0. Laboratory equilibrium data are available and are as follows:

If the bed is to remain on stream for 10 h, what is the minimum
height of the column required to treat the solution?

Answer: 3.3 m

7.13. Adsorption Purification Revisited
In Illustration 6.4 we addressed the problem of sizing a carbon bed
for the removal of benzene from water. The calculations there are
limited to determining the minimum requirements in the absence of
transport resistance, i.e., under conditions of local equilibrium. We
now wish to calculate the efficiency of the process by incorporating
the effect of a mass transfer resistance. Carry over the pertinent
variables from Illustration 6.4 and make use of Table 7.3 and the
Glueckauf relation (Equation 7.29a). Assume D = 10–9 m2/s, R = 2
mm, e = 0.3, t = 4.

Answer: 38%

7.14. Pollution from the Mist over Niagara Falls
In a 1986 study of pollution in the Niagara Falls region it was found
that an estimated 60 tonnes of PCBs, chloroform, and chlorobenzenes
are released each year into the atmosphere from the mist over
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Niagara Falls. This is entirely due to the high fugacity (or activity
coefficients) of these substances, which brings about a near quanti-
tative transfer to the atmosphere when no more than a tiny fraction
of the liquid has evaporated. We have shown this to be the case for
mercury in Illustration 7.4 but have not established the time frame
over which the event occurs. Consider the same process of evapo-
ration of mercury, this time taking place from a droplet 1 mm in
diameter. Mass transfer here is almost entirely liquid-film controlled,
and a measured value of kL = 2.6 ¥ 10–5 m/s has been reported.
Calculate the time required for the droplet to release 90% of its
original mercury content. How does this compare with the lifetime
of a droplet over Niagara Falls, given that the drag coefficient of a
sphere in the turbulent regime is 0.44?
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8
Continuous-Contact Operations

The various staged operations taken up in the previous chapter have several
features in common: The two phases involved in the transfer of mass were
brought together and mixed intimately in discrete stages, which took the
form of stirred tanks or some equivalent device. As a result, the concentra-
tions were generally distributed uniformly in space and any variations they
underwent were with respect to time, and not with distance. The operations
were not only allowed to go to equilibrium but were actively encouraged to
do so by means of agitation and the provision of sufficient contact time. Any
departures from equilibrium were lumped into an entity called the stage
efficiency. An efficiency of 100% signified the attainment of complete equi-
librium and values below that expressed varying degrees of non-equilib-
rium.

Continuous-contact operations are diametrically different from staged
operations in almost every aspect. The two phases are in continuous flow
and in continuous contact with each other, rather than repeatedly separated
and re-contacted in an array of stages. Second, the attainment of equilibrium
is shunned. An active driving force is maintained at all times and its con-
stituent concentrations vary continuously from the point of entry to the exit.
The result is that the concentrations are now distributed in space and, assum-
ing a normal steady-state operation, are invariant in time. Thus, while staged
operations vary at most with time, but not at all with distance, the exact
opposite holds in continuous-contact operations.

A final difference concerns the equipment used in the two cases. Contin-
uous-contact processes are generally carried out in empty or packed columns
or in tubular devices of various configurations. Staged operations may use
columns, but these are usually subdivided into discrete contact stages in the
form of trays. More commonly, staged processes are carried out in agitated
vessels of some type, which may be used singly or in suitable arrangements.

In the following, we divide continuous-contact operations into two distinct
categories. The first deals with classical packed-column operations in coun-
tercurrent flow. We revisit the packed-gas scrubber we first saw in Chapter 2
and provide a general survey of packed-gas absorption operations. Packed-
column distillation is addressed next and, in a somewhat unusual departure
from the norm, we reexamine coffee decaffeination by supercritical extraction.
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The process involves a moving-bed configuration, which although superfi-
cially different from the conventions of packed column processes has identical
operational parameters and can be analyzed by identical procedures.

The second category involves membrane processes, a contemporary topic
of considerable importance with the promise of a bright future. Among the
subcategories considered here are reverse osmosis, hemodialysis, and mem-
brane gas separation, and the text provides some useful relations to address
problems in these areas.

8.1 Packed-Column Operations

Packed columns are used primarily in gas absorption and liquid extraction
and in air-water contact operations such as humidification and water cool-
ing, which we take up in Chapter 9. They are found less frequently in
distillation operations where their use is confined mostly to small-scale
processes involving high-efficiency packing.

The analysis of packed-column operations has the same three basic goals
we have seen in similar contexts, i.e., design, prediction of equipment per-
formance, and, to a lesser extent, parameter estimation from experimental
data. We may, for example, wish to calculate the height of a column required
to achieve a certain degree of separation or level of purification. Or it may
be required to assess the effects of changes in feed concentration or flow rate
on column performance. In all these problems, the same basic model equa-
tions are applied and manipulated in appropriate ways to extract the desired
information.

The principal mathematical feature shared by all steady-state packed-
column operations is the distribution of the concentration variables in space,
principally in the direction of flow. The model must therefore be composed
of mass balances taken over a difference element of each phase, which are
then converted into ODEs and integrated to obtain concentration profiles
and other useful information. Algebraic (integral) mass balances also appear
and can often be combined with the ODE balances to obtain important
results.

We have already, in Illustration 2.3, alerted the reader to the existence of
this multitude of mass balances, and we have occasion now to obtain a
broader picture of their derivation and various applications. To do this, we
return to the example of the gas scrubber taken up there and reexamine it
in greater detail.

Illustration 8.1: The Countercurrent Gas Scrubber Revisited

The basic model equations for countercurrent continuous mass transfer are
the differential mass balances over each phase, which had been derived in
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Illustration 2.3 and the companion equilibrium relation (Equation 2.12f).
They represent a complete model for the system and are reproduced below.

Gas-Phase Mass Balance

  (2.12d)

Liquid-Phase Mass Balance

  (2.12e)

Equilibrium Relation

Y* = f(X) (2.12f)

Here X and Y are solute concentrations in units of kg solute per kg carrier
or solvent, and the mass velocities Gs and Ls have units of kg (carrier or
solvent)/m2 s.

The two mass balances can be manipulated in a number of ways to yield
specific results of interest. One such operation consists of subtracting Equa-
tion 2.12d and Equation 2.12e, which results in the elimination of the mass
transfer terms. We obtain

  (8.1)

This equation can be integrated between different limits to yield the alge-
braic mass balances derived in Illustration 2.3 by performing integral solute
balances over the column. They are

(LsX2 + GzY) – (LsX + GsY2) = 0 (2.11a)

and

(LsX2 + GsY1) – (LsX1 + GsY2) = 0 (2.11b)

These two expressions are then recast in a form that makes them more
suitable for graphical representation. We have termed these alternative for-
mulations operating lines and reproduce them below.
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and

 (2.11d)

We soon show how these expressions can be used to arrive at a graphical
solution of the model equation.

The ODE mass balances (Equation 2.12d and Equation 2.12e) can also be
tackled separately and in isolation by performing a formal integration. We
obtain, for the gas-phase balance,

  (8.2a)

where Z = height of the scrubber and KOY is an average overall mass transfer
coefficient that is obtained by experiment. The integral on the right side is
referred to as the number of transfer units (NTU) and the factor preceding
it as the height of a transfer unit (HTU). Thus,

Z = HTU ¥ NTU (8.2b)

On the surface, we do not seem to have gained much by taking this step
since the integral contains too many variables and therefore cannot be eval-
uated. Some thought will reveal, however, that the difference Y – Y* in the
integrand can be read from a joint graph of the operating line and equilib-
rium curve. This is shown in Figure 8.1, where the difference in question is
given by the vertical distance between the two curves.

Let us note some features of this diagram. To begin, it has a familiar air
to it. We in fact have seen an identical representation of the operating line
and equilibrium curve in the operating diagram, dealing with a countercur-
rent staged cascade (Figure 7.14a). However, that diagram differs from Figure
8.1 because it uses the staircase construction to establish the number of stages
required to achieve a desired separation. In the present case, graphical eval-
uation of the NTU integral takes the place of the staircase construction, while
the HTU represents, in a sense, the inherent mass transfer resistance of the
process and can therefore be viewed as the equivalent of a stage efficiency.

Another feature that the two operations share is the existence of a minimum
solvent flow rate. In both cases this flow leads to a pinch at the level of the
feed concentration between the operating line and equilibrium curve. This
has previously led to the number of stages going to infinity. The result here
is similar: The NTU integral increases rapidly as we approach the pinch
point and ultimately diverges to infinity. This leads to a column of infinite
height Z. While operating costs are reduced with diminishing solvent flow
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in both cases, the capital cost of the plant, i.e., the cascade or column, rises
rapidly and goes to infinity when the minimum solvent flow rate is imposed.

The design procedure for a packed-gas scrubber parallels that of the coun-
tercurrent staged cascade. We start by fixing the point (X2, Y2) representing
the compositions at the top of the column. Y2 denotes the prescribed effluent
concentration and X2 the purity of the solvent. A line of slope Ls/Gs is next
drawn through that point and extended to the level of the feed concentration
Y1. The slope Ls/Gs is usually set at a value in the range 1.2 to 1.5 (Ls/Gs)Min.

FIGURE 8.1
The countercurrent packed-gas scrubber: (a) column variables; (b) operating diagram.
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The vertical difference between the two graphs, the operating line and the
equilibrium curve, are then used to evaluate the NTU integral. This can be
done either graphically or numerically. Finally, the height of a transfer unit
is established using the given carrier flow rate Gs and a volumetric mass
transfer coefficient KOYa determined experimentally or drawn from existing
correlations or tabulations (see Table 5.6). These values typically vary over
the range 10 to 50 cm. With both HTU and NTU in hand, the height of the
scrubber can then be determined using Equation 8.2b.

Comments:

Let us first return to the basic model equations (Equation 2.12d to Equation
2.12f). This model  is quite general, and able to accommodate arbitrary equi-
librium relations and system parameter values. Its solution, which is not
undertaken here, must be implemented numerically and can be used both
for design and prediction of scrubber performance and for parameter esti-
mation. The reduced form of the solution we derived, which rests on the
use of the operating diagram Figure 8.1b and Equation 8.2b, is not able to
provide direct information on scrubber performance except by a process of
trial and error. Suppose, for example, that we wish to establish the effluent
concentration that results from doubling the feed rate, i.e., Gs, in an existing
scrubber of height Z. The HTU value would first have to be modified to
reflect the new flow rate, but more importantly, the upper limit of the NTU
integral would have to be adjusted and the evaluation of the integral
repeated by trial and error until the product of HTU and NTU exactly
matches the given height Z of the scrubber. The numerical solution suffers
from the same dilemma, but can be used, once it is properly programmed
and in place, to carry out a wide range of repeated calculations with a
minimum of effort.

A second point of note concerns the solvent flow rates to be used. Low
amounts of solvent carry the advantage of low solvent inventory but lead
to greater scrubber heights, which in the limit of the minimum flow rate
leads to an infinitely high tower. If, on the other hand, we allow an
unbounded increase in solvent flow, column height and cost will be reduced
to a minimum but operating costs will go to infinity. Between these two
extremes there must be an optimum flow rate that will minimize the total
expenditures composed of capital and operating costs.

This situation is depicted in Figure 8.2, which shows a plot of total cost
vs. solvent flow rate. That cost is made up of three component expenditures
consisting of the cost of the column, the cost of the solvent, and the cost of
pumping the solvent to the top of the column. The column cost starts at
infinity when solvent flow is at a minimum, thereafter declines sharply, and
ultimately levels off to a near-constant value. The pumping cost also starts
at infinity because the column is infinitely high, then declines, passes through
a minimum, and gradually increases, going to infinity again as the solvent
flow rate becomes unbounded. The cost of the solvent shows a much simpler
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relation to flow rate, rising almost in a straight line, with any departures
from linearity resulting from volume discounts allowed for the solvent. The
total cost curve that results from the three-component expenditures shows
a minimum, which, as mentioned, lies in the typical range (1.2 to 1.5) (Ls/
Gs)Min.

Illustration 8.2: The Countercurrent Gas Scrubber Again: Analysis of the 
Linear Case

We consider here the case where both the operating line and equilibrium
curves are linear, the latter represented by Henry’s law:

Y* = HX (8.3)

On introducing this relation into the NTU integral of Equation 8.2a, we
obtain

  (8.4a)

Drawing on the material balance (Equation 2.11a) to express X as a function
of the gas-phase mass ratio Y yields

  (8.4b)

FIGURE 8.2
The countercurrent gas scrubber cost vs. solvent flow rate.
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where E is the so-called absorption factor, equal to the ratio of the slopes of
operating line to equilibrium line, L/HG. E has its counterpart in staged
operations and is called the extraction ratio there.

A standard evaluation of this integral yields

  (8.4c)

or equivalently

  (8.4d)

Here R is given by

  (8.4e)

and in the case of pure solvent (X2 = 0) becomes a direct measure of the
depletion Y2/Y1 in the solute content of the gas phase. It is identical to the
residue factor previously defined for staged countercurrent processes (see
Table 7.1), and a plot of it relating it to the absorption factor E and the number
of transfer units appears in Figure 8.3a. The reader will note that the diagram
is quite similar in appearance to the plot seen in Figure 7.15, which relates
the number of stages in a countercurrent cascade to the same parameters.

We now address a number of features that both plots have in common
and that define the behavior of these linear systems.

As briefly noted in Illustration 7.7, the parameter value E = 1 represents
an important dividing line. Above it, the residue factor R converges asymp-
totically to a constant value with an increase in the number of transfer units.
We cannot, in other words, absorb arbitrarily large fractions of the incoming
solute by increasing solvent flow rate, as long as the value of E remains
below unity. This becomes possible only when the absorption factor is greater
than 1; that is, whenever the slope of the operating line exceeds that of the
equilibrium line. The solute fraction remaining in the outgoing gas can now
be made arbitrarily small by the simple expedient of increasing the solvent
flow rate. A complete reduction to zero solute content, however, becomes
possible only in the limiting case of an infinite flow rate of virgin solvent.

A rational explanation of this behavior can be obtained by inspecting the
pertinent operating diagrams, shown in Figure 8.3b. We note here that for
E < 1, operating and equilibrium lines always converge and ultimately
intersect in a pinch, making it impossible to set arbitrarily high solute recov-
ery ratios. When E exceeds unity, the two lines diverge and no longer inter-
sect except at the origin. It now becomes possible to fix the effluent gas
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FIGURE 8.3
The gas scrubber in the Henry’s law region: (a) evaluation of NTU; (b) operating diagram.
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concentration Y2 at any level other than zero without risking a pinch. The
dividing line for these two types of behavior is the operating line, which
runs parallel to the equilibrium line. No intersection occurs in this case and
the general behavior is the same as for E > 1.

The NTU plot of Figure 8.3a can also be applied to other packed-column
processes operating in the linear region. These include gas stripping and
extraction, and require the pertinent parameters to be redefined to fit each
new operation. This has been done in Table 8.1, which lists the different
versions of R and E for each case.

Comments:

This brief analysis of gas absorption with systems obeying Henry’s law leads
to some interesting conclusions. The lower solvent flow-rate limit here is no
longer set by graphically locating the operating line, which causes a pinch.
We make use, instead, of the criterion that the slope of the operating line
must at least equal and preferably exceed that of the equilibrium line, i.e.,
Henry’s constant. This results in a quick and convenient resolution of the
problem of finding the lower limit of the solvent flow rate. 

Illustration 8.3: Distillation in a Packed Column: The Case of Constant aaaa 
at Total Reflux

Packed-column distillation, while practiced much less frequently than gas
absorption, still finds considerable use in medium- and small-scale applica-
tions. The model equations parallel those for the absorption case and result
in the same HTU-NTU relations seen there, with mole fractions taking the
place of mass ratios as the pertinent concentration units. We obtain

  (8.5a)

TABLE 8.1

Packed-Column Parameters in the Linear Region

Process R E Equilibrium Relation

Gas absorption          L/HG Y = HX

Gas stripping        HG/L Y = HX

Liquid extraction        mB/A Y = mX
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and supplement this expression with the equilibrium relation given by

y* = f(x) (8.5b)

The operating lines needed for the evaluation of the NTU integral are
identical to those established in Chapter 7 and can be seen in Figure 7.17
and Figure 7.18. Either graphical or numerical procedures can be used for
this purpose.

A case of special interest is that of a system with constant relative volatility
a run at total reflux. The equilibrium relation is now given by

  (8.5c)

Because at total reflux the operating line coincides with the 45° diagonal,
we have equality of the mole fractions, y = x, and Equation 8.5c becomes

  (8.5d)

Introducing this relation into the NTU integral yields

  (8.5e)

or equivalently

  (8.5f)

This expression can be evaluated analytically using the additional integra-
tion formula

  (8.5g)

Its application leads to the result

  (8.6)
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This is a convenient expression to determine NTU and, from it, HTU values
in laboratory experiments, which are usually run at total reflux. It also finds
use in the distillation of closely boiling mixtures such as isomers or isotopes.
Here a values are quite low and constant, and the operating line very nearly
coincides with the 45° diagonal so that Equation 8.6 becomes a valid approx-
imation of the actual number of transfer units. An example of its application
in the distillation of isotopes is found in Practice Problem 8.5.

Illustration 8.4: Coffee Decaffeination by Countercurrent Supercritical 
Fluid Extraction

Section 6.2.5 introduced the reader to the concept of supercritical fluid extrac-
tion (SCE), and Illustration 6.7 provided a first simple example of its appli-
cation by considering the single-stage extraction of caffeine from coffee beans
using supercritical carbon dioxide. The amount of CO2 required in this ele-
mentary operation was calculated at 45.9 kg CO2/kg coffee, an inordinately
high level. Commercial decaffeination processes use a countercurrent oper-
ation carried out in tall columns (see Figure 6.15), with the coffee beans
entering at the top and discharged intermittently at the bottom. This process
is close enough to a continuous operation to allow us to use the principles
established for such an operation.

The operating diagram for the process is shown in Figure 8.4. The equi-
librium curve is drawn from the relation established in Chapter 6, i.e.,

x = 1.24y0.316 (6.9a)

FIGURE 8.4
Operating diagram for decaffeination.
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The operating line will now be located below the equilibrium curve since
the process is one of stripping or desorption, i.e., the reverse of that seen in
gas absorption. The resistance here would evidently be in the solid phase,
with the driving force given by the horizontal distance between operating
line and equilibrium curve (Figure 8.4). We do not make use of the driving
force in this illustration, but address instead the following problem: Suppose
that the caffeine content is to be reduced from 1 to 0.05%, a typical goal in
commercial decaffeination and one used in the single-stage extraction pro-
cess in Illustration 6.7. We first wish to establish how much the CO2 con-
sumption is reduced if we replace the single-stage process with a
countercurrent mode of contact. Second, given a typical column height of
20 m, what would be the height equivalent to a theoretical stage, HETS?

We start in the usual fashion: by first establishing the minimum amount
of “solvent” CO2 required for the operation. The pinch here does not occur
at the feed condition, as is usually the case, but much earlier at some inter-
mediate point of the equilibrium curve. That point is located by drawing a
tangent to the equilibrium curve starting from the point representing con-
ditions at the bottom of the column (see Figure 8.4).

If we now set the actual G/S ratio at twice the minimum amount, we obtain
the following result:

(S/G) = 1/2 (S/G)Max = Dy/Dx = 0.04/0.95  (8.7a)

The CO2 consumption, which is the inverse of this ratio, is then given by

G/S = 0.95/0.04 = 23.8 kg CO2/kg coffee (8.7b)

The number of stages between feed and effluent is obtained by the usual
staircase construction and equals approximately four. The corresponding
HETS value is then given by

  (8.7c)

Comments:

There are a number of features in this example drawn from industry that
fall outside the conventional boundaries of textbook problems. The first item
of note is the location of the pinch, which occurs at a point between feed
and effluent conditions. The resulting minimum CO2 consumption is at the
modest level of 11.9 kg CO2/kg beans. Even doubling that amount for actual
operating conditions still yields a consumption that is less than that calcu-
lated for a single-stage contact (Illustration 6.7). This is a clear-cut vindication
of the countercurrent mode of operation.

The second feature of note is the small number of stages required (four),
and connected to it, the inordinately high value of the height equivalent to

HETS
Height of column
Number of stages

m= = =20
4

5
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a theoretical stage (5 m). This was partly the result of the relatively generous
amount of CO2 we allowed over and above the minimum required. If that
number is reduced to 1.5 times the minimum, the number of stages rises to
approximately 10, and with it comes a corresponding drop in the HETS to
2 m. It is likely that the actual column operation is in fact in the range of 1.2
to 1.5 times the minimum CO2 requirement and that the HETS is of the order
of 1 m, a value much more in line with that expected in operations of this
type. The reader is encouraged to examine these cases more closely by
enlarging the relevant section of the operating diagram and stepping off the
stages for each slope of the operating line.

8.2 Membrane Processes

The notion of separating substances by means of membrane barriers that
allow the selective passage of one or more species to the exclusion of all
others has both a powerful appeal and the appearance of an impossible
dream.

Consider the advantages of such a process compared to other operations:

• Elimination of thermal energy as an operating expense
• Ability to process heat-sensitive materials
• No intrusion of solvents, which merely produce an enriched phase

and require further processing
• No necessity to regenerate or replace adsorbents or ion-exchange

resins

In fact, the only operating costs visible to the casual observer are conveying
the fluids to and (usually) through the barriers and the ultimate disposal of
the product stream.

The age-old quest for such membranes accelerated in the first half of
the 20th century but was initially plagued by a lack of suitable materials,
low throughput rates and selectivity, and continuous problems with foul-
ing and plugging. The advent of synthetic polymers brought about a wide
new range of materials capable of being altered and modified to suit a
particular application. Low throughput rates initially persisted but were
overcome with the dramatic development in 1960 of high-flux cellulose
acetate membranes by Loeb and Sourirajan. This event signaled the start
of a burst of activity in the field of membrane development that continues
undiminished to this day.
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8.2.1 Membrane Structure, Configuration, and Applications

The basic structure of present-day membranes is illustrated in Figure 8.5. It
consists of a selective polymeric film and a much thicker but more porous
sublayer, which provides the necessary structural support but otherwise
does not actively participate in the separation. Such membranes composed
of a dual layer of different materials are referred to as anisotropic or asym-
metric.

The performance of a membrane process is influenced by a number of
factors, chief among which are the physical structure of the membrane and
the nature and composition of the feed. These factors can be used to order
and classify the processes into subcategories, each with its own distinctive
features. These categories have gradually assumed proportions that have
turned them into self-contained operations in their own right. This is shown
in Table 8.2, which summarizes the various subprocesses that have emerged,
their relation to physical structure expressed through the membrane pore
diameter, and the different applications that have come about as a result.
Note the impressive range of both the physical parameters and the actual
applications. Pore diameters vary over the span of six orders of magnitude
capable of barring particles as small as sodium ions (3.7 Å) in reverse osmosis
or bacteria with a diameter of 1 mm in microfiltration, while allowing free
passage to water molecules. Intermediate-size particles such as proteins (100
Å) or viruses (1000 Å) can either be retained or allowed to permeate, depend-
ing on the requirements of the process.

Although fairly distinct in their capabilities, these processes have several
features in common . The membrane materials used are generally polymeric
in origin and are extensions, both in mode of preparation and in composition,
of the cellulose acetate membranes pioneered by Loeb and Sourirajan.
Another common feature shared by most of the processes listed is the use
of pressure as the driving force; the exceptions are the different forms of
dialysis. Thus, in hemodialysis, concentration replaces pressure as the driv-
ing force, while electrodialysis is driven by an electrical potential.

FIGURE 8.5
The asymmetric membrane.
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Geometrical configurations of the membrane modules have passed
through various stages of development from which two major contenders
have emerged: In the spiral-wound configuration, membrane sheets flanked
by two spacer-supported channels are wound around a central perforated
collector tube, which receives the permeate (Figure 8.6). Feed enters axially
through one of the channels and selectively permeates radially through the
membrane into the second channel, which discharges the permeate into the
collector tube. In the hollow-fiber configuration, a shell and tube arrangement
is used in which the feed enters either through the membrane fibers (core-
fed) or is confined to the shell side (shell-fed). These flow geometries are
illustrated in Figure 8.7.

Let us now turn to a more detailed examination of these processes: Both
nanofiltration (NF) and reverse osmosis (RO) draw on principles of osmosis for
their implementation. The principal features of this phenomenon and its
manifestation in reverse-osmosis operations are illustrated in Figure 8.8a.
Consider a selective membrane, i.e., one that is freely permeable to water
but much less so to salt, separating a salt solution from water, as shown in
Part 1. In such an arrangement, water will flow from the pure-water side
into the side less concentrated in water, i.e., the saltwater side. This process
is referred to as normal osmosis. If, now, a hydrostatic pressure is applied
to the salt side, the flow of water will be retarded, and if that pressure is
sufficiently high, the flow will ultimately cease completely. At this point we
will have reached what is termed osmotic equilibrium (Part 2), and the hydro-
static pressure associated with this state is referred to as the osmotic pressure.
A further increase in applied pressure will act to reverse the flow from the

TABLE 8.2

Membrane Processes and Their Applications

Process Pore Diameter Applications

NF Nanofiltration 10 Å High-flux desalination
RO Reverse osmosis 2–30 Å Desalination
HD Hemodialysis Similar to RO membranes Removal of urea, creatinine, and 

other substances from urine
ED Electrodialysis Similar to RO membranes Desalination in the range 

500–2000 ppm salt content
GS Gas separation Similar to RO membranes Recovery of H2 in ammonia 

plants, separation of N2 from 
air, sweetening of natural gas

UF Ultrafiltration 10–1000 Å Separation of proteins and other 
macromolecules; treatment of 
process water and whey; 
clarification of fruit juices

MF Microfiltration 0.1–10 mm Removal of microorganisms 
from water and beverages, or 
product antibiotics

CF Conventional filtration 10–100 mm Cell harvesting

Note: 1 nm = 10 Å = 10–3 mm.
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distribution of free volume or holes (see Chapter 3). The daily production
of water using RO and NF  amounts to approximately 1 billion gallons, of
which 60% involves desalination of brackish and sea water. The remainder
of the membrane capacity is in the production of ultrapure water for the
electronics industry. Both hollow-fiber and spiral-wound configurations are
employed, with pressures in the range 50 to 70 atm for sea water, and 15 to
20 atm for brackish water. Osmotic pressures for these feeds are in the range
1 to 20 atm and are listed, along with other items of interest, in Table 8.3.

Gas separation and hemodialysis often employ membranes similar to those
used in RO, but differ from them in several aspects. Neither involves osmotic
pressure as a countervailing driving force. In gas separation, the partial
pressure difference of the diffusing species acts as the driving potential, while
in hemodialysis the concentration difference is across the membrane to pro-
vide the necessary impetus. Hollow fiber configurations are predominant in
both applications.

Membrane gas separation is a rapidly evolving technology, with a strong
presence in hydrogen recovery from plant off-gases, and in the separation
of nitrogen from air. Approximately 50% of all nitrogen used in ammonia
synthesis and other applications is produced by membrane separation, the
rest coming from the cryogenic liquefaction and distillation of air. Hydrogen
recovery typically employs pressures as great as 150 atm on the feed or shell
side of the module, with correspondingly small hollow-fiber diameters of
50 to 100 mm (Table 8.2). Nitrogen separation employs much lower feed
pressures of only up to 10 atm, which can be easily accommodated in the
bore-side of the hollow fiber module and can tolerate higher fiber diameters
of up to 1 mm. Because of the extreme sensitivity of the separation process
to small pinholes in the membrane, it has become customary to cover the
basic fiber with a permeable defect-sealing layer of silicone rubber. We
address questions of enrichment and selectivity attained in these processes
in the next section.

Hemodialysis is a special case of a wider class of operations covered by the
umbrella term dialysis. It involves, as is shown in Figure 8.8b, the simulta-
neous permeation of solutes from the higher to the lower concentration side
of the membrane while water passes  in the opposite direction driven by the

TABLE 8.3

Osmotic Pressures of Various Solutions at 25°°°°C

Solute Concentration, mg/l Osmotic Pressure, atm

NaCl 35,000 27
Sea water 32,000 23
Brackish water 2,000–5,000 1–2.7
Sucrose 1,000 1.1
Dextrose 1,000 2
Blood plasma and 
intracellular fluid (37°C)

— 7.2
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osmotic pressure difference of the two solutions. In hemodialysis, water flux
is suppressed by using iso-osmotic solutions on both sides. The nonperme-
ating solution is referred to as the retentate and contains blood cells, proteins,
and other valuable components of the blood. The stream carrying away the
toxic solutes, which have permeated through the membrane, is termed the
dialysate or permeate. The use of hollow-fiber membranes in the dialysis of
blood is now widespread and serves close to 1 million patients worldwide
involving over 100 million procedures a year. The device, often referred to
as an artificial kidney, is illustrated in Figure 8.9. In it, a saline solution with
an osmotic pressure nearly equal to that of blood is supplied to the shell

FIGURE 8.8
(a) Principles of reverse osmosis; (b) principles of dialysis.
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side of the module while the blood is pumped countercurrently through the
core side of the hollow-fiber module. The device contains several thousand
fibers in a 5-cm-diameter tube with a total membrane area of 1 to 2 m2. The
cumulative area used worldwide for medical purposes exceeds that
employed in all industrial applications.

Ultrafiltration (UF) is commonly used to strip smaller-sized molecules
such as salts and sugars along with water from solutions containing valu-
able macromolecules. The most prominent applications that have emerged
in recent times are the concentration of automotive paint in process rinse
water and the concentration of valuable proteins in whey, the supernatant
liquid produced in cheese manufacture. In both cases the application of
UF  technology not only helps to recover valuable materials but also
eliminates a bothersome disposal problem. The extension of the process to
the treatment of other waste streams has been hampered by the tendency
of the membrane to accumulate retained macromolecules at the surface,
often in the form of adhering gel layers. This concentration polarization, as
it is termed, which arises in all liquid-phase membrane processes but is
most marked here, can be partially overcome by membrane modification,
repeated cleaning, or the use of high fluid velocities. It remains, however,
a serious impediment to the flourishing of UF technology. Its likely future
course will be an incremental improvement through the development of
membranes that discourage the adhesion of gel layers. UF has a potentially
huge market in the treatment of wastewaters such as those that arise in
the pulp and paper industry but must await a solution of the problem of
concentration polarization.

FIGURE 8.9
The hemodialyzer. (From Matsuura, T., Synthetic Membranes and Membrane Separation Processes,
CRC Press, Boca Raton, FL, 1990. With permission.) 
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8.2.2 Process Considerations and Calculations

The engineer dealing with membrane processes is confronted with the usual
set of tasks associated with operations of this type. In the area of design, we
wish to establish the type of membrane and the total area required for a
specified separation or production rate. Conversely, for a given unit, real or
imaginary, we would want to project performance or product concentration
and recovery. Finally, it is often desirable to establish the effect of operating
parameters such as feed composition, module geometry, or applied pressure
on process performance. We provide some guidelines for dealing with these
tasks, aided by the survey of fiber size and operating pressure given in Figure
8.10.

Membrane processes in general involve concentration changes in at least
two directions, axial and lateral or radial, and therefore inevitably give rise,
at least in principle, to PDEs. When both solute and water transport is
involved, the equations will be two in number and they will also be coupled.
Rigorous numerical solutions of these models were established in the 1970s
and 1980s but are generally shunned by process engineers because of their
complexities. Certain simplifying assumptions can be introduced that reduce
the models to the ODE or even algebraic level while providing reasonably
valid estimates of the answers being sought.

In all these endeavors, rigorous or approximate, transport parameters play
a key role and must be addressed first. They are dependent on a number of
variables, including flow conditions, membrane and module geometry, and
the specific membrane process being addressed. Thus, the flow can be

FIGURE 8.10
The principal types of hollow-fiber membranes.
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laminar or turbulent, involve gases or liquids, or take place in hollow-fiber
or spiral-wound geometries. We have listed some of these features and the
resulting transport parameters in Table 8.4.

We note, first of all, that transport resistance is on the fluid side in most
cases; the main exception is gas permeation, which, because of the much
higher diffusivities involved, is controlled by the membrane resistance.
When fluid flow is laminar on the core side, mass transport will be in the
entry region (see Chapter 5). This is reflected by the Sherwood number
tabulated in Table 8.4. Transport coefficients on the shell side are subject
to some uncertainty, which is indicated by listing a suggested range of
values. Finally, we note that some of the models can be reduced to the
ODE level. This occurs primarily as a result of the absence of water flux
and the prevailing resistance residing in an entry-region boundary layer
(hemodialysis), or in the membrane itself (gas separation). In the illustra-
tion that follows, use is made of these and other simplifications to provide
the reader with a set of tools for the preliminary analysis of membrane
processes.

TABLE 8.4

Membrane Transport Characteristics

Type of Process 
and Geometry Flow Regime

Controlling 
Resistance

Solute Transport 
Coefficients

Type of 
Model

Reverse 
osmosis
spiral wound

Laminar 
(Entry 
region)

Core-side 
fluid

PDE

Reverse 
osmosis 
hollow fiber

Turbulent 
(Shell-side 
fed)

Shell-side 
fluid k ~ 10–5 – 10–6 m/s PDE

Gas separation 
hollow fiber

Laminar Membrane Permeabilities ODE

Hemodialysis 
hollow fiber

Laminar 
(Entry 
region)

Core-side 
fluid

ODE

Reverse 
osmosis 
hollow fiber 
(bore-side fed)

Laminar 
(Entry 
region)

Core-side 
fluid 

PDE

Ultrafiltration 
hollow fiber

Laminar/
turbulent

Core-side 
fluid and gel 
layer Sh = 0.23 Re0.8 Sc1/3 

(Turbulent)

PDE or 
ODE

Note: Water permeability for contemporary RO membranes is in the range Pw = 10–7 to 10–8

mol/m2sPa.
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Illustration 8.5: Brian’s Equation for Concentration Polarization

Concentration polarization, which has briefly been mentioned in our previ-
ous discussions, arises in all processes involving the passage of water or
some other solvent through the membrane wall. The resulting flux will
initially lead to a depletion of water and a consequent rise in solute concen-
tration in the vicinity of the wall. This sets in motion a countervailing dif-
fusion of solute back into the core fluid, which is exactly balanced by the
rate at which solute is transported to the wall by the permeating water. We
have indicated these opposing flows and the resulting concentration profile
in Figure 8.11, where Cb, Cw, and Cp are solute concentrations in the bulk
fluid, at the wall, and in the permeate, respectively. Note that simultaneously,
and in conjunction with this process, an entry-region development of the
concentration profile takes place, which is described by the Levêque-type
transport relations given in Table 8.2.

This local balance of solute transport was first described by Brian in ana-
lytical form as follows:

  

JwC – JwCp =  (8.8a)

where Jw is the volumetric flux in units of m3/m2 s and x is the distance in
the direction of water flux. Note that both C and x increase in the same

FIGURE 8.11
Concentration polarization.
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direction so that Fick’s law takes a positive sign. This expression can be
integrated over the boundary layer thickness Dx, which yields

  (8.8b)

or

  (8.8c)

where the right side can be viewed as a Peclet number, given that Jw has the
units of velocity.

Recognizing that the ratio D/Dx defines the mass transfer coefficient kc,
Equation 8.8c can be recast in the form

  (8.8d)

which is the expression derived by Brian. The ratio Cw/Cb is a measure of
solute accumulated at the membrane wall and is termed the concentration
polarization modulus ECp. We have occasion to use this equation in the illus-
tration that follows, and in a modified and revealing form in Practice Prob-
lem 8.6.

Illustration 8.6: A Simple Model of Reverse Osmosis

We set as our task here the replacement of the rigorous PDE model of reverse
osmosis by a simple and approximate treatment, which makes use of certain
empirical findings. Given the uncertainty of the parameters used in even the
most rigorous models, this is no more than what good engineering sense
dictates.

Our starting point is the basic flux equation for water transport through
membranes driven by hydrostatic and osmotic potentials, a process alluded
to in Chapter 1 (see Table 1.2). We have

Nw/A = Pw(Dp – Dp) (8.9a)

where Nw is the molar transmembrane water flux (mol/s) and Pw is the water
permeability in mol/m2 s Pa. A range of values for Pw is given in Table 8.4.

The osmotic pressure p is a colligative property, i.e., a property that
depends on the particle molarity and is for infinitely dilute solutions given
by the van’t Hoff equation:
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p = CnpRT (8.9b)

where C = molar concentration and np = number of particles formed on
dissociation. 

This equation holds well for the dilute solutions involved in nanofiltration
and for brackish water. Even for sea water, with Cnp ~ 103 mol/m3, it predicts
an osmotic pressure of p = 103 ¥ 8.31 ¥ 298 = 2.48 MPa = 24.6 atm, compared
to an experimental value of 23 atm (Table 8.3). We adopt this equation to
replace osmotic pressure by concentration and make the further assumption
that the osmotic pressure in the permeate is zero, i.e., that the membrane is
100% effective in rejecting salt and the bulk concentration Cb is constant, as
was deduced in Illustration 5.2 for laminar entry region flow. We can then
combine the two equations and factor out the constant Cb to obtain

  (8.9c)

This expression opens a way to introduce Brian’s equation (Equation 8.8d)
to eliminate the unknown polarization modulus Cw/Cb. We have

  (8.9d)

and noting that the volumetric flux Jw (m3/m2 s) equals 1.8 ¥ 10-6 times the
molar flux Nw/A (mol/m2 s), we obtain the following expression in the single
variable Jw:

  (8.9e)

This is a non-linear equation in which Jw must be solved numerically. We
can use this equation to estimate water flux Jw drawing on kc values given
in Table 8.4 or those for the Peclet number Jw/kc listed in Table 8.5. Let us

TABLE 8.5

Experimental Membrane Process Parameters

Process ECp = Cw/Cb Pe Ee

Reverse osmosis 1–1.5 0.3–0.5 <10–2

Ultrafiltration 70–150 5–10 ~10–2

Gas separation ~1 3 ¥ 10–3 to 7 ¥ 10–2 ~1
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choose an average value for Pe = 0.4, a water permeability of 10-7 mol/m2 s
Pa (see Table 8.4) and an applied hydrostatic pressure of DP = 1000 psig =
6.8 ¥ 106 Pa. The particle molarity Cbnp for sea water is approximately 103

mol/m3. We obtain from Equation 8.9e:

Jw = 1.8 ¥ 10–6 ¥ 10–7 (6.8 ¥ 106 – 103 ¥ 8.314 ¥ 298 exp (0.4)) (8.9f)

or

Jw = 5.6 ¥ 10–7 m3/m2 s = 5.6 ¥ 10–7 m/s (8.9g)

This compares with a water flux of about 9 ¥ 10–7 m/s obtained in com-
mercial desalination processes under identical conditions.

Comments:

The degree of agreement obtained with this simple model is quite remark-
able but should be seen as being partly due to the judicious choice of
experimental Peclet number and water permeability Pw. The range of these
parameters will result in the answers extending between certain limits,
which will differ by a factor of at least 2, introducing uncertainties of the
same magnitude in the quantity being sought. A more fruitful application
of Equation 8.9d and Equation 8.9e lies in their use as a tool for exploring
the effect of changes in the operating variables on the performance of an
existing unit with a known water permeability. Feed rate, water salinity, or
operating pressure are the more obvious candidates for such a study. We
address the effect of these variables on reverse osmosis performance in
Practice Problems 8.7 and 8.8.

Illustration 8.7: Modeling the Artificial Kidney: Analogy to the External 
Heat Exchanger

We have previously indicated that transmembrane transport in hemodi-
alysis is dominated by the fluid resistance on the blood (core) side and
that this resistance lies entirely in the laminar entry region. It was further
seen that the dialysate concentration is adjusted to have the same osmotic
pressure as that of the blood and that consequently no water flux is
allowed to intrude on the proceedings. The only transport is that of the
solutes to be removed from the blood, which is characterized by a core-
side mass transfer coefficient listed in Table 8.3. We are, in other words,
dealing with a straightforward combination of convective flow in the axial
direction and radial transport through a film resistance. This combination
can be expressed in terms of simple ODEs. Assuming co-current flow, the
following results.
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For the core-side mass balance:

Rate of solute in – rate of solute out = 0

  –  = 0 (8.10a)

For the shell-side mass balance:

Rate of solute in – Rate of solute out = 0

  –  = 0 (8.10b)

On dividing by Dx and letting Dx Æ 0 we obtain the two ODEs

  (8.10c)

and

  (8.10d)

where the subscripts B and D refer to blood and dialysate, respectively, and
K0 (m/s) is an overall mass transfer coefficient that includes the effect, usually
minor, of the membrane resistance itself.

The two ODEs are solved simultaneously by an extension of the D-operator
method outlined in the Appendix or by Laplace transformation. The results
can be arranged into the following dimensionless form:

For the co-current case:

  (8.11a)

For the countercurrent case:

  (8.11b)
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where the parameters Z, NT, and E are defined as follows:

Z = QB/QD = Flow rate ratio (8.11c)

NT = K0A/QB = Number of mass transfer units (8.11d)

E = (CBi – CBo)/(CBi – CDo) = Extraction ratio (8.11e)

and the subscripts i and o refer to inlet and outlet conditions, respectively.
In most practical applications, dialysate flow is large compared to blood

flow (Z @ 0) and its solute concentrations much lower than those prevailing
in the blood. Under these conditions we obtain for both the co-current and
countercurrent cases

E = 1 – exp(-NT) (8.12a)

or equivalently

CBi/CBo = exp(-K0A/QB) (8.12b)

The expressions above are general-purpose equations that can be used not
only for design (A in NT), but also for parameter estimation (K0 in NT) from
experimental concentration data, and the calculation of effluent concentra-
tion CBo for different flow rates. We address this type of calculation in Practice
Problem 8.10.

If the task is to assess the response of the body to dialysis, it becomes
necessary to integrate the events in the blood compartment with those taking
place in the dialyzer. The configuration then becomes identical to one that
is well known in the field of heat transfer. It involves heating the contents
Mt of a well-stirred tank by pumping it through an external heat exchanger
at a flow rate F and returning it to the tank. The tank represents the blood
compartment while the dialyzer takes the place of the heat exchanger. The
analogy is illustrated in Figure 8.12.

The model is based on the assumption that the heat exchanger is at a quasi-
steady state since flow through it is much faster than the rate at which
incoming temperature changes with time. The solution, which is a classical
and well-known one, is given by

  (8.13a)

where the steam temperature Ts corresponds to the external dialyzer con-
centration, which is usually taken to be vanishingly small. To convert this
expression to represent the duration of the dialysis procedure, we drop the
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heat capacity Cp and replace the heat transfer coefficient U by the mass
transfer coefficient Ko. The time t it takes to reduce the toxin concentration
from Co to C is then given by

  (8.13b)

where V and Q are now the blood volume and volumetric flow rate, respec-
tively. Derivation of this expression is left to the exercises.

A typical value for KoA is 1 cm3/s; that for the blood flow rate is 5 cm3/s.
Blood volume for an adult is about 5 l. We then have, for a tenfold reduction
in toxic concentration,

  (8.13c)

i.e.,

t = 12,690 s = 3.52 h (8.13d)

This is the duration of a typical dialysis procedure.

FIGURE 8.12
Analogy between an external heat exchanger and the dialyzer.
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Equation 8.13b is a highly useful expression to assess the effect of the
percent toxin to be removed, of the value KoA for different dialyzers, and
the impact of flow rate Q on the duration of the precedent. Note that Ko

varies with Q as well, but the dependence is a weak one-third power one
(see Table 8.4).

Illustration 8.8: Membrane Gas Separation: Selectivity aaaa and the Pressure 
Ratio ffff

It has previously been indicated (see Table 8.2) that membrane-based gas
separation processes, while still of considerable complexity, can be modeled
at the level of ODEs. This is because the principal transport resistance resides
within the membrane itself and because the mass balances need therefore
be concerned only with concentration changes in the direction of flow. These
equations, however, must be supplemented by force balances to take account
of the nonlinear pressure drop associated with permeation processes. The
resulting set of ODEs will generally have to be solved numerically. We do
not take up this problem here but instead acquaint the reader with two
important system parameters that provide useful information for a prelim-
inary assessment of these operations. These parameters are the pressure ratio
f and the membrane selectivity a.

The pressure ratio is an operational parameter and is defined as the ratio
of feed pressure to that prevailing on the permeate side, i.e.,

f = PF/PP (8.14a)

where the subscripts refer to feed and permeate conditions, respectively.
Selectivity a, on the other hand, is a property of the membrane and deals

with the relation between compositions, usually expressed as mole fractions
y1, on either side of the barrier. Its definition, at least in its form, is identical
to that of relative volatility, which was seen in connection with vapor-liquid
equilibria (see Equation 6.20a). For a two-component system, it is given by
the relation

  (8.14b)

where the ratio E = y1P/y1F can be viewed as an enrichment factor of the
more permeable component 1 attainable by a particular type of membrane.
Both a and f are used, singly or in conjunction, to define two important
regions of limiting operational behavior. When f is small, and the selectivity
is far in excess of the pressure ratio, i.e.,

a >> f (8.14c)
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we speak of the process as pressure-ratio limited. Conversely, if the pressure
ratio substantially exceeds a, i.e.,

f >> a (8.14d)

the process is said to be in the selectivity-limited region. Let us consider these
two cases, and the information and lessons to be drawn from them.

1. Pressure-Ratio-Limited Region

We start by noting that gas permeation is driven by a concentration or partial
pressure difference across the membrane, i.e., it is a process based on diffu-
sion, and not on D’Arcy-type bulk flow. For diffusion to take place, the feed
partial pressure must be higher than that on the permeate side; i.e., we must
have

pF > pP (8.15a)

or equivalently in terms of mole fraction y or total pressure P

yFPF > yPPP (8.15b)

As a consequence of this inequality, the enrichment attained will generally
be smaller than the total pressure ratio and can at most equal it; i.e., we must
have

  (8.15c)

and in the limit 

  (8.15d)

This limiting value corresponds to the situation in which the partial pres-
sures on either side of the membrane have attained equality, and diffusion
has ceased. Note that while partial pressures are now equal, the total pres-
sures on either side are not, nor are the corresponding mole fractions.

The enrichment given by Equation 8.15d represents the maximum value
of E attainable, irrespective of the selectivity of the membranes involved.
In other words the process is now dependent on f only and is consequently
in the pressure-ratio-limited region, with a resulting enrichment given by
Equation 8.15d. This condition arises when a exceeds f by a factor of more
than 5.
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2. Selectivity-Limited Region

When the pressure ratio is very large, it ceases to be a limiting factor and
the process becomes solely dependent on the membrane selectivity a. The
enrichment E will in this case no longer be dictated by the value of f but
must instead be extracted from Equation 8.14a. We obtain by simple rear-
rangement

  (8.16)

which is entirely analogous to the enrichment obtained in vapor-liquid
equilibria. This condition holds when f exceeds a by a factor of more than 5.

Comments:

The limiting expressions (Equation 8.15d and Equation 8.16) are invaluable
in arriving at a first assessment of gas-separation processes. Suppose, for
example, that a = 5, which is a typical membrane selectivity for the separa-
tion of nitrogen and oxygen. Then in any practical operation, the pressure
ratio will be in excess of a and the operation will consequently take place
in the selectivity-limited region. The maximum enrichment of nitrogen
attainable is then given by (Equation 8.16)

  (8.17)

This is still a respectable value and has led to the large-scale adoption of
the membrane process for the separation and enrichment of air.

The limiting expressions laid down above are also helpful in setting limits
on the usefulness of enhancing membrane selectivity. This comes about as
a result of the high cost of compressing feed gas to very high pressures or
drawing a hard vacuum on the permeate side, which limits practical pressure
ratios f to the range 10 to 50. Suppose, for example, that a value of f = 10
is chosen. Then a membrane selectivity of 50 will locate the process in the
pressure-ratio-limited region with the enrichment factor given by E = f,
independent of a (Equation 8.15d). Any further increases in membrane selec-
tivity will therefore have no effect on the performance of the process under
these conditions.
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Practice Problems

8.1. The Operating Line in a Gas Scrubber
Explain the meaning and consequences of the following special cases
of an operating line for a gas scrubber:
a. The line is vertical.
b. The line is horizontal.
c. The line is curved.
d. The line is displaced parallel to itself and away from the equi-

librium curve.
e. The line lies below the equilibrium curve.
What is the effect on NTU in cases a, b, and d?

8.2. The Effect of Feed Flow Rate in Gas Absorption
Analyze how an increase in the gas flow rate would affect the per-
formance of an existing absorber.

8.3. The Effect of Packing Size in Gas Absorption
Qualitatively plot the component and total costs that are affected by
packing size in a gas absorber. (Hint: Use Figure 8.2 as a guide.)

8.4. Packed Column Liquid Extraction in the Linear Regime
An aqueous solute is to be extracted in a packed column using an
organic solvent with a distribution coefficient of 1.5. The raffinate
concentration is to be reduced tenfold from 0.1 to 0.01 wt ratio and
it is proposed to use a solvent ratio 1.5 times the minimum
required. The entering solvent is essentially solute free and HTU
is initially set at 4 m. Such high HTU values of several meters are
not unusual in liquid-extraction applications. Establish the
required height of the extraction column.

Answer: 11.2 m

8.5. Another Look at Isotope Distillation
An isotope pair with a separation factor of 1.01 is to be separated
into overhead and bottoms product with compositions of 0.99 and
0.10 mole fraction, respectively, by distillation in a packed column.
A particular high-efficiency packing has been touted by its manu-
facturer as having HTU values of no more than 3 cm. The facility
considering the process is, for various reasons, constrained to col-
umn heights of no more than 10 m. Will the process meet this
requirement?

8.6. Concentration Polarization, Peclet Number, and Enrichment Factor
Show that Brian’s equation (Equation 8.8d) can be recast in the form
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   (8.8d)

where Pe = JDx/D is the flux Peclet number, and Ee is an enrichment
factor defined by the ratio Cp/Cw. Table 8.5 conveys an idea of the
magnitude of these parameters for various membrane processes.

8.7. The Effect of Pressure in Reverse Osmosis
Typical sea water desalination plants using reverse osmosis produce
30 to 50 gfd of water [gal (U.S.) per square ft per day] (1 gfd = 4.72
¥ 10–7 m3/m2 s). Suppose it is decided to double the operating pres-
sure from 50 to 100 atm. Will the production rate increase by less or
by more than a factor of 2? Assume 100% salt rejection.

8.8. The Effect of Feed Rate and Water Salinity in Reverse Osmosis
Consider the process described in Illustration 8.6. Using the numer-
ical parameter values cited there determine:
a. The effect of halving salinity on Jw.
b. The effect of doubling the shell-side feed rate on the same quan-

tity. (Hint: Consider the effect on v in turbulant flow.)

Answer: a. Jw = 8.9 ¥ 10–5 m3/m2 s

8.9. Concentration of an Isotonic Saline Solution
Isotonic saline is an NaCl solution that has the same osmotic pressure
as blood. It is used in medical treatments, for example, to make up
fluid loss, and also as the extracting fluid on the dialysate side of an
artificial kidney. Calculate the concentration of this solution. (Hint:
Consult Table 8.3.)

Answer: 0.141 molar

8.10. Performance of a Hemodialyzer
Use the following data to calculate the urea concentration exiting
from a hemodialyzer with a total surface area of 1 m2 and 100 hollow
fibers of length L = 17 cm.

Urea diffusivity   D = 2 ¥ 10–5 cm2/s
Urea inlet concentration   CBi = 100 ppm
Blood flow rate   QB = 1 cm3/s (total)

Answer: 560 ppm
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8.11. Effect of Membrane Resistance: The Wall Sherwood Number
For the hemodialyzer of Practice Problem 8.10, calculate the percent
resistance in the membrane wall, using the wall Sherwood number
defined in Illustration 5.1.

Answer: 5.1%

8.12. The Hemodialyzer
Derive the solution (Equation 8.13b) describing the performance of
a hemodialyzer. (Hint: Start with a differential balance for the dia-
lyzer to obtain the effluent blood concentration, and use this value
for the balance over the blood compartment.)

8.13. Performance of a Membrane Process in Gas Separation
The membrane selectivity for the removal of CO2 from natural gas
is of the order 20. For a feed containing 5% CO2, give an approximate
evaluation of the enrichment attainable using a pressure ratio of 20.
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9
Simultaneous Heat and Mass Transfer

Our treatment so far has made occasional reference to heat transfer, primarily
to draw the reader’s attention to the analogies that exist between the trans-
port of heat and mass. For example, in Chapter 1 we highlighted the simi-
larities between the rate laws governing convective and diffusive heat and
mass transfer. The analogy between the two phenomena when dealing with
co-current or countercurrent operations has been brought out on several
occasions, notably Illustration 8.7.

We now turn our attention to processes where heat and mass transfer occur
in unison. This is far from an unusual event, but it raises the complexity of
the underlying model, a fact that persuaded us to defer its consideration to
the final chapter.

Simultaneous heat and mass transfer occur in a natural way whenever the
transport of mass is accompanied by the evolution or consumption of heat.
An important class of such operations, and one that occupies a considerable
portion of this chapter, involves the condensation of water vapor from an
airstream and the reverse process of evaporation of liquid water into air.
There are a host of important operations in which this type of transfer occurs.
The humidification and dehumidification of air, often identified with air
conditioning, is practiced within domestic, commercial, and industrial con-
texts. Process water that was used in a plant for cooling purposes is often
cycled through a cooling tower, where it is contacted in countercurrent flow
with air and undergoes evaporative cooling before being returned for reuse.
The drying of solids, an important class of operations in its own right, also
draws on the principles that underlie the transport of water between its
liquid phase and air. Indeed, the air-water system and the temperature and
concentration changes that arise in air-water contact are of such importance
in the physical sciences that they have led to the construction of psychometric
or humidity charts. These charts summarize in convenient fashion the thermal
and concentration variables relevant to operations involving the air–water
system. In the illustrations and practice problems that follow, we use these
charts repeatedly to establish parameters of interest in various operations
based on the air–water system.
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Simultaneous heat and mass transfer also occurs in exothermic or endo-
thermic heterogeneous reacting systems and in the absorption or adsorption
from concentrated gas streams. These topics are addressed in separate illus-
trations but we retain the air–water system as the central theme of this
chapter.

9.1 The Air–Water System: Humidification and 
Dehumidification, Evaporative Cooling

9.1.1 The Wet-Bulb Temperature

We start our deliberations by examining the events that occur when a flowing
gas comes in contact with a liquid surface. The reader will be aware from
personal experience that this process results in a drop in the temperature of
the liquid, often referred to as evaporative cooling. The chill we experience
when wind blows over our perspiring bodies is one manifestation of this
effect.

Let us assume that both the water and the air are initially at the same
temperature. During the first stage of evaporation, the energy required for
the process, i.e., the latent heat DHv, will come from the liquid itself, which
consequently experiences a drop in temperature. That decline, once it is
triggered, will cause a corresponding amount of heat transfer to take place
from the air to the water. At this intermediate stage, the latent heat of
vaporization is provided both by the liquid itself and by heat transfer from
the warmer gas.

As the liquid temperature continues to drop, the rate of heat transfer
accelerates until a stage is reached where the entire energy load is supplied
by the air itself. A steady state is attained in which the rate of evaporation
is exactly balanced by the rate at which heat is transferred from the gas to
the liquid. The liquid is then said to be at its “wet-bulb temperature,” Twb,
and the corresponding air temperature is referred to as the “dry-bulb tem-
perature,” Tdb. The difference (Tdb – Twb) constitutes the driving force for the
heat being transferred from the gas to the liquid. This is indicated in Figure
9.1, which also shows the associated humidities of the air, Ywb (kg H2O/kg
air), the saturation humidity prevailing at the surface of the liquid, and Ydb,
the humidity in the bulk air. The wet-bulb temperature and its associated
saturation humidity play a central role in humidification and dehumidifica-
tion, in water cooling operations, as well as in drying processes. These are
taken up in subsequent illustrations.

The relation among Twb, Ywb, and the system parameters is established by
equating the rate of heat transfer from air to water to the rate of evaporation,
i.e., the rate at which moisture is transferred from the water surface to the
air. Thus,
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Rate of evaporation = Rate of heat transfer

kYA(Ywb – Ydb)DHv = hA(Tdb – Twb) (9.1a)

where kY is the mass transfer coefficient in units of kg H2O/m2 s DY.
Canceling terms and rearranging we obtain

  (9.1b)

where the difference Tdb – Twb is referred to as the wet-bulb depression.
We note from Equation 9.1b that the humidity of the air Ydb can, in prin-

ciple, be established from measured values of Tdb, Twb, and Ywb, the latter
being obtained from the relation

  (9.1c)

where  is the vapor pressure of water, available from tables, and M =
molar mass. Tdb is measured by exposing a dry thermometer to the flowing
air, while Twb is obtained in similar fashion using a thermometer covered
with a moist wick. More recent devices for measuring Y rely on changes in
electrical properties of the sensor element with the moisture content of air.
Both wet- and dry-bulb properties appear in the humidity charts that are
taken up shortly.

FIGURE 9.1
Temperature and humidity distribution around a water drop exposed to a flowing airstream.
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9.1.2 The Adiabatic Saturation Temperature and the Psychrometric Ratio

Before addressing the properties and construction of the humidity charts,
we consider a small variation on the simple contact of water with flowing
air, which led to the wet-bulb conditions. In this modified arrangement,
shown in Figure 9.2, a stream of air is humidified in contact with constantly
recirculated water. Both the water and the exiting gas stream attain adiabatic
saturation temperature, Tas, which is lower than the dry-bulb temperature
of the entering air because of evaporative cooling.

If care is taken to introduce the make-up water at the same adiabatic
saturation temperature, and the datum temperature is set at Tas, a simple
energy balance will yield

Rate of energy in – Rate of energy out = 0

[Cs(Tdb – Tas) + YdbDHv] – [Cs(Tas – Tas) + YasDHv] = 0 (9.2a)

which on rearrangement leads to the expression

  (9.2b)

where Cs is the specific heat of the air, also termed humid heat, in units of
kJ/kg dry air. Plots of this equation appear in the humidity charts discussed
in the next illustration.

The striking similarity between the adiabatic saturation and wet-bulb rela-
tions, Equation 9.2b and Equation 9.1b, led to a detailed examination of the
ratio of the two slopes, h/kYCs, also known as the psychrometric ratio. These
studies culminated in the finding that for the water-air system, and only for
that system, its value is approximately unity. Thus,

Psychrometric Ratio h/kYCs ª 1 (9.2c)

FIGURE 9.2
Flow sheet showing the attainment of adiabatic saturation conditions.
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This expression, known as the Lewis relation, when used to compare
Equation 9.1b and Equation 9.2b, leads to the conclusion that the adiabatic
saturation and wet-bulb temperatures are essentially identical. The Lewis
relation has other important implications as well, as will become apparent
in Illustration 9.4 dealing with the design of water-cooling towers. It is seen
there that the underlying model equations can be enormously simplified by
making use of the Lewis relation.

Illustration 9.1: The Humidity Chart

The psychrometric or humidity charts are displayed in Figure 9.3 and Figure
9.4 for the low and high temperature ranges shown. To familiarize ourselves
with the properties of these diagrams, we start by defining and deriving a
set of variables, which appear implicitly or explicitly in the two figures.

Absolute Humidity Y
This quantity was already referred to in connection with the wet-bulb tem-
perature and is redefined here for convenience:

  (9.3a)

FIGURE 9.3
Humidity chart: low temperature range. (From Carrier Corporation. With permission.) 
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where  is the partial pressure of water vapor.
Y appears as the right-hand side ordinate in the humidity charts.

Relative Humidity RH
To obtain a sense of the relative degree of saturation of the air, we define

FIGURE 9.4
Humidity chart: high temperature range. (From Carrier Corporation. With permission.) 
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  (9.3b)

where  is the saturation vapor pressure of water at the temperature
in question.

RH varies over the range 0% (dry air) to 100% (fully saturated air) and
appears in the humidity charts as a set of parametric curves that rise
smoothly from left to right.

Dew Point Tdp

This is the temperature at which moist air, cooled at constant PTot and Y,
becomes saturated, i.e., attains 100% relative humidity. Its value is estab-
lished by moving from the initial defining point of a given air–water mixture
on the humidity chart along a horizontal line to the eventual intersection
with the curve of 100% relative humidity.

Humid Volume VH

The humid volume of moist air is the specific volume in m3/kg dry air
measured at PTot = 101.3 kPa (1 atm) and the temperature T of the mixture.
Values of VH appear in the humidity charts as a set of lines of negative slope.

Humid Heat Cs

This quantity, which has already been encountered in connection with the
adiabatic saturation temperature, is the specific heat of moist air expressed
in units of kJ/kg dry air.

Humid heat does not usually appear explicitly in the charts but is con-
tained in the enthalpies shown there. It can be calculated from the following
equation:

Cs(kJ/kg dry air) = 1.005 + 1.88Y (9.3c)

Enthalpy H
With the humid heat in hand, we are in a position to formulate the enthalpy
of an air–water mixture. With T° chosen as the datum temperature for both
components and adding sensible and latent heats we obtain

H(kJ/kg dry air) = Cs(T – T°) + YDHv° (9.3d)

Sensible Latent
heat heat

where the datum temperature is usually set equal to 0°C for both liquid
water and dry air.
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Values of the enthalpies of various air-water mixtures are read from the
left-hand oblique ordinate.

Adiabatic Saturation Temperature Tas and Wet-Bulb Temperature Tdp

Plots of the adiabatic saturation line, Equation 9.2b, appear in the humidity
charts as lines extending from the abscissa to the 100% relative humidity
curve. The point of intersection with that curve defines the wet-bulb tem-
perature Twb, which is also the adiabatic saturation temperature Tas.

Example

This concrete example illustrates the various uses to which the humidity
charts may be put: We choose moist air with a relative humidity of 25% and
a (dry-bulb) temperature of 50°C and proceed to calculate various properties
of interest using the chart shown in Figure 9.4.

Absolute Humidity Y. This value is read from the right side rectangular
ordinate, which yields

Y = 0.0195 kg H2O/kg dry air (9.4a)

Dew Point Tdp. We follow the horizontal line through the point Y = 0.0195,
T = 50°C to its intersection with the 100% relative humidity curve
and obtain

Tdp = 24.5°C (9.4b)

This corresponds to the temperature at which, on isobaric cooling of the
moist air, the first condensation of water occurs.

Wet-Bulb Temperature Twb. Here the procedure is to follow the adiabatic
saturation line to its intersection with the 100% relative humidity curve. We
obtain

Twb = 30.4°C (9.4c)

Note that the wet-bulb temperature is not identical to the dew point.

Water Partial Pressure . This quantity can be obtained directly from
the absolute humidity and Equation 9.3a. Solving it for  yields

  (9.4d)
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Humid Volume VH. The plots for VH are shown as steep lines of negative
slope. The point Y = 0.1095, T = 50•C is located between the lines
for VH = 0.90 and 0.95. Linear interpolation yields the value

VH = 0.945 m3/kg dry air (9.4e)

Enthalpy H. This value is read from the oblique left-hand ordinate of
Figure 9.4 and comes to

H = 103 kJ/kg dry air (9.4f)

Water Removal. Suppose the air mixture considered here is to be cooled
and dehumidified to T = 15°C and RH = 20%. The water to be
removed can then be calculated as follows:

(Y)initial = 0.1095 (Y)final = 0.0021 (9.4g)

Water to be removed:

(Y)initial – (Y)final = 0.0195 – 0.0021 = 0.0174 kg H2O/kg air (9.4h)

Alternatively, the result may be expressed in volumetric units by
dividing by the humid volume of the original mixture: 0.0174/0.945
= 0.0184 kg H2O/m3 initial mixture.

Water Removal Heat Load. In addition to the amount of water to be
removed, an important parameter in the design of a dehumidifica-
tion unit is the associated heat load. That quantity can be computed
from the relevant enthalpies read from the humidity chart. We have
for the case cited

(H)initial = 103 kJ/kg dry air, (H)final = 20.3 kJ/kg dry air (9.4i)

Heat removed = (H)initial – (H)final = 103 – 20.3 = 82.7 kJ/kg dry air (9.4j)

Alternatively, using volumetric units

Heat removed = [(H)initial – (H)final]/VH = 82.7/0.945 = 87.5 kJ/m3 (9.4k)

Illustration 9.2: Operation of a Water-Cooling Tower

As previously mentioned, warm process water that was used in a plant for
cooling purposes can be restored to its original temperature by contacting
it with an airstream, which causes it to undergo evaporative cooling. The
operation is generally carried out in cooling towers containing stacked pack-
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ings of large size and voidage to minimize pressure drop. We propose here
to model the operation of such a tower and, in the course of the model
development, introduce the reader to some ingenious simplifications based
on the Lewis relation (Equation 9.2c).

As in all packed-column operations, the fundamental model equations
consist of differential balances taken over each phase; the principal novelty
here is the simultaneous use of mass and energy balances.

The pertinent variables and the differential elements around which the
balances are taken are displayed in Figure 9.5a.

Water Balance over Gas Phase (kg H2O/ml s)

This balance is no different from similar mass balances used in packed-gas
absorbers and distillation columns (see Chapter 8) and takes the form

Rate of water vapor in – Rate of water vapor out = 0

  –  = 0 (9.5a)

which upon introduction of the auxiliary mass transfer rate equation, divi-
sion by Dz, and letting Dz Æ 0 yields the usual form of ODE applicable to
these cases:

  (9.5b)

where Y* – Y is the humidity driving force.

Water Balance over Water Phase

This balance is omitted since the water losses are usually less than 1%.

Gas Phase Energy Balance (kJ/m2 s)

Here we must be careful to include both sensible heat transfer as well as the
latent heat brought into the air by the water vapor. We obtain

Rate of energy in – Rate of energy out = 0

  –  = 0 (9.5c)

which, after applying the same procedure as before, yields
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  (9.5d)

Here TL and TG are the water and air temperatures, respectively, and H
equals the enthalpy of the moist air at a given point in the tower.

Liquid Phase Energy Balance (kJ/m2 s)

A completely analogous derivation to the gas-phase energy balance yields

  (9.5e)

FIGURE 9.5
Variables and operating diagram for a packed cooling tower.
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where we have replaced the liquid enthalpy HL by CpL (TL – T°). The
model is completed by adding the relevant equilibrium relation,
which coincides with the 100% RH curve in the humidity charts and
is also available in analytical form. Thus, for the equilibrium relation

Y* = f(TL) (9.5f)

Equation 9.5b, Equation 9.5d, Equation 9.5e, and Equation 9.5f together
with the previously given expression for H (Equation 9.3d) constitute a set
of five equations in the five state variables Y, Y*, TG, TL, and H.

Although a numerical solution of these equations is today easily accom-
plished, early workers in the field had to cast about for alternative means
of solving the model. To do this, they used the ingenious device of introduc-
ing the Lewis relation into the gas-phase energy balance, which has the effect
of combining TG and Y into a single variable, the air enthalpy H. We sketch
the procedure below, using interfacial values in place of Y* and TL to accom-
modate the film coefficients h and kY used in the Lewis relation. We use that
relation to replace h by kYCs and obtain in the first instance

  (9.5g)

where, as seen from Equation 9.3d, the bracketed terms ( ) represent enthal-
pies of air–water mixtures. We therefore can write

  (9.5h)

where Hi – H can be considered an enthalpy driving force, which replaces
and combines the temperature and humidity driving forces in the original
model.

We now assume that the two-film theory can be applied to this system,
with the result that Equation 9.5h can be cast in the form

  (9.5i)

where KYa is now the overall mass transfer coefficient and H* the gas enthalpy
in equilibrium with the bulk water temperature TL.

This equation is of the same form as gas-phase differential balances
encountered in gas absorption and distillation, so that the design procedures
used there can be replicated, provided an appropriate operating line can be
constructed. That line is obtained from an overall two-phase integral heat
balance and takes the form
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Gs(H1 – H) = LCL(TL1 – TL) (9.5j)

for part of the column, and for the entire tower

Gs(H1 – H2) = LCL(TL1 – TL2) (9.5k)

The gas-phase energy balance (Equation 9.5i) can in turn be formally
integrated to yield the familiar HTU-NTU relation:

  (9.5l)

The model is completed with the addition of the equilibrium relation:

H* = f(TL) (9.5m)

which is constructed from the 100% RH curve of the psychrometric charts.
The original set of five equations, three of which are ODEs, have thus been

reduced to the three relations (Equation 9.5k, Equation 9.5l, and Equation
9.5m). What is more, the set is now cast in the familiar form of an HTU-
NTU expression, joined to an operating line and equilibrium relation. The
graphical procedure used to solve this much simpler set is outlined in Figure
9.5b and follows the usual routine of drawing an operating line, this one of
slope LCL/Gs, through the point (H1, TL1), and evaluating the NTU integral
using the enthalpy driving force read from the operating diagram. Note that
it is now GMin, not LMin, which corresponds to an infinitely high tower. In
Practice Problem 9.3, the reader is asked to apply this method to the design
of a cooling tower. 

9.2 Drying Operations

The drying of solids is a topic of considerable proportions that merits an
entire monograph for its proper treatment. Our purpose here is to give the
reader a brief survey of the operation and to provide practice in carrying
out simple calculations.

Drying can be carried out in a variety of physical configurations in which
the solids can be stationary, conveyed on a moving belt, or allowed to tumble
through an inclined rotary kiln. What these operations have in common is
the use of heated air to assist in the drying process. When air passes through
a stationary mass of solids, which may be contained in a set of perforated
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trays or in a fixed bed or column, the process is referred to as through-flow
drying. Cross-flow drying occurs when air passes through a perforated con-
veyor belt at right angles to the solids being conveyed. Rotary kilns, on the
other hand, usually make use of a countercurrent mode of contact, with hot
combustion gases flowing upward into the inclined kilns while the tumbling
solids make their way downward in the opposite direction.

The drying of solids in general is a highly complex process involving both
heat and mass transfer. If the solid is porous, moisture content and the
temperature will vary internally, as well as externally in the direction of
airflow. Thus we could be dealing with at least two coupled PDEs (mass and
energy balance) in time and two dimensions. 

Early studies of drying processes revealed that considerable simplifications
result by recognizing three distinct drying periods, shown in Figure 9.6.
During an initial adjustment period, the surface moisture quickly drops to
the wet-bulb temperature. If the moisture content in the air is either negli-
gible or otherwise constant due to steady-state conditions, the humidity
driving force will assume a constant value Y* – Y and the drying process
will consequently proceed at a constant rate. During this constant-rate
period, as it is called, the process can be modeled algebraically if we assume
negligible change in air humidity in the direction of flow, or by an ODE if
the latter varies. Thereafter, the drying process becomes more complex as
moisture removal now must take place from the interior porous structure
and a continually receding water interface. A lengthy drying period results
as the moisture becomes increasingly inaccessible. It is this interval, called
the falling-rate period, that leads to the aforementioned PDEs.

In the following illustration, which deals with the drying of a steamed
activated carbon bed, we assume that the operation takes place entirely in
the constant-rate period. This is based on the fact that carbon is a hydropho-
bic substance that allows little penetration of its porous structure by the
condensate produced during the steaming process. In other words, the con-
densate is assumed to be present entirely as surface moisture, which is
removed by a constant-rate drying mechanism.

FIGURE 9.6
The various drying periods.
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Illustration 9.3: Debugging of a Vinyl Chloride Recovery Unit

Vinyl chloride monomer (VCM) is a volatile substance (boiling point 14°C)
used as a starting material for the production of polyvinyl chloride (PVC).
It has been identified as a potential carcinogen, and occupational health
regulations now call for an upper limit of 1 to 5 ppm VCM in factory air.

A preferred method of air purification is to pass VCM-laden air through
beds of activated carbon. These beds operate on a four-step cycle:

1. Saturation with VCM to 1 ppm breakthrough
2. Stripping of the adsorbed VCM with steam, which is subsequently

condensed, leaving essentially pure VCM that is dried and recycled
3. Drying of the carbon bed with hot air
4. Cooling of the regenerated bed with cold purified air

A dual-bed system is commonly employed, so that while one bed is “on-
stream,” the second bed can be regenerated and prepared for the adsorption
step. The time period allowed for each step is typically as follows:

1. Saturation: 4 h
2. Steaming: 2 h
3. Drying: 1 1/2  h
4. Cooling: 1/2  h

A schematic diagram of the cycle appears in Figure 9.7.
A major producer of PVC experienced difficulties with a newly installed

adsorption system. The unit performed satisfactorily with fresh carbon, but
during subsequent cycling the VCM level in the effluent rose to unacceptable
levels. Inspection of the beds after drying revealed considerable residual
moisture. Inadequate drying during step 3 was therefore considered to be a
possible reason for the malfunctioning of the bed. The total amount of
condensate that needed to be evaporated was estimated at 100 kg.

When queried about their choice of airblower and its delivery rate (0.1
kg/s at 49°C), plant personnel responded that it was based on the assump-
tion that the condensate was at or near 100°C. This was a major conceptual
error. Basic knowledge of the psychrometric chart should have led to the
realization that evaporative cooling would reduce the temperature of the
condensate well below 100°C, i.e., to the wet-bulb level. This in turn would
dramatically reduce the evaporation rate since the vapor pressure, and hence
the driving saturation humidity, is an exponential function of temperature.

If we assume that the entire bed attains the wet-bulb temperature after a
brief start-up period, the model reduces to an ODE, which must be comple-
mented by a cumulative mass balance to determine the drying time. We
consider instead a limiting version of the full model in which the exiting
airstream is assumed to be fully saturated. This asymptotic case provides us
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with an estimate of the minimum airflow rate required to evaporate the charge
of 100 kg water in the assigned time of 1 1/2  h.

Let us proceed along these lines. To obtain the minimum airflow rate we
compose a cumulative water balance, which is given by

  =  

Ywb(Gs)Mint = 100 kg (9.6a)

from which, with t = 1 1/2  h = 5400 s, we obtain

  (9.6b)

FIGURE 9.7
Removal of VCM from air: operation of the adsorption purifier.
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The humidity chart, Figure 9.4, is now used in Equation 9.6b to establish
values of (Gs)Min for various levels of incoming air temperature Tair. This is
done in the usual fashion by first locating the incoming air temperature and
humidity, assumed to be zero, on the chart, and then moving from that point
upward and to the left along the adiabatic saturation line to a point of
intersection with the 100% RH curve. The right-hand ordinate of that point
yields the value of Ywb to be used in Equation 9.6c. The results obtained are
summarized in Table 9.1.

Examination of Table 9.1 shows that the air provided by the plant (Tair =
50°C, Gs = 0.1 kg/s) underestimated the minimum requirement by a factor
of 14. Even at a temperature of 125°C, the minimum flow required was still
five times that actually provided. Clearly, a combination of both higher
temperature and greater blower capacity would be required to meet the
drying specifications. A reasonable recommendation would be for a flow
rate of 1 kg/s at 125°C at the point of delivery. This provides a safety factor
of 2 over the tabulated (Gs)Min of 0.49 kg/s.

Comments:

Note here that we were able, without resorting to elaborate calculations, to
pinpoint the cause of malfunction and to make realistic recommendations
for its rectification. The rapid way in which this was achieved and the simple
remedies proposed would please industrial clients who value quick results
and simple solutions above all else. We should not be blind to the fact,
however, that this success was based on a good understanding of the phys-
ical process involved. The situation required not so much an extensive exper-
tise in drying operations, but rather the simple recognition that we were
dealing with evaporative cooling. This realization led to a rapid resolution
of the problem.

9.3 Heat Effects in a Catalyst Pellet: The Nonisothermal 
Effectiveness Factor

Illustration 4.9 considered the model that describes the isothermal diffusion
and reaction in a catalyst pellet. Solution of that model yields the reactant
concentration profile within the pellet, which is then converted by integration

TABLE 9.1 

Minimum Air Flow Rates for Drying a Carbon Bed Containing 100 kg Moisture

Air Temperature (°C) 25 50 75 100 125
Ywb (kg H2O/kg air) 0.006 0.013 0.021 0.028 0.038
(Gs)Min (kg/s) 3.1 1.4 0.88 0.66 0.49
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into the so-called catalyst effectiveness factor E. Such isothermal effectiveness
factors apply to small particles with high thermal conductivities and relatively
low reaction rates.

In general the heat of reaction, which is of the order of 100 kJ/mol, cannot
be ignored, and the mass balance must then be complemented by an appro-
priate shell energy balance. That balance must consider the heat conducted
in and out of the shell, as well as the heat generated or consumed within
the pellet.

We assume the same slab geometry and first-order reaction as before and
consider the reaction to be exothermic, which is the more common case. The
following formulation is then obtained:

Rate of energy in – Rate of energy out = 0

  –  = 0 (9.7a)

Dividing by ADx and letting Dx Æ 0 we obtain the second-order ODE

  (9.7b)

where ke is the effective thermal conductivity of the pellet.
This expression is supplemented by the mass balance given in Illustration

4.9 in which the rate constant kr is now a function of temperature. We repeat
it here for completeness:

  (4.16b)

The two ODEs, which are coupled by the two state variables CA and T,
generally have to be solved numerically. The resulting concentration profile
CA(x) can then be integrated over the pellet volume Vp as was done in the
isothermal case to obtain the nonisothermal effectiveness factor Eni:

  (9.7c)

where kr(T) is given by the familiar Arrhenius relation:

kr(T) = A exp(-Ea/Rt) (9.7d)
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Here the reference state is taken to be the surface concentration CAS and
the surface temperature Ts, i.e., the conditions that would prevail within the
pellet in the absence of transport resistances.

A typical, unscaled plot of Eni vs. the nonisothermal Thiele modulus is
shown in Figure 9.8. Two additional parameters that contain the thermal
factors make their appearance here: the Arrhenius number Ea/RTs, which
contains the important activation energy Ea; and the dimensionless param-
eter b, which reflects the effect due to the heat of reaction and the transport
resistances. For b = 0, i.e., for a vanishing heat of reaction or infinite thermal
conductivity, the effectiveness factor reduces to that of the isothermal case.
b > 0 denotes an exothermic reaction and here the rise in temperature in the
interior of the pellet is seen to have a significant impact on Eni which may
rise above unity and reach values as high as 100. This means that the overall
reaction rate in the pellet is as much as 100 times faster than would be the
case at the prevailing surface conditions. This is due to the strong exponential
dependence of reaction rate on temperature, as expressed by the Arrhenius
relation (Equation 9.7d). As expected, the effect varies directly with the heat
generated (DHr) and inversely with the rate of heat removal. Thus, exother-
micity, far from being undesirable, actually has a beneficial effect on catalytic
conversion. We must guard, however, against an excessive rise in tempera-
ture, which might adversely affect catalyst structure, causing a decline or

FIGURE 9.8
Nonisothermal effectiveness factor and its jump transitions (constant Arrhenius number). 
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even cessation of catalytic activity. The problem of estimating the maximum
temperature that may occur in a catalyst pellet is addressed in Practice
Problem 9.4.

For endothermic reactions, b < 0 applies; DHr is now a positive number.
The effectiveness factor is now below the value seen in the isothermal case,
due once again to the dependence of kr on temperature. The effect is shown
in the plots of Figure 9.8.

An additional point needs to be noted in connection with the inflections
shown by some of the effectiveness curves. It is seen that in this region
of inflections E becomes a multivalued function of the Thiele modulus.
The question then arises which of the three values actually materializes
in practice. A mathematical analysis of such systems, which goes beyond
the scope of this book, shows that of the three states, only the upper and
lower ones are stable, and that a jump transition occurs from one to the
other as one passes through this region. This transition occurs at different
locations, depending on the direction from which the region is
approached. Suppose, for example, that the Thiele modulus is gradually
diminished, by reducing surface temperature Ts. Effectiveness then under-
goes a gradual increase, reaches a maximum value M shown in Figure
9.8, and then begins a decline until the tangent point T is reached. Here
the effectiveness factor experiences a sudden jump decrease to the lower
value L, after which it continues a smooth decline with diminishing mod-
ulus value toward the limiting value of unity. A similar jump transition
occurs when one approaches from the opposite direction, but this time it
is a jump increase, and it occurs at a different location, from the tangent
point T¢ to the location H. This phenomenon of obtaining different ordinate
values, depending on the direction in which a curve is traversed, is
referred to as a hysteresis effect, and the surface temperatures Ts at which
the jump transition occurs are known as the ignition and extinction tem-
peratures. In other words, when these temperatures are reached, the reac-
tion rate either undergoes a sudden increase (ignition, point T¢) or it
experiences a sudden drop (extinction, point T). These interesting features
can be used to control the course of a particular catalytic reaction.

Comments:

Although the system we have considered here is a relatively simple one
involving a first-order reaction, it has revealed the existence of some fasci-
nating and exotic phenomena. Such phenomena are not limited to catalytic
reactions but arise in other nonisothermal systems, for example, in continu-
ous-flow stirred tank reactors, and even in isothermal systems. Their com-
mon feature is that the performance curve describing the system has to
exhibit an inflection. Such inflections have also been observed in a biological
context, where they play the role of a biological switch, which is activated in
response to particular stimuli.
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Illustration 9.4: Design of a Gas Scrubber: The Adiabatic Case

In Illustration 8.1 and Illustration 8.2, we gave a detailed account of the
characteristics and performance of a gas scrubber. The tacit assumption was
made that the operation was isothermal and that the entire equilibrium curve
applied to a single temperature, that of the incoming feed and solvent. Above
concentrations of a few mole percent, heat effects make themselves increas-
ingly felt and a corresponding shift in the equilibrium curve to lower gas
solubilities takes place. In principle, the temperature rises in both phases,
but due to the low volumetric heat capacities of the gas, temperature equil-
ibration is rapid and the enthalpy change lies preponderantly in the liquid
phase. This has led to the concept of an adiabatic equilibrium curve, which
is constructed by using the predicted temperature rise in the liquid to cal-
culate the local gas solubilities as a function of the solute concentration in
the gas phase. The relevant equations for the construction of the adiabatic
operating diagram, Figure 9.9a, are as follows:

• The solute mass balance and the resulting operating line are unaf-
fected by the heat effects and remain unchanged. We have, as before
in the isothermal case,

(Y1 – Y2)Gs = (X1 – X2)Ls (9.8a)

• To calculate the temperature rise, we draw on an integral enthalpy
balance over both phases (Figure 9.9b). Choosing as a reference state
the temperature of the incoming solvent and setting Href = HL2 = 0,
we obtain

HL (kJ/kg solution) ¥ L (kg solution/s) =

Gs (kg carrier/s)DHsol’n (kJ/kg solute) ¥ (Y – Y2) (9.8b)

where the enthalpy of the liquid HL is given by the auxiliary relation

HL = CL(kJ/kg K) ¥ (TL – TL2) – DHsol’n (9.8c)

• Combining these equations, we obtain for the local temperature rise

  (9.8d)

where the factor X/(1 + X) is used to convert total liquid flow rate
L to solvent flow rate Ls.

To construct the adiabatic equilibrium curve, one chooses a pair of values
(X, Y) on the operating line, calculates TL from Equation 9.8d, and with the
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values (Y1, TL) in hand, establishes X from available equilibrium isotherms.
X, Y* values obtained in this fashion determine a point on the adiabatic
equilibrium curve.

The remainder of the calculations proceed as in the isothermal case, i.e.,
the adiabatic operating diagram (Figure 9.9a) is used to compute NTU, which
is then multiplied by HTU to obtain the design height Z = HTU ¥ NTU.

Comments:

Note the simplification that results from confining the heat effects to the
liquid phase and assuming thermal equilibrium between the two phases.

FIGURE 9.9
Adiabatic gas scrubber.
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Had this not been done, an additional enthalpy balance for the gas phase
would have been required, and the concept of the adiabatic equilibrium
curve would have been jeopardized. Once the temperature rise has been
accounted for and used in the construction of the adiabatic equilibrium
curve, the entire procedure reverts to the familiar territory of the isothermal
case. The comfort and value of familiarity is not to be underestimated.

Practice Problems

9.1. Meteorology

a. Using the humidity charts, and given a daytime temperature and
relative humidity, indicate how you would proceed in order to
predict whether dew will form.

b. Again using the psychrometric charts, and assuming a strong
wind to be blowing, indicate under what conditions frost may
form, even though the temperature remains above 0°C. What is
the maximum temperature that will allow this to happen?

9.2. Air Supply to a Dryer
An air dryer requires 1 kg/min (dry base) of air at 80°C and RH =
20%. The available air is at 25°C and RH = 50%, and is to be brought
to the desired conditions by direct injection of steam. What is the
minimum rate at which steam must be supplied, given that its latent
heat is 2450 kJ/kg?

Answer: 0.08 kg/min

9.3. Design of a Cooling Tower
Water is to be cooled from 43.3 to 29.7°C in a packed column using
air entering countercurrently at 29.5°C and a wet-bulb temperature
of 23.3°C. The water flow rate is 2.71 kg/m2 s and airflow is to be
set at 1.5 times the minimum value. The overall mass transfer coef-
ficient for the column is estimated at KYa = 0.90 kg/m3 s DY. Calculate
the height of the tower.

Answer: 6.6 m

9.4. Maximum Temperature in a Catalyst Pellet
Derive an expression for the maximum possible temperature in a
catalyst pellet. (Hint: Eliminate the reaction term by dividing mass
and energy balances.)
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Selected References

General Mass Transfer Texts

The earliest major text on mass transfer process is:

R.E. Treybal. Mass Transfer Operations. McGraw-Hill, New York, 1952.
See also 3rd edition, 1979.

More recent texts on mass transfer, often presented in combination with
heat transfer, include the following:

F.M. White. Heat and Mass Transfer. Addison-Wesley, Reading, MA, 1988.
S. Middleman. Introduction to Mass and Heat Transfer. John Wiley, New

York, 1997.
E.L. Cussler. Diffusion: Mass Transfer in Fluid Systems. 2nd ed., Cam-

bridge University Press, New York, 1997.
H.D. Baehr. Heat and Mass Transfer (translated from the German). Spring-

er, New York, 1998.
A.F. Mills. Basic Heat and Mass Transfer. 2nd ed., Prentice Hall, Engle-

wood Cliffs, NJ, 1999.

Separation processes, which make extensive use of mass transfer concepts,
are well presented in the recent text:

J.D. Seader and E.J. Henley. Separation Process Principles. John Wiley,
New York, 2000.
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Transport Phenomena

The classical text by Bird, Stewart, and Lightfoot (1960) has recently been
updated:

R.B. Bird, W.R. Stewart and E.N. Lightfoot. Transport Phenomena. 2nd
ed., John Wiley, New York, 2000.

Transport theory applied to biomedical and materials engineering is dis-
cussed in:

D.R. Poirier and G.H. Geiger. Transport Phenomena in Materials Processing.
Minerals, Metals and Materials Society, Warrendale, PA, 1994.

R.L. Fournier. Transport Phenomena in Biomedical Engineering. Taylor &
Francis, London, 1999.

Diffusion

Authoritative compilations of solutions to Fick’s and Fourier’s equations can
be found in the classical monographs:

H.S. Carslaw and J.C. Jaeger. Conduction of Heat in Solids. Oxford Uni-
versity Press, Oxford, U.K., 1959.

J. Crank. Mathematics of Diffusion. 2nd ed., Oxford University Press,
Oxford, U.K., 1978.

They include solutions of source problems.
Diffusivities, permeabilities and solubilities in polymers are compiled in:

J. Brandrup, E.H. Immergut, and E.A. Grulke, Eds. Polymer Handbook,
4th ed., John Wiley, New York, 1999.

See also:

J. Crank and G.S. Park, Eds. Diffusion in Polymers. Academic Press, New
York, 1968.
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Tables of diffusivities in various solids and liquids, including metals, mol-
ten salts and semiconductors appears in Poirier and Geiger cited above.
Similar information on diffusion in porous catalysts can be found in:

C.N. Satterfield. Mass Transfer in Heterogeneous Catalysts. MIT Press,
Cambridge, MA, 1970.

Diffusion and Reaction

The twin topics of diffusion and reaction are taken up in most texts on reactor
engineering, including:

R.W. Missen, C.A. Mims, and B.A. Saville. Introduction to Chemical Re-
action Engineering and Kinetics. John Wiley, New York, 1999.

O. Levenspiel. Chemical Reactor Engineering. John Wiley, New York, 1999.

Phase Equilibrium

There is a plethora of handbooks and other compilations of phase equilib-
rium of relevance to mass transfer operations.

For gas, liquid and solid solubilities in water it is best to draw on envi-
ronmental source books, among which the monumental treatise by Mackay
et al. stands out:

D. Mackay, W.-Y. Shiu, and K.C. Ma. Illustrated Handbook of Physico-
Chemical Properties and Environmental Fate for Organic Chemicals. Vols.
1 to 5, Lewis Publishers, Boca Raton, FL, 1991−1997.

The treatise also reports vapor pressures and bioconcentration factors of the
cited substances.

For vapor−liquid and liquid−liquid equilibria, the reader is referred to the
equally monumental compilations:

D. Behrens and R. Eckermann, Eds. Vapor−Liquid Equilibrium Collection
(25 volumes). Liquid−Liquid Equilibrium Collection (5 volumes).
DECHEMA Chemistry Data Series, DECHEMA, Frankfurt,
1977–1982.
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Equilibria of relevance to supercritical fluid extraction can be found in:

M. McHugh and V. Krukonis. Supercritical Fluid Extraction. 2nd ed.,
Butterworth-Heinemann, Oxford, U.K., 1994.

Compilations of adsorption equilibria appear in:

D.P. Valenzuela and A.L. Myers. Adsorption Equilibria Handbook, Prentice
Hall, Englewood Cliffs, NJ, 1989.

Equilibria involving metals and systems of metals can be found in:

E. Brandes and G.H. Brooks, Eds. Smithell’s Metals Reference Book. 7th
ed., Butterworth-Heinemann, Oxford, U.K., 1992.

Separation Processes

Equilibrium stage separations with emphasis on distillation and gas absorp-
tion, are exhaustively treated in:

E.J. Henley and J.D. Seader. Equilibrium Stage Separation Operations in
Chemical Engineering. John Wiley, New York, 1981.

See also the text on separation processes by the same authors cited above.
The reader will find an up-to-date treatment of distillation in:

J.G. Stichlmair and J.R. Fair. Distillation: Principles and Practice. Wiley/
VCH, New York, 1998.

Treatments of liquid-liquid extraction appear in:

R.E. Treybal. Liquid Extraction. 2nd ed., McGraw-Hill, New York, 1963.
T.C. Lo, M.H.I. Baird, and C. Hanson, Eds. Handbook of Solvent Extraction.

John Wiley, New York, 1983.

and in:

J. Thornton. Science and Practice of Liquid−Liquid Extraction, Vol. 1 and 2.
Oxford University Press, Oxford, U.K., 1992.
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The definitive and up-to-date monographs on membrane separation are:

T. Matsuura. Synthetic Membranes and Membrane Separation Processes.
CRC Press, Boca Raton, FL, 1994.

R.W. Baker. Membrane Technology and Applications. McGraw-Hill, New
York, 2000.

Fundamentals of adsorption, separation, and purification are discussed in
a slim volume by the author:

D. Basmadjian. The Little Adsorption Book. CRC Press, Boca Raton, FL,
1996.

Other

The illustration and practice problems in Chapter 3, which deal with trans-
port in plants, used the following as a source:

P.S. Nobel. Biophysical Plant Physiology and Ecology. W.H. Freeman, San
Francisco, 1987.

See also by the same author:

P.S. Nobel. Physicochemical and Environmental Plant Physiology. Academic
Press, New York, 1999.
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Appendix A1
The D-Operator Method

The basis of the D-operator method consists of replacing the operational part
of a derivative, i.e., d/dx, by the operator symbol D, and treating that symbol
as an algebraic entity. Thus, the second derivative is written in the form

  (A.1)

and in its full form

  (A.2)

where D2y is considered to be the algebraic product of D2 and y. It follows
that the quantity y can be separated from D2y by factoring it out, just as one
would an algebraic quantity. Thus, the ODE

  (A.3)

can be written in the equivalent form

(D2 – 1)y = 0 (A.4)

from which it follows that

D2 – 1 = 0 (A.5)

with the solutions

D1 = 1 D2 = 1 (A.6)

d
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Equation A.5 is termed the characteristic equation of the ODE (Equation A.3)
and its solution (Equation A.6) is referred to as the characteristic roots of the
ODE.

Consider now the general second-order ODE

ay² + by¢ + cy = 0 (A.7)

Then it can be shown that its solution takes the form

y = C1 exp(D1x) + C2 exp(D2x) (A.8)

where D1 and D2 are the characteristic roots of the ODE, i.e., the solutions
of the characteristic equation

aD2 + bD + c = 0 (A.9)

When the roots are complex, the exponential terms in Equation A.8 are
converted to a trigonometric form using Euler’s formula:

eix = cox  x + i sin x (A.10)

We note in addition that the exponential terms can also be expressed in
equivalent hyperbolic form and that, when the roots are identical, one of the
two solutions is premultiplied by x. This follows from the appropriate theory.
Table A.1 summarizes the results.
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Appendix A2
Hyperbolic Functions and ODEs

TABLE A.1

Short Table of Hyperbolic Functions

    

    

TABLE A.2

Solutions of the Second-Order ODE ay²²²² ±±±± by¢¢¢¢ ±±±± cy = 0

Characteristic Roots Solutions

1. Distinct and real
  

or y = C1 sinh D1x + C2 cosh D2x
2. Identical and real y = C1eDx + C2xeDx

3. Imaginary D1,2 = ±bi y = C1 cos bx + C2 sin bx
4. Complex conjugate D1,2 = a ± bi y = eax(C1 cos bx + C2 sin bx)

sinh x
e ex x

= - -

2
tanh

sinh
cosh

x
x
x

=

cosh x
e ex x

= + -

2
coth

cosh
sinh

x
x
x

=

y C e C e
D x D x= +

1 2

1 2
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Subject Index

A
Absorption, see Gas–liquid absorption
Activity coefficients, 229

calculation, from solubilities, 236
prediction, by UNIQUAC equation, 230
variation with concentration, 229

Additivity of resistances
in carbon dioxide uptake by leaf, 119
in diffusion through composite cylinders, 9
in heat transfer, 26
in mass transfer, 26, 35
two-film theory and, 26, 27

Adsorption (see also Percolation processes)
batch, of trace substance, 154
countercurrent cascade for, 265
crosscurrent cascade for, 257
desorption from bed in, 298
efficiency in single stage, 301
Freundlich isotherm for, 241, 306
Henry’s constants for, 204
Langmuir isotherm for, 201
minimum adsorbent inventory in, 260
minimum bed size in, 207
moisture isotherms in, 205
of vinyl chloride monomer, 363
single-stage, 247, 248, 306
Toth isotherm for, 241

Agitated vessels
dissolution time in, 179, 187
efficiency of, 301, 302
mass transfer correlations for, 178

Air–water system
enthalpy of, 355
humidity charts for, 353, 354
in drying operations, 361, 371
in water cooling, 357

Antoine equation, 193
table of constants for, 194

Artificial kidney, see Hemodialyzer
Azeotropes, 231

diagrams for, 233
table of, 234

B
Batch distillation

at constant overhead composition, 291
at constant reflux, 294
differential, 251
Rayleigh equation for, 252
recovery in, 293, 296, 310
separation factors from, 254
total boil-up in, 311

Bioconcentration factor (BCF), 182, 183, 187
Biology, Biomedical engineering, and 

Biotechnology
bioconcentration, 182
blood coagulation, 37
controlled-release devices, 35, 90
diffusion in living cell, 128
diffusivities of biological substances in 

water, 97
drug administration, 86
effective therapeutic concentration (ETC), 

35, 87
hemodialysis, 330, 332, 333, 334, 338, 346, 

347
mass transfer in blood, 23, 185, 334
mass transfer in kidney, 185
mass transfer in leaf, 112, 119
nicotine patch, model for, 153
partition coefficients, 57, 220
pharmacokinetics, 85
protein concentration by ultrafiltration, 

308
toxin uptake and elimination in animals, 

180
vascular grafts, 23, 37

Blood and blood flow
anticoagulant release into, 186
coagulation trigger in, 37
critical vessel diameter in, 185
determination by dye dilution, method of, 

88
hemodialysis of, 330, 332, 333, 334, 338
isotonic solution for, 346
mass transfer between tissue and, 57



384 Mass Transfer: Principles and Applications

mass transfer coefficients in, 23
mass transfer regimes in, 185

osmotic pressure of, 229
Boundary and initial conditions for 

differential equations, 6, 69, 72, 
75, 144, 151

Breathing losses in storage tank, 193
Buckingham p theorem, 166, 168

C
Carbon dioxide

absorption in packed tower, 176
and global warming, 129
caffeine equilibrium in supercritical, 219
compensation of emissions by plant life, 

120
emission from car, 120
in carbonation of soft drink, 197
in supercritical extraction of caffeine, 218
net global emissions of, 129
removal from natural gas of, 347
uptake by leaves, 119

Casting of alloys
microsegregation in, 73
modeling of, 75
Rayleigh’s equation in, 78

Catalyst pellet
design of, 143
diffusivity in, 115
effectiveness factor for, 147, 365
Raschig Ring form of, 154
reaction and diffusion in, 7, 143
temperature effect on performance of, 

154, 365, 371
Coffee decaffeination, 218, 324
Compartments, 40, 241

in animals and humans, 51, 85, 187
in environment, 220

Concentration polarization
Brian’s equation for, 335
in alloy casting, 73
in electrorefining, 98
in membrane separation, 332
in reverse osmosis, 335

Conduction of heat, 2, 3
Conservation laws

continuity equation, 80, 89
generalized vectorial of mass, 79

Continuous-contact operations
distillation, 322
gas absorption, 53, 314
liquid extraction, 322, 345
membrane processes, 326
minimum solvent requirement in, 317

supercritical fluid extraction, 324
water cooling, 357

Controlled-release drug delivery, 35, 90, 186
Cooling tower

design equation for, 361
operating diagram for, 359

D
D’Arcy’s law, 2
Dialysis, 330, 331
Diffusion

and Fick’s law, 2
and reaction, in liquids, 140, 143, 150, 155
and reaction, in solids, 88, 89, 140, 144
equimolar counter, 18
from sources, 123
from spherical cavity, 8, 10
from well-stirred solution, 89, 138
in animal tissue, 139
in catalysts, 115, 141, 145
in cylinder, 136
in gases, 91, 117
in gas–solid reactions, 142
in hollow cylinder, 8
in leaves, 112, 119
in liquids, 95
in metals, 102
in plane sheet or slab, 67, 136
in polymers, 102
in porous media, 110, 115, 145
in semi-infinite medium, 83, 124, 125, 133, 

135
in solids, 101
in sphere, 35
mechanisms of, 92, 95, 101, 102, 111
of dopant in silicon chip, 117
of solids in solids, 116, 120
steady-state multidimensional, 81
through stagnant film, 18, 34
transient, 121, 133

Diffusivities
effective, in porous media, 110, 115, 302
equations for, 93, 96
in air, 92
in liquids, 95, 217
in metals, 96
in molten salts, 96
in polymers, 105, 118
in solids, 106, 116
in supercritical fluids, 217
in water, 97, 118
Knudsen, 111, 118

Dimensional analysis, 166
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Dimensionless groups for mass and heat 
transfer, 159

Dissolution of solids, 179, 187
Distillation

at total reflux, 322
batch (differential), 62, 251
batch-column, 290
construction of trays for, 266
continuous fractional, 273
effect of feed and reflux on, 310
Fenske equation for, 289
effect of open stream, 310
isotope, 288, 345
McCabe–Thiele diagrams for, 276, 278, 

280, 285, 292
minimum number of trays for, 282, 284
minimum reflux for, 282, 284, 286
O’Connell’s correlation for tray 

efficiencies, 300
packed-column, 322
packing for, 174
recovery in, 288, 292, 293, 296, 310
steam, 242

Distribution coefficients in liquid–liquid 
equilibria, 213

D-operator method, 379
Driving force

linear, 3, 5, 34
overall, 27

Drying
air supply for, 262, 371
freeze, 155
of carbon bed, 362
of plastic sheets, 172
periods, 362
time of, 88, 362
with air blower, 31

E
Effective therapeutic concentration (ETC), 35, 

87
Effectiveness factors for catalyst particles, 

115, 141
derivation, 147
plot as function of Thiele modulus, 147
use in design of catalysts, 147

Electrorefining of copper
model, 100
size of plant, 118

Emissions
concentration histories and profiles, 127
continuous, 124
effect of wind on, 131
from chimney, 153

from embedded sources, 10, 83, 84, 90
from plane source, 124
from point source, 123, 128
from solvent spill, 153
from storage tank, 196
instantaneous, 124, 128
into infinite medium, 123, 126
into semi-infinite medium, 125, 128
net global carbon dioxide, 129
table of solutions for concentrations of, 

124
Enhancement factor in gas–liquid mass 

transfer with reaction, 152, 156
Environmental topics (see also Emissions)

adsorption of pollutants in carbon bed, 
205, 311, 362

attenuation of mercury pollution of water 
basin, 254

bioconcentration factors for toxins, 183
carbon dioxide uptake by plant life, 119
clearance of river bed and soils, 87, 299
DDT uptake by fish, 222
discharge of plant effluent into river, 200
evaporation of pollutant from mist over 

Niagara Falls, 311
evaporation of pollutant from water 

basin, 42, 242, 254
global warming, 112, 120, 129
Henry’s constants for adsorption of 

pollutants onto soil, 209
mass transfer between oceans and 

atmosphere, 36
mass transfer in leaf, 112
octanol–water partition coefficient, 221
partitioning, 220, 225
pollutant release from buried dumps, 83, 

84
pollutant release from groundwater onto 

soils, 208
reaeration of river, 47
uptake and clearance of toxins in animals, 

180
Error function

table of numerical values of, 126
table of properties of, 126

ETC, see Effective therapeutic concentration
Eutectic, 89

F
Fenske equation, 289
Fermi problems, 31, 33, 117
Fick’s equation, 67, 121, 131
Fick’s law, 2
Film theory, 14, 24



Film thickness
effective, 14, 35
estimation of, 22
in entry region, 162, 164

Fish
bioconcentration in, 183
uptake of toxin by, 183, 221
water intake by, 239

Fourier’s law, 2
Freeze-drying of food, 155

G
Gas–liquid absorption, Gas scrubbing

adiabatic, 369
countercurrent, continuous contact, 314
countercurrent, staged, 265
countercurrent, with linear equilibrium, 

270, 309
design of packed columns for, 317
diameter for packed column, 187
Henry’s constants for, 197
HETP for, 176
Kremser equation for staged and linear 

equilibrium, 270
mass balances in, 53
mass transfer coefficients for packings 

used in, 175
minimum solvent requirements in, 267, 

317
NTUs for linear equilibrium, 320, 321
O’Connell’s correlation for plate 

efficiencies in, 300
operating diagram for countercurrent, 

267, 317, 321
optimum packing size for, 345
optimum solvent flow rate for, 319
trays for, 266
use of reactive solvent in, 151

Gas–solid reactions and diffusion, 142
Glueckauf equation, 302
Gradient-driven processes, 2, 33
Graetz problem for mass transfer, 70, 81

H
Hatta number, 152
Heat exchangers, 88, 338
Heat transfer

additivity of resistances in, 26
analogy to mass transfer, 14, 28, 159, 338
convective, 3, 16, 26, 159

Helium, underground storage of, 10, 84
Hemodialyzer, 330, 332

analogy to external heat exchange, 341

calculation of performance, 338, 346, 347
mass transfer coefficient for, 341

Henry’s constants
for absorption equilibria, 197
for adsorption from water onto soil, 209
for gas–water equilibria, 197
in Langmuir isotherm, 203

Henry’s law, 196
HETP (height equivalent to a theoretical 

plate), 176, 290
estimation of, 176

HETS (height equivalent to a theoretical 
stage)

in coffee decaffeination, 325
HTU (height of a transfer unit), 316, 345, 361
Humidity

absolute, 353, 356
and humid heat, 355
and humid volume, 355, 357
charts, 353, 354
relative, 354

I
Ice, evaporation of, 155
Ideal solutions, 226

Raoult’s law for, 226
table of separation factors for, 235

Intalox Saddles, 174, 175
Ion-exchange (see also Percolation processes)

Efficiency of column, for linear 
equilibrium, 305

equilibrium isotherm for, 241
minimum bed size for, 311
structure of resins for, 239

Isotonic solution, 346
Isotopes

CH4–CH3D, 236
C12O–C13O, 288
distillation of, 288, 345
H2O–HDO, 235, 241
separation factors for, 235
use of Fenske equation in distillation of, 

288

K
Kremser or Kremser–Souders–Brown 

equation, 269, 272

L
Laminar boundary layer, 13
Laminar flow
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entry (Lévêque) region for mass transfer 
in, 162, 185

fully developed region for mass transfer 
in, 162, 185

mass transfer coefficients for, 162, 164
release of a substance into, 70, 80

Langmuir isotherm, 201
Laplace’s equation, 81
Leaching

countercurrent staged, 270
Kremser equation for stage calculations 

in, 272
of oil-bearing seeds, 140, 307
of ore, 154
phase diagram for staged, 308

Lewis relation, 353
Linear driving force, 3, 16
Linear phase equilibria

countercurrent cascades of systems with, 
267, 309

gas scrubbing in systems with, 272
Kremser equation for staged operations 

with, 270
minimum solvent or adsorbent inventory 

for crosscurrent cascades with, 
260

NTUs for systems with, 320, 321
Liquid–liquid extraction

calculations in triangular diagram for, 
213, 249, 263

continuous contact with linear 
equilibrium, 345

countercurrent cascade for, 270, 309
crosscurrent cascade for, 261, 263
distribution coefficients for, 213
efficiency in, 301
Kremser equation, use in, 270
minimum solvent inventory in, 260
operating diagrams for, 249, 263
phase equilibria, for, 210, 212, 213, 241
single-stage, 249

Log-mean differences, 9, 17, 34
Loop of Henle, 185

M
Mass balances

classification of, 49, 51
cumulative, 51, 62, 76, 135, 293, 295
differential, 50
integral, 50, 53
setting up of, 39, 53
steady-state, 41, 53
unsteady, 41, 50, 53
unsteady differential, 51, 67

Mass transfer
analogies with heat transfer, 14, 28, 73, 

185, 340, 341
by diffusion, see Diffusion
convective, 15, 70, 87
driving force for, 15
film theory for, 15
rate laws for, 2, 3
resistance to, 3
simultaneous with heat transfer, 349

Mass transfer coefficients
conversion of, 17, 21
definitions of, 17
estimation of, 22, 31
film, 15
for adsorption, 302
for column packings, 175
in agitated vessels, 177
in blood flow, 23, 185, 334
in kidney, 185
in laminar flow around simple 

geometries, 163
in laminar tubular flow, 162, 164
in membrane processes, 35, 334
in toxin uptake and clearance in animals, 

183
in turbulent flow around simple 

geometries, 171, 172
in turbulent tubular flow, 171
overall, 25
units of, 16, 21
volumetric, 48, 55, 177, 181
Materials science topics
binary liquid–solid equilibria, 74, 78, 89
casting of alloys, microsegregation in, 73
diffusion in metals and molten salts, 96, 

106, 116, 120
diffusion in polymers, 102, 105, 118
doping of silicon chips, 117, 154
eutectic, 89
gas–solid reaction with diffusion, 142
membranes, separation by, 326
membranes, structure of, 327
Sievert’s law, 106
transformer steel, manufacture of, 138

McCabe–Thiele diagram
in batch fractionation, 292
in continuous fractionation, 285
location of feed plate in, 286
minimum number of plates from, 284
minimum reflux ratio from, 284
q-line in, 283

Membranes
asymmetric, 327
hollow-fiber, 328
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Loeb–Sourirajan, 326
permeabilities in, 334
spiral-wound, 328, 329
structure of, 327

Membrane gas separation, 330
nitrogen production by, 344
pressure ratio, 342
pressure ratio limited, 343
selectivity, 342
selectivity limited, 344

Membrane processes, 326
for removal of CO2 from natural gas, 347
hollow-fiber dimensions for, 333
mass transfer coefficients for, 334
table of, 328

Models, information from, 64
Moisture adsorption isotherms, 205
Momentum transport, 5
Moving boundary problems

and freeze-drying of food, 155
and reacting particle, 142
shrinking core model for, 148

N
Newton’s viscosity law, 2, 5
NTU (number of transfer units), 316, 345, 361

plot for calculation of, 321

O
O’Connell’s correlations for tray efficiencies, 

300
Ohm’s law, 3, 12
Operating diagrams

for continuous contact operations, 317, 
345

for countercurrent cascades, 267
for crosscurrent cascades, 260, 263
for fractionation (McCabe–Thiele), 276, 

278, 280, 286, 292
for percolation processes, 298
for single-stage operations, 247, 250
for supercritical extraction, 324

Osmosis, 331
equation for, 3

Osmotic pressures, table of, 330

P
Packaging materials, design of, 108, 118, 120
Packings for packed-column operations, 174
Pall Rings, 174, 175, 176
Partial differential equations

how to avoid, 57, 60, 73, 142, 155, 336, 340

setting up of, 66
vectorial form of, 79

Partitioning
blood-tissue, 57
in biology and environment, 220, 241, 255
octanol–water partition as measure of, 

221
Peclet number, 159, 170, 336, 338, 345
Percolation processes, 296

as staged operation, 296
bed size for, actual, 305
bed size for, minimum, 207, 305, 311
efficiency of, 305
in adsorption from groundwater onto 

soil, 298
in clearance of soils and river beds, 298
parameters for design and analysis of, 303

Permeability, 61, 103, 334
Phase diagrams

for binary liquid–solid systems, 74
for binary vapor–liquid systems, 225, 228, 

233
for liquid–liquid systems, 209, 241
for pure substances, 191
in triangular coordinates, 212
lever rule in, 213, 226

Pharmacokinetics, 85
Phase equilibria

binary liquid–solid, 74, 78 
binary vapor–liquid, 224
fluid–solid, 201
gas–liquid, 196
Henry’s constants for, 196, 197, 209, 230
in supercritical CO2, 217, 219, 324
liquid–liquid, 209, 241
of water vapor on adsorbents, 201

Phase rule, 222
Photosynthesis, 119
Poiseuille equation, 2
Pollutants

adsorption onto soils, 208
clearance from river beds and soils, 299
emissions from sources, equations for, 124
evaporation from water basins, 42, 237, 

254
removal by adsorption in carbon beds, 

205, 311, 362
solubilities in water of, 199

Psychrometric charts, 353, 354
Psychrometric ratio, 352

Q
Quasi-steady-state assumption, 57, 60, 142, 

155, 340
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R
Raoult’s law, 226
Raschig Rings, 154, 174
Rate laws, tables of, 2, 3
Rayleigh equation

determination of separation factor from, 
254

in batch distillation, 252
in casting of alloys, 78
in environment, 254
in ultrafiltration, 308

Reactive solvent, selection of, 151
Reflux ratio, 278
Relative volatility, see Separation factors
Reverse osmosis (RO)

concentration polarization in, 335
effect of pressure in, 346
effect of salinity in, 346
flux Peclet number for, 336, 338
hollow-fiber modules, 329
mass transfer coefficients for, 334
production rates of water by, 338
simple design equation for, 336

S
Schmidt number, 158
Sea water

desalination of, 328, 336
osmotic pressure of, 230
sea salt from, 239

Separation factors (relative volatility), 232
effect of total pressure on, 236
for ideal solution, 235, 241
for liquid–solid systems, 79
table of, 235

Shape factors in 3-D diffusion, 83, 84
Shear rate, 185
Shear stress, 5
Sherwood number, 158, 159, 171, 178, 347
Sievert’s law, 106
Silicon

diffusivity in solids, 116
doping of chips, 117, 154
use in manufacture of transformer steel, 

138
Solubilities of liquids and solids in water, 

table of, 199
Solubility of gases in water, table of, 197
Solution mining, 186
Stage efficiencies, 299

in adsorption, 301
in distillation, 301
in gas–liquid absorption, 300

in liquid–liquid extraction, 301
in percolation processes, 304

Staged operations, 243
co-current, 244

countercurrent, 244, 264
crosscurrent, 244, 257, 263
differential, 251
efficiencies of, 244
single-stage, 245, 249
with linear equilibria, 260

Stanton number, 158, 170
Supercritical fluid (SCF), 215

caffeine extraction with, 219, 324
carbon dioxide as, 217
diffusivities in, 217
equilibrium relation, for caffeine 

extraction with, 219, 241
region of existence, 216
solubility of naphthalene in, 217

Supercritical fluid extraction (SCE), 192, 210, 
215

applications, 216
decaffeination by, 219, 324
operating diagram for, 324
plant, at Houston, Texas, 218
size of extraction vessel, 218

T
Temperature

adiabatic saturation, 352, 356
critical, 191
dew-point, 355, 356
dry-bulb, 350
effect on catalyst effectiveness factor, 365
effect on gas absorption, 368
maximum in catalyst pellet, 371
wet-bulb, 350, 356

Thiele modulus, 146
Triangular diagram, 209, 212
Turbulent flow

mass transfer coefficients in, 171, 172
Two-film theory, 24

U
Ultrafiltration, 332, 334

protein concentration by, 308

V
van’t Hoff equation, 336
Vector operators

in formulation of conservation laws, 79
table of, 82
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W

Washing of granular solids, 309
Water purification

by activated carbon, 205, 311
by ion-exchange, 240, 311
by reverse osmosis, 331, 334, 336

Z
Zero gradients, 6




