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Preface

Biological and biomedical studies have entered a new era over the past two decades
thanks to the wide use of mathematical models and computational approaches.
A booming of computational biology, which sheerly was a theoretician’s fantasy
twenty years ago, has become a reality. Obsession with computational biology and
theoretical approaches is evidenced in articles hailing the arrival of what are vari-
ously called quantitative biology, bioinformatics, theoretical biology, and systems
biology. New technologies and data resources in genetics, such as the International
HapMap project, enable large-scale studies, such as genome-wide association stud-
ies, which could potentially identify most common genetic variants as well as rare
variants of the human DNA that may alter individual’s susceptibility to disease and
the response to medical treatment. Meanwhile the multi-electrode recording from
behaving animals makes it feasible to control the animal mental activity, which
could potentially lead to the development of useful brain–machine interfaces. Em-
bracing the sheer volume of genetic, genomic, and other type of data, an essential
approach is, first of all, to avoid drowning the true signal in the data. It has been
witnessed that theoretical approach to biology has emerged as a powerful and stim-
ulating research paradigm in biological studies, which in turn leads to a new re-
search paradigm in mathematics, physics, and computer science and moves forward
with the interplays among experimental studies and outcomes, simulation studies,
and theoretical investigations. In the current collection of papers, which are mini-
reviews written by leading experts in their own areas of computational and systems
biology, we attempt to summarize and share with the readers some of the most re-
cent thriving developments.

The conference from which this book results was to celebrate the 70th birthday
of Qian MinPing, a Professor in Mathematics and Theoretical Biology at Peking
University. She is one of the people who foresaw the forthcoming tide of the com-
putational and systems biology more than 20 years ago. “She is an amazing woman”
said Mike Waterman, one of the conference attendees. Most contributing authors of
the book are her students and are proud of being members in the “Qian-School.”
Below is a brief biography of Prof. Qian, written by herself.

The editors of the volume asked me to write something about myself instead of
contributing a research article. Reflecting on this request, it finally daunted on me
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vi Preface

that I am now at the age of telling grandma’s story which might be indeed more
interesting to the younger generation. The life of Chinese scientists of my generation
could be quite colorful and their stories multitudinous. We experienced two wars
(The World War II and the civil war between the communists and the nationalists),
numerous political movements including “The Cultural Revolution” of more than
ten years, and finally the past thirty years of reform era with rapid changes in every
aspect of Chinese life.

In 1979, after the end of the nightmare like “The Cultural Revolution,” abso-
lutely out of my expectation even in dream, I was fortunate enough to be a selected
member of the first group of people sent to the US as visiting scholars. When I
arrived in the US, I was impressed by the affluent life in America, with great con-
trast to that in China at that time. However, my strongest feeling was about the ex-
pectation and enthusiasm for the future of China and the lately started academic
career of myself. That seems to be so long ago and might not be easily under-
standable by today’s youngsters. But it concerns almost everything with the con-
temporary Chinese history in general and my own family background in particu-
lar.

My father was a Professor in polymer science educated in England. Growing
up under the family influence, I decided in high school that I would devote myself
to science. I entered the Peking University in 1956 and studied mathematics. Even
though officially I was a student and later a faculty member in a good university,
I could hardly fulfill what I wished. We often could only do research in our spare
time after “work”; Even for that we were criticized as holding “illegal” seminars on
mathematics in evenings and on Sundays. Thus, any opportunity to me for learning
was really like food in starvation and water for thirstiness. Even though I was al-
ready 40 years old, what I was thinking the most was to take the advantage of the
opportunity to study as much as one could, so that I would be able to catch-up sci-
entific development of the world. It would be silly to expect myself making first class
contributions to mathematics or science starting that late. The realistic goal to us
was to play a connecting-role between the preceding generation, such as Professor
Xu, Bao-Lu (Pao Lu Hsu), and the coming generation that entering undergraduate
studies at the time. Therefore, the job I assigned myself was to introduce the most
important new development in the field of stochastic processes to my students and
to guide them to the frontier of scientific research. Still, if one wants to teach the
students about modern research, he or she self definitely needs to have experience
with such. Hence, even though we had not had much opportunity in doing research
before, I, and most others like me in China, tried very hard to get a flavor of orig-
inal research. Now looking back to my last 30 years, I could say I feel happy and
satisfied, since I had made a good decision on my job and I tried my best for it.
Many friends have asked me if I have ever thought about staying in the US, and the
answer was always “No,” since my motto is that “To marry a person who loves you
instead of one you admire”: China indeed needed me the most at that moment of the
history.

To me, working with students and enjoying their achievements were really the
greatest pleasure. In fact, I have been growing with my students in my academic
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life: Often before I teach them, I do not really know much more than they do; the
only advantage I have is my experience. When I teach a course, no matter whether
it is familiar or new to me, I always try to bring something new into the class,
and to improve my previous teaching and to adjust it according to the changing
situation. I feel very sad if no one among the students really wants to understand
what I teach. However, if the students truly enjoy my teaching, especially those I
made a special effort, the pleasure to me is as great as I obtain a nice result in
research.

If I ever had some good influence on my students, I think it is mostly through
my enthusiasm and persistence in work and the attitude of pursuing the scientific
truth and originality with self-confidence, irrespective of being in a familiar field
or in an early stage of other new research. I myself obtained such influence mostly
from my farther, my brother, and my teachers, such as P.L. Hsu and Z.P. Jiang, not
through their preaching but from their deeds. In fact, my father rarely talked to me
on serious topics but teased me as his little girl. His influences on me were from
his own hard working days and nights, and life-long enthusiasm toward scientific
research. My brother Min Qian, twelve years older, has been my real scientific men-
tor since my university days. As a faculty member in the same department, he has
never taught me any formal courses. But he often talked to me about mathemat-
ics, and even physics, in the way like oral exams between teachers and students.
I have learnt what it means to thoroughly understand something and how to grasp
the essence of a problem this way. Learning from Professor P.L. Hsu’s lectures notes
on general topology (not on probability and statistics) in a complete new presenta-
tion and writing reports to him several times had given me life-time benefit, since
that made me understand the importance to always pursue one’s own originality in
study, no matter in teaching or in research. I have learnt to be a devoted scientist
without seeking fame and wealth from Professor Z.P. Jiang.

Since 1998, I have become increasingly attracted to the fascinating development
of genetics and computational molecular biology. Starting at the age of 59 from
knowing almost nothing, I, together with my students, have learnt a great deal of
biology. I teach them what I know, but more importantly, how to obtain and un-
derstand the new biological knowledge fast by taking advantage of our background
of mathematical training. At the meantime, I have learnt from them a great deal
through presentations and discussions in seminars. Indeed, working together with
students keeps me updated in biology, which, unlike mathematics, is such an ex-
tremely rapidly changing field. Together we continuously build connections between
the wide range of new theoretical and experimental results.

Here I would like to talk a little bit about my feeling for leaning and studying
biology as a mathematician. We all see that right now it is a time of tremendous new
discoveries in biology. Significant experimental facts and novel data are obtained
in biomedical sciences almost every month. Mathematics can play some important
roles in explaining and understanding them. Real implications of observations and
data are often far from what they seem to be. For instance, huge amount of mi-
croarray expression data have been obtained in recent years, and many have public
access. Some conclusions have already been drawn, such as which genes or ge-
nomic parts are involved for what complex diseases or phenotypes. Still, because
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the above conclusions are drawn from statistical analysis, rarely a mechanistic un-
derstanding is offered on why and how the genes are involved. The questions why so
many statistically significant SNPs appear in the genomic desert and how SNPs in
regulatory regions affect the phenotypes remain to be elucidated. What we know and
understand is still very limited. The situation reminds us of the early 20th century
when the great progress in theoretical physics followed a large amount of new ob-
servations and data, such as those in X-rays radiations, photoelectrical effect, and
electron diffraction. Revolution or paradigm shift in physics eventually led to great
applications in technology that have affected the life of mankind ever since. I often
wonder whether a deep and thorough theoretical biology will come in the 21st cen-
tury based on all these recent observations and data. I feel strongly that whatever
the final theoretical edifice will be, the statistical genetics and bioinformatics will
be integral parts of it.

To reach a thorough understanding of something from what one observes, theo-
retical induction and integration with imagination are not only important but ac-
tually also are necessary. I believe that mathematics can play precisely this in-
dispensable role in this respect. However, this may not be just simple use of ex-
isting models and methods from existing mathematics. Real-world biological sys-
tems are extremely complex, and one needs first to grasp their most essential ele-
ments before representing them in terms of mathematical models. Furthermore, one
also needs new mathematical concepts, tools, and methods for modeling and inte-
grating simpler components, and to characterize more and more complex systems.
Thus, a mathematician coming into contact with biological problems should posi-
tion him- or herself as a scientist instead of considering him- or herself as merely
a mathematical tool and model provider. He or she should learn and study biol-
ogy together with biologists. The ultimate real truth would be obtained as a whole,
rather segmented into biology, chemistry, physics, and mathematics as isolated dis-
ciplines.

This volume consists of 19 chapters and covers a wide spectrum of topics. In
Chap. 1, S. Zhong and his colleagues used thermodynamic models to analyze gene
regulatory mechanisms. In Chap. 2, Y. Ding reviewed major algorithms for RNA
secondary structure prediction, with a focus on ensemble-based approaches that
have proved to be advantageous in many applications since they provide complete
statistical characterizations of the Boltzmann ensemble of RNA secondary struc-
tures. He described applications of an RNA structure sampling algorithm to the
rational design of short interfering RNAs for gene silencing by RNA interference
and to target identification for microRNAs that play important roles in posttran-
scriptional gene regulation. In addition to sequence features, incorporation of target
mRNA secondary structure is an important consideration in these applications. The
microarray technology has developed rapidly and has advanced our knowledge of
the genomes of various species and the understanding of complex diseases. Particu-
larly, the oligonucleotide microarrays have received increasing attention in biolog-
ical and biomedical research. However, many aspects of the oligo arrays have not
been thoroughly studied or fully understood, which lead to issues related to the ar-
ray data quality control. In Chap. 3, W.J. Fu and his colleagues demonstrated that
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new developments in these areas of the oligo arrays lead to better understanding of
the array mechanism and improvement in the microarray data analysis. In Chap. 4,
H. Ge tried to apply the models of stochastic processes into two very active fields
now, nonequilibrium thermodynamics and biological signal transduction. Many es-
sential concepts and relations related to classical thermodynamic laws have been
put forward and discussed in details. Besides it, stochastic approach is also used
to model biological signal transduction pathways and modules. Here, he focused
on the phosphorylation and dephosphorylation module and mainly investigate its
sensitivity against external signals. It was found that at least to some extent stochas-
tic models could explain the mechanism producing ultrasensitivity better than the
corresponding deterministic one. In Chap. 5, J.F. Feng and his colleagues reviewed
some of recent progresses in applying Granger causality to recover network struc-
tures: gene networks, protein networks, and neuronal networks. Some successful
applications are included to demonstrate the power of the approach. Phylogenetic
footprinting is one of the most effective approaches for transcription factor binding
site identification. In the past decade, many phylogenetic footprinting methods have
been developed and have demonstrated their power in predicting binding sites. In
Chap. 6, X.M. Li and his colleagues differed from other reviews on phylogenetic
footprinting and presented a few representative methods based on whether these
methods depend on alignments. They also pointed out a few challenging problems
for future directions. In Chap. 7, P. Wang and her colleagues introduced penalized
regression-based methods, space and LogitNet, for constructing genetic inter-
action or regulatory networks from high-dimensional continuous and binary array
data. They also introduced remMap for constructing networks using two different
types of high-dimensional array data. These methods are illustrated through both
simulated and real data examples.

Protein domains are parts of the protein that can function independently of other
parts. Thus, domains form the basic units of proteins, and domain–domain inter-
actions are the fundamental causes of protein interactions. Although large amounts
of protein interaction data sets from many different organisms are available, our
knowledge of domain interactions is limited. Several computational methods have
been developed to predict domain–domain interactions from protein interactions and
other information including gene coexpression, gene annotation, and domain fusion.
In Chap. 8, F.Z. Sun and his colleagues reviewed several computational approaches
to achieve this objective, including a maximum likelihood estimation method, a
likelihood ratio based method, maximum parsimony, and methods integrating inter-
action data from multiple organisms, gene annotation, co-evolution, etc.

Now with the developed mathematical theory of irreversible stochastic processes
carried out by Min-Ping Qian, Min Qian, and their colleagues at Peking Univer-
sity, it is clear that the irreversible stochastic processes are applicable to many of
the interesting open-system phenomena in chemistry and biochemistry. In Chap. 9,
H. Qian and his colleagues started with the simple Michaelis–Menten enzyme kinet-
ics from a purely stochastic perspective and then turned to an irreversible Markov
process called coupled diffusion, which could be used to model motor protein, fluc-
tuating enzymes in a living cells, and self-regulating genes. They also found that a
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bifurcation, saddle-node or pitchfork, occurs in certain coupled diffusion systems
while decreasing the rates of jump processes. In Chap. 10, D.F. Wu and her col-
leagues briefly reviewed the current status of the probability model and the statistical
methods in cancer screening and their limitations.

The smallest confidence interval for a given class of intervals was defined to be
the intersection of all intervals in the class. If this intersection belongs to the given
class, we say the smallest interval exists in the class, and this interval is simply the
best in that class. In Chap. 11, W.Z. Wang introduced a general method to con-
struct the smallest one-sided 1 − α confidence interval when there exist nuisance
parameters. In Chap. 12, J. Xie and her colleagues introduced the idea of group
variable selections in a regression model and applied the method to genomic data.
In Chap. 13, inspired by the Granger causality idea in time series, W.Q. Yang and
his colleagues extended the notation to static data and applied it to protein data.
In Chap. 14, N.R. Zhang reviewed the computational and statistical problems that
arise in DNA copy number data and surveyed recent advances in their treatments. In
Chap. 15, T.L. Zhang outlined a number of cluster detection approaches and disease
mapping approaches.

Treating mRNA transcript abundances as quantitative traits and mapping gene
expression quantitative trait loci for these traits has been studied in many species
from yeast to human. There has been significant success in finding associations be-
tween gene expression and genetic markers. These eQTL studies have been used
to identify candidate causal regulators, to construct gene regulation networks, to
identify hot spot regions, and to better understand clinical phenotypes. Because of
the large number of genes and genetic markers in such analyses, it is extremely
challenging to discover how a small number of eQTLs interact with each other
to affect mRNA expression levels for a set of (most likely co-regulated) genes. In
Chap. 16, J.S. Liu and his colleagues reviewed a few methods for studying eQTL
data and outlined a new Bayesian method they recently developed for eQTL map-
ping. In Chap. 17, H.Y. Zhao and his colleagues first constructed a weighted gene
co-expression network and then extracted gene modules from the constructed net-
work based on some topological measure. To interpret the biological meaning of the
extracted modules, they used information from Gene Ontology, Kyoto Encyclope-
dia of Genes and Genomes, and genome-wide location data to study whether each
module is enriched for certain categories. Furthermore, they compared the utility
between topological overlap and Pearson correlation similarity measures to define
modules. Additionally, to study the relationships between modules derived from dif-
ferent expression data sets for the same species, they compared the consistency of
gene modules inferred using different expression data sets. Lastly, they performed
expression Quantitative Trait Loci (eQTL) analysis to gain a better understanding of
the genetic basis of gene modules. In Chap. 18, X.J. Zhang developed a rigorous ap-
proach to decode spike trains in a single neuron and an ensemble of neurons with or
without interactions. Finally in Chap. 19, Y. Zhang proposed a new method that can
accurately approximate the statistical significance of peaks adjusting for multiple
testings.
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Chapter 1
Analysis of Combinatorial Gene Regulation
with Thermodynamic Models

Chieh-Chun Chen and Sheng Zhong

1.1 Introduction

Transcriptional control is a key regulatory mechanism for cells to direct their des-
tinies. A large number of transcription factors (TFs) could simultaneously bind to a
regulatory sequence. With the constellation of TFs bound, the expression level of a
target gene is usually determined by the combinatorial control of a number of TFs.

Thermodynamics was first introduced in physics to study the conversion of en-
ergy into work or heat of a system from a macroscopic point of view. Statistic
mechanics incorporating statistical tools with thermodynamic principles provides
a powerful framework to model and further to predict the collective motion of
molecules at the microscopic level on the basis of known characteristics and interac-
tions of a system. The statistic thermodynamic concept [12] was first adopted on the
study of molecular mechanism for gene regulation in Bacteriophage Lambda. Later
it was further utilized on modeling TF–DNA and TF–RNA polymerase (RNAP)
interactions in bacteria [3–5]. These models brought the stochastic interactions of
TFs, regulatory sequences, and RNAP together and enabled a quantitative model for
the transcription rate in prokaryotes.

Recently, several attempts to employ thermodynamic models in the study of eu-
karyotic gene regulation were made. With thermodynamic analysis of synthetic pro-
moters, certain phenomena in gene regulation, such as cooperativity and the effects
of weak binding sites, were uncovered [9]. Applying a thermodynamic model un-
der a fixed time point in Drosophila development successfully predicted the spa-
tial expression patterns of segmentation genes in Drosophila [11]. In differentiating
embryonic stem cells (ESCs), the interaction types of the TFs could be predicted
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Table 1.1 The Boltzmann
distribution for the two states
of a TFBS

State TF Weight

Free 0 1

Attached 1 qTF

from the temporal response of the target gene, and further a transcription network
composed of 34 TF–TF interactions and 185 TF-target relationships were identified
[6, 7]. These successes made thermodynamic models an applicable route to analyze
gene regulatory mechanisms.

1.2 Thermodynamic Models for TF–DNA Binding

Here we introduce the fundamental model to integrate combinatorial signals at the
level of cis-regulatory transcription control in bacteria through the thermodynam-
ics of TF–DNA and TF–RNAP–DNA interactions [5]. These interactions can be
quantified by several parameters that are tuneable by the selection and placement of
various protein-binding DNA sequences.

1.2.1 TF–DNA Interactions

At a given time in a cell, there are only two states for a transcription factor binding
site (TFBS): attached with or free of a TF. Let qTF denote the ratio of the probability
of a TFBS in the attached state to that in the free state (Table 1.1).

The probability that the TFBS of a target gene is bound with a TF could be
denoted as

P(TFbinding)= qTF

1+ qTF
.

On the other hand, let [TF − DNA] represent the cellular concentration of the
promoter bound by the TF. The binding process can be denoted as

[TF] + [DNA]→ [TF−DNA].
Then the probability that the TFBS of a target gene is bound with a TF can be

formulated as

P(TFbinding)= [TF−DNA]
[DNA] + [TF−DNA] .

At equilibrium state, the concentrations of the substrates can be described as

P(TFbinding)= [TF]
[TF] + [KTF] =

[TF]
KTF

[TF]
KTF

+ 1
,
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Table 1.2 The Boltzmann
distribution of a promoter
with one TF and one RNAP

State TF RNAP Weight

1 0 0 1

2 0 1 qp

3 1 0 qTF

4 1 1 ωTFpqpqTF

where [TF] is the cellular concentration of the activated TF targeted by this site,
and KTF is the effective dissociation constant (relative to the genomic background)
representing the concentration required for half of the TF binding to the promoter.
Thus, we can obtain

qTF = [TF]
KTF

.

RNAP-promoter binding (without any TF present) can be described by the same
form,

P(RNAPbinding)= qp

1+ qp ,

where the ratio of the probability of an RNAP in the attached state vs. in the free
state is denoted as qp = [RNAP]/Kp .

1.2.2 TF–RNAP–DNA Interactions

1.2.2.1 One TF

If we consider the case of a TF interacting with an RNAP, there are four possible
states for a promotor: (1) bound by both the TF and the RNAP; (2) bound by the
RNAP only; (3) bound by the TF only; (4) free from either the TF or the RNAP
(Table 1.2).

The probability of the promoter of the target gene bound with an RNAP can be
represented as

P(RNAPbinding)= qp +ωTFpqTFqp

1+ qp + qTF +ωTFp
,

where

ωTFp =
⎧
⎨

⎩

1, no interaction,
10–100, activation,
0, repression.

Different settings of ω reflect different roles a TF could play (Table 1.2). If ω
is set to 1, it represents that there is no interaction between the RNAP and the TF.
They bind independently to the promoter. If ω is set to 10–100, it represents that the
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Fig. 1.1 Forms of TF–RNAP interactions and their corresponding parameters for modeling the
probability of RNAP binding [6]. A is a transcription factor acting as an activator of genes. R is a
transcription factor acting as a repressor of genes. P represents RNAP. The curve with a dot at the
end represents an repression effect; the curve with an arrow in the end indicates either cooperation
between transcription factors or activation of gene by transcription factors

Table 1.3 The Boltzmann distribution of a promoter with its RNAP and two TFs

(TF1, TF2) (0, 0) (1, 0) (0, 1) (1, 1)

RNAP

0 1 qTF1 qTF2 ωTF1TF2qTF1qTF2

1 qp ωTF1pqpqTF1 ωTF2pqpqTF2 (ωTF1p +ωTF2p)ωTF1TF2qTF1qTF2qp

TF helps recruit the RNAP binding to the promoter. The larger ω is, the larger the
synergism is. If ω is set to 0 or close to 0, it represents that the TF blocks the RNAP
binding to the promoter, and thus the TF serves as a repressor (Fig. 1.1).

1.2.2.2 Two TFs

The case of two TFs capable of binding to a promoter together with an RNAP could
be represented in the same fashion (Table 1.3).

The probability of RNAP binding to the promoter can be denoted as

P(RNAPbinding)=
∑
j

∑
k P (1, j, k)

∑
i,j,k∈{0,1} P(i, j, k)

,

where P(i, j, k) = P(RNAP = i, TF1 = j, TF2 = k). The parameters ω could be
set differently to reflect the nature of these interactions between two TFs or the
interactions between one TF and one RNAP (Fig. 1.2).

1.2.2.3 Multiple TFs

A general form for multiple regulatory TFs able to bind to a promoter with an RNAP
could be represented as the following. Let ZON be the partition sum of the Boltz-
mann weightsW over all states of TF binding to the promoter bound by RNAP, and
ZOFF not bound by the RNAP on the contrary.

P(RNAPbinding)= ZON

ZOFF +ZON
.
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Fig. 1.2 Forms of interactions between two TFs and one RNAP, and their corresponding param-
eters for modeling the probability of RNAP binding [6]. A1 and A2 are activators. R1 and R2 are
repressors. P represents RNAP. The line with a dot at the end represents an repression effect; the
line with an arrow at the end indicates either cooperation between two TFs or activation of a gene
by a TF

With multiple TFBSs, different configurations of site occupation can be formed.
The Boltzmann weight W for a configuration could be simply represented by the
product of qi and wij , where qi reflects the TF–DNA interaction (i.e., the binding
affinity of a TFBS to the TF), and wij reflects the interaction between two TFs on
sites i and j . Let σi = 1 if site i is occupied and σi = 0 otherwise. Then

W [σ1, . . . , σL] =
L∏

i=1

q
σi
i

∏

i<j

ω
σiσj
ij .

Thus, ZOFF can be obtained by summing over all configurations without the
RNAP binding on the promoter:

ZOFF =
∑

σ1=0,1

· · ·
∑

σL=0,1

W [σ1, . . . , σL].

ZON can be further represented as

ZON =
∑

σ1=0,1

· · ·
∑

σL=0,1

Q[σ1, . . . , σL] ·W [σ1, . . . , σL],

whereQ[σ1, . . . , σL] reflects the interaction between the RNAP and each bound TF,

Q= qp
L∏

i=1

[
1− σiδ(ω0i ,0)

] ·
[

1+ω
L∑

j=1

σj δ(ωpj ,ω)

]

.

The first part makes sure that the RNAP could bind to DNA without any repressor
present (i.e., ωpi = 0). The second part represents the additional weights from the
cooperative interactions between the RNAP and each bound TF, respectively.



6 C.-C. Chen and S. Zhong

Fig. 1.3 Cis-regulatory constructs and response characteristics of the AND(a) and OR(b) gates [5].
Filled and open boxes denote strong and weak binding sites, respectively. Dashed lines indicate
cooperative interaction with ωij = 20. Plotted to the right of each construct is the fold change in
RNAP-binding probability for typical cellular TF concentrations [A] and [B] (in nM). Qualitative
features of these plots are insensitive to the precise values of the parameters used

Given the binding strengths Ki and the cooperativity factors ωij for all the DNA
sites, the binding probability of the RNAP to the promoter can be computed straight-
forwardly. Different regulatory functions could be implemented by arranging TFBSs
in cis-regulatory regions with appropriate settings of the parameters, such as inter-
action parameters ω and TF dissociation constants K , under various TF concentra-
tions. Take two TFs binding to a promoter with an RNAP for example (Fig. 1.3).
By tuning the parameter wTF1TF2 , different logic functions can be implemented.
Figure 1.3(a) shows the implementation of the logic function AND, where weak
binding sites for TFs A and B are designed to be next to each other so that only
with the presences of both TFs the additional cooperative interaction enables them
to bind onto the promoter. Similarly, the OR gate could be constructed, where no
interaction between TFs A and B is needed for binding.

1.3 Models for Gene Expression

With the above thermodynamic model of TF–DNA interactions, we now know how
to quantify the equilibrium binding probability of the RNAP to the promoter, given
the cellular concentrations of all the TFs. However, the bridge connecting from the
binding probability of RNAP to the gene expression levels is still missing.
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In general, it is often assumed in thermodynamic models that the degree of gene
transcription is proportional to the binding probability of the RNAP to the promoter.
In the following section, we discuss two different routes to further model gene ex-
pression. A kinetic model was proposed to analyze the dynamics of gene expression
over times [7]. A logistic regression model was also used to associate RNAP binding
with gene expression levels. In particular, it could handle the situation that beyond a
certain number of activators or repressors, maximal or minimal transcription levels
could be made.

1.3.1 Kinetic Model

Assume that the changes of TF concentrations can be inferred from the changes of
mRNA levels of TFs and that the mRNA degradation rates are linearly dependent on
the mRNA concentration. Thus, based on the principle of thermodynamic models
that the transcription rate is proportional to the binding probability of RNAP, in [7],
the following ordinary differential equation was proposed to mimic the dynamics of
gene expressions:

dG

dt
=Kg

(
P(RNAPbinding)

)−KdG,
where G denotes the transcript concentration, Kg represents the maximal synthe-
sized rate of transcripts, and Kd is the degradation rate of transcripts.

Although gene expressions should be continuous signals throughout the time,
an assumption should be made that gene expressions are measured when the tran-
scriptional system is in its equilibrium state at each time point, which is satisfied
by all time course microarray data. Under this circumstance, the expression can be
represented by

G= αP (RNAPbinding),

where

α = Kg
Kd
.

1.3.2 Logistic Model

A statistical framework was developed [11] to predict the expression of a target
DNA sequence. The main idea is to sum over expression levels predicted by a logis-
tic model under all possible configurations of TFs on a given sequence.

Let each possible configuration of TFs be c, and the RNAP binding probabil-
ity be P(E). Then the whole probability of RNAP binding is the weighted sum of
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RNAP binding probability for every configuration, where the weight of each con-
figuration is the probability of the configuration,

P(E)=
∑

c∈C
P (c)P (E|c),

where P(c) denotes the probability of a configuration on a DNA sequence, and
P(E|c) denotes the probability of RNAP binding under a configuration c. Note that
although P(E) is the probability of RNAP binding, P(E) is proportional to the
expression level under the thermodynamic principle.

1.3.2.1 Sequence Component P(c)

To compute the probability of a certain configuration c on a given sequence, all
possible configurations of TFBSs should be considered. Note that no TFBSs can
overlap each other in a configuration. Just as the Boltzmann distribution mentioned
in Sect. 1.2, the probability of each configuration P(c) is given by

P(c)= W(c)
∑
c′∈C W(c′)

,

where W(c) represents the statistical weight associated with configuration c.
Intuitively, assuming TFs bind independently to the sequences, the statistical

weight of a configuration c should be the product of the contribution of each TF
binding on c. Moreover, two factors can influence a TF binding to its binding site,
the concentration of the TF, denoted by τ , and the binding affinity of the TFBS.

A standard position specific scoring matrix (PSSM) is utilized to represent the
binding affinity of a TFBS. It defines a separate probability distribution over the four
nucleotides at each position of the binding site recognized by the TF. The simple
assumption of a PSSM is that all positions within a binding site are independent.
Thus, for a TF i that binds to a site of length L(i), the binding affinity can be
represented as

BAi (S1, . . . , SL(i))=
L(i)∏

j=1

P
j
i (Sj )

PB(Sj )
,

where PB is a background distribution, such as a uniform Markov order zero back-
ground (i.e., PB(A) = PB(C) = PB(G) = PB(T ) = 0.25). The background model
serves as a scale against a binding site being measured. Compared to the probability
from the background model, the larger the probability from the PSSM, the higher
the binding affinity.

Thus, the statistical weight of the entire configuration c could be derived by sim-
ply multiplying together the contributions of all TFBSs in c. Let a configuration
c has k TFs f (1), . . . , f (k) binding on their TFBSs at positions p(1), . . . , p(k),
respectively, the statistical weight W(c) of the configuration can be represented as

W(c)=
k∏

i=1

τf (i)BAi (Sp(i), . . . , Sp(i)+L(i)).
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To further incorporate the cooperativity interactions between TFs, the effect of
the binding site arrangement needs to be considered. Different arrangements of
binding sites, such as distances and orientations, might affect the nature of TF in-
teractions. Moreover, the effects of hetero-cooperativity and homo-cooperativity are
regarded as essential factors to help TF binding onto DNA.

To simplify the model, here only adjacent TF pairs are assumed with such co-
operative effects. Second, no orientation difference affects the cooperativity. Third,
only homo-cooperativity effect is applied. Based on these general assumptions, the
statistical weight of c can be represented in an extended form with binding cooper-
ativity as follows:

W(c)=
[

k∏

i=1

τf (i)BAi (Sp(i), . . . , Sp(i)+L(i))
]

×
[
k−1∏

i=1

γ
(
f (i), f (i + 1),p(i + 1)− p(i))

]

,

where function γ defines the binding cooperativity between adjacent TFs f (i) and
f (i + 1) separated by distance d . Intuitively, the closer the TF pair is, the stronger
the cooperativity interaction is. For any pair of adjacent different TFs, γ (f (i), f (i+
1), d) = 0, where f (i) �= f (i + 1). Nevertheless, γ can be easily generalized by
other functions incorporated with reasonable features of cooperativity interactions.

1.3.2.2 Expression Component P(E|c)

For a configuration c, the logistic function is used to infer its ability of recruiting
RNAP. The contribution of each TF on c is assumed to be independent of the ex-
pression outcome, where activators contribute positively, and repressors contribute
negatively. With the unique saturation property of the logistic model, maximal or
minimal transcription is achieved beyond a certain number of bound activators and
repressors, respectively.

Thus, given a configuration c with k TFs f (1), . . . , f (k) binding to their TFBSs
at positions p(1), . . . , p(k), respectively, the probability of RNAP binding, P(E|c),
can represented as

P(E|c)= logit

[

ω0 +
k∑

i=1

ωf (i)

]

= 1/

[

1+ exp

[

−
[

ω0 +
k∑

i=1

ωf (i)

]]]

,

where w0 represents the basal level of the expression, and wi represents the contri-
bution of TF i on the expression levels. A positive value for wi reflects TF i to be
an activator, while a negative one represents TF i to be a repressor.
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1.4 Reconstruction of Regulatory Networks

The interactions among regulatory proteins and their regulatory sequences collec-
tively form a regulatory network, which controls the fate of cells. A major challenge
in the study of gene regulation is to identify the interaction relationships within a
regulatory network. In the following section, we introduce a computational frame-
work based on thermodynamic modeling to reconstruct regulatory networks.

Based on Interaction-Identifier [7] to select for the thermodynamic model that
best describes the TF–TF and TF–RNAP interaction for each target gene, the
Network-Identifier method [6] was further developed for inferring regulatory net-
works from time course gene expression data.

1.4.1 Interaction-Identifier

The Interaction-Identifier method models how different TF interaction forms
(Figs. 1.1 and 1.2) affect the expression levels of a target gene at steady states.
First, a thermodynamic model is used to translate a TF interaction form with the
TF concentrations into the probability of RNAP binding onto the promoter of the
target gene (see Sect. 1.2). Next, a kinetic model derives the gene expression pro-
file across times for each TF interaction form (see Sect. 1.3.1). By searching the
space of TF interaction forms, Interaction-Identifier identifies the underlining TF
interaction form of each target gene, which minimizes the difference between the
model-derived expression profile and the observed expression data (Fig. 1.4).

Fig. 1.4 Flowchart of the Interaction-Identifier algorithm [7]
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Fig. 1.5 Flowchart of the Network-Identifier algorithm [6]

1.4.2 Network-Identifier

Network-Identifier utilizes Interaction-Identifier to find common TF interaction
forms of target genes across multiple time course microarray datasets and then incor-
porates those predicted regulatory relationships supported by independent datasets
into a regulatory network. The method has three components: (1) Interaction-
Identifier [14], (2) Evidence merger, and (3) Verification component (Fig. 1.5).

For each time course dataset, Interaction-Identifier first evaluates the fitness of
each interaction form on each target gene and returns its Top-10 most-likely TF
interaction form. Next, Evidence merger identifies the most frequently appeared in-
teraction form across multiple datasets for each target gene. The verification compo-
nent groups target genes based on their most frequently appeared interaction forms.
Chi-square tests are used to examine whether the identified TF-target relationships
are enriched with regulatory relationships identified from independent experimental
data, such as ChIP-chip and RNAi data. Finally, Network-Identifier will report the
regulatory relationships confirmed by both two independent data sources.

1.5 Applications

Thermodynamic models of gene regulation have shown promising results in eu-
karyotic systems. We introduce three applications in yeast (Saccharomyces cere-
visiae), Drosophila, and Mouse embryonic stem cells, respectively, in the following
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sections. The common goal for these applications is to unravel the effects of cis-
regulatory transcription control on gene expression (i.e., to find the relationships
between sequence and gene expression). In the first application, compositions of
sequences were manipulated to further discover the underlying mechanism of how
sequences could affect expression. The second application predicts spatial expres-
sion pattern of enhancer sequences in embryonic development of fruit fly, while the
third one tried to decipher the interactions of TFs and regulatory relationships from
temporal expression data.

1.5.1 Analysis of Combinatorial cis-regulation in Synthetic
Promoter in Yeast

Although the fundamental theory of gene regulation has been studied and defined,
the connections between regulatory information (cis-motifs and transcription fac-
tors) and gene expression profiles is still unclear [13]. Several studies developed
in silico promoter models [8, 14] demonstrated the associations between promoter
modules and gene expressions. A ground-breaking study in Yeast [2] achieves the
relatively high accuracy of prediction from conserved cis-motif logics to expres-
sion. This made it tempting to design synthetic promoters that allow refined and
targeted modifications of promoter architecture. Through synthetic promoter en-
gineering [1], cis-motif logic, including orientation, binding energy, and position
could be clearly elucidated and served as control variables to study gene expression
and gain insights of regulatory complexity.

In order to learn how cis-regulatory mechanisms affecting gene expression in
yeast, a strategy of combinatorial engineering was utilized to construct the synthetic
promoter libraries [9]. All random combinations of three or four TFBSs as building
blocks were placed upstream of a core-promoter attached with yellow fluorescent
protein. Then those synthetic promoters were integrated into the yeast genome. By
quantifying florescent intensities, the level of gene expression can be observed.

In the L1 promoter library, 429 promoters were analyzed with five fitting pa-
rameters. The thermodynamic method enabled to explain 49% of the variance in
expression (Table 1.4), which is more than double the amount of variance explained
by the best models of genome-wide expression data. Another independent data, the
L1-test library, composed of novel combination of the L1 building blocks, was used
as testing data to assess the predictive power of the model for L1 library. With the
same parameter settings as the L1 library’s, the model still captured 44% of the vari-
ance in expression, which suggested that the model was not overfitted. The results
of the thermodynamic approach suggest that modeling the biophysical principle of
TF–DNA and TF–TF interactions can generally depict the expression driven by dif-
ferent combinations of TFBSs.
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Table 1.4 Summary of
synthetic promoter
libraries [9]

Library # of
promoters

# of fitted
parameters

Fraction of variance
explained (R2)

L1 429 5 0.49

L1-test 83 0 0.44

1.5.2 Predicting Spatial Expression Patterns from Sequence in
Drosophila Segmentation

Drosophila melanogaster is a model organism for genetics research because of its
short life cycle, the relatively small genome, and easily manipulation in laboratory.
Moreover, since its embryos grow outside the body, it provides an excellent means of
studying embryonic development in eukaryotes. Studying its notable segmentation
network has helped accumulate most of our knowledge about the mechanisms of
segmentation in arthropods [10].

The well-characterized segmentation gene network involves a cascade of gene
regulation (Fig. 1.6(a)). It consists of a four-tiered hierarchy of maternal and zy-
gotic factors that define the antero-posterior (A-P) axis in a stepwise refinement
of expression patterns. First, maternal transcripts of the segmentation genes in an
oocyte are specifically targeted to the anterior (bicoid(BCD), hunchback(HB)) and
posterior (Nanos(NOS), caudal(CAD)). Those maternal proteins together activate
certain zygotic gap genes, such as kruppel (Kr), giant (Gt), knirps (Kni), and tailless
(Tll), at specific positions along the A-P axis. All transcripts of gap genes, together
with maternal proteins, activate periodic patterns of seven pair-rule genes (even-
skipped (eve), fushi tarazu (ftz)) that finally activated fourteen segmental polarity
genes, resulting in establishment of segment boundaries.

With the spatial expression patterns for eight key transcription factors, includ-
ing BCD, HB, CAD, Kr, Gt, Kni, Tll, Torso-response element (TorRE), and their
binding-site preferences as inputs, a computation framework [11] (see Sect. 1.3.2)
was applied to model the process of transcriptional regulation and further to predict
the spatial expression of 44 gap and pair-rule gene modules with known patterns
collected from literatures.

The results show that expression patterns predicted by the model trained on
these data exhibit good or fair agreement with the measured patterns for most mod-
ules (Fig. 1.6(b)). The expression of gap gene modules is generally predicted well,
suggesting that the model has adequately captured the input and interaction rules.
Prediction of pair-rule gene modules seems more mixed suggesting that some in-
put factors may be missing, and some higher-level interaction rules are not cap-
tured.
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1.5.3 Inferring Gene Regulatory Networks in Mouse Embryonic
Stem Cells

Embryonic Stem Cells (ESCs) are derived from early mammalian embryos. ESCs
possess two important characteristics that define their importance in scientific and
medical fields. First, they are capable of self-renewal through apparently unlim-
ited, undifferentiated proliferation in cultured cell lines; second, they have remark-
able pluripotency potentials to give rise to many different cell types in the body
that may contribute to the study of body development and regenerative medicine.
A few transcription factors have shown to be key transcriptional regulators in ESCs.
These include Oct4, Sox2, Nanog, Klf4, Esrrb, and Tcl1. Large-scale genomic data
have been generated for these regulators. Microarray data are allowed to measure
changes in expression levels across different time or different experimental con-
ditions. Chromatin immunoprecipitation (ChIP)-chip data enable to determine the
binding loci to identify the targets of TFs, while RNA inference (RNAi) is used for
shutting down a TF to help distinguish its target genes. By systematically analyz-
ing the high-throughput genomic data, the mystery of regulatory circuit in ESCs is
gradually unraveled.

Network-Identifier was developed [6] to analyze the combinatorial control of
the key transcription factors and to further infer the regulatory network in mouse
ESCs. Five time series microarray datasets of mouse ESCs were used, includ-
ing a dataset for retinoid acid-induced differentiation and four datasets for spon-
taneous differentiation of four ESC lines. Six known keys TFs, Oct4, Sox2, Nanog,
Klf4, Esrrb, and Tcl1 served as regulators of this system. 747 genes annotated
by Gene Ontology term “Transcription Regulator Activity” are used as target
genes.

Network-Identifier reported an ESC transcription network with 87 regulators and
target genes (Fig. 1.7). Several interesting regulatory relationships are revealed. In
particular, the mutual regulation of Klf2 and Klf4 were recently shown to be an im-
portant module for maintaining the undifferentiated state of ESCs. Mtf2 has only
recently been implied to inhibit differentiation by recruiting the polycomb group of
transcription repressors. The results further indicate that Klf4 and Sox2 can syn-
ergistically activate Mtf2 in ESCs. The regulatory relationships for a number of
genes involved in lineage specific differentiation were also identified. These include
Gata6, Gata3, Sox17, and FoxA2. Inhibiting these lineage specific differentiation
genes in ESCs is critical to maintain an undifferentiated state. Among the predicted
network, there were a number of transcription repressors, including Ctpb2 and Rest.
Ctpb2 was predicted to be activated by Oct4. Rest was predicted to be jointly reg-
ulated by Oct4 and Sox2. These results suggest that Oct4 and Sox2 can indirectly
inhibit differentiation genes by activating transcription repressors such as Ctpb2 and
Rest.
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Fig. 1.7 (Color online) The gene regulatory network identified by Network-Identifier [6]. Nodes
with squares (yellow) represent regulators. Nodes with double circles (red) represent genes used for
differentiation. The rest filled nodes (green) represent genes promoting self-renewal and pluripo-
tency. Sharp and blunt arrows represent activation and repression effects, respectively. The solid
lines (red and green lines showing activation and repression activities, respectively) are with RNAi
evidence. The dash lines (blue and black lines showing activation and repression activities, respec-
tively ) denote regulatory relationships with ChIP-chip evidence

1.6 Concluding Remarks

Thermodynamic models based on depicting the interactions between TF–TF and
TF–DNA to predict RNAP binding probability have shown their applicability to
capture the underlying relationship between regulatory sequence and gene expres-
sion in either prokaryotic or eukaryotic systems.

However, molecular events are much more complicated in reality. There are still
a number of simplification made in modeling the biophysical properties of gene reg-
ulation. Many mechanisms, such as the cooperativity interactions for more than two
TFs, long-range interaction of enhancer binding TFs and RNAP, DNA methylation,
and chromatin structure, are not included in current methods. Future work that takes
these molecular features and events into account will potentially provide us with a
thorough understanding of combinatorial gene regulation.
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Chapter 2
RNA Secondary Structure Prediction and Gene
Regulation by Small RNAs

Ye Ding

2.1 Introduction

RNA molecules are involved in some of the cell’s most fundamental processes that
include catalysis, pre-mRNA splicing and RNA editing, and regulation of transcrip-
tion and translation. To a large degree, the function of a regulatory RNA molecule is
determined by its structure. Computational methods for modeling RNA secondary
structure provide useful initial models for solving the tertiary structure by crys-
tallography or nuclear magnetic resonance (NMR). The problem of computational
prediction of secondary structure for a single RNA sequence dates back to the early
1970s [99]. Free energy minimization has been an important method for such pre-
diction. The partition function approach by McCaskill enables rigorous computation
of base-pair probabilities and heat capacity [70]. In recent years, there has been in-
creasing interest in ensemble-base approaches that extend the pioneering work of
McCaskill. In this chapter, we briefly review these developments. Gene silencing by
RNA interference and posttranscriptional gene regulation by microRNAs are funda-
mental discoveries in molecular biology. Rational design of short interfering RNAs
for improving potency of gene silencing and regulatory target prediction for mi-
croRNAs are two important computational problems. We here review work from
our group and others to show that target mRNA secondary structure is important for
both efficient gene silencing and microRNA target recognition.
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2.2 RNA Secondary Structure Prediction

RNA plays a variety of important functional roles that include catalysis, RNA splic-
ing, and regulation of transcription and translation. These roles are typically carried
out at specific RNA structural sites, often through molecular interactions or con-
formational change. Hence, the function of an RNA molecule is primarily deter-
mined by its secondary and tertiary structures. RNA tertiary interactions involve
secondary structure elements and are substantially weaker than secondary inter-
actions. Thus, to a large extent, the free energies in secondary structure represent
the thermodynamics of RNA folding. The tendency for RNA folding to be primar-
ily driven by secondary structure features is a tremendous advantage for structural
and functional studies on RNAs. Furthermore, computational RNA tertiary struc-
ture prediction without experimental information is an intractable problem, and the
thermodynamics of tertiary interactions have not been well characterized. In addi-
tion, RNA secondary structure is well conserved in evolution. For these reasons,
computational algorithms have focused on RNA secondary structure prediction in
the last several decades. Given an RNA sequence, a secondary structure is simply
defined by a list of base pairs, typically Watson–Crick (G•C or A–U) and Wobble
G–U. As shown by Fig. 2.1 for a predicted minimum free-energy structure for Xlo
5S rRNA, helices and loops of various types represent basic structural elements of
RNA secondary structure.

2.2.1 Free Energy Minimization

In structural computational biology, free-energy minimization for prediction of
macromolecular folding is a long-established paradigm. It assumes that, at equi-
librium, the solution to the underlying molecular folding problem is unique and
that the molecule folds into the lowest-energy state. Also, it is implicitly assumed
that the free energies of individual structural motifs are additive. This paradigm had
been the foundation for prediction of RNA secondary structure for several decades
[67, 68, 74, 99, 116]. For RNA secondary structure prediction, free-energy param-
eters for basic structural motifs are estimated or extrapolated from chemical melt-
ing experiments [67, 68, 110]. The discrete optimization problem is ill-conditioned,
in that the prediction is sensitive to small changes in the energy parameters [53,
115]. Furthermore, there is substantial uncertainty in the energy parameters, par-
ticularly for loops. For these reasons, efficient algorithms have been developed for
not only computing the minimum free energy (MFE) structure, but also for gener-
ating a heuristic set of suboptimal structures [67, 68, 116]. An alternative approach
computes all suboptimal foldings within an energy increment above the MFE [109].
The exponential growth in the number of these foldings motivated the development
of the RNAshapes method for the efficient representation of the near-optimal fold-
ings [36]. The complete suboptimal approach addresses the low-energy end of the
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Fig. 2.1 The minimum free-energy structure for Xlo 5S rRNA and all types of secondary structural
elements: helix (formed by stacked base pairs), bulge loop (B loop), interior loop (I loop), hairpin
loop (H loop), and multibranched loop (M loop)

unweighted energy landscape. Neither approach guarantees an unbiased represen-
tation of the Boltzmann-weighted ensemble. The free-energy minimization algo-
rithm [116] and the algorithm for computing suboptimal structures [109] have been
extended for two or more interacting RNAs [3].

2.2.2 Partition Function Approach

In a drastic departure from free-energy minimization, the partition function ap-
proach pioneered by McCaskill (1990) [70] laid the foundation for statistical char-
acterizations of the equilibrium ensemble of RNA secondary structures. In par-
ticular, base-pair probabilities can be calculated. Similar to its MFE counterpart,
the algorithm for computing partition function and base-pair probabilities is cubic
and requires quadratic storage. The significance of base-pair probabilities has been
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further demonstrated in two studies. For base pairs in the MFE structure, those with
higher probabilities have higher predictive accuracy measured by positive predictive
value [64]. The positive predictive value is the percentage of base pairs in the pre-
dicted structure that are in the structure determined by comparative sequence anal-
ysis. Thus, base-pair probabilities provide measures of confidence for MFE predic-
tions. That study was based on an extended partition function algorithm that accom-
modated coaxial stacking and more recent energy parameters. Furthermore, base-
pair probabilities are found to be less affected by uncertainties in energy parameters
than is the MFE structure [53]. The McCaskill algorithm has also been extended
to include a class of pseudoknots [29, 30]. Like the partition function, the mean
and variance (and any moments in general) of the Boltzmann-weighted free-energy
distribution can be calculated, and these ensemble characteristics are reported to be
useful for distinguishing biological sequences from random sequences [71]. A par-
tition function algorithm for k-point mutants of an RNA sequence has recently been
described [17]. For modeling the hybridization of two nucleic acid molecules, the
Zuker group was the first to compute partition function and base-pair probabili-
ties [21]. These developments are indicative of a paradigm shift towards ensemble-
based approaches.

2.2.3 Statistical Sampling Approach

In the traceback step of an RNA folding algorithm, base pairs are generated one at a
time according a chosen principle (e.g., energy minimization or probabilistic sam-
pling as discussed below) to form a secondary structure. The long-standing problem
of a statistical representation of probable foldings can be addressed by a sampling
extension of the partition function approach [24]. In the traceback step, the con-
ditional probabilities computed with partition functions are used to sample a new
base-pair or unpaired base(s), given partially formed structure. Thus, the essence of
the sampling algorithm is stochastic traceback. The Boltzmann distribution in sta-
tistical mechanics gives the probability of a secondary structure I at equilibrium as
exp[−E(I)/RT]/U , where E(I)/ is the free energy of the structure, R is the gas
constant, T is the absolute temperature, and U is the partition function for all admis-
sible secondary structures of the RNA sequence, i.e.,U =∑I exp[−E(I)/RT]. The
sampling algorithm generates a sample of secondary structures in proportion to their
Boltzmann probabilities, guaranteeing a statistical representation of the Boltzmann-
weighted ensemble.

A statistical sample of the ensemble allows sampling estimates of the probabil-
ities of any structural motifs, from the simplest elements of base pair and unpaired
base, to loops of various types, to more complex structures consisting of stems and
loops that may be of special interest in a given application. In particular, proba-
bility profiling of single-stranded regions in RNA secondary structure is directly
applicable to the rational design of mRNA-targeting nucleic acids [22–26]. The
Boltzmann-weighted density of states (BWDOS) [24] characterizes the weighted
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energy landscape, whereas a density-of-states algorithm [19], applicable only to
short sequences, describes the unweighted landscape. A structure sample can also
be used for computation of other characteristics of the Boltzmann ensemble. For ex-
ample, the mean and the variance of the free-energy distribution can be estimated by
a sample, whereas exact calculations require laborious algorithm development [71].
In principle, a sampling extension can also be developed for a partition function
algorithm including pseudoknots. In this case, base-pair probabilities can be esti-
mated by a sample, and the estimates should closely approximate those computed
by a high-order algorithm [30].

A sample of moderate size drawn from the ensemble of an enormous num-
ber of possible structures is sufficient to guarantee statistical reproducibility in the
estimates of typical sampling statistics. The reproducibility is best demonstrated
when two independent samples do not have a single structure in common [24, 28].
These seemingly surprising observations are fully expected for an exact sampling
algorithm. The sampling algorithm is the basis of the Sfold RNA software pack-
age [26] and has been implemented into other RNA folding software including
UNAfold [63], Vienna RNA package [42], and RNAstructure [65]. Sampling was
adapted for probabilistic representation of structure shapes for RNA sequences of
moderate length or longer [107]. A method has been presented to speed up the sam-
pling step [80].

2.2.4 Cluster and Centroid Representation of Boltzmann Ensemble

In the sampled ensemble, distinct structural clusters were observed [24]. This ob-
servation suggested that the Boltzmann ensemble could be efficiently represented
by clusters. Automated clustering procedure and tools have been developed for this
purpose [13, 27, 28]. The procedure returns three to four clusters on average. An-
other advantage of clustering is that the centroid structure, as the single best repre-
sentative of the cluster, can be easily identified with little computational cost. The
centroid of any set of structures is defined as the structure in the whole ensemble
that has the shortest total distance to structures in the set. For the base-pair distance
between two structures, the centroid is simply the structure formed by all base pairs
having a frequency > 0.5 in the structure set [27]. The clusters, together with their
probabilities (estimated by frequencies in the sample) and their centroids, present a
complete and efficient statistical characterization of the Boltzmann ensemble. Simi-
lar to the reproducibility of ensemble-level sampling statistics [24], the clusters and
centroids are also statistically reproducible from one sample to another, even when
the two independent samples do not share a single structure [28]. The centroid of
the sampled ensemble and the best cluster centroid provide alternative structural
predictions. It was a surprising finding that these predictions are substantially im-
proved over the minimum free energy predictions [27], a result that further validates
ensemble-based approaches. The idea of centroid has generated considerable inter-
est. Generalized centroid estimators for bioinformatics problems in particular RNA
secondary structure prediction have been proposed [12, 38].
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Fig. 2.2 Post-transcriptional
regulation by shRNAs or
siRNAs. An shRNA (with a
typically 19–29 bp stem) can
be processed by Dicer into an
siRNA. The guide strand in
the assembled RISC guides
target recognition by
complementary base-pairing.
Target cleavage by RNAi
machinery is triggered by
perfect complementarity.
Partial complementarity can
induce off-target mRNA
cleavage or repression of gene
expression via microRNA
pathway, for which the seed
base-pair match (in red)
involving nt 2 to nt 7 or 8 of
the 5′ end of the guide strand
is reported to be important

2.3 Gene Silencing by Small Interfering RNAs

RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is
induced by double-stranded RNA (dsRNA) homologous to the target gene [35].
RNAi can be mediated either by small interfering RNAs (siRNAs) of about 21 nt
with two-nucleotide 3′ overhang [33], or by stably expressed short hairpin RNAs
(shRNAs) that are processed by Dicer into siRNAs [9, 76]. During activation of the
RNA-induced silencing complex (RISC), the guide (antisense) strand of the siRNA
duplex is preferentially assembled into the RISC when the stem formed by the 5′ end
and its complement is less stable than the one formed by the 3′ end and its comple-
ment [49, 90]; the “passenger” (sense) strand is cleaved by Argonaute2 (Ago2), the
catalytic component of RISC [69, 82]. The antisense strand guides Ago2 to cleave
mRNA by perfect base-pairing with the complementary site in the target (Fig. 2.2).
In comparison with antisense oligos or trans-cleaving ribozymes for gene knock-
down, RNAi generally offers greater potency and target specificity. As the method
of choice for loss-of-function studies in mammalian systems and drug target vali-
dation, RNAi has revolutionized basic biology study and drug discovery research.
In addition, novel RNAi-based therapeutic agents for treating a variety of human
diseases have been under development, most notably by Alnylam Pharmaceuticals.

2.3.1 Design Rules for Improving Potency

Large variation in the efficiency of siRNAs for different sites on the same target
is commonly observed [43]. Usually, only a small proportion of randomly selected
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siRNAs are potent. Thus, there has been a great interest in determining rules for the
improvement of RNAi design. A number of empirical rules on siRNA duplex fea-
tures have been reported. These include the asymmetry rule for siRNA duplex ends,
which requires that the 5′ end of the antisense strand forms a stem with its comple-
ment that is less stable than the stem formed by the 5′ end of the sense strand [49,
90]. The asymmetry rule is strongly related to the requirements of high A/U con-
tent at the 5′ end of the antisense strand and high G/C at the 5′ end of the sense
strand [84, 101]. A number of position-specific nucleotide preferences and other
siRNA sequence features have been proposed [78, 84]. In addition, the importance
of target secondary structure and accessibility has been suggested by several studies
based on computational modeling of target structure and accessibility [41, 50, 51,
61, 62, 89, 94, 97] and was supported by compelling evidence based on experimen-
tally assessed accessibility [2, 7, 54, 75, 106, 108].

2.3.2 Structure Based Assessment of Target Accessibility

A number of approaches have been published for quantifying target site accessibil-
ity for rational design of RNA-targeting nucleic acids. Based on target structures
predicted by RNA folding algorithms, these methods are either probabilistic or en-
ergetic. Probabilistic methods assess the probability that a base or a block of bases is
single stranded [23, 70, 73], whereas energetic methods model the energy exchanges
of the hybridization process [59–61, 66, 93–95], arguably providing more refined
measures of accessibility. For example, consider two target sites with (nearly) equal
probability of being single stranded. If one site has high AU and the other has high
GC, then the energetic costs for disrupting the target structure and the stabilities of
the hybrid could be quite different for the two sites. In data analysis for some of our
studies, energy measures were observed to give improved correlations than proba-
bilistic measures. Thus, our efforts have focused on energetic models. Below, we
briefly discuss several major methods.

The Sfold structure sample [24, 26] allows computation of both probabilistic
measures [23] and energetic measures of target accessibility [59, 60, 93–95]. It is
well established that a single-stranded block of 4–5 nts can facilitate the nucleation
step of the hybridization [40, 112]. Thus, a moderate structure sample is sufficient
for revealing potential effective sites by using block size of 4 nts for accessibil-
ity profiling [23]. The major advantage of using the structure sampling algorithm
is that the time-consuming partition-function calculation for the whole target se-
quence only needs to be computed once. Folding constraints such as maximum nu-
cleotide distance L for two bases to form a pair can be imposed for “local” folding.
Such local folding was found to be significant for prokaryotic applications [93]. For
prokaryotes, transcription and translation are tightly coupled events so that the tar-
get mRNA is unlikely to be able to fold globally. In contrast, eukaryotic mRNAs
are first transcribed in nucleus and then transported to cytoplasm where they can
conceivably fold globally before they engage in interactions with other molecules
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Fig. 2.3 A proposed simple
model for efficient RNAi.
RISC assembly is facilitated
by asymmetric ends of siRNA
duplex; target recognition via
intermolecular base-pairing is
aided by structural
accessibility at the target site.
The combination of the
upstream effect of duplex
asymmetry and the
downstream effect of target
accessibility is generally
essential for potent gene
silencing

in the cytoplasm for regulation of gene translation. Global folding using Sfold sam-
pling algorithm can reveal highly unstructured sites that are well “conserved” in the
likely mRNA structure population. These well-predicted sites can be valuable for
the selection of effective target sites.

Target site disruption energy, 	Gdisruption, is the energy cost of local disrup-
tion of the mRNA structure so that the binding site becomes completely single
stranded [94]. A largely single-stranded (i.e., structurally accessible) site does not
require substantial structure alteration for the guide siRNA strand to bind to the tar-
get. 	Gdisruption is a quantitative measure of the structural accessibility at the target
site and is calculated based on target secondary structures predicted by Sfold [26] to
address the likely population of mRNA structures. We found in data analysis, as
illustrated by Fig. 2.3, that target accessibility is an important determinant of RNAi
activity and the asymmetry of siRNA duplex asymmetry is important for facilitating
RISC assembly [94]. We also found that the commonly observed negative effect of
high siRNA GC-content on RNAi potency is due to generally poor target accessibil-
ity for a high GC target site which is likely to have stable secondary structure [14],
rather than the likelihood that the high GC siRNA guide strand may form stable
intramolecular secondary structure as previously suggested [78].

An alternative to the local disruption assumption is the global disruption model.
For this model, as a result of siRNA:mRNA hybridization, the base pairs outside the
target site can be rearranged so that the mRNA adopts a new globally altered struc-
ture. In this case, the free energy of the target secondary structure after siRNA bind-
ing must be recalculated by refolding the mRNA with the binding site constrained
to be unpaired. This constraint option has been implemented in Sfold and available
through the Sfold web server [26]. However, refolding will cost a hefty computa-
tional price. This global model is essentially equivalent to an approach based on
exact calculation of ensemble free energies from initial folding and refolding [61].
This approach makes the assumption that the target will reestablish structure equi-
librium after siRNA binding. The analysis of siRNA datasets in our study suggests
that target cleavage by RNAi machinery appear to be rather rapid so that the target
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may not have time to refold before cleavage [94]. While this issue warrants further
investigation, data analysis using ensemble energies also confirmed the importance
of target secondary structure in RNAi activity [61].

An extension of the McCaskill algorithm [70] can compute the probability that
a block of nucleotides is single stranded [73]. However, for each block, this exten-
sion requires recomputation of the partition functions for the entire RNA and is too
time consuming to be efficient for scanning through all possible blocks of a long
RNA in the search of best target sites. To handle this problem for RNAi application,
a short local RNA folding window of size W was used, along with L and block
length u [97]. These treatments introduce substantial uncertainty in computational
analysis. Indeed, for u, the empirically selected optimal values are quite different
for two training datasets [97], raising the concern of the general applicability of
optimal parameter values learned from one source of data. For a specific mRNA,
because it is not possible to have accurate information on its independent folding
domains which may be better predicted individually, the overall prediction accuracy
would be compromised by a prespecified local folding window length that does
not suit this specific mRNA. The major findings from this study are the same as
we previously reported [94], i.e., target accessibility as a down stream factor in the
RNAi pathway and duplex asymmetry for facilitating RISC assembly [49, 90] are
two most important factors for RNAi efficiency.

2.3.3 Specificity and Off-targeting

Gene silencing by RNAi can be highly gene-specific [16, 92]. Single base-pair mis-
matches could drastically alter RNAi efficacy [33, 43], and siRNAs can be designed
to discriminate the wild-type and mutant alleles of many genes that differ by just s
single nucleotide [91]. However, off-target gene regulation by RNAi has been ob-
served [45, 88]. Each strand of an siRNA duplex can possibly be assembled into the
RISC to guide recognition of both fully and partially complementary mRNAs [79].
Off-target activity results from partial complementarity for nontargeted genes. Off-
targeting can induce measurable phenotypes [58] and thus represents a major im-
pediment to large-scale phonotypic screening applications of RNAi. While chem-
ical modification of siRNA duplexes may reduce off-target effects [15, 46], it is
essential to take into account the issue of target specificity in the design of siRNAs
or shRNAs. Microarray studies suggest that off-targeting is mainly associated with
perfect 3′ UTR matches for nucleotide positions 2–7 or 8 (hexamer or heptamer
“seed” [57]; see Fig. 2.2) of the 5′ end of the siRNA guide strand [5, 47]. The seed
region is an important determinant for target recognition by microRNAs [57]. How-
ever, in these microarray studies, the number of mRNAs with seed matches is far
greater than the number of actual off-targets. In addition, two recent studies reported
either a lack of enrichment for either 3′ UTR or seed matches [100] or a substan-
tial number of off-targets that do not have a seed match [103]. These observations
strongly indicate that additional factors responsible for off-target effects remain to
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be identified. In general, it is advisable that an siRNA or shRNA contains at least
three mismatches to any other genes in the genome of the species under study, that
known single-nucleotide polymorphism should be avoided, and that common ex-
ons of alternatively spliced mRNAs should be avoided as well [77]. For a complete
suite of RNAi design tools, it is essential to address both the issue of gene silencing
potency and the issue of targeting specificity. This is particularly important for large-
scale loss-of-function screens by using siRNA libraries [32] or shRNA libraries [10,
87, 96].

2.4 Posttranscriptional Gene Regulation by MicroRNAs

MicroRNAs are endogenous noncoding RNAs (ncRNAs) of ∼22 nt and are among
the most abundant regulatory molecules in multicellular organisms. microRNAs
typically negatively regulate specific mRNA targets through essentially two mech-
anisms: (1) when a microRNA is perfectly or nearly perfectly complementary to
mRNA target sites, as is the case for most plant microRNAs, it causes mRNA target
cleavage [85]; and (2) a microRNA with incomplete complementarity to sequences
in the 3′ untranslated region (3′ UTR) of its target (as is the case for most ani-
mal microRNAs) can cause translational repression or mRNA destabilization [34].
microRNAs regulate diverse developmental and physiological processes in animals
and plants [1, 6, 11, 31, 102]. Besides animals and plants, microRNAs have also
been discovered in viruses [18].

2.4.1 Target Identification Using Sequence Features

Identification and experimental validation of microRNA targets are essential for un-
derstanding the regulatory functions of this important class of ncRNAs. The targets
and functions of plant microRNAs are relatively easy to identify due to the near-
perfect complementarity [85]. By contrast, the incomplete target complementarity
typical of animal microRNAs implies a huge regulatory potential but also presents a
challenge for target identification. A number of algorithms have been developed for
predicting animal microRNA targets. A common approach relies on a “seed” model
based on a critical observation by Lai [52], wherein the target site is assumed to
form strictly Watson–Crick (WC) pairs with bases at positions 2 through 7 or 8 of
the 5′ end of the microRNA (see Fig. 2.2). In the stricter, “conserved seed” formula-
tion of the model, perfect conservation of the 5′ seed match in the target is required
across multiple species [56, 57]. One well-known exception to the seed model is the
interaction between let-7 on lin-41 in C. elegans, as shown by Fig. 2.4, for which
G–U pair and unpaired base(s) are present in the seed regions of two binding sites
with experimental support [104]. While the seed model is supported as a basis for
identifying many well-conserved microRNA targets [81], two studies suggest that
G–U or mismatches in the seed region can be well tolerated and that conserved seed
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Fig. 2.4 let-7 regulates lin-41 by complementary base-pairing at two sites in the 3′ UTR of the
lin-41 mRNA [104, 105]. Neither the bulged A in the seed region for site 1 (in red, at position 5
from the 5′ end of the 27 nt spacer) nor the wobble G–U pair in the seed region for site 2 (in red,
with U at position 6 of the 5′ end of let-7) meets the requirements of the seed model [56, 57] that
bases 2 to 7 or 8 of the miRNA 5′ end must form Watson–Crick pairs with its target (for the color
version, see Color Plates on p. 389)

match does not guarantee repression [20, 72]. These suggest that the seed model
may represent only a subset of functional target sites and that additional factors are
involved in further defining target specificity at least for some cases with conserved
seed matches. A comprehensive study led to the proposal of three classes of target
sites: “canonical”, “seed”, and “3′ compensatory” [8]. A canonical site pairs well
with a microRNA on both the 5′ end and the 3′ end; a seed site has strong pairing
to the 5′ end of the microRNA, with little or no pairing required on the 3′′ end to
stabilize the hybrid; a 3′ compensatory site requires strong pairing to the 3′ end of
the microRNA to compensate for weak pairing on the 5′ end. Most genetically val-
idated target sites appear to be of the canonical configuration, including the sites
for let-7: lin-41 (see Fig. 2.4). In addition to seed match, a number of features of
site context have been proposed for enhancing targeting specificity [37]. More re-
cently, functional target sites within the protein coding region of mouse mRNAs
have been reported, and four of five validated mouse targets do not contain sites
with seed match [98]. Also interestingly, a new class of human microRNA targets
was reported to contain interaction sites in both the 5′ UTR and the 3′ UTR, and
the 3′ end of the microRNAs are primarily involved in target binding for 5′ UTR
sites [55].

2.4.2 A Target Structure-Based Model for MicroRNA: Target
Hybridization

To attempt to understand the exceptions to the seed model and to develop target
prediction methodology that does not rely on but can incorporate sequences fea-
tures such as seed match, we considered the secondary structure of target mRNA
that has been found to be important for other types of mRNA-targeting nucleic
acids including siRNAs. We developed a model for modeling the interaction be-
tween a microRNA and a target as a two-step hybridization reaction (see Fig. 2.5):
nucleation at an accessible target site, followed by hybrid elongation to disrupt lo-
cal target secondary structure and form the complete microRNA-target duplex [59].
Nucleation potential and hybridization energy are two key energetic characteristics
of the model. In this model, the role of target secondary structure on the efficacy
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Fig. 2.5 Two-step model of hybridization between a small (partially) complementary nucleic acid
molecule and a structured mRNA: (1) nucleation at an accessible site of at least 4 or 5 unpaired
bases (A); (2) elongation through “unzipping” of the nearby helix, resulting in altered local target
structure (B)

of repression by microRNAs is taken into account, by employing the Sfold pro-
gram to address the likelihood of a population of structures that coexist in dynamic
equilibrium for a specific mRNA molecule. This model can accurately account for
the sensitivity to repression by let-7 of both published and rationally designed mu-
tant forms of the Caenorhabditis elegans lin-41 3′ UTR, and for the behavior of
many other experimentally tested microRNA-target interactions in C. elegans and
Drosophila melanogaster. The model is particularly effective in accounting for cer-
tain false positive predictions obtained by other methods. The model also performed
well in a study of mammalian and viral microRNA targets [60].

In a more recent study [39], we analyzed a set of 3404 transcripts in C. ele-
gans that were suggested by immunoprecipitation (IP) to be the targets for worm
microRNAs [111]. Enrichment analyses by comparing targets and nontargets (i.e.,
transcripts absent in the IP dataset) revealed several important parameters. These in-
clude 5′ seed and modifications, structural accessibility of both the target site and the
25 nt-region upstream of the target site as assessed by target structures predicted by
Sfold, the nucleation potential and the total energy change of the hybridization de-
scribed in our previous work [59]. We developed a method to incorporate these sig-
nificant parameters into worm microRNA target predictions. This method was found
to make much better predictions than several well-known algorithms. Surprisingly,
for this large target dataset, there was a lack of correlation for the contextual fea-
tures based on analysis of microarray data for a small number of microRNAs [37].
In an independent study, three prediction parameters were analyzed for 6,387 candi-
date microRNA-target interactions between 114 human microRNAs and 890 mRNA
transcripts, with patterns of expression across 88 human tissue samples [44]. These
three parameters are the total energy change of the hybridization [59], the context
score based on contextual features [37], and a core for measuring site conservation.
It was found that only the total energy change of the hybridization is predictive
of paired microRNA and mRNA expression data. Thus, the results from analyses of
these large datasets not only further support our structure-based hybridization model
but also cast doubts on the general applicability of the contextual features proposed
from analysis of a relatively small microarray dataset. Results from microarray data
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may not be highly reliable, due to inherent limitations and difficulty in the interpre-
tation of the microarray data. For example, it has been shown that the secondary
structure of the target is important for microarray probe design and data interpre-
tation [83]. However, this issue has been largely overlooked in the analysis of mi-
croarray data. The importance of target structural accessibility is also supported by
several other studies [48, 86, 113, 114].

2.5 Concluding Remarks

The paradigm-shifting work by McCaskill has inspired the developments of ex-
tended partition function algorithms for modeling single molecular folding and hy-
bridization of two nucleic acid molecules, sampling extension and clustering rep-
resentation of sampled ensemble. These methods enable characterizations of the
equilibrium structure ensemble that are not possible with the use of free energy
minimization.

For improving the potency of RNAi, target structure is clearly an important fac-
tor in the design of siRNAs. Several existing methods use different assumptions and
treatments in parameter calculations for RNAi design. It is not clear whether one ap-
proach is superior to the other. Clearly, analyses of large datasets would be needed
to compare these methods and to further investigate relevant issues such as the va-
lidity of global or local target folding. Off-targeting by RNAi is a major impediment
for large-scale RNAi screening. 3′ UTR seed match can explain some but not all
of observed off-target effects. It remains a challenge to identify additional factors
responsible for off-target effects for improving the specificity of gene silencing.

It has been established that microRNAs can also target protein coding regions and
5′ UTR, in addition to 3′ UTR, and target binding can primarily involve the 5′ end or
the 3′ end, or both ends of the microRNA. Seed match may represent a major class of
target sites; however, it remains a challenge to estimate how large this class and other
classes of targets are, which will require large-scale carefully designed experiments
and analysis. Because seed pairing and contextual features are learned from small
number of highly expressed microRNAs [4], the ratios of different classes of targets
may well depend on the abundance of the microRNAs. It is conceivable that strong
pairing for both 5′ end and the 3′ end can be essential for a microRNA of low
abundance. The strength of microRNA-target hybridization would depend on the
expression levels of the microRNA and its target. Incorporation of concentrations of
microRNAs and target mRNAs will be a logical step for extension of hybridization
modeling, as some data for expression levels have become available. Since target
binding by microRNA can lead to two regulatory outcomes, translational repression
or target mRNA degradation, it is an open question whether it is possible to predict
the two outcomes.
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Chapter 3
Some Critical Data Quality Control Issues
of Oligoarrays
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3.1 Introduction

The microarray technology has been widely used as a high-throughput tool in
biological and biomedical research since its debut in 1990s. It has advanced
rapidly during the past decade, from low-density arrays to high-density arrays,
from gene expression arrays to single nucleotide polymorphism (SNP) arrays, tiling
arrays, and mitochondrial arrays. It is anticipated that the copy number variants
(CNV) arrays will become available very soon. On one hand, the array tech-
nology has been advancing at an unprecedented speed, especially the oligonu-
cleotide arrays. On the other hand, a large number of computational methods have
been introduced and advanced our knowledge in understanding and analyzing the
array data. However, recent studies have shown that the oligoarrays have been
widely applied but still poorly understood [27], which may imply that compu-
tational methods have not been able to capture the fast development of the ar-
ray technologies. Interestingly, there has been a debate on the reliability and re-
producibility of the microarray studies during the past five years [32, 33, 36].
The recent observation of the oligoarray design and data quality problems [27]
raised further concerns over the array data quality control (QC), which becomes
more and more severe and may take more time to resolve than previously ex-
pected.

Among the platforms of the commercial microarrays, the Affymetrix SNP arrays
have received increasing attention for genome-wide association studies (GWASs)
and CNV studies, partly due to the fact that the Affymetrix Inc has taken an open-
source approach of making the detailed array information available on the internet,
including the probe sequence structure and HapMap samples with the gold-standard
HapMap annotation. Such an approach allows methodological research to fine-tune
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the current computational methods and allows the optimization of future array de-
sign based on the current results and future research needs. Although more and more
array design and data quality issues have been raised lately on the oligoarrays, this
by no means implies that the oligoarrays are the only array platform that has data
QC issues. The open-source policy has enabled research in the array design and
data quality assessment, and the oligoarrays have received favorable attention with
major improvement in array design, data QC, and computational methods for data
analysis. In this chapter, we will study some critical issues in the oligoarrays and
demonstrate that certain data issues inherent in the array design may be resolved
through computational methods if the mechanism of the array design is properly
incorporated into the mathematical models and computational methods.

Currently, there are a large number of computational methods available for mi-
croarray data analysis. Depending on the study outcome and the array design, these
methods can be grouped into several categories. The gene expression data may be
analyzed with single-probe intensity-based methods, e.g., SAM [38], PAM [37], or
gene set methods [10, 35, 49] to identify differentially expressed genes or gene sets,
pathway analysis and protein interaction in system biology [18]. The SNP array data
can be analyzed for genetic association studies and haplotype analysis based on the
SNP genotype calls, e.g., [6, 34, 50], or for GWASs based on the genome scan of
the entire genome [46], or the most recent CNV studies [4].

The above computational methods have offered promise to deciphering the hu-
man genome by analyzing microarray data. While most of them use advanced sta-
tistical and computational tools, including data mining and machine learning, and
have demonstrated to reveal successfully biological and biomedical discoveries, the
mechanism of the array technology has not been fully incorporated into the data
analysis. It is well known that the microarray has been designed through multidis-
ciplinary research, and thus techniques used in the array design play a crucial role
in the data analysis and should be incorporated through mathematical and statistical
modeling.

Traditionally, the discipline of statistics was developed from the experimental
sciences, such as agriculture. It thus has a deep root in biological experiments and
emphasizes experimental design and data collection. This applies to studies not only
at the population level but also at the molecular and genetic level. In particular, data
from microarray studies are collected through biomedical experiments at both popu-
lation level and molecular level through collaboration of multidisciplinary research
team and thus deserve special interdisciplinary effort for data analysis. Ignorance
or failure to recognize this uniqueness of microarray data may lead to inaccurate
or biased results, or even lead to practice against rules in biology. In this paper, we
will emphasize the importance of this approach and demonstrate with examples that
incorporating the array mechanism in microarray data analysis will lead to consid-
erable improvement, which not only provides much needed theoretical support from
the related disciplines but also offers guidance to improved data analysis.

The outline of this chapter is as follows. We will summarize the microarray data
quality control issues in Sect. 3.2. Section 3.3 discusses the modeling of physico-
chemical properties and their application to microarray data. Section 3.4 studies
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a special issue, the mismatch phenomenon. Section 3.5 discusses the relationship
among the abundance of gene expression, DNA copy numbers and probe intensity,
and presents a newly developed probe intensity composite representation (PICR)
model for estimating the copy numbers with oligo SNP arrays. Section 3.6 provides
a new mixed-effects model-based imputation method to repair bright spots on the
arrays. Section 3.7 provides concluding remarks.

3.2 Quality Control in Microarray Data Analysis

So far, microarrays have been shown to boost biomedical research in many areas,
from the early studies of rare diseases (breast cancer, leukemia) to common diseases
(hypertension, diabetes), from infectious diseases (hepatitis, HIV) to neural disor-
ders (autism, schizophrenia), etc. The array technology not only offers the much
needed techniques to scan the human genome in searching for new genetic markers
to achieve better understanding of the disease etiology but also provides fine-tuned
techniques to pursue the goal of the translational research and customized medicine,
particularly for drug development and therapeutic treatment through successful ge-
netic profiling in clinical diagnosis. Although microarray studies have different de-
signs and different scientific objectives to achieve, the fundamental principles re-
main the same, i.e., to identify the genetic difference and biological variabilities
that are associated with or responsible for the diseases or phenotypes by studying
the expression or abundance of genes (or gene sets) and the DNA structure (SNPs,
CNVs) through mathematical modeling and statistical analysis. Successful exam-
ples have provided evidence that the microarray technology has assisted researchers
to achieve their goals that otherwise would be impossible to achieve, including ge-
netic profiling for the prognosis of breast cancer patient survival after surgery [41],
classification of leukemia [12], accurate location of transcription regulatory regions
and binding sites [42], recent large-scale GWAS study on tens of thousands of sub-
jects [46], CNV studies [4, 45], etc.

One of the major issues in microarray studies is the array data quality control, or
the so called low-level analysis, which has been emphasized by Professor Speed’s
group in a number of publications, including the pioneering work on microarray
normalization [2]. It has been observed that microarray data, usually the probe in-
tensity data, reflect not only biological variability between different groups of sub-
jects, which is the primary objective of the investigations, but also wild noise and
artifacts that are generated during the microarray experiments, including but not
limited to variations in DNA or RNA tissue preservation, PCR amplification, exper-
iment reagent, environmental and experimental conditions of the laboratories, etc.
The data quality issues are present in various formats. Some are observable, such
as systematic shift of probe intensity (array brightness), unequal variability of in-
tensities across arrays (array probe contrast), and uneven reagent spray (array paint-
brush). While others are more difficult to detect and require sophisticated analytic
tools, such as array batch effect, population stratification [1], the recently discovered
genomic wave [8, 22], etc.
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The array quality has sparked a major debate about the microarray quality con-
trol: whether the array technology generates reliable data for biomedical research.
The debate was initiated by observations that minimal consistency of differentially
expressed genes was found in a series of microarray experiment studies on the same
disease [36]. This observation makes the use of microarrays in biomedical research
questionable and motivated a series of studies of the impact of the array data qual-
ity control in the literature. For example, it has been demonstrated that new criteria
should be used in judging the consistency of findings of the microarray studies [32].
Others have shown that genotyping error on the SNP arrays for genetic association
studies leads to increased type I and type II errors [17, 24], which further leads to
increased false positives, false negatives, and decreased power for scientific discov-
eries.

Since our discussion focuses on the Affymetrix oligonucleotide arrays, some
general concepts apply similarly to other array platforms, while others may require
special treatment before the application.

The Affymetrix microarrays are based on the design of probes that have 25 nu-
cleotide bases in each probe. The design uses probe sequence pairs of a perfect
match (PM) probe and a mismatch (MM) probe to annotate the target sequences.
The 25 nucleotide bases on the PM probes are perfectly complement to the target
sequences, while those on the MM probes are complement nucleotides at all po-
sitions except for the center nucleotide (the 13th position on the probe), which is
a mismatch to the nucleotide of the target sequence. Gene expression arrays have
a number (about 10 to 20) of probe pairs within the domain of each gene to mea-
sure the abundance of gene expression, while the high-density SNP arrays have 20
and 12 pairs of probes for the GeneChip 100-K and 500-K arrays, respectively. The
most recent Affymetrix GeneChip 6.0 SNP arrays use only 12 PM probes to anno-
tate each SNP with 6 PM probes for one allele and other 6 PM probes for the other
allele. The MM probes are not used in this new design.

The unique design of Affymetrix oligonucleotide arrays using PM and MM
probes [23] requires special methods for the array data analysis. The rationale is that
the mismatch nucleotide in the probe sequence usually induces lower intensity value
than its corresponding PM probe, and the latter reflects the specific probe sequence
binding by design, while the former reflects nonspecific probe binding and thus to
some extent may represent the background level of the probe intensity. However,
it has also been observed that a fairly large portion (about 30%) of MM probes in
gene expression arrays have a larger intensity than their corresponding PM probes.
In the SNP arrays, the portion is down to about 9%. This observation surely casts
doubt on whether the MM probe intensity can be used for array background control,
as they lead to negative intensity value if subtracted from their corresponding PM
probe intensity as in general practice. It also raises further questions: Can microar-
ray data analysis be conducted at a level different from the probe intensity? Can it
be improved with other approaches given that the probe intensity level analysis has
made major contributions in biomedical research.

The special observation of the large portion of MM > PM implies that the oc-
currence of the MM phenomenon is not solely by chance but reflects some array
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mechanism, which is not fully understood. Thus it requires special analytical meth-
ods for data analysis. Successful examples include a statistical model by Li and
Wong [19], in which they introduced a model-based method to analyze the array
data by separately modeling the probe intensities of the PM probes from the MM
probes. However, as pointed out in a recent paper, the oligoarrays have been widely
applied but poorly understood [27], as there are far more unresolved issues than the
ones we understand so far. We will discuss the MM phenomenon with more details
in a later section.

It is well known that microarray data are subject to artifacts and wild noise at
the probe intensity level. A series of normalization methods have been proposed to
remove the artifacts [2, 9, 16, 28, 30, 53]. Although normalization procedures try
to take the summary statistics of the probe intensities, such as the mean or median
of the perfect match intensities (mismatch probes were deemed of no use and hence
were recommended not to be used in a number of articles), the wild noise is only
tapered to certain extent. For example, assuming that the probe intensity data has
a measurement error with mean 0 and variance σ 2, the mean probe intensity will
have the variance σ 2/m, where m is the number of PM probes annotating the same
SNP. Although this approach may reduce the variability of the probe intensity data,
it will retain the noise, possibly at a slightly smaller scale. Furthermore, in the gene
expression data, the probe intensities are usually analyzed separately for each probe,
and the probes within the same gene are not studied together, which may result in in-
formation loss. One may also ask: How to coherently combine the information from
different probes together in data analysis? Although gene clustering has been stud-
ied in gene expression analysis, it does not take the advantage of modeling probes
together within the same gene, which is meaningful since each probe intensity re-
flects part of the gene expression directly. There has been no satisfactory answer yet
to the above question.

3.3 Physico-Chemical Properties in Sequence Duplex
Hybridization

Although many methods have been studied for microarray data analysis, most of
them are solely based on the probe intensity level data (e.g., SAM, PAM, etc.) after
appropriate normalization procedure to remove the artifacts but do not incorporate
the modeling of the probe sequence structure. Notice that microarray data are probe
intensities generated from the array image based on fluorescence scan in the hy-
bridization between probe sequence and target sequence. Hence, from the point of
view of statistical experimental design, better understanding of the process in the
microarray experiments and incorporating the array mechanism through the probe
structure of the nucleotides into the model may improve the analysis.

So far, a series of papers have studied the array mechanism through the physico-
chemical properties of the microarray duplex hybridization between probe and tar-
get sequences. In particular, the effect of the nucleotides and their positions on the



44 W.J. Fu et al.

probes have been studied with thermodynamic models of the sequence binding.
Specifically, Zhang et al. studied the free energy of the probe sequences through
a positional-dependent nearest-neighbor (PDNN) model by considering the nu-
cleotide pairs in the probe sequence [51]. The free energy of each perfect match
probe sequence was modeled by

E =
24∑

l=1

ωlλ(sl, sl+1),

where λ(sl, sl+1) is the stacking energy of the nucleotide pair at the position
(l, l + 1) on the probe with l = 1, . . . ,24, and ωl is the effect of the lth position
on the probe. They further studied the probe intensity and decomposed the probe
intensity signal into gene-specific binding (GSB) and nonspecific binding (NSB).
The signal of each probe intensity was modeled by

I =Nsφ(Es)+Nnsφ(Ens)+B,
where Ns is the concentration of the target that involves GSB, Es is the free energy
for the formation of the specific RNA–DNA or DNA–DNA duplex with the GSB
target fragment. Nns is the concentration of RNA or DNA target molecules that
contributes to the NSB, and Ens is the average free energy for NSB. B is the array
baseline intensity. The function φ(x)= 1/(1+ ex) yields the binding affinity based
on the free energy x of the probe sequence for the GSB or the average free energy
for the NSB. Fitting this probe intensity model together with the PDNN model for
the free energy, Zhang et al. achieved a strikingly good fit to the probe intensity [51].

Furthermore, Zhang et al. also found that the effect of the nucleotide positions
and the nucleotide pairs are not symmetric. They showed that the effect of nu-
cleotides were higher at the central locations than at the locations far from the center,
and the nucleotide pairs [AG], [CG], and [TG] had a much higher stacking energy
than the pairs [GA], [GC], and [GT], respectively (Fig. 1c in [51]), while the pair
[GG] had moderate stacking energy. This further implies that consideration of GC
content of probe effect is important but not enough. The combinatorial pattern of
the probe nucleotides also makes a major difference, and the structure of probe se-
quences needs to be modeled as well. In addition, in an experiment of very low con-
centration of target molecules, they found that the nucleotide triplets also present
very different behavior, and the [CGC] triplet usually has a relatively low inten-
sity ratio of PM/MM, while the triplet [CCC] has a relatively high intensity ratio of
PM/MM. Their work has demonstrated that the study of the physico-chemical prop-
erties of the microarray data is crucial to the thorough understanding and analysis of
the microarray data. Further study of the modeling of the probe intensities through
the structure and binding of the sequence duplex may lead to improved modeling
and analysis of the oligonucleotide microarray data.

The above Zhang affinity equation is similar to the Langmuir adsorption equa-
tion φ(x) = K/(1 + Kx) in studying the adsorption of gas molecules on a solid
surface except that the target sequences are now in special solution and are usually
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at a relatively low concentration in the microarray experiments. Ono et al. further
studied the DNA duplex binding through a more general finite hybridization (FH)
thermodynamic model [26]. They have shown that the FH model unifies the Zhang
gene-specific and Langmuir adsorption models. The Langmuir model can be ex-
pressed as

ILm = α Kx

1+Kx + I
bg,

where K = exp(−	G/RT ) gives the equilibrium constant of probe-target duplex
formation, 	G denotes the free energy, R is the gas constant, T is the temperature,
x is the concentration of target molecules, and I bg denotes the background intensity.
The Zhang gene-specific model can be expressed as

IZh = α′
(

x

1+ exp(Es)
+ N

1+ exp(Ens)

)

+ I bg,

where x is the same as in the Langmuir model, N is the population of the RNA
molecules that contributes to the NSB. Es and Ens remain the same as above. The
FH model takes the form

IFH = C
2

{
1

Ksp
+A+ x −

√
(

1

Ksp
+A+ x

)2

− 4Ax

}

+ I bg,

where C is the scale of intensity, and A= [P total] and x = [T total] are the probe and
target concentrations, respectively. Ono et al. have shown that both Langmuir and
Zhang models are limiting cases of the FH model. As the target concentration x is
relatively high, i.e., x � A, the FH model can be approximated by the Langmuir
model

IFH � AC
xKsp

1+ xKsp + I
bg.

As the target concentration is relatively low, i.e., x	 A, the FH model can be ap-
proximated by the Zhang model

IFH �AC xKsp

1+AKsp + I
bg.

They further showed in their experiments of varying probe sequence length that the
Langmuir model fits the intensity data well for high intensity values but not for low
intensity values and that the Zhang model fits the intensity data well for low intensity
values but not for high intensity values. In comparison, the FH model unifies both
models and thus performs better than the other two for both high and low intensity
values.

Both Zhang et al. and Ono et al. observed a considerable nonspecific binding ef-
fect, which may contribute up to 40% of the array probe signal through data analysis
by the Zhang model (data not shown). This large amount of NSB may help to ex-
plain why microarray studies attained a low minimal consistency and further raises
the concerns of the reliability and reproducibility of microarray studies.
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To further study the nonspecific binding, Furusawa et al. [11] developed a ther-
modynamic model of NSB by duplex formation of probes and multiple hypothetical
targets. They generalized the PDNN model to n-nearest neighbor model for free
energy estimation and also considered the effect of secondary structure, i.e., the
folding of duplex. Their new model improved the prediction of nonspecific signals.

Modeling the dissociation of molecules, Held et al. [13, 14] studied the wash-out
effect of the microarray experiment and found that the residuals from the dissocia-
tion of the target fragments to the probes in the dynamics of the duplex hybridization
contributes to the overall modeling of the expression. In a most recent work, Li et
al. [21] studied a competitive thermodynamic model to characterize the dissociation
between the probe and target sequences and achieved further improvement in fitting
the array probe intensity data.

As pointed out in Pozhitkov et al. [27], “more systematic physico-chemical stud-
ies will be required to better understand the hybridization and dissociation behavior
of oligonucleotides.” The above work has demonstrated that proper modeling of the
physico-chemical properties of the array duplex hybridization allows continuous
improvement of the modeling of the array probe intensity data, which will eventu-
ally lead to improvement of data analysis through better understanding of the array
mechanism.

3.4 The MM Phenomenon: MM > PM

It is known that MM probes are designed to tune the background intensity so that the
true signal would be yielded by subtracting the MM intensity from the PM intensity,
i.e., IPM − IMM would provide the true signal at the probe. However, the MM phe-
nomenon, where a large number of MM probes achieve higher intensity than their
corresponding PM probes, makes the above adjustment method invalid through sub-
traction. This MM phenomenon implies that the array mechanism deserves serious
investigation. It indicates that certain mismatch nucleotides may yield larger bind-
ing affinity than the complementary perfect match nucleotides, unexpected by our
understanding that perfect match usually induces larger binding than the mismatch.
This prompted a group of researchers to believe that MM probes are of no use and
should be excluded from the array design [5, 29], which eventually led to the re-
moval of the MM probes from the most recent Affymetrix 6.0 SNP arrays.

The MM phenomenon has been studied in a few articles. Initially, it was observed
by Naef et al. [25] and also reported in Bolstad et al. [3] on gene expression arrays. It
was then studied by Urakawa et al. [39], Zhang et al. [51], Wu et al. [47, 48], Wang
et al. [44]. It was also studied on tiling arrays by Siringhaus et al. [31], who pointed
out that the inclusion of MM probes is to differentiate specific from nonspecific hy-
bridization. This practice was based on three assumptions: (1) Nonspecific bindings
affect PM and MM probes equally; (2) The mismatch reduces the affinity of GSB to
that of MM; and (3) fluorescence signal is identical for PM and MM probes. These
assumptions imply that MM< PM. The observation of the MM phenomenon makes
the above assumptions invalid.
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Fig. 3.1 Relative frequency of probe pairs showing MM > 2 PM in RNA U133 arrays of human
breast tissue. The horizontal labels the nucleotide triplet in the center of the MM probe

Zhang et al. [51] studied the effect of nucleotide triplets through the PDNN
model and found that at a very low concentration level where the GSB is negligible,
MM > PM occurs when a Guanine (G) occupies the PM probe center position, and
MM < PM occurs when a Cytosine (C) occupies the PM probe center position. Wu
et al. [48] studied the positional effect of the nucleotide for GSB and NSB sepa-
rately and studied the standard errors of the log probe intensity for PM and MM and
the cost of cross-hybridization. Wu et al. [47] further studied the effect of G-stack—
probes that contain multiple Guanines in a row—and concluded that the probes that
contain a [GGGG] or [CCCC] may have different mechanism, which leads to their
poor performance on the microarrays. Wang et al. [44] studied the MM phenomenon
and characterized it using a special pattern of the center nucleotide of the probes.
They found that among all probes on the U133 plus 2.0 RNA arrays of their study
samples, the center nucleotide G had the highest percentage for MM > PM, while
among the outlier of MM > PM, the center nucleotide C and G had the highest
percentage with that of C slightly higher than G. However, their conclusion was
based on the assumption that all four nucleotides have an equal 25% chance of oc-
currence, and their reported percentage was not adjusted by the distribution of the
special probe classes.

To study the MM phenomenon, we used RNA arrays based on several differ-
ent tissues, including the human mixed tissues of heart, teste, and cerebellum, the
human tissue of the breast, and mouse tissues. We found a special pattern of the
center nucleotide triplets. Different from the previous work [44], we studied the fre-
quency pattern of center nucleotide triplets and adjusted with its distribution among
the total number of probe pairs as follows. For each c1 = 2, 4, or 6, the frequency
(nJraw) of the probe pairs in which MM > c1PM was calculated for each J among
the center nucleotide class J ∈{[AAA], [AAC], . . . , [TTG], [TTT]}. The percent-
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Fig. 3.2 Relative frequency of probe pairs showing MM > 2 PM in RNA U133 arrays of human
heart, teste, and cerebellum tissues. The horizontal labels the nucleotide triplet in the center of the
MM probe

age of the probe pairs (NJ ) with the center nucleotide triplet J on the array out of
the total number of probe pairs was also calculated. The adjusted relative frequency
was calculated as nJadj = nJraw/N

J .
It is shown in Figs. 3.1, 3.2, 3.3, 3.4 that the adjusted relative frequency of the

probe pairs in which MM> c1PM with human breast tissue and human mixed tis-
sues of the heart, teste, and cerebellum with different multiples c1 = 2, 4, and 6. It
is illustrated that the MM phenomenon has a higher relative frequency if the MM
probe has a nucleotide pair [CC] in the center, extremely so if the center nucleotide
triplet is [CCC]. While the center nucleotide triplet [GGG] has a high relative fre-
quency in MM > 2PM but not in MM > 4PM and MM > 6PM. In contrast, such
a special pattern disappears for PM> c2MM, with c2 = 2, 4, and 6 as shown in
Fig. 3.5 for c2 = 2. This observation is consistent with the one by Zhang et al.
[51] for very low target concentration. We further found that similar pattern in the
Affymetrix tiling arrays (data not shown), which implies that the MM phenomenon
is not specific to RNA arrays but also may occur in other platforms of short oligoar-
rays.

Of note, the following inference can be made.

(1) There have been observations that some SNP genotype calling methods based
solely on summary statistics of the PM probe intensities have higher error rate
in annotating heterozygous SNPs. This is, at least partly, due to the fact that
these SNP genotype calling methods use the largest probe intensity to make
genotype calls assuming that perfectly complement nucleotides yield the largest
probe intensity. For example, consider a (GC) SNP with flanking nucleotide G
on both sides, i.e., the target nucleotide triplets at the SNP position are [GGG]
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Fig. 3.3 Relative frequency of probe pairs showing MM > 4 PM in RNA U133 arrays of human
heart, teste, and cerebellum tissues. The horizontal labels the nucleotide triplet in the center of the
MM probe

Fig. 3.4 Relative frequency of probe pairs showing MM > 6 PM in RNA U133 arrays of human
heart, teste, and cerebellum tissues. The horizontal labels the nucleotide triplet in the center of the
MM probe

or [GCG]. According to the SNP array design, the two PM probes annotating
this SNP have the central nucleotide triplets: PA = [CCC] and PB = [CGC].
Notice that when annotating the target [GCG], PA probe has a mismatch in the
center, while PB has a perfect match. Therefore, by the MM phenomenon, PA
presents a larger intensity than PB, i.e., PA > PB. Hence, a nucleotide type G
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Fig. 3.5 Relative frequency of probe pairs showing PM > 2 MM in RNA U133 arrays of human
heart, teste, and cerebellum tissues. The horizontal labels the nucleotide triplet in the center of the
MM probe

will be called for this target. Similarly, when annotating the target [GGG], the
PA probe has a perfect match, and the PB probe has a mismatch. In this case, the
mismatch probe PB = [CGC] does not present the MM phenomenon, and thus
the PA intensity is larger than PB intensity, i.e., PA > PB. Hence, a nucleotide
type G will be called for this target. Therefore, a heterozygous (GC) SNP will
be called incorrectly as a homozygous (GG) SNP. For the same reason, a ho-
mozygous (CC) SNP will be called incorrectly as a homozygous (GG) SNP, but
a homozygous (GG) SNP will be called correctly. It is clear that this MM phe-
nomenon leads to SNP genotype calling error, with heterozygous SNPs more
frequently than homozygous SNPs.

(2) Vallone et al. [40] studied the SNPs of the human mitochondria with the
Affymetrix MitoChip platform MitoChip 2.0 and reported problems in the SNP
calling algorithm. It was noted that genotype calling error often occurs to re-
sult in a G-stack at the SNP position. This can be well explained by the above
illustration assuming that the MM phenomenon occurs in MitoChip at a large
chance as well, which may potentially be due to the same array mechanism of
nucleotide binding.

From the above two implications of the MM phenomenon it can be concluded
that mismatch probes are of particular importance so that they should not be re-
moved from the oligonucleotide array design. If they are removed, SNP genotype
calls should not be based on only simple summary statistics of the PM probe inten-
sities. More sophisticated genotype calling methods must be used.
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3.5 Abundance of Gene Expression: Copy Number Versus Probe
Intensity

Microarray studies generate probe intensity data, and the analysis has thus far fo-
cused on the probe intensity data. Although PM probe intensity is known to be
highly correlated with the copy numbers, as shown by experiments [15], and has
been used as a surrogate of the copy numbers for the quantification of the abundance
of gene expression, there exists major difference between the copy numbers and
probe intensity in many aspects. Gene expression is a characterization of the abun-
dance of gene activity and is presumably inherent in the tissues and is not subject
to any measurement errors. However, probe intensity is an external measurement
obtained through the high-throughput technology to quantify the energy involved
in the DNA/DNA or DNA/RNA duplex hybridization and depends on many exper-
imental factors, such as fluorescent quantity, array spray reagent, temperature, and
the scanning of the array image. Any single factor may affect the probe intensity
reading and contribute to the noise and artifacts in microarray data, where the latter
refers to the factors that vary with experimental conditions but do not reflect bio-
logical variability of different individuals. Although the above artifacts have been
known in microarray data analysis and a number of methods have been studied to
address these issues, such as the normalization methods for microarray data [2], the
fundamental issues of the difference between the two have not been fully recog-
nized. Recognizing this difference will eventually lead to a search of the methods
that focus on the genuine abundance of gene expression but do not vary with the ex-
perimental conditions, which may thus filter out the wild range of noise in the probe
intensity data. Given the current experimental conditions and the microarray tech-
nologies, and assuming that the probe intensities are the data from the microarray
studies, is it possible to find methods that quantify the abundance of gene expression
and do not suffer from the current artifacts and wild range of noise?

To answer this question, it is crucial to separate true signal data that reflect the
activities of genes from the false signal data that reflect the artifacts and the noise
in the probe intensity experiments through decomposition of the probe intensity. It
is believed that improvement of experimental conditions, such as following strin-
gent protocols, will help to reduce the amount of artifacts but cannot completely
remove it. Changing array design, such as using the Agilent long oligoarrays that
have 60 nucleotide bases in each probe sequence rather than 25 nucleotide bases in
the Affymetrix arrays, will help to reduce the noise by effectively reducing the num-
ber of short DNA sequence bindings of small homologue. However, these methods
cannot completely remove the artifacts and thus are not what we are looking for.

Given the above problem in the experimental process, one needs to search for a
resolution with computational approaches. Although this does sound unlikely, we
will show that computational methods are promising in resolving this issue. In a
series of studies, Zhang and colleagues [51, 52] developed a GSB method in mod-
eling the RNA/DNA or DNA/DNA duplex hybridization, and the method has led
to major improvement in microarray studies. Successful examples also include the
CRLMM, an SNP array genotype calling method that accounts both probe sequence
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nucleotide effect and their positional effect as well as the length and GC content of
the target sequence.

It is worthwhile to note that the DNA copy numbers at a single SNP locus have
been estimated so far with the probe intensity ratio between an individual subject
and a reference, such as a reference defined by the mean or median of the probe
intensity of a normal control group. Since the microarray probe intensity data have
many artifacts and are subject to wild range of noise due to experimental condi-
tions, the copy numbers obtained through such a ratio method will surely inherit the
noise even if array normalization procedures are cautiously taken as a preventive
procedure.

In the following, we demonstrate that incorporation of the physico-chemical
properties will lead to a new computational method for the estimation of copy num-
bers based on the probe intensities. In this work [43], we found that further study of
the DNA/DNA or DNA/RNA duplex binding by modeling the positional and neigh-
borhood effects will not only improve the SNP array data analysis for genotype
calling and copy number estimation but also decompose the probe intensity data
into signal data and nonsignal artifact data.

We first generalized the PDNN model by Zhang et al. [51] to a generalized PDNN
(GPDNN) model by modeling the oligonucleotide binding with up to two mismatch
nucleotides to estimate the probe sequence binding free energy. The free energy for
binding with no mismatch nucleotide is modeled with the same PDNN model as
before,

E =
24∑

l=1

ωlλ(sl, sl+1),

where λ(sl, sl+1) and ωl remain the same. The free energy with one mismatch nu-
cleotide at the shift position (13+ j) is modeled by

E1 =
24∑

l=1,l �=12+j,13+j
θ
j
l λ(sl, sl+1)

+ κj δ{(SP12+j , SP13+j , SP14+j
)
,
(
ST12+j , ST13+j , ST14+j

)}
,

where θjl is the positional factor, κj the positional factor of the mismatch nucleotide
with shift j , and δ is the effect of the nucleotide triplet with mismatch nucleotide at
position j . For two mismatch nucleotides, the free energy is modeled by

E2 =E1 + ξj
{(
SP12+j , SP13+j , SP14+j

)
,
(
ST12+j , ST13+j , ST14+j

)}
,

where E1 is the free energy that the hybridization would have if there were only
one mismatch nucleotide at the center position, ξj reflects the difference of the free
energy due to the second mismatch nucleotide at position 13 + j . This GPDNN
model calculates the binding free energy for all oligonucleotide probe sequences.
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We then decomposed each probe intensity into four terms for the high-density
100-K and 500-K SNP arrays by the following PICR model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

...

IPA,ks = NAf
(
EPA,ks,A

)+NBf
(
E

PA,ks,B
1

)+BPA,ks + εPA,

IMA,ks = NAf
(
E

MA,ks,A
1

)+NBf
(
E

MA,ks,B
tk

)+BMA,ks + εMA,

IPB,ks = NAf
(
E

PB,ks,A
1

)+NBf
(
EPB,ks,B

)+BPB,ks + εPB,

IMB,ks = NAf
(
E

MB,ks,A
tk

)+NBf
(
E

MB,ks,B
1

)+BMB,ks + εMB,
...

where I ’s represent the probe intensities, NA and NB are allelic copy numbers for
alleles A and B , respectively. E’s are the free energies and can be calculated based
on the GPDNN model with tk = 2 for shift k �= 0 and tk = 1 for k = 0. f (E) repre-
sents the binding affinity with the Zhang equation. The baseline B’s are assumed to
be identical within the same DNA strand with s = 0 for sense-strand and s = 1 for
anti-sense strand. The measurement error terms ε’s are independent and identically
distributed with mean 0 and variance σ 2.

For given SNP of each array, the PICR model can be fitted to the probe intensi-
ties of the probe set annotating the same SNP, and the allelic copy numbers NA and
NB can be estimated with a linear regression model with the precalculated binding
affinities f (E)’s for different probes and strand. We have demonstrated that this
model can be trained with only a single array to obtain all model parameters. Fur-
thermore, we also developed an SNP genotype calling algorithm and demonstrated
with the HapMap samples that this SNP genotyping method was robust across ar-
rays, laboratories, and array platforms with high SNP genotype calling accuracy
about 99.7% on 100-K SNP arrays and 99.2% on 500-K SNP arrays and outper-
formed other methods [43].

It was also pointed out [43] that the PICR model provides a novel approach by
transforming the probe intensity level data, which are subject to wild range of noise
and artifacts, to the copy number data, which are cleaned and biologically mean-
ingful data. The robustness of the highly accurate genotype calling method based
on the PICR model has demonstrated that this PICR model does yield cleaned copy
number data with high accuracy. Recognizing the difference between the probe in-
tensity data and the copy number data is of crucial importance and will lead to novel
and powerful approaches for scientific discovery. While the copy numbers represent
certain inborn characteristic of the tissue and are not subject to any measurement
error or artifacts, the probe intensity data are subject to measurement errors and all
kind of artifacts. Therefore this PICR model offers a means to transform the probe
intensity data to the copy number data through a regression model and thus poten-
tially offers a promise to revealing scientific discoveries with more powerful tests
by modeling and analyzing the cleaned and biologically meaningful copy number
data in subsequent analysis.
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3.6 Array Image Quality and Repair Through an Imputation
Method with a Mixed Effects Model

It is well known that microarray data may be subject to uneven spray of chemicals,
which leads to bright or dark spots or paintbrush in the array image. Such defects
of arrays, if not properly adjusted, will lead to large bias in the probe intensity
data and will affect data analysis result. Although various normalization methods
for microarray data analysis have been studied, most of them deal with systematic
bias, such as the use of quantile normalization method to remove artifacts [2], few
methods have been developed to deal with the bright spots and paintbrushes. We
here present a newly developed imputation method based on a mixed-effects model
that extends the PICR model from a single SNP to multiple SNPs on the same array
to fix the bright spots [20].

Li et al. [20] developed a mixed-effects model for multiple SNPs on the same
array:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Iij = βi0 + βi1fij1 + βi2fij2 + εij ,
βi0 = β0 + αi0,
βi1 = β1 + αi1,
βi2 = β2 + αi2,

where Iij is the intensity of the j th probe of SNP i for i = 1,2, . . . ,N and j =
1,2, . . . ,m with m being the number of probes for each SNP in a specific platform
of arrays, e.g., m = 40 for Xba arrays. fij1 and fij2 are the binding affinities for
two alleles A and B , respectively. Here, β0, β1, β2 are fixed effects for baseline
background, copy numbers for allele A and allele B , respectively. α0, α1, α2 are the
corresponding random effects on SNPs and are independently normally distributed
with N(0, σ 2

0 ), N(0, σ
2
1 ), and N(0, σ 2

2 ), respectively. εij is independent of the α’s
and is normally distributed with N(0, σ 2).

Since the binding affinities fij1 and fij2 are calculated based on the PICR model
that was trained with a single Xba array, they remain the same and are robust across
different samples and different platforms of arrays [43]. This mixed-effects model is
fitted to multiple SNPs on the same array and can provide prediction for the missing
probe intensity. We apply this mixed-effects model to the arrays with damaged areas,
in which the probe intensities are assumed missing to avoid taking biased intensity
values. The predicted values of the mixed effects model over the damaged areas will
provide probe intensity values for multiple imputation.

Figure 3.6 presents an Xba SNP array image obtained by the dChip program on
one of the HapMap samples [7]. It is shown that there is one bright spot on the array
due to uneven spray of chemical. This spot has about 2000 pairs of probe intensities
and thus affects the intensity of about 2000 SNPs. To fix this problem, we took the
mixed effects model approach with the following procedure.

Procedure to fix damaged area with the mixed-effects model

(1) Randomly select 100 SNPs among the unaffected SNPs by this spot.
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Fig. 3.6 A HapMap Xba array image illustrating a damaged area with bright spot

(2) Combine each affected SNP with the 100 selected SNPs to fit the above mixed-
effects model.

(3) Predict the probe intensities in the damaged area by the mixed-effects model
with the probe affinities in the area.

The imputation of the probe intensities by the above mixed-effects model re-
moved the bright spots and yielded a smooth image as shown in Fig. 3.7. This
imputation raised the SNP genotype calling accuracy from 98.96% to 99.74% by
the PICR genotype calling method. Similar improvement was observed over other
damaged arrays in the HapMap samples.

3.7 Concluding Remarks

The microarray technology has advanced rapidly during the last decade and has
been demonstrated to be successful in assisting biological and biomedical research
for scientific discoveries. It has gone through dramatic changes from the initial rel-
atively uncomplicated design and understanding of the probe intensities with rela-
tively simple computational methods to the current complex techniques and sophis-
ticated computational methods. Although many advances and improvement have
been made in the array technology and the related methodologies, there are still a
number of aspects of the array mechanisms that are not thoroughly understood [27],
such as the nonspecific binding of the arrays, the MM phenomenon, and the genomic
wave [8, 22].
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Fig. 3.7 Array image illustrating a damaged area fixed by imputation with the mixed-effects model

The recent development of the GWAS and CNV studies generated a huge amount
of health data using the arrays [45, 46]. This important resource for biomedical re-
search will keep the arrays a viable tool for biomedical studies. It is thus imperative
that array data quality be ensured and novel analytical methods be developed to im-
prove the current computational methods for higher accuracy and statistical power
with high sensitivity and specificity and low false positive and false negative.
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Chapter 4
Stochastic-Process Approach to Nonequilibrium
Thermodynamics and Biological Signal
Transduction

Hao Ge

4.1 Introduction

4.1.1 Nonequilibrium Thermodynamics

Equilibrium thermodynamics emerged when Carnot proposed the first theoretical
treatise on mechanical work and efficiency in heat engines in the early nineteenth
century. Over the course of that century, a complete physical theory on changes in
heat, mechanical work, and internal energy of molecular systems was developed due
to the elegant contributions by Clausius, Boltzmann, Helmholtz, Gibbs, and others.

The original objective of equilibrium thermodynamics is to describe the transfor-
mations of energy in all its forms. During its development, a number of key physical
quantities were introduced, such as entropy, enthalpy, free energy, and so on. These
quantities and their relations are essential for understanding biochemical systems
from a physical point of view.

However, one hundred fifty years after its formulation, the second law of ther-
modynamics still appears more as a program than a well-defined theory and all the
thermodynamic potentials could be well defined only in equilibrium states. This
is one of the main reasons why the equilibrium thermodynamics could hardly be
applied to real biochemical systems, because living cells must continually extract
energy from their surroundings in order to sustain the characteristic features of life
such as growth, cell division, intercellular communication, movement, and respon-
siveness to their environment.

Therefore, a central problem in physical chemistry arises: Does there exist a gen-
eralization of the Second Law which is valid away from equilibrium? This is an
old question having its origin in Boltzmann’s work in gas kinetics [3], and during
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the 20th century, its development has achieved great success, including two Nobel
Prizes of Chemistry awarded to L. Onsager and I. Prigogine, respectively.

On the other hand, if one needs to study the nonequilibrium thermodynamics
from a microscopic or mesoscopic point of view and wants to be less ambitious
and get a rather satisfactory understanding, effective stochastic models may be the
best approach to choose. It could help us break through the shackles of former equi-
librium and near-equilibrium statistical mechanics and would accomplish a rather
complete theory of nonequilibrium thermodynamics [12, 13].

4.1.2 Biological Signal Transduction

Biological signal transduction processes are increasingly understood in quantitative
terms such that the switching of enzymes and proteins between phosphorylated and
dephosphorylated states becomes a universal module [10, 35]. The biological activ-
ity of a target protein is often wakened by the phosphorylation reaction catalyzed
by a specific kinase and restrained by the dephosphorylation reaction catalyzed by
a specific phosphatase, which is quite similar to the turning on and off procedure of
an ordinary switch.

One of the key concepts in Phosphorylation–dephosphorylation cycle (PdPC)
signaling is the switching sensitivity: the sharpness of the activation of the substrate
protein in response to the concentration of the kinase is basic in the perspective
of metabolic control analysis, usually termed as Hill coefficient first proposed by
Hill [24].

Actually, the research about the sensitivity of single-enzyme catalysis activity,
also known as the allosteric cooperativity, has already been developed for about
forty years, since the classic papers of Monod, Wyman, and Changeux [41] and
Koshland, Nemethy, and Filmer [33]. However, in the case of multienzyme sys-
tems such as the phosphorylation–dephosphorylation module, the situation is quite
different. In the early 1980s, Goldbeter and Koshland [20, 34] discovered the ul-
trasensitivity phenomenon of a PdPC switch in terms of the zeroth-order kinetics of
kinase and phosphatase, where the Hill coefficient can be extremely high. Moreover,
it has already been observed in experiments [27].

Most of the previous models [20, 23, 47, 57] built for the phosphorylation and
dephosphorylation module were traditionally based on coupled nonlinear determin-
istic differential equations in terms of regulatory mechanisms and kinetic parame-
ters, which are widely used in the field of computational biology [8, 42]. Nowadays,
as there is a growing awareness of the basic character of noise in the study of the
effects of noise in biological networks, it becomes more and more important to
develop stochastic models with chemical master equations (CME) based on bio-
chemical reaction stoichiometry, molecular numbers, and kinetic rate constants [18,
31, 40, 58]. Moreover, several recently interesting experimental results can only be
explained by stochastic models [11].

We aim to thoroughly investigate temporal cooperativity [47] emerged in the sig-
nal transduction module of phosphorylation–dephosphorylation cycle (PdPC) and
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to compare it with allosteric cooperativity through stochastic models. The cooper-
ativity in the cyclic reaction is temporal, with energy “stored” in time rather than
in space as for allosteric cooperativity. This kind of cooperativity utilizes multiple
kinetic cycles in time, in contrast to allosteric cooperativity that utilizes multiple
subunits in a protein [16].

4.2 Stochastic-Process Approach: Examples

4.2.1 Mesoscopic Description of Biochemical Systems

4.2.1.1 Markov Chain (Master Equation)

Finite Markov chain is a jump process in the state space S = {1,2, . . . ,N} with
transition density matrix Q(t)= {qij (t)}N×N .

The starting point is a master equation formula of the system

d

dt
pi(t)=

N∑

j=1

(
qji(t)pj (t)− qijpi(t)

)
(4.1)

for the dynamical evolution of a probability distribution pi(t) over states i =
1,2, . . . ,N . The quantity qij (t) is the transition density (probability per time) to
state j from state i. It contains internal rate constants and external conditions im-
posed by the coupling to the reservoir systems.

Let us also mention that the numberN need not to be finite, and the system could
also be regarded as the stochastic model of coupled chemical reactions (chemical
master equation) [40, 54].

4.2.1.2 Hill’s Model of Muscle Contraction

T.L. Hill applied his general mesoscopic model for biochemical polymers to muscle
contraction [25]. See Fig. 4.1 for the three-state model, where M is the myosin
cross-bridge, A the actin cite, A ·MDPi and A ·MD are both “attached” states of
M and A, and the transition from A ·MD to MDPi will hydrolyze one molecule of
ATP(ATP→ ADP+ Pi).

4.2.1.3 Stochastic Michaelis–Menten Kinetics

One considers a three-step mechanism of the Michaelis–Menten kinetics [46] in
which the conversion of S into P in the catalytic site of the enzyme is represented
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Fig. 4.1 Three-state ATPase
attachment–detachment cycle
used to illustrate the
theoretical formalism for
muscle contraction. Copied
from [25]

Fig. 4.2 Kinetic scheme of a simple reversible enzyme reaction (a) in which k0
1 and k0

−3 are
second-order rate constants. From the perspective of a single enzyme molecule, the reaction is
unimolecular and cyclic (b). The pseudo-first-order rate constants k1 = k0

1cS and k−3 = k0
−3cP

where cS and cP are the concentrations of substrate S and P in the steady state. Copied from [11]

as a process separate from release of P from the enzyme (Fig. 4.2(a)):

E + S k0
1�
k−1
ES

k2�
k−2
EP

k3�
k0−3

E + P. (4.2)

From the perspective of a single enzyme molecule, the reaction is unimolecular
and cyclic, and the rate equation for the probabilities of the states is the master
equation

dPE(t)

dt
= −(k1 + k−3)PE(t)+ k−1PES(t)+ k3PEP (t),

dPES(t)

dt
= k1PE(t)− (k−1 + k2)PES(t)+ k−2PEP (t),

dPEP (t)

dt
= k−3PE(t)+ k2PES(t)− (k−2 + k3)PEP (t).

(4.3)
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4.2.2 Langevin Systems

In statistical physics, Langevin dynamics is an approach to mechanics using simpli-
fied models and using stochastic differential equations describing Brownian motion
in a potential to account for omitted degrees of freedom.

For a system of N particles with masses m and time-dependent coordinates
X =X(t), the Langevin equation is

mẌ =−∇V (X)− f +√2mγkT ξ(t),

where V (X) is the particle interaction potential such that ∇V (X) is the force calcu-
lated from the particle interaction potentials, Ẋ is the velocity and thus f = γmẊ
is the friction force, T is the temperature, k is Boltzmann’s constant, and ξ(t) is a
delta-correlated stationary zero-mean Gaussian process satisfying

〈
ξ(t)

〉= 0,
〈
ξ(t)ξ

(
t ′
)〉= δ(t − t ′),

where δ is the Dirac delta.
If the friction coefficient γ is large enough, then mẌ ≈ 0. Thus,

γ Ẋ =−∇V (X)
m

+
√

2γ kT

m
ξ(t).

Generally speaking, Langevin dynamics is only one class of diffusion processes,
and the latter could be also applied to model the stretching of single molecule [29]
and the well-known Molecular motors [32, 52].

4.3 Stochastic Thermodynamics

If a system is gently driven away from equilibrium by a small time-dependent pertur-
bation, then the response of the system to the perturbation can be described by linear
response theory [39, 44]. However, if the system is driven far from equilibrium by a
large perturbation, then linear response and other near-equilibrium approximations
are generally not applicable.

The research on irreversible systems far from equilibrium began with the works
by Haken [21] about laser and Prigogine et al. [19, 43] about oscillations of chemical
reactions. Prigogine and his collaborators provided explicit expressions for entropy
production in various situations and regarded a nonequilibrium steady state as a
stationary open system with a positive entropy production rate [43].

Nonetheless, in contrast to equilibrium systems, with their elegant theoretical
framework, the understanding of nonequilibrium steady-state systems is still prim-
itive. What we really expect is a unified framework that describes both equilibrium
and nonequilibrium phenomena, obtained by extending the Second Law not only
to the steady states but also to any arbitrary nonequilibrium states. Many different
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kinds of approach have been put forward in the last several decades, and a recent
comparative study of nonequilibrium thermodynamics can be found in [37].

In 1998, Oono and Paniconi [45] proposed a framework of steady-state thermo-
dynamics. The steadily generated heat, which is generated even when the system
remains in a single steady state, and the total heat are distinguished. They call the
former the “housekeeping heat,” which is equal to the entropy production in steady
state and may come from the chemical driven force in biochemical systems [46, 48].
Subtracting the housekeeping heat from the total heat defines the excess heat, which
reflects the time-dependent variation of the system. The key point of their work is
that “if we can carefully remove the steadily produced heat due to housekeeping
dissipation, then the state should not be very different from equilibrium.” More-
over, they also put forward a phenomenological extended form of the Second Law:
“A process converting work into excess heat is irreversible. And ‘reversibility’ is
modulo house-keeping heat, which is produced anyway.”

On the other hand, now stochastic models are widely used in physics, chemistry,
biology, and even in economics. The Markov process could be applied to model
chemical reactions, which are of special interest in biology, in relation with their
coupling with active transport across membrane [8, 25] and also recent mechanisms
of molecular motors [32]. Furthermore, in real biochemical systems, the external
parameters such as the concentrations of external signal proteins always oscillate
or remarkably fluctuates, which give rise to the necessity for the analysis of time-
dependent processes. We believe that if one wants to comprehensively investigate
the temporally phenomena of nonequilibrium state, then the stochastic processes,
especially Markov chains and diffusions, would be the proper mathematical models
to apply.

In 1953, Onsager and Machlup [39, 44] proposed the Onsager–Machlup princi-
ple, which is actually a functional formula about the probability density of a stochas-
tic process close to equilibrium. Then, it was T.L. Hill who first successfully con-
structed a general mesoscopic stochastic model for the combination and transforma-
tion of biochemical polymers in vivid metabolic systems and investigated its ther-
modynamic properties far from equilibrium [25]. In the mean time, Schnakenberg
developed an elegant network theory for the microscopic and macroscopic behavior
of master-equation systems, namely, finite Markov chains in a mathematical lan-
guage [54]. After that, a rather complete mathematical theory for nonequilibrium
steady states has been developed for stochastic models [50, 51]. Here, we recom-
mend a recent book [30] for systematic interpretations of this theory.

In recent years it has been realized that a trajectory perspective of stochas-
tic processes might encode surprisingly more information than one might expect
from traditional thermodynamic arguments, and a few interesting relations that de-
scribe the statistical dynamics of driven systems even far from equilibrium have
been discovered. They include the fluctuation theorems of sample entropy produc-
tion [7, 36, 38], Jarzynski’s equality [28], Crooks’ relations [5, 6], etc. Jarzynski
[28, 29] considered nonequilibrium transitions between two equilibrium states, pro-
viding equilibrium Helmholtz free energy differences in terms of nonequilibrium
measurements of the work required to switch from one ensemble to another.
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Although the concept of Helmholtz free energy fails in nonequilibrium steady
states (NESS), Hatano and Sasa [22] generalized Jarzynski’s work relation to NESS,
which is more relevant to motor proteins. Their work was inspired by Oono and
Paniconi’s framework [45], and they derived the first explicit expression for the
extended form of the Second Law of Thermodynamics, namely T�S ≥Qex, where
S is the general entropy defined in their paper, and Qex is the excess heat.

It is indispensable to emphasize that the Jarzynski and Hatano–Sasa equalities
become rather trivial and make no sense for time-independent processes. Hence re-
cently, we put forward a unified rigorous proof of them [14, 15] for time-dependent1

Markov chains and also diffusion processes and tried to gain deeper insights into
these issues.

First of all, we accept the opinion that for the Second Law, in particular, a proper
formulation and interpretation of entropy is more subtle. However, a nonequilib-
rium state needs for its description time-dependent variables, because of exchange
of mass and energy between the system and its surroundings, and the problem of
the definition of entropy is still open and actually not yet definitively solved. Fortu-
nately, for stochastic processes, the so-called Gibbs entropy has already been widely
accepted in statistical physics and information theory. Then it becomes our starting
point.

The common definition of Gibbs entropy associated with any discrete probability
distribution {pi} is

S
[{pi}

]=−k
∑

i

pi logpi,

where k is the Boltzmann constant. In statistical mechanics, it gives the entropy
for a canonical ensemble of a molecular system at a constant temperature and is a
generalization of Boltzmann’s formula to a situation with nonuniform probability
distribution.

It is widely known that the entropy change dS can be decomposed into two terms
[43, 46]: the first, deS is the transfer of entropy across the boundaries of the system,
and the second diS is the entropy produced within the system.

Here, it is easy to derive that [46]

dS(t)

dt
= diS + deS = epr(t)− hdr(t), (4.4)

where epr(t) is just the instantaneous entropy production rate [17], and hdr(t) is
due to the exchange of heat with the exterior, called the heat dissipation rate.

Although entropy may be considered as an ensemble property, Seifert [55] suc-
cessfully developed a theory of entropy production along a stochastic trajectory en-
lightened by the newly developed fluctuation theorems [5, 7, 28] and showed that the
entropy production defined along a single stochastic trajectory also can be divided
into a medium part and a part of the particle (system) [55].

1Also called “inhomogeneous” in the language of Markov processes.
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Meanwhile, the idea of decomposing the total heat into a “housekeeping” part
and another “excess” part was put forward by Oono and Paniconi [45] and made ex-
plicit in Langevin systems by Hatano and Sasa [22]. It says that Qtot =Qex +Qhk,
and more importantly, we found out that the housekeeping heat is always nonnega-
tive, which implies the nonequilibrium essence of the system [12, 13].

For equilibrium system, Qex reduces to the total heat Qtot, because in this case
Qhk ≡ 0 due to the detailed balance condition, and in time-independent steady state,
Qex(t) ≡ 0, and hence the housekeeping heat Qhk equals the work done by the
external driven force, which is all dissipated [46, 48].

However, the situation is quite different for the time-dependent nonequilibrium
system, in which the housekeeping heat still comes from the work done by some
external driven force, but what is the origin of the excess heat? We will show that it
is just the change of a thermodynamic quantity called general internal energy.

If the system satisfies the detailed balance conditions for all time, then the tradi-
tional concept of internal energy exists, and both of the excess heat and dissipative
work contribute to its change, which is actually the First Law [15]. Therefore, we
believe that the situation will not be essentially different even if detailed balance
conditions fails.

Further, we find out that the integral of the dissipative work subtracting the excess
heat does not depend on the particular “path” taking through the parameter space,
namely, only depends upon the initial and final states. Thus, there exactly exists a
“general internal energy,” whose derivative is just the difference of the dissipative
work and excess heat, i.e.,

dU(t)

dt
=−Qex(t)+W(t). (4.5)

It is just the ordinary internal energy for the equilibrium canonical ensemble accord-
ing to the Maxwell–Boltzmann law. Hence (4.5) is just the generalized First Law of
thermodynamics. From the trajectory view, we can also define the internal energy
of the state X(t). Then one has U(X(t), t) = −Qex(X(t), t)+W(X(t), t), which
implies that the First Law is also satisfied along every trajectory.

Despite the dissipative work, there also exists another kind of work done by
the external driven force, denoted as Edf (t), and we derived that Edf (t)≡Qhk(t),
which is only known to be valid in steady state before [46, 48]. Now we understand
that there exist two kinds of external works done on the system; one is the dissipa-
tive work W(t), and the other, Edf (t), is from the external driven force. They result
in the change of general internal energy and the heat dissipation, respectively.

Based on the elementary definition of free energy in equilibrium thermody-
namics F = U − T S, here we can define a general free energy in the same way:
F(t) = U(t) − T S(t). For an equilibrium system, it is just the Gibbs free energy
in a spontaneously occurring chemical reaction at constant pressure p and temper-
ature T , and also the Helmholtz free energy for systems at constant V and T [53].
Its change gives the maximum work, other than pV work. Therefore, it is called a
“hybrid free energy” by Ross [53].
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More important, Schnakenberg [54] has shown that it is just the Lyapunov func-
tion as well as Prigogine–Glansdorff criterion certificating the thermodynamic sta-
bility for the steady state of the time-independent master equation system. It has
been revisited lately [12].

On the other hand,

dF(t)

dt
= dU(t)

dt
− T dS(t)

dt

=W(t)− (T · epr(t)−Qhk(t)
)
. (4.6)

Here we introduce a new concept named Free heat Qf (t)= T · epr(t)−Qhk(t)

identifying the free energy change in the form of heat, i.e.,

dF(t)

dt
=W(t)−Qf (t).

This concept will play the central role in the extended form of the Second Law of
Thermodynamics below.

Regarding the Second Law of Thermodynamics, although all the thermodynamic
quantities in the previous sections can be defined along the sample trajectory, the
Clausius inequality and many other thermodynamic constrains related to the Second
Law should be interpreted statistically through ensemble average.

Notice that every term in the expression of the entropy production rate epr(t)
is nonnegative; hence epr(t) ≥ 0, and the equality holds if and only if the detailed
balance condition holds. Then according to (4.4) and (4.6), we derive several in-
equalities of the differential forms:

T
dS(t)

dt
+Qtot(t) = T · epr(t)≥ 0, (4.7a)

dF(t)

dt
−W(t)−Qhk(t) = −T · epr(t)≤ 0. (4.7b)

Equation (4.7a) is just the well-known Clausius inequality (dS ≥−Qtot
T

), which
is rectified to obtain expressions for the entropy produced (dS) as the result of heat
exchanges (Qtot), and (4.7b) is a general version of the free energy inequality for
the amount of work performed on the system, since the work values must then be
consistent with the Kelvin–Planck statement and forbids the systematic conversion
of heat to work.

More precise, the quantity Qhk(t) in (4.7b) vanishes when the detailed balance
condition holds, and then it returns back to the traditional Helmholtz or Gibbs free
energy inequalities of equilibrium thermodynamics depending on whether it is an
NVT or NPT system [2]. In this case, −dF ≥−W , which implies that the decrease
of free energy gives the maximum dissipative work done upon the external environ-
ment.

Also, their corresponding integral forms are

T�S +
∫

Qtot(t) dt ≥ 0, (4.8a)
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�F −
∫

W(t) dt −
∫

Qhk(t) dt ≤ 0. (4.8b)

However, there still leaves a fundamental question: “what is precisely the re-
versible process that connects two different equilibrium states?” Then a new con-
cept of “instantaneous reversible process” [17] with zero entropy production rate
naturally emerges, which corresponds to the ideal reversible process involved in the
classic theory of equilibrium thermodynamics, and it will imply that there does not
exist any real reversible process connecting two different equilibrium states.

Furthermore, an extended quantitative form of Second Law of Thermodynamics
will be developed built on the nonnegativity of the new concept ‘free heat” (Qf (t)=
epr(t)− TQhk(t) ≥ 0), which only appears during time-dependent processes [12,
13]. Then according to (4.4) and (4.6), we have another group of inequalities in the
differential forms:

T
dS(t)

dt
+Qex(t) = T · epr(t)−Qhk(t)≥ 0, (4.9a)

dF(t)

dt
−W(t)=−Qf (t) = −T · epr(t)+Qhk(t)≤ 0, (4.9b)

followed by their corresponding integral forms

T�S +
∫

Qex(t) dt ≥ 0, (4.10a)

�F −
∫

W(t) dt ≤ 0. (4.10b)

Inequality (4.10a) is an extended form of the Clausius inequality during any
nonequilibrium time-dependent process, whose special case is included in Hatano
and Sasa’s work [22], and inequality (4.10b) is a different general form of free en-
ergy inequality. It implies that the dissipative work value must be consistent with
the Oono–Paniconi statement of the extended Second Law of thermodynamics [45],
which forbids the systematic conversion of excess heat to work.

For the equilibrium case, Qex = Qtot, and they both actually return to (4.7a).
Moreover, if the system is in steady state, then Qf (t) ≡ 0, and this form of the
Second Law is eliminated.

4.4 Ultrasensitivity and Temporal Cooperativity of PdPC
Module

4.4.1 Reversible Kinetic Model for Covalent Modification

Many references [2, 20, 47, 57] have considered the important phosphorylation–
dephosphorylation cycle (PdPC) catalyzed by kinase E1 and phosphatase E2, re-
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spectively. The phosphorylation covalently modifies the protein W to become W ∗:

W +E1 + ATP
a0

1�
d1
W ·E1 · ATP

k1�
q0

1

W ∗ +E1 + ADP;

W ∗ +E2
a2�
d2
W ∗E2

k2�
q0

2

W +E2 + P i.

Then at constant concentrations for ATP, ADP, and Pi, introducing the pseudo-
reaction orders a1 = a0

1[ATP], q1 = q0
1 [ADP], and q2 = q0

2 [Pi], these reactions be-
come

W +E1
a1�
d1
WE1; WE1

k1�
q1
W ∗ +E1;

W ∗ +E2
a2�
d2
W ∗E2; W ∗E2

k2�
q2
W +E2.

This biochemical scheme is also isomorphic to another important module in cel-
lular signal transduction across the cell membrane, namely the GTPase system.

It is indispensable to note that the sustained high concentration of ATP (∼1 mM)
and low concentrations of adenosine diphosphate (ADP) (∼10 µM) and Pi (or-
thophosphate) (∼1 mM) give rise to an equilibrium constant of 4.9 × 105 M for
ATP hydrolysis, and the phosphorylation potential in a normal cell is approximately
12 kcal mol−1 [26].

4.4.2 Reduced Models

It is always supposed that the total concentration of W and W ∗ is much larger than
that of the kinase and phosphatase (i.e., WT � E1T +E2T or, equivalently, WT =
[W ] + [W ∗]) [20, 47]. Therefore, the dynamics of kinase and phosphatase can be
considered separately:

(a): W +E1
a1�
d1
WE1

k1�
q1
W ∗ +E1;

(b): W +E2
q2�
k2
W ∗E2

d2�
a2
W ∗ +E2.

(4.11)

The steady states in the above Michaelis–Menten kinetics have been solved in
the classic enzymology [4], and the fluxes from W to W ∗ and from W ∗ to W in
reactions (a) and (b) of (4.11) are

v1
([W ])=

V1[W ]
K1

1+ [W ]
K1
+ [W ∗]

K∗1

, v∗1
([W ∗])=

V ∗1 [W ∗]
K∗1

1+ [W ]
K1
+ [W ∗]

K∗1
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Fig. 4.3 The reduced model
of PdPC switch

and

v2
([W ])=

V2[W ]
K2

1+ [W ]
K2
+ [W ∗]

K∗2

, v∗2
([W ∗])=

V ∗2 [W ∗]
K∗2

1+ [W ]
K2
+ [W ∗]

K∗2

,

respectively, in which the parameters V1 = k1E1T , V ∗1 = d1E1T , V2 = d2E2T , and
V ∗2 = k2E2T are the maximal forward (W →W ∗) and backward (W ∗ →W ) fluxes
of the reactions (a) and (b); and K1 = d1+k1

a1
, K∗2 = d2+k2

a2
, K∗1 = d1+k1

q1
, and K2 =

d2+k2
q2

are the corresponding Michaelis constants.
Hence our model is now reduced to the form of Fig. 4.3, which can be also found

in the latest book [2] and further reduced to

W
f1([W ])
�

f2([W ∗])
W ∗, (4.12)

where f1 = v1 + v2 is the total flux from W to W ∗, f2 = v∗1 + v∗2 is the total flux
from W ∗ to W , and [W ] + [W ∗] =WT (constant).

4.4.3 Deterministic Model

The ordinary differential equation of the model (4.12) is

d[W ∗]
dt

= f1
(
WT − [W ∗])− f2

([W ∗]), (4.13)

whose steady state [W ∗]ss satisfies f1(WT − [W ∗]ss) = f2([W ∗]ss) and [W ]ss =
WT − [W ∗]ss .

What we concern most is the steady-state fraction of phosphorylated proteinW ∗,
i.e., φ = [W ∗]ss

WT
. Beard and Qian [2] have written down the general equation for φ =

[W ∗]ss
WT

in the deterministic model under the restrictions WT � E1T + E2T (WT =
[W ] + [W ∗]) and q1, q2 	 1:

σ
def= θK1

K∗2
= V1

V ∗2
= μγ [μ− (μ+ 1)φ](φ − 1− K1

WT
)

[μγ − (μγ + 1)φ](φ + K∗2
WT
)
. (4.14)
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Fig. 4.4 The illustrated chemical master equation of the reduced model of the PdPC switch. The
two-dimensional vector (N − i, i) represents the random state that the molecule number of the
species W is (N − i) and the molecule number of the species W ∗ is i

Let q1 = q2 = 0; then one can get

σ = φ(1− φ + K1
WT
)

(1− φ)(φ + K∗2
WT
)
,

which is just the celebrated Goldbeter–Koshland equation [20] in their pioneer work
on zero-order ultrasensitivity.

4.4.4 Stochastic Model: Chemical Master Equation

In order to illustrate the essence of temporal cooperativity, we should turn to the
stochastic model, chemical master equation. Let V be the volume of the system;
then the total molecule number of W and W ∗ is N =WT V . Due to the existence
of unavoidable fluctuations, one cannot determine the molecule numbers of each
species at any arbitrary time t and, instead, can only determine the probability that
the vector representing the molecule numbers of species W and W ∗ is (N − i, i).

Denote the probability of the state (N − i, i) at time t as P(N − i, i; t); then it
satisfies the chemical master equation

dP (N,0; t)
dt

= f2(1/V )V P (N − 1,1; t)− f1(N/V )V P (N,0; t);
dP (N − i, i; t)

dt
= f1

(
(N + 1− i)/V )VP (N + 1− i, i − 1; t)

+ f2
(
(i + 1)/V

)
VP (N − 1− i, i + 1; t)

− [f1
(
(N − i)/V )

+ f2(i/V )
]
VP (N − i, i; t), i = 1,2, . . . ,N − 1;

dP (0,N; t)
dt

= f1(1/V )V P (1,N − 1; t)− f2(N/V )V P (0,N; t).

(4.15)

From (4.15), in the steady state, the ratio of the probabilities of the states (N −
i, i) and (N,0) is �ij=1[f1((N+1−j)/V )

f2(j/V )
]; then the steady distribution of the state
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(N − i, i) is

P ss(N − i, i)=
∏i
j=1

f1((N+1−j)/V )
f2(j/V )

1+∑N
i=1
∏i
j=1

f1((N+1−j)/V )
f2(j/V )

. (4.16)

Similar to the deterministic model, we introduce the ratio of the averaged
molecule number 〈W ∗〉 of phosphorylated protein molecules and the total molecule
number N , i.e.,

〈φ〉 def= 〈W ∗〉
N

=
∑N
i=1 i

∏i
j=1

f1((N+1−j)/V )
f2(j/V )

N(1+∑N
i=1
∏i
j=1

f1((N+1−j)/V )
f2(j/V )

)
. (4.17)

Define the quantities Kj = (N+1−j)f2(j/V )
jf1((N+1−j)/V ) representing the “dissociation capa-

bility” of the j th molecule in the state (N − j, j) transiting back from the activated
species W ∗ to the inactivated one W that are called “dissociation constants,” and
their reciprocals are representing the “association capability” of the j th molecule
transiting from the inactivated species W to the activated one W ∗ that can be called
“association constants.”

With these in our model, there exists the temporal cooperative phenomenon if
the quantities {Kj , j = 1,2, . . . ,N} successively decrease, which means the more
number of molecules of W ∗ is, the larger the association constant of the next
molecule transiting from the state W to W ∗ becomes. Furthermore, the cooperative
phenomenon appears more and more distinct when the gradient of the decreasing
quantities {Kj , j = 1,2, . . . ,N} increases.

4.4.5 Simple PdPC Switch: First-Order Approximation

Suppose WT 	 K1,K
∗
2 	 K∗1 ,K2 (nonsaturated); then f1([W ]) ≈ V1[W ]

K1
+ V2[W ]

K2

and f2([W ∗]) ≈ V ∗2 [W ∗]
K∗2

+ V ∗1 [W ∗]
K∗1

are both first-order, which is just the ordinary

PdPC switch discussed in [47].
It is easy to derive that both the fractional saturation φ in the deterministic model

and the 〈φ〉 in the stochastic model are equal to α
1+α . Then since α =

V1
K1
+ V2
K2

V ∗2
K∗2
+ V ∗1
K∗1

is

an increasing hyperbolic function of E1T , 〈φ〉 = φ is also an increasing hyperbolic
function of E1T illustrating no cooperative effect either, which implies that the N
molecules of W and W ∗ are all independent.

The dissociation constants {Ki} of temporal cooperativity with different vol-
umes. It is found that in such a simple PdPC switch, these dissociation constants
are all very close to 1, regardless of the variety of volumes, reconfirming no obvious
cooperative phenomenon.
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4.4.6 Ultrasensitive PdPC Switch: Zero-Order Approximation

Supposing that K2,K
∗
1 �WT �K1,K

∗
2 (saturated) and that K∗2 	K2, K1 	K∗1 ,

one can arrive at the limit case ( [W
∗]

K∗1
≈ 0 and [W ]

K2
≈ 0) f1([W ]) = v1([W ]) +

v2([W ])≈ V1 and f2([W ∗])= v∗1([W ∗])+ v∗2([W ∗])≈ V ∗2 .
These are both in the zero-order case, which should be considered as nonlin-

ear since f1(0) �= 0 and f2(0) �= 0. This is just the situation of ultrasensitive PdPC
switch [47] and zero-order ultrasensitivity phenomenon put forward by Goldbeter
and Koshland [20]. The Hill coefficient of the response curve can approach thou-
sands and tens of thousands.

In the deterministic model of this limit case, we have φ = δ{V1>V
∗
2 }, which is

a step function with ideal infinite sensitivity. In the stochastic model, the steady

distribution of the state (N − i, i) is αi

N(1+∑N
i=1 α

i)
(truncated geometric distribution),

so

〈φ〉 = 〈W
∗〉
N

=
∑N
i=1 iα

i

N(1+∑N
i=1 α

i)
=
⎧
⎨

⎩

NαN+1− αN+1−α
α−1

N(αN+1−1)
, α �= 1,

1/2, α = 1,
(4.18)

where α = V1
V ∗2

is the ratio of the forward flux from W to W ∗ and the backward flux

from W ∗ to W .
Obviously, 〈φ〉 is an increasing function of α and, consequently, an increas-

ing function of E1T . Moreover, as N → ∞, one has 〈φ〉 → 1 if α > 1 and
〈φ〉 → 0 if α < 1 (see Fig. 4.5). In this case, the classical Hill coefficient nH =
2 d log〈φ〉
d logα |〈φ〉= 1

2
= 1

3N + 2
3 . Therefore, as the total molecule number N tends to in-

finity, the Hill coefficient can increase to an arbitrary value.
Hence, when the Michaelis constants K1,K2 are quite small, the ultrasensitive

cooperative phenomenon emerges both in deterministic and stochastic models, al-
though their sensitivities cannot be as high as in the limit case discussed above.

Figure 4.5 illustrates the curves of 〈φ〉 with respect to E1T at different volumes
in the stochastic model of ultrasensitive PdPC switch under the zero-order approxi-
mation, in which it is found that the sensitivities of these curves are increasing with
the volumes (molecule numbers) and finally approach the ideal jumping curve of φ
with infinite sensitivity.

Figure 4.6 illustrates the curves of 〈φ〉 with respect to E1T at different volumes
in the stochastic model (4.15) by formula (4.17) of the ultrasensitive PdPC switch
without the zero-order approximation, in which it is found that the sensitivities of
these curves are increasing with the volumes (molecule numbers).

Figure 4.7 represents the dissociation constants {Ki} of cooperativity with dif-
ferent volumes. It is found that in the ultrasensitive PdPC switch, these dissociation
constants clearly decrease, and the gradient increases with the total molecule num-
bers, suggesting more and more distinct cooperative phenomenon.
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Fig. 4.5 The curve of 〈φ〉
with respect to E1T at
different volumes in the
stochastic model of
ultrasensitive PdPC switch
under the zero-order
approximation, where the
other parameters are the same
as those in Fig. 4.7

Fig. 4.6 The curve of 〈φ〉
with respect to E1T of
different volumes in the
stochastic model of the
ultrasensitive PdPC switch
without the zero-order
approximation, where the
other parameters are the same
as those in Fig. 4.7

4.4.7 Mathematical Equivalence to Allosteric Cooperativity

Although the sharp activation in PdPC switches has always been compared to al-
losteric cooperative transitions [34], it has never been made very clear what the
essential similarities and differences between them are. This significant question
could date back to Fischer and Krebs [9, 10], who discovered protein phosphory-
lation as a regulatory mechanism for enzyme activity and won the Nobel Prize in
1992.

Cooperativity can be generally considered in relation to the Adair scheme, first
proposed by Adair [1] in relation to the binding of oxygen to haemoglobin, and the



4 Stochastic Approach to Biophysical Systems 77

Fig. 4.7 The dissociation
constants in the ultrasensitive
PdPC switch, where a1 = 10,
d1 = 1, k1 = 1.5,
q1 = 0.0001, E1T = 0.01,
a2 = 10, d2 = 1, k2 = 1.5,
q2 = 0.0001, E2T = 0.01,
WT = 10, and α = V1/V

∗
2 .

The volume V takes values 1,
2, 5, 10, and 100, and the
molecule numbers N =WT V
are 10, 20, 50, 100, and 1000,
respectively

Fig. 4.8 General model of the allosteric cooperative phenomenon, where E is the enzyme, S is
the substrate, and c= [S]

general form of the Adair equation is

φ =
∑N
i=1

(N−1)!
(i−1)!(N−i)!

ci
∏i
j=1Kj

1+∑N
i=1

N !
i!(N−i)!

ci
∏i
j=1Kj

,

where c = [S], Kj = (N−j+1)c[ESj−1]
j [ESj ] is the dissociation constant of the j th

molecule of the substrate (regardless of site). Consequently, there is an important
corollary that the Hill coefficient of the [S]−φ curve determined by the Adair equa-
tion cannot exceed the total number N of sites on a single enzyme, i.e., nH ≤N .

Figure 4.8 is the general model of allosteric cooperative phenomenon including
both the famous MWC and KNF models [33, 41]. In this model, the concentration
of the substrate S is fixed, and the vector (N − i, i) represents the state in which
there are i sites occupied with substrates among the total N sites.

Therefore, we can show the equivalence of the underlying mathematics in tem-
poral cooperativity and allosteric cooperativity, both of which can be expressed by
“dissociation constants,” which also raises the essential differences between the sim-
ple and ultrasensitive PdPC switches.

It is very important to point out that Fig. 4.8 is nearly the same as Fig. 4.4, where
the temporal cooperativity is on the scale of the N sequential phosphorylation–
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dephosphorylation cycles. The sequential states in Fig. 4.4 are adjacent in time
rather than in space, which is the case in allosteric cooperativity. The model in
Fig. 4.8 is a special case of the model in Fig. 4.4 where f1(N+1−i/V )

f2(i/V )
= (N+1−i)[S]

iKi
.

These two kinds of cooperativity phenomena both come from the nonlinearity
of functions f1 and f2 (i.e., the varying of Ki ), but the former emerges from the
complex chemical reactions, while the latter arises from the allosteric interactions
between different sites. Actually, although there is no direct interaction between the
substrate enzymes, the total N molecules of W and W ∗ are not really independent:
they all compete for the single kinase and phosphatase, and hence there are implicit
interactions between them. Because this interaction is not through space but, instead,
is sequential in time, so Qian [47, 49] refer to it as temporal cooperativity.

Moreover, the meanings of the quantity N in Figs. 4.4 and 4.8 are totally dif-
ferent: the former represents the total molecule number in the temporal coopera-
tivity model, and the latter represents the total number of sites on a single enzyme
molecule, respectively. Hence, the degree of allosteric cooperativity is restricted by
the total number of sites in a single enzyme molecule which cannot be freely regu-
lated, while temporal cooperativity is only restricted by the total molecule number
of the target protein which can be regulated in a wide range and gives rise to the
ultrasensitivity phenomenon. That is just why the organisms find it advantageous
to develop the mechanism of covalent modification via phosphorylation and ATP
hydrolysis to control the biological activity of proteins rather than the mechanism
of allosteric transitions.

Therefore, the improving of the total number of molecules of target protein can-
not increase the degree of allosteric cooperativity, while it can obviously increase
the degree of temporal cooperativity, indicated by the increasing gradients of the
fractional saturation function 〈φ〉 (Fig. 4.6) and the decreasing dissociation con-
stants {Kj , j = 1,2, . . . ,N} (Fig. 4.7)!

4.5 Conclusion and Discussion

We are now at the beginning of a new development in theoretical chemistry and
physics, in which thermodynamic concepts may play an even more basic role. To
investigate these concepts, stochastic thermodynamics has developed much further
than other approaches during the last two decades [29, 56]. For stochastic systems,
the central problem is around the extension of the Second Law, which originally
describes the fundamental limitation on possible transitions between equilibrium
states.

Based on stochastic processes, we put forward a rather unified theory of nonequi-
librium thermodynamics [12, 13], which should be more convincing and rigorous
than the previous phenomenological frameworks. In addition, it would be interest-
ing to test experimentally all the quantities and relations, especially in nonharmonic
time-dependent potentials, where the Gaussian distribution assumption should be
violated.
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On the other hand, quantitative understanding and mathematical modeling of bi-
ological systems presents a significant challenge and a unique opportunity for sci-
entists of diverse disciplines, including both deterministic models and stochastic ap-
proaches. It is often thought that noise added to the biological models only provides
moderate refinements to the behaviors otherwise predicted by the classical deter-
ministic system description, while it is quite clear that the main result, namely the
mathematical equivalence between temporal and allosteric cooperativity can only
be explicitly expressed by the chemical master equation model (see Fig. 4.4). Also
the concept of temporal cooperativity in terms of the random-walk model is not
limited to PdPC and kinetically isomorphic GTPases but also applies to many other
signaling processes [49].
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Chapter 5
Granger Causality: Theory and Applications

Shuixia Guo, Christophe Ladroue,
and Jianfeng Feng

5.1 Introduction

A question of great interest in systems biology is how to uncover complex network
structures from experimental data [1, 3, 18, 38, 55]. With the rapid progress of ex-
perimental techniques, a crucial task is to develop methodologies that are both statis-
tically sound and computationally feasible for analysing increasingly large datasets
and reliably inferring biological interactions from them [16, 17, 22, 37, 40, 42].
The building block of such enterprise is to being able to detect relations (causal,
statistical or functional) between nodes of the network. Over the past two decades,
a number of approaches have been developed: information theory [4], control theory
[16] or Bayesian statistics [35]. Here we will be focusing on another successful al-
ternative approach: Granger causality. In recent Cell papers [7, 8], the authors have
come to the conclusion that the ordinary differential equation approach outperforms
the other reverse engineering approaches (Bayesian network and information the-
ory) in building causal networks. We have demonstrated that the Granger causality
achieves better results than the ordinary differential approach [54].

The basic idea of Granger causality can be traced back to Wiener [47] who con-
ceived the notion that, if the prediction of one time series is improved by incorpo-
rating the knowledge of a second time series, then the latter is said to have a causal
influence on the first. Granger [23, 24] later formalised Wiener’s idea in the context
of linear regression models. Specifically, two auto-regressive models are fitted to
the first time series—with and without including the second time series—and the
improvement of the prediction is measured by the ratio of the variance of the error
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Fig. 5.1 The extensions of traditional Granger causality that will be discussed in this chapter

terms. A ratio larger than one signifies an improvement, hence a causal connection.
At worst, the ratio is 1 and signifies causal independence from the second time se-
ries to the first. Geweke’s decomposition of a vector autoregressive process [20, 21]
led to a set of causality measures which have a spectral representation and make
the interpretation more informative and useful by extending Granger causality to
the frequency domain. In this chapter, we aim to present Granger causality and how
its original formalism has been extended to address biological and computational
issues, as summarised in Fig. 5.1.

Partial Granger Causality In its original conception, Granger causality is limited
to the investigation of pairs of time series. If strong enough, indirect connections
produce spurious relations between distant nodes. Conditional Granger causality
[10, 12, 21] is able to deal with this situation by removing the influence of an ex-
ternal node and thus discarding what would be misleading connections. However, it
requires the explicit knowledge of the influencing node; in other words, its applica-
bility largely depends on the ability to measure all relevant variables, which is usu-
ally not possible in biological recordings. Both exogenous inputs and endogenous
variables can confound accurate causal influences and thus degrade the credibility
of the uncovered network structure. In order to eliminate the influences of exoge-
nous inputs and latent variables, and inspired by the definition of partial correlation
in statistics, we introduce a new definition of Granger causality: partial Granger
causality, which is robust against perturbations due to common unseen variables
[25, 26, 29, 50].
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Frequency Analysis Thanks to Geweke’s decomposition of a power spectrum
[20, 21], Granger causality can be expressed in the frequency domain [26, 49] and
thus provides more information: a spectrum indicating at which frequencies the con-
nection between two time series occurs is produced, instead of a single number. This
property is especially useful for studying phenomena in which frequencies play a
major role, like electro-physiological recordings (e.g. multi-electrode array in the
brain) or rhytmic behaviour like ciracadian rhythm [15]. The two representations
(time and frequency domains) are consistent: integrating the spectrum over all fre-
quencies is equal in practice to the time domain Granger causality.

Complex Granger Causality In complex systems of genes, proteins or neurons,
elements often work cooperatively or competitively to achieve a task. If we want
to understand biological process in details, it is of substantial importance to study
the interactions among groups of nodes. Such group interactions are ubiquitous in
biological processes: enzymes act on the production rate of metabolites [18, 28],
information is passed on from one layer of neurons to the next, transcription factors
form complexes which influence gene activity, etc. These interactions will be missed
out with traditional Granger causality approaches. To tackle this problem, we extend
traditional Granger causality to complex Granger causality, defined both in the time
and frequency domains [15, 29]. Furthermore, we validate this approach with real
biological data.

Harmonic Granger Causality Partial Granger causality was developed to elimi-
nate the influence of common inputs, be they exogenous and endogenous. But full
elimination is only possible if all common external inputs have equal influence on
all measured variables, which is generally not realistic to expect in experimental
recordings. For example, we know that certain genes are sensitive to local pH or
temperature, while others are not. In this situation, we want to know which variables
are impacted by environmental inputs, and the extent of this influence. In Sect. 5.5,
Granger causality is modified to explicitly include a model of an oscillating exter-
nal input [9, 11, 27, 44, 48–50]. Its influence on each of the observed variables can
then be quantified, and an accurate network can be built. The method is applied to
microarray experiments to study the circadian rhythm in a plant.

Granger Causality and Bayesian Networks Bayesian networks are a popular
approach for investigating biological systems which has proved successful on many
occasions [35, 39]. A natural question is to know whether one should choose
Bayesian network or Granger causality when faced with data. In Sect. 5.6, we
present a systematic and computationally intensive comparison between the two
methods [52]. The experiment is done on simulated data, of which the true structure
is known and for which we have total control on the parameters. It results that the
length of the time series is a crucial factor for the contrasted performances of the
two methods.
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Unified Causal Model In contrast to many similar frameworks [17, 37], Granger
causality does not use the concept of perturbation to define causality. In these frame-
works, the states of the system are compared before and after some event (e.g. in-
jection of different inhibitors in a cell in [39]). Instead, Granger causality relies
on dependence over time to define causality. Unified Causal Model (UCM) is an
attempt at including the notions of stimuli and modifying coupling to traditional
Granger causality. Section 5.7 explains how UCM unifies the seemingly different
approaches of Granger causality, phenomenological in nature, and the model-based
Dynamic Causal Model (DCM, [16]).

Large Networks While partial Granger causality is efficient for uncovering small
network structures, the method does not scale up for practical reasons: removing
the influence of all other variables requires the fit of a linear model so large that it
exhausts the number of observables. The system is underdetermined, and the result-
ing Granger causality unreliable. To address this issue, we developed an iterative
procedure that builds a global network of possibly hundreds of nodes from local
investigations. The idea is to gradually prune the network by removing indirect con-
nections, considered one at a time. Applied on simulated networks of 200 nodes, the
method shows very good performance. Section 5.8 shows its application on a large
network of 800 proteins [53].

5.2 Partial Granger Causality

Traditional Granger causality is defined for two time series only. In order to build
a network of interactions from a collection of time series, a simple approach is to
apply it to all possible pairs of signals. However, indirect links can lead to spurious
connections if single connections are strong enough: if A→ B and B→ C, then
very likely A→ C will be picked up by Granger causality. The end-result is often
a very densely connected network. Conditional Granger causality [12, 22] works
by explicitly removing the influence of a third signal and thus avoids producing
misleading links.

Critically, the ability of conditional Granger causality to deal with indirect inter-
actions depends on being able to measure all relevant variables in a system. This
is not possible most of the times, and both environmental inputs and unmeasured
latent variables can confound real causal influences. For example, in experimental
data recorded from the inferotemporal (IT) cortex, every measured neuron receives
common exogenous inputs from the visual cortex and feedback from the prefrontal
cortex. Moreover, even with advanced multielectrode array techniques, only a tiny
subset of interacting neurons in a single area is recorded and there bound to be latent,
unobserved variables. In this section, we introduce partial Granger causality [25], an
extension of conditional Granger causality which addresses the issue of exogenous
and latent variables.
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5.2.1 Time Domain Formulation

For three time series Xt , Yt and Zt , define �yt = (Xt , Yt ,Zt ), where Xt and Yt are
one-dimensional time series, andZt is a set of time series of dimensionm. A general
form of an autoregressive model with zero mean and exogenous variable �εEt has the
following vector autoregressive representation with the use of the lag operator1 L:

B(L)�yt = �εEt + �εt (5.1)

where B is a polynomial matrix of L, B(0)= In, the n× n identity matrix. The two
random vectors �εE and �ε are independent. The exogenous variable �εE represents
the environmental drive and is typically present in any experimental setup.

As already mentioned, the confounding influence of latent variables is possibly
even more disruptive than that due to exogenous inputs. To incorporate latent vari-
ables, assume that the ith network element receives unmeasured inputs of the form
∑N
j=1 xij (t)/N , where each xij is a stationary time series, and j is the latent index.
According to the Wold representation, any stationary variable ξ(t) can be ex-

pressed as the summation of the form
∑
k ψkε(t − k), and we have

xij (t)=
∑

k=1

ψij,kε
L
ij (t − k)

where εLij is the latent variable of indices (i, j). Therefore

N∑

j=1

xij (t)/N =
N∑

j=1

∑

k=1

ψij,kε
L
ij (t − k)/N

=
∑

k=1

ψ̄i,kε
L
i (t − k)

where ψ. are constants. In other words, each node i receives a latent input εLi which
depends on its history.

So the model (5.1) becomes

B(L)�yt = �εEt + �εt +B(1)(L)�εLt (5.2)

where the random vectors (�εEt , �εLt ) and �εt are independent, and B(1)(L) is another
polynomial matrix of L of appropriate size.

1A lag operator L is such that LXt = Xt−1. Thus, applying the operator k times yields: LkXt =
Xt−k . The auto-regressive model Xt +A1Xt−1 +A2Xt−2 + · · · = εt can be represented as (Id +
A1 L +A2 L2 + · · · )Xt = εt .
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Now consider two time series Xt and Zt which admit a joint autoregressive rep-
resentation of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt =
∞∑

i=1

a1iXt−i +
∞∑

i=1

c1iZt−i + �ε1t + �εE1t +
−−−−−→
B1(L)εL1t

Zt =
∞∑

i=1

b1iZt−i +
∞∑

i=1

d1iXt−i + �ε2t + �εE2t +
−−−−−→
B2(L)εL2t

(5.3)

For simplicity of notation, let us define

ui(t)= �εit + �εEit +
−−−−−→
Bi(L)εLit

The noise covariance matrix for the model can be represented as

S =
[

var(u1t ) cov(u1t , u2t )

cov(u2t , u1t ) var(u2t )

]

=
[
Sxx Sxz
Szx Szz

]

In the same fashion, the vector autoregressive representation for a system involv-
ing three variables Xt,Yt and Zt can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt =
∞∑

i=1

a2iXt−i +
∞∑

i=1

b2iYt−i +
∞∑

i=1

c2iZt−i + �ε3t + �εE3t +
−−−−−→
B3(L)εL3t

Yt =
∞∑

i=1

d2iXt−i +
∞∑

i=1

e2iYt−i +
∞∑

i=1

f2iZt−i + �ε4t + �εE4t +
−−−−−→
B4(L)εL4t

Zt =
∞∑

i=1

g2iXt−i +
∞∑

i=1

h2iYt−i +
∞∑

i=1

k2iZt−i + �ε5t + �εE5t +
−−−−−→
B5(L)εL5t

(5.4)

The noise covariance matrix for the model can be represented as

Σ =
⎡

⎣
var(u3t ) cov(u3t , u4t ) cov(u3t , u5t )

cov(u4t , u3t ) var(u4t ) cov(u4t , u5t )

cov(u5t , u3t ) cov(u5t , u4t ) var(u5t )

⎤

⎦=
⎡

⎣
Σxx Σxy Σxz
Σyx Σyy Σyz
Σzx Σzy Σzz

⎤

⎦

In order to consider the influence from Y to X while controlling for the effect
of the exogenous input, we consider the variance of u1t when we eliminate the
influence of u2t :

cov(u1t , u1t )− cov(u1t , u2t )cov(u2t , u2t )
−1cov(u2t , u1t )= Sxx − SxzS−1

zz Szx

Similarly, the variance of u3t while eliminating the influence of u5t equals to

cov(u3t , u3t )− cov(u3t , u5t )cov(u5t , u5t )
−1cov(u5t , u3t )=Σxx −ΣxzΣ−1

zz Σzx

The value of Sxx −SxzS−1
zz Szx , a scalar, measures the accuracy of the autoregres-

sive prediction of X based on its previous values conditioned on Z and eliminating
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the influence of the latent variables, whereas the value of Σxx −ΣxzΣ−1
zz Σzx , also

a scalar, represents the accuracy of predicting present value of X based on the pre-
vious history of both X and Y , conditioned on Z and eliminating the influence of
latent variables. Granger causality defines the causality from one process to another
by comparing the improvement in prediction when the first process is taken into
account. Similarly we define this causal influence by

F = ln

( |Sxx − SxzS−1
zz Szx |

|Σxx −ΣxzΣ−1
zz Σzx |

)

(5.5)

We call F partial Granger causality. Note that conditional Granger causality is
defined by F = ln( |Sxx ||Σxx | ). The essential difference between them is that with con-
ditional Granger causality, the effect of latent variables remains present both in the
denominator |Σxx | and in the numerator |Sxx |. In contrast, partial Granger causal-
ity uses the conditional variance in both the denominator |Σxx −ΣxzΣ−1

zz Σzx | and
numerator |Sxx − SxzS−1

zz Szx |. As a result, the effects of the latent and exogenous
variables are both taken into account.

5.2.2 Numerical Example

Example 1 We simulated a 5-node oscillatory network structurally connected with
different delays. In order to illustrate the robustness of partial Granger causality, we
add exogenous inputs and latent variables to the model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.95
√

2x1(t − 1)− 0.9025x1(t − 2)+ ε1(t)+ a1ε6(t)

+ b1ε7(t − 1)+ c1ε7(t − 2)

x2(t) = 0.5x1(t − 2)+ ε2(t)+ a2ε6(t)+ b2ε7(t − 1)+ c2ε7(t − 2)

x3(t) = −0.4x1(t − 3)+ ε3(t)+ a3ε6(t)+ b3ε7(t − 1)+ c3ε7(t − 2)

x4(t) = −0.5x1(t − 2)+ 0.25
√

2x4(t − 1)+ 0.25
√

2x5(t − 1)+ ε4(t)

+ a4ε6(t)+ b4ε7(t − 1)+ c4ε7(t − 2)

x5(t) = −0.25
√

2x4(t − 1)+ 0.25
√

2x5(t − 1)+ ε5(t)+ a5ε6(t)

+ b5ε7(t − 1)+ c5ε7(t − 2)

where εi(t), i = 1,2, . . . ,7, are zero-mean uncorrelated processes with identical
variances, aiε6 is the exogenous input, and the term biε7(t − 1)+ ciε7(t − 2) rep-
resents the influence of latent variables. From the model (depicted in Fig. 5.2(A))
one can see that x1(t) is a direct source to x2(t), x3(t), and x4(t), x4(t) and x5(t)

share a feedback loop. There is no direct connection between x1(t) and x5(t). We
perform a simulation of this system with ai ∼ U [0,1], bi = 2, ci = 5, i = 1, . . . ,5,
to generate a data set of 2000 data points with a sample rate of 200 Hz.

A bootstrap is used to calculate 95% confidence intervals. Figure 5.2 (B, up-
per panel) shows the values for both partial Granger causality (F1) and conditional
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Fig. 5.2 Granger Causality applied to the system in Example 1. (A) The true network structure.
(B) (upper panel) Comparison of the partial Granger causality F1 and the conditional Granger
causality F2. F2 fails to pick up any true connections, while the inferred links from F1 are consis-
tent with the correct structure (A). (Bottom panel) Comparison of the partial Granger causality in
the time domain (blue line) and frequency domain (red line, the integral of the frequency domain
formulation in the interval [−π,π]. (C) Results of the frequency domain decomposition of all 20
pairs of signals (for the color version, see Color Plates on p. 390)

Granger causality (F2) when applied to the simulated data. Partial Granger causality
outperforms the conditional Granger causality.

The values of the conditional Granger causality are all very small due to the
dominating nuisance effect of latent variables and common inputs, while the partial
Granger causality reveals the correct structure.

5.3 Frequency Analysis

Granger causality summarises the influence of one time series on another with a
single nonnegative number. It is possible to extract more information about their
connection by going to the frequency domain. Thanks to Geweke’s decomposition
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[20, 21], the power spectrum of the target signal can be written as a sum of eas-
ily interpretable quantities, leading to a natural definition of Granger causality in
the frequency domain. Instead of a single number, a whole spectrum expliciting at
which frequencies the signals interact is obtained. We present here a similar decom-
position for the more recent partial Granger causality.

To derive the spectral decomposition of the time domain partial Granger causal-
ity, we first multiply the matrix

P1 =
(

1 −SxzS−1
zz

0 Im

)

(5.6)

to both sides of (5.3). The normalised equations are represented as

(
D11(L) D12(L)

D21(L) D22(L)

)(
Xt
Zt

)

=
(
X∗t
Z∗t

)

(5.7)

with D11(0) = 1, D22(0) = Im, D21(0) = 0, cov(X∗t ,Z∗t ) = 0, we note that
var(X∗t ) = Sxx − SxzS−1

zz Szx , var(Z∗t ) = Szz. For (5.4), we also multiply the ma-
trix

P = P3 · P2 (5.8)

where

P2 =
⎛

⎝
1 0 −ΣxzΣ−1

zz

0 1 −ΣyzΣ−1
zz

0 0 Im

⎞

⎠ (5.9)

and

P3 =
⎛

⎝
1 0 0

−(Σxy −ΣxzΣ−1
zz Σzy)(Σxx −ΣxzΣ−1

zz Σzx)
−1 1 0

0 0 Im

⎞

⎠ (5.10)

to both sides of (5.4). The normalised equation of (5.4) becomes

⎛

⎝
B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)

⎞

⎠

⎛

⎝
Xt
Yt
Zt

⎞

⎠=
⎛

⎝
εxt
εyt
εzt

⎞

⎠ (5.11)

where εxt , εyt , εzt are independent, with variances Σ̂xx , Σ̂yy and Σ̂zz:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Σ̂zz = Σzz
Σ̂xx = Σxx −ΣxzΣ−1

zz Σzx

Σ̂yy = Σyy −ΣyzΣ−1
zz Σzy −

(Σyx −ΣyzΣ−1
zz Σzx)(Σxy −ΣxzΣ−1

zz Σzy)

(Σxx −ΣxzΣ−1
zz Σzx)
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After Fourier transforming (5.7) and (5.11), we can rewrite these two equations
as the following expression:

(
X(λ)

Z(λ)

)

=
(
Gxx(λ) Gxz(λ)

Gzx(λ) Gzz(λ)

)(
X∗(λ)
Z∗(λ)

)

(5.12)

and
⎛

⎝
X(λ)

Y (λ)

Z(λ)

⎞

⎠=
⎛

⎝
Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)

⎞

⎠

⎛

⎝
Ex(λ)

Ey(λ)

Ez(λ)

⎞

⎠ (5.13)

Note that X(λ) and Z(λ) from (5.12) are identical with those from (5.13), and we
thus have

⎛

⎝
X∗(λ)
Y (λ)

Z∗(λ)

⎞

⎠ =
⎛

⎝
Gxx(λ) 0 Gxz(λ)

0 1 0
Gzx(λ) 0 Gzz(λ)

⎞

⎠

−1⎛

⎝
Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)

⎞

⎠

×
⎛

⎝
Ex(λ)

Ey(λ)

Ez(λ)

⎞

⎠

=
⎛

⎝
Qxx(λ) Qxy(λ) Qxz(λ)

Qyx(λ) Qyy(λ) Qyz(λ)

Qzx(λ) Qzy(λ) Qzz(λ)

⎞

⎠

⎛

⎝
Ex(λ)

Ey(λ)

Ez(λ)

⎞

⎠ (5.14)

where Q(λ)=G−1(λ)H(λ). Now the power spectrum of X∗ is

Sx∗x∗(λ)=Qxx(λ)Σ̂xxQ′xx(λ)+Qxy(λ)Σ̂yyQ′xy(λ)+Qxz(λ)Σ̂zzQ′xz(λ) (5.15)

where ′ denotes the conjugate transpose. Note that Σ̂xx =Σxx −ΣxzΣ−1
zz Σzx ; the

first term of Sx∗x∗ can be thought of as the intrinsic power eliminating exogenous
inputs and latent variables, while the remaining two terms as the combined causal
influence from Y mediated by Z. This interpretation leads immediately to the defi-
nition

fY→X|Z(λ)= ln
|Sx∗x∗(λ)|

|Qxx(λ)Σ̂xxQ′xx(λ)|
(5.16)

Note that according to (5.7), the variance ofX∗ equals Sxx−SxzS−1
zz Szx . By the Kol-

mogorov formula [21] for spectral decompositions and under some mild conditions,
the Granger causality in the frequency domain and in the time domain measures
satisfy

FY→X|Z = 1

2π

∫ π

−π
fY→X|Z(λ)dλ (5.17)

Example 2 We apply the frequency analysis to the data presented in Example 1.
Figure 5.2 (B, bottom panel) presents a comparison between the time domain par-
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tial Granger causality and the integrated frequency domain partial Granger causal-
ity (the summation over all frequencies). As expected from Kolmogorov formula,
the decomposition in the frequency domain fits very well with the partial Granger
causality in the time domain. Figure 5.2(C) shows the spectra for the partial Granger
causality for all 20 pairs of signals. There are direct causal links from 1 to 2, 3 and 4,
and a feedback between 5 and 4. Most importantly they are consistent with the re-
sults in the time domain.

This approach has been used with success on data where one would expect fre-
quency to be important, e.g. electrophysiological experiments, but also on microar-
ray or protein data [26, 53]. Section 5.5.4 presents an example on gene expression
changes during circadian rhythm in a plant.

5.4 Group Interaction: Complex Granger Causality

So far, we have only considered Granger causality between two individual signals.
This can be limiting for the study of biological systems, where cooperative and
competitive actions are a frequent occurrence. For example, one would like to study
the flow of information between brain regions rather than between individual neu-
rons, or to elucidate transcription factor complexes (an AND-like combination of
proteins) in the cell. In this section, we present complex Granger causality [29], a
measure of causality between collections of time series. It can be considered the nat-
ural extension of partial Granger causality to the multidimensional case. However,
we will see that cross-interaction between sources can now have an influence on the
strength of the connection to a target group.

5.4.1 Time Domain Formulation

Consider three multiple stationary time series �Xt , �Yt and �Zt with k, l and m di-
mensions, respectively. We first consider the relationship from �Yt to �Xt conditioned
on �Zt . The joint autoregressive representation for �Xt and �Zt can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Xt =
∞∑

i=1

a1i �Xt−i +
∞∑

i=1

c1i �Zt−i + �ε1t

�Zt =
∞∑

i=1

b1i �Zt−i +
∞∑

i=1

d1i �Xt−i + �ε2t

(5.18)

where �εt are vectors representing exogenous and endogenous inputs and noise. The
noise covariance matrix for the system can be represented as

S =
(

var(�ε1t ) cov(�ε1t , �ε2t )

cov(�ε2t , �ε1t ) var(�ε2t )

)

=
(
Sxx Sxz
Szx Szz

)
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where var and cov represent variance and covariance, respectively. In the same man-
ner, the vector autoregressive representation for the system involving the three time
series �Xt , �Yt and �Zt can be written in the following way:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�Xt =
∞∑

i=1

a2i �Xt−i +
∞∑

i=1

b2i �Yt−i +
∞∑

i=1

c2i �Zt−i + �ε3t

�Yt =
∞∑

i=1

d2i �Xt−i +
∞∑

i=1

e2i �Yt−i +
∞∑

i=1

f2i �Zt−i + �ε4t

�Zt =∑∞
i=1 g2i �Xt−i +∑∞

i=1 h2i �Yt−i +∑∞
i=1 k2i �Zt−i + �ε5t

(5.19)

The noise covariance matrix for the above system can be represented as

Σ =
⎛

⎜
⎝

var(�ε3t ) cov(�ε3t , �ε4t ) cov(�ε3t , �ε5t )

cov(�ε4t , �ε3t ) var(�ε4t ) cov(�ε4t , �ε5t )

cov(�ε5t , �ε3t ) cov(�ε5t , �ε4t ) var(�ε5t )

⎞

⎟
⎠=

⎡

⎣
Σxx Σxy Σxz
Σyx Σyy Σyz
Σzx Σzy Σzz

⎤

⎦

The conditional variance Sxx − SxzS−1
zz Szx measures the accuracy of the autore-

gressive prediction of �X based on its previous values conditioned on �Z, whereas
the conditional variance Σxx −ΣxzΣ−1

zz Σzx measures the accuracy of the autore-
gressive prediction of �X based on its previous values of both �X and �Y conditioned
on �Z. Note that now both Sxx − SxzS−1

zz Szx and Σxx −ΣxzΣ−1
zz Σzx are matrices

and not scalars. We denote Tx|z and Txy|z their respective traces, which we use to
compare their relative size. Following the original concept of Granger causality, we
define the partial complex Granger causality from group �Y to group �X conditioned
on group �Z to be

F �Y→�X| �Z = ln

(
Tx|z
Txy|z

)

(5.20)

If Y and X are one-dimensional, the definition reduces to that of partial Granger
causality. Partial Complex causality has the same property of removing the influence
of explicit and unseen variables from the connection from Y to X.

5.4.2 Frequency Domain Formulation

The derivation of the frequency domain formulation follows the steps seen in
Sect. 5.3, with the minor difference that the trace replaces the absolute value.

We first normalise (5.18) by multiplying the matrix

P1 =
(
Ik −SxzS−1

zz

0 Im

)

(5.21)
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to both sides of it. The normalised equations are represented as

(
D11(L) D12(L)

D21(L) D22(L)

)( �Xt
�Zt
)

=
( �X∗t�Z∗t

)

(5.22)

where var( �X∗t )= Sxx −SxzS−1
zz Szx, var( �Z∗t )= Szz. For (5.19), we also multiply the

matrix

P = P3 · P2 (5.23)

where

P2 =
⎛

⎝
Ik 0 −ΣxzΣ−1

zz

0 Il −ΣyzΣ−1
zz

0 0 Im

⎞

⎠ (5.24)

and

P3 =
⎛

⎝
Ik 0 0

−(Σyx −ΣyzΣ−1
zz Σzx)(Σxx −ΣxzΣ−1

zz Σzx)
−1 Il 0

0 0 Im

⎞

⎠ (5.25)

to both sides of (5.19). The normalised equation of (5.19) becomes

⎛

⎝
B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)

⎞

⎠

⎛

⎝

�Xt
�Yt
�Zt

⎞

⎠=
⎛

⎝
�εxt
�εyt
�εzt

⎞

⎠ (5.26)

where �εxt , �εyt , �εzt are independent, and their variances being Σ̂xx, Σ̂yy and Σ̂zz
with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Σ̂zz = Σzz
Σ̂xx = Σxx −ΣxzΣ−1

zz Σzx

Σ̂yy = Σyy −ΣyzΣ−1
zz Σzy −

(Σyx −ΣyzΣ−1
zz Σzx)(Σxy −ΣxzΣ−1

zz Σzy)

(Σyy −ΣyzΣ−1
zz Σzy)

As shown in Sect. 5.3, we can obtain the power spectrum of �X∗t
Sx∗x∗(ω)=Qxx(ω)Σ̂xxQ∗xx(ω)+Qxy(ω)Σ̂yyQ∗xy(ω)+Qxz(ω)Σ̂zzQ∗xz(ω)

(5.27)
Considering the traces of both sides of (5.27), we have:

tr
(
Sx∗x∗(ω)

) = tr
(
Qxx(ω)Σ̂xxQ

∗
xx(ω)

)+ tr
(
Qxy(ω)Σ̂yyQ

∗
xy(ω)

)

+ tr
(
Qxz(ω)Σ̂zzQ

∗
xz(ω)

)
(5.28)

As before, we can think of the first term as the intrinsic power while eliminating
exogenous inputs and latent variables, and the remaining two terms as the combined
influence from �Y mediated by �Z.
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This interpretation leads immediately to the definition

f �Y→�X| �Z(ω)= ln
tr(Sx∗x∗(ω))

tr(Qxx(ω)Σ̂xxQ∗xx(ω))
(5.29)

Note that according to (5.20), the variance of X∗ equals Σxx −ΣxzΣ−1
zz Σzx . By

the Kolmogorov formula [21] for spectral decompositions and under the same mild
conditions, the Granger causality in the frequency domain and in the time domain
measures satisfy

F �Y→�X| �Z =
1

2π

∫ π

−π
f �Y→�X| �Z(ω)dω (5.30)

5.4.3 Effect of Correlation Between Sources

The complex Granger causality between a group and a target signal can be af-
fected by the source signals’ cross-correlations. Let us consider a model where
yi , i = 1,2, . . . ,N , are identical random processes. The Granger causality from
(yi(t), i = 1, . . . ,N ) to their weighted sum y(t) := a∑N

i=1 yi(t) + εt is log(1 +
a2N(1+ ρ(N − 1))) where ρ is the correlation coefficient between yi ’s and εt is
normally distributed. Figure 5.3 illustrates how the complex interaction depends on
the correlation. If the original signals are not correlated (black dashed line), taken
as group, they have increasingly higher interaction with y with the number of units.
But this interaction is always higher the more positively cross-correlated they are.
Conversely, negative cross-correlation reduces the interaction, all the way down to
zero even though the target signal y is made up of each of these signals by con-
struction. Collaborative activity enhances the interaction, but antagonistic activity
reduces or even suppresses the interaction.

Fig. 5.3 The role of
correlation in the complex
interaction. The Granger
causality vs. units (N ) for
different cross-correlation
coefficients with a = 0.022.
(ρ =−1/9 is the smallest
possible value for the
cross-correlations of 10 units)
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5.5 Harmonic Granger Causality

With partial Granger causality, the external influence is assumed present but not
known in explicit form. However, there are situations in which a model of an exter-
nal factor is available, for example the oscillating amount of sunlight received by an
organism. In this section, we consider the inclusion of a harmonic oscillator in the
formulation of Granger causality. This new term represents a periodically changing
environmental input (e.g. sunlight, pH, temperature), and since its contribution to
the prediction is explicit, it is possible to elucidate its Granger influence on each of
the observed time series.

This extension should be amenable to a more general class of models: any func-
tion can be written as a sum of periodic functions through Fourier analysis [27, 44].
Moreover, it should be possible to define it for more than two time series and use it
like partial Granger causality. Both aspects are the subject of further study.

5.5.1 Time Domain Formulation

As we have seen in the previous sections, the core idea of Granger analysis is to
measure how much the prediction of a target time series has improved with the
knowledge of a possible source. The innovation of harmonic Granger causality is
to have two possible sources of influences—another observed time series and the
oscillator—which leads to two quantities of interest.

Consider a target time series X, a possible source Y and the periodic environ-
mental factor E. As usual, we use an autoregressive model to predict X, but this
time we include different combinations of contributions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt =
∞∑

i=1

a1iXt−i +C1x cos(2πf1xt + φx)+ ε1t

Xt =
∞∑

i=1

a2iXt−i +
∞∑

i=1

b2iYt−i +C2x cos(2πf2xt + φx)+ ε3t

Xt =
∞∑

i=1

a3iXt−i +
∞∑

i=1

b3iYt−i + ε5t

(5.31)

We denote Σi the variance of each error term εit . The only difference between
the first and second equation is the inclusion of Y in the model. Therefore, we can
naturally define the harmonic Granger causality from Y to X as

FY→X = ln
Σ1

Σ3

Similarly, the only difference between the second and the third equation is the
inclusion of the oscillator. We define the harmonic Granger causality from E to X
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as

FE→X = ln
Σ5

Σ3

These newly defined quantities behave in the same manner as before: if Y
(resp. E) does not contribute to X, b2i = 0 and ε3t = ε1t , which implies FY→X = 0.
Otherwise, Σ1 >Σ3, since the fit has more degrees of freedom, and FY→X > 0.

5.5.2 Two Remarks About Harmonic Granger Causality

1. The addition of the harmonic term in the causality analysis is motivated by the
fact that signals from experimental data are often periodic. A closer model would
include more than one oscillator, to take into account a larger number of back-
ground periodic influences. This Fourier-like method could lead to a more accu-
rate picture of the network structure.

2. Harmonic Granger causality requires the fitting of three autoregressive models,
whose parameters have to be estimated. When the model does not feature an har-
monic term, a usual least-square fitting or classical more sophisticated techniques
are sufficient and can easily be implemented [12, 33, 36]. When the autoregres-
sive model includes an harmonic term, a two-step procedure can improve param-
eter estimation. First, we identify (manually or automatically) the dominating
oscillation present in X by looking at its spectrum after Fourier transformation.
The dominating frequency is filtered out to produce a new X̃ lacking this fre-
quency, which is then fitted using usual methods [27, 44].

5.5.3 Frequency Domain Formulation

Harmonic Granger causality has an equivalent formulation in the frequency domain,
whereby we can obtain the causality spectra showing the frequencies at which the
influence of one node is exerted on another. Deriving the frequency domain formula-
tion requires some mathematical manipulations in order to decompose the spectrum
into clearly separated expressions.

To begin with, we rewrite the following auto-regressive model:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt =
∞∑

i=1

a2iXt−i +
∞∑

i=1

b2iYt−i +C2x cos(2πf2xt + φx)+ ε3t

Yt =
∞∑

i=1

c2iYt−i +
∞∑

i=1

d2iYt−i +C2y cos(2πf2yt + φy)+ ε4t

(5.32)

in terms of the lag operator
(
D11(L) D12(L)

D21(L) D22(L)

)(
Xt +Oxt
Yt +Oyt

)

=
(
ε3t
ε4t

)

(5.33)
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where Oxt and Oyt represent the oscillator added to X and Y , respectively. We first
normalise (5.33) by multiplying the matrix

P =
(

1 0
−Σ34
Σ3

1

)

(5.34)

to both sides of it, where Σ34 = cov(ε3t , ε4t ), Σ3 = var(ε3t ), The normalised equa-
tions are represented as

(
D̃11(L) D̃12(L)

D̃21(L) D̃22(L)

)(
Xt +Oxt
Yt +Oyt

)

=
(
ε̃3t
ε̃4t

)

(5.35)

where ε̃3t and ε̃4t are now independent. Fourier-transforming both sides of (5.35)
leads to

[
X(ω)+Ox(ω)
Y (ω)+Oy(ω)

]

=
[
Hxx(ω) Hxy(ω)

Hyx(ω) Hyy(ω)

][
Ex(ω)

Ey(ω)

]

(5.36)

where the transfer function is H(ω) = D̃−1(ω). We can also rewrite (5.36) in the
following expression:

[
X(ω)

Y (ω)

]

=
[
Hxx(ω) Hxy(ω)

Hyx(ω) Hyy(ω)

][
Ex(ω)

Ey(ω)

]

+
[
Õx(ω)

Õy(ω)

]

(5.37)

where
[
Õx(ω)

Õy(ω)

]

=−
[
Ox(ω)

Oy(ω)

]

It can now be seen that X is defined as follows:

X(ω)=Hxx(ω)Ex(ω)+Hxy(ω)Ey(ω)+ Õx(ω) (5.38)

To obtain the frequency decomposition of the time domain causality, we look at
the auto-spectrum of Xt :

Sxx(ω) = X(ω)X∗(ω)
= HxxExE∗xH ∗xx + ÕxÕ∗x +HxxExÕ∗x + ÕxE∗xH ∗xx
+HxyEyÕ∗x +HxyEyE∗yH ∗xy + ÕxE∗yH ∗xy

= S1 + S2 (5.39)

S1 =HxxExE∗xH ∗xx + ÕxÕ∗x +HxxExÕ∗x + ÕxE∗xH ∗xx , viewed as intrinsic part,
involves only the variance of ε3t , which is the noise term from the model for Xt .
S2 = HxyEyÕ∗x +HxyEyE∗yH ∗xy + ÕxE∗yH ∗xy , viewed as the causal part, involves
only the variance of ε4t , which is the noise term from the model for Yt .

Note that if the harmonic term Ox is not present, there are only two terms in the
expression for Sxx ; it is consistent with the frequency decomposition of the time
domain pairwise causality [12].
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Finally, we can define the causal influence from Yt to Xt at frequency ω as

fY→X(ω)= ln

(
Sxx(ω)

S1(ω)

)

(5.40)

5.5.4 A Circadian Circuit

Next we show a biological example to further confirm our partial complex Granger
causality approach and harmonic Granger causality approach. We collected microar-
ray data of Arabidopsis leaves of 32,448 genes that were observed over 11 days. The
plants are grown in laboratory conditions, where they are subjected to 12 hours of
artificial daylight followed by 12 hours of no light representing night time. Gene
microarray data is collected at regular intervals (twice a day) throughout the experi-
ment, so the data length is 22. A circadian circuit has been reported in the literature
[13, 30, 31]. The circuit comprises of 8 genes: PRR5, PRR7, PRR9, ELF4, LHY,
CCA1, TOC1 and GI. The time domain trace of the expression of these genes is
shown in Fig. 5.5(A). Each of the genes with the exception of GI exhibits highly
oscillatory behaviour with a time period of one day. This periodicity is attributed
to the presence of incident sunlight during the day time and its absence during the
night.

By calculating node-to-node partial Granger causality between single node, we
find the gene circuit as plotted in Fig. 5.4(A). GI is an isolated gene in our structure,
without having any interactions with other six genes. In fact, this also coincides
with the experimental findings. On p. 4 of [30], it is mentioned that The GI single
mutant had a relatively weak phenotype, whereas our assays of the triple GI; LHY;
CCA1 mutant demonstrate GI’s importance. We thus turn our attention to partial
complex Granger causality. Figure 5.4(B) tells us that all single genes ELF4, TOC1,
LHY, CCA1 and (LHY, CCA1) have very little influence on GI. However, ELF4,
TOC1, LHY and CCA1 together exhibit a significant interaction with GI, which is
in agreement with the experimental finding. We then analyse the interactions in the
frequency domain, the detailed results are shown in Fig. 5.4(C). No surprisingly,
most of the interactions show a periodic behaviour by exhibiting a peak at 11 day
period.

Due to the strong oscillatory behaviour of the data shown in Fig. 5.5(A), in the
next step, we use harmonic Granger causality to analyse it. The task regarding this
data set is twofold. Firstly we wish to identify which of the genes are driven by
the external oscillation, and secondly, we wish to determine how the genes are
connected to form the network governing flowering of the plant [31, 41, 43]. The
method to determine environmental input and network connectivity is as follows.
There are 56 pairwise combinations possible with eight genes; for each of these 56
gene pairs, the parameters of three candidate models as (5.31) meaning with and
without the oscillation term and with and without the causal term respectively are
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Fig. 5.4 Network of a circadian circuit in plant Arabidopsis leaf. (A) The gene circuit obtained
in terms of partial Granger causality, GI has not any interactions with other six genes when the
relationships between single genes are considered. However, ELF4, TOC1, LHY, CCA1 together
exhibit a significant interaction with GI. (B) Complex interactions between different group of genes
and GI. (C) Gene interactions in the frequency domain
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Fig. 5.5 (A) Time domain traces of gene expression of eight genes. (B) Network of a circa-
dian circuit in plant Arabidopsis leaf using harmonic Granger causality approach. Four genes
including PRR9, CCA1, TOC1 and ELF4 receive external inputs

calculated. From the error term of each model we can infer both the presence of an
external environmental driver and the possibility of a connection between the pair
of genes. The final results are shown in Fig. 5.5(B). The plot reveals that four of the
genes in this network receive external inputs: PRR9, CCA1, TOC1 and ELF4. The
first two of these four genes agree with Ueda’s network [45, 46]. The structure of
Ueda’s network is also very close to the structure of our network, both showing a
high level of connectivity.

Here we use two different approaches: partial complex Granger causality and
harmonic Granger causality to analyse the same data, the two structures shown
in Figs. 5.4(A) and 5.5(B) are also different. The reason is that the network in
Fig. 5.4(A) is inferred from partial Granger causality, while network Fig. 5.5(B)
is inferred from pairwise Granger causality. More reliable network would be con-
structed by combining both of these approaches, which is our further topic to be
studied.
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5.6 A Comparative Study Between Granger Causality and
Bayesian Network

A popular approach for building a causal network is the use of Bayesian networks
[6, 34, 35, 39]. Bayesian networks are based on the concept of conditional proba-
bility and are part of a class of probabilistic graphical models. While having sound
theoretical foundations, they suffer some limitations, amongst which: a same set of
probability distributions can have multiple graphical representations, and all net-
works are directed acyclic graphs, which precludes feedback loops. The latter can
be addressed by Dynamic Bayesian Networks [51], which consider how the data
changes over time. The usual approach for the estimation of a Bayesian network is
to decide on a scoring function (the likelihood of observing the data given a net-
work structure) and search for the best candidate in the space of possible graphs.
Given the size of this space (exponential in the number of nodes), one usually re-
lies on sampling methods like Markov-Chain Monte Carlo [5], a long and computer
intensive process.

In this section, we compare the performances of Granger causality and Bayesian
Network on a simulated dataset of known structure in order to investigate the rela-
tive merits of the two methods. As a benchmark, we use a modified version of the
system from Example 1 where all exogenous inputs and latent variables have been
removed:

Example 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x1(t)= 0.95
√

2x1(t − 1)− 0.9025x1(t − 2)+ ε1(t)

x2(t)= 0.5x1(t − 2)+ ε2(t)

x3(t)=−0.4x1(t − 3)+ ε3(t)

x4(t)=−0.5x1(t − 2)+ 0.25
√

2x4(t − 1)+ 0.25
√

2x5(t − 1)+ ε4(t)

x5(t)=−0.25
√

2x4(t − 1)+ 0.25
√

2x5(t − 1)+ ε5(t)

The experiment goes as follows: applied to the same data, both Granger causality
and a dynamic Bayesian network produce a tentative network. The operation is done
100 times, and a final network from each approach is built with edges that appear
at least 95% of the time. The sample size (or number of time points) varies from
1000 down to 20, in order to investigate its impact on accuracy. Figure 5.6 shows
the performances of the two methods, with Bayesian networks on the right-hand
side and Granger Causality on the left-hand side.

From this experiment we find that both approaches can reveal correct network
structures for the data with a large sample size (1000 here). As one would ex-
pect, the accuracy decreases with the size of the data, with more and more links
gone missing but the two methods perform identically. However, at n= 20, Granger
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Fig. 5.6 Networks inferred with Bayesian Network and Granger causality for various sample
sizes. Grey edges indicate undetected causalities (false negatives). For each sample size n, we
simulated a data set of 100 realizations of n time points. High-confidence arcs, appearing in at
least 95% of the 100 networks are shown. (A) The sample size is 1000. (B) The sample size is 80.
(C) The sample size is 40. (D) The sample size is 20

causality lacks all correct links, while the Bayesian network still features true posi-
tives (X1 →X4 and X1 →X2). The reason for the poorer performance of Granger
causality is that at small sample size the linear fit becomes less constrained, which
makes the Granger coefficient unstable.

In conclusion, both Granger causality and Bayesian Networks are sensitive to
sample size [52]. With long enough time series, they are as accurate as each other,
and the choice for one or the other should be done on other parameters, like compu-
tational requirements (light for Granger causality, heavy for Bayesian networks) or
inclusion of prior knowledge (natural in a Bayesian setting).
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5.7 Unified Causal Model (UCM)

A successful approach for the study of brain region communication is the Dynamic
Causal Model (DCM, [16, 17]). DCM uses a model of how the data were generated,
equating the observed variables to the result of a convolution of a linear combina-
tion of latent variables. In a functional magnetic neuroimaging context, the convo-
lution captures the varying delays on the blood flow (haemodynamics response).
Moreover, the model includes the effect of a deterministic input—for example a
stimulus—on the signal dynamics. A causal inference can be drawn from fitting
the model (and other competing models) and estimating the likelihood of observ-
ing the data. Based on these two properties, DCM seems radically different from
the Granger Causality Model (GCM). GCM does not impose a model but is purely
based on the data statistics. And GCM does not natively incorporate the notion of
input—although some extensions do, as seen in this chapter, e.g. Harmonic Granger
causality, Sect. 5.5.

The Unified Causal Model is an attempt at reconciling the two approaches, whose
mathematical formulations are actually quite close. We first recall the definition of
DCM:

dX

dt
= (A+ utB)Xt + utC

Yt = g(X)+ εt
(5.41)

where X represents brain region states and are unobserved. Matrices A, B and C
model which interactions take place and to what extent and a deterministic input
is represented by ut . The function g is the convolution capturing the physiological
effect of the blood flow. The observations Yt are used to estimate the validity of the
model. The traditional Granger causality has to be modified in such a way that it
includes the deterministic input in a very similar fashion. We write the two modified
auto-regressive models as

Xt =
∑

i=1

(a1i + b1iut−i )Xt−i + c1vt−1 + ε1t

Xt =
∑

i=1

(a2i + b2iut−i )Xt−i + c2vt−1 +
∑

i=1

(d2i + e2iut−i )Yt−i + ε2t
(5.42)

where both Xt and Yt are two observed signals. As usual, we write Xt first in terms
of its past, then adding the knowledge of Yt . The definition of the Granger causality
is the measure of the prediction improvement:

FY→X = ln
var(ε1)

var(ε2)
(5.43)

Thus modified, Granger causality is able to use known input signals in a way
similar to that of DCM. It is also possible to derive a frequency domain formula-
tion of the Granger causality. This method has been applied on local field potential
recordings in sheep’s brain and demonstrated learning induced changes in inter- and
intra-hemispheric connectivity [19].
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5.8 Large Networks

So far, the focus has been put on relatively small networks, with 20 nodes at most.
The reason for this is purely numerical: with a limited number of time points, as
is the case with experimental data, the linear auto-regressive model fit rapidly be-
comes under-constrained as the number of signals increases and the solution ceases
to be unique. The resulting Granger causality, defined as a ratio, is unstable and un-
reliable. For example, a partial Granger causality between two signals, conditioned
on n others, requires the estimation of (2+ n)2p parameters, where p is the order
(maximum time delay) of the model; for a dataset of 10 signals and the minimum
order p = 1, one needs at least 100 time points in order to calculate the Granger
causality between pairs of nodes conditioned on the rest.

To bypass this difficulty, we proposed a procedure for building large networks
of hundreds of nodes using partial Granger causality. The rationale is as follows: if
the usual Granger causality from Y → X is large but significantly decreases when
conditioned on a third signal Z (FY→X|Z), then the connection Y → X is only
indirect and should be discarded. We use this principle to find the direct ancestors
(signals acting on a target X with no intermediate) of each nodes. At step 0, we
search for all signals Y such that FY→X is large. We call Ω0 this collection of
candidate ancestors. At step 1, we filter this set further with keeping the signals
Y ∈Ω0 such that FY→X|Z is still large for all Z ∈Ω0. We call Ω1 this new set and
carry on the procedure by conditioning on groups of 2, then 3, etc. signals until such
an operation is not possible (the size of Ωi decreases at each iteration). The result
is a list of direct ancestors for each node, which we aggregate to produce the global
network.

We test the validity of this approach on simulated data. We built an Erdös–Rényi
random graph with N = 200 nodes and M = N lnN = 1060 edges. We generate
N time series with an auto-regressive model such that they follow the random net-
work’s structure: the transition matrix A is build from the transpose of network’s
adjacency matrix by replacing nonzero entries by a random value. The matrix A is
then scaled to have a maximum eigenvalue less than 1, in order to make the system
stable. Each time series is 200 time-points long and normal noise of unit variance is
added throughout.

Figure 5.7(A) shows the resulting receiver operating characteristic (ROC)
curve [14], that is the graph obtained by plotting the false positive rate against the
true positive rate. A random guess is represented by the dashed line. The method
shows a maximum true positive rate just over 0.5, which is not very high. However,
the false positive rate is always very low: the method misses many ancestors, but its
guesses are rarely wrong. This is crucial for biological applications: it means that
the results can be used in further experiments, for example by indicating which pro-
tein/gene to manipulate. Figure 5.7(B) shows how the true positive rate varies with
respect to the strength of the connection (i.e. the associated weight in the transition
matrix). Weak connections are more likely missed out.

The procedure is easy to parallelise (each node can be processed separately) and
easy to implement. It has been applied on a dataset of 812 proteomic time series
[53] to produce a large and complete network.
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Fig. 5.7 Performance of the network building procedure. (A) Receiver operator characteristic
curve. (B) Sensitivity of the procedure to the connection strength

5.9 Summary

In this chapter, we introduced several important extensions of Granger causality that
have been devised for tackling issues specific to biological phenomena. We started
with partial Granger causality, which is not only able to remove the influence of
other observables but also to reduce the influence of external, unseen inputs. This is
of considerable importance for biological data where typically only a small portion
of the quantities of interest is actually observed. We showed that this extension (and
the others) has its counterpart in the frequency domain, so that instead of summa-
rizing the strength of the connection in one single number as is the case in the time
domain, we can obtain a spectrum indicating at which frequency the interaction
takes place. Partial Granger causality has then been further extended to Complex
Granger causality. Complex Granger causality captures the effect of group action,
a frequent occurrence in biology where the whole is often more significant than the
parts. Harmonic Granger causality used an explicit form of possible external influ-
ence for modelling periodic inputs like sunlight. Since it is one of the most popular
approaches for reverse-engineering biological systems, Bayesian network has been
systematically compared with the much simpler Granger causality and it was shown
that they both give similar results, provided that the number of time points is large
enough. It was also shown that another popular approach for studying brain imaging
data in particular called Dynamic Causal Model, and Granger causality both can be
seen as a particular case of the more general Unified Causal Model. And finally,
we presented a new method for building large networks of hundreds of nodes with
limited data, a standing problem in systems biology.
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Appendix: Estimating the Error Covariance Matrix

The main quantity of interest for calculating Granger causality is the covariance
matrix of the error term ε in the d-dimensional auto-regressive (AR) model

Xt =
p∑

i=1

AiXt−i + ε(t)

The coefficients of the matrices Ai need to be estimated from the data. Typically,
they are found by minimising the variance of the error between the prediction Xt
and the observation at the same time t . Morf’s procedure [33] provides a fast and
robust way of estimatingAi and the covariance matrix of ε via a recursive algorithm.

Unless prior knowledge informs us about the likely order p of the AR model
(for example by knowing at which time-scale one should expect interactions to take
place), it also has to be estimated from the data. The goodness of fit alone is not
sufficient for selecting the optimal order: adding a new order implies adding d2

more unknowns to the system, which considerably improves the fitting simply by
increasing the degrees of freedom. The Akaike Information Criterion (AIC, [2])
provides a trade-off between the model complexity (a function of p) and the fit. For
an AR model of dimension d , of order p and with T observations, this quantity can
be written as

AIC(p)= 2d2p+ d(T − p) log

⎛

⎜
⎜
⎝2π

∑

t=p+1...T
i=1...d

ε2
i (t)

d(T − p)

⎞

⎟
⎟
⎠

The optimal order p is then defined as the one that minimises the AIC.
A point estimate of the Granger causality is often not sufficient for making a

strong conclusion about the data and a confidence interval is required. In some cases
([25] for partial Granger causality), it is possible to derive the confidence interval
in closed form. In general, it is estimated via a bootstrap procedure [32]—given
the optimal AR model, an ensemble of signals are generated which each produce a
value for the Granger causality. The final estimation of the Granger causality and its
confidence interval are defined as the average and the standard error of this set of
estimates.
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Chapter 6
Transcription Factor Binding Site Identification
by Phylogenetic Footprinting

Haiyan Hu and Xiaoman Li

6.1 Introduction

Transcription factor binding sites (TFBSs) are 6–14 base pair (bp) long DNA seg-
ments that transcription factors (TFs) bind to. When TFs bind to their TFBSs, those
genes near to the TFBSs can be turned on/off. The TFBSs bound by a TF are often
similar to each other, and we call the common pattern of the TFBSs bound by a TF a
motif. Motifs can be represented as consensus sequences, position weight matrices
[1] and motif logos [2] (Fig. 6.1). Because the motif of a TF represents the common
DNA pattern bound by a TF, in some sense, to identify TFBSs refers to the same
thing as to identify motifs.

The identification of TFBSs is crucial for the understanding of gene regulation.
When a TF binds to a TFBS alone or with other TFs binding to multiple TFBSs, the
binding of TF–TFBS pairs can promote or repress the transcription of nearby genes.
Put simply, the TFBSs are the switches of the gene expression. The identification of
these switches and the understanding of the building principle of these switches are
the first step to understand gene regulation and to control gene expression [3].

There are many methods available for TFBS identification. Traditionally, re-
searchers were using DNase footprinting [4] and gel mobility shift assay [5, 6]. It is
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Fig. 6.1 Transcription factor
binding sites, motif, and their
representation. Here the
PWM is a frequency matrix.
Researchers often use the
relative entropy instead of
frequency in PWMs

through these gene-by-gene approaches that we gain some basic understanding of
the gene regulation and the nature of TFBSs. With the advent of genome sequencing
technology, more and more genome sequences become available. It is necessary to
develop computational approaches to deal with the enormous amount of sequence
data. Since the 1980s, a large number of computational methods have been devel-
oped for such purpose [7–35, 39]. Computational methods are capable of predicting
TFBSs from a group of sequences and/or on the whole genome scale, which greatly
accelerate the speed of identifying functional TFBSs.

The available computational methods often utilize one or more of the following
three types of information to identify motifs and TFBSs (Fig. 6.2). The first type is
the over-representation property of the motif [1, 7, 19, 22]. As we know, a TF can
bind to many similar short DNA segments. That is, a TF can affect the expression
of many genes, alone or together with other TFs. Therefore, if we have a group of
genes that are regulated by a TF, we expect the TFBSs of the TF to occur in the
noncoding sequences of many genes in this group, presumably in the upstream one
kilobase (kb) long sequences (Fig. 6.2a). We can obtain such a group of coregulated
genes from prior biological knowledge, microarray experiments, ChIP-chip experi-
ments [36] (chromatin immunoprecipitation followed by microarray experiments),
ChIP-seq experiments [37, 38] (chromatin immunoprecipitation followed by high-
throughput sequencing experiments), and so on. The second type of information is
the conservation property of motifs [9, 24–26, 28, 34, 39]. A TFBS is functional un-
der certain experimental conditions. Such functional DNA segments are often more
conserved compared with nonfunctional DNA segments. By comparing a sequence
and its orthologous sequences, we can identify more conserved regions in these se-
quences and then identify TFBSs in these more conserved regions. Wasserman et
al. [40] have found that 98% (74/75) of experimentally defined sequence-specific
binding sites of skeletal-muscle-specific TFs are confined to the 19% of human se-
quences that are most conserved in the orthologous rodent sequences. Therefore,
the identification of motifs and TFBSs in conserved regions is a feasible and reli-
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Fig. 6.2 Three types of information that are used for TFBS identification. (a) Over-representation.
The horizontal lines are the sequences from coregulated genes in one species. The small boxes on
the line are the TFBSs. (b) Conservation. The TFBSs in one group of orthologous chimpanzee,
mouse and rat genes are similar. That is, the TFBSs in this gene are conserved across three species.
(c) Clustering. Three different TFBSs often occur together in short regions in the input sequences.
Such short regions are often called cis-regulatory modules (CRMs) (for the color version, see Color
Plates on p. 390)

able strategy. The third type of information is the clustering property of motifs [14,
41, 42] (Fig. 6.2c). Early experimental studies in Sea urchin and fly have shown that
many TFBSs from the same TF or from different TFs often occur in short regions
of a few hundred bp [3]. We call such short regions containing multiple TFBSs a
cis-regulatory module (CRM). The chance of finding a CRM in the noncoding se-
quences is much smaller than that of finding an individual TFBS in the noncoding
sequences.

In this chapter, we are focusing on the computational methods that utilize the
conservation property of motifs. Such methods are often called phylogenetic foot-
printing methods. In biology, phylogenetics is the study of evolutionary relatedness
among various groups of organisms (e.g., species, populations), which is discovered
through molecular sequencing data and morphological data matrices. Bona fide TF-
BSs are functional and are shared by multiple species if these species are properly
chosen. These shared TFBSs by orthologous sequences are likely the footprints in
the sequences that inform how the functional elements evolve. Therefore, the meth-
ods based on finding such footprints are called phylogenetic footprinting methods.
Note that, although the conservation property is an indispensable part in these meth-
ods, these methods also often utilize other properties of motifs.

An essential component of the phylogenetic footprinting methods is the com-
parison of orthologous sequences to identify conserved footprints. To compare or-
thologous sequences, an alignment approaches is often used. An alignment of two
sequences occurs when the nucleotides from both sequences match in order with
each other.That is, assume ai and ak are the nucleotides at any two positions i and k
of the first sequence, respectively. Assume bj and bm are the nucleotides at any two
positions j and m of the second sequence that match with ai and ak , respectively.
If i < j , then k < m (Fig. 6.3). In the alignment of two sequences, a nucleotide
from one sequence can either match with one nucleotide in the other sequence and
an indel that represents a deletion in the other sequence. Similarly, an alignment of
multiple sequences is considered as a match of nucleotides from multiple sequences
in order. Alignments can be classified into two large categories: global alignments
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Fig. 6.3 Alignment of two sequences a and b. (a) Sequence alignments require the aligned order
of the nucleotides in the sequences must be kept. (b) An illegal alignment where the order of the
aligned nucleotides are changed

and local alignments. The former are to identify the match between or among the
entire sequence regions, while the latter are to identify the match between or among
any subregions in the input sequences (Fig. 6.4).

One obvious drawback of using alignments for phylogenetic footprinting is that
the TFBSs may not be aligned with their orthologous counterparts in another species
in the alignments, which is particular true for global alignments. This is because
global alignments may neglect the optimal match of short regions while TFBSs are
in general short. For instance, “ACCCTGA” in the two sequences in Fig. 6.4 are
not aligned in the global alignment. Local alignments tend to produce many good
alignment candidates for TFBS identification; however, in practice only a handful of
optimal local alignments can be kept for TFBS analysis (Fig. 6.4). To compare se-
quences without alignments, one may either enumerate all k-mers (DNA segments
of k bp long) and their derivatives or apply statistical methods such as expectation
maximization (EM) algorithms and Gibbs sampling methods to compare DNA seg-
ments.

In this chapter, we will first describe current TFBS identification methods based
on alignments, followed by the introduction of current TFBS identification methods
without alignments. All these methods use multiple genome sequences. Then we
will point out the future direction of TFBS identification by phylogenetic footprint-
ing.

6.2 Current TFBS Identification Based on Alignments

As we mentioned earlier, a routine way for researchers to identify TFBSs is to
look for conserved over-represented segments in the alignments of orthologous
sequences. Orthologous sequences are the corresponding sequences in different
species. In high eukaryotes, such as human, it is much easier to identify orthologous
sequences of coding regions rather than noncoding regions. A common practice to
obtain orthologous sequences of noncoding regions is to use the aligned sequences
in multiple genome alignments as orthologous sequences. Researchers also use the
sequences around transcription start sites (TSSs) of orthologous genes as ortholo-
gous sequences.
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Fig. 6.4 (Color online) Global and local alignments. (a) A global alignment of two sequences.
The curve shows the optimal match between the two sequences. (b) A local alignment of two
sequences. The short curves are the optimal local alignments. For example, the two red segments
are optimal matches in a local alignment, represented by the red straight line. The figure is from
Michael Brudno

One of the best alignment-based methods is CompareProspector [23]. Com-
pareProspector takes as input a list of sequences that are assumed to share motifs
from one anchor species. Such sequences can be obtained from high-throughput
genomics techniques such as gene expression profile clustering, ChIP-chip target
regions and ChIP-seq peak regions. To utilize the multiple genome sequences, Com-
pareProspector uses Lagan (Mlagan) to align two (multiple) orthologous sequences
[43] and generates a list of percent identity values representing the cross-species
conservation of each nucleotide in the anchor species. Then CompareProspector ap-
plies a similar Gibbs sampling approach as was implemented in BioProspector [22].

In detail, in the Gibbs sampling iterations, CompareProspector biases the motif
finding towards sequences conserved across species. First, the user can specify two
thresholds, Tch (high conservation threshold) and Tcl (low conservation threshold).
In BioProspector, a site score Ax is calculated for every site x in the input sequence
as the ratio of the probability of generating x from the motif model over the proba-
bility of generating x from the background distribution. A new site is sampled with
probability proportional to Ax. In CompareProspector, during initial iterations of
Gibbs sampling, only positions whose conservation values are above Tch are sam-
pled. Subsequently, the conservation cutoff is gradually decreased from Tch to Tcl to
allow sampling of less conserved positions. The new site score A′x is weighted by
sequence conservation to favor sampling of more conserved sequences. Sequences
without orthologs are assigned Tcl as the conservation value for all x, so they only
participate in sampling in later iterations. Finally, in the original BioProspector, sites
with a high enough scoreAx are automatically added to the motif without sampling.
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CompareProspector restricts automatic additions to only sites whose conservation
values are above Tch. This step further down weighs the influence of divergent sites
and sequences without orthologs. The output of CompareProspector includes a list
of highest-scoring motifs as PWMs, the individual TFBSs used to construct each
motif PWM, and the locations of the TFBSs on the input sequences.

At least a couple of techniques contribute to the success of CompareProspector.
First, Lagan and Mlagan, based on the CHAOS local alignment tool [44], are a suite
of new generation alignment tools that have been shown to align the regulatory
elements well even in distantly related species. Second, even with the emphasis on
the conserved positions, CompareProspector still allows one to take the divergent
positions as TFBS candidates, which is superior to the procedure that neglects such
positions from the beginning.

In 2004 and 2005, many similar methods to CompareProspector were developed,
such as EMnEM [25], phyloGibbs [45], and PhyME [39]. EMnEM uses the aligned
sequences as input and applies the EM algorithm to identify motifs under some
evolution models. PhyloGibbs uses the aligned sequences by the Dialign program
[46] and applies the Gibbs sampling methods to identify motifs under evolution
models. Other difference between EMnEM and PhyloGibbs includes evolution tree
difference, how to deal with the divergent sequences in the multiple alignments,
and so on. PhyloGibbs considers a star phylogenetic tree while EMnEM considers a
more suitable tree like a species tree. PhyloGibbs focuses on the well-conserved re-
gions in the multiple alignments first and considers the unaligned TFBS candidates
while EMnEM uses the entire aligned sequences simultaneously. In terms of these
two aspects, PhyME basically uses the phylogenetic trees similarly as the EMnEM
and utilizes the aligned sequences in similar fashion as the PhyloGibbs. Note that
PhyME is also using the EM algorithm to identify motifs and TFBSs.

Kellis et al. developed an approach that is different from the above methods [47].
They have applied the method in yeast genomes and have produced impressive re-
sults. They start from the genome alignments of noncoding sequences of ortholo-
gous genes and try to enumerate gapped 6-mer motifs. In detail, they first identify
conserved “mini-motifs,” which are then used to construct full motifs. Mini-motifs
are sequences of the form XYZn(0–21)UVW, consisting of two triplets of speci-
fied bases interrupted by a fixed number (from 0 to 21) of unspecified bases. For
instance, TAGGAT and ATAnnGGC are two mini-motifs. If reverse complements
are grouped together, the total number of distinct mini-motifs is 45760. Conserved
mini-motifs are then defined according to three conservation criteria. In each case,
conservation rates are normalized to appropriate random controls. The conservation
criteria are: (1) intergenic conservation, the mini-motif shows a significantly high
conservation rate in intergenic regions; (2) intergenic–genic conservation, the mini-
motif shows significantly higher conservation in intergenic regions than in genic
regions; (3) upstream–downstream conservation, the mini-motif shows significantly
different conservation rates when it occurs upstream compared with downstream
of a gene. The conserved mini-motifs are then used to construct full motifs. The
mini-motifs are first extended by searching for nearby sequence positions showing
significant correlation with a mini-motif. The extended motifs are then clustered,
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merging those with substantially overlapping sequences and those that tend to occur
in the same intergenic regions. Finally, a full motif is created by deriving a consen-
sus sequence (which may be degenerate). Each full motif is assessed for genome-
wide conservation by calculating its MCS (motif conservation score), and those
motifs with MCS > 4 are retained. Here the MCS of a motif is defined based on
the conservation rate of the motif in intergenic regions and is measured in standard
deviations above the rate for comparable control motifs. Each full motif was also
tested for enrichment in upstream compared with down-stream regions, by com-
paring its conservation rate in divergent versus convergent intergenic regions. The
motif analysis automatically identified 72 genome-wide elements, including most
known regulatory motifs in yeast.

The success of the method from Kellis et al. lies on the comparison of motif
identification with random sequences. In general, researchers define background
sequences as those input segments by removing the TFBSs they predict. This makes
sense in many cases, as was shown in the success of the software of MEME [7],
CompareProspector [24], and others. However, whether a method works, we really
need to test on the independent random sequences, which will greatly filter false
positives.

Although successful, the method developed by Kellis et al. will miss many bona
fide motifs and TFBSs. By using the whole genome sequences of four yeast species,
Kellis et al. only identified 72 motifs, which is much less than the 300 hypothesized
motifs in Saccharomyces cerevisiae. Therefore, even in the yeast, it is not a simple
task to identify all the motifs.

6.3 Methods Independent of Alignments

6.3.1 Defects of Alignments Especially Genome Alignments

Alignment methods may presumably align many TFBSs and their counterparts in
orthologous sequences. However, many TFBSs may not be aligned with their orthol-
ogous TFBSs. This is because the typical length of the sequences input for align-
ments is around 1 kb and the typical TFBSs are 6–14 bp long. If the species under
consideration are not divergent enough, the alignments cannot really show the evo-
lution constraints. On the other hand, if the species are divergent, it is likely that the
noise of the diverged nonfunctional background will overcome the short conserved
signal. The result is that the alignments may not align the short regulatory elements
properly. If one tends to use the local alignments instead of the global alignments,
the true TFBSs may be aligned properly with their counterpart across species. Given
the short length of the TFBSs, we will have numerous aligned short segments from
local alignments if the species under consideration diverged not that long. We can
only afford to consider some of these local alignments and may miss many other
possible TFBSs. If the species are divergent, we may rarely be able to find good
candidates since the alignment methods in general do not take the divergent time
into account.
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Moreover, the current alignment methods are still not perfect. For instance, al-
though we use the genome alignments on the daily basis, the current genome align-
ments from different methods are not consistent. Recently, Margulies et al. [48]
compared four genome alignment methods, Mlagan [43], TBA [49], Mavid [50],
and Pecan, on orthologous sequences in the 44 ENCODE regions (The ENCODE
Project Consortium 2004) from 28 vertebrates. For 14 mammals, a total of 206
megabase (Mb) of sequence was obtained from mapped bacterial artificial chro-
mosomes and finished to “comparative grade” standards [51] specifically for these
studies. For another 14 species, 340 Mb of sequence were obtained from genome-
wide sequencing efforts at varying levels of completeness and quality. The details
of the difference of the alignments are based on the four methods are as follows.

The comparison here was made at the nucleotide level, at which many down-
stream applications operate. The authors [48] found that the level of agreement be-
tween alignments varies significantly between species, with agreement much higher
when comparing alignments of primates versus those of more distant species. In
general, agreement between the different alignments is influenced significantly by
the total coverage; for example, MAVID aligns 27.4% of human bases to an ar-
madillo nucleotide, versus 42.4%, 41.2%, and 40.1% for Mlagan, PECAN, and
TBA, respectively; and thus the maximum possible agreement between all the align-
ments is 27.4%. They found that 17.5% of all human nucleotides are aligned to the
same armadillo nucleotide by all four alignments, and 66.1% of all human bases are
identically aligned if they considered gapped columns (i.e., columns in which a hu-
man nucleotide is predicted do not have an orthologous nucleotide in the armadillo
sequence). Their conclusions show that there are substantial variations between the
nucleotide-level orthology predictions made by the four alignments, even though a
significant majority of all human nucleotides is aligned identically between human
and a given nonhuman sequence. As a surrogate for sensitivity, they also determined
the coverage of annotated protein-coding sequences in each of the alignments. Since
coding exons are regions of the human genome that are largely ancient and likely
to be shared among all of the lineages analyzed here, these represent a set of nu-
cleotides heavily enriched for “true positive” (i.e., actually orthologous) positions.
The authors defined the alignment “coverage” as the number of human coding bases
aligning to a given nonhuman species. It was found that coverage of coding ex-
ons varies considerably among the different alignments, especially when analyzing
alignments between humans and more distant species. When counting the number
of coding exons with at least one base pair aligned to a base in the mouse genome,
for example, coverage ranges from 55% in MAVID to 72% in Mlagan, with TBA
and PECAN showing intermediate values. Alternatively, when looking at only those
coding exons that are fully covered (i.e., no gaps), these values range from 29% in
MAVID to 38% in PECAN. PECAN and Mlagan exhibit the highest values by these
measures and are similar for most species.

From the study by Margulies et al. it is clear that researchers should be cautious
when they aim to identify TFBSs and motifs from those alignments. Kellis et al.’s
results compared with PhyloNet below show that maybe only those obvious TFBSs
and motifs can be identified from the whole genome alignments. In the following,
we will introduce several methods that do not use any alignment tools.
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6.3.2 TFBS Identification Without Sequence Alignments

One of the early methods that do not use the alignment to identify conserved TF-
BSs is the footprinter developed by Blanchette and Tompa [9, 10]. This algorithm
is guaranteed to report all sets of motifs with the lowest parsimony scores, calcu-
lated with respect to the phylogenetic tree relating the input species. It is a deter-
ministic method, using dynamic programming to obtain the motifs. This method is
more about identifying conserved motifs in one gene across multiple species, in-
stead of conserved motifs in multiple genes across multiple species. Thus, it does
not require a group of coregulated genes as input. Although it is linear in terms of
sequence length, it cannot be applied to long DNA sequences because TFBSs can
be conserved by chance in long DNA sequences.

An early TFBS identification method without alignment that also considers over-
representation property of motifs is the PhyloCon algorithm [34]. PhyloCon consists
of three components: initial profile generation, profile comparison, and a greedy ap-
proach to combine common regions in different profiles. PhyloCon generates initial
multiple aligned sequences using Wconsensus [52]. Wconsensus gives many un-
gapped suboptimal aligned segments. If the real TFBSs are correctly positioned in
any of these aligned segments, they will emerge during subsequent profile compar-
isons. Initial multiple aligned sequences generated by Wconsensus are transformed
into profiles, or position-specific scoring matrices. Each column is a vector of four
elements, representing either counts or observed frequencies of different nucleotides
at a position in the aligned segments. Each profile represents a conserved region in
the initial orthologous sequences. A conserved region can be represented by more
than one profile based on suboptimal aligned segments. A profile is treated as a
sequence of columns, so the alignment between profiles is analogous to the align-
ment between sequences. Assuming position independence and a suitable scoring
scheme, the score of an alignment between two profiles is the sum of the scores
from comparing corresponding columns in the two profiles. PhyloCon uses a new
statistic called Average Log Likelihood Ratio (ALLR) to compare two columns in
different profiles. ALLR can be used to distinguish probability distributions from
each other, as well as from the background. It measures the joint probability of
observing the data generated by one distribution given the likelihood ratio of the
other distribution over the background distribution. Given this scoring statistic and
the assumption of position independence, the score of aligning local regions of two
profiles is simply the sum of comparison scores of position pairs. A dynamic pro-
gramming algorithm is implemented to identify high similarity regions in profiles
using the ALLR statistic. PhyloCon then uses a greedy algorithm to combine profile
comparison results.

As one of the first methods combining the over-representation property and the
conservation property of motifs, PhyloCon is fast and works better than the Gibbs
sampling methods based on over-representation property of motifs only [34]. How-
ever, in some cases, it is difficult to select motifs from Phylo-Con output, due to the
fact that PhyloCon outputs the same motifs repeatedly, from the longer versions to
the shorter versions.
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Fig. 6.5 An illustration of PhyloNet. Copied from the PhyloNet paper

The PHYLONET algorithm [35] is a much faster algorithm compared with Phy-
loCon (Fig. 6.5). Briefly, the algorithm enables “motif-BLAST” by integrating com-
parative genomics information and regulatory network topology and exploring a
phylogenetic profile space. Similar to PhyloCon, PhyloNet generates conserved
short regions as profiles. Each promoter is represented by its phylogenetic profiles
and queried against a database of phylogenetic profiles of all promoters in a genome.
Statistical significance of motifs is determined by Karlin–Altschul statistics that are
modified for profile searches.

Note that PhyloNet identifies TFBSs and motifs on a whole genome scale, while
PhyloCon is considering only a group of coregulated genes. To identify TFBSs on
a genome scale, the authors of PhyloNet take an approximation approach when
they compare profiles. They establish a partition of the profile space and develop a
BLAST-like algorithm that has linear time and memory complexity. In detail, they
partition the profile space into 15 subspaces by supervised learning and elect a con-
sensus letter based on the weighted sum of all profiles in the subspace to represent a
subspace. This partition coincides with common degenerate DNA representations,
but the actual boundaries are optimized based on all pairwise profile comparisons.
The new alphabet of 15 letters (A, C, G, T, a, c, g, t, W, S, R, Y, M, K, and N) re-
places the original DNA sequences with additional conservation information. Based
on the weighted similarity measurements by the ALLR statistic among profiles of
any two subspaces, a substitution scoring matrix is constructed. The ALLR matrix
is a log-odds scoring system that satisfies the restrictions needed to apply Karlin–
Altschul statistics. With the use of the expansion of Karlin-Altschul statistics, good
estimation of the statistical significance of scores of local profile alignments can be
made. The letter representation of the profiles allowed the authors to use an efficient
BLAST-like search engine to identify all similar profiles and identify the shared
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motifs among these similar profiles. This design allows a profile comparison to be
1,000 times faster than a pairwise comparison of all profiles by dynamic program-
ming implemented in PhyloCon, with a minimum loss of sensitivity.

The advantage of methods without alignments can be seen from the compar-
isons of PhyloNet and Kellis et al.’s methods. PhyloNet successfully predicted 296
nonredundant motifs by using 3,524 Saccharomyces cerevisiae promoter sequences
with orthologous counterparts Saccharomyces mikatae, Saccharomyces kudriavze-
vii, and Saccharomyces bayanus. From the analysis of four to six yeast genomes
Kellis et al. [47] and Cliften et al. [53] predicted 71 and 92 regulatory motifs, re-
spectively. Both collections identified many known TF motifs and many predicted
motifs. However, the two collections overlap by 50%, demonstrating that neither
collection reached saturation: 30 (42%) motifs in the Kellis set match a motif in the
Cliften set, whereas 43 (47%) in the Cliften set match the Kellis prediction. Despite
using the sequences from only four yeast species from Cliften et al., PHYLONET
not only identified over twice as many predictions as either previous study, it also
identified 86% (n = 61) of the Kellis motifs and 92% (n = 85) of the Cliften mo-
tifs, including all motifs supported by both studies. These comparisons highlight
PHYLONET’s ability to extract substantially more information from comparative
analysis than previous methods. It also shows that the alignment- based methods
may miss many motifs and TFBSs.

Tree Gibbs Sampler (TGS) [20] is another method that does not use the align-
ments to identify TFBSs. Similar to footprinter [10], TGS does not depend on align-
ments of orthologous sequences and takes the evolution of DNA sequences into ac-
count. Different from footprinter, TGS uses a PWM to represent a motif and applies
a Gibbs sampling method, instead of deterministic methods to identify TFBSs. Such
statistical approach avoids the arbitrary alignment score cutoffs to define the candi-
date functional sites, such as those often encountered in current methods. Without
alignments, TGS has the flexibility to find similar motif instances in orthologous se-
quences, even if those TFBSs are inverted, translocated, or mutated. Moreover, TGS
fully uses the phylogenetic information and tracks the trace of the functional sites
during evolution, i.e., the motifs are allowed to evolve, although at a slower rate
than the background. Furthermore, the method simultaneously finds similar motif
instances not only in many genes but also in orthologous sequences, which enables
it to find weak but conserved motifs. Finally, the method automatically chooses the
width for motifs, which has the potential to identify all motifs that are enriched in
the input sequences.

TGS uses two evolution models to describe nucleotide evolution. TGS assumes
the TFBSs evolve more slowly than the nonfunctional background sites. Therefore,
two 4× 4 substitution matrices are used to describe the evolution along every branch
of the phylogenetic tree for the TFBSs and the background sites, respectively. Each
row of a matrix gives the probabilities of one type of nucleotide in the ancestor
evolving into A, C, G, and T in the descendant, in the order of A, C, G, and T.
For instance, the number at the entry (3, 2) in the matrix in Table 1 tells that the
probability for a nucleotide G in the ancestor to evolve into the nucleotide C in the
descendant is 0.0347.
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Table 6.1 An example of the
substitution matrices for the
branch from the common
ancestor of S. cerevisiae and
S. mikatae to S. cerevisiae in
the yeast phylogenetic tree.
See TGS paper for details

S. cerevisiae

Ancestor

A C G T

A .7743 .0347 .1329 .0581

C .0583 .6791 .0334 .2292

G .2320 .0347 .6752 .0581

T .0583 .1369 .0334 .7714

For background evolution, regions in the upstream region of orthologous genes
are aligned, and the background nucleotide distribution and the branch lengths in
the species tree are inferred from the alignments by using maximal-likelihood esti-
mation. Then the background substitution matrix for every branch is obtained from
the estimated background nucleotide distribution and the branch lengths. Note that
in TGS, the species tree is used as the phylogenetic tree. To define the motif substi-
tution matrix for a branch, TGS simply decreases the branch length estimated above
by a fixed proportion, say 50%, and then constructs the motif substitution matrix for
the branch from the decreased branch length. This is a primitive way to model the
slower evolution of the functional motifs as compared with the background. With
more experimentally verified motif sites available, motif substitution matrices may
be constructed from the experimentally verified sites.

With the two evolution substitution matrices on every branch of the phyloge-
netic tree defined, TGS implements a Gibbs sampling method to infer the model
parameters and motif instances under the assumption that there is at most one motif
instance for every gene. See Fig. 6.6 for the illustrations. A novel strategy used by
TGS is the up-down fashion to identify motifs. That is, TGS will first identify the
ancestral TFBS for each group of orthologous sequences, and then it will identify
child TFBSs of these ancestral TFBSs until we have predicted the TFBSs for all
the sequences in all the species. It is because of this up-down fashion of sampling,
TGS avoids the alignment procedure to find the TFBSs and their counterparts. For
instance, in Fig. 6.6, for one group of orthologous sequences, if the ancestral TFBS
at the root of the tree is known, to identify the TFBSs in the sequences of the cur-
rent species is just to look at each position of the sequences and see whether there
is some segment “similar” to its parent TFBSs. Here “similar” takes the divergent
time into account, and it is not necessary that the TFBSs must be physically similar
to their parent TFBSs. Because of this up-down fashion across many orthologous
sequence groups, TGS can pinpoint the true motifs fast. For instance, if TGS starts
from a non-TFBS segment at the ancestral level, it is difficult to find similar seg-
ments in many species and/or in many genes. On the other hand, if TGS starts from
a TFBS-like segment at the ancestral level, it is more likely that many similar TFBSs
can be found in the input sequences.

TGS has shown several advantages over other methods, such as PhyloCon and
CompareProspector. The authors have shown that TGS has both better sensitivity
and better specificity when applied to the yeast ChIP-chip datasets [54]. The ad-
vantage can also be shown in the distant species comparisons. By applying TGS on
the 63 ribosomal protein gene pairs from two insect species, fruit fly (Drosophila
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Fig. 6.6 A cartoon illustration of TGS. Each rectangular box represents one species. The colored
lines are the regulatory regions of coregulated genes. The small boxes are the TFBSs in each
sequence. TGS assumes that there is at most one TFBS in each sequence. The motifs may be
different in different species although they evolve from the same ancestral motifs (for the color
version, see Color Plates on p. 391)

melanogaster) and mosquito (Anopheles gambiae), the authors predicted a pair of
motifs. Note that the two species diverged more than 250 million years ago, and
methods that rely on alignment typically give poor predictions in this situation.
The two motifs predicted by TGS have the same consensus, ACAGCTGTCAAAA.
Moreover, TGS found TFBSs in all 63 gene pairs. If MEME [7] is applied on
genes in individual species, GCGGTCACACT (fly) and CAGCTGTCAAACGG
(mosquito) are identified in 41 and 44 genes, respectively. Although the underlined
parts in the motif consensus identified by MEME look similar, the instances corre-
sponding to the two motifs in the orthologous gene pairs rarely share>5 nucleotides
in the underlined 9-mer parts. The TFBSs found by TGS share a median 8 bp of 13
positions. Moreover, the motif ACAGCTGTCAAAA identified by TGS is similar
to an experimentally verified motif CAGTCACA, which was found to regulate 14
ribosomal protein genes in Schizosaccharomyces pombe [55]. Although phylocon
outputs a motif ACCAGCTGTCAAAGGGG, which contains the one identified by
our method, only 7 orthologous pairs are found by PhyloCon to contain the motif
instances. Moreover, the p-value of this motif is not significant compared with those
of other motifs output by PhyloCon. As to CompareProspector, none is found in the
top 15 output motifs similar to the one identified by TGS. Note that 63 TFBS pairs
found by TGS share 8 bp of 13 positions on average. This shows that using pre-
aligned sequences as input to find motifs will likely miss many TFBSs for distant
species, because those alignments in general cannot take the evolutionary distance
into account, and many “well” conserved instances are missed.
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Verifier [21] is another method that identifies TFBSs without alignments. Verifier
uses similar evolution models as TGS. However, the goal is very different from that
of TGS. TGS is trying to identify true motifs, and presumably, the true motifs are
among the top predictions. Verifier is expecting that the predicted top motifs are true
motifs.

In detail, for a set of coregulated genes, Verifier first uses a motif over-
representation based method, e.g., MEME [7], with a nonstringent threshold to
find potential motifs in the anchor species, from which the coregulated genes are
obtained, as well as in other closely related species. The identified motifs in any
species are called marginally significant motifs (MSMs) of that species. Because
the threshold is set to be very low, most motifs that are over-represented in the ge-
nomic regions of the selected genes would likely be included in MSMs; i.e., the
genuine motifs are likely to be included although there are many false positive pre-
dictions. Verifier then models the evolutionary paths of the neutral intergenic regions
and poses the null hypothesis that the MSMs are not functional motifs, and there-
fore their TFBSs evolved like neutral intergenic regions. Verifier then tests whether
there are MSMs that are much more conserved in the multiple species than what are
expected under the null hypothesis. Verifier performs the tests by enumerating all of
the groupings’ of MSMs and calculating the probability that the current grouping
of MSMs evolved from the same common ancestral motif under the null model. In
the end, Verifier reports the significantly conserved MSMs as putative TF binding
motifs and ranks these motifs according to their significance.

Again, Verifier performs better than PhyloCon and CompareProspector. It has
better sensitivity and specificity as well. Especially the specificity, in 30 out of 35
predictions, verifier has ranked the bona fide motif as the top one motif.

6.4 Future Direction of Phylogenetic Footprinting

Although computational TFBS identification can be traced back to 1984 or earlier
and we may have several hundred computational methods already, computational
TFBS identification is far from mature. We will mention some challenges in the
field of cis-regulatory analysis in the following.

One challenge is how to select one or several TFBS identification methods for
a group of input sequences [56]. With many TFBS identification methods and
software available, biologists and even computational biologists have difficulty in
choosing the best tools for their TFBS finding endeavor. Tompa et al. [57] have
shown that it has been a challenging task to conduct studies on performance com-
parisons of TFBS finding tools. The difficulty in performance assessment of these
tools stems from several sources. The tools have been developed based on varied
and complex motif models, and therefore, individual tools may do better on one
type of data but do worse on other types of data. In addition, our incomplete under-
standing of the biology of regulatory mechanism does not always provide adequate
evaluation of underlying algorithms over motif models. Tompa et al. have made a
benchmark dataset for testing computational methods that are based on sequences
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from one species. Most of these datasets only contain a few sequences. Benchmark
datasets with more sequences might be better, because in general TFBSs are iden-
tified in many sequences, not just 4 or 5 sequences in one species. Moreover, great
effort is needed for a benchmark dataset for comparing the phylogenetic methods as
well. It is also important to develop strategies to integrate these available methods
for better prediction of TFBSs.

Another challenge is how to identify TFBSs in the entire noncoding sequences in
high eukaryotes, especially in human. It is relatively simple to identify TFBSs in the
yeast genome and current methods such as PhyloNet work well in yeast. However,
to simply apply such methods to the human genome, it is most likely to generate
more false positives than true positives. This is because the noncoding region of
a human gene is several million bp long on average, as compared to the several
hundred bp long noncoding regions of yeast genes. Very few of the current meth-
ods can identify TFBSs in the entire noncoding regions of the human genome [58].
Without considering the entire noncoding region of a gene, many conclusions about
the expression pattern of a gene must be misleading and incomplete. We doubt that
computational methods alone can achieve such a goal without considering the high-
throughput experimental data. Currently, there is a large amount of data available
concerning DNA methylation, histone methylation, DNase I hypersensitive sites,
and so on. To investigate the relationship between TFBSs and these chromatin pa-
rameters will narrow the TFBS searching space. With more and more understanding
of the relationship of TF binding and chromatin structure changes, we may develop
computational methods to identify CRMs in the entire noncoding regions.

Another challenge is how to understand the dynamics of the TF binding. Purely
sequence-based approaches for binding site identification do not capture the cellular
state and thus do not reflect the dynamic nature of transcriptional regulation [59].
Many computational approaches that have taken mRNA levels of genes into account
can already infer the interaction of TFs and tissue specific TF bindings. Unfortu-
nately, these approaches still cannot describe the dynamics of the gene regulatory
networks on a larger scale. A highly relevant attribute of the cellular state is the chro-
matin structure and epigenetic state of the genome. Recently, computational models
have been proposed to predict DNase I hypersensitive regions [60], nucleosome po-
sitioning [61], and unmethylated CpG islands [62]. Incorporating these attributes
should enhance binding site and its dynamics prediction.

Hannenhalli [59] proposed a new challenge in TFBS analysis: how to represent
TFBSs more accurately. He pointed out that previous approaches to improve bind-
ing site predictions have either attempted to develop enhanced, more informative
motif representations or models, or tried to exploit additional genomic or transcrip-
tomic attributes. Given several experimentally determined binding sites for a TF,
he suggested that an ideal representation is one that strikes an optimal balance be-
tween sensitivity and specificity by extracting maximal information. While PWM
representation assumes independence among positions within a binding site, a full
dependence model, on the other extreme, requires estimating an exponentially large
joint distribution based on a small number of exemplars. Mixture models [63] rep-
resent a reasonable tradeoff. However, the functional relevance of multiple motif
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subtypes is not always clear. The optimal choice among these possibilities may vary
among TFs, and a detailed evaluation of these choices needs to be done. Moreover,
a significant portion of known binding sites have been determined using in vitro ap-
proaches, such as SELEX or DNA arrays, which may be different in vivo because
of additional factors such as chromatin structure, epigenetic state, and the avail-
ability of other TFs. An unbiased and comprehensive evaluation of the differences
between binding sites recognized in vivo and in vitro needs to be done. Also, post-
translational modification states of TF proteins can alter, directly or indirectly, the
TF–DNA interaction [64]. The high-throughput technology to identify posttransla-
tional modifications is limited to certain types of modifications and our understand-
ing of how these modifications affect TF–DNA interaction is not sufficiently de-
tailed. Ultimately, although we have PWMs for some TFs, such PWMs may contain
sub-PWMs and should be divided into different subtypes, or these PWMs are only
for in vitro models, and so on. To have more accurate PWMs is another challenge.

There are many other challenges, such as how to validate the computational pre-
dictions? How to incorporate CRM prediction with the phylogenetic footprinting?
How to model chromatin structure and its dynamics in order to understand gene
regulation? Currently, there are some methods developed for such purposes. Such
efforts should be thought as the first step in the direction of these endeavors. We
need to address these questions comprehensively in the future.
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Chapter 7
Learning Network from High-Dimensional
Array Data

Li Hsu, Jie Peng, and Pei Wang

7.1 Introduction

The study of interactions among biological components helps to shed light on the
functional interconnections among the regulatory genes and their signaling com-
ponents, consequently resulting in a better understanding of disease pathologies.
In many recent studies, correlations (or other essentially equivalent statistics, such
as regression coefficients) derived from high-throughput array data have been used
to infer interactions among molecular activities, for it is believed that strong in-
teractions among various functional components often result in significant corre-
lations among genes or clones measured in the experiments [17, 25, 29, 41]. The
most straightforward method is to build a relevance network by declaring an edge
between two genes if the absolute correlation of their molecular activity measure-
ments exceed a threshold [3]. Such high correlations can be due to direct interactions
with each other (e.g., one gene is regulated by another gene) or indirect interactions
through intermediate genes (e.g., coregulated by a third gene). A relevance net-
work cannot distinguish between these two types of interactions. To further inves-
tigate relationships among genes, Gaussian Graphical Models (GGMs) have been
adopted (see, for example, [19, 22, 27, 33, 47]). In a GGM, each vertex represents
a gene, and an edge will be drawn between two genes only if their correspond-
ing molecular activity measurements are conditionally dependent given the activity
measurements of all other genes. There is a rich literature on fitting GGMs (see,
for example, [5–8, 45], and references therein). However, in array data where the
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number of genes p is typically much larger than the number of samples n, the clas-
sical methods do not work any more. To tackle this challenge, pioneer work has
been done for high-dimensional continuous variables, including likelihood-based
approach [11, 19, 31, 47], regression-based approach [22], and many others (see,
for example, [21, 33]). In a more recent work [27], we develop a new method
space—Sparse Partial Correlation Estimation—for selecting nonzero partial cor-
relations under the high-dimension-low-sample-size setting. This method employs
sparse regression techniques by imposing a sparsity constraint on the network as a
whole, which is particulary effective in identifying hub nodes of a network.

When the molecular activities are measured or summarized in binary variables,
tools developed for high-dimensional continuous variables cannot be directly ap-
plied. As a parallel development to the continuous case, we propose a new algorithm
LogitNet [43] for inferring the conditional dependence between pairs of binary vari-
ables given all others. Assuming a tree topology for the genetic network, we estab-
lish a connection between joint probability distribution of the p binary variables and
p logistic regression models with symmetric coefficient matrix. As in space, we
impose a sparsity constraint on the network as a whole.

The idea of utilizing conditional dependency can be generalized to build net-
works based on multiple types of data. Motivated by studying the influence of
DNA copy number alterations on RNA transcript levels, we develop remMap—
REgularized Multivariate regression for identifying MAster Predictors—for fit-
ting multivariate regression models with high-dimensional responses and predic-
tors [28]. RemMap employs the MAP penalty, which consists of an �1 norm part for
controlling the overall sparsity of the network and an �2 norm part for encouraging
the detection of hub nodes in the network. This combined regularization takes into
account both model interpretability and computational tractability.

A coherent theme among the three methods is to utilize proper sparse regulariza-
tion schemes under regression frameworks to deal with high dimensionality while
incorporating desired network structures. In the rest of this chapter, we will dis-
cuss each of these three methods in detail (Sects. 7.2–7.4). We will also describe
a real application (Sect. 7.5) and then conclude the chapter with a short summary
(Sect. 7.6).

7.2 space

7.2.1 Model

In [27], we proposed a novel method for constructing GGMs for a high-dimensional
vector based on i.i.d. samples. This method is referred to as space. Since high-
throughput genomic experiments usually involve thousands of genes for tens or at
most hundreds of samples, the challenge is on how to deal with the high-dimension-
low-sample-size. While this seems to be a prohibitively difficult problem, it is
widely believed that genetic regulatory relationships are intrinsically sparse. Thus
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one can reasonably assume that for most gene pairs, their corresponding measure-
ments are conditionally independent. Moreover, for genetic regulatory networks
(GRNs), there often exist well-connected hub nodes. Since these nodes play impor-
tant roles in shaping network functionality, it is particularly interesting to identify
them. To tackle these challenges, space utilizes sparse regression techniques to
induce model sparsity while encouraging the selection of hub nodes.

Suppose that Y = (y1, . . . , yp)
T , where the superscript T is a transpose, has a

joint distribution with mean 0 and covariance Σ . The partial correlation ρij be-
tween yi and yj is defined as ρij := Corr(εi, εj ), where εi and εj are the residual
errors of the best linear predictors of yi and yj based on y−(i,j) = {yk : 1 ≤ k �=
i, j ≤ p}, respectively. Note that, under the normality assumption, partial corre-
lations equal to conditional correlations and thus a zero partial correlation means
conditional independency. The inverse of the covariance matrix Σ is called the con-
centration matrix. Denote Σ−1 = (σ ij )p×p and let y−i := {yk : 1 ≤ k �= i ≤ p}.
The following well-known result relates partial correlations to regression coeffi-
cients [27]: for 1 ≤ i ≤ p, yi is expressed as yi =∑j �=i βij yj + εi , such that εi

is uncorrelated with y−i if and only if βij =−σ ijσ ii = ρij
√
σ jj

σ ii
. Moreover, for such

defined βij , Var(εi) = 1
σ ii

. Since ρij = sign(βij )
√
βijβji , the search for nonzero

partial correlations can be viewed as a model selection problem under a regression
framework.

Suppose Yk = (yk1 , . . . , ykp)T are i.i.d. observations from (0,Σ) for k = 1, . . . , n.

Denote the sample of the ith variable as Yi = (y1
i , . . . , y

n
i )
T . The space method

estimates the partial correlations θ = (ρ12, . . . , ρ(p−1)p)T by minimizing the fol-
lowing joint penalized loss function:

Ln(θ ,σ ,Y)= Ln(θ ,σ ,Y)+ J (θ). (7.1)

In the above, Ln(θ ,σ ,Y) is the weighted sum of the �2 loss over all p regressions,

Ln(θ ,σ ,Y) := 1

2

(
p∑

i=1

wi

∥
∥
∥
∥Yi −

∑

j �=i
βijYj

∥
∥
∥
∥

2
)

= 1

2

(
p∑

i=1

wi

∥
∥
∥
∥Yi −

∑

j �=i
ρij

√

σ jj

σ ii
Yj

∥
∥
∥
∥

2
)

, (7.2)

where σ = {σ ii}pi=1, Y= {Yk}nk=1, and w = {wi}pi=1 are nonnegative weights, and
the penalty term J (θ) aims to control the overall sparsity of the final estimation of
θ . In [27], we focus on the �1 penalty (also a.k.a. lasso penalty [37]):

J (θ)= λ‖θ‖1 = λ
∑

1≤i<j≤p

∣
∣ρij

∣
∣. (7.3)

In space, sparsity is imposed on the partial correlations θ as a whole. This
“joint” modeling helps to efficiently utilize data and also encourages the selection
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of hub nodes. This method also preserves the intrinsic symmetry of the partial corre-
lation matrix, i.e., ρij = ρji by estimating them directly. Moreover, space is flexi-
ble in incorporating prior knowledge. One may assign different weights to different
nodes according to their “importance.” For example, as in weighted least squares,
the weight can be set as the (estimated) residual variance. Or one can let the weight
be proportional to the (estimated) degree of each variable. This would result in a
preferential attachment effect which explains the cumulative advantage phenomena
observed in many real life networks including GRNs [23].
Space estimates θ and σ by a two-step iterative procedure. Given an ini-

tial estimate σ (0) of σ , θ is estimated by minimizing the penalized loss func-
tion (7.1), whose implementation is discussed below. Then given the current es-
timates θ (c) and σ (c), σ is updated by 1/σ̂ ii = 1

n
‖Yi −∑j �=i β̂

(c)
ij Yj‖2, where

β̂
(c)
ij = (ρij )(c)

√
(σ jj )(c)

(σ ii )(c)
. These two steps are then iterated until convergence is

reached for all parameters. Based on our experience, it usually takes no more than
three cycles for this procedure to stabilize.

Given σ and positive weights w, let Y = (ỸT1 , . . . , ỸTp )T be an np × 1 col-

umn vector, where Ỹi = √wi Yi , and let X = (X̃(1,2), . . . , X̃(p−1,p)) be an np by
p(p− 1)/2 matrix, with

X̃(i,j) =
(

0, . . . ,0,

√

σ̃ jj

σ̃ ii
ỸTj , 0, . . . ,0,

√

σ̃ ii

σ̃ jj
ỸTi , 0, . . . ,0

)T

↑ ↑
ith block j th block

,

where σ̃ ii = σ ii/wi . Then it is easy to see that the loss function (7.2) equals to
1
2‖Y − X θ‖2

2, and the minimization with respect to θ is equivalent to

min
θ

1

2
‖Y − X θ‖2

2 + λ‖θ‖1.

Note that the current dimensions ñ = np and p̃ = p(p − 1)/2 are of much higher
order than the original n and p. Fortunately, X is a block matrix with many zero
blocks. Thus, algorithms for lasso regression can be efficiently implemented by
taking into consideration this structure (see [27] for more details). To further im-
prove the convergence speed, space implements an active-shooting algo-
rithm, modifying the shooting algorithm, which is first proposed by Fu in [13]
and then extended by many others including [10, 12, 14]. It solves �1 penalized re-
gression problems by updating each coordinate iteratively until convergence. Since
under a sparse model, only a small subset of variables have nonzero coefficients, a
faster convergence rate can be achieved by focusing on the set of variables that are
more likely to be in the model (referred to as the active set). Suppose that the goal is

min
β∈Rp

1

2
‖Y −Xβ‖2

2 + λ
p∑

j=1

|βj |.

The active-shooting algorithm proceeds as follows:
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1. Initial step: previously obtained estimates or estimates obtained from univariate
soft shrinkage,

β
(0)
j = sign

(
YT Xj

)(∣
∣YT Xj/X

T
j Xj

∣
∣− λ/XTj Xj

)

+.

2. Define the current active set Λ= {k : current βk �= 0}.
(1) For each k ∈ Λ, update βk with all other coefficients fixed at the current

values.
(2) Repeat (1) until convergence is achieved on the active set.

3. For i = 1 to p, update βi with all other coefficients fixed at the current value. If
no βi changes during this process, stop; otherwise, go back to step 2.

A simulation study in [27] shows that active-shooting greatly improves com-
putational efficiency over shooting for sparse models. In particular, it takes less
than 30 seconds (on average) to fit the space model by active-shooting (im-
plemented in c code) for cases with 1000 variables and 200 samples and when the
resulting model has around 1000 nonzero partial correlations on a server with two
Dual/Core, CPU 3 GHz, and 4 GB RAM.

7.2.2 Simulation

In [27], simulation studies were performed to compare space and two alterna-
tive methods. The first one is the neighborhood selection approach proposed by
Meinshausen and Buhlmann in [22] (referred to as MB hereafter), where p lasso re-
gressions are performed separately. By comparing space with MB, we illustrated
the advantages of the joint modeling approach. The second method is the penalized
maximum likelihood approach proposed by [47] and efficiently implemented by
[11] (referred to as glasso hereafter). This method assumes a multivariate normal
distribution and imposes the �1 norm of the concentration matrix as penalty on the
negative log-likelihood function. As suggested by the simulation results, the rela-
tively simpler loss function used by space (which is quadratic in the unknown pa-
rameters) appears to pay off under the high-dimension-low-sample-size setting [27].

For space, the initial value of σ ii was set to be one. The initial weights were
also set to be one (i.e., equal weights). In each subsequent iteration, new weight wi
was set to be proportional to the estimated degree of yi , i.e., #{j : ρ̂ij �= 0, j �= i}.
The corresponding method is referred to as space.dew (degree-based weight).
For glasso, the diagonal of the concentration matrix was not penalized.

A network consisting of five disjointed modules was simulated, with each mod-
ule having 100 nodes. This is aimed to mimic real-life large networks which of-
ten exhibit a modular structure comprised of many disjointed or loosely connected
components of relatively small size. Moreover, each module consisted of three
hubs with degrees around 15, and the other nodes with degrees in between one
to four. In total, there were 500 nodes and 568 edges. (This network was re-
ferred to as the Hub network.) Nonzero partial correlations were assumed to fall
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Table 7.1 Power (sensitivity) of space.dew, MB, and glasso in identifying correct edges
when FDR is controlled at 0.05

p n space.dew MB glasso

500 250 0.844 0.784 0.655

1000 200 0.707 0.656 0.559

300 0.856 0.790 0.690

500 0.963 0.894 0.826

into (−0.67,−0.1] ∪ [0.1,0.67), with two modes around −0.28 and 0.28. Finally
n= 250 i.i.d. samples were drawn from the corresponding multivariate normal dis-
tribution.

Each method was evaluated at a series of different values of the tuning parameter.
(The tuning parameter controls the total number of edges in the estimated model.)
Figure 7.1(a) shows the number of correctly detected edges (Nc) vs. the number of
total detected edges (Nt ) averaged over 50 independent data sets. It can be seen that
space.dew performed the best among all methods. Specifically, when Nt = 568
(which is the number of true edges), space.dew detected 501 correct edges on
average with a standard deviation 4.5 edges. On the other hand, MB and glasso
detected 472 and 480 correct edges on average, respectively. In terms of hub detec-
tion, for a given Nt , a rank was assigned to each variable yi based on its estimated
degree (the larger the estimated degree, the smaller the rank value). The average rank
of the 15 true hub nodes was then calculated for each method. The results are shown
in Fig. 7.1(b). This average rank would achieve the minimum value 8 (indicated by
the grey horizontal line) if the 15 true hubs had larger estimated degrees than all
other nonhub nodes. As it can be seen from Fig. 7.1(b), the average rank curves (as
a function of Nt ) for space.dew was very close to the optimal minimum value 8
for a large range of Nt . This suggests that space.dew can successfully identify
most of the true hubs. On the other hand, both MB and glasso identified far fewer
hub nodes, as their corresponding average rank curves were much higher than the
grey horizontal line.

To investigate the impact of dimensionality p and sample size n, simulations
were conducted for a larger dimension with p = 1000 and various sample sizes with
n= 200, 300, and 500. The simulated network included ten disjointed modules of
size 100 each and had 1163 edges in total. Nonzero partial correlations formed a
similar distribution as that of the p = 500 network discussed above. When false
discovery rate (= 1-specificity) is controlled at 0.05, the power (= sensitivity) for
detecting correct edges is given in Table 7.1. The sample size appeared to have a
big impact on the performance of all methods. For p = 1000, when the sample size
increased from 200 to 300, the power of space.dew increased more than 20%;
when the sample size was 500, space.dew achieved an impressive power of 96%.

These methods were also applied to various networks without hubs. space.dew
performed similarly as, if not better than, the other two methods, although its advan-
tages became smaller compared to the results on the networks with hubs. Nonnor-
mal distributions, in particular, multivariate t-distribution with degrees of freedom
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3,6,10, were also considered. As expected, the performances of all methods dete-
riorated compared to the normal case; however, the relative performance of these
methods remained essentially unchanged.

In summary, space utilizes a joint sparse regression model for selecting nonzero
partial correlations under the high-dimension-low-sample-size setting. By control-
ling the overall sparsity of the partial correlation matrix, it is able to automatically
adjust for different neighborhood sizes and thus utilizes data effectively, especially
in terms of hub nodes identification. This method is implemented through a fast al-
gorithm active-shooting, which can be readily extended to solve many other
penalized optimization problems. See Sects. 7.3 and 7.4 for examples of such ex-
tension.

7.3 LogitNet

7.3.1 Model

This section describes a sparse regression-based approach to infer the conditional
dependencies for binary variables [43]. This is a parallel development to the space
method for continuous variables. Binary variables arise frequently in genomic data,
for example, genomic aberration status or mutation status at marker loci in patient
samples. Understanding the interactions of these aberration events will provide us
insights into biological mechanism of disease process.

Let XT = (X1, . . . ,Xp) be a p × 1 vector of binary variables. The pattern of
conditional dependencies between these binary variables can be described by an
undirected graph G = (V ,E), where V is a finite set of vertices, (1, . . . , p), that
are associated with binary variables (X1, . . . ,Xp); and E is a set of pairs of vertices
such that each pair inE is conditionally dependent given the rest of binary variables.
Assume that the edge set E does not contain cliques more than 2 and the joint
probability distribution Pr(X) can be represented as a product of functions of pairs
of binary variables. Furthermore, if Pr(X) is strictly positive for all values of X,
then Pr(X) leads to the well-known quadratic exponential model

Pr(X = x)=Δ−1 exp
(
xT θ + zT κ),

where zT = (x1x2, x1x3, . . . , xp−1xp), θT = (θ1, . . . , θp), κT = (κ12, κ13, . . . ,

κ(p−1)p), and Δ is a normalization constant such that Δ = ∑1
x1=0 · · ·∑1

xp=0 exp(xT θ + zT κ).
There are a couple of appealing properties of this model. First, the zero values

in κ are equivalent to the conditional independence for the corresponding binary
variables. This implies that to infer the edges in E, one only needs to examine
whether the corresponding κ parameter values are zero or not. Second, κ can also
be interpreted as a conditional odds ratio between paired binary variables given all
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Fig. 7.1 Simulation results for Hub network

others and obtained by p logistic regression models with each binary variable as an
outcome and the rest of the binary variables as covariates. This can be written as

⎧
⎪⎨

⎪⎩

logit
{
Pr(x1 = 1|x2, . . . , xp)

}= θ1 + κ12x2 + · · · + κ1pxp,
...

logit
{
Pr(xp = 1|x1, . . . , xp−1)

}= κ1px1 + · · · + κ(p−1)pxp−1 + θp.
(7.4)

Let B be the matrix of the row combined regression coefficients from p logistic re-
gression models, and βrs the matrix element for the r th row and the sth column. It is
easy to see that the B matrix is symmetric, i.e., βrs = βsr = κrs , i �= j . Interestingly,
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the symmetry of B also ensures the compatibility of the p logistic conditional distri-
butions, and the resulting joint distribution is the quadratic exponential model [15].

Therefore, to infer the edge set E of the graph, one can use the regression coeffi-
cient estimates obtained by fitting the p logistic regression models in (7.4) with sym-
metric B. The log pseudo-likelihood function for (7.4) is then l(B)=−∑p

r=1 lp(B),
where lp(B) is the log-likelihood function for the r th logistic regression model,
r = 1, . . . , p.

An advantage for using regression models to infer graphs is one can make use of
sparse regression techniques to handle high-dimension-low-sample-size problems
when the true model is sparse relative to the dimensionality of the data. The basic
idea is to constrain the number of nonzero coefficients or shrink the estimates of
coefficients so that the model is not overfit in the case of p� n. One particularly
popular choice for constraining the parameter estimation is by using �1 norm or the
lasso penalty [37]. Adding this penalty function to the negative of log pseudo-
likelihood function (7.4) gives a regularized or penalized loss function

llasso
λ (B)=−l(B)+ λ

p∑

r=1

p∑

s=r+1

|βrs |, (7.5)

and B̂(λ) := arg minBl
lasso
λ (B). The model defined in (7.5) is referred to as Logit-

Net model, and B̂(λ) is the LogitNet estimator with β̂rs(λ) as the rsth element
of B̂(λ).

To minimize the loss function (7.5), the gradient descent algorithm [14] needs
to be extended to enforce the symmetry of B. Since there is no closed form solu-
tion to minimizing (7.5), a one-step Newton–Raphson algorithm is used to update
the parameter estimates one at a time in the same spirit as the shooting algorithm
[10, 13] for solving general linear lasso regression. Care is taken when the current
estimate is 0 or the update of an estimate crosses 0, as �1 norm is not differentiable
at 0. The algorithm also takes other steps to ensure a stable numerical procedure,
for example, limiting the update size and setting the upper bound for the Hessian
matrix [49]. This is the basic algorithm. To improve the convergence speed, the al-
gorithm also adopts the active-shooting idea used in the space algorithm
(Sect. 7.2), which focuses on the convergence of currently nonzero regression co-
efficients (active set) while looping the whole set of regression coefficients. Further
details of the algorithm can be found in [43].

In the penalized regression, the penalty term shrinks the estimates towards zero
by the amount determined by the penalty parameter λ. However, it is worth noting
that each parameter is not penalized by the same amount. This can be seen from the
update for β̂rs(λ), r = 1, . . . , p and s = (r + 1), . . . , p,

Δβ lasso
rs =Δβrs − λ

l̈(βrs)
sgn(βrs), (7.6)

where sgn(βrs) = 1 if βrs is positive and −1 if βrs is negative; and l̈(βrs)−1 is
the variance of β̂rs . When λ = 0, i.e., no penalty, the update for penalized lasso
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Δβ lasso
rs is same as Δβrs . When λ > 0, the penalty is weighted by the variance of

the estimate, i.e., estimates with larger variance are penalized more than estimates
with smaller variances. It turns out that this type of penalization is very useful, as
it offers ways to account for specific features of a particular data type. In the next
section on the application of LogitNet to genomic instability data, it is shown a
proposal for how to modify the weighted penalty parameter to account for specific
features of the data.

Two common procedures can be used for selecting the penalty parameter λ:
cross validation (CV) and Bayesian Information Criterion (BIC). For both proce-
dures, the penalized log-likelihood function (7.5) is used for selecting nonzero coef-
ficients. After the nonzero coefficients are determined, they are reestimated without
penalty, and the reestimated ones are then plugged in the log-likelihood function,
because when p� n, the estimates from the penalized likelihood function can be
considerably shrunk and do not reflect the true values any more. The reestimation
is a common practice when applying CV for �1 penalized regression under high-
dimensional setting [9]. To further control the false positive rate, a cv.vote pro-
cedure from [28] is applied, which retains only those variables being consistently
selected by many, for example, more than half of, cross validation folds in the final
model.

7.3.2 Application to Genomic Instability Data

This section uses genomic instability data as an example to illustrate how Logit-
Net can be modified to accommodate a specific feature in the data. Specifically,
genomic instability, referring to as the propensity of aberrations in chromosomes,
plays a critical role in the development of many diseases. In this type of data, spa-
tial correlation of aberrations is very common. This can pose problem in inferring
nonzero coefficients, because loci that are spatially closest to the target are likely
the strongest predictors in the model and would explain away most of the variation
in the target locus. This leaves little variation for loci at other locations even if they
are correlated with the target locus. Obviously this result is not desirable because
the objective is to identify the network among all of these loci, particularly those
that are not close spatially.

One approach to account for this undesirable spatial effect is to downweight the
effect of the neighboring loci of the target locus, say, Xr when regressing Xr on the
rest of the loci. Recall that the penalty term in (7.6) is weighted by the variance of
the parameter estimates. Following the same idea, one can achieve the downweight-
ing of neighboring loci by letting the penalty term be proportional to the strength
of their correlations with Xr . This way one can shrink the effects of the neighbor-
ing loci with strong spatial correlation more than those that have less or no spatial
correlation. Specifically, the update for the parameter estimate βrs in (7.6) can be
written as

Δβ lasso
rs =Δβrs −wrs λ

l̈(βrs)
sgn(βrs),
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where wrs is the weight for the spatial correlation. It is natural to assume that spatial
correlation only exists within the same chromosome. Thus, for events on different
chromosomes, the corresponding weightwrs can be simply set to 1; while for events
on the same chromosome, the corresponding wrs is calculated based on the strength
of the spatial correlation between locus r and locus s. One may first calculate the
log odds ratio between the target locus (the outcome) and each of the rest of the loci,
and then smooth the log odds ratios along the genome with a window size of say, 10
loci. The smoothed curve is set to zero when the curve starting from the target locus
hits 0, and the weight may be set as exponential of the smoothed curve.

Interestingly, the above weighting scheme together with the enforcement of the
symmetry of B in LogitNet encourages a group selection effect, i.e., highly cor-
related predictors tend to be in or out of the model simultaneously. This point can be
illustrated with a simple example system of three variablesX1,X2, andX3. Suppose
that X2 and X3 are very close on the genome and highly correlated and that X1 is
associated with X2 and X3 but sits on a different chromosome. Under the proposed
weighting scheme, the weight matrix w is 1 for all entries except w23 = w32 = a,
which is a large value because of the strong spatial correlation between X2 and X3.
Then, for LogitNet, the joint logistic regression model

logit(X1) ∼ β11 + β12X2 + β13X3, (7.7)

logit(X2) ∼ β12X1 + β22 + β23X3, (7.8)

logit(X3) ∼ β13X1 + β23X2 + β33, (7.9)

is subject to the constraint |β12| + |β13| + a|β23|< s. Because of the large value of
a, β23 will likely be shrunk to zero, which ensures β12 and β13 to be nonzero in (7.8)
and (7.9), respectively. With the symmetry constraint imposed on B matrix, both β12
and β13 are forced to be selected in (7.7). This grouping effect would not happen
if only the model (7.7) were fit, for which only one of β12 and β13 would likely be
selected [51], nor would it happen if one did not have a large value of a because
β23 would have been the dominant coefficient in models (7.8) and (7.9). Indeed, the
group selection effect of LogitNet is clearly observed in the simulation studies
shown in the next section.

7.3.3 Simulation

The LogitNet model is closely related to the work by [30], which fits p lasso
logistic regressions separately (hereafter referred to as SepLogit), whereas Log-
itNet fits p logistic regression models jointly while enforcing symmetry of re-
gression coefficients. In [43], the performance of LogitNet was evaluated and
compared with SepLogit. Since the SepLogit method did not ensure symme-
try, there would be cases where βrs = 0 but βsr �= 0 or vice versa. In these cases the
result may be interpreted using the “OR” rule: Xr and Xs are deemed to be condi-
tionally dependent if either βrs or βsr is nonzero. The “AND” rule was also used,
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Fig. 7.2 Oncogenic pathway of a chain shape. For each adjacent mutation pair (M1,M2) withM1
on the left side of the arrow and M2 on the right side of the arrow, the number above (or below)
the arrow gives the conditional probability of Pr(M2 = 1|M1 = 1) (or Pr(M2 = 1|M1 = 0))

however, it always yielded very high false negative rate. Due to space limitation, the
results for the “AND” rule were omitted.

Data were generated mimicking genomic instability data. Background aberra-
tion events with spatial correlation were generated using a homogenous Bernoulli
Markov model. It was part of the instability-selection model [24], which hypoth-
esized that the genetic structure of a progenitor cell was subject to chromosomal
instability that causes random aberrations. Then aberration events that followed a
particular oncogenic pathway were generated with spatial correlation and superim-
posed on the background aberration events.

A total of n= 200 samples each with p = 600 markers were generated. The 600
marker loci were uniformly distributed across six different chromosomes with 100
loci on each chromosome. A simple oncogenic pathway model, a chain shape model
(Fig. 7.2), was considered. The model contained six aberration events: A, B , C, D,
E, F . Without loss of generality, these six aberrations were located in the middle
of each chromosome. The true conditionally dependent pairs in this model were
{(A,B), (B,C), (C,D), (D,E), (E,F )}.

The performance of the methods was evaluated by two metrics: the false posi-
tive rate (FPR) and the false negative rate (FNR) of edge detection. A nonzero β̂rs
was considered a false detection if its genome location indices (r, s) is far from the
indices of any true edge (Manhattan distance > 30 loci), where 30 was the maxi-
mum aberration size around the target locus in the simulation set up. For example,
in Figs. 7.3(b) and (c) red dots that do not fall into any grey diamond are considered
false detection. Similarly, a conditionally dependent pair was considered missed if
there was no nonzero β falling in the grey diamond. FPR is then the number of false
detections divided by the total number of nonzero β̂rs , r < s; and FNR is the number
of missed divided by the number of truly dependent pairs.

A total of 50 independent data sets were generated. Both LogitNet and Se-
pLogit were applied to each simulated data set for a series of different values
of λ. Figure 7.3(a) shows the total error rate of the two methods as a function of λ.
Clearly LogitNet outperformed SepLogit. For LogitNet, the average opti-
mal total error rate (FPR+FNR) across the 50 independent data sets was 0.014 (s.d.
= 0.029), while the average optimal total error rate for SepLogit was 0.211 (s.d.
= 0.203). The two coefficient matrices B̂ for a simulated data set are illustrated in
Figs. 7.3(b) and (c). As one can see, there was a large degree of asymmetry in the
result of SepLogit: 435 out of the 476 nonzero β̂rs had inconsistent transpose el-
ements, β̂sr = 0. On the contrary, by enforcing symmetry the LogitNet approach
correctly identified all five true conditionally dependent pairs in the chain model.
Moreover, the nonzero β̂rs ’s plotted by red dots tended to be clustered within the
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Fig. 7.3 (Color online) (a) Total error rates of LogitNet and SepLogit for the chain model in
Fig. 7.2. The solid line (dashed lines) is the mean curve (mean± one s.d.). (b, c) An example of the
coefficient matrix B by LogitNet and SepLogit, respectively. Red dots represent nonzero βrs .
Points in the grey diamond are deemed as correct detections. The dashed blue lines indicate the
locations of aberration A− F
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grey diamonds. This shows that LogitNet indeed encourages group selection for
highly correlated predictors and thus is able to make good use of the spatial corre-
lation in the data when inferring the edges.

Both CV and BIC were evaluated for LogitNet, and they performed reason-
ably well. The CV criterion tended to select larger models than the BIC and thus has
more false positives (0.079 versus 0.025) and fewer false negatives (0 versus 0.06).
The average total error rate (FPR+FNR) for CV was 0.079, slightly smaller than the
total error rate for BIC, 0.084.

Taken together, the LogitNet method [43] makes uses of sparse regression
techniques for learning networks using high-dimensional binary data. It enforces
the symmetry when estimating the regression coefficients. As a result, the Logit-
Net estimates are more efficient and more interpretable than approaches that do not
enforce the symmetry. Here a lasso penalty function is imposed. Other penalty
functions can easily be extended in the penalized loss function (7.5).

7.4 remMap

7.4.1 Motivation and Model

In a few recent breast cancer cohort studies, microarray expression experiments
and array-based comparative genomic hybridization (array CGH) experiments have
been conducted for more than 170 primary breast tumor specimens collected at
multiple cancer centers [1, 2, 16, 18, 34, 35, 50]. One goal of these studies is to re-
veal the subtle and complicated regulatory relationships among DNA copy numbers
(from CGH experiments) and RNA transcript levels (from microarray expression
experiments). Such information will help shed light on cancer mechanisms.

The dependence of RNA levels on DNA copy numbers can be modeled through
a straightforward multivariate linear regression model with the RNA levels as re-
sponses and the DNA copy numbers as predictors. While multivariate linear regres-
sion is well studied in statistical literature, the current problem bears new challenges
due to (i) high-dimensionality in terms of both predictors and responses; (ii) the in-
terest in identifying master regulators in genetic regulatory networks; and (iii) the
complicated relationships among correlated response variables. Thus, the naive ap-
proach of regressing each response onto the predictors separately is unlikely to pro-
duce satisfactory results, as such methods often lead to high variability and over-
fitting.

Some work has been done for performing multivariate linear regression with
high-dimensional predictors, including [20, 39, 48]. In [28], we proposed a method
remMap—Regularized Multivariate regression for identifying MAster Predictors—
for fitting multivariate regression with not only high-dimensional predictors but also
high-dimension responses. RemMap uses a penalty which is designed to induce
sparsity in the model and at the same time to encourage the selection of master
predictors—predictors which affect (relatively) many responses.
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Consider a multivariate regression with Q response variables y1, . . . , yQ and P
prediction variables x1, . . . , xP :

yq =
P∑

p=1

xpβpq + εq, q = 1, . . . ,Q, (7.10)

where the error terms ε1, . . . , εQ have a joint distribution with mean 0 and covari-
ance Σε . All the response and prediction variables are standardized to have mean
zero, and thus there is no intercept term in (7.10). The goal is to identify nonzero en-
tries in the P ×Q coefficient matrix B= (βpq) based onN i.i.d. samples. Under the
normality assumption, the coefficients βpq can be interpreted as proportional to the
conditional correlation Cor(yq, xp|x−(p)), where x−(p) := {xp′ : 1 ≤ p′ �= p ≤ P }.
Let Yq = (y1

q , . . . , y
N
q )
T and Xp = (x1

p, . . . , x
N
p )
T denote the sample of the qth

response variable and that of the pth prediction variable, respectively. Also let
Y = (Y1 : . . . : YQ) denote the N × Q response matrix, and X = (X1 : . . . : XP )
denote the N × P prediction matrix.
RemMap aims to fit the multivariate regression model (7.10) when both Q and

P are larger than the sample size N . For example, in the breast cancer study men-
tioned above, the sample size is 172, while the number of genes and the number of
chromosomal regions are on the order of a couple of hundred (after prescreening).
When the dimensions of both predictors and responses are large, it is reasonable to
assume that (i) only a subset of predictors enter the model, and (ii) a predictor may
affect only some but not all responses. To take into account these aspects, remMap
uses a combined regularization with a �1 norm penalty on the coefficient matrix B
to control the overall sparsity of the model and a �2 norm penalty for the group of
coefficients corresponding to the same predictor (one row of B) to control the to-
tal number of predictors entering the model. Consequently, a predictor will not be
selected into the model if the corresponding �2 norm is too small. Note that, this
penalty favors the selection of the so-called master predictors. The �2 penalty (or
its analogies) has been used for other purposes in the literature, see [46, 48] for
examples.

Specifically, remMap utilizes the following penalized loss function:

L(B;λ1, λ2) = 1

2

∥
∥
∥
∥
∥

Y−
P∑

p=1

XpBp

∥
∥
∥
∥
∥

2

F

+ λ1

P∑

p=1

‖Cp ·Bp‖1 + λ2

P∑

p=1

‖Cp ·Bp‖2, (7.11)

where Cp is the pth row of the indicator matrix C = (cpq) = (CT1 : . . . : CTP )T ,
which is a prespecified P ×Q 0–1 matrix indicating which coefficients should be
penalized; Bp is the pth row of B; ‖ · ‖F denotes the Frobenius norm of matrices;
‖ · ‖1 and ‖ · ‖2 are the �1 and �2 norms for vectors, respectively; and “·” stands
for Hadamard product (that is, entry-wise multiplication). The indicator matrix C is
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prespecified based on prior knowledge: if one knows in advance that predictor xp
affects response yq , then the corresponding regression coefficient βpq will not be
penalized, i.e., cpq = 0 (see Sect. 7.5 for an example). When there is no such infor-
mation available, C can be simply set to be a constant matrix cpq ≡ 1. The remMap
estimate of the coefficient matrix B is defined as B̂(λ1, λ2) := arg minBL(B;λ1, λ2).
The combined penalty in (7.11) is referred to as the MAP (MAster Predictor) penalty.
Here, we want to point out a difference between the MAP penalty and the Elastic-
Net penalty proposed by Zou et al. [51], which combines the �1 norm penalty with
the squared �2 norm penalty under the multiple regression setting. The squared �2

norm itself does not induce sparsity and thus is intrinsically different from the �2

norm penalty discussed above.
The remMap estimator B̂(λ1, λ2) can be obtained by an iterative algorithm. We

first describe how to update one row of B (say the pth0 row), when all other rows are
fixed.

Theorem 7.1 Given {Bp}p �=p0 in (7.11), the solution for minBp0
L(B;λ1, λ2) is

given by B̂p0 = (β̂p0,1, . . . , β̂p0,Q) which satisfies: for 1≤ q ≤Q,

(i) If cp0,q = 0, β̂p0,q =XTp0
Ỹq/‖Xp0‖2

2 (OLS), where Ỹq = Yq −∑p �=p0
Xpβpq .

(ii) If cp0,q = 1,

β̂p0,q =
⎧
⎨

⎩

0 if ‖B̂ lasso
p0

‖2,C = 0,
(
1− λ2

‖B̂lasso
p0

‖2,C ·‖Xp0‖2
2

)

+β̂
lasso
p0,q

otherwise,
(7.12)

where ‖B̂ lasso
p0

‖2,C := {∑Q
t=1 cp0,t (β̂

lasso
p0,t

)2}1/2, and

β̂ lasso
p0,q

=
⎧
⎨

⎩

XTp0
Ỹq/‖Xp0‖2

2 if cp0,q = 0,

(|XTp0
Ỹq | − λ1)+

sign(XTp0
Ỹq )

‖Xp0‖2
2

if cp0,q = 1.
(7.13)

The proof of Theorem 7.1 is given in the supplementary material of [28]. Theo-
rem 7.1 basically shows that the remMap procedure amounts to two folds of shrink-
age: a lasso shrinkage of the OLS solution followed by a group shrinkage of the
lasso solution. Theorem 7.1 naturally leads to an algorithm which updates the rows
of B iteratively until convergence. The same active-shooting idea described
earlier can also be adopted here to improve the convergence speed.

In [28], we select the tuning parameters (λ1, λ2) by v-fold cross validation (CV).
Specifically, as described in Sect. 7.3.1, OLS estimates based on the selected model
rather than the shrunken estimates are used in calculating the cross validation scores
to avoid overfitting. In addition, in [28], we develop the cv.vote procedure men-
tioned earlier to further control the false positive rates. A BIC criterion, which is
computationally cheaper but requires much more assumptions, is also considered.
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7.4.2 Simulation

In [28], we compared the remMap method with two alternatives: (i) the joint
method which only utilizes the �1 penalty, that is, λ2 = 0 in (7.11); (ii) the sep
method which performs Q separate lasso regressions. For each method, we consid-
ered three tuning strategies, which results in nine methods in total:

1. remMap.cv, joint.cv, sep.cv: The tuning parameters are selected
through 10-fold cross validation.

2. remMap.cv.vote, joint.cv.vote, sep.cv.vote: The cv.vote
procedure is applied that retains only variables selected by more than five cross
validation folds.

3. remMap.bic, joint.bic, sep.bic: The tuning parameters are se-
lected by a BIC criterion.

In the simulation, the sample size N was fixed at 200, and varying dimensions
P = Q = 400,600,800 were considered. For a given set of (N,P,Q), predic-
tors (x1, . . . , xP )

T were first generated according to NormalP (0,ΣX), where ΣX
is the predictor covariance matrix (ΣX(p,p′) := 0.4|p−p′|). Next, a P × Q 0–1
adjacency matrix A was simulated, which specified the topology of the network
between predictors and responses. The networks were generated with five mas-
ter predictors (hubs), each influencing 20–40 responses. In addition, the diagonals
of A equaled one. This was aimed to mimic cis-regulations of DNA copy
number alternations on its own expression levels. The P × Q regression coeffi-
cient matrix B = (βpq) were then simulated by setting βpq = 0 if A(p, q) = 0
and βpq ∼ Uniform([−5,−1] ∪ [1,5]) if A(p, q) = 1. After that, the residuals
(ε1, . . . , εQ)

T were generated according to NormalQ(0, σ 2
ε IQ). The residual vari-

ance σ 2
ε was chosen such that the average signal-to-noise ratio equals 0.25. Finally,

the responses (y1, . . . , yQ)
T were generated according to model (7.10). Each data

set consisted of N = 200 i.i.d. samples of such generated predictors and responses.
For all methods, predictors and responses were standardized to have (sample) mean
zero and standard deviation one before model fitting. In addition, C = (cpq) was
taken to be cpq = 0 if p = q (meaning that the cis-regulations were viewed as prior
information) and cpq = 1 otherwise. The primary goal was to identify the trans-
edges, the predictor-response pairs (xp, yq) with A(p, q) = 1 and C(p, q) = 1,
i.e., the edges that were not prespecified by the indicator matrix C. The total num-
ber of tran-edges was 132 in the above network.

Results on trans-edge detection averaged across 25 independent data sets
were summarized in Fig. 7.4 in terms of the number of false positive detections
of trans-edges (FP) and the number of false negative detections of trans-
edges (FN). It is clear that remMap.cv and remMap.cv.vote performed
the best in terms of the total number of false detections (FP+FN), followed by
remMap.bic. The three sep methods resulted in too many false positives (es-
pecially sep.cv). This is expected since there were a total ofQ tuning parameters
selected separately, and the relations among the responses were not utilized at all.
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Fig. 7.4 Impact of dimensionality. Heights of solid bars represent numbers of false positive detec-
tions of trans-edges (FP); heights of shaded bars represent numbers of false negative detec-
tions of trans-edges (FN). All bars are truncated at height = 132 [28] (for the color version,
see Color Plates on p. 391)

The three joint methods performed reasonably well, though they had consider-
ably larger number of false negative detections compared to remMap methods. This
is because the joint methods incorporated less information about the relations
among the responses caused by the same predictors. Finally, comparing cv.vote
to cv, the cv.vote procedure decreased the false positive detections while only in-
flated the false negative counts slightly. As to the impact of dimensionality (P,Q),
the larger the dimension, the more false negative detections (Fig. 7.4). Moreover,
remMap performed much better than joint and sep on master predictor selec-
tion, especially in terms of the number of false positive trans-predictors
(results not shown). This is because the �2 norm penalty was more effective than the
�1 norm penalty in excluding irrelevant predictors.

In summary, remMap is developed for fitting multivariate regression models un-
der high-dimensionality and is particularly useful for identifying predictors that af-
fect many responses. The remMap method can be applied to many genomic studies
involving two types of biological measurements. A notable example is the e-QTL
mapping, with the SNP status being the predictor variables and the expression levels
used as response variables.

7.5 Real Application

In [28], space and remMap were applied to the breast cancer study discussed
in Sect. 7.4.1. The goal was to search for genome regions whose copy number al-
terations have significant impact on RNA expression levels, especially on those of
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the unlinked genes, i.e., genes not falling into the same genome region as the copy
number alterations.

Data Preprocessing A total of 172 tumor samples had both cDNA expression
microarray and CGH array data. The experiments were described in [1, 2, 16, 18,
34, 35, 50]. In what follows, we outline the data preprocessing steps. More details
can be found in [28].

Each CGH array contains measurements (log2 ratios) on about 17 K mapped
human genes. A positive (negative) measurement suggests a possible copy number
gain (loss). After proper normalization, cghFLasso [38] was used to estimate the
underlying DNA copy numbers based on array outputs. Copy number alteration in-
tervals (CNAIs) were then derived by employing the Fixed-Order Clustering (FOC)
method [42], where CNAIs are defined as basic CNA units (genome regions) in
which all genes tend to be amplified or deleted simultaneously in a sample. For
each CNAI in each sample, the mean value of the estimated copy numbers of the
genes falling into this CNAI was calculated. This resulted in a 172 (samples) by 384
(CNAIs) numeric matrix.

Each expression array contains measurements for about 18 K mapped human
genes. After global normalization for each array, each gene was standardized across
172 samples to have median = 0 and MAD (median absolute deviation) = 1. Then
we focused on a set of 654 breast cancer related genes, which was derived based on
seven published breast cancer gene lists [4, 26, 32, 35, 36, 40, 44]. This resulted in
a 172 (samples) by 654 (genes) numeric matrix.

Since different tumor subtypes might confound the detection of associations be-
tween CNAIs and gene expressions, a set of subtype indicator variables based on
the expression data were derived. Specifically, following [35], 172 patients were
grouped into five distinct groups based on their expression patterns. The corre-
sponding subtype indicator variables were then used as additional predictors in the
remMap model.

Interactions Among RNA When the copy number change of one CNAI affects
the RNA level of an unlinked gene, there are two possibilities: (i) the copy number
change directly affects the RNA level of the unlinked gene; (ii) the copy number
change first affects the RNA level of an intermediate gene (either linked or un-
linked), and then the RNA level of this intermediate gene affects that of the unlinked
gene. Figure 7.5 gives an illustration of these two scenarios. In [28], the main interest
was to find the first-type relationships. To achieve this, the interactions among RNA
levels were first characterized and then accounted for in remMap in order to obtain
the direct interactions. For this purpose, the space method was applied to search
for associated RNA pairs through identifying nonzero partial correlations [27]. The
estimated network (referred to as Exp.Net.664 hereafter) has in total 664 edges—
664 pairs of genes whose RNA levels are significantly correlated with each other
after accounting for the expression levels of other genes (Fig. 7.6(a)).

Interactions Between CNAIs and RNA Expressions remMap was then applied
to study the interactions between CNAIs and RNA transcript levels. For each of the



152 L. Hsu et al.

Fig. 7.5 (a) Direct interaction between CNAI A and the expression of gene B; (b) indirect inter-
action between CNAI A and the expression of Gene B through the intermediate Gene C [28]

654 breast cancer genes, the expression level was regressed on three sets of pre-
dictors: (i) expression levels of other genes that are connected to the target gene
(the current response variable) in Exp.Net.664; (ii) the subtype indicator variables
derived in the previous section; and (iii) the copy numbers of all 384 CNAIs. It
is of interest whether any unlinked CNAIs are selected into this regression model,
i.e., the corresponding regression coefficients are nonzero. This suggests potential
trans-regulations (trans-edges) between the selected CNAIs and the target gene
expression. The coefficients of the linked CNAI of the target gene were not included
in the MAP penalty (this corresponds to cpq = 0, see Sect. 7.4.1 for details). This is
because the DNA copy number changes of one gene often influence its own ex-
pression level, and it is of less interest in this study. Furthermore, no penalties were
imposed on the expression levels of connected genes either. Another view of this is
that the cis-regulations between CNAIs and their linked expression levels, as well
as the inferred RNA interaction network were considered as “prior knowledge” in
this study.

Note that, different response variables (gene expressions) now have different sets
of predictors, as their neighborhoods in Exp.Net.664 are different. However, the
remMap model can still be fitted with a slight modification. The idea is to treat all
CNAI (384 in total), all gene expressions (654 in total), and subtype indicators as
predictors. Then, for each target gene, the coefficients of those gene expressions that
were not linked in Exp.Net.664 were forced to be zero and not updated throughout
the iterative fitting procedure.

We applied remMap.cv.vote on the data and identified 43 trans-edges,
which correspond to three contiguous CNAIs on chromosome 17 and 31 distinct
(unlinked) RNAs. Figure 7.6(b) illustrates the topology of the estimated regula-
tory relationships. The three CNAIs being identified as transregulators sit closely
on chromosome 17, spanning from 34811630bp to 35699243bp and falling into cy-
toband 17q12-q21.2. This region (referred to as CNAI-17q12 hereafter) contains
24 known genes, including the famous breast cancer oncogene ERBB2 and the
growth factor receptor-bound protein 7 (GRB7). As suggested by the result of the
remMap model, the amplification of CNAI-17q12 also influences the expression
levels of 31 unlinked genes/clones. This implies that CNAI-17q12 may harbor tran-
scriptional factors whose activities closely relate to breast cancer. Indeed, there are
four transcription factors (NEUROD2, IKZF3, THRA, NR1D1) and two transcrip-
tional coactivators (MED1, MED24) in CNAI-17q12. It is possible that the ampli-
fication of CNAI-17q12 results in the over expression of one or more transcription
factors/co-activators in this region, which then influence the expressions of the un-
linked 31 genes/clones. In addition, none of the subtype indicator variables was
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Fig. 7.6 (a) Inferred network for the 654 breast cancer related genes (based on their expression
levels) by space. Nodes with degrees greater than ten are drawn in blue. (b) Network of the
estimated regulatory relationships between the copy numbers of the 384 CNAIs and the expres-
sions of the 654 breast cancer related genes. Each blue node stands for one CNAI, and each green
node stands for one gene. Red edges represent inferred transregulations (43 in total). Gray edges
represent cis-regulations [28] (for the color version, see Color Plates on p. 392)

selected into the final model. Even when we forced them to be in the model (by
setting the corresponding cpq = 0), the resulting hub CNAIs remained unchanged.
These imply that the three hub CNAIs are unlikely confounded by tumor subtypes.
However, besides RNA interactions and subtype stratification, there could be other
unaccounted confounding factors. Therefore, caution must be taken when interpret-
ing these results.

7.6 Concluding Remarks

In this chapter, three sparse regression models, space, LogitNet and remMap,
for inferring networks from high-dimensional array data are presented. Space is
designed for continuous variables, whereas LogitNet is designed for binary vari-
ables, and both aim to infer conditional dependency relationships among the vari-
ables. remMap infers networks relating two different types of high-dimensional
data, with one set of variables naturally serving as predictors and the other serving
as responses. The three methods have some common features. All methods model
gene relationships jointly instead of looking at one gene at a time. This joint mod-
eling approach not only improves the model efficiency by reducing the total error
rates, but also allows the incorporation of specific features of the model such as
the symmetry constraint in space and LigitNet. Furthermore, all three methods
have produced grouping effects. In space, the overall sparsity constraint and the
choice of weights encourage identification of hubs. In LogitNet, the symmetric
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coefficient matrix along with the weight function encourages conditional depen-
dency between groups of spatially correlated clones. For remMap, the grouping
effect is achieved explicitly by an additional �2 norm penalty imposed on the coef-
ficients corresponding to the same predictor, which facilitates the identification of
master predictors.

Understanding the direction of the relationship is very useful in further delineat-
ing the biological mechanism of a disease. For example, it is possible that gene A
regulates gene B but not vice versa; or mutation A is an early event, and mutation B
is a late event happening on the background of mutation A. In some situations, there
is a natural direction in the relationship, such as the example shown in Sect. 7.5,
which studies the influence of DNA copy number alterations on RNA expression
levels. The networks inferred from remMap often contain such directions, as the
nature of two types of data may suggest a natural ordering. On the other hand,
space and LogitNet infer undirected graphs, as the conditional dependency re-
lationship between the two events has no direction. To infer directed graphs, prior
information regarding pathways (for example, KEGG database) or clonal evolution
will be useful. Research along this line is under way and will be communicated in
future works.
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Chapter 8
Computational Methods for Predicting
Domain–Domain Interactions

Hyunju Lee, Ting Chen, and Fengzhu Sun

8.1 Introduction

In recent years, high-throughput technologies such as yeast two-hybrid (Y2H) as-
says have produced large-scale protein–protein interaction data sets at a genome
scale from several organisms. Using these protein–protein interaction data sets, re-
searchers have been able to study proteins in the context of their functional networks
and to address important biological questions such as detecting signalling pathways,
elucidating protein complexes, inferring protein functions, and predicting disease-
related genes.

A domain is a functional unit of a protein, and different combinations of do-
mains result in diverse range of proteins. Therefore, protein interactions are gener-
ally caused by domain interactions. It is essential to understand protein interactions
at the domain level. In Eukaryotes, many proteins are composed of more than one
domain, and these domains are conserved across the organisms. For example, do-
main G-γ (PF00631) is present in 259 protein sequences of 57 species. As another
example, domain WD40 (PF00400) is present in 45,685 sequences of 608 species
(as of April 2009). Domains on the surface of the proteins usually physically interact
with specific domains in other proteins in order to perform their functions. Domain–
domain interaction is the subunit of the protein–protein interaction and conserved
across organisms. For example, it is reported from protein data bank (PDB) [2] that
domains G-γ and WD40 interact with each other [PDB:1GP2] [25].

Domain–domain interaction is very useful for studying protein functions, pro-
tein interactions, and the gene regulatory network. As interacting domains and in-

H. Lee
Department of Information and Communications, Gwangju Institute of Science and Technology
(GIST), Gwangju, Republic of Korea

T. Chen · F. Sun (�)
Molecular and Computational Biology Program, Department of Biological Sciences, University
of Southern California, Los Angeles, CA, USA
e-mail: fsun@college.usc.edu

J. Feng et al. (eds.), Frontiers in Computational and Systems Biology,
Computational Biology 15,
DOI 10.1007/978-1-84996-196-7_8, © Springer-Verlag London Limited 2010

157

mailto:fsun@college.usc.edu
http://dx.doi.org/10.1007/978-1-84996-196-7_8


158 H. Lee et al.

teracting proteins are highly likely to share functions or involve in the same cellular
process, inferred interactions may give clues to determine the function of unknown
proteins [3]. The mutation of specific domains of a protein can cause disease by dis-
rupting the interaction with other proteins. Hence, the study of domain interactions
can reveal the pathways related to disease [12]. In addition, as domain–domain in-
teractions are conserved across several organisms, it is possible to use the predicted
domain interactions from one organism in order to infer functional interaction net-
work in the other organisms. The study of domain interaction conservation also
provides insight about the evolution of proteins [15].

Domain interactions can be determined by the crystal structures of proteins using
experimental methods such as X-ray crystallography or nuclear magnetic resonance
(NMR). However, the experimental determination of new domain interactions is
slow as these techniques are generally labor intensive. On the other hand, compu-
tational methods have been shown to be promising to infer domain interactions by
integrating large-scale data sets such as protein–protein interactions, domain func-
tions, and protein sequences. When we infer domain interactions from protein in-
teractions, (1) what models should we use to link domain interactions with pro-
tein interactions? (2) how should we deal with false positive and false negative in-
teractions? When we integrate multiple data sources to infer domain interactions,
(3) what is the relationship between domain interaction and each data source such
as the domain function and domain fusion? (4) what integrative methods should we
use to improve the prediction accuracy? In this chapter, we review several compu-
tational methods inferring domain–domain interactions.

1. Using protein–protein interaction data: We introduce the following methods:
an association-based method, a maximum-likelihood estimation (MLE)-based
method, a Bayesian method, a domain pair exclusion analysis-based method,
and a parsimony linear programming optimization-based method, for predicting
domain interactions.

2. Integrating multiple biological data sources: We introduce an extension of
the likelihood-based method based on protein interaction data from one species
to multiple species and a naive Bayesian method for integrating many different
data sources.

This chapter is organized as follows. We first introduce data sources used in the
reviewed papers. Then, we describe various ways to assess the accuracy of pre-
dicted domain interactions. Next, we explain methods for predicting domain in-
teractions using protein–protein interactions, approaches for combining protein in-
teraction data sets from multiple organisms, and methods for integrating multiple
biological data sources. Finally, we discuss future research questions.

We note that a large number of computational methods have been developed
to predict domain interactions and it is difficult to have an exhaustive review of
the field at this stage. The computational methods that we review in this chapter
represent only a small fraction of such methods and certainly biased toward those
that we have studied over the years. We apologize to many excellent researchers
whose work is not represented in this review.
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8.1.1 Data Sources

Domain databases include Interpro [1] and Pfam [6]. In Pfam, the conserved
functional units are discovered through multiple sequence alignments and hidden
Markov models (HMMs). The current release of Pfam (22.0) contains 9,314 protein
families.

Protein structure database includes Protein Data Bank (PDB) [2]. It contains
57,013 structures as of April 2009. Domain interactions can be detected by the ex-
perimental approaches based on the crystal structures of proteins.

Domain–domain interaction data sets can be constructed using protein struc-
ture data set. If two domains are close enough to interact, the binding sites are in-
ferred. iPfam [5] contains 2,580 domain interactions inferred from PDB (July 2004
version).

Protein interactions have traditionally been studied by genetic, biochemical,
and biophysical techniques. The interactions detected by these methods are gen-
erally considered reliable but produce only small-scale data sets. The MIPS [19]
database collected protein interactions from these small-scale experiments for yeast.
Recently, several high-throughput methods such as yeast two-hybrid assay for the
detection of protein interactions have been developed. These methods are used to
generate protein interactions for yeast [13, 26], fruitfly [11], etc. DIP database [22]
collects protein interactions from many species such as yeast, worm, fruitfly, and
humans. It contains 57,000 proteins from over 270 organisms (as of May 2009).
Other large-scale interaction databases include Biomolecular INteraction Network
Database (BIND) and General Repository of Interaction Datasets (BioGRID). For
humans, the Human Protein Reference Database (HPRD) [20] collects human
protein–protein interactions from individual small-scale experiments published in
the literature.

Domain functions can be obtained using the mapping table from Pfam to GO in
the Gene Ontology webpage (http://www.geneontology.org) [7, 8].

Domain fusion data set can be obtained from protein–domain information in
Pfam-A [6] to identify pairs of domains coexisting in one protein. The method is
referred as domain fusion in the rest of the paper.

8.1.2 Assessing the Accuracy of Predicted Domain–Domain
Interactions

One of the important issues after predicting domain–domain interactions is how
to assess the accuracy of inferred interactions. The direct way is to compare the
predicted domain interactions with experimentally determined domain interactions
in databases such as PDB [2] or iPfam [5]. However, it is generally difficult to
discover new protein structures and to analyze domain interactions from protein
structures. Even though iPfam provides the analyzed domain interactions from PDB,

http://www.geneontology.org
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the coverage of the iPfam is relatively small compared to the number of potential
domain interactions.

Since the number of known domain interactions is relatively small compared to
the entire domain interactions, indirect methods for evaluating the predicted domain
interactions have been developed. One of the approaches is to use the predicted
domain interactions to predict protein interactions in a new set of proteins. The
accuracy of these inferred protein interactions is assessed by comparing with gold
standard protein interactions such as MIPS in yeast. The basic idea is that if one or
multiple domain pairs (one from each protein of the protein pair) interact, then the
pair of proteins interact.

Another indirect method is to compare the coexpression patterns of genes whose
products contain interacting domain pairs. It is assumed that protein pairs with in-
teracting domain pairs are more likely to have similar expression patterns. The as-
sessment is measured by calculating the statistical significance of the correlation
between the expression pattern of protein pairs inferred as interacting compared to
those from random protein pairs.

8.2 Computational Methods for Predicting Domain Interactions
Using Protein–Protein Interactions

Sprinzak and Margalit [23] predicted domain interactions from protein interactions
by introducing the idea of over-represented domain pairs in interacting protein pairs.
This idea was later extended using the maximum likelihood estimation (MLE)
method and an expectation and maximization (EM) algorithm by Deng et al. [3]
and Riley et al. [21]. Guimarães et al. [12] addressed this problem using a linear
programming optimization approach based on the maximum parsimony idea.

8.2.1 Predicting Domain Interactions Based on Over-represented
Domain Pairs

The basic idea of the method based on over-represented domain pairs is that do-
main pairs which occur more frequently in interacting protein pairs than expected
assuming random association of domain pairs are more likely to interact with each
other [23]. Let Imn be the observed frequency of interacting protein pairs with one
protein containing domain Dm and the other protein containing domain Dn. Let Im
and In be the frequencies of proteins containing domains Dm and Dn in all the pro-
teins, respectively. Then, the likelihood ratio defined asAmn = Imn/(ImIn)was used
to measure the strength of association between domains Dm and Dn. Throughout
this chapter, we refer this method as the association method.

In Fig. 8.1, we give an artificial example where there are five proteins P1,

P2, . . . ,P5 and six domainsD1,D2, . . . ,D6. The adjacency matrix between the pro-
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Fig. 8.1 An artificial
example of five proteins
(P1,P2, . . . ,P5) and their
domains (D1,D2, . . . ,D6).
The edges between the nodes
indicate interactions between
the proteins

Table 8.1 (Upper) The adjacency matrix between the proteins and the domains for the artificial
example in Fig. 8.1. (Lower) The frequency of interacting protein pairs with one protein containing
one domain and the other protein containing the other domain (upper triangle), and the calculated
association scores Amn for any domain pairs (lower triangle)

Proteins Domains

D1 D2 D3 D4 D5 D6

P1 1 0 0 0 0 0

P2 0 1 0 0 0 0

P3 1 1 1 0 0 0

P4 0 0 0 1 1 0

P5 0 0 0 0 1 1

I 2 2 1 1 2 1

Domains Domains

D1 D2 D3 D4 D5 D6

D1 – 0 0 1 3 1

D2 0 – 0 1 3 1

D3 0 0 – 1 2 1

D4 0.5 0.5 1.0 – 0 0

D5 0.75 0.75 1.0 0 – 0

D6 0.5 0.5 1.0 0 0 –

teins and domains is given in Table 8.1 (upper). The upper part above the diagonal
of Table 8.1 (lower) gives the values of Imn, m �= n, and the lower part below the
diagonal gives the value of Amn.

Using the association score defined above, Sprinzak and Margalit [23] identified
several interesting interactions among domains which the authors referred as sig-
natures. This original study raised significant interests in the computational biology
community, and many more advanced methods have been developed to infer domain
interactions from protein interactions.
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The association method of Sprinzak and Margalit [23] has several limitations.
First, it does not consider which domain pairs are responsible for a given interact-
ing protein pair. For example, in Fig. 8.1, it can be inferred that D1 may interact
with either D5 or D6 based on the interacting protein pair (P1,P5). On the other
hand, we cannot infer the relationship between (D1,D2,D3) and (D5,D6) based
on (P3,P5). However, the association method treats the contributions of interact-
ing protein pairs (P1,P5) and (P3,P5) to the domain pairs (D1,D5) and (D1,D6)

the same. Second, the association method does not take the noninteracting protein
pairs into consideration. In the example given in Fig. 8.1, since P1 does not interact
with P4, we can infer that domain D1 does not interact with D4 or D5. Combining
the above two reasons, it is more likely that D1 interacts with D6. To infer domain–
domain interactions, global approaches considering all proteins and all domains are
needed. Third, the association methods cannot efficiently deal with false positive
and false negative interactions between the proteins.

8.2.2 Maximum Likelihood Estimation (MLE) Method

To overcome the limitations of the association method, Deng et al. [3] developed
a probabilistic model linking domain interactions with protein interactions. This
model considered both interacting protein pairs and noninteracting protein pairs, and
incorporated the false-positive and false-negative protein interactions from high-
throughput experiments. A maximum likelihood estimating (MLE) method was de-
veloped to estimate the probability of interaction for any pair of domains. An ex-
pectation maximization (EM) algorithm was used to obtain the MLE. This method
made two key assumptions:

1. Pairs of domains interact with each other independent of other domain pairs.
2. A pair of proteins interact if and only if at least one pair of domains, one from

each protein, interact with each other.

The conditions were relaxed in other later studies [21, 24]. The model can be briefly
described as follows. We use the following notation.

• P1,P2, . . . ,PN : the set of N proteins.
• Pij indicates protein pair (Pi,Pj ), and Pij = 1 if protein Pi interacts with pro-

tein Pj .
• D1,D2, . . . ,DM : the set of M domains.
• Dmn indicates domain pair (Dm,Dn), and Dmn = 1 if domain Dm interacts with

domain Dn.
• D(ij)mn : interaction status of domains Dm and Dn within the protein pair (Pi,Pj ).
• Nmn: the number of protein pairs containing domain pairs (Dm,Dn).
• λmn: probability that domain Dm interacts with domain Dn.
• Pij : the set of domain pairs, one domain from each of the proteins Pi and Pj .
• Oij : the interaction status between protein Pi and protein Pj , with Oij = 1 if

proteins Pi and Pj are observed to interact and Oij = 0 otherwise.
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• fn and fp: false negative and false positive rates defined as fn = P(Oij =
0|Pij = 1) and fp = P(Oij = 1|Pij = 0).

Based on the two assumptions and the notation given above, we have

Pr(Pij = 1)= 1.0−
∏

Dmn∈Pij

(1− λmn) (8.1)

and

Pr(Oij = 1)= Pr(Pij = 1)(1− fn)+
(
1− Pr(Pij = 1)

)
fp. (8.2)

Finally, the likelihood for the observed interaction data is

L=
∏

1≤i<j≤N

(
Pr(Oij = 1)

)oij (1− Pr(Oij = 1)
)1−oij , (8.3)

where oij is the observed value of Oij for proteins Pi and Pj . The objective is to
estimate λmn so that L is maximized based on the observed protein interactions
and the relationship between domains and proteins. In Deng et al. [3], they fixed
the values of fn and fp , and approximate methods for determining their values
were given. For convenience, we let θ = (λmn,1 ≤ m < n ≤M). To achieve this
objective, an EM algorithm was designed as follows.

Assume that at the t th step of the EM algorithm, the current value of θ is θ(t−1).
In the E-step,

E
(
D
(ij)
mn = 1|Okl = okl,∀k, l, θ(t−1))= λ

(t−1)
mn (1− fn)oij f 1−oij

n

Pr(Oij = oij |θ(t−1))
, (8.4)

and in the M-step,

λ(t)mn =
λ
(t−1)
mn

Nmn

∑

i∈Am,j∈An

(1− fn)oij f 1−oij
n

Pr(Oij = oij |θ(t−1))
. (8.5)

By repeating the E-step and M-step many times until the likelihood function in (8.3)
does not change significantly, we can estimate the parameters.

The MLE approach is assessed using protein–protein interaction data sets. First,
the probability of interaction between two domains is calculated using the high-
throughput data sets such as Uetz and Ito protein interaction data. Second, probabil-
ities of domain–domain interactions are used to infer probabilities of protein–protein
interactions using (8.1). Third, the protein interactions with probability larger than a
certain threshold is considered as predicted protein interactions, and these are com-
pared with MIPS protein interaction data set. MIPS data set is usually considered
as containing reliable protein interactions. When the predicted protein interaction
belongs to the MIPS data set, it is called correctly predicted protein interaction.
This process is repeated for both the association method and the MLE method, and
it has been consistently shown that the MLE method outperforms the association
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method. For a given specificity (a fraction of correctly predicted protein interactions
over all MIPS protein interactions), the sensitivity (a fraction of correctly predicted
protein interactions over all predicted protein interactions) is always higher for the
MLE approach than the association method, showing that the MLE approach out-
performs the association method. This observation has been consistently shown in
other studies [17, 21].

8.2.3 A Bayesian Method for Predicting Domain Interactions

The number of parameters λmn is usually large, and the number of observed inter-
actions is comparatively small. Therefore, the accuracy of the estimated parameters
can be low. To overcome this problem, Kim et al. [14] developed a Bayesian method
to estimate the parameters. In addition, they also treated fn and fp as random vari-
ables and assumed their prior distributions. Some other modifications, including the
consideration of the number of domains in each protein and protein interactions
across several different organisms, were also introduced. Here we review the basic
setup of the Bayesian model.

The basic model linking domain interactions to protein interactions as described
in Sect. 8.2.2 was used in the Bayesian approach. Instead of treating (λmn,fn, fp)
as deterministic parameters, the Bayesian model considers them as random vari-
ables. The prior distributions for fn and fp are assumed to be uniform on intervals
[un, vn] and [up, vp], respectively. The prior distribution of λmn was assumed to be
the beta distribution with parameters (α,β), i.e., λmn ∼ Beta(α,β). Under the above
assumptions,

fn|rest ∝
∏

1≤i<j≤N

(
Pr(Oij = 1)

)oij (1− Pr(Oij = 1)
)1−oij g(fn|fp, θ),

fp|rest ∝
∏

1≤i<j≤N

(
Pr(Oij = 1)

)oij (1− Pr(Oij = 1)
)1−oij g(fp|fn, θ),

λmn|rest ∝
∏

1≤i<j≤N

(
Pr(Oij = 1)

)oij (1− Pr(Oij = 1)
)1−oij g(λmn|rest),

where g(·) is the prior distribution for the parameters. Kim et al. [14] showed that
all the three posterior distributions are log-concave functions. They thus used adap-
tive rejection sampling method [9] and the adaptive rejection Metropolis sampling
method [10] to obtain the posterior distributions of the parameters.

8.2.4 A Likelihood-Ratio-Based Method: Domain Pair Exclusion
Analysis (DPEA)

The MLE method of Deng et al. [3] ranked the domain–domain interactions based
on the estimated values of λmn without specifically considering the number of pro-
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tein pairs Nmn containing the domain pairs (Dm,Dn). When multiple domain pro-
teins interact with each other, it is not clear which domain pairs are responsible for
the protein interactions. Due to the relative small number of observed interactions,
the estimated values of λmn may not be accurate making the ranking of domain in-
teractions based on λmn less reliable. In statistics, one commonly used principle for
hypothesis testing is the likelihood ratio test, which compares the likelihood of the
observed data under the null hypothesis versus the likelihood of the data under the
alternative hypothesis. For the current problem of evaluating the significance of do-
main interactions between domainsDm andDn, the null hypothesis isH0 : λmn = 0,
and the alternative hypothesis is H1 : λmn > 0.

Based on these considerations, Riley et al. [21] introduced a domain pair exclu-
sion analysis (DPEA) approach to predict domain interactions. First, DPEA calcu-
lates the λmn, the probability that domain Dm and domain Dn interact using the
MLE method of Deng et al. [3]. Similar method can be used to estimate the MLE of

θ = (λ(mn)kl ,1≤ k < l ≤N) by forcing λmn = 0. Second, let L0 be the likelihood of
the observed interaction data under θ . Then theE score is the log(L/L0). In Riley et
al. [21], the investigators used the highly reliable interactions in MIPS and assumed
that fp = 0. Preliminary studies also showed that fn tends to be small and can be
approximately by 0. Under all these assumptions,

Emn =
∑

i,j,Dmn∈Pij

log
Pr(Oij = 1|m,n can interact)

Pr(Oij = 1|m,n do not interact)
(8.6)

=
∑

i,j,Dmn∈Pij

log
1−∏Dkl∈Pij (1− λkl)

1−∏Dkl∈Pij (1− λ
(mn)

kl )
, (8.7)

where λ
(mn)

kl represents the probability of interaction between domains Dk and Dl
using the MLE method when the probability of interaction between domains Dm
and Dn is set to 0. E-score is the summation of the likelihood ratio between the
probability that protein i and protein j interact when domain Dm and domain Dn
interact, and the probability that protein i and protein j interact when domain Dm
and domain Dn does not interact for all protein pairs with the domain pair Dm
and Dn. Intuitively, this E-score calculates the contribution of domains Dm and Dn
for interacting protein pairs with domains Dm and Dn.

An important difference between the MLE method and the E-score is that the
more there are interacting protein pairs with domains Dm and Dn, the higher Emn
score. This is because more interacting proteins with domain pairs Dm andDn have
a chance to increase the E-score by the summation of the likelihood ratio. On the
other hand, the score by the MLE method largely depends on the fraction of inter-
acting protein pairs compared to all the pairs of proteins with domains Dm and Dn.
Hence, it does not depend on the number of interacting protein pairs with domains
Dm and Dn.

The prediction accuracy of DPEA was assessed using the PDB domain interac-
tion data set [21]. If a method is reasonable, the set of highly ranked domain pairs
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should contain more true domain interactions from PDB. The authors compared
DPEA with the MLE-based method of Deng et al. [3] and the association method
of [23] using the following approach. For any given k, domain pairs with the top k
highest scores according to each of the three methods were chosen and compared
with true domain interactions in PDB. It was shown that the fraction of true do-
main interactions among domain pairs with the top k highest scores based on DPEA
is the highest, followed by that of the MLE-based method, and the corresponding
fraction based on the association method is the lowest for all the values of k. At
least for the data the authors analyzed, the DPEA method outperforms the other two
approaches. However, independent studies based on other protein interaction data
sources are still needed.

8.2.5 Maximum-Parsimony-Based Method–Linear Programming
Optimization

Although the MLE, Bayesian, and the likelihood-ratio-based methods described
above performed well in predicting domain interactions, they also have several
drawbacks. First, they are all model based and need several assumptions. How-
ever, these assumptions may not hold in reality. The effects of the misspecifica-
tions of the assumptions on the accuracy of the predicted domain interactions are
not known. The assumption of independence of domain interactions among protein
pairs certainly does not hold in reality. If one domain Dm already interacts with
another domain Dn, Dm cannot participate in interacting with other domains. Sec-
ond, it is difficult to specify a range for fn and fp in the model. To overcome these
problems, model-free-based methods have been developed to predict domain inter-
actions.

Guimarães et al. [12] assumed that interactions between proteins have evolved in
a parsimonious way so that the minimal number of domain interactions can explain
the observed protein interactions. They considered the problem of predicting inter-
acting domain pairs as an optimization problem. The objective is to minimize the
number of domain–domain interactions necessary to justify the underlying protein–
protein interaction network. This approach is called the “Parsimonious Explana-
tion (PE)” method. They formulated the problem using a linear programming. Let
variable xmn represent the score of the potential interaction between domains Dm
and Dn. For a given interacting protein pair of Pi and Pj , we have a set of potential
domain interaction pairs Pij . Using linear programming, the goal is to minimize
the objective function

∑
m,n xmn subject to the set of constraints, which require that∑

(Dm,Dn)∈Pij
xmn ≥ 1 for all interacting protein pairs. The estimated value of xmn

is called an LP (linear programming)-score in [12].
The PE method assigns a high score to frequently occurring domain pairs in or-

der to minimize the number of domain pairs in explaining observed protein interac-
tions. To avoid over-prediction for frequently occurring domain pairs, a promiscuity
versus witnesses (pw)-score is calculated for every predicted domain–domain in-
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teraction. The pw-score considers both statistical significance of the LP-score and
false positive protein interactions. First, p-value(m,n) estimates statistical signifi-
cance of the frequency of appearance of the domain pair in its LP-score. One thou-
sand random networks are generated by permutating the randomly selected edges,
and the LP-score is calculated for each random network. P-value(m, n) is the frac-
tion of random network experiments that return the LP-score equal to or larger than
the LP-score obtained by observed protein–protein interaction network. Second, let
w(m,n) be the number of observed protein interactions for a given domain pair
(m,n), and let r be the reliability of the observed interacting protein network. The
(1− r)w(m,n) is the probability that all edges in the network that correspond to an
interaction with domain pair (m,n) are false positive. The pw-score is the minimum
between (1− r)w(m,n) and p-value(m, n).

pw-score(m,n)=min
(
p-value(m,n), (1− r)w(m,n)). (8.8)

By selecting domain–domain interactions lower than pw-score cutoffs, the PE
method can control the prediction accuracy. Using the same DIP protein inter-
action data and PDB domain interaction data from Riley et al. [21], the authors
showed that the prediction accuracy increases with LP-score and decreases with
pw-score.

The PE method does not penalize domain pairs in noninteracting protein pairs
and adds weight for frequent domain pairs in the interacting proteins, allowing de-
tection of high-specificity and low-promiscuity domain interactions. At the same
time, the pw-score controls frequently occurring domain pairs which can be falsely
considered as interacting independent of the underlying protein interaction struc-
ture.

8.3 Integrated Approaches for Predicting Domain Interactions

With the completion of genome sequences of many species, comparative analysis of
many species became very important to understand the function of genes and their
products. Comparative analysis of protein domains from more than 50 species re-
vealed the consensus and differences of domain organizations between species [27].
The analysis of protein–protein interactions from several species allows the detec-
tion of conserved domain–domain interactions, and these conserved interactions can
be used to predict high-confidence domain interactions [16, 17].

In addition to protein interaction data sets from multiple species, other data
sources including domain fusion and domain function also contain information for
domain interactions. We next review integrative approaches for predicting domain
interactions [16, 17, 24].
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8.3.1 An Extended Likelihood Approach for Predicting Domain
Interactions Based on Protein Interactions from Multiple
Species

Liu et al. [17] first proposed the idea of integrating protein interactions from multi-
ple species for predicting domain interactions. They used the interaction data from
yeast, worm, and drosophila to predict domain–domain interactions by extending
the MLE and the EM algorithm of Deng et al. [3]. The likelihood function for the
observed protein interaction data across all three species is defined as

L=
∏

Pr(Oijk = 1)oijk
[
1− Pr(Oijk = 1)

]1−oijk , (8.9)

where k indicates the species. The likelihood function is represented by θ =
(λmn,fpk, fnk). Liu et al. [17] assumed that the probability of domain interactions
λmn does not depend on the species. However, the false positive and false negative
rates are species specific. To obtain the maximum likelihood estimates of the param-
eters, they modified the EM algorithm of Deng et al. [3]. The complete data include
all the domain interactions for protein pairs i and j in the three species, denoted by
D
(ij)
mnk . The E-step is

E
(
D
(ij)
mnk|Oijk = oijk, λ(t−1)

mn

)= λ
(t−1)
mn (1− fnk)oijk f 1−oijk

nk

Pr(Oijk = oijk|λ(t−1)
mn )

. (8.10)

In the M-step, the probability of interactions between domains m and n, λmn, is
calculated as

λ(t)mn =
λ
(t−1)
mn

Nmn

∑

i,j,k

(1− fnk)oijk f 1−oijk
nk

Pr(Oijk = oijk|λ(t−1)
mn )

, (8.11)

where Nmn is the total number of all protein pairs with domains m and n across the
three species. These two equations are the extension of (8.4) and (8.5) for integrating
protein interactions from single species.

The extended likelihood approach allows the integration of protein interactions
from diverse species. The accuracy of domain–domain interactions predicted from
this integrated information outperforms that from only one species yeast. It is
demonstrated by comparing a gold standard MIPS protein interactions with protein–
protein interactions inferred from predicted domain–domain interactions using the
extended likelihood approach. The Bayesian method has also been extended to mul-
tiple species [14].
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Table 8.2 Domain fusion and domains with similar biological processes are more likely to inter-
act. “Fraction” indicates the fraction of domain interactions in iPfam in a given set. “Fold” indicates
the ratio of the fraction over expected value (0.17%)

Evidence # protein pairs # Overlap iPfam Fraction Fold

Random domain pairs 1,539,135 2,580 0.17% –

Domain fusion 9,615 1,141 11.8% 69

Same GO terms 57,907 1,302 0.8% 13

8.3.2 Predicting Domain Interactions from Multiple Data Sources

In addition to protein interactions from multiple species, other information sources,
such as domain fusion and domain function, can also be used to predict domain
interactions.

Using Protein Interactions from Multiple Species Instead of using the extended
likelihood approach of [17], Lee et al. [16] proposed another approach to combine
protein interaction data from multiple species. For each species, instead of directly
using λmn to measure the possibility of domain interactions, Lee et al. [16] proposed
to use the expected number of domain interactions among the interacting protein
pairs to score domain interactions, i.e.,

E(#Dmn)=NmnPr(Dmn = 1), (8.12)

where Nmn is the number of protein pairs having domains Dm and Dn. This ex-
pected number considers the biological intuition that if a pair of domains is observed
in multiple protein interactions, this pair of domains is more likely to interact.

Using Domain Fusion Enright et al. [4] and Marcotte et al. [18] showed that two
proteins are more likely to interact if they are fused into one protein in another
species. Lee et al. [16] extended this idea to domains and examined whether two
domains are more likely to interact with each other if they are fused into one protein
in any species. A total of 9,615 pfam-A domain pairs which coexist in one protein
in any species were collected. Among them, 11.8% of domain pairs overlap with iP-
fam. It is 69-fold higher than random domain pairs with 0.17% overlap with iPfam.
Biological process of gene ontology is studied to see if domain pairs with similar
functions are more likely to interact with each other. A total of 57,907 domain pairs
with the same GO terms were collected, and 0.8% of domain pairs overlapped with
iPfam. This ratio is 13-fold higher than random pairs as seen in Table 8.2. These
preliminary studies proved our initial hypotheses.

Based on these observations, we defined CE(Dmn), where CE stands for Co-
Existence, as the number of proteins that contain both domains Dm and Dn. The
values of CE(Dmn) were binned into nine categories. For each category, we cal-
culated the likelihood ratio corresponding to domain fusion by the fraction of in-
teracting domain pairs in the category over that among random domain pairs. The
likelihood ratio score increases with CE. For details, see [16].
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Table 8.3 The probability of true domain interactions increases with the overall likelihood ratio
score. The likelihood ratio values of predicted domain pairs, the number of predicted domain pairs,
and the number of overlaps with iPfam

Likelihood ratio values Interactions Overlap with iPfam Fraction Fold

Random domain pairs 1,539,135 2,580 0.17% –

>0 25,352 2,080 8.2% 48

≥1 6,386 1,641 25.7% 151

≥4 2,391 1,241 51.9% 305

≥6 2,044 1,142 55.9% 329

≥11 1,683 1,011 60.1% 353

≥21 886 634 71.6% 421

≥51 420 336 80.0% 471

Using Gene Ontology The gene ontology has a hierarchical structure, where par-
ents represent the general function, and offsprings represent more specific terms.
Two domains with more specific common terms are more functionally related with
each other than two domains with more general common terms. A more specific
function generally covers a smaller number of domains. Assume that domain Dm
and domain Dn have the same function Ff . A score SG(Dmn), where SG stands for
the Same Gene ontology, was defined as the number of domains having the func-
tion Ff . Values of SG(Dmn) were binned into six intervals, and then the likelihood
ratio corresponding to SG was similarly calculated as for CE. The likelihood ratio
decreases as SG(Dmn) increases.

Predicting Domain Interactions by Integrating Protein Interactions from Mul-
tiple Species, Domain Fusion, and Gene Ontology All information including
protein interactions from four species, CE(Dmn), and SG(Dmn) were then com-
bined to obtain a joint score by multiplying the likelihood ratio scores for all the six
data sources. As shown in Table 8.3, as the total likelihood increases, the fraction
of overlap with iPfam increases with the overall likelihood score. Figure 8.2 shows
the accuracy of predicted domain interactions based on the ROC curve when do-
main fusion, domain function, and combination of all of the six evidences are used.
Integration of all of the six evidences outperforms the other cases. This integrative
approach has been formalized recently by Wang et al. [24].

8.4 Discussion

In this chapter, we review several computational methods to predict domain interac-
tions from multiple biological data sets. First, we describe the methods using protein
interactions. One of first systematic methods incorporating the global protein inter-
action network is the maximum likelihood estimation approach. This method has
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Fig. 8.2 The comparison of prediction accuracies by integrating multiple biological data sets using
the naive Bayesian method. The letters Y, W, F, H, C, and G indicate domain interactions based
on yeast, worm, fruitfly, humans, co-existence, and same GO function, respectively. YWFH. Liu
shows the result of predicted domain interactions using the extended MLE method defined in Liu
et al. [17] with protein interactions of yeast, worm, fruitfly, and humans. (This figure is excerpted
from Lee et al. [16]) (for the color version, see Color Plates on p. 392)

been extended by several groups for more accurate prediction of domain interac-
tions.

Second, we describe the integrative approach to use protein interactions from
multiple species, domain function, and domain sequences. The fact that domains
are conserved across species gives a great opportunity to use these data sets for
comprehensive understanding of cellular activities at a domain level.

As it is hard to determine domain interactions using experiments, it is becoming
more important to develop computational approaches to achieve this objective. We
are able to infer more biological and medical knowledge from domain interactions
if the accuracy of predicted domain interactions increases. For example, revealing
how mutations on proteins are propagated through domain interaction network helps
to predict disease-related proteins in the network level.

In summary, we show the power of integrating multiple biological data sources
for predicting domain interactions. Still, significant questions such as incomplete-
ness of data sets and difficulty of assessment of predictions are remained to be ad-
dressed. As new biological data sets are rapidly generated, it is important to study
the relationship between these new data sets and domain interactions.
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Chapter 9
Irreversible Stochastic Processes, Coupled
Diffusions and Systems Biochemistry

Pei-Zhe Shi and Hong Qian

9.1 Introduction

One of the earliest research areas of Professor Min-Ping Qian is the irreversibility
of stochastic processes, more specifically Markov chains [1, 2]. These days, part of
her main interest is stochastic modeling of cellular processes at a systems biochem-
istry level [3]. The relation between these two topics might not be so obvious at first
sight. But if one takes a more fundamental perspective of “what is life” as that of a
physicist [4], then the philosophical connection is obvious: Since cellular processes
are stochastic [5] and living systems are in nonequilibrium states [6]; the mathe-
matical representation of living cellular processes must be stochastic processes that
reflect irreversibility.

While the philosophical connection is now obvious, this paper focuses on the spe-
cific role played by irreversible Markov processes in modeling cellular biochemical
systems [7]. In Sect. 9.2 we start with the simple Michaelis–Menten enzyme ki-
netics from a purely stochastic perspective, i.e., that of a single enzyme driven by
the nonequilibrium chemical reaction of substrate to product. This provides the mo-
tivation for irreversible Markov processes (also known as nonsymmetric Markov
processes following Kolmogorov). Then in Sect. 9.3, we discuss three biochemical
models, each one of them leads to an irreversible Markov process called coupled
diffusion. In the past, the mathematical theory of coupled diffusions has been ex-
tensively studied by the probability group at Peking University [8–10]. In Sect. 9.4,
two limit cases of the coupled diffusion in the fast jump processes and the fast
diffusion processes are analyzed. In particular, we study the nonequilibrium steady-
state flux and entropy production of the system. In Sect. 9.5, we show a bifurcation,
saddle-node or pitchfork, which occurs in certain coupled diffusion systems while
decreasing the rates of jump processes. Section 9.6 discusses some recently devel-
oped numerical methods for solving the steady-state coupled diffusion equations.
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Section 9.7 gives some discussions, and all the mathematical details are collected
in Sect. 9.8.

9.2 Single-Molecule Michaelis–Menten Enzyme Kinetics and
Irreversible Markov Processes

Let us consider the widely studied enzymatic reaction

S +E ko1�
k−1

SE
k2�
k−2

PE
k3�
ko−3

P +E, (9.1)

in which ko1 and ko−3 are second-order rate constants, with dimension [time]−1 ×
[concentration]−1, while all the other k’s are first-order rate constants with dimen-
sion [time]−1.

The classical reversible Michaelis–Menten kinetics analysis focuses on the
turnover of substrate S to product P . With relatively low concentration of the en-
zyme, the net turnover rate of the enzyme-catalyzed reaction is characterized nicely
by Briggs and Haldane [11] under the quasi-steady-state assumption, in terms of
Vmaxs and Kms. Furthermore, the Haldane relationship shows that the concen-
trations of substrate and product at equilibrium is determined by Vmaxs and Kms
[12].

However, in another viewpoint, one can focus on the states of the enzyme. If
we consider only a single enzyme molecule, as that in single-molecule enzymol-
ogy [13], then the enzyme has three possible states: E, SE, and PE. The dynam-
ics of the single-enzyme kinetics is a continuous-time three-state Markov chain
(Q-process) with infinitesimal transition rates k±i (i = 1,2,3), where k1 = ko1cS
and k−3 = ko−3cP . Here, instead of assuming a constant concentration of enzyme-
substrate complex under the quasi-steady state, we assume that the concentration of
substrate cS and the concentration of product cP are constant, independent of time.
This is certainly a valid assumption for a wide range of biochemical reactions in-
side a living cell under homeostasis. The basis of this assumption is that living cells
are open systems, which finally go to a nonequilibrium steady state; while the Hal-
dane relationship in classical Michaelis–Menten kinetics considers a closed system,
which reaches an equilibrium at the end.

The Michaelis–Menten kinetics of a single molecule is

dpE

dt
= k−1pSE − (k1 + k−3)pE + k3pPE = J−1 + J+3 − J+1 − J−3 , (9.2a)

dpSE

dt
= k1pE − (k−1 + k2)pSE + k−2pPE = J+1 + J−2 − J−1 − J+2 , (9.2b)

dpPE

dt
= k2pSE − (k−2 + k3)pPE + k−3pE = J+2 + J−3 − J−2 − J+3 , (9.2c)
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Fig. 9.1 A diagramic representation of enzyme catalyzed reaction (9.1). (a) A three-state contin-
uous-time Markov chain with transition rates k±i . (b) The probability flux between states, defined
as the transition rate times the probability of the single enzyme being at the origin state of the flux

where pX means the probability of being at state X (X =E, ES, EP), J±1,2,3 are the
forward and backward flux of the reactions.

If a chemical reaction system reaches its equilibrium, the condition of detailed
balance is satisfied, i.e., the net probability mass transition between any pair of re-
actants being zero: J+i − J−i ≡ 0, i = 1, 2, 3. In terms of reaction constants, that
is,

k1pE = k−1pES, k2pSE = k−2pPE, k3pPE = k−3pE.

This lead to the relation of the reaction rate constants

k1k2k3 = k−1k−2k−3, (9.3)

which is known as the Kolmogorov cycle condition. Noticing that k1 = k0
1cS and

k−3 = k0
−3cP , the condition (9.3) puts a constrain on the concentrations of S and P

in chemical equilibrium.
However, for general values of cS and cP , the detailed balance condition will not

be satisfied. In fact the steady state of the system is not an equilibrium. To investigate
the irreversibility of this chemical process, we analyze the system in the viewpoint
of energy [14]. Define the chemical potential (Gibbs free energy) of X as

μX(t)= μ0
X + kBT lnpX(t), μ0

X = h0
X − T s0

X,

where X =E, SE, PE, μ0
X , h0

X , s0
X are the standard state free energy, enthalpy, and

entropy, kB is the Boltzmann constant, and T is temperature in Kelvin. The chemical
potentials of S and P are as normally defined,

μS = μ0
S + kBT ln cS, μP = μ0

P + kBT ln cP .

For chemical reaction E + S� SE at equilibrium, μE +μS = μSE , so

μ0
E +μ0

S −μ0
SE = kBT ln

p
eq
SE

c
eq
S p

eq
E

= kBT ln
k0

1

k−1
.
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The second equation is due to the detailed balance at equilibrium p
eq
E c

eq
S k

0
1 =

p
eq
SEk−1. Then at any time

μE +μS −μSE = μ0
E +μ0

S −μ0
SE − kBT ln

pEcS

pES

= kBT ln
k0

1pEcS

k−1pES
= kBT ln

J+1
J−1
. (9.4a)

Similar equations are set up for the other two reactions:

μSE −μPE = kBT ln
J+2
J−2
, (9.4b)

μPE − (μE +μP ) = kBT ln
J+3
J−3
. (9.4c)

Therefore, summing up both sides of (9.4a)–(9.4c), we get

μS −μP = kBT ln
J+1 J

+
2 J3+

J−1 J
−
2 J

−
3

= kBT ln
k1k2k3

k−1k−2k−3
. (9.5)

If the detailed balance condition (9.3) holds, μS = μP , which means the chemical
potential of substrate S and product P are equal, and the system reaches equilibrium.
However, if the chemical potential difference between S and P is not zero, we have

	GSP = μS −μP = kBT ln
k1k2k3

k−1k−2k−3
. (9.6)

So

k1k2k3

k−1k−2k−3
= e	GSP/kBT . (9.7)

After a sufficient long time, the system will settle down to a nonequilibrium steady
state (NESS), while the mass flux is going from high energy (source) to low energy
(sink) constantly. The chemical potential difference	GSP is the driving force of the
flux J ss , which has the expression

J ss = k1k2k3 − k−1k−2k−3

k1k2 + k1k3 + k1k−2 + k2k3 + k2k−3 + k−1k−2 + k−1k3 + k−1k−3 + k−2k−3
.

(9.8)

The rate of heat dissipation at NESS is

hdr= J ss ·	GSP.
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Since J ss = J+i − J−i , i = 1,2,3, we see

hdr=
3∑

i=1

(
J+i − J−i

)
kBT ln

J+i
J−i

≥ 0.

This is exactly the statement of The Second Law of Thermodynamics: with only
a single temperature bath T , one can only continuously convert chemical work to
heat, but not in reverse. The condition for the equality is J ss = 0, which is equivalent
to the condition of detailed balance. And in general, when J ss �= 0, the system has a
positive heat dissipation rate, thus is irreversible.

To summarize, the reversibility of the chemical reaction system (9.1) in a steady
state is determined by the pseudo-first-order reaction constants k±i . The term
pseudo refers to the implicitly included concentrations of S and P in the constants,
i.e., k1 = k0

1cS , k−3 = k0
−3cP . If

k1k2k3

k−1k−2k−3
= 1,

then the system will reach equilibrium, and the process will be reversible. If

k1k2k3

k−1k−2k−3
�= 1,

then it reaches an NESS with positive heat dissipation rate, the process turns out
to be irreversible. In NESS, there is a nonzero steady-state cyclic flux J ss in the
system, and a nonzero free-energy difference between S and P as the driving force
of the system. This force comes from the external energy supply, as one needs to
put S in and take P out continuously.

In the classical enzyme kinetics, Briggs and Haldane studied “reversible” enzyme
reaction (9.1) [11]. With the assumption of quasi steady-state relationship

d[SE]
dt

= d[PE]
dt

= 0,

one can compute the net turnover rate of the enzyme-catalyzed reaction (9.1) [12]

vnet =
Vmaxf

[S]
KmS

− Vmaxr
[P ]
KmP

1+ [S]
KmS

+ [P ]
KmP

, (9.9)

where

KmS =
k−1k3 + k−1k−2 + k2k3

ko1(k2 + k−2 + k3)
, KmP =

k−1k3 + k−1k−2 + k2k3

ko−3(k−1 + k2 + k−2)
,

Vmaxf =
k2k3[E]t

k2 + k−2 + k3
, Vmaxr =

k−1k−2[E]t
k−1 + k2 + k−2

.
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The celebrated Haldane equation between kinetic constants and equilibrium con-
stant is

Keq = [P ]eq

[S]eq
= ko1k2k3

k−1k−2k
o
−3
= Vmaxf KmP

VmaxrKmS
, (9.10)

so at equilibrium

ko1[S]eqk2k3 = k−1k−2k
o
−3[P ]eq.

Now realizing that k1 = ko1[S] and k−3 = ko−3[P ], we see that the Haldanes equation
is precisely our (9.3). In fact, the vnet in (9.9) is exactly the J ss in (9.8) if we set
[E]t = 1. The Michaelis–Menten kinetics can be best understood in terms of single-
enzyme steady-state flux [15].

From the mathematical stand point, the continuous-time discrete-state Markov
process has the infinitesimal transition rate matrix (Q-matrix)

Q=
⎡

⎣
−k1 − k−3 k1 k−3
k−1 −k−1 − k2 k2
k3 k−2 −k3 − k−2

⎤

⎦ . (9.11)

The stationary distribution π = (p1,p2,p3) satisfies π = πQ. By the theory of
Markov processes [16], its stationary process is reversible if and only if

p1k1 = p2k−1, p2k2 = p3k−2, p3k3 = p1k−3, (9.12)

which is equivalent to

k1k2k3 = k−1k−2k−3.

One can see that the Michaelis–Menten kinetics (9.2a)–(9.2c) is equivalent to the Q-
matrix transition description, and the irreversibility of the chemical reaction system
is exactly the same as the irreversibility of the continuous-time three-state Markov
process.

9.3 Coupled Diffusion

Modeling the previous simple chemical reaction network as a Markov process is
rather straightforward. One may ask how to apply the above theory to more complex
biochemical processes? Here we show a general model of a large class of processes
in cellular molecular biology, the coupled diffusion model, which intrinsically is an
irreversible Markov process.

We use three biologically different examples to show how they fit into the same
coupled diffusion model. The biological examples are conformational fluctuating
enzymes, motor proteins, and self-regulating genes. The term coupled diffusion
refers to a two-dimensional space, where in one dimension (generally continuous),
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the system follows a diffusion process, and in the other dimension (generally dis-
crete), it follows a jump process. Then the probability distribution satisfies a Fokker–
Planck equation (FPE) in the diffusion direction and satisfies a chemical master
equation (CME) in the jumping direction. The coupled diffusion as a whole is a spe-
cial form of differential Chapman–Kolmogorov equation, which describes a general
continuous-time Markov process. FPE characterizes the detail in a single reaction,
including information about potential surface and multiple time scales in diffusion
and reaction. On the other hand, CME, which ignores the fluctuation within a single
state, handles the intermolecular dynamics of a multimolecular system. The coupled
diffusion model provides a flexible way of modeling a small biological system with
both intramolecular details and intermolecular dynamics.

9.3.1 Fluctuating Enzymes

In biochemistry, an interesting and important phenomenon is cooperativity. In the
traditional theory of allosteric cooperativity, the cooperativity in enzyme kinetics
comes from the cooperative binding of substrates, where the binding of one enzy-
matic subunit enhances the binding of the rest of the subunits. Such cooperative
mechanism often leads to a sigmoidal curve of the rate of production versus the
concentration of substrate. According to classical Michaelis–Menten theory, posi-
tive cooperativity occurs only when the enzyme has multiple binding sites. In recent
years, however, positive cooperativity of monomeric enzyme, glucokinase as an ex-
ample [17], is reported, which marks the break down of Michaelis–Menten theory.

On another hand, the conformational fluctuation of enzyme molecules has been
discovered and studied since 1970s [18]. The recent development in single-molecule
enzymology has provided a wealth of information on fluctuating enzymes. Statisti-
cally significant narrowing of the conformational distribution is also observed [19].
Under this background, a unified coupled diffusion model with an additional confor-
mational dimension arise, and under certain conditions, the model exhibits positive
cooperativity for monosite enzymes (Fig. 9.2), even if the enzyme and enzyme-
substrate complex have the same one macroscopic conformational state [20].

The enzyme-catalyzed reaction can be written in the simpler form

E
k0

1 [S]�
k−1

ES
k2
⇀E, (9.13)

where the second reaction is irreversible because product is constantly removed
from the system. In the perspective of single enzyme molecule, the enzyme molecule
has two states, unbound form E and bound form ES. Let pE(x, t) and pES(x, t)

denote the probabilities of the enzyme molecule being in the states E and ES with
conformational coordinate x, respectively. By Michaelis–Menten kinetics, the prob-
abilities of being at E and ES satisfy

dpE

dt
= −k0

1[S]pE + (k−1 + k2)pES,
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Fig. 9.2 Sigmoidal curve (squares): The probability of the enzyme molecule being ES at
steady state as a function of substrate concentration s. Dash line is for Michaelis–Menten
relation pES = s/(s + Km); Solid line is for cooperative binding with Hill coefficient 2:
pES = s2/(s2+K ′m). The curves are adjusted to have the same half-rate substrate concentration to
compare the sigmoidal shape

dpES

dt
= k0

1[S]pE − (k−1 + k2)pES.

Meanwhile, the fluctuation follows a one-dimensional diffusion process on the
potential landscape u1,2(x). Then, the kinetics of the enzyme with conformational
fluctuation can be described by a set of coupled partial differential equations,

∂pE(x, t)

∂t
= kBT

η1

∂2pE

∂x2
+ 1

η1

∂

∂x

(
du1(x)

dx
pE

)

− ko1(x)[S]pE +
(
k−1(x)+ k2(x)

)
pES, (9.14a)

∂pES(x, t)

∂t
= kBT

η2

∂2pES

∂x2
+ 1

η2

∂

∂x

(
du2(x)

dx
pES

)

+ ko1(x)[S]pE −
(
k−1(x)+ k2(x)

)
pES, (9.14b)

with nonflux boundary conditions

JE |±∞ = −
[
kBT

η1

∂pE

∂x
+ 1

η1

du1(x)

dx
pE

]

±∞
= 0, (9.14c)

JES|±∞ = −
[
kBT

η2

∂pES

∂x
+ 1

η2

du2(x)

dx
pES

]

±∞
= 0. (9.14d)
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9.3.2 Motor Proteins

Motor proteins are molecules that can move along a periodic molecular track in one
direction. A typical example of motor protein is myosin in the muscle cells. The
track of myosin is the actin filament, with a periodic structure of period ∼36 nm.
Generally, we consider the movement of motor proteins on a periodic domain.

The dynamics of a single molecule with the presence of a periodic energy poten-
tial can be modeled by the Smoluchowski equation

∂p(x, t)

∂t
=−∂J (x, t)

∂x
=D∂

2p(x, t)

∂x2
− ∂

∂x

(
F(x)

β
p(x, t)

)

,

where x is the position variable, D and β are diffusion and frictional coefficients,
satisfying the Einstein relation βD = kBT , and F(x) = −u′(x) is the force on
the protein due to energy potential function u(x). Without thermal agitation, the
movement of the protein molecule will follow an overdamped Newtonian motion:
−βẋ+F(x)= 0. This Smoluchowski equation is equivalent to the stochastic equa-
tion

dx(t)

dt
= F(x)

β
+√2Dw(t).

If the protein has only one macroscopic state with a unique periodic energy land-
scape, one can show that the mean velocity is 0 [21]. Therefore, to generate unidi-
rectional movement, the motor protein needs more than one macroscopic state as
well as external energy supply.

Consider the simple case where the motor protein has two states, with energy
potential functions u1(x) and u2(x), respectively. The driving force for the transition
between states comes from the ATP hydrolysis

ATP+H2O
f
�
g

ADP+ Pi.

As an example, myosin molecule can bind an ATP or ADP molecule in its head
domain, and the transition between these two states is represented by the ATP hy-
drolysis. Note that in a real biological process like myosin movement, the motor
protein generally undergoes many states, and ATP hydrolysis comes into play in
various forms. Suppose that the two states of the motor protein are distinguished by
the bound ATP or ADP molecule and the transition between the states of the motor
protein is characterized by

dp1

dt
= −fp1 + gp2,

dp2

dt
= fp1 − gp2.

(9.15)

Combining the Markov kinetics (9.15) between macroscopic states and the previ-
ously established Brownian dynamics of each single state, we have the coupled
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diffusion equation

∂p1(x, t)

∂t
= kBT

β1

∂2p1

∂x2
+ 1

β1

∂

∂x

(
u′1(x)p1

)− f (x)p1 + g(x)p2, (9.16a)

∂p2(x, t)

∂t
= kBT

β2

∂2p2

∂x2
+ 1

β2

∂

∂x

(
u′2(x)p2

)+ f (x)p1 − g(x)p2, (9.16b)

where p1, p2 are the probability density functions of the motor protein being at
position x and state 1 or 2. f (x), g(x) are the reaction rates between the two states,
where the concentration of ATP, ADP, and Pi are included implicitly.

9.3.3 Self-regulating Genes

One of the amazing features of biological systems is that they can regulate their pro-
tein levels to accommodate the environment. This regulation is mostly accomplished
by an entire genetic network. However, even a single gene can regulate its expres-
sion by itself. One famous example is Lac operon [22], whose expression products
can inactivate the inhibitor in the environment and in turn enhance the expression
level.

Now we consider a simplified self-regulating gene in a DNA molecule inside a
cell, of which the only expression product is the repressor of the gene itself. If no
repressor is bound on the regulatory site, the gene is in “ON” state and can produce
the repressor protein at a constant rate of gα ; while if a repressor binds up and turns
the gene “OFF”, then the rate of producing repressor becomes a lower value gβ .
Meanwhile, the repressor protein has a constant rate of degradation k. For a single
repressor protein, the binding rate is h, and the releasing rate is f . Considering the
total number of repressor proteins in the system, n, and distinguish the two states
(ON/OFF) of the gene, we will have the following probability transition diagram:

Let pα(n, t), pβ(n, t) be the probabilities that there are n repressor proteins in
the system while the gene is “ON” and “OFF”, respectively. Then for the above
scheme, the master equations are

dpα(n)

dt
= gαpα(n− 1)− (gα + kn)pα(n)+ k(n+ 1)pα(n+ 1)

+ kpβ(n+ 1)− hnpα(n)+ fpβ(n), (9.17a)
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dpβ(n)

dt
= gβpβ(n− 1)− (gβ + kn)pβ(n)+ knpβ(n+ 1)

+ hnpα(n)− fpβ(n), (9.17b)

with one-sided boundary conditions pβ(0)= 0 and pα(−1)= 0.
If we define the forward and backward difference operators

δ+f (n)= f (n+ 1)− f (n), δ−f (n)= f (n)− f (n− 1),

then the chemical master equation can be written as a coupled diffusion form. For
the bound repressor degradable case,

gαpα(n− 1)− (gα + kn)pα(n)+ k(n+ 1)pα(n+ 1)

= gα
[
pα(n− 1)− 2pα(n)+ pα(n+ 1)

]+ [k(n+ 1)− gα
]
pα(n+ 1)

− [kn− gα]pα
= gαδ+δ−pα(n)+ δ+

[
(kn− gα)pα(n)

]
.

So

dpα(n)

dt
= gαδ+δ−pα(n)+ δ+

[
(kn− gα)pα(n)

]

+ kpβ(n+ 1)− hnpα(n)+ fpβ(n), (9.18a)

dpβ(n)

dt
= gβδ+δ−pβ(n)+ δ+

[
(kn− gβ)pβ(n)

]

− kpβ(n+ 1)+ hnpα(n)− fpβ(n). (9.18b)

9.3.4 General Form

Although these three biological processes are very different, the mathematical mod-
els have the same form of equations

∂

∂t

(
p1
p2

)

=
(

L1 0
0 L2

)(
p1
p2

)

+
(−α β

α −β
)(

p1
p2

)

, (9.19)

where p1,2 are probability density functions in a single molecule perspective, L1,2
are second-order differential or difference operators, and α,β are exchange rates.
Particularly in continuous space,

Li = ∂x(Di∂x + u′i ), i = 1,2, (9.20)

D1,2 are diffusion constants, and u1,2 are potential functions. This coupled diffusion
is actually a differential Chapman–Kolmogorov equation, where the diffusion part
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is restricted within each of the two states, and jump process occurs only in between
the states.

Now we restrict our discussion on continuous spacial coordinates equations. At
steady state, the time-independent coupled diffusion equation can be written in the
Sturm–Liouville form

0 = ∂x
(
eu1(x)∂x 0

0 eu2(x)∂x

)(
p1
p2

)

+
(
eu1(x)[u′′1(x)− α] eu1(x)β

eu2(x)α eu2(x)[u′′2(x)− β]
)(

p1
p2

)

. (9.21)

Consider the Hilbert space H = L2×L2 with inner product of f= (f1, f2)
T defined

as

〈f,g〉 =
∫ ∞

−∞
f · gdx =

∫ ∞

−∞
f1(x)g1(x)+ f2(x)g2(x) dx.

The linear operator on H

L = ∂x
(
eu1∂x 0

0 eu2∂x

)

+
(
eu1(x)[u′′1(x)− α] eu1(x)β

eu2(x)α eu2(x)[u′′2(x)− β]
)

with reflecting or periodic boundary conditions is symmetric if and only if

eu1β = eu2α. (9.22)

See Sect. 9.8.1 for a proof. Equation (9.22) represents the Kolmogorov cycle condi-
tion for the coupled diffusion process.

It has been proved mathematically that, with a symmetric elliptic operator L, the
stationary coupled diffusion process (steady-state solution) is time reversible and
has zero entropy production rate [23]. As one expected, (9.22) shows that, in the
time-reversible process, detailed balance holds in between the two diffusion coor-
dinates, since the solutions to the separated diffusion processes satisfy the coupled
equation

p1(x)= Ce−u1(x), p2(x)= Ce−u2(x),

where C is a scaling constant. Notice that u1(x), u2(x) can vary by a constant with-
out affecting the equation. Therefore, if eu1β and eu2α are linearly dependent, the
steady state of the coupled diffusion process is actually an equilibrium, and the pro-
cess is time reversible.

In the models of biochemical processes in living cells, the elliptic operator in
coupled diffusion is generally asymmetric, detailed balance is not satisfied, and the
system will reach a nonequilibrium steady state after a long time.
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9.4 Limit Cases of Coupled Diffusion Processes

For biochemically interesting applications, the coupled diffusion equations are in
general a asymmetric Sturm–Liouville problem. Without the detailed balance, one
does not have a routine mathematical tool to find analytical solutions. However,
in the limit of fast reaction or fast diffusion, asymptotic solutions can still provide
much information about the model.

9.4.1 Limit Case: Fast Jump Process

In the limit case of fast jump between the two states, the jump process reaches steady
state immediately and holds the detailed balance thereafter for each and every x.
The general form of a spatially continuous coupled diffusion with fast jump and
slow diffusion is

∂

∂t

(
p1
p2

)

= ε
(

L1 0
0 L2

)(
p1
p2

)

+
(−α β

α −β
)(

p1
p2

)

, (9.23)

where

Li =Di ∂
2

∂x2
+ ∂

∂x
u′i , i = 1,2.

The probability density functions p1(x),p2(x) can be written in perturbation series

p1 = p0
1 + εp1

1 + ε2p2
1 + · · · , p2 = p0

2 + εp1
2 + ε2p2

2 + · · · .

Plugging into the steady-state equation, we get a sequence of equations by equating
the coefficients of powers of ε. The zero-order equation is

ε0: αp0
1 = βp0

2.

Therefore, in terms of the total probability density of being at position x, p0(x)=
p0

1(x)+ p0
2(x), we have

p0
1(x)=

β(x)

α(x)+ β(x)p
0(x), p0

2(x)=
α(x)

α(x)+ β(x)p
0(x).

The equation of order ε1 is

ε1: L1p
0
1 − αp1

1 + βp1
2 = 0,

L2p
0
2 + αp1

1 − βp1
2 = 0.
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Adding up the two equations, we get

L1p
0
1 + L2p

0
2 = 0

⇒ L1

(
β(x)

α(x)+ β(x)p
0(x)

)

+ L2

(
α(x)

α(x)+ β(x)p
0(x)

)

= 0.

The equation can be integrated once, and we get a first-order ordinary differen-
tial equation in terms of p0(x), which can be solved directly with corresponding
boundary conditions. The asymptotic solutions in the limit of fast reaction for the
three examples are given in Sect. 9.8.2.

9.4.2 Limit Case: Fast Diffusion

If diffusion is much faster than the jumps, then the diffusion reaches a steady state
very soon. Though the reaction is slow, probability mass is still exchanging. Newly
exchanged mass will spread out inside the new state following the diffusion process
immediately, and this process reaches a steady state when there is no total net mass
exchange between the two states.

For a coupled diffusion with fast diffusion and slow jumps, the general form is

∂

∂t

(
p1
p2

)

=
(

L1 0
0 L2

)(
p1
p2

)

+ ε
(−α β

α −β
)(

p1
p2

)

. (9.24)

Again, we write the probability density functions in perturbation series

p1 = p0
1 + εp1

1 + ε2p2
1 + · · · , p2 = p0

2 + εp1
2 + ε2p2

2 + · · ·
and the zero-order equation

L1p
0
1 = 0, L2p

0
2 = 0

provides two solutions for the two steady-state diffusion processes L1,2. Since the
solution is not unique, the weight coefficient for each solution is still undetermined.

The first-order equation is

L1p
1
1 − αp0

1 + βp0
2 = 0, L2p

1
2 + αp0

1 − βp0
2 = 0.

We integrate either equation. Since the differential term disappears by boundary
conditions, we get

∫

α(x)p0
1(x) dx =

∫

β(x)p0
2(x) dx,

which, together with the total probability condition, determines the coefficients for
dominant terms p0

1, p0
2. Complete solutions of the three examples in the limit of fast

diffusion are shown in Sect. 9.8.3.
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9.4.3 NESS Flux

The most significant feature of a living biological system is the existence of nonzero
net flux in NESS, i.e., external energy is consumed to drive the biological process
in an organized way continuously. In another word, the NESS flux is a key quantity
of life phenomenon. To investigate the NESS flux in the limit cases, it is sufficient
to consider the flux between the two states j (x)= α(x)p1(x)− β(x)p2(x).

In the limit of fast jumps,

j = α(p0
1 + εp1

1

)− β(p0
2 + εp1

2

)+ O
(
ε2)

= αp0
1 − βp0

2 + ε
(
αp1

1 − βp1
2

)+ O
(
ε2)

= ε(αp1
1 − βp1

2

)+ O
(
ε2)

= εL1p
0
1 + O

(
ε2),

where p0
1 is the asymptotic solution of p1(x) in the limit of fast jumps.

In the limit of fast diffusion, the reaction rates are εα(x) and εβ(x), and so

j = ε(αp0
1 − βp0

2

)+ O
(
ε2),

where p0
1,2 are asymptotic solutions of p1,2(x) in the limit of fast diffusion.

By comparing these approximations with the flux of numerical solutions, we
verified that the limit case fluxes are valid, see Fig. 9.3.

Fig. 9.3 NESS flux j = α(x)p1(x)− β(x)p2(x) and its asymptotic approximation in the limit of
fast reaction and fast diffusion of the model of fluctuating enzymes. Parameters for (a) the slow
diffusion (fast reaction) case, η1 = 3.5× 102, η2 = 103; (b) the slow reaction (fast diffusion) case,
η1 = 3.5× 10−3, η2 = 10−2
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9.4.4 Entropy Production

Given the probability distribution of each conformational and enzyme state, the en-
tropy of the system could be defined mathematically. With the general form of cou-
pled diffusion, the entropy is

S(t)=−
∫

p1(x, t) logp1(x, t)+ p2(x, t) logp2(x, t) dx.

Then taking the time derivative and substituting ∂p1,2/∂t from (9.19), we have

dS

dt
=
∫ [

J 2
1

D1p1
+ J 2

2

D2p2
+ (αp1 − βp2) log

αp1

βp2

]

dx

−
∫ [

−u
′
1J1

D1
− u

′
2J2

D2
+ (αp1 − βp2) log

α

β

]

dx

= epr− hdr.

The entropy production rate and heat dissipation rate are

hdr =
∫ [

−u
′
1J1

D1
− u

′
2J2

D2
+ j log

α

β

]

dx, (9.25)

epr =
∫ [

J 2
1

D1p1
+ J 2

2

D2p2
+ j log

αp1

βp2

]

dx, (9.26)

where

Ji(x)=−dpi(x)
dt

− u′i (x)pi(x), i = 1,2,

is the diffusive flux, and

j (x)= α(x)p1(x)− β(x)p2(x)

is the vertical jump process flux. In NESS, entropy S does not change with time,
and so hdr= epr.

9.5 Stochastic Bifurcation

We are able to find asymptotic solutions to the coupled diffusion in both limit cases
of fast jump or fast diffusion. But what is the difference between these two so-
lutions? What behavior of the solutions are we expecting for a general equation?
We use the following simple example to study the dynamics of coupled diffusion
system. We illustrate how bistability arises when the jump rates decrease, and the
resulting bifurcation [24].
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We consider a simple stochastic dynamics X(t) with fluctuating μ(t),

dX=−(X−μ)dt +√2dBt , (9.27)

where Bt is the standard Brownian motion, and the fluctuating μ(t) takes two values
±λ with fluctuation rate q . Then the Fokker–Planck equation for the system is a
coupled diffusion on (−∞,∞):

∂u1

∂t
= ∂

2u1

∂x2
+ ∂

∂x
(x + λ)u1 − qu1 + qu2,

∂u2

∂t
= ∂

2u2

∂x2
+ ∂

∂x
(x − λ)u2 + qu1 − qu2,

(9.28)

with noflux boundary conditions at x =±∞.
We are interested in the stationary distribution. By a similar asymptotic approach,

if q� 1, then there is a fast equilibration u1(x)= u2(x). Therefore, if one sums the
two equations in (9.28), one has [21]

∂u

∂t
= ∂

2u

∂x2
+ ∂

∂x
(xu), (9.29)

where u(x, t) = u1(x, t)+ u2(x, t). The stationary distribution for this equation is
a Gaussian centered at x = 0 with variance 1. On the other limit, if q	 1, then the
stationary distribution is simply

uss(x)= 1

2
√

2π

(
e−(x−λ)2/2 + e−(x+λ)2/2). (9.30)

Hence, if λ > 1, then uss(x) has two maxima near ±λ.
Therefore, when λ is large, the steady-state distribution has a single peak at x = 0

for q� 1 but two peaks near x =±λ for q	 1. There must be a bifurcation from
large q to small q . In the case of λ� 1, i.e., the fluctuation in the mean of the Gaus-
sian is much greater than its variance, we can locate this bifurcation by perturbation
theory.

We introduce u(x) = uss
1 (x)+ uss

2 (x) and v(x)= uss
1 (x)− uss

2 (x). Since we as-
sume that λ� 1, u(x) can be written in perturbation series in terms of λ−n around
x = 0. Through some calculation in Sect. 9.8.4, we get the leading terms of u(x) as

u(x)= c0

(

1+ (1− q)
λ2

x2
)

. (9.31)

Therefore, when q < 1, η(x) is concave at x = 0, implying the existence of two
peaks on both sides; when q > 1, η(x) is convex at x = 0, i.e., a maximum.

Numerical computation shown in Fig. 9.4 verifies the above analytical result.
With increasing q from 0 to 1, the two peaks of u(x) move toward the center x = 0
and merge into one at some critical value qc . The critical point of bifurcation qc ≈ 1
for a large λ, as predicted in (9.31). The position of local maximum with parameter
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Fig. 9.4 (a) Pitchfork bifurcation diagrams of local extrema of u(x), the sum of steady-state prob-
ability density functions (pdf) uss

1 (x) and uss
2 (x) according to the toy model in (9.28). q is the

rate of fluctuation between the two states. The solid and dashed lines represent the maxima and
the minima of the probability density function, respectively. The parameters λ= 4 in the calcula-
tion. (b) Saddle-node bifurcation in the system (9.32) with different diffusion constants D1 = 1.2,
D2 = 0.8, and λ= 4. When the symmetry between the two equations in (9.32) is no longer present,
the pitchfork bifurcation is reduced to the saddle-node bifurcation, known as imperfection

q undergoes a pitchfork bifurcation. One should note, however, that pitchfork bifur-
cation is structurally unstable, and it is due to a high degree of symmetry in (9.28).
Suppose that the two Brownian motions have different diffusion constant D1 and
D2 in the toy model; then the equation becomes

∂u1

∂t
= D1

∂2u1

∂x2
+ ∂

∂x
(x + λ)u1 − qu1 + qu2,

∂u2

∂t
= D2

∂2u2

∂x2
+ ∂

∂x
(x − λ)u2 + qu1 − qu2,

(9.32)

and the bifurcation loses symmetry as shown in Fig. 9.4.

9.6 Numerical Methods

Cellular biological processes often happen in a very small time scale—much faster
than the variation of the environment. Therefore, the steady-state property usu-
ally dominates the behavior of the biochemical system. For the coupled diffusion
processes, in such cases, computing the time-independent steady-state solution is
sufficient. Solving the resulting coupled diffusion equation is essentially finding
the eigenfunction corresponding to the zero eigenvalue of the asymmetric Sturm–
Liouville problem.

For the continuous spatial dimension, the most straightforward method is the
finite difference method. We discretize the spatial domain by uniform grids x= {xi},
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i = 0, . . . ,m+ 1, and use the vector

u=
[

p
q

]

= [p0, . . . , pm+1, q0, . . . , qm+1]T , (9.33)

where pi = p(xi), qi = q(xi), i = 0, . . . ,m+1, are the values of p, q at grid points.
Replacing the derivatives by midpoint finite difference approximation, we get a lin-
ear system

Mu= f, M ∈R
(m+2)2,u, f ∈R

m+2. (9.34)

The matrix M has the shape

M=
[
T1 S1
S2 T2

]

,

where S1, S2 are diagonal matrices representing the coupling term between the two
equations. With nonflux boundary condition, T1, T2 are trigonal matrices; with pe-
riodic boundary, the dimension of the linear system is m+ 1 because only one side
boundary value is needed, and T1, T2 each have two additional entries at the upper
left and lower right corners. The righthand side vector f is zero.

The numerical problem becomes finding the eigenvector corresponding to the
zero eigenvalue of the sparse matrix M. There is a powerful numerical package
ARPACK designed for computing several eigenvalues and eigenvectors of large-
scale but sparse matrices [25]. Steady-state solution can be computed using this
package.

For one-sided boundary problems in discrete space, self-regulating genes as an
example, there is a simpler approach. At steady states, the probability transfer in the
network can be represented by a sequence of cyclic fluxes. There are many kinds of
cyclic flux decomposition of the steady-state network flow; however, we prefer the
following one because it leads to a recursive formula for the nth nodes and cyclic
flux.

In this representation, we notice that J0(n) is always a positive flux, and J0(n) =
pβ(n)k. The probabilities pα(n− 1), pβ(n) and flux J (n) satisfy

kpβ(n+ 1)+ J (n+ 1) = gαpα(n)− k(n+ 1)pα(n+ 1),

J (n+ 1)− J (n) = (k + f )pβ(n)− hnpα(n),
J (n+ 1) = knpβ(n+ 1)− gβpβ(n),
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p(n+ 1)=A(n)p(n), i.e.,

⎛

⎝
pα(n+ 1)
J (n+ 1)
pβ(n+ 1)

⎞

⎠=
⎛

⎜
⎝

gα
k(n+1) + h

k
− 1
kn

− (k+f )(n+1)+gβ
kn(n+1)

−hn 1 f + k
−h
k

1
kn

f+k+gβ
kn

⎞

⎟
⎠

⎛

⎝
pα(n)

J (n)

pβ(n)

⎞

⎠ . (9.35)

The initial condition can be determined by considering the first cycle. We have

J0(1) = kpβ(1)= gαpα(0)− kpα(1)= hpα(1)− fpβ(1)− J (2),
J (2) = −2hpα(1)+ (f + k)pβ(1)+ J (1),
J (1) = 0,

and so

pα(1)= (2f + 2k)gα
k(2f + 2k + 3h)

pα(0), J (1)= 0,

pβ(1)= 3hgα
k(2f + 2k+ 3h)

pα(0),

and the value of pα(0) can be determined by the total probability condition

pα(0)+
∞∑

n=1

[
pα(n)+ pβ(n)

]= 1.

9.7 Discussion

Irreversible stochastic processes, either the Q-processes without detailed balance or
the nonsymmetric diffusion processes, are the appropriate mathematical language
for modeling cellular biochemical systems and stochastic biological processes. We
have given several examples in this paper for the former; an example for the latter is
the theory of population genetics [26–28]. The mathematical studies of irreversible
stochastic processes carried out by Min-Ping Qian, Min Qian, and their colleagues
at Peking University give rise to several important concepts that include entropy
production and probability circulation. Both are characteristics of any stationary ir-
reversible stochastic process: If the stationarity is not sustained by detailed balance,
it has to be sustained by circular balance, the Kirchhoff law. Because of the presence
of the circulations, a stationary process is not time-symmetric and thus is nonzero
entropy production. Both concepts of entropy production and probability circulation
had been in the physics literature in the 1970s [29, 30], but showing that both are
mathematical consequences of irreversible stochastic processes and that they are
equivalent within given mathematical conditions is the contribution of the Peking
University group. The concept of entropy production has also gone through a ma-
jor development in the 1990s in terms of the fluctuation theorem in the West. It is
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now recognized that it is an integral part of irreversible Markov processes [31, 32]:
Entropy production can be defined as a stochastic quantity associated with an irre-
versible stochastic process. Now with the developed mathematical theory [16], it is
clear that the irreversible stochastic processes are applicable to many of the interest-
ing open-system phenomena in chemistry and biochemistry [33, 34], motor protein,
fluctuating enzymes in living cells, self-regulating genes, and stochastic resonance
not discussed in the present paper [35, 36], just for a few examples.

9.8 Mathematical Methods

9.8.1 Proof of Sturm–Liouville Operator

Consider the Hilbert space H = L2×L2 with the inner product of f= (f1, f2)
T and

f= (f1, f2)
T defined as

〈f,g〉 =
∫ ∞

−∞
f · gdx =

∫ ∞

−∞
f1(x)g1(x)+ f2(x)g2(x) dx.

The linear operator on H

L = ∂x
(
eu1∂x 0

0 eu2∂x

)

+
(
eu1(x)[u′′1(x)− α] eu1(x)β

eu2(x)α eu2(x)[u′′2(x)− β]
)

with reflecting or periodic boundary conditions is symmetric if and only if

eu1β = eu2α.

Proof Let f,g ∈ H; then

〈Lf,g〉 − 〈f,Lg〉 =
∫ ∞

−∞
[(
eu1f ′1

)′ + eu1(u′′1 − α)f1 + eu1βf2
]
g1 dx

+
∫ ∞

−∞
[(
eu2f ′2

)′ + eu2(u′′2 − β)f2 + eu2αf1
]
g2 dx

−
∫ ∞

−∞
[(
eu1g′1

)′ + eu1(u′′1 − α)g1 + eu1βg2
]
f1 dx

−
∫ ∞

−∞
[(
eu2g′2

)′ + eu2(u′′2 − β)g2 + eu2αg1
]
f2 dx

= g1
(
eu1f ′1

)∣
∣
∂�
+g2

(
eu2f ′2

)∣
∣
∂�
+
∫ ∞

−∞
eu1βf2g1 dx

+
∫ ∞

−∞
eu2αf1g2 dx − f1

(
eu1g′1

)∣
∣
∂�
−f2

(
eu2g′2

)∣
∣
∂�
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−
∫ ∞

−∞
eu1βg2f1 dx −

∫ ∞

−∞
eu2αg1f2 dx.

Applying the boundary condition, if it is reflecting boundary, we have

f ′1 =−u′1f1, f ′2 =−u′2f2, g′1 =−u′1g1, g′2 =−u′2g2, x ∈ ∂�.
By substitution, the nonintegral terms cancel; if it is periodic boundary, the nonin-
tegral terms disappear as well. Then we get

〈Lf,g〉 − 〈f,Lg〉 =
∫ ∞

−∞
(
eu1β − eu2α

)
(f2g1 − f1g2) dx.

Since the choice of f,g is arbitrary, L being symmetric requires

eu1β = eu2α. (9.36)
�

9.8.2 Asymptotic Solution in the Limit of Fast Jump Process

1. Fluctuating enzymes—nonflux boundary.
By fast reaction, the reaction part in (9.14a)–(9.14d) reaches equilibrium at

each conformational position x, and so

p1 = k21

k12 + k21
p, p2 = k12

k12 + k21
p.

With nonflux boundary conditions, the steady-state solution of p(x) satisfies

∂

∂x

[
a(x)p(x)

]+ b(x)p(x)= 0,

where

a(x)= k21(x)/η1 + k12(x)/η2

k12(x)+ k21(x)
, b(x)= k21(x)u

′
1(x)/η1 + k12(x)u

′
2(x)/η2

k12(x)+ k21(x)
.

The solution can be expressed as

p(x)= c

a(x)
exp

(

−
∫ x

0

b(s)

a(s)
ds

)

. (9.37)

The constant c can be addressed by the total probability condition.
2. Motor protein—periodic boundary.

For motor protein (9.16a), (9.16b), the only difference with fluctuating en-
zyme model is on boundary condition. By setting

p1 = g

f + gp, p2 = f

f + gp,
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we have the steady-state equation about p(x) as

∂

∂x

[
a(x)p(x)

]+ b(x)p(x)= c1,

where

a(x)= β2g + β1f

f + g , b(x)= β2u
′
1g+ β1u

′
2f

,
kBT (f + g).

The solution will be

p(x) = c1

a(x)
exp

(

−
∫ x

0
b(s)/a(s) ds

)∫ x

0
exp

(∫ s

0
b(ξ)/a(ξ)dξ

)

ds

+ c2

a(x)
exp

(

−
∫ x

0
b(s)/a(s) ds

)

. (9.38)

At boundaries,

a(0)p(0)= c2,

a(L)p(L) exp

(∫ L

0
b(s)/a(s) ds

)

= c1

∫ L

0
exp

(∫ s

0
b(ξ)/a(ξ) dξ

)

ds + c2.

(9.39)

The periodic boundary condition provides a(0)p(0) = a(L)p(L), which will
give a relation between c1 and c2. Together with the total probability condition,
the constants can be uniquely determined.

3. Self-regulating genes—one-sided reflecting boundary.
The asymptotic solution of (9.17a), (9.17b) can be computed recursively. Tak-

ing self-regulating gene as an example, fast reaction leads to hnpα(n)= fpβ(n),
and so

pα(n)= f

hn+ f p(n), pβ(n)= hn

hn+ f p(n),

where p(n) = pα(n) + pβ(n). Adding the two equations for states α and β ,
we assume that the detailed balance strictly holds between pα(n) and pβ(n) and
obtain a chemical master equation in terms of p(n), which describes the diffusion
between neighboring p(n)’s. Since the left boundary n= 0 is reflecting, the net
flux between p(0) and p(1) is zero, and then deductively, the net flux between
any two adjacent spatial position is zero. In this way, we can express p(n) in
terms of p(0). We have

fgα + h(n− 1)gβ
h(n− 1)+ f p(n− 1)= knp(n).
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Denote G(n)= [fgα + h(n− 1)gβ ]/[h(n− 1)+ f ]. Then

p(n)= c
n∏

�=1

G(�− 1)

k�
. (9.40)

9.8.3 Asymptotic Solution in the Limit of Fast Diffusion

1. Fluctuating enzymes—nonflux boundary.
Since the diffusion is fast and reaction between E and ES is slow in (9.14a)–

(9.14d), we solve the two diffusion equations separately and get

p1(x)= c1e
−u1(x), p2(x)= c2e

−u2(x).

Although the detailed balance cannot be satisfied anyway, the total probability of
being at both states can be balanced by the chemical reaction, that is,

∫

k12(x)p1(x) dx =
∫

k21(x)p2(x) dx.

So

c1

∫

k12(x)e
−u1(x) dx − c2

∫

k21(x)e
−u2(x) dx = 0, (9.41)

c1

∫

e−u1(x) dx + c2

∫

e−u2(x) dx = 1, (9.42)

whence we can compute the coefficients c1, c2.
2. Motor protein—periodic boundary.

For the motor protein case in (9.16a), (9.16b), the leading-order equation be-
comes two separated diffusion equations with periodic boundary conditions

p′i (x)+
u′i (x)
kBT

pi(x)= ci, i = 1,2,

and so

pi exp
(
ui(x)/kBT

)= ci
∫ x

0
exp
(
ui(s)/kBT

)
ds + di, i = 1,2.

The periodic boundary condition states

di = pi(0) exp
(
ui(0)/kBT

)= pi(L) exp
(
ui(L)/kBT

)

= ci
∫ L

0
exp
(
ui(s)/kBT

)
ds + di, i = 1,2, (9.43)

and so ci = 0. As a result, the solution will be the same as the solution of fluctu-
ating enzyme model.
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3. Self-regulating genes—one-sided reflecting boundary.
In the case of fast birth-death jump and slow interstate transition in (9.17a),

(9.17b), the producing and degradation of repressor is fast, while the binding
and releasing is slow. Since bound repressor is degradable, we have a nontrivial
interstate transition from β state to α state with rate k. Even if the binding and
release rate is zero, there still would be a nonzero transition flux from β to α,
until pβ(n)≡ 0. The steady-state probability distribution is

pα(n)= gnα

knn!e
−gα/k, pβ(n)= 0. (9.44)

9.8.4 Bifurcation of the Toy Model

We introduce u(x)= uss
1 (x)+ uss

2 (x) and v(x)= uss
1 (x)− uss

2 (x). Then from (9.28)
we have

d2u(x)

dx2
+ d

dx
(xu+ λv) = 0, (9.45)

d2v(x)

dx2
+ d

dx
(xv + λu)− 2qv(x) = 0. (9.46)

Equation (9.45) can be integrated, and noting that [ du
dx
+ xu + λv]x=±∞ = 0, we

have

λv(x)=−du(x)
dx

− xu(x). (9.47)

Substituting this into (9.46), we have

d3u(x)

dx3
+ 2x

d2u(x)

dx2
+ (x2 − λ2 − 2q + 3

)du(x)

dx
+ 2(1− q)xu(x)= 0. (9.48)

We are interested in the behavior of u(x) around x = 0: u′(0)= 0 since the solution
to (9.48) is an even function. Furthermore, if u′′(x) > 0, u(x) is concave and bistable
since u(x)≥ 0 and u(±∞)= 0. If u′′(x) < 0, u(x) is convex with a peak at x = 0.
Since λ� 1, much larger than other coefficients around x = 0, the dominant term
of (9.48) is

−λ2 du(x)

dx
= 0,

which gives a constant solution u(x)= c0. As a result, in terms of the small param-
eter λ−2, the solution of (9.48) has the form

u(x)= c0 + η(x)
λ2

, c0 > 0,
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and then the equation for η(x) becomes

1

λ2

(
d3η

dx3
+ 2x

d2η

dx2
+ (x2 − 2q + 3

)dη

dx
+ 2(1− q)xη

)

− dη
dx
+ 2c0(1− q)x = 0. (9.49)

Since λ� 1, we discard the small terms and obtain

−dη(x)
dx

+ 2c0(1− q)x = 0,

and so

η(x)= c0(1− q)x2, u(x)= c0

(

1+ (1− q)
λ2

x2
)

. (9.50)
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Chapter 10
Probability Modeling and Statistical Inference
in Periodic Cancer Screening

Dongfeng Wu and Gary L. Rosner

10.1 Background

Early detection and efficient treatments are the most effective ways to increase the
cure rate or prolong survival of cancer patients. The primary technique for imple-
menting early detection is screening exams, by which the disease may be found be-
fore symptoms are present. There are many different kinds of cancer screenings in
the world, such as mammogram and clinical breast exam (CBE) for breast cancer,
chest X-ray or computed tomography (CT) scanning for lung cancer, fecal occult
blood test (FOBT) for colon cancer, prostate-specific antigen (PSA) for prostate
cancer, etc.

Probability modeling in cancer screening was dated back to 1969, right after the
Health Insurance Plan of Greater New York (HIP) study was close to an end. The
HIP study, which began at the end of 1963, was the first randomized clinical trial to
examine regular screening exams that include mammography as a diagnostic screen-
ing test for breast cancer. The study randomized initially asymptomatic women aged
40 to 64 years without a history of breast cancer to two groups: the study group and
the control group. Each group consisted of about 31,000 women. The screening pro-
gram for the study group called for up to 4 annual breast cancer screening exams,
with each screening exam including both a mammogram and a clinical breast exam.
The control group received usual care [16].

Zelen and Feinleib [32] in their first paper on screening proposed the disease
progressive model: the disease develops by progressing through 3 states, denoted
by S0 → Sp → Sc (Fig. 10.1). S0 refers to the disease-free state or the state in
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Fig. 10.1 Illustration of disease development and lead time

which the disease cannot be detected; Sp refers to the preclinical disease state, in
which an asymptomatic individual unknowingly has disease that a screening exam
can detect; and Sc refers to the disease state at which the disease manifests itself in
clinical symptoms. The progressive disease model describes the natural history of
lesions detected by screening for cancer. The goal of screening programs is to detect
the cancer in the preclinical state (Sp). The paper discussed probability modeling in
cancer screening where an individual is examined only once. It clearly defined some
concepts or key parameters in cancer screening programmes that are widely used
until today, such as sensitivity, transition probability from the disease-free state to
the preclinical state, and sojourn time distribution in the preclinical state.

Sensitivity is the probability that the screening exam is positive, conditional on
the individual being in the preclinical stage Sp . The sensitivity cannot be estimated
readily from data collection in screening. For a disease with low incidence, confir-
mation of the status of disease in a seemingly healthy population is not cost effective
or ethical. Also, a screened negative individual who has been followed and found
to be positive later may represent either a false negative on the previous screening
exams or a newly developed case. Sojourn time is the time from when the disease
first develops to the manifestation of clinical symptoms. The nature of data collec-
tion in a screening program precludes exact observation of the onset of either Sp
or Sc. Therefore, estimation of the sojourn time distribution is difficult. However,
this information can be obtained under model assumptions, and we believe that the
preclinical phase of breast cancer may last from 1 to 5 years [4, 18, 22–24], and it
may last longer for colorectal cancer [27]. Hence there is a good chance that can-
cer can be detected in its preclinical stage, which is the goal of implementing a
screening program. Transition probability from the disease free state (S0) to the
preclinical state (Sp) is continuously changing with one’s age [22–24] and is diffi-
cult to estimate without proper modeling. Another vital characteristic is Lead time,
which is the length of time the diagnosis is advanced by screening. The effective-
ness of the screening program directly depends on the lead time. If one enters the
preclinical state (Sp) at age t1 and becomes clinically incident (Sc) later at age t2,
then (t2 − t1) is the sojourn time. If she is offered a screening exam at time t within
the time interval (t1, t2), and cancer is diagnosed, then the length of the time (t2− t)
is the lead time. This is illustrated in Fig. 10.1.

An individual with a longer lead time usually has a better prognosis than one
with a shorter lead time. For a particular case detected by the screening, the lead
time is unobservable.

There are many papers to estimate the sensitivity, the sojourn time distribution,
and the transition probability from the disease-free to the preclinical state in a
screening program. Walter and Day [20] estimated the incidence, the sensitivity,
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and the sojourn time from the HIP data. They modeled the sojourn times in the
preclinical state as exponentially distributed. They found a high marginal correla-
tion between the sensitivity and the parameter for the sojourn time distribution. This
high marginal correlation may reflect a common dependence on age. However, they
did not include a dependence on age in their model.

Shen and Zelen [17] presented two models they called stable and nonstable.
The stable model assumed constant transition probabilities across all ages (i.e.,
w(t) ≡ w). Their nonstable model considered w(t) to be a step-function of age,
with w(t) to be a constant within each 5-year age group (40–44, 45–49, etc.). They
assumed constant sensitivity and mean sojourn time across all ages in their models.
They analyzed the HIP data and estimated sensitivity under the stable model to be
0.70 (standard error 0.20). The estimated sensitivity with the nonstable model was
0.72 (standard error 0.17). The nonstable disease model requires more assumptions,
however. For example, a person’s age at the initial and the last screening exams
should fall into the same age group. Their stable estimate of the mean sojourn time
was 2.5 years (standard error 1.2 years). With the nonstable model, the estimate was
2.2 years, with a standard error of 0.89 years. The innovative part in this paper was
that they used a likelihood function to estimate these parameters.

Chen et al. [3] provided a method for estimating the mean sojourn time without
using data from interval cases. They analyzed screening data from Taiwan. Their
estimated mean sojourn time was 1.90 years, with a 95% C.I. (1.18, 4.86). They
assumed that the transition probabilities were exponentially distributed and 100%
sensitivity, which they deemed unrealistic.

There have been questions concerning the efficient design of periodic cancer
screening programs: at what age should screening programs be initiated [1], and
at what frequency [5]. If screening programs were specifically designed for peo-
ple with various risk factors, then more cases could be diagnosed at scheduled ex-
ams. However, optimal design of screening exams is hindered because the theory
of screening has not been well developed to date. Very often the recommended fre-
quency in a periodic screening program is arbitrary.

In this chapter, we will briefly review the current status of the probability model
and the statistical methods in cancer screening and their limitations, and we will
also point out some challenging problems and future developments in this area.

10.2 Current Methods in Periodic Cancer Screening

We will use the HIP data for breast cancer as an example in this section. Consider a
cohort of initially asymptomatic individuals who enroll in a breast cancer screening
program. Assume there are K ordered screenings that, for a specific individual,
occur at ages t0 < t1 < · · · < tK−1. We define βi = β(ti) as the sensitivity at age
ti ; w(t) dt is the transition probability from S0 to Sp during (t, t + dt); q(x) is the
PDF of the sojourn time in Sp , andQ(z)= ∫∞

z
q(x) dx is the survivor function. We

define the ith generation of women as those who enter Sp during the ith screening
interval (ti−1, ti), i = 1,2, . . . ,K − 1. The 0th generation includes all who enter Sp
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before t0. We let t−1 = 0 and tK = T , where T represents the span of the human
life, a fixed value in this section.

10.2.1 MLE and Bayesian Inference of Age-Dependent Sensitivity
and Transition Probability in Periodic Screening

We will briefly review the statistical inference procedures that Wu, Rosner, and
Broemeling [23] developed under the progressive disease model. The purpose was
to provide statistical inference for the sojourn time, the age-dependent sensitivity
and the age-dependent transition probability from the disease-free state S0 to the
preclinical state Sp . We used age as a covariate in the estimation of the sensitivity
and the transition probability simultaneously, both in a frequentist point of view and
in a Bayesian framework.

Consider a cohort of initially asymptomatic individuals who are all aged t0 at
study entry, and there are K ordered screening exams that occur at ages t0 < t1 <
· · ·< tK−1. Let ni,t0 be the total number of individuals examined at the ith screen-
ing; si,t0 is the number of cases detected and confirmed at the ith screening; and ri,t0
is the number of cases diagnosed in the clinical state Sc within (ti−1, ti ), the interval
cases. The likelihood function for this age group is proportional to

L(·|t0)=
K∏

k=1

D
sk,t0
k,t0
I
rk,t0
k,t0

(1−Dk,t0 − Ik,t0)nk,t0−sk,t0−rk,t0 , (10.1)

where Dk,t0 is the probability that an individual will be diagnosed at the kth sched-
uled exam given that she is in the state Sp; and Ik,t0 is the probability of being
incident in the kth screening interval. The probability that an individual in Sp is
detected at the first scheduled exam (i.e., k = 1) at age t0 is

D1,t0 = β0

∫ t0

0
w(x)Q(t0 − x)dx. (10.2)

The integral in the equation arises because she must have entered the preclinical
state Sp before t0 and remained in that state at least until t0.

To get Dk,t0 , we consider an ith generation individual who was detected at the
kth screening exam (1 ≤ i < k). These are the possibilities: either she passed her
previous (k− i− 1) exams undetected and had a sojourn time of at least (tk−1− x),
where x ∈ (ti−1, ti) is her age at onset of Sp; or she entered Sp in the (k − 1)th
screening interval (tk−2, tk−1). Hence the probability is

Dk,t0 = βk−1

{
k−2∑

i=0

{

[1− βi] · · · [1− βk−2]
∫ ti

ti−1

w(x)Q(tk−1 − x)dx
}

+
∫ tk−1

tk−2

w(x)Q(tk−1 − x)dx
}

for k = 2, . . . ,K. (10.3)



10 Probability Modeling and Statistical Inference in Periodic Cancer Screening 207

To calculate Ik,t0 , we consider an ith generation women i < k. She must have
gone undetected in her (k − i) previous screening exams and have a sojourn time
longer than (tk−1 − x) but shorter than (tk − x), where x is her age at onset of Sp .
Alternatively, she may have entered Sp after the kth exam and developed clinical
symptoms before (tk − x). Hence,

Ik,t0 =
k−1∑

i=0

[
1− β(ti)

] · · · [1− β(tk−1)
]
∫ ti

ti−1

w(x)
[
Q(tk−1 − x)−Q(tk − x)

]
dx

+
∫ tk

tk−1

w(x)
[
1−Q(tk − x)

]
dx for k = 1, . . . ,K. (10.4)

The likelihood for the whole HIP study group is proportional to

L=
64∏

t0=40

L(·|t0) (10.5)

according to the people’s initial age t0, ranging from 40 to 64 in the HIP study. We
carefully chose parametric models for β(t), w(t), and q(x) as follows:

β(t) = 1

1+ exp{−b0 − b1(t − t̄ )} , (10.6)

w(t) = 0.2√
2πσ t

exp
{−(log t −μ)2/(2σ 2)}, (10.7)

q(x) = κxκ−1ρκ

(1+ (xρ)κ)2 , (10.8)

where t̄ is the average age at entry in the study group. The unknown parameters
θ = (b0, b1,μ,σ

2, κ, ρ) were to be estimated from the likelihood function. Simula-
tions were performed to evaluate the reliability of the proposed likelihood [23, 24].
We applied our model to the HIP data using both Markov Chain Monte Carlo
(MCMC) and the Maximum Likelihood Estimate (MLE). The Bayesian posterior
and the MLE were very close to each other. Our results show that the sensitivity
increases with age; it is 0.6 in age 40 and 0.87 at age 64. The transition probabil-
ity is not a monotone function of age but has a single maximum at about age 60.
The posterior mean sojourn time is 1.88 years. Lee and Zelen [8] used SEER infor-
mation [19] of breast cancer incidence to estimate w(t), assuming that the sojourn
time is exponentially distributed with a mean of 4 years. Our estimated transition
probabilities are larger than theirs, as might be expected, since we estimated lower
sensitivities among younger women. This is the first time that the HIP data have
been used directly to obtain estimates for the transition probability into Sp .

We applied our model to the MCCCS data for colon cancer. The sensitivity ap-
pears to increase with age for both genders. The age-dependent transition proba-
bility has a single maximum at age 72 for males and age 75 for females. The age-
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dependency seems more dramatic for females than for males. The posterior mean
sojourn time is 4.08 years for males and 2.41 years for females [27].

We applied this model to the Mayo Lung Project for male heavy smokers [26].
Since there is no evidence of age effect for sensitivity of chest X-ray in clinical stud-
ies, we slightly modified our model to fit this fact. The posterior mean sensitivity
is 0.734; the 95% highest posterior density (HPD) interval is (0.647, 0.813). The
posterior mean sojourn time is 9.1 years for males heavy smokers; the 95% HPD
interval for the sojourn time is (4.9, 23.8) years. The age-dependent transition prob-
ability has a single maximum at age 63. The physicians at the lung cancer clinic at
the Brown Cancer Center, University of Louisville, are very interested in our find-
ings, since they are compatible with their clinical observations for the sojourn time.

10.2.2 Bayesian Inference for the Lead Time in Periodic Cancer
Screening

Many researchers have proposed methods to infer lead time among participants in
a screening program, whether within a randomized study or not. Prorok [14] made
a major contribution by deriving the conditional probability distribution of the lead
time, given detection at the ith screening exam. He then applied his model in sim-
ulations to study the properties of the lead time, assuming different sojourn time
distributions. He noted that when one increases the number of exams, keeping the
between-exam interval fixed, the local lead time properties appeared to stop chang-
ing after 4 or 5 screening exams in his examples. The stabilization of the local lead
time properties suggested a stopping rule for comparative studies, in that further
screening exams will not yield more information about the benefit of screening ver-
sus no screening. His work, however, has limited applicability. He considered only
screen-detected cases, ignoring interval cases for whom the lead time is zero. His
results apply to cases who are screen-detected at the ith screening exam. He did
not estimate the whole proportion of cases who were not detected by the periodic
screening.

We will briefly review the statistical inference for the lead time that Wu, Rosner,
and Broemeling [25] developed under the progressive disease model. The aim was
to provide statistical inference of the lead time for the whole cohort, including both
the screen-detected and the interval incident case. The lead time is distributed as a
mixture of a point mass at zero and a piecewise continuous distribution. Simulations
were carried out, using the HIP data for breast cancer, to make inference under
different screening time intervals, the proportion of breast cancer patients who might
benefit from the periodic screening exams (i.e., those whose lead time is bigger
than zero) and the proportion that do not. The model provides policy makers with
important information regarding the screening frequency and the possible benefit to
women who take part in a periodic screening program.

We let D = 1, indicating the development of clinical disease, and D = 0, in-
dicating the absence of the clinical disease before death. We use L to denote the
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lead time. The lead time distribution is a mixture of the conditional probability
P(L= 0|D = 1) and the conditional PDF fL(z|D = 1):

P(L= 0|D = 1) = P(L= 0,D = 1)

P (D = 1)
, (10.9)

fL(z|D = 1) = fL(z,D = 1)

P (D = 1)
. (10.10)

We need P(D = 1), the probability of developing breast cancer during one’s life-
time after age t0, the joint probability P(L = 0,D = 1), and the joint probability
density function fL(z,D = 1), to compute the distribution of the lead time explic-
itly. We assume that the individual is asymptomatic at age t0.

The probability of developing breast cancer after the initial screening exam (at
age t0) is the following. Suppose a woman is incident with clinical disease at age
t ∈ (t0, T ). Then, one must move from S0 to Sp before age t , say at age x. The
sojourn time in the preclinical state is (t − x). Hence,

P(D = 1)=
∫ T

t0

∫ t

0
w(x)q(t − x)dx dt. (10.11)

The lead time is zero if and only if an individual is an interval case. Let IK,i
denote the probability of being an interval case in the ith interval (ti−1, ti) in a
sequence of K screening exams. Then

P(L= 0,D = 1)= IK,1 + IK,2 + · · · + IK,K,

where

IK,j =
j−1∑

i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)
{
Q(tj−1 − x)−Q(tj − x)

}
dx

+
∫ tj

tj−1

w(x)
{
1−Q(tj − x)

}
dx for all j = 1, . . . ,K. (10.12)

It can be proved by mathematical induction that, if the sensitivity is less than 1, then
for any fixed sequence t0 < t1 < · · ·< tK−1 < T ,

I1,1 ≥ (I2,1 + I2,2)≥ · · · ≥ (IK,1 + · · · + IK,K).

In other words, more screening reduces the probability that the lead time equals zero
among women who would go on to develop cancer.

For the cases whose lead times are greater than zero, we calculate the joint PDF
fL(z,D = 1), where z ∈ (0, T − t0]. When T − t1 < z≤ T − t0, detection must have
been occurred at t0. In general, when T − tj < z ≤ T − tj−1, j = 2,3, . . . ,K , one
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was screen-detected at ti , i = 0, . . . , j − 1 (i.e., tc = ti + z < T , i = 0, . . . , j − 1),

fL(z,D = 1)=
j−1∑

i=1

βi

{
i−1∑

r=0

(1− βr) · · · (1− βi−1)

∫ tr

tr−1

w(x)q(ti + z− x)dx

+
∫ ti

ti−1

w(x)q(ti + z− x)dx
}

+ β0

∫ t0

0
w(x)q(t0 + z− x)dx,

for z ∈ (T − tj , T − tj−1], j = 2,3, . . . ,K, (10.13)

fL(z,D = 1)= β0

∫ t0

0
w(x)q(t0 + z− x)dx, for z ∈ (T − t1, T − t0].

(10.14)

The validity of this distribution can be verified by

P(L= 0|D = 1)+
∫ T−t0

0
fL(z|D = 1) dz= 1.

We obtained the same result as in Prorok [14] when conditioning on detection
by the ith screenings. However, our deriving procedure is greatly simplified. See
Sect. 10.2.2 in Wu et al. [25].

It is clear that the lead time distribution depends on the sensitivity β(t), the transi-
tion probability w(t), and the sojourn time distribution q(x) in the preclinical state.
We know that these three key parameters were modeled by θ = (b0, b1,μ,σ

2, κ, ρ)

in (10.6) to (10.8) in Sect. 10.2.1, and θ can be estimated by Bayesian posterior
samples through Markov Chain Monte Carlo (MCMC) simulation [23].

Let H represent the HIP study group data. The likelihood function L(θ |H) was
defined in (10.5) in Sect. 10.2.1. Let π(θ) be the prior distribution of θ . The posterior
distribution of θ is f (θ |H)∝ L(θ |H)π(θ). The posterior predictive distribution of
the lead-time z can be estimated as follows:

f (z|H)=
∫

f (z, θ |H)dθ =
∫

f (z|θ,H)f (θ |H)dθ ≈ 1

n

∑

i

f (z|θ∗i ).

(10.15)

Where f (z|θ∗i ) is the mixture distribution of the lead time in (10.9) and (10.10), and
θ∗i is the posterior samples.

Simulation studies using the HIP study data provide predictive inference under
different screening frequencies. The time interval between screens was 6, 9, 12, 18,
and 24 months from age 50 (t0) to 80 years (T ). From the results we see that, if a
woman begins annual screening when she is 50 years old and continues until she
reaches 80, then there is a 23.37% chance that she will not benefit (i.e., interval
incident case) from early detection by the screening program if she develops breast
cancer during those thirty years; however, if she will benefit from the program, her
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most possible lead time (mode) will be 3.6 months. Her chance of no benefit from
the screenings drops to 8.95% if the exams are 6 months apart, and her most possible
lead time is 6 months. It seems necessary for a woman to take the exam every six
months to guarantee a 90% chance of earlier detection based on our simulation
result.

We applied this method to MCCCS for colon cancer [28]. The results show that
if a man begins annual screening when he is 50 years old and continues until he
reaches 80, then there is a 18.87% chance that he will not benefit from early detec-
tion by the screening program if he develops colorectal cancer during those thirty
years. His chance of no benefit from the screening program decreases to 6.45% if
the exams are 6 months apart. While for the females, the chance of no early detec-
tion is 9.48% for the annual test and 2.39% for the 6-month test to guarantee a 90%
chance of early detection, it maybe necessary for the males to take the FOBT every
9 months, while the females can take it annually.

We applied the lead-time method to Mayo Lung Project data for male heavy
smokers [26]. We found that if a male heavy smoker begins screening when he is
50 years old with a 3-year screening interval and continues until he reaches 80,
then there is a 14.78% chance that he will not benefit from early detection by the
screening program if he develops lung cancer during those thirty years. His chance
of no benefit from the screening program decreases to 7.46% if the exams are two
years apart. It is not necessary to take the screening exam every 4 months as the
Mayo Lung Project was carried out, but taking the exam every 2 years for male
heavy smokers is probably enough to guarantee a 90% of early detection under the
then-not-so-high assumption of sensitivity. The reason is that lung cancer tends to
have a much longer sojourn time than that of other kinds of cancer.

10.2.3 Testing the Dependence of Two Screening Modalities

We developed a hypothesis testing procedure in [18] under a stable disease model.
The parameters to be estimated and tested are the sensitivity of mammogram β1,
the sensitivity of physical exam β2, and their correlation coefficient ρ when the
transition probability w(t)=w was a constant (the stable disease model).

Three cases can be identified by screening exams: cases detected by mammo-
gram only; cases detected by physical exam one; and cases identified by both. De-
fine α1, α2, and α3 as the probabilities of these three mutually exclusive events.
Then we can express αi as a function of β1, β2, and ρ, for example, α3 = β1β2 +
ρ
√
β1β2(1− β1)(1− β2), and the overall sensitivity β = β1 + β2 − α3.

It is clear that a positive correlation reduces the overall sensitivity and the op-
posite is true for a negative correlation. A test for independence can be made by
considering H0 : α3 = β1β2, which is equivalent to H0 : ρ = 0.

Let t0 < t1 < · · ·< tK−1 represent K ordered screening exam times. Define the
ith screening interval (ti−1, ti ) for i = 1,2, . . . , k − 1, with 	i = ti − ti−1. Adopt
the following notation: ni is the total number of individuals examined at ti−1; si is
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the number of cases detected at the exam given at ti−1; and ri is the number of cases
diagnosed within the interval (ti−1, ti ).

LetDi(β) be the probability of an individual diagnosed at the ith scheduled exam
given at ti−1, and let Ii(β) be the probability of an interval case occurring in the ith
interval. The full likelihood is

L(β1, β2, ρ)=
k∏

i=1

Di(β)
si Ii(β)

ri
[
1−Di(β)− Ii(β)

]ni−si−ri
3∏

j=1

(αj /β)
sij ,

where si1, si2, si3 denote the number of cases detected by modality 1 only, by modal-
ity 2 only, and by both modalities, respectively.

Under the stable disease model, the transition probability w(t) is assumed to be
some unknown constant w. The values of Di(β) and Ii(β) under the stable disease
model are greatly simplified:

Di(β) =

⎧
⎪⎨

⎪⎩

βP

{

1− β
i−1∑

j=1

(1− β)i−j−1Q(ti−1 − tj−1)

}

i > 1,

βP i = 1,

Ii(β) = P
[
	i

μ
− β

i−1∑

j=0

(1− β)i−j−1{Q(ti−1 − tj )−Q(ti − tj )
}
]

,

where P is the prevalence of breast cancer; Q(·) is the survival function of the
sojourn time in the pre-clinical state, and the exponential distribution with parameter
μ is adopted for the sojourn time.

A simplified conditional likelihood is

Lc(β1, β2, ρ)=
k∏

i=1

Di(β)
si Ii(β)

ri

(Di(β)+ Ii(β))si+ri
3∏

j=1

(αj /β)
sij ,

where the prevalence parameter P and ni are eliminated by virtue of Di(β)
Di(β)+Ii (β) .

A likelihood ratio test was developed to test the independence of the two screen-
ing modalities. Under the null hypothesis H0 and under some regular conditions,
the log-likelihood ratio test is

−2 log(LR)= 2
{
l
(
β̂1, β̂2, ρ̂, μ̂

)− l(β̃1, β̃2, μ̃
)}∼ χ2

1 approximately,

where the estimators are the maximum likelihood estimators (MLEs) over the in-
tervals on which the parameters are defined. The conditional likelihood ratio test
statistic can be derived in a similar fashion.

We applied the methodologies to the HIP and CNBS trials (Table 5, [18]). Our
main finding was that the correlation coefficient is zero, or even slightly negative.
This means that mammogram and physical exams appear to contribute indepen-
dently to the detection of breast cancer on screening. The two procedures are com-
plementary to each other. Our analysis shows that it is important to emphasize the
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contribution of physical exams in addition to mammography in breast cancer screen-
ing practice, especially for women under 50 years old.

10.3 Future Developments in Cancer Screening

We will provide some unsolved problems, possible solutions, or our future endeav-
ors in periodic cancer screening.

10.3.1 Evaluate Long Term Benefits of Periodic Cancer Screening

Cancer screening programs have existed for a long time, and NIH recommends an-
nual mammograms for women over 50. However, a specific knowledge gap is: how
to evaluate the long-term benefit due to screening? For example, if a woman in her
fifties wants to know the benefit of taking annual screening exams in her life time,
can policy makers or physicians offer her a quick answer, such as what is the prob-
ability of early detection if she would develop breast cancer in the future? And if
it is an early diagnosis, how early could it be? Or what could be her risk of over-
diagnosis? What is the possibility of no early diagnosis? What is the chance that she
might have just wasted her money and her time, and finally die of causes other than
breast cancer? These questions are related to the long-term benefit due to periodic
cancer screening, and there is almost no literature to fully address these issues so
far, hence there is a knowledge gap here.

Wu, Rosner, and Broemeling [25] provided a very limited solution to some of the
questions above. The lead-time model can provide answers to some questions, such
as what is the probability that a woman’s cancer will be detected early if she has
cancer later in her lifetime? How does changing the screening time interval affect
the lead-time distribution? For example, we found that if a woman begins annual
breast cancer screening when she is 50 years old and continues until she reaches
80, then there is a 23.4% chance that she will not benefit from early detection by
the program if she develops breast cancer during those 30 years. Her chance of
no benefit decreases to 9% if the exams are 6 months apart [25]; For male heavy
smokers, it is necessary to take the screening every two years to guarantee a 92.5%
chance of early detection [26]. However, there is a big limitation in Wu et al. [25],
where the human life time was treated as a fixed value, which means, for anyone
who takes the screening exam, it was assumed that cancer symptoms will always
appear before death. In other words, it ignores the possibility of over-diagnosis. In
reality, people can die of causes other than the targeted cancer.

We want to address these problems by classifying all initially asymptomatic par-
ticipants in a periodic cancer screening program into four mutually exclusive cat-
egories: Over-Diagnosis (or False-Benefit), True-Benefit, No-Benefit, and Unnec-
essary. Using breast cancer as an example, we will assume that an individual is
asymptomatic and without a history of breast cancer before she takes any screening
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exam. Based on the diagnosis status and whether she would have breast cancer be-
fore death or not, we will categorize people who take part in periodic screening into
4 mutually exclusive groups:

• Case 1 (Unnecessary): A woman who took part in screening exams, no breast
cancer was diagnosed, and finally she died of other causes.

• Case 2 (No-Benefit): A woman who took part in screening exams and who was a
clinical incidence case between two scheduled exams.

• Case 3 (True-Benefit): A woman whose breast cancer was diagnosed at a sched-
uled screening exam, and her clinical symptom would have appeared before her
death.

• Case 4 (Over-Diagnosis): A woman who was diagnosed with breast cancer at
a scheduled screening exam; however, her clinical symptom would NOT have
appeared before her death.

For each of the four situations, we will derive the probability and then evaluate the
long-term benefit due to screening by simulations. Therefore this is a prospective
study based on the existed data for evaluation purposes.

10.3.2 Sensitivity as a Function of Age, Time Spent in Sp and
Sojourn Time

Many studies have suggested that screening sensitivity increases with age at diagno-
sis, especially for breast cancer [5, 9, 10, 16, 20, 22, 23]. Walter and Day [20] also
found that screening sensitivity is negatively correlated with sojourn time. More in-
tuitively, when the tumor cell is just formed, the sensitivity is fairly small; while at
the late stage, that is, when the preclinical stage Sp comes to an end and the clinical
stage Sc will soon start, the sensitivity might be very close to one. Hence the sen-
sitivity not only depends on age at diagnosis and the sojourn time but also depends
on the time that the individual spent in the preclinical state.

How to combine this information into the sensitivity is very challenging. We
propose a new model to allow the sensitivity to vary with people’s age, sojourn
time, and time spent in the preclinical state. More specifically, let sensitivity

β(t, s|T )= 1

1+ exp(−b0 − b1 ∗ (t −m)− η ∗ g( sT ))
, (10.16)

where T = the sojourn time, a random variable; t = age at diagnosis, s = time
spent in Sp , s ∈ [0, T ], m = the average age at entry, and g( s

T
) is a generalized

linear model to associate the sensitivity β with s and T . The model is chosen such
that our previous model on β is nested inside. (b0, b1, η) are the parameters need
to be estimated. We will use the same parametric model for w(t) and q(t) as in
Sect. 10.2.1.
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If we keep in mind that 0 ≤ s ≤ T , g( s
T
)= 1 when s = T , and g( s

T
)= 0 when

s = 0, then a few candidates for the function g(·) could be:

g

(
s

T

)

= s

T
, g

(
s

T

)

=
(
s

T

)2

,

g

(
s

T

)

=
√
s

T
, g

(
s

T

)

=
(
s

T

)2

×
(

3− 2s

T

)

.

Under this new model, the probabilities Dk,t0 and Ik,t0 will be changed to

Dk,t0 =
k−2∑

i=0

∫ ti

ti−1

w(x)

∫ ∞

tk−1−x
q(t)

{
k−2∏

j=i

[
1− β(tj , tj − x|t)

]
}

× β(tk−1, tk−1 − x|t) dt dx

+
∫ tk−1

tk−2

w(x)

∫ ∞

tk−1−x
q(t)β(tk−1, tk−1 − x|t) dt dx for k = 2, . . . ,K,

(10.17)

D1,t0 =
∫ t0

0
w(x)

∫ ∞

t0−x
q(t)β(t0, t0 − x|t) dt dx, (10.18)

Ik,t0 =
k−1∑

i=0

∫ ti

ti−1

w(x)

∫ tk−x

tk−1−x
q(t)

{
k−1∏

j=i

[
1− β(tj , tj − x|t)

]
}

dt dx

+
∫ tk

tk−1

w(x)
[
1−Q(tk − x)

]
dx, for k = 1, . . . ,K. (10.19)

The double integral arises because the sensitivity is changing with the sojourn time
and the time spent in the preclinical stage, as well as with age. A big challenge might
be in the area of computing or MCMC simulation.

10.3.3 Optimal Scheduling for the Next Exam

So far, an important and unaddressed problem in cancer screening is: for an individ-
ual who has taken some screening exams in the past, and who is asymptomatic right
now, when to schedule his/her next screening exam? Using breast cancer screening
as an example: Should she take it after 3 months, 6 months, 9 months, or 12 months?
What would her best choice be? Physicians face this question almost every day: how
to provide informed and satisfying advice to a woman in such a situation?

Some research work has been done in optimal scheduling for screenings before.
Zelen [31] made a major contribution. He developed a utility function to find the
optimal scheduling for (n+ 1) exams. “This is equivalent to a fixed budget which
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allows only (n + 1) examinations.” (quote from Zelen [31]). The utility function
needs to assign different weights to cases diagnosed by the first exam, cases diag-
nosed at subsequent exams, and the interval cases. The optimal spacing of the exams
is to find a sequence of time (t0, t1, . . . , tn) that maximize the utility function. Zelen
found that for the optimal intervals to be equal, the sensitivity must be 1, which
cannot be achieved in reality. The other issue is the choice of the weights, which is
mostly subjective.

Lee and Zelen [8] developed the threshold method and the schedule sensitivity.
Their threshold method calculates the probability of being in Sp , and exams are
scheduled whenever this probability reaches the same value as that at age 50 (which
is 0.0018 in their simulation). They found that the screening interval gets smaller as
people get older. The schedule sensitivity is the ratio of the expected number of cases
diagnosed on scheduled exams to the expected number of the total cancer cases.
Hence schedule sensitivity will increase if more screenings would be scheduled
in a fixed time interval. Again, costs or weights were involved in their schedule
sensitivity. There are many other papers (Parmigiani [11, 12], Parmigiani et al. [12])
on optimal scheduling. They all use some kind of utility function that involves cost
or weight. Their major contributions are on the optimal scheduling for (n+1) exams
as a group but not focusing on the next coming exam.

We propose to use a totally different approach to handle the scheduling of screen-
ing. We will not use weight or cost, or utility function. We will not focus on (n+ 1)
exams but focus only on the next coming exam instead. More specifically, we pro-
pose to derive the conditional probability of incidence before the next exam, given
one’s screening history. Then the next screening interval shall be chosen, such that
this probability will be limited by some preselected small value, say 10%, 5%, or
less. Hence, with 90% or more chance, a woman will not become a clinically in-
cident case before her next scheduled exam. We will also derive the conditional
lead-time distribution, conditional on that one would be diagnosed with cancer at
the next screening exam. This could provide individuals (based on her screening
history) some predictive information regarding how early the diagnosis could be if
she would develop cancer and follow this schedule. The research may provide a
theoretical and practical basis to guide individuals or physicians to make informed
decision in screening exam. Specifically, the research may solve the problems of
when cancer screening should be performed for different individuals with different
risk factors in the near future.

10.3.4 Survival Benefit due to Periodic Screening

The effectiveness of a screening program directly depends on the availability of ef-
fective therapy and improved outcome if one receives treatment for the disease in
its earliest stages of development. When evaluating the effectiveness of a screen-
ing program, one should account for the fact that the age at diagnosis is earlier if
the disease is detected by screening rather than by the onset of clinical symptoms.
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The difference between the age of diagnosis with screening and the future onset
of clinical disease without screening is called the lead time. Even in the absence
of effective therapy, screening will appear to lengthen the time from diagnosis un-
til death. If one does not account for the lead time when analyzing the benefit of
screening, then one’s inference is subject to lead-time bias (Prorok [15]).

Much research has been done in this area [2, 6, 7, 15, 21]. Xu and Prorok [29]
and Xu et al. [30] made a major contribution in statistical modeling in this area.
For a screen-detected case, they used the total observed survival time data in HIP,
to estimate the distribution of the time survived post-lead-time by a deconvolution
method. They developed two models, one assumed that the post-lead-time survival
is independent of the lead time, and the other assumed that they are positively cor-
related.

However, their work has big limitations too. They assumed that the lead time was
distributed as the exponential (λ) random variable, which is not realistic. And their
method is difficult to be generalized if the exponential distribution was modified to
other distributions. In Wu et al. [25], the exact lead-time distribution was derived.
We hope to combine our new findings on the lead-time distribution and develop
a likelihood method to solve this problem. It is hoped that this will provide more
accurate measurement for the survival benefit due to screenings.
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Chapter 11
On Construction of the Smallest One-sided
Confidence Intervals and Its Application
in Identifying the Minimum Effective Dose

Weizhen Wang

11.1 Introduction

Suppose that a random vector X is observed from a distribution with a known cu-
mulative distribution function F(x; θ) with an unknown k × 1 parameter vector
θ = (θ, η), where θ is the parameter of interest, and η is the nuisance parameter
vector. The parameter space is

Θ = {θ = (θ, η) : η ∈D(θ) for each θ ∈ [A,B]},

where [A,B] is a given interval in R1 and is open if the corresponding ending is
infinity, andD(θ) is a subset ofRk−1 depending on θ . In this paper, we describe how
to search for the optimal one-sided 1− α confidence interval of the form [L(X),B]
for θ .

Example 1 (One-sided confidence interval for two independent proportions) In clin-
ical trial, it is often of interest to compare a treatment with a control. Let p1 and p0

be the proportions of showing improvement for the treatment and control groups, re-
spectively. Let X be the number of subjects in the treatment sample of size n show-
ing improvement, and define Y similarly for the control sample of size m. Then X
follows a binomial distribution, denoted by Bin(n,p1), and Y ∼ Bin(m,p0), and X
and Y are independent. In this case the observed random vector is θ = (X,Y ). The
researcher wishes to see p1 larger than p0 by a certain amount, say δ, a predeter-
mined nonnegative number, and has no (or a little) interest in the upper bound of the
difference. Therefore, a one-sided confidence interval for the parameter of interest
Δ = p1 − p0 of the form [L(X),1] is needed, and for example, p0 is a nuisance
parameter in this case. Following the general setting in the previous paragraph, the

W. Wang (�)
Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
e-mail: weizhen.wang@wright.edu

J. Feng et al. (eds.), Frontiers in Computational and Systems Biology,
Computational Biology 15,
DOI 10.1007/978-1-84996-196-7_11, © Springer-Verlag London Limited 2010

219

mailto:weizhen.wang@wright.edu
http://dx.doi.org/10.1007/978-1-84996-196-7_11


220 W. Wang

parameter space Θ = {(p1,p0) : 0≤ p1,p0 ≤ 1} can be rewritten as

Θ = {(Δ,p0) : p0 ∈D(Δ) for each Δ ∈ [−1,1]} (11.1)

with [A,B] = [−1,1] and

D(Δ)=
{ [0,1−Δ] if Δ ∈ [0,1],
[−Δ,1] if Δ ∈ [−1,0).

(11.2)

We will discuss the construction of a smallest interval [LS(X),1] in Sect. 11.3.

Example 2 (Identifying the minimum effective dose with binary data) Suppose that
we have a sequence of independent binomial random variables Xi ∼ Bin(ni,pi) for
i = 1, . . . , k and Y ∼ Bin(m,p0). The goal here is to identify the smallest positive
integer i0 such that pi > p0 + δ for any i ∈ [i0, k]. Each pi is the proportion of
patients who show improvement using a drug at dose level i. A large i associates
with a large dose level, and p0 is the proportion for the control group. Then i0 is
called the minimum effective dose (MED). Finding the MED is important since
high doses often turn out to have undesirable side effects. Typically, the MED is to
be found when the observation follows a normal distribution with the comparison
in proportions replaced by that in means. Thus, the assumption of normality is an
issue to be addressed. See, for example, Tamhane, Hochberg, and Dunnett [10],
Bretz, Pinheiro, and Branson [4], and Wang and Peng [16] for results under this
setting. Now we search for the MED with a binary response without such concerns
on the distribution, see Tamhane and Dunnett [9]. A sequence of hypotheses can be
formulated to detect the MED as follows:

H0i :min
j≥i {pj − p0} ≤ δ vs. HAi :min

j≥i {pj − p0}> δ for i = 1, . . . , k, (11.3)

which is similar to the one in Hsu and Berger [6, p. 471]. It is easy to see that the
MED equals the smallest i for which H0i is not true. It is also well known that there
is a one-to-one relationship between test and confidence interval. Therefore, we will
use the smallest interval derived in Sect. 11.4 for testing each H0i and propose a
modification to conduct simultaneous tests for (11.3) with the experimentwise error
rate controlled at level α in Sect. 11.4.

Typically, there are two requirements for a confidence interval: the accuracy and
precision. For the accuracy, we employ 1 − α confidence interval C(X), i.e., the
coverage probability of interval C(X) is no less than 1−α for all parameter config-
urations as given below,

CoverC(θ, η)= Pθ(θ ∈ C(X))≥ 1− α ∀θ ∈Θ. (11.4)

For the precision, we employ the set inclusion criterion by Wang [11], i.e., for
two 1−α confidence intervals C1(X) and C2(X), C1(X) is said to be no worse than
C2(X) if

C1(x) is a subset of C2(x) for any x ∈RX, (11.5)
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where RX is the range of X. This is easy to use because no expectation computation
is needed to check the superiority of C1 over C2 as in two commonly used criteria:
the minimum expected length and the minimum false coverage probability. Also, it
is clear in interpretation since C2 is discarded because it is always larger than C1.

In consequence, we should search for the smallest 1 − α confidence interval
which is a subset of any other 1− α confidence interval on all values x of X, per-
haps in a certain class of intervals. In other words, if the intersection of all 1− α
confidence intervals in a class still belongs to that class, then it is the smallest inter-
val, and it is the best in the strongest sense.

The interval class from which we search for the best interval cannot be too small
or too large. If it is too small, the “best” interval in that class is useless; but if it is too
large, then the “best” interval simply does not exist. To characterize the appropriate
class, suppose that an ordering, denoted by �, is defined on RX , i.e.,

(a) For any two vectors x1 and x2 in RX , one and only one of the following rela-
tionships is true:

x1 ≺ x2 or x1 ≡ x2 or x2 ≺ x1.

(b) If three vectors x1, x2, and x3 in RX satisfy

x1 � (i.e.,≺ or ≡)x2 and x2 � x3,

then

x1 � x3.

(c) For any vector x in RX , the sets Ux = {y ∈ RX : y � x} and Vx = {y ∈ RX :
x ≡ y} are σ -measurable.

Example 3 An ordering on RX can be easily generated by a given σ -measurable
function J (X), including continuous functions as follows. For two vectors x1 and
x2, define

x1 ≺ (≡,")x2 if and only if J (x1) < (=,>)J (x2), (11.6)

respectively, and denote this ordering by �J .
We will search for the smallest interval in an interval class defined below.

Definition 11.1 For a given ordering � on RX , define a class of one-sided 1− α
confidence intervals for θ :

Bl =
{[L(X),B] : L(x1)= L(x2), if x1 ≡ x2; L(x1)≤ L(x2), if x1 � x2

}
.

Definition 11.2 A confidence interval [LS(X),B] in Bl is the smallest if for any
[L(X),B] in Bl , L(x)≤ LS(x) for all x ∈RX .

We call the interval above the smallest interval in Bl or the smallest interval under
ordering �.
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Remark 1 The idea for the above two definitions is very simple. To illustrate it using
Example 1, suppose n = 10 = m. For two possible observation values (X,Y ) =
(10,0) and (X,Y )= (0,10), the parameter value ofΔ= p1−p0 should be larger if
the former is observed. One reason for this is that the maximal likelihood estimator
for Δ = p1 − p0 at (10, 0) equals 1, larger than that at (0, 10), which is equal
to 0. Therefore, the confidence limit L(X,Y ) at (10, 0) should be larger. Once the
ordering on all values of (X,Y ) is available, to determine the confidence limit LS of
the smallest interval at a given point (x, y), one holds all other LS(x′, y′) still and
simply raises LS(x, y) until the minimum coverage probability of [LS(X,Y ),1]
decreases to 1 − α. This justifies the existence of the smallest confidence interval
under the specified ordering.

There have been several efforts to construct the smallest one-sided 1 − α con-
fidence intervals. When the distribution of the one-dimensional observed random
variable X only involves a single parameter θ , Bol’shev [2] first constructed the so-
called most accurate confidence interval, which is equivalent to the smallest interval,
for θ under the assumption that the distribution of X is stochastically nondecreasing
in θ . He employed the natural ordering by the identity function J (x) = x, which
is intuitively correct for a nondecreasing distribution family in θ . Wang [12] gen-
eralized Bol’shev’s result under any given ordering, and his result did not need the
assumption of nondecreasing distribution family in θ . When there exist nuisance pa-
rameters, Bol’shev and Loginov [3] offered an unsuccessful solution because they
did not realize the importance of the ordering on the confidence limits. Wang [13]
proposed the smallest interval for the difference of two independent proportions in
the setting of Example 1, and Wang [14] obtained the general construction of the
smallest interval in the presence of nuisance parameters.

The rest of the paper is organized as follows. In Sect. 11.2, we introduce a general
construction of the smallest interval in Bl proposed in Wang [14]. In Sect. 11.3,
one reasonable ordering on the sample space in Example 1, RX = {(x, y) : 0 ≤
x ≤ n,0 ≤ y ≤m}, is introduced following Wang [13], and the smallest interval is
derived under this ordering. In Sect. 11.4, we describe how to identify the MED in
Example 2 as given in Wang [13].

11.2 The Smallest One-sided Confidence Interval

The following theorem provides the existence and the construction of the smallest
interval in Bl .

Theorem 11.1 (Wang [14, Theorem 1]) Suppose that a vector X is observed from
a distribution with known cdf F(x; θ) and unknown parameter vector θ . For α ∈
[0,1], an ordering � on RX , and any x ∈RX , let

fx(θ)= inf
η∈D(θ)

[
1− P(θ,η)(y ∈RX : x � y)

]
, (11.7)
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and let

Gx =
{
θ ∈ [A,B] : fx(θ ′)≥ 1− α ∀θ ′ < θ}. (11.8)

Define

LS(x)=
{

supGx if Gx �= ∅,
A otherwise.

(11.9)

Then (1) [LS(X),B] ∈ Bl ; (2) [LS(X),B] is the smallest in Bl .

Equations (11.7), (11.8), and (11.9) carry out the idea described in the second
part of Remark 1.

Remark 2 The assumption on the underlying distribution for Theorem 11.1 being
valid is mild. One only needs the set {y ∈ RX : x � y} to be σ -measurable so that
fx(θ) in (11.7) is well defined. This is implied by condition (c) of the ordering.
However, a reasonable ordering may not be easy to obtain if one does not know the
underlying distribution and/or the parameter of interest well. When RX is finite, the
ordering seems relatively easy to obtain. But when RX is infinite, it is challenging
to derive a reasonable ordering.

Remark 3 Theorem 11.1 can be used as a polishing tool to improve any given inter-
val as follows. For any 1−α confidence interval for [L(X),B], let �L be the order-
ing on RX by a function L as in (11.6). Then the smallest 1− α confidence interval
[LS(X),B] exists under this ordering by Theorem 11.1. Therefore, L(x) ≤ LS(x)
for any x. Also, a complete class of one-sided 1− α intervals, under the set inclu-
sion criterion, can be obtained by collecting all [LS(X),B] for any 1− α interval
[L(X),B].

The smallest interval is constructed for any given ordering � on RX as in Theo-
rem 11.1. Can this interval be further improved? Yes, if there exists an ordering �∗
finer than �.

Definition 11.3 For two orderings � and �∗ on RX , �∗ is finer than � if {y ∈RX :
y ≺ x} is a subset of {y ∈ RX : y ≺∗ x} for any x in RX . An ordering � is finest if
Vx = {y ∈RX : y ≡ x} contains only one element for any x ∈RX .

Theorem 11.2 Let [LS(X),B] and [L∗S(X),B] be the smallest 1− α intervals for
θ with respect to orderings � and �∗, respectively. If �∗ is finer than �, then

LS(x)≤ L∗S(x) (11.10)

for any x ∈RX .

Example 4 Consider two orderings (both unreasonable) on RX = {0,1,2,3}, where
X ∼ Bin(3,p):

�1: 0≡ 1≡ 3≺ 2
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Table 11.1 Three smallest intervals under three orderings: �1, �2 and �
x 0 1 2 3

LS,1(x) 0 0 0.13914 0

LS,2(x) 0 0.01695 0.13914 0.13535

LS,≤(x) 0 0.01695 0.13535 0.36840

and

�2: 0≺ 1≺ 3≺ 2

and the natural ordering of ≤. Following Theorem 11.1, the 95% smallest intervals
under these three orderings are obtained and listed in Table 11.1.

The third one is the famous one-sided 95% Clopper and Pearson interval. Since
�2 is finer than �1, as implied in Theorem 11.2, [LS,1(X),1] is uniformly smaller
than [LS,2(X),1]. However, the second and third orderings are both finest, so nei-
ther one of the two corresponding smallest intervals uniformly dominate the other.
A more interesting fact is that the same conclusion holds for the two intervals if the
expected length of these intervals are computed for comparison on the precision.

11.3 A Smallest Interval for the Difference of Two Independent
Proportions

In this section, we will derive a smallest interval for Δ= p1 − p0 in the setting of
Example 1. Let pB(x;n,p) denote the pmf of Bin(n,p). Recall RX = {x = (x, y) :
x ∈ [0, n], y ∈ [0,m]}. Which ordering on RX provides an interval that cannot be
uniformly improved? Roughly speaking, first, by Theorem 11.1, we prefer an order-
ing on RX that yields a large smallest solution of

fx(Δ)= 1− α for all x’s, (11.11)

where

fx(Δ)= min
p0∈D(Δ)

∑

(x′,y′)≺x
pB(x

′;n,p0 +Δ)pB(y′;m,p0); (11.12)

secondly, due to Theorem 11.2, each set Vx would contain only one point; lastly,
because of the specialty of binomial distributions, the ordering � should satisfy:
(1) (x1, y)� (x2, y) (so L(x1, y)≤ L(x2, y)) for x1 ≤ x2; and (2) (x, y2)� (x, y1)

(so L(x, y2)≤ L(x, y1)) for y1 ≤ y2. Let BB denote the class of all one-sided 1−α
intervals for Δ satisfying (1) and (2). We will search for optimal intervals, perhaps
admissible ones, from BB in this section. Let �D be the desirable ordering on RX .
It is clear that (n,0) must be the largest among all (x, y)’s under �D . The second
largest (x, y) should be either (n − 1,0) or (n,1), or both (if n = m). We, by in-
duction, construct an ordering �D that satisfies (1) and (2) and starts at point (n,0)
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as follows. Step 1: Let C1 = {(n,0)} be the subset of RX that contains the largest
value in RX . Step 2: Let m0 = 0 and m1 = 1. Suppose, by induction, that {Cj }kj=1
are available for some positive integer k, where

Cj =
{
(xi, yi)

}mj
i=mj−1+1

for some nonnegative integers m0,m1, . . . ,mk satisfying: (I) Cj = {(x.y) ∈ RX :
(x, y) ≡D (xmj , ymj )}, and (II) (xmj , ymj ) ≺D (xmj−1, ymj−1) for each j ≤ k. So
Cj contains the j th largest value in RX under �D , L(x, y) is a constant on Cj ,
and L(xmj , ymj ) is nonincreasing in j . Now we determine Ck+1, i.e., the set of

the (k + 1)th largest value in RX under �D . Let Sk =⋃k
j=1Cj , and let Nk be the

“neighbor” set of Sk , i.e.,

Nk =
{
(x, y) ∈ S : (x, y) �∈ Sk; (x + 1, y) ∈ Sk or (x, y − 1) ∈ Sk

}
.

Due to (1) and (2), some points in Nk are disqualified to be in Ck+1. To exclude
these points, let NCk be the “candidate” set within Nk satisfying

NCk =
{
(x, y) ∈Nk : (x + 1, y) �∈Nk and (x, y − 1) �∈Nk

}
. (11.13)

Therefore, Ck+1 must be a subset of NCk , and a point selected from NCk auto-
matically guarantees (1) and (2). For each point x0 = (x0, y0) in NCk , consider

fx0
(Δ)= min

p0∈D(Δ)
∑

z∈({z0}∪Sk)c
pB(x;n,p0 +Δ)pB(y;m,p0).

Let

Ex0
= {Δ ∈ [−1,1] : fx0

(Δ′)≥ 1− α ∀Δ′ <Δ} (11.14)

and

Lo(x0)=
{

sup Ex0
if Ex0

�= ∅,
−1 otherwise.

(11.15)

Define

Ck+1 =
{
x ∈NCk : Lo(x)= max

x0∈NCk
Lo(x0)

}
and (11.16)

mk+1 = mk + the number of elements in Ck+1. (11.17)

Note that Ck+1 may contain more than one point especially when n=m. By in-
duction, an ordering �D characterized by {Cj = {(xi, yi)}mji=mj−1+1}k0

j=1 with some
positive integer k0 is constructed. Therefore, the smallest one-sided 1−α confidence
interval under this ordering, denoted by [LDS (X),1], is constructed for estimatingΔ
following Theorem 11.1.

Remark 4 Although the description of the construction on the ordering �D is fairly
long, the idea behind the construction is very simple. Since RX is finite, we easily
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identify the largest value in RX , (n,0), by a common sense, and this is the starting
point of the entire construction. Given that the largest k values on RX are identi-
fied, which is the next largest value (the (k + 1)th largest) on RX? There must be
some points next to the already constructed ones, also yielding the largest possible
confidence limit. These two are done by (11.13) and (11.16). Furthermore, If Cj
always contains a single point for any j , then, for x ∈ Cj , LDS (x) equals the largest
of Lo(x0)’s in the previous step, and we have the following result.

Proposition 11.1 (Wang [13, Proposition 3]) For ordering �D and interval
[LDS (X),1] constructed in Steps 1 and 2, if each Cj contains only one sample point
(i.e., mj =mj−1 + 1 for all j ’s), then [LDS (X),1] is admissible in BB . i.e., for an
interval [L(X),1] ∈ BB , if LS(x) ≤ L(x) for any x ∈ RX , then LS(x) = L(x) for
any x ∈RX .

Remark 5 Conditions (1) and (2) were first proposed in Barnard [1] and called the
“C” condition. He constructed an optimal rejection region for the hypothesis testing
problem

H0(0) :Δ≤ 0 vs. HA(0) :Δ> 0,

using a special ordering on RX . His ordering satisfies conditions (1) and (2) and is
generated also by induction starting at C1 = (n,0), and is similar to ours, except
that he focused on Δ= 0, but we deal with all Δ ∈ [−1,1]. Pointed out by Martin
Andres and Silva Mato [8], Barnard’s test is the (overall) most powerful existing test
for comparing two independent proportions. The drawback of this test is the com-
plexity on the determination on the ordering. Ours seems worse. When n and m are
large, the determination of ordering �D requires extensive numerical computation
in (11.16).

Example 5 Suppose n= 4 and m= 1. Now construct the smallest 95% confidence
interval with ordering specified by {Cj }k0

j=1. First, C1 = {(4,0)} following Step 1,
and LS(4,0)=−0.095 by solving

f(4,0)(Δ)= min{p0∈D(Δ)}
(
1− pX(4;4,Δ+ p0)pY (0;1,p0)

)= 0.95

because f(4,0) now is nonincreasing in Δ. In Step 2, N1, the neighbor set of
S1(= C1), is equal to {(3,0), (4,1)}, and NC1 =N1. Following (11.15),

Lo(3,0)=−0.345, Lo(4,1)=−0.527.

Thus, C2 = {(3,0)} by (11.16). In Step 3, three sets S2, N2 and NC2 are needed,
and they are given in Table 11.2. Note that here NC2 �=N2.

Again, for each point in NC2, we have Lo(2,0)=−0.561, Lo(4,1)=−0.527,
following (11.15). Then C3 = {(4,1)} by (11.16). The rest of the interval construc-
tion is given in Table 11.3. Following Remark 4, since each Cj contains a single
point, LDS (x, y) on Cj is equal to the largest Lo(x0) in the previous step, and is
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Table 11.2 Three sets S2, N2, NC2 needed in Step 3 of the interval construction

y x

0 1 2 3 4

1 – – – N2 N2, NC2

0 – – N2, NC2 S2 S2

Table 11.3 The details of the construction of partition {Cj }k0
j=1 when n= 4 and m= 1

j Cj Nj NCj LDS (x, y)

Lo(x0)

1 (4,0) (3,0), (4,1) (3,0), (4,1) −0.095

−0.345, −0.527

2 (3,0) (2,0), (3,1), (4,1) (2,0), (4,1) −0.345

−0.561, −0.527

3 (4,1) (2,0), (3,1) (2,0), (3,1) −0.527

−0.578, −0.752

4 (2,0) (1,0), (2,1), (3,1) (1,0), (3,1) −0.578

−0.757, −0.752

5 (3,1) (1,0), (2,1) (1,0), (2,1) −0.752

−0.770, −0.902

6 (1,0) (0,0), (1,1), (2,1) (0,0), (2,1) −0.770

−0.950, −0.902

7 (2,1) (0,0), (1,1) (0,0), (1,1) −0.902

−0.950, −0.987

8 (0,0) (0,1), (1,1) (1,1) −0.950

−0.987

9 (1,1) (0,1) (0,1) −0.987

−1

10 (0,1) −1

reported in the last column of Table 11.3, and the construction is complete at the
10th (= k0) step. This interval is admissible in BB due to Proposition 11.1.

11.4 Identifying the Minimum Effective Dose

In this section, we discuss how to identify the MED in the setting of Example 2.
Recall that we observe a sequence of independent binomial random variables Xi ∼
Bin(ni,pi) for i = 1, . . . , k and Y ∼ Bin(m,p0), and we are interested in a sequence
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of hypotheses given in (11.3). The goal is to identify the smallest positive integer
i0 such that H0i0 is not true. This can be done by conducting simultaneous tests
for (11.3) with the experimentwise error rate controlled at α.

Note that there is a special structure on C = {H0i : i = 1, . . . , k}: H0i is decreas-
ing in i. Thus C is closed under the operation of intersection, i.e., the intersection
of any two hypotheses in C still belongs to C . Suppose that a level α nondecreasing
(in i) rejection region Ri for H0i is constructed. Then, for a multiple test problem
for testing all null hypotheses in C , we define a multiple test procedure: assert HAi
if Ri occurs. This procedure automatically controls the experimentwise error rates
at level α following the closed test procedure by Marcus, Peritz, and Gabriel [7].

Now we can apply the interval constructed in Sect. 11.3 to obtain a level α test for
H0i with a nondecreasing rejection region in i. Let LDS,i(Xi, Y ) be the smallest one-
sided 1−α confidence interval for pi −p0 obtained in Sect. 11.3 before Remark 4.
Define a rejection region for H0i

Ri =
{
(x1, . . . , xk, y) : min

i≤j≤k
{
LDS,j (xj , y)

}
> δ

}
. (11.18)

It is clear that Ri is nondecreasing in i.

Theorem 11.3 (Wang [13, Theorem 2]) Rejection region Ri is nondecreasing in i
and is of level α for H0i . Therefore, the multiple test procedure, which asserts not
H0i (i.e., asserts HAi ) if Ri occurs for any H0i ∈ C , controls the experimentwise
error rate at level α.

Remark 6 The multiple test procedure with rejection regions {Ri}ki=1 in (11.18) is
equivalent to the following step-down test procedure.

Step 1. If Rk does not occur, conclude that the MED does not exist and stop; other-
wise go to the next step.

Step 2. If Rk−1 does not occur, conclude that MED = k and stop; otherwise go to
the next step.

...

Step k. If R1 does not occur, conclude that MED= 2 and stop; otherwise conclude
that MED= 1 and stop.

11.5 Discussion

In this paper, we discuss how to derive the smallest confidence interval under any
ordering on the sample points for a parameter of interest in the presence of nuisance
parameter(s). The interval construction is based on a direct analysis on the coverage
probability and only needs mild assumptions on the underlying distribution besides
an ordering on the sample points. A generalization to the two-sided confidence in-
terval construction can also be found in Wang [15]. This indicates that the interval
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construction based on the coverage probability has potentials to be a general method
besides the five methods discussed in Casella and Berger [5, Chap. 9] for construct-
ing confidence intervals. For one-sided intervals, the proposed construction is an
automatic algorithm, provided that an ordering is given.

The set inclusion criterion is employed for searching for good intervals because
it has a clear interpretation. Under this criterion, the smallest interval is the best in
the strongest sense, provided its existence. It is well known that the existence of
the best interval depends on the class of intervals from which the best is searched.
We successfully characterize such classes by (a) considering one-sided 1− α con-
fidence intervals and (b) requiring an ordering on the random confidence limits.
Bol’shev and Loginov [3] did not construct the interval under (b). Another general
application of the proposed method is to improve any given one-sided 1− α confi-
dence interval as explained in Remark 3. As a special application, we discuss how to
construct optimal one-sided confidence interval for the difference of two dependent
proportions. An ordering similar to Barnard’s [1] is derived, however, a computa-
tion issue remains. One can also use the proposed method to construct confidence
interval for the difference of two dependent proportions. See more details in Wang
[14]. The future research question is how to derive an optimal ordering for a given
parameter of interest, especially when RX is continuous.
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Chapter 12
Group Variable Selection Methods
and Their Applications in Analysis of Genomic
Data

Jun Xie and Lingmin Zeng

12.1 Introduction

Regression is a simple but the most useful statistical method in data analysis. The
goal of regression analysis is to discover the relationship between a response y and a
set of predictors x1, x2, . . . , xp . When fitting a regression model, besides prediction
accuracy, parsimony is another important criterion of goodness. Simpler models are
preferred by researchers for easier interpretation of the relationship between x and y.
Moreover, discarding irrelevant predictors often improves prediction accuracy [10].
Variable selection methods have long been used in regression analysis, for exam-
ple, forward selection, backward elimination, best subset regression. The number of
variables p in the traditional setting is typically 10 or at most a few dozens. Modern
scientific technology, led by the microarray, has produced data dramatically above
the conventional scale. We have p = 1,000 to 10,000 in gene expression microarray
data, and p up to 500,000 in single nucleotide polymorphism (SNP) data.

To make things more complicated, the large number of variables in the biological
data are dependent. For example, it is well known that for genes that share a com-
mon biological function or participate in the same metabolic pathway, the pairwise
correlations among them can be very high [11]. Traditional variable selection meth-
ods that select variables one by one may miss important group effects on pathways.
Consequently, when traditional variable selection methods are applied in multiple
data sets from a common biological system, the selected variables from the multiple
studies may show little overlap. To overcome the challenges, we have developed a
series of group variable selection methods, which construct highly correlated genes
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into a group and select the whole group once one gene among them is in the model.
In this chapter, we introduce the idea of group variable selection and illustrate its
utility by applying the methods to genomic data analysis.

12.2 Background

12.2.1 Existing Variable Selection Methods

We consider the linear regression model

y= x1β1 + x2β2 + · · · + xpβp + ε,
where the response y is predicted by p predictors x1, . . . ,xp . Without loss of gener-
ality, the response and the predictors are all centered so that there is no intercept in
the model. Assume that n observations and the error term ε = (ε1, . . . , εn) are i.i.d.
with mean 0 and variance σ 2. The regression model is often expressed in a matrix
format

y=Xβ + ε,
where y ∈Rn, X ∈Rn×p , and β ∈Rp .

A traditional variable selection method is known as the best subset selection. The
procedure first determines a criterion of model goodness, for example, residual sum
of squares, adjusted R2, Mallow’s Cp , the Akaike information criterion (AIC), or
the Bayesian information criterion (BIC). Then all possible subsets of variables are
evaluated by the criterion, and the subset that optimizes the criterion is selected.
However, when the number of variables p is large, the best subset selection is com-
putationally intensive. Huo and Ni [3] prove that the best subset selection is an
NP-hard (nondeterministic polynomial-time hard) problem. That is, the best subset
solution cannot be obtained in computation times as a polynomial of the number of
variables. Alternatively, sequential approaches can be used, including forward se-
lection, backward elimination, and stepwise regression. The sequential approaches
are computationally less demanding than the best subset selection. However, their
heuristic searches of variables cannot guarantee an optimal solution to the regression
model.

More recently, penalized least squares methods have been used for variable se-
lection. The most popular one is Lasso (Least absolute shrinkage and selection op-
erator) proposed by Tibshirani [14]. The Lasso estimators are defined by

β̂Lasso = argminβ‖y−Xβ‖2 + λ
p∑

j=1

|βj |,

where λ is a nonnegative regularization parameter. The second term of the sum of
the absolute regression coefficients is usually called L1 penalty. Equivalently, Lasso
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is a constrained ordinary least squares that minimizes

‖y−Xβ‖2 subject to
p∑

j=1

|βj | ≤ s,

where s is a corresponding regularization parameter. Due to the nature of the L1

penalty, Lasso shrinks the regression coefficients toward 0 and produces some co-
efficients that are exactly 0 and hence implements variable selection. Many re-
searchers have studied properties of Lasso [5, 6, 20, 21]. Under certain conditions,
Lasso is shown to select the right set of variables with a probability going to 1.
However, Lasso’s conditions are violated for a group of highly correlated variables.
In this situation, Lasso tends to select only one variable from the group and does not
care which one is selected.

Efron et al. [1] propose a new variable selection algorithm, Least Angle Regres-
sion (LARS), which is a less greedy version of traditional forward selection meth-
ods. A special feature of LARS is that a simple modification of the LARS algorithm
calculates all possible Lasso estimators but uses computer times an order of mag-
nitude less than Lasso. The efficiency of the LARS algorithm makes it an attractive
variable selection method.

Besides Lasso, other penalized least squares approaches have been proposed,
using penalty functions more general than the L1 penalty. Fan and Li [2] define a
special penalty function that is singular at the origin to produce sparse coefficient es-
timators, satisfies certain conditions to produce continuous models, and is bounded
by a constant to produce nearly unbiased estimators for large coefficients. Their
penalty function is called SCAD. Fan and Li [2] show that, with a proper choice of
the regularization parameter, SCAD possesses oracle properties, which are referred
to that the probability of selecting the right set of variables (with nonzero coeffi-
cients) converges to 1 and that the estimators of the nonzero coefficients are asymp-
totically normal with the same means and covariances as if the zero coefficients were
known in advance. Kim et al. [4] also apply SCAD in certain high-dimensional data.

The traditional variable selection methods and the later additions Lasso, LARS,
and SCAD do not select variable groups. In fact, they all ignore the correlation be-
tween the variables. Elastic net proposed by Zou and Hastie [23] is the first variable
selection method that works for groups of predictors. Elastic net is also a member
of penalized least squares. The penalty function is a linear combination of L1 and
L2 penalties. By introducing a L2 penalty term, elastic net encourages strongly cor-
related variables to be in or out of the model at the same time. This phenomenon
is termed “grouping effect.” In theory, a strictly convex penalty function provides
a sufficient condition for the grouping effect. The L2 penalty guarantees strict con-
vexity. On the other hand, elastic net does not reveal the underlying group structure
in its solution and does not possess the properties introduced by Fan and Li [2] in
SCAD.

When people have prior knowledge on variable groups, group Lasso proposed
by Yuan and Lin [18] is designed to select predefined groups of predictors. Suppose



234 J. Xie and L. Zeng

that p predictors are divided into J groups with sizes k1, . . . , kJ . The group Lasso
estimators are obtained by minimizing

∥
∥
∥
∥
∥

y−
J∑

j=1

Xj βj

∥
∥
∥
∥
∥

2

+ λ
J∑

j=1

‖βj‖Kj ,

where λ is the regularization parameter, and ‖z‖K = (z′Kz)1/2 with a symmetric
k × k positive definite matrix K . The positive definite matrices K1, . . . ,KJ for the
J groups can be chosen as identity matrices of sizes k1, . . . , kJ , respectively. Yuan
and Lin [18] also propose group LARS as an extension of LARS. Group Lasso and
group LARS have been used in multifactor ANOVA models, in which each factor
may have several levels and can be expressed through a group of dummy variables.

In addition to the frequentist methods, Bayesian interpretations of the penal-
ized regression Ridge and Lasso have been proposed. It can be shown that the
Bayesian estimators of the coefficients β1, . . . , βp are equivalent to Ridge when
we assume normal prior distributions for β’s, and are equivalent to Lasso when
we assume Laplace prior distributions [8, 17]. Bayesian approach offers an alterna-
tive framework of variable selection. Theoretically, Bayesian methods can deal with
high-dimensional inter-correlated variables through generalized prior distributions.
In practice, Bayesian methods will encounter the same difficulty as its frequentist
counterpart.

12.2.2 Large Scale Genomic Data

High-throughput gene expression microarray techniques have now been routinely
used in biological applications. An array measures expression levels of thousands of
genes simultaneously. Differences between experiment conditions (treatments) are
implied by expression variations of a large number of genes. In medical research,
microarray is used to detect associations between gene expression profiles and clin-
ical outcomes, for example, cancer types or stages. Consider a clinical outcome as
the response variable y and all genes measured in the microarray as the predictor
variables x1, . . . , xp . Then the variables are of high dimension, with complicated
dependent structures. Identifying a subset of significant genes that affect the clinical
outcome will be a good application of our proposed group selection methods.

In one of our previous projects, we have developed a suite of statistical methods
[19] for inferring cis-regulatory modules, which are groups of transcription factors
binding in the promoter regions to regulate gene expression. Our approach is an in-
tegrative analysis that combines information from multiple types of biological data,
including genomic DNA sequences, genome-wide location analysis (ChIP-chip ex-
periments), and gene expression microarray. We first use a hidden Markov model
by Wu and Xie [16] to predict a cluster of transcription factor binding sites in DNA
sequences. The predictions are refined by regression analysis on gene expression
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microarray data and/or ChIP-chip binding experiments. We have constructed a re-
gression model that describes a gene of interest as a function of its TFs. The response
variable is the gene expression level. The predictor variables are the TF binding lev-
els approximated by the TF gene expression values. We view a combinatorial effect
of multiple TFs on the gene through multiple regression analysis. However, the dif-
ficulty is to select an appropriate set of TFs which has significant effects on the
gene.

Due to complicated dependence among TFs, the problem of selecting TF co-
variates for a gene posts a challenge to the standard variable selection procedures.
Consider a regression example of gene ACE2 versus a set of TFs consisting of Fkh1,
Fkh2, Mcm1, Ndd1, Swi4, and Swi6 using Spellman et al.’s [13] yeast cell cycle mi-
croarray data. It is known that ACE2 was bound by Fkh1, Fkh2, and the complex
Mcm1/Fkh2/Ndd1 [12]. Hence, a good variable selection method is to select the cor-
responding four TFs as much as possible. The expression levels of FKH1 and FKH2
are highly correlated with a correlation coefficient of 0.63. Using forward selection,
Lasso, and elastic net, Fkh2 always enters the model first. However, the standardized
regression coefficient of Fkh2 is 0.677 and that of Fkh1 is −0.045 when both Fkh2
and Fkh1 are in the model. The available methods fail to select both Fkh2 and Fkh1
as a group of covariates. In fact, variable selection in regression analysis tends to
keep only one variable in the model, whenever there is a group of highly correlated
covariates. The group variable selection methods attempt to solve this problem.

Another application of the proposed group variable selection methods is SNP
data analysis. SNPs are the most common genetic variations in the human genome
and occur once in several hundred base pairs. An SNP is a position at which two
alternative bases occur at appreciable frequency (>1%) in the human population.
The NCBI dbSNP database currently stores 5 million human SNPs identified by
comparing the DNA of different individuals, making it possible to use them for
genome-wide SNP genotyping. SNPs can serve as genetic markers for identifying
disease genes by linkage studies in families, linkage disequilibrium in isolated pop-
ulations, association analysis of patients and controls, and loss-of-heterozygosity
studies in tumors [15]. Oligonucleotide SNP microarrays have been developed for
high-throughput genotyping of human SNPs with marker number ranging from
10,000 (Mapping 10-K array) to 500,000 (Mapping 500-K array set). With the tech-
nique advances, genome-wide association studies become popular to detect specific
DNA variants that contribute to human phenotypes and particularly human diseases.
In SNP data analysis, we assume a phenotype of interest as the response variable y,
and a large number of SNPs as the predictor variables. The proposed group vari-
able selection methods will be used to identify genetic variants that associate with
variation in the phenotype.

12.3 gLars and gRidge Algorithms

Consider the linear regression model

y=Xβ + ε,
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where y = (y1, y2, . . . , yn)
T is the response variable, X = (x1,x2, . . . ,xp) is the

predictor matrix, and ε is a vector of independent and identically distributed random
errors with mean 0 and variance σ 2. There are n observations and p predictors. We
center the response variable and standardize the column vectors of the predictor
matrix. Hence, there is no intercept in our model:

n∑

i=1

yi = 0,
n∑

i=1

xij = 0,
n∑

i=1

x2
ij = 1 for j = 1,2, . . . , p.

The LARS algorithm proposed by Efron et al. [1] is a less greedy forward model
selection procedure. At the beginning of LARS, a predictor enters the model if its
absolute correlation with the response is the largest one among all the predictors.
The coefficient of this predictor grows in its ordinary least squares direction until an-
other predictor has the same correlation with the current residual (i.e., equal-angle).
Next, both coefficients of the two selected predictors begin to move along their or-
dinary least squares directions until a third predictor has the same correlation with
the current residual as the first two. The whole process continues until all predictors
enter the model. In each step, one variable adds into the model, and the solution
paths, which are the coefficient estimators as functions of the tuning parameter (de-
fined later in Formula (12.1)), are extended in a piecewise linear fashion. After all
variables enter the model, the whole LARS solution paths complete.

For data with dependent structures, we propose gLars and gRidge algorithms
that construct groups simultaneously along the variable selection process. We first
give a grouping definition. Predictors form a group if they satisfy both of the two
criterions:

• They are highly correlated with the response variable (or current residual).
• They are highly correlated with each other.

The correlation thresholds for the two criterions will be determined from the data.
For instance, the threshold of the first criterion is suggested to be the 75th percentile
of all correlations (in absolute value) between the current residual and unselected
predictors. The correlation threshold (absolute value) for the second criterion is ei-
ther the 75th percentile of all pairwise correlations among the predictors or chosen
from a set of grids, for example, 0.9, 0.8, 0.7, 0.6. An important difference of the
proposed method from the standard forward selection procedures is that our vari-
able selection criterion has two components and hence is defined by a region in the
two-dimensional space, (t1, t2) in Step 3 in the following algorithm. In addition, the
first requirement of selecting a variable highly correlated with the response variable
is not affected by collinearity among predictors.

In the gLars algorithm, we start as LARS to select a predictor which has the
largest correlation with the response. We call this predictor a “leader element.” We
then build a group based on this leader element and the current residual according
to the two grouping criterions. Note that both criterions have to be satisfied when
selecting a variable into a group. Once a group has been constructed, it will be
represented by a unique direction in Rn as the linear combination of the ordinary
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least squares directions of all variables in the group. Next, we choose another leader
element, analogous to the equal-angle requirement of the LARS algorithm. A new
group is formed again following the grouping definition. We refine the solution paths
in a piecewise linear format. The whole process continues until all predictors enter
the model. The detailed algorithm is described below.

1. Initialization: Set the step index k = 1, β[0] = 0, residual r [0] = Y , active set
A0 = ∅, inactive set AC0 = {X1,X2, . . . ,Xp}.

2. Identify the leader predictor x for the first group, where x = argmaxxi |x′i r [k−1]|,
xi ∈ACk−1.

3. Construct the group Gk with the leader predictor x from Step 2 according to the
two criterions: x′j r [k−1] > t1 and x′j x > t2, xj ∈ ACk−1, where t1 = 0.75th per-

centile of all correlations between xj and r [k−1], and t2 = t ∈ {0.9,0.8,0.7,0.6}.
Set Ak =Ak−1 ∪Gk , ACk =ACk−1 \Gk .

4. Compute the current direction γ with components

γAk =
(
X′AkXAk

)−1
X′Ak r

[k−1], γACk
= 0,

where XAk denotes the matrix comprised of the columns of X corresponding
to Ak .

5. Calculate how far the gLars algorithm progresses in direction γ . It divides into
two small steps:

Find xj ′ in ACk which corresponds to the smallest α ∈ (0,1] such that

‖X′Gj (r [k−1] − αXγ )‖L1

pj
= ∣∣x′j ′

(
r [k−1] − αXγ )∣∣,

where Gj is a group from Ak , pj is the number of variables in group Gj , and
‖.‖L1 represents the sum of absolute values.

Justification. As in Step 3, find the group with the leader predictor xj ′ selected
above and denote the group as XGj ′ . Recalculate α ∈ (0,1] for this selected new
group such that

‖X′Gj (r [k−1] − αXγ )‖L1

pj
=
‖X′Gj ′ (r [k−1] − αXγ )‖L1

pj ′
.

Update β[k] = β[k−1] + αγ , r [k] = Y −Xβ[k].
6. Update k to k + 1, and Ak =Ak−1 ∪Gj ′ , ACk =ACk−1 \Gj ′ .
7. If ACk �= ∅, return to Step 4. Otherwise, set γ , β , and r to be the OLS solutions

and stop.

Ordinary least squares would perform poorly when the correlations among the
predictors are high and/or the noise level is high. Since both LARS and gLars move
towards ordinary least squares direction in each step, they face the same shortage.
Ridge estimators, on the other hand, perform better in this situation. We propose a
gRidge algorithm, which moves towards ridge estimator direction in each step. The
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relationship between ridge estimator β̂(λ) and ordinary least squares estimator β̂
can be shown as

β̂(λ) = (X′X+ λI)−1X′Y = (X′X(I + λ(X′X)−1))−1
X′Y

= (I + λ(X′X)−1)−1
β̂ = Cβ̂,

where C = (I + λ(X′X)−1)−1, and λ is the ridge parameter. The gRidge algorithm
is thus a simple modification of the gLars algorithm. When a group is constructed,
gRidge represents the group by a unique direction from the linear combination of the
ridge directions of all variables in the group. The variable coefficients are moving
towards the ridge directions.

As we run simulations, we notice that gRidge outperforms other methods in terms
of relative prediction errors (RPEs, defined below in the simulations). However, this
method is limited by its comparably larger false positives due to an over-grouping
effect. We propose to add a hard threshold δ to gRidge estimators so that small (but
nonzero) coefficients will be removed, i.e., β̃j = β̂j I (β̂j > δ). Based on simula-
tions, we define the threshold δ =√σ log(p)/n. Hence smaller error term, smaller
number of predictors, or larger sample size give smaller threshold. We name the
modified gRidge algorithm gRidge_new, with this hard threshold filtering. Simu-
lation studies show that gRidge_new not only preserves low RPE but also greatly
reduces false positives.

Both gLars and gRidge produce the entire piecewise linear solution paths as
LARS does. Groups of variables are selected when we stop the paths after a cer-
tain number of steps. The number of step k is the tuning parameter. Equivalently,
we may use a tuning parameter as the fraction of the L1 norm of the coefficients

s =Σj_selected
∥
∥β̂j

∥
∥
L1
/Σj

∥
∥β̂j

∥
∥
L1
. (12.1)

For gLars, s (or k) is the only tuning parameter. It is determined by a standard five-
fold cross-validation (CV). For gRidge, there are two tuning parameters, the ridge
parameter λ in addition to s (or k). Similar to elastic net, we cross-validate on two
dimensions. First, we choose a grid for λ, say {0.01,0.1,1,10,100,1000}. Then for
each λ, gRidge produces the entire solution path. The parameter s (or k) is selected
by five-fold CV. At the end, we choose the λ value which gives the smallest CV
error.

12.3.1 Simulation Studies

Simulation studies are used to compare the proposed gLars and gRidge with ordi-
nary least squares, ridge regression, LARS, and elastic net. The simulated data are
generated from the true model y = Xβ + σε, ε ∼ N(0,1). We have studied many
examples for different scenarios but only present four here due to the space limit.
For each example, we simulate 100 data sets. Each data set consists of a training
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set and a test set. The tuning parameters are selected on the training set by five-fold
cross-validation. The variable selection methods are compared in terms of relative
prediction error (RPE) [22] and selection accuracy on the test set. The relative pre-
diction error is defined as RPE= (β̂−β)T Σ(β̂−β)/σ 2, whereΣ is the population
covariance matrix of X. The four scenarios are given by:

Example 1 (Adopted from [23]) There are 100 and 200 observations in the train-
ing and test sets, respectively. The true parameter β = (3,1.5,0,0,2,0,0,0), and
σ = 3. The pairwise correlation between xi and xj is set to be corr(xi ,xj ) =
0.5|i−j |. This example creates a sparse model with a few large effects, and the co-
variates have first-order autoregressive correlation.

Example 2 (Adopted from Daye and Jeng unpublished) We simulate 100 and 400
observations in the training and test sets, respectively. We set the true parameters as

β = (3, . . . ,3
︸ ︷︷ ︸

15

,1.5, . . . ,1.5
︸ ︷︷ ︸

5

,0, . . . ,0
︸ ︷︷ ︸

20

)

and σ = 6. The predictors are generated as

xi = Z + εxi , Z ∼N(0,1), i = 1, . . . ,15,

xi ∼ N(0,1), i.i.d., i = 16, . . . ,40,

where εxi are independent identically distributed N(0,0.01), i = 1, . . . ,15. This ex-
ample creates one group from the first 15 highly correlated covariates. The next five
covariates are independent but provide signals on the response variable.

Example 3 (Adopted from [23]) We simulate 100 and 400 observations in the train-
ing and test sets, respectively. We set the true parameters as

β = (3, . . . ,3
︸ ︷︷ ︸

15

,0, . . . ,0
︸ ︷︷ ︸

25

)

and σ = 15. The predictors are generated as

xi = Z1 + εxi , Z1 ∼N(0,1), i = 1, . . . ,5,

xi = Z2 + εxi , Z2 ∼N(0,1), i = 6, . . . ,10,

xi = Z3 + εxi , Z3 ∼N(0,1), i = 11, . . . ,15,

xi ∼N(0,1), i.i.d., i = 16, . . . ,40,

where εxi are independent identically distributed N(0,0.01), i = 1, . . . ,15. There
are three equally important groups with five members in each. There are also 25
noise variables.



240 J. Xie and L. Zeng

Table 12.1 Median relative prediction errors (RPE) and median number of nonzero coeffi-
cients/median number of zero coefficients misspecified as nonzero coefficients for the four ex-
amples based on 100 replications. The best results are emphasized in italic fonts

Methods Example 1 Example 2 Example 3 Example 4

OLS 0.5843 3/5 0.6364 20/20 0.6390 15/25 0.6458 9/31

Ridge 0.2832 3/5 0.2519 20/20 0.0993 15/25 0.1971 9/31

LARS 0.4640 3/0 0.3208 12/1 0.1620 6/2 0.1200 3/6

Elastic net 0.1714 3/1 0.2587 15/2 0.0800 15/1 0.1110 7/8

gLars 0.2616 3/2 0.4235 20/3 0.2220 15/3 0.2121 9/8

gRidge 0.1806 3/3 0.1963 20/12 0.0700 15/10 0.0700 9/13

gRidge_new 0.1816 3/1 0.1988 19/3 0.0700 15/2 0.0690 9/8

Example 4 We simulate 100 and 200 observations in the training and test sets, re-
spectively. We set the true parameters as

β = (3,3,3,0,0
︸ ︷︷ ︸

5

,3,3,3,0,0
︸ ︷︷ ︸

5

,3,3,3,0,0
︸ ︷︷ ︸

5

,0, . . . ,0
︸ ︷︷ ︸

25

).

The predictors and the error terms are the same as in Example 3. There are also
three equally important groups with five members in each of them. However, in
each group, there are two noise variables, which have no effect on the response
variable but are highly correlated with the other three important variables. There are
totally 31 noise variables.

Table 12.1 summarizes the prediction results. The median RPE from 100 simu-
lations is reported. The smallest RPE is emphasized in italic font, which indicates
the most accurate method for each example. We also report the median number of
nonzero coefficients versus the median number of zero coefficients misspecified as
nonzero, which imply the true positive and false positive of a method. The sim-
ulation results indicate that LARS tends to produce very sparse models but does
not work for collinearity. Elastic net improves LARS when predictors are corre-
lated. But elastic net misses the five true signals with the small coefficients 1.5 in
Example 2. The first proposed method gLars improves elastic net in terms of true
positives, especially in Examples 2 and 4. gRidge and gRidge_new produce the
smallest RPEs in all the examples and therefore are the most accurate models in
terms of prediction. We also notice that while preserving the large coefficients close
to the true coefficients, gRidge tends to select more variables than elastic net, due to
its over grouping effect. After we add a hard threshold to gRidge, the gRidge_new
estimators achieves the best performance.
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12.4 Unbiased Variable Selection via SCAD_�2

SCAD is proposed by Fan and Li [2] as a variable selection method via penal-
ized least squares. The SCAD penalty function is specially defined to satisfy three
properties for the coefficient estimators: unbiasedness, sparsity, and continuity. To
address the challenges of genomic data analysis, we add another property of group-
ing effect and propose a new penalty function named SCAD_�2. Instead of defining
grouping criterions as we have proposed in gLars and gRidge, we achieve the group-
ing effect in SCAD_�2 through a strictly convex penalty function, which is a linear
combination of the L2 norm and the SCAD function. More specifically, we propose
a naive SCAD_�2 estimator β̂naive as the minimizer of the penalized least squares
function

Q(β)= 1

2
‖y−Xβ‖2 +

p∑

j=1

fλ1(βj )+ λ2‖β‖2, (12.2)

where ‖β‖2 =∑p

j=1 β
2
j , and fλ(θ) is the SCAD function defined as

fλ(θ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ|θ | if 0≤ |θ |< λ,
−θ

2 − 2aλ|θ | + λ2

2(a − 1)
if λ≤ |θ |< aλ,

(a + 1)λ2/2 otherwise.

Here a is a real number larger than 2. Under the condition that the columns of
X are orthonormal, we can obtain the explicit expression of the naive SCAD_�2
estimator β̂naive. Specifically, β̂naive = β̂OLS/(1+ 2λ2) for large |β̂OLS| and hence is
a biased estimator. The true SCAD_�2 estimator β̂SCAD_�2 is defined as β̂SCAD_�2 =
(1+ 2λ2)β̂naive, to attain unbiasedness.

For a general predictor matrix X not orthonormal, including situations with cor-
related predictors, SCAD_�2 estimator is defined by the naive SCAD_�2 estimator
multiplying a matrix depending on λ2 and the covariance matrix of X. We can show
that the SCAD_�2 estimator satisfies the following four properties:

1. Unbiasedness: β̂j,SCAD_�2 = β̂j,OLS for large components of |β̂j,OLS|.
2. Sparsity: β̂j,SCAD_�2 = 0 when |β̂j,OLS| is small.
3. Continuity: β̂SCAD_�2 is a continuous function with respect to β̂OLS.
4. Grouping effect: Two coefficients β̂j,SCAD_�2 and β̂i,SCAD_�2 tend to be equal if

the two respective variables xj and xi are highly correlated.

Following Fan and Li’s [2] discussion, for sparsity, it is sufficient to prove that
minθ �=0{(|θ | + p′λ(|θ |)} > 0; and for continuity, it is sufficient to prove that
argminθ {|θ | + p′λ(|θ |)} = 0, where pλ(|θ |) is the penalty function of SCAD_�2
as defined by the last two terms in Formula (12.2). To prove the grouping ef-
fect, we use the fact that the penalty function is strictly convex. In addition, let
β̂i,naive and β̂j,naive denote the ith and j th elements of β̂naive, respectively. Define
D(i, j)= |β̂i,naive − β̂j,naive|/|y|. The following theorem implies that strongly cor-
related variables will be in or out of model together through SCAD_�2.
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Theorem 12.1 Assuming β̂i,naive · β̂j,naive > 0 and a regularity condition for λ2, we
have

D(i, j)≤ C ·√2(1− ρ),
where C is a constant that may depend on λ2, and the sample correlation ρ = xTi xj .

The quantity D(i, j) measures the difference between the coefficients of two
predictors xi and xj . In an extreme case where the absolute value of the correlation
between the two predictors is close to 1, Theorem 12.1 guarantees that the coef-
ficients of the two predictors will be almost identical except the sign difference.
In other words, naive SCAD_�2 has the group effect. The true SCAD_�2 estimator
equals a scalar multiplying the naive SCAD_�2 estimator. Therefore, SCAD_�2 has
the grouping effect as well.

We establish asymptotic theories for SCAD_�2, when the number of variables
p is fixed and the sample size n goes to infinity. Note that the larger n becomes,
the heavier the least squares part in Formula (12.2) weighs. As an adjustment, we
consider the following penalized least squares function:

Q(β)= 1

2
(y−Xβ)T (y−Xβ)+ n

p∑

j=1

fλ1(βj )+ nλ2‖β‖2.

Let β∗ = (β∗1 , . . . , β∗p)T denote the true value of β in the linear regression prob-
lem. Without loss of generality, we assume the first p1 elements β∗1 , . . . , β∗p1
are nonzeros, and the remaining p − p1 elements are zeros. Denote β∗N =
(β∗1 , . . . , β∗p1

)T and β∗Z = (β∗p1+1, . . . , β
∗
p)
T . We use β̂(n) = (β̂1(n), . . . , β̂p(n))

T

to denote the minimizer of Q(β) and denote β̂N (n) = (β̂1(n), . . . , β̂p1(n))
T and

β̂Z = (β̂p1+1(n), . . . , β̂p(n))
T as the estimators of the nonzero and zero coefficients,

respectively. We rewrite λ1 and λ2 as λ1(n) and λ2(n) to emphasize that they vary
as n changes. The following asymptotic theorems hold.

Theorem 12.2 (Estimation consistency) If λ1(n) → 0 and
√
nλ2(n) → 0 as

n→∞, then there exists a local minimizer β̂(n) of Q(β) such that ‖β̂(n)− β∗‖ =
Op(n

−1/2).

Theorem 12.3 (Selection consistency) If λ1(n) → 0,
√
nλ1(n) → +∞, and√

nλ2(n)→ 0 as n→+∞, then limn→∞ Prob{β̂Z(n)= 0} = 1.

Theorem 12.4 (Oracle property) If λ1(n)→ 0,
√
nλ1(n)→+∞, and

√
nλ2(n)→

0 as n→+∞, then the root-n consistent local minimizer β̂(n)= ( β̂N (n)
β̂Z(n)

)
satisfies

the following with probability tending to 1:

1. Sparsity: β̂Z(n)= 0.

2. Asymptotic normality:
√
n(β̂N (n)− β∗N)

D−→ N (0, σ 2Σ−1
N ), where ΣN is the

covariance matrix of the first p1 predictors.
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The basic ideas in the proofs of these asymptotic theorems include applying Tay-
lor expansion of the penalized least squares functionQ(β) and the law of large num-
ber or the central limit theorem. These results build strong theoretical backgrounds
for the proposed group variable selection method. To implement SCAD_�2, we use
local quadratic approximation similar to the algorithm of SCAD.

12.5 Applications in Genomic Data Analysis

12.5.1 SNP Data Analysis

The proposed group variable selection methods are particularly useful in high-
dimensional data with dependent structures, for instance, gene expression microar-
ray data, genetic variation SNP data, and transcription factor binding ChIP-chip
data. Statisticians have been playing important roles in gene expression microar-
ray data analyses in the past decade. With the advance of SNP techniques and the
stride in SNP detections and the international HapMap project, SNP data analysis
becomes another interesting field for statisticians to explore.

As an initial example, we study genetic variation (SNPs) for human gene expres-
sion. Natural variation in the baseline expression of many genes can be considered
as heritable traits. Morley et al. [7] have collected microarray and SNP data to local-
ize the DNA variants that contribute to the expression phenotypes. The data consists
of 14 families with 56 unrelated individuals (the grandparents). There are ∼8,500
genes on the array and 2,756 SNP markers genotyped for each individual. The ex-
pression level of a given gene is the response variable and the 2,756 SNP markers
are the predictors in our model. We apply the proposed group selection methods to
search for optimal set of SNPs for gene ICAP-1A, which is the top gene in Morley
et al.’s [7, Table 1] with the strongest linkage evidence.

We code each SNP as 0, 1, 2 for wild-type homozygous, heterozygous, and mu-
tation (rare) homozygous genotypes, respectively, according to the genotype fre-
quency. We first screen data to exclude SNPs that have a call rate less than 95% or
minor allele frequency less than 2.5%. The number of SNPs is reduced to 1,739 af-
ter screening. Then we select 500 most “variable” SNPs as the potential predictors.
The variability of an SNP is measured by its sample variance.

We split data into the training set with 42 observations and the test set with 14
observations. Model fitting and choices of the tuning parameters are based on the
training set. The first grouping criterion is set up to be the 75th percentile of all cor-
relations between x and y. The second grouping criterion requires the correlation
with the leader element to be greater than 0.6. The prediction error (residual sum
of squares) is evaluated on the test data. Table 12.2 shows that gLars and gRidge
have lower prediction errors than LARS and elastic net with about 30 SNPs se-
lected for gene ICAP-1A. We notice that R2 of the LARS fitted model with 24 SNP
covariates is 0.779, which supports the hypothesis of Morley et al.’s [7] study that
gene expression phenotypes are controlled by genetic variants. On the other hand,
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Table 12.2 Test prediction errors of Lasso, elastic net, gLars, and gRidge for the SNP data

Methods Test prediction error Number of genes Tuning parameter s

LARS 1.569 24 0.4343

Elastic net (λ2 = 0.01) 1.872 23 0.2323

gLars 1.360 33 0.3838

gRidge (λ2 = 0.01) 1.531 28 0.4141

Table 12.3 The first 12 steps of predictors selected by Lasso, elastic net, gLars, and gRidge for
the SNP data

Methods LASSO Elastic net gLars gRidge

Step 1 458 458 458 458

Step 2 481 481 481 481

Step 3 321 321 321,131 321,131

Step 4 287 287 287 287

Step 5 240 240 240 240

Step 6 76 76 406 406

Step 7 406 131 76 76

Step 8 131 406 102 102

Step 9 345 345 345 345

Step 10 102 102 498 498

Step 11 498 498 30,27 30,27

Step 12 30 30 167 167

the coefficient estimators of all SNP covariates are very small, in the scale of 0.01,
suggesting small additive effects of multiple SNPs.

Table 12.3 lists the first 12 steps that the predictors are selected in each algo-
rithm. The numbers in the table are the indices of the variables. For instance, 458 in
Step 1 means that variable x458 enters the model at the first step. At Step 3, gLars
and gRidge depart from LARS and elastic net due to the grouping effect. The first
group consists of two SNPs, x321 SNP rs1004620, and x131 SNP rs1868237. The
correlation of these two variables is 0.65. The two SNPs are in chromosome 3 with
14 K base pairs apart. They are in an intergenic region. The two closest genes have
no functional annotation. Another group consisting of two SNPs x30 rs1882600 and
x27 rs1001396 are selected by gLars and gRidge at Step 11. These two SNPs are in
chromosome 7 with over 2.5 million base pairs apart. SNP x30 rs1882600 is in an
intergenic region, whereas x27 rs1001396 resides in the gene FOXK1. According to
Swiss-Prot functional annotation, FOXK1 is a transcriptional regulator that binds to
the upstream of myoglobin gene.

Our results suggest more SNP associations with a gene expression phenotype
than the simple linkage analysis. For example, variables x240 SNP rs1446297 and
x76 SNP rs933602 are jointly selected as important covariates for the expression
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Fig. 12.1 Regression of the expression phenotype of ICAP-1A on the two nearby SNPs

of ICAP-1A according to all four variable selection methods. However, they are
not significant in simple regression analysis with a p-value cutoff 0.01. These two
SNPs locate in the same chromosome as ICAP-1A (chromosome 2) with nearly 27
million base pairs and 220 million base pairs, respectively, away from ICAP-1A.
Figure 12.1 shows their locations and regression plots. SNP rs1446297 is in the pro-
motor region (about 200 base pairs upstream) of gene FAM82A1. SNP rs933602 is
in the promotor region (about 300 base pairs upstream) of gene DNER. The signif-
icant effects of these two SNPs on gene ICAP-1A may suggest associations among
the corresponding genes.

12.5.2 Gene Expression Data Analysis

We apply SCAD_�2 to a genomic data set in a study of rat eye disease by Scheetz et
al. [9]. The data set consists of 120 rats generated from two highly inbred parental
rat strains. Among 31,000 genes that express in eyes, we are interested in finding
relevant genes which are correlated with gene TRIM32 known to cause the eye
disease Bardet–Biedl syndrome.

We first exclude genes that lack sufficient variation to result in 3,000 most vari-
able genes. Then we order the 3,000 genes based on their absolute correlations with
gene TRIM32 from the largest to the smallest. The top 90 genes are selected as the
potential predictors for the response variable gene TRIM32.

Next, we apply SCAD_�2 to select groups of genes that may influence the ex-
pression of TRIM32. The 120 rat samples are randomly split into a training set
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Table 12.4 Comparison of SCAD_�2 with SCAD, Lasso, and elastic net based on 100 simulations
in the analysis of gene expression data of rat eye disease

Methods Median MSE (SE) Median nonzero

Lasso 0.017 (0.0012) 13

Elastic net 0.016 (0.0015) 10

SCAD 0.0439 (0.0043) 39

SCAD_�2 0.0383 (0.0043) 25

with 100 samples and a test set with 20 samples. A regression model is fitted in
the training set. A generalized cross validation method is used to decide the tuning
parameters, (a, λ1, λ2), on the training data. Model prediction accuracy is measured
by the mean squared error (MSE) on the test set. We compare the prediction accu-
racy of SCAD_�2 with those of SCAD, Lasso, and elastic net. The whole processes
are repeated 100 times. The median MSE and the median number of selected genes
are shown in Table 12.4. Elastic net and Lasso produce more sparse models with
fewer numbers of predictors than those of SCAD and SCAD_�2. Elastic net and
Lasso also provide similar results, without an obvious group effect in elastic net.
Although elastic net and Lasso give small MSEs, their sparse set of variables may
miss important signals, due to the fact that the methods may only select one vari-
able from a group. On the other hand, SCAD_�2 performs better than its nongroup
effect counterpart SCAD. Specifically, SCAD_�2 outperforms SCAD by offering a
moderate size model (with 25 predictors) and 13% reduction of MSE.

12.6 Discussion

Although large-scale genomic data have been routinely created in biomedical re-
search, extracting useful information from the data remains a challenge. Available
statistical and computational tools encounter major difficulties of high dimension-
ality and complicated dependence in the data. This chapter discusses variable se-
lection approaches for high dimensions and, more importantly, new ideas of group
variable selection. The group information naturally embedded in biological systems
or pathways helps to enhance signals in analysis of genomic data.

Traditional forward selection is a heuristic approach, not guaranteeing an opti-
mal solution. LARS, a less greedy version of traditional forward selection method,
however, is shown by Efron et al. [1] to be closely related to Lasso, which possesses
optimal properties under appropriate conditions [5, 20, 21]. Our proposed gLars and
gRidge take advantage of the LARS procedure while aiming at group selections for
dependent data. The methods do not require prior information on the underlying
group structures but construct groups along the selection procedure. Our grouping
criterions consider the joint information of x and y and therefore better fit the con-
text of variable selection than standard clustering on x alone. On the other hand, any
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prior information on the model or groups can be easily incorporated into the algo-
rithms of gLars and gRidge by manually selecting certain variables at specific steps.
The current methods may be improved by exploring different thresholds (t1, t2) in
the grouping definition.

SCAD_�2 is a combination of the unbiased approach SCAD and the ridge regres-
sion. It is not computationally efficient as the forward procedure but possess good
properties in terms of coefficient estimation. One of our future works is to extend
the proposed group selection methods to general regression models, where y may
depend on x through any nonlinear function. The proposed methods are more appro-
priate than other variable selection algorithms for data with complicated dependent
structures.
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Chapter 13
Modeling Protein-Signaling Networks
with Granger Causality Test

Wenqiang Yang and Qiang Luo

13.1 Introduction

The development of computational techniques to identify the gene networks, such as
regulatory networks and protein–protein interaction networks, underlying observed
gene expression patterns, and protein image data is a major challenge in the analy-
sis of high-throughput data. Gene interaction networks can be critical in the analysis
and treatment of complex diseases. Significant progresses have been made in the last
few years in characterizing regulatory interactions at the genomic level [2, 6, 9], in-
cluding methods for identifying gene and protein interactions, regulatory modules
occurring with a high frequency in the genome, and the identification of transcrip-
tion motifs [3, 17, 19, 24]. Methods for gene network reconstruction have been pro-
posed based upon statistical methods such as Bayesian networks [16, 20, 21, 26],
Boolean models [18], graphical Gaussian models [8, 23], etc.

The key of reconstructing gene networks is to identify causal relations among si-
multaneously acquired signals. Karen Sachs et al. [22] reconstruct the causal protein
signaling network with the Bayesian network structure inference algorithm. How-
ever, Bayesian networks have several limitations. First, the computational cost of
Bayesian network inferences is usually very high, and the obtained results are not
always accurate, in comparison with other reverse engineering approaches (see, for
example, [4]). Second, Bayesian network can only be applied to signaling pathways
that they are acyclic, whereas signaling pathways are known to be rich in feedback
loops.

One major approach to analyze the causality between two signals is to examine if
the prediction of one signal could be improved by incorporating information of the
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other, as proposed by Granger [5, 10]. In particular, if the prediction error of the first
signal is reduced by including measurements from the second signal in the linear
regression model, then the second signal is said to have a causal influence on the first
signal. By exchanging the roles of the two signals, one can address the question of
the causal influence in the opposite direction. In this article, we extend the Granger
causality definition to nonlinear problems to infer causal protein-signaling networks
from single-cell data. Our approach can construct cyclic relations among proteins.
Furthermore, the traditional Granger causality is only applicable to timer series data.
Our setup is applicable to static data, and therefore it opens a full and new spectrum
of applications.

In the next section we review the original approach by Granger while describing
our point of view about its nonlinear extension. In Sect. 13.3 we show application
of the proposed method to reconstruct a causal protein network. Some conclusions
are drawn in Sect. 13.4.

13.2 Granger Causality and Approach

We briefly recall the Granger causality [11]. LetX and Y be two time series. Denote
FXt be the entire information up to and including time t , with FXt = σ {Xs, s ≤ t},
and let Ft be the information set available at time t . Ft \ FXt indicates the informa-
tion set excluding FXt . The Granger causality is defined as follows:

1. X does not cause Y in mean with respect to Ft−1 if

E(Yt |Ft−1)=E
(
Yt |Ft−1 \ FXt

)
. (13.1)

2. X is a prima facie cause in mean of Y with respect to Ft−1 if

E(Yt |Ft−1) �=E
(
Yt |Ft−1 \ FXt

)
. (13.2)

A conventional approach of testing Granger causality is to consider the condi-
tional mean E(Yt |Ft−1) to be a parametric linear model and to test the null hy-
pothesis that the coefficients on lagged values of X are all zero. The conventional
linear tests are powerful in uncovering linear causal relations. However, there is a
disadvantage. The tests require modeling assumptions such as the linearity of the
regression structure. To infer a nonlinear causal relationship is somewhat limited.
In order to circumvent the nonlinearity issue, some approaches have been proposed
[1, 15].

In order to extend the Granger causal testing to reconstruct the protein causal
networks, we consider a random variable set P = {P1,P2, . . . ,PN }, with Pi being
the measurement of the expression level for the ith protein, i = 1,2, . . . ,N . To
simplify the statement, we only consider the causal relation between P1 and P2. Let
Y = P2 be the variable of the target protein, X = P1 be the variable of the Granger
cause candidate protein, and let Z = P \ {X,Y } = (P3, . . . ,P4) be the variable of
the rest proteins; then we can test whether Y is the Granger cause of X or not.
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Define two regression models for Y :

Y = E(Y |Z)+ ε, (13.3)

Y = E(Y |X,Z)+ ε′, (13.4)

where ε and ε′ are random noises. Denoting the expectation function for model
(13.3) by f (Z), and for model (13.4), by g(X,Z), the two models can be reformu-
lated as follows:

Y = f (Z)+ ε, (13.5)

Y = g(X,Z)+ ε′. (13.6)

By the definition of the Granger causality (13.2), X is a Granger cause of Y if

E(Y |Z) �= E(Y |X,Z). (13.7)

Therefore, we introduce a log-likelihood ratio measure as follows:

R(X→ Y |Z)= log

{
E(Y − E(Y |Z))2

E(Y − E(Y |X,Z))2
}

. (13.8)

Apparently, X is a Granger cause of Y if R(X→ Y |Z) > 0. In this case, a directed
arc from X to Y may be interpreted as a causal influence from the first protein to the
second one.

Next, we need to compute the log-likelihood ratio R(X→ Y |Z). The expecta-
tions in the numerator and the denominator of (13.8) are the error variances of the
regression models in (13.3) and (13.4), respectively. If we denote the residuals of
the two regression models by ek,Z and ek,XZ, respectively, where K is the number
of the data points, the estimates of the error variances can be given by the averages
of the squared residuals:

S2
Z =

1

K − 2

K∑

k=1

e2
k,Z, (13.9)

S2
X,Z =

1

K − 2

K∑

k=1

e2
k,XZ, (13.10)

where

ek,Z = yk − f (zk), (13.11)

ek,XZ = yk − g(xk, zk). (13.12)

Then the log-likelihood ratio can be well estimated by

R̂(X→ Y |Z)= log

(
S2

Z

S2
X,Z

)

. (13.13)
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Although for the target protein Y , the Granger cause candidate proteinX, and the
rest proteins Z, the observation sample (yk, xk, zk), k = 1, . . . ,K , is available, we
know nothing about the regression functions f and g, and they must be very sophis-
ticated for the complex nature of the life phenomena, so neither the common linear
nor nonlinear regression method is suited in this case. Fortunately, in the Granger
causality test the explicit formulations of the regression functions are not necessary.
So the Artificial Neural Networks (ANN) as black-boxes can be employed to fit
the input and output data of the regression functions. The best estimates f̂ and ĝ
will minimize the averages of the squared error at each data point for the regression
models. Mathematically, let

Ŝ2
Z =

1

K − 2

K∑

k=1

(
yk − f̂ (zk)

)2
, (13.14)

Ŝ2
XZ =

1

K − 2

K∑

k=1

(
yk − ĝ(xk, zk)

)2
. (13.15)

If the ANNs are feedforward ANNs with one hidden layer, we can train the ANNs
with the observation sample by some training algorithm to give the best estimates f̂
and ĝ for the regression function f and g, respectively. Obviously, the input layer
has as many pure linear neurons as the different proteins in the input vector, and only
one output pure linear neuron for the target protein Y . The number of the tangent
sigmoid neurons in the hidden layer is a model parameter, which will be specified
empirically.

For example, the data points (Tk, Ik)Kk=1, where Tk = yk and Ik = zk , are used to
train the ANN for the regression model defined by (13.3) with the target vector Tk
and the input vector Ik . Here, the high-throughput proteomic data are available for
the modeling of the protein-signal networks.

Together with the definitions given by (13.9), (13.10), (13.11), (13.12), (13.14),
and (13.15), the averages of the squared residuals S2

Z and S2
XZ will be good estimate

by the averages of the squared error Ŝ2
Z and Ŝ2

XZ after training, respectively, and
hence (13.13) can be computed by

R̂(X→ Y |Z)= log

(
Ŝ2

Z

Ŝ2
X,Z

)

. (13.16)

13.3 Data and Results

We use our method to reconstruct the protein causality network discussed in [22]
(experimental data are available on Science Online, which include 14 data files.
We only use the first data file). Data are expression levels of 11 phosphorylated
molecules which are simultaneously measured from single cells by flow cytometry.
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Fig. 13.1 The structure of the three-layer feedforward neural networks with 6 hidden neurons

Fig. 13.2 The training processes of the ANNs for the regression models: (a) for the model given
by (13.5); (b) for the model given by (13.6)

Here, we set the random variables P = {P1, . . . ,P11} to denote the expression
levels for the 11 proteins. The three-layer feedforward neural networks with 6 hid-
den neurons (as shown in Fig. 13.1) are employed in our algorithm to estimate the
log-likelihood ratio measure R(Pi→ Pj |P \ {Pi,Pj }) (i, j = 1,2, . . . ,11).

After some pretreatment, the regularization and outlier-elimination exactly, on
the expression data, the ANN can be trained by the Levenberg–Marquardt algorithm
[14].

Figure 13.2 shows the training processes of the ANNs for regression models
given by (13.5) and (13.6). The outputs of the ANNs after training are presented
on Fig. 13.3, where X is the protein Mek, and Y , Z are the protein Raf and the
others, respectively. Figure 13.4 shows the residuals given by ANNs after training
for the regression models. The averages of the squared residuals can be estimated
by S2

Z = 0.0019 and Ŝ2
Z = 0.0031, thereby the log-likelihood ratio for (X,Y,Z)

is R̂(X→ Y |Z) = log(0.0031/0.0019) = 0.4895 > 0. Therefore, in this example,
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Fig. 13.3 The output of the ANNs after the training process for the regression models: (a) for the
model given by (13.5); (b) for the model given by (13.6)

Fig. 13.4 The residuals of the ANNs after the training process for the regression models: (a) for
the model given by (13.5); (b) for the model given by (13.6)

X(Raf) is the Granger cause of Y (Mek) given the background information Z, i.e.,
given the rest proteins, a causal influence from the protein Raf to the protein Mef is
inferred by the Granger causality test model.

The resulting protein causal network was reconstructed by Granger causality
tests (Fig. 13.5). To evaluate the validity of the model, we compared the network
with those described in the literature. According to [22], we categorized the arcs as
the follows: (i) reported, for connections well-established in the literature that have
been demonstrated under numerous conditions in multiple model systems; (ii) re-
ported, for connections that are not well known, but for which we were able to find
at least one literature citation; (iii) added, for connections that are not demonstrated;
(iv) missed, which indicates an expected connection that our Granger causality test
failed to find. Of the 29 arcs in our model, 16 were expected, 2 were reported, 11
were additional pathways, and 2 were missed.

Several of the additional connections from our model (Plcγ → Raf, Plcγ →
Jnk, Plcγ → PKA, Plcγ → Erk, PIP2→ Jnk, PIP2→Akt, PIP2→Mek, PIP3→
PKC, PIP3→ P38) demonstrate that there is causal influence among those proteins.
For example, Plcγ → Raf means that the protein Plcγ is causal influence of Jnk,
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Fig. 13.5 The graph of protein-signaling network reconstructed by the Granger causality tests

Fig. 13.6 The causal relationship between proteins PIP2 and Plcγ with hidden variable

because the connection from Plcγ to PKC and the connection from PKC to Raf
explain the dependence of Raf on Plcγ .

The other additional connections from our model are from PIP2 to Plcγ and
from Mek to Raf. There are known direct connections from Plcγ to PIP2 and Raf
to Mek. It is possible that there might be mutual causal, i.e., Plcγ → PIP2 as well
as PIP2→ Plcγ and Raf→Mek as well as Mek→ Raf. On the other hand, maybe
there is another cause that causes the mutual influences, but those proteins are not
measured (we denote those proteins as hidden variables). For instance, PKC influ-
ence Raf and Mek. Maybe the influence of protein PIP2 on Plcγ was mediated by
intermediate proteins that were not measured in the data set, so there is a mutual
influence between PIP2 and Plcγ . They can be describe as Fig. 13.6. Table 13.1
enumerates possible causal relationships corresponding to all added connections in
our model.
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Table 13.1 Possible causal relationships represented by added connections in our model

Added connection Causal relationship Type

Plcγ → Raf Plcγ → PKC→ Raf Causal dependence

Plcγ → Jnk Plcγ → PKC→ PKA→ Raf Causal dependence

Plcγ → PKA Plcγ → PKC→ PKA Causal dependence

Plcγ → Erk Plcγ → PKC→ PKA→ Erk Causal dependence

PIP2→ Jnk PIP2→ PKC→ Jnk Causal dependence

PIP2→Akt PIP2→ PKC→ PKA→Akt Causal dependence

PIP2→Mek PIP2→ PKC→Mek Causal dependence

PIP3→ PKC PIP3→ PIP2→ PKC Causal dependence

PIP3→ P38 PIP3→ PIP2→ PKC→ P38 Causal dependence

PIP2→ Plcγ PIP2→ ·· ·→ Plcγ → PIP2 Mutual dependence

Mek→ Raf Mek← PKA→ Raf Mutual dependence

13.4 Conclusion

In this paper, we proposed Granger causal test combining artificial neural network
to infer protein causal networks. We correctly reconstructed the protein-signaling
network from multivariate flow cytometry data. The result showed that the Granger
causal test is suitable for modeling gene networks. The Granger causality test has
advantages, including the ability to detect indirect and direct connections, efficient
computing, and the ability to capture the feedback loops. Therefore, it is a promising
method that can scale well for large, genome-scale gene or protein networks.

Modeling gene or protein networks is one of the central topics in systems biology
[7, 12, 13, 25]. Our method can uncover the unknown regulation relationship among
genes or proteins from express and image data. In this paper, we only demonstrate
the model based on the static data. However, the method can also be applied for time
series data. We investigate these topics in our future papers.
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Chapter 14
DNA Copy Number Profiling in Normal
and Tumor Genomes

Nancy R. Zhang

14.1 Introduction

For a biological sample, the DNA copy number of a genomic region is defined as
the number of copies of the DNA in that region within the genome of the sample,
relative to either a single control sample or a pool of population reference sam-
ples. Within the last decade, significant advances in microarray technology have
enabled the genome-wide fine-scale measurement of DNA copy number in a high-
throughput manner [5, 35, 39, 40, 47]. This enables systematic studies which can
lead to a better understanding of the role of DNA copy number changes in human
disease and in phenotypic variation in the human population. These high-throughput
experiments produce large amounts of data that are rich in structure, motivating the
development of new statistical methods for their analysis. This chapter reviews the
computational and statistical problems that arise in DNA copy number data and
surveys recent advances in their treatment.

First, we review some terms and general concepts relating to DNA copy num-
ber. A copy number variant (CNV) is defined as a genomic region where the DNA
copy number differs between two or more individuals from a population. CNVs
that have so far been catalogued are by convention larger than 1 kilobase, although
technologies based on high-throughput sequencing [45] and denser arrays [19] can
detect shorter CNVs. Within the last five years, many studies [9, 10, 21, 30, 41] have
shown that CNVs are a common type of genetic variation in the human population,
with the fraction of the genome covered by CNVs estimated to be between 2%
[10] and 15% [13]. Like single nucleotide polymorphisms (SNPs), variants in copy
number segregate in a Mendelian fashion and contribute to phenotypic variation.
Considering that they cover significantly more genomic territory in terms of base
pairs and that they are more likely than SNPs to have a deleterious effect, CNVs are
now routinely used alongside SNPs in genetic association studies.
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Changes in DNA copy number have also been highly implicated in tumor
genomes. Some of these changes are inherited, but many are due to somatic mu-
tations that occur during the clonal development of the tumor. The copy number
changes in tumor genomes are often referred to as copy number aberrations (CNAs),
to differentiate them from inherited CNVs. CNAs are usually larger in size than
CNVs, often involving gains and losses of entire chromosome arms. Their roles in
tumor development are varied, and high-fold amplification of genomic regions con-
taining oncogenes and deletion of regions containing tumor suppressor genes have
been widely documented. For example, a search using the terms “copy number”
and “tumor” brings up 4421 articles in Pubmed. These evidences suggest that at
least some CNAs play a role in driving tumor progression.

Given the raw DNA copy number data from a single sample, an immediate chal-
lenge lies in estimating the true underlying copy number from the noisy measure-
ments. This problem, often referred to as segmentation of total copy number, has
drawn considerable attention and is reviewed in Sect. 14.2. For data from some ar-
ray platforms, such as the Affymetrix and Illumina genotyping arrays, it is possible
to tease apart the underlying copy numbers of the two distinct sets of chromosomes
inherited from the two biological parents. This problem, which we refer to as parent-
or allele-specific copy number estimation, is motivated and reviewed in Sect. 14.3.
In both total copy number and parent-specific copy number estimation, it is im-
portant to distinguish between tumor and normal samples in the formulation of the
statistical model. This is a theme that will be reiterated in this chapter.

In many studies, multiple technical platforms or different versions of the same
platform are being used to interrogate the same biological samples. Pooling infor-
mation across these multiple sources can give a more accurate consensus molecular
profile for each sample. Section 14.4 looks at recent approaches to multiplatform
integration. A more complex problem is the joint analysis of multiple copy num-
ber profiles, each coming from a different biological sample. There can be many
different goals in such cross-sample analyses, which deserve different statistical
approaches. Section 14.4 reviews the modeling issues and recent developments in
cross-sample models for DNA copy number.

14.2 Total Copy Number Estimation for One Sample

The total DNA copy number data for any given sample comes in the form of a
sequence {(xi, yi) : i = 1, . . . , n}, where n is the number of probes, and xi and yi are
respectively the genome location and normalized intensity for probe i. “Probe” and
“normalized intensity” mean different things for different experimental platforms,
and the reader is referred to [5, 35, 39, 40, 47] for more details. The term “total copy
number” refers to the sum of the copy numbers for the chromosomes inherited from
the two biological parents. If this number varies over the cells in the sample, then the
intensity is a reflection of average copy number over all of the cells. Thus, although
total copy number for each individual cell is integer valued, when the sample is
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Fig. 14.1 Copy number data for a tumor sample assayed on the Agilent, Illumina, and Affymetrix
platforms

genetically heterogeneous, the average copy number can vary over a continuous
scale.

The appropriate preprocessing procedure that is necessary to normalize the in-
tensity measurements depends on the technical platform that generated the data, see
[1, 35, 48] for some examples of nontrivial preprocessing procedures. The data from
most platforms is in the form of a log ratio of the DNA quantity in the target sam-
ple versus the DNA quantity in an appropriate control. The “normal” state, where
the copy number in the target agrees with that in the control, should have mean 0.
A contiguous stretch of measurements that are on average higher (or lower) than
0 suggests a gain (or loss) in copy number. Figure 14.1 shows an example copy
number profile for a genomic region from a tumor sample, assayed on three dif-
ferent platforms. Note that different experimental platforms vary in noise variance,
responsiveness to signal, and location of probes. Section 14.4 examines these dif-
ferences between platforms in more detail.

The observed intensities are noisy surrogates of the true copy number at the mea-
sured positions. Since chromosomes are gained and lost in segments, adjacent po-
sitions in the genome are highly likely to have the same underlying copy number.
This is why change-point models [34, 38, 51, 55, 58], smoothing methods [6, 18, 26,
50], Haar-based wavelets [17], spatially restricted clustering [52, 57], and various
formulations of hidden Markov models [3, 8, 12, 14, 15, 26] have been proposed
for the estimation of DNA copy number. [25] and [56] reviewed and compared the
performance of existing approaches in 2005. It is impossible to review in this chap-
ter all of the above approaches. We focus on the change-point formulation for this
problem that underlies the Circular Binary Segmentation (CBS) algorithm [34, 51],
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which is one of the simplest and most transparent methods. CBS was found to be
one of the more accurate methods by both [25] and [56]. We then summarize hid-
den Markov model-based approaches, which, as we will see in Sect. 14.3, generalize
naturally to model the more complex data from genotyping arrays.

Since the location of the probes, at a coarse global scale, is approximately uni-
formly distributed in the genome, the location information {xi : i = 1, . . . , n} is
often ignored in the segmentation process. Then, a simple change-point model for
the sequence of intensities is

yi = μi + εi, i = 1, . . . , n, (14.1)

where μ = {μi : i = 1, . . . , n} is a piecewise constant function of i, and {εi : i =
1, . . . , n} are i.i.d. errors. To describe μ, we assume that there exists a series of
change-points 0= τ0 < τ1 < · · ·< τm < τm+1 = n such that

μt = θi, t ∈ [τi, τi+1), i = 0, . . . ,m. (14.2)

For inference, the errors are usually assumed to be Gaussian, although this assump-
tion is not crucial if the distances between successive τj ’s are large. Under this
model, the segmentation problem reduces to estimating the change-points and the
means within each segment. The number of change-points m is also not known and
has been observed to range from below 10 to above 100 in some tumor samples.

If the values of the change-points τ are known, then θj can be estimated by the
mean of the observations that fall in the j th segment. To estimate τ , the CBS algo-
rithm employs a greedy top-down approach that recursively applies the generalized
likelihood ratio statistic for testing a square wave change. In more detail, for any
interval 1 ≤ a < b ≤ n, let the null hypothesis be that the observations are i.i.d.
Gaussian, and let the alternative be that there is a subinterval with a change in mean
and no change in variance. The generalized likelihood ratio statistic is

max
a<s<t<b

Zs,t , where Zs,t =
St − Ss − t−s

b−a (Sb − Sa)
σ̂
√
(t − s)[1− (t − s)/(b− a)] , (14.3)

and Sj = y1 + · · · + yj . CBS starts by setting a = 1 and b = n. Let zobs be the ob-
served maximum of Zs,t , and (s∗, t∗) be the maximizing interval. If the p-value of
the scan, P(maxa<s<t<b Zs,t > zobs), is smaller than some prechosen threshold α,
then the maximizing interval is reported, and the intervals [a, s∗), [s∗, t∗), [t∗, b]
are recursively scanned using the same procedure. The recursion stops when none
of the subregions contain a square wave change that is significant at the level α.

The p-value for the scan statistic in (14.3) can be computed using asymptotic
approximations given by [20] and [46], which is quite accurate for tail probabil-
ities. Alternatively, [58] proposed a modified BIC criterion for estimating m and
showed that, when used in conjunction with CBS, has more accurate off-the-shelf
performance than p-value based thresholds.

In contrast to the change-point formulation, hidden Markov model-based meth-
ods assume that the observed intensities are emitted by an underlying Markov chain.
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Different published methods assume different dynamics for the underlying Markov
chain. The earliest method [14] assumes that the hidden states follow a discrete-
state Markov chain and obtains a segmentation using the Viterbi algorithm. The
discrete-state model works well for detecting inherited CNVs in normal samples
but is not flexible enough for tumor samples, where due to sample heterogeneity,
it is hard to predict how many states there should be in the underlying chain. To
better accommodate fractional copy number changes, [26] assumes that the under-
lying mean is a continuous-valued Markov jump process with a baseline state and
a changed state, where every time a jump is made to the changed state the Markov
chain takes on a new Gaussian value. Exact recursive equations for the posterior
expectation of the underlying mean given the entire observed intensity sequence are
given in [26], along with a fast linear time approximation. The Bayesian approach
allows computation of confidence intervals for the expected copy number at each
position and the total number of CNVs. The hidden Markov models in [12, 15] also
assume continuous-valued jumps but estimate the underlying states using Markov
chain Monte Carlo or pseudo-likelihood based approaches.

The fundamental difference between frequentist approaches such as CBS and
hidden Markov models lie in the necessary assumptions about the length and mag-
nitude of jumps. For a hidden Markov model, one must explicitly specify the wait-
ing time distribution between jumps and the distribution of the underlying state se-
quence. If reliable prior information in this regard is available, then hidden Markov
models can more flexibly incorporate them. However, when prior information is not
available, they must either be specified arbitrarily by the user or estimated from the
data. Frequentist approaches do not require the user to specify these prior distribu-
tions, and thus, while being less flexible, may have better off-the shelf performance.

The methods mentioned so far use only total intensity data which measures the
sum of the copy numbers of both parental chromosomes. Data from some platforms,
such as Illumina and Affymetrix genotyping arrays and Molecular Inversion Probes,
can reveal more information. These platforms measure, for targeted bi-allelic sin-
gle nucleotide polymorphisms, the quantities of both alleles. The total intensity ob-
tained from these platforms is usually the log transform of a sum of the intensities of
both alleles, normalized to a group of population control samples. This essentially
reduces a two-dimensional data sequence into a one-dimensional sequence of log ra-
tios, resulting in a loss of information. For Illumina data, for example, the B-allele
frequency, defined as the normalized ratio of the quantity of the B-allele to the total
quantity of both alleles, seems to be more informative for detecting low-amplitude
jumps [35]. Methods for detecting inherited CNVs can gain power by incorporat-
ing the B-allele frequency, as done in the softwares QuantiSNP [8] and PennCNV
[53]. More details of these methods, in the context of parent specific copy number
estimation, are given in the next section.

14.3 Parent Specific Copy Number Estimation

The genome of each somatic human cell normally contains two copies of each of
the 22 autosomes, one inherited from each biological parent. At any genome loca-
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Fig. 14.2 (a) An example data sequence taken from a TCGA glioblastoma sample. The left panel
shows the A- and B-allele intensities. The right panel shows the logR and B-allele frequencies.
(b) The estimated major and minor copy numbers for the example region from TCGA sample 0258
chromosome 2

tion, one or both of these two chromosomes may gain or lose copies. The methods
described in the last section use only the total intensity data {yi}, which measure the
sum of the copy numbers of the two inherited chromosomes. These methods do not
reveal whether both chromosomes have changed copies and, at polymorphic loci,
which of the alleles have been affected. The extraction of this information is im-
portant, because the allele-specific nature of amplifications and deletions is highly
relevant for the biological understanding of cancer and represents a key advantage of
SNP array-based assays in comparison to the conventional array-based comparative
genomic hybridization experiments that measure only total copy number. Further-
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more, copy neutral loss-of-heterozygosity events, defined as the simultaneous gain
of one copy and loss of the other copy of the inherited chromosomes, have long
been implicated in the actions of oncogenes. These events can only be detected us-
ing allelic-specific measurements.

For simplicity, we consider only biallelic SNPs and let the alleles be arbitrarily
labeled A and B . Allele “A” may refer to different bases at different SNPs and may
also reside on different chromosomes across adjacent SNPs. Genotyping platforms
give, at selected SNPs, a bivariate measurement quantifying each of the alleles A
and B . An example sequence of normalized A and B intensities for a genomic
region of a tumor sample assayed using the Illumina platform is shown in the left
panel of Fig. 14.2a. The log ratio and the B-allele frequency are shown in the middle
panel of the figure.

As is evident in Fig. 14.2a, the allele-specific measurements at each SNP follow
a mixture distribution that depend on the genotype of the sample at that SNP. The
genotype is usually unknown and must also be inferred from the data. Without the
genotype information, adjacent allele-specific measurements cannot be smoothed.
Thus, conventional change-point models cannot be applied directly to this problem.
However, the parent-specific copy number, which we define as a bivariate quan-
tity that distinguishes between the chromosomes inherited from the two parents, is
smooth across adjacent positions on a chromosome. Without family data, it is im-
possible to distinguish which chromosome is maternal and which is paternal. Thus
the parent specific copy numbers are exchangeable. When there is an imbalance in
copy number, the chromosome with the higher copy number is called the “major”
chromosome, and the other is called the “minor” chromosome.

La Framboise et al. [24] is one of the earlier methods that make use of allele-
specific data. They applied existing segmentation algorithms to the total copy num-
ber. Then, the B-allele frequency is used to estimate the allele-specific copy number
and loss of heterozygosity status for each segment. Discrete-state hidden Markov
models [8, 27, 53] have also been proposed for this problem. In these approaches, the
hidden states representing changes in whole copy number or generalized genotypes
such as AA, AB, BB, A−, B−, AAB, ABB, etc. [8] is one of the earliest methods in
this category. Designed for Illumina data, it is based on a hidden Markov model with
six underlying states described in Table 14.1. Within each state, the log ratio and B-
allele frequency are assumed to be independent. The log ratio is assumed to be a
mixture of a uniform distribution and a Gaussian distribution with state-dependent
mean and variance. The uniform distribution acts as a noninformative state for cap-
turing outliers in the data. The B-allele frequency follows a mixture distribution that
depends on the unknown genotype, with also a uniform component for robustness
against outliers. The parameters of this model can be estimated by maximizing the
marginal likelihood, thus giving it some desirable frequentist properties while also
allowing for flexible Bayesian type inference. The PennCNV software [53] uses a
similar model. By utilizing the information in the B-allele frequency, these hidden
Markov models can more accurately detect and genotype inherited CNVs, as com-
pared to the procedures in Sect. 14.2.

Methods based on discrete-state hidden Markov models are designed for de-
tecting copy number variants in normal tissue, where the assumption of idealized
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Table 14.1 Hidden states, associated copy numbers, genotype states, and biological interpretation
in [8]

Hidden state Copy number Number of genotypes Interpretation

1 0 0 Full deletion

2 1 1 Single copy loss

3 2 3 Normal

4 2 2 Normal LOH

5 3 4 Single copy gain

6 4 5 Double copy gain

Table 14.2 Relationship
between the inherited allele
configuration st and the true
allele specific copy numbers
xt in [7]

st xAt xBt

AA θ1
t + θ2

t 0

AB θ1
t θ2

t

BA θ2
t θ1

t

BB 0 θ1
t + θ2

t

unit-copy changes holds because the cells within the samples are usually homoge-
neous. By requiring a fixed set of predefined discrete states, these methods do not
adapt well to data from heterogeneous tumor samples, which produce data with ap-
parently fractional copy number changes. Through simulated titration studies, [48]
show that methods relying on idealized genotype states lose sensitivity when tumors
are diluted with normal cells.

To treat the heterogeneity in tumor samples, [7] propose a continuous-state
hidden Markov model to simultaneously estimate the parent specific DNA copy
numbers and the unknown genotypes. To describe their model, let y = {yt =
(yAt , y

B
t ) : t = 1, . . . , n} be the normalized intensity values for alleles A and

B at n SNPs ordered by their location in a reference genome. Let θ = {θt =
(θ1
t , θ

2
t ) : t = 1, . . . , n} be the underlying parent specific copy numbers, and st ∈

S = {AA,AB,BA,BB} be the configuration at SNP t specifying the alleles carried
by the inherited chromosomes. Let xt be the true copy numbers of alleles A and
B at SNP t . The value of xt is determined by θt and st , with the mapping shown
in Table 14.2. Note that when a somatic event causes a change in copy number in
one or both parental chromosomes at SNP t , the allele-specific copy numbers xt
change, but st remains fixed. For example, if st = AB and if θ1

t were amplified two-
fold, then the true copy number of allele A would be 2, but st would still be AB.
The observed allele specific intensities yt are assumed to be equal to the true allele
specific quantities plus an independent measurement error,

yt = xt + εt , (14.4)

where εt ∼ N(0,Σst ), and Σst are state-specific error covariance matrices. This
model is summarized in Fig. 14.3. The inherited allele configurations st are as-
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Fig. 14.3 Overview of stochastic segmentation model in [7]

sumed to be i.i.d. multinomial with parameters (pAA
t , p

BA
t , p

AB
t , p

BB
t ), which can be

obtained from the genotyping data of a set of normal control samples. The dynam-
ics of θ is modeled as a Markov jump process that generalizes the one-dimensional
model in [26] to two dimensions. Conceptually, each time a jump occurs, θt can
either go to a baseline state which consists of a point mass at a predefined value
or choose a new value in %2 according to a bivariate Gaussian distribution. Chen
et al. [7] generalizes the estimation procedure in [26] to simultaneously estimate s
and θ from y. The parameters of the hidden Markov model can be estimated from
the data via expectation maximization. A plot of the major and minor copy numbers
estimated from their procedure for the example region given in Fig. 14.2a is given
in Fig. 14.2b. From the plot we see that this region contains an unbalanced gain
of two copies in one chromosome coupled with an almost complete deletion of the
other chromosome. This is immediately followed by gain of one chromosome with
the other fixed at normal level. Without analyzing allele-specific data, we would not
have known that the gain in total copy number at the left end of this region actually
involves an almost complete loss of heterozygosity.

14.4 Integration of Multiple Array Platforms

With the rapid development of new genome-wide profiling platforms, there is now
an increasing need of data integration when more than one technical platform, or
different replicates on the same platform, are used to assay the same biological sam-
ples. For example, the Cancer Genome Atlas (TCGA) project, an NIH-funded initia-
tive to characterize DNA, RNA, and epigenetic abnormalities in tumors, has adopted
three independent platforms for studying DNA copy number variants (CNVs) in its
pilot phase: Affymetrix SNP 6.0 arrays, Illumina HumanHap 550K SNP arrays, and
Agilent CGH 244K arrays. The conventional approach for analyzing these types of
data is to apply existing segmentation algorithms to search for copy number changes
using the data from each platform separately. The segmentation results from all
platforms then need to be combined. However, the platforms often disagree on the
calling of a change, either on its significance or on its location and magnitude. In
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such situations, it is difficult to decide what the consensus should be. Furthermore,
by segmenting each platform separately, information is not pooled across platforms
for boosting the power of hard-to-detect signals. For these reasons, [2] and [59]
proposed methods to integrate the data across platforms during the segmentation
process.

To integrate the data during segmentation, the differences between platforms
need to be resolved. Some platforms, such as Illumina and Agilent, produce allele-
specific data, while others, such as Agilent and cDNA arrays, produce two-color
ratio data that measure only total intensity. The probes from each platform map to
a different set of locations in the genome, at different densities. For example, the
Affymetrix 6.0 array has 1.8 million probes, while the Agilent CGH 244K array has
about one-sixth as many probes. The measurements from different platforms also
have different signal-to-noise ratios, as can be seen from Fig. 14.1. Furthermore, the
different platforms respond with different saturation curves [2]. In regions of high-
fold amplification, Illumina and Affymetrix tend to have more pronounced signal
saturation than Agilent. In short, each of the three platforms has its advantages and
disadvantages, but together they produce a balanced genome-wide survey for each
sample and represent a much denser coverage than each platform does alone.

Bengtsson et al. [2] studied the problem of differing degrees of attenuation of
the true copy number changes across platforms and proposed a method based on
principal curves to correct for between platform differences. Their method brings
the unsegmented intensity levels to the same scale across sources. For the same
underlying true copy number, each platform should have the same mean value after
this normalization procedure. Then, existing segmentation methods can be applied
to a combined set of intensity levels over all sources to identify the copy number
changes. However, the normalization procedure in [2] does not resolve the issue of
differing error variances between sources, and the homogeneous variance model in
(14.3) would not be optimal when applied to this combined data set.

Zhang et al. [60] proposed a multiplatform Circular Binary Segmentation
(MPCBS) procedure, which has been adopted in the processing of the TCGA
glioblastoma samples. MPCBS sums statistical evidence across platforms with
proper scaling and do not require a prestandardization of different data sources.
The statistics are based on maximizing the likelihood of a simple multiplatform
model, which can be formulated as follows. Let the platforms be indexed by
k = 1, . . . ,K , with K being the total number of platforms.The observed data is
yk = yk1, . . . , yknk for the nk snps/clones on the kth platform, which have ordered
locations (tk1, . . . , tknk ) along a chromosome. It is assumed that for each platform,
the data has been normalized to be centered at 0 for “normal” copy number and to
have Gaussian noise. The fact that all {yk : k = 1, . . . ,K} are assaying the same
biological sample implies that at any genomic location t there is only one true un-
derlying copy number μt for all platforms. Let fk(·) be the response function for
platform k, which quantifies the dependence of the mean intensity on the underlying
copy number. The observed intensity level for the ith probe of the kth platform is
modeled as

yki = fk(μtk,i )+ εk,i , (14.5)
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where the noise terms εk,i are independently distributed N(0, σ 2
k ), and σ 2

k is the
platform-specific noise variance. Zhang et al. [60] consider only linear response
functions fk(μ)= rkμ, where the parameter rk , called the response ratio, describes
the ratio between the change in signal intensity and the underlying copy number
change for platform k. This linearity assumption allows for simple and intuitive
test statistics and fast scanning algorithms. The true copy number μt is modeled
as a piecewise constant function as in (14.2), where the endpoint n is replaced
by the length of the chromosomal region in base pairs. The magnitude parameters
θ = (θ0, . . . , θm) and change-points τ = (τ1, . . . , τm) are all unknown and, like the
response ratios, must be estimated from the data.

It is insightful to look at the generalized likelihood ratio statistic that arises from
this cross-platform model and compare it to (14.3) for the one sample case and,
later, to (14.12) for the multisample case described in the next section. Consider the
case where r = (r1, . . . , rK) is known, and the goal is to test whether there is a CNV
at a window from s to t . Under the null hypothesis that there is no change, the data
within this region should have baseline mean fk(0)= 0, i.e.,

H0: yki ∼N
(
0, σ 2

k

)
for k = 1, . . . ,K and i : s ≤ tki < t. (14.6)

If there is a gain (or loss) of magnitude μ, each platform should respond with signal
fk(μ)= rkμ. The signal is thus a mean shift in a common direction for all platforms,
with the observed magnitude of shift being rkμ for platform k, i.e.,

HA: yki ∼N
(
rkμ,σ

2
k

)
for k = 1, . . . ,K and i : s ≤ tki < t. (14.7)

Let nk(s, t)= |{i : tk,i ∈ (s, t]}| be the number of probes from the kth platform that
falls within (s, t], and ȳk,(s,t] be the mean intensity of these probes. The generalized
log-likelihood ratio statistic for testing HA versus H0 is

Z(s, t)= [
∑K
k=1 δk,s,tXk,s,t ]2
∑K
k=1 δ

2
k,s,t

, (14.8)

where

Xk,s,t = ȳk,[s,t] − ȳk,[1,nk]
σk

√

nk(s, t)−1 + n−1
k

(14.9)

and

δk,s,t = rk
√
nk(s, t)/σk. (14.10)

Xk,s,t is equivalent to the statistic in (14.3) computed for the kth platform, and
the cross-platform statistic is the projection of Xs,t = (X1,s,t , . . . ,XK,s,t ) on to the
vector δ = (δ1,s,t , . . . , δK,s,t ). We thus call (14.8) the projected χ2 statistic. It can
also be viewed as the squared norm of a weighted sum of t-test statistics, where the
weight δk,s,t for platform k is proportional to the response ratio rk , the square root
of the number of probes from that platform that falls into [s, t), and the inverse of
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Fig. 14.4 An example of a joint segmentation of a set of tumor samples. The segmentation outputs
a set of common change-points to give the best sparse summary of the set of tumors (for the color
version, see Color Plates on p. 393)

the error standard deviation σk . When there is only one platform, the statistic (14.8)
is equivalent to the chi-square statistic used in the Circular Binary Segmentation
algorithm of [34]. As for CBS, σk is usually unknown and must be estimated from
the data. For more details on the estimation of the platform response ratios, see [59].

14.5 Modeling Recurrence Across Samples

When the same biological sample is assayed using multiple platforms, the under-
lying signal for the copy number profiles from each platform should be the same.
This is the concept that underlies the projected χ2 statistic (14.8) in the MPCBS
algorithm. However, when each copy number profile represents a different biolog-
ical sample, the underlying signal is no longer shared. Usually, only a fraction of
the samples are carriers of any given CNV. In an integrated analysis of copy number
data across multiple biological samples, one is often interested in the differences
and similarities across samples.

Before introducing the statistical models for cross-sample analysis, we need to
examine more carefully the purpose of cross-sample integration. What do we hope
to achieve in such an analysis? What types of signals are we aiming to capture across
samples? The answer to this question is simple for multiplatform integration, where
the goal is simply to combine data across platforms to obtain a better estimate of the
shared underlying change-points. In cross sample analyses, how should the concept
of a shared signal be defined? When the signals are not shared, how should the
variation be characterized?

One goal in copy number studies over a cohort of tumor samples is finding re-
gions of recurrent aberration. Such regions, where a large number of samples of
the same type of tumor have gained or lost copies, may contain genes that are key
players in the development of the tumor. For example, Fig. 14.4 shows a set of
tumor samples, with many samples carrying overlapping deletions covering chro-
mosome 9 [43]. Such commonly deleted regions may carry genes that play a role
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in cell proliferation or delay apoptosis. Similarly, commonly amplified regions may
harbor tumor suppressor genes. In Sect. 14.5.1, we review methods that are geared
towards identifying these regions.

The methods reviewed in Sect. 14.5.1 combine information across samples post-
segmentation. That is, each sample is segmented on its own, and the cross sample
analysis sees only the segmented data. However, in some cases, such as inherited
CNVs, the change-points are shared across samples for instances of the same CNV.
In such cases, aggregating information across samples can improve the power of
detecting shared weak signals. Consideration of power is especially relevant to the
detection of inherited CNVs, most of which are very short and may only span a few
probe sets or clones, and thus are easily missed in single-sample detection meth-
ods. Inherited variants are also hard to detect in the sense that they usually involve
single-copy changes, as compared to aberrations in tumors which often consist of
high-fold amplifications and homozygous deletions. In Sect. 14.5.2, we discuss the
aggregation of data across samples prior to or during segmentation.

In the analysis of both inherited and somatic copy number variants, it is often
useful to obtain a sparse cross-sample summary of a complex region for use in
downstream analyses. For example, in clinical studies we may have, along with the
copy number data, variables such as survival outcome or status of other biomarkers.
We may want to find chromosomal regions whose copy number status is correlated
with these variables. These types of analyses are often done with gene or protein
expression data, but for copy number data, it is unclear what to use as the explana-
tory variables. If each probe were considered as a variable, then the smoothness of
the underlying signal is ignored. Since copy number studies now routinely use plat-
forms containing hundreds of thousands to over a million probes, if each probe were
considered as a variable, we would be faced with a very large number of highly cor-
related variables, which would reduce the sensitivity of downstream analyses. Some
studies take the average copy number over each chromosome, chromosome arm, or
cytoband as the variables for downstream analysis. This clearly is a coarse method
that sacrifices sensitivity. In Sect. 14.5.3, we describe a method for reducing a set of
copy number profiles into a set of representative regions, so that the average copy
number of each sample in each region gives a good summary of the cohort.

14.5.1 Post-Segmentation Procedures

In post-segmentation procedures [4, 11, 16, 32, 33, 42, 49], each sample is first seg-
mented separately, which reduces them to piecewise constant sequences indicating
regions of amplification, deletion, or normal copy number. Then, the samples are
aligned, and a statistical model [32, 33] or permutation-based approach [11] is used
to identify regions of highly recurrent aberration.

One of the earliest methods is STAC [11], which takes in a binary sequence for
each sample that indicates whether the sample contains an aberration at each probe
position. Consider first the simple method which considers only the prevalence of
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Fig. 14.5 Illustration of the concept of a footprint of in the STAC program. In each of the scenarios
(a–c), the gray box indicates the footprint for the entire stack of four samples. In (c), the light gray
box indicates the footprint for the stack containing only samples 1–3

aberration at each location m, denoted by F(m). The p-value of F(m) can be com-
puted by permutation, where the intervals within each profile are randomly rear-
ranged. Let Fi(m) be the prevalence over samples at location m for permutation i.
Then, the p-value of a location m0 is computed by

PF (m0)= |{i : maxm Fi(m) > F(m0)}
total number of permutations

.

Locations that are aberrant in a large number of samples have a low p-value. How-
ever, the statistic F(m) does not capture the fact that it is more surprising when
several samples have tight overlap for a short aberrant interval (Fig. 14.5a), as op-
posed to when an overlap is a result of long aberrations that do not align tightly
(Fig. 14.5b). To differentiate between these two situations, [11] defines a “stack”
to be a set of intervals that share at least one common position and the “footprint”
of a stack to be the union of the sets of positions covered by the intervals. Each of
the set of intervals (a–c) in Fig. 14.5 is a stack, but Fig. 14.5b has a larger footprint
than Fig. 14.5a. A smaller footprint provides greater evidence for localization of an
important gene in the region. In Fig. 14.5c, the set of all 4 intervals is a stack, but so
is any subset, e.g., the intervals from only samples 1–3. The stack for samples 1–3
has a much smaller footprint than the stack containing all four samples and may be
more biologically interesting. For each position m, let Sm to be the set of all stacks
with m as a common position, i.e., the set of all subsets of samples that are aberrant
at position m. For each s ∈ Sm, let P(s) be the p-value for the footprint of the stack
s computed by permutation. Then, glossing over details, the score for the most sig-
nificant footprint is computed as R(m)=mins∈Sm P (s). A related method is MSA,
which builds upon the notions of frequency and footprint but relies on the original
intensity data and searches over a set of possible cut-off values in the segmentation
procedure. As the permutation-based p-values are computationally intensive, MSA
also contains algorithmic improvements which reduce the execution time.

Another example of a method in this category is GISTIC [4]. Unlike STAC and
MSA, which consider only the location and length of the aberrant intervals, GISTIC
also factors in the amplitude of the aberration in each sample. The rationale given for
this is that the prevalence of the aberration among samples and the average ampli-
tude of these events are both positively associated with the likelihood that a region
carries driver aberrations. Beroukhim et al. [4] define the G-score as the prevalence
of the copy-number change times the average amplitude over the carriers. Permuta-
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tion tests are used to compute the significance of the observedG-scores, and regions
with maximal G-scores are selected.

It is important to note that, since these methods use segmented data as input, the
quality of their results depend on the reliability of the underlying segmentation al-
gorithm. All segmentation methods incur errors, and these methods assume that it
is more likely for biologically significant aberrations to recur across samples than
experimental or statistical errors. However, many errors in segmentation are due to
experimental artifacts, such as local trends, which also recur across samples at the
same locations. These artifacts, if not carefully removed, may be misconstrued as
significant recurrent regions. Another concern is that, while it is likely that the re-
current regions are due to driver mutations, they may also be a result of biases in the
DNA mutation or repair machinery. Thus, care must be taken in their interpretation.

14.5.2 Cross-Sample Detection of Inherited Variants

The methods described in the previous section pool information across samples post
segmentation. In this section, we consider methods for joint segmentation of a co-
hort of samples. For detecting inherited CNVs, such joint segmentation methods
have been shown to boost power [60]. Also, since different samples have different
signal quality and noise characteristics, integrating them during segmentation can
account for these differences.

When testing for a change in mean in a single sequence, the two quantities that
affect the power of detection are the height of the jump and the width of the changed
interval. The generalized likelihood ratio statistic (14.3) is a function of these two
quantities. When multiple samples are simultaneously scanned, a third quantity, the
number of carriers of the change, should be factored into the scan statistic. When
more than one sample show evidence for a change, then the change is more likely
to be real. By pooling samples in the segmentation step, we are capitalizing on this
fact to boost power.

There are now several models for multisample joint segmentation of copy num-
ber data. The HMM-based approach of [54] focuses on the analysis of cancer data
and does not assume the change-points to be shared across samples. The authors
mention that a shared change-point model would be desirable for the detection of
inherited CNVs, and they note the substantial computational task inherent in a sat-
isfactory HMM for this problem. Such an undertaking is reported in [44], where
a multilayer hierarchical hidden Markov model is used to segment all samples si-
multaneously. Shah et al. [44] assumes an underlying “master” Markov chain which
decides whether the samples, as a group, should enter a “changed” state. Given that
the master has entered the changed state, each sample can choose, with a flip of coin,
whether to jump to a shared mean level or to stay at the baseline level. This model
assumes that all carriers must change in the same direction with the same magni-
tude. An MCMC algorithm is proposed to sample from the posterior distribution of
the master state.
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Hidden Markov models for this problem rest on many assumptions about how the
aberrations are shared across samples, e.g., they must be in a common direction or
must be present in a majority of the samples. For a less restrictive approach, Zhang
et al. [60] proposed a simultaneous change-point model for the detection of inherited
changes. To describe the model, let the observed data be a two-dimensional array
{yit : i = 1, . . . ,N, t = 1, . . . , T }, where yit is the data point for the ith sample at
probe t , N is the total number of samples, and T is the total number of probes. For
each sample i, the random variables yi = {yit : t = 1, . . . , T } are mutually inde-
pendent and Gaussian with mean values μit and variances σ 2

i . The null hypothesis
assumes that the means for each profile are identical across locations. The simplest
alternative where there is a single changed interval assumes that there exist integer
values 1≤ τ1 < τ2 ≤ T and at least one sample i such that

μit = μi + δiI{τ1<t≤τ2}, (14.11)

where the δi are nonzero constants, and μi is the baseline mean level for profile i.
For this testing problem, a direct generalization of (14.3) is maxs<t Z(s, t), where

Z(s, t)=
N∑

i=1

U2
i (s, t), (14.12)

and Ui(s, t) is the sequence-specific statistic defined as in (14.3) for the ith se-
quence. If the variances were known, then (14.12) would be the generalized log-
likelihood ratio statistic for testing H0 versus HA. For each fixed s < t , the null
distribution of Z(s, t) is approximately χ2 with N degrees of freedom. Large val-
ues of maxs<t Z(s, t) are evidence against the null hypothesis. If the null hypothesis
is rejected, the maximum likelihood estimate of the location of the variant interval
is (s∗, t∗)= argmaxs,t Z(s, t). Zhang et al. [60] developed analytic p-value approx-
imations for scans using statistics of the form (14.12).

Similar to the sum of chi-squares statistic is the “interval scores” method of [28],
which uses a statistic likeZ(s, t) but without the squares. Thus, like [44], the method
focuses on common deletions or common amplifications. However, many inherited
CNVs have changes in both directions at any given locus. This is because the indi-
vidual copy numbers are defined relative to the population average, and when two
or more copy number levels exist in the population for a given locus, normalizing to
the average creates both “gains” and “losses” among the carriers.

To assess the improvement in sensitivity gained from pooling data across sam-
ples, [60] used a set of 62 samples assayed using Illumina 550K Beadchips. The
experiments were performed on DNA samples extracted from lymphoblastoid cell
lines derived from 10 sets of trios consisting of a child and his/her two parents,
and 16 pairs of technical replicates for 16 independent DNA samples. Zhang et al.
showed that using statistic (14.12) improves the concordance rate between repli-
cates and between the child and parent samples, as compared to single sample
scans.
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Fig. 14.6 (Color online) Comparison of the null hypothesis rejection regions between the sum of
chi-square statistic (14.12) and the weighted t -statistic (14.8) on K = 2 platforms. In all figures,
the axes are the magnitudes of the X variables (14.9) for platforms 1 and 2. A significance level of
0.05 is used to determine the decision boundaries of both statistics. For (b), weights of δ1 = 1 and
δ2 = 2 are used. The red line shows the direction of the weight vector δ = (δ1, δ2)

Note the differences between the projected chi-squares statistic (14.8) and the
sum-of-chi-squares statistic (14.12) for multisample segmentation. When pooling
data across independent biological samples, not all samples are expected to carry
the same CNV, and often both deletions and amplifications can be observed be-
tween the samples at the same genome location. This is why the sum-of chi-squares
statistic (14.12) does not “reward” agreement in direction of change between sam-
ples. In contrast, the statistic in (14.8) rewards agreement and penalizes disagree-
ment. The difference between the two statistics is shown graphically in Fig. 14.6,
where we illustrate the simple case of two samples/platforms with the response
ratio of the second platform being twice that of the first platform. Suppressing
the dependence on s, t , note that both statistics are functions of X = (X1,X2),
as defined in (14.9) which, assuming that σk is known, is bivariate Gaussian with
mean 0 and identity covariance matrix under the null hypothesis. Figures 14.6a–b
show in gray the region in the (X1,X2) plane where the null hypothesis will be
rejected. For example, in Fig. 14.6a, which depicts the situation in (14.12), the
rejection boundary is a circle centered at the origin. In Fig. 14.6b, which de-
picts the situation in (14.8), the rejection boundary is {X : δ′X > tα}, which is
perpendicular to the vector δ2/δ1. Importantly, Fig. 14.6b awards agreement be-
tween the two platforms, while Fig. 14.6a treats all quadrants of the plane equally.
The statistic (14.8) (Fig. 14.6b) also allows one platform to dominate the oth-
ers: In the case where the directions disagree, e.g., in the upper left or lower
right quadrants, the consensus can still be made according to the dominant plat-
form.
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14.5.3 Obtaining a Cross-Sample Signature

As before, consider a set of copy number profiles {yit : i = 1, . . . ,N, t = 1, . . . , T }
over n samples and T probes. A sparse cross-sample signature can be defined as
a set of genomic regions R = {(si , ti) : si < ti, i = 1, . . . ,M} and an associated
n×M matrix X such that an approximation ŷ for y can be constructed solely using
the information in R and X. To evaluate the approximation, one may use the sum of
squared errors

T∑

i=1

N∑

j=1

(yij − ŷij )2.

We seek signatures where M 	 T . Then, the matrix X can be used in place of the
matrix y in downstream clustering, classification, and regression modeling. This is
still largely an open problem, with much ongoing work. Here, we describe a solution
given in [60] based on an extension of the CBS algorithm:

Algorithm 1 (Multisample Circular Binary Segmentation) Fix the global signifi-
cance level α, parameter p, and maximum window T0 < T . We denote by Yh:k the
matrix {yi,t : i = 1, . . . ,N, t = h, . . . , k}.
1. Initialize T1 = 1 and T2 = T .
2. Compute

Zmax = max
T1≤s<t≤T2
1≤t−s≤T0

{
Z(s, t)

}
.

Let (s∗, t∗) be the maximizing interval.
3. If the p-value of Zmax, as computed using approximations give in [60], is less

than α, then for each (u, v) ∈ {(T1, s
∗ − 1), (s∗, t∗), (t∗ + 1, T2)}, do:

a. Determine the carriers of the variant. For all t = u, . . . , v, if a sample carries
the variation, let ŷi,t = ȳi,u:v , and for the other samples, let ŷi,t = ȳi,T1:T2 . Let
Y ′u:v = Yu:v− Ŷu:v , where Ŷu:v is the matrix {ŷi,t : i = 1, . . . ,N, t = u, . . . , v}.

b. Repeat steps 2–3 for T1 = u, T2 = v, and the newly normalized Y ′u:v .

This algorithm, like CBS, recursively scans the genome for intervals that maxi-
mize the sum of chi-square statistic. If the p-value of the maximum is smaller than
a predefined threshold, a cut is made at the maximizing interval. Then, the carriers
of the variant, i.e., samples whose mean level actually changes in the interval, are
determined. There are many ways of determining the carriers, some simple ad hoc
solutions are given in [60]. A box-shaped signal is estimated for the carriers, while
a flat line is fitted for the noncarriers. Residuals are taken, and the regions to the left,
center, and right of the cut are recursively segmented using the same procedure.

The multisample CBS algorithm was used to analyze the 9p21 deletion in child-
hood leukemia [43] to give the sparse cross sample signature shown in Fig. 14.4.
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14.6 Concluding Remarks

In this chapter, we surveyed some of the recent developments in the analysis of DNA
copy number data from microarray platforms. These analyses started with a focus
on single-sample total copy number segmentation. Now, new statistical and com-
putational challenges arise in the proper extraction of allele-specific information
from DNA genotyping arrays and in the analysis of DNA copy number data from
multisample, multiplatform experiments. These applications have inspired new de-
velopments in change-point models, especially in the formulation of simultaneous
change-point models over multiple sequences. The theory underlying these mod-
els may prove useful to other applications, especially other types of genome-wide
profiling.

There is much ongoing work on the integrated analysis of DNA copy number
data with gene expression, protein expression, and methylation data. Although such
studies are well motivated on the biological side, there is a shortage of statistical
models in this area. For recent progress on this problem, see [37] and [36].

Since detection of copy number variants is a zero cost by-product of the geno-
typing arrays used in association studies, there is much motivation for using them
in existing association studies. However, further statistical work and biological evi-
dence is need to determine how to utilize the copy number information in studies of
genetic inheritance. Advances in this area rest on the understanding of how CNVs
segregate in a population [41] and the selective pressures acting on CNVs [10]. For
a nice survey on this problem, see [29].

When interpreting the results from microarray-based copy number studies, we
must carefully note that these assays are noisy and prone to cross hybridization,
especially in repetitive regions or regions with complex rearrangements [10]. Con-
cordance of CNVs detected using microarrays with those detected through sequenc-
ing experiments is incredibly low [10, 31, 59]. To date, biological confirmation of
CNV detection methods has been limited to small-scale experiments involving, for
example, male vs. female copy number on the X chromosome or confirmation of a
few known CNVs. New sequencing-based technologies, especially paired end map-
ping [22, 23], will be invaluable complementary tools in CNV discovery and in
characterization of structural variants in the genome.
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Chapter 15
Spatial Disease Surveillance: Methods
and Applications

Tonglin Zhang

15.1 Introduction

The availability of geographical indexed health and population data and statistical
methodologies have enabled the realistic investigation of spatial variation in disease
risks, particular at the small unit level. Recently, incidence or mortality counts at
county level have been announced on the website of the United States Centers for
Disease Control and Prevention (CDC). Due to the reason of privacy, CDC does
not announce the exact locations of disease events. Instead, it only announces the
disease counts aggregated over geographical units, such as at the county or zipcode
level. As this is also common in most countries, spatial disease surveillance there-
fore focuses on methodology development for aggregated data.

Overall, statistical approaches for disease incidence or mortality fall into two
classes of approaches: cluster detection approaches and disease mapping ap-
proaches. Cluster detection approaches, which are also called hypothesis testing
approaches or frequentist approaches, are expected to test and locate spatial clus-
ters in the study area. These approaches can also be classified into two categories:
general testing approaches or focused testing approaches [5]. General testing ap-
proaches, also called general tests, consist of a single global test statistic associated
with the null hypothesis of no spatial clusters [3, 8, 16, 37, 40]. They usually col-
lect evidence of the existence of clusters throughout the whole study area without
evaluating the statistical significance of a particular cluster. If the null hypothesis is
rejected, a global statistic cannot give the location of the spatial clusters. Focused
testing approaches, also called focused tests, are designed to locate the spatial clus-
ter around a prespecified point in the study area [2, 16, 21, 23, 43].

Disease mapping is defined as the estimation and presentation of unit summary
measurements of disease counts [26]. The aims of disease mapping include sim-
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ple description, hypothesis generation, allocation of health care resources, assess-
ment of inequalities, and estimation of background variability in underlying dis-
ease risk [39]. A disease mapping method, which is typically specified under the
Bayesian framework, produces smooth estimates of unit-specific disease rates suit-
able for mapping [6]. Those approaches are usually carried out with Poisson models
under the Bayesian framework with random effect having either spatial correlated or
uncorrelated extra variation [26]. In general, disease mapping approaches are able to
capture gradual and global variations of disease rates and are less useful in detecting
abrupt, localized variations [14]. Typical Bayesian approaches address the disease
clustering problem including Lawson [25, 26], Green and Richardson [18], and Dig-
gle [10]. Since a disease mapping approach usually is not tractable analytically, the
intractability of the posterior distribution has led to the use of Markov Chain Monte
Carlo (MCMC) simulation methods to generate samples from joint distributions.

Some Background Suppose that a study area is partitioned into m disjoint (sub-
area) units. Let Yi be the disease count, yi be the observed count, and ni be the at
risk population size in unit i for i = 1, . . . ,m. Assume that Yi follows (or approxi-
mately follows) a Poisson distribution; it has been known that this is appropriate in
most rare disease studies in spatial epidemiology [3, 24, 26, 36, 37, 45]. Then, the
statistical model can be specified as

Yi ∼ Poisson(θiEi) (15.1)

conditionally independently for i = 1,2, . . . ,m, where θi is an unknown parame-
ter, and Ei is an expected count proportional to the known population size. In this
model, θi is often called the relative risk, and the observed value of θi , denoted by
yi/ni , is often called the standard morbidity rate (SMR) [26].

The spatial variation of θi is modeled via the generalized linear mixed effect
models [28, 35, 44], which is usually modeled differently in cluster detection ap-
proaches or disease mapping approaches. In a cluster detection approach, Yi are
usually assumed marginally independently distributed with different expected risks
for units within the cluster or outside of the cluster, respectively [4, 18, 21]. In the
simplest case, suppose that C is the only cluster in the study area. A statistical model
in a hypothesis testing approach assumes that θi = θc if i ∈ C and θi = θ0 if i �∈ C.
If θc > θ0, C is a hot spot. If θc < θ0, C is a cool spot. Multiple cluster cases can
also be modeled similarly. Even though people often focus on the hot spot detection
problem, the cool spot detection problem is also important [46].

In a disease mapping approach, θi is no longer treated as an unknown parameter.
Instead, it is treated as a random variable. Commonly the prior for θi in model (15.1)
is specified as [39]

log(θi)= μi +Ui, (15.2)

where μi is a linear combination of fixed effects, and Ui is a spatial dependent
random effect (mostly assuming normally distributed). Since Poisson distribution
with a lognormal prior has no an analytic solution, numerical methods are applied,
such as using quasi-likelihood and MCMC methods (see Lawson [26, p. 42]).
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The organization of the sections of this chapter is as follows. In Sect. 15.2,
we will review several well-known hypothesis testing approaches in details. In
Sect. 15.3, we will review a few disease mapping approaches briefly. In Sect. 15.4,
we will compare well-known hypothesis testing approaches by simulation and case
studies. In the end, we will provide concluding remarks.

15.2 Review of Cluster Detection Approaches

Even though both hypothesis testing approaches and disease mapping approaches
can be used to analyze spatial patterns for disease, hypothesis testing approaches are
more commonly used than disease mapping approaches. In most hypothesis testing
approaches (e.g., see [37, 39]), the null hypothesis is

H0 : θ1 = θ2 = · · · = θm.
It means that, under the null hypothesis, the expected count is proportional to the at
risk population. The alternative hypothesis is defined differently according to inter-
ests of problems. For example, in the hot spot only study, the alternative hypothesis
is defined as

H1 :E(Yi)= θni(1+ δi)
with δi > 0 if unit i is within the cluster and δi = 0 if unit i is outside of the cluster
[18, 21]. Here, θ is the overall average of the disease rate, and θ is an unknown
parameter. In the hot and cool spot study, the alternative hypothesis allows δi taking
negative values, so that δi > 0 if unit i is within in a hot spot cluster and δi < 0 if
unit i is within in a cool spot cluster.

Several traditional hypothesis testing methods can assess the null hypothesis via
the examination of the set Yi and ni , such as methods of tests by using the Pearson
χ2 goodness-of-fit statistic and the deviance (or likelihood ratio) goodness-of-fit
statistic. Assume that ŷi is the predicted count of the ith unit under the null hypoth-
esis; then the Pearson χ2 statistic is defined (see [1, p. 22]) as

X2 =
m∑

i=1

(yi − ŷi )2
ŷi

,

and the deviance statistic (see [1, p. 142], for detail) is defined as

G2 =
m∑

i=1

2yi log(yi/ŷi).

Under H0, both X2 and G2 approximately follow a chi-squared distribution with
m− p degrees of freedom, where p is the number of parameters contained in the
model under the null hypothesis. The null hypothesis is rejected ifX2 orG2 is large.
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Since goodness-of-fit statistics are not specified for test of spatial variations, they
cannot be used in cluster detection and localization problems. When the null hypoth-
esis is rejected, goodness-of-fit statistics only indicate heterogeneous disease risks
which could have two different interpretations: the first one is the heterogeneous
risks without spatial dependence, and the second one is the heterogeneous risk with
spatial dependence. In addition, the null hypothesis of no spatial clusters may pro-
vide a mechanism for inducing various forms of overdispersion. In particular, if θi
are an iid sample from a probability density function, X2 or G2 may also be signif-
icant, but in this case the truth is still the null hypothesis [20]. In the following, we
review several well-known hypothesis testing methods that have been extensively
used in detection and localization of disease incidence or mortality clusters.

15.2.1 Scan Statistics

Kulldorff developed the spatial scan statistic by combing time series scan statis-
tic [32] and spatial analysis machine (GAM) methods [33]. The spatial scan test
uses a moving circle of varying size to find a set of regions or points that maxi-
mizes the likelihood ratio test for the null hypothesis of a purely random Poisson
or Bernoulli process. Time can be included for a space-time scan test. Categorical
covariates, such as age group and sex, can be included as control variables. Recent
developments have led to various modifications of scan statistics for cluster shape
detections [4].

In Kulldorff’s scan method, the local cluster C is unknown and is the key issue
to be determined by the method. In the most general case, any connected subset of
units can be a candidate of the cluster. Since the number of units is finite, the number
of candidates is also finite. However, even if m is not quite large, the number of
candidates of clusters can also be extremely large. For example, when m = 30, it
could be as large as O(2m)=O(230). Therefore, scan method and its modifications
consider only a small portion of the possible candidates. For example, Kulldorff
considers circular or rectangle subsets as the candidates of clusters, and his circular
and rectangle spatial scan statistic has been used extensively along with his software
SaTScan [22]. Tango and Takahashi’s modified flex scan considers a small portion
of subsets of connected units [38].

Suppose C is the (small portion of) collect of candidates of clusters. For a C ∈ C ,
the scan statistic detects any units within a cluster C in which counts are signifi-
cantly higher (or lower) than expected. The test compares the total number of disease
counts, yc =∑i∈C yi , within C with the total number of counts, yc̄ =∑i �∈C yi , out-
side of C, given the corresponding at-risk populations inside and outside of C, de-
noted by nc =∑i∈C ni and nc̄ =∑i �∈C ni , respectively. Let y = yc + yc̄ =∑m

i=1 yi

and n = nc + nc̄ =∑m
i=1 ni . Assume that θi = θc for i ∈ C and θi = θ0 for i �∈ C.

To test the null hypothesis of H0 : θc = θ0 against the alternative hypothesis of
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H1 : θc > θ0, Kulldorff developed the likelihood ratio as

ΛC = maxθc>θ0 L(C, θc, θ0)

maxθc=θ0 L(C, θc, θ0)
=
(
yc/nc

y/n

)yc(yc̄/nc̄

y/n

)yc̄

when yc/nc ≥ yc̄/nc̄ and ΛC = 1 otherwise, where L(C, θc, θ0) is the likelihood
function. Since C is unknown, it can be treated as a parameter, and the maximum
likelihood ratio test statistic for unspecified spatial cluster C is given by

Λ=max
C∈C

ΛC. (15.3)

Like most test statistics, Kulldorff’s scan statistic also has some limitations. For
instance, it cannot directly include ecological covariates and overdispersion. In ad-
dition, the spatial scan statistic does not account for overdispersion. We display a
modification of Kulldorff’s scan statistic below, so that spatial analysts are not only
able to include ecological covariates but also able to account for overdispersion [45].

Modifications Recently, Zhang, and Lin [45] have proposed a modification of
Kulldorff’s scan statistic to account for ecological covariates and overdispersion.
Suppose that we only allow the existence of hot spot. The model-based spatial scan
statistics use the concept of relative risk to introduce a spatial loglinear model:

log(θi)= xtiβ + αi, (15.4)

where β is the vector of coefficients of parameters, αi is the cluster indicator defined
as αi = αc if i ∈ C and αi = α0 if i �∈ C. By the constraint, α0 is always set as
α0 = 0. Under the null hypothesis of H0 : αc = 0, model (15.4) becomes

log(θi)= xtiβ. (15.5)

Under the alternative hypothesis of H1 : αc > 0 for some C, model (15.4) becomes

log(θi)= xtiβ + αcIi∈C. (15.6)

When C is given, the MLE (maximum likelihood estimate) of β under the null
hypothesis and the MLE of αc and β under the alternative hypothesis can easily be
derived (see [1, 13]). Let β̂0 be the MLE under the null hypothesis, and α̂c and β̂1

be the MLE under the alternative hypothesis. The predicted counts based on H0 and

H1 can be derived by ŷ0
i = niexti β̂0 and ŷ1

i = niextiβ+α̂cIi∈C , respectively. Let G2
0 and

X2
0 be the deviance and Pearson goodness-of-fit statistics under model (15.5), and
G2

1 and X2
1 be those under model (15.6). Then, the deviance statistic, the Pearson

statistic, and the Wald statistic for the significance test of the cluster C are

G2
c =G2

0 −G2
1; X2

c =X2
0 −X2

1; Zc = α̂c

σ̂α̂c
,
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where σ̂α̂c is the estimate of the standard error of α̂c under (15.6). Following Kull-
dorff, the model-based deviance scan statistic, Pearson scan statistic, and Wald scan
statistic can be readily defined respectively as

G2
s =max

C∈C
G2
C, X2

s =max
C∈C

X2
C, Zs =max

C∈C
ZC. (15.7)

For G2
s , X

2
s , or Zs , we reject H0 and claim the existence of spatial clusters if the

value is large. If we also allow the existence of cool spot, we can take the sign of Zc
into consideration by modifying the definitions in (15.7).

Modification for Overdispersion Overdispersion can occur in the spatial Poisson
process either because of spatially correlated data or because of spatially varied
cases and populations from a large number of spatial units. To gauge and to reduce
the potential effect of overdispersion, a dispersion parameter denoted by φ can be
introduced via the quasi-Poisson model [30]. When φ = 1, it is a regular Poisson
regression without overdispersion. When φ > 1, it is the Poisson regression with
overdispersion. An estimate of the dispersion parameter can be used:

φ̂c =max

(
X2

1

dfC,res
,1

)

,

where dfc,res is the residual degree of freedom of model (15.6). When the dispersion
parameter is considered, the G2

c , X
2
c , and Z2

c should be modified accordingly as

G2
c,o =G2

c/φ̂c , X
2
c,o =X2

c /φ̂c , and Zc,o = Zc/
√

φ̂c , which implies that G2
s,o, X

2
s,o,

and Zs,o can also be modified accordingly via similar equations as those in (15.7),
respectively.

Similar to Kulldorff’s spatial scan statistic Λ, the null distributions of test statis-
tics are not analytically tractable. Therefore, we follow Kulldorff’s idea to compute
their p-values by the bootstrap method. The null hypothesis of no clustering is re-
jected for largeG2

s , X
2
s , or Zs values without adjusting overdispersion, and for large

G2
s,o, X

2
s,o, and Zs,o values with adjusting overdispersion. The corresponding boot-

strap p-value is the rank of the real observed values in the corresponding bootstrap
distribution. Following Kulldorff [21], the p-values are calculated by a bootstrap
method conditionally on the total number of counts by the following algorithm.

Bootstrap for the p-Values of G2
s , X

2
s , Zs , G2

s,o, X
2
s,o, or Zs,o

(i) Let T be the test statistic. Calculate the observed value (denoted by T ∗) of T
based on the real data.

(ii) Derive the predicted counts ŷi under the null model (15.5).
(iii) Generate K independent multinomial random variables with total counts equal

to y and proportional vector equal to (ŷ1/y, . . . , ŷm/y). Calculate the simu-
lated values T ∗k,sim of T .

(iv) Report the p-values of T by #{T ∗k,sim ≥ T ∗ : k = 1,2, . . . ,K}/K , where #(A)
represents the number of elements in a set A.
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15.2.2 Permutation Testing Methods

A number of permutation testing methods have been proposed in detecting clus-
ters. Almost all of them need a well-defined measure of the closeness (or weight)
between two units. Let wij be the measure of the closeness between units i and
j [7]. In the simplest case, we can take wij = 1 if units i and j are adjacent and 0
otherwise. Another common choice is to use a decreasing function of the distance
between the centroids of units i and j . We now describe three permutation testing
methods: they are Moran’s I [31], Geary’s c [15], and Getis–Ord’s G [16]. Even
though there are quite a few other methods, we choose these three methods because
they are the most popular methods in cluster detection.

Let zi be the variable of interest at unit i. Moran’s I is defined as

I = 1

S0b2

m∑

i=1

m∑

j=1,j �=i
wij (zi − z̄)(zj − z̄), (15.8)

where S0 = ∑m
i=1
∑m
j=1,j �=i wij , z̄ = ∑m

i=1 zi/m, and bk = ∑m
i=1(zi − z̄)k/m.

Moran’s I statistic usually ranges between −1 and 1 even though its absolute value
could be over 1 in extreme cases. With a coefficient close to −1, Moran’s I indi-
cates neighborhood dissimilarity; with a coefficient close to 1, Moran’s I indicates
neighborhood similarity. When the coefficient of Moran’s I is close to 0, it indicates
spatial randomness or independence [7].

Geary’s c statistic is defined as

c=
(
m− 1

2mb2S0

) m∑

i=1

m∑

j=1,j �=i
wij (zi − zj )2. (15.9)

Geary’s c is always positive, with a small value indicating neighborhood similarity,
a large value indicating neighborhood dissimilarity, and a value close to 1 indicating
spatial randomness or independence [41]. Getis–Ord’s G statistic is given by

G=
∑m
i=1
∑m
j=1,j �=i wij zizj

∑m
i=1
∑m
j=1,j �=i zizj

, (15.10)

with a small value indicating neighbor dissimilarity and a large value indicating
neighbor similarity.

The p-values of Moran’s I , Geary’s c, and Getis’s G are computed under ran-
dom permutation test schemes. A random permutation test generally calculates the
moments of the test statistic under every possible arrangement of the data. These ar-
rangements would be used to generate the distribution of the test statistic under the
null hypothesis. A related approach uses many Monte Carlo rearrangements of the
data rather than enumeration of all of the possible arrangements [12]. If the number
of Monte Carlo rearrangements is large and each arrangement has equal probability
in each Monte Carlo replicate, then the exact test and Monte Carlo permutation test
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will have similar results, and the Monte Carlo permutation test is asymptotically
equivalent to the exact permutation test [17, pp. 185–187]. Note that for a general
m, there are m! possible permutation arrangements in the exact permutation test.
It is generally impossible to obtain the exact moments of a test statistic under the
permutation test scheme. However, since the numerators of Moran’s I , Geary’s c,
and Getis–Ord’s G are in quadratic form and their denominators are permutation
invariant, the exact expressions of their moments under random permutation test
scheme are available and have been included in the many textbooks (e.g., see Cliff
and Ord [7]). In the following, we denote by ER(·) and VR(·) the expected value
and variance of a statistic under the exact permutation test scheme. Formulae of the
moments then are given below accordingly:

ER(I)=− 1

m− 1
, ER(c)= 1, ER(G)= S0

m(m− 1)
,

and

ER
(
I 2) = S1(mb

2
2 − b4)

S2
0b

2
2(m− 1)

+ (S2 − 2S1)(2b4 −mb2
2)

S2
0b

2
2(m− 1)(m− 2)

+ (S
2
0 − S2 + S1)(3mb2

2 − 6b4)

S2
0b

2
2(m− 1)(m− 2)(m− 3)

,

ER
(
c2) = S1(m− 1)(b4 + 3b2

2)

2mS2
0b

2
2

+ (S2 − 2S1)(m− 1)(3b2
2 + b4)

4S2
0b

2
2
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where Bk = ∑m
i=1 z

k
i /m, S1 = ∑m

i=1
∑m
j=1,j �=i (wij + wji)

2/2, and S2 =
∑m
i=1[

∑m
j=1,j �=i (wij + wji)]2. Their variances are VR(I) = ER(I 2) − E2

R(I),

VR(c) = ER(c2) − E2
R(c), and VR(G) = ER(G2) − E2

R(G). Assuming that I , c,
and G are asymptotically normal, their p-values are calculated by a two-sided z-
test as 2[1−Φ(| I−ER(I)√

VR(I)
|)] for I statistic, 2[1−Φ(| c−ER(c)√

VR(c)
|)] for c statistic, and

2[1−Φ(|G−ER(G)√
VR(G)

|)] for G statistic. If the p-values are less than the significance
level, then the null hypothesis of spatial independence is rejected, and spatial de-
pendence is concluded.
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The common choice of zi can be the observed rate, the Pearson residual, or the
deviance residual in model (15.5). The statistics given by (15.8), (15.9), and (15.10)
then become the rate based as denoted by Ir , cr , orGr , the Pearson residual based as
denoted by IPR, cPR, orGPR or deviance residual based as denoted by IDR, cDR, and
GDR. It has been shown that the Pearson residual-based and the deviance residual-
based test statistics are more reliable than the rate-based test statistics [46].

Simply looking at the values of Moran’s I , Geary’s c, and Getis–Ord G is not
able to locate the detected cluster. Therefore, local versions of these statistics have
been proposed. The most common used local versions (called focused tests) are
local Moran’s Ii . Together with local Geary’s ci , it is called LISA in the spatial
statistical literature [2]. Another commonly used focused test is Getis–Ord’s local
Gi [16]. Local Ii , ci , and Gi are complementary of the global test statistics.

Anselin’s LISA [2] has two components of the statistics: the local Ii is defined
as

Ii = (zi − z̄)
b2

m∑

j=1,j �=i
wij (zj − z̄);

the local ci is defined as

ci = 1

b2

m∑

j=1,j �=i
wij (zi − zj )2

for i = 1, . . . ,m; and Getis–Ord’s Gi [16] is defined as

Gi =
∑m
j=1,j �=i wij zj
∑m
j=1,j �=i zj

.

Similarly to the method used in computation of the moments of the global statis-
tics, the moments of Ii , ci , and Gi are also computed under the permutation test
scheme. The results are

ER(Ii)=− wi·
m− 1

, ER(ci)= 2mwi·
m− 1

, ER(Gi)= wi·
m− 1

,

and
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,

where wi· =∑m
j=1,j �=i wij and wi(2) =∑m

j=1,j �=i
∑m
k=1,k �=i wijwik .
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As those for the global statistics, the p-values of the local statistics are also sug-
gested to be calculated under the asymptotic normality assumption. Based on the
z-test scheme for Ii and Gi , local similarity or dissimilarity is obtained if their val-
ues are greater than or less than its permutation expected value with a significance
p-value, respectively. For local ci , the conclusion is opposite: local similarity is ob-
tained if ci is less than its permutation expected value with a significance p-value,
and local dissimilarity is obtained if ci is greater than its permutation expected value
with a significance p-value. Since all of them encounter the multiple testing prob-
lems, Ii , ci , and Gi are only recommended to use when their global statistics are
significant [2, 16].

15.2.3 Other Methods

Even though Kulldorff’s scan, Moran’s I , Geary’s c, and Getis–Ord’s G are the
most commonly used statistics, a few other testing methods are also proposed in
spatial statistical literature. Examples include Tango’s CG [37], Whittemore’s T
statistic [42], Rogerson’s R statistic [36], and Besag–Newell’s R statistic [5]. How-
ever, we are not able to describe any of them here. The reason for us to introduce
in Sects. 15.2.1 and 15.2.2 Kulldorff’s scan and permutation tests is that they have
already been incorporated in many statistical software packages, which make them
more popular than other statistics.

15.3 Review of Disease Mapping Approaches

In disease mapping, the rare disease counts Yi are assumed conditionally indepen-
dently following Poisson distributions, but their conditional expected values are
spatially dependent. Disease mapping approaches are often formulated under the
framework of Bayesian hierarchical models. As the unit-specified MLEs of the rel-
ative risks given by θ̂i = yi/ni is highly unstable, more robust estimation is provided
by specifying a joint model for θ = (θ1, θ2, . . . , θm), which allows the estimate of
each θi to borrow strength from its neighboring units. This can be achieved by using
a multivariate prior distribution for θ .

A common model in disease mapping methods is usually modified from model
(15.2) as

log(θi)= α +Xtiβ +Ui, (15.11)

where Ui is a spatial random effect term to be specified by a prior distribution. This
method has been previously studied by Diggle et al. [11] and Wakefield et al. [39].

In model (15.11), spatial dependence is described by random effects Ui . Two
common methods are proposed to model spatial dependence: the first one models
spatial dependence by a spatial autoregressive (SAR) model [34], and the second
one models spatial dependence by a geostatistical model [11].
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Let U = (U1,U2, . . . ,Um)
t . The SAR model is formulated as

U = ρWU + ε. (15.12)

In (15.12), U is an m-dimensional vector of dependent variables, the scalar ρ is
called the spatial autoregressive parameter, the error term ε is assumed to be iid
N(0, σ 2) distributed, and W = (wij )m×m is the spatial weight matrix with wii = 0
for the description of the closeness between units i and j as before. By convention,
we usually set wii = 0, wij ≥ 0, and

∑m
j=1wij = 1.

An SAR model is usually not stationary. It describes the spatial autocorrelation
between neighboring units. Spatial autocorrelation is a measure of spatial depen-
dence between values of random variables over geographic units. The sign of the
spatial autoregressive parameter ρ in model (15.12) indicates two types of spatial
autocorrelation, positive autocorrelation and negative autocorrelation, in which a
positive autocorrelation captures the existence of high-value clustering or low-value
clustering (or hot spots and cool spots), while a negative autocorrelation captures
the juxtaposition of high values next to low values [19, 27, 44].

A geostatistical model assumes

U ∼N(0, σ 2R
)
,

where σ 2 is the common marginal variance. The correlation matrix R is modeled
by an isotopic correlation function. Let h be the distance between two points over
the space. We say the correlation function C(h) is isotopic if it only depends on the
L2 norm value ‖h‖ of h. When C(·) is chosen, the correction matrix R is defined by
R = (c(dij ))m×m, where dij is the distance between units i and j . A common way
to define C(h) is to use the parametric way. For example, C(h) can be the famous
Matérn correlation function

C(h)= cν(h)= ν1

2α−1"(α)

(
h

ν2

)α

Kα

(
h

ν2

)

, ‖h‖> 0,

for 0≤ ν1 < 1, ν2 > 0, and Kα(·) is the modified Bessel function.
In disease mapping, the prior distribution for U is implemented in the Bayesian

computation of the posterior risks. This leads to the use of MCMC simulation meth-
ods to generate samples from the joint posterior distribution. Details of the com-
putational algorithms using MCMC methods are provided in many textbooks (e.g.,
see [26]).

15.4 Simulation and Case Study

Some results of this section have been published in a journal article joint with Ge
Lin [45].

In both simulation and case studies, we used real-world data based on 110 coun-
ties in Guangxi Zhuang ethnic Province. Guangxi is one of five autonomous ethnic
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minority regions in China. We obtained the county-level infant birth and death data
from the 2000 Census in China. Infant mortality rates vary substantially among
these counties, ranging from 248 to 7260 per 100,000 (Fig. 15.1). Guangxi for the
most part is mountainous and is considered a less developed region in southwestern
China. The county-level elevations range from 20 to 1,140 meters above sea level,
lower in the southeast and higher toward the west. In the absence of other variables,
elevation is a good measure of access to care, education, and other socioeconomic
resources. For this reason, we included elevation in both simulation and the case
study.

15.4.1 Simulation

We evaluated the type I error probabilities and the power functions of well-known
hypothesis testing methods reviewed in Sect. 15.2. For a pure spatial situation, the
model-based likelihood ratio scan statistic is equivalent to the original spatial scan
statistic, and its statistical powers have been thoroughly evaluated [24]. For this
reason, we opted to evaluate the performance of these model-based scan statistics
by including an ecological covariate. For simplicity, we define the size of a local
cluster or spatial association by a county and its adjacent counties [29], which can be
indexed by a column vector (wi ) in the spatial weight matrix. We used 110 counties
to generate the spatial weight matrix based on spatial adjacency and used infant
births (ni ) and deaths (Yi ) and elevations x to fit a baseline model. Assuming that
E(Yi)= θini , we fitted a baseline model with the quadratic function of elevation as
ecological covariates. The fitted model is

log(θi)=−4.160+ 2.07× 10−3x − 1.27× 10−6x2. (15.13)

The coefficient of the quadratic term in the fitted model was negative. The maximum
predicted mortality rate was (2.07 × 10−3)/(2 × 1.27 × 10−6) = 815. Since the
elevation of most counties (103 out of 110) is lower than 815 meters, model (15.13)
suggests that the infant mortality rate increased as elevation increased.

Model (15.13) serves as a baseline model for generating a new response and a
local cluster term. We inserted a seven-county cluster C in the baseline model with
its center at Pingnan, a nonborder county, and the new response variable Y ′i was then
generated from

log
(
θ ′i
)= ηi +Ui =−4.160+ 2.07× 10−3x − 1.27× 10−6x2 + δIi∈C +Ui,

where θ ′i = E(Y ′i )/ni , Ii∈C is the indicator function, which is 1 if i ∈ C and 0
otherwise. The random effect Ui is generated independently from N(−σ 2

i /2, σ
2
i )

with σ 2
i = log[1+ (φ−1)e−ηi ], so that marginally we have the quasi-Poisson model

as

V (Yi)

E(yi)
= φ, φ ≥ 1.
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Table 15.1 Rejection rate based on 1000 simulated data sets when φ = 1

δ G2
s Zs G2

s,o Zs,o IDR

0.0 6.0 5.8 4.5 4.3 5.8

0.025 7.1 6.8 7.1 6.8 6.4

0.05 14.9 14.9 12.6 12.6 8.3

0.075 37.4 37.9 39.4 39.4 23.1

0.1 71.6 72.3 72.4 73.5 48.7

0.125 93.9 94.3 94.2 95.0 75.0

0.15 99.1 99.2 99.3 99.3 92.9

0.175 100.0 100.0 100. 100.0 99.0

0.20 100.0 100.0 100.0 100.0 100.0

We used δ to measure the strength of the cluster from 0 to 0.20 or 20% more
than the logarithm of the relative risk outside of the cluster. We used φ to measure
the overdispersion. Since the model was exactly Poisson when φ = 1, there was no
overdispersion for the simulated data. However, when φ > 1, there was overdisper-
sion. As φ is larger, the overdispersion becomes stronger.

In the simulation, we compared the type I error ratesG2
s , Zs ,G

2
s,o, Zs,o, and IPR

when δ = 0 and their power functions based on 1000 runs for each selected δ (Ta-
ble 15.1). Since deviance residual-based test statistics and Pearson residual-based
test statistics are defined from goodness-of-fit statistics in nature, we did not include
X2
s , X2

s,o, and IPR in Table 15.1. We obtained p-values of IDR from permutation
testing methods, and p-values of scan statistics from bootstrap method with 1000
replications. Since a spatial cluster can be treated as a spatial association term or an
explanatory variable in the loglinear model, we scanned all counties and searched
for the spatial association term that yielded the largest likelihood ratio or Wald z-
value. We fixed the significance level at 0.05. We evaluated the power of the inserted
cluster by the percentage of p-values that were less than or equal to the significance
level.

When no overdispersion was not present (φ = 1), the type I error and power func-
tions of the four model-based spatial scan statistics were consistent. All the model-
based scan statistics had acceptable type I error probabilities, with 6.0%, 5.8%,
4.5%, and 4.3% respectively for G2

s , Zs , G
2
s,o, and Zs,o. As δ or cluster strength

increased, the power functions of detectability increased rapidly while accounting
for ecological covariates. They were all able to detect the existence of the cluster
with moderate cluster strength. When the relative risk inside the cluster was 0.175
more than outside the cluster, the powers were all 100%. The Wald-based spatial
scan statistics also performed well in comparison to the likelihood ratio-based scan
statistic. As shown in Table 15.1, IDR was not as powerful as scan statistics.

We also did a simulation study when overdispersion was present by taking φ = 2.
In this case when δ = 0, the rejection rate of G2

s or Z2
s was over 50%, the rejec-

tion rate of G2
s,o or Zs,o was around 10%, but the rejection rate of IPR was still

around 5%. This indicates that the type I error probabilities of scan statistics are in-
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flated, but the type I error probabilities of permutation testing method are not inflated
when overdispersion is present, and the proposed scan statistics with the adjustment
of overdispersion significantly reduced type I error probabilities.

To briefly summarize, type I error probabilities and power functions for G2
s , Zs ,

Z2
s,o, and Zs,o were all comparable for a given cluster strength when overdispersion

was not present. In the presence of a strong cluster, all three were able to correctly
identified the cluster center 99% of the time. Even though we did not evaluate the
pure spatial process without any ecological covariates, we expected the same results
based on the formulations for G2

s and Zs ; for example, see details on pages 37–
40 in [9]. When overdispersion is present, G2

s,o and Zs,o have lower type I error
probabilities but are still higher than the nominal value. Moran’s I always keeps
type I error probabilities as low as the nominal value. In general, scan statistics
are more powerful than permutation testing methods, but they are sensitive to the
presence of overdispersion.

15.4.2 Case Study

Higher infant mortality in the Guangxi is a sensitive political issue for the central
government, which tries to improve living standards for all ethnic groups and na-
tionalities. It is already known that access to adequate primary care is an issue,
and primary care is more available in lowland counties than in highland and moun-
tainous counties. An interesting question, in addition to access to care, is what other
factors might play a role for high infant mortality in the province. Since local socioe-
conomic and health care data were not available, we used average county elevation
to approximate the lack of access. One of the coauthors was from the region, and our
task was to first identify local pockets of counties by controlling for the elevation
effect and then turn our findings over to provincial health officials for further health
disparity analyses.

We first fitted infant mortality rates with a loglinear model that includes a
quadratic elevation term as

log(θi)= β0 + β1x + β2x
2,

where x represented the county level elevation in meters. The estimated values were
β̂0 =−4.16, β̂1 = 2.07×10−3, and β̂2 =−1.27×10−6, with standard errors 2.22×
10−2, 1.21× 10−4, and 1.23× 10−7. Since both the linear term and quadratic term
of elevation were highly significant, we considered the following model for cluster
detection:

log(θi)= β0 + β1x + β2x
2 + αIi∈C,

where C ∈ C , and C is the collection of all candidates for a potential circular cluster.
In the analysis, we also considered potential overdispersion by using G2

s,o, Zs,o,
and IDR [29]. Since IDR does not suffer overdispersion, we use IDR to check for the
consistency of G2

s,o and Zs,o for adjustment of overdispersion. We used a stepwise
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Fig. 15.1 County level infant mortality rate per 100,000 in Guangxi, China in 2000 (for the color
version, see Color Plates on p. 393)

Table 15.2 Results from the stepwise scan for infant mortality in Guangxi based on 1000 simu-
lated data sets for the significance of G2

s , Zs , and Zs,0, where p-value is given in the brackets

φ̂ C G2
s Zs G2

s,o Zs,o IDR

29.1 w45 638 (0.001) 27.9 (0.001) 29.9 (0.001) 6.03 (0.001) 0.294 (0.001)

21.3 w51 196 (0.001) 14.3 (0.001) 9.74 (0.052) 3.17 (0.53) 0.124 (0.036)

20.2 w81 81.4 (0.001) 9.39 (0.001) 4.17 (0.690) 2.13 (0.638) 0.047 (0.381)

scan method searching for local clusters by treating a local cluster as an explanatory
variable indexed by wi . This method is identical to the spatial scan method for
detecting the first cluster. However, if multiple clusters exist, our method to scan
for the secondary cluster might be slightly different from the spatial scan statistic.
In SatScan, the secondary cluster is searched by considering the first cluster. In our
method, when the first cluster is identified, its effect is taken out by the first cluster
spatial association term, and an additional cluster term is used to scan and test for
the existence of an additional cluster. The stepwise scan stops if the test statistic is
no longer significant.

In the scan process, the first cluster was signaled with a p-value less than 0.001
for G2

s , Zs , Zs,o, and IDR (Table 15.2). This cluster, centered at Fangcheng Qu
(w45), is close to the border with Vietnam, and the area had dilapidated infrastruc-
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ture for years due to the 1979 Sino–Vietnam Border War. The second cluster was
signaled with a p-value less than 0.001 for G2

s and Zs . The p-values for IDR and
Zs,o were much weaker in the range. Even though the second cluster, centered at
Pubei Xian (w51), is not far from the Vietnam border, most counties were not near
the war zone. However, due to the war and prewar refugees who flooded into China
from Vietnam, the counties around Pubei Xian were a government-designated set-
tlement area, with a large influx of ethnic Chinese refugees from Vietnam. It was
likely that after 20 years, some refugees had resettled elsewhere, but many of them,
especially the poor, still lived on government-sponsored farms.

The signals for the potential third cluster were mixed. Even though the third
cluster was signaled from G2

s and Zs , the results from G2
s,o, Zs,o, and IDR were

not significant. The overdispersion parameters were greater than 20 among the first
three models, signaling a strong effect. SinceG2

s,o and Zs,o considers the adjustment
of the overdispersion problem, and the result is consistent with that from IDR, the
third possible cluster was much less trustworthy. Thus, the stepwise spatial scan
procedure was stopped, and it concluded the existence of two clusters centered at
Fangcheng Qu and at Pubei Xian (Fig. 15.1). The final model, therefore, is

log(θi)=−4.52+ 3.24× 10−3x − 2.13× 10−6 + 0.927w45 + 0.365w51.

Based on the final model with two spatial association terms w45 and w51, we
calculated parameter estimates for elevation and its quadratic terms, 3.24 × 10−3

and −2.13 × 10−6, respectively (with corresponding z-values 24.31 and −16.31,
respectively). With the parameter estimate of overdispersion φ̂ = 20.16, the adjusted
z-values were 5.42 and −3.65, which were highly significant (with p-values less
than 0.001). Based on these parameter estimates, we further examined mortality
variation inside and outside of the clusters. The odds ratios of the first and second
clusters were 2.53 and 1.44, respectively. Taking elevation into consideration the
mortality rates of the counties within the first and second cluster were 153% or 44%
higher, respectively, than the expected value. Since the elevation that corresponds to
the maximum predicted mortality rate was about 760 meters, and there were only 12
counties above this level, the two detected clusters were the net effect of a general
positive relationship between elevation and infant mortality.

15.5 Concluding Remarks

We have outlined a number of cluster detection approaches and disease mapping
approaches in this book chapter. Certain issues are worth emphasized on. Given
the nature of disease incidence or mortality, it is important to point out that any
current method can be modified to adjust ecological covariates by a generalized lin-
ear model. This is particular interesting after a spatial cluster has been identified
since the following up study is to link the identified cluster with risk factors. Even
though there are many methods for cluster detection, their statistical properties have
not been understood. This makes the interpretation of discoveries difficult. Although
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most studies focus on detection of hot spot clusters, the presence of cool spot cluster
significantly influences the results of hot spot analysis. Modeling spatial dependence
is a typical difficult problem in disease mapping, because most disease mapping ap-
proaches are extremely computationally intensive. In most cases, estimation cannot
be found analytically, and thus an MCMC algorithm is applied. This is extremely
time consuming if we want to compare methods numerically.
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Chapter 16
From QTL Mapping to eQTL Analysis

Wei Zhang and Jun S. Liu

16.1 Introduction

Genetic loci that affect mRNA expression levels of other genes are referred to as
expression quantitative trait loci (eQTL). Discovering eQTLs by combining gene
expression data with genetic marker data is an important means to understand gene
regulation and to study disease mechanisms. EQTL mapping has been studied in
many species, e.g., yeast [1, 2], eucalyptus [3], mice [4–6], rats [7], and human
[8, 9]. Results from eQTL studies have been used for identifying hot spots [1, 4–7,
9, 54], constructing causal networks [6, 10–14], prioritizing lists of candidate genes
for clinical traits [5, 7, 13], and elucidating subclasses of clinical phenotypes [4, 5].

Most eQTL studies are based on linear regression models [15] in which each
trait variable is regressed against each marker variable. The p-value of the regres-
sion slope is reported as a measure of significance for the association. In the context
of multiple traits and markers, procedures such as false discovery rate (FDR) con-
trols [16, 17] can be used to control family-wise error rates. Despite the success of
this type of regression approach, a number of challenging problems remain. First,
these methods cannot easily assess the joint effect of multiple markers, i.e., epistatic
effects, beyond additive effects. Storey et al. [85] developed a step-wise regression
method to find eQTL pairs. This procedure, however, tends to miss eQTL pairs with
small marginal effects but a strong interaction effect. Second, there are often strong
correlations among expression levels for certain groups of genes, partially reflecting
coregulation of genes in biological pathways that may respond to common genetic
loci and environmental perturbations [2, 4, 14, 18, 19]. Previous findings of eQTL
“hot spots,” i.e., loci affecting a larger number of expression traits than expected
by chance, and their biological implications further enhance this notion and high-
light the biological importance of finding such gene “modules.” Mapping genetic
loci for multiple traits simultaneously is more powerful than mapping single traits
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at a time [20]. Although for a known small set of correlated traits, one can con-
duct QTL mapping for the principal components [21], this type of method becomes
ineffective when the set size is moderately large, or one has to enumerate all possi-
ble subsets. An alternative approach is to identify subsets of genes by a clustering
method and then fit mixture models to clusters of genes [22] or linear regression by
treating genes as multivariate responses [23]. The eQTL mapping then depends on
whether the clustering method can find the right number of clusters and the right
gene partitions.

In contrast, aforementioned issues can be partially addressed by the Bayesian
partition (BP) model [24]. In this framework, we introduce three sets of latent indi-
cator variables for genes, markers, and individuals and then systematically infer the
association between groups of genes and sets of markers. A Markov chain Monte
Carlo (MCMC) algorithm is designed to traverse the space of all possible partitions.
Simulation studies show that the proposed method achieves significantly improved
power in detecting eQTLs compared to traditional regression-based methods. A par-
ticular strength of the BP model is its ability to detect epistasis when the marginal
effects are weak, addressing a key weakness of all other eQTL mapping methods.

This chapter is organized as follows. We first give a brief description of the bio-
logical background of eQTL mapping in Sect. 16.2. Then in Sect. 16.3, we provide
a brief review of both QTL mapping methods and eQTL analysis methods. We ex-
plain the BP model in Sect. 16.4 and show some simulation results in Sect. 16.5. We
conclude the chapter with a short discussion in Sect. 16.6.

16.2 Biological Background

16.2.1 Genetic Experiments for eQTL Studies

Natural variation in gene expression is extensive in species from yeast to human.
The goal of the eQTL mapping is to correlate variations in the gene expression with
DNA variations. In such cases we say that the gene is linked to or mapped to the cor-
responding DNA region. One justification for studying genetics of gene expression
is that transcript abundance may act as an intermediate phenotype between genomic
sequence variation and more complex whole-body phenotypes.

The idea of carrying out genome-wide eQTL mapping was introduced by Jansen
and Nap [25] and Brem et al. [1]. The principal procedure for studying mice is out-
lined in Fig. 16.1. First two distinct inbred strains of mice are crossed to produce the
F1 generation, which has heterozygous alleles across the whole genome. In back-
cross design (Fig. 16.1(a)), the F1 generation is crossed with one of the parents
to produce the B1 generation. In intercross design (Fig. 16.1(b)), the F1 genera-
tion is crossed among themselves to produce the F2 generation. mRNA abundances
of the offspring are measured from microarray experiment, and the whole genome
is scanned generating thousands of SNPs. Due to recombination, the chromosome
in the derived offspring is a mosaic of the two grandparental chromosomes. Most
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Fig. 16.1 Backcross and intercross. All individuals within an inbred strain (F0) are genetically
identical and are homozygous at all loci. The two parental strains are crossed to produce the F1
generation. The F1 individuals are also genetically identical and are heterozygous at all loci. In (a),
the F1 generation is then crossed back to one of the parental strains to produce the backcross. In
(b), the F1 generation is crossed with itself to produce the intercross

eQTL mapping methods for backcross designs can be easily extended to intercross
designs. Intercross designs, in addition to being able to estimate dominant effect,
are usually more powerful than backcross designs [26].

The genetic markers are chosen to cover the whole genome. Two distance mea-
sures are used to specify the linear order of the marker loci along each chromosome:
the physical distance (b), which is the number of nucleotides between two loci, and
the genetic distance, measured in centimorgans (cM), which represents the average
number of crossovers between the two loci in 100 meioses. The probability of re-
combination r (also called the recombination rate or recombination fraction) can be
calculated from genetic distance d using Haldane’s map function r = (1− e−2d)/2.

16.2.2 EQTL Hot Spots

A common feature of eQTL studies is the detection of eQTL hot spots, i.e., genomic
regions that affect the expression of a much large number of genes than expected
by chance. For example, Brem et al. [1] detected eight eQTL hot spots in yeast
that affect the expression of a group of 7–94 genes of related functions. Additional
five hot spots were predicted using a larger sample size [2]. The existence of eQTL
hot spots is also prominent in arabidopsis [27, 28], mice [4, 6, 54], rats [7], and
human [9, 19]. The typical procedure in claiming a hot spot is dividing the genome
of the species under study into multiple fixed length windows and counting the
number of transcripts mapped to each window. A Fisher’s exact test is then used to
test whether a window contains significantly more eQTLs than expected.
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The existence of the hot spots is evidence for master regulators of the gene ex-
pression. Many genes that map to the same hot spots are enriched for functional gene
sets derived from Gene Ontology, and causal regulators are predicted near the hot
spot [2, 14], suggesting that the eQTL hot spots are biologically coherent. However,
complicated experiments are prone to misinterpretation. As Darvasi [29] pointed
out, the hot spots can be explained by clustering of genes with highly correlated ex-
pression, or the phenomenon is falsely inflated by the high false discovery rate due
to multiple testing. This is illustrated by a recent simulation study using real expres-
sion data from human pedigrees with an independently simulated SNP map [30].
Their analyses showed strong clustering of eQTLs, demonstrating that “ghost” hot
spots may result simply from a high correlation among mRNA levels.

16.2.3 eQTL and cQTL

EQTL mapping is a promising technique for the identification of genes relevant
to a complex disease. Major loci controlling complex phenotypes, such as obesity,
may affect genes of related function in the pathway. Thus, the mRNA expressions
of these downstream genes in the relevant pathways will be linked to the major
causative loci. By finding colocalized eQTL and traditional clinical QTL (cQTL),
it is possible to identify a list of candidate genes for the follow-up study of the dis-
ease. For example, in a rat eQTL mapping study [7], 255 cis-acting genes were
mapped to regions of physiological QTL affecting blood pressure related traits.
Among these genes, 73 have human orthologs that reside within known human
blood pressure loci, serving as candidates for follow-up studies of human hyper-
tension.

In addition, there may be heterogeneity among the causative loci for a given
disease in a population of interest. When present, this heterogeneity impacts the
ability to detect linkages to the causative loci, as the significance of any one locus
is diminished when the population is considered as a whole. EQTL data serves as
an alternative source to define a trait more accurately, generating genetically more
homogeneous groups of individuals. In a study of obesity, Schadt et al. [4] mapped
eQTLs and cQTLs for fat pad mass (FPM) in an F2 mice population. The mice
were raised in two different conditions with high versus low FPM. By clustering a
collection of genes differentially expressed between the two groups, they identified
two distinct subgroups within the high FPM group. Separate genetic analyses were
performed on two sets of individuals: (1) those classified as high FPM group 1
or low FPM; (2) those classified as high FPM group 2 or low FPM. QTLs of the
FPM trait fell in two nonoverlapping genomic regions, suggesting heterozygous
control of the FPM trait. When using the whole population to map FPM, the second
peak was missed, and the primary peak had reduced significance level. Despite its
success in identifying differential FPM QTLs, how to automatically detect genetic
heterogeneity using eQTL data remains an interesting open question.



16 From QTL Mapping to eQTL Analysis 305

16.3 Methods for QTL and eQTL Mappings

Quantitative trait loci (QTL) mapping generally refers to identifying the genetic
loci that are responsible for variation in a quantitative traits (such as the yield from
a crop, the body fat mass of a mouse, etc.). Pioneering genetic mapping studies can
be traced back to over 80 years ago, when Sax [31] showed that the association
between seed weight and seed coat color in beans is due to the linkage between
genes controlling weight and the genes controlling color. However, systematic and
accurate mapping of QTLs has not been possible because of the difficulty in ar-
ranging crosses with genetic markers densely spaced throughout the whole genome.
Recently, advances in genetics have made it possible to genotype markers on the
genome scale [32]. Large amount of QTL mapping studies follow the advent of
statistical methods [15, 33] for experimental crosses, in which confounding effects
are fully controlled so that phenotypic variations are attributed mainly to genetic
factors.

Detection and estimation of the effects of genetic factors contributing to a certain
trait help one understand the biochemical basis of the trait and may aid in the design
of selection experiments to improve the trait. For example, agricultural traits, such
as resistance to diseases and pests, tolerance to heat, drought and cold, could be
mapped and introgressed into domestic strains from exotic relatives [34]. Aspects
of mammalian physiology, such as hypertension, diabetes, predispositions to cancer,
and drug sensitivities, could be investigated in animal strains differing widely for
these traits [35, 36].

We already introduced the experimental design in Sect. 16.1. In the following
text, we consider only the backcross design. When just looking at the QTL effect
on the mean of the trait of interest, only one parameter needs to be estimated in the
backcross design. We use 0/1 to denote the two possible genotypes at each marker.

16.3.1 Single QTL Model

Consider a backcross of n individuals measured withM markers {X1, . . . ,XM} and
a univariate phenotype Y . When studying the association between the trait Y and
markerXj , one can compare the phenotypic means for two classes of progeny: those
with Xj = 0 and those with Xj = 1. The difference between the means provides an
estimate of the QTL effect at marker j . The significance of the association can be
obtained using the likelihood ratio test, or its equivalence such as the chi-square or
F-tests. Specifically, for a test at the j th marker, the single QTL model is

Y = μ+ βXj + ε, ε
iid
∼ N

(
0, σ 2).

A LOD score, which is the log-10 based likelihood ratio, is calculated for each
marker to test H0 : β = 0 vs. H1 : β �= 0. The LOD score is plotted as a function of
genome position and compared to a genome-wide threshold to declare any signifi-
cance. This approach is conceptually simple and easy to implement.
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Table 16.1 Probabilities of the genotypes at the QTL conditional on the genotypes at the two
flanking markers

Flanking marker
genotype (xL, xR)

QTL genotype za

0 1

(0,0) (1−rL)(1−rR)
1−r

rLrR
1−r

(0,1) (1−rL)rR
r

rL(1−rR)
r

(1,0) rL(1−rR)
r

(1−rL)rR
r

(1,1) rLrR
1−r

(1−rL)(1−rR)
1−r

aHere rL, rR , and r denote the recombination frequencies between the left marker and the QTL,
the QTL and the right marker, and between the two flanking markers. The expected mean of the
trait given the genotypes at the two flanking markers is μ + βcz , where the coefficient is cz the
conditional probability that the genotype at the QTL is 1 (the third column in the table)

When linear regression and hypothesis testing were first carried out in QTL anal-
ysis [15], large-scale genotyping technology was not available, and genetic markers
were usually distantly spaced. A lot of efforts were made to infer the QTLs not lo-
cated at the genotyped position but somewhere between two adjacent markers. This
problem can be viewed as a missing data problem since the genotypes at the QTL
are not observed. Lander and Botstein [15] proposed an interval mapping method to
identify potential QTLs that might reside between genotyped markers. At any given
genetic location where the genotype is not measured, the distribution of the trait is
a mixture of two normal distributions with means corresponding to genotype being
0 or 1, and the mixture proportions equal to the probabilities of the genotype being
0 or 1, which can be estimated using observed data from two flanking markers and
the genetic map, i.e.,

P(y|xL, xR)= P(z= 0|xL, xR)P (y|z= 0)+ P(z= 1|xL, xR)P (y|z= 1),

where z denotes the missing genotype of the QTL, and xL, xR denote the observed
genotypes at the two flanking markers. The EM algorithm [37] is commonly used
by treating the genotype at the QTL as missing data to estimate the maximum like-
lihood under H1.

Alternatively one can derive the expected mean trait value in terms of the putative
QTL, as given in Table 16.1 The QTL effect β can be directly estimated via multiple
linear regression:

Y = μ+ βcz + ε,
where cz = P(z = 1|xL, xR), and the log ratio of the sum of square of residuals
can be used to assess the significance of the effect [38]. Theoretically, this method
should suffer from the inappropriate assumption of normality within marker geno-
type class due to segregation of QTL, but in practice it seems to give similar results
as the EM method.

With the advances of high-throughput technology in the last 10 years, genotyped
markers are distributed very densely, usually around 1 cM apart. The advantage of
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interval mapping in giving more precise QTL locations tends to weigh less than the
computational cost involved.

16.3.2 Multiple QTL Model

Single QTL model provides a simple tool to detect the association of the quantita-
tive trait with a given QTL, but it does not take into consideration of the interfering
effect of multiple QTLs. As a consequence, the power of detection may be com-
promised, and the estimates of locations and effects of QTLs may be biased [15].
Even nonexistent “ghost” QTL may appear [38, 39]. Although multiple regression
procedures [38, 40] are straightforward, it is computational infeasible to explore ev-
ery possible model and potential QTLs within genotyped marker regions when the
number of QTLs gets large.

Jansen [41, 42] and Zeng [43] independently proposed a hybrid mapping method
that fits single-interval mapping QTL model at each putative QTL by using selected
markers as covariates to eliminate the effect of other QTLs. The task of finding
multiple QTLs thus reduces to one-dimensional search. The idea is to first select a
subset of markers, S, to control for background genetic variation and then perform a
genome scan at each locus, conditional of the genetic effects of markers in the set S.
At each locus in the genome, given the genotype z, the trait Y is distributed as

Y = μ+ βZ +
∑

j∈S
βjXj + ε,

where Xj is the genotype of a marker in the set S. The likelihood ratio test is then
performed to test the null hypothesis that there is no QTL among the tested markers
versus the alternative hypothesis that there is a QTL. A LOD score is calculated
and compared with the genome-wide threshold. When the QTL is located between
two adjacent markers so that the genotype is not directly observed, one can use ECM
algorithm [44] to get the maximum likelihood estimation to perform likelihood ratio
test.

The key problem is the choice of the set of markers to use as regressors. Too
many markers will give low power for detection and too few markers will cause low
accuracy. Including linked markers as regressors will reduce the chance of inter-
ference of possible multiple linked QTLs, but with a possible increase of sampling
variance. A general guideline in practice is to use variable selection technique, such
as forward selection backward elimination with AIC [46], to select markers into
the subset S and then drop those markers that are within 10 cM of the test position
[41, 47].

Kao et al. [48] proposed a multiple interval mapping (MIM) method to use multi-
ple intervals simultaneously to search QTLs with possible interactions. The generic
model is

Y = μ+
M∑

j=1

αjZj +
∑

j<k

δjkwjkZjZk + ε,
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where {Zj }Mj=1 are the genotypes at theM putative QTLs, αj and wjk are marginal
and interaction effects, and δjk is an indicator for interaction. Given the locations
of the M putative QTLs, the maximum likelihood estimates of the QTL effects can
be obtained via ECM [44]. Starting with an empty model (no QTL), they adopted
stepwise selection with a likelihood ratio test as the selection criterion.

Sen and Churchill [45] described a computationally efficient Monte Carlo algo-
rithm using importance sampling. The goal is to make inference about the QTL ef-
fect parameters (μ) and the QTL location parameters (γ , including epistasis) based
on the observed marker genotypes (m) and phenotype (y). The joint distribution can
be factorized as

P(y,m,g,μ,γ )= P(y|g,μ)P (μ)× P(g|m,γ )P (m)P (γ ),

where g is the unobserved genotypes of the QTL. This factorization implies that
the uncertainty of the unobserved genotype g comes from two sources: the pheno-
typic effect on y and the linkage with m. Based on this, they proposed a two-step
procedure to estimate multiple QTLs. In the first step, they imputed q versions of
complete genotype information {G1, . . . ,Gq} on an equally spaced grid of loca-
tions spanning the genome conditional on the observed genotyped markers, i.e.,
G∼ P(G|m). In the second step, they computed weight to the selected QTLs under
model γ as

wk(γ )= P(γ )P (y|Gk,γ ), k = 1, . . . , q.

Using Bayesian rule, the posterior probability of QTL locations can be estimated
from

P(γ |y,m)∞
∫

P(γ )P (y|G,γ )P (G|m)dG≈
q∑

k=1

wk(γ ).

They used a model scanning followed by model selection using Bayes Factor [50]
as criterion to update the QTL models. The advantage of this two-step approach is
that by separating the genotype imputation and weights calculation into two parts,
the imputed genotype map needs not be recomputed when comparing different can-
didate models.

Due to recent developments of Markov chain Monte Carlo (MCMC), Bayesian
model selection methods have become increasingly popular in multiple QTL map-
ping. The typical procedure starts by setting up a likelihood function for the ob-
served data and prior distribution on the unobserved quantities and then uses MCMC
to sample the parameters of interest from the joint posterior distribution. These
methods fall in two categories. One is treating the number of QTLs as a random
variable and using Reversible Jump Markov chain Monte Carlo (RJ-MCMC) [87]
to explore posterior distributions in different dimensions [49, 86]. The ability to
“jump” between models of different dimension requires a careful construction of
proposal distribution. An alternative Bayesian variable selection method was de-
veloped [51] based upon a composite space [52] representation to avoid dimension
change. The dimension of the model space is fixed by placing an upper bound of
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the number of QTLs. Each genetic effect is modeled by a so-called spike and slab
mixture distribution, which has a nonzero probability mass at value zero to promote
variable selection [51, 53, 55]:

Y = μ+
M∑

j=1

βjXj + e,

βj ∼ pδ(0)+ (1− p)N
(
0, σ 2),

where δ(0) represents the degenerate distribution with probability 1 at zero (point
mass). This prior is a “spikier” function than the spike-and-slab function used in
George and McCulloch [56]. The Bayesian MCMC approaches provide a robust
inference of genetic architecture that incorporates model uncertainty by averaging
over all possible models [57], but they are computationally intensive compared to
traditional regression methods.

Broman and Speed [58] compared various model selection methods using differ-
ent searching algorithms, including deterministic search (forward selection, back-
ward elimination, stepwise search with both forward selection and backward elim-
ination) and stochastic search via MCMC, with the single QTL mapping method
and composite mapping method [59], through intensive simulation studies. They
pointed out that: (1) Single QTL mapping performs very poorly in detecting multi-
ple QTLs; (2) Composite mapping method generally has a low false positive rate.
But the performance highly depends on the choice of the number of markers used
as regressors. A considerable attenuation of power is accompanied by a choice of
too many or too few markers to serve as regressors; (3) Forward selection method
selects a high proportion of extraneous markers even when the sample size is large.
This is because the markers are highly correlated, and once an extraneous marker is
selected into the model, it remains in the model; (4) MCMC and forward selection
followed by backward elimination perform the best with moderate sample size.

16.3.3 Thresholding

A common issue in all likelihood ratio test method in QTL mapping problems is
the difficulty of determining appropriate significance thresholds for the purpose of
detecting QTL. The source of this difficulty is twofold. First, there is the problem of
determining the distribution of the test statistic under an appropriate null hypothesis.
The regularity conditions that ensure an asymptotic chi-square distribution for the
likelihood ratio statistic are not satisfied. Many factors, including the sample size,
the genetic map, and the underlying true magnitude of the QTL effect, can influ-
ence the distribution of the test statistic. The second difficulty is to control multiple
hypotheses testing error.

When markers are dense and the sample size is large, Lander and Botstein [15]
showed that the LOD score for the single QTL model in a backcross experiment
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varies according to the square of an Ornstein–Uhlenbeck processes. The approx-
imate threshold for LOD score at the type I error rate α is 2 log(10)tα , where tα
solves for

α = (C + 2Gtα)χ
2(tα).

C is the number of chromosomes; G is the length of the genetic map, measure
in Morgans; χ2(tα) is the probability that a χ2

1 -distributed random variable is less
than tα . Similar threshold is studied in other QTL models [26].

Churchill and Doerge [60] described a permutation-based method to estimate a
threshold value. The quantitative trait data are permuted with respect to the marker
data a large number of times to effectively sample from the distribution of the test
statistic under a null hypothesis of no QTL. The approach is statistically sound,
robust to departures from standard assumptions and is tailored to the experiment
under study.

In Doerge and Churchill [61], they generalized the permutation test to the prob-
lem of detecting multiple QTL effects in a sequential way. Conditional Empirical
Threshold (CET) is obtained to permute the traits after stratification according to
the already detected QTLs. Residual Empirical Threshold (RET) is obtained to per-
mute the residuals from a parametric model among whole population. CET provides
a completely nonparametric test and allows for general nonadditive interactions
among QTLs. However, markers linked with the first QTL will continue to show
association with the trait after the stratification. Thus the application is restricted
to regions of the genome that are unlinked to the major QTL. RET-based test may
be more powerful than CET-based tests when the structural model is approximately
true. In a sequential search procedure for multiple QTLs, the type I error rate may
not be controlled.

As the number of markers grows, the number of markers showing significant as-
sociation with the phenotype by chance is also expected to grow if the type I error
rate is controlled. To handle this multiple test issue, false discovery rate (FDR) [16]
was introduced to control the expected proportion of false discoveries, which essen-
tially allows multiple false positive declarations. Using the notation in Table 16.2,
the false discovery rate is defined as the proportion of false positives among all sig-
nificant hypotheses, i.e., E(V

R
,R > 0). The FDR offers less stringent control over

Type I errors than the family-wise error rate P(V > 0) and is therefore usually more
powerful. Such a relaxation is driven by the nature of the problem under study: “It
is now often up to the statistician to find as many interesting features in a data set
as possible rather than test a very specific hypothesis on one item” [17].

Table 16.2 Possible outcomes from M hypothesis tests

Accepted null Rejected null Total

Null true U V M0

Alternative true T S M1

Total W R M
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For M independent tests, Benjamini and Hochberg [16] provided a procedure to
control FDR at the desired level α as follows:

1. Sort M p-values from smallest to largest as P(1) ≤ · · · ≤ P(M).
2. Starting from P(M), compare P(i) with α i

M
.

3. Let k be the first time P(i) ≤ α i
M

, reject all P(1) through P(k).

Simulation studies confirmed that the BH procedure works well in single QTL map-
ping and multiple QTL mapping [62].

Storey [63] introduced a “positive false discovery rate” (pFDR) defined as
E(V

R
|R > 0) and gave a Bayesian interpretation of pFDR. For M independent hy-

potheses {H1, . . . ,HM} with p-values {P1, . . . ,PM}, denote Hi = 0 if the ith null
hypothesis is true and 1 if it is false. Suppose the rejection region is (p : p < γ ). We
further assume P(Hi = 0)= π0. Then using Bayes rule,

pFDR(γ )= P(Hi = 0|Pi < γ )= P(Hi = 0)P (Pi < γ |Hi = 0)

P (Pi < γ )
= π0γ

R/M
.

The distribution of the p-values is a mixture from the null and the alternative. For p-
values close to 1, the mixture component from the alternative becomes very small.
This suggests that we can use

P(Pi > λ) = π0P(Pi > λ|Hi = 0)+ (1− π0)P (Pi > λ|Hi = 1)

≈ π0P(Pi > λ|Hi = 0)= π0(1− λ)
to get a conservative estimate of π̂0 ≈ #{Pi :Pi>λ}

M(1−λ) , where λ is close to 1. Thus,

pFDR(γ )≈ #{Pi : Pi > λ}γ
(1− γ )R .

To remove arbitrariness in choosing λ, Storey and Tibshirani [17] suggested using
a cubic spline to estimate π0. Finally we can associate each p-value with a q-value,
which is the minimum pFDR that can be attained when calling that feature signifi-
cant, i.e.,

q(P(i))= min
t≥P(i)

q(t)=min
{
q(P(i+1)),pFER(P(i))

}
.

If we call all features significant with q-values no greater than α, then for large M ,
the FDR will be no greater than α. The independence assumption can also be relaxed
to weak dependence, such as that genes within a small group are independent of all
the other genes [17].

16.3.4 Multiple Trait Mapping

Many data for mapping QTL contain measurements on multiple traits or one trait
in multiple environments. Methods for single trait mapping do not take advantage



312 W. Zhang and J.S. Liu

Fig. 16.2 Pleiotropic QTL and linked QTL models. (a) Scatter plots of the two quantitative traits
evaluated at a common QTL. Individuals are labeled according to the genotypes at the QTL.
(b) Pleiotropic QTL model (left) vs. linked QTL model [88]

of the correlation structure of the data and are therefore not powerful enough for
detecting true QTLs and estimating the location accurately [20, 64–66]. Consider
two quantitative traits Y1 and Y2 tested at one binary marker X with QTL effects β1

and β2, respectively. Denote by ρ the residual correlation between Y1 and Y2. Thus
the joint distribution of Y1 and Y2 can be written as

(
Y1
Y2

)

=
(
μ1
μ2

)

+
(
β1
β2

)

X+
(
e1
e2

)

,

(
e1
e2

)

∼ N
(

0,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

))

.

(16.1)

Without loss of generality, we let β1 > 0. The relationship among Y1, Y2 and the
QTL can be described in Fig. 16.2(a), corresponding to four combinations of the
signs of β2 and ρ. It has been shown [20] that when β1β2ρ < 0, the power of the
joint analysis is always higher than that of separate analysis (Fig. 16.2(a2, a3)).
When β1β2ρ > 0, the power of the joint test may be lower than the higher one of
the separate tests due to the fitting of additional parameters in the model. However,
empirical studies have suggested that joint mapping is generally more informative
than separate mapping for traits moderately or highly correlated. When there are
more than two traits to consider simultaneously, joint mapping is even more benefi-
cial.

Another justification for mapping multiple traits simultaneously is that a joint
analysis helps one understand the nature of genetic correlations. Generally speaking,
two traits are correlated genetically due to pleiotropy or linkage, as illustrated in
Fig. 16.2(b). Under a pleiotropic model (16.1), correlation between Y1 and Y2 can
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be driven by a pleiotropic QTL. Under model (16.2),
(
Y1
Y2

)

=
(
μ1
μ2

)

+
(
β1 0
0 β2

)(
X1
X2

)

+
(
e1
e2

)

,

(
e1
e2

)

∼ N
(

0,

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

))

;
(16.2)

two QTLs in close linkage each influence a trait independently. Separation of these
two hypotheses has important implications to our understanding of the nature of
genetic correlations between the traits involved.

Likelihood ratio test provides a uniform tool for testing pleiotropic effect and
comparing pleiotropic vs. close linkage. When QTL genotype is missing, the EM
algorithm can be used to carry out the maximum likelihood estimation [20]. Knott
and Haley [66] used multivariate least square estimates as an approximation. When
the genotype of the QTL is unknown, the design matrix X is simply a function
of the genotype probabilities for each individual. Nonparametric bootstrapping was
proposed [70] to construct a confidence interval on the estimated distance between
two QTLs to test pleiotropy versus close linkage.

As the number of traits gets larger, dimension reduction techniques have been
widely used. For example, Mahler et al. [67] summarized information from numer-
ous histologic phenotypes by principal component analysis in mapping the colitis
susceptibility trait in mice. Weller et al. [68] and Mangin et al. [69] applied canoni-
cal transformation to obtain uncorrelated canonical traits followed by QTL mapping
for the canonical traits.

So far we have reviewed methods for mapping QTL. When it comes to eQTL
mapping with thousands of markers and expression of thousands of genes generated
from microarray experiments, more sophisticated methods are needed. Ideally, a
statistical method for eQTL identification would properly account for multiplicities
across the genome, multiplicities across transcripts, epistatic effect, and correlations
among transcripts.

16.3.5 Regression Based Methods for eQTL Mapping

Using single trait mapping to large amount of gene expression has been known to
suffer from low power in detection, partly due to the multiple testing problem and
partly due to its inability to utilize the correlation structure among the gene expres-
sion traits. A common practice for handling thousands of transcripts is to select a
small number of target genes and map QTLs for these prescreened transcripts. For
example, Lan et al. [54] and Yvert et al. [2] applied hierarchical clustering to the
gene expression and then used principal component analysis for each gene cluster
to reduce the dimension to a few “supergenes” that capture the majority of varia-
tions in expression data within each cluster. Biswas et al. [71] used Singular Value
Decomposition (SVD) and Independent Component Analysis to reduce the dimen-
sion of thousands of expression traits to a few hundred meta-traits. Mapping QTLs



314 W. Zhang and J.S. Liu

for the expression of these “supergenes” or meta-traits can enhance the signal of
the genetic association. However, caution should be taken because information is
lost during the process of dimension reduction and the transformation of the linkage
back to the original gene traits is not always possible.

Partial least square (PLS) regression, introduced by Wold [72], has been used as
an alternative approach to the ordinary least square regression in cases where the
design matrix X is singular, e.g., X has multi-collinearity, or X has more variables
than observations, so that the OLS solution does not exist. In many biological data
sets with a large number of covariates and a limited number of samples, commonly
referred to as “large p, small n” problems, this is usually the case. The main idea
of PLS is to find a set of latent components that performs a simultaneous decom-
position of X and Y with the constraint that these components explain as much as
possible the covariance between X and Y . The underlying model is as follows:

X = T P ′ + eX,
Y = TQ′ + eY ,

where T = XW is called the score matrix, and P and Q are the loading matrices.
Several algorithms exist for estimating the score matrix and the loading matrices
using the successive optimization procedure (NIPALS, SIMPLS), with slightly dif-
ferent constraints. Although dimension reduction via PLS is an appealing way of
dealing with ill-posed regression problems, it does not lead to the selection of rel-
evant variables. In eQTL analysis where thousands to millions of SNP markers are
under consideration simultaneously, very few are actually linked with the expression
traits. The existence of large number of irrelevant variables makes the PLS estimator
inconsistent.

To accommodate this problem, a sparse partial least square (SPLS) regression
has been proposed by Chun and Keles [23], which imposes a penalty on the L1

norm of the weight matrix W . The tuning parameter and the number of important
latent components are determined via cross-validation to minimize the mean square
prediction error. The procedure starts by clustering gene expression into groups of
similar expression and then fits SPLS to each cluster by treating the expression of
multiple genes as multivariate responses. The final stage is constructing bootstrap
confidence interval for the transcript selection using only the selected markers from
the original fit. Only those marker/transcript pairs with confidence intervals exclud-
ing 0 are claimed as having significant linkage. Simulation studies show that the
multivariate SPLS regression leads to increase in power for detecting weak link-
age since the inherent correlation among genes are taken into account. An obvious
advantage of the SPLS over traditional single-trait-single-marker analysis is that
the issue of multiple transcripts and multiple markers is bypassed and therefore it
avoids potential multiple-testing errors. However, the performance depends on how
well the preclustered groups of gene traits are similar to each other. If the group of
genes actually consists of subgroups that are linked to different markers, SPLS may
contaminate the structures and generates ambiguous linkages.
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16.3.6 Bayesian Methods for Studying eQTLs

Recent efforts in eQTL mapping focus on combined analysis of all transcripts and
markers. Mixture-Over-Marker (MOM) model of Kendziorski et al. [22] was the
first attempt to allow information sharing across transcripts and to analyze multiple
markers jointly by a mixture model over the markers. The MOM model assumes
that a transcript t maps to nowhere with probability p0 and maps to marker m with
probability pm, so that

∑M
m=0 pm = 1. The marginal distribution of transcript t ,

yt = (yt1, . . . , ytn)′, for n observations is given by

p0f0(yt)+
M∑

m=1

pmfm(yt),

where f0(yt) =
∫
g(yt|μ)π(μ)dμ. The underlying mean μ is treated as random

effect and integrated out. fm(yt) is the distribution given that transcript t is asso-
ciated with marker m. The genotypes at marker m naturally separate the obser-
vations into subgroups, say yt = {y0

t ,y
1
t }. Then, fm(yt) = f0(y0

t )f0(y1
t ). Param-

eters, {p0,p1, . . . , pM} and those specifying g(·) and π(·), are estimated via the
EM algorithm. With multiple transcripts present in the data, they proposed to first
partition the transcripts into subgroups using k-means clustering. Then for each
cluster, the parameters are shared across multiple transcripts. Despite its ability
to model associations with multiple markers across multiple transcripts simulta-
neously, the assumption that each transcript is either associated with one of the
markers or not associated with any marker at all is indeed very strong in real appli-
cations.

A Bayesian joint analysis of transcripts and markers (BAYES) was proposed by
Jia and Xu [73]. To avoid variable selection, they adopted a Bayesian shrinkage
analysis so that markers with small effects are forced to shrink their effects to zero.
The expression level of the transcript t , Yt , follows a linear regression model

Yt =Xγt + et ,
where X = (X1, . . . ,XM) are the genotypes ofM markers, γt = (γt1, . . . , γtM)′ are
the regression coefficients of these markers for transcript t , et ∼ N(0,Rσ 2), and
R is a known positive definite matrix. The coefficient of marker m for transcript t ,
i.e., γtm, follows a two-component mixture Gaussian distribution. The strength of
the effect of a particular marker is shared across all transcripts. The full model is
described as follows:

Yt ∼ N
(
X′γt ,Rσ 2);

γtm ∼ (1− ηtm)N(0, δ)+ ηtmN
(
0, σ 2

m

)
, where δ = 1e− 4;

σ 2 ∼ Inv− χ2(0,0);
ηtm ∼ Bernoulli(ρm);
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ρm ∼ Dirichlet(1,1);
σ 2
m ∼ Inv− χ2(5,50).

Markov chain Monte Carlo (MCMC) is utilized to sample the parameters from their
joint posterior distribution, and certain threshold values are used to select the eQTLs.
The posterior mean of the proportion of transcripts associated with each marker
(ρm) can be used to detect hot spot regions where many transcripts are mapped than
expected.

BAYES allows a transcript to be simultaneously associated with multiple mark-
ers and a marker to simultaneously alter the expression of multiple transcripts
through hierarchical modeling. Simulation studies comparing the method of MOM
and BAYES revealed that MOM works well if a transcript is linked to only one
marker. However, when a transcript is controlled by multiple markers with different
effects, the linkage is detected only at the major eQTL, and the remaining eQTLs
will be missed by using MOM. In the full Bayesian approach of BAYES, the mul-
ticollinearity problem is not explicitly addressed, and priors for the regression co-
efficients are assumed to be independent. This assumption is contradictory to the
fact that adjacent markers are highly correlated in real data analysis. Therefore, the
highly correlated nature of the marker data may hamper the performance of variable
selection.

16.3.7 Bayesian Networks

Bayesian network is a graph-based model of joint multivariate probability distribu-
tions that captures properties of conditional independence between variables. The
network is a directed and acyclic graph so that the joint probability can be decom-
posed into product of the conditional probabilities of each node given its parents (it
is possible for a node to have an empty parent set). Statistical foundations for learn-
ing Bayesian networks from observations and computational algorithms to do so are
well understood and have been used successfully in many applications [74–76].

Bayesian networks have been used to study causal interaction networks of bio-
logical systems based on gene expression data from time series and gene knockout
experiments, protein–protein interaction data derived from predicted genomics fea-
tures, and on other direct experimental interaction data [77, 78]. Recently, Zhu et
al. [10] used large-scale liver microarray and genotypic data from the segregating
mouse population [4] to construct the gene regulation network in the mouse liver
system. The rationale to use eQTL data is that any gene expression trait pair con-
trolled by a common QTL is either (1) independently driven by the same QTL or
(2) causally associated in that one is driven by the QTL (upstream gene), while the
other responds to the trait driven by the QTL (downstream gene). They employed
two assumptions to incorporate the eQTL information into the network construc-
tion in order to reduce the computational load. First, only a limited set of genes are
allowed to directly interact with any given gene. The candidate genes are selected



16 From QTL Mapping to eQTL Analysis 317

based on (1) correlation of the LOD score and (2) mutual information of the expres-
sion level, with the given gene. Second, eQTL data is used again to provide causal
anchors between any gene expression trait pair. For example, cis-acting genes are
not allowed to be controlled by the other genes that are mapped to the same eQTL.
Genes that have multiple eQTLs are more likely to be in the downstream of the net-
work than genes with fewer but stronger eQTLs. They demonstrated the utility of
the resulting network in this system by examining the gene expression behavior of
HSD11B1. The predictive capabilities of the network were assessed by comparing
the set of genes predicted by the network to respond to perturbations in the expres-
sion of HSD11B1, with the set of genes observed to change in response to HSD11B1
inhibition. They showed that involving expression and QTL data in a segregating
population leads to optimal networks that possess greater predictive power of causal
relationship than similar networks derived from the expression data alone.

A local network construction via eQTL analysis was developed by Li [12] in a
mice population study. They first identified a list of 175 transcripts that were mapped
to 209 trans-acting QTL regions. The 364 genes that are located in these QTL re-
gions and have SNPs that differ between the two progenitor strains were considered
as candidate modulators. By connecting an edge from the modulator gene in the
QTL region to the target gene that mapped to the QTL, they constructed a list of
445 QTL-SNP-derived relations. For genes with more than one candidate modula-
tors in a given QTL region, they used the Bayesian network calculation to search for
the best modulator and removed the remaining modulators. Among the final list of
145 modulatory relations, they identified two transcription factor binding sites in the
two target genes’ sequences that were predicted to be regulated by the correspond-
ing transcription factors, confirming the validity of these predictions. However, they
made a very strong assumption that the expression of the modulator genes located
in the QTL regions “controls” the target genes’ expression, which only represents a
small portion of eQTL regulation.

16.3.8 Integrative Analysis

Recently, new high-throughput technologies for DNA sequencing and Genomics
produce large-scale data sets from diverse sources. Significant progress has been
made by integrating multiple sources of data to reconstruct networks that predict
complex system behavior. Module network, introduced by Segal et al. [79], com-
bined the known regulator information with the gene expression data to identify
regulatory modules and study their condition-specific regulatory program. A regu-
latory module is a set of coregulated genes, associated with a regulatory program
that explains the expression of the module genes in terms of a set of regulatory con-
texts. Lee et al. [80] extended the module network approach to incorporate eQTL
data into the regulatory network construction. Their algorithm, “Geronemo,” takes
as input, a list of putative regulators (transcription factors, signal transduction pro-
teins, chromatin modification factors, and mRNA processing factors) for yeast, gene
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expression profile data, and genetic data measured on a yeast inbred population [81],
to build module networks, in which each regulatory program is specified by a combi-
nation of both expression regulators (from the expression of the putative regulators)
and genotype regulators (from the genetic data). The algorithm iterates between
learning a regulatory program using decision trees for each module and reassigning
each gene to the module whose regulation program provides the best prediction for
the gene’s expression profile.

Zhu et al. [14] combined multiple types of large-scale molecular data, includ-
ing genotypic, gene expression, TFBS, and PPI data that were previously gener-
ated from a number of yeast experiments, to reconstruct causal, probabilistic gene
networks for a yeast inbred population [81]. They compared the performances of
three Bayesian networks: (1) Bayesian network based on the expression data alone
(BNraw); (2) Bayesian network based on expression and eQTL data (BNqtl); and
(3) Bayesian network based on expression, eQTL, TFBS, and PPI data (BNfull). The
networks were constructed using a weighted coexpression network algorithm [82].
As in Zhu et al. [10], the information from eQTL, TFBS, and PPI data was used
as prior evidence that two genes were causally related. The obtained networks were
divided into sub networks to form gene modules that were comprised of highly in-
terconnected expression traits.

BNqtl and BNfull predicted the TF target genes and gene knockout signatures
much better than BNraw, suggesting that the latter two represent better causal rela-
tionship among the genes. They further used the constructed networks to infer causal
regulators for the previously described yeast eQTL hot spots [2]. They first selected
putative cis-acting genes for each hot spot regions as candidate causal regulators.
They then compared the set of genes directly linked to each candidate regulator
in the Bayesian network to the set of genes mapped to the corresponding hot spot
region. Again, BNfull was demonstrated to be the most predictive network, which
inferred a large number of causal regulators consistent with previously proposed re-
sults [2], followed by BNqtl. Five previously unknown predictions made by BNfull

had been experimentally validated.

16.4 A Bayesian Partition Model for eQTL Mapping

Here we briefly describe a Bayesian partition (BP) method for eQTL mapping de-
veloped in the PhD thesis of Wei Zhang in Harvard Statistics Department [24, 83].
We define a module as a set of gene expression traits and a set of DNA markers
(e.g., SNPs) such that the expression variation of the genes is associated with the
marker variation.

To formally describe the BP model, consider a sample with N individuals. Each
individual i is measured with G gene expression values denoted as {yig : g =
1, . . . ,G} and M marker genotypes denoted as {xim : m = 1, . . . ,M}. We assume
that the observed data can be partitioned into D nontrivial modules plus a null
component. The number of nonnull modules, D, is prespecified by the user and
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Fig. 16.3 Bayesian Partition Model. Each row represents an individual. The columns represent
gene expression traits (left) and markers (right). Data is partitioned into three modules plus a null
module. Module 1 has two markers associated with a group of genes, represented by a link in solid
line. In this module individuals are partitioned into three individual types. Genes in module 2 are
associated with one marker, with two individual types. Module 3 has two markers linked with a
group of genes, with three individual types. Note that different modules have different individual
partitions

should reflect the user’s prior belief in the higher level structure of the data. Ev-
ery gene g or marker m belongs to one of the D nontrivial modules or the null
module, determined by the gene indicator Ig ∈ {0,1, . . . ,D} and the marker indi-
cator Jm ∈ {0,1, . . . ,D}. For each module d ∈ {1, . . . ,D}, we further partition the
N individuals into nTd types denoted by the individual indicators Kdi ∈ {1, . . . , nTd }
for i ∈ {1, . . . ,N}. Each module may have a different number of individual types
and different ways of partitioning the N individuals. For example, with a single
biallelic marker (alleles “A” and “a”) in the module, the module may have two in-
dividual types corresponding to genotypes aa vs. Aa or AA (dominant model), or
three individual types corresponding to genotypes aa, Aa, and AA (additive model).
We seek module partitions in which expression patterns are similar for all genes,
and gene expression variations across different individuals can be explained by
the individual types. The overall partition of genes and markers into modules is
determined by gene indicators {Ig ∈ {0,1, . . . ,D}, g = 1, . . . ,N} and marker in-
dicators {Jm ∈ {0,1, . . . ,D},m = 1, . . . ,M}, while the module-specific partition
for individuals is determined by the individual indicators {Kdi : d = 1, . . . ,D, i =
1, . . . ,N,Kdi ∈ {1, . . . , nTd }}. A cartoon illustration of the partition model is shown
in Fig. 16.3.

We model the gene expression traits in module d by an ANOVA model so that
each trait value is the sum of the gene effect (αg), the eQTL effect for individual
type k (δk), the individual effect (ri ), and an error term:

yig = δk + ri + αg + εig,
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where gene g is in module d , and k is the individual type of i; δk is the eQTL
effect determined by the individual type k =Kdi ; ri is the effect of other regulators,
such as transcription factors, signaling molecules, chromatin modification factors,
and so on; αg explains the gene effect; and εig is the random measurement error.
All genes in the same module share the same eQTL effect and individual effect,
the combination of which, denoted as βdi = δk + ri , can be viewed as the module
center. In the Bayesian framework, we put a normal-inverse-chi-square distribution
on {δk, ri, αg, εig}.

To account for epistasis, we model the joint distribution of all the associated
markers in a module, denoted as xi = {xim : m is in module d, i.e., Jm = d}, by a
multinomial distribution whose frequency parameters are determined by the indi-
vidual type k =Kdi . We also put a conjugate prior distribution on these parameters:

xi
iid∼ Multinomial(1; θk), θk =

{
θ1
k , . . . , θ

L
nM
d

k

}
,

θk ∼ Diri(αk), α1
k = α2

k = · · · = αL
nM
d

k = λ

Ln
M
d

,

where θk is the frequency vector of the multinomial distribution for the individual
type k in module d ; αk is the hyper parameters for θk; L is the number of possible
genotypes at each marker; nMd =

∑
m:Jm=d is the total number of linked markers in

module d ; and λ is the pseudo-count for the Dirichlet prior.
For the null component, we assume that there is no association between genes and

markers. Each gene expression trait follows a normal distribution, and each marker
follows an independent multinomial distribution. To avoid overfitting, we put an
exponential prior on the indicators to penalize the higher complexity partitions:

P(Ig,Jm,Kdi)∞ exp

(

−cG
∑

d

n
g
d − cM

∑

d

Ln
m
d − cT

∑

d

nTd

)

,

where, ngd , nmd , nTd are the numbers of genes, markers, and individual types in
module d , and L is the number of genotypes at each marker. Markov chain
Monte Carlo algorithms including steps such as parallel tempering and reversible
jump MCMC [84] are designed to sample from the above joint distribution (see
Zhang [83] for more details).

16.5 Simulation Results

16.5.1 Simulation I

We tested the BP algorithm on a simulated data set in the context of inbred cross
of haploid strains. The simulated dataset consists of 120 individuals measured with
1000 genes and 500 markers. Given the haploid nature of the segregants, 500 binary
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Table 16.3 Simulation design for simulation I

Module Modela # Genesb Heritabilityc Cor.d % of Var.e

A R = βIxA1 =xA2 + βIxA3 =1 + e 60 0.85 0.5 0.236

B R = βIxB1 =xB2 + e 60 0.7 0.5 0.188

C R = βIxC1 =1 + e 40 0.65 0.5 0.156

D R = βIxD1 =1 + βIxD2 =1 + e 40 0.7 0.5 0.186

aRegression models used to simulate the core genes. We denote xdi as the ith marker in module d
bNumber of genes in the module
cHeritability of the core gene
dAverage correlation of the genes in the module with the core gene
eAverage percentage of variations for genes in the module explained by the true model

markers are equally spaced on 20 chromosomes, each of length 100 cM, using the
“qtl” package in R. We simulated four modules, A, B, C, and D, each containing
60, 60, 40, and 40 genes, which are associated with 3, 2, 1, and 2 markers, respec-
tively. The associated markers are randomly selected and do not overlap. To mimic
the inter-correlation of the genes in real gene expression data, we first generated
a core gene R in each module according to the corresponding models depicted in
Table 16.3. In each model, e ∼ N(0, σ 2

e ) represents the environmental noise. The
regression coefficient β in each model is determined by the corresponding heritabil-
ity, which is defined as h2 = (σ 2

s − σ 2
p)/σ

2
s , where σ 2

s and σ 2
p are the variances

among phenotype values in the segregants and the pooled variance among parental
measurements, respectively. We set σ 2

p = σ 2
e = 1 and solve other variance param-

eters based on h2. After generating the core gene, we simulated the gene expres-
sion traits in each module from a Gaussian model where the average correlation
to the core gene is set as in Table 16.3 and genes in the same module are inde-
pendent conditional on the core gene. The percentage of variation explained by the
true model averaged over all genes in a module is also listed in Table 16.3. Note
that the data simulation model is different from the posited model in the Bayesian
analysis.

We ran our algorithm with 15 parallel chains and 100,000 iterations. The trace
of the log posterior probability (Fig. 16.4) indicates that the MCMC chain reached
the equilibrium after the burn-in period of ∼30,000 iterations. To find the genes
in each module, we simply counted the number of times a gene appeared in each
module from the posterior distribution and assigned genes into modules using the
majority vote. From Fig. 16.5 we see that all of the genes in the null compo-
nent were correctly classified. Most genes in the other four modules were also
correctly classified. There were some genes in the nonnull modules that were
classified into the null component, most likely due to weak signal among those
genes.

To find the linked markers in each module, we not only counted the marginal
number of appearances for each marker in each module but also the number of joint
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Fig. 16.4 Trace plots and autocorrelation plots of the log posterior probabilities for the simulated
data set. The trace plot was generated from two independent runs, each having 100,000 iterations
(for the color version, see Color Plates on p. 394)

Fig. 16.5 The posterior probability plot for each gene to be included in the corresponding module.
The first 200 genes are in one of the four modules, separated by the red vertical line. The module
membership was determined by the majority vote based on the posterior samples from the last
25,000 iterations (for the color version, see Color Plates on p. 394)

appearances in order to account for the joint effect. The truly linked markers and
the posterior inference are summarized in Table 16.4. We see that the truly linked
markers were correctly identified for modules A, B, and D. In module B, our method
picked the true marker pair (490, 149) and marker pair (491, 149) with probabilities
about 0.5 each. This is due to the strong linkage between makers 490 and 491. In
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Table 16.4 True markers and inferred markers in each module

Module True markers Posterior inference

Markers Posterior Prob.a

A (270, 100, 172) (270, 100, 172) 0.988

B (490, 149) (490, 149) 0.503

(490, 149) 0.490

C 292 292 0.751

(292, 61) 0.142

(292, 62) 0.103

D (443, 191) (443, 191) 0.813

191 0.109

aPosterior probabilities are calculated based on joint appearances of the corresponding marker(s)
in MCMC iterations

Table 16.5 Simulation design for simulation II

Module Modela %Varb Locus 1c Locus 2d Epistasise

A R = βIx1=1 or x2=1 + e 0.153 0.338 0.339 0.333

B R = βIx1=x2 + e 0.158 0.052 0.052 0.895

C R = 2βIx1=1 or x2=1 + β(x1 ∗ x2)+ e 0.160 0.466 0.441 0.088

D R = βIx1=0,x2=1 + 2βIx1=1,x2=0 + e 0.161 0.133 0.128 0.739

E R = βx1 + β(x1 ∗ x2)+ e 0.132 0.748 0.138 0.128

F R = 2βx1 + βx2 + e 0.169 0.736 0.231 0.043

G R = 2βx1 + βIx1=x2 + e 0.168 0.743 0.050 0.211

H R = 2βI01 + 1.5βI10 + 0.5βI11 + e 0.168 0.131 0.048 0.821

aRegression models that were used to generate the core gene in each module
bAverage percentage of variations of genes in the module explained by the true model
cAverage percentage of genetic variance explained by the first locus
dAverage percentage of genetic variance explained by the second locus
eAverage percentage of genetic variance explained by epistasis

all cases, our method correctly identified the truly associated markers with high
posterior probabilities.

16.5.2 Simulation II

Here we conducted a comparison study. Similar to the previous simulation, we gen-
erated 100 data sets with 120 individuals, 500 binary markers, and 1000 gene ex-
pression. Eight different two-eQTL models were used, as summarized in Table 16.5,
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Fig. 16.6 Comparison of the receiver operator characteristic (ROC) curves for the gene-marker
pair detection obtained by our Bayesian partition method (BP) and the two-stage regression method
(SR). Different points along the ROC curves represent the false positive and true positive counts
averaged over 100 simulations at different posterior probability thresholds (for BP) or at different
FDR thresholds (for SR). There are 40 genes in each of the eight modules which are linked to two
markers, and thus the total number of the true positive gene-marker pairs is 640

each having 40 genes. We fixed h2 at 0.6 for the core gene and the inter-correlation
for genes in the module with the core gene at 0.5 across all eight modules.

We analyzed the simulated data sets using two methods: (1) our Bayesian par-
tition method using parallel tempering with 15 temperature ladders and 100,000
MCMC iterations each, referred to as BP; (2) the two-stage regression method pro-
posed by Storey et al. [85], referred to as SR. As shown from the receiver operating
characteristic (ROC) curves in Fig. 16.6, BP achieved a significantly higher power
to detect eQTLs compared to SR. There are likely two reasons for this. First, we
modeled the coregulated genes as a module so that information from all genes in
a given module could be aggregated to improve the signal. Second, we modeled
epistatic interactions explicitly so that markers with weak marginal but strong in-
teractive effects could be detected. In contrast, the performance of the SR method
strongly depends on the strength of the marginal effect of the major marker.

We compared the total number of the true gene-marker pairs detected in each
module at various thresholds (Fig. 16.7). As expected, the SR method had a high
failure rate when the marginal effects of both markers are weak, even at a very
generous threshold. This can be seen in modules B, D, and H, where no or very
weak marginal effect is present, and genetic variations are mainly explained by the
epistasis. In modules E, F, and G, where the major marker explains more than 70%
of the genetic variation, the SR method detected the major marker in nearly 50% of
the simulations at the 0.5 threshold, but not the minor marker. In modules A and C,
where the marginal effects of the two markers are almost the same, the SR method
detected one of the markers for some genes, but the detection rates were lower than
those in modules E, F, and G because neither marker has a very strong marginal
effect. In contrast, the BP method performed significantly better than SR in all eight
modules.

Since we do not fix the number of individual types in each module, we will
encounter the problem of dimension change when we add a new type or remove an
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Fig. 16.7 Barplots of the number of true eQTLs detected in each module by the BP method (blue)
and step-wise regression (SR) method (green). The shaded bar represents the number of genes
detected as mapped to at least one of the true eQTLs, while the solid bar represents the number
of genes detected as mapped to both eQTLs. The thresholds are 0.5 for both posterior probability
(BP) and FDR (SR). From Fig. 16.6 we know that the total number of false positive gene-marker
pairs is 11.41 and 38.04 for BP and SR, respectively. When the thresholds are relaxed to 0.1, more
eQTLs were detected in each category, as indicated by the vertical lines above the bars. However,
the total number of the false positive gene-marker pairs is still lower using BP (178.37) compared
to that using SR (267.07) (for the color version, see Color Plates on p. 395)

old type. The method we provide here is simply adding exponential penalties for the
number of individual types. Several parameters need to be specified in the model,
including the number of modules D, the penalty parameters, the hyper parameters
for the modules, and the hyper parameters for the null component. The module size
D is determined based on the prior information about the data set. In simulations,
we found that as long asD is as large as or larger than the true number of modules in
the data set, the algorithm can always detect module genes and their linked markers.
Through simulation studies, we found that the results were not sensitive to the choice
of other prior parameters.

16.6 Discussion

In this chapter we introduced the eQTL mapping problem and reviewed a few sta-
tistical methods for conducting QTL and eQTL mappings. Whereas conventional
linkage analysis has been widely and successfully applied to the study of one or a
small number of traits at a time, the new module-based Bayesian partition method of
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Zhang et al. [24] is suitable for analyzing thousands of phenotypes simultaneously.
Both simulation studies and real data examples demonstrated that the BP method
is effective for detecting marker interactions, even when no marginal effects could
be detected. These improvements in power are a direct result of accounting for the
correlation among gene expression traits and assessing the joint effect of multiple
eQTLs, including interactions, on these correlated gene sets.

The Bayesian partition method can be viewed as extensions of some earlier meth-
ods. Lee et al. [80] proposed to simultaneously partition the gene expression and
genotype markers. However, their method requires strong priors on the potential
regulators. Kendzioski et al. [22] proposed a mixture of markers (MOM) model to
find the eQTLs for multiple gene expression. They first use k-means clustering to
identify subsets of genes and then apply eQTL mapping to the clusters of genes. In
contrast, gene expression partition and eQTL mapping are modeled jointly in the
Bayesian partition method of Zhang et al. [24]. It will be of interest to apply and
compare these methods on more complex human genetic–genomic data.
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Chapter 17
An Evaluation of Gene Module Concepts
in the Interpretation of Gene Expression Data

Xianghua Zhang and Hongyu Zhao

17.1 Introduction

Essentially all biological functions of a living cell are carried out through the inter-
play between many genes. Identifying these gene networks and their functions is a
main challenge in systems biology, which is a rapidly evolving research area fueled
by the recent advances in high-throughput biotechnologies that enable the collec-
tion of, large-scale genomics data on gene expressions [1, 2], genome-wide location
(or called transcription factor binding sites) [3, 4], protein–protein interactions [5],
genetic variations [6, 7], and many other types of data. These data provide valuable
system level information on different aspects of the complex biological processes
and make it possible to infer the underlying networks. Many computational and
statistical methods have been proposed to use these data to dissect transcriptional
networks [8, 9]. Despite substantial research on this topic, it remains a great chal-
lenge to elucidate the complete network due to the complexity of the transcription
processes and the noisy nature of high-throughput data.

Instead of completely characterizing the underlying networks, researchers have
found it useful to describe a biological system as consisting of a set of network
modules. Each module consists of genes physically or functionally related to each
other to perform specific functions. It has been demonstrated that various biolog-
ical systems, such as transcriptional regulatory networks, metabolic networks, and
protein–protein interaction networks, are organized in this modular manner [10–12].
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For example, in transcriptional regulatory networks, modules are commonly used to
represent a set of genes with coherent expression patterns or regulated by the same
sets of transcription factors. The introduction of the module concept provides use-
ful summaries of gene expression patterns, because it focuses on a group of genes
rather than individual genes, thus reducing complexity in a system. It is therefore
important to appropriately define and identify modules to facilitate the study of a bi-
ological system. We will primarily focus on the transcriptional regulatory network
in this chapter.

Early research on module identification in transcriptional regulatory networks
mainly relied on gene expression data. Typically, clustering methods, such as hier-
archical clustering, k-means clustering, or biclustering methods are used to identify
sets of genes with correlated expression patterns from gene expression data using
a diverse set of similarity metrics, such as Pearson correlation and mutual informa-
tion. Each resulting cluster is a set of genes with similar expression patterns and can
be treated as a gene module. Based on the assumption that coexpressed genes tend
to be coregulated and possibly have similar functions, the clustering results may
be helpful to understand the functions of an unknown gene if it falls into a cluster
of genes with known functions. Instead of using traditional clustering methods that
directly use metrics based on expression profiles, several network-based methods
have been proposed, such as weighted gene coexpression network (WGCN) analy-
sis method [13] and ENIGMA method [14]. These methods first map genes to an
association network based on a specific correlation metric; then a similarity mea-
sure between two genes is defined through their positions in the network. Network
modules are inferred from this network-based similarity measure. Note that belong-
ing to the same network module does not guarantee similar functions nor similar
regulations for a group of genes.

Instead of using only gene expression data, methods have been developed to
integrate diverse data sources for module inference. For example, protein–protein
interaction data, genome-wide location data, and sequence data have been used in
the literature for this purpose. Benefiting from such additional information, mod-
ules can be defined more rigorously, e.g., genes in a module not only need to have
coherent expression patterns but also need to be regulated by the same sets of tran-
scription factors. As a result, modules identified by these methods are more related
to biological processes because of the use of additional data sources in the process
of deriving modules. For example, Segal and colleagues [15] used a probabilistic
graph model to identify transcriptional modules from expression data and gene an-
notation information. More specifically, a precompiled set of candidate regulatory
genes, containing both known and putative transcription factors and signal transduc-
tion molecules, are considered in this method. Each transcriptional module includes
genes whose expression patterns are regulated by the same set of regulatory genes
under different conditions. One limitation of their model is that the activity level
of a regulator is proportional to its observed expression level, because it is well
known that the activity of a molecule may not be correlated with its transcription
level due to post-translational modification, protein translocation, and many other
reasons.
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Because genome-wide location data [3, 4] provide direct physical evidence of
regulatory interactions between genes and transcription factors, methods have been
proposed recently to integrate gene expression data and genome-wide location data
to infer transcriptional modules. Bar-Joseph et al. [16] developed an iterative pro-
cedure named GRAM, which combines genome-wide location data and expression
data, to discover gene modules of regulatory network. Xu et al. [17] extended Segal
et al.’s work to incorporate genome-wide location data as prior knowledge. Liu et
al. [18] proposed a similar method using Bayesian hierarchical models.

Other types of data, such as sequence data, have also been combined in identify-
ing transcriptional modules. Tanay et al. [19] proposed a graph bicluster algorithm
named SAMBA to simultaneously integrate expression data, genome-wide location
data, protein–protein interaction data, and phenotypic data. Lemmens et al. [20]
developed an approach named ReMoDiscovery for module discovery based on het-
erogeneous data, including gene expression data, genome-wide location data, and
motif data. Wu et al. [21] developed a method to integrate transcription factor bind-
ing site (TFBS), mutant, genome-wide location, and heat shock time series gene
expression data to infer transcriptional modules for yeast heat shock response.

Although many different methods have been proposed to identify gene modules
from various data sources and many useful results have been obtained, there is no
consensus on the definition of modules and a lack of understanding of the biological
basis of modules. In this chapter, we present an analysis of gene modules based on
WGCN to investigate how they are related to the underlying regulation process. For
each expression data set, we first construct a WGCN and then extract gene modules
from the constructed network based on some topological measure. To interpret the
biological meaning of the extracted modules, we use information from Gene On-
tology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG pathways), and
genome-wide location data to study whether each module is enriched for certain
categories. Furthermore, we compare the utility between topological overlap and
Pearson correlation similarity measures to define modules. Additionally, to study
the relationships between modules derived from different expression data sets for
the same species, we compare the consistency of gene modules inferred using dif-
ferent expression data sets. Lastly, we perform expression Quantitative Trait Loci
(eQTL) analysis to gain a better understanding of the genetic basis of gene mod-
ules.

17.2 Methods and Materials

17.2.1 WGCN Construction

In order to identify modules from microarray gene expression data, we used a
WGCN analysis method developed by Horvath and colleagues [13] to construct
the gene coexpression network. This method has been found to be a useful approach
[22, 23]. In a WGCN, each node corresponds to a gene, and two nodes are connected
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by a weighted edge, which indicates the coexpression similarity of the correspond-
ing genes across the samples.

To construct a WGCN from a given gene expression data set, a similarity measure
of how two genes are coexpressed should be defined first. For a pair of genes Gi
and Gj , the absolute value of the Pearson correlation coefficient of their expression
profiles is usually used as the coexpression similarity measure. Here, we denote it
as sij :

sij = |cor(Gi,Gj )|. (17.1)

To derive the coexpression network, an adjacency function is then defined to
convert sij to network connection strength aij . For an unweighted co-expression
network, the following adjacency function is commonly used by hard thresholding:

aij =
{

1 if sij ≥ τ,
0 otherwise,

(17.2)

where τ is a hard threshold. Two genes are connected by an edge in the coexpression
network if the absolute correlation value between their gene expression profiles is
larger than the hard threshold. The use of a hard threshold may lead to information
loss. For instance, if τ is selected to be 0.7, there will be no link between two genes
with sij less than but very close to 0.7. Different from this unweighted network
construction, WGCN assigns a weight to each edge using a soft threshold instead
to reduce information loss. This is accomplished by adopting the following soft
adjacency function:

aij = sβij . (17.3)

That is, the network adjacency aij is defined by raising the coexpression similar-
ity to a power with a parameter β . This adjacency measure has a value between 0
and 1. For each node, its network connectivity is calculated as the summation of the
connection strengths with the other genes,

ki =
∑

j �=i
aij . (17.4)

β is one critical parameter that needs to be determined in the adjacency function
because different β values can result in different networks. Most biological networks
tend to follow the scale-free topology, and the frequency of connectivity of the nodes
in a scale-free network follows an approximate inverse power law distribution. In
practice, the value of β is commonly selected to be the smallest integer so that the
resulting weighted network has the scale free topology. With this selected β , the soft
adjacency can be calculated to derive a WGCN.
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17.2.2 Module Identification from WGCN

After constructing a WGCN, the next step is to group highly coexpressed genes
into modules. In a WGCN, genes highly coexpressed with each other are subsets of
nodes tightly connected to each other, that is, nodes with high topological overlap.
To extract sets of nodes with high topological overlap within a WGCN, a topological
overlap measure between nodes is defined as

wij = lij + aij
min{ki, kj } + 1− aij , (17.5)

where lij =∑u �=i,j aiuauj represents the number of nodes both connected by nodes
i and j . wij is a measure of similarity in terms of the nodes they are connected to.
After the calculation of wij among all the nodes in a WGCN, traditional clustering
methods, such as average linkage hierarchical clustering, can be adopted to cluster
the nodes using the topological overlap similarity measure as input to obtain the
clustering dendrogram. Gene modules can be defined as discrete branches of the
clustering dendrogram. The dynamic cut tree algorithm, a method using the internal
structure and lips branches of the dendrogram, is used to automatically identify
modules. The algorithm adopted an iterative procedure until the resulting module
number becomes stable. Each resulting module denotes a set of genes with coherent
expression patterns across samples.

17.2.3 Enrichment Analysis

Coexpressed genes tend to be coregulated and possibly have similar functions.
Therefore, genes in the same module are expected to be enriched for some spe-
cial function categories, pathways or targets genes of specific transcription factors.
In order to understand the biological basis of the network modules, we consider
each identified gene module for enrichment of annotations from GO [24], KEGG
pathways [25], and the physical binding of the transcription factors [4]. In our anal-
ysis, GO and KEGG pathway enrichment analysis was performed by the DAVID
tool [26]. For transcription factor targets enrichment analysis, the hypergeometric
distribution was used to assess the statistical significance. Given a reference set
with k genes bound by the same transcription factor, and a testing set with n genes
consisting of a module extracted from a WGCN, the probability for observing an
overlap with t genes of the two genes sets by chance under the null hypothesis of no
enrichment is

p = P(x ≥ t)=
∑

t≤x≤min(n,k)

( n
x

)(
N
k−x

)

(
N
n

) , (17.6)

where N is the number of all the genes in the yeast genome. This p-value is then
adjusted by the Bonferroni correction to account for multiple comparisons.
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17.2.4 eQTL Analysis

To understand the genetic basis of the network modules, we conducted an analysis
of gene modules through eQTL analysis. eQTL methods are commonly used to
identify genetic variants affecting gene expression variations in different organisms,
including yeast, rat, human, and others [6, 27, 28]. Through eQTL analysis, we may
infer putative interactions between genes. In this chapter, we used eQTL analysis
to study the biological basis of the modules to investigate whether the expression
levels of genes in the same module are influenced by the same eQTL or eQTLs
located in the same genomic region. In our analysis, eQTL analysis was conducted
by performing Student’s t-test between each candidate marker and gene expression
trait with a significance threshold of p-value 4 × 10−5. For each gene expression
trait, only the marker having the most significant association with the trait across
the genome was kept.

17.2.5 Data Sets

We focus on genomics analysis of S. cerevisiae in this chapter and analyze two
microarray expression data sets. The first data set was generated by Brem and col-
leagues from a cross between two distinct isogenic strains BY and RM [8]. It con-
tains gene expression measurements for 5,740 genes and genotypes of 2,956 Single
Nucleotide Polymorphism (SNP) markers for each of the 112 segregants. The sec-
ond data set is the Rosetta Compendium generated by Hughes et al. [2], which con-
tains gene expression values for 6,280 genes measured in 300 experiments. These
300 experiments included 276 deletion mutants, 11 tetracycline regulatable alleles
of essential genes, and 13 chemical treatments. Hereafter, we denote these two data
sets as the Brem data set and the Hughes data set, respectively.

We considered genome-wide location data produced by Harbison and colleagues
in the transcription factor enrichment analysis [4]. These data were collected to
study the binding specificity of 204 transcription factors in the rich medium condi-
tion using ChIP-on-chip. A subset of 84 transcription factors were also profiled in
at least one of 12 other experimental conditions, such as heat and amino acid star-
vation. All genes having binding p-value less than 0.001 with a transcription factor
are considered as the target gene set of the transcription factor.

17.3 Results

17.3.1 Identifying Modules from WGCN

For each gene expression data set, we used the 3,500 most differentially expressed
genes as input to construct the WGCN and derive modules. This was accom-
plished by using the R package developed by Horvath and colleagues [29]. Based
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Fig. 17.1 Dendrogram view of hierarchical clustering results for the WGCNs constructed from
the Brem data set and the Hughes data set (for the color version, see Color Plates on p. 396)

on the scale-free topology criterion, we set β equal to 6 for both data sets. Fig-
ure 17.1 shows the hierarchical clustering dendrograms of genes in the WGCNs
based on the topological overlap similarity measurement for the Brem data set
and the Hughes data set, where subtrees containing highly connected genes are
identified as gene modules. As shown in Fig. 17.1, genes were clustered into dis-
tinct modules. We inferred that there were 11 modules for the Brem data set and
17 modules for the Hughes data set. To distinguish different modules, a distinct
color was assigned to each module. The number of genes included in each mod-
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Fig. 17.2 The heatmap view of gene expression patterns of gene modules extracted from the
WGCN for the Brem data set (for the color version, see Color Plates on p. 397)

ule varied greatly. For example, the largest turquoise module had 556 genes and
the smallest greenyellow one only consisted of 63 genes for the Brem data set,
whereas the number ranged from 50 to 358 for the Hughes data set. The heatmaps
of expression patterns of the 12 gene modules for the Brem data set are shown
in Fig. 17.2 (the grey module, which includes genes not belonging to any of the
11 identified modules, is also presented). Figure 17.2 shows that genes in the
same module have similar expression patterns, while those in different module
have distinct patterns. For the grey module, there is no apparent expression pat-
tern.
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17.3.2 Biological Interpretation of Gene Modules

To assess whether gene modules identified from the WGCN have special biologi-
cal functions, we performed GO and pathway enrichment analysis. First, enrichment
analysis using the yeast GO categories, including molecular functions, cellular com-
ponents, and biological processes, were examined as described in the method sec-
tion. For each module, the statistically most significant GO category is presented in
Table 17.1 for the Brem data set. More than one GO category was enriched for 10
of 11 modules. For example, 122 of the 556 genes in the turquoise module belong
to the cytosolic ribosome cellular component category, and 178 of the 200 genes
in the green module belong to the mitochondrion cellular component category. In
order to gain further understanding of the functional significance of gene modules,
we also conducted a pathway enrichment analysis for each module. Pathways anno-
tated in the KEGG database were used. The results are also shown in Table 17.1. We
found that 8 modules were significantly enriched. For example, the turquoise mod-
ule was enriched for genes within the ribosome pathway with a p-value 8.3×10−10,
which is consistent with its GO enrichment results. Similar results were found for
the Hughes data set.

Table 17.1 GO and pathway analysis results of gene modules for the Brem data set

Module Size Enriched GO
category

GO overlap
(p-value)

Enriched KEGG
pathway

KEGG overlap
(p-value)

Turquoise 556 Cytosolic
ribosome

122 (9.5× 10−103) Ribosome 120 (8.3× 10−96)

Blue 317 Cytoplasm 23 (1.0× 10−8) Starch and
sucrose
metabolism

15 (1.4× 10−3)

Brown 209 Nucleolus 33 (5.4× 10−9) Purine metabolism 16 (4.0× 10−5)

Yellow 207 Amino acid
metabolic
process

46 (5.8× 10−19) Valine, leucine
and isoleucine
biosynthesis

9 (9.2× 10−5)

Green 200 Mitochondrion 178 (5.5× 10−96) Aminoacyl-
tRNA
biosynthesis

13 (5.0× 10−8)

Red 144 Nucleolus 87 (6.4× 10−84) RNA polymerase 5 (0.02)

Black 96 – – – –

Pink 77 Endoplasmic
reticulum

13 (7.7× 10−3) – –

Magenta 72 Mitochondrial
membrane part

35 (2.5× 10−38) Oxidative
phosphorylation

35 (5× 10−36)

Purple 70 Retrotransposon
nucleocapsid

23 (2.1× 10−29) – –

Greenyellow 63 Amino acid
biosynthetic
process

33 (6.2× 10−35) Urea cycle and
metabolism of
amino groups

7 (8.6× 10−4)
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Table 17.2 Transcription factors are enriched for modules of the Brem data set

Module Size Transcription factors with target genes enriched in the module

Turquoise 556 FHL1 HIR1 RAP1 SFP1

Blue 317 CIN5 MSN2 SKN7

Brown 209 –

Yellow 207 BAS1 DAL81 GCN4 LEU3 OPI1 STB1

Green 200 –

Red 144 –

Black 96 KRE33 MBF1 RDR1 YBL054W

Pink 77 HMS1 KRE33 MBF1 RDR1 YBL054W

Magenta 72 HAP1 HAP2 HAP3 HAP4 HAP5 KRE33 MBF1 RDR1 YBL054W

Purple 70 KRE33 KSS1 MBF1 MIG2 MIG3 RDR1 STE12 THI2 YBL054W

Greenyellow 63 ARG80 ARG81 DAL81 GCN4 GLN3 KRE33 MBF1 RDR1 RTG3 YBL054W

We expect that genes regulated by the same transcription factor should have sim-
ilar expression patterns, and hence the target genes of a transcription factor should
more likely appear in the same module. To see whether this is the case in the ob-
served data, we tested if there is any significant enrichment for the target genes of
transcription factors in each module. Genome-wide location data generated by Har-
bison et al. was used to define target genes of different transcription factors [4]. The
results are presented in Table 17.2 for the Brem data set. We can see that 8 of the 11
modules from the Brem data set are enriched for more than one transcription factor.
Transcription factors enriched for some module are the components of a transcrip-
tion factor complex. For example, transcription factors enriched for the magenta
module, HAP2, HAP3, HAP4, HAP5 are subunits of the heme-activated, glucose-
repressed Hap2/3/4/5 CCAAT-binding complex [30]. Transcription factors ARG80
and ARG81, which were enriched for the green–yellow module, are the components
of the Mcm1–Arg80–Arg81 protein complex [30]. The enrichment results for GO
categories, KEGG pathways, and transcription factor targets suggest that modules
identified from the WGCNs include genes coexpressed to perform specific biologic
functions, which indicate that these identified gene modules do have functional sig-
nificance.

17.3.3 Comparison Between Pearson Correlation and Topological
Overlap

In WGCN, topological overlap measure is used to define the similarity between
genes and to identify modules. We may also use Pearson correlation to define the
similarity between genes and use it to find modules instead of topological overlap.
Note that topological overlap and Pearson correlation are two distinct ways to mea-
sure the similarity of a gene pair. When calculating the Pearson correlation of a
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Fig. 17.3 Comparison
between Pearson correlation
coefficient measure and
topological overlap measure
for gene pairs of the Brem
data set

gene pair, only the information of these two genes is used. While in the calculation
of topological overlap, the relationships between this gene pair and all other genes
are considered. Genes strongly connected with the same set of genes will have high
topological overlap.

Here, to explore the relative utility of topological overlap versus Pearson cor-
relation for module inference, we calculated the similarity of every gene pair for
the 3,500 most differentially expressed genes using both kinds of similarity mea-
sures. As shown in Fig. 17.3 of the scatter-plot, there is some moderate association
between the two similarity measures. For gene pairs with a given Pearson correla-
tion value, their topological overlap had a wide range of values, especially for those
having a large Pearson correlation value.

We used Pearson correlation instead of topological overlap to measure the simi-
larity between genes to identify modules for the Brem data set. After the calculation
of the Pearson correlations between each pair of genes among the 3,500 most differ-
entially expressed genes, the same procedure was adopted to find modules as before
for similarity measures based on topological overlaps. Many more modules, a total
of 30 compared to 11 using topological overlap, were detected using Pearson cor-
relation as the similarity measure. The general module size was smaller, with the
largest module having 209 genes, and most of the other modules consisted of 50 to
120 genes. As shown in Table 17.3, only 19 modules were enriched for some GO
categories, which was relatively low compared to those modules identified through
the topological overlap (19/30 versus 10/11). These results suggest that topological
overlap may be more informative than Pearson correlation to capture the similarity
between genes, because it may borrow information from other genes in addition to
the gene pairs considered.
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Table 17.3 GO analysis of gene modules using Pearson correlation instead of topological overlap
as the similarity measure for the Brem data set

Module Size Enriched GO category Overlap Enrichment p-value

Turquoise 209 Purine base metabolic process 8 5.6× 10−3

Blue 173 Cytoplasm 144 6.0× 10−10

Brown 166 Nucleolus 89 2.4× 10−79

Yellow 158 – – –

Green 129 Cytosolic ribosome 36 8.3× 10−26

Red 124 – – –

Black 116 Bucleus 65 4.3× 10−3

Pink 107 Amino acid metabolic process 34 1.6× 10−16

Magenta 105 – – –

Purple 104 Pheromone-dependent
signal transduction
during conjugation with
cellular fusion

7 9.9× 10−4

Greenyellow 99 – – –

Tan 95 Mitochondrial ribosome 51 1.5× 10−68

Salmon 93 Tricarbotimesylic acid
cycle intermediate
metabolic process

6 7.0× 10−3

Cyan 92 Nucleosome 8 5.3× 10−7

Midnightblue 84 Endoplasmic reticulum 28 3.0× 10−9

Lightcyan 78 Amino acid biosynthetic
process

46 1.3× 10−35

Grey60 77 Mitochondrial membrane part 36 4.2× 10−38

Lightgreen 75 Cytosolic ribosome 63 2.3× 10−95

Lightyellow 69 – – –

Royalblue 67 – – –

Darkred 63 – – –

Darkgreen 63 – – –

Darkturquoise 62 – – –

Darkgrey 62 – – –

Orange 60 Mating projection tip 7 2.4× 10−4

Darkorange 60 Aryl-alcohol
dehydrogenase activity

6 3.2× 10−6

White 59 Sterol metabolic process 21 8.8× 10−28

Skyblue 57 Retrotransposon nucleocapsid 22 2.6× 10−30

Saddlebrown 54 – – –

Steelblue 53 Translational initiation 7 2.2× 10−3
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17.3.4 Consistency of Gene Modules

If each module represents a functional unit of some biological process, we expect
the modules to be consistent in the coexpression networks built from different
expression data sources. To test this hypothesis, we explored the consistency of
the modules inferred from the Brem data set and the Hughes data set. For each
module detected in the Brem data set, we compared it with all the modules in-
ferred from the Hughes data set to evaluate whether there is any statistically sig-
nificant overlap between these modules using the hypergeometric test. The mod-
ule pairs with a p-value less than 0.001 are listed in Table 17.4, and the GO
enrichment analysis was carried out to examine if there is any significant func-
tional enrichment of the overlapping genes. Table 17.4 shows that 9 of the 11
modules from the Brem data set have statistically significant overlaps with one or
more modules from the Hughes data set. In addition, significant GO enrichment
was found for the overlapping genes of 8 module pairs. These results suggest that
there is some degree of consistency between modules detected from different data
sets.

Table 17.4 Module pairs with significant overlap between the Brem data set and the Hughes data
set

Brem Data Hughes Data Overlap Overlap
p-value

Enriched GO
categoryModule Size Module Size

Turquoise 556 Blue 348 20 1.4× 10−4 –

Turquoise 556 Purple 68 56 1.5× 10−68 Cytosolic ribosome

Blue 317 Turquoise 358 57 1.6× 10−11 Glycogen metabolic
process

Blue 317 Tan 60 55 6.6× 10−144 Cellular
carbohydrate
catabolic process

Blue 317 Cyan 55 28 1.3× 10−4 Mitochondrion

Brown 209 Green 126 25 1.1× 10−15 rRNA processing

Yellow 207 Brown 276 85 1.0× 10−100 Amino acid
metabolic process

Green 200 Lightcyan 50 43 3.8× 10−100 Mitochondrial matrix

Red 144 Green 126 51 6.9× 10−126 Nucleolus

Magenta 72 Greenyellow 62 6 4.3× 10−6 –

Purple 70 Magenta 72 34 2.6× 10−212 Retrotransposon
nucleocapsid

Greenyellow 63 Brown 276 57 1.3× 10−170 Amino acid
biosynthetic process
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17.3.5 Genetic Basis of Gene Modules

As detailed above, modules extracted from the WGCNs have certain biological in-
terpretations. For the Brem data set, the genetic marker information was also avail-
able. This enables us to investigate whether the eQTLs for the genes in the same
module are located in the region near each other in the genome. We conducted
eQTL analysis to identify genomic regions affecting gene expression levels for all
the genes in each module to 2,896 SNP markers and tested if there is any significant
enrichment of eQTL regions for genes in the same module.

A total of 2,567 gene and SNP pairs were identified as significant, which involved
2,567 distinct gene expression traits and 726 markers. We depict the eQTL results
using the eQTL viewer (Fig. 17.4) [31]. For each module, the eQTLs of its member
genes are represented by its module color. Figure 17.4 shows that the eQTLs of
genes in a module are enriched for some genomic region. For example, more than
one genomic region contains a relatively large number of eQTLs of genes from
the blue module. To further study which genomic regions and to what extent the
genomic regions are associated with each module, we divided the genome into 20 kb
segments in length, resulting in a total of 602 genomic regions. For each region, we
tested the overlap between genes whose eQTL located in that region and genes in
a specific module. As shown in Table 17.5, all but one of the 11 modules were
significantly enriched for being linked to one genomic region. For example, there
were 215 genes linked to the region on chromosome 15 between base pairs 160,000
and 180,000, and 149 of these genes belonged to the blue module. This suggests that
genetic variations in a common genomic region can explain the observed expression
variations of genes in the same module. It is not unexpected as genes in the same
module should have similar expression profiles, therefore more likely to be linked
to the same genomic region.

In Fig. 17.4, a dot in the diagonal line represents an eQTL having an SNP marker
with genomic location near a gene significantly affected by this marker, which
means that the genetic perturbation of the gene leads to a transcription change of
itself. These dots represent putative cis-regulation, while all others represent puta-
tive trans-regulation. There are 450 genes having cis-eQTLs among the 2756 genes.
Most of the eQTLs, totaling 2,306, are trans-eQTLs. Intuitively, for the trans-eQTL,
the expression variation of its trait gene in mutant strains maybe attributed to the ge-
netic variation of genes encoding its transcription factors, and we tested this hypoth-
esis. Genes whose eQTLs were located within the 10-kb upstream and downstream
region of genes encoding their transcription factors are taken as affected by the ge-
netic variation of their transcription factor genes. From Table 17.6 we can see that
only a relatively small number of eQTLs are located near their transcription factors.
Although we have found that some modules are enriched for the target genes of
transcription factors, few genetic variations in gene expression of genes in a module
are due to polymorphisms in the transcription factors that bind to these genes. This
is consistent with previous observation that genes within eQTLs of gene expres-
sion traits are not enriched for transcription factors [27]. The expression variation of
genes with trans-eQTLs in the module may involve genes other than transcription
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Fig. 17.4 eQTL results for the Brem data set. The horizontal line represents the genomic locations
of the SNP markers, and the vertical line represents the genomic locations of the trait genes. Color
dots with the same color correspond to the eQTLs of genes in the module with the corresponding
color (for the color version, see Color Plates on p. 398)

factors. For example, the products of genes located in the eQTL regions may inter-
act with the activities of some transcription factors that regulate the other genes at
the protein level.

17.4 Conclusions

In this chapter, we have analyzed modules extracted from the WGCNs in the context
of diverse types of high-throughput data. The goal of this study was to investigate
the underlying biological meaning and genetic basis of the inferred modules.

Network methods such as WGCNs have been widely used in systems biology
studies, for example, either using gene expression data alone or using gene expres-
sion data in combination with other types of data to reconstruct transcriptional regu-
latory networks. Such methods are promising because they provide a global descrip-
tion of the biological processes. The modularity of biological network is a result of
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Table 17.5 Enriched eQTL region for each gene module

Module Size SNP genomic
location

eQTLs located
in the genomic
region (overlap)

Enrichment
p-value

Turquoise 556 Chr 2, 390000 44 (17) 2.1× 10−4

Blue 317 Chr 15, 170000 215 (149) 4.0× 10−118

Brown 209 Chr 2, 550000 203 (44) 4.1× 10−15

Yellow 207 Chr 3, 90000 87 (29) 1.8× 10−5

Green 200 Chr 14, 450000 304 (118) 5.2× 10−81

Red 144 Chr 2, 55000 202 (48) 6.4× 10−26

Black 96 – – –

Pink 77 Chr 3, 570000 22 (3) 0.01

Magenta 72 Chr 15, 570000 34 (24) 5.4× 10−35

Purple 70 Chr 8, 90000 61 (11) 1.7× 10−8

Greenyellow 63 Chr 3, 70000 83 (38) 1.5× 10−49

various biological processes, such as transcriptional coregulation in order to accom-
plish a biological function. As a result, networks resulting from these methods may
also have modular structures.

In the coexpression networks presented here, gene modules were extracted based
on the topological overlap measure, which seems to be a more informative met-
ric compared with Pearson correlation to define gene modules. Each gene module
represents a set of highly connected genes, that is, a group of highly coexpressed
genes. GO and pathway enrichment analyses suggested that gene modules are en-
riched for genes having similar functions or genes in the same pathways. In addition,
gene modules are also enriched for target genes regulated by the same transcription
factors. These facts indicate that gene modules extracted from the coexpression net-
work are biologically meaningful. We also found that there were significant over-
laps between modules inferred from different data sets and that the overlapping
genes were also enriched for GO categories, which suggests that modules may rep-
resent an inherent property component of the underlying biological process. On the
other hand, we also note that there exist differences between modules inferred from
different data sets, which may be induced by different conditions under which the
expression data sets were collected.

Integrating genetics and genomics data offers a promising approach to under-
standing the genetic basis of modules. We showed that some of the modules are
directly linked to some genetic regions. This relationship is demonstrated when we
conducted eQTL analysis of genes within each module, and the results showed that
there existed genomic regions controlling the coexpression network modules. Many
of these eQTLs were trans-eQTLs, and the genes located near the eQTL region
were usually not transcription factors directly regulating the trait genes. Hence, reg-
ulators other than transcription factors do contribute to the expression variations.
For instance, genes located near the eQTLs may encode some proteins that can in-
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Table 17.6 Overlap between genes bound by a transcription factor and genes whose eQTL are
located near the transcription factor. All transcription factors with at least one overlap are listed

TF name Num. of eQTLs
located near the TF

Num. of genes
bound by the TF

Overlap

HAP1 152 151 44

FKH2 357 169 11

STB5 7 50 3

SWI4 26 161 3

YJL206C 15 35 3

ZAP1 19 22 3

ARG81 46 36 2

CBF1 8 282 2

CIN5 16 223 2

HAL9 162 28 2

HSF1 14 161 2

RFX1 26 25 2

SOK2 15 73 2

ABF1 9 267 1

BAS1 13 52 1

DAL81 3 114 1

DIG1 14 155 1

FKH1 13 142 1

GCR2 5 75 1

MOT3 9 39 1

OAF1 23 61 1

PDR3 11 21 1

RTG3 2 109 1

SMP1 128 91 1

STP2 89 11 1

SWI6 24 158 1

TEC1 23 84 1

YAP1 17 99 1

YAP3 111 18 1

teract with transcription factors at the protein level; then the affected transcription
factors control the expression of their target genes. In addition, the eQTL regions
likely contain more than one gene. A question of interest is to infer the causal genes
for each trait gene or genes in the same module. Integrating other data, such as
protein–protein interaction data, we may gain an even better understanding on how
such interaction are involved to regulate the expression levels of trait genes [32].



348 X. Zhang and H. Zhao

Such knowledge should be informative to understand the transcriptional regulation
relationships.

Overall, our results suggest a clear view of gene modules in the WGCN. Gene
modules provide us a more global way to interpret the underlying cellular processes.
We believe that module-based methods may provide valuable perspectives to under-
stand complex biological processes.
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Chapter 18
Readout of Spike Waves in a Microcolumn

Xuejuan Zhang

18.1 Introduction

Neurons receive and emit spike trains which are typically stochastic in nature, due
to the combination of their intrinsic channel fluctuations, their morphologies, and
the variability in the input they receive. How to accurately and efficiently read out
the input information from spike waves is the central question in (theoretical) neuro-
science [12, 18, 22, 25], but the answer has yet been unprovided. For a given neuron
or neuronal network, the most commonly used method to read out the input infor-
mation is undoubtedly the maximum likelihood estimate (MLE), which is optimal
under mild conditions. However, in order to perform the MLE, the prerequisite is
that we should know the exact expression of the interspike interval (ISI) distribu-
tion of efferent spikes of a neuron or a neuronal network. This is, unfortunately, a
difficult task in general. Even for the simplest leaky integrate-and-fire (LIF) model,
such a distribution, which is equivalent to the distribution of the first passage time
of an Ornstein–Uhlenbeck (OU) process, is unknown. Indeed, it has been posed as
an open problem for many years in the literature [12, 18, 33].

Besides in neuroscience, the first passage time of an OU process is also of quite
interest in many other fields such as physics, engineering and finance, etc., and the
topic has been widely addressed in many textbooks [17, 26, 30]. Due to the re-
cent development [1, 19], three expressions of the interspike interval distribution
are available. The first two expressions are expressed in terms of infinite series or
infinite integrals which are not easy to be calculated numerically. What is suitable
for our purpose is the third one, in which the probability density of ISI can be nu-
merically simulated by Monte Carlo method. Based on this, the MLE for the LIF
model can be developed. Despite of the fact that the MLE for a LIF model has been
discussed intensively by a few authors [8, 10, 15, 24, 28, 32], to the best of our
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knowledge, our approach is based on the exact expression of the ISI distribution of
the LIF model, which should open up many interesting issues for further study, as
we will partly demonstrate here.

We then employ the MLE to several applications. First, we test the MLE for a sin-
gle LIF model with Poisson-type inputs. It is found that the input information (rate)
can be accurately decoded. To further explore the implications of our approach here,
we apply our method to address a long-standing problem: what is the ratio between
inhibitory and excitatory inputs in a biological neuron? Although it is found that the
number of inhibitory neurons is smaller than the number of excitatory neurons in
the cortex [21, 29], it is generally agreed that inhibitory neurons send stronger sig-
nals than excitatory neurons [9]. Therefore the exact ratio between inhibitory and
excitatory inputs remains elusive. With the MLE developed in the current paper, we
are able to reliably estimate the ratio between inhibitory and excitatory inputs to a
LIF neuron.

A more interesting problem is to develop the MLE for an array of LIF neurons
with dynamical inputs. We first consider the case of an ensemble of identical LIF
neurons. With a short time window (∼25 msec), the dynamical input can be read out
reliably [20]. This is also an interesting result, and it answers another issue in neu-
roscience. It was found in [31] that the required time from sensory inputs to motor
reactions is around 200 msec [20]. This suggests that only a few spikes can be gen-
erated in each layer to (encode) decode the input information and the spikes should
be deterministic rather than stochastic. Here we demonstrate that with neuron pools
of a reasonable size (100 neurons), the input information can be accurately read
out within a very short time window from random spikes if the MLE is employed.
Therefore, the stochasticity in spikes does not contradict to the time constraints.

Certainly, neurons in a microcolumn interact with each other. By incorporating
lateral inhibition and the time delay of the synaptic inputs, we find that the input
information can still be reliably read out from spike waves of an interacting neu-
ronal network, using the MLE strategy mentioned above. The results should open
up many new and challenging problems for further research, both in theory and
in applications. For example, we would naturally ask how to implement MLE for
multilayer interacting spiking neuronal networks.

18.2 Theoretical Results

18.2.1 Distribution of Interspike Interval

We start our discussion from the following single LIF model

dV =−V
γ
dt + λdt +√λdBt , V ≤ Vth, (18.1)

where V (t) is the membrane potential at time t , γ is the decay time, λ≥ 0 is the in-
put, Bt is the standard Brownian motion, and Vth is the threshold. When V exceeds
Vth from below, V is reset to Vre = 0, the resting potential.
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Our goal is to decode the input λ from the statistical properties of the ISI of the
efferent spikes which can be expressed as

T = inf
{
t > 0 : V (t)≥ Vth|V (0)= 0

}
. (18.2)

More precisely, we define

τi = inf
{
t > τi−1 : V (t)≥ Vth|V (τi−1)= 0

}
, i ≥ 1,

τ0 = 0,
(18.3)

and Ti = τi − τi−1, i ≥ 1. It is ready to see that {Ti, i ≥ 1} is an i.i.d. sequence and
has the identical distribution density as T .

By letting U = (V − λγ )/√λ, the distribution of the ISI of efferent spikes of the
LIF model (18.1) is equivalent to the distribution of the first-passage time of the OU
process

dU =−U
γ
dt + dBt (18.4)

starting from Ure =−
√
λγ to hit Uth = Vth

√
λ−√λγ . The interspike interval of

efferent spikes can be expressed as

T = inf
{
t :U(t)≥ Vth/

√
λ−√λγ |U(0)=−√λγ }. (18.5)

Let pλ(t) be the distribution density of T . As mentioned above, the first-passage
time problem, which occurs in many areas, had once been believed to have no gen-
eral explicit analytical formula (see p. 183 in [18]), except a moment expansion of
the first-passage time distribution for constant input. Recently, the knowledge of the
sought density is nicely summarized in [1], where three expressions of the distri-
bution of T are presented: the series representation, the integral representation, and
the Bessel bridge representation. For numerical approximation, the authors pointed
out that the first two approaches are easy to implement but require the knowledge
of the Laplace transform of the first hitting time, which can be computed only for
some specific continuous Markov processes, while the Bessel bridge approach over-
comes the problem of detecting the time at which the approximated process crosses
the boundary [1]. For this reason, here we prefer to apply the Bessel bridge method
under which the probability density of T has the following form:

pλ(t) = exp

(−λ−1V 2
th + 2γVth + t

2γ

)

p(0)(t)

×E0→Vth
{

exp

[

− 1

2γ 2λ

∫ t

0
(rs − Vth + λγ )2 ds

]}

, (18.6)

where

p(0)(t)= Vth√
2πλt3

exp

(

−V
2
th

2tλ

)

(18.7)
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is the distribution density of the nonleaky IF model, {rs}s≤t is the so-called three-
dimensional Bessel bridge starting from point 0 and ending at point Vth, which
can be constructed from three independent Brownian bridges. Mathematically, it
satisfies the stochastic differential equation

drs =
(
Vth − rs
t − s + λ

rs

)

ds +√λ dBs, r0 = 0, s < t. (18.8)

In (18.6), E0→Vth represents the expectation with respect to the stochastic process
rs with starting point 0 and ending point Vth. So the density function pλ(t) is an
ensemble average over many trials of the three-dimensional Bessel bridge.

At a first glance, the expression of (18.6) looks somewhat complicated, as it is an
expectation of a singular stochastic process. However, we can resort to Monte Carlo
method to numerically evaluate the expectation. To do this, we have to generate a
large number, say M , of independent sampling paths of a three-dimensional Bessel
bridge. It should be pointed out that in numerical simulations, we do not use (18.8)
to directly simulate the process {rs}0≤s≤t since it is degenerate at s = 0. Instead we
consider the process {r2

s }0≤s≤t which satisfies

d(rs)
2 = 2rs drs + λds. (18.9)

Note that the second term on the right-hand side of the equation above is due to
the Itô integral. According to this, the iterate procedure to simulate the stochastic
process rs is as follows (we simply denote r(j) as r(j	t)):
⎧
⎨

⎩

u(j + 1)= u(j)+	t ·
(

2r(j)(Vth − r(j))
t − j	t + 3λ

)

+ 2r(j) · √λ ·	B(j),
r(j + 1)=√u(j + 1),

with r(1) = 0 and u(1) = 0, where 	t is the time step, and 	B(j)
	=

B(j	t +	t)−B(j	t) is the increment of the Brownian motion with distribution
Norm(0,	t). Here Norm(·, ·) is the normal distribution with corresponding mean
and variance. The three-dimensional Bessel bridge rs has a trajectory as shown in
Fig. 18.1A.

Denote by {ri(k	t)} the ith sampling trajectory, and let

f1(t)= exp

(−λ−1V 2
th + 2γVth + t

2γ

)

p(0)(t);

then the approximation formula for (18.6) is

p̄λ(t)= f1(t) · 1

M

M∑

i=1

exp

[

− 1

2γ 2λ

n∑

k=1

(
ri(k	t)− Vth + λγ

)2 ·	t
]

, (18.10)

where	t = t
n

. The ISI density calculated from pλ(t) is plotted in Fig. 18.1C, which
demonstrates that p̄λ matches the histogram obtained from a direct simulation of the
LIF model very well.
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Fig. 18.1 MLE of a single neuron. (A) Examples of trajectories of rs and ws . (B) pλ(t) (red) and
histogram (blue) from a direct simulation of the LIF model. (C) The estimated input rate λ̂ (dots)
obtained from 600 interspike intervals. Parameters are Vth = 20 mV and γ = 20 msec (for the
color version, see Color Plates on p. 398)

The Bessel bridge rs has a trajectory as shown in Fig. 18.1A. The ISI density
calculated from pλ(t) is plotted in Fig. 18.1B, which is shown to match with the
histogram obtained from a direct simulation of the LIF model.

18.2.2 MLE Decoding Strategy

Having the exact function of the distribution pλ(t), we can perform the MLE de-
coding procedure. The likelihood function is given by

L
	=

N∏

i=1

pλ(Ti), (18.11)

where N is the total number of spikes. Then

lnL=
N∑

i=1

lnpλ(Ti). (18.12)

The optimal estimate of the input information λ corresponds to the root of the
equation d lnL/dλ= 0. However, calculation of d lnL/dλ will yield a complicated
expression, since the density function pλ(t) implies a singular stochastic process

rs whose derivative with respect to λ, ws
	= drs/dλ, is also a singular stochastic

process. Actually, ws satisfies the equation

dws =
(−ws
t − s +

1

rs
− λ

r2
s

ws

)

ds + 1

2
√
λ
dBs (18.13)

with r0 = 0 and w0 = 0. One sampling trajectory of ws is shown in Fig. 18.1A.
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After some calculations, we know that the MLE of λ is the root of the equation

(

Nγ−1 +
N∑

i=1

T −1
i

)

V 2
th − λN + γ−2

N∑

i=1

E0→Vth
[
gλ(Ti)

]= 0, (18.14)

where gλ(t) is given by

∫ t

0

[
(rs − Vth + λγ )2 − 2λ(rs − Vth + λγ ) · (ws + γ )

]
ds

×
exp[− 1

2γ 2λ

∫ t
0 (rs − Vth + λγ )2 ds]

E0→Vth{exp[− 1
2γ 2λ

∫ t
0 (rs − Vth + λγ )2 ds]}

. (18.15)

Though it is difficult to find an analytical solution of (18.14), we can numerically
find its root, denoted as λ̂. Figure 18.1C depicts the value λ̂ vs. its actual value λ
for the model defined by (18.1), where each point of λ̂ is obtained by using 600 in-
terspike intervals. It is clearly shown that the estimated value λ̂ excellently matches
with the true value λ.

Actually, the precision of the estimate can be theoretically decided by one of the
nice properties of the MLE, which lies in the fact that we can estimate the confidence
intervals according to Fisher information which is defined by

I (λ)=
∫ (

p′λ(t)
pλ(t)

)2

pλ(t) dt. (18.16)

From (18.6) we conclude that

p′λ(t)
pλ(t)

= 1

2λ2

[(
γ−1 + t−1)V 2

th − λ+ γ−2E0→Vth
[
gλ(t)

]]
.

Hence the Fisher information is given by

I (λ)= 1

4λ4

∫
[(
γ−1 + t−1)V 2

th − λ+ γ−2E0→Vth
[
gλ(t)

]]2
pλ(t) dt. (18.17)

For a given sampling number N, let λ̂N be the estimate of a parameter λ via
MLE. We have that

√
N
(
λ− λ̂N

)→ Norm
(
0,1/I (λ)

)

in distribution. Then the confidence intervals of the model parameter λ for a given
N can be computed as

[

λ− 1√
NI (λ)

,λ+ 1√
NI (λ)

]

. (18.18)
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Fig. 18.2 Comparison of two methods. (A) Estimate of afferent input λ via the MLE method.
Dashed lines are confidence intervals calculated from (18.18). (B) Estimate of afferent input λ via
the “rate coding” method. Here we fix r = 0 and a = 1 and choose 200 ISI intervals

18.2.3 Comparing with Rate Decoding

One might ask why we do not decode the input information by simply fitting the
firing rate and CV since the first and second moments of ISIs are known. Such a “rate
decoding” approach has been extensively discussed in the literature. It is known that
when the sampling number is large enough, both MLE and rate coding methods
give reasonable results. However, from the viewpoint of parameter estimation, the
advantage of the MLE method is obvious. By the Cramer–Rao lower bound, we
know that the MLE is optimal, but rate decoding is not.

Further numerical comparison of the two approaches is presented in Fig. 18.2. It
is known that with the input rate increasing, the variation also increases, and thus
both the errors of decoding via the MLE and via the “rate coding” increase in the
regime of high λ. However, as can be seen from Fig. 18.2A, the decoding error via
the MLE method is bounded by the Cramer–Rao lower bound, while the error via
the “rate coding” approach may be out of this range. From this point of view, the
MLE is optimal. The advantage of the MLE over the “rate coding” is quite obvious
even for a relatively small sampling number (here we take N = 200).

18.3 Applications

In this section, we will apply the above developed strategy of MLE to some decoding
problems.

18.3.1 Decode Excitatory and Inhibitory Ratio in a Single Neuron
with Stationary Input

One can see from Fig. 18.1C that stationary input to a single neuron can be reliably
read out by the method of MLE based on the density function of ISI. Generally,
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a neuron receives excitatory and inhibitory inputs. Hence the corresponding LIF
model could be written as

dV =−V
γ
dt +μdt +√β dBt , V ≤ Vth, (18.19)

where
{
μ= aλ(1−R),
β = a2λ(1+R), (18.20)

with a being the magnitude of excitatory postsynaptic potentials (EPSP) and R the
ratio between inhibitory and excitatory inputs.

Similar to decoding the input rate λ in (18.1), the value of excitatory and in-
hibitory ratio R can be known from the solution of the following equation:

(

γ−1 + 1

N

N∑

i=1

T −1
i

)

V 2
thβ

′ + 2Vth
(
μ′β −μβ ′)− ββ ′

+ β ′

γ 2N

N∑

i=1

E0→Vth
[
gR(Ti)

]= 0, (18.21)

where the derivative is with respect to R, gR is a function related to the three-
dimensional Bessel bridge and can be calculated in the same way as gλ(t) in (18.15).
In Fig. 18.3, the ratio for the model defined by (18.20) is estimated, which is shown
to be very accurate.

In the literature, what is the exact value of R has been a long debating issue
[9, 29]. On the one hand, it has been argued that R should be around unity [21, 29].
On the other hand, experimentally measured postsynaptic value seems to be much
higher [9]. However, since input signals travel through the dendrites and soma (both
highly nonlinear media) and finally arrive at the hillock where the spikes generate,
the ratio could be very different from the one measured from postsynaptic current.

Fig. 18.3 The estimated ratio
R̂ (open circles) vs. the actual
value R. Parameters are
Vth = 20 mV, γ = 20 msec,
and Vre = 0 mV
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Fig. 18.4 (Color online) MLE of the ratio R. Results for four datasets are shown here. Black
curves are the histograms from the experimental data, and red curves are the density distribution
functions

To see whether the debate can be partially answered, let us have a look of some
recorded datasets of pyramidal neurons in macaque monkey MT/V5 with random
dots stimuli [4] (http://www.neuralsignal.org/index_data.html). In Fig. 18.4, we plot
data histograms (black ones) of the interspike intervals from four sets of recorded
datasets. In each panel, the inset is a section of the whole recording of the spikes.

We suppose that the input–output relationship of each pyramidal cell can be re-
garded as a LIF neuron with (18.19) and (18.20). We set Vth = 25 mV, γ = 20 msec,
λ= 2, a = 1.5 mV, Vre = 0 mV, all in physiologically reasonable regions. The in-
terspike intervals distribution density can be obtained from the MLE of R, which
is the solution to (18.21). The red curves in Fig. 18.4 depict the estimated density
distribution functions, which are shown to be very good approximations to the cor-
responding histograms from the experimental data.

We have analyzed 10 datasets, and the ratios obtained from MLE are 0.682,
0.605, 0.792, 0.78, 0.61, 0.77, 0.51 0.55, 0.905, 0.77, with a mean of R = 0.6974,
in accordance with the value suggested in the literature [13].

18.3.2 Decode Dynamical Inputs in Networks Without Interactions

In the following, let us further develop the MLE to decode dynamical inputs in pools
of neurons, which has been partly solved in [27]. The network as schematically
plotted in Fig. 18.5A is composed of 100 neurons. We assume that the input is
varying slowly compared with the time scale of the neuronal dynamics, so that in
each time window of fixed length TW , the ISI distribution adiabatically follows the
stationary one.

http://www.neuralsignal.org/index_data.html
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Fig. 18.5 MLE in a network without interactions. (A) Schematic plot of reading dynamic inputs
from an ensemble of neurons. For a fixed time window (indicated by T iw,T

j
w ), the spikes are col-

lected, and the input is decoded by means of MLE. (B) Raster plots of spikes in five different
decoding windows. The information is read out from the spikes in each window. (C) An example
of reading the input information from ensemble of neurons is shown. The original signal λ(t) is
plotted in the continuous line, while dots are estimated values of λ(t) (for the color version, see
Color Plates on p. 399)

To express the main idea of how to apply the MLE to decode dynamical input
information, we assume that each neuron receives a common excitatory Poisson
synaptic input, and the procedure below is also valid for other ratios between the
inhibitory input and the excitatory input. We suppose that the waveform of input is
λ(t)= 2+ 4(sin2(2πt)+ sin2( 3

2πt)). Here the time scale of the input is measured
in the unit of second, and thus it varies slowly compared with the time scale of the
neuronal dynamics. Note that in this case any interspike interval longer than Tw will
not be included in the procedure, so the estimated input λ̂(t) is bound to be biased,
a typical situation in survival analysis. To obtain an unbiased estimate, the censored
intervals have to be included, and more detailed calculations are required. However,
since the numerical results (see Fig. 18.5C) indicate that the bias is very limited, we
simply ignore the issue of censored intervals. Figure 18.5C depicts the MLE vs. the
input frequency for time windows Tw = 25 ms. Although Tw is very short, we can
see that the estimate is excellent (except that it is slightly downward biased).

Now we consider a more biologically realistic setup. Assume that an ensemble of
neurons, say 1000 leaky LIF neurons, are grouped into N = 10 columns, and each
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Fig. 18.6 MLE in position tracking. (A) The setup of our encoding and decoding. The place
information x(t) is feeded to 1000 neurons organized in 10 columns with different preferred po-
sitions xi . For each column, spikes are collected in the window Tw , and the MLE is applied. The
position is read out by first solving (18.22), obtaining the corresponding x̂ and fitting a Gaussian
curve to all 10 data points x̂. The maximum point of the fitted Gaussian curve is the decoded posi-
tion. (B) One example of λ̂ vs. columns. (C) Examples of 10 decoded results (for the color version,
see Color Plates on p. 400)

100 neurons in a same column share an identical tuning curve defined by

λ(xi;x)= λ0 + c · λ0 exp

(

− (x − xi)
2

2σ 2

)

, (18.22)

where c is a constant scaling factor, σ is the tuning width, xi is the column’s field
center, and x is the position. Hence, for example, the neuron in the ith column
receives an input which is the position information x(t) ∈ [0,L] (we take L = 11
here), and the response of the neuron is given by λ(xi, x(t)). The task is to read
out the position information x(t). The setup mimics the situation of reading out the
position of a rat from simultaneous recordings of place cells in Hippocampus [32].

For simulation, we fix c = 2, σ = 1.5, and λ0 = 2. We assume that the target
position x changes in time according to x(t) =∑N

j=1 ξjχ(t ∈ Ij ), where ξj are
independent random variables uniformly distributed in [0,L], and Ij = {t : (j −
1)Tw < t < jTw}, i.e., we consider a target hopping every Tw to a new random
position between 0 and L. An outcome of our experiments is shown in Fig. 18.6.



362 X. Zhang

The results above also provide a possible answer for another long-standing issue
in neuroscience. It was pointed out in [31] that the time interval between sensory
inputs and motor outputs is around 200 msec. It is then argued that only a few
interspike intervals can be used to estimate the input in each layer and therefore a
stochastic dynamics is implausible in the nervous system. Our results clearly show
that within a very short time window (20 msec), the spikes generated from an array
of neurons contain enough information for the central nervous system to decode
the input information. Hence, even without the overlap of the processing time of
each layer in the nervous system, within 200 msec it could reliably read out the
information for around ten layers.

18.3.3 Decode Input Information in Networks with Interactions

So far we have assumed that neurons in the same column are regarded as inde-
pendent. Certainly neurons in a microcolumn interact with each other, which might
considerably change all conclusions in the previous sections. Can we or the central
nervous system read out the input information from spike waves? In this section,
let us further investigate such an issue. The purpose is to read out the information
of an external stimulus even in the presence of interactions between neurons in a
microcolumn.

The strategy adopted here (or possibly by the nervous system) is based on in-
corporating the lateral inhibition and the time delay of the synaptic inputs. As a
result, all neurons in a network behave independently before the interactions kick
in. The depolarization caused by the external inputs evokes the hyperpolarizing ef-
fect of inhibitory interactions between neurons, which subsequently shuts down the
firing of all neurons (first epoch) and enables the neurons in the microcolumn act
independently again.

The model we consider here consists of PE = 100 excitatory and PI = 100 in-
hibitory neurons with all-to-all connections. Biologically, a neuron has two compart-
ments: soma and dendrite. For excitatory interactions, neurons receive inputs at its
dendritic compartment; for inhibitory connection, neurons interact with each other
via inhibitory neurons (not specifically modeled) and receive inputs at its somatic
compartment. Here, for simplicity, we unify the somatic and dendritic compartments
as the following single model described as

dVj

dt
=−Vj

γ
+ IEj (t)+ ISj (t), Vj ≤ Vth, j = 1,2, . . . ,Nn = PE + PI ,

(18.23)
where
⎧
⎪⎪⎨

⎪⎪⎩

IEj (t)= aλj (t)+ a
√
λj (t)ξj (t),

I Sj (t)=
PE∑

k=1

∑

tmk +τ<t
wEjkδ

(
t − tmk − τ

)− rEI
PI∑

l=1

∑

tml +τ<t
wIjlδ

(
t − tml − τ

)
.

(18.24)
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Fig. 18.7 (A) A schematic
plot of the model setup with
10 neurons. White arrows are
excitatory interactions, and
green arrows are inhibitory
interactions via inhibitory
neurons (not specifically
modelled). (B) A single
neuron model of two
compartments. (C) One
trajectory of one single cell is
depicted (blue trace), and the
red line is the local field
potentials for averaging all
neurons in a microcolumn.
The oscillatory in Gamma
frequency is obvious. (D) The
optimal time window for
decoding the input (the
window between two thick
vertical lines) (for the color
version, see Color Plates on
p. 401)

Here IEj (t) is the external input from the stimulus with an input rate λj (t) and mag-

nitude a, ξj (t) are independent white noises, ISj (t) is the spiking input from other

neurons to the j th neuron, i.e., the intralayer interactions, wEjk and wIjl are EPSP
and IPSP sizes that the j th neuron receives from the kth excitatory neuron and the
lth inhibitory neuron, tmk is themth spike generated from the kth neuron, and τ is the
time delay due to the interaction. We suppose that wEjk and wIjl are uniformly dis-
tributed in [0,D], and λi(t)= λj (t)= λ. Finally, rEI is the ratio between intralayer
inhibitory and excitatory interactions. In our numerical simulations, we fix a = 1,
D = 2, rEI = 1.8, and τ = 5 msec. An explanation of our model setup is plotted in
Figs. 18.7A and B.

Figures 18.7C and D show one simulation with the setup as above. As expected,
with the application of the external inputs, all neurons start respond to it. Some
neurons fire a few spikes. However, the inhibitory inputs kicks in when t is around
10 msec and inhibit all neuronal activities. Once all neurons are silent, the interac-
tions between neurons disappear, and all neurons in the network act as independent
units again. Hence the external inputs evoke the second epoch of the spikes. The
procedure above repeats itself. We might ask ourselves why neurons use pulsed
interactions to communicate between them rather than other forms of interactions
such as gap junctions to interact. The difference between gap junctions and pulsed
interaction is that the former exchanges information continuously and the later only
react to each other when the membrane potential exceeds a threshold which results
in the independent phase in Fig. 18.7D.
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Fig. 18.8 Histogram (blue) and density function pλ(t) (red): (A) The histogram (blue trace) is
obtained from a direct simulation of the model, and the red line is the theoretical density; (B) The
histogram is from the filtered interspike intervals (the first modes in A). (C) Reading the input
information (the solid line) from an ensemble of neurons, every dot is estimated within a fixed
time window Tw = 20 msec

Based on such an inhibition-induced shutting down mechanism, let us now in-
vestigate how the afferent input rate λ(t) can be read out accurately by applying
the MLE strategy. The problem of introducing interactions in a fixed time window
is that the decoding may have a significant bias. To resolve this issue, let us first
have a look of the histogram of the ISIs of (18.23)–(18.24) in the case the input rate
λ(t) is time-independent, say λ(t)= λ= 4. It is indicated in Fig. 18.8A that the his-
togram now has two modes: the one with short ISIs corresponds to the actual ISIs
driven by the external input, and the other is due to the interactions. After filtering
out the second mode, the obtained histogram fits well with the theoretical density
(the red trace in Fig. 18.8B. To decode the input information, we filter out the spikes
corresponding to the second mode and use exclusively the ISIs of the first mode. It
is shown in Fig. 18.8C that in a short time window, the input rate can be reliably
decoded.

In Figs. 18.9A and B, we test our algorithm in a dynamic input with waveform
λ(t)= 2+4(sin2(2πt)+ sin2( 3

2πt)), for different values of coupling strength. Here
t is measured in the unit of second, which ensures the ISI distribution being adiabat-
ically stationary in each time window of length around 25 msec. To show the net-
work behavior under different coupling intensities, the ensemble voltage traces and
the corresponding raster plots of 100 excitatory cells for λ(t)= λ= 3 are depicted
in the above and the middle panels of Figs. 18.9A and B, respectively. Interestingly,
it is shown that the network displays rhythmic activity when the coupling strength
is strong and the decoding (shown in the bottom trace of Fig. 18.9B) is quite accu-
rate; however, for weak values of the coupling strength, no rhythmic activities are
observed, and as expected, the estimated values (see the bottom trace of Fig. 18.9A)
are much less accurate than in the rhythmic case.

Figures 18.9A and B suggest that there should exist a critical value of the cou-
pling strength Dc, after which the network can perform decoding accurately. To

see this, we plot the relative decoding error λ̂−λ
λ

vs. the coupling intensity D in
Fig. 18.9C, for constant afferent inputs (here we choose λ= 4, λ= 5, and λ= 8).
One can see that for D = 0, the decoding is very accurate, which is just the case
discussed in Sect. 18.3.2. With D slightly increasing, the absolute decoding error
increases. This is because the interactions between neurons cannot be shut down for
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Fig. 18.9 MLE in a network with interactions. (A) and (B) The above traces: The trajectories of
100 excitatory neurons and the corresponding mean voltages for λ= 3 during 0–60 ms. The middle
traces: Raster plots corresponding to the above trace. The bottom traces: Reading out the dynamic
inputs (the solid line) from 100 excitatory neurons, every dot is estimated via the MLE approach
within a fixed time window Tw = 25 msec. Left column is for D = 0.3, while right column is for
D = 1.5. (C) The optimal coupling intensities for reading out the input information within a fixed
time window Tw = 25 msec

weak coupling strengths. After about D = 0.25, the absolute decoding error grad-
ually decreases, and after about D = 0.8, the input rate can be reliably read out,
meanwhile, the network exhibits significant rhythmic activities.

If only interspike intervals are concerned, then for a too short time window, it is
difficult to perform a decoding task as there are no enough spikes. On the other hand,
if the time window is too long, then the informative interspike intervals generated
via the external inputs are interfered with the ones due to interactions. We conclude
that there should be an optimal decoding time window T

optim
w in which the input

information is optimally decoded. To test this, we plot the relative decoding errors
|λ̂−λ|
λ

vs. different time windows in Fig. 18.10A for intermediate input rates and



366 X. Zhang

Fig. 18.10 (A) Decoding errors of reading out intermediate input rates within different time win-
dows, where optimal time windows are shown to be around 15–40 msec. (B) Decoding errors of
reading out high input rates are shown to be very small within both short and large time windows.
(C) Relationship of the optimal decoding windows and the periods of the network oscillations. One
can see that for moderate input rates, T optim

w ≈ Tnet. Here we fix D = 1.5

in Fig. 18.10B for high input rates. It is shown that for moderate input rates (2 ≤
λ ≤ 5), such optimal windows exist and are around 15–40 msec, which are in the
gamma range, while for a high input rate λ, the decoding errors are small (<5%)
for both short and long time windows. The accuracy of decoding for high input
rates is because in this case, spikes are generated within a very short time (∼ or
<5 msec, the synaptic delay time), which implies that neurons in a pool have no
time to interact with each other before starting the next epoch of firings. Hence, in
response to a high input rate, neurons in a network actually act independently. This
is why a small decoding error is achieved even for long time windows.

To explore how the optimal decoding windows for moderate input rates come
about and how they are related with the periods Tnet of the network oscillations,
we further depict these two time windows (Tnet and T optim

w ) vs. the input rate λ
in Fig. 18.10C. The definition of Tnet is clear; for example, see Fig. 18.9B. One
can see that for a reasonable range of input rates λ (about 2 ≤ λ ≤ 5), the optimal
decoding windows are approximately equal to the network periods. The consistence
of the optimal decoding windows and the periods of the network oscillations for
moderate input rates manifests that the spikes generated from a pool of neurons
within the period of the network rhythm are sufficient to read out input rates. Too
small or too large time windows will either include no enough input information or
interfered redundant interspike intervals, both of which will introduce the bias in
decoding. The results shown in Figs. 18.9 and 18.10 may serve as a good example
to manifest the functional role of the Gamma rhythm (30 to 80 Hz) in information
processing, which has been extensively discussed by many authors (see [7] and
references therein).

18.4 Discussion

We have presented a study on how to perform MLE on spike waves [34]. First, a
rigorous algorithm of the MLE based upon the ISI distribution is developed. The
algorithm enabled us to address a few key issues in Neuroscience. We have shown
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that the MLE can be successfully applied to read out either steady or dynamic in-
puts in single or pools of neurons. Even within short time windows, the decoded
information is of high accuracy. We have also addressed that even for spiking neural
networks with interactions, we can still employ the strategy of the MLE to decode
dynamic inputs, by properly incorporating the local inhibitory interactions in a mi-
crocolumn and the delay of synaptic currents.

We have only included a very brief account of our applications here and will
publish more results such as tracking moving stimuli, decoding multistimuli, con-
structing IF-type visual cortex, and exploring the gamma rhythm in signal decoding
elsewhere. Furthermore our approach may help us to answer another long-standing
problem: what is the ratio between inhibitory and excitatory inputs in a biological
neuron? Although it has been found that the number of inhibitory neurons is smaller
than the number of excitatory neurons in the cortex [21, 29], it is generally agreed
that inhibitory neurons send stronger signals than excitatory neurons [9]. Therefore
the exact ratio between inhibitory and excitatory inputs remains elusive. With the
maximum likelihood estimate developed in the current paper, we may be able to
reliably estimate the ratio between inhibitory and excitatory inputs to a LIF neuron.

As a simplified phenomenological neuronal model, the LIF equation preserves
spiking properties of a neuron, and the input information can be reliably read out,
as manifested in the current paper. However, the LIF model fails to capture many
biophysical details [5, 11]. In the literature, there are some models that are more
biophysically accurate but still mathematically simple, such as quadratic IF neu-
rons [6, 14], exponential IF neurons [16], and more recently adaptive exponential
IF neurons [3]. It is shown that adaptive exponential IF neurons give an effective
description of neuron activities, and can reliably predict the voltage trace of a natu-
ralistic pyramidal neuron from a dynamic I–V curve [2]. We realized that general-
izing the MLE strategy developed for the LIF neurons to these nonlinear IF neurons
still needs more endeavor, as it is not so easy to derive exact expressions of the dis-
tributions of ISIs for these nonlinear IF neurons. Furthermore, we have not taken
into account learning, here and it is certainly a more challenging issue since the
estimated parameters are also dynamical variables [23].
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Chapter 19
False Positive Control for Genome-Wide
ChIP-Chip Tiling Arrays

Yu Zhang

19.1 Introduction

Chromatin immunoprecipitation of DNA segments followed by microarray hy-
bridization (ChIP-Chip) is a powerful tool for studying protein–DNA interactions
in vivo. Applying this technology with high-density oligonucleotide tiling arrays
allows precise localization of transcription factor binding in the whole-genome
scale [1, 2]. A typical tiling array chip contains 4 × 105 DNA probes (oligonu-
cleotide of 25–100 bp long) tiled at every 30–100 bp on the genome. ChIP-Chip
data is thus an array of hybridization intensities measured from the ordered probes.
Large intensity values are called peaks, and the probe locations of these peaks in-
dicate the most likely positions of protein–DNA binding. The task is therefore to
find statistically significantly large peaks and their corresponding locations on the
genome, which is referred to as peak-calling.

Probe intensities of multiple adjacent probes are positively correlated due to the
large size of sheared DNA fragments. As a result, regions containing many large val-
ues of hybridization intensities are more likely to cover a true protein–DNA binding
site than regions containing just a single peak. The positive correlation structure of
adjacent probes raises a statistically challenging problem for estimating the signif-
icance of peaks under the context of multiple testings. The well-known Bonferroni
method is too conservative for estimating the family-wise type I error rate in peak-
calling, because the method assumes independence between tests. Alternatively, one
may want to control the false discovery rate (FDR) introduced by Benjamini and
Hochberg [3]. However, when tests are positively correlated, the estimated propor-
tion of false rejections can have large variability. More importantly, significant peaks
tend to be clustered, making the usual FDR control on individual tests inappropriate.
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Many computational methods have been developed for ChIP-chip peak-calling in
recent years [4–7]. None of them, however, provided a rigorous control on the false
discoveries adjusting for millions of simultaneous comparisons. A common practice
is to report all significant peaks passing an arbitrarily chosen cutoff; the validity of
called peaks will then be verified using rtPCR. A nested Bonferroni method [8]
has been proposed that provides a better upper bound of type I error rate than the
Bonferroni method. Alternatively, permutation tests may be used to estimate the
statistical significance of peaks, provided that permutation preserves the covariance
structure of the data [9]. However, it is common that a ChIP-chip experiment has
none or just a few biological and technical replicates, which makes permutation not
applicable.

We propose a new method that can accurately approximate the statistical signif-
icance of peaks adjusting for multiple testings. Our approach is to convert the test
statistics of probe intensities into a declumped statistic such that the local correlation
among the probes is compensated. The declumping approach has been previously
used in approximating the significance of sequence matching [10]. For tiling arrays,
we first use a Monte Carlo method called importance sampling [11] to estimate the
significance of individual clumps. We then use a Poisson distribution to approxi-
mate the overall significance of a peak adjusting for multiple testings. We demon-
strate that our approach can accurately approximate the true statistical significance
of peaks in a very efficient way. For example, it takes less than 1 second to com-
pute the family-wise statistical significance of an observed peak value. We further
generalize the method to address two additional issues in tiling array analysis. First,
we demonstrate how to combine peak-calling results from various window sizes to
maximize the power for detecting subtle peaks. Using simulations, we show that
peaks identified using a fixed window size can lose a substantial amount of power
than combining results from a range of window sizes. Second, an FDR control with-
out considering the positive correlation among probes can seriously underestimate
the true FDR level of protein–DNA binding intervals. We therefore propose a mod-
ified FDR method to solve this problem.

19.2 Methods

Let X = (X1, . . . ,XL) denote an array of standardized hybridization intensities of
L probes ordered by their physical locations on the chromosome. For each probe,
the null hypothesis is that the probe does not overlap with a binding site, and we as-
sume that the probe intensities follow a normal distribution. A simple peak-calling
approach is then to test the null hypothesis using a sliding window of k consecutive
probes, where the window starts at each probe under testing and covers k consecu-
tive probes to the right. There are a total of L− k+1 such windows. Under the null,
we test whetherXi = (Xi+· · ·+Xi+k−1)/k is much larger than that expected from
a normal distribution with mean 0. The task is therefore to determine a threshold for
Xi such that the family-wise type I error rate is controlled at a desired level.
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19.2.1 Poisson Approximation

Given n independent tests with test statistic Ti , i = 1, . . . , n, and a stringent thresh-
old t , if Ti ≥ t is a rare event under the null hypothesis, we have that the num-
ber of rejections, W =∑n

i=1 I {Ti ≥ t}, follows approximately a Poisson distri-
bution [12]. That is, P(W = w) = e−λλw/w!, where λ = E(W) is the expected
number of tests passing threshold t . As a result, the family-wise p-value is given
by P(maxni=1Ti ≥ t) = 1 − P(W = 0) = 1 − e−λ. The Poisson approximation,
however, will not work for positively correlated tests. We therefore compensate
for the positive correlation by introducing the binary indicator Ri(t) = I {Xi ≥
t}I {Xi−1 < t,∀l = 1, . . . , k− 1} at each probe i, where Xi−1 = 0 for i − l ≤ 0.
We abbreviate Ri(t) as Ri . It is easily checked that Ri,Ri+1, . . . ,Ri+k−1 are neg-
atively correlated, i.e., at most one of Ri,Ri+1, . . . ,Ri+k−1 can take value 1. We
can view the distribution of Ri as a mixture of a Bernoulli distribution and a unit
mass on zero, with weights π and 1− π , respectively, where π is the probability
that none of the (k − 1) windows proceeding the ith window passes the thresh-
old t , i.e., π = Pr(Xi−1 < t,∀l = 1, . . . , k− 1), and the Bernoulli parameter is
p = P(Xi ≥ t | Xi−1,∀l = 1, . . . , k − 1). If there are no other dependence struc-
tures, the Poisson approximation will work for the distribution ofWR =∑L−k+1

i=1 Ri
with mean λ=E(WR)= (L− k+ 1)πp.

Instead of testing the window averages, we check whether Ri = 1 or not, where
Ri = 1 indicates a significant peak at position i after declumping. We call this new
test an R-test in contrast to the test of window averages, which we call X-test. We
further define the clump size as the number of windows involved in an R-test. The
clump size can be chosen by the user, where a larger clump size can compensate
more to the positive correlation among probes, especially for small window sizes
such as k = 1. A large clump size, however, will increase computation time. We
generalize the definition of Ri to Ri(t)= I {Xi ≥ t}I {Xi−l < t,∀l = 1, . . . , c− 1},
with c = max(cmin, k) denoting the clump size and cmin denoting a user-specified
minimum clump size. The value of cmin can be determined from the covariance ma-
trix of window averages, e.g., let cmin be the smallest distance between two windows
whose covariance is smaller than a threshold (such as 0.05). Finally, an error bound
of our Poisson approximation can be obtained by the Chen–Stein method [13]. Ac-
cording to Theorem 1 in Arratia et al. [14], we have |P(W = w)− e−λλw/w!| ≤
2(b1 + b2 + b3). If probes are only locally dependent, b1 = λ2/(L − k + 1) and
b2 = b3 = 0, and thus the error bound for the probability of observing no significant
binding among all tests is |P(WR = 0) − e−λ| ≤ 2λ2/(L − k + 1). Note that this
error bound is very small for a large number of tests.

Our approach using the Poisson approximation reduces the family-wise p-value
estimation to the Poisson mean estimation, i.e., estimating λ= (L− k + 1)πp. Im-
portantly, only πp needs to be estimated, which is unrelated with the total number of
tests. This enables us to compute the family-wise p-values at a relatively constant
computational cost, and thus the method can be very efficient for whole-genome
studies. Specifically, we estimate πp using a Monte Carlo method called importance
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sampling [11], which provides accurate and efficient calculations for any large val-
ues of peak thresholds. Importance sampling can also easily take into account the
irregular probe tiling structures, such as gaps between probes masked by repeats.

Given a k-probe window and its (c− 1) preceding windows, let X1, . . . ,Xc+k−1

denote the values of the (c+k−1) involved probes. Under the null hypothesis of no
binding,X1, . . . ,Xc+k−1 follow a multivariate normal distribution with mean μ and
covariance matrix Σ . The covariance matrix Σ captures the dependence structure
among local probes. We estimate both μ andΣ from the data using the middle 90%
of the data to avoid biased estimation from the true binding signals and outliers.

The importance sampling procedure works as follows:

1. Generate X= (X1, . . . ,Xc+k−1) according to a trial density function g(X).
2. Calculate Xi = (Xi + · · · + Xi+k−1)/k for i = 1, . . . , c; if Xc ≥ t and Xi < t ,
∀i = 1, . . . , c − 1, calculate a weight w = f (x)/g(x), otherwise w = 0; here,
f (x) denotes the multivariate normal density function with mean μ and covari-
ance Σ ; repeat the process and obtain weights w1, . . . ,wn.

3. Estimate πp by (w1+ · · · +wn)/n, and thus the adjusted p-value of threshold t
is approximately 1− e−(L−k+1)(w1+···+wn)/n.

The trial density function g(x) should be chosen properly to ensure the efficiency
of the importance sampling algorithm. We choose g(x) to be a multivariate normal
with elevated means but the same covariance matrix Σ .

19.2.2 Varying Window Sizes

We can further generalize our method to combine peak-calling results from various
window sizes. Suppose that we allow the window size to vary between [kmin, kmax];
the windows will then have a nested structure, i.e., smaller windows within larger
windows. The problem is again to adjust for multiple testings but for both overlap-
ping windows and nested windows. To do this, we define a new test, which we call
an S-test, for simultaneous peak-calling of multiple window sizes.

Let Bm(i, k) denote the starting positions of all m-probe windows that are at
most cmin probes away from the k-probe window at the ith probe, for m < k. Let
t = (tkmin , . . . , tkmax) denote the thresholds for each window sizes kmin ≤ k ≤ kmax,
respectively. LetXi(k) and Ri(t, k) denote the window averages and the R values of
a k-probe window. To compensate for the positive correlations among overlapping
and nested windows, we declare significance of a k-probe window if and only if all
overlapping and nested windows of smaller sizes are insignificant with respect to
their own thresholds. In particular, we define the new indicator

Si(t) =
kmax∑

k=kmin

I
{
Ri(tk, k)= 1

}
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×
k−1∏

j=1

I
{
Xl(j) < tj ,∀l ∈ Bj (i, k)

}
, for i = 1, . . . ,L− k + 1.

We abbreviate Si(t) as Si and call the corresponding test an S-test.
It is straightforward to show that Si is binary and locally negatively correlated,

and thus Poisson approximation can be used with an error bound given by the Chen–
Stein method. The thresholds t = (tkmin , . . . , tkmax) can be calculated progressively
for each window size in an increasing order. Let λk denote the expected number of
false rejections for window size k, conditional on that no tests of smaller windows
within the clump have been rejected, we can find each threshold tk that gives λk
rejections. The total number of expected false positives is therefore λ = λkmin +
· · · + λkmax .

19.3 Results

19.3.1 Simulation Study

We simulated two scenarios to evaluate our method: independent probes and de-
pendent probes. For independent probes, we simulated 10,000 datasets with 20,000
evenly tiled probes with intensities following a standard normal distribution. For de-
pendent probes, we simulated the same number of datasets, but the probe intensities
were taken as the means of five adjacent probe intensities, which corresponded to a
lag 5 correlation model.

We first checked the accuracy of our importance sampling algorithm (Fig. 19.1).
Under both scenarios, the average number of significant R-tests for each window
size agreed well to our estimation. We further checked the standard errors for ap-
proximating a significance of 10−8, for window sizes from 1 to 10. The standard
errors were consistently within 10−10 scale using 200,000 iterations. The computa-
tion time of our importance sampling is linearly related with the window sizes. For
example, for k = 10, it takes ∼1 second to finish 200,000 importance samplings on
a regular PC.

We next checked the assumed Poisson distributions for the number of significant
R-tests (Fig. 19.2). We observed consistent agreement between the histograms of
significant R-tests and the corresponding Poisson probability curves with the same
means. This supported our Poisson heuristic for R-tests at large thresholds. In com-
parison, the number of significant X-tests, which are positively correlated, has a
greatly inflated variance in comparison with that expected from a Poisson distribu-
tion. This is true even at stringent thresholds. Figure 19.2 further shows that both
R-tests and X-tests have the same frequency at bin 0. This indicates that, ignoring
some boundary effects, the two tests have the same family-wise type I error rate.
This is why we can approximate the significance of peaks using the declumping
method.
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Fig. 19.1 Observed average number of significant R-tests (dots) versus the importance sampling
estimated numbers (lines), under two simulated scenarios. Lines from left to right correspond to
window sizes from 10 to 1

We finally checked the accuracy of the approximated p-values adjusting for mul-
tiple testings (Fig. 19.3). Our Poisson approximated p-values were plotted against
the empirical p-values in the logarithm scale. We also plotted Bonferroni adjusted
p-values as a comparison. Even for independent probes, we observed that the Bon-
ferroni method is conservative, and it is more so when probes are dependent. This
result is expected because the correlation among tests is stronger for dependent
probes. For a numerical example, when the empirical p-value was 0.054 for k = 10,
the Bonferroni adjusted p-values were 0.083 for independent probes and 0.139 for
dependent probes, respectively, ∼60% and ∼170% more conservative than the ac-
tual significances. In comparison, our approximations agreed well with the empirical
p-values.

19.3.2 Power of Various Window Sizes

We next performed a power study to check whether combining windows can obtain
better power than using a fixed window size. We simulated probe intensities using
multivariate normal distributions under two scenarios. In the first scenario, both the
background and binding regions have the same covariance, but their mean intensi-
ties differs by 4. In the second scenario, the means between background and binding
regions differ by 3, and their covariance matrices are also different (identity covari-
ance for background and lag 5 correlation for binding). Under each scenario, 100
datasets were simulated containing 300,000 probes each, and 100 binding regions
were also randomly simulated covering 4 to 7 probes. We calculated the powers of
using fixed window sizes k = 1, . . . ,10 and combining window sizes at the same
significance level.
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Fig. 19.2 Histogram of the number of significant tests of window size k = 1 and 10 compared to
Poisson probability curves with the same means. λ denotes the expected number of false positives.
Light gray: R-tests. Dark gray: X-tests. The same thresholds were used for R-tests and X-tests

As shown in Fig. 19.4, the power by using a fixed window size is strongly in-
fluenced by the choice of k. Under both scenarios, we observed significant losses
of power when the window sizes deviated from the true widths of binding inter-
vals. The power curves behaved also differently between the two scenarios. Smaller
windows performed well for the first scenario, but larger windows performed well
for the second scenario. In comparison, our method of combining all window sizes
obtained the best powers under both scenarios. We therefore suggest combining
window sizes in practice so to capture the protein–DNA binding signals with a max-
imized power.

19.3.3 FDR Control Accounting for Positive Correlations

Our method cannot only control family-wise error rate but also control FDR. Ben-
jamini and Hochberg’s FDR [3] is estimated as the ratio between the expected num-
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Fig. 19.3 Empirical p-values (dots) and Bonferroni adjusted p-values (crosses) compared to our
approximated p-values (x-axis) in logarithm scale

Fig. 19.4 Powers of using fixed window sizes (R-test) from 1 to 10 compared to the power of
using combined window sizes (S-test). Case 1: same covariance between binding and background
regions. Case 2: larger covariance in binding regions than background. Lines from top to bottom
correspond to 50, 12.56, 3.15, 0.79, 0.20, and 0.05 expected false positives, respectively

ber of false rejections and the total number of rejections. If the number of true posi-
tives is relatively small compared to the total number of tests, the numerator can be
approximated by the Bonferroni method. Most theoretical results for FDR are based
on the independence assumption among tests. When applied to positively correlated
tests, however, the estimated FDR can be much more variable. A more serious prob-
lem is that it is commonly practiced to merge overlapping peaks into a joint binding
interval, where FDR method without taking this into account can be very mislead-
ing. Our method compensates the positive correlation among tests via declumping.
As a result, we define a modified FDR as the ratio between the number of significant
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Fig. 19.5 Observed average
FDR (y-axis) versus the
expected FDR (x-axis). Dots:
FDR controlled by our
method of declumping
(R-tests of k = 1, . . . ,10 and
S-test). Crosses: FDR
controlled by Benjamini and
Hochberg’s method on
window averages

clumps and the total number of rejected clumps. Since our significant clumps do not
overlap, the FDR can be controlled at a proper level, which measures the propor-
tion of nonoverlapping false positive binding intervals among all detected binding
intervals.

We used the datasets in our power study under scenario 1 to illustrate our FDR
control. We calculated the average FDR observed from R-tests and S-test using
various window sizes and compared them with the expected FDR levels. As shown
in Fig. 19.5, the empirical and theoretical FDR agreed well for both R-tests and
S-test. We further used Benjamini and Hochberg’s method to control FDR on the
window averages (X-tests) assuming independence. We observed that the average
FDR is significantly larger than that expected by the Benjamini and Hochberg’s
method. The reason is that the former measures the proportion of nonoverlapping
false binding intervals, while the latter measures the proportion of false windows
without accounting for the clumping effect. That is, the actual FDR of protein–
DNA binding intervals can be seriously underestimated if we ignore the positive
correlation among windows.

19.4 Discussion

We introduce a novel approach to control false positives in genome-wide ChIP-chip
tiling arrays. There are three key components of our method. First, we assume that
tests are locally correlated and the correlation can be compensated by clumps. Sec-
ond, we use importance sampling to efficiently calculate the tail distribution of a
single clump. Third, a Poisson distribution is used to approximate the statistical sig-
nificance of one or a few clumps adjusting for multiple testings. Our approach can
be easily applied to genome-scale multiple comparison problems without sacrificing
accuracy and computation time. The method is a combination of theory and numer-
ical calculation such that it is flexible to take into account complexities in real data
analysis.
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The assumption underlying our Poisson approximation is that the number of sig-
nificant clumps appearing by chance is rare. This assumption is almost always satis-
fied in practice, because type I errors are usually tolerated at low levels in genome-
wide studies. If the expected number of false positives is l, a rule of thumb is that
the total number of tests (L− k + 1) should be much larger than l(c+ k − 1). For
example, l(c+ k − 1) < 0.05(L− k + 1). This criterion is necessary to reduce the
edge effects and local interference in Poisson approximation. In addition, when es-
timating the Poisson mean, one may use a multiplier different from the total number
of tests, where the latter is only accurate when the true signals are relatively rare
(e.g., <2% of data are true signals). In some studies, there may be a large propor-
tion of data representing the true signals, so that a smaller multiplier should be used.
However, for cases like transcriptome arrays, one may want to use chromosome seg-
mentations instead of window-based tests.

Although the detected binding intervals are statistically significant, they may not
correspond to biological interesting sites. Possible factors confusing the peak de-
tection include DNA repetitive sequences, genomic duplications, sequence-specific
hybridizations, redundant probe designs, and pitfalls in raw data normalization. For
this reason, sophisticated models may be used to take into account of those con-
founding factors. A particular advantage of our approach is that it can work with
any models in peak-calling, as long as a test statistic can be summarized from the
model using a local window of probes. In this paper, we only used window averages
to demonstrate the method, but other test statistics can be easily applied. Particu-
larly interesting models will be those incorporating biological knowledge [15, 16].
In summary, our method is a general approach that has a great potential to be applied
to many current and future large-scale studies in computational biology.
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Fig. 2.4 let-7 regulates lin-41 by complementary base-pairing at two sites in the 3′ UTR of the
lin-41 mRNA [104, 105]. Neither the bulged A in the seed region for site 1 (in red, at position 5
from the 5′ end of the 27 nt spacer) nor the wobble G–U pair in the seed region for site 2 (in red,
with U at position 6 of the 5′ end of let-7) meets the requirements of the seed model [56, 57] that
bases 2 to 7 or 8 of the miRNA 5′ end must form Watson–Crick pairs with its target
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Fig. 5.2 Granger Causality applied to the system in Example 1. (A) The true network structure.
(B) (upper panel) Comparison of the partial Granger causality F1 and the conditional Granger
causality F2. F2 fails to pick up any true connections, while the inferred links from F1 are consis-
tent with the correct structure (A). (Bottom panel) Comparison of the partial Granger causality in
the time domain (blue line) and frequency domain (red line, the integral of the frequency domain
formulation in the interval [−π,π]. (C) Results of the frequency domain decomposition of all 20
pairs of signals

Fig. 6.2 Three types of information that are used for TFBS identification. (a) Over-representation.
The horizontal lines are the sequences from coregulated genes in one species. The small boxes on
the line are the TFBSs. (b) Conservation. The TFBSs in one group of orthologous chimpanzee,
mouse and rat genes are similar. That is, the TFBSs in this gene are conserved across three species.
(c) Clustering. Three different TFBSs often occur together in short regions in the input sequences.
Such short regions are often called cis-regulatory modules (CRMs)
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Fig. 6.6 A cartoon illustration of TGS. Each rectangular box represents one species. The colored
lines are the regulatory regions of coregulated genes. The small boxes are the TFBSs in each
sequence. TGS assumes that there is at most one TFBS in each sequence. The motifs may be
different in different species although they evolve from the same ancestral motifs

Fig. 7.4 Impact of dimensionality. Heights of solid bars represent numbers of false positive de-
tections of trans-edges (FP); heights of shaded bars represent numbers of false negative de-
tections of trans-edges (FN). All bars are truncated at height = 132 [28]
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Fig. 7.6 (a) Inferred network for the 654 breast cancer related genes (based on their expression
levels) by space. Nodes with degrees greater than ten are drawn in blue. (b) Network of the
estimated regulatory relationships between the copy numbers of the 384 CNAIs and the expres-
sions of the 654 breast cancer related genes. Each blue node stands for one CNAI, and each green
node stands for one gene. Red edges represent inferred transregulations (43 in total). Gray edges
represent cis-regulations [28]

Fig. 8.2 The comparison of prediction accuracies by integrating multiple biological data sets using
the naive Bayesian method. The letters Y, W, F, H, C, and G indicate domain interactions based
on yeast, worm, fruitfly, humans, co-existence, and same GO function, respectively. YWFH. Liu
shows the result of predicted domain interactions using the extended MLE method defined in Liu
et al. [17] with protein interactions of yeast, worm, fruitfly, and humans. (This figure is excerpted
from Lee et al. [16])
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Fig. 14.4 An example of a joint segmentation of a set of tumor samples. The segmentation outputs
a set of common change-points to give the best sparse summary of the set of tumors

Fig. 15.1 County level infant mortality rate per 100,000 in Guangxi, China in 2000
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Fig. 16.4 Trace plots and autocorrelation plots of the log posterior probabilities for the simulated
data set. The trace plot was generated from two independent runs, each having 100,000 iterations

Fig. 16.5 The posterior probability plot for each gene to be included in the corresponding module.
The first 200 genes are in one of the four modules, separated by the red vertical line. The module
membership was determined by the majority vote based on the posterior samples from the last
25,000 iterations
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Fig. 16.7 Barplots of the number of true eQTLs detected in each module by the BP method (blue)
and step-wise regression (SR) method (green). The shaded bar represents the number of genes
detected as mapped to at least one of the true eQTLs, while the solid bar represents the number
of genes detected as mapped to both eQTLs. The thresholds are 0.5 for both posterior probability
(BP) and FDR (SR). From Fig. 16.6 we know that the total number of false positive gene-marker
pairs is 11.41 and 38.04 for BP and SR, respectively. When the thresholds are relaxed to 0.1, more
eQTLs were detected in each category, as indicated by the vertical lines above the bars. However,
the total number of the false positive gene-marker pairs is still lower using BP (178.37) compared
to that using SR (267.07)
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Fig. 17.1 Dendrogram view of hierarchical clustering results for the WGCNs constructed from
the Brem data set and the Hughes data set
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Fig. 17.2 The heatmap view of gene expression patterns of gene modules extracted from the
WGCN for the Brem data set
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Fig. 17.4 eQTL results for the Brem data set. The vertical line repents the genomic locations of
the SNP markers, and the horizontal line repents the genomic locations of the trait genes. Color
dots with the same color correspond to the eQTLs of genes in the module with the corresponding
color

Fig. 18.1 MLE of a single neuron. (A) Examples of trajectories of rs and ws . (B) pλ(t) (red) and
histogram (blue) from a direct simulation of the LIF model. (C) The estimated input rate λ̂ (dots)
obtained from 600 interspike intervals. Parameters are Vth = 20 mV and γ = 20 msec
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Fig. 18.5 MLE in a network without interactions. (A) Schematic plot of reading dynamic inputs
from an ensemble of neurons. For a fixed time window (indicated by T iw,T

j
w ), the spikes are col-

lected, and the input is decoded by means of MLE. (B) Raster plots of spikes in five different
decoding windows. The information is read out from the spikes in each window. (C) An example
of reading the input information from ensemble of neurons is shown. The original signal λ(t) is
plotted in the continuous line, while dots are estimated values of λ(t)
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Fig. 18.6 MLE in position tracking. (A) The setup of our encoding and decoding. The place
information x(t) is feeded to 1000 neurons organized in 10 columns with different preferred po-
sitions xi . For each column, spikes are collected in the window Tw , and the MLE is applied. The
position is read out by first solving (18.22), obtaining the corresponding x̂ and fitting a Gaussian
curve to all 10 data points x̂. The maximum point of the fitted Gaussian curve is the decoded
position. (B) One example of λ̂ vs. columns. (C) Examples of 10 decoded results
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Fig. 18.7 (A) A schematic
plot of the model setup with
10 neurons. White arrows are
excitatory interactions, and
green arrows are inhibitory
interactions via inhibitory
neurons (not specifically
modelled). (B) A single
neuron model of two
compartments. (C) One
trajectory of one single cell is
depicted (blue trace), and the
red line is the local field
potentials for averaging all
neurons in a microcolumn.
The oscillatory in Gamma
frequency is obvious. (D) The
optimal time window for
decoding the input (the
window between two thick
vertical lines)
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