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PREFACE TO SECOND EDITION

IN preparing this second edition I have tried to incorporate as much new
material as possible but to preserve the character of the original volume.
The book contains a collection of mathematical solutions of the differential
equations of diffusion and methods of obtaining them. They are discussed
against a background of some of the experimental and practical situations
to which they are relevant. Little mention is made of molecular mechanisms,
and I have made only fleeting excursions into the realms of irreversible
thermodynamics. These I hope are self-explanatory. A number of general
accounts of the subject are already available, but very few mathematical
solutions of the equations of non-equilibrium thermodynamics have been
obtained for practical systems.

During the last 15-20 years the widespread occurrence of concentration-
dependent diffusion has stimulated the development of new analytical and
numerical solutions. The time-lag method of measuring diffusion coefficients
has also been intensively investigated and extended. Similarly, a lot of
attention has been devoted to moving-boundary problems since the first
edition was published. These and other matters have now been included by
extensive revision of several chapters. Also, the chapter dealing with the
numerical solution of the diffusion equations has been completely rewritten
and brought up to date. It seems unbelievable now that most of the calcula-
tions in the first edition were carried out on desk calculating machines.

Two entirely new chapters have been added. In one are assembled some of
the mathematical models of non-Fickian or anomalous diffusion occurring
mainly in solvent-polymer systems in the glassy state. The other attempts a
systematic review of diffusion in heterogeneous media, both laminates and
particulates. A succession of improved solutions are described to the problem
of diffusion in a medium in which are embedded discrete particles with
different diffusion properties.

I have resisted the temptation to lengthen appreciably the earlier chapters.
The enlarged edition of Carslaw and Jaeger's book Conduction of heat in
solids contains a wealth of solutions of the heat-flow equations for constant
heat parameters. Many of them are directly applicable to diffusion problems,
though it seems that some non-mathematicians have difficulty in makitfg
the necessary conversions. For them I have included a brief 'translator's
guide'. A few new solutions have been added, however, some of them in the
context in which they arose, that is the measurement of diffusion coefficients.

I should like to express my appreciation to the Vice Chancellor and
Council of Brunei University for so readily agreeing to my application for
extended leave without which I could not have undertaken the preparation of
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a second edition. I am deeply grateful to my academic colleagues who shared
my administrative responsibilities and particularly to Professor Peter
Macdonald who so willingly and effectively assumed the role of Acting Head
of the School of Mathematical Studies.

I am most grateful to Mrs. Joyce Smith for all the help she gave me, not
least by typing the manuscript and checking the proofs. Mr. Alan Moyse
kept me well supplied with the seemingly innumerable books, journals, and
photostat copies which I requested.

I owe a great deal to friendly readers who have pointed out mistakes in the
first edition and made helpful suggestions for the second. In particular I
have benefited from discussions with my friend and former colleague, Dr.
Geoffrey Park. I had an invaluable introduction to the literature on which
Chapter 12 is based from Mr. W. M. Woodcock, who came to me for help
but, in fact, gave far more than he received. Finally, I have appreciated the
understanding help and guidance afforded me by members of staff of the
Clarendon Press.

Uxbridge J. C.
October 1973
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PREFACE

A MORE precise title for this book would be 'Mathematical solutions of
the diffusion equation', for it is with this aspect of the mathematics of
diffusion that the book is mainly concerned. It deals with the description of
diffusion processes in terms of solutions of the differential equation for
diffusion. Little mention is made of the alternative, but less well developed,
description in terms of what is commonly called 'the random walk', nor are
theories of the mechanism of diffusion in particular systems included.

The mathematical theory of diffusion is founded on that of heat conduction
and correspondingly the early part of this book has developed from 'Con-
duction of heat in solids' by Carslaw and Jaeger. These authors present many
solutions of the equation of heat conduction and some of them can be applied
to diffusion problems for which the diffusion coefficient is constant. I have
selected some of the solutions which seem most likely to be of interest in
diffusion and they have been evaluated numerically and presented in graphi-
cal form so as to be readily usable. Several problems in which diffusion is
complicated by the effects of an immobilizing reaction of some sort are also
included. Convenient ways of deriving the mathematical solutions are
described.

When we come to systems in which the diffusion coefficient is not constant
but variable, and for the most part this means concentration dependent, we
find that strictly formal mathematical solutions no longer exist. I have tried
to indicate the various methods by which numerical and graphical solutions
have been obtained, mostly within the last ten years, and to present, again in
graphical form, some solutions for various concentration-dependent
diffusion coefficients. As well as being useful in themselves these solutions
illustrate the characteristic features of a concentration-dependent system.
Consideration is also given to the closely allied problem of determining the
diffusion coefficient and its dependence on concentration from experimental
measurements. The diffusion coefficients measured by different types of
experiment are shown to be simply related. The final chapter deals with the
temperature changes which sometimes accompany diffusion.

In several instances I have thought it better to refer to an easily accessible
book or paper rather than to the first published account, which the reader
might find difficult to obtain. Ease of reference usually seemed of primary
importance, particularly with regard to mathematical solutions.

I should like to express my thanks to my friend and colleague, Mr. A. C.
Newns, who read the typescript and made many valuable comments and
suggestions, and also to Mrs. D. D. Whitmore, who did most of the calcula-
tions and helped to correct the proofs and compile the index. I am grateful
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to Miss D. Eldridge who, by patient and skilful typing, transformed an almost
illegible manuscript into a very clear typescript for the printer. I should also
like to thank the following who readily gave permission to use material from
various publications: Professor R. M. Barrer, Mr. M. B. Coyle, Dr. P. V.
Danckwerts, Dr. L. D. Hall, Dr. P. S. H. Henry, Professor J. C. Jaeger, Dr.
G. S. Park, Dr. R. H. Stokes, Dr. C. Wagner, and the publishers of the
following journals, British Journal of Applied Physics, Journal of Chemical
Physics, Journal of Metals, Journal of Scientific Instruments, Philosophical
Magazine, Proceedings of the Physical Society, Transactions of the Faraday
Society. Finally, it is a pleasure to thank those members of the staff of the
Clarendon Press who have been concerned with the production of this book
for the kindness and consideration they have shown to me.

Maidenhead J. C.
December 1955
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THE DIFFUSION EQUATIONS

1.1. The diffusion process

DIFFUSION is the process by which matter is transported from one part of a
system to another as a result of random molecular motions. It is usually
illustrated by the classical experiment in which a tall cylindrical vessel has
its lower part filled with iodine solution, for example, and a column of clear
water is poured on top, carefully and slowly, so that no convection currents
are set up. At first the coloured part is separated from the clear by a sharp,
well-defined boundary. Later it is found that the upper part becomes coloured,
the colour getting fainter towards the top, while the lower part becomes cor-
respondingly less intensely coloured. After sufficient time the whole solution
appears uniformly coloured. There is evidently therefore a transfer of iodine
molecules from the lower to the upper part of the vessel taking place in the
absence of convection currents. The iodine is said to have diffused into the
water.

If it were possible to watch individual molecules of iodine, and this can be
done effectively by replacing them by particles small enough to share the
molecular motions but just large enough to be visible under the microscope,
it would be found that the motion of each molecule is a random one. In a
dilute solution each molecule of iodine behaves independently of the others,
which it seldom meets, and each is constantly undergoing collision with sol-
vent molecules, as a result of which collisions it moves sometimes towards a
region of higher, sometimes of lower, concentration, having no preferred
direction of motion towards one or the other. The motion of a single molecule
can be described in terms of the familiar 'random walk' picture, and whilst it is
possible to calculate the mean-square distance travelled in a given interval of
time it is not possible to say in what direction a given molecule will move in
that time.

This picture of random molecular motions, in which no molecule has a
preferred direction of motion, has to be reconciled with the fact that a transfer
of iodine molecules from the region of higher to that of lower concentration
is nevertheless observed. Consider any horizontal section in the solution and
two thin, equal, elements of volume one just below and one just above the
section. Though it is not possible to say which way any particular iodine
molecule will move in a given interval of time, it can be said that on the
average a definite fraction of the molecules in the lower element of volume
will cross the section from below, and the same fraction of molecules in the
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upper element will cross the section from above, in a given time. Thus, simply
because there are more iodine molecules in the lower element than in the
upper one, there is a net transfer from the lower to the upper side of the section
as a result of random molecular motions.

1.2. Basic hypothesis of mathematical theory

Transfer of heat by conduction is also due to random molecular motions,
and there is an obvious analogy between the two processes. This was recog-
nized by Fick (1855), who first put diffusion on a quantitative basis by
adopting the mathematical equation of heat conduction derived some years
earlier by Fourier (1822). The mathematical theory of diffusion in isotropic
substances is therefore based on the hypothesis that the rate of transfer of
diffusing substance through unit area of a section is proportional to the
concentration gradient measured normal to the section, i.e.

F = -DdC/dx, (1.1)

where F is the rate of transfer per unit area of section, C the concentration of
diffusing substance, x the space coordinate measured normal to the section,
and D is called the diffusion coefficient. In some cases, e.g. diffusion in dilute
solutions, D can reasonably be taken as constant, while in others, e.g. diffusion
in high polymers, it depends very markedly on concentration. If F, the
amount of material diffusing, and C, the concentration, are both expressed
in terms of the same unit of quantity, e.g. gram or gram molecules, then it is
clear from (1.1) that D is independent of this unit and has dimensions (length)2

(time)"*, e.g. cm2 s~ *. The negative sign in eqn (1.1) arises because diffusion
occurs in the direction opposite to that of increasing concentration.

It must be emphasized that the statement expressed mathematically by
(1.1) is in general consistent only for an isotropic medium, whose structure
and diffusion properties in the neighbourhood of any point are the same
relative to all directions. Because of this symmetry, the flow of diffusing sub-
stance at any point is along the normal to the surface of constant concentration
through the point. As will be seen later in § 1.4 (p. 5), this need not be true
in an anisotropic medium for which the diffusion properties depend on the
direction in which they are measured.

1.3. Differential equation of diffusion

The fundamental differential equation of diffusion in an isotropic medium
is derived from eqn (1.1) as follows.

Consider an element of volume in the form of a rectangular parallelepiped
whose sides are parallel to the axes of coordinates and are of lengths
2 dx, 2 dy, 2 dz. Let the centre of the element be at P(x, y, z), where the
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concentration of diffusing substance is C. Let ABCD and A'B'C'D' be the
faces perpendicular to the axis of x as in Fig. 1.1. Then the rate at which
diffusing substance enters the element through the face ABCD in the plane
x — dx is given by

4dydz '•-£*•>•
where Fx is the rate of transfer through unit area of the corresponding plane
through P. Similarly the rate of loss of diffusing substance through the face
A'B'C'D' is given by

4dydz
dx

dx

A"* 2dx A

FIG. 1.1. Element of volume.

B , 4djdz( / ;+ |£ -dx)

The contribution to the rate of increase of diffusing substance in the element
from these two faces is thus equal to

-Sdxdydz
8F,
dx'

Similarly from the other faces we obtain

— 8dxdydz —— and — I
dy dz

But the rate at which the amount of diffusing substance in the element
increases is also given by

dC

dt '

and hence we have immediately

d£ dF, dFy dj^

dt dx dy dz
(1.2)
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If the diffusion coefficient is constant, Fx, Fy,Fz are given by (1.1), and (1.2)
becomes

dc ld2c d2c d2c
D +dt \dx2 dy2 dz2

reducing simply to

dt dx2

(1.3)

(1-4)

if diffusion is one-dimensional i.e. if there is a gradient of concentration only
along the x-axis. Expressions (1.1) and (1.4) are usually referred to as Fick's
first and second laws of diffusion, since they were first formulated by Fick
(1855) by direct analogy with the equations of heat conduction.

In many systems, e.g. the interdiffusion of metals or the diffusion of organic
vapours in high-polymer substances, D depends on the concentration of
diffusing substance C. In this case, and also when the medium is not homo-
geneous so that D varies from point to point, eqn (1.2) becomes

dt dx\ dxj dyd
0£\ A
d J ddy J dz dz

where D may be a function of x, y, z, and C.
If D depends on the time during which diffusion has been taking place

but not on any of the other variables, i.e.

D = f(t\

then on introducing a new time-scale T such that

the diffusion equation becomes

dC _ d2C d2C d2C

which is the same as (1.3) for a constant diffusion coefficient equal to unity.

1.3.1. Diffusion in a cylinder and sphere

Other forms of the above equations follow by transformation of co-
ordinates, or by considering elements of volume of different shape. Thus by
putting

x = r cos 6,

y = r sin 8,

or by considering an element of volume of a cylinder of sides dr, r d0, dz,
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we obtain the equation for diffusion in a cylinder,

8C
~dt

. 3C
88

D 8C
7~d~e

8_

~8~z
(1.7)

in terms of the cylindrical coordinates r, 0, z. The corresponding equation
for a sphere in terms of spherical polar coordinates r, 0, 0 is obtained by
writing

x = r sin 6 cos 0,

j ; = r sin 0 sin 0,

z = r cos 0,

or by considering an element of volume of a sphere of sides dr, r d#, r sin
It is

1 3C

sin

D d2C
sin20 ^ • d-8)

The simplified forms of (1.7) and (1.8) for purely radial diffusion, e.g. in a long
cylinder where end effects are negligible or in a spherically symmetrical
system, are given in Chapters 5 and 6, where some solutions of the differential
equations are to be found. All these diffusion equations can be expressed in
terms of the nomenclature of vector analysis as

dC
— = div (D grad C).
ct

1.4. Anisotropic media

Anisotropic media have different diffusion properties in different directions.
Some common examples are crystals, textile fibres, and polymer films in
which the molecules have a preferential direction of orientation. For such
media it is not always true, as was stated in § 1.2 (p. 2) for isotropic media,
that the direction of flow of diffusing substance at any point is normal to the
surface of constant concentration through the point. This means that (1.1)
must be replaced in general by the assumptions

dC dC

8C 8C

Fz =

21~8~x~ +

8C

21~dy

8C
32Ty

dC
(1.9)
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so that Fx, for example, depends not only on dC/dx but also on dC/dy and
dC/dz. The Ds have the significance that D13 dC/dz, for example, is the con-
tribution to the rate of transfer in the x-direction due to the component of
concentration gradient in the z-direction. Substituting from (1.9) for the
Fs in (1.2) we obtain

dc „ d2c ^ d2c n d2c ,n „ x d2c

if the Ds are taken as constant. The extension to non-constant Ds is obvious
from (1.5). A transformation to rectangular coordinates £, rj9 C, can be found
which reduces (1.10) to

— - D — D — D— (111)

This is the same transformation as that by which the ellipsoid

+ (Di2 + D21)xy = constant (1.12)

is reduced to

D1£
2 + D2ti

2+D3C
2 = constant. (1.13)

The new axes may be called the principal axes of diffusion and Dx, D2, D3 the
principal diffusion coefficients. If we make the further transformation

. (1.14)

where D may be chosen arbitrarily, (1.11) becomes

dC
(1.15)

This has the same form as eqn (1.3) for isotropic media, and hence certain
problems in anisotropic media can be reduced to corresponding problems in
isotropic media. Whether or not this can be done in a given case depends on
the boundary conditions. Thus it is possible when the medium is infinite, or
when it is bounded by planes perpendicular to the principal axes of diffusion
so that the boundary conditions are of the familiar form C = constant,
£, = 0, £ = /, t > 0, for example, and similarly for Y\ and (. The problem of
diffusion into an anisotropic cylinder which has its axis along £ and is bounded
by planes perpendicular to £, reduces to the corresponding problem in an
isotropic cylinder provided D2 = D3.
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Certain properties deduced by Carslaw and Jaeger (1959, p. 46) indicate
the physical significance of the ellipsoid and also of the principal axes
of diffusion. Thus it can be shown that the square of the radius vector of the
ellipsoid in any direction is inversely proportional to the diffusion coefficient
normal to the surfaces of constant concentration at points where their
normals are in that direction. Hence the diffusion coefficient Dn at right angles
to surfaces whose normals have direction cosines /, m, n relative to the princi-
pal axes of diffusion is given by

Dn = l2D1+m2D2 + n2D3. (1.16)

Carslaw and Jaeger further show that if there is symmetry about the planes
{ = 0 and t] = 0, then the general relationships (1.9) for the Fs reduce to

- F 4 = D, dC/d^ -Fn = D2 dC/dn, - F c = D3 dC/dC. (1.17)

This simplification also occurs for other types of crystallographic symmetry.
It means that the flow through a surface perpendicular to a principal axis of
diffusion is proportional simply to the concentration gradient normal to the
surface as is the case for isotropic media.

1.4*1. Significance of measurements in anisotropic media

Since in the majority of experiments designed to measure a diffusion
coefficient the flow is arranged to be one-dimensional, it is worth while to
see how such measurements are affected by anisotropy. If the diffusion is
one-dimensional in the sense that a concentration gradient exists only along
the direction of x, it is clear from (1.10), since both C and dC/dx are everywhere
independent of y and z, that the diffusion is governed by the simple equation

8C d2C

and D n is the diffusion coefficient measured. If the direction of diffusion is
chosen to be that of a principal axis, then Dllis equal to one or other of the
principal diffusion coefficients Dl9 D2, or D3 . Otherwise the coefficient
^ u = Ai> related to Dl9 D2 , D3 , by (1.16) is measured. This would be
measured, for example, by an observation of the rate of flow through a plane
sheet of a crystal cut so that its normal has direction cosines (/, m, n) relative
to the principal axes of diffusion of the crystal. Similar remarks apply to a
high polymer sheet in which there is both uniplanar and undirectional
orientation, i.e., the molecules are arranged with their long axes lying mainly
parallel to the plane of the sheet and all parallel to one direction in that plane.
The principal axes of diffusion of such a sheet will be normal to the plane
sheet, and along and perpendicular to the preferred direction of orientation
in that plane. Even if a concentration gradient exists in one direction only,
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it is clear from (1.9) and (1.15) that the diffusion flow is not along this direction
unless it coincides with a principal axis of diffusion.

1.4.2. Conversion of heat flow to diffusion solutions

Carslaw and Jaeger (1959) and other books contain a wealth of solutions
of the heat-conduction equation. There is general awareness among scientists
and engineers that the phenomena of heat flow and diffusion are basically the
same. Nevertheless, many non-mathematicians experience difficulty in
making the changes of notation needed to transcribe from one set of solutions
to the other. In this section we examine in detail the correspondence between
the physical parameters, the variables, and the equations and boundary
conditions which occur in heat-flow and diffusion problems. We take the
one-dimensional case with constant properties as an illustration.

(i) The equations. Diffusion theory is based on Fick's two equations (1.1)
and (1.4), where C is the concentration of diffusant expressed, say, in mass per
unit volume, and D is the diffusion coefficient. The two corresponding equa-
tions in heat flow are

F = -KdO/dx, (1.19)

ot \cp ox

where 0 is temperature, K is the heat conductivity, p is density, and c specific
heat, so that pc is the heat capacity per unit volume. The space coordinate is
x and t is time. In (1.19), F is the amount of heat flowing in the direction of x
increasing per unit time through unit area of a section which is normal to the
direction of x.

(ii) Variables and parameters. In order that the two sets of equations should
correspond we may identify concentration C with temperature 0, and take
D = Kin (1.1) and (1.19) and D = K/(cp) in (1.4) and (1.20). The two together
mean cp = 1. This is a consequence of our having identified C with 0. The
'diffusing substance' in heat flow is heat not temperature. The factor cp is
needed to convert temperature to the amount of heat per unit volume; but
concentration is, by definition, the amount of diffusing substance per unit
volume and so no conversion factor is needed, i.e. cp = 1. It is usual to write
K/(cp) = k, the heat diffusivity. All three of K, /c, cp appear in heat-flow
equations, and to convert to diffusion terms we take

D = K = k and cp = 1. (1.21)

(iii) Boundary conditions, (a) Prescribed surface temperature corresponds
to prescribed concentration just within the surface, say of a plane sheet.
If the surface is in contact with a vapour at pressure p, there is some relation
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between p and C such as C = Sp, where 5 is the solubility. There is no ana-
logue to S in heat flow.

(b) Prescribed heat flux corresponds to flux of diffusant and we have

- K dO/dx = F(t), in heat, (1.22a)

- D dC/dx = F(t\ in diffusion, (1.22b)

where F is in general a known function of time but may be constant.
(c) A heat-insulated surface corresponds to an impermeable surface and is

the special case of (1.22a, b) with F = 0, i.e.

dC/dx = d9/dx = 0.

(d) What is referred to as a 'radiation boundary condition' in heat flow
usually means that the heat flux across unit area of the surface is proportional
to the difference between the surface temperature 0s and the temperature 90

of the outside medium, i.e. is given by H(9S — 60). But the rate of heat loss from
unit area of a surface is — K d6/dn in the direction of the normal n, measured
away from the surface, so that the boundary condition is

i.e.

where h = H/K. Sometimes this is referred to as Newton's law of cooling.
It corresponds to surface evaporation in diffusion, and we have

where a = h = H/D.
If the surface is perpendicular to the x-direction, as an example, dC/dn =

dC/dx if n is along the direction of x increasing but dC/dn = —dC/dx if
along x decreasing. Thus for a slab between x = 0 and x = 1 we have

dc/dx + <x(Cs-C0) = 0, x = 1,

but

- dc/dx + a(Cs - Co) = 0, x = 0.

(e) A perfect conductor of heat is always at a uniform temperature and so is
equivalent in this respect to a well-stirred fluid. Thus, a boundary condition
describing thermal contact with a perfect conductor also describes diffusion
of solute from a well-stirred solution or vapour. Conservation of heat from a
well-stirred fluid of fixed volume Kand uniform temperature 0S, a function of
time, gives as a boundary condition on the surface x = 0 of a medium,
x > 0, in contact with the fluid

cpVdOJdt = KdO/dx9 x = 0,
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where c, p have their usual meaning for the fluid. Correspondingly for diffusion
we have

VdCJdt = DdC/dx, x = 0.

In addition, 6S will be the temperature just within the surface but the two
concentrations may be related by some isotherm equation. Care is needed
with algebraic signs as in the previous section.

(f) The conservation principle applied at the interface between two media
of different properties leads immediately to boundary conditions

0 t = 02, Kx dOJdx = K2 d62/dx

in heat flow and

Cx = PC2 + g, Dx dCJdx = D2 dC2/dx,

in diffusion, where the suffices 1 and 2 denote the two media and P and Q
are constant.

(g) If heat is produced in a medium, e.g. as a result of an exothermic reac-
tion, at a rate A per unit volume, this must be added to the right side of eqn.
(1.20), which can be written

d9 d2e

The diffusion equation (1.4) must be similarly modified if the diffusing sub-
stance is created or removed as diffusion proceeds. We identify A as the rate
of creation per unit volume and put cp = 1, K = D as usual.

(h) Problems in heat flow may involve moving boundaries on which phase
changes occur, accompanied by the absorption or liberation of latent heat.
In the first case, the relevant feature is that latent heat is removed instan-
taneously from the heat-conduction process, in which it takes no further part.
The diffusion counterpart is the immobilizing of diffusing molecules on
fixed sites or in holes. The velocity of the transformation boundary at X(t)
is related to the difference between the rate of heat arriving and leaving it by
conduction by a condition

-K1 d61/dx + K2d62/dx = LpdX/dt,

where L is the latent heat per unit mass and p the density, assuming no volume
changes accompany the transformation. The condition in a diffusion problem
follows by writing 0 = C, D = K, p = 1 as usual, and L becomes the capacity
of the immobilizing sites in unit volume for trapped diffusing molecules.

Useful collections of mathematical solutions of the diffusion equations are
to be found in books by Barrer (1951), Jost (1952), and Jacobs (1967). Jacob's
solutions are of particular interest to biologists and biophysicists.



METHODS OF SOLUTION WHEN THE
DIFFUSION COEFFICIENT IS CONSTANT

2.1. Types of solution

G E N E R A L solutions of the diffusion equation can be obtained for a variety of
initial and boundary conditions provided the diffusion coefficient is constant.
Such a solution usually has one of two standard forms. Either it is comprised
of a series of error functions or related integrals, in wHich case it is most suit-
able for numerical evaluation at small times, i.e. in the early stages of diffusion,
or it is in the form of a trigonometrical series which converges most satis-
factorily for large values of time. When diffusion occurs in a cylinder the
trigonometrical series is replaced by a series of Bessel functions. Of the three
methods of solution described in this chapter, the first two illustrate the
physical significance of the two standard types of solution. The third, em-
ploying the Laplace transform, is essentially an operator method by which
both types of solution may be obtained. It is the most powerful of the three,
particularly for more complicated problems. The methods are presented here
as simply as possible. The fuller treatments necessary to make the discussion
mathematically rigorous are to be found in works on heat conduction, e.g.
Carslaw and Jaeger (1959).

2.2. Method of reflection and superposition

2.2.1. Plane source

It is easy to see by differentiation that

C = -texp(-x2/4Dt), (2.1)

where A is an arbitrary constant, is a solution of
dC _ d2C
dt dx2'

which is the equation for diffusion in one dimension when D is constant.
The expression (2.1) is symmetrical with respect to x = 0, tends to zero as x
approaches infinity positively or negatively for t > 0, and for t = 0 it
vanishes everywhere except at x = 0, where it becomes infinite. The total
amount of substance M diffusing in a cylinder of infinite length and unit
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cross-section is given by

M
/•oo

J - c
Cdx, (2.3)

and if the concentration distribution is that of expression (2.1) we see, on
writing

x2/4Dt = £2, dx = 2{Dtf df, (2.4)

that

/•a

M - 2AD- exp(-£2)d£ = 2A(nD)*. (2.5)

Expression (2.5) shows that the amount of substance diffusing remains
constant and equal to the amount originally deposited in the plane x = 0.
Thus, on substituting for A from (2.5) in eqn (2.1), we obtain

C =
M

2{nDtf
exp(-x2/4Dt), (2.6)

and this is therefore the solution which describes the spreading by diffusion
of an amount of substance M deposited at time t = 0 in the plane x = 0.
Fig. 2.1 shows typical distributions at three successive times.

l-25r

FIG. 2.1. Concentration-distance curves for an instantaneous plane source. Numbers on curves
are values of Dr.

2.2.2. Reflection at a boundary
Expression (2.6) can be used to build up solutions of other problems in

linear flow by introducing the concept of reflection at a boundary. Thus, in
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the problem just considered, half the diffusing substance moves in the direc-
tion of positive x and the other half along negative x. If, however, we have a
semi-infinite cylinder extending over the region x > 0 and with an imperme-
able boundary at x = 0, all the diffusion occurs in the direction of positive x.
We can consider the solution for negative x to be reflected in the plane
x = 0 and superposed on the original distribution in the region x > 0. Since
the original solution was symmetrical about x = 0 the concentration distribu-
tion for the semi-infinite cylinder is given by

M

This procedure of reflection and superposition is mathematically sound, for
reflection at x = 0 means the adding of two solutions of the diffusion equa-
tion. Since this equation is linear the sum of the two solutions is itself a solu-
tion, and we see that (2.7) satisfies the condition that the total amount of
diffusing substance remains constant at M. Furthermore, the condition to be
satisfied at the impermeable boundary is

dC/dx = 0, x = 0, (2.8)

since this is the mathematical condition for zero flow across a boundary.
As dC/dx is zero at x = 0 in the original solution (2.6), it is clearly still zero
after reflection and superposition.

2.2.3. Extended initial distributions
So far we have considered only cases in which all the diffusing substance is

concentrated initially in a plane. More frequently in practice, however, the
initial distribution occupies a finite region and we have an initial state such
as that defined by

C=C0, x < 0 , C = 0, x > 0 , t = 0. (2.9)

This is the initial distribution, for example, when a long column of clear
water rests on a long column of solution, or when two long metal bars are
placed in contact end to end. The solution to such a problem is readily
deduced by considering the extended distribution to be composed of an
infinite number of line sources and by superposing the corresponding
infinite number of elementary solutions. With reference to Fig. 2.2, consider the
diffusing substance in an element of width ^ to be a line source of strength
Co S£. Then, from (2.6) the concentration at point P, distance £ from the
element, at time t is

and the complete solution due to the initial distribution (2.9) is given by
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summing over successive elements 81;, i.e. by

= % r exp(-/72)df/, (2.10)
^ JxllJ(Dt)Jx/2J(Dt)

where r\ =

\C

( 1
Si x = 0 P x

FIG. 2.2. Extended initial distribution.

A standard mathematical function, of which extensive tables are available,
is the error function, usually written as erf z, where

erfz = - r | exp(-f/2)df/.

This function has the properties

erf(-z) = -erfz, erf(O) = 0, erf(oo) = 1,

and hence, since

2

(2.11)

(2.12)

2 r
—
7T2 J -

2 f00 2 fz

= — Qxp(-rj2)drj - — exp(->/:

7C2 J o 7T2 J o

= 1 — erf z = erfc z, (2.13)

where erfc is referred to as the error-function complement, the solution
(2.10) of the diffusion problem is usually written in the form

C(x, t) = iC0 erfc (2.14)

Convenient tables of the error function are those of the Works Project
Association (1941) and shorter tables are to be found, for example, in Milne-
Thomson and Comrie (1944). Table 2.1, taken from Carslaw and Jaeger
(1959), is sufficient for many practical purposes. The form of the concentra-
tion distribution is shown in Fig. 2.3. It is clear from (2.14) that C = jC0 at
x = 0 for all t > 0.

The error function therefore enters into the solution of a diffusion problem
as a consequence of summing the effect of a series of line sources, each
yielding an exponential type of distribution.
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FIG. 2.3. Concentration-distance curve for an extended source of infinite extent.

In the same way, we can study the diffusion of a substance initially confined
in the region — h < x < + /i as in Fig. 2.4. Here the integration is from
x-h to x + h instead of from x to oo as in (2.10), leading immediately to the
result

(2.15)

The concentration distribution at successive times is shown in Fig. 2.4. It is
clear that the system can be cut in half by a plane at x = 0 without affecting

l-U

0-8

0-6

0-4

0-2

on

-

0

V i

2

i
- 3 - 2 0

x/h

FIG. 2.4. Concentration-distance curves for an extended source of limited extent. Numbers on
curves are values of (Dt/h2)*.
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the distribution, which is symmetrical about x = 0. Therefore expression
(2.15) also gives the distribution in a semi-infinite system. Such a system is
realized in practice in the classical experiment in which a cylinder contains a
layer of solution having on top of it an infinitely-long column of water, initially
clear. In practice, this means that concentration changes do not reach the
top of the column during the time of the experiment.

2.2.4. Finite systems

If the column of water, referred to above, is of finite length /, the condition
that the concentration tends to zero as x approaches infinity is to be replaced
by the condition that there is no flow of diffusing substance through the top
surface, i.e.

dC/dx = 0, x = l (2.16)

We have seen that this condition is satisfied if the concentration curve is
considered to be reflected at the boundary and the reflected curve superposed
on the original one. In the finite system we are considering now, the curve
reflected at x = I is reflected again at x = 0, and then at x = /, and so on, the
result of each successive reflection being superposed on the original curve
(2.15). Since the original solution is the sum of two error functions, the complete
expression for the concentration in the finite system is an infinite series of error
functions or error-function complements so that

c =

2l + h-x c 2l-
+ f

Al-h-x . 4/-x
f

A solution of this kind can be obtained for most problems in diffusion by use
of the Laplace transform, to be discussed in § 2.4 (p. 19), or otherwise. Such
solutions are most useful for calculating the concentration distribution in
the early stages of diffusion, for then the series converges rapidly and two or
three terms give sufficient accuracy for most practical purposes.

In all cases the successive terms in the series can be regarded as arising
from successive reflections at the boundaries. The nature of the reflection
depends on the condition to be satisfied. For the impermeable boundary
already considered a simple reflection ensures that dC/dx = 0 as required.
Another boundary condition which occurs frequently is of the type C = 0,
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in which case it is necessary to change the sign of the concentration when
it is reflected at the boundary. A further example of the use of this method is
given by Jost (1952). For more complicated problems, however, the reflection
and superposition method soon becomes unwieldy and results are more
readily obtained by other methods.

2.3. Method of separation of variables

A standard method of obtaining a solution of a partial differential equation
is to assume that the variables are separable. Thus we may attempt to find a
solution of (2.2) by putting

C = X(x)T(t\ (2.18)

where X and T are functions of x and t respectively. Substitution in (2.2)
yields

which may be rewritten

1 AT Dd2X

T df X dx2 '
(2.19)

so that we have on the left-hand side an expression depending on t only,
while the right-hand side depends on x only. Both sides therefore must
be equal to the same constant which, for the sake of the subsequent algebra,
is conveniently taken as — X2D. We have, therefore, two ordinary differential
equations

and

id-^--l2 (2 21)
Xdx2~ ' ( '

of which solutions are

T=e" A 2 D r , (2.22)

and

X = A sin Ax + B cos Xx, (2.23)

leading to a solution of (2.2) of the form

C = (A sin Xx + B cos Xx) exp ( - X2Dt), (2.24)
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where A and B are constants of integration. Since (2.2) is a linear equation,
the most general solution is obtained by summing solutions of type (2.24),
so that we have

co

C= Z (AmsinAmx + BmcosAmx)exp(-/^Dt\ (2.25)

where Am, Bm, and Xm are determined by the initial and boundary conditions
for any particular problem. Thus if we are interested in diffusion out of a
plane sheet of thickness /, through which the diffusing substance is initially
uniformly distributed and the surfaces of which are kept at zero concentration,
the conditions are

C = Co, 0 < x < /, t = 0 (2.26)

C = 0, x = 0, x = /, t > 0. (2.27)

The boundary conditions (2.27) demand that

Bm = 0, Xm = mn/l, (2.28)

and hence the initial condition (2.26) becomes
CO

Co = Z Am sin (mnx/l), 0 < x < /. (2.29)
I

By multiplying both sides of (2.29) by sin (pnx/l) and integrating from 0 to /
using the relationships

. pnx . mnx [0, m ^ p,
sin —— sin —— dx = < (2.30)

/ / l\U m = p,

we find that terms for which m is even vanish, and

Am = 4C0/mn, m = 1, 3, 5,....

The final solution is therefore
C = — - V exp { — D(2n+ I)2n2t/l2) sin , (2.31)

n n = 0 2n+\ I
where In + 1 has been substituted for m for convenience so that n takes values
0,1, 2,.... This trigonometrical-series type of solution converges satisfactorily
for moderate and large times, and it is then used for numerical evaluation in
preference to the error-function type of solution discussed earlier in § 2.2.4
(p. 16).

In (2.29) the initial distribution is expressed as a sum of sine functions.
This reveals the physical significance of the trigonometrical series in (2.31),
each term of which corresponds to a term in the Fourier series (2.29) by
which the initial distribution can be represented.
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2.4. Method of the Laplace transform

The Laplace transformation is a mathematical device which is useful
for the solution of various problems in mathematical physics. Application
of the Laplace transform to the diffusion equation removes the time variable,
leaving an ordinary differential equation the solution of which yields the
transform of the concentration as a function of the space variables x, >', z.
This is then interpreted, according to certain rules, to give an expression for
the concentration in terms of x, y, z and time, satisfying the initial and
boundary condition. Historically the method may be regarded as derived
from the operational methods introduced by Heaviside. Full accounts of the
Laplace transform and its application have been given by Carslaw and
Jaeger (1941), Churchill (1944), and others. Shorter accounts by Jaeger
(1949) and Tranter (1951) are also available. Here we shall deal only with its
application to the diffusion equation, the aim being to describe rather than to
justify the procedure.

The solution of many problems in diffusion by this method calls for no
mathematics beyond ordinary calculus. No attempt is made here to explain
its application to the more difficult problems for which the theory of func-
tions of a complex variable must be used, though solutions to problems of this
kind are quoted in later chapters. The fuller accounts should be consulted for
the derivation of such solutions.

2.4.1. Definition of the Laplace transform

Suppose f(t) to be a known function of rfor positive values of t. Then
the Laplace transform f(p) of f(t) is defined as

f0

=
Jo

(2.32)

where p is a number sufficiently large to make the integral (2.32) converge.
It may be a complex number whose real part is sufficiently large, but in the
present discussion it suffices to think of it simply as a real positive number.
For example, if f(t) = e2', p must exceed 2. Unless it is necessary to emphasize
that / is a function of p, just as / is a function of r, we shall usually denote the
Laplace transform of / by / .

Laplace transforms of common functions are readily constructed by carry-
ing out the integration in (2.32) as in the following examples:

f(t) = 1, f(p) = P z~pt dt = 1/p, (2.33)
Jo

f(t) = ef l ', f ( p ) = { Q~pteatdt=[ Q-{p~a)tdt = - 1 - , (2 .34)
Jo Jo P ~ a

f(t) = sin wt, f(p) = e~p' sin cut dt = 7 ̂  y . (2.35)
Jo pz + coz
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Extensive tables or dictionaries of Laplace transforms are available, some
in the works referred to above. A short table of transforms occurring fre-
quently in diffusion problems is reproduced from Carslaw and Jaeger's
book (1959) in Table 2.2.

2.4.2. Semi-infinite medium

As an example of the application of the Laplace transform, consider the
problem of diffusion in a semi-infinite medium, x > 0, when the boundary is
kept at a constant concentration Co , the initial concentration being zero
throughout the medium. We need a solution of

f = 4£ (2-36)
satisfying the boundary condition

C = Co, x = 0, f > 0 , (2.37)

and the initial condition

C = 0, x > 0, t = 0. (2.38)

On multiplying both sides of (2.36) by e"pr and integrating with respect to t
from 0 to oo we obtain

Jo ex2 DJO dt
(2.39)

If we assume that the orders of differentiation and integration can be inter-
changed, and this can be justified for the functions in which we are interested,
then

f00 r)2C c)2 f00 c)2C

f c-'Udt-fJ Ce-"dr = i£ (2.40)
Jo dx- cbr Jo dx2

Also, integrating by parts, we have
r°° ^c r°°

e~pt—dt = [Ce-pr]o°+p Ce" p r dt = pC, (2.41)
Jo df Jo

since the term in the square bracket vanishes at t = 0 by virtue of the initial
condition (2.38) and at t = oo through the exponential factor. Thus (2.36)
reduces to

D 0 = pC. (2.42)

By treating the boundary condition (2.37) in the same way we obtain

C = r Co Q~pt dt = — , x = 0. (2.43)
Jo P
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Thus the Laplace transform reduces the partial differential equation (2.36)
to the ordinary differential equation (2.42). The solution of (2.42) satisfying
(2.43), and for which C remains finite as x approaches infinity is

C = — e"«x, (2.44)
P

where q2 = p/D. Reference to Table 2.2, item 8, shows that the function whose
transform is given by (2.44) is

(2.45)

where, as before,

erfcz= 1-erfz. (2.46)

It is easy to verify that (2.45) satisfies (2.36), (2.37), and (2.38) and that it is
therefore the required solution of the diffusion problem.

2.4.3. Plane sheet

In the problem just considered the transform solution could be interpreted
immediately by reference to the table of transforms. Consider now, as an
example of a slightly more difficult problem in which this is not so, a plane
sheet of thickness 2/, whose surface are maintained at constant concentration
Co , and with zero concentration of diffusing substance throughout the sheet
initially. Let the sheet occupy the region — / ^ x ^ /, so that there is symmetry
about x = 0 and the boundary conditions may be written

C = C0, x = l, t^O, (2.47)

dC/dx = 0, x = 0, t ^ 0. (2.48)

Eqn (2.48) expresses the condition that there is no diffusion across the central
plane of the sheet. It is often more convenient to use this condition and to
consider only half the sheet, 0 ^ x ^ /, instead of using the condition
C=C0,x= - / .

The equations for the Laplace transform C are

dx

with

dC/dx - 0, x = 0, (2.50)

and

C = C0/p, x = /, (2.51)
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where q2 = p/D as before. The solution of these is

C = C ° C ° s h ^ . (2.52)
pcosh ql

There are two methods of dealing with this transform solution, leading to the
two standard types of solution we have already met. We shall first obtain a
solution useful for small values of the time.

(i) Expansion in negative exponentials. We express the hyperbolic functions
in (2.52) in terms of negative exponentials and expand in a series by the
binomial theorem. Thus we obtain from (2.52),

C
_ ^Of (l_x)

- { e
+ e

= ^° f] (_i)»e-««2«-n)i-x) + ^o £ (_1)»e-,«
P n=0 P M=0

Thus, using item 8 of the table of transforms (Table 2.2), we obtain

This is a series of error functions such as we obtained by the method of
reflection and superposition. Successive terms are in fact the concentrations
at depths / — x, / + x, 3/ — x, 3/ + x,... in the semi-infinite medium. The series
converges quite rapidly for all except large values of Dt/l2. For example, we
have for the concentration at the centre of the sheet (x = 0) when Dt/l2 = 1

C/Co = 0-9590 -00678 + 0-0008 = 0-8920, (2.55)

and when Dt/l2 = 0-25

C/Co = 0-3146-0-0001 = 0-3145. (2.56)

(ii) Expression in partial fractions. It can be shown that if a transform y
has the form

^ (257)

where f(p) and g(p) are polynomials in p which have no common factor, the
degree of f(p) being lower than that of g(p), and if

g(p) = (p-ai)(p-a2)...(p-an\ (2.58)

where ax, a2,..., an are constants which may be real or complex but must all
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be different, then the function y(t) whose transform is y(p) is given by

y(t) = X 4^ e f l r ' - (2-59)

Here g\ar) denotes the value of dg(p)/dp when p = ar. A proof of this by
Jaeger (1949) is reproduced in the Appendix to this chapter. It is derived by
expressing (2.57) in partial fractions. Since the hyperbolic functions cosh z
and sinh z can be represented by the following infinite products (see, e.g.
Carslaw (1909, p. 275))

/ 4z2\ / 4z2 \ / 4z2 \cosh z = | l + — j | l + — j | l + — j . . . , (2.60)

z 2 \ / z2 \ / z2

a quotient of these functions such as in (2.52) may still be regarded as being
of the type (2.57) except that now f(p) and g(p) have an infinite number of
factors. The a1,a2,— are the zeros of g(p)9 i.e. solutions of the equation,
g(p) = 0, and if these are all different it is plausible to assume that (2.59) still
holds with n = oo. The justification of this assumption involves the theory of
functions of a complex variable in order to carry out a contour integration
and is to be found in the fuller accounts of the subject. There is, in fact, a
rigorous mathematical argument by which the use of (2.59) with n = oo, can
be justified in diffusion problems in a finite region only. It must not be applied
to (2.44), for example, for the semi-infinite region. The above refers to al9

a2,... all different. The extension of (2.59) to cases in which g(p) has repeated
zeros, e.g. one of its factors is square, is given in the Appendix. Its application
to an infinite number of factors is still justifiable.

We may now consider the application of (2.59) to (2.52). First the zeros of
the denominator must be found. Clearly, p = 0 is a zero, and the other zeros
are given by the values of q for which cosh ql = 0, i.e.

and hence

D{2n + \)2n2

To apply (2.59) to (2.52) we need

» " = 0,1,2,.... (2.63)

g'(p) = -r(P c o s n <?') = cosh ql + \ql sinh ql (2.64)
dp
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For the zero p = 0, g\p) = 1. For the other zeros, given by (2.62) and (2.63),
cosh ql = 0, and

sinh9f = s i n h ^ ± ^ = ismi2n+
2

l)n = ,(-!)", (2.65)

so that for these zeros, by substituting in (2.64) we obtain

Hence finally by inserting the zeros into (2.59) we obtain

C = Co > exp{ — D(2n + \)znzt4r\ cos . (2.67)
7C n = 0 2n 4-1 2 /

This is the trigonometrical-series type of solution obtained previously by
the method of separation of the variables. The series converges rapidly for
large values off. Thus for the concentration at the centre of the sheet (x = 0)
when Dt/l2 = 1,

C/Co = 1 -0-1080 = 08920, (2.68)

and when Dt/l2 = 0-25

C/Co = 1 -0-6872 + 0-0017 = 0-3145. (2.69)

2.5. Solutions in two and three dimensions

2.5.1. Solutions expressed as the product of the solutions of simpler problems

Consider the equation of diffusion

dx\+dx\+dx\~ D dt'

in the rectangular parallelepiped

a{ < x1 < bl9 a2 < x2 < b2, a3 < x3 < fo3. (2.71)

For certain types of initial and boundary conditions, the solution of (2.70) is
the product of the solutions of the three one-variable problems, and thus can
be written down immediately if these are known. The following proof is
given by Carslaw and Jaeger (1959, p. 33).

Suppose cr(xr, t\r = 1,2, 3, is the solution of

(172)
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with boundary conditions

« r ^ - j 8 r c r = O, xr = ar, t > 0, (2.73)
cxr

< ! ^ + j8;cr = 0, xr = ftr, r > 0 , (2.74)

where the ctr and /?r are constants, either of which may be zero (so that the
cases of zero surface concentration and no flow of heat at the surface are
included) and with initial conditions

cr(xr, r) = C£xr\ t = 0, ar < xr < br. (2.75)

Then the solution of (2.70) in the region defined by (2.71) with

c = C1(x1)C2(x2)C3(x3), t = 0, (2.76)

and with boundary conditions

*r^-Prc = 0, xr = ar9 t > 0, r = 1,2, 3, (2.77)

x'^-P'rC = 0, xr = ftr, t > 0, r = 1,2, 3, (2.78)

is

c = c1(x1,r)c2(x2,r)c3(x3,0. (2.79)

For substituting (2.79) in (2.70) gives

d2cl d2c2 d2c3 1 / dCi dc2 dc3\

dt dt dt J

(2.80)

using (2.72). Clearly the initial and boundary conditions (2.76), (2.77), and
(2.78) are satisfied.

An essential condition is (2.76), namely that the initial condition must be
expressible as a product of the initial conditions for the one-variable problems
taken separately. Carslaw and Jaeger (1959) give solutions for a rectangular
corner, rectangles, parallelepipeds, cylinders and some examples of isotherms
are shown graphically.

2.5.2. A general relationship

Goldenberg (1963) derived a much more general relationship between the
transient solutions of two-dimensional problems for an infinite cylinder of
arbitrary cross-section, and the transient solutions of the corresponding
three-dimensional problems in finite cylinders. The boundary conditions
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on the end faces of the cylinder may be of the type describing constant
concentration, constant flux, or evaporation, and heat may be generated at a
rate independent of time and the axial coordinate.

An example of Goldenberg's relationships is afforded by the homogeneous
slab, bounded by the planes z = 0 and z = /, with heat produced in the
cylindrical region R of arbitrary cross-section for time t > 0, at the constant
rate A per unit time per unit volume.

The slab is initially at zero temperature with its faces maintained at zero
temperature for t > 0. The corresponding two-dimensional problem is
obtained when the thickness / of the slab is infinite and the solution is
independent of z. Goldenberg (1963) shows that the solution V(x, y, z, t)
for the finite slab is related to /(x, y, t) for the infinite slab by the expression

Jo
e"*/+5 | e-*/dr^, (2.81)

where S = Dn2(2n+l)2/l2 and D is the diffusion coefficient.
The same relationship is valid for a hollow cylinder of arbitrary cross-

section and for the region external to a cylinder of arbitrary cross-section.
Similar relationships hold in other situations discussed by Goldenberg.

2.6. Other solutions

Langford (1967) obtained new solutions of the one-dimensional heat
equation for temperature and heat flux both prescribed at the same fixed
boundary. They take the form of series of polynomial and quasi-polynomial
solutions for plane sheets, cylinders, and spheres. They include as special
cases some of the old or classical solutions. They also have applications to
phase change problems with boundaries moving at a constant velocity.

APPENDIX TO CHAPTER 2

To deduce the function y(t) whose Laplace transform y(p) is given by

we first put y(p) into partial fractions in the usual way by assuming

M = y _A_ =
g(p) P-a

y + + + ... + .
g(p) r=iP-ar P-0i p-a2 P~a3 ' P~an

Then

f(p)= X Ar(p-a1)...(p-ar_1)(p-ar+l)...(p-an\ (3)
r= 1
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and putting p = ar in this gives

f(ar) = Ar(ar-a1)...(ar-ar_1)(ar-ar+l)...(ar-an) (r = l ,2 , . . . ,n ) . (4)

Substituting for Ar from (4) in (2) gives

-{)= y _J fW (5)
y P

 r=1p-ar(ar-al)...(ar-ar_1)(ar-ar+1)...(ar-anY
Now since

g(p) = {p-cix){p-a2)...{p-an\ (6)

we have, on differentiating by the ordinary rule for differentiation of a product,
n

g'(p)= Z (P-ai)-(P-ar-i)(p-ar + 1):-(p-an)- (7)

Putting p = ar in this, gives

g\ar) = (ar-a1)...(ar-ar_l)(ar-ar+l)...(ar-anl (8)

and using (8) in (5) gives a further form for y(p) namely

On applying item 3 of Table 2.2 to successive terms of (9) we obtain immedi-
ately

This result applies only to the case in which g(p) has no repeated zeros, but it
can readily be generalized for the case of repeated factors. Thus (10) implies
that to each linear factor p — ar of the denominator of y(p) there corresponds a
term

in the solution. The generalization is that, to each squared factor (p — b)2

of the denominator of y(p) there corresponds a term

i
in the solution. To each multiple factor (p — c)m of the denominator of y(p)
there corresponds a term

z { 1 1 f e- (13)
s = oLdp5l giP) JJp = cs!(m-5-l)!

in the solution.
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3.1. Introduction

IN this and the following three chapters solutions of the diffusion equation
are presented for different initial and boundary conditions. In nearly all cases
the diffusion coefficient is taken as constant. In many cases the solutions are
readily evaluated numerically with the help of tables of standard mathe-
matical functions. Where this is not so, and where numerical evaluation is
tedious, as many graphical and tabulated solutions as space permits are given.

3.2. Instantaneous sources

Under this heading are included all problems in which an amount of
diffusing substance is deposited within a certain restricted region at time
t = 0 and left to diffuse throughout the surrounding medium. For example,
it may be located initially at a point, or in a plane, or within a sphere, when
we have an instantaneous point, plane, or spherical source as the case may
be.

The solution for an instantaneous plane source in an infinite medium has
already been given in Chapter 2, eqn (2.6). The corresponding solution for an
instantaneous point source on an infinite plane surface is obtained in the
same way by recognizing that

C = -exp{-(x2+y2)/4Dt} (3.1)

is a solution of

d*C 82ClSC

d x 2 ^ d y 2 ~ D d t ' { ]

which is the equation for diffusion in two dimensions when the diffusion
coefficient is constant. The arbitrary constant A is expressed in terms of M,
the total amount of substance diffusing, by performing the integration

M
poo /»oo

C dx Ay = 4nDA, (3.3)
J — on J — on

the concentration C being expressed in this problem as the amount of
diffusing substance per unit area of surface. The concentration at a distance
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r from a point source on an infinite plane surface is thus given by

M
(3.4)

The corresponding expression for a point source in an infinite volume is

M

By integrating the appropriate solution for a point source with respect
to the relevant space variables, solutions may be obtained for line, surface,
and volume sources. Thus for surface diffusion in the x, y plane due to a line
source along the y-axis we have

-L M M
{(i+i)/4D}d (2/4D) (3.6)

where now M is the amount of diffusing substance deposited initially per
unit length of the line source. This is the same as expression (2.6) of Chapter 2
for a plane source of strength M per unit area in an infinite volume. The
corresponding result for a line source of strength M per unit length in an
infinite volume, obtained by integrating (3.5), is

M
4nDt

which is the same expression as (3.4) for a point source on an infinite plane
surface, though M has a different significance in the two cases. Results for a
variety of sources are derived by Carslaw and Jaeger (1959, p. 255). The
spherical and cylindrical sources are likely to be of practical interest. If the
diffusing substance is initially distributed uniformly through a sphere of
radius a, the concentration C at radius r, and time t is given by

/ ( ) [exp { ( a r ) 2 // —\[exp{-(a-r)2/4Dt}-exp{-(a + r)2/4Dt}l (3.8)

where Co is the uniform concentration in the sphere initially. Expression
(3.8) may easily be written in terms of the total amount of diffusing substance
M, since

: 0 . (3.9)

The corresponding result for a cylinder of radius a may be written in the form

C Ca I rr'r >2i l
Jo °\

\*S ^ w^ W i » . ^ \ « / • * - - «- / I • W ^ » ^ y » / , M ^ V , ~ t t .
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where Io is the modified Bessel function of the first kind of order zero.
Tables of /0 are available. The integral in (3.10) has to be evaluated numeri-
cally except on the axis r = 0, where (3.10) becomes

C = C0{l-exp(-a2/4Dt)}. (3.11)

These expressions may be applied, for example, to the diffusion of a sphere
or cylinder of solute into a large volume of solvent. Curves showing the con-
centration distribution at successive times are given in Figs. 3.1 and 3.2.
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FIG. 3.1. Concentration distributions for a spherical source. Numbers on curves are values of
(Dt/a2)*.
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FIG. 3.2. Concentration distributions for a cylindrical source. Numbers on curves are values of
{Dt/a2f.
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The expression (3.10) and the curves of Fig. 3.2 also apply to a circular
disc source, of radius a, on an infinite plane surface, if Co denotes the uniform
concentration of the diffusing substance over the region 0 < r < a initially.
An alternative solution given by Rideal and Tadayon (1954) is

<f= aC0\ J1(wa)J0(wr)exp(-Drw2)dw, (3.10a)

where Jo and Jl are Bessel functions of the first kind and of order zero and
one respectively. Tables of J o and J{ are available. Rideal and Tadayon
also give an expression for the total amount of diffusing substance Q re-
maining on the disc after time t, which is

Q = 2na2C0 [ J^^-Qxp(-Dtu2)du. (3.10b)
Jo "

For small values of t, (3.10b) becomes

Q = 7 i a 2 C 0 U - - l y ) i , (3.10c)

and when t is large we have
Q = na*C0/(4Dt). (3.10d)

Cases of an extended source in an infinite medium, where the diffusing
substance initially occupies the semi-infinite region x < 0 or is confined
to the region —h<x<h, have been considered (see eqns (2.14) and (2.15)
in Chapter 2). The solution to the corresponding problem in which the region
— h < x < h is at zero concentration and |x| > h at a uniform concentration
Co initially is

C = i C 0 ^ e r f c A 7 ^ + e r f c ^ 7 ^ ^ . (3.12)

Knight and Philip (1973) have obtained an exact explicit solution for
D = a{\—b~lCy2 with a and b positive constants and for an instantaneous
distributed source at concentration b and the initial concentration uniform
but arbitrary away from the source. The analysis holds for infinite and semi-
infinite media, and physical applications are discussed.

3.2.1. Continuous sources

A solution for a continuous source, from which diffusing substance is
liberated continuously at a certain rate, is deduced from the solution for the
corresponding instantaneous source by integrating with respect to time t.
Thus if diffusing substance is liberated continuously from a point in an in-
finite volume at the rate 0 per second, the concentration at a point distant r
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from the source at time t is obtained by integrating (3.5) and is

t'»F??- (15a)

If <j> is constant and equal to q, then

C = —^- erfc — ^ — . (3.5b)
AnDr 2y/{Dt)

Solutions for other continuous sources are obtained similarly and examples
are given by Carslaw and Jaeger (1959, p. 261).

3.3. Semi-infinite media

The solution for a plane source deposited initially at the surface, x = 0,
of a semi-infinite medium was given in Chapter 2, eqn (2.7), and that for the
initial distribution C = Co , 0 < x < h, C = 0, x > h, was seen to be given
by eqn (2.15) for x positive.

The problem of the semi-infinite medium whose surface is maintained at a
constant concentration Co, and throughout which the concentration is
initially zero, was handled by the method of the Laplace transform in
Chapter 2, p. 21 (see eqn (2.45)). Other results of practical importance which
may be obtained in the same way are given below.

(i) The concentration is Co throughout, initially, and the surface is
maintained at a constant concentration Ci.

C~Cl J (3.13)

The special case of zero surface concentration is immediately obvious. The
rate of loss of diffusing substance from the semi-infinite medium when the
surface concentration is zero, is given by

- Jw
so that the total amount Mt of diffusing substance which has left the medium
at time t is given by integrating (3.14) with respect to t and is

M, = 2 C 0 | H 2 (3.15)

The same expression with Co replaced by Cx gives the total amount taken
up by the medium in time t if the initial concentration Co is zero. If the initial
concentration is zero throughout the semi-infinite medium, and the surface
concentration varies with time, solutions are still obtainable by the Laplace
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transform. Cases of practical interest are given below. Here Mt is used through-
out to denote the total amount of diffusing substance which has entered the
medium at time t.

(ii) Cx = 0 = kt, where k is a constant.

C = kt\ 1 +
2Dt

erfc
2j(Dt) JfrDt)

exp {-x2/4Dt}

= 4kt i2erfc
2y/(Dt)'

(3.16)

(3.17)

The function i2erfc is defined and tabulated in Table 2.1, so that values of C
may be written down immediately. The effect of an increasing surface
concentration is shown in Fig. 3.3.
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FIG. 3.3. Sorption curves for variable and constant surface concentrations in a semi-infinite
medium.
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(iii) Cx = 0 = kt'1, where k is a constant.

(3.18)

Mr = ±fcr(7cD)±. (3.19)

The function ierfc is defined and tabulated in Table 2.1. In this case M is
directly proportional to t and so the rate of uptake of diffusing substance is
constant.

(iv) Cx = 0 = kt*n, where k is a constant and n is any positive integer, even or
odd.

C = fcr&i + l)(4r)*" i"erfc—*—. (3.20)

The function i"erfc is defined and tabulated up to n = 6 in Table 2.1.
is the gamma function defined and tabulated, for example, by Milne-
Thomson and Comrie (1944). If n is even, so that \n = N, an integer, then

= r(AT+l) = Nl. (3.22)

If n is odd, so that \n = M — | , then

r(\n+ 1) = T(M + i) = 1 . 3 . 5 .... ( 2 M - 3 ) ( 2 M - l)n±/2M. (3.23)

Other properties of gamma functions are

r(£) = 7r*. (3.24)

A polynomial in v- may sometimes be a useful way of representing a given
surface concentration empirically. In such a case the complete expression
for the concentration at any point is the sum of a number of terms of type
(3.20) corresponding to successive terms in the polynomial.

(v) These solutions can be extended to cover other initial and boundary
conditions by using the fact that for a linear differential equation the sum of
two solutions is itself a solution. For example, if

Cx = 0 = C0 + kt (3.25)

and the semi-infinite medium is initially at zero concentration throughout,
the solution is given by
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since the first term on the right-hand side of (3.26) is the solution satisfying
the conditions

C = C x = 01

I (3.27)
C = 0, x > 0J

and the second term satisfies

C = kt, x = 0)
\. (3.28)

C = 0, x > 0J
In general the solution to the problem of the semi-infinite medium in

which the surface concentration is given by F(t) and in which the initial
distribution is /(x), is given by

C = c1+c2, (3.29)

where c1 is a solution of the diffusion equation which satisfies

cl=09 r - 0 ^ (3.30)
cx = F(t), x = 0J

and c2 is another solution satisfying

c2 = 0, x = O

Clearly, with cx and c2 so defined, the diffusion equation and the initial and
boundary conditions are satisfied. Consider, as an example, the problem of
desorption from a semi-infinite medium having a uniform initial concentra-
tion Co, and a surface concentration decreasing according to (3.25), with k
negative. The solution is

^ (3.32)

which is obtained by adding to (3.26) the solution satisfying

C = Co, x > 0, t = 0
(3.33)

C = 0, x = 0, t>0!

i.e. by adding Co erf {x/2y/(Dt)}.

3.3.1. Surface evaporation condition

In some cases the boundary condition relates to the rate of transfer of
diffusing substance across the surface of the medium. Thus, if a stream of dry
air passes over the surface of a solid containing moisture, loss of moisture
occurs by surface evaporation. Similarly if the solid is initially dry and the
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air contains water vapour, the solid takes up moisture. In each case the rate
of exchange of moisture at any instant depends on the relative humidity of
the air and the moisture concentration in the surface of the solid. The simplest
reasonable assumption is that the rate of exchange is directly proportional
to the difference between the actual concentration Cs in the surface at any
time and the concentration Co which would be in equilibrium with the
vapour pressure in the atmosphere remote from the surface. Mathematically
this means that the boundary condition at the surface is

- D— = a(C0 - Cs), x = 0, (3.34)

where a is a constant of proportionality.
If the concentration in a semi-infinite medium is initially C2 throughout,

and the surface exchange is determined by (3.34), the solution is

f — f* x f x i

= erfc—-^ exp(/ix + h2Dt)erfc <—^ \-hJ(Dt)>, (3.35)C0-C2

where h = OL/D. The special cases of zero concentration in the medium
initially (C2 = 0), and evaporation into an atmosphere of zero relative
humidity (Co = 0), are immediately obvious from (3.35). The rate at which the
total amount Mt of diffusing substance in the semi-infinite medium per unit
cross-sectional area changes is given by

-CX (3.36)
dt I dxjx=0

and, on substituting for Cs the value obtained from (3.35) by putting x = 0,
after integration with respect to t we obtain for the total quantity of diffusing
substance having crossed unit area of the surface,

exp (h2Dt) erfc hy/(Di)-l +-rhy/(Dt) \ (3.37)

If Co is greater than C2 this amount is taken up by the medium; if Co is
less than C2 this amount is lost by evaporation from the surface. The ex-
pression (3.35) can be written in terms of any two of the dimensionless
parameters

hyJ(Dt\ or hx. (3.38)
2y/(Dt)9

In Fig. 3.4 the ratio (C-C 2 ) / (C 0 -C 2 ) is plotted as a function of x/2y/(Dt)
for various values of hj(Dt). In order to evaluate hMt/{C0 — C2) from (3.37),
only one dimensionless parameter hyJ(Dt) is needed. The relationship is
readily evaluated from standard functions and is shown graphically in
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1-Or

FIG. 3.4. Concentration distribution for a surface evaporation condition in a semi-infinite
medium. Numbers on curves are values of /?(Df)*-

Fig. 3.5. The evaluation for large hyJ(Dt) is made easier by using the asymp-
totic formula

exp (z2) erfc z = —r
1 1 1.3

(3.39)

3.3.2. Square-root relationship

Expression (2.45) shows that the solution of the problem of diffusion into a
semi-infinite medium having zero initial concentration and the surface of
which is maintained constant, involves only the single dimensionless para-
meter

2y/(Dt)'
(3.40)

It follows from this that

(i) the distance of penetration of any given concentration is proportional to
the square root of time;

(ii) the time required for any point to reach a given concentration is pro-
portional to the square of its distance from the surface and varies
inversely as the diffusion coefficient;

(iii) the amount of diffusing substance entering the medium through unit
area of its surface varies as the square root of time.
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FIG. 3.5. Sorption curve for a surface evaporation condition in a semi-infinite medium.

These fundamental properties hold in general in semi-infinite media, pro-
vided the initial concentration is uniform and the surface concentration
remains constant. They also hold for point and line sources on infinite sur-
faces or in infinite media, and also for the case of diffusion in an infinite
medium where the diffusing substance is initially confined to the region
x < 0. Clearly they do not apply to cases where parameters other than
x/2yJ(Dt) are involved, such as the width of an extended source or the rate of
change of surface concentration, etc.

3.4. The infinite composite medium

Here we consider diffusion in systems in which two media are present.
Suppose the region x > 0 is of one substance in which the diffusion coefficient
is Dx, and in the region x < 0 the diffusion coefficient is D2. In the simplest
case, the initial conditions are that the region x > 0 is at a uniform con-
centration Co , and in x < 0 the concentration is zero initially. If we write
cx for the concentration in x > 0 and c2 in x < 0 the boundary conditions at
the interface x = 0 may be written

c2/Cl = k, x = 0, (3.41)

Dx dcjdx = D2 dc2/dx, x = 0, (3.42)
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where k is the ratio of the uniform concentration in the region x < 0 to that
in x > 0 when final equilibrium is attained. The condition (3.42) expresses
the fact that there is no accumulation of diffusing substance at the boundary.
A solution to this problem is easily obtained by combining solutions for the
semi-infinite medium so as to satisfy the initial and boundary conditions. We
seek solutions of the type

c, =

c2 = A2 + B2

x > 0,

x < 0,

(3.43)

(3.44)

which are known to satisfy the diffusion equations in the two regions. By
choosing the constants Al9 Bl9 A2, B2 to satisfy the initial conditions and
(3.41), (3.42) we obtain

-erfc
2y/(D2tY

< 3 4 5 )

(3.46)

Fig. 3.6 shows a typical concentration distribution for the case where
D2 = 4D1 and k = \. Graphs for other cases are shown by Jost (1952)
and by Barrer (1951). We may note that, as diffusion proceeds, the con-
centrations at the interface, x = 0, remain constant at the values

(3.47)
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FIG. 3.6. Concentration distribution in a composite medium. Dxt = 1, D2 = 4D l5 k =
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3.4.1. Interface resistance

If we have the same problem as on p. 38 except that there is a contact
resistance at x = 0, then (3.41) is to be replaced by

D1dc1/dx + h(c2-c1) = 0, x = 0, (3.48)

while (3.42) still holds. The expressions for the concentrations in this case are

l + U V ^ i

+ exp {htx + hlD^i) erfc

Co = -—,- V .1 <erfc

erf

(3.49)

erfc

where

(3.50)

(3.51)

The concentrations on either side of the interface are no longer constant
but each approaches the equilibrium value \C0 relatively slowly. This,
and the general distribution at successive times, is illustrated in Fig. 3.7 for
the case in which Dx = D2 and h = Yo

1-Or
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FIG. 3.7. Concentration distribution in a composite medium with a resistance at the interface.
Numbers on curves are values of Dxt; Dx = D2; h = ruDl.
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3.5. The semi-infinite composite medium

This is the case of a semi-infinite medium which has a skin or surface
layer having diffusion properties different from those of the rest of the
medium. Thus, suppose in the semi-infinite region — / < x < oo, the diffusion
coefficient is Dl in the region — / < x < 0, and that the concentration is
denoted by cx there, while the corresponding quantities in x > 0 are D2 and
c2. If we assume the conditions at the interface to be

Cl=c2, x = 0, (3.52)

Dx dcjdx = D2 dc2/dx, x = 0, (3.53)

the solution to the problem of zero initial concentration and the surface
x = —I maintained at constant concentration Co is given by Carslaw and
Jaeger (1959, p. 321), and is

where

k = (DJD2)\ a = ~ . (3.56)

The total quantity entering the medium through unit area of the surface
x = — / in time tis Mt9 where Mt is given by

Following Carslaw and Jaeger (1959, p. 322), for very large times the
exponentials in (3.57) may all be replaced by unity. This is true also of the
error-function complements in (3.57) and so for large times we have ap-
proximately

IC \ l 2ICO \nll2

lot \ 4a

1-a

provided a2 < 1. Fig. 3.8 shows MJICO as a function of (ZV//2)*.
Whipple (1954) has given formulae for the concentration in a semi-infinite

region of low diffusion coefficient bisected by a thin well-diffusing slab, at
different times after the boundary of the semi-infinite region has been raised
suddenly from zero to unit concentration. This is of interest in grain-
boundary diffusion.
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FIG. 3.8. Sorption curves for a composite semi-infinite medium. Numbers on curves are values
of DJD2.

3.6. Weber's disc

This is a classical problem of the field due to an electrified disc. More
recent interest relates to the diffusion current at a circular electrode. Several
authors (Tranter 1951; Grigull 1961; Saito 1968) have developed the same
solution in different ways. When the diameter of the electrode is 2a we
require solutions of

cr r or cz

where C is the concentration say of oxygen in the solution, the axis of z
passes perpendicularly through the centre of the disc and r is the radial
distance from the z-axis. The boundary conditions are

c =
dC/dz =

c =

o,
o,
Co ,

z = 0,

z = 0,

y ^ 0,

r ^ a,

v > a,

Z = 00 ,

C = Co, z ^ 0, r = oo, (3.60)

where Co is the concentration in the bulk of the solution. The concentration is
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given by

Co-C =
2C0 f00 sin {ma)•i m

J0(mr)e~mzdm

2C0
tan" -. (3.61)

The concentration gradient at the disc surface is

dC

~dz
2c0 r .

= si
r = 0 n JO

sin (ma)J0(mr) dm

2C0 1
(3.62)

Saito (1963) gives an approximate analytical solution for a narrow band
electrode and sketches the concentration distribution for each electrode.



DIFFUSION IN A PLANE SHEET

4.1. Introduction

I N this chapter we consider various cases of one-dimensional diffusion in a
medium bounded by two parallel planes, e.g. the planes at x = 0, x = /.
These will apply in practice to diffusion into a plane sheet of material so thin
that effectively all the diffusing substance enters through the plane faces and
a negligible amount through the edges.

4.2. Steady state

Consider the case of diffusion through a plane sheet or membrane of
thickness / and diffusion coefficient Z), whose surfaces, x = 0, x = /, are
maintained at constant concentrations C l 5 C2 respectively. After a time, a
steady state is reached in which the concentration remains constant at all
points of the sheet. The diffusion equation in one dimension then reduces to

d2C/dx2 = 0, (4.1)

provided the diffusion coefficient D is constant. On integrating with respect
to x we have

dC/dx = constant, (4.2)

and by a further integration we have, on introducing the conditions at
x = 0, x = /,

Both (4.2) and (4.3) show that the concentration changes linearly from Cl to
C2 through the sheet. Also, the rate of transfer of diffusing substance is the
same across all sections of the membrane and is given by

F = -D dC/dx = D(Cl - C2)/L (4.4)

If the thickness / and the surface concentrations Cl9 C2 are known, D can
be deduced from an observed value of F by using (4.4). Experimental ar-
rangements for measuring D in this and other ways have been reviewed by
Newns (1950).

If the surface x = 0 is maintained at a constant concentration Cx and
at x = / there is evaporation into an atmosphere for which the equilibrium
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concentration just within the surface is C2, so that

dC/cx+h(C-C2) = 0, x = I,

then we find

C - C = _kL (4.3a)

and

F = l—r——. (4.4a)

If the surface conditions are

dC/dx + h1(C1 — C) = 0, x = 0; dC/dx + h2{C— C2) = 0, x = /,

then

C = x ^ ^ ~ ^—-^— —, (4.3b)

and

F = ° l 2v 1 - 2 . (4.4b)
hx -^h2-\-hlh2l

Corresponding solutions for a funnel-shaped region are easily obtained
(Jacobs 1967).

4.2J. Permeability constant

In some practical systems, the surface concentrations C1,C2 may not
be known but only the gas or vapour pressures px,p2 on the two sides of
the membrane. The rate of transfer in the steady state is then sometimes
written

and the constant P is referred to as the permeability constant. Here P is
expressed, for example, as cm3 gas at some standard temperature and pres-
sure passing per second through 1 cm2 of the surface of a membrane 1 cm
thick when the pressure difference across the membrane is 1 cm of mercury.
The permeability constant is a much less fundamental constant than the
diffusion coefficient which is expressed in units such as cm2 s~ \ particularly
as different investigators use different units and even different definitions
of P.

If the diffusion coefficient is constant, and if the sorption isotherm is
linear, i.e. if there is a linear relationship between the external vapour
pressure and the corresponding equilibrium concentration within the
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membrane, then eqns (4.4) and (4.5) are equivalent, but not otherwise. The
linear isotherm may be written

C = Sp9 (4.6)

where C is the concentration within the material of the membrane in equili-
brium with an external vapour pressure p, and S is the solubility. Since Cx,
px and C2, p2 in (4.4) and (4.5) are connected by (4.6) it follows that, with due
regard to units,

P = DS. (4.7)

4.2.2. Concentration-dependent diffusion coefficient

If the diffusion coefficient varies with concentration it is clear that the
simple value of D deduced from a measurement of the steady rate of flow is
some kind of mean value over the range of concentration involved. Thus,
if D is a function of C (4.1) is to be replaced by

d
dx

= 0, (4.8)

and hence the relationship

F = -DdC/dx = constant (4.9)

still holds, as of course it must in the steady state. Integrating between Cx

and C2, the two surface concentrations, we have

1 CCl

F = - - DdC = Dr(Cx-C2)IU (4.10)

where

(4.11)

and this is the mean value deduced from a measurement of F. It follows
from (4.9) that if D depends on C the concentration no longer depends
linearly on distance through the membrane. Concentration distributions
for D depending on C in a number of ways are given in Chapter 9.

4.2.3. Composite membrane

If we have a composite membrane composed of n sheets of thicknesses
/x, /2,..., /„, and diffusion coefficients Dl,D2,..., Dn, the fall in concentration
through the whole membrane is the sum of the falls through the component
sheets. Since the rate of transfer F is the same across each section, the total
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drop in concentration is

7T + TT+ - +7T = (* i+*2+ -. +RH)F, (4.12)

where R1 = lJDl9 etc. may be termed formally the resistance to diffusion
of each sheet. Thus the resistance to diffusion of the whole membrane is
simply the sum of the resistances of the separate layers, assuming that there
are no barriers to diffusion between them. This subject is treated more
generally in § 12.2(i) (p. 266).

4.3. Non-steady state

All the solutions presented here can be obtained either by the method
of separation of the variables or by the Laplace transform as described in
§2.4. Many of the results are quoted by Barrer (1951), Carslaw and Jaeger
(1959), Jacobs (1967), Jost (1952) and others. The emphasis here is on numeri-
cal evaluation.

4.3.1. Surface concentrations constant. Initial distribution f(x)

If

C = C^ x = 0, r ^ O , (4.13)

C = C2 , x = / , r ^ O , (4.14)

C = f(x), 0 < x < /, t = 0, (4.15)
the solution in the form of a trigonometrical series is

— exp(-D7tVr//2) f'/(*') sin ̂  dx'. (4.16)

In the cases of most common occurrence f(x) is either zero or constant so
that the integral in (4.16) is readily evaluated. Very often the problem is
symmetrical about the central plane of the sheet, and the formulae are then
most convenient if this is taken as x = 0 and the surfaces at x = ±1.

4.3.2. Uniform initial distribution. Surface concentrations equal

This is the case of sorption and desorption by a membrane. If the region
— / < x < I is initially at a uniform concentration Co, and the surfaces are
kept at a constant concentration Cx, the solution (4.16) becomes

(4.17)
{ o nn%2n+\ 2/

If Mt denotes the total amount of diffusing substance which has entered the
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sheet at time r, and M^ the corresponding quantity after infinite time, then

2 g 2 e x p { - D ( 2 B + l ) V t / 4 f 2 } . (4.18)
M R

= ! S exp{D(2B+l)Vt/4f2}

The corresponding solutions useful for small times are

and

The modifications to these expressions for Co = 0 or C1 = 0 are obvious.
Jason and Peters (1973) analyse the bimodal diffusion of water in fish

muscle by combining two expressions of the type (4.18). one for each mode
and each having its own diffusion coefficient.

Eqn (4.18) can be solved graphically for Dt/l2 and hence D obtained from
measured sorption or desorption time curves. An alternative suggested by
Talbot and Kitchener (1956) is the approximate formula

where 6 = n2Dt/4l\ x = ^MJM^ and p = 1 + *8 + x24, q =
and,r = l + 9 x 8 + 25x24.

The solution is correct to four significant figures when MJM^ < § for
desorption. The solution (4.18) also applies to diffusion along a cylindrical
rod or tube of length /, with one end and its surface sealed and the other end
maintained at a constant concentration.

Talbot and Kitchener also obtained a solution for a slightly tapering tube.
If dx and d2 are the diameters of the two ends, the degree of taper is specified
by \i = (d2 — dl)/dl9 where dl is the closed end, and may be positive or
negative. For small ju, e.g. around 0-01, we have effectively radial diffusion
and a solution is

M, 6 ^ 2 2

where the an are the roots of tana = —a///, and, to the first order in
a2 = (n — \)2n2 + 2jj.. The solution becomes, with this approximation,

M °° 8
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where 6 = n2Dt/4l\ A = S/n2, kn = 1 - | / l / ( 2 n - I)2, i.e.

X = 0-81057, k, = -0-21585, k2 = 0-86491, k3 = 0-95137.

Thus putting x = ^7i2Mr/M00 as before, 6 must satisfy

If the solution (4.18) is applied to the tapered tube to calculate 0, the ap-
proximate value, say 60, obtained can be corrected by using

e = eo< i-

where s = kl+^k2x
s +Tsk2x

24, p and f̂ are defined above, and /c/i is the
correction term. Talbot and Kitchener (1956) quote

K = 0-807 -0-60x8 + (0-212 -O-25x8)/0o

approximately and discuss in more detail the capillary tube method (Ander-
son and Saddington 1949) for measuring diffusion coefficients.

It is clear that expressions (4.17), (4.18), (4.19), (4.20) can be written in
terms of the dimensionless parameters

T = Dt/l2
9 X = xlU (4.21)

so that the solutions for all values of Z), /, r, and x can be obtained from
graphs or tabulated values covering these two parameters. Graphs of
(C — C0)/(Ci — C0) are shown for various times in Fig. 4.1. These are re-
produced with change of nomenclature from Carslaw and Jaeger's book
(1959, p. 101). Tabulated values of (C-C^C^CQ) and of MJM^ are
given by Henry (1939). Values of MJM^ have also been tabulated by McKay
(1930) and extensive numerical values for the concentration at the centre of
the sheet, x = 0, are given by Olson and Schulz (1942). The curve labelled
zero fractional uptake in Fig. 4.6 shows how MJM^ varies with the square
root of time in a sheet of thickness 2a when the concentration at each surface
remains constant.

4.3.3. Uniform initial distribution. Surface concentrations different

This is the case of flow through a membrane. If one face x = 0 of a mem-
brane is kept at a constant concentration Cx and the other x = / at C2, and
the membrane is initially at a uniform concentration Co , there is a finite
interval of time during which the steady-state condition previously discussed
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F I G . 4.1. Concentration distributions at various times in the sheet —l<x<l with initial uni-
form concentration C o and surface concentration Cx. Numbers on curves are values of Dt/l2.

in § 4.2 (p. 44) is set up. During this time the concentration changes accord-
ing to

C = sin '^^ exp (— Dn2n2t/l2)

(4.22)

As r approaches infinity the terms involving the exponentials vanish and we
have simply the linear concentration distribution obtained in § 4.2. Barnes
(1934) examined the errors introduced by assuming a linear gradient to
exist across the membrane during the whole course of diffusion.

If Mt denotes the total amount of diffusing substance which enters the
sheet during time t, and M^ the corresponding amount during infinite time,
then

-D(2n + l)2n2t/l2}. (4.23)

In this case 1 + C2)—Co} and the total content of the membrane
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at time t is given by Mt + lC0. The expression (4.23) is similar to (4.18) and
is readily evaluated from the curve labelled zero fractional uptake in Fig. 4.6,
with the proviso that in (4.23) / signifies the whole thickness of the membrane
but in (4.18) it denotes the half-thickness.

The rate at which the gas or other diffusing substance emerges from unit
area of the face x = I of the membrane is given by —D(dC/dx)x=l which is
easily deduced from (4.22). By integrating then with respect to t, we obtain
the total amount of diffusing substance Qt which has passed through the
membrane in time t.

t 2/ " C, c o s m r - C , ,

AC I °° 1
+ —T I n ^ n 2 U-exp(-£>(2m+l) 2 r t 2 t /< 2 )}- (4-24)

In the commonest experimental arrangement both Co and C2 are zero, i.e.
the membrane is initially at zero concentration and the concentration at the
face through which diffusing substance emerges is maintained effectively at
zero concentration. In this case we find

O Dt 1 2 °° (— IV
^ ^ ^ { D n 2 n h n ( 4 2 4 a )

which, as t -• oo, approaches the line

This has an intercept L on the t-axis given by

L = 12/6D (4.26)

Following Daynes (1920), Barrer (1951) has used (4.26) as the basis of a
method for obtaining the diffusion constant, the permeability constant, and
the solubility of a gas by analysing stationary and non-stationary flow through
a membrane. Thus from an observation of the intercept, L, D is deduced by
(4.26); from the steady-state flow rate the permeability constant P is deduced
by using (4.5), and S follows from (4.7). The intercept L is referred to as the
'time lag'.

A graph of QJICX as a function Dt/l2 is shown for the case Co = C2 = 0
in Fig. 4.2. To within the accuracy of plotting the steady state is achieved
when Dt/l2 = 0-45 approximately

An alternative form of solution useful for small times, usually attributed to
Holstein (Rogers, Buritz, and Alpert 1954) is easily derived by using Laplace
transforms as in § 2.4.3(i). Still keeping Co = C2 = 0, we find the rate of
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FIG. 4.2. Approach to steady-state flow through a plane sheet.

flow F(t) per unit area of the surface x = / to be

DdC
F(t) = -

dx nt

D\
- exp{-(2m+l)2/2/(4Z)r)} (4.27)

This series converges most rapidly for small t. Rogers et al. take only the
leading term and obtain essentially

ln(PF) = In <2Cl
ADt'

(4.27a)

From the slope and intercept of this line experimental data yield D and
Cl9 and hence solubility. They discuss the advantages of their method
compared with the use of the time lag given by eqn (4.26).

Other applications of Holstein's solution are discussed in § 10.6 and § 10.6.2
(pp. 216 and 224). Jenkins, Nelson, and Spirer (1970) examined the more
general problems of deducing both the diffusion coefficient and the solu-
bility coefficient from experimental data and mathematical solutions when
the outflow volume is finite so that the concentration varies with time at the
outgoing face. The necessary solution is given by Carslaw and Jaeger (1959).
Jenkins et al. tabulate some useful calculated data and also consider varying
concentrations at the ingoing face. In particular, they examined the assump-
tion, frequently made in time-lag measurements of the Daynes type, that
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steady flow is established after a period of about 3 times the time lag. They
concluded that the time lag is underestimated by about 4 per cent by making
this assumption.

Paul and Dibenedetto (1965) also obtained solutions for finite outflow
volumes. Spacek and Kubin (1967) allowed the concentrations on both sides
of the membrane to vary with time.

4.3.4. Variable surface concentration

The solution to the general problem of diffusion in the region 0 < x < I
with the surfaces at concentrations (fr^t) and (j)2{i) and the initial concentra-
tion f(x) is given by Carslaw and Jaeger (1959, p. 102). For empirical values
of 0t(O, </>2(0> and f(x\ three integrals arise which have to be evaluated
graphically or numerically. In certain cases, however, where the surface
concentration can be represented by a mathematical expression, the solution
can be considerably simplified.

(i) One case of practical interest is that of a sheet in which the concentration
is initially zero and each surface of which approaches an equilibrium con-
centration Co , exponentially, i.e.

4>i(t) = 4>2(t) = C O {1- e x p ( - # ) } • (4-28)

This can represent a surface concentration which is changed rapidly but not
instantaneously, a situation which usually arises when an instantaneous
change is attempted in an experiment. For the sheet whose surfaces are at
± / the solution is

« ( - i rex P ( -D(2n+l) 2 7r 2 r /4 / 2 ) (2n+l)7rx

n nh (2n+l){4jS/2-D7r2(2n+l)2} °°S 2/ ' [ ^

provided /? is not equal to any of the values D(2n+\)2n2/4l2. The sorption-
time curve, i.e. the curve showing the total amount Mt of diffusing substance
in the sheet as a function of time t, is obtained by integrating (4.29) with
respect to x between the limits — / and + / and is

M
± = 1 - exp(-ptHD/Pl2)* tan (/?/z/C0

8 * exp{-(2n + l)27r2Df/4/2

2

Fig. 4.3 shows uptake curves for different values of the parameter j3/2/D
plotted against (Dt/l2)^. When /? = oo, the surface concentration rises in-
stantaneously to Co and the curve of Fig. 4.3 has the characteristic initial
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FIG. 4.3. Calculated sorption curves for surface concentration given by C0(l — e fit). Numbers on
curves are values of pi2/D.

linear portion followed by the approach to the equilibrium value Mt = 2/C0.
The uptake curves for finite values of fil2/D, for which the surface concentra-
tion rises at a finite rate, all show points of inflexion. At first the rate of uptake
increases as sorption proceeds but later decreases as the final equilibrium is
approached. Curves of this kind are often referred to as sigmoid sorption
curves. They may arise in practice because surface equilibrium conditions
are not established instantaneously, but they may result from other causes
(see § 11.2, p. 255; § 14.4.6, p. 347).

(ii) If the surface concentrations vary linearly with time, i.e.

(4.31)

the solution is

DC Dt 1

16 «
7c3t '

(-1)"
exp { - D(2n + 1)Vt/4/2}cos

2/
(4.32)
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FIG. 4.4. Concentration distributions in a plane sheet for surface concentration kt. Numbers on
curves are values of Dt/l2.

The corresponding expression for Mt is

2 64 « exp {-

kl3
l)Vf/4/2}

I2 (2n+l)4 (4.33)

Some numerical results are given by Williamson and Adams (1919) and
Gurney and Lurie (1923). Fig. 4.4 shows DC/kl2 plotted as a function of
x/l for various values of Dt/l2. Fig. 4.5 shows DMt/kl3 as a function of the
single variable Dt/l2.

4 r

J_
0 0-5 2010 1-5

Dt/l2

FIG. 4.5. Sorption curve for plane sheet with surface concentration kt.
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These solutions can be extended to cover modified surface conditions such
as (fr^t) = 4>2{t) = C0 + /cr, and a non-zero initial concentration by super-
posing solutions as in § 3.3(v).

Sinusoidally varying surface concentrations are considered in § 10.6
(p. 217).

4.3.5. Diffusion from a stirred solution of limited volume

If a plane sheet is suspended in a volume of solution so large that the
amount of solute taken up by the sheet is a negligible fraction of the whole,
and the solution is well stirred, then the concentration in the solution
remains constant. If, however, there is only a limited volume of solution, the
concentration of solute in the solution falls as solute enters the sheet. If the
solution is well stirred the concentration in the solution depends only on
time, and is determined essentially by the condition that the total amount of
solute in the solution and in the sheet remains constant as diffusion proceeds.
It is useful from an experimental point of view to have only a limited amount
of solution since the rate of uptake of solute by the sheet can be deduced from
observations of the uniform concentration in the solution. It is often simpler
to do this than to observe directly the amount in the sheet. This has been
stressed by Carman and Haul (1954), who have written mathematical
solutions in forms most appropriate for the measurement of diffusion
coefficients by this method.

The general problem can be stated mathematically in terms of a solute
diffusing from a well-stirred solution. The modifications necessary for cor-
responding alternative problems, such as that of a sheet suspended in a
vapour, are obvious.

Suppose that an infinite sheet of uniform material of thickness 2/ is placed
in a solution and that the solute is allowed to diffuse into the sheet. The sheet
occupies the space — / < x < /, while the the solution is of limited extent and
occupies the spaces —l — a^x^ — /, I ^ x ^ l + a. The concentration of
the solute in the solution is always uniform and is initially Co, while initially
the sheet is free from solute.

We require a solution of the diffusion equation

dC d2C

dt dx2'
with the initial condition

C = 0, - / < * < / , r = 0, (4.35)

and with a boundary condition expressing the fact that the rate at which
solute leaves the solution is always equal to that at which it enters the sheet
over the surfaces x = ±1. This condition is

adC/dt = +DdC/dx, x = ±1, t > 0. (4.36)
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We assume here that the concentration of solute just within the surface of
the sheet is the same as that in the solution. This may not be so but there may
be a partition factor K which is not unity, such that the concentration just
within the sheet is K times that in the solution. This can clearly be allowed for
by using a modified length of solution a/K in place of a in (4.36) and else-
where.

A solution of this problem by March and Weaver (1928), based on the
use of an integral equation, was cumbersome for numerical evaluation.
More convenient forms of solution have been obtained by Carslaw and
Jaeger (1959, p. 128), Wilson (1948), Berthier (1952), while Crank (1948c) has
developed solutions particularly suitable for small values of the time.
The solution is most readily obtained by the use of the Laplace transform.
In a form expressing the total amount of solute M, in the sheet at time t as a
fraction of M ^ , the corresponding quantity after infinite time, the solution is

where the qns are the non-zero positive roots of

tznqn= -<xqH9 (4.38)

and a = a/I, the ratio of the volumes of solution and sheet, or if there is a
partition factor K then a = a/KL Some roots of (4.38) are given in Table 4.1
for values of a corresponding to several values of final fractional uptake.
Roots for other values of a are given by Carslaw and Jaeger (1959, p. 492)
and by Carman and Haul (1954). It is sometimes convenient to express a
in terms of the fraction of total solute finally taken up by the sheet. Thus, in
the final equilibrium state, since the total amount of solute in solution and
sheet was originally contained in the solution of concentration Co, we have

^ = aC0, (4.39)

where C^ is the uniform concentration in the sheet finally. The content
M^ of the sheet finally is given by

The fractional uptake of the sheet finally is therefore given by

M^ = 1
2aC0 1+a '

(4.41)

If, for example, 50 per cent of the solute initially in the solution is finally in
the sheet, a = 1. In the particular case of an infinite amount of solute (a = oo)
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the roots of (4.38) are qn = (n + %)n9 and we have

^ | ^ ^ } , (4.42)

which is expression (4.18) for the case of a constant concentration Co at
the surface of a sheet. The smaller Dt/l2 is, the more terms in the series in
(4.37) are needed for a given accuracy. When more than three or four terms
are needed it is better to use an alternative form of solution. For most values
of a the simplest expression is

M
— - = ( l + a ) { l - exp(T/a2)erfc(T/a2)*}, (4.43)

where T = Dt/l2. If very small values of a are required, corresponding to
very high fractional uptakes of solute by the sheet, there may be a range of
Dt/l2 in which neither (4.37) nor (4.43) is convenient but where the following
is useful:

Mt f a a3 3a5 1
— — — (1 +a)< 1 irri + . _ i r r A - y ( _ i r r i + - >• (4.44)

This is obtained from (4.43) by substituting the asymptotic expansion for
exp (T/oc2) erfc (T/a2)* when T/a2 is large.

Fig. 4.6 gives curves showing MJM^ against (Dt/l2f for five values of
final fractional uptake. Fig. 4.6 shows that the greater the final fractional
uptake of the sheet the faster is the solute removed from the solution. Clearly
by comparing the rate of fall of concentration in the solution observed
experimentally, with the corresponding calculated curve showing MJM^
as a function of Dt/l2, the diffusion coefficient D can be deduced. This has
been suggested by Berthier (1952) as a method for measuring self-diffusion
using radioactive isotopes. He gives a table of MJM^ for values of I/a
between 0 and 1-0 at intervals of 04. For precision measurements it is
advisable to check Berthier's values as in some instances not enough terms
of the series solutions have been retained to obtain the accuracy quoted.
The concentration within the sheet is given by the expression

C = CJl+ I ^^«Py)^ (^ I (4.45)
001 t \ 1+a + a2^2 cos fc, j

We have considered diffusion into a plane sheet initially free of solute.
There is the complementary problem in which all the solute is initially
uniformly distributed through the sheet and subsequently diffuses out into a
well-stirred solution. It is easily seen that the mathematical solutions pre-
sented above for sorption by the sheet also describe desorption, provided
Mt is taken to mean the amount of solute leaving the sheet up to time f,
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FIG. 4.6. Uptake by a plane sheet from a stirred solution of limited volume. Numbers on curves
show the percentage of total solute finally taken up by the sheet.

and M^ the corresponding amount after infinite time. For the problem of
desorption from the sheet we require a solution of (4.34) satisfying (4.36) but
with the initial condition (4.35) replaced by

On writing
C = Co , - / < * < / , t = 0. (4.46)

(4.47)

(4.46) and the other equations for desorption are identical with (4.34),
(4.35), (4.36), with Cx written for C. Hence the equations and solutions for
desorption are identical with those for sorption provided M^M^ are suitably
interpreted and Cx, ( C ^ replace C, C^ in expression (4.45). The parameter a
is equal to a/Kl as before, but its relation to the final uptake of the sheet
expressed by (4.40) and (4.41) no longer holds. Instead we have that the
fractional uptake of the solution is given by

1
21CO

(4.48)

Jaeger and Clarke (1947) have presented solutions of a number of other
problems in diffusion from a well-stirred solution in terms of certain funda-
mental functions. Accurately drawn graphs of these functions, from which
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solutions of limited accuracy are readily constructed, are given in their paper.
Permeation into finite volumes is discussed in §4.3.3 (pp. 52, 53).

4.3.6. Surface evaporation

In § 3.3.1 (p. 35) the rate of loss of diffusing substance by evaporation from
the surface of a sheet was represented by

-DdC/dx = a(C 0-C s) , (4.49)

where Cs is the actual concentration just within the sheet and Co is the
concentration required to maintain equilibrium with the surrounding
atmosphere. If the sheet — / < x < /is initially at a uniform concentration C2,
and the law of exchange of the type (4.49) holds on both surfaces, the solution
is

C-C2 _ ™ 2Lcos(Pnx/l)Gxp(-P*Dt/l2)
C0-C2 ~ ~ ^ (#f+ L2 + L) cos j?n '

where the /3ns are the positive roots of

j8tan/? = L (4.51)

and

L = loc/D, (4.52)

a dimensionless parameter. Roots of (4.51) are given in Table 4.2 for several
values of JL Roots for other values of L are given by Carslaw and Jaeger
(1959, p. 491). The total amount of diffusing substance Mt entering or leaving
the sheet up to time f, depending on whether Co is greater or less than C2,
is expressed as a fraction of M ^ , the corresponding quantity after infinite
time, by

A solution suitable for small values of time may be obtained in the usual way
by expanding the expression for the Laplace transform in a series of negative
exponentials (Carslaw and Jaeger 1959, p. 310). The terms in the series expres-
sion for concentration very soon become cumbersome for numerical evalua-
tion, however. In practice, it is usually sufficient to use only the leading terms
corresponding to the interval during which the sheet is effectively semi-
infinite, when the concentration is given by expression (3.35), and (3.37) gives
the value of Mt for half the sheet.

Graphs showing MJM ^ for several values of L are plotted in Fig. 4.7
from numerical values given by Newman (1931). Carslaw and Jaeger (1959,
p. 123) give corresponding curves as well as others showing how the con-
centrations at the surfaces and the centre of the sheet vary with time. Newman
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FIG. 4.7. Sorption or desorption curves for the surface condition (4.49). Numbers on curves are
values of L = IOL/D.

also gives a table of values from which MJM^ can easily be deduced for a
parabolic initial distribution instead of a uniform initial concentration. All
these equations and solutions have a practical application in the drying of
porous solids.

Carslaw and Jaeger (1959, p. 114) give solutions of more general problems
in which there is an initial, non-uniform concentration distribution, or in
which the vapour pressure is different on the two surfaces of the sheet, or
in which evaporation occurs from one surface only, the other being main-
tained at a constant concentration. Jaeger and Clarke (1947) have also given
in graphical form the solutions of a number of problems with an evaporation
type of boundary condition.

The more complicated case in which the rate of transfer on the surface is
proportional to some power of the surface concentration was discussed by
Jaeger (1950a).

4.3.7. Constant flux Fo at the surfaces

If the sheet — / < x < I is initially at a constant concentration Co, and
diffusing substance enters at a constant rate Fo over unit area of each surface,
i.e.

DdC/dx = F0, x = U (4.54)
then

C-C
/V JDf 3x2-/2

~D\12~+~~612~~'
2 (-ir nnx(-Dn2n2t/l2) cos——

(4.55)



62 DIFFUSION IN A PLANE SHEET

Obviously the total amount of diffusing substance taken up by unit area of
the sheet in time t is 2Fot. Concentration-distance curves for various times
are shown in Fig. 4.8. An alternative form of solution suitable for small
times is given by Macey (1940).

•4r
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FIG. 4.8. Concentration distributions in a plane sheet for constant flux Fo at the surface. Numbers
on curves are values of Dt/l2.

4.3.8. Impermeable surfaces

An impermeable surface is one at which the concentration gradient is
zero. This condition holds at the central plane of a sheet provided the initial
and boundary conditions are symmetrical about that plane. It follows there-
fore that the symmetrical solutions already given for the plane sheet occupy-
ing the region -I < x < I apply also to the sheet 0 < x < I when the
face x = 0 is impermeable. If, on the other hand, both surfaces x = 0 and
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x = I are impermeable and the initial distribution is /(x), the solution is

C = 7 / ( * ) d x +7 Z exp(-DM27r2r//2)cos—- /(*')cos —— dx'.
I J o I n = l < •>() '

(4.56)

Barrer (1951) suggests that diffusion from one layer to another as discussed
in §2.2.4 may be treated by regarding the system as a single layer with
impermeable boundaries and applying (4.56), where the initial distribution is

f(x) = 0, h< x < I J

The solution (4.56) becomes

C = C0\
H

1+
2- i ! s in^exp(-DnW)cos^4. (4-58)

Jackson, Oldland, and Pajaczkowski (1968) made a similar use of (4.56) in a
radiotracer method of measuring diffusion coefficients (§ 10.8, p. 252).
The solution (4.58) is complementary to expression (2.17) which is convenient
for small times. Numerical values based on (2.17) and (4.58) are available
in the well-known tables by Stefan (1879) and Kawalki (1894), some of
which are reproduced by Jost (1952).

Another special case of (4.56) has been evaluated by Crank and Henry
(1949c) in an investigation of different methods of conditioning a sheet to
a required uniform concentration. They consider the problem in which a
sheet, initially at zero concentration throughout, has its surfaces maintained
at a constant concentration Co for a time t0, after which they are rendered
impermeable. The subsequent change in concentration is described by
(4.56) with f(x) given by

s i n ( 2 m + exp {-D(2m+ l)27r2t0/<2}].
J
(4.59)

In this case the two integrals in (4.56) reduce to

Cf(x)dx = Col\l-\ £ 1 exp{-D(2m+l)27r2r0//
2}], (4.60)

JO L n
 W = O ( ^ T 1 ) J

and

(4.61)
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where 2p is substituted for n since only the terms involving even n are non-
zero.

4.3.9. Composite sheet

Various problems of diffusion into a composite sheet comprised of two
layers for which the diffusion coefficients are different have been solved (see,
for example, Carslaw and Jaeger (1959, p. 319)). The solutions are similar
in form to those presented in this chapter but obviously more complicated.
In view of the additional number of parameters involved, no attempt is
made to give numerical results here. Studies of the time-lag involved in
establishing the steady-state flow through a composite sheet of several
layers are discussed in § 12.2(ii) (p. 268).

4.4. Edge effects in membranes

We have treated flow through a membrane as a one-dimensional pheno-
menon. In the usual experimental arrangements an appreciable portion of
the membrane is clamped between impermeable annular plates of outer
radius b. At the ingoing and outgoing faces, flow only occurs through the
circular aperture, radius a, where a < b. But inside the membrane the flow
lines spread into the clamped region. This 'edge effect' means that the usual
assumption of one-dimensional diffusion is not strictly correct. Barrer,
Barrie, and Rogers (1962), using a solution developed by Jaeger and Beck
(1955), examined the importance of the edge effect. They replaced the usual
experimental condition of constant concentrations maintained on the two
faces of the membrane by conditions of uniform constant flux. The mathe-
matical solution yields a mean concentration difference between the two
faces of the membrane which can be equated to the prescribed uniform
difference in the original experiment. Barrer et al. (1962) obtain the relation-
ship

FJF = 1-16S/7C2, (4.62)

with

S = I Ji IJ^){IM)Ki(q^-K1(qP)I1(qoi)l (4.63)

where F is the steady-state flux per unit area with edge effect, Fo without edge
effect, jS = nb/l9 a = na/l, with / the membrane thickness, and li,Kx are
modified Bessel functions. Fig. 4.9, taken from Barrer et a/.'s paper, shows that
the relative difference in the flux (F — Fo)/Fo for a given overlap (b — a)/a is
greater the thicker the membrane and for an I/a ratio of 0-2 or less is approach-
ing the limits of experimental error.

The conclusion is that with thin membranes (I/a ^ 0-2) edge effects may
safely be neglected but otherwise appreciable errors creep in. Barrer et al.
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FIG. 4.9. Relative difference in flux (F — Fo)/Fo as a function of the overlap (b — a)/a for fixed I/a
ratios. (From Barrer et al. 1962).

show that the errors can lead to apparent differences between diffusion
coefficients deduced from steady-state and time-lag measurements.

4.5. Approximate two-dimensional solutions

Problems in which the diffusion is predominately in one direction occur
frequently, perhaps because of the boundary conditions or the shape of the
medium. Crank and Parker (1966) obtained approximate solutions to two-
dimensional problems in biased heat flow. Previously it was widely accepted
that for a thin sheet a good, one-dimensional approximation is obtained by
assuming the temperature to be uniform across the thickness of the sheet.
It appears, however, that a 'quadratic profile' provides a better approximation
than the usual 'constant profile'. Crank and Parker considered the problem
defined by the equations

Vxx + Vyy=Vt (4 6 4)

vx = 0, x = 0; vx=-hv, x = b\ t ^ 0, (4.65)

v = 0, y = 0; i ; = l , y= 1, t ^ 0 ,

v = 0, 0^y < 1 , 0 ^ x < 6 , t = 0. (4.66)
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These equations describe the temperature in a sheet of thickness b and unit
length, whose ends are maintained at fixed temperatures and from the
surfaces of which heat is lost according to Newton's law of cooling. In
diffusion terms, we have ends at constant concentration and evaporation
from the surface x = b.

(i) Constant profile. If diffusion is small in the x-direction compared with
that in the ^-direction, then the concentration v should vary slowly with x.
Thus the mean concentration u defined by

u = - \ vdx (4.67)

should be a good approximation to v. On integrating (4.64) with respect to
x from 0 to b and using (4.67) we obtain

—h

i.e.
ut-uyy = -pu, (4.68)

where

P = {h(v)x=b}/bu. (4.69)

The 'constant profile' solution (Fox 1934) assumes v = w, i.e. p = h/b.
Crank and Parker discuss two ways of improving this crude approximation.

(ii) Partial separation of variables. We replace the assumption v = u by
v = Xu, where X is a function of x only and u is defined by (4.68) for some
value of p. Then from (4.64)

uXxx = X{ut-uyy) = -Xpu

from (4.68), so that Xxx = —pX and finally

X = A sin (xjp) + B cos (x^/p),

where A, B are arbitrary constants. In order to satisfy (4.65) with v = Xu we
have A = 0 and

y/pUin(by/p) = h. (4.70)

If hb is small enough we get a good approximation from the first root only
px of (4.70). Then (4.68) becomes

ut-uyy = -pxu. (4.71)

The boundary conditions on u are found from (4.66) and (4.67) and are

M = 0, y = 0; II = 1, j> = 1; u = 0, r = 0, 0 ^ y < 1. (4.72)
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The solution of (4.71) subject to (4.72) is

sinh /
1 sinh

( 1 Y >
+ 27rexp(-p1r) £ j - ^ exp (-r2n2t) sin my. (4.73)

r=l Pi + r U

Thus, an approximation to the solution of (4.64), (4.65), and (4.66) is

vx = Bu1 cos xs/p1. (4.74)

The arbitrary constant B may be chosen so that vl is as close as possible to v
at t = 0. Since ux is identically zero at t = 0 except when y = 1, the only
deviation of t^ from i; to be minimized is along y — 1. A least-squares fitting
of i?! gives

. (4.75)

A Chebyshev criterion (Fox and Parker 1968) leads to

B = 2/{l+cos(bVp)}. (4.76)

Crank and Parker quote error bounds on v — vx.

(iii) Quadratic profile. An alternative approach starts again from (4.68)
but with p regarded simply as a parameter, for the time being unknown. We
define an approximation w(x, y, t) to v such that

wxx = ut-uyy = -pu. (4.77)

Since u and p are independent of x we can integrate (4.77) to give

w = {A + Bx-\px2)u, (4.78)

where A and B are arbitrary functions of y and t. They are obtained by making
w obey the conditions (4.65) on v and we have

B = 0, A = pb(l+^hb)/K

so that

w = (1 +±hb-\hx2/b)?^. (4.79)

We can easily see that w satisfies eqns (4.64H4.66) to within O(hb) if p =
h{l + 0{hb)}/b. Thus by using w for i; in (4.69) to obtain p, we have finally
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referred to as the 'quadratic-profile' solution. The constant k is arbitrary
but must not differ from unity by more than O(hb). Least-squares or Cheby-
shev criteria can again be used but we choose k = 1. Crank and Parker (1966)
tabulated their approximate solutions and compared them with the full
analytical solution which is

* 2h cos asx

2 » (-1)7exp(-r27r2r) . 1 „ O1,
< . % + 2rcexp -as

2r) Y ' , , sin my}, (4.81)

| s inha s
 F

 r=\ r V + a2 J

where as, (s = 1, 2, ) are the positive roots of

a tan <xb = h, (4.82)
for a range of values of h and b. They concluded that the 'constant-profile'
solution which is usually used as an approximation for a thin sheet or rod is,
in fact, poor for a thin sheet with a high surface evaporation. But it provides a
good approximation for a thick sheet with low surface loss. Both the quad-
ratic profile' and the 'partial separation of variables' yield much better
approximations over all. Concentration profiles across the sheet support
these general conclusions.

As hb -• 0, the roots of (4.82) approach

Also the constant terms outside the curly brackets in (4.81) tend towards
unity for 5 = 1 and the other terms either stay of the same order of magnitude
or decrease, as s increases. It is easy to see that as hb -• 0 the analytical solu-
tion (4.81) approaches the approximate solution given by (4.73), (4.74), and
(4.79). Crank and Parker show, however, that the approximate methods can
readily be extended to cover some non-linear situations.



DIFFUSION IN A CYLINDER

5.1. Introduction

W E consider a long circular cylinder in which diffusion is everywhere radial.
Concentration is then a function of radius r and time t only, and the diffusion
equation (1.7) becomes

3C 1 3

5.2. Steady state

If the medium is a hollow cylinder whose inner and outer radii are a and
b respectively, and if the diffusion coefficient is constant, the equation de-
scribing the steady-state condition is

The general solution of this is

C = A + B\nr, (5.3)

where A and B are constants to be determined from the boundary conditions
at r = a, r = b. If the surface r = a is kept at a constant concentration Cx,
and r = b at C2 , then

C " In (b/a) * P ' 4 )

The quantity of diffusing substance Qt which diffuses through unit length of
the cylinder in time t is given by

If Qt is measured in a concentration-dependent system, the mean value of
the diffusion coefficient obtained from (5.5) is (J^ DdC)/(C2 — Cx) as for
the plane sheet (see (4.11)). The concentration distribution defined by (5.4)
is not linear, as it is for the plane sheet. Typical distributions are shown in
Fig. 5.1 for the cases C2 = 0, b/a = 2, 5, 10.
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FIG. 5.1. Steady-state concentration distributions through cylinder wall. Numbers on curves are
values of b/a.

Another steady-state problem leading to an interesting result is that of
the hollow cylinder whose surface r = a is kept at a constant concentration
C l 9 and at r = b there is evaporation into an atmosphere for which the
equilibrium concentration just within the surface is C2. The boundary
condition, with the constant of proportionality denoted by /z, is

(5.6)

and we find

c =
ln (b/r)} + hbC2 In (r/a)

I+hb In (r/a) '
(5.7)

The outward rate of diffusion per unit length of the cylinder is Qn where

Qt = 2 T C D ( C 1 - C 2 )
hb

I + hb In (b/a)'
(5.8)

By differentiating this expression with respect to fc, it is easily seen that if
ah > 1 the rate of diffusion decreases steadily as b increases from a, but if
ah < 1 the rate first increases and later decreases, passing through a maximum
when b = 1/h. This is due to the two opposing changes associated with an
increase in b. On the one hand, the rate of evaporation is increased because of
the increase in area of the surface, r = b, as b increases, but on the other hand,
the gradient of concentration through the cylinder decreases as b is increased.
In certain circumstances, therefore, the rate of diffusion through the wall of a
pipe may be increased by making the wall thicker (Porter and Martin 1910).
This is illustrated in Fig. 5.2 for ah = \.
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FIG. 5.2. Effect of thickness of cylinder wall on steady-state rate of flow.

If the surface conditions are

dC/dr + h^Ci-C) = 0; dC/dr + h2(C-C2) = 0,

we find

ahlCl{l+bh2\n(b/r)}-^bh2C2{l+ahl\n(r/a)}
C =

and

e,=

ah1+bh2 + abh1h2\n(b/a)

2nDtabhlh2(C2-Cl)

ah1+bh2 + abh1h2 In (b/a)'

(5.6a)

(5.7a)

(5.8a)

Other problems on diffusion in regions bounded by surfaces of the cylin-
drical coordinate system and in which the flow is not necessarily radial are
treated by Carslaw and Jaeger (1959, p. 214).

5.3. Non-steady state: solid cylinder

Following essentially the method of separating the variables described
in §2.3 (p. 17), we see that

C = wexp(-Da2r) (5.9)
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is a solution of (5.1) for D constant provided u is a function of r only, satisfying

which is Bessel's equation of order zero. Solutions of (5.10) may be obtained
in terms of Bessel functions, suitably chosen so that the initial and boundary
conditions are satisfied. Thus if the initial concentration distribution is
f(r) and the surface r = a is maintained at zero concentration, a solution of
(5.1) is wanted satisfying

C = 0, r = a, r ^ O , (5.11)

C = /(r), 0 < r < a, t = 0. (5.12)

The boundary condition (5.11) is satisfied by

C= £ ^(<V)exp(-Do#), (5.13)
W = 1

provided the ans are roots of

Jo(fl«») = 0, (5.14)

where J0(x) is the Bessel function of the first kind of order zero. Roots of
(5.14) are tabulated in tables of Bessel functions. For this function C is
finite at r = 0. The initial condition (5.12) becomes

f{r)= £ V o W (5-15)

it being assumed that f(r) can be expanded in a series of Bessel functions of
order zero. The Ans are determined by multiplying both sides of (5.15) by
rJo(ocnr) and integrating from 0 to a using the results,

Jo
0, (5.16)

when a and /? are different roots of (5.14), and

\{aoLn\ (5.17)

where Jx(x) is the Bessel function of the first order and a is a root of (5.14).
The derivation of the relationships (5.16) and (5.17), and of corresponding
expressions which hold when a is a root not of (5.14) but of alternative
equations which commonly arise in diffusion problems, is given by Carslaw
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and Jaeger (1959, p. 196). Finally the solution satisfying (5.11) and (5.12) is

C = ~2 f exp (-D*lt)J-^- [ rf(r)J0(mn) dr. (5.18)

Alternatively, solutions for both large and small times can be obtained by
use of the Laplace transform.

5.3.1. Surface concentration constant: initial distribution f(r)

If in the cylinder of radius a the conditions are

C=C0, r = a, r ^ O , (5.19)

C = /(r), 0 < r < a, t = 0, (5.20)

the solution is

-2 t e x P ( - D a n
2 f ) ^ | ^ (rf(r)J0(mn)dr, (5.21)

where the ans are the positive roots of (5.14).
If the concentration is initially uniform throughout the cylinder/(r) = C t

and (5.21) reduces to

If Mt denotes the quantity of diffusing substance which has entered or left
the cylinder in time t and M^ the corresponding quantity after infinite time,
then

M °° 4
T71=l- I-2-ie*P(-^)- (5-23)
1Vi oo M = 1 " a n

The corresponding solution useful for small times is

C-C1 a* r fl-r (^-^(Dra)1. r a - r
= -x erfc —-7-— + —-3 lerfc -

C o _ C i ~ r i 2V(D0" 4ar^ l™2y/(Dt)

(9a2-lr2-2ar)Dt.2 c a-r

which holds provided r/a is not small. The case of r/a small is discussed by
Carsten and McKerrow (1944). They give a series solution involving modified
Bessel functions of order n + \. The necessary functions are tabulated in
their paper and numerical calculation is straightforward.
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Also for small times we have

ML 4 [Dt Dt Dt
(5.25)

Clearly these solutions are not as valuable as the corresponding ones for
the plane sheet. In practice the range in t over which they are convenient for
evaluation is less than in the plane case.

1 0 r

FIG. 5.3. Concentration distributions at various times with initial concentration Cl and surface
concentration Co. Numbers on curves are values of Dt/a2.

The solutions for the cylinder can be written in terms of the two dimension-
less parameters Dt/a2 and r/a. Curves showing (C—C^UCQ — C^) as a
function of r/a for different values of Dt/a2 drawn by Carslaw and Jaeger
(1959, p. 200) are reproduced in Fig. 5.3. The curve of Fig. 5.7 for zero frac-
tional uptake shows how MJM^ depends on Dt/a2 when the concentration
at the surface of the cylinder remains constant.
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5.3.2. Variable surface concentration

If the initial concentration in the cylinder is zero and that at the surface is
<j)(t), the solution is

2D °° a Jn(ra ) f'
= — ^] exp(-Z)a2f) "

tf n= 1 ^l(^an) Jo

(5.26)

where the ccns are the roots of (5.14).
(i) As for the plane sheet, a case of practical interest is when

(j)(t) = C 0 {l -exp( - j8 r )} , (5.27)

representing a surface concentration which approaches a steady value Co ,
but not instantaneously. The solution (5.26) then becomes

C

C

20 J0(mn) exp(-Pan
2t)

and the sorption-time curve is given by

7ra2Cn

)8r) _4_ " exp(-Da 2r)
U}a2/D)±J0{(Pa2/D)t} *72 hi a2{a2/()S/D)-1}'

(5.28)

(5.29)

Fig. 5.4 shows uptake curves for different values of the parameter fia2/D.

i-Or

o (Dt/a2)'

FIG. 5.4. Calculated sorption curves for surface concentration given by C0(l — e pt). Numbers on
curves are values of Pa2/D.
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(ii) If the surface concentration varies linearly with time, i.e.

(j){t) = kt,

the solution is

2k «

4D

(5.30)

01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 10

FIG. 5.5. Concentration distributions through a cylinder with surface concentration kt. Numbers
on curves are values of Dt/a2.

In Fig. 5.5, curves showing DC/(ka2) are drawn against r/a for different values
of Dt/a2. Numerical values are given by Williamson and Adams (1919).
The corresponding expression for Mt is

. 2 nka* Ank
(5.32)

n=1

and Mfi/inka^) is plotted against Dt/a2 on Fig. 5.6. These solutions can be
extended by superposition as in § 3.3(v), to cover modified surface conditions
such as (j>(t) = Co + kt and a non-zero initial concentration.
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FIG. 5.6. Sorption curve for cylinder with surface concentration kt.

5.3.3. Diffusion from a stirred solution of limited volume

The problem differs only in detail from the corresponding problem
considered for the plane sheet in § 4.3.5 (p. 56) and the results can be written
down without explanation.

Suppose that the cylinder occupies the space r < a while the cross-section
of the bath of solution in which it is immersed is A (excluding the space
occupied by the cylinder). The concentration of solute in the solution is
always uniform and is initially Co . The cylinder is initially free from solute.
The total amount of solute Mt in the cylinder after time t is expressed as a
fraction of the corresponding amount M^ after infinite time by the relation
(Wilson 1948).

4a(l+a)
rexp(-Dqn

2t/a2), (5.33)

where the qns are the positive, non-zero roots of

xqnJo(qn) + 2Ji(qn) = 0, (5.34)

and a = A/na2, the ratio of the volumes of solution and eylinder. If there is
a partition factor K between solute in equilibrium in the cylinder and in the
solution, a = A/(na2K). The parameter a is expressed in terms of the final
fractional uptake of solute by the cylinder by the expression

1

AC0

(5.35)

The roots of (5.34) are given in Table 5.1 for several values of a in order to
assist the evaluation of (5.33). The convergence of the series in (5.33) becomes
inconveniently slow for numerical evaluation when Dt/a2 is small. An
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alternative solution suitable for small Dt/a2 when a is moderate is (Crank
1948c).

M ' l +-£] 1 - e x p {4(1 +ia)2Z)r/(a2a2)} erfc {2(1 +i<x)
a

(5.36)

Carman and Haul (1954) have derived an alternative equation which is less
easy to use but which is accurate up to considerably higher values ofM f /M a .
Their equation is

M
1 - exp {4y2Dt/(a2oc2)} erfc \ ^ \ A \ \

73+74

+ - ^ - exp {4y2Dt/(a2*2)} erfc j - ^ 1 ^ 1 J, (5.37)

where

(5.38)

F o r a very small it is convenient t o use the asympto t ic expans ion for erfc in
(5.36) and hence t o write

M, 1+q f ajDt/a2)-* . OL^Dt/a2)-* 3a5(Z)t/a2)-^ )
M ^ l + i a j 2^(l+ia)+167r*(l+ia)3 128«*(1 +ia)5 + ' y [ '

If a is very large, the following expression is more convenient,

2\DtMt = -ui-an—r
a

which for the special case of a = 00, becomes

* 1 Dt 1

l^m<+..,A5M)

6TT±
(5.41)

The derivation of these solutions for small times is given by Crank (1948c).
Fig. 5.7 shows curves of MJM^ against (Dt/a2)* for five values of the final
fractional uptake. Berthier (1952) gives a table of MJM^ for values of I/a
between 0 and 1 at intervals of 0-1. As in the plane case his values are not
always reliable to three decimal places.

The concentration of solute C within the cylinder is given by

2) J0(qn)

As for the plane sheet (§ 4.3.5, p. 58) the above equations also describe the
course of desorption into a well-stirred solution, initially free from solute,
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(Dt/a2)>

FIG. 5.7. Uptake by a cylinder from a stirred solution of limited volume. Numbers on curves show
percentages of total solute finally taken up by cylinder.

from a cylinder in which the concentration is initially uniform and equal to
Co . The only modifications are that (5.35) is to be replaced by

1
na2C0

(5.43)

and C1, (CJQO replace C, C^ in (5.42), where

5.3.4. Surface evaporation

If the cylinder is initially at a uniform concentration C2 , and there is a
surface condition

- D dC/dr = a(Cs - Co), (5.45)

where Cs is the actual concentration just within the cylinder and Co is
the concentration required to maintain equilibrium with the surrounding
atmosphere, the required solution is

C-C2 2U0(rpJa)
(5.46)



80 DIFFUSION IN A CYLINDER

The /Jns are the roots of

and
L = aoc/D,

(5.47)

(5.48)

a dimensionless parameter. Roots of (5.47) are given in Table 5.2 for several
values of L. The total amount of diffusing substance Mt entering or leaving
the cylinder, depending on whether Co is greater or less than C2, is expressed
as a fraction of M^ , the corresponding quantity after infinite time, by

Mt 4L2exp(-tfDt/a2)
(5.49)

The solutions suitable for small values of time, provided r/a is not small, are

C-C2 ierfc
a-r AhcfiDt f 1 3 —r

where h = a//), and
(5.50)

(5.51)

Tabulated values of MJM^ are given by Newman (1931) from which the
graphs of Fig. 5.8 are drawn. Newman also gives values of a second function
from which MJM^ can easily be deduced for a parabolic initial distribution.

1 Or -

0 1 2 3 4 5
(Dt/a2V

FIG. 5.8. Sorption and desorption curves for the surface condition (5.45). Numbers on curves are
values of L = QOL/D.
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5.3.5. Constant flux F0 at the surface

If the cylinder is initially at a uniform concentration Co, and there is a
constant rate of transfer of diffusing substance Fo per unit area of the surface,
i.e.

(5.52)

then we have

where the <xns are

-DdC/dr

Foa f 2Di
C ° " D\a2

- 2 £ exj
n= 1

the positive roots

Ji

= Fo

of

(«) = 0.

= a,

Jo(mja)
(5.53)

(5.54)

Roots of (5.54) are given in tables of Bessel functions, and the first five roots
are to be found in Table 5.2 when L= 0. Obviously the amount of diffusing
substance lost by unit length of the cylinder in time t is 2naFot. This is a
problem which has been discussed in connexion with the drying of clay by
Macey (1940, 1942), Jaeger (1944), and others. A solution useful for small
values of time is

a — r

a-r

Concentration-distance curves, plotted from (5.53) are shown in Fig. 5.9.

5.3.6. Impermeable surface

If the surface of the cylinder is impermeable and there is an initial con-
centration distribution f(r) then

C = M fW)dr'+ Z exp(-Dan
2t)

a UO n=l

fr W)J 0(a/)drj, (5.56)
o J

where the <xns are roots of

Ji(a*J = 0, (5.57)

which are given in standard tables.
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FIG. 5.9. Concentration distributions in a cylinder for constant flux Fo at the surface. Numbers
on curves are values of Dt/a2.

5.3.7. Composite cylinder

Various problems of radial diffusion into a composite cylinder comprised
of two coaxial cylinders having different diffusion coefficients have been
solved (see e.g. Carslaw and Jaeger (1959, p. 345). The extra parameters
involved make any attempt at general numerical evaluation too formidable
to be attempted here. Some solutions relating to diffusion accompanied by
non-linear absorption are discussed in Chapter 9.

Olcer (1968) summarized the available solutions and solved the composite
hollow cylinder problem in a very general form for combined radial and
axial diffusion with internal sources included. Stevenson (1974) obtains a
solution and gives numerical values typical of a small tubular membrane
related to permeability measurements.

5.4. The hollow cylinder

Carslaw and Jaeger (1959, p. 207) give the general solution to the problem
of the hollow cylinder with the surface r = a maintained at a constant
concentration C1? and r = b at C2 , when the initial distribution is f(r), in
the region a ^ r ^ b. In the special case of a constant initial concentration,
f(r) = Co, and when Cx = C2, the solution is

-^-exp(-Dan
2 t) .

where = Jo(r«n)Yo(b«n)-Jo(bain)Yo(mn),

(5.58)

(5.59)
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and the ans are the positive roots of

U0(aan) = 0. (5.60)

Roots of (5.60) are given in Table 5.3 for different values of b/a. This table
is reproduced from Carslaw and Jaeger's book (1959, p. 493). In (5.58) and
(5.59) J o and Yo are Bessel functions of the first and second kind respectively,
of order zero. They are both listed in standard tables. The expression for the
amount of diffusing substance entering or leaving the region a ^ r ^ b in
time t is given by

(561)

In Fig. 5.10, curves of MJM^ are plotted against {Dt/(b — a)2}^ for different
values of b/a.
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FIG. 5.10. Uptake curves for hollow cylinder.
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5.4.1. Flow through cylinder wall

If the surface r = a is maintained at C1? r = b at C2, and the region
a ^ r ^ b is initially at Co, the concentration approaches the steady-state
distribution discussed in § 5.2 (p. 69) according to the expression

Q In (b/r) + C2 In (r/a) » J0(flaJl/0K,)exp(-Da2Q

ln(ft/a) * ^ J ( a

»=i J2
0(aan)-J

2(bocn)

where the ans are roots of (5.60). The amount of diffusing substance entering
or leaving the cylinder wall in time t is given by Mr, where

a2{J(aa) + J(K)}

Normally a quantity of greater practical interest is the amount Qt escaping
from unit length of the outer surface r = b. This is readily deduced from (5.62)
and is given by obtaining —2nD(r dc/dr)r = h and integrating with respect to
time t. In the most commonly occurring case Co = C2 = 0, and we then find

nC[ = In (b/a) 4 ^ (x2{Jl(aoin)-J
2(b(xn)} ' ( 5 ' 6 4 )

For a given b/a the graph of Qt/(nb2C1) against t approaches, at large t, a
straight line which makes an intercept L on the t-axis given by

a2-b2+(a2 + b2)\n(b/a)
4 h ^ ' ( 5 ' 6 5 )

As Barrer (1951) suggests, this intercept provides a means of measuring
the diffusion coefficient D for a material in the form of a hollow cylinder.
Fig. 5.11 shows graphs of Qt/(nb2 C J, the amount evaporated from unit area
of the outer surface r = b, as a function of Dt/(b — a)2 for different values of
b/a.

5.4.2. A general boundary condition

Jaeger (1940) has given the solution to the problem of diffusion into a
hollow cylinder in which the concentration is initially zero and the boundary
conditions on the two surfaces are

i d c , d c i

kl^- + k2—- + k3C = /c4, r = a, (5.66)
dt dr
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FIG. 5.11. Approach to steady-state flow through wall of cylinder. Numbers on curves are
values of b/a.

k> = b. (5.67)

These conditions include as special cases.
(i) Constant concentrations, Clonr = a and C2 on r = b, when /cx = k2 =

k1 = k2 = 0, /c4//c3 = C j , /C4//C3 = C2.

(ii) Evaporation conditions on the surfaces

-DdC/dr = y1(C1-Q9 r = a,

DdC/dr = y2(C-C2\ r = b,

(5.68)

(5.69)

when kt = k\ = 0, k2 = k'2 = D, k3 = -yl9 kA = -yxCx, k'3 = y2, k'A =
y2C2. This includes the obvious modification for an impermeable surface,

(iii) Diffusion proceeding from a well-stirred solution occurring in the
region 0 ^ r ^ a, the concentration at r = a being always the same as that
throughout the solution; the surface r = b impermeable. At r = a the condi-
tion is

no1 dC/dt = 2naD dC/dr, r = a,
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i.e.

f - ^ = 0, ,.«. (5.70)
dt a dr

and we have also

dC/dr = 0, r = b, (5.71)
so that fcx = k'2 = 1, fc2 = -2D/a, k\ = k'3 = fc4 = fc3 = fc4 = 0. Other
cases, such as that of diffusion from a well-stirred solution in the region
0 ^ r ^ a with the surface r = b maintained at a constant concentration,
or the surface r = a maintained at a constant concentration while there is
loss by evaporation from the surface r = b, and other combinations of these
boundary conditions are all deducible from the general solution. The deriva-
tion of the solution by the use of Laplace transforms is given by Jaeger
(1940) (Carslaw and Jaeger 1959, p. 332). The final result is

_ ak4{k'2 - bk'3 In (r/b)} - bk\{k2 - ak3 In (r/a)}
ak3k'2 — bk2k'3 — abk3k'3 In (a/b)

-n

- k'4{AnJ0(aoin) - k2anJ .(OOL „)}], (5.72)

where

An = k3-Dk1a2; A'n = k3-Dk\tf
(5.73)

B = k2 + 2DkJa- B' = k'2 + 2Dk\/b) '

C0(r-ctn) = J0(raM){/lf iy0(aaJ-k2a / iy l(aaJ}

*n)l (5.74)

A'nJ 0{boLn)-k'2CLnJ ̂ b^)

— {AnJ0(accn) — /c2aMJ1(aaJ}2(A^2 4- /c2B'a2)

and where the ans are the positive roots of

{(/c3-/c1Da2)Jo(aa)-/c2aJ1(aa)}{(/c'3-/c'1Da2)yo(ba)-/c2ayl(ba)}

} = 0-

(5.76)
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5.5. The region bounded internally by the cylinder r = a

(i) If the initial concentration throughout the region r > a is Co, and the
surface r — a is maintained at C t , then

— - 5 . = 1 + -c exp(-£>u2r)-
dw

(5.77)

A solution useful for small times is

C-CQ

c,-cft

r-a (r-a)(Dtf. r-a
—r-n— ierfc -

'2yl{Dt)

-f
Dt(9a2-2ar-lr2

i2erfc r — a

2y/(Dt)'
(5.78)

Fig. 5.12 shows how concentration depends on radius at successive times.
The expression for the amount of diffusing substance F crossing unit area
of the surface r = a in unit time is

F = -D
8C\ 4{Ci-C0)D f00 , ^ , ,

= ' 2 exp(-D«2t)

/,=« n a J°
u{J2

0(au)+Y2
0(au)}-

(5.79)

Numerical values of the integral in (5.79) have been tabulated by Jaeger
and Clarke (1942) and are shown graphically by Carslaw and Jaeger (1959,
p. 388). For small times we have

F = (5.80)

FIG. 5.12. Concentration-distance curves in the region r > a. Numbers on curves are values
of Dt/a2.
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and for large times

where T = Dt/a2 and y = 0-57722 is Euler's constant.
(ii) If the region r > a is initially at a uniform concentration Co, and there

is transfer of diffusing substance across r = a according to

-DdC/dr = *{C-C,\ r = a, (5.82)

then we have

yr = I exp(-Dw2r)

^ ) } d^

where /z = a/D. Graphs showing how (C — CJACo —Cx) at the surface
r = a varies with time have been drawn by Carslaw and Jaeger, (1959
p. 338), for several values of ah. Clearly because of (5.82) these curves also
show the rate of transfer across unit area of the surface r = a. Carslaw and
Jaeger (1959, p. 338) also give the solution of the corresponding problem
when there is a constant rate of flow of diffusing substance across the surface
r = a.
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DIFFUSION IN A SPHERE

6.1. Introduction

IF we restrict ourselves to cases in which the diffusion is radial, the diffusion
equation for a constant diffusion coefficient takes the form

dC l d 2 C 2 d C
— = DTJI-T- . 6.1)

dt \dr2 r dr

On putting
u = Cr, (6.2)

(6.1) becomes

ft= *V- (63)

Since this is the equation for linear flow in one dimension, the solutions of
many problems in radial flow in a sphere can be deduced immediately from
those of the corresponding linear problems.

6.2. Steady state

In this case the equation is

— r 2 — = 0, (6.4)

of which the general solution is

C = B + A/r, (6.5)

where A and B are constants to be determined from the boundary conditions.
If in the hollow sphere, a ̂  r ̂  b, the surface r = a is kept at a constant
concentration Cx, and r = b at C2, then

a C x ( b r ) + b C 2 ( r a )
C = — . (6.6)

r(b-a)
The quantity of diffusing substance Qt which passes through the spherical
wall in time t is given by

-^(C2-Cl). (6.7)
b — a
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If Qt is measured in a concentration-dependent system, the mean value of
the diffusion coefficient obtained from (6.7) is

r:DdC (Ci-C2)

as for the plane sheet (see eqn. (4.11)).
If the surface r = a is maintained at a concentration Cl and at r = b

there is evaporation according to the condition

^ + h(C-C2) = 0, r = b, (6.8)

we find

r{hb2 + a(l-hb)}

The amount Qt passing through the spherical wall in time t is now given by

= 4nDthab2{Cx-C2) ]Q)
1 hb2 + a(l — hb)

If ah > 2, the rate of diffusion decreases steadily as b increases, but if ah < 2
the rate first increases and later decreases, passing through a maximum when
b = 2/h. As in the case of the cylinder, this maximum is due to the combina-
tion of a decreasing gradient and an increasing surface area as b is increased.

If the surface conditions are

dC/dr + hl(Cl-C) = 0, r = a; dC/dr + h2(C-C2) = 0, r = b,

(6.11)
the solutions are

C1a
2h1{b2h2-r(bh2-\)}

' }

r{b2/i2(̂ i + l)-^i(^2-l)}
and

4na2b2hlh2Dt(Cl-C2)
1 b2h2(ah1 + l) — a2hl(bh2 — l)'

6.3. Non-steady state

6.3.1. Surface concentration constant: initial distribution f(r)

If we make the substitution u = Cr, suggested above, the equations for u
are
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u = 0, r = 0, t > 0, (6.15)

u = aC0, r = a, t > 0, (6.16)

M = rf{r), t = 0, 0 < r < a, (6.17)

where Co is the constant concentration at the surface of the sphere. These are
the equations of diffusion in a plane sheet of thickness a, with its ends, r = 0
and r = a, kept at zero and aC0 respectively, and with the initial distribution
rf(r). This problem has been considered in §4.3.1 (p. 47) and the solution
follows immediately by making the appropriate substitutions in eqn (4.16).
If the sphere is initially at a uniform concentration C1 and the surface con-
centration is maintained constant at Co, the solution becomes

C0 — Cl nr n = j n a

The concentration at the centre is given by the limit as r -• 0, that is by

^ = ^ = 1+2 f (-\)nexp(-Dn2n2t/a2). (6.19)

The total amount of diffusing substance entering or leaving the sphere is
given by

— = 1 -4 Z \exp(-Dn2n2t/a2). (6.20)

The corresponding solutions for small times are

C-Ci _ a *
C -C ~ r _

and

These solutions can be written in terms of the two dimensionless parameters
Dt/a2 and r/a. Curves showing (C — C^KCQ — C^ as a function of r/a for
different values of Dt/a2, drawn by Carslaw and Jaeger (1959, p. 235) are
reproduced in Fig. 6.1. The curve for zero fractional exhaustion on Fig. 6.4
shows MJM^ as a function of Dt/a2.

6.3.2. Variable surface concentration

If the initial concentration in the sphere is zero and that at the surface is
(j)(t) the solution is

C = - — V (-1)" Qxp(-Dn2n2t/a2)nnsin— f exp{Dn2n2X/a2)(j){})<U.

(6.23)
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1-Or

FIG. 6.1. Concentration distributions at various times in a sphere with initial concentration
Ct and surface concentration Co. Numbers on curves are values of Dt/a2.

(i) When

(6.23) becomes

= C0{l-exp(-/fe)},

, p sin {(pa2/D)±r/a}

sin
j 3 £ / n exp(-Dn27r2r/a2) .

2, (-1)—-^—-.—~ -».— sinT r D r ^ / " «(n27r2-^2/D) ^" a
and the sorption-time curve is given by

3M,
i

D

(6.24)

(6.25)

n2D „% n2(n2n2-Pa2/D) '

Fig. 6.2 shows uptake curves for different values of the parameter fla2/D.

(6.26)
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1-Or

FIG. 6.2. Calculated sorption curves for surface concentration given by CO{1 — exp( — fit)}.
Numbers on curves are values of fia2/D.

(ii) If the surface concentration varies linearly with time, i.e.

0(0 = kt.

the solutions are

^ , . a 2 - r 2 \ 2 k a 3 » - 1 " , ^ 2 2 / 2 . -
C = k\t =- Y v —^-exp(-Dn 2 7r 2 t /a 2 )sm—,

6D Dn5rnfi n5

nnr

a

and

MtD/{%na5k) is plotted against Dt/a2 in Fig. 6.3.

(6.27)

(6.28)

(6.29)

6.3.3. Diffusion from a well-stirred solution of limited volume

The problem and method of solution are very similar to those of the plane
sheet and the results can be given without explanation. Suppose that the
sphere occupies the space r < a, while the volume of the bath of solution
(excluding the space occupied by the sphere) is V. The concentration of solute
in the solution is always uniform and is initially Co . The sphere is initially
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FIG. 6.3. Sorption curve for sphere with surface concentration kt.

free from solute. The total amount of solute Mt in the sphere after time t is
expressed as a fraction of the corresponding quantity after infinite time by
the relation

- - i - I

where the qns are the non-zero roots of

(6.30)

(6.31)

and a = 3V/(4na3), the ratio of the volumes of solution and sphere, or if
there is a partition factor K between solute in equilibrium in the sphere and
the solution, a = 3V/(4na3K). The parameter a is expressed in terms of the
final fractional uptake of solute by the sphere by the relation

1

1+a
(6.32)

The roots of (6.31) are given in Table 6.1 for several values of a. An alternative
solution suitable for small times given by Carman and Haul (1954) is

7i+}'2 I a \a-

+ higher terms,
yi+y2

(6.33)
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where in their notation

and

1}, (6.34)

e erfc z = exp z2 erfc z. (6.35)

In Fig. 6.4, MJM^ against (Dt/a2)* is plotted for five final fractional uptakes.
Berthier (1952) gives a table of MJM^ for values of I/a between 0 and 1 at
intervals of 0-1. His values are not always reliable to three decimal places.

1 0 r

0-0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8

FIG. 6.4. Uptake by a sphere from a stirred solution of limited volume. Numbers on curves show
percentage of solute finally taken up by sphere.

The concentration of solute C within the sphere is given by

6(1 + a) exp ( - Dg2t/a2) a sin (qnr/a)

:2 r sin qn
(6.36)
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The above equations also describe the course of desorption into a well-
stirred solution, initially free from solute, from a sphere in which the con-
centration is uniform and equal to Co . The only modifications are that (6.32)
is to be replaced by

and Cj , (Cj)^ replace C, Cm in (6.36), where

C^Co-C, (Cl)o0 = C0-Cx. (6.38)

6.3.4. Surface evaporation

If the sphere is initially at a uniform concentration Cl, and there is a
surface condition

= (x(Cs-C0\ (6.39)

where Cs is the actual concentration just within the sphere, and Co is the
concentration required to maintain equilibrium with the surrounding
atmosphere, the required solution is

C - C o =2La « exp (-Dtft/a2) sin j^r/a
C i - C o r ^ {/?n

2 + L(L- l )} sin/?,, "

The fins are the roots of

- l = 0 , (6.41)
and

L = a*/D. (6.42)

Some roots of (6.41) are given in Table 6.2. The expression for the total
amount of diffusing substance entering or leaving the sphere is

M, , £ 6L2exp(-/?n
2Pt/a2)

Fig. 6.5 shows curves of MJM^ plotted as functions of (Dt/a2)^ for several
values of L for which Newman (1931) gives tabulated solutions.

6.3.5. Constant flux F0 at the surface

If the sphere is initially at a uniform concentration Co , and there is a
constant rate of transfer Fo per unit area of surface, i.e.

-DdC/dr = Fo, r = a, (6.44)
then we have

1 r2 3 a " sin (anr) , ]



DIFFUSION IN A SPHERE 97

FIG. 6.5. Sorption or desorption curves for the surface condition (6.39). Numbers on curves are
values of L = aa/D.

where the aocns are the positive roots of

aaMcot aoLn = (6.46)

The amount of diffusing substance lost by the sphere in time t is 4na2Fot.
Some roots of (6.46) are given in Table 6.2 when L = 0. Fig. 6.6 shows curves
of D(C0 — C)/(Foa) plotted against r/a for different values of Dt/a2.

6.3.6. Impermeable surface

If the surface of the sphere is impermeable and there is an initial concentra-
tion f(r) then

3 Ca 2 °°
C = ^ \ r2/(r)dr + - X

a Jo arn=l

where the ans are the positive roots of (6.46).

sin ci r Ca

^ - r'/(r')sinanr'dr',
in ocnaj0

sin
)-
sin

(6.47)

6.3.7. Composite sphere

Problems of diffusion into a composite sphere comprised of an inner
core and an outer shell for which the diffusion coefficients are different
have been considered by Carslaw and Jaeger (1959, p. 351), Bromwich
(1921), Carslaw (1921), Carslaw and Jaeger (1939), Bell (1945), and others.
The extra parameters involved make any attempt at general numerical
evaluation too formidable to be attempted here.
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00

FIG. 6.6. Concentration distributions in a sphere for constant flux Fo at the surface. Numbers on
curves are values of Dt/a2.

6.4. Hollow sphere

Carslaw and Jaeger (1959, p. 246) give the general solution to the problem
of the hollow sphere with the surface r = a maintained at a constant con-
centration C1? and r = b at C2 , when the initial distribution is f(r) in the
region a ^ r ^ b. Some special cases have been considered by Barrer (1944)
who also suggests a number of practical systems to which his solutions might
be applied. In the special case of a constant initial concentration, f(r) = Co ,
and when Cx = C2, the solution is

c-c0 b c o s n n — a \ . nnir — a) , ->->„, -,,1 s i n - ^ exp { - Dn2n2t/(b - a)2}
b-a

(6.48)

The total amount of diffusing substance entering or leaving the hollow sphere
a ^ r ^ b in time t is given by

M, =

M

b cos nn — a

(6.49)
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FIG. 6.7. Uptake curves for hollow sphere.

Graphs of MJM^ against {Dt/(b — a)2}* are shown in Fig. 6.7 for different
values of b/a.

6.4.1. Flow through spherical wall

If the surface r = a is maintained at Cx, and r = b at C2, and the region
a ^ r ^ b is initially at Co, the concentration approaches the steady-state
distribution discussed in § 6.2, according to the expression

aC, (bC2-aCl){r-a) 2

r r(b — a) rn,
b(C2-C0) cos nn-aiC^ Co)

x sinM" ( r ahxp{-Dn27i2t/(b-a)2}.
b — a

(6.50)
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The total amount which accumulates in the spherical wall in time t is Mf,
where

ab
(\ 4- h* 4-

2
M, - >-*)[(s2

— v
Qxp{-Dn2n2t/(b-a)2}

, — lab cos nn - - C o

(6.51)

The quantity which is usually of greater practical importance is Qn the
amount escaping say from the outer surface r = b. In the simplest case,
when Co = C2 = 0, we find

n i 9

-7-4 Z
6 n z

 n = l

(6.52)

As r -> oo, the graph of (6.52) when plotted against Dt/(b — a)2 approaches a
straight line which has an intercept on the time axis given by

Dt 1
(6.53)

(b -a ) 2 6'

As in the case of the plane sheet and the cylinder, this intercept can be used

osr

01 0-2 0-3 0-4 0-5 0-6

FIG. 6.8. Approach to steady-state flow through the wall of a sphere.
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to determine the diffusion coefficient D experimentally (Barrer 1951).
Fig. 6.8 shows the way in which the graph of (6.52) approaches the straight
line.

6.4.2. Surface evaporation

Carslaw and Jaeger (1959, p. 246) give a solution to the problem in which
evaporation into an atmosphere of zero vapour pressure occurs at r = a
and r = b according to the expressions

k1—-h1C = 0, r = a, (6.54)

k2-— + h2C = 0, r = b. (6.55)

If the initial concentration distribution in the spherical wall is /(r), the
solution is

C = - f exp {-Da2
ntRn{r)} f r'Rn(r')f(r') dr', (6.56)

where

G = ahi+k^, H = bh2-k2, (6.57)

(H2 + b2k2
2cx.2f{G sin(r-a)<xn + ak^ cos (r- a)an

{{b-a){a2k\oL2
n+G2){b2k2

2a
2
n+H2) + {Hakx^

(6.58)

and +a n , n = 1,2,... are the roots of
2 )cos(fo-a)a = 0. (6.59)

By putting either or both /cx and k2 zero we obtain the solutions for one or
both surfaces maintained at zero concentration, and similarly hl or h2 zero
corresponds to an impermeable surface. If both hx and h2 are zero, so that
both surfaces are impermeable, a term

is to be added to (6.56).
If evaporation takes place into atmospheres of different vapour pressures

the solution can be deduced from the above by following the method used
by Carslaw and Jaeger (1959, p. 118) for the plane sheet. Thus we write
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C = u + w, where w is a function of r only, satisfying

d
dr

du

= 0, a < r < b,

= ft,

so that

u =

and w is a function of r and t such that

dw D d I 2dw

dw

dw
2-—

a < r < b,

i— /iivv = 0, r = a,
or

r = ft,

and hence w is given by (6.56) on using f{r) — u for f(r).

6.5. The region bounded internally by the sphere r = a

Solutions of this problem follow readily from those of the corresponding
problems of the semi-infinite sheet by using the transformation u = Cr.

(i) If the region r > a is initially at a uniform concentration Co, and the
surface r = a is maintained at Cx, the solution is

C-Co a r-a
= - erfc -2y/(Dty

(6.60)

which is readily evaluated using Table 2.1.
(ii) If the initial concentration is Co , and there is a boundary condition

= h{Cl-C\ r = a9 (6.61)
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then we find

C—Co ha2 r n r — a , - , , [ r — a
\ e r f c e x P {h'(ra) + h'2Dt\ erfc ^^-77—:- e xP {h'(r-a) + h'2Dt\ erfc ̂

(6.62)

where /?' = /z + (l/a). The ratio (C — C^KC^ — Co) on the surface, r = a, is

y O - exp(/2/2Dt)erfc/zV(Dr)}, (6.63)

which again is readily evaluated from Table 2.1.



CONCENTRATION-DEPENDENT DIFFUSION:
METHODS OF SOLUTION

7.1. Time-dependent diffusion coefficients

I N Chapters 2-6 mathematical solutions were presented for various problems
in which the diffusion coefficient was taken to be constant. These solutions
can also be used if the diffusion coefficient D depends on the time t for which
diffusion has been proceeding but is independent of other variables, i.e. if D
is a function of t only. In this case the equation for diffusion in one dimension
becomes

- -5, (7.1)

and on writing

dT=D(t)dt, (7.2)

i.e.

T= f D(t')dt\ (7.3)

equation (7.1) reduces to

^ - ^ (7 4)

The solutions for constant D can therefore be used to give C as a function of
x and T, and T is then converted into t using the relationship (7.3). If the
integral in (7.3) cannot be evaluated formally, the relationship between T
and t has to be obtained by graphical or numerical integration. If the boundary
conditions involve time explicitly, e.g. if the surface concentration is a
given function of t, this function must be rewritten in terms of T in order to
obtain the appropriate solution of (7.4) in x and T. The transformation (7.2)
of course, can be used for all forms of the diffusion equation, e.g. for dif-
fusion in a plane sheet, cylinder, or sphere.

Dodson (1973) used (7.3) in a problem of diffusion in a cooling solid
presented by the calculation of the age of a rock or mineral from its ac-
cumulated products of radioactive decay. His equation takes the form

dc/dt =
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which in terms of the variables

q = l - e ~ a ' - c , M = j D(0)e~'df = D(0)(l-e~')

becomes

dq/du = V2q.

Solutions for a time-dependent surface condition on q are deduced by
Dodson from general forms by Carslaw and Jaeger (1959).

7.2. Concentration-dependent diffusion: infinite and semi-infinite media

A case of great practical interest is that in which the diffusion coefficient
depends only on the concentration of diffusing substance. Such a concentra-
tion-dependence exists in most systems, but often, e.g. in dilute solutions, the
dependence is slight and the diffusion coefficient can be assumed constant for
practical purposes. In other cases, however, such as the diffusion of vapours
in high-polymer substances, the concentration dependence is a very marked,
characteristic feature. A number of methods have been used to obtain
numerical solutions, some applicable to any type of concentration-depen-
dent diffusion coefficient, and others restricted to particular types, e.g.
exponential or linear dependence. In other cases, algebraic solutions have
been expressed in terms of a single integral and these will be referred to as
formal solutions even though the integral has to be evaluated numerically.

7.2.1. Boltzmann s transformation

The equation for one-dimensional diffusion when the diffusion coefficient D
is a function of concentration C is

cC _ d
dt ~ dx ox

(7.5)

Boltzmann (1894) showed that for certain boundary conditions, provided D
is a function of C only, C may be expressed in terms of a single variable
x/2t* and that (7.5) may therefore be reduced to an ordinary differential
equation by the introduction of a new variable rj, where

r\ = \x/t*. (7.6)
Thus we have

dC 1 dC
( 7 ? )

and
dC x dC

(7>8)



106 CONCENTRATION-DEPENDENT DIFFUSION:

and hence

dx
D

d_C_

~dx
D

4r dry

so that finally (7.5) becomes

dC dC

(7.9)

(7.10)

an ordinary differential equation in C and rj. The transformation (7.6)
can be used when diffusion takes place in infinite or semi-infinite media
provided the concentration is initially constant in the regions x ^ 0 or x > 0
as the case may be. For the problem defined by

eqn (7.10)

Similarly,

become

C

c
is to be solved

the conditions

C

c

= cl

= c2

x < 0,
x > 0,

t = 0,

r = 0,

for the boundary conditions

C =

for a

= C0

= cx

c
c

C i , 7̂ —

C2, */ =

semi-infinite

x = 0,

x > 0,

= Q , 17

= Cl5 7̂

- 0 0 ,

+ OO.

medium

t >0 ,

t = 0,

= 0,

= 00.

(7.11)
(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

It is only when the initial and boundary conditions are expressible in terms
of t] alone, and x and t are not involved separately, that the transformation
(7.6) and the eqn (7.10) can be used. They cannot be used, for example, when
diffusion occurs in a finite sheet of thickness /, and the boundary conditions
are

C = Co, x = 0,

because the second condition becomes

x = /, (7.19)

(7.20)

which is not expressible in terms of rj only but involves t explicitly. In general
the transformation can be used for diffusion and semi-infinite media when the
initial concentrations are uniform and may be zero.
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7.2.2. Numerical iterative methods

(i) Crank and Henry (1949a,b) gave a method of solving (7.10) subject to
(7.17) and (7.18) based on iterative quadrature. Eqn (7.10) can be written

(7-21)
D dr] drj\ drj

where c = C/Co, a dimensionless concentration, and c = 1 on rj = 0. We
illustrate the method for the case c = 0, Y\ = oo. By integrating (7.21) twice,
we obtain

where A is a constant of integration to be chosen such that

= 1 ' ( 7-2 3 )

in order that (7.18) shall be satisfied. The condition (7.17) is automatically
satisfied by (7.22). The diffusion coefficient D is a known function f(c) of c,
e.g. D = exp (kc). If we have a first approximation to the function c(rj) we
deduce the function D(rj) using D = f(c) and carry out the integrations in
(7.22) numerically using (7.23) to obtain a second approximation, and so on.
The convergence of this iteration is poor when D varies markedly with c.
Crank and Henry obtained some improvement by rewriting the procedure
in terms of the variable s defined by

s= \ Ddc \ Ddct (7.24)

(ii) Philip (1969a) reviewed his extensive contributions to the theory of
infiltration which include one-dimensional diffusion as a special case. One
method (Philip 1955) which has better convergence and accuracy than the
one just described starts by rewriting (7.10) as

t This transformation seems to have been used first by Kirchhoff(1894) and more recently by
Eyres, Hartree, Ingham, Jackson, Sarjant, and Wagstaff (1946). Philip (1973a) has shown that
for periodic non-linear diffusion, the time average of s satisfies Laplace's equation and is there-
fore readily evaluated for appropriate boundary conditions.
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which on integration yields

2 I rjdc = -Ddc/drj, (7.25)

subject to the condition (7.17). The lower limit of the integral is 0 because
(7.18) implies dc/dt] -• Oasc -> O.Philip's method uses a finite-difference form
of (7.25) in an iterative procedure starting from an estimate of J* r\ dc. An
analytical solution is used in the region of c -» 0. He compares his numerical
solutions with the analytical solutions obtained by Neumann's method
§ 13.2.4 (p. 296) for two examples in which D is a two-step function of c.

(iii) Lee (1969) put the problem on a sounder mathematical footing by
examining the analytical properties of the initial-value system comprising
eqn (7.10) written in terms of the variable s defined in (7.24), i.e.

^ 2 ^- (7.26)

dr\ dr]

subject to the conditions

s = 1, Y\ = 0 (7.27)

and

ds/drj = - g , n = 0, (7.28)

where F(s) = l/D(s) and the parameter g > 0. He showed that the unique
solutions are monotonic decreasing, and either reach s = 0 at a finite value of
Y\ or tend asymptotically as r\ -> oo, to s = s^, 1 > s^ > 0. He refers to the
former solutions as Class I type and the latter of Class oo. He established that
a solution of (7.26) subject to (7.28) and

s = 0, t] = + oo (7.29)

exists, which is the solution of the initial-value system with s^ = 0. Subse-
quently, Lee (1971a, 1972) developed iterative methods for obtaining
numerical solutions of the initial-value problem for successive approximations
to the parameter g in (7.28) until the solution for which s^ = 0 is obtained
within prescribed error estimates. The methods can conveniently be pro-
grammed for a digital computer and one solution takes only two or three
minutes of computer time.

First, Lee considers a solution s = s{rj, g) of the initial-value system. From
(7.26) it is evident that for rj « I, d2s/drj2 « 1. Thus ds/drj changes very
slowly for r\ « 1, and its value at a point is very close to the slope of the chord
joining that point and the initial point rj = 0, s = 1.
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The term ds/drj in (7.26) may be replaced by (1 —s)/(l —77), and so we
approximate to (7.26) for rj « 1 by

^ = 2(1-s)F(s). (7.30)
drj2

Lee (1971a) used the solution of (7.30) as a first approximation in his iterative
process. The solution is easily obtained and can be of some intrinsic interest
as an approximate solution which may be accurate enough for some pur-
poses. The reader is referred to Lee's paper (1971a) for iterations based on the
solution of (7.30).

We turn instead to the method described in the later paper (1972) which,
by avoiding the use of (7.30), is simpler and requires less computing time.
Lee established some relevant theorems so that we can consider two positive
numbers gv and gL

* and gv = %U/n)*, (7.31)

where

U = sup F(s) (7.32)

and

L = inf F(s) (7.33)

such that

(i) for all g > gv the solutions s(r], g) are of Class I;
(ii) for all g < gL the solutions s(f/, g) are of Class oo with s^ > 0.

The gradient G we require to give the solution of (7.26) lies in the range

&L < G < 8u-
We now take as a first approximation of G an interpolated value g t , where

Si =i(gi/ + gL)- (7-34)

Depending on s(rj, gx) being of Class I or Class oo, the second approximation
is obtained by a similar interpolation between the derivative at r\ = 0 of
sfo, gi) and that of sfo, gL) or s(rj, gv).

In general, if the last iterative solution is of Class oo with an asymptotic
value other than zero, the next approximation is obtained by interpolating
between the derivative at rj = 0 of the last solution and that of the last Class I
solution; if, on the other hand, the last iteration is of Class I then the next
approximation follows by interpolating between the derivative of the last
solution and that of the last Class oo solution. Lee used a fourth-order
Runge-Kutta method of numerical integration to obtain the successive
approximate solutions.
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Since the derivatives of these solutions are negative and monotonic
increasing to zero, an error estimate 0 < ed « 1 can always be prescribed so
that the asymptotic value of a solution can be assumed as soon as the absolute
value of the derivative becomes less than ed, and hence the solution is
asymptotic. Otherwise, the value of the solution reaches zero before the value
of its derivative exceeds — ed, and the solution is of Class I.

For a solution of Class oo the asymptotic value assumed above indicates
the degree of approximation of the solution to the required one which
approaches zero asymptotically. Thus, for a prescribed error estimate
0 < ea « 1, iteration stops as soon as the assumed asymptotic value of the
last iterative solution is less than ea. The last solution is taken as the required
solution s(rj, s'o).

Lee (1969) showed that the derivatives are monotonic increasing to zero
approximately at an exponential rate exp ( — rj2m), where

m = inf F(s).
0<s< 1

It follows that the increment of the asymptotic value due to ed ^ 0 is always
less than

-ed Qxp(-rj2m)dr] = -ed(n/4m)*,

which can be made very much less than ea if we choose ed « m^ea. Thus we
can choose consistent error estimates.

Lee (1971a) tabulated results for a practical example relating to the uptake
of excess calcium by calcium chloride (Wagner 1968). The diffusion coefficient
D takes the form

D = D0/(l+Ac).

The variable s defined by (7.24) becomes

s(c) =

and in the eqn (7.26) we have

F(s) = exp{sln(l

Lee evaluated numerical solutions satisfying (7.27) and (7.29) which are repro-
duced in Table 7.1 for a wide range of values of A. The prescribed error esti-
mate ea is 001 and ed is 10"4. The table shows the integration step sizes and
the number of iterations required. A GE-225 digital computer took two to
three minutes from data input to print final results for one solution.

By his second method Lee (1972) tabulated solutions of the equation

d ^ p _ f 1 }dp
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subject to the conditions

p = 1, n = 0 ; p = 0, rj = cc,

where >y ^ 0, 1 ^ p ^ 0, a0, b0 are constants.

7.2.3. Two- and three-dimensional series solutions

Philip (1966) developed series solutions for radially symmetrical diffusion
in infinite media surrounding cylinders and spheres. The equation is

subject to the conditions

C = Co, p > 1, T = 0, (7.36)

C = C l 9 p = 1, T ^ 0 , (7.37)
where

p = r/r0, i = r/rg (7.38)

and r = r0 is the surface of the cylindrical (m = 2) or spherical (m = 3) cavity
from which diffusant is supplied. We seek solutions of (7.35) of the form

P(C,T) = l + 01T i + 02T + (/>3T* + - ' (7'39)

where each </> is a function of C. Philip (1957) gave an a priori justification of
this form of series in a related study of infiltration. By using

(dC/dT)p(dP/dC)r = -(dp/dT)c (7.40)

we convert (7.35) into
1 d p m d I _ , d

(7.41)
09

and integration with respect to C yields

= D9m~1^. (7.42)
1 d rc

mdiJc/

We have assumed that limc^Co Dp m - 1 dC/d9 = 0, i.e. the flux is zero at
infinity for all finite T. By substituting (7.39) in (7.42) and assuming that the
expansion on each side is convergent we obtain the following set of relations
on equating coefficients:

f </>1dC= -2(D/<t>\\ (7.43)
JC0

f 4>2dC = {D(j>'2/(ct)\)2}-(m-l) f DdC, (7.44)
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o 3 L Wl) Jco J

and so on. Here $' signifies differentiation with respect to C, and because of
(7.37) we have the conditions

C = Cl9 4>n = 0, n = 1,2,3,.... (7.46)

The first equation (7.43) is clearly of the same form as (7.25). Detailed com-
parison allowing for the different symbolism shows them to be identical. Thus,
the leading term in the series for m-dimensional diffusion is the solution for
one-dimensional diffusion. This is to be anticipated as long as the depth of
penetration is small compared with r0.

Once equation (7.43) has been solved, say by the methods of § 7.2.2 (i),
(ii), (p. 107), then (7.44), (7.45) etc. may be solved in turn. They are all linear
equations and are amenable to numerical solution. One workable procedure
is analogous that that outlined in §7.2.2 (ii) (p. 107). Philip (1969a) gives a
sample set of moisture profiles in soil, computed from the first three terms of
the series solutions for the cylindrical and spherical cases.

7.2.4. Some special numerical solutions

Wagner (1952) for exponential and Stokes (1952) for linear concentration
dependent diffusion each transformed eqn (7.10), so that the relationship
between D and C is removed from the differential equation and appears in-
stead in one of the boundary conditions. Methods of numerical forward
integration are used to build up families of solutions for different exponential
and linear relationships.

(i) Exponential diffusion coefficients. Infinite medium. Wagner (1952)
has given the following method of dealing with a diffusion coefficient which
varies exponentially with concentration, according to the expression

D = Duexp[P{C-%Cx + C2)}l (7.47)

where Da is the diffusion coefficient for the average concentration
Ca = ^ C \ + C2), and /? is a constant given by

P = d In D/dC (7.48)

Wagner deals first with the problem in an infinite medium for which the
diffusion equation is

and the initial conditions

C-

C =

dC
~dt

are

= ct,
= c ,

d dCDir
dx

x < 0,

x >• 0 ,

t

t

= 0,

= 0.

(7.49)

(7.50)

(7.51)
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For purposes of tabulating the final results it is convenient to take new
variables

y = $x/(Dot)*9 (7.52)

where Do is the diffusion coefficient for the concentration Co at x = 0 and

so that

C 1 )^ (7.54)

To compute numerical values of the function i//, we introduce another
dimensionless variable

C0)9 (7.55)

whereupon (7.47) becomes

D = Doe\ (7.56)

with Do as diffusion coefficient for C = Co. Substitution of (7.52), (7.55),
and (7.56) in (7.49) gives

- = 0. (7.57)

// try

Introducing the auxiliary variable

u = ey (7.58)

into (7.57), we have

Solutions of (7.59) from y = — oo to y = + oo for the initial conditions

y = 0, u = 1, y = 0, (7.60)

were obtained for different values of the parameter g given by

g EE (dy/d>Oy = 0 = (Au/Ay)y = 0 = 0-2,04,..., 24. (7.61)

For each value of g there are two limiting values of y, yl at y = — oo and
y2 at y = + oo, with opposite signs. In view of (7.55) these values are related
to the initial concentrations C1 and C2 by

y, = / ? « : , - C o ) , (7.62)

y2 = /?(C2-C0) . (7.63)
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On subtracting corresponding sides of (7.62) and (7.63) we have

72-71 =P(C2-CX\ (7.64)

which according to (7.48) is the natural logarithm of the ratio of the diffusion
coefficients for the concentrations C2 and Cx . Fig. 7.1 shows the relation
between y2 — yl and the parameter g.

2-4

20

1-6

1-2

0-8

0-4

0 i i i | | L
0-5 10 1-5 2 0 2-5 3 0 3-5 4 0 4-5 5 0

±(y2—7i) =±p(c2-c{)

FIG. 7.1. Auxiliary parameter g as a function of(y2 — yl) = /?(C2 —Ct).

Moreover, it follows from (7.62) and (7.63) that

Co = %C1 + C2)-%

Substitution of (7.65) in (7.47) gives

(7.65)

(7.66)

To facilitate the computation of Do, a graph of ^{yl + y2) as a function of g
is shown in Fig. 7.2.

According to (7.55) and (7.53) we obtain the values of \j/ from the re-
lationship

(7.67)

Numerical values of the function \jf(yy g) are compiled in Table 7.2. For
negative values of the parameter g the relationship

can be used and the sign of y must be reversed.

(7.68)
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- 0 - 4 -

- 0 - 6 -

0 0 0-4 0-8 1-2 1-6 2 0

FIG. 7.2. %yl+y2) as a function of g.

2-4

In view of the regularity of the differences between the ij/ values for
different g values but equal y values, it is believed that the error in \j/ is in
general not greater than one figure in the last decimal place, except for
g = —1-6 to g = —24 for which the accuracy is less because of rather
sudden changes in the values of the first derivative of ^ as a function of y.

In order to obtain the concentration distribution for a diffusion coefficient
with given initial concentrations Cx and C2 and known values of Da and jS,
we proceed as follows:

(1) read the value of the auxiliary parameter g for the known value of
(y2-yi) = P(C2-Cl) from Fig. 7.1;

(2) read the value of ^y1 + y2) for the auxiliary parameter g from Fig. 7.2;
(3) calculate the value of Do from (7.66);
(4) plot \\f for the auxiliary parameter g as a function of y with the aid of

Table 7.2.

In view of (7.52) and (7.54) the plot of \\f versus y gives the concentration C
at any point x at time t.

Instead of using Figs. 7.1 and 7.2, the values of g and ^yx +y2) may be
calculated from the empirical interpolation formulae

5(y2-y1)310-3 + 64(y2-y1)510-5 , (7.69)

= -(M44g2-0-0038g4 (7.70)

Thus far it has been assumed that the diffusion coefficient is an exponential
function of the concentration in accordance with (7.47). If this assumption
does not hold strictly, we may use the foregoing analysis as an approximation.
Wagner (1952) recommends that the analysis be based on the diffusion
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coefficients for the concentrations

C_ i = i ( C 1 - C 2 ) - i ( C 2 - C 1 ) and C* = ^C, + C2) + i (C 2 -C 1 )

as the most representative values, corresponding to the average concentra-
tion ^{C1 + C2)±25 per cent of the total concentration difference {C2 — Cl).
Thus

B
 2

 l

± J } \ (7.72)

(ii) Exponential diffusion coefficients: semi-infinite medium. If a substance
diffuses from the interior of a sample, with uniform initial concentration
Co, to the surface (or vice versa) we need solutions of (7.49) with the initial
and boundary conditions

C = C0, x > 0 , r = 0, (7.73)

C = CS9 x = 09 r > 0 , (7.74)

where x is the distance from the surface and Cs denotes the surface concentra-
tion for t > 0.

In this case we consider an exponential dependence of the diffusion coeffi-
cient D on concentration given by

D = Dsexp{j3(C-Cs)}, (7.75)

where Ds is the diffusion coefficient for the surface concentration Cs.
Upon introduction of (7.75) and the auxiliary variables

ys = ix/(Dst)\ (7.76)

c = (C-CJ / (C 0 -CJ , (7.77)
and

, (7.78)

into (7.49) we obtain (7.57) with ys instead of y. In view of (7.74), (7.76),
(7.78) the integration is to be performed with y = 0 at ys = 0. Thus we can
use the values of y calculated above in § 7.2.4 (i) (p. 112). In view of (7.73),
(7.77), and (7.78) we have

y = P(C0-Cs) = r, ys=<x>, (7.79)

c = y/r. (7.80)

Here r is the natural logarithm of the ratio of the diffusion coefficients for the
concentrations Co and Cs. Fig. 7.3 shows the values of r, i.e. the limiting
values of y at y = oo, as a function of the auxiliary parameter g used for the
integration of (7.59). Numerical values of c are compiled in Table 7.3.
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r = p(C0-Cs)

FIG. 7.3. Auxiliary parameter g as a function of r = P{CO — CS).

In order to obtain the concentration distribution for diffusion from the
surface to the interior of a sample (or vice versa) one therefore proceeds as
follows:

(1) read the value of the parameter g for the value of r = jS(C0 — Cs) from Fig.
7.3;

(2) Plot c for this value of g as a function of ys using Table 7.3.

The concentration C at any distance x and any time t follows, since from
(7.77)

C=CSHCO-Cs)c9 (7.81)
and ys is given by (7.76)

Instead of using Fig. 7.3 one may calculate the values of g with the aid of
the empirical interpolation formula

g =
M28r

(7.82)
1—0-177r

Using (7.76) and (7.81), the flux across the surface x = 0 becomes

-Ds(dC/dx)x = 0 = -UDJt)HC0-Cs)(dc/dys)ys = 0 (7.83)

and from (7.61), (7.80), and (7.82) it follows that

dc\ 2 1-128
l-0-177r'

(7.84)

If P is positive (i.e. the diffusion coefficient increases with concentration)
and if the substance diffuses from the surface into the interior of a sample with
zero initial concentration, i.e. C0 — Cs < 0, the value of g is negative.
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(iii) Linear diffusion coefficients. Using a method similar to Wagner's,
R. H. Stokes (1952) obtained solutions for the infinite medium and conditions
(7.50), (7.51) for a diffusion coefficient depending linearly on concentration
according to the expression

D = D,{\+\a{Cl + C2)-aC}. (7.85)

Here Da is the value of D when C = i(C1 + C2), the mean concentration.
By using the substitutions

| i+^-o I (7'86)

and

the diffusion equation (7.49) reduces to

dw2 v^ dw'

with the boundary conditions

i > = l , w= + 0 0 , (7.89)

- o o . (7.90)

For convenience, we denote by b2 the value of v at w = — oo. From (7.85)
we see that b is the ratio of the diffusion coefficient at Cx to that at C2.
Stokes obtained numerical solutions of (7.88) by starting at w = 3, v = 1
(the value w = 3 is suggested by the known solution for a constant diffusion
coefficient) and a chosen small value of dv/dw, say less than 001. The integra-
tion proceeds in the direction of decreasing w till a value of v is reached which
is constant to within the accuracy of working. This value of v is b2, and is
reached at some negative value of w between — 2 and — 5. Different values of
the initial gradient dv/dw lead to different values of b2 which are known only
when the solutions are completed. This family of solutions gives, for different
bs, values of v and dv/dw at closely spaced intervals in w (the usual interval
used by Stokes was 0-1 in w). From these solutions, values of concentration
and concentration gradient are readily obtained. They are conveniently
expressed in :erms of a new independent variable ya defined by

(7.91)
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so that we have

dC = (Q-CJ&l+ft)}* 1 di;
d.ya 2(1-6) t?±dw' "

C = C2 + (C1-C2)(l-i;*)/(l-ft). (7.93)

Tables 7.4 and 7.5 show -(dC/dya)/(C1-C2) and (C-C2)/(C1-C2) as
functions of ya for different values of b. All the solutions shown correspond to
b < 1, i.e. to diffusion coefficients which decrease as the concentration
increases. The corresponding solutions for b > 1 may be obtained by reversing
the sign of ya; thus, for example, the solution for b = 0-1407 becomes the
solution for b = 1/0-1407 = 7-106 when the sign of ya is changed. Solutions
for intermediate values of b can be obtained by interpolation.

(iv) Diffusion coefficient directly proportional to concentration. The problem
treated by Wagner (1950) of a diffusion coefficient given by

D = D0C/C0, (7.94)

has some features of particular interest. Considering first the semi-infinite
medium in which

C = Co , x = 0, t > 0, (7.95)

C = 0, x > 0, t = 0, (7.96)

and introducing the variables

y = ixADot)*, (7-97)

c = C/C0, (7.98)

the diffusion equation

dt dx

becomes

d2c Idc
4^ = 0. (7.100)

dy

Further simplification is achieved by substituting

v = c2, (7.101)

when (7.100) becomes

dy2 v2 dy
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with boundary conditions

v = 1,

v = 0, y = oo.

(7.103)

(7.104)

Using numerical methods of integration and disregarding temporarily
the second condition (7.104), a family of solutions of (7.102) can be obtained
for arbitrarily chosen values of (dv/dy)y = 0 = v'o. Clearly if the condition
(7.104) at y = oo is to be satisfied, v'o must be negative. Then from (7.102) the
second derivative of v with respect to y is positive. If |VQ| « 1, the curve of v
against y tends to a constant value at large y as shown in Fig. 7.4, curve A.

FIG. 7.4. Schematic solutions of (7.102).

A solution of this kind does not satisfy (7.104), however. On the other hand,
if |v'0| » 1, curves which approach the axis v = 0 with finite slopes as shown
schematically by curve B in Fig. 7.6 are obtained. Tentatively we assume
that a special value of |v'0| yields a solution for which v vanishes at a certain
abscissa y = y0 and satisfies the additional condition

dy
v = 0, (7.105)

This is the condition that the rate of transport of diffusing substance shall be
zero when C = 0, since by eqns (7.97) (7.98), and (7.101) we have for the rate of
transport

C dC _ D%C0 dv

° Q & " 4r* dy'
(7.106)
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A function satisfying (7.102), (7.103), and (7.105) can then be combined with
the trivial solution v = 0, y ^ y0, so that a solution for the whole range
y ^ 0 results.

With the tentative assumption that condition (7.105) is satisfied at a
finite value y = y0, the factor y on the right side of (7.102) can be replaced
approximately by y0 if v « 1. Thus

dy2 v* dy

if v « 1, with the boundary conditions

v = 0, y = y 0 , (7.108)

dv/dy = 0, y = y0. (7.109)

Integration yields

v = {2yo(yo-y)}\ v « 1. (7.110)

Consequently, in the vicinity of y = y0, where v « 1 and hence c « 1
and C « Co , the function v(y) is represented approximately by a parabola
and the concentration ratio c = v̂  by a straight line.

To obtain a solution of (7.102) for the whole range 0 < y < y0, numerical
integration is required. Since the boundary conditions (7.103) and (7.105)
refer to different values of y it is useful to make the substitutions

£ = v/y*9 (7.111)

whereupon eqns (7.102), (7.108), and (7.109) become

0^(1-4' (7113)

C = 0, £ = 0, (7.114)

- J = 0, £ = 0. (7.115)

In order to integrate (7.113) from £ = 0, the second derivative d2C/d£2 at
£ = 0 must be known. This cannot be obtained directly from (7.113) because
for £ = 0 the right side is indeterminate. By substituting (7.111) and (7.112) in
(7.110) and differentiating twice, we obtain

d2C/d22 = 8, £ = 0. (7.116)

On carrying out the numerical integration of (7.113) starting with conditions
(7.114), (7.115), (7.116) at I = 0, we obtain C = 2-34 when f = 1, i.e. when
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y = 0. Then it follows from (7.111) and (7.103) that

y = (C*=i)-* = 0.81.

Transforming (7.112) and substituting (7.117) we have

y = ; M l - « = 0-81(1-£).

Finally it follows from (7.98), (7.101), (7.111), and (7.117) that

(7.117)

(7.118)

(7.119)

A graph of C/Co against \x/(D_ot)* is shown as curve I in Fig. 7.5.
10
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FIG. 7.5. Concentration distributions.
Curve I, D = D0C/C0; curve II, error

function solution (7.120).
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FIG. 7.6. Concentration distribution for
D^DiC/C,.
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In Fig. 7.5 curve II shows the corresponding graph for a constant diffusion
coefficient, calculated from

C/Co = erfc{ix/(Do0i}- (7-120)
Curve II approaches the abscissa asymptotically, whereas curve I reaches the
abscissa at the finite value y = 0-81 with a finite slope. Thus, in this special
case, an advancing velocity of the diffusing component is strictly definable,t
and from (7.97) and (7.117) it is given by

(dx/dr)c = 0 = yoD*o/t* = 2ylD0/x = l-3lD0/x. (7.121)

tShampine (1973/?) discusses solutions c(rj) = (1-a*/)1^, 0 ^ Y\ < I/a. c{\]) = 0, >y > I/a,
produced by D(c) = (pc(i/2(x2){l — cp/(l +/?)}, where rj = x/t* and a, p are positive parameters.
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Furthermore, (7.113) may be integrated up to ^ = +00, i.e. x = -co,
when the solution approaches a limiting value (1 , where £i = 6-82. We
then have the solution of the problem in an infinite medium for the initial
conditions

C = Cl9 x < 0,

x > 0,

(7.122)

(7.123)

where Ct and C2 are both constant, and the diffusion coefficient D is given
by

D = DXCICX,

where Dl is the diffusion coefficient when C = C1. Then from equations
(7.98), (7.101), (7.111), and (7.112) we find

C/Cy = (C/Q = oo)1 = (C/Ci)1. (7.124)

This concentration ratio can be related to the non-dimensional variable
^x/iDyt)^, which through (7.97) is given by

2{Dxtf
= y = 0-765.V, (7.125)

where y is calculated from { using (7.118). A graph of C/Cx as a function of
\xl(Dxt)* is shown in Fig. 7.6. The concentration at x = 0 is 0-59(1^ instead
of 0-50C! which is the value obtained when the diffusion coefficient is con-
stant.

G"

3-5 4-0

FIG. 7.7. Graph of concentration ratio C/Co versus dimensionless variable y = x/(2Dot)* for
desorption problem with diffusion coefficient directly proportional to concentration,
D = D0C/C0(e = 00), constant (e = 0), and directly proportional to concentration difference,
D = D0(\-C/C0)(e= -1).
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Wilkins (1963) obtained a solution in the form of the very convenient
power series

u = c —
4 72 576 86 400 115 200 304 819 200

4877£8 4469^ 311 543g1Q

4 877 107 200 48 771 072 000 43 893 964 800 000

in which £ = l—y/y0 and u = cjy\. It follows that y0 = 1-1428, £ =
1-0-87506};, and c = 1-3059M.t The series solution clearly cannot be used to
find the limiting value of c at x = — oc in the infinite medium. Wilkins,
however, refers to values of u tabulated by Christian (1961) in relation to the
Blasius problem in fluid flow which are in good agreement with his series
in the range over which it is valid.

The previously-neglected desorption problem was also discussed by
Wilkins (1963), who showed that the diffusion system could be transformed
into the form

rj = 0, / = df/drj = 0; rj = oo, d//diy = 2,

and that c = jdf/drj and y = 2~*f. The quantities / , / ' , and / " have been
tabulated as functions off/ by Howarth (1938), and were used by Wilkins to
plot the desorption solution. This solution is reproduced in Fig. 7.7, to-
gether with the corresponding solutions for a constant D and for D =
D0(l — C/Co). The inset shows on a larger scale the region of intersection of
the solutions analysed also by a further power series (see § 9.3.2, p. 176).

Wilkins also calculated the total amount of material that enters the half-
space x > 0 per unit area up to time t, i.e.

M = P Cdx = 2C0{Dj)> P c(y)dy.
Jo Jo

His expressions for the dimensionless quantity M/C0(Dj)1 are reproduced
in Table 7.6. The conditions for the infinite medium are t = 0, C = Co for
x < 0, C = 0 for x > 0; for sorption they are C = Co , x = 0, t ^ 0; C = 0,
x ^ 0, t = 0 and the usual corresponding conditions hold for desorption.
The diffusion coefficient is D = Da(l +%aC0-aC) and e = -aC0/(\ +\aC0).

Pattle (1959) found a class of exact solutions describing diffusion from a
point source when D has the form

D = D0(C/C0)
b, b>0.

t Heaslet and Alksne (1961) give a series solution for D = <*.
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The equation

dt ds

has the solution

t \ I S
C = C0~ 1-71 t > 0, s2 ^ s 2 ,

C = 0,s2 ^ s2. (7.127)

These equations represent an expanding diffusion zone with a definite edge, of
radius s1 given by

When a quantity Q is liberated at time t = 0 at a point in an infinite line,
plane, or volume, the parameters s0, f0 are determined by

(7.128a)

When fc > 1, the concentration gradient at the boundary of the region is
infinite; when b = 1, it is finite; and when b < 1, it is zero.

7.2.5. Analytical iterative methods

Kidder (1957) developed a perturbation method for desorption when
D(C) = aC with a constant. Successive coefficients in a series solution are the
analytical solutions of increasingly complicated ordinary differential equa-
tions. The method has been extended by Knight (1973a) to include power-law
and exponential relationships between D and C for both sorption and
desorption problems.

Parlange (1971a, b) described a method of successive approximations based
on an inverted form of the diffusion equation in which the space coordinate x
is taken as the dependent variable. This has been improved by Philip (1973b)
and Knight and Philip (1973) using a formulation in terms of an integral
equation which identifies Parlange's iterative scheme as equivalent to Picard's
method of successive approximations (1893).

7.2.6. Exact formal solutions

By exact formal solutions we mean those that can be expressed without
approximation in terms of the functions of mathematical analysis. Un-
fortunately, they are mostly of implicit or parametric form rather than ex-
plicit relationships between concentration and the space and time variables.
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This means that they do not reveal general features, which is one of the
attractions of analytical solutions, nor are they particularly simple to
evaluate numerically. The solutions explored by Philip (1960) come nearest
to overcoming these disadvantages (§ 7.2.6 (i)).

Fujita (1952, 1954) obtained solutions in parametric form for diffusion
into a semi-infinite medium at the surface of which the concentration is held
constant. He considered three expressions for D(C) which are (1) D0/(l — XC);
(2) D0/(l -XC)2; (3) D0/(l +2aC + bC2). The last form clearly includes the
first two. In all three, Do, X,a,b are constants. Some solutions evaluated by
Fujita's methods are presented in Figs. 9.12 and 9.13. Figs. 9.20, 9.21, and
9.22 show an example of the behaviour associated with a diffusion coefficient
which passes through a maximum value as C is increased.

Some of Philip's (1968) solutions in connection with swelling soils can be
related to Fujita's solutions. Storm (1951) proposed a method which can
provide an exact solution for diffusion into a semi-infinite medium, with
a specified flux on the surface, when the diffusion coefficient has the same
form as that of Fujita's case (2) above. Storm reduced the problem to the
solution of a linear equation with linear boundary conditions but again
his solution is in parametric form. Knight (1973b) extended Storm's method
to more general problems including that of Fujita (1952) and gave explicit
exact solutions in some cases including the problems of the instantaneous
source and of redistribution in the finite region.

Lee (1971b) considered a time-lag, concentration-dependent diffusion
coefficient of the form D0{C(x, t — h)}.

(i) A general class of exact solutions. Philip (1960) showed that there exists
an indefinitely large class of functional forms of D(C) for which formal
solutions of the diffusion equation may be found analytically. He starts
from a postulated solution and derives the D(C) relationship which produces
it.

In this section we adopt the nomenclature of Philip's paper (1960) for
ease of reference to the functions he develops and tabulates. He is concerned
first with the problem

subject to the conditions

0 = 0, x > 0, t = 0, (7.130)

0 = 1, x = 0, t > 0. (7.131)

Substitution of the variable

<t> = x/f± (7.132)
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allows (7.129) to be written as

D=-\te\yd6- (7133)

It follows that the solution of (7.129) subject to (7.130) and (7.131) exists so
long as D(6) is of the form

where F is any single-valued function of 0 in the interval 0 < 0 < 1, which
satisfies certain conditions discussed below.

First the function F must satisfy the boundary conditions imposed on </>,
and so

F(l) = 0. (7.135)

Other conditions are imposed by the requirement that D exists. In fact, it is
necessary that je

0F d6 and dF/d0 exist throughout the range 0 < 0 ^ 1.
We note, however, that sometimes a finite number of discontinuities in D
may be allowable or D may be permitted to be infinite at a finite number of
points in the range 0 ^ 0 ^ 1, in which cases dF/d0 may either not exist or
may be infinite at the appropriate finite number of points in the 0-range.

Furthermore, we do not wish D to become negative. The flux of diffusant
in the direction ofx positive is —Dd6/dx = — f~*Dd0/d</>. For the conditions
(7.130) and (7.131) we require D ^ 0 and the flux to be non-negative, i.e.
dO/dcj) ^ 0. This calls for the further condition

dF/d6 ^ 0 , 0 < 0 ^ 1. (7.136)

Philip (1960) gives a short table of solutions of (7.129), with their associated
forms of D, obtained simply by selecting F functions satisfying the above
conditions and evaluating (7.134). Unfortunately, all of them have the
property that lime_0 D(6) is either zero or infinite. Whilst diffusion coefficients
which are zero at zero concentration are sometimes of interest it would
seriously limit the importance and generality of Philip's method if all his
solutions turned out to have this property. He examines the difficulty in the
following way.

The well-known solution (see eqn (2.45)) is equivalent in the present
nomenclature to the statement that for

F = 2D% inverfc 0, D = Do = constant. (7.137)

Here inverfc denotes the inverse of erfc defined and examined by Philip
(1960), who therefore puts

F = 2D% inverfc 0+/(0), Do finite, non-zero (7.138)
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in (7.134) and obtains

where

B(0) = 2n~± exp { -(inverfc 6)2}. (7.140)

The properties of inverfc 6 and B(6) are treated in detail by Philip (1960),
and the functions are tabulated. In obtaining (7.139) we used the relation-
ships

d 1 Cd

—(inverfc 0 ) = - - ; inverfc 6 d9 = \B. (7.141)
ad B Jo

We are concerned with the conditions under which D(0) is finite and non-zero.
A sufficient condition is seen from (7.139) to be that both

lim
0-0

and lim | B-f-
0 - 0

be finite (including zero). The zero condition ensures that D(0) = Do. If
both the above limits are zero it follows that the inverfc term in (7.138)
accounts completely for the finite, non-zero value of D(0) in (7.139). It is
not difficult to show that the single condition

lim . f = 0 (7.142)
0-0 inverfc u

ensures that both the limits referred to above are zero. By using the relation
(Philip 1960)

inverfc 6 n u , .
l i m — — — r = l , 7.143
0-0 ( — In vy

we find that (7.142) is equivalent to

l i m — / — x = 0. (7.144)
0-0 ( - in oy

Thus / can become infinite at 6 = 0 but must approach infinity more
slowly than ( — In 6)*.

We conclude that there exists a formal solution of (7.129) subject to (7.130)
and (7.131) and for which D(0) = Do is finite and non-zero corresponding to
every D(6) of the form (7.139) for which 2D% inverfc 04- / satisfies the ap-
propriate conditions on F discussed above and satisfies (7.142).
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A slight extension is that for

F = 2D% inverfc 9±f, (Do finite, non-zero)

but now we require the stronger condition

\df/dO\ ̂  2Dt/B.

We finally note that the condition (7.135) implies

/(I) = 0.

There is little difficulty in generating functions / which satisfy the require-
ments. Philip (1960) presents a few typical solutions which are reproduced in
Table 7.7. He also gives corresponding solutions for the infinite medium.
Unfortunately, it still seems to be true (Philip 1969a) that the functional pairs
most readily generated by this promising method are rather complicated in
form and are not particularly well adapted to fitting experimental data on
D(8).

7.3. Goodman's integral method

Later in § 13.6.2 (p. 312) we obtain approximate analytical solutions by an
'integral method'. Goodman (1964) has applied his method to concentration-
dependent and other non-linear systems. The technique is described in
detail in § 13.5.2 with reference to problems in which a physically defined
boundary surface moves through the medium. The application to concentra-
tion-dependent diffusion is so similar that no details are given in this chapter.
It suffices to point out that an artificial boundary at what is called the 'pene-
tration distance' 8(t\ is introduced and thereafter takes the place of the
physical boundary of § 13.5.2. Its properties are such that for x > 8(t) the
medium is, to the accuracy of working, at its initial concentration. A full
account is given by Goodman (1964), who also discusses several ways of
improving the accuracy of a solution obtained by the integral method. One
of these is the method of moments, which we now describe.

7.4. Methods of moments

If we substitute some approximate solution cn into the one-dimensional
diffusion equation we are left with a residual eB, say, such that,
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We seek a solution which makes en small in some sense. In the version of the
method of moments which we shall describe we multiply by a weighting
factor Xn and average over the total range in X. On setting this average
residual to zero we obtain

ndAT = O, n = 0,1,2,.... (7.146)

We choose cn to satisfy the boundary conditions and to contain k unknown
parameters. By using k different weighting factors we have enough equations
of type (7.146) to determine the k parameters. Clearly, the case n = 0 is
identical with the Goodman's integral method. Fujita (1951) inspired by the
work of Yamada (1947) applied the method of moments to a sorption prob-
lem in a plane sheet of thickness 2/. His equation is (7.145) with en = 0 and
the non-dimensional variables are defined as C/Co = c9x/l = X9Dot/l

2 = T,
D(C)/D(0) = F(c), where D = Do when C = CO. The problem is specified
by the conditions

c = 0, 0 < X < 1, 7 = 0 , (7.147)

c= 1, X = 1, T> 0, (7.148)

dc/dX = 0, X = 0, T>0. (7.149)

Fujita uses the zero and first moments only and the problem is reduced to
that of finding c(X, T) satisfying the two moment equations

and

together with the conditions (7.147) to (7.149). We proceed by considering
that in the early stages of diffusion the concentration-distance curve may be
represented approximately by a curved portion near the surface of the sheet,
followed by a horizontal part coinciding with the x-axis. Strictly, according
to the diffusion equation, the concentration becomes finite, though it may
be small, everywhere in the sheet at the instant diffusion commences. The
region over which the concentration may be assumed zero depends, of course,
on the accuracy of working. For a prescribed accuracy, we denote by x0 the
point at which the concentration becomes zero and clearly x0 is a function of
time. Thus x0 = I when t = 0 and x0 = 0 when t = tl9 say. The time tx

is that at which the concentration first becomes finite at the centre of the
sheet to the prescribed accuracy of working. Denoting by Xo the value of X
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corresponding to x0 , i.e. Xo = x0//, we assume that in the region Xo ^ X ̂  1
the concentration is given by a cubic expression of the form

c(X9 T) = B(T){X-X0(T)}2 + E(T){X-X0(T)}\ (7.152)

where B(T\ E(T), and X0(T) are functions of T to be determined. We have
furthermore

c = 0, 0 ̂  AT ̂  Xo. (7.153)

The condition (7.149) is satisfied by (7.152). Also (7.147) may be written as

X0=l9 T=0. (7.154)

Introducing (7.148) into (7.152) and putting

B(l-X0)
2 = U9 E(l-X0)

3 = V, (7.155)

we obtain the relation between U and V,

U+V=l. (7.156)

Inserting (7.152) and (7.153) into (7.150), integrating, and using (7.148) we
obtain

which, on eliminating Kby eqn (7.156), becomes

{(lX0)(l+W)} r^(lit/)F(l). (7.158)

Similarly from the first-moment equation (7.151) we find

^ { ( 1 - X0)
2(l +&)} = 20G(l), (7.159)

where

G(c)= f F(c')dc'. (7.160)

Here F(l) and G(l) denote the values of F and G when c = 1. On integrating,
(7.159) becomes

{2 = ar , (7.161)

where

a = 30G(l), £=1-XO9 (7.162)

and the integration constant has been determined by (7.154). Inserting
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(7.161) into (7.158) we find

d L ocT\ 12 /3 OLT

The solution of (7.163) which satisfies the condition f = 0, T = 0, in accord-
ance with (7.162) and (7.154), is

(7.164)

where /? is a constant determined from the quadratic equation

24<xj32F(l) + {a-108F(l)}£ + § = 0. (7.165)

Clearly for (7.164) to have a physical meaning /? must be positive. The
question as to which of the two possible roots of (7.165) should be taken if
both are positive is decided in Fujita's treatment by considering the special
case of a constant diffusion coefficient. When the solution (7.170) below,
derived by the method of moments, is evaluated for a constant diffusion
coefficient it is found that better agreement with the formal solution is
obtained by taking the larger of the two roots (actually ft = yj) of (7.165).
When the diffusion coefficient is concentration-dependent we take that root
of (7.165) which tends to the value -fe as the range in the diffusion coefficient
is decreased and we approach a constant coefficient. Denoting by Tx the time
at which Xo = 0, i.e. at time Tx the advancing front of the diffusion reaches the
centre of the sheet, we have £ = 1, T = Tx and hence from (7.164)

P=TX. (7.166)

Inserting (7.164) into (7.161) yields

U = ocp-i (7.167)

and then

V= - a 0 + f. (7.168)

Thus both U and V are found to be constants. The expression for Xo is

X0 = l-yJ(T/p). (7.169)

Substituting these equations into (7.152) and remembering (7.155) we find

c(X9 T) = (aM){X-HV(T//!)}2(/i/r)

-(aj5-f){X-l+V(7/iS)}3(iS/r)-,l-V(T/iS)^X^l, (7.170)

and

c{X9 T) = 0, 0 ^ X ^ 1-J(T/P). (7.171)

From (7.170) we readily obtain an expression for the concentration
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distribution when the concentration just ceases to be zero at the centre of
the sheet. It is

c(X, T) = (ap-^X2-(oip-^X\ 0 ̂  X ̂  1. (7.172)

The next step is to derive an approximate solution which holds for later
times when the concentration at the centre of the sheet has become appreci-
able, according to the accuracy of working. Such a solution must satisfy
(7.149) and (7.148), and must also agree with (7.172) when T = Tx. We there-
fore assume a cubic equation again of the form

c(X9 T) = Ai(T) + X2Bl{T) + X*El{T\ 0 ̂  X ̂  1, (7.173)

where AX(T\ BX(T\ E^T) are functions of T to be determined. They are of
course different from the corresponding functions in (7.152). We see im-
mediately that A^T) in (7.173) is the concentration at the centre of the sheet.
Proceeding as before, by inserting (7.148) in (7.173) we obtain

A1+B1+E1 = 1. (7.174)

The zero and first-moment equations in this case lead to

^ + ^ + ^ j (2B1 + 3£1)F(1), (7.175)

^ . (7.176)

Eliminating Ex by using (7.174) and putting

&AJ&T=<t>, (7.177)

we have

U ^ = (3-2^-3^(1), (7.178)
1

7T . (7-179)
d/^

We can eliminate Bl from these two equations, remembering that
dG/dA j = F, and obtain

- ^ - = 28F(l) + f FiAJ + ̂ iGiAJ-Giimi). (7.180)

This can be simplified to the form

% ¥ (7.181)



134 CONCENTRATION-DEPENDENT DIFFUSION:

by introducing the following variables

f=l-A, (7.182)

i)j = 74>/{20F(l)}, (7.183)

1 + (

«/>-[ F{\)
•d/'. (7.185)

In order that the solution (7.173) should reduce to (7.172) when T = Tl9

over the whole range of X, we must have

A^TJ = 0, (7.186)

B^T,) = a/J-i (7.187)

E^T,)^ -otf + f. (7.188)

Eliminating the term (j)dB1/dAl from (7.178) and (7.179) we obtain, in
terms of the new variables just introduced,

From (7.182), (7.186), and (7.187) it follows that Bx = <xj?-§ when / = 1,
and so from (7.189) we have

Ml) = -&{aj8-f + !<rtl)}. (7.190)

For any given concentration-dependent diffusion coefficient the quantities
r(f) and q(f) can be evaluated from (7.184) and (7.185), the relevant range of
/ being 0 ^ / ^ 1 since / = 1 corresponds to T = Tx and / = 0 to T = oo.
Thus (7.190) gives the initial condition to be satisfied by the solution of the
differential equation (7.181). In general, numerical integration of (7.181) will
be necessary.

When the solution of (7.181) is known, (^(A^ follows from (7.183). Also by
integrating (7.177) and using the condition A1 = 0, T = Tx we obtain

A dA'
t (

which can be evaluated once 4>(Ax) has been obtained from (7.183). Since
from (7.173) Ax represents the concentration at the centre of the sheet, from
(7.191) we can calculate how this concentration varies with time. Once the
relationship between Ax and T, and hence between / and T is known, Bl

is easily determined as a function of T from (7.189) using (7.183). Finally,
knowing AX{T) and BX{T), E^T) is obtained from (7.174), and hence all
functions of Ton the right-hand side of (7.173) are known.
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The total amount of diffusing substance Mt taken up by the sheet per unit
area at time t is given by

Cl

Mt = 2\ C(x,r)dx, (7.192)

which in terms of the non-dimensional variables becomes

M, = 2/C0 f c(X,T)dX. (7.193)
Jo

For early times, when the concentration at the centre of the sheet is effectively
zero, i.e. T < Tx, c is given by (7.170) and (7.171), and so we have

M' = 2 / c ° ( 8 ^ + i r ) n ° < T < Tl • (7194)

For later times we find

Mt = llCoil-frW-faiT)}. (7.195)

We note from (7.194) that, in the early stages, Mt is proportional to the
square root of time, irrespectively of how the diffusion coefficient depends on
concentration. We shall see later, in § 9.4 (p. 179), that this is a characteristic
feature of concentration-dependent diffusion.

7.5. Approximation by orthogonal functions

Tsang (1960; 1961) developed a method of obtaining approximate analytic
solutions which are simple in form and reasonably accurate for moderately
concentration-dependent diffusion coefficients.

He discusses the equation

T f ( r ) (7196)

dt dz\ dzj
subject to the conditions

0 = 1 , O ^ Z ^ T C , f = 0 (7.197)
0 = 0, z = 0 and n, t ^ 0. (7.198)

These are conditions for desorption in a sheet of thickness / expressed in the
non-dimensional variables,

z = nx/U 0 = (C-CoViC, - Co), a = D/Do,

where Co is the surface concentration and Cx the initial concentration.
Tsang starts from the expansion

innz. (7-199)
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Substitution in (7.196) followed by the usual procedure for evaluating
Fourier coefficients leads to an infinite set of first-order, ordinary differential
equations for the functions fn(t), i.e.

dfn(t)dt= £ {oikn(t) + fSkn(t)}fn(t), (7-200)
n= 1,3,5

where

akn = (-2n2/n) \ a sin kz sin nz dz, (7.201)

pkn = (2n/n) j (doc/dz) sin kz cos nz dx. (7.202)

The required initial conditions are

fk(0) = (8/TT/C2)", k = 1, 3, 5,.... (7.203)

Tsang demonstrates that provided a varies slowly with z a reasonable
approximation is to neglect all the /„ terms in (7.200) for n > k. He further
replaces all/^s for k ^ 1 by fk(0) exp ( —/c2f) implying that the harmonics die
away rapidly.

As an example, he considers a linear concentration-dependent D for which

a = 1 + / 0 = 1 + (2/TT)H/I(0 sin z + .... (7.204)

Using only these two terms for a and the equation for k = 1 in (7.200) Tsang
obtains the solution

/64/1

\ n
- sin z, (7.205)

where (j)0 is the required solution of (7.196) with a = 1, i.e.

</>0(z, t) = £ — e xP ( - n2*)sin nz- (7.206)
M = 1 , 3 , 5 n7L

For the total amount of penetrant lost M(t) we have

Mt = (j) dz = Mo(0~~ —2~~)—2 =r7' (7.207)

where

o A I 4 p ( M 2 r ) . (7.208)

Values of M(t) calculated from (7.207) for X = 2-5,4-8,10-0 by Tsang agree to
within a few per cent with the corresponding solutions shown in Fig. 9.16
(p. 180).
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NUMERICAL METHODS

8.1. Numerical solutions

IN the preceding chapters a large number of mathematical solutions have
been presented, most of them in the form of infinite series. Useful though
these solutions are their application to practical problems can present
difficulties. First, the numerical evaluation of the solutions is usually by no
means trivial. Secondly, the analytical methods and solutions are, for the
most part, restricted to simple geometries and to constant diffusion properties
such as the diffusion coefficient. In other words, they apply strictly only to
linear forms of the diffusion equations and the boundary conditions. This can
be a severe limitation where the diffusion coefficient in polymer systems, for
example, is often markedly concentration dependent.

The solution of mathematical equations which more closely model experi-
mental and practical situations is possible by the methods of numerical
analysis. In the days when the calculations had to be performed on a desk
calculating machine use of these methods was a formidable task. The advent
of the high speed digital computer revolutionized the situation. Recently,
considerable developments have taken place in the subject of numerical
analysis and in the construction of efficient computer programs to obtain
numerical solutions. It is well beyond the scope of this book to attempt even a
general introduction to the subject of numerical analysis. Most scientists
and engineers, however, at sometime or other feel the need to solve problems
for which they cannot find an analytical solution. An experiment is often
conducted under conditions dictated by the analytical mathematical solu-
tion available even though the experimentalist would prefer an alternative
arrangement. Those who have taken courses only in traditional mathematics
often find it hard to appreciate that the simpler numerical methods offer,
as it were, a new start not necessarily presented as an advanced course or as
an extension of analytical methods. It is not necessary to establish a mathe-
matical solution first, into which numbers are then inserted. These remarks
have a special relevance to the subject of partial differential equations. This
usually comes towards the end of an undergraduate course and is regarded
as a branch of higher mathematics.

In order to try to overcome these mental barriers, and to give non-mathe-
maticians an insight into the simpler numerical methods of solving the
diffusion equation, we introduce the subject first from a physical point of
view. After this, the more mathematical derivation aims to show how real
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problems can be tackled and to illustrate some of the pitfalls to be avoided.
The reader should then be able to handle simpler problems himself: in more
difficult cases he should at least know how computers obtain numerical
solutions and what help the specialists in numerical analysis are able to
offer. A few of the many books available for further reading are those by
Fox (1962), Mitchell (1969), and Cohen (1973). Smith's (1965) book is a
textbook written primarily for students with no previous knowledge of
numerical methods whatsoever. The example in § 8.4.1 (p. 143) below is one
of many to be found in his book.

8.2. Non-dimensional variables

Inspection of the analytical solutions in the preceding chapters reveals
that the group of variables Dt/l2 occurs frequently. The diffusion coefficient D
is measured in cm2 s"1, say; it has the dimensions (length)2(time)~ *. Thus if
we write the group Dt/l2 = T, we see that T is a dimensionless variable.
There are a number of advantages in using non-dimensional variables in
numerical work, though it is not essential to do so. Usually, a good deal of
arithmetic is involved in large problems. A whole set of solutions with
different physical parameters, e.g. for sheets of different thicknesses, can often
be obtained from one basic solution in non-dimensional variables by simple
scaling, with considerable economy of computer time. The fundamental
parameters are often high-lighted and analogies with physically different
systems become clearer, e.g. the distribution of diffusant and electric potential
under similar conditions.

For diffusion in a plane sheet of thickness /, when the diffusion coefficient D
is constant, convenient variables are

X = x/l, T = Dt/l2, c = C/Co, (8.1)

where Co is some standard concentration such as the value at the surface of
the sheet if it is constant. Then

d C _ d C d X _ < 3 C l d2C _ d2C 1
Ix~~Jx~dx~~dX~r ihc^'Jx2!2

and

dC dC dT dC D

~dt ~ ~df~dF ~~dfl2'

Thus, the simple diffusion equation

d-^-Dd2C (8 2)
dt ~ D ^ (8-2)
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becomes

dc d2c

dx2'
(8.3)

where we have substituted C = cC0.
We note that in the non-dimensional variables the thickness becomes unity,

e.g. the sheet lies between X = 0 and X = 1.

8.3. Physical derivation of a numerical solution

Consider a plane sheet in which a concentration gradient of diffusant
exists initially. We wish to calculate how the distribution of diffusant changes
with time. We divide the sheet into layers each of thickness h as in Fig. 8.1 and
denote by C0,Cl,C2 the concentrations at three neighbouring interfaces.
The dotted lines at R and S denote the mid sections of the two adjacent
layers.

X

FIG. 8.1.

We recall Fick's first law of diffusion: rate of transfer of diffusant through
unit area is proportional to gradient of concentration and the constant of
proportionality is the diffusion coefficient D. Thus in a short time T the
amount of diffusant which has entered the shaded layer (Fig. 8.1) through
unit area of the surface R is given approximately by qR = — DT(C1 — C0)/h.
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In the same time, the amount flowing out through the face at S is approxi-
mately qs = —DT(C2 — C1)/h. The net amount of diffusant accumulated in
the shaded element in time i is

( ( (8.4)

If we now take Cx to represent the average concentration in the narrow
shaded element, the net gain of diffusant by the element can be written
approximately as (C\ — CJ/z, where C\ is the concentration at the end of the
interval T. Equating this with (8.4) we have

3<
By choosing Dx/h2 = \ we find

(8.5)

(8.6)

This relationship enables us to calculate by simple arithmetic the concentra-
tion at a point at time r + r if we know the concentrations Co , C2 at the two
neighbouring points at time t. We can apply (8.6) successively at each point of
the sheet and advance the calculation in time steps T.

As an example, suppose the concentration distribution is initially parabolic
as in Fig. 8.2, where the values are non-dimensional concentrations c ex-
pressed as fractions of the surface concentration at x = 0. The diagram is

FIG. 8.2. Initial parabolic concentration distribution.

symmetrical about the centre of the sheet and the sheet has been divided into
20 layers each of non-dimensional width h = 0-05. This means that
DT/(0-05)2 = \ and hence for the time step we have chosen Dx = 0-00125. The
time T itself in seconds can easily be found for a known value of D. This
does not enter into our basic calculation, however, for which we need only
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(8.6). We first identify CQ,CX, C2 as the initial concentrations (t = 0) at the
surface of the sheet and at two layers inside, Co = 1, C1 = 0-81, C2 = 0-64.
Then by (8.6) we have

C\ = ^100 + 064) = 0-82,

for the concentration one layer inside the sheet at t = T. We next apply (8.6)
to the points at which the initial concentrations are 0-81, 0-64, and 0-49 re-
spectively and calculate the new concentration at a depth 2h inside the sheet
as 0-65. Having calculated a complete line of concentration values at t = T,
we repeat the whole process to obtain a second line of values at t = 2T,
and so on. A computer can carry out this repetitive arithmetic easily and
quickly.

So far, we have used no calculus nor have we directly referred to the partial
differential equation which expresses Fick's second law. Nevertheless, the
relation (8.5) is one of the most commonly used formulae in the numerical
solution of diffusion or heat-flow equations. But we have made certain
approximations, and we have little idea of how accurate our solution is.
Other difficulties, too, can arise in using this simple method, and so we now
give a more mathematical derivation of (8.5) and of a slightly more compli-
cated alternative.

8.4. Finite-difference solution: explicit method

We return to the non-dimensional equation (8.3) and take the sheet to
occupy the space 0 ^ X ^ 1. Let the range in X be divided into equal inter-
vals 5X and the time into intervals ST, so that the X—Tregion is covered
by a grid of rectangles, as in Fig. 8.3, of sides dX, ST. Let the coordinates of a
representative grid point (X, T) be (iSX, jST\ where i and j are integers. We
denote the value of c at the point (iSX, jST) by ctj with corresponding values
at neighbouring points labelled as in Fig. 8.3. By using Taylor's series in the
T direction but keeping X constant, we can write

from which it follows that

where O(ST) signifies that the leading term to have been neglected is of the
order of 8T when we have divided both sides of (8.7) to get (8.8).
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•i-\J

r
ST

L
FIG. 8.3.

Similarly, by applying Taylor's series in the X direction, keeping T con-
stant, we have

(d2c\

t

dc

8X2

d2c

dx-
On adding we find

32c

dX< (SX)2 + O(8X)2.

(8.9)

(8.10)

(8.11)

By substituting (8.8) and (8.11) in (8.3) and neglecting the error terms we find
after slight re-arrangement

(8.12)

where r = ST/(SX)2. If we choose r = \, we regain the equivalent of (8.6).
With reference to Fig. 8.3, we can use (8.12) with a chosen value of r to calcu-
late the values of c at all points along successive time rows of the grid provided
we are given some initial starting values at T = 0, and some conditions on
each of the boundaries X = 0, X = 1. A formula such as (8.12) which enables
one unknown value to be expressed directly in terms of known values is
called an 'explicit finite-difference formula'.
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8.4.1. Example

Smith (1965) worked out a simple numerical example in which the initial
distribution in non-dimensional form consists of two straight lines

c = 2X, 0 ^ X ^ i T = 0,

c = 2 ( l -X) , i ^ X ^ l , 7 = 0 , (8.13)

and the two faces of the sheet are maintained at zero concentration so that

c = 0, X = 0 and 1, 7 ^ 0 . (8.14)

The initial distribution (8.13) could arise if two separate sheets, each of
thickness \, had separately been allowed to reach a steady state with one
surface at unit concentration and the other at zero and then they had been
placed firmly together. The problem is symmetric about X = \ and so we
need the solution only for 0 ^ X ^ \. Take SX = YO SO t n a t t n e initial and
boundary values are as in the top row and first column of values in Table 8.1.
Increasing values of 7, i.e. of j , are shown moving downwards for convenience
of calculation. The values of c tabulated in Table 8.1 correspond to 3X = JQ,
3T = 1/1000 so that r = ^ (8.12).

The analytical solution satisfying (8.13) and (8.14) is

8 °° 1
c = -^ Y -^ sin \nn sin nnX exp( — n2n2T). (8.15)

* n= i n2

In Table 8.2, the finite-difference solution is compared with values calculated
from (8.15) at X = 0-3 and 0-5. The percentage error is the difference of the
solutions expressed as a percentage of the analytical solution. The compari-
sons are seen to be reasonably good on the whole. The largest errors are found
at X = 0-5 for small times. This is because of the discontinuity in the initial
gradient dc/dX which changes from +2 to —2 at X = 0-5. Table 8.2 shows,
however, that the errors die away as 7 increases. This is the way a discon-
tinuity usually effects the finite-difference solution of a diffusion equation.

We shall refer again in §8.10.1 (p. 152) to the special treatment of dis-
continuities which is needed if we want accurate values of the function near the
singularity.

We turn now to a serious limitation on the value of r = ST/(SX)2 in
(8.12). The reader will have no difficulty in repeating the calculations keeping
SX = YO but increasing <5Tto y ^ s o t n a t r = i- Smith (1965) tabulates the
solution and finds the errors to be somewhat larger than for r = JQ but still
well within the accuracy of many experimental measurements. However,
Figs. 8.4 and 8.5 taken from Smith (1965) demonstrate that the value of
r = \ is critical. In Fig. 8.4, for r = 0-48, the finite difference solutions agree
with the analytical reasonably well, but in Fig. 8.5 (r = 0-52) oscillations have
developed. If a still larger value of r is taken, say r = 1, the finite-difference
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= 0-48
Solution of the differential equation
shown by the curves

Solution of the finite-difference
equations shown by the dots

•7=0048 (/+1 = 10)

T=0-096(/+l=20)

r=0-192(/+l=40)

0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 1-0
X

FIG. 8.4. After Smith 1965.

r = 0-52

r=0-208(/+l=40)

01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 10
X

FIG. 8.5. After Smith 1965.

solution bears no resemblance to the analytical solution. It has become
'unstable' in the sense that the errors increase without limit. We shall discuss
the subject of instability further in § 8.11 (p. 157). Here we note that a severe
limitation is imposed on the value of r, and hence on dT, for a given 5X. We
are forced to take a large number of small time steps when using the simple
explicit method. These considerations lead us to search for better formulae.

8.5. Crank-Nicolson implicit method

A method which is widely used was proposed by Crank and Nicolson
(1947). They replaced d2c/dX2 by the mean of its finite-difference representa-
tions on the jth and (7+ l)th time rows and approximated eqn (8.3) by

ST (SX)2 {dT)2 (8.16)
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where the total error is 0{{5T)2+ {6X)2}. We can write (8.16) in the form

-rc I -_ 1 J + 1 +(2 + 2 r ) c i J + 1 - r c i + 1 J + 1 = rcI-_1J + (2-2r)cI.J + rci + lJ (8.17)

where r = ST/(dX)2.
The left side of (8.17) contains three unknowns on the time level 7 + 1, and

on the right side the three values of c are known on the jth time level. If there
are N internal grid points along each time row, then for j = 0 and i = 1,
2,..., N, eqn (8.17) gives N simultaneous equations for N unknown values
along the first time row expressed in terms of the known initial values and the
boundary values at i = 0 and N + 1 . Similarly for 7 = 1 , unknown values are
expressed along the second time row in terms of those calculated along the
first. This type of method, in which the solution of a set of simultaneous
equations is called for at each time step, is described as an 'implicit method'.
More work is involved at each time step but the Crank-Nicolson method has
the strong advantage of remaining stable for all values of r. We can thus
proceed with larger and hence fewer time steps, the limit being set by the
accuracy required, having in mind that higher-order terms in the Taylor
series have been neglected in deriving (8.17).

8.5.1. Example

Smith (1965) discusses the solution of the problem of § 8.4.1 (p. 143) by the
Crank-Nicolson method, taking 5X = YO and ST = J^Q SO that r = 1. This
is a convenient choice of r for which (8.17) reduces to

j J+1-ci + 1J+l = ci_1J-\-ci + lJ. (8.18)

Taking j = 0, the values of ci0 (i = 1,2,... ,9) are given by the first row
of Table 8.1. We remember the symmetry of the problem which makes
c6 = cA, c7 = c3, etc. Since all the unknowns in the simultaneous equations
are on the left side there need be no confusion if we write for any time step
cij+l = ct(i = 1,2,... ,9).

The set of equations for the first time step is

- 0 + 4 c 1 - c 2 = 0 + 04

- c 1 + 4 c 2 - c 3 = 0-2 + 0-6

- c 2 + 4 c 3 - c 4 = 0-4 + 0-8

- c 3 + 4 c 4 - c 5 = 0-6+1-0

- 2 c 4 + 4c5 = 0-8 + 0-8. (8.19)

These equations are easily solved by a well-known method of elimination.
The first equation is used to eliminate cl from the second equation; the new
second equation is used to eliminate c2 from the third equation, and so on.
Finally, the new fourth equation can be used to eliminate c4 from the last
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equation, giving one equation with only one unknown c5. The other un-
knowns c4, c3,c2,cx are then found by back-substitution. The solution is

cx = 0-1989, c2 = 0-3956, c3 = 0-5834,

c4 = 0-7381, c5 = 0-7691. (8.20)

The simultaneous equations for the values of c along the second time row
have left sides identical with those of (8.19) but with values from (8.20)
substituted for c,_ ij and ci+1} on the right sides. Part of this finite-difference
solution is given in Table 8.3 and the comparison with the analytical solution
at T = 0-1 is good. The implicit method for this example is about as accurate
as the explicit method which uses ten times as many time steps for the same
total time range. The remarks in § 8.4.1 (p. 143) about the discontinuity in the
initial gradient at X = 0-5 apply also to the results of the implicit method.

More details of the elimination method of solving the equations and of
alternative iterative methods are to be found in Smith (1965) and in standard
works on numerical analysis.

8.6. Other boundary conditions

8.6.1. Surface concentration a given function of time

The way in which the concentration at the surface of the sheet varies with
time may be given in the form of an algebraic formula, a graph or a set of
tabulated values. The data can be substituted directly at each time step into
(8.12) or (8.17) and the methods proceed as described.

8.6.2. Derivative condition

We have seen that boundary conditions involving the gradient of con-
centration occur frequently. As an example, we consider the evaporation
condition of § 3.3.1 (p. 35), which we write as

dc/dX = a(c s-ce), X = 0, (8.21)

where cs is the surface concentration at time T and ce is the equilibrium
surface concentration corresponding to the vapour pressure in the atmos-
phere remote from the surface. The algebraic signs need careful attention
(§ 1.4.2 (iii) (d), p. 9). The left side of (8.21) is the rate of transfer away from the
surface i.e. in the direction of negative X, and for a condition of loss by
evaporation this is a positive quantity. Also for evaporation cs > ce and
so the right side of (8.21) is also positive. Fig. 8.6 depicts the relevant grid
points at X = 0 and X = 1 if a similar condition were to hold on both sur-
faces.
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FIG. 8.6. After Smith 1965.
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The simplest way to represent the condition (8.21) at X = 0 in finite differ-
ences is

= a(c 0 J -c e ) , (8.22)

This gives one extra equation for c0J at any time step, to be used in the ex-
plicit or implicit schemes instead of a given value of c0J.

A more accurate replacement of (8.21) is possible by introducing a 'fictitious'
concentration c_l} at the external grid point (-8XJ8T) (Fig. 8.6). We
imagine the sheet extended one layer. The condition (8.21) becomes

(cltj-c-ltj)/(2dX) = a(c0J-ce). (8.23)

The value of c_ t d is unknown, but it can be eliminated by using the replace-
ment of the partial differential equation. For the surface point this is

•I (8.24)
dT (6X)2

Elimination of c_ t j from (8.23) and (8.24) gives

dT S

The explicit form of (8.25) is

( 8 2 5 )

and the Crank-Nicolson formula is

(8.27)

which can easily be rearranged to become the first equation of the set (8.17).
The special case of an impermeable surface corresponds to a = 0 in the

above equations.
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8.6.3. A restricted amount of diffusant

In §4.3.5 (p. 56) we considered problems in which the condition (4.36)
expresses the fact that the rate at which solute leaves a well-stirred solution is
equal to that at which it enters a sheet immersed in the solution. Using the
non-dimensional variables (8.1) and considering the sheet to be of thickness
/ and the surface X = 0 to be in contact with a stirred solution of extent a,
we can write the boundary conditions as

a dc0J8T = I dcOJ/dX9 X = 0, T > 0. (8.28)

In this problem, Co in (8.1) is conveniently taken to be the initial uniform
concentration in the solution. The simplest finite-difference replacement of
(8.28) is

a^ = -J-(ClJ-c0J). (8.29)

Alternatively, by introducing a fictitious concentration, as in (8.23), we find

S^M l+—\ = —^-(c, —cn .)• (8.30)
01 I OX j \OA)

The explicit and implicit forms of (8.29) and (8.30) follow at once by ap-
proximate replacement of dcOJ/dT.

8.7. Finite-difference formulae for the cylinder and sphere

In terms of the variables

R = r/a9 T=Dt/a2, (8.31)

the equation for radial diffusion in a cylinder of radius a becomes

dc 1 d
R8C\RdR ] =

The finite-difference approximations corresponding to (8.11), omitting the
error term, are

- l j c , - ! , } , i * 0 , (8.33)

ci.j-coj, i = 0. (8.34)

The nomenclature is as for the plane sheet, namely that ctj is the concentra-
tion at the point (idR, jdT), the range 0 ^ R ^ 1 having been divided into
equal intervals <5JR. Explicit and implicit formulae follow by combining (8.33)
and (8.34) with appropriate replacements for dc/dT.
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An alternative method of dealing with a hollow cylinder of internal radius
b, suggested by Eyres et al. (1946), is to use

Xx = In (R/b) (8.35)

as independent variable. Then (8.32) becomes

dc exp( -2X 1 ) d2c

dT b2 dX 2> (8.36)

and we have diffusion in a plane sheet with a variable diffusion coefficient.
The non-dimensional equation for radial diffusion in a sphere of radius a

is

8c _ 1 Si 8c\ ^ c 2 3c
df~R~2dR\R d +

and the finite-difference approximations are

1 8
i # 0 , (8.38)

6 (cu-c0J), i = 0. (8.39)

The treatment of the various boundary conditions for the cylinder and
sphere is precisely analogous to that of § 8.6 (p. 146).

8.8. Composite media

Conditions at the interface between two different media can be dealt with
by a slight extension of the methods of § 8.6.2 (p. 146). Considering the plane
case first, let x = xs be the interface and let the suffices a, b refer to the left side
(x < xs) and right side (x > xs) of the interface respectively. The space inter-
vals (5xa and Sxb may be different if desired. Let F(cs, t) denote the flux across
the interface. The conditions to be satisfied are

Da dcjdx = Db dcjdx = F(cs, t), x = xs, (8.40)

which expresses the fact that diffusant enters one medium at the same rate as
it leaves the other, together with some relation between the concentrations on
the two sides of the interface. We shall consider the simplest case of

c\ = ch = cs (8.41)

and the modification made necessary by a more general relationship such
as

c* = Q
will be obvious.
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As in § 8.6.2 (p. 146) the simplest procedure is to replace (8.40) by

which relates cs to the concentrations at the two neighbouring points on any
time row.

As in § 8.6.2 (p. 146) a more accurate replacement is possible by imagining
the medium to the left of the boundary to be extended one step 3xa to the
right of xs and eliminating the fictitious concentration there by using (8.40).
We obtain

8t - - - - - ( 8 4 3 )

Similarly, by extending the medium to the right of the interface one step
dxh to the left, we find

(8.44)

By eliminating F from (8.43) and (8.44) we obtain

^ = *^(cs + 1J-csJ)-^-(cSJ-cs_u). (8.45)

This equation can be written in non-dimensional variables, and explicit or
implicit finite difference formula derived by appropriate substitution for
dcjdt. Corresponding formulae for composite cylinders and spheres are
derived in the same way.

8.9. Two- and three-dimensional diffusion

There is no difficulty in principle in extending the methods described in
§§8.4 and 8.5 (pp. 141 and 144) to two and three dimensions. In practice,
however, the considerable increase in computational labour called for has
stimulated attempts to find more efficient methods. These are still the subject
of active research and we can only indicate briefly their general nature.
A typical, simple problem is to obtain solutions of

dc ld2c d2c\

cT \cx cyI

over the rectangular region O^x^a, O^y^b, subject to the conditions
that c is known over the whole region at t = 0 and is prescribed on the
boundary for t ^ 0. We cover the region with a rectangular space grid at
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each time step and denote coordinates by

x = idx, y = jdy, t = nSt, (8.47)

where i, j , n are positive integers. The values of c at the grid points are denoted
by

c(idxjdy9 nSt) = ciJtn. (8.48)

The explicit finite-difference scheme of § 8.4 (p. 141) becomes

D ,iJ,n _

(<5*r
D

• ̂ u-u.-^ + c^J- (8-49)

This is computationally straightforward but the stability restriction is

DIT^I+T^I}***' (8-5°)

which is more severe than r ^ \ as in § 8.4. In three dimensions the restriction
is even more severe. Extremely small steps 6t must be used.

The Crank-Nicolson method becomes

i-cU,» i J \ d c , d

St

32,, 32, 2c
(8.51)

and requires the solution of (M— 1)(N— 1) simultaneous algebraic equations
for each time step St, where NSx = a, Mdy = b. Because five unknown values
of c in general appear in each equation they are less amenable to solution
by direct elimination methods and are usually solved iteratively.

One of the earliest and still probably the most widely-used method which
offers considerably improved efficiency is that of Peaceman and Rachford
(1955). The essential feature of Peaceman and Rachford's method and of
several later variants is to replace only one second-order derivative, say
d2c/dx2, by an implicit difference approximation, leaving the other derivative
d2c/dy2 to be treated explicitly. By applying the resulting difference equation
to each of the (N — 1) points along a grid line parallel to the x-direction we
obtain (N— 1) simultaneous equations, each one containing only three
unknown values of c, e.g. for the point (ij,n\ cI-Jtll + 1 , Ci_1JilI + 1 , c i + lf</> + 1

are unknowns but cftJ-+ltn + 1,cl-t>/-_1>n + 1 do not appear. We have a set of
(N—l) equations to solve (M— 1) times for each of the (M — 1) grid lines
parallel to the x-direction. This is much easier than the solution of the
(N— 1)(M— 1) simultaneous equations needed in an implicit method. The
solution is advanced from the (n+ l)th to the (tt + 2)th step by interchanging
the treatment of the second-order derivatives, i.e. d2c/dx2 is treated explicitly
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and d2c/dy2 implicitly. This and similar methods are generally referred to as
alternating direction implicit methods (ADI methods) and are usually stable
for all ratios dt/(Sx)2 and St/(3y)2. Mitchell (1969) discusses several methods
including three dimensional variants and gives guidance on which to choose
for different types of problem. Even greater efficiency of calculation is
promised by using the 'hopscotch methods' developed by Gourlay (1970,
1971). For other geometries and curved boundaries special finite-difference
formulae are needed. (Smith 1965, Mitchell 1969, Fox 1962).

8.10. Singularities: local solutions

8.10.1. One dimension: discontinuity at origin

It is possible to start a finite-difference solution directly from the prescribed
initial conditions which give a row of values of c at T = 0. In some cases, e.g.
when the surface concentration is a continuously varying function of time
which is known, starting this way will probably be quite satisfactory. In other
cases the conditions are such that a singularity exists at T = 0. For example,
if the conditions are

c = 0, 0 < X < 1, T = 0, (8.52)

c = l , X = 0, 7 ^ 0 , (8.53)

the limiting value of c is unity as T tends to zero for X = 0, whereas c tends
to zero as X approaches zero for T = 0. In other words, the concentration is
discontinuous at (0,0). As we neglected higher terms in the Taylor series
when deriving the finite-difference replacements for derivatives, the difference
solution is likely to be a poor one near a discontinuity where some derivatives
will be infinitely large. Although this is confirmed in practice, it is a fortunate
property of the diffusion equation that a difference solution quickly ap-
proaches the analytical solution and its accuracy is probably acceptable
after a few time steps.

We can secure accuracy in the neighbourhood of the singularity either by
developing an analytical or a series solution applicable for small times, or
by transforming the variables so that the singularity is removed.

It is often not difficult to find a suitable small-time solution because a
medium of any shape behaves as if it were semi-infinite in the early stages of
diffusion when the measurable penetration of diffusant is small. Thus the
solutions of Chapters 3 or 7 can be used.

For the conditions (8.52) and (8.53) the singularity at (0,0) can be removed
by using the variables

£ = X/T\ T = T*. (8.54)

The effect is to expand the origin X = 0, T = 0 into the positive half of the



NUMERICAL METHODS 153

£ axis and to remove the whole of the positive half of the X-axis to £ = oo.
The discontinuity in c at X = 0, T = 0 is transformed into a smooth change
along the positive £-axis. Finite-difference solutions can proceed in terms
of the variables £, T, without difficulty, though the diffusion equation is
slightly more complicated after the transformation. Thus, the simple diffusion
equation (8.3) becomes

2T£ = £-& (8-55)

and (8.52) and (8.53) are now

c = 0, i

c= 1,

; = oo,

£ = 0,

T

T

= 0, (8.56)

(8.57)

The numerical process starts with the solution of the ordinary differential
equation for c(£) obtained by putting x = 0 in (8.55). In this example, an
analytic solution exists: in other cases, e.g. for a variable diffusion coefficient,
the methods of Chapter 7 can be used. There will come a time x when the
boundary condition on X = 1 will need to be taken into account. We can
continue in the transformed plane or return to the original variables (X, T)
according to which is more convenient.

Discontinuities in derivatives rather than in the function c itself may also
need special treatment, though usually the trouble is less marked. Dis-
continuities may occur also in the initial condition but not on the boundary
as in the example of § 8.4.1 (p. 143).

We have said that the accuracy of finite-difference solutions improves as
T increases and usually they have been found to approach the corresponding
analytical solutions where these are known. For certain initial and derivative
boundary conditions, however, it can happen that a small difference persists
for all time T between the numerical and analytical solutions. This rather
specialist topic is discussed by Mitchell (1969).

8.10.2. Two dimensions: boundary discontinuities

Difficulties can arise at a corner on the boundary of the region within which
diffusion is taking place. Re-entrant corners, where, the boundary changes
direction through an angle exceeding n as at P in Fig. 8.7 are particularly
troublesome. Some or all of the derivatives of the concentration may become
infinitely large at the corner.

(i) Series solutions. Motz (1946) described how an analytical solution which
incorporates the singularity can be welded onto the usual finite-difference
solutions of steady-state problems away from the corner. Fox and Sankar
(1969) generalized this method to include other boundary conditions. Bell
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r>
r

FIG. 8.7. Re-entrant corner.

and Crank (1973) combined the same idea to solve transient diffusion prob-
lems in two-dimensions. They express the diffusion equation (8.46) in polar
coordinates r, 0 centred at P (Fig. 8.8) in the form

n + (8.58)

As an example the boundary conditions in the neighbourhood of P are taken
to be

= 0 on 0 = O,0o- (8-59)

Consider a separation of variables solution

C = exp(-0L2Dt)R(r)\l/(6)+W(r, 0),

where W(r, 0) is a solution of Laplace's equation representing the steady-
state form of the singularity. We obtain for R and \ji

if," = - 0 , 2 ^ (8.60)

1 / o)2\
R' + -R+R a2 ^ = 0 . (8.61)

Eqn (8.60) has a solution

\j/ = a cos a>6 + b sin a>6

FIG. 8.8. Corner in polar form.
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and (8.61) is Bessel's equation for which

R = pjjoir), CD ^ 0,

which is finite at P.

Thus a solution of (8.58) is

C{r, 0, t) = exp ( - 0L2Dt)JJ^r) {A cos coQ + B sin toO) + W(r, 0), (8.62)

in which the boundary conditions (8.59) require

B = 0, co = kn/90, k = 0,1,2,. . . ,

and following Motz (1946)

W(r, 0) = f <Vk>l c o s kW

with A = n/80.
As an illustration we consider the re-entrant corner at P in Fig. 8.7 for

which 0O = 37i/2, i.e. X = 2/3 and the normal derivatives of C are zero on
PPi and PP 2 - The general solution obtained by summing solutions of type
(8.62) for this case is

00 °° 2k8
C(r,0,r)= I I AkJap(-tfDt)J2kl3(af)cos —

j=0 fc=0 3

+ £ ckr2k/3 cos = 1 . (8.63)

We note that although C itself is finite at P, all derivatives with respect to r
contain singular terms at P. Hence the need to avoid using finite-differences
near P. Instead we use an approximation for small r based on (8.63) which
we can express as a single power series in r by expanding the Bessel functions
and collecting like terms in r. Thus

«
J2k/3\Z) — Z

m =

and (8.63) can be written

C = ao(t) + a j(r) cos | 0

+ r2{a2(t) cos 20 - bo(t)} + 0{r$). (8.64)
The as are functions oft and represent the coefficients of the leading term in
each Bessel function expansion together with the corresponding coefficient
of the steady-state solution.

The series (8.64) is used, at time t, to obtain function values C at points near
the corner in terms of those further away. The two sets of points are referred
to as 'near' and 'far' points. One far point is needed to determine each
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unknown coefficient in the series. In the simple case of a three-term ap-
proximating series, for example, we see that three far points are needed. We
can select three near points, both sets being displayed in Fig. 8.9. Eqn (8.64)
becomes

20
C = a0 + ax cos —

40
cos (8.65)

In principle, we use values of C and of r, 0 at Fx, F2, F3 in Fig. 8.9 to determine
0o» fli > a2 fr°m (8.65). We then evaluate C at N1, N2,N3 using appropriate
values of r, 0 and those of a0, ax, a2 just determined. These values of C are
substituted in the explicit finite-difference formula when required. Elsewhere,
the simple difference scheme is used. Practical details of the method and
some refinements together with an assessment of accuracy are given by Bell
and Crank (1973).

FIG. 8.9. Near and far points.

(ii) Heat-balance equation. A simpler treatment of a corner uses the method
of § 8.3 (p. 139) and the two-dimensional equivalent of Fig. 8.1. The domain
is divided into elementary areas, which are mainly rectangular except where
they are made to fit the shape of the boundary. Bell (1973) has treated heat
flow in a chamfered billet by considering elements as shown in Fig. 8.10.
In diffusion terms, the corner concentration CP at P is assumed to be the
mean concentration for the corner element, for which a mass-balance equa-
tion is used. The rate at which diffusant enters the corner element is
approximated by —D(C1 — CP)Ay/Ax over the face RS and by
-\D(C2-CP)Ax/Ay over QR. The flux over PQ and PS is specified by the
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Corner
element

Typical body
element

Typical surface
element

• Denotes mesh points

FIG. 8.10. Chamfered corner.

boundary conditions. The net flux into the element through all faces is
equated to Vc dCP/dt, where Vc is the volume of the corner element. The
resulting equation is used in conjunction with the corresponding ones for all
other elements and which are identical with the usual finite-difference equa-
tions. This method seems to have been mentioned for the first time by Eyres,
Hartree, Ingham, Jackson, Sarjant, and Wagstaff (1946).

8.11. Compatibility, convergence, stability

We have assumed that finite-difference methods provide reasonable
approximations to the true solution of the partial differential equation. The
investigation of this assumption is an important part of the work of profes-
sional numerical analysts. We shall outline the nature of the problems in a
general way, leaving the reader to consult standard references for the details.
It is broadly true that the investigation of linear systems is reasonably satis-
factory but that relatively little progress has been made with general treat-
ments of non-linear systems. In these cases, for the most part, the analysis
is based on the assumption of localized linearity.

We are concerned with three related properties:

(a) Compatibility. In deriving the finite-difference equation we neglected
higher-order terms in the Taylor series. These constitute a truncation error.
We require that the truncation error should tend to zero as SX and 5T, for
example, approach zero. If this is not so, the difference scheme is said to be
incompatible or inconsistent with the partial differential equation. In this
case, the difference solution is not likely to approach the solution sought.
It is not usually difficult to establish the conditions necessary for the com-
patibility of a difference scheme.
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(b) Convergence. Assuming compatability is ensured there next arises the
question of whether the solution of the difference equations converges to the
solution of the partial differential equation as the grid size approaches zero.

Let U represent the exact solution of a partial differential equation, with
x and t independent variables, and u the exact solution of the approximating
difference equations. The finite-difference solution is said to be convergent
when u tends to U as Sx and dt both tend to zero. Convergence is usually
more difficult to investigate than compatability. Once established, however,
it should be possible to decrease the difference U — M, usually called the dis-
cretization error, and hence improve the difference solution by decreasing
dx or dt or both, perhaps subject to some relationship between them. When
two solutions obtained with different grid sizes agree to within the desired
accuracy it is usually assumed that the process of solution is complete. Fox
and Mayers (1968) have drawn attention to pathological cases in which the
assumption may be dangerous.

(c) Stability. If it were possible to carry out calculations to an infinite
number of decimal places and if the initial and boundary data were specified
exactly, the numerical calculations would produce the exact solution u of the
difference equations. In practice, of course, each calculation is carried out to a
finite number of figures and 'round off errors are introduced. The solution
actually computed is not u but N, say, which we can call the 'numerical solu-
tion'. The subject of stability is concerned with the possible build up of errors
in the calculation which would cause N to be significantly different from u.

A set of finite-difference equations is said to be stable when the cumulative
effect of all rounding errors is negligible. If the magnitudes of the errors
introduced at the various grid points are each less than <5, then the finite-
difference equations are usually considered stable if the maximum value of
u — N tends to zero as 5 tends to zero, and does not increase exponentially
with the number of time rows in the computation.

Usually it is not possible to determine the magnitude of u — U at a given
mesh point for an arbitrary distribution of errors. Standard methods of
investigating stability mainly study the growth of an isolated error or a single
row of errors. On the whole stability estimates tend to be conservative and
numerical solutions are usually more accurate than estimated.

More extensive treatments of these matters are given, e.g. by Smith
(1965), Fox (1962), and Mitchell (1969).

8.12. Steady-state problems

Steady-state solutions have been obtained in earlier chapters for one-
dimensional diffusion in a plane sheet, cylinder, or sphere. In two and three
dimensions for these shapes, and particularly for a constant diffusion



NUMERICAL METHODS 159

coefficient, analytical solutions can sometimes be obtained as in § 2.5 (p. 24).
Even these are usually cumbersome for computation and are not available
at all for more complicated shapes or non-linear problems. The numerical
methods, which have been used extensively, are mostly referred to as finite-
difference methods or finite-element methods.

8.12.1. Finite-difference methods

We are here referring to problems for which dC/dt = 0 everywhere. The
finite-difference methods use the same replacements for the space derivatives
in the diffusion equation and for the boundary conditions as in § 8.9 (p. 150).
Large sets of simultaneous algebraic equations are solved by direct or
iterative methods including the ADI methods. The practical details and dis-
cussions of accuracy and convergence are discussed e.g. by Smith (1965), Fox
(1962), and Mitchell (1969). Singularities may occur both on the boundary or
within it and these need special consideration. We have referred in § 8.10.2
(p. 153) to the Motz method (1946). This and other methods are discussed by
Woods (1953), Fox and Sankar (1969), Whiteman (1970), Whiteman and
Papamichael (1972), and Symm (1966).

8.12.2. Finite-element methods

These methods have been widely used for several years by engineers in-
terested in stress problems and in steady-state heat flow. More recently,
mathematicians have attempted to put the methods on a rigorous mathe-
matical basis. The finite-element methods can be described as adaptations of
the calculus of variations suited to numerical evaluation by a computer. So
far, they have been applied to transient diffusion problems only in a few iso-
lated instances (see e.g. Bruck and Zyvoloski (1973)). None of the results
presented in this book have been obtained by using finite elements. The
subject is in a very active state of development, however, and may well make a
major contribution to the mathematics of diffusion in the next few years.

Meanwhile, the interested reader will find available simple introductions
to both finite-difference and finite-element methods in the book by Myers
(1971), a more general account by Zienkiewicz (1967, 1971), and the pro-
ceedings of a conference on the mathematics of finite elements and applica-
tions edited by Whiteman (1973).



SOME CALCULATED RESULTS FOR
VARIABLE DIFFUSION COEFFICIENTS

9.1. Steady state

IN the steady state the concentration distribution through a plane sheet,
in which diffusion is assumed to be one-dimensional, is given by the solution
of the equation

— D—J =0 , (9.1)

where D is the diffusion coefficient, not necessarily constant. The corre-
sponding equations for the hollow cylinder and sphere are obvious.

9.1.1. D a function of concentration

If D is a given function of concentration, i.e.

D = D0{l+f(C)},

the general solution of (9.1) can be written as

Doj{l+f(C)}dC = Ax + B9 (9.2)

where A and B are constants to be determined by the boundary conditions.
The corresponding solution for the hollow cylindrical tube is

Do J {1 +/(Q} dC = A In r + B, (9.3)

and for the hollow spherical shell,

D0J{l+/(C)}dC= ~ + B. (9.4)

When the boundary conditions for the plane sheet are

C=CX, x = 0, (9.5)

C = C2, x = /, (9.6)

eqn (9.2) becomes, using Barrer's (1946) nomenclature,

cl^F(c1)-c2-F(c2)
= ~r (9J)
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where

F(Q= f /(C')dC'.
Jo

(9.8)

Similarly, for the cylindrical tube or spherical shell with boundary condi-
tions

C = C X , r = r l 9 (9.9)

r = r 2 ,
we find for the cylinder

In r1 — In r

and for the sphere
Cl+F(C1)-C2-F(C2)

C1-^F(C1)-C2-F(C2)

(9.10)

(9.11)

(9.12)

For any given relationship between D and C, the integrals F(C) are readily
evaluated either analytically, graphically, or numerically, and the concentra-
tion distribution follows immediately from the above equations. Some
typical examples calculated by Barrer (1946) are reproduced in Figs. 9.1

0-4 -

0-2 -

00 0-2 0-4 0-6
x/l

0-8 10

FIG. 9.1. Typical steady-state concentration distributions across a membrane when
D = DO{1+/(C)}.C1 = l , C 2 = 0.

Curve 1: /(C) = aC\a = 100. Curve 4: /(C) = 0 (simple Fick law obeyed).
Curve 2: /(C) = aC; a = 10. Curve 5: f(C) = -aC;a = 0-5.
Curve3:/(C) = aC;a = 2. Curve6:/(C) = ~aC\a = 10.
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0-4 „ 0-6

FIG. 9.2. Typical steady-state concentration distributions across a membrane when
D = D0{\+f(C)}. Cx = 1, C2 = 0.

Curve 1: /(C) = a ebC; a = 1, 6 = 3. Curve 5: /(C) = 0 (simple Fick law obeyed).

Curve 2: f(C) =
1 + 6C

Curve3: / (C)= -

\ a = 100, 6 = 1 . Curve 6: f(C) =
1 4- oC

; a = 1,6 = 2. Curve7: / (C)= -

\ a = 0-9, 6 = 1 .

Curve4:/(C) =
aC

\+bC
\a= 1,6 = 1. Curve8:/(C) = = 1.

and 9.2. They illustrate the general conclusion that when D increases as C
increases the concentration-distance curves in the steady state are convex
away from the distance axis; but when D decreases as C increases the curves
are convex towards that axis. If D first increases and then decreases or vice
versa, with increasing C, a point of inflexion appears in the concentration-
distance curves.

9.1.2. D a function of distance

If we have

= DO{1+/(*)},

or

(9.13)

(9.14)

for the sheet or cylinder and sphere, the general solutions (9.2), (9.3), and
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(9.4) are to be replaced by

d X ~ (9.15)

^ - (9.16)

or

respectively. Denoting by / the integral on the right-hand side of each of
these equations, taking x = 0 or r = 0 as the lower limit and / x , I2 the values
of / at the two boundary surfaces, we find

C - C W , 9 1 8 )

c c 1T'
Concentration distributions follow immediately for given /(x) or f(r).

Barrer (1946) shows typical curves for f(x) = ax and /(x) = bx + ax2. They
are reproduced in Fig. 9.3. When D is an increasing function of x the curves
are convex towards the axis of x and when D is a decreasing function of x
they are convex away from that axis.

9.1.3. Rate of flow

We saw in § 4.2.2 (p. 46) that the rate of flow F through unit area of a plane
membrane of thickness /, when the concentrations at the two faces are
C1,C2 is given by

(9.19)
c2

where D is a function of concentration C. The corresponding argument
for a cylindrical shell of inner radius rl and outer radius r2 is as follows. Let
F denote the rate of flow per unit-length of cylinder. Then

F = -inrDdC/dr, (9.20)

which on integration becomes

f2 F fCl

-—dr = DdC. (9.21)
Jri 2nr Jc2

But in the steady state F is independent of r and hence we find

D dC. (9.22)
2* r

In (r2/r1)JC2
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FIG. 9.3. Typical steady-state concentration distributions when D = Do{\ +/(*)}. Cx = 1,
C2 = 0 .

Curve 1: f(x) = -ax, a = 0-99. C u r v e 6 : f(x) = bx + ax2;a = l,b = 2.
Curve 2: f(x) = -ax;a = 0-90. Curve 7: f(x) = bx + ax2;a = 2-25, fc = 3.
Curve 3: f(x) = 0 (simple Fick law obeyed). Curve 8: f(x) = ax; a = 9.
C u r v e 4 : f(x) = ax;a= 1 0 . Curve 9: f(x) = ax, a = 99.
Curve 5:/(*) = ax;a = 20.

The corresponding result for a spherical shell is

F = 47C7~Z7J DdC ' (9-23)

where F now refers to the total flow through the shell. When D is a function
of x or r given by (9.13) or (9.14) it is easy to see from (9.18) that

F = -D— = -Do— -, for the plane sheet, (9.24)

and

C —C
F = -2nD0-±—-^, for the cylindrical tube, (9.25)

F = -AnD0
C

T
l f2, for the spherical shell. (9.26)
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9.1.4. Asymmetrical diffusion through membranes

Hartley [1948] has indicated that in any membrane for which the diffusion
coefficient depends both on concentration and on distance through the
membrane, different rates of penetration in the forward and backward
direction are to be expected in general. Writing D = /(x, C) we have for the
rate of flow

F = - /(x,C)dC/dx. (9.27)

If the function /(x, C) is expressible as the product of two separate functions
/ t(x) and /2(C), (9.27) becomes

Jo/iW Jc2
/2(QdC, (9.28)

c2

where the boundaries of the sheet are at x = 0, x = /. In this case, since

(9'29)

the permeability of the membrane will be symmetrical. The function /(x, C)
will not usually be separable in this way, however, except in the simple cases
in which fx(x) or /2(C) is constant, and so it is unlikely that the membrane
will be symmetrical unless D is constant or a function of either x or C alone.

Sternberg and Rogers (1968) set up a mathematical model of a membrane
with a solubility coefficient which varied asymmetrically with position. The
model gives a quantitative description of the directional transport process.
Peterlin and Williams (1971) discuss four different theoretical models. The
subject of selective permeation through asymmetric membranes is reviewed
and discussed by Rogers and Sternberg (1971).

9.1.5. Diffusion of one substance through a second substance which is confined
between membranes

A point of considerable interest concerning steady-state diffusion was
raised by Hartley and Crank (1949). Let a substance B be confined between
membranes which are impermeable to B. Also let the concentrations of A
in contact with the membranes be maintained by supply and removal of A
through the membranes from and to reservoirs of vapour or of solutions of A
in B or in any other substance which cannot penetrate the membranes. It is
convenient here to use the ideas and nomenclature of § 10.3 (p. 205). Then in
the steady state, sections at fixed distances from the membranes are fixed
with respect to amount of component B, and the rates of transfer of A across
all such sections must be equal so that

- DB
A dCB

A/d£B = constant . (9.30)
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We will assume that the partial volumes are constant. Eqns (10.21), (10.26),
(10.28) are

d£B = V°BCv
Bdx; dCvJdCB

A = {VBCV
B)2\ DB

A = DV(VBCV
B)\ (9.31)

and on substituting these relationships in (9.30) we have

-Dv dC\
——y — ^ = constant. (9.32)
VBCB dx

On using

VA—-+ VB—- = 0, (9.33)

(9.32) becomes
Dv dCl

T T T ^ -~- = constant. (9.34)
VACV

B dx
If, instead, we maintain the steady state by substituting membranes perme-
able only to B and supplying and removing B in the reverse direction we
find, by interchanging A and B in (9.32) and reversal of signs to allow for the
reversal of direction,

Dv dCv

B = constant. (9.35)VAC\ dxVAC\

It is evident that eqns (9.34) and (9.35) require different concentration-
distance functions. The steady state is therefore different, even between the
same concentration limits, according to which component is constrained
and which is free to diffuse.

This difference is particularly evident in dilute solutions. We shall assume
here, in the interests of simplicity, that Dv is constant. The concentration of A
being very low, VBCV

B can be assumed to be unity. Eqn (9.32) now becomes

dCv

Dv—^ = the constant rate of transfer of A. (9.36)
dx

This is valid for A diffusing and B restrained.
Substituting from (9.33) we may modify (9.35) to

Dv dCv Dv

A = -—- (In CV
A) = constant rate of transfer of B. (9.37)VBC\ dx VL

This is valid for A restrained and B diffusing between the same concentration
limits.

It will be seen that when the dilute component is diffusing its concentration
gradient under these simple conditions is linear. When the same limits are
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maintained by diffusing the 'solvent' through membranes impermeable to
the 'solute', the gradient of the logarithm of concentration of the latter is
linear and hence the concentration itself varies exponentially with distance.

When the total fall of concentration ACV
A of the dilute constituent is small

compared with its mean concentration, (9.36) becomes

rate of transfer of A = —- ACV
A, (9.38)

and (9.37) becomes

Dv ACV

equivalent rate of transfer of B = — TT^, (9.39)
« CAVB

where / is the distance between the membranes. The rate of diffusion of water
in such a system down a given, small, mean vapour pressure gradient is
therefore not expected to be constant but to be inversely proportional to the
mean concentration of the solute. It will further be proportional to the
diffusion rate of the solute given by (9.38). Thus if water diffuses from 991 per
cent to 990 per cent relative humidity through a layer containing hydrogen
chloride, it will do so about twice as rapidly as when the layer contains sodium
chloride. If the diffusion occurs from 90-1 per cent to 90-0 per cent relative
humidity, each rate will fall to one-tenth of its former value.

These conclusions refer to the case where the membranes are separated by a
fixed distance. If, as is more likely to be true in practice, the membranes con-
fine a given amount of component A so that the volume between them will
vary inversely as the mean concentration of A, the distance / in (9.39) will be
more nearly inversely proportional to CA than constant. In this case the rate
of transfer of B will be, to a first approximation, dependent on ACA only and
not on the mean value of CA. This result may be obtained directly from equa-
tions in £ in the treatment given of the swelling membrane in § 10.6.5. (p. 239).
Diffusion of solvent through a constant amount of solute per unit area thus
behaves more simply than diffusion through a constant thickness. This
conclusion is not at once obvious and may have some important applications
in physiological processes.

A second conclusion of interest may be drawn when we consider what
happens in such a steady-state system if the membranes are suddenly ren-
dered completely impermeable. Sections fixed with respect to the membranes
are now fixed with respect to volume of solution. The change of concentration
with time will therefore from now on be governed by

ct ox \ ex

but, at the instant of change of membranes, (9.32) still holds if A has been the
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diffusing component, whence

r\ P\fV\ r\f~*V r\f~*V
— Dv = -constant x VB—- = constant x VA—±. (9.41)
ox ox I ox ox

Combining (9.40) and (9.41) we obtain

- H = -constant x VA, (9.42)

^ | dx = dCv
A = 0, (9.43)

since

dt

for CV
A constant. Now the constant in (9.30) and (9.42) is the rate of transfer of

A at the steady state in standard units of amount. Multiplied by VA it repre-
sents the volume rate of transfer of A, or, since we are always considering
transfer across unit area, the linear velocity with which A appeared to pass
through the system.

We thus find that, at the instant when A ceases to flow through, the whole
concentration-distance distribution commences to move backwards at the
velocity with which substance A previously passed through the membrane.
With increasing time, the distribution will flatten out, of course, from the low
concentration upwards as the substance A, diffusing down the gradient now,
accumulates.

It is evident, therefore, that in the steady state during the passage of sub-
stance A there was superimposed on the true diffusion process a real flow of
the whole system.

9.2. Non-steady-state conditions

We present here, in graphical form, a collection of solutions of the equation
for diffusion in one dimension. They have been evaluated by one or other of
the methods described in Chapters 7 and 8, and refer to various types of
concentration-dependent diffusion coefficients and three simple boundary
conditions. Solutions for the infinite medium refer to the initial condition

c
c

For sorption in a semi-infinite

C=C0;

c = o,

= c,,
= c2,
medium

, x =

X >

X

X

the

0,

0,

<o,
> 0 .

conditions are

t > 0,

t = 0,

(9.44)

(9.45)

(9.46)

(9.47)
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and for desorption

C = 0,

c = co,
x = 0,

x > 0,

> 0,

= 0.

(9.48)

(9.49)

One example of each type of diffusion coefficient considered is shown in
Figs. 9.4(a) and 9.4(b).

20

16
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0
0 0 0-2 0-4 0-6 0-8 1-0 0-0 0-2 0-4 0-6 0-8

c c

FIG. 9.4. Some typical diffusion coefficients.

1. D/Do = 1 + 10(1 - e " 2 ' 3 0 3 ' ) . 5. D/Do = e"2 '3 0 3 '
6. D/Do = 1/(1-3-292c +2-877c2).

10

2. D/Do= 1+50 In (1+0-5136c).
3. D/Do = l+9c .
4. D/Do = e 2 3 0 3 c

7. D/Do = l/(l-0-6838c)2

8. D/Do= 1/(1-0-9c).

9.3. Concentration-distance curves

Shampine (1973a) used a Runge - Kutta computer library program to obtain
numerical solutions of the Boltzmann diffusion equation (7.10) subject to
C = 1, */ = 0; C = 0, >/ = oo. His 'shooting method' is analagous to that of
Lee, § 7.2.2 (iii) (p. 108). Tabulated values of C(rj) for each of the eight diffusion
coefficients listed below Fig. 9.4 may be obtained from L. F. Shampine. In
his paper, he also examines the existence and uniqueness properties.

The shapes of the concentration-distance curves are characteristic of the
diffusion coefficient and of the boundary conditions. They do not conform to
quite such a simple classification as do the corresponding curves in the steady
state. Thus, as we saw earlier in § 9.1.1. (p. 162) Barrer (1946) was able to write,
with regard to the results of his steady-state calculations, that whenever D
increases as C increases, concentration-distance curves are convex away
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FIG. 9.5. Concentration-distance curves for D = Daexp p{C-2iCl +C2)}, where jS is positive
and given by P{C2 — Cl) = l n ^ / D J . Numbers on curves are values of D1/D2. Dl and D2

are values of D at Cx and C2 respectively.

from the distance axis. Figs. 9.8 and 9.10 show that this is true also for curves
relating to desorption from a semi-infinite medium when D is a linearly or
exponentially increasing function of concentration. Figs. 9.7 and 9.9 show
that for these diffusion coefficients the statement holds also for sorption by a
semi-infinite medium over the greater part of the concentration range, but
that there is an important difference in behaviour in the region of low con-

FIG. 9.6. Concentration-distance curves. D = Daexp P{C-2iCl + C2)}, where ft is negative and
given by (C2 - Cx) = In {DJD^). Numbers on curves are values of D2/Dl. Dl and D2 are values

of D at Cx and C2 respectively.
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00

FIG. 9.7. Concentration-distance curves for linear diffusion coefficients during sorption for
D = D0(l + aC/C0). Numbers on curves are values of a.

centration. This difference is a direct consequence of the boundary condition.
In the steady state, the condition is that the concentration shall have some
fixed value, possibly zero, at the face of the membrane through which the
diffusing substance emerges. When diffusion occurs into a semi-infinite
medium, however, the condition that the concentration shall approach zero
at infinity means that the gradient of concentration tends to zero at the limit
of penetration into the medium. This produces a point of inflexion in any
concentration-distance curve which is convex away from the distance axis
at high concentrations. The curves of Fig. 9.11 relate to a diffusion coefficient
which increases as C increases but does so at a steadily decreasing rate (see
Fig. 9.4(a)). We see that in this case the concentration-distance curves may be
convex downwards. The curves of Figs. 9.12 and 9.13 conform with these
statements.

The curves shown in Figs. 9.5 and 9.6 for infinite media follow the same
general pattern as for the semi-infinite media, except that the boundary
conditions ensure that the concentration gradient becomes zero at each end.
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10 11 12

FIG. 9.8. Concentration-distance curves for linear diffusion coefficients during desorption for
D = D0{l+aC/C0). Numbers on curves are values of a.

200

FIG. 9.9. Concentration-distance curves for exponential diffusion coefficients during sorption
for D = Do exp (kC/C0). Numbers on curves are values of e\ being the ratio of D at C = Co to

D at C = 0.
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9.3.1. Correspondence between sorption and desorption

If (Co — C) is written for C, the diffusion equation in one dimension is
unchanged but the conditions (9.46) and (9.47) become respectively (9.48)
and (9.49). This means that the solution for sorption when D is a given function
of C is also the solution for desorption when D is the same function of
(Co — C) and vice versa. For example, the sorption curve for D = Do exp (kC)
is also the desorption curve for

D = Do e
f c ( c°-C ) = (Do e

fcCo) e"fcC

This allows general statements corresponding to those of § 9.3 to be made
for diffusion coefficients which decrease as concentration increases.

Helfferich (1963) has drawn attention to the general nature of this cor-
respondence principle. One system is specified by

dCJdt = div (Dt grad Q ,

Dt = /i(ct), (9.50)

10
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0-6

0-5
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01
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Ct = /2(x),

/f
i i

x > 0, t = 0,

x = 0, t > 0,

1 1 1

FIG. 9.10. Concentration-distance curves for exponential diffusion coefficients during desorption
for D = Do exp (kC/C0). Numbers on curves are values of e\ being the ratio of D at C = Co to

D at C = 0.
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FIG. 9.11. Concentration-distance curves during sorption for D = DO{1 +501n(l +/cC/C0)}.
Numbers on curves are values of 1 + 50In(l +/c), being the ratio of D at C = Co to D at C = 0.

where / t , f2, and /3 are known functions. The solution is

C,. = F(x, t).

The solution remains the same if C, is replaced by C0 — Cj, where C, is
variable and Co is a constant equal to or greater than the maximum con-
centration Cf occurring in the problem. Thus, once calculated, the solution
F(x, t) provides the solution also to the corresponding problem

dCj/dt = div (Dj grad C,),

Dj = gl(Cj)=f1(Co-Cj)9

Cj = g2(x) = C0-/2(x), x > 0, t = 0,
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FIG. 9.12. Concentration-distance curves during sorption for

D = ( l -aC/C 0 ) '

Numbers on curves are values of 1/(1 —a), being ratio of D at C = Co to D at C = 0.

and the solution is

Helfferich lists some typical corresponding solutions for sorption and
desorption. The correspondence principle applies in two and three dimen-
sions and in anisotropic media provided that each diffusion coefficient along
the principal axes obey a correspondence relation.

The diffusion coefficient may depend on time and position, in addition to
concentration and the absolute value of the concentration gradient, provided
the dependence is the same in the corresponding functions /x and gx. Tem-
perature- and stress-dependent diffusion systems can also correspond.
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FIG. 9.13. Concentration-distance curves during sorption for

D = (l-aC/C0)2

Numbers on curves are values of 1/(1 —a)2, being ratio of D at C = Co to D at C = 0.

9.3.2. Common points of intersection

Stokes (1952) drew attention to the fact that if a large-scale graph is pre-
pared from the data of Table 7.3 (p. 384) an interesting property emerges.
Two concentration-gradient curves are shown in Fig. 9.14, one for a constant
diffusion coefficient and the other for a diffusion coefficient varying linearly
with concentration, the value at the higher concentration being 0-1406 of that
at the lower concentration. The other curves are omitted to avoid confusion
of the diagram but on his large-scale plot Stokes found that whatever the

t Garg and Ruthven (1972) calculated concentration, and sorption and desorption curves
in zeolite spherical crystals for this D and that of Fig. 9.12.
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FIG. 9.14. Comparison of concentration-gradient curves. Curve I. For a constant diffusion
coefficient. Curve II. For a diffusion coefficient varying linearly with concentration, the value at

the higher concentration being 0-1406 of that at the lower concentration.

value of b, all his curves appeared to pass through the point P (Fig. 9.14) of
coordinates

dC/dya
y, = 1-205, = -0-133.

The nomenclature here is that of §7.2.4. (iii) (p. 118). If a similar large-scale
graph of (C—C2)/(Cl — C2) is prepared from the data of Table 7.4 (p. 385),
there appear to be two common points with coordinates

ya = +0-66, (C-C2)/(Cl-C2) = 0-176;

ya = -0-66, (C-C2)/(C1-C2) = 1-0-176 = 0-824.

If the sorption curves of Fig. 9.7 for linear D are replotted against the variable
ya they too pass through a 'common point' of coordinates ya = 1-00,
C/Co = 0-157. For the replotted desorption curves of Fig. 9.8 the common
point is ya = 1-09, C/Co = 0-872. Similar common points are found in other
cases. For example, when the curves of Fig. 9.9 for exponential diffusion
coefficients are replotted against x/(4Dt)% where D is the integrated mean
value D0(Q

k— l)//c, they all pass approximately through the point for which
C/CQ = 0-25 and x/(4Drf = 0-85.

We can obtain a partial understanding of the significance of these apparently
common points by looking at the limiting case of a linear diffusion coefficient
of very large range. Thus, a very large D = D0(l +aC/C0) is approximated by
D = DoaC/Co, except for very small C, and this is the form examined by
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Wagner (1950) whose solution is given in §7.2.4 (iv) (p. 119). Wagner's Do

is to be identified with Doa of this section, as the value of D when C = Co.
Thus, the two curves of Fig. 7.5 are approximations to the two limiting cases of
linear diffusion coefficients having infinite and negligible ranges. When these
limiting curves are replotted against the variable ya = x/(4Datf, where now
Da is the diffusion coefficient at C = \C0, they intersect at a point very close
to the common point of intersection of the replotted curves of Fig. 9.7 given
by ya = 1-00, C/Co = 0-157. Similarly, the replotted Wagner's curve of Fig.
7.6 for the infinite medium intersects the corresponding curve for a constant
diffusion coefficient in two points which are approximately the common
points of intersection demonstrated by Stokes from the data of Table 7.4
(p. 385).
A much cruder, but useful, limiting case of an exponential diffusion coeffi-
cient of large range is provided by the discontinuous coefficient in. Fig. 13.7(a)
(p. 294) as Cx approaches C t . In this case (13.13) and (13.18) for C2 = 0 and
Cx-Cl small show g(fc/2Df), and hence k/(2D\\ to be small. Writing
k/2D\ = 7, say, we have from (13.13), g(Y) = n±Y2(l + Y) = n^Y2 =

approximately. Thus, using (13.11) and (13.18), we have

C
x

since Cx is approaching C1. But for the discontinuous diffusion coefficient
we have

and so finally
X 1= ̂  = ° '75

Now X is the position of the discontinuities in the concentration curves of
Fig. 13.7, and replotting them against x/(4Dt)* confirms that as Cx-> C1?

X/(4Dtf approximates to 0-75. The intersection with the concentration
curve for a constant D will be at about X/{4Dtf = 0-75, C/Cl = 0-3, which is
not far from the 'common point' of the replotted curves of Fig. 9.9.

Wilkins (1963), however, carried out a more accurate and systematic
study of the concentration curves associated with linear diffusion coefficients
of the form D = D0(l+aC/C0). He obtained series solutions for a = - 1
as well as a = oo (see § 7.2.4, (iv), p. 124) and for small values of a. Table 9.1
summarizes Wilkins' findings on the positions of the various intersection
points and shows that they are quite insensitive to a but not strictly inde-
pendent of a.

The application of these points to the measurement of concentration
dependence as suggested by Stokes (1952) and Crank and Henry (1949b)
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is still possible provided the 'spread' demonstrated by Wilkins is within the
errors of observation in a practical experiment.

9.4. Sorption- and desorption-time curves

On the basis of the sorption and desorption curves shown in Figs. 9.15,
9.16, and 9.17 and of corresponding curves published elsewhere (Crank and
Henry 1949a) we may draw the following general conclusions for a system
in which the diffusion coefficient increases as concentration is increased but
does not depend on any other variable.

(i) In the early stages, when diffusion takes place essentially in a semi-
infinite medium, the amount sorbed or desorbed is directly proportional
to the square root of time. This is true, incidentally, whatever the relationship
between the diffusion coefficient and concentration, and follows directly
from the fact that for the prescribed boundary conditions concentration
depends on the single variable x/t* (§ 7.2.1, p. 105). When D increases with
concentration increasing, the linear behaviour may extend well beyond 50
per cent of the final equilibrium uptake in the case of sorption. The same is
true for desorption when D decreases with concentration increasing.

01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 10

FIG. 9.15. Sorption curves for D = D0(l+aC/C0). Numbers on curves are values of a.
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FIG. 9.16. Desorption curves for D = D0(l +aC/C0). Numbers on curves are values of a.

(ii) When they cease to be linear, the sorption and desorption curves
plotted against (time)" each become concave towards the (time)1 axis,
and steadily approach the final equilibrium value. This is true for all the
calculated results obtained for the initial and boundary conditions (9.46),
(9.47), (9.48), (9.49) and it is reasonable to conclude that it is a quite general
result though no satisfactory general proof has yet been produced. It is an
important property because sorption curves have been observed experi-
mentally (Crank and Park 1951; Mandelkern and Long 1951) which show
points of inflexion when plotted against (time)*, i.e. there is a region in which
the curve is convex to the (time)1 axis. This has been taken as evidence either
that the boundary condition (9.46) does not describe the experimental
conditions, or that the diffusion coefficient is a function of some variable
other than concentrations. Prager (1951) has given a general proof that
sorption and desorption curves when plotted against time can never become
convex to the time axis, but this is a less stringent restriction than the one
just put forward. His proof is as follows.
We wish to show that the integral

= r
Jo

C(x,t)dx, (9.51)
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0-0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 10 11
(AW/2)*

FIG. 9.17. Sorption and desorption curves for exponential diffusion coefficient D = Do exp {kC/C0).
Numbers on curves are values of ek being ratio of D at C = Co to D at C = 0.

obtained as a solution of

D
dc

(9.52)

with the conditions

C = Co = constant, x = 0, x = /, t > 0, (9.53)

C = 0, 0 < x < /, t = 0, (9.54)

cannot yield an inflexion point when plotted against t. The diffusion coefficient
D is a function of concentration C only and is always positive. On writing

(9.52) becomes

with conditions

s(C) = D(C)dC,
Jo

d2s ds

s = So, x = 0, x = /, r > 0,

5 = 0, 0 < x < /, t = 0.

(9.55)

(9.56)

(9.57)

(9.58)
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Furthermore, since the rate of transfer across unit area normal to the x-
direction is given by — D 8C/8x = — ds/dx, we have

dMt
= -2

ds\

dxjx=0
(9.59)

allowing for the symmetry of the problem. Because dMJdt is infinite when
t = 0, it follows that if there is to be a point of inflexion at some later time,
dMr/dt must go through a minimum, and so (ds/dx)x = 0 must go through a
maximum as a function of t. This in turn requires that there is some finite
length of time, extending just beyond that at which the inflexion is supposed
to occur, during which

dt [dx
(9.60)

x = 0

Also, since s = So is constant at x = 0 and x = /, ds/dt must also be negative
during that time near x = 0 and x = /. We now show that this is impossible
for the given initial and boundary conditions.

For very small r, the condition dC/dt ^ 0 holds for all x, because we cannot
have negative concentrations. Since D is positive everywhere this means that
ds/dt = D dC/dt must also be positive or zero everywhere for sufficiently
small t. But dC/dt, and hence ds/dt, is continuous everywhere and ds/dt
must therefore first be zero if it is to become negative. Let x = X be the first
point at which ds/dt = 0 excepting x = 0 or x = I where this is always true.
Then ds/dt will be positive or zero on both sides of X, i.e. it will show a mini-
mum at X when plotted against x so that

or

dx2

8

8~t

8s

Jt

82s
(9.61)

x = X

But it follows from (9.56) that since ds/dt = 0 at x = X, so also d2s/dx2 = 0
there. Eqn (9.61) then indicates that in the next instant (d2s/dx2)x = x is
positive or zero, and so using (9.56) again and remembering that D > 0
we see that (ds/dt)x = x becomes positive or zero. Thus ds/dt can never become
negative and so there can never be a point of inflexion in the plot of Mt

against r, i.e. in the uptake curve plotted against time.

(iii) If D increases as concentration increases, the shape of the sorption
curve when plotted against time is not very sensitive to the form of the
diffusion coefficient. It is often not significantly different from the cor-
responding curve for a constant diffusion coefficient. This is, of course,
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because the sorption curves are parabolic, i.e. linear against (time)*, over
most of their length. The desorption curves when plotted against time are
much more sensitive to the form of the diffusion coefficient if this increases as
concentration increases. If the diffusion coefficient decreases as concentration
increases, then the desorption curve will approximate to that for a constant
diffusion coefficient.

(iv) When D increases with concentration increasing throughout the
relevant range of concentration, desorption is always slower than sorption,
and conversely if D decreases with concentration increasing. This is illustrated
by Fig. 9.17. In particular, the last stages of desorption are much slower than
those of sorption if D increases with concentration increasing, and vice versa.

Crank and Henry (1949a) examined the sorption and desorption curves
associated with a diffusion coefficient which passes through a maximum
value at some intermediate concentration. Three such diffusion coefficients
are shown in Fig. 9.18, where c = C/Co as usual. They correspond to the
algebraic relationships:

D/Do= l + 14-8c(l-c),

D/Do = 1 + 100c2 exp ( - 10c2),

D/Do = 1 +100(1 - c ) 2 exp {-10(1 - c ) 2 } .

(9.62)

(9.63)

(9.64)

r
I 20
1
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Concentration c

FIG. 9.18. Diffusion coefficient-concentration relationships.

All three satisfy the conditions D/Do = 1 when c = 0 and c = 1; and the
maximum value of D/Do is approximately 4-7 in each case. Eqn (9.62) is a
symmetrical form in which this maximum occurs at c = 0-5, while the
maximum values for (9.63) and (9.64) are at c = 0-3 and 0-7 respectively, since
(9.64) follows immediately from (9.63) by writing (1 — c) for c. The sorption and
desorption curves for these diffusion coefficients are presented in Fig. 9.19.
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FIG. 9.19. Sorption and desorption curves.

Since (9.62) is symmetrical in c and (1 — c) it follows from what was said above
that for the boundary conditions considered the sorption- and desorption-
time curves are coincident, and this is, of course, true for any symmetrical
relationship between D and c. The results show that for D given by (9.63)
with a maximum at c = 0-3 the desorption curve lies wholly above that for
sorption, while the opposite is true for the relation (9.64) where the maximum
value of D occurs at c = 0-7.

The relative behaviour of the sorption- and desorption-time curves is
affected by the relative values of the diffusion coefficient at c = 0 and c = 1,
and also by the position of the maximum in the D-c curve if one occurs.
This suggests that, in some cases, the desorption curve may be above the
sorption curve in the early stages of diffusion but later may cross it so that
the final stages of desorption are again slower than those of sorption. This
is likely to occur when there is a maximum in the diffusion coefficient-
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concentration relationship and when the value of D at c = 1 is greater than
at c = 0.

In order to study this behaviour a diffusion coefficient-concentration
relationship of the form

D/Do = 1 + a erf (fie) + yc (9.65)

was used, where a, /?, y are constants for any one curve. There is no significance
in the precise form of (9.65) except that it leads to diffusion coefficient-
concentration curves of the desired form and is convenient to handle numeri-
cally. From (9.65) we have

= ^fexp(-/J2c2) + 7 = 0, (9.66)

when D has a maximum value. All curves given by (9.65) pass through the
point D/Do = 1, c = 0. The three further conditions that D/Do shall have a
prescribed value at c = 1 and a given maximum value at a prescribed value of
c, can be satisfied by suitable choice of the parameters a, jS, y, the desired values
being readily determined by use of (9.65) and (9.66). A typical curve of this
family, actually the one given by

D/Do = 1+4-62 erf (610c)-312c, (9.67)

which satisfies the conditions

c = 0 ; D/Do = 25, c = 1;}
(9.68)

d(D/D0)/dc = 0, D/Do= 47, c = 025, '

is shown in Fig. 9.21 together with the sorption- and desorption-time curves.
The curves intersect at

(D0t/l
2f = 0-29.

For values of (D0t/l
2)* less than this, desorption proceeds more rapidly

than sorption but after the intersection the desorption curve lies below that
for sorption. This is to be contrasted with the sorption and desorption
curves shown in Fig. 9.22 which do not intersect and which are for a diffusion
coefficient of the form

D/Do = 1+29-86 erf (0-98c)-23-40c. (19.69)

This diffusion coefficient is also shown inFig. 9.22 where it is seen to differ
from that defined by (9.67) in that it has a maximum value at c = 0-6 instead
of c = 0-25. Fig. 9.20 shows further curves for a diffusion coefficient of the
same general shape having a maximum value at c = 0125. It is clear from
inspection of these curves that, keeping the end points of the diffusion
coefficient-concentration curves fixed at D/Do = 1 and D/Do = 2-5 and the
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FIG. 9.22. D/Do = 1+29-86 erf (0-98c)-2340c.

maximum value of D/Do = 4-7, as the position of the maximum values moves
back from c = 1 to c = 0 there is first a range of positions of the maximum
for which the whole process of desorption is slower than sorption. Continuing
to move the position of the maximum towards c = 0 there is evidently a
further range of positions for which the desorption and sorption curves
intersect, the point of intersection occurring at successively larger values of
Dot/l

2 as the position of the maximum moves towards c = 0. There is some
intermediate position of the maximum for which the desorption curve crosses
the sorption curve at the origin only and this is the limiting case between
sorption and desorption curves which intersect for t > 0 and those which
do not.

For this set of curves having D/Do = 2-5, c = 1, it is found that the limiting
position of the maximum for which intersection of the sorption and de-
sorption curves occurs at Dot/l

2 = 0 is about c = 0-26. When the maximum
occurs at higher values of c than this, desorption is slower than sorption right
from D0t/l

2 = 0, but when the maximum lies in the range 0 < c < 0-26 the
desorption curve is first above the sorption curve but crosses it later so that the
final stages of desorption are again slower than those of sorption.
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Still confining attention to the general form of variable diffusion coefficient
expressed by (9.65), it is to be expected that the critical position of the maxi-
mum for which the sorption and desorption curves have equal gradients in
the neighbourhood of t = 0 when plotted against (D0t/l

2)* will vary as the
value of D at c = 1 is caused to vary, taking the maximum value of D to
remain constant and the condition D/Do = 1, c = 0, to be satisfied in all
cases. This expectation is confirmed by the results presented graphically in
Fig. 9.23 where the critical position of the maximum is plotted as a function
of the value of D/Do at c = 10. The critical position is seen to move towards
c = 0 as the value of D at c = 1 is increased.

5 r

5"

I

Sorption quicker than desorption —
curves do not intersect intersect

Sorption slower than"
desorption initially —
curves intersect

Sorption slower than desorption —
curves do not intersect

,J>orption quicker than desorption
initially — curves intersect

0 0 01 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9
Concentration c at which D/Do has a maximum value

FIG. 9.23. Critical position of the maximum of D/Do as a function of D/Do at c = 10.

The points at each end of the curve of Fig. 9.23 were arrived at by general
reasoning and the intermediate points by calculation. Thus considering
first a D-c curve for which the value of D/Do at c = 1 is very close to 4-7,
which is the value of the maximum D/Do for this family of curves, it is clear
that, in general, for a D-c curve of this type the diffusion coefficient is effec-
tively increasing over the whole range of concentration, and sorption will be
quicker than desorption throughout. This is true for all positions of the
maximum except when it is so near to c = 0 that the diffusion coefficient is
effectively constant over the whole range of concentration, in which case the
sorption- and desorption-time curves coincide throughout and c = 0 is
therefore the limiting position of the maximum when D/Do = 4-7 at c = 1.

By an extension of this argument the critical position of the maximum
can be determined when D/Do = 0 at c = 1. It was seen above that the sorp-
tion-time curve obtained when D is a certain function of c is the same as the
desorption-time curve when D is the same function of (1 -c) and vice versa.
It follows immediately that if the initial rates of sorption and desorption are
equal when D is a certain function of c, they will also be equal when D is the



188 SOME C A L C U L A T E D RESULTS FOR

same function of (1 — c), i.e. if the critical position of the maximum value of
D is c = cm in the first case, it will be c = 1 — cm in the second case. Now if D
is a function of c such that D is very small when c = 1, the corresponding
function of (1 — c) is such that the value of D at 1 — c = 1 is relatively very
close to the maximum value of D. This function approximates to the type just
considered above and the critical position of the maximum value of D is at
(1 — c) = 0 and therefore at c = 1 for the original D-c curve.

For any D-c curve of the general family under discussion, the relative
behaviour of the sorption- and desorption-time curves can be deduced from
Fig. 9.23 if the value of D/Do at c = 1 and the position of the maximum are
known. Four regions are to be distinguished, in two of which the sorption-
and desorption-time curves intersect at some time, t > 0, and in the other two
they do not intersect when t > 0. When the value of D/Do at c = 1 exceeds
unity, the initial rate of desorption is more rapid than that of sorption if the
curves intersect, and vice versa when D/Do < 10 at c = 1. The critical
position of the maximum no doubt depends on the magnitude of the maximum
value of D, and also for a given maximum value it will depend to some
extent on the detailed shape of the diffusion coefficient-concentration curve.
These aspects of the problem have not yet been investigated.

The relative rates of sorption and desorption are also examined later
(§ 13.2, p. 387) for diffusion coefficients which are discontinuous functions of
concentration (Crank and Henry 1951). If the sorption and desorption curves
of Figs. 13.1(d) and 13.2(d) are plotted on one diagram they are found to
intersect markedly. A particular example is shown in Fig. 9.24 for the diffusion
coefficient shown in the inset. These curves are for a diffusion coefficient
which is infinite over an intermediate range of concentration and it is easy to
see the condition necessary in this case for intersection. Referring again
to Figs. 13.1 and 13.2 and using that nomenclature, we see that the height
of the initial vertical part of the sorption curve of Fig. 13.1(d) is ICX, and
that of the corresponding part of the desorption curve (Fig. 13.2(d)) is
l(C1 — CY). Hence, provided D is greater at high than at low concentrations,
intersection occurs if Cx -CY exceeds Cx, so that

^ a ) , (9.70)

where a is the concentration range over which D is infinite. Thus the limiting
case is when this range is symmetrically situated with respect to the whole
concentration range 0 to Cx . If the infinite region is mainly in the upper half
of the concentration range, desorption is slower than sorption throughout,
but if it is mostly in the lower half the sorption and desorption curves intersect.
Clearly, the point of intersection occurs earlier the smaller D2 is compared
with D t in Fig. 13.1(d).

Fig. 9.25 shows sorption and desorption curves for the diffusion coefficient
shown in the inset. These curves were calculated by the numerical methods
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FIG. 9.24. Sorption and desorption curves.

described in Chapters 7 and 8. Although the value of D in the middle con-
centration range of the inset of Fig. 9.25 is still relatively high, the intersection
is much less marked in Fig. 9.25 than in Fig. 9.24 and becomes even less
pronounced if the largest value of D is decreased further.

9.4,1. Effect of the initial concentration on the rate of sorption

It might be expected that the initial rate of sorption by a sheet having a
finite, uniform concentration of diffusing substance in it initially would be
greater than the corresponding rate for zero initial concentration if the
operative diffusion coefficient is small at low concentrations. Such an effect
has been observed experimentally, e.g. by King (1945) for the uptake of
methyl alcohol by wool. The effect should be most marked when the diffusion
coefficient is zero at low concentrations as in Fig. 13.7(a) (p. 2 94). A convenient
measure of initial rate of sorption is the initial gradient of the sorption curve
when plotted against (time)* as in Fig. 13.7, i.e.

dT*\/C
— i , where T = (9.71)
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FIG. 9.26. Effect of initial uptake on initial rate of sorption.
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The nomenclature is that of Chapter 13 and Figs. 13.6 and 13.7. The initial
rate so calculated is shown in Fig. 9.26 as a function of C2, the initial uniform
concentration in the sheet (Crank and Henry 1951). The different curves
refer to different values of Cx, the concentration at which D changes dis-
continuously. In all cases, the initial rate of sorption decreases as the initial
regain is increased. This, then, is a further characteristic feature of a purely
concentration-dependent system, and in systems which show qualitatively
different behaviour some factor other than concentration-dependence must
be sought as the cause.

9.5. Diffusion-controlled evaporation

Some evaporative processes are diffusion controlled in the sense that the
rate of evaporation depends largely on the rate at which solvent or mixture
is supplied to the evaporating surface by internal diffusion. An important
consideration is the effect of the proportion of solvent vapour, or the relative
humidity, in the atmosphere into which the evaporation takes place. In-
stances have been reported (Crank 1950), when evaporation takes place
through an organic membrane or a polymer film, in which the rate observed
in practice is increased by increasing the relative humidity at the evaporating
surface. This behaviour has been attributed to the effect of a diffusion coeffi-
cient which is low at low solvent concentrations, the argument being that by
maintaining some vapour in the outside atmosphere the concentration range
over which diffusion within the sheet is difficult is removed. It has been
shown theoretically (Crank 1950), by evaluating solutions of the diffusion
equation for appropriate diffusion coefficients and boundary conditions, that
such behaviour is not to be expected in a purely concentration-dependent
system. Both the steady-state evaporation through a membrane and the loss
of vapour from a sheet containing solvent have been examined.

9.5.1. Steady-state evaporation through a membrane

We saw in § 4.2.2 (p. 46) that if we have a membrane of thickness / separa-
ting a region of high from one of low vapour pressure, then the rate of
evaporation through the membrane in the steady state is F, where

F = (1//) f ° DdC. (9.72)

Here Co and Cx are the concentrations just within the surfaces of the mem-
branes on the high- and low-pressure sides respectively. The argument leading
to (9.72) is true whether D is constant or not. In particular it is true when D
is a function of concentration, and provided D is never negative in the range
from Co to Cl, the integral in (9.72) must always increase or remain constant
as the range of concentration is increased. Thus, as Park has pointed out (see
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Crank 1950) if the high concentration remains fixed, the rate of evaporation
F can never increase as a result of increasing the lower concentration C l 5

i.e. the rate of evaporation is greatest into an atmosphere completely free of
solvent vapour. Where the experimental facts genuinely differ from this, some
alternative explanation must be found.

Nooney (1973) gives examples of hypothetical diffusion coefficients that
yield anomalous behaviour. Their essential property is that they become
zero or infinite on some surface within or on the entry surface of the membrane.
Thus D(x, C) = 2x*(l - C)~ 2 with C(0) = 1, C(l) = 1 - h admits of a solu-
tion C(x) = 1-toc*, F = 1/fc, so that D = 2x*/T2 and D(0,1) = 0 while
dC(0)/dx = oo. In his second example, D(x, C) = ix*(l -C)~*. Then
C(x) = \-hx2 and F = h~\ so that D(x, C) = /T^x" 1 and D(0,1) = oo
while dC(0)/dx = 0. In both examples, F increases as C(l) increases.
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FIG. 9.27. Concentration distributions in steady state.

Further insight into the effect of changing the vapour pressure on the
low-pressure side when D depends only on concentration is given by Fig.
9.27. Calculated distributions of concentration through the membrane are
shown for a case in which D is an exponential function of concentration such
that D increases by 50-fold from C = 0 to C = Co. The concentration, Co ,
on the high-pressure side is the same for each curve, but in one case Cx = 0
and in the other C1 = jC0. The curves show how the concentration distribu-
tion adjusts itself so that the rate of flow is greater when Cl = 0, even though
the region of low diffusion coefficient is then included. Clearly, a low diffusion
coefficient is compensated by a high concentration gradient.
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FIG. 9.28. Diffusion coefficients.
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9.5.2. Evaporation from films and filaments

It is not possible to express the rate of loss of vapour from a film containing
solvent in terms of a simple expression such as (9.72) and so it is less easy to
examine the effect of introducing vapour into the outside atmosphere.
However, some illustrative examples have been worked numerically (Crank
1950) for the first diffusion coefficient shown in Fig. 9.28. This is an experi-
mental curve relating to the diffusion of acetone in cellulose acetate. The
concentration distributions through a sheet initially containing solvent at a
uniform concentration have been calculated for this diffusion coefficient
and two different boundary conditions:

(i) The surface of the sheet is assumed to reach equilibrium with the outside
atmosphere instantaneously when evaporation commences, i.e. if the
atmosphere is free of vapour the concentration at the surface falls im-
mediately to zero; if the vapour pressure in the atmosphere is p, the
surface of the sheet immediately reaches the concentration which is in
equilibrium with p.

(ii) A condition expressing the rate of evaporation from the surface is
assumed. This is taken to be

(9.73)

where Cs is the actual concentration in the surface of the sheet at any time
and Co the concentration which would be in equilibrium with the vapour
pressure remote from the surface. The diffusion coefficient Ds is the value
corresponding to the concentration Cs.
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FIG. 9.29. Concentration distributions at various times.

Fig. 9.29 shows the calculated variation of concentration with distance
through the sheet at two different times for the condition (i), that of vigorous
surface evaporation. For each time, curves are shown for the cases in which
(a) the surface concentration falls to zero instantaneously, (b) it falls to one-
tenth of its initial value instantaneously. We see that there is little difference
between the two curves at either time. In particular the total solvent content
of the sheet at any time, represented by the area under the appropriate curve
of Fig. 9.29, is much the same whether the surface concentration falls to zero
or to one-tenth of its initial value, i.e. whether the concentration over which
D is small is removed or not. In so far as there is a slight difference, the rate of
loss of solvent by the sheet is greater in the vapour-free atmosphere. As in
the steady state, the rate of evaporation is not increased by introducing vapour
into the atmosphere.

The reason for this is clear from these calculations as it was in the steady
state. When the diffusion coefficient has a small value at the surface the
concentration gradient is correspondingly large so that the rate of loss of
vapour, given by D dC/dx at the surface, does not alter appreciably. This
compensating effect is most obvious when the diffusion coefficient is zero
over a range of low concentrations as in the second diffusion coefficient
shown in Fig. 9.28. This is a hypothetical coefficient chosen to exaggerate
the effect. The concentration-distance curve for this coefficient is sketched
in the inset of Fig. 9.29 from general reasoning. The surface gradient is
infinite over the concentration range for which D is zero (in this case for
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concentrations less than 0-10) so that the product can have a non-zero value.
A finite gradient cannot develop for concentrations less than 0-10, since this
would imply that solvent had been removed from a region of zero diffusion
coefficient under the action of a finite gradient, which is not possible. For
such a diffusion coefficient the rate of evaporation is precisely the same for
all surface concentrations between zero and 0-1.

The same general conclusion holds for the surface condition (9.73), i.e.
the rate of loss from the sheet is always increased by decreasing the external
vapour pressure. Hansen (1968) tabulated concentration distributions and
their means for the drying of a lacquer film by solvent evaporation. The
concentration-dependent D is approximated by. two exponential curves
joined together. Various solvents and drying conditions are covered.

9.6. Effect of a surface skin

Many films and fibres show evidence of a surface skin having properties
different from those of the underlying layer or core. In this section we
examine the effect of such a skin on diffusion behaviour. The results pre-
sented were obtained as part of an attempt to understand some of the
peculiar features which are sometimes observed when solvents diffuse into
and out of polymer substances (Crank and Park 1951).

We shall restrict ourselves to cases in which the skin and the core are
each homogeneous and the boundary between the two is sharply defined.
In the skin the diffusion coefficient is assumed to be either constant or a
discontinuous function of concentration, and beneath the skin to be every-
where infinite at all concentrations.

(i) The simplest case is one in which D is constant in the skin, and the
medium is semi-infinite. The solution has been given in Chapter 3, eqn
(3.57) (p 41), which becomes

M, iDt

2/C0
72

* f 1
»™>

when D2 = oo. Here M, is the total amount of diffusing substance which
enters the composite medium in time t if the surface is maintained at a
constant concentration Co. When Mt/21CO is plotted as a function of (Dt/l2)*
the curve is linear for small times and its gradient later increases steadily as t
increases. When plotted as a function of Dt/l2 the curve is parabolic at first
and then becomes linear, the gradient of the linear part being determined by
the constant rate of flow across the outer surface in the final steady state. Both
the curves shown in Fig. 9.30 are noticeably different from the corresponding
ones for a semi-infinite homogeneous sheet when M, is proportional to r* for
all times.
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FIG. 9.30. Sorption curves for a composite semi-infinite sheet. D in skin is constant; D below skin
is infinite, (i) M,/2/Co against Dt/l\ (ii) MJ21CO against {Dt/l2f.

(ii) We consider next a finite sheet having on each surface a skin in which
D is a discontinuous function of concentration C of the type shown in Fig.
9.31 (a). The general shape of the sorption-time curve for this case is easily
deduced from the concentration-distance curve for the same diffusion
coefficient and a homogeneous sheet. Solutions are given in Chapter 13,
Figs. 13.6 and 13.7; the sorption-time curve is parabolic for small times and

0 5 10 15 20 25
Dt/I2

FIG. 9.31. Sorption and desorption curves for sheet with skin.
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the concentration-distance curve is characterized by a sharp front which
advances according to the square root of time (Fig. 9.3l(b)). It is clear that
until this sharp front has penetrated to the inner boundary of the skin the
sorption-time curve is the same as for a homogeneous sheet having the
properties of the skin throughout. After this the concentration on the outer
surface of the sheet remains at Co and that on the inner surface of the skin at
Cx till the uniform concentration throughout the region of infinite diffusion
coefficient has reached the value Cx. During this time there is approximately
a steady-state flow through the skin so that the rate of sorption by the whole
sheet is constant and the sorption-time. curve is linear. When the whole sheet
beneath the skin has reached a concentration Cx there is a gradual decrease
in rate of sorption as the final equilibrium concentration Co is approached
throughout the sheet.

The details of the calculation for this case are as follows. For sorption
we require solutions of the usual equation

dc d2c

where in the region 0 < x < /, D is defined by

D = 0, 0 < C < Cx, (9.76)

D = Dl9 CX<C<CO, (9.77)

and in the region / < x < / + a, D is infinite. The solutions are subject to the
conditions

C = Co, x = 0, f > 0 , (9.78)

C = 0, 0 < x < / + a, r = 0. (9.79)

For small times the concentration-distance curve falls discontinuously
from C = Cx to C = 0, and until this vertical part of the curve reaches
x = / at, say, time t = t0, the medium is effectively semi-infinite and the
solution is

u 0 ' ( 9 ' 8 0 )

where

/lerffc/(2Dt) = Cx-C0, (9.81)

and the constant k is given by

C —C Tt^k efc2/4£>l

erf(/c/2Df)+ 2D\ °x = °' (9'82)

After t = t0 the concentration at x = / remains at C = Cx till an amount



198 SOME C A L C U L A T E D RESULTS FOR

aCx has crossed x = /. During this time the usual solution, §4.3.1, eqn
(4.16), (p. 47), for a sheet whose surface concentrations are fixed and in
which the initial concentration distribution is /(x), given by substituting
t = t0 in (9.80), applies, i.e.

x 2 * Cx cos nn — C o . nnx , 9 9/ , l9,
C = CO + (CX-CO)- + - X — ^sin—exp{-/V27r2(r-r0)//2}

i 7i n = i n l

2 * *Mix Cl nnx
+ 7 I sml-rexp{-Dln

2n2(t-t0)/l
2} /(x)sin —dx. (9.83)

* M = l l ^ 0 '

From (9.83) it is easily deduced that the amount M o crossing unit area at
x = 0 from time t = t0 onwards is given by

— IM °° I2

° ( C C ) U ) 2 I

^ (9.84)< Cx cos «7r - Co + ̂  I / (x) sin ̂  dx >.
I / J o * J

The amount Mt crossing unit area at x = / in the same time is given by

---Ml = (Cx-C0)(t-t0)

"2 I (- lr-^

-C0 + n^- \ / ( x ) s i n ^x \cxcosnn-C0 + n^- \ / (x)s in^dxi . (9.85)

Eqn (9.84) expresses the total amount absorbed by the composite sheet from
time r0 onwards and these solutions apply till M, = aCx as calculated from
(9.85). For much of this time there will be approximately a steady-state
flow across the region 0 < x < /.

After the concentration throughout the region / < x < l + a has reached
Cx, the boundary condition on x = / is

-D^C/dx = adC/dt, (9.86)

and the solution is conveniently continued by numerical methods described
in Chapter 8 using for (9.86) the finite-difference form

dC CS_2-4CS_,+3CS

to ~ Wx ' (9'87)

where the range 0 < x < / is divided into equal steps Sx, and Cs+P is the
value of C at x = 1 + pSx.
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For desorption we require solutions of eqn (9.75) for the same diffusion
coefficient but subject to the conditions

C = 0, x = 0, t > 0,

C = Co, 0 < x < l + a, t = 0.

(9.88)

(9.89)

In this case the concentration-distance curve rises discontinuously at
x = 0 from C = 0 to C = Cx, and in the early stages, when the concentration
at x = / is not appreciably different from Co to the required accuracy, the
solution is simply that for a semi-infinite sheet having a surface concentration

, i.e.

C-CX = (CO-CX) erf
7iD.tr

(9.90)

At later times the condition (9.86) again applies and the solution can be
continued numerically as for sorption. A typical sorption-time curve is
shown in Fig. 9.31 for Cx = \C0 and a skin which forms one-fifth of the half-
thickness of the sheet. The corresponding curve for desorption is also shown
in Fig. 9.31.

The investigations into the cause of intersecting sorption- and desorption-
time curves discussed in §9.4(iv) (p. 183) suggest that a diffusion coefficient
in the skin of the form shown in Fig. 9.32(a) might be interesting. The con-
centration-distance curve for this diffusion coefficient has a sharp front as in
Fig. 9.32(b), and the required mathematical solutions up to the time at which
this front reaches the inner surface of the skin are presented in § 13.2.4.

36
(a)

0-5 10 1-5 2 0 2-5

FIG. 9.32. Sorption and desorption curves for sheet with skin.
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(p. 296), together with a numerical procedure for extending them to later
times (Chapter 8). Desorption can be treated by the same equations and
methods. Fig. 9.32 shows calculated sorption- and desorption-time curves
for the diffusion coefficient of Fig. 9.32(a) and a skin one-fifth of the half-
thickness of the sheet as before. Here we see that the curves intersect but the
linear part has almost disappeared from the sorption curve. We can now see
that this must always be so, for, as we have already noted, intersection of
sorption and desorption curves only occurs when the region of high diffusion
coefficient is in the lower half of the concentration range, which means that
the diffusion coefficient is small or zero only at very low concentrations. But
it is clear from what we have said and from Fig. 9.32(b) that for relatively
thin skins the amount absorbed by the sheet when the sorption-time curve
ceases to be linear is roughly proportional to the height of the sharp front
in the concentration-distance curve, i.e. to the concentration range over which
D is small or zero. It follows that, in general, when the sorption-time curve
calculated for the model we have chosen has a long linear portion, desorption
will be everywhere slower than sorption; conversely if the sorption and
desorption curves intersect markedly no appreciable linear part will be
observed in the sorption curve.

9,6.1. Composite cylinder

The effect of a skin on the uptake of dye by a cylindrical fibre has been
studied (Crank and Godson 1947). The solutions obtained relate to a circular
cylinder of infinite length and radius a immersed in a solution. Dye molecules
diffuse into the cylinder and are deposited in capillaries of the cylinder.
The concentration of the dye in the solution is always uniform, while the
cylinder is initially free of dye. The cylinder has a core of radius b, in which the
diffusion coefficient is Db and for b < r < a the diffusion coefficient is Dfl. In
any element of the cylinder the amount of dye S deposited in the capillaries
and immobilized is related to C, the amount free to diffuse, by the relationship

S = RC\ (9.91)

where R is a constant which, in this example, is chosen so that in the final equi-
librium state 90 per cent of the dye initially in the solution has entered the
fibre. When the ratio of the volume of solution to that of the fibre is 25:1,
R = 70-8. If we denote by Mt the amount of dye in the cylinder after time t, and
M^ the corresponding amount after infinite time, Fig. 9.33 shows MJM^ as a
function of log (Dbt/a

2) for b = -^a. The several curves correspond to different
values of Db/Da. The effect of changing the ratio DJDa is to displace the
sorption curve parallel to the time axis, and this is accompanied by a slight
change in the shape of the curves. Thus, when MJM^ = 0-5, in Fig. 9.33,
the abscissae of points on the curves for Db/Da = 2, 10, and 30 differ
from the corresponding abscissa for Da = Db by the amounts 0-30,
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FIG. 9.33. Sorption curves for a composite cylinder b = -^a. Numbers on curves are values of
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FIG. 9.34. Sorption curves for a composite cylinder, b = -^a. Numbers on curves are values of
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1-00, 145 respectively, i.e. by approximately log 2, log 10, log 30. When
MJM^ = 0-8, the abscissae differences are 0-18, 0-78, 1-18 respectively.
Thus the sorption curve for this composite cylinder almost coincides with the
corresponding curve for a homogeneous cylinder having a diffusion coeffi-
cient Da throughout. The final stages proceed more rapidly in the composite
cylinder, however, as is to be expected because of the greater diffusion
coefficient in the core. For a thicker skin there is less difference in the shapes
of the curves for composite and homogeneous cylinders (Crank and Godson
1947).
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FIG. 9.35. Concentration distribution in a composite cylinder, b = ^a\DJDa = 30. Numbers on
curves are values of Dbt/a

2. solution for homogeneous cylinder of diffusion
coefficient Dh.

In Fig. 9.34 some of the uptake curves are replotted against (Dbt/a
2)* to

show that the presence of a skin does not necessarily produce a point of
inflexion in the uptake curve plotted against the square root of time, as it
does in the problems discussed in § 9.6. Fig. 9.35 shows the over-all concentra-
tion (S + C) in a composite cylinder as a function of the radial coordinate at
three different times. There is a rapid fall in concentration within the skin
and a discontinuity in concentration gradient at the boundary between the
skin and the core where the diffusion coefficient changes discontinuously.
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THE DEFINITION AND MEASUREMENT
OF DIFFUSION COEFFICIENTS

10.1. Definitions

Q U A N T I T A T I V E measurements of the rate at which a diffusion process
occurs are usually expressed in terms of a diffusion coefficient. Before
describing some methods of measurement, we shall examine the definition
of the diffusion coefficients a little more carefully than in § 1.2 (p. 2). Con-
fining attention to one dimension only, the diffusion coefficient is defined as
the rate of transfer of the diffusing substance across unit area of a section,
divided by the space gradient of concentration at the section. Thus, if the
rate of transfer is F, and C the concentration of diffusing substance, and if x
denotes the space coordinate, then

F = -DdC/dx, (10.1)

and (10.1) is a definition of the diffusion coefficient D. In using this definition
in practice, it is necessary to specify carefully the section used and the units
in which F, C, and x are measured. Only the simplest system of practical
importance is considered, which is a two-component system, since it is not
possible to set and observe a concentration gradient of a single substance in
itself without introducing complicating features such as pressure gradients,
etc. The diffusion of isotopes is best regarded as a special case of a two-
component system.

10.2. A frame of reference when the total volume of the system remains
constant

Consider the inter-diffusion of two liquids A and B in a closed vessel and
assume that there is no overall change of volume of the two liquids on
mixing. Two diffusion coefficients, DV

A, Dy
B, one for each liquid, may be

defined by the relationships

FA = -Dv
AdCA/dx, (10.2)

FB= -Dv
BdCB/dx. (10.3)

CA and CB are the concentrations of A and B respectively, each expressed in
the usual way in any convenient unit of amount (e.g. gram or, in the case of
simple molecular substances, gram mole) per unit over-all volume. FA and
FB are the rates of transfer of A and B measured in the same units of amount
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per unit time, across a section which is defined by the condition that the
total volume on either side of it remains constant as diffusion proceeds. In
the particular case under consideration it is therefore fixed with respect to
the containing vessel. The origin from which x is measured is such that the
x-coordinate of the section is constant; x is measured in normal units of
length, e.g. centimetres and the same unit of length is used in measuring the
volume which appears in the definition of concentration. If the unit of time
adopted is the second it follows that the units of DV

A and DV
B are each cm2 s~1.

These somewhat obvious statements are made here in full because it will be
seen later in § 10.3 (p. 205) that other scales of length and alternative ways of
measuring concentration are more suitable in some circumstances.

Let VA and VB denote the constant volumes of the unit amounts used in
defining the concentrations of A and B. Thus if CA is expressed in grams per
unit volume, VA is the volume of 1 g of A. In dilute solutions, where the volume
changes in the range of concentration concerned can be considered negligible,
VA and VB will be the partial specific or molar volumes. That of the solute may
be very different from the specific volume in the pure state. The volume
transfer of A per unit time across unit area of the section defined is therefore

and that of B is

-Dv
BVBdCB/dx.

By definition of the section as one across which there is no net transfer of
volume we have immediately

DV
AVA—- + DV

BVB—- = 0. (10.4)

The volume of A per unit over-all volume of solution is VACA and of B is
VBCB, so that, since only molecules of A and B are present, we have

VACA+VBCB=19 (10.5)

which, following differentiation with respect to x, becomes

VA—- + VB—- = 0. (10.6)

In order that (10.4) and (10.6) shall both be satisfied it follows that
}A = UBDV

A = Dy
B9 (10.7)

or else that

VA = 0 or VB = 0. (10.8)

If VA = 0 and VB # 0, it follows from (10.6) that

dCB/dx = 0, (10.9)
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and further reference is made to this case in § 10.6.4 (p. 234). In either case
the behaviour of a two-component system, satisfying the condition of zero
volume change on mixing, may be described in terms of a single diffusion
coefficient, which may vary with composition. It is convenient to refer to it
as the mutual diffusion coefficient denoted henceforth by Dv. This coefficient
is familiar in the interdiffusion of gases (Jeans 1940). Its physical significance
is considered later in § 10.4 (p. 209).

10.3. Alternative frames of reference

The definition of the volume-fixed section used in § 10.2 (p. 203) above is
unambiguous only as long as the total volume of the diffusion system remains
constant. If there is an over-all change of volume of the two components on
mixing, the side of the section on which the volume is to remain constant
must be chosen arbitrarily, and the diffusion coefficient becomes equally
arbitrary. In such a case some alternative frame of reference must be used in
defining the section across which transfer of diffusing substance is to be
measured. There are clearly several possibilities. Thus, for example, the
total mass of the system will always be conserved even though volume is
not, and a section can be defined consistently such that the mass of the system
on either side of the section remains constant during diffusion.

Where a convention other than that of constant volume on either side is
used in defining a section, the second-order differential equation describing
diffusion may not take the standard form of (7.5). It is clearly convenient if
it can be made to do so since the standard form has frequently been used as
the starting-point in calculations of diffusion behaviour. This can always be
arranged by departing from the orthodox linear scale, e.g. centimetres, for
measurement of the spatial coordinate so far denoted by x, and by measuring
concentration in a certain way. Let some modified scale of length be denoted
by £, and consider two sections, fixed on the same convention, at { and £, + d£.
The rate of entry of A into the volume enclosed between these sections is
FA and that of departure is FA + (dFJd£)d£. The rate of accumulation is
therefore

and this is always true independently of how FA and £ are measured. It can
only be equated to (dCJdt) d£, however, when CA and £, are measured in
certain consistent units. Thus, if the sections are fixed with respect to total
mass, then £ must be measured so that equal increments of £ always include
equal increments of total mass, and CA must be defined as the amount of A
per unit total mass. Similarly, if the sections are fixed with respect to volume
or mass of component B, equal increments of f must include equal increments
of amount of B, and CA must be expressed as the amount of A per unit amount
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of B. In general, for all values of t, and t, the element of unit length in terms of
£, and of unit cross-sectional area, is that which contains an amount of A
equal to the unit used in defining the concentration CA. When the quantities
CA and £ satisfy this condition the usual relationship

follows at once, and by substituting for FA from the relationship

FA= -DdCJdi (10.11)

we derive the familiar form of the diffusion equation

dt « , - « • (10-12)

It is convenient that £ should have the dimension of length and D the
usual dimensions of (length)2(time)~~ *. This can be arranged without interfer-
ing with the generality or simplicity of (10.12), by multiplying the mass of
component B (or the total mass of A and B together if this is the reference
system being used) by an arbitary constant specific volume. The volume
represented by the product of a mass of B, for example, and this arbitrary
specific volume will be referred to for convenience as the basic volume of that
mass of B.

The concentration of A was defined above as the amount of A per unit
amount of B. We now redefine the concentration of A as the amount per
unit basic volume of B, and unit £ to contain unit basic volume of B per
unit area. A convenient arbitrary specific volume is that of the pure compo-
nent B, so that the basic volume of a certain mass of B is the volume that
mass of B would occupy in the pure state.

The same arbitrary specific volume is used for concentrations expressed
in the original definition per unit mass of A and B together, i.e. the basic
volume of a mass of A and B together is obtained by multiplying the mass by
the same arbitrary specific volume. This is true also for deriving the basic
volume of A alone, so that the basic volume has a simple physical significance
only in the case of the basic volume of B. Nevertheless, the use of this particular
basic volume has the convenience that all the concentrations measured in
the different frames of reference tend to the same value in dilute solutions.

Of course, concentration is frequently expressed in a number of different
ways and so the symbol CA is retained, but the appropriate index V, B, or M
as superscript is added, so that the concentration of A is written CV

A,CB
A,

or CA according as the amount of A is contained in unit volume of solution,
or in unit basic volume of B or in unit basic volume of total mass. According
as unit f contains, per unit area, unit basic volume of B or of A and B together,
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the symbol £B or £M is used. The diffusion coefficients D^9D^,D^ also carry
an index to indicate the frame of reference to which they refer. The arbitrary
specific volume may be denoted by VB9 and then £B and £M are defined
formally by the respective relationships

d£B=VBCv
Bdi, (10.13)

dx. (10.14)

10.3.1. Sections fixed with respect to total mass and mass of one component

It was found in § 10.2 (p. 203) that the behaviour of a two-component
system satisfying the condition of zero volume change on mixing can be
represented in terms of a single diffusion coefficient Dv. A similar result
follows readily for a system in which volume changes occur, provided the
diffusion coefficients are defined with respect to a mass-fixed section. Thus
the equation defining such a section is

^ §5- = 0, (10.15)

and the definitions of CA and CB lead immediately to the equation

Cy + Cjf =1/Kg. (10.16)

On differentiating (10.16) with respect to £M and comparing with (10.15)
we find

D% = D%. (10.17)

If a section fixed with respect to one component, say B, is used, then clearly
DB = 0 and only the coefficient DB

A is needed to describe the diffusion
behaviour. Thus the statement that the diffusion behaviour of a two-compo-
nent system can be described in terms of a single diffusion coefficient, is
valid whether there is a change of volume of the whole system or not, pro-
vided the appropriate frame of reference is used in defining the diffusion
coefficient. Frames of reference could be so chosen that the two coefficients
are not identical and neither is zero, but they would be related through some
function of the partial volumes and would not be independent measures of
two separate diffusion processes. The possibility of measuring the diffusion
of the two molecular species independently is discussed in £ 10.4 (p. 211).

10.3.2. Relations between the diffusion coefficients D^,DA9 DB
A

The rate of transfer of A through a Infixed section is greater than that
through a total-mass-fixed section by an amount given by the concentration
of A per unit mass of B multiplied by the flux of B across the mass-fixed
section. Thus the flux of A across a infixed section in the direction of {
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increasing is

as ~ CMy0 ft* > v * — ,

using (10.16).
But the rate of transfer across a infixed section is — DA dCA/d£B so that

we have

DB = ——— —- —^- (1019)

From the definitions of CA and CA it is easy to show that

—& = (V°BC^)2. (10.20)

Also since

dU = V°B(CV
A + CV

B) dx9 d£B = V°BCV
B dx9 (10.21)

we have

§1 = V%C», (10.22)

so that finally, by substituting (10.22) and (10.20) in (10.19), we find

DB
A = DM(V°BC% ) 2 , (10.23)

since re-arrangement of the partial derivatives in (10.19) is permissible. For
a system in which there is zero volume change on mixing, so that VA and VB

are constant, the relation between DA and Dv can be similarly established.
Thus the flux of A across a JB-fixed section in the direction of £, increasing is

^ ^ ^ = - - ^ ^ , (10.24)
C dx VC dxVBCB

using (10.5) and (10.6). But the rate of transfer of A across a B-fixed section is
-DBdCA/d£B, so that we have

VBCV
B dx dCB

A

From the definition of CV
A and CB

A it follows that

dC

A and CA

y

V ) 2= (VBCV
B)2, (10.26)

and from the second of (10.21) we have immediately

^ = VBCV
B, (10.27)
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so that on substituting (10.26) and (10.27) in (10.25) we find

DB
A = DV{VBCV

B)2 = DF(volume fraction of B)2. (10.28)

Since (10.28) applies only when VB is constant, and therefore VB = VB,
comparison of (10.28) and (10.23) shows that when there is no over-all volume
change accompanying diffusion

DM = DV(CV
B/C^)2 = Dv (basic total volume/true total volume)2. (10.29)

10.4. Intrinsic diffusion coefficients

We saw in § 10.3.1 that any two-component system can be described by a
single or mutual diffusion coefficient, which may be a function of composition
but will be the same function for both components. In the simplest case,
where the molecules of the components A and B are identical in mass and
size, the rates of transfer of A and B due to random motion across a volume-
fixed section may reasonably be expected to be equal and opposite. In
general, however, differences of mass and size of A and B molecules result
in the transfer of A by random motions being greater or less than that of B.
Consequently, a hydrostatic pressure tends to be built up in the region of
the solution which contributes least to the volume rate of transfer. This
pressure is relieved by a compensating bulk-flow of A and B together, that
is of the whole solution (Meyer 1899, Jeans 1940, Hartley 1946). This existence
of bulk flow can be demonstrated in the case of gases, when diffusion occurs
across a porous plate which offers considerable viscous resistance. In this
case, an increased pressure is found to arise in that part of the vessel occupied
initially by the slower diffusing component. It has been demonstrated in
metal systems (Darken 1948) and in polymer solvent systems (Robinson
1946) by the insertion of marker particles, t In the latter case, the large polymer
molecules will diffuse far more slowly, as a result of random motions, than
the small solvent molecules. Thus the polymer movement measured by the
mutual coefficient is almost entirely a bulk-flow.

The over-all rate of transfer, say of component A, across a volume-fixed
section may be expressed as the combined effect of bulk-flow and true
diffusion resulting from the random motion of non-uniformly distributed A
molecules. From the point of view of interpreting diffusion coefficients in
terms of molecular motions, the mutual diffusion coefficient Dv thus appears
to be unnecessarily complicated by the presence of the bulk-flow. It is desir-
able to define new diffusion coefficients, Q)A and 3)B, in terms of the rate of
transfer of A and B, respectively, across a section fixed so that no bulk-flow
occurs through it. Such a section may be impossible to determine in practice,
except in special conditions mentioned below. It is fixed in a different way

t The marker movement is often referred to as the Kirkendall effect, since it was first observed
in metals by Kirkendall, E. O. (1942).
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from any of the other sections previously dealt with, and it must follow the
bulk-flow although this flow is not normally directly observable. These new
diffusion coefficients will be referred to as 'intrinsic diffusion coefficients'.
When the partial volumes are constant they are related to the mutual dif-
fusion coefficient in the following way.

On one side of a section fixed so that no bulk-flow occurs through it, there
is a rate of accumulation of total volume of solution, which may be denoted
by (/>, where

dCv dCv

^ V®^-' (10.30)

As thus defined, (j> is actually the rate of increase of volume on the side of
smaller x, and this must be equal to the rate of transfer of total volume by
bulk-flow across a volume-fixed section. Such a bulk-flow involves a rate of
transfer of A of <j)Cv

A, so that, equating two expressions for the net rate of
transfer of A across the volume-fixed section, we find

On substituting for <\> from (10.30) and using (10.6) we have finally

Dv = VACy
A(@B-®A) + @A. (10.32)

If the molal volumes vary with composition, the coefficient Dv has no
physical significance, but 2A, Q)B can still be defined in terms of the rates of
transfer of A and B respectively across a section which moves so that there is
no bulk-flow of A and B together, through it. It is convenient in this case to
relate the intrinsic diffusion coefficients to DB

A. Since the net rate of transfer
of B through a B-fixed section is, by definition, zero, it follows that the con-
tributions to the transfer of B resulting from the over-all bulk-flow and from
the true diffusion of B relative to the bulk-flow, must be equal and opposite.
The rate of transfer of B by true diffusion relative to the bulk-flow is

-9BdCv
B/dx,

in the direction of x increasing and hence the volume transfer of the whole
solution accompanying bulk-flow with respect to the B-fixed section is given
by

cv
B dx'

in the direction of x increasing. This produces a rate of transfer of A through
the B-fixed section of
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due to the bulk-flow. This is to be combined with the rate of transfer of A
relative to the bulk-flow which is given by

-®Adcv
A/dx

to give the net rate of transfer of A across a B-fixed section, which is simply

-DB
AdC*/dZB-

Thus we have the equation

_£)* d = - Q ) A d + _£®B * (10.33)

OQB OX C B vX

When the molal volumes are not constant, the relationship

vAcA+vBcB = i

still holds, but the differentiated form (10.6J is to be replaced by

Since

it follows immediately from (10.27), (10.33), and (10.34) that

CV VB+cv
BdvB/dCv

B]' ( }

This reduces to (10.32) when VA and VB are constant.
It is clear from (10.32) or (10.35) that the values of <2)A and Q)B cannot be

deduced separately, unless some information other than Dv or DB
A is available.

One possibility is to use an observation of the bulk-flow, as suggested by
Darken (1948) and by Hartley and Crank (1949). Sometimes, e.g. in solvent-
polymer systems, the intrinsic diffusion for one component, e.g. the polymer,
is so much smaller than for the other that it can be assumed to be zero. With
the assumption that Q)B = 0 we have from (10.32)

g>A = Dv/(l - VACV
A) = DV/(VBCV

B) = D7(volume fraction of B\ (10.36)

which allows the intrinsic diffusion coefficient of component A and its
dependence on concentration to be deduced from observations of Dv. The
ideas discussed above in §§ 10.1-10.4 have been the subjects of papers by
Darken (1948), Hartley and Crank (1949), Kuusinen (1935), Lamm (1943)
and Pattle, Smith, and Hill (1967).
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10.5. 'Self'-diffusion coefficients

By using radioactively-labelled molecules it is possible to observe the rate
of diffusion of one component in a two-component system of uniform
chemical composition. Since what is involved is an interchange of labelled
and unlabelied molecules which are otherwise identical there is no bulk-flow
and the true mobility of the labelled molecules with respect to stationary
solution is measured. Nevertheless, the diffusion coefficient so deduced will
in general differ from the corresponding intrinsic diffusion coefficient for
the same chemical composition. Johnson (1942) has found this to be so in
metal systems. Seitz (1948), regarding the diffusion process as a jumping of
molecules from one equilibrium position to another, accounts for the
difference on the basis that when there is a gradient of chemical composition
the frequency with which a molecule jumps to the right is not the same as that
with which it jumps to the left. For the labelled molecules, however, the two
frequencies are identical. Darken (1948) and Prager (1953) have related the
diffusion coefficient measured by an experiment using radioactive molecules
to the intrinsic diffusion coefficient in terms of the thermodynamic properties
of the system. Their result can be anticipated as follows.

Consider a two-component system comprising molecules A and B and
let the gradient of concentration CA of A be maintained in an equilibrium
condition by the application of a force FA per g mol of A in the direction of
increasing x. This is purely a hypothetical operation but it can be realized in
the case of large molecules, much different in density from the solvent, by a
centrifugal field. The generalized form of the condition for this thermodyna-
mic equilibrium is

FA = dfjijdx, (10.37)

where \iA is the chemical potential of component A. The rate of transfer of A
due to the force FA is

r r r a,,
(10.38)

oAr) OAY\ 8x '

where aArj is a resistance coefficient. But in the equilibrium condition (10.38)
is also the rate of transfer by diffusion relative to a section through which there
is no bulk-flow and so we have

dx (TArj dCA dx

and hence

_ C
A ~ °A1

£- (10.40)
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On applying the same treatment to the labelled molecules in a system of
uniform chemical composition we have

. " £ S , (10.41,
ox C* ox

because of the ideality of the system, where asterisks denote properties of
labelled molecules. Instead of (10.40), therefore, we obtain

R T
(10.42)

and finally

QA = @*CA(dfiA/dCA)/RT, (10.43)

if we assume the resistance coefficient OAY\ to depend only on chemical
composition. Carman and Stein (1956) used these concepts in discussing
their measurements of self-diffusion coefficients in mixtures of ethyl iodide
and n-butyliodide.

Pattle et al. (1967) questioned the validity of this assumption. It implies
that the mobility of a few tracer molecules moving relative to all the others
is the same as the corresponding mobility in mutual diffusion where all the
molecules of one kind are moving in one direction and the rest in the other.
They propose as an alternative a 'one-process' theory which postulates no
bulk-flow but instead introduces 'enhancement factors' relating mobilities
in mutual and tracer diffusion. The factors are chosen so that the theory fits
the experimentally observed values of the different diffusion coefficients and
the associated thermodynamic data. Patel et al. agree that the 'two-process'
theory incorporating bulk-flow can be modified by the insertion of similar
arbitrary parameters. The subject needs further careful experimental in-
vestigation of the kind carried out by Pattle et al. in the rubber-benzene
system.

Kirk wood, Baldwin, Dunlop, Gosting, and Kegeles (1960) discussed the
various frames of reference described in § 10.3 (p. 205) with reference to the
transport equations of irreversible thermodynamics. They were particularly
concerned to test Onsager's reciprocal relations and to measure diffusion
coefficients in systems in which changes of volume occur on mixing. In this
connection Fujita and Gosting (1956) presented mathematical solutions of
Onsager's flow equations for diffusion in a three-component system with
interacting flows. They developed a general procedure for calculating the
four diffusion coefficients from experimental data.

Bearman (1961) examined the absolute reaction rate theory (Glasstone,
Laidler, and Eyring (1941)) and the equations of Hartley and Crank (1949)
and of Gordon (1937) from the viewpoint of statistical thermodynamics.
He found the different approaches basically equivalent. In his criticism of the
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idea of intrinsic diffusion coefficients Bearman seems to confuse the mass-
fixed frame of reference (§ 10.3.1, p. 207) with that moving with the bulk-flow
(§ 10.4, p. 209). Partly for this reason the term 4bulk-flow' may be preferable
to 4mass-flow' as originally used by Hartley and Crank (1949). Wright (1972)
in a series of papers dealing with gaseous diffusion at 'strictly uniform
pressure' obtains expressions similar in algebraic form to those of this
section. He sees this as quite natural since the two discussions are expressing
the same basic concepts in different terms.

Tyrrell (1971) considers that all the phenomenological descriptions of
diffusion based on Fick's original concepts are deceptively too simple.
He discusses critically the problems of the definition of diffusion coefficients
and suggests that understanding of diffusion processes is most likely to
advance through the application of non-equilibrium thermodynamics and
through mechanical analogies involving frictional coefficients (Mills 1963;
Tyrell 1963).

10.6. Methods of measurement

Crank and Park (1968) reviewed the more useful experimental techniques
for measuring diffusion coefficients and their concentration dependence. In
this section the emphasis is on the associated mathematical analysis.

Most of the earlier methods assumed constant diffusion coefficients.
When such methods are applied to systems in which this is not true, a mean
value is obtained. Both steady-state and transient methods are used, some-
times in combination, as in the time-lag method of §4.3.3 (p. 51). Various
methods based on the analysis of concentration-distance curves are reviewed
by Alexander and Johnson (1949, Chapter X). A variation is to observe the
over-all rate of uptake or loss of diffusing substance by a specimen of known
size and shape, and to compare this with the calculated rate of uptake
expressed as a function of Dt. In some cases, special tables have been con-
structed to facilitate the calculations. Stefan's tables (1879), to which refer-
ence was made earlier in § 4.3.8 (p. 63) refer to the diffusion of solute from a
column of solution into a column of water. They give the amount of diffusing
substance contained in successive layers of equal height. These tables and
others of a similar nature are reproduced and discussed by Jost (1952).
In all these methods, the difficulties lie in the experimental techniques rather
than in the subsequent mathematics. Adequate accounts are already avail-
able (Barrer 1951; Jost 1952). It suffices to say here, following the discussion
of the alternative definitions of diffusion coefficients, that in the early mea-
surements it is usually assumed that the total volume of the system remains
constant as diffusion proceeds and so the mutual diffusion coefficient Dv is
measured. A notable exception is that of Clack (1916; 1921), who introduced a
correction for mass-flow and obtained in effect the coefficient DB

A of solute
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with respect to stationary solvent. A number of examples are discussed in
more detail by Hartley and Crank (1949).

This is a convenient point at which to refer to a method of measurement
suggested by Taylor (1953, 1954) based on observations of the dispersion of
soluble matter in solvent flowing slowly through a small-bore tube. The
distribution of concentration is found to be centred on a point which moves
with the mean speed of flow U and is symmetrical in spite of the asymmetry
of flow. Taylor (1953) shows that the distribution is determined by a longi-
tudinal diffusion coefficient k which is related to the molecular diffusion
coefficient D by the relation

. a2U2

where I/, the mean speed of flow, is defined as \u0, where u0 is the maximum
velocity on the axis and a is the radius of the tube.

Two useful experimental conditions are as follows.

(i) Material of mass M concentrated at x = 0 when time t = 0. The
solution for this is

C = \Ma-2n-\kty± exp(-x?/4/cr),

where x1 = x — \uot.
(ii) Material of constant concentration Co is allowed to enter the tube at

a uniform rate at x = 0, starting at t = 0. Initially the tube is filled with
solvent only (C = 0). The solution for this case is

C/Co = i + i e r f j _ ^ } , X ] < o ,

In either case /c, and hence D, may be deduced by comparing the
appropriate mathematical solution with an observed concentration
distribution. The mathematical analysis rests on the assumption that
radial differences in concentration are smoothed out quickly by
molecular diffusion compared with the time necessary for appreciable
effects to appear owing to convective transport. Also longitudinal
diffusion is neglected.

In a second paper, Taylor (1954) suggested necessary conditions to be

a D

where L is the length of tube over which appreciable changes in concentration
occur. In later papers Philip (1963) criticizes some aspects of this work and
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a similar analysis by Aris (1956), and suggests a more generalized approach.
Carrier (1956) deals with the effluent from a tube when the intake is oscillatory.
This is a method which may be of particular interest in physiological systems
(Philip 19696).

Two more recent methods rely on less familiar mathematical solutions.
Pasternak, Schimscheimer, and Heller (1970) described a 'dynamic', isobaric
permeation experiment in which atmospheric pressure is maintained on both
sides of a membrane. One face is in contact with the penetrant and a carrier
gas, flowing at a constant rate past the other face, sweeps away the penetrant
which diffuses through the membrane to a recording system. Thus the per-
meation rate is observed continuously. The mathematical statement of an
experiment is

C = 0, x = /, t ^ 0, (10.44)

C = Q, x = 0, r = 0, (10.45)

C = C{, x = 0, t > 0, (10.46)

C = Ci(/-x)//, 0 ^ x ^ / , r = 0, (10.47)

C = Cf(/-x)/7, O^x^l, t = oo. (10.48)

Thus there is a change from one steady state to another with the concentra-
tion at x = / always zero. Pasternak et al. use Holstein's solution (4.27)
modified to allow for their initial condition (10.47). It is

F - l 1
4 D ( C f - Q 2 |^ ) | e x p {-(2n + \)2l2l(ADt)} (10.49)|

where F is the flux at x = /. Taking the first term of the series in (10.49) we
have

^) 2 exp{- / 2 / (4Df)} , (10.50)

where AF^ = D(C{ — C)ll is the change in flux from the start to the finish
of the experiment. They then write (10.50) in the form

AF/AF^ = (4/TT±)X e~*\ (10.51)

where X2 = l2/(4Dt). Then D is easily derived from a comparison of the
master plot of AF/AF^ from (10.51) with the corresponding experimental
plot against t.

Evnochides and Henley (1970) used a frequency-response technique to
measure the diffusion coefficient and the solubility simultaneously. A
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polymer sample is exposed to a permeating gas whose pressure is varied
sinusoidally. The phase angle and amplitude of the weight changes are
measured as a function of the frequency of the sinusoidal pressure change.
Initially, the main pressure of the gas is Pm and the concentration inside the
film is uniform and equal to KPm. At x = ±L we have the concentration

Cs = KP = K{Pm + AP sin (cot + e)}

where the amplitude AP = ^Pi-P0)- Defining Cm = KPm and Co = KP0

and

we require solutions of

subject to

y = sin

= (C-CJ/(Cm-C0)

dy/dt = D d2y/dx2

e), t > 0, x = ±L.

The full solution is given by Carslaw and Jaeger (1959).

It is

y = Ay sin (art+ £ + 0)

co coss-

x cos e X P | 4L2

At large times a periodic steady state is reached

y = Ay sin (cot + e + 0),

where

sin e}

(10.52)

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)

Defining Mr, as the mass of gas in the film at time t we have

M, = 2Ap [ Cdx, (10.60)
Jo

where A and p are the area and density of the film. Taking Mm = WCm and
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Mo = WC0, where W is the mass of the film, eqns (10.52) and (10.57) with
appropriate substitutions lead after integration of (10.60) to

Mt-Mm = A sin (cot+ e + \l/\ (10.61)

where

J(2)KWAP(sin2 2CL + smh 2CL)
2CL(co2CL + h2CL) ' l

fsin2(L-sinh2£L] , i n , . ,
= tan W . . u ^ r >. 10.63

[sin2£L + sinh2CLJ
Evnochides and Henley conclude that a single experiment in which both
A and \j/ are measured suffices to determine both K and (. Both occur in
(10.62) but the phase angle is independent of the solubility.

10.6.1. Analysis of steady-state flow
In a series of papers Ash, Barrer, and others have studied extensively the

theory of steady-state flow through membranes. From measurements of the
flux through the membrane they have been concerned to extract information
about the concentration profile, the amount of diffusant within the membrane,
and the dependence of the diffusion coefficient on concentration and the
positional coordinate.

Ash and Barrer (1971) have developed a general theory of one-dimensional
diffusion in slabs, hollow cylinders, and spherical shells when D is a separable
function of concentration and the space coordinate. For v-dimensional
diffusion, where v = 1 corresponds to flow through unit area of a slab, v = 2
through a cylinder of unit length, and v = 3 through a spherical shell, the
general equation can be written

and in the steady state dC/dt = 0. At the boundaries Rx and R2(R2 > &i)
it is assumed that

C(Rl9t) = Cx and C(R2,t) = C2, (10.65)

where Cx and C2 are constant and Cx > C2. Thus flow occurs in the direc-
tion of r increasing and is termed 'forward flow'. When Cl and C2 are inter-
changed we have 'reverse' flow.

Take D to be given by

D = D04>[C)f(r\ (10.66)

where </>(0) = 1, f(R{) = 1. The steady-state flow in the direction of r
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increasing is

F= -(Dvr^lDo<i){C)f{r)dCldr (10.67a)

where

dr

and col = 1, co2 = 2n, w3 = An. The expression (10.67b) for F follows from
(10.67a) by integrating with respect to r, and remembering that F is indepen-
dent of r. We note in passing that \F\ is independent of the direction of flow
for the type of D assumed in (10.66) (Hartley 1948). Integration of (10.67a)
with respect to r from R1to r yields

NJR^r) CCl CCi

————— <p{u)du= <p(u)du. (10.68)
NAR\->R2) Jc2 Jc(r)

If 0(C) and f(r) are known, the concentration profile through the membrane,
in principle, may be determined from (10.68). Interchanging Cl and C2 in
(10.68) gives the corresponding relationship for C(r) in 'reverse' flow. By
adding the two relationships we obtain

4>{u)du = 0. (10.69)
)

In the particular case of constant D, (10.69) becomes

so that the 'reverse' distribution is readily found if the 'forward' distribution
is known. It is likely, however, that in practice 4>(C) and f(r) will not be known
in advance. Ash and Barrer (1971) propose the following procedure for
determining C(r) in such cases.

We keep C2 and R{ constant and make a series of measurements of
F = F(C1, R2) for different values of Cl and R2. From (10.68) we have

Nv(Rj, r) = J £ 4>{u) d u - jc
c[

r) 4>(u) du = F{CX, R2)-F(C(r\ R2)

NV{R19R2) ^24>(u)du F(Cl9R2)

by using (10.67b). We must keep in mind that C(r) is the concentration at
the point r, R^^ < r < R2 in an experiment for which the surfaces Rx and R2

are at concentrations Cx and C2 respectively, but that F{C(r\ R2) denotes the
flow that would be observed in an experiment for which the concentration
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at the surface R^^ were C{r). Similarly, F(C1, r) signifies the flow that would
be observed through a membrane with surfaces at Rx and r kept at concentra-
tions Cx and C2 respectively. With this nomenclature

fCl

F(C!, r) = covD0 (j)(u) du/Nv (R l, r),
Jc,

and F(CX, K2) is given by (10.67b).
It follows that

Nv(Rl9r) F{Cl9R2) F(Cl9R2)-F(C(r)9R2)

Nv{Rl9R2) F(Cl9r) F(Cl9R2) ' ( 1 ° ' 7 0 )

We now draw two master plots based on experimental data: the first
of F against C1 for constant C2, Rx and R2; the second of F against R2 for
C^Ci a n d ^1 held constant (Figs. 10.1(a) and 10.1(b)).

(a)

F{C(r),R2) -.

(b)

C(r)

FIG. 10.1.

We select a value of r in the range Rx < r < R2. From the plot in Fig.
10.1(b) we read the values of FiC^r) and F(Cl9R2) and find their ratio.
The value of F(C(r), R2) follows from (10.70) and from Fig. 10.1(a) the value
of C(r) for the selected value of r. Proceeding in this way for various selected
values of r the profile of C(r) against r is determined. To deal with reverse
flow we write

f l <Ku)du+ f l <Ku)du = f l (j)(u)du
J C(r) J C(r) J C2
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by using (10.69). Hence

F(C(r),R2)-F(C(r),R2) = F(C,,R2). (10.71)

This relation may be substituted into (10.70) to obtain

N^R^r) F(C1;JR2) F(C(r), R2)

F(CltR2)'
(10.72)

The master plots allow C(r) to be found as a function of r. The amount of
diffusant in the membrane is

M = ojy-lC(r)dr. (10.73)

Once C(r) has been determined as a function of r the integration of (10.73)
can be performed numerically or graphically. The procedures for finding
C(r) and M require no knowledge of 0(C) or of /(r). These functions can
be obtained, however, at least in theory, from the master plots.

For C2 and Rx held constant (10.67b) may be written

F(Cl9R2)NJLRi9R2) = cOvDoj '<t>(u)du.

Partial differentiation with respect to R2 and Cx respectively gives

—N V (R X , ,R2) = 0, (10.74)

(10.75)

and

dF(Cl,R2) ^ a)vD0<t>(C)

dC, N , ( * i , « 2 ) '

On combining (10.74) and (10.75) and re-arranging we see that

= ^ T ^ dF(Cl,R2)/8R2-

All the quantities needed to find the functional dependence of D can be
obtained graphically or numerically from the master plots in Figs. 10.1(a)
and 10.1(b).

The particular cases of D = D0(f)(C) or D = Dof(r) only can be extracted
from the equations developed above. They are treated separately by Ash
and Barrer (1971), who give some additional relationships.
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10.6.2. Time-lag methods

In §4.3.3 (p. 51) the approach to steady-state flow through a membrane
was analysed and the time-lag L related to the diffusion coefficient by (4.26)
for cases of constant D.

Paul and Dibenedetto (1965) have shown how the time-lag technique can
be extended to the situation in which the pressure or concentration on the
'downstream' side of the membrane increase with time, as the diffusant
emerges into a limited volume.

Frisch (1957) has obtained expressions for the time lag which apply also
to systems with concentration dependent diffusion coefficients without
explicitly solving the diffusion equation. He considers C = Co, x = 0,
C = 0, x = U > 0; C - 0, 0 < x < /, t = 0.

We denote the non-steady rate of flow through the surface x = / by F(t),
where

F(t)= - I D C ^
\ dx x=l

The total flow through this surface in time t is given by

(10.77)

Q(t) = f
Jo

F(t)dt. (10.78)

To find Q{t) we first integrate both sides of the diffusion eqn (7.5) over x from
x to / and obtain

Integrating again over x from 0 to / and re-arranging we obtain

Finally, by integrating over t from 0 to t and changing the order of integration
we find

Q(t) = -U\ D(u)du-\ C(z,t)dzdx>. (10.79)
' [ Jo JoJx )

The asymptote Qs(t) to Q(t) is

QJLt) = F(t-L) (10.80)

since its gradient is the steady-state flow rate F and the time lag L is its
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intercept on the t-axis. Comparison of (10.79) with (10.80) using the ap-
propriate form of (10.67b) shows that

where Cs(x) is the concentration distribution through the membrane in the
steady state. Integration by parts leads to the form

rl /cCo

L=\ xC s(x)dx/ D(u)du. (10.82)
Jo / Jo

The appropriate form of (10.68) gives

f ° D(u) du = y f ° D{u) &u. (10.83)
J cs ' J o

In principle, Cs(x) can be derived from (10.83) if D(u) is known or (10.82)
can be rewritten as

i2fS°wD(w){JS°P(u)du}dw
L ~ WmW • ( }

Provided the functional form of D(C) = Dc is known, the measurement of
L for various values of Co allows the constant parameters of D, and hence
D as a function of C, to be determined.

It can be shown (Frisch 1958; Pollack and Frisch 1959) that when
In Jo ^(M) du is a convex function of C, the time lag is governed by the in-
equality

1 ^

Barrie and Machin (1967) stress that the relative variation of L with C is
always considerably smaller than that of D(C) with C. This is particularly
true when D(C) decreases with C increasing. They show graphs of L(C) and
D(C) illustrating these general statements for various concentration dependent
diffusion coefficients.

Ash, Baker, and Barrer (1968) have suggested two extensions of (10.82)
and (10.84) which may be more convenient in practice when D is a function
of concentration only. The first is based on the appropriate special case of
(10.76) which, in conjunction with the master plots of Figs. 10.1(a) and (b),
allows the concentration distribution to be deduced from measurements of
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the steady-state flow F. We can determine Cs(x) in (10.82) from the relation

x F(C0)-F{Cs(x)}

/ F{C0)

Furthermore, from (10.85a) we have

- /

(10.85a)

dF{Cs(x)}, (10.85b)

and by substituting (10.85a) and (10.85b) in (10.82) we obtain

, = l$F
o
iCo) CF[F(C0)-F{Cs(x)}] dF{Cs(x)}

{F(C0)}>

where CF = C[F{Cs(x)}] and is the value of the concentration which cor-
responds to F{Cs(x)} on the appropriate master plot. Frisch (1957) illustrates
his method for the cases of D constant and D(C) = D0(l + /JC), and also con-
siders more general boundary conditions. Barrer and Ferguson (1958) and
also Meares (1958, 1965) quote the expression for L given in (10.86) below
for an exponential dependence of D on C.

Frisch (1958) showed that from measurements of L and the steady-state
flow F at different pressures, both the parameters in the D(C) functional
relationship and the solubility coefficient can be found without resource to a
separate measurement of solubility.

Meares (1965) carried out a single permeation experiment for a system in
which the diffusion coefficient was known to have the form

One face of the membrane is in contact with vapour at a constant pressure Px.
Frisch's expression (10.84) leads in this case to the relationship

4D0L 4 e " c ' - l + e 2 ' i C ' ( 2 / ? C 1 - 3 )
=

The limiting slope as t approaches zero, of the graph expressing Holstein's
solution (4.27a) gives a value for Do, since at this time the concentration is
still very small in the greater part of the sheet. The steady-state rate of per-
meation through a sheet of area A into a volume V in which the pressure is
p(t) is given by

^^jV-ac^^-L, . ,10*7,

When Do has been determined, f}C1 follows from (10.86) and the individual
values of jS and Cx are calculated from (10.87).
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If Henry's law is obeyed the solubility coefficient S is also obtained from
C1 and the pressure on the ingoing face. Meares (1965) found the method
successful in three quite different systems.

Frisch (1959) has generalized his early results to include cases in which D
may depend explicitly not only on concentration but also on time and x.
He considers the v-dimensional, diffusion problem defined by

dC' * A " ' "-'*"" ~ " = 1 , 2 , 3 , (10.88)
dty9' r^'dr] dr

in R1 < r < R2, t > 0, where

0 = Cj or 0(Cj, Kj, 0 = 0i(O

0 = -̂2 O r 0(^-2 » ^2 »0 = ^2(0

C(r,0) = Co(r). (10.88a)

Here 0 is a 'potential of diffusion' defined in general by

F = —D grad C = — grad 0,

and for spherically symmetric systems by

F = -DdC/dr = -dcfr/dr. (10.89)

Integration of (10.89) gives

4>i(O-02W= I F(r,t)dr9

in general and

2

when D = D{C, t).
The case, v = 1, corresponds to one-dimensional diffusion through a

flat membrane of thickness /, v = 2 to radial diffusion through infinite con-
centric cylinders and v = 3 to radial diffusion between concentric spheres.

We assume that as t -> oo a steady state is attained and 0 -> 0S, the solution
of

dr
with

0^/^) = 0sj = lim <

r-> 00

r-»oo
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Following the method outlined above Frisch arrives at the relation

L = ^R'r

(10.90)

We note that the expression (10.90) is generally true for all equations of flow
which conform to the conservation of mass condition. Ash et al. (1968) stress
this point and quote expressions analogous to (10.90) for the time lag measured
at any plane in a membrane. When D = D(C\ a function of concentration
only, the second term on the right side of (10.90) vanishes identically. This
follows since for D = D{C\ <f> is independent of t and hence ^(f) = 0S

1?

(j)2(t) = 0S
2. The first term on the right side then reduces for the particular

case v = 1 and C2 = Co = 0 to (10.82) and hence to (10.84).
Thus in general L(/) can be written as the sum of a 'Fickian' time lag LF(/)

and a 'non-Fickian' or 'time-dependent' contribution LT which is independent
of /. Frisch (1962a) wrote

where a(Cj) is independent of /. Thus, if time lags can be measured for films
of different thicknesses but which are otherwise of identical physical proper-
ties a plot of L(/) against I2 should be a straight line of ordinate intercept LT,
while the slope gives a value of DiC^, oo) obtained from steady-state measure-
ments. So far, we have considered only the time lag measured at the 'down-
stream' boundary, e.g. at x = /, for the plane membrane. Frisch (19626)
used his technique to obtain expressions for L(x) and in particular L(0)
measured at the 'upstream' face of the membrane. The 'upstream-down-
stream' difference is shown to be

AL = L(/)-L(0) = (1/F) f {Cs(x)-C0} dx. (10.91)
Jo

Furthermore, we may refer to a time lag measured by an experiment in
which Co = C2 as an 'absorption time lag' La. The condition Co = Cl9

leading to a 'desorption time lag' Ld, is also possible. On inserting this value
for Co in the Fickian part of (10.90) and taking v = 1 it follows that the
absorption-desorption time-lag difference for a Fickian membrane is given
by

SL(l) = SL = Ld-Ld = liC^-C^jlF. (10.92)

The double difference b AL is defined as

3 AL = ALa - ALd = l(C1 - C2)/F. (10.93)
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Barrer (1969) gives a list of time lags and related quantities. Petropoulos
and Roussis (1967) made extensive studies of the properties of these time lags
and their differences in attempts to detect and characterize different types of
non-Fickian behaviour. They distinguish between systems in which the
diffusion and solubility parameters are time-dependent or distance-de-
pendent. They introduce the gradient of chemical potential into the diffusion
equation which becomes

8 t - a . . , - 7 ~ a . . i - , . - r , , ( 1 0 . 9 4 )

with boundary conditions

a ( 0 , f ) = a o , a(l9t) = a l 9 a(x,0) = a l 9 (10.95)

and where DT is the 'thermodynamic diffusion coefficient', and PT the cor-
responding permeability. We assume the a09 a{, ax to be constants. Compari-
son of (10.94) with (7.5) shows that

D = DTSda/dC. (10.96)

By applying the method of Frisch to (10.94) we find that LT, the non-Fickian
time-lag increment, is given by

LT = dr {PT{a, oo)-PT(a, 0} d a / PT(a, oo)da. (10.97)
J o J ai I "ai

Petropoulos and Roussis introduced expressions for S(a, t) and DT(a, t) which
they thought to be appropriate to diffusion in polymers showing evidence of
time-dependent behaviour. They used

S(a,t)/S(a, oo) = l-w(a)exp {-^(a)*}, (10.98)

where
u(a) = 1 -S(a, 0)/S(a, oo), u{ax) = 0;

DT(a, t)/DT(a, oo) = 1 -w(a )exp { -P2{a)t}9 (10.99)

where
w(a)= l-DT(a,0)/DT(a,oo).

All these functions of a may alternatively be expressed in terms of
C°° = aS(a, oo), the corresponding concentration in the fully relaxed mem-
brane after theoretically infinite time. Substitution of (10.98) and (10.99) in
(10.97) remembering (10.96) yields, after integration with respect to t,

u w uW D(C-,ao)dC-

(10.100)
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where all functions in (10.100) are to be taken as functions of C00, i.e. u =
^(C00) etc. Petropoulos and Roussis suggested that u and w will normally be
much less than unity, so that LT = LTi + LTl approximately, which is the
sum of the contributions from the time-dependence of 5 and DT respectively.
They proceed to examine some examples in detail.

Time-lag expressions for a system in which the solubility and thermo-
dynamic diffusion coefficient are distance-dependent are obtained by the
same authors for

S = S(fl, x) = S(a9 0)<Mx), (10.101)

DT = DT(a, x) = DT(a, 0)<£2(x), (10.102)

where (^(O) = </>2(0) = 1 a n d 0iM><5Mx) a r e non-negative, analytic, and
continuous functions in 0 ^ x ^ /.

The time-dependent systems we have considered tend towards a Fickian,
purely concentration-dependent system in the final steady state of permeation.
We have studied the increment in the time lag which results because the
system is not Fickian throughout the permeation process. In contrast, the
distance-dependence with which we are now concerned persists for all time
and so the time-lag increment has a different significance. Any experimentally
measured time lag for a non-homogeneous sheet can be interpreted as if it
were homogeneous by applying the Frisch method to (7.5). This will yield
an apparent diffusion coefficient D = D(C) which is an average function for
the sheet and where C is the averaged concentration variable obtained from
the corresponding equilibrium sorption measurements; i.e.

C = aS = - f Sdx, (10.103)
/ Jo

where S is the apparent solubility coefficient. The purely concentration-
dependent parameters D and S define an 'equivalent Fickian system'. We
wish to see how the expression for the time lag for a non-homogeneous sheet
differs from the standard expression for the equivalent, purely concentration-
dependent system.

Petropoulos and Roussis transformed (10.94) into

d C _ _ d / dC\

dt ~ dx\ 'dxy

C(0, r) = Co , C(/, t) = Cl9 C(x, 0) = Cx, (10.104)

where C0,Cl,Cl are constants, Co and Ct being in equilibrium with the
respective ar. In view of (10.101) and (10.102), De in (10.104) is given by

De = De(C, x) = DTS(da/dC) = De(C, 0)4>(x), (10.105)
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where
4>(x) = faWfalx). (10.106)

The procedure developed by Frisch (1957) can be applied to (10.104) and
yields the result

^ J ' , oo)-C t } dx, (10.107)

where C{x, oo) is given by the solution of

f D(z) dz = {l - ^ H f ° D(z) dz. (10.108)
Jci I ^W J Jct

The subsidiary functions in (10.107) are

=1o
and the steady-state flow F is now given by

f °F = {O(/)}-1 f °De(C,0)dC = Z"1 f °5(z)dz, (10.110)
Jc, Jet

from which we find

5 (10.111)

Corresponding expressions for time-lag differences were given by Petropoulos
and Roussis (1967) and some special cases were examined. Any time lag can
be split in this case into L = LF + Lh by analogy with the time-dependent
case L = LF-\-LT.

Ash et al. (1968) quote a particular result thought to be relevant for a
membrane made by compaction of powder under pressure. The middle of the
membrane is less compressed than the outer layers. For a diffusion coefficient
D defined by

D = D0 /{l-<ni(l-tt)}, (10.112)

where u = x/l and a is a coefficient, they quote the result

If the form of (10.112) is assumed or known for D then (10.113) allows a to
be determined from a measurement of Lx.

A few time-lag relationships permit distinction between time- and dis-
tance-dependent anomalies in their most general form. For example:

(i) Always, we have ALj(a0, a^ = 0,
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(ii) All non-Fickian components of time lag are unaffected by flow reversal
in time-dependent systems but not in distance-dependent cases except
when the solubility and diffusion coefficient are symmetrical about the
mid plane of the membrane for all activities.

Other results are given by Petropoulos and Roussis (1967) and are extended
(1969a) to cases in which activity and distance factors are not separable.

Ash, Barrer, and Nicholson (1963) and later Paul (1969) used Frisch's
method to study the effect of an immobilizing reaction on the diffusion time
lag. Paul's diffusion equation is modified to allow for some molecules being
trapped in non-diffusing holes according to a Langmuir-type isotherm. It
has the form

(10.114)

where C is the concentration of molecules free to diffuse with a diffusion
coefficient D, and a and K are parameters of the immobilization isotherm.
Paul gives general expressions for both the absorption and desorption time
lags. Commonly used conditions are those of zero concentration at the down-
stream face of a plane sheet and a constant concentration Co, maintained at
the upstream face. In addition, C = 0 initially throughout the sheet for
absorption and C = Co initially for desorption. For these cases, Paul obtained
for the time lag for absorption La

6L aD2 / /2= 1+Kf(y)9 (10.115)

where

f(y) = 6y-3{y2+y-(\+y)\n(\+yyh

and for the desorption lag Ld,

3LdD
2/l2= -1+KgOO, (10.116)

where

g(y) = 3y"3(l +y)-l{b2 + y-U +y? In (1 + j>)}-

Paul discussed the effect of various parameters on the time lags and their
implications for models of diffusion in glassy polymers. Petropoulos (1970)
examined the physical assumptions underlying earlier treatments.

10.6.3. Analysis of concentration-distance curves

There are a number of optical methods for observing how either the
refractive index or its gradient depends on distance measured in the direction
of diffusion at a given time (Crank and Park 1968). Concentration-distance
curves can also be obtained in the case of two metals interdiffusing (Barrer
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1951). If two infinite media are brought together at t = 0, e.g. two long
columns of liquid or two metal bars, the diffusion coefficient and its con-
centration-dependence can readily be deduced from the concentration
distribution observed at some known subsequent time. The conditions of the
experiment are

C=C^, x < 0 , t = 0, (10.117)

C = 0, x > 0, f = 0, (10.118)

where C is the concentration of the component in which we are interested,
and x = 0 is the position of the initial interface between the two components
at time t = 0. Assume for the moment that there is no over-all change of
volume on mixing and that C is measured as mass per unit volume of the
system. Then we may use the Boltzmann variable rj = x/2t* and as in § 7.2.1
(p. 105) we obtain the ordinary differential equation

2 ^ = T
drj arj \ ]

On integration with respect to rj (10.119) becomes

, (.0,20,

since DdC/dt] = 0 when C = 0. Here Cx is any value of C between 0 and
CM. Finally, by rearrangement of (10.120) and introducing x and f, we have

Since (D dC/dr])c = Coo = 0 also, it follows from (10.120) that

f °°xdC = f °° qdC = 0, (10.122)
Jo Jo

and in order that the boundary conditions shall be satisfied the origin
from which x is measured must be such that (10.122) is satisfied. In other
words, the plane, x = 0, must be chosen so that the two shaded areas in
Fig. 10.2(a) are equal. In a constant volume system (10.122) is a conservation
of mass condition and it is clearly satisfied if x is measured from the initial
position of the boundary between the two components at time t = 0. In this
case, therefore, the procedure is to plot the concentration-distance curve
for a known time as in Fig. 10.2 (b), to locate the plane x = 0 by use of
(10.122), and then to evaluate D at various concentrations Cx from (10.121).
The integrals can be obtained by using a planimeter or by counting squares
and the gradients dx/dC by drawing tangents. In Fig. 10.2(b) the area repre-
senting]^1 x dC is shown shaded. Diffusion coefficients in metal systems were
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(a) (b)

FIG. 10.2. Evaluation of D from a concentration-distance curve using (10.121).

obtained by Matano (1932-3) using this method, and since then it has been
widely used. Alternative ways of using (10.121) have been suggested.

(i) One development has been found useful in dilute solutions (Eversole,
Peterson, and Kinds water 1941). On integrating by parts (10.121) becomes

Cdx' , (10.123)
dx

At (lnCx)* d(lnC)*

where x1 is the value of x at which C = Cx and the derivatives are to be
measured at the point x = xx. The determination of the gradients at various
concentrations is made simpler by this modification if the graph of x against
(In C)* is nearly linear as it is in some systems.

A corresponding analysis can be applied to the penetration of diffusing
substance into an effectively semi-infinite sheet, provided the concentration-
distance curve can be obtained. An example is the diffusion of dye molecules
from a well-stirred solution into a cellulose sheet (Crank 1948a). Eqn (10.121)
still holds if x is measured from the surface of the sheet.

(ii) Graphical or numerical methods of evaluating the diffusion coefficient
from (10.121) have certain disadvantages. They entail the measurement of
slopes and areas under curves and it is clear from the behaviour of the
concentration-distance curves in Fig. 10.2 that considerable uncertainty
arises for concentrations near the limiting values. Often the values of diffusion
coefficients for very small concentrations of one component are of great
importance and so it is desirable to be able to calculate them as accurately
as the experimental data permit. A method of improving the the accuracy
of the calculations near the extremes of the concentration-range has been
suggested by Hall (1953). He examines some experimental data of da Silva
and Mehl (1951) for the copper-silver system. Using the nomenclature of
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the previous section, he takes C to be the concentration of copper and C^
to be 100 per cent copper. Fig. 10.3, taken from Hall's paper, is a probability
plot of C/C^ against x/t% i.e. the variable u which is used as ordinate is given
by

i<l+erfw) = C/C^. (10.124)
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FIG. 10.3. Probability plot of a concentration distribution. a0 is the side of the unit cell.

Other relationships involving error functions can of course be used. Hall
finds (10.124) convenient for purposes of calculation. We avoid his use of the
function erfc for the left-hand side of (10.124) because it is not standard
notation. The point of interest is that when plotted in this way the concentra-
tion-distance curve becomes linear at the two ends of the concentration range.
Now a straight line on this plot corresponds to an equation of the type

u = hrj + k,

so that, from (10.124) and (10.125), we have

It readily follows that
drj n^

hCr
-exp(w2),

(10.125)

(10.126)

(10.127)

and

Jo

hC

(10.128)
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If now we write (10.121) in terms of rj and substitute from (10.127) and (10.128)
we obtain

1 7E±
D(C) = -^ + /c-y(l+erfu)exp(w2). (10.129)

\r h

The differences between (10.129) and Hall's final expression are because the
Y\ used here differs from his X by a factor of 2. The quantities h and k are ob-
tained respectively as the slope and intercept of the linear portion of the
probability plot, and D is evaluated from (10.129) simply by substituting these
values and that of u which through (10.124) corresponds to the C/C^ for
which D is required. The relationship (10.129) can be applied at each end of
the concentration range with appropriate values for h and k. In the inter-
mediate curved portion of Fig. 10.3 slopes and areas must be measured on a
plot of the type shown in Fig. 10.2 and the diffusion coefficient deduced from
(10.121). Evidence of the improved accuracy resulting from the use of (10.129)
is advanced by Hall.

10.6.4. Systems in which there is a volume change on mixing

The interdiffusion of two components forming a system in which volume
changes occur on mixing has been considered by Prager (1953) as follows.
The rates at which the concentrations of the two components CA and CB

change at a point are given by

dCA

dt

8CB

dt

d
~ dx

d
~~dx

a , -T-(VCA), (10.130)
dx dx

, , ^(vCB\ (10.131)
dx I dx

where 2A and Q)B are the intrinsic diffusion coefficients introduced in § 10.4,
and v is the velocity of the mass-flow assumed to be in the x direction and
dependent only on the x coordinate and the time t. There is a relationship
between CA and CB at constant temperature and pressure which is

VBCB+VACA = 19 (10.132)

where the Vs are the partial molal volumes of the two components, and
also we have

(dCB/dCA)P,T = -VA/VB. (10.133)

Using (10.132) and (10.133) in (10.131) we find

( 1 0 1 3 4 )
dcA
dt

d
dx

VA
BvB

dcA
dx

dv
Bdx

h vA dcA
B



OF DIFFUSION COEFFICIENTS 235

and combining (10.134) with (10.130) yields

-yBirdx dx\ dx j dx\ VB dx

Integration by parts from — oo to x transforms (10.135) into

VACMdVR\ldC

(10.135)

dCA dx
dx', (10.136)

where v and dCJdx have been assumed zero at x = — oo. Substituting
(10.136) into (10.130) and (10.131) we find

dt dx dx -iuMm\**)
dt -dx\D dx) dx\CB)^VBCA\dCAj\8x

dx'

where Dv is related to Q)A and Q)B by

(10.137)

(10.138)

(10.139)

which is eqn (10.32). We should note that we are here defining Dv by (10.139).
It has the significance of a mutual diffusion coefficient as defined in § 10.2
(p. 205) only if there is no volume change on mixing. The second terms on the
right-hand sides of (10.137) and (10.138) arise because of the volume changes
on mixing, and they vanish when such changes do not occur, i.e. when
(dVA/dCA)PT = 0, in which case (10.137) and (10.138) reduce to the usual
diffusion equations.

If the initial distribution is such that

cA = o,
cA = ca

X

X t = 0,

(10.140)

(10.141)

then we can make the Boltzmann substitution (1894) even if (dVA/dCA)PT

is not zero. Thus if we suppose CA to be a function of r\ = x/2t* only, eqn
(10.137) becomes

dCA

d^ dr]\--\cA Dv

L m KRC
BcA

dr,
d»/7, (10.142)

with boundary conditions

CA = 0, ri =-oo; CA = CX, r\ = oo. (10.143)

If the concentration distribution CA{r\) is known from experiment, (10.142)
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can be solved for Dv to give

The first term on the right-hand side of (10.144), when written in terms of x
and t, is the expression (10.121) for calculating D from the concentration
distribution when there is no volume change on mixing. The second term is a
small correction term in which we have substituted for Dv from (10.121)
written in terms of r\ as an approximation.

It is of interest to examine what diffusion coefficient is obtained by the
Matano (1932-3) procedure, as described in § 10.6.3 (p. 230) when there is a
volume change on mixing. Continuing to denote by r\ the distance coordinate
measured from the initial position of the boundary between the two com-
ponents, Matano introduces a new coordinate r\1 measured from a new origin
chosen so that JQ°° r]l dCA = 0. If the new origin be at rj = — 8 then we have
q1 = rj + 8 and hence

f (rj-8)dCA = 0, (10.145)

so that

8 = -^- [ ~ rjdCA. (10.146)
^oo J o

Furthermore, Matano deduces a diffusion coefficient from the expression

dwi fCl

Dc c = -2—1+~ r\idCA. (10.147)
dCAJ0

Now

5, (10.148)= f
Joo Jo

and hence the diffusion coefficient calculated in this way is

DCA=CI = - 2 ^ - ( | % d C 1 + C 1 A (10.149)

since dt]JdCA = drj/dCA and where S is given by (10.146). Comparing
(10.149) with (10.144) shows that this procedure does not yield exactly
the coefficient Dv related to the intrinsic diffusion coefficients by (10.139)
but only an approximation to it. It assumes

r rBI r T/ \xr dC^ = constant, (10.150)
Jo CAK \3CA

the constant being 8, the displacement of the origin. Prager (1953) suggests
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that a better approximation is to treat VB and (l/CA)(dVB/dCA) as constants,
in which case (10.144) becomes

where B is given by

B = -

dCA\ dCA, (10.151)

(10.152)

This procedure, like Matano's, requires no data on the partial molal volumes.
If such data are available it is of course possible, though more laborious, to
use the complete equation (10.144) to evaluate Dv.

We can now see what is the physical significance of the diffusion coefficient
deduced by the Matano procedure when there is a volume change on mixing.
Returning to eqn (10.142) and writing (j> for the flow velocity due to volume
change, we have

_ 2 ^ = A L K ^ | d (10.153)
drj drj\ dt] I drj

and on integrating from CA = 0 to CA = C^, this becomes

o

- [ C > ] c
0 « . (10.154)

/•C

- 2
Jo

\
o

Since dCydf/ = 0 at both ends of the range of integration, we see that

ridCA9 (10.155)

where 0 ^ is the value of <j) when CA = C^. Thus by choosing the origin of rj
such that the right-hand side of (10.155) is zero, we select a frame of reference
such that, provided C = 0 at one end of the system, there is no flux of com-
ponent A at either end due to volume change. It must be emphasized that the
removal of the effect of volume change is complete only at the ends of the
system, and so the diffusion coefficient deduced by using the Matano pro-
cedure is not the mutual diffusion coefficient. In fact, it is not a diffusion
coefficient which is readily related to those obtained by other methods.

An alternative treatment of a system in which a volume change occurs
makes use of the frame of reference fixed with respect to the total mass of the
system. Thus in terms of the variables C™ and £M introduced in § 10.3, eqn
(10.121) (p. 231) becomes
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and according to the Matano procedure the origin of £M is to be chosen such
that

Jo
(10.157)

The upper limit of integration for C™ comes from (10.16) since when £M = oo,
C^ = 0. Choosing the origin of £M so that (10.157) holds ensures that the
boundary conditions are satisfied as in §10.6.3 (p. 231). Thus, provided
concentrations and distance scales are expressed in the new units as described
in § 10.3, the coefficient DM is obtained from (10.156) and (10.157).

By combining (10.23) and (10.35) we have a relationship between DM

and the intrinsic diffusion coefficients, Q)A and Q)B, which takes the place of
(10.139) in Prager's method.

10.6.5. Sorption method

(i) Constant diffusion coefficient. A different approach is to deduce the
diffusion coefficient from observations of the over-all rate of uptake of
component A by a plane sheet of component B. Such a method has been used,
for example, to determine the diffusion coefficient of direct dyes in cellulose
sheet (Neale and Stringfellow 1933) and of oxygen in muscle (Hill 1928). In
each case the diffusion coefficient was assumed constant.

We shall describe the method in terms of the uptake of vapour by a plane
sheet, first on the assumptions that the diffusion coefficient is constant and
the sheet does not swell, and then for cases in which the sheet swells and the
diffusion coefficient is concentration-dependent. Its application to other
systems will be obvious. The experimental procedure is to suspend a plane
sheet of thickness / in an atmosphere of vapour maintained at constant
temperature and pressure, and to observe the increase in weight of the sheet
and hence the rate of uptake of vapour. This can be done most conveniently
by hanging the sheet on a spring of known stiffness. The appropriate solution
of the diffusion equation may be written

if the uptake is considered to be a diffusion process controlled by a constant
diffusion coefficient D. Here Mt is the total amount of vapour absorbed by
the sheet at time f, and M ̂  the equilibrium sorption attained theoretically
after infinite time. The application of (10.158) is based on the assumption
that immediately the sheet is placed in the vapour the concentration at each
surface attains a value corresponding to the equilibrium uptake for the vapour
pressure existing, and remains constant afterwards. The sheet is considered
to be initially free of vapour. The value of t/l2 for which MJM^ = \,
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conveniently written (t/l2)±, is given by

(10.159)
I2), n*D~{\(> 9 16

approximately, the error being about 0-001 per cent. Thus we have

D = 0-049/(t/l%, (10.160)

and so, if the half-time of a sorption process is observed experimentally for a
system in which the diffusion coefficient is constant, the value of this constant
can be determined from (10.160). The extension of this method to less simple
systems is as follows.

(ii) Sorption by a swelling sheet. In deriving (10.158) the thickness / of the
sheet is assumed to remain constant as diffusion proceeds. In practice it
often happens, however, that the sheet swells and the thickness increases as
the vapour enters. Eqn (10.158) can still be used in such cases, provided we
take a frame of reference fixed with respect to the substance of the sheet, and
concentration and thickness are measured in the units discussed in § 10.3
(p.207). Thus we take the basic volume of the sheet to be its volume in the
absence of vapour and use the unit of length £B such that unit £B contains, per
unit area, unit basic volume of the substance of the sheet B. Then the thickness
of the sheet, measured in these units, is constant and equal to the original
unswollen thickness, and the diffusion coefficient deduced from (10.158) by
substituting the original thickness for / is that for the diffusion of vapour
relative to stationary sheet (denoted by DA in § 10.3). If there is no over-all
volume change on mixing, i.e. if the increase in volume of the sheet is equal
to the volume of vapour sorbed at the vapour pressure existing in the ex-
periment, the coefficient obtained by this sorption method is related to the
mutual diffusion coefficient Dv', deduced by the Matano procedure, by eqn
(10.28), i.e.

DB
A = Dv(\ -volume fraction of vapour)2. (10.161)

(iii) Concentration-dependent diffusion coefficients. Clearly from (10.158)
and (10.160) the value of t/l2 for which MJM^ has any given value, and in
particular the value of (£//%, is independent of M^ when the diffusion co-
efficient is constant. Fig. 10.4 shows a set of curves obtained experimentally
by Park (see Crank and Park 1949) for the uptake of chloroform by a poly-
styrene sheet, each curve corresponding to a different vapour pressure and
hence a different M^ . It is evident that {t/l2)± decreases considerably the
greater the value of the final uptake M^ and therefore the diffusion coefficient
is not constant but increases as the concentration of chloroform is increased.
The problem is to deduce quantitatively how the diffusion coefficient is
related to concentration, given the half-times of sorption experiments carried
out for a number of different vapour pressures.
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FIG. 10.4. Rate of uptake of chloroform by polystyrene sheet at 25 °C.

Application of (10.160) to each of the curves of Fig. 10.4 yields some
mean value 2), say, of the variable diffusion coefficient averaged over the range
of concentration appropriate to each curve. The method devised by Crank
and Park (1949) depends on the fact that, for any experiment, D provides a
reasonable approximation to (l/Co)Jo°DdC, where 0 to Co is the con-
centration range existing in the sheet during that experiment. This was shown
to be so (Crank and Henry 1949a) by evaluating numerical solutions of the
diffusion equation for a number of variable diffusion coefficients. By applying
(10.160) to the sorption-time curves so calculated, values of D were obtained
and compared with corresponding values of (1/CO) J^DdC. Thus by
deducing a value of D from each of the experimental curves of Fig. 10.4
using (10.160), and assuming the approximate relationship

f °
Jo

= (l/C0)f DdC, (10.162)

a graph showing DC0 as a function of Co can be drawn as in Fig. 10.5 and
numerical or graphical differentiation of the curve with respect to Co gives a
first approximation to the relationship between D and C. Numerical data are
given in Table 10.1.

In many cases this first approximation may be sufficiently accurate, but
successively better approximations can be obtained as follows. Sorption-
time curves are calculated numerically for the D-C relationship obtained as
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FIG. 10.5. Graph of DC0 as a function of Co.

the first approximation, there being one calculated curve for each experi-
mental curve of Fig. 10.4. The D values derived by applying (10.160) to the
calculated curves are shown in Table 10.1, column 6. Comparison of these
calculated D values with the experimental ones and therefore with the first
estimate of (1/CO) J^0 D dC shows the errors involved in use of (10.162) for
this particular type of diffusion coefficient. The correct relationship between
D and (1/CO) J£° D dC for the D-C relationship given by the first approxima-
tion can be plotted, and from this improved values of (1/CO) J£° D dC can be
read off for the experimental values of D. By repeating the differentiation, a
second approximation to the diffusion coefficient D is obtained. The process
can be repeated till the calculated and experimental values of D agree to the
accuracy desired. Results are shown in Table 10.1.

In this form the method can be used whatever the relationship between D
and C but the calculations involved in evaluating successive approximations
are tedious and laborious.

(iv) Exponential and linear diffusion coefficients. In many systems the
diffusion coefficient is found to depend either linearly or exponentially on
concentration, and so for these cases correction curves have been produced
showing the difference between (1/CO) J£°(D/D0)dC and D/Do, where Do

is the value of D at zero concentration of vapour or whatever the diffusing
substance is. The correction curves are shown in Fig. 10.6. By using the
appropriate curve, the diffusion coefficient-concentration relationship can
be deduced as readily from sorption experiments as from steady-state
measurements. In each case, differentiation of J D dC to obtain D is the
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FIG. 10.6. Correction curves for sorption method. Percentage difference is

(D/D0)-(l/C0)Jg°(D/D0)dC

expressed as a percentage of D/Do. These curves can be applied to both half-times and initial
gradients.

only mathematical operation involved. Park (1950) used a method of
differentiation which is considerably more accurate than direct graphical
differentiation if D is an exponential function of C. Denoting J^0 {D/Do) dC
by /, he plotted log / against Co to obtain a curve which approximates to a
straight line. Then d log I/dC0 is easily obtained by graphical differentiation
and D follows from the expression

D/Do = d//dC0 - 2-303/ d log I/dC0. (10.163)
The method for exponential and linear diffusion coefficients is therefore as
follows:

(1) plot sorption-time curves for different vapour pressures as in Fig.
10.4;

(2) calculate D for each curve using (10.160);
(3) extrapolate D to zero concentration to give Do;
(4) read off from the appropriate correction curve of Fig. 10.6 the value of

(l/C0)JS°(D/D0)dC = / /C o for each D/Do;
(5) differentiate / using (10.163) or otherwise to obtain D/Do and hence D.

A second approximation may be necessary due to the uncertainty in the
first estimate of Do. It is, of course, necessary to have some idea of the type of
diffusion coefficient involved before the choice of correction curve can be
made. For example, if the initial choice is exponential, but the final result is
nothing like an exponential function, and if use of the linear correction curve
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also fails, then the method of successive approximations has to be carried
out as described above in § 10.6.5 (iii) (p. 239)

For diffusion coefficients varying exponentially with concentration
Hansen (1967) calculated correction factors, F.d and Fd, which when applied to
D give D(C0), where Co is the surface concentration for absorption or the
initial uniform concentration for desorption, i.e.

D(C0) = FaD or FdD.

His computed results are reproduced in Table 10.2, where exp K is the ratio
of the diffusion coefficients at the extremes of the concentration range in any
experiment and T± = DotJ{L')2, where L' is the half-thickness of a free
sheet or the full thickness of a film attached on one surface to an impermeable
backing. After deducing D from the half-times measured for several con-
centration ranges, Do is estimated by extrapolation. Values of exp X, and
hence of the correction factors F can then be estimated and an approximation
to a D(C) relationship obtained. This can be improved iteratively. Hansen
finds his results agree reasonably well with those of Table 10.1.

Fels and Huang (1970) described a method of obtaining the diffusion
coefficient and free volume parameters (Fujita 1961) from desorption data.
They obtained numerical solutions of the equation

vP \dC
dt " — < " - 1 7 - 1 K x n | -

where a and b involve free volume parameters and the diffusion coefficient,
and fP is the volume fraction of the penetrant.

(v) Use of a single sorption experiment. Duda and Vrentas (1971) develop
a new technique for deducing the concentration-dependence from a single
sorption curve, based on the method of moments (§ 7.4, p. 129). They also use
only the first two moments, but a novel feature is that they express their
concentration profile in terms of a variable related to the amount of pene-
trant in a given part of the polymer rather than the space coordinate as in
(7.152). In the nomenclature of § 7.4 (p. 129) their profile can be written

where AQ,AX are undetermined functions of time T, \j/(T) = c(0, T) and

cx r1

m = {c(X\ T)-il/(T)} dX\ M = {c{X\ T)-^(7)} dX'.
Jo *o

Such a form is capable of describing the concentration profile over the entire
duration of the sorption experiment. After considerable manipulation Duda
and Vrentas arrive at a fairly simple set of two algebraic equations and one
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differential equation from which the concentration-dependence F(c) can
be obtained when the sorption-time curve and its derivative are available
from experimental data. Duda and Vrentas tested the accuracy of the method
for exponential diffusion coefficients varying by as much as five-fold and
found about 5 per cent accuracy over 80 per cent of the concentration range.
There was a serious loss of accuracy at low concentrations but complementary
studies of desorption could circumvent the difficulty. In practice, the need to
carry out numerical differentiation may prove a serious drawback. But this
and other ways of extracting information from single sorption, desorption
or permeation curves deserve further study. Duda and Vrentas include the
effects of volume changes on mixing and phase volume change. They also
derive expressions for the concentration distribution corresponding to a
prescribed diffusion coefficient.

10.6.6. Sorption-desorption method

A method which uses both sorption and desorption data, is very quick and
simple in cases to which it is applicable. If Ds is calculated using (10.160) from
the half-time for sorption and J5d from the half-time for desorption over the
same concentration range, then ^{Ds + Dd) is a better approximation to
(l/C0)J£°DdC than either Ds or Dd separately. Often it is a very good
approximation and has been used without correction in some instances
(Prager and Long 1951; Kokes et al 1952). If the range in D is small enough
for this to give the accuracy required, the method is particularly simple since
there is no need even to extrapolate to obtain Do at zero concentration.
Kokes, Long, and Hoard (1952) have applied the sorption-desorption method
to successive small concentration ranges so that the approximation ^{Ds + Dd)
can be used with more confidence than it could if applied to the complete
concentration range. Should it be necessary to obtain higher accuracy, the
correction curves of Fig. 10.7 can be used to obtain better estimates of
(1/CO) JQ° D dC. These are then differentiated as in the sorption method to ob-
tain D.

10.6.7. Use of initial rates of sorption and desorption

In § 10.6.5 (p. 240) we deduced an average diffusion coefficient from the
half-time of a sorption curve by using (10.160). It is also possible to deduce
an average diffusion coefficient from the initial gradient of the sorption
curve when plotted against the square root of time. Thus, in the early stages,
for a constant diffusion coefficient D and a sheet of thickness /, we have
(§4.3.2, p. 48)

Mt 4 lDt\*
(10.164)

If the initial gradient, R = d(Mr/M00)/d(t//2)^, is observed in a sorption
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FIG. 10.7. Correction curve for sorption-desorption method. Percentage difference is
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expressed as a percentage of j(Ds + Dd)/D0. (N.B. The differences here are opposite in sign to
those of Fig. 10.6.)

experiment in which D is concentration-dependent, then the
diffusion coefficient D deduced from (10.164) is

average

D = —R2. (10.165)

This, too, provides an approximation to (l/C0)j*Q0DdC, and the sorption
method can proceed as above but starting with the new values of D given by
(10.165) as original data. Initial rates of desorption can be used similarly.
Correction curves for exponential and linear diffusion coefficients are shown
for the sorption method in Fig. 10.6 and for sorption-desorption in Fig. 10.7.

If the sorption curve when plotted against (t/l2)* is approximately linear as
far as MJM^ = \, and this is often true in practice, then it is easy to see that
(10.160) and (10.165) yield roughly the same diffusion coefficient. Thus for a
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linear sorption curve we have

R = yj(t/l%, (10.166)

and so from (10.165) we find

D = ̂  /(t/l% = 0049/(f//% (10.167)

which is the same as (10.160).

10.6.8. Use of final rates of sorption and desorption

In the later stages of diffusion in a plane sheet only the first term in the
series of (10.158) need be considered, and we have

— {In {M^-Mt)} = \-. (10.168)

During a sorption experiment the final concentration, Co say, is approached
throughout the sheet; during the final stages of desorption the concentration
everywhere tends to zero. If the diffusion coefficient is constant, both experi-
ments should yield the same value on applying (10.168). Otherwise, the
application of (10.168) to a sorption experiment gives D(C0), while from
desorption we obtain Do , the value at C = 0. By this method, we avoid the
extrapolation needed to estimate Do in the method of § 10.6.5 (iii). Frensdorff
(1964) used both methods and examined the extent of the final linear portions
of desorption curves by computing numerical solutions of the diffusion equa-
tion for D(C) given by

where Co is the initial equilibrium concentration. His results are reproduced
in Fig. 10.8

10.6.9. A step-function approximation to the diffusion coefficient

Prager (1951) described an alternative method of deducing the diffusion
coefficient-concentration relationship from sorption data. The principle
of the method is to approximate to the actual concentration-dependence by a
step function. For such a function the differential equations can be solved
analytically (Chapter 13) and the heights of the individual steps computed.
The step function is then smoothed out by an averaging process.

The concentration range to be studied is divided into a number of intervals
and we assume that the diffusion coefficient D(C) has a constant (although as
yet unknown) value in each. For a diffusion experiment covering only the first
concentration interval D is constant throughout and may be calculated if Mt

is known as a function oft, using the solution (10.164). For a diffusion experi-
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0 1 -

D(0)t/P

FIG. 10.8. Calculated desorption curves for a linear diffusion coefficient D(C)/D{0) = 1 + A'C/Co,
where Co is the initial concentration. Numbers on the curves are values of A', and / is the thick-

ness of the sheet. (From Frensdorff 1964).

ment covering the first two intervals, D{C) is given by a step function whose
value in the first interval is now known from the first calculation. The value
in the second interval may be calculated as described below using the equa-
tions of § 13.2.2 (p. 290). This procedure may be continued so as to calculate
the value of D(C) in the third interval, its value in the first two being known,
and so on, until the entire concentration range has been covered. The
method as described here is based on the treatment of diffusion with dis-
continuous boundaries given in §§ 13.2.2 and 13.2.4 (p. 290 and 296). An
alternative treatment is given in Prager's original paper (1951).

Before the concentration in the centre of the film attains an appreciable
value we may consider diffusion to take place into a semi-infinite medium.
If we have a two-step diffusion coefficient such that for concentrations
greater than Cx , D = D l 9 and for concentrations less than Cx, D = D2 ,
then the diffusion process can be described by the equations of § 13.2.2 if
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D1 and D2 are known.. In particular, dMJdt* is given using the nomenclature
of that section by

dMt _ 2AD\

Here we have the opposite problem, i.e. given dMJdt^ from an experiment
and D2 having been calculated from the previous experiment, to find D1.
If Mt is measured as a function of t* this means essentially that AD\ is
measured. Hence if we estimate D1,k is determined from (13.12) on p. 291
and a new Dl follows from (13.15) of the same section. Successive estimates
of D1 are made till agreement is obtained between estimated and final values
of Dx . The graphs shown in Figs. 13.4, 13.5 and 13.6 of Chapter 13 can be
used to help the calculation.

The method is readily extended to a three-step diffusion coefficient and
then to higher numbers of steps. Thus if

= D2,

the process is described by the equations of § 13.2.4 (p. 296). Again AD\ is
measured and D2, D3 are known from previous experiments. We estimate Dx

and calculate kx from (13.32) and k2 from (13.38). Finally we check kl ,k2,D1

in (13.39), repeating if necessary as before. The number of equations of the
type (13.38) and (13.39) increases with the number of steps in the diffusion
coefficient but the method still holds.

Fujita and Kishimoto (1952) analysed Prager's data by the method of
moments, § 7.4.

10.6.10. Sorption by sheets initially conditioned to different uniform concen-
trations

Barrer and Brook (1953) used a method of measuring the concentration-
dependence of the diffusion coefficient based on a series of sorption experi-
ments. The concentration Co at the surface of the specimen is kept constant
throughout the series but the initial uniform concentration, Cx, through the
sheet, is different for each experiment. Denoting again by Mt the amount of
diffusing substance taken up by the sheet in time t, we may write for the initial
stages of sorption, M

C1> C>

C < Cy,

cx>c-. >cy,

(10.169)

(10.170)

(10.171)

K (10.172)

Here K is different for each experiment, being a function of C l 5 the initial
concentration through the sheet. A curve showing K as a function of C t

must cut the axis of C, at the point C1 = Co because then the initial rate of
sorption, and hence K, is zero, there being no concentration gradient. Thus
the experimental curve of K against Cx, when extrapolated, must always pass
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through Cj = Co when K = 0. Furthermore, as the interval Co — C1 is
decreased progressively in successive experiments the sorption process can
more and more nearly be described by the diffusion equation and its solution
for a constant diffusion coefficient, i.e. by

Mf = (10.173)

where Do is the value of the diffusion coefficient at the concentration Co.
Hence, as Cx approaches Co, the curve of K against Cx approaches asympto-
tically a tangent of slope — 4D§/TT*. This differs by a factor of two from the
expression given by Barrer and Brook, because they consider the amount
entering through one face of the sheet, whereas we include both. If the experi-
mental curve is sufficiently well defined by the data obtained from the
sorption experiments, the tangent can be drawn and Do deduced from its
gradient using (10.173). By repeating the series of experiments for different
values of the surface concentration Co , the relationship between the diffusion
coefficient and concentration is obtained. If, as in some zeolites, D decreases
as C increases, then the curve of K against Cl approaches the tangent from
above as in Fig. 10.9. If, however, D increases as C increases, which is often

FIG. 10.9. Curve of A'against C1 approaching asymptote from above because D decreases as C
increases.

the case in solvent-polymer systems, then the tangent is approached from
below as in Fig. 10.10. Thus the curves of K and Cl show at a glance the nature
of the concentration-dependence of D. If it is practicable to carry out desorp-
tion experiments as well as sorption, that is to include values of C1 which are
higher than the surface concentration Co, the curve of K against Cl will
cross the Cx axis at C^^ = Co, as in Fig. 10.11. This should allow the tangent
to be drawn more accurately since extrapolation is avoided.
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FIG. 10.10. Curve of K against Cx approaching asymptote from below because D increases as C
increases.

C,

FIG. 10.11. Curve of K against C\ using data from both sorption and desorption experiments.

10.7. Weighted-mean diffusion coefficients

In § 10.6.7 (p. 244) we looked upon the average diffusion coefficient deduced
from the initial rate of sorption by (10.165) as as approximation to (1/CO) x
Jo° D dC. Subsequently, numerical solutions showed that the initial rates of
sorption and desorption are much more closely controlled by weighted-
mean diffusion coefficients of the form

Cp-lD(C)dC (10.174a)



OF DIFFUSION COEFFICIENTS 251

for sorption and

f °(C0-C)*-lD(C)dC (10.174b)
o

for desorption.
On the basis of his original calculations for diffusion coefficients increasing
with concentration over ranges up to 200-fold in one or other of the ways
shown by curves, 1, 3, 4 in Fig. 9.4, Crank suggested the values p = 1-67,
q = 1-85.

Kishimoto and Enda (1963) found good agreement between D(C) ob-
tained for the polymethyl acrylate-benzene system from steady-state mea-
surements and by using (10.174a, b) with these values of p and q. Barrie
and Machin (1971) found that their experimental data also supported the
same values. They pointed out, however, that the correspondence principle
between sorption and desorption (see §9.3.1, p. 173) implies that for very
small concentration ranges p and q should approach the same limiting value.
By using Lin Hwang's (1952) series solution they concluded that as Co -• 0,
p -> 2/(7i-2). Wilkins's (1963) solutions for small e presented in Table 7.6
confirm this limiting value. Also, we may regard his solutions for e = oo as
limiting cases for linear diffusion coefficients of very large range. It is easy
to deduce that for D increasing 1-62 < p < 1-75 and 1-75 < q < 1-89. These
ranges include the values of 1-67 and 1-85 which fit experimental measure-
ments over a wide intermediate range of D(C).

Kishimoto and Enda (1963) proposed a convenient approximate way of
using (10.174b). They assume

D(C) = D0 + fc1C + /c2C2+ ..., (10.175)

where k1,k2 etc. are unknown coefficients. By introducing (10.175) into
(10.174b) and integrating they find that Dd may be written

2 + ..., (10.176)
where

kl = 2-85/c;; k2 = (3-85 x 2-85/2!)fc'2 = 5-486/c2;

fc3 - (4-85 x 3-85 x 2-85/3 !)k3 = 8-871k'3. (10.177)

Higher coefficients are readily calculated. The coefficients Do and k' are
obtained by fitting the expression (10.176) to the experimentally observed
values of 25 d and suitably chosen values of Co. The D(C) plot follows readily
from (10.175) and (10.177).

10.8. Radiotracer methods

A number of experimental arrangements have been proposed for observing
the diffusion of labelled molecules. If the total concentration of labelled and
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unlabelled molecules is kept constant throughout the system, self-diffusion
coefficients are measured. The same principles have been applied in the
presence of an overall concentration gradient.

In the 'thin-smear' method, Moore and Ferry (1962. 1968) use a radio-
actively-labelled penetrant in trace amounts so that its concentration is very
small throughout the experiment. Initially, penetrant is spread in a thin
layer on one surface of a polymer disc and the variation of activity with time
at the opposite face is observed. In general, this activity is due to the inte-
grated effect of /^particles emanating from different depths in the polymer.
The diffusion coefficient is deduced by comparing the measured activity
change with the corresponding theoretical expression

N(t)

JV(oo)
- 1 - 2

1 + e 1+48 1 + 9e
(10.178)

where N(t) and iV(oo) are the activities just outside the inert surface of the
disc at time t and at equilibrium, i = n2Dt/h2, e = {n/^ih)2, D is the diffusion
coefficient, h the disc thickness, and fi the absorption coefficient for the /?-
particles in the polymer, assuming an exponential law. Eqn (10.178) takes
into account radiation contributions from below the inert surface. If, however,
the absorption of the /^-particles is sufficiently high we have the case of e = 0
and the activity is simply proportional to the concentration at the inert
surface.

In the twin-disc method (Moore and Ferry 1962), a disc containing
unlabelled penetrant is place on top of an identical disc containing labelled
penetrant. Sn this case, the activity is taken to measure the concentration of
radioactive penetrant at the upper surface of the sample and the appropriate
mathematical solution is

N(t) l - i ( e - < - i e - ^ + i e - 2 5 T - _y (10.179)
N(oo) ny > 3

Jackson, Oldland, and Pajaczkowski (1968) used an arrangement which
can be described as follows. The radioactive source occupies the region
h < x < k\ diffusion takes place into a polymer sheet in k < x < L and
into a cover film in 0 < x < h. They used the appropriate particular form of
the solution (4,56) to calculate the concentration distribution

C 2L ™ 1 ., / nnk nnh\ nnx
{-n2x) sin s in— cos-—, (10.180)L I | / tAU \ ft f\ i->111 Jill I V/VyiJ 7

C, K[k — n) i H \ L LI L

where x = ?i2Dt/L2. This is substituted into the expression for the activity
N(r), at the surface x - 0,

rL

N(t) = H\ C/(x)dx, (10.181)
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where f(x) is the fraction of /?-rays reaching the surface from nuclei at
distance x; H is a constant of the apparatus. Jackson et ai assume
f(x) = exp( — pix) and obtain

N{t) = 1 + / 2 L '"2 ^ " 7.^._nnk . nnh
N(oo)

where

If the activity is observed at the surface x = L, eqn (10.182) still holds with
the modification that

/ cos nn — Q'^
A(n) =

Expressions (10.181) and (10.182) are based on the assumption that the
diffusion coefficient is the same throughout the system though there are, in
fact, three distinct layers. Jackson et al. (1968) examined another extreme
model. The middle layer, in which the polymer is initially confined, is now
considered as a perfectly stirred liquid. The penetrant concentration just
inside the polymer is K times that in the stirred liquid at the interface between
them. Also, the cover film is now taken to be of zero thickness and so forms
the surface x = 0. The mathematical solutions of § 4.3.5 (p. 56) apply, and
when substituted in (10.181) result in the expression, for the surface x = L,

where qn are the non-zero positive roots of tan qn — —ocqn,

a = fc/KL, T = Dt/(L-k)2, and B(n) =

Park (1954) who applied a similar technique to the self-diffusion of tricresyl
phosphate in polystyrene found it necessary to construct a jS-ray absorption
curve under the conditions actually used in the diffusion experiments. He
used two layers of equal thickness and so numerical and graphical methods
were needed to obtain the diffusion coefficient.

The j?-particle absorption techniques described above are difficult to apply
when the penetrant is volatile. Park (1961) therefore used a radioactive
exchange process in a sealed equilibrium sorption system. The mathematical
solutions required are again those of § 4.3.5 (p. 56).
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NON-FICKIAN DIFFUSION

11.1. Glassy polymers

THE diffusion behaviour of many polymers cannot be described adequately
by a concentration-dependent form of Fick's law with constant boundary
conditions, especially when the penetrant causes extensive swelling of the
polymer. Generally, this is the case with so-called glassy polymers which are
said to exhibit 'anomalous' or 'non-Fickian' behaviour. In rubbery polymers,
on the other hand, diffusion is generally Fickian. The essential distinction is
that polymers in the rubbery state respond rapidly to changes in their
condition. For example, a change in temperature causes an almost im-
mediate change to a new equilibrium volume. The properties of a glassy
polymer, however, tend to be time-dependent; for example, the stress may
be slow to decay after such a polymer has been stretched. Deviations from
Fickian behaviour are considered to be associated with the finite rates at
which the polymer structure may change in response to the sorption or
desorption of penetrant molecules.

Anomalous effects may be directly related to the influence of the changing
polymer structure on solubility and diffusional mobility, or they may result
from the internal stresses exerted by one part of the medium on another as
diffusion proceeds.

Polymers usually have a wide spectrum of relaxation times associated with
structural changes, but all of them decrease as temperature or penetrant
concentration is increased and motion of the polymer segments enhanced.
At a given concentration, the change from the glassy to the rubbery state is
said to occur at the glass transition temperature. A sorption process, for
example, will be influenced by those segmental motions which occur at about
the same rate or slower than the motivating diffusion process. In rubbery
polymers, well above their glass temperature, the polymer chains adjust so
quickly to the presence of the penetrant that they do not cause diffusion
anomalies.

Alfrey, Gurnee, and Lloyd (1966) proposed a useful classification according
to the relative rates of diffusion and polymer relaxation. Three classes are
distinguished:

(i) Case I or Fickian diffusion in which the rate of diffusion is much less
than that of relaxation;

(ii) Case II diffusion, the other extreme in which diffusion is very rapid
compared with the relaxation processes;
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(iii) Non-Fickian or anomalous diffusion which occurs when the dif-
fusion and relaxation rates are comparable.

The significance of the terms Case I and Case II is that they are both simple
cases in the sense that the behaviour of each can be described in terms of a
single parameter. Case I systems are controlled by the diffusion coefficient.
In Case II the parameter is the constant velocity of an advancing front which
marks the innermost limit of penetration of the diffusant and is the boundary
between swollen gel and glassy core. Case II is also a second extreme or
limiting case with respect to the shape of the sorption-time curve. If we denote
the amount sorbed at time t by Ktn, with K and n constants, then Case II
systems are characterized by n = 1 and Case I systems by n = \.

Non-Fickian systems lie between Case I and Case II in that n takes an
intermediate value between \ and 1, or changes sigmoidally from one to the
other. Also, non-Fickian behaviour needs two or more parameters to describe
the interacting diffusion and relaxation effects inherent in it.

11.2. Characteristic features

Extensive reviews are available of the experimentally observed diffusion
anomalies in various polymer systems (Rogers 1965; Alfrey et al. 1966;
Park 1968; Stannet, Hopfenberg, and Petropoulos 1972; Hopfenberg and
Stannet 1973). These contain many references to original papers. We shall
confine attention in this chapter to a qualitative description of the main
characteristic features. It provides a background for the discussion in § 11.3
below of the mathematical models which have been advanced in partial
explanation of the anomalies. The different types of behaviour are sum-
marized in Fig. 11.1, taken from Rogers (1965).

(i) Fickian: Case I. The characteristic features of Fickian diffusion,
controlled by a concentration-dependent diffusion coefficient, are listed in
§9.4 (p. 179). The term pseudo-Fickian has been used (Rogers 1965) to
describe sorption-desorption curves of the same general shape and disposi-
tion, but for which the initial portion persists for a shorter time.

(ii) Sigmoid. Curves of the general shape of Fig. ll.l(b) have been observed
experimentally in many systems (Park 1968). The sorption curves are sigmoid
in shape with a single point of inflexion often at about 50 per cent equilibrium
sorption. The initial rate of desorption exceeds that of sorption, but desorp-
tion soon becomes slower and the curves cross.

(iii) Two-stage sorption. Bagley and Long (1955) carried out a series of
'interval' sorptions of acetone by cellulose acetate. The polymer was first
brought into equilibrium with acetone vapour at one vapour pressure and
then the sorption-(time)^ relationship resulting from a small increase in
vapour pressure was observed. An initial rapid uptake, a linear function of
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FIG. 11.1. 'Non-Fickian' or 'anomalous' sorption and desorption curves compared with Fickian-
type curves. (Rogers 1965).

(time)*, leads to a quasi-equilibrium acetone uptake as in Fig. 11.1c, followed
by a slow approach to a final true equilibrium. Bagley and Long (1955)
advanced the simple interpretation that a quasi-equilibrium is reached rapidly
first at the polymer surface and then by simple diffusion throughout the
polymer sheet. The second stage of sorption is associated with an increase in
surface concentration which occurs slowly compared with the diffusion
process and is the rate-determining factor for sorption. The concentration
is virtually uniform throughout the sheet and increases at a rate independent
of the thickness. The sigmoid curve as in Fig. 1 l.l(b) is a special case in which
surface concentration changes and diffusion flow occur at comparable rates.

An experimental observation of the acetone distribution in a sheet by
Long and Richman (1960) confirmed this interpretation and showed that
the surface concentration Cs is well represented by

Q __ Q -\-(C C HI e~^f) (11 1)

where C{ and Ce are the surface concentrations achieved instantaneously
and at final equilibrium, t is time and /? a constant. Park (1961) has shown that
the expected relation between the diffusion coefficient calculated from the
first stage and the self-diffusion coefficient is satisfied provided the activity
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and volume fraction from the quasi-equilibrium isotherm are used and not
those from the final equilibrium isotherm.

(iv) Advancing boundaries: Case II. When a liquid penetrant diffuses into
a polymer sheet or filament, sharp boundaries can often be seen under a
microscope. The topic is reviewed by Park (1968) and Rogers (1965) with
references to original papers. Hartley (1946) noted three boundaries. The
inner boundary marks the limit of penetration of the liquid, while the outer
boundary shows the limit of the swollen gel. The third, intermediate, boun-
dary is usually thought to lie between polymer in the elastic rubbery state
and glassy polymer. When the polymer sheet is in contact with vapour
rather than liquid penetrant similar phenomena are observed but in many
cases the middle boundary will be missing if the whole system is in the glassy
state.

Often the positions of the boundaries are proportional to £\ Cases in
which each boundary moves with a constant velocity and also intermediate
power laws have been observed by Hartley (1946) and Kwei and Zupko
(1969). Wang, Kwei, and Frisch (1969) point out that an alternative expres-
sion for the depth of penetration is at + bt*, where a and b are constants.

Robinson (1950) obtained interferometric fringe photographs of chloro-
form penetrating cellulose acetate between parallel glass plates. In particular,
the concentration was seen to change very rapidly in the region of the inner
boundary, implying the existence of large internal stresses due to the interac-
tion of the swelling polymer and the central unattacked core of the sheet.
Not only can the orientation of the polymer molecules be changed by these
stresses (Dreschel, Hoard, and Long (1953)), but also Hermans (1948) and
Alfrey et al. (1966) have observed anisotropic dimensional changes and
transverse cracking of the unswollen core.

Related effects in permeation experiments were observed by Park (1951).
Meares (1958) found a rapid initial flux of allyl chloride vapour through a
membrane of polyvinyl acetate, which quickly fell to a low value before
the more normal gradually increasing flow occurred. Meares attributed
the initial behaviour to the increase in diffusion coefficient brought about
by the stress exerted by the swollen surface layers on the solvent-free region
beneath. Similar overshooting in sorption experiments has been observed
(Rogers 1965).

11.3. Mathematical models

A number of authors have proposed mathematical models of the pene-
trant-polymer diffusion phenomena. No single model successfully predicts
all the experimental observations. Nevertheless, each one accounts for some
of the features described in § 11.2 (p. 255), and collectively they contribute
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towards an elucidation, albeit incomplete, of the complex mechanisms
involved. It is only possible in this book to describe briefly the salient features
of some of the models. Details are given in published papers. Essentially
they are all concerned with the combination of penetrant diffusion and poly-
mer relaxation proceeding at different relative rates according to the condi-
tions of the experiment.

11.3.1. History-dependence

Crank (1953) explored the suggestion that part of the movement of the
polymer molecules may be effectively instantaneous, and part relatively
slow compared with the diffusion of penetrant. An increase in penetrant
concentration is assumed to lead to an immediate increase in diffusion coef-
ficient, followed by a slow drift towards an equilibrium value as a result of the
relaxation process characteristic of the glassy state. This means that the value
of the diffusion coefficient in any element of the system depends on the
concentration history of the element. We assume the surface concentration
to be held constant and that the fast and slow changes in the diffusion coef-
ficient proceed independently of each other. If the concentration changes
infinitely rapidly then we can expect the instantaneous component Dx of the
diffusion coefficient to satisfy

Di = DoeflC, (11.2)

where C is the penetrant concentration and Do and a are constants. At a
point that remains at a given concentration C the diffusion coefficient is
assumed to increase further with time until a final equilibrium value De is
obtained given by

De = Doe
bC, (11.3)

where b is larger than a. This approach to De is assumed to be a first-order
change such that

^ = a(De-D), (11.4)

where a is also a function of concentration given by

a = aoeffC. (11.5)

The over-all expression for the diffusion coefficient D becomes

ldD\ IdDA IdC

Calculations based on this equation produce sorption-desorption curves
exhibiting many features of the sigmoid and psuedo-Fickian types of curves.
With five adjustable parameters available we must not expect to draw detailed
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conclusions from a comparison of calculated curves with experimental data.
Nevertheless, the orders of magnitude obtained were reasonable. This
history-dependent model cannot explain two-stage behaviour which must
indicate some influence of solubility.

11.3.2. Two-stage theories

We have seen in § 11.2(iii) that a good description of two-stage sorption is
afforded by solutions of the concentration-dependent form of the diffusion
equation with a time-dependent surface concentration satisfying eqn (11.1).
It is, however, unlikely in general that slow relaxation of the polymer is
important only on the surface. In the history-dependent model, internal
relaxation influenced only the diffusion coefficient. In the second stage of
two-stage sorption the concentration is thought to be uniform throughout
the sheet as in § 11.2(iii), and Newns (1956) has developed the other extreme
hypothesis that internal relaxation influences only the solubility. Following
Flory (1953), Newns considers that in the quasi-equilibrium at the end of the
first stage the elastic forces in the swollen polymer network have increased
the chemical potential of the sorbed penetrant to such an extent that no
further sorption occurs. On standing, the elastic forces slowly relax, the
chemical potential decreases, and more penetrant is absorbed to establish
equilibrium again. This process continues to a final, true equilibrium when
the elastic forces have decayed away completely or reached equilibrium.
The hypothetical hydrostatic pressure n exerted by the polymer network at
a time during the second stage when the concentration is Cq is given by

n = (RT/V)ln(p/pq)9 (11.7)

where V is the partial molar volume of the penetrant, the pressure p is the
actual vapour pressure of the penetrant, and pq the pressure that would
correspond to a concentration Cq if a final equilibrium had been reached.
The internal stress due to the presence of the penetrant is yAv, where Av is
the fractional volume change and y an elastic constant. By balancing the
opposing stresses Newns obtained an expression for the ratio of the amount
sorbed during the first stage, to that at final equilibrium, and predicted
correctly several features of the two-stage sorption curve.

Petropoulose and Roussis (1969b) obtained numerical solutions of eqn
(10.94) (p.227) containing 'thermodynamic' parameters, and so incorporated
relaxation effects both on the surface and in the body of the polymer.

11.3.3. Strain-dependent models

In §11.2(iv) evidence of internal stresses arising from the differential
swelling of an outer swollen layer and an internal core of a sheet or filament
was described. Attempts have been made to relate anomalous diffusion
behaviour to these stresses.
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Crank (1953) assumed that only the diffusion coefficient is affected by the
stresses and not the surface concentration or internal solubility. The essential
features of the mathematical model are clear from Fig. 11.2. Sorption
experiments (Park 1953) suggest that the cross-sectional area A of the sheet
can be assumed to remain effectively constant throughout its thickness.

(a)

(b) (c)

Q

Ao C

X

FIG. 11.2. From Crank 1953.

The diffusion coefficient in the unstressed polymer is approximated by the
step-wise form in Fig. 11.2(c). The associated concentration distribution is
shown in Fig. 11.2(b), where Co is the constant surface concentration. We
assume the mechanical compression to be uniform in the region 0 < x < X,
and that the stress-free swelling in this region corresponds to that for a mean
concentration ^ C o + Cx). The stress-free swelling in the central core X <
x < I is assumed zero. Internal stresses are assumed to have a negligible
effect when X = /. The sheet is initially of area Ao and finally Ax, i.e. Al is
the stress-free swelling for a final uniform concentration Co. The increases
in area are small, and so in the absence of stress they are taken to be pro-
portional to mean concentrations. In the swollen region, 0 < x < X, the
mean stress-free area AM is given by

AM-A0 = (A1-A0)CJC09

when the mean concentration is CM. The compression is

(11.8)

At the stage shown in Fig. 11.2(a), the swollen region, 0 < x < X, is
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compressed by SAM and the dry region X < x < I extended by SA0. The
assumption of constant area throughout the thickness means that

A =A0 + SA0 = AM-SAM. (11.9)

By equating total forces of compression and extension we obtain

X0SA0{l-X)/A0 = lM5AMX/AM9 (11.10)

where Ao and AM are Young's moduli for the dry and swollen polymer re-
spectively. The diffusion coefficients are assumed to be related to SAM and
SAoby

(11.11)

D2 = D0(l+;ji08A0/A0)9 (11.12)

where Dl and D2 are the diffusion coefficients in the swollen and dry regions
when the area is A, Crank (1953) considerably simplified the mathematics by
further assuming that the ratio of the diffusion coefficients for the fully
compressed and unstressed states is the same for swollen and dry polymer
regions. It then follows from (11.11) and (11.12) that DJD2 remains constant
as diffusion proceeds and so

D = D(t)D(C). (11.13)

Calculations based on this model reproduced an experimental sorption
curve for methylene chloride in polystyrene and, to some extent, the change
in area with time. The model also predicts qualitatively the experimental
observation that in the early stages a thin sheet should absorb more penetrant
than a thicker one. But according to the model, plots of MJM^ against
t*/l should all coincide for different thicknesses /, and this is not true.

Another view of the effect of internal stresses has been discussed by
Frisch, Wang, and Kwei (1969) and Wang, Kwei, and Frisch (1969). They
include in the basic transport equation, in addition to the gradient of chemical
potential, a second term deriving from the partial stress of the penetrant.
In this case, the thermodynamics of irreversible processes leads to an expres-
sion for the flux of penetrant

dx C dx
(11.14)

where B is a mobility coefficient, \i the chemical potential, and S the partial
stress tensor in one dimension. On making the assumption that S is pro-
portional to the total uptake of penetrant so that

S(x) = s I C(x/,r)dx/, (11.15)



2 6 2 NON-FICKIAN DIFFUSION

where s is a constant, we arrive at the generalized diffusion equation

dC d \ cC }
— = —\l>(C,x9t)- B(C,x9t)sC\. (11.16)
dt dx { dx J

If the stress gradient predominates so that dji/dn « dS/dx, eqn (11.16) is
seen to lead to Case II diffusion (§ 11.2(iv), p. 257). Wang et al. (1969) point
out that the solution of the linear form of (11.16) (for which D and v = Bs
are constants) for diffusion into a penetrant-free semi-infinite medium
x ^ 0, with x = 0 maintained at a constant concentration Co, is

(11.17,

When x is small compared with vt, inspection of the function erfc reveals that
the second term on the right side of (11.17) is much larger than the first.
Wang et al. therefore make the approximation that except for very small t
the movement of any plane X with a given concentration is such that

X = 2ky/(Dt) + vt9 (11.18)

where k is a constant. They then take an expression of this approximate form
to describe the movement of the sharp boundary associated with a discon-
tinuous diffusion coefficient (§ 13.2, p. 287). They apply Danckwerts' moving
frames of reference (§ 13.4, p. 298) and obtain solutions of the linear form of
(11.16) in which, of course, the sharp boundary moves according to (11.18).
Kwei, Wang, and Zupko (1972) find their model predicts successfully the
rates of sorption and penetration of acetone in poly(vinyl chloride). The
two special cases of D « v and D » v correspond to Fickian and Case II
diffusion respectively.

Alfrey et al. (1966) used approximate mathematical models to calculate
swelling stresses and fracturing in glassy-polymer discs and cylinders in
which two-stage diffusion is occurring.

11.3.4. Irreversible thermodynamical model

Frisch (1964, 1966) has discussed diffusion in glassy polymers in the
language of irreversible thermodynamics. In view of the many excellent
general accounts of this subject which are available (de Groot 1961; de
Groot and Mazur 1962; Prigogine 1967; Haase, 1969] we shall attempt only
to convey the essence of Frisch's ideas in the simplest terms.

In addition to the usual thermodynamic variables such as concentration,
temperature and pressure, Frisch introduces a set of unspecified internal
parameters which are used to describe the gradual 'freezing' or relaxing of
internal degrees of freedom as the system passes through a 'glass-like'
transition region. Above the transition temperature the system is in internal
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chemical equilibrium with respect to these parameters, but below the
transition region it is not. Thus, the Gibbs free energy per unit mass G is a
function of the mass-fraction concentrations cj9 temperature T, pressure p,
and the proposed internal parameters £a (a = 1, 2,..., N). Systems with a
glass-like transition are defined to have a characteristic temperature T^cj9 p)
such that dG/d£a = 0 for T > T^ but is not zero for all a when T < 7J.
Below T* these free energy derivatives depend on £a, which themselves depend
on the history of the system as well as its composition, i.e. £a = £a(r, c,-, p)
where t is time.

At constant T, p etc. the Gibbs-Duhem relation is given by

j

= ££«<Ua, T<T^ (11.19)

where Aa = dG/d£a.
We discuss the diffusion flux with respect to a mass-fixed section. A

basic idea in irreversible thermodynamics is that the flux Jt of one component
i depends not only on its own gradient of chemical potential but also on those
of the other components in the system. Thus we write

Jt= t Lijxr T > Tt> ( 1 L 2 0 )

7 = 0

where in the one-dimensional case the forces X} are given by

Xj= -d/ij/dx. (11.21)
The Li} are the so-called Onsager coefficients and for T > T^ they are
functions of T, p, c} only, i.e. Li} = L{j{T,p, c). Correspondingly, we define

J,= t LtjXj9 T< 7J, (11.22)
j = 0

but now Lij are time-dependent since they are also functions of £a, i.e.
Lij = L^T, p, Cj, 4). Reciprocal relations

L^Lj^ L^Lji, (11.23)

are to be satisfied and also

£ • / , = ().
i = 0

Following Frisch we consider as an example a two-component system in
one dimension, with component 0 as the polymer and component 1, the
penetrant. Thus q = 1, giving

Jo + Jj = 0, Loo = L01 - - L 1 0 = L n , (11.24)
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so that (11.20) and (11.22) with (11.21) become

d
ox

(11.25)

In this example, we have only one independent concentration variable since
c1 = l—c0. Thus, using (11.19),

OC1 C\ix

where

'tol-dtfrl—df; {U21)

Finally, the diffusion flux is given by

= -Ddcjdx, T < T;, (11.28)

where the diffusion coefficients are

T<7^. (11.29)

Thus, even if there is no change of mechanism across 7^, i.e. L n = L n ,
D will differ from D and will be history-dependent.

Frisch (1964) developed the approach further in other reference frames and
in a consideration of boundary conditions he showed that the time-dependent
surface concentration observed experimentally by Long and Richman (see
eqn (11.1)) can be deduced.

11.4. Conclusion

No single one of the models discussed in (11.3) can account satisfactorily
for all the known aspects of anomalous diffusion. A synthesizing model is
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still needed to include the combined effects of history, orientation, and stress
on the diffusion process within the polymer system and on the surface
concentration. Furthermore, a composite model needs to be of such a form
that it can be used to predict diffusion behaviour under given conditions and
be useful for the interpretation of experimental data.
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DIFFUSION IN HETEROGENEOUS MEDIA

12.1.

P R A C T I C A L materials are frequently heterogeneous in structure. We
distinguish two types: particulates, in which discrete particles of one phase
are dispersed in a continuum of another; and laminates, comprising layers
of different properties sandwiched together. Barrer (1968) has reviewed some
studies of both types.

12.2. Laminates

We consider some properties of laminates in which the layers A, B, C...
are normal to the direction of flow.

(i) Steady state. In the steady state, the flow through the ith lamina is the
same as for any other lamina and is given by

F = -o)vr
x-1DidCJdr, (12.1)

where for a plane sheet, hollow cylinder, and spherical shell, v = 1,2, and 3
respectively and co/"1"1 is the surface area with a^ = 1, a>2 = 2ft, and
co3 = 4TC for unit area of a plane sheet, unit length of a cylinder, and for a
whole spherical shell. If D, is independent of concentration, and the solubility
is proportional to the pressure in all laminae, the integration of (12.1) with
respect to r gives

F = j ^ ^ y (12-2)

where ACt is the concentration drop across the ith lamina and

The permeability is given by Pt = Z)^ where a{ is the solubility coefficient
in the ith lamina, i.e. C{ = o^i and so (12.2) may be written

where Ap( is the pressure drop across the ith lamina which would correspond
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to AC;. It follows immediately that

1JR^R}1 + IJR^1+ +IJ^RJ

= — Z ^Pi = ~ ^p, (12.4)
r i= 1 r

where Ap is the total pressure drop across the n-layer laminate. The over-all
permeability P of the composite is defined by

P = W*nM. (12.5)
ajAp

We arrive at the three formulae

L l2 ln I . . ux

i+i+~+i=p>(slab);

In (R JR0) + \njRJRJ + + \n(RJRn^) = ln (RJR0)
p2 pn

( l / R p j - j l / R , ) ( / J d / J

P P

( spherical shell). (12.6)

Here lt = Ri — Ri_1 and / = Rn — R0. Also on the left sides but not on the
right of eqn (12.6) we may substitute P- = Dp^ i = 1,2,..., n. The cor-
responding relationships between diffusion coefficients follow by putting
o = 1 and hence P = D everywhere in (12.6).

Barrer (1968) draws attention to an important property of a laminate in
which the diffusion coefficient of each lamina is a function of concentration,
and the solubility of the diffusant is not proportional to the pressure. Integra-
tion of (12.1) now leads to

^AC| = i % ^ , (12.7)

where

D.-dC, (12.7a)

in which A2i-i»^2i a r e t n e values of Ct just within the two surfaces R(_x
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and Rt, Or- summation, (12//) becomes

Finally, we may define an overall integral diffusion coefficient for the laminate
D by the expression

— £ ACt =
 l^R*jR»\ (12,9)

F ^ D

The magnitude of the sum on the left side may depend on the sequence of the
laminae. Ash, Bauer, and Palmer (1965) have investigated the distribution
of concentration through the laminate in the case where each Dt is constant,
and Henry s law holds in each lamina. In (12.2) above they substitute AC,- =
I2i — ̂ 2i--15 where the Is are as used in (12.7a) above. Then we can write

F i~1

— Ht = (A2l._1-A2l.) f l fcr ( 1 2 i ° )

where

and where l2i — kik2i.v x and fe0 = 1. After summing over all values of i and
re-arrangmg, we find

/ n
— OJVA1 2^ **(. (12.12)

Also from (12.10) we find

^2i = K
j = 0 I i = lI»=i //

By integrating (12.1) from r to R^. x and re-arranging we see that

which can be rewritten by substituting for l2i-i fr°m the equivalent of
(12.13) if need be.

(ii) Time lag. The time lag as defined in §4.3.3 (p. 51) for a single lamina
has also been calculated for laminates by methods which avoid the need to
obtain complete solutions of the transient diffusion equation. One of these
is due to Jaeger (1950b) and employs Laplace transforms. He expresses the
time lag in terms of eight subsidiary quantities related to certain determinants.
Four sets of boundary conditions are considered at the two outer faces of
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the laminate:

(i) constant temperature, zero temperature;
(ii) constant heat flux, zero temperature;

(iii) constant flux, zero flux;
(iv) temperature proportional to time, zero flux.

For each combination he tabulates numerical values for the time lag for
heat flow through two different building walls each composed of six layers.

Barrie, Levine, Michaels, and Wong (1963) applied Jaeger's procedure to
laminates AB and ABA. Ash, Barrer, and Petropoulos (1963) used Frisch's
method described in § 10.6.2 (p. 222) to obtain time lags for repeated laminates
ABAB.... Ash, Barrer, and Palmer (1965) deal also with the laminate ABCD...
and with composite hollow cylinders and spherical shells. Barrer (1968)
quotes a number of the formulae for particular cases. They are all cumber-
some and here we give only the general formula for the v-dimensional case
derived by Ash et al. (1965).

(12.15)

Ash et al consider two special systems in more detail: (a) a lamina of
substance B is inserted in a medium A and the position of B is varied; (b)
the lamina B is inserted centrally in A and its thickness varied. Results are
presented graphically for plane sheets, cylinders and spheres. Kubin and
Spacek (1967) consider an ABA type of plane membrane separating two
compartments, each of the same finite volume, which contain solutions
differing in concentrations of a common solute.

12.3. Disperse phase in a continuum

Holliday (1963) gives examples of practical systems made up of one
continuous polymer phase and one dispersed phase. The following para-
meters are required to describe a composite material of this kind:

(i) The geometry of the dispersed phase (shape, size, and size distribution,
concentration and its distribution, orientation, topology);
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(ii) the composition, state of matter, and other properties of both the
disperse phase and the continuous phase.

Essentially the same mathematical equations describe the phenomena of
electrical and heat conductivity, and the diffusion of penetrant. The many
theoretical formulae that have been proposed to predict electrical and thermal
properties of these composites are easily adapted to permeability studies.
Several authors have summarized some of the papers on the subject and
given extensive lists of references. In this account, the methods described
have been selected to represent the different types of mathematical approach
that have met with some success in correlating experimental and theoretical
results. For a formulation of diffusive flow in heterogeneous systems in
terms of irreversible thermodynamics, we refer to Barrer (1968) and to
Kedem and Katchalsky (1963), who consider multi-component systems
and electrolytes.

12.4. The mathematical problem of a two-phase system

We consider a number of discrete particles of material A embedded in a
continuous medium of material B. In general, the particles constituting
phase A may vary in size and shape, and their distribution in the medium
phase B may be random or regular both in respect of spacing, arrangement
and orientation. We denote by Da and Db the diffusion coefficients, assumed
constant, of materials A and B respectively and by Ca, Cb the corresponding
concentrations. These are normally functions of three space variables,
but not of time, when steady-state problems are being studied.

The steady-state concentration in each phase satisfies Laplace's equation

V2Cf = 0, i = a9b. (12.16)

The two conditions which the concentration must satisfy are that both the
concentration and the flux of the diffusing substance must be continuous
everywhere. In particular, on any surface separating two phases we have

Ca = Cb; Da dCJdn = Db dCJdn, (12.17)

where d/dn denotes the directional derivative normal to the interface.
Conditions (12.17) hold over the whole surface of each of the particles con-
stituting phase A. Additional boundary conditions will be specified over
the outermost surface or surfaces of phase B, according to the nature of the
problem under consideration. In stating (12.17) we have assumed that no
contact resistance exists at the interface. The appropriate modification is
easily made if necessary.
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12.4.1. Arrays of spheres, cylinders, and ellipsoids

Earlier workers investigated successively more complicated approxima-
tions to the general problem. The first paper usually quoted is by Maxwell
(1873), who solved the problem of a suspension of spheres so sparsely dis-
tributed in the continuum that any interaction between them is negligible.
The volume fraction va of the dispersed phase is therefore small. By applying
the conditions (12.17) to appropriate harmonic functions, he obtained an
expression for the effective diffusion coefficient of the composite medium,
which can be written in the form

D~Db =vf lf
>fl"D '- 02.18)

The coefficient D is the diffusion coefficient of a hypothetical homogeneous
medium exhibiting the same steady-state behaviour as the two-phase com-
posite. Burger (1919) extended the treatment to ellipsoids and Eucken (1932)
included particles of different sizes. Fricke (1931) derived an expression for
spheroids suspended in a continuum which he expressed as a generalized
form of Maxwell's equation (12.18), namely

D~°b = v . ^ V ^ - , (12.19)
D + xDb

where x is a function of DJDh and the ratio a/b is the ratio of the axis of
symmetry of the spheroid to the other axis. For the case of spheres, x = 2,
we have Maxwell's formula. In general

- ^ - - ^ - - ^ (12.20)

where

M(a <

and

T
3Ll+iM
(0-isin:

s i n 3 <j)

M(a > b) =

" (Da-Db)-pDb'

2

[DJ(Db-

1

sin2 (/>'

1
1)} ' 1+(1-M){J

where cos </> =

1 c o s 2 <f>'

2sinVn

where cos 6' = b/a.

1 +
1 -

-a/b,

sin (j)'

sin cp'

The influence of the geometric factors of the suspended particles is expressed
solely in the parameter /?.
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Fricke presented graphs of /? and x against DJDb for different values of
a/b and concluded that for a constant volume concentration the diffusion
coefficient of the suspension is independent of the size of the suspended
particles, and also nearly independent of their form, when the difference
between the diffusion coefficient of the two phases is not very large. This is
especially true for suspensions of prolate spheroids (a > b) which have a
smaller diffusion coefficient than the suspending medium.

Comparison with experimental data for the blood of a dog, for which the
values Da = 0, b/a = 4-25, and x = 1-05 are considered appropriate, shows
excellent agreement for volume concentrations ranging from 10 per cent to
90 per cent. On the other hand, Hamilton and Grosser (1962) attempted to
correlate Fricke's expression (12.19) with experimental data relating to
mixtures of rubber and particles of aluminium or balsa in the form of
spheres, cylinders, parallelepipeds, or discs. They found that (12.19) predicts
all the experimental data more satisfactorily if x is not calculated from (12.20),
but from an empirical relationship

x + 1 = 3/tfr. (12.21)

The sphericity of a particle if/ is defined as the ratio of the surface area of a
sphere of volume equal to that of the particle, to the surface area of the
particle. In these terms Fricke's values of x + 1 would be 3/ij/2 for prolate
ellipsoids and 3/I/J1'5 for oblate ellipsoids.

The general conclusion is that if the continuous phase has the higher
diffusion coefficient there is little shape-effect. In the opposite case, a marked
shape-effect is noticeable if the ratio of the diffusion coefficients exceeds 100,
and the expression (12.19) with x given by (12.21) accounts satisfactorily for
the variation over a wide range of variables.

Starting from solutions of Laplace's equation expressed in Legendre
functions, Rayleigh (1892) obtained an improved approximation for identical
spheres arrayed on a single cubic lattice. His work was developed further by
Runge (1925) and de Vries (I952a,b) to include both body-centred and face-
centred cubic lattices and cylinders.

Another way of stating the nature of Maxwell's approximation is that he
assumed any one spherical particle to be embedded in a medium whose
properties were those of pure phase B, unmodified by the presence of the
spheres of phase A. Subsequently, other assumptions were made, notably
that the surrounding properties are those of the equivalent homogeneous
medium. Barrer (1968) quotes several references and formulae and a table
from de Vries (1952a,/?) comparing calculated results for spheres by several
authors. These are seen to be consistent only when DJDb is small. Barrer
suggests that the formulae may account reasonably well for plastics con-
taining impermeable filler particles, though the question of non-spherical
shapes is not resolved. Higuchi and Higuchi (1960) discuss a number of
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theoretical relationships for both steady and transient How, particularly in
relation to pharmaceutical problems,

Keller (1963) obtained an asymptotic solution for a dense cubic array of
spheres of infinite diffusivity embedded in a medium with diffusion coefficient
D. His expression for the effective diffusion coefficient D00 is

D*/D = - ^ In ((TC/6) - / ) +• ..., (12.22a)

with (n/6)—f « 1, where / is the volume fraction occupied by the spheres.
The singularity at / = n/6 occurs when the spheres touch each other. The
corresponding result for a square array of cylinders is

— = rr + ... , (1 2.22b)
D 2{(7i/4)--/p

with (n/4)—f « 1. Keller (1963) also established the following theorem. Let
D00 and D° denote the effective diffusion coefficients of the two composite
media obtained by imbedding in a medium of diffusivity D a square lattice of
circular cylinders with diffusion coefficients oo and 0, respectively. Then

D°°/D - D/D°, (12.23a)

A similar theorem for a rectangular lattice relates D00 in the x-direction with
D° in the y-direction. That theorem also holds for non-circular objects
provided they are symmetric in the x- and >'~axes. It states that

D?/D = D/D°, (12.23b)

where the subscripts x and y indicate the directions in which the effective
coefficients are measured. Theorem (12.23a) holds for objects which are
symmetric in the x- and y-axes and also in the 45° lines x = + y.

12.4,2.. Series-parallel formulae

Some papers have explored the idea that neighbouring parts of a composite
medium may be considered to be in series or parallel. We have seen in § 12,2
(p. 267) that a laminate composed of n sheets of thicknesses ll912... /„ and
diffusion coefficients DX,D2... Dn placed in series has an effective diffusion
coefficient D, given by

L+k+ L--L
D. D2 "Dm D '

where / is the total thickness of the laminate. The effective diffusion coefficient
for a composite consisting of n sheets in parallel is given by

Both expressions are based on the assumption that the flow is uni-directional.
If it is not, the relationships are approximations.
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FIG. 12.1. Analytical conductivity is determined by considering the fluid-solid suspension as
divided into cubes. (After Jefferson et al. 1958).

(i) Uniform spheres on a regular lattice. Jefferson, Witzell, and Sibbett
(1958) consider the composite medium to be divided into a number of
cubes as in Fig. 12.1(a), each having a sphere of the discontinuous phase at
its centre; Fig. 12.1(b) shows half a typical cube containing a hemisphere.
Jefferson et al. consider this to comprise the three components A, B, and C
as in Fig. 12.1(c). The cylinder A has length and radius both equal to the
radius of the sphere; the cylinder C has the same radius but its length is the
difference between the side of the cube and the radius of the sphere; B is a
hollow cylinder of length equal to half the side of the cube, outer diameter
twice its length, and inner diameter that of the sphere. The three components
are considered to form a series-parallel diffusion circuit, as in Fig. 12.1(d).
The underlying assumption is that the diffusion flow through the composite
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is everywhere uni-directional. This implies first, that the net flow through
components A and C is the same; and second, that concentrations are
constant over all planes perpendicular to the flow In particular, the con-
centration difference between the ends of B is the sum of the differences
across A and C respectively.

In reality, these assumptions are not strictly true, even in the most favour-
able case of a plane sheet of composite material with opposite faces maintained
at different concentrations so that flow would be uni-directional in a homo-
geneous sheet. In the composite, it will be two- or three-dimensional to an
extent depending on the geometry of the discontinuous phase and its dis-
tribution, and the relative properties of the two phases. We present Jefferson
et a/.'s treatment with slightly modified nomenclature. They were concerned
with the corresponding thermal problem.

The diffusion flow through the composite model qs of Figs. 12.1(c) and
12.1 (d) is given by qs = qA + qB- Denote by DA, AA, /A the diffusion coefficient,
cross-sectional area, and length of component A, and by ACA the concentra-
tion difference between its ends, with corresponding nomenclature for
components B and C. Then

Since the total change in concentration across the half cube is ACS, where
ACS = ACA + ACC and also AA = Ac, we find

ACSAA ACSAADAC

q l + k '
where DAC is the equivalent diffusion coefficient of A and C taken together.

By considering A and C together in parallel with B we have for the total
flow qs through the half-cube,

DAC &CSAA DB ACSAB

—r~n—+—/
'A + 'C lB

(12.25)

where Ds is the effective diffusion coefficient for the whole system and As

the cross-sectional area of the cubic element.
Remembering that /B = /A4-/c , we have on substituting for DAC from

(12.24)

If now we take the sphere to be of unit diameter and component C to be of
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length n then the geometry of the model gives (Fig. 12.1f)

AA = 7C/4, As = (l + 2n)2
? AB = (l+2n)2 — n/4;

lA = lB = 05, lc = n. (12.27)

It remains to determine the diffusion coefficient DA. With reference to Fig.
12.1(e), and by applying the series formulae similar to the first of (12.24) to a
cylindrical element of A lying between r and r + Sr;

_ DAAAACA _ r = °-5 2nACArdr

where DD is the diffusion coefficient of the spheres forming the discrete phase,
and Dc is already defined for component C which can be identified as the
continuous phase.

Substituting x^ = (0-5)2 — r2 and x c = 0-5 — xD, and performing the
integration we find

2DDDC f DD
7 A

Be
(12-28)

The parameter, n, is related to the volume fraction vD of the discontinuous
phase by the expression

n - 0403v~1 / 3-0-5. (12.29)

Eqns (12.26), (12,27), (12.28), and (12.29), when combined, yield an expression
for the effective diffusion coefficient of an array of uniform spheres arranged
on a regular lattice in a continuum, in terms of their volume fraction and the
diffusion properties of the two phases.

(ii) Random distribution of discrete phase, Tsao (1961) extended the use of
the series-parallel formulae to composites in which the discontinuous
phase consists of randomly distributed particles of irregular size and shape.
A unit cube of such a composite is shown in Fig. 12.2(a). It is assumed that
the surfaces parallel to the xy« and xz~planes are sealed, so that the over-all
direction of diffusion is along the x-axis. The shaded regions represent the
discontinuous phase d and the rest is the continuous phase c. Tsao illustrates,
by Fig. 12.2(b), three porosity parameters. For a line in the cube parallel to
the x-axis, the one-dimensional porosity Pt is defined to be the fraction of
the unit length occupied by the discrete phase. For a plane parallel to the yz-
plane in Fig. 12.2(b), the two-dimensional porosity P2 is defined as the frac-
tional area occupied by phase d. Finally, the three-dimensional porosity
F 3 is the volume fraction occupied by phase d.

Tsao slices the two-phase composite material into many thin layers,
parallel to the yz-plane as in Fig. 12.2(a). Each layer is so thin that P2 may be
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(d)

A

X or Px

FIG. 12.2. From Tsao (1961).

assumed constant within it. Since both the parallel and series formulae are
independent of the order in which the separate components are placed, we
can re-arrange the elements of the discontinuous phase within each slice
and then re-arrange the slices in any order we find convenient. All this assumes
that the diffusion may be considered uni-directional in the x-direction. In this
way Tsao proceeds through Fig. 12.2(c) to the arrangement of discrete
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phase shown in Fig. 12.2(d), in which there no longer exists any variation in
the z-direction so that a unit cross-section, perpendicular to z, can be con-
sidered, as in Fig. 12.2(e). The slices have become infinitesimally thin to
produce a smooth curve whose axes can conveniently be relabelled P{ and
P2 as indicated. By applying the series-parallel formulae it is easy to show
that the effective diffusion coefficient of the composite De is given by

(12.30)
\ + (Dd-Dc)P2

In order to evaluate eqn (12.30), a functional relationship between P t and P2

is needed.
Tsao assumed that the probability of any given length of discrete phase

occurring along any line in the original composite followed the normal dis-
tribution curve. This means that the probability W{>P\) of the one-dimen-
sional porosity being greater than P\ can be written

where \x is the mean and o the standard deviation of Pl. But the probability
of P\ being exceeded along any line through the composite is equal to the
fractional area occupied by the discrete phase for which the one-dimensional
porosity equals P\. This is simply P2(P\) since we see from Fig. 12.2(e)
that for all P2 less than this particular value, paths for which Px exceeds
P\ exist.

Thus we may write

P2(Pi)= W(>Pi) (12.32)

as defined in (12.31). Substitution from (12.32) for P2 in (12.30) gives an
expression for the effective diffusion coefficient of the composite De in
terms of Dd, Dc and the distribution parameters \i and o. Since

•J o
(12.33)

it follows that the mean value // = P 3 , the volume fraction of the discrete
phase. Tsao decided that the standard deviation a of Pt had to be deter-
mined by experiment in addition to the volume fraction, in order to fix the
two parameters \i and G in his probability function.

Cheng and Vachon (1969) applied Tsao's basic idea in a different way.
They re-arranged the particles of the discontinuous phase to form a centra-
lized symmetrical area as in Fig. 12.3(a), which they then transformed to
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Discontinuous
phase

(a)

Discontinuous
phase

(b)

FIG. 12.3. Phase distribution for a two-phase mixture as represented by: (a) the x-axis bisecting
the square; (b) the x-axis coinciding with the lower border of the square. (From Cheng and

Vachon 1969).

Fig. 12.3(b) by dropping the x-axis to coincide with the lower edge of the
square. Following Tsao, they assumed the discontinuous phase to be dis-
persed according to a normal distribution so that the curve in Fig. 12.3(b)
is of the form

y=Clexp(-C2x
2\ (12.34)

where Cl and C2 are parameters. Having in mind that — \ ^ x < | , they
neglected all higher terms in the expansion of the exponential function in
(12.34) and wrote

y = B + Cx2. (12.35)

From the symmetry of Fig. 12.3(a) we see that

B = - 4 /C . (12.36)
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Using (12.35) and (12.36) in the expression for the volume fraction,

rB/2
P3 = 2 ydx, (12.37)

Jo
we find

B = V(3P3/2), C = -4V2/{V(3P3)}. (12.38)

By applying the series-parallel formulae to Fig. 12.3(b) and remembering
that in Tsao's notation y = P2 and x = P t , we find

1 CB/2 dP l—B

T.-2). B ^ B j T - s r (1239)

P 2 is expressed as a function of P t from (12.35) using (12.38).
It is convenient to substitute

E = Dc - B(Dd - DG), F = C(Dd - Dc) (12.40)

and so write two expressions for 1/De:

(a) Dc > Dd.

^ , (12.41)

( b ) D c < D d .

J_ - 1 in i v - ' 2-w - /i - - (1242)

e V ^

In this case F is a negative quantity.
Since only one parameter P 3 , the volume fraction, is needed to determine

B and C through (12.38) it appears that Cheng and Vachon have removed the
need to measure a second parameter experimentally as Tsao suggested.
What they have done is to specify one particular set of normal distributions
by their assumption of symmetry in Fig. 12.3(a). In fact, in terms of B and C
the normal distribution (12.34) is

y = B exp {Cx2/B\

which is identical with that used by Tsao to derive (12.31) if we identify
x = Pi— \i and B/C = 2c2. The only difference is that Tsao normalized
his integral by the factor l/(ayj2n), whereas Cheng and Vachon chose
B = - 4 / C = (3P3/2)± Clearly they have also chosen a = iJ(3P3) by their
method of rearranging the discontinuous phase in Figs. 12.3(a) and 12.3(b).

Cheng and Vachon suggest how their method can be applied to some
three- and multi-phase systems for certain ratios of the diffusion coefficients
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of the component phases. They also compare results obtained by their own
and other formulae with experimental data for two- and three-phase systems.
Fidelle and Kirk (1971) measured thermal conductivities of three different
composites covering a broad range of filler concentration and heat con-
ductivity ratios. The composites were carborundum plaster, alumina
plaster, and alumina polyester. Over-all, the best predictor of their experi-
mental data is the Cheng-Vachon formula. That theirs is better than the
three-dimensional computer results obtained by Fidelle and Kirk (1971)
perhaps suggests that the assumption that the spheres are on a regular
lattice and not randomly distributed, as in Cheng and Vachon's treatment,
is more serious than that of uni-directional flow. The uni-directional,
approximate treatment has the advantage of leading to a simple explicit
expression for the effective diffusion coefficient.

12.4.3. Numerical solutions
Several authors have obtained numerical solutions of Laplace's equation

for a region in which identical uniform particles of one phase are arranged
on a regular lattice in a continuum of a different phase.

(i) Fidelle and Kirk (1971) used finite-difference methods analogous to
those described in Chapter 8 to compute numerical solutions for Jefferson's
model of spherical particles § 12.4.2(i) (p. 274). They took account of the three-
dimensional nature of the problem but did not reproduce the spherical
interfaces exactly. They used the best approximation possible with a rectan-
gular grid of points.

(ii) Bell and Crank (1974) studied a regular two-dimensional array of
identical, rectangular blocks, impenetrable by the diffusing substance, i.e.
having zero diffusion coefficient. They first showed that for any region with
repeated symmetry, as in Fig. 12.4(a), it suffices to study the steady-state

yf' Z, ^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Zj

\\w\\\\\\\\\\v\

(a) (b)

FIG. 12.4. (a) Aligned rectangular blocks, (b) Basic element.
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problem in a rectangular region with a re-entrant corner as in Fig. 12.4(b),
provided the number of repeating basic units is an integer power of two.
The blocks need not be rectangular. The argument applies in general,
provided symmetry is identified. A staggered arrangement, as in Fig. 12.5(a),
can be studied by solving the problem for the rectangle with two re-entrant
corners, as in Fig. 12.5(b).

o^\\\\\\\\\\\\\\\\\\\\v

X'

(a) (b)

FIG. 12.5. (a) Staggered rectangular blocks, (b) Basic element.

Bell and Crank obtained finite-difference solutions for the regions shown
in Figs. 12.4(b) and 12.5(b). The singularities at the re-entrant corners (see
§§ 8.10.2 and 8.12, pp. 153 and 159) were treated by the methods of Whiteman
and Papamichael (1972). An alternative approach by Symm (1973) using
integral equations and Green's functions produces the same results. Typical
plots of concentration and flow-lines are given in Figs. 12.6 and 12.7. They
confirm the approximate nature of the assumptions underlying the series-
parallel model (§ 12.4.2, p. 273). With reference to Figs. 12.4 and 12.5, the
series-parallel (SP) expression for the effective diffusion coefficient De of
the composite is

D =
Dh D

h + a(\-h)
(12.43)

where v is the volume fraction of the dispersed phase, given by v = (1 — h)o.
In order to derive (12.43) we sum infinitesimal strips perpendicular to the
flow by a series formula, and the diffusion coefficient for each strip comes from
the formula for diffusion resistances in parallel. Alternatively, we can obtain
an approximation based on the summation of strips lying parallel to the flow
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FIG. 12.6. Lines of constant concentration. FIG. 12.7. Flow lines (where F is the total
flow through the region).

rather than across it. For this problem we obtain the apparently trivial
expression

De = Dh (12.44)

which, for convenience, we refer to as the parallel-series or PS approximation.
Fig. 12.8 shows how DJD varies with the 'window' width h and that the
numerical solution lies between the SP and PS approximations. These and
other calculated results, taken together with Keller's reciprocal relation
(12.23b) led Bell and Crank to the general conclusion that for rectangular

oo
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0-40 0-36

40 50 60
Window (per cent)

0-32 0-28 0-24 0-20 016 012
Volume fraction v = (l— h)o

80

008

90 100
• 100/z

004 000

FIG. 12.8.
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blocks with diffusion coefficient Dd in a continuum with coefficient Dc the
effective diffusion coefficient depends primarily on 'window space' h, when
Dd « Dc, and on block width a, when Dd » Dc. In passing, they quote results
for the limiting case a = 0 of thin discs oriented normal to the flow.

Bell and Crank proposed an improved approximate expression, which is a
weighted average of the SP and PS approximations,

, (12.45)

where

0 = 0-56-0-5(7 + 04/z, (12.46)

and DSP and Dps are the estimates produced by the SP and PS models.
Expression (12.45), with (12.46), gives values of De differing by only 2 per cent
or 3 per cent from the numerical solutions for a range of block sizes and
spacings for both the aligned and staggered arrangements.

(iii) Keller and Sacks (1964) tabulated numerical values of DJD for a
regular lattice of impermeable, uniform cylinders of various radii. They
confirmed Keller's asymptotic solution (12.22b), adjusted by (12.23a).
Their results for cylinders of radius r agree with those of Bell and Crank
(1974) for square blocks of side 2<r, when suitable scaled so that they have the
same cross-sectional area, i.e. r = la/yju. Thus, the geometric shape of the
dispersed phase is not important when the areas are normalized, except when
the blocks or cylinders are very close together. The weighted approximation
(12.45) with (12.46) also represents satisfactorily the results of Keller and
Sacks.

Baxley, Nicholas, and Couper (1968) tried a numerical-statistical approach
to cope with randomly distributed particles of irregular shape. They con-
sidered that any two-phase system could be represented by a three-dimen-
sional cubical system of small cubes of each phase. Any irregular shaped
particle can be built to any degree of approximation by arranging a sufficient
number of small cubes according to a predetermined plan. Also, elementary
cubes of the discrete phase can be inserted into the continuum according to
any specified statistical distribution. They simulated a two-phase system as a
three-dimensional matrix in a computer. An IBM 7040 permitted 8 x 8 x 1 1 =
704 elementary cubes and so the number of discrete phase cubes for a given
volume fraction / was 704/ The heterogeneous system was built up in the
computer by placing small solid cubes in storage locations whose coordinates
were determined by a constant-density random-number generator. Then a
set of finite-difference equations for the composite was solved. The calculated
results were compared with measured data for several liquid-solid and
liquid-liquid systems. Unexpectedly, Jefferson's series-parallel approxima-
tion for spheres arranged on a regular lattice gave equally good results.
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In the light of more recent work by Bell and Crank (1973) on rectangular
blocks, it could be that the corners of Baxley's cubes are one serious source
of error and that the finite-difference representation needs to be improved.



13

MOVING BOUNDARIES

13.1. Introduction

I N one general class of problem some of the diffusing molecules are im-
mobilized and prevented from taking further part in the diffusion process.
This may be due to a chemical reaction by which the diffusing molecules are
either precipitated or form a new immobile chemical compound. Alterna-
tively, we may have a less specific type of adsorption on fixed sites. We are
concerned with immobilization processes which are irreversible, and so rapid
compared with the rate of diffusion that they may be considered instan-
taneous. Only a limited number of molecules can be immobilized in a given
volume of the medium. Examples are the diffusion of oxygen into muscle
where oxygen combines with the lactic acid; the reaction of Cu2 + ions with
CS2 groups as they diffuse in cellulose xanthate; and the diffusion of perio-
date ions into cellulose fibres and their removal by combination with the
glucose groups of the cellulose. An essential feature of the idealized problem
of diffusion accompanied by the instantaneous and irreversible immobiliza-
tion of a limited number of the diffusing molecules is that a sharp boundary
surface moves through the medium. It separates a region in which all the
sites are occupied from one in which none of them are. In front of the advanc-
ing boundary the concentration of freely diffusing molecules is zero, while
behind it immobilization is complete. Fig. 13.1 illustrates the situation. The
same mathematical problem is presented by heat flow in a medium which
undergoes a phase change at some fixed temperature, accompanied by the
absorption or liberation of latent heat. Such problems are often referred to as

Empty

Distance

FIG. 13.1. Diffusion of particles which are trapped in immobile holes.
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'Stefan problems' after J. Stefan (1890). An excellent survey of the literature
dating from that time is given by Muehlbauer and Sunderland (1965).
Bankoff (1964) has written a useful review article with numerous references.
Rubenstein's book (1971) gives a systematic presentation of the mathematical
aspects of Stefan problems.

The occurence of a sharp boundary does not necessarily imply a chemical
reaction. When a liquid penetrant diffuses into a polymer sheet or filament,
sharp boundaries are frequently observed under a microscope. They cor-
respond to near-discontinuities in the gradient of the concentration-distance
curve (Hartley 1946). They imply discontinuous changes in the diffusion
coefficient-concentration relationship and present the same mathematical
problem. We consider both analytical and numerical methods of obtaining
mathematical solutions.

13.2. Discontinuous diffusion coefficients

We shall first consider diffusion coefficients which change discontinuously
from one constant value to another at certain concentrations. They may be
zero or infinite over parts of the concentration range. Such coefficients
provide examples of extreme types of concentration-dependence and are
useful in that they enable limits to be set to the extent to which concentration-
dependence of the diffusion coefficient can modify the course of diffusion as
indicated, for example, by the shape of the concentration-distance curve.
Some special cases which do not require detailed calculation are considered
first, and afterwards solutions are developed for more general cases.

13.2,1. Special cases not requiring detailed calculation

When the diffusion coefficient varies discontinuously with concentration
in certain ways, the concentration-distance curves and the sorption- and
desorption-time curves can be deduced by general reasoning from the known
solutions for a constant diffusion coefficient. Some examples referring to
uni-directional diffusion in a plane sheet are presented graphically in
Figs. 13.2 and 13.3. These diagrams are largely self-explanatory and need
only brief comments. The nomenclature is as follows: c is the concentration
of diffusing substance at a distance x measured from the surface of the sheet
in the direction of diffusion at time t, and D is the diffusion coefficient.
Also Mt is the total amount of diffusing substance absorbed by or desorbed
from unit area of a plane sheet of thickness / in time t. For sorption the sheet
is initially free of diffusing substance and the surface is maintained at c = C1

throughout; for desorption the initial concentration is C{ throughout the
sheet and the surface is maintained at zero concentration. In Fig. 13.2(a),
over the concentration range Cj > c > Cx for which D is zero, the concentra-
tion gradient is infinite and there is no penetration into the sheet. The sorption
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(a)

D-c
C ! /C ]

(b)

r*-0O—H

Cx C,

(c)

Cx

(d)

/c,

FIG. 13.2. Sorption behaviour.

behaviour is identical with that for a constant diffusion coefficient Dx and
surface concentration Cx, and the equilibrium total content of the sheet is
ICX. When D is infinite over any finite interval of concentration at the upper
end of the concentration range as in Fig. 13.2(b), the existence of a finite
concentration gradient anywhere in the range Cx > c > Cx would mean an
infinite rate of transfer of diffusing substance. Consequently, the concentra-
tion must reach its final uniform value Cl throughout the sheet infinitely
rapidly, and this is true whatever the form of the D against c curve at low
concentrations, even if D is zero. When D is infinite at low concentrations,
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but drops to a constant finite value Dx at c = Cx (Fig. 13.2(c)), the sheet
attains a uniform concentration Cx throughout, infinitely rapidly, and the
remainder of the sorption behaviour is as for a constant diffusion coefficient
Dx. The sorption behaviour is precisely the same for a diffusion coefficient
which is infinite for intermediate concentrations and has a constant finite
value at high concentrations, as in Fig. 13.2(d), whatever the form of D at
low concentrations, again even if D is zero. The curves of Fig. 13.3 for desorp-
tion follow by similar arguments and need no comment.

D-c c-xl(D,t)\

(a)

/c\

KCX-CX)

(b)

r--oo 1 C lF /c\

/ (C.-Q)

(c)

(d)

Cy

C,

C,r

j i

/ c

FIG. 13.3. Desorption behaviour.
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13.2.2. Diffusion coefficients having a discontinuity at one concentration

The more general cases in which the diffusion coefficient changes discon-
tinuously from one constant finite value to another, at one or more con-
centrations, require detailed calculation. At the concentration at which a
discontinuous change in D occurs there is also a discontinuity in the con-
centration gradient, and the way in which this moves has to be determined.
The problem can be stated mathematically as follows.

Suppose that diffusion takes place into a semi-infinite medium and that
the surface x = 0 is maintained at a constant concentration Cx. We shall
consider first a diffusion coefficient in which a discontinuity occurs at a
concentration Cx. For concentrations less than Cx, D = D2, and for con-
centrations greater than CX,D = D{. Suppose that at time t the discontinuity
in concentration gradient occurring at Cx is at x = X(t); this is a function
of t which has to be determined. At time t, let the concentration in the region
0 < x < X be denoted by c1? and in the region x > X by c2. At the dis-
continuity, the concentrations cl,c2 must be the same, and also the mass
of diffusing substance must be conserved, so we have

c,=c2 = Cx, x = X, (13.1)

Dx dcjdx = D2 dc2/dx, x = X. (13.2)

In the region 0 < x < X we have to satisfy

dcjdt = D1 d2cjdx2, 0 < x < X, (13.3)

and

Cl = Cj , x = 0. (13.4)

In the region x > I w e must satisfy

dcjdt = D2 d2c2/dx\ x > X. (13.5)

Also we suppose the concentration to be C2 (constant) at large distances, i.e.

c2 = C2 , x = oo. (13.6)

The following method of solution of these equations is due to Neumann
and is used by Carslaw and Jaeger (1959, p. 283) to deal with an analogous
problem in heat flow when heat is evolved or absorbed at the boundary.
Neumann's method consists of writing down a particular solution of the
differential equations and boundary conditions (13.1) to (13.6), and then
seeing what initial condition this solution satisfies. The solution of (13.3)
satisfying (13.4) is
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where A is a constant. Also if B is a constant,

x
(13.8)

Then (13.1) requires

A erf—i = Cx — Cl, (13.9)

and

Since (13.9) and (13.10) have to be satisfied for all values of f, X must be
proportional to r*, say,

X = kt*9 (13.11)

where k is a constant to be determined. Using throughout (13.7), (13.8),
(13.9), (13.10), and (13.11) in (13.2) we obtain

Q-Ci cx-c2 _
+/(k/2Df)-U' (U'U)g(k/2Df)+/(k/2Df)

where g and / are functions given by

( m 3 )

When (13.12) is solved numerically, it gives k in terms of C l 5 C2, C^, and
the diffusion coefficients Dx and D2 . The numerical solution is greatly
facilitated by using Figs. 13.4, 13.5 and 13.6 which show graphs o f / a n d g.
The same graphs were shown in Danckwerts's paper (1950/?).

Substituting fc = X/t* in (13.9) and (13.10), we obtain

Aerf-^j=Cx-Cl9 (13.15)

k
Berfc —-j = Q - C 2 , (13.16)

from which /I and B can be evaluated, knowing k, and hence the concentra-
tions cx and c2 follow from (13.7) and (13.8). When t = 0,X = 0andc 2 - C2 .

This solution applies strictly only when the medium is semi-infinite, a
condition which is effectively satisfied in the early stages of diffusion into a
sheet of finite thickness. When the concentration at the centre of the sheet
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FIG. 13.4 f{k/2D\) for positive values of k/2D\.
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kl(2D\)

FIG. 13.5. f(k/2D\) for negative values of k/2D\.
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± kl(2D\)
FIG. 13.6. g as a function k/2D\.

becomes appreciable, this solution must be replaced by one in which the
finiteness of the sheet is recognized. In general, it is necessary to continue
the solution by numerical methods such as are discussed in Chapter 8.
In at least one interesting case, however, a formal solution is possible after
the sheet has ceased to be semi-infinite. This is when the diffusion coefficient
is zero at low concentrations, i.e. D2 = 0. Since this case can be solved
completely without excessive labour, and as it is a limiting case of a diffusion
coefficient which is small at low concentrations and increases with con-
centration increasing, it justifies detailed consideration.

13.2.3. Diffusion coefficient zero for concentrations less than Cx and constant
and finite above Cx

When D2 approaches zero, k/2D\ becomes large, and by applying the
asymptotic expansion

1 / 1 1 \

(13.17)

(13.18)

to (13.14) eqn (13.12) reduces to

g(k/2D\) + cY-c2 = o.

Eqn (13.18) can be solved to give k and the solution follows from (13.7).
From (13.2), dcjdx -• oo when D2 -+ 0, unless dc1/dx = 0, which is the final
steady state, and hence the concentration gradient is infinite at low con-
centrations. Examples of concentration curves, plotted against x/^Djt)*,
are shown in Fig. 13.7 for Cx = %Cl9\Cl9%Cl9 and \CX respectively, and
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FIG. 13.7. Concentration-distance curves for D as in Fig. 13.7(a). Numbers on curves are values

for C2 = 0 in each case. They also apply to the problem of diffusion with
precipitation discussed by Hermans (1947), who gives a graph effectively of
k/2D\ as a function of (Cx - CX)/(CX - C2), so that the root of (13.18) can be
read off for any desired combination of values of C1,C2, and Cx. This is
the graph shown in Fig. 13.6.

It is clear from the way in which the concentration-distance curves of
Fig. 13.7 terminate abruptly that, from the time the vertical advancing front
reaches the centre of a finite sheet, the diffusion coefficient is constant at
Dx over the whole of the remaining concentration range. The solution
required is thus the well-known one for diffusion into a plane sheet, with a
constant diffusion coefficient and a given initial concentration distribution
through the sheet. In the present nomenclature, the solution (4.16) given in
§4.3.1 (p. 47) is

2/

2(-ir+1/C t (x) sin ax (13.19)
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where the surface of the sheet x = 0 is maintained at Cx, the centre of the
sheet is at x = /, and f(x) is the concentration distribution through the
sheet at time t = t0. The total amount, Mf, of diffusing substance present in
half the sheet at time t is obtained by integrating the right-hand side of
(13.19) with respect to x between the limits 0 and /, and is given by

M °°
— i = 1+2

^ d x ^ ^ l <mo,
o /Cj 2/ (2n + l)27rj

In the present problem, f(x) is given by (13.7) evaluated at time f0, so that

(13.21)

where A is given by (13.9). The time t0 is defined as that at which X = /, so
that it is related to the solution of (13.7) by the expression

(13.22)
I2

By substituting in (13.20) from (13.21) and (13.22), MJICX is expressed as a
function of the single variable D^t/l2. The integral in (13.20) is conveniently
evaluated numerically. A family of curves showing MJlCl as a function of
(D^/l2)^ is shown in Fig. 13.8 for several values of Cx including Cx = 0,
when the solution is simply that for a diffusion coefficient having the constant
value Dx. The linear parts of these curves follow readily from the solution
(13.7) since we have

dMl=_lDi
d^l AD*

and hence

/ c i n c i \ * /

where A is given by (13.9) and is negative for sorption.
We may note that these curves, which are universal for all values of Dl9

are each linear at first, becoming concave downwards later though it might
have been expected that they would show a different behaviour. Thus when
the vertical front of a concentration-distance curve (Fig. 13.7) reaches the
centre of the sheet, the region of zero diffusion coefficient is immediately
removed and the subsequent sorption is governed by a constant and possibly
high value of D, i.e. by D1. On these grounds it is not at first unreasonable to
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0-5 10 (D], / /2 )* 1-5 20

FIG. 13.8. Sorption curves for D as in Fig. 13.7(a). Numbers on curves are values of Cx/Cl.

expect the sorption to proceed more rapidly at this stage, i.e. for the gradient
of a curve of Fig. 13.8 to be first constant and then to increase. Detailed
calculation shows that this is not so, however, even for this limiting case of a
discontinuous diffusion coefficient which is zero at low concentrations.

13.2.4. Diffusion coefficients having discontinuities at two concentrations

The above results can be extended to the case of a diffusion coefficient
defined by

D = D l 5 C,> c> Q , (13.24)

D = D 2 , c<CY, (13.25)

D = D 3 , Cx>c>CY. (13.26)

It is convenient to refer to this as a two-step diffusion coefficient. At the
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concentrations Cx and CY there are discontinuities in concentration gradient,
and at each discontinuity conditions corresponding to (13.1) and (13.2) are
to be satisfied. The method is so closely similar to that just described that the
equations can be written down without explanation. Concentrations cx, c2,
c3 are associated with the ranges in which the diffusion coefficient has the
values DX,D2,D3 respectively. Then if A, B, and E are constants we have the
following solutions:

<*1 -

?2 =

The conditions

c,

c2

cx

+ A erf-

+ £ erfc

+ £Jerf

c2

X

2(D2r)^'

X

2(D30*

= ^3 =

= C3 =

0 < x <

X

pr f•••• c i 1

cx.
Cy,

> Y,

X

(D3t)\
I

x =

X =

X,

L X < x < Y.

X,

Y,

(13.27)

(13.28)

(13.29)

(13.30)

(13.31)

require that

^ ' ( 1 3 3 2 )

CY-C2 = £erfc ¥, (13.33)

. Y „ X

from which it follows that

X = klt*9 Y=k2t*9 (13.35)

where kl and k2 are constants to be determined. By using the two conditions

Dx dcjdx = D3 dcjdx, x = X, (13.36)

D2 dc2/dx = D3 dc3/dx, x = Y9 (13.37)

and eqns (13.27), (13.28), (13.29), (13.32), (13.33), (13.34), and (13.35) we derive
the following two equations from which to evaluate kx and k2.

Dt(Cy-Q)exp(-/c^/4D3) = ()

erf(fc^Df) erf(/c2/2D|)

Dl(Cy-C2)exp(-^/4D2)
erfc(/c2/2D|) erf(fc2/2Dt)-

Df(CyQ)exp(^/4D3)

erf(fc/2Dt)erfffc^D^) '
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Once kx and k2 are determined the whole solution follows as before, and
it is easy to see that the same initial condition holds, namely, that the region
x > 0 is at a uniform concentration C2 . Eqns (13.38) and (13.39) can be solved
numerically without excessive labour, but for any further extension to a three-
or-more step diffusion coefficient the numerical work would probably be
prohibitive. However, the two-step form includes several interesting types of
diffusion coefficient and by suitable choice of D l 5 D 2 , D 3 and CX,CY a
reasonable approximation to many continuously varying diffusion coef-
ficients can be obtained. Some results for two-step diffusion coefficients
are discussed in Chapter 9.

13.3. Immobilizing reaction

The concentration plots in Fig. 13.7 have the form of Fig. 13.1. If we inter-
pret C in §§ 13.2.2 and 13.2.3 to be the total concentration of molecules, i.e.
both freely diffusing and immobilized, then Cx in (13.18) with C2 = 0, can
be identified as the concentration of the immobilized component. In order
that the front can advance a distance 3X we need to supply an amount Cx SX
of diffusant. The amount arriving at X in a time interval 5t is —DlSt dC/dx.
Conservation at the moving boundary therefore requires

-D{dC/dx = CxdX/dt.

If this condition is substituted for (13.2) when D2 = 0, we finally regain (13.18).
In the case of heat flow Cx becomes Lpx where L is the latent heat and px the
density of medium 1. Thus, a problem in diffusion with immobilization can
be thought of formally as a concentration-dependent diffusion process in
which D is zero when the total concentration C is in the range 0 ^ C < Cx

and changes discontinuously to a finite value at C = Cx.

13.4. General problem of the moving boundary

We give now Danckwert's (19506) treatment of the more general problem
in which a moving interface is involved. In all the cases considered the two
regions are separated by a plane surface and diffusion takes place only in the
direction perpendicular to this plane. The concentration is initially uniform
in each region. The process of diffusion may cause changes which bring about
the disappearance or appearance of matter at the interface in one or both
regions, and hence a resulting bodily movement of the matter in one or both
regions relative to the interface. An example which is easy to visualize is
afforded by the melting of ice in contact with water; as heat (here regarded as
the diffusing substance) flows from water to ice, ice disappears and water
appears at the interface, so that both ice and water are in bodily movement
with respect to the interface. In all the cases considered the rates of bodily
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motion of the matter in the two regions with respect to the interface are directly
proportional to each other, e.g. the volume of ice melted is proportional
to the volume of water formed. Variations in specific volume or partial
specific volume due to changes in concentration (or temperature) are ignored.
The solutions derived below do not apply to systems in which convection
currents are important or in which gradients of both concentration and
temperature exist.

13.4.1. The problem

Consider two media which are free from convection currents but which
may be in relative bodily motion along the x-axis, which is perpendicular
to the interface. Position in medium 1 is specified by a coordinate in the
x t system which is stationary with respect to medium 1; position in medium
2 by a coordinate in the x2 system, stationary with respect to medium 2.
The media are separated at time t by the plane xx = Xx, x2 = X2, which is
initially at xl = x2 = 0. Medium 1 occupies all or part of the space X1 <
xx < oo, medium 2 all or part of the space — oo < x2 < X2 (Fig. 13.9).

x2= ac x2=0 x-0 xa = X2

FIG. 13.9.

In both media there is a substance which moves by diffusion relative to the
Xj and x2 coordinates and is transferred from one medium to the other.
The concentration of the diffusing substance at time t is denoted by cx at xx

and by c2 at x2. The following equations are obeyed in the two media,

dcjdt = Dxd
2cjdx\,

dc2/dt = D2d
2c2/dx2

2,

(13.40)

(13.41)
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where the diffusion coefficients D1 and D2 are assumed to be independent of

At any lime the concentrations c^XJ , c2{X2) at either side of the interface
are assumed to be related by an equilibrium expression

c2(X2) = Qc1(X1) + R, (13.42)

where Q and R are constants, e.g. for the absorption of a gas obeying Henry's
law, Q is the solubility of the gas and R = 0. The diffusing substance is con-
served at the interface so that

(13.43)

We have already said that there is constant proportionality between the
rates of movement of the two media relative to the interface and hence it
follows that

X2 = PX1, (13.44)

where P is a constant determined by the conditions of the problem and may
in some cases be zero.

We now proceed to build up solutions of these equations by what is
essentially the same method as was used earlier for discontinuous diffusion
coefficients, leaving till later an examination of the various ways in which the
initial and boundary conditions can be specified.

Consider an infinite medium in which eqn (13.40) holds. Then a solution
takes the form

C ( Q O ) " C l ^ , (13.45)

where c?i(oc) and ct(0) are given by the initial and boundary conditions, i.e.

c, = Cl(oo), Xl > 0, t = 0, (13.46)

cx = cx(0), x, = 0, t > 0. (13.47)

Similarly, the solution of (13.41) for corresponding conditions

c2 = c2(-oo), x2 < 0, t = 0, (13.48)

c2 - c2(0), x2 = 0, t > 0, (13.49)

is

For the same conditions, the total amounts of diffusing substance, Vl and
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V2, crossing the planes xx = 0, x2 = 0 respectively in time t in the direction oi
decreasing x are

(13.51)

V2 = 2{c2(0)-c2(-x)}(D2r/7c)*. (13.52)

The solutions (13.45) and (13.50) apply to an infinite medium. Each can
be applied equally well to a region bounded by one or two x-planes either
stationary or moving, provided that (i) the initial concentration at every
point in this restricted region is the same as for the same value of xx or x2

in the infinite medium; and (ii) the concentration at the boundary plane or
planes is at all times the same as for the same value of Xj or x2 in the infinite
medium. The problems to be discussed here concern media bounded by one
or two planes, but they fulfil the above conditions and so the solutions for
infinite media can be used. In other words we shall show that the solutions
(13.45) and (13.50) are compatible with (i) eqns (13.42), (13.43), (13.44) and
(ii) the conditions determined by the data of the problem which may be of one
of two kinds described below as Class A and Class B. It should be noted that
the values of cl outside medium 1 and of c2 outside medium 2 have no
physical significance.

I3o4o2. Problems of Class A

Here the movement of one or both media relative to the boundary is
caused by the transfer of diffusing substance across the interface. The condi-
tions are that two of the quantities c^oo), cx(0), c^X^, c2( — x ) , c2(0) are
specified and also that the magnitudes of Xx and X2 are at all times propor-
tional to the amount of diffusing substance which has crossed the interface
(xl = Xl9 x2 = X2). Hence we may write

dt
= S<D,

dx dt
(13.53)

where S is a constant of proportionality characteristic of the system and
is the ratio of the magnitude of Xx to the amount of diffusing substance
which has crossed the interface in the direction of decreasing x. Combining
this with (13.43) and (13.44) we have

9 — . ~ ~~,, , „ . — , , (13.54)
dt

Substituting (13.42), (13.44), (13.45), and (13.50) in (13.53) and (13.54) we find

df S
— ) e x p ( - X ' / 4 D 1 r ) . (13.55)
nt
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! ( * ,» = {c2(0)-C2(-0O)}
7Cf

exp(-P2Xj/4D2t).

Also from (13.45), putting xt = Xl,cl = c^XJ, we have

c1(X1) = c 1 (0)+{c 1 (oo)-c 1 (0)}erf
2>/(D10J"

(13.56)

(13.57)

It is clear that (13.55), (13.56), and (13.57) can simultaneously be satisfied
for all values of f, if and only if Xl/t

i is constant. Put

)*, (13.58)

(13.59)

(13.60)

so that (13.55), (13.56), and (13.57) become respectively

= n*<x\^ —

c2(0)-c2(c») = K*a|^- --PR-PQc^XMexp

c,(*,) = Ci(0)+ {c^ooJ-c^O)} erf a, (13.61)

while substituting x2 = X2 in (13.50) and using (13.58) and (13.44) gives

c2(0)-c2(-oo) D
(13.62)

Eqns (13.59) to (13.62) are independent and contain, besides physical con-
stants and the parameters R and S, the six quantities cx(0), c^oo), c2(0),
c2( — oo), c^{Xx\ and a. Hence if two of the concentrations are given, the four
equations can be solved for the other three and a, and the concentrations cx

and c2 follow as functions of x and t from (13.45) and (13.50). The expressions
so obtained for cl and c2 satisfy both the initial and boundary conditions of
the problem and the equation of diffusion, and therefore constitute the
required solution. Substitution for a in (13.58) gives X1, and hence X2 from
(13.44), in terms of t and known quantities. Finally we notice that the con-
centrations c^Xj) and c2{X2) at the interface are necessarily constant from
(13.61) and (13.42).

13.4.3. Problems of Class B

Here the movements of the media on either side of the interface are not
related to the amount of diffusing substance which has crossed the interface
by eqns (13.53) and (13.54). Instead, three of the five concentrations
Cj(O), c^X^, c2(0), c2(— oo) are specified.



M O V I N G B O U N D A R I E S 303

Substituting (13.42), (13.44), (13.45), and (13.50) into (13.43) gives

{^(ooJ-MO)}
nt

+ {c2(0) - c2( - oo)} R M 2 exp ( - P2X2/4D2t)

+ ^ d T { ( 1 ~ P 0 C l ( X l ) ~ p ^ } = a (13>63)

Taken with (13.57) this can only be true for all values oft x'iXJt^ is constant.
On putting

Xx = 2pt*, (13.64)

(13.63) becomes

From(13.57)
+P{W-

cAX,) = c,(

n

PQ)

0) +

'exP(-j52

c^XJ-PF

tcAco)-c,

IDX)

exp(-P

J} = 0.

2/D2)

(0)}erf(B/Dt),

(13.65)

(13.66)

while from (13.42) and (13.50)

c2(Xi) = Qc^XJ + R = c2(0)H-{c2(0)-c2(-oo)}erf(Pj8/Dj). (13.67)

Eqns (13.65), (13.66), and (13.67) are independent and so, since three of the
five concentrations c^oo), cx{Xx\ c^O), c2(0), c2( — oo) are known, the values
of the other two and of /? can be determined. Hence Xx can be found as a
function of t from (13.64), and cx and c2 as functions of x and f from (13.45)
and (13.50).

13.4.4. Examples of Class A problems

(i) Absorption by a liquid of a single component from a mixture of gases.
An ideal mixture of a soluble gas A and an insoluble gas is in contact with a
liquid. Let the gas be medium 1 and the liquid medium 2. Initially the mole
fraction of A in the gas is c^oo) and the concentration of dissolved A in the
liquid, expressed as volume of gas per unit volume of liquid, is uniform and
equal to c2( — oo); c^oo) and c2( — oo) are given. There is always equilibrium
between the gas and the liquid at the interface, where Henry's law is assumed
to be obeyed. It is further assumed that there is no appreciable change in the
partial volume or temperature of the liquid when A is absorbed, and also
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that the diffusion of A in the liquid obeys the simple diffusion equation (13.41).
If the origin of the xx system of coordinates moves so that there is no mass
flow of the gaseous mixture across any plane of constant x2 , then eqn
(13.40) is obeyed in the gas. For this to be so, X1 must be equal at all times to
the volume of component A absorbed by unit area of the liquid surface, i.e.
Xl = V. Thus the conditions of the problem correspond to those specified
for Class A problems, with S = 1 in eqns (13.53) and (13.54).

The x2 coordinate of the liquid surface does not change, and hence X2 = 0,
c2(X2) = c2(0) for all f; in equation (13.44), P = 0. Eqn (13.42) becomes

R = 0, c2(X2) = c2(0) = Qcx(Xx\

where Q is the solubility of A in the liquid expressed as volume of gaseous A
in unit volume of liquid per unit mole fraction of A in the gas. Making the
appropriate substitutions and eliminating the unknowns except a, eqns
(13.59), (13.60), and (13.61) reduce to

-*— 1— = 7cTa exp (a2) erfc a = /(a), (13.68)
OL(UD1/D2)'-Q + C2(-oo)

and putting Xl = Kin (13.58) gives

V= 2a(D1t)±. (13.69)

The function / has already been shown in Figs. 13.4 and 13.5 and, using
these curves, a is readily evaluated from (13.68) by trial and error for known
values of D t , D2, Q, c^oo), and c2( — oo). The rate V at which A is absorbed
by the liquid follows immediately from (13.69). It is also easy to show that

( 1 3 . 7 0 )

erfc a 2(0^

c2 = e^i(^i) + { 2 c 1 ( X 1 ) - c 2 ( - a D ) } e r f ^ - ) T . (13.72)

The same equations may be used for the escape of dissolved gas A from
solution. In this case a will be negative and the amount of A leaving the
solution in time Ms —V.

For further discussion of the physical conditions under which these
solutions are applicable, Danckwerts's original paper (1950b) should be
consulted.

A special case arises when c^XJ , the concentration at the interface, is
determined by some factor other than diffusion in a liquid. Examples quoted
by Danckwerts are the isothermal evaporation of a liquid into still air, when
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c^/YJ is determined by vapour pressure, and the sorption of a gas by a liquid
which is rapidly stirred without deforming the surface, so that Qc^X^ =
c2( — oc). For such cases it is easy to show that (13,59) and (13.61) become

(13-73)

where /(a) and a have the same significance as before.

(ii) Tarnishing reactions. A film of tarnish is formed on the surface of a
metal by reaction with a gas. The reaction proceeds by diffusion of dissolved
gas through the film to the surface of the metal, where its concentration
cx(Xx) is assumed to be zero, i.e. the reaction is assumed to be so rapid that the
rate of tarnishing is controlled entirely by the diffusion process. The outer
surface of the film is constantly saturated with the gas.

Let the film be medium 1. Since c^X^) is not determined by diffusion in
another medium, eqns (13.60) and (13.62) are not required. Let Wbe the mass
fraction of the gaseous component in the compound which it forms with the
metal, p the density of this compound (which is assumed independent of the
concentration of the dissolved gas), and cx the concentration of the dissolved
gas (expressed as mass of gas per unit volume of the film) at a distance xx

beneath the surface of the film. The outer surface of the film is at xx = 0 , the
metal surface at xx = Xx, the film thickness being X1. From (13.53)

S = -l(Wp). (13.74)

Furthermore, since c^XY) = 0, ^(0), the saturated concentration of gas
at the outer surface of the film, is given by

^ = 7r-aexp(a2)erfa = g(a), (13.75)
Wp

from (13.59) and (13.61), and

)*, (13.76)

where Dx is the diffusion coefficient of the dissolved gas in the film. Fig. 13.6
gives g as a function of a, and so values of a corresponding to given values of
c^OyiWp) can be read directly from that graph and used to calculate film
thickness as a function of time from (13.76). If ct(0) « Wp, expansion of
exp(a2) and erf a shows that g = 2a2 approximately and therefore in this
case

X, =
2Dxcx(Q)t

Wp
(13.77)

This means that, if the solubility of the gas in the film is sufficiently small, the
film thickness is given without appreciable error by the formula obtained by
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assuming that the concentration gradient in the film is uniform. The problem
of tarnishing was also solved by Booth (1948) who points out that the form
(13.77) is a good approximation for systems usually encountered in practice.

13.4.5. Examples of Class B problems

(i) Solution of gas in a liquid, followed by reaction with a solute. The surface
of the liquid is constantly saturated with the gas B, which is assumed to be
undiluted with inert gases. The liquid contains a solute A which effectively
reacts instantaneously and irreversibly with the dissolved gas. Diffusion of
both A and B is assumed to obey the simple diffusion equation of the types
(13.40) and (13.41). Any part of the liquid will contain A or B but not both.
There will be a plane, xx = X 1 ,x 2 = X2 , at which the concentrations of both
A and B will be zero. That part of the liquid containing A is taken to be medium
1, that containing B is medium 2. The surface of the liquid is permanently
at xx = x2 = 0, so that Xl = X2 and P = 1 from eqn (13.44). Also

cl{X1) = c2(X2) = 09 (13.78)

and hence R = 0 in eqn (13.42). We assume nx moles of A to react with n2

moles of B and so, in order to fulfil the conservation condition (13.43), we
put c1 = —mln2/nl, where ml is the concentration of A at xx in moles per
unit volume and c2 the concentration of B at x2 in the same units. Further,
c2(0) is the saturated concentration of B at the surface of the liquid, and m^oo)
the initial concentration of A in the liquid. Eqns (13.65) and (13.67) then
become

n1c2(0)/(i8/Dt)-«2'w1(oo)g(i5/D|) = 0, (13.79)

where / and g are the functions of p/D\ and /?/Df given respectively, as
functions of a, in eqns (13.68) and (13.75) and plotted in Figs. 13.4, 13.5, and
13.6. Hence from (13.52) and (13.67) we find the volume of gaseous B absorbed
in time t to be given by

V =
2c2(0)

(13.80)

The value of /? can be found from (13.79) by trial and error, using Figs. 13.4,
13.5, and 13.6, and substituted in eqn (13.80) to obtain V. This problem is also
treated by Hermans (1947).

If the gas is diluted by an insoluble component, the surface concentration
c2(0) of B in the liquid is determined by diffusion in the gas. In this case, in
order to obtain an exact solution, (13.69) and (13.73) must be used together
with (13.79) and (13.80). A value of the concentration at the surface of the
liquid must be found by trial and error such that the rate of absorption is
the same when calculated from either set of equations. The quantities Dl9

c^oo), and c^X^) in (13.69) and (13.73) refer respectively to the diffusion
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coefficient of B in the gas and to the mole fractions of B in the bulk of the gas
and at the interface.

(ii) Progressive freezing of a liquid. The solution to this problem, given
previously by Carslaw and Jaeger (1959), assumes that no change of volume
occurs on freezing. The present equations take such a volume change into
account. Suppose liquid initially occupies the region x > 0 and that freezing
proceeds progressively, due to the removal of heat from the surface, x = 0,
which is maintained at a constant temperature To. Subsequently, let the liquid
be medium 1, and the solid, medium 2. Since no material crosses the surface
maintained at To this corresponds always to x2 = 0. If there is a volume
change on freezing there is relative movement of the planes x1 = 0andx 2 = 0.
The diffuser in this case is heat. Take L to be the latent heat of fusion per unit
mass, p j , p2

 t n e densities, al, o2 the specific heats, and Dx, D2 the thermal
diffusivities of liquid and solid respectively. The variation of these quan-
tities with temperature is ignored. If Kl,K2 are the thermal conductivities
of the liquid and solid respectively, then

Dx = KJfaaJ; D2 = K2/(p2a2). (13.81)

The temperature of the liquid is initially 7^ throughout and the solid-
liquid interface (xx = Xl,x2 = X2) is always at the melting-point Tx.
The heat content of the solid at Tx is taken to be zero, and hence that of the
liquid at Tx is L. In this problem, concentration signifies the heat content,
and hence, since c2(X2) = 0, we have from (13.42)

cl(Xl) = -R/Q = L/Pl. (13.82)

Since XJX2 = p2/px, it follows from (13.44) that

P = Pi/p2- (13.83)
We also have

ci =Pi*i(Tl-Tx + L/<rl), (13.84)

c2 = p2o2{T2-Tx), (13.85)

where Tx is the temperature at xA in the liquid and T2 the temperature at x2

in the solid.
Eliminating Cj(0) and c2{ — oo) from (13.65) to (13.67) and substituting

equations (13.81) to (13.85) we find

where / and g are the functions plotted with a as variable in Figs. 13.4, 13.5,
and 13.6. The thickness of the solid formed up to time t is X2, where

(13.87)
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The temperature at any point in the solid is T2, where

T2 = T , - ( r , - 7 0 | l - e r f { p M p Z ) ! ) j J , (13.88)

while in the liquid it is Tx, where

Hence if (13.86) is solved by trial and error using Figs. 13.4, 13.5, and 13.6,
the resulting value of /? can be used to calculate the thickness of the solid and
the temperatures at any point as functions of time. The equations apply also,
with suitable changes of nomenclature, to the melting of a solid which is at a
uniform temperature.

It should be noted that a practical system only behaves in the way de-
scribed by the above equations provided the density is uniform or increases
steadily in a downward direction; otherwise convection currents arise.

13.5. Radially symmetric phase growth

We refer here to a particular problem with radial symmetry for which
analytical solutions are easily found. A spherical or cylindrical new phase is
growing from a negligible radius in an initially uniform medium and equi-
librium conditions are maintained at the growing surface. Frank (1950)
presents mathematical solutions earlier developed by Rieck (see Huber 1939).
Other relevant papers by Ivantsov (1947), Zener (1949), and Horvay and Cahn
(1961) include the growth of cylinders, paraboloids, and ellipsoids.

Following Frank we denote concentration (or temperature) by 4> and
write

(13.90)

where r is the radial coordinate and s is defined by

s = r/{Dt)*. (13.91)

Then the usual diffusion equation for spherical symmetry becomes

0=-£+?M. (13.92)

Putting d(j)/ds = p and integrating, we have

d(j)/ds= -As-2Qxp(-\s2) (13.93)

and hence

4> = A\ z - 2 e x p ( - ^ z 2 ) d z + (/>00, (13.94)
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where 0 ^ is the value of <j> at infinity and / l i s a constant. Integration by parts
yields

0 - ^ = A{s~l

= AF3(s), say. (13.95)

Tables and graphs of F3(s) are given by Frank (1950).
The total flux of diffusant over a sphere of radius R = SiDrf is

/ S\
-4nR2D(d(t)/dr)r = R = AnAD^t^ exp - — (13.96)

using (13.95) and (13.91).
Frank takes q to be the amount of diffusant expelled per unit volume of

new phase formed as growing proceeds and assumes the boundary condition.

= q2nS3Dh^ (13.97)

so that
S2

A = \qS3 exp (13.98)

Also, on the surface of the growing sphere, radius S, cj) has the constant value

= qf*(S)+ </>«>, say. (13.99)

Frank (1950) tabulates the function /3(S), and shows graphs of 5 as a function
of (</>s — 0oo)3/^ f° r t n e spherical, cylindrical, and linear cases.

For the two-dimensional, cylindrical growth Frank obtains the cor-
responding solutions

d(j)/ds = -As~l exp ( - i s 2 ) , (13.100)

<t>-<t>*=-2A

- - i / 4 Ei ( - i s 2 ) = ylF2(s), (13.101)

where Ei is the exponential integral to be found in standard mathematical
tables.

Frank tabulates F2(s). Using the same type of boundary condition as
(13.97) we find

A = \qS2 exp (iS2),
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and so on the surface of the growing cylinder of radius 5, </> has the constant
value

(f)s= - i<yS 2exp(iS 2)Ei(- iS 2) + </>x

= ^/2(S) + 0 x - (13.102)

We note that in the linear case

/1(S) = -|Sexp(iS2)F1(S) (13.103)

and

Fx{s) = 7r^erfc(|s). (13.104)

Readers should consult Frank's paper (1950) for related problems which
include the cases in which both heat and moisture control phase growth,
and where two dissolved substances diffuse independently to form the new
phase.

Reiss and La Mer (1950) studied the growth of mono-dispersed aerosols and
hydrosols. Their mathematical solutions assume that the flux of material
through any surface in the diffusion field is much greater than the rate of
change of concentration on that surface.

13.6. Approximate analytic solutions

Formal mathematical solutions have only been obtained for a limited
number of problems, mostly in infinite or semi-infinite media. In other cases,
for example when the surface concentration varies with time, or the medium
is in the form of a cylinder or sphere, or the diffusion coefficient is concentra-
tion-dependent, some approximation must be made or a numerical procedure
adopted.

13.6.1. Steady-state approximation

Stefan (1891) and Hill (1928) assumed that the concentration distribution
behind the moving boundary approximated at any instant to the steady-state
distribution which would be set up if the boundary were fixed in its position at
that instant. We illustrate this approach with the following problem.

The surface of a semi-infinite sheet of uniform material is in contact with a
well-stirred solution of extent /, and the solute diffuses into the sheet which is
initially free of solute. The sheet contains S sites per unit volume, on each of
which one diffusing molecule can be instantaneously and irreversibly im-
mobilized. The concentration in the solution is always uniform and is initially
CB expressed as the number of molecules per unit volume of solution. The
concentration at any time just within the surface of the sheet is taken to be
that in the solution. We denote by C(x, t) the concentration of freely diffusing
molecules at any point x in the sheet at time t expressed in molecules per unit
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volume. The concentration of immobilized molecules is zero if C is zero and
equal to S when C is non-zero. If we assume the diffusion coefficient D to
be constant, the one-dimensional equation

is to be solved subject to

C

idC/dt =

SdX/dt =

dt l

= 0, t =

D dC/dx,

-DdC/dx,

1 dx2

0,

X

X

X >

= 0,

= x,

o,
r ^ O ,

t > 0.

(13.105)

(13.106)

(13.107)

(13.108)

Here X(r) is the value of x at which C = 0, and denotes the position of the
moving boundary. Condition (13.107) expresses the conservation of solute
at the surface and (13.108) is derived in § 13.3 (p. 298).

Denote by Cx(i) the value of C at the surface and throughout the well-
stirred solution at time t. Thus Cx(r) = CB when t = 0 and decreases as
diffusion proceeds. When the advancing boundary is at x = X(t) the quasi-
steady state is given by

C = CX?-^. (13.109)
A

On differentiating (13.109) and substituting in (13.107) and (13.108) we find

and

Eliminating Cx from (13.110) and (13.111), integrating the result and using
the initial condition that

Q = CB, X = 0, (13.112)

we find

Substitution for Cx in (13.111), followed by integration, yields

Dt CB {SX

I2 S \IC
- + ln i H

ic,
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From (13.114) we find X(t) and Cx(t), and then C(x, t) follows from (13.109).
Crank (1957b) gave corresponding approximations for the cylinder and
sphere. By comparison with accurate solutions obtained by the numerical
procedures of § 13.7 he concluded that when S/CB exceeds 10, the steady-state
approximations are good enough for most practical purposes. Thus when
S/CB = 10, the approximated position of the moving boundary is in error
by about 1 per cent and by about 3 per cent when S/CB = 5.

Improved approximations starting from the steady state solution have
been derived by Stefan (1891), Pekeris and Slichter (1939), and Kreith and
Romie (1955).

13.6.2. Goodman's integral method

In an approximate method, Goodman (1958) also postulates a concentra-
tion profile behind the moving boundary, though not necessarily the steady-
state one. It usually takes the form of a polynomial which is made to satisfy
all the boundary conditions. It satisfies also an integrated form of the diffusion
equation. The position of the moving boundary emerges as the solution of an
ordinary differential equation with time as the independent variable. A re-
view of integral methods and some applications are given by Goodman
(1964).

We illustrate the procedure by applying it to the problem of the preceeding
section, in the particular case of Cx constant. We integrate (13.105) with
respect to x from x = 0 to X and use (13.108) to give

where o = S/D, and we have interchanged the order of integration and differ-
entiation. The concentration profile is assumed to have the form

C = a(x-X) + b(x-X)2 (13.116)

where a, b are constants to be determined from the boundary conditions and
X = X(t). The condition

C = 0, x = X(t)9 t^0, (13.117)

is satisfied. We also need

C = d = constant; x = 0, t ^ 0. (13.118)

The condition (13.108) is not very convenient as it stands, and so we first
differentiate (13.117) with respect to t and obtain
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Elimination of dX/dt between (13.108) and (13.119) with use of (13.105)
gives

IdC 2

i dx
x = X(t). (13.120)

dt dx2'

By substituting (13.118) and (13.120) in the profile (13.116) we find, after some
manipulation

a = ^ { i _ ( i + / i ) ± } , b = ^ ^ , (13.121)

where // = 2Cl/(aD).
Finally, we use the profile (13.116), with a and b from (13.121), in (13.115)

to obtain an ordinary differential equation for X(t). Its solution which satisfies
X(0) = 0 is

X = <xt*9

*-*{*%$$}•
In principle, the method can be applied to a variety of boundary conditions
and geometric shapes. Goodman (1964) and Crank and Gupta (1972a)
show how additional boundary conditions can be generated by successive
differentiation in order to determine successive coefficients in higher-order
polynomial profiles. Poots (1962b) has applied integral methods to cylinders
and spheres.

Only isolated attempts have been made to extend the integral method to
more than one space dimension. There are obvious difficulties in the choice
of the profile of the moving boundary. Poots (1962a) obtained a solution of
the problem of the solidification of a long bar of square cross-section which
compared moderately well with the numerical solution of Allen and Severn
(1962). Pleshanov (1962) used a quadratic polynomial for the approximate
temperature profile in bodies symmetric in one, two or three dimensions.
Budhia and Kreith (1973) studied melting in a wedge.

13.7. Finite-difference methods

Several numerical methods based on the finite-difference replacements of
the diffusion equation described in Chapter 8 have been proposed. They
differ in the way they treat the moving boundary and the grid on which numeri-
cal values are calculated. In general, the moving boundary will not coincide
with a grid line in successive time steps St if we take St to be constant and
predetermined. Douglas and Gallie (1955) chose each St iteratively so that the
boundary always moved from one grid line to the neighbouring one in an
interval St. This means that successive time intervals are of different durations.
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Crank (1957a) proposed two methods: the first fixes the boundary by a
change of the space variable; the second uses special finite-difference formulae
based on Lagrangian interpolation for unequal intervals in the neighbour-
hood of the moving boundary, in order to track its progress between grid
lines. Ehrlich (1958) employed Taylor's expansions in time and space near
the boundary. Murray and Landis (1959) deformed the grid so that the
number of space intervals between the moving boundary and an outer surface
remained constant, with suitable transformation of the diffusion equation.
Crank and Gupta (1972a, b) developed several procedures in which the grid
is moved with the velocity of the boundary. A recent method (Chernous'ko
1969, 1970; Dix and Cizek 1970) of handling the diffusion equation, which
offers a special advantage in Stefan problems, interchanges the concentration
and space variables so that x becomes the dependent, and C and t the inde-
pendent variables. If the boundary is known to occur at a fixed concentration
its position comes naturally from the solution without special treatment.

Lazaridis (1970) has extended finite difference methods to two- and three-
dimensional corner? An alternative approach is mentioned by Crank (1974).

13.7.1. Fixing the boundary

Crank (1957a) obtained numerical solutions for the problem posed in
§ 13.6.1 (p. 310) by using two transformations: (i) to remove the singularity at
x = 0, t = 0 and (ii) to fix the advancing boundary. The conservation condi-
tion (13.107) was used in the integrated form

C = CB-\ f (C + S)dx, x = 0, r ^ 0 . (13.123)
/ Jo

The singularity is handled by use of the new variables

c = C/CB, s = S/CB, f = x/(Dtf, T = (Dt/a2f, (13.124)

when the relevant equations are
d2c dc dc

2—^ = ! — - £ — , (13.125)

c = 0, i = oc, T = 0, (13.126)

1 d£x 1 I8c\ 6 ,
~i^T = ~ b d + ̂ > T > 0 ' (13.127)

2 dr ST\d^jx 2T
where £x = X/(Dt)* is the position of the moving boundary in the transformed
variables. Also

c = 0, I > ix, T > 0 , (13.128)
while (13.123) becomes

a Ci

= l — -
/ Jo

(13.129)
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When T = 0, these equations have an analytical solution for 0 ^ £ ^ ix,

c = l+flerf(££),

which satisfies c = 1, £ = 0, T = 0. The constants B and £x are determined
from (13.127) and (13.128) with T = 0, since

l + B e r f ^ ) = 0 (13.130)

and

= 2/s. (13.131)

(13.132)

The function on the left-side of (13.131) is plotted in Fig. 13.6.
We now fix the moving boundary by writing

Essentially the same transformation was used previously by Landau (1950)
in a consideration of ablating slabs in which the melt is continuously and
immediately removed from the surface. Citron (1960) extended the treatment
to include temperature-dependent thermal properties. Sanders (1960)
obtained an analytical solution for a particular specified motion of the free
boundary.f

Using (13.132) in the present problem we obtain

T - , 0 < rj < 1, (13.133)

3c* ^ ' (13.134)
2 dt ST^x\drjJl 2T '

a f1

c = l — - (c + sk^Ydw, *7 = 0, (13.135)
I Jo

when we have used (dc/drj)l to mean {dc/dr])n=1. The problem is now that of
finding values of £x and (dc/drj)1 which are mutually consistent with (13.134)
and for which the solution of (13.133) satisfies (13.135). Crank (1957a, b) used
a convenient iterative finite-difference scheme to obtain numerical solutions
for a plane sheet, cylinder and sphere in which the fraction s = S/CB, i.e. the
ratio of the number of sites per unit volume to the number of molecules in unit
volume of solution, takes the values 1, 2, 5, 10. For each value of s, solutions
were obtained for an unlimited amount of solute, and for two restricted
amounts chosen such that in the final equilibrium state respectively 50 per
cent and 90 per cent of the solute has entered the medium. For each s, A/na2

is calculated from the expression for the fraction of the total amount of solute

t Spalding and Gibson (1971) coupled this transformation with the idea of a 'penetration
distance' (see § 7.3, p. 129) in an economized finite-difference procedure for solving concentra-
tion-dependent and other non-linear diffusion problems.
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finally in the cylinder, for example, which is

1+s

where a is the radius of the cylinder and A the cross-sectional area of the
solution in which the cylinder is immersed. Table 13.1 show values of (Dt/a2)^
at which the total uptake is | , \, | , expressed as a fraction of its equilibrium
value. Tables 13.2 and 13.3 show values of (Dt/a2)^ at which the advancing
boundary is ̂ , -|, and \ of the way towards the centre. The time at which the
centre itself is reached are shown only for the plane sheet as they are difficult
to determine accurately for the cylinder and sphere.

Meadley (1971) considered the back diffusion of solute in a layer of solution
when the free surface recedes due to evaporation of the solvent. He fixed the
receding surface by a transformation essentially the same as (13.132).

13.7.2. Diffusion on both sides of a moving boundary
For the problem considered in § 13.7.1, the total concentration falls to zero

at the advancing boundary, c.f. Fig. 13.7. A more general problem arises when
diffusion occurs on both sides of the boundary, as in the example of § 13.2.2
(p. 290). We can still use the transformations of § 13.7.1 to fix the boundary,
as long as the sheet is behaving semi-infinitely, i.e. the concentration at the
centre of the sheet has not changed to within the accuracy of the calculations.
After that, Crank (1957a) proposed either to use two transformations to
fix both the moving boundary and the central plane of the sheet or to employ
Lagrangian interpolation formulae to track the boundary. The second
approach is described in the next section.

13.7.3. Lagrange interpolation
We return to the x, t plane and develop finite-difference approximations to

derivatives based on functional values which are not necessarily equally
spaced in the argument. They are generalized forms of the formulae developed
in Chapter 8.

The Lagrangian interpolation formula is

/(*) = t lJLx)f("j)> (1 3 1 3 6)

where

//*) = , P"\X),, ,, (13-137)
(x-a})pn(aj)

Pn(x) = (x-ao)(*-fli) •(*-«,,-!)(*-«„) (13.138)

and p'n(aj) is its derivative with respect to x, at x = a}. We restrict attention to



MOVING BOUNDARIES 317

three-point formulae, i.e. n = 2, and find that

Id2/(x) f(a0) , f(ax)
2 dx2 (ao-a1)(ao-a2) {a1-a0){a1-a2) {a2-a0)(a2-a1)

and

dx

(13.139)

(13.140)

where

and

lo\x) —7 7 7 7 >

(ao-a1)(ao-a2)
x -ao){al -a2)

(x-ao) + (>
{a2-a0)(a2-al)

(13.141)

We apply these formulae in the neighbourhood of the moving boundary.
Taking the plane sheet as an example, we consider it to comprise M layers
each of thickness dx, and let the boundary x = X at time t be somewhere in
the (m+ l)th layer (Fig. 13.10). Thus X = (m + p)dx where p is fractional and
0 < p < 1. If for x < X we identify

= cm_i, f{al) = cm, f{a2) = cX9 (13.142)

then (13.139) and (13.140) become

x = mSx (13.143)

dx

pdx

m — 2 m—\ m+1
a0 a,

FIG. 13.10.

m + 2
a2
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and

Similarly for x > X we have

3x2 (Sx)2\(l-p)(2-p) l - p ' 2 - p j '

and

= (m+l)dx, (13.145)

We use these formulae for the space derivatives together with the usual
explicit or implicit replacements of time derivatives (see Chapter 8) in the
diffusion equation itself, and in the conditions on the moving boundary
x = X. For points other than mSx, X and (m+ l)dx, we use the usual finite-
difference formula developed in Chapter 8 for equal intervals, including any
condition on x = 0.

13.7.4. Moving grid system

Crank and Gupta (1972a) dealt with a moving-boundary problem arising
from the diffusion of oxygen in absorbing tissue by using Lagrangian-type
formulae and a Taylor series near the boundary. Subsequently (19726) they
developed an alternative method based on a moving grid.

In the physical problem, oxygen is allowed to diffuse into a medium, and
some of the oxygen is absorbed, thereby being removed from the diffusion
process. The oxygen concentration at the surface of the medium is maintained
constant. This first phase of the problem continues until a steady state is
reached, in which the oxygen does not penetrate any further into the medium.
The surface is then sealed so that no further oxygen passes in or out. The
medium continues to absorb the available oxygen already in it, and conse-
quently the boundary marking the furthest depth of penetration recedes
towards the sealed surface.

The diffusion-with-absorption process is represented by the equation

where C{X9 T) denotes the concentration of the oxygen free to diffuse at a
distance X from the outer surface at time T; D is the diffusion constant; and
m, the rate of consumption of oxygen per unit volume of the medium, is also
assumed constant. The problem has two parts:
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(i) Steady-state. During the initial phase, when oxygen is entering through
the surface, the boundary condition there is

C = C0, X = 0, T ^ O , (13.148)

where Co is constant. A steady-state is ultimately achieved, in which
dC/dT = 0 everywhere, when both the concentration and its space derivative
are zero at a point X = Xo. No oxygen diffuses beyond this point, and we have

C = dC/dX = 0, X^X0. (13.149)

The required solution in the steady state is easily found to be

C = ̂ (X-X0)\ (13.150)

where Xo = ^(IDCJm).

(ii) Moving-boundary problem. After the surface has been sealed, the point
of zero concentration, originally at X = Xo, recedes towards X = 0. This
second phase of the problem can be expressed in terms of the variables

x

by the equations

X DT

| = 0-i. •
dc/dx = 0, x

c = dc/dx = 0, x

c = U\-x)\ 0

t

= 0,

= xB(0,
^ x ^ 1

D
nX\

xB(

>

= 0,

t I

t

c
2C0

= 0.

(13.152)

(13.153)

(13.154)

(13.155)

The surface is sealed at t = 0 and xB(f) denotes the position of the moving
boundary in the reduced space variable.

An approximate analytical solution can be used to get away from the
singularity at x = 0, t = 0 due to the instantaneous sealing of the surface. In
the range 0 ^ t ^ 0020, the expression

(13.156)

is sufficiently accurate for most purposes. During this time the boundary
has not moved to within the accuracy of the calculations. Once the boundary
begins to move, a grid system can be used, moving with the velocity of the
moving boundary (Crank and Gupta 1972b). This has the effect of transferring
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the unequal space interval from the neighbourhood of the moving boundary
to the sealed surface. An improved degree of smoothness in the calculated
motion of the boundary was obtained compared with the results of using
Lagrange interpolation.

We divide the region 0 ^ x ^ 1 into n intervals each of width Ax such that
xt = i Ax; i = 0,1,... n and n Ax = 1. We denote by c{ the values of c at
(i Ax, j At), j = 0, 1,2,.... We start at t = 0 with the steady-state solution
(13.155). In the first interval At we evaluate cl

n_ t , and also the new position of
the boundary, which has moved from x = 1 to x = 1 — E, say, as in Fig. 13.11.

/ =0

1
1
11

i
£

1
£

X n-2

£

A-n-i j

!
i
1
I
i*
l £
S

x=0 x=\

FIG. 13.11. Moving grid. (From Crank and Gupta \912b).

The whole grid is now moved a distance s to the left, as indicated by the broken
lines. We wish to evaluate values of c° and the second space derivatives at
each of the points x x — e, x2 — E, ..., xn _ x — e, 1 — e, at t = 0. Crank and Gupta
(19726) describe two methods of doing this. In the first method, interpolations
are based on cubic splines, and a tridiagonal set of algebraic equations needs
to be solved for each step in time. The second method, which we shall
describe, is based on polynomial approximations and is simpler to apply.
In return, we lose some of the continuity which the splines secure.

We represent c(x) at any time between the two points xf, xi + x by

= a

where a = a(j, /+ 1), etc. We employ the usual expressions

C (•'; Ci - i ^-C\ 1 ^ 1 + 1 . * ~

dx2 (Ax)2

and at the surface x = 0,

c2c0 2

(13.157)

(13.158)

(13.159)

where c = xt — x0 . At x = xl9 the Lagrangian type formula is used to allow
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for the unequal interval c, namely

From (13.157) we obtain
(13.161)

where c' — d2c/dx2. Assuming the function values to be known at any time
j At, when the distance of the moving boundary from the surface x = 0 is
^' + rAx, the method proceeds as follows. Obtain the second derivatives at
each point of the grid at time 7 At, using the relations (13.158) and (13.159).
By inserting ci,ci+l,c"i,c"i+l into (13.157) and (13.161), we derive the coef-
ficients a, /?, y, //, and hence determine the interpolating polynomial (13.157)
for each interval xt to xi+l.

The value of c j + 1 , i.e. at the point neighbouring the moving boundary and
time (7+I) At, follows from the simple explicit relationship:

{c")l-l, (13.162)

where (c"){ denotes the value of c" at xr at j At. The Taylor's series for cr

obtained by expanding about the moving point can be written as

cr = c(x0)-l\-
dc\ ,Jd2c

dx: + ..., (13.163)

where /(O ^ / ^ Ax) is the distance of the moving boundary from x r. We
can derive the extra derivatives by differentiating (13.154) with respect to t,
i.e.

dc Idc

df = \dx
dx

_ _i_

x=x dr

dc

~dt
= 0

x = xn

(13.164)

Using (13.152) and (13.154) in (13.164) we obtain

d2c/dx2 = 1, x = x0 . (13.165)

Similarly, by further differentiation we find

d3c/dx3 = -dxB/dr, x = xB. (13.166)

Provided the boundary is not moving too quickly we can use the Taylor
series to obtain approximately

/ = V(2cr). (13.167)

Therefore, once cj
r
+l is known from (13.162) we find the position of the

moving boundary from (13.167). Hence its movement t;j+ * in the interval from
j At to (7+I) At is given by

£ ; + 1 = Ax-/ ' " M . (13.168)
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Having got e we then interpolate the values of c(x) and c"(x) at t = j At
at the points x t - £ , x2 —e,..., xn — e using (13.157) and (13.161). The values of
c(x) at the new points x{, x2... xr at time (j+ I) At follow at once from

cj+] )-c\x{-

remembering that

together with

At v ' 7 '

K{ + 1 = x{-t-j+\ i = l ,2 . . . , r ,

co ~co

(13.169)

At
= c"(xo)-l, x = 0. (13.170)

We have seen that the space interval xl — x0 varies from one time step to the
next. As we proceed in steps At we eventually find that the points x0 and x t

come so close together that the values of c there are not significantly different,
to the accuracy of calculating. We then replace £ by <J + Ax to get values at the
next time step and proceed as before.

Crank and Gupta showed that their solutions obtained by the different
numerical procedures were in reasonable agreement. Furthermore, a slightly
modified form of Goodman's integral method shows that quite good
approximations are provided by the following analytic expressions:

x B ( r ) = 1 - e x p < - 2
tx-t\*

t-u

c(x, x0) = x

(13.171)

(13.172)

(13.173)

These solutions are applicable only for the time interval t0 ^ f ^ t{ where
t0 = 4/25n and tx = TC/16. For t ^ t0, the approximate solution for small
times (13.156) holds and from (13.171) tx is seen to be the total time for the
concentration everywhere to become zero.

An alternative form of moving grid was used by Murray and Landis
(1959). They kept the number of space intervals between x = 0 and x = X
constant and equal to n, say. Thus (5x = X(t)/n is different in each time step.
They differentiated partially with respect to time r, following a given grid
point instead of at constant x. We have for the point i<5x

dx4 (13.174)

Murray and Landis assumed a general grid point at x to move with velocity
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dx/dr, where

Then eqn (13.152) become

1 dx
x dt

1 dX
~X ~dd'

xt dX dc
~X~dt"!x'

d2c

(13.175)

(13.176)

Finite-difference solutions can be obtained when dX/dt is determined by
an appropriate boundary condition. The idea implicit in (13.174) can be
applied to any moving grid. If it moves bodily, as assumed by Crank and
Gupta, all grid points have the same velocity, dX/dt, the relation (13.175) is
not needed and the xJX factor in (13.176) becomes unity.

13.7.5. Isotherm migration method

The aim of all the methods described so far has been to determine how the
concentration at a given point changes with time. An alternative method was
proposed by Chernous'ko (1969, 1970) and independently by Dix and Cizek
(1970). It has a particular advantage where phase changes are involved, and
so we describe it in this chapter, though its use is not confined to moving
boundary problems. In this method, the way in which a fixed temperature
moves through the medium is calculated. Hence it is referred to as the 'iso-
therm migration method'. In the diffusion analogy we trace the motion of
contours of constant concentration.

When a phase change or other boundary occurs at a prescribed temperature,
its motion emerges naturally from the solution without any special treatment.
Also the need to evaluate temperature or concentration-dependent parameters
at each time step is avoided. The appropriate values are simply carried
along with the isotherm. These advantages are partly offset by some increase
in complexity of the finite-difference equations and difficulties with some
boundary conditions.

Instead of expressing concentration C as a function of x and t, we now re-
write the equations so that x becomes a function of C and t. The dependent
variable becomes x(C, t) instead of C(x, t). We note that with reference to the
diffusion equation in one dimension we can write

dC

since for C held constant

dx
dC

=
<dC

Jx~

dx
dt

dx +
dC
dt

df

dC
dt

= 0

del
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Starting from the usual diffusion equation

ct dx

and using the above relations we find

dC IdxMdx]-1 S/Sx^1 ldx\-3d2x

i.e.

dx\

dt
= D

dC dC2'
(13.178)

If we consider, as an example, the simplest form of the problem in § 13.6.1.
(p. 310) in which the condition (13.107) on x = 0 is replaced by

C = Co = constant, x = 0, t ^ 0, (13.179)

then we can rewrite the condition (13.108) on the moving boundary

' c = 0 ' f ^ 0 ' ( m 8 0 )

remembering that we took C = 0 on x = X(t). The condition (13.179) be-
comes

x = 0, C = C0, t^0. (13.181)

In order to start the solution we need to use an analytic or approximate
solution suitable for small times. This provides values of x for equally spaced
values of C at a given small time t from which we can proceed in steps
St to obtain values of x on a grid in the C, t-plane by applying the usual
finite-difference formulae to the transformed equations.

If we let x" be the value of x at C = i3C, t = nSt, we find the diffusion equa-
tion (13.178) becomes approximately

x;.'
 + i = x? + 4 3 f f 7 A ' l:1} , (13.182)

and from (13.180) we have

DdtSC

Crank and Phahle (1973) obtained results by this method, for the problem of
melting a block of ice, that agreed well with the exact analytical solution and
with solutions obtained by Goodman's integral method and Lagrangian
interpolation.
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13.8. Other methods

Methods based on applications of Green's functions lead to integro-
differential equations for the position of the phase interface. Short descrip-
tions of these and other methods including Boley's (1961) fictitious boundary
conditions or imbedding' techniques, and the variational methods of Biot
(1970) and Biot and Daughaday (1962) are given by BankofT (1964) and
Goodman (1964), together with references to other papers.

Fox (1974) has written an extensive survey in a book which also contains
accounts of new research and of practical problems.
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DIFFUSION AND CHEMICAL REACTION

14.1. Introduction

T H E problem discussed in this chapter is that of the absorption of one
substance by another through which it can diffuse and with which it can
also react chemically. This can be regarded as a problem in diffusion in
which some of the diffusing substance becomes immobilized as diffusion
proceeds, or as a problem in chemical kinetics in which the rate of reaction
depends on the rate of supply of one of the reactants by diffusion. There are
numerous practical examples of processes involving simultaneous diffusion
and chemical reaction of one sort or another. Thus diffusion may take place
within the pores of a solid body which can absorb some of the diffusing sub-
stance, or we may have diffusion occurring through a gel and an immobile
product resulting from the attraction of the diffusing molecules to fixed sites
within the medium. Examples involving diffusion into living cells and micro-
organisms can be cited from biology and biochemistry. In contrast with the
sharp boundary problems of Chapter 13, here we assume that some un-
occupied reacting sites are always available. Chemical reactions in high
polymer substances are often considerably dependent on the mobility of the
reactants as well as on the kinetics of the reaction itself.

14.2. Instantaneous reaction

If the reaction by which the immobilized reactant is formed proceeds very
rapidly compared with the diffusion process, local equilibrium can be
assumed to exist between the free and immobilized components of the
diffusing substance. In the simplest case, the concentration S of immobilized
substance is directly proportional to the concentration C of substance free to
diffuse, i.e.

S = RC. (14.1)

In the particular case of diffusion with adsorption on to internal surfaces
or sites (14.1) is referred to as a linear adsorption isotherm.

When diffusion is accompanied by absorption, the usual equation for
diffusion in one dimension has to be modified to allow for this, and becomes

dC _ d2C dS
dt dx2 dt'
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if the diffusion coefficient D is constant. On substituting for S from (14.1) we
have

dt R + l dx2

which is seen to be the usual form of equation for diffusion governed by a
diffusion coefficient given by D/(R +1). Clearly the effect of the instantaneous
reaction is to slow down the diffusion process. Thus if R + 1 = 100, the overall
process of diffusion with reaction is slower than the simple diffusion process
alone by a hundredfold. In fact, if the linear relationship (14.1) holds, solutions
of the diffusion-with-reaction problem for given initial and boundary condi-
tions are the same as for the corresponding problem in simple diffusion,
except that the modified diffusion coefficient D/(R +1) is to be used. This is
true irrespective of whether the diffusion-with-reaction occurs in a plane
sheet, cylinder, or sphere, or any other geometric shape, and whether diffusion
occurs in one dimension or more.

14.2.1. Non-linear isotherm

If the relationship between S and C is not linear but is of the form

S = RC\ (14.4)

for example, where R and n are constants, then (14.2) still holds, but (14.3)
becomes non-linear and solutions of the diffusion-with-reaction problem
in this case can only be obtained by numerical methods of integration such
as those described in Chapter 8. Some numerical solutions have been obtained
(Crank 1948/?, Crank and Godson 1947) describing the uptake of a restricted
amount of solute by a cylinder, when diffusion within the cylinder is ac-
companied by adsorption and where the concentrations of free and adsorbed
solute are related by an equation such as (14.4). In this example, 90 per cent
of the total amount of solute is taken up by the cylinder in the final equilib-
rium state. Figs. 14.1 and 14.2 show the effect of the exponent n on the over-all
rate of uptake of solute and on the way in which it is distributed through the
cylinder at a given time.

MR is large so that dC/dt may be neglected compared with dS/dt, (14.2) may
be written

?>-»'%}, (14.5)
dt ~~ dx\ dxj ~ dx\n \R

on substituting for C from (14.4). Thus we see that diffusion accompanied
by a non-linear reaction described by (14.4) is formally the same as diffusion
governed by a diffusion coefficient which is not constant, but which depends
on the total concentration of diffusing substance, free and immobile. This
statement holds whatever the relationship between the concentration of
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FIG. 14.1. Diffusion with adsorption into a cylinder of radius a. Numbers on curves are values of
exponent n in (14.4).

50 r

FIG. 14.2. Concentration distributions in a cylinder of radius a when Dt/a2 = 5. Numbers on
curves are values of exponent n in (14.4). 90 per cent of solute enters cylinder.

concentration at surface of cylinder is constant.

free and immobile components, provided it is non-linear. It need not neces-
sarily be of the form of (14.4). If in (14.4) n is fractional, e.g. as in the well-
known Freundlich type of adsorption isotherm, then the effective diffusion
coefficient in (14.5), which is given by

increases as the concentration S is increased. If on the other hand n > 1,
the effective diffusion coefficient decreases as the concentration is increased.
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Standing, Warwicker, and Willis (1948) have considered an extension of this
argument to the case in which the product of the reaction is not immobile
but can itself diffuse at a rate different from that of the free component.

Vieth and Sladek (1965) considered an isotherm which is a combination
of a linear component and a non-linear one of the Langmuir type. The linear
part corresponds to gas dissolved in the amorphous regions of a glassy
polymer; the non-linear, to gas trapped in small holes or microvoids in the
polymer. The trapped gaseous molecules are immobile. The diffusion equa-
tion takes the form

, CH(b/kD)

dx2 dt |_ {i+(b/kD)cDy

where CD is the concentration of gas free to diffuse with diffusion coefficient
D, CH is the saturation capacity of the microvoids, and b and kD are para-
meters in the Langmuir and linear isotherms respectively. Vieth and Sladek
obtained finite-difference solutions pertaining to diffusion into a plane sheet
from a limited volume of gas. They found that their mathematical model
described experimental data satisfactorily, and offered a way of estimating
diffusion rates from sorption data for polymers and also for porous catalysts.

14.3. Irreversible reaction

If the diffusing substance is immobilized by an irreversible first-order
reaction so that the rate of removal of diffusing substance is /cC, where k
is a constant, then the equation for diffusion in one dimension becomes

^ = D^-kQ (14.6)
dt dx2

provided the diffusion coefficient D is assumed to be constant. This is also
the equation representing the conduction of heat along a wire which loses
heat from its surface at a rate proportional to its temperature. Some solutions
relating to this latter problem are given by Carslaw and Jaeger (1959, p. 134),
where use is made of the transformation C = C exp (— kt) which reduces
(14.6) to the usual equation in one dimension with C as dependent variable.
Odian and Kruse (1969) used solutions of (14.6) and its steady-state equiva-
lent in discussing the effects of diffusion on radiation-induced graft poly-
merization.

Danckwerts (1951) has shown how solutions of (14.6) and of the general
equation

— = DS/2C-kC (14.7)
dt

can be deduced by simple transformation of the solutions of the corresponding
problems in diffusion without reaction. He applies his method to two types
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of surface boundary condition. In the first case the surface is in equilibrium
at all times with the surrounding atmosphere or solution, and the surface
concentration has the constant value Co . In the second case the rate of
evaporation or absorption at any time is given by

DdC/dN = a(C 0-C s) , (14.8)

where Cs is the actual concentration on the surface at that time, Co the
equilibrium surface concentration attained after infinite time, and dC/dN
the concentration gradient measured in the outward direction along the
normal to the surface. Here a is a constant. For convenience in writing we
put h = OL/D in what follows.

In the problems to be considered, therefore, the initial and boundary
conditions are

C = 0, t = 0, at all points in the medium, (14.9)

and either

C = Co, t > 0, at all points on the surface, (14.10)

or

dC/dN = h(C0 - C), t > 0, at all points on the surface. (14.11)

14.3.1. Danckwerf s method

Let Cj be the solution of the equation for diffusion in one dimension in the
absence of reaction, i.e. of

^ = 4%, ,.4,2,
dt ox

for the same boundary conditions as are imposed on C in (14.9), (14.10), and
(14.11). We shall give the argument for diffusion in one dimension and
it will be clear, as Danckwerts shows, that it can be applied equally well
to the general equation (14.7). If Cx is a solution of (14.12), the solution of
(14.6) for the same boundary conditions of the above type is

C = k\ Cxz-kt df' + Q e " * ' . (14.13)

This is easily shown as follows. By differentiating (14.13) with respect to t
we obtain

^ = fcC1e-fcr-fcC1e-*' + — e " * ' = d£lt-^ (14.14)
dt dt dt

and on differentiating twice with respect to x we have

dx Jo ox ^x
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Substituting from (14.12) in (14.15) gives

(14.16)
dx2 Jo dt dt

and finally using (14.14) we find

so that (14.13) is a solution of (14.6).
Furthermore, when t = 0, we see from (14.13) that C = Cx and so C obeys

the required initial conditions. For points at which Cx = Co, for all t,

C = kC0\ e-fcr'dt' + Coe-fcf = Co. (14.18)
J

For points at which

dCJdN ^ M C o - C J , (14.19)
we find

dC , fr dC, kt, J , dCx kt

= hk\ ( C o - C J e - ^ ' d r '
Jo

= h(C0-C). (14.20)

The solution (14.13) therefore satisfies the required initial and boundary
conditions if Cx does.

If the quantity, Mr, of diffusing substance absorbed in time t is required, we
use in general

F = ̂ = ffl) |^dS = ifc f^e-^dr ' + ̂ e-*'. (14.21)
dt J j dN Jo

The area integral is taken over the whole surface of the absorbing medium
and Fx is the corresponding rate of absorption when no chemical reaction
takes place, i.e.

The volume integral is taken over the whole volume of the absorbing medium.
Many of the solutions for diffusion without reaction are available in the

form of infinite series which can be written

y,z)e-". (14.23)
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Numerous examples have been given in Chapters 3-6. Here / and v are
different for each term in the series, but are not functions of t; v is not a
function of x, y, z. Applying (14.13) to (14.23) we find

C _

C~o~

Similarly, since in such cases F1 is of the form

^i/C0 = Z g e - w , (14.25)

where g is different for each term in the series but is not a function of x, y, z, r,
we obtain from (14.21)

F rt+vexPl !-,( t +v,n
Co [_ K-j-V J ( 1 4 2 6 )
Co [_ K-j-V J

and

j ; [ h ( t + "-'^^' | t + '»+ ' ] . (.4.27,
14.3.2. Examples

The method can be applied generally for boundary conditions of the type
(14.10) or (14.11). It will be illustrated by the examples quoted by Danckwerts.

(i) Sphere with surface evaporation condition. We take the sphere to be of
radius a. Then the solution for diffusion without reaction is (Chapter 6, eqn
(6.40))

y Paw
2Q sin mn

Co r n^{a2oc2
n+ah(ah-l)}smaoi; [ ' }

where the a^s are the roots of

aa cot aa + ah -1 = 0 , (14.29)

which are given in Table 6.2. Hence

x = 4na2D
, dr

and from (14.26)

o 17 - " exp(-D(x2t)
= Snh2CnDa2 Y —, \ , . " ; (14.30)

and from (14.27)

«• - *"h'c'D°! £ ^ i S ? l w + { ! f ' ' ( 1 4 3 2 )

(/e + D a J { a a h f i ( a / z l ) |
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(ii) Rectangular block or parallelepiped with constant surface concentration.
We take the block to occupy the space — a < x < a, —b<y<b, —c<
z < c, so that the edges are of lengths 2a, 2b, 2c. The solution for diffusion
without reaction is

d _ 64 (2/+1)TCX

xcos 2b 2c
exp(-falMII)

where

Hence

a/,m,n =
2m+l\2

(14.33)

(14.34)

00 00 00

ae
l)2(2m + l)

(14.35)

and from (14.26)

( J o o
where by a is understood almn given by (14.34). Similarly Mt follows readily
from (14.27).

(ii) Infinite cylinder with surface evaporation condition. We take the cylinder
to have radius a and consider diffusion to be entirely radial. The expression
for diffusion without reaction is (Chapter 5, eqn (5.46))

C o

where the ans are the roots of

= hJ0(aa),

l ' ]

(14.38)

and J0,Ji are Bessel functions, of the first kind, of order zero and one re-
spectively. Values of an are to be found in Table 5.2. Hence

(14.39)

and from (14.26)
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Also Mt is easily found from (14.27). Here Mt and F refer to unit length of
cylinder.

Other results may be derived in this way or directly from (14.13) or (14.21).
Some examples of expressions for the rate of uptake F are given below:

(iv) Sphere {radius a) with constant surface concentration

F = 8,aDC0 £ ^ + ̂ x P { - y + D.W)}
ka2 + Dn2n2

(v) Infinite cylinder (radius a) with constant surface concentration. Here
F is the rate of uptake through unit length of the curved surface of the cy-
linder:

F = 4nDC0 i fe + D « " 7 { f + D a " » , (14.42)

where the ans are the roots of Jo(aoc) = 0.

(vi) Finite cylinder (radius a, length 21) with constant surface concentration.
Here F is the rate of total uptake through the ends and the curved surface:

_ 64DICO « » f /?„,„ I f/c + Dft.,, exp {- t(k + P f t j n

where the ans are the roots of J0(aoc) = 0, and

)2n2/(4l2). (14.44)

(vii) Semi-infinite solid with surface evaporation condition. The solution is
obtained by application of (14.21) to the corresponding solution without
reaction (Chapter 3, eqn (3.35)). Here F is the rate of uptake per unit area of
plane surface and

F = ^^\[h(Dk)Uvf(ktf + h2DQvfch(Dt^Qxp{t(h2D-k)}-k]. (14.45)
n LJ K

(viii) Semi-infinite medium with constant surface concentration. The
mathematical problem and its solution are identical with those for the
conduction of heat along a thin rod which loses heat from its surface at a
rate proportional to its temperature (Danckwerts 1950a; Carslaw and
Jaeger 1959). The expression for the concentration is

C _
Q ~

erfc | ^ - ^ - + >/(*oj- (14.46)
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Also

and

Mt = Co

(14.47)

(14.48)

The dimensionless quantity Mtk^/(C0D^) is plotted as a function of kt
in Fig. 14.3. From this graph, Mt can be obtained at any time t for any
combination of the variables Co, D, and k.

0-2 0-4 0-6 0-8 10

FIG. 14.3. Diffusion with an irreversible reaction into a semi-infinite medium with constant
surface concentration.

When kt is large so that erf J{kt) approaches unity, (14.46), (14.47), and
(14.48) become

C/Co = exp(-xk±fD% (14.49)

F = C0{Dkf\ (14.50)

± (14.51)
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Eqns (14.49) and (14.50) show that the concentration at any point and the
rate of sorption each tend to a steady value and the total amount taken up
increases linearly with time as in Fig. 14.3.

When kt is very small we find by expanding erf^/cf) and exp( — kt) and
neglecting powers of kt higher than the first, that (14.47) and (14.48) become

F = C0{l+kt){D/(nt)}* (14.52)
and

Mt = 2C0(l+$kt)(Dt/n)\ (14.53)

which reduce to the well-known solutions for diffusion without reaction
when k = 0. Further solutions describing the uptake of a restricted amount
of diffusing substance which is simultaneously destroyed by an irreversible
reaction are given in § 14.4.4 below as special cases of more general solutions
for a reversible reaction.

14.3.3. Steady-state solutions

As with the semi-infinite case just discussed so in all systems of the type
under consideration, the rate of sorption and the concentration at any
point tend to steady values at large times. The steady-state solutions may
be obtained by putting dC/dt equal to zero in the appropriate form of (14.7),
which may then be solved to give the steady-state solution directly. When the
expression for C or F takes the form of (14.24) or (14.26), the steady-state
solution may be obtained merely by omitting the time-dependent term,
which tends to zero as t tends to infinity. This leads to a solution in the form
of a series which is often not readily evaluated.

In some cases the following method leads to a more convenient form of
solution. On putting t — oo in (14.13) and (14.21) we find

CJk= fc.e-'-dt, (14.54)

and
/»00

FJk = F^-^dt. (14.55)
J o

The expressions on the right-hand sides of these equations are the Laplace
transforms of C t and F1 respectively, the parameter (usually written as p
or s in transform notation) taking the value k. Thus, as an example, for a
semi-infinite solid with surface evaporation we have, in the absence of
reaction,

F, = hDC0 exp (h2Dt) erfc {h{Dtf}. (14.56)

The Laplace transform of the right-hand side of (14.56) is
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and hence from (14.55)

Some other steady-state solutions are given below, preceded by references
to the corresponding expressions describing the approach to the steady-
state.

(i) Sphere with surface evaporation condition (eqn (14.31)).

(ka2/D)±coth(ka2

(ii) Infinite cylinder with surface evaporation condition (eqn (14.40)).

c~0 =
 2nah%D)n^iD)^hh{k^iDf\ (1459)

Here 70 and / t are modified Bessel functions of the first kind of zero and
first order respectively.

(iii) Sphere with constant surface concentration (eqn (14.41)).

^ = AnaD{{ka2IDf coth (ka2/D)*-l). (14.60)

(iv) Infinite cylinder with constant surface concentration (eqn (14.42)).

A further application of the use of eqn (14.13) is to the problem of the extrac-
tion of a dissolved substance from a drop of liquid which is rising or falling
through another liquid. It is described in Danckwert's paper (1951).

14.4. Reversible reaction

The most general case for which formal mathematical solutions have
so far been obtained is that in which the reaction is first-order and reversible.
The behaviour to be expected when the reaction is reversible depends on
the relative rates of diffusion and reaction. Thus we have seen in § 14.2 (p. 326)
that when the reaction is very rapid we can assume that the immobilized
component is always in equilibrium with the component free to diffuse, and
diffusion is the rate-controlling process. At the other extreme is the case of
diffusion being so rapid compared with the reaction that the concentrations
of diffusing substance and immobilized product are effectively uniform
throughout the medium and the behaviour is controlled solely by the re-
versible reaction. Solutions of the more general case in which the rates of
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diffusion and reaction are comparable have been obtained by Wilson
(1948) and Crank (1948c).

The general problem can conveniently be stated in terms of a solute
diffusing from a solution into a plane sheet of material. The modifications
necessary for corresponding, alternative problems, such as those of a sphere
or cylinder suspended in a vapour, will be obvious. Suppose an infinite sheet
of uniform material of thickness 2a is placed in a solution and that the solute
is allowed to diffuse into the sheet. As diffusion proceeds, a first-order, re-
versible reaction occurs and a product, which is non-diffusing, is formed. The
sheet occupies the space — a ^ x ^ a, and there is a restricted amount of
solution which occupies the space —l — a^x^ —a, a ^ x ^ l + a. The
concentration of solute in the solution is always uniform and is initially Co,
while initially the sheet is free from solute. Let C be the concentration of
solute free to diffuse within the sheet and S that of the immobilized solute,
each being expressed as amount per unit volume of sheet.

The diffusion is governed by the equation

dC d2C dS

and we consider the simultaneous reaction to be of the type

dS/dt = AC-fiS. (14.63)

Here D is the diffusion coefficient and X and \i are the rate constants of the
forward and backward reactions respectively. Thus the immobilized solute
is formed at a rate proportional to the concentration of solute free to diffuse,
and disappears at a rate proportional to its own concentration. We require
solutions of (14.62) and (14.63) with the initial condition

S = C = 0, -a<x<a, t = 0, (14.64)

and with a boundary condition expressing the fact that the rate at which
solute leaves the solution is equal to that at which it enters the sheet over the
surfaces x = ±a. This condition is

idC/dt = +DdC/dx, x = ±a, t > 0. (14.65)

We here assume that the concentration of solute free to diffuse just within the
surface of the sheet is the same as that in the solution. This may not be so
and there may be a distribution factor K, which is not unity, such that the
concentration just within the sheet is K times that in the solution. This can
clearly be allowed for by using a modified length of solution l/K in place of /
in (14.65) and elsewhere. Mathematical solutions follow for these equations
and for corresponding equations for the cylinder and sphere.
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14.4.1. Mathematical solutions

(i) Plane sheet. Solutions of the equations of § 14.4 can be obtained by the
method of Laplace transforms. Writing C and 5 for the Laplace transforms of
C and S respectively, so that

C = Ce~ptdt, S = Se~ptdt,
*o Jo

(14.66)

we have the following equations for C and S

pC = -PS + Dd2C/dx\ (14.67)

pS = /.C-fiS, (14.68)

-lC0 + plC = -DdC/dx, x = a. (14.69)

On eliminating S from (14.67) and (14.68), and replacing the partial derivative
by an ordinary derivative since t does not appear, we find

^ , (14.70)
D p + fj

of which the solution that gives C an even function of x is

C = F(p) cos kx. (14.71)

The function F(p) is determined by the boundary condition (14.69) and it
follows immediately that

C = , lC,oC°*kX. , . (14.72)
pi cos ka — ku sin ka

The derivation of C is straightforward as in Chapter 2, § 2.4.3 (ii), and after
some reduction gives

c _ /Co g. Co exp ( p n t ) c o s knx
l + (R + l)

.t1! \. Ill \ \a Pn P2ja\ cos kna
\ {Pn + H)2]\2l 2Dkl + 2Dikl\

(14.73)

where the pns are the non-zero roots of

and R = Xj[i is the partition factor between immobilized and free solute.
The expression for S differs from (14.73) only by having an extra factor
A/(pw + ju) multiplying the nth term, including the term pn = 0. Writing Mt

for the total amount of solute, both free to diffuse and immobilized, in half
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the sheet at time t, and M^ for the corresponding quantity in the final
equilibrium state attained theoretically after infinite time, we have

where the pns are given by (14.74) and where

a = l/(R + l)a, M^ = ICO/(1 + a). (14.76)

(ii) Cylinder. The case of the cylinder was considered by Wilson (1948),
using a slightly different method. The final result for a cylinder of radius a,
in a solution occupying a region of cross-sectional area A, is

M< i y ( l+a)exp(p.t)

where
a = A/{7ta2(K +1)}, Mx = AC0/(l + a), (14.78)

and the pns and fcns are given by

pn J,(Ka) 2 PnPn + l + H . . . - .

Da V(M)' " D P + n ' U '2nDa 0 (M) P

The expression for the concentration of free solute is

= AC0

A + (R + l ) 2

\ \na2 , Ap2
n } J0(kna)

(14.80)

The expression for S differs from (14.80) only by having an extra factor
multiplying the nth term, including the term pn = 0.

(iii) Sphere. On introducing new variables rC and rS the equations for the
spherical case take essentially the same form as those for the plane case, and
the same method of solution leads to

1 2"J I V
where the pns and kns are given by

2"J I V Wk^

p n _ l = -knacotkna, k2
n = - ^ ^-——, (14.82)

D pn + u
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and

a = = , M^ = - ^ . (14.83)
4na (R + l) 1+a

The expression for C is

3F+47ta3(R+l)

, y Coexp(p.t) a sin fcBr
+ ^ . f , X,i }\2na3 pn Vpj }~r sin kna

 [ ' >

I ( + ]
and that for S differs from (14.84) only by having an extra factor A,/(pn

multiplying the rcth term, including the term pn = 0.

14.4.2. Physical significance of the mathematical solutions

When mathematical solutions are as complicated in form as those in
§ 14.4.1 their physical significance is not immediately obvious. Consider eqns
(14.74) and put

x = k2a\ y = pa2/D, £ = a2(/l + ^)/A n = a2fi/D. (14.85)

Then
ly/a = Jx tan Jx, (14.86)

x = -y-^i (1487)
y + n

are the equations to be solved for the roots. Graphs of eqns (14.86) and (14.87)
are sketched in Fig. 14.4 to show the general location of the roots. The graph
of (14.86) is the same for all £, and rj, and from the figure it is easy to see quali-
tatively how the roots vary with £, and n. When corresponding transforma-
tions to those of (14.85) are applied to eqns (14.79) for the cylinder and (14.82)
for the sphere, the resulting equations are of the same form as (14.86) and
(14.87), so that Fig. 14.4 can be taken as showing qualitatively the location
of the roots for all three cases. There is a root for which kna is imaginary given
by

ly/a = V(-x)tanh V(-x) . (14.88)

The general expression for MJM ^ therefore comprises a unit term from
pn = 0, a term for which kna is imaginary, and two infinite series of terms
corresponding to the intersections of the two branches of (14.87) with suc-
cessive branches of (14.86).

The relative importance of the various terms depends on the parameter
n. It is interesting to see quantitatively what happens to the general solution
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Calculated from (14-86)
Calculated from (14-87)

O Successive real roots
£ Root for which k „ a

is imaginary

\

FIG. 14.4. Location of roots of (14.86) and (14.87).

for the extreme values of this parameter which correspond to very fast and
very slow reactions. The roots of (14.87) are given by

2y= _ ( (14.89)

the two infinite series arising from the alternative sign. For extreme values of
rj the roots are readily obtained by using the appropriate binomial expansion
of the term under the square root sign in (14.89). Proceeding in this way with
the aid of Fig. 14.4, it is not difficult to show that if r\ is very large, that is the
reaction is very rapid compared with diffusion, the terms in the general solu-
tion for MJM^ which arise by taking the negative sign in (14.89) vanish, as
does also the term from the imaginary root. The terms from the positive
sign lead to

(14.90)M = 1 ~ ?
where the knas approach the roots of

tan kna = — (xkna,

and

P = D/(R + l)a2.

(14.91)

(14.92)

This is the solution obtained by Wilson (1948) for the case of an immobilizing
reaction which is rapid compared with diffusion.
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If, however, rj is small because the reaction is infinitely slow (JJ. = 0),
we find that the terms arising from the positive sign in (14.89) vanish provided
a/I is not zero, which case is treated separately in § 14.4.3. The terms from the
negative sign combine with that from the imaginary root to give

ML R I \ f
R + U + Jl l+l/a + (l/a)2k2

na
2

where the kns are given by
tanfcna = -(l/a)kna. (14.94)

The whole term in the second bracket in (14.93) is to be recognized as
the expression for simple diffusion from a finite bath, i.e. diffusion in the
absence of any immobilized component. Eqn (14.93) also describes a simple
diffusion process,, therefore, and MJM^ changes from zero at t = 0 to
\—Rl/{(R+ 1) x(l + a)} at t = oo, which is easily shown to be the fractional
uptake of solute to be expected in the absence of immobilized solute. Thus
(14.93) indicates the behaviour to be expected on general argument, namely
that for an infinitely slow reaction the sheet takes up, by simple diffusion, only
the fraction of solute which it can accommodate in the freely diffusing state
and none in the immobilized state.

If on the other hand \ia2/D is small because D is very large, all terms in the
general solution vanish except the one associated with the imaginary root
and we are left with

Mt . R I
1

Ra
"l + a

lit). (14.95)

This expression is readily deduced from elementary considerations when
diffusion is so rapid that the concentration of solute is effectively uniform
through the sheet at all times.

The type of behaviour observed in a practical system for which \ia2jD
is very small, depends on the time scale of the experiment. If this is such that
the reaction occurs very slowly compared with the duration of the experi-
ment the simple diffusion behaviour of eqn (14.93) is observed. If on the
other hand diffusion is very rapid compared with the time scale of the
experiment, the simple first-order reaction of eqn (14.95) is observed.

14.4.3 Numerical evaluation

When eqns (14.74) and (14.75) are written in terms of pjfi and kna, we see
that MJM^ can be calculated as a function oiDt/a2 if three parameters are
known. The parameters are I/a, that is the ratio of the volumes occupied by
solution and sheet respectively; the partition factor R; and the modified
rate constant for the reaction, \ia2/D. Alternatively, since R = X/n, a solution
is defined by I/a and the two rate constants \ia2/D and Xa2/D. In some cases it
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is more useful to relate R to the fraction of the total amount of solute which is
in the sheet finally, i.e. to MJICO, by the relations (14.76). For the cylinder
the corresponding parameters are na2/A, R, and fia2/D, and for the sphere
4na3/3V, K, and fia2/D.

Once the roots pn, kna are obtained, the evaluation of each of the expres-
sions for MJM^ for the plane sheet, cylinder, and sphere is straightforward
provided /, A, and Fare finite. The cases of/, A, and V infinite, however, need
further consideration because the convergence of terms for which pn ap-
proaches — \x can be very slow and numerical evaluation becomes awkward
and laborious, particularly for small fxa2/D. For the plane sheet when
a = oo, eqn (14.75) reduces to

2D2k2
n(l+pn/Li)2exp(pnt)

{ 0)

where now kna = {n + \)n. As we saw in § 14.4.2, there are two infinite series in
the general expression for MJM^. We shall confine attention for the moment
to the series associated with the positive square root in eqn (14.89) since these
are the terms for which pn approaches — \i when Dk2J\i is large. Substituting
for 1 +pjn from the second of eqns (14.74) we find

= « _ y
l ' }

If pn = — n to the order of accuracy required, after the first r non-zero roots,
we have

l+pJti)2exp(Pnt)

R

approximately, since

^ k2a

^ k2n:

n=l Kna

= 1.2 ^ 2

(14.98)

(14.99)

The relationship (14.99) follows, for example, from (14.90) when a = oo,
since MJM^ = 0 when t = 0. The error involved in use of the approximate
form (14.98) is less than

R
£- k2

a
: (14.100)

and can be made as small as desired by choice of r. We may note in passing
that since in (14.97) pj[i and 1 +pjii occur only with R, this a more con-
venient form of expression for computation than (14.96) when pj/a is
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small or near — 1, particularly for large R, since it is less sensitive to the
accuracy of the roots pj\x.

When I/a = oo, it follows from (14.88) that there is no root for which
kna is imaginary. The complete expression for MJM ^ is therefore that of
(14.98) together with terms arising from the negative sign in the roots of
(14.89). On using (14.98) numerical evaluation of MJM^ for I/a infinite is
straightforward. The corresponding formulae for the plane sheet and the
sphere are easily derived.

14.4.4. Irreversible reaction

A special case of the above solutions of particular interest is that of an
irreversible reaction, when the rate of formation of immobilized solute is
directly proportional to the concentration of free solute. In this case jn = 0,
but A is non-zero so that R = oo, a = 0, M^ = /Co. The solution for the
plane sheet, for example, for these values follows immediately from (14.74) and
(14.75) provided / is finite.

The solution for the case of / = oo is less obvious. When fi = 0, the
imaginary root (pf, kt) is given by

lp. = -Dkj tanhkja, k'2 = (Pf + A)//), (14.101)

where k{ = ik'i9 and so when / = oo,

p. = 0, k? = A/D. (14.102)

When a = 0, \x = 0, and pt is small, we can expand exp (ptt) in powers of ptt
and write (14.75) as

M ir ICpJl+Pit) $ /Co exp (/y)
Mt = /Co 2T L IT" ' (14.103)

a Pi Vi^ n= i . a Pn PJa

2/ IDk'? 2D2k\2 2/ 2Dk22/ IDk'? 2D2k\2 2/ 2Dk2
n 2D2k2

n

from which, when / = oo, so that lpt is given by (14.101) and (14.102), we have
finally

—<- = ^qtanhq + ̂ sech2 q + ̂ -tanhq- t 2D k*^vw, { { 4 m )
aC0 a2 2q ^ a2p2

where

kna = (n + \)n, k2 = -(p^ + AyZ), q = ^/{Xa2/D). (14.105)

The first term on the right-hand side of (14.104) gives the rate of uptake of
solute due to the chemical reaction in the final steady state.

The forms of (14.77) and (14.79) for the cylinder, and of (14.81) and (14.82)
for the sphere when \i = 0, a = 0, are obvious. When A = oo we have for the
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cylinder

M, 2Dt Ix(q) l2M) y 4D2/c2exp(/y)
—2?r = 1 +—T(lTT~\~j27~\ ~~ L 2 ' (14.106)

where

J 0 ( M = 0, /c2 - - ( P | i + ;.)/D, </ - y/(la2/D). (14.107)

When F = oo we have for the sphere

— = —^-(gcoth q— 1) — fcosech2 q + | co th q —

(14.108)

where

kna = nn, /c2 = - (p n + A)/D, q = J(^a2/D). (14.109)

The solutions (14.104), (14.106), (14.108) can of course be obtained directly
by use of the Laplace transform or otherwise. When A — oo the concentration
at the surface of the cylinder is constant and (14.106) is the integrated form of
(14.42). Similarly (14.108) is the integrated form of (14.41).

14.4.5. Desorption

We have considered diffusion into a plane sheet initially free of solute.
There is the complementary problem in which all the solute is at first uni-
formly distributed through the sheet and subsequently diffuses out into the
solution. If free and immobilized solute are considered to be initially in
equilibrium everywhere in the sheet, it is easily seen that the mathematical
solutions presented above for sorption also describe desorption, provided
Mt is taken to mean the amount of solute leaving the sheet up to time t, and
M^ the corresponding amount after infinite time. For desorption from a
plane sheet, for example, we want solutions of eqns (14.62) and (14.63) satis-
fying the condition (14.65), but with (14.64) replaced by

C = Co, S = So, -a<x<a, t = 0. (14.110)

Writing

Cl=C0-C, Sl=S0-S, (14.111)

it is easy to see that (14.110) and the other equations for desorption are
identical with (14.62), (14.63), (14.64), and (14.65) with C{,S{ written for C, S
respectively, remembering only that AC0 — jnS0 = 0, if we have equilibrium
throughout the sheet at t = 0. Hence the solutions for Cx for desorption are
readily deduced from those for C for sorption, as are also the expressions for

relating to desorption.
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14.4.6. Calculated results

Evaluation of the expressions of § 14.4.4 for the irreversible reaction and
any particular set of parameters is comparatively simple and straight-
forward. On the other hand a considerable amount of painstaking labour
is involved in the evaluation of the formulae for the reversible reaction
even when there is an infinite amount of solute, and it is therefore worth
while to present some numerical values. In Tables 14.1, 14.2, 14.3, 14.4
calculated values of MJM^ are tabulated for the plane sheet, cylinder, and
sphere. The arrangement of the tables was decided by ease of presentation.
Three values of the partition factor R are included and for each R three rates
of reaction. All tabulated solution refer to an infinite amount of diffusing
substance. The values oiMJM^ are believed to be correct to within ± 1 in the
third decimal place.

Solutions for the plane sheet are illustrated in Figs. 14.5, 14.6, and 14.7.
Those for the cylinder and sphere show the same general features, differing
only in detail. Fig. 14.5 shows how the sorption curves change in shape and
position as fia2/D is varied between the two extremes given by \i = oo
(infinitely rapid reaction) and \i = 0 (simple diffusion with no reaction). By
plotting against {jitf as in Fig. 14.6 we can show the approach to the curve
for D = oo (purely reaction controlled) as \ia2jD tends to zero because of
D becoming large. We see also in Fig. 14.6 that the discontinuity in the gradient
of the curve for D infinite appears as a 'shoulder' when jia2/D = 0-01. As
fia2/D is increased further the shoulder disappears leaving a sorption curve

l-or

0-75 -

0-50 -

0-25 -

0-5 10 15 20 2-5
{Dt\{R+ \)a2}{

FIG. 14.5. Plane sheet, R = 10. Numbers on curves are values of fia2/D.
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100

0-75

0-50

0-25

0

D = oo

001

0-5 10 1-5 20 2-5

FIG. 14.6. Plane sheet, R = 10. Numbers on curves are values of na2/D.

with a point of inflexion. At still higher pia2/D the inflexion becomes less
noticeable as in Fig. 14.5 and the curves have the simple shape commonly
associated with diffusion. Fig. 14.7 shows the influence of the parameter R,
the partition factor between immobilized and free solute. As R is increased
the height of the shoulder decreases, and if curves for R = 100 were plotted
on the present scale no shoulder would be detected for any value of fxa2/D.

One interesting feature of these results is that they indicate limits to the
relative rates of diffusion and reaction outside of which the reaction is
effectively infinitely rapid or infinitely slow as the case might be. Thus for the
plane sheet, the values of MJM^ for fia2/D = 10 differ by only a few per cent
from those for an infinitely rapid reaction. The differences are greatest for
R = 1 where they are about 5 per cent. At the other extreme the solution for
fia2/D = 001, R = 1, is the same as that for an infinitely slow reaction to the
same degree of accuracy except at small times (see Fig. 14.7 for example).
The differences increase in this case as R increases, being about 20 per cent
for R = 100.

The significance of these limits is perhaps easier to appreciate when
they are expressed in terms of the half-times of the simple diffusion and
simple reaction processes respectively. For simple diffusion into the plane
sheet from an infinite amount of solution it is easy to show that the half-time
td, that is the time at which MJM^ = \, is given by

Dtja2 = -(4/K2)lnn2/16 = 0-2, (14.112)
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FIG. 14.7. Plane sheet, R = 1. Numbers on curves are values of fia2/D.

approximately. On the other hand if immobilized solute is formed from a
uniform, constant concentration Co of free solute according to the equation

dS/dt = XC0-fiS,

this reaction has a half-time tT given by

litr = In 2 = 0-7,

(14.113)

(14.114)

approximately, and combining (14.112) and (14.113) we have for the ratio of
the half-times,

tr/td = 3-5D/(fia2). (14.115)

Thus we can say that if the diffusion is more than 1000 times faster than
the reaction, the behaviour of the diffusion-reaction process is roughly the
same as it would be if diffusion were infinitely rapid. On the other hand
if the half-times for diffusion and reaction are comparable, the behaviour
approximates to that for an infinitely rapid reaction. These statements indi-
cate orders of magnitude only. They apply also to the cylinder and sphere.

14.5. A bimolecular reaction

Katz, Kubu, and Wakelin (1950) and also Reese and Eyring (1950) have
considered the problem of diffusion accompanied by an immobilizing reac-
tion which is bimolecular. They consider diffusion in a cylinder, representing
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a textile fibre in which there are a number of active groups to which the
diffusing molecules can become attached. The process is described by the
equation

dC/dt = DV2C-knC, (14.116)

where n(r, t) is the number of active groups unattacked at radius r and time t.
Both treatments are approximate only, because (14.116) is non-linear and
not amenable to formal solution. Katz et al. first neglect the term knC in
(14.116) and then use the known solution of the simplified diffusion equation
which yields C as a function of r and t, to obtain an approximation to n
through the equation

dn/dt = -knC. (14.117)

Reese and Eyring (1950) make the assumption that the rate of reaction
depends on the average concentration of diffusing molecules throughout the
fibre, and not on the concentration C as in (14.117), which depends on the
radial coordinate r. More recently, Petropoulos and Roussis (196%) dis-
cussed numerical solutions of the complete equation (14.116). They referred
also to solutions obtained by Lebedev (1966). Nicolson and Roughton
(1951) applied the Crank-Nicolson numerical method to the diffusion of
CO and O 2 through the outer membrane of the red blood corpuscle, ac-
companied by diffusion and chemical reaction in a core of concentrated
haemoglobin. The equations take the form

dy
— = -k'py + k(yo-y),

in the haemoglobin core, and

in the surface membrane. Further applications of the mathematical treatment
have been made by Klug, Kreuzer, and Roughton (1956). The subject has
been reviewed by Roughton (1959).

14.6. Reduced sorption curves

Weisz (1967) suggested that when fractional sorption curves are plotted
against a modified time variable there is relatively little difference between
their behaviour even for the extreme cases of a cweak' linear isotherm and
a 'strong1 irreversible sorption characterized by the type of sharp advancing
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boundary discussed in Chapter 13. Weisz used a time variable T given by

Dt P Co

~~ R2 b C f '

where t is real time, D the diffusion coefficient of the mobile component, R
the radius of the cylinder or sphere, P the fractional volume in which diffusion
occurs, b a tortuosity factor, and Co and Cf are the surface and the total final
concentrations throughout the medium. A second paper by Weisz and Hicks
(1967) gives numerical results.

Further papers by Weisz and co-workers are referred to by Ott and Rys
(1973) who present a general model of diffusion with immobilization in-
cluding cases of competitive sorption of more than one diffusing species.

14.7. Constant reaction rate

Solutions of the equation

where A represents a constant rate of generation or removal of diffusing
substance, have been adequately covered for the standard geometrical
shapes by Carslaw and Jaeger (1959). Goldenberg (1951, 1952) solved the
heat equation for the case of a constant rate of heat generation in a sphere
embedded in an infinite medium having identical (1951) and different (1953)
diffusion properties.



15

SIMULTANEOUS DIFFUSION OF HEAT
AND MOISTURE

15.1. Introduction

T H E problem to be discussed in this chapter is that of the diffusion of one
substance through the pores of a solid body which may absorb and im-
mobilize some of the diffusing substance with the evolution or absorption of
heat. This heat will itself diffuse through the medium and will affect the extent
to which the solid can absorb the diffusing substance. We thus have two
processes, the transfer of moisture and the transfer of heat, which are coupled
together, and we cannot in general consider one process without considering
the other simultaneously. For convenience we shall refer to diffusion through
pores, but the theory will apply to alternative systems provided only that
some of the diffusing substance is immobilized and that heat is given out in
the process. Thus the case of a dissolved substance diffusing through a gel
would be included. Equations of the same form would also be obtained,
neglecting thermal effects, for the diffusion of two substances through a
porous solid, each capable of replacing the other in absorption by the solid.

15.2. Uptake of water by a textile fibre

A simple illustration of the coupling between the transfer of heat and that
of moisture is afforded by the uptake of moisture by a single textile fibre.
Water penetrates the fibre by diffusion and for a wool fibre a diffusion coeffi-
cient of about 10"7 cm2 s" ! can be taken as representative. The time for a
single fibre to reach say 80 per cent of its final uptake of moisture depends
not only on the diffusion coefficient but also on the diameter of the fibre—
the thinner the fibre the more quickly it absorbs. Now the average diameter
of a fibre is so small (rather less than 10"3 cm) that for a diffusion coefficient
of 10~7 cm2 s~* we expect 80 per cent absorption to be reached in about 2
seconds. King and Cassie (1940) attempted to demonstrate this conclusion
experimentally by measuring the rate of sorption of water vapour by a small
mass of wool (0-25 g) suspended by a sensitive spring-balance in an evacuated
chamber into which water vapour was introduced at 23-5 mm pressure. By
suspending the wool in an evacuated chamber King and Cassie eliminated
diffusion through any surrounding atmosphere, and they expected to
measure directly a rate of uptake governed solely by diffusion within the
fibres. In view of the small diameter of the fibre we expect this uptake to be a
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matter of only a few seconds. This does not appear to be at first sight supported
by the uptake curve they observed, which reached 80 per cent only after an
hour or so.

We must remember, however, that when water vapour is absorbed by
wool a large amount of heat is evolved which produces a considerable
increase in temperature. King and Cassie showed that when this temperature
rise is taken into account the relatively low rate of sorption can be reconciled
with the statement that an individual fibre reaches equilibrium with its
surroundings effectively instantaneously. Thus the uptake of moisture
depends on the vapour pressure and also on temperature; the uptake is
greater the higher the vapour pressure but is decreased by a rise in temperature.
In the experiment we have described, the uptake would have been more than
30 per cent if the temperature had remained constant. Because the temperature
rose to over 65 °C, however, the uptake immediately acquired was much less
than 30 per cent. A temporary equilibrium is reached, in which the uptake
is in equilibrium with the external vapour pressure at the modified temperature
produced by the heat evolved as the vapour is absorbed. King and Cassie
(1940) calculated this temporary equilibrium uptake to be 2-3 per cent and
the temperature 80 °C. Subsequently heat is lost and as cooling proceeds
the uptake of moisture increases. The uptake curve observed by King and
Cassie was thus essentially a cooling curve. The uptake and temperature
curves calculated in this way agree well with the corresponding experimental
curves.

This experiment in a vacuum may seem artificial, but it illustrates that the
immediate reaction of a mass of fibres when presented with a new atmosphere
is to modify that atmosphere to be in equilibrium with itself at the expense of
only a slight change in its own moisture content.

15.3. Two possible equilibrium conditions

We consider now an example quoted by Cassie (1940a) having a more
direct bearing on the problem in which we are interested. Suppose a sheet of
wool fibres conditioned to 45 per cent R.H. at 20 °C, so that its moisture up-
take is 10 per cent, is suddenly placed in a stream of air at 65 per cent R.H.
and the same temperature. The wool and air can come to equilibrium in two
very different ways:

1. By an increase in the uptake of the wool until it is in equilibrium with
65 per cent R.H. The regain needed is 14 per cent.

2. By an increase in the temperature of the wool and air till the new vapour
pressure represents only 45 per cent R.H., the uptake of the wool re-
maining essentially unchanged at 10 per cent. It is easy to calculate
from vapour pressure tables that this will be so if the temperature rises to
25 °C.



354 SIMULTANEOUS DIFFUSION OF HEAT AND MOISTURE

Of these two possible equilibrium conditions the first, involving a con-
siderable change in moisture uptake, can only be achieved after a large
volume of air has passed through the wool. The second, involving a tem-
perature rise, is easily attained almost immediately because of the large heat
of sorption. Enough heat is produced by a relatively small increase in
moisture uptake to raise the temperature of the wool to 26 °C (̂  per cent will
do it if the heat capacity of the air is neglected). For this reason the first
equilibrium set up is the one in which the temperature rises but the regain
is essentially unchanged. This is only a pseudo-equilibrium, however, because
if we continue to blow air at 20 °C over the wool the final temperature must be
20 °C and the final regain 14 per cent. Here we have the essential feature of the
propagation of humidity and temperature changes in textiles or similar
materials, namely the existence of two equilibrium states—a temporary one
set up quickly and involving no change in uptake, and a permanent one set
up relatively slowly and involving a change in moisture content.

15.4. Propagation of two disturbances

Clearly, therefore, when the air stream first passes through, a front,
separating the original and pseudo-equilibrium conditions, moves through
the textile with the speed of the air flow if we neglect the heat capacity of the
textile. Thus a fast disturbance representing change of temperature and
moisture in the air without change of regain, is followed by a much slower
disturbance bringing a change of regain. Furthermore, the same general
behaviour is to be expected when the transfer of heat and moisture occurs by
diffusion rather than as a result of aerodynamic flow of air.

Mathematical equations describing the diffusion phenomena in detail
have been set up and from them it is possible to calculate how concentration,
temperature, and total moisture uptake vary with time and distance through
the medium till final equilibrium is attained. Henry (1939,1948) first gave the

FIG. 15.1. Element of textile package.
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theory for diffusion of humid air into a textile package and Cassie (1940b)
later gave ihe corresponding theory for air forced through the textile,
neglecting diffusion effects entirely. Since then Daniels (1941) has taken into
account diffusion of heat and moisture in an air stream forced through the
textile. Armstrong and Stannett (1966a) extended the work of Cassie and
others to include the effects of the diffusion of moisture in cylindrical fibres.
In plane sheets which are thinner, movement of both heat and moisture
were allowed for (Armstrong et al. 1966b). We now give Henry's treatment
of the diffusion problem.

15.5. Equations for diffusion of heat and moisture

15.5.1. Equilibrium equation

Fig. 15.1 shows diagrammatically an element of a textile package occupied
partly by fibres and partly by air spaces. This is much oversimplified but
serves to fix ideas. We have said that a fibre can always be considered as in
equilibrium with its immediate surroundings. We shall further assume linear
dependence on both temperature and moisture content and write

M = constant + GC-O>T, (15.1)

where C is the concentration of water vapour in the air spaces expressed in
g cm"3 , M is the amount of moisture absorbed by unit mass of fibre, a and a>
are constants. We shall consider the equilibrium uptake of moisture by a
fibre to be related to water vapour concentration and temperature T by the
linear relation (15.1). This is a necessary assumption if the theory is to pro-
ceed ; clearly in practice it is only an approximation which is reasonable over
small ranges of humidity and temperature.

15.5.2. Vapour diffusion equation

Consider an element of a textile package. We can derive two equations,
one expressing the rate of change of concentration and the other the rate of
change of temperature.

The rate of change of concentration is governed by the following:

(i) Diffusion of vapour through the air spaces and through the fibres, both
these being proportional to the concentration gradient in the usual way.
Diffusion through the pores will in many cases be greater than through
the fibres, but even if this is not so we can represent both processes by
one term if we make the assumption that the vapour in the fibre is always
in equilibrium with that in the air in the immediate neighbourhood and
the absorption isotherm is linear as in (15.1).

(ii) The absorption or desorption of moisture by the fibres from the air
spaces.
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Thus we can say,

Net amount of vapour entering element by diffusion
= increase in moisture in air + increase in moisture in fibres. (15.2)

If a fraction v of the total volume of the package is occupied by air and
1 — v by fibre of density ps then, expressing (15.2) mathematically, the equation
governing the movement of vapour can be written

where C and M have been defined and DA is the diffusion coefficient for
moisture in air. The factor g allows for the fact that the diffusion is not along
straight air channels but through a matrix of intertwined fibres and any
diffusion along the fibres themselves can also be allowed for in this factor.
It is a factor which can be measured by permeability measurements under
steady-state conditions.

15.5.3. Heat diffusion equation

The rate at which the temperature of the element changes is determined
by

(i) conduction of heat through air and fibres;
(ii) the heat evolved when moisture is absorbed by fibres.

Thus

Increase in heat content of fibres
= net amount of heat entering by conduction + heat evolved

as fibres absorb moisture, (15.4)

and this is expressed mathematically by the equation

dT d2T dM / i c c x
K ( 1 5 5 )

where a is the specific heat of the fibres, K the over-all heat conductivity
of the package, p the density of the package, expressed as mass of fibre
per unit overall volume, and q is the heat evolved when 1 g of water vapour
is absorbed by the fibres. In writing (15.5) the reasonable assumption has
been made that the heat content of the air is negligible compared with that of
the fibres.

One vital point to be noticed is that both eqn (15.3) and (15.5), that is the
vapour equation and the temperature equation, involve M, the amount of
moisture in the fibres. It is at once obvious that the two processes, the transfer
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of moisture and the transfer of heat, are coupled together in this way and
that we cannot in general consider one process without considering the other
simultaneously.

15.5.4. Assumptions underlying the mathematical theory

It is worth while to enumerate some of the assumptions on which the
theoretical treatment is based. The main ones are as follows:

(i) The linear dependence of M on C and T to which reference has already
been made.

(ii) The quantities DA , K, a, p are assumed constant and independent of
moisture concentration and temperature.

(iii) The heat of sorption q is assumed independent of regain though in
practice it is not so.

(iv) Hysteresis of sorption is neglected, that is the equilibrium equation
(15.1) is assumed to hold whether the fibre is gaining or losing moisture.

(v) The relative volumes occupied by fibre and air are assumed not to
change as diffusion proceeds, i.e. v is assumed constant. In actual fact,
as the fibres sorb moisture they swell and occupy progressively more
space, and the air correspondingly less. This is thought to be unimpor-
tant except for very dense packages.

(vi) No account has been taken of the influence of capillarity in the air
spaces. This will be appreciable only at very high humidities or in water,

(vii) The fibres have been assumed to reach equilibrium with their immediate
surroundings instantaneously. There is some evidence that relatively
slow changes of fibre structure may occur as the moisture is taken up,
and that while most of the uptake is effectively instantaneous there
may be a slow drift of moisture content persisting for some time. The
information on this at the moment is too sparse for it to be taken into
account even if the mathematics permitted.

15.6. Solution of the equations

Using Henry's nomenclature the equations to be solved can be written

where

" dx2

J2T
d x 1 "

dM/BC = a;

" = K/(ap);

dt

8T

~dt

- ' dt'

dM
8 d t '

dM/dT = co,

y = d-v)/(vp): g = q/a.

(15.7)

(15.8)

(15.9)
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Eliminating M, we obtain

..d2C „ dC dT
= 0, (15.10)

d2T dT dC
v — y — (l + *;co) \-8<J— = 0, (15.11)

dx dt dt

which can be written more simply in the forms

d C d
(15.12)

dx dt

where the significance of D, ©, /I, and v is immediately obvious. These equations
are now in a form analogous in some respect to those representing two
coupled vibrations, and they may be treated in the usual manner, provided
X and v are assumed constant, by the introduction of 'normal coordinates',
which are linear combinations of C and T, of the form rC + sT. With proper
choice of the ratio r/s, eqns (15.12) and (15.13), expressed in terms of the new
coordinates, give rise to two simple diffusion equations, each containing only
one of the normal coordinates. The quantities represented by the latter
consequently diffuse according to the usual law, and independently of each
other, just as the normal modes of vibration of coupled mechanical systems,
once started, continue without mutual interference. In order to find the
normal coordinates, we multiply (15.12) by r/D and (15.13) by s/®, and add,
obtaining

If this is to be expressible as a simple diffusion equation for rC + sTwe must
have

r/D-sv/Q) _ s/9-rX/D

r s
i.e.

= = a2 say. (15.15)
D r Q) Q) s D

This is a quadratic in r/s and gives the two values of r/s required to form
the two normal coordinates. Also, \i2 will have two values, corresponding
to the roots of r/s. Eqn (15.14) can now be written

( r C + 5T)^ ( rC + sT) = 0, (15.16)
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which is a simple diffusion equation for rC + sT with diffusion coefficient

Vn2-
We can now determine the normal coordinates and their diffusion coef-

ficients. Elimination of r/s between the eqns (15.15) gives

(15.17)

the roots of which are

o D + Q) + J\{Q) — D)2 + 4kvDQ)\
"2 - ~ v ( *-. (15.18)

15.6.1. Diffusion rates

If we write \j\x\ = Dx and \j\i\ = D2 in order to preserve the representation
of a diffusion coefficient by the letter D, and if we put DjQ) = w, then we have
from (15.18)

Dx 2

D u+ 1+71(1 -u) 2 +4iuv} '

D2 _ 2

D u-\-1

(15.19)

(15.20)

Fig. 15.2 shows a nomogram, reproduced from Henry's paper (1948) for
solving these equations. If a straight line be placed so as to cut the two
straight scales at the appropriate values for u and kv, then the points at which
it cuts the circular scale give Dx/D and D2/D respectively. To find DxjQ)
and D2/% \/u must be used in place of u. Usually it is convenient to express
£>! in terms of D and D2 in terms of Q).

If kv is small compared with (Q) — D)2/(4D<3), i.e. if either the coupling
between the two diffusion processes is weak or D and Q) are of widely different
magnitudes, the roots become

2 _ 1 kv

1 kv
(15.21)

approximately. Thus as the coupling becomes weaker \i\ tends towards
1/D, and \i\ tends towards 1/^, so that we may speak of ±iil as the vapour
roots, and ±fi2 as the thermal roots, though when coupling exists all roots
are concerned with both diffusion processes to a greater or lesser extent.

15.6.2. Expressions for concentration and temperature changes

Proceeding from eqn (15.17) or (15.18) we see that

= l /D+1/0,
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FIG. 15.2. Nomogram for DJD and D2/D in terms of u and AV

i.e.

Using (15.15) and (15.22) we find that

v D

\-\i\® D

X

(15.22)

(15.23)

Hence if we choose rx and s2 to be equal to unity, the normal coordinates are
determined, and the solution of the differential equations (15.6), (15.7),
(15.8) can be written

AC
1 _

(15.24)
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^ C = ^2(x, y, z, t), (15.25)

where AC and AT are the deviations of C and T from some given values
(e.g. the initial), and the i//s are solutions of ordinary diffusion equations
with diffusion coefficients equal to \j\i\ and \j\i\ respectively, and subject
to appropriate boundary and initial conditions. Solving for C and T we get

AC = 01(x,j>,z,t)+—^-<l>2(x9y9z9t)9 (15.26)

AT = 02(x, y, z, 0 + Y~-0i(x, y, z, r), (15.27)

where

and

02(x, >;, z, t) = ' 2 ^ ^ 2 > 2 ( x , y, z, r). (15.29)

The 0s, being proportional to the i/̂ s, are also solutions of the ordinary diffu-
sion equation with diffusion coefficients equal to \j\i\ and \l\i\ respectively,
and with boundary and initial conditions which give the required conditions
for C and T.

The physical interpretation of these equations derived by Henry is that
each diffusion 'wave' of vapour is accompanied by a temperature 4wave'
proceeding at the same rate, whose magnitude is proportional to that of the
vapour diffusion wave, the relation between the two depending only upon the
properties of the materials. Similarly, the main temperature 'wave' is ac-
companied by a subsidiary vapour diffusion wave. Even if only one of the
external conditions, say the vapour concentration, alters, there will neverthe-
less be the complete set of two vapour 'waves' and two temperature 'waves',
though the latter may be small if the coupling is weak.

Henry points out that similar reasoning to that just given still holds if
eqns (15.12) and (15.13) have on their right-hand sides, instead of zero, any
functions of the independent variables x,y, z, and t. Such equations would
correspond to the case where either the diffusing substance or heat, or both,
are being set free or absorbed in a manner additional to and independent of
the diffusion processes, and independent of C and T. There might, for example,
be a chemical reaction causing both the diffusing substance and heat to be
evolved throughout the medium. In such cases the solution to the problem of
the simultaneous transfer of heat and vapour reduces to the sum of solutions
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for the ordinary diffusion of the 'normal coordinates1 with appropriate rates
of evolution throughout the medium of the quantities they represent.

15.6.3. Solutions for sudden changes of external conditions

The above equations enable the solution of the coupled diffusion problem
to be obtained in terms of the solution for the ordinary diffusion problem
with the same boundary conditions. Suppose a specimen of any shape is in
equilibrium with its surroundings and that at time t = 0 the concentration
C and temperature T of the diffusing substance are suddenly altered to
C + A0C and T+A0Trespectively at the boundary, and maintained constant.
Let the solution to the simple diffusion problem, assuming diffusion constants

AC = A0Cj\(x,y,z,t\ (15.30)

AT = A0Tf2(x,y9z,t). (15.31)

The specimen eventually reaches equilibrium with the new conditions so that
fx and f2 must increase from 0 to 1 as t increases from 0 to infinity. The form
of these functions depends on the shape of the specimen and typical solutions
have been given in earlier chapters for plane sheets, cylinders, and spheres, for
example. Clearly fx and f2, multiplied by suitable constants depending upon
the initial conditions at the boundary, are the functions <j)i and <j>2 in eqns
(15.26) and (15.27). Thus, remembering that the system must eventually come
to equilibrium with AC = A0C and AT = A0T, and that fx and f2 are then
both unity, we find

AC= ^2 2I{(l-
1 — jX2)

(15.32)

(15.33)

An alternative form of these equations, put forward by Henry (1939) is

4C , 4oC/l J iz i fW-iM, h _,,,. (15.34|

AT ATf P
AT = A0Tf2

The first term on the right-hand side of each equation represents the 'wave'
which would result if there were no coupling between the diffusion processes
and which may be referred to as the 'permanent wave'. The second term
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represents the result of the coupling and may be called the 'temporary wave'
since it starts at zero, increases to a maximum, and then diminishes to zero
again.

In many cases it is required to know the rate at which the amount of
diffusing substance absorbed M varies. To determine this we substitute

AM = GAC-OJAT (15.36)

in (15.34) and (15.35), and after some rearrangement we obtain

AM = A0Mfx + { Itf--- — I Ao
1 1

W'~~~Dr' t*i-l
(15.37)

where from (15.10) and (15.12)

D" = D(l+ya), (15.38)

and from (15.11) and (15.13)

0 " = 0(l+eco). (15.39)

If it is desired to include both the amount absorbed and the amount in the
pores, and M' is the total amount of diffusing substance contained in unit
mass of solid, then from (15.36) and the definition of y in (15.9) we obtain

AM' = 1+ —I AM+— AT, (15.40)
yo) yo

which may be evaluated using (15.35) and (15.37). If ycr is large, i.e. if much
more diffusing substance is absorbed by the solid than is contained in the
pores, M' is nearly equal to M and (15.40) is not needed. Henry points out that
this is so for baled cotton, for example, for which yo may be as much as 7000. In
this case also, since the terms in the expression (//? — 1/D — eco/^") occurring
in (15.37) nearly cancel if eco is fairly large compared with unity, e.g. for cotton
it is about 10 or 30, (15.37) may be written approximately

a> AOT\ (/2 - / , ) , (15.41)
J

where u is written for D/0. Here co A0Tis the total change in the equilibrium
value of M which would be produced by the change in temperature A0T, if
C remained constant. Henry (1939) has given numerical values of the various
constants involved in the above equations for the case of baled cotton at
densities 0-2, 0-4, 0-6g/cm~3 and has written (15.40) in numerical form for
each density.
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15.6.4. Change in external humidity only

Henry (1948) has explored further the case in which no change is made in
the external temperature, only the external humidity being changed. Then
we can put A0T = 0 in eqn (15.32) and by substituting \/D1 and 1/D2 for
\x\ and \x\ respectively, and then rearranging we obtain for the ratio of the
change in C at any instant to the equilibrium value of the change,

AC = P 1 U > 2 - P ) / 1 - P 2 ( P 1 - D ) / 2

P)A0C

This can be written very simply as

AC/A0C = ( l - p ) / 1 + p / 2 , (15.43)

where

Thus p is a dimensionless quantity that can be expressed in terms of the
ratios DJD and D2/D. We have already seen in eqns (15.19) and (15.20) that
these ratios can be calculated directly from u = D/2 and Av, and so p can
also be obtained from u and Av. The necessary relationship is

(2p- l ) 2 = , ( " ~ ^ .. (15.45)
(w—1) +4wvA

Henry's nomogram (1948) for calculating p in terms of u and Av is reproduced
in Fig. 15.3. Since the right-hand side of (15.45) is unaltered if 1/w is substituted
for w, the scale for u from 1 to oo enables all possible values of u to be dealt
with. It also follows from this symmetry that the same numerical value for p
can be used to handle the problem in which the external temperature is
changed instead of the humidity.

Putting A0T = 0 in (15.41), we get

4 M - / , - " ! £ ' : • ' • ' • . - ••

u2

A0M

where

Henry's nomogram for calculating n in terms of u and 1/(1 + sco) is reproduced
in Fig. 15.4. Under the conditions for which (15.41) and (15.46) apply we have

u

(l+w)2(l+eo;) + i/ ' *

= 1/(1—Av), (15.48)

approximately.
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FIG. 15.3. Nomogram for p in terms of u and Av.

Henry has given a table of values of p and n and also of the diffusion
coefficients D, % Dl9 D2 for cotton packages of two densities and three
relative humidities and temperatures. For the experimental data on which
his calculations are based his original paper (1948) should be consulted. The
two densities are 0-2gcm~3 and 0-5 gem"3 at temperatures 20°C, 50°C,
and 80 °C, and the relative humidities (R.H.) are 20 per cent, 65 per cent, and
90 per cent. The results are shown in Table 15.1, reproduced from Henry's
paper (1948), the significance of the figures being clear from the labelled cells.
Figures for 80 °C and 90 per cent relative humidity are omitted because under
these conditions the vapour pressure would be a considerable fraction of
atmospheric pressure, and fluid flow would make an appreciable contribution
to the process. From this table and eqns (15.43) and (15.46), it is a simple
matter to calculate how concentration and total moisture content vary for a
package of known size and shape. When dealing with total moisture content,
/j and f2 are, of course, functions only of time. As an example, suppose the
package is in the form of a large flat sheet then we have (§ 4.3.2, p. 48)

(15.49)



366 SIMULTANEOUS DIFFUSION OF HEAT AND MOISTURE

O-O-i

0 - 5 -

1 0 -

2 0 -

( '_

3 0 :

40-

50-

1 0 -

20-=

1 0 0 -

FIG. 15.4. Nomogram for n in terms of u and AV or 1/(1 +EOJ).

where m = ^D^/l2,1 being the thickness of the sheet. The function f2 is the
same with Dx replaced by Z)2.

The following points about the solutions are of particular interest.

(i) In Table 15.1 it is seen that, as the temperature rises, the moisture
diffusion coefficient D, which is at first much smaller than the thermal
diffusion coefficient % eventually becomes much larger. Furthermore, the
diffusion coefficient Dx for the slower normal function is always less than
either D or Q) but never by a factor of less than \. On the other hand, D2 is
always much greater than D or Q). The figures for n show that the secondary
wave is of very small amplitude, as judged by the total moisture content, at
low temperatures, but becomes appreciable at high temperatures. The
figures for p show that in the case of an external thermal disturbance only, the
secondary wave may be important even at room temperatures.

(ii) Since both j \ and f2 always change from 0 to 1 we see from (15.35) that
the change in temperature associated with an external change of humidity
only (A0T = 0), is a transient one, which increases from zero to a maximum
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and disappears again. This transient temperature has been observed by
Cassie and Baxter (1940).

(iii) If the initial disturbance is one of temperature only there is a cor-
responding transient change in moisture content.

(iv) The effect of size or shape is all included in the function / and so
conversion from one package to another is relatively simple. In particular
t and / always appear as t/l2 in (15.49), for example, and we have the usual
dependence of the time scale on the square of the linear dimensions, familiar
in simple diffusion problems.

(v) For comparisons of calculated and experimental values the papers of
Cassie and Baxter (1940) and of Daniels (1941) should be consulted. The
former describes a pure diffusion experiment, the latter a flow-under-pressure
experiment with diffusion as a complicating feature. It is not to be expected
that the theoretical treatment of a subject as complicated as this can reproduce
all the features accurately and quantitatively. Its value lies in clarifying the
mechanism by which heat and moisture are transferred, in making possible
rough estimates of time scales under given conditions, and in particular,
showing how the times for a given package can be estimated from measure-
ments on a standard package.

15.7. Surface temperature changes accompanying the sorption of vapours

A much simpler problem, but one of practical interest, is to calculate the
temperature change which accompanies the sorption of vapour by a solid,
in cases where the temperature rises due to the heat of condensation given
up at the surface of the solid and the heat of mixing can be neglected.

We consider a plane sheet suspended in a vapour maintained at constant
pressure. The sheet is taken to be so thin that effectively all the vapour enters
through the plane faces and a negligible amount through the edges. Uptake of
vapour therefore occurs by uni-directional diffusion through the sheet and
the amount taken up is assumed proportional to the square root of time.
The heat of mixing is taken to be a negligible fraction of the heat of sorption
which thus becomes simply the heat of vaporization. This assumption carries
the implication that during sorption heat is evolved only at the two surfaces of
the sheet. Values of heat conductivity, specific heat, and density of the sheet
are taken to be constant, independent of temperature and vapour content. The
calculated results are based in the first place on the assumption that heat is
lost from the surfaces by radiation only, according to Stefan's law. For small
temperature differences, however, both radiation and convection losses
proceed at rates directly proportional to the temperature difference between
the surface and its surroundings, and so convection losses can be allowed for
by adjusting the radiation constant.
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15.7.1. Mathematical equations

Taking 9 to be the temperature difference between an element of the
sheet and the vapour in which the sheet is suspended, 0o the temperature of
this vapour assumed constant, x the space coordinate perpendicular to the
surface of the sheet (the surfaces being at x = 0 and x = /), and t the time
during which uptake of vapour has occurred, the equation governing the
conduction of heat through the sheet is

d9 _ K d2

dt pot dx

Here K is heat conductivity, p density, and a specific heat of the substance of
the sheet, all expressed in c.g.s. units. At each surface, heat is continuously
evolved, as vapour is taken up, at a rate given by \p\h dR/dt, where R is the
regain at time r, i.e. mass of vapour taken up per unit initial mass of sheet, and
L the heat of vaporization. Some of this heat is lost by radiation from the
surface at a rate which for small temperature differences is given by k6,
where k = 4ao6l and o0 is Stefan's constant. The remainder of the heat
enters the sheet by conduction at a rate given by — K d6/dx. The equation
expressing conservation of heat at the surface .x = 0 is therefore

2. (15.50)

^ k d + K8^- = 0, x - 0. (15.51)
dt ex

There is a corresponding condition for the surface x = /, but for purposes of
calculation it is preferable to consider only half the sheet and to use the
condition

dO/dx = 0, x = \l (15.52)

because the uptake of vapour and the heat flow are symmetrical about the
central plane of the sheet. We need therefore to evaluate solutions of (15.50)
with the boundary conditions (15.51) and (15.52) and the initial condition

0 = 0, 0 < x < £/, t = 0. (15.53)

We consider the regain JR at time t to be given by

R = B{t/12)K (15.54)

where B is a constant for a given experiment. It follows from eqn (4.20), for
example, that

B = 4C0(D/n)K (15.55)

where Co is the equilibrium regain attained theoretically after infinite time,
and D an average diffusion coefficient for the concentration range 0 to Co of
vapour. The constant B is thus dependent on the experiment considered, i.e.
on the system, the temperature and the vapour pressure, but is independent
of the thickness of the sheet.
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On introducing the non-dimensional variables

K<x.y 0 Kt
p J BV pa/2' (15.56)

and substituting for R in (15.51) from (15.54), eqns (15.50), (15.51), (15.52),
and (15.53) become

dcj) d 0

3T dX2'

1 kl ± dcj)

—_ 0_̂ —Z. = o, X = 0, T > 0,

dcfrldX = 0, X = i

0 = 0, 0 < X < 1, = 0.

(15.57)

(15.58)

(15.59)

(15.60)

When expressed in terms of the new variables 0, X, and T, the problem there-
fore contains only a single non-dimensional parameter kl/K, which we
denote for convenience by h. A number of solutions of eqn (15.57) satisfying
(15.58), (15.59), and (15.60) have been evaluated for different values of h,
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FIG. 15.5. Variation of surface temperature with (time)*. Numbers on curves are values of
h = kl/K.
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using the numerical methods described in Chapter 8. The calculated surface
temperatures are shown graphically in Fig. 15.5, and together with the two
special cases for K = oo and K = 0 they constitute the solution of this
problem for all values of the physical properties involved. For convenience of
scale in Fig. 15.5, (kl(x/p)*(9/BL) is plotted against (kt/lpa)*. These variables
are respectively h*(j) and (hrf and hence are readily deduced from <j> and
T for a given h.

15.7.2. Special cases of zero and infinite conductivity

While the case of zero heat conductivity may be of little practical signifi-
cance it is nevertheless a useful limiting solution from the mathematical
point of view. When K = 0, no heat penetrates the sheet and we are concerned
only with eqn (15.51) which becomes

y = k6. (15.61)

For the particular case of R given by (15.54), integration of (15.61) leads
immediately to

S (1562)

When K is infinite the temperature is always uniform throughout the sheet
and some of the heat evolved at the surface is lost by radiation while the rest
raises the temperature of the whole sheet. This is expressed by the equation

^plL = 2/c0 + / p a ^ , (15.63)
at at

which becomes

^A«L (15.64)

(15.65)

At Ipa

on substituting for R from (15.54). The solution of (15.64) is

-
2kt\ f 1

Ipa ti exp
2k,

When expressed in terms of the variables h^cj) and hr used in Fig. 15.5, eqn
(15.65) becomes

= exp(-2/i i) f exp(2/2T1)d(/?iTf)-
Jo

Tabulated values of the right-hand side of (15.66) are given by Sakamoto
(1928) for values of (/IT)* in the range 0 < 2hz < 100. The solution (15.66) is
shown as the curve marked K = oo in Fig. 15.5.
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15.7.3. Calculated results. General solution in non-dimensional variables

In Fig. 15.5, \v<\> is plotted against (/IT)* for different values of h = kl/K.
Since both variables and the parameter h are non-dimensional, the variation
of surface temperature with time can be deduced from this figure for any
system (subject to the basic assumptions) by inserting appropriate values of
the physical constants involved.

The following general points are of interest.

(a) For any finite conductivity the surface temperature rises discontinu-
uously at t = 0 to some finite value and immediately afterwards begins to fall.

(b) For the smaller values of h, i.e. larger conductivities, the surface tem-
perature passes first through a minimum and later through a maximum before
falling eventually to the temperature of the surroundings. The initial fall in
temperature occurs while the sheet is behaving semi-infinitely with respect to
heat flow. The temperature rises when an appreciable amount of the heat
entering the sheet through its second surface reaches the surface under
consideration. The later maximum in surface temperature occurs when heat
is removed from the surface by conduction and radiation (and possibly
convection) as quickly as it is given up by the vapour entering the sheet. It is
to be remembered that the rate of uptake of vapour, and hence the rate of
supply of heat to the surface, steadily decreases, being proportional to l/^/t.

It is to be expected that the smaller the heat conductivity of the sheet the
longer the time that elapses before the heat from one surface reaches the other
and hence the later the minimum temperature occurs.

(c) For h > 1 no minimum or maximum temperatures occur, but the
surface temperature falls continuously for t > 0, so that theoretically the
highest temperature is achieved instantaneously at zero time.

(d) When the conductivity is infinite, the surface temperature rises con-
tinuously from that of the surroundings up to a maximum and then falls.
For zero conductivity the surface temperature is theoretically infinite at
t = 0 and then falls steadily.

(e) To within the accuracy of plotting, the maximum temperature can be
deduced from the curve for K = oo even if the conductivity is finite, provided
kl/K < 0-2 approximately.

(f) For a given sheet the temperature change in degrees is proportional
to the heat of vaporization L and also to the constant B. We have seen in
eqns (15.54) and (15.55) that B is the gradient of the linear plot of regain
against (t//2)% and is also proportional to the product of the equilibrium
regain and the square root of an average diffusion coefficient.

The following are two examples of the use of the general solution.

(i) Effect of thickness. As an example of the use of the curves of Fig. 15.5
we have calculated the way in which the temperature at the surface of a
polymer sheet varies with time as it takes up vapour, and how this depends on
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thickness. The following values are taken as representative of a variety of
polymers and vapours:

p = 1-0, a = 0-35, L = 100,

K = 4-5 x l ( T \

k = 1-6x10"

all in c.g.s. units. The value of k comes from Stefan's constant and relates to an
ambient temperature of 35 °C. The value B = 710 x 10"5 has been used. It
corresponds to a system in which the equilibrium regain is 5 per cent and the
average diffusion coefficient is

4 x l O " 7 c m 2 s - 1 .

Temperature-time curves are plotted in Fig. 15.6 for a number of thicknesses.
For a sheet 007 cm thick the maximum temperature change is approximately
14 °C at about 65 s. The maximum temperature is lower and occurs later,
the thicker the sheet, but for a sheet as thick as 5-66 cm the highest temperature
is 0-25 °C attained at t = 0. We note incidentally that in theory for all thick-
nesses the surface temperature changes instantaneously by 0-25 °C at the
beginning of sorption. As we have already mentioned, corresponding curves
for other equilibrium regains in the same system can be deduced from
those of Fig. 15.6 since 6 is directly proportional to B and hence to Co.

200 1000
Time (s)

FIG. 15.6. Variation of surface temperature with time, shown as excess over 35 °C. Numbers on
curves are sheet thicknesses in centimetres, a = 0-35, L = 100, p = 1, B = 71 xlO~5,/c = 1-6 x

10~4, K = 4-5 x 10~4. All units are c.g.s.



SIMULTANEOUS DIFFUSION OF HEAT AND MOISTURE 373

(ii) Limiting rate of sorption for 1 °C rise in surface temperature. G. S. Park
suggested that, from an experimental point of view, it is useful to know what is
the fastest sorption or alternatively the greatest regain for which the rise in
surface temperature does not exceed 1 °C. Accordingly, in Fig. 15.7 are
plotted curves which show how the limiting value of B for a 1 °C rise in
temperature depends on the thickness of the sheet. The thicker the sheet the
faster the sorption permissible.

00

FIG. 15.7. Upper limits of B for surface temperature rise of 1 °C. Numbers on curves are values
of k. I is the thickness of the sheet in centimetres, a = 0-35, L = 100, p = 1, K = 4-5 x 10"4. All

units are c.g.s.

The three curves of Fig. 15.7 are for different values of the emissivity
constant k. The middle of the three corresponds to a surface loss purely by
radiation when the temperature of the surroundings is 35 °C. Changes in k
may be due to differences in ambient temperature 60 since k = 4(jo0l.
Alternatively a higher value of k can correspond to some loss of heat by
convection in the vapour, since both the convective term and the radiation
term in the heat loss are directly proportional to temperature difference for
small temperature excesses. Thus the curve on Fig. 15.7 for k = 64 x 10~4

could correspond to an experiment in which a stream of vapour is passed over
the surfaces of the sheet.
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15.8.

Ash and Barrer (1963) give expressions for the continued flow of matter
and heat in the gas phase, surface phase, and intracrystalline phase
simultaneously, using the equations of irreversible thermodynamics.



TABLES

TABLE 2.1
Table of the error function and associated functions

X

0
005
01
0-15
0-2
0-25
0-3
0-35
04
045
0-5
0-55
0-6
065
0-7
0-75
0-8
0-85
0-9
095
10

1-2
L-3
L4
1-5
1-6
L-7
L-8
L-9
20
2-1
2-2
2-3
24
2-5
2-6
2-7
2-8
2-9
SO

e* erfc x

10
09460
0-8965
0-8509
08090
0-7703
0-7346
0-7015
0-6708
0-6423
0-6157
0-5909
0-5678
0-5462
05259
0-5069
04891
0-4723
04565
04416
04276
04017
0-3785
0-3576
0-3387
0-3216
03060
0-2917
0-2786
0-2665
0-2554
0-2451
02356
0-2267
0-2185
0-2108
0-2036
01969
01905
01846
01790

0
01126
0-2234
0-3310
04336
0-5300
0-6188
0-6988
0-7692
0-8294
0-8788
0-9172
0-9447
0-9614
0-9678
0-9644
0-9520
09314
0-9035
0-8695
0-8302
0-7403
0-6416
0-5413
0-4450
0-3568
0-2791
0-2132
01591
01160
00827
00576
00393
00262
00171
00109
00068
00042
00025
00015
00008

11284
11256
1-1172
11033
10841
10600
10313
0-9983
0-9615
0-9215
0-8788
0-8338
0-7872
0-7395
0-6913
0-6429
0-5950
0-5479
0-5020
04576
04151
0-3365
0-2673
0-2082
01589
01189
00872
00627
00442
00305
00207
00137
00089
00057
00036
00022
00013
00008
00004
00003
00001

erfx

0
0-056372
0-112463
0167996
0-222703
0-276326
0-328627
0379382
0428392
0475482
0-520500
0-563323
0-603856
0-642029
0-677801
0-711156
0-742101
0-770668
0-796908
0-820891
0-842701
0-880205
0-910314
0-934008
0-952285
0-966105
0-976348
0-983790
0-989091
0-992790
0-995322
0-997021
0-998137
0-998857
0-999311
0-999593
0999764
0999866
0-999925
0-999959
0-999978

erfc x

10
0-943628
0-887537
0-832004
0-777297
0-723674
0-671373
0-620618
0-571608
0-524518
0479500
0436677
0-396144
0-357971
0-322199
0-288844
0-257899
0-229332
0-203092
0179109
0-157299
0119795
0089686
0065992
0-047715
0033895
0023652
0016210
0010909
0007210
0004678
0002979
0001863
0001143
0000689
0000407
0000236
0000134
0-000075
0000041
0000022

2 ierfc x

1-1284
10312
0-9396
0-8537
0-7732
0-6982
0-6284
0-5639
0-5043
04495
0-3993
0-3535
0-3119
0-2742
0-2402
0-2097
0-1823
01580
01364
0-1173
01005
00729
00521
00366
00253
00172
00115
00076
00049
00031
00020
00012
00007
00004
00002
00001
00001
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TABLE 2.1 (contd.)

X

0
005
01
015
0-2
0-25
0-3
0-35
0-4
0-45
0-5
0-55
0-6
065
0-7
0-75
0-8
0-85
09
0-95
10
11
1-2
1-3
1-4
1-5
1-6
1-7
1-8
19
20
21
2-2
2-3
24
2-5
2-6
2-7
2-8
2-9
30

4 i2erfc x

10
0-8921
0-7936
0-7040
0-6227
0-5491
0-4828
0-4233
0-3699
0-3223
0-2799
0-2423
0-2090
0-1798
0-1541
01316
01120
00950
00803
0-0677
00568
00396
0-0272
00184
00122
00080
00052
00033
00021
00013
00008
00005
00003
00002
00001

6 i3erfc x

0-5642
0-4933
0-4301
0-3740
0-3243
0-2805
0-2418
0-2079
0-1782
01522
01297
01101
00932
00787
00662
00555
00464
00386
0-0321
00265
00218
00147
00097
00063
00041
00026
00016
00010
00006
00003
00002
00001

8 i4erfc x

0-25
0-2148
01841
0-1573
01341
01139
00965
00816
00687
0-0577
00484
00404
00336
00279
00231
00190
00156
00128
00104
00085
00069
00045
00029
00019
00011
00007
00004
00003
00002
00001
00001

10i5erfcx

00940
00795
00671
00564
00474
00396
0-0331
00275
00228
00189
00156
00128
00105
00086
00070
00057
00046
00037
00030
00024
00019
00012
00007
00004
00003
00002
00001

12i6erfcx

0-0313
00261
00217
00180
00149
00123
00101
00083
00068
00055
00045
00036
00029
00024
00019
00015
00012
00010
00008
00006
00005
00003
00002
00001
00001

ierfc x = | erfc f d£ = —z e *2 — x erfc x
- \ :

i 2 e r f c x = I ierfc £d£ = {\{\ + 2 x 2 ) e r f c x - ~ x e ~

/.oo

2n i"erfc x = In \ in~l erfc <̂  d^ = i" ~ 2erfc x - 2 x i"" l erfc x.
^ X

- 2 x i e r f c x )
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TABLE 2.2

Table of Laplace transforms

v(p)= f Q~ptv(t)dt
Jo

We write q = J(p/D). D, x and h are always positive, a is unrestricted.

v(p) v(t)

-7TT> v > " I

sin wf

cos cot

10.

11.

12.

13.

IIT*. - 0 , 1 , 2 ,

q + h

erfc-

2(-re-*2/4D '-xerfc *

xM x
H erfc —: x

2DJ 2y/(Dt)

n'f erfc
2y/(Dt)

nt
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TABLE 2.2 (contd.)

v(p) v(t)

14.

15.

16.

pq{q + h)

1 x 1 ,
- erfc —: e*
h 2y/{Dt) h.

17.

18.

(q + h)2 -2h

h2 2j(Dt) h\n

19.

20.

21.

22.

23.

24.

p-<x

Iv{qx')Kv{qx), x > x

Iv(qx)Kv(qx'), x < x

K0(qx)

— exlp

P

- — {l-hx-2h2Dt}ehx + Dth2

(a/D) erfc

I e - u W > / 4 D , 7 / i ^
2t v\2Dt

x"

8Dr
^2

, v ^ 0

1

27e
-x2l4Dt
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TABLE 2.2 (contd.)

v(p) v(t)

25.

26.

27.

28.

r00

du

> 0

v ^ 0

Fractional
uptake

0
01
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
10

a

CO

90000
40000
2-3333
1-5000
10000
0-6667
04286
0-2500
01111
0

TABLE
Roots of tan q

4i

1-5708
1-6385
1-7155
1-8040
1-9071
2-0288
2-1746
2-3521
2-5704
2-8363
31416

4-7124
4-7359
4-7648
4-8014
4-8490
4-9132
50037
51386
5-3540
5-7172
6-2832

4.1

43

7-8540
7-8681
7-8857
7-9081
7-9378
7-9787
8-0385
8-1334
8-3029
8-6587
9-4248

q

<?4

10-9956
110057
110183
110344
110558
110856
111296
11-2010
11-3349
11-6532
12-5664

4s

14-1372
14-1451
141549
14-1674
14-1841
14-2075
14-2421
14-2990
14-4080
14-6870
15-7080

Qe

17-2788
17-2852
172933
173036
17-3173
17-3364
173649
17-4119
17-5034
17-7481
18-8496

TABLE 4.2
Roots of f$ tan /? = L

0
001
01
0-2
0-5
10
20
50
100

1000
00

0
00998
0-3111
0-4328
0-6533
0-8603
10769
1-3138
1-4289
1-5552
1-5708

31416
31448
3-1731
3-2039
3-2923
3-4256
36436
40336
4-3058
4-6658
4-7124

6-2832
6-2848
62991
6-3148
6-3616
6-4373
6-5783
69096
7-2281
7-7764
7-8540

9-4248
9-4258
94354
9-4459
9-4775
9-5293
9-6296
9-8928
10-2003
10-8871
10-9956

12-5664
12-5672
12-5743
12-5823
12-6060
12-6453
12-7223
12-9352
13-2142
13-9981
14-1372

15-7080
15-7086
15-7143
15-7207
15-7397
15-7713
15-8336
160107
16-2594
171093
17-2788
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TABLE 5.1

Roots oftxqJ^qJ + UMn) = 0

Fractional
uptake

0
0-1
0-2
03
04
0-5
06
0-7
0-8
09
10

a

oo
90000
40000
2-3333
1-5000
10000
0-6667
04286
0-2500
01111
0

<7i

2-4048
24922
2-5888
2-6962
2-8159
2-9496
30989
3-2645
3-4455
3-6374
3-8317

5-5201
5-5599
5-6083
5-6682
5-7438
5-8411
5-9692
6-1407
6-3710
6-6694
70156

8-6537
8-6793
8-7109
8-7508
8-8028
8-8727
8-9709
91156
9-3397
9-6907
10-1735

11-7915
11-8103
11-8337
118634
119026
11-9561
120334
121529
12-3543
127210
13-3237

Qs

14-9309
14-9458
149643
14-9879
150192
150623
15-1255
15-2255
154031
15-7646
164706

18-0711
180833
180986
181183
181443
181803
18-2334
18-3188
184754
18-8215
19-6159

TABLE 5.2
Roots ofpjW-LJoiP) = 0

L

0
001
01
0-2
0-5
10
20
50
100
1000

00

Pi

0
01412
0-4417
06170
0-9408
1-2558
1-5994
19898
21795
23809
2-4048

Pi

3-8137
3-8343
3-8577
3-8835
3-9594
40795
42910
4-7131
50332
54652
5-5201

70156
70170
70298
7-0440
70864
7-1558
7-2884
7-6177
7-9569
8-5678
8-6537

PA

10-1735
101745
101833
101931
10-2225
102710
10-3658
10-6223
10-9363
11-6747
11-7915

Ps

13-3237
13-3244
13-3312
13-3387
13-3611
13-3984
134719
13-6786
13-9580
147834
14-9309

Pe

164706
164712
164767
164828
16-5010
16-5312
16-5910
16-7630
170099
17-8931
18-0711

TABLE 5.3
Roots of J0(actn) Y0(bccn) - J0{bccn) Y0(aocn

b/a

1-2
1-5
2-0
2-5
30
3-5
40

ace,

15-7014
6-2702
31230
2-0732
1-5485
1-2339
10244

act 2

314126
12-5598
6-2734
4-1773
3-1291
2-5002
20809

47-1217
18-8451
94182
6-2754
4-7038
37608
3-1322

62-8302
25-1294
12-5614
8-3717
6-2767
50196
41816

aai5

78-5385
314133
15-7040
104672
7-8487
6-2776
5-2301



Fractional
uptake

0
01
02
0-3
0-4
0-5
0-6
0-7
0-8
0-9
10

oc

00

90000
40000
2-3333
1-5000
10000
0-6667
0-4286
0-2500
01111
0

Roots

31416
3-2410
3-3485
3-4650
3-5909
3-7264
3-8711
40236
41811
4-3395
4-4934

TABLES

TABLE

of tan qr

6-2832
6-3353
63979
6-4736
6-5665
6-6814
6-8246
70019
72169
7-4645
7-7253

6.1
3ft.

</3

9-4248
9-4599
9-5029
9-5567
9-6255
9-7156
9-8369
100039
10-2355
10-5437
10-9041

12-5664
12-5928
12-6254
12-6668
12-7205
12-7928
12-8940
130424
13-2689
13-6133
140662

15-7080
15-7292
15-7554
15-7888
15-8326
15-8924
15-9779
161082
16-3211
16-6831
17-2208

381

18-8496
18-8671
18-8891
18-9172
18-9541
190048
190784
191932
19-3898
19-7564
203713

TABLE 6.2
Roots of Pncotpn + L-1 =0

L

0
001
01
0-2
05
10
20
50
100

1000
oo

Pi

0
01730
0-5423
0-7593
11656
1-5708
20288
2-5704
2-8363
3-1102
31416

Pi

4-4934
44956
4-5157
4-5379
46042
4-7124
4-9132
5-3540
5-7172
6-2204
6-2832

Pi

7-7253
7-7265
7-7382
7-7511
77899
7-8540
7-9787
8-3029
8-6587
9-3309
94248

P.
10-9041
10-9050
10-9133
10-9225
10-9499
10-9956
110856
11-3349
11-6532
12-4414
12-5664

Ps

140662
140669
14-0733
140804
14-1017
14-1372
14-2075
14-4080
146870
15-5522
15-7080

Pe

17-2208
17-2213
17-2266
17-2324
172498
17-2788
173364
17-5034
17-7481
18-6633
18-8496



TABLE 7.1
Numerical solutions ofd2s/dn2 = -In esln(1 + A)ds/dn subject to s = 1,

s = 0, n = +oo

= 0;

A
br,

Iterations
required

-(ds/drj)n = 0

1

00
01
0-2
0-3
04
0-5
0-6
0-7
0-8
0-9
10
11
1-2
1-3
14
1-5
1-6
1-7
1-8
1-9
20
21
2-2

0-500
10"2

4
1 212

s

1000
0-879
0-762
0-651
0-548
0455
0-373
0-301
0-240
0188
0146
0112
0084
0063
0-047
0035
0025
0019
0014
0011
0009
0007
0006

1000
io-2

8
1-286

s

1000
0-872
0-749
0-634
0-528
0435
0-353
0-283
0-223
0174
0134
0102
0076
0056
0041
0-030
0-022
0016
0011
0008
0-006
0005
0004

2000
10~2

6
1-399

s

1000
0-861
0-730
0-609
0-501
0408
0-328
0-260
0204
0158
0121
0092
0069
0051
0037
0-027
0020
0014
0011
0008
0006
0005

4000
10"2

7
1-565

s

1000
0-846
0-703
0-576
0-467
0-375
0-299
0-236
0184
0143
0110
0083
0063
0048
0036
0-027
0-021
0016
0013
0011
0011
0010

6000
10"2

8
1-699

1000
0-833
0-682
0-552
0-442
0352
0-277
0-217
0168
0128
0097
0073
0054
0040
0028
0020
0014
0010
0007
0005
0-003
0002

1000
10"2

7
1-895

5

1-000
0-815
0-655
0-521
0413
0-326
0-256
0-200
0155
0119
0091
0069
0052
0040
0030
0-023
0018
0014
0011
0009
0008

2500
10~2

8
2-389

s

1000
0-775
0-596
0460
0-357
0-277
0-214
0165
0126
0096
0072
0053
0039
0-028
0020
0014
0010
0007
0004
0003
0002

1000
io~2

10
3-576

s

1000
0-695
0-502
0-375
0-285
0-218
0167
0127
0097
0073
0055
0041
0030
0021
0015
0010
0007
0005
0004
0002

2000
io-2

10
4-464

s

1000
0-649
0458
0-339
0-256
0195
0150
0115
0088
0067
0051
0-038
0029
0021
0016
0019
0009
0007
0006

5000
5-10"3

10
6091

s

1000
0-589
0406
0-297
0-223
0169
0129
0098
0-075
0056
0042
0031
0028
0017
0012
0008
0006
0004
0002

10000
5-10"3

12
7-787

5

1000
0-545
0-371
0-271
0203
0-155
0119
0091
0070
0054
0041
0031
0024
0018
0015
0012
0009
0008
0007

15000
5-10~3

12
9027

s

1000
0-521
0-353
0-257
0192
0146
0112
0085
0065
0050
0-037
0028
0021
0016
0012
0009
0007
0005
0004

35000
10~3

14
12-38

s

1000
0474
0319
0-232
0173
0132
0101
0077
0059
0045
0034
0-025
0-019
0014
0011
0008
0006
0005

DO
r
m
on

From Lee 1971.(a).
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TABLE 7.2
Exponential diffusion in an infinite medium; numerical values of the function

y, g)

oo 0-2 04 0 6 0-8 10 1-2 1-6 20 2-2 24

-20
_
-
_
_
-
-
-
_

-

9
•8
•7
6
•5
4
•3
•2
• 1
0

-0-9
-0-8
-07
-0 6
-05
-04
-03
-0-2
-01
0 0

+ 0 1
+ 0-2
+ 03
+ 04
+ 0-5
+ 06
+ 07
+ 08
+ 09
+ 10
+ 11
+ 1-2
+ 1-3
+ 14
+ 1-5
+ 1-6
+ 1-7
+ 1-8
+ 19
+ 20

-995
-993
-989
-984
-976
-966
-952
-934
-910
-880
-843
-797
-742
-678
-604
-520
-429
-329
-223
-112

0
112
223
329
429
520
604
678
742
797
843
880
910
934
952
966
976
984
989
993
995

-998
-996
-994
-990
-984
-976
-964
-948
-925
-896
-858
-810
-751
-682
-602
-511
-412
-306
-195
-81
32
143
250
352
445
531
608
677
737
788
831
868
899
922
941
956
968
977
984
989
992

-1000
-999
-998
-996
-992
-985
-976
-962
-942
-914
-876
-826
-765
-690
-602
-504
-397
-282
-117
-50
64
174
278
374
462
543
614
678
733
781
823
858
886
911
931
947
959
969
977
983
988

-1000
-999
-998
-996
-992
-985
-975
-958
-933
-896
-845
-781
-700
-605
-497
-381
-259
-138
-18
97
205
305
397
481
555
622
681
733
778
816
849
878
901
921
938
951
962
971
978
983

-1000
-999
-997
-993
-986
-974
-953
-920
-872
-804
-717
-612
-494
-366
-237
-109

14
129
235
332
420
499
568
631
686
734
lib
812
844
871
894
913
930
943
955
964
972
978

-1000
-999
-997
-994
-986
-972
-945
-901
-834
-741
-626
-494
-354
-214
-79
46
161
265
359
442
517
582
640
691
736
775
810
839
865
888
906
924
937
948
958
966
973

-1000
-999
-998
-995
-987
-969
-933
-870
-774
-647
-498
-343
-191
-50
78
193
295
385
465
535
596
650
698
740
111
809
837
861
883
901
917
931
943
953
961
968

-1000
-999
-996
-987
-963
-912
-817
-678
-501
-334
-169
-20
111
225
325
411
487
553
611
661
706
745
779
809
836
859
879
897
913
926
938
948
956
964

-1000
-997
-986
-952
-869
-721
-528
-329
-148

9
143
256
353
436
508
570
624
672
713
750
782
810
835
857
878
894
909
922
933
943
952
959

-1000
-998
-984
-928
-785
-562
-329
-127

39
176
288
382
462
530
589
640
684
723
757
787
813
837
858
876
892
906
919
930
940
949
956

-1000
-999
-997
-975
-866
-615
-336
-107

70
209
320
411
487
552
607
654
696
732
764
792
817
839
858
876
891
905
917
928
937
946
952

-1000
-996
-946
-697
-353
-89
99
240
349
438
511
572
624
668
709
740
771
798
820
841
859
876
890
903
915
924
934
943
950

-1000
-993
-831
-393
-76
129
272
380
466
535
593
642
684
720
751
779
804
825
845
862
877
891
903
915
924
933
941
948
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TABLE 7.3
Exponential diffusion in a semi-infinite medium; numerical values of the

function 1000c(j;s,g)

- 2 4 -2-2 -20 -1-i _1.6 - 1 4 -12 -10 -0-8 -0 6 -0-4 -0-2 -000

0 0
0 1
0-2
0-3
0-4
0-5
06
07
08
0 9
•0
1
•2
•3
•4
•5
•6
•7
•8
•9

2 0

0
78
182
330
600
877
995
1000

0
81
185
325
520
775
960
997
1000

0
84
189
323
497
709
898
981
998
1000

0
87
193
322
479
660
833
944
987
998
1000

0
90
196
321
466
624
778
896
962
989
998
1000

0
93
200
322
457
600
737
851
928
970
989
996
999
1000

0
96
204
322
449
580
704
811
891
944
974
989
996
998
999
1000

0
99
207
323
443
564
678
111
857
915
953
976
988
995
998
999
1000

0
102
210
324
439
551
657
750
827
886
929
958
977
987
994
997
999
1000

0
105
214
325
435
541
639
727
800
860
905
939
961
977
986
992
996
998
999
1000

0
107
217
325
433
534
626
708
779
836
883
919
945
964
977
986
992
995
998
999
1000

0
110
220
328
430
527
614
692
759
816
862
899
928
949
965
977
985
990
994
997
998

0
112
223
329
429
520
604
678
742
797
843
880
910
934
952
966
976
984
989
993
995

+0-4 +0-6 +08 +10 +1-2 +14 +16 +18 +20 +2-2 +24

00
0 1
0-2
03
0 4
0-5
0 6
0-7
08
0 9
10
•1
•2
•3
4
•5

•6
•7
•8
•9

2 0

0
115
226
330
427
516
595
666
728
781
826
863
896
919
939
955
967
976
983
988
992

0
117
228
331
426
512
588
656
715
766
811
848
879
905
926
943
956
967
976
982
987

0
120
231
333
425
508
582
647
704
754
797
833
865
891
913
931
946
958
986
975
981

0
122
233
334
424
505
576
639
694
742
784
820
851
878
900
919
935
948
959
968
975

0
124
236
335
424
502
571
632
685
732
773
809
839
866
889
910
925
938
950
960
968

0
126
238
336
423
499
567
626
677
723
763
798
828
855
878
897
914
929
941
952
961

0
128
240
338
423
497
563
620
670
715
754
788
818
844
867
887
904
919
932
944
953

0
130
242
339
422
495
559
615
664
707
745
779
808
835
857
877
895
910
924
935
945

0
132
244
340
422
494
556
610
658
700
738
771
800
825
848
868
886
902
915
928
938

0
134
246
341
422
492
553
606
653
694
731
763
792
817
840
860
878
893
903
920
929

0
136
248
342
422
491
550
602
648
688
724
756
784
809
832
852
870
885
900
912
923

0
138
250
344
422
489
548
599
644
683
718
749
111
802
824
844
862
878
892
905
916
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TABLE 7.4
Linear diffusion in an infinite medium, concentration gradients

-(dC/dj/a)/(C1-C2) against y, = x/{2J(D.dt)}

b = ratio of the diffusion coefficient at concentration Cx to that at C2

2-8
2-6
24
2-2
20
1-8
1-6
14
1-2
1-0
0-8
0-6
04
0-2
00

-0-2
- 0 4
-0-6
- 0 8
- 1 0
-1-2
- 1 4
-1-6
-1-8
- 2 0
-2-2
- 2 4
-2-6
-2-8

b = If

0001
0-002
0-005
0010
0022
0044
0079
0134
0-208
0-298
0-394
0481
0-542
0-564
0-542
0481
0-394
0-298
0-208
0134
0079
0044
0022
0010
0005
0002
0001

b = 0-8806

0001
0-002
0005
0012
0024
0-047
0083
0136
0-207
0-292
0-384
0468
0-533
0-561
0-547
0491
0406
0308
0-212
0135
0-077
0040
0-019
0008
0-003

b = 0-7228

0001
0003
0007
0015
0028
0050
0086
0135
0-200
0-280
0-367
0452
0-522
0-560
0-558
0-511
0423
0-319
0-215
0130
0-071
0035
0015
0006
0002

b = 0-5506

0001
0002
0005
0009
0018
0032
0055
0089
0134
0195
0-268
0-348
0430
0504
0-555
0-569
0-535
0455
0-339
0-221
0125
0061
0-027
0010
0003
0001

b = 0-3270

0002
0004
0007
0013
0023
0039
0062
0092
0134
0188
0-250
0-321
0-398
0474
0-539
0-579
0-577
0-514
0-388
0-232
0108
0039
0011
0003

b = 01407

0003
0006
0011
0017
0028
0043
0066
0095
0132
0179
0-233
0-296
0-365
0439
0-513
0-578
0-621
0-607
0479
0-226
0049
0005

t The data for b = 1 represent the Gaussian curve corresponding to ideal diffusion.
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TABLE 7.5
Linear diffusion in an infinite medium; relative concentration

(C-C2)/(Cl-C2) against y.d = x/{2j(D.J)}

b = ratio of diffusion coefficient at concentration Cx to that at C2

2-6
24
2-2
20
1-8
1-6
14
1-2
10
08
0-6
04
0-2
00

-0-2
- 0 4
- 0 6
-0-8
- 1 0
-1-2
- 1 4
-1-6
-1-8
- 2 0
-2-2

b= 1

0002
0005
0012
0024
0045
0079
0129
0198
0-286
0-389
0-500
0-611
0-714
0-802
0-871
0-921
0-955
0-976
0-988
0-995
0-998
1000

b = 0-8806

0001
0003
0006
0013
0026
0048
0082
0131
0199
0-284
0-385
0495
0606
0-710
0-800
0-872
0-923
0-958
0-979
0-990
0-996
0-999
1000

b = 0-7228

0001
0004
0008
0015
0029
0051
0084
0132
0197
0-279
0-376
0485
0-597
0-705
0-799
0-873
0927
0-961
0-981
0-992
0-997
0-999
1000

b = 0-5506

0-001
0002
0005
0010
0019
0033
0055
0088
0134
0195
0-273
0-367
0-473
0-586
0-697
0-797
0-876
0-933
0-967
0-986
0-995
0-998
1000
1000

b = 0-3270

0001
0002
0004
0007
0013
0024
0039
0061
0093
0137
0194
0-266
0353
0455
0-567
0-683
0793
0-884
0-946
0-980
0-994
0-998
1000
1000
1000

b = 0-1407

0001
0003
0006
0010
0017
0028
0044
0068
0099
0139
0192
0258
0-339
0-434
0-543
0-664
0-785
0-898
0-970
0-995
0-999
1000
1000
1000
1000
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TABLE 7.6

Amount of material M that has diffused through
unit area of plane x = 0 up to time t, expressed as
dimensionless ratio M/C0(Dar)i (Wilkins 1963)

Infinite medium

16TC

= 0-56419(l+0-0010854£2-0-0010854£3+ ... ]

£ = oo : -2y3
2u(0)u'(0) = 0-56486

£ = - 1: -2y3
2u(0)u'(0) = 0-56486

Sorption

. f 4-7T
• 0 : — — £ + „ £+

4n 32TT

= 1-1284(1+0068326-0-04048e2+ ...)

e = oo : -2yiu'(0)= 1-2551

£ = - 1 : 2"*/"(0) = 0-93922

Desorption
4-7U 64-8 (7 -3^)TC-7C 2 _

e + y ^ £ 2 +——-e + ——^ £+...

4n 32TC2

= 1-1284(1-0-06832£ 4-0-02784£2+ ...)

£ = oo : 2-±/"(0) = 0-93922

£ = - 1 : -2yiu'(0) = 1-2551



No.

TABLE 7.7

Some exact solutions with D concentration dependent

en

2(«+ir

n - l l

J
1 8 \

— + nB]
nB j

}±?DU—(l-en0+n9en)+Bnen6

[nB

Remarks

n > 0. For minus sign
Z)o ^ ™2/16

> 0. For minus sign
Do has lower limit

For minus sign

> 0. For minus sign
Do ^ TTM2 e2716

od
r
m

From Philip 1960.



(;-

(j

u(j
(j

u

= 0)T
= 1)
= 2)
= 3)
= 4)
= 5)

i
X

= 0000
0001
0002
0003
0004
0005

= 0
= 0

0
0
0
0
0
0

i = 1
01

0-2000
0-2000
0-2000
0-2000
0-2000
02000

TABLES

TABLE 8.1

i = 2
0-2

04000
0-4000
0-4000
0-4000
0-4000
0-3999

i = 3
0-3

0-6000
0-6000
0-6000
0-5996
0-5986
0-5971

i = 4
0-4

0-8000
0-8000
0-7960
07896
0-7818
0-7732

i = 5
0-5

10000
0-9600
0-9280
0-9016
0-8792
0-8597

38'

i = 6
0-6

0-8000
0-8000
0-7960
0-7896
0-7818
0-7732

(; = 10) 0-01 0 01996 0-3968 0-5822 0-7281 0-7867 0-7281

0 = 20) 002 0 01938 0-3781 0-5373 0-6486 0-6891 0-6486

From Smith 1965.

TABLE 8.2
F.D.S. = Finite-difference solution: A.S. = Analytical solution

x = 0-3 X = 0-5

F.D.S. A.S.
Percentage
difference F.D.S. A.S.

Percentage
difference

0005 0-5971 0-5966 008 0-8597 0-8404 2-3
001 0-5822 0-5799 0-4 0-7867 0-7743 1-6
0-02 0-5373 0-5334 0-7 0-6891 0-6809 1-2
010 0-2472 0-2444 11 0-3056 0-3021 1-2

TABLE 8.3

x = o o-i 0-2 0-3 0-4 0-5

Analytical
solution

From Smith

7 = 000
T = 001
T = 002

T= 010

T = 0 1 0

1965.

o
 o

 o
 

o

0

0

0-2
01989
01936

00948

00934

0-4
0-3956
0-3789

0-1803

01776

0-6
0-5834
0-5400

0-2482

0-2444

0-8
0-7381
0-6461

0-2918

0-2873

10
0-7691
0-6921

0-3069

0-3021
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TABLE 9.1f
Intersections of c(y) for given a with c(y) when a = 0.
c = C/Co, D = D0(l +aC/C0), y = x/{AD.dtf

y
c

y
c

y
c

Infinite

0-6586
0-1758

06653
0-1733

06766
01693

medium

a small,

-06586
0-8242

-0-6766
0-8307

-0-6653
0-8267

Sorption

tending to zero

10188
01496

a = oo

1-0012
01568

a = - 1

1-0474
01385

Desorption

10188
0-8504

10474
0-8615

10012
0-8432

t Taken from Wilkins (1963).



TABLE 10.1

Diffusion coefficients for chloroform in polystyrene at 25CC. All diffusion coefficients are in cm2 s~ l x 10~ 10

% Regain at
equilibrium =

Co

50

7-5
9-9

12-9
13-2
15-1
16 3
16-8

(t/1%
s c m - 2 x l 0 1 0

1-130
0-620
0-288
0-248
0151
00583
00481

D
experimental

0024
(extrap.)
00437
00797
0-171
0199
0-326
0-846
0-972

1 fCo

— DdC

(cm2 s""1

10"10)

0024

0-0437
0-0797
0171
0199
0-326
0-846
0-972

1st Approximation

D

0024
(extrap.)
0116
0-288
0-780
0-970
3-36

105
160
approx.

D
calculated

0024

00504
0103
0-238
0-276
0-585
1-20

2nd

1 f *"°
— DdC
C0J0
( c m 2 s M

i o - 1 0 )

0024

0039
0062
0125
0144
0-216
0-583

Approximation

D

0024

012
0-29
0-40
0-54
1-6
6-6

D
calculated

0024

0044
0080
0-17
0-20
0-33
0-85

H

DO
r*
m
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exp K

10°
2
5

101

102

103

104

105

106

107

108

194 x 10"*
1-51 x lO" 1

1-05 x 10" *
78OxlO"2

2-60 x 10 ' 2

8 4 0 x l 0 ~ 3

2-69 x 10"3

8-60 x 10" 4

2-66 x lO" 4

8-36 x 10"5

2-65 x 10"5

TABLES

TABLE 10.2

Desorption

Ti

4-90 x 10" 2

380 x l O ' 2

2-56 x 10-2

188 x lO" 2

5-OOxlO"3

1-13 x lO" 3

2-32 xlO~4

4-36 x 10-5

7-87 x l O ' 6

142 x lO" 6

248X10"7

(Fd)i

100
1 56
2-70
4 0

134
43-3

138-7
443
370

4300
13670

100
155
2-61
3-84

10-2
231
474
890

160-5
290
506

Absorption

1-94 x 10" l

126 x 10- l

6-60 x 10"2

3-90 x 10" 2

6 4 0 x l 0 " 3

940 xlO"4

M9X10"4

148xlO"5

1-74 xlO"6

2O5xlO"7

2-35 x 10" 8

100
1-3
1-7
201
3-30
4-85
614
763
8-97

10-60
1210

From Hansen 1967.

TABLE 13.1
Values of (Dt/a2f are tabulated; Mt is the total uptake at time t; Ma

corresponding amount after infinite time
the

Plane sheet
0-25 0-50 0-75

Cylinder
0-25 0-50 0-75 0-25

Sphere
0-50 075

Unlimited 1
amount 2
of solute 5

10

50%equili- 1
brium 2
uptake of 5
of solute 10

90%equili- 1
brium 2
uptake of 5
solute 10

0-275 0-549 0-825
0-325 0-650 0-976
0446 0-891 1-337
0-596 1191 1-787

0-225 0480 0-778
0-292 0-619 0-994
0436 0-915 1462
0-601 1-265 2006

0146 0-306 0-508 0102 0-216 0-367
0174 0-363 0-598 0-119 0-253 0428
0237 0495 0-814 0160 0-348 0-584
0316 0-660 1080 0-213 0460 0-772

0-119 0-261 0468 0077 0183 0-333
0-156 0-341 0606 0102 0-236 0427
0-220 0-504 0-784 0153 0-349 0-636
0-316 0-702 1-218 0-209 0483 0-867

0176 0403 0-750 0094 0-219 0443 0057 0147 0-309
0-255 0-587 1058 0137 0-320 0-634 0092 0-220 0449
0423 0-942 1-675 0219 0-522 1010 0149 0-356 0-720
0-603 1-340 2-361 0314 0-743 1435 0-213 0-514 1027
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TABLE 13.2

Values of (Dt/a2)* are tabulated

393

s/

Unlimited amount
of solute

50 % equilibrium
uptake of solute

90% equilibrium
uptake of solute

\ X/a

1
2
5

10

1
2
5

10

1
2
5

10

0-75

0-202
0-269
0-408
0-568

0-208
0-280
0-425
0-596

0-219
0-293
0-444
0-618

Plane
0-50

0-403
0-538
0-816
1136

0-430
0-582
0-889
1-248

0-482
0-644
0-980
1-375

sheet
0-25

0-605
0-808
1-223
1-705

0-668
0-908
1-397
1-972

0-818
1105
1-700
2-380

0

0-806
1076
1-631
2-273

0-923
1-270
1-970
2-786

1-328
1-850
2-928
4-125

s/Ci

Unlimited amount
of solute

50% equilibrium
uptake of solute

90% equilibrium
uptake of solute

ro/a

^ \

1
2
5

10

1
2
5

10

1
2
5

10

Values

075

0195
0-259
0-390
0-543

0-206
0-274
0-419
0-587

0-223
0-300
0-454
0-638

TABLE

of(Dtla2f

Cylinder
0-50

0-371
0-491
0-740
1024

0-410
0-553
0-847
1190

0-509
0-683
1046
1-459

13.3
are tabulated

0-25

0-523
0-689
1028
1-427

0-601
0-811
1-247
1-750

0-853
1-167
1-796
2-549

0-75

0187
0-246
0-375
0-522

0-202
0-268
0-412
0-580

0-230
0-309
0-467
0-655

Sphere
0-50

0-344
0-453
0-678
0-942

0-390
0527
0-808
1132

0-533
0-718
1098
1-538

0-25

0-468
0608
0-910
1-242

0-548
0-736
1123
1-569

0-850
1171
1-806
2-535
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TABLE 14.1
Values of MJM., for fia2/D = 0-01

^ \ n

DfAK + l V i * ^ ^ ^

0005
001
002
004
006
008
010
0-15
0-2
0-3
04
0-5
10
1-5
20
2-5
50
7-5

10
15
20
40
60
80

Plane

10

0024
0034
0048
0067
0079
0086
0091
0099
0104
0114
0123
0133
0178
0-220
0-261
0-299
0-463
0-588
0-685
0-815
0-891
0-987
0-998
1000

sheet

100

0009
0013
0021
0036
0051
0065
0079
0114
0147
0-210
0-268
0-322
0-537
0-683
0-782
0-850
0-977
0-996
0-999
1000

Cylinder

10

0043
0058
0074
0088
0093
0096
0099
0-104
0108
0118
0128
0-137
0183
0-226
0-267
0-306
0-471
0-597
0-693
0-822
0-896
0-988
0-999
1000

100

0012
0017
0026
0043
0060
0-077
0094
0133
0172
0-243
0-308
0-368
0-597
0-743
0-836
0-895
0-989
0-999
1000

Sphere

10

0057
0073
0086
0093
0096
0098
0100
0105
0109
0119
0129
0138
0184
0-227
0-269
0-307
0-473
0-599
0-695
0-823
0-898
0-989
0-999
1-000

100

0013
0018
0027
0046
0064
0081
0099
0140
0180
0-254
0-322
0-383
0616
0761
0-851
0-907
0-991
0-999
1000



TABLE 14.2
Values of MJM^ for na2/D= 0-1

\
DrAK + l j a 2 ^ ^

0005
001
002
004
006
008
010
015
0-2
0-3
04
0-5
10
1-5
20
2-5
50
7-5

10
15
20
40

1

0-057
0080
0113
0160
0197
0-227
0-254
0-310
0-354
0-418
0-459
0-488
0-559
0-601
0-638
0-671
0-797
0-875
0-923
0-971
0-989
1000

Plane sheet

10

0025
0035
0052
0076
0095
0112
0128
0164
0198
0-261
0-320
0-374
0-585
0-724
0-816
0-877
0-983
0-998
1000

100

0017
0032
0062
0116
0166
0-211
0-253
0-343
0-418
0-536
0-626
0-696
0-889
0-959
0-985
0-994
1000

1

0108
0149
0-205
0-277
0-327
0-365
0-395
0-445
0-476
0-507
0-524
0-535
0-579
0-619
0-655
0-687
0-809
0-884
0-929
0-974
0-990
1000

Cylinder

10

0044
0-060
0081
0106
0125
0143
0159
0-200
0-238
0-309
0373
0-432
0-652
0-786
0-868
0-919
0-993
0-999
1000

100

0029
0054
0101
0188
0-265
0-333
0-394
0-519
0-615
0-748
0-832
0-887
0-983
0-997
1000

1

0155
0-210
0-279
0361
0-409
0-441
0-463
0-494
0-508
0-522
0-532
0-542
0-585
0-624
0-660
0-692
0-813
0-886
0-931
0-974
0-990
1000

Sphere

10

0059
0076
0095
0-117
0136
0153
0171
0-212
0-252
0-325
0-391
0-451
0-672
0-804
0-883
0-930
0-995
1000

100

0-037
0068
0-127
0-232
0-324
0-404
0-474
0-613
0-712
0-838
0-907
0-946
0-996
1000

CO

r
m



TABLE 14.3
Values of MJMn for fia2/D = 1-0

><*
Dt/(R + l)a2 \ ^

0005
001
002
004
006
008
010
015
0-2
0-3
0-4
0-5
10
1-5
20
2-5
50
7-5

1

0057
0081
0115
0164
0-203
0-237
0-267
0334
0390
0-481
0553
0-613
0-804
0-900
0-948
0-973
0-999
1000

Plane sheet

10

0028
0045
0075
0131
0181
0-226
0268
0-358
0-432
0-549
0-637
0-707
0-895
0-962
0-986
0-993
1000

100

0045
0081
0136
0-210
0-264
0-309
0348
0430
0-497
0607
0691
0-758
0927
0-978
0-994
0998
1000

1

0109
0151
0-208
0-285
0-341
0-385
0-423
0495
0-549
0-630
0-691
0-741
0-891
0-954
0-980
0-992
1000

Cylinder

10

0051
0079
0129
0-217
0295
0363
0-423
0-547
0-638
0-768
0-848
0-898
0986
0-998
1000

100

0085
0151
0250
0-378
0-465
0-531
0-587
0692
0-767
0866
0-923
0-955
0-997
1000

1

0155
0211
0-283
0-371
0-429
0471
0504
0-564
0-608
0-676
0-732
0-777
0912
0965
0986
0995
1000

Sphere

10

0070
0105
0166
0-273
0-366
0-445
0514
0-648
0-743
0-860
0-922
0-956
0-997
1000

100

0120
0-212
0-346
0-510
0613
0-687
0-743
0-840
0-899
0959
0-983
0-993
1000

W
r
m
on
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TABLE 14.4
Values of MJM^ for fia2/D = 10

Dt/(R + \)a2

0-005
001
002
004
006
008
010
015
0-2
0-3
04
0-5
10
1-5
20
2-5
50

R -

\

Plane sheet

1

0059
0085
0126
0190
0-242
0-288
0-329
0-414
0-484
0-595
0-680
0-746
0-920
0-975
0-992
0-998
1000

Cylinder

1

0112
0159
0230
0336
0420
0-489
0-547
0660
0-740
0-845
0-906
0-943
0-995
1000

Sphere

1

0160
0-224
0-316
0-448
0-546
0-623
0686
0-796
0-865
0-939
0-972
0-987
1000



TABLE 15.1
Diffusion coefficients and amplitudes

20° C

50° C

80° C

20° C

50° C

80° C

20%

4-5
4-1

28
18

140
39

0094

0-34

0-21

R.H.

34
130

41
180

49
420

00037

0050

0-20

p = 0-2 g cm 3

65?

31
2-5

21
9-3

90
17

0192

0-39

017

vo R . H .

12
140

16
230

20
690

00040

0041

Oil

90%

0-93
0-72

50
2-3

D

022

042

P

R.H.

3-2
160

40
250

9

00013

00010

n

20%

14
1-3

84
64

41
17

0050

025

0-30

R.H.

16
63

20
78

24
140

00016

0-027

0-147

p = 0-5 g cm 3

65%

0-92
0-80

5-7
34

27
74

013

0-38

0-24

R.H.

5-7
66

7-7
99

9-8
210

00019

0023

0087

90%

0-28
0-24

1-5
086

015

0-39

R.H.

1-5
62

20
110

00006

00062

The figures in each cell of the top half are for diffusion coefficients, the arrangement being as shown in the cell for 80°C and 90% R.H. The unit is 10 5

cm2 s~ l. The significance of the figures in the bottom half is shown in the corresponding cell.

r
m
C/3
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SUBJECT INDEX

Absorption accompanying diffusion: see
Chemical reaction and diffusion.

Absorption from a mixture of gases,
303-305.

Acetone in cellulose acetate, 193.
Anisotropic media, 5-8.
Anomalous diffusion: see Non-Fickian diffu-

sion.
Basic volume, 206.
Bimolecular reaction, 349-350.
Boltzmann's transformation, 105.
Bulk flow, 209.

Capillary tube method, 49.
Case I diffusion, 254.
Case II diffusion, 254.
Cellulose, direct dyes in, 232, 238.
Cellulose acetate: see Acetone.
Chemical reaction and diffusion: immobiliza-

tion on limited number of fixed sites,
286, 298, 310; on mobile sites, 306;
examples of, 326; instantaneous revers-
ible, 326-329; irreversible, 329-337,
345-346; reversible first order,
337-345, 347-349; bimolecular,
349-350; reduced sorption curves,
350-351; constant reaction rate, 351.

Chloroform in polystyrene, 239-241.
Composite media: infinite, 38-40; semi-

infinite, 41; plane membrane, 46-47,64,
196-200; cylindrical, 82, 200-202;
spherical, 97; finite-difference formulae
for, 149-150; see also Laminates and
Particulates.

Concentration-dependence, measurement
of: see Diffusion coefficient, measure-
ment of.

Concentration-dependent diffusion: differen-
tial equation for, 4; characteristic fea-
tures of, 179-189; see also Methods of
solution for variable diffusion coeffi-
cients, Concentration-distance curves,
Sorption curves, and Desorption curves.

Concentration-distance curves, steady-state:
cylinder, 70; plane sheet, 161-164.

Concentration-distance curves, non-steady
state: for instantaneous plane source, 12;
extended sources, 15; cylindrical and
spherical sources, 30; in semi-infinite
medium, 37; in composite infinite
medium, 39, 40; in plane sheet, 50, 55,

62; in cylinder, 74, 76, 82, 87, in sphere,
92, 98; in composite cylinder, 202.

Concentration-distance curves for variable
diffusion coefficients: discontinuous,
288, 289, 294; exponential, 170, 172,
173; proportional to concentration, 122,
123; linear, 171, 172; calculation of dif-
fusion coefficient from, 230-238; com-
mon points of intersection of, 176-179;
logarithmic, 174; D = D0/(l - ac), 175;
D = D0(l - ac)2, 176; for acetone in cel-
lulose acetate, 194.

Continuous sources, 31, 32.
Correspondence principle, 173.
Crank-Nicolson method, 144-146.
Cylinder, steady state with irreversible reac-

tion, 337.
Cylinder, non-steady state: zero surface con-

centration, 72-73; constant surface con-
centration, 73-74; variable surface con-
centration, 75-77; in stirred solution,
77-79; with surface evaporation, 79-80;
constant surface flux, 81; impermeable
surface, 81; composite, 82, 200-202;
with absorption, 327-328; with irrever-
sible reaction, 333; finite difference for-
mulae, 148, 149.

Cylinder, hollow, steady-state: 69-71;
160-164, 218-221; influence of wall
thickness, 70; non-radial flow, 71.

Cylinder, hollow, non-steady state: constant
surface concentration, 82, 83; flow
through wall and time-lag, 84; general
boundary conditions, 84-86; logarithmic
transformation, 149.

Cylinder, region bounded internally by, 87,
88.

Cylinder, finite length, with irreversible reac-
tion, 334.

Cylindrical source, 29.

Desorption curves: see Sorption and desorp-
tion curves.

Diffusion coefficients: definition of, 2,
203-209; concentration dependent, 46;
time dependent, 104; mutual, 205; in-
trinsic, 209-211; self, 212-214; position
dependent, 225; relations between
205-214; weighted mean, 250, 251; see
also Exponential, Linear, and Discon-
tinuous diffusion coefficients.
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Diffusion coefficient, measurement of: 214;
Taylor's flow method, 215; dynamic
method, 216; frequency response
method, 216-218; steady-state methods,
218-221; time-lag methods, 222-230;
analysis of concentration-distance
curves, 230-238; sorption and desorp-
tion methods, 238-250; weighted
means, 250, 251; radiotracers, 251-253
thin smear and twin disc methods,
252-253.

Diffusion equations: 2-7; analogy with heat
flow, 8-10; derivation of, 2-4; in plane
sheet, 4, 44; in cylinder, 4, 5, 69; in
sphere, 4, 5, 89; in anisotropic media,
5-7; in heterogeneous media, 266-284;
Boltzmann's transformation, 105; see
also Solutions of.

Diffusion process, definition and description
of, 1.

Diffusion wave, 361.
Diffusion with chemical reaction: see Chemi-

cal reaction and diffusion.
Dilute solutions, diffusion in, 16, 232.
Discontinuous diffusion coefficients: special

cases, 287-289; with one discontinuity,
290-296; with two discontinuities,
188-191, 296-298; in measurements of
diffusion coefficients, 246-250; in sur-
face skin, 196-200.

Disc source, 31.
Dyes in cellulose, 232, 238.
Dynamic permeation method, 216.

Edge effects in membranes, 64.
Error functions: definition, 14; tables of,

375-376.
Evaporation, diffusion controlled, 191-195.
Explicit finite-difference method, 141-144.
Exponential diffusion coefficients: Wagner's

solution, 112-117; correction factors ap-
plied to sorption and desorption data,
241-243; concentration curves, 162,
169, 170, 172, 173; sorption and desorp-
tion curves, 181.

Falling drop, extraction of solvent from, 337.
Fick's laws, 2, 4.
Finite-difference approximations: for plane

sheet, 141, 142, 144; for cylinder and
sphere, 148-149; for various boundary
conditions, 146-148; at an interface,
149, 150; in two and three dimensions,
150-151.

Finite elements, 159.
Formal solutions, concentration dependent

systems, 125-129.
Freezing of a liquid, 307.
Frequency response method, 216-218.

Glassy polymers, 254.
Goodman's integral method, 129; with mov-

ing boundary, 312, 313; in two-
dimensions, 313.

Half-times for sorption and desorption, diffu-
sion coefficients from, 238-243.

Heat and moisture, simultaneous diffusion of,
352-367; surface temperature changes
on sorption, 367-374.

Heterogeneous media: see Composite media,
Laminates, Particulates.

History dependence, 258.
Holstein's solution, 51, 52, 216, 224.

Immobilizing reaction: see Chemical reaction
and diffusion.

Infinite composite medium, 38-40.
Infinite media: plane source, 11,12; extended

source, 13-16; instantaneous sources,
28-31; continuous source, 31, 32; mov-
ing boundary in, 298-301; concentration
dependent diffusion in, 105-124; con-
centration distributions, 170.

Inflexion in sorption curve, 54,180,202, 347,
348.

Instantaneous source: plane, 11-13; ex-
tended, 13-17, 31; point, 28, 29; linear,
spherical, cylindrical, 29, 30; disc, 31.

Intrinsic diffusion coefficient, 209-211.
Irreversible reaction: see Chemical reaction

and diffusion.
Irreversible thermodynamics: 213, 214,

262-264.

Kirkendall effect, 209.

Laminates: 266-268; time-lag, 268, 269.
Laplace transformation: definition, 19; use

of, 20-24; table of 377-379.
Line source: 29.
Linear diffusion coefficients: 118-124; cor-

rection factors applied to sorption and
desorption data, 241 -242; concentration
curves, 161, 169, 171, 172; common
points of intersection, 176-179; sorption
and desorption curves, 179, 180.

Mass flow: see Bulk flow.
Matano's method, 230-238.
Mathematical solutions: types of, 11; for in-

finite and semi-infinite media, 28-43,
195; for plane sheet, 44-68, 195-200;
for cylinder, 69-87,200-202; for sphere,
89-103; with moving boundary,
286-325; with chemical reaction,
326-351; for variable diffusion coeffi-
cients, 160-202; for simultaneous trans-
fer of heat and moisture, 352-367. See
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a/50 Methods of solution; Numerical
Methods.

Mean diffusion coefficient: from steady-state
flow, 46, 69, 90; from sorption and de-
sorption half-times, 239-244; from ini-
tial rates of sorption and desorption,
244-246.

Membranes: 44-47, 49-53, 69-71, 84,
99-101, 160-164, 191-193; asymmetri-
cal, 165; time-lags in concentration and
time dependent membranes, 222-228;
non-homogeneous, 228-230; im-
mobilizing reaction, 230.

Methods of solution, constant diffusion coeffi-
cient: reflection and superposition,
11-17; separation of variables, 17-18;
Laplace transform, 19-24; product solu-
tions, 24-25; other methods, 25-26.

Methods of solution, discontinuous diffusion
coefficients, 287-298.

Methods of solution, variable diffusion coeffi-
cients: time dependent, 104-105; con-
centration dependent, 105-136; expo-
nential and linear diffusion coefficients,
112-125; exact formal solutions,
125-129; Goodman's integral method,
129; method of moments, 129-135, or-
thogonal functional approximations,
135-136; numerical methods, 137-159.

Moisture, uptake by wool: see Heat and mois-
ture.

Moments, method of: 129-135.
Moving boundary: associated with discon-

tinuous diffusion coefficients, 287-298;
Neumann's method, 290; Danckwert's
general treatment, 298-308; radial
phase growth, 308-310; steady state ap-
proximation, 310-312; Goodman's in-
tegral method, 312-313; finite-
difference methods, 313-323; isotherm
migration method, 323-324; other
methods, 325; practical examples, 286,
303-307.

Mutual diffusion coefficient, 205, 214.

Newton's law of cooling, 9.
Nomograms, for diffusion of heat and mois-

ture, 365, 366.
Non-dimensional variables, 138-139; 369.
Non-Fickian diffusion, 254-265.
Numerical methods, 137-159.

Orthogonal functions, approximate solutions,
135-136.

Parallelepiped, rectangular, 3; diffusion in
with irreversible reaction, 333.

Particulates: mathematical models of two-
phase systems, 270-285.

Permeability constant: 45, 51.
Plane sheet, steady state: 44-46; composite

membrane, 46-47; concentration dis-
tributions, 160-164.

Plane sheet, non-steady state: constant sur-
face concentrations, 47-53; variable sur-
face concentration, 53-56; from a stirred
solution, 56-60; surface evaporation,
60-61: constant surface flux, 61-62; im-
permeable surfaces, 62-64; edge effects,
64-65; approximate two-dimensional
solutions, 65-68; with surface skin,
196-200; swelling sheet, 239; tempera-
ture changes accompanying diffusion,
367-374; see also Sorption and desorp-
tion curves, and Diffusion coefficient,
measurement of.

Plane source, 11, 13.
Point source, 28-29; 124-125.
Polystyrene: see Chloroform in polystyrene.

Product solutions, 24-25;
Radio-tracer methods, 58, 63, 212-214,

252-253.
Random walk, 1.
Reflection and superposition, 11-17.
Relationships between different coefficients,

207-214.
Reversible reaction: see Chemical reaction

and diffusion.

Self diffusion, 58, 212-214.
Semi-infinite media: plane source, 13; ex-

tended source, 16; prescribed surface
concentration, 32-35; surface evapora-
tion, 35-37; square root relationship, 37;
composite, 41-42; Weber's disc, 42-43;
concentration dependent diffusion in,
105-124; concentration distributions,
171-176.

Separation of variables, 17-18, 71.
Sigmoid sorption curves: see Inflexion in

sorption curve.
Singularities, 152-157.
Skin: on semi-infinite medium, 41; on plane

sheet, 64, 195-200; on cylinder, 82,
200-202; on sphere, 97.

Solubility: 44, 51, 224-225, 227, 228, 230.
Sorption and desorption curves: in semi-

infinite medium, 33, 38, 42, 196, 335; in
plane sheet, 54, 55, 59, 61, 196, 347,
348, 349; in cylinder, 75, 77, 79, 80, 83,
201, 328; in sphere, 93, 94, 95, 97, 99.

Sorption and desorption curves for various
diffusion coefficients: linear concentra-
tion dependence, 179, 180; exponential
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concentration dependence, 181; diffu-
sion coefficient exhibiting a maximum,
184; discontinuous diffusion coefficient,
288, 289, 296.

Sorption and desorption curves: correspon-
dence principle, 173; general properties
of, 179-191; effect of surface skin,
195-200; temperature change accom-
panying sorption, 353, 367.

Sphere, steady state with irreversible reac-
tion, 337.

Sphere, non-steady state: new variable rC,
89, 102; constant surface concentration,
90-91; variable surface concentration,
91-93; in stirred solution, 93-96; with
surface evaporation, 96; with constant
surface flux, 96-97; composite, 97; with
irreversible reaction, 332, 334; finite-
difference formulae, 148-149.

Sphere, hollow, steady state, 89-90;
160-164; influence of wall thickness on
rate of flow, 90.

Sphere, hollow, non-steady state: constant
surface concentration, 98-99; flow
through wall and time-lag, 99-101; sur-
face evaporation, 101-102.

Sphere, region bounded internally by,
102-103.

Spherical source, 29.
Square-root relationship, 37, 179.
Steady-state method, of measuring the diffu-

sion coefficient and its concentration de-
pendence: 44, 218-221.

Steady-state solutions: see Cylinder, hollow;
plane sheet; sphere hollow.

Stepwise diffusion coefficient: see Discontinu-
ous diffusion coefficient.

Strain dependence, 259-262.
Superposition: see Reflection and superposi-

tion.
Surface evaporation: see Semi-infinite media;

plane sheet; cylinder including hollow
cylinder; sphere, including hollow
sphere.

Swelling sheet, 239.

Tapering tube, 48-49.
Tarnishing reaction, 305-306.
Taylor's flow method, 215-216.
Temperature change associated with sorp-

tion: 367-374; see also Heat and mois-
ture.

Textile fibre, uptake of water by, 352-353.
Thin-smear method, 252.
Three-dimensional diffusion: 24-26, 111,

150-152,333.
Time-dependent diffusion, 104-105,

254-265.
Time-lag: 51, 84, 100; Frisch method,

222-224, for exponential diffusion
coefficient, 224; generalization to Fick-
ian and non-Fickian systems, 225-230;
effect of immobilizing reaction, 230.

Twin disc method, 252.
Two-dimensional diffusion: 24-26, 111,

150-152, 334; approximate treatment,
65-68; edge effects in membranes, 64.

Two-stage sorption, 255-257.

Wall thickness, influence of, on rate of flow: in
cylinder 70; in sphere, 90.

Weber's disc, 42-43.
Weighted-mean diffusion coefficients,

250-251.
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