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PREFACE 

THE CHEMICAL INDUSTRY has undergone significant changes during the past 25 
years due to the increased cost of energy, increasingly stringent environmental reg- 
ulations, and global competition in product pricing and quality. One of the most 
important engineering tools for addressing these issues is optimization. Modifica- 
tions in plant design and operating procedures have been implemented to reduce 
costs and meet constraints, with an emphasis on improving efficiency and increas- 
ing profitability. Optimal operating conditions can be implemented via increased 
automation at the process, plant, and company levels, often called computer- 
integrated manufacturing, or CIM. As the power of computers has increased, fol- 
lowing Moore's Law of doubling computer speeds every 18 months, the size and 
complexity of problems that can be solved by optimization techniques have corre- 
spondingly expanded. Effective optimization techniques are now available in soft- 
ware for personal computers-a capability that did not exist 10 years ago. 

To apply optimization effectively in the chemical industries, both the theory 
and practice of optimization must be understood, both of which we explain in this 
book. We focus on those techniques and discuss software that offers the most poten- 
tial for success and gives reliable results. 

The book introduces the necessary tools for problem solving. We emphasize 
how to formulate optimization problems appropriately because many engineers and 
scientists find this phase of their decision-making process the most exasperating 
and difficult. The nature of the model often predetermines the optimization algo- 
rithm to be used. Because of improvements in optimization algorithms and soft- 
ware, the modeling step usually offers more challenges and choices than the selec- 
tion of the optimization technique. Appropriate meshing of the optimization 
technique and the model are essential for success in optimization. In this book we 
omit rigorous optimization proofs, replacing them with geometric or plausibility 
arguments without sacrificing correctness. Ample references are cited for those 
who wish to explore the theoretical concepts in more detail. 



xii Preface 

The book contains three main sections. Part I describes how to specify the three 
key components of an optimization problem, namely the 

1. Objective function 
2. Process model 
3. Constraints 

Part I comprises three chapters that motivate the study of optimization by giv- 
ing examples of different types of problems that may be encountered in chemical 
engineering. After discussing the three components in the previous list, we describe 
six steps that must be used in solving an optimization problem. A potential user of 
optimization must be able to translate a verbal description of the problem into the 
appropriate mathematical description. He or she should also understand how the 
problem formulation influences its solvability. We show how problem simplifica- 
tion, sensitivity analysis, and estimating the unknown parameters in models are 
important steps in model building. Chapter 3 discusses how the objective function 
should be developed. We focus on economic factors in this chapter and present sev- 
eral alternative methods of evaluating profitability. 

Part I1 covers the theoretical and computational basis for proven techniques in 
optimization. The choice of a specific technique must mesh with the three compo- 
nents in the list. Part I1 begins with Chapter 4, which provides the essential con- 
ceptual background for optimization, namely the concepts of local and global 
optima, convexity, and necessary and sufficient conditions for an optimum. Chap- 
ter 5 follows with a brief explanation of the most commonly used one-dimensional 
search methods. Chapter 6 presents reliable unconstrained optimization and meth- 
ods. Chapter 7 treats linear programming theory, applications, and software, using 
matrix methods. Chapter 8 covers recent advances in nonlinear programming meth- 
ods and software, and Chapter 9 deals with optimizati~n of discrete processes, 
highlighting mixed-integer programming problems and methods. We conclude Part 
I1 with a new chapter (for the second edition) on global optimization methods, such 
as tabu search, simulated annealing, and genetic algorithms. Only deterministic 
optimization problems are treated throughout the book because lack of space pre- 
cludes discussing stochastic variables, constraints, and coefficients. 

Although we include many simple applications in Parts I and I1 to illustrate the 
optimization techniques and algorithms, Part 111 of the book is exclusively devoted 
to illustrations and examples of optimization procedures, classified according to 
their applications: heat transfer and energy conservation (Chapter 1 I), separations 
(Chapter 12), fluid flow (Chapter 13), reactor design (Chapter 14), and plant design 
(Chapter 15), and a new chapter for the second edition on planning, scheduling, and 
control using optimization techniques (Chapter 16). Many students and profession- 
als learn by example or analogy and often discover how to solve a problem by 
examining the solution to similar problems. By organizing applications of opti- 
mization in this manner, you can focus on a single class of applications of particu- 
lar interest without having to review the entire book. We present a spectrum of 
modeling and solution methods in each of these chapters. The introduction to Part 
I11 lists each application classified by the technique employed. In some cases the 
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optimization method may be an analytical solution, leading to simple design rules; 
most examples illustrate numerical methods. In some applications the problem 
statement may be so complex that it cannot be explicitly written out, as in plant 
design and thus requires the use of a process simulator. No exercises are included 
in Part 111, but an instructor can (1) modify the variables, parameters, conditions, or 
constraints in an example, and (2) suggest a different solution technique to obtain 
exercises for solution by students. 

An understanding of optimization techniques does not require complex math- 
ematics. We require as background only basic tools from multivariable calculus and 
linear algebra to explain the theory and computational techniques and provide you 
with an understanding of how optimization techniques work (or, in some cases, fail 
to work). 

Presentation of each optimization technique is followed by examples to illus- 
trate an application. We also have included many practically oriented homework 
problems. In university courses, this book could be used at the upper-division or the 
first-year graduate levels, either in a course focused on optimization or on process 
design. The book contains more than enough material for a 15-week course on opti- 
mization. Because of its emphasis on applications and short case studies in Chap- 
ters 11-16, it may also serve as one of the supplementary texts in a senior unit oper- 
ations or design course. 

In addition to use as a textbook, the book is also suitable for use in individual 
study, industrial practice, industrial short courses, and other continuing education 
programs. 

We wish to acknowledge the helpful suggestions of several colleagues in devel- 
oping this book, especially Yaman Arkun, Georgia Institute of Technology; Lorenz 
T. Biegler, Carnegie-Mellon University; James R. Couper, University of Arkansas; 
James R. Fair, University of Texas-Austin; Christodoulos Floudas, Princeton Uni- 
versity; Fred Glover, University of Colorado; Ignacio Grossmann, Carnegie-Mellon 
University; K. Jayaraman, Michigan State University; I. Lefkowitz, Case Western 
Reserve University; Tom McAvoy, University of Maryland; J h o s  Pint&, Pint& 
Consulting Services; Lany Ricker, University of Washington; and Mark Stadtherr, 
University of Note Dame. Several of the examples in Chapters 11-16 were pro- 
vided by friends in industry and in universities and are acknowledged there. We 
also recognize the help of many graduate students in developing solutions to the 
examples, especially Juergen Hahn and Tyler Soderstrom for this edition. 

T. F. Edgar 
D. M. Himmelblau 
L. S. Lasdon 



ABOUT THE AUTHORS 

THOMAS F. EDGAR holds the AbelI 
Chair in chemical engineering at the 
University of Texas at Austin. He earned 
a B. S. in chemical engineering from the 
University of Kansas and a Ph. D. from 
Princeton University. Before receiving 
his doctorate, he was employed by Con- 
tinental Oil Company. His professional 
honors incIude selection as the 1980 
winner of the AIChE Colburn Award, 
ASEE Meriam-Wiley and Chemical 
Engineering Division Awards, ISA Edu- 
cation Award, and AIChE Computing in 
Chemical Engineering Award. He is 
listed in Who's Who in America. 

He has published over 200 papers 
in the fields of process contro1, opti- 
mization, and mathematical modeling 

of processes such as separations, combustion, and microelectronics processing. He 
is coauthor of Pmcess Dynamics and Contml, published by Wiley in 1989. Dr. 
Edgar was chairman of the CAST Division of AIChE in 1986, president of the 
CACHE Corporation from 198 1 to 1984, and president of AIChE in 199.7. 

DAVID M. HIMMELBLAU is the Paul 
D. and Betty Robertson Meek and 
American Petrofina Foundation Cen- 
tennial Professor Emeritus in Chemical 
Engineering at the University of Texas 
at Austin. He received a B. S. degree 
from Massachusetts Institute of Tech- 
nology and M. S. and Ph. D. degrees 
from the University of Washington. He 
has taught at the University of Texas for 
over 40 years. Prior to that time he 
worked for several companies including 
International Harvester Co., Simpson 
Logging Co., and Excel Battery Co. 
Among his more than 200 publications 
are 11 books including a widely used 
introductory book in chemical engi- 



About the Authors xv 

neering; books on process analysis and simulation, statistics, decomposition, fault 
detection in chemical processes; and nonlinear programming. He is a fellow of the 
American Institute of Chemical Engineers and served AEChE in many capacities, 
including as director. Me also has been a CACHE trustee for many years, serving 
as president and later executive oficer. He received the ALChE Founders Award and 
the CAST Division Computers in Chemical Engineering Award. His current areas 
of research are fault detection, sensor validation, and interactive learning via 
computer-based educational materials. 

LEON LASDON holds the David Bru- 
ton Jr. Centennial Chair in Business 
Decision Support Systems in the Man- 
agement Science and Information Sys- 
tems Department, ColIege of Business 
Administration, at the University of 
Texas at Austin and has taught there 
since 1977. He received a B. S. E. E. 
degree from Syracuse University and an 
M. S. E. H. degree and a Ph. D. in sys- 
tems engineering from Case Institute of 
Technology. 

Dr. Lasdon has published an award- 
winning text on large-scale systems 
optimization, and more than 100 articles 
in journals such as Management Sci- 
ence, Operations Research, Mathemati- 
cal Programming, and the INFORMS 

Journal on Computing. His research interests include optimization algorithms and 
software, and applications of optimization and other OWMS methodologies. He is 
a coauthor of the Microsoft ExceI Solver, and his optimization software is used in 
many industries and universities worldwide. He is consulted widely on problems 
involving ORlMS applications. 





PART I 

PROBLEM FORMULATION 

Formulating the problem is perhaps the most crucial step in optimization. Problem 
formulation requires identifying the essential elements of a conceptual or verbal 
statement of a given application and organizing them into a prescribed mathemati- 
cal form, namely, 

1. The objective function (economic criterion) 
2. The process model (constraints) 

The objective function represents such factors as profit, cost, energy, and yield 
in terms of the key variables of the process being analyzed. The process model and 
constraints describe the interrelationships of the key variables. It is important to 
learn a systematic approach for assembling the physical and empirical relations and 
data involved in an optimization problem, and Chapters 1, 2, and 3 cover the rec- 
ommended procedures. Chapter 1 presents six steps for optimization that can serve 
as a general guide for problem solving in design and operations analysis. Numer- 
ous examples of problem formulation in chemical engineering are presented to 
illustrate the steps. 

Chapter 2 summarizes the characteristics of process models and explains how 
to build one. Special attention is focused on developing mathematical models, par- 
ticularly empirical ones, by fitting empirical data using least squares, which itself 
is an optimization procedure. 

Chapter 3 treats the most common type of objective function, the cost or rev- 
enue function. Historically, the majority of optimization applications have involved 
trade-offs between capital costs and operating costs. The nature of the trade-off 
depends on a number of assumptions such as the desired rate of return on invest- 
ment, service life, depreciation method, and so on. While an objective function 
based on net present value is preferred for the purposes of optimization, discounted 
cash flow based on spreadsheet analysis can be employed as well. 

It is important to recognize that many possible mathematical problem formu- 
lations can result from an engineering analysis, depending on the assumptions 
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made and the desired accuracy of the model. To solve an optimization problem, the 
mathematical formulation of the model must mesh satisfactorily with the computa- 
tional algorithm to be used. A certain amount of artistry, judgment, and experience 
is therefore required during the problem formulation phase of optimization. 



THE NATURE AND ORGANIZATION OF 
OPTIMIZATION PROBLEMS 

.................................... 1.1 What Optimization Is All About 4 
1.2 Whyoptimize? .................................................. 4 ................................ 1.3 Scope and Hierarchy of Optimization 5 ............................. 1.4 Examples of Applications of Optimization 8 ...................... 1.5 The Essential Features of Optimization Problems 14 .................. 1.6 General Procedure for Solving Optimization Problems 18 ......................................... 1.7 Obstacles to Optimization 26 

References ...................................................... 27 ......................................... Supplementary References 27 
Problems ....................................................... 28 



4 PART I : Problem Formulation 

OPTIMIZATION IS THE use of specific methods to determine the most cost-effective 
and efficient solution to a problem or design for a process. This technique is one of 
the major quantitative tools in industrial decision making. A wide variety of prob- 
lems in the design, construction, operation, and analysis of chemical plants (as well 
as many other industrial processes) can be resolved by optimization. In this chap- 
ter we examine the basic characteristics of optimization problems and their solution 
techniques and describe some typical benefits and applications in the chemical and 
petroleum industries. 

1.1 WHAT OPTIMIZATION IS ALL ABOUT 

A well-known approach to the principle of optimization was first scribbled cen- 
turies ago on the walls of an ancient Roman bathhouse in connection with a choice 
between two aspirants for emperor of Rome. It read-"De doubus malis, minus est 
semper aligendum7'--of two evils, always choose the lesser. 

Optimization pervades the fields of science, engineering, and business. In 
physics, many different optimal principles have been enunciated, describing natu- 
ral phenomena in the fields of optics and classical mechanics. The field of statistics 
treats various principles termed "maximum likelihood," "minimum loss," and "least 
squares," and business makes use of "maximum profit," "minimum cost," "maxi- 
mum use of resources," "minimum effort," in its efforts to increase profits. A typi- 
cal engineering problem can be posed as follows: A process can be represented by 
some equations or perhaps solely by experimental data. You have a single perform- 
ance criterion in mind such as minimum cost. The goal of optimization is to find 
the values of the variables in the process that yield the best value of the perform- 
ance criterion. A trade-off usually exists between capital and operating costs. The 
described factors-process or model and the performance criterion-constitute the 
optimization "problem." 

Typical problems in chemical engineering process design or plant operation 
have many (possibly an infinite number) solutions. Optimization is concerned with 
selecting the best among the entire set by efficient quantitative methods. Comput- 
ers and associated software make the necessary computations feasible and cost- 
effective. To obtain useful information using computers, however, requires (I) crit- 
ical analysis of the process or design, (2) insight about what the appropriate 
performance objectives are (i.e., what is to be accomplished), and (3) use of past 
experience, sometimes called engineering judgment. 

1.2 WHY OPTIMIZE? 

Why are engineers interested in optimization? What benefits result from using this 
method rather than making decisions intuitively? Engineers work to improve the 
initial design of equipment and strive to enhance the operation of that equipment 
once it is installed so as to realize the largest production, the greatest profit, the 
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minimum cost, the least energy usage, and so on. Monetary value provides a con- 
venient measure of different but otherwise incompatible objectives, but not all 
problems have to be considered in a monetary (cost versus revenue) framework. 

In plant operations, benefits arise from improved plant performance, such as 
improved yields of valuable products (or reduced yields of contaminants), reduced 
energy consumption, higher processing rates, and longer times between shutdowns. 
Optimization can also lead to reduced maintenance costs, less equipment wear, and 
better staff utilization. In addition, intangible benefits arise from the interactions 
among plant operators, engineers, and management. It is extremely helpful to sys- 
tematically identify the objective, constraints, and degrees of freedom in a process 
or a plant, leading to such benefits as improved quality of design, faster and more 
reliable troubleshooting, and faster decision making. 

Predicting benefits must be done with care. Design and operating variables in 
most plants are always coupled in some way. If the fuel bill for a distillation col- 
umn is $3000 per day, a 5-percent savings may justify an energy conservation proj- 
ect. In a unit operation such as distillation, however, it is incorrect to simply sum 
the heat exchanger duties and claim a percentage reduction in total heat required. A 
reduction in the reboiler heat duty may influence both the product purity, which can 
translate to a change in profits, and the condenser cooling requirements. Hence, it 
may be misleading to ignore the indirect and coupled effects that process variables 
have on costs. 

What about the argument that the formal application of optimization is really 
not warranted because of the uncertainty that exists in the mathematical represen- 
tation of the process or the data used in the model of the process? Certainly such 
an argument has some merit. Engineers have to use judgment in applying opti- 
mization techniques to problems that have considerable uncertainty associated with 
them, both from the standpoint of accuracy and the fact that the plant operating 
parameters and environs are not always static. In some cases it may be possible to 
carry out an analysis via deterministic optimization and then add on stochastic fea- 
tures to the analysis to yield quantitative predictions of the degree of uncertainty. 
Whenever the model of a process is idealized and the input and parameter data only 
known approximately, the optimization results must be treated judiciously. They 
can provide upper limits on expectations. Another way to evaluate the influence of 
uncertain parameters in optimal design is to perform a sensitivity analysis. It is pos- 
sible that the optimum value of a process variable is unaffected by certain parame- 
ters (low sensitivity); therefore, having precise values for these parameters will not 
be crucial to finding the true optimum. We discuss how a sensitivity analysis is per- 
formed later on in this chapter. 

1.3 SCOPE AND HIERARCHY OF OPTIMIZATION 

Optimization can take place at many levels in a company, ranging from a complex 
combination of plants and distribution facilities down through individual plants, 
combinations of units, individual pieces of equipment, subsystems in a piece of 
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equipment, or even smaller entities (Beveridge and Schechter, 1970). Optimization 
problems can be found at all these levels. Thus, the scope of an optimization prob- 
lem can be the entire company, a plant, a process, a single unit operation, a single 
piece of equipment in that operation, or any intermediate system between these. 
The complexity of analysis may involve only gross features or may examine minute 
detail, depending upon the use to which the results will be put, the availability of 
accurate data, and the time available in which to carry out the optimization. In a 
typical industrial company optimization can be used in three areas (levels): (1) 
management, (2) process design and equipment specification, and (3) plant opera- 
tions (see Fig. 1.1). 

Management makes decisions concerning project evaluation, product selection, 
corporate budget, investment in sales versus research and development, and new 
plant construction (i.e., when and where should new plants be constructed). At this 
level much of the available information may be qualitative or has a high degree of 
uncertainty. Many management decisions for optimizing some feature(s) of a large 
company therefore have the potential to be significantly in error when put into prac- 
tice, especially if the timing is wrong. In general, the magnitude of the objective 
function, as measured in dollars, is much larger at the management level than at the 
other two levels. 

Individuals engaged in process design and equipment specification are con- 
cerned with the choice of a process and nominal operating conditions. They answer 
questions such as: Do we design a batch process or a continuous process? How 
many reactors do we use in producing a petrochemical? What should the configu- 
rations of the plant be, and how do we arrange the processes so that the operating 
efficiency of the plant is at a maximum? What is the optimum size of a unit or com- 
bination of units? Such questions can be resolved with the aid of so-called process 

FIGURE 1.1 
Hierarchy of levels of optimization. 

Management 

Operations 
Allocation 
and 
scheduling 

Individual 
equipment 

Design 
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design simulators or flowsheeting programs. These large computer programs carry 
out the material and energy balances for individual pieces of equipment and com- 
bine them into an overall production unit. Iterative use of such a simulator is often 
necessary to arrive at a desirable process flowsheet. 

Other, more specific decisions are made in process design, including the actual 
choice of equipment (e.g., more than ten different types of heat exchangers are 
available) and the selection of construction materials of various process units. 

The third constituency employing optimization operates on a totally different 
time scale than the other two. Process design and equipment specification is usu- 
ally performed prior to the implementation of the process, and management deci- 
sions to implement designs are usually made far in advance of the process design 
step. On the other hand, optimization of operating conditions is carried out 
monthly, weekly, daily, hourly, or even, at the extreme, every minute. Plant opera- 
tions are concerned with operating controls for a given unit at certain temperatures, 
pressures, or flowrates that are the best in some sense. For example, the selection 
of the percentage of excess air in a process heater is critical and involves balancing 
the fuel-air ratio to ensure complete combustion while making the maximum use 
of the heating potential of the fuel. 

Plant operations deal with the allocation of raw materials on a daily or weekly 
basis. One classical optimization problem, which is discussed later in this text, is 
the allocation of raw materials in a refinery. Typical day-to-day optimization in a 
plant minimizes steam consumption or cooling water consumption. 

Plant operations are also concerned with the overall picture of shipping, trans- 
portation, and distribution of products to engender minimal costs. For example, the 
frequency of ordering, the method of scheduling production, and scheduling deliv- 
ery are critical to maintaining a low-cost operation. 

The following attributes of processes affecting costs or profits make them 
attractive for the application of optimization: 

1. Sales limited by production: If additional products can be sold beyond current 
capacity, then economic justification of design modifications is relatively easy. 
Often, increased production can be attained with only slight changes in operat- 
ing costs (raw materials, utilities, etc.) and with no change in investment costs. 
This situation implies a higher profit margin on the incremental sales. 

2. Sales limited by market: This situation is susceptible to optimization only if 
improvements in efficiency or productivity can be obtained; hence, the economic 
incentive for implementation in this case may be less than in the first example 
because no additional products are made. Reductions in unit manufacturing 
costs (via optimizing usage of utilities and feedstocks) are generally the main 
targets. 

3. Large unit throughputs: High production volume offers great potential for 
increased profits because small savings in production costs per unit are greatly 
magnified. Most large chemical and petroleum processes fall into this classifi- 
cation. 

4. High raw material or energy consumption: Significant savings can be made by 
reducing consumption of those items with high unit costs. 
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5. Product quality exceeds product spec@cations: If the product quality is signifi- 
cantly better than that required by the customer, higher than necessary produc- 
tion costs and wasted capacity may occur. By operating close to customer spec- 
ification (constraints), cost savings can be obtained. 

6. Losses of valuable components through waste streams: The chemical analysis of 
various plant exit streams, both to the air and water, should indicate if valuable 
materials are being lost. Adjustment of air-fuel ratios in furnaces to minimize 
hydrocarbon emissions and hence fuel consumption is one such example. Pollu- 
tion regulations also influence permissible air and water emissions. 

7. High labor costs: In processes in which excessive handling is required, such as 
in batch operation, bulk quantities can often be handled at lower cost and with a 
smaller workforce. Revised layouts of facilities can reduce costs. Sometimes no 
direct reduction in the labor force results, but the intangible benefits of a less- 
ened workload can allow the operator to assume greater responsibility. 

Two valuable sources of data for identifying opportunities for optimization 
include (1) profit and loss statements for the plant or the unit and (2) the periodic 
operating records for the plant. The profit and loss statement contains much valu- 
able information on sales, prices, manufacturing costs, and profits, and the operat- 
ing records present information on material and energy balances, unit efficiencies, 
production levels, and feedstock usage. 

Because of the complexity of chemical plants, complete optimization of a 
given plant can be an extensive undertaking. In the absence of complete optimiza- 
tion we often rely on "incomplete optimization," a special variety of which is 
termed suboptimization. Suboptimization involves optimization for one phase of an 
operation or a problem while ignoring some factors that have an effect, either obvi- 
ous or indirect, on other systems or processes in the plant. Suboptimization is often 
necessary because of economic and practical considerations, limitations on time or 
personnel, and the difficulty of obtaining answers in a hurry. Suboptimization is 
useful when neither the problem formulation nor the available techniques permits 
obtaining a reasonable solution to the full problem. In most practical cases, subop- 
timization at least provides a rational technique for approaching an optimum. 

Recognize, however, that suboptimization of all elements does not necessarily 
ensure attainment of an overall optimum for the entire system. Subsystem objec- 
tives may not be compatible nor mesh with overall objectives. 

1.4 EXAMPLES OF APPLICATIONS OF OPTIMIZATION 

Optimization can be applied in numerous ways to chemical processes and plants. 
Typical projects in which optimization has been used include 

1. Determining the best sites for plant location. 
2. Routing tankers for the distribution of crude and refined products. 
3. Sizing and layout of a pipeline. 
4. Designing equipment and an entire plant. 
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5. Scheduling maintenance and equipment replacement. 
6. Operating equipment, such as tubular reactors, columns, and absorbers. 
7. Evaluating plant data to construct a model of a process. 
8. Minimizing inventory charges. 
9. Allocating resources or services among several processes. 

10. Planning and scheduling construction. 

These examples provide an introduction to the types of variables, objective func- 
tions, and constraints that will be encountered in subsequent chapters. 

In this section we provide four illustrations of "optimization in practice." that 
is, optimization of process operations and design. These examples will help illus- 
trate the general features of optimization problems, a topic treated in more. detail 
in Section 1.5. 

EXAMPLE 1.1 OPTIMAL INSULATION THICKNESS 

Insulation design is a classic example of overall cost saving that is especially perti- 
nent when fuel costs are high. The addition of insulation should save money through 
reduced heat losses; on the other hand, the insulation material can be expensive. The 
amount of added insulation needed can be determined by optimization. 

Assume that the bare surface of a vessel is at 700°F with an ambient temperature 
of 70°F. The surface heat loss is 4000 Btu/(h)(ft2). Add 1 in. of calcium silicate insu- 
lation and the loss will drop to 250 Btu/(h)(ft2). At an installed cost of $4.00 ft2 and a 
cost of energy at $5.00/106 Btu, a savings of $164 per year (8760 hours of operation) 
per square foot would be realized. A simplified payback calculation shows a payback 
period of 

$4.00/(ft2) 
= 0.0244 year, or 9 days 

$164/(ft2) (year) 

As additional inches of insulation are added, the increments must be justified by the 
savings obtained. Figure El .  1 shows the outcome of adding more layers of insulation. 
Since insulation can only be added in 0.5-in. increments, the possible capital costs are 
shown as a series of dots; these costs are prorated because the insulation lasts for sev- 
eral years before having to be replaced. In Figure El . l  the energy loss cost is a con- 
tinuous curve because it can be calculated directly from heat transfer principles. The 
total cost is also shown as a continuous function. Note that at some point total costs 
begin increasing as the insulation thickness increases because little or no benefit in 
heat conservation results. The trade-off between energy cost and capital cost, and the 
optimum insulation thickness, can be determined by optimization. Further discussion 
of capital versus operating costs appears in Chapter 3; in particular, see Example 3.3. 

EXAMPLE 1.2 OPTIMAL OPERATING CONDITIONS 
OF A BOILER 

Another example of optimization can be encountered in the operation of a boiler. 
Engineers focus attention on utilities and powerhouse operations within refineries and 
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Cost ($/year) 

Insulation thickness 

FIGURE El. l  
The effect of insulation thickness on total cost (x* = optimum 
thickness). Insulation can be purchased in 0.5-in. increments. (The total 
cost function is shown as a smooth curve for convenience, although the 
sum of the two costs would not actually be smooth.) 

process plants because of the large amounts of energy consumed by these plants and 
the potential for significant reduction in the energy required for utilities generation 
and distribution. Control of environmental emissions adds complexity and constraints 
in optimizing boiler operations. In a boiler it is desirable to optimize the air-fuel ratio 
so that the thermal efficiency is maximized; however, environmental regulations 
encourage operation under fuel-rich conditions and lower combustion temperatures in 
order to reduce the emissions of nitrogen oxides (NO,). Unfortunately, such operating 
conditions also decrease efficiency because some unburned fuel escapes through the 
stacks, resulting in an increase in undesirable hydrocarbon (HC) emissions. Thus, a 
conflict in operating criteria arises. 

Figure E1.2a illustrates the trade-offs between efficiency and emissions, sug- 
gesting that more than one performance criterion may exist: We are forced to consider 
maximizing efficiency versus minimizing emissions, resulting in some compromise 
of the two objectives. 

Another feature of boiler operations is the widely varying demands caused by 
changes in process operations, plant unit start-ups and shutdowns, and daily and sea- 
sonal cycles. Because utility equipment is often operated in parallel, demand swings 
commonly affect when another boiler, turbine, or other piece of equipment should be 
brought on line and which one it should be. 

Determining this is complicated by the feature that most powerhouse equipment 
cannot be operated continuously all the way down to the idle state, as illustrated by 
Figure E1.2b for boilers and turbines. Instead, a range of continuous operation may 
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FIGURE E1.2~  
Efficiency and emissions of a boiler as a function of air-fuel ratio. (1.0 = 
stoichiometric air-fuel ratio.) 

exist for certain conditions, but a discrete jump to a different set of conditions (here 
idling conditions) may be required if demand changes. In formulating many opti- 
mization problems, discrete variables (on-off, high-low, integer 1, 2, 3,4, etc.) must 
be accommodated. 

EXAMPLE 1.3 OPTIMUM DISTILLATION REFLUX 

Prior to 1974, when fuel costs were low, distillation column trains used a strategy 
involving the substantial consumption of utilities such as steam and cooling water in 
order to maximize separation (i.e., product purity) for a given tower. However, the 
operation of any one tower involves certain limitations or constraints on the process, 
such as the condenser duty, tower tray flooding, or reboiler duty. 

The need for energy conservation suggests a different objective, namely mini- 
mizing the reflux ratio. In this circumstance, one can ask: How low can the reflux 
ratio be set? From the viewpoint of optimization, there is an economic minimum 
value below which the energy savings are less than the cost of product quality degra- 
dation. Figures E1.3a and E1.3b illustrate both alternatives. Operators tend to over- 
reflux a column because this strategy makes it easier to stay well within the product 
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FIGURE E1.2b 
Discontinuity in operating regimen. 

Constraint - Constraint --, 

Region of feasible operation 

Value of products 

Cost of heat 
(high fuel cost) 

Cost of heat 
(low fuel cost) 

Reflux, or heat duty 

FIGURE El.% 
Illustration of optimal reflux for different fuel costs. 
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Reflux, or heat duty \ 

FIGURE E1.3b 
Total profit for different fuel costs. 

specifications. Often columns are operated with a fixed flow control for reflux so that 
the reflux ratio is higher than needed when feed rates drop off. This issue is discussed 
in more detail in Chapter 12. 

EXAMPLE 1.4 MULTIPLANT PRODUCT DISTRIBUTION 

A common problem encountered in large chemical companies involves the distribu- 
tion of a single product (Y) manufactured at several plant locations. Generally, the 
product needs to be delivered to several customers located at various distances from 
each plant. It is, therefore, desirable to determine how much Y must be produced at 
each of m plants (Y,, Y,, . . . , Y,) and how, for example, Y, should be allocated to each 
of n demand points (Y,,, Y,,, . . . , Y,,). The cost-minimizing solution to this prob- 
lem not only involves the transportation costs between each supply and demand point 
but also the production cost versus capacity curves for each plant. The individual 
plants probably vary with respect to their nominal production rate, and some plants 
may be more efficient than others, having been constructed at a later date. Both of 
these factors contribute to a unique functionality between production cost and pro- 
duction rate. Because of the particular distribution of transportation costs, it may be 
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desirable to manufacture more product from an old, inefficient plant (at higher cost) 
than from a new, efficient one because new customers may be located very close to 
the old plant. On the other hand, if the old plant is operated far above its design rate, 
costs could become exorbitant, forcing a reallocation by other plants in spite of high 
transportation costs. In addition, no doubt constraints exist on production levels from 
each plant that also affect the product distribution plan. 

1.5 THE ESSENTIAL FEATURES OF OPTIMIZATION PROBLEMS 

Because the solution of optimization problems involves various features of mathe- 
matics, the formulation of an optimization problem must use mathematical expres- 
sions. Such expressions do not necessarily need to be very complex. Not all prob- 
lems can be stated or analyzed quantitatively, but we will restrict our coverage to 
quantitative methods. From a practical viewpoint, it is important to mesh properly 
the problem statement with the anticipated solution technique. 

A wide variety of optimization problems have amazingly similar structures. 
Indeed, it is this similarity that has enabled the recent progress in optimization tech- 
niques. Chemical engineers, petroleum engineers, physicists, chemists, and traffic 
engineers, among others, have a common interest in precisely the same mathemat- 
ical problem structures, each with a different application in the real world. We can 
make use of this structural similarity to develop a framework or methodology 
within which any problem can be studied. This section describes how any process 
problem, complex or simple, for which one desires the optimal solution should be 
organized. To do so, you must (a) consider the model representing the process and 
(b) choose a suitable objective criterion to guide the decision making. 

Every optimization problem contains three essential categories: 

1. At least one objective function to be optimized (profit function, cost function, 
etc.). 

2. Equality constraints (equations). 
3. Inequality constraints (inequalities). 

Categories 2 and 3 constitute the model of the process or equipment; category 1 is 
sometimes called the economic model. 

By a feasible solution of the optimization problem we mean a set of variables 
that satisfy categories 2 and 3 to the desired degree of precision. Figure 1.2 illus- 
trates the feasible region or the region of feasible solutions defined by categories 2 
and 3. In this case the feasible region consists of a line bounded by two inequality 
constraints. An optimal solution is a set of values of the variables that satisfy the 
components of categories 2 and 3; this solution also provides an optimal value for 
the function in category 1. In most cases the optimal solution is a unique one; in 
some it is not. If you formulate the optimization problem so that there are no resid- 
ual degrees of freedom among the variables in categories 2 and 3, optimization is 
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FIGURE 1.2 
Feasible region for an optimization problem involving two independent 
variables. The dashed lines represent the side of the inequality constraints 
in the plane that form part of the infeasible region. The heavy line shows 
the feasible region. 

not needed to obtain a solution for a problem. More specifically, if me equals the 
number of independent consistent equality constraints and mi equals the number of 
independent inequality constraints that are satisfied as equalities (equal to zero), 
and if the number of variables whose values are unknown is equal to me + mi, then 
at least one solution exists for the relations in components 2 and 3 regardless of the 
optimization criterion. (Multiple solutions may exist when models in categories 2 
and 3 are composed of nonlinear relations.) If a unique solution exists, no opti- 
mization is needed to obtain a solution--one just solves a set of equations and need 
not worry about optimization methods because the unique feasible solution is by 
definition the optimal one. 

On the other hand, if more process variables whose values are unknown exist 
in category 2 than there are independent equations, the process model is called 
underdetermined; that is, the model has an infinite number of feasible solutions so 
that the objective function in category 1 is the additional criterion used to reduce 
the number of solutions to just one (or a few) by specifying what is the "best" solu- 
tion. Finally, if the equations in category 2 contain more independent equations 
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than variables whose values are unknown, the process model is overdetermined and 
no solution satisfies all the constraints exactly. To resolve the difficulty, we some- 
times choose to relax some or all of the constraints. A typical example of an overde- 
termined model might be the reconciliation of process measurements for a material 
balance. One approach to yield the desired material balance would be to resolve the 
set of inconsistent equations by minimizing the sum of the errors of the set of equa- 
tions (usually by a procedure termed least squares). 

In this text the following notation will be used for each category of the opti- 
mization problem: 

Minimize: f (x) objective function (a) 

Subject to: h(x) = 0 equality constraints (b) 

g(x) r 0 inequality constraints (4 

where x is a vector of n variables (x,, x2, . . . , x,), h(x) is a vector of equations of 
dimension m,, and g(x) is a vector of inequalities of dimension m,. The total num- 
ber of constraints is m = (m, + m,). 

EXAMPLE 1.5 OPTIMAL SCHEDULING: FORMULATION OF 
THE OPTIMATION PROBLEM 

In this example we illustrate the formulation of the components of an optimization 
problem. 

We want to schedule the production in two plants, A and B, each of which can 
manufacture two products: 1 and 2. How should the scheduling take place to maxi- 
mize profits while meeting the market requirements based on the following data: 

Material 
processed Profit 
(lblday) ($nb) 

Plant 1 2 1 2 

How many days per year (365 days) should each plant operate processing each kind 
of material? Hints: Does the table contain the variables to be optimized? How do you 
use the information mathematically to formulate the optimization problem? What 
other factors must you consider? 

Solution. How should we start to convert the words of the problem into mathematical 
statements? First, let us define the variables. There will be four of them (tAl,tA2, t,,, 
and t,,, designated as a set by the vector t) representing, respectively, the number of 
days per year each plant operates on each material as indicated by the subscripts. 

What is the objective function? We select the annual profit so that 
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Next, do any equality constraints evolve from the problem statement or from implicit 
assumptions? If each plant runs 365 days per year, two equality constraints arise: 

Finally, do any inequality constraints evolve from the problem statement or implicit 
assumptions? On first glance it may appear that there are none, but further thought 
indicates t must be nonnegative since negative values of t have no physical meaning: 

Do negative values of the coefficients S have physical meaning? 
Other inequality constraints might be added after further analysis, such as a lim- 

itation on the total amount of material 2 that can be sold (L,): 

or a limitation on production rate for each product at each plant, namely 

To find the optimal t, we need to optimize (a) subject to constraints (b) to (g). 

EXAMPLE 1.6 MATERIAL BALANCE RECONCILIATION 

Suppose the flow rates entering and leaving a process are measured periodically. 
Determine the best value for stream A in kg/h for the process shown from the three 
hourly measurements indicated of B and C in Figure E1.6, assuming steady-state 
operation at a fixed operating point. The process model is 

where M is the mass per unit time of throughput. 

Solution. We need to set up the objective function first. Let us minimize the sum of 
the squares of the deviations between input and output as the criterion so that the 
objective function becomes 

A sum of squares is used since this guarantees that f > 0 for all values of MA; a min- 
imum at f = 0 implies no error. 
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FIGURE E1.6 

A > 

No equality constraints remain in the problem. Are there any inequality con- 
straints? (Hint: What about MA?) The optimum value of MA can be found by differ- 
entiating f with respect to MA; this leads to an optimum value for MA of 82.4 and is 
the same result as that obtained by computing from the averaged measured values, 
MA = & - M,. Other methods of reconciling material (and energy) balances are 
discussed by Romagnoli and Sanchez (1999). 

(a) 92.4 kgh , (b) 94.3 kgm 
(c) 93.8 kgh 

1.6 GENERAL PROCEDURE FOR SOLVING OPTIMIZATION 
PROBLEMS 

+ 

No single method or algorithm of optimization can be applied efficiently to all 
problems. The method chosen for any particular case depends primarily on (1) the 
character of the objective function and whether it is known explicitly, (2) the nature 
of the constraints, and (3) the number of independent and dependent variables. 

Table 1.1 lists the six general steps for the analysis and solution of optirniza- 
tion problems. You do not have to follow the cited order exactly, but you should 
cover all of the steps eventually. Shortcuts in the procedure are allowable, and the 
easy steps can be performed first. Each of the steps will be examined in more detail 
in subsequent chapters. 

Remember, the general objective in optimization is to choose a set of values of 
the variables subject to the various constraints that produce the desired optimum 
response for the chosen objective function. 

Steps 1, 2, and 3 deal with the mathematical definition of the problem, that is, 
identification of variables, specification of the objective function, and statement of 
the constraints. We devote considerable attention to problem formulation in the 
remainder of this chapter, as well as in Chapters 2 and 3. If the process to be opti- 
mized is very complex, it may be necessary to reformulate the problem so that it 
can be solved with reaionable effort. 

Step 4 suggests that the mathematical statement of the problem be simplified 
as much as possible without losing the essence of the problem. First, you might 
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TABLE 1.1 
The six steps used to solve optimization problems 

1. Analyze the process itself so that the process variables and specific characteris- 
tics of interest are defined; that is, make a list of all of the variables. 

2. Determine the criterion for optimization, and specify the objective function in 
terms of the variables defined in step 1 together with coefficients. This step pro- 
vides the performance model (sometimes called the economic model when 
appropriate). 

3. Using mathematical expressions, develop a valid process or equipment model 
that relates the input-output variables of the process and associated coefficients. 
Include both equality and inequality constraints. Use well-known physical prin- 
ciples (mass balances, energy balances), empirical relations, implicit concepts, 
and external restrictions. Identify the independent and dependent variables to get 
the number of degrees of freedom. 

4. If the problem formulation is too large in scope: 
(a) break it up into manageable parts or 
(b) simplify the objective function and model 

5. Apply a suitable optimization technique to the mathematical statement of the 
problem. 

6. Check the answers, and examine the sensitivity of the result to changes in the 
coefficients in the problem and the assumptions. 

decide to ignore those variables that have an insignificant effect on the objective 
function. This step can be done either ad hoc, based on engineering judgment, or 
by performing a mathematical analysis and determining the weights that should be 
assigned to each variable via simulation. Second, a variable that appears in a sim- 
ple form within an equation can be eliminated; that is, it can be solved for explic- 
itly and then eliminated from other equations, the inequalities, and the objective 
function. Such variables are then deemed to be dependent variables. 

As an example, in heat exchanger design, you might initially include the fol- 
lowing variables in the problem: heat transfer surface, flow rates, number of shell 
passes, number of tube passes, number and spacing of the baffles, length of the 
exchanger, diameter of the tubes and shell, the-approach temperature, and the pres- 
sure drop. Which of the variables are independent and which are not? This question 
can become quite complicated in a problem with many variables. You will find that 
each problem has to be analyzed and treated as an individual case; generalizations 
are difficult. Often the decision is quite arbitrary although instinct indicates that the 
controllable variables be initially selected as the independent ones. 

If an engineer is familiar with a particular heat exchanger system, he or she 
might decide that certain variables can be ignored based on the notion of the con- 
trolling or dominant heat transfer coefficient. In such a case only one of the flow- 
ing streams is important in terms of calculating the heat tr&sfer in the system, and 
the engineer might decide, at least initially, to eliminate from consideration those 
variables related to the other stream. 
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A third strategy can be carried out when the problem has many constraints and 
many variables. We assume that some variables are fixed and let the remainder of 
the variables represent degrees of freedom (independent variables) in the optimiza- 
tion procedure. For example, the optimum pressure of a distillation column might 
occur at the minimum pressure (as limited by condenser cooling). 

Finally, analysis of the objective function may permit some simplification of 
the problem. For example, if one product (A) from a plant is worth $30 per pound 
and all other products from the plant are worth $5 or less per pound, then we might 
initially decide to maximize the production of A only. 

Step 5 in Table 1.1 involves the computation of the optimum point. Quite a few 
techniques exist to obtain the optimal solution for a problem. We describe several 
methods in detail later on. In general, the solution of most optimization problems 
involves the use of a computer to obtain numerical answers. It is fair to state that 
over the past 20 years, substantial progress has been made in developing efficient 
and robust digital methods for optimization calculations. Much is known about 
which methods are most successful, although comparisons of candidate methods 
often are ad hoc, based on test cases of simple problems. Virtually all numerical 
optimization methods involve iteration, and the effectiveness of a given technique 
often depends on a good first guess as to the values of the variables at the optimal 
solution. 

The last entry in Table 1.1 involves checking the candidate solution to deter- 
mine that it is indeed optimal. In some problems you can check that the sufficient 
conditions for an optimum are satisfied. More often, an optimal solution may exist, 
yet you cannot demonstrate that the sufficient conditions are satisfied. All you can 
do is show by repetitive numerical calculations that the value of the objective func- 
tion is superior to all known alternatives. A second consideration is the sensitivity 
of the optimum to changes in parameters in the problem statement. A sensitivity 
analysis for the objective function value is important and is illustrated as part of the 
next example. 

EXAMPLE 1.7 THE SIX STEPS OF OPTIMIZATION FOR A 
MANUFACTURING PROBLEM 

This example examines a simple problem in detail so that you can understand how to 
execute the steps for optimization listed in Table 1.1. You also will see in this exam- 
ple that optimization can give insight into the nature of optimal operations and how 
optimal results might compare with the simple or arbitrary rules of thumb so often 
used in practice. 

Suppose you are a chemical distributor who wishes to optimize the inventory of 
a specialty chemical. You expect to sell Q barrels of this chemical over a given year 
at a fixed price with demand spread evenly over the year. If Q = 100,000 barrels 
(units) per year, you must decide on a production schedule. Unsold production is kept 
in inventory. To determine the optimal production schedule you must quantify those 
aspects of the problem that are important from a cost viewpoint [Baumol(1972)]. 

Step 1. One option is to produce 100,000 units in one run at the beginning of the 
year and allow the inventory to be reduced to zero at the end of the year (at which time 
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another 100,000 units are manufactured). Another option is to make ten runs of 
10,000 apiece. It is clear that much more money is tied up in inventory with the for- 
mer option than in the latter. Funds tied up in inventory are funds that could be 
invested in other areas or placed in a savings account. You might therefore conclude 
that it would be cheaper to make the product ten times a year. 

However, if you extend this notion to an extreme and make 100,000 production 
runs of one unit each (actually one unit every 3 15 seconds), the decision obviously is 
impractical, since the cost of producing 100,000 units, one unit at a time, will be exor- 
bitant. It therefore appears that the desired operating procedure lies somewhere in 
between the two extremes. To arrive at some quantitative answer to this problem, first 
define the three operating variables that appear to be important: number of units of 
each run (D), the number of runs per year (n), and the total number of units produced 
per year (Q). Then you must obtain details about the costs of operations. In so doing, 
a cost (objective) function and a mathematical model will be developed, as discussed 
later on. After obtaining a cost model, any constraints on the variables are identified, 
which allows selection of independent and dependent variables. 

Step 2. Let the business costs be split up into two categories: (1) the carrying cost 
or the cost of inventory and (2) the cost of production. Let D be the number of units 
produced in one run, and let Q (annual production level) be assigned a known value. 
If the problem were posed so that a minimum level of inventory is specified, it would 
not change the structure of the problem. 

The cost of the inventory not only includes the cost of the money tied up in the 
inventory, but also a storage cost, which is a function of the inventory size. Warehouse 
space must exist to store all the units produced in one run. In the objective function, let 
the cost of carrying the inventory be KID, where the parameter K, essentially lumps 
together the cost of working capital for the inventory itself and the storage costs. 

Assume that the annual production cost in the objective function is proportional 
to the number of production runs required. The cost per run is assumed to be a linear 
function of D, given by the following equation: 

Cost per run = K2 + K3D (a) 

The cost parameter K2 is a setup cost and denotes a fixed cost of production-quip- 
ment must be made ready, cleaned, and so on. The parameter K3 is an operating cost 
parameter. The operating cost is assumed to be proportional to the number of units 
manufactured. Equation (a) may be an unrealistic assumption because the incremen- 
tal cost of manufacturing could decrease somewhat for large runs; consequently, 
instead of a linear function, you might choose a nonlinear cost function of the form 

Cost per run = K, + K4D1I2 (b) 

as is shown in Figure E1.7. The effect of this alternative assumption will be discussed 
later. The annual production cost can be found by multiplying either Equation (a) or 
(b) by the number n of production runs per year. 

The total annual manufacturing cost C for the product is the sum of the carrying 
costs and the production costs, namely 

Step 3. The objective function in (c) is a function of two variables: D and n. How- 
ever, D and n are directly related, namely n = QLD. Therefore, only one independent 
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FIGURE E1.7 
Nonlinear cost function for manufacturing. 

variable exists for this problem, which we select to be D. The dependent variable is 
therefore n. Eliminating n from the objective function in (c) gives 

What other constraints exist in this problem? None 'are stated explicitly, but sev- 
eral implicit constraints exist. One of the assumptions made in arriving at Equation 
(c) is that over the course of one year, production runs of integer quantities may be 
involved. Can D be treated as a continuous variable? Such a question is crucial prior 
to using differential calculus to solve the problem. The occurrence of integer variables 
in principle prevents the direct calculation of derivatives of functions of integer vari- 
ables. In the simple example here, with D being the only variable and a large one, you 
can treat D as continuous. After obtaining the optimal D, the practical value for D is 
obtained by rounding up or down. There is no guarantee that n = Q/D is an integer; 
however, as long as you operate from year to year there should be no restriction on n. 

What other constraints exist? You know that D must be positive. Do any equality 
c~nstraints relate D to the other known parameters of the model? If so, then the sole 
degree of freedom in the process model could be eliminated and optimization would 
not be needed! 

Step 4. Not needed. 
Step 5. Look at the total cost function, Equation (c) .  Observe that the cost func- 

tion includes a constant term, K3Q. If the total cost function is differentiated, the term 
K3Q vanishes and thus K3 does not enter into the determination of the optimal value 
for D. K,, however, contributes to the total cost. 

Two approaches can be employed to solve for the optimal value of D: analytical 
or numerical. A simple problem has been formulated so that an analytical solution can 
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be obtained. Recall from calculus that if you differentiate the cost function with 
respect to D and equate the total derivative to zero 

you can obtain the optimal solution for D 

Equation (f) was obtained without knowing specific numerical values for the param- 
eters. If K,, K2, or Q change for one reason or another, then the calculation of the new 
value of D"pt is straightforward. Thus, the virtue of an analytical solution (versus a 
numerical one) is apparent. 

Suppose you are given values of K, = 1.0, K2 = 10,000, K3 = 4.0, and Q = 
100,000. Then DOpt from Equation (f) is 3 1,622. 

You can also quickly verify for this problem that DOpt from Equation (f) mini- 
mizes the objective function by taking the second derivative of C and showing that it 
is positive. Equation (g) helps demonstrate the sufficient conditions for a minimum. 

Details concerning the necessary and sufficient conditions for minimization are pre- 
sented in Chapter 4. 

Another benefit of obtaining an analytical solution is that you can gain some 
insight into how production should be scheduled. For example, suppose the optimum 
number of production runs per year was 4.0 (25,000 units per run), and the projected 
demand for the product was doubled (Q = 200,000) for the next year. Using intuition 
you might decide to double the number of units produced (50,000 units) with 4.0 runs 
per year. However, as can be seen from the analytical solution, the new value of DOpt 
should be selected according to the square root of Q rather than the first power of Q. 
This relationship is known as the economic order quantity in inventory control and 
demonstrates some of the pitfalls that may result from making decisions by simple 
analogies or intuition. 

We mentioned earlier that this problem was purposely designed so that an ana- 
lytical solution could be obtained. Suppose now that the cost per run follows a non- 
linear function such as shown earlier in Figure E1.7. Let the cost vary as given by 
Equation (b), thus allowing for some economy of scale. Then the total cost function 
becomes 

After differentiation and equating the derivative to zero, you get 

Note that Equation (i) is a rather complicated polynomial that cannot explicitly be 
solved for P p t ;  you have to resort to a numerical solution as discussed in Chapter 5. 
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A dichotomy arises in attempting to minimize function (h). You can either (1) 
minimize the cost function (h) directly or (2) find the roots of Equation (i). Which is 
the best procedure? In general it is easier to minimize C directly by a numerical 
method rather than take the derivative of C, equate it to zero, and solve the resulting 
nonlinear equation. This guideline also applies to functions of several variables. 

The second derivative of Equation (h) is 

A numerical procedure to obtain Dopt directly from Equation ( 4  could also have been 
carried out by simply choosing values of D and computing the corresponding values 
of C from Equation ( 4  (K, = 1 .O; K2 = 10,000; K3 = 4.0; Q = 100,000). 

From the listed numerical data you can see that the function has a single minimum in 
the vicinity of D = 20,000 to 40,000. Subsequent calculations in this range (on a finer 
scale) for D will yield a more precise value for P p t .  

Observe that the objective function value for 20 5 D 5 60 does not vary sig- 
nificantly. However, not all functions behave like C in Equation (4-some exhibit 
sharp changes in the objective function near the optimum. 

Step 6. You should always be aware of the sensitivity of the optimal answer, that 
is, how much the optimal value of C changes when a variable such as D changes or a 
coefficient in the objective function changes. Parameter values usually contain errors 
or uncertainties. Information concerning the sensitivity of the optimum to changes or 
variations in a parameter is therefore very important in optimal process design. For 
some problems, a sensitivity analysis can be carried out analytically, but in others the 
sensitivity coefficients must be determined numerically. 

In this example problem, we can analytically calculate the changes in @pt in 
Equation ( 4  with respect to changes in the various cost parameters. Substitute DOpt 
from Equation Cf) into the total cost function 

Next, take the partial derivatives of @pt with respect to K,, Kz, K3, and Q 
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Equations (1 1) through (14) are absolute sensitivity coefficients. 
Similarly, we can develop expressions for the sensitivity of DOpt: 

Suppose we now substitute numerical values for the constants in order to clarify how 
these sensitivity functions might be used. For 

then 

DOpt = 3 1,622 

What can we conclude from the preceding numerical values? It appears that Dopt 
is extremely sensitive to K,, but not to Q. However, you must realize that a one-unit 
change in Q (100,000) is quite different from a one-unit change in K1 (0.5). Therefore, 
in order to put the sensitivities on a more meaningful basis, you should compute the 
relative sensitivities: for example, the relative sensitivity of P p t  to K, is 
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Application of the preceding idea for the other variables yields the other relative sen- 
sitivities for C O P t .  Numerical values are 

Changes in the parameters Q and K3 have the largest relative influence on COPt, sig- 
nificantly more than K, or K,. The relative sensitivities for Dopt are 

so that all the parameters except for K, have the same influence (in terms of absolute 
value of fractional changes) on the optimum value of D. 

For a problem for which we cannot obtain an analytical solution, you need to 
determine sensitivities numerically. You compute (1) the cost for the base case, that 
is, for a specified value of a parameter; (2) change each parameter separately (one at 
a time) by some arbitrarily small value, such as plus 1 percent or 10 percent, and then 
calculate the new cost. You might repeat the procedure for minus 1 percent or 10 per- 
cent. The variation of the parameter, of course, can be made arbitrarily small to 
approximate a differential; however, when the change approaches an infinitesimal 
value, the numerical error engendered may confound the calculations. 

1.7 OBSTACLES TO OPTIMIZATION 

If the objective function and constraints in an optimization problem are "nicely 
behaved," optimization presents no great difficulty. In particular, if the objective 
function and constraints are all linear, a powerful method known as linear pro- 
gramming can be used to solve the optimization problem (refer to Chapter 7). For 
this specific type of problem it is known that a unique solution exists if any solu- 
tion exists. However, most optimization problems in their natural formulation are 
not linear. 

To make it possible to work with the relative simplicity of a linear problem, we 
often modify the mathematical description of the physical process so that it fits the 
available method of solution. Many persons employing computer codes for opti- 
mization do not fully appreciate the relation between the original problem and the 
problem being solved; the computer shows its neatly printed output with an author- 
ity that the reader feels unwilling, or unable, to question. 

In this text we will discuss optimization problems based on behavior of physi- 
cal systems that have a complicated objective function or constraints: for these 
problems some optimization procedures may be inappropriate and sometimes mis- 
leading. Often optimization problems exhibit one or more of the following charac- 
teristics, causing a failure in the calculation of the desired optimal solution: 

1. The objective function or the constraint functions may have finite discontinuities 
in the continuous parameter values. For example, the price of a compressor or 
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heat exchanger may not change continuously as a function of variables such as 
size, pressure, temperature, and so on. Consequently, increasing the level of a 
parameter in some ranges has no effect on cost, whereas in other ranges a jump 
in cost occurs. 

2. The objective function or the constraint functions may be nonlinear functions of 
the variables. When considering real process equipment, the existence of truly 
linear behavior and system behavior is somewhat of a rarity. This does not pre- 
clude the use of linear approximations, but the results of such approximations 
must be interpreted with considerable care. 

3. The objective function or the constraint functions may be defined in terms of 
complicated interactions of the variables. A familiar case of interaction is the 
temperature and pressure dependence in the design of pressure vessels. For 
example, if the objective function is given as f = 15.5~,x~l '~,  the interaction 
between x, and x2 precludes the determination of unique values of x, and x,. 
Many other more complicated and subtle interactions are common in engineer- 
ing systems. The interaction prevents calculation of unique values of the vari- 
ables at the optimum. 

4. The objective function or the constraint functions may exhibit nearly "flat" 
behavior for some ranges of variables or exponential behavior for other ranges. 
This means that the value of the objective function or a constraint is not sensi- 
tive or is very sensitive, respectively, to changes in the value of the variables. 

5. The objective function may exhibit many local optima, whereas the global opti- 
mum is sought. A solution to the optimization problem may be obtained that is 
less satisfactory than another solution elsewhere in the region. The better solu- 
tion may be reached only by initiating the search for the optimum from a differ- 
ent starting point. 

In subsequent chapters we will examine these obstacles and discuss some ways 
of mitigating such difficulties in performing optimization, but you should be aware 
these difficulties cannot always be alleviated. 
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PROBLEMS 

For each of the following six problems, formulate the objective function, the equality con- 
straints (if any), and the inequality constraints (if any). Speczfy and list the independent vari- 
ables, the number of degrees of freedom, and the coeflcients in the optimization problem. 
Solve the problem using calculus as needed, and state the complete optimal solution values. 

1.1 A poster is to contain 300 cm2 of printed matter with margins of 6 cm at the top and 
bottom and 4 cm at ea@i - - .re side. Find the overall dimensions that minimize the total area 
of the poster. 

1.2 A box with a square base and open top is to hold 1000 cm3. Find the dimensions that 
requife the least material (assume uniform thickness of material) to construct the box. 

1 3  Find the area of the largest rectangle with its lower base on the x axis and whose cor- 
ners are bounded at the top by the curve y = 10 - 9. 

1.4 Three points x are selected a distance h apart (x,, xo + h, xo + 2h), with corresponding 
valuesfa, ff,, and&. Find the maximum or minimum attained by a quadratic function 
passing through all three points. Hint: Find the coefficients of the quadratic function 

. first. 

1.5 Find the point on the curve f = 2x2 + 3x + 1 nearest the origin. 

1.6 Find the volume of the largest right circular cylinder that can be inscribed inside a 
sphere of;adius R. 

1.7 In a particular process the value i f  the.productflx) is a function of the concentration x 
of ammonia expressed as a mole fracti-9. The following figure shows several values 

X 

FIGURE P1.7 
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offix). No units or values are designated for either of the axes. Duplicate the figure, 
and insert on the duplicate the constraint(s) involved in the problem by drawing very 
heavy lines or curves on the diagram. 

1.8 A trucking company has borrowed $600,000 for new equipment and is contemplating 
three kinds of trucks. Truck A costs $10,000, truck B $20,000, and truck C $23,000. 
How many trucks of each kind should be ordered to obtain the greatest capacity in ton- 
miles per day based on the following data? 

Truck A requires one driver per day and produces 2100 ton-miles per day. 
Truck B requires two drivers per day and produces 3600 ton-miles per day. 
Truck C requires two drivers per day and produces 3780 ton-miles per day. 
There is a limit of 30 trucks and 145 drivers. 

Formulate a complete mathematical statement of the problem, and label each indi- 
vidual part, identifying the objective function and constraints with the correct units ($, 
days, etc.). Make a list of the variables by names and symbol plus units. Do not solve. 

1.9 In a rough preliminary design for a waste treatment plant the cost of the components 
are as follows (in order of operation) 

1. Primary clarifier: $19.4 x f  
2. Trickling filter: $16.% x;1.66 
3. Activated sludge unit: $9 1.5 X< 0.30 

where the x's are the fraction of the 5-day biochemical oxygen demand (BOD) exiting 
each respective unit in the process, that is, the exit concentrations of material to be 
removed. 

The required removal in each unit should be adjusted so that the final exit con- 
centration x, must be less than 0.05. Formulate (only) the optimization problem listing 
the objective function and constraints. 

FIGURE P1.9 

1.10 Examine the following optimization problem. State the total number of variables, and 
list them. State the number of independent variables, and list a set. 

Minimize: f (x) = 4x1 - x: - 12 

Subject to: 25 - x: - x: = 0 

lox, - x; + lox, - x; - 34 1 0 

(x, - 3), + (x2 - 112 2 0 

x,, xz ' 0 
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1.11 A series of four well-mixed reactors operate isothermally in the steady state. Examine 
the figure. All the tanks do not have the same volume, but the sum of Vi = 20 m3. The 
component whose concentration is designated by C reacts according to the following 
mechanism: r = - k c  in each tank. 

Determine the values of the tank volumes (really residence times of the compo- 
nent) in each of the four tanks for steady-state operation with a fixed fluid flow rate of 
q so as to maximize the yield of @uct C,. Note (V,/qi) = Oi, the residence time. Use 
the following data for the cocffici&ts in the problem 

n = 2.5 k = 0.00625 [m3/(kg mol) ] - '.5(s) - ' 

The units for k are fixed by the constant 0.00625. 
List: 

1. The objective function 
2. The variables 
3, The equality constraints 
4. The inequality constraints 

What are the independent variables? The dependent variables? Do not solve the 
problem, just set it up so .it can be solved. 

1.12 A certain gas contains moisture, which you need to remove by compression and cool- 
ing so that the gas will finally contain not more than 1% moisture (by volume). If the 
cost & the compression equipment is 

Cost in $ = (pressure in psi) '4' 

and the cost of the cooliig equipment is 

Cost in $ = (350 - temperature in 

what is the best temperature to use? 
Define the objective function, the independent and the dependent variables, and 

the constraints first. Then set this problem up, and list all of the steps to solve it. You 
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do not have to solve the final (nonlinear) equations you derive for T. Hint: The vapor 
pressure of water (p*) is related to the temperature T in "C by Antoine's equation: 

1.13 The following problem is formulated as an optimization problem. A batch reactor 
operating over a 1-h period produces two products according to the parallel reaction 
mechanism: A -+ B, A + C. Both reactions are irreversible and first order in A and 
have rate constants given by 

ki = kio exp {Ei/RT} i = 1,2 

where klo = 106/s 

k,, = 5.1011/s 
El = 10,000 cal/gmol . 
E2 = 20,000 cal/gmol 

The objective is to find the temperature-time profile that maximizes the yield of B for 
operating temperatures below 282°F. The optimal control problem is therefore 

Maximize: B(l .O) 

dA 
Subject to: - = - (k,  + k2)A 

dt 

(a) What are the independent variables in the problem? 
(b) What are the dependent variables in the problem? 
(c) What are the equality constraints? 

\ 
(d) What are the inequality constraints? 
(e) What procedure would you recommend to solve the problem? 

1.14 The computation of chemical equilibria can be posed as an optimization problem with 
linear side conditions. For any infinitesimal process in which the amounts of species 
present may be changed by either the transfer of species to or from a phase or by chem- 
ical reaction, the change in the Gibbs free energy is ' 

dG = S d T +  Vdp + c F i d n i  
I 

Here G, S, T, and p are the Gibbs free energy, the entropy, the temperature, and the 
(total) pressure, respectively. The partial molal free energy of species number i is' ki, 
and ni is the number of moles of species number i in the system. If it is assumed,that 
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the temperature and pressure are held constant during the process, dT and dp both van- 
ish. If we now make changes in the ni such that dni = dkni, so that the changes in the 
ni are in the same proportion k, then, since G is an extensive quantity, we must have 
dG = dkG. This implies that 

Comparison of Equations (1) and (2) shows that the chemical potentials are inten- 
sive quantities, that is, they do not depend on the amount of each species, because if 
all the ni are increased in the same proportion at constant T and p, the pi must remain 
unchanged for G to increase in the same rate as the n,. This invariance property of the 
pi is of the utmost importance in restricting the possible forms that the pi may take. 

Equation (2) expresses the Gibbs free energy in terms of the mole numbers ni, 
which appear both explicitly and implicitly (in the pi) on the right-hand side. The 
Gibbs free energy is a minimum when the system is at equilibrium. The basic prob- 
lem, then, becomes that of finding that set of ni that makes G a minimum. 

(a) Formulate in symbols the optimization problem using the previous notation with nT 
being the number of moles of the compounds at equilibrium and M the number of 
elements present in the system. The initial number of moles of each compound is 
presumed to be known. 

(b) Introduce into the preceding formulation the quantities needed to solve the follow- 
ing problem: 

Calculate the fraction of steam that is decomposed in the water-gas shift reaction 

at T = 1530°F and p = 10 atm starting with 1 mol of H20 and 1 mol of CO. Assume 
the mixture is an ideal gas. Do not solve the problem. 

Hints: You can find (from a thermodynamics book) that the chemical potential can 
be written as , 

pi = pf + RTlnp + RTlnxi = pf + RTlnp, 
(3) 

where xi = mole fraction of a compound in the gas phase 

Pi = PXi 

E-L& = (AGOT)i 

-(AGO,) = RT In K,, with K, being the equilibrium constant for the reaction. 

1~15 For a two-stage adiabatic compressor where the gas is cooled to the inlet gas temper- 
ature between stages, the theoretical work is given by 

where k = C j C ,  
p, = inlet pressure 
p2 = intermediate stage pressure 
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p3 = outlet pressure 
V ,  = inlet volume 

We wish to optimize the intermediate pressure p2 so that the work is a minimum. Show 
that if p, = 1 atm and p3 = 4 atm, pipt = 2 atrn. 

1.16 You are the manufacturer of PCZ,, which you'sell in barrels at a rate of P barrels per 
day. The cost per barrel produced is 

C = 50 + 0.1P + 9000/P in dollars /barrel 
---+.- 

For example, for P = 100 barrelslday, C = $150/barrel. The selling price per barrel is 
$300. Determine 

(a) The production level giving the minimum cost per barrel. 
(b) The production level which maximizes the profit per day. 
(c) The production level at zero profit. 
(d) Why are the answers in (a)-and (b) different? 

1.17 It is desired to cool a gas [C, = 0.3 Btu/(lb)("F)] from 195 to 90°F, using cooling water 
at 80°F. Water costs $0.2011000 ft3, and the annual fixed charges for the exchanger are 
$0.50/ft2 of inside surface, with a diameter of 0.0875 ft. The heat transfer coefficient 
is U = 8 Btu/(h)(ft2)("F) for a gas rate of 3O(M lblh. Plot the annual cost of cooling 
water and fixed charges for the exchanger as a function of the outlet water tempera- 
ture. What is the minimum total cost? How would you formulate the problem to obtain 
a more meaningful result? ~ i n i  Which variable is the manipulated variable? 

1.18 The total cost (in dollars per year) for pipeline installation and operation for an incom- 
pressible fluid can be expressed as follows: 

C = C,D L + C2mA p/p 

where C, = the installed cost of the pipe per foot of length computed on an annual 
basis (C,D'.5 is expressed in dollars per year per foot length, C2 is 
based on $O.O5/kWh, 365 dayslyear and 60 percent pump efficiency). 

D = diameter (to be optimized) 
L =' pipeline length = 100 miles 
m = mass flow rate = 200,000 lblh 

Ap = 2 pv2W(Dg,) . f = pressure drop, psi 
p = density = 60 lb/ft3 
v = velocity = (4m)/(p~D2) 
f = friction factor = (0.046~0.2)/(D0.2 v ~ . ~  p0.2) 
p = viscosity = 1 CP 

(a) Find general expressions for DOpt, vOpt, and @pt. 
(b) For C; = 0.3 (D expressed in inches for installed cost), calculate DOpt and vOpt for 

the following pairs of values of p and p (watch your units!) 
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1.19 Calculate the relative sensitivities of D"pt and C"pf in Problem 1.18 to changes in p, p, 
m, and C2 (cost of electricity). Use the base case parameters as given in Problem 1.18, 
with C, = 0.3. 

Pose each of the following problems as an optimization problem. Include all of the features 
, mentioned in connection with the Brst four steps of Table 1.1, but do not solve the problem. 

1.20 A chemical manufacturing firm has discontinued production of a certain unprofitable 
product line. This has created considerable excess production capacity on the three 
existing batch production facilities that operate separately. Management is considering 
devoting this excess capacity to one or more of three new products; call them products 
1, 2, and 3. The available capacity on the existing units which might limit output is 
summarized in the following table: 

Available time 
Unit &/week) 

Each of the three new products requires the following processing time for com- 
pletion: 

Productivity match)  

Unit Product 1 Product 2 Product 3 

The sales department indicates that the sales for products 1 and 2 
exceeds the maximum production rate and that the sales potential for product 3 is 20 
batches per week. The profit per batch would be $20, $6, and $8, respectively, on prod- 
ucts 1, 2, and 3. 

How much of each product should be produced to maximize profits of the com- 
pany? Formulate the objective function and constraints, but do not solve. 

1.21 You are asked to design an efficient treatment system for runoff from rainfall in an eth- 
ylene plant. The accompanying figure gives the general scheme to be used. 

The rainfall frequency data for each recurrence interval fits an empirical equation 
in the form of 

where R = cumulative inches of rain during time t 
t = time, h 

a and b = constants that have to be determined by fitting the observed rainfall data 

Four assumptions should be made: 

1. The basin is empty at the beginning of the maximum intensity rain. 
2. As soon as water starts to accumulate in the basin, the treatment system is started 

and water is pumped out of the basin. 
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Rainfall 

Outfall 

FIGURE P1.21 

Treatment 
system 

3. Stormwater is assumed to enter the basin as soon as it falls. (This is normally a 
good assumption since the rate at which water enters the basin is small relative to 
the rate at which it leaves the basin during a maximum intensity rain.) 

4. All the rainfall becomes runoff. 

P 

v 

p 
> 

The basin must not overflow so that any amount of water that would cause the 
basin to overflow must be pumped out and treated. What is the minimum pumping rate 
P required? 

Impoundment 
basin volume, 

v 

Area of 
runoff to 

be treated, 
A - 

Other notation: Q = Volumetric flow rate of water entering basin 
P = Volumetric treatment rate in processing plant 

Q 

1.22 Optimization of a distributed parameter system can be posed in various ways. An 
example is a packed, tubular reactor with radial diffusion. Assume a single reversible 
reaction takes place. To set up the problem as a nonlinear programming problem, write 
the appropriate balances (constraints) including initial and boundary conditions using 
the following notation: 

x = Extent of reaction t = Time 
T = Dimensions temperature r = Dimensionless radial coordinate 

Do the differential equations have to be expressed in the form of analytical solutions? 
The objective function is to maximize the total conversion in the effluent from the 

reactor over the cross-sectional area at any instant of time. Keep in mind that the heat 
flux through the wall is subject to physical bounds. 

1.23 Calculate a new expression for Dopt i f f  = 0.005 (rough pipe), independent of the 
Reynolds number. Compare your results with these from Problem 1.18 for p = 1 cP 
and p = 60 1b/ft3. 

1.24 A shell-and-tube heat exchanger has a total cost of C = $7000 + $250 D2.5L + 
$200 DL, where D is the diameter (ft) and L is the length'(ft). What is the absolute and 
the relative sensitivity of the total cost with respect to the diameter? 

If an inequality constraint exists for the heat exchanger 

how must the sensitivity calculation be modified? 
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1.25 Empirical cost correlations for equipment are often of the following form: 

where C is the base cost per unit and S is the size per unit. Obtain an analytical expres- 
sion for the minimum cost in terms of S, and, if possible, find the expression that gives 
the value of S at the minimum cost. Also write down an analytical expression for the 
relative sensitivity of C with respect to S. 

1.26 What are three major difficulties experienced in formulating optimization problems? 
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CONSTRAINTS IN OPTIMIZATION arise because a process must describe the physi- 
cal bounds on the variables, empirical relations, and physical laws that apply to a 
specific problem, as mentioned in Section 1.4. How to develop models that take 
into account these constraints is the main focus of this chapter. Mathematical mod- 
els are employed in all areas of science, engineering, and business to solve prob- 
lems, design equipment, interpret data, and communicate information. Eykhoff 
(1974) defined a mathematical model as "a representation of the essential aspects 
of an existing system (or a system to be constructed) which presents knowledge of 
that system in a usable form." For the purpose of optimization, we shall be con- 
cerned with developing quantitative expressions that will enable us to use mathe- 
matics and computer calculations to extract useful information. To optimize a 
process models may need to be developed for the objective function5 equality con- 
straints g, and inequality constraints h. 

Because a model is an abstraction, modeling allows us to avoid repetitive 
experimentation and measurements. Bear in mind, however, that a model only imi- 
tates reality and cannot incorporate all features of the real process being modeled. 
In the development of a model, you must decide what factors are relevant and how 
complex the model should be. For example, consider the following questions. 

1. Should the process be modeled on a fundamental or empirical level, and what 
level of effort (time, expenses, manpower) is required for either approach? 

2. Can the process be described adequately using physical principles? 
3. What is the desired accuracy of the model, and how does its accuracy influence 

its ultimate use? 
4. What measurements are available, and what data are available for model verifi- 

cation? 
5. Is the process actually composed of smaller, simpler subsystems that can be more 

easily analyzed? 

The answers to these questions depend on how the model is used. As thi model of 
the prqess becomes more complex, optimization usually becomes more difficult. 

In this chapter we will discuss several factors that need to be considered when 
constructing a process model. In addition, we will examine the use of optimization 
in estimating the values of unknown coefficients in models to yield a compact and 
reasonable representation of process data. Additional information can be found in 
textbooks specializing in mathematical modeling. To illustrate the need to develop 
models for optimization, consider the following example. 

EXAMPLE 2.1 MODELING AND OPTIMIZING BLAST 
FURNACE OPERATION 

Optimizing the operation of the blast furnace is important in every large-scale steel mill. 
A relatively large number of important variables (several of which cannot be measured) 
interact in this process in a highly complex manner, numerous constraints must be taken 
into account, and the age and efficiency of the plant significantly affect the optimum 
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operating point (Deitz, 1997). Consequently, a detailed examination of this problem 
demonstrates the considerations involved in mathematical modeling of a typical process. 

The operation of a blast furnace is semicontinuous. The raw materials are iron 
ore containing roughly 20 to 60 percent iron as oxides and a variety of other metallic 
and nonmetallic oxides. These materials are combined with coke, which reacts to 
form blast furnace gas. Limestone is a flux that helps separate the impurities from the 
hot metal by influencing the pH. Apart from the blast furnace gas, which may serve 
as a heating medium in other processes, the output of the furnace consists of molten 
iron, which includes some impurities (notably carbon and phosphorus) that must be 
removed in the steelmaking process, and slag, which contains most of the impurities 
and is of little value. Operation of the blast furnace calls for determination of the 
amount of each ore, a production rate, and a mode of operation that will maximize the 
difference between the product value and the cost of producing the required quantity 
and quality of molten iron. Figure E2.1 shows the flow of materials in the blast fur- 
nace, which itself is part of a much larger mill. One ton of hot metal requires about 
1.7 tons of iron-bearing materials, 0.5 to 0.65 tons of coke and other fuel, 0.25 tons 
of fluxes, and 1.8 to 2.0 tons of air. In addition, for each ton of hot metal produced, 
the process creates 0.2 to 0.4 tons of sldg, 0.05 tons or less of flue dust, and 2.5 to 3.5 
tons of blast furnace gases. The final product, hot metal, is about 93% iron, with other 
trace ingredients, including sulfur, silicon, phosphorus, and manganese. The process 
variables and conceptual models are identified in Figure E2.1 under the 'column 
"Process Analysis," which has categories for the objective function, equality con- 
straints, and inequality constraints. 

Objective function 

To formulate the objective function, two categories of costs have to be considered: 

1. Costs associated with the material flows (the input and output variables), such as 
the costs of purchased materials. 

2. Costs associated with the operations related to the process variables in the model. 

The terms that make up the objective function (to be maximized) are shown in Figure 
E.2.1. The profit of the blast furnace can be expressed as 

Equality and inequality constraints 

The next step in formulating the problem is to construct a mathematical model of the 
process by considering the fundamental chemical and physical phenomena and phys- 
ical limitations that influence the process behavior. For the case of the blast furnace, 
typical features are 

1. Iron ore: Ores of different grades are available in restricted quantities. Different 
ores have varying percentages of iron and different types and amounts of impu- 
rities. The proportion of each ore that occurs in the final hot metal is assumed 
to be fixed by its composition. For example, the amount of fine ore must be lim- 
ited because too much can disrupt the flow of gas through the furnace and limit 
production. 

2. Coke: The amount of coke that may be burned in any furnace is effectively limited 
by the furnace design, and the hot metal temperature is controlled by the amount 
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FIGURE E.2.1 
Objective function components and types of constraints for a blast furnace. 

of coke (or carbon). The coke consumption rate can be based on empirical rela- 
tionships developed through regression of furnace data. 

3. Slag: For technical reasons, the level of impurities in the slag must be controlled. 
There is an upper limit on the percentage of magnesium, upper and lower limits on 
the percentage of silicon and aluminum, and close limits on the "basicity" ratio 
(CaO + MgO)/(SiO, + Al,O,). The basicity ratio controls the viscosity and melt- 
ing point of the slag, which in turn affect the hearth temperature and grade of iron 
produced. 

Process Analysis 

Objective Function Components 

Associated Costs and Revenues: 

Orel:xl material cost cl 
Ore 2: x2 material cost c2 
Ore 3: x3 material cost c3 

Cast iron scrap: xq material cost cq 
Coke A: x5 material cost cg 
Coke B: x6 material cg 
Pig iron: x7 sales price c7 
Blast furnace gas: xg assigned value: cg 

Constraints 

Equalities 

Material and Energy Balances: 

Metal (iron) balance 
Slag balance 
Carbon balance 
Gas balance 
Elemental balances (0, H, S, Si, Al, 
Ca, Mg, P, Ti, K, Cu, Mo, Mn, etc.) 
Energy balance 

Inequalites 

Process Limits: 

Coke throughput 
Hot metal production rate 
Slag volume 
Ore availability 
Elements in slag 
Elements in metal 
Basicity 
Sales limits 

Process 

Coke B - Limestone 

Coke A \ 

1 
Blast 
furnace 
gas 

V 

Slag < pig 
iron 

Ore 1 - 
Ore2 + 

Ore3 + 

Cast iron 
scrap B 

> 

Air 



c H APTER 2: Developing Models for Optimization 41 

The basicity ratio can be expressed in terms of the blast furnace feeds xi as follows: 

where w , ~  = weight fraction of CaO in feed i 
w , ~  = weight fraction of MgO in feed i 
w,~ = weight fraction of SiO, in feed i 
wSi = weight fraction of Al,O, in feed i 

4. Phosphorus: All phosphorus in the raw material finds its way into the molten 
metal. There is an upper limit on the phosphorus permitted, although precise quan- 
tities are sometimes prescribed. In general, it is cheaper to produce higher phos- 
phorus iron, but more expensive to refine it. 

From these and other considerations you can prepare: 

1. A set of input and output variables. 
2. A set of steady-state input-output material and energy balances (equality constraints). 
3. A set of explicit empirical relations (equality constraints). 
4. A set of restrictions (inequality constraints) on the input and output variables as 

indicated in Figure E.2.1. 

2.1 CLASSIFICATION OF MODELS 

Two general categories of models exist: 

1. Those based on physical theory. 
2. Those based on strictly empirical descriptions (so-called black box models). 

Mathematical models based on physical and chemical laws (e.g., mass and energy 
balances, thermodynamics, chemical reaction kinetics) are frequently employed in 
optimization applications (refer to the examples in Chapters 11 through 16). These 
models are conceptually attractive because a general model for any system size can 
be developed even before the system is constructed. A detailed exposition of fun- 
damental mathematical models in chemical engineering is beyond our scope here, 
although we present numerous examples of physiochemical models throughout the 
book, especially in Chapters 11 to 16. Empirical models, on the other hand, are 
attractive when a physical model cannot be developed due to limited time or 
resources. Input-output data are necessary in order to fit unknown coefficients in 
either type of the model. 
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collection 
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"l 
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o experimental data - - - - - nonlinear model 
- linear model 

- 

Specific collection area A 

FIGURE E2.2 
ESP collection efficiency versus specific collection area for a linear 
model 7 = 0.129A + 85.7 and a nonlinear model 7 = 100{ 1 - 
[e-0.0264A/(4.082 - 3.15 X lop6 A)] ) . 

EXAMPLE 2.2 MODELS OF AN ELECTROSTATIC 
PRECIPITATOR 

A coal combustion pilot plant is used to obtain efficiency data on the collection of par- 
ticulate matter by an electrostatics precipitator (ESP). The ESP performance is varied 
by changing the surface area of the collecting plates. Figure E2.2 shows the data col- 
lected to estimate the coefficients in a model to represent efficiency 7 as a function of 
the specific collection area A, measured as plate arealvolumetric flow rate. 

Two models of different complexity have been proposed to fit the performance data: 

Model 1: 7 = b,A + b, 

Model 2: 7 = 100 I 
Model 1 is linear in the coefficients, and model 2 is nonlinear in the coefficients. The 
mathematical structure of model 2 has a fundamental basis that takes into account the 
physical characteristics of the particulate matter, including particle size and electrical 
properties, but we do not have the space to derive the equation here. 

Which model is better? 



CHAPTER 2: Developing Models for Optimization 43 

Solution. The coefficients in the two models were fitted using MATLAB, yielding 
the following results: 

Modell: b, = 0.129 b, = 85.7 

Model 2: y, = 0.0264 y, = 4.082 y, = -0.00000315 

As can be seen in Figure E2.2, model 2 provides a better fit than model 1 over the 
range of areas A considered, but model 2 may present some difficulties when used as 
a constraint inserted into an optimization code. 

The electrostatic precipitator in Example 2.2 is typical of industrial processes; 
the operation of most process equipment is so complicated that application of fun- 
damental physical laws may not produce a suitable model. For example, thermo- 
dynamic or chemical kinetics data may be required in such a model but may not be 
available. On the other hand, although the development of black box models may 
require less effort and the resulting models may be simpler in form, empirical mod- 
els are usually only relevant for restricted ranges of operation and scale-up. Thus, 
a model such as ESP model 1 might need to be completely reformulated for a dif- 
ferent size range of particulate matter or for a different type of coal. You might have 
to use a series of black box models to achieve suitable accuracy for different oper- 
ating conditions. 

In addition to classifying models as theoretically based versus empirical, we 
can generally group models according to the following types: 

Linear versus nonlinear. 
Steady state versus unsteady state. 
Lumped parameter versus distributed parameter. 
Continuous versus discrete variables. 

Linear Kersus nonlinear 
Linear models exhibit the important property of superposition; nonlinear ones 

do not. Equations (and hence models) are linear if the dependent variables or their 
derivatives appear only to the first power: otherwise they are nonlinear. In practice 
the ability to use linear models is of great significance because they are an order of 
magnitude easier to manipulate and solve than nonlinear ones. 

To test for the linearity of a model, examine the equation(s) that represents the 
process. If any one term is nonlinear, the model itself is nonlinear. By implication, 
the process is nonlinear. 

Examine models 1 and 2 for the electrostatic precipitator. Is model 1 linear in 
A? Model 2? The superposition test in each case is: Does 

(2. la)  

and 
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where J = any operator contained in the model such as square, differentiation, 
and so on. 

k = a constant 
x, and x2 = variables 

ESP model 1 is linear in A 

but ESP model 2 is nonlinear because 

Steady state versus unsteady state 
Other synonyms for steady state are time-invariant, static, or stationary. These 

terms refer to a process in which the values of the dependent variables remain con- 
stant with respect to time. Unsteady state processes are also called nonsteady state, 
transient, or dynamic and represent the situation when the process-dependent vari- 
ables change with time. A typical example of an unsteady state process is the oper- 
ation of a batch distillation column, which would exhibit a time-varying product 
composition. A transient model reduces to a steady state model when d / d t  = 0. 
Most optimization problems treated in this book are based on steady state models. 
Optimization problems involving dynamic models usually pertain to "optimal con- 
trol" or real-time optimization problems (see Chapter 16) 

Distributed versus lumped parameters 
Briefly, a lumped parameter representation means that spatial variations are 

ignored and that the various properties and the state of the system can be consid- 
ered homogeneous throughout the entire volume. A distributed parameter repre- 
sentation, on the other hand, takes into account detailed variations in behavior from 
point to point throughout the system. In Figure 2.1, compare these definitions for a 
well-stirred reactor and a tubular reactor with axial flow. In the first case, we 
assume that mixing is complete so no concentration or temperature gradient occurs 
in the reactor, hence a lumped parameter mathematical model would be appropri- 
ate. In contrast, the tubular reactor has concentration or temperature variations 
along the axial direction and perhaps in the radial direction, hence a distributed 
parameter model would be required. All real systems are, of course, distributed 
because some variations of states occur throughout them. Because the spatial vari- 
ations often are relatively small, they may be ignored, leading to a lumped approx- 
imation. If both spatial and transient characteristics are to be included in a model, 
a partial differential equation or a series of stages is required to describe the process 
behavior. 

It is not easy to determine whether lumping in a process model is a valid tech- 
nique for representing the process. A good rule of thumb is that if the response is 
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essentially the same at all points in the process, then the model can be lumped as a 
single unit. If the response shows significant instantaneous differences in any direc- 
tion along the vessel, then the problem should be treated using an appropriate dif- 
ferential equation or series of compartments. In an optimization problem it is desir- 
able to simplify a distributed model by using an equivalent lumped parameter 
system, although you must be careful to avoid masking the salient features of the 
distributed element (hence building an inadequate model). In this text, we will 
mainly consider optimization techniques applied to lumped systems. 

Continuous versus discrete variables 
Continuous variables can assume any value within an interval; discrete vari- 

ables can take only distinct values. An example of a discrete variable is one that 
assumes integer values only. Often in chemical engineering discrete variables and 
continuous variables occur simultaneously in a problem. If you wish to optimize a 
compressor system, for example, you must select the number of compressor stages 
(an integer) in addition to the suction and production pressure of each stage (posi- 
tive continuous variables). Optimization problems without discrete variables are far 
easier to solve than those with even one discrete variable. Refer to Chapter 9 for 
more information about the effect of discrete variables in optimization. 

Outlet 

-- 

Observed flow 

Stirred tank 

HOW i; 0 0 )  HOW o;t 

Entering reactants dispersion 

distributed uniformly 
across the cross section 

FIGURE 2.1 
Flow patterns in a stirred tank (lumped parameter system) and a tubular 
reactor (distributed parameter system). 
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An engineer typically strives to treat discrete variables as continuous even at 
the cost of achieving a suboptimal solution when the continuous variable is rounded 
off. Consider the variation of the cost of insulation of various thickness as shown 
in Figure E 1.1. Although insulation is only available in 0.5-in. increments, contin- 
uous approximation for the thickness can be used to facilitate the solution to this 
optimization-problem. 

2.2 HOW TO BUILD A MODEL 

For convenience of presentation, model building can be divided into four phases: 
(1) problem definition and formulation, ( 2 )  preliminary and detailed analysis, 
(3) evaluafion, and (4) interpretation application. Keep in mind that model building 
is an iterative procedure. Figure 2.2 summarizes the activities to be carried out, 

\L 

I Select key variables, 1 

Experience, 
reality 

Phase 
- - - t - -  

Formulate model objectives, 
evaluation criteria, costs 

of development 
< 

physical princiiles to be applied, 
test plan to be used 

JI 

Computer simulation, Develop < Observations, 
software development model data 

I 

Management 
objectives 

Problem 

Design 
Phase 

I 

Apply model r i  

Definition 

4 
Evaluate and 

FIGURE 2.2 
Major activities in model building prior to application. 

Evaluation 
verify model ' Phase 
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which are discussed in detail later on. The content of this section is quite limited in 
scope; before actually embarking on a comprehensive model development pro- 
gram, consult textbooks on modeling (see References). 

Problem definition and formulation phase 
In this phase the problem is defined and the important elements that pertain to 

the problem and its solution are identified. The degree of accuracy needed in the 
model and the model's potential uses must be determined. To evaluate the structure 
and complexity of the model, ascertain 

1. The number of independent variables to be included in the model. 
2. The number of independent equations required to describe the system (some- 

times called the "order" of the model). 
3. The number of unknown parameters in the model. 

In the previous section we addressed some of these issues in the context of 
physical versus empirical models. These issues are also intertwined with the ques- 
tion of model verification: what kinds of data are available for determining that the 
model is a valid description of the process? Model building is an iterative process, 
as shown by the recycling of information in Figure 2.2. 

Before carrying out the actual modeling, it is important to evaluate the eco- 
nomic justification for (and benefits of) the modeling effort and the capability of 
support staff for carrying out such a project. Primarily, determine that a success- 
fully developed model will indeed help solve the optimization problem. 

Design phase 
The design phase includes specification of the information content, general 

description of the programming logic and algorithms necessary to develop and 
employ a useful model, formulation of the mathematical description of such a 
model, and simulation of the model. First, define the input and output variables, and 
determine what the "system" and the "environment" are. Also, select the specific 
mathematical representation(s) to be used in the model, as well as the assumptions 
and limitations of the model resulting from its translation into computer code. Com- 
puter implementation of the model requires that you verify the availability and ade- 
quacy of computer hardware and software, specify computer input-output media, 
develop program logic and flowsheets, and define program modules and their struc- 
tural relationships. Use of existing subroutines and databases saves you time but can 
complicate an optimization problem for the reasons explained in Chapter 15. 

Evaluation phase 
This phase is intended as a final check of the model as a whole. Testing of indi- 

vidual model elements should be conducted during earlier phases. Evaluation of the 
model is carried out according to the evaluation criteria and test plan established in 
the problem definition phase. Next, carry out sensitivity testing of the model inputs 
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and parameters, and determine if the apparent relationships are physically mean- 
ingful. Use actual data in the model when possible. This step is also referred to as 
diagnostic checking and may entail statistical analysis of the fitted parameters (Box 
et al., 1978). 

Model validation requires confirming logic, assumptions, and behavior. These 
tasks involve comparison with historical input-output data, or data in the literature, 
comparison with pilot plant performance, and simulation. In general, data used in 
formulating a model should not be used to validate it if at all possible. Because 
model evaluation involves multiple criteria, it is helpful to find an expert opinion in 
the verification of models, that is, what do people think who know about the 
process being modeled? 

No single validation procedure is appropriate for all models. Nevertheless, it 
is appropriate to ask the question: What do you want the model to do? In the best 
of all possible worlds, you want the model to predict the desired process perform- 
ance with suitable accuracy, but this is often an elusive goal. 

2.3 SELECTING FUNCTIONS TO FIT EMPIRICAL DATA 

A model relates the output (the dependent variable or variables) to the independent 
variable(s). Each equation in the model usually includes one or more coefficients 
that are presumed constant. The term parameter as used here means coefficient and 
possibly input or initial condition. With the help of experimental data, we can deter- 
mine the form of the model and subsequently (or simultaneously) estimate the value 
of some or all of the parameters in the model. 

2.3.1 How to Determine the Form of a Model 

Models can be written in a variety of mathematical forms. Figure 2.3 shows a few 
of the possibilities, some of which were already illustrated in Section 2.1. This sec- 
tion focuses on the simplest case, namely models composed of algebraic equations, 
which constitute the bulk of the equality constraints in process optimizati*. 
Emphasis here is on estimating the coefficients in simple models and not on the 
complexity of the model. 

Selection of the form of an empirical model requires judgment as well as some 
skill in recognizing how response patterns match possible algebraic functions. 
Optimization methods can help in the selection of the model structure as well as in 
the estimation of the unknown coefficients. If you can specify a quantitative crite- 
rion that defines what "best" represents the data, then the model can be improved 
by adjusting its form to improve the value of the criterion. The best model presum- 
ably exhibits the least error between actual data and the predicted response in some 
sense. 
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Algebraic Integral Differential Difference 
equations equations equations equations 
(steady state, (continuous) (continuous) (discontinuous) 
lumped parameter) 

Partial 
differential 

Ordinary 
differential 

equations equations I 

Steady state Unsteady Steady Unsteady 
(distributed state state (one state 
parameter) (distributed distributed (lumped 

parameter) parameter) parameter) 

Steady state Unsteady state 
(multidimensional (one-dimensional) 
connection of 
lumped-parameter 
systems, e.g., 
stages) 

FIGURE 2.3 
Qpical mathematical forms of models. 

Typical relations for empirical models might be 

y = a. + alxl + a2x2 +. . .  linear in the variables and coefficients 

y = a. + al,x: + a,+lx, +. - .  linear in the coefficients, nonlinear in 
the variables (xl, x2) 

1 
G(s) = nonlinear in all the coefficients 

a, + als + a2s2 

- @Nu = a ( ~ e ) ~  nonlinear in the coefficient b 
(Nu: Nusselt number; Re: Reynolds 
number) 

When the model is linear in the coefficients, they can be estimated by a pro- 
cedure called linear regression. If the model is nonlinear in the coefficients, esti- 
mating them is referred to as nonlinear regression. In either case, the simplest ade- 
quate model (with the fewest number of coefficients) should be used. 

Graphical presentation of data assists in determining the form of the function 
of a single variable (or two variables). The response y versus the independent vari- 
able x can be plotted and the resulting form of the model evaluated visually. Figure 
2.4 shows experimental heat transfer data plotted on log-log coordinates. The plot 



FIGURE 2.4 
Average Nusselt number (Nu) versus Reynolds number (Re) for a circular cylinder in air, placed normal to the flow (McAdarns, 1954, 
with permission from McGraw-Hill Companies). 
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FIGURE 2.5 
Predicted Nusselt numbers for turbulent flow with constant wall heat flux (adapted with 
permission from John Wiley and Sons from Bird et al., 1964). Abbreviations: Nu = Nusselt 
number; Re = Reynolds number; Pr = Prandtl number. 

appears to be approximately linear over wide ranges of the Reynolds number (Re). 
A straight line in Figure 2.4 would correspond to log Nu = log a + b log Re or Nu 
= u ( R ~ ) ~ .  Observe the scatter of experimental data in Figure 2.4, especially for 
large values of the Re. 

If two independent variables are involved in the model, plots such as those 
shown in Figure 2.5 can be of assistance; in this case the second independent vari- 
able becomes a parameter that is held constant at various levels. Figure 2.6 shows 
a variety of nonlinear functions and their associated plots. These plots can assist in 
selecting relations for nonlinear functions of y versus x. Empirical functions of 
more than two variables must be built up (or pruned) step by step to avoid includ- 
ing an excessive number of irrelevant variables or missing an important one. Refer 
to Section 2.4 for suitable procedures. 

Now let us review an example for selecting the form of a model to fit experi- 
mental data. 
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2 1 I I 1 I 

Equation (2) 

FIGURE 2.6 
Functions of a single variable x and their corresponding trajectories. (Continues) 

12 I I I 1 I 

Equation (3) 

X 
(3) - = a + px 

Y 
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X 

FiIGURE 2.6 (continued) 

EXAMPLE 2.3 ANALYSIS OF THE HEAT TRANSFER 
COEFFICIENT 

Suppose the overall heat transfer coefficient of a shell-and-tube heat exchanger is cal- 
culated daily as a function of the flow rates in both the shell and tube sides (w, and 
w,, respectively). U has the units of ~tu/(h)("F)(ft~), and w, and w, are in lbh. Figures 
E2.3a and E2.3b illustrate the measured data. Determine the form of a semiempirical 
model of U versus w, and w, based on physical analysis, 

Solution. You could elect to simply fit U as a polynomial function of ws and w,; there 
appears to be very little effect of ws on U, but U appears to vary linearly with w, (except 
at the upper range of w, where it begins to level off). A more quantitative approach 
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can be based on a physical analysis of the exchanger. First determine why w, has no 
effect on U. This result can be explained by the formula for the overall heat transfer 
coefficient 

where h, = the shell heat transfer coefficient 
h, = the tube side heat transfer coefficient 
hf = the fouling coefficient 

If h, is small and h, is large, U is dominated by h,, hence changes in w, have little 
effect, as shown in Figure E2.3a. 

Next examine the data for U versus w, in the context of Figure 2.6. For a reason- 
able range of w, the pattern is similar to curve D in Equation (3) where 

which can also be written as 

Note the similarity between Equations (c) and (a), where x = h, and y = U. From a stan- 
dard heat transfer coefficient correlation (Gebhart, 1971), you can find that h, also varies 
according to Ktwp8, where Kt is a coefficient that depends on the fluid physical proper- 
ties and the exchanger geometry. If we lump llh, and l/hf together into one constant 
l/hsf, the semiempirical model becomes 

FIGURE E2.3a 
Variation of overall heat transfer 
coefficient with shell-side flow rate 
w, = 8000. 

FIGURE E2.3b 
Variation of overall heat transfer 
coefficient with tube-side flow rate 
w, for w, = 4000. 
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The line in Figure E2.3b shows how well Equation ( 4  fits the data. 

In the previous examples and figures we indicated that functions for two inde- 
pendent variables can be selected. When three (or more) independent variables 
occur, advanced analysis tools, such as experimental design (see Section 2.4) or 
principal component analysis (Jackson, 1991), are required to determine the struc- 
ture of the model. 

Once the form of the model is selected, even when it involves more than two 
independent variables, fitting the unknown coefficients in the model using linear or 
nonlinear regression is reasonably straightforward. We discuss methods of fitting 
coefficients in the next section. 

2.3.2 Fitting Models by Least Squares 

This section describes the basic idea of least squares estimation, which is used to 
calculate the values of the coefficients in a model from experimental data. In esti- 
mating the values of coefficients for either an empirical or theoretically based 
model, keep in mind that the number of data sets must be equal to or greater than 
the number of coefficients in the model. For example, with three data points of y 
versus x, you can estimate at most the values of three coefficients. Examine Figure 
2.7. A straight line might represent the three points adequately, but the data can be 
fitted exactly using a quadratic model 

By introducing the values of a data point (Y,, x,) into Equation 2.2, you obtain one 
equation of Yl as a function of three unknown coefficients. The set of three data 
points therefore yields three linear equations in three unknowns (the coefficients) 
that can be solved easily. 

To compensate for the errors involved in experimental data, the number of data 
sets should be greater than the number of coefficients p in the model. Least squares 
is just the application of optimization to obtain the "best" solution of the equations, 
meaning that the sum of the squares of the errors between the predicted and the 
experimental values of the dependent variable y for each data point x is minimized. 
Consider a general algebraic model that is linear in the coefficients. 
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FIGURE 2.7 
Linear versus quadratic fit for three data points. 

There are p independent variables xj, j = 1, . . . , p. Independent here means con- 
trollable or adjustable, not functionally independent. Equation (2.3) is linear with 
respect to the Pj, but xj can be nonlinear. Keep in mind, however, that the values of 
xj (based on the input data) are just numbers that are substituted prior to solving for 
the estimates Dj, hence nonlinear functions of xj in the model are of no concern. For 
example, if the model is a quadratic function, 

we specify 

XI = 1 

and the general structure of Equation (2.3) is satisfied. In reading Section 2.4 you 
will learn that special care must be taken in collecting values of x to avoid a high 
degree of correlation between the xi's. 

Introduction of Equation (2.3) into a sum-of-squares error objective function 
gives 
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The independent variables are now identified by a double subscript, the first index 
designating the data set (experiment) number (i = 1, . . . , n) and the second the 
independent variables (j = 1, p). 

Minimizing f with respect to the p's involves differentiating f with respect to 
PI, Pz, . . . , P, and equating the p partial derivatives to zero. This yields p equations 
that relate the p unknown values of the estimated coefficients B1, . . . , Sp: 

where Si = the estimated value of pi 
x,'s = the experimental values of xj 
Yi = the measured dependent variables 

Note the symmetry of the summation terms in x, and that numbering of xu's in the 
summations corresponds to matrix indices (rows, columns). This set of p equations 
in p unknowns can be solved on a computer using one of the many readily avail- 
able routines for solving simultaneous linear equations. 

Equations (2.5) can be expressed in more compact form if matrix notation is 
employed (see Appendix A). Let the model be expressed in vector matrix notation as 

where E = the random error in the data 
Y = the vector of measured dependent variables 
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The objective function to be minimized is 

Equations 2.5 can then be expressed as 

which has the formal solution via matrix algebra 

Statistical packages and spreadsheets solve the simultaneous equations in (2.8) 
to estimate 6 rather than computing the matrix inverse in Equation (2.9). 

The next two examples illustrate the application of Equation 2.9 to fit coeffi- 
cients in an objective function. The same procedure is used to fit coefficients in 
constraint models. 

EXAMPLE 2.4 APPLICATION OF LEAST SQUARES TO 
DEVELOP A COST MODEL FOR THE COST OF HEAT 
EXCHANGERS 

In the introduction we mentioned that it is sometimes necessary to develop a model for 
the objective function using cost data. Curve fitting of the costs of fabrication of heat 
exchangers can be used to predict the cost of a new exchanger of the same class with 
different design variables. Let the cost be expressed as a linear equation 

where p , ,  p2, and p3 are constants 
N = number of tubes 
A = shell surface area 

Estimate the values of the constants p , ,  P2, and p ,  from the data in Table E2.4. The 
regressors are x, = 1, x, = N, and x3 = A. 

Solution. The mavices to be used in calculating fi are as follows (each data set is 
weighted equally): 
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TABLE E2.4 
Labor cost data for mild-steel 

floating-head exchangers 
(0-500 psig) working pressure 

Labor cost Area Number of 
($) (A) tubes (N) 

Source: Shahbenderian, 1961. 

Equation (2.9) gives the best estimates of PI, P2, and P3: 

b1 = 38.177 

b3 = 0.209 

Check to see if these coefficients yield a reasonable fit to the data in Table E2.4. 

EXAMPLE 2.5 APPLICATION OF LEAST SQUARES IN YIELD 
CORRELATION 

Ten data points were taken in an experiment in which the independent variable x is the 
mole percentage of a reactant and the dependent variable y is the yield (in percent): 
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Fit a quadratic model with these data and determine the value of x that maximizes the 
yield. 

Solution. The quadratic model is y = P, + p g  + P3x2. The estimated coefficients 
computed using Excel are 

P2 = 2.63 

p3 = -0.032 

The predicted optimum can be formed by differentiating 

i. = a, + b2. + b l x 2  
with respect to x and setting the derivative to zero to get 

A 

The predicted yield Y at the optimum is 88.8. 

Certain assumptions underly least squares computations such as the indepen- 
dence of the unobservable errors ci, a constant error variance, and lack of error in the 
x's (Draper and Smith, 1998). If the model represents the data adequately, the resid- 
uals should possess characteristics that agree with these basic assumptions. The 
analysis of residuals is thus a way of checking that one or more of the assumptions 
underlying least squares optimization is not violated. For example, if the model fits 
well, the residuals should be randomly distributed about the value of y predicted by 
the model. Systematic departures from randomness indicate that the model is unsat- 
isfactory; examination of the patterns formed by the residuals can provide clues about 
how the model can be improved (Box and Hill, 1967; Draper and Hunter, 1967). 

Examinations of plots of the residuals versus pi or xi, or a plot of the frequency 
of the residuals versus the magnitude of the residuals, have been suggested as 
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numerical or graphical aids to assist in the analysis of residuals. A study of the signs 
of the residuals (+ or -) and sums of signs can be used. Residual analysis should 
include 

1. Detection of an outlier (an extreme observation). 
2. Detection of a trend in the residuals. 
3. Detection of an abrupt shift in the level of the experiment (sequential observations). 
4. Detection of changes in the error variance (usually assumed to be constant). 
5. Examination to ascertain if the residuals are represented by a normal distribu- 

tion (so that statistical tests can be applied). 

When using residuals to determine the adequacy of a model, keep in mind that 
as more independent variables are added to the model, the residuals may become 
less informative. Each residual is, in effect, a weighted average of the eiys; as more 
unnecessary xi's are added to a model, the residuals become more like one another, 
reflecting an indiscriminate average of all the E'S instead of primarily representing 
one ci. In carrying out the analysis of residuals, you will quickly discover that a 
graphical presentation of the residuals materially assists in the diagnosis because 
one aberration, such as a single extreme value, can simultaneously affect several of 
the numerical tests. 

Nonlinear least squares 
If a model is nonlinear with respect to the model parameters, then nonlinear 

least squares rather than linear least squares has to be used to estimate the model 
coefficients. For example, suppose that experimental data is to be fit by a reaction 
rate expression of the form rA = kc,". Here r, is the reaction rate of component A, 
CA is the reactant concentration, and k and n are model parameters. This model is 
linear with respect to rate constant k but is nonlinear with respect to reaction order 
n. A general nonlinear model can be written as 

where y = the model output 
xj's = model inputs 
Pj's = the parameters to be estimated 

We still can define a sum-of-squares error criterion (to be minimized) by selecting 
the parameter set Pj so as to 

min 2 (Yi - 
Pj i = 1  

where Yi = the ith output measurement 
k. = model prediction corresponding to the ith data point 
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The estimated coefficients listed for model 2 in Example 2.2 were obtained using 
nonlinear least squares (Bates and Watts, 1988). 

As another example, consider the problem of estimating the gain K and time 
constants ri  for first-order and second-order dynamic models based on a measured 
unit step response of the process y(t). The models for the step response of these two 
processes are, respectively (Seborg et al., 1989), 

where t = the independent variable (time) 
y = the dependent variable 

Although K appears linearly in both response equations, 7,  in (2.12) and r1 
and r2 in (2.13) appear nonlinearly, so that nonlinear least squares must be used to 
estimate their values. The specific details of how to carry out the computations will 
be deferred until we take up numerical methods of unconstrained optimization in 
Chapter 6.  

2.4 . FACTORIAL EXPERIMENTAL DESIGNS 

Because variables in models are often highly correlated, when experimental data 
are collected, the xTx matrix in Equation 2.9 can be badly conditioned (see Appen- 
dix A), and thus the estimates of the values of the coefficients in a model can have 
considerable associated uncertainty. The method of factorial experimental design 
forces the data to be orthogonal and avoids this problem. This method allows you 
to determine the relative importance of each input variable and thus to develop a 
parsimonious model, one that includes only the most important variables and 
effects. Factorial experiments also represent efficient experimentation. You system- 
atically plan and conduct experiments in which all of the variables are changed 
simultaneously rather than one at a time, thus reducing the number of experiments 
needed. 

Because of the orthogonality property of factorial design, statistical tests are 
effective in discriminating among the effects of natural variations in raw materials, 
replicated unit operations (e.g., equipment in parallel), different operators, different 
batches, and other environmental factors. A proper orthogonal design matrix for 
collecting data provides independent estimates of the sums of squares for each vari- 
able as well as combinations of variables. Also the estimates of the coefficients 
have a lower variance than can be obtained with a nonorthogonal experimental 
design (Montgomery, 1997; Box et al., 1978). That is, you can have more confi- 
dence in the values calculated for Pi than would occur with a nonorthogonal design. 
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TABLE 2.1 
Orthogonal experimental design 

Scaled (coded) 
values of the 
independent 

variables Experiment Response 
number Y 21 Z2 

From a practical standpoint, the user of the model must decide which input 
variables should be studied because this will determine the number of tests that 
must be carried out (Drain, 1997). In a standard factorial design, 2" tests are 
required, where n is the number of input variables to be studied. You must also 
decide how much each input variable should be changed from its nominal value, 
taking into account the sensitivity of the process response to a change in a given 
input variable, as well as the typical operating range of the process. The determi- 
nation of the region of experimentation requires process knowledge. The experi- 
mental range should be chosen so that the resulting measurements of the response 
do not involve errors in the sensors that are greater than typical noise levels. 

Suppose you want to fit the linear model y = P1 + P5z1 + P3z2, where z1 and z, 
are the independent variables. Let the values of z1 and z2 in the experiment be delib- 
erately chosen by an experimental orthogonal design like that shown in Table 2.1. 

The values of the coded independent variables correspond to the four corners 
of a square in the z1 and z, space. The summations in Equation (2.5) simplify in this 
case (x, = 1, x2 = z,, x3 = z,): 

For the experimental design in Table 2.1, 
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FIGURE E2.6 
Orthogonal design for the variables temperature, 
pressure, and flowrate. 

It is quite easy to solve Equation (2.9) now because these expressions are 
uncoupled; the inverse of xTx for Equation (2.13) can be obtained by merely taking 
the reciprocal of the diagonal elements. 

EXAMPLE 2.6 IDENTIFICATION OF IMPORTANT VARIABLES 
BY EXPERIMENTATION USING AN ORTHOGONAL 
FACTORIAL DESIGN 

Assume a reactor is operating at the reference state of 220°C, 3 atm pressure, and a 
gas flow rate of 200 kgh. We can set up an orthogonal factorial design to model this 
process with a linear model Y = P, + Pp2 + P3x3 + P4x4 SO that the coded values of 
the xi are 1, - 1, and 0. Examine Figure E2.6. Suppose we select the changes in the 
operating conditions of _'20°C for the temperature, 2 2  atm for the pressure, and 250 
kglh for flowrates. Let x, = 1; then x,, x3, and x,, the coded variables, are calculated 
in terms of the proposed operating conditions as follows: 
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Based on the design the following data are collected: 

Y (yield) x2 x3 x4 

The extra data at the (0,O) point are used to obtain a measure of the error involved in 
the experiment. 

Solution. The matrices involved are 

h 

With these matrices you can compute the estimates of Pi by solving Equation (2.9), 
yielding 

In terms of the original variables 

It is clear from the size of the estimated coefficients that mass flowrate changes have 
a much smaller influence on the yield and thus, for practical purposes, could be elim- 
inated as an important independent variable. 
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If the independent variables are orthogonal, deciding whether to add or delete 
variables or functions of variables in models is straightforward using stepwise least 
squares (regression), a feature available on many software packages. Stepwise 
regression consists of sequentially adding (or deleting) a variable (or function) of 
variables to a proposed model and then testing at each stage to see if the added (or 
deleted) variable is significant. The procedure is only effective when the indepen- 
dent variables are essentially orthogonal. The coupling of orthogonal experimental 
design with optimization of operating conditions has been called "evolutionary 
operation" by which the best operating conditions are determined by successive 
experiments (Box and Draper, 1969; Biles and Swain, 1980). 

2.5 DEGREES OF FREEDOM 

In Section 1.5 we briefly discussed the relationships of equality and inequality con- 
straints in the context of independent and dependent variables. Normally in design 
and control calculations, it is important to eliminate redundant information and 
equations before any calculations are performed. Modern multivariable optimiza- 
tion software, however, does not require that the user clearly identify independent, 
dependent, or superfluous variables, or active or redundant constraints. If the num- 
ber of independent equations is larger than the number of decision variables, the 
software informs you that no solution exists because the problem is overspecified. 
Current codes have incorporated diagnostic tools that permit the user to include all 
possible variables and constraints in the original problem formulation so that you 
do not necessarily have to eliminate constraints and variables prior to using the soft- 
ware. Keep in mind, however, that the smaller the dimensionality of the problem 
introduced into the software, the less time it takes to solve the problem. 

The degrees of freedom in a model is the number of variables that can be spec- 
ified independently and is defined as follows: 

where NF = degrees of freedom 
Nv = total number of variables involved in the problem 
NE = number of independent equations (including specifications) 

A degrees-of-freedom analysis separates modeling problems into three cate- 
gories: 

1 .  NF = 0: The problem is exactly determined. If NF = 0, then the number of inde- 
pendent equations is equal to the number of process variables and the set of 
equations may have a unique solution, in which case the problem is not an opti- 
mization problem. For a set of linear independent equations, a unique solution 
exists. If the equations are nonlinear, there may be no real solution or there may 
be multiple solutions. 
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2.  NF > 0: The problem is underdetermined. If NF > 0, then more process vari- 
ables exist in the problem than independent equations. The process model is said 
to be underdetermined, so at least one variable can be optimized. For linear mod- 
els, the rank of the matrix formed by the coefficients indicates the number of 
independent equations (see Appendix A). 

3 .  NF < 0: The problem is overdetermined. If NF < 0, fewer process variables exist 
in the problem than independent equations, and consequently the set of equa- 
tions has no solutions. The process model is said to be overdetermined, and least 
squares optimization or some similar criterion can be used to obtain values of the 
unknown variables as described in Section 2.5. 

EXAMPLE 2.7 MODEL FOR A SEPARATION TRAIN 

Figure E2.7 shows the process flow chart for a series of two distillation columns, 
with mass flows and splits defined by x,, x2, . . . , x,. Write the material balances, and 
show that the process model comprises two independent variables and three degrees 
of freedom. 

Solution. The balances for columns 1 and 2 are shown below: 

Column 1 x, = x2 + x3 or x1 - x2 - x3 = 0 (a> 

There are three equations and three unknowns. 

40% light ends Medium solvent 

60% bottoms 
( ~ 2 )  

Heavy solvent 
( ~ 5 )  

FIGURE E2.7 
Train of distillation columns. 
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The coefficient matrix is 

Variables 

Equations (a) 1 -1 -1 
(b) -0.4 1 0 
(c) -0.6 0 1 

The three equations are not independent. The rank of the coefficient matrix is 2, 
hence there are only two independent variables, and column 1 involves 1 degree of 
freedom. 

Column 2 x2 = x4 + x5 or x2 - x4 - x5 = 0 (6) 

There is one equation and three unknowns, so there are two degrees of freedom.Over- 
all there are four equations (a), (b), (c), (d) and five variables.The coefficient matrix 
is 

Because the rank of the coefficient matrix is three, there are only three inde- 
pendent equations, so Equation (2.14) indicates that there are two degrees of freedom. 
You can reduce the dimensionality of the set of material balances by substitution of 
one equation into another and eliminating both variables ,and equations. 

In some problems it is advantageous to eliminate obvious dependent variables to 
reduce the number of equations that must be included as constraints. You can elimi- 
nate linear constraints via direct substitution, leaving only the nonlinear constraints, 
but the resulting equations may be too complex for this procedure to have merit. The 
following example illustrates a pipe flow problem in which substitution leads to one 
independent variable. 

EXAMPLE 2.8 ANALYSIS OF PIPE FLOW 

Suppose you want to design a hydrocarbon piping system in a plant between two 
points with no change in elevation and want to select the optimum pipe diameter that 
minimizes the combination of pipe capital costs and pump operating costs. Prepare a 
model that can be used to carry out the optimization. Identify the independent and 
dependent variables that affect the optimum operating conditions. Assume the fluid 
properties (p ,  p)  are known and constant, and the value of the pipe length (L) and 
mass flowrate (m) are specified. In your analysis use the following process variables: 
pipe diameter (D), fluid velocity (v), pressure drop (Ap), friction factor (f). 

Solution. Intuitively one expects that an optimum diameter can be found to minimize 
the total costs. It is clear that the four process variables are related and not indepen- 
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dent, but we need to examine in an organized way how the equality constraints (mod- 
els) affect the degrees of freedom. 

List the equality constraints: 

1. Mechanical energy balance, assuming no losses in fittings, no change in elevation, 
and so on. 

2. Equation of continuity, based on plug flow under turbulent conditions. 

3. A correlation relating the friction factor with the Reynolds number (Re). 

The friction factor plot is available in many handbooks, so that given a value of Re, 
one can find the corresponding value off. In the context of numerical optimization, 
however, using a graph is a cumbersome procedure. Because all of the constraints 
should be expressed as mathematical relations, we select the Blasius correlation for a 
smooth pipe (Bird et al., 1964): 

The model involves four variables and three independent nonlinear algebraic 
equations, hence one degree of freedom exists. The equality constraints can be manip- 
ulated using direct substitution to eliminate all variables except one, say the diameter, 
which would then represent the independent variables. The other three variables 
would be dependent. Of course, we could select the velocity as the single independent 
variable of any of the four variables. See Example 13.1 for use of this model in an 
optimization problem. 

2.6 EXAMPLES OF INEQUALITY AND EQUALITY CONSTRAINTS 
IN MODELS 

As mentioned in Chapter 1, the occurrence of linear inequality constraints in indus- 
trial processes is quite common. Inequality constraints do not affect the count of the 
degrees of freedom unless they become active constraints. Examples ofesuch con- 
straints follow: 
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1. Production limitations arise because of equipment throughput restrictions, stor- 
age limitations, or market constraints (no additional product can be sold beyond - 
some specific level). 

2. Raw material limitations occur because of limitations in feedstock supplies; 
these supplies often are determined by production levels of other plants within 
the same company. 

- 

3. Safety or operability restrictions exist because of limitations on allowable oper- 
ating temperatures, pressures, and flowrates. 

4. Physical property specifications on products must be considered. In refineries 
the vapor pressure or octane level of fuel products must satisfy some specifica- 
tion. For blends of various products, you usually assume that a composite prop- 
erty can be calculated through the averaging of pure component physical prop- 
erties. For N components with physical property values Vi and volume fraction 
y,, the average property f is 

EXAMPLE 2.9 FORMULATION OF A LINEAR INEQUALITY 
CONSTRAINT FOR BLENDING 

Suppose three intermediates (light naphtha, heavy naphtha, and "catalytic" oil) made 
in a refinery are to be blended to produce an aviation fuel. The octane number of the 
fuel must be at least 95. The octane numbers for the three intermediates are shown in 
the table. 

Amount blended , Octane 
(barrelstday) number 

Light naphtha XI 92 
Heavy naphtha X2 86 
Catalytic oil X3 97 

Write an inequality constraint for the octane number of the aviation fuel, assum- 
ing a linear mixing rule. 

Solution. Assume the material balance can be based on conservation of volume (as 
well as mass). The production rate of aviation gas is x4 = x1 + x2 + x,. The volume- 
average octane number of the gasoline can be computed as 

x 1 
(92) + X2 (86) + x3 (97) 2 95 (a)  

x, + X2 + Xj Xl + X2 + X3 x, + X2 + Xg 
Multiplying Equation (a) by (x, + x, + x,) and rearranging, we get 

This constraint ensures that the octane number specification is satisfied. Note that 
Equation (b)  is linear. 
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EXAMPLE 2.10 LINEAR MATERIAL BALANCE MODELS 

In many cases in which optimization is applied, you need to determine the allocation 
of material flows to a set of processes in order to maximize profits. Consider the 
process diagram in Figure E2.10. 

FIGURE E2.10 
Flow diagram for a multiproduct plant. 

Each product (E, F: G) requires different (stoichiometric) amounts of reactants 
according to the following mass balances: 

Reactants 
Product (1-kg product) 

Prepare a model of the process using the mass balance equations. 

Solution. lbelve mass flow variables can be defined for this process. Let x,, x2, x, 
be the mass input flows of A to each process. Similarly let x4, x5, x6, and x7 be the indi- 
vidual reactant flows of B and C, and define x,, x9, and x,, as the three mass product 
flows (E, E G). Let x,, and x12 be the total amounts of A and B used as reactants (C 
is the same as x,). Thus, we have a total of 12 variables. 

The linear mass balance constraints that represent the process are: 
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x4 = 0 . 3 3 3 ~ ~  0 

With 12 variables and 9 independent linear equality constraints, 3 degrees of freedom 
exist that can be used to maximize profits. Note that we could have added an overall 
material balance, x,, + x12 + x, = x, + x9 + x,,, but this would be a redundant equa- 
tion since it can be derived by adding the material balances. 

Other constraints can be specified in this problem. Suppose that the supply of A 
was limited to 40,000 kglday, or 

If this constraint is inactive, that is, the optimum value of xll  is less than 40,000 
kglday, then, in effect, there are still 3 degrees of freedom. If, however, the optimiza- 
tion procedure yields a value of x,, = 40,000 (the optimum lies on the constraint, such 
as shown in Figure 1.2), then inequality constraint f becomes an equality constraint, 
resulting in only 2 degrees of freedom that can be used for optimization. You should 
recognize that it is possible to add more inequality constraints, such as constraints on 
materials supplies, in the model, for example, 

These can also become "active" constraints if the optimum lies on the constraint 
boundary. Note that we can also place inequality constraints on production of E, F, 
and G in order to satisfy market demand or sales constraints 

Now the analysis is much more complex, and it is clear that more potential equal- 
ity constraints exist than variables if all of the inequality constraints become active. It 
is possible that optimization could lead to a situation where no degrees of freedom 
would be left--one set of the inequality constraints would be satisfied as equalities. 
This outcome means no variables remain to be optimized, and the optimal solution 
reached would be at the boundaries, a subset of the inequality constraints. 

Other constraints that can be imposed in a realistic problem formulation include 

1. Operating limitations (bottlenecks)-there could be a throughput limitation on 
reactants to one of the processes (e.g., available pressure head). 

2. Environmental limitations-there could be some additional undesirable by-products 
H, such as the production of toxic materials (not in the original product list given 
earlier), that could contribute to hazardous conditions. 
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You can see that the model for a realistic process can become extremely com- 
plex; what is important to remember is that steps 1 and 3 in Table 1.1 provide an 
organized framework for identifying all of the variables and formulating the objec- 
tive function, equality constraints, and inequality constraints. After this is done, you 
need not eliminate redundant variables or equations. The computer software can 
usually handle redundant relations (but not inconsistent ones). 
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PROBLEMS 

2.1 Classify the following models as linear or nonlinear 

(a) Two-pipe heat exchanger (streams 1 and 2) 

BC: T,(t, 0) = a IC: TI(O,Z) = 0 

where T = temperature Cp = heat capacity 

t = time S = area factor 

BC = boundary conditions IC = initial conditions 

p = density 

(b) Diffusion in a cylinder 
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where C = concentration r = radial direction 
t = time D = constant 

2.2 Classify the following equations as linear or nonlinear (y = dependent variable; x, z = 
independent variables) 

(a) y: + y ;  = a 2  

avY a2vy 
(b) v,- = p- 

ax dz2 

2.3 Classify the models in Problems 2.1 and 2.2 as steady state or unsteady state. 

2.4 Classify the models in Problems 2.1 and 2.2 as lumped or distributed. 

2.5 What type of model would you use to represent the process shown in the figure? 
Lumped or distributed? Steady state or unsteady state? Linear or nonlinear? 

Air + 

Liquid + 

FIGURE P2.5 
A wastewater treatment system uses five stacked 
venturi sections to ensure maximum oxygenation 
efficiency. 
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2.6 Determine the number of independent variables, the number of independent equations, 
and the number of degrees of freedom for the reboiler shown in the figure. What vari- 
ables should be specified to make the solution of the material and energy balances 
determinate? (Q = heat transferred) 

Liquid 1 >Vapor 

I 

Figure P2.6 

2.7 Determine the best functional relation to fit the following data sets: 

(a) (b) (c) (dl 

2.8 The following data have been collected: 

Which of the following three models best represents the relationship between Y and x? 

y = e"+BX 

y = e"+P,"+Pd 

y = a x @  

2.9 Given the following equilibrium data for the distribution of SO, in hexane, determine 
a suitable linear (in the parameters) empirical model to represent the data. 
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xi Yi 
pressure weight fraction 

(psi4 hexane 

2.10 (a) Suppose that you wished to curve fit a set of data (shown in the table) with the 
equation 

Calculate c,, c,,  and c, (show what summations need to be calculated). How do 
you find c,  and c, if co is set equal to zero? 

(b) If the desired equation were y = alxe -"@, how could you use least-squares to find 
a,  and a,? 

2.11 Fit the following data using the least squares method with the equation: 

Compare the results with a graphical (visual) estimate. 

2.12 Fit the same data in Problem 2.11 using a quadratic fit. Repeat for a cubic model (y = 

C,  + clx + cg2  + c3x3). Plot the data and the curves. 

2.13 You are asked to get the best estimates of the coefficients b,, b,, and c in the follow- 
ing model 

given the following data. 
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Explain step by step how you would get the values of the coefficients. 

2.14 Fit the following function for the density p as a function of concentration C, that is, 
determine the value of a in 

given the following measurements for p and C: 

2.15 (a) For the given data, fit a quadratic function of y versus x by estimating the values 
of all the coefficients. 

(b) Does this set of data constitute an orthogonal design? 

2.16 Data obtained from a preset series of experiments was 

Temperature, T Pressure, p Yield, Y 
( O F )  ( a t 4  

Fit the linear model ? = b, + b,x, + b2x2 using the preceding table. Report the esti- 
mated coefficients b,, b,, and b,. Was the set of experiments a factorial design? 

2.17 You are given data for Y versus x and asked to fit an empirical model of the form: 

y = a  + px 

where p is a known value. Give an equation to calculate the best estimate of a. 
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2.18 A replicated two-level factorial experiment is carried out as follows (the dependent 
variables are yields): 

Time 
(h) 

Temperature Yield 
("C) (%) 

Find the coefficients in a first-order model, Y = Po + P,x, + Ps2. (Y = yield, x, = 
time, x, = temperature.) 

2.19 An experiment based on a hexagon design was carried out with four replications at the 
origin, producing the following data: 

Factor levels Design levels 

Yield Temperature Time 
(%I ("C) (h) XI x2 

96.0 75 2.0 1 .000 0 
78.7 60 2.866 0.500 0.866 
76.7 30 2.866 -0.500 0.866 
54.6 15 2.0 -1.000 0 
64.8 30 1.134 -0.500 -0.866 
78.9 60 1.134 0.500 -0.866 
97.4 45 2.0 0 0 
90.5 45 2.0 0 0 
93.0 45 2.0 0 0 
86.3 45 2.0 0 0 

temperature - 45 
Coding: xl  = x2 = time - 2 

30 

Fit the full second-order (quadratic) model to the data. 

2.20 A reactor converts an organic compound to product P by heating the material in the 
presence of an additive A. The additive can be injected into the reactor, and steam can 
be injected into a heating coil inside the reactor to provide heat. Some conversion can 
be obtained by heating without addition of A, and vice versa. In order to predict the 
yield of P, Y, (lb mole product per lb mole feed), as a function of the mole fraction of 
A, X,, and the steam addition S (in lbllb mole feed), the following data were obtained. 
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(a) Fit a linear model 

Y, = co + clXA + c2S 

that provides a least squares fit to the data. 
(b) If we require that the model always must fit the point Y, = 0 for X, = S = 0, cal- 

culate c,, c,, and c2 SO that a least squares fit is obtained. 

2.21 If you add a feed stream to the equilibrium stage shown in the figure, determine the 
number of degrees of freedom for a binary mixture (Q = heat transferred). 

FIGURE P2.21 

2.22 How many variables should be selected as independent variables for the furnace 
shown in the figure? 

25% excess dry air 

Fuel 70°F 

- 

Q (loss) 

FIGURE P2.22 

100°F 

v 
co- 

Flue gases o 
2 1900°F N2 

80% CH4 

20% N2 

2.23 Determine the number of independent variables, the number of independent equations, 
and the number of degrees of freedom in the following process (A, B, and D are chem- 
ical species): 

v 

Furnace 3 
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Mixer I-{ I 

F 1 Reactor F3 

A, B A, B, D ' Distill- 
A ation 

L 

F4 @ B  . 
V 

A 
Splitter B * P  

FIGURE P2.23 

The encircled variables have known values. The reaction parameters in the reactor are 
known as the fraction split at the splitter between F4 and F5. Each stream is a single 
phase. 

2.24 A waste heat boiler (see Fig. P2.24) is to be designed for steady-state operation under 
the following specifications. 

Stream drum 

Risers 
Downcomers Shell 

> Ls - > 
Gas in Gas out - 

Tube 

n n n n 

diameter, d 

FIGURE P2.24 
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Total gas flow 25,000 kg/h 
Gas composition SO2 (9%), 0, (12%), N, (79%) 
Gas temperatures in = 1200°C; out = 350°C 
Stream pressure outside tubes 250 kPa 
Gas properties Cp = 0.24 kcal/(g)("C) 

p = 0.14 kg/(m)(h) 
. k = 0.053 kcaV(m)(h)("C) 

Cost data are 
Shell $2.5O/kg 
Tubes $1 50/m2 
Electricity $0.60/kWh 
Interest rate 14% 

Base the optimization on just the cost of the shell, tubes, and pumping costs for the 
gas. Ignore maintenance and repairs. 

Formulate the optimization problem using only the following notation (as 
needed): 

surface area of tubes, m2 
cost of shell, $ 
cost of tubes, $ 
heat capacity of gas, kcaY(kg)("C) 
diameter of shell, m 
tube outer and inner diameters, m 
friction factor 
acceleration due to gravity, m/s2 
gas side heat transfer coefficient inside the tubes, kcaV(m2)(h)("C) 
interest rate, fraction 
gas thermal conductivity, kcaV(m)(h)('C) 
length of shell, m 
molecular weight of gas 
number of tubes 
life of equipment, years . 
duty of the boiler, kcal/h 
gas temperature entering and leaving the boiler, "C 
temperature in general 
density of gas, kg/m3 
viscosity of gas, kg/(m)(h) 
gas velocity, rnls 
gas flow, kg/h 
weight of shell, tons 
efficiency of blower 
gas pressure drop, kPa 
shell thickness, m 

How many degrees of freedom are in the problem you formulated? 
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THE FORMULATION OF objective functions is one of the crucial steps in the appli- 
cation of optimization to a practical problem. As discussed in Chapter 1, you must 
be able to translate a verbal statement or concept of the desired objective into math- 
ematical terms. In the chemical industries, the objective function often is expressed 
in units of currency (e.g., U.S. dollars) because the goal of the enterprise is to min- 
imize costs or maximize profits subject to a variety of constraints. In other cases the 
problem to be solved is the maximization of the yield of a component in a reactor, 
or minimization of the use of utilities in a heat exchanger network, or minimization 
of the volume of a packed column, or minimizing the differences between a model 
and some data, and so on. Keep in mind that when formulating the mathematical 
statement of the objective, functions that are more complex or more nonlinear are 
more difficult to solve in optimization. Fortunately, modern optimization software 
has improved to the point that problems involving many highly nonlinear functions 
can be solved. 

Although some problems involving multiple objective functions cannot be 
reduced to a single function with common units (e.g., minimize cost while simul- 
taneously maximizing safety), in this book we will focus solely on scalar objec- 
tive functions. Refer to Hurvich and Tsai (1993), Kamimura (1997), Rusnak et al. 
(1993), or Steur (1986) for treatment of multiple objective functions. You can, of 
course, combine two or more objective functions by trade-off, that is, by suitable 
weighting (refer to Chapter 8). Suppose you want to maintain the quality of a 
product in terms of two of its properties. One property is the deviation of the vari- 
able yi  (i designates the sample number) from the setpoint for the variable, y,. The 
other property is the variability of yi from its mean y (which during a transi- 
tion may not be equal to y,). If you want to simultaneously use both criteria, you 
can minimize f: 

where the wi are weighting factors to be selected by engineering judgment. From 
this viewpoint, you can also view each term in the summations as being weighted 
equally. 

This chapter includes a discussion of how to formulate objective functions 
involved in economic analysis, an explanation of the important concept of the 
time value of money, and an examination of the various ways of carrying out a 
profitability analysis. In Appendix B we cover, in more detail, ways of estimat- 
ing the capital and operating costs in the process industries, components that are 
included in the objective function. For examples of objective functions other than 
economic ones, refer to the applications of optimization in Chapters 11 to 16. 

3.1 ECONOMIC OBJECTIVE FUNCTIONS 

The ability to understand and apply the concepts of cost analysis, profitability 
analysis, budgets, income-and-expense statements, and balance sheets are key 
skills that may be valuable. This section treats two major components of economic 
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objective functions: capital costs and operating costs. Economic decisions are made 
at various levels of detail. The more detail involved, the greater the expense of 
preparing an economic study. In engineering practice you may need to prepare pre- 
liminary cost estimates for projects ranging from a small piece of equipment or a 
new product to a major plant retrofit or design. 

To introduce the involvement of these two types of costs in an objective func- 
tion, we consider three simple examples: The first involves only operating costs and 
income, the second involves only capital costs, and the third involves both. 

EXAMPLE 3.1 OPERATING PROFITS AS THE OBJECTIVE 
FUNCTION 

Let us return to the chemical plant of Example 2.10 with three products (E, F, G) and 
three raw materials (A, B, C) in limited supply. Each of the three products is produced 
in a separate process (1,2, 3); Figure E3.1 illustrates the process. 

Process data 
Process 1: A + B + E 

Process 2: A + B + F 

Process 3: 3A + 2B + C + G 

Maximum 
Raw available Cost 

material (kglday) (gflcg) 

FIGURE E3.1 
Flow diagram for a multiproduct plant. 
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Reactant Processing Selling price 
requirements cost (product) (product) 

Process Product (kglkg product) (@kg) (@kg) 

E $A,  S B  1.5 
F $A, & B  0.5 
G $ A , ~ B , !  C 1 .O 

(mass is conserved) 

Formulate the objective function to maximize the total operating profit per day in the 
units of $/day. 

Solution The notation for the mass flow rates of reactants and products is the same 
as in Example 2.10. 

The income in dollars per day from the plant is found from the selling prices 
(0.04E + 0.033F + 0.038G). The operating costs in dollars per day include 

Raw material costs: 0.015A + 0.02B + 0.025C 

Processing costs: 0.015E + 0.005F + 0.01G 

Total costs in dollars per day = 0.015A + 0.02B + 0.025C + 0.015E 

The daily profit is found by subtracting daily operating costs from the daily income: 

Note that the six variables in the objective function are constrained through material 
balances, namely 

Also 

The optimization problem in this example comprises a linear objective function and 
linear constraints, hence linear programming is the best technique for solving it (refer 
to Chapter 7). 
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The next example treats a case in which only capital costs are to be optimized. 

EXAMPLE 3.2 CAPITAL COSTS AS THE OBJECTIVE 
FUNCTION 

Suppose you wanted to find the configuration that minimizes the capital costs of a 
cylindrical pressure vessel. To select the best dimensions (length L and diameter D) of 
the vessel, formulate a suitable objective function for the capital costs and find the opti- 
mal (WD) that minimizes the cost function. Let the tank volume be V, which is fixed. 
Compare your result with the design rule-of-thumb used in practice, (WD)"Pt = 3.0. 

Solution Let us begin with a simplified geometry for the tank based on the follow- 
ing assumptions: 

1. Both ends are closed and flat. 
2. The vessel walls (sides and ends) are of constant thickness t with density p, and 

the wall thickness is not a function of pressure. 
3. The cost of fabrication and material is the same for both the sides and ends, and is 

S (dollars per unit weight). 
4. There is no wasted material during fabrication due to the available width of metal 

plate. 

The surface area of the tank using these assumptions is equal to , 

(ends) (cylinder) 

From assumptions 2 and 3, you might set up several different objective functions: 

ITD~ 
fi=, + TDL (units of area) (b) 

T D ~  
f 2 = P ( T + ~ D L ) * t  (units of weight) 

+ 7iDL) f (units of cost in dollars) 

Note that all of these objective functions differ from one another only by a multi- 
plicative constant; this constant has no effect on the values of the independent vari- 
ables at the optimum. For simplicity, we therefore use f, to determine the optimal val- 
ues of D and L. Implicit in the problem statement is that a relation exists between 
volume and length, namely the constraint 

Hence, the problem has only one independent variable. 
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Next use (e) to remove L from (b) to obtain the objective function 

Differentiation off, with respect to D for constant V, equating the derivative to zero, 
and solving the resulting equation gives 

This result implies that f, - VU3, a relationship close to the classical "six-tenths" rule 
used in cost estimating. From (e), Lopt = ( 4 V l ~ ) ~ ' ~ ;  this yields a rather surprising 
result, namely 

The (UD)"Pt ratio is significantly different from the rule of thumb stated earlier in the 
example, namely, WD = 3; this difference must be due to the assumptions (perhaps 
erroneous) regarding vessel geometry and fabrication costs. 

Brummerstedt (1944) and Happel and Jordan (1975) discussed a somewhat more 
realistic formulation of the problem of optimizing a vessel size, making the following 
modifications in the original assumptions: 

1. The ends of the vessel are 2: 1 ellipsoidal heads, with an area for the two ends of 
2(1.16D2) = 2.32D2. 

2. The cost of fabrication for the ends is higher than the sides; Happel and Jordan 
suggested a factor of 1.5. 

3. The thickness t is a function of the vessel diameter, allowable steel stress, pressure 
rating of the vessel, and a corrosion allowance. For example, a design pressure of 
250 psi and a corrosion allowance of in. give the following formula for t in inches 
(in which D is expressed in feet): 

The three preceding assumptions require that the objective function be expressed in 
dollars since area and weight are no longer directly proportional to cost 

The unit conversion of t from inches to feet does not affect the optimum (LID), nor 
do the values of p and S, which are multiplicative constants. The modified objective 
function, substituting Equation (i) in Equation (j), is therefore 

The volume constraint is also different from the one previously used because of the 
dished heads: 

Equation ( I )  can be solved for L and substituted into Equation (k). However, No ana- 
lytical solution for DOpt by direct differentiation of the objective function is possible 
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now because the expression for f6, when L is eliminated, leads to a complicated poly- 
nomial equation for the objective function: 

When f, is differentiated, a fourth-order polynomial in D results; no simple analytical 
solution is possible to obtain the optimum value of D. A numerical search is therefore 
better for obtaining DOpt and should be based on f, (rather than examining df71dD = 
0). However, such a search will need to be performed for different values of V and the 
design pressure, parameters which are embedded in Equation (i). Recall that Equa- 
tions (i) and (my are based on a design pressure of 250 psi. Happel and Jordan (1975) 
presented the following solution for (WD)"Pt: 

TABLE E3.2 
Optimum (LID) 

Design pressure (psi) 

Capacity (gal) 100 250 400 

In Chapter 5 you will learn how to obtain such a solution. Note that for small 
capacities and low pressures, the optimum WD approaches the ideal case; examine 
Equation (h) considered earlier. It is clear from Table E3.2 that the rule of thumb that 
(UD)"Pt = 3 can be in error by as much as $50 percent from the actual optimum. 
Also, the optimum does not take into account materials wasted during fabrication, a 
factor that could change the answer. 

Next we consider an example in which both operating costs and capital 
costs are included in the objective function. The solution of this example requires 
that the two types of costs be put on some common basis, namely, dollars per-year. 

EXAMPLE 3.3 OPTIMUM THICKNESS OF INSULATION 

In specifying the insulation thickness for a cylindrica vessel or pipe, it is necessary 
to consider both the costs of the insulation and the value of the energy saved by adding 
the insulation. In this example we determine the optimum thickness of insulation for 
a large pipe that contains a hot liquid. The insulation is added to reduce heat losses 
from the pipe. Next we develop an analytical expression for insulation thickness 
based on a mathematical model. 

The rate of heat loss from a large insulated cylinder (see Figure E3.3), for which 
the insulation thickness is much smaller than the cylinder diameter and the inside heat 
transfer coefficient is very large, can be approximated by the formula 

AAT 
= x / k  + l l h ,  
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Insulation of 
thickness x 

Air 

Q (heat loss) 

AT = T (hot fluid) - T (air) 

FIGURE E3.3 
Heat loss from an insulated pipe 

where AT = average temperature difference between pipe fluid and ambient sur- 
roundings, K 

A = surface area of pipe, m2 
x = thickness of insulation, m 

h, = outside convective heat transfer coeffient, kJ/(h)(m2)(K) 
k = thermal conductivity of insulation, kJ/(h)(m)(K) 
Q = heat loss, kJ/h 

All of the parameters on the right hand side of Equation (a) are fixed values except for 
x, the variable to be optimized. Assume the cost of installed insulation per unit area can 
be represented by the relation Co + C,x, where Co and C, are constants (Co = fixed 
installation cost and C, = incremental cost per foot of thickness). The insulation has a 
lifetime of 5 years and must be replaced at that time. The funds to purchase and install 
the insulation can be borrowed from a bank and paid back in five annual installments. 
Let r be the fraction of the installed cost to be paid each year to the bank. The value of 
r selected depends on the interest rate of the funds borrowed and will be explained in 
Section 3.2. 

Let the value of the heat lost from the pipe be H, ($/lo6 kJ). Let Y be the num- 
ber of hours per year of operation. The problem is to 

1. Formulate an objective function to maximize the savings in operating cost, savings 
expressed as the difference between the value of the heat conserved less the annu- 
alized cost of the insulation. 

2. Obtain an analytical solution for x*, the optimum. 

Solution If operating costs are to be stated in terms of dollars per year, then the cap- 
ital costs must be stated in the same units. Because the funds required for the insula- 
tion are to be paid back in equal installments over a period of 5 years, the payment 
per year is r(Co + Clx)A. The energy savings due to insulation can be calculated from 
the difference between Q(x = 0) = Q,, and Q: 
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The objective function to be maximized is the present value of heat conserved in dol- 
lars less the annualized capital cost (also in dollars): 

dollars 1 
f = (Qo - Q) ( p) Y ( ~ )  year H ~ ( ~ ) ;  (year) 

Substitute Equation (b) into (c), differentiate f with respect to x, and solve for the opti- 
mum ( d m  = 0): 

Examine how x* varies with the different parameters in (d), and confirm that the trends 
are physically meaningful. Note that the heat transfer area A does not appear in Equa- 
tion (d). Why? Could you formulate f as a cost minimization problem, that is, the sum 
of the value of heat lost plus insulation cost? Does it change the result for x*? How do 
you use this result to select the correct commercial insulation size (see Example 1. l)? 

Appendix B explains ways of estimating the capital and operating costs, leading to 
the coefficients in economic objective functions. 

3.2 THE TIME VALUE OF MONEY IN OBJECTIVE FUNCTIONS 

So far we have explained how to estimate capital and operating costs. In Example 3.3, 
we formulated an objective function for economic evaluation and discovered that 
although the revenues and operating costs occur in the future, most capital costs are 
incurred at the beginning of a project. How can these two classes of costs be evalu- 
ated fairly? The economic analysis of projects that incur income and expense over 
time should include the concept of the time value of money. This concept means that 
a unit of money (dollar, yen, euro, etc.) on hand now is worth more than the same unit 
of money in the future. Why? Because $1000 invested today can earn additional dol- 
lars; in other words, the value of $1000 received in the future will be less than the 
present value of $1000. 

For an example of the kinds of decisions that involve the time value of money, 
examine the advertisement in Figure 3.1. For which option do you receive the most 
value? Answers to this and similar questions sometimes may be quickly resolved 
using a calculator or computer without much thought. To understand the underly- 
ing assumptions and concepts behind the calculations, however, you need to 
account for cash flows in and out using the investment time line diagram for a proj- 
ect. Look at Figure 3.2. 
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You Decide Which Option You Prefer If You Are The 
Winner Of The Sweepstakes: 

pq pq pq 
OR OR 

$2,000,000 NOW. $1,000,000 NOW. $167,000 a year 
Payable immediately. PLUS $137,932 a year for 30 years. 

for 29 years. 

Tell us your choice. Read the instructions on the reverse to learn 
how you can activate your Grand Prize Option. 

FIGURE 3.1 
Options for potential sweepstakes winners. Which option provides the optimal value? 

FIGURE 3.2 
The time line with divisions 
corresponding to 6 time periods. 

6 

Money paid out 

Money received I 

FIGURE 3.3 
Representation of cash received and disbursed. 

Figure 3.3 depicts money received (or income) with vertical arrows .pointing 
upward; money paid out (or expenses) is depicted by vertical arrows pointing 
downward. With the aid of Figure 3.3 you can represent almost any complicated 
financial plan for a project. For example, suppose you deposit $1000 now (the pres- 
ent value P) in a bank savings account that pays 5.00 percent annual interest com- 
pounded monthly, and in addition you plan to deposit $100 per month at the end of 
each month for the next year. What will the future value F of your investments be 
at the end of the year? Figure 3.4 outlines the arrangement on the time line. 

Note that cash flows corresponding to the accrual of interest are not represented 
by arrows in Figure 3.4. The interest rate per month is 0.4167, not 5.00 percent (the 
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1 PMT PMT PMT PMT PMT 
p $100 $100 $100 $100 $100 

$1000 

FIGURE 3.4 
The transactions for the example placed on the time line. 

Construction Start up Product Shut down Salvage 
manufactured 

FIGURE 3.5 
Cash flow transactions for a proposed plant placed on the time line. 

annual interest rate). The number of compounding periods is n = 12. PMT is the 
periodic payment. 

Figure 3.5 shows (using arrows only) some of the typical cash flows that might 
occur from the start to the end of a proposed plant. As the plant is built, the cash 
flows are negative, as is most likely the case during startup. Once in operation, the 
plant produces positive cash flows that diminish with time as markets change and 
competitors start up. Finally, the plant is closed, and eventually the equipment sold 
or scrapped. 

It is easy to develop a general formula for investment growth for the case in 
which fractional interest i is compounded once per period (month, year). (Note: On 
most occasions we will cite i in percent, as is the common practice, even though in 
problem calculations i is treated as a fraction.) If P is the original investment (pres- 
ent value), then P(l + i) is the amount accumulated after one compounding period, 
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say 1 year. Using the same reasoning, the value of the investment in successive 
years for discrete interest payments is 

t = n years Fn = P(l + i)" (3.2~) 

The symbol Fn is called thefiture worth of the investment after year n, that is, the 
future value of a current investment P based on a specific interest rate i. 

Equation (3.2~) can be rearranged to give present value in terms of future 
value, that is, the present value of one future payment F  at period n 

For continuous compounding Equation (3.2~) reduces to Fn = Pein. Refer to Gar- 
rett, Chapt. 5 (1989) for the derivation of this formula. 

The following is a list of some useful extensions of Equation (3.3). Note that 
the factors involved in Equations (3.3)-(3.7) are F, P, i ,  and n, and given the values 
of any three, you can calculate the fourth. Software such as Microsoft Excel and 
hand calculators all contain programs to execute the calculations, many of which 
must be iterative. 

1. Present value of a series of payments Fk (not necessarily equal) at periods k = 
1, ..., n in the future: 

P = 
Fl + F2 + ... + Fn-1 + Fn 

(1 + i )  (1 + i ) 2  (1 + i ln  - ' (1 + i)" (3.4) 

2. Present value of a series of uniform future payments each of value 1 starting in 
period m and ending with period n: 

n 1 k n + l  1 - , 1  

k-m (1 + i ) k  [()()] m = i ( l + i ) m - l  i ( l  + i)" 

(1 + i)n-m+l - 
- - 

1 

i(l + i)" 

Ifm = 1, 

n 1 ' ( 1  + i)" - 1 
P =  x - - 

k G 1  (1 + i lk  i(l + i)" 
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3. Future value of a series of (not necessarily equal) payments P,: 

4. Future value of a series of uniform future payments each of value 1 starting in 
period rn and ending in period n: 

If m = 1 so that k = 1,  the equivalent of Equation (3.7) is 

The right-hand side of Equation (3.5) is known as the "capital recovery factor" or 
"present worth factor," and the inverse of the right-hand side is known as the "repay- 
ment multiplier" r. 

Tables of the repayment multiplier are listed in handbooks and some textbooks. 
Table 3.1 gives r over some limited ranges as a function of n and i. 

TABLE 3.1 

i(1 + i)" 
Values for the fraction r = 

(1 + i)" - 1 

Interest rate 

Key: n = number of years i = interest rate, % 
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For uniform (equal) future payments each of value F, Equation (3.5) becomes 

If the interest is calculated continuously, rather than periodically, the equivalent 
of Equation (3.5) is (with the uniform payments of value F) 

The inverse of the right-hand side of Equation (3.6) is known in economics as 
the "sinking fund deposit factor," that is, how much a borrower must periodically 
deposit with a trustee to eventually pay off a loan. 

Now let us look at some examples that illustrate the application of the concepts 
and relations discussed earlier. 

EXAMPLE 3.4 PAYING OFF A LOAN 

You borrow $35,000 from a bank at 10.5% interest to purchase a multicone cyclone 
rated at 50,000 ft3/min. If you make monthly payments of $325 (at the end of the 
month), how many payments will be required to pay off the loan? 

Solution The diagram on the time line in Figure E3.4a shows the cash flows. 
Because the payments are uniform, we can use Equation (3.5), but use $325 per 
month rather than $1. 

PMT 
-325 

FIGURE E3.4a 

35,000 - 325[(' + 
i(l + i)" 

Equation (a) can be solved for n (months). Use Equation (3.8) to simplify the procedure. 

r 
(i + 1)" = - 

r - i  
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In the example the data are 

R = 
2.85263 

= 327.4 months 
0.0087 12 

The final payment (No. 328) will be less than $325.00, namely $143.1 1.  
For income tax purposes, you can calculate the principal and interest in each pay- 

ment. For example, at the end of the first month, the interest paid is $35,000 (0.008750) 
= $306.25 and the principal paid is $325.00 - $306.25 = $18.75, so that the principal 
balance for the next month's interest calculation is $34,981.25. Iteration of this proce- 
dure (best done on a computer) yields h e  "amortization schedule" for the loan. 

You can carry out the calculations using the Microsoft Excel function key (found 
by clicking on the "insert'? button in the toolbar): 
1. Click on the function key (f,.) in the spreadsheet too1 bar. 
2. Choose financial function category (Figure E3.4b). 
3. Select NPER. 

mi a con 

Fun 

M o s t  Recently used- 
All 

Date b. Time 
Math & Trig 
Statistical 
Lookup & Reference 
Database 
Text 
Logical 

R&um the m r m k  r$ mriods Far an investment based on ~eriodic, 
cm s r ~ s t  rat: 

I- 

FIGURE E3.4b 
Permission by Microsoft. 
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t that a 5 Future 

- 

; the pre! 
laymbnts 
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now. 

FIGURE E3.4~ 
Permission by Microsoft. 

A A -A- 

C -- -. -- - - -- - 
Interest Payback Hate Number of Payments 

FIGURE E3.4d 
Permission by Microsoft. 

4. Enter correct vaIues for payment 1-$325), rate (0.105/12), and present value 
($35.000) (Figure E3.4c), and click on "'OK to get the screen shown in Figure 
E3.4d. The solution appears in the "Number of Payments" cell (Figure E3.4e). 

Note the many other options that can be called up by the function key. 
You can also carry out the calculations in a spreadsheet format. 

1. Enter in the vaIue for the interest by typing "=0.105/12" in the interest cell. 
2. Type "= -325135000" in the payback rate cell. 
3. In our example we type "In(b2/(b2-al))lln( l +a I)" to calculate the number of 

payments. 
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1 0  & e @ p  -- x & m R d  - . -  r. . % c g  -- v- , - 4 
----" I 

I Ariaf ' I  Q I s-- +'a .00 
" *p-p- - rn +lo / tr 

+.,.+ .- - 

= 1 
B --- C - 

Interest rayhack Rate Number of  Payments 
0.00875 - 0.009285714 - -- - - 327.4392653 , 

FIGURE E3.4e 
Permission by Microsoft. 

EXAMPLE 3.5 SELECTION OF THE CHEAPEST ANODES 

Ordinary anodes for an electrochemical process last 2 years and then have to be 
replaced at a cost of $20,000. An alternative choice is to buy impregnated anodes that 
last 6 years and cost $56,000 (see Figure E3.5). If the annual interest rate is 6 percent 
per year, which alternative would be the cheapest? 

Alternative A Alternative B 

B B 
$20,000 $20,000 $20,000 $56,000 

FIGURE E3.5 

Solution We want to calculate the present value of each alternative. The present 
value of alternative A using Quation (3.4) is 

The present value of alternative B is -$56,000. Alternative A gives the largest (small- 
est negative) present value. 
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3.3 MEASURES OF PROFITABILITY 

As mentioned previously, most often in the chemical process industries the objec- 
tive function for potential projects is some measure of profitability. The projects 
with highest priorities are the ones with the highest expected profitability; "ex- 
pected" implies that probabilistic considerations must be taken into account (Palvia 
and Gordon, 1992), such as calculating the upper and lower bounds of a prediction. 
In this section, however, we are concerned with a deterministic approach for eval- 
uating profitability, keeping in mind that different definitions of profitability can 
lead to different priority rankings. Analyses are typically carried out in spreadsheets 
to generate a variety of possibilities that allow the projects to be ranked as a prel- 
ude to decision making. 

Among the numerous measures of economic performance that have been pro- 
posed, two of the simplest are 
1. Payback period (PBP)-how long a project must operate to break even; ignores 

the time value of money. 

Cost of investment 
PBP = 

Cash flow per period 

Example: For an investment of $20,000 with a return of $500 per week the PBP is 

$20,000 
$500 

= 40 weeks 

2.Return on investment (RO1)-a simple yield calculation without taking into 
account the time value of money 

Net income (after taxes) per year 
ROI (in percent) = X 100 

Cost of investment 

Example: Given the net return of $6000 (per year) for an initial investment of 
$45,000, the ROI is 

Two other measures of profitability that take into account the time value of 
money are 

1. Net present value (NPV). 
2. Internal rate of return (IRR). 

NPV takes into account the size and profitability of a project, but the IRR measures 
only profitability. If a company has sufficient resources to consider several small 
projects, given a prespecified amount of investment, a number of high-value IRRs 
usually provide a higher overall NPV than a single large project. 
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FIGURE 3.6 
Cash flows used in calculating net 
present value (NPV) and internal 
rate of return (IRR) for a typical 
capital investment project. 

Figure 3.6 designates the cash flows that might occur for a cash investment in 
a project. NPV is calculated by adding the initial investment (represented as a neg- 
ative cash flow) to the present value of the anticipated future positive (and negative) 
cash flows. Equation (3.4) showed how to calculate NPV. 

If the NPV is positive, the investment increases the company's assets: The 
investment is financially attractive. 
If the NPV is zero, the investment does not change the value of the company's 
assets: The investment is neutral. 
If the NPV is negative, the investment decreases the company's assets: The 
investment is not financially attractive. 

The higher the NPV among alternative investments with the same capital outlay, 
the more attractive the investment. 

IRR is the rate of return (interest rate, discount rate) at which the future cash 
flows (positive plus negative) would equal the initial cash outlay (a negative cash 
flow). The value of the IRR relative to the company standards for internal rate of 
return indicates the desirability of, an investment: 

If the IRR is greater than the designated rate of return, the investment is finan- 
cially attractive. 
If the IRR is equal to the designated rate of return, the investment is marginal. 
If the IRR is less than the designated rate of return, the investment is financially 
unattractive. 

Table 3.2 compares some of the features of PBP, NPV, and IRR. 
Numerous other measures of profitability exist, and most companies (and 

financial professionals) use more than one. Cut-off levels are placed on the meas- 
ures of profitability so that proposals that fall below the cut-off level are not deemed 
worthy of consideration. Those that fall above the cut-off level can be ranked in 
order of profitability and examined in more detail. 

In optimization you are interested in 

1. Minimizing the payback period (PBP), or 
2. Maximizing the net present value (NPV), or 
3. Maximizing the internal rate of return (IRR) 
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TABLE 3.2 
Comparisons of various methods used in economic analyses 

Payback period (PBP) Net present value (NPV) Internal rate of return (IRR) 

Definition 

Number of years for the net Present worth of receipts less IRR equals the interest rate i 
after-tax income to recover the the present worth of such that the NPV of receipts 
net investment without disbursements less NPV of disbursements 
considering time value of equals zero 
money 

Advantages 

Measure of fluidity of an Works with all cash flow Gives rate of return that is a 
investment patterns familiar measure and indicates 

relative merits of a proposed 
Commonly used and well Easy to compute 

investment 
understood Gives correct ranking in most Treats variable cash flows 

project evaluations 
Does not require reinvestment 
rate assumption 

Disadvantages 

Does not measure profitability Is not always possible to Implicitly assumes that capital 

Ignores life of assets 
specify a reinvestment rate for recovered can be reinvested at 
capital recovered the same rate 

Does not properly consider the Size of NPV ($) sometimes Requires trial-and-error 
time value of money and fails to indicate relative calculation 
distributed investments or cash 

profitability 
flows Can give multiple answers for 

distributed investments 

or optimizing another criterion of profitability. The decision variables are adjusted 
to reach an extremum. In most of the problems and examples in the subsequent 
chapters we have not included factors for the time value of money because we want 
to focus on other details of optimization. Nevertheless, the addition of such factors 
is quite straightforward. 

EXAMPLE 3.6 CALCULATION OF THE OPTIMAL INSULATION 
THICKNESS 

In Example 3.3 we developed an objective function for determining the optimal thick- 
ness of insulation. In that example the effect of the time value of money was intro- 
duced as an arbitrary constant value of r, the repayment multiplier. In this example, 
we treat the same problem, but in more detail. We want to determine the optimum 
insulation thickness for a 20-cm pipe carrying a hot fluid at 260°C. Assume that cur- 
vature of the pipe can be ignored and a constant ambient temperature of 27°C exists. 
The following information applies: 
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Values of energy saved 

\L 
Insulation cost 

FIGURE E3.6 
Cash flows for insulating a pipe. 

Y 8000 operating hourslyear 
Ht 3.80/106 kJ fuel cost, 80% thermal efficiency (boiler) 
k 0.80 kJ/(h)(m)("C), insulation 
C, $34/cm insulation for 1 m2 of area, cost of insulation 
h~ 32.7 W(h)(m2)("C), heat transfer coefficient (still air) 

Life of the insulation = 5 years 
Annual discount rate (i) = 14% 

L 100 m, length of pipe 

The insulation of thickness x can be purchased in increments of 1 cm (i.e., 1 ,2 ,3  cm, 
etc.). Equation (b) in Example 3.3 still applies. The value of the energy saved each 
year over 5 years is 

and the cost of the insulation is 

at the beginning of the 5-year period. Figure E3.6 is the time line on which the cash 
flows are placed. 

The basis for the calculations will be L = 100m. Because the insulation comes in 1- 
cm increments, let us calculate the net present value of insulating the pipe as a function 
of the independent variable x; vary x for a series of I-, 2-, 3-cm (etc.) thick increments to 
get the respective internal rates of return, the payback period, and the return on invest- 
ment. The latter two calculations are straightforward because of the assumption of five 
even values for the fuel saved. The net present value and internal rates of return can be 
compared for various thicknesses of insulation. The cost of the insulation is an initial neg- 
ative cash flow, and a sum of five positive values represent the value of the heat saved. 
For example, for 1 cm insulation the net present value is (r = 0.291 from Table 3.1) 
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A summary of the calculations is 

Value Net Internal 
Insulation Insulation of fuel Payback Return on present rate of 
thickness cost saved period investment value return 

x (cm) ($1 ($/year) (years) (% per year) ($) (%) 

From Example 3.3, Equation E3.3(4 gives x = 6.4 cm as the optimal thickness cor- 
responding to the net present value as the criterion for selection. Note that the optimal 
thickness chosen depends on the criterion you select. 

Additional examples of the use of PBP, NPV, and IRR can be found in 
Appendix B. In Section B.5, we present a more detailed explanation of the vari- 
ous components that constitute the income and expense values that must be used 
in project evaluation. 
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PROBLEMS 

3.1 If you borrow $100,000 from a lending agency at 10 percent yearly interest and wish 
to pay it back in 10 years in equal installments paid annually at the end of the year, 
what will be the amount of each yearly payment? Compute the principal and interest 
payments for each year. 

3.2 Compare the present value of the two depreciation schedules listed below for i = 0.12 
and n = 10 years. Depreciation is an expense and thus has a negative sign before each 
value. The present value also have a negative sign. 

Year (a) (b) 

3.3 To provide for the college education of a child, what annual interest rate must you 
obtain to have a current investment of $5000 grow to become $10,000 in 8 years if the 
interest is compounded annually? 

3.4 A company is considering a number of capital improvements. Among them is pur- 
chasing a small pyrolysis unit that is estimated to earn $15,000 per year at the end of 
each year for the next 5 years at which time the sellers agree to purchase the unit back 
for $550,000. Ignore tax effects, risk, and so on, and determine the present value of the 
investment based on an interest rate of 15.00% compounded annually. At the end of 
year 2 there will be an expense of $25,000 to replace the unit combustion chamber. 

3.5 One member of your staff suggests that if your department spends just $10,000 to 
improve a process, it will yield cost savings of $3000, $5000, and $4000 over the next 
3 years, respectively, for a total of $12,000. Your company policy is to have an internal 
rate of return of at least 15% on process improvements. What is the NPV of this pro- 
posed improvement? 

3.6 You want to save for a cruise in the Caribbean. If you place in a savings account at 6% 
interest $200 at the beginning of the first year, $350 at the beginning of the next year, and 
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$250 at the beginning of the third year, how much will you have available at the end of 
the third year? 

3.7 You open a savings account today (the middle of the month) with a $775 deposit. The 
account pays 6t% interest (annual value) compounded semimonthly. If you make 
semimonthly deposits of $50 beginning next month, how long will it take for your 
account to reach $4000? 

3.8 Looking forward to retirement, you wish to accumulate $60,000 after 15 years by mak- 
ing deposits in an account that pays 9!% interest compounded semiannually. You open 
the account with a deposit of $3200 and intend to make semiannual deposits, begin- 
ning 6 months later, from your profit-sharing bonus paychecks. Calculate how much 
these deposits should be. 

3.9 What is the present value of the tax savings on the annual interest payments if the loan 
payments consist of five equal monthly installments of principal and interest of $3600 
on a loan of $120,000. The annual interest rate is 14.0%, and the tax rate is 40%. 
(Assume the loan starts at the first of July so that only five payments are made during 
the year on the first of each month starting August 1.) 

3.10 The following advertisement appeared in the newspaper. Determine whether the state- 
ment in the ad is true or false, and show by calculations or explanation why your answer 
is correct. 

A 15-year fied-rate mortgage with annual payments saves you nearly 60 
percent of the total interest costs over the life of the loan compared with a 30- 
year fixed-rate mortgage. 

3.11 You borrow $300,000 for 4 years at an interest rate of 10% per year. You plan to pay 
in equal annual, end-of-year installments. Fill in the following table. 

Balance due Principal Interest Total 
at beginning payment, payment, payment, 

Year of year, $ $ $ $ 

Consideration is being given to two plans for supplying water to a plant. Plan A 
requires a pipeline costing $160,000 with annual operation and unkeep costs of $2200, 
and an estimated life of 30 years with no salvage. Plan B requires a flume costing 
$34,000 with a life of 10 years, a salvage value of $5600, and annual operation and 
upkeep of $4500 plus a ditch costing $58,000, with a life of 30 years and annual costs 
for upkeep of $2500. Using an interest rate of 12 percent, compare the net present val- 
ues of the two alternatives. 

3.13 Cost estimators have provided reliable cost data as shown in the following table for the 
chlorinators in the methyl chloride plant addition. Analysis of the data and recornrnen- 
dations of the two alternatives are needed. Use present worth for i = 0.10 and i = 0.20. 
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Chlorinators 

Glass-lined Cast iron 

Installed cost $24,000 $7200 

Estimated useful life 10 years 4 years 

Salvage value $4000 $800 

Miscellaneous annual costs as percent of original cost 10 20 

Maintenance costs 

Glass-lined. $230 at the end of the second year, $560 at the end of the fifth year, and 
$900 at the end of each year thereafter. 

Cast iron. $730 each year. 

The product from the glass-lined chlorinator is essentially iron-free and is estimated to 
yield a product quality premium of $1700 per year. Compare the two alternatives for 
a 10-year period. Assume the salvage value of $800 is valid at 10 years. 

3.14 Three projects (A, B, C) all earn a total of $125,000 over a period of 5 years (after-tax 
earnings, nondiscounted). For the cash-flow patterns shown in the table, predict by 
inspection which project will have the largest rate of return. Why? 

Cash flow, $103 

Year A B C 

3.15 Suppose that an investment of $100,000 will earn after-tax profits of $10,000 per year 
over 20 years. Due to uncertainties in forecasting, however, the projected after-tax 
profits may be in error by ?20 percent. Discuss how you would determine the sensi- 
tivity of the rate of return to an error of this type. Would you expect the rate of return 
to increase by 20 percent of its computed value for a 20-percent increase in annual 
after-tax profits (i.e., to $12,000)? 

3.16 The installed capital cost of a pump is $200/hp and the operating costs are 4#/kWh. 
For 8000 Nyear of operation, an efficiency of 70 percent, and a cost of capital i = 0.10, 
for n = 5 years, determine the relative importance of the capital versus operating costs. 

3.17 The longer it takes to build a facility, the lower its rate of return. Formulate the ratio 
of total investment I divided by annual cash flow C (profit after taxes plus deprecia- 
tion) in terms of I-, 2-, and 3-year construction periods if i = interest rate, and n = life 
of facility (no salvage value). 

3.18 A chemical valued at $0.94/lb is currently being dried in a fluid-bed dryer that allows 
0.1 percent of the 4-million lbfyear throughput to be carried out in the exhaust. An 
engineer is considering installing a $10,000 cyclone that would recover the fines; extra 



PART I : Problem Formulation 

pressure drop is no concern. What is the expected payback period for this investment? 
Maintenance costs are estimated to be $300/year. The inflation rate is 8 percent, and 
the interest rate 15 percent. 

3.19 To reduce heat losses, the exterior flat wall of a furnace is to be insulated. The data pre- 
sented to you are 

Temperature inside the furnace at the wall 
Air temperature outside wall 
Heat transfer coefficients 

Outside air film (h) 
Conductivity of insulation (k) 

Cost of insulation 
Values of energy saved 
Hours of operation 
Interest rate 

500°F (constant) 
Assume constant at 70°F 

4 ~tu/(h)(f t~)("~)  
0.03 Btu/(hr)(ft)("F) 
$0.75/(ft2) (per inch of thickness) 
$0.60/106 Btu 
8700lyear 
30% per year for capital costs 

Note that the overall heat transfer coefficient U is related to h and k by 

where t is the thickness in inches of the insulation, and the heat transfer through the 
wall is Q = UA (Tfm,, - T,,,), where T is in OF. Ignore any effect of the uninsulated 
part of the wall. 

What is the minimum cost for the optimal thickness of the insulation? List specif- 
ically the objective function, all the constraints, and the optimal value of t .  Show each 
step of the solution. Ignore the time value of money for this problem. 

3.20 We want to optimize the heat transfer area of a steam generator. A hot oil stream from 
a reactor needs to be cooled, providing a source of heat for steam production. As 
shown in Figure P3.20, the hot oil enters the generator at 400°F and leaves at an 
unspecified temperature T,; the hot oil transfers heat to a saturated liquid water stream 
at 250°F, yielding steam (30 psi, 250°F). The other operating conditions of the 
exchanger are 

U = 100 Btu/(h) (ft2) (OF) overall heat transfer coefficient 

We ignore the cost of the energy of pumping and the cost of water and only consider 
the investment cost of the heat transfer area. The heat exchanger cost is $25/ft2 of heat 

Water 
(250°F, 
saturated) 

Oil (Tz) 

Steam 
generator !- 

Steam 
(250°F, 
30 psia) 

Hot oil 
(400°F) 

FIGURE P3.20 
Steam generator flow diagram. 
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transfer surface. You can expect a credit of $2/106 Btu for the steam produced. Assume 
the exchanger will be in service 8000 hlyear. Find the outlet temperature T, and heat 
exchanger area A that maximize the profitability, as measured by (a) return on invest- 
ment (ROI) and (b) net present value. 

3.21 In Chemical Engineering (Jan. 1994, p. 103) the following explanation of 
internal rate of return appeared: 

Internal return rate. The internal return rate (ZRR), also known as the dis- 
counted cash flow return rate, is the iteratively calculated discounting rate 
that would make the sum of the annual cashflows, discounted to the present, 
equal to zero. As shown in Figure 2, the ZRR for Project Chem-A is 38.3%/yl: 
Note that this single jixed point represents the zero-profitability situation. It 
does not vary with the cost of capital (discount rate), although the prof- 
itability should increase as the cost of capital decreases. There is no way that 
the ZRR can be related to the projitability of a project at meaningful discount 
rates because of the nonlinear nature of the discounting step. 

What is correct and incorrect about this explanation? Be brief! 

3.22 Refer to Problem 3.5. The same staff member asks if the internal rate of return on 
the proposed project is close to 15%. Calculate the IRR. 

3.23 The cost of a piece of equipment is $30,000. It is expected to yield a cash return per 
month of $1000. What is the payback period? 

3.24 After retrofitting an extruder, the net additional income after taxes is expected to be 
$5000 per year. The remodeling cost was $50,000. What is the return on investment in 
percent? 

3.25 Your minimum acceptable rate of return (MARR) is 18%, the project life is 10 years, 
and no alternatives have a salvage value. The following mutually exclusive alternatives 
have been proposed. Rank them, and recommend the best alternative. 

Capital investment, $ 38,000 50,000 55,000 60,000 70,000 
Net annual earnings, $ 11,000 14,100 16,300 16,800 19,200 
IRR, % 26.1 25.2 26.9 25.0 24.3 

3.26 You have four choices of equipment (as shown in the following table) to solve a pol- 
lution control problem. The choices are mutually exclusive and you must pick one. 
Assuming a useful life of 10 years for each design, no market value, and a pretax min- 
imum acceptable rate of return (MARR) of 15% per year, rank them and recommend 
a choice. 

Alternative DI D2 D3 D4 

Capital investment, $1000 600 760 1,240 1,600 
Annual expenses, $1000 780 728 630 574 
P (present value), $1000 - $4,5 15 - $4,414 -$4,402 - $4,48 1 
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3.27 A company invests $1,000,000 in a new control system for a plant. The estimated 
annual reduction in cost is calculated to be $162,000 in each of the next 10 years. What 
is the 
(a) Return on investment (ROI) 
(b) Internal rate of return (IRR) 
Ignore income tax effects and depreciation to simplify the calculations. 

3.28 The following table gives a comparison of costs for two types of heaters to supply heat 
to an oil stream in a process plant at a rate of 73,500,000 Btu/h: 

- -- 

Oil convection Rotary air preheater 

Heat input in lo6 Btu/h 114.0 96.5 
Thermal efficiency, % 64.5 76.1 
Total fuel cost (at $1.33/per lo6 Btu) for 1 year $1,261,000 $1,068,000 
Power at $0.06/kWh for 1 year 48,185 
Capital cost (installed), $ $1,888,000 $2,420,000 

Assume that the plant in which this equipment is installed will operate 10 years, that 
a tax rate of 34%/year is applicable, and that a charge of 10% of the capital cost per 
year for depreciation will be employed over the entire 10-year period, that fixed 
charges including maintenance incurred by installation of this equipment will amount 
to lO%Iyear of the investment, and that a minimum acceptable return rate on invested 
capital after taxes and depreciation is 15%. Determine which of the two alternative 
installations should be selected, if any. 

3.29 You are proposing to buy a new, improved reboiler for a distillation column that will 
' save energy. You estimate that the initial investment will be $140,000, annual savings 

will be $25,000 per year, the useful life will be 12 years, and the salvage value at the 
end of that time will be $40,000. You are ignoring taxes and inflation, and your pretax 
constant dollar minimum acceptable rate of return (MARR) is 10% per year. Your boss 
wants to see a sensitivity diagram showing the present worth as a function of ?50% 
changes in annual savings and the useful life. 
(a) What is the present value P of your base case? 
(b) You calculate the P of -50% annual savings to be - $42,084 and the P for +50% 

annual savings to be $128,257. The P at -50% life is -$8,539. What is the P at 
+50% life? 

(c) Sketch the P sensitivity diagram for these two variables [P vs the change in the 
base (in %)I. To which of the two variables is the decision most sensitive? 
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OPTIMIZATION THEORY 
AND METHODS 

PART I1 DESCRIBES modern techniques of optimization and translates these con- 
cepts into computational methods and algorithms. Because the literature on opti- 
mization techniques is vast, we focus on methods that have proved effective for a 
wide range of problems. Optimization methods have matured sufficiently during 
the 20 years so that fast and reliable methods are available to solve each irnpor- 
tant class of problem. 

Seven chapters make up Part I1 of this book, covering the following areas: 

1. Mathematical concepts (Chapter 4) 
2.One-dimensional search (Chapter 5) 
3. Unconstrained multivariable optimization (Chapter 6) 
4. Linear programming (Chapter 7) 
5. Nonlinear programming (Chapter 8) 
6. Optimization involving discrete variables (Chapter 9) 
7. Global optimization (Chapter 10) 

The topics are grouped so that unconstrained methods are presented first, followed 
by constrained methods. The last two chapters in Part I1 deal with discontinuous 
(integer) variables, a common category of problem in chemical engineering, but one 
quite difficult to solve without great effort. 

As optimization methods as well as computer hardware and software have 
improved over the past two decades, the degree of difficulty of the problems that 
can be solved has expanded significantly. Continued improvements in optimization 
algorithms and computer technology should enable optimization of large-scale 
nonlinear problems involving thousands of variables, both continuous and integer, 
some of which may be stochastic in nature. 
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To UNDERSTAND THE strategy of optimization procedures, certain basic concepts 
must be described. In this chapter we examine the properties of objective functions 
and constraints to establish a basis for analyzing optimization problems. We iden- 
tify those features that are desirable (and also undesirable) in the formulation of an 
optimization problem. Both qualitative and quantitative characteristics of functions 
are described. In addition, we present the necessary and sufficient conditions to 
guarantee that a supposed extremum is indeed a minimum or a maximum. 

4.1 CONTINUITY OF FUNCTIONS 

In carrying out analytical or numerical optimization you will find it preferable and 
more convenient to work with continuous functions of one or more variables than 
with functions containing discontinuities. Functions having continuous derivatives 
are also preferred. Case A in Figure 4.1 shows a discontinuous function. Is case B 
also discontinuous? 

We define the property of continuity as follows. A function of a single variable 
x is continuous at a point xo if 

f(xo) exists 

lim f (x) exists 
x+xo 

If flx) is continuous at every point in region R, then f(x) is said to be continuous 
throughout R. For case B in Figure 4.1, the function of x has a "kink" in it, but f (x) 
does satisfy the property of continuity. However, f'(x) = dfix)ldx does not. There- 
fore, the function in case B is continuous but not continuously differentiable. 

x1 
Case A 

x2 

Case B 

FIGURE 4.1 
Functions with discontinuities in the function or derivatives. 
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EXAMPLE 4.1 ANALYSIS OF FUNCTIONS FOR CONTINUITY 

Are the following functions continuous? (a ) f l x )  = l lx ;  (b) f  ( x )  = In x.  In each case 
specify the range of x for whichflx) and f l ( x )  are continuous. 

Solution 
(a ) f (x )  = l l x  is continuous except at x = O;J10) is not defined. f t ( x )  = - 1/x2 is con- 

tinuous except at x = 0. 
(b) f(x) = In x is continuous for x > 0. For x 5 0, In ( x )  is not defined. As to f ' (x)  = 

llx, see (a). 

A discontinuity in a function may or may not cause difficulty in optimization. 
In case A in Figure 4.1, the maximum occurs reasonably far from the discontinuity 
which may or may not be encountered in the search for the optimum. In case B, if 
a method of optimization that does not use derivatives is employed, then the "kink" 
in f(x)  is probably unimportant, but methods employing derivatives might fail, 
because the derivative becomes undefined at the discontinuity and has different 
signs on each side of it. Hence a search technique approaches the optimum, but then 
oscillates about it rather than converges to it. 

Objective functions that allow only discrete values of the independent vari- 
able(~) occur frequently in process design because the process variables assume 
only specific values rather than continuous ones. Examples are the cost per unit 
diameter of pipe, the cost per unit area for heat exchanger surface, or the insulation 
cost considered in Example 1.1. For a pipe, we might represent the installed cost as 
a function of the pipe diameter as shown in Figure 4.2 [see also Noltie (1978)l. For 

pipe diameters 

Cost 

FIGURE 4.2 
Installed pipe cost as a function of diameter. 

Commercially available 
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Diameter 

FIGURE 4.3 
Piecewise linear approximation to cost function. 

most purposes such a cost function can be approximated as a continuous function 
because of the relatively small differences in available pipe diameters. You can then 
disregard the discrete nature of the function and optimize the cost as if the diame- 
ter were a continuous variable. For example, extend the function of Figure 4.2 to a 
continuous range of diameters by interpolation. If linear interpolation is used, then 
the extended function usually has discontinuous derivatives at each of the original 
diameters, as shown in Figure 4.3. As mentioned earlier, this step can cause prob- 
lems for derivative-based optirnizers. A remedy is to interpolate with quadratic or 
cubic functions chosen so that their first derivatives are continuous at the break 
points. Such functions are called splines (Bartela et al., 1987). Once the optimum 
value of the diameter is obtained for the continuous function, the discretely valued 
diameter nearest to the optimum that is commercially available can be selected. A 
suboptimal value for installed cost results, but such a solution should be adequate 
for engineering purposes because of the narrow intervals between discrete values of 
the diameter. 

EXAMPLE 4.2 OPTIMIZATION INVOLVING AN INTEGER- 
VALUED VARIABLE 

Consider a catalytic regeneration cycle in which there is a simple trade-off between 
costs incurred during regeneration and the increased revenues due to the regenerated 
catalyst. Let x ,  be the number of days during which the catalyst is used in the reactor 
and x2 be the number of days for regeneration. The reactor start-up crew is only avail- 
able in the morning shift, so x, + x, must be an integer. 

We assume that the reactor feed flow rate q (kglday) is constant as is the cost of 
the feed C,  ($/kg), the value of the product C2 ($/kg), and the regeneration cost C, 
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($/regeneration cycle). We further assume that the catalyst deteriorates gradually 
according to the linear relation 

where 1.0 represents the weight fraction conversion of feed at the start of the operat- 
ing cycle, and k is the deterioration factor in units of weight fraction per day. Define 
an objective function and find the optimal value of x,. 

Solution. For one complete cycle of operation and regeneration, the objective func- 
tion for the total profit per day comprises 

Profit -- - Product value - Feed cost 
Day 

- (Regeneration cost per cycle) (Cycles per day) 

or in the defined notation 

where dav, = 1.0 - (kx1/2). 
The maximum daily profit for an entire cycle is obtained by maximizing Equa- 

tion (a) with respect to x,. As a first trial, we allow x, to be a continuous variable. 
When the first derivative of Equation (a) is set equal to zero and the resulting equa- 
tion solved for x,, the optimum is 

Suppose x2 = 2, k ,  = 0.02, q = 1000, C,= 1.0, C, = 0.4, and C, = 1000. Then xlOp' 
= 12.97 (rounded to 13 days if x, is an integer). 

Clearly, treating x, as a continuous variable may be improper if x, is 1, 2, 3, and 
so on, but is probably satisfactory if x, is 15, 16, 17, and so on. You might specify x, 
in terms of shifts of 4-8 h instead of days to obtain finer subdivisions of time. 

In real life, other problems involving discrete variables may not be so 
nicely posed. For example, if cost is a function of the number of discrete pieces of 
equipment, such as compressors, the optimization procedure cannot ignore the inte- 
ger character of the cost function because usually only a small number of pieces of 
equipment are involved. You cannot install 1.54 compressors, and rounding off to 1 
or 2 compressors may be quite unsatisfactory. This subject will be discussed in 
more detail in Chapter 9. 
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4.2 NLP PROBLEM STATEMENT 

A general form for a nonlinear program (NLP) is 

Minimize: f (x) 
Subject to: a i  5 gi(x) 5 bi i = 1, . . . ,  m 

and lj 5 xi 5 u j j =  1, . . . ,  n 

In this problem statement, x is a vector of n decision variables (x,, . . . , x,), f 
is the objective function, and the g, are constraint functions. The a, and bi are spec- 
ified lower and upper bounds on the constraint functions with a, 5 b, and $, uj are 
lower and upper bounds on the variables with 1, 5 u,. If ai = bi, the ith constraint 
is an equality constraint. If the upper and lower limits on gi correspond to a, = -00 
and b, = +m, the constraint is unbounded. Similar comments apply to the variable 
bounds, with 1, = uj corresponding to a variable xj whose value is fixed, and 1, = 
-m and uj = +oo specifying a free variable. 

Problem 4.1 is nonlinear if one or more of the functionsf, g,, . . . , g, are non- 
linear. It is unconstrained if there are no constraint functions g, and no bounds on 
the xi, and it is bound-constrained if only the xi are bounded. In linearly constrained 
problems all constraint functions gi are linear, and the objective f is nonlinear. There 
are special NLP algorithms and software for unconstrained and bound-constrained 
problems, and we describe these in Chapters 6 and 8. Methods and software for 
solving constrained NLPs use many ideas from the unconstrained case. Most mod- 
ern software can handle nonlinear constraints, and is especially efficient on linearly 
constrained problems. A linearly constrained problem with a quadratic objective is 
called a quadratic program (QP). Special methods exist for solving QPs, and these 
are often faster than general purpose optimization procedures. 

A vector x is feasible if it satisfies all the constraints. The set of all feasible 
points is called the feasible region F. If F is empty, the problem is infeasible, and 
if feasible points exist at which the objective f is arbitrarily large in a max problem 
or arbitrarily small in a min problem, the problem is unbounded. A point (vector) 
x* is termed a local extremum (minimum) if 

for all x in a small neighborhood (region) N in F around x* with x distinct from x*. 
Despite the fact that x* is a local extremum, other extrema may exist outside the 
neighboorhood N meaning that the NLP problem may have more that one local 
minimum if the entire space of x is examined. Another important concept relates to 
the idea of a global extremum, the unique solution of the NLP problem. A global 
minimum occurs if Equation (4.2) holds for all x E E Analogous concepts exist for 
local maxima and the global maximum. Most (but not all) algorithms for solving 
NLP problems locate a local extremum from a given starting point. 

NLP geometry 
A typical feasible region for a problem with two variables and the constraints 
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FIGURE 4.4 
Feasible region (region not shaded and its boundaries). 

is shown as the unshaded region in Figure 4.4. Its boundaries are the straight and 
curved lines xj = 0 and gi(x) = 0 for i = 1,2, j = 1, 2. 

As another example, consider the problem 

Minimize f = (xI  - 3)2 + (x2 - 4)2 

subject to the linear constraints 

This problem is shown in Figure 4.5. The feasible region is defined by linear 
constraints with a finite number of corner points. The objective function, being non- 
linear, has contours (the concentric circles, level sets) of constant value that are not 
parallel lines, as would occur if it were linear. The minimum value off corresponds 
to the contour of lowest value having at least one point in common with the feasi- 
ble region, that is, at x,* = 2, x2* = 3. This is not an extreme point of the feasible 
set, although it is a boundary point. For linear programs the minimum is always at 
an extreme point, as shown in Chapter 7. 

Furthermore, if the objective function of the previous problem is changed to 
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FIGURE 4.5 
The minimum occurs on the boundary of the constraint set. 

as depicted in Figure 4.6, the minimum is now at x, = 2, x, = 2, which is not a 
boundary point of the feasible region, but is the unconstrained minimum of the non- 
linear function and satisfies all the constraints. 

Neither of the problems illustrated in Figures 4.5 and 4.6 had more than one 
optimum. It is easy, however, to construct nonlinear programs in which local 
optima occur. For example, if the objective function f, had two minima and at least 
one was interior to the feasible region, then the constrained problem would have 
two local minima. Contours of such a function are shown in Figure 4.7. Note that 
the minimum at the boundary point x, = 3, x2 = 2 is the global minimum at f = 3; 
the feasible local minimum in the interior of the constraints is at f = 4. 

Although the examples thus far have involved linear constraints, the chief non- 
linearity of an optimization problem often appears in the constraints. The feasible 
region then has curved boundaries. A problem with nonlinear constraints may have 
local optima, even if the objective function has only one unconstrained optimum. 
Consider a problem with a quadratic objective function and the feasible region 
shown in Figure 4.8. The problem has local optima at the two points a and b 
because no point of the feasible region in the immediate vicinity of either point 
yields a smaller value off. 
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FIGURE 4.6 
The minimum occurs in the interior of the constraint set. 

In summary, the optimum of a nonlinear programming problem is, in general, 
not at an extreme point of the feasible region and may not even be on the boundary. 
Also, the problem may have local optima distinct from the global optimum. These 
properties are direct consequences of nonlinearity. A class of nonlinear problems can 
be defined, however, that are guaranteed to be free of distinct local optima. They are 
called convex programming problems and are considered in the following section. 

4.3 CONVEXITY AND ITS APPLICATIONS 

The concept of convexity is useful both in the theory and applications of optirniza- 
tion. We first define a convex set, then a convexfunction, and lastly look at the role 
played by convexity in optimization. 

Convex set 
A set of points (or a region) is defined as a convex set in n-dimensional space 

if, for all pairs of points x, and x, in the set, the straight-line segment joining them 
is also entirely in the set. Figure 4.9 illustrates the concept in two dimensions. 
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FIGURE 4.7 
Local optima due to objective function. 

A mathematical statement of a convex set is 

For every pair of points x1 and x2 in a convex set, the point x given by a lin- 
ear combination of the two points 

x = yx, + (1  - y)x, 0 5 y 5 1 

is also in the set. The convex region may be closed (bounded) by a set of functions, 
such as the sets A and B in Figure 4.9 or may be open (unbounded) as in Figures 
4.10 and 4.12. Also, the intersection of any number of convex set is a convex set. 

Convex function 
Next, let us examine the matter of a convexfunction. The concept of a convex 

function is illustrated in Figure 4.10 for a function of one variable. Also shown is a 
concave function, the negative of a convex function. (If f (x) is convex, - f (x) is 
concave.) A function f (x) defined on a convex set F is said to be a convexfunc- 
tion if the following relation holds 
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FIGURE 4.8 
Local optima due to feasible region. 

where y is a scaler with the range 0 5 y 5 1. If only the inequality sign holds, the 
function is said to be not only convex but strictly convex. [If f ( x )  is strictly con- 
vex, -f (x )  is strictly concave.] Figure 4.10 illustrates both a strictly convex and a 
strictly concave function. A convex function cannot have any value larger than the 
values of the function obtained by linear interpolation between x, and x, (the cord 
between x, and x, shown in the top figure in Figure 4.10). Linear functions are both 
convex and concave, but not strictly convex or concave, respectively. An important 
result of convexity is 

If f ( x )  is convex, then the set 

is convex for all scalers k. 

The result is illustrated in Figure 4.11 in which a convex quadratic function is cut 
by the plane f (x )  = k. The convex set R projected on to the x,-x, plane com- 
prises the boundary ellipse plus its interior. 

The convex programming problem 
An important result in mathematical programming evolves from the concept of 

convexity. For the nonlinear programming problem called the convex programming 
problem 

Minimize: f ( x )  
Subject to: gi(x) 5 0 i = 1, . . . , m 
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Convex set 

Convex set 

Nonconvex set 
All of the line a segment is 
,not in the set 

FIGURE 4.9 
Convex and nonconvex sets. 

in which (a) f(x) is a convex function, and (b) each inequality constraint is a con- 
vex function (so that the constraints form a convex set), the following property can 
be shown to be true 

The local minimum off (x) is also the global minimum. 

Analogously, a local maximum is the global maximum off (x) if the objective func- 
tion is concave and the constraints form a convex set. 

Role of convexity 
If the constraint set g(x) is nonlinear, the set 

R = {xlg(x) = 0) 

is generally not convex. This is evident geometrically because most nonlinear func- 
tions have graphs that are cumed surfaces. Hence the set R is usually a curved sur- 
face also, and the line segment joining any two points on this surface generally does 
not lie on the surface. 
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X1 x2 
Convex function 

Concave function 

Convex function 

FIGURE 4.10 
Convex and concave functions of one variable. 
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Convex function Convex function 

Plane f (x) = k 

I I 
I I 
I I 
I I 
I I 

FIGURE 4.11 
Illustration of a convex set formed by a plane f(x) = k cutting a convex function. 

As a consequence, the problem 

Minimize: f (x) 
g i (x )  5 0  i = 1, ...,. m 

Subject to: 
h,(x) = 0 k =  1, ..., r < n 

may not be a convex programming problem in the variables x,, . . . , x, if any of 
the functions hk(x)  are nonlinear. This, of course, does not preclude efficient solu- 
tion of such problems, but it does make it more diff~cult to guarantee the absence 
of local optima and to generate sharp theoretical results. 

In many cases the equality constraints may be used to eliminate some of the 
variables, leaving a problem with only inequality constraints and fewer variables. 
Even if the equalities are difficult to solve analytically, it may still be worthwhile 
solving them numerically. This is the approach taken by the generalized reduced 
gradient method, which is described in Section 8.7. 

Although convexity is desirable, many real-world problems turn out to be non- 
convex. In addition, there is no simple way to demonstrate that a nonlinear problem 
is a convex problem for all feasible points. Why, then is convex programming stud- 
ied? The main reasons are 

1. When convexity is assumed, many significant mathematical results have been 
derived in the field of mathematical programming. 

2. Often results obtained under assumptions of convexity can give insight into the 
properties of more general problems. Sometimes, such results may even be car- 
ried over to nonconvex problems, but in a weaker form. 
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For example, it is usually impossible to prove that a given algorithm will find 
the global minimum of a nonlinear programming problem unless the problem is 
convex. For nonconvex problems, however, many such algorithms find at least a 
local minimum. Convexity thus plays a role much like that of linearity in the study 
of dynamic systems. For example, many results derived from linear theory are used 
in the design of nonlinear control systems. 

Determination of convexity and concavity 
The definitions of convexity and a convex function are not directly useful in 

establishing whether a region or a function is convex because the relations must be 
applied to an unbounded set of points. The following is a helpful property arising 
from the concept of a convex set of points. A set of points x satisfying the relation 

is convex if the Hessian matrix H(x) is a real symmetric positive-semidefinite 
matrix. H(x) is another symbol for V2f(x), the matrix of second partial derivative 
of f(x) with respect to each xi 

H(x) = H = vf (x) 

The status of H can be used to identify the character of extrema. A quadratic form 
Q(x) = X ~ H X  is said to be positive-definite if Q(x) > 0 for all x # 0, and said to 
be positive-semidefinite if Q(x) 2 0 for all x # 0. Negative-definite and negative- 
semidefinite are analogous except the inequality sign is reversed. If Q(x) is positive- 
definite (semidefinite), H(x) is said to be a positive-definite (semidefinite) matrix. 
These concepts can be summarized as follows: 

1. H is positive-definite if and only if xTHx is > 0 for all x # 0 . 
2. H is negative-definite if and only if x T ~ x  is < 0 for all x # 0 .  
3. H is positive-semidefinite if and only if x T ~ x  is 2 0 for all x # 0 .  
4. H is negative-semidefinite if and only if xTHx is 0 for all x # 0 .  
5. H is indefinite if X ~ H X  < 0 for some x and > 0 for other x. 

It can be shown from a Taylor series expansion that if f(x) has continuous second 
partial derivatives, f(x) is concave if and only if its Hessian matrix is negative- 
semidefinite. For f (x) to be strictly concave, H must be negative-definite. For f(x) 
to be convex H(x) must be positive-semidefinite and for f (x) to be strictly convex, 
H(x) must be positive-definite. 

EXAMPLE 4.3 ANALYSIS FOR CONVEXITY AND CONCAVITY 

For each of these functions 
(a) f ( x )  = 3x2 
(b)  f ( x )  = 2x -. 
(c) f ( x )  = -5x2 
(d) f ( x )  = 2x2 - x 3  
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determine if f(x) is convex, concave, strictly convex, strictly concave, all, or none of 
these classes in the range - m 5 x 5 m. 

Solution 
(a) f "(x) = 6, always positive, hence f(x) is both strictly convex and convex. 
(b) f "(x) = 0 for all values of x, hence f(x) is convex and concave. Note straight 

lines are both convex and concave simultaneously. 
(c) f "(x) = - 10, always negative, hence f(x) is both strictly concave and concave. 
(d) f "(x) = 6 - 3x; may be positive or negative depending on the value of x, hence 

f(x) is not convex or concave over the entire range of x. 

For a multivariate function, the nature of convexity can best be evaluated by 
examining the eigenvalues of f(x) as shown in Table 4.1 We have omitted the indef- 
inite case for H, that is when f(x) is neither convex or concave. 

TABLE 4.1 
Relationship between the character of f(x) and the 

state of H(x) 

All the 
eigenvalues 
of H(x) are 

Strictly convex Positive-definite >O 
Convex Positive-semidefinite 20 

Concave Negative-semidefinite 10 
Strictly concave Negative-definite <O 

Now let us further illustrate the ideas presented in this section by some examples. 

EXAMPLE 4.4 DETERMINATION OF POSITIVE-DEFINITENESS 
OF A FUNCTION 

Classify the function f(x) = 2xT - 3xlx2 + 2 4  using the categories in Table 4.1, or 
state that it does not belong in any of the categories. 

Solution 

af ( 4  -- 
' - h i  - 3x2 

, a'f(x> -- a?f(x> - 4  -- - 4 
8x1 ax: ax; 

The eigenvalues of H are 7 and 1, hence H(x) is positive-definite. Consequently,JTx) 
is strictly convex (as well as convex). 
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EXAMPLE 4.5 DETERMINATION OF POSITIVE-DEFINITENESS 
OF A FUNCTION 

Repeat the analysis of Example 4.4 forflx) = x12 + x,x2 + 2x2 + 4 

Sobtion 

The eigenvalues are 1 + fi and 1 - fi , or one positive or one negative value. 
Consequently, fix) does not fall into any of the categories in Table 4.1. We conclude 
that no unique extremum exists. 

EXAMPLE 4.6 DETERMINATION OF CONVEXITY AND 
CONCAVITY 

Determine if the following function 

flx) = 2x1 + 3x2 + 6 
is convex or concave. 

Solution 

hence the function is both convex and concave. 

EXAMPLE 4.7 DETERMINATION OF CONVEXITY OF A 
FUNCTION 

Consider the following objective function: Is it convex? 

AX) = 2x; + 2x1x2 + 1.5~; + 7x1 + 8x2 + 24 
Solution 

a X x >  -- ax~> - 3 ---- a2f(x> - - - ----- a'f(x> - - 4  ---- - 2 
ax: ax; axiax2 ax2ax1 

Therefore the Hessian matrix is 

The eigenvalues of H(x) are 5.56 and 1.44. Because both eigenvalues are positive, the 
function is strictly convex (and convex, of course) for all values of x1 and x2. 
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EXAMPLE 4.8 DETECTION OF A CONVEX REGION 

Does the following set of constraints that form a closed region form a convex region? 
2 - x l  + x2 I 1 

x ,  - x2 1 - 2  

Solution. A plot of the two functions indicates that the region circumscribed is 
closed. The arrows in Figure E4.8 designate the directions in which the inequalities 
hold. Write the inequality constraints as gi 2 0. Therefore 

g , (x )  = X l  - X2 + 2 L 0 

That the enclosed region is convex can be demonstrated by showing that both g l (x )  
and g2(x)  are concave functions: 

negative definite 

negative semidefinite 

Because all eigenvalues are zero or negative, according to Table 4.1 both g, and g2 are 
concave and the region is convex. 

FIGURE E4.8 
Convex region composed of two concave functions. 
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EXAMPLE 4.9 CONSTRUCTION OF A CONVEX REGION 

Construct the region given by the following inequality constraints; is it convex? 

x,  1 6; x2 5 6; x1 r 0; xl + x2 I 6; x2 2 0 

Solution. See Figure E4.9 for the region delineated by the inequality constraints. By 
visual inspection, the region is convex. This set of linear inequality constraints forms 
a convex region because all the constraints are concave. In this case the convex region 
is closed. 

FIGURE E4.9 
Diagram of region defined by linear inequality constraints. 

4.4 INTERPRETATION OF THE OBJECTIVE FUNCTION IN TERMS 
OF ITS QUADRATIC APPROXIMATION 

If a function of two variables is quadratic or approximated by a quadratic function 
f(x) = b, + blxl + bg2 + bllx: + b22xg + b,2xlx2, then the eigenvalues of 
H(x) can be calculated and used to interpret the nature offlx) at x*. Table 4.2 lists 
some conclusions that can be reached by examining the eigenvalues of H(x) for a 
function of two variables, and Figures 4.12 through 4.15 illustrate the different 
types of surfaces corresponding to each case that arises for quadratic function. By 
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TABLE 4.2 

Geometric interpretation of a quadratic function 

Character of 
Eigenvalue Signs Qpes of Geometric center of 

Case relations el e, contours interpretation contours Figure 

Circles Circular hill 
Circles Circular valley 
Ellipses Elliptical hill 
Ellipses Elliptical valley 
Hyperbolas Symmetrical 

saddle 
Hyperbolas Symmetrical 

saddle 
Hyperbolas Elongated saddle 
Straight lines Stationary ridge* 
Straight lines Stationary valley* 
Parabolas Rising ridge** 
Parabolas Falling valley*$ 

Maximum 
Minimum 
Maximum 
Minimum 
Saddle point 

Saddle point 

Saddle point 
None 
None 
Atm 
At 00 

*These are "degenerate" surfaces. 
*The condition of rising or falling must be evaluated from the linear terms in f(x). 

FIGURE 4.12 
Geometry of a quadratic objective function of two independent 
variables-elliptical contours. If the eigenvalues are equal, then the 
contours are circles. 

implication, analysis of a function of many variables via examination of the eigen- 
values can be conducted, whereas contour plots are limited to functions of only two 
or three variables. 
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FIGURE 4.13 
Geometry of a quadratic objective function of two 
independent variables-saddle point. 

FIGURE 4.14 
Geometry of a quadratic objective function of two independent 
variables-stationary valley. 
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FIGURE 4.15 
Geometry of second-order objective function of two independent variables- 
falling valley. 

Figure 4.12 corresponds to objective functions in well-posed optimization 
problems. In Table 4.2, cases 1 and 2 correspond to contours off (x) that are con- 
centric circles, but such functions rarely occur in practice. Elliptical contours such 
as correspond to cases 3 and 4 are most likely for well-behaved functions. Cases 5 
to 10 correspond to degenerate problems, those in which no finite maximum or 
minimum or perhaps nonunique optima appear. 

For well-posed quadratic objective functions the contours always form a con- 
vex region; for more general nonlinear functions, they do not (see Qe next section 
for an example). It is helpful to construct contour plots to assist in analyzing the 
performance of multivariable optimization techniques when applied to problems of 
two or three dimensions. Most computer libraries have contour plotting routines to 
generate the desired figures. 

As indicated in Table 4.2, the eigenvalues of the Hessian matrix ofJTx) indicate 
the shape of a function. For a positive-definite symmetric matrix, the eigenvectors 
(refer to Appendix A) form an orthonormal set. For example, in two dimensions, if 
the eigenvectors are v, and v,, v:v2 = 0 (the eigenvectors are perpendicular to 
each other). The eigenvectors also correspond to the directions of the principal axes 
of the contours of JTx). 

One of the primary requirements of any successful optimization technique is 
the ability to move rapidly in a local region along a narrow valley (in minimiza- 
tion) toward the minimum of the objective function. In other words, an efficient 
algorithm selects a search direction that generally follows the axis of the valley 
rather than jumping back and forth across the valley. Valleys (ridges in maximiza- 
tion) occur quite frequently, at least locally, and these types of surfaces have the 
potential to slow down greatly the search for the optimum. A valley lies in the 
direction of the eigenvector associated with a small eigenvalue of the Hessian 

\ 
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matrix of the objective function. For example, if the Hessian matrix of a quadratic 
function is 

then the eigenvalues are el = 1 and e, = 10. The eigenvector associated with el = 
1, that is, the x, axis, is lined up with the valley in the ellipsoid. Variable transfor- 
mation techniques can be used to allow the problem to be more efficiently solved 
by a search technique (see Chapter 6). 

Valleys and ridges corresponding to cases 1 through 4 can lead to a minimum 
or maximum, respectively, but not for cases 8 through 11. Do you see why? 

4.5 NECESSARY AND SUFFICIENT CONDITIONS FOR AN 
EXTREMUM OF AN UNCONSTRAINED FUNCTION 

Figure 4.16 illustrates the character offlx) if the objective function is a function of a 
single variable. Usually we are concerned with finding the minimum or maximum of 
a multivariable functionflx). The problem can be interpreted geometrically as b d -  . 
ing the point in an n-dimension space at which the function has an extremum. Exarn- 
ine Figure 4.17 in which the contours of a function of two variables are displayed. 

An optimal point x* is completely specified by satisfying what are called the 
necessary and suficient conditions for optimality. A condition N is necessary for a 
result R  if R can be true only if .the condition is true (R  + N). The reverse is not 
true, however, that is, if N is true, R  is not necessarily true. A condition is sufficient 
for a result R  if R  is true if the condition is true (S =s R ) .  A condition T  is neces- 
sary and sufficient for result R if R  is true if and only if T  is true (T  * R ) .  

X 

FIGURE 4.16 
A function exhibiting different types of stationary points. 
Key: a-inflection point (scalar equivalent to a saddle point); 
b-global maximum (and local maximum); c-local minimum; 
d-local maximum 
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FIGURE 4.17a 
A function of two variables with a single stationary point 
(the extremum). 

The easiest way to develop the necessary and sufficient conditions for a mini- 
mum or maximum offlx) is to start with a ~ a ~ l o i  series expansion about the pre- 
sumed extremum x* 

where Ax = x - x*, the perturbation of x from x*. We assume all terms in Equa- 
tion (4.4) exist and are continuous, but will ignore the terms of order 3 or higher 
[03(Ax)], and simply analyze what occurs for various cases involving just the terms 
through the second order. 

We defined a local minimum as a point x* such that no other point in the vicin- 
ity of x* yields a value offlx) less than f (x*), or 

Ax) - Ax*) 2 0 (4.5) 

x* is a global minimum if Equation (4.5) holds for any x in the n-dimensional space 
of x. Similarly, x* is a local maximum if 
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FIGURE 4.17b 
A function of two variables with three stationary 
points and two extrema, A and B. 

Examine the second term on the right-hand side of Equation (4-4): VTf(x*) Ax. 
Because Ax is arbitrary and can have both plus and minus values for its elements, 
we must insist that Vf (x*) = 0. Otherwise the resulting term added to f(x*) would 
violate Equation (4.5) for a minimum, or Equation (4.6) for a maximum. Hence, a 
necessary condition for a minimum or maximum off (x) is that the gradient off (x) 
vanishes at x* 

that is, x* is a stationary point. 
With the second term on the right-hand side of Equation (4.4) forced to be zero, 

we next examine the third term:  AX^) vf (x*) Ax. This term establishes the char- 
acter of the stationary point (minimum, maximum, or saddle point). In Figure 4.17b, 
A and B are minima and C is a saddle point. Note how movement along one of the 
perpendicular search directions (dashed lines) from point C increasesflx), whereas 
movement in the other direction decreases f (x). Thus, satisfaction of the necessary 
conditions does not guarantee a minimum or maximum. 

To establish the existence of a minimum or maximum at x*, we know from 
Equation (4.4) with Vf (x*) = 0 and the conclusions reached in Section 4.3 con- 
cerning convexity that for Ax # 0 we have the following outcomes 
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Vzf(x*) = H(x*) AxT V2f(x*) AX Near x*, f(x) - f(x*) 

Positive-define >O Increases 
Positive-semidefinite 20 Possibly increases 
Negative-definite <O Decreases 
Negative-semidefinite 5 0  Possibly decreases 
Indefinite Both 10 and 8 0  Increases, decreases, neither 

depending on Ax 

Consequently, x* can be classified as 

Positive-definite Unique ("isolated") minimum 
Negative-definite Unique ("isolated") maximum 

These two conditions a& known as the suficiency conditions. 
In summary, the necessary conditions (items 1 and 2 in the following list) and 

the sufficient condition (3) to guarantee that x* is an extremum are as follows: 

1. flx) is twice differentiable at x*. 
2. Vf(x*) = 0, that is, a stationary point exists at x*. 
3. H(x*) is positive-definite for a minimum to exist at x*, and negative-definite for 

a maximum to exist at x*. 

Of course, a minimum or maximum may exist at x* even though it is not possible to 
demonstrate the fact using the three conditions. For example, iffix) = f13, x* = 0 
is a minimum but H(0) is not defined at x* = 0, hence condition 3 is not satisfied. 

EXAMPLE 4.10 CALCULATION OF A MINIMUM OF f (x) 

Does f(x) = x! have an extremum? If so, what is the value of x* and f(x*) at the 
extremum? 

Solution 

fl(x) =4x3 f"(x) = 1 2 2  

Set f '(x) = 0 and solve for x; hence x = 0 is a stationary point. Also, fl'(0) = 0, mean- 
ing that condition 3 is not satisfied. Figure E4.10 is a plot ofJTx) = 2. Thus, a rnini- 
mum exists for f (x) but the sufficiency condition is not satisfied. 

If both first and second derivatives vanish at the stationary point, then further 
analysis is required to evaluatk the nature of the function. For functions of a single 
variable, take successively higher derivatives and evaluate them at the stationary 
point. Continue this procedure until one of the higher derivatives is not zero (the nth 
one); hence, f '(x*), f"(x*), . . . , f("-')(x*) all vanish. Two cases must be analyzed: 

1. If n is even, the function attains a maximum or a minimum; a positive sign of fen) 
indicates a minimum, a negative sign a maximum. 

2. If n is odd, the function exhibits a saddle point. 

For more details refer to Beveridge and Schechter (1970). 
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FIGURE E4.10 

For application of these guidelines toflx) = 2, you will find &JTx)ld$ = 24 for 
which n is even and the derivative is positive, so that a minimum exists. 

EXAMPLE 4.11 CALCULATION OF EXTREMA 

Identify the stationary points of the following function (Fox, 1971), and determine if 
any extrema exist. 

Solution. For this function, three stationary points can be located by setting V'x) = 0: 

The set of nonlinear equations (a) and (b) has to be solved, say by Newton's method, 
to get the pairs (x,, x,) as follows: 

Stationary point Hessian matrix 
Point (XI, xz> f ( 4  eigenvalues Classification 

B (1.941, 3.854) 0.9855 37.03 0.97 Localminimum 

A (- 1.053, 1.028) -0.5134 10.5. 3.5 Local minimum 
(also the global 
minimum) 

C (0.61 17, 1.4929) 2.83 7.0 -2.56 Saddle point 

Figure 4.17b shows contours for the objective function in this example. Note that 
the global minimum can only be identified by evaluating f (x) for all the local minima. 
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For general nonlinear objective functions, it is usually difficult to ascertain the 
nature of the stationary points without detailed examination of each point. ' 

EXAMPLE 4.12 

In many types of processes such as batch constant-pressure filtration or fixed-bed ion 
exchange, the production rate decreases as a function of time. At some optimal time 
topt, production is terminated (at POPt) and the equipment is cleaned. Figure E4.12a 
illustrates the cumulative throughput P(t) as a function of time t for such a process. 
For one cycle of production and cleaning, the overall production rate is 

where R(t) = the overall productioq rate per cycle (massltime) 
t, = the cleaning time (assumed to be constant) 

- .  
Determine the maximum production rate and show that POPt is indeed the maxi- 

mum throughout. 

Solution. Differentiate R(t) with respect to t, and equate the derivative to 0: 

dR(t) - P(t) + [dP(t)/dt](t + t,) -- - = 0 
dt (t + t J 2  

The geometric interpretation of Equation (b) is the classical result (Walker et al., 1937) 
that the tangent to P(t) at P e t  intersects the time axis at - t,. Examine Figure E4.12b. 
The maximum overall production rate is 

FIGURE E4.12a 
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FIGURE E4.12b 

FIGURE E4.12~ 

negative 

Does POPt meet the sufficiency condition to be a maximum? Is 

d 2 ~ ( t )  - 2P(t) - 2[dP(t)/dt](t + t,) + [d2p(t)/dt2](t  + tc)2 
- < o  ? (d) 

dt2 ( t  + tCl3 

Rearrangement of (4 and introduction of (b) into (d), or the pair (P"pt, tOpt), gives 
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From Figure E4.12b we note in the range 0 < t< t"pt that dP(t)ldt is always positive 
and decreasing so that d2P(t)ldt2 is always negative (see Figure E4.12~). Conse- 
quently, the sufficiency condition is met. 
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PROBLEMS 

4.1 Classify the following functions as continuous (specify the range) or discrete: 
(a) f ( 4  = ex 
(b) f (x) = ax,-, + b(xo - x,) where x, represents a stage in a distillation column 

XD - xs 
(c) f ( x )  = where x, = concentration of vapor from a still and x, is the 

+ xs concentration in the still 
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4.2 The future worth S of a series of n uniform payments each of amount P is 

where i is the interest rate per period. If i is considered to be the only variable, is it dis- 
crete or continuous? Explain. Repeat for n. Repeat for both n  and i being variables. 

4.3 In a plant the gross profit P in dollars is 

where n = the number of units produced per year 
S = the sales price in dollars per unit 
V  = the variable cost of production in dollars per unit 
F = the fixed charge in dollars 

Suppose that the average unit cost is calculated as 

n V + F  
Average unit cost = 

n  

Discuss under what circumstances n can be treated as a continuous variable. 

4.4 One rate of return is the ratio of net profit P to total investment 

where t = the fraction tax rate 
I = the total investment in dollars 

Find the maximum R as a function of n for a given I if n is a continuous variable. 
Repeat if n is discrete. (See Problem 4.3 for other notation.) 

4.5 Rewrite the following linear programming problems in matrix notation. 

(a) Minimize: f ( x )  = 3x1 + 2 . ~ 2  + x3 

Subject to: g , ( x )  = 2x1 3x2 + x3 2 10 

g2(x) = X I  + 2x2 + ~3 2 15 

(b) Maximize: f ( x )  = 5x1 + 10x2 + 1 h 3  

Subject to: g , (x )  = 15xl + lox2 + lox3 5 200 

g,(x) = X ,  2 o 
g3(x) = x2 2 0 

4.6 Put the following nonlinear objective function into matrix notation by defining suitable 
matrices; x = [x, x21T. 

f ( x )  = 3 + 2x1 + 3x2 + 2x: + 2 ~ ~ x 2  + 6x; 
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4.7 Sketch the objective function and constraints of the following nonlinear programming 
problems. 

(a) Minimize: f(x) = 2xf - 2~1x2 + 2 ~ ;  - 6x1 + 6 

Subject to: gl(x) = x1 + x2 5 2 

(b) Minimize: f(x) = x: - 3x1x2 + 4 

Subject to: gl(x) = 5x1 + 2x2 2 18 

h,(x) = - 2x1 + x; = 5 

(c) Minimize: f(x) = -5x: + x; 

x; 1 
Subjectto: gl(x) = 7 - - 5  -1 

x2 x2 

g2(x) = xl 2 0 

g3(x) = X2 2 0 

4.8 Distinguish between the local and global extrema of the following objective function. 

f(x) = 2x: + x; + x:x; + 4x1x2 + 3 

4.9 Are the following vectors (a) feasible or nonfeasible vectors with regard to Problem 
4.5b; (b) interior or exterior vectors? 

(1) x = [5 2 10IT 

(2) x = [lo 2 7.5IT 

(3) x = [0 0 OIT 

4.10 Shade the feasible region of the nonlinear programming problems of Problem 4.7. Is 
x = [I 1lT an interior, boundary, or exterior point in these problems? 

4.11 What is the feasible region for x given the following constraints? Sketch the feasible 
region for the two-dimensional problems. 

(a) hl(x) = x1 + x2 - 3 = 0 

h2(x) = 2x1 - x2 + 1 = 0 

(b) hl(x) = x: + x i  + x; = 0 

h2(x) = x1 + x2 + x3 = 0 

(c) gl(x) = XI - x; - 2 2 0 

g2(x) = X1 - X2 + 4 2 0 

(d) h,(x) = x:+xg + 3 

gl(x) = XI - X2 + 2 2 0 

g2(x) = X1 2 0 

g3(x) = X2 2 0 
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4.12 Two solutions to the nonlinear programming problem 

Minimize: f (x) = 7x1 - 6x2 + 4x3 

Subject to: hl(x) = x: + 2.x; + 3x; - 1 = 0 

h2(x) = 5x1 + 5x2 - 3x3 - 6 = 0 

have been reported, apparently a maximum and a minimum. 

Verify that each of these x vectors is feasible. 

4.13 The problem 
Minimize: f(x) = 100(x,-~:)~ + (1 -xl) ,  

Subject to: x: + x; 5 2 
is reported to have a local minimum at the point x* = [l 1IT. Is this local optimum also 
a global optimum? 

4.14 Under what circumstances is a local minimum guaranteed to be the global minimum? 
(Be brief.) 

4.15 Are the following functions convex? Strictly convex? Why? 

(a) 2x: + 2xlx2 + 3x; + 7x1 + 8x2 + 25 

What are the optimum values of x1 and x,? 

(b) e5" 

4.16 Determine the convexity or concavity of the following objective functions: 

(a) f(x19xz) = (XI + X: 

(b) f(x,,x,, x3) = x: + x; + x: 

(c) f ( ~ 1 ,  ~ 2 )  = 62 X I  + ex2 

4.17 Show that f = exl + ex2 is convex. Is it also strictly convex? 

4.18 Show that f = 1x1 is convex. 

4.19 Is the following region constructed by the four constraints convex? Closed? 
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4.20 Does the following set of constraints form a convex region? 

4.21 Consider the following problem: 

Minimize: f ( x )  = x f + x2 

Subject to: g l ( x )  = x:  + x:  - 9 5 0 

g2(x)  = ( x ,  + x i )  - 1 5 0 

: Does the constraint set form a convex region? Is it closed? (Hint: A plot will help you 
decide.) 

4.22 Is the following function convex, concave, neither, or both? Show your calculations. 

f ( x )  = In xl + In x2 

4.23 Sketch the region defined by the following inequality constraints. Is it a convex region? 
Is it closed? 

X l + X 2 - - 1 1 0  

x , - X , + I  2 0  

2 - X I  2 0 

X 2  2 0 

4.24 Does the following constraint set form a convex region (set)? 

h ( x )  = x: + x ;  - 9 = 0 

4.25 Separable functions are those that can be expressed in the form 

For example, xp + x i  + x:  is a separable function because 

Show that if the terms in a separable function are convex, the separable function is 
convex. 
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4.26 Is the following problem a convex programming problem? 

Minimize: 
200 

f (x) = loox,  + - 
X l X 2  

300 
' Subject to: 2x2 + - 5 I 

x1x2 

4.27 Classify each of the following matrices as (a) positive-definite, (b) negative-definite, 
(c) neither. 

4.28 Determine whether the following matrix is positive-definite, positive-semidefinite, 
negative-definite, negative-semidefinite, or none of the above. Show all calculations. 

4.29 In designing a can to hold a specified amount of soda water, the cost function (to be 
minimized) for manufacturing one can is 

and the constraints are 

Based on the preceding problem, answer the following; as far as possible for each 
answer use mathematics to support your statements: 
(a) State whether f(D, h) is unimodal (one extremum) or multimodal (more then one 

extremum). 
(b) State whether f(D, h) is continuous or not. 
(c) State whether f(D, h) is convex, concave, or neither. 
(d) State whether or not f(D, h) alone meets the necessary and sufficient conditions 

for a minimum to exist. 
(e) State whether the constraints form a convex region. 

4.30 A reactor converts an organic compound to product P by heating the material in the 
presence of an additive A (mole fraction = x,). The additive can be injected into the 
reactor, while steam can be injected into a heating coil inside the reactor to provide heat. 
Some conversion can be obtained by heating without addition of A, and vice versa. 
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The product P can be sold for $50/lb mol. For 1 lb mol of feed, the cost of the addi- 
tive (in dollars~b mol) as a function of xA is given by the formula, 2.0 + loxA + 20xA2. 
The cost of the steam (in dollars) as a function of S is 1.0 + 0.003s + 2.0 X S2. 
(S = lb stearn/lb mol feed). The yield equation is y, = 0.1 + 0 . 3 ~ ~  + 0.001s 4- 0 . 0 0 0 1 ~ ~  
S; YP = lb mol product Pllb mol feed. 

(a) Formulate the profit function (basis of 1.0 lb mol feed) in terms of xA and S. 

f = Income - Costs 

The constraints are: 

(b) Is f a concave function? Demonstrate mathematically why it is or why it is not concave. 
(c) Is the region of search convex? Why? 

4.31 The objective function for the work requirement for a three-stage compressor can be 
expressed as (p is pressure) 

p, 1 atm and p4 = 10 atrn. The minimum occurs at a pressure ratio for each stage 
of 6. Is fconvexfor 1 S p ,  5 10,l 5 p 3  5 lo? 

4.32 In the following problem 
(a) Is the objective function convex? (b) Is the constraint region convex? 

Minimize: 

300 
g(x) = 2x2 + r i 

Subject to: X I  + X 2  

4.33 Answer the questions below for the following problem; in each case justify your answer. 

Minimize: 1 4  1 2  f(x) = 2x1 - 5x1 - X* 

Subject to: x: + x i  = 4 

(a) Is the problem a convex programming problem? 
(b) Is the point x = [l 1IT a feasible point? 
(c) Is the point x = [2 2IT an interior point? 

4.34 Happel and Jordan (1975) reported an objective function (cost) for the design of a dis- 
tillation column as follows: 
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where n = number of theoretical stages 
R = reflux ratio 
P = percent recovery in bottoms stream 

They reported the optimum occurs at R = 8,  n = 55, and P = 99. Is f convex at this 
point? Are there nearby regions where f is not convex? 

4.35 Given a linear objective function, 

f = xl + X2 

(x, and x, must lie in region A )  

FIGURE P4.35 

explain why a nonconvex region such as region A in Figure P4.35 causes difficulties 
in the search for the maximum off in the region. Why is region A not convex? 

4.36 Consider the following objective furiction 

Show that f is convex. Hint: Expand f for both n odd and n even. You can plot the func- 
tion to assist in your analysis. Under what circumstances is 

convex? 

4.37 Classify the stationary points of 

(a) f = - x 4  + x 3  + 20 
(b) f = x 3  + 3x2 + x + 5 
(c) f = x 4 - 2 x 2 +  1 

(d) f = X: - 8x1x2 + X; 

according to Table 4.2 
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4.38 List stationary points and their classification (maximum, minimum, saddle point) of 

(a) f = xf + 2x1 + 3x; + 6x2 + 4 

(b) f = X l  + X2 + X :  - 4 ~ ~ x 2  + 2 4  

4.39 State what type of surface is represented by 

at the stationary point x = [0 OIT (use Table 4.2). 

4.40 Interpret the geometry of the following function at its stationary point in terms of 
Table 4.2 

4.41 Classify the following function in terms of the list in Table 4.2: 

4.42 In crystal NaCl, each Na+ or C1- ion is surrounded by 6 nearest neighbors of opposite 
charge and 12 nearest neighbors of the same charge. Two sets of forces oppose each 
other: the coulombic attraction and the hard-core repulsion. The potential energy u(r) 
of the crystal is given by the Lennard-Jones potential expression, 

where €,a are constants, such that E > 0, a > 0. 
(a) Does the Lennard-Jones potential u(r) have a stationary point(s)? If it does, lo~ate 

it (them). 
(b) Identify the nature of the stationary point(s) min, max, etc. 
(c) What is the magnitude of the potential energy at the stationary points? 

4.43 Consider the function 

Note that x = a minimizes y. Let. z = x2 - 4x + 16. Does the solution to x2 - 4x + 
16 = 0, 

minimize I? ( j  = fi) . 

4.44 The following objective function can be seen by inspection to have a minimum at x = 0: 

f ( x )  = 1x31 
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Can the criteria of Section 4.5 be applied to test this outcome? 

4.45 (a) Consider the objective function, 

Find the stationary points and classify them using the Hessian matrix. 
(b) Repeat for 

(c) Repeat for 

4.46 An objective function is 

By inspection, you can find x* = [8 5IT yields the minimum of Ax). Show that x* 
meets the necessary and sufficient conditions for a minimum. 

4.47 Analyze the function 

Find all of its stationary points and determine if they are maxima, minima, or inflec- 
tion (saddle) points. Sketch the curve in the region of 

4.48 Determine if the following objective function 

f(x) = 2: + x ;  + x:x;  + 4x ,x2  + 3 

has local minima or maxima. Classify each point clearly. 

4.49 Is the following function unimodal (only one extremum) or multimodal (more than one 
extremum)? 

4.50 Determine whether the solution x = [-0.87 -0.8IT for the objective function 

f(x) = x: + 1 2 ;  - 1%: - 56x2 + 60 

is indeed a maximum. 
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A GOOD TECHNIQUE for the optimization of a functioh of just one variable is essen- 
tial for two reasons: 

1. Some unconstrained problems inherently involve only one variable 
2. Techniques for unconstrained and constrained optimization problems generally 

involve repeated use of a one-dimensional search as described in Chapters 6 
and 8. 

Prior to the advent of high-speed computers, methods of optimization were 
limited primarily to analytical methods, that is, methods of calculating a potential 
extremum were based on using the necessary conditions and analytical derivatives 
as well as values of the objective function. Modern computers have made possible 
iterative, or numerical, methods that search for an extremum by using function and 
sometimes derivative values ofJTx) at a sequence of trial points xl, x2, . . . . 

As an example consider the following function of a single variable x (see Fig- 
ure 5.1). 

Start - 

f ( x ) = x 2 - 2 x +  1 
- 

Iterative method: - 
second estimate 

Iterative method: 
first estimate of x* 

I 
0 1 2 3 4 

FIGURE 5.1 
Iterative versus analytical methods of finding a minimum. 
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An analflcal method of finding x* at the minimum off (x) is to set the gradient off (x) 
equal to zero 

and solve the resulting equation to get x* = 1; x* can be tested for the sufficient 
conditions to ascertain that it is indeed a minimum: 

To carry out an iterative method of numerical minimization, start with some ini- 
tial value of x, say x" = 0, and calculate successive values of f(x) = x2 - 2x + 1 and 
possibly dfldx for other values of x, values selected according to whatever strategy 
is to be employed. A number of different strategies are discussed in subsequent sec- 
tions of this chapter. Stop when f(xk+') - f(9) < el or when 

where the superscript k designates the iteration number and el and e2 are the pre- 
specified tolerances or criteria of precision. 

Iff (x) has a simple closed-form expression, analytical methods yield an exact 
solution, a closed form expression for the optimal x, x*. If f(x) is more complex, for 
example, if it requires several steps to compute, then a numerical approach must be 
used. Software for nonlinear optimization is now so widely available that the numer- 
ical approach is almost always used. For example, the "Solver" in the Microsoft 
Excel spreadsheet solves linear and nonlinear optirllization problems, and many 
FORTRAN and C optimizers are available as well. General optimization software is 
discussed in Section 8.9. 

Analytical methods are usually difficult to apply for nonlinear objective func- 
tions with more than one variable. For example, suppose that the nonlinear function 
Ax) = f (xl, x2, . . . , xn) is to be minimized. The necessary conditions to be used are 



c H APTER 5: Optimization of Unconstrained Functions 155 

Each of the partial derivatives when equated to zero may well yield a nonlinear 
equation. Hence, the minimization of f(x) is converted into a problem of solving a 
set of nonlinear equations in n variables, a problem that can be just as difficult to 
solve as the original problem. Thus, most engineers prefer to attack the minimiza- 
tion problem directly by one of the numerical methods described in Chapter 6, 
rather than to use an indirect method. Even when minimizing a function of one vari- 
able by an indirect method, using the necessary conditions can lead to having to 
find the real roots of a nonlinear equation. 

5.1 NUMERICAL METHODS FOR OPTIMIZING A FUNCTION 
OF ONE VARIABLE 

Most algorithms for unconstrained and constrained optimization make use of an 
efficient unidimensional optimization technique to locate a local minimum of a 
function of one variable. Nash and Soter (1996) and other general optimization 
books (e.g., Dennis and Schnabel, 1983) have reviewed one-dimensional search 
techniques that calculate the interval in which the minimum of a function lies. To 
apply these methods you initially need to know an initial bracket A0 that contains 
the minimum of the objective functionflx), and thatflx) is unimodal in the interval. 
This can be done by coding the function in a spreadsheet or in a programming lan- 
guage like Visual Basic, Fortran, or C, choosing an interval, and evaluatingflx) at 
a grid of points in that interval. The interval is extended if the minimum is at an end 
point. There are various methods of varying the initial interval to reach a final inter- 
val An. In the next section we describe a few of the methods that prove to be the 
most effective in practice. 

One method of optimization for a function of a single variable is to set up as 
fine a grid as you wish for the values of x and calculate the function value for every 
point on the grid. An approximation to the optimum is the best value of f(x). 
Although this is not a very efficient method for finding the optimum, it can yield 
acceptable results. On the other hand, if we were to utilize this approach in opti- 
mizing a multivariable function of more than, say, five variables, the computer time 
is quite likely to become prohibitive, and the accuracy is usually not satisfactory. 

In selecting a search method to minimize or maximize a function of a single 
variable, the most important concerns are software availability, ease of use, and 
efficiency. Sometimes the function may take a long time to compute, and then effi- 
ciency becomes more important. For example, in some problems a simulation may 
be required to generate the function values, such as in determining the optimal 
number of trays in a distillation column. In other cases you have no functional 
description of the physical-chemical model of the process to be optimized and are 
forced to operate the process at various input levels to evaluate the value of the 
process output. The generation of a new value of the objective function in such cir- 
cumstances may be extremely costly, and no doubt the number of plant tests would 
be limited and have to be quite judiciously designed. In such circumstances, effi- 
ciency is a key criterion in selecting a minimization strategy. 
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5.2 SCANNING AND BRACKETING PROCEDURES 

Some unidimensional search procedures require that a bracket of the minimum 
be obtained as the first part of the strategy, and then the bracket is narrowed. 
Along with the statement of the objective function Ax) there must be some 
statement of bounds on x or else the implicit assumption that x is unbounded 
(- oo < x < oo). For example, the problem 

Minimize: f (x) = (x - 1 0 0 ) ~  

has an optimal value of x* = 100. Clearly you would not want to start at -oo (i.e., 
a large negative number) and try to bracket the minimum. Common sense suggests 
estimating the minimum x and setting up a sufficiently wide bracket to contain the 
true minimum. Clearly, if you make a mistake and set up a bracket of 0 5 x r 10, 
you will find that the minimum occurs at one of the bounds, hence the bracket must 
be revised. In engineering and scientific work physical limits on temperature, pres- 
sure, concentration, and other physically meaningful variables place practical 
bounds on the region of search that might be used as an initial bracket. 

Several strategies exist for scanning the independent variable space and deter- 
mining an acceptable range for search for the minimum of f(x). As an example, in 
the above function, if we discretize the independent variable by a grid spacing of 
0.01, and then initiate the search at zero, proceeding with consecutively higher val- 
ues of x, much time and effort would be consumed in order to set up the initial 
bracket for x. Therefore, acceleration procedures are used to scan rapidly for a suit- 
able range of x. One technique might involve using a functional transformation 
(e.g., log x) in order to look at wide ranges of the independent variable. Another 
method might be to use a variable grid spacing. Consider a sequence in x given by 
the following formula: 

Equation (5.1) allows for successively wider-spaced values, given some base incre- 
ment (delta). Table 5.1 lists the values of x and f(x) = (x - 100)~  for Equation 
(5.1) with 6 = 1.Note that in nine calculations we have bounded the minimum of 
f(x). Another scanning procedure could be initiated between x = 63 and x = 255, 
with 6 reduced, and so on to find the minimum of f(x). However, more efficient 
techniques are discussed in subsequent sections of this chapter. 

In optimization of a function of a single variable, we recognize (as for general 
multivariable problems) that there is no substitute for a good first guess for the 
starting point in the search. Insight into the problem as well as previous experience 

TABLE 5.1 
Acceleration in fixing an initial bracket 
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are therefore often very important factors influencing the amount of time and effort 
required to solve a given optimization problem. 

The methods considered in the rest of this chapter are generally termed descent 
methods for minimization because a given step is pursued only if it yields an 
improved value for the objective function. First we cover methods that use function 
values or first or second derivatives in Section 5.3, followed by a review of several 
methods that use only function values in Section 5.4. 

5.3 NEWTON AND QUASI-NEWTON METHODS 
OF UNIDIMENSIONAL SEARCH 

Three basic procedures for finding an extremum of a function of one variable have 
evolved from applying the necessary optimality conditions to the function: 

1. Newton's method 
2. Finite difference approximation of Newton's method 
3. Quasi-Newton methods 

In comparing the effectiveness of these techniques, it is useful to examine the rate 
of convergence for each method. Rates of convergence can be expressed in various 
ways, but a common classification is as follows:" 

Linear 

(rate usually slow in practice) 

Order p 

IIxk+l - x*ll 
5 c c 2 0, p r ' 1, k large 

llxk - x*llP 

(rate fastest in practice if p > 1) 

If p = 2, the order of convergence is said to be quadratic. 
To understand these definitions, assume that the algorithm generating the 

sequence of points xk is converging to x*, that is, as k + 00, if Equation (5.2) holds 
for large k, x + x*.Then 

Ilxk+l - x*ll 5 c llxk - x*ll k large 

aThe symbols xk, xk+', and so on refer to the kth or (k + 1)st stage of iteration and not to powers of x. 
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so the error at iteration k + 1 is bounded by c times the error at iteration k, where 
c < 1. If c = 0.1, then the error is reduced by a factor of 10 at each iteration, at 
least for the later iterations. The constant c is called the convergence ratio. 

If Equation (5.3) holds for large k, then (Ixk+' - x*ll 5 c llxk - xllP, k large 
enough. If p = 2, and 11 xk - xOl( = 10-I for some k, then 

and so on. 
Hence, if c is around 1 .O, the error decreases very rapidly, the number of cor- 

rect digits in xk doubling with each iteration. Because all real numbers in double 
precision arithmetic have about 16 significant decimal digits, only a few iterations 
are needed before the limits of accuracy of Equation (5.3) are reached. 

Superlinear 

1 1 ~ ~ ' ~  - x*Il . 
lim 0 (or < ckandck+Oask+oo) 
+ Ilxk - x*ll (5.4) 

(rate usually fast in practice) 

For a function of a single variable llxll = 1x1 itself. 

5.3.1 Newton's Method 

Recall that the first-order necessary condition for a local minimum is f '(x) = 0. 
Consequently, you can solve the equation f '(x) = 0 by Newton's method to get 

making sure on each stage k that f ( ~ + l )  < f (xk) for a minimum. Examine Figure 5.2. 
To see what Newton's method implies about f(x), suppose f (x) is approximated 

by a quadratic function at J? 

Find df(x)/dx = 0, a stationary point of the quadratic model of the function. The 
result obtained by differentiating Equation (5.6) with respect to x is 
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FiIGURE 5.2 
Newton's method applied to the solution of fl(x) = 0. 

which can be rearranged to yield Equation (5.5). Consequently, Newton's method 
is equivalent to using a quadratic model for a function in minimization (or maxi- 
mization) and applying the necessary conditions. 
The advantages of Newton's method are 

1. The procedure is locally quadratically convergent [p = 2 in Equation (5.3)] to the 
extremum as long as f"(x) # 0. 

2. For a quadratic function, the minimum is obtained in one iteration. 

The disadvantages of the method are 

1. You have to calculate both f'(x) and f "(x). 
2. Iff "(x) + 0, the method converges slowly. 
3. If the initial point is not close enough to the minimum, the method as described 

earlier will not converge. Modified versions that guarantee convergence from 
poor starting points are described in Bazarra et al. (1993) and Nash and Sofer 
(1996). 

5.3.2 Finite Difference Approximations to Derivatives 

If f(x) is not given by a formula, or the formula is so complicated that analytical 
derivatives cannot be formulated, you can replace Equation (5.5) with a finite dif- 
ference approximation 
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FIGURE 5.3 
Quasi-Newton method for solution off ' ( x )  = 0. 

Central differences were used in Equation (5.8), but forward differences or any 
other difference scheme would suffice as long as the step size h is selected to match 
the difference formula and the computer (machine) precision with which the cal- 
culations are to be executed. The main disadvantage is the error introduced by the 
finite differencing. 

5.3.3 Quasi-Newton Method 

In the quasi-Newton method (secant method) the approximate model analogous to 
Equation (5.7) to be solved is 

f'(xk) + m(x - xk) = 0 (5.9) 

where rn is the slope of the line connecting the point xp and a second point d, 
given by 

The quasi-Newton approximates fl(x) as a straight line (examine Figure 5.3); as 
xq +xp, rn approaches the second derivative of f(x). Thus Equation (5.9) imitates 
Newton's method 

where 2 is the approximation to x* achieved on one iteration k. Note that f'(x) can 
itself be approximated by finite differencing. 
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Quasi-Newton methods start out by using two points 9 and x4 spanning the 
interval of x, points at which the first derivatives offlx) are of opposite sign. The zero 
of Equation (5.9) is predicted by Equation (5.10), and the derivative of the function 
is then evaluated at the new point. The two points retained for the next step are x 
and either X4 or 9. This choice is made so that the pair of derivatives f '(x), and 
either f '(9) or f I ( $ ) ,  have opposite signs to maintain the bracket on x*. This varia- 
tion is called "regula falsi" or the method of false position. In Figure 5.3, for the (k 
+ 1)st search, 2 and X4 would be selected as the end points of the secant line. 

Quasi-Newton methods may seem crude, but they work well in practice. The 
order of convergence is (1 + ~ ) / 2  = 1.6 for a single variable. Their conver- 
gence is slightly slower than a properly chosen finite difference Newton method, 
but they are usually more efficient in terms of total function evaluations to achieve 
a specified accuracy (see Dennis and Schnabel, 1983, Chapter 2). 

For any of the three procedures outlined in this section, in minimization you 
assume the function is unimodal, bracket the minimum, pick a starting point, apply 
the iteration formula to get Xk+l (or X" ) from Xk (or 9 and x4), and make sure that 
f(Xk+') < f(xk) on each iteration so that progress is made toward the minimum. As 
long as f "(2) or its approximation is positive, f(x) decreases. 

Of course, you must start in the correct direction to reduce f(x) (for a mini- 
mum) by testing an initial perturbation in x. For maximization, minimize -f (x). 

EXAMPLE 5.1 COMPARISON OF NEWTON, FINITE 
DIFFERENCE NEWTON, AND QUASI-NEWTON METHODS 
APPLIED TO A QUADRATIC FUNCTION 

In this example, we minimize a simple quadratic function f (x)  = x2 - x that is 
illustrated in Figure E5.la using one iteration of each of the methods presented in 
Section 5.3. 

Solution. By inspection we can pick a bracket on the minimum, say x = -3 to x = 
3. Assume x0 = 3 is the starting point for the minimization. 

Newton's method. For Newton's method sequentially apply Equation (5.5). 
Examine Figure 5.1 b for f (x) = x2 - x and f '(x) = 2x - 1 ; f "(x) = 2. Note f "(x) is 
always positive-definite. For this example Equation (5.5) is 

and 

Because the function is quadratic and hence f (x) is linear, the minimum is 
obtained in one step. If the function were not quadratic, then additional iterations 
using Equation (5.5) would take place. 
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FIGURE E5.1b 

Finite difference Newton method. Application of Equation (5.8) to f ( x )  = x2 - x  
is illustrated here. However, we use a forward difference formula for f ' ( x )  and a three- 
point central difference formula for f "(x) 
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with h = 

One more iteration could be taken to improve the estimate of x*, perhaps with a 
smaller value of h (if desired). 

Quasi-Newton method. The application of Equation (5.10) to f(x) = x2 - x starts 
with the two points x = -3 and x = 3 corresponding to the xp and xq, respectively, in 
Figure 5.3: 

As before, the optimum is reached in one step because f '(x) is linear, and the linear 
extrapolation is valid. 

EXAMPLE 5.2 MINIMIZING A MORE DIFFICULT FUNCTION 

In this example we minimize a nonquadratic function f(x) = x" - x + 1 that is illus- 
trated in Figure E5.2a, using the same three methods as in Example 5.1. For a starting 
point of x = 3, minimize f(x) until the change in x is less than Use h = 0.1 for 
the finite-difference method. For the quasi-Newton method, use x4 = 3 and xp = -3. 

Solution 

Newton's method. For Newton's method, f' = 4x3 - 1 and f "  = 12x2, and the 
sequence of steps is 



1 64 PART I I : Optimization Theory and Methods 

X 

FIGURE E5.2a 
Newton iterates for fourth order function. 

Additional iterations yield the following values for x:  

As you can see from the third and fourth columns in the table the rate of convergence 
of Newton's method is superlinear (and in fact quadratic) for this function. 
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Finite Difference Newton. Equation (5.8) for this example is 

For the same problem as used in Newton's method, the first iteration using (b) for 
h = is 

Other values of h give 

For h = the procedure diverged after the second iteration. 

Quasi-Newton. The application of Equation (5.10) yields the following results 
(examine Figure E5.2b). Note how the shape of fl(x) implies that a large number of 
iterations are needed to reach x*. Some of the values of fl(x) and x during the search 
are shown in the following table; notice that xs remains unchanged in order to main- 
tain the bracket with f '(x) > 0. 
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FIGURE E5.2b 
Quazi-Newton method applied to f '(x). 

5.4 POLYNOMIAL APPROXIMATION METHODS 

Another class of methods of unidimensional minimization locates a point x near x*, 
the value of the independent variable corresponding to the minimum of f(x), by 
extrapolation and interpolation using polynomial approximations as models off (x). 
Both quadratic and cubic approximation have been proposed using function values 
only and using both function and derivative values. In functions where f '(x) is con- 
tinuous, these methods are much more efficient than other methods and are now 
widely used to do line searches within multivariable optimizers. 

5.4.1 Quadratic Interpolation 

We start with three points x,, x2, and x3 in increasing order that might be equally 
spaced, but the extreme points must bracket the minimum. From the analysis in 
Chapter 2, we know that a quadratic function f(x) = a + bx + c 2  can be passed 
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exactly through the three points, and that the function can be differentiated and the 
derivative set equal to 0 to yield the minimum of the approximating function 

Suppose that f(x) is evaluated at x,, x,, and x, to yield f(xl) = fi, f(x2) = f2, and 
f(x,) = f3. The coefficients b and c can be evaluated from the solution of the three 
linear equations 

via determinants or matrix algebra. Introduction of b and c expressed in terms of 
x,, x2, x,, fl, f,, and f, into Equation (5.11) gives 

To illustrate the first stage in the search procedure, examine the four points in 
Figure 5.4 for stage 1. We want to reduce the initial interval [x,, x,]. By examining 
the values of f(x) [with the assumptions that f(x) is unimodal and has a minimum], 
we can discard the interval from x, to x, and use the region (x,, x,) as the new inter- 
val. The new interval contains three points, (x,, ;, x,) that can be introduced into 
Equation (5.12) to estimate a x*, and so on. In general, you evaluate f (x*) and discard 
from the set {x,, x,, x,} the point that corresponds to the greatest value offlx), unless 

FIGURE 5.4 
Two stages of quadratic interpolation. 

f (x) 

fi 
f3 

f2 4 
f *  

Stage 1 

Stage 2 

X I  x2 2 X3 x 

I 
I 
I 
I 

I 
I 
I 
I 

x2 2 X3 x 
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I. If 2 lies between x, and x,: 

(a) f * < f2 Pick xz, %, x3 

f *  < f 3  

I 0 I I ( b ) f * > f 2  P i ckx , , x ; ? ,~  
I I I 

I I I f *  < f 3  

X, X, R x3 X, X, R X, 

11. If 2 lies between x, and x2: 

(a) f * < fi Pick xl, 2, x2 

f* <fl 
(b) f * > f2 Pick E, x2, x3 

I ? f *  < f i  

X, R X, X, X, R X, XJ 

X X 

FIGURE 5.5 
How to maintain a bracket on the minimum in quadratic interpolation. 

a bracket on the minimum ofj(x) is lost by so doing, in which case you discard the x 
so as to maintain the bracket. The specific tests and choices of xi to maintain the 
bracket are illustrated in Figure 5.5. In Figure 5.5, f * = f(X). If x* and whichever 
of {x, ,  x2, x,} corresponding to the smallest f(x) differ by less than the prescribed 
accuracy in x, or the prescribed accuracy in the corresponding values of f(x) is 
achieved, terminate the search. Note that only function evaluations are used in the 
search and that only one new function evaluation (for x" ) has to be carried out at each 
new iteration. 

EXAMPLE 5.3 APPLICATION OF QUADRATIC 
INTERPOLATION 

The function to be minimized is f(x) = 2 - x and is illustrated in Figure E5. la. Three 
points bracketing the minimum (- 1.7, - 0.1, 1.5) are used to start the search for the 
minimum off (x); we use equally spaced points here but that is not a requirement of 
the method. 

Solution 

xl = -1.7 x2 = -0.1 x3 = 1.5 

f(x,) = 4.59 f(xz) = 0.1 1 f(x3) = 0.75 
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Two different formulas for quadratic interpolation can be compared: Equation (5.8), 
the finite difference method, and Equation (5.12). 

Note that a solution on the first iteration seems to be remarkable, but keep in mind 
that the function is quadratic so that quadratic interpolation should be good even if 
approximate formulas are used for derivatives. 

5.4.2 Cubic Interpolation 

Cubic interpolation to find the minimum of f(x) is based on approximating the 
objective function by a third-degree polynomial within the interval of interest and 
then determining the associated stationary point of the polynomial 

Four points must be computed (that bracket the minimum) to estimate the minimum, 
either four values of Ax), or the values of Ax) and the derivative of JTx), each at two 
points. 

In the former case four linear equations are obtained with the four unknowns 
being the desired coefficients. Let the matrix X be 
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Then the extremum off (x) is obtained by setting the derivative of f(x) equal to zero 
and solving for x 

so that 

The sign to use before the square root is governed by the sign of the second deriv- 
ative of f (?), that is, whether a minimum or maximum is sought. The vector A can 
be computed from XA = F or 

After the optimum point i is predicted, it is used as a new point in the next 
iteration and the point with the highest [lowest value of f(x) for maximization] 
value off (x) is discarded. 

If the first derivatives of f(x) are available, only two points are needed, and the 
cubic function can be fitted to the two pairs of the slope and function values. These 
four pieces of information can be uniquely related to the four coefficients in the cubic 
equation, which can be optimized for predicting the new, nearly optimal data point. 
If (x,,f,, f ',) and (x,,f,, f ',) are available, then the optimum x is 

where z = 
3[h - hl 
[x2 - ~ 1 1  

+fil+fi 

In a minimization problem, you require x1 < x2, f ;  < 0, and f; > 0 (x, and x, 
bracket the minimum). For the new point (x"), calculate fl(x") to determine which 
of the previous two points to replace. The application of this method in nonlinear pro- 
gramming algorithms that use gradient information is straightforward and effective. 

If the function being minimized is not unimodal locally, as has been assumed 
to be true in the preceding discussion, extra logic must be added to the unidimen- 
sional search code to ensure that the step size is adjusted to the neighborhood of the 
local optimum actually sought. For example, Figure 5.6 illustrates how a large ini- 
tial step can lead to an unbounded solution to a problem when, in fact, a local min- 
imum is sought. 
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FIGURE 5.6 
A unidimensional search for a local minimum of a multimodal 
objective function leads to an unbounded solution. 

EXAMPLE 5.4 OPTIMIZATION OF A MICROELECTRONICS 
PRODUCTION LINE FOR LITHOGRAPHY 

You are to optimize the thickness of resist used in a production lithographic process. 
There are a number of competing effects in lithography. 

1. As the thickness t (measured in micrometers) grows smaller, the defect density 
grows larger. The number of defects per square centimeter of resist is given by 

2. The chip yield in fraction of good chips for each layer is given by 

where a is the active area of the chip. Assume that 50 percent of the defects are 
"fatal" defects (a = 0.5) detected after manufacturing the chip. 

Assume four layers are required for the device. The overall yield is based on a 
series formula: 
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3. Throughput decreases as resist thickness increases. A typical relationship is 

Each wafer has 100 chip sites with 0.25 cm2 active area. The daily production level is 
to be 2500 finished wafers. Find the resist thickness to be used to maximize the num- 
ber of good chips per hour. Assume 0.5 5 t  5 2.5 as the expected range. First use 
cubic interpolation to find the optimal value of t, t*. How many parallel production 
lines are required for t*, assuming 20 hlday operation each? How many iterations are 
needed to reach the optimum if you use quadratic interpolation? 

Solution. The objective function to be maximized is the number of good chips per 
hour, which is found by multiplying the yield, the throughput, and the number of 
chips per wafer (= 100): 

Using initial guesses of t  = 1.0 and 2.0, cubic interpolation yielded the following val- 
ues o f f :  

1 .O 4023.05 5611.10 
2.0 4101.73 -2170.89 
1.414 4973.22 - 148.70 
1.395 4974.60 3.68 (optimum) 

Because f is multiplied by 100, f' after two iterations is small enough. Figure E5.4 
is a plot of the objective function f(t). 

FIGURE E5.4 
Plot of objective function (number of good chips per hour) versus resist 
thickness, t(pm). 
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The throughput for t* = 1.395 is 

If a production line is operated 20 hlday, two lines are needed to achieve 2500 waferslday. 
If quadratic interpolation is used with starting points of t = 1, 2, and 3, the fol- 

lowing iterative sequence results: 

5.5 HOW ONE-DIMENSIONAL SEARCH IS APPLIED IN A 
MULTIDIMENSIONAL PROBLEM 

In minimizing a function f(x) of several variables, the general procedure is to (a) 
calculate a search direction and (b) reduce the value of f(x) by taking one or more 
steps in that search direction. Chapter 6 describes in detail how to select search 
directions. Here we explain how to take steps in the search direction as a function 
of a single variable, the step length a. The process of choosing a is called a unidi- 
mensional search or line search. 

Examine Figure 5.7 in which contours of a function of two variables are 
displayed: 

Suppose that the negative gradient of f(x), - Vf (x), is selected as the search direc- 
tion starting at the point xT = [l 21. The negative gradient is the direction that max- 
imizes the rate of change off (x) in moving toward the minimum. To move in this 
direction we want to calculate a new x 

where s is the search direction, a vector, and a is a scalar denoting the distance moved 
along the search direction. Note as = Ax, the vector for the step to be taken 
(encompassing both direction and distance). 
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FIGURE 5.7 
Unidimensional search to bracket the minimum. 

Execution of a unidimensional search involves calculating a value of a and 
then taking steps in each of the coordinate directions as follows: 

- In the x l  direction: x l ,  ,,, - x, ,  + a s l  

- In the x2 direction: x  ,,,, , - x  ,,,,, + as, 

where s, and s, are the two components of s in the x1 and x2 directions, respectively. 
Repetition of this procedure accomplishes the unidimensional search. 
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EXAMPLE 5.5 EXECUTION OF A UNIDIMENSIONAL SEARCH 

We illustrate two stages in bracketing the minimum in minimizing the function from 
Fox (1971) 

in the negative gradient direction 

starting at xT = [ l  21 where f(x) = 5. Here 

We start to bracket the minimum by taking a0 = 0.05 

Steps (a) and (b) consist of one overall step in the direction s = [4 -2IT, and yield 
AxT = [0.2 -0.11. At xl, f (1.2, 1.9) = 4.25, an improvement. 

Step size a 

FIGURE E5.5 
Values of f(x) along the gradient vector [4 -2IT starting at [ l  2IT. 
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For the next step, we let a' = 2a0 = 0.1, and take another step in the same 
direction: 

At x2, f(1.6, 1.7) = 5.10, so that the minimum of f(x) in direction s has been brack- 
eted. Examine Figure 5.7. The optimal value of a along the search direction can be 
found to be G* = 0.0797 by one of the methods described in this chapter. Figure 
E5.5 shows a plot off versus a along the search direction. 

5.6 EVALUATION OF UNIDIMENSIONAL SEARCH METHODS 

In this chapter we described and illustrated only a few unidimensional search meth- 
ods. Refer to Luenberger (1984), Bazarra et al. (1993), or Nash and Sofer (1996) for 
many others. Naturally, you can ask which unidimensional search method is best to 
use, most robust, most efficient, and so on. Unfortunately, the various algorithms are 
problem-dependent even if used alone, and if used as subroutines in optimization 
codes, also depend on how well they mesh with the particular code. Most codes sim- 
ply take one or a few steps in the search direction, or in more than one direction, with 
no requirement for accuracy-nly thatflx) be reduced by a sufficient amount. 
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PROBLEMS 

5.1 Can you bracket the minimum of the following function 

starting at x = O? Select different step sizes (small and large), and explain your results. 
If you have trouble in the analysis, you might plot the function. 

5.2 Bracket the minimum of the following functions: 

(a) f(x) = e x +  1.5x2 

(b) f(x) = 0.5(x2 + l)(x + 1) 

(c) f(x) = x3 - 3x 

(d) f(x) = 2x2(x - 2)(x + 2) 

(e) f(x) = 0.1x6 - 0.29x5 + 2.31x4 - 8.33x3 + 12.89x2 - 6 . 8 ~  + 1 

5.3 Minimize f = (x - via (a) Newton's method and (b) the quasi-Newton (secant) 
method, starting at (1) x = -1, (2) x = -0.5, and (3) x = 0.0. 

5.4 Apply a sequential one-dimensional search technique to reduce the interval of 
uncertainty for the maximum of the function f = 6.64 + 1 . 2 ~  - x2 from [0,1] to less 
than 2 percent of its original size. Show all the iterations. 

5.5 List three reasons why a quasi-Newton (secant) search for the minimum of a function 
of one variable will fail to find a local minimum. 

5.6 Minimize the function f = (x - Use quadratic interpolation but no more than a 
maximum of ten function evaluations. The initial three points selected are x, = 0, x, 
= 0.5, and x3 = 2.0. 

5.7 Repeat Problem 5.6 but use cubic interpolation via function and derivative evaluations. 
Use x, = 0.5 and x2 = 2.0 for a first guess. 
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5.8 Repeat Problem 5.6 for cubic interpolation with four function values: x, = 1.5, x, = 3.0, 
x3 = 4.0, and x4 = 4.5. 

5.9 Carry out the initial and one additional stage of the numerical search for the minimum of 

by (a) Newton's method (start at x = I), (b) the quasi-Newton (secant) method (pick a 
starting point), and (c) polynomial approximation (pick starting points including x = 1). 

5.10 Find the maximum of the following function 

Hint: f'(x) = (1 + x)'(2 - x ) ~  

(a) Analytically. (b) By Newton's method (two iterations will suffice). Start at x = -2. 
List each step of the procedure. (c) By quadratic interpolation (two iterations will suf- 
fice). Start at x = -2. List each step of the procedure. 

5.11 Determine the relative rates of convergence for (1) Newton's method, (2) a finite dif- 
ference Newton method, (3) quasi-Newton method, (4) quadratic interpolation, and 
(5) cubic interpolation, in minimizing the following functions: 
(a) x2 - 6x + 3 (b) sin (x) with 0 < x < 27r (c) # - 202 + 0 . 1 ~  

5.12 The total annual cost of operating a pump and motor C in a particular piece of equip- 
ment is a function of x, the size (horsepower) of the motor, namely 

Find the motor size that minimizes the total annual cost. 

5.13 A boiler house contains five coal-- boilers, each with a nominal rating of 300 boiler horse- 
power (BW). If economically justified, each boiler can be operated at a rating of 350 percent 
of nominal. Due to the growth of manufacturing depar&mnts, it has become necessary to install 
additional boilers. Refer to the following data. Determine the percent of nominal rating at which 
the present boilers should be operated. Hint: Minimize total costs per year BI-IP output. 

Data: The cost of fuel, coal, including the cost of handling coal and removing cin- 
ders, is $7 per ton, and the coal has a heating value of 14,000 BtuAb. The overall effi- 
ciency of the boilers, from coal to steam, has been determined from tests of the pres- 
ent boilers operated at various ratings as: 

-- -~ 

Percent of Percent 
nominal overall thermal 
rating, R efficiency, E 
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The annual fixed charges C,  in dollars per year on each boiler are given by the 
equation: 

Assume 8550 hours of operation per year. 
Hint: You will find it helpful to first obtain a relation between R and E by least 

squares (refer to Chapter 2) to eliminate the variable E. 

5.14 A laboratory filtration study is to be carried out at constant rate. The basic equation 
(Cook, 1984) comes from the relation 

(Pressure drop)(Filter area) 
Flow-rate oc 

(Fluid viscosity )(Cake thickness) 

Cook expressed filtration time as 

where tf = time to build up filter cake, min 
APc = pressure drop across cake, psig (20) 

A = filtration area, ft2 (250) 
p = filtrate viscosity, centipoise (20) 
M = mass flow of filtrate, lb,/min (75) 
c = solids concentration in feed to filter, lb,/lb, filtrate (0.01) 
xc = mass fraction solids in dry cake 
a = constant relating cake resistance to solids fraction (3.643) 
h = constant relating cake resistance to solids fraction (2.680) 
p = 3.2 X (lbm/ft)2 

Numerical values for each parameter are given in parentheses. Obtain the maximum 
time for filtration as a function of xc by a numerical unidimensional search. 

5.15 An industrial dryer for granular material can be modeled (Becker et al., 1984) with the 
total specific cost of drying C($lm3) being 

(FACpA + UA) ATC; 
= [ In( W ~ /  W~)/6VtI AH, + pCL + C; 

where A = heat transfer area of dryer normal to the air flow, m2 (153.84) 
p = constant, function of air plenum temperature and initial moisture level 

C', = unit cost of electricity, $/kwh (0.0253) 
C', = unit cost of labor, $/h (15) 8 

C', = unit cost of propane, $/kg (0.18) 
CpA = specific heat of air, Jkg  K (1046.75) 
FA = flow-rate of air, kglh (3.38 X lo5) 

AHc = heat combustion of propane, Jkg  (4.64 X lo7) 
P = electrical power, kW (188) 

AT = temperature difference (T - TI), K; the plenum air temperature T minus 
the inlet air temperature TI (TI = 390 K) 
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U = overall heat transfer coefficient from dryer to atmosphere, 
W/(m2)(K>(45) 

V, = total volume of the dryer, m3 (56) 
W, = final grain moisture content (dry basis), kglkg (0.1765) 
Wo = initial moisture content (dry basis), kgkg (0.500) 

Numerical values for each parameter are given in parentheses. Values for the coefficient 
are given by 

Find the minimum cost as a function of the plenum temperature T (in kelvin). 

5.16 The following is an example from D. J. Wilde (1979). 

The first example was formulated by Stoecker* to illustrate the steepest 
descent (gradient) direct search method. It is proposed to attach a vapor 
recondensation refrigeration system to lower the temperature, and conse- 
quently vapor pressure, of liquid ammonia stored in a steel pressure vessel, 
for this would permit thinner vessel walls. The tank cost saving must be 
traded off against the refrigeration and thermal insulation cost to find the 
temperature and insulation thickness minimizing the total annual cost. 
Stoecker showed the total cost to be the sum of insulation cost i = 400~O.~ 
(xis the insulation thickness, in.), the vessel cost v = 1000 + 22(p - 14.7)1.2 
(p is the absolute pressure, psia), and the recondensation cost r = 144(80 
- t)lx (t is the temperature, OF). The pressure is related to the temperature by 

lnp = -3950(t - 460)-' + 11.86 

By direct gradient search, iterated 16 times from a starting temperature of 50°F, the 
total annual cost is found to have a local minimum at x -- 5.94 in. and t = 6.29OF, 
where the cost is $53,400/yr. The reader can verify, however, that an ambient sys- 
tem (80°F) without any recondensation only costs $52,00OIyr, a saving of 3%. 

Is the comment in the example true? 

*Stoecker, W. F. In "Design of Thermal Systems." McGraw-Hill, New York (1971), pp. 152-155. 
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THE NUMERICAL OPTIMIZATION of general nonlinear multivariable objective func- 
tions requires efficient and robust techniques. Efficiency is important because these 
problems require an iterative solution procedure, and trial and error becomes 
impractical for more than three or four variables. Robustness (the ability to achieve 
a solution) is desirable because a general nonlinear function is unpredictable in its 
behavior; there may be relative maxima or minima, saddle points, regions of con- 
vexity, concavity, and so on. In some regions the optimization algorithm may 
progress very slowly toward the optimum, requiring excessive computer time. For- 
tunately, we can draw on extensive experience in testing nonlinear programming 
algorithms for unconstrained functions to evaluate various approaches proposed for 
the optimization of such functions. 

In this chapter we discuss the solution of the unconstrained optimization 
problem: 

Find: that minimizes 

Most effective iterative procedures alternate between two phases in the opti- 
mization. At iteration k, where the current x is xk, they do the following: 

1. Choose a search direction sk 
2. Minimize along that direction (usually inexactly) to find a new point 

where ak is a positive scalar called the step size. The step size is determined by an 
optimization process called a line search as described in Chapter 5. 

In addition to 1 and 2, an algorithm must specify 

3. The initial starting vector x0 = [ x  xs . . . n;lT and 
4. The convergence criteria for termination. 

From a given starting point, a search direction is determined, andfix) is mini- 
mized in that direction. The search stops based on some criteria, and then a new 
search direction is determined, followed by another line search. The line search can 
be carried out to various degrees of precision. For example, we could use a simple 
successive doubling of the step size as a screening method until we detect the opti- 
mum has been bracketed. At this point the screening search can be terminated and 
a more sophisticated method employed to yield a higher degree of accuracy. In any 
event, refer to the techniques discussed in Chapter 5 for ways to carry out the line 
search. 

The NLP (nonlinear programming) methods to be discussed in this chapter dif- 
fer mainly in how they generate the search directions. Some nonlinear program- 
ming methods require information about derivative values, whereas others do not 
use derivatives and rely solely on function evaluations. Furthermore, finite differ- 
ence substitutes can be used in lieu of derivatives as explained in Section 8.10. For 
differentiable functions, methods that use analytical derivatives almost always use 
less computation time and are more accurate, even if finite difference approxima- 
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tions are used. Symbolic codes can be employed to obtain analytical derivatives but 
this may require more computer time than finite differencing to get derivatives. For 
nonsrnooth functions, a function-values-only method may. be more successful than 
using a derivative-based method. We first describe some simple nonderivative 
methods and then present a series of methods that use derivative information. We 
also show how the nature of the objective function influences the effectiveness of 
the particular optimization algorithm. 

6.1 METHODS USING FUNCTION VALUES ONLY 

Some methods do not require the use of derivatives in determining the search direc- 
tion. Under some circumstances the methods described in this section can be used 
effectively, but they may be inefficient compared with methods discussed in subse- 
quent sections. They have the advantage of being simple to understand and execute. 

6.1.1 Random Search 

A random search method simply selects a starting vector xO, evaluatesflx) at xO, and 
then randomly selects another vector x1 and evaluates flx) at xl. In effect, both a 
search direction and step length are chosen simultaneously. After one or more 
stages, the value of flxk) is compared with the best previous value of flx) from 
among the previous stages, and the decision is made to continue or terminate the 
procedure. Variations of this form of random search involve randomly selecting a 
search direction and then minimizing (possibly by random steps) in that search 
direction as a series of cycles. Clearly, the optimal solution can be obtained with a 
probability of 1 only as k + oo but as a practical matter, if the objective function 
is quite flat, a suboptimal solution may be quite acceptable. Even though the 
method is inefficient insofar as function evaluations are concerned, it may provide 
a good starting point for another method. You might view random search as an 
extension of the case study method. Refer to Dixon and James (1980) for some 
practical algorithms. 

6.1.2 Grid Search 

Methods of experimental design discussed in most basic statistics books can be 
applied equally well to minimizingflx) (see Chapter 2). You evaluate a series of 
points about a reference point selected according to some type of design such as 
the ones shown in Figure 6.1 (for an objective function of two variables). Next 
you move to the point that improves the objective function the most, and repeat. 
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(a) Three-level factorial 
design (32 - 1 = 8 points 
plus center) 

(b) Hexagon design 
(6 points + center) 

(c) Two-level factorial 
design (22 = 4 points 
plus center) 

FIGURE 6.1 
Various grid search designs to select vectors x to evaluateflx). 

For n = 30, we must examine 330 - 1 = 2.0588 X 1014 values of f(x) if a three- 
level factorial design is to be used, obviously a prohibitive number of function 
evaluations. 
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FIGURE 6.2 
Execution of a univariate search on two different quadratic functions. 

6.1.3 Univariate Search 

Another simple optimization technique is to select n fixed search directions (usu- 
ally the coordinate axes) for an objective function of n variables. Thenflx) is min- 
imized in each search direction sequentially using a one-dimensional search. This 
method is effective for a quadratic function of the form 

because the search directions line up with the principal axes as indicated in Figure 
6.2a. However, it does not perform satisfactorily for more general quadratic objec- 
tive functions of the form 

as illustrated in Figure 6.2b. For the latter case, the changes in x decrease as the 
optimum is neared, so many iterations will be required to attain high accuracy. 

6.1.4 Simplex Search Method 

The method of the "Sequential Simplex" formulated by Spendley, Hext, and 
Himsworth (1962) selects points at the vertices of the simplex at which to evaluate 
f(x). In two dimensions the figure is an equilateral triangle. Examine Figure 6.3. In 
three dimensions this figure becomes a regular tetrahedron, and so on. Each search 
direction points away from the vertex having the highest value offlx) to the other 
vertices in the simplex. Thus, the direction of search changes, but the step size is 
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FIGURE 6.3 
Reflection to a new point in the simplex method. 
At point 1, f(x) is greater than f at points .2 or 3. 

fixed for a given size simplex. Let us use a function of two variables to illustrate the 
procedure. 

At each iteration, to minimize f(x), f(x) is evaluated at each of three vertices of 
the triangle. The direction of search is oriented away from the point with the high- 
est value for the function through the centroid of the simplex. By making the search 
direction bisect the line between the other two points of the triangle, the direction 
goes through the centroid. A new point is selected in this reflected direction (as 
shown in Figure 6.3), preserving the geometric shape. The objective function is then 
evaluated at the new point, and a new search direction is determined. The method 
proceeds, rejecting one vertex at a time until the simplex straddles the optimum. Var- 
ious rules are used to prevent excessive repetition of the same cycle or simplexes. 

As the optimum is approached, the last equilateral triangle straddles the optimum 
point or is within a distance of the order of its own size from the optimum (examine 
Figure 6.4). The procedure cannot therefore get closer to the optimum and repeats 
itself so that the simplex size must be reduced, such as halving the length of all the 
sides of the simplex containing the vertex where the oscillation started. A new simplex 
composed of the midpoints of the ending simplex is constructed. When the simplex 
size is smaller than a prescribed tolerance, the routine is stopped. Thus, the optimum 
position is determined to within a tolerance influenced by the size of the simplex. 

Nelder and Mead (1965) described a more efficient (but more complex) version 
of the simplex method that permitted the geometric figures to expand and contract 
continuously during the search. Their method minimized a function of n variables 
using (n + 1) vertices of a flexible polyhedron. Details of the method together with 
a computer code to execute the algorithm can be found in Avriel (1976). 

6.1.5 Conjugate Search Directions 

Experience has shown that conjugate directions are much more effective as search 
directions than arbitrarily chosen search directions, such as in univariate search, or 
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- 
FIGURE 6.4 . 
Progression to the vicinity of the optimum and oscillation around the optimum 
using the simplex methpd of search. The original vertices are $, xy, and x!. The 
next point (vertex) is kb. Succeeding new vertices are numbered starting with 1 
and continuing to 13 at which point a cycle starts to repeat. The size of the 
simplex is reduced to the triangle determined by points 7, 14, and 15, and then 
the procedure is continued (not shown). 

even orthogonal search directions. Two directions si and sj are said to be conjugate 
with respect to a positive-definite matrix Q if 

In general, a set of n linearly independent directions of search so, s1 . . . , Sn- 1 are 
said to be conjugate with respect to a positive-definite square matrix Q if 

In optimization the matrix Q is the Hessian matrix of the objective function, H. 
For a quadraticfinction f(x) of n variables, in which H is a constant matrix, you are 
guaranteed to reach the minimum of f(x) in n stages if you minimize exactly on each 
stage (Dennis and Schnabel, 1996). In n dimensions, many different sets of conju- 
gate directions exist for a given matrix Q. In two dimensions, however, if you choose 
an initial direction s1 and Q, s2 is fully specified as illustrated in Example 6.1. 
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Orthogonality is a special case of conjugacy because when Q = I, ( ~ j ) ~ s j  = 0 
in Equation (6.2). If the coordinates of x are translated and rotated by suitable 
transformations so as to align the new principal axes of H(x) with the eigenvectors 
of H(x) and to place the center of the coordinate system at the stationary point of 
f(x) (refer to Figures 4.12 through 4.13, then conjugacy can be interpreted as 
orthogonality in the space of the transformed coordinates. 

Although authors and practitioners refer to a class of unconstrained optimiza- 
tion methods as "methods that use conjugate directions," for a general nonlinear 
function, the conjugate directions exist only for a quadratic approximation of the 
function at a single stage k. Once the objective function is modeled by a new 
approximation at stage (k + I), the directions on stage k are unlikely to be conju- 
gate to any of the directions selected in stage (k + 1). 

EXAMPLE 6.1 CALCULATION OF CONJUGATE DIRECTIONS 

Suppose we want to minimizeflx) = + 4 - 3 starting at (xO)~ = [ l  11 with the 
initial direction being so = [-4 -2IT. Find a conjugate direction to the initial direc- 
tion so. 

Solution 

We need to solve Equation (6.2) for st = [s', s:lT with Q = H and so = [ - 4  -2IT. 

Because si is not unique, we can pick si = 1 and determine si 

Thus s1 = [l -4IT is a direction conjugate to so = [ - 4  -2IT. 
We can reach the minimum of fix) in two stages using first so and then sl. Can 

we use the search directions in reverse order? From x0 = [l 1IT we can carry out a 
numerical search in the direction so = [ - 4  -2IT to reach the point xl. Quadratic 
interpolation can obtain the exact optimal step length because f is quadratic, yielding 
a = 0.27778. Then 
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For the next stage, the search direction is s1 = [_1 -4IT, and the optimal step length 
calculated by quadratic interpolation is a' = 0.1 11 1. Hence 

as expected. 

6.1.6 Summary 

As mentioned earlier, nonlinear objective functions are sometimes nonsmooth due to 
the presence of functions like abs, min, max, or if-then-else statements, which can 
cause derivatives, or the function itself, to be discontinuous at some points. Uncon- 
strained optimization methods that do not use derivatives are often able to solve non- 
smooth NLP problems, whereas methods that use derivatives can fail. Methods 
employing derivatives can get "stuck" at a point of discontinuity, but -the function- 
value-only methods are less affected. For smooth functions, however, methods that 
use derivatives are both more accurate and faster, and their advantage grows as the 
number of decision variables increases. Hence, we now turn our attention to uncon- 
strained optimization methods that use only first partial derivatives of the objective 
function. 

6.2 METHODS THAT USE FIRST DERIVATIVES 

A good search direction should reduce (for minimization) the objective function so 
that if x0 is the original point and x1 is the new point 

Such a direction s is called a descent direction and satisfies the following require- 
ment at any point 

To see why, examine the two vectors Vf(xk) and sk in Figure 6.5. The angle 
betweer) them is 8, hence 

If 8 = 90' as in Figure 6.5, then steps along sk do not reduce (improve) the value of 
f (x ) .  If 0 5 8 < 90°, no improvement is possible and f(x) increases. Only if 8 > 90" 

k k  does the search direction yield smaller values of f(x), hence VTf(x )s < 0. 
We first examine the classic steepest descent method of using the gradient and 

then examine a conjugate gradient method. 
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6.2.1 Steepest Descent 

The gradient is the vector at a point x that gives the (local) direction of the greatest 
rate of increase in f (x). It is orthogonal to the contour off (x) at x.  For rnaximiza- 
tion, the search direction is simply the gradient (when used the algorithm is called 
"steepest ascent"); for minimization, the search direction is the negative of the gra- 
dient ("steepest descent") 

In steepest descent at the kth stage, the transition from the current point xk to the 
new point x" ' is given by the following expression: 

where Ax '  = vector from xk to xk+ 
sk = search direction, the direction of steepest descent 
a' = scalar that determines the step length in direction sk 

The negative of the gradient gives the direction for minimization but not the mag- 
nitude of the step to be taken, so that various steepest descent procedures are pos- 

Region of 
valid 
search directions 

FIGURE 6.5 
Identification of the region of possible search directions. 
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sible, depending on the choice of ak. We assume that the value offlx) is continu- 
ously reduced. Because one step in the direction of steepest descent will not, in gen- 
eral, arrive at the minimum offlx), Equation (6.4) must be applied repetitively until . 

the minimum is reached. At the minimum, the value of the elements of the gradi- 
ent vector will each be equal to zero. 

The step size ak is determined by a line search, using methods like those 
described in Chapter 5. Although inexact line searches (not continued to the exact 
minimum) are always used in practice, insight is gained by examining the behavior 
of steepest descent when an exact line search is used. 

First, let us consider the perfectly scaled quadratic objective function 
f(x) = x: + x:, whose contours are concentric circles as shown in Figure 6.6. 
Suppose we calculate the gradient at the point xT = [2 21 

The direction of steepest descent is 

FIGURE 6.6 
Gradient vector for f ( x )  = x: + x;  . 
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FIGURE 6.7 
Steepest descent method for a general quadratic function. 

Observe that s  is a vector pointing toward the optimum at (0, 0). In fact, the gradi- 
ent at any point passes through the origin (the optimum). 

On the other hand, for functions not so nicely scaled and that have nonzero off- 
diagonal terms in the Hessian matrix (corresponding to interaction terms such as 
xlx2 ), then the negative gradient direction is unlikely to pass directly through the 
optimum. Figure 6.7 illustrates the contours of a quadratic function of two variables 
that includes an interaction term. Observe that contours are tilted with respect to the 
axes. Interaction terms plus poor scaling corresponding to narrow valleys, or ridges, 
cause the gradient method to exhibit slow convergence. 

If ak is chosen to minimize f(xk + a s k )  exactly then at the minimum, 

We illustrate this in Figure 6.8 using the notation 

gk (a)  = f ( t  + a s k )  

where g k  is the function value along the search direction for a given value of a. 
Because xk and sk are fixed at known values, gk depends only on the step size a. 
If sk is a descent direction, then we can always find a positive a that causes f to 
decrease. 
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g k ( f f )  = 
f ( x k  + a s k )  

Slope = ~f T ( ~ k  + a k s k  )sk = 0 

I 
l 

a k 
a 

FIGURE 6.8 
Exact line search along the search direction sk. 

Using the chain rule 

In an exact line search, we choose ak as the a that minimizes gk (a), SO 

as shown in Figure 6.8. But when the inner product of two vectors is zero, the vec- 
tors are orthogonal, so if an exact line search is used, the gradient at the new point 
xk+' is orthogonal to the search direction sk. In steepest descent sk = -V f(xk), so 
the gradients at points xk and xk+' are orthogonal. This is illustrated in Figure 6.7, 
which shows that the orthogonality of successive search directions leads to a very 
inefficient zigzagging behavior. Although large steps are taken in early iterations, 
the step sizes shrink rapidly, and converging to an accurate solution of the opti- 
mization problem takes many iterations. 

The steepest descent algorithm can be summarized in the following steps: 

1. Choose an initial or starting point xO. Thereafter at the point xk: 
2. Calculate (analytically or numerically) the partial derivatives 
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3. Calculate the search vector 

4. Use the relation 
X k + l  = k x + aksk 

to obtain the value of xk+l. To get ak minimize gk(a) numerically, as described in 
Chapter 5. 

5. Compare f(xk+l) with f(xk): if the change in f(x) is smaller than some tolerance, 
stop. If not, return to step 2 and set k = k + 1. Termination can also be specified 
by stipulating some tolerance on the norm of Vf(xk). 

Steepest descent can terminate at any type of stationary point, that is, at any 
point where the elements of the gradient of f(x) are zero. Thus you must ascertain 
if the presumed minimum is indeed a local minimum (i.e., a solution) or a saddle 
point. If it is a saddle point, it is necessary to employ a nongradient method to move 
away from the point, after which the minimization may continue as before. The sta- 
tionary point may be tested by examining the Hessian matrix of the objective func- 
tion as described in Chapter 4. If the Hessian matrix is not positive-definite, the sta- 
tionary point is a saddle point. Perturbation from the stationary point followed by 
optimization should lead to a local minimum x*. 

The basic difficulty with the steepest descent method is that it is too sensitive 
to the scaling off (x), so that convergence is very slow and what amounts to oscil- 
lation in the x space can easily occur. For these reasons steepest descent or ascent 
is not a very effective optimization technique. Fortunately, conjugate gradient 
methods are much faster and more accurate. 

6.2.2 Conjugate Gradient Methods 

The earliest conjugate gradient method was devised byFletcher and Reeves (1964). 
If f(x) is quadratic and is minimized exactly in each search direction, it has the 
desirable features of converging in at most n iterations because its search directions 
are conjugate. The method represents a major improvement over steepest descent 
with only a marginal increase in computational effort. It combines current infor- 
mation about the gradient vector with that of gradient vectors from previous itera- 
tions (a memory feature) to obtain the new search direction. You compute the 
search direction by a linear combination of the current gradient and the previous 
search direction. The main advantage of this method is that it requires only a small 
amount of information to be stored at each stage of calculation and thus can be 
applied to very large problems. The steps are listed here. 

Step 1. At x0 calculate f(xO). Let 

Step 2. Save Vf(xO) and compute 
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by minimizing f(x) with respect to a in the so direction (i.e., carry out a unidimen- 
sional search for aO). 

Step 3. Calculate f(xl), Vf(xl). The new search direction is a linear combina- 
tion of so and Vf(xl): - , 

For the kth iteration the relation is 

For a quadratic function it can be shown that these successive search directions are 
conjugate. After n iterations (k = n), the quadratic function is minimized. For a 
nonquadratic function, the procedure cycles again with xn+' becoming xO. 

Step 4. Test for convergence to the minimum of f(x). If convergence is not 
attained, return to step 3. 

' 

Step n. Terminate the algorithm when 11  Vf (xk) 11 is less than some pre-K 
scribed tolerance. 

Note that if the ratio of the inner products of the gradients from stage k + 1 rel- 
ative to stage k is very small, the conjugate gradient method behaves much like the 
steepest descent method. One difficulty is the linear dependence of search direc- 
tions, which can be resolved by periodically restarting the conjugate gradient 
method with a steeped descent search (step 1). The proof that Equation (6.6) yields 
conjugate directions and quadratic convergence was given by Fletcher and Reeves 
(1964). 

In doing the line search we can minimize a quadratic approximation in a given 
search direction. This means that to compute the value for (I! for the relation xk-' = 

xk + ask we must minimize 

f(x) = f( xk + ask) = f (xk) + VTf (xk) ask + f ( ~ s ~ ) ~ H  (xk) (osk) (6.7) 

where Axk = ask. TO get the minimum of f(xk + ask), we differentiate Equation 
(6.3) with respect to a and equate the derivative to zero 

with the result 

For additional details concerning the application of conjugate gradient meth- 
ods, especially to large-scale and sparse problems, refer to Fletcher (1980), Gill et 
al. (1981), Dembo et al. (1982), and Nash and Sofer (1996). 
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EXAMPLE 6.2 APPLICATION OF THE FLETCHER-REEVES 
CONJUGATE GRADIENT ALGORITHM 

We solve the problem known as Rosenbrock's function 

Minimize: f(x) = 100 (x2 - x:)' + (1 - xJ2 

starting at x(O) = [- 1.2 1.OIT. The first few stages of the Hetcher-Reeves procedure 
are listed in Table E6.2. The trajectory as it moves toward the optimum is shown in 
Figure E6.2. 

TABLE E6.2 
Results for Example 6.2 using the Fletcher-Reeves method 

Number 
of function a f o  af(x> 

Iteration calls f (XI X I  x 2  ax1 a x 2  

FIGURE E6.2 
Search trajectory for the Fletcher-Reeves algorithm (the numbers 
designate the iteration). 
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6.3 NEWTON'S METHOD 

From one viewpoint the search direction of steepest descent can be interpreted as 
being orthogonal to a linear approximation (tangent to) of the objective function at 
point xk; examine Figure 6.9a. Now suppose we make a quadratic approximation 
offlx) at xk 

f (x) - f (xk) + VTf (xk) A xk + f (A J?)~H (xk) (6.10) 

where H (xk) is the Hessian matrix of'f(x) defined in Chapter 4 (the matrix of sec- 
ond partial derivatives with respect to x evaluated at xk). Then it is possible to take 
into account the curvature ofJTx) at xk in determining a search direction as described 
later on. 

Newton's method makes use of the second-order (quadratic) approximation of 
Ax) at xk and thus employs second-order information aboutflx), that is, informa- 
tion obtained from the second partial derivatives of flx) with respect to the inde- 
pendent variables. Thus, it is possible to take into account the curvature offlx) at 
xkand identify better search directions than can be obtained via the gradient 
method. Examine Figure 6.9b. 

The minimum of the quadratic approximation of flx) in Equation (6.10) is 
obtained by differentiating (6.10) with respect to each of the components of Ax and 
equating the resulting expressions to zero to give 

v ~ ( x )  = v f (#) + H (xk) A xk = 0 (6.11) 

where [H(xk) 1-l is the inverse of the Hessian matrix H (xk). Equation (6.12) 
reduces to Equation (5.5) for a one-dimensional search. 

Note that both the direction and step length are specified as a result of Equa- 
tion (6. l l). IfJTx) is actually quadratic, only one step is required to reach the min- 
imum offlx). For a general nonlinear objective function, however, the minimum of 
JTx) cannot be reached in one step, so that Equation (6.12) can be modified to con- 
form to Equation (6.7) by introducing the parameter for the step length into (6.12). 
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s = - Vf (xk) 

-1 

xk - . Linearized -- 

X1 
(a) Steepest descent: first-order approximation 
(linearization) off (x) at xk 

I s = - [VZf(xk)] - 'Vf (xk) 

Quadratic approximation 
o f f  (x) . 

I 

X I  

(b) Newton's method: second-order (quadratic) 
approximation off (x) at xk 

FIGURE 6.9 
Comparison of steepest descent with Newton's method from 
the viewpoint of objective function approximation. 

Observe that the search direction s is now given (for minimization) by 

and that the step length is ak. The step length ak can be evaluated numerically as 
described in Chapter 5. Equation (6.13) is applied iteratively until some termination 
criteria are satisfied. For the "pure" version of Newton's method, a = 1 on each 
step. However, this version often does not converge if the initial point is not close 
enough to a local minimum. 
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Also note that to evaluate Ax in Equation (6.12), a matrix inversion is not nec- 
essarily required. You can take its precursor, Equation (6.1 I), and solve the follow- 
ing set of linear equations for Axk 

a procedure that often leads to less round-off error than calculating s via the inver- 
sion of a matrix. 

EXAMPLE 6.3 APPLICATION OF NEWTON'S METHOD TO A 
CONVEX QUADRATIC FUNCTION 

We minimize the function 

f ( x )  = 4x: + x; - 2x1x2 

startingat x0 = [ l  l l T  

with a = 1, 

hence, 

Instead of taking the inverse of H, we can solve Equation (6.15) 



200 PART I1 : Optimization Theory and Methods 

which gives 

AX! = -1 

Ax! = -1 

as before. The search direction so = -H-l Vf(xO) is shown in Figure E6.3 

EXAMPLE 6.4 APPLICATION OF NEWTON'S METHOD AND 
QUADRATIC CONVERGENCE 

If we minimize the nonquadratic function 

from the starting point of (1, I), can you show that Newton's method exhibits quad- 
ratic convergence? Hint: Show that 
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x1 

FIGURE E6.4 

Solution. Newton's method produces the following sequences of values for x,, x,, 
and [f(xk+l) - f(xk)] (you should try to verify the calculations shown in the following 
table; the trajectory is traced in Figure E6.4). 

Iteration XI X, f (xk") - f (xk) 

You can calculate between iterations 2 and 3 that c = 0.55; and between 3 and 
4 that c = 0.74. Hence, quadratic convergence can be demonstrated numerically. 
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Newton's method usually requires the fewest iterations of all the methods dis- 
cussed in this chapter, but it has the following disadvantages: 

1. The method does not necessarily find the global solution if multiple local solu- 
tions exist, but this is a characteristic of all the methods described in this chapter. 

2. It requires the solution of a set of n symmetric linear equations. 
3. It requires both first and second partial derivatives, which may not be practical 

to obtain. 
4. Using a step size of unity, the method may not converge. 

Difficulty 3 can be ameliorated by using (properly) finite difference approxi- 
mation as substitutes for derivatives. To overcome difficulty 4, two classes of meth- 
ods exist to modify the "pure" Newton's method so that it is guaranteed to converge 
to a local minimum from an arbitrary starting point. The first of these, called trust 
region methods, minimize the quadratic approximation, Equation (6. lo), within an 
elliptical region, whose size is adjusted so that the objective improves at each iter- 
ation; see Section 6.3.2. The second class, line search methods, modifies the pure 
Newton's method in two ways: (1) instead of taking a step size of one, a line search 
is used and (2) if the Hessian matrix H($) is not positive-definite, it is replaced 
by a positive-definite matrix that is "close" to ~ ( t )  . This is motivated by the eas- 
ily verified fact that, if H(x~)  is positive-definite, the Newton direction 

is a descent direction, that is 

IfJTx) is convex, H(x) is positive-semidefinite at all points x and is usually positive- 
definite. Hence Newton's method, using a line search, converges. If fix) is not 
strictly convex (as is often the case in regions far fromthe optimum), H(x) may not 
be positive-definite everywhere, so one approach to forcing convergence is to 
replace H(x) by another positive-definite matrix. The Marquardt-Levenberg 
method is one way of doing this, as discussed in the next section. 

6.3.1 Forcing the Hessian Matrix to Be Positive-Definite 

Marquardt (1963), Levenberg (1944), and others have suggested that the Hessian 
matrix ofJTx) be modified on each stage of the search as needed to ensure that the 
modified H(x),H(x), is positive-definite and well conditioned. The procedure adds 
elements to the diagonal elements of H(x) 

where is a positive constant large enough to make H(X) positive-definite when 
H(x) is not. Note that with a p sufficiently large, PI can overwhelm H(x) and the 
minimization approaches a steepest descent search. 
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TABLE 6.1 
A modified Marquardt method 

Step 1 
Pick x0 the starting point. Let E = convergence criterion. 
Step 2 
Set k = 0. Let $ = lo3. 
Step 3 
Calculate Vf (d) . 
Step 4 
Is 11 Vf (d ) )  < E? If yes, terminate. If no, continue. 

Step 5 
Solve (H(x~) + pS) sk = - Vf (xk) for sk. 
Step 6 
If Vf T(Xk)sk < 0, go to step 8. 
Step 7 
Set pk = 2 p k  and go to step 5. 
Step 8 
Choose ak by a line search procedure so that 

Step 9 
If certain conditions are met (Dennis and Schnabel, 1996), reduce P. 
Go to step 3 with k replaced by k + 1. 

A simpler procedure that may result in a suitable value of P is to apply a mod- 
ified Cholesky factorization as follows: 

where D i~ a diagonal matrix with nonnegative elements [ dii = 0 if H(xk) is positive- 
definite] and L is a lower triangular matrix. Upper bounds on the elements in D are 
calculated using the Gershgorin circle theorem [see Dennis and Schnabel (1996) 
for details]. 

A simple algorithm based on an arbitrary adjustment of P (a modified Mar- 
quardt's method) is listed in Table 6. l. 

EXAMPLE 6.5 APPLICATION OF MARQUARDT'S METHOD 

The algorithm listed in Table 6.1 is to be applied to Rosenbrock's function f(x) = 
100(x2 - x : ) ~  + ( 1  - xl)* starting at x0 = [- 1.2 l . ~ ] % i t h  H(' = H(xO). 
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TABLE E6.5 
Marquardt's method 

Elements of [H(xk) + PI]-I 

A quadratic interpolation subroutine was used to minimize in each search direc- 
tion. Table E6.5 lists the values offlx), x, V'x), and the elements of [H(x) + PI]-I for 
each stage of the minimization. A total of 96 function &aluations and 16 calls to the 
gradient evaluation subroutine were needed. 

6.3.2 Movement in the Search Direction 

Up to this point we focused on calculating H or H-l, from which the search direc- 
tion s can be ascertained via Equation (6.14) or Ax from Equation (6.15) (for min- 
imization). In this section we discuss briefly how far to proceed in the search direc- 
tion, that is, select a step length, for a general function f(x). If Ax is calculated from 
Equations (6.12) or (6.13, a = 1 and the step is a Newton step. If a # 1, then any 
procedure can be used to calculate cw as discussed in Chapter 5. 

Line search. The oldest and simplest method of calculating a to obtain Ax is 
via a unidirnensional line search. In a given direction that reduces f(x), take a step, 
or a sequence of steps yielding an overall step, that reduces f (x) to some acceptable 
degree. This operation can be carried out by any of the one-dimensional search 
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techniques described in Chapter 5. Early investigators always minimized f(x) as 
accurately as possible in a search direction s, but subsequent experience, and to 
some extent theoretical results, have indicated that such a concept is invalid. Good 
algorithms first calculate a full Newton step ( a  = 1) to get xk+l, and if f(xk) is not 
reduced, backtrack in some systematic way toward xk. Failure to take the full 
Newton step in the first iteration leads to loss of the advantages of Newton's 
method near the minimum, where convergence is slow. To avoid very small 
decreases in f(x), most algorithms require that the average rate of descent from xk 
to xk+l be at least some prescribed fraction of the initial rate of descent in the search 
direction. Mathematically this means (Armijo, 1966) 

k k  f (xk + a Isk) 5 f (d) + y a  VY(x )S (6.18) 

Examine Figure 6.10. In practice y is often chosen to be very small, about so 
just a small decrease in the function value is required. 

Backtracking can be accomplished in any of the ways outlined in Chapter 5 but 
with the objective of locating an xk+l for which f(xk+l) c f(xk) but moving as far as 
possible in the direction sk from xk. The minimum of f(xk + ask) does not have to 
be found exactly. As an example of one procedure, at xk, where a = 0, you know 
two pieces of information about f(xk + ask): the values of f(x9 and VTf(xk) sk. After 
the Newton step ( a  = 1) you know the value of f(xk + sk). From these three pieces 
of information you can make a quadratic interpolation to get the value a where the 
objective function fla) has a minimum: 

FIGURE 6.10 
Range of acceptable values for choice of ak to meet criterion (6.20) 
with y = 0.02. 
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After & is obtained, if additional backtracking is needed, cubic interpolation 
can be carried out. We suggest that if & is too small, say & < 0.1, try & = 0.1 
instead. 

Trust regions. The name trust region refers to the region in which the quad- 
ratic model can be "trusted" to represent f(x) reasonably well. In the unidimen- 
sional line search, the search direction is retained but the step length is reduced if 
the Newton step proves to be unsatisfactory. In the trust region approach, a shorter 
step length is selected and then the search direction determined. Refer to Dennis 
and Schnabel(1996) and Section 8.5.1 for details. 

The trust region approach estimates the length of a maximal successful step 
from xk. In other words, llxll < p, the bound on the step. Figure 6.11 shows f(x), 
the quadratic model of f(x), and the desired trust region. First, an initial estimate 
of p or the step bound has to be determined. If knowledge about the problem does 

FIGURE 6.11 
Representation of the trust region to select the step length. Solid lines are 
contours offlx). Dashed lines are contours of the convex quadratic 
approximation offlx) at xk. The dotted circle is the trust region boundary in 
which S is the step length. x, is the minimum of the quadratic model for 
which H (x) is positive-definite. 
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not help, Powell (1970) suggested using the distance to the minimizer of the quad- 
ratic model of f(x) in the direction of steepest descent from xk, the so-called 
Cauchy point. Next, some curve or piecewise linear function is determined with an 
initial direction of steepest descent so that the tentative point xk+l lies on the curve 
and is less than p. Figure 6.11 shows s as a straight line of one segment. The trust 
region is updated, and the sequence is continued. Heuristic parameters are usually 
required, such as minimum and maximum step lengths, scaling s, and so forth. 

6.3.3 Termination 

No single stopping criterion will suffice for Newton's method or any of the opti- 
mization methods described in this chapter. The following simultaneous criteria are 
recommended to avoid scaling problems: 

where the "one" on the right-hand side is present to ensure that the right-hand side 
is not too small when f(xk) approaches zero. Also 

and 

Il V f  (xk) ll < 8 3  

6.3.4 Safeguarded Newton's Method 

Several numerical subroutine libraries contain "safeguarded" Newton codes using 
the ideas previously discussed. When first and second derivatives can be computed 
quickly and accurately, a good safeguarded Newton code is fast, reliable, and locates 
a local optimum very accurately. We discuss this NLP software in Section 8.9. 

6.3.5 Computation of Derivatives 

From numerous tests involving optimization of nonlinear functions, methods that 
use derivatives have been demonstrated to be more efficient than those that do not. 
By replacing analytical derivatives with their finite difference substitutes, you can 
avoid having to code formulas for derivatives. Procedures that use second-order 
information are more accurate and require fewer iterations than those that use only 
first-order information(gradients), but keep in mind that usually the second-order 
information may be only approximate as it is based not on second derivatives them- 
selves but their finite difference approximations. 
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6.4 QUASI-NEWTON METHODS 

Procedures that compute a search direction using only first derivatives off provide 
an attractive alternative to Newton's method. The most popular of these are the 
quasi-Newton methods that replace H(xk) in Equation (6.11) by a positive-definite 
approximation Hk: 

Hksk = - Vf(xk) (6.23) 

Hk is initialized as any positive-definite symmetric matrix (often the identity 
matrix or a diagonal matrix) and is updated after each line search using the changes 
in x and in Vf(x) over the last two points, as measured by the vectors 

and 

yk = Vf(xk+') - Vf(xk) 

One of the most efficient and widely used updating iormula is the BFGS update. 
Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970) independ- 
ently published this algorithm in the same year, hence the combined name BFGS. 
Here the approximate Hessian is given by 

k T  k If Hk is positive-definite and (d ) y > 0, it can be shown that Hk+ ' is positive- 
definite (Dennis and Schnabel, 1996, Chapter 9). The condition ( d k ) 7  > 0 can 
be interpreted geometrically, since 

= ak (slope2 - slope 1 ) 

The quantity slope2 is the slope of the line search objective function gk(a) at 
a = d (see Figure 6.8) and slope1 is its slope at a = 0, so (dk)Tyk > 0 if and 
only if slope2 > slopel. This condition is always satisfied iff is strictly convex. A 
good line search routine attempts to meet this condition; if it is not met, then Hk is 
not updated. 

If the BFGS algorithm is applied to a positive-definite quadratic function of n 
variables and the line search is exact, it will minimize the function in at most n iter- 
ations (Dennis and Schnabel, 1996, Chapter 9). This is also true for some other 
updating formulas. For nonquadratic functions, a good BFGS code usually requires 
more iterations than a comparable Newton implementation and may not be as accu- 
rate. Each BFGS iteration is generally faster, however, because second derivatives 
are not required and the system of linear equations (6.15) need not be solved. 
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EXAMPLE 6.6 APPLICATION OF THE BFGS METHOD 

Apply the BFGS method to find the minimum of the function f (x) = x;' - 27E,x: + 
+ x: - 2x1 + 5.  x2 

Use a starting point of (1,2) and terminate the search when f changes less than 
0.00005 between iterations. The contour plot for the function was shown in Figure 5.7. 

Solution. Using the Optimization Toolbox from MATLAB, the BFGS method 
requires 20 iterations before the search is terminated, as shown below. 

TABLE E6.6 
BFGS method 

Iteration XI 

For problems with hundreds or thousands of variables, storing and manipulat- 
ing the matrices H~ or V n t )  requires much time and computer memory, mak- 
ing conjugate gradient methods more attractive. These compute sk using formulas 
involving no matrices. The Fletcher-Reeves method uses 

where 
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The one-step BFGS formula is usually more efficient than the Fletcher-Reeves 
method. It uses somewhat more complex formulas: 

This formula follows from the BFGS formula for ( f i k ) - '  by (1) assuming ( f i k -  ' ) - l  

= I ,  ( 2 )  computing (Hk)-'  from the update formula, and (3) computing sk as 
- ( H k )  - l  Vf ( x k )  . Both methods minimize a positive-definite quadratic function of n 
variables in at most n iterations using exact line searches but generally require sig- 
nificantly more iterations than the BFGS procedure for general nonlinear functions. 
A class of algorithms called variable memory quasi-Newton methods (Nash and 
Sofer, 1996) partially overcomes this difficulty and provides an effective compro- 
mise between standard quasi-Newton and conjugate gradient algorithms. 
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PROBLEMS 

6.1 If you carry out an exhaustive search (i.e., examine each grid point) for the optimum 
of a function of five variables, and each step is 1/20 of the interval for each variable, 
how many objective function calculations must be made? 
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6.2 Consider the following minimization problem: 

Minimize: f(x) = x: + x1x2 + xi + 3x1 

(a) Find the minimum (or minima) analytically. 
(b) Are they global or relative minima? 
(c) Construct four contours of f(x) [lines of constant value of f(x)]. 
(d) Is univariate search a good numerical method for finding the optimum of f(x)? 

Why or why not? 
(e) Suppose the search direction is given by s = [ l  OIT. Start at (0,0), find the opti- 

mum point P, in that search direction analytically, not numerically. Repeat the 
exercise for a starting point of (0,4) to find P,. 

(f) Show graphically that a line connecting PI and P, passes through the optimum. 

6.3 Determine a regular simplex figure in a three-dimensional space such that the dis- 
tance between vertices is 0.2 unit and one vertex is at the point (- 1, 2, -2). 

6.4 Carry out the four stages of the simplex method to minimize the function 

starting at x = [l 1.5IT. Use x = [ 1 2IT for another corner. Show each stage on 
a graph. 

6.5 A three-dimensional simplex optimal search for a minimum provides the following 
intermediate results: 

x vector 

Value of 
objective 
function 

What is the next point to be evaluated in the search? What point is dropped? 

6.6 Find a direction orthogonal to the vector 

at the point 

x = [0 0 OIT 

Find a direction conjugate to s with respect to the' Hessian matrix of the objective 
function f(x) = xl + 2x; - xlx2 at the same point. 
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6.7 Given the function f(x) = x! + x; + 2x$ - xlx2, generate a set of conjugate 
directions. Carry out two stages of the minimization in the conjugate directions min- 
imizing f(x) in each direction. Did you reach the minimum of f(x)? Start at (1, 1, 1). 

6.8 For what values of x are the following directions conjugate for the function 
f(x) = X: + ~1x2 + 1 6 ~ ;  + X: - xlxg3? 

6.9 In the minimization of 

starting at (0, -2), find a search direction s conjugate to the x, axis. Find a second 
search vector s, conjugate to s,. 

6.10 (a) Find two directions respectively orthogonal to 

and each other. 
(b) Find two directions respectively conjugate to the vector in part (a) and to each 

other for the given matrix 

6.11 The starting search direction from x = [2 2IT to minimize 

f(x) = X: + XlX2 + X; - 3x1 - 3x2 

is the negative gradient. Find a conjugate direction to the starting direction. Is it unique? 

6.12 Evaluate the gradient of the function 

2 2 2 f(x) = (xl + x ~ ) ~ x ~  + x3x1x2 

atthepoint x =  [ l  1 1IT. 
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6.13 You are asked to maximize 

Begin at x = [I 1IT, and select the gradient as the first search direction. Find a sec- 
ond search direction that is conjugate to the first search direction. (Do not continue 
after getting the second direction.) 

6.14 You wish to minimize 

If you use steepest descent starting at (1, l), will you reach the optimum in 
(a) One iteration 

,- 

(b) Two iterations 
(c) More that two? 

Explain. 

6.15 Evaluate the gradient of the function 

at the point (0, 0). 

6.16 Consider minimizing the function Ax) = x: + xg. Use the formula xk+' = x - 
aVf(xk), where a is chosen to minimize Ax). Show that xk+' will be the optimum 

. x after only one iteration. You should be able to optimizeflx) with respect to (I! ana- 
lytically. Start from 

6.17 Why is the steepest descent method not widely used in unconstrained optimization 
codes? 

6.18 Use the Fletcher-Reeves search to find the minimum of the objective function 
(a) f(x) = 3x: + xg 

(b) f(x) = 4(x, - 5 ) ,  + (x2 - 6), 

starting at x0 = [ l  1IT. 

6.19 Discuss the advantages and disadvantages of the following two search methods for 
the function shown in Figure P6.19. 
(a) Steepest descent 
(b) Conjugate gradient 

Discuss the basic idea behind each of the two methods (don't write out the individ- 
ual steps, though). Be sure to consider the significance of the starting point for the 
search. 
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FIGURE P6.19 

6.20 Repeat Problem 6.18 for the Woods function. 

where F,(x) = -200x1(x4 - x$) - (1 - x,) 
F2(x) = 200(x2 - x:) + 20(x2 - 1) + 19.8(~4 - 1) 
F3(x) = - 1 80x3 (x4 - xi) - (1 - x3) ' 
F4(x) =(-3, - 1, - 3, - 1) 

6.21 An open cylindrical vessel is to be used to store 10 ft3 of liquid. The objective func- 
tion for the sum of the operating and capital costs of the vessel is 

Can Newton's method be used to minimize this function? The solution is [r* h*IT = 
[0.22 2. 16IT. 

6.22 Is it necessary that the Hessian matrix of the objective function always be positive- 
definite in an unconstrained minimization problem? 

6.23 Cite two circumstances in which the use of the simplex method of multivariate 
unconstrained optimization might be a better choice than a quasi-Newton method. 

6.24 Given the functionfix) = 3 4  + 3 6  + 3x: to minimize, would you expect that steep- 
est descent or Newton's method (in which adjustment of the step length is used for 
minimization in the search direction) would be faster in solving the problem from 
the same starting point x = [lo 10 10IT? Explain the reasons for your answer. 
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6.25 Consider the following objective functions: 

4 9 
(a) f(x) = 1 + x1 + x2 + - + - 

x 1  X2  

(b) f ( ~ ) = ( x ~ + 5 ) ~ + ( ~ ~ + 8 ) ~ + ( ~ ~ + 7 ) ~ + 2 x ~ x ~ + 4 ~ ~ ~ ~  

Will Newton's method convergk for these functions? 

6.26 Consider the minimization of the objectbe function 

by Newton's method starting from the point x0 = [ l  1IT. A computer code carefully 
programmed to execute Newton's method has not been successful. Explain the prob- 
able reason(s) for the failure. 

6.27 What is the initial direction of search determined by Newton's method forfix) = xf 
+ &?j? What is the step length? How many steps are needed to minimizeflx) ana- 
lytically? 

6.28 Will Newton's method minimize Rosenbrock's function 

starting at x0 = [- 1.2 1.OIT in one stage? How many stages will it take if you mini- 
mizefix) exactly on each stage? How many stages if you let the step length be unity 
on each stage? 

6.29 Find the minimum of the following objective function by (a) Newton's method or (b) 
Fletcher-Reeves conjugate gradient 

starting at xT = [ lo  101. 

6.30 Solve the following problems by Newton's method: 

Minimize: 
(a) f(x) = 1 + x1 + x2 + x 3  + ~ 4  + ~ 1 x 2  + ~ 1 x 3  + ~ 1 x 4  

+ x2x3 + ~ 2 x 4  + ~ $ 4  + X :  + X ;  + X :  + X :  

starting from 

x0 = [ -3  -30 -4 -0.1IT and also x0 = [0.5 1.0 8.0 -0.7IT 

2 3 4  (b) f(x) = ~ 1 ~ 2 ~ 3 . ~ 4  [exp - ( X I  + x 2  + x 3  + x 4 ) I  

starting from 
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6.31 List the relative advantages and disadvantages (there can be more than one) of the fol- 
lowing methods for a two-variable optimization problem such as Rosenbrock's 
"banana" function (see Fig. P6.19) 
(a) Sequential simplex 
(b) Conjugate gradient 
(c) Newton's method 

Would your evaluation change if there were 20 independent variables in the opti- 
mization problem? 

6.32 Find the maximum of the functionfix) = 100 - (10 - xJ2 - (5 - x2l2 by the 
(a) Simplex method 
(b) Newton's method 
(c) BFGS method 

Start at xT = [0 01. Show all equations and intermediate calculations you use. For the 
simplex method, carry out only five stages of the minimization. 

6.33 For the function f(x) = (x - use 
(a) Newton's method- 
(b) Quasi-Newton method 
(c) Quadratic interpolation 

to minimize the function. Show all equations and intermediate calculations you use. 
Start at x = 0. 

6.34 For the function f(x) = (x - use 
(a) Steepest descent 
(b) Newton's method 
(c) Quasi-Newton method 
(d) Quadratic interpolation 

to minimize the function. Show all equations and intermediate calculations you use. 
Start at x = 0. 

6.35 How can the inverse of the Hessian matrix for the function 

be approximated by a positive-definite matrix using the method of Marquardt? 

6.36 You are to minimize f(x) = 2x: - 4x1x2 + xz. 
Is H(x) positive-definite? If not, start at x0 = [2 2IT, and develop an approximation 
of H(x) that is positive-definite by Marquardt's method. 

6.37 Show how to niake the Hessian matrix of the following objective function positive- 
definite at x = [ l  1IT by using Marquardt's method: 
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6.38 The Hessian matrix of the following function 

where u = 1.5 - xl (1 - x2) 
u2 = 2.25 - xl ( l  - x;) 
u3 = 2.625 - xl ( l  - x;) 

is not positive-definite in the vicinity of x = [0 1IT and Newton's method will ter- 
minate at a saddle point if started there. If you start at x = [0 1IT, what procedure 
should you carry out to make a Newton or quasi-Newton method continue with 
searches to reach the optimum, which is in the vicinity of x = [3 0.5IT? 

6.39 Determine whether the following statements are true or false, and explain the reasons 
for your answer. 
(a) All search methods based on conjugate directions (e.g., Fletcher-Reeves method) 

always use conjugate directions. 
(b) The matrix, or its inverse, used in the BFGS relation, is an approximation of the 

Hessian matrix, or its inverse, of the objective function [V2JTx)]. 
(c) The BFGS version has the advantage over a pure Newton's method in that the lat- 

ter requires second derivatives, whereas the former requires only first derivatives 
to get the search direction. 

6.40 For the quasi-Newton method discussed in Section 6.4, give the values of the ele- 
ments of the approximate to the Hessian (inverse Hessian) matrix for the first two 
stages of search for the following problems: 

. (a) Maximize: f(x) = - x: + x1 - x t  + x2 + 4 

(b) Minimize: f(x) = x:exp [x2 - x i  - 10(xl - x ~ ) ~ ]  

f(x) = x: + x; + x; + x; 

starting from the point (1, 1) or (I, 1, 1, 1) as the case may be. 

6.41 Estimate the values of the parameters k, and k2 by minimizing the sum of the squares 
of the deviations 

where 

for the following data: 

Plot the sum-of-squares surface with the estimated coefficients. 
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6.42 Repeat Problem 6.41 for the following model and data: 

6.43 Approximate the minimum value of the integral 

subject to the boundary conditions dy/& = 0 at x = 0 and y = 0 at x = 1. 
Hint: Assume a trial function y(x) = a( l  - x2) that satisfies the boundary condi- 

tions and find the value of a that minimizes the integral. Will a more complicated trial 
function that satisfies the boundary conditions improve the estimate of the minimum 
of the integral? 

6.44 In a decision problem it is desired to minimize the expected risk defined as follows: 

where F(b) = e-*12'du (normal probability function) 

Find the minimum expected risk and b. 

6.45 The function 

f(x) = (1 + 8x, - 7x: + ;x: - $ x ~ ) ( ~ ~ e - ~ ~ ) ~ ( x , )  

has two maxima and a saddle point. For (a) F(x3) = 1 and (b) F(x3) = x3e -(x3 + 11, 

locate the global optimum by a search technique. 

Answer: (a) x* = [4 2IT and (b) x* = 14 2 1IT. 
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6.46 By starting with (a) x0 = [2 1IT and (b) x(' = [2 1 1IT, can you reach the solution 
for Problem 6.45? Repeat for (a) x0 = [2 2IT and (b) x0 = [2 2 1IT. 

Hint: [2 2 11 is a saddle point. 

6.47 Estimate the coefficients in the correlation 

from the following experimental data by minimizing the sum of the square of the 
deviations between the experimental and predicted values of y. 

6.48 The cost of refined oil when shipped via the Malacca Straits to Japan in dollars per 
kiloliter was given (Uchiyama, 1968) as the linear sum of the crude oil cost, the insur- 
ance, customs, freight cost for the oil, loading and unloading cost, sea berth cost, sub- 
marine pipe cost, storage cost, tank area cost, refining cost, and freight cost of prod- 
ucts as 

4.242 X 104at 0.7952 + 1.8 13ip (nt + 1 .2q)0.861 + 
52.47q(360) 

where a = annual fixed charges, fraction (0.20) 
c, = crude oil price, $/kL (12.50) 
ci = insurance cost, $/kL (0.50) 
c, = customs cost, $/kL (0.90) 
i = interest rate (0.10) 
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n = number of ports (2) 
p = land price, $/m2 (7000) 
q = refinery capacity, bbyday 
t = tanker size, kL 

Given the values indicated in parentheses, use a computer code to compute the min- 
imum cost of oil and the optimum tanker size t and refinery size q by Newton's 
method and the quasi-Newton method (note that 1 kL = 6.29 bbl). 

(The answers in the reference were 

t = 427,000 dwt = 485,000 kL 
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LINEAR PROGRAMMING (LP) IS one of the most widely used optimization tech- 
niques and perhaps the most effective. The term linear programming was coined by 
George Dantzig in 1947 to refer to problems in which both the objective function 
and the constraints are linear (Dantzig, 1998; Martin, 1999; Vanderbei, 1999). The 
word programming does not refer to computer programming, but means optimiza- 
tion. This is also true in the phrases "nonlinear programming," "integer program- 
ming," and so on. The following are examples of LP that occur in plant management: 

1. Assign employees to schedules so that the workforce is adequate each day of the 
week and worker satisfaction and productivity are as high as possible. 

2. Select products to manufacture in the upcoming period, taking best advantage' of 
existing resources and current prices to yield maximum profit. 

3. Find a pattern of distribution from plants to warehouses that will minimize costs 
within the capacity limitations. 

4. Submit bids on procurement contracts to take into account profit, competitors' 
bids, and operating constraints. 

When stated mathematically, each of these problems potentially involves many 
variables, many equations, and many inequalities. A solution must not only satisfy 
all of the constraints, but also must achieve an extremum of the objective function, 
such as maximizing profit or minimizing cost. With the aid of modern software 
you can formulate and solve LP problems with many thousands of variables and 
constraints. 

7.1 GEOMETRY OF LINEAR PROGRAMS 

Consider the problem 

Maximize: f = x ,  +. 3x2 ' 

Subject to: - X I  + xz 5 1 

XI + X2 5 2 

X ,  r 0, x2 2 o 
The feasible region lies within the unshaded area of Figure 7.1 defined by the inter- 
sections of the half spaces satisfying the linear inequalities. The numbered points 
are called extreme points, corner points, or vertices of this set. If the constraints are 
linear, only a finite number of vertices exist. 

Contours of constant value of the objective function f are defined by the linear 
equation - 

x l  + 3x2 = Constant = c (7.2) 

As c varies, the contour is moved parallel to itself. The maximum value off is the 
largest c for which the line has at least one point in common with the constraint set. 
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FIGURE 7.1 ' 

Geometry of a linear program. 

For Figure 7.1, this point occurs for c = 5, and the optimal values of x are x, = 0.5, 
x, = 1.5. Note that the maximum value occurs at a vertex of the constraint set. If 
the problem seeks to minirnizef, the minimum is at the origin, which is again a ver- 
tex. If the objective function were f = 2x1 + 2x2, the line f = Constant would be 
parallel to one of the constraint boundaries, x,  + x, = 2. In this case the maximum 
occurs at two extreme points, (x, = 0.5, x, = 1.5) and (x,  = 2, x, = 0) and, in fact, 
also occurs at all points on the, line segment joining these vertices. 

'ILvo additional cases can exist. First, if the constraint x,  + x, 5 2 had been 
removed, the feasible region would appear as in Figure 7.2, that is, the set would be 
unbounded. Then max f is also unbounded because f can be made as large as desired 
subject to the constraints. Second, at the opposite extreme, the constraint set could 
be empty, as in the case where x,  + x, 5 2 is replaced by x, + x2 5 - 1 .  Thus an 
LP problem may have (1) no solution, (2) an unbounded solution, (3) a single opti- 
mal solution, or (4) an infinite number of optimal solutions. The methods to be 
developed deal with all these possibilities. 

The fact that the extremum of a linear program always occurs at a vertex of the 
feasible region is the single most important property of linear programs. It is true 
for any number of variables (i.e., more than two dimensions) and forms the basis 
for the simplex method for solving linear programs (not to be confused with the 
simplex method discussed in Section 6.1.4). 

Of course, for many variables the geometrical ideas used here cannot be visu- 
alized, and therefore the extreme points must be characterized algebraically. This is 
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FIGURE 7.2 
Unbounded minimum. 

done in the next two sections, in which the problem is placed in standard form and 
the basic results of linear programming are stated. 

Standard form for linear programs 
An LP problem can always be written in the following form. Choose x = (x,, 

x,, . . . , xn) to minimize 

n 

Subject to: a,x, = b ,  i 1,2, . . . ,m 
j= 1 

(7.4) 

1. I x .  I u,, j = 1, . . . ,n J J (7.5) 

where cj are the n objective function coefficients, a, and bi are parameters in the m 
linear equality constraints, and i, and u, are lower and upper bounds with I, 5 uj. 
Both i, and u, may be positive or negative. In matrix form, this problem is 

Minimize: f = cx (7-6) 

Subject to: Ax = b 

a n d l l x l u  

A is an m X n matrix whose (i, j) element is the constraint coefficient a,, and c, b, . 

1, u are vectors whose components are c,, b,, i,,.uj, respectively. If any of the Equa- 
tions (7.7) were redundant, that is, linear combinations of the others, they could be 
deleted without changing any solutions of the system. If there is no solution, or if 
there is only one solution for Equation (7.7), there can be no optimization. Thus the 
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case of greatest interest is where the system of equations (7.7) has more unknowns 
than equations and has at least two and potentially an infinite number of solutions. 
This occurs if and only if 

and 

We assume these conditions are true in what follows. The problem of linear pro- 
gramming is to first detect whether solutions exist, and, if so, to find one yielding 
the minimum f. 

Note that all the constraints in Equation (7.4) are equalities. It is necessary to 
place the problem in this form to solve it most easily (equations are easier to work 
with here than inequalities). If the original system is not of this form, it may easily 
be transformed by use of so-called slack variables. If a given constraint is an 
inequality, for example, 

then define a slack variable x,+~ 2 0 such that 

and the inequality becomes an equality. Similarly, if the inequality is 

we write 

Note that the slacks must be nonnegative to guarantee that the inequalities are sat- 
isfied. 

EXAMPLE 7.1 STANDARD LP FORM 

Transform the following linear program into standard form: 

Minimize: f = x,  + x2 

Subject to: 2x1 + 3x2 5 6 

X I  + 7x2 1 4 

x ,  + X2 = 3 

x ,  2 0, x2 unconstrained in sign 
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Solution. Define slack variables x3 r 0, x4 2 0. Then the problem becomes 

Minimize: f = x1 + x2 

Subject to: 2x1 + 3x2 + x3 = 6 

XI + 7x2 - X 4  = 4  

x1 + x2 = 3 
X, r 0, x3 2 0, x4 2 o 

In the rest of this chapter, we assume that the rows of the constraint matrix A are 
linearly independent, that is, rank (A) = m. If a slack variable is inserted in every row, 
then A contains a submatrix that is the identity matrix. In the preceding example, if 
we insert a slack variable x, into the equality: 

then the rows of A are independent. Modern LP solvers automatically transform prob- 
lems in this way. 

7.2 BASIC LINEAR PROGRAMMING DEFINITIONS AND RESULTS 

We now generalize the ideas illustrated earlier from 2 to n dimensions. Proofs of 
the following theorems may be found in Dantzig (1963). First a number of standard 
definitions are given. 

DEFINITION 1. A feasible solution to the linear programming problem is a vec- 
tor x = (x , ,  x,, . . . , x,) that satisfies Equations (7.7) and the bounds (7.8). 

DEFINITroN 2. A basis matrix is an m X rn nonsingular matrix formed fi-om 
some m columns of the constraint matrix A (Note: Because rank (A)  = m, A con- 
tains at least one basis matrix). 

DEFINITION 3. A basic solution to a linear program is the unique vector deter- 
mined by choosing a basis matrix, setting each of the n - m variables associated 
with columns of A not in the basis matrix equal to either I ,  or uj? and solving the 
resulting square, nonsingular system of equations for the remaining m variables. 

DEFINITION 4. A basic feasible solution is a basic solution in which all vari- 
ables satisfy their bounds (7.8). 

DEFINITION 5. A nondegenerate basic feasible solution is a basic feasible solution 
in which all basic variables xj are strictly between their bounds, that is, I ,  < xj < uj. 

DEFINITION 6. An optimal solution is a feasible solution that also minimizes f 
in Equation (7.6). 
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For example, in the system 

obtained from Equation (7.1) by adding slack variables x3 and x4, the matrix 

formed from columns 3 and 4 of the equations in (7.9) is nonsingular and hence is 
a basis matrix. The corresponding basic solution of (7.9) 

is a nondegenerate basic feasible solution. The matrix 

formed from columns 1 and 4 of Equation (7.9) is also a basis matrix. The corre- 
sponding basic solution is obtained by setting x2 = x, = 0 and solving 

yielding x, = - 1, x4 = 3. This basic solution is ,not feasible. 
The importance of these definitions is brought out'by the following results: 

RESULT 1. The objective function f assumes its minimum at a vertex of the fea- 
sible region. If it assumes its minimum at more than one vertex, then it takes on the 
same value at every point of the line segment joining any two optimal vertices. 

This theorem is a multidimensional generalization of the geometric arguments 
given previously. By result 1, in searching for a solution, we need only look at ver- 
tices. It is thus of interest to know how to characterize vertices in many dimensions 
algebraically. This information is given by the next result. 

RESULT 2. A vector x = (x,, . . . ,x,) is a vertex of the constraint set of an LP 
problem if and only if x is a basic feasible solution of the constraints (7.7)-(7.8). 

Result 2 is true in two dimensions as can be seen from the example of relations 
(7.1), whose constraints have been rewritten in equation form in (7.9). The (x,, x,) 
coordinates of the vertex at x, = 0, x, = 1 are given by the (x,, x,) coordinates of 
the basic feasible solution 

The optimal vertex corresponds to the basic feasible solution 
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An alternative definition of a vertex provides geometric insight and generalizes 
easily to nonlinear problems. Refer again to Figure 7.1. There are two variables, 
and each vertex is at the intersection of two active constraints. If there were three 
variables, active constraints would correspond to planes, and vertices would be 
determined by the intersection of at least three active constraints. For n variables, 
at least n hyperplanes must interact to define a point. We say "at least," because it 
is possible that more than n hyperplanes pass through a vertex. One can always 
draw other redundant constraints through the vertices in Figure 7.1. 

We can state these ideas precisely as follows. Consider any optimization prob- 
lem with n variables, let x be any feasible point, and let na,,(x) be the number of 
active constraints at x. Recall that a constraint is active at x if it holds as an equal- 
ity there. Hence equality constraints are active at any feasible point, but an inequal- 
ity constraint may be active or inactive. Remember to include simple upper or lower 
bounds on the variables when counting active constraints. We define the number of 
degrees of freedom (dof) at x as 

DEFINITION: A feasible point x is called a vertex if dof(x) 5 0 and the coeffi- 
cient matrix of the active constraints at x has rank n. It is a nondegenerate vertex if 
dof(x) = 0, and a degenerate vertex if dof(x) < 0, in which case abs[dof(x)] is 
called the degree of degeneracy at x. 

Comparing this definition with the previous one (x is a vertex if and only if it 
is a basic feasible solution), if x is a basic feasible solution, then n - m nonbasic 
bounds are active, plus m equalities, so 

and dof(x) 5 0. If k basic variables are at their bounds, n,, (x) = n + k, and x is a 
degenerate vertex with degree of degeneracy k. It is straightforward to show that the 
active constraint matrix has rank n. One can reverse the argument, showing the def- 
initions are equivalent. 

In nonlinear programming problems, optimal solutions need not occur at ver- 
tices and can occur at points with positive degrees of freedom. It is possible to have 
no active constraints at a solution, for example in unconstrained problems. We con- 
sider nonlinear problems with constraints in Chapter 8. 

Results 1 and 2 imply that, in searching for an optimal solution, we need only 
consider vertices, hence only basic feasible solutions. Because a basic feasible 
solution has m basic variables, an upper bound to the number of basic feasible 
solutions is the number of ways m variables can be selected from a group of n vari- 
ables, which is 

n ! 
(n  - m ) !  m! 

For large n and m this is a very large number. Thus, for large problems, it is impossi- 
ble to evaluate f at all vertices to find the minimum. What is needed is a computational 
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scheme that selects, in an orderly fashion, a sequence of vertices, each one yield- 
ing a lower value off, until finally the minimum is attained. In this way we con- 
sider only a small subset of the vertices. The simplex method, devised by G. B. 
Dantzig, is such a scheme. This procedure finds a vertex and determines whether it 
is optimal. If not, it finds a neighboring vertex at which the value off is less than 
or equal to the previous value. The process is iterated and in a finite number of steps 
(usually between m and 2m) the minimum is found. The simplex method also dis- 
covers whether the problem has no finite minimal solution (i.e., min f = -00) or if 
it has no feasible solutions (i.e., an empty constraint set). It is a powerful scheme 
for solving any linear programming problem. 

To explain the method, it is necessary to know how to go from one basic fea- 
sible solution (BFS) to another, how to identify an optimal BFS, and how to find a 
better BFS from a BFS that is not optimal. We consider these questions in the fol- 
lowing two sections. The notation and approach used is that of Dantzig (1998). 

Systems of linear equations and equivalent systems 
Consider the system of m linear equations in n unknowns 

A solution to this system is any set of variables x, . . . xn.that simultaneously satis- 
fies all equations. The set of all solutions to the system is called its solution set. The 
system may have one, many, or no solutions. If there is no solution, the equations 
are said to be inconsistent, and their solution set is empty. 

- 

Equivalent systems and elementary operations 
Two systems of equations are said to be equivalent if they have the same solu- 

tion sets. Dantzig (1998) proved that the following operations transform a given lin- 
ear system into an equivalent system: 

1. Multiplying any equation Ei by a constant q # 0 
2. Replacing any equation E, by the equation E, + qEi, where Ei is any other equa- 

tion of the system 

These operations are called elementary row operations. For example, the linear 
system of Equations (7.9) 
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may be transformed into an equivalent system by multiplying the first equation by 
- 1 and adding it to the second, yielding 

Note that the solution x, = 0, x, = 0, x, = 1, x, = 2 is a solution of both sys- 
tems. In fact, any solution of one system is a solution of the other. 

Pivoting 
A particular sequence of elementary row operations finds special application in 

linear programming. This sequence is called a pivot operation, defined as follows. 

DEFINITION. A pivot operation consists of m elementary operations that replace a 
linear system by an equivalent system in which a specified variable has a coefficient 
of unity in one equation and zero elsewhere. The detailed steps are as follows: 

1. Select a term args, in row (equation) r, column (variable) s, with a, f 0 called 
the pivot term. 

2. Replace the rth equation E, by the rth equation multiplied by lla,. 
3. For each i = 1,2, . . . , m except i = r, replace the ith equation Ei by Ei - ais/ar$Zr, 

that is, by the sum of Ei 'and the replaced rth equation multiplied by -a,. 

- - - - - - - -  - - 

EXAMPLE 7.2 USE OF PIVOT OPERATIONS 

Consider the system 

Transform the set of equations to an equivalent system in which x,  is eliminated from 
all but Equation (a), but having a unity coefficient in Equation (a). 

Solution. Choose the term 2x, as the pivot term. The first operation is to make the 
coefficient of this term unity, so we divide Equation (a) by 2, yielding the equivalent 
system 
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The next operation eliminates x, from Equation (b) by multiplying (a') by - 1 and 
adding the result to Equation (b), yielding 

Finally, we eliminate x, from Equation (c) by multiplying (a') by -3 and adding the 
result to Equation (c), yielding 

x, + 1 . 5 ~ ~  - 2X3 + 0 . 5 ~ ~  = 0.5 (a ') 

- 2 . 5 ~ ~  + 2x3 + 4 . 5 ~ ~  = 5.5 (b') 

3 . 5 ~ ~  + 7x3 - 1 . 5 ~ ~  = 0.5 (c') 

Canonical systems 
In the following discussion we assume that, in the system of Equations 

(7.6)-(7.8), all lower bounds Z,. = 0, and all upper bounds uj = +a, that is, that the 
bounds become x 2 0. This simplifies the exposition. The simplex method is read- 
ily extended to general bounds [see Dantzig (1998)l. Assume that the first rn 
columns of the linear system (7.7) form a basis matrix B. Multiplying each column 
of (7.7) by B-I yields a transformed (but equivalent) system in which the coeffi- 
cients of the variables (x,, . . . , xm) are an identity matrix. Such a system is called 
canonical and has the form shown in Table 7.1. 

The variables x,, . . . , xm are associated with the columns of B and are called 
basic variables. They are also called dependent, becau'se if values are assigned to 
the nonbasic, or independent variables, xm+,, . . . , xn? then x,, . . . , xm can be deter- 
mined immediately. In particular, if xm+ ,, . . . , xn are all assigned zero values then 
we obtain the basic solution 

TABLE 7.1 
Canonical system with basic variables x,, x,, . . . , x, 

Dependent 
(basic) 
variables Independent (nonbasic) variables Constants 
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then this is a basic feasible solution. If one or more bi = 0,  the basic feasible solu- 
tion is degenerate. 

Instead of actually computing B-I and multiplying the linear system (7.7) by 
it, we can place Equation (7.7) in canonical form by a sequence of m pivot opera- 
tions. First pivot on the term allxl if all # 0. If all = 0, there exists an element in 
its first row that is nonzero, since B is nonsingular. Rearranging the columns makes 
this the (1, 1) element and allows the pivot. Repeating this procedure for the terms 
a2,x2, . . . , a m d m  generates the canonical form. Such a form will be used to begin 
the simplex algorithm. 

7.3 SIMPLEX ALGORITHM 

The simplex method is a two-phase procedure for finding an optimal solution to LP 
problems. Phase 1 finds an initial basic feasible solution if one exists or gives the 
information that one does not exist (in which case the constraints are inconsistent 
and the problem has no solution). Phase 2 uses this solution as a starting point and 
either (1) finds a minimizing solution or (2) yields the information that the minimum 
is unbounded (i.e., -m). Both phases use the simplex algorithm described here. 

In initiating the simplex algorithm, we treat the objective function 

as just another equation, that is, 

which we include in the set to form an augmented system of equations. The sim- 
plex algorithm is always initiated with this augmented system in canonical form. 
The basic variables are some m of the x's, which we renumber to make the first m, 
that is, x1 . . . xm and -f. The problem can then be stated as follows. 

Find values of x1 r 0, x2 r 0, . . . , x, 2 0 and rnin f satisfying 
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In this canonical form the basic solution is 

We assume that this basic solution is feasible, that is, 

The workings of phases 1 and 2 guarantee that this assumption is always satisfied. 
If Equation (7.14) holds, we say that the linear programming problem is in feasible 
canonical form. 

Test for optimality 
If the problem is in feasible canonical form, we have a vertex directly at hand, 

represented by the basic feasible solution (7.13). But the form provides even more 
valuable information. By merely glancing at the numbers Fj, j = rn + 1, . . . , n, 
you can tell if this extreme point is optimal and, if not, you can move to a better 
one. Consider first the optimality test, given by the following result. 

\ 

RESULT 3. A basic feasible solution is a minimal feasible solution with total - - 
cost 5 if all constants 2, + ,, c, + ,, . . . , c, are nonnegative, that is, if 

The 5 are called reduced costs. 

The proof of this result involves writing the previous equation as 
- 

f = f + cm+lx,+l + ... + c,x, 

Because the variables x,,, . . . x, are presently zero and are constrained to be 
nonnegative, the only way any one of them can change is for it to become positive. 
But if 2, 2 0 for j = rn + 1, . . . , n, then increasing any xj cannot decrease the 
objective function f because then Fjxj 2 0. Because no feasible change in the non- 
basic variables can cause f to decrease, the present solution must be optimal. 

The reduced costs also indicate if there are multiple optima. Let all Zj 2 0 
and let 7, = 0 for some nonbasic variable x,. Then, if the constraints allow that 
variable to be made positive, no change in f results, and there are multiple optima. 
It is possible, however, that the variable may not be allowed by the constraints to 
become positive; this may occur in the case of degenerate solutions. We consider 
the effects of degeneracy later. A corollary to these results is the following: 

- 
RESULT 4. A basic feasible solution is the unique minimal feasible solution if 

cj > 0 for all nonbasic variables. 
Of course, if some Zj < 0 then f can be decreased by increasing the corre- 

sponding xj, SO the present solution is probably nonoptimal. Thus we must consider 
means of improving a nonoptimal solution. 
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Consider the problem of minimizing f, where 

We show how the canonical form can be used to improve a nonoptimal basic feasi- 
ble solution. 

Assume that we know that x,, x,, -f can be used as basic variables and that the 
basic solution will be feasible. We can thus reduce system (7.16) to feasible canon- 
ical form by pivoting successively on the terms x5 (first equation) and x, (second 
equation) (-f already appears in the correct way). This yields 

The circled term will be explained soon. The basic feasible solution is 

Note that an arbitrary pair of variables does not necessarily yield a basic solution 
to Equation (7.16) that is feasible. For example, had the variables x, and x, been 
chosen as basic variables, the basic solution would have been 

which is not feasible, because x, and x2 are negative. 
For the original basic feasible solution, one reduced cost is negative, namely - 

c3 = -24. The optimality test of relations (7.15) thus fails. Furthermore, if x, is 
increased from its present value of zero (with all other nonbasic variables remain- 
ing zero), f must decrease because, by the third equation of (7.18), f is then related 
to x, by 

How large should x, become? It is reasonable to make it as large as possible, 
because the larger the value of x,, the smaller the value off. The constraints place 
a limit on the maximum value x, can attain, however. Note that, if x2 = x4 = 0, rela- 
tions (7.18) state that the basic variables x,, x5 are related to x, by 

X'j = 5 - 3x3 
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Thus as x3 increases, x, and x, decrease, and they cannot be allowed to become neg- 
ative. In fact, as x3 reaches 1.5, x, becomes 0 and as x3 reaches 1.667, x, becomes 
0. By that time, however, x, is already negative, so the largest value x3 can attain is 

Substituting this value into Equations (7.21) and (7.22) yields a new basic fea- 
sible solution with lower cost: 

This solution reduces f from 28 to - 8. The immediate objective is to see if it is opti- 
mal. This can be done if the system can be placed into feasible canonical form with 
x,, x,, -f as basic variables. That is, x, must replace x, as a basic variable. One rea- 
son that the simplex method is efficient is that this replacement can be accom- . 

plished by doing one pivot transformation. 
Previously x, had a coefficient of unity in the second equation of (7.18) and 

zero elsewhere. We now wish x, to have this property, and this can be accomplished 
by pivoting on the term 2x3, circled in the second equation of (7.18). This causes x, 
to become basic and x, to become nonbasic, as is seen here: 

This gives the basic feasible solution (7.24), as predicted. It also indicates that the 
present solution although better, is still not optimal, because Z2, the coefficient of 
x2 in the f equation, is - 1. Thus we can again obtain a better solution by increas- 
ing x2 while keeping all other nonbasic variables at zero. From Equation (7.25), the 
current basic variables are then related to x2 by 

f = - 8 -  x2 

Note that the second equation places no bound on the increase of x2, but the first 
equation restricts x, to a maximum of 0.5 1 0.875 = 0.57 1, which reduces x, to zero. 
As before, we obtain a new feasible canonical form by pivoting, this time using 
0 . 8 7 5 ~ ~  in the first equation of (7.25) as the pivot term. This yields the system 
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and the basic feasible solution 

Because all reduced costs for the nonbasic variables are positive, this solution is the 
unique minimal solution of the problem, by the corollary of the previous section. 
The optimum has been reached in two iterations. 

Degeneracy 
In the original system (7.18), if the constant on the right-hand side of the sec- 

ond equation had been zero, that is, if the basic feasible solution had been degen- 
erate, then x,  would have been related to x, by 

And any positive change in x, would have caused x, to become negative. Thus x, 
would be forced to remain zero and f could not decrease. We go through the pivot 
transformation anyway and attain a new form in which the degeneracy may not be 
limiting. This can easily occur, for if relation (7.29) had been 

then x, could be made positive. 

Unboundedness 
If relations (7.26) had been 

then x, could be made as large as desired without causing x, and x, to become neg- 
ative, and f could be made as small as desired. This indicates an unbounded solu- . 
tion. Note that it occurs whenever all coefficients in a column with negative Zj are 
also negative (or zero). 

Improving a nonoptimal basic feasible solution in general 

- 
Let us now formalize the procedures of the previous section. If at least one 

cj < 0, then, at least if we assume nondegeneracy (all b, > 0 ), it is always pos- 
sible to construct, by pivoting, another basic feasible solution with lower cost. If 
more than one Zj  < 0, the variable xs to be increased can be the one with the most 
negative Zj; that is, the one whose relative cost factor is 
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Although this may not lead to the greatest decrease in f (because it may not be pos- 
sible to increase x, very far), this is intuitively at least a good rule for choosing the 
variable to become basic. More sophisticated "pricing" schemes have been devel- 
oped, however, that perform much better and are included in most modern LP 
solvers [see Bixby, 19921. An important recent innovation is the development of 
steepest edge pricing [see Forrest and Goldfarb (1992)l. 

Having decided on the variable x, to become basic, we increase it from zero, 
.holding all other nonbasic variables zero, and observe the effects -on the current 
basic variables. By Equation (7.12), these are related to xs by 

Increasing xs decreasesf, and the only factor limiting the decrease is that one of the 
variables x1 . . . x, can become negative. However, if 

then xs can be made as large as desired. Thus we have 'the following result. 

RESULT 5 (UNBOUNDEDNESS). If, in the canonical system for some s, all coeffi- 
cients a, are nonpositive and Fs  is negative, then a class of feasible solutions can 
be constructed for which the set off values has no lower bound. 

The class of solutions yielding unbounded f is the set 

with x, any positive number and all other xi = 0. If, however, at least one Zis is pos- 
itive, then xs cannot be increased indefinitely because eventually some basic vari- 
able becomes first zero, then negative. From Equation (7.3 I), xi becomes zero when 
Zis > 0 and when x, attains the value 

The first xi to become negative is the xi that requires the smallest xs to drive it to 
zero. This value of xs is the greatest value for xs permitted by the nonnegativity con- 
straints and is given by 
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The basic variable x, then becomes nonbasic, to be replaced by xs. We saw from the 
example in Equations (7.16)-(7.28) that a new canonical form with xs replacing x, 
as a basic variable is easily obtained by pivoting on the term Z,J , .  Note that the 
previous operations may be viewed as simply locating that pivot term. Finding 
- 
c s  = rnin Z j  < 0 indicates that the pivot term was in column s, and finding that 

the minimum of the ratios ii/iiis for Z i s  > 0 occurred for i = r indicates that it 
was in row r. 

As seen in the example, if the basic solution is degenerate, then the given 
by Equation (7.35) may be zero. In particular, if some bi = 0 and the correspon- 
ding Z i s  > 0 then, by Equation (7.35), $ = 0. In this case the pivot operation is 
still carried out, but f is unchanged. 

Iterative procedure 
The procedure of the previous section provides a means of going from one basic 

feasible solution to one whose f is at least equal to the previous f (as can occur, in 
the degenerate case) or lower, if there is no degeneracy. This procedure is repeated 
until (1) the optimality test of relations (7.15) is passed or (2) information is pro- 
vided that the solution is unbounded, leading to the main convergence result. 

RESULT 6. Assuming nondegeneracy at each iteration, the simplex algorithm 
terminates in a finite number of iterations. 

Because the number of basic feasible solutions is finite, the algorithm can fail 
to terminate only if a basic feasible solution is repeated. Such repetition implies that 
the same value off is also repeated. Under nondegeneracy, however, each value of 
f is lower than the previous, so no repetition can occur, and the algorithm is finite. 

Degenerate case 
If, at some iteration, the basic feasible solution is degenerate, the possibility 

exists that f can remain constant for some number of subsequent iterations. It is then 
possible for a given set of basic variables to be repeated. An endless loop is then set 
up, the optimum is never attained, and the simplex algorithm is said to have cycled. 
Examples of cycling have been constructed [see Dantzig (1998), Chapter 101. 

Some procedures are guaranteed to avoid cycling (Dantzig, 1998). Modern LP 
solvers contain very effective antidegeneracy strategies, although most are not 
guaranteed to avoid cycling. In practice, almost all LPs have degenerate optimal 
solutions. A high degree of degeneracy (i.e., a high percentage of basic variables at 
bounds) can Blow the simplex method down considerably. Fortunately, an alterna- 
tive class of LP algorithms, called barrier methods, are not affected by degeneracy. 
We discuss these briefly later in the chapter. 

Two phases of the simplex method 
The simplex algorithm requires a basic feasible solution as a starting point. Such 

a starting point is not always easy to find and, in fact, none exists if the constraints 
are inconsistent. Phase 1 of the simplex method finds an initial basic feasible solution 
or yields the information that none exists. Phase 2 then proceeds from this starting 
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point to an optimal solution or yields the information that the solution is unbounded. 
Both phases use the simplex algorithm of the previous section. 

Phase 1. Phase 1 starts with some initial basis B and an initial basic (possibly 
infeasible) solution (x,, xN) satisfying 

In the previous expression, all components of xN are at bounds and N is the corre- 
sponding matrix of coefficients for x,. Because B is nonsingular 

If x, is between its bounds, the basic solution is feasible and we begin phase 2, 
which optimizes the true objective. Otherwise, some components of xB violate their 
bounds. Let L and U be the sets of indices of basic variables that violate their 
bounds, that is 

and 

Phase 1 minimizes the following linear objective function, the sum of infeasibili- 
ties, sin8 

sinf = 2 (1, - x,) + 2 (3 - u,) 
,EL j~ U 

Note that each term is positive, and that sinf = 0 if and only if the basic solution is 
feasible. When minimizing sin5 the standard simplex algorithm is applied, but the 
rules for choosing the pivot row described earlier must be changed, because some 
basic variables are now infeasible. During this process, infeasible basic variables 
can satisfy their bounds and feasible ones can violate their bounds, so the index sets 
L and U (and hence the function sinf) can change at any iteration. If the simplex 
optimality test is met and sinf > 0, then the LP is infeasible. Otherwise, when sinf 
= 0, phase 2 begins using the simplex method discussed earlier. 

The initial basis 
Often a good initial basis is known. Once an LP model is constructed and val- 

idated, it is common to do several series of case studies. In each case study, a set of 
LP data elements (cost or right-hand side components, bounds, or matrix elements 
aq) are assigned a sequence of closely related sets of values. For example, one may 
vary several costs through a range of values or equipment capacities or customer 
demands (both of the last two are right-hand sides or bounds). If there are several 
sets of parameter values, after the first set is solved, the optimal basis is stored and 
used as the initial basis for the LP problem that uses the second set, and so on. This 
usually sharply reduces computation time compared with a cold start, where no 
good initial basis is known. In fact, the simplex method's ability to warm start 
effectively is one of its major advantages over barrier methods (discussed later). 



c H A P T E R 7: Linear Programming (LP) and Applications 24 1 

EXAMPLE 7.3 ITERATIVE SOLUTION OF AN LP PROBLEM 

Consider first the problem illustrated geometrically in Figure 7.1 given in relations 
(7.1), that is 

Maximize: f = xl + 3x2 

Subject to: -x ,  + x2 + x3 = 1 

where x,, x4 are slack variables. Solve for the maximum using the simplex method. 

Solution. Here no phase 1 is needed because an initial basic feasible solution is obvi- 
ous. To apply directly the results of the previous sections, we rephrase the problem as 

Minimize: -x l  - 3x2 

subject to Equation (a).  The initial feasible canonical form is 

- X I  + x + Xg 0 = 1 

X l  + x2 + x4 = 2 

- X I  - 3x2 -f = o  
The initial basic feasible solution is 

This corresponds to vertex (2) of Figure 7.1. 

Iteration 1. Because F2 = min(Zl, C 2 )  = - 3  < 0, x2 becomes basic. To see 
which variable becomes nonbasic, we compute the ratios bi /a i2;  for all i such that 
Z ,, > 0. This gives 

- 
The minimum of these is b l /2  12; thus the basic variable with unity coefficient in row 
1, x,, leaves the basis. The pivot term is a,,x2 that is, the x2 term circled in Equation 
(b). Pivoting on this term yields 

Iteration 2. The new basic feasible solution is 
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Note that f is reduced. The solution corresponds to vertex (3) of Figure 7.1. Because - 
c, = -4 = minjFj, x ,  becomes basic. The only ratio bi/iiil having Z i l  > 0 is 

that for i = 2; thus x4 becomes nonbasic and the circled pivot term is Z21xl = 2x1.  
Pivoting yields 

with basic feasible solution 

which corresponds to vertex (4) of Figure 7.1. This is optimal, since all F j  > 0. The 
path taken by the method is vertices (2), (3), (4). 

7.4 BARRIER METHODS 

Barrier methods for linear programming were first proposed in the 1980s and are 
now included in most commercial LP software systems. Their underlying princi- 
ples and the way they operate are very different from the simplex method. They 
generate a sequence of points that may not satisfy all the constraints until the 
method converges and none of the points need be extreme points. This allows them 
to cut across the feasible region rather than moving from one extreme point to 
another, as the simplex method does. Hence they usually take far fewer iterations, 
than the simplex method, but each iteration takes more time. See Martin (1999), 
Vanderbei (1999), or Wright (1999) for complete explanations. Current implemen- 
tations of barrier methods are competitive with the best simplex codes, are often 
faster on very large problems, and often do very well in problems where the sim- 
plex method is slowed by degeneracy. 

7.5 SENSITIVITY ANALYSIS 

In addition to providing optimal x values, both simplex and barrier solvers provide 
values of dual variables or Lagrange multipliers for each constraint. We discuss 
Lagrange multipliers at some length in Chapter 8, and the conclusions reached 
there, valid for nonlinear problems, must hold for linear programs as well. In Chap- 
ter 8 we show that the dual variable for a constraint is equal to the derivative of the 
optimal objective value with respect to the constraint limit or right-hand side. We 
illustrate this with examples in Section 7.8. 
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7.6 LINEAR MIXED INTEGER PROGRAMS 

A mixed integer linear program (MILP) is an LP in which one or more of the deci- 
sion variables must be integers. A common subset of MILPs are binary, in which 
the integer variables can be either 0 or 1, indicating that something is either done 
or not done. For example, the binary variable xj = l(0) can mean that a facility is 
(is not) placed at location j, or project j is (is not) selected. For such yes-no vari- 
ables, fractional values have no significance. Almost all LP solvers now include the 
capability to solve MILPs, and this dramatically increases their usefulness. The 
computational difficulty of solving MILPs is determined mainly by the number of 
integer variables, and only in a secondary way by the number of continuous vari- 
ables or constraints. Currently the best MILP solvers can handle hundreds of inte- 
ger variables in reasonable time, sometimes more, depending on the problem struc- 
ture and data. We discuss MILP's further in Chapter 9 [see also Martin (1999) and 
Wolsey (1998)l. 

7.7 LP SOFTWARE 

LP software includes two related but fundamentally different kinds of programs. 
The first is solver software, which takes data specifying an LP or MILP as input, 
solves it, and returns the results. Solver software may contain one or more algo- 
rithms (simplex and interior point LP solvers and branch-and-bound methods for 
MILPs, which call an LP solver many times). Some LP solvers also include facili- 
ties for solving some types of nonlinear problems, usually quadratic programming 
problems (quadratic objective function, linear constraints; see Section 8.3), or sep- 
arable nonlinear problems, in which the objective or some constraint functions are 
a sum of nonlinear functions, each of a single variable, such as 

Modeling systems 
A second feature of LP programs is the inclusion of modeling systems, which 

provide an environment for formulating, solving, reporting on, analyzing, and man- 
aging LP and MILP models. Modeling systems have links to several LP, MILP, and 
NLP solvers and allow users to change solvers by changing a single statement. 
Modeling systems are all designed around a language for formulating optimization 
models, and most are capable of formulating and solving both linear and nonlinear 
problems. Algebraic modeling systems represent optimization problems using alge- 
braic notation and a powerful indexing capability. This allows sets of similar con- 
straints to be represented by a single modeling statement, regardless of the number 
of constraints in the set. For more information on algebraic modeling languages, 
see Section 8.9.3. 
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Another type of widely used modeling system is the spreadsheet solver. Micro- 
soft Excel contains a module called the Excel Solver, which allows the user to enter 
the decision variables, constraints, and objective of an optimization problem into 
the cells of a spreadsheet and then invoke an LP, MILP, or NLP solver. Other 
spreadsheets contain similar solvers. For examples using the Excel Solver, see Sec- 
tion 7.8, and Chapters 8 and 9. 

The power of linear programming solvers 
Modern LP solvers can solve very large LPs very quickly and reliably on a PC 

or workstation. LP size is measured by several parameters: (1) the number of vari- 
ables n, (2) the number of constraints m, and (3) the number of nonzero entries nz 
in the constraint matrix A. The best measure is the number of nonzero elements nz 
because it directly determines the required storage and has a greater effect on com- 
putation time than n or m. For almost all LPs encountered in practice, nz is much 
less than mn, because each constraint involves only a few of the variables x. The 
problem density 100(ndmn) is usually less than 1%, and it almost always decreases 
as m and n increase. Problems with small densities are called sparse, and real world 
LPs are always sparse. Roughly speaking, a problem with under 1000 nonzeros is 
small, between 1000 and 50,000 is medium-size, and over 50,000 is large. A small 
problem probably has m and n in the hundreds, a medium-size problem in the low 
to mid thousands, and a large problem above 10,000. 

Currently, a good LP solver running on a fast (> 500 rnI-Iz) PC with substantial 
memory, solves a small LP in less than a second, a medium-size LP in minutes to 
tens of minutes, and a large LP in an hour or so. These codes hardly ever fail, even 
if the LP is badly formulated or scaled. They include preprocessing procedures that 
detect and remove redundant constraints, fixed variables, variables that must be at 
bounds in any optimal solution, and so on. Preprocessors produce an equivalent LP, 
usually of reduced size. A postprocessor then determines values of any removed 
variables and Lagrange multipliers for removed constraints. Automatic scaling of 
variables and constraints is also an option. Armed with such tools, an analyst can 
solve virtually any LP that can be formulated. 

Solving MILPs is much harder. Focusing on MILPs with only binary variables, 
problems with under 20 binary variables are small, 20 to 100 is medium-size, and 
over 100 is large. Large MILPs may require many hours to solve, but the time 
depends greatly. on the problem structure and the availability of a good starting 
point. We discuss MILP and MINLP formulations in Chapter 9. 

Imbedded Linear Programming solvers 
In addition to their use as stand-alone systems, LPs are often included within 

larger systems intended for decision support. In this role, the LP solver is usually 
hidden from the user, who sees only a set of critical problem input parameters and a 
set of suitably formatted solution reports. Many such systems are available for sup- 
ply chain management-for example, planning raw material acquisitions and deliv- 
eries, production and inventories, and product distribution. In fact, the process indus- 
tries--oil, chemicals, pharmaceuticals-have been among the earliest users. Almost 
every refinery in the developed world plans production using linear programming. 
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When embedded in decision support systems (usually in a Windows environ- 
ment), LP solvers typically receive input data from a program written in C or Visual 
Basic and are often in the form of dynamic link libraries (DLLs). Most of today's 
LP solvers are available as DLLs. 

Available Linear Programming software 
Many LP software vendors advertise in the monthly journal OWMS Today, 

published by INFORMS. For a survey of LP software, see Fourer (1997, 1999) in 
that journal. All vendors now have Websites, and the following table provides a list 
of LP software packages along with their Web addresses. 

Company name Solver name Web addresses1E-mail address 

CPLEX Division of L O G  CPLEX : www.cplex.com 

IBM 

LINDO Systems Inc. 

Dash Associates 

Sunset Software Technology 

Optimization Software www.research.ibm.com/osl/ 
Library (OSL) 

LINDO www.lindo.com 

XPRESS-MP www.dashopt.com 

AXA Sunsetw @ix.netcom.com 

Advanced Mathematical software LAMPS info@ amsoft.demon.co.uk 

7.8 A TRANSPORTATION PROBLEM USING THE EXCEL SOLVER 
SPREADSHEET FORMULATION 

Figure 7.3 displays a Microsoft Excel spreadsheet containing the formulas and data 
for an LP transportation problem. This spreadsheet is one of six optimization exam- 
ples included with Microsoft Excel '97. With a standard installation of Microsoft 
Office, the Excel workbook containing all six examples is in the file 

MicrosoftOffice/office/exarnples/solver/solvsamp.xls 

weeencourage the reader to start Excel on his or her computer, find and open 
this file, and examine and solve this spreadsheet as the rest of this section is read. 
The 15 decision var iabs  are the number of units of a single product to ship from 
three plants to five warehouses. Initial values of these.variables (all ones) are in the 
range C8:GlO. The constraints are (1) the amount shipped from each plant cannot 
exceed the available supply, given in range B16:B18, (2) the amount shipped to 
each warehouse must meet or exceed demand there, given in range C14:G14, and 
(3) all amounts shipped must be nonnegative. Cells C16:G18 contain the per unit 
costs of shipping the product along each of the 15 possible routes. The total cost of 
shipping into each warehouse is in the range C20:G20, computed by multiplying 
the amounts shipped by their per unit costs and summing. Total shipping cost in cell 
B20 is to be minimized. Before reading further, attempt to find an optimal solution 
to this problem by trying your own choices for the decision variables. 
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Goal is to minimize total shipping cost. 

Amount to ship from each plant to each 
warehouse. 

B8:BlO<=B16:B18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:G10>=0 Number to ship must be greater than or equal 
to 0. 

You can solve this problem faster by selecting the Assume linear model checksbox in the Solver 
Options dialog box before clicking Solve. A problem of this type has an optimum solution at which 

FIGURE 7.3 
A transportation problem in a Microsoft Excel spreadsheet format. Permission by 
Microsoft. 

Algebraic formulation 
Let x, be the number of units of the product shipped from plant i to warehouse 

j .  Then the supply constraints are 

xij  5 avail,, i = 1,2,3 
j =  1 

The demand constraints are 

z n ,  2 demand,, j = 1, ..., 5 
i =  1 
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and the nonnegativities: 

The objective is to minimize 

Cost = 2 C cuxs 

Solver parameters dialog 
To define this problem for the Excel Solver, the cells containing the decision 

variables, the constraints, and the objective must be specified. This is done by choos- 
ing the Solver command from the Tools menu, which causes the Solver parameters 
dialog shown in Figure 7.4 to appear. The "Target Cell"' is the cell containing the 
objective function. Clicking the "Help'3ut~on explains all the steps needed to enter 
the "changing" (i.e., decision) variables and the constraints. We encourage you to 
"Reset all," and fill in this .dialog from scratch. 

Solver options dialog 
Selecting the "Options" button in the Solver Parameters dialog brings up the 

Solver Options dialog box shown in Figure 7.5. The current Solver version does not 
determine automatically if the problem is linear or nonlinear. To inform Solver that 

b&ject to the Comtraintr; --- - 

pkte 

FIGURE 7.4 
Solver parameters dialog box. Permission by Microsoft. 
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FIGURE 7.5 
Solver options diaIog box. Permission by Microsoft. 

the problem is an LP, select the "Assume Linear Model" box. This causes the sim- 
pIex soIver to be used. It is both faster and more accurate for LPs than the general- 
ized reduced gradient (GRG) nonlinear solver, which is the default choice. The 
GRG solver is discussed in Chapter 8. 

Solving with the simplex solver 
Select the '"Show Iteration Results" box, click "OK' in the Solver Options dia- 

log, then click "Solve" on the Solver Parameter dialog. This causes the simplex 
solver to stop after each iteration. Because an initial feasible basis is not provided, 
the simplex method begins with an infeasible solution in phase 1 and proceeds to 
reduce the sum of infeasibilities sinf in Equation (7.40) as described in Section 7.3. 
Observe this by selecting "Continue" after each iteration. The first feasible solution 
found is shown in Figure 7.6. It has a cost of $3210, with most shipments made 
from the cheapest source, but with other sources used when the cheapest one runs 
out of supply. Can you see a way to improve this solution? 

Tf you allow the simplex method to continue, it finds the improved solution 
shown in Figure 7.7, with a cost of $3200, which is optimal (all reduced costs are 
nonnegative). It recognizes that it can save $20 by shifting ten Dallas units from S. 
Carolina to Tennessee, if it frees up ten units of supply at Tennessee by supplying 
Chicago from Arizona (which costs only $10 more). Supplies at Arizona and Ten- 
nessee are completely used, but South Carolina has ten units of excess supply. 
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Amount to ship from each plant to each 
warehouse. 

B8:BlO<=B16:B18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:GlOr=O Number to ship must be greater than or equal 
to 0. 

You can solve this problem faster by selecting the Assume linear model check box in the Solver 
Options dialog box before clicking Solve. A problem of this type has an optimum solution at which 
amounts to ship are integers, if all of the supply and demand constraints are integers. 

FIGURE 7.6 
First feasible solution. Permission by Microsoft. 

The sensitivity report 
Figure 7.8 shows the sensitivity report, which can be selected from the dialog 

box that appears when the solution algorithm finishes. The most important infor- 
mation is the "Shadow Price" column in the "constraints" section. These shadow 
prices (also called dual variables or Lagrange multipliers) are equal to the change 
in the optimal objective value if the right-hand side of the constraint increases by 
one unit, with all other right-hand side values remaining the same. Hence the first 
three multipliers show the effect of increasing the supplies at the plants. Because 
the supply in South Carolina is not all used, its shadow price is zero. Increasing the 
supply in Tennessee by one unit improves the objective by 2, twice as much as Ari- 
zona. To verify this, increase the Tennessee supply to 261, resolve, and observe that 
the new objective value is $3198. The last five shadow prices show the effects of 
increasing the demands. The "Allowable Increase" is the amount the right-hand 



250 PART 11: Optimization Theory and Methods 

Amount to ship from each plant to each 
warehouse. 

B8:B 10<=B 16:B 18 Total shipped must be less than or equal to 
supply at plant. 

C12:G12>=C14:G14 Totals shipped to warehouses must be greater 
than or equal to demand at warehouses. 

C8:GlO>=O Number to ship must be greater than or equal 
to 0. 

FIGURE 7.7 
Optimal solution. Permission by Microsoft. 

side can increase before the shadow price changes, and similarly for the "Allowable 
Decrease." Beyond these ranges, some shipment that is now zero becomes positive 
while some positive one becomes zero. Try right-hand side changes within and 
slightly beyond one of the ranges to verify this. 

The "Adjustable Cells" section contains sensitivity information on changes in 
the objective coefficients. The reduced costs are the qualities Z j  discussed in Sec- 
tion 7.3. These are all nonnegative, as Qey must be in an optimal solution-see 
result 3. Note that the Z j  for the South Carolina-Chicago shipment is zero, indi- 
cating that this problem has multiple optima (because this optimal solution is non- 
degenerate, i.e., all basic variables are positive). The following table shows a set of 
shipping unit amounts that yields no net cost change. 
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Adjustable Cells 

Final Reduced Objective Allowable Allowable 
Cell Name Value Cost Coefficient Increase Decrease 

$C$8 S. Carolina San Fran 0 6 10 1E+30 6 
$D$8 S. Carolina Denver 0 3 8 1E+30 3 
$E$8 S. Carolina Chicago 0 0 6 1E+30 0 
$F$8 S. Carolina Dallas 80 0 5 0 1 
$G$8 S. Carolina New York 220 0 4 4 4 
$C$9 Tennessee San Fran 0 4 6 1E+30 4 
$D$9 Tennessee Denver 0 2 5 1E+30 2 
$E$9 Tennessee Chicago 180 0 4 0 1 
$F$9 Tennessee Dallas 80 0 3 1 0 
$G$9 Tennessee New York 0 4 6 1E+30 4 
$C$10 Arizona San Fran 180 0 3 4 4 
$D$10 Arizona Denver 80 0 4 2 5 . . 

$E$10 Arizona Chicago 20 0 5 1 2 
$F$10 Arizona Dallas 0 1 5 1E+30 1 
$G$10 Arizona New York 0 6 9 lE+30 6 

Constraints 

Final Shadow Constraint Allowable Allowable 
Cell Name Value Price R.H. Side Increase Decrease 

- - 

$B$8 S. Carolina Supply 300 0 3 10 1E+30 10 
$B$9 Tennessee Supply 260 -2 260 80 10 
$B$10 Arizona Supply 280 -1 280 80 10 
$C$12 San Fran Demand 180 4 180 10 80 
$D$12 Denver Demand 80 5 80 10 80 
$E$12 Chicago Demand 200 6 200 10 80 
$F$12 Dallas Demand 160 5 160 10 80 
$G$12 New York Demand 220 4 220 10 220 

FIGURE 7.8 
Sensitivity report. 

Shipment Change Cost change 

South Carolina-Chicago +1 +6 
Tennesseexhicago -1 -4 
Tennessee-Dallas +1 +3 
S. Carolina-Dallas -1 -5 
Total 0 

These changes leave the amounts shipped out from the plants and into the ware- 
houses unchanged. 
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7.9 NETWORK FLOW AND ASSIGNMENT PROBLEMS 

This transportation problem is an example of an important class of LPs called net- 
workflow problems: Find a set of values for the flow of a single commodity on the 
arcs of a graph (or network) that satisfies both flow conservation constraints at each 
node (i-e., flow in equals flow out) and upper and lower limits on each flow, and 
maximize or minimize a linear objective (say, total cost). There are specified sup- 
plies of the commodity at some nodes and demands at others. Such problems have 
the important special property that, if all supplies, demands, and flow bounds are 
integers, then an optimal solution exists in which all flows are integers. In addition, 
special versions of the simplex method have been developed to solve network flow 
problems with hundreds of thousands of nodes and arcs very quickly, at least ten 
times faster than a general LP of comparable size. See Glover et al. (1992) for fur- 
ther information. 

The integer solution property is particularly important in assignment problems. 
These are transportation problems (like the problem just described) with n supply 
nodes and n demand nodes, where each supply and demand is equal to 1 .O, and all 
constraints are equalities. Then the model in Equations (7.41) through (7.44) has 
the following interpretation: Each supply node corresponds to a "job," and each 
demand node to a "person." The problem is to assign each "job" to a "person" so 
that some measure of benefit or cost is optimized. The variables xii are 1 if "job" i 
is assigned to "person" j, and zero otherwise. 

As an example, suppose we want to assign streams to heat exchangers and the 
cost (in some measure) of doing so is listed in the following matrix: 

Exchanger number 

Each element in the matrix represents the cost of transferring stream i to exchanger 
j. How can the cost be minimized if each stream goes to only one exchanger? 

First let us write the problem statement. The total number of streams n is 4. Let 
cd be an element of the cost matrix, which is the cost of assigning stream i to 
exchanger j. Then we have the following assignment problem: 

Minimize: f(x) = cijxij 
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The constraints (7.46) ensure that each stream is assigned to some exchanger, and 
Equation (7.45) ensures that each exchanger is assigned one stream. Because the 
supplies and demands are integers, this problem has an optimal integer solution, 
with each xi,. equal to 0 or 1. The reader is invited to solve this problem using the 
Excel Solver (or any other LP solver) and find an optimal assignment. 
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PROBLEMS 

7.1 A refinery has available two crude oils that have the yields shown in the following 
table. Because of equipment and storage limitations, production of gasoline, kerosene, 
and fuel oil must be limited as also shown in this table. There are no plant limitations 
on the production of other products such as gas oils. 

The profit on processing crude #1 is $l.OO/bbl and on crude #2 it is $0.70/bbl. 
Find the approximate optimum daily feed rates of the two crudes to this plant via a 
graphical method. 

Maximum allowable Volume percent yields product rate 
Crude #1 Crude #2 (bbyday) 

Gasoline 70 3 1 6,000 
Kerosene 6 9 2,400 
Fuel oil 24 4iO 12,000 

rn 

7.2 A confectioner manufactures two kinds of candy bars: Ergies (packed with energy for 
the kiddies) and Nergies (the "lo-cal" nugget for weight watchers without willpower). 
Ergies sell at a profit of 50# per box, and Nergies have a profit of 60# per box. The 
candy is processed in three main operations: blending, cooking, and packaging. The 
following tableerecords the average time in minutes required by each box of candy, for 
each of the three activities. 

Blending Cooking Packing 

Ergies 1 5 3 
Nergies 2 4 1 

During each production run, the blending equipment is available for a maximum of 14 
machine hours, the cooking equipment for at most 40 machine hours, and the packag- 
ing equipment for at most 15 machine hours. If each machine can be allocated to the 
making of either type of candy at all times that it is available for production, determine 
how many boxes of each kind of candy the confectioner should make to realize the 
maximum profit. Use a graphical technique for the two variables. 
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7.3 Feed to three units is split into three streams: FA, FB, and Fc. Two products are pro- 
duced: P1 and P, (see following figure), and the yield in weight percept by unit is 

Yield 
(weight %) Unit A Unit B Unit C 

Each stream has values in $/lb as follows: 

Stream F p, p2 
Value (Wb) .40 .60 .30 
-- 

Because of capacity limitations, certain constraints exist in the stream flows: 

1. The total input feed must not exceed 10,000 lblday. 
2. The feed to each of the units A, B, and C must not exceed 5000 lblday. 
3. No more than 4000 lblday of P ,  can be used, and no more than $7000 lblday of 
P, can be used. 

FIGURE W.3 

In order to determine the values of FA, FB, and Fc that maximize the daily 
profit, prepare a mathematical statement of this problem as a linear programming 
problem. Do not solve it. 

7.4 Prepare a graph of the constraints and objective function, and solve the following lin- 
ear programming problem 

Maximize: xl + 2x2 

Subject to: - x ,  + 3x2 < 10 
xl  + x2 1 6  

x ,  - x2 ' 2 

xl + 3x2 2 6 

2x1 + X* 2 4 

x 1 2 0  Xz"0 
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7.5 A chemical manufacturing firm has discontinued production of a certain unprofitable 
product line. This has created considerable excess production capacity on the three exist- 
ing batch production facilities. Management is considering devoting this excess capacity 
to one or more of three new products: Call them products 1,2, and 3. The available capac- 
ity on the existing units that might limit output is summarized in the following table: 

Available time 
Unit @/week) 

Each of the three new products requires the following processing time for completion: 

Productivity (Watch) 

Unit Product 1 Product 2 Product 3 

The sales department indicates that the sales potential for products 1 and 2 exceeds the 
maximum production rate and that the sales potential for product 3 is 20 batches per 
week. The profit per batch is $20, $6, and $8, respectively, on products 1, 2, and 3. 

Formulate a linear programming model for determining how much of each prod- 
uct the firm should produce to maximize profit. 

7.6 An oil refinery has to blend gasoline. Suppose that the refinery wishes to blend four 
petroleum constituents into three grades of gasoline: A, B, and C. Determine the mix 
of the four constituents that will maximize profit. 

The availability and costs of the four constituents are given in the following table: 

Maximum quantity 
available Cost 

Constituent* (bbl/da y) per barrel ($) 

*1 = butane 
2 = straight-run 
3 = thermally cracked 
4 = catalytic cracked 

To maintain the required quality for each grade of gasoline, it is necessary to specify 
certain maximum or minimum percentages of the constituents in each blend. These are 
shown in the following table, along with the selling price for each grade. 
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Selling price 
Grade Specification per barrel ($) 

A Not more than 15% of 1 16.20 
Not less than 40% of 2 
Not more than 50% of 3 

B Not more than 10% of 1 15.75 
Not less than 10% of 2 

C Not more than 20% of 1 15.30 

Assume that all other cash flows are fixed so that the "profit" to be maximized is total 
sales income minus the total cost of the constituents. Set up a linear programming 
model for determining the amount and blend of each grade of gasoline. 

'.7 A refinery produces, on average, 1000 gallon/hour of virgin pitch in its crude dis- 
tillation operation. This pitch may be blended with flux stock to make commercial 
fuel oil, or it can be sent in whole or in part to a visbreaker unit as shown in Figure 
P7.7. The visbreaker produces an 80 percent yield of tar that can also be blended with 
flux stock to make commercial fuel oil. The visbreaking operation is economically 
break-even if the pitch and the tar are given no value, that is, the value of the over- 
head product equals the cost of the operation. The commercial fuel oil brings a real- 
ization of 5$/gal, but the flux stock has a cracking value of 8$/gal. This information 
together with the viscosity and gravity blending numbers and product specifications, 
appears in the following table. It is desired to operate for maximum profit. 

FIGURE W.7 

Fuel oil blending problem 

Quantity available Value Viscosity Gravity 
( g a l  (elgal) B1. No. B1. No. 

Pitch P=lOOo-V 0 5 8 
Visbreaker feed V 0 - - 

Tar T = 0.8V 0 11 7 
Flux F = any 8 37 24 
Fuel oil P + T + F  5 21 min 12 min 

Abbreviation: B1. No. = blending number. 

Formulate the preceding problem as a linear programming problem. How many vari- 
ables are there? How many inequality constraints? How many equality constraints? 
How many bounds on the variables? 
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7.8 Examine the following problem: 

Minimize: f = 3x1 + x2 + x 3  

Subject to: x1 - 2x2 + x3 4 11 

- 4 x l - k  X2+  2X3 2 3 

h l  - Xg = -1 

x1, x2, x3 2 0 

Is there a basic feasible solution to the problem? Answer yes or no, and explain. 

7.9 An LP problem his been converted to standard canonical form by the addition of slack 
variables and has a basic feasible solution (with xl  = x2 = 0) as shown in the fol- 
lowing set of equations: 

Answer the following questions: 
(a) Which variable should be increased first? 
(b) Which row and which column designate the pivot point? 
(c) What is the limiting value of the variable you designated part in (a)? 

7.10 For the problem given in 7.9, find the next basis. Show the steps you take to calculate 
the improved solution, and indicate what the basic variables and nonbasic variables are 
in the new set of equations. (Just a single step from one vertex to the next is asked for 
in this problem.) 

7.11 Examine the following problem 

Minimize: f = 3x1 + x2 + x3 * 

Subject to: x1 - 2x2 + x3 5 11 

- 4x1 + X2 + 2 x 3  2 3 

2x1 - Xg = - 1  

Is there a basic feasible solution to the problem? Answer yes or no, and explain. 

7.12 You are asked to solve the following problem: 

Maximize: f = 5 x 1  + 2x2 + 3x3 

Subjectto: x l  + 2x2 + 2x3 + x4 = 8 

3x1 + 4x2 + Xg - X 5 = 7  

Xl,  ... , x 5  2 0 

Explain in detail what you would do to obtain the first feasible solution to this prob- 
lem. Show all equations. You do not have to calculate the feasible solution-just 
explain in detail how you would calculate it. 
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7.13 You are given the following LP equation sets: 

Why is this formulation problematic? 

(b) X1 - 2X2 + x3 = 7 

xl - 3x2 + x4 = 4 

X I  + 3x2 + f = o  

Is the problem that leads to the preceding formulation solvable? How do you interpret 
this problem geometrically? 

(c> 4x1 + 2X, + x3 = 6 

6x, + 3x2 + X4 = 9 

X l  + 3x2 +f  = o  
Apply the simplex rules to minimize f for the formulation. Is the solution unique? 

(d) 4x1 + % + X3 = 7 

6x1 + 3x2 + x4 = 5 

-x1 +f = o  
Can you find the minimum off? Why or why not? 

7.14 Solve the following LP: 

Minimize: f = x ,  + x, 

Subject to: x1 + 3x2 5 12 

- .  
:: 

Does the solution via the simplex method exhibit cycling? 

7.15 In Problem 7.1 what are the shadow prices for incremental production of gasoline, 
kerosene, and fuel oil? Suppose the profit coefficient for crude #1 is increased by 10 
percent and crude #2 by 5 percent. Which change has a larger influence on the objec- 
tive function? 

7.16 For Problem 7.9, find the next basis. Show the steps for calculating the new table, and 
indicate the basic and nonbasic variables in the new table. (Just a single step from one 
vertex to the next is asked for in this problem.) 
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7.17 Solve the following linear programming problem: 

Maximize: f = x l  + 3x2 - x3 

Subject to: x1  + 2x2 + x3 = 4 

2 x 1  + ~2 r 5  

7.18 Solve the following problem: 

Maximize: f = 7 x l  + 12x2 + 3x3 

Subject to: 2x1 + 2x2 + x3 5 16 

7.19 Solve the following problem: 

Maximize: f = 6x1 + 5x2 

Subject to: 2x1 + 5x2 5 20 

-3x, - l l x ,  5 -33 

The following figure shows the constraints. If slack variables x3, x4 and x, are 
added respectively to the inequality constraints, you can see from the diagram that the 
origin is not a feasible point, that is, you cannot start the simplex method by letting 
x, = x2 = 0 because then x3 = 20, x, = - 5, and x, = - 33, a violation of the assump- 
tion in linear programming'that xi 2 0. What should you do to apply the simplex 
method to the problem other than start a phase I procedure of introducing artificial 
variables? 

FIGURE P7.19 
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7.20 Are the following questions true or false and explain why: 
(a) In applying the simplex method of linear programming, the solution found, if one 

is found, is the global solution to the problem. 
(b) The solution to a linear programming problem is a unique solution. 
(c) The solution to a linear programming problem that includes only inequality con- 

straints (no equality constraints) never occurs in the interior of the feasible region. 

7.21 A company has two alkylate plants, A, and A,, from which a given product is distrib- 
uted to customers C,, C,, and C,. The transportation costs are given as follows: 

Refinery A, At A1 A2 A2 A2 
Customer C, C2 C3 C1 c2 C3 
Cost ($/ton) 25 60 75 20 50 85 

The maximum refinery production rates and minimum customer demand rates are 
fixed and known to be as follows: 

Customerorrefinery A, A2 C, C2 C3 
Rate (tonslday) 1.6 0.8 0.9 0.7 0.3 

The cost of production for A, is $30/ton for production levels less than 0.5 todday: for 
production levels greater than 0.5 todday, the production cost is $40/ton. A2's produc- 
tion cost is uniform at $35/ton. 

Find the optimum distribution policy to minimize the company's total costs. 

7.22 Alkylate, cat cracked gasoline, and straight run gasoline are blended to make aviation 
gasolines A and B and two grades of motor gasoline. The specifications on motor 
gasoline are not as rigid as for aviation gas. Physical property and production data for 
the inlet streams are as follows: 

* 

Stream 
-- 

RVP ON(0) ON(4) Available (bbUday) 

Alkylate 5 94 108 4000 
Cat cracked gasoline 8 84 94 2500 
Straight run gasoline 4 74 86 4000 

Abbreviations: 
RVP = Reid vapor pressure (measure of volatility); 
ON = octane number; in parentheses, number of mL/gal of tetraethyl lead (TEL). 

For the blended products: 

Product RVP TEL level ON h f i t  ($mbl) 

Aviation gasoline A 5 7 0 r 80 5.00 
Aviation gasoline B 5 7 4 r 91 5.50 
Leaded motor gasoline - 4 r 87 4.50 
Unleaded motor gasoline - 0 r 91 4.50 

Set up this problem as an LP problem, and solve using a standard LP computer code. 

7.23 A chemical plant makes three products and uses three raw materials in limited supply 
as shown in Figure W.23. Each of the three products is produced ina  separate process 
(1,2,3) akording to the schematic shown in the figure. 
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Monomer 
E 

; 

Monomer 
B 

Inhibitor 
C 

FIGURE W.23 

The available A, B, and C do not have to be totally consumed. 

% Process data: 

lwaxilnum 
Raw available Cost 

makrial (lbtday) (WW Ib) 

Reactants needed Operating Selling price 
Process Product (lbflb product) cost ($1 of product ($) 

1 E $ A , ~ B  1.001100 lb A  4.001100 lb E 
(consumed in 1) 

2 F $A,$ 0.501100 lb A  3.301100 lb F 
(consumed in 2) 

3 G laB~,4c l.oo/loo lb G 3.801100 lb G 
(produced in 3) 

Set up the linear profit function and linear constraints to find the optimum product dis- 
tribution, and apply the simplex technique to obtain numerical answers. 

7.24 Ten grades of crude are available in the quantities shown in the table ranging from 10,000 
30,000 barrels per day each, with an aggregate availability of 200,000 barrels per day. 

Refineries X, Y, and Z have incremental operations with stated requirements totaling 
180,000 barrels per day. Of the available crude, 20,000 barrels per day is not used. One 
of the refineries can operate at two incremental operations, XI and X2, which represent 
different efficiency levels. The net profit or loss for each crude in each refinery operation 
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is given in the table in cents per barrel. It is assumed that the crude evaluations reflect the 
resulting product distribution from these incremental operations. (In practice, however, 
if further debits are encountered in the solution because of lack of product quality or for 
transportation of surplus products, suitable corrections can be made in the crude evalua- 
tions and the problem reworked until a realistic solution is obtained.) 

Maximize the profit per day by allocating the ten crudes among the three 
refineries with X being able to operate at two levels, so specify X ,  and X, as well as 
Y and 2. 

Crude evaluation, availability and requirement 

Abbreviations: M = 1000; bpd = barrels per day; cpb = cents per barrel. 

C r u d e a  b c d e f g h i j Required 
(Profit or loss of each refinery cpb) (M bpd) 

7.25 Consider a typical linear programming example in which N grades of paper are pro- 
duced on a paper machine. Due to raw materials restrictions not more than ai tons of 
grade i can be produced in a week. Let 

Refinery 
x1 
x2 
Y 
Z 
Available 

(M bpd) 

xi = numbers of tons of grade i produced during the week 
bi = number of hours required to produce a ton of grade i 
pi = profit made per ton of grade i 

30 
40 
50 
60 

200 

Because 160 production hours are available each week, the problem is to find non- 
negative values of xi, i = 1 ,  . . . , N, and the integer value N that satisfy 

and that maximize the profit function 

Data: 
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CHAPTER 1 PRESENTS some examples of the constraints that occur in optimization 
problems. Constraints are classified as being inequality constraints or equality con- 
straints, and as linear or nonlinear. Chapter 7 described the simplex method for 
solving problems with linear objective functions subject to linear constraints. This 
chapter treats more difficult problems involving minimization (or maximization) of 
a nonlinear objective function subject to linear or nonlinear constraints: 

Minimize: f ( x )  x = [xl x2 --x,] T 

Subject to: hi(x)  = bi i = 1,2, . . . , m (8.1) 

The inequality constraints in Problem (8.1) can be transformed into equality con- 
straints as explained in Section 8.4, so we focus first on problems involving only 
equality constraints. 

8.1 DIRECT SUBSTITUTION 

One method of handling just one or two linear or nonlinear equality constraints is 
to solve explicitly for one variable and eliminate that variable from the problem 
formulation. This is done by direct substitution in the objective function and con- 
straint equations in the problem. In many problems elimination of a single equal- 
ity constraint is often superior to an approach in which the constraint is retained 
and some constrained optimization procedure is executed. For example, suppose 
you want to minimize the following objective function that is subject to a single 
equality constraint 

Minimize: f ( x )  = 4x: + 5xg (8.2a) 

Subject to: 2x, + 3x2 = 6 (8.2b) 

Either x, or x, can be eliminated without difficulty. Solving for x,, 

we can substitute for x, in Equation (8.2a). The new equivalent objective function 
in terms of a single variable x2 is 

The constraint in the original problem has now been eliminated, and Ax2) is an 
unconstrained function with 1 degree of Ereedom (one independent variable). Using 
constraints to eliminate variables is the main idea of the generalized reduced gradi- 
ent method, as discussed in Section 8.7. 

We can now minimize the objective function (8.4), by setting the first deriva- 
tive off equal to zero, and solving for the optimal value of x2: 
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\ 
plane 

FIGURE 8.1 
Graphical representation of a function of two variables reduced to a 
function of one variable by direct substitution. The unconstrained 
minimum is at (0,0), the center of the contours. 

Once x,* is obtained, then, x4 can be directly obtained via the constraint (8.2b): 

The geometric interpretation for the preceding problem requires visualizing the 
objective function as the surface of a paraboloid in three-dimensional space, as 
shown in Figure 8.1. The projection of the intersection of the paraboloid and the 
plane representing the constraint onto the f(x,) = x, plane is a parabola. We then 
find the minimum of the resulting parabola. The elimination procedure described 
earlier is tantamount to projecting the intersection locus onto the x, axis. The inter- 
section locus could also be projected onto the x, axis (by elimination of x,). Would 
you obtain the same result for x* as before? 

In problems in which there are n variables and m equality constraints, we could 
attempt to eliminate m variables by direct substitution. If all equality constraints 
can be removed, and there are no inequality constraints, the objective function can 
then be differentiated with respect to each of the remaining (n - rn) variables and 
the derivatives set equal to zero. Alternatively, a computer code for unconstrained 
optimization can be employed to obtain x*. If the objective function is convex (as 
in the preceding example) and the constraints form a convex region, then any sta- 
tionary point is a global minimum. Unfortunately, very few problems in practice 
assume this simple form or even permit the elimination of all equality constraints. 
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Consequently, in this chapter we will discuss five major approaches for solv- 
ing nonlinear programming problems with constraints: 

1. Analytic solution by solving the first-order necessary conditions for optimality 
(Section 8.2) 

2. Penalty and barrier methods (Section 8.4) 
3. Successive linear programming (Section 8.5) 
4. Successive quadratic programming (Section 8.6) 
5. Generalized reduced gradient (Section 8.7) 

The first of these methods is usually only suitable for small problems with a few 
variables, but it can generate much useful information and insight when it is appli- 
cable. The others are numerical approaches, which must be implemented on a com- 
puter. 

8.2 FIRST-ORDER NECESSARY CONDITIONS FOR A LOCAL 
EXTREMUM 

As an introduction to this subject, consider the following example. 

EXAMPLE 8.1 GRAPHIC INTERPRETATION OF A 
CONSTRAINED OPTIMIZATION PROBLEM 

Minimize : f (x,, x2) = XI + X2 

Subject to: h(xl, x2) = x:. + X; - 1 = 0 

Solution. This problem is illustrated graphically in Figure E8. la. Its feasible region is 
a circle of radius one. Contours of the linear objective x, + x2 are lines parallel to the 
one in the figure. The contour of lowest value that contacts the circle touches it at the 
point x* = (-0.707, -0.707), which is the global minimum. You can solve this prob- 
lem analytically as an unconstrained problem by substituting for x, or x2 by using the 
constraint. 

Certain relations involving the gradients off and h hold at x* if x* is a local rnin- 
imum. These gradients are 

Vf(x*) = [1?1] 

Vh(x*) = [2Y1,2x2] I x *  = [-1.414, -1.4141 

and are shown in Figure E8.lb. The gradient of the objective function V'x*) is 
orthogonal to the tangent plane of the constraint at x*. In general Vh(x*) is always 
orthogonal to this tangent plane, hence V'x*) and Vh(x*) are collinear, that is, they 
lie on the same line but point in opposite directions. This means the two vectors must 
be multiples of each other; 

where A* = - 111.414 is called the Lagrange multiplier for the constraint h = 0. 
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FIGURE ES.la 
Circular feasible region with objective function contours 
and the constraint. 

FIGURE ES.lb 
Gradients at the optimal point and at a nonoptimal point. 

The relationship in Equation (a)  must hold at any local optimum of any equality- 
constrained NLP involving smooth functions. To see why, consider the nonoptimal 
point x1 in Figure E8. lb. Vflxl) is not orthogonal to the tangent plane of the constraint 
at xl, so it has a nonzero projection on the plane. The negative of this projected gra- 
dient is also nonzero, indicating that moving downward along the circle reduces 
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(improves) the objective function. At a local optimum, no small or incremental move- 
ment along the constraint (the circle in this problem) away from the optimum can 
improve the value of the objective function, so the projected gradient must be zero. 
This can only happen when Vf(x*) is orthogonal to the tangent plane. 

The relation ( a )  in Example 8.1 can be rewritten as 

- Vf (x* )  + A* Vh(x*) = 0 

where A* = 0.707. We now introduce a new function L(x, A) called the Lagrangian 
function: 

L(x, A )  = f ( x )  + Ah(x) (8.6) 

Then Equation (8.5) becomes 

vxL(x9A)lb*.r*) = 0 

so the gradient of the Lagrangian function with respect to x, evaluated at (x*, A*), 
is zero. Equation (8.7), plus the feasibility condition 

constitute the first-order necessary conditions for optimality. The scalar A is called 
a Lagrange multiplier. 

Using the necessary conditions to find the optimum 
The first-order necessary conditions (8.7) and (8.8) can be used to find an opti- 

mal solution. Assume x* and A* are unknown. The Lagrangian function for the 
problem in Example 8.1 is 

Setting the first partial derivatives of L with respect to x to zero, we get 

The feasibility condition (8.8) is 

x : + x ; - 1 = 0  

The first-order necessary conditions for this problem, Equations (8.9)-(8.1 l ) ,  con- 
sist of three equations in three unknowns (x,,  x,, A).  Solving (8.9)-(8.10) for x, and 
x2 gives 

1 
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which shows that x, and x2 are equal at the extremum. Substituting Equation (8.12) 
into Equation (8.1 1); 

and 

X I  = x2 = ? 0.707 

The minus sign corresponds to the minimum off, and the plus sign to the maximum. 

EXAMPLE 8.2 USE OF LAGRANGE MULTIPLIERS 

Consider the problem introduced earlier in Equation (8.2): 

Minimize: f (x) = 4x: + 5xi (a) 

Subject to: h ( x )  = 0 = 2x, + 3x2 - 6 (b) 

Solution. Let 

L(x,A) = 4x: + 5x; + A(2x1 + 3x2 - 6) (c) 

Apply the necessary conditions (8.1 1) and (8.12) 

By substitution, x, = -M4 and x2 = -3M10, and therefore Equation Cf) becomes 
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8.2.1 Problems Containing Only Equality Constraints 

A general equality constrained NLP with m constraints and n variables can be writ- 
ten as 

Maximize: f ( x )  (8.15) 

Subject to: h,(x) = b,, j = 1, . . . , m 

where x = (x, ,  . . . , x,) is the vector of decision variables, and each b, is a constant. 
We assume that the objective f and constraint functions hj have continuous first par- 
tial derivatives. Corresponding to each constraint h, = b,, define a Lagrange multi- 
plier A, and let A = (A,, . . . , A,) be the vector of these multipliers. The Lagrangian 
function for the problem is 

and the first-order necessary conditions are 

Note that there are n + m equations in the n + m unknowns x and A. In Section 8.6 
we describe an important class of NLP algorithms called successive quadratic pro- 
gramming (SQP), which solve (8.17)-(8.18) by a variant of Newton's method. 

Problem (8.15) must satisfy certain conditions, called constraint qualifications, 
in order for Equations (8.17)-(8.18) to be applicable. One constraint qualification 
(see Luenberger, 1984) is that the gradients of the equality constraints, evaluated at 
x*, should be linearly independent. Now we can state formally the first order nee=- 
sary conditions. 

First-order necessary conditions for an extremum 
Let* x* be a local minimum or maximum for the problem (8.15), and assume 

that the constraint gradients Vh,(x*), j = 1,  . . . , m, are linearly independent. Then 
there exists a vector of Lagrange multipliers A* = (AT, . . . , A:) such that (x*, A*) 
satisfies the first-order necessary conditions (8.1 7)-(8.18). 

Examples illustrating what can go wrong if the constraint gradients are &pea- 
dent at x* can be found in Luenberger (1984). It is important to remember that all 
local maxima and minima of an NLP satisfy the first-order necessary conditions if 
the constraint gradients at each such optimum are independent. Also, because these 
conditions are necessary but not, in general, sufficient, a solution of Equations 
(8.17)-(8.18) need not be a minimum or a maximum at all. It can be a saddle-or 
inflection point. This is exactly what happens in the unconstrained case, where 
there are no constraint functions h, = 0. Then conditions (8.17)-(8.18) become 

Vf (x) ,= 0 
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the familiar condition that the gradient must be zero (see Section 4.5). To tell if a 
point satisfying the first-order necessary conditions is a minimum, maximum, or 
neither, second-order sufficiency conditions are needed. These are discussed later 
in this section. 

Sensitivity interpretation of Lagrange multipliers 
Sensitivity analysis in NLP indicates how an optimal solution changes as the 

problem data change. These data include any parameters that appear in the objec- 
tive or constraint functions, or on the right-hand sides of constraints. The Lagrange 
multipliers h* provide useful information on right-hand side changes, just as they 
do for linear programs (which are a special class of NLPs). To illustrate their appli- 
cation in NLP, consider again Example 8.1, with the constraint right-hand side (the 
square of the radius of the circle) treated as a parameter b; 

Minimize: x, + x2 

2 Subject to: x1 + x$ = b 

The optimal solution of this problem is a function of b, denoted by (x,(b), x,(b)), as 
is the optimal multiplier value, A(b). Using the first-order necessary conditions 
(8.9)-(8.11), rewritten here as 

1 + 2hx1 = O  

1 + 2hx2 = 0 

x ; + x ;  = b  

The solution of these equations is (check it!); 

These formulas agree with the previous results for b = 1. The minimal objective 
value, sometimes called the optimal value finction, is 

V(b) = xl(b) + x2 (b) = -(2b)lP 

The derivative of the optimal value function is 

so the negative of the optimal Lagrange multiplier value is dVldb. Hence, if we 
solve this problem for a specific b (for example b = 1) then the optimal objective 
value for b close to 1 has the first-order Taylor series approximation 

V(b) = V(l)  - A(l)(b - 1) 
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To see how useful these Lagrange multipliers are, consider the general problem 
(8.15), with right-hand sides bi; 

Minimize : f (x ) 

Subject to: hi(x) = b,, i = 1, . . . , m (8.19) 

Let b = (b,, . . . , b,) be the right-hand side (rhs) vector, and V(b) the optimal objec- 
tive value. If 6 is a specific right-hand side vector, and (x(6), ~ ( 6 ) )  is a local opti- 
mum for b = b, then 

The constraints with the largest absolute Aj values are the ones whose right- 
hand sides affect the optimal value function V the most, at least for b close to 6. How- 
ever, one must account for the units for each bj in interpreting these values. For exam- 
ple, if some bj is measured in kilograms and both sides of the constraint hj(x) = bj are 
multiplied by 2.2, then the new constraint has units of pounds, and its new 
Lagrange multiplier is 112.2 times the old one. 

8.2.2 Problems Containing Only Inequality Constraints 

The first-order necessary conditions for problems with inequality constraints are 
called the Kuhn-Tucker conditions (also called Karush-Kuhn-Tucker conditions). 
The idea of a cone aids the understanding of the Kuhn-Tucker conditions (KTC). 
A cone is a set of points R such that, if x is in R, ATx is also in R for A r 0. A con- 
vex cone is a cone that is a convex set. An example of a convex cone in two dimen- 
sions is shown in Figure 8.2. In two and three dimensions, the definition of a con- 
vex cone coincides with the usual meaning of the word. 

It can be shown from the preceding definitions that the set of all nonnegative 
linear combinations of a finite set of vectors is a convex cone, that is, that the set 

is a convex cone. The vectors x,, x,, . . . , x, are called the generators of the cone. 
For example, the cone of Figure 8.2 is generated by the vectors [2, 11 and [2, 41. 
Thus any vector that'can be expressed as a nonnegative linear combination of these 
vectors lies in the cone. In Figure 8.2 the vector [4, 51 in the cone is given by 
[4,5] = 1 x [2, I] + 1 x [2,4]. 

Kuhn-l'ucker conditions: Geometrical interpretation 
The Kuhn-Tucker conditions are predicated on this fact: At any local con- 

strained optimum, no (small) allowable change in the problem variables can 
improve the value bf the objective function. To illustrate this statement, consider the 
nonlinear programming problem: 
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FIGURE 8.2 
The shaded region forms a convex cone. 

Minimize: f(x,y ) = (x - 2), + (Y - 1 

Subject to: g,(x,y) = -Y + x2 O 

The problem is shown geometrically in Figure 8.3. It is evident that the optimum is 
at the intersection of the frrst two constraints at (1, 1). Because these inequality con- 
straints hold as equalities at (1, I), they are called binding, or active, constraints at 
this point. The third constraint holds as a strict inequality at (1, I), and it is an inac- 
tive, or nonbinding, constraint at this point. Define a feasible direction of search as 
a vector such that a differential move along that vector violates no constraints. At (1, 
l), the set of all feasible directions lies between the line x + y - 2 = 0 and the tan- 
gent line to y = x2 at (1, I), that is, the line y = 2x - 1. In other words, the set of 
feasible directions is the cone generated by these lines that are shaded in the figure. 
The vector -Vf points in the direction of the maximum rate of decrease of$ and a 
small move along any direction making an angle (defined as positive) of less than 
90" with -Vf will decrease$ Thus, at the optimum, no feasible direction can have 
an angle of less than 90" between it and - V '  

Now consider Figure 8.4, in which the gradient vectors Vg, and Vg, are drawn. 
Note that -Vf is contained in the cone generated by Vg, and Vg,. What if this were 
not so? If -Vf were slightly above Vg,, it would make an angle of less than 90" 
with a feasible direction just below the line x + y - 2 = 0. If -Vf were slightly 
below Vg,, it would make an angle of less than 90" with a feasible direction just 
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Y t 

FIGURE 8.3 
Geometry of a constrained optimization problem. The feasible region lies 
within the binding constraints plus the boundaries themselves. 

above the line y = 2x - 1. Neither case can occur at an optimal point, and both 
cases are excluded if and only if -Vf lies within the cone generated by Vg, and 
Vg,. Of course, this is the same as requiring that Vf lie within the cone generated 
by -Vg, and -Vg,. This leads to the usual statement of the KTC; that is, iff and 
all g, are differentiable, a necessary condition for a point x* to be a constrained min- 
imum of the problem 

Minimize: f ( x )  

Subject to: g j (x )  -5 cj, j = 1, . . , r 

is that, at x*, Vf lies within the cone generated by the negative gradients of the bind- 
ing constraints. 

Algebraic statement of the Kuhn-lhcker conditions 
The preceding results may be stated in algebraic terms. For Vf to lie within the 

cone described eailier, it must be a nonnegative linear combination of the negative 
gradients of the binding constraints; that is, there must exist Lagrange multipliers 
u7such that 
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FIGURE 8.4 
Gradient of objective contained in convex cone. 

where 

and I is the set of indices of the binding inequality constraints. The multipliers u; 
are analogous to hi defined for equality constraints. 

These results may be restated to include all constraints by defining the multi- 
plier u? to be zero if gj(x*) < cj. In the previous example u5, the multiplier of the 
inactive constraint g,, is zero. Then we can say that u? 2 0 if gj(x*) = c,, and u; 
= 0 if gj(x*) < cj, thus the product u;[gj(x) - cj] is zero for all j. This property, 
that inactive inequality constraints have zero multipliers, is called complementary 
slackness. Conditions (8.21) and (8.22) then become 
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Relations (8.23) and (8.24) are the form in which the Kuhn-Tucker conditions are 
usually stated. 

Lagrange multipliers 
The KTC are closely related to the classical Lagrange multiplier results for 

equality constrained problems. Form the Lagrangian 

where the uj are viewed as Lagrange multipliers for the inequality constraints gj (x) 
5 cj. Then Equations (8.23) and (8.24) state that L(x, u) must be stationary in x at 
(x*, u*) with the multipliers u* satisfying Equation (8.24). The stationarity of L is 
the same condition as in the equality-constrained case. The additional conditions in 
Equation (8.24) arise because the constraints here are inequalities. 

8.2.3 Problems Containing both Equality and Inequality Constraints 

When both equality and inequality constraints are present, the KTC are stated as 
follows: Let the problem be 

Minimize: f (x) 

Subject to: hi (x) = bi, i = 1, . . . , m (8.26a) 

and 
gj(x) 5 cj, j =  1, . . . , r  (8.26b) 

Define Lagrange multipliers hi associated with the equalities and uj for the inequal- 
ities, and forrn the Lagrangian function 

Then, if x* is a local minimum of the problems (8.25)-(8.26), there exist vectors of 
Lagrange multipliers A* and u*, such that x* is a stationary point of the function 
L(x, A*, u*), that is, 

and complementary slackness hold for the inequalities: 
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EXAMPLE 8.3 APPLICATION OF THE LAGRANGE 
MULTIPLIER METHOD WITH NONLINEAR INEQUALITY 
CONSTRAINTS 

Solve the problem 

Minimize: f ( x )  = X ,  x2 

Subject to: g(x) = x: + x i  5 25 

by the Lagrange multiplier method. 

Solution. The Lagrange function is 

L ( x , u )  = x,x2  + u(x: + x i  - 2 5 )  

The necessary conditions for a stationary point are 

u(25 - x: - x i )  = 0 

The five simultaneous solutions of Equations (c) are listed in Table E8.3. How would 
you calculate these values? 

Columns two and three of Table E8.3 list the components of x* that are the sta- 
tionary solutions of the problem. Note that the solutions with u > 0 are minima, those 
for u < 0 are maxima, and u = 0 is a saddle point. This is because maximizing f is 
equivalent to min&ing -5 and the KTC for the problem in Equation (a) with f 
replaced by -fare the equations shown in (c) with u allowed to be negative. In Fig- 

TABLE E8.3 
Solutions of Example 8.3 by the Lagrange multiplier method 

U X1 X2 Point c f(x) Remarks 

0 0 0 A 25 0 saddle 
0.5 +3.54 -3.54 B 0 - 12.5 minimum 

(-3.54 [+3.54 C 0 - 12.5 minimum 
-0.5 +3.54 D 0 + 12.5 maximum [':::: (-3.54 E 0 + 12.5 maximum 



FIGURE E8.3 

ure E8.3 the contours of the objective function (hyperbolas) are represented by bro- 
ken lines, and the feasible region is bounded by the shaded area enclosed by the cir- 
cle g(x) = 25. Points B and C correspond to the two minima, D and E to the two max- 
ima, and A to the saddle point offlx). 

Lagrange multipliers and sensitivity analysis 
At each iteration, NLP algorithms form new estimates not only of the decision 

variables x but also of the Lagrange multipliers h and u. If, at these estimates, all 
constraints are satisfied and the KTC are satisfied to within specified tolerances, the 
algorithm stops. At a local optimum, the optimal multiplier values provide useful 
sensitivity information. In the NLP (8.25)-(8.26), let V*(b, c) be the optimal value 
of the objective f at a local minimum, viewed as a function of the right-hand sides 
of the constraints b and c. Then, under additional conditions (see Luenberger, 1984, 
Chapter 10) 
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That is, the Lagrange multipliers provide the rate of change of the optimal objec- 
tive value with respect to changes in the constraint right-hand sides. This inforrna- 
tion is often of significant value. For example, if the right-hand side of an inequal- 
ity constraint cj represents the capacity of a process and this capacity constraint is 
active at the optimum, then the optimal multiplier value u;* equals the rate of 
decrease of the minimal cost if the capacity is increased. This change is the mar- 
ginal value of the capacity. In a situation with several active capacity limits, the 
ones with the largest absolute multipliers should be considered first for possible 
increases. Examples of the use of Lagrange multipliers for sensitivity analysis in 
linear programming are given in Chapter 7. 

Lagrange multipliers are quite helpful in analyzing parameter sensitivities in 
problems with multiple constraints. In a typical refinery, a number of different 
products are manufactured which must usually meet (or exceed) certain specifica- 
tions in terms of purity as required by the customers. Suppose we carry out a con- 
strained optimization for an objective function that includes several variables that 
occur in the refinery model, that is, those in the fluid catalytic cracker, in the dis- 
tillation column, and so on, and arrive at some economic optimum subject to the 
constraints on product purity. Given the optimum values of the variables plus the 
Lagrange multipliers corresponding to the product purity, we can then pose the 
question: How will the profits change if the product specification is either relaxed 
or made more stringent? To answer this question simply requires examining the 
Lagrange multiplier for each constraint. As an example, consider the case in which 
there are three major products (A, B, and C) and the Lagrange multipliers corre- 
sponding to each of the three demand inequality constraints are calculated to be: 

The values for ui show (ignoring scaling) that satisfying an additional unit of 
demand of product B is much more costly than for the other two products. 

Convex programming problems I. 

The KTC comprise both the necessary and sufficient conditions for optimality 
for smooth convex problems. In the problem (8.25)-(8.26), if the objectivexx) and 
inequality constraint functions gj are convex, and the equality constraint functions 
hj are linear, then the feasible region of the problem is convex, and any local mini- 
mum is a global minimum. Further, if x* is a feasible solution, if all the problem 
functions have continuous first derivatives at x*, and if the gradients of the active 
constraints at x* are independent, then x* is optimal if and only if the KTC are sat- 
isfied at x*. 
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Practical considerations 
Many real problems do not satisfy these convexity assumptions. In chemical 

engineering applications, equality constraints often consist of input-output rela- 
tions of process units that are often nonlinear. Convexity of the feasible region can 
only be guaranteed if these constraints are all linear. Also, it is often difficult to tell 
if an inequality constraint or objective function is convex or not. Hence it is often 
uncertain if a point satisfying the KTC is a local or global optimum, or even a sad- 
dle point. For problems with a few variables we can sometimes find all KTC solu- 
tions analytically and pick the one with the best objective function value. Other- 
wise, most numerical algorithms terminate when the KTC are satisfied to within 
some tolerance. The user usually specifies two separate tolerances: a feasibility tol- 
erance cf and an optimality tolerance c,. A point f is feasible to within ef if 

Ihi(?i) - bit 5 cf, for i = 1, ..., m 

and 

g j (E) -c j5cf ,  for j =  1, ..., r (8.3 la) 

Furthermore, E is optimal to within (e0, cf) if it is feasible to within cf and the 
KTC are satisfied to within 8,. This means that, in Equations (8.23)-(8.24) 

and 

U .  2 -Eo, J j = 1, ... , r 

Equation (8.3 1 b) corresponds to relaxing the constraint. 

(8.3 lb) 

Second-order necessary and sufficiency conditions for optimality 
The Kuhn-Tucker necessary conditions are satisfied at any local minimum or 

maximum and at saddle points. If (x*, h*, u*) is a Kuhn-Tucker point for the prob- 
lem (8.25)-(8.26), and the second-order sufficiency conditions are satisfied at that 
point, optimality is guaranteed. The second order optimality conditions involve the 
matrix of second partial derivatives with respect to x (the Hessian matrix of the 
Lagrangian function), and may be written as follows: 

y'V;~(x*,h*,u*)~ > 0 (8.32a) 

for all nonzero vectors y such that 

where J(x*) is the matrix whose rows are the gradients of the constraints that are 
active at x*. Equation (8.32b) defines a set of vectors y that are orthogonal to the 
gradients of the active constraints. These vectors constitute the tangent plane to the 
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active constraints, which was illustrated in Example 8.1. Hence (8.32a) requires 
that the Lagrangian Hessian matrix be positive-definite for all vectors y on this tan- 
gent plane. If the ">" sign in (8.32a) is replaced by "?", then (8.32a)-(8.32b) plus 
the KTC are the second-order necessary conditions for a local minimum. See Luen- 
berger (1984) or Nash and Sofer (1996) for a more thorough discussion of these 
second-order conditions. 

If no active constraints occur (so x* is an unconstrained stationary point), then 
(8.32a) must hold for all vectors y, and the multipliers A* and u* are zero, so ViL 
= V 3  Hence (8.32a) and (8.32b) reduce to the condition discussed in Section 4.5 
that if the Hessian matrix of the objective function, evaluated at x*, is positive- 
definite and x* is a stationary point, then x* is a local unconstrained minimum off. 

EXAMPLE 8.4 USING THE SECOND-ORDER CONDITIONS 

As an example, consider the problem: 

Minimize: f(x) = (xl - + xi  

2 Subject to: x1 - x2 5 0 

Solution. Although the objective function of this problem is convex, the inequality 
constraint does not define a convex feasible region; as shown in Figure E8.4. The geo- 
metric interpretation is to find the points in the feasible region closest to (1, 0). The 
Lagrangian function for this problem is 

and the KTC for a local minimum are 

There are three solutions to these conditions: two minima, at x/ = f, 
x: = f G , u *  = 1 with an objective value of 0.75, and a local maximum at xp = 0, 
x! = 0, u0 = 2 with an objective value of 1.0. These solutions are eviden€ by exam- 
ining Figure E8.4. 

The second order sufficiency conditions show that the first two of these three 
Kuhn-Tucker points are local minima, and the third is not. The Hessian matrix of the 
Lagrangian function is 

The Hessian evaluated at (xy = 0,x; = 0, u0 = 2) is 
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FIGURE E8.4 

The second-order necessary conditions require this matrix to be positive-semidefinite 
on the tangent plane to the active constraints at (0, 0), as defined in expression (8.32b). 
Here, this tangent plane is the set 

T = {y lVg(O,O)*y = 0) 

The gradient of the constraint function is 

v%(xI,x2) = [ l  -2X2] so Vg(0,o) = [ l  01 

Thus the tangent plane at (0,O) is 

T =  {YlY, = 0) = { Y I Y  = (O,Y2)) 

and the quadratic form in (8.32a), evaluated on the tangent plane, is 

Because -2y ;  is negative for all nonzero vectors in the set T, the second-order nec- 
essary condition is not satisfied, so (0,O) is not a local minimum. 
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If we check the minimum at x: = $,xz = <, u* = 1, the Lagrangian Hessian 
evaluated at this point is 

The constraint gradient at this point is [l - fi], so the tangent plane is 

T = {YIY,  - 6 = 0) = { Y I Y  = y,(- f i , l ) l  

On this tangent plane, the quadratic form is 

This is positive for all nonzero vectors in the set T, so the second-order sufficiency 
conditions are satisfied, and the point is a local minimum. 

8.3 QUADRATIC PROGRAMMING 

quadratic programming (QP) problem is an optimization problem in which a d 
quadratic objective function of n variables is minimized subject to m linear inequal- 

' 

ity or equality constraints. A convex QP is the simplest form of a nonlinear pro- 
gramming problem with inequality constraints. A number of practical optimization 
problems, such as constrained least squares and optimal control of linear systems 
with quadratic cost functions and linear constraints, are naturally posed as QP prob- 
lems. In this text we discuss QP as a subproblem to solve general nonlinear pro- 
gramming problems. The algorithms used to solve QPs bear many similarities to 
algorithms used in solving the linear programming problems discussed in Chapter 7. 

In matrix notation, the quadratic programming problem is 

1 T Minimize: f(x) = cTx + 3 x Qx 

Subject to: Ax = b (8.33) 

where c is a vector of constant coefficients, A is an (m X n) matrix, and Q is a sym- 
metric matrix. 

The vector x can contain slack variables, so the equality constraints (8.33) may 
contain some constraints that were originally inequalities but have been converted 
to equalities by inserting slacks. Codes for quadratic programming allow arbitrary 
upper and lower bounds on x; we assume x 1 0 only for simplicity. 

If the equality constraints in (8.33) are independent then, as discussed in Sec- 
tion 8.2, the KTC are the necessary conditions for an optimal solution of the QP. In 
addition, if Q is positive-semidefinite in (8.33), the QP objective function is con- 
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vex. Because the feasible region of a QP is defined by linear constraints, it is always 
convex, so the QP is then a convex programming problem, and any local solution 
is a global solution. Also, the KTC are the sufficient conditions for a minimum, and 
a solution meeting these conditions yields the global optimum. If Q is not positive- 
semidefinite, the problem may have an unbounded solution or local minima. 

To write the KTC, start with the Lagrangian function 
1 T L = xTc + I X  QX + A T ( ~ x  - b) - uTx 

and equate the gradient of L (with respect to xT) to zero (note that hT(Ax - b) = 
(Ax - b)TA = (xTAT - bT) A and uTx = xTu) 

Then the KTC reduce to the following set of equations: 

where the ui and A, are the Lagrange multipliers. If Q is positive semidefinite, any set 
of variables (x*, u*, A*) that satisfies (8.34) to (8.37) is an optimal solution to (8.33). 

Some QP solvers use these KTC directly by finding a solution satisfying the 
equations. They are linear except for (8.37), which is called a complementary slack- 
ness condition. These conditions were discussed for general inequality constraints in 
Section 8.2. Applied to the nonnegativity conditions in (8.33), complementary slack- 
ness implies that at least one of each pair of variables (ui, xi) must be zero. Hence a 
feasible solution to the KTC can be found by starting with an infeasible comple- 
mentary solution to the linear constraints (8.34)-(8.36) and using LP pivot operations 
to minimize the sum of infeasibilities while maintaining complementarity. Because 
(8.34) and (8.35) have n and m constraints, respectively, the effect is roughly equiv- 
alent to solving an LP with (n + m) rows. Because LP "machinery" is used, most 
commercial LP systems, including those discussed in Chapter 7, contain QP solvers. 
In addition, a QP can also be solved by any efficient general purpose NLP solver. 

8.4 PENALTY, BARRIER, AND AUGMENTED LAGRANGIAN 
METHODS 

The essential idea of a penalty method of nonlinear programming is to transform a 
constrained problem into a sequence of unconstrained problems. 

Minimize: f (x) 
+ Minimize: P(f ,  g, h, r) 

Subject to: 
(8.38) 

h(x) = 0 
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where P(f, g, h, r) is a penaltyfunction, and r is a positive penalty parameter. After 
the penalty function is formulated, it is minimized for a series of values of increas- 
ing r-values, which force the sequence of minima to approach the optimum of the 
constrained problem. 

As an example, consider the problem 

Minimize: f(x) = (xl - + (x2 - 2)2 

Subject to: h(x) = xl + x2 - 4 = 0 

We formulate a new unconstrained objective function 

where r is a positive scalar called the penalty parameter, and r(x, + x, - 4)2 is 
called the penalty term. Consider a series of minimization problems where we min- 
imize P(x,r) for an increasing sequence of r values tending to infinity. As r 
increases, the penalty term becomes large for any values of x that violate the equal- 
ity constraints in (8.38). As the penalty term grows, the values of xi change to those 
that cause the equality constraint to be satisfied. In the limit the product of r and h2 
approaches zero so that the value off approaches the value of P. This is shown in 
Figure 8.5. The constrained optimum is x* = (1.5,2.5) and the unconstrained min- 
imum of the objective is at (1, 2). The point (1, 2) is also the minimum of P(x, 0). 
The minimizing points for r = 1, 10, 100, 1000 are at the center of the elliptical 
contours in the figure. Table 8.1 shows r, x,(r), and x2(r). It is clear that x(r) -+ x* 
as r + m, which can be shown to be true in general (see Luenberger, 1984). 

Note how the contours of P(x, r) bunch up around the constraint line x, + 
x, = 4 as r becomes large. This happens because, for large r, P(x, r) increases rap- 
idly as violations of x, + x2 = 4 increase, that is, as you move away from this line. 
This bunching and elongation of the contours of P(x, r) shows itself in the condi- 
tion number of V2P(x, r), the Hessian matrix of P. As shown in Appendix A, the 
condition number of a positive-definite matrix is the ratio of the largest to smallest 
eigenvalue. Because for large values of r, the eigenvalue ratio is large, V2P is said 
to be ill-conditioned. ,In fact, the condition number of V2P approaches m as r + m 
(see Luenberger, 1984), so P becomes harder and harder to minimize accurately. 

TABLE 8.1 
Effect of penalty weighting 

coefficient r on minimum off 
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FIGURk 8.5 
Transformation of a constrained problem to an unconstrained equivalent problem. The 
contours of the unconstrained penalty function are shown for different values of r. 

The condition number of the Hessian matrix of the objective function is an impor- 
tant measure of difficulty in unconstrained optimization. By definition, the small- 
est a condition number can be is 1 .O. A condition number of lo5 is moderately large, 
lo9 is large, and 1014 is extremely large. Recall that, if Newton's method is used to 
minimize a function5 the Newton search direction s is found by solving the linear 
equations 
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These equations become harder and harder to solve numerically as V2f becomes 
more ill-conditioned. When its condition number exceeds 1014, there will be few if 
any correct digits in the computed solution using double precision arithmetic (see 
Luenberger, 1984). 

Because of the occurrence of ill-conditioning, "pure" penalty methods have 
been replaced by more efficient algorithms. In SLP and SQP, a "merit function" is 
used within the line search phase of these algorithms. 

The general form of the quadratic penalty function for a problem of the form 
(8.25)-(8.26) with both equality and inequality constraints is 

The maximum-squared term ensures that a positive penalty is incurred only when 
the g, 5 0 constraint is violated. 

An exact penalty function 
Consider the exact L, penalty function; The term "L," means that the L1 

(absolute value) norm is used to measure infeasibilities. 

r 

Pl(x9 wl, ~ 2 )  = f(x) + wlj Jhj(x) 1 + 2 w2j  ma^ { o , ~ ~ ( x ) }  (8.40) 
j= 1 j= 1 I 

where the wlj and w2, are positive weights. The second term in hj produces the 
same effect as the squared terms in Equation (8.39). When a constraint is violated, 
there is a positive contribution to the penalty term equal to the amount of the vio- 
lation rather than the squared amount. In fact, this "sum of violations" or sum of 
infeasibilities is the objective used in phase one of the siimplex method to find a fea- 
sible solution to a linear program (see Chapter 7). , 

Let x* be a local minimum of the problem (8.25)-(8.26), and let (A*, u*) be a 
vector of optimal multipliers corresponding to x*, that is, (x*, A*, u*) satisfy the 
KTC (8.27)-(8.29). If 

then x* is a local minimum of P,(x, wl, w2). For a proof, see Luenberger (1984). 
If each penalty weight is larger than the absolute value of the corresponding opti- 
mal multiplier, the constrained problem can be solved by a single unconstrained 
minimization of PI. The penalty weights do not have to approach +-, and no infi- 
nite ill-conditioning occurs. This is why P, is called "exact." There are other exact 
penalty functions; for example, the "augmented Lagrangian" will be discussed sub- 
sequently. 

Intuitively, P, is exact and the squared penalty function P, is not because squar- 
ing a small infeasibility makes it much smaller, that is, (10-4)2 = Hence the 
penalty parameter r in P, must increase faster as the infeasibilities get small, and it 
can never be large enough to make all infeasibilities vanish. 
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l z l  

FIGURE 8.6 
Discontinuous derivatives in the P I  penalty 
function. 

Despite the "exactness" feature of P,, no general-purpose, widely available 
NLP solver is based solely on the L1 exact penalty function P,. This is because P1 
also has a negative characteristic; it is nonsmooth. The term lhj(x) 1 has a discon- 
tinuous derivative at any point x where hj (x) = 0, that is, at any point satisfying the 
jth equality constraint; in addition, max (0, gj (x)) has a discontinuous derivative at 
any x where gj (x) = 0, that is, whenever the jth inequality constraint is active, as 
illustrated in Figure 8.6. These discontinuities occur at any feasible or partially fea- 
sible point, so none of the efficient unconstrained minimizers for smooth problems 
considered in Chapter 6 can be applied, because they eventually encounter points 
where P, is nonsmooth. 

An equivalent smooth constrained problem 
The problem of minimizing P1 subject to no constraints is equivalent to the fol- 

lowing smooth constrained problem. 

Minimize: f(x) + wlj(plj + nlj) + 2 w2, (p2,) (8.43) 
j=  1 j =  1 

Subject to: hj(x) = p l j  - nl,, j = 1, . . . , m (8.44) 

all plj, p2j, n lj, n2j 1 0 (8.46) 

The p's are "positive deviation" variables and the n's "negative deviation" vari- 
ables. p l j  and ~2~ equal hj and gj, respectively, when hj and gj are positive, and nl, 
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and n2j equal hj and gj, respectively, when hj and gj are negative, providing that at 
most one variable in each pair (plj, nlj) and ( ~ 2 ~ ,  is positive, that is, 

But Equation (8.47) must hold at any optimal solution of (8.43)-(8.46), as long as 
all weights wlj and w2, are positive. To see why, consider the example h, = -3, 
pl, = 2, n l ,  = 5. The objective (8.43) contains a term wl, (pl ,  + nl,) = 7 ~ 1 , .  
The new solution p l ,  = 0, n l  = 3 has an objective contribution of 5w11, so the old 
solution cannot be optimal. 

When (8.44)-(8.47) hold, 

and 

so the objective (8.43) equals the L, exact penalty function (8.40). 
The problem (8.43)-(8.46) is called an "elastic" formulation of the original 

"inelastic" problem (8.1 I), because the deviation variables allow the constraints to 
"stretch (i.e., be violated) at costs per unit of violation wlj and w2,. This idea of 
allowing constraints to be violated, but at a price, is an important modeling concept 
that is widely used. Constraints expressing physical laws or "hard" limits cannot be 
treated this way-this is equivalent to using infinite weights. However many other 
constraints are really "soft," for example some customer demands and capacity lim- 
its. For further discussions of elastic programming, see Brown (1997). Curve-fitting 
problems using absolute value (L,) or minimax (L,) norms can also be formulated 
as smooth constrained problems using deviation variables, as can problems involv- 
ing multiple objectives, using "goal programming" (Rustem, 1998). 

Augmented Lagrangians 
The "augmented Lagrangian" is a smooth exact penalty function. For simplicity, 

we describe it for problems having only equality constraints, but it is easily extended 
to problems that include inequalities. The augmented Lagrangian function is 

where r is a positive penalty parameter, and the A, are Lagrange multipliers. AL is 
simply the Lagrangian L plus a squared penalty term. Let x* be a local minimum 
of the equality constrained problem 

Minimize: f (x) 

Subjectto: h,(x) = 0, j = 1, ..., rn 
and let (x*, A*) satisfy the KTC for this problem. The gradient of AL is 

V,AL (x, X, r) = Vf (x) + 2 A j  Vhj (x) + 2r x hj (x) V hj (x) (8.49) 
j= 1 j= 1 
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Since x* is feasible, hj (x*) = 0, so if X is set to h* in the augmented Lagrangian, 

m 

V,AL(x*, A*, r) = Vf(x*) + hf Vhj(x*) = 0 (8.50) 
j= 1 

Hence x* is a stationary point of AL (x, X*, r) for any r. Not all stationary points 
are minima, but if AL (x*, A*, r) is positive-definite, then x* satisfies the second- 
order sufficiency conditions, and so it is a local minimum. Luenberger (1984) 
shows that this is true if r is large enough, that is, there is a threshold 7 > 0 such 
that, if r > 7, then V: AL(x*, X*, r) is positive-definite. Hence for r > 7, 
AL(x,A*,r) is an exact penalty function. 

Again, there is a "catch." In general, 7 and X* are unknown. Algorithms have 
been developed that perform a sequence of minimizations of AL, generating suc- 
cessively better estimates of k* and increasing r if necessary [see Luenberger 
(1984)l. However, NLP solvers based on these algorithms have now been replaced 
with better ones based on the SLP, SQP, or GRG algorithms described in this chap- 
ter. The function AL does, however, serve as a line search objective in some SQP 
implementations; see Nocedal and Wright (1999). 

Barrier methods 
Like penalty methods, barrier methods convert a constrained optimization 

problem into a series of unconstrained ones. The optimal solutions to these uncon- 
strained subproblems are in the interior of the feasible region, and they converge to 
the constrained solution as a positive barrier parameter approaches zero. This 
approach contrasts with the behavior of penalty methods, whose unconstrained 
subproblem solutions converge from outside the feasible region. 

To illustrate, consider the example used at the start of Section 8.4 to illustrate 
penalty methods, but with the equality consbaint changed to an inequality: 

Minimize: f(x) = (x, - 1)2 + (x ,  - 2)2 

Subject to: g(x) = xl + x, - 4 2 0 

The equality constrained problem was graphed in Figure 8.5. The feasible region is 
now the set of points on and above the line x1 + x2 - 4 = 0, and the constrained 
solution is still at the point (1.5, 2.5) where f = 0.5. 

The logarithmic barrier function for this problem is 

where r is a positive scalar called the barrier parameter. This function is defined 
only in the interior of the feasible region, where g(x) is positive. Consider mini- 
mizing B starting from an interior point. As x approaches the constraint boundary, 
g(x) approaches zero, and the barrier term -rln(g(x)) approaches infinity, so it cre- 
ates an infinitely high barrier along this boundary. The penalty forces B to have an 
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TABLE 8.2 
Convergence of barrier function B(x, r) 

Barrier Value of the 
parameter, r x,(r) x,(r) Objective constraint Barrier term B ( g r )  

unconstrained minimum in the interior of the feasible region, and its location 
depends on the barrier parameter r. If x(r) is an unconstrained interior minimum of 
B(x, r), then as r approaches zero, the barrier term has a decreasing weight, so x(r) 
can approach the boundary of the feasible region if the constrained solution is on 
the boundary. As r approaches zero, x(r) approaches an optimal solution of the orig- 
inal problem, as shown in Nash and Sofer (1996) and Nocedal and wight  (1999). 

To illustrate this behavior, Table 8.2 shows the optimal unconstrained solutions 
and their associated objective, constraint, and barrier function values for the pre- 
ceding problem, for a sequence of decreasing r values. 

For larger r values, x(r) is forced further from the constraint boundary. In con- 
trast, as r approaches zero, x,(r) and x2(r) converge to their optimal values of 1.5 
and 2.5, respectively, and the constraint value approaches zero. The term -ln(g(x)) 
approaches infinity, but the weighted barrier term -rln (g(x)) approaches zero, and 
the value of B approaches the optimal objective value. 

For a general problem with only inequality constraints: 

Minimize: f (x) 

Subject to: gi(x) 3 0, i = 1, . . . , m 
the logarithmic barrier function formulation is 

m 

Minimize: B(x, r) = f(x) - r ln(gi(x)) 
i = l  

As with penalty functions, the condition number of the Hessian matrix Vp(x(r), r) 
approaches infinity as r approaches zero, so B is very difficult to minimize accu- 
rately for small r. From a geometric viewpoint, this is because the barrier term 
approaches infinity rapidly as you move toward the boundary of the feasible region, 
so the contours of B "bunch up" near this boundary. Hence the barrier approach is 
not widely used today as a direct method of solving nonlinear programs. When a 
logarithmic barrier term is used to incorporate only the bounds on the variables, 
however, this leads to a barrier or interior-point method. This approach is very suc- 
cessful in solving large linear programs and is very promising for NLP problems as 
well. See Nash and Sofer (1996) or Nocedal and Wright (1999) for further details. 
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Barrier methods are not directly applicable to problems with equality con- 
straints, but equality constraints can be incorporated using a penalty term and 
inequalities can use a barrier term, leading to a "mixed" penalty-barrier method. 

8.5 SUCCESSIVE LINEAR PROGRAMMING 

Successive linear programming (SLP) methods solve a sequence of linear pro- 
gramming approximations to a nonlinear programming problem. Recall that if g,(x) 
is a nonlinear function and x0 is the initial value for x, then the f ~ s t  two terms in 
the Taylor series expansion of gi(x) around x0 are 

The error in this linear approximation approaches zero proportionally to (Ax)2 as 
Ax approaches zero. Given initial values for the variables, all nonlinear functions in 
the problem are linearized and replaced by their linear Taylor series approximations 
at this initial point. The variables in the resulting LP are the h i ' s ,  representing 
changes from the base values. In addition, upper and lower bounds (called step 
bounds) are imposed on these change variables because the linear approximation is 
reasonably accurate only in some neighborhood of the initial point. 

The resulting LP is solved; if the new point is an improvement, it becomes the 
current point and the process is repeated. If the new point does not represent an 
improvement in the objective, we may be close enough to the optimum to stop or 
the step bounds may need to be reduced. Successive points generated by this pro- 
cedure need not be feasible even if the initial point is. The extent of infeasibility 
generally is reduced as the iterations proceed, however. 

We illustrate the basic concepts with a simple example. Consider the following 
problem: 

Maximize: 2x + y 

Subject to: x2 + y2 5 25 

and 

with an initial starting point of (xc, y,) = (2,2). Figure 8.7 shows the two nonlinear 
constraints and one objective function contour with an objective value of 10. 
Because the value of the objective function increases with increasing x and y, the 
figure shows that the optimal solution is at the point where the two nonlinear 
inequalities x2 + y2 5 25 and 9 - 3 5 7 are active, that is, at the solution of x2 + 
y2 = 25 and x2 - y2 = 7, which is x* = (4, 3). 
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6 

FIGURE 8.7 
SLP example with linear objective, nonlinear constraints. Line A is 
the linearization of x2 + y2 5 25 and line B is the linearization of 
x2 - y2 5 7. 

Next consider any optimization problem with n variables. Let E be any feasi- 
ble point, and let n,, (E) be the number of active constraints at x. Recall that a 
constraint is active at jZ if it holds as an equality constraint there. Hence all equal- 
ity constraints are active at any feasible point, but an inequality constraint may be 
active or inactive. Remember to include simple upper or lower bounds on the vari- 
ables when counting active constraints. We define the number of degrees of free- 
dom at jZ as 

De$nition: A feasible point E is called a vertex if dof(E) 5 0, and the Jacobian 
of the active constraints at E has rank n where n is the number of variables. It is a 
nondegenerate vertex if dof(E) = 0, and a degenerate vertex if dof(E) < 0, in 
which case ldof(E) I is called the degree of degeneracy at E. 

The requirement that there be at least n independent linearized constraints at x 
is included to rule out situations where, for example, some of the active constraints 
are just multiples of one another. In the example dof(E) = 0. 

Returning to the example, the optimal point x* = (4,3) is a nondegenerate ver- 
tex because 
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and 

Clearly a vertex is a point where n or more independent constraints intersect in n- 
dimensional space to produce a point. Recall the discussion of LPs in Chapter 7; if 
an LP has an optimal solution, an optimal vertex (or extreme point) solution exists. 
Of course, this rule is not true for nonlinear problems. Optimal solutions x* of 
unconstrained NLPs have dof(E) = n, since n,,(E) = 0 (i.e., there are no con- 
straints). Hence dof(E) measures how tightly constrained the point % is, ranging 
from no active constraints (dof(2) = n) to completely determined by active con- 
straints (dof(5) 5 0). Degenerate vertices have "extra" constraints passing 
through them, that is, more than n pass through the same point. In the example, one 
can pass any number of redundant lines or curves through (4,3) in Figure 8.7 with- 
out affecting the feasibility of the optimal point. 

If dof(E) = n - nacd%) = d > 0, then there are more problem variables 
than active constraints at x, so the (n - d) active constraints can be solved for n - d 
dependent or basic variables, each of which depends on the remaining d independ- 
ent or nonbasic variables. Generalized reduced gradient (GRG) algorithms use the 
active constraints at a point to solve for an equal number of dependent or basic vari- 
ables in terms of the remaining independent ones, as does the simplex method for 
LPs. 

Continuing with the example, we linearize each function about (x,, y,) = (2,2) 
and impose step bounds of 1 on both A x and A y, leading to the following LP: 

Maximize: 2xc + y, + 2Ax + Ay = 2Ax + Ay + 6 

Subject to: xa + y: + 2xcAx + 2yc Ay = 4Ax + 4Ay + 8 5 25 

The first two bounds require that the new point (2 + Ax, 2 + Ay) satisfy the orig- 
inal bounds. The second two bounds, called step bounds, are imposed to ensure that 
the errors between the nonlinear problem functions and their linearizations are not 
too large. 

Rearranging terms in the linearized LP yields the following SLP subproblem: 

Maximize: 2Ax + Ay 

Subject to: Ax + Ay 5 4.25 

and 
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FIGURE 8.8 
SLP example with linear objective, nonlinear constraints. 

Figure 8.7 also shows these LP constraints. Its optimal solution is at (Ax, Ay) = 
(1, I), which gives (x,, y,) = (3, 3). This point is determined entirely by the step 

- bounds. This is an improved point, as can be seen by evaluating the original func- 
tions, so we set x, = x, and repeat these steps to get the next LP. 

Maximize: 2Ax + Ay ' 

Subject to: Ax + Ay 5 f 

and 

The feasible region can be seen in Figure 8.8 and the optimal solution is at (Ax, Ay) 
= (1, a )  or (x,, y,) = (4, 3.167). This point is at the intersection of the constraints 
Ax + Ay 5 f a d  Ax = 1, so one step bound is still active at the LP optimum. 

The SLP subproblem at (4, 3.167) is shown graphically in Figure 8.9. The LP 
solution is now at the point (4, 3.005), which is very close to the optimal point x*. 
This point (x,) is determined by linearization of the two active constraints, as are 
all further iterates. Now consider Newton's method for equation-solving applied to 
the two active constraints, x2 + Y2 = 25 and A? - f = 7. Newton's method involves 



c H APTER 8: Nonlinear Programming with Constraints 

FIGURE 8.9 
The optimal point after solving the third SLP 
subproblem. A is the linearization of x2 + y2 = 25 and 
B is the linearization of x2 - y2 = 7. 

linearizing these two equations and solving for (Ax, Ay), exactly as SLP is now 
doing. Hence, when SLP converges to a vertex optimum, it eventually becomes 
Newton's method applied to the active constraints. As discussed in Chapter 5, the 
method has quadratic convergence, that is, the new error is bounded by a constant 
times the previous error squared. This is the most rapid convergence we could hope 
to obtain, so SLP is very efficient when the optimum is at a constraint vertex. 

SLP convergence is much slower, however, when the point it is converging 
toward is not a vertex. To illustrate, we replace the objective of the example with 
x + 2y. This rotates the objective contour counterclockwise, so when it is shifted 
upward, the optimum is at x* = (2.2, 4.4), where only one constraint, 2 + )$ 5 
25, is active. Because the number of degrees of freedom at x* is 2 - 1 = 1, this 
point is not a vertex. Figure 8.10 shows the feasible region of the SLP subproblem 
starting at (2, 5), using step bounds of 1.0 for both Ax and Ay. 

The point (2, 5) is slightly infeasible, and the SLP subproblem is 

Maximize: f = Ax + 2Ay 

Subject to: - 1 5 Ax 5 1 

We ignore the constraint x2 - 3 5 7 because its linearization is redundant in this 
subproblem. The LP optimum is at Ax = 1, Ay = -0.8, so the new point is (3,4.2), 
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L 

Base point = (2,5) 

Optimum = (2.2,4.4) 

New point = (3,4.2) 
(Ax= 1, Ay=-0.8) 

3 - 

1 - 

FIGURE 8.10 
SLP subproblem at (2,5) for the revised example (f = x + 2y). 

which is on the "other side" of the optimum. If we continue this process without 
reducing the step bounds, the iterates will oscillate about the optimum and never 
converge to it because the new point will always be'at the intersection of the lin- 
earized constraint and a step bound. 

The penalty SLP algorithm (PSLP), described in Zhang et al. (1985) and dis- 
cussed in the next section, contains logic for reducing the step bounds so that con- 
vergence to the optimal solution is guaranteed. The sequence of points generated 
by PSLP for this problem, starting at (2,5), with initial step bounds of 0.9, is shown 
in Table 8.3. The algorithm converges, but much more slowly than before. The rate 
of convergence is linear, as occurs in the steepest descent method for unconstrained 
optimization. The step bounds must be reduced to force convergence, as is shown 
in the "max step bound" column. The significance of the "ratio" column is 
explained in the next section. 

8.5.1 Penalty Successive Linear Programming 

The PSLP algorithm is a steepest descent procedure applied to the exact L, penalty 
function (see Section 8.4). It uses a trust region strategy (see Section 6.3.2) to guar- 
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TABLE 8.3 
Convergence of PSLP on the modified Griffith-Stewart problem 

Iteration Objective Sum of infeasibilities Ratio Max step bound 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

OPT 

*E-03 represents 

antee convergence. To explain PSLP, we begin with an NLP in the following gen- 
eral form: 

Minimize: f (x) 

Subject to: g(x) = b 

and 

Any inequalities have been converted to equalities using slack variables, which are 
included in x. The exact L, penalty function for this problem is 

If the penalty weight w is larger than the maximum of the absolute multiplier val- 
ues for the problem, then minimizing P(x, w) subject to 1 5 x 5 u is equivalent to 
minimizing f in the original problem. Often, such a threshold is known in advance, 
say from the solution of a closely related problem. If w is too small, PSLP will usu- 
ally converge to an infeasible local minimum of P, and w can then be increased. 
Infeasibility in the original NLP is detected if several increases of w fail to yield a 
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feasible point. In the following, we drop the dependence of P on w, calling it sim- 
ply p ( ~ ) .  

Let xk be the value of x at the start of PSLP iteration k. A piecewise linear func- 
tion that closely approximates P(x)  for x near xk is 

As Ax approaches 0, Pl(Ax,  xk) approaches P(xk), SO P1 approximates P arbitrarily 
well if Ax is small enough. We ensure that Ax is small enough by imposing the step 
bounds 

where sk is a vector of positive step bounds at iteration k, which are varied dynam- 
ically during the execution of PSLP. We also want the new point xk + Ax to satisfy 
the original bounds, so we impose the constraints 

The trust region problem is to choose Ax to minimize P1 in (8.54) subject to the 
trust region bounds (8.55) and (8.56). As discussed in Section (8.4),  this piecewise 
linear problem can be transformed into an LP by introducing deviation variables pi 
and n,. The absolute value terms become (pi + n,) and their arguments are set equal 
to pi - n,. The equivalent LP is 

Problem LP(xk, sk) 

Minimize: f + V f * A x + w (pi + ni) (8.57) 
i 

Subjectto: gi + V g T A x  - bi = p i  - n ,  i = 1, ..., m (8.58) 

where all functions and gradients are evaluated at xk. 
Let Axk solve LP (xk, sk). The new point xk + Axk is "better" than xk if 

The actual reduction in P is 

Of course, ared, can be negative because P need not be reduced if the step bounds 
sk are too large. To decide whether sk should be increased, decreased, or left the 
same, we compare ared, with the reduction predicted by the piecewise linear 
"model" or approximation to P, P I .  This predicted reduction is 
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Remember that Axk solves LP (xk, sk), Ax = 0 is feasible in this LP, and P1 is its 
objective. Because the minimal objective value is never larger than the value at any 
feasible solution 

If pred, = 0, then no changes Ax within the rectangular trust region (8.58) can 
reduce P1 below the value Pl(0, xk). Then xk is called a stationary point of the non- 
smooth function P, that is, the condition pred, = 0 is analogous to the condition 
Vf(xk) = 0 for smooth functions. If pred, = 0, the PSLP algorithm stops. Other- 
wise pred, > 0, so we can compute the ratio of actual to predicted reduction. 

ared, 
ratio, = - 

predk 

Changes in the step bounds are based on ratio,. Its ideal value is 1.0 because then 
the model function P1 agrees perfectly with the true function P. If the ratio is close 
to 1.0, we increase the step bounds; if it is far from 1 .O, we decrease them; and if it 
is in between, no changes are made. To make this precise, we set two thresholds u 
and 1; a ratio above u (typical value is 0.75) is "close" to 1.0, and a ratio below 1 
(typical value is 0.25) is "far" from I .  Then, the steps in PSLP iteration k are; 

1. Solve the LP subproblem LP (xk, sk), obtaining an optimal solution Axk, and 
Lagrange multiplier estimates Ak. These are the LP multipliers for the equalities 
in (8.58). 

2. Check the stopping criteria, including 
a. pred, is nearly zero. 
b. The KTC are nearly satisfied. 
c. xk is nearly feasible and the fractional objective change is small enough. 

3. Compute ared,, pred, and ratio,. 
4. If ratio, < 0, sk t sk/2, go to step 1 (reject the new point). 
5. xk t xk + Axk (accept the new point). 
6. If ratio, < 1, sk t sk/2. 

If ratio, > u, sk t 2sk. 
7. Go to step 1 with k t k + 1. 

Step 4 rejects the new point and decreases the step bounds if ratio, < 0. This step 
can only be repeated a finite number of times because, as the step bounds approach 
zero, the ratio approaches 1.0. Step 6 decreases the size of the trust region if the 
ratio is too small, and increases it if the ratio is close to 1.0. Zhang et al. (1986) 
proved that a similar SLP algorithm converges to a stationary point of P from any 
initial point. 

Table 8.3 shows output generated by this PSLP algorithm when it is applied to 
the test problem of Section 8.5 using the objective x + 2y. This version of the prob- 
lem has a nonvertex optimum with one degree of freedom. We mentioned the slow 
linear convergence of PSLP in this problem previously. Consider the "ratio" and 
"max step bound" columns of Table 8.2. Note that very small positive or negative 
ratios occur at every other iteration, with each such occurrence forcing a reduction 
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of all step bounds (they are divided by 2.0). After each reduction (once two reduc- 
tions are needed), a positive ratio occurs and the new point is accepted. When the 
ratio is negative, the new point is rejected. 

8.6 SUCCESSIVE QUADRATIC PROGRAMMING 

Successive quadratic programming (SQP) methods solve a sequence of quadratic 
programming approximations to a nonlinear programming problem. Quadratic 
programs (QPs) have a quadratic objective function and linear constraints, and 
there exist efficient procedures for solving them; see Section 8.3. As in SLP, the 
linear constraints are linearizations of the actual constraints about the selected 
point. The objective is a quadratic approximation to the Lagrangian function, and 
the algorithm is simply Newton's method applied to the KTC of the problem. 

Problem formulation with equality constraints 
To derive SQP, we again consider a general NLP of the form (8.5 1)-(8.52), but 

temporarily ignore the bounds to simplify the explanation; 

Minimize: f (x) (8.62) 

Subject to: g(x) = b 

The Lagrangian function for this problem is 

and the KTC are 

and 

As discussed in Section (8.2), Equations (8.64) and (8.65) is a set of (n + rn) non- 
linear equations in the n unknowns x and rn unknown multipliers A. Assume we 
have some initial guess at a solution (%,k). To solve Equations (8.64)-(8.65) by 
Newton's method, we replace each equation by its first-order Taylor series approx- 
imation about (Z, k). The linearization of (8.64) with respect to x and A (the argu- 
ments are suppressed) 

and that for (8.65) is 
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In Equations (8.66)-(8.67) all functions and derivatives are evaluated at (Z, X), Vg 
is the Jacobian matrix of g, and V2L is the Hessian matrix of the Lagrangian. 

Note that second derivatives of all problem functions are now involved. 
For problems with only equality constraints, we could simply solve the linear 

equations (8.66)-(8.67) for (Ax, Ah) and iterate. To accommodate both equalities 
and inequalities, an alternative viewpoint is useful. Consider the quadratic pro- 
gramming problem 

Minimize: VLT Ax + f AxT L Ax (8.69) 

Subject to: g + Vg Ax = 0 (8.70) 

If we call the Lagrange multipliers for (8.70) Ah, the Lagrangian for the QP is 

L,(Ax, Ah) = VLTAx + ~ A X ~ ~ L A X  + AhT(g + Vg Ax) (8.71) 

Setting the derivatives of i, with respect to Ax and AA equal to zero yields the 
Newton equations (8.66)-(8.67) so they are the KTC of the QP (8.69H8.70). 
Hence in the equality-constrained case, we can compute the Newton step (Ax, AX) 
either by solving the linear equations (8.66)-(8.67) or by solving the QP 
(8 -69)-(8.70). 

Inclusion of both equality and inequality constraints 
When the original problem has a mixture of equalities and inequalities, it can 

be transformed into a problem with equalities and simple bounds by adding slacks, 
so the problem has an objective function5 equalities (8.62), and bounds 

Repeating the previous development for this problem, Newton's method applied to 
the KTC yields a mixed system of equations and inequalities for the Newton step 
(Ax, Ah). This system is the KTC for the QP in (8.69)-(8.70) with the additional 
bound constraints . 

Hence the QP subproblem now has both equality and inequality constraints and 
must be solved by some iterative QP algorithm. 

The approximate Hessian 
Solving a QP with a positive-definite Hessian is fairly easy. Several good algo- 

rithms all converge in a finite number of iterations; see Section 8.3. However, the 
Hessian of the QP presented in (8.69), (8.70), and (8.73) is V-L (Z,i), and this 
matrix need not be positive-definite, even if (Z, x) is an optimal point. In addition, 
to compute V-L, one must compute second derivatives of all problem functions. 
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Both difficulties are eliminated by replacing V:L by a positive-definite quasi- 
Newton (QN) approximation B, which is updated using only values of L and V& 
(See Section 6.4 for a discussion of QN updates.) Most SQP algorithms use Pow- 
ell's modification (see Nash and Sofer, 1996) of the BFGS update. Hence the QP 
subproblem becomes 

Minimize: V,LTAx + ~ A X ~ B A X  (8.74) 

Subjectto: VgAx = -g, 1 I 2 +  Ax I u (8.75) 

The SQP line search 
To arrive at a reliable algorithm, one more difficulty must be overcome. New- 

ton and quasi-Newton methods may not converge if a step size of 1.0 is used at each 
step. Both trust region and line search versions of SQP have been developed that 
converge reliably [see Nocedal and Wright (1999) and Nash and Sofer (1996)l. A 
widely used line search strategy is to use the L, exact penalty function P(x, w) in 
(8.53) as the function to be minimized during the line search. This function also 
plays a central role in the PSLP algorithm discussed in Section 8.5. In a line search 
SQP algorithm, P(x, w) is used only to determine the step size along the direction 
determined by the QP solution, Ax. Let x be the current iterate, and let Ax solve the 
QP subproblem, QP(x, B). The L, exact penalty function for the NLP problem is 

where a separate penalty weight wi is used for each constraint. The SQP line search 
chooses a positive step size a to find an approximate niinimum of 

A typical line search algorithm, which uses the derivative of r(a) evaluated at a = 
0, denoted by r'(O), is 

stop and return the current a value. 
3. Let a, be the unique minimum of the convex quadratic function that passes 

through r(O), rl(0), and r(a). Take the new estimate of a as 

a t max (O.la,a,) (8.79) 

4. Go to step 2. 
This backtracking line search tries a = 1.0 first and accepts it if the "sufficient 

decrease" criterion (8.78) is met. This criterion is also used in unconstrained mini- 
mization, as discussed in Section 6.3.2. If a = 1.0 fails the test (8.78), a safe- 
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guarded quadratic fit (8.79) chooses the next a .  The trust region in (8.79) ensures 
that the new a is not too small. 

SQP algorithm 
Based on this line search and the QP subproblem QP (x, B) in (8.74)-(8.75), a 

typical SQP algorithm follows: 

1. Initialize: B0 t I (or some other positive-definite matrix), x0 t x (user- 
provided initial point), k t 0. 

2. Solve the QP subproblem QP (xk, Bk), yielding a solution A xk and Lagrange 
multiplier estimates Ak. 

3. Check the termination criteria (KTC, fractional objective change), and stop if 
any are satisfied to within the specified tolerances. 

4. Update the penalty weights w in the penalty function p(x, w). See Nash and 
Sofer (1996) for details. Let the new weights be wk. 

5. Apply the line search algorithm just described to the function 

yielding a positive step size ak 
6 X k + l  = x k + ffkAxk,hk+l = A 
7. Evaluate all problem functions and their gradients at the new point. Update 

the matrix Bk (Nash and Sofer, 1996) using 

8. Replace k by k + 1, and go to step 2 

Convergence of SQP 
Because of the quasi-Newton updating of Bk, this SQP algorithm estimates 

second-order information, that is, Bk is a positive-definite approximation of V:L. 
Hence a correctly implemented SQP algorithm can have a superlinear convergence 
rate, just as the BFGS algorithm for unconstrained minimization is superlinearly 
convergent. If the optimum is not at a vertex, SQP usually requires fewer iterations 
than SLP, but each iteration requires solution of a QP, which is often much slower 
than solving an LP (as SLP does). Hence each iteration takes longer than the cor- 
responding SLP iteration. In addition, the approximate Hessian matrix Bk is dense, 
even when the matrix it approximates, V:L, is sparse, so the algorithm gets slower 
and requires more storage (order of n2) as the number of variables n increases. For 
problems with n > 1000, say, the SQP algorithm posed here is not practical. How- 
ever, similar methods using sparse approximations to V:L do exist, and these can 
solve much larger problems. 

SQP code performance 
Table 8.4 shows the convergence of an SQP algorithm very similar to the one 

described here, applied to the Griffith-Stewart test problem of Section 8.5, using the 
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TABLE 8.4 
Convergence of SQP on modified 

Grirnth-Stewart problem 

Iteration Objective Sum of infeasibilities 

0 12.0000 4.000 
1 11.2069 0.172 
2 11.1810 0.015 
3 11.1831 0.012 
4 11.1803 2.1E-06 
OPT 11.1803 0.000 

objective x + 2y. This is the same problem as solved by PSLP in Table 8.3, using 
the same initial point (2, 5). Comparing the two tables shows that SQP converges 
much more rapidly on this problem than PSLP. This is because of the second-order 
information (second derivatives) estimated in the matrices Bk. The price one pays 
for this rapid convergence is the need to store and manipulate the dense matrices Bk, 
and to solve a more difficult subproblem (a QP instead of an LP). For problems with 
several thousand constraints and variables, these disadvantages usually mean that 
SLP is preferred. In fact, SLP is widely used in the oil and chemical industries to 
solve large production planning models. See Baker and Lasdon (1985) for details. 

8.7 THE GENERALIZED REDUCED GRADIENT METHOD 

The generalized reduced gradient (GRG) algorithm was first developed in the late 
1960s by Jean Abadie (Abadie and Carpentier, 1969) and has since been refined by 
several other researchers. In this section we discuss 'the fundamental concepts of 
GRG and describe the version of GRG that is implemented in GRG2, the most 
widely available nonlinear optimizer [Lasdon et al., 1978; Lasdon and Waren, 
1978; Smith and Lasdon, 19921. 

GRG algorithms use a basic descent algorithm described below for uncon- 
strained problems. We state the steps here: 

General descent algorithm 
1. Compute the gradient of'x) at the current point x,, giving V'x,). 
2. If the current point x, is close enough to being optimal, stop. 

'3. Compute a search direction d, using the gradient Vfix,) and perhaps other 
information such as the previous search direction. 

4. Determine how far to move along the current search direction d,, starting 
from the current point x,. This distance a, is most often an approximation of 
the value of a that minimizes the objective functionfix, + ad,) and is used 
to determine the next point x, = (x, + acdc). . 

5. Replace the current point x, by the next point x,, and return to step 1. 
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FIGURE 8.11 
Circular objective contours and the linear equality constraint 
for the GRG example. 

Equality constraints . 

To explain how GRG algorithms handle equality constraints, consider the fol- 
lowing problem: 

Minimize: x 2  + Y 2  

Subject to: x + y = 4 

The geometry of this problem is shown in Figure 8.11. The linear equality con- 
straint is a straight line, and the contours of constant objective function values are 
circles centered at the origin. From a geometric point of view, the problem is to find 
the point on the line that is closest to the origin at x = 0, y = 0. The solution to the 
problem is at x = 2, y = 2, where the objective function value is 8. 

GRG takes a direct and natural approach to solve this problem. It uses the 
equality constraint to solve for one of the variables in terms of the other. For exarn- 
ple, if we solve for x, the constraint becomes 

Whenever a value is specified for y, the appropriate value for x, which keeps the 
equality constraint satisfied, can easily be calculated. We call y the independent, or 



308 PART I1 : Optimization Theory and Methods 

nonbasic, variable and x the dependent, or basic, variable. Because x is now deter- 
mined by y, this problem can be reduced to one involving only y by substituting 
(4 - y) for x in the objective function to give: 

The function F(y) is called the reduced objective function, and the reduced prob- 
lem is to minimize F(y) subject to no constraints. Once the optimal value of y is 
found, the optimal value of x is computed from Equation (8.80). 

Because the reduced problem is unconstrained and quite Simple, it can be 
solved either analytically or by the iterative descent algorithm described earlier. 
First, let us solve the problem analytically. We set the gradient of F(y), called the 
reduced gradient, to zero giving: 

Solving this equation we get y = 2. Substituting this value in (8.80) gives x = 2 and 
(x, y) = (2, 2) is, of course, the same solution as the geometric one. 

Now apply the steps of the descent algorithm to minimize F(y) in the reduced 
problem, starting from an initial y, = 0, for which the corresponding xc = 4. Com- 
puting the reduced gradient gives VF(yc) = VF(0) = -8, which is not close enough 
to zero to be judged optimal so we proceed with step 3. The initial search direction 
is the negative reduced gradient direction, so d = 8 and we proceed to the line 
search of step 4. New points are given by 

where a is the step size. We start at (4, 0) with a = 0; as a increases, y also 
increases. This increase is determined by Equation (8.81) and keeps (x, y) on the 
equality constraint shown in Figure 8.1 1. 

Next a is selected to minimize g(a), the reduced objective function evaluated 
along the current search direction, which is given by 

Again, in this simple case, we can proceed analytically to determine a by setting 
the derivative of g(a) to zero to get 
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(X - 0.5)2 + (y - 2.5)2 = r2 

Y 

-1 . o  1 2 3 4 
X 

FIGURE 8.12 
Circular objective function contours and linear inequality 
constraint. 

Solving for a gives a = a. Substituting this value into Equation (8.81) gives yn = 
2 and then (8.80) gives xn = 2, which is the optimal solution. 

Inequality constraints 
Now examine how GRG proceeds when some of the constraints are inequalities 

and there are bounds on some or all of the variables. Consider the following problem: 

Minimize: ( x  - 0.5)~  + (y - 2.5)' 

Subject to: x - y 2 0 

The feasible region and some contours of the objective function are shown in 
Figure 8.12. The goal is to find the feasible point that is closest to the point (0.5, 
2.5), which is (1.5, 1.5). 

GRG converts inequality constraints to equalities by introducing slack variables. 
If s is the slack in this case, the inequality x - y 2 0 becomes x - y - s = 0. We 
must also add the bound for the slack, s r 0, giving the new problem: 
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Minimize: (x - 0.5)~  + (y - 2.5)2 

Subject to: x - y - s = 0 

Let the starting point be (1, 0), at which the objective value is 6.5 and the 
inequality is satisfied strictly, that is, its slack is positive (s = 1). At this point the 
bounds are also all satisfied, although y is at its lower bound. Because all of the con- 
straints (except for bounds) are inactive at the starting point, there are no equalities 
that must be solved for values of dependent variables. Hence we proceed to mini- 
mize the objective subject only to the bounds on the nonbasic variables x and y. 
There are no basic variables. The reduced problem is simply the original problem 
ignoring the inequality constraint. In solving this reduced problem, we do keep track 
of the inequality. If it becomes active or violated, then the reduced problem changes. 

To solve this first reduced problem, follow the steps of the descent algorithm 
outlinqd at the start of this section with some straightforward modifications that 
account for the bounds on x and y. When a nonbasic variable is at a bound, we must 
decide whether it should be allowed to leave the bound or be forced to remain at 
that bound foy the next iteration. Those nonbasic variables that will not be kept at 
their bounds are called superbasic variables [this term was coined by Murtaugh and 
Saunders (1982)J. In step 1 the reduced gradient of f(x,y) is 

In this example x is a superbasic variable. To decide whether y should also be a 
superbasic variable and be allowed to leave its bound, examine the value of its 
reduced gradient component. Because this value (-5) is negative, then moving y 
from its bound into the feasible region, that is, increasing the value of y, decreases 
the objective value. We therefore consider letting y leave its bound. In GRG, a non- 
basic variable at a bound is allowed to leave that bound only if (1) doing so improves 
the value of the objective and (2) the predicted improvement is large compared with 
the improvement obtained by varying only the current superbasic variables. In this 
example, because the magnitude of the y component of the reduced gradient is five 
times the magnitude of the x component, the incentive to release y from its bound 
is large. Thus y is added to the list of superbasic variables. 

In step 3 of the descent algorithm (because the gradient is clearly not small 
enough to stop), the first search direction is chosen as the negative gradient direction: 

d, = -[1 -51 = [-I  51 

In Figure 8.12, this direction (the dashed line) points to the center of the circular 
objective function contours at (0.5, 2.5). In step 4, the line search moves along d, 
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until either the objective stops decreasing or some constraint or variable bound is 
reached. In this example the condition that is first encountered is that the constraint 
x - y r 0 reaches its bound, and we then select the intersection of the search direc- 
tion and the constraint x - y = 0 as the next point. This is the point ( z ,  a )  where 
F =  26 = 

9 2.889. 
Because we now have reached an active constraint, use it to solve for one vari- 

able in terms of the other, as in the earlier equality constrained example. Let x be 
the basic, or dependent, variable, and y and s the nonbasic (independent) ones. 
Solving the constraint for x in terms of y and the slack s yields 

The reduced objective is obtained by substituting this relation for x in the objective 
function: 

The reduced gradient is 

which evaluated at (2,O) is 

VF(~,O) = [ - t  $ I T  
The variable y becomes superbasic. Because s is at its lower bound of zero, con- 
sider whether s should be allowed to leave its bound, that is, be a superbasic vari- 
able. Because its reduced gradient term is $, increasing s (which is the only feasi- 
ble change for s) increases the objective value. Because we are minimizing F, fix s 
at zero; this corresponds to staying on the line x = y. The search direction d = q 
and new values for y are generated from 

where (Y is the step size from the current point. The function to be minimized by the 
line search is 

The optimal step size of a = is determined by setting dg(n)lda = 0, which gives 
the next point as y, = 1.5. Because s has been fixed at zero, we are on the line x = 
y and at step 5 we have (x,, y,) = (1.5, 1.5), which is the optimal value for this prob- 
lem. To confirm this, return to step 1 of our descent algorithm, and calculate the 
reduced gradient of F(y,s) at (1.5, 0) to get 



312 PART 11 : Optimization Theory and Methods 

First, the first element in the reduced gradient with respect to the superbasic vari- 
able y is zero. Second, because the reduced gradient (the derivative with respect to 
s) is 1, increasing s (the only feasible change to s) causes an increase in the objec- 
tive value. These are the two necessary conditions for optimality for this reduced 
problem and the algorithm terminates at (1.5, 1.5) with an objective value of 2.0. 

Nonlinear constraints -* 

To illustrate how GRG handles nonlinear constraints, replace the linear con- 
straint of the previous example by 

The new problem is 

Minimize: (x - 0 .5 )~  + (y - 2.5)' 

Subject to: (x - 2)2 + y2 5 4 

O I x  

The feasible region is shown in Figure 8.13. It is bounded by a semicircle of radius 
2 centered at (2, 0) and by the x axis. The point in this region closest to (0.5, 2.5) 
is optimal, which is (0.97 1, 1.7 15). 

(170) 
starting 

x = O  point 
I I I I I I I I 

FIGURE 8.13 
Circular objective function contours with a nonliilear 
inequality constraint. 
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We again start from the point (1, 0). At this point the nonlinear constraint is 
inactive, y is released from its lower bound to become superbasic (along with x) and 
progress continues along the negative gradient direction until the constraint is 
encountered. The intersection of the constraint and the negative gradient direction 
from the starting point is at (0.697, 1.715). Now the nonlinear constraint is active. 
Adding a slack variable s gives 

To form the reduced problem, this equation must be solved for one variable in terms 
of the other two. The logic in GRG for selecting which variables are to be basic is 
complex and is not discussed here [see Lasdon et al. (1978); and Lasdon and Waren 
(1978) for more information]. In this example GRG selects x as basic. 

Solving (8.82) for x yields 

The reduced objective is obtained by substituting this expression into the objective 
function. The slack s wil1,be fixed at its current zero value for the next iteration 
because moving into the interior of the circle from (0.697, 1.517) increases the 
objective. Thus, as in the linearly constrained example, y is again the only super- 
basic variable at this stage. 

Because analytic solution of the active constraints for the basic variables is 
rarely possible, especially when some of the constraints are nonlinear, a numerical 
procedure must be used. GRG uses a variation of Newton's method which, in this 
example, works as follows. With s = 0, the equation to be solved for x is 

GRG determines a qew value for y as before, by choosing a search direction d and 
then a step size a. Because this is the first iteration for the current reduced prob- 
lem, the direction d is the negative reduced gradient. The line search subroutine in 
GRG chooses an initial value for a. At (0.697, 1.517), d = 1.508 and the initial 
value for a is 0.050. Thus the first new value for y, say y,, is 

Substituting this value into Equation (8.83) gives 

g(x) = ( x  - 2)2 - 1.466 = 0 (8.84) 

Given ;an initial guess xo for x, Newton's method is used to solve Equation (8.84) 
for x by replacing the left-hand side-of (8.84) by its first-order Taylor series approx- 
imation at xo: 
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Solving this equation for x and calling this result x, yields 

If g(x,) is close enough to zero, x, is accepted as the solution and this procedure 
stops. "Close enough" is determined by a feasibility tolerance Ef (which can be set 
by the user, and has a default value of 0.0001) using the criterion: 

If this criterion is not satisfied, x, replaces x,, and a new iteration of Newton's method 
begins. For this example, the sequence of x and y values generated by GRG is 

Iteration x g(x) 

Initial point 0.7849 -0.134E-0 1 
1 0.7900 -0.94OE-03 
2 0.7904 -0.675E-04 

In the "pure" Newton's method, ag(x)lax is reevaluated at each new value of x. In 
GRG, ag(x)lax is evaluated only once for each line search, at the point from which 
the line search begins. In this example, ag(x)lax evaluated at x = 0.697 is 2.606, so 
the GRG formula corresponding to (8.85) is 

This variation on Newton's method usually requires more iterations than the pure 
version, but it takes much less work per iteration, especially when there are two or 
more basic variables. In the multivariable case the matrix Vg(x) (called the basis 
matrix, as in linear programming) replaces aglax in the Newton equation (8.85), 
and g(%) is the vector of active constraint values at %. 

Note that the initial guess for x in row 1 of the preceding table is 0.7849, not 
its base value of 0.697. GRG derives this initial estimate by using the vector that is 
tangent to the nonlinear constraint at (0.697, 1.5 17), as shown in Figure 8.14. Given 
y, = 1.592, the x value on this tangent vector is 0.7849. The tangent vector value is 
used because it usually provides a good initial guess and results in fewer Newton 
iterations. 

Of course, Newton's method does not always converge. GRG assumes Newton's 
method has failed if more than ITLIM iterations occur before the Newton termination 
criterion (8.86) is met or if the norm of the error in the active constraints ever 
increases from its previous value (an occurrence indicating that Newton's method is 
div~rging). ITLIM has a default value of 10. If Newton's method fails but an 
improved point has been found, the line search is terminated and a new GRG itera- 

' tion begins. Otherwise the step size in the line search is reduced and GRG tries again. 
The output from GRG that shows the progress of the line search at iteration 4 is 
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Base value after 
second iteration 

Initial base value 

7 

Basic variable x 

FIGURE 8.14 
Initial estimate for Newton's method to return to the nonlinear 
constraint. 

STEP = 5.028E-02 OBJ = 9.0733-01 NEWTON ITEM 2 

STEP = 1.OOSE-01 OBJ 8.49lE-01 NEWTON ITERS = 4 
STEP = 2.0llE-01 OBJ = 9.128E-01 NEWTON ITERS = 8 
QUADRATIC INTERPOLATION 

STEP = l.242E-01 OBJ = 8.38636-01 WEIQTOW ITERS = 4 

Note that as the line search process continues and the total step from the initial 
point gets larger, the number of Newton iterations generally increases. This 
increase occurs because the linear approximation to the active constraints, at the 
initial point (0.697, 1.5 17), becomes less and less accurate as we move further from 
that point. 

Infeasible starting point 
If the initial values of the variables do not satisfy all of the constraints, GRG 

starts with a phase I objective function (as is also done in linear programming) and 
attempts to find a feasible solution. To illustrate this approach consider a problem 
that has no objective function and has the following three constraints: 

x2 + Y 2  5 4 
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x2+y2=4 

- 

- 

- 

Starting point (0.75,O) 

b I I I I I I I I I 

FIGURE 8.15 
Finding a feasible point in GRG; the feasible region is the dashed line. 

We use a starting point of (0.75, 0). The feasible region is shown in Figure 8.15 as 
the dashed line segment. At the initial point constraint 1 is strictly satisfied, but con- 
straints 2 and 3 are violated. GRG constructs the phase I objective function as the 
sum of the absolute values of all constraint violations. For this case the sum of the 
infeasibilities (sinf) is 

The first term is the violation of constraint 2 and the second term is the violation 
of constraint 3. Note that both terms are arranged so that the violations are posi- 
tive. 

The optidzation problem solved by GRG is 

Minimize: sinf ( x , ~ )  
2 Subject to: x + y2 5 4 
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At the initial point, the preceding nonlinear constraint is inactive, the reduced objec- 
tive is just sinf (x, y), and the reduced gradient is 

The initial search direction is, as usual, the negative reduced gradient direction so 
d = [0 21 and we move from (0.75,O) straight up toward the line x + y = 1. The 
output from GRG is shown in the following box. 

Norm of 
Iteration Objective Number Number Number reduced Hessian 
number function binding superbasics infeasible gradient condition 

0 1.000Et00 1 2 2 2.000E+00 1.000E+00 

STEP 2.500000E-02 OBJ = 9.00000E-01 
STEP = 5.000000E-02 OBJ 1 8.00000E-01 

STEP = 1.0000OOE-01 OBJ = 6.00000E-01 
STEP = 2.000000E-01 OBJ = 3.50000E-01 
STEP = 4.000000E-01 OBJ = 0.00000E+00 

CONSTRAINT #3 VIOLATED BOUND 

ALL VIOLATED CONSTRAINTS SATISFIED. NOW BEGIN TO OPTIMIZE TRUE OBJECTIVE 

Norm of 
Iteration Objective Number Number Number reduced Hessian 
number function binding superbasics infeasible gradient condition 

0 1.000E+00 1 2 0 2.000E+00 1.000E+00 

KUIIN-TUCKER COblDITIONS SATISFIED 

As can be seen in the output shown in the box, at the starting point (iteration 
0) there are two infeasible constraints, two superbasics, and sinf = 1. Using the 
usual formula, (x, y) for the first line search is calculated as follows: 

It is clear that the x values remain fixed at 0.75 and the y values are twice the 
step size at each step. In Figure 8.15 these steps are labeled 1 through 6. At step 5, 
GRG detects the change in sign of constraint number 3 and backs up until the con- 
straint is binding. Because at this stage (x,y) is feasible, GRG prints the message 

ALL VIOLATED CONSTRAINTS SATISFIED 
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If the problem had an objective function, GRG would begin minimizing the 
"true" objective, starting from this feasible point. Because we did not specify an 
objective for this problem, the algorithm stops. Minimizing sinf to find a feasible 
point, if needed, is phase I of the GRG algorithm; optimization of the true objec- 
tive is phase 11. If GRG cannot find a feasible solution, then phase I will terminate 
with a positive value of sinf and report that no feasible solution was found. 

8.8 RELATIVE ADVANTAGES AND DISADVANTAGES OF NLP 
METHODS 

Table 8.5 summarizes the relative merits of SLP, SQP, and GRG algorithms, focus- 
ing on their application to problems with many nonlinear equality constraints. One 
feature appears as both an advantage and a disadvantage-whether or not the algo- 
rithm can violate the nonlinear constraints of the problem by relatively large 
amounts during the solution process. 

SLP and SQP usually generate points with large violations. This can cause dif- 
ficulties, especially in models with log or fractional power expressions, because neg- 
ative arguments for these functions may be generated. Such problems have been 
documented in reference to complex chemical process examples (Sarma and 

TABLE 8.5 

Relative merits of SLP, SQP, and GRG algorithms 

Algorithm Relative advantages , Relative disadvantages 
- - -  - 

SLP Widely used in practice 

Rapid convergence when optimum is at a vertex 

Can handle very large problems 

Does not attempt to satisfy equalities at each 
iteration 

Can benefit from improvements to LP solvers 

GRG 

Usually requires the fewest function and gradient 
evaluations of all three algorithms (by far) 

Does not attempt to satisfy equalities at each 
iteration 

\ 

Probably most robust of all three methods 

Versatile-especially good for unconstrained or 
linearly constrained problems but also works 
well for nonlinear constraints 

May converge slowly on 
problems with nonvertex 
optima 

Will usually violate nonlinear 
constraints until convergence 
to optimum, often by large 
amounts 

Will usually violate nonlinear 
constraints until convergence, 
often by large amounts 

Needs to satisfy equalities at 
each step of the algorithm 

Once it reaches a feasible solution it remains 
feasible and then can be stopped at any stage 
with an improved solution 
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Reklaitis, 1982) in which SLP and some exterior penalty-type algorithms failed, but 
the GRG code succeeded and was quite efficient. On the other hand, algorithms that 
do not attempt to satisfy the equalities at each step can be faster than those that do 
(Berna et al., 1980). The fact that SLP and SQP satisfy any linear constraints at each 
iteration should ease the difficulties cited in Table 8.5 but does not eliminate them. 

In some situations the optimization process must be terminated before the algo- 
rithm has reached optimality and the current point must be used or discarded. These 
cases usually arise in on-line process control in which time limits force timely deci- 
sions. In such cases, maintaining feasibility during the optimization process may be 
a requirement for the optimizer because an intermediate infeasible point makes a 
solution unusable. 

Clearly, all three algorithms have advantages that dictate their use in certain sit- 
uations. For large problems, SLP software is used most widely, because it is rela- 
tively easy to implement given a good LP code. Large-scale versions of GRG and 
SQP are increasingly employed, however. 

8.9 AVAILABLE NLP SOFTWARE 

In this section we survey implementations of the algorithms described in Sections 
8.5 through 8.7. Although an increasingly large proportion of NLP users employ 
systems with higher level user interfaces to optimizers, such as spreadsheets and 
algebraic modeling systems, all such systems have at their core adaptations of one 
or more "stand-alone" optimization packages. By stand-alone we mean software 
designed specifically to accept the specification of a nonlinear program, attempt to 
solve it, and return the results of that attempt to the user or to an invoking applica- 
tion. The NLP capabilities and characteristics of those higher level systems there- 
fore naturally derive from those of their incorporated optimizers. As a result, we 
begin our discussion with an overview of significant stand-alone NLP optimizers. 
We also illustrate, for a simple NLP problem, the inputs and outputs of some of the 
optimizers described later on. A comprehensive list of vendors and sources for the 
products discussed in this section (as well as for a large number of linear, uncon- 
strained, and discrete optimization products) is found in More and Wright (1993) 
and Wright (2000). Advertisements for many of the systems described here can be 
found in the monthly magazine OR/MS Today, published by INFORMS (Institute 
for Operations Research and the Management Sciences). This magazine is an 
excellent source of information on analytical software of all kinds. The June 1998 
issue contains an excellent NLP software survey (Nash, 1998). 

8.9.1 Optimizers for Stand-Alone Operation or Embedded Applications 

Most existing NLP optimizers are FORTRAN-based, although C versions are becom- 
ing more prevalent. Most are capable of operation as true stand-alone systems (the 
user must usually code or modify main programs and routines that return function 
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values) or as subsystems that are embedded in larger systems and solve problems 
generated by or posed through those systems. Some vendors supply source code, 
and others supply only object code for the customers' target platform. Details are 
available from the vendors as noted later on or in More and Wright (1993) and 
Wright (2000). All NLP optimizers require that the user supply the following: 

A specification of the NLP problem to be solved-at a minimum, the number of 
functions, the number of variables, which function is the optimization objective, 
bounds on the functions and variables (if different from some default scheme), 
and initial values of some or all variables (the system may supply default values, 
but using these is recommended only as a last resort). 
One or more subprograms that supply to the optimizer, on demand, the values of 
the functions for a specified set of variable values. Some systems also allow the 
user the option of supplying derivative values. 

GRG-based optimizers 
GRG2. This code is presently the most widely distributed for the generalized 

reduced gradient and its operation is explained in Section 8.7. In addition to its use 
as a stand-alone system, it is the optimizer employed by the "Solver" optimization 
options within the spreadsheet programs Microsoft Excel, Novell's Quattro Pro, 
Lotus 1-2-3, and the GIN0 interactive solver. 

In stand-alone operation, GRG2 requires the user to code a calling program in 
FORTRAN or C that allocates working storage and passes through its argument list 
the problem specifications and any nondefault values for user-modified options (an 
option using text files for problem specifications also exists). In addition, the user 
must code a subroutine that accepts as input a vector of variable values and returns 
a vector of function values calculated from the inputs. All constraints are assumed 
to be of the form 

where li and ui are (constant) lower and upper bounds. 
GRG2 represents the problem Jacobian (i.e., the matrix of first partial deriva- 

tives) as a dense matrix. As a result, the effective limit on the size of problems that 
can be solved by GRG2 is a few hundred active constraints (excluding variable 
bounds). Beyond this size, the overhead associated with inversion and other linear 
algebra operations begins to severely degrade performance. References for descrip- 
tions of the GRG2 implementation are in Liebman et al. (1985) and Lasdon et al. 
(1978). 

LSGRG2. This extension of GRG2 employs sparse matrix representations 
and manipulations and extends the practical size limit to at least 1000 variables and 
constraints. The interfaces to LSGRG2 are very close to those described earlier for 
GRG2. LSGRG2 has been interfaced to the GAMS algebraic-modeling system. 
Performance tests and comparisons on several large models from the GAMS library 
are described by Smith and Lasdon (1992). 



CHAPTER 8: Nonlinear Programming with Constraints 321 

CONOPT. This is another widely used implementation of the GRG algorithm. 
Like LSGRG2, it is designed to solve large, sparse problems. CONOPT is available 
as a stand-alone system, callable subsystem, or as one of the optimizers callable by 
the GAMS systems. Description of the implementation and performance of 
CONOPT is given by Drud (1994). 

SQP-based optimizers 
Implementations of the SQP algorithm described in Section 8.6 are 

SQP. This is a sister code to GRG2 and available from the same source. The 
interfaces to SQP are very similar to those of GRG2. SQP is useful for small 
problems as well as large sparse ones, employing sparse matrix structures 
throughout. The implementation and performance of SQP are documented in Fan, 
et al. (1988). 

NPSOL. This is a dense matrix SQP code developed at Stanford University. It 
is available from the same source as MINOS (see following description of 
MINOS). Additional details are available in More and Wright (1993). 

NLPQL. This is another SQP implementation, callable as a subroutine and 
notable for its use of reverse communication. The called subsystem returns codes 
to the calling program, indicating what information is required on reentry. (Mork 
and Wright, 1993): 

- 

MINOS. This employs a modified augmented Lagrangian algorithm 
described in Murtagh and Saunders (1982). MINOS uses sparse matrix 
representations throughout and is capable of solving nonlinear problems exceeding 
1000 variables and rows. MINOS is also capable of exploiting, to the greatest 
extent possible, the presence of purely linear variables and functions. Because the 
user must communicate this structure to the optimizer, the greatest utility of this 
feature results from coupling MINOS to higher level modeling systems that can 
determine problem structure. As a stand-alone system, problem specifications and 
user options are supplied to MINOS via an external text file, and problem Jacobian 
information is supplied through another file. As with the other optimizers described 
here, the user must supply FORTRAN routines that compute function values and, 
optionally, derivatives. MINOS is the default optimizer option under the GAMS 
system for both linear and nonlinear problems. Details for stand-alone use of 
MINOS and additional references are given in Murtagh and Saunders (1982). 

Mathematical software libraries 
Many of the major callable libraries of mathematical software include at least 

one general NLP component (i.e., capable of solving problems with nonlinear 
constraints). IMSL provides individual callable routines for most variations of 
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linear and nonlinear constraints and objectives. The NAG FORTRAN Library 
(also available as a toolbox of MATLAB) contains an SQP method for con- 
strained problems and a variety of routines for unconstrained or specialized opti- 
mization problems. In addition, most such libraries, even those without specific 
constrained NLP solvers, contain routines that perform such tasks as equation 
solving, unconstrained optimization, and various linear algebra operations. These 
routines can be used as subalgorithm components to build customized NLP 
solvers. References for the IMSL and NAG libraries and their vendors may be 
found in More and Wright (1993). 

8.9.2 Spreadsheet Optimizers 

In the 1980s, a major move away from FORTRAN and C optimization began as 
optimizers, first LP solvers, and then NLP solvers were interfaced to spreadsheet 
systems for desktop computers. The spreadsheet has become, de facto, the univer- 
sal user interface for entering and manipulating numeric data. Spreadsheet vendors 
are increasingly incorporating analytic tools accessible from the spreadsheet inter- 
face and able, through that interface, to access external databases. Examples 
include statistical packages, optirnizers, and equation solvers. 

The Excel Solver. Microsoft Excel, beginning with version 3.0 in 1991, 
incorporates an NLP solver that operates on the values and formulas of a 
spreadsheet model. Versions 4.0 and later include an LP solver and mixed-integer 
programming (MIP) capability for both linear and nonlinear problems. The user 
specifies a set of cell addresses to be independently adjusted (the decision varia- 
bles), a set of formula cells whose values are to be constrained (the constraints), and 
a formula cell designated as the optimization objectice. The solver uses the spread- 
sheet interpreter to evaluate the constraint and objective functions, and 
approximates derivatives, using finite differences. The NLP solution engine for the 
Excel Solver is GRG2 (see Section 8.7). 

For examples that use the Excel Solver, see Chapters 7,9, and 10. For a descrip- 
tion of the design and use of the Excel Solver, see Fylstra, et al. (1998). An enhanced 
version of the Excel Solver, which can handle larger problems, is faster, and includes 
enhanced solvers is available from Frontline Systems-see www.frontsys.com. This 
website contains a wealth of information on spreadsheet optimization. 

The Quattro Pro Solver. The same team that packaged and developed the 
Excel Solver also interfaced the same NLP engine (GRG2) to the Quattro Pro 
spreadsheet. Solver operation and problem specification mechanisms are similar to 
those for Excel. 

LOTUS 123. The LOTUS 123 WINDOWS-based products incorporate linear 
and nonlinear solvers that operate in a fashion similar to those described earlier and 
use the same solver engines. 
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8.9.3 Algebraic Modeling Systems 

An algebraic modeling system normally accepts the specification bf a model in 
text as a system of algebraic equations. The system parses the equations and gen- 
erates a representation of the expressions that can be numerically evaluated by its 
interpreter. In addition, some analysis is done to determine the structure of the 
model and to generate expressions for evaluating the Jacobian matrix. The 
processed model is then available for presentation to an equation solver or opti- 
mizer. The following paragraphs describe four algebraic modeling systems with 
NLP capabilities. 

GAMSGeneral algebraic modeling system 
The general algebraic modeling system (GAMS) allows specification and solu- 

tion of large-scale optimization problems. The modeling language is algebraic with 
a FORTRAN-like style. The default NLP solver for GAMS is MINOS with 
ZOOM-XMP available for mixed-integer programming. Optional interfaces are 
available for most currently available LP, NLP, and MILP solvers. GAMS is avail- 
able on a wide variety of platforms ranging from PCs to workstations and main- 
frames. Examples of GAMS models and solution output are given in Chapter 9. 
General references, system details, and user procedures are given in Brooke and 
coworkers (1992). See www.gams.com for more information. 

AMPL 
The main features of a mathematical programming language (AMPL) include 

an interactive environment for setting up and solving mathematical programs; the 
ability to select among several solvers; and a powerful set construct that allows for 
indexed, named, and nested sets. This set construct allows large-scale optimization 
problems to be stated tersely and in a form close to their natural algebraic expres- 
sion. AMPL is described in Fourer et al. (1993). A WINDOWS version, AMPL 
PLUS, is available, with a graphical user interface (GUI) that greatly enhances pro- 
ductivity. 

- 

MPL and AIMMS 
~ 0 t h  MPL and the advanced interactive multidimensional modeling software 

(AIMMS) are algebraic modeling languages operating under Microsoft Windows, 
with convenient GUIs; powerful modeling languages; and excellent connections to 
external files, spreadsheets, databases, and a wide variety of linear and nonlinear 
solvers. See www.maximal-usa.com for MPL, and www.airnrns.com for AIMMS. 

8.10 USING NLP SOFTWARE 

This section addresses some of the problems with NLP optimization software. The 
primary determinant of solution reliability with LP solvers is numerical stability 
and accuracy. If the linear algebra subsystem of an LP solver is strong in these 
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areas, the solver will almost always terminate with one of three conditions--opti- 
mal, infeasible, unbounded--or will run up against a time or iteration limit set by 
the user prior to detecting one of those conditions. In contrast, many additional fac- 
tors affect NLP solvers and their ability to obtain and recognize a solution. 

8.10.1 Evaluation of Derivatives: Issues and Problems 

All major NLP algorithms require estimation of first derivatives of the problem 
functions to obtain a solution and to evaluate the optimality conditions. If the val- 
ues of the derivatives are computed inaccurately, the algorithm may progress very 
slowly, choose poor directions for movement, and terminate due to lack of progress 
or reaching the iteration limits at points far from the actual optimum, or, in extreme 
cases, actually declare optimality at nonoptimal points. 

Finite difference substitutes for derivatives 
When the user, whether working on stand-alone software or through a spread- 

sheet, supplies only the values of the problem functions at a proposed point, the 
NLP code computes the first partial derivatives by finite differences. Each function 
is evaluated at a base point and then at a perturbed point. The difference between 
the function values is then divided by the perturbation distance to obtain an approx- 
imation of the first derivative at the base point. If the perturbation is in the positive 
direction from the base point, we call the resulting approximation a forward differ- 
ence approximation. For highly nonlinear functions, accuracy in the values of 
derivatives may be improved by using central differences; here, the base point is 
perturbed both forward and backward, and the derivative approximation is formed 
from the difference of the function values at thosk points. The price for this 
increased accuracy is that central differences require twice as many function eval- 
uations of forward differences. If the functions are inexpensive to evaluate, the 
additional effort may be modest, but for large problems with complex functions, the 
use of central differences may dramatically increase solution times. Most NLP 
codes possess options that enable the user to specify the use of central differences. 
Some codes attempt to assess derivative accuracy as the solution progresses and 
switch to central differences automatically if the switch seems warranted. 

A critical factor in the accuracy of finite difference approximations for deriva- 
tives is the value of the perturbation step. The default values employed by all NLP 
codes (generally 1 .E-6 to 1 .E-7 times the value of the variable) yield good accuracy 
when the problem functions can be evaluated to full machine precision. When prob- 
lem functions cannot be evaluated to this accuracy (perhaps due to functions that 
are the result of iterative computations), the default step is often too small. The 
resulting derivative approximations then contain significant error. If the function(s) 
are highly nonlinear in the neighborhood of the base point, the default perturbation 
step may be too large to accurately approximate the tangent to the function at that 
point. Special care must be taken in derivative computation if the problem functions 
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are not closed-form functions in compiled code or a modeling language (or, equiv- 
alently, a sequence of simple computations in a spreadsheet). If each function eval- 
uation involves convergence of a simulation, solution of simultaneous equations, or 
convergence of an empirical model, the interaction between the derivative pertur- 
bation step and the convergence criteria of the functions strongly affects the deriv- 
ative accuracy, solution progress, and reliability. In such cases, increasing the per- 
turbation step by two or three orders of magnitude may aid the solution process. 

Analytic derivatives 
Algebraic modeling systems, such as those described in Section 8.9.3, 

accept user-provided expressions for the objective and constraint functions and 
process them to produce additional expressions for the analytic first partial deriv- 
atives of these functions with respect to all decision variables. These expressions 
are exact, so the derivatives are evaluated to full machine precision (about 15 
correct decimal digits using double precision arithmetic), and they are used by 
any derivative-based nonlinear code that is interfaced to the system. Finite- 
difference approximations to first derivatives have at most seven or eight signif- 
icant digits. Hence, an NLP code used within an algebraic modeling system can 
be expected to produce more accurate results in fewer iterations than the same 
solver using finite-difference derivatives. Chemical process simulators like 
Aspen also compute analytic derivatives and provide these to their nonlinear 
optimizers. Spreadsheet solvers currently use finite-difference approximations to 
derivatives. 

Of course, many models in chemical and other engineering disciplines are 
difficult to express in a modeling language, because these are usually coded in 
FORTRAN or C (referred to as "general purpose" programming languages), as are 
many existing "legacy" models, which were developed before modeling systems 
became widely used. General-purpose languages offer great flexibility, and mod- 
els coded in these languages generally execute about ten times faster than those in 
an algebraic modeling system because FORTRAN and C are compiled, whereas 
statements in algebraic modeling systems are interpreted. This additional speed is ' 
especially important in on-line control applications (see Chapter 16). 

derivatives in FORTRAN or C models may be approximated by differencing, 
or expressions for the derivatives can be derived by hand and coded in subroutines 
used by a solver. Anyone who has tried to write expressions for frrst derivatives of 
many complex functions of many variables knows how error-prone and tedious this 
process is. These shortcomings motivated the development of computer programs 
for automatic diflerentiation (AD). Given FORTRAN or C source code which eval- 
uates the functions, plus the user's specification of which variables in the program 
are independent, AD software augments the given program with additional state- 
ments that compute partial derivatives of all functions with respect to all indepen- 
dent variables. In other words, using AD along with FORTRAN or C produces a 
program that computes the functions and their first derivatives. 

Currently, the most widely used AD codes are ADIFOR (automatic differentia- 
tion of FORTRAN) and ADIC (automatic differentiation of C). These are available 
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at no charge from the Mathematics and Computer Science division of Argonne 
National Laboratories-see www.mcs.anl.gov for information on downloading the 
software and further information on AD. This software has been successfully applied 
to several difficult problems in aeronautical and structural design as well as chemi- 
cal process modeling. 

8.10.2 What to Do When an NLP Algorithm Is Not "Working" 

Probably the most common mode of failure of NLP algorithms is termination due 
to "fractional change" (i.e., when the difference in successive objective function 
values is a small fraction of the value itself over a set of consecutive iterations) at 
a point where the Kuhn-Tucker optimality conditions are far from satisfied. Some- 
times this criterion is not considered, so the algorithm terminates due to an itera- 
tion limit. Termination at a significantly nonoptimal point is an indication that the 
algorithm is unable to make any further progress. Such lack of progress is often 
associated with poor derivative accuracy, which can lead to search directions that 
do not improve the objective function. In such cases, the user should analyze the 
problem functions and perhaps experiment with different derivative steps or differ- 
ent starting points. 

Parameter adjustment 
Most NLP solvers use a set of default tolerances and parameters that control 

the algorithm's determination of which values are "nonzero," when constraints are 
satisfied, when optimality conditions are met, and other tuning factors. 

Feasibility and optimality tolerances 
Most NLP solvers evaluate the first-order optimality conditions and declare 

optimality when a feasible solution meets these conditions to within a specified tol- 
erance. Problems that reach what appear to be optimal solutions in a practical sense 
but require many additional iterations to actually declare optimality may be sped up 
by increasing the optimality or feasibility tolerances. See Equations (8.3 la) and 
(8.3 1b) for definitions of these tolerances. Conversely, problems that terminate at 
points near optimality may often reach improved solutions by decreasing the opti- 
mality or feasibility tolerances if derivative accuracy is high enough. 

Other "tuning" issues 
The feasibility tolerance is a critical parameter for GRG algorithms because it 

represents the convergence tolerance for the Newton iterations (see Section 8.7 for 
details of the GRG algorithm). Increasing this tolerance from its default value may 
speed convergence of slow problems, whereas decreasing it may yield a more accu- 
rate solution (at some sacrifice of speed) or "unstick" a sequence of iterations that are 
going nowhere. MINOS requires specification of a parameter that penalizes con- 
straint violations. Penalty parameter values affect the balance between seeking feasi- 
bility and improving of the objective function. 
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Scaling 
The performance of most NLP algorithms (particularly on large problems) is 

greatly influenced by the relative scale of the variables, function 'values, and Jaco- 
bian elements. In general, NLP problems in which the absolute values of these 
quantities lie within a few orders of magnitude of each other (say in the range 
0-100) tend to solve (if solutions exist) faster and with fewer numerical difficulties. 
Most codes either scale problems by default or allow the user to specify that the 
problem be scaled. Users can take advantage of these scaling procedures by build- 
ing models that are reasonably scaled in the beginning. 

Model formulation 
Users can enhance the reliability of any NLP solver by considering the follow- 

ing simple model formulation issues: 

Avoid constructs that may result in discontinuities or undefined function argu- 
ments. Use exponential functions rather than logs. Avoid denominator terms that 
may tend toward zero (i.e., llx or ll(x- 1), etc.), multiplying out these denorni- 
nators where possible. 

Be sensitive to possible "domain violations," that is, the potential for the optimizer 
to move variables to values for which the functions are not defined (negative log 
arguments, negative square roots, negative bases for fractional exponents) or for 
which the functions that make up the model are not valid expressions of the sys- 
tems being modeled. 

Starting points 
The performance of NLP solvers is strongly influenced by the point from 

which the solution process is started. Points such as the origin (0,0, . . .) should be 
avoided because there may be a number of zero derivatives at that point (as well as 
problems with infinite values). In general, any point where a substantial number of 
zero derivatives are possible is undesirable, as is any point where tiny denominator 
values are possible. Finally, for models of physical processes, the user should avoid 
starting points that do not represent realistic operating conditions. Such points may 
cause the solver to move toward points that are stationary points but unacceptable 
configkations of the physical system. 

Local and global optima 
As was discussed in Section 4.3, a global optimum is a feasible solution that 

has the best objective value. A local optimum has an objective value that is better 
than that of any "nearby" feasible solution. All NLP algorithms and solvers here are 
only capable of finding local optima. For convex programs, any local optimum is 
also global. Unfortunately, many NLPs are not convex or cannot be guaranteed to 
be convex, hence we must consider any solution returned by an NLP solver to be 
local. The user should examine the solution for reasonableness, perhaps re-solving 
the problem from several starting points to investigate what local optima exist and 
how these solutions differ from one another. Helshe can also try a global optimizer; 
see Chapter 10. 
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PROBLEMS 

8.1 Solve 

Minimize: -xl 

Subject to: xl + x i  = 0 

by solving the constraint for x, and substituting into the objective function. Do you 
get x* = [0 0IT? 

8.2 Solve 

Minimize: -x f  

Subject to: 10-~x; + x ,  = 1 

by solving the constraint for x, and substituting into the objective function. Do you 
get x* = [1 0IT? 
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8.3 Explain in no more than three sentences how the nonlinear inequality constraints in a 
nonlinear programming problem can be converted into equality constraints. Demon- 
strate for g(x) = xlx2 + x$ + ex3 5 4. 

8.4 Use the method of Lagrange multipliers to solve the following problem. Find the val- 
ues of x,, x2, and o that 

Minimize: f(x) = x i  + x$ 

Subject to: h(x) = 2x1 + x2 - 2 = 0 

8.5 Solve the following problem via the Lagrange multiplier method: 
Find the maximum and minimum distances from the origin to the curve 

Hint: The distance is the objective function. 

8.6 Show that Lagrange multipliers do not exist for the following problem: 

Minimize: f(x) = x: + x$ 

Subject to: (x, - 1)3 - x: = 0 

8.7 Examine the reactor in Figure P8.7. The objective function,flc, T )  = (c - c,)~ + T2 
is subject to the constraint c = c, + eT and also c, < K, where c, is the set point for 
the outlet concentration, a constant, and K is a constant. 

Find the minimum value of the objective function using Lagrange multipliers for 
the case in which K = c, - 2. 

Control 
valves 

FIGURE P8.7 

8.8 Examine the continuous through-circulation dryer problem posed by Luus and Jaakola 
(1973): 

Maximize: P given by 

P = 0.0064x1[1 - exp(-0. 184xt3x2)] 

Subject to: the power constraint 

(3000 + X~)X:X~ = 1.2 x 1013 
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and the moisture content distribution constraint 

exp ( 0 . 1 8 4 ~ 7 . ~ ~ ~ )  = 4.1 

They obtained the solution x* = [31,766 0.3421 P = 153.71. Does this problem sat- 
isfy the first-order conditions? 

Repeat for the problem of minimizing the capital investment for batch processes. 
The problem is to choose x,, x2, and x, to minimize 

subject to the simple constraint 

They obtained the solution P = 126,302.9 and 

8.9 Maximize: f = x: + xz + 4x1x2 

Subject to: x, + x2 = 8 

(a) Form the Lagrangian L. Set up the necessary conditions for a maximum, and solve 
for the optimum. 

(b) If the constraint is changed to x, + x2 = 8.01, compute f and L without resolv- 
ing as in part a. 

8.10 (a) Minimize f = x: + x: + lox, + 20x2 + 25 

Subject to: x, + x2 = 0 

using the Lagrange multiplier technique. Calculate the optimum values of 
xl,x2, A, andJ 

(b) Using sensitivity analysis, determine the increase in f Opt when the constraint is 
changed to x, + x2 = 0.01. 

(c) Let the constraint be added to f by a penalty function: 

Find the optimum of P with respect to x, and x2 (an unconstrained problem), not- 
ing that x t  and x; are functions of r. 

(d) Is there a relationship between r, x;, x; ,  and A*? 
(e) Perform the second derivative test on P; is it convex for P >> l? 
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8.11 Is the problem 

Minimize: f ( x )  = x: + 4 4  - 4x1 

Subject to: 2r2 - x ,  r 12 

a convex programming problem? 

8.12 Determine whether the vector xT = [0 0 ]  is an optimal solution of the problem 

Minimize: f ( x )  = (x l  - + X ;  

Subject to: h(x)  = x i  + x; + xl + x2 = 0 

8.13 Determine whether the point x  = [O 0 OIT is a local minimum of the problem: 

Minimize: f ( x )  = $(x:  - + x3 

Subject to: x i  + x i  + x: = 0 

X, r o 
X2 1 0 

X g  2 0 

Show all computations. 

8.14 Test whether the solution x* = [2 2IT meets the sufficient conditions for a mini- 
mum of the following problem. 

2 Minimize: f ( x )  = - X ~ X Z  

Subject to: h l ( x )  = x  + ( )  = 6 

8.15 Do (a) the necessary and (b) the sufficient conditions hold at the optimum X* = 
r0.82 0.91IT for the following problem? 

Minimize: f ( x )  = (x l  - 2 ) 2  + (x2 - 1)2  

x f  2 
Subject to: g , (x )  = - - - 4  

x , + 1 1 0  
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8.16 Does the following solution x* = [i $1 meet the sufficient conditions for a mini- 
mum of the following problem? 

Minimize: A x )  = - ln(l  + x l )  - In (1 + x,) ,  

Subject to: g l ( x )  = xl  + x2 - 2 5 0 

g, (x)  = x ,  2 0 

g, (x)  = x, 2 0 

8.17 Solve the following problems via a quadratic programming code. 

8.18 Find the stationary point of the function f ( x )  = x f  + X; + 4 x 1 ~ ~  subject to the con- 
straint x1 + x2 = 8. Use direct substitution. What kind of stationary point is it? 

For the same objective function and constraint, form a new function 

where r is a large number. Then optimize P. 

(a) Find the stationary point of P with respect to x1 and x,, solving for x r  and x$ in 
terms of r. 

(b) Find x?;, x; as r + oo 
(c) Does P* + f * for r + oo? 

8.19 Minimize: x i  - x: 

Subject to: x f  + x i  = 4.  

(a) Use Lagrange multipliers 
(b) Use a penalty function. 

8.20 The problem is to 

Minimize: f(x) = x :  + 6x1 + x i  + 9 

Subject to: g i (x )  = xi r 0, for i = 1,2 

From the starting vector x0 = [ 1 0.51~. 

(a) Formulate a penalty function suitable to use for an unconstrained optimization 
algorithm. 

(b) Is the penalty function convex? 

8.21 A statement in a textbook is 

The penalty term of an augmented Lagrangian method is designed to 
add positive curvature so that the Hessian of the augmented function is 
positive-definite. 

Is this statement correct? 
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8.22 Formulate the following problems as 

(a) Penalty function problems 
(b) Augmented Lagrangian problems 

(1) Minimize: A x )  = 2x: - b 1 x 2  + 2x; - 6x1 + 6 

Subject to: h ( x )  = xl + x2 - 2 = 0 

(2) Minimize: f ( x )  = x: - 3xlx2 + 4 

Subject to: g ( x )  = 5x1 + 2x2 2 18 

8.23 Comment on the following proposed penalty functions suggested for use with the 
problem. 

Minimize: f  ( x )  

Subject to: gi (x)  r 0, i = 1,2, . . . , m 
starting from a feasible point. The P functions are 

P(x ,  r )  = f  ( x )  - r  x ln gj ( x )  , 
j = 1 

What advantages might they have compared with one another? What disadvantages? 

The problem of optimizing production from several plants with different cost struc- 
tures and distributing the products to several distribution centers is common in the 
chemical industry. Newer plants often yield lower cost products because we learn from 
the mistakes made in designing the original plant. Due to plant expansions, rather 
unusual cost curves can result. The key cost factor is the incremental variable cost, 
which gives the cost per pound of an additional pound of product. Ordinarily, this vari- 
able cost is a function of production level. 

Consider three different plants producing a product called DAB. The Frag plant 
located in Europe has an original design capacity of 100 X lo6 lblyear but has been 
expanded to produce as high as 170 X 106 lblyear. The incremental variable cost for 
this plant decreases slightly up to 120 X lo6 lblyear, but for higher production rates 
severe reaction conditions cause the yields to deteriorate, causing a gradual increase in 
the variable cost, as shown by the following equation. No significant byproducts are 
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sold from this plant. Using VC = variable cost is $1100 lb and x = production level X 
lb/year 

The Swung-Lo plant, located in the Far East, is a relatively new plant with an improved 
reactorlrecycle design. This plant can be operated between 80 X lo6 and 120 X lo6 
lblyear and has a constant variable cost of $5.001100 lb. 

The Hogshooter plant, located in the United States, has a range of operation from 
120 X lo6 to 200 X lo6 lblyear. The variable cost structure is rather complicated due 
to the effects of extreme reaction conditions, separation tower limitation, and several 
byproducts, which are affected by environmental considerations. These considerations 
cause a discontinuity in the incremental variable cost curve at 140 X lo6  lblyear as 
given by the following equations: 

The three main customers for the DAB are located in the Europe (Cl), the Far East 
(C2), and the United States (C3), respectively. The following matrix shows the trans- 
portation costs of ($/lb) and total demand to the customers (Cl, C2, C3) with plant 
locations denoted as A1 (Frag), A2 (Swung-Lo), and A3 (Hogshooter). The closest 
pairing geographically is A1-C1; A2-C2; and A3-C3. 

- - 

A1 A2 A3 Total demand 

Use an iterative method based on successive linearization of the objective function to 
determine the optimum distribution plan for the product, DAB. Use an LP code to min- 
imize total cost at each iteration. 

8.25 Maximize: f(x) = 0.5 (x1x4 - X2X3 + X 3 X g  - X g X g  + X g X s  - x d ~ 7 )  

Subject to: 1 + - x i  2 0  

I - X ~ ~ O  

i - x t - x i r ~  

1 - x: - (x2 - ~ 9 ) ~  2 0 

I - ( ~ 1  - ~ 5 )  - (x2 - x ~ ) ~  2 0 

1 - (x1 - x7) - (x2 - 2 0 

1 - (x3 - x5)2 - (x,  - x6)2 2 0 

1 - (x3 - x7)2 - (x,  - x S ) ~  2 0 
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2 1 - X 7  - (xs  - x9)2 2 0 

X1Xq - X2X3 2 O 

x3x9 1 0 

-x+, 2 o 
x g *  - x g 7  2 0 

x5, 2 0 

Starting point: xb = 1, i = 1,9 

Solve using an SQP code. 

8.26 Solve the following over-constrained problem. 

Minimize: f ( x )  = x: + x;  + x:  

Subject to: g l ( x )  = -2x1 - x2 2 -5  

Starting point: x0 = [ l  1 1IT 

Use successive quadratic programming. 

8.27 Solve the following problems by the generalized reduced-gradient method. Also, count 
the number of function evaluations, gradient evaluations, constraint evaluations, and 
evaluations of the gradient of the constraints. 

(a) Minimize: f ( x )  = - (x :  + x i  + x i )  

Subject to: x1 + 2x2 + 3x3 - 1 = 0 

Use various starting points. 
x0 = [n n n], wheren = 2,4,6,8,  10, -2, -4, -6, -8, -10 

(b) Minimize: f ( x )  = ( x l  - 1 ) 2  + ( x l  - x2l2  + (x2 - x3)2  
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Subject to: x ,  + x; + x: - 2 - 3 d2 = 0 

8.28 At stage k = 2, the generalized reduced-gradient method is to be applied to the fol- 
lowing problem at the point x = [0 1 1IT. 

Minimize: f(x) = 2xf + 2x; + x; - 2xlx2 - 4x1 - 6x2 

Subject to: x ,  + x2 + x3 = 2 

(a) Compute the comp6nent step direction (+ or -) and value of each of the three 
variables after searching in the selected direction. 

(b) Reduceflx) in the search direction. 

Explain (only) in detail how you would reach the feasible point to start the next stage 
(k = 3 )  of optimization. 

8.29 Answer true or false: 

(a) In the generalized reduced-gradient method of solving NLP problems, the nonlin- 
ear constraints and the objective function are repeatedly linearized. 

(b) Successive quadratic programming is based on the application of Newton's 
method to some of the optimality conditions for the Lagrangian function of the 
problem, that is, the sum of the objective function and the product of the Lagran- 
gian multipliers times the equality constraints. 

8.30 Solve the following problems using 
i: A generalized reduced-gradient code 
ii. A successive quadratic programming code. Compare your results. 

(a) Minimize: f(x) = ( j x :  + kg, + k2 
k =  1 

Subject to: h,(x) = XI + x3 + x5 + x7 + X ,  = 0 

h2(x) = X2 + 2x4 + 3x6 + 4x8 + 5x10 = 0 

h3(x) = 2x2 - + 8x8 = O 

&(x) = - XI + 3x4 - 5x7 + X10 2 0 
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g2(x) = -xl - 2x2 - 4x4 - 8xg 1 -100 

g3(x) = - X 1  - 3x3 - 6x6 + 9x9 2 -50 

-lo3 5 xi r lo3, i =  1,2, ..., 10 

Starting point (feasible): x: = 0, i = 1,2, . . . , l o  

f(xO) = 25,333.0 

11 10 

(b) Minimize: f (x) = x xi + x (xi + xi+ 1 ) 
i= 1 i= 1 

Subjectto: x i 2 0 ,  i = 1 ,  ..., 11 

hl(x)  = 0 . 1 ~ ~  + 0 . 2 . ~ ~  + 0 . 3 ~ ~  + 0 . 2 . ~ ~  + 0 . 2 ~ ~ ~  = 1.0 

h2(x) = 0 . 1 ~ ~  + 0 . 2 ~ ~  + 0 . 3 ~ ~  + 0 . 4 ~ ~ 0  + 1 . 0 ~ ~ ~  = 2.0 

h3(x) = 0 . 1 ~ ~  + 0 . 2 ~ ~  + 0 . 3 ~ ~  + 0 . 4 ~ ~ ~  + 2 . 0 ~ ~ 1  = 3.0 

g 4 ( ~ )  = X4  + X 8  + 0.5~9 + 0 . 5 ~ 1 ~  + 1 . 0 ~ ~ ~  2 1.0 

g 5 ( ~ )  = 2.0~5 + x6 + 0 . 5 ~ ~  + 0 . 5 ~ ~  + 0.25~9 + 0 . 2 5 ~ ~ ~  + 0.5x11 1.0 

g6(x) = X4 + x6 + X 8  + X 9  + X10 + x11 l.0 

g 7 ( ~ )  = 0.1~1 + 1 . 2 ~ ~  + 1 . h g  + 1.4~9 + 1 . 1 ~ ~ ~  + 2.0~11 2 1.0 

Starting point (feasible) : xi = 1 .O, i = 1,2, . . . , I  1 

10 
(c) Maximize: A X )  = 3x1 e -O.lXlx6 + 4x2 + X :  + 7x4 + - + X 6  

X 5  

Subject to: -X4 + X5 - X6 = 0.1 

X I  + X 2  + X3  + X4  + X5 + X6  = 10 

2x1 f X2 + X3 f 3x4 2 2 

-8x, - 3x2 - 4x3 + X4  - X5  2 -10 

-a1 - 6x2 - xg - 3x4 - ~6 2 -13 

- X I  - 4x2 - 5x3 - 2 X 4  1 -18 

-20 5 xi 5 20, i =  1, ..., 6 

Starting point (nonfeasible): xi = 1 .O, i  = 1,  . . . ,6 
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(d) Minimize: f ( x )  = x: + 2 ~ ;  + 3 ~ :  + 4 ~ :  + 5x: 

Subject to: h l ( x )  = 2xl + x2 - 4x3 + x4 - x5 = 0 

h2(x) = 5x1 - 2x3 + x4 - x5 = O 

gl(x)  = X I  + 2x2 + ~3 2 6 

g2(x) = 4x3 + X 4  - 2x5 5 0 

Starting point (nonfeasible) : xi = 1, i = 1, . . . ,5 

(e) Minimize: f ( x )  = (xl - x ~ ) ~  + (x2 - x3)2 + (x3 - ~ 4 ) ~  + (x4 - ~ 5 ) ~  

Subject to: x1 + 2x2 + 3x3 - 6 = 0 

x, + 2x3 + 3x4 - 6 = 0 

x3 + 2x4 + 3x5 - 6 = 0 

Starting point (feasible): x0 = [35 -3 1 1 1 5 -5IT 

(0 Minimize: Jlx) = (xl - 1 ) 2  + (xl - x ~ ) ~  + (x3 - 1 ) 2  + (x3 - 1)2 

+ ( x ~  - 114 + ( x ~  - 116 

Subject to: x k  + sin (x4 - x5)  - 2 fi = 0 

x , + x $ r : - 8 - v 5 = 0  

Startingpoint: xO = [2 2 2 2 2IT 

(g) Minimize: f ( x )  = ( X I  - ' + ( X I  - x2)2 + (x2 - x3)2 + (xg - ~ 4 ) ~  + (x4 - ~ 5 ) ~  

Subject to: x1 + x; + x i  - 2 - 3 f i  = 0 

8.31 Explain in no more than three sentences how an initially feasible starting point can be 
obtained in solving a nonlinear programming problem. Demonstrate on the problem 

Maximize: f ( x )  = ( 1  + x , ) ~  + x2 .I-' 
Subject to: gl(x)  = 4 - xf - x i  5 0 

g,(x) = xf + x i  - 16 5 0 

h l ( x )  = xl - x2 = 3 
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Minimize: -XI 

Subject to : exp (x?x,) - 1 = 0 

Starting point (nonfeasible) : x0 = [2.0,1 .OIT 

Do you get both solutions? 

x* = [f l.0,0.0IT and [0.0, f 1.01~ 

8.33 

Minimize: -XI 

Subject to: x: + 3xfxz + 3xfxi + xg - 4x; + 8x:xz - 4xi = 0 

Starting point (nonfeasible) : x0 = [ -2.0, 2.OIT 

Do you get all three solutions? 

x* = [2.0,0.0IT, [0.0,0.0]~, [0.0,2.0IT 

8.34 The cost of constructing a distillation column can be written 

where C = Total cost, $ 
Cp = cost per square foot of plate area, $/ft2 
A = column cross-sectional area, ft2 
N = number of plates 

Nd, = minimum number of plates 
C, = cost of shell, $/ft3 
H = distance between plates, ft 
C' = cost of feed pump, $ 
Cd = cost of distillate pump, $ 
Cb = cost of bottoms pump, $ 
C, = cost of reflux pump, $ 
C, = other fixed costs, $ 

The problem is to minimize the total cost, once produce specifications and the 
throughput are fixed and the product and feed pumping costs are fixed; that is, C', Cd, 
C,, and C, are fixed. After selection of the material of construction, the costs are deter- 
mined; that is, C,, C,, Cx are also fixed. 

The process variables can be related through two empirical equations: 
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(Distillate) rD 

IB  
(Bottoms) 

FIGURE PS.34 

For simplicity choose a ' = P = 1 ; then 

For a certain separation and distillation column the following parameters are known to 
apply: 

C, = 3'0 C, = 8000 

& =  3000 ( )  = 1 
min 

The pump cost for the reflux stream can be expressed as 

C, = 5000 + 0.7L 

(a) Determine the process decision or independent variables. Which variables are 
dependent? 

(b) Find the minimum total cost and corresponding values of the variables. 
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835 A chemical manufacturing company sells three products and has found that its revenue 
function is f = lox + 4.4y2 + 22, where x, y, and z are the monthly production rates 
of each chemical. It is found from breakeven charts that it is necessary to impose the 
following limits on the production rates: 

In addition, only a limited amount of raw material is available; hence the following 
restrictions must be imposed on the production schedule: 

x + 4y + 5z 5 32 

x + 3y + 22 5 29 

Determine the best production schedule for this company, and find the best value of 
the revenue function. 

8.36 A problem in chemical equilibrium is to minimize 

subject to the material balances 

Given P = 750 and w, 

-, 

what is x* andflx*)? 

8.37 The objective is to fit a fifth-order polynomial to the curve y = x1I3. To avoid fluctua- 
tions from the desired curve, divide the curve into ten points. 
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and fit the polynomial (find the values of ai) 

by solving the following problem 

10 
1/3 2 Minimize: f (x) [P(a, xi) - xi 

i =  1 

Subject to: 0 5 P(a, j )  5 5, j = 1,8,27,64 

8.38 The Williams-Otto process as posed in this problem involves ten variables and seven 
constraints leaving 3 degrees of freedom. Three starting points are shown in Table 
P8.38.1. Find the maximum Q and the values of the ten variables from one of the start- 
ing points (S.P.). The minimum is very flat. 

Figure P8.38 shows a simplified block diagram of the process. The plant consists 
of a perfectly stirred reactor, a decanter, and a distillation column in series. There is 
recycle from the column reboiler to the reactor. 

The mathematical descriptions of each plant unit are summarized in Tables P8.38.2 
and P8.38.3. The return function for this process as proposed by Williams and Otto 
(1960) and slightly modified by DiBella and Stevens (1965) to a variable reactor volume 
problem is 

Maximize: 
100 

[8400(0.3Fp + 0.0068 FD - 0.02FA - 0.03FB - O.OIFG) 

= Return (% ) 

TABLE P8.38.1 
Starting points 

Variable 
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FIGURE PS.38 

TABLE P8.38.2 
g, = residual of mass balance on 
component i, i = A, B, C, E, G 

Constraints 

g ,  = FA + FTA - FRA - P1  = 0 

g2 = FB + FTB - FRB - P1  - P2 = 0 

g3 = FTc + 2P1 - FRc - 2P2 - P3 = 0 

g4 = FTE + 2P2 - FRE = 0 

8.5 = FTC + P2 - FRG - 0.5P3 = O 

g,  = overall mass balance 

= F A + F B - F D - F p = O  

g, = production requirement 

= F, - 4763 = 0 
O I a s 1  5 0 0 S T S l O O O  
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TABLE P8.38.3 
Williams-Otto unit mathematical models 

Decanter 

Distillation column 

Splitter 

Reactor (V = 0.0002964 FR) i ai bi 

K, = a, exp ( - b;/T) V/Fi 
PI  = KPRAFRB 1 5.9755 x lo9 12,000 
p2 = KZFRLPRC 2 2.5962 X 10l2 15,000 
' 3  = K 3 F ~ ~ F ~ ~  3 9.6283 x 1015 20,000 

TABLE P8.38.4 
Williams-Otto process nomenclature 

FA,FB Fresh feeds of components A, B (lbh) 
FR Total reactor output flow rate 
F ~ i  Reactor output flow rate of component i 
' ~ i  Decanter output flow rate of component i 

F~ Decanter bottoms flow rate of component G 

FP Column overhead flow rate of component P 
FK Column bottoms flow rate of component i 
FD Total column bottoms takeoff flow rate 
F ~ i  Column bottoms takeoff flow rate of component i 
FT Total column bottoms recycle flow rate 
Fn Column bottoms recycle flow rate of component i 
a Fraction of column bottoms recycled to reactor 
V Reactor volume (ft3) 
P Density of reaction mixture (assumed constant, 50 lb/ft3) 
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8.39 Klein and Klimpel (1967) described an NLP involving the optimal selection of plant 
sites and plant sizes over time. The functions representing fixed and working capital 
were of the form 

Fixed capital: Cost = a. + alSaz 

Working capital: Cost = bo + blP + b2Sa2 

where S = plant size 
P = annual production 

a's, b's = known constants obtained empirically 

Variable annual costs were expressed in the form of 

Cost = P(cl + c2S + c3SC4) 

Transportation costs were assumed to be proportional to the size of the shipments 
for a given source and destination. 

The objective function is the net present value, NPV (sum of the discounted cash 
flows), using a discount rate of 10 percent. All flows except capital were assumed to be 
uniformly distributed over the year; working capital was added or subtracted instanta- 
neously at the beginning of each year, and fixed capital was added only in the zero year. 

The continuous discounting factors were 
1. For instantaneous funds, 

6 = e-'Y ( r  = interest rate,y = years hence) 

2. For uniformly flowing funds, 

The variable y may be positive (after year zero) or negative (before year zero) or zero 
(for year ending with point zero in time). I 

As prices and revenue were not considered, maximization of net present value 
was equivalent to minimization of net cost. 

Let P,, be the amount of product shipped from location i(i = 1,2,3,4) to market 
j (j = 1,2,3) in year k (k = 0, 1,2,3). Let Si and 3, be, respectively, the size of plant 
in location i, and a variable restricted to 0 or 1, depending on whether Si is 0. Further- 
more, let Mojk be the market demand at center j in year k. Finally, for the sake of con- 
venience, let Pi,  denote the total production in plant i during year k. 

The nonlinear programming problem is: Find Si and Pg that will 

Maximize: NPV (including shipping) 
i 

Subject to: Pvk = Mojk 

Table P8.39.1 indicates how the net present valu&as determined for location 1; 
NPV relations for the other locations were similarly formed. Table P8.39.2 lists the 
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TABLE P8.39.1 
Net percent value 

1. Contribution of fixed capital (plant 1) 

Year Fixed capital Discount factor Discounted cash flow 

2. Contribution of working capital (plant 1) 

Year Discount Discounted cash flow 
end Working capital factor at 10% discount rate 

- 

3. Contribution of operational cost (plant 1) a. Cost tabulation (excluding shipping) 

Year Amount Depreciation* Other costs 

1 P I O ~  0.46675~ + 1.037 0.033~ - o.olS1 + 0 . 0 5 ~ : ~ ~  + 0.073:~ + O.lPlol 
-o.05Plo,S1 + o.~P,,,s;O.~~ 

2 p102 0.1167s~ + 0.2537 o.03S1 - O.OIS1 + 0 . 0 5 ~ : ~ ~  + 0.073:~ + o.O95Plo2 
-0.0048Plo2S1 + 0 . 3 8 ~ ~ ~ ~ 5 ' ; ~ ~ ~ ~  

'103 0.1166s~ + 0.253: 0.03S1 - O.OIS1 + 0 . 0 5 ~ : ~ ~  + o.07sy6 + o.09~3Plo3 

-0.0045Plo3S1 + 0.361Plo3Sl 

b. Discounted cash flow of costs (plant 1) 

Year Discount factor Discounted cost flow at 10% discount rate 

1 0.95 16 0.1983S1 + 0.0049s~ - 0.0247~:~~ + 0.4221~:~ - o.o495Plol 

+O.0025PlolS1 - 0 . 1 9 7 9 ~ ~ ~ ~ ~ ~ ~ ' ~ ~  

2 0.8611 0.0348S1 + 0.0045s~ - 0.0224~:~~ + 0.0720~:~ - o.o425plo2 

+ 0.0020PIo2S1 - 0 . 1 7 0 2 ~ ~ ~ ~ ~ ~ ~ . ~ ~  

3 0.7791 o.0315S1 + 0.0041S1 - 0.0203~:~~ + 0.06513:~ - 0.O366Plo3 

+0.0017Plo3Sl - 0 . 1 4 6 3 ~ ~ ~ ~ 3 : ~ ~  

4. Contribution of shipping costs (from plant 1) 

Discount Discounted cash flow 
Year factor Shipping cost at 10% discount rate 

1 0.95 16 0.8Pl2, + 0.5P121 -0.396P121 - 0.247P13, 
2 0.861 1 0.7P1,, + 0.45P,32 -o.313Pl2, - 0.201P132 
3 0.7791 0.6P123 + O.4PI3, -0.243P123 - 0. 162P13, 

--- - 

*Method of double rate-declining balance and straight-line crossover was used. 
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TABLE P8.39.2 
The objective function 

TABLE P8.39.3 
The constants 

'overall objective function, and Table P8.39.3 lists (1) the 22 constraints, (2) one equa- 
tion constraining the total plant dpacity to be 10 million pounds per year, (3) nine 
equations requiring satisfaction of the three markets every year, and (4) 12 inequalities 
calling for plant production not to exceed plant capacity. In addition, the nonnegativ- 
ity constraints are applicable to all 40 variables. Thus the problem has 10 linear equal- 
ity constraints and 52 inequality constraints. 
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8.40 Consider the problem of minimizing the purchase of fuel oil when it is needed to pro- 
duce an output of 50 MW from a two-boiler turbine-generator combination that can 
use fuel oil or blast furnace gas (BFG) or any combination of these. The maximum 
available BFG is specified. 

By applying nonlinear curve fitting, we obtained the fuel requirements for the two 
generators explicitly in terms of MW produced. For generator 1 we have the fuel 
requirements for fuel oil in tons per hour (x,,) 

and for BFG in fuel units per hour (x,,) 

where (x,, + x,,) is the output in MW of generator 1. The range of operation of the 
generator is 

Similarly for generator 2 the requirement for fuel oil is 

and for BFG, 

where (x,, + x,,) is the output in MW of generator 2. The range of operation of the 
second generator is 

It is assumed that only 10.0 fuel units of BFG are available each hour and that 
each generator may use any combination of fuel oil or BFG. It is further assumed that 
when a combination of fuel oil and BFG is used, the effects are additive. 

The problem is to produce 50 MW from the two generators in such a way that the 
amount of fuel oil consumed is minimum. Use successive linear programming. 

8.41 For the purposes of planning you are asked to determine the optimal heat exchanger 
areas for the sequence of three exchangers as shown in Figure P8.41. 
Data: 

Overall heat Area 
transfer coefficient required Duty 

Exchanger [U Btu/(h)(ft2)("F)] (ft2) (Btu/h) 

wCp = lo5 Btu/(h)("F) 

Hint: Find the temperatures T,, T,, T3 such that C A ,  is a minimum. 
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100°F . -------- T1 ; ------ T2 --------- 500°F 

0 
_ - - _ - - - - - )  

300°F @ 400°F ' 
- - - - - - - - - )  0 ----- * . . 

600°F 

T5 T4 T3 

FIGURE P8.41 
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Introduction 
Many problems in plant operation, design, location, and scheduling involve 

variables that are not continuous but instead have integer values. Decision variables 
for which the levels are a dichotomy-to install or not install a new piece of equip- 
ment, for example-are termed "0-1" or binary variables. Other integer variables 
might be real numbers 0, 1, 2, 3, and so on.. Sometimes we can treat integer vari- 
ables as if they were continuous, especially when the range of a variable contains a 
large number of integers, such as 100 trays in a distillation column, and round the 
optimal solution to the nearest integer value. Although this procedure leads to a 
suboptimal solution, the solution is quite acceptable from a practical viewpoint. 
However, for a small range of a variable such as 1 to 3, when the optimal solution 
yields a value of 1.3, we have less confidence in rounding. In this section we will 
illustrate some examples of problem formulation and subsequent solution in which 
one or more variables are treated as integer variables. 

First let us classify the types of problems that are encountered in optimization 
with discrete variables. The most general case is a mixed integer program ing 
(MIP) problem in which the objective function depends on two sets of variables, '% 
and y; x is a vector of continuous variables and y is a vector of integer variables. A 
problem involving only integer variables is classified as an integer programming 
(IP) problem. Finally, a special case of IP is binary integer programming (BIP), in 
which all of the variables y are either 0 or 1. Many MIP problems are linear in the 
objective function and constraints and hence are subject to solution by linear pro- 
gramming. These problems are called mixed-integer linear programming (MILP) 
problems. Problems involving discrete variables in which some of the functions are 
nonlinear are called mixed-integer nonlinear programming (MDLP) problems. We 
consider both linear and nonlinear MIP problems in this chapter. 

9.1 PROBLEM FORMULATION 

Here we review some classical formulations of typical integer programming prob- 
lems that have been discussed in the operations research literature, as well as some 
problems that have direct applicability to chemical processing: 

1. The knapsackproblem. We have n objects. The weight of the ith object is w,  and 
its value is vi. Select a subset of the objects such that their total weight does not 
exceed W (the capacity of the knapsack) and their total value is a maximum. 

Madmize: f (y ) = vyi 
i =  1 

Subjectto: z w y i  5 W yi = O,1 i =  1,2, ..., n 
i =  1 

The binary variable yi indicates whether an object i is selected (yi = 1) or not 
selected ( yi = 0). 
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2. The traveling salesman problem. The problem is to assign values of 0 or 1 to vari- 
ables y,, where y, is 1 if the salesman travels from city i to city j and 0 otherwise. 
The constraints in the problem are that the salesman must start at a particular city, 
visit each of the other cities only once, and return to the original city. A cost (here 
it is distance) c,  is associated with traveling from city i to city j, and the objective 
function is to minimize the total cost of the trips to each city visited, that is 

subject to the 2n constraints 

The two types of equality constraints ensure that each city is only visited 
once in any direction. We define yii = 0 because no trip is involved. The equal- 
ity constraints (the summations) ensure that each city is entered and exited 
exactly once. These are the constraints of an assignment problem (see Section 
7.8). In addition, constraints must be added to ensure that the y, which are set 
equal to 1 correspond to a single circular tour or cycle, not to two or more dis- 
joint cycles. For more information on how to write such constraints, see 
Nemhauser and Wolsey (1988). 

For a chemical plant analogy, the problem can also be cast in terms of pro- 
cessing n batches on a single piece of equipment in which the equipment is reset 
between processing the ith and jth batches. The batches can be processed in any 
order. Here, c, is the time or cost required to "set up" the equipment to do batch 
j if it was previously doing batch i, and y, = 1 means batch i is immediately fol- 
lowed by batch j. 

3 .  Blending problem. You are given a list of possible ingredients to be blended into 
a product, from a list containing the weight, value, cost, and analysis of each 
ingredient. The objective is to select from the list a set of ingredients so as to 
have a satisfactory total weight and analysis at minimum cost for a blend. Let xj 
be the quantity of ingredient j available in continuous amounts and yk represent 
ingredients to be used in discrete quantities vk ( y ,  = 1 if used and yk = 0 if not 
used). Let cj and dk be the respective costs of the ingredients and a ,  be the frac- 
tion of component i in ingredients j. The problem statement is 

Minimize: x cjxj + 2 dkvkyk 
i k 

Subject to: W' 5 x x j  + 2 vkyk 5 W U  
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0 5 x, 5 uj forallj  

y, = (0 , l )  for all k 

where uj = upper limit of the jth ingredient, 
and WU = the lower and upper bounds on the weights, respectively 

Af and A; = the lower and upper bounds on the analysis for component i ,  
respectively 

4.  Location of oil wells (plant location problem). It is assumed that a specific pro- 
duction4emand versus time relation exists for a reservoir. Several sites for new 
wells have been designated. The problem is how to select fi-om among the well 
sites the number of wells to be drilled, their locations, and the production rates 
from the wells so that the difference between the production-demand curve and 
flow curve actually obtained is minimized. Refer to Rosenwald and Green 
(1974) and Murray and Edgar (1978) for a mathematical formulation of the 
problem. The integer variables are the drilling decisions (0 = not drilled, 1 = 
drilled) for a set of n possible drilling locations The continuous variables are the 
different well production rates. This problem is related to the plant location 
problem and also the fixed-charge problem (Hillier and Liebeman, 1986). 

Many other problems can be formulated as integer programming problems; 
refer to the examples in this chapter and Nernhauser and Wolsey (1988) and the 
supplementary references for additional examples. 

Integer and mixed-integer programs are much harder to solve than linear pro- 
grams. The computation time of even the best available MIP solvers often increases 
rapidly with the number of integer variables, although this effect is highly problem- 
dependent. This is partially caused by the exponential increase in the total number 
of possible solutions with problem size. For example, a traveling salesman problem 
with n cities has n! tours, and there are 2" solutions to' a problem with n binary vari- 
ables (some of which may be infeasible). 

In this chapter, we discuss solution approaches for MILP and MINLP that are 
capable of finding an optimal solution and verify that they have done so. Specifi- 
cally, we consider branch-and-bound (BB) and outer linearization (OL) methods. 
BB can be applied to both linear and nonlinear problems, but OL is used for non- 
linear problems by solving a sequence of MILPs. Chapter 10 further considers 
branch-and-bound methods, and also describes heuristic methods, which often find 
very good solutions but are unable to verify optimality. 

9.2 BRANCH-AND-BOUND METHODS USING LP RELAXATIONS 

Branch and bound (BB) is a class of methods for linear and nonlinear mixed-integer 
programming. If carried to completion, it is guaranteed to find an optimal solution 
to linear and convex nonlinear problems. It is the most popular approach and is cur- 
rently used in virtually all commercial MILP software (see Chapter 7). 
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Consider the application of BB to a general MILP problem, in which all the 
integer variables are binary, that is, either 0 or 1. The problem formed by relaxing 
the "0 or 1" constraint to "anywhere between 0 and 1" is called the LP relaxation 
of the MILP. BB starts by solving this LP relaxation. If all discrete variables have 
integer values, this solution solves the MILP. If not, one or more discrete variables 
has a fractional value. BB chooses one of these variables in its branching step and 
then creates two LP subproblems by fixing this variable first at 0, then at 1. If either 
of these subproblems has an integer solution, it need not be investigated further. If 
its objective value is better than the best value found thus far, it replaces this best 
value. If either subproblem is infeasible, it need not be investigated further. Other- 
wise, we find another fractional variable and repeat the steps. A clever bounding 
test can also be applied to each subproblem. If the test is satisfied, the subproblem 
need not be investigated further. This bounding test, together with the rest of the 
procedure, is explained in the following example. 

EXAMPLE 9.1 BRANCH-AND-BOUND ANALYSIS OF AN 
INTEGER LINEAR PROGRAM 

Maximize: f = 86y, + 4y2 + 40y3 

Subject to: 774y, + 76y, + 42y3 5 875 

We can show the various subproblems developed from the stated problem by a 
tree (Figure E9.1). The objective function and inequality constraints are the same for 
each subproblem and so are not shown. The upper bound and lower bound for f are 
represented by ub and lb, respectively. 

Each subproblem corresponds to a node in the tree and represents a relaxation of 
the original IP. One or more of the integer constraints yi = 0 or 1 are replaced by the 
,relaxed condition 0 5 yi 5 1, which includes the original integers, but also all of 
the real values in between. 

Node 1. The first step is to set up and solve the relaxation of the binary IP via 
LP. The optimal solution has one fractional (noninteger) variable (y2) and an objec- 
tive function value of 129.1. Because the feasible region of the relaxed problem 
includes the feasible region of the initial IP problem, 129.1 is an upper bound on the 
value of the objective function of the KP. If we knew a feasible binary solution, its 
objective value would be a lower bound on the value of the objective function, but 
none is assumed here, so the lower bound is set to -00. There is as yet no incumbent, 
which is the best feasible integer solution found thus far. 

At node 1, y2 is the only fractional variable, and hence any feasible integer solu- 
tion must satisfy either y2 = 0 or y2 = 1. We create two new relaxations represented by 
nodes 2 and 3 by imposing these two integer constraints. The process of creating these 
two relaxed subproblems is called branching. The feasible regions of these two LPs are 
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Continuous LP optimum 
Upper bound = 129.1 
Lower bound = - w 

No incumbent 

FIGURE E9.1 
Decomposition of Example 9.1 via the branch-and-bound method. 

Upper bound = 129.1 
Lower bound = 126.0 
Incumbent = (1,07 1) 

2 3 
O I y  < I  1 - * OIy, I 1  

Y2 = 0 Upper bound = 128.1 1 Y2 = 1 
0 1 y 3 1 1  Lower bound = 126.0 0 Y3 I 1 

Y* = (Lo, 1) y* = (0.978, 1, 1) 
f = 126.0 . f = 128.11 

IP optimum 

partitions of the feasible region of the original IP, and one (or both) contain an optimal 
integer solution, if one exists (the problem may not have a feasible integer solution). 

If the relaxed IP problem at a given node has an optimal binary solution, that solu- 
tion solves the IP, and there is no need to proceed further. This node is said to be fath- 
omed, because we do not need to branch from it. If a relaxed LP problem has several 
fractional values in the solution, you must select one of them to branch on. It is impor- 
tant to make a good choice. Branching rules have been studied extensively (see 
Nemhauser and Wolsey, 1988). Finally, if the node 1 problem has no feasible solution, II 
the original IP is infeasible. At this point, the two nodes resulting from branching are 
unfathomed, and you must decide which to process next. How to make the decision has 
been well studied (Nemhauser and Wolsey, 1988, Chapter II.4). 

4 
Y1 = o  
Y 2 =  1 
0 I y 3 I l  

Y* = (0, 1, 1) 
f = 44.0 

Node 2. For this example we choose node 2 and find that the solution to the 
relaxed problem is a binary solution, so this node is now fathomed. The solution is the 

\ 

5 
Y1 = 1 
Y 2 =  1 
0 I y 3 I l  
y* = (1, 1,0.595) 
f = 113.81 
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first feasible integer solution found, so its objective value of 126.0 becomes the current 
lower bound. The difference (ub - lb) is called the "gap," and its value at this stage is 
129.1 - 126.0 = 3.1. It is common to terminate the BB algorithm when 

When the gap is smaller than some fraction to1 of the incumbent's objective value (the 
factor 1.0 ensures that the test makes sense when lb = 0). When lb = - oo, you will 
always satisfy Equation 9.1. A to1 value of lo4 would be a tight tolerance, 0.01 would 
be neither tight nor loose, and 0.03 or higher would be loose. The termination criterion 
used in the Microsoft Excel Solver has a default to1 value of 0.05. 

Node 3. The solution of the problem displayed in node 3 is fractional with a 
value of the objective function equal to 128.1 1, so the upper bound for this node and 
all its successors is 128.11. The gap is now 2.1 1, so gapl[l + abs(lb)] = 0.0166. If 
to1 in Equation (9.1) is larger than this, the BB algorithm stops. Otherwise, we create 
two new nodes by branching on y,. 

Node 4. Node 4 has an integer solution, with an objective function value of 44, 
which is smaller than that of the incumbent obtained previously. The incumbent is 
unchanged, and this node is fathomed. 

Node 5. Node 5 has a fractional solution with an objective function value of 
113.81, which is smaller than the lower bound of 126.0. Any successors of this node 
have objective values less than or equal to 113.81 because their LP relaxations are 
formed by adding constraints to the current one. Hence we can never find an integer 
solution with objective value higher than 126.0 by further branching from node 5, so 
node 5 is fathomed. Because there are no dangling nodes, the problem is solved, with 
the optimum corresponding to node 2. 

EXAMPLE 9.2 BLENDING PRODUCTS INCLUDING DISCRETE 
BATCH SIZES 

In this example we have two production units in a plant designated number 1 and 
number 2, making products 1 and 2, respectively, from the three feedstocks as shown 
in Figure E9.2a. Unit 1 has a maximum capacity of 8000 lblday, and unit 2 of 10,000 
lblday. To make 1.0 lb of product 1 requires 0.4 1b of A and 0.6 lb of B; to make 1.0 
lb of product 2 requires 0.3 lb of B and 0.7 lb of C. A maximum of 6000 lblday of B 
is available, but there are no limits on the available amounts of A and C. Assume the 
net revenue after expenses from the manufacture of product 1 is $O.l6Ab, and of prod- 
uct 2 is $0.20Ab. How much of products 1 and 2 should be produced per day, assum- 
ing that each must be made in batches of 2000 lb? 

This problem is best formulated by scaling the production variables x, and x, to 
be in thousands of pounds per day, and the objective function to have values in thou- 
sands of dollars per day. This step ensures that all variables have values between 0 and 
10 and often leads to both faster solutions and more readable reports. We formulate 
this problem as the following mixed-integer linear programming problem: 

Maximize: f = 0 . 1 6 ~ ~  + 0 . h  
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Subject to: xi = 2yi i = 1,2 

0.6~1 + 0 . 3 ~ ~  5 6 

0 5 y, 1 4 0 1 y ,  1 5 y, integer (c) 

Constraints (a) ensure that the scaled production amounts are even integers because 
the y, are general integers subject to the bounds (c). The bounds on xi are also implied 
by (a) and (c), and the xi need not be declared an integer because they will be an inte- 
ger if the y, are. 

A BB tree for this problem is in Figure E9.2b. The numbers to the left of each 
node are the current upper and lower bounds on the objective function, and the values 
to the right are the (y,, y,) values in the optimal solution to the LP relaxation at the 
node. The solution at node 1 has y ,  fractional, so we branch on y,, leading to nodes 2 
and 3. If node 2 is evaluated first, its solution is an integer, so the node is fathomed, 
and (2, 5) becomes the incumbent solution. This solution is optimal, but we do not 

Feedstocks Production units 

, 
FIGURE E9.2a 
Flow chart of a batch plant. 

Upper bound, Lower bound 

FIGURE E9.2b 
Branch-and-bound tree. 
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values I 4 - - 10 -- 2 _. 5 I 

- - 

8 bounds 4 10 - - -  5 - 
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-- 
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-- -. - - 
I - _  I 

max .16xl+.2x2 0.16 - -0.2 - - I 2.64 

FEURE E9.2~ 
Excel formulation for Example 9.2. Pemission by Microsoft. 

Cell: 

Close 

@sat All 

FIGURE E9.2d 
Solver dialog for ExampIe 9.2. Permission by Microsoft. 

know that yet. Evaluating node 3, its solution is also an integer, so it i s  fathomed. Its 
solution has an objective function value of 2.56, smaller than the incumbent, so ( 2 ,5 )  
has been proven optimal. It is possible for a BB algorithm to discover an optima1 solu- 
tion at an early stage, but it may take many more steps to prove that it is optimal. 

An Excel spreadsheet formulation of this problem is shown in Figures E9.2c and 
E9.2d. The constraint coefficient matrix is in the range CFO:FI 2 and G10:G12 con- 
tains formulas that compute the values of the constraint functions. These formulas use 
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Tolerance: 15 
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Search - 
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Scaling 

FIGURE E9.2e 
Solver options dialog box. Permission by Microsoft. 

the Excel SUMPRODUCT function to compute the inner product of the row of con- 
straint coefficients with the variable values in C5:F5. The optimal solution is the same 
as found previously in the tree of Figure E9.2b, 

The Excel Solver solves MTLP and MTNCP problems using a BB algorithm (Fyl- 
stra et al., 1998). If the "assume linear model" box is checked in the OPTIONS dia- 
log, the LF simplex solver is used to solve the LP relaxations; if not, the GRG2 non- 
linear solver is used. This dialog is shown in Figure E9.2e. The value in the 
"Tolerance" box is the value of the to1 in Equation (9. I ) ,  As shown in the figure, the 
default toIerance value is 0.05. This is a loose" value because the BB process stops 
when the "gap" satisfies Equation (9.1) with tol = 0.05. The final solver solution can 
have an objective value that is as much as 5% worse than the optimal value. Users 
who are unaware of the meaning of the tolerance setting often assume that this final 
solution is optimal. For problems with few integer variables, you can safely use a 
tighter tolerance, for example, 0.1%, because such probIerns are usually solved 
quickly. For larger problems (e.g., more than 20 binary or integer variables), you can 
solve first with a loose tolerance. If this effort succeeds quickly, try again with a 
smaller tolerance. 

If you request a sensitivity report after the solver has solved this example, the 
message "Sensitivity report and limits report are not meaningful for problems with 
integer constraints" appears (try it and see). A sensitivity report is "not meaningful" 
for a mixed-integer problem because Lagrange multipliers may not exist for such 
problems. To see why, recall that, in a problem with no integer variables, the Lagrange 
multiplier for a constraint is the derivative of the optimal objective value (OV) within 
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the OV. In other words, the OV function may not be differentiable at some points. As 
an example, consider the constraint 

As shown in Figure E9.2c, this constraint is not active at the optimal solution because 
its left-hand side value is 5.4. Hence if its right-hand side is changed from 6 to 5.4, 
the optimal solution is unchanged. Now decrease this right-hand side (RHS) just a tiny 
bit further, to 5.3999). The new optimal objective value (OV) is 2.32, sharply worse 
than the OV of 2.64 when the RHS is 5.4. This OV change occurs because the small 
RHS decrease does not allow both x, and x, to retain their current values of 4 and 10, 
respectively. One or both must decrease, and because both are even integers, each 
must decrease by a value of 2. A small fractional change is not possible. The best pos- 
sible change is to have x, = 2 while x, remains at 10. The ratio of OV change to RHS 
change is 

AOV -- - -0.32 
= 3200 

ARHS -0.0001 

Clearly as ARHS approaches zero the limit of this ratio does not exist; the ratio 
approaches infinity because AOVremains -0.32. Hence the function OV(RHS) is not 
differentiable at RHS = 5.4, so no Lagrange multiplier exists at this point. 

We now ask the reader to start Excel, either construct or open this model, and 
solve it after checking the "Show Iteration Results" box in the Solver Options dialog 
(see Figure E9.2d). The sequence of solutions produced is the same as is shown in the 
BB tree of Figure E9.2b. The initial solution displayed has all four variables equal to 
zero, indicating the start of the LP solution at node 1. After a few iterations, the opti- 
mal node 1 solution is obtained. The solver then creates and solves the node 2 sub- 
problem and displays its solution after a few simplex iterations. Finally, the node 3 
subproblem is created and solved, after which an optimality message is shown. 

9.3 SOLVING MINLP PROBLEMS USING 
BRANCH-AND-BOUND METHODS 

Many problems in plant design and operation involve both nonlinear relations 
among continuous variables, and binary or integer variables that appear linearly. 
The continuous variables typically represent flows or process operating conditions, 
and the binary variables are usually introduced for yes-no decisions. Such prob- 
lems can be written in the following general form: 

Minimize: z = f (x) + cTy (9.2) 

Subject to: h(x) = 0 

where x is the vector of continuous variables, y is the vector of integer (usually 
binary) variables, M is a matrix, and X and Yare sets. The y's are typically chosen 
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to control the continuous variables x by either forcing one (or more) variables to be 
zero or by allowing them to assume positive values. The choice of y should be done 
in such a way that y appears linearly, because then the problem is much easier to 
solve. The constraints (9.3) represent mass and energy balances, process input- 
output transformations, and so forth. The inequalities (9.4) are formulated so that y 
influences x in the desired way-we illustrate how to do this in several examples 
that follow. The set X is specified by bounds and other inequalities involving x only, 
whereas Y is defined by conditions that the components of y be binary or integer, 
plus other inequalities or equations involving y only. 

As discussed in Section 9,2, the Excel Solver uses a BB algorithm to solve 
MILP problems. It uses the same method to solve MINLP problems. The only dif- 
ference is that for MINLP problems the relaxed subproblems at the nodes of the BB 
tree are continuous variable NLPs and must be solved by an NLP method. The 
Excel Solver uses the GRG2 code to solve these NLPs. GRG2 implements a GRG 
algorithm, as described in Chapter 8. 

BB methods are guaranteed to solve either linear or nonlinear problems if 
allowed to continue until the "gap" reaches zero [see Equation (9. I)], provided that 
a global solution is found for each relaxed subproblem at each node of the BB tree. 
A global optimum can always be found for MILPs because both simplex and inte- 
rior point LP solvers find global solutions to LPs because LPs are convex pro- 
gramming problems. In MINLP, if each relaxed subproblem is smooth and convex, 
then every local solution is a global optimum, and for these conditions many NLP 
algorithms guarantee convergence to a global solution. 

Sufficient conditions on the functions in the general MINLP in Equations 
(9.2)-(9.5) to guarantee convexity of each relaxed subproblem are 

1. The objective termflx) is convex. 
2. Each component of the vector of equality constr4nt functions h(x) is linear. 
3. Each component of the vector of inequality constraint functions g(x) is convex 

over the set X. 
4. The set X is convex. 
5. The set Y is determined by linear constraints and the integer restrictions on y. 

If these conditions hold, and an arbitrary subset of y variables are fixed at integer 
values and the integer restrictions on the remaining y's are relaxed, the resulting 
continuous subproblem (in the x and relaxed y variables) is convex. Although 
many practical problems meet these conditions, unfortunately many do not, often 
because some of the equality constraint functions h(x) are nonlinear. Then you 
cannot guarantee that the feasible region of each relaxed subproblem is convex, 
so local solutions may exist that are not global solutions. Consequently, a local 
NLP solver may terminate at a local solution that is not global in some tree node, 
and, in a minimization problem, the objective function value (call it "local") is 
larger than the true optimal value. When the "local" value is tested to see if it 
exceeds the cuirent upper bound, it may pass this test, and the node will be clas- 
sified as "fathomed." No further branches are allowed from this node. The "fath- 
omed" classification is false if the true global optimal value at the node is less 
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than the current upper bound. Thus, the BB procedure fails to find any better solu- 
tions reached by further branching from this node. A nonoptimal solution to the 
MINLP may result. 

EXAMPLE 9.3 OPTIMAL SELECTION OF PROCESSES 

This problem, taken from Floudas (1995), involves the manufacture of a chemical C 
in process 1 that uses raw material B (see Figure E9.3a). B can either be purchased or 
manufactured via two processes, 2 or 3, both of which use chemical A as a raw mate- 
rial. Data and specifications for this example problem, involving several nonlinear 
input4utput relations (mass balances), are shown in Table E9.3A. We want to deter- 
mine which processes to use and their production levels in order to maximize profit. 
The processes represent design alternatives that have not yet been built. Their fixed 
costs include amortized design and construction costs over their anticipated lifetime, 
which are incurred only if the process is used. 

To model this problem as a MINLP problem, we first assign the continuous vari- 
ables to the different streams to represent the flows of the different chemicals. A2 and 
A3 are the amounts of A consumed by processes 2 and 3, B2 and B3 are the amounts 
of B produced by these processes, BP is the amount of B purchased in an external 
market, and C1 is the amount of C produced by this process. We also define the 0-1 
variables, Y1, Y2, and Y3 to represent the existence of each of the processes. 

The constraints in this problem are 
1. Conversion 

2. Mass balance for B 

The specifications and limits that apply are as follows: 
3. Nonnegativity condition for continuous variables 

A2,A3, B1, B2, B3, BP, C1 2 0 

4. Integer constraints 

Yl,Y2,Y3 = Oor 1 

5. Maximum demand for C 

C1 5 1 

6. Limits on plant capacity 

B2 5 4Y2 

B3 5 5Y3 

C1 5 2Y1 
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TABLE E9.3A 
Problem data 

Conversions: Process 1 C = 0.9B 
Process 2 B = ln(1 + A) 
Process 3 B = 1.2 ln(1 + A) 

(A, B, C, in todh) 

Maximum capacity: 

Prices: 

Process 1 2 todhofC 
Process 2 4todhofB 
Process 3 5todhofB 

Demand of C: 1 todh maximum 

Fixed Variable 
(103 $/h) (103 $/ton of product) 

Costs: Process 1 3.5 
Process 2 1 
Process 3 1.5 

Note that the constraints in (f) place an upper limit of zero on the amounts pro- 
duced if a process is not selected and impose the true upper limit if the process is 
selected. Clearly, with the bounds in step 3, this means that the amounts of B2, B3, 
and C1 are zero when their binary variables are set to zero. If a binary variable is one, 
the amounts produced can be anywhere between zero and their upper limits. 

Finally, for the objective function, the terms for the profit PR expressed in $103/h 
are given as follows: 

1. Income from sales of product C: 13C 
2. Expense for the purchase of chemical B: 7BP 
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3. Expense for the purchase of chemical A: 1.8A2 + 1.8A3 
4. Annualized investment or fixed cost for the three processes: 

Note that in the preceding expression the fixed charges are multiplied by the 
binary variables so that these charges are incurred only if the corresponding process 
is selected. Combining the preceding terms yields the following objective function: 

Maximize PR = 11C1 - 3.5Y1 - Y2 - B2 - 1.5Y3 - 1.2B3 

Relations (a)-(g) define the MINLP problem. It is important to note that the rela- 
tions between the binary and continuous variables in Equation (f) are linear. It is pos- 
sible to impose the desired relations nonlinearly. For example, one could replace C1 
by Cl * Y1 everywhere C1 appears. Then if Y1 = 0, C1 does not appear, and if Y1 = 
1, C1 does appear. Alternatively, one could replace C1 by the conditional expression 
(if Y1 = 1 then C1 else 0). Both these alternatives create nonlinear models that are 
very difficult to solve and should be avoided if possible. 

Solution. Figure ~ 9 . 3 b  shows the implementation of the MINLP problem in Excel 
Solver. The input-output relations (a)  are in cells F18:F20, and the mass balance (b) 
is in F22, both written in the form 'Xx) = 0." The left- and right-hand sides of the 
plant capacity limits (f) are in C25:C27 and F25:F27, respectively. The Solver param- 
eter dialog box is in Figure E9.3~. Nonnegativity constraints are imposed by check- 
ing the "Assume Nonnegative" box in the options dialog box. 

The optimal solution has Y1 = Y3 = 1, Y2 = 0, so only processes 1 and 3 are 
used. Because BP = 0, there is no purchase of chemical B from an outside source. 
Total costs are 11.077 (in thousands of dollars per hour), revenues are 13, and the 
maximum profit is 1.923. 

Given the optimal result, we now can ask a number of questions about the 
process operations, such as 

1. Why is process 3 used instead of 2? 
2. What happens if the cost of chemical A changes? 
3. Why is no B purchased? 

These questions can be answered, respectively, by carrying out the following steps: 

1. Rerun the base case with Y2 fixed at 1 and Y3 at 0, thus forcing process 2 to be 
used rather than 3 while optimizing over the continuous flow variables. 

2. Change the cost of A, and reoptimize. 
3. Change the cost of purchased B, and reoptimize. 

The link between the Excel Solver and the Excel Scenario Manager makes saving and 
reporting case study information easier. After solving each case, click the "Save Sce- 
nario" button on the dialog box that contains the optimality message, which invokes 
the Excel Scenario Manager. This stores the current decision variable values in a sce- 
nario named by the user. After all of the desired scenarios are generated, you can pro- 
duce the Scenario Summary shown in Table E9.3B by selecting "Scenario Manager" 
from the Tools menu and choosing "Summary" from the Scenario Manager dialog. 
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FIGURE E9.3b 
Excel Solver model. Permission by Microsoft. 
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FIGURE E9.3~ 
Solver parameter diaIog box:Pemission by Microsoft. 

Examination of the "2 instead of 3" column in Table E9.3B shows that process 3 
has higher fixed and variable operating costs than 2 (3.33 compared with 3.1 T ) but is 
more efficient because its output of B is 1.2 times that of process 2. This higher efi- 
ciency leads to lower raw material costs for chemical A (A3 cost i s  2.744, and A2 cost 
is 3.668). This more than offsets the higher operating cost, leading to lower total costs 
and a larger net profit. This analysis clearly shows that the choice between processes 
2 and 3 depends on the cost of A. If the cost of A is reduced enough, process 2 should 
be preferred. The two "'acost" columns in Table E9.3B show that a reduction of A's 
cost to 1, -5 reduces the cost but leaves process 3 as the best choice, but a further reduc- 
tion to 1.0 switches the optimal choice to process 2. 

The last row of Table E9.3B shows why no chemical B is purchased. The cost per 
unit of B produced is computed by adding the cost of A purchased to the sum of the 
fixed and variable operating costs (processes 2 and 3) and dividing by the amount of 

.B produced. In the base case this cost is $2555/ton, so that the market price of B must 
be lower than this value for an optimal solution to choose purchasing B to producing 
it. The current price of B is 7, far above this threshold. The "BPcost=2" column of 
Table E9.3B shows that if B's market price is reduced to 2, the maximum profit is 
attained by shutting down both processes 2 and 3 and purchasing B. 

Of course, a BB method can find an optimal solution even when the MINLP does 
not satisfy the convexity conditions. That occurred in Example 9.3, even though the 
equality constraints were nonlinear. The GRG2 solver did find global solutions at 
each node. An optimal solution cannot be guaranteed for nonconvex MINLPs, how- 
ever* if a local NLP solver is used. As global: optimization methods improve, future 
BB software may include a global NLP solver and thus ensure optimality. Currently, 
the main drawback to using a global optimizer in a BB algorithm is the long time 
required to find a global solution to even moderately-sized nonconvex NLPs. 



Scenario summary 

Changing cells Base 2 instead of 3 acost = 1 acost = 1.5 BPcost =2 

1. A2=consumption of chemical A in process 2 
2. A3=consumption of chemical A in process 3 
3. B2=production of chemical B by process 2 
4. B3=production of chewal  B by process 3 
5. BP=amount of B purchased in external market 
6. B1 =consumption of B by process 1 
7. C1 =amount of C produced by process 1 
1. Y1 = on-off for process 1 
2. = on-off for process 2 
3. Y3 = on-off for process 3 

Result cells 
Revenue 
Fixed cost 

Subtotal 
Operating cost 
C1 
B2 
B3 
Subtotal 
Raw material costs 
A2 cost 
A3 cost 
BP cost 
Subtotal 
Total cost 
Net profit 

Unit cost of B produced 
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9.4 SOLVING MINLPs USING OUTER APPROXIMATION 

The "outer approximation" (OA) algorithm has been described by Duran and Gross- 
man (1986) and Floudas (1995). It is implemented in software called DICOPT, which 
has an interface with GAMS. Each major iteration of OA involves solving two 
subproblems: a continuous variable nonlinear program and a linear mixed-integer 
program. Using the problem statement in Equations (9.2)-(9.5), the NLP subprob- 
lem at major iteration k, NLP(yk), is formed by fixing the integer y variables at 
some set of values, say yk E Y, and optimizing over the continuous x variables; 

Problem NLP ( yk) 

Maximize: cTyk + f (x) (9.6) 

Subject to: h (x) = 0 

We redefined the sense of the optimization to be maximization. The optimal objec- 
tive value of this problem is a lower bound on the MINLP optimal value. The MILP 
subproblem involves both the x and y variables. At iteration k, it is formed by lin- 
earizing all nonlinear functions about the optimal solutions of each of the subprob- 
lems NLP (yi), i = 1, . . . , k, and keeping all of these linearizations. If xi solves 
NLP(yi), the MILP subproblem at iteration k is 

MILP subproblem 

Maximize: cTy + z (9.8) 

T i  Subject to: z 2 f(xi) + Vf (X )(x - xi), i = 1, ... , k 

The new variable z is introduced to make the objective linear. 

Minimize: cT9 + z 

Subject to: z 3 f (x) 

is equivalent to minimizing cTy + f (x). Duran and Grossman (1986) and Floudas 
(1995) show that if the convexity assumptions ( 1 x 5 )  of Section 9.3 hold, then the 
optimal value of this MILP subproblem is an upper bound on the optimal MlNLP 
objective value. Because a new set of linear constraints is added at each iteration, this 
upper bound decreases (or remains the same) at each iteration. Under the convexity 
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TABLE 9.1 
DICOPT iteration log 

Major step Major Objective NLP or MILP 
iteration function CPU time (s) iterations Solver 

NLP 1 5.32542 0.17 8 CONOPT2 
MEP 1 2.44260 0.16 16 OSL 
NLP 2 1.72097 0.1 1 3 CONOPT2 
MILP 2 2.20359 0.16 17 OSL 
NLP 3 1.923 10 0.11 3 CONOPT2 
MILP 3 1.44666 0.17 24 OSL 
NLP 4 1.41100 0.11 8 CONOPT2 

assumptions, the upper and lower bounds converge to the true optimal MINLP value 
in a finite number of iterations, so the OA algorithm solves the MINLP problem. 

Table 9.1 shows how outer approximation, as implemented in the DICOPT 
software, performs when applied to the process selection model in Example 9.3. 
Note that this model does not satisfy the convexity assumptions because its equal- 
ity constraints are nonlinear. Still DICOPT does find the optimal solution at itera- 
tion 3. Note, however, that the optimal MILP objective value at iteration 3 is 1.446, 
which is not an upper bound on the optimal MINLP value of 1.923 because the con- 
vexity conditions are violated. Hence the normal termination condition that the dif- 
ference between upper and lower bounds be less than some tolerance cannot be 
used, and DICOPT may fail to find an optimal solution. Computational experience 
on nonconvex problems has shown that retaining the best feasible solution found 
thus far, and stopping when the objective value of the NLP subproblem fails to 
improve, often leads to an optimal solution. DICOPT stopped in this example 
because the NLP solution at iteration 4 is worse (lower) than that at iteration 3. 

The NLP solver used by GAMS in this example is CONOPT2, which imple- 
ments a sparsity-exploiting GRG algorithm (see Section 8.7). The mixed-integer 
linear programming solver is IBM's Optimization Software Library (OSL). See 
Chapter 7 for a list of commercially available MILP solvers. 

9.5 OTHER DECOMPOSITION APPROACHES FOR MINLP 

Generalized Benders decomposition (GBD), derived in Geoffrion (1972), is an 
algorithm that operates in a similar way to outer approximation and can be applied 
to MINLP problems. Like OA, when GBD is applied to models of the form (9.2)- 
(9.3, each major iteration is composed of the solution of two subproblems. At 
major iteration k, one of these subproblems is NLP(yk), given in Equations (9.6)- 
(9.7). This is an NLP in the continuous variables x, with y fixed at yk. The other 
GBD subproblem is an integer linear program, as in OA, but it only involves the 
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discrete variables y, whereas the MILP of OA involves both x and y. The con- 
straints of the GBD MIP subproblem are different from those in the OA MILP sub- 
problem. These constraints are called generalized Benders cuts. They are linear 
constraints, formed using the Lagrange multipliers of the continuous subproblem, 
NLP(yk). Only one GBD cut is added at each major iteration. In OA, an entire set 
of linearized constraints of the form (9.9) is added each time, so the OA MILP sub- 
problems has many more constraints than those in GBD. Each solution of the NLP 
subproblem in GBD generates a lower bound on the maximum objective value, and 
the MILP subproblem yields an upper bound. Duran and Grossman (1986) proved 
that for convex MINLP problems the OA upper bound is never above the GBD 
lower bound [see also Floudas (1995)l. Hence, for convex problems OA terminates 
in fewer major iterations than GBD. The OA computing time may not be smaller 
than that for GBD, however, because the OA subproblems have more constraints 
and thus usually take longer to solve. 

9.6 DISJUNCTIVE PROGRAMMING 

A disjunctive program is 'a special type of MINLP problem whose constraints 
include the condition that exactly one of several sets of constraints must be satis- 
fied (Raman and Grossmann, 1994). Defining v as the logical "exclusive or" oper- 
ator and Yi as logical variables (whose values are true or false), an example of a dis- 
junctive program, taken from Lee and Grossman (2000), is 

Minimize: (x, - 3)2 + (x2 - 2)2 + c 

and 

0 5 xi 5 8, i = 1,2 

The logical condition, called a disjunction, means that exactly one of the three sets of 
conditions in brackets must be true: the logical variable must be true, the constraint 
must be satisfied, and c must have the specified value. Note that c appears in the 
objective function. There are additional constraints on x; here these are simple 
bounds, but in general they can be linear or nonlinear inequalities. The single inequal- 
ity constraint in each bracket may be replaced by several different inequalities. There 
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may also be logical constraints on the Yi variables, but these constraints are not 
included in this example. 

Disjunctions arise when a set of alternative process units is considered during 
a process design. The following example is taken from Biegler et al. (1997), p. 519. 
If one of two reactors is to be selected, we may have the conditions: 

If reactor one is selected, then pressure P in the reactor must lie between 10 and 
15, and the reactor fixed cost c is 20. 
If reactor two is selected, then pressure P in the reactor must be between 5 and 10 
and the reactor fixed cost c is 30. 

See Hooker and Grossman (1999) for more details on occurrence of disjunctions in 
process synthesis problems. 

A generalized disjunctive program (GDP) may be formulated as an MINLP, with 
binary variables yi replacing the logical variables Yi. The most common formulation 
is called the "big-A4" approach because it uses a large positive constant denoted by M 
to relax or enforce the constraints. This formulation of the preceding example follows: 

Minimize: (x, - 3)2 + (x, - 2)2 + 5, + y2 + 3y3 

Subject to: xt  + x: - 1 5 M(l - y,) 

and 

When yi = 1, the ith constraint is enforced and the correct value of c is added to the 
objective. When yi = 0, the right-hand side of the ith constraint is equal to M, so it 
is never active if M is large enough. The constraint that sets the sum of the yi equal 
to 1 ensures that exactly one constraint is enforced. 

The big-M formulation is often difficult to solve, and its difficulty increases as 
M increases. This is because the NLP relaxation of this problem (the problem in 
which the condition yi = 0 or 1 is replaced by yi between 0 and 1) is often weak, 
that is, its optimal objective value is often much less than the optimal value of the 
MINLP. An alternative to the big-M formulation is described in Lee and Grossman 
(2000) using an NLP relaxation, which often has a much tighter bound on the opti- 
mal MINLP value. A branch-and-bound algorithm based on this formulation per- 
formed much better than a similar method applied to the big-M formulation. An 
outer approximation approach is also described by Lee and Grossmann (2000). 
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PROBLEMS 

9.1 A microelectronics manufacturing facility is considering six projects to improve oper- 
ations as well as profitability. Due to expenditure limitations and engineering staffing 
constraints, however, not all of these projects can be implemented. The following table 
gives projected cost, staffing, and profitability data for each project. 

- -- 

First-year Second-year Net 
expenditure expenditure Engineering present 

Project Description ($1 6) hours value ($) 

1 Modify existing 
production line 
with new etchers 300,000 0 4000 100,000 

2 Build new 
production line 100,000 300,000 7000 150,000 

3 Automate new 
production line 

4 Install plating line 50,000 100,000 6000 75,000 

5 Build waste 
recovery plant 50,000 300,000 3000 125,000 

6 Subcontract 
waste disposal 100,000 200,000 600 60,000 

The resource limitations are 

First-year expenditure: $450,000 
Second-year expenditure: $400,000 
Engineering hours: 10,000 
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A new or modernized production line must be provided (project 1 or 2). Automa- 
tion is feasible only for the new line. Either project 5 or project 6 can be selected, but 
not both. Determine which projects maximize the net present value subject to the var- 
ious constraints. 

9.2 An electric utility must determine which generators to start up at the beginning of each 
day. They have three generators with capacities, operating cost, and start-up costs shown 
in the following table. A day is divided into two periods, and each generator may be 
started at the beginning of each period. A generator started in period 1 may be used in 
period 2 without incurring an additional start-up cost. All generators are turned off at the 
end of the day. 

Demand for power is 2500 megawatts (MW) in period 1 and 3500 MW in period 
2. Formulate and solve this problem as a mixed-integer linear program. Define the 
binary variables carefully. 

Fixed start-up Cost per period Generator capacity in 
Generator cost ($1 per megawatt each period (MW) 

9.3 An electric utility currently has 700 MW of generating capacity and needs to expand 
this capacity over the next 5 years based on the following demand forecasts, which 
determine the minimum capacity required. 

Year Minimum capacity (MW) 

Capacity is increased by installing lo-, 50-, or 100-MW generators. The cost of 
installation depends on the size and year of installation as shown in the following 
table. 

Generator size (MW) Year 1 Year 2 Year 3 Year 4 Year 5 

Once a generator is installed, it is available for all future years. Formulate and solve the 
problem of determining the amount of new capacity to install each year so that minimum 
capacities are met or exceeded and total (undiscounted) installation cost is minimized. 

9.4 A manufacturing line makes two products. Production and demand data are shown in 
the following table. 



376 PART 11: Optimization Theory and Methods 

Product 1 Product 2 
- - 

Set-up time (hrs) 6 11 
Set-up cost ($) 250 400 
Production timetunit (h) 0.5 0.75 
F'roduction codunit ($) 9 14 
Inventory holding cost/unit 3 .  3 
Penalty cost for unsatisfied demandfunit ($) 15 20 
Selling price ($/unit) 25 35 

Demand data 

Product Week 1 Week 2 Week 3 Week 4 

Total time available (for production and setup) in each week is 80 h. Starting inventory 
is zero, and inventory at the end of week 4 must be zero. Only one product can be pro- 
duced in any week, and the line must be shut down and cleaned at the end of each 
week. Hence the set-up time and cost are incurred for a product in any week in which 
that product is made. No production can take place while the line is being set up. 

Formulate and solve this problem as an MILP, maximizing total net profit over all 
products and periods. 

9.5 A portfolio manager has $100,000 to invest in a list of 20 stocks. She estimates the 
return from stock i over the next year as r(i), so that if x(i) dollars are invested in stock 
i at the start of the year, the end of year value is [ l  + r(i)]*x(i). Write an MILP 
model that determines the amounts to invest in each stock in order to maximize end- 
of-year portfolio value under the following investment policy: no more than $20,000 
can be invested in any stock, and if a stock is purchased at all, at least $5000 worth 
must be purchased. 

Maximize: f(x) = 75x1 + 6x2 + 3x3 + 33x4 

Subject to: 774x, + 76x2 + 22x3 + 42x4 5 875 

xl, x2,x3,x4 either 0 or 1 

Maximize : f (x) = 2xl + xz 

Subject to: x, + x, 5 5 

xl,x2 L 0 and integer 
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Minimize: f ( x )  = x ,  + 4x2 + 2x3 + 3x4 

Subject to: - X I  + 3x2 - x3 + 2x4 2 2 

X I  + 3x2 + X j  + Xq 2 3 

x, ,x ,  r 0 and integer 

x3,x4 2 0 

9.9 Determine the minimum sum of transportation costs and fixed costs associated with 
two plants and two customers based on the following data: 

Annual capacity Annual fixed charges 
Plant (in thousands) (in lo4) 

Customer (j) Demand (j) 

Customer ( j )  

Plant (i) 1 2 

Hint: The mathematical statement is 

Minimize: f ( x )  = x C F x ,  + C r y i  
i j i 

Subject to: E x i j  = D j ,  j = 1, ... ,n 
i 

where CT = unit transportation cost from plant i to customer j 
Cr = fixed cost associated with plant i 

xij = quantity supplied to customer j from plant i 
y, = 1 (plant operates); = 0 (plant is closed) 
Ai = capacity of plant i 
Dj = demand of customer j 
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9.10 Four streams are to be allocated to four extractors. The costs of each stream are 

Extractor 

Stream 1 2 3 4 

The symbol P means the transfer is prohibited. Minimize the total costs. 

Minimize: f(x) = lox1 + 1 lx2 
Subject to: 9x1 + 1 1x2 1 29 

x L 0 and integer 

Maximize: f = 5x1 + 8x2 + 6x3 
Subject to: 9x1 + 6x2 + lox3 5 14 

20x1 + 63x2 + lox3 5 110 

xi 2 0, integer 

Maximize: f = x l  + x2 + x3 
Subjectto: x 1  + 2x2 + 2x3 + 2x4 + 3x5 5 18 

2x1 + x2 + 2x3 + 3x4,+ 2x5 5 15 

XI - 6x4 1 0  

x2 - 8 ~ 5  5 0 

all xj L 0, integer 

9.14 A plant location problem has arisen. Two possible sites exist for building a new plant, 
A and B, and two customer locations are to be supplied, C and D. Demands and pro- 
duction/supply costs are listed as follows. 

Use the following notation to formulate the optimization problem, and solve it for 
the values of I, and I, as well as the values of Sw Each plant has a maximum capacity 
of 500 units per day. 
li = decision variable (0-1) associated with the decision to build, or not to build, a 

plant in a given location, and thus incurs the associated fixed daily cost. 
Cij = unit cost of supplying customer j from plant i. 
Ci = fixed daily cost of plant i 
Sij = quantity supplied from the ith plant to the jth customer 
Rj = requirement of jth customer 
Qi = capacity of proposed plant 
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Production and transport costs per unit: 

A t o C  $1.00 
A to D $3.00 
B to C $4.50 
B t oD  $1.00 

Fixed plant charges per day: Minimum demand (units per day): 

plant A $700 
plant B $610 

Customer C 200 
Customer D 250 

9.15 The ABC company runs two refineries supplying three markets, using a pipeline 
owned by the XYZ company. The basic charge for pipeline use is $80 per 1000 bar- 
rels. If more than 500 barrels are shipped from the refineries to one market, then the 
charge drops to $60 per 1000 barrels for the next 1500 barrels. If more than 2000 bar- 
rels are shipped from the refineries to market, then the subsequent charge is $40 per 
1000 barrels for any over the 2000. 

The objective is to meet demands at M I ,  M2, and M3, using supplies from R, and R2. 
Xij, = number of barrels from source i to destination j at price k. 
Cijk = shipping cost of Xij, 
I j ,  = 0-1 variable to indicate whether or not any product is delivered to destination j 

at price level k. 

We can state the general problem briefly as follows: 

Minimize: ECvpvk 
ijk 

(1) 

Subject to: Exvk I Mj for all j (must meet demands) 
ik 

(2) 

and: Exij, 5 R for all i (= sources) (cannot exceed supply) 
jk 

(3) 

Xxe2 - bj21j2 5 0 foral l j  (4) 
1 

E xvl - bjl l j2  2 0 for all j (if any taken at second price must first 
1 use all at top price) 

(5) 

Exv3 - bj31j3 5 0 forallj (6) 
1 

$xO2 - b,243 r 0 for all j (if any taken at third price must first 

use all at second price) 
(7) 

bjk = upper bound on product delivered to terminal j at kth price level. 

J2 5 1 for all j(upper bounds on integer variables) 

1j3 5 1 for all j 
(8) 

The detailed matrix for this problem is set out in Table P9.15. Solve for the Ii, values 
and the xijk values. 



TABLE P9.15 Variables 

x l l l  x112 x113 x121 x122 x123 x131 x132 x133 x211 x212 x213 x221 x222 x223 x231 x232 x233 112 113 122 123 132 133 

Upper bound 
Lower bound 
Objective 
DEM.Ml 
DEM.M2 
DEM.M3 
CAP.Rl 
CAP.R2 
MlMAXPl 
MlMINP2 
MlMAXP;? 
MlMAXP3 
M2MAXP1 
M2MINP2 

w M2MAXP2 
M2MAXP3 
M3MAXP1 
M3MINP2 
M3MAXP2 
M3MAXP3 
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IN CHAPTERS 6 AND 8 we showed that in continuous variable minimization prob- 
lems with convex feasible regions and convex objectives, any local minimum is the 
global minimum. As discussed in Section 8.2, many problems do not satisfy these 
convexity conditions, and it is often difficult to verify whether they satisfy them or 
not. Models that include nonlinear equality constraints fall in this latter category. 
These constraints arise from nonlinear material balances (for which both flows and 
concentrations are unknowns), nonlinear physical property relations, nonlinear 
blending equations, nonlinear process models, and so on. Another source of non- 
convexity can be in the objective function if it is concave, which can occur when 
production costs increase with the amount produced, but at a decreasing rate due to 
economies of scale. A problem involved in minimizing a concave objective func- 
tion over a convex region defined by linear constraints is that it may have many 
local minima, one at each extreme point of the region. Nonconvex objective func- 
tions and local minima can also occur when you estimate the values of the model 
parameters using the least-squares or maximum likelihood objective functions. 

Any problem containing discretely valued variables is nonconvex, and such 
problems may also be solved by the methods described in this chapter. The search 
methods discussed in Section 10.5 are often applied to supply chain and production- 
sequencing problems. 

10.1 METHODS FOR GLOBAL OPTIMIZATION 

If an NLP algorithm such as SLP, SQP, or GRG described in Chapter 8 is applied 
to a smooth nonconvex problem, it usually converges to the "nearest" local mini- 
mum, which may not be the global mimimum. We refer to such algorithms in this 
chapter as "local solvers." The problem of finding a global minimum is much more 
difficult than that of finding a local one, but several well-established general- 
purpose approaches to the problem are discussed subsequently. 

Figure 10.1 shows a classification of global optimization methods. Exact meth- 
ods, if allowed to run until they meet their termination criteria, are guaranteed to 
find an arbitrarily close approximation to a global optimum and to verify that they 
have done so. These include branch-and-bound (BB) methods, which were dis- 
cussed in the context of mixed-integer linear and nonlinear programming in Chap- 
ter 9, methods based on interval arithmetic (Kearfott, 1996), and some multistart 
procedures, which invoke a local solver from multiple starting points. Heuristic 
search methods may and often do find global optimal solutions, but they are not 
guaranteed to do so, and we are usually unable to prove that they have found a 
global solution even when they have done so. Nonetheless, they are widely used, 
often find very good solutions, and can be applied to both mixed-integer and com- 
binatorial problems. A heuristic search method starts with some current solution, 
explores all solutions in some neighborhood of that point looking for a better one, 
and repeats if an improved point is found. Metaheuristics algorithms guide and 
improve on a heuristic algorithm. These include tabu search, scatter search, simu- 
lated annealing, and genetic algorithms. They use a heuristic procedure for the 
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and bound Interval Multistart 

FIGURE 10.1 
Classification of global optimization methods. 

I 1 

problem class, which by itself may not be able to find a global optimum, and guide 
the procedure by changing its logic-based search so that the method does not 
become trapped in a local optimum. Genetic and evolutionary algorithms use 
heuristics that mimic the biological processes of crossover and mutation. They are 
"population-based" methods that combine a set of solutions (the "population") in 
an effort to find improved solutions and then update the population when a better 
solution is found. Scatter search is also a population-based procedure. 

The methods mentioned earlier are general-purpose procedures, applicable to 
almost any problem. Many specialized global optimization procedures exist for 
specific classes of nonconvex problems. See Pinter (1996a) for a brief review and 
further references. Typical problems are 

Scatter 
search 

Problems with concave objective functions to be minimized over a convex set. 
"Differential convex" (DC) problems of the form 

Genetic and 
evolutionary 

Minimize: f (x) 

Subjectto: gj(x) 5 0, j =  1,2, ..., J 

and X E C  

where C is a convex set, and f and each constraint function gj can be expressed as 
the difference of two convex functions, such as f (x) = p(x) - q(x ) .  

Indefinite quadratic programs, in which the constraints are linear and the objec- 
tive function is a quadratic function that is neither convex nor concave because 
its Hessian matrix is indefinite. 
Fractional programming problems, where the objective is a ratio of two functions. 

If a problem has one of these forms, the special-purpose solution methods 
designed for it often produce better results than a general-purpose approach. In this 
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chapter, we focus on general-purpose methods and on frameworks that are applica- 
ble to wide classes of problems and do not discuss special problem classes further. 

10.2 SMOOTHING OPTIMIZATION PROBLEMS 

All gradient-based NLP solvers, including those described in Chapter 8, are 
designed for use on problems in which the objective and constraint functions have 
continuous first partial derivatives everywhere. Examples of functions that do not 
have continuous first partials everywhere are 

1 .  Iflx)l 
2 .  max(f (x) ,g(x))  
3 .  h(x)  = {if x,  5 0 then f (x )  else g(x)}  
4 .  A piecewise linear function interpolating a given set of (yi, xi) values. 

If you encounter these functions, you can reformulate them as equivalent smooth 
functions by introducing additional constraints and variables. For example, con- 
sider the problem of fitting a model to n data points by minimizing the sum of 
weighted absolute errors between the measured and model outputs. This can be for- 
mulated as follows: 

n 

Minimize: e(x) = 2 w i  1 y i  - h(vi , x) 1 
i =  1 

where x = a vector of model parameter values 
w i  = a positive weight for the error at the ith data point 
yi = the measured output of the system being modeled when the vector of 

system inputs is vi 
h ( v ,  x )  = the calculated model output when the system inputs are vi 

This weighted sum of absolute values in e(x) was also discussed in Section 8.4 as 
a way of measuring constraint violations in an exact penalty function. We proceed 
as we did in that section, eliminating the nonsmooth absolute value function by 
introducing positive and negative deviation variables dpi and dni and converting 
this nonsmooth unconstrained problem into an equivalent smooth constrained prob- 
lem, which is 

n 

Minimize: wi(dpi + dn,) 
i =  1 

Subject to: y i  - k(vi, x) = dp, - dn, i = 1, . . . , n (10.2)  

and dpi 2 0, dni 2 0 i = 1, ... ,n (10 .3)  

In this problem, if the error is positive, then dpi is positive and dn, is zero in any 
optimal solution. For negative errors, dpi is zero and dn, is positive. The absolute 
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error is thus the sum of these deviation variables. A similar reformulation allows the 
problem of minimizing the maximum error to be posed as a smooth constrained 
problem. 

If it is difficult or impossible to eliminate the nonsmooth functions by these or 
some other transformations, you can apply a gradient-based optimizer and hope 
that a nonsmooth point is never encountered. If one is encountered, the algorithm 
may fail to make further progress because the computed derivatives at the point are 
not meaningful. A large body of literature on methods for nonsmooth optimization 
exists (see Hiriart-Urmty and LeMarechal, 1993, for example), but software for 
nonsmooth optimization is not yet widely available. Alternatively, you can apply an 
optimization method that does not require first partial derivatives. Such algorithms 
include the Nelder-Meade simplex method (not the same as the simplex method for 
linear programming), the Hooke-Jeeves procedure, or a conjugate directions method 
due to Powell that does not use derivatives (Avriel, 1976). These techniques are not 
as sensitive to derivative discontinuities as gradient-based algorithms, but continu- 
ally improve the objective function until they reach an approximation to a local 
minimum. They are not guaranteed to converge to a local solution for nonsmooth 
problems, and are basically unconstrained methods. You can incorporate constraints 
by using penalty functions; but if a large penalty weight is used, the objective func- 
tion becomes ill-conditioned and hard to optimize with high accuracy. The search 
methods described in Section 10.5 are not as sensitive to discontinuities and are 
much less likely than a local solver to be trapped near a local optimum. 

10.3 BRANCH-AND-BOUND METHODS 

We have already discussed branch-and-bound methods in Sections 9.2 and 9.3 in 
the context of mixed-integer linear and nonlinear programming. The "divide-and- 
conquer" principles underlying BB can also be applied to global optimization with- 
out discrete variables. The approximation procedure for a function of one variable 
is shown in Figure 10.2. The nonconvex function f has three local minima over the 
interval [O, 21. The convex underestimator function f,(x) is defined over the entire 
interval. The underestimating functions f,(x) and f,(x) are defined over the two 
subintervals, and are "tighter" underestimates than f,. We will discuss procedures 
for constructing such functions shortly. Because each underestimator is convex, 
minimizing it using any convergent local solver leads to its global minimum. Let 
xT minimizef;,(x) over its associated interval, as shown in Figure 10.2. Then$(xT) 
is a lower bound on the global minimum over that interval, and f(xT) is an upper 
bound over the entire interval. These bounds are used to fathom nodes in the BB 
tree, in the same way as LP relaxations were used in Chapter 9. 

To illustrate, consider a minimization problem involving two variables with 
upper and lower bounds: 

Minimize: f (x) 

Subject to: 0 5 xi I 2, i = 1,2 
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FIGURE 10.2 
Convex underestimator of a nonconvex function. 

FIGURE 10.3 
Branch-and-bound partitions. 

where x = (x,, x2) and f is a nonconvex function having several local minima within 
the rectangle defined by the bounds. Let the initial partition be composed of four 
smaller rectangles, as shown in Figure 10.3. 

Figure 10.4 shows a BB tree, with the root node corresponding to the original 
rectangle, and each node on the second level associated with one of these four par- 
titions. Let &(x) be the underestimating function for the partition associated with 
node i. The lower bounds shown next to each node are illustrative and are derived 
by rninirnizingA(x) over its partition using any local solver, and the upper bounds 
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be convex, the scalars ai must be sufficiently large, as can easily be seen by con- 
sidering the Hessian matrix of L: 

where D is a positive diagonal matrix with diagonal elements 2ai. If these elements 
are sufficiently large, the Hessian of L is positive-definite for all x in the domain of 
f, which implies that L is convex over that domain. Tests to determine how large the 
ai's need to be are in Floudas (2000a, b), and other references cited there. Floudas 
has also shown that the maximum difference between the approximating function 
L and the actual function f is 

- As rectangles are partitioned, the difference (ui - li) decreases, so the successive 
underestimating functions become tighter approximations to$ 

10.4 MULTISTART METHODS 

Because software to find local solutions of NLP problems has become so eficient 
and widely available, multistart methods, which attempt to find a global optimum 
by starting the search from many starting points, have also become more effective. 
As discussed briefly in Section 8.10, using different starting points is a common 
and easy way to explore the possibility of local optima. This section considers mul- 
tistart methods for unconstrained problems without discrete variables that use ran- 
domly chosen starting points, as described in ~ i n n o o ~  Kan and T i m e r  (1987, 
1989) and more recently in Locatelli and Schoen (1999). We consider only uncon- 
strained problems, but constraints can be incorporated by including them in a 
penalty function (see Section 8.4). 

Consider the unconstrained global minimization of a smooth function of n vari- 
ables f(x). We assume that upper and lower bounds can be defined for each variable, 
so that all local minima lie strictly inside the rectangle R formed by the bounds. Let 
L denote the local optimization procedure to be used. L is assumed to operate as fol- 
lows: Given any starting point, x, in R, L converges to a local minimum off that 
depends on x, and is "closest" to x, in a loose sense. If L is started from each of N 
randomly generated starting points, which are uniformly distributed in R, the prob- 
ability that the best local optimum found in these N trials is global approaches one 
as N approaches infinity (Rinnooy Kan and T imer ,  1989). In fact, L is not even 
necessary for this asymptotic result to hold, because the best function value over all 
the starting points converges to the globally optimal value as N + oo with prob- 
ability 1, but this search usually converges much more slowly. 

Because each local optimum may be found many times, this multistart proce- 
dure is inefficient. If xT denotes the ith local optimum, we define the region of 
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attraction of x:, R,, to be the set of all starting points in R from which L converge 
to xT. The goal of an efficient multistart method is to start L exactly once in each 
region of attraction. 

Rinnooy Kan and Tirnmer (1987, 1989) developed an efficient multistart pro- 
cedure called multilevel single linkage (MLSL), based on a simple rule. A uni- 
formly distributed sample of N points in R is generated, and the objective function 
f is evaluated at each point. The points are sorted according to their f values, and the 
pN best points are retained, for which p is an algorithm parameter between 0 and 1. 
L is started from each point of this reduced sample, except if another sample point 
with a lower f value exists within a certain critical distance. L is also not started 
from sample points that are too near the boundary of R or too close to a previously 
discovered local minimum. Then, N additional uniformly distributed points are 
generated, and the procedure is applied to the union of these points and those 
retained from previous iterations. The critical distance decreases each time a new 
set of 'sample points is added. The authors show that, even if the sampling contin- 
ues indefinitely, the total number of local searches ever initiated by MLSL is finite 
with a probability of 1, and each local minimum off is located with a probability 
of 1. They also developed Bayesian stopping rules, which incorporate assumptions 
about the costs and potential benefits of further function evaluations, to determine 
when to stop the procedure. 

10.5 HEURISTIC SEARCH METHODS 

Chapter 9 describes several types of problems that require the use of integer-valued 
variables and discusses two solution approaches for such problems: branch-and- 
bound (BB) and outer approximation (OA). These methods can guarantee a global 
solution under certain conditions, but the computational effort required increases 
rapidly with the number of integer variables. In addition, BB is guaranteed to find 
a global optimum only if the global optimum of each relaxed subproblem is found. 
As discussed in Sections 10.3 and 10.4, this may be very hard to do if the sub- 
problems are not convex. OA also requires convexity assumptions to guarantee a 
global solution (see Section 9.4). Hence, there is a need for alternative methods that 
are not guaranteed to find an optimal solution, but often find good solutions more 
rapidly than BB or OA. We describe such methods, called heuristic search proce- 
dures, in this section. They include genetic algorithms (or, more generally, evolu- 
tionary algorithms), simulated annealing, tabu search, and scatter search. 

Heuristic search procedures can be applied to certain types of combinatorial 
problems when BB and OA are difficult to apply or converge too slowly. In these 
problems, it is difficult or impossible to model the problem in terms of a vector of 
decision variables, which must satisfy bounds on a set of constraint functions, as 
required by OA. One example is the "traveling salesman" problem, in which the fea- 
sible region is the set of all "tows" in a graph, that is, closed cycles or paths that visit 
eyery node only once. The problem is to find a tour of minimal distance or cost, 
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which is to be used by a vehicle that is routed to several stops. The traveling sales- 
man problem is the simplest type of vehicle-routing problem, with a single vehicle 
leaving from a single starting point. Multivehicle, multistarting point problems can 
have constraints such as time windows within which stops must be visited, vehicle 
capacities, restrictions on which vehicles can visit which stops, and so on (Crainic 
and Laporte, 1998). In all cases, the problem is to find a set of routes and an assign- 
ment of vehicles to routes, that visit all stops and meet all the constraints. 

Another important class of combinatorial problems is "job-shop" scheduling, 
in which you seek an optimal sequence or order in which to process a set of jobs 
on one or more machines. Such problems are often encountered in chemical engi- 
neering when sequencing a set of products through a batch process, in which set- 
up times and costs must be incurred for each unit operation before a product can be 
produced, and these times depend on the product previously produced. If there is a 
single machine, and the products are numbered from 1 to n, then the feasible region 
is the set of all permutations of the positive integers 1, 2, . . ., n, corresponding to 
the order in which the jobs are processed. This is equivalent to a traveling salesman 
problem in which each node in a graph corresponds to a job, and the travel times 
between nodes are the set-up times between jobs. 

These combinatorial problems, and many others as well, have a finite number 
of feasible solutions, a number that increases rapidly with problem size. In a job- 
shop scheduling problem, the size is measured by the number of jobs. In a travel- 
ing salesman problem, it is measured by the number of arcs or nodes in the graph. 
For a particular problem type and size, each distinct set of problem data defines an 
instance of the problem. In a traveling salesman problem, the data are the travel 
times between cities. In a job sequencing problem the data are the processing and 
set-up times, the due dates, and the penalty costs. 

One measure of the efficiency of an algorithm designed to solve a class of com- 
binatorial problems is an upper bound on the time required to solve any problem 
instance of a given size, and this time increases with size. Time is often measured by 
the number of arithmetic operations orxanstraint and objective function evaluations 
to find a solution. If, for a given algorithm and problem class, it can be shown that 
the time required for the algorithm to solve any instance of the problem is bounded 
by a polynomial in the problem size parameter(s), then that algorithm is said to solve 
the problem class in polynomial time. Some combinatorial problems, for example, 
sorting a list, are solvable in polynomial time. For many combinational problems, 
however, no known algorithm can solve all instances in polynomial time. Such prob- 
lems are called NP-hard. Although methods to find optimal solutions have been 
devised that avoid complete enumeration of all solutions (often based on branch- 
and-bound concepts), none of them can guarantee a solution in polynomial time. 
Hence, heuristic and metaheuristic search methods, which cannot guarantee an opti- 
mal solution but often find a good (or optimal) one quickly, are now widely used. 

10.5.1 Heuristic Search 

Consider the problem: Minimize f (x) subject to x EX, where x represents the vari- 
ables or other entities over which we are optimizing5 The objective function f may 
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TABLE 10.1 
Data for sequencing problem 

Processing time Due date Tardiness penalty 
Job (days) (day) ($/day) 

TABLE 10.2A 
Objective function computation for the sequence (3,1,2) 

Completion time Tardiness Delay cost 
Job (days) (days) ($) 

TABLE 10.2B 
Swap neighborhood of (3,1,2) 

1 j New permutation Move value 

be linear or nonlinear, and X is defined by the constraints of the problem. x may be 
a cycle in a graph, a permutation (representing a sequence in which to process jobs 
on a machine), or, in the simplest case, a vector of n decision variables. The con- 
straints may be bounds on functions of x, or they may include verbal logic-based 
statements or conditions like "x is a tree in this graph that connects all nodes" or 
"if-then" statements. 

As an example, consider a problem of sequencing three jobs on a single 
machine to minimize the sum of weighted "tardiness" for all jobs, where tardiness 
is defined as the difference between the completion time of a job and its due date 
if this difference is positive, and zero otherwise. Job processing times, due dates, 
and delay penalties for an instance of this problem are shown in Table 10.1. 

To show how the objective function is computed, consider the sequence 2 = (3, 
1, 2). The job completion times, tardiness values, and delay costs for this sequence 
are shown in Table 10.2A. 

The objective value for this sequence is the sum of the costs in the "delay cost" 
ciilumn: 
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TABLE 10.3 
Descent method using the search 

neighborhood N(x)  

1. Start with x E X 
2. Find x' E N(x) such that f (x') < f(x). 
3. If no such x' exists, stop and return x. 
4. Otherwise replace x by x' and return to step 2. 

In neighborhood-based heuristic searches, each x E X has an associated neigh- 
borhood N(x) that contains all the feasible solutions that the search will explore 
when the current point is x. Each alternative solution x' E N(x) is reached from x 
by an operation called a move. Consider again the three-job problem based on 
Table 10.2A. Let the current sequence x be (3, 1,2), and suppose that we consider 
only neighboring permutations x' that can be reached from x by swapping a pair of 
jobs in x. This "swap neighborhood" is shown in Table 10.2B, in which i and j are 
the indices of the jobs to be swapped. If there are n jobs, then a swap neighborhood 
contains n(n - 1)/2 permutations. 

The "move value" column in Table 10.2B contains the change in objective 
value realized by making the move, Ax') -Ax). Because x = (3, 1, 2), we deter- 
mined earlier that Ax) = 11. If the objectives for the new permutations shown in 
Table 10.2B are evaluated, move values can be obtained. By moving to permutation 
(1, 3, 2), we improve the objective by one unit. Then the same procedure can be 
applied at this new point. 

This straightforward descent method can be generalized for discrete-variable 
problems as shown in Table 10.3 (Glover and Laguna, 1997, Chapter 2). This algo- 
rithm is similar to the algorithms for linear programs 'and continuous-variable non- 
linear programs discussed in Chapters 6-8, where step 2 was conducted by choos- 
ing a search direction and performing a line search along that direction. The 
variation of this algorithm that seeks the x' E N(x) with lowest f value is called 
steepest descent (see Chapter 6). Although this simple descent method solves some 
combinatorial problems from any starting point, for many important problems 
(routing and sequencing included) it usually stops at a nonoptimal point, which is 
often far from optimal. Such a point is called a local solution relative to the neigh- 
borhood N(x). As noted by Glover and Laguna (1997), descent methods by them- 
selves have had very limited success in solving hard combinatorial optimization 
problems, but they provide an underlying heuristic for a metaheuristic procedure to 
guide the search. The resulting metaheuristic algorithms have been widely and suc- 
cessfully used. 

In fact, most metaheuristics do not require a preexisting heuristic. They simply 
require a way to define a neighborhood of any current solution, which contains 
alternative solutions as possible moves. For example, tabu search, which is dis- 
cussed in the following section, includes strategies for operating directly with such 
neighborhoods. Some neighborhood structures allow solutions to be built up one 
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element at a time in a constructive way. For example, a spanning tree in a network 
may be constructed one arc at a time, each time choosing a new arc that creates no 
loops, connects a new node, and has the greatest value or least cost. 

10.5.2 Tabu Search 
r 

Tabu search (TS) is widely used by operations research analysts, but has received 
little attention from chemical engineers, even though it can be used to solve many 
important and difficult real-world problems. These include problems of the follow- 
ing types: planning and scheduling, telecommunications and multiprocessor com- 
puting systems, transportation networks and vehicle routing, operation and design 
of manufacturing systems, and financial analysis. An excellent survey of these 
applications and pertinent references is found in Glover and Laguna (1997). 

As discussed in the previous section, descent heuristics fail to solve many prob- 
lems because they get trapped in local minima (relative to the type of neighbor- 
hoods they use). That is, they stop at the first solution encountered where no neigh- 
boring solution is better. TS, and in fact any metaheuristic search method, 
overcomes this limitation by allowing nonimproving moves. The term tabu refers 
to TS's definition of certain moves as forbidden. These are usually specified as 
moves to solutions with particular attributes, as illustrated in the following exam- 
ple. The tabu moves are specified so as to keep previously performed moves from 
being reversed or to prevent already visited solutions from being revisited. These 
and other mechanisms force the search process to move beyond the nearest local 
minimum and to explore regions where improved solutions may lie. 

We explain the ideas behind TS using a problem from Barnes and Vanston 
(198 1) of sequencing five different product batches through a single-batch process. 
Each batch has a processing time and a delay penalty cost, as shown in Table 10.4. 
The penalty is charged for any delay in starting production beyond time zero; set- 
up costs must also be taken into account. 

It is reasonable to schedule jobs with short processing times and high penalty 
costs first. This is motivation for a heuristic that computes the ratio of processing 
time to penalty cost (see column four of Table 10.4) and sequences the batches in 
ordef of increasing value of this ratio, which is the order given in the table. However, 

TABLE 10.4 
Batch processing times and delay penalties 

Processing time Delay penalty 
Batch (h) (lOO$/h) Ratio 
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TABLE 10.5 
Batch set-up costs 

j-+ 

TABLE 10.6 
Calculated completion 

times 

Batch Completion time 

this ignores the fact that, if bittch i was last produced, and batch j is next, there is a 
set-up cost of s,, dollars before batch j can begin, representing the time and expense 
associated with cleaning up after batch i and preparing the process to produce batch 
j .  These set-up costs are shown in Table 10.5. The table includes fictitious batches 0 
and 6 (always sequenced first and last, respectively, and with zero processing times 
and delay penalties), whose set-up costs represent the cost of starting up the first 
batch and cleaning up after the last one. 

Let 

be a permutation of the integers 1 through 5, representing a sequence for produc- 
ing the batches, where p(i) is the index of the job in position i. If P = (1, 3, 2, 5, 
4), then the completion times of the jobs are as shown in Table 10.6. 

The corresponding objective value obj(P) is computed as follows: 

Objective (P) = Delay cost (P) + Setup cost (P) 

Delay cost (P) = 700(3) + 800(8) + 100(4) + 300(17) + 200(13) =" 16,600 

Setup cost(P) = 1100 + 700 + 1000 + 600 + 1300 + 1200 = 5900 
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A TS algorithm for this problem described in Laguna, et al. (1991) modifies the 
swap heuristic as follows: 

At each iteration, certain moves are forbidden or tabu. 
One or more move attributes are chosen, and the tabu moves are those whose 
attribute(s) satisfy the specified tabu conditions. 
A short-term memory function determines how long a tabu restriction remains 
active. This can be expressed as the number of iterations a tabu condition is 
enforced once it is imposed. 
The tabu status of a move can be overridden if the objective value after the move 
is better than a specified threshold, called an aspiration level. 
A long-term memoryfunction determines when to restart the entire procedure and 
what the new starting point should be. These new starting points are chosen to be 
in regions of the search space (i.e., the space of all permutations) that have not 
been previously explored. This diversifies the search. Long-term memory can 
diversify the search in ways other than by direct restarting (Glover and Laguna, 
1997) and can also intensib the search by inducing it to explore attractive areas 
more thoroughly. 

The purpose of a tabu restriction is to prevent a move from being reversed dur- 
ing the length of the short-term memory, which is a number of future moves spec- 
ified by the variable tabu-size. If, at a given iteration, jobs p(i) and p(j) are 
swapped, then any move that places job p(i) earlier in the sequence than position i 
is tabu, until tabu-size iterations have occurred or the aspiration level is exceeded. 
To keep track of which moves are tabu and to free those moves from their tabu sta- 
tus, Laguna et al. define the following data structures 

tabu-list (k) = p(i) if job p(i) is prevented from moving to the left of its tabu posi- 
tion at iteration k. This is a circular list of length tabu-size. 
tabu-position p(i) = tabu position for job p(i). 
tabu-state (p(i)) = number of times job p(i) appears on the tabu list. 
aspiration-level (p(i)) = aspiration level for job p(i). 

The aspiration level allows a tabu move of a job pu) to an earlier position if 

Current objective value + move-value < aspiration level for job p(j) 

The aspiration level for a job is initialized to a large value and updated as follows. 
Let P be the current sequence and assume that the move of jobs p(i) and p(j) has 
the best move-value. 

If aspiration level (p(j)) > objective(P), then aspiration level (p(i)) = objective(P) 
If aspiration level (p(j)) > objective(P) + move-value, then aspiration level 
(p(j)) = objective(P) + move-value. 

This prevents the immediate reversal of a nonimproving move (one with a positive 
move-value) in the next iteration. The reversal of this move now has a negative 
dve-value, but it is classified as tabu, and the previous update does not allow it to 
satisfy the aspiration criterion. 
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Begin 
Initialize long term memory function 
Best-obj = large value 
Do while (Best-obj has changed in the last max-moves-long starting points) Begin1 

Generate starting solution P, and set Best~solution = P 
Evaluate obj(P) 
Initialize move~value~matrix 
Initialize short term memory function 
Do while (moves without improvement < max-moves) Begin2 

Update long term memory function 
Best-move value = large value 
For (all candidate moves) Begin3 
If (candidate move is admissable) Begin4 
If (move~value<best~move value) Begin5 
Best-move value = move-value 
Best-move = currentmove End5 

End4 
End3 

Execute best-move 
Update objective value: obj(P) = obj(P) + best-move-value 
Update move-value-matrix 
Update short term memory function 
If obj(P)<Best-obj, then Begin6 
Best-obj = obj(P) /- 

a Best-solution = P End6 
End2 
End1 

FIGURE 10.5 
Tabu search procedure for batch sequencing. 

Figure 10.5 shows the TS procedure in pseudo-code. This entire procedure is 
executed until max-moves-long successive restarts fail to improve the best objec- 
tive value. Given a starting solution, the inner do loop is executed until there are 
max-moves successive moves without improvement in the best solution found in 
the current "pass," that is, using the current starting solution. A move is considered 
a candidate if the jobs being swapped are within a specified "distance" (number of 
positions) of one another. This limitation allows search time to be limited, but a 
complete search can be done by making this distance equal to the number of 
batches. A candidate move is admissible if either it is not tabu or it is tabu but its 
tabu status is overridden by the aspiration criterion. 

The long-term memory function uses the matrix called "move~value~matrix" 
in Figure 10.5, whose (i, j) element is the number of times that job i has been sched- 
uled in position j .  This matrix is updated after every move by adding 1 to the (i, j) 
element if p(i) = j in the current sequence. Then, the fraction of time each job has 
spent in each position can be calculated by dividing these matrix elements by the 
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total number of moves so far. Penalty costs proportional to these time fractions are 
defined and are used in the heuristic that generates starting solutions to force it to 
choose diverse starting points. This one-pass heuristic starts by scheduling batch 0 
in position 0. Then, the unsequenced job j that minimizes the "distance" from the 
previously selected job, say job i, is scheduled next. The "distance" is the set-up 
cost between jobs i and j plus a multiple of the ratio of the delay penalty for job j 
divided by the largest delay penalty for all unsequenced jobs. If this heuristic is 
being used to restart the algorithm, a multiple of the fraction of time that job j has 
occupied the current position is added to the "di~tance,'~ biasing it to choose differ- 
ent positions for the jobs from those they occupied frequently thus far. Such diver- 
sification strategies are important elements of intelligent search procedures. 

The performance of this TS algorithm on the five-batch problem described ear- 
lier is shown in Table 10.7, using the following TS parameter values: 

Maximum moves without improvement = max-moves = 2. 
Maximum number of positions between swapped jobs = 1. 
Length of short-term memory = tabu-size = 3. 
Maximum restarts without improvement = max~moves~long = 4. 

At iteration 1, the best move interchanges jobs 1 and 3, with a move value of -1000. 
This leads to the new sequence in row 2. In row 1, because job 3 was moved to, the 
right, it is added to tabu-list in its first position, tabu-state (3) is set to 1 because 
job 3 appears once on tabu-list, and tabu-position (3) is set to 1, the original posi- 
tion of job 3. Moves that swap job 3 back to position 1 are henceforth tabu, unless 
they satisfy the aspiration criterion. At iteration 2, the best available move is to 
swap jobs 2 and 3, so job 3 is again added to tabu-list, its tabu-state is increased to 
2, and its tabu-position entry is changed to 2. Iterations 2 and 3 fail to improve 
Best-obj, so the inner loop is restarted at iteration 4. Note that the current schedule 
in row 4 is quite different from those in earlier rows, due to the long-term memory 
function. The schedule in row 5 is optimal, but there is no way to prove its opti- 
mality, so the search must continue. It is restarted at iterations 7,9, and 11, and the 
procedure stops at iteration 12 due to the limit of four successive restarts without 
improvement. A linear mixed-integer programming formulation of a similar pro- 
duction sequencing problem is described in Chapter 16. 

Unfortunately, no general-purpose TS software is commercially available. 
Thousands of TS implementations have been made over the last 15 years (Glover 
and Laguna, 1997), but all address specific classes of problems, such as the job 
sequencing problem discussed earlier. Many of these implementations have been 
extremely successful, because the flexibility of TS allows an experienced analyst to 
incorporate his or her knowledge of the problem into the algorithm in many ways. 
Specific knowledge can include selecting the neighborhood that defines the possi- 
ble next solutions, the short- and long-term memory structures, and the attributes 
that determine which solutions are tabu, among other things. 

In closing this section, we emphasize that the adaptive memory structures used 
i2TS encompass a variety of elements not treated in this simple example. Further 
details can be found in Glover and Laguna (1997). 



TABLE 10.7 

Performance of tabu search on a five-batch sequencing problem 

Current Current Best Move Tabu Tabu Tabu Best 
Iteration schedule objective move value state list position objective 

- - 

*Current solution is a new starting point. 
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10.5.3 Simulated Annealing 

Simulated annealing (SA) is a class of metaheuristics based on an analogy to the 
annealing of metals. Consider a solid with crystalline structure being heated to a 
molten state and then cooled until it solidifies. If the temperature is reduced rapidly, 
irregularities appear in the crystal structure of the cooling solid, and the energy 
level of the solid is much higher than in a perfectly structured crystal. If the mate- 
rial is cooled slowly, with the temperature held steady at a series of levels long 
enough for the material to reach thermal equilibrium with its environment, the final 
energy level will be minimal. Let the state of the system at any temperature be 
described by a vector of coordinates q. At a given temperature, while the system is 
attaining equilibrium, the state changes in a random way, but transitions to states 
with lower energy levels are more likely at lower temperatures than at higher ones. 

To apply these ideas to a general optimization problem, let the system state 
vector q correspond to the objects to be optimized (job sequences, vehicle routes, 
or vectors of decision variables), denoted by x. The system energy level corre- 
sponds to the objective functionflx). As in Section 10.5.1, let N(x) denote a neigh- 
borhood of x. The following procedure (Floquet et al., 1994) specifies a basic SA 
algorithm: 

Choose an initial solution x, an initial temperature T, a lower limit on tempera- 
ture TLOW, and an inner iteration limit L. 
While (T > TLOW), do 

Fork = 1 ,2 , .  . . , L, do 
Make a random choice of an element x' E N(x). 
Move-value = f(xf) - f (x) 
If move-value 5 0 (downhill move), set x = x' 
If move-value > 0 (uphill move), set x = x' with probability 
exp( - move-valuel7'). 

End inner loop 
Reduce temperature according to an annealing schedule. An example is new T = 
cT, where0 < c < 1. 
End temperature loop 

simulated annealing depends on randomization to diversify the search, both in 
selecting a move to evaluate (all moves to neighboring points are equally likely) 
and in deciding whether or not to accept a move. This basic SA algorithm uses the 
Metropolis algorithm (Johnston et al., 1989) to determine move acceptance, in 
which downhill moves are always accepted and uphill moves are accepted with a 
probability exp(-move-value/7'). Note that, as T approaches 0, the probability of 
accepting an uphill move approaches 0. Hence, when the temperature is high, many 
uphill moves may be accepted, thereby possibly preventing the method from being 
trapped at a local minimum with respect to the neighborhood N(x). The Glauber 
algorithm accepts all moves with the following probability: 

exp(-move-value/ T) 
Glauber probability = 

1 + exp(-move-value/T) 
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FIGURE 10.6 
Separation sequences. 

so here an improving move may be rejected. This leads to a search that is well 
diversified, so it will come closer to a global optimum, but may take longer than a 
Metropolis-based search, which is more likely to find a good solution quickly. 

Applying simulated annealing to separation sequence synthesis 
Floquet et al. (1994) applied SA to problems of separating a mixture of n com- 

ponents into pure products at minimal annual investment plus operating costs. The 
assumptions used were 

Each component of the feed stream exits in exactly one output stream of a sepa- 
rator. This is called /sharp separation. 
Only one input/two output (simple) or one input/three output (complex) sharp 
separators are used. 

Under these assumptions, the problem is to select the separators to be connected 
and the way they will be connected. Two possible separation sequences are shown 
in Figure 10.6. Floquet et al. (1994) show how to encode possible separation 
sequences as vectors containing the entries (-1, 0; 11, which satisfy appropriate 
restrictions, and how to transform such vectors into neighboring sequences. For 
example, some transformations correspond to the insertion or deletion of a complex 
separator. Given this definition of a solution x and its neighborhood N(x), and given 
fixed and operating costs for each type of separator that defines the objective func- 
tion f(x), the authors applied simulated annealing to find the cheapest separation 
sequence. In solving problems with 5 ,  10, and 16 components with known optimal 
solutions, their SA algorithm found optimal solutions for all cases, and less than 
2% of the feasible sequences were evaluated when the best solution was found. 
Recall, however, that an optimal solution is not guaranteed in general, and there is 
no way to tell when an optimal solution has been found unless the optimal objec- 
tive value is known in advance. 

10.5.4 Genetic and Evolutionary Algorithms 

With the exception of parallel implementations (which are becoming increasingly 
important), tabu search and simulated annealing operate by transforming a single 
solution at a given step. By contrast, genetic algorithms (GAS) work with a set of 
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solutions P = {x,, x,, . . . , x,), called a population, with each population member 
xi, called an individual or member. An initial population is created, and the popu- 
lation at the start of an iteration is modified by replacing one or more individuals 
with new solutions, which are created either by combining two individuals 
(crossover) or by changing an individual (mutation). The procedure is inspired by 
the evolution of populations of living organisms, whose chromosomes undergo 
crossover and mutation during reproduction. The genetic algorithm template that 
follows corresponds to the description in Reeves (1997). 

Choose an initial population, and evaluate the fitness of each individual. 
While termination condition not satisfied do 

If ci-ossover condition satisfied then 
Select parent individuals. 
Choose crossover parameters. 
Perform crossover. 
If mutation condition satisfied then 
Choose mutation points. 
Perform mutation. 
Evaluate fitness of offspring. 
Update population. 

We now discuss the main steps of this algorithm. For more details, see Reeves 
(1997) and several other articles in that issue of the INFORMS Journal on Com- 
puting. 

Solution encoding 
In the original genetic algorithms proposed by Holland (1975), the individuals 

were binary vectors that represented encodings of solutions. For example, if a solu- 
tion x is a vector of n decision variables, a binary encoding is obtained by repre- 
senting each component of x as a binary number and concatenating these bit 
strings. In this encoding, the bits 0 and 1 are called the alphabet. Other alphabets 
are possible, and many GAS are designed to deal with x vectors of n variables 
directly without any encoding. 

Initial population and population size 
The initial population should be diverse. Elements are often generated ran- 

domly using a uniform distribution over the solution space. As for population size, 
many authors have reported satisfactory results with population sizes as small as 
30, although values of 50-100 are more common. 

Crossover and mutation conditions 
Crossover and mutation conditions are usually randomized rules, which 

determine if these operators are to be applied in the current iteration. Crossover 
is commonly applied in most if not all iterations, whereas mutation is applied less 
frequently. 
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Crossover and mutation 
The crossover operation replaces some of the elements in each parent solution 

with those in the other. For example, in one-point crossover, with parents P1 and 
P2 represented by real-valued vectors, and with the crossover point after the third 
component, the parents and offspring are as shown here for a five-variable problem: 

Multipoint crossover is also used, with r crossover points chosen randomly. 
Crossover can be further generalized by making r a random variable, and copying 
an element from the first parent with probability q, and from the second parent with 
probability (1 - q). The case q = 0.5 is called uniform crossover. As an example of 
a mutation operator, for populations of real-valued vectors, Fogel (1995) suggests 
simply adding a Gaussian random variable to each component of a population 
member. When the individuals are bit strings, the "mutation points" are often ran- 
domly selected bits, which are then complemented to create the new solution. 

In an evolutionary algorithm, the "classical" crossover operation is replaced by 
a more general "recombination" operation, which can be any procedure that com- 
bines two or more "parents" to produce one or more "offspring." As an example, 
the scatter search procedure described' in Glover and Laguna (1997) uses linear 
combinations of several individuals to produce offspring. Fogel (1995) creates one 
offspring from each individual (a vector of n real numbers) by adding an inde- 
pendent, normally distributed random variable to each component. This can also be 
viewed as a replacement for mutation. 

Fitness and its role in selecting parents and mutation candidates 
In unconstrained optimization problems, you can use the value of the objective 

flx) as a measure of the "fitness" of an individual x, but some transformation must 
be applied when the objective is being minimized (for example, use -Ax)). More 
generally, fitness can be any monotonically increasing function of the objective. 
Using the objective directly or some simple modification of it is rarely effective, 
however, because it is sensitive to objective function scaling. Consider two values 
off: 10 and 20. Adding 1000 to f transforms these values to 1010 and 1020, whose 
percentage difference is much smaller. If the probability of being chosen to be a 
parent is equal to an individual's share of total population fitness, then before 
adding 1000, these probabilities are 113 and 213, and after they are 101012030 and 
102012030, both close to 0.5. Reeves (1997) recommends ranking procedures, the 
simplest of which ranks individuals in order of their objective function values and 
sets fitness equal to that ranking. Once a measure of fitness has been chosen, a com- 
mon procedure for selecting parents or mutation candidates is random selection 
from the population, using a probability distribution that assigns higher probabili- 
ties to individuals with higher fitness, such as that used in the previous example. 
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Updating the population 
After a number of new solutions are produced by crossover (or more generally, 

recombination) and mutation operations, improved solutions must be incorporated 
into the population. The best solution found thus far is almost always retained. A 
common strategy replaces a certain fraction of the remaining individuals, either 
with improved offspring or with new individuals chosen to maintain diversity. 
Another strategy is tournament selection, in which new solutions and current pop- 
ulation members compete in a "tournament." Each solution competes with K other 
solutions, which may be randomly selected, and, in each painvise comparison, the 
solution with best fitness value wins. If P is the population size, the P solutions with 
the most wins become the new population. 

Constraints 
When there are constraints, GAS face a fundamental difficulty, namely that 

many crossover or mutation operators rarely yield feasible offspring, even if the 
parents are feasible. This can lead to a population with an excessive number of 
infeasible solutions. To alleviate this problem, GAS often include a penalty function 
in f (see Section 8.4) to measure fitness. A value must be chosen for the penalty 
weight, however. If this is too small, the original problem of too many infeasible 
solutions remains, and if it is too large, the search tends to reject points with small 
infeasibilities, even if they are close to an optimal solution. 

For an excellent introduction to genetic algorithms, see the website constructed 
by Marek Obitko of the Czech Technical University at http://cs.felk.cvut.cz/ 
-xobitko/ga/. It contains a genetic algorithm, coded as a Java Applet, which the 
user can run interactively, specifying his or her own objective if desired. 

10.5.5 Using the Evolutionary Algorithm in the Premium Excel Solver 

An evolutionary algorithm is included in the current release of Frontline Systems' 
Premium Excel Solver (for current information, see www.frontsys.com). It is 
invoked by choosing "Standard Evolutionary" from the Solver dropdown list in the 
Solver Parameters Dialog Box. The other nonlinear solver is "Standard GRG Non- 
linear," which is the GRG2 solver described in Section 8.7. As discussed there, 
GRG2 is a gradient-based local solver, which will find the "nearest" local solution 
to its starting point. The evolutionary solver is much less likely to stop at a local 
minimum, as we illustrate shortly. 

The "Options" box for the evolutionary solver is shown in Figure 10.7. The 
solver stops when either the time or iterations limit is reached, or when 99% of the 
population members have fitness values such that the fractional deviation between 
largest and smallest is less than the "Convergence" tolerance shown in the figure. 
The population size cannot be less than 10 or more than 200, and the initial popu- 
lation is chosen mainly by random sampling from within the hyperrectangle spec- 
ified by the bounds on the variables. You are advised to define bounds for all vari- 
ables, so the initial sampling can be performed from a hyperrectangle of limited 
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FIGURE 10.7 
Options dialog for the evolutionary solver. Permission by Microsoft. 

size. The initial decision variable values entered i n .  the spreadsheet are also 
included in the initial population, perhaps several times, so the method benefits 
from a good starting point. 

As in the GA template presented earlier, an iteration of the evolutionary algo- 
rithm consists of a crossover step involving two or more parents, mutation of a sin- 
gle population member (which is performed with the probability specified in the 
"Mutation Rate'>oxx), and an optional locat search. Note that the default mutation 
probability is 0,075, so if this value is used, mutation is fairly rare. Three mutation 
strategies are possible, one of which is selected if mutation is performed. A single 
variabIe in the single population element is selected for mutation. The three strate- 
gies alter the variables value as follows: (1) replace it by a random value from a uni- 
form distribution; (2) move it to either its upper or lower bound; or (3) increase or 
decrease it by a randomly chosen amount, whose magnitude decreases as the iter- 
ations progress. In the population update, if a new element is "worse" than all pop- 
ulation members, it is discarded. If not, the member to be replaced may not be the 
worst. Instead, a probabilistic replacement process is used, where the worst mem- 
bers have higher probabilities of being replaced. Computational experiments have 
shown that this leads to a more diverse population and to overall better performance 
than if the worst element were replaced each time. The measures of goodness used 
to define better and worse are complex, involving both objective values and penal- 
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TABLE 10.8 
GRG results for Branin problem 

Changing cells Starting point 1 Starting point 2 Starting point 3 

Initial x, 1 -5 -5 
x2 1 5 10 

Final x ,  3.141590675 9.000272447 -2.619502503 
X2 2.274999493 0.999727553 10 

Final objective 0.397887358 2.550824843 2.791 184064 

ties for infeasibility. In some cases, infeasible points with good objective function 
values are accepted into the population. In others, an attempt is made to modify a 
solution to "repair" infeasibilities. 

Table 10.8 shows the result of applying the "Standard GRG Solver" to a two- 
variable, one-constraint problem called the Branin problem that has three local 
optima and a global optimum with objective function value of 0.397. The objective 
function is constructed in tbee steps: 

and the problem is 

Minimize: f 

Subject to: x, + x2 5 10 

Starting from (1, I), GRG finds the global solution, but it finds the two inferior 
local'optima starting from the points (-5,5) or (-5, 10). . . . The evolutionary solver 
finds the global optimum to six significant figures from any starting point in 1000 
iterations. 

This problem is very small, however, with only two decision variables. As the 
number of decision variables increases, the number of iterations required by evolu- 
tionary solvers to achieve high accuracy increases rapidly. To illustrate this, con- 
sider the linear project selection problem shown in Table 10.9. The optimal solu- 
tion is also shown there, found by the LP solver. This problem involves determining 
the optimal level of investment for each of eight projects, labeled A through H, for 
which fractional levels are allowed. Each project has an associated net present value 
(NPV) of its projected net profits over the next 5 years and a different cost in each 
of the 5 years, both of which scale proportionately to the fractional level of invest- 
ment. Total costs in each year are limited by forecasted budgets (funds available in 



TABLE 10.9 

Project selection problem with budget constraints 

Project Optimal 
solution Funds 
(x projects) available 

Net Present Value 151 197 119 70 130 253 165 300 Total NPV 839.11 

Costs: Year 1 20 100 20 30 50 48 50 80 Year 1 230 230 
Year 2 20 10 10 30 10 20 40 30 Year 2 90 100 
Year 3 20 0 10 30 10 20 10 20 Year 3 50 50 
Year 4 20 0 10 20 10 20 10 0 Year 4 30 50 
Year 5 10 30 10 10 10 20 10 0 Year 5 50 50 

Optimal Decisions 0 0.667 0.222 0 0 1 0.778 1 

Abbreviation: NPV = net present value. 
P 
8 
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TABLE 10.10 
Final objective values obtained by 

evolutionary solver 

Run Iterations Best objective value found 

the last column), and the problem is to maximize the total value from all projects 
subject to the budget constraints. The summed NPV and the summed annual cost 
for each year at the optimum is in the next to last column. Note that the optimal 
solution in the bottom row of the table is at an extreme point because there are eight 
variables and eight active constraints (including those that require each decision 
variable to be between zero and one). 

Table 10.10 shows the performance of the evolutionary solver on this problem 
in eight runs, starting from an initial point of zero. The first seven runs used the iter- 
ation limits shown, but the eighth stopped when the default time limit of 100 sec- 
onds was reached. For the same number of iterations, different final objective func- 
tion values are obtained in each run because of the random mechanisms used in the 
mutation and crossover operations and the randomly chosen initial population. The 
best value of 81 1.21 is not obtained in the run that uses the most iterations or com- 
puting time, but in the run that was stopped after 10,000 iterations. This final value 
differs from the true optimal value of 839.11 by 3.32%, a significant difference, and 
the final values of the decision variables are quite different from the optimal values 
shown in Table 10.9. 

If constraints that the decision variables be binary are added, however, the evo- 
lutionary solver reaches the optimal objective value of 767 in two runs with a 5000- 
iteration limit, and in one of two runs with a 1000-iteration limit. This is because 
only 28 = 256 possible solutions need to be explored. Hence, if high accuracy is 
required, general-purpose evolutionary algorithms seem best suited to small prob- 
lems with continuous variables, but they can find good solutions to larger problems, 
including integer and mixed-integer problems. Of course, evolutionary solvers (or 
any other search method) can be combined with local solvers like GRG, simply by 
starting the local solver at the final point obtained by the search procedure. If the 
problem is smooth and this point is near a global optimum, the local solver may 
well find the global solution to high accuracy. A local solver or heuristic can also 
be combined with scatter search, as described in the next section. 
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10.5.6 Scatter Search 

Scatter search, described in Glover and Laguna (1997) and Glover (1998), is a 
population-based search method that primarily uses deterministic principles to 
strategically guide the search. Its steps are shown here, stated for problems whose 
only constraints are bounds on the variables. These bounds are taken into account 
when generating trial and combined solutions. It may, however, be applied to prob- 
lems with more general constraints by augmenting the objective function with a 
penalty function (see Section 8.4). 

Steps of Scatter Search 

1. Create an initial diverse trial set of solutions. 
2. Apply an improvement method to some or all trial solutions. Save the r best solu- 

tions found as members of the initial reference set, R. 
3. Repeat steps 1 and 2 until some designated number of reference set solutions 

have been found. 
4. Select subsets of the reference set to use in step 5. 
5. For each subset chosen in step 4, use a solution combination method to produce 

one or more combined solutions. 
6. Starting from-each of the combined solutions in step 5, use the improvement 

method to create a set of enhanced solutions. 
7. If an enhanced solution is better than any member of the reference set, insert it 

in the reference set and delete the worst member of the set. 
8. Return to step 4, and repeat until some stopping condition is met. Such condi- 

tions may be based on elapsed time or iterations, or on lack of improvement in 
the objective. 

Explanation of scatter search steps 
Step 1 starts with a large set of "seed solutions, which may be created by 

heuristics or by random generation. One possible implementation then generates a 
diverse subset of these by choosing some initial seed solution, then selecting a sec- 
ond one that maximizes the distance from the initial one. The third one maximizes 
the distance from the nearest of the first two, and so on. 

The improvement method used in steps 2 and 6 may be one of the following: 

A heuristic descent method like that outlined in Figure 10.5 if the problem is 
combinatorial. 
A local NLP solver like the GRG or SQP algorithms described in Chapter 8; in 
this case, the problem must be a constrained, possibly nonconvex problem with 
continuous variables. 
Simply an evaluation of the objective and constraint functions. 

Steps 4 through 6 are the scatter search counterparts to the crossover and muta- 
tion operators in genetic algorithms, and the reference set corresponds to the GA 
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population. The solution combination method produces combined solutions that are 
linear combinations of those in the subsets produced in step 4. However, variables 
that are required to take on integer values are subjected to generalized rounding 
processes, that is, processes for which the rounding of each successive variable 
depends on the outcomes of previous roundings. In the simplest case, two subsets, 
each containing a single solution, are chosen, with one solution selected to have a 
good objective value (to intensify the search in the neighborhood of good solutions) 
and the second chosen to be far from the first (to diversify the search). In this case, 
taking linear combinations of these two solutions produces new ones that are on the 
line segment between and beyond the two "parent" solutions. These are then used 
as starting points for the improvement method. 

scatter search has been implemented in software called OPTQUEST (see 
www.opttek.com). OPTQUEST is available as a callable library written in C, 
which can be invoked from any C program, or as a dynamic linked library 
(DLL), which can be called from a variety of languages including C, Visual 
Basic, and Java. The callable library consists of a set of functions that (1) input 
the problem size and data, (2) set options and tolerances, (3) perform steps 1 
through 3 to create an initial reference set, (4) retrieve a trial solution from 
OPTQUEST to be input to the improvement method, and ( 5 )  input the solution 
resulting from the improvement method back into OPTQUEST, which uses it as 
the input to step 7 of the scatter search protocol. The improvement method is 
provided by the user. We use the term improvement loosely here because the user 
can simply provide an evaluation of the objective and constraint functions. 

Optimizing simulations 
OPTQUEST has also been combined with several Monte Carlo and discrete- 

event simulators. The Monte Carlo simulators include an Excel add-on called Crys- 
tal Ball (see www.decisioneering.com). It allows a user to define a subset of spread- 
sheet cells as random input variables with specified probability distributions and to 
designate several output cells that depend on these inputs and on other nonrandom 
input cells. The program then samples a specified number of times from the input 
distributions, evaluates the output cells, and computes statistics and histograms of 
the distributions of each output cell. In an optimization, a set of (nonrandom) input 
cells are designated as decision cells, some statistic associated with an output cell 
(typically its mean) is selected to be the objective function, and other statistics of 
other outputs may be taken as constraints. OPTQUEST is then applied to vary the 
decision variables in order to optimize the objective subject to the constraints. For 
each trial solution suggested by OPTQUEST, a complete simulation is run, and the 
designated cell statistics are returned to OPTQUEST. As an example, one can min- 
imize the average of total holding plus set-up cost in an inventory problem with ran- 
dom demand, by choosing an optimal reorder level and order quantity. In such 
problems, the average value returned by Crystal Ball is only an estimate of the true 
average, so it contains some random error, which can be reduced by using a larger 
sample size. OPTQUEST is able to process these noisy objective values and still 
return a good approximation to an optimal solution. 
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TABLE 10.11 
OPTQUEST applied to problem in Table 10.8 

Iteration Best objective x 1 x2 

TABLE 10.12 
OPTQUEST applied to problem in Table 10.9 

Iteration Best objective A B E 

Optimal 839.11 0.00 0.67 0.00 

OPTQUEST examples 
Crystal Ball can deal with spreadsheets that contain no random variables, and 

OPTQUEST can be applied to deterministic optimization problems arising from 
such spreadsheets. Table 10.1 1 shows the performance of OPTQUEST applied to 
the two-variable, one-constraint problem defined in Equations (10.7), which was 
solved by an evolutionary algorithm in Section 10.5 to six-digit accuracy in 1000 
iterations. OPTQUEST finds the same solution with similar effort. 

Table 10.12 shows OPTQUEST'S progress on the project selection LP, whose 
optimal solution is given in Table 10.9. Initial progress is rapid, but it slows rapidly 
after about 1000 iterations, and after 5000 iterations the best objective value found 
is 797.25, about 5% short of the optimal value of 839.11. The values of variables A, 
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TABLE 10.13 
Classification of metaheuristic 

search procedures 

Metaheuristic Classification 

Genetic algorithms WS/P 
Scatter search AINP 
Simulated annealing WS/l  
Tabu search A N 1  

B, and E are also shown. Although B is reasonably near its optimal value, A and E 
are far from theirs. This performance is comparable to that of the evolutionary algo- 
rithm in the Extended Excel Solver, shown in Table 10.10. If the decision variables 
in this problem must be binary, however, then OPTQUEST finds the optimal solu- 
tion, whose objective value is 767, in only 116 iterations. The evolutionary algorithm 
found this same optimal solution in one of two runs using 1000 iterations. 

Classifying metaheuristics 
Glover and Laguna (1997) classify metaheuristics according to a three-attribute 

scheme as shown in Table 10.13. In the first position, "A" denotes the use of adap- 
tive memory, and " M  means memoryless. An important feature of tabu and scat- 
ter search is remembering attributes of past solutions to guide the search in an adap- 
tive way, that is, the length and operation of the memory may vary as the search 
progresses. Genetic algorithms and simulated annealing are viewed as not having 
adaptive memory, although GAS do retain information on the past through the pop- 
ulation itself. An " N  in the second position indicates that a systematic neighbor- 
hood search is used to find an improved solution, and "S" indicates that a random- 
ized sampling procedure is employed. Although traditional GA and SA methods 
use random sampling, some recent SA and evolutionary algorithms either replace 
this with a neighborhood search or initiate a search from a point found by a ran- 
domized procedure. A "1" in the third position indicates that the method uses a pop- 
ulation of size 1, that is, it moves from a current solution to a new one; " P  indi- 
cates that a population of size P is used. 

10.6 OTHER SOFTWARE FOR GLOBAL OPTIMIZATION 

In addition to the Premium Excel Solver and Optquest, there are many other soft- 
ware systems for constrained global optimization; see Pintkr (1996b), Horst and 
Pardalos (1995), and Pint& (1999) for further information. Perhaps the most widely 
used of these is LGO (Pintkr, 1999), (Pintkr, 2000), which is intended for smooth 
problems with continuous variables. It is available as an interactive development 
environment with a graphical user interface under Mitrosoft Windows, or as a 
callable library, which can be invoked from an application written by the user in 
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Fortran, CIC + +, Visual Basic, or Delphi. The user provides the model coded as a 
corresponding subroutine or function. 

LGO operates in two phases. The first is the global phase, which attempts to 
find a point which is a good approximation to a global optimum. It uses' an adap- 
tive deterministic as well as a random sampling technique, with an option to apply 
these within a branch-and-bound procedure. The ensuing local phase starts from 
this point and finds an improved point, which is the "nearest" local optimum, using 
a combination of local gradient-based NLP algorithms. 

REFERENCES 

Avriel, M. Nonlinear Programming. Prentice-Hall, Englewood Cliffs, NJ (1976). 
Barnes, J. W.; and L. K. Vanston. "Scheduling Jobs with Linear Delay Penalties and 

Sequence Dependent Setup Costs." Oper Res 29: (1) 146-161 (1981). 
Crainic, T. G.; and G. Laporte, eds. Fleet Management and Logistics. Kluwer Academic 

Publishers, Boston/Dordrecth/London (1 998). 
Floquet, P.; L. Pibouleau; and S. Domenech. "Separation Sequence Synthesis: How to Use 

a Simulated Annealing Procedure." Comput Chem-@ng 18: 1 14 1-1 148 (1994). 
Floudas, C. A. "Global-Optimization in Design and Control of Chemical Process Systems." 

J Process Cont 10: 125-1 34 (2000a). 
Floudas, C. A. Deterministic Global Optimization: Theory, Methods, and Applications. 

Kluwer Academic Publishers, Norwell, MA (2000b). 
Fogel, D. B. "A Comparison of Evolutionary Programming and Genetic Algorithms on 

Selected Constrained Optimization Problems." Simulation 64: 397404 (1995). 
Glover, E A Template for Scatter Search and Path Relinking, working paper, School of Busi- 

ness, University of Colorado, Boulder, CO, 80309 (1998). 
Glover, F.; and M. Laguna. Tabu Search. Kluwer Academic Publishers, Nonvell, MA 

(1 997). 
Hiriart-Urruty, J. D.; and C. Lemarechal. Convex Analysis and Minimization Algorithms. 

Springer-Verlag, Berlin (1993). 
Holland, J. H. Adaptations in Natural and Arti$cial Systems. University of Michigan Press, 

Ann Arbor, MI (1975), reissued by MIT Press, Cambridge, MA (1992). 
Horst, R.; and P. M. Pardalos. Handbook of Global Optimization. Kluwer Academic Pub- 

lishers, Dordrecht/Boston/London ( 1995). 
Johnston, D. S.; C. R. Aragon; L. A. McGeoch; et al. "Optimization by Simulated Anneal- 

ing: An Experimental Evaluation: Part 1, Graph Partitioning." Oper Res 37: 865-892 
(1989). 

Kearfott, R. B. Rigorous Global Search: Continuous Problems. Kluwer Academic Publish- 
ers, Norwell, MA (1996). 

Laguna, M.; J. W. Barnes; and F. Glover. "Tabu Search Methods for a Single Machine 
Scheduling Problem." J Zntell Manufact 2: 63 (1 99 1). 

Locatelli, M.; and F. Schoen. "Random Linkage: A Family of Acceptance/Rejection Algo- 
rithms for Global Optimization." Math Prog 85: 379-396 (1999). 

Pintkr, J. D. Global Optimization in Action (Continuous and Lipschitz Optimization: Algo- 
rithms, Implementations, and Applications). Kluwer Academic Publishers, Norwell, 
MA (1996a). 



c HAPTER 10: Global Optimization for Problems 413 

Pint&, J. D. "Continuous Global Optimization Software: a Brief Review." Optima 52: 1-8 
(1996b). 

Pint&, J. D. "Continuous Global Optimization." Interactive Transactions of ORMS 2 (1999). 
Available online at http://catt.bus.okstate.edu/itorms. 

Pintkr, J. D. Computational Global Optimization in Nonlinear Systems: An Interactive Tuto- 
rial. Published for INFORMS by Lionheart Publishing, Atlanta (2000). Available 
online at www.lionhrtpub.com/books. 

Reeves, C. R. "Genetic Algorithms for the Operations Researcher." INFORMS J Comput 
9(3): 231-250 (1997). 

Rinnooy Kan, A. H. G.; and G. T. Timmer. "Stochastic Global Optimization Methods, Part 
2: Multi Level Methods." Math Prog 39: 57-78 (1987). 

Rinnooy Kan, A. H. 6.; and G. T. Timmer. "Global Optimization," Chapter 9 In Handbooks 
in OR and MS, vol. 1. G. L. Nemhauser et al., eds. Elsevier Science Publishers B. V., 
Amsterdam, The Netherlands (1 989). 

SUPPLEMENTARY REFERENCES 

Adjiman, C. S.; and C. A. Floudas. "Rigorous Convex Underestimators for General Twice- 
Differentiable Problems." J Global Optim 9: 23 (1996). 

Adjiman, C. S.; I. P. Androulakis; C. D. Maranas; and C. A. Floudas. "A Global Optimiza- 
tion Method aBB for Process Design." Comput Chem Eng 20: S419-424 (1996). 

Adjiman, C. S.; I. P. Androulakis; and C. A. Floudas. "A Global Optimization Method aBB, 
for General Twice-Differentiable Constrained NLPs 11. Implementation and Computa- 
tional Results." Comput Chem Eng 22: 1159-1 179 (1998). 

Adjiman, C. S.; S. Dallwig; C. A. Floudas; and A. Neumaier. "A Global Optimization 
Method, aBB, for General Twice-Differentiable Constrained NLPs-I, Theoretical 
Advances." Comput Chem Eng 22: 1 137-1 158 (1998). 

Angeline, P. J.; and K. E. Kinnear Jr. Advances in Genetic Programming, vol. 2. MIT Press, 
Cambridge, MA (1998). 

Azzaro-Pantel, C.; L. Bernal-Haro; P. Baudet; S. Demenech, et al. "A Two-Stage Method- 
ology for Short-term Batch Plant Scheduling: Discrete-Event Simulation and Genetic 
Algorithm." Comput Chem Eng 22: 1461-148 1 (1998). 

Choi, H.; J. W. KO; and V. Manousiouthakis. "A Stochastic Approach to Global Optimiza- 
tion of Chemical Processes." Comput Chem Eng 23: 1351-1358 (1999). 

Esposito, W. R.; and C. A. Floudas. "Parameter Estimation in Nonlinear Algebraic Models 
via Global Optimization." Comput Chem Eng 22: S213-220 (1998). 

Fogel, D. B. "A Comparison of Evolutionary Programming and Genetic Algorithms on 
Selected Constrained Optimization Problems." Simulation 64: 3499 (1995). 

Friese, T.; P. Ulbig; and S. Schulz. "Use of Evolutionary Algorithms for the Calculation of 
Group Contribution Parameters in Order to Predict Thermodynamic Properties. Part 1 : 
Genetic Algorithms." Comput Chem Eng 22: 1559-1572 (1998). 

Garrard, A.; and E. S. Fraga. "Mass Exchange Network Synthesis Using Genetic Algo- 
rithms." Comput Chem Eng 22: 1837-1850 (1998). 

Greeff, D. J.; and C. Aldrich. "Empirical Modelling of Chemical Process Systems with Evo- 
lutionary Programming." Comput Chem Eng 22: 995-1005 (1998). 

Gross, B.; and P. Roosen. "Total Process Optimization in Chemical Engineering with Evo- 
lutionary Algorithms." Comput Chem Eng 22: S229-236 (1998). 



414 PART I1 : Optimization Theory and Methods 

Hanagandi, V.; and M. Nikolaou. "A Hybrid Approach to Global Optimization Using a 
Clustering Algorithm in a Genetic Search Framework." Comput Chem Eng 22: 
1913-1925 (1998). 

Haupt, R. L. Practical Genetic Algorithms. Wiley, New York (1998). 
Jung, J. H.; C. H. Lee; and I-B. Lee. "A Genetic Algorithm for Scheduling of Multi-Product 

Batch Processes." Comput Chem Eng 22: 1725-1730 (1998). 
Karr, C. L.; and L. M. Freeman. Industrial Applications of Genetic Algorithms. CRC Press, 

Boca Raton, FL (1998). 
Lohl, T.; C. Schulz; and S. Engell. "Sequencing of Batch Operations for Highly Coupled 

Production Process: Genetic Algorithms Versus Mathematical Programming." Comput 
Chem Eng 22: S579-585 (1998). 

Mitchell, M. An Introduction to Genetic Algorithms. The MIT Press, Cambridge, MA 
(1998). 

Pham, Q.T. "Dynamic Optimization of Chemical Engineering Processes by an Evolutionary 
Method." Comput Chem Eng 22: 1089-1097 (1998). 

Sen, S.; S. Narasimhan; and K. Deb. "Sensor Network Design of Linear Processes Using 
Genetic Algorithms." Comput Chem Eng 22: 385-390 (1 998). 

Wang, K.; Lohl, T.; Stobbe, M.; and S. Engell. "A Genetic Algorithm for Online-scheduling 
of a Multiproduct Polymer Batch Plant." Comput Chem Eng 24: 393400 (2000). 

Zarnora, J. M.; and I. E. Grossmann. "Continuous Global--Optimization of Structured 
Process Systems Models." Comput Chem Eng 22: 1749-1 770 (1998). 



PART I11 

APPLICATIONS OF OPTIMIZATION 

THIS SECTION OF the book is devoted to representative applications of the opti- 
mization techniques presented in Chapters 4 through 10. Chapters 11 through 16 
include the following major application areas: 

1. Heat transfer and energy conservation (Chapter 11) 
2. Separations (Chapter 12) 
3. Fluid flow (Chapter 13) 
4. Reactors (Chapter 14) 
5. Large-scale plant design and operations (Chapter 15) 
6. Integrated planning, scheduling, and control (Chapter 16) 

Each chapter presents several detailed studies illustrating the application of 
various optimization techniques. The following matrix shows the classification of 
the examples with respect to specific techniques. Truly optimal design of process 
plants cannot be performed by considering each unit operation separately. Hence, 
in Chapter 15 we discuss the optimization of large-scale plants, including those rep- 
resented by flowsheet simulators. 

We have not included any homework problems in Chapters 11 through 16. As 
a general suggestion for classroom use, parameters or assumptions in each exarn- 
ple can be changed to develop a modified problem. By changing the numerical 
method employed or the computer code one can achieve a variety of problems. 



Classification of optimization applications (example number is in parentheses) by technique 

Chapter 
Methods 11 12 13 14 15 16 

Analytical Waste heat 
solution recovery 

(11.1) 

Pipe diameter 
(13.1) 

Material balance 
reconciliation 
(16.4) 

-- 

One-dimensional Multistage Reflux ratio Fixed-bed 
search evaporator of distillation filter (13.3) 

(1 1.3) column (12.4) - 

Unconstrained Nonlinear Minimum 
I 

optimization regression of work of 
VLE data compression 
(12.3) (13.2) 

Linear Boilerlturbo 
programming generator 

system (1 1.4) 

Thermal 
cracker (14.1) 

Planning and 
scheduling 
(16.1) 

Nonlinear 
programming 

Staged- Gas Ammonia Refrigeration Reactor 
Distillation transmission reactor (14.2) process (15.2) control (16.3) 
column (12.1) ; network (13.4) 

Alkylation Extractive 
Liquid reactor (14.3) distillation (15.3) 
extraction 
column (12.2) CVD reactor Operating 

(14.5) margin (15.4) 

Mixed integer Heat 
programming exchanger 

(1 1.2) 

Gas Protein 
transmission folding (14.4) 
network (1 3.4) 

Reaction 

Batch 
scheduling 
(16.2) 

synthesis (14.6) 
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A VARIETY OF AVAILABLE energy conservation measures can be adopted to opti- 
mize energy usage throughout a chemical plant or refinery. The following is a rep- 
resentative list of design or operating factors related to heat transfer and energy use 
that can involve optimization: 

1. Fired heater combustion controls 
2. Heat recovery from stack gases 
3. Fired heater convection section cleaning 
4. Heat exchanger network configuration 
5. Extended surface heat exchanger tubing to improve heat transfer 
6. Scheduling of heat exchanger cleaning 
7. Air cooler performance 
8. Fractionating towers: optimal reflux ratio, heat exchange, and so forth 
9. Instrumentation for monitoring energy usage 

10. Reduced leakage in vacuum systems and pressure lines and condensers 
1 1. Cooling water savings 
12. Efficient water treatment for steam raising plants 
13. Useful work from steam pressure reduction 
14. Steam traps, tracing, and condensate recovery 
15. CO boilers on catalytic cracking units 
16. Electrical load leveling 
17. Power factor improvement 
18. Power recovery from gases or liquids 
19. Loss control in refineries 
20. Catalyst improvements 

Many of the conservation measures require detailed process analysis plus opti- 
mization. For example, the efficient firing of fuel (category 1) is extremely impor- 
tant in all applications. For any rate of fuel combustion, a theoretical quantity of air 
(for complete combustion to carbon dioxide and water vapor) exists under which 
the most efficient combustion occurs. Reduction of the amount of air available 
leads to incomplete combustion and a rapid decrease in efficiency. In addition, car- 
bon particles may be formed that can lead to accelerated fouling of heater tube sur- 
faces. To allow for small variations in fuel composition and flow rate and in the air 
flow rates that inevitably occur in industrial practice, it is usually desirable to aim 
for operation with a small amount of excess air, say 5 to 10 percent, above the the- 
oretical amount for complete combustion. Too much excess air, however, leads to 
increased sensible heat losses through the stack gas. 

In practice, the efficiency of a fired heater is controlled by monitoring the oxygen 
concentration in the combustion products in addition to the stack gas temperature. 
Dampers are used to manipulate the air supply. By tying the measuring instruments 
into a feedback loop with the mechanical equipment, optimization of operations can 
take place in real time to account for variations in the fuel flow rate or heating value. 

As a second example (category 4), a typical plant contains large numbers of 
heat exchangers used to transfer heat from one process stream to another. It is 
important to continue to use the heat in the streams efficiently throughout the 
process. Incoming crude oil is heated against various product and reflux streams 
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before entering a fired heater in order to be brought to the desired fractionating col- 
umn flash zone temperature. Among the factors that must be considered in design 
or retrofit are 

1. What should be the configuration of flows (the order of heat exchange for the 
crude oil)? 

2. How much heat exchange surface should be supplied within the chosen con- 
figuration? 

Additional heat exchange surface area leads to improved heat recovery in the crude 
oil unit but increases capital costs so that increasing the heat transfer surface area 
soon reaches diminishing returns. The optimal configuration and areas selected, of 
course, are strongly dependent on fuel costs. As fuel costs rise, existing plants can 
usually profit from the installation of additional heat exchanger surface in circum- 
stances previously considered only marginally economic. 

As a final example (category 6), although heat exchangers may be very effec- 
tive when first installed, many such systems become dirty in use and heat transfer 
rates deteriorate significantly. It is therefore often useful to establish optimal heat 
exchanger cleaning schedules. Although the schedules can be based on observa- 
tions of the actual deterioration of the overall heat transfer of the exchanger in ques- 
tion, it is also possible to optimize the details of the cleaning schedules depending 
on an economic assessment of each exchanger. 

In this chapter we illustrate the application of various optimization techniques 
to heat-transfer-system design. First we show how simple rules of thumb on boiler 
temperature differences can be derived (Example 11.1). Then a more complicated 
design of a heat exchanger is examined (Example 11.2), leading to a constrained 
optimization problem involving some discrete-valued variables. Example 1 1.3 dis- 
cusses the use of optimization in the design and operation of evaporators, and we 
conclude this chapter by demonstrating how linear programming can be employed 
to optimize a stearnlpower system (Example 11.4). For optimization of heat 
exchanger networks by mathematical programming methods, refer to Athier et al. 
(1997), Briones and Kokossis (1996), and Zamora and Grossmann (1998). 

EXAMPLE 11.1 OPTIMIZING RECOVERY OF WASTE HEAT 

A variety of sources of heat at elevated temperatures exist in a typical chemical plant that 
may be economically recoverable for production of power using steam or other working 
fluids, such as freon or light hydrocarbons. Figure El 1.1 is a schematic of such a system. 
The system power output can be increased by using larger heat exchanger surface areas 
for both the boiler and the condenser. However, there is a trade-off between power recov- 
ery and capital cost of the exchangers. Jegede and Polley (1992), Reppich and Zager- 
mann (1995), Sama (1983), Swearingen and Ferguson (1984), and Steinrneyer (1984) 
have proposed some simple rules based on analytical optimization of the boiler AT 

In a power system, the availability expended by any exchanger is equal to the net 
work that could have been accomplished by having each stream exchange heat with 
the surroundings through a reversible heat engine or heat pump. In the boiler in Fig- 
ure E l  1.1, heat is transferred at a rate Q (the boiler load) from the average hot fluid 
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Heat source 7 

FIGURE El l . l  
Schematic of power system. 

temperature T, to the working fluid at Tw The working fluid then exchanges heat with 
the condenser at temperature T2 If we ignore mechanical friction and heat leaks, the 
reversible work available from Q at temperature T, with the condensing (cold-side) 
temperature at T2 is 

The reversible work available from the condenser using the working fluid temperature 
TH (average value) and the heat sink temperature T2 is 

Hence the ideal power available from the boiler can be found by subtracting W2 
from W, 

In this expression T, and T2 are normally specified, and TH is the variable to be 
adjusted. If Q is expressed in Btulh, and the operating cost is Cop, then the value of 
the available power is 
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where q = overall system efficiency (0.7 is typical) 
y = number of hours per year of operation 

CH amalgamates the value of the power in $/kWh and the necessary conversion 
factors to have a consistent set of units 

You can see, using Equation (d) only, that C is minimized by setting TH = Ts 
O? 

(infinitesimal boiler AT). However, this outcome increases the required boiler heat 
transfer area to an infinite area, as can be noted from the calculation for the area 

(In Equation (e)  an average value for the heat transfer coefficient U is assumed, ignor- 
ing the effect of pressure drop. U depends on the working fluid and the operating tem- 
perature.) Let the cost per unit area of the exchanger be CA and the annualization fac- 
tor for capital investment be denoted by r. Then the annualized capital cost for the 
boiler is 

Finally, the objective function to be minimized with respect to TH, the working fluid 
temperature, is the sum of the operating cost and surface area costs: 

To get an expression for the minimum off, we differentiate Equation (g) with respect 
to TH and equate the derivative to zero to obtain 

To solve the quadratic equation for TH, let 

al = C ~ ~ T 2 U  

a2 = C,r 

Q cancels in both terms. On rearrangement, the resulting quadratic equation is 

(a, - ( Y ~ ) T ~  - 2a1TsTH + a l~ :  = 0 

The solution to (i) for TH < T, is 
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For a system with C, = $25/ft2, a power cost of $0.06/kWh (CH = 1.76 X 
U = 95 Btu/(h)("R)(ft2), y = 8760 hlyear, r = 0.365, q = 0.7, T, = 600°R, and T, = 
790°R, the optimal value TH is 760.7"R, giving a AT of 29.3"R. Swearingen and Fer- 
guson showed that Equation (h) can be expressed implicitly as 

In this form, it appears that the allowable AT increases as the working fluid tempera- 
ture increases. This suggests that the optimum AT for a heat source at 900°R is lower 
than that for a heat source at 1 100°R. In fact, Equation (j) indicates that the optimum 
AT is directly proportional to T+ Sama argues that this is somewhat counterintuitive 
because the Carnot "value" of a high-temperature source implies using a smaller AT 
to reduce lost work. 

The working fluid must be selected based on the heat source temperature, as 
discussed by Swearingen and Ferguson. See Sama for a discussion of optimal tem- 
perature differences for refrigeration systems; use of Equation (k) leads to AT'S 
ranging from 8 to 10°R. 

EXAMPLE 11.2 OPTIMAL SHELL-AND-TUBE HEAT 
EXCHANGER DESIGN 

In this example we examine a procedure for optimizing the process design of a baf- 
fled shell-and-tube, single-pass, counterflow heat exchanger (see Figure El  1.2a), in 
which the tube fluid is in turbulent flow but no change of phase of fluids takes place 
in the shell or tubes. Usually the following variables are specified a priori by the 
designer: 

1. Process fluid rate (the hot fluid passes through the tubes), Wi 
2. Process fluid temperature change, T2 - TI 

FIGURE E11.2a . 

Process diagram of shell-and-tube counterflow heat exchanger. Key: At, = T, - t, 
cold-end temperature difference; At, = T2 - t, warm-end temperature difference. 

V 

T < 

Process 
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3. Coolant inlet temperature (the coolant flows through the shell), t, 
4. Tube spacing and tube inside and outside diameters (Di, Do). 

Conditions 1 and 2 imply the heat duty Q of the exchanger is known. 
The variables that might be calculated via optimization include 

1. Total heat transfer area, A, 
2. Warm-end temperature approach, At, 
3. Number and length of tubes, N, and L 
4. Number of baffle spacings, n, 
5. Tube-side and shell-side pressure drop 
6. Coolant flow, Wc 

Not all of these variables are independent, as shown in the following discussion. 
In contrast to the analysis outlined in Example 1 1.1, the objective function in this 

example does not make use of reversible work. Rather, a cost is assigned to the usage 
of coolant as well as to power losses because of the pressure drops of each fluid. In 
addition, annualized capital cost terms are included. The objective function in dollars 
per year is formulated using the notation in Table E l  1.2A 

Suppose we minimize the objective function using the following set of four vari- 
ables, a set slightly different from the preceding list. 

1.. At,: warm-end temperature difference 
2. A,: tube outside area 
3. hi: tube inside heat transfer coefficient 
4. h,: tube outside heat transfer coefficient 

Only three of the four variables are independent. If A,, hi, and h, are known, then 
At, can be found from the heat duty of the exchanger Q: 

F, is unity for a single-pass exchanger. U, is given by the values of h,, hi, and the foul-' 
ing coefficient h, as follows: 

Cichelli and Brinn (1956) showed that the annual pumping loss terms in Equation (a) 
could be related to hi and h, by using friction factor and j-factor relationships for tube 
flow and shell flow: 
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TABLE E11.2A 
Nomenclature for heat exchanger optimization 

Log mean of inside and outside tube surface areas 
Inside tube surface area, ft2 
Outside tube surface area, ft2 
Total annual cost, $/year 
Annual cost of heat exchanger per unit outside tube surface area, $/(ft2)(year) 
Cost of coolant, $/lb mass 
Annual cost of supplying l(ft)(lbf)/h to pump fluid flowing inside tubes, 
(~)(h)f(ft)(lbf)(year) 1 

Annual cost of supplying l(ft)(lBf)/h to pump shell side fluid, ($)(h)/(ft)(lbf)(year) 
Specific heat at constant pressure, Btu/(lb,)("F) 
Tube inside diameter, ft 
Tube outside diameter, ft 
Power loss inside tubes per unit outside tube area, (ft)(lbf)/(ft2)(h) 
Power loss outside tubes per unit outside tube area, (ft)(lbf)/(ft2)(h) 
Friction factor, dimensionless 
ArlAo 
Multipass exchanger factor 
Conversion factor, (ft)(lb,)/(lbf)(h2) = 4.18 X lo8 
Fouling coefficient 
Coefficient of heat transfer inside tubes, Btu/(h)(ft2)("F) 
Coefficient of heat transfer outside tubes, Btu/(h)(ft2)("F) 
Combined coefficient for tube wall and dirt films, based on tube outside area 
Btu/(h)(ft2)("F) 

k Thermal conductivity, Btu/(h)(ft)("F) 
L Lagrangian function 
4 Length of tubes, ft 
L' Thickness of tube wall, ft 

(continued) 

The coefficients cPi and 4, depend on fluid specific heat c, thermal conductivity k, 
density p, and viscosity p, as well as the tube diameters. $, is based on either in-line 
or staggered tube arrangements. 

If we solve for W, from the energy balance 

and substitute for Ei, E,, and Wc in Equation (a), the resulting objective function is 
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TABLE E11.2A (CONTINUED) 
Nomenclature for heat exchanger optimization 

Number of baffle spacing on shell side = number of baffles plus 1 
Number of clearances for flow between tubes across shell axis 
Number of tubes in exchanger 
Pressure drop for flow through tube side, lbf/ft2 
Pressure drop for flow through tube side, lbf/ft2 
Heat transfer rate in heat exchanger, Btuh 
Minimum cross-sectional area for flow across tubes, ft2 
Outlet temperature of process fluid, O F  

Inlet temperature of process fluid, O F  

Inlet temperature of coolant, O F  

Outlet temperature of coolant, OF 
T,  - t , ,  = cold-end temperature difference 
T2 - t2, = warm-end temperature difference 
Overall coefficient of heat transfer, based on outside tube area, Btu/(h)(ft2)(OF) 
Average velocity of fluid inside tubes, ftlh 
Average velocity of fluid outside tubes, ftlh at shell axis 
Coolant rate, lb/h 
Flow rate of fluid inside tubes, lb,/h 
Flow rate of fluid outside tubes, lbm/h 
Operating hours @r year 
Density of fluid inside tubes, lbm/ft3 
Density of fluid outside tubes, lbm/ft3 
Viscosity of fluid, lbJ(h)(ft) 
Factor relating friction loss to hi 
Factor relating friction loss to h, 
Lagrange multiplier 

Subscripts 
C Coolant 
f Film temperature, midway between bulk fluid and wall temperature 
1 Inside the tubes 
o Outside the tubes 
W Wall 

To accommodate the constraint (b), a Lagrangian function L is formed by aug- 
menting f with Equation ( B ) ,  using a Lagrange multiplier w 

Equation (h) canbe differentiated with respect to four variables (hi, h,, At,, and A,). 
After some rearrangement, you can obtain a relationship between the optimum h, and 
hi, namely 
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This is the same result as derived by McAdams (1942), having the interpretation that 
the friction losses in the shell andqube sides, and the heat transfer resistances must be 
balanced economically. The value of hi can be obtained by solving 

The simultaneous solution of Equations (f), (i), and Cj) yields another expression: 

CCY u o  

c(CA + CiEi + CoEo) At2 - At, ) 2 [ l n ( )  - 1 (1) 

The following algorithm can be used to obtain the optimal values of hi, h,, A,, 
and At, without the explicit calculation of w:  

1. Solve for hi from Equation (j) 
2. Obtain ho from Equation (i) 
3. Calculate U, from Equation (c) 
4. Determine Ei and E, from hi and h, using Equations (6) and (e) and obtain At2 by 

solving Equation (k) 
5. Calculate A, from Equation (b) 
6. Find Wc from Equation (f) 

Note that steps 1 to 6 require that several nonlinear equations be solved one at a time. 
Once these variables are known, the physical dimensions of the heat exchanger can 
be determined. 

7. De teqne  the optimal vi and v, from hi and h, using the appropriate heat trans- 
fer correlations (see McAdams, 1942); recall that the inside and outside tube 
diameters are specified a priori. 

8. The number of tubes N, can be found from a mass balance: 

9. The length of the tubes L, can be found from 

10. The number of clearances Nc can be found from N,, based on either square pitch 
or equilateral pitch. The flow area So is obtained from vo (flow normal to a tube 
bundle). Finally, baffle spacing (or the number of baffles) is computed from So, A,, 
N,, and Nc. 

Having presented the pertinent equations and the procedure for computing the 
optimum, let us check the approach by computing the degrees of freedom in the 
design problem. 

Design Variables Status 
(number of variables) 

Wi, T I ,  T2, t,, tube spacing, Di, Do, Q Given (8) 
4 ,  Wc, A,, Nt7 Lt7 U,, nb7 Apt7 Aps7 vi, v,, hi, h, Unspecified (1 3) 

Total number of variables = 8 + 13 = 21 
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Design Relationships Number of Equations 
1. Equations (b), (c), (4, (e) 

(fl, (09 (m) 7 
2. Heat transfer correlations for hi and h, (step 7) 2 
3. W, = povoso (step 10) 1 - 

Total number of relationships 10 

Degrees of freedom for optimization = total number of variables - number of given 
variables - number of equations 

Note this result agrees with Equation (h) in that four variables are included in the 
Lagrangian, but with one constraint corresponding to 3 degrees of freedom. 

Several simplified cases may be encountered in heat exchanger design. 
Case 1. U, is specified and pressure drop costs are ignored in the objective func- 

tion. In this case Ci and C, can be set equal to zero and Equation (k) can be solved for 
At, (see Peters and Tirnmerhaus (1980) for a similar equation for a condensing vapor). 
Figure El  1.2b shows a solution to Equation (k) (Cichelli and Brinn). 

Case 2. Coolant flow rate is fixed. Here At, is known, so the tube side and shell 
side coefficients and area are optimized. Use Equation (i) and Cj) to find h, and h,. A, 
is then found from Equation (b). 

In the preceding analysis no inequality constraints were introduced. As a practi- 
cal matter the following inequality constraints may apply: 

FIGURE E11.2b 
Solution to Equation (k) for the case in which Uo is specified and 
pressure drop costs are ignored. 
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TABLE E11.2B 
Design specifications for one case of heat exchanger 

optimization 

Variables 

Process fluid 
Inlet temperature of process fluid, OF 
Outlet temperature of process fluid, OF 
Process fluid flow rate, lb/h - 

Maximum process fluid velocity, ftls 
Minimum process fluid velocity, ftls 
Utility fluid 
Inlet utility fluid temperature, OF 
Maximum allowable utility fluid temperature, OF 
Maximum utility fluid velocity, ftls 
Minimum utility fluid velocity, ftls 
Shell side fouling factor 
Tube side fouling factor 
Cost of pumping process fluid, $/(ft)(lb,) 
Cost of pumping utility fluid, $/(ft)(lb,) 
Cost of utility fluid, $Ab, 
Factor for pressure 
Cost index 
Fractional annual fixed charges 
Fractional cost of installation 
Tube material 
Type of tube layout 
Construction type 
Maximum allowable shell diameter, in. 
Bypassing safety factor 
Constant for evaluating outside film coat 
Hours operation per year 
Thermal conductivity of metal Btu/(h)(ft2)("F) ., 

Number of tube passes 

Gas 
150 
100 
20,000 
160 
0.00 1 
Water 
70 
140 
8 
0.5 
2000 
1500 
0.7533 X lop8 
0.7533 X lop8 
0.5000 X lop5 
1.45 
1.22 
0.20 
0.15 
Steel 
Triangular 
Fixed tube sheet 
40 
1.3 
0.33 
7000 
26 
1 

Source: Tarrer et al. (1971). 

1. Maximum velocity on shell or tube side 
2. Longest practical tube length 
3. Closest practical baffle spacing 
4. Maximum allowable pressure drops (shell or tube side) 

The velocity on the tube side can be modified by changing the single-pass design to 
a multiple-pass configuration. In this case Ft # 1 in Equation (b). From formulas in 
McCabe, Ft depends on t, (or At,), hence the necessary conditions derived previously 
would have to be changed. The fluids could be switched (shell vs. tube side) if con- 
straints are violated, but there may well be practical limitations such as one fluid 
being quite dirty or corrosive so that the fluid must flow in the tube side (to facilitate 
cleaning or to reduce alloy costs). 

Other practical features that must be taken into account are the fixed and integer 
lengths of tubes (8, 12, 16, and 20 feet), and the maximum pressure drops allowed. 
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TABLE 11.2C 
Optimal solution for a heat exchanger involving discrete variables 

Variable 
Optimal Standard integer sizes 

Variables Design 1 2 3 4 

Tube length, ft 
Number of tubes 
Total area, ft2 
Total cost, $/year 

Heat transfer coefficients, 
~ tu / (h ) ( f t~ ) ( "~)  

Outside 
Inside 
Overall 

Outlet utility fluid 
temperature ( O F )  

Utility fluid flow rate, 
lb,/h 

Inside pressure drop, psi 

Outside pressure drop, 
psi 

Number of bafne spaces 
Shell diameter, in. 

Tube layout: 1.00-in. outside diameter 
0.834-in. inside diameter 
0.25-in. clearance 
0.083-in. wall thickness 
1.25-in. pitch 

Source: Tarrer et al. (1971). 

Although a 20-psi drop may be typical for liquids such as water, higher values are 
employed for more viscous fluids. Exchanging shell sides with tube sides may miti- 
gate pressure drop restrictions. The tube's outside diameter is specified a priori in the 
optimization procedure described earlier; usually a- or 1-inch outside diameter (0.d.) 
tubes are used because of their greater availability and ease of cleaning. Limits on 
operating variables, such as maximum exit temperature of the coolant, maximum and 
minimum velocities for both streams, and maximum allowable shell area must be 
included in the problem specifications along with the number of tube passes. 

Table 11.2B lists the specifications for a typical exchanger, and Table 11.2C 
gives the results of optimization for several cases for two standard tube lengths, 8 and 
12 ft. The minimum cost occurs for a 12-ft tube length with 64 tubes (case 3). Many 
commercial codes exist to cany out heat exchanger design. search the Web for the 
most recent versions. 
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EXAMPLE 11.3 OPTIMIZATION OF A MULTI-EFFECT 
EVAPORATOR 

When a process requires an evaporation step, the problem of evaporator design needs 
serious examination. Although the subject of evaporation and the equipment to carry 
out evaporation have been studied and analyzed for many years, each application has 
to receive individual attention. No evaporation configma-tion and its equipment can be 
picked from a stock list and be expected to produce trouble-free operation. 

An engineer working on the selection of optimal evaporation equipment must list 
what is "known," "unknown," and "to be determined.'' Such analysis should at least 
include the following: 

Known 

Production rate and analysis of product 
Feed flow rate, feed analysis, feed temperature 
Available utilities (steam, water, gas, etc.) 
Disposition of condensate (location) and its purity 
Probable materials of construction 

Unknown 

Pressures, temperatures, solids, compositions, capacities, and concentrations 
Number of evaporator effects 
Amount of vapor leaving the last effect 
Heat transfer surface 

Features to be determined 

Best type of evaporator body and heater arrangement 
Filtering characteristics of any solids or crystals 
Equipment dimensions, arrangement 
Separator elements for purity of overhead vapors 
Materials, fabrication details, instrumentation 

Utility consumption 

Steam 
Electric power 
Water 
Air 

In multiple-effect evaporation, as shown in Figure E l  1.3a, the total capacity of 
the system of evaporation is no greater than that of a single-effect evaporator having 
a heating surface equal to one effect and operating under the same terminal condi- 
tions. The amount of water vaporized per unit surface area in n effects is roughly lln 
that of a single effect. Furthermore, the boiling point elevation causes a loss of avail- 
able temperature drop in every effect, thus reducing capacity. Why, then, are multiple 
effects often economic? It is because the cost of an evaporator per square foot of sur- 
face area decreases with total area (and asymptotically becomes a constant value) so 
that to achieve a given production, the cost of heat exchange surface can be balanced 
with the steam costs. 



CHAPTER 1 1: Heat Transfer and Energy Conservation 431 

Cooling water 

FIGURE E11.3a 
Multiple-effect evaporator with forward feed. 

Steady-state mathematical models of single- and multiple-effect evaporators 
involving material and energy balances can be found in McCabe et al. (1993), Yannio- 
tis and Pilavachi (1996), and Esplugas and Mata (1983). The classical simplified opti- 
mization problem for evaporators (Schweyer, 1955) is to determine the most suitable 
number of effects given (1) an analytical expression for the fixed costs in terms of the 
number of effects n, and (2) the steam (variable) costs also in terms of n. Analytic dif- 
ferentiation yields an analytical solution for the optimal n*, as shown here. 

Assume we are concentrating an inorganic salt in the range of 0.1 to 1.0 wt% 
using a plant capacity of 0.1-10 million gallonslday. Initially we treat the number of 
stages n as a continuous variable. Figure El  1.3b shows a single effect in the process. 

Prior to discussions of the capital and operating costs, we need to define the tem- 
perature driving force for heat transfer. Examine the notation in Figure El  1 . 3 ~ ;  by 

- definition the log mean temperature difference AT, is 

Ti - Td 
AT, = 

ln(Ti/Td) 

Let Ti be equal to constant K for a constant performance ratio P. Because Td = Ti - 
ATf/n 

Let A = condenser heat transfer areas, ft2 
c, = liquid heat capacity, 1.05 Btu/(lb,)("F) 

C,  = cost per unit area of condenser, $6.25/ft2 
C, = cost per evaporator (including partitions), $7000/stage 
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Condensate gin Steam 

FIGURE E11.3b 
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a heater 
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I 

Inlet Outlet 

FIGURE E11.3~ 

Cs = cost of steam, $/lb at the brine heater (first stage) 
F,,, = liquid flow out of evaporator, lb/h 
K = Ti, a constant (Ti = AT - T, at inlet) 
n = number of stages 
P = performance ratio, lb of H 2 0  evaporated/Btu supplied to brine heater 
Q = heat duty, 9.5 X lo8 Btulh (a constant) 
q, = total lb H 2 0  evaporatedh 
q, = total lb steam usedh 
r = capital recovery factor 
S = lb steam supplied/h 

T, = boiling point rise, 4.3"F 
ATf = flash down range, 250°F 
U = overall heat transfer coefficient (assumed to be constant), 625 Btu/(ft2)(h)("F) 

AH,, = heat of vaporization of water, about 1000 Btu/lb 

The optimum number of stages is n*. For a constant per$omance ratio the total cost 
of the evaporator is 
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For A we introduce 

Then we differentiate f, in Equation (c) with respect to n and set the resulting expres- 
sion equal to zero (Q and U are constant): 

With the use of Equation (b) 

Substituting Equation (e) into (d) plus introducing the values of Q, U, ATf, C,, and 
C,, we get 

Rearranging 

In practice, as the evaporation plant size changes (for constant Q), the ratio of the 
stage condenser area cost to the unit evaporator cost remains essentially constant so 
that the number 0.184 is treated as a constant for all practical purposes. Equation (f) 
can be solved for nK for constant P 

Next, we eliminate K from Equation (g) by replacing K with a function of P so 
. that n becomes a function of P. The performance ratio (with constant liquid heat 

capacity at 347OF) is defined as 

( AHvap) (qe ) - 1000 qe - P = 
( Foutcp~A Theater)first stage 1.05(4.3 + K )  

The ratio q,lF can be calculated from 

where AHvap (355OF, 143 psi) = 1 194 Btdlb 
AHli, (350°F) = 322 Btu/lb 
AHliq (100°F) = 70 Btdlb 
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Equations (g) and (h) can be solved together to eliminate K and obtain the desired 
relation 

Equation (i) shows how the boiling point rise (T, = 4.3"F) and the number of stages 
affects the performance ratio. 

Optimal performance ratio 
The optimal plant operation can be determined by minimizing the total cost func- 

tion, including steam costs, with respect to P (liquid pumping costs are negligible) 

The quantity for aAIaP can be calculated by using the equations already developed 
and can be expressed in terms of a ratio of polynomials in P such as 

where a and b are determined by fitting experimental data. The relation for anlap can 
be determined from Equation (i). The relation for aSIdP can be obtained from equa- 
tion (1) 

where a is the fraction of hours per year (8760) during which the system operates. 
Equation (k), given the costs, cannot be explicitly solved for P*, but P* can be 

obtained by any effective root-finding technique. 
If a more complex mathematical model is employed to represent the evaporation 

process, you must shift from analytic to numerical methods. The material and 
enthalpy balances become complicated functions of temperature (and pressure). Usu- 
ally all of the system parameters are specified except for the heat transfer areas in each 
effect (n unknown variables) and the vapor temperatures in each effect excluding the 
last one (n - 1 unknown variables). The model introduces n independent equations 
that serve as constraints, many of which are nonlinear, plus nonlinear relations among 
the temperatures, concentrations, and physical properties such as the enthalpy and the 
heat transfer coefficient. 
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Because the number of evaporators represents an integer-valued variable, and 
because many engineers use tables and graphs as well as equations for evaporator cal- 
culations, some of the methods outlined in Chapters 9 and 10 can be applied for the 
optimization of multi-effect evaporator cascades. 

EXAMPLE 11.4 BOILER/TURBO-GENERATOR SYSTEM 
OPTIMIZATION 

Linear programming is often used in the design and operation of steam systems in the 
chemical industry. Figure El 1.4 shows a steam and power system for a small power 
house fired by wood pulp. To produce electric power, this system contains two turbo- 
generators whose characteristics are listed in Table E11.4A. Turbine 1 is a double- 
extraction turbine with two intermediate streams leaving at 195 and 62 psi; the final 
stage produces condensate that is used as boiler feed water. Turbine 2 is a single- 

Boiler -4-1 HPS 
'7' (635 psig steam) 

1, Power 
A A > 

P P ( E P )  X PRVI Turbine 1 - p l  

M P S  
BF, , ,  HE," 

+ c  
HE2 " (1  95 psig steam) 

> 
PRV2 L P S  

LEI V LE2 V (62 psig steam) 
\ 

FIGURE E11.4 
Boilerlturbo-generator system. 
Key: Zi = inlet flow rate for turbine i [lbm/h] 

HE, = exit flow rate from turbine i to 195 psi header [lbfi] 
LE, = exit flow rate from turbine i to 62 psi header [lbm/h] 

C = condensate flow rate from turbine 1 [lb,/h] 
Pi = power generated by turbine i [kW] 

BF, = bypass flow rate from 635 psi to 195 psi header [lbm/h] 
BF, = bypass flow rate from 195 psi to 62 psi header [lbm/h] 

HPS = flow rate through 635 psi header [lbm/h] 
MPS = flow rate through 195 psi header [lbm/h] 
LPS = flow rate through 62 psi header [IbJh] 
PP = purchased power [kW] 
EP = excess power [kW] (difference of purchased power from base power) 

PRV = pressure-reducing valve 
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extraction turbine with one intermediate stream at 195 psi and an exit stream leaving 
at 62 psi with no condensate being formed. The first turbine is more efficient due to 
the energy released from the condensation of steam, but it cannot produce as much 
power as the second turbine. Excess steam may bypass the turbines to the two levels 
of steam through pressure-reducing valves. 

Table El  1.4B lists information about the different levels of steam, and Table 
El 1.4C gives the demands on the system. To meet the electric power demand, electric 
power may be purchased from another producer with a minimum base of 12,000 kW. 
If the electric power required to meet the system demand is less than this base, the 
power that is not used will be charged at a penalty cost. Table El  1.4D gives the costs 
of fuel for the boiler and additional electric power to operate the utility system. 

The system shown in Figure El  1.4 may be modeled as linear constraints and com- 
bined with a linear objective function. The objective is to minimize the operating cost 
of the system by choice of steam flow rates and power generated or purchased, subject 
to the demands and restrictions on the system. The following objective function is the 
cost to operate the system per hour, namely, the sum of steam produced HPS, pur- 
chased power required PP, and excess power EP: 

TABLE 11.4A 
nrbine data 

lhrbine 1 nrbine 2 

Maximum generative capacity 6,250 kW 
Minimum load 2,500 kW 
Maximum inlet flow 192,000 1bmh 
Maximum condensate flow 62,000 lb,h 
Maximum internal flow 132,000 1bmh 
High-pressure extraction at 195 psig 
Low-pressure extraction at 62 psig 

Maximum generative capacity 9,000 kW 
Minimum load 3,000 kW 
Maximum inlet flow 244,000 lb,h 
Maximum 62 psi exhaust 142,000 lbmh 
High-pressure extraction at 195 psig 
Low-pressure extraction at 62 psig 

. , 

TABLE 11.4B 
Steam header data 

Header Pressure (psig) Temperature (OF) Enthalpy (BMb,) 

High-pressure steam 635 720 1359.8 
Medium-pressure steam 195 130 superheat 1267.8 
Low-pressure steam 62 130 superheat 1251.4 
Feedwater (condensate) 193.0 

TABLE 11.4C 
Demands on the system 

Resource Demand 

Medium-pressure steam (195 psig) 27 1,536 lb,h 
Low-pressure steam (62 psig) 100,623 lb,h 
Electric power 24,550 kW 
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TABLE 11.4D 
Energy data 

Fuel cost $1.68/106 Btu 
Boiler efficiency 0.75 
Steam cost (635 psi) $2.24/106 Btu 

= $2.24 (1359.8 - 193)/106 
= $0.O02614Abm 

Purchased electric power $0.0239kWh average 
Demand penalty $O.O09825/kWh 
Base-purchased power 12,000 kW 

Minimize: f = 0.00261 HPS + 0.0239 PP + 0.00983 EP 

The constraints are gathered into the following specific subsets: 

Turbine 1 

P1 1 6250 

P1 L 2500 

HEl 5 192,000 

C 5 62,000 

Zl - HEl 5 132,000 

Turbine 2 

-Material balances 

HPS - Zl  - Z2 - BFl = 0 

Il + I2 + BFl - C - MPS - LPS = 0 

Z I  - HEI - LEI - C = 0 

I2 - HE2 - LE2 = 0 

HEl + HE2 + BFl - BF2 - MPS = 0 

LEI + LE2 + BF2 - LPS = 0 

Power purchased 
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Demands 

MPS 2 271,536 

LPS 2 100,623 

P I  + P2 + PP 2 24,550 

Energy balances 

TABLE E11.4E 
Optimal solution to steam system LP 

Variable Name Value Status 

1 1  

12 
HE, 
HE2 
LEI 
LE2 
C 
BFl 
BF2 
HPS 
MPS 
LPS 
Pl 
p2 
PP 
EP 

BASIC 
BOUND 
BASIC 
BASIC 
ZERO 
BASIC 
BASIC 
ZERO 
ZERO 
BASIC 
BASIC 
BASIC 
B O Y D  
. BASIC 
BASIC 
BASIC 

Value of objective function = 1268.75 $/h 
BASIC = basic variable 
ZERO = 0 
BOUND = variable at its upper bound 

Table El  1.4E lists the optimal solution to the linear program posed by Equations 
(a)-(g). Basic and nonbasic (zero) variables are identified in the table; the minimum 
cost is $1268.75/h. Note that EP + PP must sum to 12,000 kwh; in this case the 
excess power is reduced to 761 kwh. 
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SEPARATIONS ARE AN important phase in almost all chemical engineering 
processes. Separations are needed because the chemical species from a single 
source stream must be sent to multiple destinations with specified concentrations. 
The sources usually are raw material inputs and reactor effluents; the destinations 
are reactor inputs and product and waste streams. To achieve a desired species allo- 
cation you must determine the best types and sequence of separators to be used, 
evaluate the physical or chemical property differences to be exploited at each sep- 
arator, fix the phases at each separator, and prescribe operating conditions for the 
entire process. Optimization is involved both in the design of the equipment and in 
the determination of the optimal operating conditions for the equipment. 

A wide variety of separation processes exist (Meloan, 1999), including 

Centrifugation Flotation 
Chromatography Freeze drying 
Dialysis Ion exchange 
Distillation Membranes 
Electrophoresis Osmosis 
Extraction Zone melting 
Filtration 

Although each type of process is based on different physical principles, the mathe- 
matical models used to represent a process are surprisingly similar. Usually the 
equations are material or energy balances, either steady-state (most often) or 
dynamic, corresponding to fundamental laws, and empirical equilibrium relations. 
The equations may involve discrete or continuous variables depending on the sim- 
plifying assumptions made. For example, for a staged-distillation column the typi- 
cal assumptions might include one or more of the following: 

1. The hold-up liquid on each plate is completely mixed. 
2. A constant hold-up exists on each plate, in the'reboiler, and in the condenser- 

accumulator system. 
3. The fluid dynamic response time is negligible. 
4. The effects of pressure changes in various sections of the column on the phys- 

ical properties of the system being distilled are negligible. 
5. The saturated liquid and vapor enthalpies can be expressed as a linear func- 

tion of compositions. 
6.  All fluid streams are single phase, and liquid entrainment and vapor hold up 

are negligible. 
7. The column operates adiabatically; heat lost to the atmosphere is negligible. 
8. The liquid and vapor compositions leaving a plate are a function only of the 

compositions in the column and experimental plate efficiencies, and can be 
described as a linear function of corrected compositions at various sections of 
the column. 

9. At a constant operating steam pressure, the heat transfer in the reboiler is a 
function of composition. 

Many of these assumptions are made to reduce the complexity of the mathematical 
model for the distillation process. Some may have negligible adverse effects in a 
specific process, whereas others could prove to be too restrictive. 
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This chapter contains examples of optimization techniques applied to the design 
and operation of two of the most common staged and continuous processes, namely, 
distillation and extraction. We also illustrate the use of parameter estimation for fit- 
ting a function to thermodynamic data. 

EXAMPLE 12.1 OPTIMAL DESIGN AND OPERATION OF A 
CONVENTIONAL STAGED-DISTILLATION COLUMN 

Distillation is probably the most widely used separation process in industry. Various 
classes of optimization problems for steady-state distillation are, in increasing order 
of complexity, 

1. Determine the optimal operating conditions for an existing column to achieve spe- 
cific performance at minimum cost (or minimum energy usage) given the feed(s). 
Usually, the manipulated (independent) variables are indirect heat inputs, cooling 
stream inputs, and product flow rates. The number of degrees of freedom is most 
likely equal to the number of product streams. Specific performance is measured 
by specified component concentrations or fractional recoveries from the feed 
(specifications leading to equality constraints) or minimum (or maximum) con- 
centrations and recoveries (specifications leading to inequality constraints). In 
principle, any of the specified quantities as well as costs can be calculated from the 
values of the manipulated variables given the mathematical model (or computer 
code) for the column. When posed as described earlier, the optimization problem 
is a nonlinear programming problem often with implicit nested loops for calcula- 
tion of physical properties. If the number of degrees of freedom is reduced to zero 
by specifications placed on the controlled variables, the optimization problem 
reduces to the classic problem of distillation design that requires just the solution 
of a set of nonlinear equations. 

2. A more complex problem is to determine not only the values of the operating con- 
ditions as outlined in item 1 but also the (minimum) number of stages required for 
the separation. Because the stages are discrete (although in certain examples in this 
book we have treated them as continuous variables), the problem outlined in item 
1 becomes a nonlinear mixed-integer programming problem (see Chapter 9). In 
this form of the design problem, the costs include both capital costs and operating 
costs. Capital costs increase with the number of stages and internal column flow 
rates, whereas operating costs decrease up to a certain point. 

3. An even more difficult problem is to determine the number of stages and the opti- 
mal locations for the feed(s) and side strearn(s) withdrawal. Fortunately, the range 
of candidates for stage locations for feed and withdrawals is usually small, and 
from a practical viewpoint the objective function is usually not particularly sensi- 
tive to a specific location within the appropriate range. 

Optimization of distillation columns using mathematical programming, as 
opposed to other methods, has been carried out using many techniques, including 
search methods such as Hooke and Jeeves (Srygley and Holland, 1965), mixed-integer 
nonlinear programming (MINLP) (Frey et al., 1997; and Bauer and Stichlmair, 1998), 
genetic algorithms (Fraga and Matias, 1996), and successive quadratic programming 
(SQP) (Schmid and Biegler, 1994), which is the technique we use in this example. 
The review by Skogestad (1997) treats many of the various issues involved in the opti- 
mization of distillation columns beyond those we illustrate here. 
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FIGURE E12.1 
Schematic of a staged distillation column. 

This example focuses on the design and optimization of a steady-state staged 
column. Figure E12.1 shows a typical column and some of the notation we will use, and 
Table E12.1A lists the other variables and parameters. Feed is denoted by superscript F. 
Withdrawals take the subscripts of the withdrawal stage. Superscripts V for vapor and L 
for liquid are used as needed to distinguish between phases. If we number the stages 
from the bottom of the column (the reboiler) upward with k = 1, then Vo = L, = 0, and 
at the top of the column, or the condenser, V, = L,,, = 0. We first formulate the equal- 
ity constraints, then the inequality constraints, and lastly the objective function. 

The equality constraints. The process model comprises the equality con- 
straints. For a conventional distillation column we have the following typical relations: 
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TABLE E12.1A 
Notation for distillation example 

flow of feed into stage k, moles 
liquid enthalpy (a function of p,, T,, and x,) on stage k 
vapor enthalpy (a function of pk, T,, and yk) on stage k 
stage index number, k = 1, . . . , n. 
equilibrium constant for component i for the mixture on stage k (a function of pkr Tk, x,, y,) 
flow of liquid from stage k, moles 
number of components, i = 1, . . . , m 
pressure on stage k 
heat transfer flow to stage k (positive when into stage) 
temperature on stage k 
flow of vapor from stage k, moles 
withdrawal stream from stage k, moles 
mole fraction of component i on stage k in the liquid phase 
mole fraction of component i on stage k in the vapor phase 

1. Total material balances (one for each stage k) 

F; + F[ + Vk- ,  + Lk+,  = vk + Lk + W[ + W: 

(F, and W, are ordinarily not involved in most of the stages) 

2. Component material balances (one for each component i for each stage k) 

3. Energy balance (one for each stage) 

Qk + h:Fk + Hk-lVk-l  + hk+lLk+l = HkVk + hkLk + H ~ W :  + hkw; (c)  

4. Equilibrium relations for liquid and vapor at each stage (one for each stage) 

5. Relation between equilibrium constant and p, T, x, y (one for each stage) 

6. Relation between enthalpies and p, T, x, y (one for each stage) 

The preceding classic set of algebraic equations form a well-defined sparse struc- 
ture that has been analyzed extensively. Innumerable techniques of solution have been 
proposed for problems with 0 degrees of freedom, that is, the column operating or 
design variables are completely specified. 

Our interest here in posing an optimization problem is to have one or more 
degrees of freedom left after prespecifying the values of most of the independent vari- 
ables. Frequently, values are given for the following parameters: 
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(a)  Number of stages 
(b) Flow rate, composition, and enthalpy of the feed(s) 
(c)  Location of the feed(s) and side stream withdrawal(s) 
(d) Flow rate of the side strearn(s) 
(e)  Heat input rate to each stage except one 
Cf) Stage pressures (based on column detailed design specifications) 

Reactive distillation involves additional degrees of freedom (Mujtaba and Macchietto, 
1997). If the controllable parameters remaining to be specified, namely (1) one heat 
input, and (2) the flow rate of the product (or the reflux ratio), are determined via opti- 
mization, all of the values of V,, L,, T,, xi,,, and y,,, and the enthalpies can be calcu- 
lated. More than 2 degrees of freedom can be introduced by eliminating some of the 
prespecified parameters values. 

7. Certain implicit equality constraints exist 

Because of the way the model is specified, you must take into account the following 
additional equations as constraints in the column model: 

The inequality constraints. Various kinds of inequality constraints exist, such 
as requiring that all of the Y ~ , ~ ,  Qk, F,, W,, and so on be positive, that upper and 
lower bounds be imposed on some of the product stream concentrations, and specifi- 
cation of the minimum recovery factors. A recovery factor for stage k is the ratio 

The objective function. The main costs of operation are the heating and cool- 
ing costs that are related to Q, and Q,, respectively. We assume all the other values of 
Q, are zero. Q, is determined from the energy balance, so that Q, is the independent 
variable. The cost of operation per annum is assumed to be directly proportional to Q, 
because the maintenance and cooling costs are relatively small and the capital costs 
per annum are already fixed. Consequently, the objective function is relatively simple: 

Minimize: Ql (j) 

As posed here, the problem is a nonlinear programming one and involves nested 
loops of calculations, the outer loop of which is Equation (j) subject to Equations (a) 
through (i), and subject to the inequality constraints. If capital costs are to be included 
in the objective function, refer to Frey and colleagues (1997). 

Results for a specific problem with 5 degrees of freedom. For illustration, 
we use the data of Sargent and Garninibandara (1976) for the objective function (j). 
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The problem is to determine the location and individual amounts of the feeds given 
the following information. 

A column of four stages exists analogous to that shown in Figure E12.1 except 
that more than one feed can exist (the reboiler is stage 1 and the condenser is stage 4). 
Feed and product specifications are 

Total feed = 100 lb mol/h liquid 

h, = 4000 Btu/lb mol 

Top product = 10 lb mol/h liquid 

The equality constraints are Equations (a)-(i) plus 

The inequality constraints are (k = 1, . . . ,4 )  

This problem has 5 degrees of freedom, representing the five variables Q,, F,,  F,, F,, 
and F4. 

Various rules of thumb and empirical correlations exist to assist in making initial 
guesses for the values of the independent variables. All the values of the feeds here 
can be assumed to be equal initially. If the reflux ratio is selected as an independent 
variable, a value of 1 to 1.5 times the minimum reflux ratio is generally appropriate. 

To solve the problem a sequential quadratic programming code was used in the outer 
loop of calculations. Inner loops were used to evaluate the physical properties. Forward- 
finite differences with a step size of h = lo-' were used as substitute for the derivatives. 
Equilibrium data were taken from Holland (1963). The results shown in Table E12.1B 
were essentially the same as those obtained by Sargent and Gaminibandara. 
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TABLE E12.1B 
Results of optimization 

Variable Initial guess for the variable Optimal values for the variable 

We can conclude that it is possible to use some of the cold feed as reflux in the 
top stage without voiding the product composition specification. This outcome is not 
an obvious choice for the problem specifications. 

EXAMPLE 12.2 OPTIMIZATION OF FLOW RATES IN A 
LIQUID-LIQUID EXTRACTION COLUMN 

Liquid-liquid extraction is carried out either (1) in a series of well-mixed vessels or 
stages (well-mixed tanks or in plate column), or (2) in a continuous process, such as a 
spray column, packed column, or rotating disk column. If the process model is to be 
represented with integer variables, as in a staged process, MILNP (Glanz and 
Stichlmair, 1997) or one of the methods described in Chapters 9 and 10 can be 
employed. This example focuses on optimization in which the model is composed of 
two first-order, steady-state differential equations (a plug flow model). A similar treat- 
ment can be applied to an axial dispersion model. 

Figure E12.2a illustrates a typical steady-state continuous column. The model 
and the objective function are formulated as follow's. . 

The process model. Under certain conditions, the plug flow model for an 
extraction process has an analytical solution. Under other conditions, numerical solu- 
tions of the equations must be used. As a practical matter, specifying the model so that 
an analytical solution exists means assuming that the concentrations are expressed on 
a solute-free mole basis, that the equilibrium relation between Y and X is a straight 
line r" = mX + B (i.e., not necessarily through the origin), and that the operating line 
is straight, that is, the phases are insoluble. Then the model is 

where F = extraction factor (mv,/v,) 
m = distribution coefficient 

Nox = number of transfer units 
v,, v, = superficial velocity in raffinate, extract phase, respectively 

X = dimensionless raffinate phase concentration 
Y = dimensionless extract phase concentration 
Z = dimensionless contactor length 
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Extract 
I 

FIGURE E12.2a 
Extraction column schematic for Example 12.2. (The internal 
rotating disks are not shown.) 

~ i ~ u r e  E12.2a shows the boundary conditions Xo and Y,. Given values for rn, Nox, 
and the length of the column, a solution for Yo in terms of vx and v, can be obtained; 
X, is related to Yo and F via a material balance: XI = 1 - (YOIF). Hartland and Meck- 
lenburgh (1975) list the solutions for the plug flow model (and also the axial disper- 
sion model) for a linear equilibrium relationship, in terms of F: 

Yo = 
F{1 - exp[Nox(l - F)1) 
1 - Fexp[Nox(l - F) ]  

In practice, No, is calculated from experimental data by least squares or from an 
explicit relation for the plug flow model. 

Jackson and Agnew (1980) summarized a number of correlations for Nox such as 

The value of m = 1.5. 
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Inequality constraints. Implicit constraints exist because of the use of dimen- 
sionless variables 

Constraints on vx and v, are upper and lower bounds such as 

and the flooding constraint 

Objective function. The objective function is to maximize the total extraction 
rate for constant disk rotation speed subject to the inequality and equality constraints: 

Maximize: f = vyYo (9 

Results of the optimization. Figure E12.2b illustrates contours of the objective 
function for the plug flow model; the objective function (i) was optimized by the GRG 

FIGURE E12.2b 
Contours (the heavy lines) for the objective function of extraction 
process. Points 1,2, 3, and 4 indicate the progress of the reduced- 
gradient method toward the optimum (point 4). 
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(generalized reduced-gradient) method. For small values of vx (< 0.01), the contours 
drop off quite rapidly. The starting point (point 1) 

is infeasible. Points 2, 3, and 4 in Figure E12.2b show the change as the vector of 
independent variables moves toward the optimum. Point 2 indicates the first feasible. 
values of vx and v, (0.08, 0.10), point 3 indicates where the flooding constraint (h) is 
active, and point 4 is the constrained optimum (0.15,0.05). The value of the objective 
function at point 4 is 0.225. 

EXAMPLE 12.3 FITTING VAPOR-LIQUID EQUILIBRIUM DATA 
VIA NONLINEAR REGRESSION 

Valid physical property relationships form an important feature of a process model. To 
validate a model, representative data must fit by some type of correlation using an 
optimization technique. Nonlinear regression instead of linear regression may be 
involved in the fitting. We illustrate the procedure in this example. 

Separation systems include in their mathematical models various vapor-liquid 
equilibrium (VLE) correlations that are specific to the binary or multicomponent sys- 
tem of interest. Such correlations are usually obtained by fitting VLE data by least 
squares. The nature of the data can depend on the level of sophistication of the exper- 
imental work. In some cases it is only feasible to measure the total pressure of a sys- 
tem as a function of the liquid phase mole fraction (no vapor phase mole fraction data 
are available). 

Vapor-liquid equilibria data are often correlated using two adjustable parameters 
per binary mixture. In many cases, multicomponent vapor-liquid equilibria can be pre- 
dicted using only binary parameters. For low pressures, the equilibrium constraint is 

where p = the total pressure 
pPt = the saturation pressure of component i 

xi = the liquid phase mole fraction of component i 
y, = the activity coefficient 
y, = the vapor phase mole fraction 

The van Laar model for a binary mixture is 

and 

where A,, and AZ1 are binary constants that are adjusted by optimization to fit the cal- 
culated data for xi. To use total pressure measurements we write 

P = Y @ + Y ? ? '  (4 



PART 111: Applications of Optimization 

TABLE E l 2 3  
Experimental VLE data for the system 

(1) Water. (2) 1,4 dioxane at 20°C. 

Experimental data Predicted values 

XI pexPt(mmHg) P"'" P palc 

a2 pmt: mmHg Antoine constants: log pSat = a, - - 
T + a, T O"C 

Q1 a2 a3 Range 

(1) Water 8.07131 1730.630 233.426 (1-100°C) 
(2) 1,4 dioxane 7.43 155 1554.679 240.337 (20-105°C) 

Note: Data reported by Hororka et al. (1936). 

FIGURE E12.3 
Experimental vapor-liquid equilibrium data, Example 12.3. 
[Source: Gmehling et al. (1981).] 
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or, using Equations (a)-(c) 

P = , eXP[Al2( l X 2  )'Ipp + x2 exp A,, 
A l ~ l  + A21~2 [ (A12x~?~21x2 

The saturation pressures can be predicted at a given temperature using the Antoine 
equation. For a given temperature and a binary system (x2 = 1 - x,) 

so that the two binary coefficients may be determined from experimental values of 
p versus x, by nonlinear least squares estimation (regression), that is, by minimizing 
the objective function 

where n is the number of data points. 
In the book, Vapor-Liquid Equilibrium Data Collection, Gmehling and col- 

leagues (1981), nonlinear regression has been applied to develop several different 
vapor-liquid equilibria relations suitable for correlating numerous data systems. As 
an example, p versus x, data for the system water (1) and 1,4 dioxane (2) at 20.00°C 
are listed in Table E12.3. The Antoine equation coefficients for each component are 
also shown in Table E12.3. A,, and A2, were calculated by Gmehling and colleaques 
using the Nelder-Mead simplex method (see Section 6.1.4) to be 2.0656 and 1.6993, 
respectively. The vapor phase mole fractions, total pressure, and the deviation 
between predicted and experimental values of the total p 

are listed in Table E12.3 for increments of x, = 0.10. The mean Ap is 0.09 mmHg for 
pressures ranging from 17.5 to 28.10 rnmHg. Figure E12.3 shows the predicted y, ver- 
sus x, data; note that the model predicts an azeotrope at x, = y, = 0.35. 

EXAMPLE 12.4 DETERMINATION OF THE OPTIMAL REFLUX 
RATIO FOR A STAGED-DISTILLATION COLUMN 

Once a distillation column is in operation, the number of trays is fixed and very few 
degrees of freedom can be manipulated to minimize operating costs. The reflux ratio 
frequently is used to control the steady-state operating point. Figure E12.4a shows 
typical variable cost patterns as a function of the reflux ratio. The optimization of 
reflux ratio is particularly attractive for columns that operate with 

1. High reflux ratio 
2. High differential product values (between overhead and bottoms) 
3. High utility costs 
4. Low relative volatility 
5. Feed light key far from 50 percent 



PART 111 : Applications of Optimization 

SPb 
feed 

Minimum Reflux ratio Maximum 

FIGURE E12.4a 
Variable cost trade-offs for a distillation column. 

In this example we illustrate the application of a one-dimensional search technique 
from Chapter 5 to a problem posed by Martin and coworkers (1981) of obtaining the 
optimal reflux ratio in a distillation column. 

Martin and coworkers described an application of optimization to an existing 
tower separating propane and propylene. The lighter component (propylene) is more 
valuable than propane. For example, propylene and propane in the overhead product 
were both valued at $0.20/lb (a small amount of propane was allowable in the over- 
head), but propane in the bottoms was worth $0.12/lb and propylene $0.09/lb. The 
overhead stream had to be at least 95 percent propylene. Based on the data in Table 
E12.4A, we will determine the optimum reflux ratio for this column using derivations 
provided by McAvoy (personal communication, 1985). He employed correlations for 
column performance (operating equations) developed by Eduljee (1975). 

Equality constraints. The Eduljee correlation involves two parameters: R,, the 
minimum reflux ratio, and N,, the equivalent number of stages to accomplish the sep- 
aration at total reflux. His operating equations relate N, a, X,, X,, and XB (see Table 
E12.4A for notation) all of which have known values except XB as listed in Table 
E12.4A. Once R is specified, you can find XB by sequential solution of the three fol- 
lowing equations. 
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TABLE E12.4A 
Notation and values for the propane-propylene splitter 

Symbol Description Value 

Bottoms flow rate 
Reboiler heat cost 
Condenser cooling cost 
Value of propylene in bottoms 
Value of propane in bottoms 
Cost per pound of propylene 
Cost per pound of propane 
Value of propylene in overhead 
Value of propane in overhead 
Distillate flow rate 
Feed rate 
Liquid flow rate 
Number of equilibrium stages 
Minimum equilibrium stages 
Condenser load requirement 
Reboiler heat requirement 
Reflux ratio 
Minimum reflux ratio 
Heavy key differential value 
Vapor flow rate 
Light key differential value 
Bottom light key mole fraction 
Overhead light key mole fraction 
Feed light key mole fraction 
Relative volatility 
Latent heat 

First, calculate R, 

$3.00/106 Btu 
$0.00/106 Btu 

1,200,000 lblday 
function of R (moVday) 
94 
function of reflux ratio, R 
Q, - AV 
Q R =  AV 
(To be optimized) 
11.17 
-$0.08llb 
function of R (mollday) 
$0.1 lllb 
(To be optimized) 
0.95 
0.70 
1.105 
130 Btu/lb (avg. mixture) 

Substitute the value of R, in Equation (b) to find N, 

Lastly, compute XB from 

N, = 
ln{[xD/(l - xD)] - x~)/XBI) 

In a 

Equations (a)-(c) comprise equality constraints relating XB and R. 
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FIGURE E12.4b 
Distillation column flow chart. 

Once X, is calculated, the overall material balance for the column shown in Fig- 
ure E12.4b can be computed. The pertinent equations are (the units are moles) 

Equations (d) and (e) contain two unknowns: D and B, which can be determined once 
F, XF, X,, and XD are specified. In addition, if the assumption of constant molal over- 
flow is made, then the liquid L and vapor flows V are 

Objective function. Next we develop expressions for the income and operat- 
ing costs. The operating profit f is given by 

f = Propylene sales + Propane sales - Utility costs - Raw material costs (h) 

The brackets [ ] indicate the correspondence between the words in Equation (h) 
and the symbols in Equation (i). QR is the reboiler heat requirement and Qc is the 
cooling load. 

Equation (i) can be rearranged by substituting for DXD in the propylene sales 
and for BX, in the propane sales using Equation (e) and defining - W = C, - CD 
and - U = Cf, - CL as follows 
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TABLE E12.4B 
Iterations in quadratic interpolation test problem 

Interpolated 
Left bracket Center point Right bracket values 

Iteration x f x f x f x f 

1 16.00 3967.13 18.00 3922.14 20.00 4256.45 17.24 3872.22 
2 18.00 3922.14 17.24 3872.22 16.00 3967.13 17.16 3870.79 

3 17.24 3872.22 17.16 3870.79 16.00 3967.13 17.09 3870.21 
4 17.16 3870.79 17.09 3870.21 16.00 3967.13 17.06 3870.18 
5 17.09 3870.21 17.06 3870.18 16.00 3967.13 17.06 3870.17 

Final solution 
x = 17.06 
f = 3870.17 

TABLE E12.4C 
Sensitivity study at the reflw ratio 

optimum 

Reflux ratio XB Costs 
(R)  (mol fraction) ($/day) 

'Indicates 17.07 2 10% 

Note that the first four terms off are fixed values, hence these terms can be deleted 
from the expression for f in the optimization. In addition, it is reasonable to assume 
QR = Q, - AV. Lastly, the right-hand side of Equation (j) can be multiplied by - 1 
to give the final form of the objective function (to be minimized): 

Note: h must be converted to Btulmol, and the costs to $lmol. 

Solution. Based on the data in Table E12.4A we minimized f, with respect to 
R using a quadratic interpolation one-dimensional search (see Chapter 5). The value 
of R,,, from Equation (a) was 11.338. The initial bracket was 12 5 R 5 20, and R = 
16, 18, and 20 were selected for the initial three points. The convergence tolerance on 
the optimum required that4 should not change by more than 0.01 from one iteration 
to the next. 

The iterative program incorporating the quadratic interpolation search yielded 
the results in Table E12.4B. The optimum reflux ratio was 17.06 and the cost,f,, was 
$3870lday. Table E12.4C shows the variation in f, for 2 10 percent change in R. The 
profit function changes $100lday or more. 
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OPTIMIZATION OF FLUID flow systems encompasses a wide-ranging scope of prob- 
lems. In water resources planning the objective is to decide what systems to 
improve or build over a long time frame. In water distribution networks and sewage 
systems, the time frame may be quite long, but the water and sewage flows have to 
balance at the network nodes. In pipeline design for bulk carriers such as oil, gas, 
and petroleum products, specifications on flow rates and pressures (including stor- 
age) must be met by suitable operating strategies in the face of unusual demands. 

. Simpler optimization problems exist in which the process models represent flow 
through a single pipe, flow in parallel pipes, compressors, heat exchangers, and so 
on. Other flow optimization problems occur in chemical reactors, for which vari- 
ous types of process models have been proposed for the flow behavior, including 
well-mixed tanks, tanks with dead space and bypassing, plug flow vessels, disper- 
sion models, and so on. This subject is treated in Chapter 14. 

Optimization (and modeling) of fluid flow systems can be put into three gen- 
eral classes of problems: (1) the modeling and optimization under steady-state con- 
ditions, (2) the modeling and optimization under dynamic (unsteady-state) condi- 
tions, and (3) stochastic modeling and optimization. All three classes of problems 
are complicated for large systems. Under steady-state conditions, the principal dif- 
ficulties in obtaining the optimum for a large system are the complexity of the topo- 
logical structure, the nonlinearity of the objective function, the presence of a large 
number of possibly nonlinear inequality constraints, and the large number of vari- 
ables. We do not consider optimization of dynamic or stochastic processes in this 
chapter. Instead, we focus on relatively simple steady-state fluid flow processes 
using the following examples: 

1. Optimal pipe diameter for an incompressible fluid (Example 13.1) 
2. Minimum work of gas compression (Example 13.2) 
3. Economic operation of a fixed-bed filter (Example 13.3) 
4. Optimal design of a gas transmission line (Example 13.4) 

EXAMPLE 13.1 OPTIMAL PIPE DIAMETER 

Example 2.8 briefly discussed how to determine the optimal flow in a pipe. In this 
example we consider how the trade-off between the energy costs for transport and the 
investment charges for flow in a pipe determines the optimum diameter of a pipeline. 
With a few simplifying assumptions, you can derive an analytical formula for the opti- 
mal pipe diameter and the optimal velocity for an incompressible fluid with density p 
and viscosity p. In developing this formula the investment charges for the pump itself 
are ignored because they are small compared with the pump operating costs, although 
these could be readily incorporated in the analysis if desired. The mass flow rate rn of 
the fluid and the distance L the pipeline is to traverse are presumed known, as are p 
and p. The variables whose values are unknown are D (pipe diameter), Ap (fluid pres- 
sure drop), and v (fluid velocity); the optimal values of the three variables are to be 
determined so as to minimize total annual costs. Not all of the variables are inde- 
pendent, as you will see. 
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Total annual costs comprise the sum i f  the pipe investment charges and the oper- 
ating costs for running the pump. Let Ci, be the annualized charges for the pipe and 
Cop be the pump operating costs. We propose that 

where n = an exponent from a cost correlation (assumed to be 1.3) 
7 = the pump efficiency 

Co and C, = cost coefficients \ 
\ 

C, includes the capitalization charge for the pipe per unit length, and Co corresponds 
to the power cost ($/kwh) due to the pressure drop. The objective function becomes 

Note that Equation (c) has two variables: D and Ap. However, they are related 
through a fluid flow correlation as follows (part of the process model): 

where f is the friction factor. Two additional unspecified variables exist in Equa- 
tion (d), namely v andf. Both m and f are related to v as follows: 

Equation (e) is merely a definition of the mass flow rate. Equation (f) is a standard 
correlation for the friction factor for turbulent flow. (Note that the correlation between 
f and the Reynold's number (Re) is also available as a graph, but use of data from a 
graph requires trial-and-error calculations and rules out an analytical solution.) 

To this point we isolated four variables: D, v, Ap, andf, and have introduced three 
equality constraints-Equations (d), (e), and (f )-leaving 1 degree of freedom (one 
independent variable). To facilitate the solution of the optimization problem, we elim- 
inate three of the four unknown variables (Ap, v, and f )  from the objective function 
using the three equality constraints, leaving D as the single independent variable. 
Direct substitution yields the cost equation 
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Here, Co is selected with units {($/year)/[(lb,)(ft2/s3]). We can now differentiate C 
with respect to D and set the resulting derivative to zero 

and solve for DOpt: 

Note that L does not appear in the result. 
Equation (i) permits a quick analysis of the optimum diameter as a function of a 

variety of physical properties. From the exponents in Equation (i), the density and 
mass flow rate seem to be fairly important in determining P p t ,  but the ratio of the cost 
factors is less important. A doubling of m changes the dptimum diameter by a factor 
of 1.4, but a doubling of the density decreases Dopt by a factor of 1.25. The viscosity 
is also not too important. For very viscous fluids, larger diameters resulting in lower 
velocities are indicated, whereas gases (low density) give smaller diameters and 
higher velocities. The validity of Equation (i) for gases is questionable, because the 
variation of gas velocity with pressure must be taken into account. 

Using Equation (e) 

we can discover how the optimum velocity varies as a function of m, p, and p by sub- 
stituting Equation (i) for Dopt into (j): 

where C2 is a consolidated constant. Consider the effect of p on the optimum veloc- 
ity. Generally optimum velocities for liquids vary from 3 to 8 ft/s, whereas for gases 
the range is from 30 to 60 ft/s. Although DOpt is influenced noticeably by changes in 
m, P p t  is very insensitive to changes in m. 

Suppose a flow problem with the following specifications is posed: 

m = 50 lb/s 
p = 60 lb/ft3 
p = 6.72 X lb/(ft)(s) 
q = 0.6 (60% pump efficiency) 

Purchased cost of electricity = $O.OS/kWh 
8760 hiyear of operation (100% stream factor) 

C, = $5.7 (D in ft); C,Dn is an annualized cost 
expressed as $/(ft)(year) 

L = immaterial 

The units in Equation (g) must be made consistent so that C is in dollars per year. For 
$O.OS/kWh, Co = $0.5938 {($/year)/[lb,)(ft2)/s3)]). Substitution of the values speci- 
fied into Equation (i) gives DOPt = 0.473 ft = 5.7 in. The standard pipe schedule 
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FIGURE E13.1 
Investment, operating, and total costs for pipeline example 
(L = 1 ft). 

40 size closest to DOpt is 6 in. For this pipe size (ID = 6.065 in.) the optimum veloc- 
ity is 4.2 ft/s. (A schedule 80 pipe has an ID of 5.7561 in.) Figure E13.1 shows the 
respective contributions of operating and investment costs to the total value of C. 

As the process model is made more accurate and complicated, you can lose the 
possibility of obtaining an analytical solution of the optimization problem. For 
example, if (1) the pressure losses through the pipe fittings and valves are included 
in the model, (2) the pump investment costs are included as a separate term with a 
cost exponent ( E ) that is not equal to 1.0, (3) elevation changes must be taken into 
account, (4) contained solids are present in the flow, or (5) significant changes in 
density occur, the optimum diameter will have to be calculated numerically. 

EXAMPLE 13.2 MINIMUM WORK OF COMPRESSION 

In this example we describe the calculation of the minimum work for ideal com- 
pressible adiabatic flow using two different optimization techniques, (a) analytical, 
and (b) numerical. Most real flows lie somewhere between adiabatic and isothermal 
flow. For adiabatic flow, the case examined here, you cannot establish a priori the 
relationship between pressure and density of the gas because the temperature is 
unknown as a function of pressure or density, hence the relation between pressure and 
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FIGURE E13.2 

density is derived using the mechanical energy balance. If the gas is assumed to be 
ideal, and k = C,IC, is assumed to be constant in the range of interest from p,  to p,, 
you can make use of the well-known relation 

p v k  = Constant (a) 

in getting the theoretical-work per mole (or mass) of gas compressed for a single-stage 
compressor (McCabe and colleagues, 1993) 

where TI is the inlet gas temperature and R the ideal gas constant ( = RTl ). For 
a three-stage compressor with intercooling back to TI between stages as shown in Fig- 
ure E13.2, the work of compression from p, to p4 is 

n 

We want to determine the optimal interstage pressures p, and p, to minimize W 
keeping p, and p4 fixed. 

Analytical solution. We set up the necessary conditions using calculus and also a 

test to ensure that the extremum found is indeed a minimum. 

The simultaneous solution of Equations (d) and (e) yields the desired results 

P: = P1P3 and P: = P2P4 

so that the optimal values of p, and p3 in terms of pl and p4 are 

P; = (p:p4)Y3 

P';' = ( P ; P ~ ) ' / ~  
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With these conditions for pressure, the work for each stage is the same. 
To check the sufficiency conditions, we examine the Hessian matrix of w (after 

substituting pz and p$) to see if it is positive-definite. 

The two principal minors (the two diagonal elements) must be positive because pT 
and p: are both positive, and the determinant of V'W 

is also positive, hence V2W is positive-definite. 

Numerical solution. Numerical methods of solution do not produce the gen- 
eral solution given by Equations (f) and (g) but require that specific numerical values 
be provided for the parameters and give specific results. Suppose that p, = 100 kPa 
andp, = 1000 kPa. Let the gas be air so that k = 1.4. Then (k - 1)lk = 0.286. Appli- 
cation of the BFGS algorithm to minimize w in Equation (c) as a function of p2 and 
p, starting with p2 = p3 = 500 yields 

pz = 215.44 compared with ' p; = 215.44 from Equation (f) 

p; = 464.17 compared with p; = 464.16 from Equation (g) 

EXAMPLE 13.3 ECONOMIC OPERATION OF A FIXED-BED 
FILTER 

Various rules of thumb exist for standard water filtration rates and cycle time before 
backwashing. Higher filtration rates may appear to be economically justified, how- 
ever, when the filter loading is within conventional limits. In this example, we exam- 
ine the issues involved for constant-rate filtration for a dual-media bed. Dual- and 
mixed-media beds result in increased production of water in a filter for two reasons. 
First, the larger grains (say charcoal approximately 1-rnrn size) as a top layer help 
reduce cake formation and deposition within the small (150-mm) top layer of the bed. 
Second, the head loss in the region of significant filtration is reduced. 

With respect to the objective function for a filter, the total annual cost of filtra- 
tion f is assumed to be the sum of the annualized capital costs fc and the annual oper- 
ating costs fo. The annualized capital cost is related to the cross-sectional area of the 
filter by the relation 

where r = the capital recovery factor involving the discount rate and economic life 
of the filter 

b = an empirical constant 
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z = an empirical exponent 
A = the cross-sectional area of the filter 

The cross-sectional area can be calculated by dividing the design flow rate by a quan- 
tity that is equal to the number of filter runs per day times the net water production 
per run per cross-sectional area: 

where q = the design flow rate in gallday, L/day (dual units given here) 
Vf = the volume of water filtered per unit area of bed per filter run in gal/ft2, 

Urn2 
Vb = the volume of filtered water used for backwash per unit area of bed in 

gal/ft2; Wm2 
Q = the filtration rate in gal/(min)(ft2); W(min)(m2) 
tb = the filter down time for backwash, min 

1440 = the number of rninutes/day 

For a constant filtration rate, the length of the filter run is given by tf = Vf/Q. 
The water production per filter run Vf is based on a relation proposed by Letter- 

man (1980) that assumes minimal surface cake formation by the time filtration is 
stopped because of head loss: 

where K, = a constant related to the density of the deposit within the bed 
D = the overall depth of the bed, ft. 
fl = the overall fraction of the influent suspended solids removed during the 

entire filter run 
Co = suspended solids concentration in the filter influent 
n = the number of layers i = 1, . . . , n into which the filter is divided for 

use of Equation (c) 
AH = the terminal pressure (head) loss for the bed, ft. 

k, = a function of the geometric mean grain diameter dgi in layer i. For 
rounded grains, the Kozeny-Carmen equation can be used to estimate ki: 
k, = 0.081 d i 2 ,  where dgi is in millimeters. 

'Ifipical values are n = 1, d, = 1 mm, AH = 10 ft, D = 3 ft, and (K,@C,) = 700. 
The backwash flow rate is calculated from 

We assume the backwash water is not recycled. 
We next summarize the annual operating costs of the filter because they are equal 

to the energy costs for pumping 

where fo = dollars per year 
h = the backwash pumping head in feet of water 
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C, = the cost of electricity in dollars per kilowatt-hour 
7 = the pump efficiency 

1.146 X = the conversion factor 

Let us now carry out a numerical calculation based on the following values for 
the filter parameters 

h = 110 ft of water (33.5 m) 

z = 0.86 

r = 0.134 (12.5% for 20 years) (year-') 

Substitution of these values into Equations (a)  and (e)  together with Equations 
(b) and (d) yields the total cost function 

If the values of q, tb, and Vb are specified, and Equation (c) is ignored, the total annual 
cost can be determined as a function of the water production Vf per bed area and the 
filtration rate Q. 

Figure E13.3 shows f versus Vf, the water filtered peri.un, for q (in lo6 units) = 10 
MgaYday (3.79 X 10 MLIday), tb = 10 min, and Vb = 200 gal/ft2 (8.15 X lo3 L/m2) 

At unconstrained minimum f'= $26,460 
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with Q gal/(rnin)(ft2) as a parameter. The unconstrained solution is at the upper 
bounds on Q and Vf. Notice the flatness off as Vf increases. 

Equation (c) would be used in the design of the filter, hence Equation (c) imposes 
a constraint that must be taken into account. The optimal solution becomes Vf = 940 
gaVft2 and Q = 14.2 gal/(min)(ft2) with Equation (c) included in the problem (see Fig- 
ure E13.3). A rule of thumb is 2 gal/(rnin)(ft2) (Letterman, 1980), as compared with 
the optimal value of Q. 

EXAMPLE 13.4 OPTIMAL DESIGN OF A GAS TRANSMISSION 
NETWORK 

A gas-gathering and transmission system consists of sources of gas, arcs composed of 
pipeline segments, compressor stations, and delivery sites. The design or expansion of 
a gas pipeline transmission system involves capital expenditures as well as the continu- 
ing cost of operation and maintenance. Many factors have to be considered, including 

1. The maximum number of compressor stations that would ever be required during a 
specified time horizon 

2. The optimal locations of these compressor stations 
3. The initial construction dates of the stations 
4. The optimal solution for the expansion for the compressor stations 
5. The optimal diameter sizes of the main pipes for each arc of the network 
6. The minimum recommended thickness of the main pipes 
7. The optimal diameter sizes, thicknesses, and lengths of any required parallel pipe 

loops on each arc of the network 
8. The timing of constructions of the parallel pipe loops 
9. The operating pressures of the compressors and the gas in the pipelines 

In this example we describe the solution of a simplified problem so that the var- 
ious factors involved are clear. Suppose that a gas pipeline is to be designed so that it 
transports a prespecified quantity of gas per time from point A to other points. Both 
the initial state (pressure, temperature, composition) at A and final states of the gas are 
known. We need to determine. 

1. The number of compressor stations 
2. The lengths of pipeline segments between compressor stations 
3. The diameters of the pipeline segments 
4. The suction and discharge pressures at each station. 

The criterion for the design will be the minimum total cost of operation per year 
including capital, operation, and maintenance costs. Note that the problem considered 
here does not fix the number of compressor stations, the pipeline lengths, the diame- 
ters of pipe between stations, the location of branching points, nor limit the configu- 
ration (branches) of the system so that the design problem has to be formulated as a 
nonlinear integer programming problem. Figure E 13.4a illustrates a simplified 
pipeline that we use in defining and solving the problem. 

Before presenting the details of the design problem, we need to distinguish 
between two related problem, one being of a higher degree of difficulty than the other. 
If the capital costs of the compressors are a linear function of horsepower as shown 
in line A in Figure E13.4b, the transmission line problem can be solved as a nonlin- 
ear programming problem by one of the methods discussed in Chapter 8. On the other 
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FIGURE E13.4a 
Pipeline configuration with three branches. 

hand, if the capital costs are a linear function of horsepower with a fixed capital out- 
lay for zero horsepower as indicated by line B in Figure E13.4b, a condition that more 
properly reflects the real world, then the design problem becomes more difficult to 
solve and must be solved by a branch-and-bound algorithm combined with a nonlin- 
ear programming algorithm as discussed later on. The reason why the branch-and- 
bound method is avoided for the case involving line A is best examined after the math- 
ematical formulation of the objective function (cost function) has been completed. We 
split the discussion of the transmission line problem into five parts: (1) the pipeline 
configuration, (2) the variables, (3) the objective function and costs, (4) the inequal- 
ity constraints, and (5) the equality constraints. 

The pipeline configuration. Figure E13.4a shows the configuration of the 
pipeline we are using in this example and the notation employed for the numbering sys- 
tem for the compressor stations and the pipeline segments. Each compressor station is 
represented by a node and each pipeline segment by an arc. N1, N2, and N3 represent 
the maximum number of possible stations in each of the three branches. Pressure 
increases at a compressor and decreases along the pipeline segment. The transmission 
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0 Horsepower (hp) 

FIGURE E13.4b 
Capital and operating costs of compressors. 

system is presumed to be horizontal. Although a simple example has been selected to 
illustrate a transmission system, a much more complicated network can be accommo- 
dated that includes various branches and loops at the cost of additional computation 
time. For a given pipeline configuration each node and each arc are labeled separately. 
In total there are 

n total compressors [n = ( N J ]  
n - 1 suction pressures (the initial entering pressure is known) 

n discharge pressures 
n + 1 pipeline segment lengths and diameters (note there are two segments 

issuing at the branch) 

The variables. Each pipeline segment has associated with it five variables: (1) the 
flow rate Q; (2) the inlet pressure p, (discharge pressure from the upstream compressor); 
(3) the outlet pressure p, (suction pressure of the downstream compressor), (4) the pipe 
diameter D, and (5) the pipeline segment length L. Inasmuch as the mass flow rate is 
fixed, and each compressor is assumed to have gas consumed for operation of one-half 
of one percent of the gas transmitted, only the last four variables need to be determined 
for each segment. 

The objective function. Because the problem is posed as a minimum cost 
problem, the objective function is the sum of the yearly operating and maintenance 
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costs of the compressors plus the sum of the discounted (over 10 years) capital costs 
of the pipeline segments and compressors. Each compressor is assumed to be adia- 
batic with an inlet temperature equal to that of the surroundings. A long pipeline seg- 
ment is assumed so that by the time gas reaches the next compressor it returns to the 
ambient temperature. The annualized capital costs for each pipeline segment depend 
on pipe diameter and length, but are assumed to be $870/(in.)(mile)(year). The rate of 
work of one compressor is 

where k = C,IC,, for gas at suction conditions (assumed to be 1.26) 
z = compressibility factor of gas at suction conditions (z ranges from 0.88 

to 0.92) 
ps = suction pressure, psi 
p, = discharge pressure, psi 
TI = suction temperature, OR (assumed 520°R) 
Q = flow rate into the compressor, MMCFD (million cubic feet per day) 
W = rate of work, horsepower. 

Operation and maintenance charges per year can be related directly to horse- 
power and are estimated to be between 8.00 and 14.0 $/(hp)(year), hence the total 
operating costs are assumed to be a linear function of compressor horsepower. 

Figure E13.4b shows two different forms for the annualized capital cost of the com- 
pressors. Line A indicates the cost is a linear function of horsepower [$70.00/(hp)(year)] 
with the line passing through the origin, whereas line B assumes a linear function of 
horsepower with a fixed initial capital outlay [$70.00/(hp)(year) + $10,0001 to take into 
account installation costs, foundation, and so on. For line A, the objective function in dol- 
lars per year for the example problem is 

where n = number of compressors in the system 
m = number of pipeline segments in the system (= n + 1) 
C, = yearly operating cost $/(hp)(year) 
Cc = compressor capital cost $/(hp)(year) 
Cs = pipe capital cost $/(in)(mile)(year) 
L, = length of pipeline segment j, mile 
Dj = diameter of pipeline segment j, in. 

You can now see why for line A a branch-and-bound technique is not required 
to solve the design problem. Because of the way the objective function is formu- 
lated, if the ratio (pd/ps) = 1, the term involving compressor i vanishes from the 
first summation in the objective function. This outcome is equivalent to the dele- 
tion of compressor i in the execution of a branch-and-bound strategy. (Of course 
the pipeline segments joined at node i may be of different diameters.) But when 
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line B represents the compressor costs, the fixed incremental cost for each com- 
pressor in the system at zero horsepower (Cf) is not multiplied by the term in the 
square brackets of Equation (b). Instead, C' is added in the sum of the costs 
whether or not compressor i is in the system, and a nonlinear programming tech- 
nique cannot be used alone. Hence, if line B applies, a different solution procedure 
is required. 

The inequality constraints. The operation of each compressor is constrained ' 

so that the discharge pressure is greater than or equal to the suction pressure 

P d ,  - 5 1 ,  i = 1 , 2  ,..., n 

ps, 

and the compression ratio does not exceed some prespecified maximum limit K 

In addition, upper and lower bounds are placed on each of the four variables 

The equality constraints. Two classes of equality constraints exist for the 
transmission system. First, the length of the system is fixed. With two branches, there 
are two constraints 

where L: represents the length of a branch. Second, the flow equation, the Weymouth 
relation (GPSA handbook, 1972), must hold in each pipeline segment 

where Qj = a fixed number 
pd = the discharge pressure at the entrance of the segment 
p, = the suction pressure at the exit of the segment 

To avoid problems in taking square roots, Equation (j) is squared to yield 
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Solution strategy. As mentioned previously, if the capital costs in the problem 
are described by line A in Figure E13.4b7 then the problem can be solved directly by 
a nonlinear programming algorithm. If the capital costs are represented by line B in 
Figure E13.4b7 then nonlinear programming in conjunction with branch-and-bound 
enumeration must be used to accommodate the integer variable of a compressor being 
in place or not. 

As explained in Chapter 9, a branch-and-bound enumeration is nothing more 
than a search organized so that certain portions of the possible solution set are deleted 
from consideration. A tree is formed of nodes and branches (arcs). Each branch in the 
tree represents an added or modified inequality constraint to the problem defined for 
the prior node. Each node of the tree itself represents a nonlinear optimization prob- 
lem without integer variables. 

With respect to the example we are considering, in Figure E13.4c, node 1 in the 
tree represents the original problem as posed by Equations (b)-(k), that is the prob- 
lem in which the capital costs are represented by line A in Figure E13.4b. When the 
problem at node 1 is solved, it provides a lower bound on the solution of the prob- 
lem involving the cost function represented by line B in Figure El 3.4b. Note that line 
A always lies below line B. (If the problem at node 1 using line A had no feasible 
solution, the more complex problem involving line B also would have no feasible 
solution.) Although the solution of the problem at node 1 is feasible, the solution 
may not be feasible for the problem defined by line B because line B involves an ini- 
tial fixed capital cost at zero horsepower. 

After solving the problem at node 1, a decision is made to partition on one of the 
three integer variables; Nl, N2, or N3. The partition variable is determined by the fol- 
lowing heuristic rule. 

(a) Initial problem 

Problem defined 
by Equations (b) to (k) 

Constraints: 
O s N 1 5 4  
O s N 2 s 3  
0 1 N 3 1 3  

(b) First branching 

Constraints: Constraints: 

FIGURE E13.4~ 
Partial tree and branches for the example design problem. 
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The smallest average compression ratio of all the branches in the transmission 
system is calculated by adding all the compression ratios in each branch and 
dividing by the number of compressors in the branch. The number of com- 
pressors in the branch that has smallest ratio becomes the partition variable. 

Based on this rule, the partition variable was calculated to be N2. 
After selection of the partition variable, the next step is to determine how the 

variable should be partitioned. It was decided to check each compressor in the branch 
of the transmission line associated with the partition variable, and if any compressor 
operated at less than 10 percent of capacity, it was assumed the compressor was not 
necessary in the line. (If all operate at greater than 10 percent capacity, the compres- 
sor with the smallest compression ratio was deleted.) For example, with N2 selected 
as the partition variable, and one of the three possible compressors in branch 2 of the 
gas transmission network operating at less than 10 percent of capacity, the first parti- 
tion would lead to the tree shown in Figure E13.4~; N2 would either be 3 or would be 
0 5 N2 5 2.  Thus at each node in the tree, the upper or lower bound on the number 
of compressors in each branch of the pipeline is readjusted to be tighter. 

The nonlinear problem at node 2 is the same as at node 1, with two exceptions. 
First, the maximum number of compressors permitted in branch 2 of the transmis- 
sion line is now two. Second, the objective function is changed. From the lower 
bounds, we know the' minimum number of compressors in each branch of the 
pipeline. For the lower bound, the costs related to line B in Figure E13.4b apply; for 
compressors in excess of the lower bound and up to the upper bound, the costs are 
represented by line A. 

As the decision tree descends, the solution at each node becomes more and more 
constrained, until node r is reached, in which the upper bound and the lower bound 
for the number of compressors in each pipeline branch are the same. The solution at 
node r is feasible for the general problem but not necessarily optimal. Nevertheless, 
the important point is that the solution at node r is an upper bound on the solution of 
the general problem. 

As the search continues through the rest of the tree, if the value of the objective func- 
tion at a node is greater than that of the best feasible solution found to that stage in the 
search, then it is not necessary to continue down that branch of the tree. The objective 
function of any solution subsequently found in the branch is larger than the solution 
already found. Thus, we can fathom the node, that is, terminate the search down that 
branch of the tree. 

The next step is to backtrack up the tree and continue searching through other 
branches until all nodes in the tree have been fathomed. Another reason to fathom a 
particular node occurs when no feasible solution exists to the nonlinear problem at 
node r; then all subsequent nodes below node r are also infeasible. 

At the end of the search, the best solution found is the solution to the general 
problem. 

Computational results. Figure E 13.4d and Table E 1 3.4A show the solution to 
the example design problem outlined in Figure E13.4a using the cost relation of line 
A in Figure E13.4b. The maximum number of compressors in branches 1, 2, and 3 
were set at 4,3, and 3, respectively. The input pressure was fixed at 500 psi at a flow 
rate of 600 MMCFD, and the two output pressures were set at 600 psi and 300 psi, 
respectively, for branches 2 and 3. The total length of branches 1 plus 2 was con- 
strained to be 175 miles, whereas the total length of branches 1 plus 3 was constrained 
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(a) Initial configuration (arcs are numbered sequentially) 

500 psia 8.0 > 600 psia 
600 MMCFD 
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27.0 > 300 psia 

(b) Optimal configuration with optimal pipeline lengths / 

(in miles) shown on the arcs 

FIGURE E13.4d 
Initial gas transmission system and final optimal system using the costs of line A, 
Figure E 13.4b. 

at 200 miles. The upper bound on the diameter of the pipeline segments in branch 1 
was set at 36 inches, the upper bound on the diameters of the pipeline segments in 
branches 2 and 3 at 18 in., and the lower bound on the diameters of all pipeline seg- 
ments at 4 in. A lower bound of 2 miles was placed on each pipeline segment to ensure 
that the natural gas was at ambient conditions when it entered a subsequent compres- 
sor in the pipeline. 

Figure E13.4d compares the optimal gas transmission network with the original 
network. From a nonfeasible starting configuration with 10-mile-long pipeline seg- 
ments, the nonlinear optimization algorithm reduced the objective function from the 
first feasible state of 1.399 X lo7 dollarslyear to 7.289 X lo6 dollars/year, a savings 
of close to $7 million. Of the ten possible compressor stations, only four remained in 

a 

the final optimal network. Table E13.4a lists the final state of the network. Note that 
because the suction and discharge pressures for the pipeline segments in branch 2 are 
identical, compressors 4, 5, 6, and 7 do not exist in the optimal configuration, nor do 
9 and 10 in branch 3. 

The same problem represented by Figure E13.4a was solved again but using the 
costs represented by line B instead of line A in Figure E13.4b. Figure E13.4e and 
Table E13.4B present the results of the computations. It is interesting to note that 
compressor 3 remains in the final configuration but with a compression ratio of 1, that 
is, compressor 3 is not doing any work. This means that it is cheaper to have two 
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TABLE E13.4A 
Values of operating variables for the optimal network configuration 

using the costs of line A, Figure E13.4b 

Discharge Suction Pipe Flow 
Pipeline pressure pressure diameter Length rate 
segment (psi) (psi) (in.) (mile) (MMCFD) 

Capital 
Compressor Compression cost 

station ratio ($/year) 

500 psia 7.2 > 600 psia 
600 MMCFD 

FIGURE E13.4e 
Optimal configuration using the costs of line B in Figure E13.4b. 

pipeline segments in branch 1 and two compressors each operating at about one-half 
capacity, plus a penalty of $10,000, than to have one pipeline segment and one com- 
pressor operating at full capacity. Compressor 3 doing no work represents just a 
branch in the line plus a cost penalty. 
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TABLE E13.4B 
Values of operating variables for the optimal network configuration 

using the costs of line B, Figure E13.4b 

Discharge Suction Pipe Flow 
Pipeline pressure pressure diameter Length rate 
segment (psi) (psi) (in.) (mile) (MMCFD) 

Capital 
Compressor Compression cost 

station ratio ($/year) 
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IN PRACTICE, EVERY chemical reaction carried out on a commercial scale involves 
the transfer of reactants and products of reaction, and the absorption or evolution of 
heat. Physical design of the reactor depends on the required structure and dimen- 
sions of the reactor, which must take into account the temperature and pressure dis- 
tribution and the rate of chemical reaction. In this chapter, after describing the meth- 
ods of formulating optimization problems for reactors and the tools for their 
solution, we will illustrate the techniques involved for several different processes. 

Modeling chemical reactors 
Optimization in the design and operation of a reactor focuses on formulating a 

suitable objective function plus a mathematical description of the reactor; the latter 
forms a set of constraints. Reactors in chemical engineering are usually, but not 
always, represented by one or a combination of 

1. Algebraic equations 
2. Ordinary differential equations 
3. Partial differential equations 

One extreme of representation of reactor operation is complete mixing in a contin- 
uous stirred tank reactor (CSTR); the other extreme is no mixing whatsoever (plug 
flow). In between are various degrees of mixing within dispersion reactors. Single 
ideal reactor types can be combined in various configurations to represent interme- 
diate types of mixing as well as nonideal mixing and fluid bypassing. 

Ideal reactors can be classified in various ways, but for our purposes the most 
convenient method uses the mathematical description of the reactor, as listed in 
Table 14.1. Each of the reactor types in Table 14.1 can be expressed in terms of inte- 
gral equations, differential equations, or difference equations. Not all real reactors 
can fit neatly into the classification in Table 14.1, however. The accuracy and preci- 
sion of the mathematical description rest not only on the character of the mixing and 
the heat and mass transfer coefficients in the reactor, but also on the validity and 
analysis of the experimental data used to model the chemical reactions involved. 

Other factors that must be considered in the modeling of reactors, factors that 
influence the number of equations and their degree of nonlinearity but not their 
form, are 

1. The number and nature of the phases present in the reactor (gas, liquid, solid, 
and combinations thereof) 

2. The method of supplying and removing heat (adiabatic, heat exchange mecha- 
nism, etc.) 

3. The geometric configuration (empty cylinder, packed bed, sphere, etc.) 
4. Reaction features (exothermic, endothermic, reversible, irreversible, number of 

species, parallel, consecutive, chain, selectivity) 
5. Stability 
6. The catalyst characteristics 

Some references for the modeling of chemical reactors include Fogler (1998), Fro- 
ment and Bischoff (1990), Levenspiel (1998), Missen and colleagues, (1998), and 
Schmidt (1997). 
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TABLE 14.1 
Classification of reactors 

Reactor type Mathematical description 
(continuous variables) 

Batch [well-mixed (CSTR), closed system] Ordinary differential equations (unsteady state) 
Algebraic equation (steady state) 

Semibatch [well-mixed (CSTR), open system] Ordinary differential equations (unsteady state) 
Algebraic equations (steady state) 

CSTRs, individual or in series 

Plug flow reactor 

Dispersion reactor 

Ordinary differential equations (unsteady state) 
Algebraic equations (steady state) 

Partial differential equations in one spatial 
variable (unsteady state) 

Ordinary differential equations in the spatial 
variable (steady state) 

Partial differential equations (unsteady state 
and steady state) 

Ordinary differential equations in one spatial 
variable (steady state) 

Abbreviation: CSTR = continuous stirred tank reactor. 

Objective functions for reactors 
Various questions that lead directly to the formulation of an objective function 

can be posed concerning reactors. Qpical objective functions stated in terms of the 
adjustable variables are 

1. Maximize conversion (yield) per volume with respect to time. 
2. Maximize production per batch. 
3. Minimize production time for a fixed yield. 
4. Minimize total production costs per average production costs with respect to 

time per fraction conversion. 
5. Maximize yield per number of moles of component per concentration with 

respect to time or operating conditions. 
6. Design the optimal temperature sequence with respect to time per reactor 

length to obtain (a) a given fraction conversion, (b) a maximum rate of reac- 
tion, or (c) the minimum residence time. 

7. Adjust the temperature profile to specifications (via sum of squares) with 
respect to the independent variables. 

8. Minimize volume of the reactor(s) with respect to certain concentration(s). 
9. Change the temperature from To to Tfin minimum time subject to heat transfer 

rate constraints. 
10. Maximize profit with respect to volume. 
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1 1. Maximize profit with respect to fraction conversion to get optimal recycle. 
12. Optimize profit per volume per yield with respect to boundary per initial con- 

ditions in time. 
13. Minimize consumption of energy with respect to operating conditions. 

In some cases a variable can be independent and in others the same variable can 
be dependent, but the usual independent variables are pressure, temperature, and 

- flow rate or concentration of a feed. We cannot provide examples for all of these 
criteria, but have selected a few to show how they mesh with the optimization meth- 
ods described in earlier chapters and mathematical models listed in Table 14.1. 

In considering a reactor by itself, as we do in this chapter, keep in mind that a 
reactor will no doubt be only one unit in a complete process, and that at least a sep- 
arator must be included in any economic analysis. Figure 14.1 depicts the relation 
between the yield or selectivity of a reactor and costs. 

All of the various optimization techniques described in previous chapters can 
be applied to one or more types of reactor models. The reactor model forms a set 
of constraints so that most optimization problems involving reactors must accom- 
modate steady-state algebraic equations or dynamic differential equations as well 
as inequality constraints. ' 

0 Yield or selectivity 1 

FIGURE 14.1 
Costs of energy and raw materials for a reactor as a function 
of yield and selectivity [Adapted and modified from P. 
LeGoff, "The Energetic and Economic Optimization of 
Heterogeneous Reactors," Chem Eng Sci 35: 2089 (1980)l. 
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EXAMPLE 14.1 OPTIMIZATION OF A THERMAL CRACKER 
VIA LINEAR PROGRAMMING 

Reactor systems that can be described by a "yield matrix" are potential candidates for 
the application of linear programming. In these situations, each reactant is known to 
produce a certain distribution of products. When multiple reactants are employed, it 
is desirable to optimize the amounts of each reactant so that the products satisfy flow 
and demand constraints. Linear programming has become widely adopted in sched- 
uling production in olefin units and catalytic crackers. In this example, we illustrate 
the use of linear programming to optimize the operation of a thermal cracker sketched 
in Figure E14.1. 

DNG Gas oil Propane Ethane 
< 

< Recycle 
v 

- - (Ethane) 
Thermal cracker 

Fuel - (Propane) 

v V v 
~thylene Propylene ~utadiene ~asol ine  

FIGURE E14.1 
Flow diagram of thermal cracker. 

Table E14.1A shows various feeds and the corresponding product distribution for 
a thermal cracker that produces olefins. The possible feeds include ethane, propane, 
debutanized natural gasoline (DNG), and gas oil, some of which may be fed simulta- 
neously. Based on plant data, eight products are produced in varying proportions 
according to the following matrix. The capacity to run gas feeds through the cracker 
is 200,000 lblstream hour (total flow based on an average mixture). Ethane uses the 
equivalent of 1.1 lb of capacity per pound of ethane; propane 0.9 lb; gas oil 0.9 lb~lb; 
and DNG 1.0. 

TABLE E14.1A 
Yield structure: (wt. fraction) 

Feed 

Product Ethane Propane Gas oil DNG 

Methane 
Ethane 
Ethylene 
Propane 
Propylene 
Butadiene 
Gasoline 
Fuel oil 
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Downstream processing limits exist of 50,000 lblstream hour on the ethylene and 
20,000 lblstream hour on the propylene. The fuel requirements to run the cracking 
system for each feedstock type are as follows: 

Feedstock type Fuel requirement (Btuhb) 

Ethane 8364 
Propane 5016 
Gas oil 3900 
DNG 4553 

Methane and fuel oil produced by the cracker are recycled as fuel. All the ethane and 
propane produced is recycled as feed. Heating values are as follows: 

Recycled feed Heat produced (Btuflb) 

Natural gas 21,520 
Methane 2 1,520 
Fuel oil 18,000 

Because of heat losses and the energy requirements for pyrolysis, the fixed fuel 
requirement is 20.0 X 1'06 Btu/stream hour. The price structure on the feeds and prod- 
ucts and fuel costs is: 

Feeds Price ($fib) 

Ethane 6.55 
Propane 9.73 
Gas oil 12.50 
DNG 10.14 

Products Price (*b) 

Methane 5.38 (fuel value) 
Ethylene 17.75 
Propylene 13.79 
Butadiene 26.64 
Gasoline 9.93 
Fuel oil 4.50 (fuel value) 

Assume an energy (fuel) cost of $2.50/106 Btu. 
The procedure is to 

1. Set up the objective function and constraints to maximize profit while operating 
within furnace and downstream process equipment constraints. The variables to be 
optimized are the amounts of the four feeds. 

2. Solve using linear programming. 
3. Examine the sensitivity of profits to increases in the ethylene production rate. 

We define the following variables for the flow rates to and from the furnace (in lblh): 

x, = fresh ethane feed 

x2 = fresh propane feed 
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x3 = gas oil feed 

x4 = DNG feed 

x5 = ethane recycle 

x6 = propane recycle 

x, = fuel added 

Assumptions used in formulating the objective function and constraints are 

1.20 X lo6 Btuh fixed fuel requirement (methane) to compensate for the heat loss. 
2. All propane and ethane are recycled with the feed, and all methane and fuel oil are 

recycled as fuel. 

A basis of 1 hour is used, and all costs are calculated in cents per hour. 

Objective function (profit). In words, the profit f is 

f = Product value - Feed cost - Energy cost 

Product value. The value for each product (in cents per pound) is as follows: 

Ethylene: 17.75(0.5x1 + 0 . 5 ~ ~  + 0 . 3 5 ~ ~  + 035x6 + 0 . 2 0 ~ ~  + 0 . 2 5 ~ ~ )  (a) 

Propylene: 13.79(0.01x1 + 0 . 0 1 ~ ~  + 0 . 1 5 ~ ~  + 0 . 1 5 ~ ~  + 0 . 1 5 ~ ~  + 0.18~4) (b) 

Butadiene: 26.64(0.01x1 + 0 . 0 1 ~ ~  + 0 . 0 2 ~ ~  + 0 . 0 2 ~ ~  + 0 . 0 4 ~ ~  + 0 . 0 5 ~ ~ )  (c) 

Gasoline: 9.93(0.01x1 + 0 . 0 1 ~ ~  + 0 . 0 7 ~ ~  + 0 . 0 7 ~ ~  + 0 . 2 5 ~ ~  + 0 . 3 0 ~ ~ )  (d) 

Total product sales = 9 . 3 9 ~ ~  + 9 . 5 1 ~ ~  + 9 . 1 7 ~ ~  + 1 1 . 2 3 ~ ~  + 9 . 3 9 ~ ~  + 9 . 5 1 ~ ~  (e) 

Feed cost. 

Feed cost ($/h) = 6 . 5 5 ~ ~  + 9 . 7 3 ~ ~  + 1 2 . 5 0 ~ ~  + 1 0 . 1 4 ~ ~  ( f  1 

Energy cost. The fixed heat loss of 20 X lo6 Btuh can be expressed in terms 
of methane cost (5.38$11b) using a heating value of 21,520 Btu~lb for methane. The 
fixed heat loss represents a constant cost that is independent of the variables xi, hence 
in optimization we can ignore this factor, but in evaluating the final costs this term 
must be taken into account. The value for x7 depends on the amount of fuel oil and 
methane produced in the cracker (x7 provides for any deficit in products recycled as 
fuel). 

We combine (e) and (f)  to get the objective function ($/h) 

Constraints. 

1. Cracker capacity of 200,000 lb/h 

l.l(xl + x5) + 0.9(x2 + x6) + 0.9~3 + 1.0~4 5 200,000 (h) 

or 

1 . 1 ~ ~  + 0.9~2 + 0 . 9 ~ ~  + 1..0x4 + 1 . 1 ~ ~  + 0 . 9 ~ ~  5 200,000 
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2. Ethylene processing limitation of 100,000 lbh  

0 . 5 ~ ~  + 0.35~2 + 0.25~3 + 0.25~4 + 0.5~5 + 0.35~6 5 1 0 0 , ~ o  (9 

3. Propylene processing limitation of 20,000 lb/h 

4. Ethane recycle 

Rearranging, (j) becomes 

5. Propane recycle 

Rearranging Equation (m), 

6. Heat constraint 
The total fuel heating value (THV) (in Btu/h) is given by 

fuel methane from cracker 

THV = 21,520q + 21,52O(O.O7X1 + 0 . 2 5 ~ ~  + 0.10~3 + 0 . 1 5 ~ ~  - 0.07~5 + 0.25~6) 

fuel oil from cracker 

+ 18,OOO(O.21~3 + 0 . 0 1 ~ ~ )  

The required fuel for cracking (Btulh) is 

ethane propane gas oil DNG 

8364(x1 + X5) + 5016(x2 + X6) + 3900x3 + 4553x4 

Therefore the sum of Equation (p) + 20,000,000 Btuh is equal to the THV from 
Equation (o), which gives the constraint 

+ 2 1 , 5 2 0 ~ ~  = 20,000,000 (q) 

Table E14.1B lists the optimal solution of this problem obtained using the Excel 
Solven (case I). Note that the maximum amount of ethylene is produced. As the eth- 
ylene production constraint is relaxed, the objective function value increases. Once 
the constraint is raised above 90,909 lbh, the objective function remains constant. 
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TABLE E14.1B 
Optimal flow rates for cracking furnace for 

different restrictions on ethylene and 
propylene production 

Flow rate 
(lblh) 

Stream Case 1 Case2 

x,  (ethane feed) 
x, (propane feed) 
x, (gas oil feed) 
x, (DNG feed) 
x, (ethane recycle) 
X6 (propane recycle) 
x, (fuel added) 
Ethylene 
Propylene 
Butadiene 
Gasoline 
Methane (recycled to fuel) 
Fuel oil 
Objective function (elh) 

Suppose the inequality constraints on ethylene and propylene production were 
changed to equality constraints (ethylene = 50,000; propylene = 20,000). The opti- 
mal solution for these conditions is shown as case 2 in Table E14.1B. This specifica- 
tion forces the use of DNG as well as ethane. 

EXAMPLE 14.2 OPTIMAL DESIGN OF AN AMMONIA REACTOR 

This example based on the reactor described by Murase et al. (1970) shows one way 
to mesh the numerical solution of the differential equations in the process model with 
an optimization code. The reactor, illustrated in Figure E14.2a, is based on the Haber 
process. 

N2 + 3H2 2NH3 

Figure E14.2b illustrates the suboptimal concentration and temperature profiles expe- 
rienced. The temperature at which the reaction rate is a maximum decreases as the 
conversion increases. 

Assumptions made in developing the model are 

1. The rate expression is valid. 
2. Longitudinal heat and mass transfer can be ignored. 
3. The gas temperature in the catalytic zone is also the catalyst particle temperature. 
4. The heat capacities of the reacting gas and feed gas are constant. 
5. The catalytic activity is uniform along the reactor and equal to unity. 
6. The pressure drop across the reactor is negligible compared with the total pressure 

in the system. 

The notation and data to be used are listed in Table E14.2. 
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Product 
NH3 17. 

- Catalyst zone 
- Cooling zone 

r V k T u b e  wall I 

------- ------ 
Bottom 

I X 
at excnanger I I / ~eacting - gas Feed gas ,-. 

gas c--J L---- Feed gas 
-22% 200-350 atm 

FIGURE E14.2a 
Ammonia synthesis reactor. The shaded area contains the catalyst. [Adapted, with 
permission, from Murase et al., "Optimal Thermal Design of an Auto-thermal 
Ammonia Synthesis Reactor," Ind Eng Chem Process Des Dev 9: 504 (1970). 
Copyright, American Chemical Society.] 

Length, m 

FIGURE E14.2b 
Temperature and concentration profiles of the NH, synthesis reactor. 
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TABLE E14.2 
Notation and data 

Independent and dependent variables 

x Reactor length, m 

NN2 Mole flow rate of N2 per area catalyst, kg mol/(m2)(h) 

Tf Temperature of feed gas, K 

Tg 
Temperature of reacting gas, K 

Parameters 

Cpf Heat capacity of the feed gas = 0.707 kcaV(kg)(K) 

Cpg Heat capacity of reacting gas = 0.719 kcal/(kg)(K) 
f ( ) Objective function, $/year 
f Catalyst activity = 1.0 
AH Heat of reaction = -26,000 kcaVkg mol N2 
N Mass flow of component designed by subscript through catalyst zone, kg mol/(m2)(h) 
N ,  Hours of operation per year = 8330 
P Partial pressure of component designated by subscript, psi; reactor pressure is 286 psia 
R Ideal gas constant, 1.987 kcal/(kg mol)(K) 
S1 Surface area of catalyst tubes per unit length of reactor = 10 m 
S2 Cross-sectional area of catalyst zone = 0.78 m2 

To Reference temperature = 42 1 "C (694 K) 
U Overall heat transfer coefficient = 500 kcaV(h)(m2)(K) 
W Total mass transfer flow rate = 26,400 kgh  

Objective function. The objective function for the reactor optimization is 
based on the difference between the value of the product gas (heating value and arnrno- 
nia value) and the value of the feed gas (as a source of heat only) less the amortization 
of reactor capital costs. Other operating costs are omitted. As shown in Murase et al., 
the final consolidation of the objective function teims (corrected here) is 

f(x,NN2,Tf,Tg) = 11.9877 X lo6 - 1.710 X ~ o ~ N ~ ~  + 704.04Tg 

Equality constraints. Only 1 degree of freedom exists in the problem because 
there are three constraints; x is designated to be the independent variable. 

Energy Balance, Feed Gas 

Energy Balance, Reacting Gas 

where K, = 1.78954 X lo4 exp (-20,800/RTg) 
K2 = 2.5714 X 1016 exp (-47,400/RTg) 
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Mass Balance, N, 

The boundary conditions are 

For the reaction, in terms of NN2, the partial pressures are 

Inequality constraints. 

0 5 NN2 5 3220 

400 5 Tf 5 800 

x I 0  

Feed gas composition (mole %). 

N2: 21.75; Hz: 62.25; NH3: 5; CH,: 4; Ar: 4 

Solution procedure. Because the differential equations must be solved numer- 
ically, a two-stage flow of information is needed in the computer program used to 
solve the problem. Examine Figure E14.2~. The code GRG2 (refer to Chapter 8) was 
coupled with the differential equation solver LSODE, resulting in the following exit 
conditions: 

Initial guesses Optimal solution 

4 4 2  646 kg mol/(m2)(h) 625 kg moV(m2)(h) 
Mole fraction N2 20.06% 19.4% 

T~ 710 K 563 K 

Tf 650 K 478 K 
x 10.0 m 2.58 m 
f (XI 8.45 1 X lo5 $/year 1.288 X lo6 $/year 
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Differential equation solver < 
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Initial guess for x 

Boundary conditions 

FIGURE E14.2~ 
How diagram for solution procedure, Example 14.2. 

In all, 10 one-dimensional searches were carried out, and 54 objective function calls 
and 11 1 gradient calls (numerical differences were used) were made by the code. 

EXAMPLE 14.3 SOLUTION OF AN ALKYLATION PROCESS 
BY SEQUENTIAL QUADRATIC PROGRAMMING 

A long-standing problem (Sauer et al., 1964) is to determine the optimal operating 
conditions for the simplified alkylation process shown in Figure E14.3. Sauer and col- 
leagues solved this problem using a form of successive linear programming. We first 
formulate the problem and then solve it by sequential quadratic programming. The 
notation to be used is listed in Table E14.3A which includes the units, upper and lower 
bounds, and the starting values for each xi (a nonfeasible point). All the bounds rep- 
resent economic, physical, or performance constraints. 

The objective function was defined in terms of alkylate product, or output value 
minus feed and recycle costs; operating costs were not reflected in the function. The 
total profit per day, to be maximized, is 

where C, = alkylate product value ($0.063/octane-barrel) 
C2 = olefin feed cost ($5.04/barrel) 
C, = isobutane recycle costs ($0.035/bmel) 
C4 = acid addition cost ($10.00/per thousand pounds) 
C5 = isobutane makeup cost ($3.36/barrel) 

To form the process model, regression analysis was carried out. The alkylate 
yield x4 was a function of the olefin feed x1 and the external isobutane-to-olefin ratio 

* 

x,. The relationship determined by nonlinear regression holding the reactor tempera- 
tures between 80-90°F and the reactor acid strength by weight percent at 85-93 was 

The isobutane makeup x5 was determined by a volumetric reactor balance. The 
alkylate yield x4 equals the olefin feed x,  plus the isobutane makeup x5 less shrinkage. 
The volumetric shrinkage can be expressed as 0.22 volume per volume of alkylate 
yield so that 
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FIGURE E14.3 
Alkylation flowsheet. 

X2 

lsobutane make-up 

TABLE E14.3A 

Lower * Upper Starting 
Symbol Variable bound bound value 

XI Olefin feed (barrels per day) 0 2,000 1,745 
X2 Isobutane recycle (barrels per day) 0 16,000 12,000 
x3 Acid addition rate (thousands of pounds per day) 0 120 110 
4 Alkylate yield (barrels per day) 0 5,000 3,048 
X5 Isobutane makeup (barrels per day) 0 2,000 1,974 
x6 Acid strength (weight percent) 85 93 89.2 
x7 Motor octane number 90 95 92.8 
X8 External isobutane-to-olefin ratio 3 12 8 
X9 Acid dilution factor 0.01 4 3.6 
XIO F-4 performance number 145 162 145 

"Instead of 0, was used. 

The acid strength by weight percent x6 could be derived from an equation that 
expressed the acid addition rate x3 as a function of the alkylate yield x4, the acid dilu- 
tion factor x,, and the acid strength by weight percent x6 (the addition acid was 
assumed to have acid strength of 98%) 

1 

X5 

Olefin feed 
X I  > 

Fresh acid 
X3 > 

Hydrocarbon 
product Fractionator 

Reactor 

Spent acid Alkylate product 
> 3 
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The motor octane number x7 was a function of the external isobutane-to-olefin 
ratio x8 and the acid strength by weight percent x6 (for the same reactor temperatures 
and acid strengths as for the alkylate yield x4) 

The external isobutane-to-olefin ratio x8 was equal to the sum of the isobutane 
recycle x2 and the isobutane makeup x5 divided by the olefin feed x, 

The acid dilution factor x9 could be expressed as a linear function of the F-4 per- 
formance number xlo 

The last dependent variable is the F-4 performance number x,,, which was 
expressed as a linear function of the motor octane number x7 

The preceding relationships give the dependent variables in terms of the inde- 
pendent variables and the other dependent variables. 

Equations (c),  (d), and (f) were used as equality constraints. The other relations 
were modified to form two inequality constraints each, so as to take account of the 
uncertainty that existed in their formulation. The dl and d, values listed in Table 
E14.3B allow for deviations from the expected values of the associated variables. 

Thus, the model has eight inequality constraints in addition to the three equality 
constraints and the upper and lower bounds on all of the variables. 

-[35.82 - 0 . 2 2 2 ~ ~ ~ 1  + d9,x9 2 0 (n) A 

To solve the alkylation process problem, the code NPSOL, a successive quadratic 
programming code in MATLAB, was employed. 

The values of the objective function found were 

f(xO) = 872.3 initial guess 
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TABLE E14.3B 

Deviation parameter Value 

TABLE 14.3C 

Variable Optimal value Variable Optimal value 

*At bound. 

TABLE E14.3D 

Constraint Value at x* Constraint Value at x* 

Tables E14.3C and E14.3D list values of the variables at x* (rounded to five signifi- 
cant figures) and the constraints, respectively, at the optimal solution. 

Note that the value of the isobutane makeup x5 is at its upper bound. 

EXAMPLE 14.4 PREDICTING PROTEIN FOLDING 

Although the field of molecular modeling is relatively new, it is expanding rapidly with 
advances in computational power. The appeal of molecular modeling lies in the wealth 
of potential theoretical developments and practical applications in drug design, food 
chemistry, genome analysis, and biomedical engineering. A particularly challenging 
problem involves the prediction of protein folding that can be treated as a global and 
combinatorial optimization problem. Proteins are three-dimensional structures whose 
configuration in principal can be predicted from information about a particular amino 
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FIGURE E14.4a 
Conformation of N-acetyl-N1-methyl-alanineamide 
(Courtesy of C. A. Floudas). 

acid sequence along with the environmental conditions. Naturally occurring proteins 
are composed of 20 different amino acid compounds with different side chains and a 
backbone of repeating units connected by peptide bonds. Covalent bond angles and 
interatomic forces cause the chain to form and twist in a unique way in three dimen- 
sions for each protein. Figure E14.4a illustrates a computer-generated model of the 
protein N-acetyl-N1-methyl-alanineamide. 

Once the folded sequence is known, the biological and chemical properties of the 
protein can be predicted. In the development of drugs, for example, the intended target 
in the human body is a particular protein of known structure whose behavior can be 
altered (for the better) when a drug molecule binds to a receptor site on the target mol- 
ecule. 

In spite of the complexity of the protein-folding problem, prediction of folding 
rests on a simple thermodynamic concept: The folded configuration can be identified 
by minimizing the global free energy of the molecule. Two main components exist, 
namely the unsolvated potential energy and the solvation energy, the sum of which 
must be minimized. 

This criterion requires a search through a nonconvex multidimensional conformation 
space that contains an immense number of minima. Optimization techniques that have 
been applied to the problem include Monte Carlo methods, simulated annealing, 
genetic methods, and stochastic search, among others. For reviews of the application 
of various optimization methods refer to Pardalos et al. (1996), Vasquez et al. (1994), 
or Schlick et al. (1999). 

The example considered here involves the use of a branch-and-bound global opti- 
mization algorithm known as aBB (Adjiman et al., 1998) as carried out by Klepeis et 
al. (1998) who calculated the minimum energy for a number of peptides. To simplify 
an inherently very complicated optimization problem, particularly in view of the lim- 
ited data known about solvation parameters, they formulated the energy minimization 



CHAPTER 14: Chemical Reactor Design and Operation 497 

problem using the dihedral angles (assuming the covalent bond lengths and bond 
angles fixed at their equilibrium values) as the optimization variables as follows: 

Minimize: E(4. $. q, d, q, d?) (b) 

Subject to: 

- 5 4 T, i = 1, ... , NRes 

- T ~ $ J ~ ~ T ,  i = l ,  ..., NRes 

- T ~ U ~ ~ I T ,  i =  1 ,..., NRes 

-TI xi ' I T ,  i = l ,  ..., NRes 

k = 1,  ... , K' 

-T 5 4; d T, i  = 1, ... , JN 

where E represents the total of the potential energy function and the free energy of 
solvation. Eunsol is 

A', B,  
+ E x - T i  

( i j ) ~ ~ ~ r i j  rij 

(Electrostatic contribution-ES) 

(Nonbonded contribution-NB) 

(Hydrogen bonded contribution-HB) 

Eo, k 
f (1) (1 + cos n@,) (Torsional contribution-TOR) 

RETOR 

(Cystine loop -closing contribution-CL) 

+ ($1 (1 - cosn,xl) (Cystine torsional contribution-CT) 
lc CT 

+ X E P  (Proline internal contribution-PRO) 
p E PRO 

where: Aij = nonbonded parameter specific to the atomic pair 
A> = hydrogen-bonded parameter specific to the atomic pair 
Bg = hydrogen-bonded parameter specific to the atomic pair 
Cij = nonbonded parameter specific to the atomic pair 

E0,, = parameter corresponding to torsional barrier energy for a dihedral 
angle 8, 

E,,, = parameter corresponding to torsional barrier energy for a dihedral 
angle xl involved in cystine loop closing 
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E, = fixed internal energy for each proline residue in the protein 
FU = coefficient equal to 0.5 for one to four interactions and equal to 1.0 

for one to five and higher interactions 
i = index denoting the sequence of amino acid residues in the peptide 

chain 
j = index denoting the dihedral angles of the amino acid end group 

Jc = number of carbolic end groups 
JN = number of dihedral angles of the end group 

k = index denoting the dihedral angles of the side chains for the ith amino 
acid residue 

K i  = number of angles on the side chains 
N,,, = number of amino acid residues 
n, = symmetry type for Ok 
n, = symmetry type for X, 
qi = dipole parameter for atom i 
qj = dipole parameter for atom j 
rU = the interatomic distance in the atomic pair ij 
ri, = actual interatomic distance 
ri0 = required interatomic distance 

8, $i, wi = dihedral angles along the backbone of the peptide chain 
xlk = side chain dihedral angle 
19.~ = dihedral angles of the carboxy end groups 

J 
OjN = dihedral angles of the amino end groups 

To reduce undesirable perturbations in the minimization, and for other reasons 
explained in Klepeis et al., the first term on the right-hand side of Equation (a) was 
minimized before adding the contribution from the second term. The specific details 
and parameters of problem (b) can be found in Klepeis et al. 

Klepeis et al. extended the aBB optimization algorithm to guarantee convergence 
to the global optimum of a nonlinear problem with twice differentiable functions. 
Without such a guarantee, the outcome depends too heavily on the allocated initial 
conditions for the molecular configuration. The aBB optimization algorithm brackets 
the global minimum solution by developing converging lower and upper bounds. 
These bounds are refined by successively partitioning the region for search. Upper 
bounds on the global minimum are obtained by local minimizations of the original 
energy function E. Lower bounds L are obtained by minimizing convex lower- 
bounding functions that are constructed by adding to E the sum of separable quadratic 
terms such as 

for each angle (6 terms are added). 
The a represent nonnegative parameters that must be greater than or equal to the 

negative one-half of the minimum eigenvalue of the Hessian of E over the defined 
domain. These parameters can be estimated by the solution of an optimization prob- 
lem or by using the concept of the measure of a matrix (Maranas and Floudas, 1994). 
The net result is to make L convex. A useful property of L is that the maximum sep- 
aration between L and E is bounded and is proportional to a and to the square of the 
diagonal of the successive box constraints, so that convergence to a global optimum 
occurs. 
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At any stage, once solutions for the upper and lower bounds have been estab- 
lished, the next step is to modify the bounding problems for the next iteration. This is 
accomplished by successively partitioning the initial domain into smaller subdomains. 
The default partitioning strategy used in the algorithm involves successive subdivision 
of the original hyper-rectangle by halving on the midpoint of the longest side (bisec- 
tion). A nonincreasing sequence for the upper bound is found by solving the noncon- 
vex problem E locally and selecting it to be the minimum over all the previously 
recorded upper bounds. 

Initially Klepeis et al. allowed the dihedral angles to vary over the entire [-T, T] 
domain. It was found, however, that the problem required intensive computational 
effort (Androulakis et al., 1997). A reduction of the domain space was therefore pro- 
posed by setting limits based on the actual distributions of the dihedral angles. Obvi- 
ously, for the algorithm to be successful, these reductions could not exclude the region 
of the global minimum conformation. 

The computational requirement of the aBB algorithm depends on the number of 
variables on which branching occurs. The most important variables are those variables 
that substantially influence the nonconvexity of the surface and the location of the global 
minimum. In the protein-folding problem, the backbone dihedral angles (4 and $) are 
the most influential variables. Therefore, in very large problems, to further reduce the 
dimensions of the problem, only these variables were involved in the optimization. 

Figure E14.4b shows the results of the application of the optimization strategy to 
solvated N-acetyl-N'-methyl-alanineamide. Level sets of the deviations of the total 
energy from the global minimum are shown as solid and dashed lines at 1, 2, 5, and 

FIGURE E14.4b 
Surface of the objective function obtained in determining 
the structure of N-acetyl-N'-methyl-alaninearnide; *is the 
minimum, and the level sets denote deviations from the 
minimum (in kcallmol). 



500 PART I I I : Applications of Optimization 

9 kcal/mol, respectively; *designates the global minimum. Klepeis et al. list the vari- 
ous components of the total energy as a function of the amino residues for the protein. 
Only qualitative comparisons can be made with actual proteins because of the lack of 
experimental data. 

EXAMPLE 14.5 OPTIMIZATION OF LOW-PRESSURE 
CHEMICAL VAPOR DEPOSITION REACTOR FOR THE 
DEPOSITION OF THIN FILMS 

The manufacture of microelectronic devices involves the sequencing of processes 
involving thin film deposition, patterning, and doping, only the first of which is dis- 
cussed here. The formation of the films is performed by a variety of techniques, 
including physical and chemical processes. One of the most versatile of these meth- 
ods is chemical vapor deposition (CVD), which involves reacting gases flowing over 
a wafer to form the desired film. Energy for the reaction is provided by heat or from 
a plasma. CVD requires the diffusion of gaseous reactants to the hot substrate (wafer), 
adsorption, reaction, desorption, and diffusion of the gaseous products back into the 
bulk gas. The net result of the process is formation of a film on the substrate. One 
common configuration used for CVD stacks the wafers in a tube such as that shown 
in Figure E14.5a, with heating provided by furnace elements (Middleman and 
Hochberg, 1993). The low-pressure chemical vapor deposition (LPCVD) reactor 
allows a large number of wafers to be processed in one batch, yielding good film 
thickness and composition uniformity. 

The LPCVD reactor shown in Figure E14.5a operates at pressures of 0.1-1 torr. 
The close stacking of the wafers allows for a large throughput while taking advantage 
of the fact that at these low pressures gas diffusivities are high. This arrangement 
allows good transport of gases into the region between the wafers (the interwafer 
region) and hence good radial uniformity of deposition. The flow in the region 
between the wafer edges and the reactor wall (the annular region) is laminar at typi- 
cal LPCVD conditions. The reactor walls as well as the wafers are hot so that radial 
temperature gradients are small. The nonuniformity of growth rates in the radial direc- 
tion is thus minimized. 

Pressure gage 
/ 

Front d d 
Exhaust gas + 

\ 

Reactant gas 

1 \ 
150 Wafers in boat 1 injectors 

O-ring O-ring 

FIGURE E14.5a 
A typical multiwafer hot-wall low-pressure chemical vapor deposition reactor. 
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In most microelectronics fabrication factories ("fabs"), LPCVD of polycrys- 
talline silicon (poly-Si) is carried out by the decomposition silane 

The gas-solid reaction rate is modeled by the nonlinear expression 

where R = the reaction rate 
p = the partial pressure 

k, ,  k,, k, = rate constants 

The rate expression is based on adsorption4esorption equilibrium at the substrate 
surface with an additional term (k2pH2)  representing H2 gas inhibition. The rate con- 
stants can be estimated by regression of R with the two partial pressures using exper- 
imental data (Roenigk and Jensen, 1985). 

Model equations. Fundamental process models are very useful in optimizing 
the design and operation of LPCVD systems. A fundamental model of an LPCVD 
reactor similar to Figure E14.5a was presented by Jensen and Graves (1983) and 
included the following simplifying assumptions: 

1. The reactor shown in Figure E14.5a, has no radial temperature gradients because its 
walls and substrate are heated and slow reaction rates imply small heats of reaction. 

2. The axial temperature gradient is fixed by the furnace settings because the gas 
heat-up lengths are small and most heat transfer occurs by radiation at LPCVD 
conditions. 

3. There is no axial variation of gas-phase composition in the interwafer region 
between any two consecutive wafers because the interwafer spacing is small. 

4 There is no radial variation of gas-phase composition in the annular region because the 
annular region is small, and because there is rapid diffusion at LPCVD conditions. 

5. The gas phase is in steady state, because CVD growth processes are slow com- 
pared to gas phase dynamics. 

These five assumptions were used by Jensen and Graves (1983) and were also 
employed in the design study of Setalvad and colleagues (1989). Define N, and N, as 
the molar respective fluxes of silane in the r and z directions, A as the interwafer spac- 
ing, and x, as the mole fraction of silane in the gas phase. The mass transport equations 
in the rand z directions that describe the diffusion of silane consist of two coupled par- 
tial differential equations. In Setalvad and colleagues (1989), the partial differential 
equations in the r and z directions were converted to ordinary differential equations by 
assuming the axial transport (4) only occurred in the annular region, whereas the 
radial transport (N,) only occurred in the interwafer region (see Figure E14.5b). The 
LPCVD model thus is as follows. 

Interwafer Region 
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Reactants 

Interwafer region , Annular region 

FIGURE E14.5b 
LPCVD reactor geometry with interwafer and annular regions. 

with boundary condition: 

= 0 and x l ( r i )  = (r:)  

Radial 

A- Axial 

where r, = the wafer radius, and 
+, - refers to an infinitesimal distance in postivelnegative r direction 

Annular Region 

where r, = the tube radius 
a = the area of the wafer holder plus wafers relative to the reactor tube area 

The fluxes are related to the mole fraction through Fick's law (c is total concen- 
tration of gas, and D is the diffusivity of the silane in the gas phase): 

Boundary conditions for the annular region are given at the inlet ( z  = 0) and the tube 
exit (z  = L): 

= vOc0xlo and - 
z=O 

where v0c,,x1, represents the product of gas velocity, total concentration, and mole 
fraction silane at the inlet. 
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The effectiveness factor q is defined as 

q is the ratio of the average rate of deposition on a wafer to that at its edge, so it is a 
measure of the uniformity of deposition. The rate R at r,,, varies in the z direction, 
hence q is a function of axial distance z. The effectiveness factor represents the radial 
uniformity of deposition. When surface reaction is rate-controlling, q = 1, and when 
q < 1, diffusion resistance comes into play. 

Optimization of the reactor. The nonlinear ordinary differential equations 
and boundary conditions in the model can be put in dimensionless form and converted 
to algebraic equations using orthogonal collocation (Finlayson, 1980). Setalvad and 
coworkers (1989) used these algebraic equations as constraints in formulating a non- 
linear programming problem to study the effects of temperature, flow parameters, 
reactor geometry, and wafer size on the LPCVD process, particularly the uniformity 
of silicon deposition. Strategies were devised to determine the potential improve- 
ments in the system performance by using optimum temperature staging and reactant 
injection schemes. Figure E14.5~ shows the inputs and performance measures for the 
reactor that can be optimized to maximize the film growth rate (production rate), sub- 
ject to constraints on radial film uniformity (on each wafer), as well as axial unifor- 
mity (wafer-to-wafer). 

The growth rate is quite sensitive to the axial temperature profile. An axial tem- 
perature profile that increases along the reactor because it improves the deposition 
uniformity is commonly used in industry. The temperature of each successive zone in 
the furnace (defined by the furnace elements in Figure E14.5a) can be adjusted by 
voltage applied to variac heaters. The zone temperatures are assumed constant within 
each zone, T,, j = 1, . . . , n,, where n, is the number of temperature zones to be used, 

Process inputs 

Temperature zone 
setpoints 

Reactant flow 
setpoints 

Pressure setpoint 

Wafer spacing 

Multiwafer LPCVD Process 

Process states > 

+ 

Performance 
measures 

Film growth rate 

Axial film 
uniformity 

Radial film 
uniformity 

FIGURE E14.5~ 
Multiwafer LPCVD reactor process inputs and outputs. 
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typically three to five. The optimization procedure was initiated with all Ti values 
equal to 880 K. The objective function to be maximized in this case was 

Gi is determined by averaging the growth rate given by Equation (a) over the wafer sur- 
face, which is then integrated over the axial direction to compute f(T). G is measured 
in kmin,  T is the set of temperatures, and zi (i = 1, N) are locations along the reactor 
at which the model is solved to obtain the rates Gi. f(T) is a uniformly weighted sum 
of the deposition rates over the entire reactor (N = number of increments) obtained via 
the LPCVD model, thus representing the throughput of the reactor. 

The objective function is maximized subject to the following inequality constraints: 

1. The maximum allowable axial variation in growth rate is 5% of the maximum rate, 

2. At no point should the radial variation in growth rate be greater than 5%; in terms 
of effectiveness factors, 

3. The temperature in each zone is restricted to 

This last constraint is imposed so that the grain size and other temperature-dependent 
material properties of the grown film and also its step coverage do not show excessive 
variations. 

The nonlinear programming problem based on objective function (i), model 
equations (b)-(g), and inequality constraints ( j)-(1) was solved using the generalized 
reduced gradient method presented in Chapter 8. See Setalvad and coworkers (1989) 
for details on the parameter values used in the optimization calculations, the results of 
which are presented here. 

In Figure E14.5d the performance of the reactor with operation with each of three 
temperature zones at their optimal values can be compared with the isothermal case 
(q = 880 K). The optimization routine increased the temperature of zone 3 the most, 
followed by zone 2 (see Figure E14.5e). The optimization strategy increased the value 
of f(T) while decreasing the maximum axial growth rate variation. The temperatures 
were increased from the initial value (880 K) until the axial rate variation (mi) between 
the beginning and the end of zone 3 reached the 5% limit. Reactant depletion causes 
the sharp drop-off in rate within the zone. This effect of reactant depletion increases 
noticeably from zone 1 to zone 3 (Figure E14.5d). The temperature in zone 2 could be 
decreased so that less reactant is consumed in this zone and more is available for zone 
3. However, the resulting lower rates in zone 2 cause the axial rate variation between 
the end of this zone and the beginning of zone 3 to exceed the 5% limit. 
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With temperature 

Without temperature 

95 - 
Zone 1 I zone 2 I zone 3 

0.0 0.2 0.4 0.6 0.8 1 .O 
Normalized reactor position 

(a) 
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0.99 
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0.97 - 

0.96 I I I I 
0.0 0.2 0.4 0.6 0.8 1 .O 

Normalized reactor position 
(b) 

FIGURE E14.5d 
Reactor performance with and without optimized temperature 
staging. 

Optimum reactant injection. An alternative to using temperature staging is to 
provide a sudden increase in the partial pressure of SiH,, using the reactant gas injec- 
tors shown in Figure E14.5a, so that additional reactant is fed into the reactor at dif- 
ferent points along its length. Sudden increases in growth rate at the injection points 
result without the disadvantage of excessive rate drop-off due to reactant depletion, as 
seen for the case of temperature staging. For modeling purposes the original reactor 
with two reactant injection ports can be considered to consist of three smaller reactors 
or subreactors. Predicting the performance of the reactor then involves consecutively 
solving the modeling equations for each of the subreactors; see Setalvad and cowork- 
ers (1989) for more details. 
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FIGURE E14.5e 
The optimum temperature profile for three stages. 

The optimization problem for the case of sudden injection of SiH, involves as 
independent variables the total gas flow velocities: 

based on the total amount of gas injected, and 

the mole fractions of the reactant silane in each injection stream. Here ninj is the num- 
ber of injection points. Two intermediate injection points were considered, giving four 
independent variables to be adjusted (two velocities and two mole fractions). This for- 
mulation was thought to be a reasonable balance between improved reactor perform- 
ance and the resulting greater design complexity. 

The objective function to be maximized was essentially the same as before 
except that the rate G was now a function of vOi and xli instead of Ti, that is, 

The uniformity inequality constraints [Equations ( j)-( l)]  were again included in the 
problem. Additionally, the bounds on the variables were 
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FIGURE E14.5f 
Reactor performance with optimum staged injection. 

and 

The optimum reactor growth rate and effectiveness factor are shown in Figure 
E14.5f. As expected, the optimization code adjusted vol first because the deposition 
was more sensitive to flow velocities. After vol reached its upper bound, x,, increased 
until the axial uniformity constraint was reached, that is, the difference in growth rate 
between the end of the first zone and the beginning of the second was equal to 5% of 
the inlet value (see Figure E14.5f) according to constraint (j). However, for injection 
point 2, the rates did not change by 5% between the injection points. Maximizing 
overall growth rate was more easily solved by increasing x,,. The effectiveness fac- 
tors (Figure E14.5f), unlike those in the previous temperature profile optimization 
(Figure E14.5d) stayed nearly constant along the axial direction. 
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Setalvad and coworkers (1989) also evaluated nonuniform interwafer spacing in 
the reactor to improve deposition uniformity and increase the reactor throughput. 
Optimal interwafer spacings were smaller toward the reactant inlet to take advantage 
of the larger reactant concentration in this region, and larger at the end of the reactor 
where reactant depletion and hydrogen production inhibited the polysilicon deposi- 
tion. This scheme exhibited decreased sensitivity of the process to gas flow rate vari- 
ations when compared with the uniformly spaced wafer case. 

A subsequent study by Badgwell and colleagues (1992) used a more detailed 
deposition model that was verified on industrial-scale LPCVD equipment. Badgwell 
and colleagues showed a sharp decrease in deposition uniformities for a wafer to reac- 
tor diameter ratio of about 0.5. This outcome suggested that it may not be wise to use 
existing reactors for larger wafer sizes. Furthermore, the reactor tubes that would then 
be necessary may have to be inordinately large and, in view of the low pressures, inor- 
dinately thick to be economical. 

EXAMPLE 14.6 REACTION SYNTHESIS VIA MINLP 

Process synthesis involves intelligent decision making to select a process design 
whose configuration and operating states are optimal in some sense. The development 
of mixed-integer nonlinear programming (MINLP) algorithms has greatly expanded 
the scope of quantitative synthesis because we can now treat synthesis problems 
involving both continuous and discrete variables. In this example, we demonstrate the 
use of MINLP in the synthesis of a hydrodealkylation (HDA) process (Douglas, 1988) 
as carried out by Phimister and colleagues (1999). 

The fundamental decisions in the synthesis of a multistep process that involves 
individual reactor units connected in serial and parallel configurations as well as recy- 
cle pertain to how the units will be connected. In addition, however, we must consider 
(for a steady-state process) 

1. What the feeds and their quantities should be. 
2. What reaction paths to avoid. 
3. What products should be made and in what quantity. 
4. What the flow rates should be. 
5. What variables affect the products. 
6. How to maintain flexibility. 
7. Safety issues. 

We consider only factors 1 through 4 in what follows. Phimister and colleagues 
decomposed the strategy of reactor process design so that a mathematical statement 
of the synthesis problem could be formulated in terms of an objective function and 
constraints. At the initial stage of the decision making, the designer is presumed to 
have limited information about possible reaction paths as reflected in kinetic models, 
costs of raw materials, selling prices of products, and the desired plant production. 
The MINLP problem formulation in this example includes (1) binary decision vari- 
ables designating whether or not a connection exists between reactors, (2) specifica- 
tion of continuous variables corresponding to flow rates, and (3) prespecification of the 
extent of conversion of a reactant. 

From the topographical viewpoint illustrated in Figure E14.6a the process com- 
prises a set of reactor-separator sections that connect a set of component feeds (spec- 
ified as source nodes) to component products (specified as destination nodes). Each 
section is a prescribed sequence of reactors and associated separation units, and sev- 
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FIGURE E14.6a 
Schematic of reactor-separation process. 

Recycle 

era1 sections may be interconnected, although for simplicity in presentation, we show 
only one such section in this example. The details of the design of the reactors and 
separators constituting a section are determined after the MILNP problem is solved. 
A source node defines the site from which a component is supplied, and a destination 
node defines the site at which a component is required in the process. In the initial 
topography (see Figure E14.6a) for the process, all of the components in the nodes are 
connected via directed paths, except that usually no feedback exists from a process 
component destination to a process component source. By use of binary variables in 
the constraints (as we will show later), a set of paths can be eliminated from the 
MINLP problem formulation, thus simplifying the topography. Various connections 
may be required, such as a particular feed from an external source node to a section, 
and various connections may be deleted, such as a bypass path from a process source 
to a process destination or a recycle path for a section. 

The notation used in this example for the connections is as follows: 

1 

D = the set of destination nodes { 1,2, . . . , e )  including reactor-separator 
sections (recycle) or flows exiting the overall process 

e = the process exit stream 
f = the process feed stream 
n = the number of components 
N = the total number of plant reactor-separator sections 
Q = the set of components, i = 1,2, . . . n 
S = the set of source nodes {f, 1,2, . . . , N} 
X = fraction conversion of toluene 

yijk = a binary variable (0, 1) in which the subscript i designates the chemical 
component, j denotes the source node, and k denotes the destination node 

+ = selectivity of toluene converted to benzene 
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As examples of the notation for the binary variables, y,-~~,fr = lmeans that methane 
in the feed stream goes to the reactor-separator section labeled No. 2, y ~ ~ , ~ ~  = 0 
means that hydrogen in the feed stream does not go directly to the exit stream, and 
y,,,,,, means that carbon monoxide is recycled in the reactor-separator section 
labeled No. 1. 

Stream flow rates F that exit are designated with the same set of subscript indices, 
i, j, and k, that have the same meaning as that used for the binary variables. Negative 
flow rates are not allowed (Fij,, r 0). Constraints such as 

where U is the largest flow rate allowed between two sites, place an upper bound on 
a flow rate. 

The reaction(s) in a reactor-separator section is accounted for by an equality con- 
straint(~) such as for the case of A+B in section 1 

where X is the fraction conversion of A to B. 
In the HDA process represented in Figure E14.6.b (Douglas (1988), the reac- 

tions are 

C7Hs + Hz + C6H6 + CH4 

Toluene Hydrogen Benzene Methane 

C6H6 - C12H10 + H2 
Benzene Diphenyl. ~ ~ d r o ~ e n  

FIGURE E14.6b 
Component flow diagram. 
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From Figure E14.6b you can see that five components exist for the one reactor- 
separator section, and 20 binary variables and stream flows (continuous variables) 
occur in the initial model. Let us summarize the model proposed by Phimister and col- 
leagues. Other details are in Douglas. 

Constraints Involving Binary Variables 

Bypass prohibited: 

Only toluene and hydrogen are feeds: 

Only benzene, methane, and diphenyl leave the process 

- 1 Y C , ~ H ~ ~ ,  I. e - 
No toluene exits the process to a destination 

For the reactor-separator section, all source nodes must have a destination 

Constraints Representing the Model 

Douglas (1988, Appendix B) fit the selectivity of the data t,h versus Xgiven in the 1967 
AIChE Student Contest Problem to get 

Moles benzene formed = I -  0.0036 ' = Moles toluene converted (1 - q 1 . 5 4 4  01 

Process Specifications 

Production of benzene 

80,000 metric ton per year (8000 = hour operation) 
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Molar feed 
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Hydrogen 5 mol -- - 
Toluene 1 mol 

Objective Function 

The objective function is to maximize profits, namely, products sold minus raw mate- 
rial costs. No capital or investment cost are involved in this example. 

To prevent internal flow rates having zero shadow costs at the solution and there- 
fore to avoid a multiplicity of solutions, a penalty of 0.05 times the price is incurred 
for each ton transported between a source and a destination. 

Prices and Costs for Components 

Component Pricelcost ($/ton) 

Toluene 200 
Hydrogen 100 
Benzene 500 
Methane 100 
Diphenyl 20 

Phimister and colleagues obtained the optimal configuration and associated 
flow rates shown in Figure E14.6~ using GAMS. The optimal value of the conver- 
sion was 0.697, and the selectivity + was 0.977, yielding a value of the objective 
function of $18.65 millionfyear. Refer to Phimister and colleagues (1 999) for a prob- 
lem corresponding to a more complex plant involving four reactor-separator units 
and ten components. 

Vl 
Feed p E q  Product 

/ \ I \  

Toluene 13 1,192 \ J , T  T - 

> H H -  
Hydrogen Reactor-Separator Benzene 

section for 

(Units are kmoles per hour) 

FIGURE E14.6~ 
Optimal configuration and stream flows. 
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FIGURE 15.1 
Information flow in the design process. 

As DISCUSSED IN Chapter 1, optimization of a large configuration of plant com- 
ponents can involve several levels of detail ranging from the most minute features 
of equipment design to the grand scale of international company operations. As an 
example of the size of the optimization problems solved in practice, Lowery et al. 
(1993) describe the optimization of a bisphenol-A plant via SQP involving 41,147 
variables, 37,641 equations, 212 inequality constraints, and 289 plant measure- - 
ments to identify the most profitable operating conditions. Perkins (1998) reviews 
the topic of plantwide optimization and its future. 

An important global function of optimization is the synthesis of the optimal 
plant configuration (flowsheet). By synthesis we mean the designation of the struc- 
ture of the plant elements, such as the unit operations and equipment, that will meet 
the designer's goals. Figure 15.1 shows the relation of synthesis to design and oper- 
ation. You check a flowsheet for equipment that can be eliminated or rearranged, 
alternative separation methods, unnecessary feeds that can be eliminated, unwanted 
or hazardous product or byproducts that can be deleted, heat integration that can be 
improved, and so on. Even if no new technology is to be used, the problem is com- 
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binatorial in nature, and the number of alternatives increases substantially. For 
example, Gunderson and Grossman (1990) in synthesizing a heat exchanger net- 
work showed that for a net of five units below the pinch point (and three above), 
126 different arrangements of exchangers exist. We have chosen not to discuss the 
general problem of synthesis in this chapter, but instead we treat examples of opti- 
mization applied to design of a specified configuration or flowsheet. 

A major use of optimization is in the detailed design or retrofit of a plant for 
which the flowsheet is already formulated. Goals are to enhance profitability; 
reduce utility costs; select raw materials; size equipment; lay out piping; and analyze 
reliability, flexibility, and safety, and so on. Often, as a result of various case stud- 
ies, a base case is developed by creating a detailed process flowsheet containing the 
major pieces of equipment. Then, process flow simulators are employed to achieve 
improved designs. The design team improves the database by getting vendor data 
and perhaps pilot plant data; simulates the base case design to find improvements 
and barriers to feasibility; and develops networks of heat exchangers, turbines, and 
compressors to satisfy the heating, cooling, and power requirements of the process. 
Refer to any of the process design books such as Seider et al. (1999) for details con- 
cerning the design process. 

An even more widespread application of optimization is the determination of 
the optimal operating conditions for an existing plant, such as selecting particular 
feedstocks, temperatures, pressures, flow rates, and so on. Figure 15.2 traces the 
information flow involved in determining the optimal plant operating conditions. 
See Chapter 16 for a discussion of the optimization hierarchy in plant operations. 
As indicated in the figure, optimization occurs at intermediate stages of the process 
simulator as well as in the overall economic evaluation. The figure implies that 
effectively meshing optimization algorithms with process simulators requires more 
than just an optimization code and a process simulator containing the process 
model. The software functions involved are 

1. A supervisor or director to manage overall control of the software components. 
2. Data processing conditioning, reconciliation, and validation of the data evolving 

from the plant. 
3. Estimation of process parameters and unmeasured variables. 
4. Optimization of different kinds of problems. 
5. Simulation of plant models (equations, modules, or both) of varying degrees of 

detail. 
6. A database (historian) for process variables, costs and revenues, operating con- 

ditions, disturbances, and so on. 
7. Communication links for data transfer and command signals. 
8. Reports and analysis capability for unit and plant performance, economic per- 

formance, and hypothetical scenarios. 

Although uncertainty exists in the results of all cases of the optimization of 
plants because of the uncertainty in the values of the parameters in the process 
models themselves, in the cost and revenue values in the objective function, and in 
potential changes in the process inputs, we avoid such issues in this chapter and 
focus solely on deterministic optimization. 
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15.1 PROCESS SIMULATORS AND OPTIMIZATION CODES 

Process simulators contain the model of the process and thus contain the bulk of the 
constraints in an optimization problem. The equality constraints ("hard con- 
straints") include all the mathematical relations that constitute the material and 
energy balances, the rate equations, the phase relations, the controls, connecting 
variables, and methods of computing the physical properties used in any of the rela- 

a 

tions in the model. The inequality constraints ("soft constraints") include material 
flow limits; maximum heat exchanger areas; pressure, temperature, and concentra- 
tion upper and lower bounds; environmental stipulations; vessel hold-ups; safety 
constraints; and so on. A module is a model of an individual element in a flowsheet 
(e.g., a reactor) that can be coded, analyzed, debugged, and interpreted by itself. 
Examine Figure 15.3a and b. 

Two extremes are encountered in process simulator software. At one extreme 
the process model comprises a set of equations (and inequalities) so that the process 
model equations form the constraints for optimization, exactly the same as described 
in previous chapters in this book. This representation is known as an equation- 
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A typical process module showing the necessary interconnections of 
information. 
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PROPS 2 1 1 1 1 
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FIGURE 15.3b 
A module that represents a flash unit. (Reproduced, with permission, from J. D. Seader, 
W. D. Seider, and A. C. Pauls. Flowtran Simulation-An Introduction. Austin, TX:  
CACHE, 1987.) 

oriented process simulator. The equations can be solved in a sequential fashion anal- 
ogous to the modular representation described in the next section, or simultaneously 
by Newton's method or by employing sparse matrix techniques to reduce the extent 
of matrix manipulations (Gill et al., 1981). l b o  of the better known equation-based 
codes are Aspen Custom Modeler (Aspen Technology 1998) and ASCEND (Wester- 
berg 1998). Equation-based codes such as DMCC and RT-OPT (Aspen Technology), 
and ROMEO (Simulation Sciences, 1999) dominate closed-loop, real-time opti- 
mization applications (refer to Chapter 16). Section 15.2 covers meshing equation- 
based process simulators with optimization algorithms. 
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At the other extreme, the process can be represented on a flowsheet by a col- 
lection of modules (a modular-based process simulator) in which the equations (and 
other information) representing each subsystem or piece of equipment are coded so 
that a module may be used in isolation from the rest of the flowsheet and hence is 
portable from one flowsheet to another. Each module contains the equipment sizes, 
the material and energy balance relations, the component flow rates, temperatures, 
concentrations, pressures, and phase conditions. Examples of commercial codes are 
ASPEN PLUS (Aspen Technology, 1998), HYSYS (Hyprotech, 1998), ChemCAD 
(Chemstations, 1998), PRO/II 1998 (Simulation Sciences, 1998), and Batch Pro 
and Enviro Pro Designer (Intelligen, 1999). Section 15.3 covers meshing modular- 
based process simulators with optimization algorithms. 

In addition to the two extremes, combinations of equations and modules can be 
used. Equations can be lumped into modules, and modules can be represented by 
their basic equations or by polynomials that fit the input-utput information. 

Although, as explained in Chapter 9, many optimization problems can be nat- 
urally formulated as mixed-integer programming problems, in this chapter we will 
consider only steady-state nonlinear programming problems in which the variables 
are continuous. In some cases it may be feasible to use binary variables (on-off) to 
include or exclude specific stream flows, alternative flowsheet topography, or dif- 
ferent parameters. In the economic evaluation of processes, in design, or in control, 
usually only a few (5-50) variables are decision, or independent, variables amid a 
multitude of dependent variables (hundreds or thousands). The number of depen- 
dent variables in principle (but not neces&ly in practice) is equivalent to the num- 
ber of independent equality constraints plus the active inequality constraints in a 
process. The number of independent (decision) variables comprises the remaining 
set of variables whose values are unknown. Introduction into the model of a speci- 
fication of the value of a variable, such as T = 400°C, is equivalent to the solution 
of an independent equation and reduces the total number of variables whose values 
are unknown by one. 

In optimization using a process simulator to represent the model of the process, 
the degrees of freedom are the number of decision variables (independent variables) 
whose values are to be determined by the optimization, hence the results of an opti- 
mization yield a fully determined set of variables, both independent and dependent. 
Chapter 2 discussed the concept of the degrees of freedom. Example 15.1 demon- 
strates the identification of the degrees of freedom in a small process. 

EXAMPLE 15.1 CALCULATION OF THE DEGREES OF 
FREEDOM 

Figure E15.1 shows a simplified flowsheet for the conversion of N, and H, to ammo- 
nia (NH,) when argon (A) is present in the feed. After the reaction of N, and H, 

the NH, is separated as a liquid from the gas phase. A purge gas stream prevents argon 
build-up in the system. Fresh feed is introduced in the proper ratio of N, to H, with 
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-50°C, Saturated liquid 
100 atm 
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FIGURE E15.1 

A 

NH3 , 

the accompanying argon of about 0.9 percent. Assume all of the units and the pipe 
lines are adiabatic (Q = 0). The fraction conversion in the reactor is 25 percent. 

The process has four separate subsystems for the degree-of-freedom analysis. 
Redundant variables and redundant constraints are removed to obtain the net degrees 
of freedom for the overall process. The 2 added to Ndefers to the conditions of tem- 
perature and pressure in a stream; + 1 represents the heat transfer Q. 

In this example 

N2 
H2 Splitter * ,/---, 

Nv is the number of variables 
N is the number of components (species) in a stream 

Sp. N, is the number of independent constraints 
N, is the degrees of freedom (number of decision variables) 

The analysis of each subsystem is as follows. 

N2 Reactor 
~2 
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Specifications: 
NH, concentration is zero 
Tp = -50°C 
TF = 50°C 

- Assume that p, = p ~ x  out - p,,, = 100 
Q = 0 

Nd: 19 - 13 = 

Reactor: 

N, = 2(Nv + 2) + 1 = 2(6) + 1 = 

N, : 
Material balances (H, N, A ) 
Energy balances 
Specifications: 

NH, entering = 0 
Q = O  
Fraction conversion 
pin = pout = 100 atm 
Energy balance 

Nd: 13 - 1 0 =  

Separator: 
Nv = 3(N, + 2) + 1 = 3(6) + 1 = 

Nr : 
Material balances 
Energy balance 
Specifications: 

To,, = -50°C 

Pr = Pin = PNH, = 100 
NH, concentration is 0 in 

recycle gas 
N2, H2, A are 0 in liquid NH3 

Nd: 19 - 13 = 

Splitter: 

Nv = 3(Nsp + 2) = 3(6) = 

Nr : 
Material balances 
Specifications: 

NH, concentration = 0 
Compositions same 2(N, - 1) 
Stream temperatures same = -50°C 
Stream pressures same = 100 atm 

Nd: 18 - 14 = 
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The total number of degrees of freedom is 19 less the redundant information, 
which is as follows: 

Redundant variables in interconnecting streams being eliminated: 

Stream 1: (4 + 2) = 6 

Stream 2: (4 + 2) = 6 

Stream 3: (4 + 2) = 6 

Stream 4: (4 + 2) = 6 
24 

Redundant constraints being eliminated: 

Stream 1: 
NH, concentration = 0 
p = 100 atm 

Stream 2: 
p = 100 atm 

Stream 3: 
NH, concentration = 0 

' p=lOOatm 
T = -50°C 

Stream 4:- 
NH, concentration = 0 
T = -50°C 
p = 100 atm 

Overall the number of degrees of freedom should be 

The redundant constraints and variables can be regarded as 24 + 9 = 33 addi- 
tional equality constraints in the optimization problem. 

In optimization using a modular process simulator, certain restrictions apply on 
the choice of decision variables. For example, if the location of column feeds, 
draws, and heat exchangers are selected as decision variables, the rate or heat duty 
cannot also be selected. For an isothermal flash both the temperatures and pressure 
may be optimized, but for an adiabatic flash, on the other hand, the temperature is 
calculated in a module and only the pressure can be optimized. You also have to 
take care that the decision (optimization) variables in one unit are not varied by 
another unit. In some instances, you can make alternative specifications of the deci- 
sion variables that result in the same optimal solution, but require substantially dif- 
ferent computation time. For example, the simplest specification for a splitter 
would be a molar rate or ratio. A specification of the weight rate of a component in 
an exit flow stream from the splitter increases the computation time but yields the 
same solution. 
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Next, we need to clarify some of the jargon that you will find in the literature 
and documentation associated with commercial codes that involve process simula- 
tors. Two major types of optimization algorithms exist for nonlinear programming. 

1. Feasible path algorithms. The equality constraints and active inequality con- 
straints are satisfied at the end of every intermediate stage of the calculations. 

2. Infeasible path algorithms. The equality constraints and active inequality 
constraints are satisfied only at the stage on which the optimal solution is 
reached. 

Clearly option 1 incurs more computation time when process simulators are 
involved, but an abnormal termination yields a feasible solution. 

Another classification of optimization codes relates whether a full set of vari- 
ables is used in the search: 

1. Full vector. All the independent and dependent variables cmstitute the vector 
of variables in the search. 

2. Reduced vector. Only the independent variables are involved in the search; 
the dependent variables are then determined from the constraints. 

With respect to process simulators, we can identify three types, with hybrid 
types often occurring: 

1. Equation-based. Explained previously. 
2.  Sequential modular. Refers to the process simulator being based on modules, 

and the modules solved in a sequential precedence order imposed by the flow- 
sheet information flow. 

3.  Simultaneous modular. The process simulator is composed of modules, but 
simplified, approximate, or partial representation of the modules enables 
solution techniques used in equation-based methods to be employed. 

Other jargon you will encounter: 

1. Online. Optimization calculations are carried out by computers that process 
plant data and transmit control signals. 

2.  Ofline. Data is collected and used subsequently by separate computers for 
optimization so that the results are not directly available. 

3.  Real time. The clock cycle for the collection and transfer of process data and 
the optimization calculations is the same. 

The kinds of optimization codes most often used together with process simu- 
lators include 

1. Linear programming: LP (refer to Chapter 7). 
2. Sequential linear programming: SLP (refer to Chapter 8). 
3. Sequential quadratic programming: SQP (refer to Chapter 8). 
4. Generalized reduced gradient: GRG (refer to Chapter 8). 
5. Nonlinear programming: NLP-other than items 3 or 4 (refer to Chapter 8). 
6. Mixed-integer nonlinear programming: MINLP (refer to Chapter 9). 
7. Mixed-integer successive quadratic programming (refer to Chapter 9). 
8. Random search (refer to Chapter 10 or Section 6.1). 
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Commercial process simulators mainly use a form of SQP. To use LP, you must 
balance the nonlinearity of the plant model (constraints) and the objective function 
with the error in approximation of the plant by linear models. Infeasible path, 
sequential modular SQP has proven particularly effective. 

Finally, we should mention that in addition to solving an optimization problem 
with the aid of a process simulator, you frequently need to find the sensitivity of the 
variables and functions at the optimal solution to changes in fixed parameters, such 
as thermodynamic, transport and kinetic coefficients, and changes in variables such 
as feed rates, and in costs and prices used in the objective function. Fiacco in 1976 
showed how to develop the sensitivity relations based on the Kuhn-Tucker condi- 
tions (refer to Chapter 8). For optimization using equation-based simulators, the 
sensitivity coefficients such as (dhildxi) and (dxi/dxj) can be obtained directly from 
the equations in the process model. For optimization based on modular process 
simulators, refer to Section 15.3. In general, sensitivity analysis relies on lineariza- 
tion of functions, and the sensitivity coefficients may not be valid for large changes 
in parameters or variables from the optimal solution. 

15.2 OPTIMIZATION USING EQUATION-BASED PROCESS 
SIMULATORS 

In this section we consider general process simulator codes rather than specialized 
codes that apply only to one plant. To mesh equation-based process simulators with 
optimization codes, a number of special features not mentioned in Chapter 8 must 
be implemented. 

1. A method of formatting the equations and inequality constraints. Slack vari- 
ables are used to transform the inequality constraints into equality constraints. 

2. A possibility of using both continuous and discrete variables, the latter being 
particularly necessary to accommodate changes in phase or changes from one 
correlation to another. 

3. The option of using alternative forms of a function depending on the value of 
logical variables that identify the state of the process. Typical examples are the 
shift in the relations uEd to calculate the friction factor from laminar to turbu- 
lent flow, or the calculation of P - V - T relations as the phase changes from 
gas to liquid. 

4. Efficient methods for solving equations in the physical property database 
(which often require up to 80% of the computation time needed to solve a 
plant optimization problem). 

5. Efficient methods for solving large sets of linear equations, for example, the 
linearized constraints, particularly involving sparce matrices. 

6. A good method of selecting initial guesses for the solution of the algebraic 
equations. Poor choices lead to unsatisfactory results. You want the initial 
guesses to be as close to the optimal solution as possible so that the procedure 
will converge, and converge rapidly. We recommend running the process sim- 
ulator alone to develop one or more base cases that will serve feasible starting 
points for the optimization. 
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7. Provision for scaling of the variables and equations. By scaling variables we 
mean introducing transformations that make all the variables have ranges of 
the same order of magnitude. By scaling of equations we mean multiplying 
each equation by a factor that causes the value of the deviation of each equa- 
tion from zero to be of the same order of magnitude. User interaction and 
analysis for a specific problem is one way to introduce scaling. 

8. The code must carry out a structural analysis to determine if the model is well 
posed, that is, can it detect any inconsistencies among the equations in the 
model (Duff et al., 1989; Zaher, 1995)? 

Figure 15.4 shows how the nonlinear optimization problem fits in with two 
widely used optimization algorithms: the generalized reduced gradient (GRG) and 
successive quadratic programming (SQP). The notation is in Table 15.1. Slack v a -  
ables x, have been added to the inequality constraints g 2 0 to convert them to 
equality constraints. The formulation in Figure 15.4 assumes that the functions and 
variables are continuous and differentiable (in practice, finite differences may be 
used as substitutes for analytical derivatives). Although we will not discuss opti- 
mization of dynamic processes in this chapter, in the NLP problem you can insert 
differential equations as additional equality constraints. Refer to Ramirez (1994) 
for details. In the execution of the optimization code, in some phases the specific 
assignment of independent and dependent variables within the code may differ 
from those you designate. 

In formatting the inequalities g and equations h, you will find that the so-called 
open-equation representation is preferred to the closed-equation representation. One 
of the simplest examples is a heat exchanger model (the closed-equation format): 

where A = heat transfer area 
Cp = heat capacity 
F = flow rate 
Q = heat transferred 
T = temperature 
U = heat transfer coefficient 
H = hot 
C = cold 

If the temperatures, heat capacities, U, and A are known quantities, then you can 
directly calculate Q and the F's. On the other hand, if you know the stream flows, 
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TABLE 15.1 
Notation for Figure 15.4 

Objective function 
Set of inequality constraints 
Set of equality constraints 
Vector of coefficients in the objective function and constraints 
Vector of independent (decision) variables 
Vector of dependent variables 
Vector of slack variables added to the inequality constraints 
lower bound 
upper bound 

I 

inlet temperatures, Cp's, U, and A, then the solution for Q and the outlet tempera- 
tures must be determined via iteration. This problem arises particularly for process 
models in which one unit that is underspecified is connected with another unit that 
is overspecified. 

By using open-equation formats and infeasible path optimization algorithms, 
the type of difficulty described above can be avoided. All the equations in the NLP 
problem can be solved simultaneously, driving the residuals to zero. The open- 
equation format for the heat exchanger is 

where R, is a residual. Note that division by a logarithm has been eliminated. 
Another advantage of the open-equation format is that simple connection equa- 

tions can be used rather than eliminating variables and equations that are connected. 
For example, the connections between two heat exchangers can be formulated as 

More variables are retained in this type of NLP problem formulation, but you can 
take advantage of sparse matrix routines that factor the linear (and linearized) equa- 
tions efficiently. Figure 15.5 illustrates the sparsity of the Hessian matrix used in 
the QP subproblem that is part of the execution of an optimization of a plant involv- 
ing five unit operations. 

Figure 15.4 shows the Hessian matrix for two different types of SQP algo- 
rithms for solving large-scale optimization problems. In the full-space SQP, all of 
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FIGURE 15.5 
The Hessian matrix for the QP subproblem showing five 
units and the sparsity of the matrix. 

the variables, both independent and dependent, are solved for simultaneously in the 
set of linear(ized) equations in the QP subproblem. The sparse structure of both B 
and Ah can be taken advantage of in their solution. In the reduced-space SQP only 
the sparse structure of Ah is used. For specific details of the execution of the 
reduced SQP, refer to the summary in Biegler et al. (1997) and the references 
therein, and to Schmid and Biegler (1994a). 

As mentioned before, two contrasting classes of strategies exist for executing 
the SQP algorithms: 

1. Feasible path strategies. 
2. Infeasible path strategies. 

With feasible path strategies, as the name implies, on each iteration you satisfy the 
equality and inequality constraints. The results of each iteration, therefore, provide 
a candidate design or feasible set of operating conditions for the plant, that is, sub- 
optimal. Infeasible path strategies, on the other hand, do not require exact solution 
of the constraiits on each iteration. Thus, if an infeasible path method fails, the 
solution at termination may be of little value. Only at the optimal solution will you 
satisfy the constraints. 

To improve the formatting of the equations that represent a plant, many com- 
mercial codes partition the equations into groups of irreducible sets of equations, 
that is, those that have to be solved simultaneously. If a plant is represented by thou- 
sands of equations, the overall time consumed in their solution via either a GRG or 
SQP algorithm is reduced by partitioning and rearranging the order of the equations 
with the result indicated in Figure 15.6. Organization of the set of equations into 
irreducible sets can be carried out by the use of permutation matrices or by one of 
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h,:  X : X ,  - 2 ~ ; 3  + 4 = o 
h,: x ,  + 2x5 - 8 = 0 
h,: x lx4x:  - 2x3 - 7 = 0 
h,: - 2 x , + x 5 + 5 = 0  
h5: x 2 x ~ x 5  + x2x4 - 6 = 0 

(a) The n independent equations 
involving n variables (n = 5). 

x1 x2 x3 x4 x 5 

h 1 1 1 1 
h2 1 1 
h3 1 1 1 1 
h4 1 -- 1 
h 5 1 1 1 

(b) The occurrence matrix (the 1's represent the occurrence 
of a variable in an equation). 

I hl 1 I I I  
(c) The rearranged (partitioned) occurrence matrix with 

- - 

groups of equations (sets I, 11, and 111) that have to be 
solved simultaneously collected together in the 
precedence order for solution. 

FIGURE 15.6 
Partitioning of sets of independent equations increases the 
sparsity of the occurrence matrix. 

the many algorithms found in Himmelblau (1973). Feedback of information, mate- 
rials, or energy ties equations together in irreducible groups. 

We next solve an example optimization problem for a plant represented by 
equations and inequalities using the GRG method. 

EXAMPLE 15.2 PROCESS OPTIMIZATION VIA GRG 
(EQUATION-BASED SOFTWARE) 

Figure E15.2 shows the flowsheet for the process. Feed (stream 1) is a vapor mixture 
of ethane, propane, and butane (in the proportions shown in the figure) at 200°F and 
500 psia. The product stream (stream 8) is a liquid at 5 -20°F having the same com- 
position but a reduced pressure. The notation for this example is defined in 
Table E15.2A. 
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1 Objective function. A simple objective function is used, namely, the rnini- 
mization of the instantaneous cost of the work done by the three recycle compressors: 

Minimize: f = C F3 [ 0.65 0.65 0.65 

The value 0.65 is the efficiency factor. 

TABLE E15.2A 
Notation for Example 15.2 

14 13 
Cooler 

Yi, j 

Compressor 
12 

9 

A constan&,denoting the cost of work per unit energy 
Total molar flow rate of process stream j 
Molar enthalpy of process stream j 
Vapor-liquid equilibrium constant for component i 
Liquid molar flow rate of process stream j 
Pressure of process stream identified by subscript (p, = p,, p, = ps; and p8 = p,) 
Temperature of process stream identified by subscript (T, = T,, T, = T,, and T8 = T7) 
Vapor molar flow rate of process stream j 
Liquid molar flow rate of component i in process stream j [i = 1 (ethane), 2 (propane), 
3 (n-butane)] 
Vapor molar flow rate of component i in process stream j [i = 1 (ethane), 2 (propane), 
3 (n-butane)l 

7 

Adiabatic 
flash 2 T = 200°F 21-!'-,. 

p = 500 psig 
Me = 250 mol/h 
M ,  = 600 mol/h 
M ,  = 150 mol/h 

T = -20°F 
4 6 8 

FIGURE E15.2 
How diagram of light hydrocarbon refrigeration process. 

Cooler 

10 

Adiabatic 
flash 

* Adiabatic 
flash Mixer 
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2 Inequality constraints. Three inequality constraints are involved: two relating 
pressures and one product temperature specification. 

In addition, all 34 values of T j ,  pj, xi, j ,  and yi, have lower and upper bounds. 

3 Equality constraints. The eiuality constraints (30 in all) are the linear and 
nonlinear material and energy balances and the phase relations. 

Material balances: 

Energy balance: 

The denominators in this example are simply scaling factors in the respective con- 
straints evaluated using the values of the variables in the numerator; 1 or the other 
term is picked, whichever is bigger. For example, the terms in the denominators of 
Equations (c)  and (d) representing the average of the mass and energy, respectively, 
in and out, as well as the denominators of the following equations, are not needed for 
the balances-they are scaling factors (as are the multipliers 0.05 or 0.5) that are 
introduced to improve the conditioning of the matrices of partial derivatives of the 
constraints. Without such scaling, the non-linear programming code may not reach the 
optimal solution but instead terminate prematurely. 

3.2 Adiabatic flash vessels. 

Material balances: 
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Energy balances: In the energy balances the multiplier 0.05 is used to assist in scaling. 

The values for the enthalpies of the streams in the database were based on the 
Curl-Pitzer correlations (Green, 1997). The enthalpies are calculated from correla- 
tions at zero pressure (functions of temperature and composition only) and then cor- 
rected via the enthalpy deviation: 

where H0 is the stream molar enthalpy and the superscript 0 designates zero pressure, 
and T, is the critical temperature. The enthalpy deviation term itself, AHIT,, is a func- 
tion of the mole weighted average of the three critical properties: temperature, pres- 
sure, and compressibility. 

3.3 Energy balances for compressors. For isentropic compression 

3.4 Phase equilibria relations. Evaluation of the K values for phase equilibria 
was based on the relation 

4 

where y, = activity coefficient in the liquid phase of component i evaluated from 
Hildebrand and Scott (Green, 1997) 

v, = fugacity coefficient of component i in the liquid phase evaluated from 
Chao-Seader (Green, 1997) 

+j = fugacity coefficient of component i in the vapor phase evaluated from 
Redlich-Kwong (Green, 1997) 
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Based on the notation of Table E15.2a, in stream j 

Yi,j- I / ?  
Ki = 

xi, jILj 

To assist in scaling, Equation (m) is rearranged as follows: 

and divided by 

and multiplied by the factor 0.01 : 

In summary, the problem consists of 34 bounded variables (both upper bound and 
lower bounds) associated with the process, 12 linear equality constraints, 18 nonlin- 
ear equality constraints, and 3 linear inequality constraints. 

4 Solution of the problem. It was not possible to use analytical derivatives in 
the nonlinear programming code because the energy balance equality constraints 
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and the process stream phase equilibria constraints involve the stream molar 
enthalpy Hj and the phase equilibrium constant Kv, respectively. Hj was calculated 
at zero pressure and then corrected using the Watson acentric factor (Green, 1997). 
The correction for nonideality was based on correlated experimental data that can- 
not be differentiated analytically. The component phase equilibrium constant Kij 
was calculated via the Redlich-Kwong equation of state; the vapor phase mixture 
compressibility factor zv was determined as the largest of the three real roots from 
the virial equation: 

where C, and C2 are functions of the critical properties of the mixture. An analytical 
derivative of the vapor phase mixture compressibility with respect to the stream vari- 
ables cannot be determined explicitly, and therefore, the derivative of the component 
phase equilibrium constant Kv cannot be determined analytically. 

As a consequence, the gradient of the objective function and the Jacobian matrix 
of the constraints in the nonlinear programming problem cannot be determined ana- 
lytically. Finite difference substitutes as discussed in Section 8.10 had to be used. To 
be conservative, substitutes for derivatives were computed as suggested by Curtis and 
Reid (1974). They estimated the ratio pj of the truncation error to the roundoff error 
in the central difference formula 

where dj is the step size, as follows: 

where p is the magnitude of the error incurred in the storage of a number in the computer. 
The Curtis-Reid method updates dj on each calculation of a partial derivative from the 
relation 

where u; is the target value of the error ratio. To ensure that the truncation error cal- 
culation was not dominated by round-off error, Curtis and Reid suggested a value for 
u; of 100 with an acceptable range of 10 to 1000. 

The solution listed in Table E15.2B was obtained from several nonfeasible start- 
ing points, one of which is shown in Table E15.2C, by the generalized reduced gradi- 
ent method. 
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TABLE E15.2B 
Final solution of light hydrocarbon refrigeration process 

Molar flow rates 

lb mol Btu 
(̂ ) (OF) p (psis) (--) lb m01 C&& C3H8 nC4HW C2H6 C3H8 nCdH10 

TABLE E15.2C 
Starting point 1 of light hydrocarbon refrigeration optimization 

Molar flow rates 

lb mol 
:trem (̂ ) 
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15.3 OPTIMIZATION USING MODULAR-BASED SIMULATORS 

Over the past 40 years an enormous amount of time and considerable expense have 
been devoted to the development of modular-based process simulator codes. Fig- 
ure 15.7 shows typical icons of modules found in a steady-state process simulator, 
and Figure 15.3 showed the details of one such module. In current practice, opti- 
mization meshed with modularly organized simulators prevails because (1) mod- 
ules are easy to construct and understand, (2) addition and deletion of modules to 
and from a flowsheet is easily accomplished via a graphical interface without 
changing the solution strategy, (3) modules are easier to program and debug than 
sets of equations, and diagnostics for them easier to analyze, and (4) modules 
already exist and work, whereas equation blocks for- equipment have not been 
prevalent. It seems appropriate, then, to mesh process models in the form of mod- 
ules with optimization algorithms so that computer codes do not require wholesale 
rewriting. 

FIGURE 15.7 
Typical process modules used in sequential modular-based flowsheeting codes with 
their subroutine names. 
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However, certain difficulties arise in doing this: 

1. The input and output variables in a computer module are fixed so that you 
cannot arbitrarily introduce an output and generate an input, as can be done 
with an equation-based code. 

2. When the modules are connected to one another as represented in a flowsheet, 
a long train of units may become coupled together for calculations. Thus, a 
set of modules may require a fixed precedence order of solution so that con- 
vergence of the calculations may be slower than in equation-based codes. 

3. The modules require some effort to generate reasonably accurate derivatives 
or their substitutes, especially if a module contains tables, functions with 
discrete variables, discontinuities, and so on. Perturbation of the input to a 
module is the primary way in which a finite-difference substitutes for deriv- 
atives can be generated. 

4. To specify a parameter in a module as a design variable, you need to feed back 
information around the module and adjust the parameter so that design speci- 
fications are met. This arrangement creates a loop exactly the same as a feed- 
back of material or energy creates a recycle loop. Examine Figure 15.8. If the 
values of many design variables are to be determined, you might end up with 
several nested loops of calculations (which do, however, enhance stability). 

5. Conditions imposed on a process (or a set of equations for that matter) may 
cause the unit physical states to move from a two-phase to a single-phase 
operation, or the reverse. As the code shifts from one module to another to 
represent the process properly, a severe discontinuity occurs in the objective 
function surface (and perhaps a constraint surface). Derivatives or their sub- 
stitutes may not change smoothly, and physical property values may jump 
about. 

In Section 15.1 we mentioned that two basic approaches for modular-based 
process simulators exist: 

1. Sequential modular methods. 
2. Simultaneous modular methods. 

We next consider both methods. 

FIGURE 15.8 
Modules in which recycling occurs; information (material) from the cooler module is fed 
back to the reactor, causing a loop. 
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15.3.1 Sequential Modular Methods 

Two procedures are needed to implement efficient computations using sequential 
calculations in modular-based process simulators: one is precedence ordering and 
the other is tearing. Precedence ordering was briefly touched on at the end of Sec- 
tion 15.2 in connection with the partitioning and ordering of equations. The same 
concept applies to modules connected by loops of information flow. Partitioning the 
modules in a flowsheet into minimum-size subsets of modules that must be solved 
simultaneously can be executed by many methods. As with solving sets of equa- 
tions, to reduce the computational effort you want to obtain the smallest block of 
modules that constitutes a loop in which the individual modules are tied together 
by the information flow of outputs and inputs. Between blocks, the information 
flow occurs serially. 

How can you find all of the blocks connected together by information flows? 
A simple algorithm to isolate blocks is to trace a path of the flow of information 
(material usually, but possibly energy or a signal) from one module to the next 
through the module output streams. The tracing continues until either (1) a module 
in the path is encountered again, in which case all the modules in the path up to the 
repeated module form a group together that is collapsed and treated as a single 
module in subsequent tracing, or (2) a module or group with no output is encoun- 
tered, in which case the module or group of modules can be deleted from the block 
diagram. As a simple example, examine the block diagram in Figure 15.9, which 
can be partitioned by the following steps. 

Start with an arbitraryunit, say 4, and start tracing the path of information flow 
in any selected sequence; call this path I: 

Start tracing: 4-+5-+6+4 collapse as one set (456) 

Continue tracing: (456) + 2 + 4 collapse as one set (4562) 

Continue tracing: (4562) -+ 1 -+ 2 collapse as one set (45621 ) 

Continue tracing: (45621) -+ 7 -+ 8 + 7 collapse as one set (78) 

Continue tracing: (4562 1 ) + (78) -+ 9 terminate tracing (no output) 

The precedence order for path I is as follows: 

To complete the $arch and add more modules to the precedence order, start on 
path 11: 

Start tracing: 10 -+ 3 + 2 terminate with 2 as 2 is in path I 

The precedence order for path I1 is 

All of the modules from the block diagram have been included in the tracing, and 
no more paths have to be searched. The procedure identifies all the nested and 
outer loops. The overall precedence order is (10) + (3) + (45621) -+ (78) + (9). 
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FIGURE 15.9 
Block diagram to be partitioned. 

Computer techniques to partition complex sets of modules besides the one described 
earlier can be found in Montagna and Iribarren (1988) and in Mah (1990). Simple 
sets can be partitioned by inspection. 

From a computational viewpoint, the presence of recycle streams is one of the 
impediments in the sequential solution of a flowsheeting problem. Without recycle 
streams, the flow of information would proceed in a forward direction, and the cal- 
culational sequence for the modules could easily be determined from the precedence 
order analysis outlined earlier. With recycle streams present, large groups of mod- 
ules have to be solved simultaneously, defeating the concept of a sequential solution 
module by module. For example, in Figure 15.8, you cannot make a material bal- 
ance on the reactor without knowing the information in stream S6, but you have to 
carry out the computations for the cooler module first to evaluate S6, which in turn 
depends on the separator module, which in turn depends on the reactor module. Par- 
titioning identifies those collections of modules that have to be solved simultane- 
ously (termed maximal cyclical subsystems, loops, or irreducible nets). 

To execute a sequential solution for a set of modules, you have to tear certain 
streams. Tearing in connection with modular flowsheeting involves decoupling the 
interconnections between the modules so that sequential information flow can take 
place. Tearing is required because of the loops of information created by recycle 
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FIGURE 15.10 
Vapor-liquid separator. 

streams. What you do in tearing is to provide initial guesses for values of some of 
the unknowns (the tear variables), usually but not necessarily the recycle streams, 
and then calculate the values of the tear variables from the modules. These calcu- 
lated values form new gueses, and so on, until the differences between the esti- 
mated and calculated values are sufficiently small. Nesting of the computations 
determines which tear streams are to be converged simultaneously and in which 
order collections of tear of tear streams are to be converged. 

Physical insight and experience in numerical analysis are important in select- 
ing which variables to tear. For example, Figure 15.10 illustrates an equilibrium 
vapor-liquid separator for which the combined material and equilibrium equations 
give the relation 

where zj is the mol~fraction of species j out of C components in the feed stream, 
K, = yj/xj is the vapor-liquid equilibrium coefficient, a function of temperature, 
and the stream flow rates are noted in the figure. For narrow-boiling systems, you 
can guess V/F, y,, and x,, and use the preceding summation to calculate Kj and 
hence the temperature. This scheme works well because T lies within a narrow 
range. For wide-boiling materials, the scheme does not converge well. It is better to 
solve the preceding summation for V/F by guessing T y, and x, because V/F lies 
within a narrow range even for large changes in T. Usually, the convergence rou- 
tines for the code constitute a separator module whose variables are connected to 
the other modules via the tear variables. Examine Figure 15.1 1. 
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FIGURE 15.11 
A computational sequence for modular flowsheeting. Initial values of both recycles 
are guessed, then the modules are solved in the order 1,2, 3,4,5, and 6. Calculated 
values for recycle streams S9 and S 10 are compared with guessed values in a 
convergence block, and unless the difference is less than some prescribed tolerance, 
another iteration takes place with the calculated values, or estimates based on them, 
forming the new initial guessed values of the recycle streams. 
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If the objective in selecting streams to tear is to minimize the number of the 
tear variables (Pho and Lapidus, 1973) subject to the constraint that each loop be 
broken at least once, this problem is an integer programniing problem known as the 
covering set problem. Refer to Biegler et al. (1997) and Section 8.4. 

Although it would logically be quite straightforward to nest the process simu- 
lator within the optimization code, and iteratively first satisfy the constraints repre- 
sented by the simulator by running the simulator, and then applying the optimiza- 
tion code, this procedure is not particularly efficient. The preferred strategy is to 
insert into the nonlinear optimization problem format, Figure 15.4, the equations 
corresponding to the convergence blocks in Figure 15.1 1, namely 

where L - = set of equations involving the tear variables. 
f = set of functions that compute the values of the tear variables for the 

next iteration (k + 1) as the output of a module using the values of tear 
variables from the previous iteration k. 

x, = vector of tear variables. 
p = equipment parameter vector 

S1 

in lieu of using the convergence blocks in the process simulator to determine the 
values of the tear variables. This procedure saves many iterations through nested 
loops in the process simulator. 
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With the preceding implementation, the optimization problem can be solved 
either via a GRG algorithm or SQP algorithm. Each evaluation of the constraints 
and objective function requires a full pass through the process simulator. Additional 
passes are needed to develop the gradients with respect to x (including the tear vari- 
ables). Then, the search direction can be obtained as indicated in Figure 15.4 by 
solving the following QP subproblem. 

Minimize: VY(x, xD, x ,  p)s + f s T ~ s  

Subject to: h(x,, xD, x,, p)  + VTh(xI, x,, x ,  p ) ~  = 0 

After determining the search direction s, an approximate line search is carried out 
to get the values of x, and x, for the next iteration. 

Of the various versions of the SQP algorithm, the infeasible path reduced 
SQP has been the most widely used in commercial process simulators. One tech- 
nique favored by programmers (Lang and Biegler, 1987) is to make just one pass 
through the process flowsheet simulator before adjusting the values of the deci- 
sion and tear variables rather than spending considerable computation time satis- 
fying the constraints involved in loops. This procedure has some merit because 
the value of the variables determined by a fairly precise solution of the loops on 
one iteration of the optimization program will probably no longer be satisfactory 
on a subsequent iteration. 

15.3.2 Simultaneous Modular Methods 

One of the earlier approaches to emulating equation-based optimization using 
process simulators was to develop by least squares polynomial functions (quadratic 
being the simplest) to approximate the input-output relations for a module, and for 
the phase relations (Mahelec et al., 1979; Biegler, 1985; Chen and Stadtherr, 1984; 
Parker and Hughes (1981); Schmid and Biegler, 1994a). Then, the equations could 
be used as constraints in an optimization code. Some disadvantages of such an 
approximation strategy are that (1) adequate approximation of the module may not 
be possible with s imle  relations, and (2) the optimum of the approximate model 
may not lie near the optimum of the rigorous model as ascertained via a more rig- 
orous solution. Nevertheless, such modeling schemes avoid some of the difficulties 
encountered in closure and convergence of the recycle loops each time the process 
simulator is called. You obtain the speed and flexibility of the equation-based mode 
while using as models equations representing the modules. 

Use of the reduced space SQP mentioned in Section 15.1 has facilitated the 
implementation of simultaneous modular optimization. The modeling equations rep- 
resenting the individual modules are not explicitly made part of the optimization 
problem. Instead, the equations are solved by taking successive steps using Newton's 
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TABLE 15.2 
Comparison of the results of equation-based 

and simultaneous modular-based optimization 
for two connected distillation columns 

Number of variables: 
Decision 4 
Outputs, inputs, and so on 47 
Internal 114 

Number of equality constraints: 
Simultaneous modular strategy* 47 
Equation-based strategy 161 

Number of iterations (CPU time in seconds) 
Simultaneous modular, SQP 4 (3.4) 
Equation-based, SQP 4 (3.3) 

Abbreviations: CPU = central processing unit; SQP = 

successive quadratic programming. 
*Method of Schmid and Biegler (1994b) 

method for the individual modules. In addition, as proposed by Schmid and Biegler 
(1994b), a line search is employed that does not require that the Lagrange multipliers 
associated with the equality constraints be calculated explicitly, an important saving 
in the case of code modifications. Derivatives are presumed calculated analytically or 
by finite-difference methods as described in Section 15.3.3. As an example, Table 
15.2 lists the results of Schmid and Biegler for the optimization of a hydrodealk- 
ylation process (1994b). Comparison of a simultaneous modular strategy with an 
equation-oriented strategy indicates that both yield equivalent results. 

15.3.3 Calculation of Derivatives 

Effective computer codes for the optimization of plants using process simulators 
require accurate values for first-order partial derivatives. In equation-based codes, 
getting analytical derivatives is straightforward, but may be complicated and sub- 
ject to error. Analytic differentiation ameliorates error but yields results that may 
involve excessive computation time. Finite-difference substitutes for analytical 
derivatives are simple for the user to implement, but also can involve excessive ' 
computation time. 

For modular-based process simulators, the determination of derivatives is not 
so straightforward. One way to get partial derivations of the module function(s) is by 
perturbation of the inputs of the modules in sequence to calculate finite-difference 
substitutes for derivatives for the tom variables. To calculate the Jacobian via this 
strategy, you have to simulate each module (C + 2) n,  + n, + 1 times in sequence, 
where C is the number of chemical species, n,  is the number of torn streams, and 
n, is the number of residual degrees of freedom. The procedure is as follows. Start 
with a tear stream. Back up along the calculation loop until an unperturbed inde- 
pendent variable xIVi in a module is encountered. Perturb the independent variable, 
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and calculate the resulting dependent and tear variables in that module and all 
downstream modules in the calculation loop. (Dependent variables upstream are 
not affected.) Evaluate the finite-difference approximations for the gradients off, g, 
h, and k with respect to each xI by using a forward-difference formula in which 
the values of x, are those from the perturbed calculations and the values of x,, 
except x, are perturbed values. 

One 'at a time, perturb the elements of the tear variable x , ~ .  Calculate the 
dependent variables, and evaluate the tear equations. Calculate the gradients off, g, 
h, and k with respect to each x , ~  by a forward difference equation in which the x, 
are the perturbed values and x, are the unperturbed values. 

Another way to calculate the partial derivatives is possible. Figure 15.12 rep- 
resents a typical module. If a module is simulated individually rather than in 
sequence after each unknown input variable is perturbed by a small amount, to cal- 
culate the Jacobian matrix, (C + 2)nci + ndi + l simulations will be required for 
the ith module, where nci = number of interconnecting streams to module i and ndi 
= number of unspecified equipment parameters for module i. This method of cal- 
culation of the Jacobian matrix is usually referred to as full-block perturbation. 

Wolbert et al. in 1991 proposed a method of obtaining accurate analytical 
first-order partial derivatives for use in modular-based optimization. Wolbert 
(1994) showed how to implement the method. They represented a module by a set 
of algebraic equations comprising the mass balances, energy balance, and phase 
relations: 

where +k (u,, xk) = set of functions representing the behavior of the kth module, 
i.e., the model for module k 

u, = vector of inputs to the kth module 
x, = vector of outputs from the kth module 

I Module i I Ya 

FIGURE 15.12 
A typical module showing the input stream vectors xu, 
output stream vectors y,, specified equipment parameter 
vector pi, unspecified equipment parameter vector q,, and 
the retention (dependent) variable vector ri. 
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The analytical derivatives (13 +k , /d  q) and (a c$k,/d ukJ), and the sensitivity coeffi- 
cients ( d  xk / d  uk,) can be obtained directly from Equation (15.1). 

As to &e automatic generation of exact derivatives in existing modular-based 
process simulator codes directly from the code itself, refer to Griewank and Corliss 
(1991) or Bischof et al. (1992). 

EXAMPLE 15.3 EXTRACTIVE DISTILLATION DESIGN 

This example shows the application of optimization of a process using HYSYS soft- 
ware. Refer to the website, www.mhhe.com/edgar, associated with this book. 

EXAMPLE 15.4 MAXIMIZING OPERATING MARGIN 

This example shows the application of optimization of a process using Aspen soft- 
ware. Refer to the website, www.mhhe.corn/edgar, associated with this book. 

15.4 SUMMARY 

Commercial process simulators have added optimization capabilities the specific 
details of which are naturally proprietary, but the general features of these codes are 
described in this chapter. Very large scale optimization problems of considerable 
economic value can be treated as shown by the examples presented earlier, and in 
the future improvements in power, robustness, speed of execution, and user-friendly 
interfaces of computers and software can be expected to expand the scope of opti- 
mization of large scale problems. 
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THE COORDINATED USE of computers throughout the entire spectrum of manufac- 
turing and business operations has been growing during the 1990s and is expected 
to continue during the 21st century. With the continued increases in computing 
power and advances in telecommunications, the use of optimization has expanded 
as well, including planning and scheduling, plantwide management, unit manage- 
ment, and data acquisition and monitoring. Coordination of manufacturing with 
computers has been known since the 1970s as computer-integrated manufacturing 
(CIM). CIA4 is defined as a unified network of computer hardware, software, and 
manufacturing systems that combine business and process functions including 
administration, economic analysis, scheduling, design, control, operations, interac- 
tions among suppliers, multiple plant sites, distribution sites, transportation net- 
works, and customers. Also called process operations, the goal of CIM is the man- 
agement and use of human, capital, material, energy, and information resources to 
produce desired products safely, flexibly, reliably, and cost-effectively, as rapidly as 
possible and in an environmentally responsible manner (often characterized as 
"good, fast, cheap, and clean"). 

In the CIM paradigm, operations are guided by extensive interchange of infor- 
mation that integrates sales, marketing, manufacturing, supply, and R&D data. Data 
and information flow in a seamless fashion among the various sectors. In addition, 
plant material and energy balance data are analyzed continuously, reconciled using 
nonlinear programming, and unmeasured variables reconstructed using parameter 
estimation techniques (soft sensors). General access to a common database and 
enterprise information are provided to managers, engineers, and operations so that 
optimum decisions can be made and executed in a timely and efficient manner. 

In the remainder of this chapter, we address each part of the manufacturing 
business hierarchy, and explain how optimization and modeling are key tools that 
help link the components together. 

16.1 PLANT OPTIMIZATION HIERARCHY 

Figure 16.1 shows the relevant levels for the process industries in the optimization 
hierarchy for business manufacturing. At all levels the use of optimization tech- 
niques can be pervasive although specific techniques are not explicitly listed in the 
specific activities shown in the figure. In Figure 16.1 the key information sources for 
the plant decision hierarchy for operations are the enterprise data, consisting of ' 
commercial and financial information, and plant data, usually containing the values 
of a large number of process variables. The critical linkage between models and 
optimization in all of the five levels is illustrated in Figure 16.1. The first level 
(planning) sets production goals that meet supply and logistics constraints, and 
scheduling (layer 2) addresses time-varying capacity and staffing utilization deci- 
sions. The term supply chain refers to the links in a web of relationships involving 
materials acquisition, retailing (sales), distribution, transportation, and manufactur- 
ing with suppliers. Planning and scheduling usually take place over relatively long 
time frames and tend to be loosely coupled to the information flow and analysis that 
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FIGURE 16.1 
The five levels of integrated model-based planning, scheduling, optimization, control, and 
monitoring. 
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occur at lower levels in the hierarchy. The time scale for decision making at the 
highest level (planning) may be on the order of months, whereas at the lowest level 
(e.g., process monitoring) the interaction with the process may be in fractions of a 
second. 

Plantwide management and optimization at level 3 coordinates the network of 
process units and provides cost-effective setpoints via real-time optimization. The 
unit management and control level includes process control [e.g., optimal tuning 
of proportional-integral-derivative (PID) controllers], emergency response, and 
diagnosis, whereas level 5 (process monitoring and analysis) provides data acqui- 
sition and online angysis and reconciliation functions as well as fault detection. 
Ideally, bidirectional communication occurs between levels, with higher levels set- 
ting goals for lower levels and the lower levels communicating constraints and per- 
formance information to the higher levels. Data are collected directly at all levels 
in the enterprise. In practice the decision flow tends to be top down, invariably 
resulting in mismatches between goals and their realization and the consequent 
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TABLE 16.1 
Types of objective functions and models used in manufacturing system optimization 

Optimization level Objective function mpical models 

1. Planning 

2. Scheduling 

3. Plantwide management 
and optimization 

4. Unit management 
and control 
a. Continuous process 

b. Batch process 

5. Process monitoring and 
analysis 
a. Virtual sensors 

b. Data reconciliation, 
parameter estimation 

Economic 

Economic 

Economic 

Steady state, single or 
multiperiod, discrete-event, 
material flows 

Steady state, single or 
multiperiod, discrete-event, 
material flows 

Steady state, linear algebraic 
correlations or nonlinear 
simulator 

Quadratic-noneconomic Linear or nonlinear, dynamic, 
or economic empirical or physically based 

Economic or minimum time Linear or nonlinear, dynamic 
or run-to-run, physically 
based or empirical 

Least squares 

Least squares 

Nonlinear, physically based, 
steady state, or empirical 

Linear or nonlinear, steady 
state or dynamic, physical 

accumulation of inventory. Other more deleterious effects include reduction of 
processing capacity, off-specification products, and failure to meet scheduled 
deliveries. 

Over the past 30 years, business automation systems and plant automation sys- 
tems have developed along different paths, particularly in the way data are 
acquired, managed, and stored. Process management and control systems normally 
use the same databases obtained from various online measurements of the state of 
the plant. Each level in Figure 16.1 may have its own manually entered database, 
however, some of which are very large, but web-based data interchange will facil- 
itate standard practices in the future. 

Table 16.1 lists the kinds of models and objective functions used in the CIM 
hierarchy. These models are used to make decisions that reduce product costs, 
improve product quality, or reduce time to market (or cycle time). Note that mod- 
els employed can be classified as steady state or dynamic, discrete or continuous, 
physical or empirical, linear or nonlinear, and with single or multiple periods. The 
models used at different levels are not normally derived from a single model source, 
and as a result inconsistencies in the model can arise. The chemical processing 
industry is, however, moving in the direction of unifying the modeling approaches 
so that the models employed are consistent and robust, as implied in Figure 16.1. 
Objective functions can be economically based or noneconomic, such as least 
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squares. In subsequent sections of this chapter we will demonstrate typical opti- 
mization problem formulations for each of the five levels, including decision vari- 
ables, objective function, and constraints. 

16.2 PLANNING AND SCHEDULING 

Bryant (1993) states that planning is concerned with broad classes of products and 
the provision of adequate manufacturing capacity. In contrast, scheduling focuses 
on details of material flow, manufacturing, and production, but still may be con- 
cerned with offline planning. Reactive scheduling refers to real-time scheduling 
and the handling of unplanned changes in demands or resources. The term enter- 
prise resource planning (ERP) is used today, replacing the term manufacturing 
resources planning (MRP); ERP may or may not explicitly include planning and 
scheduling, depending on the industry. Planning and scheduling are viewed as dis- 
tinct levels in the manufacturing hierarchy as shown in Figure 16.1, but often a fair 
amount of overlap exists in the two problem statements, as discussed later on. The 
time scale can often be the determining factor in whether a given problem is a plan- 
ning or scheduling one: planning is typified by a time horizon of months or weeks, 
whereas scheduling tends to be of shorter duration, that is, weeks, days, or hours, 
depending on the cycle time from raw materials to final product. Bryant distin- 
guishes among system operations planning, plant operations planning, and plant 
scheduling, using the tasks listed in Table 16.2. At the systems operations planning 
level traditional multiperiod, multilocation linear programming problems must be 
solved, whereas at the plant operations level, nonlinear multiperiod models may be 
used, with variable time lengths that can be optimized as well (Lasdon and Baker, 
1986). 

TABLE 16.2 
Planning and scheduling hierarchy 

Corporate operations planning 

Allocate production requirements to plants. 
Balance facility's capacity. 
Optimize materials and product movements (supply chain). 

Plant operations planning 

Determine production plans. 
Plan inventory strategy. 
Determine raw materials requirements. 

Plant hheduling 

Determine run lengths. 
Determine sequence of operations. 
Provide inventory for production runs. 

Source: Bryant (1993). 
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Baker (1993) outlined the planning and scheduling activities in a refinery as 
follows: 

1. The corporate operations planning model sets target levels and prices for inter- 
refinery transfers, crude and product allocations to each refinery, production tar- 
gets, and inventory targets for the end of each refinery model's time horizon. 

2. In plant operations planning each refinery model produces target operating con- 
ditions, stream allocations, and blends across the whole refinery, which deter- 
mines (a) optimal operating conditions, flows, blend recipes, and inventories; 
and (b) costs, cost limits, and marginal values to the scheduling and real-time 
optimization (RTO) models. 

3. The scheduling models for each refinery convert the preceding information into 
detailed unit-level directives that provide day-by-day operating conditions or-set 
points. 

Supply chain management poses difficult decision-making problems because 
of its wide ranging temporal and geographical scales, and it calls for greater respon- 
siveness because of changing market factors, customer requirements, and plant 
availability. Successful supply chain management must anticipate customer 
requirements, commit to customer orders, procure new materials, allocate produc- 
tion capacity, schedule production, and schedule delivery. According to Bryant 
(1993), the costs associated with supply chain issues represent about 10 percent of 
the sales value of domestically delivered products, and as much as 40 percent inter- 
nationally. Managing the supply chain effectively involves not only the manufac- 
turers, but also their trading partners: customers, suppliers, warehousers, terminal 
operators, and transportation carriers (air, rail, water, land). 

In most supply chains each warehouse is typically controlled according to 
some local law such as a safety stock level or replenishment rule. This local con- 
trol can cause buildup of inventory at a specific point in the system and thus prop- 
agate disturbances over the time frame of days to months (which is analogous to 
disturbances in the range of minutes or hours that occur at the production control 
level). Short-term changes that can upset the system include those that are "self- 
inflicted" (price changes, promotions, etc.) or effects of weather or other cyclical 
consumer patterns. Accurate demand forecasting is critical to keeping the supply 
chain network functioning close to its optimum when the produce-to-inventory 
approach is used. 

16.2.1 Planning 

Figure 16.2 shows a simplified and idealized version of the components involved in 
the planning step, that is, the components of the supply chain. S possible suppliers 
provide raw materials to each of the M manufacturing plants. These plants manu- 
facture a given product that may be stored or warehoused in W facilities (or may 
not be stored at all), and these in turn are delivered to C different customers. The 
nature of the problem depends on whether the products are made to order or made 
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FIGURE 16.2 
Supply chain in a manufacturing system. 

Warehouse 
or Storage W 

u (No warehouse) 

Customer 

Customer 3zl 

Customer a 

to inventory; made to order fulfills a specific customer order, whereas made to 
inventory is oriented to the requirements of the general market demand. Figure 16.2 
is similar to a linear allocation process of Chapter 7, with material balance condi- 
tions satisfied between suppliers, factories, warehouses, and customers (equality 
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constraints). Inequality constraints would include individual line capacities in each 
manufacturing plant, total factory capacity, warehouse storage limits, supplier lim- 
its, and customer demand. Cost factors include variable manufacturing costs, cost 
of warehousing, supplier prices, transportation costs (between each sector), and 
variable customer pricing, which may be volume and quality-dependent. A practi- 
cal problem may involve as many as 100,000 variables and can be solved using 
mixed-integer linear programming (MILP); see Chapter 9. 

EXAMPLE 16.1 REFINERY PLANNING AND SCHEDULING 

Consider a very simple version of a refinery blending and production problem, which 
is often formulated and solved in an algebraic modeling language such as GAMS (see 
Chapters 7 and 9). Figure E16.1 is a schematic of feedstocks and products for the 
refinery. Table E16.1 lists the information pertaining to the expected yields of the four 
types of crudes when processed by the refinery. Note that the product distribution 
from the refinery is quite different for the four crudes. The entire multiunit refinery is 
aggregated into two processes: a fuel chain and a lube chain. Table E16.1 also lists the 
forecasted upper limits on the established markets for the various products in terms of 
the allowed maximum weekly production. The processing costs and other data were 
taken from Karirni (1992). 

The problem is to allocate optimally the crudes between the two processes, sub- 
ject to the supply and demand constraints, so that profits per week are maximized. The 
objective function and all constraints are linear, yielding a linear programming prob- 
lem (LP). To set up the LP you must (1) formulate the objective function and (2) for- 
mulate the constraints for the refinery operation. You can see from Figure E16.1 that 
nine variables are involved, namely, the flow rates of each of the crude oils and the 
four products. 

Solution. We want to decide how much of crudes 1, 2, and 3 should be used in the 
fuel process, and how much of crude 4 should be allocated to the fuel and the lube 
processes so as to maximize the weekly profit. One decision variable exists for the 
amount (kbbywk) of each crude 1, 2, and 3 used in the fuel process. Two variables 
exist for the amount (kbbywk) of crude 4: one for the amount of crude 4 allocated to 
the fuel process and the other for the amount allocated to the lube process. Denote the 
variables by x, (c = 1 to 5), where x, through x3 represent the amounts of crudes 1 
through 3, x, represents the crude 4 sent to the fuel process, and x, represents the 
crude 4 sent to the lube process. Because the crude supplies are limited, the x, will be 
constrained by 

where S, is the maximum supply (kbbVwk) of crude c listed in Table E16.1 
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FIGURE E16.1 
Processing operation schematic. 

TABLE E16.1 
Refinery data 

Lube oil X5 

Product yields 
(bbybbl crude) 

Lube 

Product 

Fuel chain 
Lube value chain - [selling Maximum 

chain 

Crudes 1 2 3 4 4 price demand 
(XI) (4 (~3)  (~4)  (x5) ($hbl)l (lo3 bbllwk) 

Q4 

Products 

Gasoline (P,) 0.6 0.5 0.3 0.4 0.4 45.00 170 
Heating oil (P,) 0.2 0.2 0.3 0.3 0.1 30.00 85 
Jet fuel (p3) 0.1 0.2 0.3 0.2 0.2 15.00 85 
Lube oil (P4) 0.0 0.0 0.0 0.0 0.2 60.00 20 

Operating losses 0.1 0.1 0.1 0.1 0.1 - - 

Crude cost ($/bbl) 15.00 15.00 15.00 25.00 25.00 
Operating cost ($/bbl) 5.00 8.50 7.50 3.00 2.50 

Available crude supply 100 100 100 200 
( 1 o3 bbl /~k)  

Next, we want to find the amounts of different products produced for the given 
usage xc of the crudes. Let Qp ( p  = 1 to 4) refer to the gasoline, heating oil, jet fuel, 
and lube oil, respectively. Define Qp as the amount (kbbl) of product p produced, and 
let api denote the yield of product p from crude x (in bblfbbl of crude); (a2, = 0.3, 
a,, = 0.2, etc.) Thus, using the a,, from Table E16.1, 
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Let Dp be the maximum demand for product p(Dl = 170, etc.). The maximum 
demands Dp provide the upper bounds on Qp. 

Finally, we will formulate the objective function. Using the production amounts Qp 
and the crude selection x,, we can calculate the profit as total income from product 
sales minus the total production cost. If vp(p = 1 to 4) is the value of product p, then 
total income (k$) from product sales is v,Q, + vzQ, + v3Q3 + v4Q4. The production 
cost consists of the costs of crudes and the operating costs. Let C,(c = 1 to 5) denote 
the sum of crude and operating costs ($/bbl) for crude usage x, (e.g., C, = $20/bbl). 
Then the total production cost is X:= C,x,. Therefore, the complete problem state- 
ment is 

Maximize: 2 vpQp - C,x, 

Subject to: xl 5 S 1  

The problem involves nine optimization variables (x,, c = 1 to 5; Qp, p = 1 to 4) in 
the preceding formulation. All are continuous variables. The objective function is a 
linear function of these variables, and so are Equations (a) and (b), hence the problem 
is a linear programming problem and has a globally optimal solution. 

Results. The optimal solution can be obtained using GAMS (Karimi, 1992); 
the optimum flows are 100, 100, 66.667, and 100 kbbVwk, respectively, of crudes 1, 
2, 3, and 4 and 170, 70, 70, and 20 kbbVwk, respectively, of gasoline, heating oil, jet 
fuel, and lube oil are produced. All of crude 4 is used in the lube chain. The maximum 
profit obtained is 3400 k$/wk. 

As discussed by Karimi (1992), the results for this problem can be interpreted by 
considering the profit per kilobarrel for each crude. For 1 kbbVwk of crude 1, we can 
produce 0.6 kbbVwk of gasoline, 0.2 kbbVwk of heating oil and 0.1 kbbVwk of jet fuel, 
with production cost of 20 k$/kbbVwk and value of the products of 45 * 0.6 + 30 * 
0.2 + 15 * 0.1 = 34.5 k$. Thus, for 1 kbbVwk of crude 1, a profit of 14.5 k$ results. 
A similar analysis for other crudes yields 8.0 k$, 4.5 k$, 2 k$, and 8.5 k$, respectively, 
for crude variables 2,3,4, and 5; the priority for the crude options should be 1,5,2,3, 
and 4. Note that all of crude 1 is used in the optimal solution. Using 100 kbbVwk of 
crude 1 produces 60 kbbVwk of gasoline, 20 kbbVwk of heating oil, and 10 kbbVwk of 
jet fuel. Because this does not exceed the demands of any of the products, the next most 
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profitable crude (crude 4) can be used in the lube process. Because demand for lube oil 
cannot be exceeded, only 100 kbbVwk of crude 4 can be used in the lube process. Next 
we can use crude 2, because it does not produce lube oil and is the next most profitable 
crude. If all of crude 2 (100 kbbllwk) is processed, the production amounts become 
150,50,50, and 20 kbbVwk, respectively, but more products can still be manufactured. 
The maximum amount of crude 3 that can be used without exceeding any of the prod- 
uct demands is 66.667 kbbVwk, when the demand of gasoline is equaled. Finally, crude 
4 cannot be consumed in the fuel process, because it also produces gasoline and it is 
not economical to produce any more gasoline. 

Most international oil companies that operate multiple refineries analyze the 
refinery optimization problem over several time periods (e.g., 3 months). This is 
because many crudes must be purchased at least 3 months in advance due to trans- 
portation requirements (e.g., the need to use tankers to transport oil from the Mid- 
dle East). These crudes also have different grades and properties, which must be 
factored into the product slate for the refinery. So the multitime period considera- 
tion is driven more by supply and demand than by inventory limits (which are typ- 
ically less than 5 days). The LP models may be run on a weekly basis to handle 
such items as equipment changes and maintenance, short-term supply issues (and 
delays in shipments due to weather problems or unloading difficulties), and 
changes in demand (4 weeks within a 1-month period). Product properties such as 
the Reid vapor pressure must be changed between summer and winter months to 
meet environmental restrictions on gasoline properties. See Pike (1986) for a 
detailed LP refinery example that treats quality specifications and physical proper- 
ties by using product blending, a dimension not included in Example 16.1 but one 
that is relevant for companies with varied crude supplies and product requirements. 

16.2.2 Scheduling 

Information processing in production scheduling is essentially the same as in plan- 
ning. Both plants and individual process equipment take orders and make products. 
For a plant, the customer is usually external, but for a process (or "work cell" in 
discrete manufacturing parlance), the order comes from inside the plant or factory. 
In a plant, the final product can be sold to an external customer; for a process, the 
product delivered is an intermediate or partially finished product that goes on to the 
next stage of processing (internal customer). 

Two philosophies are used to solve production scheduling problems (Puigjaner 
and Espura, 1998): 

1. The top-down approach, which defines appropriate hierarchical coordination 
mechanisms between the'different decision levels and decision structures at each 
level. These structures force constraints on lower operating levels and require 
heuristic decision rules for each task. Although this approach reduces the size 
and complexity of scheduling problems, it potentially introduces coordination 
problems. 
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TABLE 16.3 
Characteristics of batch scheduling 

and planning problems 

DETERMINE GIVEN 

What Product requirements 
Product amounts: lot sizes, Horizon, demands, starting 
batch sizes and ending inventories 

When Operational steps 
Timing of specific operations, Precedence order 
run lengths Resource utilization 

Where Production facilities 
Sites, units, equipment items Qpes, capacities 

How Resource limitations 
Resource types and amounts Qpes, amounts, rates 

Source: Pekny and Reklaritis (1998). 

2. The bottom-up approach, which develops detailed plant simulation and opti- 
mization models, optimizes them, and translates the results from the simulations 
and optimization into practical operating heuristics. This approach often leads to 
large models with many variables and equations that are difficult to solve 
quickly using rigorous optimization algorithms. 

Table 16.3 categorizes the typical problem statement for the manufacturing sched- 
uling and planning problem. In a batch campaign or run, comprising smaller runs 
called lots, several batches of product may be produced using the same recipe. To 
optimize the production process, you need to determine 

1. The recipe that satisfies product quality requirements. 
2. The production rates needed to fulfill the timing requirements, including any 

precedence constraints. 
3. Operating variables for plant equipment that are subject to constraints. 
4. Availability of raw material inventories. 
5. Availability of product storage. 
6. The run schedule. 
7. Penalties on completing a production step too soon or too late. 

EXAMPLE 16.2 MULTIPRODUCT BATCH PLANT 
SCHEDULING 

Batch operations such as drying, mixing, distillation, and reaction are widely used in 
producing food, pharmaceuticals, and specialty products (e.g., polymers). Scheduling 
of operations as described in Table 16.3 is crucial in such plants. A principal feature 
of batch plants (Ku and Karimi, 1987) is the production of multiple products using the 
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same set of equipment. Good industrial case studies of plant scheduling include those 
by Bunch et al. (1998), McDonald (1998), and Schulz et al. (1998). For example, 
Schulz et al. described a polymer plant that involved four process steps (preparation, 
reaction, mixing, and finishing) using different equipment in each step. When prod- 
ucts are similar in nature, they require the same processing steps and hence pass 
through the same series of processing units; often the batches are produced sequen- 
tially. Such plants are called multiproduct plants. Because of different processing time 
requirements, the total time required to produce a set of batches (also called the 
makespan or cycle time) depends on the sequence in whidh they are produced. To 
maximize plant productivity, the batches should be produced in a sequence that min- 
imizes the makespan. The plant schedule corresponding to such a sequence can then 
be represented graphically in the form of a Gantt chart (see the following discussion 
and Figure E16.2b). The Gantt chart provides a timetable of plant operations showing 
which products are produced by which units and at what times. Chapter 10 discusses 
a single-unit sequencing problem. 

In this example we consider four products @I, p2, p3, p4) that are to be produced 
as a series of batches in a multiproduct plant consisting of three batch reactors in 
series (Ku and Karirni, 1992); see Figure E16.2a. The processing times for each batch 
reactor and each product are given in Table E16.2. Assume that no intermediate stor- 
age is available between the processing units. If a product finishes its processing on 
unit k and unit k + 1 is not free because it is still processing a previous product, then 
the completed product must be kept in unit k, until unit k + 1 becomes free. As an 
example, product p l  must be held in unit 1 until unit 2 finishes processing p3. When 
a product finishes processing on the last unit, it is sent immediately to product stor- 
age. Assume that the times required to transfer products from one unit to another are 
negligible compared with the processing times. 

The problem for this example is to determine the time sequence for producing the 
four products so as to minimize the makespan. Assume that all the units are initially 

FIGURE E16.2a 
Multiproduct plant. 
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empty (initialized) at time zero and the manufacture of any product can be delayed an 
arbitrary amount of time by holding it in the previous unit. 

Solution. Let N be the number of products and M be the number of units in the plant. 
Let q,, (called completion time) be the "clock time at which the jth product in the 
sequence leaves unit k after completion of its processing, and let rLk be the time 
required to process the jth product in the sequence on unit k (See Table E16.2). The 
first product goes into unit 1 at time zero, so ClYo = 0. The index j in T ~ , ~  and Cjrk 
denotes the position of a product in the sequence. Hence CN,, is the time at which the 
last product leaves the last unit and is the makespan to be minimized. Next, we derive 
the set of constraints (Ku and Karimi, 1988; 1990) that interrelate the Cj,k. First, the 
jth product in the sequence cannot leave unit k until it is processed, and in order to be 
processed on unit k, it must have left unit k - 1. Therefore the clock time at which it 
leaves unit k (i.e., q,+ ) must be equal to or after the time at which it leaves unit k - 1 
plus the processing time in k. Thus the first set of constraints in the formulation is 

Similarly, the jth product cannot leave unit k until product ( j  - 1) has been processed 
and transferred: 

Set C,, = 0. Finally the jth product in the sequence cannot leave unit k until the 
downsbeam unit k + 1 is free [i.e., product ( j  - 1) has left]. Therefore 

Although Equations (a)-(c) represent the complete set of constraints, some of them are 
redundant. From Equation (a) Cj,, r Cj,k- + T ~ , ~  for k 1 2 . But from Equation (c), 
Cj,k-l 2 Cj- l,k, hence Cj,k 1 Cj- l,k + ri,k for k = 2, M. In essence, Equations (a) 
and (c) imply Equations (b) for k = 2, M, so Equations (b) for k = 2, M are redundant. 

Having derived the constraints for completion times, we next determine the 
sequence of operations. In contrast to the CjPk, the decision variables here are discrete 
(binary). Define Xij as follows. Xi,. = 1 if product i (product with label pi) is in slot j 
of the sequence, otherwise it is zero. So X3,, = 1 means that product p3 is second in 
the production sequence, and X3, = 0 means that it is not in the second position. The 
overall integer constraint is 

Similarly every product should occupy only one slot in the sequence: 

The Xij that satisfy Equations (d) and (e)  always give a meaningful sequence. Now we 
must determine the clock times ti,, for any given set of Xi,j. If product pi is in slot j, then 
tj,km~~tbe7i,kandXi,j = 1 andXi,l = Xi,, = . . . = X i , ~ - 1  . = X.. ~ + l  = . . . = xi,N = 0, 
therefore we can use XiFj to pick the right processing time representing $,, by imposing 
the constraint. 
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To reduce the number of constraints, we substitute rjtk from Equation (f) into Equa- 
tions (a) and (b) to obtain the following formulation (Ku and Karimi, 1988). 

Minimize: CNM 

Subject to: Equations (c), (d), (e) and 

C,,, r 0 and Xi,, binary 

Because the preceding formulation involves binary (XiJ) as well as continuous vari- 
ables (Ci,,) and has no nonlinear functions, it is a mixed-integer linear programming 
(MILP) problem and can be solved using the GAMS MIP solver. 

Solving for the optimal sequence using Table E16.2, we obtain XI,, = X2,4 = 
X3,, = X,,, = 1. This means that p l  is in the first position in the optimal production 
sequence, p2 in the fourth, p3 in the second, and p4 in the third. In other words, the 
optimal sequence is in the order pl-p3-p4-p2. In contrast to the XiJ, we must be care- 
ful in interpreting the Ci,, from the GAMS output, because C,,, really means the time 
at which the jth product in the sequence (and not product pi) leaves unit k. Therefore 
C2,, = 23.3 means that the second product (i.e., p3) leaves unit 3 at 23.3 h. Interpret- 
ing the others in this way, the schedule corresponding to this production sequence is 
conveniently displayed in form of a Gantt chart in Figure E16.2b, which shows the sta- 
tus of the units at different times. For instance, unit 1 is processing p l  during [0, 3.51 
h. When p l  leaves unit 1 at t = 3.5 h, it starts processing p3. It processes p3 during 
[3.5,7] h. But as seen from the chart, it is unable to dischargep3 to unit 2, because unit 
2 is still processing p l .  So unit 1 holds p3 during [7,7.8] h. When unit 2 discharges p3 
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FIGURE E16.2b 
Gantt chart for the optimal multiproduct plant schedule. 
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to unit 3 at 16.5 h, unit 1 is still processingp4, therefore unit 2 remains idle during [16.5, 
19.81 h. It is common in batch plants to have units blocked due to busy downstream units 
or units waiting for upstream units to finish. This happens because the processing times 
vary from unit to unit and from product to product, reducing the time utilization of units 
in a batch plant. The finished batches of p l ,  p3, p4, and p2 are completed at times 16.5 
h, 23.3 h, 3 1.3 h, and 34.8 h. The minimum makespan in 34.8 h. 

This problem can also be solved by a search method (see Chapter 10). Because 
the order of products cannot be changed once they start through the sequence of units, 
we need only determine the order in which the products are processed. This is the 
same problem as considered in Section 10.5.2, to illustrate the workings of tabu 
search. Using the notation of that section, let 

be a permutation or sequence in which to process the jobs, where p(j) is the index of 
the product in position j of the sequence. To evaluate the makespan of a sequence, we 
proceed as in Equations (a)-(c) of the mixed-integer programming version of the 
problem. Let Ci, be the completion time of product p(j) on unit k. If product p(j) does 
not have to wat  for product p ( j  - 1) to finish its processing on unit k, then 

If it does have to wait, then 

Hence Cj,k is the larger of these two values: 

This equation is solved first for Cl,k for k = 1, . . . , M, then for C,& for k = 1,2, . . . , M, 
and so on. The objective function is simply the completion time of the last job: 

In a four-product problem, there are only 4! = 24 possible sequences, so you can eas- 
ily write a simple FORTRAN or C program to evaluate the makespan for an arbitrary 
sequence, and then call it 24 times and choose the sequence with the smallest 
makespan. For larger values of N, one can apply the tabu search algorithm described 
in Section 10.5.2. Other search procedures (e.g . , evolutionary algorithms or simulated 
annealing), can also be developed for this problem. Of course, these algorithms do not 
guarantee that an optimal solution will be found. On the other hand, the time required 
to solve the mixed-integer programming h u l a t i o n  grows rapidly with N, so that 
approach eventually becomes impractical. This illustrates that you may be able to 
develop a simple but effective search method yourself, and eliminate the need for 
MILP optimization software. 

The classical solution to a scheduling problem assumes that the required infor- 
mation is known at the time the schedule is generated and that this a priori sched- 
uling remains fixed for a planning period and is implemented on the plant equip- 
ment. Although this methodology does not compensate for the many external 
disturbances and internal disruptions that occur in a real plant, it is still the strategy 
most commonly found in industrial practice. Demand fluctuations, process devia- 
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tions, and equipment failure all result in schedule infeasibilities that become appar- 
ent during the implementation of the schedule. To remedy this situation, frequent 
rescheduling becomes necessary. 

In the rolling horizon rescheduling approach (Baker, 1993), a multiperiod solu- 
tion is obtained, but only the first period is implemented. After one period has 
elapsed, we observe the existing inventories, create new demand forecasts, and 
solve a new multiperiod problem. This procedure tries to compensate for the fixed 
nature of the planning model. However, as has been pointed out by Pekny and 
Reklaitis (1998), schedules generated in this fashion generally result in frequent 
resequencing and reassignment of equipment and resources, which may induce fur- 
ther changes in successive schedules rather than smoothing out the production out- 
put. An alternative approach uses a master schedule for planning followed by a 
reactive scheduling strategy to accommodate changes by readjusting the master 
schedule in a least cost or least change way. 

The terms able to promise or available to promise (ATP) indicate whether a 
given customer, product, volume, date, or time request can be met for a potential 
order. ATP requests might be filled from inventory, unallocated planned production, 
or spare capacity (assuming additional production). When the production scheduler 
is content with the current plan, made up of firm orders and forecast orders, the 
forecast orders are removed but the planned production is left intact. This produces 
inventory profiles in the model that represent ATP from inventory and from unallo- 
cated planned production (Baker, 1993; Smith, 1998). 

An important simulation tool used in solving production planning and sched- 
uling problems is the discrete event dynamic system (DEDS), which gives a detailed 
picture of the material flows through the production process. Software for simulat- 
ing such systems are called discrete event simulators. In many cases, rules or expert 
systems are used to incorporate the experience of scheduling and planning person- 
nel in lieu of a purely optimization-based approach to scheduling (Bryant, 1993). 
Expert systems are valuable to assess the effects of changes in suppliers, to locate 
bottlenecks in the system, and to ascertain when and where to introduce new orders. 
These expert systems are used in reactive scheduling when fast decisions need to 
be made, and there is no time to generate another optimized production schedule. 

16.3 PLANTWIDE MANAGEMENT AND OPTIMIZATION 

At the plantwide management and optimization level (see Figure 16.1), engineers 
strive for enhancements in the operation of the equipment once it is installed in 
order to realize the most production, the greatest profit, the minimum cost, the least 
energy usage, and so on. In plant operations, benefits arise from improved plant 
performance, such as improved yields of valuable products (or reduced yields of 
contaminants), better product quality, reduced energy consumption, higher pro- 
cessing rates, and longer times between shut downs. Optimization can also lead to 
reduced maintenance costs, less equipment wear, and better staff utilization. Opti- 
mization can take place plantwide or in combinations of units. 
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The application of real-time optimization (RTO) in chemical plants has been 
carried out since the 1960s. Originally a large mainframe computer was used to 
optimize process setpoints, which were then sent to analog controllers for imple- 
mentation. In the 1970s this approach, called supervisory control, was incorporated 
into computer control systems with a distributed microprocessor architecture called 
a distributed control system, or DCS (Seborg et al., 1989). In the DCS both super- 
visory control and regulatory (feedback) control were implemented using digital 
computers. Because computer power has increased by a factor of lo6 over the past 
30 years, it is now feasible to solve meaningful optimization problems using 
advanced tools such as linear or nonlinear programming in real time, meaning 
faster than the time between setpoint changes. 

In RTO (level 3), the setpoints for the process operating conditions are opti- 
mized daily, hourly, or even every minute, depending on the time scale of the 
process and the economic incentives to make changes. Optimization of plant oper- 
ations determines the setpoints for each unit at the temperatures, pressures, and 
flow rates that are the best in some sense. For example, the selection of the per- 
centage of excess air in a process heater is quite critical and involves a balance on 
the fuel-air ratio to ensure complete combustion and at the same time maximize use 
of the heating potential of the fuel. Examples of periodic optimization in a plant are 
minimizing steam consumption or cooling water consumption, optimizing the 
reflux ratio in a distillation column, blending of refinery products to achieve desir- 
able physical properties, or economically allocating raw materials. Many plant 
maintenance systems have links to plant databases to enable them to track the oper- 
ating status of the production equipment and to schedule calibration and mainte- 
nance. Real-time data from the plant also may be collected by management infor- 
mation systems for various business functions. 

The objective function in an economic model in RTQ involves the costs of raw 
materials, values of products, and costs of production as functions of operating con- 
ditions, projected sales or interdepartmental transfer prices, and so on. 

Both the operating and economic models typically include constraints on 

(a) Operating Conditions: Temperatures and pressures must be within certain 
limits. 

(b) Feed and Production Rates: A feed pump has a fixed capacity; sales are 
limited by market projections. 

(c) Storage and Warehousing Capacities: Storage tanks cannot be overfilled 
'during periods of low demand. 

(d) Product Impurities: A product may contain no more than the maximum 
amount of some contaminant or impurity. 

In addition, safety or environmental constraints might be added, such as a tem- 
perature limit or an upper limit on a toxic species. Several steps are necessary for 
implementation of RTO, including determining the plant steady-state operating 
conditions, gathering and validating data, updating of model parameters (if neces- 
sary) to match current operations, calculating the new (optimized) setpoints, and 
implementing these setpoints. An RTO system completes all data transfer, opti- 
mization calculations, and setpoint implementations before unit conditions change 
and require a new optimum to be calculated. 
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A number of RTO problems characteristic of level 3 in Figure 16.1 have been 
presented in earlier chapters of this book: 

1. Reflux ratio in distillation (Example 12.2). 
2. Olefin manufacture (Example 14.1). 
3. Ammonia synthesis (Example 14.2). 
4. Hydrocarbon refrigeration (Example 15.2). 

The last example is particularly noteworthy because it represents the current state 
of the art in utilizing fundamental process models in RTO. 

Another activity in RTO is determining the values of certain empirical param- 
eters in process models from the process data after ensuring that the process is at 
steady state. Measured variables including flow rates, temperatures, compositions, 
and pressures can be used to estimate model parameters such as heat transfer coef- 
ficients, reaction rate coefficients, catalyst activity, and heat exchanger fouling fac- 
tors. Usually only a few such parameters are estimated online, and then optimiza- 
tion is carried out using the updated parameters in the model. Marlin and Hrymak 
(1997) and Forbes et al. (1994) recommend that the updated parameters be observ- 
able, represent actual changes in the plant, and significantly influence the location 
of the optimum; also the optimum of the model should be coincident with that of 
the true process. One factor in modeling that requires close attention is the accurate 
representation of the process constraints, because the optimum operating condi- 
tions usually lie at the intersection of several constraints. When RTO is combined 
with model predictive regulatory control (see Section 16.4), then correct (optimal) 
moves of the manipulated variables can be determined using models with accurate 
constraints. 

Marlin and Hrymak (1997) reviewed a number of industrial applications of 
RTO, mostly in the petrochemical area. They reported that in practice a maximum 
change in plant operating variables is allowable with each RTO step. If the com- 
puted optimum falls outside these limits, you must implement any changes over 
several steps, each one using an RTO cycle. Typically, more manipulated variables 
than controlled variables exist, so some degrees of freedom exist to carry out both 
economic optimization as well as establish priorities in adjusting manipulated vari- 
ables while simultaneously carrying out feedback control. 

16.4 UNIT MANAGEMENT AND CONTROL 

Because of greater integration of plant equipment, tighter quality specifications, 
and more emphasis on maximum profitability while maintaining safe operating 
conditions, implementation of advanced multivariable process control is increasing. 
The distributed control system (DCS) architecture for computer control mentioned 
in the previous section normally uses feedback control based on a proportional inte- 
gral derivative (PID) controller at the implementation level for regulatory control 
(Seborg et al., 1989). Although in principle you can select the three design param- 
eters for PID control in an individual control loop using an optimization technique 
discussed in Chapter 6 (based on minimizing the sum of squares of the error from 
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setpoint), this design method is not the normal approach currently taken for level 4 
in Figure 16.1 (unit management and control). In industrial practice today, 
advanced multivariable control strategies are being applied using a mathematical 
programming approach, which is the main topic of this section. 

Model predictive control (MPC) refers to a class of control techniques in which 
a process model is used to predict the future values of the process outputs, and these 
predictions are used in computing the best control strategy. The most powerful 
MPC techniques are based on optimization of a quadratic objective function involv- 
ing the error between the setpoints and predicted outputs. MPC is especially well 
suited for dificult multiple-inputfmultiple-output (MIMO) control problems, in 
which significant interactions exist between the manipulated inputs and the con- 
trolled outputs. In addition, MPC can easily accommodate inequality constraints on 
the input and output variables, such as upper and lower limits, or rate-of-change 
limits. The operating goal is to keep the process variables within their limits while 
moving the process to an economic optimum. The success of model predictive con- 
trol in solving large multivariable industrial control problems is impressive, per- 
haps even reaching the status of a "killer" application. Control of units with as 
many as 60 inputs and 40 outputs is already established in industrial practice. Since 
the 1970s more than a thousand applications of MPC techniques have been used in 
oil refineries and petrochemical plants around the world. Thus, MPC has had a sub- 
stantial influence and is currently the method of choice for difficult multivariable 
control problems in these industries (Camacho and Bordons, 1999). 

A key feature of MPC is that future process behavior is predicted using a 
dynamic model and the available measurements. The controller outputs are calcu- 
lated so as to minimize the difference between the predicted process response and 
the desired response. At each sampling instant the control calculations are repeated 
and the predictions updated based on current measurements, which is a moving 
horizon approach. Garcia et al. (1989), Richalet (1993), and Qin and Badgwell 
(1997) have provided surveys of the MPC approach. 

Because empirical dynamic models are generally used, they are only valid over 
the range of conditions considered during the original plant tests, but MPC can be 
adapted to optimize plant performance. In this case the control strategy is updated 
periodically to compensate for changes in process conditions, constraints, or per- 
formance criteria. Here the MPC calculations need to be done more frequently 
(e.g., solving an LP or QP problem at each sampling instant) and thus may require 
an increased amount of computer resources. 

16.4.1 Formulating the MPC Optimization Problem 

In MPC a dynamic model is used to predict the future output over the prediction 
horizon based on a set of control changes. The desired output is generated as a set- 
point that may vary as a function of time; the prediction error is the difference 
between the setpoint trajectory and the model prediction. A model predictive con- 
troller is based on minimizing a quadratic objective function over a specific time 
horizon based on the sum of the square of the prediction errors plus a penalty 
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related to the square of the changes in the control variable(s). Inequality constraints 
on the input and output variables can be included in the optimization calculation. 
At each sampling instant, values of the manipulated variables and controlled vari- 
ables for the next m time steps are calculated; m is the number of control "moves," 
and its selection is discussed later. At each sampling instant, only the first control 
move (of the rn moves that were calculated) is actually implemented. Then, the pre- 
diction and control calculations are repeated at the next sampling instant, based on 
the currently measured state of the process. 

In principle, any type of process model can be used to predict future values of 
the controlled outputs. For example, one can use a physical model based on first 
principles (e.g., mass and energy balances), a linear model (e.g., transfer function, 
step response model, or state space-model), or a nonlinear model (e.g., neural nets). 
Because most industrial applications of MPC have relied on linear dynamic mod- 
els, later on we derive the MPC equations for a single-inputJsingle-output (SISO) 
model. The SISO model, however, can be easily generalized to the MIMO models 
that are used in industrial applications (Lee et al., 1994). One model that can be 
used in MPC is called the step response model, which relates a single controlled 
variable y with a single manipulated variable u (based on previous changes in u) as 
follows: 

where f(k) is the predicted value of y(k) at the k-sampling instant (k = 1, 2, . . .), 
Au(k - i) is the change in the manipulated input at time k - i [Au(k - i) = u(k - i) 
- u(k - i - I)], N is the number of terms in the step response model (usually less 
than 50), and the N model parameters S, are referred to as the step response coef- 
ficients. The initial value y(0) is assumed to be known. Other model forms in MPC 
can involve fewer parameters and can be expressed using state space form (Lee et 
al., 1994), which is now more frequently used in commercial software packages. 

Figure 16.3 shows a hypothetical step response for an industrial process gen- 
erated by a step change in the manipulated variable u. The model is developed by 
performing a step change in u(k) and recording the response y(k) until it essentially 
reaches steady state. In theory, the Si can be determined from a single-step response 
but in practice a number of step tests are required to compensate for unanticipated 
disturbances, process nonlinearities, and noisy measurements. The step response 
coefficients Si can be estimated by applying linear regression to the values of the 
output variable at each sampling instant. Usually the final or steady-state value 
y(ss) is the last sampled value of y, and the number of data points is selected to be 
larger than N, the number of terms in the model. 

We now develop a mathematical statement for model predictive control with a 
quadratic objective function for each sampling instant k and linear process model 
in Equation 16.1 : 

minf = s w i e 2 ( k  + i) + Ax Au2(k + i - 1) (16.2) 
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Step change made in the manipulated variable 

Time 

FIGURE 16.3 
Typical step response for an industrial process. A time delay may 
occur between the time that the manipulated variable is changed and 
the time that the process response occurs. 

where e(k + i)  denotes the predicted error at time (k + i), i = 1, . . . , p, 

r(k + i) is the reference value or setpoint at time k + i, and Au(k) denotes the vec- 
tor of current and future control moves over the next m sampling instants: 

Au(k) = [Au(k),Au(k + 1), . .. , Au(k + m - l ) l T  (16.4) 

To minimize f, you balance the error between the setpoint and the predicted 
response against the size of the control moves. Equation 16.2 contains design 
parameters that can be used to tune the controller, that is, you vary the parameters 
until the desired shape of the response that tracks the setpoint trajectory is achieved 
(Seborg et al., 1989). The "move suppression" factor A penalizes large control 
moves, but the weighting factors wi allow the predicted errors to be weighted dif- 
ferently at each time step, if desired. Typically you select a value of rn (number of 
control moves) that is smaller than the prediction horizon p, so the control variables 
are held constant over the remainder of the prediction horizon. 

Inequality constraints on future inputs or their rates of change are widely used 
in the MPC calculations. For example, if both upper and lower limits on u and Au 
are required, the constraints could be expressed as 

B' 5 u(k + i) 5 B", for i = 1,2, ... , m (16.5) 
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C'S Au(k+ i) r C " ,  for i =  1 ,2  ,..., m (16.6) 

where the B1, C1, and Bu, Cu are lower and upper bounds, respectively. Note that 
u(k + i) is determined by whatever values Au(k + i) assume. Constraints on the 
predicted outputs are sometimes included as well: 

The minimization of the quadratic performance index in Equation (16.2), sub- 
ject to the constraints in Equations (16.5-16.7) and the step response model such 
as Equation (16.1), forms a standard quadratic programming (QP) problem, 
described in Chapter 8. If the quadraiic terms in Equation (16.2) are replaced by lin- 
ear terns, a linear programming program (LP) problem results that can also be 
solved using standard methods. The MPC formulation for SISO control problems 
described earlier can easily be extended to MIMO problems and to other types of 
models and objective functions (Lee et al., 1994). Tuning the controller is carried 
out by adjusting the following parameters: 

The weighting factor w. 
The move suppression factor A. 
Bounds for the inputs and input moves. 
The input horizon (m) and output horizon (p). 

See the review by Qin and Badgwell (1997) for details on commercial MPC 
packages. 

EXAMPLE 16.3 MODEL PREDICTIVE CONTROL OF A 
CHEMICAL REACTOR 

To carry out changes in the desired operating conditions a chemical reactor is to be 
controlled using MPC. The reactor is treated as a SISO system; the heat addition rate 
is the input, and reactor outlet concentration is the output. To design the controller, the 
system is subjected to a step change in the input, and the output is measured using a 
constant sampling interval of 1.0 rnin. Table E16.3 lists the values of the measured 
output (the response data have been normalized to have a final steady-state value of 
1.0). The step response data follow the pattern shown in Figure 16.3. We will use 
Equation 16.1 to match the step response, with N equal to 70. Once the model coeffi- 
cients of the response are determined, we can use a QP solver to find the response for 
a specific setpoint change given the horizons rn = 2, p = 4 for the following three 
cases: 

1. Unconstrained u(k), h = 0, w = 1 
2.40 5 u(k) 1 40, h = 0, w = 1 
3. Unconstrained u(k); h is varied using a one-dimensional search (external to the 

MPC program) to find a good response that satisfies the input constraints in step 2. 

Solution. For a given setpoint change you want a smooth, reasonably rapid rise to the 
new operating point with a small amount of overshoot before settling to the desired 
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TABLE E16.3 
Step response for At = 1 

Time Step response Time Step response 

oper'ating point. In addition, the changes in the input variable (e.g., valve position for 
heat transfer medium) should not be too extreme during the transition. Although we 
do not place a hard limit on the changes in the input, this could easily be done. The 
step response model for N = 70 is simply the values of y for k = 1 to 70. 

For this example, the controller design was carried out using the MATLAB 
Model Predictive Control toolbox, which includes a QP solver. Three cases were con- 
sidered in the preceding problem statement. 

1. The MPC controller that minimizes the variance of the output (minimum variance 
controller) during a setpoint change corresponds to the controller setting w = 1, 
A = 0, and no bounds on the input. The response for this controller design for 
m = 2 and p = 4 is given in Figure E16.3 by the solid line. 
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FIGURE E16.3 
Comparison of the system behavior using three different model predictive controllers (a) 
minimum variance, (b) input constraint, (c) input penalty. 

2. The input for most chemical processes is normally constrained, (e.g., a valve 
ranges between 0 and 100 percent open). An unconstrained minimum variance 
controller might not be able to achieve the desired input trajectory for the response. 
The controller design should take the process input constraints into account. The 
results of a simulated setpoint change for such a controller with bounds of -40 and 
40 for the input and controller parameters w = 1 and h = 0 is given by the dashed 
line in Figure E 16.3. 

3. An alternative method to limit the control action for a controller is to increase the 
value of the move suppression factor A, penalizing the change in the input. The 
system response for small values of A is close to the unconstrained minimum vari- 
ance controller as expected, but it violates the constraints. With increasing values 
of the move suppression factor, however, the second term in Equation (16.2) 
becomes more important in the objective function, and control changes can corre- 
spondingly be limited to the range -40 5 u(k) 5 40. The dotted line in Figure 
E16.3 corresponds to a system with the controller setting w = 1, h = 0.01, and no 
bounds on the input. Note that the response is much slower than in the direct con- 
straint approach used in case 2. 

The control actions in Figure E16.3 are influenced by the choice of the input and 
output horizon. For this example, all of the controllers had an input horizon of 2 and 
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an output horizon of 4. In addition to w and A, the two parameters m and p can be 
adjusted to improve the response. A selection of shorter horizons will result in more 
aggressive controllers. 

Implementation issues 
A critical factor in the successful application of any optimization technique is 

the availability of a suitable dynamic model. As mentioned previously, in typical 
MPC applications an empirical model is identified from data acquired during exten- 
sive plant tests. The experiments generally consist of a series of step tests, in which 
the manipulated variables are adjusted one at a time, and the tests require a period 
of 1-3 weeks. Details concerning the procedures used in the plant tests and subse- 
quent model identification are usually considered to be proprietary information. 
The scaling and conditioning of plant data for use in model identification and con- 
trol calculations can be key factors in the success of the application. 

Integration of MPC and real-time optimization 
Significant potential benefits can be realized by using a combination of MPC 

and RTO of setpoints that was discussed in Section 16.3. At the present time, most 
commercial MPC packages integrate the two methodologies in a configuration such 
as the one shown in Figure 16.4. The MPC calculations are imbedded in the pre- 
diction and controller blocks and are carried out quite often (e.g., every 1-10 rnin). 
The prediction block predicts the future trajectory of all controlled variables, and 
the controller achieves the desired response while keeping the process within limits. 

Optimizer 

Targets, constraints, 
manipulated variable changes 

Previous values of inputs Process 
model 

I 
Prediction model error 

FIGURE 16.4 
Diagram showing the combination of real-time optimization and model predictive 
control in a computer control system. 
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The targets for the MPC calculations are generated by solving a steady-state opti- 
mization problem (LP or QP) based on a linear process model, which also finds the 
best path to achieve the new targets (Backx et al., 2000). These calculations may be 
performed as often as the MPC calculations. The targets and constraints for the LP 
or QP optimization can be generated from a nonlinear process model using a non- 
linear optimization technique. If the optimum occurs at a vertex of constraints and 
the objective function is convex, successive updates of a linearized model will find 
the same optimum as the nonlinear model. These calculations tend to be performed 
less frequently (e.g., every 1-24 h) due to the complexity of the calculations and 
the process models. 

.. 
16.5 PROCESS MONITORING AND ANALYSIS 

Measured process data inherently contain inaccurate information because the meas- 
urements are obtained with imperfect instruments. When flawed information is 
used for estimation of process variables and process control, the state of the system 
can be misrepresented and the resulting control performance is poor, leading to sub- 
optimal and even unsafe process operation. Data reconciliation means the adjust- 
ment of process data measurements in order to force the data to agree in some sense 
with a model so that the estimates are better than the data. Better is usually defined 
as the optimal solution to a constrained least squares or maximum likelihood objec- 
tive function. It is important to understand what is wrong with the values obtained 
by measurement and why they must be adjusted (Romagnoli and Sanchez, 1999). 
Data reconciliation can make the process data more useful for decision making and 
control by smoothing, eliminating outliers, and adjusting for bias and drift, thereby 
leading to better quality control, detection of faulty instrumentation, detection of 
process leaks, and increased profits. Computer-integrated manufacturing systems 
provide plant engineers direct access to extensive plant data as they are recorded. 
Automation of the data reconciliation computations is necessary to make use of the 
large amount of information available. 

Suppose that the relationship between a measurement of a variable and its true 
value can be represented by 

where ym = measured value 
y = true value 
e = error 

Measurements can contain any of several types of errors: (1) small random 
errors, (2) systematic biases and drift, or (3) gross errors. Small random errors are 
zero-mean and are often assumed to be normally distributed (Gaussian). Systematic 
biases occur when measurement devices provide consistently erroneous values, 
either high or low. In this case, the expected value of e is not zero. Bias may arise 
from sources such as incorrect calibration of the measurement device, sensor 
degradation, damage to the electronics, and so on. The third type of measurement 
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FIGURE 16.5 
Steps for data improvement. 

> 

error is gross error and is usually caused by large, short-term, nonrandom events. 
Gross errors can be subdivided into measurement-related errors, such as malfunc- 
tioning sensors, and process-related errors, such as process leaks. 

Qpically, process data are improved using spatial, or functional, redundancies 
in the process model. Measurements are spatially redundant if more than enough 
data exist to completely define the process model at any instant, that is, the system 
is overdetermined and requires a solution by least squares fitting. Similarly, data 
improvement can be performed using temporal redundancies. Measurements are 
temporally redundant if past measurement values are available and can be used for 
estimation purposes. Dynamic models composed of algebraic and differential equa- 
tions provide both spatial and temporal redundancy. 

A simplified view of measurement data improvement techniques can be divided 
into three basic steps as shown in Figure 16.5. The first step, variable classification, 
involves determining which variables are observable or unobservable and which are 
redundant or underdetermined. Several authors have published algorithms for vari- 
able classification (Crowe, 1986; Stanley and Mah, 198 1 ; Mah, 1990). Those that 
are undeterminable are not available for improvement. Next, all gross errors are 
identified and removed. Several methods proposed for gross error detection have 
been evaluated by Mah (1990), Rollins et al. (1996) and Tong and Crowe (1997). 
Data reconciliation concentrates on removing the remaining small, random mea- 
surement errors from the data. A key assumption frequently made during the recon- 
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ciliation step is that the errors are normally distributed, but gross errors severely vio- 
late that assumption. If a measurement containing a gross error were allowed into 
the reconciliation scheme, the resulting estimates of the values of the variable would 
contain a portion of the gross error distributed among some or perhaps all the esti- 
mates (referred to as "smearing"). In practice, gross error detection and elimination 
are usually performed iteratively along with the final step-data reconciliation. 

Historically, treatment of measurement noise has been addressed through two 
distinct avenues. For steady-state data and processes, Kuehn and Davidson (1961) 
presented the seminal paper describing the data reconciliation problem based on 
least squares optimization. For dynamic data and processes, Kalman filtering 
(Gelb, 1974) has been successfully used to recursively smooth measurement data 
and estimate parameters. Both techniques were developed for linear systems and 
weighted least squares objective functions. 

The steady-state linear model data reconciliation problem can be stated as 

minf = f(5 - y ) T ~ - l ( j  - y) 

subject to the model constraints 

where V = variance-covariance matrix (usually diagonal) 
y, = measurement of variable i 
ji = reconciled estimate of variable i 
A = matrix of linear constraints 
b = vector of right-hand side terms in linear constraints 

The optimal solution to this problem is 

If the model includes nonlinear constraints, the problem can be solved using non- 
linear programming (Chapter 8). 

Several researchers [e.g., Tjoa and Biegler (1992) and Robertson et al. (1996)l 
have demonstrated advantages of using nonlinear programming (NLP) techniques 
over such traditional data reconciliation methods as successive linearization for 
steady-state or dynamic processes. Through the inclusion of variable bounds and a 
more robust treatment of the nonlinear algebraic constraints, improved reconcilia- 
tion performance can be realized. 

Extended Kalman filtering has been a popular method used in the literature to 
solve the dynamic data reconciliation problem (Muske and Edgar, 1998). As an 
alternative, the nonlinear dynamic data reconciliation problem with a weighted least 
squares objective function can be expressed as a moving horizon problem (Liebman 
et al., 1992), similar to that used for model predictive control discussed earlier. 

The nonlinear objective function (usually quadratic) is 



578 PART I1 I : Applications of Optimization 

which is subject to the dynamic model 

( ( t )  ) = 0 

and inequality constraints 

g(9 ( t )  > 0 (16.14) 

This problem can be solved using a combined optimization and constraint model 
solution strategy (Muske and Edgar, 1998) by converting the differential equations 
to algebraic constraints using orthogonal collocation or some other model dis- 
cretization approach. 

EXA.MPLE 16.4 STEADY-STATE MATERIAL BALANCE 
RECONCILIATION 

Consider the process flowsheet shown in Figure E16.4, which was used by Rollins 
and Davis (1993) in investigations of gross error detection. The seven stream numbers 
are identified in Figure E16.4. The overall material balance can be expressed using the 
constraint matrix A9 = 0, where A is given by 

As a simple case, reconcile a single data set for the stream flows as follows: 

Use the variance+ovariance matrix below as a measure of the variability (and relia- 
bility) of the stream measurements: 
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FIGURE E16.4 
Recycle process network. 

TABLE E16.4 
Data reconciliation results 

Stream number k e  value Measured value Reconciled value 
(kg/min) (kg/min) (kg/min) 

Solution. The reconciled results in Table E16.4 are obtained by solving the optimiza- 
tion problem with the process model as the only set of constraints. Because all con- 
straints are linear, an analytical solution exists to the problem, as given in Equation 
16.1 1. This results in an 89.6% reduction in the sum of the absolute error. Note that 
all reconciled values are positive and hence feasible. It is not unusual for some rec- 
onciled flow rates to go negative, in which case it is necessary to solve the problem 
using a constrained minimization code such as QP. 
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THIS APPENDIX SUMMARIZES essential background material concerning matrices 
and vectors. It is by no means a complete exposition of the subject [see, for exam- 
ple, Stewart (1998), Golub and Van Loan (1996), and Meyer (2000)l but concen- 
trates mainly on those features useful in optimization. 

A.1 DEFINITIONS 

A matrix is an array of numbers, symbols, functions, and so on 

An element of the matrix A is denoted by ad, where the subscript i corresponds to 
the row number and subscript j corresponds to the column number. Thus A in (A. 1) 
has a total of n rows and m columns, and the dimensions of A are n by m(n X m). 
If m = n, A is called a "square" matrix. If all elements of A are zero except the main 
diagonal (a,,, i = 1, . . ., n), A is called a diagonal matrix. A diagonal matrix with 
each a,, = 1 is called the identity matrix, abbreviated I. 

Vectors are a special type of matrix, defined as having one column and n rows. 
For example in (A.2) x has n components 

A vector can be thought of as a point in n-dimensional space, although the graphi- 
cal representation of such a point, when the dimension of the vector is greater than 
3, is not feasible. The general rules for matrix addition, subtraction, and multipli- 
cation described in Section A.2 apply also to vectors. 

The transpose of a matrix or a vector is formed by assembling the elements of 
the first row of the matrix as the elements of the first column of the transposed 
matrix, the second row into the second column, and so on. In other words, ad in the 
original matrix A becomes the component aji in the transpose AT. Note that the 
position of the diagonal components (ad) are unchanged by transposition. If the 
dimension of A is n X m, the dimension of AT is m X n (m rows and n columns). 
If square matrices A and AT are identical, A is called a symmetric matrix. The trans- 
pose of a vector x is a row 
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A.2 BASIC MATRIX OPERATIONS 

First we present the rules for equality, addition, and multiplication of matrices. 

Equality 

- b, for all i and j A = B if and only if a, - 

Furthermore, both A and B must have the same dimensions (A and B are "con- 
formable"). 

Addition 

A + B = C requires that the element cy = ay + bij, for all i and j 

A, B, and C must all have the same dimensions. 

Multiplication 

If the matrix A has dimensions n X m and B has dimensions q X r, then to obtain 
the product AB requires that rn = q (the number of columns of A equals the num- 
ber of rows of B). The resulting matrix C is of dimension n X r and thus depends 
on the dimensions of both A and B. An element cg of C is obtained by summing the 
products of the elements of the ith row of A times the corresponding elements of 
the jth column of B: 

Note that the number of terms in the summation is m, corresponding to the number 
of columns of A and the rows of B. Matrix multiplication in general is not com- 
mutative as is the case with scalars, that is, 

Often the validity of this rule is obvious because the matrix dimensions are not con- 
formable, but even for square matrices commutation is not allowed. 

Multiplication of a matrix by a scalar 
Each component of the matrix is multiplied by the scalars, 

sA = B is obtained by s(ay) = by 

Transpose of a product of matrices 
The transpose of a matrix product (AB)T is (AB)T = BT AT. Likewise, (ABC)T = 

CT (AB)T = CT BT AT. 
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EXAMPLE A.l MATRIX OPERATIONS 

Consider a number of simple eiamples of these operations. 

Multiplication: 

For 

find AB. 

Solution. 

Addition: 

For 

Find A + B. 

Solution. 

Subtraction: 

For 

find A - B. 

Solution. 
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Transpose: 

For 

A =  [: A] and * = [ I  3 4 I ]  

find (AB)T. 

Solution. 

Multiplication of matrices by vectors: 

A coordinate transformation can be performed by multiplying a matrix times a vec- 
tor. If 

find y = Ax. 

Note y has the same dimension as x. We have transformed a point in three-dimen- 
sional space to another point in that same space. 

Other commonly encountered vector-matrix products (x and y are n-compo- 
nent vectors) include 

1. xTx = 2 x? (a scalar) 
i= 1 

Equation (A.7) is referred to as the inner product, or dot product, of two vectors. 
If the two vectors are orthogonal, then xTy = 0. In two or three dimensions, this 
means that the vectors x and y are perpendicular to each other. 

3. xTAx Here A is a square matrix of dimension n X n and the product is a scalar. 
If A is a diagonal matrix, then 
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Each vector has the dimensions (n X 1) and the matrix is square (n X n). Note 
that xxT is a matrix rather than a scalar (as with xTx). 

There is no matrix version of simple division, as with scalar quantities. Rather, 
the inverse of a matrix (A-I), which exists only for square matrices, is the closest 
analog to a divisor. An inverse matrix is defined such that AA-I = A-I A = I (all 
three matrices are n X n). In scalar algebra, the equation a-b = c can be solved for 
b by simply multiplying both sides of the equation by lla. For a matrix equation, 
the analog of solving 

AB = C (A. 10) 

is to premultiply both sides by A-l: 

IB = A-'C (A. 11) 

Because IB = B, an explicit solution for B results. Note that the order of multipli- 
cation is critical because of the lack of commutation. Postmultiplication of both 
sides of Equation (A.lO) by A-I is allowable but does not lead to a solution for B. 

To get the inverse of a diagonal matrix, assemble the inverse of each element 
on the main diagonal. If 

then 

The proof is evident by multiplication: AA-I = I. 
For a general square matrix of size 2 X 2 or 3 X 3, the procedure is more 

iilvolved and is discussed later in Examples A.3 and A.7. 
The determinant (denoted by det [A] or IA~) is reasonably easy to calculate by 

hand for matrices up to size 3 X 3: 



APPENDIX A: Mathematical Summary 589 

Another way to calculate the value of a determinant is to evaluate its cofactors. The 
cofactor of an element au of the matrix is found by first deleting from the original 
matrix the ith row and jth column corresponding to that element; the resulting array 
is the minor (Mu) for that element and has dimension (n - 1) X (n - 1). The cofac- 
tor is defined as 

c, = (- l) i+j  det M, (A. 13) 

The determinant of the original matrix is calculated by either 

1. aucu (i fixed arbitrarily; row expansion) 
j= 1 

n 

2. aoce ( j  fixed arbitrarily; column expansion) 
i =  1 

For example, if 

an expansion of the first row gives 

det [A1 = allcll + a12c12 

ell = (-l)li1az2 = az2 

clz = (- 1)1+2azl = -azl 

so that 

(A. 14) 

(A. 15) 

EXAMPLE A.2 CALCULATE THE VALUE OF A DETERMINANT 
USING COFACTORS 

Calculate the determinant 

using the first row as the expansion. 

Solution. 

det [A] = cll + 2c,, + c13 = det [: :] - 2 d e t [ i  :] +de t [ i  i] 
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It is actually easier to use the third row because of its two zeros. 

The adjoint of a matrix is constructed using the cofactors defined earlier. The 
elements Z, of the adjoint matrix are defined as 

(A. 16) 

In other words, the adjoint matrix is the array composed of the transpose of the 
cofactors. 

The adjoint of A can be used to directly calculate the inverse, A-'. 

(A. 17) 

Note that the denominator of (A.17), the determinant of A = IAI, is a scalar. If IAI 
= 0, the inverse does not exist. A square matrix with determinant equal to zero is 
called a singular matrix. Conversely, for a nonsingular matrix A, det A # 0. 

EXAMPLE A.3 CALCULATION OF THE INVERSE OF A 
MATRIX 

Consider the following matrix and find its inverse. 

Sohtion. The cofactors are 

The use of Equation (A. 17) for inversion is conceptually simple, but it is not a very 
efficient method for calculating the inverse matrix. A method based on use of row 
operations is discussed in Section A.3. For matrices of size larger than 3 X 3, we 
recommend that you use software such as MATLAB to find A-l. 
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Another use for the matrix inverse is to express one set of variables in terms of 
another, an important operation in constrained optimization (see Chapter 8). For 
example, suppose x and z are two n-vectors that are related by 

z = Ax (A. 18) 

Then, to express x in terms of z, merely multiply both sides of (A.18) by A-I (note 
that A must be n X n): 

A-'z = x (A. 19) 

EXAMPLE A.4 RELATION OF VARIABLES 

Suppose that 

z1 = X l  + x 2  

and 

z 2  = 2x1 + X2 

What are x, and x2 in terns of zI and z,? 

Solution. Let 

= [::I and x = [:] 
Therefore z = Ax, where 

The inverse of A is 

hence x = A-'z or 

The inverse matrix also can be employed in the solution of linear algebraic 
equations, 

which arise in many applications of engineering as well as in optimization theory. 
To have a unique solution to Equation (A.20), there must be the same number of 
independent equations as unknown variables. Note that the number of equations is 
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equal to the number of rows of A, and the number of unknowns is equal to the num- 
ber of columns of A. 

With the inverse matrix, you can solve directly for x: 

Although this is a conceptually convenient way to solve for x, it is not necessarily 
the most efficient method for doing so. We shall return to the matter of solving lin- 
ear equations in Section A.4. 

The final matrix characteristic covered here involves differentiation of function 
of a vector with respect to a vector. Suppose f(x) is a scalar function of n variables 
(x,, x,, . . . , x,). The first partial derivative of f(x) with respect to x is 

For a vector function h(x), such as occurs in a series of nonlinear multivariable 
constraints 

h,(Xl, X2, , x,) = 0 

the matrix of first partial derivatives, called the Jacobian matrix, is 

For a scalar function, the matrix of second derivatives, called the Hessian 
matrix, is 
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The use of this matrix and its eigenvalue properties is discussed in several chapters. 
For continuously differentiable functions, H is symmetric. 

A.3 LINEAR INDEPENDENCE AND ROW OPERATIONS 

As mentioned earlier, singular matrices have a determinant of zero value. This out- 
come occurs when a row or column contains all zeros or when a row (or column) 
in the matrix is linearly dependent on one or more of the other rows (or columns). 
It can be shown that for a square matrix, row dependence implies column depend- 
ence. By definition the columns of A, a,, are linearly independent if 

djaj = 0 only if dj = 0 for all j (A.22) 
j= 1 

Conversely, linear dependence occurs when some nonzero set of values for d, sat- 
isfies Equation (A.22). The rank of a matrix is defined as the number of linearly 
independent columns (5 n). 

EXAMPLE A.5 LINEAR INDEPENDENCE AND THE RANK OF A 
MATRIX 

Calculate the rank of 

Solution. Note that columns 1 and 3 are identical. Likewise the third row can be 
formed by multiplying the first row by 2. Equation (A.22) is 

One solution of (A.22) is d, = 1, d, = 0, d, = - 1. Because a nontrivial (nonzero) 
solution exists, then the matrix has one dependent and two independent columns, and 
the rank 1 2 (here 2). The determinant is zero, as can be readily verified using Equa- 
tion (A. 12). 

In general for a matrix, the determination of linear independence cannot be per- 
formed by inspection. For large matrices, rather than solving the set of linear equa- 
tions (A.22), elementary row or column operations can be used to demonstrate linear 
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independence. These operations involve adding some multiple of one row to 
another row, analogous to the types of algebraic operations (discussed later) that are 
used to solve simultaneous equations. The value of the determinant of A is invari- 
ant under these row (or column) operations. Implications with respect to linear 
independence and the use of determinants for equation-solving are discussed in 
Section A.4. 

EXAMPLE A.6 USE OF ROW OPERATIONS 

Use row operations to determine if the matrix 

; i] 
is nonsingular, that is, composed of linearly independent columns. 

Solution. First create zeros in the a,, and a,, position by multiplication or addition. 
The necessary transformations are 

1. Multiply row 1 by (-1); add to row 2 

2. Multiply row 1 by (-3); add to row 3 

Next use row 2 to create a zero in a,,. 
3. Multiply row 2 by (-2); add to row 3 

Note that neither rows 1 or 2 are changed in this step. The appearance of a row with 
all zero elements indicates that the matrix is singular (det [A] = 0). 

Row operations can also be used to obtain an inverse matrix. Suppose we aug- 
ment A with an identity matrix I of the same dimension; then multiply the aug- 
mented matrix by A- ': 

A - ' [ A ~ I ]  = [ I ~ A - ' 1  (A.23) 

If A is transformed by row operations to obtain I, A-I occurs in the augmented part 
of the matrix. 
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EXAMPLE A.7 CALCULATION OF INVERSE MATRIX 

Verify the results of Example A.3 using row operations. 

Solution. Form. the augmented matrix 

Successive transformations would be 

Therefore the inverse of A is 

A.4 SOLUTION OF LINEAR EQUATIONS 

The need to solve sets of linear equations arises in many optimization applications. 
Consider Equation (A.20), where A is an n X n matrix corresponding to the coef- 
ficients in n equations in n unknowns. Because x = A-lb, then from (A.17) (A( 
must be nonzero; A must have rank n, that is, no linearly dependent rows or 
columns exist, for a unique solution. Let us illustrate two cases where IAI = 0: 

It is obvious that only one linearly independent column or row exists, and JA( is 
zero. Note that there is no solution to this set of equations. As a second case, sup- 

pose b were changed to [:] . Here an infinite number of solutions can be obtained, 

but no unique solution exists. 



596 APPENDIX A: Mathematical Summary 

Degenerate cases such as those above are not frequently encountered. More 
often, IAl Z 0. Let 

A = [: ;] and b = [;I 

By algebraic substitution, x, and x, can be found. Multiply Equation (A.24a) by 
(-0.5) and add this equation to (A.24b), 

Solve (A.24d) for x2 = -0.333. This result can be substituted into (A.24~) to obtain 
x, = 0.667. 

The steps employed in Equations (A.24) are equivalent to row operations. The 
use of row operations to simplify linear algebraic equations is the basis for Gauss- 
ian elimination (Golub and Van Loan, 1996). Gaussian elimination transforms the 
original matrix into upper triangular form, that is, all components of the matrix 
below the main diagonal are zero. Let us illustrate the process by solving a set of 
three equations in three unknowns for x. 

EXAMPLE A.8 SOLUTION OF SIMULTANEOUS LINEAR 
EQUATIONS 

Solve for x given A and b. 

Solution. First a composite matrix from A and b is constructed: 

Carry out row operations, keeping the first row intact; successive matrices are 
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Next, with the second row in C, kept intact, the upper triangular form is achieved by 
operating on the third row: 

C, can now be converted to the form of algebraic equations: 

which can be solved stage by stage starting with the last row to get x, = -0.333, 
x, = -0.333, x,  = 1.333. 

Gaussian elimination is a very efficient method for solving n equations in n 
unknowns, and this algorithm is readily available in many software packages. For 
solution of linear equations, this method is preferred computationally over the use 
of the matrix inverse. For hand calculations, Cramer's rule is also popular. 

The determinant of A is unchanged by the row operations used in Gaussian 
elimination. Take the first three columns of C, above. The determinant is simply 
the product of the diagonal terms. If none of the diagonal terms are zero when the 
matrix is reformulated as upper triangular, then IA( f 0 and a solution exists. If 
IAl = 0, there is no solution to the original set of equations. 

A set of nonlinear equations can be solved by combining a Taylor series lin- 
earization with the linear equation-solving approach discussed above. For solving 
a single nonlinear equation, h(x) = 0, Newton's method applied to a function of a 
single variable is the well-known iterative procedure 

where k is the iteration number and Axk is the correction to the previous value, xk. 
Similarly, a set of nonlinear equations, h(x) = 0, can be solved iteratively using 
Newton's method, by solving a set of linearized equations of the form Ax = b: 
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Note that the Jacobian matrix dh/dx on the left-hand side of Equation (A.26) is 
analogous to A in Equation (A.20), and Axk is analogous to x. To compute the cor- 
rection vector Ax, dh/dx must be nonsingular. However, there is no guarantee even 
then that Newton's method will converge to an x that satisfies h(x) = 0. 

In solving sets of simultaneous linear equations, the "condition" of the matrix 
is quite important. If some elements are quite large and some are quite small (but 
nonzero), numerical roundoff or truncation in a computer can have a significant 
effect on accuracy of the solution. A type of matrix is referred to as "ill condi- 
tioned" if it is nearly singular (equivalent to the scalar division by 0). A common 
measure of the degree of ill conditioning is the condition number, namely the ratio 
of the eigenvalues with largest (ah) and smallest (a,) modulus: 

Iffhi  
Condition number = - 

lffll 

The bigger the ratio, the worse the conditioning; a value of 1.0 is best. The calcu- 
lation of eigenvalues are discussed in the next section. In general, as the dimension 
of the matrix increases, numerical accuracy of the elements is diminished. One 
technique to solve ill-conditioned sets of equations that has some advantages in 
speed and accuracy over Gaussian elimination is called "L-U decomposition" 
(Dongarra et al., 1979; Stewart, 1998), in which the original matrix is decomposed 
into upper and lower triangular forms. 

A.5 EIGENVALUES, EIGENVECTORS 

An n X n matrix has n eigenvalues. We define an n-vector v, the eigenvector, which 
is associated with an eigenvalue e such that 

Hence the product of the matrix A multiplying the eigenvector v is the same as the 
product obtained by multiplying the vector v by the scalar eigenvalue e.  One 
eigenvector exists for each of the n eigenvalues. Eigenvalues and eigenvectors pro- 
vide unambiguous information about the nature of functions used in optimization. 
If all eigenvalues of A are positive, then A is positive-definite. If all ei < 0, then 
A is negative-definite. See Chapter 4 for a more complete discussion of definite- 
ness and how it relates to convexity and concavity. 

If we rearrange Equation (A.28) (note that the identity matrix must be intro- 
duced to maintain conformable matrices), 

(A - eI) in Equation (A.29) has the unknown variable e substracted from each diag- 
onal element of A. Equation (A.29) is a set of linear algebraic equations where v is 
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the unknown vector. However, because the right-hand side of (A.29) is zero, either 
v = 0 (the trivial solution), or a nonunique solution exists. For example in 

then det [A] = 0, and the solution is nonunique, that is, v, = - v,. The equations 
are redundant. However, if one of the coefficients of v, or v, in Equation (A.29) 
changes, then the only solution is v, = v2 = 0 (the trivial solution). 

The determinant of (A - eI) must be zero for a nontrivial solution (v Z 0) to 
exist. Let us illustrate this idea with a (2 X 2) matrix: 

Equation (A.30) determines values of e which yield a nontrivial solution. Factoring 
(A.30) 

Therefore, the eigenvalues are 3 and - 1. Note that for e = 3, 

and for e = -1, 

both of which are singular matrices. 
For each eigenvalue there exists a corresponding eigenvector. For el = 3, Equa- 

tion (A.29) becomes 

Note that these equations are equivalent and cannot be solved uniquely; the solu- 
tion to both equations is v,, = v,,. Thus, the eigenvector has direction but not 
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length. The direction of the eigenvector can be specified by choosing vll and cal- 
culating v,,. For example, let v,, = l. Then 

The magnitude of v, cannot be determined uniquely. Similarly, for e, = - 1, 

is a solution of (A.29). 
For a general n X n matrix, an nth-order polynomial results from solving det 

(A - eI) = 0. This polynomial will have n roots, and some of the roots may be 
imaginary numbers. A computer program can be used to generate the polynomial 
and factor it using a root-finding technique, such as Newton's method. However, 
more efficient iterative techniques can be found in computer software to calculate 
both e, and vi (Dongarra et al., 1979). 

Principal minors 
In Chapter 4 we discuss the definitions of convexity and concavity in terms of 

eigenvalues; an equivalent definition using determinants of principal minors is also 
provided. A principal minor of A of order k is a submatrix found by deleting any 
n - k columns (and their corresponding rows) from the matrix. The leading prin- 
cipal minor of order k is found by deleting the last n - k columns and rows. In 
Example A.2, the leading principal minor (order 1) is 1 ; the leading principal minor 

(order 2) is [: :] , and for order 3 the minor is the 3 X 3 matrix itself. 
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PROBLEMS 

A.l For 

Find 
(a) AB and BA (compare) 
(b) ATB 
(c) A + B 
(d) A - B 
(e) det A, det B 
(f) Adj A, Adj B 
(g) A- ', B-' (verify the answer) 

A.2 Solve Ax = b for x, where 

Use 
(a) Gaussian elimination and demonstrate that A is nonsingular, Check to see that the 

determinant does not change after each row operation. 
(b) Use x = ~ - ' b .  
(c) Use Cramer's rule. 

A.3 Suppose 

Find equations for x,, x2, and x, in terms of z,, z,, z3. Use an algebraic method first; 
check the result using A-'. 

A.4 For 

find the magnitude (norm) of each vector. 
What is XTX,? xlx,T? xrAx,? 

Find a vector x3 that is orthogonal to x,(x;x3 = 0). Are x,, x,, and x3 linearly inde- 
pendent? 
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A.5 For 
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calculate det A using expansion by minors of the second row. Repeat with the third 
column. 

A.6 Calculate the eigenvalues and eigenvectors of [: :I. Repeat for 

A.7 Show that for a 2 X 2 symmetrical matrix, the eigenvalues must be real (do not con- 
tain imaginary components). Develop a 2 X 2 nonsymmetrical matrix which has com- 
plex eigenvalues. 

A.8 A technique called LU decomposition can be used to solve sets of linear algebraic 
equations. L and U are lower and upper triangular matrices, respectively. A lower tri- 
angular matrix has zeros above the main diagonal; an upper triangular matrix has zeros 
below the main diagonal. Any matrix A can be formed by the product of LU. 
(a) For 

find some L and U that satisfy LU = A. 
(b) IfAx = b, LUX = b orUx = ~ - ' b  = 6. 
Let 

Calculate L-' and 6. Then solve for x using substitution from the upper triangular 
matrix U. 

A.9 You are to solve the two nonlinear equations, 

x: + x; = 8 

using the Newton-Raphson method. Suggested starting points are (0, 1) and (4,4). 
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IN CHAPTER 3 we discussed the formulation of objective functions without going 
into much detail about how the terms in an objective function are obtained in prac- 
tice. The purpose of this appendix is to provide some brief information that can be 
used to obtain the coefficients in objective functions in economic optimization 
problems. Various methods and sources of information are outlined that help estab- 
lish values for the revenues and costs involved in practical problems in design and 
operations. After we describe ways of estimating capital costs, operating costs, and 
revenues, we look at the matter of project evaluation and discuss the many contri- 
butions that make up the net income from a project, including interest, depreciation, 
and taxes. Cash flow is distinguished from income. Finally, some examples illus- 
trate the application of the basic principles. 

The estimation of operating and capital costs is an important facet of process 
design and optimization. In the absence of firm bids or valid historical records, you 
can locate charts, tables, and equations that provide cost estimates from a wide vari- 
ety of sources based on given values of the design variables. 

1. Specialized books on cost estimation such as Garrett (1989) or Ostwald 
(1992). 

2. Textbooks on plant design such as Turton et al. (1998) and Seider et al. 
(1 999). 

3. Handbooks such as Perry's Chemical Engineering Handbook (Green and 
Maloney, 1997). 

4. Trade magazines such as Chemical Engineering or the Oil and Gas Journal. 
5 .  Literature provided by equipment vendors. 
6. Reports and books published by professional societies. 
7. Local, state, and federal government publications. 
8. Databases in process simulators such as Aspen (1998), HYSYS (1998), and 

Pro11 (1998). 
9. The Internet (http://www.chempute.com or http://www.chemengineer 

.miningco.com). 
10. Commercial software for process equipment cost estimation such as CHEM- 

COST (Icarus Corp., 1999). 

The preceding listed sources provide information on current and often historical 
capital and operating costs that can be used in your current and projected economic 
evaluation. 

B.1 CAPITAL COSTS 

In carrying out an economic analysis, recognize that various levels of detail in the 
design of a process exist. 

1. Rough feasibility estimate based on a general flowsheet using historial costs, 
charts, or the literature and using multiplying factors based on experience to 
scale for inflation, size differences, and tax rates. Examine Figure B. 1 for cost 
estimates based on entire plants as a function of capacity. 
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Purchased cost of tank, delivered basis: $lO().O() 

Installation costs: 

Piping 12.8 
Concrete 8.6 
Instruments 3.8 
Electrical 0.6 
Paint 1.2 27.0 

Total materials 127.0 

Labor costs: 

Man hours/$ materials: 0.044 
Average hourly labor costs 
including fringe: $28.50 

(0.044) (127.0) ($28.50) = 159.3 
Total 286.3 

Indirect (overhead) cost factor: 1.26 
1.26 (286.3) = 360.7 

Total cost 

FIGURE B.2 
Approximate relative proportions of the cost of a 
30,000-gallon tank erected in the field (1 unit of 12 in 
the flowsheet). 

2. Major equipment estimates based on a more detailed given flowsheet that 
includes all of the equipment of significance roughly sized with approximate 
costs. Optimization using process flow simulators (refer to Chapter 15) can 
be employed. Figure B.2 illustrates a typical analysis for a tank. Refer to 
Brown (2000) for additional details. 

3. Confirmed design in which additional detail and costs are developed for the 
arrangement of equipment, piping, utilities (water, steam, electrical, air), 
instrumentation, and control systems. 

4. Final design that provides the plans, specifications for all equipment, detailed 
sections for the flowsheets, quotes from vendors, inhouse budgets, and a 
schedule for implementation. 

As you may well surmise, more approximate designs lead to larger error 
bounds, running from perhaps +50% of the total cost for category 1 to +5% for cat- 
egory 4. The cost of making the estimates, of course, increases as the extent of the 
information about the design increases. A very preliminary design might cost from 
$5000 to $10,000, whereas the final design runs from 1% to as much as 5% of the 
total plant cost. Process simulators (refer to Chapter 15) make the preliminary 
stages of a design fairly easy to implement. 



APPENDIX B: Cost Estimation 

TABLE B.l 
Components to include in capital 

cost estimation 

Purchased equipment such as 
Towers, columns Boilers 
Reactors Generators 
Heat exchanger Air conditioning 
Cooling towers Refrigeration 
Tanks 

Piping 
Electrical 
Instrumentation 
Utilities such as 

Power 
Water 
Sewage, waste handling 
Electricity 

Insulation 
Buildings (and possibly land) 

Installation costs such as 
~ a b o r  
Painting 
Fireproofing 
Supervision 
Inspection 

Safety, fire fighting 
Engineering, design, licensing 
Laboratory 
Shipping (working capital start-up expenses) 

What components must be included in estimating plant capital costs? Table B. 1 
is a partial list with some specific details. 

Charts, correlations, and tables in the sources cited earlier relate capital costs 
to various parameters characteristic of the equipment to be evaluated. Table B.2 
lists typical parameters used to correlate equipment costs for common types of 
process equipment. Figure B.3 is an example of such correlations for the cost of 
heat exchangers as a function of exchanger area. These forms of cost curves gener- 
ally appear as nearly straight lines on log-log plots, indicating a power-law rela- 
tionship between capital cost and capacity, with exponents typically ranging from 
0.5 to 0.8. 

If you want to scale up or scale down process equipment using one of the 
parameters in Table B.2, a typical rule of thumb is the following relation 

log CB = al + a,  log S 

where CB = base cost 
S = size parameter 

a,, a, = coefficients to be estimated from valid data 
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TABLE B.2 
Process parameters used in cost estimation for typical process equipment 

Equipment type Economic variables 

1. Flashdrum Diameter, height, material of construction, internal 
pressure -\ 

2. Distillation column, tray absorber Diameter, height, internal pressure, material of 
construction, tray type, number of trays, condenser, 
reboiler (see item 3) 

3. Condenser, reboiler, heat exchanger Heat transfer surface area, type, shell design pressure, 
(shell and tube) materials for shell and tube 

4. Absorber (packed) Diameter, height, internal pressure, material of 
construction, packing type, packing volume 

5. Process furnace or direct-fired heater Design type, absorbed heat duty, pressure, tube 
material, capacity 

6. Pumps (centrifugal, reciprocating) Fluid density, capacity, dynamic head, type, driver, 
operating condition limits, material of construction 

7. Gas compressor Brake horsepower, driver type 

8. Storage tank Tank capacity, type, and storage pressure 

9. Boiler Steam flow rate, design pressure, steam superheat 

10. Reactor 'Qpe, diameter, height, design pressure, material of 
construction, capacity 

A base cost typically corresponds to carbon steel construction and pressure below 
100 psi. Note that Equation (B. 1) is equivalent to 

the familiar formula for scale-up, where a, is typically about 0.6. A slightly differ- 
ent correlation provides a more accurate fit of cost data by using three coefficients. 

log C, = a, + a2 log S + a,(log s ) ~  
The estimated capital cost C, for equipment can be found from base cost C, 

from 

where f, = design type cost factor 
f, = material of construction cost factor 
f ,  = pressure rating factor 

The design type refers to variations in equipment configuration (e.g., fixed head 
versus floating head in a heat exchanger). The adjustment for material of construc- 
tion is used principally to account for the use of alloy steel instead of carbon steel. 
The pressure rating factor allows adjusting costs for pressures other than the refer- 
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Shell-and-tube heat exchangers (not installed) 

Floating head (for 1998 costs) 

Shell and 
tube Plate and 

Scraped wall frame 

Pressure Materials adjustment 
adjustment factor Factor = a + (a/lOO)b 
MPa Factor Shell Tube a b ------ 
100 1.0 CS CS Reference 
500 1.1 CS SS 1.75 0.13 
lo00 1.2 SS SS 2.70 0.07 
1500 1.4 CS Monel 2.1 0.13 

CS = Carbon steel CS Ti 5.2 0.16 
SS = Stainless steel (316) CS Cu 1.08 0.05 

Exchanger surface area (A, m2) 

FIGURE B.3 
Purchased equipment costs for various types of heat exchangers. 

ence pressure. Obviously, higher pressure operation causes additional capital costs 
because of thicker vessel walls, and so on;& may be a discontinuous function. 

EXAMPLE B.l CAPITAL COST ESTIMATION 

Suppose the cost for a fixed-head heat exchanger constructed of 316 stainless steel 
operating at 300-600 psi is to be estimated. The base case is a carbon steel, floating- 
head exchanger operating at 100 psi of area A. For such operation (Kuri and Corripio 
1984), the base cost is 

where A is the exchanger heat transfer area in square feet (150 5 A r 12,000 ft2) and 
C, is in dollars. Multiply CB by factors f,,f,, and f,, calculated as follows: 

For a fixed head (versus floating head) 

f, = exp[-1.1156 + 0.0906(lnA)] 

For 300 to 600 psi, the correction is 

&, = 1.0305 + 0.07 140(ln A) 



For 31 6 stainless steel, the correction is 

fM = 2.7 

Equation (B.4) can then be used to determine the actual capital cost for a specified 
area A. 

For equipment such as distillation columns, the costs of several components 
(trays, shell) must be calculated. 

B.2 OPERATING COSTS 

In carrying out an economic evaluation of a proposed process or a modification of 
an existing one, estimation of future operating costs is just as important as estimat- 
ing the capital costs involved in the analysis. 

Operating costs include the costs of raw materials, direct operating labor, labor 
supervision, maintenance, plant supplies, utilities (steam, gas, electricity, fuel), prop- 
erty taxes, and insurance. Sometimes certain operating cost components are directly 
expressed as a fraction of the capital investment cost. Table B.3 is a brief checklist 

TABLE B.3 
Preliminary operating cost estimates 

A. Direct production cost 
1. Materials 

a. Raw materials: estimate from price lists, government and trade group reports 
b. Byproduct and scrap credit: estimate from price lists 

2. Utilities: from literature or similar operations 
3. Labor: from historical data, manning tables, literature, or similar operations 
4. Supervision: 10-25% of labor 
5. Fringe benefits and FICA: 3 0 4 5 %  of labor plus supervision 
6. Maintenance: 2-10% of investment per year 
7. Operating supplies: 0.5-1.0% of investment per year, or 6 1 0 %  of operating labor 
8. Laboratory: 10-20% of labor per year 
9. Waste disposal: from literature, similar operations, or separate estimate 

10. Royalties: 1-5% of sales 
11. Contingencies: 1-5% of sales 

B. Indirect costs 
1. Depreciation: 10-20% of investment per year 
2. Real estate taxes: 1-2% of investment per year 
3. Insurance: 0.5-1.0% of investment per year 
4. Interest: 10-1296 of investment per year 
5. General administrative overhead: 50-70% of labor, supervision, and maintenance, or 6 1 0 %  

of sales 
C. Distribution costs 

1. Packaging: estimate from container costs 
2. Shipping: from carriers or 1-3% of sales 

-- - 

Sources: Jelen and Black (1983), Garrett (1989), Turton et al. (1998). 
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TABLE B.4 
Rates for industrial utilities, 1998 

Utility Cost ($9 Unit 

Steam 
500 psi (250°C) 

(200°C) 
Exhaust (100°C) 

Electricity 
Purchased 
Self-generated 

Cooling water (30°C) 
Well 
River or salt 
Tower 

Process water 
City 
Boiler feed 

Compressed air 
Process air 
Iustrument 

Natural gas 
Fuel oil 
Coal 
Refrigeration (- 30°C) 

loo0 rn3 
1000 rn3 
106 Btu 
gal 
mton 
tonlday (288,000 Btu removed) 

for estimating operating costs; note that such items as property taxes, insurance, and 
maintenance are computed as fractions of total fixed capital investment. 

You may wonder how you can determine operating costs for a plant or process 
that is not yet operating. In Table B.4 you will note various rules of thumb that can 
be used to compile specific categories of approximate operating costs. If more 
detail is needed and if the appropriate information is not in your existing databases, 
then you can refer to some of the sources cited at the beginning of this chapter. For 
example, to collect more detailed information on utility costs you could prepare a 
table such as Table B.4 from data in financial newspapers and the Internet. As 
another example, detailed labor costs for operators can be assembled by consider- 
ing the number of operators per shift for a section of the plant or piece of equip- 
ment, the number of days you expect to operate per year, the number of shifts per 
day, the expected average wage per operator to which have to be added fringe ben- 
efits and FICA taxes. Raw materials costs are available from bids, the Chemical 
Marketing Reporter, or the Chemical Buyer's Guide. Operating costs can vary from 
location to location so you should obtain local data whenever possible. 

B.3 TAKING ACCOUNT OF INFLATION 

Frequently you can find cost data that are appropriate for your economic evalua- 
tion, but they may be out of date. By taking account of the inflation in cost you can 
escalate old costs to current values and project current (or old) costs into the future. 
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Figure B.4 displays four well-known cost indexes for capital costs from 1950 to 
1999: 

1. ENR: Engineering News-Record Construction and Building Indexes 
2. CE: Chemical Engineering Plant Cost Index 
3. M & S: Marshall and Swift Equipment Index (also appears in Chemical Engi- 

neering) 
4. NRC: Nelson-Fmar Refinery Construction Index (appears in Oil and Gas 

Journal) 

Note that from 1950 to 1965-1970, the slopes (except the CE plant cost) of the 
indices were similar, that the slopes increased substantially during the inflationary 
period from 1965-1970 to about 1985; thereafter they returned roughly to their 
original values of about 6 percent per year. 

If you need historical values for the cost of specific types of equipment, mate- 
rials, fuels, and so on, rather than a general index, consult the references cited at 
the beginning of the chapter. To determine capital costs (C,) in the year X in the 
future, given a known cost Cy in year Y, you simply multiply Cy by the ratio of the 
index (I, /I,): 

1500 - refinery construction index 

loo0 - 

900 - 
800 - Marshall & Swift 
700 - 
500 - 
400- 

300 - 

Chemical Engineering 
plant cost index 

news-record index (1958 = 100) 

I 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 

Year 

FIGURE B.4 
History of selected cost indexes pertinent to chemical process construction (1950-1998) 
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The U.S. Bureau of Labor Statistics provides information that permits computation 
of estimated future labor and material costs. You can project costs to the future by 
fitting a cost index values for several time periods. If the slope b of the index is con- 
stant, then the ratio IxlIy versus t is a semilog plot 

Labor costs experience inflation just as do capital costs as Figure B.5 demon- 
strates. Raw materials and fuel costs are subject to considerable erratic fluctuations 
as demonstrated by oil and metals prices, which have rapidly risen and fallen sev- 
eral times over the last five decades. For example, Figure B.6 shows the changes in 
refinery fuel price index since 1955.-Prediction of refinery fuel prices in the future 
is clearly much more difficult than predicting capital costs. 

Year 

FIGURE B.5 
Nelson-Farrar index of operating labor cost (wages plus benefits) 
1955- 1999 (1956 = 100). 
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Year 

' FIGURE B.6 
Nelson-Fmar index of refinery fuel: 1955-1999 (1956 = 100). 

B.4 PREDICTING REVENUES IN AN ECONOMIC-BASED OBJECTIVE 
FUNCTION 

In maximizing profits over future periods, you have to estimate revenues along with 
costs. Revenues involve both quantities sold and their prices. The top-down 
approach involves disaggregation, namely starting with estimates of revenues of an 
entire industry or specialized market that includes the categories of products using 
company economic models or predictions by industrial trade associations. Then 
you estimate your company's share of each category. Next, you estimate revenues 
for a specific product in the category and estimate your company's share for the 
specific product. The categories can be nested within each other by sales territory, 
distributor, salesperson, and so on. 

The other approach is the bottom-up procedure, which proceeds to aggregate 
projected sales data. You start with the projected sales data in each territory for each 
product and sum up the forecasts into successively larger amalgamations. 
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Forecasting revenues fundamentally rests on models plus judgment. More for- 
mal methods project the trends of past revenues into the future adjusting for known 
or expected fluctuations. Typical models employed are 

1. Time series 
2. Moving averages and smoothing 
3. Regression 
4. Kalman filters 
5. Stochastic models 
6. Error models 
7. Neural nets 

and are adjusted periodically based on the available data. Data can be historical in 
your database or taken from the reference cited at the start of this chapter. Keep in 
mind that estimates of future revenues have greater uncertainty than estimates of 
capital and operating costs. Look at Figure B.6 and imagine you were selling refin- 
ery fuel rather than buying it. How much error would occur in predictions of price 
made in 1969'? 1980? 1988? Although sales volume changes with price to some 
extent, severe price fluctuiions are more likely to occur than severe quantity fluc- 
tuations. In forecasting, expect unexpected disturbances and allow a margin for 
error in terms of probability distributions or "worst case" scenarios. 

B.5 PROJECT EVALUATION 

In Chapter 3, we discussed several criteria involving profitability including: 

Payback period (PBP): the cost of an investment divided by the cash flow per 
period. 

Net present value (NPV): the present value (including the time value of money) 
of initial and future cash flows given by Equation (13.4). 

Internal rate of return (IRR): the interest or discount rate for which the future 
net cash flows equal the initial cash outlay. 

Table 3.2 compared the respective features of these three criteria, and in the next 
two examples we illustrate the specific calculations involved in evaluating projects. 

EXAMPLE B.2 USE OF PBP, NPV, AND IRR TO EVALUATE 
TWO POTENTIAL PROJECTS 

Two alternative projects are under consideration. Project A has a project life of 10 
years and requires an initial investment of $100,000 with an annual cash flow after 
taxes of $20,000/year for each of 4 years followed by $10,000/year for years five 
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through ten. Project B has a life of 10 years and requires the same investment but has 
cash flows of $15,000/year for each year. Based on the information presented in 
Chapter 3, evaluate projects A and B using (a) payback period, (b) internal rate of 
return, and (c) net present value, assuming an interest rate of 10 percent (i = 0.10). 

Solution 
(a) The respective payback periods are 

Project A. It requires 4 years @ $20,000 plus 2 years @ $10,000, or a total of 6 
years to recover the investment. 

Project B. 

$100,000 
= 6.67 years 

$15,000 

These payback periods are quite close. 
(b) To find the NPV of the two projects we calculate using Equation (3.4). 

Project A. 

100,ooo + 20,000 + 20,000 NPV = - 
(1 + 0.10)~ (1 + 0.10)' (1 + 0.10)~ 

Project B. 

Again the values are quite close. 
(c)  To find the IRR of the two projects we calculate i with NPV 5 0 using Equation 

(3.4). 

Project A. 

lo 1 + l0,OOOx the solution is i = 8.06% annually 
k = 5  (1 + i)'' 

Project B. 
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The solution is i = 8.14% annually. 
Presumably, neither of the projects would be favorable. Calculations such as made in 
this example engender a high degree of uncertainty because of the long periods 
involved, so that a decision between projects, if implemented, is a toss-up. 

NPV does not require that the total lives (or multiples thereof) of projects be 
equal for a comparison to be made. Thus, ambiguous and sometimes contradictory 
results can arise in using IRR versus NPV [Brigham (1982), Woinsky (1996)l. Jelen 
and Black (1983) have suggested a comparison based on uniform annual cost, 
called unacost. 

EXAMPLE B.3 CALCULATION OF IRR AND NPV FOR 
PROJECTS WITH DIFFERENT LIFETIMES 

Suppose project C has a 20-year life and a yearly after-tax cash flow of $48,000 for 
an initial investment of $300,000. Project D has a 5-year life, with a yearly cash flow 
of $1 10,000 for an initial investment of $300,000. Compare the internal rate of return 
and net present value (for i = 0.08) for each option. 

Solution. Because the annual cash flows are uniform for projects C and D, we can 
apply Equation (3.4a). The internal rates of return are i, = 0.15 for project C and i, = 
0.25 for project D. The advantage of project D is a more concentrated period of early 
cash, generation at a high level. For a value of i = 0.08, the NPV of each project is as 
follows: 

Project C: 

Project D: 

110,000 
NPV = (x j Y )  - 300,000 

j = 1  (1 + 

Therefore, based strictly on this calculation, project C would be favored over D 
because over its lifetime (20 years versus 5 years), it would generate more (dis- 
counted) cash flow. This conclusion is in conflict, however, with that obtained by 
comparing the IRRs of the two projects. The ranking based on NPV may change if a 
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FIGURE EB.3 
Comparison of the net present value (NPV) for 
two projects as a function of i. 

different interest rate is assumed. Figure EB.3 shows how NPV varies for each proj- 
ect as a function of i (note the crossover point). Brigham (1982) has concluded that 
the use of NPV is preferable to IRR, because NPV gives more realistic results for a 
wide variety of cases, especially when cash flows vary greatly from year to year. 

One important assumption to keep in mind in the calculations outlined earlier 
is that the interest rate (discount rate) has been assumed to be constant over time 
even though it is not in practice. Examine Figure B.7, which shows how the inter- 
est rate for U.S. Treasury securities has changed over time for various durations of 
investment ranging from 3 months to 30 years (called the yield curve). 

To make a decision about investing in a project, more than just cash flows need 
to be taken into account. Cash flows are reasonably clear-cut, whereas using earn- 
ings as a criterion in a multiyear project involves a number of accounting and legal 
decisions that affect the profitability. 

To distinguish between cash flows and earnings, let us look at a grossly sim- 
plified set of financial statements for a company. The three statements are a 

1. Balance sheet 
2. Cash flow statement 
3. Income and expense statement 
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Years to maturity (log scale) 

FIGURE B.7 
Interest rate provided by U.S. Treasury bills, notes, and bonds 
at 'different dates. 

Balance Sheet 

Assets: 
Cash $100,OoO 
Building 900,000 

Total $1 ,000,000 

(Must 
Liabilities and equities: always 

Long-term debt $600,000 be equal) 
Equity 400,000 

Total $1,000,000 

C 

FIGURE B.8 
A simplified balance sheet. 

Figure B.8 illustrates the balance sheet. A balance sheet is a snapshot of the assets and 
liabilities at one point in time. It tells nothing about the transactions and adjustments 
that led to the numbers presented in the statement. A comparison of balance sheets 
over time can help indicate earnings. 

Next, Figure B.9 represents a simplified cash flow statement for a retail com- 
puter store. The bottom number in the statement does not represent profit (income, 
earnings)-just the net of the cash flows, because the $30,000 mortgage payment 



Cash Flow Statement 

Receipts from sales during the year $180,000 

Disbursements during the year: 
Maintenance $( 10,000) 
Property taxes (30,000) 
Mortgage payments to principal (30,Ow 
Mortgage payments, to interest . (6o,o(w 

Net before taxes $50,000 
Less income tax (10,000) 

Cash left after paying taxes $40,000 

FIGURE B.9 
A simplified cash flow statement. 

applied to principal is not deemed to be an item of expense, and the statement does 
not include a noncash expense incurred for depreciation of $20,000. 

The third statement shown in Figure B.10 is for income and expense that leads 
to net after-tax profits (earnings), a quantity that transfers to the balance sheet peri- 
odically in the category called equity. 

Figure B.10 gives you the correct $50,000 "bottom line." Note that both depre- 
ciation and interest are listed as deductible expenses. Interest is clearly an expense; 
but why depreciation? Unlike interest and other expense deductions, depreciation 
does not actually reduce operating cash. Nevertheless, we know that aging and 
obsolescence over a period of years does decrease the value of most things; depre- 
ciation is a loss. So you subtract it from income as you do for a cash expenditure. 

The reconciliation between the cash flow statement and the income and 
expense statement is as follows. Start with the $40,000 from the last line in the cash 
flow statement, subtract $20,000 for the depreciation expense, and add back the 
$30,000 mortgage loan principal payment (not an allowed expense). The result is 
the net after-tax earnings. Figure B. 11 is a set of statements from a small oil com- 
pany. The statement of operations lists revenue and expenses, whereas the balance 
sheet lists various assets, liabilities, and stockholders' equity ("net worth). So- 
called capital items such as buildings, equipment, oil and gas property, and various 
intangibles are assets. Operating costs are deductions from revenues for operations 
not including expenditures for capital items. 

Some of the categories and terms on the statement require brief additional 
explanation. 
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Income and Expense Statement 

Income from sales $180,000 

Expenses 
Maintenance, property taxes $ 10,OOO 
Property taxes 30,000 
Interest 60,000 
Depreciation 20,000 

Total expenses 120,000 

Before tax earnings $ 60,000 

Income tax on $60,000 of earnings 10,000 
Net after-tax earnings $ 50,000 

FIGURE B.10 
A simplified statement of income and expenses. 

Revenues 
Revenues include cash received from sales of products and services. Cash 

received from the sale of equipment, buildings, and equipment is not considered 
revenue but is instead a decrease in the property and equipment accounts (assets). 

Operating expenses 
These cash expenses are those necessary to carry on the business, that is, 

expenses paid to generate revenue. A capital expenditure for plant or equipment 
generally is not an expense but an addition to the plant or equipment account (an 
asset). Typical expenses include cost of products sold, repairs, insurance, salaries, 
property taxes, and so on. 

General and administrative expense 
These are expenses that are not directly attributed to products, services, or 

plant, or equipment, such as legal fees, corporate salaries, research expenditures, 
charitable contributions, and so on. 

Interest 
Interest paid on loans and mortgages is usually segregated from other expenses. 



622 APPENDIX B: Cost Estimation 

Statements of Operations (Unaudited) Three Months Ended Nine Months Ended 
September 30, September 30, 

2000 1999 2000 1999 

Revenues ..................................................... $ 3,724,004 $ 2,745,590 $ 9,927,736 $ 7,451,986 

Operating expenses.. ................................... (1,898,765) (1,163,249) (4,907,689) (3,306,535) 

Gross margin ........................................... 1,825,239 1,582,341 5,020,047 4,145,451 

General and administrative expense ........... (489,843) (597,905) (1,405,3 16) (1,722,7 17) 

Interest ........................................................ (235,645) (182,192) (734,376) (409,974) 

Minority interest ......................................... 2,919 - 17,854 75,086 

Income before depletion, depreciation 
and amortization ................................ 1,102,670 802,244 2,898,209 2,087,846 

Depletion, depreciation and amortization ... (858,534) (650,492) (2,275,608) (1,699,073) 

Income before taxes .................................... 244,136 151,752 622,601 388,773 

Income taxes ............................................... (53,154) (33,825) (139,754) (86,025) 

Net income .............................................. $ 190,982 $ 117,927 $ 482,847 $ 302,748 

September 30, December 31, Balance Sheets (Unaudited) 
2000 1999 

Assets 

Current assets ............................................................ $ 5,328,619 $ 4,753,476 
Notes receivable and investments ............................. - 1,403,640 

Oil and gas properties, net ........................................ 17,797,004 16,260,990 

Property and equipment, net ..................................... 3,267,74 1 1,913,897 

$ 26,393,364 $ 24,332,003 

Liabilities and stockholders' equity 

Current liabilities ...................................................... $ 5,3 13,891 $4,68 1,323 

Senior debt ................................................................ 10,493,784 9,565,428 

Subordinated notes .................................................... 1,753,400 2,123,188 

Minority interest ........................................................ 72,888 - 

Stockholders' equity .................................................. 8,759,401 7,962,064 

$ 26,393,364 $ 24,332,003 

FIGURE B.ll 
Statement of a small oil company. 

Depletion 
Depletion is noncash allowance deductable from revenue for the recovery of 

the costs of a natural resource such as oil, gas, coal, or timber. The concept is that 
as the natural resource is exhausted, the assets of the company are depleted. 
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Amortization 
Amortization is the recovery of certain capital expenditures that can be deducted 

from revenue in a manner similar to depreciation (discussed in the next section). 
Qpical capital expenditures that can be amortized are pollution control facilities, 
removal of architectural barriers for the handicapped, reduction of goodwill (an 
asset not shown in Figure B. 1 I), or patents and trademarks, and so on. 

Depreciation 
Depreciation is a noncash deduction from revenues for the reasonable exhaus- 

tion, wear and tear of, or obsolescence of, property used in the business. With 
respect to federal income taxes, the government has an enormous number of rules 
and regulations specifying how depreciation may be determined. Because these 
regulations change somewhat from year to year, new project evaluations should be 
based on the most recent regulations. Revisions in the income tax laws are often 
instituted with the express purpose of making capital investment more attractive by 
yielding a higher rate of return. 

In the straight-line (SL) depreciation, it is assumed that the equipment value 
declines linearly with respect to time. The annual depreciation cost (d) is 

where I, = capital investment (in dollars) 
Sv = salvage value (in dollars) 
n = economic life (years) 

The book value of the equipment can be found for any year j as I, - jd. For exam- 
ple, if the investment I, = $10,000 and the salvage value Sv = $1000, the annual 
depreciation for an asset with a 5-year life is $900015 = $1800. 

Property other than buildings (1 8-year property) placed into service at the pres- 
ent time must use the modijied accelerated cost recovery system (MACRS) in cal- 
culating depreciation. Property is classified as having 3, 5, 7, 10, 15, or 20 years 
life. Some examples are: 

Three-year: Special tools, televisions, furniture, computers 
Five-year: Cars, light trucks, technological equipment, telephone switch- 

ing, research equipment 
Seven-year: Office furniture and fixtures 
Ten-year: Barges, fruit bearing trees 

Rather than explain the complicated rationale behind the allowable rates of 
depreciation for those classes, Table B.5 just lists the rates for what is called accel- 
erated depreciation (MACRS). Note that for each class you deduct some deprecia- 
tion after the "useful life" (class life) expires. You can find other tables for acceler- 
ated depreciation for various circumstances in any guide to federal income taxes. If 
you do not want to choose accelerated rates of depreciation, you can choose 
straight-line depreciation (SL) using the rates listed in Table B.6. The specific 



TABLE B.5 
MACRS depreciation rates 

(Half-year convention*) 

Year 3-year property Year 5-year property Year 7-Year property 
(%I (%I (%I 

*Half-year convention assumes the property is placed in service midyear no matter when it was actually placed in 
service. 

TABLE B.6 
Straight-line depreciation rates 

(half-year convention) 

Year 3-Year property IYear property 7-Year property 10-Year property 
(%I (%I (%I 

choice of MACRS, SL, or another method is quite complex because of the exten- 
sive detailed rules for depreciation allowance and corresponding federal income tax 
consequences and is therefore beyond our scope here. 

EXAMPLE B.4 COMPARISON OF DEPRECIATION METHODS 

A piece of capital equipment costs $6000, has a service life of 3 years, and has no sal- 
vage value. Compute the depreciation schedules using the following methods: SL and 
MACRS. 

Solution. Assume the equipment falls into the 3-year class life schedule. The depre- 
ciation allowances are as follows: 
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Year SL MACRS 

Salvage value 
Salvage value is the price that can be actually obtained or is imputed to be 

obtained from the sale of used property if, at the end of its usage, the equipment 
(property) still has some utility. Salvage value is influenced by the current cost of 
equivalent equipment, its commercial value, whether the equipment must be dis- 
mantled and relocated to have utility for others, and the (projected) physical condi- 
tion of the equipment. Salvage value can be thought of as a cash flow that may 
occur several years in the future, but does not represent income for federal income 
tax purposes when received. 

Income taxes 
The federal income tax on profits from corporations is based on income after 

all costs, including depreciation, have been deducted. Because depreciation affects 
taxable income, it is an important consideration in estimating profitability. The fed- 
eral income tax rate for large corporations (profit greater than $75,000) was 
recently roughly 34-35 percent. State income taxes may push the total tax rate to 
about 40 percent. Therefore as an expense a depreciation amount of $1 reduces 
taxes about $020. At this level of taxation, the before-tax rate of return will be 
roughly 1.67 times the after-tax rate of return. 

Tax credit 
Periodically Congress has permitted the use of tax credits as a direct reduction 

from income taxes. Examples are tax credits for installing energy conservation 
devices, use of alcohol fuels and electric vehicles, development of orphan drugs, 
creation of low-income housing, and some research expenditures. Tax credits have 
been used historically to stimulate capital investment in the United States. Such 
deductions are more valuable than depreciation because they represent direct 
deductions from the tax bill after taxes are computed on income. 

Two other factors that need to be considered in project evaluation that are not 
expressly found in financial statements are inflation and debt-equity ratio. 

Inflation 
Inflation can be a significant factor in analysis of profitability. High inflation 

rates frequently occur in many countries. In computing the rate of return or net pres- 
ent value, you need to obtain a measure of profitability that is independent of the 
inflation rate. If you inflate projections of future annual income, the computed rate 
of return may largely result from the effects of inflation. Most companies strive for 
an internal rate of return (after taxes) of 1&20 percent in the absence of inflation; 
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this figure would rise if projected future income is increased to include the effects of 
inflation (i.e., selling prices are raised yearly). Furthermore, costs will also rise 
because of inflation. 

Griest (1979) has discussed the effects of inflation on profitability analysis and 
has pointed out that the percentage change in profits after income taxes rarely 
increases at the rate of inflation, largely due to the effects of taxation. Assumptions 
about inflation can change the relative ranking of project alternatives based on net 
present value; special techniques based on probability may be required because 
inflation is difficult to predict. 

Debt-Equity ratio -. 
The debt-to-equity ratio quantifies the sources of funds used for capital invest- 

ment and is generally expressed as percentjpercent, for example, 75/25 means 75 
percent debt, 25 percent equity. Debt financing involves borrowing funds (from 
banks, insurance companies, or other lenders, or by selling bonds) based on fixed 
or adjustable interest rates and specified lengths of time until the loan is due. Equity 
financing involves selling shares of stock or partnership shares to raise investment 
funds or the expenditure of retained earnings of the company. Both debt and equity 
financing can be used on the same project. Compared with 100-percent equity 
financing, the rate of return on an investment can be increased if the interest rate 
for borrowed capital is favorable because interest payments are considered to be an 
expense in computing income taxes. Suppose that the debt interest rate is 12 per- 
cent and the equity interest rate is also 12 percent. Because interest payments are 
deductible, the effective debt interest rate after taxes for a tax rate of 40 percent is 
7.2 percent. 

Next, let us go through an example of project evaluation that includes most of 
the factors just discussed. 

EXAMPLE B.5 EVALUATION OF USING EQUITY VERSUS 
DEBT FINANCING 

Suppose you are asked to evaluate the purchase of the multicone cyclone referred to 
in Example 3.4. The capital investment is $35,000 (see Example 3.4), and the equip- 
ment has a class life of 5 years, after which it will be sold for the salvage value of 
$4000. The income stream generated by the machine is on line A in Tables EB.5A and 
EB.5B. As the equipment ages, its operating and maintenance costs increase, and line 
B lists the expense profile. Assume a tax rate of 35 percent with no investment tax 
credit. Evaluate two possible scenarios: (a) 100 percent use of equity and (b) 100 per- 
cent debt financing. Use straight-line depreciation; for debt financing, for simplicity 
assume equal annual payments (principal plus interest) to the lender for the 5 years at 
a rate of 10.5%. 

Solution. Tables EB.5A and EB.5B list the data needed in the evaluation. Deprecia- 
tion is straight line (SL). The gain on sale of the cyclone at the end of the year 5 is 
$500 (which is subject to ordinary income tax) 
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TABLE EB.SA 
Calculations for purchase of cyclone (100% equity) 

Year 

A. Income 
B. Expenses 
C. Rofit (A - B) 
D. Depreciation (straight line) 
E. Net income before taxes 

(C - D) 
F. Gain on sale at end of year 5 
G. Income taxes (0.35(E + F)) 
H. Net income after taxes 

(E + F - G) 
I. Salvage value 
J. Cash flow (D + H + I) 

TABLE EBSB 
100 percent debt financing for cyclone 

Year 

1 2 3 4 5 

A. Income $18,O00 $28,000 $30,000 $30,000 $30,000 
B. Expenses 2 , m  3,000 5 , m  7,000 8 , m  

Interest . 3,675 3,079 2,420 1,693 889 
C. Profit (A - B) 12,325 21,921 22,580 2 1,307 21,111 
D. Depreciation (straight line) 3,500 7,000 7,000 7,000 7,000 
E. Net income before taxes 

(C - D) 8,825 14,92 1 15,580 14,307 14,111 
F. Gain on sale at end of year 5 - - - - 500 
G. Taxes (0.35(E + F)) 3,089 5,222 5,453 5,007 5,114 
H. Net income after taxes 

(E + F - G) 5,736 9,699 10,127 9,300 9,497 
I. Principal payments 5,676 6,272 6,93 1 7,658 8,463 
J. Salvage value - - - - 4,(-)0 
K. Cash flow (D + H + I + J) 3,560 10,427 10,196 8,642 12,034 

Cost $35,000 
Accumulated depreciation 3 1,500 
Adjusted basis for income tax $3,500 

Sales price $4,000 
Basis 3,500 
Gain $500 



What criterion should you use to make the evaluation? You can calculate the internal 
rate of return for case (a) from 

the solution for which is IRR = 38 percent. But what about case (b)? The input and out- 
flow in year 1 would be $35,000 received as a loan, less $35,000 paid out as the pur- 
chase price of the cyclone, leaving 0 as the initial cash flow. The IRR would be infinite! 

Consequently, a better criterion for evaluation is to use the net present value for 
each case. Select an interest (discount) rate of 15 percent per annum. 

Case (a): 

-35,000 11,625 + 18,700 + 18,700 + 17,400 + 21,075 
NPV, = + 

(1 + i)' (1 + i)' (1 + i )2  (1 + i ) 3  (1 + i )4  (1 + i)5 

Case (b): 

O + 3,560 + 10,427 + 10,196 + 8,642 + 12,034 
NPV - 

- (1 + i)' (1 + i)' (1 + i )2  (1 + i )3  (1 + i )4  (1 + i )5  

Clearly case (a) appears better. But other interest rates could be chosen and similar 
calculations made for NPV. For example, for an interest rate of 25 percent per annum 

NVP, = $9,875 

so that at the higher discount rate case (b) is preferred. 
The change in the NPV using debt financing of assets is known as the principle 

of leverage. A similar result can often be obtained by leasing equipment because the 
lease payments are completely deductible as expenses for income tax purposes. 
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NOMENCLATURE 

coefficient in quadratic function 
lower bound on constraint function 
crude oil yield 
annual revenue 
area 
lower bound on analysis for component i 
upper bound on analysis for component i 
coefficient matrix in linear constraint 
Jacobian matrix of constraints 
adjoint matrix of A 
augmented Lagrangian function 
coefficent in quadratic function 
ith parameter estimate 
upper bound on constraint function 
coefficients in quadratic function 
vector of coefficients in equality constraints 
barrier function 
basis matrix 
approximation to the Hessian matrix used in sequential quadratic pro- 
gramming 
coefficient in quadratic function 
constant in rate of convergence 
right-hand side, inequality constraint 
vector of cost coefficients 
cost 
base cost 



Nomenclature 

completion time (see Example 16.2) 
depreciation taken in year 
coefficient in quadratic function 
vector in BFGS method 
search vector 
number of units produced in manufacturing 
diameter 
cumulative depreciation in year j 
maximum demand 
diagonal matrix 
negative deviation variable 
positive deviation variable 
measurement error 
ith eigenvalue 
error measure 
annual expense 
objective function 
lowest estimated value off 
reduced objective function 
future value or payment in year i 
inequality constraint 
line search objective function 
vector of inequality constraints 
step size in discretization 
equality constraint 
vector of equality constraints 
Hessian matrix 
modified Hessian matrix in Equation (6.16) 
approximation of H at iteration k 
inverse Hessian matrix 
interest rate 
cost index factor 
identity matrix 
mathematical operator 
Jacobian matrix 
iteration number 
cost coefficients 
lower bound 
Lagrangian 
lower bound 
lower triangular matrix 
slope 
number of equality constraints 
rank of matrix 
number of control moves 



Nomenclature 

number of independent equality constraints 
number of independent inequality constraints 
penalty coefficient (big M method) 
ith minor of matrix 
matrix in MINLP 
dimension of x 
number of time periods in investinent project 
number of data sets 
negative deviation variables 
number of terms in Equation (16.1) 
matrix involving nonbasic variables 
number of variables 
total number of constraints 
order of convergence 
prediction horizon 
positive deviation variables 
job scheduling index 
present value 
penalty function ' 

job scheduling vector 
weighting factor in model predictive control 
production level 
weighting matrix in quadratic programming 
positive-definite matrix 
number of inequality constraints 
repayment multiplier 
line search objective 
setpoint 
penalty function weighting coefficient 
slack or surplus variable 
component of a search direction 
search direction 
size parameter 
supply limit 
step response coefficient 
salvage value 
relative sensitivity of cost to coefficient Ki 
time 
simulated annealing variable 
processing time (see Example 16.2) 
vector of Lagrange multipliers 
upper bound 
upper bound 
manipulated variable 
value coefficient 
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ith eigenvector 
vector defined in necessary conditions 
book value in year j 
optimal objective value 
eigenvector matrix 
variance-covdriance matrix 
factor in Equation (5.18) 
weighting factor in Equation (16.2) 
positive weight in penalty function 
variable in assignment problem 
vector of n variables 
model input vector 
vector of basic variables 
dependent variables 
independent variables 
optimization variable at iteration k 
vector of nonbasic variables 
reference point 
tear variables 
optimal value of x 
approximation to x* 
data matrix 
binary variable in objective function 
model output 
optimization variable 
measured variable value 
operating hours per year 
observed data point 
integer variable vector 
distance variable 
MINLP objective function term 

GREEK SYMBOLS 

distance moved along a search vector (step length) 
positive weighting factor 
model parameter 
estimated model parameter 
step size adjustment in conjugate gradient method 
positive weighting factor 
bound on step size 
parameter in convexity definition 
gradient operator ("del") 



Nomenclature 

difference in general 
determinant 
discretization in time for model predictive control 
change in manipulated variable 
X k + l  - Xk 

determinant of ith principal minor 
roundoff error 
convergence (termination) criterion 
random error between jth data point and model prediction 
vector of Lagrange multipliers 
angle between two vectors 
a scalar between 0 and 1 
scheduling variable (see Example 16.2) 
vector of tear variables in flowsheet optimization 

k stage in search 
T transpose 
o at optimal solution 
opt optimum 
I first derivative 
* optimum 
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Multistage processes, 561 
Multistart method, 388 
Mutation (in genetic algorithm), 401 

Necessary and sufficient conditions 
first order, 128, 137 
functions of continuous variables 

constrained, 267 
example applications, 269 (see also 

Kuhn-Tucker conditions; Lagrange 
multipliers) 

second order, 28 1 
unconstrained, 137 

Need for optimization, 4 
Negative definite, 128 
Nelder-Mead method, 186 
Nesting, 541 
Net present value, 100, 102, 615,617 
Networks 

generalized, 353 
heat exchanger, 252 
pipeline, 158,469 

Newton-Raphson method, 197,597 
Newton's method, 197. See also Quasi-Newton 

methods 
advantages, 158, 161,202 
algorithm, 158 
convergence, 16 1 
direction of search, 197 
disadvantages, 202 
example, 199 
geometric interpretation, 198 
modified, 202 
of solving equations, 597 
step length, 197 

NLP (nonlinear programming) algorithm 
advantages of different methods, 3 1 8 

NLPQL, 321 
Nodes (branch and bound), 355 
Nonlinear constraints, 265 
Nonlinear equations, solution of, 598 
Nonlinear model, 49 
Nonlinear programming problem. See also 

Constrained optimization; 
Unconstrained optimization 

convex, 280 
definition of, 265 

example of, 267 
geometric illustration, 268 

Nonlinear regression, 6 1,45 1 
NPSOL, 321 
NPV. See Net present value 
Numerical evaluation of derivatives. See Finite 

difference substitutes for derivatives 
Numerical search 

comparison, 161 
n dimensions 

examples, 465 
one dimension, 152-1 80 

direct methods, 166 
examples, 161, 163, 168, 171,431, 

443,466 
indirect methods, 161 

stopping criteria, 161, 168, 234, 326 

Objective. See also Linearization; Simulation 
definition, 19, 84 
economic criteria, 7, 19, 100 

investment costs, 89,93, 100,604-610 
operating costs, 85, 100,610-61 1 
profit, 100,62 1,622 

Objective function. See also Linearization 
chemical reactors, 482 
contours, 132 
form, 131 
linear, 223 
simplification, 19 

Off-line optimization, 524 
Oil well location, 354 
Olefin praductioh, 484 
One-dimensional search. See Numerical search; 

Unidimensional search 
On-line optimization, 524 
Operating cost estimation, 610 
Operating expenses, 621,622 
Optima 

boundaries, 119, 124 (see also Necessary and 
sufficient conditions; Stationary point) 

conditions, 118, 126 
existence, 118, 126 
global, 121, 127, 132 
local, 121, 127, 132 
multiple extrema, 135,382 
n dimensions, 1 18 
restricted, 121-124 (see also Direct 

substitution; Lagrange multipliers; 
Linear programming; Penalty 
function; Slack variables) 

unrestricted, 125, 132 
Optimal control, 568 
Optimal point, 118 
Optimal scheduling, 560, 565 



Subject Index 649 

Optimal solution, 14 
Optimal value. See Optimal solution 
Optimization 

difficulties, 26,326 
essential features, 14 
general procedure, 19 
need for, 4 
objectives of, 4 
obstacles to, 26 
off-line, 524 
on-line, 524 
six steps, 19, 20 
strategies, 19, 265 

Optimization characteristics. See also Levels 
optimization 

- comparison of numerical and 
analytical, 23 

general procedure, 18 
iteration, 182 
need for optimization, 4 
objectives, 4 
opposing influences, 10, 1 1,12 

Optimization complexity. See also Levels of 
optimization 

dimensionality, 19 
Optimization software, 5 18-520, 525 
OPTQUEST, 409 
Ordinary differential equations, 49 
Orthogonal search directions, 188 
Oscillation, 192,299 
Outer approximation (MINLP), 369 

Parametric penalty function methods, 290 
Parametric representation, 52, 55 
Parameter estimate, 55, 58 
Payback period, 100 
Payout time, 100 
Penalty function, 285 

size of penalty, 288 
Penalty function methods 

algorithm, 285 
ill-conditioning, 286 (see also Lagrange 

multipliers) 
Penalty parameter, 285 
Penalty SLP algorithm, 298 
Phase I-Phase I1 procedure, 239 
Pipe diameter, 461,469 
Planning, 553 
Plant optimization, 537 
Plant optimization hierarchy, 6, 550 
Plantwide management and optimization, 565 
Point 

feasible, 15, 11 8 
saddle, 127, 132, 135 
stationary, 127, 132, 135, 267 

Polynomials. See General polynomials; Surface 
fitting 

Positive definite, 128, 132,598 
Positive-definite Hessian matrix, 128, 132, 304 
Positive-definite matrix, 128, 598 
Positive-semidefinite matrix, 128, 132 
Precedence ordering, 539 
Prediction horizon, 570 
Present value (worth), 94, 100 
Pressure vessel optimization, 87 
Problem formulation, 19 
Process design, 6 ,5  16-5 17 
Process monitoring and analysis, 575 

of Process operations, 55 1 
Process selection, 400 
Process simulators, 5 18-520 
Profit, 621, 622 

chemical plant, 85 
investmentlprofit criteria, 100 

Profitability measures, 100,615 
Programs, computer, 243, 370 
Project evaluation, 6 15 
Project life, 616, 623 

Quadratic approximation, 197, 302 
geometric interpretation, 198 ' 

Quadratic convergence, 157,200. See d s o  
Conjugate direction 

Quadratic form, 132, 197 
Quadratic function 

coefficient estimation, 55, 60 (see also 
Surface fitting) 

conjugacy, 187 
geometry, 132 
minimization, 132, 187 

Quadratic interpolation, 166 
Quadratic programming, 284 

codes, 285 
quadratic programming problem, 284,571 

Quasi-Newton methods 
algorithm, 160,208 
BFGS, 208 
examples, 161, 163,209 
movement in search direction, 208 
unidimensional, 160 
updating Hessian matrix, 208 

Random search methods, 183 
Rate of return. See Internal rate of return 
Reaction synthesis, 508 
Reactive scheduling, 553 
Reactors, chemical. See Chemical reactors 
Real-time optimization (RTO), 524,565 
Recursive quadratic programming. See 

Successive quadratic programming 
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Recycle systems, 509 
Reduced gradient, 308 
Reduced gradient method, generalized, 306 
Reduced vector, 524 
Reduction, 19 
Refinery application, 556 
Reflection, 187 
Reflux ratio, 443 
Refrigeration process, 530 
Region. See Feasible region 
Region of search, 118, 124,274. See also 

Boundaries; Constraints 
interior optima, 1 18, 291 
nonconvex, 327 

Regression. See Least squares 
Relative sensitivity, 25 
Repayment multiplier, 95 
Residual, 57 
Return on investment, 100 
Revenues, 614,621 
ROI, 100 
Rosenbrock's function, 196 
Roundoff error, 324 

Saddle point 
one dimension, 135 
two dimensions, 127, 132 

Safeguarded Newton's method, 207 
Sales, 7 
Salvage value, 625 
Scaling, 327 

flowsheet optimization, 526,532 
in one-dimensional search, 155 

Scanning (unidimensional search), 156 
Scatter search, 408 
Scheduling problem, 560 
Search methods. See speczjic method 
Secant methods. See Quasi-Newton methods 
Second derivatives, 127, 132, 197, 303 
Second-order-necessary conditions, 281 
Sensitivity, 25, 242, 279 
Separations processes, 441-459. See also 

Distillation (staged); Extraction 
example 

Sequential modular flowsheeting, 524,539 
Sequential quadratic programming. See 

Successive quadratic programming 
Sequential search 

discrete-valued objectives, 1 15, 1 16 
one-dimensional search, 156, 168 
simplex, 185 

Shadow price, 242,279. See also Lagrange 
multiplier 

Simplex, 185, 233 

Simplex method of search, 185. See also Linear 
programming 

Simplification. See also Decomposition; 
Linearization; Objective function 

linear approximation, 19, 293 
mathematical, 19 
physical model, 21, 47 
quadratic approximation, 13 1, 302 

Simulated annealing, 399 
Simulation, 5 18-520 

sequential modular, 524, 529 
simultaneous modular, 524,527,543 

Simultaneous modular model, 524, 
527,543 

Slack variables, 225 
inequality constraints, 223 
Lagrange multipliers, 269 (see also Kuhn- 

Tucker conditions) 
linear systems, 230 
sufficient conditions, 281 

Software 
flowsheeting simulators, 544-545 
global optimization, 41 1 
LP, 223 
MILP, 243 
MINLP, 370 
NLP, 3 19 

Spreadsheet optimizer, 243,322 
Spreadsheets, 243,322 
SQP. See Successive quadratic programming 
Stationary point, 269 

definition, 282 
n dimensions, 259 

constrained, 282 
Kuhn-Tucker conditions, 269 
unconstrained, 127 

one dimension, 135 
need for higher derivatives, 135 

Steady state model, 44 
Steam generator, 435 
Steam system, 435 
Steepest ascent. See Gradient method 
Steepest descent. See Gradient method 
Step response, 570 
Step response model, 570 
Step size in search, 156, 158, 160, 190, 304, 

3 1 1. See also specijic method 
Stopping criteria. See Termination 
Strictly concave, 123 
Strictly convex, 123 
Suboptimization, 8 
Successive linear programming, 293 
Successive quadratic programming 

algorithm, 302 
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codes, 321 
examples, 305 

Sufficient conditions, 281. See Necessary and 
sufficient conditions 

Sum of infeasibilities, 240, 3 15 
Superbasic variables, 3 10 
Superposition, 43 
Supply chain management, 550 
Supply limit, 556 
Surface fitting, 54, 62 

definition, 55 
"fit", 56. See Least squares 
quadratic surfaces, 55 

for optimization, 59 
Synthesis, 5 16 

Tabu search, 393 
Tax credit, 625 
Taxes, 625 
Taylor series, 136 
Tearing, 540, 54 1 
Termination, 194,305,325. See also 

Convergence rate 
Thermal cracker, 484 
Time value of money, 94 
Transformation method. See penalty function 
Transportation problem, 245 
Traveling salesman problem, 353 
Trust region, 206, 298 
Two-level experiment design, 184. See Factorial 

experimental designs 

Unconstrained optimization, 183 

examples, 204, 209,451,464 
Underestimator, 385 
Unidimensional search 

indirect, 155, 157 
interpolation, 166 
multidimensional search, 173 
polynomial approximation, 166 
scanning and bracketing procedures, 156 

Unimodal functions 
definition, 156 
in numerical search, 156 

Unit management and control, 567 
Univariate search, 185 
Unsteady state model, 44, 569 
Upper bounded variables, 225,299 

Vapor-liquid equilibrium, 45 1 
Variable(s) 

basic, 227 
continuous versus discrete, 352 
dependent, 232,308 
independent, 232,308 
interaction among, 13 1 
nonbasic, 232, 308 
slack, 226, 284 

Variance-covariance matrix, 577 
Vector, 524,584 
Vertex, linear equalities, 229 

Waste heat recovery, 4 19 
Weighting factor, 571 

Yield matrix, 484 
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