SYN'&RESS®

BUYER PROTECTION PLAN / 2,
N

2N
£

WEBMASTER’S Guide to the

Wireless

Internet

Everything You Need to Develop E-Commerce Enabled
Wireless Web Sites

- Step-by-Step Instructions for Authoring a Web Clipping Application

- Complete Coverage of ASPNET’s Microsoft Mobile Internet Toolkit
Extensions

- Master Wireless Security, Including Embedded Security Technology,
Secure Air-Connect Technologies, Mobile Operator Network Security,
and Authentication

I\
(@ Ryan Fife

Global Knowledge Wei Meng Lee

RECOMMENDED READ|NE Dan A. Olsen Technical Editor '

solutionsa@asyngress.com

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

= One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

» “Ask the Author”™ customer query forms that enable you to post
guestions to our authors and editors.

» Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

» Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We're listening.

WWwwWw.syngress.com/solutions

SYNGRESS®

http://www.syngress.com/solutions

SYN'ERESS®

Webmaster’s Guide

“"Wireless
Internet

Ryan Fife
Wei Meng Lee
Dan A. Olsen Technical Editor

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, and “Career Advancement Through Skill Enhancement®,” are registered
trademarks of Syngress Media, Inc. “Ask the Author UPDATE™,” “Mission Critical™,” “Hack Proofing™,”
and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress Publishing, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL NUMBER

001 NJA8USDNFV
002 MBLAU4TPTR
003 WDP9FUV3GB
004 56LNSXDKMF
005 2SNF438BMF
006 KGF8E45SJF
007 KXMPER9T3E

008 AMGPE94FGY
009 LE49ETVDOR
010 CERUT3HNTR

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Webmaster’s Guide to the Wireless Internet

Copyright © 2001 by Syngress Publishing, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 1-928994-46-6

Technical Editor: Dan A. Olsen Freelance Editorial Manager: Maribeth Corona-Evans

Technical Reviewer: Richard Weeks Cover Designer: Michael Kavish

Co-Publisher: Richard Kristof Page Layout and Art by: Shannon Tozier

Acquisitions Editor: Catherine B. Nolan Copy Editors: Darren Meiss, Jesse Corbeil, and
Adrienne Rebello

Developmental Editor: Kate Glennon Indexer: Robert Saigh

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

Acknowledgments

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying, and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler, Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten and Annabel Dent of Harcourt Australia for all their help.

David Buckland, Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the Syngress
program.

Gene Landy at Ruberto, Israel, & Weiner for his support and his honesty—and for
occasionally picking up the tab. Thank you for your friendship Gene.

Contributors

Ryan Fife is a Technical Architect for Yospace where he is building their
developer outreach program.Yospace has a strong market reputation for
the development and deployment of high quality, working wireless data
solutions that add value even at the earliest stages of this market. Ryan is
working to maintain this prestigious reputation and expand the number
of developers who use Yospace products to build quality applications.

He has been building wireless solutions for more than two years for
clients that include large wireless companies such as Nokia and Ericsson.
Prior to joining Yospace, Ryan co-founded AnywhereYouGo.com, a wire-
less portal for developers that covered WAP, J2ME, SMS, i-Mode, and
PDA technologies. Ryan also has architected and built large e-commerce
systems in Java as a consultant for Electronic Data Systems (EDS).

Ron Herardian is a leading expert in wireless software technology and
messaging presently serving as Director of Product Strategy for
ClickServices, Inc., a venture-backed Silicon Valley startup funded by
Cisco Systems. Ron previously founded a wireless software startup,
3minder, Inc., that developed an integrated wireless and Internet mes-
saging technology and which merged with ClickServices, Inc., in May of
2000. Before entering the wireless field, he served for five years as CEO
and Chief Systems Architect for Global System Services Corporation
(GSS), an infrastructure systems consulting firm providing a range of ser-
vices in the areas of electronic messaging, directory services, and group-
ware. At GSS, Ron provided technology strategies for Fortune 500 clients,
as well as software and solution architectures for ISPs and infrastructure
software vendors such as Netscape Communications. A California native,
Ron holds various technical certifications and is the author of numerous
technical papers and articles on wireless technology and electronic mes-
saging, as well as a book on LAN-based e-mail. He holds a bachelor’s
degree from Santa Clara University and a master’s degree from Stanford
University.

vii

viii

Rory Lysaght is a Mobile Device Specialist at Ripcord Systems, a wire-
less startup based in Seattle and London. At Ripcord, Rory put together
one of the first wireless GSM 1PAQs in Europe. He has worked in Web
and wireless development in the United States, Europe, and Japan. He has
contributed articles to several online and paper publications, including
Web Review and the EE Times. Prior to this, Rory worked as a photo-
journalist, publishing numerous documentary stories in magazines in the
same three continents. He is a member of the WAP forum and the Palm
developer network. Rory is also a contributor to Syngress Publishing’s
Palm OS Web Application Developer’s Guide (ISBN: 1-928994-32-6). He
lives in Seattle, WA.

Wei Meng Lee is Series Editor for Syngress Publishing’s .NET
Developer Series. He is currently lecturing at The Center for Computer
Studies, Ngee Ann Polytechnic, Singapore. Wei Meng is actively involved
in Web development work and conducts training for Web developers and
Visual Basic programmers. He has co-authored two books on WAP and
holds a bachelor’s degree in Information Systems and Computer Science
from the National University of Singapore. The first book in the .NET
series, VB.NE'T Developer’s Guide (ISBN: 1-928994-48-2), is currently
available from Syngress Publishing.

Technical Editor and Contributor

Dan A. Olsen is an independent Web technology consultant based in
San Francisco, CA. He specializes in helping nonprofit organizations and
small business people utilize Internet technology to make their internal
processes more efficient and to communicate with their clients more
easily. Dan formerly worked as an application developer and usability
engineer for Informano Networks, a wireless Managed Services Provider
located in Emeryville, CA. In this capacity, he handled all aspects of
client-side development for a wide variety of devices including WAP and
wireless mobile phones, PDAs, and desktop Web browsers.

Prior to his venture into the world of wireless technology, Dan spent
two years with Cox Interactive Media (CIM) as a Multimedia Developer
and Web Technical Lead. During his tenure with CIM, he was the in-
house technical resource for Baylnsider.com, a San Francisco Bay Area
portal. Under the umbrella of CIM, he developed, built, and maintained
several Web sites for various local media partners and local events. Dan
studied anthropology and new media communications at the University
of Washington in Seattle.

Technical Reviewer and
Contributor

Richard Weeks (B.Sc.) is Managing Director of brightfluid
(www.brightfluid.com), a research consultancy that is studying the
behavioral patterns of the users of mobile communications—the social
and psychological triggers that accompany mobile phone usage. Richard’s
background includes key positions at Grey Interactive Services Ltd. (UK)
where he helped launch the Cartoon Network’s WAP site and
AnywhereYouGo.com in the UK where he was Business Development
Manager. Richard is a frequent contributor to various consumer and pro-
tessional mobile publications and has appeared on CNN Financial as an
expert in the field. His expertise extends from mobile phone technologies
such as SMS and WAP through to wireless LAN, satellite communica-
tions, and in-flight information delivery resulting in an all-round appreci-
ation for all aspects of the wireless Internet phenomenon.

Answers to Your
Wireless Questions
= T =
Q: Will | have to learn
different programming

if i-Mode comes to the
United States?

A i-Mode uses a subset
of HTML called
Compact HTML
(cHTML). Anyone
familiar with HTML
should have no
problem learning this.
However, there are
signs that the industry
may move towards
XHTML as the
preferred markup
language for these
devices.

Foreword XXV

Chapter 1 Moving from the Web to Wireless 1

Introduction

Explaining Wireless

Types of Wireless Connectivity

Mobile Phones as Wireless Modems

Packet Switched Networks
e Networks ¥

] Convergent and Future Mobile Wireless

~ Devices 31
3 hing Old, Something New 33
d Stuft: The Existing Internet 34

ew Stuft: Mobile Connectivity 35
MOV1 from a Wired to a Wireless Internet 38
tﬁmkmg User Interface and Interaction 39

Xi

Xii Contents

Using the Short
Message Service

S T =
The Short Message Service
(SMS) allows you to send
and receive messages of
about 160 characters via
your mobile phone using a
GSM network. This is a
relatively old technology
but is still quite popular.

Recognizing Device Limitations
Adding Personalization
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 2 Wireless Architecture

Introduction
Components of a Wireless Network
The WAP Browser
The WAP Gateway
Corresponding WAP Protocols
Understanding Information Flow
through the Gateway
The Web Server
Adjusting the Metaphor for the Wireless Internet
Considering the Mobile User
Complementing Your Web Offering
Accepting the Challenge of WAP-Enabled
Devices
Determining Device Capabilities
Testing Your Application on Various Devices
Adopting Wireless Standards
Options in Markup Languages
Wireless Markup Language
Compact HTML
Web Clipping
Handheld Device Markup Language
Using Wireless Networks and Their
Evolving Generations
Noting the Market for Wireless Browsers
and Other Applications
WAP Browsers
Java2 Micro Edition
i-Mode and cHTML
Palm Query Application
Web Browser

40
41
43
45
48

51
52
52
53
54
54

54
55
56
57
57

57
58
59
60
61
62
62
62
62

62

64
64
65
66
66
66

Contents Xiii

Short Message Service 67
Summary 68
Solutions Fast Track 68
Frequently Asked Questions 70

Chapter 3 A New Markup: WML 73
Introduction 74
A Brief History of Wireless Content 74
Developing the Intelligent Terminal Transfer
Protocol 74
Developing the Handheld Device Markup
Language 75

Exploring the
<postfield> Element

_— = Forming the WAP Forum 75

The <postfield> element Combining Languages into the

Developing the Tagged Text Markup Language 75

specifies a name and value Wireless MarkuP Language 76
pair that will be sent to Projecting Future Growth 77
the server as part of a URL WML Overview 77
request. The following are .

attributes for the Creating Well-Formed Documents 78
<postfield> element: Nesting 78
®» name The name of the Creating Valid Documents 79
field. Using WML Syntax 83
» value The value of the Following Syntax Rules 84
field. Replacing Entities 84
Closing Elements 85

Characterizing the Element with
Attributes 86
Case Sensitivity 86
Handling White Space 86
Commenting 87
Using Variables 87
Formatting Text 87
Displaying Fonts 88
Reserved Characters 89
Displaying Tables 90
Meta Information 91

Controlling Caching 91

Xiv Contents

Bookmarking 92
Understanding the Deck of Cards Paradigm 92
WML Elements 93
Adding Attributes 93
The id and class Attributes 94
The <a> Element 94
The <access> Element 95
The <anchor> Element 95
The Element 96
The <big> Element 97
The
 Element 97
The <card> Element 97
The <do> Element 98
The Element 100
The <fieldset> Element 100
The <go> Element 101
The <head> Element 101
The <i> Element 102
The Element 102
The <input> Element 103
The <meta> Element 104
The <noop> Element 105
The <onevent> Element 105
The <optgroup> Element 106
The <option> Element 106
The <p> Element 107
The <postfield> Element 108
The <prev> Element 108
The <refresh> Element 108
The <select> Element 108
The <setvar> Element 109
The <small> Element 110
The Element 110
The <table> Element 110
The <tr> Element 111

The <td> Element 111

Contents

The <template> Element
The <timer> Element
The <u> Element
The <wml> Element
Creating WML Content
Navigating within the Deck
Getting Information from the User
Using Server-Side Programs to Create
Dynamic WML
Using Openwave Extensions Introduce
Context
Navigating Parent/Child Relationships
Using Extensions
Using the <spawn> and <catch>
Extensions
Using the <exit> and <throw>
Extensions
Using the <catch> Extension
Using the <send> and <receive>
Extensions
WML Editors, WAP SDXKs, and Emulators
WML Editors
Other Editors
WAP SDKs
Ericsson WapIDE SDK
Motorola Mobile ADK
Nokia WAP Toolkit
Openwave UPSDK
WAPODbjects
WML Emulators
Summary
Solutions Fast Track
Frequently Asked Questions

112
112
113
113
114
114
115

117

120

121

123

124
124

124
126
126
129
130
130
130
130
130
131
131
132
132
135

XV

Xvi

Examining WMLScript

Contents

Data Types

N
WMLScript supports five
built-in data types:

Integer
Floating Point
String
Boolean

Invalid

Chapter 4 Enhancing Client-Side
Functionality with WMLScript

Introduction
What Is WMLScript?
Not All Phones Support WMLScript
WMLScript Compilation
How WMLScript Interacts with WML
Understanding the Basic Elements of
WMLScript
Examining WMLScript Syntax
Examining WMLScript Data Types
Examining WMLScript Operators
Examining WMLScript Control
Structures
Using WMLScript Libraries
Functions in the Class Libraries
Learning to Interpret WMLScript
Dissecting the Code
Performing Mathematical Operations Using
WMLScript
Dissecting the Code
Using WMLScript for Input Validation
Dissecting the Code
Credit Card Validation
The Credit Card Validating Algorithm
Dissecting the Code
Using WMLScript and Microsoft Active
Server Pages (ASP): Case Study
Designing the Application
Creating the Database
The WML Deck
Generating the WMLScript Program
from ASP
Debugging the WMLScript
Lessons Learned
Caching Problems

137
138
138
138
140
140

141
141
142
143

146
147
148
148
150

151
152
153
155
157
157
160

162
162
163
163

165
170
173
174

Using the Nokia WAP
Toolkit 2.1

) T =

The Nokia WAP Toolkit is
an environment for
developing, viewing, and
testing WAP applications.
It includes:

Editing, validating, and
viewing WML decks

Editing and debugging
WMLScript files

Viewing and changing
WML variables inside
the WAP browser

Examining debug
messages from the
WAP browser

Creating and editing
WBMP images

Contents

Debugging the Emulators
Emulators Are Relatively Unstable!
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 5 Wireless Development Kits

Introduction
The Openwave UPSDK 4.1
Installing Openwave UP.SDK

System Requirements for the Openwave

UPSDK
Obtaining the Openwave UP.SDK
Installing the Openwave UP.SDK
Working with the Openwave UPSDK
Accessing and Editing Local Files
Accessing Files through a Gateway
Debugging Techniques
The Nokia WAP Toolkit 2.1
Installing Nokia’s WAP Toolkit
System Requirements for the Nokia
WAP Toolkit
Obtaining the Nokia WAP Toolkit
Installing the Nokia WAP Toolkit
Working with the Nokia WAP Toolkit
Accessing and Editing Local Files
Accessing Files through a Gateway
Debugging Techniques
The Motorola Mobile Application
Development Kit 2.0
Installing the Motorola Mobile ADK
System Requirements for the
Motorola Mobile ADK
Obtaining the Motorola Mobile ADK
Installing the Motorola Mobile ADK
Using the Mobile ADK
Accessing and Editing Local Files

XVii

174
174
175
175
177

179

180
180
181

181
182
182
183
184
186
187
188
189

189
190
190
191
192
195
196

199
199

199
201
201
204
206

Xviii Contents

Accessing Files through a Gateway
Debugging Techniques
The Ericsson Mobile Internet WAP-IDE 3.1
Installing the Ericsson Mobile WAP-IDE
System Requirements for the Ericsson
Mobile WAP-IDE
Obtaining the Ericsson Mobile
WAP-IDE
Installing the Ericsson Mobile
WAP-IDE
Working with the Ericsson Mobile
WAP-IDE
Accessing and Editing Local Files
Accessing Files through a Gateway
Debugging Techniques
The Yospace SmartPhone Emulator 2.0
Installing the Yospace SmartPhone Emulator
System Requirements for the Yospace
SmartPhone Emulator
Obtaining the Yospace SmartPhone
Emulator
Installing the Yospace SmartPhone
Emulator
Developing with the Yospace SmartPhone
Emulator
Accessing and Editing Local Files
Accessing Files through a Gateway
Debugging Techniques
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 6 Web Clipping
Introduction
What Is Web Clipping?
The Components of Web Clipping
Client-Side Components

207
208
209
209

209

210

210

211
212
214
215
216
216

217

217

217

218
220
220
221
222
224
227

229
230
231
233
233

Creating a Web
Clipping Project with
the WCA Builder

M
The WCA Builder has three
main options from the File
menu: Open Index, Rescan
HTML, and Build PQA.

[boebe. bl WA Bk |
Fin Lok
Do e pw
[—— m
EuidFoa, Cwed

1 CVWEHDTeS . s duslics b
Est AnFd

Contents

Server-Side Components
A Typical Web Clipping Transaction
What Types of Hardware Support Web Clipping
Palm VII/VIIx Connected via Mobitex
Other Handheld Devices Connected
via CDPD
Palm-Compatible Handhelds Connected
via the Mobile Internet Kit
Working with the Palm OS Emulator
Downloading and Installing the Emulator
Transterring a ROM Image
Obtaining ROM Images from Palm
Starting the Emulator
Connecting the POSE to the Internet
Creating a Web Clipping Project with the
WCA Builder
Hello, World!
Scanning the HTML
Creating the .pqa File
Installing and Uninstalling the Web
Clipping Application on the POSE
Viewing the Web Clipping Application
Adding Images and Additional Pages
to Your WCA
Web Clipping Basics
Unsupported Tags and Elements
Supported Tags and Elements
Using the <title> Tag
Using the <meta> Tag
Using the <body> Tag
Using the <table>, <tr>, and <td> Tags
Using the <p> Tag
Using the , <i>, and <u> Tags
Using the and Tags
Using the , , and Tags
Using the <h1> — <h6> Tags

Xix

234
235
236
237

237

238
239
239
240
242
242
242

243
246
247
247

248
249

250
252
252
254
255
256
257
257
259
260
260
260
261

XX Contents

Using the Tag
Using the <a> Tag
Using the <form> Tag
Using the <select> Tag
Using the <input> Tag
Web Clipping Extensions
Palm-Specific <meta> Tags
Identifying Users with a Device ID

Estimating User Location by ZIP Code

Selecting a Date with the Datepicker
Object
Choosing a Date with the Timepicker
Object
Web Clipping in Action: Examples
Using a mailto: Link with Parameters
Sending E-mail via a Web Server

Guidelines for Authoring your Web Clipping

Application
Summary
Solutions Fast Track
Frequently Asked Questions

Avoiding the Common Chapter 7 Deck of Cards: Designing

Mistakes Made by \ "
Webmasters Small Viewpoint Content

= = Introduction
Some of the more Thinking In the Hand, not On the Web

common mistakes made Common Mistakes Made by Webmasters

by Webmasters include: Wasting Bandwidth

= Wasting bandwidth Forgetting Task-Based Design

= Forgetting task-based Providing Too Many Options or Too
design Much Information

= Providing too many Using Branded Terminology Instead of
options or too much Plain Language
information Thinking Like a Mobile User

= Using branded, Web- Segregating Tasks
:Lkigqupglzay Optimizing Bandwidth

language Designing Coherent Navigation

261
262
263
263
264
266
268
268
270

270

272
274
274
276

281
283
283
286

289
290
291
293
293
294

295

296
297
298
299
303

Contents XXi

Stacking a Deck of Cards 304
Parceling Navigation and Content 305
Utilizing WML Variables 314
Examining Display Differences Between
Browsers 320
UP.Browser Interpretation 323
Nokia Interpretation 325
4thPass Kbrowser Interpretation 327
Directory.wml Example 328
Directory2.wml Example 329
Summary 332
Choosing Mobile Solutions Fast Track 333
Content Frequently Asked Questions 334
- = . .
;; of the first steps to@/ C_hapter 8 _Nlrele_ss Enabling Your
building any site is Big Bandwidth Site 337
choosing what content to Introduction 338
display on the site. The Defining WAP MIME Types 338
primary questions that))
arise in adapting a large Selecting which MIME Types to Add 339
existing site to the wireless Adding MIME Types to Your Server
Internet are: Configuration 340
1. What content/services Configuring the Apache Web Server 341
might our users want Adding MIME Types to Microsoft IIS 343
0 access while they
are mobile? Detecting WAP Devices 344
2 What limitations are Parsing Header Information 344
there to the existing HTTP_USER_AGENT 345
mobile interfaces that HTTP_ACCEPT 349
we must consider? Reading Other Environmental Variables 350
Redirecting Your Users to Static Content 352
Redirecting Users in PHP 353
Redirecting Users in Perl 353
Optimizing Content Distribution 356
Choosing Mobile Content 357
Convert or Redevelop? 357
Delivering Wireless Data 359
Making Your Applications Accessible 360

Implementing Wireless Graphics 362

xxii

Contents

File Formats
Maintaining Accessibility
Converting Your Images
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 9 Microsoft Mobile Internet
Toolkit

Introduction

Overview of the .NET Mobile Architecture
Devices Supported by the Microsoft Mobile

Internet Toolkit

System Requirements

Obtaining and Installing the Microsoft
Mobile Internet Toolkit

The Architecture of ASP.NET Introduction to ASPNET

Web Clients ‘

v

ASPNET
Application

Internet Information Server (IIS) ‘

v 4

Framework

4

A

N

Windows NT/2000 05 ‘

The Content Components
HTML Server Controls
ASP.NET Server Controls

The Code Components

ASPNET Architecture

Developing Mobile Web Forms

Using Multiple Forms in a Single Page

Linking to Forms on Other Pages
Dissecting Code

User Inputs
Text and Password Input
List Selection
Selecting from a List
Data Binding List Items
Dissecting the Codes

Events

Displaying Images

Validation Controls

Paginations

Calendar Control

362
363
363
364
364
366

367

368
368

369
369

370
371
376
377
377
378
380
381
385
386
388
389
389
393
394
396
399
400
401
405
407
409

Understanding the
Seven Layers of Point-
to-Point Security

) T =
Point-to-point security can
be broken down into
seven layers,
corresponding to the steps
in the communication

path between mobile
devices and Web servers

or applications:

1. Embedded Security
Technology

2. Secure Air-Connect
Technologies

3. Mobile Operator
Network Security

4. Secure Mobile operator
Gateways

5. Authentication

6. Data Center and
Network Security

7. Secure Application
Interfaces

Contents

Accessing Data with ADO.NET
A Brief Look at ADO.NET
Data Providers
ADO.NET DataReader
Dissecting the Codes
ADO.NET Dataset
Summary
Solutions Fast Track
Frequently Asked Questions

Chapter 10 Securing Your Wireless Web

Introduction
Comparing Internet and Wireless Security
Security Challenges of the Wireless Web
Lack of Standards
Horsepower, Bandwidth, and Weak
Encryption
User Awareness and Unsecure Devices
Mistrust of Wireless ASPs
Potential for New Viruses
Understanding Your Security Objectives
Security Models of the Wireless Web
Public and Private Key Cryptography
WTLS and Point-to-Point Security Models
How WTLS Works
WTLS Classes
The WAP Gap
The Seven Layers of Point-to-Point Security
Embedded Security Technology
Mobile Operator Network Security
Secure Mobile Operator Gateways
Authentication
Data Center and Network Security
Secure Application Interfaces
Problems of a Point-to-Point Security Model
Snifting and Spoofing

XXiii

411
411
412
414
415
417
423
423
426

429

430
431
433
434

434
435
436
436
437
438
439
442
443
444
444
446
447
448
448
448
449
452
452
452

Session Management and URL Rewriting 453

XXiv Contents

Man-in-the-Middle Attack
No Complete Solution
PKI Technology and End-to-End Security
Models
How to Deploy a PKI
Server Side PKI Integration
Client Side Devices
Choosing a Certificate Authority
Certificate Management Framework
Certificate Deployment
Practical Limits of PKI Technology
Using PDAs with PKI Security
The Future of Security on the Wireless Web
Summary
Solutions Fast Track
Frequently Asked Questions

Webmaster’'s Guide to the Wireless
Internet Fast Track

Index

453
454

454
456
456
456
456
457
457
457
458
458
460
461
464

467
489

Foreword

Over the past several decades, advances in computing technology have created
widespread changes in the way that the world operates and the means by which we
deal with information. Computing has revolutionized the way that business is done,
bills are accounted for, and how records are stored. The invention of the underlying
sets of protocols to enable communication between computers in the early 1970s and
the advent of the personal computer in the 1980s, has helped to sow the seeds for
the most recent communications revolution—the Internet. In the mid-1990s, as the
World Wide Web matured to include graphics and multimedia components and more
and more individuals gained aceess to affordable computers and Internet accounts,
the popularity of the Internet exploded and the number of Web sites and people
online grew at an exponential rate. Since then, many Web sites have come and gone
and use of the Internet is something that many people in the United States take for
granted. In the case of individuals whose livelihood is enabled by the Internet, such
as Webmasters, it is something that we cannot live without.

We have also seen, over the past two decades, widespread adoption of mobile
devices that are capable of enabling communication. Cellular phones are now being
used by millions of individuals worldwide, and, in some areas, mobile phones are
more reliable and used more often than land-based telephone communications sys-
tems. Recently, many phones and other handheld devices now have the ability to
access the Internet and send messages between subscribers. These capabilities often
include e-mail and the ability to send and receive data via the Hypertext Transfer
Protocol (HTTP), although not all of these devices can view the type of HTML that
has been associated with the World Wide Web of recent years. The advent of ubiqui-
tous mobile Internet computing promises to be another revolution in the ways that
human beings interact with each other, manage information, and interact with data
applications. This revolution also promises a new landscape in which Webmasters may

apply their skills and learn some new ones.
XXV

XXVi Foreword

One common characteristic that most handheld wireless devices share, regardless
of the device category, 1s a relative lack of processing power, memory, and display
capabilities as compared to a desktop computer. Wireless networks, in addition, fea-
ture a mere trickle of bandwidth compared with a modem, let alone a DSL or T'1
connection. It is very important to keep these constraints in mind as you build your
content and applications.

Furthermore, your wireless users will most likely be accessing your Web site
while they are mobile. This fact makes it imperative for you to consider the needs of
a mobile user as you consider what types of content you should make available, or
what kinds of applications make sense for a mobile user. Also, your user interface
should take into account the small viewpoint of the devices that will be accessing
your Web site and should also consider the difficulty that often exists with user input
on these devices.

Webmaster’s Guide to the Wireless Internet 1s intended to give you, the Webmaster,
the skills and knowledge that you will need to add wireless Internet capability to
your existing Web site, to build new wireless applications, and to help you understand
the issues, both global and domestic, that exist with deploying wireless Internet solu-
tions. The primary geographical focus of this book is the United States, but
Webmasters in other countries will certainly find the information useful. Webmaster’s
Guide to the Wireless Internet is not a lengthy work on the wide variety of protocols
that are used to deploy wireless technologies, nor does it focus unnecessarily on the
minute details of emerging technologies that are volatile in nature and constantly
changing. Rather, it focuses on hands-on examples that will allow you to adapt your
existing skills in HTML and server-side scripting to deploy content and applications
to a wireless audience using WML, WMLScript, and, in some cases, lean HTML. This
book is intended to demystify the wireless landscape and provide you with answers
on how to get your wireless Web site up and running quickly.

Chapter 1 covers the basics of what makes up the wireless Internet, and how it
contrasts with the World Wide Web.

Chapter 2 covers the basic architecture of the wireless architecture and provides
a comprehensive overview of the components of the wireless Internet and how they
fit together.

Chapter 3 explains the nuts and bolts of the Wireless Markup Language, the
client-side, XML-based markup language that allows devices using the Wireless
Application Protocol (WAP) to display Internet content. This chapter will give you
an understanding of how this language difters from HTML and will give you the
skills to start building your own wireless content.

WwWw.syngress.com

Foreword xxvii

Chapter 4 explains how to add client-side scripting to your WML pages.
WMLScript is loosely based on ECMAScript, which is the language that gave rise to
both JavaScript and Jscript. Users familiar with these scripting languages will notice a
similar syntax and structure, but the means of deployment will differ. Depending on
the market in which you want to deploy your content, you may or may not be able
to make much real-world use of WMLScript.

Chapter 5 explains how to install and use the many Software Development Kits
(SDKs) supplied by wireless browser programmers and handset manufacturers to pro-
vide you with an emulator and debugger to develop your content or application.

Chapter 6 provides an introduction to the proprietary system that allows users of
Palm-powered handheld devices to access content located on the Internet. This
chapter will give you the information that you will need to start building Web
Clipping Applications (WCAs). These special HTML-based applications can be inte-
grated with local applications or interact with Web servers located on the Internet.

Chapter 7 explains the issues surrounding usability on wireless devices. This
chapter will help you build eftective small-viewpoint navigation and give you some
handy tips on how to make your wireless site more user-friendly by working within
the constraints of narrow bandwidth and limited user input.

Chapter 8 will give you information and guidelines on how to add wireless capa-
bilities to your existing Web site and choose content that is of interest to mobile
users. It also covers how to detect wireless devices and discusses the issues sur-
rounding automated or on-the-fly conversion of your content for wireless users.

Chapter 9 explains how you can use the Microsoft Mobile Internet Toolkit and
Mobile Web Forms to deploy content to a wide variety of devices using the same
code. It covers how you can maintain state during a wireless or Web transaction and
how you can integrate Microsoft’s ActiveX Data Object (ADO) technology to pro-
vide interfaces to your data to many different devices.

Chapter 10 discusses the technology used to provide secure transactions for wire-
less devices and covers the issues surrounding security as it applies within the wireless
landscape. Point-to-point and end-to-end security models and the various pitfalls
surrounding both models are discussed.

The wireless revolution, like any revolution, is not without its challenges. The
global market for wireless Internet technologies is highly diverse, with different rates
of adoption, competing protocols and technologies, and existing infrastructures that
are in some cases more economical to use in the short term than building a new
global wireless communications architecture. At present in the United States, there

WwWw.syngress.com

xxviii Foreword

exists a fragmented landscape of telecommunications companies that offer mobile
phone service and not all of them are yet capable of oftering wireless Internet access
(but most are). In Europe, standardized networks and compatible handsets have
enabled the wireless Internet to become popular very quickly. Asia has seen similar
growth in the use of the wireless Internet, most notably in Japan with
NTT/DoCoMo’s iMode system. Many individuals in these markets find that the
wireless Internet is an indispensable part of their lives, while the U.S. market has been
slow to adopt the technology. There are many reasons for this, including legacy hand-
sets, widespread Internet access via personal computers, and a telecommunications
market that features competing incompatible protocols and technologies.

This book, while comprehensively covering the technologies that already exist on
the wireless Internet (and the general principles behind them), does not attempt to
address developing technologies that are not yet deployed. There has recently been
much speculation and hype about so-called third generation, or 3G networks, which
are “just around the corner.” In addition, handset manufacturers have promised many
new developments in wireless technology, and, in particular, location-based services.
These dreams, at the time of this writing, are not yet a reality.

However, the wireless Internet is up and running and more subscribers join in
every day. The future certainly promises to be interesting, and Webmaster’s Guide to the
Wireless Internet holds much value for Webmasters who wish to add the ability to
develop wireless-accessible Web sites to their toolkit. The first step to the future
begins today, and we can only expect that the number of mobile devices that are
capable of accessing the Internet will grow as time progresses. It’s your job to make
sure that there is something worthwhile for individuals to access on the wireless
Internet, and this book provides the hands-on examples and explanations that will
allow you to do so!

—Dan A. Olsen
Technical Editor and Contributor

WwWw.syngress.com

Chapter 1

Moving from the

Web to Wireless

Solutions in this chapter:

Explaining Wireless

Types of Wireless Connectivity

'Evolving Mobile Devices

Something Old, Something New

Moving from a Wired to a Wireless
Internet

M Summary

M Solutions Fast Track

M Frequently Asked Questions

Chapter 1 *+ Moving from the Web to Wireless

Introduction

The past century has brought about many changes in information and communi-
cations technology, from the invention of the telephone and broadcast technolo-
gies to the invention of the personal computer and the Internet. These changes
have enabled us to exchange information with other individuals and to retrieve
data from vast databases practically instantly. You, as a Webmaster, are certainly
familiar with these changes and have most likely played a role in developing some
of the content accessible via the Internet and allowing users to connect with each
other through time and space.

The wireless Internet is a new revolution upon us, one that will aftect the
world on a scale similar to that of the wired Internet. We have seen it grow in
Europe and Asia, and North America appears to be the next frontier of this
expansion.

We now live in a world populated with various devices that are capable of
exchanging information at unprecedented rates of speed, measured on the scale
of milliseconds. We have mobile telephones, pagers, personal digital assistants
(PDAs), and laptop computers, all capable of being connected to the Internet. It is
truly an exciting time to be alive.

In this book, we help you learn the tools and technologies to expand and
adapt your current Internet offerings to the wireless Internet. As much as is pos-
sible, we provide analogies to technologies that you will already be familiar with
as a Webmaster for the traditional Internet. However, you need to remember that
you are dealing with a new space in which to exchange information, with new
constraints and methodologies to building a successful site and/or application.

In this chapter, we provide a brief overview of wireless technology, discussing
some of the devices that are currently connectable. We also cover in brief some of
the similarities and differences between the wired and wireless Internet. We
briefly discuss the concept of mobile versus fixed wireless and provide some
examples of these different types of wireless connectivity in action.

Explaining Wireless

Wireless is one of those terms that would seem to be self-descriptive: without wires.
However, in terms of the Internet, wireless actually encompasses a whole host of
technologies that you need to understand if you want to move from the wired
world. In the traditional Internet, you didn’t have to concern yourself much with
how your visitors actually arrived at your Web site. Of course, you did have to

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

account for slower modem speeds and deal with different browser capabilities, but
the actual connection itself wasn’t of much concern, because every user reached
your site in the same way: via a computer connected to the Internet.

The term wireless by itself is somewhat of a misnomer; a more precise term
might be mobile wireless. Broadcast television is wireless, but for the most part not
mobile. The emphasis on mobility is one of the defining characteristics of this
new paradigm. From a Webmaster’s point of view, this mobility—not simply the
lack of wires—is likely to be the most important aspect.

So how do people connect wirelessly to the Internet? At the most basic level,
someone with a wireless device—cell phone, pager, laptop—uses a radio fre-
quency connection to a base station, which then makes a wired connection to
the traditional Internet backbone. However, the actual technologies involved
differ quite a bit depending on the wireless device and can have a large impact
on how your content is delivered.

What are the potential impacts of having visitors to your site from wireless
devices? If you've been in this business long enough to remember the “browser
wars,” when competing browser standards made it necessary to jump through
hoops to make your content display eftectively on multiple systems, the bad news
is that, for the foreseeable future, it’s likely to be much worse in the wireless
arena; low bandwidth, differing standards, multiple network carriers, and a multi-
tude of radically different devices means that the job of the wireless Webmaster
just got immensely more complicated. However, the good news is that the
amount and variety of available projects is also likely to increase significantly. As
companies look, initially, to extend traditional applications into the wireless realm,
there will be a high demand for those skilled in both traditional Internet and
wireless. This first generation of the wireless Web—translating existing applica-
tions to wireless—will gradually give way to new, native applications, things that
are possible and make sense only on the wireless Internet.

The myriad of wireless devices is probably the first aspect that the wireless
Webmaster will have to deal with.You’ve probably, at some stage, used some form
of scripting, whether client-side or server-side, to detect the browser or operating
system (via the HTTP_USER_AGENT header) of the requesting client, and you
then formatted your content accordingly. Although it is certainly possible to do
this with wireless devices, the sheer variety of possible device types makes it
unlikely that you’ll want to write custom code for each and every one. Where
you may use this technique, however, is to detect which family of devices your
visitor is using. For instance, if it’s a Palm OS-based device, you can assume that
the screen size is limited to 150 pixels wide and is probably monochrome, and

Www.syngress.com

Chapter 1 *+ Moving from the Web to Wireless

the device does not support cookies. If the user-agent indicates it’s in the Pocket
PC family, chances are that this device can display full-color images at 0.25 VGA
resolution, and it also supports JavaScript. Conversely, if it’s a Wireless Application
Protocol (WAP) phone, you need to ensure that data is sent to the device in
chunks under 1.5KB and will need to be marked up using Wireless Markup
Language (WML), rather than Hypertext Markup Language (HTML).

Types of Wireless Connectivity

The mobile wireless landscape is in a state of rapid change right now. After a
period where pretty much your only option was to jury-rig some kind of con-
nection through your mobile phone, you now have multiple options for giving
all sorts of devices a mobile Internet connection. The sudden proliferation of
mobile devices—especially those based on the Palm OS and Pocket PC, has
prompted service providers to bring a wide array of wireless connection options
to market.

The first widely available method of accessing Internet content from a mobile
device was Wireless Application Protocol. WAP (which is covered in detail in
Chapter 5) is a method of viewing specially formatted content on a mobile phone.

Back in 1995, Unwired Planet (now Phone.com) developed the Handheld
Device Markup Language (HDML). HDML was a stripped-down version of
HTML, designed specifically for displaying Web content on small devices.
Recognizing that they needed the support of the large handset manufacturers to
make this a success, in 1997 they joined forces with Ericsson, Nokia, and
Motorola to form the WAP Forum. This was the body which came up with the
WAP specification, part of which was WML. As the first company with a wireless
product for carriers, Phone.com’ gateway server—UP.Link—is still in place at a
large percentage of global wireless operator facilities. Phone.com also made the
first widely distributed microbrowser for mobile phones—the UP.Browser.
Because their products were developed and integrated into a lot of handsets
before the WAP specification was finalized, a large percentage of handsets out
there, particularly in the U.S,, still support HDML, rather than WAP. WAP gate-
ways enable these legacy browsers to understand WML content.

WAP was slow to take off in the U.S., even though it was available almost a
year earlier in Europe. Unfortunately, marketers in the U.S. didn’t learn much
from the mistakes of those in Europe, where WAP was trumpeted as “The
Internet in your Pocket” and heavily hyped as providing the equivalent of a full
Internet experience. Users were quick to realize that the reality was much, much

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

less; slow speeds, dropped connections, high call charges, and the sheer difficulty
of the user interface all led to a fairly rapid backlash against WAP. This was com-
pounded by a severe lack of available WAP sites. After being promised access to
the Internet, subscribers found that not only could they not access any of the
existing Web sites, but they were also locked into walled gardens, closed portals
providing links only to WAP sites which had signed a marketing agreement with
the carriers; in many cases, there was no way to enter URLs into the phone’s
microbrowser.

Another wireless service, an information service often overlooked in the U.S.,
1s Short Message Service (SMS). Also referred to as fext messaging, SMS is a com-
plementary service that comes with all European mobile phones. With it, users
can send short text messages to each other at a fraction of the cost of a voice call.
Users enter messages on the number pad of the phone. Although this input
method is difficult for some people, particularly those accustomed to a computer
keyboard, younger users in Europe became quite adept at it, and in some case
even developed their own shorthand codes. SMS costs mere pennies per message,
and doesn’t require you to answer the phone to receive the message. As a result,
SMS has become a huge success in Europe, especially in the youth market.
Europeans send over a billion text messages a month!

Developing & Deploying...

One Web, but Not One Wireless Network

One reason for the delayed introduction of WAP in the U.S., and coinci-
dentally the reason why the U.S. in general trails Europe in terms of
wireless innovation, is that European countries all share a common wire-
less transmission standard, a legacy of Europe’s former state-run
telecom monopolies. Continent-wide availability of Global System for
Mobile Communications (GSM) means that a mobile phone user from
Helsinki can fly to London, turn on his phone on arrival at Heathrow
Airport, and immediately get a connection. This also leads to economies
of scale for the handset manufacturers. The same handset that sells in
Stockholm can be sold in Dublin with no modifications. European hand-
sets also use a Security Identity Module (SIM) chip—a thin sliver of
plastic containing a memory chip—to store both network billing infor-
mation and users’ personal phone numbers. This allows users to easily

Continued

Www.syngress.com

Chapter 1 « Moving from the Web to Wireless

transfer their account from one phone to another, and consequently
users upgrade their phones much more frequently. To sell consumers on
WAP, European carriers just needed to persuade them to upgrade to a
data-capable phone.

By contrast in the U.S., where handsets are subsidized to a lesser
degree, most people spend a considerable amount of time inputting all
of their personal phone numbers into the handset. To upgrade to a WAP
phone, an early adopter would have had to buy a relatively expensive
phone, from a small range of available models, and then re-enter all of
her personal numbers, not to mention learn a totally new user interface.
It didn’t help that, when they did finally get WAP phones, U.S. users
found themselves in the very same walled garden situation as their
European counterparts.

Compounding this problem, the U.S. suffers from a mish-mash of
competing and incompatible wireless standards. As a result, wireless
innovation in the U.S. is severely restricted. One consequence of this for
the wireless Webmaster is that you'll need to be much more rigorous in
your testing. Due to differences in the WAP gateway configuration, and
the particular microbrowser installed on the handset, a WAP page that
displays perfectly on an AT&T Nokia phone may behave quite differently
on the same handset on the Verizon network.

SMS wasn'’t initially made available in the US.The usual reason given is that
the carriers didn’t feel American consumers would respond well to having to
enter messages on a tiny nine-button numeric keypad. Given that they need to
use exactly this method to use WAP, this argument was a little hard to fathom.
SMS is gradually becoming available on U.S. wireless phone plans, although in a
limited fashion. Many service plans allow you to receive text messages, but not to
send them, which sort of limits its usefulness. SMS is closely linked to WAP. As
well as being used for sending text messages, SMS can also be used to send con-
figuration settings to your phone.

In Japan, NTT DoCoMo is often pointed to as one of the most successful
launches of a mobile data service. Within a year of its launch in 1999, the service,
known as i-Mode, had gathered 10 million subscribers. I-Mode users browse a
huge range of Web sites with cheap, full-color handsets that maintain an always-
on connection to the Internet. Users pay per kilobyte downloaded, not based on
how long they’re connected. A key component in making m-commerce a success
in a country where e-commerce has had a hard time taking hold is that users can

" www.syngress.com

Moving from the Web to Wireless « Chapter 1

purchase items from DoCoMo-approved sites and have the charges appear on
their phone bill, avoiding the need to send credit card details over the air.

The walled garden approach of the network carriers, and the relative shortage
of compelling WAP content, coupled with the usability problems inherent to the
device itself, may ultimately doom WAP. In the short term, it remains the only
viable option for presenting information to mobile phones, but as new
phone/PDA hybrids begin to appear, this advantage may be short-lived. Many
analysts have noted that the success of i-Mode has as much to do with Japanese
cultural factors as with its technology, and that this model isn’t necessarily trans-
plantable abroad. However, NTT has recently made significant investments in
several European and U.S. carriers (it owns 16 percent of AT&T Wireless), so it
could present itself as an alternative to WAP at some stage, although it hasn’t yet
made an appearance outside of Japan.

The European wireless standard, GSM, is available on a limited basis in the
U.S. Carriers such as VoiceStream and AT&T Wireless offer this service in various
areas, which means that a European visitor with a Tri-Mode phone can use his
mobile here in the U.S. and vice versa.

All of the major carriers worldwide are now readying their networks for an
upgrade to a system called General Packet Radio System (GPRS). GPRS will
offer higher data speeds and an always-on connection. It is already available in
some European countries and on a trial basis in a few U.S. cities.

Although the ability to access the Internet via a mobile phone was indeed a
technological marvel, most users quickly realized that it was of limited use. The
next evolution was to wirelessly enable the popular PDAs. After a few false starts
(the Apple Newton being a notable example), Palm, Inc. eventually got it right
with the hugely successful Palm OS line of devices. The field has recently been
expanded with the addition of several devices running Microsoft’s Pocket PC oper-
ating system. Although these devices have gained wide consumer acceptance, only
recently have options for giving them a wireless Internet connection begun to
appear. Companies such as OmniSky and Sierra Wireless offer various options for
adding wireless capability to devices such as the popular Palm'V as well as Pocket
PC-based PDAs. These generally use a packet-switched network called Cellular
Digital Packet Data (CDPD), which ofters speeds twice as fast as mobile phones.

Small handheld devices aren’t the only mobile devices. Laptops have been
mobile from the beginning, so it was also a natural to extend their reach by pro-
viding a wireless connection. Options for this are varied, although they generally
use the Personal Computer Memory Card International Association (PCMCIA)
slot, generically referred to as the PC Card slot, found on all laptops. Manufacturers

Www.syngress.com

Chapter 1 *+ Moving from the Web to Wireless

have also begun to introduce models with integrated wireless capability, and it’s
likely that before long, integrated wireless will be as commonplace as built-in
modems are today.

The newest frontier in mobile wireless is convergent devices such as combi-
nation mobile phone/PDAs or the Tablet PC. Although the first generation of
these consists of bolted-together hybrids of existing devices, the pace of innova-
tion is accelerating, and new devices come to market regularly. The combination
of cheaper and more powerful processors, faster wireless networks and new mobile-
centric operating systems means that new devices born on the wireless Internet
are bound to change the landscape of mobile computing in the years to come.

What this means for the wireless Webmaster is that you’ll need to develop
techniques for dealing with a wide variety of device types and connection speeds.
Some devices, such a WAP phones, will require you to format your content with
specific markup languages. Others will accept regular HTML but severely limit
your design options, whereas wireless laptops will have regular browsers but be
constrained by extremely slow connection speeds.

Mobile Phones as Wireless Modems

One of the earliest methods of getting a wireless connection for your PDA or
laptop was to use a cable to connect it to your mobile phone. Many mobile
phones are capable of serving as wireless modems, and software is also available to
install a soft modem on your laptop for those handsets that don’t have a data fea-
ture. You can even do the same by means of the infrared link built into most
PDAs and laptops, although this requires you to keep your device and phone pre-
cisely aligned. In either case, you then use your phone to dial up a regular
Internet Service Provider (ISP) and establish an Internet connection. However,
both of these methods limit you to the 9.6 Kbps data rate of your phone. This is,
however, an option if you have an older PDA, such as a Palm III, that doesn’t
have a wireless modem available. It may also be a fallback option if you regularly
find yourself traveling outside of the coverage areas of some of the other wireless
services we look at next. In Europe, it’s not uncommon to find people sitting at
train stations and airports with a mobile phone velcroed to the lid of their laptop,
and a cable running to the serial port on the back.

The first widely available integrated wireless option for laptops (and subse-
quently PDAs) in Europe was basically a mobile phone shrunk to the size of a
PCMCIA card—the Nokia Card Phone. With this card in a laptop or PDA, the
user essentially got a mobile dial tone. She would then use the cellular modem

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

just as if it were a regular wire line modem to dial up an ISP. Ubinetics manufac-
tures a similar GSM modem that clips onto the back of a Palm V. Once con-
nected to an ISP, the user has a regular Internet connection, although the speed is
limited to about 28.8 Kbps. To achieve these speeds, carriers use a technique
known as High-Speed Circuit-Switched Data (HSCSD). HSCSD combines sev-
eral wireless channels, each of which has a rated speed of only 9.6 Kbps, and
bundles them together to achieve higher speeds. This is analogous to wiring two
dial-up modems and two phone lines together to get a faster dial-up connection.
HSCSD is oftered only by a few carriers and only in a handful of European
countries. It is unpopular with carriers because it uses up more than one voice
channel, thus reducing their capacity, but they can’t charge accordingly for the
extra channel. Although it is still an eftective way of getting a wireless connection
in Europe, HSCSD is likely to fade in importance as services such as GPRS
become more widespread. Although this system is theoretically possible in the
U.S., to date no carriers have offered it.

Packet Switched Networks

A more recent option for wireless connectivity in the U.S. is Cellular Digital
Packet Data (CDPD), which is a relatively old packet-switched network origi-
nally built for pager and fleet-tracking applications. Packet-switched means that data
is broken up into packets or short chunks, which are sent independently, then re-
assembled at the receiving end, very much like the methods used by Transmission
Control Protocol/Internet Protocol (TCP/IP) to transfer data over the wired
Internet. By contrast, telephones are circuit switched, meaning a dedicated circuit
1s established between the two ends of the connection for the duration of the
call. Unlike cellular phones, CDPD is an always-on connection, meaning that you
don’t need to initiate a connection each time you request a URL. With certain
services, this also opens the possibility of pushing data out to devices, rather than
waiting for them to initiate communication.

The Sierra Wireless AirCard is a CDPD modem that operates at 19.2 Kbps, and
a variety of service plans are available from companies such as Go.America and
AT&T Wireless. Some wireless Internet service providers (WISPs) also ofter propri-
etary compression technologies that promise to boost access speeds. One advantage
of this model is that, with the correct drivers, you can use the exact same card in
your PDA or in your laptop. The card fits into any standard Type II PCMCIA slot.
Novatel manufacturers a similar card called the Merlin, which also operates on
CDPD. Compagq’s iPAQ and the @migo from URThere (manufactured by Palmax)
both have the option to accept these and other PC Card modems.

Www.syngress.com

10

Chapter 1 « Moving from the Web to Wireless

Companies such as Pocket, Enfora, and Glenayre make CDPD modems in
the Compact Flash (CF) format that is standard on many PDAs. CDPD modems
are also available as a clip-on for the PalmV and to fit in the expansion slot of
the popular HandSpring Visor, a Palm OS-based PDA.

Palm also makes a model with an integrated CDPD modem, the Palm VII.
Although it is chunkier than the newer Palm models and runs at a lower data
speed, the all-in-one design is convenient. Because it also runs on AAA batteries,
it doesn’t require a charger, making it one of the few truly wireless mobile wire-
less solutions.

Apart from its speed, the major drawback of CDPD is limited availability.
Coverage maps available from the main service providers (AT&T, GoAmerica, Bell
Atlantic, and GTE) reveal that signals are concentrated around the main population
centers in the U.S. Although carriers maintain that service is available to over 80
percent of the U.S. population, that is little consolation to residents outside of those
areas, or traveling professionals needing coverage at client sites en route.

Future Networks

You may have seen the terms 2.5G and 3G mentioned in relation to wireless.
The first generation (1G) was the original analog cellular phone services.
Although we are currently at 2G (all-digital service) in most of the developed
nations, it’s worth noting that close to 40 percent of mobile voice traffic in the
U.S. still travels over analog networks. The next generation of wireless connec-
tivity, sometimes also referred to as 2.5G, includes services such as GPRS. These
services are already available in Europe, but U.S. rollout has been delayed by
squabbling among the various carriers over which incompatible standard to
choose. AT&T already has GPRS service available in its home city, Seattle, and
Sprint and Verizon promise rollouts by 2002. GPRS promises data speeds of up to
200 Kbps, and early proponents talked about wireless multimedia applications
such as full-motion videoconferencing. The reality is that most services will ini-
tially ofter speeds of between 64 to 144 Kbps, which is not much faster than a
traditional wired modem, although still quite a step up from today’s meager
speeds. However, as a packet switched service, the always-on nature of the con-
nection and relatively workable speeds are sure to launch a host of new wireless
services and applications. As GPRS service becomes more widely available,
modems will no doubt be offered in both PC Card and CF formats.

Carriers in Europe, Japan, and Australia have begun to cautiously roll out
these services, although early trials have been plagued by technical delays, a

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

shortage of available handsets, much slower actual data speeds, and lackluster
reception in the marketplace.

Carriers around the world have spent vast sums of money to purchase blocks
of the wireless spectrum to use for so-called 3G services. 3G (3rd Generation)
promises high speeds and always-on connections, and is expected to usher in an
age of wireless broadband, with mobile devices capable of downloading informa-
tion at high speeds, enabling such services as video e-mail and downloading
music files to your mobile phone. The path to 3G however, will not be easy. It
requires huge investments in new transmission equipment, and a complete
replacement of all current handsets. Japan is already conducting trials of 3G ser-
vices and handsets, but industry analysts expect it will be at least 2005 before full
3G service is available in Europe and the U.S.

In Europe, the government-mandated ubiquity of GSM as a mobile commu-
nications standard has meant the ready availability of a large potential audience
for mobile wireless applications. The situation in the U.S. is somewhat more frag-
mented, with several major wireless carriers each promoting their own propri-
etary standards. Rather than uniting around a common standard, which would
provide economies of scale for manufacturers of both handsets and networking
hardware, and greater freedom of choice for consumers, U.S. carriers continue to
bicker amongst themselves over which standard should form the basis of the next
generation of wireless networks. Interestingly, while there was considerable exper-
imentation in mobile phone designs in Europe, until quite recently PDAs were
scarce. Conversely, in the U.S., PDA options have proliferated rapidly, but only
recently have wireless options started to appear on the market.

Local and Personal Networks

Two other wireless standards are worth noting here. The first is the rather poorly
named 802.11b, which is sometimes also referred to as wireless LAN (WLAN). A
consortium of companies that manufactures the hardware is now trying to intro-
duce it to consumers under the more marketing-friendly WiFi brand. 802.11b
has found ready acceptance as a short-range radio replacement for traditional
Ethernet connections. It uses an unlicensed portion of the radio spectrum to
offer data speeds of up to 11 Mbps—comparable to older wired Ethernet con-
nections. Transmitters are available as either a PC card, for use on a laptop or
PDA, or as an internal or USB-connected option on a desktop computer.
Although its short range—typically no more than 500 meters (about 1500 feet)—
doesn’t make it truly mobile, it does have application in such environments as

Www.syngress.com

1

12

Chapter 1 « Moving from the Web to Wireless

warehouses, where wireless PDA-equipped workers can roam freely about the
warehouse while maintaining a high-bandwidth connection to inventory systems.
The system has recently become more popular with home users wishing to
create a wireless home network; there is no need to drill holes in walls, floors,
and baseboards, and no costly Ethernet cable to run. It is also suitable for older
office buildings where cable cannot be run and is popular for setting up ad hoc
networks at events and tradeshows. Paired with the broadband digital subscriber
line (DSL) and cable modem services now available, 802.11b allows you to
lounge in your garden or on the deck and surf the Internet at high speeds.
Several companies have adapted the system to provide wireless coverage in areas
where large numbers of business travelers typically congregate, such as airport
lounges and the larger hotel chains. Café chains are also looking at this as a way
to encourage business users to frequent their establishments; the Starbucks coftee
chain recently installed wireless access in almost all of their outlets. The next ver-
sion of this standard, 802.11a, will up speeds to the 50 Mbps range.

Bluetooth is another short-range wireless standard gaining ground recently.
Bluetooth is quite a bit slower than 802.11b and has a shorter operational
range—about 10 meters (39 feet). It uses the same unlicensed area of the radio
spectrum as 802.11b (2.4 GHz) and offers data speeds of up to 1 Mbps.
Originally envisioned as a cable replacement technology—the first commercial
product was a wireless mobile phone headset from Ericsson—Bluetooth has
expanded to a complete networking standard. Bluetooth nodes are each capable of
operating as either a client or a server. In a PDA setting, one scenario is that you
would walk into the lobby of a major hotel or an airline’s frequent-flyer lounge.
The Bluetooth chip in your PDA would automatically discover the Bluetooth
network, negotiate your access rights and give you a network connection.

Bluetooth is also envisioned as enabling a personal area network (PAN),
where the multiple electronic devices carried by a mobile user—mobile phone,
PDA, laptop, digital camera—would communicate constantly and share functions.
In this setting, your PDA would detect that your 3G phone had the best available
network connection while on the road and use it to download your latest
schedule from your office server. On arrival back at your office, the PDA would
immediately detect the office network and use it to update your server with new
data gathered while on the move.

While Bluetooth is still in the early stages of development, several manufac-
turers—including IBM, 3Com, and Toshiba—have PC card units commercially
available now, and Compact Flash versions are in development by several more.
IBM and others will soon begin shipping laptops with integrated Bluetooth chips

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

and antennas. British Rail has already launched a trial service on some of their
trains that combines Bluetooth and Wireless LAN (802.11b) to provide Internet
connectivity to passengers.

Fixed Wireless Connectivity

Fixed wireless is an alternative to other broadband Internet services becoming
available in several areas. The typical speed, for consumer services, is about 10 Mb
(megabits per second). By contrast, the T'1 lines that feed many businesses provide
a 1.5 Mb connection, and consumer DSL connections typically provide about
256 Kb. A small dish installed on the roof picks up and transmits signals to a cen-
tral antenna. A line of sight is usually required between the antennas, so this kind
of connection is not suitable in all areas, but the service is usually not affected by
bad weather. Fixed wireless is also finding a niche in providing Internet connec-
tivity to rural areas beyond the reach of other broadband solutions, such as DSL
and cable Internet.

Fixed wireless is also marketed to businesses as an alternative to costly leased
lines for connecting several buildings of a corporate campus. In this configura-
tion, dishes on the roofs of adjacent buildings serve the same purpose as a wired
connection, linking disparate portions of a corporate local area network (LAN)
but without the need to run expensive fiber and dig up roadways. These kinds of
installations use higher-powered equipment and consequently can provide much
higher bandwidth connections.

Because it’s a broadband connection, fixed wireless won’t generally have any
relevance to the role of the wireless Webmaster; for all intents and purposes, fixed
wireless 1s equivalent to a high-speed wired connection.You may be already
serving fixed wireless users on your existing Web site, because fixed wireless 1s not
tied to WAP, HDML, or any particular device.

Table 1.1 summarizes some of the available connectivity options and the data
speeds of each. Note that these are rated top speeds. Variables such as distance
from the radio tower, number of simultaneous users in the cell, and the general
overhead involved in the HTTP connection means that actual available data
speeds are likely to be much lower.

Www.syngress.com

13

14

Chapter 1 « Moving from the Web to Wireless

Table 1.1 Connectivity Options and Speeds

Device Network Data Speed
Palm VII Mobitex 8 Kbps
Mobile phone All carriers 9.6 Kbps
Nokia Card Phone Il w/ HSCSD Orange (UK) 28.8 Kbps
Palm V w/ OmniSky modem CDPD 19.2 Kbps
Pocket PC w/ Sierra PCMCIA modem CDPD 19.2 Kbps
RIM 957 (Blackberry) Mobitex 19.2 Kbps
Wireless LAN (802.11b) Local 11 Mbps
Fixed wireless Proprietary 10 Mbps

Evolving Mobile Devices

The mobile landscape today is in a state of continual change. We hear of new
devices introduced to the market almost weekly, and wireless access options con-
tinue to multiply. So how is the aspiring wireless Webmaster to deal with devel-
oping content for so many disparate devices? Although detecting the exact device
accessing your server is possible in most cases, the sheer variety of different
devices makes it very unlikely you will want to format content for each one.The
good news is that most of the devices likely to be accessing your site wirelessly
fall into three broad categories—mobile phones, PDAs, or laptop computers.
Each has its own unique advantages and disadvantages. Although there are signifi-
cant differences between devices in each category—PDAs in particular come in a
wide variety of configurations—the three main categories are difterentiated by
connectivity, screen size, memory, and processing power.

The most widely available wireless devices are mobile phones. Their primary
purpose, of course, is voice communication. With the addition of data services
from the wireless carrier, they also work well for short text messages (using SMS)
and sometimes for reading e-mails, but the difficulty of entering text makes them
cumbersome for sending e-mail. WAP phones also allow you to access specially
formatted Internet pages.

Personal digital assistants (PDAs) have been used by traveling professionals for
several years now to track schedules, store contact information, and enter
expenses while on the road. With the addition of a wireless connection, their use-
fulness is increased. With larger screens and handwriting recognition interfaces,
they are suitable for short e-mails and can also be used to access the Internet.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

Laptops have always been mobile, of course. Laptops with a wireless modem
in the PC Card slot eliminate the need to search for phone jacks, fiddle with
wires and connectors, or huddle in public phone booths. One advantage laptops,
and some PDAs, have over wireless phones is that the wireless component is
upgradeable, so that as better, faster options become available, users don’t need to
discard the whole device. With the current pace of development in the wireless
Web, this is probably a sensible precaution, if you have the option.

Several other devices are available that seek to combine aspects of each cate-
gory—a mobile phone with an integrated Palm screen, PDAs that can be used as
phones, and laptop-size devices without keyboards that you use by writing
directly on the screen.

Wireless Phones

The first and still most prevalent device today is the data-enabled cellular phone.
Almost all of the major cellular carriers now ofter data services as well as the tra-
ditional voice service. All of the major handset manufacturers—Nokia, Motorola,
Ericsson, Mitsubishi, Alcatel, and others—offer data-capable phones, and before
long, this will be standard on all new phones. These are typically the same size as
regular cell phones, but with a screen capable of displaying specially formatted
text. They use the WAP protocol. WAP was developed as an alternative to
Hypertext Transfer Protocol (HTTP) to deal specifically with the restrictions of
the current generation of wireless, that is, with low speeds and high latency. For
display on WAP phones, content needs to be coded in WML. WAP phones don’t
connect directly with WML Web servers. They communicate with special WAP
gateways, typically operated by the carriers, which then forward the request to
the content server on their behalf. The WML content returned is then compiled
into a special compressed format before being sent back to the WAP phone,
where an application called a microbrowser decodes and displays it.

Basic Mobile Phone Properties

Mobile phones are, first and foremost, phones. Their primary purpose is to enable
the original killer app: voice communication. As such, they need to be small and
light and have minimal requirements for memory and processing power:

= Connectivity 9.6 Kbps digital cellular

= Screen size Typically 3 x 2.5 cm (1.25 x 1 in.) equivalent to 5 lines of
text, about 15 characters per line

Www.syngress.com

15

16

Chapter 1 « Moving from the Web to Wireless

= Memory Minimal

» Processing power Minimal

Mobile Phone Connectivity

A data-enabled mobile phone uses the same radio-frequency (RF) connection as
your voice calls to connect with its base station. This is typically a cell tower
somewhere within a few miles. Although it depends on a number of factors, such
as distance from the cell tower and number of users within that cell, the rated
data speed in most cases is 9.6 Kbps (some services offer 14.4 Kbps). Compared
to a 56 Kbps dial-up modem, the minimum connection speed most Web sites are
designed for, you can see this is quite slow. In addition to low bandwidth, the
current cellular networks suffer from high latency—that is, a significant delay
occurs between the time a user hits a Submit button and when the resulting con-
tent is sent back to the device. It’s also not uncommon for the signal to be
dropped in the middle of a transaction as the user drives into a tunnel or the
radio shadow of a large building.

The signal between the handset and the base station is encrypted and com-
pressed. From there, the signal is routed over regular landlines to a special server
called a WAP gateway. The segment of the call from the handset to the gateway is
done using Wireless Session Protocol (WSP), a protocol defined within WAP. The
WAP Gateway then acts on the phone’s behalf to request the page from your
server using traditional HTTP. The concept of the WAP gateway may be unfa-
miliar to you if you’re accustomed to the traditional Internet client/server model.
The gateway is basically acting as an agent or proxy for the wireless device and
also translates from the WAP protocol stack to the TCP/IP stack used on the
Internet. This is quite important to remember: A mobile phone never communi-
cates directly with your Web server; it is always a WAP gateway acting on its
behalf. Because the gateway can have a significant effect on how your content is
displayed, looking at this a little more closely is worthwhile.

When a user requests some content (either by typing a URL directly into the
phone’s microbrowser or by clicking on a link), the following series of steps occurs:

The handset establishes a connection with its base station.

2. Once this connection is set up, the microbrowser then initiates a con-
nection to a WAP gateway predefined in the phone’s configuration.

3. The microbrowser requests a URL from the WAP gateway. This is done
via a compact binary encoded request.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

4. The gateway translates this request into an HTTP request and sends it
over the wired Internet to the specified content server.

5. The content server responds by sending a page of WML content, which
may also contain WMLScript (similar to JavaScript) and special graphics
in WBMP format.

6. The gateway compresses the response into a special binary format opti-
mized for low-bandwidth networks, then sends it back to the micro-
browser. It also compiles any WMLScript found in the response.

7. The microbrowser decodes the compressed signal, and attempts to dis-
play it, if possible.

As you can see, there are quite a few steps between a visitor and your con-
tent, and each of the components along the way can have a significant effect on
the format of your content. It’s important to understand the eftect each can have
on the data you send to your visitors. To add to this, the same components but by
different manufacturers can behave quite differently. This is analogous to the early
days of the Web, when you had to contend with different manufacturers’ browsers
displaying your HTML in different ways. A WAP phone contains a microbrowser,
which is similar in function to the familiar desktop browser. However, several
major microbrowsers are in circulation, and though each conforms to the WAP
specification, the specification allows for quite a lot of flexibility in how they
actually display content.

The gateway, which is typically housed at the cellular carrier’s premises, may
also alter the content somewhat on its way through. Some gateways, for instance,
store and pass cookies, whereas some do not. The gateway can also add special
header fields, and it sometimes removes header information. The gateway will also
cache information on behalf of the phone, because most phones don’t have
enough local memory to save much data. Again, this varies from one gateway to
another, so you generally can'’t rely on it.

Mobile Phone Screen Size

The size and resolution of the display screen is probably the biggest hurdle you’ll
face in developing Web sites for WAP phones. This is similar to the early days of
the Web, when you could never be sure of the screen resolution or color capa-
bility of visitors’ monitors. There is a mechanism whereby phones can send capa-
bilities information—such as pixel count, number of lines of text, and number of
soft keys—to your server. Unfortunately, not all phones provide this information,
and not all gateways pass it on.

Www.syngress.com

17

18

Chapter 1 « Moving from the Web to Wireless

A typical phone screen is 3 x 2.5 cm (1.25 x 1 in.) and usually has a mono-
chrome LCD capable of displaying only black or white. Most current phone
screens are limited to displaying about 5 lines of text, with about 15 characters
per line. A few models have slightly larger screens, and some are even smaller. It is
possible to detect the incoming User Agent (the microbrowser in the phone),
compare this to a database of known phone configurations, and then format your
content accordingly, but the sheer variety of possible handset configurations
makes it very problematic to try to format your content for specific models of
phone. Most people will choose a lowest common denominator format that has
been tested to work satisfactorily on most common phones.

The minimal screens mean that you’ll need to rethink the amount of content
you put on pages meant for WAP users. People can always scroll up and down, of
course, but reading in this manner is difficult. Long text pieces simply don’t work
in this form, so you’ll need to cut down drastically on the amount of text on
your pages. Fitting navigation menus on there as well becomes a difficult task.
WML actually contains some features to help in this regard. Because most phones
have a number of soft keys (buttons below the screen to which you can assign
menu items), some of the navigational elements, such as home, back, and next, can
be shifted oft the main screen. However, the utility of this feature is reduced sig-
nificantly by the fact that each manufacturer has chosen to implement these soft
keys in very different ways, both physically and logically. Because you won’t know
exactly how the buttons will implement your interface on all phones, designing
interfaces becomes something of a guessing game.

Mobile Phone Memory

Most wireless handsets have little or no memory available for storage. They do
have some storage for personal phone numbers, but this varies from phone to
phone, which means that you have to be very careful how much data you send to
a handset at one time. Gateways compress your WML before sending to the
device, but how much compression happens varies by gateway. In particular,
because you typically won’t know how much data the phone can handle, you’ll
need to pick a safe limit you're sure will work on most phones. Because it’s diffi-
cult to gauge how much compression difterent carrier gateways will provide, this
may take some trial and error, but as a general rule it’s best to keep your pages, or
WML decks, under 1.5 Kb total. This may mean developing special server code if
you’re doing things such as returning database record sets; you’ll need a way to
measure the size of the record set returned by a query and then split it up into
WAP-sized chunks.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1 19

However, WML does allow for something that generally doesn’t exist on the
Web: persistent client-side variables. This means that you can capture form entries
on one page and then pass them to another page without requiring a trip back to
the server. You could, for instance, ask a visitor for some input on one card of a
multicard deck and use their responses to determine which card to navigate them
to next. This kind of conditional branching is very difticult to achieve via HTML
alone. Another potential use might be to store a visitor’s answers to a question
from one page, then refer back to these answers several pages later, without
needing to transfer the data back to the server and store it there. Again, these
variables are limited by available handset memory, but they are session-indepen-
dent, meaning they will be stored on the handset, even after your visitor navigates
away from your site. However, as new data arrives, these variables may be pushed
out and replaced. Furthermore, it is possible for any site to clear all of the vari-
ables on the phone.

SECURITY ALERT!

Unlike cookies on the Web, which can only be accessed from the same
domain that set them, WML client variables are available to any Web site
as long as they remain in memory. So if, for instance, you were to set a
variable and value “password=abc123”, the potential is raised for a mali-
cious WAP site to access and save this.

Mobile Phone Processing Power

The current crop of mobile phones has minimal processing power—basically just
enough to run an embedded operating system, and a few simplistic games. Bear
this in mind if you’ve got very complicated WMLScript that you expect to be
processed on the device. Heavy-duty computation tasks are better handed back to
the server to process. Higher powered phones capable of downloading and run-
ning Java programs are beginning to appear on the market, particularly in Japan,
but these are so far not widely available in the US.

PDAs

The next step up in device size is the PDA. These come in many different forms,
but typically have a larger screen, more memory, and more processing power than
mobile phones. A PDA generally refers to a device small enough to hold in the

Www.syngress.com

Chapter 1 « Moving from the Web to Wireless

palm of the hand, but with a larger screen than the typical mobile phone.
Current PDAs evolved from gadgets designed to help you manage your contacts
and calendar—essentially electronic FiloFaxes—and were relative latecomers to
the wireless Internet. The market for PDAs is split mainly between those running
the Palm operating system from both Palm, Inc. and its licensees (Handspring,
IBM, Sony, and Symbol), and devices based on Microsoft’s Windows CE, with a
couple of niches occupied by other alternatives such as Symbian’s EPOC and
other devices.

Developing & Deploying...

Blackberry: Pager or PDA?

A device that has become quite popular, particularly with corporate
“road warriors,” is the RIM 957—popularly known as the Blackberry—
from Canadian firm Research in Motion. This pager-like device features
a miniscule keyboard and an always-on connection to corporate e-mail
systems, such as Microsoft Exchange. The first version of this device had
a small three-line screen, but the RIM 957 added a screen with the same
dimensions and resolution as the Palm. Corporate users in the U.S. have
found this device almost addictive. Utilizing North American CDPD net-
works, the device constantly polls a dedicated Blackberry server con-
nected to the corporate mail server for new e-mails and downloads
them automatically, giving the impression of always-on, anytime, any-
where e-mail access. First rolled out in North America, the Blackberry
was such a success that it is now being made available in Great Britain
in partnership with British Telecom, utilizing their GPRS service.

One thing to bear in mind with PDAs is that, even if the units are company-
supplied, these are fundamentally personal devices. People carry these with them
constantly, and use them to track personal schedules, birthdays, grocery lists, and
address books, just as much as they do company work. Businesses have been slow
to adopt these devices, although that is now beginning to change. In fact, these
devices first began to enter corporations when people brought their own devices
to work and began synching up with their corporate calendars and address

books.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

Palm OS Devices

Although there were earlier attempts, Palm, Incs device was the first commer-
cially successtul PDA. When it was introduced in 1996, the Palm Pilot was an
instant success due to its ease of use, intuitive user interface, and small size.
Although the casings have changed quite a bit since then, and more memory has
been added, the actual Palm operating system has changed very little over the
years. A large community of developers has grown up around it, so a huge variety
of programs are now available. Until quite recently, Palm, Inc’s primary market
was individual users. Even though Palm device users tend to be extremely loyal,
Palm, Inc. has realized that to maintain their market position they need to
develop enterprise-level applications and market to large corporations. To make
their PDA acceptable to corporate I'T managers, they also need to address con-
cerns of security and support, and they need to beef up its meager memory and
processing power to make it capable of running enterprise-class applications.

Palm, Inc. also licenses its OS to several vendors. Handspring, founded by the
original developers of the Palm OS, took a leat from Apple Computer’s book and
released a series of very stylish devices in the Visor line. Although the basic OS
remains almost the same, Handspring sells Visors with a variety colorful translu-
cent cases and developed a unique, proprietary expansion slot called the
SpringBoard, which allows other manufacturers to make add-on modules for
functions such as wireless access, Global Positioning System (GPS), and even a
module that turns the Visor into a mobile phone. Sony’s Clié adds a special jog-
wheel that allows for improved navigation around the screen, and also has a
model with a higher screen resolution. IBM rebrands the Palm OS as its WorkPad
line, which it markets into corporations. Symbol and a few other companies take
the basic Palm device and encase it in a rugged, weather-resistant housing, adding
an integrated barcode scanner and wireless LAN access to make units for use in
warehouse management and other industrial applications.

Palm OS-based PDAs access the Internet via either a built-in modem (in the
case of the Palm VII), or by means of a clip-on external modem, such as the one
available for the PalmV from OmniSky. In the U.S., these modems typically use
the packet-switched CDPD network mentioned earlier, whereas in Europe they
use the GSM cellular standard. Most Palm devices currently on the market use
low-resolution monochrome LCD screens, although Palm, Inc. and a number of
its licensees have recently released some color models.

Palm, Inc’s designers felt that the best solution to the limited screen size, and
the very slow data speeds of wireless, was to do away with the concept of browsing

Www.syngress.com

21

22

Chapter 1 *+ Moving from the Web to Wireless

as we understand it on the wired Web. Instead, they envisioned a way to give
people quick access to targeted information, stripped of all embellishments. Palm,
Inc. refers to this as Web Clipping. Rather than connecting directly with your con-
tent server, Palm devices generally use an intermediary server called a proxy. This is
similar in concept to the WAP gateway, but it has quite difterent capabilities. Web
Clipping uses a subset of HTML 3.2 with a few notable changes: It doesn’t support
frames, nested tables, or a lot of the formatting options of regular HTML.

Developing & Deploying...

How Can | Validate the HTML

in My Web Clipping Application?

The full Document Type Definition (DTD), which describes in detail the
acceptable tags and attributes, is available at www.palm.com/dev/web-

clipping-html-dtd-11.dtd. You can specify this DTD in your document and
validate your code using the W3C validator at http:/validator.w3c.org.

The Palm.net proxy reads Web pages on behalf of the device, and then it
compresses them before sending over the air. It will also rewrite any HTML that
doesn’t conform to the specification, including removing graphics wider than the
Palm device screen size. However, the results of this translation are seldom what
you had in mind. In most cases, you’ll need to either construct new pages specifi-
cally for Palm OS, or reformat your existing pages so they work on both formats.

Visitors using the Palm OS generally won’t type a URL into a conventional
browser to access your site. Generally, they’ll download a special Web Clipping
Application (WCA, also previously referred to as a Palm Query Application
[PQA]) from your regular Web site, then install this on their Palm device. WCAs
are simply HTML pages compiled into a special binary format using an applica-
tion that developers can obtain freely from Palm, Inc. One potentially useful fea-
ture of Web Clipping that differs substantially from traditional Web authoring is
the ability to precompile graphics into the WCA, then later refer to these
graphics from your online pages. Because the graphics are already resident on the
Palm device, there is no need to download them over a slow wireless connection,
which enables you to create extremely efticient applications. The drawback to this

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

approach is that, because Web Clipping is a proprietary technology, you then can’t
use the same HTML for Pocket PC devices, which at present don’t support this
teature.

Pocket PC Devices

Pocket PC—based PDAs are a more recent addition to the mobile device arena,
but they are gaining popularity because of their relatively higher-resolution color
screens and greater processing power. Microsoft Pocket PC is a special version of
Windows designed specifically for smaller devices, and it comes with familiar
applications such as Outlook and Internet Explorer. In contrast to WAP phones
and Palms, these devices generally make a direct HTTP connection with your
server, without any intervening proxies.

After a few false starts with earlier versions, Microsoft’s Pocket PC 3.0 revolu-
tionized the PDA market when it was introduced in 2000. Although its market
share is still considerably less than Palm’s, it has raised the bar on functionality and
continues to advance the state of the art in mobile wireless devices. The first and
most obvious attribute is a higher resolution color screen (grayscale models are
available, but these are largely confined to industrial units). Most models also have
a backlit screen, making the display extremely bright and crisp. The Pocket PC
operating system includes pocket versions of popular Microsoft applications, such
as Word and Excel. It also has a version of Outlook that, with Microsoft
ActiveSync, allows mobile users to sync the unit with their desktop or laptop
Outlook. Most significantly for the wireless Webmaster, it features a browser that’s
very similar to Internet Explorer 3.2.

Rather than manufacture devices itself, Microsoft licenses its OS to any man-
ufacturer that can meet the minimum technical requirements. These include a
screen with 240 x 320 pixels of resolution, and memory of at least 16MB. 32MB
1s more common, and Compaq’s iPAQ 3670 comes with 64MB. Pocket PC
devices typically also have a more powerful CPU, allowing for more on-board
processing.

One feature of Pocket PCs that’s especially relevant to wireless is that most
come with an industry-standard expansion slot; either CF or PCMCIA Type II (the
same PC Card slot found on virtually every laptop computer). This immediately
gives these devices a huge base of possible expansion options. When Compaq intro-
duced their wildly popular iPAQ Pocket PC in 2000, other companies were quick
to produce wireless options for the device, either writing software drivers for
existing PCMCIA cards, or in some cases developing completely new PC cards.

Www.syngress.com

23

24

Chapter 1 « Moving from the Web to Wireless

Although technical features are obviously important, style has proven to be
just as much of a selling point. When Compagq introduced their iPAQ), it was in
such demand that units were back-ordered for months; it was practically impos-
sible to get one through regular retail channels. At one point, iPAQs were selling
on eBay for well over their retail value. Hewlett Packard makes a Pocket PC
model, the Jornada 548, that’s functionally very similar, but sales have slumped
compared to the Compaq’s superior visual appeal. At tradeshows and technology
demonstrations throughout 2000 and 2001, the sleek and shiny iPAQ was the
cool device to have.

Pocket PC—based PDAs have found ready acceptance too in the industrial
market. Symbol, Intermec, 1Tronix and others make more rugged models based
on the OS, usually with integrated barcode scanners and wireless connection
options. The increased memory and more powerful CPUs make these devices
suitable for applications that require more processing power on the handheld,
such as mobile field service automation and sales force automation.

There is another class of mobile PDA device, sometimes referred to as
Handheld PC or clamshell torm factor. These are devices that feature a horizontal
display aspect ratio, rather than the more common vertical format. Microsoft
makes a version of its Windows CE operating system specifically for these
devices. Known as Handheld PC 2000 (sometimes abbreviated to just H/PC),
this comes with pocket versions of popular Microsoft Office applications such as
Word and PowerPoint. The major difference from Pocket PC is that the screen
resolution 1s 640 x 240 pixels—0.5 VGA—and that most devices come with a
dedicated keyboard. Although not widespread among general consumers, hand-
held PCs are popular in industrial settings. iTronix makes a rugged, waterproof
version for use in harsh environments. Microsoft isn’t the only option here; Psion
makes a range of consumer devices based on the EPOC operating system. These
are mainly popular in the UK and Europe, but they don’t seem to have made
much impression in the US.

Basic PDA Properties

Mobile phones come in a seemingly endless variety of case designs, but their
basic underlying characteristics are the same. PDAs, by contrast, come in a wide
range of configurations. Models based on Palm OS and Pocket PC have radically
different features, but the general package tends to be similar. Because these are
meant to be handheld units, most have roughly the same physical dimensions:

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

» Connectivity 9.6 Kbps to 19.2 Kbps CDPD

» Screen size 5.7 cm x 5.7 cm (2.25 x 2.25 in.) (Palm); 6 cm x 8 cm
(2.25 x 3 in.) (1IPAQ).

= Resolution 160 x 160 pixels (Palm) to 240 x 320 pixels (Pocket PC)
= Memory 8MB (Palm) to 32MB (iPAQ)

» Processing power 16 MHz (Motorola Dragonball) to 206 MHz (Intel
StrongARM)

PDA Connectivity

PDAs have perhaps the widest array of connection options of any mobile wireless
device. One very popular wide-area network (WAN) option for any device with
a PC card slot is the Sierra Wireless AirCard. As mentioned earlier, several compa-
nies also make CDPD modems in the CF format.

Another option for a mobile connection is to use your mobile phone as an
external modem for your PDA. Cables are available to connect several popular
mobile phone models to various PDAs. However, this will limit you to the data
speed of your mobile phone, typically 9.6 Kbps, and makes your phone unavail-
able for regular voice calls. Although this is an interim option, or suitable for
people who regularly find themselves traveling outside the coverage areas of
CDPD, it’s likely to become less useful as easier, better integrated wireless solu-
tions become more commonplace.

The first commonly available integrated wireless PDA was the Palm VII, which
had a built-in CDPD modem and a flip-up flexible antenna. In the U.S., the Palm
VII and VIIx operate over the BellSouth CDPD network, rebranded as Palm.net,
but they are limited to a data speed of about 8 Kbps. The Palm VII is quite a
chunky device compared to models like the sleek Palm V. When Palm 'V users
began clamoring for wireless options, a company called OmniSky responded with
the Minstrel modem, a thin device that clips onto the back of the Palm. This also
uses a CDPD network, although the data speeds are faster than Palm.net—about
19.2 Kbps. In Europe, Ubinetics markets a similar clip-on for the Palm'V that uses
GSM, with the maximum data speed limited to about 14.4 Kbps.

Rather than connecting directly to a Palm device, a special proxy server
requests content from your site, and then reformats it especially for display on the
Palm’s limited screen. Pocket PC devices, by contrast, generally make a direct
HTTP connection with your Web server. One important point to note is that,
regardless of the connection type, the communication with your content Web

Www.syngress.com

25

26

Chapter 1 « Moving from the Web to Wireless

server is still via conventional HTTP. This 1s true for Palm Web Clipping, Pocket
PC browsers, and WAP phones. There may be intermediate gateway or proxy
servers between the device and your server that perform protocol translation, but
it is always a HTTP request that is made of your server.

PDA Screen Size

Palm OS-based devices have a screen approximately 5.7 cm x 5.7 cm (2.25 x
2.25 in.), with a resolution of 153 pixels wide by 144 pixels high (the actual
screen resolution 1s 160 x 160 pixels, but the lower portion is reserved for Palm’s
handwriting recognition area, and a few pixels at the side are reserved for a ver-
tical scroll bar). Although color models are available, the majority of devices on
the market right now are monochrome. Most have a color depth of 2 bits,
meaning they can display only four shades of gray. Although this is a big step up
from the tiny WAP phone screen, for a Webmaster designing pages for such a
device, this is obviously quite limiting, and you’ll need to be creative in how you
reformat your pages. Bear in mind also that, prior to Palm OS 4.0, no option for
horizontal scrolling was available.

One other device we mentioned earlier, the RIM 957 or Blackberry, also
contains a microbrowser. This browser 1s unique in that it can display both WAP
and HTML content. When in HTML mode, it behaves very much like a Palm. In
fact, it understands most of the Palm Web Clipping HTML extensions. The
screen 1s also 160 x 160 pixels, although it can display only black or white. For
the most part, you can use exactly the same pages for either Palm or Blackberry
devices. The one restriction is that the Blackberry does not use the precompiled
graphics capability of Web Clipping. If you're targeting pages for both devices,
you’ll need to be aware of this.

Some Pocket PC devices, by contrast, have much higher resolution full-color
screens. Most can display 240 pixels wide by 320 pixels high (0.25 VGA). This is
obviously much less limiting for a Webmaster. Pocket PC devices include a ver-
sion of Internet Explorer 3.2, allowing you to create pages that more closely
resemble your standard Web site. In fact, if you take care to allow for the smaller
screen and slower connection speeds, you can use the same content for both
traditional and wireless users.

PDA screens fall somewhere in between a WAP phone and a full-size laptop.
Although WAP browsers are available for Palm and Pocket PC, WAP doesn’t take
tull advantage of the larger screens, easier navigation, and availability of color.
Conversely, content formatted for a large screen won'’t generally look good on a
PDA. For instance, left-side navigation bars are a common and intuitive interface

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

on conventional Web sites. A typical navigation bar might be 125 pixels wide,
leaving the rest of the screen for content. However, on a Palm, this would leave
just 28 pixels for content! Moreover, most navigation bars are constructed with
nested tables—something not supported in the version of HTML used for Palm
Web Clipping. Although Internet Explorer does a much better job of displaying
regular Web sites on Pocket PC, it generally still requires an excessive amount of
horizontal and vertical scrolling.

Handheld PCs and devices such as the Psion Revo have a horizontal screen.
The Revo and other models have relatively low-resolution monochrome LCD
screens, while most devices running Microsoft Handheld PC (H/PC) 2000 have
tull color screens capable of 640 x 240 pixel resolution. A typical H/PC device
screen 1s 16.5 cm (6.5 in.) wide.

PDA Memory

Most Palm OS devices top out at SMB of memory, and quite a few still get by
on just 2MB. Pocket PC devices, by contrast, usually have at least 16 MB of’
RAM. Many have 32MB, and Compagq’s new iPAQ 3670 model comes standard
with 64MB. Most Pocket PC devices feature an expansion slot that can accom-
modate extra memory. The two most common expansion options on Pocket PC
devices are PCMCIA (the same PC card slot found on all laptops) and CE

CF memory modules are available in various sizes, from 8MB up to 256MB.
IBM even makes its 1GB MicroDrive in CF; rather than the solid-state memory
of most CF cards, this is actually a miniscule spinning hard drive. Because CF is a
popular storage option for many digital cameras, this makes it easy to move dig-
ital images from camera directly to PDA.You can also insert CF cards into lap-
tops, or a PDA with PC card slot, by using a cheap adapter.

Some PDAs accept PCMCIA cards, either directly or via an expansion sleeve.
Because this is exactly the same slot found on all laptops, this means that you can
use the same cards on both, as long as the manufacturer provides a Pocket PC
driver. IBM makes the MicroDrive in this format, which is basically a miniaturized
spinning hard disk on a PC card, in capacities from 500MB to over 2GB. If you
need to transport large amounts of data on your PDA, and you regularly exchange
this data with a laptop, PC card storage is a good and cost-eftective option.

Another storage option becoming more popular is the Secure Digital (SD)
card. The newer Palm models accept this format, as do several digital cameras
and other devices. These are similar to CE but much smaller—not much bigger
than a postage stamp. They come in various denominations, currently available up
to 64MB.

Www.syngress.com

27

28

Chapter 1 « Moving from the Web to Wireless

PDA Processing Power

Due to the simplicity and efficiency of the Palm OS, these devices are able to
perform adequately with relatively slow processors. However, as Palm devices are
called on more and more to perform as sophisticated enterprise tools, there’s a
need to bump up the power. Motorola has announced that they will be doubling
the power of the Dragonball chips used in all Palm devices.

Pocket PCs generally come with much more processing power. The OS itself
requires more power, but these devices were designed from the outset to perform
much more powerful onboard processing tasks. Even the slowest models come
with a 66 MHz CPU.The Compaq iPAQ features a powertful Intel StrongARM
chip that runs at 206MHz. Table 1.2 lists the processor speed and memory speci-
fications of several popular PDAs.

Table 1.2 CPU Speeds and Memory of Mobile Devices

Maker Device Processor Memory Speed
Palm Palm VII Motorola Dragonball 2MB 16 MHz
Palm Palm Vx Motorola Dragonball EZ 8MB 20 MHz
Palm Palm m505 Motorola Dragonball 8MB 33 MHz
Handspring Visor Prism/ Motorola Dragonball VZ 8MB 33 MHz
Platinum
Compaq iPaq 3650 Intel StrongARM 32MB 206 MHz
Sony Clie (with Motorola Dragonball VZ 8MB 33 MHz
Palm OS
4.00)
IBM Workpad Motorola Dragonball EZ 4MB 16 MHz
Hewlett Jornada 548 Hitachi SH3 32MB 133 MHz
Packard
Symbol PPT 2800 Intel SA1100 32MB RAM / 206 MHz
(Pocket PC) 32MB ROM
Symbol SPT 1733 Motorola Dragonball 8MB 16 MHz
(Palm OS)

Laptop Computers

Laptops have been mobile from the beginning, but they have only recently
acquired the capability to be wireless. This is a natural fit. Business travelers typi-
cally find themselves spending quite a lot of time in places such as airports, on

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

trains, or in hotel rooms lacking a phone jack. The availability of a wireless con-
nection in these areas immediately makes the time spent there more productive.
A traveler can download e-mail or the latest Powerpoint presentation before
boarding a plane, work on it en route, then upload again upon touching down.
Several manufacturers, such as IBM, HP, and Apple, have begun shipping lap-
tops with built-in wireless LAN (802.11b) cards, with antennas integrated into
the casing. These same manufacturers will soon begin offering Bluetooth-
equipped laptops. As Wireless LAN and Bluetooth networks become more
common in public spaces, it may soon be possible, in airports and large metro
areas, to remain constantly connected to the Internet or your corporate systems,
wirelessly. Several major airlines have recently announced plans to provide

onboard wireless access, so even the time spent in the air may soon be connected.

The recent introduction of more powerful Pocket PC—powered PDAs opens
the possibility that many mobile professionals will forego entirely the weight and
bulk of laptops in favor of a wireless PDA, perhaps with a lightweight portable
keyboard, as their only computer. Another OS option, Handheld PC from
Microsoft, 1s a step up from Pocket PC, and offers functionality closer to a full-
blown laptop system, but in a much more portable, instant-on package. With
larger screens, keyboards, and more memory and storage, Handheld PCs are
beginning to offer a viable alternative to bulky laptops.

Basic Laptop Properties

Laptops are an established product, and everyone from college students to trav-
eling professionals now uses them. Increasingly, both groups are adding wireless
communications options. Although larger and heavier than PDAs, they have the
advantage of more power, memory, and storage. Because most all laptops feature
at least one PCMCIA (PC Card) slot, this has been the natural way to add wire-
less connectivity.

» Connectivity 9.6 Kbps (mobile phone) to 19.2 Kbps (CDPD) or 11
Mbps (wireless LAN)

» Screen size Typically a minimum of 25 ¢cm (10 in.) wide

» Resolution Minimum 640 x 480, usually 800 x 600 pixels and higher
» Memory Typically 64MB to 128MB

» Processing power Typically 450 MHz to 1 GHz

Www.syngress.com

29

30

Chapter 1 « Moving from the Web to Wireless

Laptop Connectivity

Because virtually every laptop comes with at least one PCMCIA slot, this is still
the most popular method for adding wireless capability. Although you can pur-
chase a cable to connect your laptop to your mobile phone, just like a PDA, at
least in the U.S. this is probably a last resort for those outside the coverage areas
of other faster options.

The Sierra Wireless AirCard mentioned earlier gives you a wireless connec-
tion rated at 19.2 Kbps in most metropolitan areas. Another advantage of the
AirCard, or similar models such as the Novatel Merlin, is that you can eject the
card from your laptop and stick it straight into your PDA. As with the PDA, a
variety of service plans are available, from flat-rate monthly plans to usage-based
plans that bill according to how much data you download. In Europe, travelers
can get wireless connections of up to 28.8 Kbps using the Nokia Card Phone or
a Ubinetics card on the GSM network in their PC Card slot.

Several manufacturers also make Wireless LAN PC cards, allowing you to
access your company or home network wirelessly. As mentioned earlier, Wireless
LANSs are becoming increasingly common in the places traveling professionals
tend to congregate. As these connection points become more widespread and
corporate MIS departments implement Virtual Private Networks (VPNs), it may
soon be possible for mobile professionals to access their corporate network, at
LAN speeds, from almost anywhere in most major cities.

Although you can detect the type of device accessing your site, in most cases
you won'’t be able to infer the speed of a visitor’s connection from this. Just
because your visitor is using a 5.0 browser, doesn’t mean they’re on a high-speed
wired connection.You therefore need to make sure that your content is opti-
mized for low-bandwidth connections. To add to the complication, some desktop
browsers can also view WML content. The Opera browser can view both HTML
and WML, and Klondike 1s a dedicated WAP browser for desktop PCs.

Laptop Screen Size, Memory, and Processing Power

Most laptops on the market today have a color screen that allows for at the very
minimum 800 x 600 pixel resolution, with most newer models showing 1024 x
768 pixels. You can generally rely on them having enough memory and pro-
cessing power to run browser-based applications, so from a Webmaster’s perspec-
tive, you don’t need to do anything special to serve content to laptops, apart from
being aware that their connection speed may be low.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

Convergent and Future Mobile Wireless Devices

The devices we’ve mentioned so far are all basic variations on established device
families—the mobile phone, the PDA, the laptop. As we’ve shown, each has
inherent limitations for mobile wireless use. Next up the rung are convergent
devices that seek to merge aspects of each technology. The first devices to take
advantage of GPRS will be hybrid phone/PDA units, similar to those currently
available in Europe from Mitsubishi and Sagem, or the Kyocera Smartphone sold
in the US. Although these hybrids can sometimes compensate for the limitations
of single devices, they are still essentially old technology. The Swiss Army Knife
approach of trying to force more and more functions into a single device will
rapidly run up against basic physical restrictions in devices meant to be small,
mobile, and easy to use. Industrial design guru Donald Norman envisions a key
ring style solution, where you would have a basic communications module, then
add other modules as needed for a desired task. Bluetooth and its concept of a
personal area network could very well be the enabling technology that makes this
a reality. This would also allow the form of devices to more closely match their
function. For instance, most people want a mobile phone to be small, light, and
simple to use. Bolting on a PDA seriously compromises all of these attributes. But
because your phone is basically a communications module, why not have your
PDA use it to provide a wireless connection, using Bluetooth to communicate
between the two?

As we move into the future, we can expect to see a variety of convergent
devices and technologies. At present, a few mobile phone models break with the
traditional vertical form factor of the typical mobile phone. Nokia’s Communicator
looks at first like a rather chunky phone, but the entire front swings open like a
clamshell to reveal a larger horizontal screen and a full, although miniaturized, key-
board. This phone’s microbrowser can display both WML and HTML content. A
newer version, the Communicator 9210, features a color screen and runs the
EPOC operating system from Symbian, bringing it closer to a PDA.

Ericsson’s R380 also has a larger screen. When closed, only one end is visible,
making it look like a traditional phone, but swing the keypad open, and the dis-
play switches immediately to a horizontal, touch-sensitive screen with an intuitive
graphical user interface operated with a stylus.

The Kyocera Smartphone takes an innovative approach of combining a
phone with a Palm device. When closed, the top half of the screen is visible, and
looks like a regular—if somewhat large—phone. But swinging the keypad down
reveals a full, but slightly reduced, Palm handheld screen.

Www.syngress.com

31

32

Chapter 1 « Moving from the Web to Wireless

Another technology that looks set to change the landscape of mobile phones
is Microsoft’s new Stinger phone. Microsoft is not making the actual hardware
itself, leaving that to several major OEMs, but they have designed a totally new
operating system for them. Stinger is first and foremost a mobile phone, with
every feature of the interface optimized for one-handed use. But it will also allow
users to access the Internet, as well as connect directly to their Outlook inboxes.
Stinger relies heavily on Microsoft’s Mobile Information Server (MIS), a new
enterprise server application designed specifically for the mobile Internet. One
interesting feature of MIS that attempts to compensate for the slow data speeds of
current networks is the ability to have the server selectively remove certain por-
tions of a piece of content, thus cutting down on the amount of data sent. For
instance, if you’re on a particularly slow connection and in a hurry, you might
choose to have it remove all articles and prepositions from your e-mail messages.
It’s even possible to remove all white space. While this might initially sound
bizarre, condensed e-mails are actually quite readable, at least enough to decide
whether you want to download the entire message.

There are also optional modules available for the Handspring Visor PDA that
allow you to attach a microphone and speaker to the device, and use it as a phone.
As PDAs become more expandable, we can reasonably assume that, provided there
is demand for it, more devices will be capable of this cross-functionality.

Occupying a space somewhere between the laptop and a PDA, the Tablet PC
1s a recent arrival on the scene. Wireless by nature, this is basically a large, touch-
sensitive screen, roughly the size of a small laptop screen, and less than an inch
thick. Data input is via either handwriting recognition, or an on-screen virtual
keyboard. While this device was initially introduced almost a decade ago, it failed
then due to a lack of applications, low power, and user-interface problems. With
recent advancements in both processors and memory, and new operating systems
optimized for the form factor, the tablet is poised to become popular with trav-
eling professionals.

Although all of these devices are innovative in their own way, they still share
one underlying paradigm; communication is through visual display, with feedback
and interaction with the user interface via touch screen or keypad. This method
of interaction, however, isn’t optimal or convenient for people who are actually
mobile—in motion—as they use the device. One interface technology that looks
set to change the face of mobile computing is voice recognition and synthesis.
Voice Markup Language (VoiceML) is an XML-compliant markup language that,
used in conjunction with a voice server, can enable people to interact with Web
sites through voice alone.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

Further down the line, no one can say what new devices may emerge once
high-speed wireless networks become ubiquitous, and users come to expect and
rely on constant connectivity. In several countries, wireless Internet users already
outnumber wired users. As Moore’s Law continues to drive the size and cost of
computing power down, more and more devices—such as cars, refrigerators,
utility meters, and personal music players—will begin to sport wireless Net con-
nections. All of these devices will introduce their own unique capabilities and
interface requirements to the wireless Web mix. It’s impossible to say where this
may lead, but one thing is certain: The job of the wireless Webmaster will con-
tinue to be new, exciting, and challenging.

Something Old, Something New

Although the devices and technologies of the wireless Internet are new, many
things should be familiar to the Webmaster, and most of the skills you've devel-
oped to deal with the wired Internet are directly transferable to this new world.
For one thing, you’ll still be dealing with familiar markup languages. Palm’s Web
Clipping uses a subset of HTML 3.2, although with a few significant limitations.
The browser preinstalled on Pocket PC devices is functionally equivalent to IE
3.2, s0 it should present no serious challenge to an experienced HTML coder.
You can think of a Pocket PC device as a regular browser that just happens to
have an extremely small screen (0.25 VGA, in fact).

Probably the most significant change, both in terms of device capabilities and
markup, is the introduction of WAP. WAP phones require you to code your con-
tent in WML. WML is an application of Extensible Markup Language (XML). If
you’ve kept your skills current, chances are you're already familiar with XML. To
a coder familiar with HTML and the requirements of XML in terms of well-
formed and valid code, the switch to WML shouldn’t be difficult.

What may require some rethinking of your existing applications is that WML
uses a2 new mode of content organization and navigation that difters significantly
from the traditional page-based model of the Web. WML organizes content into
decks of cards, collections of related pages that are downloaded to the client all at
once, to minimize slow over-the-air transmissions. One of the problems of the
traditional Web is that the same markup can look quite different in difterent
browsers. Each of the major browsers is also quite tolerant of sloppy—or just
plain illegal—markup. By contrast, WML, as an application of XML, is required
to conform rigidly to the defined standard. Even a slight typo or incorrect tag

Www.syngress.com

33

34

Chapter 1 « Moving from the Web to Wireless

usage will cause the WAP gateway to refuse to process it, or in extreme cases can
even crash the phone. No more sloppy markup!

At least in the first generation of the wireless Internet, you’ll need to pay
attention to an issue that many Web developers had begun to forget about: slow
connection speeds. Quite a few of the mobile devices out there connect at speeds
of between 8 Kbps and 19.2 Kbps, slower than even the slowest modem you’re
likely to find today. (When was the last time you saw a 14.4K modem?) Network
congestion and the overhead involved in maintaining the connection probably
means that real throughput is significantly lower. This will begin to improve
somewhat with the introduction of 2.5G systems such as GPRS. But it’s likely
that GPRS won’t be widely available until at least 2003, and even then speeds are
likely to be not much higher than current dial-up—in the 56 to 64 Kbps range.
As 3G systems begin to appear towards the middle of the decade, we may finally
begin to approach the promised marketing nirvana of wireless broadband, but the
wireless landscape is changing so rapidly that it’s impossible to say what may or
may not be possible by then.

One thing that is likely to be very similar is markup. HTML has proven to be a
very adaptable language, scaling from the early days of left-aligned text on a gray
background to today’s multimedia-rich, highly interactive Web applications,
growing all the while to incorporate new and more complex media types. The next
evolution of HTML, Extensible HTML (XHTML), with its modular design and
capacity to negotiate capabilities with the requesting device, is positioned quite well
to be the markup language of choice on both the wired and wireless Web.

WAP and WML may continue to serve a niche role on smaller devices such
as mobile phones, although there’s some evidence that their role may be dimin-
ishing. Japan’s NTT DoCoMo service, i-Mode, was one of the most phenome-
nally successful wireless Internet services from the moment of its launch in 1999.
Rather than use WAP, NTT chose to go with Compact HTML (¢cHTML), a pro-
prietary subset of regular HTML. The advantage is that i-Mode’s several million
subscribers can visit regular Web sites, not just i-Mode ones, on their small, full-
color, always connected handsets. NTT has begun to take significant stakes in
several international telecom providers, and recently purchased 16 percent of
AT&T Wireless, so there’s a fair likelihood that i-Mode may soon be an addition
to the wireless Web landscape in the U.S. and Europe.

Old Stuff: The Existing Internet

One of the most impressive things about the Internet—the underlying protocols
of which were designed over 40 years ago—is how it has been able to continuously

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

adapt to significant changes in technology and usage. Not very long ago, a user
would have required expensive hardware, a large and difticult-to-use computer,
and an even more expensive and hard-to-get connection to access the Internet at
300 bits per second. Today, you can surf the Net and retrieve your e-mail at 128
Kbps at 75 miles per hour in a car or train, with an inexpensive PC card in a
mobile device, for not much more than the cost of your mobile phone plan.
However, the underlying protocols are the same TCP/IP designed by the Defense
Advanced Research Projects Agency (DARPA) pioneers in the early 1970s. That
TCP/IP has been able to adapt and grow with the increasing demands of the
Internet is a testament to the foresight and skill of its early designers.

Both the Palm and Pocket PC use the same HTTP to communicate with your
content server. The portion of the connection that travels over the wireless link,
known as the air interface, uses different protocols, but these are for the most part
invisible to the Webmaster, and have no eftect on how you design your content.

HTML has also proven to be extremely adaptable and long-lasting. When
Tim Berners-Lee designed it for exchanging technical documents between
research labs, he could hardly have imagined that in just a few years people would
be cruising graphics-rich Web sites and downloading streaming media in coffee
shops, on small portable devices with multiples of the processing power of a stan-
dard server of the time. The next evolution of markup, XHTML, is based on the
concept of modularity. Instead of all devices having to support the entire stan-
dard, a device will be able to tell a server which portions of the standard it is
capable of using. Servers would then send only the content appropriate to the
device.

Another Web concept that has been maintained in the wireless realm is the
browser. Pocket PC—based devices come with a version of Internet Explorer
that’s almost identical to IE 3.2. Once you take account of the reduced screen
dimensions (0.25 of VGA size), coding for these devices is basically the same as
for a regular browser. The Document Object Model (DOM) is the same, so most
existing JavaScript should work with minimal modifications. There is, however,
no support for CSS in the current version. WAP phones use a microbrowser
installed on the phones to display WML pages. WAP also specifies a scripting lan-
guage, WMLScript, which gives you more or less the same capabilities as you
have with JavaScript.

New Stuff: Mobile Connectivity

When they designed Wireless Application Protocol, the engineers at Phone.com
realized that HTTP had some drawbacks for use over cellular networks. HTTP is a

Www.syngress.com

35

36

Chapter 1 « Moving from the Web to Wireless

“chatty” protocol, meaning that there is a lot of back and forth communication
between the client and server as they negotiate each others’ capabilities. Because it
is also a sessionless protocol, this means that the connection has to be set up and
broken down for each and every communication between the client and server.
This leads to a lot of overhead that would slow communications to an unacceptable
level over a wireless link. Because wireless links also frequently break, the resulting
back and forth to establish communication would be unusable.

To alleviate these problems, they designed WAP, a protocol optimized for wire-
less transmission. The important thing to remember, for a Webmaster, is that WAP
provides for a mapping between all layers of HTTP and the corresponding layers of
WAP. This translation 1s performed transparently by the WAP gateway, so as a
Webmaster you really don’t have to worry too much about it. You can, for instance,
implement secure communications using the Internet-standard Secure Sockets
Layer (SSL) simply by having your visitors connect via a URL beginning with
https://. The WAP gateway will then perform a translation to Wireless Transaction
Layer Security (WTLS) before sending data to a wirelessly connected handset.

Currently the microbrowsers installed on mobile phones tend to be propri-
etary to the handset manufacturer and impossible to change, but in the future the
browsers will likely coalesce around a common standard and be user-changeable.
In Europe, some phones on the market use Microsoft’s Mobile Explorer browser.
Symbian, a consortium of companies including Nokia, Motorola, and Ericsson, 1s
developing EPOC, an alternate operating system for mobile phones and other
devices. Nokia already has a mobile phone based on EPOC for the U.S. market.

If you've ever analyzed the log files from your Web server, you may have seen
reports on the geographic location of your visitors. This is generally a best guess,
based on the location of their dial-up ISP connection, and generally can’t get
much more detailed than listing the closest major city. Beyond that, you generally
can’t know—or need to know—the exact geographical position of your visitors.
However, mobile phones and other devices that communicate via cellular net-
works do have this capability. Cellular base stations have to know where a phone
is in order to route calls. A switched-on phone is constantly communicating with
a range of base stations to remain accessible. When a phone enters a particular cell
tower’s coverage area, it registers with that tower’s controlling base station. The
Federal Communications Commission (FCC), the agency responsible for
licensing wireless carriers in the U.S., has mandated that all cellular networks in
the U.S. put in place the capability to locate the exact coordinates of a mobile
phone, to within 50 to 150 meters.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1 37

Carriers can accomplish this automatic location identification (ALI) by means
of handset- or network-based technologies. Network-based solutions work by
combining the signals from multiple base stations to triangulate the position of
the phone. Handset-based solutions generally embed a GPS chip within the
phone. GPS uses a network of satellites to precisely locate the geographical posi-
tion of a device to within a few meters. The U.S. government’s recent declassifi-
cation of this system allowed small, relatively cheap, dedicated GPS devices to be
much more accurate, spawning an entire industry. GPS units are now available as
add-ons for most of the major PDAs and laptops. As GPS chip prices fall, expect
this technology to disappear inside of these devices, until eventually all mobile
devices will be capable of determining their exact physical location and, if their
owner permits, communicating this information to the Internet sites they visit.

Developing & Deploying...

Privacy and E911

The impetus behind the FCC's ALI mandate—generally known by the
term E911—was to provide emergency services with the ability to deter-
mine the location of callers in distress, just as they currently can with
wired phones. This would enable fire departments to respond to a
motorist trapped in a car wreck, for instance, or enable search and
rescue teams to locate lost hikers. By October, 2001 all U.S. carriers are
required to put in place technology that allows emergency services to
locate the position of a cellular emergency call to within 50 meters for
67 percent of calls and 150 meters for 95 percent of calls for handset-
based solutions (or 100 and 300 meters, respectively, for network-based
solutions).

Privacy advocates, however, are concerned that this information
could also be misused, either by the government and security services,
or by marketers. Those concerned with government surveillance liken
the ability to track mobile phones to the ankle bracelets used on paroled
convicts, raising the specter of a Big Brother government tracking
citizens’ every move. Others fear that we will be bombarded with
e-coupons and other wireless spam. A fast food restaurant might shoot
a coupon for a burger and soda to your phone as you approach their
location, or a department store might detect that you're in the music
department and offer a CD discount coupon. Although these examples

Continued

Www.syngress.com

38

Chapter 1 « Moving from the Web to Wireless

might be simply annoying, it's a short step to imagining how this infor-
mation might be misused, especially when it becomes possible for
people to track when you‘re in places you'd rather not have them know
you’'ve been. Marketing companies are already notorious for correlating
personal data with Web surfing behavior. Adding the ability to track
your physical location and movements into this mix raises some serious
invasion-of-privacy concerns.

Those charged with responding to emergency calls rightly claim
that this information can be vital in saving lives and protecting property.
As is the case with many new technologies, we need to balance the
needs of public safety against the individual’s right to privacy. Several
bills have been introduced to require that carriers inform people before
making this information known, but the outcome of this legislation is
unknown and probably unlikely to satisfy everyone.

You can read the FCC’'s E911 documentation at www.fcc.gov/e911/.

The purpose of the FCC’s E911 mandate was to enable emergency services
to pinpoint the location of callers in distress. But wireless entrepreneurs were
quick to spot other uses for this information, and a whole industry has sprung up
around what has become known as location-based services. A simple example
would be that a traveler in a strange city with limited time would pull up a listing
of all restaurants within a two-block radius of his location, without having to
know where he actually was. Marketers have also proposed the idea that mer-
chants would be able to broadcast a special time-sensitive ofter only to shoppers
within the immediate area. Because location-based services are still in the forma-
tive stages, it’s too early to tell whether privacy concerns will allow such applica-
tions to flourish, but the capability will be there very shortly, and it will
undoubtedly lead to location-based applications we haven’t even dreamed of yet.

Moving from a Wired
to a Wireless Internet

The shift from the wired to wireless Internet has the potential to be every bit as
revolutionary as the shift from print to Internet was. Predictably, it is also fol-
lowing a similar path. In the early days of the Internet, and particularly of the
Web, many publishers simply ported existing print content and concepts to the
Web. This resulted in a rash of atrocious, and unusable, brochure-ware sites. It has
taken us several years to come to the realization that the Web is a new medium,

" www.syngress.com

Moving from the Web to Wireless « Chapter 1

demanding its own style of writing and content presentation. Early Web designers
sometimes had difficulty letting go of their print sensibilities and adapting to the
unique constraints and possibilities of HTML-based design. We now have a gen-
eration of designers whose natural medium is the Web, who understand its
unique characteristics, and have no print-world baggage to contend with. Web
site usability is an established (although still not always perfect) subject, with well-
known practitioners and a wealth of research available.

In many ways, we are once again at that early stage. Most wireless Web sites
out there are simply repurposed wired Web sites (or in many cases, exactly the
same sites, with no accommodation made for wireless devices at all). Users of the
first generation of wireless sites, WAP phone owners, were understandably less
than impressed. Usability of most sites was appalling, content was generally
unsuitable for the devices, and crashes and dead-ends were frequent.

So how i1s the wireless Webmaster to approach this problem? The first step is
to realize that this is truly a new medium, not simply the same old Internet on
new hardware. This consequently requires a change in perspective from a large-
screen desktop browser to a small mobile device with limited user-interaction
mechanisms and, for now, a slow wireless connection. One key point to keep in
mind about wireless users is that they tend to be mobile. This has quite important
consequences for how the wireless Webmaster presents both content and user
interfaces. In addition to having a small screen and very slow connection, your
visitors are most likely going to be using your site while actually moving—
whether in their cars or when walking down the street. And, most likely, they’ll
be using it one-handed while simultaneously engaged in some other activity,
whether taking notes or eating their lunches. This is quite a departure from the
wired Web, where you can usually assume that your users are sitting comfortably
at a large, high-resolution color screen, with a full-size keyboard and mouse.

Rethinking User Interface and Interaction

User-interaction is another area where you will need to rethink a lot of what you
learned on the Web. Most current wireless devices have severely constrained inter-
action mechanisms. Most have touch-sensitive screens, for instance, but this is not
the same as a mouse, the standard navigation device on the Web. Consequently,
there 1s no concept of rollovers, one of the most useful—and abused—navigation
aids. Data input is also problematic, because most wireless devices don’t have key-
boards.

Users on mobile phones must enter text by repeatedly pressing a number key.
Punctuation characters are even more difticult, and differ considerably from phone

Www.syngress.com

39

40

Chapter 1 « Moving from the Web to Wireless

to phone. For that reason alone, it’s advisable to keep your URLs as short as pos-
sible—don’t make visitors enter long strings of subfolders just to reach your WAP
content, or you may find yourself without any visitors at all. PDA users have it a
little easier—they can use either some form of handwriting recognition or a vir-
tual onscreen keyboard. Entering long strings of text is still difficult, however, so
the same advice on URLs holds true here.

Probably the main adjustment Webmasters will need to make to the wireless
Web is to realize that users of mobile devices need quick access to relevant infor-
mation only. This is quite different from the wired Web, where users tend to
browse for the information they need, and they are content to follow links from
a large array of choices. At least for the foreseeable future, you’ll need to bear in
mind that online time, and downloaded content, costs mobile users serious
money. Personalization, discussed in the upcoming section “Adding
Personalization,” is one way to decrease the amount of time users need to spend
searching for the content they need, but just as important is to optimize your
user interface to meet the needs and limitations of mobile users.

Obviously quality assurance (QA) testing is important for any Web applica-
tion, but the sheer variety of mobile wireless devices makes this a crucial task for
the wireless Webmaster. It’s not enough to convert your site to WML, check it on
the WAP Emulator on your desktop, and assume that it looks fine. The degree of
flexibility of interpretation allowed within the WAP specification means that con-
tent can look and act differently on different handsets. You’ll need to test and
verify your code on a variety of handsets, through as many carrier gateways as
you can. Similarly, Web Clipping applications can look quite different depending
on the transcoding proxy server used. On Pocket Internet Explorer, you’ll need
to test how your content looks with the different view settings and different user
preferences. For instance, users may turn off graphics to increase response time, so
you’ll need to ensure your user interface (UI) is usable in text-only mode.

Recognizing Device Limitations

Just as Web designers eventually realized that people simply couldn’t—and
wouldn’t—read the same amount of text on a cathode ray tube (CRT) screen as
on the printed page, you need to realize that the volume of text that works on a
Web page just won'’t be readable on a wireless device, with its limited screen size.
Some early wireless Web tools offered to translate your content on the fly to
wireless formats, but this approach simply doesn’t work. Content will need to be
specifically edited and formatted for small screens and wireless interfaces.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1

Many Webmasters have already come to the realization that the best way to
deal with differing browser capabilities, and build a truly scalable Web site pub-
lishing system, is to completely separate content from presentation. This approach
is one that will benefit those intending to publish wireless content; in fact, it may
be a requirement, to deal with the constantly expanding variety of wireless
devices. Cascading Style Sheets (CSS) was one good approach to this on the Web.
However, most current wireless devices don’t support CSS, so developing server-
side solutions will be necessary. XML, coupled with some form of device detec-
tion, may be the answer to this particular problem. Before you cringe, thinking of
the enormous task of formatting separate content for every wireless device out
there, the good news is that most of these fall into just a few families of device
types, so you won'’t need to worry about coding for particular device models. As
a bare minimum, you might want to consider detecting and formatting for WAP,
Palm OS, and Pocket PC.

Adding Personalization

Personalization on the wired Web has been used mostly as a tool for marketing.
On the wireless Web, personalization takes on a new meaning and importance. To
deal with slow connections and limited power, it makes sense to send a wireless
user only the information she needs at any particular time, rather than making
her select from among a huge array of mostly irrelevant choices. For instance, if a
visitor to your traffic information site repeatedly asks for the traftfic conditions on
the Interstate 5/Interstate 90 intersection, presenting that choice at the top of the
listings on his next visit makes sense. Because he also probably works in either
Seattle or Bellevue, reordering subsequent choices—filtering locations in the
Pacific Northwest to the top and favoring those in the Seattle region—would
probably be helpful.

Location information is one emerging area where you can use personalization
to offer an enhanced user experience. A typical Web application to search for a
restaurant might first make the visitor choose a state, then a city, then an area, and
then a culinary style. However, if you already know, from data supplied by my
device, that I'm in New Orleans, Louisiana, then why not move that choice to the
top, even if Alabama comes first alphabetically. Taking that a step further, if you
know from my usage patterns that I have a fondness for Thai cooking, why not
start my listings with Thai restaurants in the XXX area of New Orleans? Tools and
application server software are already available to enable this sort of learning or
adaptive interface on Web sites, but wireless access makes this a priority.

Www.syngress.com

a1

42

Chapter 1 « Moving from the Web to Wireless

Above all, the major shift in perspective required of the wireless Webmaster is
to realize that you’re authoring for a mobile audience, not just mobile devices.
Rather than simply using portable devices, visitors to your site may actually be
on the move, whether walking down the street or in a vehicle. They’re probably
not donating 100 percent of their attention to the screen, and likely only have
one hand for navigation. In this situation, the browsing model of the wired Web
will not work. Users need simplified, quick access to just the information they
need, in a concise format that downloads quickly. This is not simply a matter of
shortening text and optimizing graphics; successful mobile Web sites need to pro-
vide mobile users immediate access to just the information they need, when they
need it, from anywhere and from any device.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1 43

Summary

The wireless Web represents a revolution in access to online information that will
have profound impact on our society—greater even than the Internet revolution
of the past decade. Although the skills learned by Webmasters over the short but
tumultuous life of the Web will provide a solid foundation for this new world,
new skills will have to be developed and some old habits changed.

The sheer variety of different mobile devices is the first big change a ‘.
Webmaster will have to deal with, making the “browser wars” of the last few
years seem like child’s play. However, you’ll find that devices fall into a few gen-
eral families with similar characteristics, simplifying the presentation task some-
what. Device detection, coupled with on-the-fly, server-side generation of

markup is one way to solve this problem. Here, XML transformed to appropriate
markup via XSL, provides a future-proof option.

How users connect to your site can be as important as which device they use.
The majority of current mobile devices are limited to wireless speeds of between
9.6 Kbps to 19.2 Kbps, with few exceptions. These connections are also inher-
ently unreliable, with long call setup times and latency. You’ll need to modify
your content and navigation to compensate for these limitations. The walled garden
approach of carriers, coupled with the inevitable backlash against WAP when
users discovered it didn’t live up to the early hype, has left a lot of users disillu-
sioned with WAP, but newly available wireless options for PDAs and laptops have
revived interest in mobile computing. With the huge surge in interest in wireless
data services—particularly from corporate users—carriers continue to offer newer
and faster connectivity options. 2.5G services such as GPRS are already being
rolled out worldwide, and we can look forward to the much higher data speeds
of 3G introducing a world of broadband wireless within the next two to four
years.

For the purposes of the wireless Webmaster looking to provide content for
mobile users, mobile wireless devices can be classified into three families: mobile
phones, PDAs, and laptops. Mobile phones have tiny screens and slow data
speeds—9.6 Kbps is the current top speed on most networks. User interaction is
difficult, requiring users to enter data with a nine-key numeric keypad. However,

these are still the most prevalent wireless devices in circulation. In the U.S. and
Europe, WAP is the predominant means of delivering Internet content to mobile
phones. WAP compiles content to optimize transmission over wireless connec-

tions, but it is still slow and difticult to use on current networks. Japan has had

44 Chapter 1 « Moving from the Web to Wireless

huge success with a similar service called i-Mode, but as yet this doesn’t seem to
have made much impact outside of Japan.

PDAs are a step up in functionality, providing relatively larger screens, color
display, and support for both handwriting recognition and virtual keyboards.
Currently, PDAs are split into the subclasses of either Palm OS or Pocket PC,
each of which has different display capabilities, memory, and processing power.
PCMCIA and Compact Flash modems are widely available for both varieties of
PDA, oftering data speeds up to 19.2 Kbps or even 28.8 Kbps.

‘k The same wireless options available to PDA users also ofter the possibility of
wireless Internet access to laptop users. Here, users have the benefit of large, full-
color screens and full keyboard/mouse interaction, but you’ll still need to be
aware of their relatively slower data speeds and adapt your content to suit.

The mobile wireless landscape is in a state of rapid flux, with new devices
announced almost monthly. Hybrid devices attempt to combine the mobility and
voice capabilities of mobile phones with the organizational capabilities of PDAs.
Unfortunately, these tend to compromise the capabilities of each. Microsoft

Stinger 1s one device to watch, although its impact is still uncertain. Tablet PC
holds some promise as a next-generation mobile device, but is not yet available to
end-users. Voice interaction is another emergent technology that could radically
- affect the job of the wireless Webmaster.

Despite the wide range of new devices and connection options, a certain
amount of overlap still exists with the skills Webmasters have developed on the
wired Web. HTML, with some modifications, is still a very viable option for both
Pocket PC and Palm OS PDAs, and WML should present no major problems for
a competent Web coder. XHTML, XML, and XSL are the next evolution in
markup, and wireless Webmasters would do well to become proficient in these
technologies. Location-based services are another new area worth exploring, uti-
lizing technologies such as GPS to customize content for a users physical loca-

i tion. Personalization is another option for users with less time and limited screen
sizes and access speeds.

Perhaps the largest change required of Webmasters is to adapt Ul and presen-
tation to suit the different needs of mobile users, who need rapid access to tar-
geted information, rather than the browsing paradigm of the wired Web. In most
cases, this means rethinking both content presentation and user interaction, rather
than simply formatting with a new markup language. QA testing is important, to

ensure a satisfactory user experience.

WwWw.syngress.com

Moving from the Web to Wireless « Chapter 1 45

Solutions Fast Track

Explaining Wireless

M The emphasis on mobility is one of the defining characteristics of this
new wireless paradigm, and from a Webmaster’s point of view this
mobility, not simply the lack of wires, is likely to be the most important
aspect you have to deal with. ; '.

M Low bandwidth, differing standards, multiple network carriers, and a
multitude of radically different devices means that the job of the wireless
Webmaster just got immensely more complicated.

Types of Wireless Connectivity

M The Wireless Application Protocol (WAP) is the first widely available
method of accessing Internet content from a mobile device. WAP
gateways enable legacy browsers to understand WML content. However,
due to differences in the WAP gateway configuration, and the particular
microbrowser installed on the handset, a WAP page may display
difterently on different handsets.

M With Short Message Service (SMS), users can send short text messages
to each other at a fraction of the cost of a voice call. SMS can also be
used to send configuration settings to your phone. SMS is a huge success
in Europe, and it is gradually becoming available on U.S. wireless phone
plans, although in a limited fashion. ro

M Japan’s NTT DoCoMo mobile data service i-Mode ofters users the
ability to browse a huge range of Web sites with cheap, full-color
handsets that maintain an always-on connection to the Internet. It could
possibly become an alternative to WAP but currently is in use only in
Japan.

M The European wireless standard, Global System for Mobile
Communications (GSM), is available on a limited basis in the US.The

General Packet Radio System (GPRS) will soon ofter higher data speeds
and an always-on connection worldwide; it is already available in some

European countries, and on a trial basis in a few U.S. cities.

Www.syngress.com

46 Chapter 1 « Moving from the Web to Wireless

]

A recent option for wireless connectivity in the U.S. 1s Cellular Digital
Packet Data (CDPD), a packet-switched network this is an always-on
connection. The major drawback of CDPD is limited availability.

The 802.11b standard has found ready acceptance as a short-range radio
replacement for traditional Ethernet connections. Bluetooth is another
short-range wireless standard.

& Evolving Mobile Devices

]

WwWw.syngress.com

The three main categories of mobile devices, mobile phones, PDAs, and
laptop computers, are differentiated by connectivity, screen size, memory,
and processing power.

Data-capable phones use the WAP protocol, and content needs to be
coded in Wireless Markup Language (WML). They have minimal
requirements for memory and processing power. A mobile phone never
communicates directly with your Web server; there is always a WAP
gateway acting on its behalf (the gateway may alter the content
somewhat on its way through).

The market for Personal Digital Assistants (PDAs) is split mainly between
those running the Palm operating system from both Palm, Inc. and its
licensees, and devices based on Microsoft’s Pocket PC or Windows CE.
One feature of Pocket PCs that’s especially relevant to wireless is that
most come with an industry-standard expansion slot, either CF or
PCMCIA Type IL.

PDAs come in a wide range of configurations of connectivity, screen
size, memory, and processing power.

Several manufacturers have begun shipping laptops with built-in wireless
LAN (802.11b) cards, with antennas integrated into the casing. These
same manufacturers will soon begin offering Bluetooth-equipped
laptops. However, with larger screens, keyboards, and more memory and
storage, Handheld PCs are beginning to offer a viable alternative to
bulky laptops.

Also, several devices are available that seek to combine aspects of each
category—a mobile phone with an integrated Palm screen, PDAs that
can be used as phones, and laptop-size devices without keyboards that
you use by writing directly on the screen.

Moving from the Web to Wireless « Chapter 1 47

Something Old, Something New

M TCP/IP has been able to adapt and grow with the increasing demands
of the Internet; both the Palm and Pocket PC use the same HTTP to
communicate with your content server; and HTML has also proven to
be extremely adaptable and long-lasting. Another Web concept that has
been maintained in the wireless realm is the browser.

M WAP provides for a mapping between all layers of HTTP and the ; ﬂ
corresponding layers of WAP. This translation is performed transparently | =
by the WAP gateway, so as a Webmaster you really don’t have to worry -
too much about it.

M Microbrowsers installed on mobile phones tend to be proprietary to the
handset manufacturer and impossible to change, but in the future it’s

likely that they will coalesce around a common standard, and be user-
changeable.

Moving from a Wired to a Wireless Internet

M The new wireless medium requires a change in perspective from a large-
screen desktop browser to a small mobile device with limited user-
interaction mechanisms and, for now, a slow wireless connection.

M Probably the main adjustment Webmasters will need to make to the
wireless Web 1s to realize that users of mobile devices need quick access
to relevant information only.

M You'll need to test and verify your code on a variety of handsets,
through as many carrier gateways as you can. Similarly, Web Clipping
applications can look quite different depending on the transcoding proxy
server used. On Pocket Internet Explorer, you’ll need to test how your
content looks with the different view settings and difterent user
preferences.

M The best way to deal with differing browser capabilities, and build a
truly scalable Web site publishing system, is to completely separate

content from presentation.

48

Chapter 1 « Moving from the Web to Wireless

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What are Tri-Band mobile phones?

A: Tri-Band phones are typically available on the GSM system. Two different fre-
quencies are used on the continent. Almost all European phones are Dual-
Band, which automatically sense and switch to the appropriate frequency.
Tri-Band phones add the capability to work on the totally different GSM fre-
quencies used in the US. Although not widespread yet, GSM is offered by
several carriers in the U.S. A Tri-Band phone allows international travelers to
use the same phone both in the U.S. and Europe.

Q: Do I need a special WAP server to deliver WML pages?

A: No, the connection to your servef is just a standard HTTP request. You can
serve this request with any regular Web server—IIS, Apache, and so on.You
will have to configure MIME type settings on the server, so that it knows
what to do with pages with a .wml ‘extension.

Q: If I code for the Palm Pilot—will the Visor be able to see the same thing?

A: Yes, the Handspring Visor, as well as the Sony €lié and other devices running
the Palm OS, should display your pages identically, provided that your markup
is error-free.

Q: My Web site is heavy in tables—will it display on PDAs?

A: Palm Web Clipping does not support nested tables. Any <TABLE> tags
beyond the first one will be ignored, giving a result that’s rarely what you
intended. Pocket PC devices can display much more complicated table struc-
tures, but remember that the maximum viewable width is 240 pixels, unless
you want your visitors to have to scroll both horizontally and vertically.

WwWw.syngress.com

Moving from the Web to Wireless ¢ Chapter 1 49

Q: Why do wireless devices get their transmissions cut off?

A: Wireless devices must be within a certain distance of a base station to pick up
a strong enough signal. They can lose this signal if they move outside the cov-
erage area of the base station or if they enter the radio shadow of a large

building.

Q: If I program in Web Clippings—will it show up in other PDAs?

A: Yes, because Web Clipping pages are basically HTML 3.2, they will generally
display relatively well on other PDAs. However, if you use the Palm-propri-
etary method of compiling graphics into the Web Clipping Application, these
will not show up.

Q: Will I have to learn different programming if i-Mode comes to the U.S.?

A: I-Mode uses a subset of HTML called Compact HTML (cHTML). Anyone
familiar with HTML should have no problem learning this. However, there
are signs that the industry may move towards XHTML as the preferred
markup language for these devices.

-

Www.syngress.com

Chapter 2

Wireless

Architecture

Solutions in this chapter:

= Components of a Wireless Network 1 1‘

= Adjusting the Metaphor for the
Wireless Internet

. Accepting the Challenge of WAP-
Enabled Devices

» Adopting Wireless Standards

» Noting the Market for Wireless Browsers
and Other Applications

M Summary
M Solutions Fast Track

M Frequently Asked Questions
51

52

Chapter 2 * Wireless Architecture

Introduction

Computer systems are in a constant state of evolution. Consider just the aspect of
how we have gotten computers to interact with each other. The first large main-
frame computers ran software locally and required the operator to be physically
present. As computer networks gained popularity, a new client-server type of
application emerged; as developers, we were then required to build software that
not only communicated with the end user, but another computer system as well.
Over time, developers realized that talking to multiple remote computers is only
slightly more difficult than talking to just one, and multiple tier architectures
were born. It is not uncommon today to see an application that requires the
availability of at least two other computers in order to run.

The mobile Internet is about to change the way we think about Internet appli-
cations. Not only do all these devices communicate via different markup languages,
but they also don’t use the underlying protocol of the Internet: TCP/IP. The
mobile world introduces a new type of component, the gateway that sits between
these two disparate networks and enables them to communicate. But they don't just
translate information, they help our small, memory-constrained mobile devices par-
ticipate on the Internet by validating content before it is sent to them and storing
information that they do not have enough space to accommodate.

We look at how the mobile world is set up and what you need to learn in
order to take advantage of this exciting new medium. We look at the role of a
Wireless Application Protocol (WAP) gateway, the requirements of a WAP server,
and various client technologies. We also examine some of the competitors to
WAP and identify the ways in which they are better or worse at handling mobile
data. Our look at wireless architectures would not be complete without an
overview of wireless communications standards and how they affect the perfor-
mance of your data application.

Components of a Wireless Network

The mobile wireless standard with the most momentum behind it is the Wireless
Application Protocol. WAP standards are governed by members of the WAP
Forum (www.wapforum.org), an organization started by Nokia, Ericsson,
Motorola, and Openwave. Membership in the WAP Forum is open to anyone,
but device manufacturers and network operators are the only members eligible
to nominate and vote on officer appointments. The WAP specification covers all
aspects of building a wireless application including WAP server requirements,

WwWw.syngress.com

Wireless Architecture « Chapter 2

recommendations for how a WAP client should display markup, what tasks a
WAP gateway handles, and all the protocols and markup languages in between.
The average wireless application developer uses only a small percentage of these
specifications daily, but understanding the entire picture is crucial to developing a
compelling application for users.

A typical wireless solution has three pieces: the WAP browser (client), the
Web server (WAP site), and the WAP gateway, as illustrated in Figure 2.1. Web
developers will recognize the first two. The WAP gateway is used to translate
between the new wireless protocols and the existing Web protocols of the
Internet. Let’s take a look at the role and uses of each of these pieces.

Figure 2.1 The Three Tiers of WAP

WAP Browsers

| WAP Gateway

=l i i

AP Site WAP Site AP Site

The WAP Browser

The WAP browser is what most people think of when they hear the term wireless
data. Just like the Web browser is the interface to the Web, the WAP browser is
the interface to the wireless Internet. A WAP browser is typically run on a hand-
held device with limited capabilities (small screen size, limited memory, a slow
connection to the Internet) and therefore does not support many of the features
of a standard Web browser. You will see in Chapters 3 and 4 that these limitations
are counterbalanced by the usefulness of being integrated with a mobile phone.

Www.syngress.com

53

54

Chapter 2 * Wireless Architecture

The WAP Gateway

The WAP gateway is responsible for translating the wireless protocols to standard
Internet protocols and vice-versa. This allows the mobile device to communicate
with servers on the Internet but use a protocol that is optimized for wireless
communication. The WAP gateway also verifies and compiles WML source files
to a more compact form that reduces the amount of data that has to be trans-
terred over the slower wireless network.

A variety of WAP gateway products are available on the market today.
Commercial versions are available from a variety of companies—Nokia,
Openwave, and Ericsson all develop and sell their own gateway solutions. Open
source solutions are available also. The most widely known open source WAP
gateway project is Kannel (www.kannel.3glab.org).You can try out almost every
one of these gateway products because most commercial gateways have a trial
license available.

You do not need to install a WAP gateway to make your mobile site publicly
available. Most often, it is the network operator that will install and maintain
WAP gateways. The gateway is merely the server that translates between the wire-
less and land-line worlds. Most network operators provide a dial-up service that
enables the mobile data user to connect to the Internet via WAP.

Corresponding WAP Protocols

WAP devices use a new set of protocols, created by the WAP Forum, that cater to
the strengths and weaknesses of the wireless environment. Table 2.1 shows the
Internet/Web protocol and its corresponding WAP protocol.

Table 2.1 Corresponding Internet/Web and WAP Protocols

Internet/Web Protocol WAP Protocol

HTTP (Hypertext Transfer Protocol) ~ WSP/WTP (Wireless Session
Protocol/Wireless Transport Protocol)

TCP/IP, UDP/IP WDP (Wireless Data Protocol)

SSL/TLS (Secure Sockets WTLS (Wireless Transport Layer Security)
Layer/Transport Layer Security)

HTML (Hypertext Markup Language) WML (Wireless Markup Language)
JavaScript/ECMAScript WMLScript

WwWw.syngress.com

Wireless Architecture « Chapter 2

Understanding Information
Flow through the Gateway

WAP devices tend to have slower processors and less memory than most tradi-
tional Internet clients. The WAP gateway, on the other hand, is usually a fairly fast
server machine with a considerable amount of RAM. The task of browsing is
therefore split between the WAP browser and the WAP gateway. Figure 2.2 shows
the flow of information between the WAP browser, WAP gateway, and WARP site,
which results in the verification and compilation of the WML.

1. The browser requests a URL from the gateway via WTP.
2. The gateway requests the URL from the WAP site via HTTP.

3. The site sends the WML deck indicated by the URL to the gateway via
HTTP.

4. The gateway validates the WML deck it receives to ensure that it doesn’t
contain any syntax errors. If it finds errors, it simply sends a WML deck
containing an error message to the browser. If it doesn’t find any errors,
the gateway sends a compiled version of the WML deck to the browser.
(We look at gateways in more detail in Chapter 10.)

Figure 2.2 Information Flow in a WAP System

[ooooon

1 -
WAP Browser WAP Gateway WAP Site

The Web Server

You can use any traditional Web server—such as Apache (www.apache.org),
Microsoft SiteServer (www.microsoft.com/siteserver), or iPlanet
(www.iplanet.com)—to deliver a WAP site. All you need to do is configure the
server to send out the MIME types shown in Table 2.2 when WAP content is
requested. Step-by-step details on configuring Apache and Microsoft SiteServer
are available in Chapter 8.

Www.syngress.com

55

56

Chapter 2 * Wireless Architecture

Table 2.2 MIME Type Additions for Web Servers

MIME Type Your Web Server

Type of File Should Generate

WML (.wml extension) text/vnd.wap.wml

Compiled WML (.wmlc extension) Application/vnd.wap.wmlc
WMLScript (.wmls extension) text/vnd.wap.wmlscript
Compiled WMLScript (.wmlsc extension) Application/vnd.wap.wmlscriptc

Wireless Bitmap Image (.wbmp extension) Image/vnd.wap.wbmp

You can use application servers or CGI scripts to generate WAP content—
just make sure that you have the script send out the appropriate MIME type for
the content you are sending.

Adjusting the Metaphor
for the Wireless Internet

The wireless Internet must not be viewed as a wireless version of the existing
Internet and Web. In the early days of the Web, companies built Web sites that
were merely versions of their print advertising placed online. As these companies
were taught the advantages of the Web, they started using features that were not
available to them in print publications, such as daily updates, targeted informa-
tion, and user feedback. The wireless Internet has many of the same capabilities as
the Web but also imposes some new limitations, such as small screen sizes, awk-
ward text entry through the use of a number pad, and slow connection speeds.
You must take these limitations and the manner in which the user will be
accessing your site into account when building your wireless solution.

Translating your Web offering directly into a WAP solution will usually yield
a user experience that is not only less than optimal, but probably quite difticult to
use. What content you ofter on your mobile site, how the user navigates around,
and the amount of feedback the user can be expected to give require a complete
re-evaluation of how you are attacking the problem. A mobile user is after a spe-
cific piece of information and is not going to browse through a WAP site with
the same leisure as he does a Web site. Every moment a WAP user spends online
1s another minute of access they have to pay for. If you don’t provide a quick and
easy way to find the information the users are after, they will go to another site
that does. You need to be open to new ideas and remember that what works in
the Web world won'’t necessarily work in the mobile Internet world.

WwWw.syngress.com

Wireless Architecture « Chapter 2

Considering the Mobile User

The first thing to consider when building any solution is the user. The mobile
user is quite different from the user of your traditional Web site, even if it is the
same person! A mobile user is seeking an answer to a question—she wants to
receive movie listings, make reservations at a restaurant, or find the nearest gas
station. Typically, the mobile user isn’t interested in browsing your site as much as
using it to find a specific piece of information—browsing is done on computer
with a 17-inch monitor and a full keyboard.

The mobile user is also in a hurry. Openwave (then Phone.com) has pre-
sented the results of a study that found that for every click you require a mobile
user to perform, you lose 50 percent of your site’s audience. These are impatient
people on a slow connection, and you must ensure that you get them the infor-
mation they are looking for as quickly and effortlessly as possible, or your com-
petitor will end up with your customers.

Complementing Your Web Offering

Just because the wireless Internet is currently limited, it doesn’t mean that your
complete Internet presence has to be. There are tremendous opportunities in
tying your Web site and WARP site together in a way that benefits the user.
Reserve the time-consuming tasks for the Web site and the quick access to infor-
mation for your WARP site. For example, if you require a login to access your site,
let the mobile user enter a minimal amount of information when signing up
through the WAP site and then require them to enter more detailed information
the next time they visit your Web site. Keeping your WAP site simple will keep
your customers happy and encourage them to come back.

Accepting the Challenge
of WAP-Enabled Devices

The largest difference between the wireless Internet and the wired Internet is in
the devices used to access them. A Web developer has a fairly standard set of cri-
teria that they assume their user’s computer will fulfill, but a wireless developer
has no such luxury. The devices used to access WAP services vary quite substan-
tially, from a small mobile phone, to a palm-size PDA, even (rumor has it) a WAP
browser in a television. You can see that you have quite a challenge ahead of you.

Www.syngress.com

57

58

Chapter 2 « Wireless Architecture

The situation is made even more complex when you realize that each device
can have different versions of the same browser, and some even allow the user to
install a third-party browser! The good news is that there are some assumptions
you can make as well as some ways to determine device capabilities.

Determining Device Capabilities

The first difticulty you will encounter when designing for a WAP device is in
figuring out the screen size and capabilities you can assume that your end user
will have. The ofticial stance is that you shouldn’t design your application for spe-
cific capabilities, but should instead concern yourself with delivering compelling
data and let the browser decide the best way to display the data to the end user.
This approach has been tried and rejected many times (Java AWT and early ver-
sions of HTML are prime examples), but the limited visual control of current
versions of WML coupled with the difficulty of upgrading browsers once they
are deployed may allow this attempt to succeed. To give you an idea of just how
varied WAP devices are, Figure 2.3 shows popular browsers displaying the same
WML deck.

Figure 2.3 Device Variation in Displaying the Same WML Deck

[y Ewinpaan Vacation
H all slarted qut when te company | was working
wank out of buminass. B sesmed ke 3 good ides
gl ol of brwe (oe 3 while 52 restocs my wgor and
et mome long nesdad rest and masston
i ﬂl'h ﬂ;ﬂ-ﬂ'llrrgil Ba T i wad el

WwWw.syngress.com

Wireless Architecture « Chapter 2

As you can see, there is quite a variation in rendering. The good news is that
the WAP specifications do give some general guidelines that you can assume
about a device that will be browsing your WAP site. These may not always apply,
but they are a good rule of thumb.

» Display size Smaller screen size and resolution. A small mobile device
such as a phone may only have a few lines of textual display, with each
line containing 8 to 12 characters.

» Input devices A limited, or special-purpose input device. A phone typ-
ically has a numeric keypad and a few additional function-specific keys.
A more sophisticated device may have software-programmable buttons
but may not have a mouse or other pointing device.

= Computational resources Low power CPU and small memory size;
often limited by power constraints.

» Narrowband network connectivity Low bandwidth and high
latency. Devices with 300 bps to 10 Kbps network connections and 5 to
10 second round-trip latency are not uncommon.

Version 1.2 and higher of the WAP specification provide a mechanism for the
device to tell the server what capabilities it has, both inherent in the device as
well as user preferences, for custom tailoring of content for that device. This spec-
ification is called User-Agent Profiling (UAProf) and is currently not adopted by
many device manufacturers. This will hopefully change in the future.

Testing Your Application on Various Devices

The old Java joke of “Write Once, Test Everywhere” is now a reality for wireless
developers. At least 40 difterent mobile devices with WAP browsers are on the
market, and each one has its peculiarities that must be accounted for. The task of
testing wireless applications is complex enough that companies such as Encerca
(www.encerca.com) are offering wireless testing services to developers who wish
to remain focused on developing their application and let somebody else keep up
with the variations in wireless data devices.

Thoroughly testing a mobile application for interoperability is an extremely
large task. Testing a traditional Web site could be done by using a Macintosh,
Windows, and Linux machine, each with various versions of Netscape Navigator
and Microsoft Internet Explorer installed. You then had most of the browsers that
would be run by your user base in one place where they could easily be used to
test your Web site. WAP browsers, however, vary quite a bit in the way they display

Www.syngress.com

59

60

Chapter 2 * Wireless Architecture

data and interact with the user.You would have to purchase each mobile phone
and WAP browser to ensure the same level of interoperability.

The most important thing to keep in mind when testing for interoperability
is that WAP is not a layout language. The tags are very general and do not give
you, as the developer, much control over how content will be laid out on the
screen. The WARP specification explicitly says in many places that the actual
implementation is left up to the manufacturer. This is kept from getting out of
control because although the specification leaves the visual implementation up to
the manufacturer, they leave very little confusion as to how the browser should
function in any situation. Thus, the display will vary quite a bit, but the action
will be performed the same on every browser.

Testing is made even more difficult because the gateway you are going
through has an effect on the data the device receives. Some gateways compile
WML to smaller files than others, and you may see your application stop func-
tioning on the device merely because you changed the gateway you are using.
Also, the current emulators do not behave as the actual devices and thus cannot
be used to guarantee that your application works. The only true way to test your
application is to try it with every device on every network.You can do this your-
self or hire a testing company to do it for you.

Adopting Wireless Standards

Many technologies are competing to become the winning wireless standard, and
each of them has their own merits. The unfortunate side effect is that you must
learn and use a variety of technologies that are related but not always similar. The
good news is that WAP is the most dominant technology at the moment; you can
safely use it for the initial version of your mobile site and then roll out other
technologies as time permits. For developers targeting the United States market,
most devices are using the Openwave browser version 3.x, which does not sup-
port WML natively. The WAP gateway can translate WML to Openwave’s propri-
etary HDML, but in some situations no equivalent HDML construct exists for a
given WML construct.

Choosing what technology to use is a difticult one and must be carefully evalu-
ated by determining the devices used by your target audience. If you are building
an application to be deployed on a United States network operator’s portal, you
will want to build your application in HDML. In fact, many of them will require
that you do. Most mobile phone manufacturers and network operators are openly
supporting WAP and will eventually migrate to it if they are not using it today.

WwWw.syngress.com

Wireless Architecture « Chapter 2 61

The safest route is to adopt the open standards that device manufacturers
around the world are—WAP. You can build your WAP application in such a way
that it will still work on the Openwave 3.x browsers using Openwave’s gateway
translation. This will allow you to have a site that is available on older United
States mobile phones that use the Openwave 3.x browsers and the next generation
of WAP-compliant handsets.

Options in Markup Languages

You have many options for building a wireless site, but many of them will limit
you to one or two devices that can be used to view them. The language that
will get you the widest audience worldwide is WAP, but you may have a user
base that all have devices that support another one of these languages and can
therefore use them.

Developing & Deploying...

Introducing XHTML

Not only is the markup language of choice for mobile applications going
to change, but also the World Wide Web is evolving to a new format
called XHTML. If your application embeds various markup language con-
structs into your data, you could end up with some incredible difficulties
later on.

Store all of your data in a format that does not tie you to your pre-
sentation: XML, SQL database with tight restrictions on the content, or
any other format you would like. You can then produce whatever pre-
sentation markup language you like.

You can do this a few ways. You can use Extensible Stylesheet
Language Translations (XSLT) to translate one XML document style into
another, allowing you to generate WML from a set of data results that
was sent to you in a different XML document. You can use the same
tools you use to build HTML Web sites as well—PHP, JSP, and ASP are all
quite capable of generating a well-formed XML document.

XHTML is the language being adopted by both Web and WAP
browsers, so being prepared to publish XML-formatted data ensures
that your system will not be made obsolete by the next generation of
markup languages. It is much harder to do and takes a lot more effort
up front, but you will be glad you did when the next big technology
comes out and you don’t have to start over to take advantage of it.

Www.syngress.com

62

Chapter 2 * Wireless Architecture

Wireless Markup Language

Wireless Markup Language (WML) is the markup language for WAP implemen-
tations. The WAP standard also dictates a scripting language (WMLScript) to
complement it. You should use WMLScript if you are trying to reach the general
public because it is the most wide-reaching language available on the market
today. It is optimized for low-bandwidth connections and small screens.

Compact HTML

Compact HTML (¢cHTML) is the markup language for the Japanese-based i-mode
service. It 1s a stripped down version of HTML and is served from standard Web
servers just like HTML, WML, and others. The inventor of i-mode, NTT
DoCoMo, is making the technology available worldwide and trying to make

it compete with WAP as the standard of choice for mobile users.

Web Clipping

Palm, Inc’s Palm VII PDA was the first device to use Web Clipping technology. It
uses a simplified version of HTML 3.2 and can be served from any standard Web
server. Web Clipping is part of a Palm Query Application (PQA), which is dis-
cussed in the next section in more detail (Palm, Inc. is now referring to PQAs as
Web Clipping Applications [WCAs]).You can find more information on Palm’s
Web Clipping in Chapter 6.

Handheld Device Markup Language

Handheld Device Markup Language (HDML) is a predecessor to WML that was
created by Openwave. HDML was intended to be an open standard, but
Openwave joined the WAP Forum and helped them push WAP as a standard for
mobile communication. Therefore, only Openwave browsers can read HDML
content. You will find the largest concentration of Openwave browsers installed
on mobile phones in the U.S.

Using Wireless Networks and
Their Evolving Generations

The network protocols are classified as to their approximate location on the evo-
lutionary path. The first generation was Analog Mobile Phone System (AMPS)
and is mostly regarded as obsolete, although many rural areas in the United States
continue to only have analog coverage. The second generation (2G) of service

WwWw.syngress.com

Wireless Architecture « Chapter 2

(our approximate location on the timeline right now) is digital and only has pro-
visions for accessing data services the same way you do at home, using a modem
and a dial-up connection over the particular wireless network you are using. The
modem is built into the phone, so you never see it, but it is there. This is often
referred to as circuit-switched data because it takes up the entire circuit for your
call, even if you don’t need it. Examples of 2G networks are Code Division
Multiple Access (CDMA), Time Division Multiple Access (TDMA), and Global
System for Mobile communication (GSM).

The next logical step would be third generation (3G), correct? Well, not
exactly. The infrastructure for 3G is taking longer than expected to build out and
companies have made advances in what they can do with the 2G infrastructure
to make it more capable of sending and receiving data—thus, two-and-a-half
generation (2.5G) technology was born. 2.5G networks are typically higher speed
than 2G and are sometimes packet-based allowing an always-on type connection.
Packet-based systems behave like a computer network: You can hook up as many
people as you would like to the same network, and if the amount of data trans-
terred by everyone is quite low, you will not have a problem. If everyone tries to
send or receive a large amount of data at the same time, everyone’s connection
will be slowed because only a certain amount of data can be sent at once. Global
Packet Radio System (GPRYS) is a good example of 2.5G technologys; it is
packet-based and uses the same infrastructure as GSM.

The 3G networks will be rolling out over the next two to three years and
promise to provide high-speed, always-on connectivity. There are two competing
standards for 3G: Universal Mobility Telephone Service (UMTS) and
CDMA2000. Most GSM operators are looking to adopt the UMTS standards in
order to continue with the current level of compatibility that GSM users have
between various networks today. Ultimately, we may get to a single standard for
all mobile devices and be able to travel anywhere in the world while making and
receiving calls. Unfortunately, it appears that our near future will still include
incompatibilities between networks.

The network operators are not the only important piece in this mobile com-
munications puzzle. Device manufacturers must provide the mobile devices that
are capable of taking advantage of these new systems. They are excited about the
possibilities are responding to the performance promises of 3G by incorporating
color screens and multimedia capabilities into their devices so that we can take
advantage of this promised bandwidth when it arrives.

A variety of networks are used around the world, but some generalizations
about what technology is adopted where can be made. Europe is mainly GSM,

Www.syngress.com

63

64

Chapter 2 * Wireless Architecture

the United States CDMA and TDMA, and Asia is mostly CDMA. The rest of the
world uses various networks that depend on the time at which the networks
were built and what network operator was interested in building them.

Noting the Market for Wireless
Browsers and Other Applications

You can do more than browse the Web on your home computer using your
Internet connection: reading e-mail, sending instant messages, and watching real-
time entertainment are a few examples of this. Mobile devices are capable of
more than just WAP browsing as well—some have POP clients built in for e-mail
access or HTML browsers to view the Web. Some of these technologies are just
starting to appear and may not be relevant to your wireless development for quite
some time, but it’s a good idea to be aware of them.

WAP Browsers

A WAP browser 1s typically installed by the manufacturer of the mobile device and
cannot be upgraded by the user. The look and feel of the browser is not dictated by
the WAP Forum and usually follows the look and feel of the device it is installed
on—navigating between address book entries on your Nokia phone, for example,
works the same as moving between pages on a WAP site. This gives the user a con-
sistent experience on a particular device, but not between devices from different
manufacturers or even between different models from the same manufacturer.

A WAP browser is responsible for more than just displaying WML decks, it
must maintain variables and navigation data such as a history stack. Even when
you refer to the basic task of rendering WML decks, the various WAP browsers
behave difterently—some render all “do” tasks as software-mappable keys on the
phone, whereas some always draw graphic buttons on the screen. These variations
are all within the rules of the specification and ensure that you will spend many
hours testing your WAP application.

The largest market for WAP browsers is mobile phones. The WAP browser is
included with the mobile phone software and typically cannot be upgraded or
changed aside from bug fixes. This helps the software developer’s situation slightly
because the WAP browsers that are in use can be identified quite easily, but intro-
duces the much bigger problem that people will have to purchase a new mobile
phone in order to get the latest features. The purchase cycle for a mobile phone
is quite long, which means that mobile Internet site developers will have to deal
with multiple versions of browsers running on various mobile phones for quite

WwWw.syngress.com

Wireless Architecture « Chapter 2

some time. This makes the so called “browser wars” between Netscape Navigator
and Microsoft Internet Explorer look more like a skirmish.

WAP browsers are also available for a variety of PDAs, and these do not suffer
from not being upgradeable like mobile phone WAP browsers do. The extra
storage space on a PDA also means that services such as POP-based e-mail can
be accessed while you are on the go. Many Web-based e-mail services have pro-
vided WAP-based e-mail for their customers as well, so not having a dedicated
mail client does not mean that the user will be without e-mail access.

Java2 Micro Edition

“Write Once, Run Anywhere” is the battle cry for Sun and its Java efforts. With
Java2 Micro Edition (J2ME), Sun hopes to provide a compelling platform for
device manufacturers, application developers, and end users. The device manufac-
turers will appreciate the low memory and processor requirements, application
developers can develop in a language that 1s quickly becoming universally
known, and end users can access the same applications from their Palm Pilot,
Nokia phone, Ericsson phone, or any other manufacturer that supports J2ME.

Developing & Deploying...

J2ME

J2ME is fundamentally different from the other technologies listed here.
J2ME-enabled devices are able to run applications, called MIDlets, that
are stored on the device independent of a network connection. J2ME is
a general description of a smaller footprint Java.

J2ME has been further broken down into Configurations and
Profiles. The Connected Limited Device Configuration (CLDC) specifies
the basic hardware and Java environment requirements for a device to
be J2ME compliant under the CLDC specification. (There is also a
Connected Device Configuration that doesn’t limit processing power
and memory as much.) The Mobile Information Device Profile (MIDP)
goes into more detail as to what specific Java APIs are available and
what the device must support.

The ultimate goal is that a MIDlet written and tested on one Mobile
Information Device (MID) will run on any other MID without requiring any
modifications. This changes mobile devices from browsers to platforms
that can run mobile applications—a much more powerful concept.

Www.syngress.com

65

66

Chapter 2 * Wireless Architecture

I-Mode and cHTML

Just as WAP defines more than just WML, i-mode defines more than just com-
pact-HTML. The i-mode service is packet-based, and the device is always con-
nected to the Internet. This means the user doesn’t have to wait for a connection
and can use services such as instant messaging to be notified about new e-mail
messages or other items of interest. NTT DoCoMo is interested in bringing
1-mode services to the rest of the world but has run into some difficulties in
trying to do so.The rest of the world will probably never use this technology
because the next generation of WAP and 2.5G networks will effectively accom-
plish the same results.

Palm Query Application

You can probably guess from the name alone that this is a technology unique to
PDAs that run the Palm OS. In order to use a Web Clipping site, the user must
install a Palm Query Application (PQA) via hot-sync that you, as the site devel-
oper, have compiled to include at least the starting page of your application. You
can also bundle images and any information that will not change into the PQA
so the user will not have to wait on a download over a slow network connection
to retrieve these items. The end result is a mobile Internet site that is written in a
form of HTML but must be accessed via a special client and must be served up
differently than your existing Web site.

Many Palm device users are installing third party WAP browsers on their
devices to eliminate this cumbersome burden of preinstalling software for every site
they want to visit. PQA capability is not included on all Palm devices. Note, how-
ever, that even if you install a WAP browser, you will still be using the Palm.net
network to access the Internet. Palm.net uses a paging network and requires cov-
erage by the Palm.net base stations in order for you to access the Internet. Details
of how the Palm mobile connectivity works is explained in Chapter 6.

Web Browser

Some device manufacturers are including a Web browser on their wireless
devices.You can view normal Web sites using this browser, but it is displayed on
your phone or PDA screen. The user experience of these browsers is less than
stellar, but users are able to view content that would otherwise be inaccessible.
Microsoft includes Web browsing capabilities in its Mobile Internet Explorer.
Including a Web browser 1s convenient while the mobile Internet is still young

WwWw.syngress.com

Wireless Architecture « Chapter 2

because many resources are not yet available as WAP sites. The inclusion of a Web
browser allows you to access these sites and get the information you are looking
for, even if the content is difficult to read and navigate. Web browsers are a good
technology to include while the mobile Internet is just getting started, but they
will eventually be replaced by a markup language/browser combination, which
will be more suited to these small devices.

Other mobile devices are also gaining connectivity and investigating the best
interface to use for their mobile Internet. Palm OS uses a reduced capability Web
browser, devices that run the Microsoft PocketPC operating system have Internet
Explorer, and SymbianOS has a variety of available Web and WAP browsers. The
largest advantage that these types of devices have is the capability to install appli-

cations. You can download new types of browsers and decide what you do and
don’t like.

Short Message Service

The Short Message Service (SMS) allows you to send and receive messages of
about 160 characters via your mobile phone using a GSM network. This is a rela-
tively old technology but is still quite popular. Efforts are under way to add mul-
timedia capabilities to SMS and increase the number of bytes that can be sent,
eftectively removing the “short” from SMS. Many GSM phones allow you to add
entries to the address book and send updates to the phone via SMS, making it a
much more powerful tool than a simple instant messaging program.

Some other networks allow you to receive text messages, but sending them
from your mobile device (called mobile originate or MO) is usually not available. This
reduces the interest and amount of usage that these services get compared to SMS.

Www.syngress.com

67

68

WwWw.syngress.com

Chapter 2 « Wireless Architecture

Summary

Although developing for the wireless Internet can seem quite daunting at first
because of the variation between devices and technologies, it is not that difticult
a task. The designers of WAP wanted any Web developer to feel comfortable
building applications using WML and have therefore followed the example set by
HTML quite closely. The most difticult transition for Web developers 1s the
strictness of WAP. WAP gateways will not pass your WML deck along to the user
it it has any syntax errors. This is a stark contrast to the wired Web world where
everything is passed to the browser, and it decides what it can and cannot do. If
you say that you have a WML 1.1 file to send to the browser, and you use tags
from WML 1.2, the gateway will merely send an error message to your visitor—
and you will get no indication on the server.

We have looked at the pieces that fit together to build the wireless Internet,
and you should have a good idea of what the roles of each of those pieces are. We
will look at each of these technologies in more detail as we progress through the
remaining chapters. The most important piece for you to focus on as a wireless
developer is the WML markup language and how you can build an engaging
WAP site for your customers.

Devices will continue to evolve, and the limitations that we face today may
not be around forever. Screen sizes will probably stay about the same (nobody
wants a larger mobile phone, after all) but the resolution will increase and we are
already seeing color infiltrating the market. As the wireless networks transition to
an always-on, high-speed connection, we will be able to take advantage of these
increased capabilities in mobile devices.

Many competing technologies are out there, and nobody can guarantee that
WAP will ultimately become the only one you need to worry about, but its posi-
tion in the marketplace looks quite promising.

Solutions Fast Track

Components of a Wireless Network

M You can use your existing Web server to provide WAP services with only
minor configuration changes.

M WAP introduces a gateway between your server and the WAP browser.
The gateway helps the limited memory, low bandwidth device browse

Wireless Architecture « Chapter 2 69

the Internet by validating WML files and compiling them for quicker
transmittal.

Adjusting the Metaphor for the Wireless Internet

M Just as the Web required a different approach than print publishing,

the wireless Internet requires a different approach than the Web. The
capabilities of the mobile device are quite different than that of a : I‘
desktop computer. 2

The mobile user is, by definition, on the move and will not tolerate
difficult-to-navigate sites or extra fluff that just gets in the way of
helping her find what she is looking for.

Your Web site and WAP site should work together to provide an
experience that never inconveniences the user. Long signup forms and
surveys should be reserved for the Web site, and the WAP site should
help the user find the information he is looking for as quickly as
possible.

Accepting the Challenge of WAP-Enabled Devices

|

Adopting Wireless Standards

]

M

The form factor and capabilities of WAP devices can vary greatly—
ranging from pocket-sized to handheld, and possibly to the size of a
large-screen television.

Some components are in place to help you determine device capabilities
as they hit your site. These are not pervasive yet, but may be in the near
future.

Testing is important. Each device has its own peculiar set of features that
make it behave differently from every other browser.

Many wireless standards are out there. Find out what your audience has
access to and build your site accordingly.

WAP is the standard that currently has the most momentum, but this

could change as companies experiment and roll out other technologies

Www.syngress.com

70 Chapter 2 * Wireless Architecture

Noting the Market for Wireless
Browsers and Other Applications

M A variety of applications are available for mobile devices. The one you
can almost guarantee will be available is the WAP browser, however.

M Java2 Micro Edition is poised as an interesting player in the mobile data
arena.You can write an application once that can run on any brand of
‘* phone and on any network.

M Old technologies such as SMS are still going strong. Device
manufacturers are slowly overcoming the limitations of SMS, and the
concept of SMS is being expanded on to include multimedia
capabilities.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Do I need to run my own WAP gateway to let people on mobile devices
access my site?

A: You probably do not nieed to run a WAP gateway. WAP gateways are usually
installed by network operators and/or ISPs.You don’t need to install a
_ modem pool for people to accesssyour Web site, but some people want the
L J extra privacy that comes along with it. The same holds true for a WAP
gateway.

Q: Can I download a browser for my mobile phone?

A: Unlike your home computer, most phones do not let you install software on
them.You need extra hardware to support WAP anyway, so downloading a
browser wouldn’t do you any good.You can, however, download WAP
browsers for Palm devices and PocketPC products.

WwWw.syngress.com

Wireless Architecture « Chapter 2 71

Q: Is it safe to bank on a WAP device?

A: Yes.There is a very finite chance for an attacker to view your data, but he
would have to break into your network operator’s computer room and then
sift through millions of transactions looking for your bank account informa-
tion before he could do anything with it. The WAP browser will negotiate an
encrypted connection using a form of the Transaction Layer Security (TLS)
designed specifically for the WAP environment: Wireless TLS (WTLS).You Py
run a larger security risk when you bank by telephone or give your credit é

card to your waiter to pay for your restaurant bill.

Www.syngress.com

Chapter 3

A New Markup:

WML

Solutions in this chapter:

A Brief History of Wireless Content H;'.i‘lj
WML Overview

'_WML Elements

Creating WML Content
WML Editors, WAP SDKs, and Emulators

M Summary
M Solutions Fast Track

M Frequently Asked Questions

73

74

Chapter 3 « A New Markup: WML

Introduction

Telecommunications technology has arrived at the point where we can now access
information on the Internet through a mobile cellular device. Wireless Markup
Language (WML) is a lightweight markup language specifically created to address
the limitations of wireless devices and the rigors placed on the transmission of con-
tent over the air through cellular networks. This chapter presents an overview of’
the core basics necessary to understand the WML markup language. Once you have
the basics under your belt, you can go on to take a concise yet thorough examina-
tion of the various elements that make up the WML language.

With a thorough understanding of the WML language, you will then take a
look at the various approaches you can take to create WML sites that will really
shine. The chapter provides an overview of the many software development kits
(SDKs), WML editors, and emulators that are available to aid you in the construc-
tion of WML sites.

A Brief History of Wireless Content

The wireless transmission of data occurred longer ago than one may think. Our
ancestors were using sound to transmit primitive coded signals between villages
thousands of years ago, transmitting information without any apparent physical
connection between source and receiver; and the pioneering work of inventors
such as Samuel Morse and Charles Babbage in the 19th and 20th century laid the
foundations for the massive worldwide cellular networks we now enjoy.

Similarly, there is more than meets the eye when examining the Wireless
Application Protocol (WAP) and specifically, the WML that WAP specifies,
because WML has its historical roots in the development of several separate
offerings from different vendors.

Developing the Intelligent
Terminal Transfer Protocol

The Intelligent Terminal Transfer Protocol (ITTP) was developed by Ericsson in
1995 with the specific aim of allowing network operators to provide enhanced
wireless services to their subscribers. ITTP essentially handles the communication
between the network-based application and an appropriately equipped mobile
phone, however, its limitation is that such services are specific to the network
implementing them.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Developing the Handheld
Device Markup Language

The Hypertext Markup Language (HTML) necessitates a clear visual and struc-
tural reference with which to successfully render content within Web browsers.
Much of HTML is unnecessary to users of wireless devices, and with the band-
width overhead present in current cellular networks, developing wireless content
with just HTML doesn’t make sense. Much of the HTML would be unnecessary
or even useless to the end device. This problem was very much in the minds of
Unwired Planet, which in mid-1996 developed the Handheld Device Markup
Language (HDML) and made it available to developers.

HDML is a lightweight language designed to allow specially equipped “thin-
client” wireless devices to access Internet-based content using the underlying
World Wide Web transports and protocols. Unwired Planet submitted their pro-
posal for HDML to the World Wide Web Consortium (W3C) in April 1997.The
specification currently stands at version 3.0 and is used extensively in wireless
devices in the United States. Although the Extensible Markup Language (XML)
had become available around the same time that Unwired Planet submitted
HDML to the W3C, at that time the huge potential of XML had yet to be real-
ized, and it was passed over by Unwired Planet as a means of representing wire-
less content.

Developing the Tagged Text Markup Language

The Tagged Text Markup Language (TTML) was developed by Nokia
Corporation as part of its Smart Messaging solution to solve the same problem
that Unwired Planet was seeking to address with HDML: accessing Internet-
based content from a wireless device.

The Nokia Artus NetGate, (known in the US as the Nokia TTML Gateway)
allowed filtered content to be harvested from existing sites and sent to the user’s
device as a Short Message Service (SMS). The Artus NetGate gateway and an
accompanying NetGate compatible phone (the 81101 for enhanced browsing)
were announced in March 1997.

Forming the WAP Forum

In 1997, the US network operator Omnipoint Communications asked Nokia
and Unwired Planet to apply for the contract to provide wireless content services
to Omnipoint. Omnipoint did not want to have to deal with the proprietary

Www.syngress.com

75

76

Chapter 3 « A New Markup: WML

solutions that vendors such as Nokia (with Smart Messaging) and Unwired
Planet (with HDML) proposed and requested that they work together to provide
a single solution. In June 1997, Nokia and Unwired Planet formed the WAP
Forum in response to Omnipoint’s request, also bringing together Motorola and
Ericsson. These initial founders represented over 90 percent of the wireless
market. The aim was to develop a protocol that could be built on any platform to
allow users to interact with services and information as fast and efticiently as pos-
sible. Where HDML dealt with structuring and presenting data to the user, WAP
defines a whole series of specifications that deal with every aspect of Internet-
based wireless communications, including the language used to describe wireless
content. WAP essentially took all that was best from I[TTP, HDML, and TTML
and combined them in a single series of protocols (with many improvements
along the way) to form a single network-independent technology that could be
utilized from any appropriately equipped devices.

Combining Languages into
the Wireless Markup Language

The WAP Forum examined the various markup languages being offered by the
different companies and took the best aspects of each to form the Wireless
Markup Language. WML was released by the WAP Forum in 1999 and proved an
immediate success—all the handset manufacturers quickly adopted it. Those
devices that contained HDML browsers also gained the capability to browse
WML content from HDML version 3.1 onwards.

As was noted earlier, when HDML was created, XML was not thought to be
a proven technology. However, with the subsequent runaway success of XML, it
was obvious that WML would serve developers’ needs best if it was formulated as
an application of XML.

At first glance, a WML file looks quite similar to an HTML file. WML uses
brackets (< and >) to enclose elements, and the elements have attributes just as
HTML does. However, this is where the similarity ends. WML is purely con-
cerned with the structuring of data. It does not specify how the elements should
appear on-screen—this is left to the browser, which will render the WML as it
sees fit. This was a deliberate move on the part of the WAP Forum, and though
sometimes criticized for being too unstructured, it has allowed WML to be used
in everything from mobile phones with a tiny two-line display to more sophisti-
cated “Smart Phone” devices such as the Ericsson M280.

WwWw.syngress.com

A New Markup: WML * Chapter 3

WML offers many improvements over HDML, which this chapter covers
later when it looks at the specifics of the language. The most important change is
that WML, as an application of XML, must abide by the rules that govern the
creation of XML documents.

Projecting Future Growth

As with so many Internet standards and technologies, evolution of wireless stan-
dards continues at incredible speed. Nippon Telegraph and Telephone (NTT)
DoCoMo’s i-mode service, a well documented runaway success in Japan, delivers
a highly popular service to its subscribers using a subset of the HTML language
called compact HTML (cHTML). Roughly equivalent to HTML 3.2 and
requiring no extra server software over and above that used for hosting Web sites,
developers have been able to supply content without the need to learn complex
new protocols.

With such popularity, it might seem safe to say that WAP’s days could well be
numbered, but this is not so. WAP is a continuously evolving specification and (in
line with the continuing development of HTML) is set to embrace XHTML
Basic and Cascading Style Sheets (CSS), though WML will continue to be sup-
ported. NTT DoCoMo also has indicated it is likely to support XHTML in the
tuture and will thus fall in line with the WAP Forum in ensuring that future
developments are as interoperable as possible and will provide a firm mutual base
to expand upon.

Commenting on the invention of the telephone in 1876, Western Union said
“This ‘telephone’ has too many shortcomings to be seriously considered as a
means of communication.” Who could have predicted that the humble telephone
would throw off its wire shackles and empower people to receive personal calls
from across the globe?

WML Overview

When HTML was first conceived, it was primarily meant to be a way of struc-
turing data so that its creator, Tim Berners-Lee, could more easily find the con-
tent he needed. As HTML progressed from version to version, the limitations of a
structural markup language became so frustrating that the now near-legendary
Netscape and Microsoft HTML extensions were added, allowing the HTML
authors to specify what sort of fonts were to be used, in what color, and so on.
HTML, together with Cascading Style Sheets (CSS), companion scripting lan-
guages, and a whole plethora of XML-based languages is now a very different

Www.syngress.com

77

78

Chapter 3 « A New Markup: WML

beast. However, its development into the mature form it takes today has much to
do with a return to using HTML for what it was meant to do—structure con-
tent. Similarly, WML seeks to provide structure (and therefore meaning) to con-
tent. As mentioned earlier, the use of tags and attributes shows a similarity with
HTML, but this is a language that was developed from the ground up for use on
wireless devices, an environment which has many limitations concerning what
content can be easily viewed. WML has no corresponding CSS style sheet to tell
a device how the content should be formatted—that is left up to the device. This
was intentional, because many types of different devices would be making use of
WML, from personal communicators to appliances. The biggest difterence
between WML and HTML is that WML is also an application of XML, bringing
new considerations that we examine in the following sections.

The most important issues that affect how you will approach the creation of
WML documents is that WML as an application of XML is a strictly interpreted
language. A document is a WML document if it is both well-formed and valid.
Additionally, WML must meet certain further constraints, which we examine later
in the chapter.

Creating Well-Formed Documents

A WML document contains elements that have a start element and an end element. If
the element isn’t a container for data, then the element must be self-closing. This
may seem somewhat confusing, so let’s take a look at an example partial docu-
ment (don’t worry about what everything means, we take a look at that later).

<wni >
<card>
<p>l like Ice-cream
Do you?</p>
<car d>

</ wnl >

As you can see, the code has four elements: <wml>, <card>, <p>, and
.
The <wml>, <card>, and <p> elements are container elements and as such have
corresponding closing tags. The
 element, however, is empty—it doesn’t
contain any data, and thus is self-closing, which is indicated by the backslash.

Nesting

WML documents must be well-formed. This intimidating statement simply means
that a document’s elements must match. WML is constructed hierarchically, as

WwWw.syngress.com

A New Markup: WML * Chapter 3

shown in the example in the preceding section. The opening element that occu-
pies the same position in the hierarchy must correspond to the closing element at
the same level. The following example shows an example of a document that is
not well-formed:

<wni >
<card>
<p>l like Ice-cream
Do you?<card>
</ p>
</ wn >

Here, the <card> element has been closed before the <p> element. This is an
example of invalid nesting. In addition to being properly nested, the elements must
be closed, as detailed in the specification. Consider the following example:
<wnl >

<card>
<p>l like Ice-cream
Do you?
<card>
</ wml >

The closing element for the <p> element has been left out, which would
result in the document not being well-formed. With the code nested and all
elements closed, we have a well-formed piece of WML:

<wni >
<card>
<p>l like Ice-cream
Do you?</p>
<car d>

</ wml >

Nesting of elements should come easily to all those who have been practicing
good HTML. However, due to the very forgiving nature of HTML, a lot of
developers could be in for a big surprise, so it will stand you in good stead to get
into the habit of nesting and closing elements properly, not only in WML but in
HTML as well.

Creating Valid Documents

In addition to being well-formed, a WML document must be valid. Validity 1s
achieved by the inclusion of a Document Type Definition (DTD).The DTD

Www.syngress.com

79

80

Chapter 3 « A New Markup: WML

describes the elements that may legally exist within the WML document and
ensures that for the document to display, the WML document contains only those
elements allowed by the DTD.
To make our previous well-formed example valid we must add the appropriate

XML declaration and the reference to the DTD:
<?xm version="1.0"7?>
<! DOCTYPE wnr PUBLIC "//WAPFORUM / DTD_WM__1. 1// EN'
http://ww. wapforum org/ DTDY wr _1. 1. xml >
<wni >

<card>

<p>l like lIce-cream
Do you?</p>

</ card>

</ wm >

This example is both well-formed and valid. The following document,

although it is well-formed, is not valid:
<?xm version="1.0"7?>
<! DOCTYPE wm PUBLIC "//WAPFORUM / DTD_WM__1. 1// EN"
http://ww. wapforum org/ DTDY wr _1. 1. xmi >
<wni >

<card>

<para>l like |ce-cream
Do you?</para>

</ card>

</ wnl >

\WARNING

Although the various SDK emulators are excellent for providing in-depth
information on the interactions that take place during the loading and
execution of WML content, the actual end-device will very likely react dif-
ferently upon encountering an error; it will also almost certainly provide
precious little (if any) information on what went wrong. Do not rely 100
percent on emulators to test your content.

www.syngress.com

A New Markup: WML * Chapter 3

At first glance, everything may look all right, but <para> is an element that is
not defined in the DTD; therefore, the WML is not valid and will cause an error
on any device that tries to display it. Figure 3.1 shows how well-formed and valid
WML displays; Figure 3.2 shows how incorrectly formed WML will generate an
error.

Figure 3.1 Well-Formed and Valid WML

()

Figure 3.2 The SDK Catches an Error

This example was created using the Openwave UP.SDK emulator, which
includes a handy screen that provides more information in the event of an error.
By referring to the information screen we can see exactly where we went wrong.

Www.syngress.com

81

82

Chapter 3 « A New Markup: WML

Figure 3.3 shows that the SDK has picked up that the closing element for
<card> did not match the closing element for <p>, which causes an error.

Figure 3.3 The Error in Detail

A 11 e
P —

gkl o TP nomdesr B«S0S4- ™ MFFORIAADTDh WML i .1

DTDs are essentially a set of rules that say what elements can exist and in
what form they can appear. Thus, it determines whether the element contains
content or not, what attributes it has, and where it can appear in the document.
In the following example, taken from the WML DTD, you can see how the head
element should appear (we added line numbers for reference):

1 <'ELEMENT head (access | nmeta)+>
2 <I ATTLI ST head

3 %oreattrs;

4 >

Getting to know how to interpret DTDs can be worthwhile because they
often provide a definitive guide to what can and cannot be used in the language
they define. Although appearing complex at first, the DTD i1s written according
to a convention known as Backus Naur Form (BNF). BNF is a notation that
describes the syntax a language must use. Knowing how BNF works will allow
you to “read” the specification with ease. Our preceding example reads as follows:

» In Line 1, [ELEMENT specifies the name of the element (<head>) and
what other elements it may contain. For the <head> element, this can
be <access> or <meta>.

www.syngress.com

A New Markup: WML * Chapter 3 83

» In line 2, /ATTLIST specifies which attributes the <head> element can
contain. In this case, the <head> element can contain only those defined
as core attributes elsewhere in the DTD; the attribute %ocoreattrs; is a refer-
ence to another part of the DTD where the core attributes are specified
in a similar fashion to the head.

The various WML elements are covered in the later section “WML Elements.”

NoTE

You can find out more about DTDs and XML at www.xml.com.

Using WML Syntax

As mentioned earlier, WML 1s XML-based, which means that every WML file is
an XML file and must contain a reference to the DTD. Therefore, the following
must be included at the beginning of every WML file:

<?xm version="1.0"?>
<! DOCTYPE wr PUBLIC "//WAPFORUM / DTD WM__1. 1//EN'
htt p: // ww. wapf orum org/ DTD/ wrd _1. 1. xmi >

This code tells the device interpreting the file that this file is an XML docu-
ment (in this case, conforming to XML version 1.1) and that the DTD is located
at www.wapforum.org/DTD/wml_1.1.xml.

WARNING

Unlike HTML, the XML declaration must be on the first line. Even a single
space before the XML declaration will cause an error—the browser
cannot interpret white space until it knows the file is an XML file and to
which DTD it should be referring. In HTML, white space at the beginning
of a file is highly prevalent because pages are frequently constructed
dynamically from a database, which results in files with expanses of
white space where the server-side code was stripped out (this can of
course be avoided by sensibly constructing the server-side code).

Www.syngress.com

84 Chapter 3 « A New Markup: WML

Following Syntax Rules

WML can consist of a mixture of entities, elements, attributes, comments, and
variables. Many of the syntax rules in WML are directly inherited from XML:

All WML documents must contain the root element WML that contains
any other WML elements.

All elements must be lowercase (with the exception of keywords such as
DOCTYPE and ENTITY, which are in uppercase).

All element attribute values must be quoted.
All elements must have corresponding endings.

Elements which are empty elements (that is, have no content) must use
/> to signify closure of the element.

All white space is treated as significant.
Elements must not overlap, though they may be nested (as with HTML).

FElement names are case-sensitive: name and Name are not the same.

Replacing Entities

Either numeric or named, entities are specific characters within the document

character set that require escaping in WML or that may not be supported for
entry within editors (due to their using a different character set, for example). All
WML entities have the following form:

&entityreference;

Thus, the commonly used ampersand (&) becomes:

&anp;

In WML, certain characters are used to denote special situations, such as the

start and end of an element (< and >). Simply placing the character (<) in the

content would thus generate an error. Entities are used to reference content by

placing the entity on the content as a placeholder. Thus, to show a code snippet,
relevant entities would be replaced as follows (Figure 3.4 shows the result when
viewed on a device or emulator):

<p>The

&l t; p> el ement</p>

WwWw.syngress.com

A New Markup: WML * Chapter 3
Figure 3.4 WML Entities

T ot [fmwg b
Ra|wrrimmr |

As you can see in Figure 3.4, the < and > entities as output on a device
show how you can insert content into WML that would not otherwise be possible.

Closing Elements

Elements are similar to HTML elements (or fags) in that they specify the markup
and structure of a WML file. However, due to the use of XML, WML elements
do not seek to provide formatting information. This is left to the end device to
work out.

Elements can be found in one of two forms:

<el enent >Cont ent </ el enent >

or:

<el enent />

Although the first example, with its opening and ending tag, will be familiar
to anyone who has used HTML, notice the backslash on the second example.
WML is far less forgiving than HTML, and if an element is not a container for
content, you must use the backslash as shown to explicitly close it. If the element
does not contain any content but has a corresponding closing element, you must
still include the closing element, for example:

<el enent > </ el enent >

Www.syngress.com

85

86

Chapter 3 « A New Markup: WML

Characterizing the Element with Attributes

Although an element can provide information, such as identifying enclosed con-
tent as a paragraph (as in the <p> element), further information about the ele-
ment’s characteristics is provided by adding attributes to the element, as necessary.
Thus, if you want to right-align a paragraph, the attribute would read as follows:

<p align="right">Ri ght-aligned text</p>

All attributes must be enclosed in quotation marks (either single or double)—
this 1s strictly required by WML. Failure to enclose all attributes in quotes gen-
erate an error, and the content will fail to load in the device.

NoTE

No attribute may be named more than once in any element that
contains it.

You can find more information about which attributes are applicable to
which elements in the later “WML Elements” section.

Case Sensitivity

In addition to enclosing all element attributes in quotes, WML—unlike
HTML—is case-sensitive. All elements and attributes must be in lowercase.

Handling White Space

White space within text is handled by WML in the same manner as XML default
white space handling. White space before or after elements is ignored completely,
and 1in fact, sequences of white space (such as tabs and spaces) will be collapsed
into a single space, the treatment of which will depend on the locale. Thus, you
cannot space words within text by using multiple spaces or tabs. The handling of
white space within elements and attributes is dependent on the rules defined in
the XML specification referenced within the XML declaration at the beginning
of the WML deck.

Collapsing Carriage Returns

The numerous examples in this chapter make use of carriage returns and tabs to
format the content, making it easier to follow.You can continue this practice

WwWw.syngress.com

A New Markup: WML * Chapter 3

through to actual WML files to make code easier to read when editing. In WML,
the user-agent (or the WAP Gateway) will take carriage returns, tabs, new lines,
and multiple spaces, and collapse them to a single space as part of the process of
minimizing the file size.

Commenting

WML comments are much like their HTML counterparts, though they must not
extend across more than one line. Thus, the following is valid:

<l-- A conment -->

This, however, is invalid:

<l-- A Comrent...

and another -->

Using Variables

A variable is a temporary parameter, commonly stored on the user-agent into
which a value can be inserted for future access during the session. A variable
within WML has a very exact syntax.

Where white space can be expected to signify the end of a variable, the
following is acceptable:

$i dent i fier

If this is not the case, the variable must be enclosed in parentheses:

$(identifier)

Variables are covered in more detail in Chapter 4.

Formatting Text

Now for the bad news: Whereas HTML contains much to help you format your
content, such as font tags and Cascading Style Sheets, the WML specification
leaves that pretty much up to the receiving device. This behavior was intentional,
given the huge range of possible wireless devices that are bound to be created,
and means that if you rely on some kind of formatting to get across a key part of
your application functionality, you could be heading for problems. This is com-
pounded by the haphazard implementation of what little formatting control is
allowable in WML by the currently available devices.

Www.syngress.com

87

88

Chapter 3 « A New Markup: WML

The formatting that is available addresses the bare minimum necessary and
includes the following:

» Elements for bold and strong emphasis (or)
= Elements for italic and emphasized text (<I> or)
» Elements for underlined text (<u>)

» Elements to manipulate font size (<small> and <big>)

Displaying Fonts

You have very little influence over the fonts used in a device. They will almost
certainly be nonproportional in nature, which rules out fun ASCII text of the
type sometimes used to create basic pictures because these require proportional
fonts. Take a look at the differences in the interpretation of markup containing
formatting instructions in the comparison between Nokia and Phone.com
devices in Figures 3.5 and 3.6. Both emulators are displaying the same WML
content, but the Nokia device fails to display the bold text as intended. In fact,
the actual Nokia 7110 does not display formatting such as emphasized, bold, or
underlining.

Figure 3.5 Use of on a Phone.com Browser

Isascene
SEadNNg
BEa8MIG

WwWw.syngress.com

A New Markup: WML * Chapter 3 89

Figure 3.6 Use of on a Nokia Browser

Both emulators will interpret the WML, which is well-formed and valid, but
the Nokia browser doesn’t have the capacity to render bold text, so the ele-
ment is simply ignored, and the text is displayed in the normal default font.

NoTE

Figures 3.5 and 3.6 are for guidance only. Although sophisticated, emu-
lators do not necessarily exactly reflect what your WML will look like on
an actual live device. Always remember to check your WML on a real
device to prevent any unwelcome surprises. You can learn more about
emulators later in this chapter in the section called “WML Editors, WAP
SDKs, and Emulators.”

Reserved Characters

WML uses a number of special characters to denote characters that may not be
present within the current document encoding. The characters have the following

syntax:

& entity reference ;

Www.syngress.com

20

Chapter 3 « A New Markup: WML

The entity reference can be numerical, named, or hexadecimal, for example:

<
 :;

These will all cause the < character to be displayed on the device screen.

It 1s vitally important to include the ampersand and semicolon because
missing either of these will generate an error. You need to consider seven impor-
tant entities within WML, as shown in Table 3.1.

Table 3.1 Character Entity Reference Table

Entity Name Entity Entity Description
quot " Quotation mark
amp &#38; Ampersand

apos ' Apostrophe

It &#60; Less-than

gt > Greater-than

nbsp Nonbreaking space
shy ­ Soft hyphen
Displaying Tables

Tables in WML are fairly simple in comparison to HTML tables, reflecting the
limitations of the display generally available. You cannot nest tables, nor can you
set explicit widths, although you must specify the number of columns within a
row set.

\WARNING

Only the more advanced devices, such as the Ericsson R320, are likely to
be capable of displaying data marked up using tables. You must carefully
inspect the target device to ensure that the device is capable of handling
the display of tables and that the contents of the table will display as
intended.

WwWw.syngress.com

A New Markup: WML * Chapter 3 91

Meta Information

Meta information is information designed for use by the browser or gateway and
is not displayed to the user. Meta information is included within the head of the
document, the precise range of which is generally left to the device manufacturer

to specify.

Controlling Caching

Whenever a request is made for a WML page, the device will cache the received
file, allowing it to be called up from the cache instead of having to download the
whole file again. This can considerably speed up browsing . The current devices
do not have large caches; when dealing with dynamic data that may have the
same URL but different contents each time the URL is accessed, you may want
to disable caching.

You can control caching in a number of ways. Caching is a somewhat com-
plicated issue to address because many devices cache differently than others and
also differ in what instructions can be given to them to control caching. The fol-
lowing meta information is intended to cater to as many devices as possible:

<meta http-equiv="Cache-Control" forua="true" content="no-cache,

max- age=0, nust -reval i date, proxy-revalidate, s-maxage=0"/>

NoTE

As you can see from the examples in this section, you can specify from a
number of headers to cater for as many eventualities as possible.
Whenever caching is a concern, make sure you do the appropriate back-
ground research and testing to target the device on which you will be
deploying your solution.

Additionally, making use of the Expires header is an ideal way to control
browser caching. It works very well on many different devices. If the document is
set to expire in the future, the browser will always re-request the content, thus
ensuring the document is never reloaded from the cache.You can include this in
server-side script, such as ASP:

<%

Response. Expires = -1

Www.syngress.com

92

Chapter 3 « A New Markup: WML

Response. AddHeader "Cache-Control", "no-cache, nust-revalidate"
Response. AddHeader "Pragma", "no-cache"

%>

NoTE

In addition to checking how the individual device handles caching, be
aware that WAP gateways may employ caching technology as well,
which can be harder to identify.

Bookmarking

Bookmarking works much in the same way as Web browsing, allowing a user to
mark a page of interest so that they can return directly to the page at a later date.
Sometimes you may not want a user to bookmark your page (such as when the
URL also contains information specific to that particular session).You can control
bookmarking on the Openwave platform with the following meta information:

<meta nane="vnd. up. markabl e" forua="true" content="fal se"/>

Understanding the Deck of Cards Paradigm

A WML file uses a “deck of cards” paradigm to structure content. Think of each
file as a deck, within which are any number of cards. Each card is a single page
that can be displayed on the device. A simple WML file containing two cards
within the deck would look like the following:
<?xm version="1.0""?>
<! DOCTYPE wr PUBLIC "//WAPFORUM / DTD WM__1. 1// EN'
htt p: / / www. wapf orum org/ DTD/ wrd _1. 1. xmi >
<-- Start of the deck -->
<wm >

<l-- Card 1 -->

<card>

</ card>
<l-- Card 2 -->

WwWw.syngress.com

A New Markup: WML * Chapter 3

<card>

</ card>
<l-- End of the deck -->
</ wnl >

Decks are extremely handy for sending the user groups of pages that they are
likely to access, meaning that the user has to make only one connection to
download several separate cards.

WML Elements

The previous example introduced the concepts of decks and cards. You may have
noticed that the structure of the deck looked a lot like HTML. In fact, WML is
quite similar to HTML in its use of elements and attributes to describe the con-
tent within each file. The <wml> and <card> elements in the example are just
two examples of the elements you’ll find in the WML language.

Adding Attributes

Most WML elements have at least one attribute that you can use to define
parameters that specify how the device should handle the element. The element’s
attribute(s) are placed in the opening element and an attributes’ values are
enclosed in either single quotes (') or double quotes ("). Here is an example of
how an element containing two attributes would appear:

<el enent attributel="valuel" attribute2="val ue2">text</el enent>

WARNING

As you can see in the example in this section, there is a space between
each attribute. This is required in the WML specification; failure to sepa-
rate each element with a space will cause the WML to fail to load.

You will see that most of the elements in the WML Elements section of this
book contain several different attributes that you can set to specify how the
element will be used.

Www.syngress.com

93

94

Chapter 3 « A New Markup: WML

The id and class Attributes

The id and class attributes respectively allow specific elements or groups of ele-
ments to be individually identified and manipulated. An id may be assigned only
once within a particular deck and is thus unique in that instance, whereas a class
may be assigned to many different elements within the deck and is thus useful for
grouping similar elements. You can have multiple class names within the class
attribute, but these should be separated by white space. A class is case-sensitive, so
class1 and Class2 are two separate entities.

NoTE

For each WML element detailed in the sections following this one, a
table shows the various attributes that each element can contain.
Because id and class are core attributes that can be applied to any WML
element, for the sake of repetition, they will not be shown within each
individual element attribute table.

The <a> Element

The <a> element is an abbreviated form of the <anchor> element. Text within
the <a> element forms a hyperlink to another card or deck. It is preferable to
use <a> instead of <anchor> wherever possible. You cannot nest the <a> ele-
ment, and it may only contain either a
 or element. The following is
an example of the syntax for the <a> element:

A Link to Deck 2

The href attribute is required. All other attributes are optional. See Table 3.2
for a list of attributes for the <a> element.

Table 3.2 Attributes for the <a> Element

Attribute Name Description

href The target location for the link

title A short string of text that identifies the element
xml:lang The natural or formal language of the element

WwWw.syngress.com

A New Markup: WML * Chapter 3

The <access> Element

The <access> element allows the author to control how the deck is accessed
from other areas. You should consider the use of an <access> element when the
privacy and security of the information being accessed is important. The use of
variables within WML (a situation that does not exist within HTML) could theo-
retically allow malicious manipulation of information. By restricting access at the
deck level, the user’s information can be kept private.

The <access> element works by specifying which particular domains and/or
paths are allowed to access the deck. When the deck is accessed, the user agent
checks to see whether the requested destination is allowed access from the cur-
rent deck. If the domain and/or path do not match those specified, access is not
allowed.

Domains are evaluated according to suffix order. Thus, www.thedomain.com is a
match for thedomain.com, but domain.com will not match. Similarly, paths are matched
according to prefix. Thus, /path/path/ will match path/path but /pathpath will not.
The default for the domain attribute is the domain where the current deck 1s
located, and the path attribute defaults to “/”. A deck may contain only one
<access> element. See Table 3.3 for a list of attributes for the <access> element.

Table 3.3 Attributes for the <access> Element

Attribute Name Description
domain The particular domain that may access the deck
path The particular path that may access the deck

The following is an example of the syntax for the <access> element:

<access domai n="donai n. cont' pat h="/path"/>

In this example, the referring Uniform Resource Identifier (URI) would be
allowed access to the deck: http://domain.com/path/deck.wml.

The <anchor> Element

The behavior of the <anchor> element is specified by the task it contains. A task
can be thought of as an action that must be performed as a result of the user
selecting the element. In the case of the <anchor> element, this can be either
<go>, <prev>, or <refresh>, but must consist of one task only. <Anchor> ele-
ments cannot be nested. See Table 3.4 for a list of attributes for the <anchor>
element.

Www.syngress.com

95

96

Chapter 3 « A New Markup: WML

Table 3.4 Attributes for the <anchor> Element

Attribute Name Description

accesskey Signifies the access key that is assigned to the element
title A short string of text that identifies the element

The following is an example of the syntax for the <anchor> element:

<anchor >
Alink to Deck 2
<go href="deck2.wr ">

</ anchor >

As you can see, this example uses a <go> task to perform the same task as
the example given for the <a> element.

NoTE

For both the <a> and <anchor> elements, the URI can be relative or
absolute. Additionally, URL fragments are identified in the same way as
anchors in HTML by using the # identifier.

The Element

The element signifies that the text contained within should be rendered by
the user-agent as a bold font. Note that many WML microbrowsers do not
render text marked up as bold with a bold font, so if you are relying on con-
veying meaning with bold, check with the target device for conformity.

It is perhaps a better idea (and is suggested within the WML specification)
that text should use or elements instead, resorting to using
only where specific control of the text is required. This will be familiar to anyone
who has studied the use of <bold> versus within HTML. Table 3.5
lists the attribute for the element.

Table 3.5 Attribute for the Element

Attribute Name Description

xml:lang The natural or formal language of the element

WwWw.syngress.com

A New Markup: WML * Chapter 3

The following is an example of the syntax for the element:

This text is normal text, but this text is bold text!

The <big> Element

The <big> element indicates that the user-agent should render the text in a
larger font size than the base font size for the device. Table 3.6 lists the attribute
for the <big> element.

Table 3.6 Attribute for the <big> Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <big> element:

This text is a normal size... <big>but this text is bigger!</big>

The
 Element

The
 element forces a line break wherever it is placed within the text.
Table 3.7 lists the attribute for the
 element.

Table 3.7 Attribute for the
 Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the
 element:

This is on one line.
This is on the next I|ine.

The <card> Element

Each WML deck can contain one or more cards. The <card> element acts as a
container for text and other elements that together form discrete units for display
in a device. The id of a card can be used as the target for a fragment identifier
within any navigation element. See Table 3.8 for a list of attributes for the
<card> element.

Www.syngress.com

97

928

Chapter 3 « A New Markup: WML

Table 3.8 Attributes for the <card> Element

Attribute Name Description

newcontext This can be true or false and specifies if the user-agent
should reinitialize upon entry. The default value is false.

onenterbackward This is an event that is fired upon entry to the card as
a result of a <prev> task.

onenterforward This is an event that is fired upon entry to the card as
a result of <go> task.

ontimer This is an event that fires when a timer expires.

ordered This can be true or false and specifies whether the

content of the card should be displayed in an ordered
fashion. The default value is true.

title Specifies the title of the card. This is typically displayed
by the user-agent to provide meaning to the user for
the purpose of the card and should be kept short and
descriptive.

xml:lang The natural or formal language of the element.

The following is an example of the syntax for the <card> element:

<card title="A New Card" newcontext="true">
This is a card.

</ card>

All attributes of the card element are implied—that is, they are not absolutely
necessary:
<car d>
This is a card.

</ card>

This code i1s just as valid as the prior example. However, you should at least
include a title in all of your cards if only to give users some sort of indication
what the card is about.

The <do> Element

In certain situations, you may want to interact with the user in some way. The
<do> element provides an interface to initiate actions from your users at the
deck or card level. If the <do> element is present at the deck level, it can be

www.syngress.com

A New Markup: WML * Chapter 3 929

contained within a template element to provide the same functionality to all
cards within the deck. A <do> within a card will override a <do> within the
parent deck if they share the same name.

Exactly how the interface is rendered to the user is entirely dependent of the
device, and the <do> may take the appearance of a soft button, a link, or choice
through the menu system.You can use the fype attribute to provide some indica-
tion to the user-agent as to the intended use of the <do> element. See Table 3.9
for a list of attributes for the <do> element.

Table 3.9 Attributes for the <do> Element

Attribute Name Description

label A text label that identifies the element.

name The name of the event binding.

optional This can be either true or false. If true, this element may
be ignored by the user-agent.

type The intended function for which the element is intended.

xml:lang The natural or formal language of the element.

NoTE

The type attribute is required and must be specified at all times. Note
that the <do> element may not be rendered where it is placed within
the text of the card. In fact, the only safe assumption you can make is
that the user-agent will map the element to a specific user interface. This
can cause problems because the <do> element can appear at the top of
the rendered card, at the bottom, in the middle—in fact just about any-
where—so you must carefully consider the use of the <do> element
with respect to the target device.

The following is an example of the syntax for the <do> element:

<do type="accept" | abel ="Next Card">
<go href="#nextcard"/>

</ do>

Www.syngress.com

100 Chapter 3 « A New Markup: WML

The Element

The element specifies that the text should be rendered by the user-agent
with emphasis. Table 3.10 lists the attribute for the element.

Table 3.10 Attribute for the Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the element:
This text is normal but <enpthis text is enphasized</enp.

The <fieldset> Element

The <fieldset> element is useful for grouping similar fields and text together
to allow better representation of the contents on the target device. You can nest
further <fieldset> elements to provide more information on how the fields and
text relate to each other. See Table 3.11 for a list of attributes for the <fieldset>
element.

Table 3.11 Attributes for the <fieldset> Element

Attribute Name Description

title The title of the fieldset, which is typically used to
describe the contents of the fieldset, and may also be
rendered by the user-agent to provide information on
the content to the user.

xml:lang The natural or formal language of the element.

The following is an example of the syntax for the <fieldset> element:

<fiel dset title="Ice-Creans">
St rawberry

Vani | | a<br/ >
Chocol at e

</ fiel dset >

WwWw.syngress.com

A New Markup: WML * Chapter 3

The <go> Element

The <go> element is a task that specifies navigation to a URI. The href attribute
is required. See Table 3.12 for a list of attributes for the <go> element.

Table 3.12 Attributes for the <go> Element

Attribute Name Description

accept-charset Used to specify the character set the server should
accept. The default is to use the character set the deck
was sent in.

cache-control If cache-control is set to no-cache, the URL must be

reloaded from the server. This allows new values to be
set and sent to the server in the case of submissions
sending data pairs.

enctype Used when the method is set to post, enctype
specifies the content type that the submission should
be sent as. The default value is application/x-www-
form-urlencoded.

href The destination that should be navigated to.

method Either post or get. The go method is exactly the same
as the submission method used in HTTP.

sendreferer This is either true or false, and if true, the user-agent

must send the URI of the deck that contains the<go>
element to the server. This allows access controls to be
exercised.

The following is an example of the syntax for the <go> element:
<go href="cardl.wr"/>

You can find further examples of navigating using the <go> element later in
this chapter in the section called “Creating WML Content.”

The <head> Element

The <head> element contains data relating to the deck as a whole. The following
is an example of the syntax for the <head> element:
<head>

<access donmmi n="donai n. conl'/ >

</ head>

101

Www.syngress.com

102

Chapter 3 « A New Markup: WML

The <i> Element

The <i> element signifies that the text contained within should be rendered by
the user-agent in an italic font. However, is the recommended use to sig-
nify emphasis. Table 3.13 lists the attribute for the <i> element.

Table 3.13 Attribute for the <i> element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <i> element:

This is normal text but <i>this is italic text</i>.

The Element

The element allows a wireless bitmap (WBMP) image to be included.
See Table 3.14 for a list of attributes for the element.

Table 3.14 Attributes for the Element

Attribute Name Description

align Specifies how the image should be aligned with refer-
ence to the text flow it appears within. Possible options
are one of top, middle, or bottom.

alt Alternate text that can be displayed when the image is
unavailable.

height The height of the image in pixels.

hspace The amount of padding that should be applied to the
image horizontally.

localsrc An image, contained internally within the device, that
can be displayed as an alternative.

src The URI where the image to be displayed resides.

vspace The amount of padding that should be applied to the
image vertically.

width The width of the image in pixels.

xml:lang The natural or formal language of the element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

The following is an example of the syntax for the element:

<ing src="| ogo. wbnmp"

al t =" Conpany Logo" height="30" w dt h="60"/>

The <input> Element

The <input> element allows data to be entered by the user; it features some

useful methods of constraining the input via the format attribute, which can mask

the content to ensure that only the input you want is sent to the server. See Table
3.15 for a list of attributes for the <input> element.

Table 3.15 Attributes for the <input> Element

Attribute Name

Description

emptyok

format

maxlength
name
size

tabindex
title

This is either true or false, and if set to true, the element
will allow the input value to be empty.

The format attribute allows conditions to be set that

must be met before the data entry will be accepted. All

other entries will be ignored. These options are available:

Only uppercase, non-numeric characters

Only lowercase, non-numeric characters

Only numeric characters

Any uppercase character

Any lowercase character

Any character (the default value)

Any character but assumed to be lowercase

Appearing at the end of the format string, this

allows any number of characters and must be pre-

ceded by one of the above characters

nf A number of characters (n) may be entered where
f is one of the above formatting characters (other
than *f)

\c Displays the next character (c) in the text field.
Useful for formatting phone numbers and so on

The maximum number of characters that can be entered
into the input field by the user.

The name of the variable that will be set for the input
element.

The width of the input field in characters.
The position in tabbing order.
A short string of text that identifies the element.

FITXX=Zo>

Continued

103

Www.syngress.com

104 Chapter 3 « A New Markup: WML

Table 3.15 Continued

Attribute Name Description

type This can be either text or password. When password is
specified as the attribute, input is masked. This helps to
keep private data private from casual onlookers.

value A default value for the input element.
xml:lang The natural or formal language of the element.

The following is an example of the syntax for the <input> element:

<i nput nane="Nanme" type="text" val ue="Ri chard"/>

<car d>
<p>
Nanme: <i nput nanme="Nane" type="text" val ue="Richard"/>

Favorite lce-cream <input nane="lce-creanm type="text">
</ p>

</ card>

NoTE

The name attribute is required at all times and the emptyok attribute
defaults to false if not set to true. Do not rely on the size attribute to aid
layout because not all devices support this.

The <meta> Element

The <meta> element provides meta information in the head of a WML deck

as a name and value pair. The <meta> element cannot appear anywhere in the
deck other than in the head. See Table 3.16 for a list of attributes for the <meta>
element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Table 3.16 Attributes for the <meta> Element

Attribute Name Description

content The value of the property.

forua This is either true or false, and if false, the meta infor-
mation must be removed before the content is sent to
the user. Conversely, if true, the header information
must be sent to the user.

http-equiv This allows an HTTP header to be set as per RFC2068.
name The name of the property.
scheme A structure or form that can be used to interpret the

property value.

The following is an example of the syntax for the <meta> element:

<head>
<neta content="charset" val ue="character-set=| SO 10646- UCS-2"/ >

</ head>

The <noop> Element

The <noop> element specifies that no operation should be carried out by the
user-agent. Table 3.17 lists the attribute for the <noop> element.

Table 3.17 Attribute for the <noop> Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <noop> element:

<noop>Not hi ng to be done here</noop>

The <onevent> Element

The <onevent> element binds an event to an enclosed task. Table 3.18 lists the
attribute for the <onevent> element.

105

Www.syngress.com

106

Chapter 3 « A New Markup: WML

Table 3.18 Attribute for the <onevent> Element

Attribute Name Description
type The intended use of the element. This attribute is
required.

The following is an example of the syntax for the <onevent> element:

<onevent type="onenterbackward">
<go href="deck.wmr "/ >

</ onevent >

The <optgroup> Element

The <optgroup> element allows the grouping of options hierarchically to pro-
vide an indication to the user-agent of how the content should be grouped and
rendered. See Table 3.19 for a list of attributes for the <optgroup> element.

Table 3.19 Attributes for the <optgroup> Element

Attribute Name Description

title A short text string that is used to identify the group
and which may be displayed.

xml:lang The natural or formal language of the element.

The following is an example of the syntax for the <optgroup> element:
<optgroup title="Ice-Creans">
<option val ue="Strawberry"/>
<option value="Vanilla"/>
<option val ue="Chocol ate"/ >

</ opt gr oup>

The <option> Element

The <option> element defines an option in a list and occurs within a <select>
element. See Table 3.20 for a list of attributes for the <option> element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Table 3.20 Attributes for the <option> Element

Attribute Name Description

onpick The URI to navigate to upon selection by the user
title A short text string that is used to identify the option
value The value of the option

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <option> element:

<option title="Strawberry" val ue="Strawberry"/>

NoTE

See the <select> element for further examples of option lists.

The <p> Element

Text that appears within the <p> element is designated as a paragraph. See
Table 3.21 for a list of attributes for the <p> element.

Table 3.21 Attributes for the <p> Element

Attribute Name Description

align This can be either left (the default), right, or center—
though support for this is varied.
mode This can be either wrap or nowrap and specifies

whether the text within the paragraph should wrap
where it is too long to fit on the display screen.

The following is an example of the syntax for the <p> element:
<p>
This is a paragraph of text that will wap on reaching the edge of
the screen and is left aligned by default.

</ p>

107

Www.syngress.com

108

Chapter 3 « A New Markup: WML

The <postfield> Element

The <postfield> element specifies a name and value pair that will be sent to the
server as part of a URL request. You can use the <postfield> element with the
<go> element (described previously) to provide a variety of options for transmit-
ting the information. See Table 3.22 for a list of attributes for the <postfield>
element.

Table 3.22 Attributes for the <postfield> Element

Attribute Name Description
name The name of the field
value The value of the field

The following is an example of the syntax for the <postfield> element:

<post fiel d name="1ce-creant val ue="Chocol ate"/>

The <prev> Element

The task element <prev> specifies that navigation should take the user one step
back in the history stack. The following is an example of the syntax for the
<prev> element:
<anchor >

<pr ev/ >Back

</ anchor >

The <refresh> Element

The <refresh> element specifies a contextual task to be performed by the user-
agent. See the <setvar> element for more information on using <refresh>.

The <select> Element

The <select> element allows the user to make a selection from a list of options
(see the <option> element described earlier). Table 3.23 lists the attributes for the
<select> element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Table 3.23 Attributes for the <select> Element

Attribute Name Description

Iname The name of the variable that will be set with the
option value.

ivalue The default selection value.

multiple This is either true or false and signifies whether multiple
options may be selected. The default is false.

name The name of the variable to be set.

tabindex This is used to set the tabbing position of the current
element.

title The title of the selection list that may be used to aid
identification of the purpose of the list.

value The value that will be applied to a variable when the
option is selected.

xml:lang The natural or formal language of the element.

The following is an example of the syntax for the <select> element:

<sel ect name="I|ce-creant val ue="Chocol ate" title="Ice-cream">
<option val ue="Strawberry">Strawberry</option>
<option value="Vanilla">Vanill a</option>
<option val ue="Chocol at e">Chocol at e</ opti on>

</ sel ect >

The <setvar> Element

The <setvar> element is used to set a variable within the user-agent after a task
1s executed. See Table 3.24 for a list of attributes for the <setvar> element.

Table 3.24 Attributes for the <setvar> Element

Attribute Name Description
name The name of the variable
value The value of the variable

The following is an example of the syntax for the <setvar> element:

<setvar nane="vari abl el" val ue="one"/>

<setvar nane="vari abl e2" val ue="two"/>

109

Www.syngress.com

110

Chapter 3 « A New Markup: WML

The <small> Element

The <small> element indicates that the user-agent should render the text in a
smaller font size than the base font size for the device. Table 3.25 lists the
attribute for the <small> element.

Table 3.25 Attribute for the <small> Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <small> element:

This text is a nornmal size... <small>but this text is smaller!</small>

The Element

The element indicates that the contained text should be rendered with
strong emphasis. Table 3.26 lists the attribute for the element.

Table 3.26 Attribute for the Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the element:

This text is nornmal but this text is strongly

enphasi zed</ st rong>.

The <table> Element

The <table> element, along with the <tr> and <td> elements, is used to create
columns and rows of text and/or images within a card. See Table 3.27 for a list of
attributes for the <table> element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Table 3.27 Attributes for the <table> Element

Attribute Name Description

align Specifies how the content should be laid out; Allowable
values are L (left), C (center), and R (right).

columns The number of columns for the row set.

title The title of the selection list that may be used to aid

identification of the purpose of the list.

The following is an example of the syntax for the <table> element:

<table align="left" colums="1" title="Ice-creans">

</t abl e>

The <tr> Element

The <tr> element signifies a table row. The following is an example of the syntax
for the <tr> element:

<table align="left" colums="1" title="Ice-creans">

<tr>

</[tr>

</t abl e>

The <td> Element

The <td> element signifies a cell that contains the text or image. Table 3.28 lists
the attribute for the <td> element.

Table 3.28 Attribute for the <td> Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <td> element:

<table align="left" colums="1" title="Ice-creans">

111

Www.syngress.com

112 Chapter 3 « A New Markup: WML

<tr>
<t d>| ce-creamnms</td>
<t d>Strawberry</td>
<td>Vani | | a</td>
<t d>Chocol at e</ t d>
</tr>

</t abl e>

The <template> Element

A <template> element describes features that are common to all the cards within
the deck. Thus, all cards within a deck where a template element is present will
include the elements specified within the template. See Table 3.29 for a list of
attributes for the <template> element.

Table 3.29 Attributes for the <template> Element

Attribute Name Description

onenterbackward This event is fired when the card is entered from a
<prev> task.

onenterforward This event is fired when the card is entered from a
<go> task.

ontimer This event is fired when a timer expires.

The following is an example of the syntax for the <template> element:

<tenpl ate onti ner="#card2">

</tenpl at e>

The <timer> Element

The <timer> element is fired upon entry to the card and counts down in one-
tenth of one second intervals. The countdown is terminated if the card is exited
from prematurely. See Table 3.30 for a list of attributes for the <timer> element.

WwWw.syngress.com

A New Markup: WML * Chapter 3

Table 3.30 Attributes for the <timer> Element

Attribute Name Description
name The name of the bound event
value The timer value

The following is an example of the syntax for the <timer> element:

<tenpl ate ontiner="#card2">
<ti mer nane="countdown" val ue="30"/>

</ tenpl at e>

The <u> Element

The <u> element indicates that the contained text should be underlined.
Because anchors are generally underlined to indicate that they are a hyperlink,
you should use underlining judiciously to avoid creating confusion.

The following is an example of the syntax for the <u> element:

This text is normal <u>but this text is underlined</u>.

The <wml> Element

The <wml> element signifies a deck and encloses all the elements that make up
the deck, including card elements. Table 3.31 lists the attribute for the <wml>
element.

Table 3.31 Attribute for the <wml> Element

Attribute Name Description

xml:lang The natural or formal language of the element

The following is an example of the syntax for the <wml> element:

<wni >

<card>

</ card>

<card>

113

Www.syngress.com

114

Chapter 3 « A New Markup: WML

</ card>
</ wnl >

Creating WML Content

The “WML Overview” section of this chapter touched briefly on the structure
of a WML deck. We now take a closer look at constructing WML decks that can
be displayed on emulators, or even on an actual device.
Let’s take a look at a simple card, using what you learned earlier:

<?xm version="1.0""?>
<! DOCTYPE wm PUBLI C "//WAPFORUM / DTD_ WWML_1. 1// EN'
http://ww. wapforum org/ DTD/ wr _1. 1. xm >
<wm >

<card>

<p>l like Ice-cream
Do you?</p>

</ card>
</ wm >

This card is all very well but a better option would be to allow the visitor to
answer the question and form a reply in response. For that, you will need a few
more cards and will need to be able to navigate from one to the other.

Navigating within the Deck

By using the ability of WML to store multiple cards within the deck, you can ask
a question and give an answer without the user having to make another round
trip to the server:

<?xm version="1.0"7?>

<! DOCTYPE wr PUBLIC "-//WAPFORUM / DTD WML 1.1//EN'

"http://ww. wapforumorg/DTD) wr _1. 1. xmd ">

<wni >

<card id="start" title="Ice-creanl>

<p>
| like lce-cream do you?

Yes</ a><br/ >
No</ a>

</ p>

www.syngress.com

A New Markup: WML * Chapter 3

</ card>

<card id="yes" title="lce-cream Lover">

<p>
I"mglad you like ice-cream

Back
</ p>
</ card>

<card id="no" title="Ice-cream Hater">

<p>
I"'m sad you don't like ice-cream

Back
</ p>
</ card>

</ wnl >

This example, using the <a> element, works well for static content, but when
dealing with content where the results of the selection must be sent back to the
server, you need to assign a task.

Getting Information from the User

The <select> and <go> elements allow you to carry out more complex naviga-

tional tasks than is possible using the previous example. In the following example,

you’ll combine a number of elements to allow the user to select and view a choice.
First of all, make your XML declaration and specify the DTD:

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WM. 1. 1//EN'

“http://ww. wapforum org/DTD/ wr _1. 1. xm ">

'Now we start the docunent proper.

<wmi >
The first card uses a simple link to find out if the user likes ice-cream (after
all, why ask them which flavor they prefer if they don’t even like ice cream):

<card id="start" title="Ice-creant>

<p>

115

Www.syngress.com

116 Chapter 3 « A New Markup: WML

I like Ice-cream do you?

Yes

No</ a>

</ p>

</ card>

Great! The user likes ice cream. Now use the <select> element to present the
choices to the user. Exactly how the device will render the options varies, but
you can be sure that the user will be able to choose a flavor:
<card id="yes" title="Choose an |ce-creani>

<p>
What is your favorite |ce-crean®

<sel ect name="icecreant>
<option val ue="Strawberry">Strawberry</option>
<option value="Vanilla">Vanil | a</option>
<option val ue="Chocol at e">Chocol at e</ opti on>
</ sel ect>
</ p>
<do type="accept">
<go href="#showchoi ce"/ >
</ do>

</ card>

You want the user to know how glad you are with their choice.You can use a

variable substitution to show the user their choice:
<card id="showchoi ce">

<p>

You |ike $icecream So do |!

</ p>
<do type="accept" | abel ="back">

<go href="#start"/>
</ do>

</ card>

There’s no accounting for taste!

<card id="no" title="lce-cream Hater">

www.syngress.com

A New Markup: WML * Chapter 3

<p>
I'm sad you don't like ice-cream

Back
</ p>
</ card>
</ wm >

So far this 1s static, but what if we wanted to store the user’s choices or build
the list from another source? Server-side dynamic applications using scripting are
the answer.

Using Server-Side Programs
to Create Dynamic WML

Dynamic applications are applications that build content “on the fly” in response
to requests made. Thus, a single template file filled with dynamically-served con-
tent can replace hundreds, even thousands of similar HTML pages.

To add the capability of serving WML from your Web server, you need to
first add the following MIME entries to the Web server’s configuration table (see
Table 3.32).

Table 3.32 Web Server MIME Configurations

Extension MIME Type

Wml text/vnd.wap.wml

Wmlc application/vnd.wap.wmlc
Wmlsc application/vnd.wap.wmlscriptc
wmlscript text/vnd.wap.wmlscript

ws text/vnd.wap.wmlscript

wsc application/vnd.wap.wmlscriptc
wmls text/vnd.wap.wmlscript

wbmp image/vnd.wap.wbmp

In Apache, one of the most popular Web servers, you would need to edit the
AddType section in the srm.conf to include whatever MIME types you require,
such as the following:

WAP M ME Types
AddType text/vnd.wap.wrd . wrl

117

Www.syngress.com

118

Chapter 3 « A New Markup: WML

AddType i nmage/ vnd. wap. wonp . wonp

AddType application/vnd. wap. wr c . wrc
AddType text/vnd.wap.wr script .wrs

AddType application/vnd. wap. wr scriptc .wrsc

The server will accept these new MIME types once restarted. You may find
that you do not have access to the Web server to carry out configuration changes.
If you are using a scripting language to construct the WML content, you can add
the MIME type into your script. If you are using Perl, print the HTTP response
header string before printing a WML deck:

print "Content-type: text/vnd.wap.wr\n\n";
print $WW;

If you are using Microsoft Active Server Pages (ASP), set the MIME type
response at the beginning of your script:

<%Response. Cont ent Type = "text/vnd. wap. wn " %

In Perl, make sure that the header information is separated from the WML
content by a blank line (two CRLFs). In ASP, place the <@ declaration immedi-
ately after the Response.Contentype—otherwise, a blank line will be inserted
into the rendered page before your XML declaration, invalidating the page and
generating an error.

Returning to our previous example, you may have decided that you want to
build a list of ice creams from a database and also store each individual user’s pref-
erence so that you can see at a glance at some later stage everybody who likes
chocolate ice cream.

In ASP, open a database connection and use a bit of server-side scripting to
populate the options in the select element. Don’t worry if you are unfamiliar with
ASP scripting, we are more interested in demonstrating just the concept here:

<%

' First we set up our database connection

Di m oConn, sConn

Set oConn = Server. Creat eObj ect (" ADODB. Connecti on")

sConn = "DRI VER={M crosoft Access Driver (*.ndb)};" & _
"DBQ=" & Server.MapPath("icecream ndb") & ";"

oConn. Open(sConn)

WwWw.syngress.com

A New Markup: WML * Chapter 3

'"next we grab all the flavors from the database

Dim SQ., oRS
SQL = "SELECT flavors FROM i cecreans"”

Set oRS = oConn. Execut e(SQ.)

%

<%Response. Cont ent Type = "text/vnd.wap. wn " %<?xm version="1.0"7?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'

"http://ww. wapforumorg/DTD/ wr _1. 1. xm ">

<wni >

<card id="start" title="Ice-crean>

<p>
I like Ice-cream do you?

Yes

No</ a>

</ p>

</ card>

<card id="yes" title="Choose an Ice-creani>
<p>
What is your favorite |ce-creanP

<sel ect name="icecream ><%
" we're now able to loop through the results of our selection

‘" and build up the list

Do Wile Not oRS. ECF
%
<option val ue="<% ORS. Fi el ds("flavor s") %" ><%
ORS. Fi el ds("flavors") %</ opti on><%
' adding the <% to the end of the |line above instead of a new |ine
' stops a line break being inserted into the WWL out put

' keeping the WML source tidy.

ORS. MoveNext

119

Www.syngress.com

120

Chapter 3 « A New Markup: WML

Loop
%
</ sel ect >
</ p>
<do type="accept">
<go href ="#showchoi ce"/>
</ do>
</ card>
<card id="no" title="Ice-cream Hater">
<p>
I"m sad you don't like ice-cream

Back
</ p>
</ card>
<card id="showchoi ce">
<p>
You |ike $icecream So do I!
</ p>
<do type="accept" | abel ="back">
<go href="#start"/>
</ do>
</ card>
</ wm >

This capability to mix server-side scripting with WML is a powerful way to
add functionality and interaction to your application.

Using Openwave Extensions

Early incarnations of Web browsers sought to push the boundaries of what was
capable by introducing extensions to HTML. In much the same spirit, Openwave
Systems Inc. has been keen to push the boundaries of what is capable with a
wireless device.

Openwave (formerly Unwired Planet, and then later known as Phone.com
prior to their merging with Software.com in 2000) has sought to combine the

www.syngress.com

A New Markup: WML * Chapter 3

rich features of both the Openwave UP.Browser (the microbrowser contained in
many wireless devices) and the UP.Link gateway (the WAP gateway through
which requests are translated) through extensions to WML. Openwave has pro-
vided developers with features that allow the development of contextual services,
that is, services that allow different possibilities to be enacted depending on the
context within which the events take place.

Opinion is divided on how useful the Openwave extensions to WML are. A
pessimistic viewpoint says that unless your application will definitely be used
exclusively on a device featuring an Openwave microbrowser, accessing content
through an Openwave gateway (as could well be the case in corporate settings),
the extensions should not be used at all. An optimistic viewpoint argues that the
application can easily feature conditional branching to divert Openwave devices
to specific Openwave WML decks and non-Openwave devices to a more basic
WML deck. This 1s a relatively trivial task to programmers but can become a
headache when the number of devices to be catered for spirals upwards.

The reality is that compromises will almost certainly have to be introduced in
the meantime. Whether or not an application features Openwave extensions is a
judgment call: Are they are actually needed, and how many users utilizing
Openwave technology will access the live application?

Take care to ensure also that the capabilities of different versions of the
UPBrowser are taken into consideration. There are several different versions of
the Phone.com browser. See Table 3.33 for an overview of the differences
between these browsers.

Navigating Parent/Child
Relationships Using Extensions

As noted earlier, WML is structured hierarchically. This allows your applications to
be built with a “top-down” philosophy, breaking down the tasks that must be
performed into ever more discrete portions the deeper into the hierarchy you go.
The concept of “parent/child relationships” describes how the individual parts
relate to and interact with each other. We’ve used the parent/child convention
throughout this chapter. You can see in the following example that element 1 1s
contained within parent 1 making element 1 the child of parent 1. The same situa-
tion exists for parent 2 and element 2. However, element 1 has no relationship to
parent 2.

121

Www.syngress.com

(anemuadQ :931n0S) yuridn Alowioy ., 19smoigdn Aswioy .

[SETJNETNIVITepEN] papuswWW0od9y
SOA ON SOA ON Auy J9Yl0
w19smoug
papuUsWWO0d3Y 9|IqON
ON ON ON SOA 0°€ anemuadQ
92IAISS UOlje|suel) «J19smoug
«xAemalen ssadoy pP3apuUsSWWO0d3Y 9IIqOIN
ON ON S|IOIA BIA ‘SOA SOA L€ anemuadQ
9INIDS

uole|suesy «J19smoug
PIPUSWIWOIRY PIPUSIWWOIY «xAemalen ssadoy 9IqOIN
SOA SOA SOA S[IQOIA BIA ‘S9A X'y anemuadQ
yoddng suoIsudlxy poddng poddng UOISIDA Jasmoug

"1 MdLISTAIN anemuado L'L TN 0°€ TINAH Josmolug

Y3 LT LTINAWN

sai|iqede) JI9y] pue SI9SMOIGOIDIN SNOLBA Yl €€°E djqel

122

A New Markup: WML * Chapter 3

<parent 1>
<el ement 1>
</ el enent 1>
</ parent 2>
<parent 2>
<el emrent 2>
</ el enrent 2>

</ parent 2>

The Openwave extensions take this concept a stage further. By dividing the
tasks you wish to carry out into a hierarchical series and applying context to the
specific children, it becomes much easier to handle such things as the user inter-
face, the use of variables, and the exchanging of information between contexts.

Navigation within the current context is possible in WML using the <go>
and <prev> elements. However, using the Openwave extensions, we can carry on
turther to provide contextual navigation. Because the Openwave extensions are
not covered by the current WML specification, remember to reference their
DTD instead at the beginning of the WML document as follows:

<?xm version="1.0"7?>
<! DOCTYPE wmr PUBLIC "-//PHONE. COM /DTD WML 1.1//EN'
"http://ww. phone. conf dt d/ wr 11. dtd" >

Using the <spawn> and <catch> Extensions

The <spawn> element allows navigation from a parent to a child in a similar way
to a <go> task. However, using the <spawn> element spawns a new nested con-
text. When this context is exited, the user is returned to the parent context. This
may seem somewhat trivial, but the use of <spawn> allows users to browse a
number of possible cards within this context while returning to the parent con-
text in one move (as opposed to <go>/<prev> where all viewed cards would
have to be navigated through to reach the parent card). This can be a powerful
way to manage how the user navigates by condensing many frustrating clicks into
one click.

<spawn href="url.wr ">

</ spawn>

123

Www.syngress.com

124 Chapter 3 « A New Markup: WML

The <spawn> tag can contain the <catch> element to trap any errors:

<spawn href="url.wr">
<catch/>

</ spawn>

Using the <exit> and <throw> Extensions

In addition to the <prev> task, the <exit> and <throw> extensions allow navi-
gation back to the parent context. As noted previously, <throw> allows excep-
tions to be trapped and handled accordingly using <catch>.The <exit> element
1s used to cater for a specific eventuality, returning the user to the parent context
where the spawn attribute <onexit> is used to specity what should happen:

<do type="options" |abel ="Return">
<exit/>

</ do>

<do type="options" |abel ="Exit">
<t hrow name="abort"/>

</ do>

Using the <catch> Extension

The <catch> element provides a series of mechanisms to trap errors. This very
useful element allows different situations to be dealt with accordingly. For
example, if the user cancels a request, you may want to handle what happens as a
result differently than, say, the user encountering an error from the server:
<card>
<do type="accept"” | abel =" Choi ce">
<spawn href="submt.wn " onexit="#success">

<catch name="error" onthrow="#error1"/>

<catch name="cancel " ont hrow="#error2"/>
</ do>

</ card>

WwWw.syngress.com

A New Markup: WML * Chapter 3

Using the <send> and <receive> Extensions

When the user returns to the parent context, you may want to bring back some
information with them as the result of a task that was carried out. The <send>

and <receive> elements allow data to be sent from the nested child context and
received in by the parent context. The following is an example of using <send>:

<car d>

<send val ue="x"/>

<send val ue="y"/>

</ card>

The following is an example of using <receive>:

<card>

<recei ve nane="val uel"/>

<recei ve name="val ue2"/>

</ card>

NoTE

The ordering of the names and values is important. In the preceding
examples, the receiving deck will assume that the value for value? will be
x and that the value for value2 will be y. If y appeared before x, the
value of value1 would be y.

Preloading URLs

The <link> element is used to preload a URL into the device, and you should
use it only when you know that the user will probably want to follow this link. A
common use may be to preload the next page in a news item. The link element
1s placed within the head of the document:

125

Www.syngress.com

126

Chapter 3 « A New Markup: WML

<head>
<link href="next_url.wm" rel="next"/>

</ head>

WML Editors, WAP SDKs, and Emulators

A whole plethora of tools are available to the aspiring wireless developer. They
range from freeware and shareware items to full-blown SDKs from phone manu-
facturers such as Nokia and Openwave. Those with a degree of experience using
HTML editors will be pleased to know that most of the popular HTML editors
support editing WML.

WML Editors

If you are comfortable with hand-coding WML, Allaire’s Homesite is a great
editor that comes with the ability to work with WML. Although not immediately
apparent, you can enter WML and use the context-sensitive menus to access all
the various attributes, as shown in Figure 3.7. Homesite 1s inherently extensible,
so if you don’t like how it does things, you can always rewrite it.

Figure 3.7 Allaire Homesite

[s Homectide 4532 - EMALLI T
23 W A% WR DE CQE SRR RRE| o
Lok IImu]DlmI
= |14 W =l
|5 STl L 4]
o f1g “Fnilla™ Terdlla
117 Teeoa Lucs ™ Chasco L
4t T |
|15 ;
Wl 4 TR e o st
Ll 72 hrsf="#akew
T: w] Labet I—
o e S] |
s |33 ool Mg
- {‘_: Dol el Tale]
« |35 o
| I'm oad yre il Ly
& |2 WO T
-
e o
% : L L]
% | - X F' Duipat on tmgls s TI i |
n
al i FRC" laks £
n p——
5
o0 T
| wnl
— gt =

WwWw.syngress.com

A New Markup: WML ¢ Chapter 3

If you aren’t quite ready to work with raw WML code, the Macromedia
WML Studio extension may interest you. Developed by Nokia, the WML Studio
allows the creation of WML pages from within Macromedia’s popular editor

Dreamweaver.

The Nokia WML Studio for Dreamweaver is an extension to Dreamweaver
that you can download from the Macromedia Web site. It allows the creation of

WML content within Dreamweaver’s what you see is what you get
(WYSIWYG) environment, as shown in Figure 3.8.

Figure 3.8 Macromedia Dreamweaver Together with the WML Studio
Extension from Nokia

’i B il e Flems A Dl b 7 i) 1 - [i v
= '-E-Ei'ﬂ“.\'-rinlhﬁ-rﬂmﬁvﬂ'ni-l‘hﬁ
I PO P R e @ | o o400
® [
bt =
2| ki
S 7
&
=1 e
g LA A
ome < iwml wermicne =L 0% s cdinge S TS50-G0ib-125
X L FDOCTYFL wewl FTBLIC -/ BAFFORTRSSDTD WL L. L/FEH" ™

Twml

falae™e

sd="urue”™ peecootexce"

domrd id="cmrdl" ardec
< Al LgEeETLETL T

P d Lo Wordd
2 pin
TS rarde
o wl

The extension includes a WML 1.1 parser, error notification, plus the ability

to show previews of the WML content.

NoTEe

At the time of this writing, the WML Studio was not compatible with
Macromedia UltraDev 1 or UltraDev 4 and is unfortunately not available

to Apple Macintosh users.

127

Www.syngress.com

128

Chapter 3 * A New Markup: WML

EasyPad WAPtor (shown in Figure 3.9) is a simpler WML editor available for
Windows users. It allows the easy creation of WAP pages and in fact is specifically
designed to ease WML creation. WAPtor features syntax highlighting to allow the
WML to be more easily navigated and also has a content preview pane so you
can see how you are doing at any time. The preview is limited, however (for
example, there is no provision for handling WMLScript), but it can be helpful
when getting started.

Figure 3.9 EasyPad WAPtor

= oyl el i

Fle e lsomt Y Hop

EES =T A Y N)
TDBsrufct TmmDdams OB
-*.lil Forseh

-c'rnl.al..-hp" 'h =
S TR i PARSILI B0 Rl AT el 1 1S

T e s mrarn cag 0 T frornd_ 10 ™S

<k

il o R M
-

ks kwcman, g you o'
ol Pl o T e -t b
vabedde" Bag™ Hai lan
g
1Ak
gl wl="yei " He="Thinee i Me-orees

g
‘w'hl B Rl Saea s | oE-oyan bt
¥ e i " A
oo ol Chmabee’ i i foboni
< st i el el el
< g e e Tl e e e e
oy

1

ol b= Al
viges bt =8 a1

1,k

ok

i s e s pan H e ™
g

-
T amd s o Bl ot b
< e oo T ™ s BB
i
1
TCWE " M aars™

o)
Y b Brmerman 5o dn | =l

| 1 L I]

Supporting WML 1.1, WAPPage 2.1 allows the easy creation and mainte-
nance of WML content without users necessarily needing to know too much
about WML. WAPPage shows the content in an emulated WAP handset, and you
can navigate the WML content by using the built-in tree view. The compiler
allows you to quickly locate errors and projects help you group files together. As
with many other editors, it features syntax highlighting but also features drag-
and-drop WML editing.

www.syngress.com

A New Markup: WML * Chapter 3

Other Editors

Many other editors are available, some freeware, some shareware, and others full-

blown retail products, so you should easily be able to find the editor that suits

your style of working. The following list covers some of the more well-known

editors:

Card One offers a simple point-and-click interface to WML creation
and is available from www.peso.de/wap_en/index.htm.

DotWAP is a basic but popular editor for creating WML files and is
available from www.inetis.com/freeware.asp.

Santana Builder is a WML editor for the more advanced developer
that can connect to databases for complex interactive site creation and is
available from www.inetis.com/santanabuilder.asp.

WAPPage is a WML editor with drag-and-drop functionality, visual
editing, and helpful syntax highlighting together with a number of ways
of previewing WML. WAPPage is available from
www.zyglobe.com/products.html.

Wap Pro 2.0 features extensive support for the WML standard and also
allows code created for dynamic applications using ASP, PHP3, and Cold
Fusion among others and is available from www.wapemperor.com.

WBuilder Espresso is a template-based editor that features WYSIWYG
editing, WML site previews, and site publishing. WBuilder Pro is also
available and ofters workflow solutions.You can find both at
www.3tl.com/products/espresso/index.htm or www.3tl.com/
products/pro/index.htm.

WML Writer is a simple WML creation editor reminiscent of
Microsoft’s WordPad but features syntax highlighting and the creation of
full WML files. WML Writer is available from http://inin-wap.avalon.hr/
zdravko/index.htm.

XML Spy is a full-featured XML editing tool for those who want max-
imum control. You can use XML Spy to create WML files. For the more
experienced user at home with the various WML elements, XML Spy
provides XML validation, custom schema, DTD editing and creation,
and more. XML Spy is available at www.xmlspy.com.

129

Www.syngress.com

130

Chapter 3 « A New Markup: WML

WAP SDKs

WAP SDKs offer a number of tools to developers to speed the creation of WAP
sites. They generally contain at least a WML editor and an emulator to view con-
tent in. Some even go as far as to include a dedicated WAP gateway to simulate
live requests and other tools such as WBMP creation and manipulation tools. The
following sections outline the features of several WAP SDXKs.

Ericsson WapIDE SDK

Available through registration at the Ericsson Developers’ Zone
(www.ericsson.com/developerszone), the WapIDE SDK enables the development
and testing of WAP applications for Ericsson phones.

The SDK simulates the R320s, R380s, and R520m Ericsson phones and
includes an application designer facilitating the creation and testing of WML
applications. Additionally, the inclusion of a push initiator allows push messages to
be sent to the WapIDE browser or real device.

The SDK will run on Microsoft Windows NT 4.0, Windows 98, or Windows
2000 and requires Java 2 Platform, version 1.3.0 or later.

Motorola Mobile ADK

The Motorola Mobile ADK is available to individual developers who register at
the Motorola Applications Global Network (MAGNET). It allows the developer
to create and simulate WML applications targeted towards Motorola devices. You
can find additional information at www.motorola.com/developers/wireless.

Nokia WAP Toolkit

Nokia WAP Toolkit 2.1 includes WML, WMLScript, WBMP, and multi-part edi-
tors plus simulators for various Nokia phones. It also includes debugging tools, a
push simulator, and sample applications.

The SDK is available to registered users and will run on Microsoft Windows
NT 4.0, Windows 98, or Windows 2000 and requires Java 2 Platform, version
1.3.0 or later. A minimum 300MHz Pentium with 128Mb of RAM is recom-
mended. You can find additional information at http://forum.nokia.com.

Openwave UP.SDK

The UPSDK allows applications to be developed targeting devices that utilize
Openwave technologies. The SDK contains an UP.Simulator, UP.Browser phone

WwWw.syngress.com

A New Markup: WML * Chapter 3

simulator for Windows and relevant developer documentation, UP.Link notifica-
tion library and tools, plus sample application source code. For additional infor-
mation, visit http://developer.openwave.com.

WAPODbjects

The WAPODjects framework tightly integrates with Apple’s popular WebObjects
framework. Featuring drag-and-drop integration with WebObjects builder and
support for databases and Enterprise Resource Planning (ERP) systems,
WAPODbjects allows rapid application development targeted at wireless users.
Additional information is available at www.wapobjects.com/wapobjects/en.

WML Emulators

WML emulators add the facility to view your WML decks in an emulation of a
phone device. These emulators vary wildly in how they render content and how
closely this compares to actual real-life deployment of a finished application.
Although emulators are useful, there is no substitute for real-world testing using
actual devices over live public networks. For emulators specific to the phone
manufacturers, check the previous WAP SDK listing.

= M3Gate (www.m3gate.com/m3gate) M3Gate allows you to surf
WAP sites from the comfort of your PC and is launched when you
encounter a WAP address in your browser. It can be custom-designed
according to your needs for corporate applications.

» Virtual WAPJag (www.wapjag.com/news/virtual.php) Link to
the Virtual WAPJag to launch a browser window displaying the WAP

site’s content.

» WAPAka (www.wapaka.com) A free WAP microbrowser written in
WAP that can be used within Web browsers or Palm, Windows CE, and
Linux operating systems.

» YOSPACE SmartPhone Emulator (www.yospace.com) A well-
known WAP emulator that can be placed on a Web site with a huge
variety of skins and sizes to choose from.

» WinWAP PRO (www.wap-shareware.com/directory/
wapemulators/winwappro.shtml) A microbrowser available for a
number of devices. The Palm OS and Windows versions are publicly
available.

131

Www.syngress.com

132

Chapter 3 « A New Markup: WML

Summary

Although wireless markup languages have been around for some four years or so
now, they are still very much a “work in progress.” Forthcoming WAP specifica-
tions will doubtless add to the equation as wireless devices evolve and mature.
However, WML has borrowed much from the past, and we can imagine this will
continue to be the case for the foreseeable future as the language is developed
turther. Thus, there is still much to be learned from an appreciation of WML in
its present commercially available form.

The single most important point concerning WML is that it is an application
of XML and is thus subject to all the rules this entails. Although it may appear a
complex 1ssue when dealing with white space restrictions, proper nesting of ele-
ments, and representation of elements, these are common-sense points that have
the added benefit of prompting better coding standards, making the resultant
WML more readable by others. In an ideal world, it also guarantees platform
interoperability, though individual browser interpretations of the WML standard
will doubtless have their own say on how the markup is represented.

Due to the huge range of devices that will be capable of interpreting WML,
you should take care in diverting from the specification produced by the WAP
Forum. For some applications, such as use within a corporate intranet where you
know which devices will be in use, extensions can provide much added capa-
bility; however, for someone attempting to access the same service available over
the Internet on a device that does not support the extensions, their use could also
spell disaster.

The WML language provides enough capabilities to get your content out in
front of what could be the single biggest audience for any distribution medium
since radio or television. For a young technology, there is already heavy backing
from the biggest players in the industry. The inclusion of WML editing in the
most popular HTML editors and the availability of specialized WAP SDKs are
sure signs that support for WML and the creation of applications destined for
viewing on mobile devices will be ongoing and extensive.

WwWw.syngress.com

A New Markup: WML * Chapter 3 133

Solutions Fast Track

A Brief History of Wireless Content

M The Intelligent Terminal Transfer Protocol (ITTP) was developed by
Ericsson in 1995. Unwired Planet developed the Handheld Device
Markup Language (HDML) in mid-1996 and made it available to
developers. The Tagged Text Markup Language (TTML), developed by ; '.
Nokia Corporation, and the Extensible Markup Language (XML) had
become available around the same time.

M In June 1997, Nokia and Unwired Planet formed The WAP Forum, also
bringing together Motorola and Ericsson. These initial founders

represented over 90 percent of the wireless market. The WAP Forum’s
primary goal was to develop a protocol that could be built on any
platform to allow users to interact with services and information as fast
and efficiently as possible and to promote product interoperability.

M The WAP Forum examined the various markup languages being offered
by the different companies and took the best aspects of each to form the
Wireless Markup Language (WML), which was released in 1999.

M Those devices that contained HDML browsers gained the ability to
browse WML content from HDML version 3.1 onwards.

WML Overview

M WML is an application of XML. £

M A WML document contains elements that have a start tag and an end tag.
If the element isn’t a container for data, the element must be self-closing

(indicated by a backslash).

M WML files consist of a deck containing one or more cards. Each file can
be thought of as a deck, within which can be any number of cards. Each
card is a single page that can be displayed on the device.

M WML is constructed hierarchically. Files must be well-formed and valid
XML documents. Validity is achieved by the inclusion of a Document
Type Definition (DTD).

Www.syngress.com

134 Chapter 3 « A New Markup: WML

WML Elements

M WML elements specify the structure of the content.

M WML is quite similar to HTML in its use of elements and attributes to
describe the content within each file. There are relatively few elements
in comparison to HTML.

* Creating WML Content

M Dynamic applications are applications that build content “on the fly” in
response to requests made. A single template file filled with dynamically
served content can replace hundreds of similar HTML pages.

M Openwave extensions to WML allow further context and better error
handling to be introduced to your WML application.

M WML provides a number of navigation aids that are more flexible than
g those available in HTML.

- M Tasks allow the user to perform actions dependent on the situation
,q_i‘:_ encountered.

T

WML Editors, WAP SDKs, and Emulators

M WAP editors allow the quick and easy creation of WML files. Most
of the popular HTML editors support editing WML.

& M WAP editors can also sometimes contain a built-in emulator to
preview work.

L

M You should always check WML content on the target device
wherever possible.

WwWw.syngress.com

A New Markup: WML * Chapter 3 135

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q:

A:

. My content does not display on a phone but works fine on an emulator.

I created formatted content that doesn’t show up on my Nokia 7110. What’s
wrong?

Not all WAP devices are created equal. Because the WAP specification is quite
loose in what is absolutely required and what is absolutely not, the device

manufacturers make a judgment call as to which features are available and
which are not. This has led to vast differences between how difterent devices
handle WML, such as the Nokia 7110 compared to an Ericsson R380.

: How do I display characters such as a dollar sign? Is there an entity similar to

& for an ampersand?

To display a dollar sign, enter it twice as follows: $8. The dollar sign will now
display correctly.

: Which scripting language should I use to develop dynamic WML?

You can use whatever scripting language you are most comfortable with. The
example in this chapter is in ASP, but you could use PERL, PHP3, or Java
Server Pages to equal effect.

What’s wrong?

Although many emulators are very close to the actual device, there is no sub-
stitute for real-world testing. Check that the syntax of your WML is correct
and the DTD is referenced properly. If you are using nonstandard extensions,
don’t forget to change the DTD reference accordingly.

: Can I use sound or video in my WML application?

The use of multimedia within WAP devices is not possible at present, though

this looks set to change with the introduction of new standards for third-gen-
eration (3G) services.

Www.syngress.com

Chapter 4

Enhancing Client-

Side Functionality
with WMLScript

Solutions in this chapter:

= What Is WMLScript?

= Understanding Basic Elements of et j
WMLScript g

= Learning to Interpret WMLScript

» Performing Mathematical Operations
Using WMLScript

= Using WMLScript for Input Validation
= Credit Card Validation

= Using WMLScript and Microsoft ASP: A
Case Study

M Summary
M Solutions Fast Track

M Frequently Asked Questions
137

138

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Introduction

Besides using HTML for Web page rendering, Web developers also commonly
use a scripting language like VBScript or JavaScript to perform simple client-side
tasks such as user input validation. Such a task might be to validate that the user
has entered a valid date and to inform them if it isn’t. Although tasks like valida-
tion could be done on the server side, it is far more productive and efticient to
perform the checking on the client side. Besides saving a round-trip to the server
for the inputs to be validated, it allows your application to be more responsive to
the user.

As it is for developing Wireless Application Protocol (WAP) applications, the
counterpart for Wireless Markup Language (WML) is the WMLScript language.
The WMLScript language has similar objectives to those of JavaScript and
VBScript. In this chapter, we will look at how WMLScript can be used in your
application for client-side processing. We will first present an overview of the lan-
guage, followed by its syntax, operators, and control structure. We will then illus-
trate the various features of the WMLScript language by walking through several
examples. Each example will then be dissected. The approach to this chapter is
learning by example. This chapter discusses WMLScript version 1.1.

What Is WMLScript?

WMLScript is a language that provides scripting capabilities to the WAP architec-
ture. It complements the Wireless Markup Language. WMLScript is to WML
what JavaScript 1s to HTML. In the context of WAP, WMLScript performs useful
functions like user input validations and user prompts so as to reduce the round-
trip delays to the origin server. WMLScript is loosely based on the ECMAScript
(ECMA262). It is similar in syntax to scripting languages like JavaScript and
JScript.

Not All Phones Support WMLScript

Before you dive into WMLScript programming, be aware that not all WAP
phones support WMLScript. However, phones from the following vendors do
support WMLScript:

= Ericsson

= Nokia

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript » Chapter 4

In addition, phones utilizing the UP.Browser from Openwave support
WMLScript (e.g., Siemens and some models from Ericsson). For this chapter, we
will be making use of the Nokia WAP Toolkit as well as the UP.Simulator (which
contains the UP.Browser) for testing our WMLScript programs. Developers tar-
geting their applications at the UP.Browser market have to be aware of the
browser version currently installed in most of the phones in the U.S.Table 4.1
shows the difterent versions of the UP.Browser and their support for the
Handheld Device Markup Language (HDML), WML, and WMLScript.

Table 4.1 UP.Browser Language Support

Browser Version Supported Languages

UP.Browser 4.x HDML (through translation at the gateway), WML1.1,
WMLScript1.1

UP.Browser 3.1 HDML, WML1.1 (through translation at the gateway),
no support for WMLScript

UP.Browser 3.0 HDML, no support for WML and WMLScript

As you can see, WMLScript is not supported by phones running the
UP.Browser version 3.x. Therefore it is important for you to know the browser
version of your targeted user when developing your application. One solution
might be to customize your application such that during runtime, a check is
made to ensure that the user can support WMLScript.

NoTE

Devices using the UP.Browser 3.1 rely on the gateway to translate WML
codes into HDML so that they can execute WAP applications.

Using a server-side technology like Microsoft Active Server Pages (ASP), you
can have the code shown in Figure 4.1.

Figure 4.1 Code Snippet for Detecting the Kind of Devices Accessing the Deck

<%
if InStr(Request. ServerVari abl es("HTTP_USER_AGENT"), "Modzilla") then
/1 user is using a Wb browser

/1 place codes for handling web browser here

Continued

139

Www.syngress.com

140 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Figure 4.1 Continued

el se
/1 assumes the user is using a WAP device
/1 place WAP-rel ated codes here
if InStr(Request. ServerVari abl es("HTTP_USER_AGENT"), "3.1") then
/1l we can further exami ne the browser version using
/] the HTTP_USER AGENT vari abl e
end if
end if

%

The code snippets in Figure 4.1 illustrate how you can detect the kind of
devices accessing your page. Basically, when a device accesses a document from a
Web server, it will send information about itself to the Web server. This informa-
tion is stored in special variables on the Web server, known as Environment
Variables. HTTP_USER_AGENT is one such variable. It stores information
about the device type, such as browser version and brand. In the case of the
UPBrowser 4.1, it will set the following string in the variable:

ONGL UP/4.1.20a UP.Browser/4. 1. 20a- XXXX UP. Li nk/ 4. 1. HTTP- DI RECT

Based on this information, developers can then decide if the target device is
able to support WMLScript, and send the appropriate content to the device.

WMLScript Compilation

Before the WMLScript is sent to the WAP device for execution, it has to be
compiled (either by the WAP gateway or through explicit compilation) into a
binary format known as WMLScript bytecode. The WMLScript bytecode is then
sent to the device to be interpreted by the WMLScript interpreter (located on
the WAP device).

This compiled bytecode, together with the compiled WAP binary, will have
to fit into the memory of the target device. Hence, the rule for minimizing the
size of the WMLScript programs and WML decks still holds.

How WMLScript Interacts with WML

For a WML deck to interact with WMLScript, it has to call functions in a
WMLScript program defined with the extern keyword (see Figure 4.2). The

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

WMLScript program is stored in another file ending with the wmls extension.
Unlike JavaScript, it cannot be embedded within the calling program—WML in
this case.

Figure 4.2 How WML Interacts with WMLScript

extern function Hello()
Diglogs.alert ("A big Hi from WHMLEScript!");

}

For WMLScript to interact with a WML deck, the WMLBrowser library is
used (more on this in later examples). Note that in order to use WMLScript, you
need to set the MIME type for WMLScript in your Web server. The MIME type
for the .wmls extension is text/vnd.wap.wmlscript.

Understanding the Basic
Elements of WMLScript

We will illustrate the WMLScript language in this chapter by examining several
examples. For a complete reference to the language syntax, please refer to the
WMLScript reference and documentation that come with the UP.Simulator. The
UP.Simulator can be downloaded from Openwave at http://developer.openwave
.com/download/license_41.html.

Examining WMLScript Syntax

WMLScript is a case-sensitive language. That is, proper capitalization of keywords
and function names from libraries is required. It ignores white space, new lines
and tabs. Each statement in a WMULScript program is terminated by a semicolon
(;), for example:

result *= i;

141

Www.syngress.com

142

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Comments are either encapsulated within a pair of “/*” and “*/” or are pre-
ceded with the “//” combination, like this:
/* This is a block of
comments that spans nmultiple |ines
*/
/1 This is a single line of coment

// This is another |ine of comment

WMLScript 1.1 also reserves a set of keywords that have special meaning to
the compiler. They are shown in Table 4.2.

Table 4.2 Keywords in WMLScript

access extern path
agent for return
break function typeof
continue header url

div http use
div= if user
Domain isvalid var
else meta while
equiv name

Examining WMLScript Data Types
WMLScript supports five built-in data types:

= Integer

» Floating Point
» String

= Boolean

s Invalid

To declare a variable, use the var keyword. There is no need to explicitly
declare the data types; WMLScript will handle them internally. The following
illustrates how WMLScript automatically converts the variable to the appropriate
data type:

WwWw.syngress.com

var nont h=12;

Enhancing Client-Side Functionality with WMLScript « Chapter 4

var price=5. 95;
var nmsg="Hello World!";

var print Nanme=tr ue;

var except=Invalid;

The Invalid type 1s used to differentiate itself from the other data types, for

example:

if (5/0=lnvalid) {

/! codes here

Examining WMLScript Operators

Similar to most programming languages, WMLScript supports the sets of opera-
tors shown in Tables 4.3, 4.4, 4.5, 4.6, and 4.7.

Table 4.3 Assignment Operators

Operator Description

= Assignment

+= Add and then assign; for example, x += vy is equivalent to
X=X+Yy

-= Subtract and then assign; for example, x —= y is equivalent to
X=X-Y

*= Multiply and then assign; for example, x *=y is equivalent to
x=x*y

/= Divide and then assign; for example, x /=y is equivalent to
X=x/y

di v= Divide (integer division) and then assign; for example,
x div=y is equivalent to x = x divy

% Remainder (the sign of the result is the same as the sign of the
dividend) and then assign; for example, x %=y is equivalent to
X=X%Yy

<<= Bitwise left shift and then assign; for example, x <<=y is
equivalenttox = x <<y

>>= Bitwise right shift with sign and then assign; for example,

X >>=yis equivalenttox = x >>y

Continued

143

Www.syngress.com

144 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Table 4.3 Continued

Operator Description

>>>= Bitwise right shift zero file and then assign; for example,
X >>>=yisequivalenttox = x >>>y

&= Bitwise AND and then assign; for example, x &= vy is equivalent
tox=x8&y

N= Bitwise XOR and then assign; for example, x ™ =y is equivalent

FaN

tox=x"y

= Bitwise OR and then assign; for example, x | =y is equivalent
tox=x|y

Table 4.4 Binary Arithmetic Operators

Operator Description

+ Addition (for number) or concatenation (for strings)

- Subtraction

* Multiplication

/ Division

div Integer division

% Remainder, the sign of the result is the same as the sign of the
dividend

<< Bitwise left shift

>> Bitwise right shift and sign

>>> Bitwise shift right with zero fill

& Bitwise AND

| Bitwise OR

N Bitwise XOR

Table 4.5 Unary Arithmetic Operators

Operator Description
+ Plus
- Minus

-- Pre/post decrement

Continued

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript ¢ Chapter 4 145

Table 4.5 Continued

Operator Description
++ Pre/post increment
~ Bitwise NOT

Table 4.6 Logical Operators

Operator Description
&& Logical AND

|| Logical OR
! Logical NOT (unary)

Table 4.7 Comparison Operators

Operator Description

< Less than

<= Less than or equal

== Equal

>= Greater than or equal

> Greater than
Inequality

WMLScript also supports the conditional operators. For example, the fol-

lowing if-else statement:

if (x==0) {
X = 1;

}

el se {
x=10;

}

can be rewritten as:

x =072?1: 10

Www.syngress.com

146

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Examining WMLScript Control Structures

WMLScript supports the if construct for making decisions and the while and for
loops for repetitive execution.

Using the If Statement

The if statements allows decisions to be made based on the result of a condition.
For example, the following code snippet will calculate the average if the total is
more than zero; otherwise it will assign the average to be zero:
if (total >0) {

average = sum/ total;

} else {

aver age 0;

Using the While Loop

The while loop executes a block of instruction repeatedly as long as the condition
is true. For example, the following sums up all the integers from 1 to 5:

var num = 5;

var sum = O;

while (nume=1) {

sum += num-—

Using the For Loop

The for loop executes a block of instruction repeatedly for a finite number of
times. For example:

var result = 1;
for (var i=1; i<=num i++) [/ loop counter i starts at 1, ends when
result *=i; // i is less than or equal to num i is

/1 increnented by 1 in each |oop

Using the Break Keyword

The break keyword interrupts the loop within a while or for loop. For example:

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

while (nunpl) {
sum += num-— /1 add up num and decrenent num by 1
if (sum>20) /1 if the sumis nmore than 20,

br eak; /1 break out of the | oop

Using the Continue Keyword

The continue keyword allows execution of either a for or while loop to continue,
thereby skipping the rest of the block. For example:
var num = 20;
for (var i=1; i<=num i++) {
if (i%2==0) /1 if no remainder (neaning it is an even nunber),
conti nue; /1 continue the |oop

Console.print(i) // else print out the odd nunber }

Using WMLScript Libraries

The WMLScript specification contains the following libraries:

» Lang Library Contains functions that relate to the language core.
» Float Library Contains functions that perform floating point operations.
= String Library Contains functions that perform string operations.

= URL Library Contains a set of functions for handling absolute URLs
and relative URLs.

= WMLBrowser Library Contains functions by which WMLScript can
access the associated WML context.

» Dialogs Library Contains a set of typical user-interface functions.

Libraries are named collections of functions that belong logically together. To
call these functions, simply specify the library name followed by a dot (.) sepa-
rator and the function name with the appropriate parameters. We will take a look
at some of the examples in the following sections.

The library collection can be extended by emulator vendors for debugging
purposes. For example, the UP.Simulator contains the Console library to help
developers in debugging.

147

Www.syngress.com

148

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Functions in the Class Libraries

Within the libraries there are functions. Table 4.8 shows the functions within the
various libraries described in the previous section. We will be making use of some
of these functions in the examples that follow.

Learning to Interpret WMLScript

Let’s look at our first example on how WML interacts with WMLScript. In this
example, we will look at how a WML deck (see Figure 4.3) calls a WMLScript
program (Figure 4.4) using the <go> element. The WMLScript program in this
example contains one function defined with the extern keyword. It also illustrates
the use of functions located in the libraries.

Figure 4.3 Example1.wml—WML Deck Calling a WMLScript Program

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/ wi _1. 1. xm ">

<wni >
<card id="cardl" title="Card 1">
<p>
Say hello to WWLScri pt!
<do type="accept" | abel ="Hello0">
<go href ="Exanpl el. wr s#Hel | 0" />
</ do>
</ p>
</ card>
</ wm >

Figure 4.4 Example1.wmls—WMLScript Program Displaying an Alert

extern function Hello() {
Di al ogs.alert("A big H from WW.Script!");

www.syngress.com

wiy

busol paos

buusadedsaun bulysgns wopuel

9A|0SDd 9z99nbs ju|ossed

bulspeo| Jvooe|dal jeo|4asied

pIleAS! 2oe|dau JujuIW

awaYyds1ab 1\YoAOWI ulw

191949Y3196 yibug| Juxew

A1anD1ab Adw3si 1bs xew

Jep19s 104126 \VABENT] punou sl

ysaujal yiediob jew.o} mod }eo|4si

aaud si9}Pwelediab puly jeojquiw 1eo|}

IX93UODMAU NS SJUDWIDID jeo|{xew }IXd

1dwoud ob 1uswbesq1ob \vALIETVIETE) 1ul 19SJ930e4RYD
wJ1juod 1ep1ab asegqlab 2Jedwod l00}4 sqe
M9|e pJedjuaiindlab bulysadedss vieyd [192 yoge
sbojeiq J9SMOIGTINM NN bulns jeo|4 bueq

salIeIqI] sse|D snolie/ dy) Jo suoidung 8 a|qel

149

150

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Dissecting the Code

The WML deck (shown in Figure 4.3) contains a <go> element, which points to
a WMLScript file:

<go href ="Exanpl el. wr s#Hel | 0" />

To link a WML deck to the WMLScript file, specify the filename of the
WMLScript file in the href attribute of the <go> element. The name following
the # symbol is the function name in the WMLScript.

Within the WMLScript file (see Figure 4.4), we have a function named
Hello() defined with the extern keyword:

extern function Hello() {

Only functions in WMLScript with the extern keyword preceding the func-
tion name may be called by a WML deck. In this case, the function named
Hello() accepts no input parameters.

Di al ogs. alert("A big H from WWScript!");

This line simply tries to display an alert on the user’s screen. In this case, we
use the alert() function from the Dialogs library. Using the Nokia WAP Toolkit,
you should see the screens shown in Figure 4.5.

Figure 4.5 Linking a WML Deck to a WMLScript File

— R — A big Hi from
Say hello to WML Script!
WMLSCriptl

Hello 0K

NoTE

WMLScript statements end with a semicolon (;). Readers familiar with
JavaScript should feel right at home!

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Performing Mathematical
Operations Using WMLScript

The next example that we will illustrate is performing mathematical operations,
using WMLScript to calculate the factorial of a number. This example uses a
WML deck to prompt the user to enter a number (see Figure 4.6). The number
is then passed to the WMLScript program for calculation (see Figure 4.7).This
example illustrates looping construct in WMLScript as well as setting variable
values in WMLScript and how it is passed back to the WML deck.

Figure 4.6 Example2.wml—WML Deck to Prompt the User to Enter a Number

<?xm version="1.0"?>

<! DOCTYPE wmr PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/ DTD/wr _1. 1. xm ">

<wni >
<card id="cardl" title="Card 1">

<p>
Factorial machine:

Enter a nunber:
<i nput type="text" name="nunt />
<do type="accept" |abel ="Cal cul ate!">
<go href ="Exanpl e2. wr s#Cal cul ate($(num)" />
</ do>
</ p>
</ card>

<card id="card2" title="Card 2">
<p>
$num ! is $(result)
</ p>
</ card>
</ wm >

151

Www.syngress.com

152 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Figure 4.7 Example2.wmls—WMLScript Program to Calculate the Factorial of
a Number

extern function Cal cul ate(num {
var result = 1;
for (var i=1; i<=num |i++)
result *=i;
WWMLBr owser . set Var ("result", result);

WWLBr owser . go(" Exanpl e2. wnl #car d2") ;

Dissecting the Code

In this example, we want the WMLScript (see Figure 4.7) to calculate the facto-
rial of a number and display the result in a card. This example illustrates several
different features of the WMLScript language.

Let’s take a closer look at the WML deck (see Figure 4.6):

<i nput type="text" name="nuni />

The user enters a number through the use of the <input> element.

<go href ="Exanpl e2. wr s#Cal cul ate($(nunm))" />

The Calculate() function within the Example2.wmls file is called. The
number entered by the user (num) is passed to the function.
<card id="card2" title="Card 2">
<p>
$num ! is $(result)
</ p>

</ card>

Card2 will display the result of the operation performed by the WMLScript.
The value of result is set by the WMLScript function.

Within the WMLScript function, we have the function declaration of
Calculate():
extern function Cal cul ate(num{

var result = 1;

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

A new variable result is defined with the var keyword and set to a value of 1.
for (var i=1; i<=nun i++)

result *= i,

The for loop repeatedly executes a set of instructions. In this case, it multiplies
all the numbers from 1 to num.

WWLBr owser . set Var ("result”, result);

The result is stored into the WML variable result using the setVar() function

from the WMLBrowser library. Notice that a pair of double quotes encloses the
WML variable result.

WWLBr owser . go(" Exanpl e2. wnl #car d2") ;

Once the result is stored, #card2 from the WML deck is loaded using the
go() function from the WMLBrowser library. Figure 4.8 displays the resulting
screens on the WAP Toolkit.

Figure 4.8 Performing Mathematical Operations Using WMLScript

Cand | c— Card 2
Factorial machine: Hlig120

Enter a numberjig|

Options

Using WMLScript for Input Validation

The next example illustrates a very common usage of WMLScript—input valida-
tion. Input validation is a very common task performed by Web applications.
Imagine asking the user for his or her birth date. If the user enters 13 for month,
the error could be detected early by client-side input validation, rather than
posting the input to the server and causing a round-trip delay only to realize that
the input is erroneous. This is especially important for WAP application, as the
connection is inherently slow and therefore there is a necessity to reduce the
number of connections to the server.

153

Www.syngress.com

154 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

In this application, we have a user registering using a WAP browser. The user
keys in his or her userID and enters a password twice for confirmation. The
WMLScript will compare the two passwords to ensure that they are identical
before proceeding to register the user. (The WML deck is shown in Figure 4.9

and the WMLScript is shown in Figure 4.10.)

Figure 4.9 Example3.wml—WML Deck to Prompt Users to Enter a UserID

and Password

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
“http://ww. wapforum org/DTD/ wr _1. 1. xm ">

<wni >

<card id="cardl" title="Registration" newcontext="true">

<p>

UserI D : <input type="text" nanme="userlD'/>

Password: <input type="password" nanme="passwordl"/>

Confirm Password: <input type="password" nanme="password2"/>

<do type="accept" | abel ="Register!">

<go href ="Exanpl e3. wil s#veri f yPasswor d(' $passwordl',

' $password2')"/ >
</ do>
</ p>
</ card>
</ wmr >

Figure 4.10 Example3.wmls—WMLScript Program to Perform Input Validation

extern function verifyPassword (Passwordl, Password2)

{
var URL;
if (String.conpare(Passwordl, Password2) == 0) {
URL = "register.asp?userlD=" + WMLBrowser.getVar("userlD') +

" &asswor d=" + Passwordl;
WWLBr owser . go(URL) ;

}

WwWw.syngress.com

Continued

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Figure 4.10 Continued

el se {
Di spl ayMessage("Passwords do not match! Please retry...");
WWLBr owser . go(" Exanpl e3. wmr ") ;
}

function Displ ayMessage(nessage) {
Di al ogs. al ert (nessage) ;

return ;

Dissecting the Code

Again, let’s start with the WML deck shown in Figure 4.9:

User|I D : <input type="text" nanme="userl|D'/>

Password: <input type="password" nanme="passwordl"/>
User enters a user]D and password

Confirm Password: <input type="password" name="password2"/>

The user re-enters the password:

<go href ="Exanpl e3. wil s#veri f yPasswor d(' $passwordl', ' S$password2')"/>
The verifyPassword() function in Example3.wmls is called. The two pass-

words are passed to this function. Notice the pair of double quotes surrounding

the two input parameters.
At the WMLScript end, shown in Figure 4.10, is:

extern function verifyPassword (Passwordl, Password2)

The first function in this file, verifyPassword(), has two input parameters:
Password1 and Password2.

var URL;

if (String.conpare(Passwordl, Password2) == 0) {

155

Www.syngress.com

156

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

The compare() function in the String library is used to compare the two
strings. If they are identical, the function will return a value of 0. If the two pass-
words were identical, an ASP file would be called.

URL = "register.asp?userlD=" + WWLBrowser.getVar("userlD') +
"&passwor d=" + Passwordl;
The URL for the ASP file is created with the query string containing the
userID and password.

WWLBr owser . go(URL) ;

The browser is then redirected to the ASP file:

el se {

Di spl ayMessage(" Passwords do not match! Please retry...");
If the two passwords are not identical, the DisplayMessage() function is
then called. This function takes in a single input parameter:

WWLBr owser . go(" Exanpl e3. wmr ") ;

Once the message is displayed, we reload the Example3.wml deck:

function Displ ayMessage(nessage) {
Di al ogs. al ert (nessage) ;

return ;

Notice that the DisplayMessage() function does not have the extern key-
word. This function can be used only within the WMLScript file and is not
callable from a WML deck directly. The output of Example3.wml and
Example3.wmls are shown in Figure 4.11.

Figure 4.11 Comparing User Inputs Using WMLScript

— B i EFETON Pﬂﬂ‘ﬂ‘?ﬂﬁ?ﬂm noi
LserD [Please ret
Pazeword | Lo
Confirm

Passwnrd "]

Options 0K

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

NoTE

Functions that only are used internally do not require the extern keyword.

Credit Card Validation

Another common use for WMLScript is in validating credit card numbers. This
example illustrates several WMLScript language constructs by checking the
validity of a credit card number.

The Credit Card Validating Algorithm

Depending on the credit card type, most credit card numbers are encoded with a
check digit. By running the credit number through some algorithms, a check
digit is often appended to the end of the credit card number. To validate that the
number is a valid credit card number, the numbers are applied the same algo-
rithm in the reverse manner. The following illustrates the LUHN Formula (Mod
10) for validating a credit card number.

1. Multiply the value of alternate digits by 2, starting from the second
rightmost digit.
2. Add all the individual digits derived from step 1.

If the sum of all the digits 1s divisible by 10, the card number is valid;
otherwise it is invalid.

Let us demonstrate this algorithm’s use with an example. In this example we will
attempt to validate a credit card with the number 123467890123456.

1. First, multiply the value of the alternate digits by 2 starting from the
second rightmost digit as described previously.

Digit 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
Mul tipler x2 X2 X2 x2 X2 X2 X2 X2
Resul t 2 6 10 14 18 2 6 10

2. Next, add the individual digits derived from the previous step.

2+2+6+4+(1+0)+6+((1+4)+8+(1+8)+
0O0+2+2+6+4+(1+0) +6 =264

157

Www.syngress.com

158

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

3. Finally, attempt to divide the resultant sum from step 2 by a value of 10.
Sun¥64
Sixty-four is not divisible by 10; therefore the card number is invalid! Our

implementation of this algorithm using WMLScript is shown in Figure 4.12 and
Figure 4.13.

Figure 4.12 Example4.wm|—WML Deck to Prompt the User to Enter a Credit
Card Number

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
“http://ww. wapforum org/DTD/wr _1. 1. xm ">

<wni >
<t enpl at e>
<do type="options" |abel ="Min">
<go href="#cardl"/>
</ do>
</tenpl ate>
<card id="cardl" title="Card 1">
<p>
Pl ease enter credit card nunber:
<input type="text" format="*N' name="nuni/>
<do type="accept" |abel ="Validate!">
<go href ="Exanpl e4. wr s#Val i date(' $(num')" />
</ do>
</ p>
</ card>
<card id="card2" title="Ilnvalid">
<p>
Credit nunber not correct.
</ p>
</ card>
<card id="card3" title="Valid">
<p>

Credit nunber correct.

Continued

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Figure 4.12 Continued

</ p>
</ card>
</ wnl >

Figure 4.13 Example4.wmls—WMLScript Program to Validate the
Authenticity of a Credit Card Number

extern function Validate(num {
var sum = O0;

var tenp, |ength;

length = String.|ength(num;
for (var i=length-1; i>=0; —+) { /lstart with rightnost
digit
if (i %2 ==0) {
tenp = Lang.parselnt(String.charAt(numi)) * 2; //multiply the
/I nunber by 2
sum += Lang. parselnt (String.charAt(tenp,0)); //sumup the
/1 first digit
if (String.length(temp) > 1) [1if nore than 1
/ldigit...
sum += Lang. parselnt (String.charAt(tenp,1));// sum up the
/1 second digit

} else {

sum += Lang. parselnt(String.charAt(numi)); // sinply sum up
/1 the nunber

}
}
if (sum % 10 !'= 0) /1 if not divisible
/1 by 10
WWLBr owser . go(" #card2"); I card nunber
I not valid
el se Il else

Continued

159

Www.syngress.com

160

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Figure 4.13 Continued

WWLBr owser . go(" #card3"); I card nunber
I is valid

Dissecting the Code

We start with the <template> element of the WML deck shown in Figure 4.12:

<t enpl at e>
<do type="options" |abel ="Min">
<go href="#cardl"/>
</ do>

</ tenpl at e>

The <template> element defines deck-level event binding. In this case, the
<do> element is applicable to all the cards in the deck.

Because WMLScript does not support the use of array, we have to improvise
the use of array using a string. Since a string supports element indexing, we can
manipulate the digits as though we are using an array (this can be seen in Figure
4.13). For example, if we have 1234567890123456, we can manipulate it as a
string (see Figure 4.14).

Figure 4.14 Manipulating a String Much Like an Array

f Position 0 Position 15 :

1 2 |3 |4 |56 |7 (8]9 (0 1 2 |3 | 4|56

Given the following statement:

length = String.length(num;

We will first want to know the length of the number:

for (var i=length-1; i>=0; —) { //start with rightnmost digit

We will then use a for loop to cycle through all the digits in the number:

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

if (i %2 ==0) {
tenmp = Lang.parselnt(String.charAt(numi)) * 2; //mltiply the
/I nunber by 2
If the position is an even number (the % is the modulus operator), multiply

the digit at that position by 2:

sum += Lang. parselnt(String.charAt(tenp,0)); //sumup the first digit

and sum up the result digit-by-digit.

if (String.length(tenmp) > 1) [1if nore than 1
/idigit...
sum += Lang. parselnt(String.charAt(tenp,1));// sum up the
I second digit

If the result contains more than a digit, sum up the second digit.

} else {

sum += Lang. parselnt (String.charAt(numi)); //sinply sum up the nunber
}

If the position number is not an even number, simply sum up the number.

if (sum % 10 != 0) /1if not divisible by 10
WWMLBr owser . go("#card2"); //card nunber not valid

el se /el se
WWLBr owser . go("#card3"); //card nunber is valid

Finally, take the result and perform a modulus 10 operation. If there is no
remainder the card is valid; otherwise it 1s invalid. Figure 4.15 shows the resulting
screens on the WAP Toolkit.

Figure 4.15 Validating Credit Card Numbers Using WMLScript

el A 1 Irmvalid
Flease enter credit Credit number not
card carmect

number.

DBYE 75/ Y .U.I4454]

Options Kain

161

Www.syngress.com

162

www.syngress.com

Chapter 4 * Enhancing Client-Side Functionality with WMLScript

Using WMLScript and Microsoft Active
Server Pages (ASP): Case Study

We have seen how WMLScript can be used to perform client-side validation and
to complement WML applications that run on a WAP device. One particular appli-
cation that is very popular is a currency converter. However, the conventional cur-
rency converter usually hardcodes the exchange rate in the WMLScript program.
Once the WMLScript is downloaded onto the device, it is cached and any changes
to the currency conversion rate would not be reflected in the application.

In this case study, we will illustrate how you can use ASP to create a truly
dynamic WMLScript program using the currency converter application as a case
study. Our currency converter is able to reflect the daily changes in the exchange
rates.

Designing the Application

A currency converter application often is used to illustrate the use of WMLScript.
For this example, we will use the UP.Simulator provided by Openwave. Figure 4.16
and Figure 4.17 illustrate the desired outcome of our application.

Figure 4.16 Selecting the USD Option to Convert from, and Keying the
Amount to Convert

Figure 4.17 Selecting the SIN Option to Convert to, and Viewing the Result
of the Conversion

Enhancing Client-Side Functionality with WMLScript « Chapter 4

The user simply chooses the currency to convert from, keys in the amount to
be converted, and selects the target currency. The converted currency would then
be displayed.

Creating the Database

Our application makes use of a database containing a single table named
Conversion. The database table can be seen in Figure 4.18.

Figure 4.18 Our Database Contains One Table Named Conversion

&, Micsosnll Aocess - [Convessis - T abile]

[T B Edt ew [roet Fomst Beceds Toobk ‘Sindoe bep = |8 %
E-d &0 B o @ - [
Cumancy | Simkquiv |i|
] 0.83
SN 1

[|.-‘ii|

T | g 1YY 180 P

Dot asws MM

This table simply contains the exchange rate of currencies. The exchange rate
1s tagged to a fixed currency, the Singapore dollar in this case. For example:

1 USD (US Dollar) = 1.73 SIN (Singapore Dollar)
1 RM (Malaysian Ringgit)= 0.48 SIN
Converting from one currency to another is a two-step process. For example:
1. To convert 15 USD to RM, first convert the USD to SIN:
15 * 1.73 = 25.95 SIN

2. Then convert the SIN to RM:
25.95/0.48 = 54.0625 RM

The Conversion table contains two fields: Currency and SinEquiv. The
Currency field contains the currency name and the SinEquiv field contains the
equivalent amount of the currency in Singapore dollar.

The WML Deck

Let’s take a look at the WML deck that loads the application. The code can be
seen in Figure 4.19.

Www.syngress.com

163

164 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Figure 4.19 Currency.wml

<?xm version="1.0"?>

<! DOCTYPE wr PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/ wr _1. 1. xm ">

<wni >
<card id="cardl" title="Currency">
<p>
Currency to convert from
<sel ect name="fronCurrency">
<option val ue="USD"'>US$$</ opti on>
<option val ue="SI N'>S$$</ opt i on>
<option val ue="RM >RM\W/ opti on>
</ sel ect >
Enter Currency: <input type="text" nane="amount" format="*N'/>
Currency to convert to:
<sel ect nane="toCurrency">
<option val ue="USD"'>US$$</ opti on>
<option val ue="SI N'>S$$</ opt i on>
<option val ue="RM >RW/ opt i on>
</ sel ect >
<do type="accept" | abel ="Cal cul ate">
<go href="Cal cul at e. asp#Convert ($(anmount))"/>
</ do>
</ p>
</ card>
<card id="card2" title="Note">
<p>
Pl ease select a different currency.
</ p>
</ card>
</ wn >

There are two cards within the deck. The first card takes care of user input,
and once the user is done with it, links to the WMLScript:

<go href="Cal cul at e. asp#Convert ($(amount))"/>

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Notice that we did not link to a WMLScript file with the .wmls file exten-
sion. Instead, we have pointed the deck to an ASP file. We are going to use
Microsoft Active Server Pages to dynamically generate the WMLScript program.
The amount to be converted is also passed as an input parameter to the function
named Convert().

Generating the WMLScript Program from ASP

In the early days of the Web, most of the pages were static—content remains the
same unless it was changed by a webmaster or a Web designer. However, with the
explosive growth of the Internet (and the World Wide Web), people have realized
the importance and necessity of dynamic content. And very soon after, different
technologies were developed to enable Web sites to publish content that was
dynamic, through the use of server-side technologies. A good example would be
CGI scripts that return stock pages when requested. These pages often contain
information stored in a database. Some of the other server-side
technologies/products include:

» Microsoft Active Server Pages (ASP)
= Java Server Pages (JSP)
» ColdFusion Application Server

» PHP Hypertext Preprocessor (PHP)

In this example, we will illustrate server-side processing using Microsoft ASP.
Readers who are not familiar with ASP could refer to the following sources for
learning ASP:

» www.w3schools.com/asp/default.asp

» wwwlearnasp.com

The listing in Figure 4.20 shows the ASP document generating the
WMLScript program.

Figure 4.20 Calculate.asp

<! —#| NCLUDE fil e="adovbs.inc" —
<%
Response. Cont ent Type="t ext/vnd. wap. wrl scri pt"

if hour(tine())>=0 AND minute(time())>=00 AND hour(time())<8 AND
m nute(tine())<=59 then

Continued

Www.syngress.com

165

166 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Figure 4.20 Continued

Response. Expi resAbsol ute = Mont hName(nmonth(date()) , true) &
" " & day(date()) & " 8:00:00"

el se
Response. Expi resAbsol ute = Mont hName(nonth(date()+1) , true)
& " " & day(date() + 1) & " 8:00:00"
end if

%
extern function Convert (anount) {
var ori gAm =anount;
var fromCurrency = WWLBrowser. get Var ("fronCurrency");
var toCurrency = WWLBrowser. getVar ("toCurrency");
if (String.conpare(fronCurrency,toCurrency)==0) {
WWLBr owser . go("currency. wr #card2");

return;
}
<%
Dmrs
Set rs = Server. Create(bj ect (" ADODB. Recor dset ")
connStr = "DRI VER={M crosoft Access Driver (*.ndb)};DBQ=" &

Server. MapPat h("currency. ndb") & ";"
rs. Open "Conversion", connStr, adOpenKeySet, adLockOptinistic
%
var USD =<% rs.Find "Currency = 'USD "
response.wite rs("Si nEquiv")
9%,
var SIN =<% rs. MoveFi r st
rs.Find "Currency = 'SIN "
response.wite rs("Si nEquiv")
%;
var RM = <% rs. MoveFi r st
rs.Find "Currency = '"RM "
response.wite rs("SinEquiv")
%
if (fromCurrency=="USD"') {

WwWw.syngress.com

Continued

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Figure 4.20 Continued

anount = USD * amount;

} else if (fromCurrency=="RM') ({
anount = RM * anount;

}

if (toCurrency=="USD") {
amount = anmount / USD;

} else if (toCurrency=="RM') {

anmobunt = anmount / RM

}

anmount *=1.0;

var str = origAmt + " " + fronCurrency + " is " ;

Di al ogs.alert(str + String.format ("% 2f",anpunt) + " " +
toCurrency);

}

We use ASP to dynamically generate the WMLScript program. The reason for
this is that we want to load the currency exchange rate from a database so that it
1s always current. By doing that, the user is always using the latest exchange rate
for conversion.

However, there is a little problem is doing this. As database access is required,
it could be a time-consuming affair if we generate the WMLScript program
every time someone needs to use the application. In a Web environment where
concurrency is an important factor in determining the success of your site, this
problem is going to drastically slow down your server.

Fortunately, the nature of this application does not require that the user
require up-to-the-minute exchange rates. It would be reasonable if the exchange
rates were updated once a day.

To solve this problem, we make use of the caching property of WMLScript on
the device. What we could do is to set the expiration date of the WMLScript to
every morning at 8:00 A.M. When a user accesses the application after 8:00 A.M., or
loads the application for the first time, the WMLScript is fetched from the server
and cached for later use. Subsequent usage would then be loaded from the cache.

167

Www.syngress.com

168

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Let’s now take a closer look at our WMLScript file:

<! —#| NCLUDE fil e="adovbs.inc" —

Since we are using ActiveX Data Objects (ADO) for database access, we need
to include the adovbs.inc file containing all the ADO constants used by VBScript.

<%

Response. Cont ent Type="t ext/vnd. wap. w scri pt"

Remember that since we are generating the WMLScript file dynamically, we
need to explicitly set the MIME type in the ASP document using the
Response.ContentType property. Note that a pair of <% %> tags encloses the
ASP codes (VBScript in this case).

if hour(time())>=0 AND minute(tinme())>=00 AND hour (tinme())<8 AND mi nute
(tinme())<=59 then

Response. Expi resAbsol ute = MnthNane(nonth(date()) , true) & " " &
day(date()) & " 8:00:00"
el se

Response. Expi resAbsol ute = MnthNane(nmonth(date()+1) , true) & " "
& day(date() + 1) & " 8:00: 00"

end if

The next portion of the code determines the expiration date of the
WMLScript. The checking is simple: if the user loads the ASP document after 12
midnight, the expiration date would be set to 8:00 A.M.. the same day. If the ASP
document is loaded after 8:00 A.M., the expiration date would then be set to 8:00

A.M. the next day. To set the expiration date, use the Response.ExpiresAbsolute
property. The date format looks like this: “Oct 21 8:00:00”.

function Convert (anount){
var ori gAnt =anount ;
var fronCurrency = WWLBrowser. get Var ("fronCurrency");
var toCurrency = WWLBrowser. getVar("toCurrency");

Next we have the Convert() function. For a WMLScript function to be
callable from WML, it needs to have the extern keyword. Within the function we
defined three variables using the var keyword. The first variable is used to store
the original amount to be converted, and the next two variables retrieve the two
currencies involved in the conversion. In order for WMLScript to interact with
WML, you can use the WMLBrowser library. There are a number of functions

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

within the library that allow you to communicate with the WML deck. The
getVar() function retrieves the values of WML variables.

Before we start the conversion, we want to make sure that the two currencies
involved are not identical. For string comparisons, use the compare() function
from the String library. If they are identical, load the second card in the WML
deck and exit the WMLScript function using the return keyword.
if (String.conpare(fronCurrency,toCurrency)==0) ({

WWLBr owser . go("currency. w #card2") ;

return;

Because we are getting the conversion rates from a database, we need to use
ADO for data access.
<%
Dmrs
Set rs = Server. Create(bj ect (" ADODB. Recor dset")

connStr = "DRI VER={M crosoft Access Driver (*.ndb)};DBQ=" &
Server. MapPat h("currency. mdb") & ";"

rs. Open "Conversion", connStr, adQOpenKeySet, adLockOptinistic
%

Once the records in the database are retrieved, we proceed to assign the indi-
vidual rate to the respective variables.
var USD =<%rs.Find "Currency = 'USD "
response.wite rs("SinEquiv")
%,
var SIN =<%rs. MoveFi rst
rs.Find "Currency = "SIN "
response.wite rs("SinEquiv")
%,
var RM = <% rs. MoveFir st
rs.Find "Currency = 'RM"
response.wite rs("Si nEquiv")
%,

169

Www.syngress.com

170

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

The Find() method of the Recordset object is used to locate the correct
record to assign to the variables. Note that after the first variable is assigned, you
need to perform a MoveFirst() operation so as to ensure that the search always
begin from the first record. Also, recall earlier that we opened the recordset using
the adOpenKeyset cursor:

rs. Open "Conversion", connStr, adQpenKeySet, adLockOptinistic

This is important because using the default cursor (adOpenForwardOnly)
will cause the MoveFirst() method to fail. Finally, we perform the conversion:
if (fronCurrency=="USD") {

anmount = USD * anount;

} else if (fromCurrency=="RM') {
anount = RM * amount;

}

if (toCurrency=="USD") {
anmount = anmount / USD;

} else if (toCurrency=="RM') {

anmpbunt = anmount / RM

}

The result is then displayed using the alert() function from the Dialogs
library.
amount *= 1.0;
var str = origAnt + " " + fronCurrency + " is " ;
Di al ogs. alert(str + String.format ("% 2f",anount) + " " + toCurrency);
}

The format() function from the String library formats the result to two
decimal places.

Debugging the WMLScript

One of the difficulties that we found when coding this application is deciding
how to troubleshoot your WMLScript when you are faced with problems. Since
we are using the UP.Simulator for this application, we naturally turn to the
Phone Information window for help when it comes to debugging.

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Apart from some of the syntax errors that would quite often emerge, another
tricky problem is with caching.You need to ensure that the WMLScript file is
cached and used at the right time.

Let’s discuss the first problem, syntax error. Syntax error can be detected easily
using the Phone Information window. For example, assume we have the fol-
lowing error in our WMLScript program:
var USD =<%rs.Find "Currency = 'USD "

response.wite rs("Si nEquiv")

% // mssing ";

This error will generate an error in the compilation process, and the deck
shown in Figure 4.21 would be displayed.

Figure 4.21 The UP.Simulator Displaying an Error Message

Looking into the Phone Information window (see Figure 4.22) reveals the
following source of error.

(25) : error: syntax error at "var" missing ;

Figure 4.22 Looking into the Phone Information Window for Sources of Error

Fraar |rd ped o

171

Www.syngress.com

172 Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

The second problem is trickier. You want to know whether you have set the
expiration date of the WMLScript correctly. For instance, when you load the
application for the first time at 7:30 A.M., the WMLScript should expire in 30
minutes. To check that, the UP.Simulator provides an option for you to display
the cache information of the browser. To display the cache information, press the
F6 function key or click on Info->Cache (this can be seen in Figure 4.23). The
cache information would then be displayed in the Phone Information window
displayed in Figure 4.24.

Figure 4.23 The UP.Simulator Allows Cache Information to Be Examined

EHHEG' sy Help

5ol Gowe 75 L 5

Figure 4.24 Viewing the Cache Information in the Phone Information Window

Notice that the Calculate.asp document (generating the WMLScript file) has
a Time-To-Live (TTL) of 30 minutes. This indicates that the WMLScript will
expire in 30 minutes (since loading time is 7:30 A.M.).
DunmpCacheEntri es By Request
Fl ags: R=Must-Revalidate |=InUse O=CQut O Date C=l nChannel
Types: B=Bitmap !=BOGUS WFWWL S=WM_Scri pt C=Chan

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

URLM DOCM FLAG T PR TTL URLS
01588/ 2 01600/ 2 S 1 30m HITP://LOCALHOST/ Cal cul at e. asp
01564/ 9 01572/ 3 W1 29d HITP://LOCALHOST/ currency. wrl

Once the application is loaded, the WMLScript in the cache would be used if
the application is accessed anytime from 7:30 A.M. to 8:00 a.m.This is reflected in
the Phone Information when the application is run again:

cache hit: <HTTP://LOCALHOST/ Cal cul at e. asp>

When the same application is accessed after 8:00 A.M., the WMLScript would
then have expired, and a reload is necessary. To be certain that the WMLScript is
reloaded, check the Phone Information window to see that the WMLScript is
recompiled:

HTTP GET Request: HTTP://LOCALHOST/ Cal cul ate. asp

----------------- DATA SIZE ------------------------
Unconpi | ed data from HTTP is 860 bytes.

...found Content-Type: text/vnd.wap.wr script.

[xI ateWMLScript] [unknown subscriber] Conpiling
WWLScri pt [x| at eWMLScri pt] WWLScr

i pt was successful Conpiled WAP binary is 278 bytes.

During the debugging stage you might be tempted to forward your system
clock to see the expiration effect of the WMLScript. However, this does not
work. For example, if you load the application at 7:45 A.M., the TTL of the
WMLScript file would be 15 minutes. If you now adjust your time to 8:00 A.M.,
the WMLScript would still be loaded from cache. This is because the expiration
of the WMLScript works based on the “count-down” eftect. The correct way to
do this is to set the clock to 7:58 A.M. and load the application. After that, wait
for about five minutes before loading the application again. This time round, the
WMLScript would expire!

Lessons Learned

What was originally thought of as a simple project turns out to be quite an
experience for us. Let us share what we have learned with you.

173

Www.syngress.com

174

Chapter 4 *« Enhancing Client-Side Functionality with WMLScript

Caching Problems

We have tested the application on three emulators:

= UPSimulator 4.0
= Nokia WAP Toolkit version 1.3 beta and 2.0
= FEricsson WapIDE 2.1

The Nokia WAP Toolkit 2.0 and the UP.Simulator have no problem with
caching. However, the Ericsson WapIDE performs caching regardless of setting
the HTTP header to expire the cache at a certain time. The Ericsson emulator
will work correctly only if the cache is disabled. This results in the ASP docu-
ment being executed every time the application is loaded, which causes a signifi-
cant increase in load time, both on the client and server sides.

Debugging the Emulators
Recall that we have this line in the last part of our WMLScript:

amount *= 1.0;

This seemingly redundant line resolves a bug in the UP.Simulator’s imple-
mentation of the format() function in the String library.

String.format ("% 2f", anount)

The problem with this function is that if the amount is an integer, it will not
format the string correctly. When used together with the alert() function from
the Dialogs library, the screen simply remains unchanged even when the user
presses the Calculate soft key.

This problem was irritating, as it was hard to pinpoint at the beginning of the
project. The other emulators like Nokia WAP Toolkit and the Ericsson WapIDE
do not have problems with this issue.

Emulators Are Relatively Unstable!

When it comes to running WMLScripts, emulators are still pretty unstable. We
spent a good portion of our time trying to run the application on the different
emulators. Sometimes it worked, sometimes it didn’t. So far, the UP.Simulator has
been pretty stable, except for the bug noted previously.

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript ¢ Chapter 4 175

Summary

In this chapter, we have taken a quick look at how WAP applications can make
use of WMLScript to perform client-side tasks such as input validation. We have
demonstrated the various features of the language by examining several examples.
The syntax of WMLScript 1s similar to that of JavaScript. In this chapter we
have seen the various language features like data types, looping constructs, key-
words, and operators. Since not all WAP browsers support WMLScript, special
care must be taken to ensure that the target device is able to execute the : "‘
WMLScript program before sending them one.
The WMLScript language itself comes with a set of libraries providing most
of the commonly used functions to help the developers. However, note that some
vendors may provide additional libraries that will work only on their particular

platform.

To get you started on WMLScript, we have demonstrated four scenarios in
which we can make use of WMLScript. These examples illustrated the various
language features such as linking a WML deck with a WMLScript program,
looping, improvisation of arrays using strings, and so on. And finally, we put
together a WAP application using WML, WMLScript, and Microsoft ASP to
illustrate a practical use of WMLScript.

Solutions Fast Track

What Is WMLScript?

M WMLScript is loosely based on the ECMAScript (ECMA262).
M Most devices in the market support WMLScript.

M WMLScript programs are compiled into bytecode by WAP gateways.
M WMLScript is activated by WML decks.

Understanding Basic Elements of WMLScript

M WMLScript contains libraries.

M Within each library are functions that provide most commonly needed

functionality.

Www.syngress.com

176

Chapter 4 * Enhancing Client-Side Functionality with WMLScript

Learning to Interpret WMLScript

M WMLScript functions that are preceded by the extern keyword are
callable by WML decks.

Performing Mathematical
Operations Using WMLScript

M Variables are declared in WMLScript using the var keyword.
M WMLScript handles data type internally.
M WMLScript supports looping using the for construct.

Using WMLScript for Input Validation
M The compare() function in the String library compares two strings.

Credit Card Validation

M WMLScript does not support arrays.

M Use a string to improvise an array if needed.

Using WMLScript and Microsoft ASP: A Case Study

M A server-side technology like ASP can be used to generate dynamic
WMLScript programs.

M WMLScript programs are cached on the client-side.

M Use the HTTP directives to control caching behavior on the client-side.

WwWw.syngress.com

Enhancing Client-Side Functionality with WMLScript « Chapter 4

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why is it that on certain emulators my WMLScript program would fail to
execute?

A: Some emulators do not execute WMLScript properly. A good idea is to try
out different emulators during the development phase.

Q: Why is input validation important for mobile devices?

A: Input validation is especially important for mobile application because the
connection to the back-end server is inherently slow. Input validation reduces
the round-trip delay caused by server-side validation since the validation is
done on the client-side.

Q: What are the similarities and differences between WMLS and JS as it applies
in this realm?

A: WMLScript and JavaScript both*perform client-side operations. However,
unlike JavaScript, WMLScript programs are compiled before they are sent to
the client side. Also, WMLSecript programs are saved in separate files, unlike
JavaScript, which has the option to embed 'within the HTML document.

Q: What kind of setup is required of me if [want to run the ASP example?

A: You need to have a Web server (Microsoft Personal Web Server or Internet
Information Server will do). If you are not using Microsoft Windows
Operating System, you may need additional setup for your Web server (e.g.,
Apache, etc.).

Q: Where can I learn more about the WMLScript language? What is the latest
version of WMLScript?

A: We strongly recommend that you check out WAPForum’s Web site for the
latest release of WMLScript and its specifications. The WAPForum’s Web site
is at www.wapforum.org.

177

Www.syngress.com

L

Chapter 5

Wireless

Development Kits

Solutions in this chapter:

= The Openwave UP.SDK 4.1 5 @
= The Nokia WAP Toolkit 2.1

= The Motorola Mobile Application
Development Kit 2.0

= The Ericsson Mobile Internet WapIDE 3.1

» The Yospace SmartPhone Emulator 2.0

M Summary
M Solutions Fast Track

M Frequently Asked Questions

179

180

Chapter 5 ¢ Wireless Development Kits

Introduction

When you start developing Wireless Application Protocol (WAP) applications,
you will probably find that continuously testing your application using your
WAP-enabled mobile phone is both difficult and expensive. The good news is
that emulators and software development kits (SDKs) are available to help you
during the design, development, and testing phases of creating your mobile appli-
cation. These tools not only make testing the application easier than using your
mobile phone, but they also provide more detailed feedback, including informa-
tion such as line numbers where the errors occurred and the size of the compiled
Wireless Markup Language (WML) deck.

Each SDK has difterent features, advantages, and disadvantages. Developers
also have quite a variation in their preferences. The information in this chapter
should help you choose an SDK that is best suited to your needs and work style.
We look at the following SDKs in this chapter:

» The Openwave UPSDK 4.1

» The Nokia WAP Toolkit 2.1

= The Motorola Mobile Application Development Kit 2.0

» The Ericsson WAP-Integrated Development Environment 3.1

» The Yospace SmartPhone Emulator 2.0

We go step-by-step through the process of downloading, installing, and using
each SDK with simple examples. This chapter should give you a good feel for
each one and help you decide which one you would like to use during your
development process.

The Openwave UP.SDK 4.1

A large percentage of mobile phones sold in the United States use Openwave
System’s WAP browser. Openwave provides an SDK to help you develop applica-
tions and test them on the UP.Browser. The software is available free of charge,
and you can use it to test applications on your local file system or on remote
servers. The UP.SDK can, through the use of skins, emulate a variety of mobile
phones on the market to make testing your application on multiple devices
easier. The UP.SDK includes a variety of tools and documentation, including

the following:

WwWw.syngress.com

Wireless Development Kits « Chapter 5

= The UPSimulator for WML

= Libraries for Common Gateway Interface (CGI) programs that make
generating WML easier (Perl and C)

= C++ (Solaris) and COM (Windows) notification, digest, and fax
libraries and tools

» Tools for requesting and installing SSL certificates
» Sample WML and WMLScript files

= Developer documentation in Hypertext Markup Language (HTML)
format

You can use the Openwave UPSDK to simulate phones that use the
UPBrowser version 4.x.You can develop WAP applications and applications that
use the Openwave extensions to WML using the UP.SDK. The sample applica-
tion we develop does not use these extensions. You will need a separate program
for editing your WML and WMLScript files because an editor is not included in
the UP.SDK.

Installing Openwave UP.SDK

The UPSDK is written for the Win32 platform—this includes Windows 9x,
Windows NT, and Windows 2000. We look at the specific requirements for your
system, how to obtain the software, and how to install it on your computer.

System Requirements for the Openwave UP.SDK

Openwave gives the following requirements for running the UP.SDK:

= To run the UP.Simulator, you need a computer with an Intel (or com-
patible) processor running Windows 95, Windows 98, or Windows NT
4.0 (Service Pack 5).

» To test WML services available on the Internet (such as the example ser-
vices provided by Openwave), your computer must have an Internet
connection.

= To test your own WML services, you need a Hypertext Transfer Protocol
(HTTP)-compliant Web server.

Openwave does not explicitly state support for Windows Me or Windows
2000, although we have run the UPSDK on both platforms without any problems.

181

Www.syngress.com

182

Www.syngress.com

Chapter 5 * Wireless Development Kits

Openwave does not claim any memory requirements either, but we have found
that you should have at least 64MB of memory.

Obtaining the Openwave UP.SDK

You can download the UP.SDK from the Openwave Developer Program Web
site at http://developer.openwave.com in the Downloads section.You are not
required to register in order to download the UP.SDK, but you are required to
register if you wish to test through the UP.Link gateway that they provide on the
Internet. Also on the Web site are directions for signing up and provisioning the
UPLink gateway for testing.

You can download various emulator skins to simulate testing on multiple
devices. The term skins is a bit misleading, actually, because the browser will not
only inherit the look of the device but also the behavior. This is useful for checking
the navigation and appearance of your application on multiple devices in a rapid
manner. The skins are downloadable from the same location as the UPSDK.

Installing the Openwave UP.SDK

When you download the UPSDK from the Openwave Web site, you will down-
load a file called upsdkW41e.exe. Run this application, and you will be greeted
with the initial install screen shown in Figure 5.1.

Figure 5.1 The UP.SDK Initial Install Screen

Opemwane UESDR 4.7

Lirp sy sapciarien o desis ooy S ppe, o ey
e i

CE) e |

Wireless Development Kits « Chapter 5

Click Next to continue.You will have to click Yes to agree to the Software
License Agreement as well as the Screenshots and Image Use Agreement. You will
also have to verify that you are not residing in a country that the United States
currently has an export embargo against (a peculiar requirement for a WapIDE!).

The installation program then asks you where you would like to install the
UPSDK on your computer and what program group you would like to set up
for your Start menu.You can accept the defaults for this or specify another loca-
tion. The installer then copies the software to your system, and the final install
screen gives you the option of viewing the ReadMe file and starting the
UP.Simulator. Choose the option to start the UP.Simulator and click Finish.

Working with the Openwave UP.SDK

When you first launch the UP.Simulator, you will see two screens, as shown in
Figure 5.2.

Figure 5.2 The UP.Simulator

[o ol G emw el S

ibeal Hiran
1 WEL Damples
1 BREL ey leR

The Phone Information screen provides you with details about what the
UP.Simulator is doing. Shown here are the URLs that you are trying to access as
well as information about the currently loaded WML Deck. This is information
that is usually not critical to your application, but useful to know if, for example,

183

Www.syngress.com

184

Chapter 5 ¢ Wireless Development Kits

you are debugging a problem or curious about the compiled size of your WML.
You may want to work with the Phone Information window minimized so that
you look at it only when you run into problems.

The emulator window shows a picture of the selected device and will be the
window you use to interact with the application.

Accessing and Editing Local Files
This version of the UP.SDK requires you to type in every WML deck you would
like to access in the address bar located at the top of the emulator window. To
access local files, use the syntax file://c:\wap\hello.wml and normal HTTP
URL:s to access decks on a Web server such as http://127.0.0.1/hello.wml. Let’s
save the following WML file as a simple Hello World page called hello.wml in
the c:\wap directory:
<?xm version="1.0"?>
<! DOCTYPE wr PUBLIC "-//WAPFORUM / DTD WML 1. 3//EN'
"http://ww. wapforum org/ DTD/ wil 13. dt d" >

<wni >

<card id="hello" title="Hello Wrld">

<p>Hel l o World!</p>

</ card>

</ wmi >

The emulator window with our example file is shown in Figure 5.3.

In most cases, you can use the keyboard to enter information into the emu-
lator instead of using the graphical keypad. However, use the keypad to verify
that input formatting restrictions and other GUI features work as you expect.

NoTE

The UP.SDK does not provide a mechanism for editing files. You must use
an editor such as TextPad or Emacs to create and change your WML files.
The advantage of Openwave’s approach is that you do not have to learn
a new editor just to write WML applications. The disadvantage is that
your favorite editor may not have the WML-specific editing features that
make developing WAP applications easier.

WwWw.syngress.com

Wireless Development Kits * Chapter 5 185
Figure 5.3 The UP.Simulator

i--rw-l:: P e

i }msuwm.i

0
_En!

The Phone Information window will show you the uncompiled and com-
piled size of the WML file you access. The Phone Information window also
shows you caching information; because wireless networks are low bandwidth,
every effort to cache files is made. This may become a problem when you are
developing an application that is constantly updating with new information, such
as a game. WAP provides mechanisms for telling gateways and browsers how long
to cache information, but it may not behave as expected in all cases. This is a
good way to ensure that your page is caching only your page for the duration

you specify. Figure 5.4 shows the Phone Information window after we have
loaded our example page.

Figure 5.4 Information About the Current WML Deck

3 lojel B 55 Al

Www.syngress.com

186

Chapter 5 ¢ Wireless Development Kits

Accessing Files through a Gateway

Openwave provides access to a UP.Link gateway free of charge for developers.You
are required to sign up for the Openwave Developer Program in order to access
this service.You can sign up at the Openwave Developer Program Web site by
clicking the WAP Gateway button along the top navigation bar or the UP.Link
Provisioning link along the left navigation bar.You will be prompted to sign up if
you are not a member. Once you log in, you can add, delete, or edit users that are
allowed to access the UP.Link gateway. Follow the directions on the Openwave
Web site to manage your users and gain access to the UP.Link gateway.

You need to change the settings in your UP.Simulator to use the UP.Link
you have just set up. From the emulator window, select Settings | UP.Link
Settings from the menu bar.You will then be able to select either a direct HTTP
connection, or to use one of the gateways specified. The gateways are all prefilled
with the names of the Openwave gateway servers, so all you have to do is click
the radio button as shown in Figure 5.5 and click OK to start using the gateway.

Figure 5.5 UP.Simulator Gateway Setup Screen

1 o oot ot HTTF Dbt i ek i i T
e HI'TF rervm . nparerg anp L sk,

" HTTP Dinci
hoams L T iy e T L -

T, | ST
T Fomy | |

Fh.pl.irml. -Iu.nmd..

B B R Ty [T oy e ST S ey

Carvisai Sacsgh LIP Lsk

& [EL |:[-\.- S e p—— |

Pl e |

erH,[J.-_.ql-gu-u |
[| Lol |

Once you are using the gateway, you cannot access local files anymore; the
simulator will attempt to contact the gateway first and have it deliver the file.You
can access only servers that are not blocked by firewalls. You must run a Web
server that is accessible by the outside world to test your WAP application using a
gateway. Other than that, the simulator acts as it did before, but it proxies all of its
requests through the UP.Link gateway.

WwWw.syngress.com

Wireless Development Kits * Chapter 5 187

Debugging Techniques

As described earlier, the UPSDK provides a Phone Information console window
that provides great information for the developer of a WAP application. This
window gives you information that helps you track down the source of any
problem. Figure 5.6 illustrates this with our hello.wml file from which we have
removed the close paragraph tag (</p>).

Figure 5.6 The Phone Information Window after Loading an Invalid WML File

T A e 5| S Al

Unfortunately, the error message isn’t as descriptive as “No close tag for <p>
tag opened on line 6,” but it does help you find the problem.The phone emulator
window simply tells you to look in the Phone Information window because a
compilation error occurred.You will also notice in Figure 5.6 that the file was not
found in the cache. We had a compilation error, so the UP.Simulator will look for
the file on the disk again, but if we load the hello.wml file from the previous
example again, we notice that it finds the file in the cache.This is indicated by the
text “cache hit: file://c:\wap\hello.wml” in the Phone Information window.

The UP.SDK will not reload the WML deck from the server unless you first
clear the cache by selecting Edit | Clear Cache from the emulator window
menu bar.You can now reload the hello.wml file and get the compiled size and

Www.syngress.com

other information from the Phone Information window.

188 Chapter 5 ¢ Wireless Development Kits
The Info menu allows you to view information about the status of the

UP Simulator. You can find out what cookies have been set, what documents are
in the cache, the source of the current WML deck, and other information.

\WARNING

The use of cookies is not always supported in WAP browsers, and even if
it is supported, it may not always be available. The UP.Browser, for
instance, relies on a UP.Gateway being used for cookie support. You may
want to investigate, using URL rewriting to insert user information into
links or some other technique for tracking users on your mobile site to
avoid these incompatibilities.

The Nokia WAP Toolkit 2.1

Nokia 1s the largest mobile handset manufacturer in the world, so a large per-
centage of your WAP site visitors will be using Nokia phones. The Nokia WAP
Toolkit can simulate WAP-enabled Nokia phones as well as a prototype phone
that implements features not yet available on consumer handsets. The Nokia WAP
Toolkit is an environment for developing, viewing, and testing WAP applications.
It includes many features that will make your mobile development easier, such as
the following:

» Editing, validating, and viewing WML decks

» Editing and debugging WMLScript files

» Viewing and changing WML variables inside the WAP browser

» Examining debug messages from the WAP browser

» Creating and editing WBMP images

The Nokia WAP Toolkit is a complete development environment, but you

can use any editor of your choice and merely use the Toolkit to view and debug
your applications. You can use the Nokia WAP Toolkit to simulate Nokia phone
models 6210 and 7110 after you download additional modules from the Forum
Web site. You can only develop WAP 1.2 applications using the Nokia Blueprint
phone, a concept phone that comes with the toolkit. WAP 1.3 is not supported at

this time. The SDK includes an editor for WML, WMLScript, and Wireless
Bitmap (WBMP) image files.

WwWw.syngress.com

Wireless Development Kits * Chapter 5 189

Developing & Deploying...

Supporting Multiple Versions of WML

The browser in a mobile phone cannot be easily upgraded, and some-
times it cannot be upgraded at all. Because of this, your WAP site will
most likely need to support multiple versions of the WML standard. The
advantage to you is the ability to determine what browsers people will
be using based on the devices that are most prominent in the market-
place. The disadvantage is that you cannot tell your users to upgrade to
the latest browser in order to view your site—they are stuck with that
browser until they purchase a new mobile phone.

Requiring a certain version of WML will cause your site to be
unviewable by users with devices that do not support that particular ver-
sion. By doing so, you will lose customers before ever getting a chance
to make a first impression.

Installing Nokia’s WAP Toolkit

The Nokia WAP Toolkit is written in Java for the Win32 platform—this includes
Windows 9x, Windows NT, and Windows 2000. The installation may require you
to install additional software from Sun Microsystems if you do not have an appro-
priate Java Virtual Machine (JVM) already installed on your computer. In the fol-
lowing sections, we cover the specific requirements for your system, how to obtain
the software, and how to install the Nokia WAP Toolkit on your computer.

System Requirements for the Nokia WAP Toolkit
Nokia gives the following requirements for running the WAP Toolkit:
» Java Runtime Environment (JRE) version 1.3. If you do not have the
JRE installed, the setup program will install it for you automatically.
= Adobe Acrobat Reader for Online Help and User Documentation.

= A Pentium II 266 MHz (or faster), 128MB RAM (256MB recom-
mended), Windows NT 4.0 with SP3 or Windows 98 or Windows 2000,
16-bit color, 1024x768 resolution, 20MB of hard disk space.

Www.syngress.com

190

Chapter 5 ¢ Wireless Development Kits

Nokia does not state support for Windows Me, but we have installed and run
the toolkit successfully on Windows Me. The memory requirements might seem
high, especially coming from an embedded device manufacturer, but the WAP
Toolkit’s performance is noticeably better with more memory.

Obtaining the Nokia WAP Toolkit

You can download the Nokia WAP Toolkit from the Forum Nokia Web site at
http://forum.nokia.com.You have to register to download the WAP Toolkit, but
registering allows you to download the SDK free of charge.

You can download a variety of other tools for WAP and other technologies
from the Forum Nokia Web site. The Nokia Activ Server is a WAP gateway/Web
server that you can use to develop, test, and deploy WAP applications. You also
gain access to developer discussions and documentation on Nokia products.

Installing the Nokia WAP Toolkit

The file you download from Forum Nokia is called NokiaToolkit2_1.zip. It con-
tains the setup.exe program as well as the license agreement and release notes. You
must unzip this file to run the setup program.You can use any program that can
handle zip archives, such as Aladdin Expander (www.aladdinsys.com/expander) or
WinZip (www.winzip.com).

Once you unpack the zip archive, run the setup.exe program.You will be
greeted with the initial install screen shown in Figure 5.7.

Figure 5.7 The Nokia WAP Toolkit Initial Install Screen

www.syngress.com

Wireless Development Kits « Chapter 5

Click Next to continue with the installation.You then have to accept the
terms of the license agreement by clicking Yes.You are now presented with the
choice of where to install the program; it is safe to accept the default location.
The next screen, shown in Figure 5.8, lets you choose what components of the
Nokia WAP Toolkit you want to install.

Figure 5.8 Nokia WAP Toolkit Install Options

B d By - wiliew v v i b

wrial

I

o ABE e e Tl s g vl i e il

i ferkeregear i oo
Wl Tk ok, B
i A T
vk,

Guics Aeoasdon Jramed i

Sppon drvplatic e LFFELAR

Hock | Kimd © I e

The Basic Toolkit is required; you cannot uncheck it. The second component
is the WAP Server Simulation, which allows you to test applications locally when
you do not have access to a WAP gateway. If you do not install this component,
you must have access to a WAP gateway in order to use the toolkit. Unless you
are extremely cramped for disk space, do install the WAP Server Simulation
because it makes prototyping and development much easier.

Choose what Program Group to install the Toolkit into and confirm all your

decisions. The setup program will finish the installation, and you can then use the
Nokia WAP Toolkit.

Working with the Nokia WAP Toolkit

If you installed using the defaults, you can launch the Nokia WAP Toolkit by
selecting Programs | Nokia WAP Toolkit | WAP Toolkit from the Start
menu. You will see a splash screen while the application loads and then the initial
window, shown in Figure 5.9, will appear.

The window on the left is where you will do most of your work—it includes
the WBMP editor, WML and WMLScript source editors, and various debugging
facilities. The window on the right is the phone emulator where you will view
your application and enter information using the phone interface.

Www.syngress.com

191

192

Chapter 5 * Wireless Development Kits

Figure 5.9 Nokia WAP Toolkit

[Jieeei AEE|
Tl [[eosme Teold jlag TN)
Lompirs | i i W Gl S 1 i b L |
VRl D 2 e Bx
v e]
30 hrefegeper Lot A = P e
| P LTl TER]
i sk e ™ b T wepame™ il alin Bakia
[Ee o
* “Hi = =
. -
: ¢=p
[l L -
® -latr ‘-‘
g cmais o
“ITCArE 152 || -'| I‘
i —
. T
B oo UL | b 7 g P ™ T
L B e I] |:-uu-:uﬂw_1'\-.-ﬂ|.l:u-|hﬂ
g | domruusa | ssmsisa] by v s |
S]

Accessing and Editing Local Files

You can use the Nokia WAP Toolkit to create, edit, and view files stored locally
on your computer. Let’s create a simple WML file called hello.wml and save it in
the c:\wap directory. First, select File | New | WML Deck from the menu
bar, or press Ctrl+N on your keyboard. A new WML deck will appear in the
editor with a large amount of skeleton code already filled in. This is great for the
first couple of files that you write, but you will quickly find yourself deleting
large portions of the skeleton files every time you create a new WML deck. Let’s
use the template and customize it to mimic our other examples.

The WML deck defaults to WML 1.1, but has version 1.2 and 1.3 declara-
tions commented out in the default file. You can use one of the other declarations
if your application requires features not available in version 1.1 of WML. For our
example, version 1.1 suffices, so we can delete the other declarations. We do not
need a head element in our deck, so we can delete that comment. The default
template provides a Back button for every card. The Nokia browser does not pro-
vide backwards navigation by default, so if you do not place this functionality in
the template section or in every card, users on Nokia phones will not be able to
navigate to previous cards when viewing your application.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

The first card contains a quite a few comments that guide you through
building your own card. The first thing we need to do is change the title. Let’s
make the attribute read title=‘“Hello> instead of the default “Card #1.” We
aren’t going to add anything new to the card, but we can see where we would
have to add elements such as <onevent>, <do>, and <timer> from the com-
ments. We can remove these comments to make our final code cleaner. The default
<do> tag has a type attribute of unknown. We want this to be the default action,

—cC

so let’s change this so that it reads type=*‘‘accept’ and leave the rest as it is.

We have a paragraph in cardl that has the text First Card in bold. Let’s change
the text to be “Hello World!” and leave it bolded. We can leave the rest of the
deck as it is. Our final example file now looks like this:
<?xm version="1.0"?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'

"http://ww. wapforumorg/DTD/wr _1. 1. xm ">
<wni >
<tenpl at e>
<do type="prev"><prev/></do>

</tenpl at e>

<card id="cardl" title="Hell 0" newcontext="true">
<do type="accept" | abel ="Next">
<go href="#card2"/>

</ do>

<p align="center">
<bi g>Hel | 0o Wor | d! </ b></bi g>
</ p>

</ card>

<card id="card2" title="Card #2">
<onevent type="ontiner">
<prev/>

</ onevent >

<tinmer val ue="25"/>

193

Www.syngress.com

194

Chapter 5 * Wireless Development Kits

<p align="center">
<bi g>Second Car d</ b></bi g>
</ p>
</ card>
</ wm >

You need to save your file before the Toolkit can compile it, but let’s make
our lives easier by clicking the Compile button and letting the Toolkit prompt
us to save the file. Save the file in c:\wap as nokia.wml and then you should see
that it compiles with no errors. You need to compile your file before viewing
with the Nokia Blueprint phone in order to see the latest version. If you do not
compile it, you will be viewing the last version that was compiled and your
changes will not be shown.You can now click the Show button, and your sample
file will appear in the Blueprint phone as shown in Figure 5.10.

Figure 5.10 Blueprint Phone with Our WML Deck

e [Dwome Teold jie LA Ee
Lomrimry b L b e il o el :l
MR A B x
Ry s
[re Hpll), il
-1-"
¢=»
Sod
ood
e d
e d
il | |
Corin | = | T
g | domruan | sunnin | by | YeL DM i i |
— PF=s =

The Nokia WAP Toolkit provides a substantial amount of information about
the WML file you are currently viewing. If you select the WML Deck tab along
the bottom of the Toolkit window, you will see the WML Deck that is currently
loaded into the emulator in an Element Tree view—a tree representation of the
WML file.You can choose from a variety of views including:

WwWw.syngress.com

Wireless Development Kits « Chapter 5

» Original Source This is only available if you are viewing an uncom-
piled WML file in the emulator. If you compile your file before viewing
it or you are retrieving it through a gateway, this option will not appear.

» Decoded WML The WML source represented by the Compiled
Wireless Markup Language (WMLC) file the emulator received. This
will not have any of the comments and will more than likely be
indented differently than the original file, but the functionality should be
the same. This is handy when your source files are heavily commented
for maintenance reasons and you just want to see the actual WML code.

= Bytecode The compiled version of the WML file. This is what the
actual WAP devices will receive on the network. This is of little value
except to determine the compiled size of the WML deck. If you are
developing WAP tools such as a gateway or WMLC decompiler, this is a
useful view to have.

» Element Tree A tree representation of the WML file. A quick and easy
way to see the overall structure of your WML deck.

The Nokia WAP Toolkit provides a large number of features that developers
of all types of WAP applications will find useful. Not all of them may seem rele-
vant at first, but chances are you will use each one of them during some point in
your development cycle.

Accessing Files through a Gateway

Nokia does not provide access to a WAP gateway through their developer pro-
gram.You will have to download and install the Nokia Activ Server to access files
through a Nokia gateway. Interoperability is a large issue in the WAP world, so
testing various WAP browser and gateway combinations is recommended. Let’s
use the Ericsson public gateway and the Nokia WAP Toolkit together.

To change the WAP gateway, select Toolkit | Device Settings from the
menu bar. The Blueprint Device Settings dialog box will appear. Check the radio
button labeled Use WAP Gateway Connection and enter the IP address of
195.58.110.201 in the WAP Gateway Address text box. The Nokia WAP Toolkit
with these settings is shown in Figure 5.11.

The Nokia WAP Toolkit will not use the WAP gateway to access WML decks
on your local file system. Only WML decks loaded from URLs will be retrieved
through the gateway. You can continue to develop and test local files without set-
ting the Toolkit back to HTTP Direct mode.

195

Www.syngress.com

196 Chapter 5 ¢ Wireless Development Kits

Figure 5.11 The Nokia WAP Toolkit Gateway Settings

[LT T '|"|H,r::|- wird | Hpmms|
T s HTTF Epsst (o Ll

HTTF Salingu

I

;

I |

F A AR iy GO
B ey A
o iy ade 77,0, L1
I Ui Cpaivietion-Lii i Mo L] =TT
T S e e Dt Me T
o sy Termewd (ramn

[| Camni | I

Debugging Techniques

The Nokia WAP Toolkit has many advanced debugging features. Let’s start off by
looking at how it handles invalid WML. Let’s remove the closing big element

(</big>) from the first card in our nokia.wml file, so that the paragraph looks
like this:

<p align="center">
<bi g>Hel | o Worl d! </ b>
</ p>

Click Compile in the Toolkit window, and a dialog box pops up telling us
that the source file contains two errors. Click OK and use the error message box
that appears in the source editing window to review the errors, as shown in
Figure 5.12.

When you double-click on an error message, the cursor is placed on that
location in the source file. The first error message says “Error: 3077 line:15,
column:8 XML:name within end tag does not match with the start tag” Line 15,
column 8 is in the middle of our </p> element. The error message isn’t very
explicit about what it was expecting, but it does tell us that it was expecting
something other than a paragraph element to be closed. We know it is the big
element, and if we put the </big> element back into the source file, everything
works as expected.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

Figure 5.12 Invalid WML Error Message in the Nokia WAP Toolkit

iy B Semme Tewld Heip A N
L EEA | P Prom e L Faalor ¥ 5 b ek mres i =l
gy T M ARl el ek bl el X
T
S - -
.

mi

1=

Rl
& B IL rgve w a3 1L)
[= =1 o PRy &
[| FilE bk | ETdm | TEOT =T F |

Enpnemn | Decc e wio I L LTRT l-|lw| WWEL Dk o iy wovlla v I

kn-::-r'-g-ru i |

WARNING

The final error: “Error:3078,line:44,column:1 XML: pending content” of
our example in this section does not make much sense. Our source file is
only 29 lines long. This type of error message was common in C com-
pilers and generally means that a close tag is missing somewhere in the
file. First, look into the error messages that point to actual line numbers,
then recompile your deck—you will often find that the other errors were
actually side effects of the more explicit errors.

We need a more complex WML file to see the advanced features. This WML
deck isn’t very useful on a real WAP device, but it is useful for illustrating the
debugging features of the Nokia WAP Toolkit.
<?xm version="1.0""?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'

"http://ww. wapforumorg/DTD/wm _1. 1. xm ">
<wml >
<card id="hone" title="Tool kit denp" ontimer="#home">
<timer val ue="300"/>
<p> Hell o $nanme. Wl cone. </p>
</ card>
</ wmr >

197

Www.syngress.com

198

Chapter 5 * Wireless Development Kits

When you open the file and show it in the Blueprint phone, you will notice
that the status bar along the bottom of the Toolkit window counts down to the
next timer event. Figure 5.13 shows it along the bottom as well. Debugging a
timer is much easier when you see it counting down. Otherwise, you just wait
for a while and wonder if something is wrong with your code or if your com-
puter is just slow!

Our deck does not set the name variable. We can do this through the toolkit
and see the results on the Blueprint phone. Select the Variables tab along the
bottom of the Toolkit window to bring up the variable editing screen. We can
add variables to the browser environment by entering the name and value and
clicking Set at the bottom-right of the window. Let’s set up our variable by set-
ting Name to name and Value to phyllis as shown in Figure 5.13.

Figure 5.13 Advanced Debugging Features of the Nokia WAP Toolkit

Joiees ML
flm i ma Tool o PEEEX]
Linadnl | dier o v L
PP KBS e A Ox
Hasr = I3
——]
ol gl
L Tk)
- - =
= P
-
o d
| -
o<
e d
—— — = Cwas |
Wik fulpllie. |
Wy g | P v st [y | S P | b i |
AL e Fadig Bl & 4 B A

Once you click the Set button, you will notice that the deck is updated in
the Blueprint phone. Let’s change the value to darrell and click Set again.You’ll
notice that the Toolkit automatically updates your application when you change
variables. You can alter variables and debug your application without going

through the tedium of actually reloading the deck every time using the Nokia
WAP Toolkit.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

The Motorola Mobile Application
Development Kit 2.0

The Motorola Mobile Application Development Kit (Mobile ADK) supports the
widest variety of mobile standards of any of the SDKs we have covered here. The
Mobile ADK supports the following mobile technologies:

» WML and WMLScript via an IDE and WAP Emulator for a variety of
Motorola phones

» VoxML and VoiceXML for developing voice response systems
» Microsoft ASP-generated XML, WML, VoxML, and VoiceXML

The Mobile ADK relies on the Motorola Wireless IDE for many of its fea-
tures. The two packages provide a complete development environment with proj-
ect management, source control integration, and error tracking.

Installing the Motorola Mobile ADK

The Mobile ADK is written in Java for the Win32 platform—this includes
Windows 9x, Windows NT, and Windows 2000. The installation may require you
to install additional software from Microsoft if you do not have the appropriate
Java Virtual Machine already installed on your computer. We cover the specific
requirements for your system, how to obtain the software, and how to install the
Mobile ADK on your computer.

The Mobile ADK requires that the Motorola IDE be installed before you can
use it. You can use both applications separately from each other, but they must
both be installed for the Mobile ADK to work.

System Requirements for the Motorola Mobile ADK

Motorola gives the following requirements for running the Mobile ADK:

= Windows 95, Windows 98, Windows 2000, or Windows NT 4.0

= Microsoft JVM version 5.00.3186 or later (Microsoft JVM version
5.00.3234 or later for Windows 2000)

= Microsoft Internet Explorer 5.0 (or later)
= Service Pack 3 or later (required for Windows NT 4.0)
= A Pentium II 266 MHz (or faster)

199

Www.syngress.com

200 Chapter 5 * Wireless Development Kits

= 80MB of free disk space
= 64MB of RAM (128MB or more required for running voice applications)
» A video card that supports 1024x768 resolution and 16-bit color mode

» A Windows-compatible sound card (required for running voice
applications)

= A compatible set of speakers and microphone (required for running
voice applications)

Windows Me was not listed as a compatible platform, but we have success-
tully installed and used it on that platform. The Java requirements are quite strict.
You cannot use the JDK from Sun to run the application. Motorola requires the
Microsoft JVM to function correctly.

Developing & Deploying...

Microsoft Java Virtual Machine

You probably already have the Microsoft JVM installed on your machine.
Open Internet Explorer and select View | Java Console from the menu
bar. If you do not have that option, you need to enable the Java console
by opening up your Control Panel and running the Internet Options
applet. Select the Advanced tab and scroll down the options until you
find the Java Console Enabled option. Check that box and restart your
machine. You should now be able to pull up the Java console by
selecting View | Java Console and figure out what version of the JVM
you are running.

Upgrading your JVM is easy through Windows Update. Select Start
| Windows Update from the Start menu and then choose Product
Updates from the resulting Web page. The Microsoft Java Virtual
Machine should be one of the packages available for you to download.
You can also download the latest version at www.microsoft.com/java if
you do not want to use Windows Update.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

Obtaining the Motorola Mobile ADK

You can download the Mobile ADK from the Motorola Applications Global
Network (MAGNET) Web site at www.motorola.com/developers/wireless in the
Tools & Downloads section. You have to register with Motorola before you can
access the Mobile ADK. Once you have registered and logged in to the site, click
on the Tools & Downloads section and then click on the link to the Mobile
Application Development Kit on the next page. Once you get to the page
that actually lets you download the Mobile ADK, you will also find a link to the
Wireless IDE. You must download and install this before you install the Mobile
ADK. This is the largest SDK we look at, and it is unfortunate that the way
Motorola initiates downloads is incompatible with many download managers that
let you recover from a dropped connection.

Download the Mobile ADK 2.0 after you have downloaded the Wireless
IDE. The Wireless IDE filename is FlexIde_Ver 2.1 0_83 rel.exe and the
Mobile ADK filename is MobileADK2_0.exe. Motorola will also e-mail you a
license key that you will have to enter during installation. We walk through
installing both of these applications next.

Installing the Motorola Mobile ADK
Run the FlexIde_Ver_2_1_0_83_rel.exe first. You will be greeted with the

installation screen shown in Figure 5.14. Click Next to go to the next screen
that asks you where you would like to unpack the setup program.You can accept

the defaults and click Next to continue with the installation.

Figure 5.14 Initial Install Screen for the Motorola Wireless IDE

Maicrale ‘#insnee Ol

ot [e] e |

201

Www.syngress.com

202

Chapter 5 ¢ Wireless Development Kits

The setup program will be unpacked and then run.The Motorola logo will
appear on your screen for a moment and then a dialog box welcoming you to
the install will appear. Click Next to begin the installation. You will have to
accept the License Agreement by clicking Yes on the next screen. The install pro-
gram will then ask for your name and organization; enter them and click Next
to continue. Choose the defaults for the installation directory and Program
Group, and then the installer will copy the software to your machine.

You cannot launch the Wireless IDE yet because you have to install a target
device for it to work with. In our case, this is the Mobile ADK and its related
devices. Run the MobileADK2_0.exe installation program and a dialog box
telling you this is the MADK 2.0 SDK installer will appear. Click Next to bring
up the screen that asks you where to unpack the setup files. Accept the default
location and click Continue to unpack the setup program and run it. The
Motorola logo will appear on the screen for a moment, and then the setup pro-
gram will show the initial screen shown in Figure 5.15.

Figure 5.15 Initial Motorola Mobile ADK Installation Screen

MADK 2.0 5DK

‘e i B 2 D b . Do
s vl rednd LS D e eyt
-

B u s P i
bsdorm g e Taar u;n

ik Dol bl b el e i a e e maprw p
ey ey, (Chack, ewr s ol m vl e e pogpom

LA g e el e gl ol
i prgira b e

of P g
i o i, g vl o v o] perral pos g, ored
ol L O T T s e o bl o et

G|

Click Next to start the installation.You will be told to ensure that the
Wireless IDE is already installed and that you are installing the Mobile ADK to
the same location as you did the Wireless IDE on the next screen. We have

www.syngress.com

Wireless Development Kits « Chapter 5

installed the Wireless IDE and will be installing the Mobile ADK to the same
location, so click Next to continue. The License Agreement is then shown. If you
agree to the terms, click Yes to continue with the installation. The next screen
asks you for your name, your company’s name, and your serial number as shown
in Figure 5.16.

Figure 5.16 Serial Number Verification Screen for the Motorola Mobile ADK
Flmam b vl s

1l el rafecr e g o g 1) i e oy o g
ey boagt 5™ rers arveTHTET:

Motorola e-mails the serial number to you. If you did not get your license key
e-mailed to you, contact Motorola through their Web site. The e-mail you receive
should include some additional instructions that may be relevant to your installa-
tion. Enter the license key, which is in the form: SPSDK-nnn-nnnnn-nnnn, then
click Next.You can choose the default locations for the installation directory and
Program Groups by clicking Next on the following two screens. Depending on
what software you already have installed, you may have to go through the setup
programs for Microsoft Agent and Speech Recognition software. This will include
agreeing to some license agreements and choosing some options. The Speech
Recognition software will bring up the dialog box shown in Figure 5.17.

This begins the process of ensuring that your microphone and speakers are
correctly hooked up. If you do not wish to work with Voice XML, you can skip
this step by clicking Cancel.You can always adjust the microphone settings later
through the Speech applet in the Control Panel. A final screen is shown indi-
cating that all the software was installed correctly. Click Finish to complete the
installation process.

203

Www.syngress.com

204 Chapter 5 ¢ Wireless Development Kits

Figure 5.17 Microsoft Speech Recognition Setup Screen

T s e o el - e] o i el e o g
o e e

Using the Mobile ADK

The Mobile ADK is project based.You will have to start a new project to begin
using the software. Select Programs | Motorola Wireless IDE | Wireless
IDE from the Start menu to launch the application. The initial dialog box will
ask you if you wish to open a new or existing project. We want to start a new
project because this is the first time we’ve used the Mobile ADK. Select Open a
new Wireless IDE Project.You will then be asked to fill in the name of the
project, where the source files are located, and from what directory the project
will be run. Let’s name our project mobileADK, make our source directory
c:\wml\madk\, and our run directory c:\wml\madk\run\ (as shown in
Figure 5.18); click Next to continue.

The next dialog box asks us to select a predefined application as a starting
point for your code. The available options are shown and explained in Table 5.1.

Table 5.1 Explanation of Wireless IDE Predefined Application Types

Predefined

Application

Name Project Description

MADK2_0.asp Microsoft ASP project ASP can be used to generate a

variety of other markup lan-
guages including VoxML,
VoiceXML, WML, and HTML.

Continued

WwWw.syngress.com

Table 5.1 Continued

Wireless Development Kits « Chapter 5

Predefined
Application

Name Project

Description

MADK2_0.vml

MADK2_0.vxml

MADK2_0.wml

VoxML project

VoiceXML project

WML application

VoxML is Motorola’s propri-
etary voice markup language.
Motorola is moving towards
VoiceXML, and this support is
mostly for legacy applications.

VoiceXML is a joint effort by
IBM, AT&T, Lucent, and
Motorola to combine various
proprietary voice markup lan-
guages into one standard. The
World Wide Web Consortium
Voice Browser Working Group
used VoiceXML as a model for
its Dialog ML specification.

This provides a basic WML
deck as a starting point for
your application.

Figure 5.18 Creating a New Project in the Motorola Wireless IDE

Step

1

=

Fyomo e
Preso Vars

P Doy

reriarulh Lo

Dt

[]

[J Hisip I

We want a WML application, so let’s choose MADK2_0.wml as our starting
point and click Finish to start working with the Wireless IDE.

205

Www.syngress.com

206 Chapter 5 * Wireless Development Kits

Accessing and Editing Local Files

The Wireless IDE automatically creates a file called mobileADK.wml for you.
Let’s insert our “Hello World!” contents into this file:
<?xm version="1.0"?>
<I DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 2//EN'
"http://ww. wapforum org/ DTD/ wi 12. dt d" >

<wni >

<card id="hello" title="Hello World">

<p>Hell o World! </ p>

</ card>

</ wm >

Let’s validate the file to make sure it will work correctly. Select File | Save
from the menu bar to save the file. Then select Project | Compile File to
compile it. You should see a new pane appear underneath your source window
that says no errors were found. Your Wireless IDE should now look like the one
shown in Figure 5.19.

Figure 5.19 The Motorola Wireless IDE with No Errors

b aabain D0 joaddai [| - matsbnh D sl

e Et fowh [wecl fmh lirdeer Serile Hee

T p——— =
LI TYFE wwl FERLIC ¥ F
B R anf A BT
L

codid 1= TLCI#m ksl L

peBells Barld!osp
JISALT

Vel cpmerye: L1, 1 il vy [

EFies Wl_ﬁ&;—ﬁ r-lr-m—n-rh-jl

LT oW [

WwWw.syngress.com

Wireless Development Kits « Chapter 5

We have no errors, so we should be able to look at it in the simulator now.
You can launch the current file in the simulator by selecting the Simulator |
Run menu option in the Wireless IDE. A new simulator window will appear
with our WML deck loaded.

Accessing Files through a Gateway

Motorola produces and sells a WAP gateway, but they do not provide one for
developer use on the Internet.You can find out more about the Developer
Version of the Motorola WAP Gateway at www.motorola.com/wap. Ericsson
realizes the value a public gateway provides to developers and has one available
for developer use. We’ll connect to their gateway. Make sure the simulator is run-
ning or you won't be able to access the Simulator | Mobile Settings menu. If
that option is grayed out, select Simulator | Run from the menu bar to start
the simulator. Once you select the Simulator | Mobile Settings menu option,
a dialog box with various options will appear. At the bottom in the WML
Settings section, select the option that says Connect through WAP Gateway. A
new section will appear at the bottom of the dialog box, as shown in Figure 5.20.

Figure 5.20 Gateway Settings in the Motorola Mobile ADK
T -

‘el w' il ey
Heram 1JEL

g

LE Sl

I Gl pssck Tl

AL e
o LFL

™ emp: Lt
O Lot Wil et L Wl

1 e ey
LRCE h Frr

Enter the IP address of 195.58.110.201 and port 9200, for connectionless
mode to the WAP gateway. You can now access any server that is visible on the

207

Www.syngress.com

208

Chapter 5 ¢ Wireless Development Kits

Internet just as you would when using HTTP direct mode, but the request will
be proxied through the Ericsson WAP gateway first. The Mobile ADK has trouble
testing local files while you have the WAP gateway set, so you will want to switch
back to HTTP Direct mode for development and testing. This will probably be
fixed before the final product is released.

Debugging Techniques

The Wireless IDE works like a programming language IDE. If you change the
files in the project, you must compile the files again before running them in the
simulator. If you do not, you will see the old version of the source, not the
updated one. The Wireless IDE will warn you if files have been changed but not
recompiled, but it is still easy to mistakenly test an old version of your WML file
without realizing it. The safe way to use the Wireless IDE is to always compile
the project before running the simulator.

Let’s remove the close paragraph tag from our mobileADK.wml file so that it
now contains the following markup:

<?xm version="1.0"7?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 2//EN'
"http://ww. wapforum org/ DTD/ wi 12. dt d" >

<wml >

<card id="hello" title="Hello World">

<p>Hel | o Worl d!

</ card>

</ wmr >

We can now select Project | Compile Project from the Wireless IDE
menu to compile our file; the Wireless IDE will automatically save our changes
before compilation. The pane where we saw a report that no errors were found
now contains some error information. The error message is
“c:\wml\mobileADK.wml(8): Error: syntax error.” This doesn’t help us debug
our application very easily. The number in parentheses is the line number, which
in our case is the end of the file. A syntax error is very general and could be any-
thing from a misspelled tag to, in our case, a missing close tag. Luckily, we know
where the error is, and we can insert the close paragraph tag to make the WML
deck compile correctly again.

You can open the invalid WML file in the simulator, but it will simply
respond with an error message of “Syntax error in source. Open the file in the

WwWw.syngress.com

Wireless Development Kits « Chapter 5

IDE and compile to find more information.” The Mobile ADK, despite its large
download size, provides the least useful information during debugging compared
to the others. This is unfortunate because the Wireless IDE is a very useful tool
for creating, editing, and managing projects.

The Ericsson Mobile Internet WaplIDE 3.1

Ericsson has developed a software development kit that emulates their most pop-
ular WAP-enabled phones. This SDK is supported and complemented by the
Developer Zone Web site (www.ericsson.com/developerzone) and a multitude of
developers from around the world who use it on a daily basis. The Ericsson
WapIDE helps you build and test WAP applications. The WapIDE includes the
following components:

» Browser Simulates various Ericsson mobile phones with WAP services
for testing. You can use it to demo WAP applications as well.

= Application Designer Makes building and testing a WAP application
easier by integrating a WML and WMLScript editor with an Ericsson
mobile phone simulator.

» Push Initiator Can send push messages to the simulator or an actual
WAP terminal.

This version of the WapIDE can simulate the Ericsson R320s, R380s, and
R520m.You can develop WAP applications that use WAP 1.1 (R320s and R380s)
and WAP 1.2 (R520m).

Installing the Ericsson Mobile WapIDE

The WapIDE is written in Java for the Win32 platform—this includes Windows
9x, Windows NT, and Windows 2000. The installation may require you to install
additional software from Sun Microsystems if you do not have an appropriate Java
Virtual Machine already installed on your computer. In the following sections, we
cover the specific requirements for your system, how to obtain the software, and
how to install the WapIDE on your computer.

System Requirements for the
Ericsson Mobile WapIDE

Ericsson gives the following requirements for running the WapIDE:

209

Www.syngress.com

210

Chapter 5 * Wireless Development Kits

= Microsoft Windows 98, Windows NT 4.0, or Windows 2000
= Java2 Platform, version 1.3.0 or later.

» Microsoft Internet Explorer 5, or later, is required to access local files
and use the application designer.

= 20MB of free disk space
» Intel Pentium II 266 MHz (or faster) with 128MB of RAM (or better

recommended for performance reasons)

Ericsson does not explicitly state support for Windows Me, but we have suc-
cessfully installed it and used it on that platform with no problems.

Obtaining the Ericsson Mobile WapIDE

You can download the Ericsson WapIDE from the Ericsson Developer Zone Web
site at www.ericsson.com/developerzone.You are required to register before
downloading the WapIDE.You can download other simulators from the
Developer Zone Web site, including a dedicated R380 simulator and older ver-
sions of the WapIDE.

Installing the Ericsson Mobile WapIDE

The file you download from Ericsson will be called WapIDE_31.exe. Run this
application and you will be greeted with the initial install screen shown in
Figure 5.21.

Figure 5.21 Initial Install Screen for the Ericsson WapIDE

WwWw.syngress.com

Wireless Development Kits « Chapter 5

Click Continue to begin installing the WapIDE.You will have to accept the
License Agreement, view a ReadMe file, and then choose where you want the
SDK installed. We chose the default installation location for simplicity. You can
choose what Program Group to install the WapIDE into on the next screen. The
final screen asks you to confirm your choices, and then the WapIDE is installed
on your computer.

Working with the Ericsson Mobile WapIDE

We look at the Application Designer during these exercises because it integrates
the browser into a development environment. If you installed the WapIDE in the
default location, you can start the application from the Start menu by choosing
Programs | Ericsson WapIDE 3.1 | Application Designer. The initial
window may take some time to appear, this is normal. The initial window is
shown in Figure 5.22.

Figure 5.22 Initial Ericsson WapIDE Window

B el | - et M= B3
Fis Eed Vs Toae Halp

racoda g 1 %
B e

LS 12) Rt

The WapIDE is a project-based environment. This means that you can group
files together in a project and can reload them all at once into the WapIDE at a
later time, saving yourself the effort of loading each file individually. The top-left

211

Www.syngress.com

212

Chapter 5 ¢ Wireless Development Kits

pane shows the current project files and lets you navigate through various ele-
ments of the WML deck you are currently working with. The bottom-left pane
shows information about the current element you have selected: card titles, the
WML version of the deck, and so on. The right pane shows the source of the
current WML deck. Finally, the bottom pane shows you status messages about the
WapIDE, such as validation errors in WML decks.

Accessing and Editing Local Files

Let’s create a new project and add our hello.wml file. From the main window,
choose the File | New | New Project menu item.You will be asked if you
want to save the changes to the current project; unless you have already been
working on a project that you wish to save, click No.You will then be prompted
with the dialog box to fill in information about your project. We set ours up as
shown in Figure 5.23.

Figure 5.23 Creating a New Project in the Ericsson WapIDE

Frajerirme b el ic TrE F
[T THE TR |
L VEEeRET T 101 T 12

Ceaimipion

AL LGIDEdCTacl Lo ThE LLLoakon skr-dDl.

oo |

You can use three difterent methods to accomplish most tasks in the WapIDE:
menu choices, the toolbar, and keyboard shortcuts. Let’s focus on the menu
choices, and you can explore the other two options on your own. To add a new
WML file to the project, select File | New | New WML Deck from the
menu bar. Now, you can edit the WML deck to contain the text you want.You
can edit the file in the right pane. Go to the spot after the open <p> element
and insert the text “Hello World!” into the file. Also add the ID and title
attributes to the card so that the hello.wml file looks like this:

<?xm version="1.0"7?>
<! DOCTYPE wr PUBLIC "-//WAPFORUM / DTD WML 1. 2//EN'
"http://ww. wapforum org/ DTD/ wi 12. dt d" >

WwWw.syngress.com

Wireless Development Kits « Chapter 5

<wml >
<card id="hello" title="Hello World">
<p>Hel | o Worl d!
</ p>
</ card>
</ wm >

The editor will not show you updated information about the WML deck
until you validate it. You can validate the file by selecting the Tools | Validate
“hello.wml” menu option. Once you validate your document, the left panes
will be updated with the information you just typed in, as shown in Figure 5.24.

Figure 5.24 Updated WML Deck Information in the Ericsson WapIDE

= (e T e p—

Fis Eed Yew Jaoln Hag
o -
i o e 8] W

Y bt wrd

é!—

BB Ak r- oY el d e = H | -
I W E T "'.I"I

r-ei;l-'lll

4l | s
R 6 GO 31

Falidetimm waa wecsanful, =o scooce Sewmdi

We can now view the document in a WAP device by selecting the Tools |
Test “hello.wml” menu option This will launch the WapIDE browser in a new
window with the hello.wml file we just created. Figure 5.25 shows the R520m
with our new deck in it.

Www.syngress.com

213

214 Chapter 5 * Wireless Development Kits

Figure 5.25 Ericsson R520 Emulator Viewing hello.wml

Fir 'drs dzsdmmic Hea

=@l @

i.ﬁl

Notice that a Back button is not included by default. Ericsson browsers
require you to explicitly put in WML to perform backward navigation if you
want it to be available to the user. Each card from which the user can navigate
backwards requires the following piece of code:

<do | abel ="Back" type="prev"><prev/></do>

Not all browsers require this, but be careful not to omit it because you could
end up with areas of your WAP site that users cannot get out of. If the browser
provides a Back button by default, it will simply ignore this portion of WML code.

Accessing Files through a Gateway

The browser component can retrieve files locally on your file system or on the
network through a gateway. The default behavior is to use the public gateway
Ericsson has set up for Developer Zone members, but you can use any gateway
you have access to. Ericsson provides information on their Web site for down-
loading and installing their gateway on your local machine. We add the Ericsson
gateway to our configuration even though it is included by default, just to run
you through the steps required.

Select the View | Settings menu option from your browser window. You
will see a configuration dialog box with multiple tabs across the top. Select the
Gateway tab then click Add to create a new gateway entry. Fill out the name as
DevZone and enter the IP address 195.58.110.201. The gateway that Ericsson
provides does not require a username or password, so leave those fields empty.
When you click OK, you will be taken back to the gateway selection screen.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

From the pull-down list, select the DevZone entry and then click OK at the
bottom of the dialog box to save your changes. Now, whenever you request a
document from a network address using HTTP, it will request the file from the
gateway, and the gateway will actually retrieve the document before sending it
back to you.

Debugging Techniques

The WapIDE provides good error messages that help you debug your application.
Let’s take our simple WML file and remove the </p> element, so that our para-
graph line looks like this:

<p>Hel l o Worl d!

When we validate this file, we get some error messages in the bottom pane, as
shown in Figure 5.26.

Figure 5.26 Ericsson WapIDE with Error Messages

Bl seiF - s it g
Fis 81 yww Tooin Hug

il |-

R T CHE B

This is pretty good information. We know that we opened a paragraph ele-
ment and did not close it. The line numbers and columns that are reported match
up with the next tag it encountered, but the message is clear and points outs the

215

Www.syngress.com

216

Chapter 5 ¢ Wireless Development Kits

problem quite well—even if it does miss the location a bit. If we correct the
problem and revalidate, we get a comforting message indicating that no errors
were found.

The WapIDE does not provide information such as cache status, variable
values, or compiled WML size. This is unfortunate because the rest of the envi-
ronment is nice for building and testing applications. You can open the Trace
window to view information about the current status of the emulator, which can
be helpful when you are trying to track down a network problem.

The WapIDE allows you to clear the device cache or disable caching alto-
gether. This is handy during repetitive testing, but be sure to test your application
with caching on once you believe it is working. You can reach the cache setup by
selecting View | Settings from the browser window and going to the Cache
tab, as shown in Figure 5.27.

Figure 5.27 Cache Settings for the WAP Browser in the Ericsson WapIDE

Gumner| Gatemay [Gcve | Radom |

L dmoipin

Thes c@TES P in g sopra pihikh Thecxcie B
serlige Med o s e E T S rawEr s R Tan
opirgd fniuesnl Fred "o Jald b gl wilfi b
ol B, R b T el o T R

T Dimskde cache i Cucte |

Rusi o | ceew |

The Yospace SmartPhone Emulator 2.0

The Yospace SmartPhone Emulator Developer Edition is the only SDK in our
lineup that isn’t developed by a browser manufacturer. This Yospace SmartPhone
Emulator is designed to emulate browsers from multiple vendors simultaneously,
thus speeding up your development. The SmartPhone Emulator is written
entirely in Java; you can run it on any platform that has a Java 1.1.8 compatible
VM installed (this includes Java2 VMs). This is the only SDK we’ve looked at that
1s truly cross-platform. Linux, Apple MacOS, Sun Solaris, and Microsoft Windows
are all known to work well with the SmartPhone Emulator.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

Installing the Yospace SmartPhone Emulator

Many versions of the SmartPhone Emulator are available from Yospace. The
Developer Edition is for use on your local machine to access files both remotely
or on your local file system and is the one that we installed. The Web Site Edition
allows you to demo your WAP application to people who visit your site with a
regular Web browser. You can use the JavaBean Edition to build your own appli-
cation that can access WAP services by emulating popular handsets.

We cover only installing the Windows version of the SmartPhone Emulator
Developer Edition. The instructions for other platforms are documented on the
Yospace Web site at www.yospace.com. We go step-by-step through the system
requirements, downloading the SmartPhone Emulator, and installing it on your
computer.

System Requirements for the
Yospace SmartPhone Emulator

The Yospace SmartPhone Emulator is written entirely in Java and can therefore be
run on any computer system that has a Java 1.1.8 or compatible VM installed. As
mentioned earlier, Yospace has packaged the SmartPhone Emulator in installation
programs for Microsoft Windows, Apple MacOS, Solaris, and Linux/other UNIX
platforms. If you download the Windows or MacOS version, you can choose to
download it without the JVM if you already have one installed on your system.
Yospace gives no specific processor or memory requirements because the software
can run on such a wide variety of machines. If you find the program doesn’t run
fast enough perhaps you should get a faster processor or add more memory. With
that said, the Windows install program that we used 1s a Win32 application, so you
must have Windows 9x, Me, NT, or 2000 to install the software.

Obtaining the Yospace SmartPhone Emulator

You can download the SmartPhone Emulator from the Yospace Web site at
www.yospace.com in the Products section. Yospace requires you to register in
order to download the software. Once you download the software, Yospace will
e-mail you a license that is good for five days. After this license expires, you will
need to purchase a license from Yospace to continue using the software.

217

Www.syngress.com

218

Chapter 5 * Wireless Development Kits

Installing the Yospace SmartPhone Emulator

You will download a file called SPEDE2_0.zip, which contains one file, from the
Yospace Web site. Unzip it with a zip extractor such as WinZip (www.winzip.com)
or Aladdin Stufflt Expander (www.aladdinsys.com). Run the spede2_0.exe appli-
cation (which is the file that you extract) and, after some initial splash screens, you
will be greeted with a dialog box requiring you to accept the license agreement for
the SmartPhone Emulator. If you agree with the terms of the license, click Yes and
then click Next to continue the installation process.You can accept the default
installation location on the next screen and then click Install to start the actual
copying of files to your computer. The software will be installed while a dialog box
like the one shown in Figure 5.28 updates you on the status of the installation.
Once the installation completes, click Done, and the software is installed.

Figure 5.28 The Yospace Installation Screen
(6 fmmi b (b 20 M=K

£ YOSPACE

SmiartPhone Emulator
SR -

RN THIH 10

Developing with the Yospace
SmartPhone Emulator

You can now start the SmartPhone Emulator by choosing Programs |
SmartPhone Emulator | SmartPhone Emulator 2.0 from the Start menu.
The first dialog box you see will ask you for your name, e-mail address, and
license key. These must match the registration info you gave to Yospace. You will
only be asked for this information when you first run the program or the license
expires. The license screen is shown in Figure 5.29.

You can choose what mode you would like to run the program in from this
screen: Development Mode or Display Mode. Display Mode shows just one emu-
lator in its own window so that you can demo your WAP application without

WwWw.syngress.com

Wireless Development Kits * Chapter 5

having a complete development environment cluttering the screen. Development
Mode is where we spend most of our time. It allows you to view multiple emu-
lators at the same time, load a file or location into multiple emulators with one
command, and view variable names and values and other status information.

Figure 5.29 Yospace SmartPhone Emulator License Screen

g e AP g
PP b oy st ke, o PR L i T P

Fansn i boares deisin
Hera Liesyma peeimady | T = Py Sy ege mans
et c N Avasl SRR |EroHiE e st ol
Tiu W e | 3o G- T M L

= Cwvminorantbode ™ Dimolw s

o | e |

The initial window may seem intimidating at first, but figuring it out is quite
easy. Figure 5.30 shows the default workspace when you start in Development
Mode.

Figure 5.30 Default Development Mode Workspace

o i e B et m L HEEGANS L HAH | FHEI LS HELS | UHT Pl
B few Viphnsr feier e
IR OME &t Bw e &

RS W R
v Lo s
W i AT B

il Becp o B L e

219

Www.syngress.com

220

Chapter 5 ¢ Wireless Development Kits

The windows in the main part of the screen are emulators for various mobile
phones. The SmartPhone Emulator allows you to create and save groups of emu-
lators as workspaces.You can have one workspace per manufacturer, per browser
type (UP.Browser, Nokia Browser, and so on), or any other scheme you can
come up with.You can save these workspaces and recall them later when you
need to test the same combination of devices again.

The default workspace includes an Ericsson R380, Ericsson R320, Nokia
6210, and Motorola Timeport. Because it includes multiple devices, you must tell
the SmartPhone Emulator which emulator you want to work with. You can
select the emulator window or its corresponding name from the list in the top-
right pane. If you select the Workspace, everything you do will apply to all the
emulators. Select the Workspace as shown in Figure 5.30 before we start loading
files in the next section.

Accessing and Editing Local Files

You will have to use a separate text editor to create WML and WMLScript files.
The Yospace SmartPhone Emulator does not include text-editing capabilities. We
use the same file we created in other examples and saved as c:\wap\hello.wml.
If you haven’t already created it, save the following WML deck to that location:

<?xm version="1.0"?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforum org/DTD/wr _1. 1. xm ">

<wni >

<card id="hello" title="Hello World!">

<p> Hello World! </p>

</ card>

</ wm >

Load this file into all the emulators at once by selecting the File | Open
File menu option. This will bring up a dialog box asking what file to load. Find
and select our file (c:\wap\hello.wml) and click Open to load the file in all the
emulators. You can see how easily you can view your WAP application on mul-
tiple devices with the SmartPhone Emulator.

Accessing Files through a Gateway

The Yospace SmartPhone Emulator does not allow you to change the gateway
used to access WAP content. The gateway functionality is encapsulated in the

WwWw.syngress.com

Wireless Development Kits « Chapter 5

emulators. This is unfortunate because testing through multiple gateways is a
good way to find many problems.

Debugging Techniques

The Yospace SmartPhone Emulator provides very precise debugging information.
Let’s break the hello.wml file so that it does not close the paragraph element. The
resulting file looks like this:

<?xm version="1.0"?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforum org/DTD/wr _1. 1. xm ">

<wni >

<card id="hello" title="Hello Wrld!">

<p> Hello World!

</ card>

</ wm >

We have to empty the cache before we reload the file by selecting the
Workspace | Empty Cache menu option. Then we can load our file the same
way we did before. This time, every emulator will give you an error message.
These error messages are exactly what each individual phone would show you if
you were holding it in your hand—not very informative. However, a new mes-
sage appears in the status bar along the bottom of the window: “! Last Error:
502.” Click on this message and a dialog box (shown in Figure 5.31) will appear
giving you more detailed information about the problem.

Figure 5.31 Yospace SmartPhone Emulator Invalid WML Error Dialog Box

it HTTP s G5 - vl Fvw, T S el LU O
5 ey & GFT s e R D ArapmE R Al
BURCE TR Ty e AR A e LY VL e wli
o |

The error message tells us that the paragraph tag on line 6 does not have a
corresponding close tag. This is the most descriptive error message from any of
the SDKs we’ve looked at. Although the error message is clear, it is somewhat
difficult to find inside the variety of HTTP status messages. This is especially
confusing because we were loading a local file. The extraneous error messages are

221

Www.syngress.com

222

Chapter 5 ¢ Wireless Development Kits

a result of how the SmartPhone Emulator is actually viewing each file internally,
and the messages should probably be ignored.

The SmartPhone Emulator also has variable debugging capabilities. Let’s
create a more complex WML deck and see how variables are handled. Save this as
c:\wap\vartest.wml:

<?xm version="1.0"?>
<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/wm _1. 1. xm ">
<wni >
<card id="home" title="SnmartPhone Enul ator denp">
<p>
Name: <input type="text" name="nane"/>
</ p>
<do type="accept">
<go href="#showname"/>
</ do>

</ card>

<card id="showname" title="My nane is...">
<p> Hell o $nanme. Wl cone. </ p>
</ card>
</ wm >

Let’s look at this in the Ericsson R380. Select it from the workspace pane on
the top left, then load the file via the menu bar. The Ericsson R380 is a touch-
screen device, so click your mouse between the angle brackets (< >) to bring up
the text entry screen. Type in consuelo and then click on the arrow icon in the
bottom-right corner of the emulator display. You will be taken back to the first
page, but consuelo will appear between the angle brackets now. Click Accept, and
the resulting screen simply repeats the entered name along with a message. Now
we can pull up the variable window. Select the View | View Variables menu
option, and a new window will appear (see Figure 5.32).

You can keep this window open to track the status of your variables as you
browse with the emulator. This window also shows your browse history and
status messages from the browser.

WwWw.syngress.com

Wireless Development Kits * Chapter 5 223

Figure 5.32 Yospace SmartPhone Emulator Variable Window

e

e iog

Il bl WL | e St B ey

il

Www.syngress.com

3

224

WwWw.syngress.com

Chapter 5 * Wireless Development Kits

Summary

You can choose from many available WAP SDKs. Finding the right one can be
an extremely difficult and time-consuming task. Each SDK has its strengths and
weaknesses, but you can use this to your advantage. You may find yourself using
one SDK for your normal development, and each of the other ones at difterent
times when it proves advantageous.

Users of operating systems besides Microsoft Windows variants have one
choice: the Yospace SmartPhone Emulator. The good news is the SmartPhone
Emulator does many of the tasks that other SDKs do, and it reports errors better
than the rest. The bad news is that it is the only one that costs money! The Nokia
WAP Toolkit provides great error feedback and editing of WML, WMLScript,
WBMP image files as well as variable viewing editing and timer status in the
running browser. The downside is that it requires separate downloads for each
real-world device you want to emulate. The Openwave UP.SDK is very simple,
but it provides a large amount of feedback and is a native Windows application,
which gives it a performance edge over the Java-based emulators. The Ericsson
WapIDE provides project management features that allow you to quickly open
and edit groups of WML and WMLScript files. The Motorola Mobile ADK pro-
vides a completely integrated environment that integrates with source control
software and supports other mobile technologies such as Voice XML.

Whatever SDK you choose, you will be pleased with the amount of time and
work you save over developing and testing applications using your mobile
handset, and the ease of developing and testing WAP applications on your home
computer.

Solutions Fast Track

The Openwave UP.SDK 4.1

M The UPSDK provides emulation for a variety of mobile devices.You
can use it to test your application on a variety of phones from multiple
device manufacturers as long as they use the UP.Browser in their
phones.

M You can download the UP.SDK from the Openwave Developer Program
Web site (http://developer.openwave.com) in the Downloads section.

Wireless Development Kits « Chapter 5

M The UPSDK does not provide any text editing or IDE-style capabilities.
It 1s useful for testing applications only, and you must have a separate
program to create and edit your WAP files.

M The error messages reported by the UPSDK are fairly helpful in finding
syntactical problems. They will point you in the correct direction but are
not explicit enough to make finding errors a simple task.

The Nokia WAP Toolkit 2.1

M The WAP Toolkit provides a prototype-like mobile phone for
development.

M You can download modules that emulate actual Nokia phones from the
Forum Nokia Web site (http://forum.nokia.com).

M The WAP Toolkit is a full-featured IDE.You can create and edit WML
and WMLScript files as well as WBMP images using the built-in tools.

M The error messages reported by the WAP Toolkit are geared more

towards machines than humans, but the line numbers they report are
usually very close to the source of the problem.

The Motorola Mobile
Application Development Kit 2.0

M The Mobile ADK includes support for a large variety of Motorola
mobile phones. The Mobile ADK is the only SDK we looked at that
also supports voice applications through VoxML and Voice XML as well
as Microsoft ASP support.

M You can download the Mobile ADK from the Motorola Applications
Global Network (MAGNET) Web site at www.motorola.com/devel-
opers/wireless in the Tools & Downloads section.

M The Mobile ADK and Wireless IDE provide a complete development
environment for your mobile needs. You can integrate with source

control products and develop for a variety of environments using the
same IDE.

225

226 Chapter 5 * Wireless Development Kits

M The error reporting in the Mobile ADK is entirely subpar when
compared to the other SDKs. The only thing you will find out is
that an error occurred with your file. You will have to do all the work
of figuring out where the error actually is.

The Ericsson Mobile Internet WapIDE 3.1

i M The WapIDE includes support for three Ericsson mobile phones.You

can use the emulator independent of the environment for building and
debugging applications, which provides a good mechanism to demo
your WAP applications.

M You can download the Ericsson WapIDE from the Ericsson Developer
Zone Web site at www.ericsson.com/developerzone.

M The WapIDE includes an Application Designer that helps you build
WML decks that are syntactically correct as well as compile and debug
the ones that aren’t.

M The error reporting is quite descriptive although the line numbers don’t
tend to match up that well. Also, it displays a lot of error messages for
one error (three in our case), which makes tracking down problems a
little more difticult.

The Yospace SmartPhone Emulator 2.0

M The SmartPhone Emulator can emulate a variety of mobile devices from
a large variety of manufacturers. Viewing source files in multiple emula-
tors—either individually or at the same time—is quite easy with the
i d layout of the SmartPhone Emulator. It is also written entirely in Java,
making it the only emulator that you can use on operating systems other
than Microsoft Windows.

M You can download the SmartPhone Emulator from the Yospace Web site
(www.yospace.com) in the Products section.

M The SmartPhone Emulator includes no editing capabilities, but it does
provide good debugging facilities for viewing variables, history stacks,
and other portions of the running WAP browsers.

WwWw.syngress.com

Wireless Development Kits « Chapter 5

M The error reporting is the most accurate of the group. It pinpoints the
cause of the problem rather than the effect. The error messages are clut-
tered with a lot of information pertaining to the internal implementa-
tion of the SmartPhone Emulator, which makes finding the actual error
message a little difticult. Once you do find it however, it points you
directly to the error.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: I've tested my application in all the SDKs and it works—but I can’t get it to
work on my phone. What’s wrong?

A: The SDK provides emulation of the actual phone, but it is not perfect.
Remember from Chapter-2 that the gateway sits in the middle and can cause
incompatibilities to show up in your WML code. The WAP gateway that your
network provider is using could be causing the problem. Unfortunately, you
are basically left with trial-and-error to figure out what the problem is. You
can hire a WAP testing-company to figure it out for you if youd like.

Q: Every SDK but the UPSDK is written in Java, so why is the Yospace
SmartPhone Emulator the only one I can run on my Linux machine?

A:You can find directions on the Internet for getting an older version of the
Nokia WAP Toolkit to run under Linux, but youwill lose a considerable
amount of performance. Many of the slower operations have been written in
native code to make the SDK performance better. Unfortunately, you will
have to convince the other manufacturers to release a pure Java version to get
it running under Linux.

Www.syngress.com

227

Chapter 6

Web Clipping

Solutions in this chapter:

= What Is Web Clipping? 5

= What Types of Hardware Support Web
Clipping
. Working with the Palm OS Emulator

= Creating a Web Clipping Project with the
Web Clipping Application Builder

= Web Clipping Basics and Examples

M Summary
M Solutions Fast Track

M Frequently Asked Questions

229

230

Chapter 6 * Web Clipping

Introduction

One of the most interesting and challenging aspects about the evolving wireless
Internet is the plethora of devices that are capable of browsing Internet content.
These devices range from phones capable of using Wireless Application Protocol
(WAP), to pagers capable of sending and receiving e-mails, to handheld Personal
Digital Assistants (PDAs) with wireless modems or native connectivity. All of
these devices feature different capabilities, interfaces, and usage patterns. They
each require a difterent toolkit with which to craft your Web sites and applica-
tions, and each operate under a slightly different set of rules in regards to usability.

In this chapter, we will focus on the tools and methods used to deliver con-
tent to the last category of devices mentioned, the PDA. In particular, we will
discuss the proprietary Web clipping network that allows Palm-compatible hand-
held devices to access Internet content. These devices do not necessarily have to
be manufactured by Palm, but Web clipping, by definition, is restricted to Palm-
compatible devices such as the Handspring Visor, Sony Clie, Qualcomm PDQ), or
the Kyocera smart phone. There are slight differences between these devices, but
in this case, fortunately, the difterences are minimal, and have more to do with
the network that the device uses to connect to the Internet than the device itself.

This chapter is not intended to be a comprehensive reference on all of the
intricacies all of the aspects of developing Web clipping applications (WCAs), nor
is it a guide to programming native Palm OS applications. Rather, it is written as
an introduction to the technology, and will provide information useful to
Webmasters interested in deploying WCAs. The skills used to develop a WCA are
skills that you most likely already have, namely, understanding of HTML and
some experience with server-side scripting. If you are interested in a more in-
depth coverage of this topic, you may want to read the Palm OS Web Application
Developer’s Guide, available from Syngress Publishing at www.syngress.com.

First, we will provide a definition and an overview of Web clipping, including
the various components that must interact in order for content to be retrieved
from a server. We will then cover the devices that can support Web clipping and
the additional connection hardware and networks that are used to connect a
handheld device to the Internet.

Once we've explained the basics of what Web clipping is and the variety of
ways you can connect a Palm-compatible organizer to the Internet, we will move
into the development environment and discuss how to install the Palm Operating
System Emulator (POSE) on your desktop computer. This program will allow
you to test your application and its interaction with your Web server without

WwWw.syngress.com

Web Clipping * Chapter 6

owning or having access to an actual Palm-powered handheld. We will then dis-
cuss how to install the Web Clipping Application Builder provided by Palm and
walk you through the creation of your first WCA using this development tool
and the POSE.

We will then examine what aspects of HTML are and are not supported
within the context of Web clipping. Specifically, we will examine the subset of
HTML that can be used to build Web clippings, and the differences between the
ways that your code will look and act on a handheld device versus a desktop
computer. We will also cover some handy device-specific functions that are
unique to Web clipping.

Later in the chapter, we will cover several examples that illustrate what you
can do within a WCA, and how these capabilities contrast with how you may be
accustomed to programming for the Web. We’ll demonstrate how you can imple-
ment some familiar features in a new environment, and provide examples of how
to send data to and retrieve content from a Web server on the Internet using a
WCA.

What Is Web Clipping?

First things first: Web clipping is not Web browsing. Forget the metaphor of
“surfing the Web” as you know it from the desktop computing world. That being
said, what is Web clipping?

Web clipping refers to a proprietary system that allows handheld devices run-
ning the Palm Operating System (version 3.5 or higher) to access the Internet
using compiled content that resides on the device. This content is first authored
in Hypertext Markup Language (HTML) and then converted to a special type of
file called a Web clipping application (WCA) that can be installed on the device.
WCAs can contain most of the common elements of the earlier versions of Web
sites, such as links, forms, and images. The HTML markup used to create a WCA
is a subset of HTML 3.2, containing only the elements suited to an environment
with little processing power and memory. This subset of HTML is called
Compact HTML (cHTML).

A Web clipping application provides a means for your users to access your site
or a Web application from their handheld device. There are pros and cons to this
situation. An advantage is that you can distribute several HTML pages that can
send data to your Web server from the field. On the other hand, you must put
some extra effort into making sure that you include the relevant elements for
your users before deploying your Web application. Once a WCA 1is installed on the

231

Www.syngress.com

232 Chapter 6 * Web Clipping

user’s device, the only way to change it is to have the user download the latest
version of the WCA.

NoTE

You can find over 250 WCAs available for download at wireless.palm.net/
apps. Many applications have already been built to solve common fea-
tures that are requested by Palm.net users (e-mail, messaging, news,
shopping, etc.). You can also post your own WCAs for distribution to
users. One of the best ways to learn how to build an effective Web clip-
ping application is to see what others have done successfully, and, per-
haps more importantly, to see what others have done unsuccessfully!

The WCA is viewed using the Web Clipping Application Viewer, or Clipper
browser, which resides on the device. The Web Clipping Application Viewer can
send data to (and receive properly formatted HTML from) a Web server located
on the Internet through a network of base stations and Palm.net proxy servers. In
addition, a WCA can launch, and, vice versa, be launched by, local applications on
the device.

NoTE

It helps to think of WCAs as miniature Web sites stored on the handheld
device, and to think of Clipper as a Web browser, but remember that
these concepts are not directly analogous. In actuality, a WCA is a Palm
Database Format record set that is installed on the device. Its content is
static and cannot be updated until a user installs a new version of the
application. Likewise, Clipper itself is not a Web browser, per se, but
rather a unique application that can render HTML stored in a WCA.

Web clipping applications were formerly called Palm Query Applications
(PQAs). The files created by the Web Clipping Application Builder are saved with
an extension of .pqa, a vestige of their former nomenclature. In this chapter, we
will use the term Web clipping application or WCA to refer to what we are
building. When we refer to Web clipping we will be referring to the entire pro-
cess, not just an individual part of it.

WwWw.syngress.com

Web Clipping * Chapter 6

The Components of Web Clipping

Since we are most interested in the wireless Internet, we will focus primarily on
the client-server aspects of Web clipping and on the overall architecture of a typ-
ical transaction. The basic architecture of Web clipping includes several elements.
The basic flow is shown in Figure 6.1: the device communicates with a Palm.net
Proxy Server via a wireless network (made up of base stations run by Cingular
Wireless), and the Proxy Server communicates with a Web server via the
Internet. Any traffic must flow through the Palm.net Proxy Server network in
order to be sent to the device.

Figure 6.1 Web Clipping Architecture

co[oo

WCA
Viewer

Palm.net Web Server

Mobitex Network Proxy Server
(Cingular Wireless)

Client-Side Components

The client-side components of Web clipping are the Palm handheld device, the
Web clipping application, and the Web Clipping Application Viewer. Another
necessary component is a piece of hardware that is used to provide connectivity.

The Wireless Device

The handheld device is the actual hardware that runs the Palm Operating System
(OS 3.5 or later). It will typically contain a processor, some memory, a screen, and
an input device (usually a stylus, but sometimes a miniature keyboard). Palm cur-
rently licenses their OS to a wide variety of vendors, including Handera,
Handspring, and Sony.

The Web Clipping Application

This is, technically, a Palm Database Format record set that contains HTML and
images. It is the application that you will build and make available for your users
to install on their devices.You can create Web clipping applications using the
WCA Builder. To create a WCA, you will need to create your HTML and images
and import them into the WCA Builder. The WCA Builder will then scan your

233

Www.syngress.com

234

Chapter 6 * Web Clipping

HTML and convert your code into a format readable by the Web Clipping
Application Viewer.

The Web Clipping Application Viewer

This is the program on the device that is capable of viewing Web clipping appli-
cations. It will render the contents of the WCA through a browser-like interface.
It is capable of interacting with servers on the Internet as well as device-resident
applications on a Palm-powered handheld.

The Connection Hardware

This component connects the device to the Internet. This may be an embedded
radio antenna, an attachable third party modem, or a user’s cellular phone con-
nected to the device via a cable or Infrared (IR) connection.

Server-Side Components

The server-side components of Web clipping are the Mobitex wireless network,
the Palm.Net proxy server network, and any individual Web server or server-side
program (such as a CGI script) that is accessed over the Internet. The one consis-
tent server-side component is the Palm.net proxy server network. This 1s the part
of the architecture where the HTML from a Web site is converted to CML and
sent to the device, and where the requests from the device are communicated to
a Web server on the Internet.

Mobitex Base Stations

These radio stations are owned by Cingular Wireless and make up a wireless net-
work capable of transmitting data at a rate of 9.6 kbps. These base stations are
capable of relaying the ZIP code of a Palm VII transmitting wireless data.

NoTE

The actual speed of a Web clipping transaction will be slightly slower
than 9.6kbps, due to Internet traffic and the processing that is done by
the Proxy server.

WwWw.syngress.com

Web Clipping * Chapter 6

Palm.net Proxy Server Network

The Palm.net Proxy Server Network is made up of computers that handle the
requests initiated by handheld devices. These servers will, in turn, send a request to
other servers on the Internet on behalf of the device. They will then relay the
response over the air in a format readable by the Web Clipping Application Viewer.

Web Servers

The final server-side component of Web clipping is the Web server that handles
the forwarded request from the device and sends back a response in HTML. This
request may be for a static file, or a CGI script, or other server-side script to gen-
erate dynamic content that may handle the request.

A Typical Web Clipping Transaction

In a typical Web clipping transaction, a user downloads and installs a WCA on
their handheld device; the WCA contains a form that allows the user to input
stock symbols and retrieve quotes. When the user launches this WCA using the
Web Clipping Application Viewer, they fill out the form and Clipper sends a
request over the air to a Palm.net proxy server. The proxy server passes this
request on to a Web server connected to the Internet.

The Web server then responds by returning HTML that contains the latest
quote for the requested stock symbol. This response is handled by the Palm.net
proxy server, which encodes it into the appropriate format for Clipper and then
sends the clipping over the air to the handheld device. Figure 6.2 illustrates what
the user would see within Clipper after installing and launching the WCA.

Figure 6.2 A Typical WCA Response

Palm 05" Emulaios b Palm 05 Emulaios i

235

Www.syngress.com

236

Chapter 6 * Web Clipping

What Types of Hardware
Support Web Clipping

There are many different handheld devices that are capable of connecting to the
Internet. The actual means of connecting will vary depending on your particular
device. For example, the Palm VII/VIIx was designed for Web clipping, and is
capable of interacting with the Internet utilizing a radio antenna that is part of
the device’s hardware. Other Palm models may connect to the Internet via an
external modem or cellular phone. Palm-compatible Smart Phones can install and
use WCA:s.

In this section we will provide an overview of connecting many difterent
handheld devices to the network. In some cases the hardware that handles the
physical connection will be included in the device, and in others, the connection
will be provided by additional devices. We will first discuss the Palm VII/VIIx,
then other handheld devices connected via other networks. Lastly, we will discuss
connecting the less costly handheld devices such as the Palm m100, m105, and
Palm III series.

NoTE

The RIM 957 (Blackberry) e-mail pager can view the HTML contained in a
WCA, but only if the .pga file is directly accessible from the Internet
(www.mysite.com/mypga.pga).

A RIM pager does not fully support Web clipping. For example, it is
possible for you, in your server response, to reference an image that is
embedded in your compiled, device-resident WCA. The RIM will not be
able to render the image because it does not store compiled WCAs on
the device.

Minimum hardware requirements on any of the handheld devices covered in
this section are not an issue. You can take advantage of Web clipping just as easily
on a Handspring Visor with a modem and 2MB of RAM as you can on a Palm
VIIx with an integrated wireless antenna and 8MB of RAM. The number of
WCAs that you can install on your device, however, will be limited to the avail-
able memory. The bare requirements for most Palm-compatible devices are ver-
sion 3.5 or later of the Palm OS, and some method to connect to the Internet.

WwWw.syngress.com

Web Clipping * Chapter 6

Regardless of your method of connection, you will need to pay for some
type of connection service. All of these various devices are connecting to the
Internet via an intermediate wireless layer. This layer can be composed of many
different service providers, hardware configurations, and wireless networks, and
the solution differs depending on the device you are using.

NoTE

Once your handheld is connected to the Internet via any of the following
means, you may also browse WAP content using a third-party browser.
The most common browser at this point is the 4thpass.com Kbrowser,
available for download at www.4thpass.com. Versions exist for both the
Palm VII/VIIx and others, so make sure that you get the appropriate
download for your device.

Palm VII/VIIx Connected via Mobitex

The Palm VII/VIIx models contain a radio antenna as part of their hardware
configurations. This antenna connects to a network of radio base stations, run by
Cingular Wireless. This Mobitex network carries data at a rate of 9.6 kbps, but, as
mentioned previously, the actual connection speed may be slower due to delays
in Internet traffic and proxy server translation. If you are using a Palm VII/VIIx,
you will need to get a subscription to Palm.net in order to connect to this net-
work and use Web clipping applications.

You can activate this service from the device itself. The first time that you
raise the wireless antenna, the Activate Setup program starts automatically. You can
enter your registration and payment information and be up and running in min-
utes. There are several different pricing plans available, ranging from about $10
per month to $45 per month. Each plan includes a base volume of transmission
plus an additional cost per kilobyte.You can find additional details at
http://myaccount.palm.net.

Other Handheld Devices Connected via CDPD

If you are using another Palm handheld device or other Palm-compatible device,
such as the Handspring Visor, then it is possible to purchase and install a Minstrel
modem that attaches to the unit. This modem operates on the Cellular Digital

237

Www.syngress.com

238

Chapter 6 * Web Clipping

Packet Data (CDPD) network, available across most of the U.S. Service may be
purchased via AT&T, Verizon, GoAmerica, or Omnisky. Omnisky does not sup-
port Palm models below the Palm V/Vx.

Palm-Compatible Handhelds
Connected via the Mobile Internet Kit

The Palm Mobile Internet Kit (MIK) allows users of Palm handheld devices
other than the Palm VII/VIIx to make use of Web clipping and other Internet-
related applications. The Mobile Internet Kit may be used most any Palm hand-
held, including models that were released several years ago. Included in the
purchase of the MIK is a copy of the Palm OS 3.5 upgrade.

The MIK works by allowing your Palm handheld to utilize a modem or a
data-capable cellular phone to connect to the Internet, which can be done via a
cable or via an Infrared (IR) connection.You may need to purchase a difterent
cable depending on the model of your phone, but the general process is the same.
You will not need to pay for Palm.net service, or purchase a monthly flat-rate
account from a wireless network carrier. However, any connection time will cut
into the minutes available on your cellular phone account.

NoTE

A list of compatible phones can be found at www.palm.com/software/
mik/phone.html.

Essentially, the MIK uses the same procedure that some desktop computers
use to connect to the Internet. The software of the Palm sends a data signal to
the modem, which in turn transmits it to an ISP, which communicates with the
Internet. You can use the same ISP as you do with your regular computer (with
the exception of proprietary connection and mail protocols). This also eliminates
the need for an account with Palm.net.

As you can see, there are a wide variety of handheld devices that are capable of
connecting to the Internet, and many ways of connecting these devices to the
Internet. It is possible, however, to build and test WCAs without purchasing a
device or paying connection fees. There is an emulator available that can run on
your desktop computer and mimic a wireless handheld. In the next section, we will
discuss the installation and configuration of the Palm Operating System Emulator.

WwWw.syngress.com

Web Clipping * Chapter 6

Working with the Palm OS Emulator

Once upon a time, back in the dark ages of 1996 and 1997, a gentleman named
Greg Hewgill created an application called Copilot that emulated the software of
a Palm Pilot on a desktop computer. In the beginning of 1998, Palm Inc. asked
permission to take over the development of the emulator, and have since
renamed Copilot to the Palm Operating System Emulator (POSE) and incorpo-
rated it into the Palm OS Software Development Kit. The source code remains
open and available. The POSE is available for download at www.palmos.com/
dev/tech/tools/ and is distributed under the GNU General Public License
(GPL). In this section, we will cover the download and installation of the POSE
on the Windows and Macintosh platforms.

A UNIX version of this emulator is available in source code format. Source
code versions of the emulator are also available for the Windows and Macintosh
versions. However, it is not necessary to understand the inner workings of the
Palm Operating System, or to understand how to install the emulator from
source code in order to build a successtul Web clipping application. For our pur-
poses, we will be using the emulator only as it applies to Web clipping.

Downloading and Installing the Emulator

The Palm Operating System Emulator is available for the Windows and
Macintosh platforms as a compressed archive (.zip or .sit). You must be running
Windows 95, 98, or NT or Macintosh OS 7.5 (or higher) to install the POSE.

To install the POSE on a Windows or Macintosh system, download the
archive and extract it to a local folder using your favorite compression utility.
Windows users will be familiar with WINZip, and Macintosh users will be
familiar with Aladdin Stufflt Expander. A restart of your system is not necessary
to install the emulator.

Installing the application is only the first step, however. In order run the emu-
lator, you will need to obtain a Read-Only Memory (ROM) image of the oper-
ating system. There are two places to obtain access to a ROM image:

1. Transferring a ROM image from an existing device that you own.

2. Registering with the Palm Developer Program.

239

Www.syngress.com

240 Chapter 6 * Web Clipping

Developing & Deploying...

Why Do | Need a ROM Image?

The Palm OS emulator allows you to emulate only the device hardware.
To install any applications on the emulator, or even to start it up, you will
need to obtain a copy of the Palm OS. It is possible to transfer a ROM
image from a device you own (see the next section), but it is recom-
mended that you join the Palm Developer Program (www.palm.com/
dev/) to ensure that you know exactly which version of the OS you are
installing. You will need to obtain a ROM image of version 3.5 or higher.

Transferring a ROM Image

It is possible to transfer the ROM image of the Palm OS from a handheld device
to a desktop computer. This is done by first installing a transfer program onto the
device, and then initiating a transfer of the ROM image to the POSE. The appli-
cation required to perform this transfer, ROM Transfer.prc, is included in the
download for the POSE.

To transter a ROM image from a handheld:

1.

Install the Palm OS application named ROMTransfer.prc (included in
the emulator download) onto your handheld device.

Place the handheld in the HotSync cradle that is connected to the
computer that contains the Emulator program.

Start your handheld and start the ROM Transfer application (see
Figure 6.3).You can also select a port speed here.

Start the POSE and select Download from the startup screen (see
Figure 6.4).

Press the Begin button on the dialog box containing instructions and
port selections (use the same port and speed that connects to your hand-
held). Once you press Begin, the POSE will wait for a response from
your handheld (see Figure 6.5).

Tap the Transfer Now button on your handheld.

Be patient while the process completes.

WwWw.syngress.com

Web Clipping * Chapter 6

Figure 6.3 Start the ROM Transfer Application on the Handheld Device

Figure 6.4 Download the Image from the POSE

Falm U5 Emvelalm

Tl B Bk SR

Losd & prevme srwlsly 1ezmon ha dek

Ciwnlasd & PR resga boan s P 0 deven

L

L B Pabvs OE Ersulsind

Figure 6.5 Select Port and Speed of Transfer

Irtnatere oo |
5 Derabls HotSune ar sy otha spplcalion et ey ba Long =l -
thes dedegind ssisl posi Cancal |

B Clhok thee" Besge”* bustion inifes oo T e Pl 06
Eraslalor vall sl lor vroan Palre descm o respaned.

7. Tapthe* Bagn Trarcfr butian inthe A0 Trander*
H0pkaion on s Pals desvice,

B T hin ek vl gk Hﬂﬂmmﬂ!ﬂm [ﬂl‘!‘.
11 i e aooss dueng ha

L i ngmhruglllhhw
o
vk Ioa i Fuwe "'

I:'W.t.llm.ldhmmmdmlun

B A Byl AWM he b amvibnsd b R derkbop poanpis,
vowsvall b arhed bo revw it o a Ba El'u-inil.l

oo] paarapbs. " Pas ALy TI'III'I
n—llmmmu

Eoe= [COMI |
Speed |||i 20 b 1-|

Www.syngress.com

241

242

Chapter 6 * Web Clipping

Obtaining ROM Images from Palm

Developers must register with the Palm Alliance Program in order to gain access
to ROM images of the Palm OS. Registration is free, and there is no fee to
download ROM images. There are several levels of membership with varying
degrees of support available. Details on the program, including information on
how to join, can be found at www.palmos.com/dev/.

U.S. developers may download ROM images from the ROM Image
Clickwrap Area of the Resource Pavilion as soon as their electronic registration is
completed. However, developers from outside the United States must send a
signed agreement to Palm Inc. in order to gain access to ROM images.

Once you have obtained a ROM image, we suggest that you save it in the
same directory as your POSE for ease of installation.

Starting the Emulator

To start the emulator, execute the program named Emulator.exe or Emulator,
which will be located where you extracted the downloaded archive. There are
several options that allow you to start the emulator with difterent versions of the
Palm Operating system, difterent Palm hardware models, and difterent amounts of
Random Access Memory (RAM).

Connecting the POSE to the Internet

The Palm VII uses the device’s wireless antenna to connect to the Palm.net net-
work via radio waves. Given that the POSE cannot mimic the radio waves
emitted and received by the actual device, how do you configure the emulator to
connect to Palm.net?

In order for the Palm OS emulator to connect to the Internet, you must
configure the software so that it may take advantage of the network interface of
your desktop computer to connect to a Palm.net proxy server. This will allow the
device to use your desktop’s Internet connection to communicate with Palm.net.
There are two main steps to setting this up: configuring the device to utilize your
Internet connection, and configuring the device to use a Palm.net Proxy Server.

1. Right-click on the emulator window and select Settings and then
Properties... (if you are using the Mac OS, use the Preferences item
from the Edit menu).

WwWw.syngress.com

Web Clipping * Chapter 6

2. Check the box Redirect NetLib calls to host TCP/IP (this allows
applications to use your desktop network interface rather than the hand-
held’s internal library).

Reset the emulator.

4. In the emulator, click on the Prefs icon and select Wireless from the
selector in the upper-right corner of the emulator’s screen.

5. Make sure the proxy server address is set to either 206.112.114.82 or
206.112.114.83.

NoTE

The IP addresses of the Palm.net development proxy servers are some-
times changed by Palm. You can always find the latest proxy IP addresses
and status at www.palmos.com/dev/tech/webclipping/status.html.

Palm also hosts a read-only mailing list called Web Clipping
Announcements. By subscribing to this list, you will receive e-mail
updates containing information pertinent to WCA development.

Creating a Web Clipping
Project with the WCA Builder

Since Web clipping relies on a subset of HTML 3.2, it is possible to build and test
your WCA using tools that will already be familiar to you as a Webmaster: a text
editor and a Web browser. Remember that there are some differences between
how the browsers handle the HTML that will be covered in detail later in this
chapter. It should be fairly easy for you to get your feet wet and begin building
WCA:s, especially if you typically code your HTML by hand.

The WCA Builder has three main options from the File menu (see Figure 6.6):
Open Index, Rescan HTML, and Create PQA.The Open Index function will
open up an HTML page and import it into the WCA Builder. When the WCA
Builder opens your index file, it will scan your HTML and automatically include
any files that you have linked to into the WCA Builder. Likewise, the WCA Builder
will automatically include any images that are referenced in your application.

243

Www.syngress.com

244

Chapter 6 * Web Clipping

Figure 6.6 WCA Builder Main Options

¥ hillo liml - WA Buibdei

Ede Hel
[brcke: Lkl
Bmscan HTHL g
Buld PO CuliE

1 CNWIHDETWSY,, el hisd
s faeFa

NoTE

The Web Clipping Application Builder (WCA Builder) may be downloaded
from www.palmos.com/dev/tech/webclipping/gettingstarted.html.
Versions are available for both Windows (.zip) and Macintosh Platforms
(.sit). A UNIX version is not available. To install, you will need to extract
the contents to a folder on your system and run the file called
WCABuild.exe (Windows) or WCA Builder (Macintosh).

Realistically, once you’ve authored your HTML and saved it to a file, using
the WCA Builder is quite simple. All you need to do is drag your index page
(containing links to other pages) into the WCA Builder window. The WCA
Builder will scan your HTML and will import any pages that you have linked to
and add them to your WCA. It will also check your HTML for errors and notity
you if there are any bugs in your code. For example, if you omit the action ele-
ment of a form tag, or do not use an absolute reference (www.yoursite.com/
cgi-bin/script.cgi), you will be informed of this error when the WCA Builder
scans your HTML.

The WCA Builder does not validate your code, however, because CML does
not require that all elements be closed, properly nested, or even valid HTML ele-
ments. The error-checking done by the WCA Builder is minimal and attempts to
ensure that your application will function correctly on the handheld device. It
will check your code and alert you if it cannot find an image file specified, or if
you have an anchor tag without a filename. It will not, however, detect if your
href attribute is valid.

It 1s also important to note that a WCA can contain one and only one file
with a given filename. Say, for example, that you build the HTML for your WCA
using two subdirectories, each containing an HTML page called index.html. This

WwWw.syngress.com

Web Clipping * Chapter 6

is a fairly common practice, and intuitively it would seem like you would be
able to do this in a WCA. The index page we will use to test this contains the
tollowing code:
<htm >
<head>

<title>Error Test</title>

</ head>

<body>

Untitl ed
Untitl ed
</ body>

</htm >

When you load this file into the WCA Builder, you will receive the error
alert shown in Figure 6.7 if directories one and two exist, and if they both con-
tain a file called index.html. However, in the event that you do not have these
directories created, or that the files do not exist, you will not receive an error
from the WCA Builder, but your WCA will not function as expected.

Figure 6.7 Error for Duplicating Filenames in a WCA

[] Pl o fvancdnea'de gkbopanonincies bl Line B 7
L Dot bosses: Albsrosrras in POS, [-15]

This simple example shows that although the WCA Builder can help to
reduce the errors in your code, it cannot eliminate them entirely. It is possible to
build a WCA that contains bugs even with the code scanning, so be sure to test
all of the links and image references in your application. Chances are you are
familiar with automated tools that can validate your links, often within your
HTML editor (such as BBEdit for the Macintosh, or HomeSite for the PC).
Xenu'’s link sleuth (http://home.snafu.de/tilman/xenulink.html) is free software
that can validate HTML links on local files or Web sites.

While the Application Builder program is running, you can make changes to
your index page (or other pages), and simply rescan the HTML by pressing F5 or

245

Www.syngress.com

246

Chapter 6 * Web Clipping

selecting Rescan HTML from the File menu. Changes on all pages will be
implemented into the WCA Builder.

When you are satistied with your HTML, press Control-B or select Build
PQA from the File menu, and the WCA Builder will create a file (with exten-
sion .pqa) that can be transferred to the handheld device and accessed by Clipper.

Now, we will walk through the creation of our first WCA with a Hello,
world! program.

Hello, World!

Traditionally, the first program or page built by programmers in any environment
is the familiar and trusty “Hello, world!” program. In this section, we will cover
the basics of authoring your first Web clipping application (see Figure 6.8). The
purpose of this exercise is to make sure that your WCA Builder is installed prop-
erly, and that you are able to install your WCA onto the POSE.

Figure 6.8 hello.html

<! DOCTYPE HTML PUBLIC "-//POS//DTD WCA HTM. 1.1//EN'
"“http://ww. pal m com dev/ webcl i ppi ng- ht m -dt d-11. dtd">
<htm >
<head>
<title>Hello, world!</title>
</ head>
<body>
<hl>Hel | o, world!</hl>
<p>This web clipping application has been successfully installed!</p>
</ body>
</htm >

Including the Document Type Definition (DTD) at the top of the document
is not required, but it is a good idea to validate your HTML code against the
DTD in order to ensure that your code is valid. As the Web (both wired and
wireless) moves towards a more standardized environment containing well-
formed and valid markup such as XHTML (and subsets), best practices dictate
that an appropriate DTD be included with every document.

The rest of the code in Figure 6.8 is very straightforward and will generate a
page containing a title and a paragraph, shown in a desktop browser in Figure 6.9.

WwWw.syngress.com

Web Clipping * Chapter 6

Figure 6.9 hello.html in a Web Browser

;Iinln_ waldl - Minenit infmnet Fepimer W= E

Fie E® Yiew Fyewies Josk Hep -
=
Hello., world!
Thig wels Cappag apobcahon has bein
maccersuly mstaled|
_ - |
] Do 2 Wy Cowrpsst 4

Scanning the HTML

To have the WCA Builder scan your code and prepare it for compilation into a
.pqa file, drag the icon for your file into the WCA Builder window (or select
Open Index from the File menu). Figure 6.10 illustrates what hello.html of
Figure 6.8 looks like in the WCA Builder. If you make changes to your original
HTML file, you can press F5 to rescan the code and update the changes within
the WCA Builder.

Figure 6.10 hello.html in the WCA Builder

i helln himl - '&'CA Helder

Fi= Help

hinren [Gie] Tups | Mochnd

] Feln bl TER Boicsod HTHL Dooimment S0 TSN 4 PR

ks (LAH 2298 bades| Uncompiessad |[[L1EH ¥4 bytas] Dompessiad 3

You will notice in that the file sizes of the HTML and of the compressed
WCA are displayed in the lower left of the application window. You can tell the
size of your application before installing it on the device, a very useful feature.

Creating the .pqa File

To create your Web clipping application that you want installed on the device,
press Control-B or select File | Build PQA from within the WCA Builder.
Upon selecting this action, you are presented with a dialog that allows you to
save your .pqa file to a directory on your computer (see Figure 6.11).

247

Www.syngress.com

248

Chapter 6 * Web Clipping

Figure 6.11 Building the .pga

il PTIA HE
€= 28l o i
_ Cance |

s
Sread | L !

Agiel o
Fiba e |h.-|n.~q-|

Pasvamin [10 =] Soveen gt [20% 5]

HTML Ercodrg | ol E

POSTEnsedng [as i =]

I indel lolse: | B

There are several options in the Build PQA dialog box. In addition to Build
and Cancel, you have the option of specifying an icon that will be displayed on
the device by clicking the Large and Small icon buttons. Should you create
custom icons for your application, ensure that the small icon 1s 15 pixels wide
and 9 pixels tall, and that the large icon is 32 pixels wide and 22 pixels tall.

You can specify the version of your WCA by changing the value in PQA
version. Also, you are able to specify the maximum bit depth that will be used to
render the images in your application. The display of images within a WCA is
limited by two factors: the display depth of the device, and the bit depth of the
images in the application. This feature allows you to ensure consistent presenta-
tion of your application on devices with varying display depths by setting the dis-
play depth of your application to a lowest common denominator.

Installing and Uninstalling the Web
Clipping Application on the POSE

The easiest way to install an application onto the POSE is to drag the icon for
the .pga onto the window of the emulator program. Also, you can select Install
Application or Database from the File menu on the Macintosh and by right-
clicking on the emulator window on a Windows PC.

To install a WCA on a handheld device, use the HotSync utility as follows:

WwWw.syngress.com

NoTE

Web Clipping * Chapter 6

Save your WCA to the directory on your desktop that will be used by
the HotSync operation.

Open the Palm Desktop program on your desktop.

Click on Install on the Palm Desktop program.The Install Tool
window will pop up. Locate your WCA and Add it. Then click Done.

Put your device into its cradle and perform the HotSync operation.

Your WCA icon should now appear on your handheld.

If you have the Palm Desktop software installed on your computer, you
can install directly to your device by selecting the Install to User option
when you build your WCA.

To uninstall a WCA that you no longer wish to use from either the POSE or
a handheld device:

1
2.
3.
4

Choose Delete from the App menu.
Select your WCA, then select Delete.
At the confirmation box, select Yes.

Select Done to return to the application launcher and confirm that the
application no longer appears.

Viewing the Web Clipping Application

Once your application has been installed on the device, you can view it by

clicking on its icon. By default, WCAs are placed within the main launcher

window and also are included under the Palm.net screen. Figure 6.12 shows the
default icon and title for our first application.

We can launch the application by clicking on it, which starts the Clipper
application and displays our HTML code, as shown in Figure 6.13.

249

Www.syngress.com

250

Chapter 6 * Web Clipping

Figure 6.12 Launching the WCA

Figure 6.13 Hello, world! in Clipper

Adding Images and Additional Pages to Your WCA

It 1s possible for your WCA to include multiple pages and images. To add an
image to your application, you can use the same image syntax as you do for
desktop browsers. For example, to add an image to our Hello, world! application,
we can create an image in a graphics program such as Adobe PhotoShop or
Paint. We then add the following line of code to our page, just as we would for a
desktop browser:

<inmg src="nyimage.gif">

Figure 6.14 shows what the WCA Builder will look like once we save our
changes to hello.html and tell the WCA Builder to rescan the HTML. It is not
necessary to drag your images into the WCA Builder to have them included in
your WCA. As the HTML of your page is scanned, any images automatically are
imported into the WCA Builder.

Www.syngress.com

Web Clipping * Chapter 6 251

Figure 6.14 Image Added to the WCA Builder

i halin_hitml - S'CA Boider

Hie Help

hinras | Gom] Tups | Macbad

B el iyl TEH Edoscsck HTHL Cooirrent S0 TN 2 P

g-ll:-\.ryl 1EB GF Irnags 10F0F 744 P

S hisy [LEED 76 tdes) Uncompissssd | (L8CH [B2 bdes| Compeesesd r

NoTEe

You can use images in .gif or .jpg format. The WCA Builder can handle
converting either type during the final creation of your WCA. It is not
necessary to create images at lower color depths to be able to include
them in your application, but there are instances where you may want to
optimize the color depth of your images by hand instead of letting the
W(CA Builder convert them automatically.

Likewise, to add additional pages to your WCA, you simply need to link to
them in your index page. For example, if we were to add links to two more pages
to our WCA, we simply need to create the pages and add links to them using the
anchor tag (<a>):
Page 2

Page 3

Once we save our changes to hello.html and press F5 in the WCA Builder to
rescan our HTML, we will see that the pages have been imported automatically
into the WCA Builder, as shown in Figure 6.15.

Figure 6.15 Pages Added to the WCA Builder

i halln himl - S'CA B older

higres | 5e=] Typs | Mg

7 hedin iyl TEH Boicsck KT RL Doirrent S0 TSN =P

g-ll:-\.rﬂ KB GF Inaga 10S0F 7 44 P

] el himl KR Meciosck HTHL Docuvent 50 10S0AT T 43P0

1:-' w_l il TER Boicsod HTHL Docimment S0 1A P

[T 1.8KH (1457 bedes| Usorrpressed (0L 5KH [555 bedes| Commgeess=d &

Www.syngress.com

252

Chapter 6 * Web Clipping

When you build your WCA, all of the elements shown in the WCA Builder
window will be included in a single file that you can install on the device. The
WCA Builder is a handy, easy-to-use tool that allows you to concentrate on
writing your HTML instead of learning another markup language or converting
images. The fact that it scans your HTML automatically and includes any ele-
ments that you have linked to in your code makes the creation of a WCA simple
and straightforward.

In this section, we have covered how to use the WCA Builder to create our
first Web clipping application, and how to include images and additional pages
into our application. We discussed how to install and run a WCA, and provided
instructions on how to uninstall application from your handheld or the POSE. In
the next section, we will discuss, in detail, which elements of HTML are or are
not supported within Web clipping, as well as items unique to Clipper.

Web Clipping Basics

A Web clipping application, as previously mentioned, is a collection of HTML
pages and images that are compiled and installed on a Palm-Compatible handheld
device. A Web Clipping Application Viewer renders the content of the WCA on
the device.

Although the basic building blocks of a WCA are HTML and images, Clipper
does not actually render HTML, per se. Rather, Clipper renders Compact
HTML, a subset of HTML 3.2 developed specifically for Web clipping. Don't let
that scare you, however, because there is no need to learn another markup lan-
guage. It is only necessary to know basic HTML to build a WCA.

First, we will discuss HTML features that are not supported by Clipper, and
then cover the most common HTML tags and how they behave in a WCA. We
will then cover some elements that are unique to Web clipping, and how to
implement them in your application. We will then discuss how to interact with a
Web server using a WCA, and cover some examples. Finally, we will suggest some
general guidelines to make your WCA more user-friendly.

Unsupported Tags and Elements

There are some features of the HTML that are not supported in Web clipping to
any degree. The following list consists of elements that you cannot include in
your WCA:

WwWw.syngress.com

Web Clipping * Chapter 6 253

» Animated GIFs

» Cascading style sheets (CSS)

= Cookies

= ECMAScript (JavaScript, jscript)
= Frames

= Imagemaps

» Java Applets

» Layers

= Named typefaces

» Nested tables

NoTE

Palm OS version 4.0 does support cookies, although it is unrealistic at
this point to assume that your users will have this OS installed.

Simply put, device constraints are responsible for the lack of support for these
elements. As time progresses, we can expect that some of these features will
become available to handheld devices (although not necessarily under Web clip-
ping). It is up to you as a Webmaster to make effective use of the limited features
that are available.

The fortunate thing about Web clipping is that there are several very useful
extensions that help to alleviate the constraints of the environment. For example,
there is an object called datepicker that allows your users to choose a date using a
calendar interface and send a string to your server. To gain the same functionality
with a desktop browser, you would have to create the calendar object yourself,
using a combination of HTML and JavaScript. Also, for some users, you will be
able to gain information about their location (ZIP code) and have access to a
unique device identifier.

Before we get into the details of these Web clipping-specific extensions to
HTML, we will examine the subset of HTML that is utilized by Clipper.

Www.syngress.com

254

Chapter 6 * Web Clipping

Supported Tags and Elements

As mentioned previously, the markup used to author a WCA is a subset of
HTML 3.2, meaning that not all of the elements of the 3.2 specification are
available. Furthermore, some of the elements that are supported may not behave
exactly as they do on a desktop Web browser. One of the most problematic of
these elements is the lack of support for nested tables. If you are in the habit of
using tables extensively for layout, you will need to rethink how you apply these
features. Form elements are also rendered slightly differently (most notably radio
buttons).

In general, if you are comfortable with hand-coding your HTML the jump
to Web clipping will give you a new environment in which to apply your skills.
When designing and building your application, you will want to take the limita-
tions into consideration and keep your code simple, lean, and optimized for a low
bandwidth connection and a small screen size. For the most part, however, you
will be able to build WCAs using tools and skills that you already possess.

NoTEe

A Document Type Definition (DTD) can be downloaded at
www.palm.com/dev/webclipping-html-dtd-11.dtd, and you can specify
this DTD at the top of your page using the standard DTD syntax. Once
you have done this, you can use the W3C validator at validator.w3.org to
ensure that your server-side HTML is error-free without running it
through the WCA Builder.

The subset of HTML 3.2 that comprises the markup for Web clipping appli-
cations 1s fairly large, and it is not necessary to run through a laundry list of the
entire tag set. We will, however, cover the most common and useful supported
tags in this section, as well as their attributes and possible values.

In the event that you can code HTML with your eyes closed (as many of us
can), you may already be familiar with the elements and attributes presented here.
On the other hand, if you have been using a What-You-See-Is-What-You-Get
(WYSIWYG) editor such as FrontPage or DreamWeaver, this section will read as
a crash-course in HTML.

Most likely, you have encountered the following tags in your experience as a
Webmaster:

WwWw.syngress.com

Web Clipping * Chapter 6 255

n <title>
= <meta>
» <body>
» <table>, <tr>, <td>
[<p>
» , <i>, <u>
= , <em=>
. , ,
. <hl> - <h6>
n <jmg>
n <a>
= <form>
= <gelect>
= <input>
Let’s now take a look at how these elements are similar and different from

their desktop equivalents, and cover how they behave differently when viewed
with the Web Clipping Application Viewer.

Using the <title> Tag

First things first—Ilet’s take a look at the <title> tag. In a normal HTML docu-
ment, the <title> tag is displayed in the top of the browser window, as shown in
Figure 6.16.

Figure 6.16 <title> Tag in a Desktop Browser

;Iinln_ waldl - Minenit infmnet Fepimer W= E

Be Ed ew Fyeies Tk dee [JERI
=
Hello., world!
Thig wels Cappag appbaton hag beesn
maccersuly mstaled|
_ - |
] Do 2 Wy Cowrpsst 4

Www.syngress.com

256 Chapter 6 * Web Clipping

Likewise, in a WCA, the text within the <title> tag is displayed at the top of
the Web Clipping Application Viewer, illustrated in Figure 6.17.

Figure 6.17 <title> Tag within Clipper

One important item to note about this tag is that the length of the title bar
in Clipper is slightly less than one-half of the screen width. If your <title> tag is
too long, it will be truncated and appended with an ellipsis (...), as illustrated in
Figure 6.18.

Figure 6.18 Truncated <title> tag in Clipper

Palrm OS5 Errvella Lo F

Using the <meta> Tag

The <meta> tag, used to send HTTP header information inline in a document,
is less supported by Clipper than it is for standard desktop browsers. Primarily,
you will use the <meta> tag to relay information to the Palm.net Proxy Server
that your page is built specifically for Web clipping. Palm-specific <meta> tags
are discussed later.

Www.syngress.com

Web Clipping * Chapter 6

Clipper is unable to process HTTP redirects by using a <meta> tag. In the
event that you do need to do a redirect, you can do it in a server response by
using the Location header. Bear in mind that if you do multiple redirects in the
same response, an error will be generated and sent to Clipper. The best guideline
1s for you to use redirects only when necessary, and ensure that only one redirect
Is sent in a response.

Using the <body> Tag

The <body> tag attributes of HTML 3.2 are supported in Web clipping. You may
specify the background color of the document, as well as text and link colors.
However, for the most part, you will be dealing with monochrome or grayscale
displays, which greatly reduces your color choices. In fact, there are only four
colors supported on all devices that support Web clipping, shown in Table 6.1.

Table 6.1 Colors Supported by All Web Clipping Devices

Hex Value Display
#000000 Black
#C0CO0COo Silver
#808080 Gray
#FFFFFF White
NotE

It is important to avoid selecting low-contrast colors for backgrounds
and text. Should you employ the use of colors, be judicious in their use
and make sure that your application retains usability on monochrome
displays.

Using the <table>, <tr>, and <td> Tags

Tables, when they were first introduced in HTML 2.0, were intended to mark up
data displayed in rows and columns. As time progressed (and as many Webmasters
can recall), tables were commonly used as a page layout tool to dictate the posi-

tioning and display of text and graphics. With the advent of HTML 4.0 and CSS,

257

Www.syngress.com

258 Chapter 6 * Web Clipping

tables are now being phased out as a design tool, and being used for data once
again.

WARNING

The most important item to note is Clipper’s lack of support for nested
tables. In the event that you include a nested table in your application,
Clipper will render the nested table as plain text, which will rarely create
the desired effect. You should take this into consideration when
designing your WCA.

The <table> tag supports the more common elements of tables used in stan-
dard HTML, outlined in Table 6.2.

Table 6.2 Table Elements Supported by the <table> Tag

Attribute Description Possible Values Default Value
Align The horizontal alignment of Left, center, right Left

the table
Width The width of the table, in Numeric value Width of

pixels; percentage values contained

are not supported elements, up to

browser width

Cellpadding The number of pixels Numeric value Two pixels

between the edge of a cell
and its contents

Cellpacing The number of pixels Numeric value Two pixels
between rows and columns

NoTE

Tables have a maximum width of 153 pixels under Palm OS 3.5 (due to a
lack of horizontal scrolling). It is recommended that you keep the width
element unspecified when writing your code. This way, your tables will
be rendered by Clipper’s table algorithm, which operates similarly to
how tables are rendered on a desktop browser. The table will wrap
around the elements in the cells, and stretch to the edge of the screen
before wrapping cell contents.

www.syngress.com

Web Clipping * Chapter 6

The <tr> tag is used to designate the beginning of a row within a <table>.
The only valid attribute for the <tr> tag is the align attribute, which has possible
values of left, center, and right (with a default value of left).

A <tr> tag may contain two elements, <td> (table data cell) or <th> (table
header cell). Table 6.3 shows possible attributes for the <td> element, what they
specify, as well as the valid and default values for each.

Table 6.3 Table Elements Supported by the <td> Element

Attribute Description Possible Values Default Value
Align The horizontal alignment of Left, center, right Left
the cell
Width The width of the cell, in Numeric value Auto
pixels
Rowspan The number of rows that Numeric value Single row
the cell spans within the
table
Colspan The number of columns Numeric value Single column
that the cell spans within
the table

As in standard HTML, the only difterence between the <td> and <th> cells
is that the text within a <th> is, by default, bold and centered.

NoTE

If you are sending HTML containing table code back in a server response,
you must ensure that you also include the palmcomputingplatform=true
header either in the response itself or contained within a <meta> tag.
Otherwise, the Palm.net Proxy Server will treat your code as if it origi-
nated on a traditional Web site, and your table code will be modified,
often with undesirable results!

Using the <p> Tag
The <p> tag denotes a paragraph of text, which supports the align attribute.
There are several values to specify the alignment of the <p> tag: left, center, and

right. The default, as with desktop browsers, is left alignment. Astute readers will
note that the rarely used justify value for this attribute is unsupported by Clipper.

259

Www.syngress.com

260

Chapter 6 * Web Clipping

Using the , <i>, and <u> Tags

These tags specity the appearance of text within a document as bold, italicized, or
underlined, and are functionally equivalent to their HTML counterparts.

Using the and Tags

These tags logically specify the appearance of text within a document. Clipper
will render the tag as bold text, and the tag as italicized text. In
general, there is a current trend to replace display-based markup (, <i>) with
logically-based markup.

Using the , , and Tags

These tags specity elements of a list. This list may be unordered () or
ordered ().These elements behave much as they do on a desktop browser,
with an indent from the left side of the browser.

The element supports the start attribute, which specifies the number at
which the listing should start. This is often used to split ordered lists between
side-by-side table cells. Chances are you will not have the horizontal real estate to
implement this within Clipper, however. You can use this to split lists between
pages, of course. In addition, the tag also supports the fype attribute. You
may specify the types shown in Table 6.4 with the effects indicated.

Table 6.4 Type Attribute Effects for an Ordered List

Value Effect

1 (default) Incremental numeric listing

A Ascending uppercase letter listing
a Ascending lowercase letter listing

I Ascending uppercase roman numeral listing
i Ascending lowercase roman numeral listing

The element specifies an unordered list, and has no optional attributes
within Clipper, just like its desktop counterpart. The element specifies a list
item. There are several possible values that specify the display of the bullet next to
list items in an unordered list. These values are specified with the type attribute,
and have possible values of circle, disc, and square.

WwWw.syngress.com

Web Clipping * Chapter 6

Using the <h1> — <h6> Tags

These elements specify headings within a document, and provide display of
bolded text with line breaks before and after the element. They behave similarly
to their desktop counterparts, but the size difterence is not as great. Also, it is
worth mentioning that the <h4>, <h5>, and <h6> elements display rather small
within Clipper. When you consider that your users are often on —the go and
may not be using your WCA under optimal conditions, it makes sense to keep
the headers used within your application at a maximum depth of three levels
(<h1> — <h3>).

Using the Tag

The image tag is supported by Clipper, but it behaves somewhat differently than
you might expect. As we mentioned earlier, a WCA built using the WCA Builder
has the capability of containing one and only one file with a given filename. This
means that you cannot have multiple images with the same name within your
application, as Clipper will treat them both as the same image. The attributes
shown in Table 6.5 are supported for the tag; remember that only the src
attribute is required.

Table 6.5 Image Attributes Supported by the Tag

Attribute Description

Src The location of the image relative to the HTML page
Width The display width of the image, in pixels

Height The display height of the image, in pixels

Hspace Horizontal padding around the image, in pixels

Vspace Vertical padding around the image, in pixels

Alt Alternate text for the image, used in place of graphic
Align Alignment of image: left, center, or right

Border Specifies a border around the image, in pixels (default is 0)

261

Www.syngress.com

262 Chapter 6 * Web Clipping

Developing & Deploying...

The Locallcon Meta Tag

It is possible to include extra images within a WCA by specifying them
as a Locallcon by using the following syntax:

<neta nane="Local | con" content="nyi mage. gi f">

Doing so will instruct the WCA Builder to bundle the image within
your .pqa, thus ensuring that the icon exists on the local device (we rec-
ommend including all of these references in the index page of your
application to keep track of them). You can reference these images later
in your server responses with the following syntax:

<i ng src="fil e: nypqga. pga/ nyi mage. gi f ">

Clipper will find the image on the local device and display it to the
user without them having to download the image from your Web site
and send it over the air to the device. This is the preferred method of
using images in a server response. It will require some forethought when
you initially build your WCA, but it will help to create a faster (and
cheaper) user experience!

Using the <a> Tag

The anchor tag is the defining feature of HTML versus other document tech-
nologies, and arguably the most important tag in any Webmaster’s repertoire. The
anchor tag supports three different attributes within Clipper: href, name, and
button. The meaning and syntax of these attributes is described in Table 6.6.

Table 6.6 Attributes of the <a> Tag

Attribute Description Syntax

Href Refers to the location of the Text
document being linked to,
identical to desktop browser

Name Refers to the anchor itself, Text
identical to desktop browser

Button Displays link as button, unique Text
to Clipper

WwWw.syngress.com

Web Clipping * Chapter 6

The protocols shown in Table 6.7 are valid with an anchor tag in a Web clip-
ping sent to a browser or WCA installed on the device.

Table 6.7 Protocols Valid with the <a> Tag

Protocol Resource

http:/ Uniform Resource Identifier (URI) accessed via HTTP.
https:// Uniform Resource Identifier (URI) accessed via secure HTTP.
mailto: E-mail address, accessed via the Exchange Manager. The

Exchange Manager calls the default e-mail application. This is
accomplished via Messaging Application Programming
Interface (MAPI), which is the same library that handles this
action on a desktop computer.

file: Location of file on device. You can access individual pages with
an installed WCA by using the following syntax:
.

palm: Application on device. When linked to, Clipper is closed and
the requested location is launched in place of Clipper. For
example, can be used to launch
the Memo Pad.

palmcall: Application on device. When linked to, the application is
launched from Clipper, and Clipper remains in the background
until the application is closed.

Whenever Clipper has to send information over the air, it will render three
small lines to the left of a link, whether it is a text link or a button. This over-
the-air icon informs users that they will be sending and receiving data over the
wireless network, and will correspondingly incur charges. Links that point to a
page that is located on the device using the protocols will not have this symbol. A
secure link will show the image of a small key and the over-the-air icon.

Using the <tform> Tag

The <form> tag is a very important aspect of Web clipping, as it enables your
WCA to send data to a Web server located on the Internet. Clipper allows you to
use both GET and POST methods, and you must specify an action attribute, which
specifies a Uniform Resource Identifier (URI) for your form to send data to.

Using the <select> Tag

The <select> element allows you to generate a menu that allows your user to
make a choice from a variety of options (specified using <option> elements

263

Www.syngress.com

264

Chapter 6 * Web Clipping

within the <select>), and behaves almost exactly the same as it does in a desktop

browser. The select element supports the attributes shown in Table 6.8.

Table 6.8 Attributes of the <select> Tag

Attribute Contains Description Default

Name

Size

Multiple

String Name of variable Required — N/A

containing selected
value to be sent
to server

Number Number of options to 1

be displayed

Minimized attribute, Allows multiple options Off
no value needed to be selected; in order

to enable a scrollable
list, the minimum
value is 2

Using the <input> Tag

The <input> element allows the user to input information that can be sent to a

server for processing. It supports a wide variety of formats via the fype attribute.
The <input> element supports the attributes shown in Table 6.9.

Table 6.9 Attributes of the <input> Tag

Attribute Meaning

Type The type of input to be rendered: valid values for this include
text, password, hidden, radio, checkbox, submit, reset

Name Name of variable containing value to be sent to server

Value Predefined value

Checked Specifies that an input with type radio or checkbox will be
checked

Size Specifies the length, in character units, of the input (of type
text) to be rendered

Maxlength Specifies the maximum number of characters that may be

entered in an input of type text

WwWw.syngress.com

Web Clipping * Chapter 6

NoTE

There are also two Palm OS-specific values that may be specified for the
input element: timepicker and datepicker. See the section, “Web Clipping
Extensions.”

The <input> element behaves quite similarly to its standard HTML counter-
part, with the exception of the radio button (type=radio). This type is rendered as
a box, which may be selected by the user. In order for this box to display any text,
the label must be inserted directly after the input tag, as shown in Figure 6.19 and
Figure 6.20.

Figure 6.19 Adding Radio Buttons

<htnm >
<head>

<title>Radio Button</title>
<met a name="Pal nConputi ngPl atfornf content="true">
</ head>
<body>
<hl>Radi o Button Exanpl e</hl>
<form action="http://ww. yoursite.com cgi-bin/script.cgi">
<i nput type="radi 0" nanme="radi 0" val ue="Optionl">Cpti onl

<i nput type="radi 0" nanme="radi 0" val ue="Qption2" checked>Opti on2

<i nput type="radio" nanme="radi 0" val ue="COption3">0ption3

<i nput type="radi 0" nanme="radi 0" val ue="Opti on4">Cpti ond

<i nput type="radi 0" nane="radi 0" val ue="Qpti on5">0pti on5

</forne
</ body>
</htm >

265

Www.syngress.com

266 Chapter 6 * Web Clipping

Figure 6.20 Radio Buttons Added in Clipper

Palm 05" E ki loi F’

Web Clipping Extensions

There are a few elements unique to Web clipping. These include some <meta>
tags that relay information to the Proxy Server, variables that can be used to
identify unique devices and their approximate locations, and objects that can
gather date and time data from the user.

NoTE

If you have HTML on your existing site that you would like to make avail-
able to Web clipping users, you can mark it with the <smallsscreenig-
nore> tag, which tells the proxy server to ignore the code in between.

Palm-Specific <meta> Tags

There are many <meta> tags and header information that are specific only to
Web clipping. A full list of these tags is described in Palm Inc’s Web Clipping
Developer’s Guide, located at www.palmos.com/dev/tech/docs/webclippings/
PalmWebClippingFront.html. Table 6.10 describes the most common and useful
tags that you can use to relay information.

WwWw.syngress.com

"sasuodsal JI9AIDS
inoA jo e ul bey
SIy} apnppul noA 1eyy
pabeinodus Ajbuouys
SI 1] J19M9S Axoud
19uw|ed a3y} Aq pay
-lpow 3q 10U p|noys
M 1eyy pue Jaddi)d
1o} 9jes si buid

-di]> e 1eyy saiypads
CRIIET)

9y} Uo palo)s pue
VDM € Ul pspnpul
9q 0} abew ue jo
dweu ay} sai41dads
Be} sy} “voM JnoA
buipjing ajiym pasn
‘pamaIn sem buid
-dijp ay3 swiny ayy
Ke|dsip |im saddi]>
‘pa111WO §| *A10}

-SIY JI9Y} MBIA SI9sN
uaym pake|dsip

90 0} 1x3) saljdads

<,9NnJ},,=1udluod ,uwuojiejdbuipndwodwied, =sweu elpw> wJoe|dbunndwodwied

<, jibabewifw/ebd-ebdAw:a|iy,, =215 bwi>

:xejpuhs buimol|oj ay3 buisn Aq J9AIDS OAN B WO

umop 3uds sbuiddid ul paduaJa4al 9q J9)e| ued abewl sIyl
<, JibabewiAw,, =1uaju0d ,,uodI|ed0|,, =dWeu e}awW > uod||ed07

<.,.iPMOM ‘O||9H,,=1Ud3U0d ,1x211S1|A10)S1Y,, =dWeu e1paw > a151|A101S1H

uondudsag

9|dwex3 swep bel

Buiddi|y gapn 40y sbey el [ngasN QL9 d|geL

267

268 Chapter 6 * Web Clipping

NoTE

Palm OS 4.0 offers a great many more <meta> tags than those listed
here, including some caching mechanisms. As time progresses, you may be
interested in implementing some of the newer features of Web clipping.

Identifying Users with a Device ID
There is a special variable that you can access on any device that supports Web

clipping. It is referenced as such:

<i nput type="hidden" nane="id" val ue="%levicei d">

This variable is returned in the format [1, 0, -1].[X].
The content of the first brackets corresponds to the type of device:

» A value of 1 is returned if the proxy server recognizes the device ID as
being a Palm VII.

= A value of O 1s returned if the device cannot be determined to be a
Palm VII or other device.

» A value of —1 is returned if the proxy server can determine that the
device is not a Palm VII.

The content of the second set of brackets is a unique string that is created
upon device activation. You can use %DEVICEID to identify unique users, but
with limited reliability. Depending on the network from which your user is
accessing your application (Smart Phones in particular), the value of %DEVICEID
may change from session to session, and, in some cases, within a particular session.

NoTE

The actual string format of %DEVICEID may change as time progresses,
so it should be treated as a black box when used in a server-side applica-
tion. That is, do not make any assumptions as to the exact format of the
string. Be sure to accommodate this in your application in order to
create the best experience for your users.

WwWw.syngress.com

Web Clipping * Chapter 6 269

Developing & Deploying...

Using %DEVICEID to Recognize Individual Users

Given that a Palm.net proxy server processes all Web clipping transac-
tions, you cannot use the user’s IP address to identify individual users
because all requests will be written to your server logs with the IP of the
proxy server. Also, cookies are supported only for Palm OS 4.0, which, at
the time of this writing, is not yet prevalent in the market. The %DEVI-
CEID element was implemented as a cookie substitute and was intended
to allow developers to identify individual devices.

There are, as previously mentioned, issues with the implementation
that severely limit the usage of %DEVICEID for authentication in an envi-
ronment that deals with sensitive data. However, if no real damage will
be caused if the %DEVICEID of a particular user is spoofed, and you
make sure to rely only on %DEVICEID for Palm VII users (since it may
change midsession for users of other networks), you can use it reliably
to identify individual users in a variety of situations.

For example, if you offer downloadable stock quotes, you may pro-
vide your users with an option to customize their preferences and select
the stocks they want to see. You can develop your application so that
when the user initiates a request for stock quotes from their device, they
receive quotes for the stocks in which they are interested. This is an
effective means of providing a positive user experience while minimizing
data sent over the air.

The %DEVICEID element provides Webmasters with something we
previously have had to generate ourselves, namely, a unique key that
represents an individual user (device). This identifier is unfortunately
insecure and not always reliable (depending on the user’s connection
network), so you must take care in how you use it.

SECURITY ALERT

You should not associate any personal information with %DEVICEID.
Mobile devices are susceptible to theft, and sensitive information may be
compromised if %DEVICEID is the only method of authentication.
Furthermore, a determined user can obtain the %DEVICEID from other
devices by offering a Trojan Horse PQA. There is not a reliable means of
determining the authenticity of a request using %DEVICEID, and you
should use prudence when using it to identify users.

Www.syngress.com

270

Chapter 6 * Web Clipping

Estimating User Location by ZIP Code

The %ZIPCODE variable contains the ZIP code of the nearest Web clipping
base station to the user. This will provide a rough estimate of where your user is
located at the time of access, accurate to within approximately 10 miles.

<i nput type="hidden" nane="zip" val ue="%i pcode">

NoTE

This variable may not be always available. Unless your user is connected
via the Mobitex network, you will not be able to utilize this feature of
Web clipping. In the event that the ZIP code is unavailable, %ZIPCODE
returns a value of 000000. You can work around this by building some
detection into your server-side application that allows users to enter their
locations as opposed to submitting the %ZIPCODE value automatically.

Palm OS 4.0 offers much more information about the user’s network,
including information regarding the latitude and longitude of the loca-
tion, as well as county, city, state, and country information. If you are in
a situation in which you can reliably know what type of hardware your
users have (such as a corporate environment), then you may be able to
take advantage of this information before the 4.0 OS becomes prevalent
in the general market.

Selecting a Date with the Datepicker Object

A very useful element unique to the Web clipping environment is the datepicker
object.You can invoke the datepicker object to generate a string containing a date:

<i nput type="datepicker" nane="date" val ue="MV DY YYYY" >

NoTE

The date attribute is output in YYYY-MM-DD format, but dates are
assigned using the MM/DD/YYYY format shown in the preceding code.

www.syngress.com

Web Clipping * Chapter 6

If you omit the value attribute, or if the value is not in the expected format,
then the current date will be displayed. Figure 6.21 shows how the datepicker

object looks in the POSE (in this case, we have specified 01/01/2001 as the date
within the HTML code).

Figure 6.21 Datepicker Object with Value Attribute Omitted

When users click on the input field, they are presented with a clickable cal-
endar that allows them to select a date (see Figure 6.22).

Figure 6.22 Selecting a Date

The user is also given the option to select Today as the date. This option
allows the user to select the current date. Upon pressing the Today button, the

user 1is returned to the page containing the datepicker object, as illustrated in
Figure 6.23.

Www.syngress.com

271

272 Chapter 6 * Web Clipping

Figure 6.23 Selected Date Returns the User to the Datepicker Object

Pl 08 Erflalon I8 Palm 08 Erfullalon =

Choosing a Date with the Timepicker Object

The timepicker is another useful element that is unique to the Web clipping
environment. The timepicker is invoked using a syntax very similar to the
datepicker: Output of this object is always in 24-hour HH:MM format, but the
input of this object may be in 12-hour format depending on the user’s prefer-
ences (accessible via the Formats screen under Prefs).

The following sets the 24-hour format:

<i nput type="tinepicker" nane="tinme" val ue="hh: mi >

The following sets the 12-hour format:
<i nput type="tinepicker" name="tine" val ue="hh: nm am pni >
Figure 6.24 illustrates the timepicker object in action. First, the user is pre-

sented with a screen containing the specified time (in this case, 11:30 am), or, if
no time is specified, the current time.

Figure 6.24 Timepicker Object with Value Attribute Omitted

www.syngress.com

Web Clipping * Chapter 6

Upon clicking on the input field, the user is presented with a dialog to
specify the time. Each field is selected and manipulated with the arrows in the
center of the dialog box (see Figure 6.25).

Figure 6.25 Selecting a Time

Once the user selects the new time and presses OK, they are returned to the
page containing the timepicker object, with the selected time displayed (see
Figure 6.26).

Figure 6.26 Selected Time Returns the User to the Timepicker Object

If the value attribute is omitted, or if the value is not in the expected format,
the current time will be displayed in the timepicker when the user clicks on it.
This being the case, it is not necessary for you to overly concern yourself with
the user’s preferences. The default preference is 12-hour format, so you may want
to keep this in mind as you build your application.

273

Www.syngress.com

274

Chapter 6 * Web Clipping

The device-specific extensions to Web clipping are quite useful and conve-
nient, and come in handy both to reduce development time (by eliminating the
need to code client-side functionality such as calendars and time inputs), and to
increase the quality of the user experience (by providing a consistent interface to
input data). In addition, location-based features such as %ZIPCODE (and
%LOCATION for Palm OS 4.0) provide an easy route to providing users with
information relevant to their location while accessing your server. The %DEVI-
CEID, despite its variability, can be used as a convenient way to recognize indi-
vidual users when there is not a risk to the user should the authenticity of
%DEVICEID become compromised.

Now that we have covered the available code to build a Web clipping applica-
tion, we can move on to discuss some examples.

Web Clipping in Action: Examples

In this section, we will discuss two examples: one that illustrates how a WCA can
pass information to other local applications, and one that illustrates how you can
send information to a Web server and return a page that is appropriate for
Clipper. For the most part, this will be similar to methods you will already be
familiar with from developing HTML for desktop browsers. The first example
that we will use is a mailto: link that will be processed using the local e-mail
application on the device (iMessenger, in this case). This feature utilizes
Messaging Application Protocol Interface (MAPI), a library that allows applica-
tions to send parameters to an e-mail program. This is the same feature that
allows mailto: links to launch the e-mail program on a desktop computer. The
same syntax used to pass parameters to a mailto: link is used to pass parameters to
other applications on the device using the palm: or palmcall: URL protocols.

We will then illustrate a form-based example of how you can send an e-mail
message using a CGI script installed on your server. Chances are you have used
this in one form or another already. In this chapter, we will be using a mailform
example using PHP due to its portability across platforms and open-source avail-
ability. You can download a free copy of PHP from www.php.net.

Using a mailto: Link with Parameters

This example is fairly straightforward and will illustrate some basic concepts
about exchanging information between programs located on a Palm-powered
handheld device. We will use an HTML mailto: link to compose an outgoing
e-mail using iMessenger, the e-mail application that is included on the Palm
VII/VIIx (see Figure 6.27).

WwWw.syngress.com

Web Clipping * Chapter 6

Figure 6.27 E-mail Example

<htm >

<head>

<title>

Emai | Exanpl e

</title>

</ head>

<body>

<h1>Emai | Exanpl e</ hl>

<p>This exanple illustrates both how you can use the 'button' attribute

of the anchor tag to render a link as a button, and how you can
pass

paraneters within a link that will help conpose the email.</p>
<a href="mmilto: exanpl e@yngr ess. con?subj ect =Fr om WCA&body=This is a
message that came from a WCA" button>exanpl e@ynress. conx/ a>
</ body>
</htm >

The code in Figure 6.27 should look fairly familiar. It consists of a paragraph
of text and a single link with an href that uses the mailto: protocol. This is a stan-
dard protocol that specifies an e-mail address. It is possible to pass parameters
using the mailto: protocol. The only parameters that we can pass here are subject
and body. Subject denotes some text that should be used as the subject of the mes-
sage, and body denotes the message text. Figure 6.28 illustrates what this WCA
looks like in the POSE, and what users will see once they click on the button.

The same syntax that is used to pass parameters in this example can also be
used to pass parameters to other applications called using the palm: or palmcall:
protocols. Unfortunately, it is not possible to pass any parameters directly to the
native Palm applications such as the Memo Pad or Address Book from a WCA.
There is, however, a third-party application called iKnapsack that uses the Palm
OS device library to access to these native applications. The iKnapsack applica-
tion provides an API that allows you to write to the Memo Pad, set contacts in
the Address Book, or schedule events in the Date Book using a WCA.You can
obtain a copy of iKnapsack (and a WCA that allows you to write memos, set
contacts, and schedule events) for free from www.tow.com/software/iknapsack.

275

Www.syngress.com

276

Chapter 6 * Web Clipping

Figure 6.28 E-mail Example on the POSE

Palm 8" E ol loi F Palrn 05" Erfuld 0§

Once users compose their messages, they have the option to put the e-mails
in their outboxes. The e-mail will not be sent until the users open the iMessenger
application and send/receive their mail. If the information that the users wish to
send 1is time-sensitive, then we may want to deliver the messages via a form sub-
mitted to our Web server. This is demonstrated in the following example.

Sending E-mail via a Web Server

In this example, we will use a Web clipping application to send e-mail via a PHP
script installed on a Web server. This example is written using PHP, but it is cer-
tainly possible to use most any server-side language (such as Perl or ASP) to send
e-mail using information submitted from an HTML form. Figure 6.29 contains
the HTML that we will use for our WCA.

Figure 6.29 mailform.html

<htnm >
<head>
<title>Mail Fornx/title>
</ head>
<body>
<form action="http://ww. yoursite.com WCAni | er. php" >
<h1l>Mai | Fornx/ hl>
To:
<input type="text" name="to" size=20>

From

Continued

WwWw.syngress.com

Web Clipping * Chapter 6

Figure 6.29 Continued

<input type="text" name="fronl' size=20>

Subj ect :

<input type="text" name="subject" size=20>

Message:

<t ext area name="body" ></t ext ar ea>

<input type="subnmit" val ue="Send Message">
</forne

</ body>

</htm >

Once we have scanned this HTML into the WCA builder and created a .pqa
file from 1it, we install it on our POSE and launch it. The WCA as it appears in
the POSE is shown in Figure 6.30. In this case, we have filled in the input fields
with a simple test message.

Figure 6.30 Mailform.html Launched as .pga from the POSE

Palrm OS5 Errvulla Lo F’

The WCA itself does no good unless we have a script to which we can point
it. You can install the PHP script from Figure 6.31 on your Web server and alter
the action attribute of the <form> tag in Figure 6.29 to point to where you have
placed the script. In the event that you do not have PHP available, you can obtain
a copy for free from www.php.net.

277

Www.syngress.com

278 Chapter 6 * Web Clipping

Figure 6.31 WCAmailer.php

<?
header ("Content-type: text/htm");
header (" Pal mConputi ngPl atform true")

if(enmpty($to)) error("No recipient specified");
if(empty($from) error("No from address specified");
i f (enpty($body)) error("No nessage text specified");

i f(mail ($to, $subj ect, $body, "From $fromn")) {

print<<<_ THANKS_ _

<htm >

<head>

<title>Success!</title>

<meta name="Hi storyLi st Text" content="Success!">
</ head>

<hl>Success! </ hl>

<p>Your message has been sent!</p>
To: </ b> $t o

<pb>From </ b> $fronxbr>
Subj ect : </ b> $subj ect

Message: </ b>

$body

</ body>

</htm >

__THANKS__;

exit();

} else {

error ("Message delivery failure!");

}

function error(Serr) {
print<<<_ERROR _

WwWw.syngress.com

Continued

Web Clipping * Chapter 6

Figure 6.31 Continued

<htm >

<head>

<titl e>ERRORI </title>

<meta nanme="Hi storyLi st Text" content="ERROR ">
</ head>

<h1>ERROR! </ h1>

<p>Your nessage cannot be sent for the follow ng reason:</p>
<p>$err </ strong></ p>

<p>Pl ease go back and try again!</p>

</ body>

</htm >

__ERRCR__;

exit();

}

?>

The first element of the header describes the MIME type of the content
contained in the response as being composed of HTML text. This header is nec-
essary whenever information is returned to any browser from a server-side script,
or else the Web server will return an error.

The second line of the header is optional, but marks the content as valid for
display on a handheld device. As mentioned before, the PalmComputingPlatform
header informs the Palm.net proxy server that our HTML should not be refor-
matted for Clipper. It is strongly encouraged that this information be included in
any page that is sent to Clipper.

When we are serving out static HTML pages we can specify this information
as a <meta> tag within the document. In fact, we could specify this information
in a <meta> tag here as well (as we have done with HistoryListText), but instead
we are specifying the information directly in the header itself.

This script makes use of the PHP mail() function, which accepts several argu-
ments used to compose an e-mail message. The first argument specifies the e-mail
address to which the message should be sent. The second argument contains the
subject of the message, and the third argument contains the message body. We can
specify additional mail headers (such as cc:, bee:, or, in this case ‘~-From:’-) in the

279

Www.syngress.com

280

WwWw.syngress.com

Chapter 6 * Web Clipping

fourth argument. Any additional headers must be separated by newline characters
(\n on UNIX systems, and \r\n on Win32 systems), but in this case, we are sub-
mitting only one additional header so this is not necessary. The mail function will
return a true value if it is able to successfully send the e-mail, and will return
false if it cannot.

We have specified a specific error function that will print an error message to
the user’s browser if there is a problem with their input or if the mail cannot be
delivered. We check to see if the variables have been set by using the empty/()
function, which will return true if the variable contains a value and false if it does
not. In the event that these variables are empty, then the program will print out
an error message and stop executing.

NoTEe

If we were to implement the Figure 6.31 script into production, we
would want to validate the to and from e-mail addresses with a regular
expression in the script. There are many examples of e-mail validation
that can be found on the php-general mailing list archives at
www.php.net.

Once the user submits the form and the mail is successtully sent, the user
receives the clipping shown in Figure 6.32. In the event that an error occurs, the
user 1s returned a clipping exemplified in Figure 6.33, with an appropriate error
message displayed.

Figure 6.32 Success!

Palrm OS5 Errvulla Lo F’

Web Clipping * Chapter 6

Figure 6.33 ERROR!

Palm 05" Erfula loi F’

Guidelines for Authoring
your Web Clipping Application

As with every application or site you build, you should view any interactive
aspect from the user’s point of view. It is often best to refrain from thinking about
technical architecture until a clear picture of the user’s needs is created. Once the
user’s perception and goals are understood, the application may be built within
this framework.

Also, in addition to the needs of your users, you should consider the con-
straints of the device that will be used to access your application. In this case,
your constraints are limited by a slow connection speed, a small (at least in rela-
tion to a standard monitor) screen size, and input limited, for the most part, to
the use of a stylus.

So, what does this mean for your Web clipping application? We suggest the
following guidelines:

» Avoid implementing unnecessary, unwanted, or unused features. For
example, let’s say that your WCA allows users to browse news headlines,
synopses, and full news stories. If you find that 99 percent of your users
read only headlines and synopses, you should consider eliminating the
option to “read the full story.”

» Keep the dominant, or most likely, action highly accessible. For example,
if you provide weather information in your WCA, and your users are
most interested in a daily forecast, you should use a button instead of a
link, and make sure that your users do not have to scroll to find it.

281

Www.syngress.com

282

Chapter 6 * Web Clipping

» Design your application so that the minimum content needs to be
downloaded over the air in response to a query. For example, if your
users are searching a library of books, allow them to narrow their search
by as many criteria (title, author, genre, publisher, keyword) as possible
before retrieving results from a remote server.

= When you are sending content back to the device from your server, you
should link to pages within your WCA instead of sending content over
the air whenever possible. Any content that does not change regularly
should be stored on the device.

» Keep graphics to a minimum, and store them locally on the device. Palm
provides a specific <meta> tag (Locallcon) for this purpose. Avoid
sending images over the air wherever it is possible (dynamically gener-
ated images are, of course, an exception). Remember, “A picture is worth
a thousand words.”

Technically, there is not a display limitation on the length of a Web clipping
application page, but realistically, you should endeavor to display your content on
one screen in order to limit the amount of scrolling that your users have to do.

There is one limitation in terms of file size. Due to a system memory limita-
tion, no individual WCA page can exceed 63KB. Bear in mind that this page
would be very large, as this limitation refers to the compressed version of the
page. The limitation on Web clipping application size is determined solely by the
amount of memory you have on your handheld device.

Regardless of any technical limitation to the size of your pages, you should
keep your HTML markup to a minimum. Every character counts, including
markup. You should avoid the use of tables where possible, and refrain from gratu-
itous use of the tag.You should also keep variable names limited to a
minimum of characters. Furthermore, we suggest that the values of <select> lists
be an index, as opposed to a text variable. The time that this saves your users will
be greatly appreciated. Remember, they are the ones paying for the bandwidth!

WwWw.syngress.com

Web Clipping * Chapter 6 283

Summary

Web clipping allows users of Palm-powered handheld devices to view slimmed-
down HTML on their handheld device. They do not use a typical browser, but
rather the Web Clipping Application Viewer, also called the Clipper browser, that
allows them to view specially compiled device-resident HTML applications on
their PDA. These applications are almost like miniature Web sites on the device,
but they are, for the most part, static until the user updates them. These applica- “
tions can be standalone or they can incorporate Web content via HTML links or
forms. In addition, these applications have the ability to interact with other appli-
cations on the handheld device by passing parameters in a URL.

In this chapter, we have provided an overview of what Web clipping is and
how it difters from desktop Web browsing. We have discussed the many devices

and networks that may be used to connect a handheld device to the Internet and
interact with Web servers. We have covered many of the HTML elements that are
supported by the Web Clipping Application Viewer, and discussed the difterences
between these elements and their desktop counterparts. We also discussed some
of the elements that are unique to the Web clipping environment and covered
some of the issues that surround the usage of these elements in applications.

We covered the installation and usage of the toolkit that is used to deploy
Web clipping applications, including the WCA Builder and the Palm Operating
System Emulator. We demonstrated in a few examples how you, the Webmaster,
could apply your existing skills to offer content and services to Web clipping
users. It’s not quite the same as building a Web site, and not quite as different as
building WAP content, but it is an interesting step toward true mobile Internet
connectivity. As demand for wireless PDAs grows, in the corporate environment
in particular, we can expect to see more and more handheld devices with the
ability to access the Internet in a manner similar to Web clipping.

Solutions Fast Track

What Is Web Clipping?

M Web clipping refers to a proprietary network that allows Palm-
compatible handheld devices to connect to the Internet by browsing
compressed HTML contained in special files installed on the device. The
Web Clipping Application Viewer is also called the Clipper browser.

Www.syngress.com

284 Chapter 6 * Web Clipping

]

Web clipping difters from Web browsing both in usage patterns and the
actual technology used to access the Internet. WCA users are mobile,
and deal with limited input mechanisms.

M A Web clipping application is installed on a device, and cannot be

]

&

|

M

X

updated until the user installs a new version. This means that extra
thought should be put into what interactions are included in a WCA.

A subset of HTML 3.2 is used to build Web clipping applications. Not
all elements of the specification are supported, but many elements are.

What Types of Hardware Support Web Clipping

Devices running the Palm Operating System version 3.5 or higher can
take advantage of Web clipping.

Many devices can access the Internet via Web clipping, including the
Palm VII/VIIx connected via Mobitex and other Palm-compatible
handhelds connected via the CDPD Network or Mobile Internet Kit.

The RIM 957 (Blackberry) Pager can browse the content of a WCA if
it is accessed via a direct link over the Internet. These devices are unable
to follow links to, or display images that the WCA expects to be found
locally on the device, such as links using the file: protocol.

Working with the Palm OS Emulator

]

hu

WwWw.syngress.com

The Palm Operating System Emulator (POSE) is freely available from
the Palm Web site at www.palm.com/dev/tech/tools/.

In order to use the POSE, first you need to install the emulator to
emulate the hardware, and then install a ROM image of the OS to start
the emulator or run any software.

There are two ways to obtain ROM images: transfer one from a device
that you own, or download one from the Palm Resource Pavilion.You
must register as a Palm developer to obtain ROM images from Palm.

It is necessary to configure the emulator to access the Internet via the
network interface of the computer upon which it is installed. The

emulator must be set to redirect network requests to TCP/IP, and the
emulator software must be configured to use a Palm.net Proxy Server.

Web Clipping * Chapter 6 285

Creating a Web Clipping Project with
the Web Clipping Application Builder

M The Web Clipping Application (WCA) Builder, like the POSE, can be
downloaded from the Palm Web site at www.palm.com/dev/tech/tools/.

M The WCA Builder is used to compile device-resident Web clipping
applications from HTML and images. I‘

M The WCA Builder automatically will scan HTML from a single index
page and automatically include any linked pages or referenced images. It
will do some basic error checking, but it is not foolproof, and code
should be validated externally.

M Custom icons may be used for your Web clipping applications. These can
be selected in the Build PQA dialog box, which is the final step in the
application building process.

Web Clipping Basics and Examples

M Many of the more common tags from the HTML 3.2 specification are
available, but many other recent developments are not. Any elements that
require client-side processing, such as animated images, imagemaps, and
client-side scripting have been eliminated due to device constraints.

M Some useful features are unique to Web clipping, including variables that
relay information about the location of the user and a unique device
identifier. Two other elements are available: datepicker and timepicker.
These elements help to offset the device constraints of Web clipping.

M Data transmitted over the air should be minimized as much as possible,
and local resources on the device should be leveraged to minimize
network traffic. This can be accomplished by linking to local images
on the device, and by including content that is not time-sensitive on
the device.

286

WwWw.syngress.com

Chapter 6 * Web Clipping

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How can I close my WCA and return the user to the Application menu?

A:You can do this by launching the launcher application via a link. Use

Qui t </ a>.

Q: I have added bgcolor attributes to my table cells, and they are not working!
What is wrong?

A: Clipper supports the bgcolor attribute for <table>, but not for <tr>,<td>,
or <th>.

Q: Is there any way to get rid of that pesky over-the-air icon?

A: Theoretically you couldcreate an image and use that as your form submit
button, but the over-the-air icon 18 useful for the users, as they typically will
be paying for any centent that/'they download. It is recommended that you
do not implement workarounds for this.

Q: Do I need to test my application on a device, or will the POSE suffice?

A: The POSE will reliably render your HTML, but you'should test the usability
of your application with an actual device. Using a mouse and keyboard from
your desktop to input data is a radically different experience than using a
stylus and graffiti for input.

Q: Can I create a custom icon for my WCA?

A Yes, this can be done in the WCA Builder. You can select your own custom
image by clicking the Large and small buttons in the Build PQA dialog.
You can author images in .gif, jpg, or .bmp format using the editor of your
choice, and check them using the Palm Image Checker (included in the
WCA Builder download). The large icon must be 32x22 pixels, and the small

icon must be 15x9 pixels.

Web Clipping * Chapter 6 287

Q: Can I use tags in my WCA?

A: Yes, you can make use of the tag, but it will control only the size of
your text.Valid values are between 1 and 6, with 3 being the default. It is not
possible to use named typefaces within Clipper.

Q: Do I have to rewrite my existing site to be able to view it with Clipper?

A: HTML from standard Web sites can be parsed by the Palm.net Proxy Server L&
and formatted for display within Clipper. If your site is very graphics and : é
JavaScript intensive, it will most likely not translate well. On the other hand, .
if your site uses logical markup (headers, lists, paragraphs), then it will display
better within Clipper.You can use the <smallscreenignore> tag to mark con- d

tent that should be ignored by the Palm.net proxy server.

www.syngress.com |8

Chapter 7

Deck of Cards:

Designing Small
Viewpoint Content

Solutions in this chapter:
el

e
’l-._} -

._ilg

= Thinking In the Hand, not On the Web
= Stacking a Deck of Cards

= Examining Display Differences between
Browsers

M Summary

&

Solutions Fast Track

M Frequently Asked Questions

289

290

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Introduction

The wireless Web, although very new, harkens back to the old days of text-only
Web browsers. Minimal support for graphics and animations, miserably low band-
width, tiny screen resolutions, and devices lacking processing power are a few of
the commonalities between the wireless Internet and the pre-1994 World Wide
Web (WWW).

Due to these differences, developing for the wireless Internet will require dif-
ferent tactics than those to which many Webmasters have become accustomed.
Using JavaScript for form validation? Forget it. Applets? Not yet. Graphics?
Barely. Tables? As long as you are careful. Images? Yes, but don’t expect everyone
to see them.

The wireless Internet, and Wireless Markup Language (WML) in particular,
has been criticized of late as being ill-designed and hard to use. This is certainly
the case in some instances, but it does not have to be. It’s up to you, the
Webmaster, to design the interface for your content or application in a way that
allows the user to form a coherent mental picture of your site and what they can
do with it.

We're facing a world much like the early days of the WW W, where designers
and Webmasters were attempting to apply print metaphors to the Internet, and
tailing to reach users in compelling ways. Now, we are facing a situation where
Webmasters and applications designers are often expected to re-create the WWW
on a handheld device, rather than taking advantages of the Internet in a means
most suited to the mobile user of the wireless device. We all need to look at our
users in a new way, and to think differently about meeting their needs.

In this chapter, we will first discuss some common mistakes made by
Webmasters in terms of information architecture and user interface, and the
importance of thinking like a mobile user. We will then cover how to develop
your information architecture and interface based on what it means to the wire-
less user, taking advantage of server-side techniques as well as the deck of cards
metaphor of the wireless Web. We will also cover display differences between
browsers as they apply to usability and cover how to ensure a consistently usable
presentation across a variety of devices. We will focus mainly on WML, but
remember that many of these principles are applicable to Handheld Device
Markup Language (HDML) and, in some cases, Hypertext Markup Language
(HTML) displayed on a handheld device.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Thinking In the Hand, not On the Web

Typically, today’s Web sites tend to have a somewhat pyramidal structure, one in
which the user can browse to various layers of depth within the pyramid. These
sites often have a means of moving vertically or horizontally within them. By ver-
tical navigation, we are referring to a user being able to move deeper into a spe-
cific section of a site. By horizontal navigation, we are referring to a user being
able to move across pages or subsections within the same section. Figure 7.1 pro-
vides a simple example of the pyramid metaphor.

Figure 7.1 The Pyramidal Navigational Structure

,,,,,,,,, = Hyperlinks

~ ~
N N

N
. N . \ N
.ﬁ % .H .ﬁ . N .ﬁ .M g N ﬁ

In this structure, the user can browse horizontally through a section, all the
while retaining the ability to move up a layer or return to the home page of
the site.

A breadcrumb is a common element of many Web designs, and an aid to the
pyramid metaphor. In case you have not heard the term before, it refers to a list
of links that correspond to the main pages of each level of the site hierarchy,
which will often mirror the directory structure of the site.

Breadcrumbs are typically found on every page, and allow the user to move
between the various layers of the site. A typical example of this is the line at the
top of the page on the Open Directory Project site at www.dmoz.org. Many dif-
ferent sites use this element in a variety of ways, but the general theme is fairly
consistent: it provides the user with a means of understanding where they are
within a site. Figure 7.2 illustrates this element of a site.

291

Www.syngress.com

292 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.2 Use of Breadcrumbs for Pyramidal Navigation

B O pen Diseoty - Compatoss Mabele Competisg. wholoss D ots - Himosst et Epploss M= E
B E® Wew Fyede Todk Hep =
| Seglchrmar] e Ao e Toreg i W obde_Corepesingi®arasbsia_Duim! _'] oG

=

[dlri[a](z] open diraciory projact

ahomt dsess | s34 TRL | geedate TEL | bec oo an editor | bede

[Saarch ||m witima chmciry H

Tap: Computers: Mohile Computing: Wireless Iiata (2700 Thesempdinn
w I-Nlede Isternei (700
« WAP 2400
]
1] B Irdaral &

The pyramidal navigational structure and accompanying elements seen across
the Web did not suddenly appear overnight: Rather, they were developed as
designers and Webmasters began to understand how users understand the Web. The
end result 1s a structure that lends itself to the capabilities of the medium, and
allows users to make sense of their position within the nonphysical space of the
Web.You can see examples of this structure on sites all the way from Amazon to
Yahoo!

However, we're barely beginning to understand how users make sense of the
wireless Internet. It requires a new way of looking at the Internet, and its users
have radically difterent needs and expectations than the users of the WWW.

Users of the wireless Internet do not browse. A contributing factor to this is
the walled gardens that have been created by many service providers. These sites
come up when the user initiates a Web session, and eftectively lock users into
viewing only the sites that have struck a deal with the service provider. Some
carriers do not even offer the opportunity to enter a URL from the browser’s
start page.

Yet another factor affecting how users interact with the wireless Internet is the
difficulty of entering text into the browsers that are currently shipped on mobile
phones. Users of Personal Digital Assistants (PDAs) running the Palm OS or
Microsoft PocketPC OS have the option of entering data with a stylus or portable
keyboard, but it is still a good idea to limit the amount of user input required for
your site or application because these tools, although more effective than a numeric
keypad, hardly rival their desktop counterparts in terms of input efficiency.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

It is important for designers, information architects, Webmasters, and applica-
tion developers to create intuitive interfaces that allow users to form coherent
representations of content and structure by interacting via a wireless device. You
should strive to limit user input and help your users make efficient use of your
site by providing lean, well thought-out presentation and clear navigation. Omit
unnecessary elements, and thoroughly test those that remain with a variety of
devices and users.

In this section, we will cover some of the common mistakes that are made by
Webmasters and discuss the importance of thinking like a mobile user while
building your site. We will recommend some principles that will help to create a
mental image of your site for your users, ensuring that they can use your site to
quickly get what they need while on the go.

Common Mistakes Made by Webmasters

Some of the more common mistakes made by Webmasters include:

» Wasting bandwidth
» Forgetting task-based design
= Providing too many options or too much information

» Using branded, Web-like terminology instead of plain language

We will cover ways around each of these mistakes in detail, but one theme
remains common throughout: The metaphor of the Web is inappropriate to the
new medium.

Wasting Bandwidth

In an age where broadband connections to the Internet are becoming fairly com-
monplace, it is easy to forget the days where a 14.4k connection was considered
high-speed. It’s rare now to find users that connect at speeds under 56k. This has
become the de facto standard of baseline Internet connectivity and the speed for
which most Web pages are optimized. The wireless Internet, however, is not sub-
ject to this standard. If you are a wireless user in the United States, the fastest
connection speed you will see is still below that of a 14.4k modem.

Many Web users these days have a monitor capable of displaying at least
800x600 pixels of resolution and millions of colors. This is very difterent from the
screen of a mobile phone, which will often be capable of displaying between 2
and 5 lines of text, with a resolution of less than 400 pixels square. It’s certainly
not possible to fully represent a standard Web site on such a small screen.

293

Www.syngress.com

294 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

NoTE

You can save your wireless users some download time (and money) by
including all your application’s images within your Web Clipping
Application (WCA). They can be referenced inside a server response by
using the local icon element. More details on this can be found in
Chapter 6.

Given these strict bandwidth and screen size limitations, how can we maxi-
mize the user experience? With simplicity and efficiency is how.

One way to reduce bandwidth is to eliminate the use of graphics altogether.
This method does have its advantages in that you will never have to convert any
graphics to Wireless Bitmap (WBMP) format for use on a WAP device, but
chances are you will still not want to completely give up images in your content
or application.

Instead, you should use images only when they are more effective than text.
One example that comes to mind is that of a weather report. If you can display
an image of a sun to represent ‘“Today it is sunny,” you will save your users valu-
able time in interpreting your content.

In general, images should be eliminated from your content when there is not
a direct benefit to the user. Avoid forcing your users to download an image for a
splash screen, no matter how much you want users to see your company logo on
entry to your site. These splash screens are the functional wireless equivalent of
loading a 200k flash movie as the first page of your wired site.

The best advice, should you employ the use of images, is to keep them as
small as possible in terms of file size and resolution—squeeze as much value you
can out of the bandwidth and screen size you have available. Your users will
appreciate it and be more likely to return.

Forgetting Task-Based Design

The concept of browsing is a well-accepted metaphor for how people use the
WWW, but it does not make sense to think of mobile users as just browsing the
wireless Internet. Mobile users do not have the time or desire to aimlessly surf
sites; rather, they have a specific need for information that is relevant to where
they are and what they are doing at the time (or what they plan to do later).
They are interested in how the wireless Internet can make their lives easier. They

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

want to check their e-mail, view product inventory, check their stocks, or find
out what movie is playing tonight.

It’s very important, therefore, to provide your user with a clear and efticient
path to the task they wish to perform. One common method is to make the
browser’s Accept key point to the most dominant action, and use the Options key
to provide other options for using the site.

While planning your wireless site or application, develop use cases that
describe the different tasks that users are expected to perform, and test them. How
many steps does it take to perform the most common tasks? Is it clear to the user
how to “get in, get it, and get out?” If you find your users are having difticulty
finding what they need, then you should make changes to your site accordingly.

Providing Too Many Options
or Too Much Information

One need only take a brief look at the front page of www.yahoo.com to see the
wealth of information available on the site. There are literally hundreds of links
on the front page of this site, which is well known as being fast-loading and easy
to use.Yahoo! is one of the oldest Web portals, as well as one of the most suc-
cessful. The site provides millions of people worldwide with information
everyday. Yahoo! also offers free e-mail and personalized home pages that are
catered to users’ home locations.

One look at the Yahoo! WAP site shows an interface engineered for the
mobile user. The site is categorized primarily as a personalized version of the site,
including e-mail as the first listed option. Other options in the first few lines
include an address book and local information. All told, the Yahoo! WAP site
includes two initial pages with a total of approximately 20 links.

The Yahoo! WAP site ofters the user great deal of functionality but there is so
much information listed that it 1s hard for the mobile user to quickly know exactly
what is available to them. Regular use of the site will generate some familiarity, but
it is hard for a new user to tell what is offered. Figure 7.3 illustrates the first page of
the Yahoo! WAP site.

In addition to their WAP site, Yahoo! also ofters a Palm Web Clipping
Application (WCA) for the palmtop user. This application can be downloaded
from the Yahoo! Web site and installed on a handheld device running the Palm
OS. The Yahoo! WCA is illustrated in Figure 7.4.You can see that they have pared
down their site significantly to provide the Palm user with Yahoo! content. The
use of well-crafted icons gives Yahoo! WCA user an instantaneous grasp of what
1s available to them.

295

Www.syngress.com

296 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.3 First Page of the Yahoo! WAP Site

Figure 7.4 Yahoo! Web Clipping Application

Palrm OS5 Errvulla Lo

The most interesting part of the Palm WCA in comparison to the Yahoo!
WAP site is that it actually contains less content, despite the availability of more
memory and display area on the device. There is no link to the Yahoo! directory,
no links to shopping, driving directions, horoscopes, or lottery results. There are
many elements that are present in the Yahoo! WAP site that would be of use to
the Palm user, but they are curiously absent. We can only speculate as to why
these two wireless offerings put forth by Yahoo! are so different.

Using Branded Terminology
Instead of Plain Language

Web marketing, in its effort to deliver “eyeballs,” has developed a language all its
own. Elements of a site are often conceived, developed and labeled with mar-
keting in mind. The result is a medium that is chock-full of language geared
towards generating clicks (and advertising impressions). This is in direct opposi-
tion to how a wireless site should be built and conveyed to the user.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

It’s critically important to deliver your information in a clear format. Try to
resist the temptation to create new and catchy phrases for your content or appli-
cation. Don’t create new metaphors when you don’t have to. Instead, use straight-
forward, descriptive terms that will inform your users of exactly what to expect
when they click on a link.

For example, you may be tempted to think up a catchy name for your appli-
cation that parses stock quotes.You could call it Market Update, Flash Quote, or
Insta-Track. However, you would be best oft to simply use “Stock Quotes” to
ensure that your users understand exactly what they are getting, and that they do
not waste precious seconds figuring out what to do or waiting for content that is
not what they are expecting.

Thinking Like a Mobile User

The mistakes mentioned in the previous section have one root cause: The
Webmaster is not thinking like a user. When you consider building a wireless inter-
face to your application or a new wireless Web site, be sure to ask yourself: “Does
my idea make sense for a mobile user?” If the answer is no, you should put down
this book and continue to build eftective Web sites.

If your idea does provide some utility to the mobile user, then you should
engineer it from the ground up as a mobile user-friendly site. Remember what
you have learned as a Webmaster, and perhaps more importantly, forget what you
have learned when it does not make sense in the mobile environment.

There are three main ways to increase the usability of your small viewpoint
content and tailor your application to the mobile user.

First, look at your site and think about how or why someone might use it.
What content should be on the site? For example, if you run a local portal site
and you know that your users are interested in sports, traffic, and weather, you
should make this information available to your mobile users. What tasks are they
most likely to perform regularly? If you run a financial information site, you
would most likely want to make stock quotes a prominent feature on your
mobile site. Which task are users most likely to use on a given visit? Prioritize the
placement of options on your site according to how they may be used and make
it easy for users to get what they need with a minimum of input.

Second, examine your site and remove any elements that do not aid usability.
For example, if you have a splash screen that displays your logo and then immedi-
ately sends the user to another card, consider reducing the size of the graphic or
removing the splash page altogether. Perhaps you’ve built a card that uses unique

297

Www.syngress.com

298

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

icons as the bullets on a list of links. This can be effective, provided that the icons
are very clear and easy to understand, but in many cases it will make more sense
to remove the icons and use the <OPTION> element or softkeys.

Third, design the navigation of your site with the mobile user and small-
viewpoint interface in mind and run through your site with the worst emulator
configuration you can find. One with two lines should be sufficient to convince
you that it’s important to keep your site simple and to the point.

Last, but not least, use DNS wildcards, client detection, and server-side aliases
to reduce text input. Typing in http://wap.mysite.com/cgi-bin/applications/
weather/weatherfinder.cgi on a mobile phone is much more difticult then
entering http://mysite.com/wthr. It may take a little work on the part of your
domain administrator, and some forethought on how you structure your site, but
it will pay off in the long run.

Segregating Tasks

Task segregation refers to the analysis of the use cases of your site, categorizing the
tasks a typical user will perform as actions that occur most often (perhaps on every
visit), tasks that occur with lesser frequency (perhaps on every 10th visit), and tasks
that occur rarely (perhaps only on the first visit or every 100th visit or so). We will
apply this analysis to one of the most common uses of the wireless Web: e-mail.

It is important to look at the difterent actions that can take place in any
e-mail suite. Table 7.1 lists e-mail tasks based on the frequency of the action: high
frequency tasks are those that occur on almost every single time your user visits
the site, medium frequency tasks are performed periodically by users, and low
frequency tasks are rarely performed by the user.

Table 7.1 E-Mail Task Segregation

E-Mail Tasks Frequency
Account setup Low
Logging in High
Retrieving e-mail from the server High
Composing/Replying/Forwarding High
Filtering and sorting e-mail into folders Medium
Deleting e-mail Medium
Account editing Low
Logging out High

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

If you take care to ensure that the high frequency tasks are always accessible,
and that the medium and rare frequency tasks are out of the way yet easy to find
when needed, your users will have a better experience using the system.

Optimizing Bandwidth

One of the most difficult bottlenecks to deal with when programming for the
wireless Internet is caused by the size of the tiny chunks of data that most wire-
less devices can receive. This is also frustrating for the mobile user, as they have to
wait precious seconds for the trickle of data to download content to their device.

In some instances this is limited by hardware and network connectivity. For
example, many handheld WAP devices can accept only a little over 1K of data in
any given transaction, due to their limited memory.

There is also the additional concern of the subscription models that are pre-
sent in the market. In some cases, users will pay a per-minute connect fee, while
others may pay on a per-byte basis. Many mobile phone users pay for each
minute they are using their microbrowser, and Palm.net users pay by the number
of bytes transmitted to their device.

In order to make your users’ experiences as smooth as possible, it is up to you
to squeeze as much as you can out of every byte. It is even possible to make small
refinements in terms of the actual characters used to code the cards that make up
your application, which will have a cumulative effect on your deck’s the final
weight.

Minimize the Use of Images

As we have already seen, the first way to decrease the amount of data sent to your
users is to eliminate images from your application. Icons can be used to translate
an idea to a user very quickly, however, and you should weigh the usability
gained by the icon versus the usability lost by including the icon in the total
bytes that make up your deck.

Use Short Variable and Card Naming Conventions

One of the easiest places to trim characters 1s in the naming of the variables used
in your application. For example, userldentificationNumber is a much longer vari-
able name than simply id. Furthermore, the shorter variable name is just as easily
interpreted by any programmer modifying the code, whether they are coding for
the client or the server.

299

Www.syngress.com

300

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Also, you can save some characters by using shortened ID attributes for the
cards in your deck. Consider the size differences between information and info, or
cat versus catalog. Keeping your card identifiers to three or four characters can save
some data without affecting the legibility of the code. In fact, a coherent 3-letter
naming convention can make your code more legible!

Limit Display-based and Redundant Markup

You can also make your code leaner by minimizing the use of display-based
markup within your cards. This does not mean that you should not take care that
your application can be interpreted easily, but rather that you should avoid gratu-
itous use of font tags (such as within table cells in a WCA) or explicitly declaring
attributes that are the same as the default value for the element (such as declaring
<P ALIGN=LEFT”> when <P> will generate the same effect).

Granted, we do not have intimate knowledge of the proprietary tokenizers
(or compilers) that run on the WAP gateways, but if you limit the amount of data
that you send to the gateway for processing and logically structure your markup
to minimize the characters used for the desired display effect, you will save your
users time and money.

Index Your <SELECT> Lists

One effective way to generate a smaller WAP binary while maintaining the user
experience is by indexing your <SELECT> lists. Figure 7.5 will illustrate how to
save characters and reduce the final size of the deck sent to the user. We will con-
struct two different <SELECT> lists that will appear identical to the user, one
using indexing, and the other containing a value that matches the description of
the <OPTION>.This example is written in PHP, but it is possible to port this
simple test page to any server-side scripting language. In the event that you do
not have access to a scripting language, you can create two decks: one containing
an indexed list, and the other containing descriptive <OPTION> elements.

Figure 7.5 test.php

<?php
header (" Cont ent -type: text/vnd. wap. wn ") ;

print("<?xm version="'1.0"?>");

if(!isset($node)) {

$mode = "

Continued

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Figure 7.5 Continued

}

?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapf orum org/DTD/wr _1. 1. xmd ">

<wml >
<car d>

<p>

Select a Continent:

<?php if($nmode == "index") { ?>
<sel ect name="cn">
<option val ue="0">Afri ca</ opti on>
<option value="1">Antarcti ca</opti on>
<option val ue="2">Asi a</ opti on>
<option val ue="3">Austral i a</ opti on>
<option val ue="4">Eur ope</ opti on>
<option val ue="5">North Ameri ca</option>
<option val ue="6">South Anerica</option>
</ sel ect>

<? } else { ?>

<sel ect name="Continent">

<option val ue="Africa">Africa</option>

<option value="Antarctica">Antarctica</opti on>
<option val ue="Asi a" >Asi a</ opti on>

<option val ue="Australia">Australia</option>

<option val ue="Eur ope" >Eur ope</ opti on>

<option val ue="North Anerica">North America</option>
<option val ue="South Anmerica">South Anerica</option>
</ sel ect>

Continued

301

Www.syngress.com

302

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.5 Continued

<? } ?>

</ p>
</ card>
</ wnl >

When we load this page into our browser without specifying the $mode
variable (http://localhost/test.php), we can see that the final size of the WAP
binary is 187 bytes, as shown in Figure 7.6.

Figure 7.6 Binary Size without Indexing <SELECT> List

"4 Pl bl it

O

However, when we load up the page specifying mode=index within the
query string (http://localhost/test.php’mode=index), we see that the final size of
the binary is 146 bytes. This is illustrated in Figure 7.7.

You can see from this example that using indexed <SELECT> lists can save
significant numbers of characters, even after the code is parsed by the WAP
gateway. The end user will notice absolutely no difference between the two dif-
ferent cards, but the indexed card is 22% smaller than the first version. A deck
that contains many <SELECT> lists would benefit greatly from this simple
method of saving characters.

This implementation should be used with care, however, as a client-side coder
can change the order of the list or alter the display value without confirming the
meaning of the variable’s actual value with the server-side programmer.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content * Chapter 7

Figure 7.7 Binary Size after Indexing <SELECT> List

o P B

e |

B, i ik ek i i e i i - e e e e e e e

] ETE Ll FH"
1 i

It is incredibly unlikely that the continents featured in our example will
change in our lifetimes and affect our results, so you could store this information
as part of a user profile without potential errors resulting in the future. However,
it we were using <SELECT> lists to denote information that is somewhat likely
to change over time (such as voting districts or area codes), or information that is
constantly changing (like current movie listings), we would need to take very
special care to ensure that there is a consistent correspondence between the value
of the index and the description of the value that is displayed. One way to do
this would be to generate the <SELECT> list dynamically with server-side
scripting and a database containing the index corresponding to the value.

Designing Coherent Navigation

The pyramidal structure mentioned at the beginning of this chapter has become
a well-accepted metaphor for representing information. For now at least, the
wireless Internet presents some challenges to this metaphor, primarily because the
amount of information that the user can view at any given time is limited. With
the limited screen real estate available on a wireless device, you must re-think the
mental picture your users form of your site, and make sure that your navigational
structure is suited to the reduced view afforded by a handheld device.

It 1s simply not possible to represent the whole of the pyramidal structure
within each card, but it is possible to build a smooth navigational system by using
a well-crafted deck. The model that we will discuss here is a menu-driven hub-
and-spoke metaphor. Most Webmasters should be familiar with the term hub-and-
spoke, but if you have not heard of it before, this metaphor was common to the

303

Www.syngress.com

304

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

early days of the Web and text-based interfaces, and features a fairly linear and
strictly vertical mode of navigation. The user is first presented with a main menu
consisting of options. Each item on the main menu points to a sub-menu, each
item of which in turn points to the final content. The hub-and-spoke metaphor
1s lustrated in Figure 7.8.

Figure 7.8 The Hub-and-Spoke Navigational Structure

The dashed lines denote links between difterent cards. You can see that the
navigational paths radiate out from a central point, and that a user may navigate
from node to node, but only in a vertical direction. In order for a user to get to
another card at the same level, they must first hop back to the previous node.

The primary means of navigating within this structure on a mobile phone are
the accept and the back keys that are built into most phones and Web browsers.
Users tend to, in a vertical sense, “drill down” and “back up,” or in a linear sense,
move forward and back throughout the site. The next section will focus on the
construction of this navigational system.

Stacking a Deck of Cards

While building Web sites, you have most likely become accustomed to multi-
dimensional navigation and sub-navigation structures.You have also become

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

proficient at integrating multimedia content where it is appropriate, and learned
how to break up content so that it makes sense for the WWW.You have learned
how to provide your users with a means of understanding where they are within
your site and how to navigate within your information architecture. These are valu-
able lessons, but the principles behind them are more important than the specifics.

In this section, we will discuss the methods by which you can provide your
users with a coherent small-viewpoint interface to your site, and how to take
advantage of these methods to create a smooth and compelling user experience.
There are some very important difterences between the WWW and the wireless
Internet that we must consider here.

While you may be accustomed to sending your users one screen (or page) at
a time on the WWW, WML allows you to send your users several pieces of con-
tent or navigation (that is, multiple screens or cards) at once. A single download
consisting of multiple cards is referred to as a deck.

The main catch is that the size of the final compiled binary of your content
must be under 1397 bytes. Although this is a very small overhead, it is possible to
deliver several cards in one deck (usually around 5, depending on the amount of
markup and content). An entire application interface can easily fit within a single
deck, and in some cases, the entire application may fit within a single deck.

NoTE

You can find a list of various WML browsers and their maximum deck
sizes at skin.surfnet.nl/mobile/wap/wap-clients.shtml.

We will now cover some examples of parceling your content into decks and
how to utilize some of the features of WML to make for a more effective user
experience.

Parceling Navigation and Content

In this section, we will discuss the nuts and bolts of dividing your navigation and
content into manageable chunks to improve the user experience. The primary
focus is on delivering the entire navigational structure of your application in one
card, and then allowing the user to download the actual content that they want
in a subsequent request. The primary reason for doing this is speed. You don’t

305

Www.syngress.com

306

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

want to waste your users’ time by forcing them to sit through requests while nav-
igating your site.

Let’s use the example of a library site. The main functions of the site include
general information about the library (hours, location, directions), a catalog
(search, browse), and user services (books checked out, late fees due, reservations).
We could potentially divide each section of the site into different decks, each
containing an index and subsequent files. This would seem a natural approach to
the treatment of our content, but it does not make for the most effective wireless
user experience.

Instead, we will first send the user a deck containing the navigational struc-
ture of the site, and allow the user to initiate a second request to retrieve the
actual content.

It is possible to send a user a deck that consists solely of navigation. The first
card presented to the user will link to other cards within the first deck. Upon
selecting one of the links on the first card, the user 1s immediately forwarded to
that area’s menu.

Notice that there is no request sent to the server, and correspondingly no
delay in receiving the selected card. This greatly enhances navigation for the user,
as they can move back and forth within the navigation deck without sending a
request or receiving more content over the air. Figure 7.9 shows the deck that
will be sent to the user upon their visit to the site.

Figure 7.9 index.wml

<wm >

<card name="hone" title="Miin Menu">
<p>Li brary Menu: </ p>

<p>

l nformati on<br/ >
Cat al og</ a><br/ >

Servi ces</ a><br/ >

</ p>

</ card>

<card nane="info" title="Information">

<p>

Continued

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content * Chapter 7 307

Figure 7.9 Continued

Phone Directory

Hours of Qperation

Addr ess</ a><br/ >

Di recti ons</ a><br/ >

</ p>

</ card>

<card nane="cat" title="Catal og">

<p>

Sear ch</ a><br/ >
Br owse</ a><br/ >
</ p>

</ card>

<card name="svc" title="Services">

<p>

Books Checked CQut

Lat e Fees Due

Reservati ons</ a><br/ >

</ p>

</ card>

</ wnl >

Relative links are used extensively in this deck, identified by the hash mark
(#).This symbol is used to link to a card contained within the current deck. It
may also be used to reference specific cards within other decks by specitying the
URI of the deck followed by a hash mark and the name of the desired card.

NoTE

The syntax used in WML to reference cards within decks is the same as
the syntax used to reference anchor tags using the <NAME> attribute
in HTML.

Www.syngress.com

308 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.10 illustrates the relationship between the cards in this deck. The first
card, labeled with the home id attribute, contains relative links to the other cards
in the deck. The other cards in the deck (info, cat, svc) contain links to another
deck that contains the content for the section. The svc card, for example, contains
links to three cards in the sve.wml deck (out,fee,res). Figure 7.11 illustrates the
cards in svc.wml. Note that there are no links between these cards in this deck,
and that there is no index to provide navigation. The navigation for this deck is
provided by the svc card of the first deck.

Figure 7.10 index.wml Represented Graphically

home

#info

info

#at cat

#sve SVC

sve.wmb#out
sve.wmb#fee
sve.wml#res

Figure 7.11 svc.wml Represented Graphically

out

fee

res

Upon loading up index.wml, the user will see the first card containing links
that correspond to each section of the site as follows, in Figure 7.12.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Figure 7.12 index.wml: List of Links

Library Hemm:
[Intormation]
[fatalag]

FiSeevices)

Upon selecting the services link, the browser will display the card (sve.wml)
containing links to the content within the Services section, shown in Figure 7.13.

Figure 7.13 index.wml: Selecting Services Link

Seryices:
[Books Cheoked Ont]
[Late Feer Dae]
[Reaervalions]

The user of the library WAP site can navigate the entire site using the data
downloaded in the first request. Once the user has decided on their final destina-
tion however, they must send a request in order to receive the content. The deck
that the user receives contains all of the cards for the requested section. The user
can then navigate the entire section by using their history stack, as opposed to
sending a new request for each page.

In the following example, we will show the path of a user entering the site,
browsing to the Information section, and retrieving directions to the library.
Figure 7.14 contains the code for the Information section.

Figure 7.14 info.wml

<?xm version="1.0"?>

<! DOCTYPE wmr PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"“http://ww. wapforum org/DTD/ wr _1. 1. xm ">

<wni >

Continued

309

Www.syngress.com

310 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.14 Continued

<card id="tel" title="Phone Directory">
<p>Phone Nunbers: </ p>

<p>Mai n: 111-1111</p>

<p>Circul ation: 111-1112</p>

<p>Kid's story line: 111-1113</p>

</ card>

<card id="hrs" title="Hours of Qperation">
<p>The Library is open from 9am 9pm Monday through Sunday. </ p>

</ card>

<card id="addy" title="Address">
<p>Mai | i ng address: </ p>

<p>Anyt own Li brary

1 Main Street

Anytown, USA 00001- 0001

</ p>

</ card>

<card id="dirs" title="Directions">

<p>The library is located at Main and Center in Anytown.</p>
<p>Directions:

From the North

From t he East

From t he West

From t he Sout h

</ p>

</ card>
<card id="n" title="From North">

<p>Directions fromthe north:</p>

<p>Fol ow Spring H ghway to Main Street</p>

WwWw.syngress.com

Continued

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Figure 7.14 Continued

<p>Make a right at Main Street</p>
<p>Fol low Main for 3 blocks to center street</p>
<p>Library is on the right</p>

</ card>

<card id="e" title="From East">

<p>Directions fromthe east:</p>

<p>Fol ow Center street into town</p>

<p>Library is on the left once you pass Min.</p>

</ card>

<card id="s" title="From South">
<p>Directions from the South:</p>

<p>Take Exit 9 fromlInterstate 1</p>

<p>Make a left at Main Street</p>

<p>Fol low Main for 2 blocks to Center St.</p>
<p>Li brary is on the |eft</p>

</ card>

<card id="w' title="From West">

<p>Directions fromthe West:</p>

<p>Fol | ow Ri ver Boul evard to Center St.</p>
<p>Library is on the right before you pass Min.</p>

</ card>

</ wnl >

This deck contains all of the cards in the site’s Information section. These
cards include one containing phone numbers, one containing hours of operation,
one containing the library’s address, and another card describing the location of
the library with links to directions. This may seem like quite a lot of content to
send to the user at once, but the size of the final WAP binary (992 bytes) is still
under 1K, as shown in Figure 7.15.

311

Www.syngress.com

312 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.15 Phone Information for info.wml

2 [hadd 14 camaita o=

Figure 7.16 shows info.wml, which contains a total of 8 cards, and the rela-

tionship between those cards. You will notice that 4 of the cards (n,e,s,w) are
linked from the dirs card.

Figure 7.16 info.wml Represented Graphically

tel
hrs
addy

dirs

#e e

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

When the user first visits the site, they are shown the first card of index.wml,
as shown in Figure 7.17.

Figure 7.17 index.wml

Library Hacmu:
B IInforwanion
ICacalagh

|Serwicer]

Upon selecting the Information link, the user is sent to the Info card, as shown
in Figure 7.18.

Figure 7.18 index.wml#info

Infa:
| Flotnie Baoode |
|Eibrary Hoursl
laddress]
Fitirection]

Upon selecting the Directions link, the user will be sent to the dirs card named
info.wml. This selection will initiate the second request from the server. The dirs
card of info.wml is shown in Figure 7.19.

Figure 7.19 info.wml#dirs

Tha Libeary ia
lopacsd o Malw

|From The Bascl

This card describes the location of the library, and also allows the user to
choose a link that will give them directions to the library from the 4 compass
points. Upon selecting to receive directions from the East, the user is shown the e
card of info.wml. This is illustrated in Figure 7.20.

313

Www.syngress.com

314 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.20 info.wml#e

icactions fram
cha Tasu:

Follow Cancer
ETrEst incs Towmn,
labrary iz on ths

laft onca Fou
pass Hain.

In this example, we have made use of the hub-and-spoke metaphor to deliver
the information with a minimum of individual server connections. The user
seeking directions in the first request was sent the entire navigation of the site
(four cards) in a single deck. On the second request, the user was sent the entire
content of the information section (eight cards) in a single deck.

The user only had to connect to the server twice: once to receive the global
navigation, and once to receive the content for an entire section. Astute viewers
will notice that the content deck has no ”index” or “main” page. It merely con-
tains the content, as the navigation deck contains all of the links necessary to nav-
igate the subsection. The user will be able to view the entire Info section without
another request to the server.

Since the library’s location, phone numbers, and directions are unlikely to
change, we may want to specify a header that instructs the browser to keep this
deck in the browser cache. This will give the user ready access to this information
from their history stack in the future. The syntax for header declarations in WML
is identical to that of HTML, as it is part of the HTTP specification.

Utilizing WML Variables

WML has the capability of storing variables on the device, which is a concept
unheard of in the stateless world of the WWW. Typically, server-side programmers
have had to generate Web sessions or maintain the state of the transaction by
printing out variables in hidden form fields to pass their values from transaction
to transaction. With the ability to store information on the device, you can gather
input from the user in a series of cards instead of gathering information CGI-
style by passing variables in hidden fields.

Let’s say, for example, that we are building an interface to a company direc-
tory. The directory contains the department, title, name, phone number, e-mail,
and mailing address of every person in a 45,000 employee company. In order to

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

get the information they need, a wireless user may wish to narrow their search by
location, department, or title.

Instead of gathering information from the user in a series of requests, we can
gather the desired information by sending one deck to the user. The function of
this deck is to generate the parameters necessary to execute a short list of relevant
contacts. In the example shown in Figure 7.21, we will allow the user to set param-
eters, then display the selected parameters. We will be using the UPBrowser SDK
to view this deck, but rest assured that it works in both the Nokia and 4thpass
Kbrowsers. In the next section, we will explore display differences in detail.

Figure 7.21 directory.wml

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/wr _1. 1. xm ">

<wni >

<t enpl at e>

<do type="options" |abel="GO">
<go href="#search"/>

</ do>

</ tenpl at e>

<card id="home" title="Directory">

<onevent type="onenterforward">
<refresh>
<setvar name="dept" val ue=""/>
<setvar name="|loc" val ue=""/>
<setvar nane="title" value=""/>
</refresh>

</ onevent >

<p>Sel ect your Criteria:</p>
<p>

Depart nent </ a><br/ >

Continued

315

Www.syngress.com

316 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.21 Continued

Locati on

Titl e

</ p>

</ card>

<card id="dept" title="Department">

<p>Depart nent : </ p>

<p>

<sel ect nane="dept">

<option val ue="Any" >Any</ opti on>

<option val ue="Sal es" >Sal es</ opti on>

<option val ue="Shi ppi ng">Shi ppi ng</ opti on>
<option val ue="Qperations">Cperations</option>
<option val ue="Marketi ng">Mar ket i ng</ opti on>
<option val ue="HR"'>HR</ opti on>

<option val ue="Accounti ng">Accounti ng</ opti on>
</ sel ect>

</ p>

</ card>

<card id="loc" title="Location">

<p>Locati on: </ p>

<p>

<sel ect name="| oc">

<option val ue="Any" >Any</ opti on>

<option val ue="New Yor k" >New Yor k</ opti on>

<option val ue="San Franci sco">San Franci sco</option>
<option val ue="Denver">Denver </ opti on>

<option val ue="Dal | as">Dal | as</ opti on>

<option val ue="Washi ngton, DC'>Wshi ngton, DC</option>
<option val ue="Phoeni x" >Phoeni x</ opti on>

<option value="Salt Lake City">Salt Lake City</option>

<option val ue="Chi cago" >Chi cago</ opti on>

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Figure 7.21 Continued

<option val ue="Seattl e">Seattl e</option>
</ sel ect>
</ p>

</ card>

<card id="title" title="Title">

<p>Title:</p>

<p>

<sel ect name="title">

<option val ue="Any" >Any</ opti on>

<option val ue="Associ at e">Associ at e</ opti on>
<option val ue="Supervi sor" >Super vi sor </ opti on>
<option val ue="Manager " >Manager </ opti on>
<option val ue="Vice President">Vice President</option>
<option val ue="Presi dent">Presi dent </ opti on>
</ sel ect >

</ p>

</ card>

<card id="search" title="Search">

<p>

The followi ng paraneters have been set:

Departnent: $(dept)

Location: $(loc)

Title: $(title)

</ p>

</ card>

</ wm >

You will notice the <TEMPLATE> element at the top of the deck. This ele-
ment allows us to render the same code on every card within the requested deck.
No matter which criteria the user decides to narrow their request by, they will
still have the option of viewing the selected parameters by selecting the Options

317

Www.syngress.com

318 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

key or moving back to the main page with the Accept key to further narrow
their search.

Debugging...

Persistent Variables

WML variables are persistent throughout time. The example shown in
Figure 7.21 will store the selected variables between browser sessions. It
is recommended that these variables be set to an empty value using the
<SETVAR> command before sending the user to the search application,
to avoid using old parameters. It is possible to clear ALL of the variables
stored on the phone by using the newcontext="true” attribute, but this
can cause problems for the user on other sites, as well as any other
stored variable-dependent applications they may be using on your site.

NoTE

In the example shown in Figure 7.21, we are displaying a link to the card
with an id of search to display the user’s parameters. However, this link
could very easily point to a CGl script that would execute the search with
the selected parameters.

Figure 7.22 illustrates what the user will see when they pull up directory.wml
in their browser and select Department.

Figure 7.22 directory.wml: Department Criteria

Select your Criteria:

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Once the user has selected the Department in which to search by pressing
the accept key, they are returned to the first card in the deck.They can then
narrow their search by Location and Title, as illustrated in Figure 7.23.

Figure 7.23 directory.wml: Location and Title Criteria

5 Wice President
0K

Once the user has selected their criteria, they can select the Options key
(labeled GO!) to view their parameters, as shown in Figure 7.24.

Figure 7.24 directory.wml: Viewing Parameters

The fallowing
parametees have been
setl

Department: Sales

Location: Hew York
Title: Manager
0K Gaol

The advantage to this multi-card approach is that the user can quickly enter
the information using the first deck, without having to initiate a server request to
set each different variable. We could potentially render all of the select lists on
one card, although this would result in a very different user experience
depending on the browser being used.

For example, the Nokia WAP browser has no problems displaying multiple
<SELECT?> lists on a single card, so the user can individually select the elements
of each <SELECT> list. On the other hand, if the user is using the UP.Browser
(version 3.x or 4.x) from Openwave (formerly Phone.com), then the select lists
will automatically be rendered on different cards and the user will be run
through the select lists in a linear fashion.

In the next section, we will discuss the most common display differences
among browsers. Depending on the markets in which you are deploying your
content, you may want to focus on a specific browser or use server-side scripting
to branch your code.

319

Www.syngress.com

320

Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Examining Display
Differences Between Browsers

Whereas the wired Internet browser wars of the mid 1990s were the result of dif-
ferent companies trying to dominate the market, you should be prepared for the
multiplicity of wireless devices and browsers that are available. WML browsers
have been developed for many different devices; including mobile phones, e-mail
pagers, and PDAs.

When designing for the wireless Internet, you are dealing not only with a
browser that may implement features differently, but with diftferent devices that
will interact with the features in a different manner. Developing for two browsers
on a desktop computer is very difterent to developing for 10 different browsers
on 10 different devices with radically differing input methods.

For example, a mobile phone user will have only keys with which to input
data. Usually, one key acts as a positive acknowledgement (accept), and one offers
more options (options). Many phones will have a back key built into the
handset. Alternately, a PDA will often use a stylus as the primary input device,
allowing for a somewhat mouse-like interface. Some e-mail pagers (such as the
RIM 957 Blackberry) have a miniaturized keyboard and a scrolling wheel for the
interface. It is generally accepted, therefore, that user input should be minimized
wherever possible.

Fortunately, WML i1s defined as an application interface, so you will not have
to code individually for each device. It is up to the browser programmers and
device manufacturers to interpret the feature set of WML and map it to the input
mechanisms of the device.

Unfortunately, this world is not perfect, and there are some large differences
in how your code will be interpreted on the difterent devices and browsers.

NoTE

Openwave has published a list of Ul guidelines for the UP.Browser. It is
available online at http://developer.openwave.com/resources/uiguide.html.
In addition, they have published guidelines for markets that serve both the
Nokia and Openwave browsers. A full list of Openwave Ul white papers
may be found at http://developer.openwave.com/support/techlib.html.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

In this section, we will examine a few of the differences among the devices
and discuss methods of ensuring a consistently usable application. We will focus
on the Openwave UP.Browser, the Nokia browser, and the 4thPass Kbrowser. We
will also provide an example of submitting a search form that contains both a
<SELECT> and an <INPUT> element in order to illustrate the usability difter-
ences among these three browsers.

Figure 7.25 contains the same <SELECT> lists as the example in Figure 7.21,
but with all of the <SELECT> lists contained in a single card. We are still
clearing our variables on entry, but we are not including the <TEMPLATE>
element because the user will be directed linearly through each element on the
single card in the deck.

Figure 7.25 directory2.wml

<?xm version="1.0"?>

<! DOCTYPE wm PUBLIC "-//WAPFORUM / DTD WML 1. 1//EN'
“http://ww. wapforum org/DTD/ wr _1. 1. xm ">

<wni >

<card id="home" title="Directory">

<onevent type="onenterforward">
<refresh>
<setvar name="dept" value=""/>
<setvar nane="l|oc" value=""/>
<setvar nane="title" value=""/>
</refresh>

</ onevent >

<p>Sel ect your Department:</p>

<p>

<sel ect nane="dept">

<option val ue="Any" >Any</ opti on>

<option val ue="Sal es" >Sal es</ opti on>
<option val ue="Shi ppi ng" >Shi ppi ng</ opti on>

<option val ue="Qperations">Cperati ons</option>

Continued

321

Www.syngress.com

322 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Figure 7.25 Continued

<option val ue="Marketi ng">Mar ket i ng</option>
<option val ue="HR"'>HR</ opti on>

<option val ue="Accounting">Accounti ng</opti on>
</ sel ect >

</ p>

<p>Sel ect your Location: </ p>

<p>

<sel ect name="| oc">

<option val ue="Any" >Any</ opti on>

<option val ue="New Yor k" >New Yor k</ opti on>

<option val ue="San Franci sco">San Franci sco</option>
<option val ue="Denver">Denver </ opti on>

<option val ue="Dal | as">Dal | as</ opti on>

<option val ue="Washi ngton, DC'>Wshi ngton, DC</option>
<option val ue="Phoeni x" >Phoeni x</ opti on>

<option value="Salt Lake City">Salt Lake City</option>
<option val ue="Chi cago" >Chi cago</ opti on>

<option val ue="Seattl e">Seattl e</option>

</ sel ect>

</ p>

<p>Sel ect your Title:</p>

<p>

<sel ect name="title">

<option val ue="Any" >Any</ opti on>

<option val ue="Associ at e">Associ at e</ opti on>

<option val ue="Supervi sor" >Super vi sor </ opti on>

<option val ue="Manager " >Manager </ opti on>

<option val ue="Vice President">Vice President</option>
<option val ue="Presi dent">Presi dent </ opti on>

</ sel ect>

</ p>

WwWw.syngress.com

Continued

Deck of Cards: Designing Small Viewpoint Content * Chapter 7 323

Figure 7.25 Continued

<p>Enter a Keyword:

<i nput nane="key"/></p>

<p>

The followi ng paraneters have been set:

Departnent: $(dept)

Location: $(loc)

Title: $(title)

Keyword: $(key)

</ p>

</ card>

</ wm >

UP.Browser Interpretation

In this section we will walk through the above deck (Figure 7.25) using the
UPBrowser SDK. We will illustrate how this browser will render multiple
<SELECT> and <INPUT> elements in a single deck. In sharp contrast to how
a desktop browser would render these individual form elements, the user is
stepped through the different elements on the single card as if they were indi-
vidual cards in the deck and linked in a linear fashion. When the user pulls up
this deck in the UP.Browser, they will see only the first <SELECT> list, as illus-
trated in Figure 7.26.

Figure 7.26 directory2.wml on UP.Browser: Department Criteria

Www.syngress.com

324 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Upon selecting the Department, the user is forwarded to the next

<SELECT?> list on the card; in this case it is the Location selector. This is shown
in Figure 7.27.

Figure 7.27 directory2.wml on UP.Browser: Location Criteria

Select your Lacation:

31 San Franoisco
4 Benver
5 Dallas
(1) 4

Again, upon selecting an item in this list, the user is forwarded to the next
(and final) list on the card, the Title selector, shown in Figure 7.28.

Figure 7.28 directory2.wml on UP.Browser: Title Criteria

2 Associate

1 Supervisor

4 Manager

5 Wice President
(1.4

Once the user has selected the criteria by which they would like to search,
they are given the option to enter a keyword, shown in Figure 7.29.

Figure 7.29 directory2.wml on UP.Browser: Keyword Option

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Finally, the user is shown the results of their entry, as illustrated in Figure 7.30.

Figure 7.30 directory2.wml on UP.Browser: Viewing Parameters

As you can see, the UPBrowser will step the user through individual
<SELECT> lists on a single card as if they were individual cards (keeping
keystrokes to a minimum). The reason for this has to do with the evolution of the
UPBrowser: When it was first introduced, the UP.Browser was strictly capable of
rendering Handheld Device Markup Language, and in many cases (especially in
the U.S.), the binary that the phone receives is actually HDML that has been
transcoded from WML by the WAP Gateway.

This transcoding can pose some strange behavior in your application if you
are using 3.1 UP.Browser features on a phone that only supports HDML 3.0.

A full discussion of these differences is outside the scope of this chapter, but
more details on this can be found on the Openwave Developer Web site at
http://developer.openwave.com.

Nokia Interpretation

One of the key differences between the UPBrowser and the Nokia browser is
that the Nokia browser renders any <SELECT> list as being mapped to a List
option on the Accept key. This feature forces the user to list the options before
they can select one. Once they have listed the options, they can select one.

Once the user has selected an item and hit OK, they are returned to the card
containing the <SELECT> list. The usability hindrances imposed by this will
become evident when we load up directory2.wml in the Nokia SDK.

When the user first pulls up this deck, they are presented with several screens
of text with all of the <SELECT> lists and the <INPUT> element rendered on
the same page. In addition, the user can scroll down to see the final paragraph in
our card, which displays the state of the variables on the card. Figure 7.31 illus-
trates what the user will see when loading up this card (note that this browser
renders the fitle attribute of the <CARD> element, unlike the UP.Browser).

325

Www.syngress.com

326 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content
Figure 7.31 directory2.wml on Nokia SDK: Selector List

] T O e
Salect your

Eﬁﬁ'ﬂ&l‘!.

Salect wour Location:
List

Once the user selects the List option while the Department selector is active,
they see the following screen (Figure 7.32).

Figure 7.32 directory2.wml on Nokia SDK: Department List Option

On this screen, the user can use their arrow keys to move up and down the
list. Once they have highlighted the desired option, they must hit the Select
button to change the value, as illustrated in Figure 7.33.

Figure 7.33 directory2.wml on Nokia SDK: Selecting from List

L Dirociory
Salact your

 Shipping Deparirnent:

) Dpeteratians ﬂ |
Select your Location:

Gt OH Lisd

Once they have selected the option, they must then hit the OK button to
return to the card that contains the <SELECT> list. This process must be
repeated for each <SELECT> element on the card.

This feature is similarly implemented with the <INPUT> form element. The
user must select the input, then select Edit to enter their selection. Figure 7.34
illustrates what this looks like for the user.

First, they must edit the <INPUT> element. Once they select Edit, they can
enter text to be stored within the variable. When they are done entering their
text, they must hit the OK button to be returned to the card containing the
<INPUT> element.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7 327

Figure 7.34 directory2.wml on Nokia SDK: Entering Keyword

Erlhnr a Keywand Smm-‘
Your Search
Edit OH

NoTE

Enter a Keywant
[EEDIR

Your Sparch
Edit

It is possible to do some rudimentary input validation by using the
format attribute of the <INPUT> element. More details on this can be
found in Chapter 4. It is also possible to do some complex input valida-
tion by using WMLscript. More information on this can be found in

Chapter 5.

At the end of this process, the user can scroll down to see the state of the

variables that they have entered, as shown in Figure 7.35.

Figure 7.35 directory2.wml on Nokia SDK: Viewing Parameters

Direciory:
Ligparirent; Any
Location: Ay

Title: Ay
Fapwond Seth

As illustrated here, there are large differences in how the UP.Browser and Nokia
browsers will render <SELECT> and <INPUT> elements. The cumbersome way
the Nokia browser interacts with these elements is certainly cause for careful atten-

tion to be paid as to which browsers are being used to access your WAP site.

4thPass Kbrowser Interpretation

The Kbrowser, available at www.4thpass.com, renders WML significantly difter-

ently than either the UP.Browser or the Nokia browser. In order to illustrate

these differences, we will compare how this browser renders the first example
(with <SELECT> elements on difterent cards) with how it renders the second
example (with the <SELECT> elements on the same card).

Www.syngress.com

328 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Directory.wml Example

Figure 7.36 illustrates how the 4thpass Kbrowser will render directory.wml. One

of the first things that we notice is that the <TEMPLATE> element is rendered
at the top of the user’s screen.

Figure 7.36 directory.wml on Kbrowser: Selector List

Palrm OS5 Errvella Lo F

Figure 7.37 illustrates how the Kbrowser renders <SELECT> elements. Their
behavior is similar to how a desktop WWW browser renders radio buttons. They

are treated as a set of mutually exclusive checkboxes, and the user is not able to
select more than one element.

Figure 7.37 directory.wml on Kbrowser: Department Criteria

Palrm OS5 Errvella Lo F

Figure 7.38 illustrates what the final card of this deck looks like. Note the
encoded space that is displayed when we show the Location variable. This can be
eliminated by unescaping the value of the variable by entering:

$(l oc: unesc) instead of $(Ioc)

Www.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Figure 7.38 directory.wml on Kbrowser: Viewing Parameters

Palm 05" Erfulaloi F’

NoTE

The 4thPass Kbrowser is will render keys that have been disabled with
the <NOOP/> attribute. It is not possible to disable the <PREV/> ele-
ment with <NOOP/> for this browser. There is a workaround, however,
which involves assigning an <ONENTERBACKWARD > event to kick the
user one element forward in their history stack.

This example behaves pretty much as expected, assigning values to the vari-
ables and allowing the user to see the results of these values. When the
<SELECT> elements are on different cards, this browser behaves functionally
equivalent to the other browsers, but what happens when we implement the
second example?

Directory2.wml Example

When we load up directory2.wml in the 4thpass Kbrowser, all of the elements
are displayed on the same page, as shown in Figure 7.39.

However, the state of the page is not updated upon selecting any of the ele-
ments on the page, and we cannot refresh the page without resetting the values
of the variables. If this application were to be deployed into production, any
users browsing the site with the 4thpass Kbrowser would be faced with an unus-
able application. If you are including this browser in the target browser set for
your application, you would be best to branch your code according to the

329

Www.syngress.com

330 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

HTTP_USER_AGENT string, and test it thoroughly on a variety of devices

and emulators.

Figure 7.39 directory2.wml on Kbrowser: Selector List

In this section, we’ve seen that the same WML code may be compiled and
rendered on a variety of devices with radically different interfaces resulting from
how the browser interprets the code. In some cases, it is possible to write WML
that will compile for a wide variety of browsers, but that will not be functionally
equivalent among them. The examples presented here should be enough to con-
vince you that it 1s important to view your code on difterent devices and branch
it accordingly.

Developing & Deploying...

The Importance of Testing

It is extremely critical to test your WML site or application on every single
emulator or device you can get your hands on. If your target audience
lies within the United States, it is doubly critical to do so, as the binary
that is displayed on any given device will not necessarily be the WML
that you have written (due to WAP gateway transcoding). Also, some
emulators and devices may behave differently.

In addition to the technical concerns, it is critical to test the human
factors of your application using real users in real-world scenarios. Try
testing your application while on the train, or in a cab, or walking down

Continued

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content * Chapter 7

the street. It may be very easy for you to use your site while you are sit-
ting comfortably at your desk, but it may be very hard to use in the field.
You will also find that it is much easier to enter input with a desktop key-
board and mouse than it is to do with a stylus or keypad.

You may find that an application that works gracefully in an emu-
lator and a controlled environment is clunky and hard to use in a real
world situation. You may also find that regular users will have difficulty
interpreting your application because they are unfamiliar with it. By
showing a prototype of your application to a novice user, you will gain
valuable information on how to make the final version more usable, and
by testing on real-world devices you will be subject to the constraints
that all users face in the field.

331

Www.syngress.com

332 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Summary

In this chapter, we have discussed the pyramidal navigational structure that is

fairly prevalent on the WWW. We have discussed the many mistakes that are

commonly made by Webmasters making the transition to wireless, and how these

mistakes are largely the result of an attempt to represent the WWW on a small-

viewpoint device.

In order for Webmasters to provide eftective, compelling applications, it is

‘k necessary for us to work within the constraints of the wireless landscape. This
involves accommodations of a technical nature, such as the minimized use of
images and extraneous markup; as well as accommodations of a human nature,
such as taking mobility into consideration and minimizing the data a user must
input to interact with an application.

There are some unique features to WML that allow us to send multiple
screens to the user at once, and it is possible to use this feature to our user’s
advantage by limiting the number of server connections that must be initiated by
the handheld device. It’s possible to build a swift-feeling application by making
use of the hub-and-spoke metaphor and parceling our site into one deck for nav-
igation and several decks of content. In addition, a linear, task-based navigation

- scheme will result in a more efficient relay of information to the user.

In this chapter, we also examined the display differences among the different
browsers, and found that there are significant differences in how the most
common WML browsers display content and Ul elements. Designing an applica-
tion and branching your code with these differences in mind will help to ensure
the best user experience possible.

It is of critical importance to test your applications on a wide variety of
devices, and although we're dealing with a great many devices and input mecha-
nisms, it is possible to apply some thought to the usability of our applications so

i as to create a more effective user experience.

Last, but certainly not least, it is of utmost importance to test your application
with real users in the field. As of yet, there is no emulator that can eftectively
recreate the experience of entering text into a mobile phone browser on a
crowded train at rush hour! With a little forethought and a lot of patience, it is
possible to build usable WML applications and debunk the myth that WML is, by
nature, a hindrance to usability.

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7

Solutions Fast Track

Thinking In the Hand, not On the Web

M

The wireless Internet provides us with a smaller viewpoint for content,
and it is not possible to represent the typical pyramidal site structure of
the WWW on handheld devices.

It is difficult to provide both horizontal and vertical navigation on a
mobile device due to a lack of screen real estate.

The needs of the mobile user necessitate a fairly linear, task-based
navigational scheme, with a frequency of access-based segregation of tasks.

Working within the bandwidth and input constraints of the wireless
medium can prevent the mistakes that are typically made by many
Webmasters.

Stacking a Deck of Cards

]

M

It is possible to make many small refinements to your markup that will
have a cumulative effect on the final size of your content.

A hub-and-spoke metaphor can be used eftectively within the
framework of WML. Users have full freedom of vertical navigation,
though this metaphor does not use horizontal navigation.

Minimizing the number of server connections can greatly increase a
site’s usability, and one of the easiest ways to do this for small sites is to
send one deck consisting of navigation, and, on request, send decks that
contain the sections’ content.

WML variables are stored on the device (similar to cookies), and are
persistent between decks as well as cards. You should be aware of the
state of the user’s variables in your application, and clear them as
appropriate.

333

334 Chapter 7 * Deck of Cards: Designing Small Viewpoint Content

Examining Display Differences Between Browsers

M One of the most notable differences between the UP.Browser and the
Nokia browser is in the rendering of the <SELECT> and <INPUT>
elements. On average, the Nokia browser user will need to enter twice
as many keystrokes.

M The 4thpass Kbrowser (for the Palm OS) renders WML differently than
* either the Nokia or the UP.Browser. If you are supporting this browser
in your site, you should take care to branch your code and test your
application thoroughly.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: How many devices should I test my application on?

A: You should test your application on as many devices as is possible, because
each device manufacturer may interpret your code slightly differently
depending on the browser and carrier. Emulators are widely available, but
they do not necessarily provide the same real-world experience. Furthermore,
once your code is run through a gateway, it may function differently on dif-

i J ferent devices.
Q: How can I disable the user’s Back button?

A:You can use the following code to prevent your users from re-entering your
application:
<do type="prev">
<noop/ >

</ do>

WwWw.syngress.com

Deck of Cards: Designing Small Viewpoint Content ¢ Chapter 7 335

Q: Where can I learn more about usability?

A: Jakob Nielsen is one of the foremost usability experts. He publishes regular
usability reports (mostly pertaining to the Web), and has a comprehensive
archive of his articles on his Web site at www.useit.com.

Q: Should I use <SELECT> lists for navigation?

A: 1t is generally recommended that <SELECT> lists be used for navigation on |
the UP.Browser, but that a list of links be presented to the Nokia browser. If
you do use select list for the Nokia browser, be sure to use the onpick
attribute to save your users a click.

Www.syngress.com

Chapter 8

Wireless Enabling
Your Big Bandwidth

Site

Solutions in this chapter:

Defining WAP MIME Types H;'.-ilz
Detecting WAP Devices

‘Optimizing Content Distribution

Delivering Wireless Data

Implementing Wireless Graphics

M Summary

M Solutions Fast Track

M Frequently Asked Questions

337

338

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

Introduction

So, your supervisor has told you that your company must take advantage of the
wireless Internet and that as the Webmaster, you are to convert the company’s
existing Web site to a wireless version. Seems easy enough, right? You should be
able to run a program over the document area of your site and in a day or so
your site will be available to any user with a wireless device!

Although the idea is appealing, it certainly is not a reality. Delivering content
over the airwaves to mobile devices carries with it several limitations, most
notably in terms of device display, bandwidth, and the sheer number of different
devices capable of browsing Internet content over a wireless connection. It is of
utmost importance that Webmasters be aware of the limitations of wireless
devices and devise a new strategy for delivering content to said devices.

In this chapter, we will cover the nuts-and-bolts issues of adding wireless
capabilities to your existing site. We will cover server configuration for the two
most common Web servers on the market and discuss methods for detecting
which users can access wireless content. We will discuss the issues and solutions
surrounding the automated conversion of existing Web sites. We will also cover
how to make your wireless data applications accessible and how to implement
graphics that will be viewable on wireless devices.

This chapter assumes that you already have some experience with server con-
figuration and CGI programming, and that you have a basic knowledge of WML.
If you do not have any experience working on the server-side, then this chapter
will cover the basics, and you should not have a problem setting up the wireless
section of your site.

Defining WAP MIME Types

Setting up your Web server software to dispatch wireless content is the first step
to making your Web site available to the wireless Internet. The steps needed to
accomplish this will differ according the server software and platform, but the
basic process is the same.

As you probably already know, Web browsers recognize and handle content
according to information sent in the response header by the server. In any given
response, the Web server will send out a file accompanied by a Multipurpose
Internet Mail Extension (MIME) type. A MIME type, in relation to an HTTP
transaction, is a definition of the type of content contained in a given file being
sent to a Web browser.

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8 339

MIME types are typically associated with file extensions that are mapped in
the server configuration and sent out with all files containing that extension. In a
server-side programming environment (using PHP or ASP, for example), it 1s pos-
sible to specify the MIME type manually within the response.

Selecting which MIME Types to Add

First off, depending on the market in which you want to provide your wireless
content, and the extent to which you use WMLScript, you will need to add some
or all of the MIME types and file extensions to your server configuration that are
listed in Table 8.1.

Table 8.1 MIME types and file extensions for your server configuration

MIME Type File Extension
Text/vnd.wap.wml wml
application/vnd.wap.wmlc .wmlc
Text/vnd.wap.wmls .wmls
application/vnd.wap.wmlscriptc .wmlsc
image/vnd.wap.wbmp .wbmp
Text/x-hdml .hdml

NoTE

If you are already familiar with the basics of WML and with adding MIME
types to your server, you may want to add the types from Table 8.1 and
skip down to the section titled “Detecting WAP Devices.”

If your audience is located in the U.S.., it is important to define the last
MIME type listed above and to build support for HDML into your site. The
reason for this is that there are many phones in use in the United States that do
not support WML, and many of the phones that do support WML do so only
via gateway translation. You may be able to get around this by restricting your
use of WML to the features that are supported in HDML 3.0, however. More
details on this can be found at the developer section of the OpenWave Web site
(http://developer.openwave.com).

Www.syngress.com

340 Chapter 8 * Wireless Enabling Your Big Bandwidth Site

Adding MIME Types to
Your Server Configuration

In this section, we will discuss how to add the requisite wireless MIME types to
your site in order to dispatch wireless content. Before we get into the details of
adding MIME types to your server configuration, it makes sense to have at least
one piece of content to dispatch for testing purposes. The following code, saved
as hello.wml, will create your first WML page; Figure 8.1 shows the resulting
screen on the UP.Browser.
<?xm version="1.0""?>
<! DOCTYPE wrl PUBLIC
"-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforum org/DTD/wr _1. 1. xm ">
<wml >
<card id="hi" title="Hello!">
<p>
Hel | 0, worl d! </ b>
</ p>
</ card>
</ wm >

Figure 8.1 Our hello.wml File as viewed with the UP.Browser SDK

i e D Sewom Hew

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

The first two elements of this file are very important. They carry the message
that the file is an Extensible Markup Language (XML) document, and that it
must be validated against the Document Type Definition (DTD) specified. In this
case, our markup needs to comply with the DTD published by the WAP Forum.
These lines are a form of guarantee that the document will contain valid markup
without any stray, missing, or uncompleted tags. You should place this file in a
publicly accessible place in the document area of your site.

If you try to access this file from a WML browser without setting the MIME
types in your server configuration, you will receive an error. On most Web
servers, text/html is set as the default MIME type, so if you have yet to associate
the .wml extension with the text/vnd.wap.wml MIME type your server will not
recognize the content of the file as WML or send out the correct MIME type.
Correspondingly, the client will not be able to render the content.

Depending on the server software you are running, you will need to perform
a different set of steps to add the MIME types. We will cover adding the MIME
types to the two most common Web servers on the market: the Apache Web
Server (www.apache.org) and Microsoft’s Internet Information Server
(www.microsoft.com/iis).

Configuring the Apache Web Server

There are many options available to add MIME types to the Apache environ-
ment. Where you choose to add the configuration depends largely on the imple-
mentation of the server itself. If you want to implement the MIME types in a
global manner, simply add a few new lines to the mime.types file. If you are run-
ning many individual Web sites (VirtualHosts), you may want to add the MIME
types on a site-by-site basis. If you do not have root access to the machine run-
ning the Web server, it may make the most sense to use an .htaccess file to add
new directives to the server configuration. We will examine these three method-
ologies in detail.

\WARNING

Before making any changes to a server configuration file, it is generally
good practice to make a backup of the file you are editing. That way, in
the event that you make a mistake while editing, you can be assured to
have a working version of your configuration file.

341

Www.syngress.com

342

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

Adding to the mime.types File

To add wireless MIME types to this Apache configuration file, you first need to
locate mime.types. On a Linux/UNIX system, the file will typically be located in
/usr/local/apache/conf. On a win32 system, the default Apache Web server
installation will place the file in C:\Apache\contf.

Open the file using a text editor (such as vi or Notepad), and add the fol-
lowing lines:
text/vnd. wap. wr . wni
application/vnd. wap. wr c .wrc
text/vnd.wap.wrs .wnls
application/vnd. wap. wr scriptc .wr sc
i mage/ vnd. wap. wbnp . wbnp
text/x-hdm . hdni

Save your changes, and then restart the Web server. You should now be able to
see your “hello, world” WML document when you request http://your.site.com/
wap/helloworld.wml using a WML browser.

Adding to the httpd.conf File

The configuration file httpd.conf is used to configure many (or in some cases, all)
of the options available within the server environment. Adding the MIME types
to this file allows us more flexibility as far as defining the MIME types for any
individual VirtualHost running on our server.

You must add the types using the AddType directive according to the fol-
lowing syntax:
AddType text/vnd.wap. wr . wrl
AddType application/vnd. wap. wr c .wrc
AddType text/vnd.wap.wrs .wns
AddType application/vnd. wap. wr scriptc .wr sc
AddType i nage/ vnd. wap. wonp . wbnp
AddType text/x-hdm . hdm

The AddType directive can be added to any Directory or VirtualHost defined
in httpd.conf. Appending the entries to httpd.conf accomplishes the same eftect
as adding them to mime.types. Save your changes, and then restart the Web
server. You should now be able to see your WML document when you request
http://your.site.com/wap/helloworld.wml using a WML browser.

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

Using the .htaccess File

In the event that you do not have root access to the Web server (as is often the case
in shared hosting environments), you can define the MIME types in an .htaccess
file residing in the directory in which you will be placing your content. As above,
the MIME types are defined using the AddType directive and syntax. An .htaccess
file containing only the AddType definitions would contain the following:
AddType text/vnd.wap. wr . wrl

AddType application/vnd. wap. wr c .wrc

AddType text/vnd.wap.wrs .wns

AddType application/vnd. wap. wr scriptc .wrsc

AddType i nage/ vnd. wap. wonp . wbnp

AddType text/x-hdm . hdm

You should now be able to see your WML document when you request
http://your.site.com/wap/helloworld.wml using a WML browser.

Adding MIME Types to Microsoft IIS

MIME types can be registered in IIS 4.0 and 5.0 using the Internet Service
Manager console. Adding the MIME types to Microsoft’s Internet Information
Server (IIS) can be done via the following steps:

1. Select Default Web Site (or whatever Web site you wish to enable for
wireless content) and bring up the Properties dialog box.

2. Select the HTTP Headers tab.
Under MIME Map, click the File Types tab and select New Type.

4. Type .wml in the Extension field and text/vnd.wap.wml in the
Content Type field, and then click OK.

5. Repeat the previous steps for each of the MIME types and extensions
mentioned earlier in this chapter for each site running on your machine.

In addition, Under IIS 5.0, you have the option to add MIME types for all
sites running on the same server by doing the following:

1. Select Internet Information Services and bring up the Properties
dialog box.

2. Under Computer MIME Map, click the Edit button and select New
Type.

343

Www.syngress.com

344

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

3. Type .wml in the Extension field and text/vnd.wap.wml in the
Content Type field, and then click OK.

You should now be able to see your WML document when you request
http://your.site.com/wap/helloworld.wml using a WML browser.

Detecting WAP Devices

Thus far in this chapter, we have covered the MIME types that you need to add
to your server configuration in order to serve content to wireless devices, and we
have discussed how to add those MIME types to your server configuration. At
this point, your Web server should be running and happily sending out the
appropriate MIME types for your content. Now, we will shift our attention to
the client and discuss how to detect the types of content that a user can accept
according to the information sent in their request.

There are, at present, many different devices capable of accepting WML con-
tent. These range from mobile phones with 2 lines of visible text, to Personal
Digital Assistants (PDAs) with screens capable of displaying much more, to desktop
WAP emulators capable of rendering WML. It 1s very important for the Wireless
Webmaster to understand the unique ways in which their services will be rendered
on these differing devices, and to have a solid means of determining the attributes
of the browser that is being used to access the content at any given time.

In this section, we will provide a simple example of detecting and redirecting
WAP devices to the correct content according to the information sent in the
request header. We will provide an example of how to detect the language that
the device can accept and how to detect which type of device is requesting your
content. Examples will be provided in PHP and Perl, but it will be possible for
you to adapt these examples to any server-side scripting language, such as ASP,
Java, or Python (to name a few). The means of parsing header information are
language-specific, but the information is common to any HTTP transaction, and
any server-side programming or scripting language will do.

Parsing Header Information

As you are probably already aware, all browsers using the Hyper Text Transfer
Protocol (HTTP) send certain information along with any request. This informa-
tion 1is sent within the request header, and tells the Web server about the browser
making the request. These environmental variables include text strings that
describe the computing environment of the Web server. Some of these strings

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

describe aspects of the Web server, such as the software that the server is running,
or the email address of the server administrator. Other variables contain informa-
tion about the client, such as the difterent types of content the device can accept
or the URL of the referring document.

You may have used the HTTP_USER_AGENT header to discern which
browser your user is using, in order to deliver appropriate Cascading Style Sheets
(CSS), or perhaps you have parsed the HTTP_ACCEPT header to figure out if
your user can accept a Macromedia Flash Movie. These are the same variables
used in order to detect wireless devices. We will briefly discuss these variables
before moving on to an example of how to redirect users based on their device.

NoTE

You will not be able to detect wireless devices with a client-side scripting
language such as JavaScript. The request must be handled at the server
level in order to deliver the appropriate MIME type with your content.

HTTP_USER_AGENT

The HTTP_USER_AGENT variable contains a text string identifying the
browser that is sending the request. It will most commonly contain an abbrevi-
ated name and the version number of the browser. The Nokia browser will
report the model of the phone in this string, and any phone using the
UPBrowser (also known as the Phone.com browser) will report the version of
UP.Browser that the device is using. Ericsson phone browsers identify themselves

by name as well.

NoTE

A comprehensive list of device specifications and WAP User Agents can
be found at www.allnetdevices.com.

To read the value contained in HTTP_USER_AGENT using PHP, you will
use the getenv() function, requesting the name of the variable. The function will
return the value of the variable requested. While using Perl, you will obtain the

345

Www.syngress.com

346

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

value of the HTTP_USER_AGENT by accessing a special data structure (a hash,
for those familiar with Perl data types) called %ENV. For example, to get the
value of HTTP_USER _AGENT, you would use the following fragment in a
PHP page:

<?

$useragent = getenv("HTTP_USER AGENT");

print $useragent;

?>

or the following fragment in a Perl program:

$useragent = $ENV{ HTTP_USER AGENT };

print $useragent;

or the following fragment in an ASP page:

<%

useragent = Request. ServerVari abl es("HTTP_USER_AGENT")
Response. Wite(accept)

%

It certainly does not provide much value if we just print out the variable to
the user! In order to make some use of the variable, we must evaluate it and
make a decision on what to do.

One of the most pragmatic uses of this variable is to differentiate phones, and
pagers with very limited displays, from PDAs with larger displays. Remember that
any user browsing your site through a phone will be largely dependent upon a
text interface, while a user browsing your content with a PDA will be able to
interpret the content in a more visual manner.

In the following example, we will cover how you can use HTTP_USER
_AGENT header to redirect your users to appropriate content based on which
browser they are using. We will differentiate the two major phone browsers from
the major PDA browsers and redirect our users appropriately.

First oft, we will need some means of storing our device profiles. For our
expository purposes here, we will be using a text file that lists a few strings that
will be contained in the HTTP_USER_AGENT header and associates each
string with a device type (Figure 8.2). Note that this is a simplified implementa-
tion of this concept. It is also possible to create elaborate device profiles using
XML or Databases.

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8 347

Figure 8.2 Contents of ualist.txt

4t hpass. com KBrowser 1.0: PDA
UP. Browser/ 3. 1- UPGL UP. Li nk/ 3. 2: Phone
Noki a- WAP- Tool ki t/ 2. 1: Phone

Next, we will need a program to retrieve the HTTP_USER_AGENT header
and compare it to the entries in the file (Figure 8.3).

Figure 8.3 Contents of device.cgi

#! [/ usr/ bi n/ perl

use strict;

ny $test = $ENV{ HTTP_USER AGENT };
my $type;

open(DB, ' <ualist.txt");

whi | e(<DB>) {
ny($ua, $dev) = split(/:/,%$);
if ($test eq $ua) {

$type = S$dev;
}

}

cl ose(DB);

print STDOUT "Content-type:text/vnd. wap. wi\n\n";
print STDOUT<<_CARD,
<?xm version="1.0"7?>
<! DOCTYPE wnm PUBLIC
"-// WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD) wr _1. 1. xm ">
<wni >

<card id="ua" title="HTTP_USER_AGENT">

<p>

HTTP_USER_AGENT: <br/ >$t est <br/ ><br/ >

Continued

Www.syngress.com

348

Chapter 8 * Wireless Enabling Your Big Bandwidth Site

Figure 8.3 Continued

Devi ce Type:
$type

</ p>
</ card>
</ wnl >
_CARD
exit;

As you can see from Figures 8.4 and 8.5, this file successfully detects a pre-
typed HTTP_USER_AGENT string and returns the type of device back to the

browser.

Figure 8.4 Output of type.cgi in UP.Browser 3.2

P, Drowser /3, 1-UPGL
P, Limk 3.2

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

HTTP_ACCEPT

The HTTP_ACCEPT variable contains a semicolon-delimited text string listing
the MIME types that the device can accept (text/vnd.wap.wml, for example). A
pattern match can be executed against this string to make sure that the device
can accept the content that you wish to send to it.

You will access the value of this variable using the same syntax as HTTP
_USER_AGENT.You will use the following in PHP:
<?
$accept = getenv("HTTP_ACCEPT");

?>

and the following in a Perl program:

$accept = $ENV{ HTTP_ACCEPT };

and the following in an ASP page:

<%

accept = Request. ServerVari abl es("HTTP_ACCEPT ")
%>

Just as with HTTP_USER _AGENT, we will need to do some additional
processing in order to do anything meaningful with the variable. In this case,
what is called for 1s a pattern match against the string to isolate the MIME types
for the client to accept. We will search the HTTP_ACCEPT variable and look
for the types of wireless markup languages in which our content is coded. For
example, to find out if our client can accept WML content, we need to look for
the following string:

text/vnd. wap. wrl

To do this in PHP, we will use the ereg() function, which executes a regular
expression search for a pattern in a string. The pattern and the string are passed as
arguments to the function. It is commonly used in a true/false context:

if (ereg("text/vnd\.wap\.wm", $accept)) {
/1 do something here

} else {

//do sonething el se

}

349

Www.syngress.com

350

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

To accomplish the same in Perl, we will use the ~ (tilde) operator, which is
used to determine whether the expression on the left contains the text delimited
within the slashes on the right. In this case, we are using the tilde operator to
determine whether the environmental variable HTTP_ACCEPT contains the
string “vnd.wap.wml”.

if (SENV{HTTP_ACCEPT} =~ /text\/vnd\.wap\.wr/) {
#do somet hing here
} else {

#do somet hing el se

}

There is certainly more to these functions that what we are doing here, but
neither an extensive discussion on regular expressions nor a serious foray into the
intricacies of programming is necessary here to deliver wireless content to your
users. The main thing that you should get from this section is the means to access
environmental variables using PHP and/or Perl, and gain some knowledge on
how to use these variables within the context of your site.

The next section will describe a program that will allow you to see all of the
environmental variables for any browser that queries it. You can install this script
on your site and take a peek under the hood of the browser that you use.

R eading Other Environmental Variables

There are many variables that are of use in the server environment besides the
ones mentioned in this section. Some devices will report their screen size or the
number of buttons that are on the device as environmental variables. You can
print out a list of all of the environmental variables to a browser by installing the
tollowing Perl program on your server:

#1/ usr/ bi n/ perl
this programw |l print out the environmental variables
to the client in WM, HDM., or HTM. dependi ng on the browser

this routine will detect whether the device
accepts WW., HDM., or HTM

sub detect _accept {

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

variable in which we will store the results

ny $result;

first, test for wn
if ($ENV{' HTTP_ACCEPT'} =~ nt4 ext/vnd\.wap\.wr %) {
assign result
$result = "wnl"

next, test for HDWM
} elsif ($ENV{' HTTP_ACCEPT'} =~ nPdext/x-hdm %) {
assign result
$result = "hdm ";

#if neither HDML or WML, then send HTM.
} else {
$result = "htm";

finally, send back string containing result

return $result;

now, we test the result of this routine and print out

our environnental variables

i f(&detect_accept eq "htm") {
#print HTM. header and print out results
print "Content-type:text/htm\n\n";
map { print "$_ : SENV{$ _}
" } keys %NV,
} elsif (&Jetect_accept eq "hdm") {
#print HDML header and print out results
print "Content-type:text/x-hdm\n\n";
print "<HDWML VERSI ON=' 3. 0' ><Dl SPLAY>";

351

Www.syngress.com

352

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

map { print "$_ : $ENVS$_}
" } keys %ENV,

print "</DlI SPLAY></ HDM_>";

} elsif (&Jetect_accept eq "wrd") {
#print WML header and print out results
print "Content-type:text/vnd. wap. wr\n\n";
pri nt <<HEAD;
<?xm version="1.0"?>
<! DOCTYPE wnm PUBLIC
"-//WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/wr _1. 1. xm ">
HEAD
print "<wr ><card id='first' title=" printenv'><p>";
map { print "$_ : SENV{$ }
" } keys %NV,
print "</p></card></wr >";
}

To install the program, save the above text as printenv.cgi, and put it in your
cgi-bin. If you are using a UNIX system, you will need to make sure that the file
is executable and that the first line of the file corresponds to the location of your
Perl installation.

You can request the file (http://your.site.com/cgi-bin/printenv.cgi) with
most any browser and view the complete list of environmental variables. There is
no flow control in this script, so bear in mind that when you send the content to
an actual device you may find that the deck is too large for the device to handle.
However, the emulators that are available for both the UPBrowser and the Nokia
WAP Toolkit do not suffer from the limitations imposed by WAP gateways. They
will deliver the deck contents even if they are too large for an actual device.

Redirecting Your Users to Static Content

Now that your Web server is up and running and you know where to look to
find out what types of content your users can accept, you can use this knowledge
to give your users what they want: content. In this section we will cover how to
redirect your users to separate static pages based on their browser. If you imple-
ment this on your site, it will allow you to send all of your users to the same
URL (http://your.site.com), regardless of the device that they are using. When

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

the user queries your URL, they will execute the redirection script (index.cgi)
and be directed to an appropriate index page coded in either HTML, WML, or
HDML.

We will provide examples in PHP and Perl in the following sections, and also
provide code samples of pages to make sure that the redirection example is
working correctly. The first code sample should look very familiar. It’s a small
HTML page that informs you (the user) that your script is correctly installed. The
last two code samples are written in WML and HDML, respectively, and will dis-
play the same message as the first example.

Redirecting Users in PHP

PHP stands for “PHP Hypertext Preprocessor” . It is a server-side scripting lan-
guage that allows you to embed control structures within your markup. It has
recently grown in popularity due largely to its portability, flexibility, and ease
of use.
<?
$accept = getenv("HITP_ACCEPT");
if (eregi("vnd\.wap\.wr", $accept)) {

header (" Location:/wn /index. wr");
} elseif (eregi("text/x-hdm", $accept)) {

header ("Location:/hdm /i ndex. hdm ");
} else {

header ("Location:/htm /index. htm");

?>

Redirecting Users in Perl

Practical Extraction and Reporting Language (Perl) has long been a favorite lan-
guage of many Webmasters due to its utility and interpretive syntax. Perl can be

used from the UNIX shell or implemented as a Web-accessible CGI program. In
this subsection, we will provide a Perl program that will redirect users to a page,
depending on the browser that they use to request the page.

#1/ usr/ bi n/ perl
$accept = $ENV{ HTTP_ACCEPT};
if ($accept =~ nmMiext/vnd.wap. wri %) {

353

Www.syngress.com

354

Chapter 8 * Wireless Enabling Your Big Bandwidth Site

print "Location:index.wrd\n\n";

} elsif ($accept =~ mMext/x-hdm %) {
print "Location:index.hdm\n\n";

} else {
print "Location:index.htm\n\n";

}

exit;
Code for index.html:
<htm >

<head>
<title>Congratul ations!</title>
</ head>
<body>
<h1>Congrat ul ati ons! </ h1>
<p>If you can see this, it nmeans that the redirect script installed
on this server is working correctly!</p>
<p>Your | anguage type is: HIM</p>
</ body>
</htm >

The code of this page is fairly straightforward; you probably don’t even need
to put it into a browser to know exactly how it will look (Figure 8.6)!

Figure 8.6 Output of index.html

':l:llrr.u.ll:ulullurrlll Bzie ol Dnbiinet Explo. [=] E

Fi= Edt Yiew Fgvodms Took Heb -
H
Congratulations!
‘'ongratulations!
IF wou can ses thes, i means that the redeect
SCrIpd wstaled oo thod gereer i '.v;':'.-u.l..-a:
carmecthy
Vour language type 15 HTIML
p— ¥ ¥ J
& Dore 0 Iriemat &

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

Code for index.wml (also refer to Figure 8.7):

<?xm version="1.0"?>
<! DOCTYPE wnm PUBLIC
"-// WAPFORUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTD/wm _1. 1. xm ">
<wni >
<card id="congrats" title="Congratulations">
<p>
Congrat ul ati ons!

Your redirect script is working!

</p>
<p>Your |anguage type is: WWL</p>
</ card>
</ wm >

Figure 8.7 Output for index.wml

Conjrratwlat iomns
¥our redirect soript

As noted throughout this book, one very important thing to note about
WML documents is that they must contain valid markup. Unlike in HTML,
there can be no stray or misplaced tags in your document. You’ll find this out
very quickly when you start to code your own WML on a regular basis!

Code for index.hdml (also refer to Figure 8.8):
<hdm versi on=3. 0>
<di spl ay>
Congr at ul ati ons!

Your redirect script is working!

Your | anguage type is: HDWML

355

Www.syngress.com

356

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

/ di spl ay>
</ hdm >

Figure 8.8 Output for index.hdml

Congratuwlations!
Your redirect soript
i warking!

Tour Lanipoage bype
is: HDML
nK

The third markup language that we will use 1s Handheld Device Markup
Language (HDML), which is used by many of the legacy phones available in the
United States. It is entirely up to you to decide which languages to support, but
we suggest that if you want to reliably deliver content to users in the United
States, build at least minimal HDML support into your site.

The first element of this document specifies that it is an HDML document
and that it is written in HDML 3.0. All HDML documents require a version
statement in the first line. The next element, <display>, is a type of card that can
be rendered with HDML. The other two types of cards that can be used are
<nodisplay>, which does not display anything to the user, and <choice> cards,
which allow the user to pick from a list of options. The HDML that you deliver
does not need to be validated against a DTD (like WML), but it is always recom-
mended that you code cleanly.

Support for HDML is waning as support for WML grows, but there are a
great many phones still in use that are only capable of rendering HDML. Some
WAP gateways do on-the-fly transcoding of HDML to WML and vice-versa, for
phones that do not natively support either language. Some gateways will even
code HTML to WML, which we will touch on in the next section.

Optimizing Content Distribution

Just as you take care to manage the file system of your existing Web site, you
should put some thought into the organization of your wireless site. You may
wish to maintain two Web sites running on the same machine, one with the
name of www.yoursite.com, and one with the name of wap.yoursite.com. This
offers some benefits, as long as your users know where they are supposed to go.

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

On the other hand, you could install the redirection script covered above to send
your users to the correct location, wherever that may be.

Regardless of the technical issues of how you manage your content, it
makes sense to take a critical look at your current Web site, and to consider what
you want to provide to your wireless users on your wireless Web site. In this sec-
tion, we will ask the important questions that surround building a wireless Web
site, and discuss the issues surrounding the conversion of existing sites to the
wireless Internet.

Choosing Mobile Content

One of the first steps of building any site is choosing what content to display on
the site. This concept is of particular importance when we consider taking our
existing Web site to the wireless Internet. The primary questions that arise in
adapting a large existing site to the wireless Internet are the following:

1. What content/services might our users want to access while they are
mobile?

2. What limitations are there to the existing mobile interfaces that we must
consider?

Most likely, you will not be able (or will not want) to deliver all of your
existing site to mobile users. Critically examine your content and applications to
ensure that they are useful to the mobile user. For example, if you run a portal
site, you may want to deliver wireless news, weather, and email to your mobile
users, as this information 1s of most value to them. Content such as book reviews,
in-depth coverage of intricate issues, and user message boards or forums are best
left to the desktop browsers.

Remember that mobile users often have a very small window on your site as
well as a small-bandwidth connection, and that they will not benefit as greatly
from the high-bandwidth components of your site (such as images) or have the
ability to scroll through pages and pages of links. Try not to overwhelm the user.
Provide a small list of useful actions they can perform on your site, and the wire-
less portion of your site will be more successful.

Convert or Redevelop?

There are several approaches to adapting existing Web content to the wireless
Internet, and the optimal approach depends largely on the nature of the existing

357

Www.syngress.com

358 Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

content. There are roughly three options for enabling your site for wireless
consumption:

1. You could run a program that automatically traverses the HTML docu-
ment area of your site and produces HTML that is valid. You could then
use Extensible Style Language Transformations (XSLT) to transform the
valid HTML into a WML version according to an XSL ruleset.

2. Alternately, you might write a ‘wrapper’ program that will take a request
from a wireless browser and act as a proxy to the Internet. This program,
upon receiving a request, would retrieve and format the resulting con-
tent for a handheld device.

3. You could rebuild a new wireless version of your site, taking into con-
sideration the needs of wireless users and the nature of your content.

So how do you decide what to do? The first option is useful if you need to
get your site on the wireless Internet as soon as possible, and if your site is made
up primarily of text-based content with minimal formatting. The downside of
this option is that you cannot assure that your XSL, which operates on a static
rule set, will generate a user-friendly version of your site. If your site is already
coded in XML, then you can eliminate the first step of this solution and go
straight to XSLT.

The second solution is a good idea if you are familiar with the existing con-
tent and can reliably translate it on-the-fly. It certainly helps if the content is gen-
erated by a machine rather than by a human being, and is best suited for
low-bandwidth applications, such as entertainment calendars, traffic and weather
information, and movie listings. Another upside is that you can extract only the
elements that your users need, something that they will certainly appreciate. The
downside of this solution is that the actual request will be much slower to the
user because they are not only waiting for your server to return content, but they
are also waiting for your server to retrieve, convert, and deliver content.
Depending on the amount of formatting you must do, and the speed of the
HTML-based application, this delay may render your application too slow for the
mobile user.

We favor the third option because it is most likely to generate a user-friendly
wireless site. Many of the existing complaints about the wireless Internet could
have been avoided if the early adopters took this strategy rather than the first two
options. The problems associated with this option primarily have to do with
development time and resources because it is not always economically feasible to

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

start from scratch. Nonetheless, it makes the most sense for you to consider the
needs and desires of your users, and build your site around those needs.

NoTE

Google (www.google.com) has developed an intelligent on-the-fly con-
verter that will allow WML browsers to view HTML sites. It works for
small, basic, text-based sites, but ultimately fails on sites that contain
large amounts of graphic-based navigation elements or form-based con-
tent. Using this converter should be enough to convince you that any
automated conversion system, no matter how intelligent, fails when
compared to a wireless site designed with human usability in mind.

It is certainly possible to convert HTML (even bad HTML) to WML, but is
it desirable to do so? Most notably, existing translation mechanisms do not readily
allow for the file-size limitations of mobile devices. Furthermore, not all elements
of HTML are supported in WML, and any user interface will certainly be sub-
optimal unless re-engineered and re-coded by a human being. It is our recom-
mendation that you consider your application from the user’s perspective. Ask
yourself: would I want to have my content available on a handheld device? Does
it provide some utility to my users? Do the benefits outweigh the costs of devel-
opment? If the answer to any or all of those questions is no, then you should skip
to the next chapter!

Delivering Wireless Data

Making data available to mobile users is a key advantage that building a wireless
Web site can provide. If we are providing information from a database to users on
the WWW, we can make this same data available to users on wireless devices.

If your Web site is database-driven and content is separated from presentation,
you should be able to generate an eftective wireless Web site fairly painlessly. You
will certainly have an easier time building a site from a database of content than
by building one from many static pages of HTML that have been hacked
together over a long period of time by multiple people with varying skill-levels
and coding styles.

In this section, we will cover the coding of a module that will allow you to
adapt your existing data application to the wireless Internet. The theories and

359

Www.syngress.com

360

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

issues covered here will make sense for any existing Web site that separates con-
tent from presentation.

Making Your Applications Accessible

The first step to delivering wireless data is determining what type of device is
requesting the content. We have covered the means of detecting devices and redi-
recting users previously in this chapter, but now we will apply this detection
scheme as a means of selecting an interface to your application.

We will cover the basics of building a library that can be accessed from many
applications, and return a result that contains the language to be used, and the
type of device in order to apply some logic to the presentation of the retrieved
data. The routines, regardless of the programming language used, look something
like this pseudocode example:

I F devi ce_supports_wrl AND devi ce_does_not _support_hdmi
$l anguage = "wnl "

ELSE | F devi ce_supports_hdm
$l anguage = "hdni "

ELSE | F devi ce_supports_htm
$l anguage = "htm "

ELSE

$l anguage = "unknown"

I F device_i s_phone
$devi cet ype = "phone"
ELSE | F device_is_ PDA
$devi cetype = " PDA"
ELSE | F device_i s_Web_browser
$devi cet ype = "Web_browser"
ELSE

$devi cet ype = "unknown"

Once we have authored this routine and provided a means for it to be called
from our applications, we can use it to determine how and in what quantities to
display our content. For example, if the request for data came from a mobile tele-
phone, we can assume that our final deck of results should not contain more than
1397 bytes of data. If the same request came from a PDA, we might enable more

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8 361

chunks of the data to be displayed on a given card in the deck (but still minimize
the size of the deck because PDA users pay ‘per-byte’.) If the request came from
a Web browser, we might be able to send back all of the results in one page, with
extensive formatting.

The example in Figure 8.9 is provided in Perl, but you should be able to
adapt it to the server-side scripting language of your choice.

Figure 8.9 Language and Device Detection in Perl

#! / usr/ bi n/ perl

use strict;

ny $device = &det ect _devi ce;
nmy $l anguage = &detect_| anguage;

#det ects | anguage according to HTTP_ACCEPT

sub detect _| anguage {

ny $l ang;

ny $accept = $ENV{HTTP_ACCEPT};

if ($accept =~ nmMext/vnd\.wap\.wr %) ({
$lang = "wr";

} elsif ($accept =~ nbaext/x-hdm %) {
$lang = "hdm";

} elsif ($accept =~ nMext/x-htm %) {
$lang = "htm";

} else {

$lang = "";

}

return $l ang;

}

#detects device against known UA |ist (from device.cgi)
sub detect_device {

ny $type;

ny $uagent = $ENV{HTTP_USER_AGENT};

open(DB, ' <ualist.txt");

whi | e(<DB>) {

Continued

Www.syngress.com

362

Chapter 8 ¢ Wireless Enabling Your Big Bandwidth Site

Figure 8.9 Continued

ny($ua, $dev) = split(/:/,$);
if ($uagent eq $ua) {

$type = $dev;
}

}

cl ose(DB);

return $type;

}

The script in Figure 8.9 provides the basic building blocks to detect both the
language that the client can accept and the type of device requesting the content
(against a predefined list of user agents and device types). By using the results of
these two subroutines, it is possible to alter the presentation of retrieved data
depending on the properties of the client.

You could add additional methods to this library to extract the number of
softkeys a device has, or to collect device-specific identification strings (such as
the subscriber_no displayed in the header for the UP.Browser, or the %deviceid
of a Palm VII PDA.) Which environmental variables you choose to examine and
how you branch your code is implementation-specific, and it is possible to build
WML that works on all devices, but most instances will benefit from some code
branching or redirection.

Implementing Wireless Graphics

In general, wireless images will be of lower resolution, color depth, and file size
than their WWW counterparts. We will discuss the common file formats for
images sent over the wireless Internet, how to maintain accessibility when images
may not be available, and some of the more common methods for creating
images in the appropriate wireless format.

File Formats

Several difterent image file formats are supported on mobile devices. Two formats
with which any Webmaster will be familiar are GIF and JPEG. A format with
which traditional Webmasters may not be familiar is that of the Wireless Bitmap
(WBMP), a one-bit depth (two-color) bitmap. Which particular device supports

WwWw.syngress.com

Wireless Enabling Your Big Bandwidth Site « Chapter 8

any particular image format is a much harder thing to discern. Some devices sup-
port only WBMP images, and others support GIF and JPEG and not WBMP.
WML that is transcoded to HDML via a gateway may have all of the images
stripped out of it.

Maintaining Accessibility

[t is important to maintain accessibility of our site to devices that do not support
the technologies that we are using. This applies to images as well. It is absolutely
imperative to make use of the ALT attribute of the tag when building
our site so that users accessing the site with non-image capable browsers can still
gain value from the site (after all, we’re building it for the users, right?).

Converting Your Images

There are several means for creating images that are viewable by mobile devices.
Teraflops (www.teraflops.com/wbmp/) provides an online converter that converts
images uploaded via a Web browser. A search for “WBMP” on Tucows
(www.tucows.com) will turn up a wide variety of free and/or shareware tools
available for download.

363

Www.syngress.com

364

WwWw.syngress.com

Chapter 8 * Wireless Enabling Your Big Bandwidth Site

Summary

While it may not be possible to magically convert your existing Website in all its
glory to a wireless version, it is certainly possible to add wireless capabilities to an
existing Website without a complete overhaul.

In this chapter, we have covered the means of adding wireless capabilities
at the directory, site, and server level to existing Web server environments for
both Apache and Microsoft IIS; and discussed the issues involved with making an
existing site available to mobile users.

We have discussed the means of detecting wireless devices and redirecting
users to appropriately formatted content, using PHP and Perl, and based on
information contained in the environmental variables HTTP_USER_AGENT
and HTTP_ACCEPT. We also examined a small library written in Perl that can
be used to detect language types and devices in order to branch display code
according to the user’s browser.

In addition, we discussed the issues surrounding the automated conversion of
HTML to WML, and discussed wireless graphics and some tools available for
graphics conversion.

Solutions Fast Track

Defining WAP MIME Types

M It is important to consider the market for which you are delivering
content, and to define the appropriate MIME types for the devices used
by your users.

M There are several options for defining MIME types under the most
common Web servers on the market. MIME types may be defined and
Wireless content may be deployed at the directory, site, or server level.

M WAP MIME types are defined in the same manner as any other MIME
type.

Detecting WAP Devices

M WAP devices send the same type of header information to Web servers
as desktop browsers do.

Wireless Enabling Your Big Bandwidth Site « Chapter 8

M HTTP_ACCEPT can be used to detect the language that a given
browser can accept.

M HTTP_USER_AGENT can be used to differentiate browsers
depending on the reported name of the browser.

M A combination of HTTP_ACCEPT and HTTP_USER_AGENT can
be used to redirect devices to appropriate content, or to profile devices
for formatting.

Optimizing Content Distribution

M Regardless of the technical issues of how you manage your content, take
a critical look at your current Web site and consider what you want to
provide to your wireless users.

M It is possible to automatically format existing sites, but with dubious
results.

M WAP sites may be set up with the same flexibility as Web sites.

Delivering Wireless Data

M Mobile users are more often in need of data rather than content.

M It is important to separate content from presentation for data
applications.

M Build modules that enable device profiling and accordingly allow for
different presentations of dynamic data from the same source.

Implementing Wireless Graphics

M Several different formats are supported, including common Web formats
for some devices.

M Ensure accessibility by using <ALT> tags on all images, and conserve
bandwidth by only using graphics when necessary.

M Online and desktop converters are available to automatically convert
your existing images.

365

L

366

Chapter 8 * Wireless Enabling Your Big Bandwidth Site

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Will I need to install a WAP gateway to serve out my site?

A: No.You only need to configure your Web server to deliver the appropriate
content.

Q: What kind of server-side scripting languages can I use to create wireless con-
tent?

A:You can use ASP, PHP, JSP, Perl, Python, Ruby, or any other server-side
scripting language to print WML to a browser:

Q: Do I need to branch my WML code for different browsers?

A: Not necessarily. If your code is well designed and valid, it should display on any
browser that supports WML. However, there are seme differences between
browsers that do affect usability. Depending on the nature of your implementa-
tion, you may want to branch your code for a better user experience.

WwWw.syngress.com

Chapter 9

Microsoft Mobile

Internet Toolkit

Solutions in this chapter:

= Overview of the .NET Mobile Architecture
= Introduction to ASP.NET

= Developing Mobile Web Forms

» Accessing Data with ADO.NET

M Summary
M Solutions Fast Track

M Frequently Asked Questions

367

368

Chapter 9 * Microsoft Mobile Internet Toolkit

Introduction

In the earlier chapters you have seen the use of the Wireless Markup Language
(WML) and WMLScript for creating mobile applications and services. In this
chapter, we will take a look at the Microsoft Mobile Internet Toolkit and how it
can aid in mobile application development. The Microsoft Mobile Internet Toolkit
is a set of mobile framework extensions that have been added to ASPINET Web
Forms. With these extensions, a mobile application developer can create compelling
mobile applications without worrying unduly about the limitations of the various
target devices. The current situation in mobile application development is that var-
ious devices have a very different look and feel, and often developers have to spend
huge amounts of time tailoring their applications to run on the target devices. A
typical solution is to code the content of your application in XML and use XSLT
to transform the content into a target markup language like WML.

Rather than focusing on the user interface issues, the Microsoft Mobile
Internet Toolkit provides a set of APIs to let the developer concentrate on the
functionality of the application. During runtime, the Microsoft Mobile Internet
Toolkit API will automatically detect the kind of device accessing the application
and generate the appropriate codes to run on it.

To get the full benefit from this chapter, you should know the basics of
Microsoft ASP for developing Web applications.

Overview of the .NET
Mobile Architecture

The Mobile Internet Toolkit is built on the Microsoft ASPNET Web Forms
(which we’ll discuss in the next section). It is an extension to the ASPNET
model. The toolkit includes a set of Mobile Controls that is executed by the
Mobile Internet Controls runtime during the execution phase. The key feature of
the runtime is its ability to recognize the difterent types of devices accessing the
forms and to generate dynamically the codes that the device can understand.

The toolkit supports such controls as Calendar, Label, SelectionList, and
Textbox. Since the toolkit is an extension of ASPNET Web Forms, it supports
languages like VB .NET, C#, and JScript.NET.

WwWw.syngress.com

Devices Supported by the
Microsoft Mobile Internet Toolkit

Microsoft Mobile Internet Toolkit * Chapter 9 369

According to Microsoft, the Microsoft Mobile Internet Toolkit SDK has been
tested with the following devices:

Mitsubishi T250
Nokia 7110

Pocket PC with Microsoft Pocket Internet Explorer version 4.5

Siemens C-351

The following additional devices and simulators have had limited testing:

Ericsson R380

Microsoft Internet Explorer 5.5
Microsoft Internet Explorer 6.0
Mitsubishi D5021

NEC N5021

Nokia 6210

Palm VIIx

PalmV

Panasonic P5021

RIM Blackberry 950

RIM Blackberry 957

Samsung 850

Siemens S-351

Sprint Touchpoint phone

System Requirements

To develop mobile applications using the Mobile Internet Toolkit, your system

requirements are as follows:

Www.syngress.com

370

Chapter 9 * Microsoft Mobile Internet Toolkit

» Microsoft Windows 2000 Server/Advanced Server/Professional SP1
» Internet Information Server

» Microsoft Internet Explorer 6.0

» _NET Framework Beta 2 (including ASPNET)

= Mobile Internet Toolkit Beta 2

NoTEe

Microsoft Internet Explorer 6.0 is installed automatically when you
installed the .NET framework SDK.

Starting from Beta 2 of the toolkit, you can now make use of the visual tools
in Visual Studio .NET (Beta 2) to develop your mobile application. However, all
the code in this chapter has been developed using a text editor.

Obtaining and Installing the
Microsoft Mobile Internet Toolkit

The current release of the Microsoft Mobile Internet Toolkit is Beta 2. You can
download a copy of the Microsoft Mobile Internet Toolkit Beta 2 from the fol-
lowing URL: http://msdn.microsoft.com/downloads/default.asp?URL=/code/
sample.asp?url=/MSDN-FILES/027/001/516/msdncompositedoc.xml.

NoTE

The Beta 1 version of the Microsoft Mobile Internet Toolkit was known as
the .NET Mobile Web SDK.

To install the toolkit, simply double-click on the downloaded file and follow
the instructions from the installation wizard; start by accepting the licensing
agreement. In the Setup Type screen, choose to install the Complete setup to
install all the program features, rather than choosing the Custom setup. Click the
Next button, and when the program completes the installation the wizard will
bring you to a final screen that allows you to exit by clicking Finish. Once the

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

toolkit is installed, you will find a shortcut called Mobile Internet Toolkit
Overview created on your desktop.

NoTE

Before installing the Microsoft Mobile Internet Toolkit, you must first
install the .NET framework SDK. The .NET framework SDK can be
obtained from http://msdn.microsoft.com/downloads/default.asp? URL=/
code/sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml.

The toolkit comes with documentation as well as sample code.To use the
QuickStart Tutorial provided with the toolkit, you must configure a virtual direc-
tory on your Web server to point to the correct directory path. Table 9.1 indi-
cates the virtual directory details.

Table 9.1 Virtual Directory to QuickStart Tutorial

Virtual Directory MobileQuickStart
Name

Directory Path C:\Program Files\Microsoft.Net\Mobile Internet Toolkit\
QuickStart
(Please specify the default document as Default.aspx)

If the virtual directory is configured correctly, you will see the screen shown
in Figure 9.1 using the URL http://localhost/MobileQuickStart.

Introduction to ASP.NET

Since the Microsoft Mobile Internet Toolkit is based on ASP.NET, it is important
for you to have a good understanding of how ASPNET works and how it is
different from ASP. Before we look into the technical details of working with
ASPNET, let’s consider a typical situation when writing a Web application

with ASP.

As you are probably aware, HTTP is a stateless protocol. Although being
stateless has its benefits, such as reducing the resources on the server side, it often
poses headaches for Web developers. In the following example, we will illustrate
one of the problems with statelessness commonly faced by ASP developers. In
this example, we have a form and we need users to fill it in and submit it for
processing. Our form may look like Figure 9.2.

371

Www.syngress.com

372 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.1 MobileQuickStart Page

W Hhrroea® Hakde Ik roeck Tosolh i ek aed Toferial - Haoresell Iniermet Explarer |00 =
| Pl mi vew Freebm Tom Heb e |
| Batcirmem [it i ok kst | o
Nl icrasaft
Mobile Internet Toolkit
QuickStart Tutorial
Mde TOH 1 Fean miy & amplea .
Tt St Wedcome ta the Mobile Intermet Toolkit QuickStart Tutorisl
Antrichictn
Ton Makids Iniso Toalks e Hiterezdt bade aeedt 1ol <harbidim o § otael i A A o gl ol e P
:ﬂh.l:l'.l.h.l.&g.ll.l.l.i. il g s s e foalhic. The: (uickina caeples v Bedgresd oo be dhae, saoy-ao-Lndss i
Xparg the Sangle Mmivnticns of Dmsturas of ch boollit. De Hh e v huess corepisbed B CrkStwt tuboniel, o el b shls iz
b Pl herecticeirs) rabils esh spolicstiorn .
iabul el i v s
Isbeduong Mabde Wal Forme Whal Lesml of Fopariizs = Armzumnd n e CaockSirt?
Haredlweg Upar [npef « ey Te— [—— ¥ 1
Lit Conlrly :nfhc.":‘u‘mhr“‘:\mw -.'I\-Il-c .v.h'\l-'.ul:'\ra: '\.ﬁ I-I: :::j- 'r:'I ST :-E’: :: I-r:’;' = ..r:fm"ﬁ -
the AT Framssvm k. camples o thet coanga e, ‘ros pa oo the fuboalal By clobing g
Ak anced Tapes
ke grel Sln by beeky ‘ol ing with tha QuidkGiart Gamples
W Tha ik Shart: sarepley arn et scperimnced in Hhe prassried sequence. Esch mction sy you ors Fasilia
B =il oroppl s prreenied B oewier b
Imags Aadf ctater., CabenSar svd Sl
Wk Your Omn Coriroly -
il iy Pt e e s "
g L bs [rpe o, B) peghd g rq ey
L e Fiobe by Caoabides
Secumty =}

Figure 9.2 Web Application Using ASP

Wi los albeass pgboasg - Pl Inbemet Exploeer - | ' .|“:H|
B [t ges Fgeeber [ook jasn [= |
Adidrenin }l_'l hirng o sl s | e LI s
-
Till i hsaiit yaiiiiall
Pl bdeng Les
Whech part of the world e yoe from? | A _'-'_‘I
=
] tane Lirwlas) Simles ol Amen ce F

When we click on the Submit button, we print a message on the same page,
as shown in Figure 9.3.

Notice that the name in the textbox is gone and the item in the selection list
has been reset to the first item. Figure 9.4 shows the ASP code for our sample

Web application.

www.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.3 State Is Lost When the ASP Page Is Submitted

i i, e akeal ol osup - Fikroan® Inksrmst il

e Gl few Fyewies [k e

Mm-nlﬂlm.,. Pt ey | =|

b

=

[T IR 11 |

Tell us abowt yoursell;

-|uu:|)
Wl e of the werld e Yol Bam Ewiopa ﬂ

ST | Fairome to ASF.NET, Win Mang Loe (from Ana)l

] Cave 2 A Lacw invarai

Figure 9.4 Eg1.asp

<htnm >
Tel | us about yourself:
<f orm met hod="post" acti on="egl. asp">
Name<i nput type="text" nanme="userNane">

Wi ch part of the world are you fron?
<sel ect name="part Of Worl d">
<option val ue="Europe" >Eur ope
<option val ue="Asi a">Asi a
<option value="United States of America">United States of America
</ sel ect>
<i nput type="submit" val ue="submt">
<%
i f Request. Form("userNane")<>""then

Response. Wite "<i>Wel come to ASP. NET, " &
Request . Form("user Name") & " (from

" & Request.Forn{"partOfworld") & ")!</i>"
end if

%>

</htm >

To ensure that the name and selection item remains selected after submission,
we must modify our codes as shown in Figure 9.5.

373

Www.syngress.com

374

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.5 Eg2.asp

<htn >
Tel | us about yourself:
<f orm met hod="post" action="eg2. asp">

Name<i nput type="text" name="user Nane" val ue="<%
=Request . For m("user Nane") %">

Wi ch part of the world are you fronf
<% i t enBel ect ed=Request. Form("partOf Worl d") %
<sel ect nane="part O Worl d">

<option <% f itenSel ected="FEurope" then Response.wite "SELECTED'
end if %

val ue="Eur ope" >Eur ope

<option <%f itenBel ected="Asia" then Response.wite "SELECTED
end if % val ue="Asia">Asia

<option <% f itenBSelected="United States of America" then
Response.wite "SELECTED' end if

% value="United States of Anmerica">United States of America
</ sel ect>

<i nput type="submt" val ue="submt">

<%
i f Request. Forn("userName")<>""then

Response. Wite "<i>Wel come to ASP. NET, " &
Request . Forn{"userName") & " (from" &

Request. Forn("partOrWorld") & ")!</i>"
end if

%

</htm >

And now our Web application will behave as we intend it to, as shown in
Figure 9.6.

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.6 Preserving State in ASP Requires Substantial Effort

Wihrn Gl e - el et =0l x|
B GR jew Fewis [k e | = |
|

Tell us absut yaursell:

Hamef#re beng Lee

Wtuch part of the world are you o 'I""-"\- "'J
Ui | Wodeaosnd to ACSFNET W Mesyg Law (from Saa)

£ | Cora (5 Lol rraret

- |

From this simple example, you can see clearly the following problems with
the current ASP technology:

» Mixture of HTML and scripting codes Our code in Figure 9.4
contains a mixture of display codes (HTML) and application logic (using
VBScript). Because building Web applications often involves graphic
designers and programmers, the current ASP technology does not pro-
vide a clean separation of display from content. This often results in bugs
and difficulties in post-project maintenance.

» Extra effort must be spent on maintaining states In Figure 9.5,
look at the amount of code you have to write in order for the server to
maintain the state when transiting from page to page. Most of the time
spent on maintaining states could be directed toward implementing busi-
ness logic.

Now let’s look at how we can do the same thing using ASPNET—look at
the code shown in Figure 9.7.

NoTEe

ASP.NET pages ends with a .aspx extension.

Figure 9.7 Eg1.aspx

<script |anguage="vb" runat="server">

Sub Buttonl_clicked (sender as Object, e as EventArgs)

Continued

375

Www.syngress.com

376

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.7 Continued

nmessage.text = "<i>Wel cone to ASP. NET, " & userNane. Text &
"(from" & partOWrld.Value & ") !</i>"
End Sub
</script>
<htm >
<body>

<form runat ="server">
Tel | us about yourself :

Name : <asp:textbox runat="server" id="userName"/>

Which part of the world are you fronf
<select id="partOfWorld" runat="server">
<option val ue="Europe"/>
<option val ue="Asi a"/>
<option value="United States of Anerica"/>
</ sel ect >

<asp: button runat="server" id="buttonl" onCick="Buttonl _clicked"
text="Submt"/>

</fornp
<asp: | abel runat="server" id="nessage"/>
</ body>
</htm >

The ASPNET code shown in Figure 9.7 deserves our closer attention. We
can divide this code into two main parts, content and code. In the figure, the part
related to code rather than content is depicted in in boldface.

The Content Components

Within the user interface (UI) part of Figure 9.7, we can see familiar HTML
code. In addition, we also see a few new tags starting with an asp: prefix. You
might also notice some of the elements have the additional runat attribute. Let’s
define some terms used in ASPNET. The whole ASPNET document shown in
our example is known as a Web Form. A Web Form contains two components:
Code and Content. The Content component of a Web Form can contain Web
Form Server controls. Web Form Server controls contain the following types of

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

controls: HTML Server control, ASPNET Server control, Validation controls, and User
controls. The examples in the next section illustrate the first two kinds of controls.
(We’ll examine the validation controls later in the chapter. User controls are
much more complex and won’t be addressed here.)

HTML Server Controls

An example of an HTML Server control is as follows:

<select id="partOfWorld" runat="server">

Notice that HTML Server controls are similar to the normal HTML elements,
except that they have the additional runat attribute. In ASPNET, normal HTML

elements are converted to HTML Server controls so that they can be programmed
on the server. The id attribute acts as a unique identifier for the server controls.

NoTEe

If you have experience programming Visual Basic, a good way to view
ASP.NET programming is to imagine yourself writing VB codes, except
that this time your application runs on the Web platform. You can
imagine an ASP.NET page as an executable file, producing HTML codes to
be sent to the Web browser.

ASPNET Server Controls

Besides the HTML server controls, ASPNET provides a different set of server
controls known as ASPNET server controls.You can think of ASPNET server
controls as ActiveX controls in VB. Unlike the HTML Server controls, they do
not provide a one-to-one mapping. The following is an example of an ASPNET
Server control:

<asp: button runat="server" id="buttonl" ondick="Buttonl_clicked"
text="Submt"/>

This ASPNET server control will render itself as an <input> element when
viewed using a Web browser. ASPNET server controls expose properties and
events that you can set and service. For example, this ASPNET server control
defines the onClick event. When the button is clicked, the Button1_clicked subrou-
tine would be serviced (which is covered in the next section).

377

Www.syngress.com

378

Chapter 9 * Microsoft Mobile Internet Toolkit

NoTE

If you are experienced with HTML, think of ASP .NET server controls as
another set of tags and elements that you can use to create dynamic Web
applications. For example, instead of using the <input> tag for text input,
you can also use the <asp:input> element (but with more features!).

The Code Components

The Content component basically concerns itself with display issues. The Code
components are the “glue” that binds things up. Our example shows a subroutine
defined in the Code section. This subroutine is fired when the user clicks on the
Submit button. It then displays a welcome message by referencing the controls
defined in the Content section.

<script |anguage="vb" runat="server">

Sub Buttonl clicked (sender as (bject, e as Event Args)

nmessage.text = "<i>Wel cone to ASP. NET, " & userNane. Text &
"(from" & partOfWrld.Vvalue & ") I</i>"
End Sub
</script>
NOTE
Again, the processing model of ASP.NET should be very familiar to VB
programmers.

Figure 9.8 shows what our ASPNET page looks like on the Web browser.

After a page has been submitted, it will retain its state before the submission.
To see the HTML codes generated by the ASPNET runtime, select View
Source (see Figure 9.9).

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.8 ASP.NET Preserves the State Automatically

[iteiee ke aliorsd. eylase - Srressh Interme| =001 x|
M D& e Ppets Tk peb [= |
Vet (W] Fery ol b ey =| pe

Tell us alssin vaursell |
Hirnss - [bsrg Las

wich part of the world are pou from T | e
Suibivin

Wpitcomp (o ASE,NET, W Mg Leedrom Anal

Figure 9.9 Our Example’s HTML Output

<htnm >
<body>

<form name="ctrl 1" nethod="post" action="egl.aspx" id="ctrl1">

<i nput type="hidden" nanme="__ VI EWSTATE"

val ue="YTB6OTYOMz MANTkz X2Ewel 9o0ej V6MBhf YTB6YTB6aHpUZVx4dF88aT5XZWkj b211 |
HRvI EFTUCSORV(s | Fdl aSBNZWsnI Ex| ZShnenBt | EFzaWEpl CE8L2k+eF9f eF9f eHhf eF9f e
A==f 77cl5df" />

Tel | us about yourself :

Name : <input name="userName" type="text" value="Wi Meng Lee"
i d="user Nanme" />

VWi ch part of the world are you fron?

<sel ect name="partOfWrld" id="partOWrld">
<option val ue="Eur ope" >Eur ope</ opti on>
<option sel ected val ue="Asi a">Asi a</ opti on>
<option value="United States of Anerica">United States of
Aneri ca</ opti on>

</ sel ect >

<i nput type="subnmit" nane="buttonl" value="Subnit" id="buttonl" />

</fornme

Continued

379

Www.syngress.com

380

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.9 Continued

<i >\l come to ASP. NET, Wei Meng Lee(from Asia)
I </i>

</ body>
</htm >

What is interesting in this HTML output is the hidden input element, indi-
cated in Figure 9.9 in boldface.

The _ VIEWSTATE hidden element is the one that performs all the magic. It
is responsible for “maintaining’ states between pages. The value of this hidden ele-
ment is used by the ASPNET runtime to recall the previous state the page was in.

NoTE

The concept of using a hidden element to maintain state is somewhat
similar to that of using a browser session, with a sessionid passed as a
hidden form value, or of using a cookie.

ASP.NET Architecture

Figure 9.10 illustrates the architecture of ASPNET. The Web client first interacts
with Internet Information Server (IIS). If the Web client is accessing HTML
pages, IIS will communicate with the underlying operating system to fetch the
HTML pages. If the Web client is accessing an ASPNET application, the
ASPNET application will first be compiled to produce a .NET runtime class.
The .NET runtime class is then compiled and invoked to produce HTML to be
sent to the client side.

One important difference between ASPNET and ASP is that ASPNET appli-
cations are parsed and compiled once and then cached, so that subsequent
requests do not go through the same time-consuming steps. This creates a positive
impact on the performance of ASPNET applications.

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.10 Architecture of ASP.NET

Web Clients

!

Internet Information Server (1IS)

ASPNET
Application /
NET
Framework

Windows NT/2000 05

Developing Mobile Web Forms

Now that you have seen how ASPNET works, it is time to take a look at a very
simple Mobile Web Form and the components it contains (Figure 9.11).

Figure 9.11 Welcome.aspx

<%@ Page | nherits="System Wb. U . Mbi |l eControl s. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Namespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Web. Mobi |l e" %

<Mobi | e: Form i d="For nOne" runat ="server">

<Mobi | e: Label runat="server">Wel cone to the Mcrosoft Mbbile
I nternet Tool kit! </ Mbile:Label >

</ Mbbi | e: For n»

Figure 9.12 shows the code from Figure 9.11 displayed in different kinds of
browsers: Pocket PC, UPSDK 4.1, and IE 5.5.

If you have been developing WAP application using WML and ASP, you
would be surprised that the same application can be displayed on all these dif-
ferent devices, with no effort on your side for customization. That’s the power of
the Microsoft Mobile Internet Toolkit SDK.

381

Www.syngress.com

382 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.12 Viewing the Mobile Web Form on the Various Devices

Mmoo to e Mook Mobils
Inbemet: Tooki !

ELEREETE Tl
Pl b Vs Foabn ¥ L-L:'-
hlﬂul;‘_‘irﬁw.ﬂm#ﬂj &ca

‘Wedroers b0 e Mool Makds
szt Taclks!

] [T | Loosreranat .

Let’s now take a closer look at the Welcome.aspx page. The first few lines of a
Mobile Web Form contains the standard header directives:

www.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | e" %

The @ Page directive defines page-specific attributes used by the ASPNET
page parser and compiler. The Inherits attribute specifies that the page is inherited
from the “System. Web.UI.MobileControls.MobilePage” class, which itself is inher-
ited from the ASPNET Page class. The Language attribute specifies the language to
be used in the page. For our example, we have used VB.NET. The @ Register direc-
tive associates aliases with namespaces and class names. In the preceding Mobile
Web form, we use the tagprefix of Mobile to associate with the System.Web.UI
.MobileControls namespace. The assembly in which the namespace you are associ-
ating with tagprefix resides is specified in the assembly attribute.

Next we have the <Mobile:Form> element. This element acts as a container to
group controls together logically.

<Mbbi | e: Form i d=" For nOne" runat ="server">

In our case, we have a <Mobile:Label> control, which simply provides a label
for text to be displayed.

<Mobi | e: Label runat="server">Wlcone to the Mcrosoft Mbbile
I nternet Tool kit! </ Mbile:Label >

That’s all there is to it! As you can see, during runtime when the form is
requested, the .NET runtime will automatically detect the type of devices
requesting that page and perform a dynamic generation of the target markup lan-
guages. In our case, the Pocket PC and IE 5.5 both receive HTML (as shown in
Figure 9.13), and the UPSDK receives WML (as shown in Figure 9.14).

Figure 9.13 HTML Receives by Pocket PC and IE 5.5

<ht m ><body><f or m i d=" For nOne" nane="For nOne" met hod="post"
acti on="wel conme. aspx?__uf ps=631315933684236256" >

<i nput type="hidden" nane="__EVENTTARGET" val ue="">
<i nput type="hidden" name="__ EVENTARGUMENT" val ue="">
<script |anguage=javascript><!—
function __doPost Back(target, argunent)

var theform = docunent. For nOne

t hef orm __EVENTTARGET. val ue = target

Continued

383

Www.syngress.com

384 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.13 Continued

t hef orm __ EVENTARGUVMENT. val ue = ar gunent

theform submt ()

}

[l —

</script>

Wel come to the Mcrosoft Mbile Internet Tool kit!

</ f or np</ body></ ht m >

Figure 9.14 WML Received by the UP.SDK 4.1

<?xm version='1.0"?>

<! DCCTYPE wnm PUBLIC '-//WAPFORUM / DTD WML 1. 1//EN
"http://ww. wapforumorg/DTD/wr _1. 1. xm ' >

<wni >
<head>
<nmeta http-equiv="Cache-Control" content="nax-age=0" />
</ head>
<card i d="Formne" >
<p>Wel cone to the Mcrosoft Mobile Internet Tool kit!

</ p>
</ card>
</ wm >

Debugging...

Known Issues with the Pocket PC Emulator

For readers using the Microsoft Embedded Visual Toolkit 3.0, take note
that the Pocket PC emulator by default does not support JScript. This
feature will pose a problem for mobile applications that make use of
JScript for page navigations. To enable JScript support, you should
download the JScript.dll component from Microsoft’'s Web site.

Continued

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Once the component is downloaded, copy the component into the
directory that contains the Embedded Visual Toolkit 3.0 (for example,
C:\Windows CE Tools\wce300\MS Pocket PC\emulation\palm300\windows).

After copying the component, open a command window and
switch into the directory where the component is copied and execute
the following command:

C.\Wndows CE Tool s\wce300\ M5 Pocket PC\ emrul ati on\ pal 800\
wi ndows>r egsvrce jscript.dll

If the component is installed correctly, you should see the Pocket PC
emulator and the window shown in Figure 9.15.

Figure 9.15 Registering the jscript.dll
RegSwCE

7y, DRRegistersaner in
s % fecript.dl aucceeded

NoTE

For the remainder of this chapter we will illustrate examples using the
Pocket PC emulator and the UP.SDK 4.1.

Using Multiple Forms in a Single Page

In ASPNET pages, there can be only a single form; however, you can have mul-
tiple mobile forms in a Mobile Web form. In this section, we will discuss having
multiple forms in a page and how to link them up. Consider the example in
Figure 9.16.

Figure 9.16 Multiple_forms.aspx

<%@ Page | nherits="System Wb. U . Mbil eControls. Mbbi | ePage”
Language="VB" %

<% Regi st er TagPrefix="Mbi |l e" Nanmespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | e" %

Continued

385

Www.syngress.com

386

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.16 Continued

<Mbbi | e: For m i d=" For nOne" runat ="server">
<Mobi | e: Label runat="server">This is the first fornmx/ Mbile: Label >

<Mbobi | e: Li nk runat="server" navi gat eURL="#For nifwo" >CGot 0 Form
Two</ Mobi | e: Li nk>

</ Mbbi | e: For n»

<Mobi | e: Form i d=" For mfwo" runat ="server">
<Mobi | e: Label runat="server">This is the second fornx/ Mbile: Label >
</ Mobi | e: For >

In Figure 9.16, we have two forms in a page.To link the two forms, use the
<Mobile:Link> control. The navigateURL attribute contains the ID of the form
to link to. Note that the ID is preceded by a number character (#).

Linking to Forms on Other Pages

Even though you may have multiple forms on a page, it is common to have
forms located in different pages. With Mobile Web Forms, linking to forms on
another page is not so straightforward. Consider the two pages in Figures 9.17
and 9.18.

Figure 9.17 Page1.aspx

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPr efix="Mbi |l e" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em WWb. Mobi | e" %

<Mobi | e: Form i d="For nOne" runat ="server">

<Mbbi | e: Label runat="server">This is the first form on Page
1</ Mobi | e: Label >

<Mbbi | e: Li nk runat="server" navi gat eURL="Page2. aspx">Goto Form
t wo</ Mobi | e: Li nk>

</ Mobi | e: For n»

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.18 Page2.aspx

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbil ePage"
Language="VB" %

<%@ Regi st er TagPr efix="Mobi |l e" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | " %

<Mobi | e: Form i d=" For ml'wo" runat ="server">

<Mobi | e: Label runat="server">This is the second form on Page
2</ Mobi | e: Label >

</ Mobi | e: For >

<Mobi | e: Form i d="For nThree" runat="server">

<Mbobi | e: Label runat="server">This is the third form on Page
2</ Mobi | e: Label >

</ Mobi | e: For n»

The form in the first page (Pagel.aspx, Figure 9.17) links to the second page
(Page2.aspx, Figure 9.18) by specifying the filename in the navigateURL attribute:

<Mobi | e: Li nk runat="server" navi gat eURL="Page2. aspx">Goto Form
t wo</ Mobi | e: Li nk>

This will link to the FormTwo on Page2.aspx, as shown in Figure 9.19.

Figure 9.19 Linking to Forms on Other Pages

Tris 18 che sevomd
Do on Paps 2

However, if we want to link to FormThree in Page2.aspx, we have a problem.
Readers who are familiar with WML might recall using the number character
(#) to link directly to a card in a deck. So we might have something like the fol-
lowing:

<Mbbi | e: Li nk runat="server" navi gat eURL="Page2. aspx#For nThr ee" >Got 0
Form two

387

Www.syngress.com

388 Chapter 9 * Microsoft Mobile Internet Toolkit

</ Mobi | e: Li nk>

However, this is not going to work! It actually turns out to be more involved
than just using the #character. Here is the solution:

<Mbbi | e: Li nk runat ="server"
navi gat eURL="Page2. aspx?For n=For nirhr ee" >CGot 0 Form t hr ee</ Mobi | e: Li nk>

We have added an additional parameter called Form and set it to a value of
FormThree. In Page2.aspx, we then added this snippet of VB code:
<script runat="server" |anguage="vb">
Sub Page_Load(sender as Object, e as System Event Args)
Di m formNane = Request. QueryString("Forni)
i f fornmNane=ForniThree.|D then
Acti veForm = For nThr ee
end if
End Sub

</script>

FormThree is now loaded directly; see Figure 9.20.

Figure 9.20 Jumping Directly to a Form in Another Page

Thia &8 The CLrec
Eocm Gb Page L

This i@ che thizd
fore on Page &

IpGoip Form Ehreo

Dissecting Code
Let’s take a more detailed look at the code to see how it works:

Sub Page_Load(sender as Object, e as System Event Args)
Di m f ormName = Request. QueryString("Fornt)
i f fornmName=Fornirhree.|D then
Acti veForm = For nThr ee
end if

End Sub

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

When the page is first loaded, the Page_Load event is first triggered. As the
URL contains the parameter Form, we can retrieve the value of it using the
Request. QueryString collection. We then verify that the value is actually the ID of
Form three. If it is, we then set the current active form to be Form three using
the ActiveForm property. The ActiveForm property sets and returns the page cur-
rently active.

User Inputs

Now that we have looked at linking forms, let’s turn our attention to user inputs.
The Microsoft Mobile Internet Toolkit supports the following user input con-
trols, with their HTML and WML counterparts shown in Table 9.2:

. TextBox
= Command

s List

Table 9.2 User Input Controls

Input Controls in Equivalent Tags Equivalent Tags
Mobile Internet Toolkit in HTML in WML

TextBox <input> <input>
Command <input> <do>

List <a> <select> <option>

Text and Password Input

To input text into a Mobile Web Form, use the <Mobile:TextBox> control
provided, as illustrated in Figure 9.21.

Figure 9.21 Password.aspx

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbil ePage"
Language="VB" %

<%@ Regi st er TagPr efix="Mbi |l e" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | e" %

<script runat="server" |anguage="vb">

Continued

389

Www.syngress.com

390 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.21 Continued

Sub Conpar ePasswor d(sender as Cbject, e as Event Args)
i f Passwordl. Text.Length <8 then
message. Text = "Password nust have at |east 8 characters”
Exit sub

end if

i f Passwordl. Text <> Password2. Text then
message. Text = "Your passwords do not natch.”
el se
wel comeMessage. Text += User Nanme. Text

ActiveForm = Wl cone

end if
End sub
</script>

<Mbbi | e: For m runat ="server" i d="Regi sterForni>
<Mbbi | e: Label runat="server">Sel ect a user nanme?</Mobil e: Label >
<Mbbi | e: Text Box runat="server" id="UserNane" />
<Mobi | e: Label runat ="server">Passwor d?</ Mobi | e: Label >
<Mobi | e: Text Box password="true" runat="server" id="Passwordl" />
<Mbbi | e: Label runat="server">Confirm Passwor d</ Mobi | e: Label >
<Mbbi | e: Text Box password="true" runat="server" id="Password2" />

<Mbbi | e: Conmand runat ="server"
ond i ck=" Conpar ePasswor d" >Regi st er </ Mobi | e: Conmand>

<Mobi | e: Label runat="server" id="nmessage"/>
</ Mobi | e: For m»

<Mbbi | e: Form runat ="server" id="Wel cone">

<Mbbi | e: Label id="wel comeMessage" runat="server">Wel cone,
</ Mobi | e: Label >

</ Mbbi | e: For n»

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9 391

This page contains two forms, one for allowing the user to input his or her
username and passwords, and one for displaying a message.

The output from Figure 9.21 displayed on the Pocket PC and the UP.SDK is
shown in Figure 9.22 and Figure 9.23, respectively.

Figure 9.22 User Inputs on Pocket PC

T (VIO e L e] s

AT it g
[es mw Lo
Pgerse ™

Corvlrm Passord

The <Mobile:TextBox> control allows text input:
<Mbbi | e: Text Box runat="server" id="UserNane" />
To mask the text input (as in the case of entering passwords), specify the pass-
word attribute as ““true”.
<Mbbi | e: Text Box password="true" runat="server" id="Passwordl" />
We also saw an additional control, <Mobile:Command>.The <Mobile:

Command> control displays a command button so that an action can be

performed.

Www.syngress.com

392 Chapter 9 * Microsoft Mobile Internet Toolkit

<Mobi | e: Command runat ="server"
onCl i ck=" Conpar ePasswor d" >Regi st er </ Mobi | e: Conmand>

The onClick attribute indicates the subroutine to call when the user clicks on
it. In this case, the subroutine to be invoked is ComparePassword.
Sub Conpar ePasswor d(sender as Cbject, e as Event Args)
i f Passwordl. Text.Length <8 then
nmessage. Text = "Password nust have at |east 8 characters”
Exit sub
end if

i f Passwordl. Text <> Password2. Text then
message. Text = "Your passwords do not natch.”

el se
wel comeMessage. Text += User Nanme. Text
ActiveForm = Wl cone

end if

End sub
Within the subroutine, you can simply reference the controls using their IDs.

For example, if you want to check for the length of the password that the user
has entered, you can simply reference the control using:

Passwor d1. Text . Lengt h

If the length of the password is less than eight, we set the Text property of the
Label control named message to contain the error message:

message. Text = "Password nust have at |east 8 characters”

We also check to see if the two passwords entered are the same. If they are,
we print a welcome message on the second form:

wel comeMessage. Text += User Name. Text

The second form is invoked by using the ActiveForm property:

Acti veForm = Wl cone

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

List Selection

Another form of user input is via a selection list. Consider the example in
Figure 9.24.

Figure 9.24 Lists.aspx

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPr efix="Mobi | e" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

<Mobi | e: For m runat =" server">
<Mbbi | e: Label runat="server">Menbershi p Types</ Mbil e: Label >
<Mobi | e: Li st runat="server" id="Menbership">
<Item val ue="STU' text="Students"/>
<l tem val ue="PRO" text="Professionals"/>
<ltem val ue="LIB" text="Libraries"/>
</ Mobi | e: Li st >
</ Mobi | e: For np

The <Mobile:List> control provides the ability to display lists of items either
as a static list or interactive selection. The page in Figure 9.24 causes the screens
on the Pocket PC and the UP.SDK (see Figure 9.25 and Figure 9.26, respec-
tively) to be displayed.

Figure 9.25 Viewing the List on the Pocket PC

= w albwri TR R

S sl rar
Mo il
Frofeucrals

[T

393

Www.syngress.com

394 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.26 Viewing the List on the UP.SDK

Hemberahip Typem
Inudsnza
Frofemaicanla
Linvaraes

Selecting from a List

A static list 1s not very exciting, not to mention not very useful. A list is useful
only if the user can choose from it. In the example in Figure 9.27, we have mod-
ified the previous program to make the list item selectable.

Figure 9.27 Selectlists.aspx

<%@ Page | nherits="System Wb. U . Mbil eControl s. Mbbi | ePage”
Language="VB" %

<%@® Regi st er TagPrefix="Mbi |l e" Namespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

<script runat="server" |anguage="vb">
Sub Sel ect _Iten(sender as (bject, e as ListComandEvent Args)
Di m Fees as i nteger
Di m Menber shi pType as String = e.Listltem Val ue
Sel ect Case Menbershi pType

Case "STU
Fees = 38
Case "PRO
Fees = 95
Case "LIB"
Fees = 1995
End Sel ect
FeesPayabl e. Text = "The fees payable for " & e.Listltem Text & "
is $" & Fees

Acti veForm = For mTwo
End Sub

WwWw.syngress.com

Continued

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.27 Continued

</script>

<Mobi | e: Form runat ="server" i d="FornOne" >
<Mbbi | e: Label runat="server">Menbershi p Types</ Mbil e: Label >

<Mobi | e: Li st runat="server" id="Menbership"
Onl t emConmmand="Sel ect _Iteni >

<Item val ue="STU" text="Students"/>
<l tem val ue="PRO" text="FProfessionals"/>
<ltem val ue="LIB" text="Libraries"/>
</ Mobi | e: Li st>
</ Mobi | e: For np

<Mobi | e: For m runat ="server" i d="For nifwo" >
<Mobi | e: Label runat="server" id="FeesPayable" />
</ Mobi | e: For m»

Note that we have added another attribute, Onltem Command, to the
<Mobile:List> control. This attribute contains the name of the subroutine to be
invoked when the list item is selected (see Figure 9.28).

Figure 9.28 List Items Are Selectable

Sub Sel ect _Iten(sender as Object, e as ListComandEvent Args)
Di m Fees as i nteger
Di m Menber shi pType as String = e.Listltem Val ue
Sel ect Case Menbershi pType
Case "STU'
Fees = 38
Case "PRO'

395

Www.syngress.com

396 Chapter 9 * Microsoft Mobile Internet Toolkit

Fees = 95
Case "LIB"

Fees = 1995

End Sel ect

FeesPayabl e. Text = "The fees payable for " & e.Listltem Text & "

is $" & Fees
ActiveForm = For mIwo
End Sub

Within the subroutine, we use a Select-Case statement to find the fees
payable; the results are shown in Figure 9.29.

Figure 9.29 Displaying the List Item Selected

Tha fasr papebls foo
Jomeree im §i0

Data Binding List Items

A list is much more useful if you can dynamically bind it to a list of items. The
code in Figure 9.30 illustrates how you can bind a list of items using the
ArrayList class in VB.NET.

Figure 9.30 Databind.aspx

<%@ Page | nherits="System Wb. U . Mbil eControls. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPr efix="Mbi | e" Nanmespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | e" %

<script runat="server" |anguage="vb">

Sub Menu_ltem(sender as Object, e as ListConmandEvent Args)

nmessage. Text = "Fees for " & e.Listltem Text & " menbership is
$" & e.Listltem Val ue

Acti veForm = For mTwo

WwWw.syngress.com

Continued

Microsoft Mobile Internet Toolkit * Chapter 9 397

Figure 9.30 Continued
End Sub

Private O ass Menber
Dim nmlype as String

Di m nfFees as Single

Public Sub New(t as String, f as Single)
t
f

mlype

nfFees
End Sub

Public Property Type
Get
Type = niype
End GCet
Set
nType = Val ue
end Set
End Property

Public Property Fees
Get
Fees = nfees
End GCet
Set
nFees = Val ue
end Set
End Property
End C ass

Sub Page_Load (send as Object, e as EventArgs)
if not (IsPostBack) then

Dim array as new Arraylist()

Continued

Www.syngress.com

398 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.30 Continued

array. Add(new Menmber (" Students", 38))
array. Add(new Menber (" Prof essional s", 95))
array. Add(new Merber ("Li braries", 1995))

Menu. Dat aSource = array
Menu. Dat aBi nd()

end if
End Sub
</script>

<Mobi | e: Form runat ="server" i d="For nOne" >

<Mobi | e: Label runat="server" id="test">Menbership
Types</ Mobi | e: Label >

<Mbbi | e: Li st runat="server" id="Menu" DataTextFi el d="Type"
Dat aVal ueFi el d="Fees" onltenConmand="Menu_ltent'/>

</ Mobi | e: For m»

<Mobi | e: Form runat ="server" i d="For miwo" >
<Mobi | e: Label runat="server" id="nessage"/>

<Mobi | e: Li nk runat="server"
navi gat eURL="#For nOne" >Back</ Mobi | e: Li nk>

</ Mbbi | e: For n»

When the page is loaded, the result is the screen shown in Figure 9.31.

Figure 9.31 Data Binding a List

EenbETAnLD Tyses

1bELadentS
2 Profsazipeals
3 Libhrarciam

LUl

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Dissecting the Codes

We first create an array (using the ArrayList class) when the page is loaded. An
ArrayList class is a single dimensional array that can grow dynamically when
elements are added to it.
Sub Page_Load (send as Ohject, e as EventArgs)
if not (IsPostBack) then

Dim array as new Arraylist()

array. Add(new Merber (" Students", 38))

array. Add(new Menber (" Prof essi onal s", 95))

array. Add(new Menber ("Li braries”, 1995))

In our case, we have added three Member objects to the array. Once the
objects are added to the array, we bind the array to the list:

Menu. Dat aSource = array
Menu. Dat aBi nd()

You may have noticed that we have this line:

if not (IsPostBack) then

The IsPostBack property contains a Boolean value that indicates whether the
page is loaded in response to the client’s postback, or if the page is loaded for the
first time. The IsPostBack property will be true if the user clicks on the Back link
to return to the main page. We want to make sure that the array is not recreated
when the user posts back the page (though it is harmless in this case to recreate
the array).

NoTE

The .NET framework automatically sets the IsPostBack property. There is
no need for the programmer to set it.

The <Mobile:List> control also contains two additional attributes—
DatalextField and DataValueField.

<Mbobi | e: Li st runat="server" id="Menu" DataTextFi el d="Type"
Dat aVal ueFi el d="Fees" onltenConmand="Menu_ltemn'/>

Www.syngress.com

399

400

Chapter 9 * Microsoft Mobile Internet Toolkit

The Data'lextField attribute binds the Type property of the Member class to
the List item’s Text property. The DatalalueField attribute binds the Value property
of the Member class to the List item’s Value property. This is evident from the
following line:

nmessage. Text = "Fees for " & e.Listltem Text & " menbership is
$" & e.Listltem Val ue

Events

Mobile controls (like any other ASPNET server controls) respond to events. You
have seen the various events associated with the controls shown in the earlier
examples, for example the following:

<Mbbi | e: Conmand runat ="server"
ond i ck=" Conpar ePasswor d" >Regi st er </ Mobi | e: Cormand>

In this example, the onClick attribute represents the onClick event. The
ComparePassword subroutine is invoked when the command button is clicked. In
this case, the event is related to the control. Page-level events are also available.
Look at this next line as an example:

Sub Page_Load(sender as Object, e as System Event Args)

In this case, the event (Page_Load) is fired when the page is loaded. Form-level
events are also possible using the OnActivate attribute of the <Mobile: Form> control.
To see the sequence in which these two events are fired, consider Figure 9.32.

Figure 9.32 OnActivate.aspx

<%@ Page | nherits="System Web. Ul . Mobil eControl s. Mobi | ePage"
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Namespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

<script runat="server" |anguage="vb">
Sub Page_Load(sender as Object, e as System Event Args)
nmessage. Text += "Page Loaded.
End Sub

Sub Form Activate(sender as Object, e as Event Args)

Continued

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.32 Continued
nmessage. Text += "Form Acti vat ed.
End Sub

</ script>

<Mbbi | e: For m i d="For nOne" runat="server" onActivate="Form Activate">
<Mobi | e: Label runat="server" id="nessage"/>

</ Mbbi | e: For n»

When the page in Figure 9.32 1s loaded, the screen shown in Figure 9.33 is
displayed.
Figure 9.33 Demonstrating the Sequence of Events

it ook fondc raste ape

g Il Forrn R vl

vew Tash &= |5 {3 @)

It thus can be seen that the Page_Load event is fired first, followed by the
OnActivate event of the <Mobile: Form> control.

Displaying Images

To display images, you can use the <Mobile:Image> control. Because various
mobile devices display images of differing format, it is important to send the cor-
rect image type to the right device. To solve this problem, you can use the
<DeviceSpecific> control as shown in Figure 9.34.

401

Www.syngress.com

402

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.34 Image.aspx

<%@ Page | nherits="System Web. U . Mbil eControls. Mbbil ePage"
Language="VB" %

<%@ Regi st er TagPr efix="Mobi |l €" Nanespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi | " %

<Mobi | e: For m runat =" server" >
<Mobi | e: Label >Phot o of nysel f </ Mobi | e: Label >
<Mbobi | e: | mage runat =server alternateText="[M/ Photo here]">
<Devi ceSpeci fic>
<Choice Filter="i sHTM.32" | mageURL="nysel f.bmp" />
<Choice Filter="isWW11" | nmageURL="nysel f.wbnp" />
</ Devi ceSpeci fic>
</ Mobi | e: | mage>
</ Mobi | e: For np

Within the <DeviceSpecific> control, you have the <Choice> elements. In the
preceding program, each choice element contains two attributes—Filter and
ImageURL. So 1in this case, if the user were using a Web browser, the BMP file
would be displayed, as shown in Figure 9.35.

Figure 9.35 Displaying the BMP File in a Web Browser

EIINCE .loix
e e v
=

FPhate of mysell

7

Ak

=

[H Local inlr anet

On the UP.SDK, the WBMP file would be selected, as shown in Figure 9.36.

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.36 Displaying the WBMP File in a WAP Browser

The <Choice> elements are evaluated according to the order in which they
appear in the <DeviceSpecific> control. If none of the <Choice> elements evaluates
true, the string “[My Photo here]” would be displayed. The Filfer attribute con-
tains values that are matched from the <deviceFilters> element in the web.config
configuration file (see Figure 9.37).

The web.config file contains the various device filters. Figure 9.37 shows a
portion of the web.config file. A device may match several <filter>s. For example,
a Web browser satisfies the isHTML32 and the prefersGif filter. The compare
attribute of the <filter> element specifies the capability evaluated by the compar-
ison evaluator and the argument attribute specifies the argument against which the
capability should be compared.

To illustrate using the preceding example, a WAP device will match the
isWML11 filter, which will in turn match the second <Choice> element:

<Choice Filter="isHTM.32" | mageURL="nysel f.bnp" />
<Choice Filter="isWWL11" | mageURL="nysel f.wbnp" />

Figure 9.37 Web.config

<devi ceFi |l ters>

<! — Mar kup Languages —

<fil ter name="i sHTM.32" conpare="pref erredRenderi ngType"
argument ="htm 32" />

<filter name="i sWWML11" conpare="preferredRenderi ngType"
argunment ="wr 11" />

<fil ter name="i sCHTM.10" conpare="preferredRenderi ngType"
argunent ="chtnm 10" />

<! —Devi ce Browsers —

<fil ter nanme="i sGoAnerica" conpare="browser"

Continued

403

Www.syngress.com

404

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.37 Continued

<fil ter

<fil ter

<fil ter

<fil ter

<fil ter

ar gurment =" Go. Web" />
nanme="i sSMVE" conpar e="br owser"

argunment ="M crosoft Mobile Explorer" />
nane="i sMyPal ni conpar e="br owser"

argunent ="MWPal ni' />
nane="i sPocket | E' conpar e="browser"

argument =" Pocket | E" />
nanme="i sUP3x" conpare="type"

argunent =" Phone. com 3. x Browser" />
nane="i sUP4x" conpare="type"

ar gunent =" Phone. com 4. x Browser" />

<! — Speci fic Devi ces —

<fil ter

<fil ter

nane="i sEri cssonR380" conpare="type"
argunent ="Eri csson R380" />

nane="i sNoki a7110" conpare="type"
argument =" Noki a 7110" />

<! —Device Capabilities —

<fil ter

<fil ter

<fil ter

<fil ter

<fil ter

<fil ter

nane="prefersd F"' conpare="preferredl nageM MVE"
argurent ="i mage/ gi f" />
nanme="pr ef er sWBMP" conpar e="pr ef err edl nrageM ME"
argunent ="i nage/ vnd. wap. wormp" />
nane="supportsCol or" conpare="i sCol or"
argunent ="true" />
nane="support sCooki es" conpare="cooki es"
argument ="t rue" />
nanme="supportsJavaScri pt" conpare="javascript"
argunment ="true" />
nane="support sVoi ceCal | s" conpare="canl niti at eVoi ceCal | "

argunent ="true" />

</ devi ceFil ters>

www.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Validation Controls

There are quite a few validation controls available in the Microsoft Mobile
Internet Toolkit SDK:

» CompareValidator Compares two controls using a specified operator.
» CustomValidator Allows customized validation of controls.

» RangeValidator Validates the value of a control to ensure that it falls
within a specified range.

» RegularExpressionValidator Validates the value of a control by speci-
tying a regular expression.

» RequiredFieldValidator Ensures that a field is supplied a value.

» ValidationSummary Displays the summary of all errors that occurred
during the rendering of a form.

To see how they work, let’s consider the example shown in Figure 9.38.

Figure 9.38 Validation.aspx

<%@ Page | nherits="System Web. Ul . Mobil eControl s. Mobi | ePage"
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Nanmespace="System Web. Ul . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

<script |anguage="vb" runat=server>
Sub Submit_Ondick(sender as Object, e as EventArgs)
if (Page.lsValid) then
ActiveForm = FornR
Result. Text = "The nonth you have entered was " & nonth. Text
end if
End sub

</script>

<Mbbi | e: Form i d="For ml" runat =server>
<Mbbi | e: RangeVal i dat or runat =server
Control ToVal i dat e=" nont h"

Type="1nt eger"

Continued

405

Www.syngress.com

406 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.38 Continued

Maxi munval ue="12"

M ni nunVaLue="1">

The nmonth is not correct. Please try again.
</ Mobi | e: RangeVal i dat or >

<Mbbi | e: Label runat=server>Pl ease enter your birth
nmont h</ Mobi | e: Label >

<Mbbi | e: Text Box id="nmonth" Nuneric="true" runat=server/>

<Mobi | e: Command OnCl i ck="Submi t _Ond i ck"
runat =ser ver >Submi t </ Mobi | e: Command>

</ Mobi | e: For n»

<Mobi | e: Form i d="For n2" runat =server >

<Mobi | e: Label id="Result" runat=server/>

<Mobi | e: Li nk Text ="Back" navi gat eURL="#Forml" runat=server/>
</ Mobi | e: For np

In this example, we use the <Mobile:RangeValidator> control to validate the
range of a number.

<Mbbi | e: RangeVal i dat or runat =server
Cont r ol ToVal i dat e="nont h"
Type="Int eger"
Maxi munmval ue="12"
M ni nunvVaLue="1">
The nonth is not correct. Please try again.

</ Mobi | e: RangeVal i dat or >

Once the number is entered and the button is clicked, the Submit_OnClick()
subroutine is invoked. The IsValid property will validate the range of the number
entered. If the validation fails, the message “The month is not correct. Please try
again” 1s displayed; otherwise Form2 will be loaded.

Sub Submit_Ondick(sender as Object, e as EventArgs)

if (Page.lsValid) then
ActiveForm = FornR

Result. Text = "The nonth you have entered was " & nonth. Text

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

end if
End sub

Figure 9.39 and Figure 9.40 show the output as displayed by the Pocket PC
emulator and the UP.SDK, respectively.

Figure 9.39 Using the Validator Controls on the Pocket PC

o sthost Fealcrion. spa 7F1 -

tip ekt valdyior e 0 =

Thea rmonth you Fuees srtared win 12
=5 i@ youn D lh meirdh

13]

Paginations

In an earlier section we saw the use of the <Mobile:List> control. It is possible
that the list of items within the control might be long. Anyone who has written a
WAP application can attest to the importance of keeping the list short, at least
per screen. A common technique is to display the list in multiple pages, and as
such this technique is commonly known as records paging. One of the great fea-
tures of the Mobile API is its auto-paging capability. Consider the example
shown in Figure 9.41.

Figure 9.41 Paginate.aspx

<%@ Page | nherits="System Web. Ul . Mobil eControl s. Mobi | ePage"
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Namespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

Continued

407

Www.syngress.com

408

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.41 Continued

<script |anguage="vb" runat=server>

Sub Sel ect _Item (sender as (Object, e as ListConmandEvent Args)

End Sub

</script>

<Mobi | e: Form runat ="server" id="forml"
pagi nat e="true"
Pager St yl e- Next PageText="Go to Page {0}"
Pager St yl e- Previ ousPageText ="Back to Page {0}">

<Mobi | e: Label runat="server" StyleReference="title" Text="Books in
the .net Devel oper Series" />

<Mobi | e: Label runat="server" id="PageNo"/>

<Mbbi | e: Li st runat="server" id="titles"
Onl t enCommand="Sel ect _I t ent' >

<ltem val ue="1" text="VB .net Devel oper's Guide"/>
<l tem val ue="2" text="XM. Devel oper's CGuide to Wb Based EDI "/ >
<ltem val ue="3" text="C#. net Devel oper's QGuide"/>
<Item val ue="4" text="ASP. net Devel oper's Cuide"/>
<ltem val ue="5" text=".net Mbile Web Devel oper's Cuide"/>
<ltem val ue="6" text="ADO net Devel oper's Cuide"/>
<Item val ue="7" text="Web Services Devel oper Guide"/>
</ Mobi | e: Li st >
</ Mobi | e: For np

Our list contains seven items. When loaded using the UP.SDK, we see that
the list is displayed in multiple cards (see Figure 9.42).

Figure 9.42 Paginating a Form

Guilds

& LIF _mst [evelopsc's
Gul s

6 .mar Mohige Wek

kit st Davelopac' s

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

To allow for paging, simply insert the Paginate attribute into the <Mobile: Form>
control and set it to “true”. Additionally, the PagerStyle-NextPageTéxt and the
PagerStyle-PreviousPagelext attributes allow you to set the message for displaying the
next and previous page, respectively.

<Mobi | e: Form runat ="server" id="forml"
pagi nat e="true"
Pager St yl e- Next PageText="Go to Page {0}"
Pager St yl e- Previ ousPageText ="Back to Page {0}">

Calendar Control

Apart from those regular controls like Label and Textbox, the Microsoft Mobile
Internet Toolkit also includes some interesting controls like the Calendar and
AdRotator controls. We will illustrate the use of the Calendar control in this section.

Date selection is a commonly used feature of mobile applications and in the
past, great efforts have gone into making date selection as easy and error-proof as
possible. Instead of spending time in building the date selection module, the
Mobile APT has included the Calendar control. Consider the example shown in
Figure 9.43.

Figure 9.43 Birthdate.aspx

<%@ Page | nherits="System Mbile. U .Mbil ePage" Language="VB"' %
<%@ Regi st er TagPr efix="Mobi | e" Nanmespace="System Mbile. U" %

<script |anguage="VB" runat="server">

Sub dat e_Changed(sender as Cbject, e as EventArgs)

message. Text = "So your birthdate is " & birthdate. Sel ect edDat e
End Sub
</script>

<Mbbi | e: For m i d="FormL" runat ="server">

<Mobi | e: Label runat="server" styleReference="Title" Text="Tell me
your birthdate!"/>

<Mbbi | e: Cal endar id="birthdate" OnSel ecti onChanged="dat e_Changed"
runat ="server"/>

Continued

409

Www.syngress.com

410 Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.43 Continued

<Mbbi | e: Label runat="server" id="message"/>
</ Mobi | e: For n»

Figure 9.44 and Figure 9.45 shows how our code appears in the various
emulators.

Figure 9.44 Using the Calendar Control on the Pocket PC

| Inbmmek Explores

it | Nocakas ibathd e soe?

Teall e o i rthedat el

= BiEpat 201

Sm Eon Tue Wed Thu i Set
dk

15
£k
I a3
2 2 4 =
5o yor brthdste i §iE300

wicw Tewks 4 [T (1 (B

Figure 9.45 Using the Calendar Control on the UP.SDK

When a date has been selected, the message in Figure 9.46 is printed.

Figure 9.46 Printing the Birth Date

= ﬂ al 31 1 2 3
4 =]] 4 79 1@
Sa wour brifhdabe i 7291008

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

If you want the individual day, month and year printed instead (it is restricted
to mm/dd/yyyy format), you can use the following properties:

nmessage. Text = "So your birthdate is " & birthdate. Sel ect edDat e. day

or

nmessage. Text "So your birthdate is " & birthdate. Sel ectedDate. nonth

or

message. Text = "So your birthdate is " & birthdate. Sel ect edDat e. year

Accessing Data with ADO.NET

Today, most applications of any respectable size involve database access in one way
or another. Developers are familiar with using the ActiveX Data Objects (ADO)
for accessing databases thorough OLE DB and ODBC. In anticipation of the
increasing trend of distributed computing and the need to access data remotely,
ADO.NET was evolved to support disconnected data access. Actually, ADO.NET
is more of an evolution, rather than a revolution. If you are familiar with ADO,
chances are you will find most of the concepts in ADO.NET similar.

In the next section, we will take a closer look at ADO.NET and at how you
can get started with it quickly.

A Brief Look at ADO.NET

If you are familiar with ADO, you should know that the Recordset object in
ADO is no longer available in ADO.NET. Figure 9.47 sums up the architecture
of ADO.NET.

In place of the Recordset object, in ADO.NET there are two new objects for
data access. They are:

= Dataset
= DataReader

A Dataset object basically represents a complete set of data including related
tables, constraints, and relationships among the tables. Think of a Dataset object as
a static cursor in ADO, but instead of storing only a single table, it stores multiple
tables. A DataR eader object 1s used for reading records in a forward-only fashion.
Think of a DataR eader object as a forward-only cursor in ADO.

411

Www.syngress.com

412

Chapter 9 * Microsoft Mobile Internet Toolkit

Figure 9.47 ADO.NET Architecture

NET Data Provider Data Set
Connection Command DataRelationCollection
Transaction ‘ ’ Parameters

DataTableCollection

DataReader DataAdapter DataTable
SelectCommand DataRowCollection
InsertCommand > DataColumnCollection
UpdateCommand ConstraintCollection

DeleteCommand

11 1l

XML
Data Providers

In ADO, communication with the data source is through the OLE DB providers.
In ADO.NET, the communication is through Data providers. ADO.NET contains
two Data providers:

» SQL Data provider
= OLEDB Data provider

If your backend database is SQL Server, you should use the SQL Data provider
as it talks natively (using TDS) to SQL server. This results in immediate perfor-
mance gains, as there is no need to go through the OLE DB layer. However, if you
are not using SQL Server, you should use the OLEDB Data provider.

The OLEDB Data provider is engineered to work with most OLE DB
providers. The providers listed in Table 9.3 have been tested and are known to
work with ADO.NET.

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Table 9.3 Supported OLE DB Providers

Driver Provider
SQLOLEDB Microsoft OLE DB Provider for SQL Server
MSDAORA Microsoft OLE DB Provider for Oracle

Microsoft.Jet.OLEDB.4.0

OLE DB Provider for Microsoft Jet

NoTE

It is possible to use the OLEDB Data provider even if you are using SQL
server. In this case, you are foregoing the benefits of talking directly to
SQL server by going through additional layers by first going to the
OLEDB Data provider and then going through the OLEDB provider.

Figure 9.48 summarizes the discussion so far.

Figure 9.48 Comparing SQLData Provider and OLEDB Data Provider

Application

;

\

DataReader

DataSet

OLEDB Data
Provider

M

SQL Data
Provider

¢

OLE Provider

SQL Server
. Datahases '

Non-SQL Server

. Databases '

|

Www.syngress.com

413

414

Chapter 9 * Microsoft Mobile Internet Toolkit

ADO.NET DataReader

A huge portion of our database access is on retrieving records and simply dis-
playing them on the client side. For this reason, ADO.NET provides the

DataR eader. The DataReader is a read-only, forward-only stream returned from
the database. In order to prevent storing a huge number of records in memory
(resulting from multiple users performing the data retrieval at the same time, typ-
ical of Web access patterns), the DataR eader stores only a single record in

memory at any one time. The example in Figure 9.49 illustrates the use of the
DataR eader.

Figure 9.49 DataTitles.aspx

<%@ Page | nherits="System Wb. U . Mbil eControl s. Mbbi | ePage”
Language="VB" %

<%@ Regi st er TagPrefix="Mbi |l e" Namespace="System Web. U . Mobi | eControl s"
Assenbl y="Syst em Wb. Mobi |l e" %

<%@ | nport namespace="System Data" %
<%@ | mport namespace="System Data. SQ.Cdient" %

<script |anguage="vb" runat=server>
Sub Page_l oad (sender as Object, e as Event Args)

Dim connStr As String = "server=local host; User I|D=sa;
passwor d=; dat abase=Pubs”

Dim conn As New SQ.Connection(connstr)
Dim comm As New SQ.Comrand("SELECT * FROM Titl es", conn)
Di m dat aReader As SQ.Dat aReader

Try
conn. Open()
dat aReader = conm Execut eReader
'---reads the record one by one and add to list---
Whi | e dat ar eader . Read
titles.Items.add (datareader("Title"))
End Wile
Catch any_exception As Exception '---catching any exception

and displaying it---

Continued

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

Figure 9.49 Continued

error Message. Text = "Error!"
Finally
'---close the connection and frees the datareader---
conn. C ose()
dat areader = Not hi ng
End Try
End Sub

</script>

<Mbbi | e: For m runat ="server" pagi nate="true">

<Mobi | e: Label runat="server" StyleReference="title" Text="Books in
the Pubs table" />

<Mobi | e: Li st runat="server" id="titles"/>
<Mbbi | e: Label runat="server" id="errorMssage"/>
</ Mobi | e: For m»

When this code is run, the screen shown in Figure 9.50 will appear.
Figure 9.50 Accessing Records Using the DataReader Object

Tre Tusy Ixsaurive's

Pasmans Sade
Conking With

Binck

Dissecting the Codes

The first thing to note when using ADO.NET is that we need to import two
namespaces:

<%@ | nport namespace="System Data" %
<%@ | mport namespace="System Data. SQ.Cient" %

We next create three objects—conn, comm, and dataReader. The
SQLConnection object is for making a connection to the database and the

415

Www.syngress.com

416 Chapter 9 * Microsoft Mobile Internet Toolkit

SQLCommand object is used for setting a command. The SQLDataR eader
object is used for reading records in a read-only, forward-only fashion.

Dim connStr As String = "server=local host; User |D=sa;
passwor d=; dat abase=Pubs"

Dim conn As New SQ.Connection(connstr)
Dim comm As New SQ.Conmmand("SELECT * FROM Titles", conn)

Di m dat aReader As SQ.Dat aReader

We next have a Try, Catch, and Finally block:
Try

Catch any_excepti on As Exception
Finally

End Try

Within the Try block, we open a connection to the database and execute the
command. To read the individual record, we use the Read() method of the
DataR eader and then add it to the list control.

conn. Open()
dat aReader = comm Execut eReader

'---reads the record one by one and add to list---
Wi | e dat ar eader. Read

titles.Itens.add (datareader("Title"))
End Wil e

Within the Catch block, we want to display any exception that occurs as a
result of executing the codes in the Try block.

error Message. Text = "Error!"

And in the Finally block, we close the connection and free the DataReader
object:

'---close the connection and frees the datareader---
conn. d ose()

dat areader = Not hi ng

WwWw.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9

NoTE

Note that in VB.NET, the Set keyword is no longer in use. Also, notice the
ability to pass parameters to a class at the moment of instantiation.

ADO.NET Dataset

From the last section you can see that the DataReader object provides a quick
and easy way to retrieve records from a table. In this section, we will look at the
more powerful and flexible Dataset object.

Let’s take a look at the following example and see how we can use a Dataset
object to access three different tables in the database. We will use the Pubs
database that comes installed with Microsoft SQL Server 2000. We will specifi-
cally use the following three tables:

= Titles
= Authors
» TitleAuthor
The relationship between the three tables is shown in Figure 9.51.

Figure 9.51 Relationships between the Three Tables

Authors Titles
,E“E—"' |ID |Name E—E."" |ID |Name
& aud TileAuthor K fed
au_lname title
au_fname I:'&“Ey-u\.l D | Mame bype
phane: & auids” pub_id
addrezs % titlefiu:l price
ity au_ord advance
state rayaltyper roypalty

We want to print out all the titles stored in the Title table as well as the
associated authors.

417

Www.syngress.com

418 Chapter 9 * Microsoft Mobile Internet Toolkit

We have the following code:
<%@ Page | nherits="System Web. U . Mbi | eControl s. Mbbi | ePage”
Language="VB" %
<%@ Regi ster TagPrefix="Mbi |l e" Nanespace="System Web. Ul . Mbbi | eControl s"
Assenbl y="Syst em Web. Mobi |l e" %

<%@ | mport namespace="System Data" %
<%@ | nport namespace="System Data. SQ.Cient" %

<script |anguage="vb" runat=server>
Sub Page_l oad (sender as (Object, e as EventArgs)
'---using dataset---

Dim connStr As String = "server=local host; User |D=sa;
passwor d=; dat abase=Pubs"

Dim conn As New SQ.Connection(connstr)
Dim comm As New SQ.Conmmand(" SELECT * FROM Titles", conn)

Dimsqgl As String = "SELECT * FROM TitleAuthor INNER JO N
Aut hors ON Titl eAut hor.au_i d=Aut hors. au_i d"

Di m adapter as New SQ.Dat aAdapt er (conm)
Dim ds As New Dat aSet (" Pubs")
Dmtitl eToAdd as String

Di m count as short

Try

'---using the dataset command to fill a table froma
dat aset - - -

adapter.Fill(ds, "Titles_table")
'---setting the dataset command to another Command obj ect---
comm ConmmandText = sql
"---filling another table in the dataset---
adapter.Fill(ds, "TitleAuthor_table")

'---set a relationship between the two tables---

DmtitlelD titles_Colum As DataCol um
Dimtitlel D titleauthor_colum As DataCol um

www.syngress.com

Microsoft Mobile Internet Toolkit * Chapter 9 419

'---relationship between the titles and titleauthors
t abl es-

titlelD titles_Colum =
ds. Tabl es("titles_table"). Colums("title_id")

titlelD_titleauthor_colum =
ds. Tabl es("titl eaut hor_table"). Col ums("title_id")

Dim Titl eToAut hor As New Dat aRel ati on(" Tt 0A",
titlelD titles_Columm, titlelD_ titleauthor_col um)

Di m chi |l drow As Dat aRow
Dim row As Dat aRow

'---add a relation to the dataset---
ds. Rel ati ons. Add(Ti t| eToAut hor)

For Each row In ds. Tables("titles_table"). Rows
titleToAdd = rowm("title") & " by "
count = 0
For Each childrow In row Get Chil dRows(" Tt 0A")
count += 1
if count>1 then
titleToAdd += ", "
end if

titl eToAdd += childrow("au_fname") & " " &
chil drow "au_| nane")

Next
titles.itenms. Add (titl eToAdd)

Next
Catch any_exception As Exception '---catching any exception
and displaying it---
error Message. Text = "Error!"
Finally

'---close the connection and frees the dataset---
conn. d ose()
ds = Not hi ng

Www.syngress.com

420

Chapter 9 * Microsoft Mobile Internet Toolkit

End Try

End Sub

</script>

<Mbbi | e: For m runat ="server" Pagi nate="true">

<Mobi | e: Label runat="server" StyleReference="title" Text="Titles
and Aut hors" />

<Mobi | e: Li st runat="server" id="titles"/>
<Mbbi | e: Label runat="server" id="errorMessage"/>
</ Mobi | e: For n»

Now let’s take a closer look at the preceding code. We first create an
SQLConnection object to connect to our database:
Dim connStr As String = "server=local host; User |D=sa;
passwor d=; dat abase=Pubs"
Dim conn As New SQ.Connection(connstr)
Next we create a SQ.Comuand object:
Dim comm As New SQ.C