
Handbook of 
Experimental Pharmacology 

Volume 158 

Editor-in-Chief 

K. Starke, Freiburg i. Br. 

Editorial Board 

G. V. R. Born, London 
M. Eichelbaum, Stuttgart 
D. Ganten, Berlin 
H. Herken t, Berlin 
F. Hofmann, Miinchen 
1. Limbird, Nashville, TN 
w. Rosenthal, Berlin 
G. Rubanyi, Richmond, CA 



Springer-Verlag Berlin Heidelberg GmbH 



The Macrophage 
as Therapeutic Target 

Contributors 
J. M. Aerts, R. Boot, E.J. Brown, G.D. Brown, P.C. Calder, 
T. J. Chambers, W. J. S. de Villiers, F. Di Virgilio, M. G. Espey, 
D. Ferrari, A. Frauenschuh, T. Ganz, C. K. Glass, S. Gordon, 
D.R. Greaves, A. Groener, D.N.J. Hart, P.M. Henson, 
S.R. Himes, C. Hollak, D.A. Hume, Z. Johnson, G. Kraal, 
R.I. Lehrer, J.D. MacMicking, J. Mahoney, 
L. Martinez-Pomares, J.D. McKinney, J.L. Miller, 
S. M. Moghimi, V. H. Perry, A. Proudfoot, H. Rosen, 
D.R. van der Westhuyzen, N. van Rooijen, S. Vuckovic, 
J.S. Welch, J.A. Willment, S. Wong, P. Yaqoob 

Editor 
Siamon Gordon 

Springer 



Professor 
Siamon Gordon 
Sir William Dunn School of Pathology 
University of Oxford 
South Parks Road 
Oxford OXl 3RE 
United Kingdom 

e-mail: christine.holt@pathology.oxford.ac.uk 

With 27 Figures and 9 Tables 

ISBN 978-3-642-62919-8 ISBN 978-3-642-55742-2 (eBook) 
DOI 10.1007/978-3-642-55742-2 
Cataloging-in-Publication Data applied for 

Bibliographic infonnation published by Die Deutsche Bibliothek 
Die Deutsche Bibliothek lists this publication in the Nationalbibliografie; 
detailed bibliographic data is available in the Internet at 
<http://dnb.ddb.de>. 

This work is subject to copyright. AU rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcast­
ing, reproduction on microfilm or in any other way, and storage in data banks. Duplication ofthis pub­
lication or parts thereof is permitted only under the provisions of the Gennan Copyright Law of Sep­
tember 9, 1965, in its current version, and pennission for use must always be obtained from Springer­
Verlag. Violations are liable for Prosecution under the German Copyright Law. 

© Springer-Verlag Berlin Heidelberg 2003 
Softcover reprint of the hardcover Ist edition 2003 

The use of general descriptive names, registered names, etc. in this publication does not imply, even in 
the absence of a specific statement, that such names are exempt from the relevant protective laws and 
regulations and free for general use. 

Product liability: The publishers cannot guarantee the accuracy of any infonnation about dosage and 
application contained in this book. In every individual case the user must check such information by 
consulting the relevant literature. 

Cover design: design & production GmbH, Heidelberg 
Typesetting: Stiirtz AG, 97080 Wiirzburg 

27/3150 hs - 5 4 3 2 1 O 



Preface 

During the past decade, the rapid growth of molecular and cellular knowledge 
of macrophages (M0), as a specialized host defence and homeostatic system, 
has begun to offer attractive targets for therapeutic intervention. M0 playa cen­
tral role in a wide range of disease processes, from genetically determined lyso­
somal storage diseases, to acute sepsis, chronic inflammation and repair, tissue 
injury and cell death. Under- or overactivity of M0 clearance, immune effector 
functions and responses to metabolic abnormalities contribute to common dis­
orders such as autoimmunity, atherosclerosis, Alzheimer's disease and major in­
fections including AIDS and tuberculosis. 

The discovery of tumour necrosis factor (TNF)-a and the development of 
specific inhibitors that are highly effective clinically in diseases such as rheuma­
toid arthritis illustrate the way scientific advances have already been translated 
into practice. Development of powerful molecular genetic methods made it pos­
sible to clone and express specific cytokines produced by M0 and potent 
growth factors acting on M0 and other myeloid cells, such as granulocyte-mac­
rophage colony-stimulating factor (GM-CSF), to modulate and boost M0 activi­
ties. Specific plasma membrane receptors control cell recruitment, adhesion, en­
docytosis and activation of innate and acquired immune functions. Discovery 
of the Toll-like receptors has already served as a major spur to uncover signal­
ling pathways that might yield future therapeutic targets. Phagocytic uptake of 
apoptotic cells and micro-organisms by M0 contribute to host defences, as well 
as providing a potential niche for intracellular pathogens. 

Whilst the goals of therapeutic intervention based on improved understand­
ing of M0 functions and their contribution to pathogenesis may seem self evi­
dent, there are considerable difficulties in producing useful new agents. The M0 
of the body constitute a distributed cellular system also known as the mononuc­
lear phagocyte, or reticulo-endothelial system, with great heterogeneity in cell 
differentiation and activation in different organs and disease states. Common 
progenitors give rise to tissue M0 which differ considerably in their properties, 
e.g. in the nervous system and liver, to dendritic cells, specialized for antigen 
presentation to naive T lymphocytes and to osteoclasts, multinucleated cells 
able to resorb living bone. Their receptors and versatile biosynthetic and secre­
tory responses result in adaptation to very different micro environments. Their 
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systemic actions help to integrate many physiologic functions and pathologic 
processes. It should therefore not come as a surprise if M0 contribute beneficial 
as well as deleterious roles to the diseased host. They represent the classic two­
edged sword. It is a formidable challenge to aim selective intervention at sub­
populations of cells or subsets of their gene products without affecting their vi­
tal normal functions or other cells, directly or indirectly. A further difficulty is 
our present-day ignorance of basic mechanisms of M0 functions, e.g. in vaccine 
development (their role as natural adjuvants or immunosuppressants) and their 
complex life history in vivo. Gene ablation and transgenesis have confirmed 
some hypotheses and left others open. Cell culture models are useful, but im­
perfect, in not mimicking complexity within the host. Classic pharmacologic ap­
proaches need to be aligned with newer knowledge of M0 gene expression and 
regulation. 

The present volume covers a range of subjects and provides opportunities for 
a more focused M0-targeted approach. The individual chapters review selected 
topics briefly, to place cellular processes and molecular targets in perspective. 
These are grouped broadly. Section I deals with general issues of cell differentia­
tion, routes of delivery and of M0-specific gene targeting, with particular em­
phasis on the living host. Section II deals with selected plasma membrane recep­
tors, uptake processes, regulation of cellular responses and different categories 
of secretory products. Finally, Sect. III considers specialized cell types, environ­
ments and examples of cell-pathogen interactions. Overall, the volume should 
provide a broad sample of the state of the art. Useful reviews and references in 
the literature are cited within individual chapters. 

I would like to acknowledge the excellent assistance of Christine Holt, and of 
the editorial staff at Springer-Verlag. 

Oxford, Spring 2003 Siamon Gordon 
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Abstract "Therapeutic validation" is a utilitarian classification of the applica­
tion of the basic science base of the macrophage. Reduction to therapeutic prac­
tice represents the cutting edge of therapy, but rests upon a decades-old basic 
science foundation. Macrophage-targeted therapeutics have now added signifi­
cant value to the lives and quality of life of patients, without undue adverse ef­
fects in multiple disease settings. These are exemplified by the impact of macro­
phage enzyme replacement for a lysosomal storage disease (Gaucher's), the 
modulation of osteoclast-dependent bone destruction by bisphosphonates, and 
revolutionary impact of TNF sequestrants on both rheumatoid arthritis, as well 
as the delineation of new mechanisms in the understanding of Crohn's diseases. 
The macrophage, as a cell, is now beginning to reach a full measure of therapeu­
tic maturity in the application of the understanding of the particular rate-limit­
ing roles that it plays in the maintenance of health or the induction of diseases. 

Keywords Bisphosphonates, Crohn's disease, Enzyme replacement, Gaucher's 
disease, Macrophage, Osteoporosis, Rheumatoid arthritis, TNF sequestration 



4 H. Rosen 

The concept of therapeutic target validation bears disproportionate weight in 
the conduct of applied science in the pharmaceutical and biotechnology sectors, 
where research decisions are significantly influenced by perceptions of market 
size. These organizations measure the success of their scientific output by prod­
ucts launched and the expansion of revenues earned and not by the successful 
testing of meaningful hypotheses and the resulting high-impact publications. To 
do this, however, the products must add significant value to the lives and quality 
of life of patients, without undue adverse effects. The ability to regard the mac­
rophage as a "validated" therapeutic target suggests the macrophage, as a cell, is 
now beginning to reach a full measure of maturity in the application of the un­
derstanding of the particular rate-limiting roles that it plays in the maintenance 
of health or the induction of diseases. 

The notion of "therapeutic validation" is simply a utilitarian classification of 
the application of the basic science base of the macrophage. In many respects, 
the reduction to therapeutic practice may represent the cutting edge of therapy, 
but rests upon a decades-old basic science foundation. It provides an objective, 
although retrospective, validation of the importance of the study of macro­
phages to advancing human therapeutics. The view is, however, skewed towards 
the major medical needs that drive economic activity, and does not necessarily 
reflect the full contribution of the study of macrophages, where the advancing 
science base has had major impacts upon the understanding of immunity, vacci­
nation, tissue remodeling, and embryology, although in areas that have not yet 
been brought to therapeutic fruition. In this essay, I have used a broad defini­
tion of macrophage study that includes cells of the monocytic lineage such as 
monocytes, macrophages, osteoclasts, and have also included discussion of in­
herited metabolic defects in which macrophages are central to the expression of 
tissue pathology and dysfunction. I will also show how the quality of the basic 
science base was prospectively predictive of both efficacy and the adverse expe­
rience profiles associated with therapeutic approaches to molecules affecting 
macrophage function. 

1 
Modification of Macrophage Function Can Now Be Said 
to Modify Disease Outcome, Rather than Provide Symptomatic Relief 

The validation of the macrophage as a proven therapeutic target has crossed 
multiple treatment modalities. In the macrophage-specialized function of lyso­
somal degradation, the lysosomal storage defects of Gaucher's disease have led 
to the relatively successful replacement of a heritable defective enzyme, glucoce­
rebrosidase, using recombinant enzyme, as an orphan disease. In contrast, the 
treatment of rheumatoid arthritis and Crohn's disease has been revolutionized 
by the advent of tumor necrosis factor (TNF) sequestrants. These have not only 
improved patients' lives but have provided unique insights into human disease 
mechanisms not readily modeled in animal models (Podolsky 2002). The suc­
cessful treatment of osteoporosis and Paget's disease of bone by the inhibition 



The Macrophage as a Validated Pharmaceutical Target 5 

of osteoclast-dependent bone resorption represents the successful use of small 
molecules (bisphosphonates) in the alteration of outcome of an event entirely 
dependent upon cells of the monocytic lineage. These all represent highly spe­
cific macrophage-related events in pathology usefully modulated therapeutical­
ly, and are much more compelling evidence for the specific role of macrophages 
in pathology than is, for example, the expression and upregulation of cyclooxy­
genase 2 in macrophages, where therapeutic efficacy is only partly attributable 
to macrophage effects, and where such efficacy is largely symptomatic, rather 
than disease modifying in terms oflong-term impact upon patient outcomes. 

2 
Enzyme Replacement in Gaucher's Disease 

Gaucher's disease is an autosomal recessive disease with its highest prevalence 
(type I) in Ashkenazi Jews (Balicki and Beutler 2002). It is a typical lysosomal 
storage disease caused by a deficiency in glucocerebrosidase, an essential step 
in the cleavage of glucose from cerami de (Inoue and Lupski 2002). Glucocere­
broside substrate, therefore, accumulates within cells of the mononuclear pha­
gocyte system and within the central nervous system. (Dwek et al. 2002) Three 
clinical subtypes of Gaucher's disease are described. The adult or type I Gau­
cher's is a non-cerebral form of storage disease, with some residual enzymatic 
activity, that accounts for its emphasis on splenic, hepatic, and skeletal involve­
ment. Infantile Gaucher's (type II) is an acute disease dominated by cerebral ac­
cumulation of substrate, as well as hepatosplenic involvement. No enzyme activ­
ity is usually detected. Type III Gaucher's is a juvenile disease intermediate in 
signs and symptoms from types I (adult) and II (infantile). The involvement of 
the eNS and pre-existing skeletal muscle lesions has significant impact on the 
efficacy of enzyme replacement therapy. 

The disease pathology results directly from either eNS dysfunction, or the 
physical effects of the accumulation of distended macrophage "Gaucher's cells" 
in spleen, liver, marrow, lymph nodes, thymus, and Peyer's patches. These long­
term effects include anemia and thrombocytopenia. Longitudinal studies with 
2-5 years of clinical follow-up have been published in type I Gaucher's disease, 
using recombinant glucocerebrosidase targeted to macrophage lysosomes 
through the endocytic route (Weinreb et al. 2002). Enzyme replacement is high­
ly effective in ameliorating extra-eNS disease manifestations. Patients show 
long-term improvements and maintenance of improvement in anemia and 
thrombocytopenia. There is also a measurable benefit in bone erosions and 
bone pain, with more than 50% of patients showing measurable improvement 
even after the presence of radiologically documented bone lesions and bone 
pain (Bembi et al. 2002; Poll et al. 2002). This is a pleasing and rational ap­
proach to the correction of a primary heritable peripheral defect of macro­
phages, and illustrates the therapeutic accessibility of macrophages that have ac­
cess to the circulation. Large molecules equilibrate inefficiently across the 
blood-brain barrier in the absence of specific transcytotic mechanisms or leak-



6 H. Rosen 

age, and therefore the primary CNS defect is not amenable to approach via the 
circulation, and will likely require the development of effective gene therapies 
or alternate approaches to the modification of glycosylation pathways (Dwek et 
al. 2002). The disease, because of its low prevalence, will always be considered 
an orphan. This ultimately limits the resources that could be brought to thera­
peutic approaches, and reflects that market forces will always favor the highly 
prevalent, and patients and physicians will need to rely upon small companies 
seeking market niches, or academic institutions with governmental or charitable 
funding to approach these diseases. 

3 
TNF Sequestrant Therapy Improves the Outcome of RA 
and Sheds Critical Mechanistic Insights into Crohn's Disease 

The central role of the macrophage in the mechanism of human disease has 
emerged from the clinical evaluation of TNF sequestrants in rheumatoid arthri­
tis and Crohn's disease. The impact of the elucidation of the pathophysiology of 
TNF on therapeutics, sheds light into the long lag phase between the leading 
edge of macrophage biology and its therapeutic application. TNF-a was discov­
ered in the 1970s by Old and colleagues (Feldmann and Maini 2001) and cloned 
in the early 1980s, when it was shown that cells of the monocytic lineage were 
the major source ofTNF production (Tracey and Cerami 1994). TNF is a rapidly 
produced proinflammatory cytokine, with serum levels detectable within 30 min 
of lipopolysaccharide (LPS) stimulus, and likely reflects the cleavage of pre­
formed membrane-bound TNF-a by TNF-a-converting enzyme (TACE). Block­
ade of TNF release blunts the release of other proinflammatory cytokines such 
as interleukin (IL)-1 and IL-6, suggesting that TNF plays a role as a molecular 
trip wire for the activation of stress responses to noxious stimuli, that engage a 
cascade of events culminating in spatially and temporally regulated recruitment 
of inflammatory and immune leukocytes at sites of injury. In keeping with these 
data was the demonstration of the pivotal role of TNF-a in the early control of 
intracellular bacterial pathogens. The work of Havell in listeriosis (Havell 1989) 
and Vassalli (Kindler et al. 1989) in early granuloma formation and the control 
of Bacillus Calmette-Guerin (BCG) infection in mice, both accurately showed 
the role of TNF-a as an essential organizer of the granulomatous response, and 
foreshadowed the efficacy of TNF sequestration in Crohn's disease, (Sandborn 
and Targan 2002) as well as the deleterious potentiation of bacterial diseases in­
cluding tuberculosis (Tb) by TNF sequestration. This remains one of the few ar­
eas of basic biology where early studies have so accurately prospectively pre­
dicted the adverse effects expected upon clinical usage. The lag phase between 
characterization of the role of TNF and the central role of the macrophage as or­
ganizer and participant in the granuloma, and the clinical exploitation of these 
data was almost 15 years. The features that contributed to the gap between the 
basic discovery and the clinical exploitation included developing adequate 
methods of production and manufacture, as well as the lengthy requirements 
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for clinical trials in chronic diseases with complex clinical endpoints such as 
rheumatoid arthritis (Feldmann and Maini 2001; Bresnihan 2002; Jenkins and 
Hardy 2002; Kalden 2002; Scott 2002; Weisman 2002) and Crohn's disease. In 
addition, the essential role of TNF in host defense coupled with the long half­
lives of TNF sequestrants required significant empirical approaches to dose 
ranging. The choice of dose in attempting to validate a pharmacological mecha­
nism is always difficult, in this case especially so because of the need to walk a 
tightrope between suppression of the host response sufficient for efficacy, and 
suppression of macrophage function to the point where host defense impair­
ment results in catastrophic potentiation of rapid bacterial infections. The ad­
vantage of the rheumatoid arthritis field is that standard therapies including 
methotrexate and corticosteroids also have well-documented risks of potentia­
tion of infection. With appropriate patient exclusion criteria, the clinical safety 
of TNF sequestration has been acceptable, with a somewhat higher prevalence 
of upper respiratory infection in First World usage. Recent reports have includ­
ed the reactivation of miliary Tb in patients by TNF sequestrants, and more than 
70 reports of Tb reactivation can now be found within the Adverse Experience 
database maintained by the Food and Drug Administration (FDA) (Keane et al. 
2001; Mayordomo et al. 2002). 

An unexpected clinical finding has been the development of demyelinating 
disease in a small number of patients receiving TNF sequestrant therapy for 
adult or juvenile rheumatoid arthritis (Sicotte and Voskuhl 2001). Trials of 
lenercept in multiple sclerosis (Lenercept 1999) showed that there were no sig­
nificant differences between groups on any magnetic resonance imaging (MRI) 
study measure, but the number of lenercept-treated patients experiencing exac­
erbations was significantly increased compared with patients receiving placebo 
(p=0.007) and their exacerbations occurred earlier (p=0.006). These findings 
suggest that one of the roles of TNF may be in the control of demyelination, and 
that the macrophage, by extension, can play pleiotropic roles in human patholo­
gy, exacerbating rheumatoid arthritis and Crohn's disease, while playing a sup­
pressive role in multiple sclerosis. Another hint towards a suppressive role for 
TNF in disease is the small incidence of drug-induced lupus on TNF sequestrant 
therapy. This again is in keeping with the predictive value of basic studies, 
where TNF-a deletant mice also developed elevated levels of anti-double strand­
ed (DS) DNA antibodies (Ettinger and Daniel 2000). 

The findings that TNF sequestration can have beneficial effects upon the ex­
pression of Crohn's disease but not ulcerative colitis, has again sharpened the 
focus on the role of the macrophage in Crohn's disease, and strongly differenti­
ated the pathogenesis of Crohn's disease from ulcerative colitis (Podolsky 2002; 
Sandborn and Targan 2002). One of the strengths of the pharmacological ap­
proach is this ability, through controlled clinical trials, to provide insights into 
human as opposed to model diseases. It is, however, salutary that in this field at 
least, disease models in lower species including rodents have in large part been 
prospectively predictive of both efficacy and adverse experience. 



8 H. Rosen 

4 
Bisphosphonates Enhance Bone Mass Retention 
and Protect Against Fractures by Inhibition of Osteoclast Formation 

Whereas the two previous examples deal with macrophage enzyme replacement 
using recombinant enzyme, or sequestration of a macrophage-secretory product 
TNF with antibodies or receptor fusion proteins, the efficacy of small synthetic 
chemical moieties, specifically nitrogen-containing bisphosphonates, impact 
upon the resorption of bone mass, by inducing osteoclast and macrophage ap­
optosis. 

Bisphosphonates are the most effective inhibitors of bone resorption and are 
extensively used for the treatment of systemic or local bone loss including post­
menopausal osteoporosis and tumor bone disease. Bisphosphonates are pyro­
phosphate analogs, which bind to bone. Bisphosphonates are then removed 
from the mineral matrix in the acidic compartment formed between the osteo­
clast and the bone surface, analogous to the sealed compartments described in 
macrophages upon immune complexes or complement ligands (Wright and 
Silverstein 1984). Labeled bisphosphonates accumulate in osteoclasts and inhib­
it further bone resorption (Reszka et al. 1999). Evidence has accumulated that 
all bisphosphonates that inhibit the resorption of bone induce the caspase-de­
pendent formation of pyknotic nuclei and the cleavage of Mstl kinase. This 
cleavage of Mstl kinase and caspase activation is dependent upon the bisphos­
phonate inhibition of the mevalonate pathway, and is specifically blocked by the 
addition of geranylgeraniol, a key precursor for geranylgeranyl diphosphate 
(Benford et al. 1999; Reszka et al. 1999). It emerges from these studies that the 
flux through the mevalonate pathway to geranylgeraniol is essential for the for­
mation of osteoclasts from macrophages, and for the long-term maintenance of 
the osteoclast population (Fisher et al. 1999; Fisher et al. 2000). In the absence 
of protein geranylgeranylation, osteoclasts fail to differentiate from macro­
phages in murine, rabbit, and chicken systems, and that this failure can be at­
tributed to the effects of bisphosphonates on geranylgeranylation and not farne­
sylation of proteins (Coxon et al. 2000). The effects of bisphosphonates are 
therefore complex. Effective pharmacodynamic inhibition of bone resorption 
that can be measured both as the retention of bone mass, as well as by the inhi­
bition of fractures in long-term clinical use (Karpf et al. 1997) can be achieved 
by the modulation of osteoclast differentiation from macrophages, as well as by 
the inhibition of osteoclast function through the activation of caspase-mediated 
apoptotic events. 

5 
Future Directions 

These areas have shown the therapeutic feasibility of macrophage enzyme re­
placement, secretory product sequestration, and inhibition of osteoclast differ­
entiation and function. Efficacious therapies with direct effects upon macro-
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phages now target rheumatoid arthritis, Crohn's disease, osteoporosis, tumor 
disease of bone, and inherited metabolic defects of the mononuclear phagocyte 
system. The important role of the macrophage as a regulator and remodeler of 
tissue, and regulator of the migratory and differentiative events of tissue cells 
has not yet been exploited. That the macrophage plays a central role in athero­
sclerosis is clear. The therapies effectively directed towards the role of the mac­
rophage in that disease still requires reduction to practice. It may be that many 
of the therapeutically advantageous effects of peroxisome proliferator-activated 
receptors (PPAR) agonists in vascular disease will prove to be useful probes of 
macrophage function in human pathology (Berger and Moller 2002). 
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Abstract The transcription factors that playa major role in the development 
and function of the monocyte/macrophage lineage are outlined in this review. 
Hematopoiesis proceeds through the binding of specific combinations of tran­
scription factors leading to a temporal and lineage-restricted pattern of gene ex­
pression. We summarize current knowledge of how transcription factors are 
able to drive monocyte differentiation from early pluripotent progenitors. These 
transcription factors include numerous homeobox family proteins, AML-I, 
Pu.I, MZF-l, Egr-l, lCSBP, and STAT family proteins. The transcription factors 
that control inducible gene expression in mature macrophages are also covered. 
Macrophages are able to respond to a range of bacterial products and playa 
critical role in both the innate and adaptive immune response to infection. The 
inducible transcription factors that regulate inflammatory and anti-microbial 
gene products covered here include NF-KB/Rel, lRF, STAT, and C/EBP family 
proteins. This activation of macrophages must be precisely regulated to prevent 
damage to host tissue. Many transcription factors can act as repressors of gene 
expression in macrophages and the signals that down-regulate inflammatory re­
sponses such as activation ofTGF,B, PPARy and glucocorticoid receptors are dis­
cussed. Macrophages play a fundamental role in adaptive immunity and are 
likely to influence the formation of either a Thl or Th2 pattern of immune reac-
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tivity. We briefly review the current understanding of how activation of different 
transcription factors can influence the profile of cytokines expressed in macro­
phages and contribute to the formation of distinct immune responses. 

Keywords Gene regulation, Transcription factors, Macrophage development, 
Inflammation, Immune response 

1 
Introduction 

The mononuclear phagocyte family is present throughout development and in 
every organ system, where they can comprise 10%-15% of the total cell mass. 
Progenitor cells in the bone marrow give rise to blood monocytes that can enter 
tissue and further develop into distinct tissue macrophages. Macrophages are 
vital to both the innate and acquired immune response by direct endocytosis 
and cytotoxicity, antigen presentation, and production of biologically active mo­
lecules such as cytokines and chemokines. Their destructive potential underlies 
many aspects of the pathology of acute and chronic inflammation. 

Macrophages share many constitutively expressed genes, such as the endo­
cytic receptors responsible for recognition of microorganisms. The expression 
of other genes is acutely regulated by external stimuli such as microbial prod­
ucts, lymphokines, and growth factors. Ultimately, the pattern of gene expres­
sion is determined by specific transcription factors. This chapter deals with the 
control of transcription in cells of the macrophage lineage. 

2 
Transcription Factors in Macrophage Development 

Hematopoiesis branches into distinct pathways through a temporal and lineage­
specific pattern of transcription factor expression. Lineage commitment appears 
to take place through rapid changes in the expression or function of specific 
transcription factors. This pattern of activation may arise extrinsically, from ac­
tivation by growth factors or intrinsically, from either genetically coded or sto­
chastic events. Lineage commitment can still occur in the absence of many cy­
tokines known to influence myelopoiesis. Although the hematopoietic growth 
factors, granulocyte colony-stimulating factor (G-CSF), interleukin OL)-3 and 
granulocyte macrophage (GM)-CSF can regulate growth and differentiation 
from bone marrow precursors, they do not appear to be required for steady­
state hematopoiesis (Nishinakamura et al. 1995). In contrast, macrophage 
(M)-CSF (CSF-l) is required for macrophage production as determined by the 
phenotype of mice with a targeted deletion of the CSF-l receptor or a natural 
mutation in the CSF-l gene (Cecchini et al. 1997; Dai et al. 2002). 

Molecular events involved in early myelopoiesis have been extensively stud­
ied due to their importance in the formation of myeloid leukemias. Most studies 
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have focused on either transcription factors that are targets for gene transloca­
tion in leukemia or interacting proteins that act in concert to effect proliferation 
or differentiation of progenitor cells. Leukemia-associated proteins include sev­
eral members of the homeobox superfamily of genes, acute myeloid leukemia 
protein-l (AML-l), promyelocytic leukemia zinc finger protein (PLZF) and my­
eloid zinc finger protein (MZF-l). Many transcription factors that effect my­
eloid development are also required for gene expression in differentiated macro­
phages. These proteins include the Ets protein family transcription factor PUl, 
the bZIP proteins of the CCAAT enhancer binding protein family (C/EBP), c­
Maf, AML-l and the zinc finger proteins, specificity protein 1 (Spl) and the ear­
ly growth response factor (Egr)-l. A number of transcription factors can re­
spond to the extrinsic stimuli that regulate myelopoiesis. Retinoic acid receptors 
(RAR) are important in induction of terminal granulocyte differentiation and 
signal transducers and activators of transcription (STAT) transcription factors 
control cytokine-induced differentiation. This review will briefly describe early 
events in myeloid development with emphasis on transcription factors associat­
ed with monocyte/macrophage development. 

2.1 
Early Myeloid Development 

One of the most common targets for translocation in acute myeloid leukemia is 
within the gene that encodes the AML-l (Runxl) transcription factor. Many 
translocations disrupt AML-l function by formation of a fusion protein that re­
places the trans-activation domain with a histone deacetylase repressor protein 
(ETO, MTGI6) (Hiebert et al. 200l). Interaction between AML-l and the cofac­
tor, CBFj3 allows high-affinity binding to DNA and forms the core binding factor 
(CBF) protein complex (Bushweller 2000). AML-l and CBFj3 are normally ex­
pressed in all hematopoietic tissues during myeloid differentiation and in ma­
ture macrophages (Tracey and Speck 2000). The CBF protein complex appears 
to act as a master regulator of hematopoiesis since targeted deletion of either 
AML-l or CBF j3 in transgenic mice resulted in a complete loss of fetal liver he­
matopoiesis (Lutterbach and Hiebert 2000). CBF is thought to act as an organiz­
ing factor to facilitate the actions of other transcription factors. AML-l is able 
to bind to C/EBP proteins and PUl, and these interactions are important for ex­
pression of CSF-l receptor on myeloid progenitors and mature macrophages 
(Petrovick et al. 1998). C/EBP proteins and PUI can both synergistically acti­
vate the human CSF-l receptor promoter with AML-l (Zhang et al. 1996a). Like 
many of the transcription factors mentioned here, AML-l may lie downstream 
of hematopoietic growth factor signaling pathways. CSF-l receptor signaling ac­
tivates the ras-raf-MAPK pathway that leads to serine phosphorylation of AML-
1 by the extra-cellular signal regulated kinase-l (ERKl). ERK-dependent phos­
phorylation potentiates the trans-activation ability of AML-l and may be impor­
tant for differentiation of progenitor cells and activation of mature macrophages 
(Tanaka et al. 1996). 
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The function of the HOX family of homeobox genes in hematopoiesis was 
also identified through chromosomal abnormalities associated with certain leu­
kemias. These HOX genes are expressed in somewhat lineage-restricted patterns 
and are an important component of the coded pattern of gene expression during 
hematopoiesis. There is evidence that HOXAI0, HOXA9, HOXA5, HOXB3, 
HOXB8, and HOXB7 can influence myeloid development (Lawrence et al. 1997). 
Targeted deletion of HOXA9 resulted in approximately 30% reduction in total 
leukocytes and lymphocytes, accompanied by atrophy of the spleen and thymus. 
Myeloid/erythroid and pre-B progenitors in the marrow were significantly re­
duced with little or no disruption of earlier progenitors (Lawrence et al. 1997). 
Overexpression of HOXB3 in bone marrow cells resulted in loss of nearly all 
B-cell progenitors, with elevated numbers of granulocyte-macrophage colony 
forming cells in the spleen and bone marrow (Sauvageau et al. 1997). HOXA5 
may also regulate lineage restriction. HOXA5 expression in CD34(+) multi potent 
progenitors shifted differentiation toward myelopoiesis and away from erythro­
poiesis (Crooks et al. 1999). Down-regulation of HOXAI0 may be required to al­
low cells to progress to later stages of myeloid development (Thorsteinsdottir et 
al. 1997). Targeted deletion of HOXA10 resulted in a twofold increase in periph­
eral blood neutrophils and monocytes and a fivefold increase in myeloid pro­
genitors (Tenen et al. 1997). The expression of HOXAlO is highest in CD34+ 
progenitors and is down-regulated during myeloid development (Lawrence et 
al. 1995). 

Some HOX proteins appear to specifically promote monocyte development, 
but this activity may be a result of ectopic expression. Further analysis will be 
required to determine if these effects are consistent with the normal pattern of 
expression during hematopoiesis. HOXB8 expression in the 32Dcl3 progenitor 
cell line inhibited granulocyte differentiation in response to G-CSF but was re­
quired for GM-CSF induced monocyte differentiation (Krishnaraju et al. 1997). 
Similarly, HOXB7 expression in the HL60 cell line inhibited retinoic acid-in­
duced granulocyte differentiation but not vitamin D3-induced monocyte differ­
entiation (Lill et al. 1995). It should be noted that HOXB7 does not appear to be 
expressed in monocytes and was not induced by treatment with CSF-1 (Lill et 
al. 1995). 

Several transcription factors from the zinc finger family are potentially im­
portant in myeloid development. These proteins contain cysteine and histidine 
residues that bind zinc ions to form a protein loop capable of binding a range of 
specific DNA sequences. Zinc finger proteins involved in myeloid differentiation 
belong to the Drosophila Kruppel-related proteins and include Sp1, MZF-1, and 
Egr-l. 

MZF-1 transcription factors appear to be important for maintenance of my­
eloid progenitor cells. MZF-l expression was detected in the myeloid lineage 
from myeloblasts to metamyelocytes and not in other bone marrow cell types 
(Bavisotto et al. 1991). Consistent with this expression pattern, the MZF-1 pro­
moter contains binding sites for MZF-1, PU.l, and retinoic acid receptors (Hui 
et al. 1995). Expression of MZF-l in the IL-3-dependent myeloid cell line, 
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FDCP1, decreased apoptosis after withdrawal of 1L-3 and led to tumor forma­
tion in 70% of transduced cells. Similarly, MZF-1 decreased retinoic acid-in­
duced apoptosis in HL-60 cells (Hromas et al. 1996; Robertson et al. 1998). The 
neoplastic and anti-apoptotic characteristics of MZF-1 suggest it may function 
to expand numbers of myeloid precursors before they proceed to terminally dif­
ferentiate. 

The Sp1 and Egr-1 transcription factors are important regulators of both bas­
al and inducible gene expression in mature macrophages and are discussed in 
more detail later. Although they do not show lineage-restricted expression, there 
is significant evidence that both can playa limited role in monocyte develop­
ment. A number of studies have shown that Sp1 can mediate specificity and in­
ducibility during cell differentiation. There is evidence of enhanced Sp1 binding 
to sites in myeloid cells possibly due to cell-specific phosphorylation of Sp1 
(Chen et al. 1993; Zhang et al. 1994a,b). Egr-1 is an early response gene that can 
be induced by a variety of stimuli and is up-regulated during monocytic but not 
granulocytic differentiation. Expression and anti-sense inhibition of Egr-1 pro­
vided evidence that Egr-1 acts as a specific inducer of monocyte differentiation 
(Nguyen et al. 1993; Krishnaraju et al. 1995; Lee et al. 1996). Disruption of the 
Egr-l gene in transgenic mice failed to show any abnormality in monocyte de­
velopment, but this result may be due to compensation by the other Egr-1 fami­
ly members, Egr-2 and Egr-3 (Lee et al. 1996). 

The STAT transcription factors are a family of seven proteins important for 
cytokine-regulated gene expression (Ward et al. 1999). STAT transcription fac­
tors are latent until tyrosine phosphorylated by receptor-associated Janus kinas­
es OAK) (Parganas et al. 1998). STAT proteins are important for induction of 
genes during immune responses and this activity will be discussed later in the 
review. STAT3 plays a crucial role in proliferation and survival of many cell 
types and targeted deletion of STAB is embryonic lethal (Takeda et al. 1997). 
1L-6 induced macrophage differentiation of the Ml cell line required STAT3 ac­
tivation (Hirano et al. 2000). STAT5a and STAT5b can both contribute to my­
eloid cell development by mediating activation through GM-CSF signaling. Tar­
geted deletion of both STAT5a and STAT5b, among other defects, showed a de­
crease in colony forming ability in response to GM-CSF (Teglund et al. 1998). 
Both STAT3 and STAT5 are able to activate important proliferation and anti­
apoptosis genes and are a common target for viral oncogenes such as v-abl 
(Kieslinger et al. 2000; Nosaka et al. 1999). STAT5 proteins are likely to act on 
myeloid progenitors by enhancing proliferation and cell survival. Signaling 
through the CSF-l receptor is able to activate STATl, STAB and STAT5 and ac­
tivation of STATl and STAB is augmented by co-stimulation with y-interferon 
(y-1FN) (Novak et al. 1996). Since CSF-l receptor expression is low in progenitor 
cells and increases as cells differentiate to monocyte/macrophages, induction of 
STAT proteins could be critical for proliferation, survival and differentiation of 
macrophages in response to CSF-1 (Eilers and Decker 1995; Eilers et al. 1995). 
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2.2 
Monocyte Differentiation 

The mechanism that allows myelopoiesis to branch into the monocytic and 
granulocytic pathways is not well defined. One theory is that the level of specific 
transcriptional activators determines the pathway of cell development. Many of 
these transcription factors regulate their own expression, and small changes in 
expression may push cells towards lineage commitment. The transcription fac­
tors most closely tied to monocyte development are PU.1, interferon consensus 
sequence binding protein (ICSBP or IRF-8), and c-Maf. 

PU.1 is a member of the Ets family of transcription factors and is the product 
of the Spi-1 oncogene identified in Friend virus-induced erythroleukemias. PU.1 
is expressed at low levels during early hematopoietic development and specifi­
cally up-regulated during myeloid development (Cheng et al. 1996). PU.1 is ex­
pressed at high levels in myeloid and B cells but is not found in T cells (Chen et 
al. 1995a). This expression pattern suggests that PU.1 can playa role in commit­
ment to early myeloid lineages as well as the later stages of differentiation. Con­
sistent with this role is the down-regulation of PU.1 during erythropoiesis and 
the inhibition of erythropoiesis observed upon retroviral overexpression in 
bone marrow cultures (Schuetze et al. 1993). Gene knockout of PU.1 in mice 
gave conflicting results. One knockout resulted in embryonic lethality at day 
E16 (Scott et al. 1994) and another resulted in viable animals that could be kept 
alive for days under sterile conditions (Mckercher et al. 1996). Although the first 
knockout suggested PU.1 disruption could affect early multipotent progenitors, 
the second demonstrated a more restricted phenotype, consistent with the pat­
tern of PU.1 expression. Recent research has demonstrated that this difference 
in transgenic animals is due to the genetic background of the mice, suggesting 
that other transcription factors can compensate to a varying extent for PU.1 de­
ficiency (Luchin et al. 2001). Viable transgenic animals showed an absence of 
monocytes and mature B cells but were still capable of producing B-cell progen­
itors. T cells and neutrophilic cells were present although neutrophils were re­
duced in number and altered in function (Mckercher et al. 1996; Anderson et al. 
1998). 

The PU.1 protein contains an 80 amino acid DNA-binding domain, character­
istic of Ets factors, located at the carboxyl terminal end (Klemsz et al. 1990). 
Like other Ets factors, PU.1 binds to purine-rich sequences characterized by a 
loose consensus core motif GGAA (Klemsz et al. 1990), but binding is distinct 
from the other Ets family members, Ets-l, Ets-2, Elf-I, and Fli-l (Voso et al. 
1994). The PU.l gene promoter itself contains a PU.l-binding site important for 
function in myeloid cells. A significant up-regulation of PU.l coincides with the 
first detection of early myeloid progenitors, suggesting amplification of PU.l oc­
curs through an autocrine loop and this enhanced expression may playa major 
role in commitment to the myeloid lineage (Voso et al. 1994; Chen et al. 1995a). 
A model of how PU.l can act as an essential component of monocyte develop-
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ment yet playa more restricted role in B-Iymphocyte and granulocyte develop­
ment is emerging. 

At one level, PU1 expression is much higher in macrophages than B cells and 
over-expression of PU1 in B cells can actually suppress activity of B cell-specific 
enhancers (Ross et al. 1994; Dekoter and Singh 2000). Recent research in my­
eloid development has focused on proteins that interact with PU1 or compete 
for DNA binding, and these two mechanisms also contribute to the restricted 
activity of PU1 in the formation of certain cell types. The Ets domain of PU1 
can interact with the C-terminal finger region of the transcription factor GATA-
1, leading to repression of PU1-mediated gene expression (Nerlov et al. 2000). 
GATA-1 is down-regulated in myeloid development but plays an important role 
in development of non-myeloid lineages (Voso et al. 1994). In a similar manner, 
B cell-specific activator protein (BSAP) PAXS can interact with PU1 through the 
trans-activation domain and inhibit PU1 activity (Maitra and Atchison 2000). 
The expression of BSAP is restricted to B lymphopoiesis. Another lymphocyte­
specific inhibitor of PU1 is a second Ets-family protein, PU1-related factor 
(Prf), that can compete for DNA binding. Prf is expressed during B-Iymphocyte 
development only and since Prf does not appear to function as a transcriptional 
activator, it may function as an antagonist of PU1 activity (Hashimoto et al. 
1999). 

These mechanisms suggest that PU1 activity is oflimited importance in early 
B-Iymphocyte development. Although PU.1 is required for final maturation and 
expression of genes in differentiated B lymphocytes, the role of PU1 during 
lymphopoiesis is less defined. The reduction of PU1 activity during B lympho­
poiesis would also be expected to have a minimal impact due to partial redun­
dancy with the closely related Spi-B transcription factor (Garrett-Sinha et al. 
2001). Spi-B is expressed in B lymphocytes and not in myeloid cells and Spi-B 
gene knockout in PU1 +/- mice resulted in a reduction of immature and ma­
ture B lymphocytes (Chen et al. 1995b; Su et al. 1996). 

The ability of PU1 to interact with members of the interferon regulatory factor 
(IRF) family may also be significant in directing monocyte differentiation. The 
IRF family member, ICSBP, has been shown to regulate myeloid differentiation 
(Holtschke et al. 1996; Scheller et al. 1999; Tamura et al. 2000). The IRF family 
members are able to bind the interferon-stimulated response elements (ISRE) 
found in many interferon-inducible genes (Contursi et al. 2000). ICSBP is ex­
pressed in monocyte/macrophage lineages, B lymphocytes, and activated T lym­
phocytes and is induced by y-interferon (IFN) (Darnell et al. 1994). Although y­
IFN alone is myelosuppressive, in combination with CSF-1 or GM-CSF it is an ac­
tivator of monocytopoiesis (Breen et al. 1991). ICSBP forms a complex with Pu'1 
and activates composite elements in the myeloid-specific gp91(phox) p67(phox) 
and Toll-like receptor 4 genes (Eklund and Kakar 1999; Rehli et al. 2000). Targeted 
deletion of the ICSBP gene resulted in a significant increase in granulocytes and a 
reduction in mature macrophages with a significant impairment of the ability of 
GM-CSF or CSF-I to form macrophage colonies (Scheller et al. 1999). Expression 
of ICSBP in a bipotential cell line, derived from ICSBP-/- mice, showed that 
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ICSBP drives myeloid progenitors to differentiate into macrophages but inhibits 
granulocyte differentiation (Tamura et al. 2000). 

The PUI gene knockout described above also proposed a limited role for 
PUI in early granulocyte development. Similar to B cells, PUI appeared to be 
significant mainly in the final stages of granulocyte differentiation. This stage­
specific role is consistent with considerable evidence that commitment to the 
granulocyte lineage is closely associated with expression of C/EBP proteins and 
not PUI (Gombart and Koeffler 2002). The C/EBP family is a subfamily ofbZIP 
(leucine zipper) proteins. Relevant C/EBP family members include C/EBPa, CI 
EBP,B, C/EBP8, and C/EBPE, all of which bind to similar DNA sequences (Anton­
son et al. 1996). Targeted deletion of either the C/EBPa or C/EBPe genes resulted 
in severe impairment of granulocyte development (Yamanaka et al. 1997a; 
Zhang et al. 1997). Expression of both C/EBPa and C/EBPe increases during 
granulocyte differentiation but decreases during monocyte differentiation 
(Morosetti et al. 1997; Scott et al. 1992; Yamanaka et al. 1997b). Interestingly, the 
ectopic expression of C/EBPe alone in 32Dcl3 progenitor cells was sufficient for 
differentiation to mature granulocytes, indicating a certain level of functional 
redundancy (Khanna-Gupta et al. 2001). 

This expression pattern is not true for a third member of the family, C/EBP,B 
(NF-IL6) which increases during monocyte but not granulocyte differentiation 
(Natsuka et al. 1992). In the mouse, C/EBP,B is a strong transactivator of the 
CSF-l receptor (c-fms) gene promoter (Xie et al. 2002). C/EBP,B shows low activ­
ity in myeloid cells until cells are activated by inflammatory mediators and is 
generally associated with inducible gene expression that is discussed later in the 
review. Gene knockout of C/EBP,B resulted in no abnormalities in myeloid dif­
ferentiation, although there were deficiencies in macrophage activation at later 
stages (Screpanti et al. 1995). The possibility that C/EBP family members can 
substitute in pairs has not been eliminated. 

Another bZIP family member that affects monocyte development is c-Maf. 
Overexpression of c-Maf induces HL60 and U937 cells to terminally differentiate 
to macrophages (Hegde et al. 1999). c-Maf is thought to promote macrophage 
differentiation by forming complexes with c-Myb and inhibiting specific c-Myb 
regulated targets (Hedge et al. 1998). Gene knockout of c-Myb resulted in em­
bryonic lethality and a failure offetalliver hematopoiesis (Mucenski et al. 1991). 
c-Myb is thought to act early in hematopoiesis, and its expression is down-regu­
lated during differentiation (Gewirtz and Calabretta 1988). This down-regula­
tion may be important for monocyte differentiation since c-Myb has been 
shown to inhibit the CSF-l receptor gene (Reddy et al. 1994). Inhibition of 
c-Myb activity appears to be of lesser importance for granulocyte development. 
c-Myb can synergize with C/EBP proteins and a number of granulocyte-specific 
genes are trans-activated by c-Myb (Oelgeschlager et al. 1996; Verbeek et al. 
1999). 

The microphthalmia transcription factor (MiTF) family is a set of four related 
members of the bHLH-ZIP class of proteins. The MiTF family member is re­
quired for development of osteoclast cells, a closely related cell lineage to mac-
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rophages (Moore 1995). Evidence of their role in monocytopoiesis arises from 
the dominant phenotype of a subset of MiTF mutations. MiTF transcription fac­
tors bind DNA as homodimers or heterodimers with other family members and 
there is evidence that MiTF proteins interact with PD.l (Steingrimsson et al. 
1994; Luchin et al. 2001). Targeted deletion of individual MiTF family members 
was not associated with any deficiency in macrophage development; however, 
this probably reflects the redundant expression in macrophages of all four mem­
bers, MiTF, TFE-3, TFE-B, and the myeloid-specific member, TFE-C (Rehli et al. 
1999). 

3 
(ommon Regulatory Elements in Macrophage-Specific Promoters 

Regulation of macrophage-specific genes requires the coordinate assembly of 
multiple transcription factors onto distinct regulatory elements. Promoters that 
direct lineage-specific expression in macrophages are different from many other 
tissue-specific promoters. Macrophage-specific promoters generally lack a de­
fined initiator sequence, such as a TATAA box. Transcription initiation can oc­
cur at multiple sites within the promoter or at a single strong start site. Trans­
fection of tissue culture cells showed that macrophage restricted expression in 
some genes required only a small region upstream of the major transcription 
start site. Deletional analysis of the PD.l and human CSF-IR promoters showed 
that minimal, tissue-specific promoter activity was encoded in an approximately 
90-bp region (Zhang et al. 1994a; Chen et al. 1995a; Kistler et al. 1995; Ross et al. 
1998). The core promoter elements that allow transcription initiation in the ab­
sence of a TATAA box are a major component of macrophage-restricted gene ex­
pression as outlined below. 

Several transcription factors have been shown to interact with TATAA-bind­
ing protein (TBP), and this interaction may allow certain transcription factor 
binding sites to substitute for a TATAA sequence. The presence of functional 
Spl sites in the initiation sequence of many promoters may overcome the ab­
sence of a TATAA sequence. Spl has been shown to interact with a number of 
proteins that influence TFIID binding and hence transcription initiation. Spl 
can interact with TBP as well as TAFIlO and CRSP, a cofactor complex that can 
directly bind TFIID (Emili et al. 1994; Ryu et al. 1999). Although Spl expression 
is ubiquitous, the DNA-binding activity can be cell-type specific as outlined 
above. An in vivo study showed that Spl binds the CDllb promoter specifically 
in myeloid cells and was required for myeloid-specific promoter activity (Chen 
et al. 1993). 

Many macrophage-specific promoters, however, do not contain Spl sites 
within the core upstream promoter sequence. These promoters show a consis­
tent pattern of elements near the start of transcription as outlined in Fig. 1. The 
purine-rich elements within these regions have been repeatedly identified as 
PD.l binding sites. Indeed, nearly all of the macrophage-specific promoters ana­
lyzed so far contain a PD.l site near the start of transcription. An interesting ex-
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Fig. 1 Sequence comparison of the proximal promoter regions of macrophage-restricted genes. Se­
quences are aligned by an E box-like motif present in many macrophage-restricted promoters lacking a 
TATAA box element. Arrows mark published transcription initiation sites. PU.l lEts-like GGAA motifs are 
shaded in gray and dark shading indicates motifs where mutation resulted in a significant loss of my­
eloid-specific promoter activity 

ception is the CD14 promoter, which contains a TATAA box initiation site but 
no PU.1 binding site (Zhang et al. 1994b). The CD14 promoter is capable of di­
recting cell-specific expression only in transient assays and not in transgenic 
mice (Ferrero et al. 1993). Similarly, the chicken lysozyme gene also lacks a 
PU.1 site in its promoter but contains one in an upstream enhancer important 
for cell-restricted expression (Ahne and Stratling 1994). PU.1 probably acts to 
recruit the basal transcription complex. A purine-rich repeat alone can function 
as a macrophage-specific promoter (Ross et al. 1998) and PU.1 has been shown 
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to bind directly to TBP in vitro (Hagemeier et al. 1993). Further evidence that 
PU.l can playa role in macrophage-specific transcription initiation was provid­
ed by study of Fcyreceptorl gene expression. Basal and y-INF-induced expres­
sion was abolished by mutation of the PU.l site, and replacement of the mutated 
site with a TATAA box restored activity (Eichbaum et al. 1994). 

Other Ets family transcription factors are likely to be important for macro­
phage promoter activity. Macrophage-specific genes typically contain several 
purine-rich sequence elements, not all of which bind pu.l. The other Ets factors 
expressed in myeloid cells are Ets-2, Fli -1, Elf-I, and myeloid Elf-I-like factor 
(MEF) (Klemsz et al. 1993; Kola et al. 1993; Voso et al. 1994). The Ets-2 tran­
scription factor mediates activation of genes in response to CSF-l receptor sig­
naling such as urokinase plasminogen activator (vPA) and scavenger receptor 
(Fowles et al. 1998). Activation of the ras-raf-MEKI-ERK kinase pathway by 
CSF-l results in phosphorylation of Ets-2 and increased transcriptional activity 
(Fowles et al. 1998). Ets-2 has also been shown to trans-activate the CSF-l recep­
tor promoter (Ross et al. 1998). Targeted deletion of Ets-2 was embryonic lethal 
at E8.5, but other studies showed Ets-2 can play an important role in basal and 
inducible gene expression in macrophages (Reddy et al. 1994; Henkel et al. 1996; 
Yang et al. 1996). 

Binding sites for C/EBP transcription factors are also common in myeloid­
specific promoters. Although C/EBP proteins are critical for granulocyte devel­
opment, there is evidence for a role in macrophage gene expression. The C/ 
EBP,8 family member is active in macrophages and is important for inducible 
gene expression. Targeted deletion of C/EBP,8 resulted in impaired macrophage 
function and mice were immunodeficient (Screpanti et al. 1995). As mentioned 
above, the level of C/EBP,8 specifically increased during monocyte differentia­
tion and C/EBP,8 is activated by phosphorylation with ERK kinases and hence a 
target for CSF-l receptor signaling. Although clearly not required for lineage de­
velopment, C/EBP,8 can trans-activate the CSF-l receptor promoter with AML-l 
and pu.l. It is not clear how this interaction, perhaps in response to infection, 
can potentiate cell-specific gene expression or differentiation of macrophages 
(Zhang et al. 1996b; Xie et al. 2002). 

Many of the protein complexes that bind regulatory elements in macrophage­
specific genes are still not identified. A comprehensive analysis of at least one 
macrophage-specific gene may be required to catalogue required transcription 
factors. Advances in array technologies such as gene chips may allow identifica­
tion of transcription factors and the pathways that regulate them. Changes in 
chromatin structure are an important determinant of the pattern of gene expres­
sion and many transcription factors recruit co-factors that can acetylate or 
deacetylate histones. Studies on how transcription factors restructure chromatin 
will also be needed to understand the complex architecture of protein binding 
that enables cell-specific expression. 



22 D. A. Hume . S. R. Himes 

4 
Regulation of Inducible Gene Expression 

Regulation of inducible gene expression in macrophages is of crucial impor­
tance to the pathogenesis of several diseases including inflammation, septic 
shock, atherosclerosis, rheumatoid arthritis, pulmonary fibrosis, and inflamma­
tory bowel disease. During the course of infection, the activation of macro­
phages must be strictly controlled to prevent damage to host cells. The precise 
regulation of macrophages is also required to direct host defenses towards spe­
cific pathogens and sites of infection. Adaptive immunity has been loosely cate­
gorized into two distinct T-cell responses, based on the profile of cytokines ex­
pressed. The response of T helper (Th)-l cells is mainly directed towards sys­
temic infection by viruses and bacteria, and Th2 cell responses are directed to­
wards mucosal infections, primarily in response to infection by parasites. Mac­
rophage or T-cell activation by two distinct subsets of cytokines directs these 
responses. Autocrine or paracrine stimulation with IL-4 or IL-lO promotes Th2 
cell responses and stimulation with IL-12 or y-IFN promotes Th1 cell responses 
(Schulze-Koops and Kalden 2001). The role of macrophages in the formation of 
these two T cell subsets is generally understated. Macrophages are the most sen­
sitive cell type to the microbial products that activate distinct immune respons­
es. For example, the ability of bacterial DNA to specifically potentiate the Th1 
immune response is well established yet T cells are not capable of responding to 
bacterial DNA (Weiner 2000). Additionally, macrophages develop into distinct 
lineages in tissue and are likely to mediate organ-associated immune responses 
such as activation of distinct T cell subsets or immune tolerance in the intestinal 
mucosa. This review will concentrate on recent studies of transcription factors 
that control gene expression in response to pro-inflammatory and anti-inflam­
matory signals. 

4.1 
Pro-inflammatory Signals 

NF-KB/Rel Proteins. Nuclear factor-KB/Rel proteins are a small family of tran­
scription factors that are latent in the cytoplasm by virtue of their association 
with IKB inhibitor proteins. A large number of extracellular signals can trigger a 
variety of distinct signal transduction pathways that lead to the degradation of 
IKB. The nuclear localization signal on NF-KB/Rel proteins is then unmasked, 
allowing translocation to the nucleus and DNA binding as hetero or homodimer 
protein complexes. NF-KB/Rel proteins are important for the induction of nearly 
all of the proteins associated with inflammation (Silverman and Maniatis 2001). 
The ubiquitination and proteolytic degradation of IKBs is activated by the IKB 
kinases, IKKal f3ly (Cheng et al. 1996; Lee and Rikihisa 1998; Silverman and 
Maniatis 2001). Although activated by similar signals, the NF-KB/Rel family pro­
teins possess distinct functions. The pSO and pS2 members do not contain the 
C-terminal trans-activation domain, and trans-activation requires dimerization 
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with the p65 (ReIA), RelB, or c-Rel proteins (Silverman and Maniatis 2001). The 
prototypic protein complex that mediates inducible gene expression is the NF­
ICB, p50/p65 heterodimer. The primary activation signals in macrophages are 
microbial products such as lipopolysaccharide (LPS) and bacterial DNA, IL-1, 
IL-6, and tumor necrosis factor-a (TNF-a) (Zhang and Ghosh 2000). The mech­
anisms of signal transduction and activation of NF-ICB/Rel is not covered here, 
since they have been reviewed elsewhere (Silverman and Maniatis 2001). 

Several studies have shown that transcriptional activation by ReI proteins re­
quired both the degradation of IICB and ReI protein phosphorylation and that 
these two activation signals can be uncoupled (Schmitz et al. 2001). NF-ICB, p65 
has a protein kinase A phosphorylation site on serine 276 (Zhang et al. 1997). 
Phosphorylation at this site was dependent on IICB degradation and was re­
quired for binding to the transcriptional co-activator, CREB-binding protein 
(CBP) (Zhong et al. 1998). A second site on p65, serine 529, was phosphorylated 
in response to TNF-a stimulation and was also dependent on IICB degradation 
(Wang and Baldwin 1998; Wang et al. 2000a). Phosphorylation of s529 appeared 
to be mediated by casein kinase II (Wang et al. 2000a) and resulted in enhanced 
transcriptional activation but not nuclear translocation or DNA binding. IL-1 
has also been shown to induce phosphorylation of p65, and this phosphoryla­
tion required phosphotidylinositol-3 kinase and Akt (Sizemore et al. 1999). This 
signaling appears to involve IKK,B and required serines 529 and 536 of p65 (Ma­
drid et al. 2001). PI3 K and Akt stimulation was again found to enhance tran­
scriptional activity and not nuclear translocation or DNA binding (Madrid et al. 
2001). Considerably less work has been performed on activation of c-Rel pro­
teins; however, many of the phosphorylation sites in p65 occur in the rel homol­
ogy domain. There is also evidence that uncoupling of IICB degradation and 
transcriptional activation occurs with c-Rel. Targeted deletion of c-Rel resulted 
in enhanced expression of GM-CSF, IL-6, and TNF-a in peritoneal macrophages 
treated with LPS but reduced expression of GM-CSF and 1L-2 in activated T cells 
(Gerondakis et al. 1996). 

The evidence that s276 phosphorylation allowed binding to the co-activator 
CBP may in part explain the anti-inflammatory activity of PPARy signaling and 
cAMP activation. Both PPARy, discussed below, and cAMP-response element 
binding protein (CREB) may compete for limiting amounts of CBP and interfere 
with p65 transcriptional activation (Li et al. 2000). This activity highlights the 
potential therapeutic value of compounds that target the phosphorylation of 
p65 or the associated binding proteins during inflammation, particularly since 
targeted deletion of p65 or IICB produced a lethal phenotype (Silverman and 
Maniatis 2001). 

STAT Proteins. Many cytokines that are important for cellular activation in the 
macrophage lineage utilize the JAK-STAT signaling pathway. The ligand-activat­
ed y-IFN receptor recruits JAK1 and JAK2 kinases, leading to phosphorylation, 
nuclear translocation, and binding of STATl homodimers to GAS (y-IFN acti­
vated site) elements. The activation of STAT proteins is transient and several 



24 D. A. Hume . S. R. Himes 

constitutive and inducible pathways down-modulate STAT actIvIty (Darnell 
1997). Constitutive pathways that down-modulate STAT activity include dephos­
phorylation, proteolytic degradation, and binding to inhibitor molecules 
(Haspel et al. 1996; Kim and Maniatis 1996; Chung et al. 1997a,b). Induction of 
the suppressors of cytokine signaling molecules (SOCS) by a large number of 
cytokines is important for feedback inhibition of JAK kinase activity and allows 
cross-inhibition between cytokine receptors (Endo et al. 1997; Starr et al. 1997). 
Signaling through the mitogen-activated protein kinase (MAPK) pathway has 
also been shown to inhibit STAT activation (Sengupta et al. 1998). Phorbol ester, 
ionomycin or GM-CSF activation of ERK kinase has been shown to inhibit 
IL-6-mediated JAK1 and JAK2 phosphorylation of STAT3 (Petricoin et al. 1996; 
Sengupta et al. 1996). Other pathways that inhibit STAT activation in macro­
phages include, crosslinking of Fc or complement CR3 receptors (Feldman et al. 
1995; Marth and Kelsall 1997) and activation of the signal transducers, protein 
kinase A and protein kinase C (Bhat et al. 1995; Lee and Rikihisa 1998). STAT 
proteins are also regulated through serine phosphorylation by kinases yet to be 
identified. The functional significance of serine phosphorylation varies and can 
either activate or inhibit tyrosine phosphorylation or DNA binding (Eilers et al. 
1995; Wen et al. 1995; Beadling et al. 1996). 

The precise regulation of STAT proteins in macrophages may be instrumental 
in directing either Thl or Th2 cell responses. For example, the cytokine IL-lO is 
a potent growth factor for activated B cells, but down-modulates T-cell respons­
es by suppressing expression of major histocompatibility complex class II and 
B7 on macrophages (Ding et al. 1993). The induction of SOCS3 by IL-I0 can 
block y-IFN mediated STATl activation by binding to phosphorylated residues 
in the tyrosine kinase domain ofJAK kinases (Ito et al. 1999). STATl along with 
IRFs are required for expression of IL-12, an important cytokine for directing 
Thl responses (Durbin et al. 2000). Strong inflammatory signals from bacteria 
can also alter cell signaling. Treatment of macrophages with LPS, IL-l, and 
TNF-a inhibited IL-6 and IL-lO but not y-IFN activation of STAT phosphoryla­
tion and DNA binding (Ahmed and Ivashkiv 2000). 

IL-4 can induce expression of a distinct subset of genes in macrophages, in­
cluding FCEreceptor IIb (CD23), 15-lipoxygenase, and IL-l receptor antagonist 
(Vercelli et al. 1988; Conrad et al. 1992; Fenton et al. 1992). The induction of 
STAT6 by IL-4 signaling is important in both activation and inhibition of gene 
expression (Kaplan et al. 1996; Shimoda et al. 1996; Takeda et al. 1996). Pretreat­
ment of macrophages with y-IFN or /3-IFN can suppress activation of STAT6 
by IL-4. This repression is mediated by interferon-induced expression of the 
JAK-STAT inhibitor SOCSI (Dickensheets et al. 1999). IL-4 activation of STAT6 
binding can, in turn, suppress y-IFN-induced transcription. STAT6 appears to 
inhibit interferon-induced gene expression by competition for occupancy of 
promoter binding sites with STATl (Ohmori and Hamilton 1998). STAT6-1-

mice showed decreased susceptibility to septic peritonitis due to enhanced bac­
terial clearance. This enhanced anti-microbial activity was associated with in-
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creased levels ofIL-12, TNF-a, and macrophage-derived chemokine (Matsukawa 
et al. 2001). 

IRF Proteins IRF Protein. 1RFs are a family of at least nine transcription factors 
with a broad range of activities (Taniguchi et al. 2001). All members are ex­
pressed in most cell types except 1RF-4 and 1CSBP, which are expressed in lym­
phoid and myeloid cells only (Driggers et al. 1990; Rosenbauer et al. 1999). The 
members that effect macrophage activation the most are 1RF-l, interferon-stim­
ulated gene factor-3y (1SGF3y, 1RF-9), and 1CSBP (1RF-8). 1RF-l expression is 
strongly enhanced in macrophages by treatment with y-1FN (Flodstrom and 
Eizirik 1997). Targeted disruption ofIRF-l resulted in a wide range of defects in 
macrophage activation and consequent resistance to several models of chronic 
inflammatory disease. Macrophages from 1RF~/~ mice failed to induce iNOS (in­
ducible nitric oxide synthetase) in response to LPS or ,6-1FN (Kamijo et al. 1994; 
Martin et al. 1994). The iNOS enzyme catalyzes production of nitric oxide, im­
portant for intracellular killing of pathogens and may explain the severe pathol­
ogy of Mycobacterium bovis infection in 1RF-l~/~ mice (Kamijo et al. 1994). 
1RF-l was also required for expression of the p40 subunit if 1L-12, essential for 
activation of the Thl-cell subset in the immune system (Lohoff et al. 1997). 

1CSBP (IRF-8) shows selective expression in myeloid and lymphoid cells and 
is important for macrophage development as discussed above. 1CSBP is induced 
by y-1FN but not by a-1FN or ,6-1FN (Kanno et al. 1993). 1CSBP can bind to 
composite elements by formation of activating transcriptional complexes with 
1RF-l, 1RF-2, and PU.l (Eklund et al. 1998). Transcriptional activation by 1CSBP 
is critical for the Thl immune response since 1CSBP~/~ mice failed to produce 
1L-12 and y-1FN and showed increased susceptibility to virus infection (Wang et 
al. 2000b). 

1SGF3y/1RF-9 also forms activating complexes upon stimulation with a and 
,B-IFNs and exerts its transcriptional effects exclusively by association with 
STATl and STAT2 (Veals et al. 1992; Bluyssen et al. 1996; Darnell 1997). The re­
sulting trimolecular 1RF-9/STATl,2 complex, referred to as 1SGF3, is able to ac­
tivate transcription of many genes by binding to 1SREs (Stark et al. 1998). y-1FN 
treatment of macrophages can strongly enhance transcriptional activation 
through 1SREs by up-regulating 1RF-9 and STATl expression. There is also evi­
dence that y-1FN together with spontaneously produced a- or ,6-1FN allows 
physical association between the 1FN receptors and STATl/2 docking and acti­
vation (Bandyopadhyay et al. 1990; Levy et al. 1990). 

C/EBP ProteinsC/EBP Protein. The principle C/EBP family members that acti­
vate gene expression in response to inflammatory stimuli are C/EBP,6 and CI 
EBPo. The level of C/EBPE is extremely low in mature macrophages and C/EBPa 
levels generally decrease in response to inflammatory signals (Tengku-Muham­
mad et al. 2000). C/EBP,6 is predominantly expressed in monocyte/macro­
phages, hepatocytes, keratinocytes, and adipocytes and is the principle media­
tor of C/EBP-induced inflammatory gene expression in macrophages (Akira et 
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al. 1990; Cao et al. 1991; Lekstrom-Himes and Xanthopoulos 1998; May tin and 
Habener 1998). The expression and activity of C/EBP,6 is induced by many in­
flammatory mediators such as LPS, IL-1, IL-6, y-IFN, and TNF-a (Akira et al. 
1990; Pope et al. 1994; Darville and Eizirik 2001; Hu et al. 2001). y-IFN can stim­
ulate the transcriptional activity of C/EBP,6 through activation of ERK1 and 
ERK2 kinases. This phosphorylation and activation of C/EBP,6 was required for 
induction of ISGF3y/IRF-9 expression, allowing formation of the ISGF3 complex 
on ISREs (Hu et al. 2001). Induction of C/EBP,6 plays a central role in acute­
phase responses by activating expression of a number of inflammatory media­
tors, including TNF-a, IL-1,6, IL-6, IL-8, MIP-1a, MCP-1, and MMP-1 (Grove 
and Plumb 1993; Shirakawa et al. 1993; Stein and Baldwin 1993; Pope et al. 
1994). A role for C/EBP proteins has been established in a number of inflamma­
tory diseases (Poli 1998). Macrophages that express high levels of C/EBP,6 were 
found in the synovial lining of patients with rheumatoid arthritis and the level 
of expression strongly correlated to lining thickness (Pope et al. 1999). 

Egr-l ProteinsEgr-l Protein. A number of studies have shown that Egr-1 tran­
scription factors are important for macrophage activation during chronic or 
acute inflammation (Mcmahon and Monroe 1996). Many recent studies have 
specifically analyzed the role of Egr-1 in the pathogenesis of atherosclerotic le­
sions (Khachigian 2001). Egr-1 is induced not only by inflammatory cytokines 
and LPS, but also by enzymatically degraded low-density lipoprotein (LDL), 
hypoxia, physical force, and injury (Silverman and Collins 1999). Egr-1 activa­
tion influences expression of many stress-response genes including platelet-de­
rived growth factor (PDGF), transforming growth factor (TGF),6, TNF-a, intra­
cellular adhesion molecule (ICAM)-l, urokinase-type plasminogen activator, 
and metalloproteinases (Mccaffrey et al. 2000). Elevated levels of Egr-1 can be 
found at early stages of atherosclerosis with progressive increase in expression 
during formation of lesions, particularly in areas of macrophage infiltration 
(Mccaffrey et al. 2000). Activation of Egr-1 may be important for infiltration of 
macrophage into lesions. Egr-1 expression and binding was required for activa­
tion of the CD44 promoter in response to IL-1 (Maltzman et al. 1996). Expres­
sion of the adhesion molecule, CD44 is important for recruitment of leukocytes 
to inflammatory sites, and CD44 signaling results in expression of pro-inflam­
matory chemokines in macrophages (Ariel et al. 2000; Stoop et al. 2001). 

4.2 
Anti-inflammatory Signals 

SMAD ProteinsSMAD Protein. The cytokine TGF,6 can act as a potent anti-in­
flammatory agent in macrophages, and up-regulation of TGF,6 in gastrointesti­
nal tissue is essential for induction of oral tolerance (Letterio and Roberts 
1998). Targeted deletion of the TGF,61 gene resulted in systemic inflammation 
and early death (Shull et al. 1992). SMADs are a family of proteins that trans­
duce signals from type I and type II TGF,6 receptors (Massague and Wotton 
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2000). TGF,8 activation of the type I receptor results in serine phosphorylation 
of SMAD2 and SMAD3 which associates with SMAD4 during nuclear transport 
forming complexes that bind DNA and recruit transcription factors (Letterio 
and Roberts 1998; Massague and Wotton 2000). Inhibition of LPS activation in 
macrophage by TGF,8 treatment required SMAD3 and appeared to involve the 
ability of SMAD3 to compete for the co-activator p300 (Werner et al. 2000). 

The pro-inflammatory cytokines, TNF-a and y-IFN can both inhibit the 
TGF,8ISMAD signaling pathway. These cytokines inhibit SMAD activity by in­
ducing the expression of the repressor, SMAD7 that can occupy ligand activated 
TGF,81 Rl and block SMAD2 and SMAD3 phosphorylation (Hayashi et al. 1997; 
Nakao et al. 1997). Disruption of the SMAD signaling pathway is implicated in 
the pathogenesis of inflammatory bowel disease. SMAD7 expression was up-reg­
ulated in mucosal tissue from patients with Crohn's disease and ulcerative coli­
tis, and analysis of lamina propria mononuclear cells from diseased tissue 
showed extremely low levels of phosphorylated SMAD3 and these cells did not 
respond to TGF,8 treatment (Monteleone et al. 2001). 

PPARy. Recent research has provided evidence that the peroxisome proliferator­
activated receptor (PPAR) family of nuclear receptors can act as a down-modu­
lator of inflammation. PPAR proteins are capable of both positive and negative 
regulation of gene expression in response to ligand binding. PPAR proteins con­
tain a highly conserved DNA-binding domain and ligand-dependent and -inde­
pendent trans-activation domains (Nolte et al. 1998; Xu et al. 1999). PPAR posi­
tively regulates gene expression by binding as a complex with retinoid X recep­
tors to composite elements within target genes (Direnzo et al. 1997). The PPARy 
family member is expressed in macrophages and appears to be involved in lipid 
accumulation and inflammatory responses. Both the natural ligand, 15-deoxy­
,112,14prostaglandin Jz and the thiazolidinedione (TZD) class of synthetic ligands 
have anti-inflammatory effects on macrophages and TZDs show early signs of 
efficacy against inflammatory bowel disease (Delerive et al. 2001; Lewis et al. 
2001). Treatment of macrophages with PPARy ligands reduced expression of the 
inflammatory cytokines TNF-a, IL-l,8 and IL-6 (Jiang et al. 1998). Treatment of 
elicited macrophages induced a resting phenotype and suppressed iNOS, gelati­
nase B and scavenger receptor A (Ricote et al. 1998). PPARy inhibition of the 
iNOS promoter did not involve DNA binding. PPARy appears to inhibit gene ex­
pression by suppressing the activity of NF-KB, AP-l, and STATl transcription 
factors through competition for recruitment of the shared co-activators p300 
and CBP (Ricote et al. 1998; Li et al. 2000). IL-4-mediated inhibition of iNOS 
synthesis partially involves PPARy by inducing the coordinate expression of 
PPARy and its ligands 13 HODE and 15 HETE (Ricote et al. 2000). 

Evidence that PPARy may influence lipid accumulation in macrophages has 
led to concerns over the use of TZDs in the treatment of diabetes. PPARy-acti­
vated THP-1 cells showed increased expression of the scavenger receptor CD36 
and increased uptake of oxidized LDL (Chawla et al. 2001). Targeted deletion 
and retroviral expression ofPPARy confirmed that CD36 expression is enhanced 
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by PPARy (Chawla et al. 2001). Other reports, however, have shown that PPARy 
does not promote formation of macrophage foamy cells and can activate choles­
terol efflux by induction of apo AI-mediated cholesterol transporter (ABCA1) 
gene expression (Chinetti et al. 2001). 

Glucocorticoid ReceptorGlucocorticoid Receptor Activation. Glucocorticoids (GC) 
are used as immunosuppressive agents in organ transplantation, immune dis­
eases, and inflammatory disorders. GCs suppress many functions in macro­
phages, the most significant of which is inhibition of cytokine production, in­
cluding suppression of TNF-a production. Administration of GCs results in ad­
verse effects in many tissues and causes systemic monocytopenia in humans 
(Joyce et al. 1997). GCs have been shown to interfere with the function of mem­
bers of the NF-ICB and AP-1 family of transcription factors (Auphan et al. 1995). 
The decreased binding of NF-ICB seen with glucocorticoid treatment may result 
from either interaction between ligand-activated glucocorticoid receptor and 
p65/RelA or induction ofIICB synthesis (Ramdas and Harmon 1998; Costas et al. 
2000). Recent evidence suggests that glucocorticoids can alter the function of 
histone acetylases by inhibiting p65-associated acetylase transferase or CBP re­
cruitment by NF-ICB (Ito et al. 2001; Kagoshima et al. 2001). There is, however, 
evidence that post-transcriptional mechanisms contribute significantly to glu­
cocorticoid inhibition of cytokine production. In humans, glucocorticoids re­
duce the stability of IL-1,8, IL-1a, and IL-6 mRNA (Keffer et al. 1991; Amano et 
al. 1993). 

GCs also have a profound effect on the regulation of ThllTh2 cytokine re­
sponses (Almawi et al. 1999). Treatment with the GC, dexamethasone resulted in 
specific inhibition of IL-12 activation of STAT 4 with no effect on IL-4 activation 
of STAT6 (Franchimont et al. 2000). The loss of IL-12 activity resulted in re­
duced y-IFN expression from T cells and natural killer cells and a subsequent 
decrease in the ability of macrophages to direct Th1 cell responses. The result­
ing Th2 cytokine profile with GC treatment is believed to be a result of this inhi­
bition of Th1 cell responses. GCs were not shown to directly enhance Th2 cyto­
kine responses and addition of y-IFN abrogated the dexamethasone enhanced 
Th2 cytokine profile (Agarwal and Marshall 2001; Miyaura and Iwata 2002). 

5 
Future Studies 

Macrophage-specific gene expression involves the temporal and lineage-specific 
assembly of transcription factor complexes on DNA. A critical step in transcrip­
tion factor access to DNA is the remodeling of chromatin, and both cell differ­
entiation and macrophage activation require extensive changes in chromatin 
structure. Many developmental transcription factors such as NF-ICB, AML-1, 
homeobox family proteins, and HMG-box proteins can modify chromatin either 
directly or by binding specific co-factors. Identifying the DNA-binding proteins 
that allow rapid changes in chromatin structure is an important area for future 
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study. Finally, it is clear that a large number of important transcription factors 
are still not identified. A detailed analysis of protein binding has been per­
formed on a few select promoters. Even within these genes, the transcription 
factors that bind many of the conserved elements have not been identified. 
These studies may require technology that allows rapid identification of pro­
teins assembled on promoter or enhancer sequences. Recent advances in mi­
crochip technology, used for analysis of protein-protein interaction, may help 
to identify proteins that associate with transcription factors or structural pro­
teins in chromatin. Expression profiling by micro array can determine the spec­
trum of transcription factors present during macrophage development and acti­
vation. These analyses may reveal new targets for novel therapeutics that act at 
the level of gene transcription. 
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Abstract The propensity of macrophages for the phagocytic clearance of colloi­
dal particles provides a rational approach to macrophage-specific targeting and 
drug delivery. Furthermore, by precision engineering, colloidal drug carriers 
can be targeted to selective population of macrophages in the body as well as 
intracellular locations. These approaches have led to the development of a num­
ber of regulatory-approved particulate formulations for delivery of therapeutic 
and diagnostic agents to macrophages. This article will briefly discuss selected 
approaches and highlight barriers in in vivo macrophage-specific targeting with 
colloidal carriers via intravenous, subcutaneous and oral routes of administra­
tion, and it explores avenues for selective modification of macrophage cellular 
activity. 

Keywords Antigen presentation, Colloidal carriers, Drug delivery, Kupffer cells, 
Liposomes, Lymph nodes, M cells, Macrophage suicide, Nanospheres, 
Poloxamer, Poloxamine, Splenic macrophages, Stimulated macrophages 
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Abbreviations 

APC 
EO 
IES 
MHC 
PO 
TAT 

1 
Introduction 

antigen-presenting cell 
ethylene oxide 
interendothelial cell slits 
major histocompatibility complex 
propylene oxide 
trans-activating transcriptional activator 

Macrophages are widely distributed throughout the body and perform a wide 
range of homeostatic, physiological, and immunological functions. Among 
them, phagocytosis (or endocytosis) is the macrophage's primary task, which 
has been well conserved throughout evolution. This is achieved by virtue of a 
vast array of specialised plasma membrane recognition receptors with which the 
macrophage can arrest and eliminate senescent and damaged cells, particulate 
debris and microbial invaders (Gordon 1995). 

The propensity of macrophages for the phagocytic/macropinocytic clearance 
of foreign particles provides a rational approach to macrophage-specific target­
ing through suitable particulate vehicles. The concept of particulate targeting of 
macrophages is an attractive one, in that a wide variety of systems are available 
and particles with differing physicochemical properties and loading capacities 
can be constructed (Poznansky and Juliano 1984; Moghimi et al. 2001). The par­
ticulate entities which have been used include liposomes, niosomes, polymeric 
nanospheres, oil-in-water microemulsions, and even natural constructs such as 
lipoproteins and erythrocytes. For targeting, three criteria must be considered. 
The first criterion is the distribution of macrophages in tissues in terms of access 
from various physiological portals of entry. The second involves determinants of 
phagocytic recognition and ingestion, which includes macrophage phagocytic/ 
endocytic receptors (e.g. the nature, density, and their state of activation) and 
the effect of environmental factors on their phagocytic functions. The last is the 
physicochemical characteristics of the particles to be ingested and includes par­
ticle morphology, hydrodynamic size and surface characteristics (e.g. ligand ex­
pression, bound opsonins). This article will briefly discuss selected approaches 
and highlight barriers in in vivo macrophage-specific targeting with colloidal 
carriers via intravenous, subcutaneous and oral routes of administration and ex­
plores avenues for selective modification of macrophage cellular activity. 

2 
The Macrophage as a Therapeutic Target for Nanocarriers 

Colloidal targeting of macrophages offers a number of advantages. These include 
treatment of diseases and disorders of the macrophage system as well as attempts 
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to manipulate phagocytic cell number and their functional activities. For exam­
ple, although most micro-organisms are killed by macrophages, many pathogen­
ic organisms have developed means for resisting macrophage destruction follow­
ing phagocytosis. In certain cases, the macrophage lysosome and/or cytoplasm 
is the obligate intracellular home of the micro-organism, examples include Toxo­
plasma gondii, various species of Leishmania, Mycobacterium tuberculosis, Myco­
bacterium leprae, Listeria monocytogenes, and Cryptococcus neoformans (Alving 
1988; Donowitz 1994). The targeting of antimicrobial agents encapsulated in col­
loidal vehicles to infected macrophages is therefore a logical strategy for effective 
microbial killing. The endocytic pathway will direct a colloidal carrier to lyso­
somes where pathogens are resident. Degradation of the carrier by lysosomal en­
zymes can release drug into the phagosome-lysosome vesicle itself or into the cy­
toplasm either by diffusion or by specific transporters, depending on the physi­
cochemical nature of the drug molecules (Alving 1988; Lloyd 2000). On the other 
hand, delivery to cytosol can be further enhanced by triggering drug release in 
late endosomes. Examples include pH-sensitive and fusogenic vesicles (Drum­
mond et al. 2000). A pH-sensitive vesicle maintains stable phospholipid bilayers 
at neutral pH or above but destabilises and becomes fusion-competent at the 
acidic pH of late endosomes and subsequently release their encapsulated cargo 
into cytoplasm (Horwitz et al. 1980). Alternatively, by mimicking the character­
istics of certain toxins or viruses, cytoplasmic delivery of agents can also be en­
hanced. This requires co-encapsulation of bacterial pore-forming toxins (e.g. lis­
teriolysin 0) or fusion pep tides found in envelope glycoproteins of certain virus­
es (e.g. HA2 fusion peptide of influenza virus) in particulate vehicles (Lee et al. 
1996; Beauregard et al. 1997; Drummond et al. 2000). The fusion glycoprotein of 
such viruses displays sharp fusion profiles with pH midpoints from 5.0 to 6.6, 
which is in good agreement with estimates of the endosomal pH. These targeting 
strategies also overcome the toxicity of drugs effective against microbes. For ex­
ample, the most prominent potential toxicities associated with pentavalent anti­
monials (e.g. sodium stibogluconate) used for leishmaniasis treatment include 
changes in the electrocardiogram and hepatocellular damage. Thus direct target­
ing allows significant reductions in the required quantity of drugs, while achiev­
ing therapeutic drug concentrations in the infected cell. 

Macrophages play an important role in induction of immunity. The induction 
of an immune response against a protein antigen invokes the interaction of the 
antigen with macrophage [or an antigen-presenting cell (APC)] that partially de­
grades the antigen and channels pep tides into the MHC molecules (class I or 
class II) for processing and presentation (Fling et al. 1994; Harding and Song 
1994; Kovacsovics-Bankowski and Rock 1995). These highly polymorphic MHC 
class I and class II molecules bind and transport peptide fragments of intact pro­
teins to the surface of APCs for interaction with either CD4+ or CD8+ T lympho­
cytes. It is generally accepted that endogenous proteins of a cell are presented via 
the MHC class I pathway, whereas exogenous peptides are presented via the MHC 
class II route. Most soluble antigens are poor at priming MHC class I-restricted 
cytotoxic T-lymphocyte responses because of their inability to gain access to the 
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cytosol. Colloidal carriers and particularly liposomes, however, act as powerful 
adjuvants if they are physically associated with a protein antigen (Gregoriadis 
1990; Rao and Alving 2000). After phagocytosis by macrophages or APCs, the en­
trapped antigens in liposomes are presented to either MHC class I or class II path­
ways. Successful cytotoxic T-cell responses may further be obtained following an­
tigen delivery with pH-sensitive liposomes as the antigen cargo may be delivered 
either to group 1 CD1 molecules (which also belong to MHC class I molecules but 
are localised in the endosomes and are able to bind and present glycolipids and 
microbial lipids) or be released directly into the cytosol. 

Phagocytosis is not a prerequisite for intracellular targeting. Decoration of 
the nanoparticulate surface with trans-activating transcriptional activator (TAT) 
protein from HIV-1, or related peptides, facilitates cytoplasmic entry, which 
does not involve endocytosis and occurs by an energy-independent process 
(Torchilin et al. 2001). So far, TAT protein movement and import do not appear 
to be cell-specific. Although this approach may have implications for intracellu­
lar delivery of biologicals, the intracellular fate of the carrier must also be con­
sidered. A related technology is based on the remarkable cellular trafficking 
properties of the 35-kDa herpesvirus-1 structural protein VP22 (Elliott and 
O'Hare 1997). This protein reaches the nuclear compartment, despite lacking a 
nuclear localisation sequence, and binds chromatin in a matter of minutes. It 
also can act as a soluble carrier to transport peptides and proteins to the cell 
nucleus and therefore it is an attractive candidate for delivery of transcriptional 
factors, functional genes, cell cycle control regulators and DNA vaccines to mac­
rophages and stem cells in vitro prior to transplantation. 

There are many potential dysfunctions of macrophages that may be involved 
directly or indirectly in pathogenesis of diseases. For example, newborn infants 
manifest increased susceptibility to lung infections due to deficiency in alveolar 
macrophage-mediated secretion of biological response modifiers (Lee et al. 
2001). Other examples include autoimmune blood disorders, spinal cord injury, 
sciatic nerve injury, T cell-mediated autoimmune diabetes and rheumatoid ar­
thritis (Alves-Rosa et al. 2000; Barrera et al. 2000; Liu et al. 2000; Wu et al. 
2000). These conditions should be amenable to treatment or become manage­
able following challenge with particulate carriers containing encapsulated drugs 
and genes via appropriate routes of administration. Indeed, colloidal-mediated 
macrophage suicide (i.e. delivery of macrophage toxins) has proved to be a pow­
erful approach in removing unwanted macrophages in various experimental sit­
uations (van Rooijen and Sanders 1997; Alves-Rosa et al. 2000; Barrera et al. 
2000; Liu et al. 2000; Wu et al. 2000; Kotter et al. 2001; Polfliet et al. 2001). 

Macrophages are also heterogeneous with respect to phenotype and physio­
logical properties, even within a single organ (Gordon et al. 1992; Rutherford et 
al. 1993). Understanding of macrophage heterogeneity will undoubtedly provide 
new insights and opportunities for designing carriers that can selectively deliver 
agents to defined macrophage sub-populations in vivo (see also "Targeting and 
Therapeutics: Colloid Engineering Meets Immunobiology"). An interesting at­
tempt is to enhance delivery to newly proliferated macrophages or newly re-
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cruited monocytes (Moghimi and Patel 2002) at selected sites rather than local 
resident macrophages. 

Apart from therapeutic goals, colloidal carriers are also useful for assessing 
macrophage phagocytic and clearance functions in vivo. Similarly, particulate 
colloids with entrapped radiopharmaceutical or contrast agents are helpful in 
imaging a designated pathology through macrophage loading (Tilcock 1995; 
Moghimi and Bonnemain 1999). 

3 
Targeting and Therapeutics: Colloid Engineering Meets Immunobiology 

3.1 
Intravenous Route 

3.1.1 
Resident Macrophages in Contact with Blood 

Hepatic phagocytes or Kupffer cells are the largest population of macrophages in 
contact with blood (approximately 90%) and are the most prominent participants 
in particle clearance from the circulation (Moghimi et al. 2001). In addition to 
Kupffer cells, splenic marginal zone and red pulp macrophages also participate con­
siderably in particle sequestration from the blood. Particle extraction by splenic 
macrophages is further enhanced in phagocytic malfunctions of Kupffer cells; this 
is simply due to increased blood concentration of particles (Moghimi et al. 2001). 

Advantage has been taken of the natural physiological fate of particulate drug 
carriers to deliver, albeit passively, a variety of agents, which include antimi­
crobials and immunomodulators, to Kupffer cells and splenic macrophages 
(Poznansky and Juliano 1984). This specific delivery has resulted in direct kill­
ing of microbes and in the activation of the phagocytes to a bactericidal, fungi­
cidal and tumouricidal state. The therapeutic efficacy of particulate-encapsulat­
ed drug may be further improved by targeting of the carrier to specific macro­
phage plasma membrane receptors. One such example is tufts in receptor. Tuft­
sin, a part of the Fe portion of the heavy chain of the leukophilic IgG, is a natu­
ral macrophage-activator peptide. The binding of tufts in to its receptor causes 
macrophage activation. Intravenous injection of tuftsin-bearing liposomes to in­
fected animals not only resulted in delivery of liposome-encapsulated drugs to 
the macrophage phagolysosomes, but also in the non-specific stimulation of liv­
er and spleen macrophage functions against parasitic, fungal and bacterial in­
fections (Agrawal and Gupta 2000). Another interesting approach for future ex­
ploration is surface decoration of liposomes and nanoparticles with mannose 
receptor ligands, since ligands of mannose receptor carbohydrate recognition 
domains may modulate macrophage function (Linehan et al. 2001). 

Our understanding of splenic architecture and intrasplenic microcirculation 
has provided us with new opportunities for selective targeting of nanoparticles 
to splenic marginal zone and red pulp macrophage. To enhance splenic reten-
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Fig. 1 
Structure of poloxamines (A) and poloxamers (B) 

tion of particles, a number of criteria must be met (Moghimi et al. 1991, 
1993b,c; Moghimi and Hunter 2000). First, particles must exhibit prolonged cir­
culation times in the blood; that is to avoid rapid clearance from the blood by 
Kupffer cells. Second, particles must be non-deformable and their size should 
be equivalent or exceed the reported width of splenic interendothelial cell slits 
(IES) in the sinus walls usually in the order of 200-500 nm. Indeed, IES are the 
sites that retain blood cells and blood-borne particles, depending on their bulk 
properties, size, sphericity and deformability. Finally, filtered particles must be 
prone to phagocytosis by the neighbouring macrophages. 

Thus, to prolong particle concentration in the blood, polymeric materials 
such as dextrans, poloxamer 407, poloxamine 908 and poly(ethyleneglycol)-
5000 have been used to camouflage particles against Kupffer cell capture 
(Moghimi et al. 2001; Gbadamosi et al. 2002; Moghimi 2002). For example, 
poloxamine 908 (Fig. 1) consists of four central hydrophobic blocks, each com­
posed of 17 propylene oxide (PO) units, joined together by an ethylene diamine 
bridge. Each hydrophobic block is also attached to a relatively hydrophilic chain 
consisting of 119 ethylene oxide (EO) units. The hydrophilicity of EO chains 
arises from hydrogen bonding with water molecules. This copolymer can adsorb 
onto the surface of hydrophobic particles (e.g. polystyrene nanospheres) via its 
central hydrophobic portion, while the EO flanks extend from the particle sur­
face and provide stability to the particle suspension by repulsion through a ster­
ic mechanism of stabilisation involving both enthalpic and entropic contribu-



Exploitation of Macrophage Clearance Functions In Vivo 47 

100 

'" 80 
'" 0 
'tl 

'tl 

'" .. 
~ 60 
'" '2 's 
'tl 

'" 40 ... 
0 

"" 20 

0 
0 5 11 20 98 

Number of ethylene oxide units per flank of copolymer 

Fig. 2 Footpad and lymph node (popliteal and iliac nodes) distribution of uncoated and poloxamer­
coated polystyrene nanospheres (60 nm) at 2 h after subcutaneous injection into rat footpads, Polox­
amers 401, 402, 403 and 407 were used for particle coating and their structure is shown in Fig, 1, 
Closed columns represent uptake by regional lymph nodes and open columns represent the fraction of 
particles retained at footpads, For experimental details, see Moghimi et al. (1994) 

tions. The steric barrier of EO chains suppresses protein adsorption on to the 
particle surface as well as particle interaction with plasma membrane of Kupffer 
cells (Moghimi et al. 1993d). If the size of the camouflaged particles is below 
150 nm, they escape splenic filtration at IES and remain in the blood with re­
ported half-lives of 24-48 h (Moghimi et al. 2001). Due to their altered pharma­
cokinetic properties, these particles can passively accumulate at sites of inflam­
mation, infection and solid tumours, but the extent of particle extravasation is 
dependent upon the porosity of the blood vessels at such pathological sites. At 
such sites, activated macrophages can recognise and phagocytose extravasated 
long circulating particles by an unknown mechanism (Moghimi et al. 2001), On 
the other hand, if the size of rigid particles is in the range of 200-300 nm, splenic 
filtration will predominate (in excess of 50% of the injected dose within a few 
hours of intravenous injection with Kupffer cell uptake of <15% of the dose) 
(Moghimi et al. 1993c), Surprisingly, in the spleen, filtered poloxamine-coated 
particles are eventually phagocytosed by the red pulp macrophages; this is pre­
sumably due to gradual loss of the surface coating and subsequent opsonisation. 

3.1.2 
Stimulated or Activated Liver Macrophages 

In contrast to resident Kupffer cells, stimulated or activated liver macrophages 
or newly recruited marginating monocytes can rapidly recognise and ingest 
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surface-engineered long-circulating as well as poloxamine-based splenotropic 
particles from the blood by an opsonin-independent mechanism (Moghimi et 
al. 1993a; Moghimi and Murray 1996; Moghimi and Gray 1997). The nature of 
macrophage receptors that recognise such engineered particles remains to be 
unravelled, but a role for CD 14, class A scavenger receptors and even Dectins 
seems possible. Nevertheless, these surface-engineered particles may find appli­
cations as diagnostic/imaging tools for stimulated or newly recruited hepatic 
macrophages (Fig. 2) (Laverman et al. 2001). For example, such diagnostic pro­
cedures may prove useful for patient selection or for monitoring the progress of 
treatment with long-circulating nanoparticles carrying anti-cancer agents, thus 
minimising damage to hepatic macrophages. 

3.2 
Subcutaneous Route 

3.2.1 
Interstitial and Lymph Node Macrophages 

The distinct physiological function of the lymphatic capillaries opens up an op­
portunity for macrophage-specific targeting with colloidal carriers. In these 
capillaries, numerous endothelial cells overlap extensively at their margins and 
lack adhesion mechanisms at many points. Immediately following interstitial in­
jection, many of the overlapped endothelial cells are separated and thus passage­
ways are provided between the interstitium and lymphatic lumen, and particles 
are conveyed to the nodes via the afferent lymph. In lymph nodes, macrophages 
of medullary sinuses and paracortex are mainly responsible for particle capture 
from the lymph. However, the behaviour of particles following interstitial ad­
ministration is controlled by a number of physicochemical and biological fac­
tors (Moghimi and Rajabi-Siahboomi 1996). 

Physicochemical considerations include particle size and its surface charac­
teristics. Generally, the size of the particles must be larger than 20 nm to prevent 
their leakage into the blood capillaries. Although larger particles (>100 nm) 
may carry a considerable amount of agent, they move very slowly from the site 
of injection into initial lymphatics; the drainage often takes a period of days. 
This slow transit may induce local inflammation and renders particles suscepti­
ble to phagocytosis or macropinocytosis at the injection site (Moghimi et al. 
1994). However, considerable differences in drainage and lymph node uptake of 
particles of similar size can occur. These are explained by differences in surface 
characteristics of particles, which include the extent of surface hydrophobicity! 
hydrophilicity and the presence of macrophage-specific ligands. For example, 
the extent of surface hydrophobicity!hydrophilicity controls particle aggregation 
at the injection site as well as its interaction with the amorphous ground sub­
stance of the interstitium. Hence, the greater the tendency for particle aggrega­
tion or interaction with the interstitial structures, the slower the particle drain­
age and presentation to lymph node macrophages (Moghimi et al. 1994). The 



Exploitation of Macrophage Clearance Functions In Vivo 49 

II 

Fig. 3 Scintigraphic images of rats with normal (n and enhanced (II) macrophage activity 4 h following 
intravenous injection of e9mTc04 -)-Iabelled long-circulating liposomes. To enhance macrophage pha­
gocytic activity, poloxamine 908 was injected intravenously (43 mg/kg) 3 days prior to liposome injec­
tion. In (I) the images represent the circulatory blood pool in the heart region (arrow) and poor localisa­
tion of liposomes in both liver (large arrowhead) and spleen (small arrowhead) regions. In (II) a large 
fraction of liposomes is captured by stimulated Kupffer cells and splenic macrophages (arrowheads) 

concept of steric stabilisation of nanoparticles with poloxamer and poloxamine 
copolymers proved successful in minimising particle retention at the injection 
site while maximising uptake by local lymph node macrophages (Moghimi et al. 
1994). The longer the EO chain (while maintaining the length of central hydro­
phobic segment) of the coating copolymers, the lesser the tendency for particle 
aggregation and interaction with interstitial elements. The resulting outcome 
was rapid particle drainage into initial lymphatics (Fig. 3). The choice of coating 
copolymer also influences macrophage recognition of particles. For example, 
the strong steric barrier of poloxamer 407 suppresses particle opsonisation in 
lymph and/or interaction with macrophage receptors. Such engineered entities 
drain rapidly, escape clearance by lymph node macrophages, reach the systemic 
circulation, and remain in the blood for prolonged periods. For medical imag­
ing, these particles have applications for visualising the lymphatic chain, but for 
macrophage targeting appropriate ligands (e.g. mannose, antibodies) must be 
attached to the distal end of the hydrophilic chains. To enhance both rapid par­
ticle drainage and capture by regional lymph node macrophages simultaneously, 
particles require coating with copolymers with 5-15 EO units (Fig. 3). These na­
noengineering concepts satisfy at least the requirements for lymphoscintigraphy 
and indirect lymphography (rapid spreading of particles from the injection site 
and good retention in regional lymph nodes). Other investigators have exploited 
the adjuvant effect of such engineered nanoparticles in vaccination protocols 
following interstitial injection as the coating agents (e.g. poloxamers) can ma­
nipulate a number of macrophage accessory functions (e.g. upregulation of 
MHC class II expression) (Hunter and Bennett 1984; Howerton et al. 1990). 

Regardless of these surface engineering techniques, particle drainage from 
the interstitium and their subsequent capture by lymph node macrophages also 
depends on the potency of the lymphatic system and lymph node. Other biolog-
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ical factors which influence particle localisation in lymph nodes include lymph 
propulsion, obesity and recent surgery in the area of lymphatic drainage and 
are discussed elsewhere (Moghimi and Rajabi-Siahboomi 1996; Moghimi and 
Bonnemain 1999). 

3.3 
The Oral Route 

3.3.1 
Intestinal Macrophages 

A challenging but attractive strategy is to deliver nanoparticles to macrophages 
in the oral cavity. The majority of the available evidence suggests the adsorption 
of particulates in the intestine following oral administration takes place at the 
Peyer's patches (Simecka 1998). The epithelial cell layer overlying the Peyer's 
patches contains specialised M cells. In the immunocompetent host, the M-cell 
apical membranes bind and take up bacteria, viruses, inert particles, etc. from 
the lumen and transport them to underlying macrophages and dendritic cells. 
The microbial sampling function of M cells is critical to the ability of the mu­
cosal immune system to monitor the contents of the intestinal lumen. Indeed, 
the use of colloidal particles to deliver vaccines and adjuvants has its foundation 
in the M cell's ability for transcytosis. Microencapsulation of antigens in such 
systems also provides better protection for the antigen during intestinal transit. 
Numerous studies have now confirmed protective immunity induced by mucos­
al immunisation with polymeric particulate systems (Marx et al. 1993; Jones et 
al. 1997). The immune outcomes have included mucosal (secretory IgA) and se­
rum antibody (IgG and IgM) responses as well as systemic cytotoxic T lympho­
cyte responses in splenocytes. Tolerance to orally administered microparticulate 
encapsulated antigens is another potential outcome but has received little atten­
tion. Oral tolerance could provide tremendous potential in treating autoimmune 
and inflammatory diseases through antigens entrapped in nanoparticles. Low­
dose, transmucosal exposure to antigens may also trigger antigen-specific IgE 
responses (Simecka 1998). T helper-2 cell activation, which supports mucosal 
IgA responses, promotes isotype switching to IgE-B cells. This is believed to be 
through secretion of IL-4 (Finkelman et al. 1991). Such IgE responses, whether 
local or systemic, can mediate potentially life-threatening immune reactions. 
Thus, IgE responses against antigen should be carefully monitored because of 
the potential for hypersensitivity reactions in susceptible individuals. 

Induction of an appropriate immune response following oral administration 
depends primarily on factors that affect uptake and particle translocation by M 
cells. These include particle size, dose, composition and surface chemistry as well 
as the region of the intestine where particles are taken up, membrane recycling 
from intracellular sources and the species (Ermak and Giannasca 1998). For ex­
ample, studies using a number of different microparticles have established that M 
cells can transport these in a size range similar to that of micro-organisms (re-
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viewed by Ermak and Giannasca 1998). A lower limit for size has yet to be deter­
mined for M -cell sampling, but the upper limit is believed to be in the region of 
10 flm. Following transcytosis particles may be engulfed by phagocytic cells in 
the dome region or pass through the basal lamina into the sub-endothelial dome 
region where they gain access via efferent lymphatics to macrophages in mesen­
teric lymph nodes and peripheral lymphoid organs. Particles transported beyond 
the follicle-associated epithelium are also disseminated in a size-dependent man­
ner, with dispersion increasing with decreasing particle size «500 nm). The com­
position of particles may also affect cytokine production by macrophages and 
dendritic cells in the dome region. The efficiency of sampling orally delivered 
nanoparticles by M cells is, however, low as these cells are relatively rare in the 
epithelial lining (the cumulative surface area of M-cell apical membrane through­
out the intestine has been estimated to be IflO,OOOth of enterocytes). Therefore, 
strategies are needed to specifically target the M -cell apical surfaces. Indeed, the 
use of M cell-selective probes such as secretory IgAs, monoclonal antibodies, lec­
tins, and M-cell attachment proteins of reovirus has enhanced the efficiency of 
particulate targeting and subsequent presentation to the regional macrophages 
(Ermak and Giannasca 1998). Such approaches could ultimately be required for 
optimal stimulation of immunological responses following oral delivery. 

4 
Current Clinical Trends and Future Prospects 

It is now clear that the propensity of macrophages for the phagocytic clearance of 
colloidal vehicles provides a rational approach to macrophage-specific targeting 
and drug delivery. To date, this approach has led to the development of a number 
of regulatory approved particulate formulations. Examples include Ambisome 
(Gilead Sciences) and a recent liposomal vaccine against hepatitis A. Ambisome 
is a liposomal formulation of amphotericin B, which is used for treatment of vis­
ceralleishmaniasis or confirmed infections caused by specific fungal species. 

Alternatively, a significant delay of macrophage involvement would extend the 
circulation time of intravenously injected colloidal vehicles, thus enabling them 
to deliver their cargo to non-macrophage sites. Evasion of binding or uptake of 
particles by macrophages has been achieved by numerous surface modification 
strategies (Moghimi et al. 2001). Several formulations of stable, long-circulating 
liposomes are now marketed or seeking approval as carriers of anticancer agents 
in the treatment of solid tumours. Examples include DaunoXome (daunorubicin, 
marketed by Gilead Sciences), Doxil (doxorubicin, marketed by Alza Corpora­
tion), Onco TCS (vincristine, INEX Pharmaceuticals) and NX211 (lurtotecan, 
OSI Pharmaceuticals). The next generation of long circulating colloidal carriers 
are likely to be surface decorated with suitable ligands to internalising receptors 
overexpressed on tumour cells (e.g. cancers overexpressing HER2/neu proto-on­
cogene, folate) or angiogenic endothelial cells (e.g. av/33 integrin complex, Tie-2) 
(Moghimi et al. 2001). Such approaches will improve the selectivity and anti-tu­
mour activity of existing and newly discovered anti-cancer agents. 
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Intriguing progress is being made in diagnostic imaging with the develop­
ment of a long-circulating ultra-small super-paramagnetic iron oxide particle 
(Sinerem, Guerbet, France). Following intravenous injection, a significant frac­
tion of Sinerem reaches numerous lymph nodes in the body, particularly ab­
dominal and mediastinal nodes, which are the main sites of metastases and are 
not readily accessible for microscopic evaluation. Interestingly, in the lymph 
nodes these particles are phagocytosed by resident macrophages. As a result, 
Sinerem has helped to distinguish between normal and tumour-bearing nodes 
or reactive and metastatic nodes with magnetic resonance in man (Moghimi 
and Bonnemain 1999). Sinerem can also be administered subcutaneously. 

It is conceivable that future sophistication in colloidal targeting of macro­
phages as well as non-macrophage cells and the outcome of end-results will de­
pend on the detailed understanding of biological barriers as well as macrophage 
functions and their recognition mechanisms. 
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Abstract The functional heterogeneity of macrophages based on anatomical 10-
calization and receptor expression as well as their versatile way through which 
they react to different stimuli makes them key players in many processes of the 
body. To stimulate or downregulate their functions in therapeutic ways using 
their extremely efficient phagocytosis capacity, one has to consider that they are 
often located at sites that are hard to reach. Local administration of drugs is 
therefore often the method of choice whereby liposomes seem to be an ideal ve­
hicle through their versatility and relative ease of handling, as well as their effi­
cient uptake by macrophages. Especially the use of the macrophage suicide 
technique has enabled the study of many functions of the macrophage. An over­
view is given of the many routes that can be used to reach the macrophage at 
different sites and the effects this has on the function of the cell. 

Keywords Liposomes, Phagocytosis, Clodronate 
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1 
Introduction 

Macrophages are extremely versatile cells that have evolved as professional 
phagocytes. Their phagocytosis capacity is pivotal for the uptake and degrada­
tion of infectious agents and senescent or damaged cells of the body. This makes 
them central cells in tissue remodeling and repair, as well as key players in im­
mune responses and inflammatory reactions. 

Although a certain phagocytic capacity can be ascribed to a variety of cells, 
this capacity is more or less intermediate compared to that of macrophages, and 
often specialized or restricted as in the case of retinal rod internalization by the 
epithelial cells of the retina (Rabinovitch 1995). 

The extreme efficiency of the macrophage in terms of particle uptake is due 
to the presence of a vast array of different receptors on the cell membrane that 
uniquely, or in concert, act to facilitate uptake. 

As a consequence of the possible interactions of the various receptors 
and their signaling modes inside the cell, the process of phagocytosis can be 
quite complicated and leads to different subsequent actions of the macrophage 
(Aderem and Underhill 1999). 

Many of the receptors on the macrophage that are involved in the binding to 
pathogenic ligands are able to recognize conserved motifs, so-called pathogen­
associated molecular patterns (Janeway 1992). These include mannans found on 
yeast cell walls, bacterial peptides, lipopolysaccharides, lipoteichoic acid, but 
also self-molecules that have been modified such as oxidized low-density lipo­
protein (LDL) are recognized. The pattern recognition receptors involved form 
distinct groups based on molecular structure and recognition profile, and they 
include the family of scavenger receptors, Toll-like receptors, and mannose re­
ceptor (Krieger and Herz 1994; Medzhitov and Janeway 2000; Pearson 1996; 
Peiser et al. 2002; Platt and Gordon 2001). In addition, members of the group of 
pattern recognition receptors can recognize humoral factors such as compo­
nents of the complement system, antibodies and factors such as mannan-bind­
ing protein. These factors are involved in the opsonization of pathogens, thereby 
facilitating their uptake by macrophages. The receptors involved in the recogni­
tion such as Fc and complement receptors are key players in the phagocytic ca­
pacity of macrophages (Carroll 1998; see also Ravetch 1997; Ravetch and Clynes 
1998; Stahl and Ezekowitz 1998). Signaling after engagement of these receptors 
leads to major changes in the actin distribution and mobility of the cell, but can 
also lead to the production of cytokines and other factors (Wright and Silver­
stein 1983; Stein and Gordon 1991; Takai et al. 1994; Gerber and Mosser 2001). 
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2 
Heterogeneity of Macrophages 

The mode of activation of the macrophage that can occur after engagement of 
the multiple types of receptors is therefore dependent on the composition of the 
pathogen or particle to be internalized. 

In the case of Fc receptor-mediated uptake of bacteria, strong activation of 
the macrophage resulting in cytoskeleton rearrangements and the release of 
pro-inflammatory factors such as tumor necrosis factor (TNF)-a can be seen, 
whereas the uptake of apoptotic cells, predominantly engaging scavenger recep­
tors and CD14, leads to the production of anti-inflammatory factors such as in­
terleukin (IL)-10 and transforming growth factor (TGF)-,B (Savill et al. 1993; 
Platt et al. 1996; Savill 1998; Fadok et al. 2001). Interestingly, the way the macro­
phage reacts to stimuli resulting from uptake of different particles and receptor 
usage is also dependent on the activation state of the cell and may therefore dif­
fer considerably (Riches 1995). 

In addition, it has become clear that not only the maturation stage of the 
macrophage in the tissue, from recently immigrated monocyte to fully differen­
tiated macrophage, will determine the potential of the cell to react to external 
stimuli, but that the tissue itself, where the macrophage is maturing, is of impor­
tance for the differentiation of the cell. This leads to major differences in func­
tion of macrophages residing, e.g., in the alveoli of the lungs versus the Kupffer 
cells in the liver (Fathi et al. 2001; Laskin et al. 2001). 

Alveolar macrophages, in addition to being efficient scavenging cells, control 
the homeostasis of the lungs through active downregulation of the activity of T 
lymphocytes and dendritic cells in the interstitial tissues of the lung (Holt et al. 
1993). This capacity is unique for macrophages in the lung microenvironment 
and seems to be dependent on the production of inhibitory factors by the mac­
rophage, such as nitric oxide. In addition to differences in macrophage popula­
tions between different organs, it is clear that even within tissues different sub­
populations of macrophages can be discriminated, especially in lymphoid or­
gans such as the spleen. Based on anatomical localization, receptor usage and 
turnover kinetics, in the spleen at least five different subpopulations of macro­
phages can be found (van Rooijen et al. 1989a,b; Kraal 1992). 

Together with the different modes of activation that the macrophage can de­
velop in response to stimuli, such tissue-dependent specialization adds to the 
complexity of the cell and forms an important factor when one attempts to ma­
nipulate macrophages by specific targeting. Furthermore, the phagocytic capac­
ity of macrophages may lead to unwanted degradation of bioactive products be­
fore they can reach their target cells. So, although the efficient uptake of parti­
cles by macrophages makes them ideal cells to target, the rapid degradation fol­
lowing phagocytosis may lead to inefficient effects of bioactive materials or un­
wanted effects on the macrophage. 

This can be a problem when macrophages themselves are the target cell, but 
it also creates an important drawback in attempts to reach other cell types with, 



58 G. Kraal· N. van Rooijen 

e.g., encapsulated moieties. In the latter cases, such negative influences can be 
overcome by first killing the macrophages selectively, followed by the adminis­
tration of the compound that is supposed to activate other cells (van Rooijen et 
al. 1997; van Rooijen and Sanders 1997). 

Furthermore, because of the localization of macrophages in all tissues, often 
between densely packed cells or collagen fibers, it is not always easy to reach 
the macrophage. Administration of particulate material into the bloodstream 
will only reach macrophages that are located in areas where the blood has free 
access: the blood sinuses of liver and spleen. To reach the macrophage in other 
tissues, it is necessary to administer locally into the target organ, as is the case 
for alveolar macrophages (Pantelidis et al. 2001) or skin macrophages (Thepen 
et al. 2000). 

3 
How to Reach Macrophages in Various Tissues 

The extent to which resident macrophage populations in different organs are ac­
cessible to single molecules, molecular complexes or particulate carriers de­
pends on both the position of the macrophages in the tissues and on the proper­
ties of the molecules or particles. In general, all macrophages can be reached by 
small molecules when these are able to pass the capillary networks in order to 
penetrate into the tissues. For larger molecules, molecular complexes, or parti­
cles, the macrophage can only be reached if there is no physical barrier between 
the site of injection and the macrophage. Such a barrier can be formed, e.g., by 
endothelial cells in the wall of blood vessels, by alveolar epithelial cells in the 
lung, by reticular fibers or collagen fibers in the spleen, or by the presence of 
densely packed cells such as lymphocytes in the white pulp of the spleen or in 
the paracortical fields of lymph nodes. By choosing the right administration 
route for the materials to be injected, this barrier can be kept at a minimum. 

3.1 
The Use of Liposomes 

Information on the comparative accessibility of various macrophages in differ­
ent organs has been obtained from studies using liposomes that lead to the 
death of the macrophage. 

Liposomes (artificially prepared phospholipid vesicles) encapsulating the bis­
phosphonate clodronate can be used to deplete macrophages in various organs 
and tissues. Such liposomes, once injected in vivo, will be ingested by macro­
phages. They are subsequently exposed to lysosomal phospholipases leading to 
intracellular degradation of the phospholipid bilayers and release of entrapped 
clodronate molecules within the cells. The more clodronate liposomes will be 
ingested and digested by the macrophages, the more clodronate will be accumu­
lated within the cells, since it is not easy for these molecules to escape, given 
their poor ability to cross cell membranes. At a certain intracellular concentra-
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Fig. 1 Routes of administration of liposomes to reach macrophages. Intravenous (iv) injection of lipo­
somes will reach all macrophages in those organs that are in direct, open contact with the bloodstream, 
such as liver, spleen, and bone marrow. Intraperitoneal injection (ip) will reach first the macrophages in 
the peritoneal cavity, but may ultimately also reach macrophages in the lymph nodes that drain the 
peritoneal cavity and may from there even reach the bloodstream. The latter will especially occur when 
large or repeated doses are given Lp. Subcutaneous injection of liposomes will reach local macrophages 
in the subcutaneous tissues and from there will be transported by lymphatics to lymph nodes (LN). 
Again, here liposomes may ultimately reach the bloodstream. Other routes of administration, such as 
local, intratracheal (it) instillation, will lead to selected access to macrophages, as seen in the lung. In­
tratracheally administered liposomes will readily reach the alveolar macro phages, but will not reach the 
macrophages in the lung interstitium. Macrophages in the organs depicted on the right can be reached 
only by local injection of liposomes, but access is often difficult and incomplete 

tion of clodronate, the cell will be eliminated by apoptosis. This approach 
has been named the liposome-mediated macrophage suicide technique (Van 
Rooijen and Sanders 1994). 

By comparison of the doses of clodronate liposomesliposome required for de­
pletion of macrophages and the time interval between injection of liposomes 
and depletion, ample information on the in vivo accessibility of various macro­
phages has been obtained. The data are summarized below. 

3.2 
Intravenous Administration 

Intravenously injected materials can reach macrophages in the liver (Kupffer 
cells), spleen and bone marrow (Fig. 1). Kupffer cells in the liver sinuses, as well 
as marginal zone macrophages and red pulp macrophages in the spleen have a 
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strategic position with respect to large molecular aggregates and particulate ma­
terials in the circulation. Liposomes have a nearly unhindered access to these 
macrophages as concluded from their fast and complete depletion within 1 
day after intravenous injection of clodronate liposomes in mice and rats (Van 
Rooijen et al. 1990). Obviously, it is a little more difficult for intravenously in­
jected liposomes to reach the marginal metallophilic macrophages in the outer 
periphery of the white pulp. Depletion of the white pulp macrophages in the pe­
riarteriolar lymphocyte sheaths (PALS) is incomplete, emphasizing the barrier 
formed by the reticulin fiber network and/or the densely packed lymphocytes 
in the white pulp. 

The spleen is often chosen as a model system to study macrophages in vivo, 
since five different subpopulations of macrophages can be found that are all re­
stricted to their own compartment. Moreover, these macrophages are separated 
from the main blood flow by different barriers. Large molecules such as serum 
albumins and 500-kDa dextran are retained within the marginal zone and red 
pulp. Only small polysaccharides and proteins are able to permeate the splenic 
white pulp. Evidence has been presented that there exists a splenic conduit net­
work that regulates the transport of small molecules in the white pulp (Nolte 
2002). 

Additionally, macrophages in the bone marrow have access to intravenously 
injected clodronate liposomes. However, two consecutive injections with a time 
interval of 2 days were required to get a nearly complete depletion of macro­
phages from the bone marrow (Barbe et al. 1996). 

Kupffer cells in the liver playa key role in the homeostatic function of the liv­
er. They form the largest population of macrophages in the body, make up 30% 
of the hepatic nonparenchymal cell population, and have easy access to particu­
late materials in the circulation. Consequently, a large proportion of all intra­
venously administered particulate carriers used for drug targeting or gene 
transfer will be prematurely destroyed before they reach their targets. Therefore, 
transient blockade of phagocytosis by Kupffer cells might be an important fac­
tor to optimize in drug targeting, gene transfer, and xenogeneic cell grafting 
(van Rooijen et al. 1997). Also, transient suppression of the cytokine-mediated 
activity of Kupffer cells might have a beneficial effect on various disorders of 
the liver (Schumann et al. 2000). 

3.3 
Subcutaneous Administration 

Subcutaneously injected clodronate liposomes are able to deplete macrophages 
in the draining lymph nodes of mice and rats (Fig. O. Such liposomes, when, 
e.g., injected in the subcutaneous tissue of the footpads of mice, led to the de­
pletion of subcapsular sinus lining macrophages and medulla macrophages in 
the draining popliteal lymph nodes (Delemarre et al. 1990). Macrophages in the 
paracortical fields and those in the follicles of the lymph nodes were not affect­
ed, emphasizing the existence of a barrier formed by reticular fibers and/or 
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densely packed lymphocytes in these lymph node compartments, comparable 
to that formed in the white pulp of the spleen. 

After passing the popliteal lymph nodes, the lymph flow will be further fil­
tered by consecutive draining lymph node stations such as the lumbar lymph 
nodes (in the mouse). Obviously, macrophages in these secondary lymph nodes 
were less efficiently depleted. Interestingly, only macrophages had been depleted 
in those lymph node compartments that directly drained the initial popliteal 
lymph nodes, indicating that different parts in the lymph nodes are correspond­
ing each with their own draining area and have their own afferent lymph vessels. 
As a consequence, particles such as liposomes are not equally distributed over 
all macrophages in the lymph nodes. 

3.4 
Intraperitoneal Administration 

Macrophages from the peritoneal cavity and the omentum of the rat can be de­
pleted by two consecutive intraperitoneal injections with, given at an interval 
of 3 days (Biewenga et al. 1995). The peritoneal cavity is drained by the parathy­
mic lymph nodes (in rats and mice). After passing these lymph nodes, the 
lymph flow reaches the blood circulation via the larger lymph vessels such as 
the ductus thoracicus. As a consequence, intraperitoneally injected clodronate 
liposomes are also able to deplete the macrophages of parathymic lymph nodes 
and, once they arrive in the blood circulation, they may deplete macrophages in 
liver and spleen (Fig. 1). Given the relatively large volume that can be adminis­
tered in a single dose via the intraperitoneal route, the total number of macro­
phages that can be affected is even higher than that affected by intravenous in­
jection. 

3.S 
Intratracheal Instillation and Intranasal Administration 

Alveolar macrophages form a first line of defense against microorganisms enter­
ing the lung via the airways. In contrast to the interstitial macrophages that are 
separated from the alveolar space by an epithelial barrier, alveolar macrophages 
which are located in the alveolar space have direct access to liposomes adminis­
tered via the airways, for instance by intratracheal instillation, intranasal ad­
ministration, or by the application of aerosolized liposomes (Fig. 1). The direct 
access of clodronate liposomes to alveolar macrophages is demonstrated by the 
rapid elimination of these cells after intratracheal administration into mice and 
rats (Thepen et al. 1989), leaving the interstitial macrophage population unaf­
fected. Alveolar macrophages make up about 80% of the total macrophage pop­
ulation in the lung. Given their presence in high numbers and the total mass of 
lung tissue, they form an important population of macrophages in the body. 
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3.6 
Intraventricular Injection in the Central Nervous System 

Stereotaxical injection of clodronate liposomes into the fourth ventricle of the 
central nervous system (eNS) of rats resulted in a complete depletion of peri­
vascular and meningeal macrophages in the cerebellum, cerebrum, and spinal 
cord of these rats (Polfliet et al. 2001). These results also confirm that macro­
phages in the brain are accessible to liposomes if the latter are administered via 
appropriate routes. 

3.7 
Intra-articular Injection in the Synovial Cavity of Joints 

Phagocytic synovial lining cells playa crucial role in the onset of experimental 
arthritis induced with immune complexes or collagen type II. A single intra-ar­
ticular injection with clodronate liposomes caused the selective depletion of 
phagocytic synovial lining cells in mice and rats, demonstrating that this ad­
ministration route allows easy access of the liposomes to the macrophages lining 
the synovial cavity. Recent experiments have confirmed that liposomes are also 
able to reach synovium lining macrophages in man (Barrera et al. 2000). 

3.8 
Local Injections: The Testis 

Local injection of a suspension of liposomes can be performed in most organs. 
However, whether or not the liposomes will be able to diffuse from the injection 
site over the rest of the tissue will largely depend on the tissue structure. In the 
testis of rats, a loosely woven tissue structure allows the liposomes to reach 
most of the testicular macrophages, as demonstrated by the finding that at least 
90% of the testicular macrophages can be depleted by clodronate liposomes 
(Bergh et al. 1993). 

4 
Specificity of Liposome-Mediated Delivery into Macrophages 

During the past decade, several particulate drug-carrier devices have been de­
veloped. Among these, liposomes may be considered the most versatile and 
promising drug-delivery system (e.g., Gregoriadis 1995). The natural fate of 
liposomes, once they have been injected in vivo, is their uptake and degradation 
by macrophages. As a consequence, both liposome-encapsulated hydrophilic 
molecules and hydrophobic molecules that are associated with the phospholipid 
bilayers of the liposomes will be targeted into the macrophage, if no action is 
taken to prevent their phagocytosis. Although macrophages in general seem to 
prefer liposomes with an overall negative charge, e.g., achieved by incorporation 
of the anionic phospholipid phosphatidylserine in the bilayers, neutral and cat-
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ionic liposomes are also rapidly taken up by macrophages. Several modifica­
tions of the originalliposome formulations, such as the incorporation of amphi­
pathic polyethylene glycol (PEG) conjugates in the liposomal bilayers have been 
proposed in order to reduce the recognition and uptake of liposomes by macro­
phages. Nevertheless, a large percentage of these so-called long-circulating lipo­
somes will still be ingested by macrophages, emphasizing that macrophages 
form the logical target for liposomes (Litzinger et al. 1994). Liposomes of more 
than one micron in diameter will be internalized by non-phagocytic cells to a 
very low extent only. This explains why other cells such as lymphocytes and 
granulocytes are not depleted by clodronate liposomes. In summary, it may be 
concluded that liposomes form an ideal vehicle for the delivery of various com­
pounds into macrophages. 

Given the fact that macrophages will ingest all types of non-self macro­
molecules and particulate materials, it is difficult to achieve specific targeting to 
only one macrophage subset, e.g., in the spleen. In studies intended to reveal the 
conditions for monoclonal antibody-mediated specific targeting of enzyme mo­
lecules to marginal metallophilic macrophages in the spleen, we found that 
highly specific targeting of the enzyme molecules could be achieved only by us­
ing monomeric conjugates of the antibody and the enzyme. Larger conjugates 
lead to their uptake by all macrophage subsets in the spleen (van Rooijen et al. 
1992). 

5 
Conclusions 

Macrophages play key roles in many processes of the body. To stimulate or 
downregulate their functions in therapeutic ways using their extremely efficient 
phagocytosis capacity, one has to consider that they are often located at sites 
that are hard to reach. Local administration of drugs is therefore often the meth­
od of choice, whereby liposomes seem to be an ideal vehicle through their ver­
satility and relative ease of handling, as well as their efficient uptake by macro­
phages. 
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Abstract The innate immune system modulates antigen-specific adaptive im­
mune responses in a qualitative and quantitative manner. In this chapter we 
propose that vaccine design would benefit from decoding this instructive func­
tion. We argue that the characterisation of cellular (particularly antigen-present­
ing cells) and soluble components of the innate system, and how they are inter­
connected, is an essential first step towards this goal. 
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Antigen-presenting cell 
Complement receptor 
Dendritic cell 
Immunoglobulin 
Lipopolysaccharide 
Mucosal associated lymphoid tissue 
Leucine-rich repeat 
Macrophage 
Mannose receptor 
Marginal zone 
Pathogen associated molecular pattern 
Sialoadhesin 
Scavenger receptor class A 
Subcapsular sinus 
T-cell dependent 
T-cell independent 
Toll-like receptor 
Transmembrane 

Approaches to Vaccines 

Historically, the aim of vaccination has been to prevent outbreaks of infectious 
diseases. Traditional vaccines were developed to mimic natural infections with 
live attenuated or inactivated bacteria or viruses. Live attenuated bacterial and 
viral vaccines include those for Mycobacterium tuberculosis (Bacille Calmette 
Guerin or BCG), Salmonella typhi Ty21a, vaccinia, polio, measles, mumps and 
rubella. Inactivated vaccines include those for Vibrio cholerae, Bordetella pertus­
sis, influenza and rabies. Although their benefit-to-risk ratio is high, there is lit­
tle or no knowledge of the protective antigens or immune responses responsible 
for immunity. Unpredictable adverse effects associated with a few conventional 
vaccines [ego B. pertussis (Cody et al. 1981), rotavirus (Lynch et al. 2000) and 
respiratory syncytial virus (Kapikian et al. 1969)] are a major drawback of this 
empirical approach to vaccine development. Conventional vaccines with estab­
lished high efficacy and safety would continue to contribute to vaccine pro­
grams, but current experimental vaccines in humans have been directed toward 
the use of well-defined antigens (subunit vaccines) to generate protective immu­
nity. This rational approach has been made possible with our increased under-
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standing of the molecular details of microbial pathogenesis, immune responses 
against microbial targets, and humoral and cell-mediated immune mechanisms. 
Subunit vaccines are either purified from bacteria or viruses or produced chem­
ically or by recombinant gene technology. Subunit bacterial vaccines include 
formaldehyde-inactivated exotoxins from Corynebacterium diphtheriae (diph­
theria toxoid) and Clostridium tetani (tetanus toxoid), and capsular polysaccha­
rides from a number of encapsulated bacteria (e.g. Haemophilus inJluenzae, 
Neisseria meningitidis, Streptococcus pneumoniae) (Levine et al. 1997). 

The present aims for vaccination are no longer restricted to the prevention of 
infectious diseases, but also include therapeutic intervention of chronic viral in­
fections, cancers, alloreactivity, autoimmunity and allergy. Contraceptive vac­
cines are also under development (Levine et al. 1997). The types of immune re­
sponses that vaccines are required to elicit or inhibit vary with the nature of the 
pathogens and targeted antigens or conditions. For most extracellular patho­
gens, antibody responses appear to be important, whereas for most intracellular 
pathogens, cell-mediated responses are responsible for protection. A combina­
tion of both humoral and cell-mediated responses might be required for elimi­
nation of some pathogens. Whilst inducing neutralising antibodies against tox­
ins or surface molecules on pathogens has been the basis for almost every past 
and present successful vaccine, there are many important human pathogens 
(e.g. malaria and HIV) and tumours that require the elicitation of strong cell­
mediated immune responses. There is also a need for vaccine formulations able 
to induce immunological tolerance or modulate T-helper cell responses for con­
ditions such as autoimmunity and allergy (Liu 1997). 

Identification of suitable B- and T-cell epitopes (class II and class I restricted) 
that are targeted by the acquired immune system is necessary but insufficient 
for the development of effective vaccines. It has to be complemented by investi­
gation of delivery systems and formulations (collectively referred to as adju­
vants) that would compensate for the inherent lack of immunogenicity of sub­
unit vaccines. Most adjuvants appear to act through their interactions with the 
innate immune system (Moingeon et al. 2001). The current view that the innate 
immune system not only provides short-term protection but also instructs the 
adaptive immune system to generate the most appropriate B- and T-cell re­
sponses following its encounter with pathogens is supported by recent evidence 
(Medzhitov and Janeway 2002). Thus, understanding the links between the in­
nate and the adaptive immune systems is critically important to vaccine design. 

2 
Immune Responses to Antigens 

Immune responses against microbes and antigens are initiated in secondary 
lymphoid organs, spleen, lymph nodes and mucosal-associated lymphoid tissue 
(MALT). In order to elicit an immune response, antigens entering at peripheral 
sites such as the skin, blood and gastrointestinal tract need to reach these sec­
ondary lymphoid organs where antigen-specific naIve Band T lymphocytes cir-
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culate. Not every antigen can elicit an immune response. Immunogenicity ap­
pears to vary with antigen form [soluble, cell-associated (Batista et al. 2001), or 
particulate (Ramachandra et al. 1999)], amount or load (Zinkernagel 2000), 
composition (foreignness) (Allison and Fearon 2000; Apostolopoulos et al. 
2000) and location within the body (mucosal or systemic sites). It also depends 
on their propensity to activate complement (Carroll 1998) or engage other se­
rum factors and natural antibodies (Sakamoto et al. 2001; Shimizu et al. 2001), 
and perhaps more importantly the context (Shi and Rock 2002) (homeostasis or 
inflammation) in which they are detected by the innate immune system. 

Lack of immunogenicity to self-antigens is of obvious benefit. Tolerance to 
self-antigens is mostly due to the stringent process of negative selection of B 
and T lymphocytes in bone marrow and thymus, respectively. This central toler­
ance mechanism ensures the deletion of most autoreactive Band T cells. For 
those Band T cells that escape negative selection in the primary lymphoid or­
gans, their full activation by self-antigens is prevented by peripheral tolerance 
mechanisms by which they could be killed, anergised or negatively regulated. 
Activation of naIve antigen-specific Band T cells to proliferate and differentiate 
into effector and memory cells requires antigen-presenting cells (APC) to cap­
ture, process, transport and present antigens, and provide co-stimulatory sig­
nals and cytokines. 

Antigens reaching lymphoid organs are either native (cell-associated or solu­
ble) or processed by APe. Native antigens transported with bound complement 
and/or antibodies or by specialised APC (Wykes et al. 1998; Berney et al. 1999) 
are recognised by antigen-specific B cells and are deposited on the surface of 
follicular dendritic cells (FDC) (Tew et al. 2001). In the case of T cell-dependent 
antigens (TD), B cells will acquire T-cell help and form germinal centres where 
immunoglobulin (Ig) class switching, affinity maturation and the production of 
memory cells occur. This is the case for most protein antigens and some glycol­
ipids that can be presented to T cells by MHC class II or CD1 molecules, respec­
tively. Humoral immune responses can also be elicited in the absence of classical 
B-T cognate interactions. These thymus independent (TI) responses are essen­
tial in the initial protection against pathogens and are characterised by the lack 
ofIg class switching and memory B cells. TI type 1 antigens [such as lipopoly­
saccharide (LPS)] induce a polyclonal response by activating B cells in an anti­
gen-independent manner. TI type 2 antigens are normally polymers [carbohy­
drates or proteins assembled as multimers including components of viral cap­
sules (Fehr et al. 1998)] that are able to cross-link B-cell receptors and induce 
mainly IgM and IgG3 production in mice and IgM and IgG2 in humans. At large 
antigen doses, all lymphoid organs are able to elicit TI responses. However at 
more realistic antigen doses, only the spleen can accumulate enough antigens to 
trigger TI responses (Ochsenbein et al. 2000). Therefore, the spleen has been 
considered as essential for the generation of TI responses. 
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3 
Professional Antigen-Presenting Cells and Immunity: 
The Balance Between Clearance and Presentation 

It is becoming clear that APC responses to microbes and their unique products 
are critical to the initiation of immune responses against pathogens. Macro­
phages (M0) and dendritic cells (DC) appear to be the most important APC. 
Both cell types are widely distributed and located suitably throughout the body 
to encounter pathogens and microbial products. M0 are endowed with a num­
ber of cell surface receptors involved in opsonic and nonopsonic endocytosis 
and phagocytosis and upon activation produce soluble mediators that could ini­
tiate and regulate inflammatory responses. Despite having similar sets of cell 
surface receptors and function in antigen processing, M0 and DC have different 
roles in the induction and regulation of immunity, with DC being uniquely suit­
ed to activate naIve T cells in secondary lymphoid organs (Steinman et al. 2000). 
DC act as messengers, and instruct T cells to respond to stimuli they have re­
ceived in peripheral tissues (Lanzavecchia and Sallusto 2001). The instructions 
would be conveyed in several ways: by the peptides presented on MHC-I and -II 
molecules, by the co-stimulatory and adhesion molecules displayed at the cell 
surface, and by the cytokines produced by the APC. The nature of the antigen 
and the inflammatory response elicited in the periphery would determine the 
subsequent B- and T-cell responses (Hawiger et al. 2001). Vaccine development 
will thus benefit from the identification of the mechanisms regulating APC func­
tion in situ. 

Characterisation of the resident and recruited APC populations and their be­
haviour upon stimulation would enable the design of vaccines that will target 
antigens and APC to the appropriate secondary lymphoid organs and generate 
suitably activated T -and B-cell populations. This approach is of great interest in 
the case of prophylactic vaccines to be used in healthy individuals, since it will 
focus on delivery methods and formulations that can be produced in large scale. 
Therapeutic vaccines aiming at modifying an ongoing immunological process 
(such as allergy and chronic infection) require an understanding of the mecha­
nisms that govern the conditions of non- or hyper-responsiveness of local APC 
populations, the regulation of activated T cells and the targeting systems that 
would act locally. 

Monocytes migrate constitutively to tissues where they normally differentiate 
into M0 and in some cases DC (Randolph et al. 1998). M0 are heterogeneous in 
shape and function, depending on their local microenvironment, and can be 
distinguished by differences in the level of expression of certain cell surface mo­
lecules (Gordon 1999). During steady-state conditions, M0 remain in the tissue 
where they play an important role in normal homeostasis. Their unique endo­
cytic and phagocytic capacity place M0 at the centre of the inflammatory pro­
cess because they have the advantage of sampling the environment at the first 
instance (Parnaik et al. 2000; Fadok and Chimini 2001). As such, they could ef­
fectively control the availability of antigens encountered by DC. This could be 
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relevant in the case of autoimmunity, since M0 reduce the amount of self-anti­
gens that might be available to break tolerance. They also perform a more active 
role in the prevention of autoimmunity through the production of inhibitory cy­
tokines such as interleukin (lL)-10 and transforming growth factor (TGF)-,B 
upon apoptotic cell uptake (Fadok and Chimini 2001). These inhibitory proper­
ties have been exploited by some intracellular microbes that have developed 
mechanisms to gain access to the M0 intracellular environment (Ernst 1998) 
and are most apparent in alveolar M0, which have also been shown to inhibit 
DC function (Goerdt et al. 1999; Tzachanis et al. 2002). To perform homeostatic 
functions, tissue M0 express endocytic receptors such as the mannose receptor 
(MR) and scavenger receptors, but not MHC-II and co-stimulatory molecules. 
This phenotype might be controlled through the interaction of the widely ex­
pressed OX2 (CD200) with its ligand (OX2L) on M0 (Hoek et al. 2000; Wright et 
al. 2000), or through the action of Ig-like inhibitory receptors (Dietrich et al. 
2000). Finally, M0 are effector cells of the innate immune system. They are ca­
pable of destroying microbes and tumour cells and could cause tissue damage 
through the release or impaired clearance of inflammatory mediators, lysosomal 
hydrolases and reactive oxygen and nitrogen radicals. This capacity will be en­
hanced or modulated once activated T cells reach the tissues. In particular, 
T-helper (Th)l T cells will enhance cytotoxic M0 mechanisms through the pro­
duction of interferon (IFN)-y. Th2-derived cytokines have a more subtle effect 
and seem to generate M0 with an alternatively activated or suppressor pheno­
type characterised by enhanced expression of endocytic receptors, reduced 
T-cell activation capacity, arginase production and synthesis of alternative mac­
rophage-associated chemokine (AMAC)-l (Stein et al. 1992; Goerdt et al. 1999; 
Tzachanis et al. 2002). 

Under steady-state conditions, DC migrate through lymphatics to secondary 
lymphoid organs (Huang et al. 2000). This migratory DC population found in 
the absence of inflammation has not been well characterised, but might be in­
volved in the maintenance of tolerance. They could transport self-antigens and 
present them to naIve T cells either directly, or through antigen transfer to resi­
dent DC (Steinman et al. 2000). When an inflammatory response is elicited 
through injury, infection or active immunisation, recruited monocytes move 
into the tissues and differentiate into activated M0 with increased endocytic 
and secretory activities. Under these conditions, enhanced cell trafficking to 
draining lymphatic tissue ensures antigen delivery and presentation. Though 
DC have been considered the likely mediators of antigen transport, several re­
ports have identified recruited M0 as the major cells involved in antigen capture 
in situ. In a fluorescent microsphere-induced inflammation model, recruited 
monocytes with a M0-like phenotype could be seen internalising these particles 
in the periphery. Antigen-bearing cells in lymphoid organs were then character­
ised as DC (Randolph et al. 1999). In the case of the adjuvant MF59, recruited 
cells at the site of injection that internalised the adjuvant were characterised as 
M0 (F4/80+' CDllb+, CDllc-). When draining lymph nodes were analysed, 
MF59-loaded apoptotic M0 were observed at the subcapsular sinus, and a sec-
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ond MF59-containing cell population was detected in the T-cell area. These cells 
presented adjuvant-containing apoptotic bodies, indicating that antigen transfer 
between both cell types could have taken place (Dupuis et al. 2001). 

Microbial-derived products exert a major influence in the phenotype of APC. 
Much research has focused in defining their capacity to modulate DC pheno­
type and determine the differentiation pathway (Thl vs Th2) of Th cells upon 
activation (Lanzavecchia and Sallusto 2001). The use of large doses (e.g. 25 J1g 
LPS/mouse) of antigens in most of these studies has made the assessment of the 
role of M0 in modulating these processes difficult (Pulendran et al. 2001). It is 
likely that M0 clearance/signalling systems could be overwhelmed by large dos­
es of antigens. Under more physiological conditions, M0 could influence the ex­
tent of the inflammatory response by expressing inhibitory factors such as 
IL-I0 following stimulation (Sutterwala et al. 1998; Gerber and Mosser 2001). 
IL-lO could act as a de-activator and induce uncoupling of the cytokine recep­
tors required by DC for migration to lymphoid organs (D'Amico et al. 2000). In 
a model of soluble Toxoplasma gondii tachyzoite antigen (STAg)-induced DC 
migration and IL-12 production, lipoxin produced by splenic M0 induces a re­
fractory phase in the responsiveness of DC to this stimulus (Aliberti et al. 2002). 

4 
Role of M0 in Secondary Lymphoid Organs in the Control 
of Immune Responses 

There are distinct populations of M0 in secondary lymphoid organs. Blood­
borne antigens are encountered by the spleen, which, as mentioned earlier, is 
required for TI-2 responses both in humans and mice (AmIot et al. 1985). This 
functional requirement in both species does not translate into structural simi­
larity. Even though in both cases the marginal zone (MZ) is populated by B cells 
with an activated phenotype (CR2+, IgD-, IgM+, CD27+) distinct from the follic­
ular recirculating pool (IgD+' IgM+) (Zandvoort et al. 2001), human spleen lacks 
a distinct marginal sinus, but contains an additional structure referred to as the 
perifollicular zone which surrounds B-cell follicles. However, a population of 
sialoadhesin (Snt M0, a characteristic feature of murine MZ, has been located 
at these perifollicular areas (Steiniger et al. 1997). In murine spleens there are 
five M0 subtypes (Fig. 1). Red pulp M0 (F4/80+, macrosialin+, MR+) do not 
seem to playa direct role in the regulation of immune responses except for anti­
gen clearance and probably for their release of soluble mediators following acti­
vation. White pulp (WP) M0 are poorly characterised. They lack F4/80 expres­
sion but can be visualised by their expression of macrosialin. White pulp M0, 
identified with the MOMA-2 monoclonal antibody, might act in the enhance­
ment of immune responses through the regulated synthesis of C3 after immuni­
sation, which could induce local opsonisation of antigens (Fischer et al. 1998). 
During the germinal centre reaction, tingible body macrophages (macrosialin+, 
MR cysteine-rich domain ligands+) (Martinez-Pomares et al. 1996) can be ob-
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Fig. 1 In addition to their particular anatomical localisation, splenic MfIl can be classified based on 
their differential pattern of marker expression. While red pulp MfIl exclusively express the EGF-TM7 fam­
ily member F4/80 and MR, they share expression of macrosialin with other MfIl populations. Expression 
of the scavenger receptors MARCO and scavenger receptors class A, and the DC-SIGN murine homo­
logue mSIGNRl (recognised by the ER-TR9 antibody) is restricted to marginal zone MfIl. Marginal zone 
metallophilic M0 are uniquely endowed with high expression of the member of the Siglec family, Sn, 
and the ability to interact with the CysR domain of the MR. Evenly distributed within lymphoid areas, a 
population of cells expressing macrosialin can be observed. During the germinal centre reaction, macro­
sialin expressing MfIl that can bind the CysR domain of the MR (tingible body MfIl) can be observed in 
the dark zone. These cells are probably involved in clearance of apoptotic cells 

served in the dark zone. These cells are thought to be involved in the uptake of 
apoptotic B cells. 

In murine spleens, the MZ (Kraal 1992) is a unique structure surrounding 
the marginal sinus where two distinct M0 populations are situated. The margin­
al zone metallophilic (MZM) M0, which surround the white pulp but are more 
abundant around follicular areas, are strategically placed to be exposed to anti­
gen and to control cell trafficking. These cells express large quantities of Sn, a 
member of the Siglec superfamily of proteins involved in cell adhesion. MZM­
M0 migrate into the lymphoid area under some circumstances and could be in­
volved in the transport of antigens to the follicles (Groeneveld et al. 1986; Yu et 
al. 2002). They express sulphated glycoforms of Sn and CD45 that act as coun­
ter-receptors for the cysteine-rich (CysR) domain of the MR (Martinez-Pomares 
et al. 1999). This interaction suggests that MR+ cells or soluble MR (sMR) can 
be targeted to these cells. Interaction between membrane lymphotoxin ex­
pressed by B cells with its receptor on stromal cells is required for the induction 
of the sulphotransferases responsible for the generation of the sulphated glyco-
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proteins that mediate CysR-domain binding (Martinez-Pomares et al. 1999; Yu 
et al. 2002). One day following LPS immunisation, MZMM0 are detected in the 
follicles. They maintain the ability to bind the CysR domain of the MR, and ex­
press MOMA-1 and Sn (Groeneveld et al. 1986; Yu et al. 2002). However, follow­
ing immunisation with sheep red blood cells, the expression of the murine ho­
mologue of the human germinal centre DC marker decysin in MZMM0 was in­
duced. Decysin+ cells expressing ligands for the CysR domain were detected at 
48 h in follicles (Mueller et al. 2001). These results suggest that these cells pos­
sess the flexibility to modulate their phenotype according to the type of antigen 
injected. 

MZMM0 are of special interest in adjuvant and vaccine development for 
three main reasons. They are targeted by immunostimulating complexes or 
ISCOMs after intravenous immunisation (Claassen et al. 1995); they are required 
for TD responses to particulate bacterial antigens (Buiting et al. 1996); and they 
are major producers of IFN-a/[3 after viral infection (Eloranta and AIm 1999). 
In contrast to DC, these cells are macrophage colony-stimulating factor 
(M-CSF)-dependent, can be eliminated using liposomes containing clodronate 
(van Rooijen et al. 1989), and lack MHCII expression in situ (L. Martinez­
Pomares, unpublished). 

At the other side of the marginal sinus resides a population of large M0 
(MZM0) that express clearance receptors such as scavenger receptors class A 
(SR-A) (Hughes et al. 1994), macrophage receptor with collagenous domain 
(MARCO) (Elomaa et al. 1995) and an uncharacterised neutral polysaccharide 
receptor detected by the antibody ER-TR9 (van Vliet et al. 1985). Though it has 
been suggested that these cells could be involved in the generation of TI re­
sponses, depletion experiments using ER-TR9 (Kraal et al. 1989) seem to indi­
cate that this is not the case. Indeed they might playa down-modulating role by 
reducing antigen load (Van den Eerwegh et al. 1992). A role in processing par­
ticulate antigens and transfer to MZ B cells cannot be ruled out. The induction 
of the initial TI, neutralising IgM response to vesicular stomatitis virus, polio­
myelitis virus and recombinant vaccinia virus is dependent on efficient antigen 
trapping by CR3- and CR4-expressing M0 of the marginal zone (Ochsenbein 
and ZinkernageI2000). 

Material collected by lymphatics drains into lymph nodes (LN). The first cells 
encountered by this mixture of plasma components and cells (migratory DC 
among them) are the subcapsular sinus (ss) M0. This population of M-CSF-de­
pendent M0 express Sn and MOMA-1 and can be depleted using clodronate­
loaded liposomes injected subcutaneously (van Rooijen and Sanders 1994). 
Their presence depends on a constant flow of lymph, since elimination of lym­
phatic vessels leads to their disappearance from the ss and migration into T-cell 
areas (Mebius et al. 1991). As in the case of MZMM0, ssM0 express a sulphated 
glycoform of Sn that can be recognised by the CysR domain of the MR 
(Martinez-Pomares et al. 1996). After immunisation, a migratory cell population 
with the same phenotype but expressing CDllc and MHC-II can be found in 
the follicles. These cells are functionally DC and present antigen to nalve T and 
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B cells in vivo (Martinez-Pomares et al. 1996; Berney et al. 1999). Their origin is 
not clear; they could derive from the ssM0 or represent migratory cells moving 
from the periphery. Another major M0 populations present in LN are the med­
ullary M0 that surround lymphatic and vascular endothelia at the medullary re­
gion. They seem to be involved in clearance and accordingly express similar 
markers to those found on MZM0 such as SR-A and MARCO (Elomaa et al. 
1995) in addition to F4/80, MR and Sn (Linehan et al. 1999). MZMM0 and ssM0 
could correspond to the antigen-transporting cells that transport immune com­
plexes during the course of an immune response as previously described by 
Szakal et al. (1983). Cells expressing the M0 calcium-type lectin, found on der­
mal M0 but not Langerhans cells, could be transiently found in the T-cell areas 
of lymph nodes during the sensitisation phase of contact hypersensitivity and 
seemed to contribute to the efficiency of sensitisation even though they were 
negative for the antigen. This work opens the possibility of a modulator role for 
migratory M0 during the process of T-cell activation (Sato et al. 1998). Beside 
macrophages, immature and mature DC also reside in LN. They are able to in­
ternalise and process antigens. It has been proposed that a resident DC popula­
tion in lymphoid organs could be implicated in tolerance induction (Steinman 
et al. 2000). 

5 
Adjuvants as Immunomodulators and Delivery Systems 

Adjuvants are substances that enhance immune responses in general or specific 
to a particular antigen. Original adjuvant formulations consisting of bread­
crumbs, agar, saponin, starch oil and lecithin were found to increase the levels 
of diphtheria or tetanus antitoxin (Ramon 1925). This empirical approach has 
identified a wide spectrum of substances as candidate adjuvants. These include 
bacterial and plant products, surface-active agents such as saponins, synthetic 
and biopolymers, vitamins, hormones, and aluminium and calcium salts. Their 
modes of action in the immune system are generally not known. To date, Alum 
is the only adjuvant approved for human vaccines (Edelman 2002). This is prob­
ably because it is extremely safe, rather than its effectiveness in enhancing all 
immune responses. Alum can only enhance antibody responses in some vac­
cines, and it is totally ineffective in stimulating cell-mediated immune respons­
es. There is thus a great need for understanding the modes of action of experi­
mental adjuvants or adjuvant formulations in order to improve current vaccines 
and to design novel ones. The aims for modern adjuvants or adjuvant formula­
tions would be to boost the immunogenicity of subunit vaccines at mucosal 
sites or generate antigen-specific Band T cells by activating selectively Th-cell 
subsets (Th1 or Th2). Adjuvants could act in several potential ways. They could 
introduce or maintain antigen in the appropriate in vivo microenvironment. 
They could recruit and activate APC and lymphocytes by providing signals as­
sociated with infections, which would induce inflammation and increase Ag de­
livery to draining lymphoid tissues. Finally, they could deliver T-cell epitopes to 
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MHC class-I and -II molecules for CD8 CTL and CD4 Th cells, respectively [see 
O'Hagan et al. (2001) for review]. 

6 
Endocytic Nonopsonic Receptors on Antigen-Presenting Cells 
as Molecular Targets for Antigen Delivery 

Endocytic receptors on DC and M0 could be considered as targets for antigen 
delivery to MHC-II compartments and subsequent enhanced antigen presenta­
tion to T cells. In some instances, targeting to MHC-I compartment through the 
exogenous pathway can also take place. Since many of these receptors recognise 
endogenous molecules (Platt and Gordon 1998; Linehan et al. 2001; Lee et al. 
2002), a balance between clearance and presentation could be established 
through their regulated differential expression on M0 and DC. Additionally, the 
requirement for inflammatory stimuli would ensure that peripheral tolerance is 
maintained. 

6.1 
The Mannose Receptor and the Scavenger Receptor Class A 

In the mouse, MR and SR-A are absent from conventional DC populations in the 
periphery and lymphoid organs (Hughes et al. 1995; Linehan et al. 1999). This 
would be in accordance with their role as clearance systems for a large number 
of self-molecules (Table 1). Nonetheless, their presence in bone marrow-derived 
DC (both MR and SR-A, unpublished observations) and in cultured human DC 
(only shown for the MR) suggests that they might be up-regulated during DC 
differentiation or recruitment in vivo. Indeed, an uncharacterised population of 
MHC-II+, MR+ cells has been described in LN (Linehan et al. 1999), and MR ex­
pression has also been observed in situ in human inflamed skin (Wollenberg et 
al. 2002). SR-A is highly expressed by MZM0 (Hughes et al. 1995). In both cases 
enhanced presentation has been observed after mannosylation (Sallusto 1995; 
Agnes et al. 1997) or maleylation (Bansal et al. 1999) of proteins to generate MR 
and SR ligands respectively. MR can mediate the uptake and targeting of glycol­
ipids for presentation by CDlb in human monocyte-derived DC (Prigozy et al. 
1997). These properties were exploited in the induction of protective anti-tu­
moral responses by immunisation with the tumour-associated antigen MUC-l 
conjugated to mannan, a ligand for the MR (Apostolopoulos et al. 1995, 2000). 
However, MR-mediated enhanced presentation needs to be reassessed in view of 
the results of several recent studies: (1) LPS-induced 1L-12 production in cul­
tured human DC can be inhibited by mannosylated lipoarabinomannans (Nigou 
et al. 2001); (2) The maturation state of DC is not affected by the involvement of 
MR in the uptake of secretory IgA (Heystek et al. 2002); and (3) MR can block 
the intracellular sorting and presentation of MUC-1 (Hiltbold et al. 2000). 
Therefore, in the absence of additional stimuli, MR ligation might not be able to 
enhance immunogenicity of antigens or activate DC. 
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The presence of MR CysR domain ligands in selected myeloid populations in 
secondary lymphoid organs (Martinez-Pomares et al. 1996; Berney et al. 1999; 
Martinez-Pomares et al. 1999; Yu et al. 2002), highlights the dual role of the MR 
in homeostasis and immunity. A soluble form of the MR (Martinez-Pomares et 
al. 1998) has been suggested as the counter-receptor for these molecules. 

6.2 
DEC-20S and DC-SIGN 

DEC-20S (Table 1) is an endocytic receptor mostly restricted to DC populations 
and thymic epithelium. Even though its ligands have not been identified, using 
polyclonal and monoclonal antibodies it has been shown that its cytoplasmic 
tail is highly efficient in targeting to late endosomes and to the MHC-II com­
partment (Jiang et al. 1995; Mahnke et al. 2000). Recently a chimeric anti-DEC-
205 monoclonal antibody bearing a hen egg lysozyme T cell epitope was shown 
to stimulate antigen-specific T cells in vivo. The outcome of this stimulation is 
unresponsiveness if this reagent was injected in the absence of adjuvant or acti­
vation and if an anti-CD40 monoclonal antibody was used (Hawiger et al. 2001). 
Nevertheless, these results should be carefully assessed since DEC-20S can be 
expressed by M0 under inflammatory conditions (Wijffels et al. 1991). 

Table 1 Selected antigen-presenting cell receptors relevantin vaccine design 

Receptor Ligand Structure Comments 

Mannose S04-3-Ga 1-S04 -(3/4)-Ga INAc- CysR domain-FNII-{RD(x8)-
receptor man nose, fucose N-acetyl- TM-cT (endocytosis) 

glucos.amine-
Scavenger Selected polyanionic Collagenous domain 
receptor compounds Type1 only 
Class A SRCR domain 
DEC-20S Unknown CysR domain-FNII-{RD 

(x10)-TM-CT (endocytosis) 
DC-SIGN Mannose C-type lectin-(internalis.ation 

N-acetyl-glucosamine motif) 
TlR-2 Peptidoglycan lRR Signals as 

lipoprotein heterodimer in 
lipoarabinomannan combination with 
Selected lipopolys.accharides Cytoplasmic domain related TlR1 and TlR6 

to Il-1R (TIR domain) 
TlR-3 dsRNA LRR and TIR 
TlR-4 lipopolysaccharide LRR and TIR Requires MD2 

lipoteichoic acids and CD14 
TlR-S Flagellin lRR and TIR 
TLR-7/TlR-8 Small anti-viral compounds lRR and TIR 
TlR-9 Unmethylated CpG lRR and TIR 
,B-Glucan R ,B-Glucan C-type lectin-TM-cT (lTAM) ,B-Glucan-

independent 
binding to T cells 
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Another DC restricted receptor, DC-SIGN, a C-type lectin involved in T 
cell adhesion (through its interaction with ICAM-3), HIV-l-binding and 
transendothelial migration (through its interaction with ICAM-2) has been im­
plicated in antigen internalisation and presentation to T cells (Engering et al. 
2002). The requirement for antigen targeting to an endocytic receptor on DC 
might not be absolute since some studies indicate that targeting to other surface 
molecules on DC is enough to enhance presentation (Serre et al. 1998). 

7 
Signalling Receptors on Antigen-Presenting Cells as Sensors 
of Foreignness 

Toll-like receptors (TLR) were thought to be genuine detectors of pathogen-as­
sociated molecular patterns (PAMP) (Medzhitov and Janeway 2000). This as­
sessment is being challenged by the discovery of TLR-mediated signalling in 
responses to endogenous ligands that could be released from damaged cells 
(Leadbetter et al. 2002; Vabulas et al. 2002). In humans there are 10 members of 
this family and PAMP on specific microbes have been identified for most of 
these TLR (Table 1) (Akira et al. 2001; Medzhitov 2001; Hemmi et al. 2002; 
Kaisho and Akira 2002). Although direct binding of PAMP has not yet been 
demonstrated for any of the TLR, their signalling capability in response to 
PAMP is unequivocal. The homology of their intracellular region with the cyto­
plasmic tail of the IL-IR suggested that these molecules could signal through 
the same pathway, which involves an adaptor protein, My88D. Only TLR-4 has 
been shown to induce some responses through a MyD88-independent pathway 
mediated by another adaptor protein referred to as TIRAP or MAL (Horng et al. 
2001). MyD88-deficient mice have a bias towards a Th2 response with enhanced 
basal levels of IgE and normal responses to ovalbumin (OVA) co-injected with 
Alum (a Th2-inducer) but not with complete Freund's adjuvant (CFA) (Thl-in­
ducer). These results indicate that TLR signalling could favour the induction of 
a Thl response (Schnare et al. 2001). TLR are differentially expressed in differ­
ent DC populations, suggesting that there is specialisation of APC to respond to 
specific microbes (Kadowaki et al. 2001). 

Finally dectin-l, widely expressed by myeloid cells including DC and M0, 
has recently been shown to be a major ,B-glucan receptor on M0 (Brown and 
Gordon 2001; Brown et al. 2002). Since ,B-glucans from fungi and yeasts have a 
variety of immunostimulatory effects, this receptor could potentially mediate 
most if not all of these activities. It contains an immunoreceptor tyrosine-based 
activation motif (ITAM) in its cytoplasmic tail and ligand recognition is expect­
ed to activate signalling pathways of DC and M0. In addition a role for dectin-l 
as an enhancer of innate immune responses, its phagocytic activity could also 
lead to enhanced antigen uptake and presentation. 
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8 
Current Challenges of Vaccine Development 

Mucosal delivery of antigens is one of the most desirable routes of immunisa­
tion because it is easier to administer, has reduced toxicity and provides immu­
nity at the sites where many pathogens establish infection. However, oral immu­
nisation using vaccines containing pure antigens or killed/inactivated organisms 
has not been successful in generating protective immunity. The difficulties have 
been the instability of antigens in the harsh acidic and proteolytic environment 
of the stomach and the limited access of antigens and APC stimuli to the mu­
cin-coated epithelial cell layer and the underlying MALT. Some promising deliv­
ery systems and potent adjuvants for oral and intranasal immunisation include 
genetically modified non-toxic bacterial toxins [see (O'Hagan et al. 2001) and 
references therein], and microparticles with entrapped protein and DNA-encod­
ed antigens (O'Hagan et al. 2001). The mechanisms for their effectiveness have 
not been defined, but it is most likely due to the fact that they can enhance anti­
gen delivery to DC and M0 through pinocytosis and/or via their interactions 
with specific endocytic!phagocytic receptors, and activate these APC fully by 
the presence ofPAMP. How these signals are integrated to achieve protective im­
munity is being investigated at the molecular and cellular levels. 

Whilst almost all vaccines are targeted to elicit adaptive immune responses 
toward protein antigens, there is also a need to examine non-protein compo­
nents as vaccine and adjuvant candidates. Carbohydrate antigens have an im­
portant role in vaccine development because immune responses against them 
could prevent successful blood transfusion, organ transplantation, tumour for­
mation and microbial infections. In addition, some microbial carbohydrates, in­
cluding alginate from Pseudomonas aeruginosa, capsular polysaccharides from 
Klebsiella pneumoniae and Streptococcus pneumoniae and ,B-glucans from yeasts 
and other fungi, have immunomodulatory effects on the immune system, and as 
such could also be used as adjuvants to improve the immunogenicity of vaccines 
against infectious diseases and cancer. Their modes of action have not been 
clarified, but induction of macrophage functions and cytokine production (e.g. 
TNF-a, IL-1) would likely be their effects (Yokochi et al. 1980; Otterlei et al. 
1991; Otterlei et al. 1993; Choyet al. 1996; Ho et al. 2000; Tokunaka et al. 2000; 
Urn et al. 2000; Suzuki et al. 2001). 

On the surface of most human bacterial pathogens, carbohydrate antigens 
are in the form of capsular polysaccharides (CPSs), lipopolysaccharides/ 
lipooligosaccharides, teichoic acids, and lipoteichoic acid. Antibody responses 
to CPSs are the basis for protection against most infections due to extracellular 
bacteria; but the efficacy of CPS-based vaccines varies with the antibody isotype 
and its complement-fixing ability. Antibody responses to CPS vary with age: 
adults and children over 2 years are generally responsive if CPS is immunogenic, 
but children under 18 months (who are the most vulnerable to bacterial infec­
tions) do not respond to CPS. To achieve T-cell help in order for B cells to pro­
duce antibodies against carbohydrates, investigators have coupled CPS chemi-
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cally to protein carriers in an attempt improve their immunogenicity in infants. 
CPS-protein conjugate vaccines for type b Haemophilus inJluenzae and sero­
group C Neisseria meningitidis have been extremely effective in reducing disease 
incidence to record low levels in countries where mass vaccination programs 
have been implemented. 

Intranasal immunisation of a pneumococcal glycoconjugate with mucosal ad­
juvants such as Escherichia coli heat-labile enterotoxin mutants has recently 
been shown to induce a significant increase in polysaccharide-specific and pro­
tein carrier-specific antibody responses in all IgG subclasses (Jakobsen et al. 
2001). Phenotypic characterisation and determining the functions of the DCs 
and M0s in the nasal-associated lymphoid tissues (NALT) should enable the de­
sign of effective adjuvants and vaccines for this practical route of immunisation 
against respiratory pathogens. Although the successes of conjugate vaccines 
have encouraged further development of similar vaccines against other bacterial 
pathogens, the underlying mechanisms of immune responses against carbohy­
drate antigens remain poorly defined. M0s and DCs have been shown to con­
tribute to antibody responses to II antigens by responding to PAMPs and acti­
vating TLR-mediated pathways of cytokine induction. The secreted cytokines, 
including IL-l, IL-6, IL-12 and GM-CSF, provide the necessary second signals to 
B cells that are activated by multivalent mIg cross-linking polysaccharides (Vos 
et al. 2000). It is, however, not clear how carbohydrate antigens are transported 
to secondary lymphoid tissues where antigen-specific B cells are located. Fur­
ther investigations on DCs and M0s would also be required to understand the 
immunomodulatory properties of some polysaccharides. The challenge is to un­
derstand how these types of antigens interact with the innate immune system, 
and how recognition and potential signalling by receptors on DCs and M0s af­
fect immunogenicity or adjuvanticity. Insights into these mechanisms would en­
able the development of vaccines designed to modulate immune responses 
against carbohydrate antigens or other similar II antigens in normal and immu­
nocompromised individuals. It may also be possible to identify novel carbohy­
drate-based adjuvants that can achieve a fine balance between initiation of im­
mune responses without a potentially damaging inflammatory process, because 
almost all CPS-based vaccines are well-tolerated in humans. 

In summary, DCs and M0s play critical roles in determining antigen toler­
ance and immunogenicity and the generation of appropriate adaptive immune 
responses. Future vaccine formulations would thus not only include selected B­
and T-cell epitopes, but also delivery systems and adjuvant components that 
specially modulate the migration, antigen presentation and cell activation of 
specific DC and M0 types at targeted immune sites. The main challenges in vac­
cine development are to identify adjuvants to generate cell-mediated immune 
responses for tumours and chronic viral infections, and to enhance mucosal 
and systemic immune responses via the oral and intranasal routes. Detailed 
analyses of the immunobiology of DCs and M0s would contribute greatly to the 
designing of vaccines to meet these challenges. 
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Abstract The study of macrophage biology has been hindered by our inability 
to efficiently direct transgene expression to cells of the mononuclear phagocyte 
lineage in vivo. Recent progress in understanding the transcriptional regulation 
of several genes expressed predominantly in macrophages has led to improved 
vectors for macrophage gene targeting. Vectors that can reproducibly direct 
high-level, macrophage-specific transgene expression may find application in 
gene therapy protocols that seek to correct genetic defects of metabolism such 
as lysosomal storage disorders. Efficient targeting of gene expression to macro­
phages and dendritic cells may allow us to modulate immune responses and to 
develop more efficient genetic vaccines. 

Keywords Phagocytes, Transgenes, Vaccines 
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1 
Background 

1.1 
Introduction to the Cells of the Mononuclear Phagocyte Lineage 

All blood cells develop from a series of haematopoietic progenitor cells, which 
ultimately originate from haematopoietic stem cells. Blood monocytes develop 
from monoblasts within the adult bone marrow and are released into the circu­
lation. Monocytes are recruited via constitutive and inflammatory mechanisms 
to virtually all the tissues of the body where they terminally differentiate into 
the various cell types of the mononuclear phagocyte lineage. Mononuclear 
phagocytes in adult tissues include Kupffer cells in the liver, microglia in the 
brain, Langerhans cells in the skin and mucosa and tissue-resident macrophages 
in tissues such as the lamina propria detectable with specific monoclonal anti­
bodies including F4/80 and FAfl1, which recognise the gene products of the 
Emr1 and CD68 genes respectively. These tissue resident macrophages play im­
portant roles in tissue homeostasis and are key players in innate and adaptive 
immune responses. Other cell types of the mononuclear phagocyte family in­
clude osteoclasts which play an essential role in bone morphogenesis, bone re­
modelling and bone homeostasis. Monocytes can also differentiate into myeloid 
dendritic cells (DCs), which capture and process antigens in the tissues before 
presenting antigenic peptides to naIve T cells in the context of MHC class II 
within lymph nodes. While protocols for dendritic-cell differentiation from hu­
man monocytes in culture systems are well established, the exact linage rela­
tionships between macrophages and DCs in vivo are less well defined. 

With the advent of new genomic technologies such as gene arrays, we have 
access to extensive databases that list the most highly expressed genes in macro­
phages, myeloid DCs, macrophages treated with oxidised low-density lipopro­
tein (LDL) and DCs challenged with different pathogens [to list only four recent 
papers: Hashimoto et al. (1999, 2000); Shiffman et al. 2000; Huang et al. 2001)]. 
One striking feature of this type of expression analysis is how few genes in these 
collections are solely restricted to mononuclear phagocytes. Among the "macro­
phage-restricted" genes of known function, we can count a number of pattern­
recognition receptors including the scavenger receptors SR-A and MARCO as 
well as the macrophage mannose receptor (MMR) (McKnight and Gordon 
1998). Other macrophage-restricted genes include the murine Emr1 gene, which 
encodes the antigen detected by the F4/80 monoclonal antibody (McKnight et 
al. 1996). Other members of this EGF TM? family (Stacey et al. 2000) include 
the recently described membrane protein FIRE (Emr4), expressed by macro­
phages and DCs (Caminschi et al. 2001); Emr2, expressed by neutrophils and 
activated macrophages (Lin et al. 2000) and Emr3, expressed by neutrophils, 
monocytes and macrophages (Stacey et al. 2001). Other cell surface receptors 
that are restricted to mononuclear phagocytes include the M-CSF receptor, 
which is the product of the c-fms proto-oncogene and Siglec-1 a membrane lec-
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tin expressed by a subset of macrophages that recognises carbohydrate ligands 
containing sialic acid (Munday et al. 1999). Recently we have cloned and charac­
terised a number of macrophage-restricted genes including two cell surface-ex­
pressed lectin molecules, a macrophage-restricted C-type lectin, MARVIN 
(Balch et al. 1998) and a functional ,B-glucan receptor previously reported as a 
DC-restricted molecule, Dectin-1 (Brown and Gordon 2001; Willment et al. 
2001). Currently the best candidate that we have for a pan macrophage marker 
is CD68, a member of the lysosomal associated membrane protein (LAMP) fam­
ily (Holness and Simmons 1993). Anti CD68 monoclonal antibodies recognise 
tissue-resident macrophages in a wide range of normal human tissues and re­
veal the presence of activated macrophages in human pathologies such as ath­
erosclerosis and arthritis (Pulford et al. 1990). The FAfll monoclonal antibody 
recognises the mouse homologue of human CD68, macrosialin (the product of 
the murine Cd68 gene). FAfll detects a similarly broad range of tissue resident 
macrophages in murine tissues (Rabinowitz and Gordon 1991). For all of the 
candidate macrophage-restricted markers that we have mentioned in this sec­
tion, mRNAs and proteins expressed by these genes can be found in some non­
myeloid cell types in certain tissues, e.g. SR-A expression in hepatic endotheli­
um or MMR expression in placenta. The term "macrophage-restricted" should 
be seen as a relative rather than an absolute description for the pattern of ex­
pression of these genes. Strikingly, there have been no reports of any macro­
phage-restricted or even myeloid-restricted transcription factors to date. Many 
macrophage-expressed gene promoters contain binding sites for the ETS family 
transcription factor PUl, but this helix-loop-helix transcription factor is also 
expressed in B lymphocytes and granulocytes and has been implicated in eosi­
nophil gene expression (Chen et al. 1995; van Dijk et al. 1998). 

1.2 
Potential Applications of Macrophage-Specific Gene Targeting 

If we could develop gene expression systems that would allow us to reproducibly 
direct high-level transgene expression to macrophages in vivo, this genetic tech­
nology would find multiple applications both in basic science and, potentially, 
in clinical medicine. 

Successful macrophage gene targeting would allow us to test the effect of spe­
cific trans genes on macrophage function in normal animals. These studies could 
be extended to study the role of macrophages in animal models of important 
human pathologies such as atherosclerosis, arthritis and neuroinflammation as 
well as infectious disease models. One potential application for lineage-specific 
gene targeting would be the development oflineage-specific gene knockout ani­
mals. Macrophage-restricted expression of the Cre recombinase would allow the 
excision of a "phloxed" allele from the genome only in macrophages. The first 
reports of such a myeloid-restricted excision strategy used mice in which the 
Cre recombinase was recombined into the murine lysozyme gene. When crossed 
with two different strains of mice carrying 10xP-flanked genes, highly efficient 
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excision was seen in both granulocytes and mature macrophages (Clausen et al. 
1999). Clearly using the lysozyme locus does not direct gene excision targeted 
only to macrophages. 

A recently developed technology for interfering with gene expression is post­
transcriptional gene silencing induced by RNA interference or RNAi. This tech­
nique has been successfully used to study gene function in invertebrates and 
plants and recent technical developments may make this system more useful for 
interfering with mammalian gene expression (Caplen et al. 2002; Paddison et al. 
2002). The RNAi technique relies on expressing specific double-stranded RNAs 
in specific cell types. Obviously, provision of macrophage-specific expression 
could allow for macrophage-specific ablation of selected genes. 

One potential clinical application for high-level macrophage-specific gene ex­
pression would be somatic gene therapy for inherited metabolic diseases. One 
obvious candidate for macrophage gene therapy would be amelioration of the 
debilitating effects of inherited lysosomal storage disorders including Gaucher 
disease, Fabry disease and Niemann-Pick disease. This very heterogeneous 
group of metabolic diseases has been an attractive target for the development of 
somatic gene therapy protocols because of the paucity of good therapeutic op­
tions for afflicted individuals (currently limited to bone marrow transplantation 
and costly enzyme-replacement therapy). In Gaucher disease, the enzyme gluco­
cerebrosidase is absent from all cells leading to an intracellular accumulation of 
undigested glucosylceramide, particularly affecting macrophages. Retroviral 
gene transfer of the glucocerebrosidase gene can correct the enzyme deficiency 
in Gaucher disease cell lines (Aran et al. 1996; Schuening et al. 1997) and signif­
icant levels of glucocerebrosidase have been obtained in transgenic animals 
(Guy et al. 1999). Retroviral gene delivery via CD34+ bone marrow cells trans­
duced ex vivo has been attempted in a pilot study of three patients. After rein­
troduction into patients, retrovirus-infected cells could be detected for up to 
3 months, but the very low efficiency of gene correction (-0.2% of cells) and the 
low levels of glucocerebrosidase expression were insufficient to make any im­
pact on the course of the disease (Dunbar et al. 1998). The macrophage could 
also be a useful vehicle for production of secreted proteins absent in the plasma 
of inherited diseases such as factor VIII in haemophilia A or factor IX in 
haemophilia B. Alternatively, targeting therapeutic gene expression to the alveo­
lar macrophage could be an attractive therapeutic modality for respiratory dis­
eases including emphysema and cystic fibrosis. 

Given the central role of macrophages in innate immunity and their ability to 
present antigen in the context of MHC class II, efficient macrophage and DC 
gene targeting would allow the development of new protocols for immunomod­
ulation. Such protocols could involve either in vivo delivery via a "gene gun" ap­
paratus or ex vivo transfection of macrophages or DCs with a view to eliciting a 
strong adaptive immune response against tumour-specific antigens. Several re­
cent reports have shown successful vaccination against HIV and malaria using a 
combination of DNA vaccine priming followed by recombinant virus booster. 
Nearly all DNA vaccination has been performed using bacterial plasmids that 
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use the human cytomegalovirus (CMV) immediate early promoter/enhancer. To 
date there have been very few reports of using promoters that would direct 
high-level gene expression specifically in macrophages or DCs. While broad 
cell-type specificity might be suitable or preferable for local antigen delivery, 
the ability to direct gene expression specifically to Langerhans cells in vivo 
might allow for the manipulation of antigen-presenting cell biology through ex­
pression of specific cytokines, co-receptors or chemokine receptors. Other po­
tential approaches to immunotherapy might be to use macrophage-specific gene 
expression to deliver therapeutic doses of anti-inflammatory cytokines such as 
interleukin (IL)-10 (Lang et al. 2002). 

1.3 
A Very Brief Introduction to Mammalian Gene Regulation 

Before discussing how macrophage-specific gene expression programmes are 
established, it is worth briefly reviewing current ideas about mammalian gene 
regulation. Differential gene expression in mammalian cells appears to be regu­
lated primarily at the level of transcription initiation. For this reason, studies of 
gene expression have focussed on DNA-protein interactions that lead to the 
productive engagement of RNA polymerase II with the transcription initiation 
sites of mammalian genes. The DNA sequences immediately 5' of the major 
transcription initiation site constitute the gene's promoter and contain a num­
ber of recognisable sequence motifs including CCAAT boxes, GC sequences and 
TATA boxes. Nearly all the macrophage-restricted genes studied to date do not 
conform to the typical mammalian promoter organisation in that they do not 
contain recognisable TATA-box sequences within their promoters. Instead they 
contain one or several purine-rich DNA sequences containing the motif GGAA 
around the transcription initiation site (Tenen et al. 1997; Clarke and Gordon 
1998). For many macrophage-expressed genes, these GGAA sites have been 
shown to bind the ETS family transcription factor PU.l, and mutations that 
abolish PU.l binding markedly reduce promoter activity. PU.l is not a macro­
phage-specific transcription factor, however, as PU.l binding sites have been 
shown to be important for expression of genes in B lymphocytes and eo sino­
phils, and PU.l is also expressed in neutrophils (Chen et al. 1995). PU.l has been 
shown to interact with a number of transcription factors including AML-l, 
CCAAT enhancer-binding proteins (C/EBPs), interferon regulatory factor (IRF)-
4 and microphthalmia transcription factor (MITF). These combinatorial interac­
tions with other classes of transcription factor may act to restrict PU.l's tran­
scription enhancing activity to cells of the macrophage lineage. Transcription 
factors bound to the promoter and more distant enhancer elements interact 
with a cohort of other nuclear proteins to form a stable pre-initiation complex 
containing RNA polymerase II. These large multi-protein complexes contain 
classes of proteins called coactivators and corepressors that playa key role in 
mammalian gene regulation (Rosenfeld and Glass 2001). 
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Por several genes that are expressed in other haematopoietic cell types, com­
pelling evidence has been presented that sequences residing up to 50 kbp away 
from the gene can exert a powerful influence on gene expression. These se­
quence elements, termed locus control regions (LCRs), are especially important 
in allowing genes to escape the repressive effects of assembly into inactive chro­
matin. The first LCR to be identified was associated with a series of DNase I hy­
persensitive sites found in the chromatin of the human ,B-globin locus (Grosveld 
et al. 1987). When these LCR sequences were incorporated into DNA used for 
microinjection of mouse embryos, the resultant transgenic mice were shown to 
express human ,B-globin transgenes at a high level only in cells of the erythroid 
lineage. Importantly, the human ,B-globin transgenes were expressed at the same 
level as the endogenous murine ,B-globin genes (Blom van Assendelft et al. 1989; 
Talbot et al. 1989). The functional definition of an LCR sequence is that it can 
direct the position independent expression of a transgene and that the observed 
levels of transgene expression are directly proportional to copy number (Orkin 
1990). LCRs were subsequently described in the human T-cell gene CD2, the hu­
man T-cell receptor gene locus and at least two gene loci that direct expression 
in B cells (Greaves et al. 1989; Diaz et al. 1994; Madisen and Groudine 1994; Sab­
battini et al. 1999; reviewed in Grosveld 1999; Dillon and Sabbattini 2000; Pes­
ten stein and Kioussis 2000). 

2 
Macrophage-Specific Gene Targeting in Transgenic Animals 

In Table 1 we have listed published reports of successful targeting of heterolo­
gous trans genes to macrophages in vivo. In the following section of our review 
we will briefly discuss published reports of macrophage gene targeting in trans­
genic mouse experiments. 

Table 1 Examples of successful targetingof transgene expression to macrophages in transgenic animals 

Transgene 

Scavenger Receptor SR-AIII 
Interleukin-l0 
Murine Abq MHC class II 
Matrix metalloproteinase-1 
Hormone-sensitive lipase 
Lipoprotein lipase 
Human apoA1 
Human growth hormone 
Bovine scavenger receptor SR-A 
Interferon-y receptor dominant 
negative mutant 
Glucocerebrosidase 
PMURARalpha 

Targeting sequence 

CD68 promoter and IVS 1 
CD68 promoter and IVS 1 
CD68 promoter and IVS 1 
Human SR-A promoter 
Human SR-A promoter 
Human SR-A promoter 
Human SR-A promoter 
Human SR-A promoter 
Chicken lysozyme minigene 
Human lysozyme gene 

Murine MHC Class II LCR 
CD11 b promoter 

Reference 

Gough et al. 2001 
Lang et al. 2002 
Unpublished data 
Lemaitre et al. 2001 
Escary et al. 1999 
Wilson et al. 2001 
Major et al. ApoAI 
Horvai et al. 1995 
Daugherty et al. 2001 
Dighe et al. 1995 

Guy et al. 1999 
Early et al. 1996 
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2.1 
The Human CDllb Promoter 

CD11b is an integrin subunit expressed by monocytes, most macrophage popu­
lations, granulocytes, natural killer cells and a subset of CD5+ B lymphocytes. 
Daniel Tenen and colleagues published a series of reports in which they charac­
terised the promoter of the human CD11b gene and identified sequences that 
directed reporter gene expression in transiently transfected myeloid cell lines. 
Key elements within the human CD11b promoter included a PU.l binding site 
at position 20 and an Spl binding site at position 60 (Pahl et al. 1992; Chen et 
al. 1993; Pahl et al. 1993). 

A 1.8 kbp fragment of the human CD11b promoter was tested for its ability 
to direct macrophage-restricted expression of two different reporter genes, the 
Escherichia coli j3-galactosidase gene and a murine Thy1.1 CDNA with human 
growth hormone introns and polA addition sequence (Dziennis et al. 1995). 
One line of transgenic mice was established carrying the Thy 1.1 trans gene, and 
two lines of transgenic mice were established carrying the j3-galactosidase trans­
gene. Northern blot and RNase protection analysis demonstrated transgene ex­
pression in elicited peritoneal macrophages and fluorescence-activated cell sort­
er (FACS) analysis with a Thy l.l-specific monoclonal antibody showed that 
-50% of peritoneal macrophages expressed the Thy 1.1 transgene. Two-colour 
FACS analysis using the B-cell specific marker B220 and the granulocyte-specific 
reagent Grl showed that the Thy1.1 trans gene was expressed in granulocytes 
and B cells as well as a subpopulation of Macl + macrophages (Dziennis et al. 
1995). 

In a separate study, Back et al. used a 1.5-kbp fragment of the CD 11 b promot­
er to direct expression of a human CD4 reporter gene in transgenic mice (Back 
et al. 1995). In three independent lines of transgenic mice Back et al. saw no ex­
pression in macrophages and detected human CD4 transgene expression in 
granulocytes and B lymphocytes in two of the three lines of mice (Back et al. 
1995). The discrepancy in the expression pattern reported by the two groups 
could be caused by the relatively small number of transgenic lines studied or 
differences in the design of the transgenic targeting construct used, notably the 
provision of human growth hormone gene sequences in the CD11b Thy 1.1 con­
struct. 

In the only other published study in which the human CD 11 b promoter was 
used to direct transgene expression, Early et al. reported the phenotype of trans­
genic mice expressing a PML/RARa transgene using the CD 11 b expression cas­
sette developed by the Tenen laboratory. In one line of founder mice, transgene 
expression was detected in bone marrow by RT-PCR, but no experiments were 
performed to demonstrate which haematopoietic cell type was expressing the 
transgene (Early et al. 1996). In summary, published reports show that the 
CD11b promoter can direct trans gene expression to myeloid cell types, but the 
efficiency and specificity of targeting to macrophages in vivo leave much to be 
desired. 
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2.2 
Lysozyme-Directed Transgene Expression 

The enzyme lysozyme degrades components of the bacterial cell wall. In mam­
malian species, lysozyme is expressed by cells of the innate immune system es­
pecially neutrophils and activated macrophages and by the Paneth cells of the 
intestine. In the mouse genome there are two lysozyme genes, the M lysozyme 
gene that directs lysozyme synthesis in neutrophils and macrophages while the 
linked P lysozyme gene is expressed specifically in the Paneth cells of the intes­
tine (Cross et al. 1988). In contrast, there is only one lysozyme gene in the hu­
man genome. The transcriptional regulatory sequences of the murine M lyso­
zyme gene have been studied in transient transfection assays. Sequences capable 
of directing expression in myeloid cells have been identified in the promoter 
and an enhancer element identified in the 3' flanking sequences of the M lyso­
zyme gene (MoIlers et al. 1992). The only report of using murine lysozyme se­
quences to target myeloid cell expression in vivo is the report of Clausen et al. 
who integrated a copy of the Cre recombinase into the murine M lysozyme gene 
by homologous recombination and demonstrated myeloid restricted excision of 
P lox flanked target genes in two different strains of transgenic mice (Clausen et 
al. 1999). Lysozyme Cre mice have recently been used to generate transgenic 
mice that have macrophage-specific ablation of the IL-4 receptor a chain (F. 
Brombacher, personal communication). 

Work from our own laboratory showed that a 3.5-kbp fragment of the human 
lysozyme gene was able to direct expression of a bacterial reporter gene, chlor­
amphenicol acetyltransferase (CAT), to myeloid cells in three independent lines 
of transgenic mice. Transgene activity was highest in bone marrow, spleen, lung 
and thymus, and CAT enzyme activity was detectable in elicited granulocytes 
and macrophages (Clarke et al. 1996). The same 3.5-kbp human lysozyme pro­
moter fragment was used to direct myeloid-restricted expression of a dominant 
negative mutant of the interferon-y receptor alpha chain (Dighe et al. 1995). We 
have demonstrated that human lysozyme promoter sequences can target gene 
expression to immature and mature myeloid cells, but our experience is that the 
levels of trans gene mRNA expression are low and expression is confined to a 
subset of tissue macrophages in vivo. 

The chicken lysozyme gene has been used as a model system for studying 
changes in chromatin organisation related to gene expression. Additionally, the 
ability of different fragments of the chicken lysozyme gene locus to direct posi­
tion-independent transgene expression has been tested in stably transfected cell 
lines and transgenic animals (reviewed in Bonifer et al. 1997). The initial experi­
ments of Stief and Sippel showed that inclusion of chicken lysozyme gene se­
quences with the properties of matrix attachment regions (MARs) in reporter 
gene plasmids gave position-independent expression in stably transfected mam­
malian cell lines (Stief et al. 1989). This property of chicken lysozyme gene se­
quences was confirmed in the experiments of Bonifer et aI., who used a 2l-kbp 
DNA fragment encompassing the chicken lysozyme gene locus and its associat-
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ed DNase I hypersensitive sites and MARs to generate transgenic mice. The 
chicken lysozyme gene was expressed in mature myeloid cells, including macro­
phages, in a copy-number dependent manner regardless of the site of integra­
tion into the mouse genome (Bonifer et al. 1990, 1997; Bonifer et al. 1994). 
Chicken lysozyme MAR sequences have been used as a component of several 
eukaryotic gene expression vectors used for stable transfection experiments in 
mammalian cells (Zahn et al. 2001) and even in zebrafish transgenesis (Caldovic 
et al. 1999). 

We are aware of only one report in which chicken lysozyme gene sequences 
have been used to express a heterologous gene in the macrophages of transgenic 
mice. Daugherty et al. recently reported the generation of transgenic mice in 
which a bovine scavenger receptor bSR-A was expressed under the control of 
the chicken lysozyme promoter. The authors detected transgene mRNA in elicit­
ed macrophages but they were unable to detect expression ofbSR-A protein due 
to a lack of specific antibodies. The bSR-A mice were shown to have altered 
peritoneal macrophage adhesion in vitro and enhanced granuloma formation in 
vivo, both properties that would be consistent with enhanced scavenger receptor 
expression. In the absence of transgene protein expression data, it is hard to 
evaluate the usefulness of the chicken lysozyme cassette for directing macro­
phage-specific expression in transgenic mice. 

2.3 
Regulatory Elements of the Human c-fes Gene 

The c-fes proto-oncogene encodes a 92-kDa protein tyrosine kinase that is asso­
ciated with the common ,B-chain subunit of the granulocyte-macrophage (GM)­
CSF and IL-3 receptors. A 13.2-kbp fragment of human genomic DNA contain­
ing all 19 exons and 18 introns of the c-fes gene together with 446 bp of 5' flank­
ing and 1.5 kb of 3' flanking sequence was used to generate transgenic mice 
(Greer et al. 1990). The human c-fes transgene mRNA showed the same pattern 
of expression as the endogenous mouse c-fes gene, being expressed at high level 
in bone marrow-derived macrophages. The authors reported that the 13.2-kbp 
fragment of DNA containing the human cjes gene was able to confer position­
independent expression that was proportional to copy number and that the hu­
man c-fes transgene appeared to be expressed as efficiently as the endogenous 
c-fes gene (Greer et al. 1990). 

Heydemann et al. made a series of plasmid constructs in which different frag­
ments of the 13.2-kb c-fes gene fragment were tested for their ability to direct 
myeloid-specific gene expression in transgenic mice. Sequences important for 
transgenic expression were shown to reside in introns 1 and 3 of the human c­
fes gene (Heydemann et al. 2000). On the basis of these observations, the au­
thors concluded that sequences within introns 1 and 3 constitute a myeloid-spe­
cific locus control region (LCR). In the same paper, the authors went on to ex­
plore the ability of the human c-fes LCR to direct myeloid expression of a heter­
ologous enhanced green fluorescent protein (EGFP) transgene. EGFP transgene 
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expression was only detected in 3 of the 8 transgenic lines analysed. Transgene 
expression was analysed by flow cytometry and EGFP fluorescence was detected 
in 50% of Grl + granulocytes and 50% of Macl + myeloid cells but absent in 
B220+ B lymphocytes and absent in thymocytes (Heydemann et al. 2000). The 
failure of the c-fes LCR to give a higher efficiency of heterologous trans gene ex­
pression in myeloid cells is surprising. Given that c-fes LCR sequences are com­
pletely contained within the c-fes gene it is possible that these sequences need to 
be included in the primary transcription unit for maximal effect. 

2.4 
Use of the Human SR-A Gene Promoter to Target Gene Expression 
in Transgenic Mice 

Macrophage scavenger receptors mediate the uptake of modified forms of LDL. 
The first macrophage scavenger receptor gene to be cloned was SR-A, which 
gives rise to at least two different functional isoforms of the receptor, SR-AI and 
SR-AII, by alternative splicing (Emi et al. 1993). SR-A is expressed by a subset 
of tissue-resident macrophages in vivo, such as alveolar macrophages and Kupf­
fer cells, as well as macrophages in inflammatory pathologies, such as athero­
sclerosis (Gough et al. 1999). The promoter of the human SR-A gene has been 
analysed by a number of laboratories in transient transfection assays. The labo­
ratory of Christopher Glass identified SR-A promoter sequences between posi­
tions 245 and +46 as being important for expression in the myeloid leukaemia 
cell line THP-l and implicated the transcription factors API, PU.l and ets-2 as 
being important for SR-A promoter activity (Wu et al. 1994). Further analysis of 
the SR-A promoter by the Glass laboratory identified an enhancer sequence be­
tween positions 4500 and 4100 (Moulton et al. 1994). A human SR-A promoter/ 
enhancer cassette containing human SR-A promoter sequences between 245 and 
+46 fused to the upstream enhancer sequence was used in transgenic experi­
ments. Horvai et al. first demonstrated the ability of this SR-A enhancer/pro­
moter cassette to direct macrophage-restricted expression of a human growth 
hormone reporter gene in macrophages of transgenic mice and demonstrated 
transgene expression by bone marrow-derived macrophages cells differentiated 
in the presence of M-CSF (Horvai et al. 1995) The current literature furnishes 
several examples of successful targeting to macrophages using the SR-A en­
hancer/promoter cassette developed by the Glass laboratory (Table O. 

2.5 
Regulatory Sequences of the Human (068 Gene 

CD68 is probably the best pan macrophage marker in immunohistochemistry 
studies of human tissues (Pulford et al. 1990). The protein recognised by CD68 
monoclonal antibodies is a member of the lysosome-associated membrane pro­
tein (LAMP) family (Holness and Simmons 1993) and human CD68 shows 72% 
amino acid identity with the murine macrosialin protein (Holness et al. 1993). 
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Li et al. have studied the elements of the murine macrosialin promoter required 
for macrophage-specific expression (Li et al. 1998) and our laboratory has char­
acterised the sequences responsible for transcriptional regulation of the human 
CD68 gene (Greaves et al. 1998). The draft human genome sequence shows that 
the human CD68 gene is one of 9 genes in a -140 kbp region of chromosome 
17p13 and the CD68 gene ATG initiation codon lies 669 bp 3' of the EIF4Algene, 
which encodes eukaryotic initiation factor 4AI (Jones et al. 1998). 

The 666-bp EIF4Al CD68 intergenic region has significant promoter activity 
in murine macrophage cell lines and a number of other cell types (Greaves et al. 
1998). A 5' deletion analysis of the CD68 5' flanking sequence showed that a 
promoter fragment of only 150 bp directs reporter gene expression in transient­
ly transfected macrophage cell lines to a level that is twice that seen using the 
SV 40 enhancer in the same reporter plasmid. We cloned each of the five CD68 
gene introns 3' of a minimal CD68 promoter and showed that only intron 1 was 
able to contribute to macrophage-specific expression (Greaves et al. 1998). Tak­
en together, these observations led us to conclude that the combination of the 
human CD68 promoter and the 83-bp first intron of the human CD68 gene co­
operate to direct high-level reporter gene expression in transiently transfected 
macrophage cell lines. 

To test the utility of human CD68 gene sequences in macrophage gene-target­
ing experiments, we have generated a series of CD68 expression vectors in which 
cDNA fragments of different transgenes have been cloned downstream of a 2940 
CD68 promoter fragment and the 83-bp first intron of the CD68 gene. Initial ex­
periments using splice variants of the human macrophage scavenger receptor 
SR-A showed that human CD68 gene sequences were able to direct high-level 
expression of SR-A trans genes in stably transfected RAW cells (Gough et al. 
2001). In two lines of transgenic mice, we were able to demonstrate high levels 
of a SR-AIII transgene in bone marrow and elicited peritoneal macrophages 
(Gough et al. 2001). More recently we have shown the utility of the CD68 pro­
moter intron 1 cassette to direct macrophage-specific expression of an IL-I0 
transgene in transgenic mice. Macrophages of these transgenic mice constitu­
tively express high levels of the deactivating cytokine IL-I0 and display pro­
found changes in their response to bacterial pathogens. No transgene expression 
is detected in neutrophils, B cells or T cells (Lang et al. 2002). These initial ex­
periments suggest that CD68 transcriptional regulatory sequences may be useful 
for directing transgene expression in cells of the mononuclear phagocyte lin­
eage. One reason for the success of the CD68 vector may be the inclusion of the 
CD68 intron close to the 5' end of the transgene. 
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3 
Gene Delivery to Macrophages Using Viral and Non-viral Vectors 

3.1 
Retroviral Vectors 

Retroviruses have been used widely in gene therapy protocols and as a vehicle 
for gene delivery to primary cells, including bone marrow progenitor cells. First 
generation retroviral vectors were of limited usefulness in macrophage trans­
duction because they were only able to deliver trans gene expression in dividing 
cells. More recently, developed recombinant lentiviral vectors have shown great 
promise in gene delivery to a wide range of cell types in vivo (Somia and Verma 
2000). The most spectacular example of the power of this technology is shown 
by expression of GFP in every tissue of an adult mouse following transduction 
of single-cell mouse embryos with a recombinant lentiviral vector (Lois et aI. 
2002). The majority of retroviral vectors rely on viral or housekeeping gene pro­
moters to direct transgene expression. However, a recent paper by Cui et aI. 
compared the efficiency of self-inactivating lentiviral vectors containing the pro­
moter of the housekeeping gene EF-1a or the class II gene HLA-DRa to drive 
GFP expression in antigen-presenting cells following infection of human CD34+ 
bone marrow-derived progenitor cells. The HLA-DRa promoter efficiently tar­
geted GFP expression to differentiated DCs in non-obese diabetic, severe com­
bined immunodeficiency (NOD/SCID) mice eng rafted with human haematopoi­
etic stem cells (Cui et aI. 2002). This report shows the feasibility of developing 
myeloid-restricted trans gene expression in vivo through development of retrovi­
ral vectors containing macrophage or DC-specific promoters. 

3.2 
Adenovirus-Mediated Gene Transfer 

Recombinant adenoviruses offer several significant advantages over retroviral 
vectors for gene delivery, notably the ability to routinely prepare high titres of 
recombinant virus and the ability to efficiently infect non-dividing cells. Re­
combinant adenoviruses have been used to drive heterologous gene expression 
in human macrophages and DCs cultured ex vivo. Examples include the restora­
tion of respiratory burst in monocyte-derived macrophages from patients with 
X-linked chronic granulomatous disease using a recombinant adenovirus en­
coding the gp91 ph ox subunit (Schneider et aI. 1997), MUCl gene transduction 
of human blood-derived DCs (Maruyama et aI. 2001) and modification of mu­
rine DCs to secrete the CC chemokine macrophage-derived chemokine (MDC) 
(Kikuchi and Crystal 2001). There are also reports of recombinant adenovirus 
transduction of tissue resident macrophages in vivo, for instance the study of 
Wheeler et aI., which demonstrated transgene expression in Kupffer cells in 
mice infected with a recombinant adenovirus (Wheeler et aI. 2001). Not all tis­
sue-resident macrophages are equally susceptible to adenovirus infection due to 
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differences in the level of expression of the cell-surface integrins that mediate 
adenoviral gene entry into cells. It has been reported that alveolar macrophages 
are refractory to adenovirus infection and that this block to infection is not alle­
viated by treatment with M-CSF (Kaner et al. 1999; Conron et al. 2001). One ap­
proach that might be adopted to circumvent this obstacle to in vivo gene deliv­
ery would be the development of recombinant adenoviral vectors with altered 
viral coat proteins (Wickham 2000). 

For experiments where primary cells are manipulated ex vivo there is no 
strict requirement for including a macrophage or DC-specific promoter in the 
adenovirus vector. However, the utility of recombinant adenoviruses or adeno­
associated adenoviruses for in vivo gene delivery could be greatly enhanced by 
developing adenoviral vectors containing macrophage-specific promoters. We 
have made a recombinant adenovirus that uses the human CD68 promoter to 
drive expression of a soluble form of the human scavenger receptor (Wickham 
2000) and we are developing recombinant viral vectors that include both the 
CD68 promoter and the macrophage-specific enhancer element within the first 
intron of the CD68 gene. 

3.3 
Non-Viral Vectors 

A number of different compounds have been developed that facilitate DNA entry 
into cultured cells in vitro, and some of these compounds have been shown to 
mediate DNA delivery in vivo. Peritoneal macrophages have been shown to take 
up naked plasmid DNA via a non-scavenger receptor-mediated mechanism, al­
though this process is very inefficient (Takakura et al. 1999). One approach to 
directing DNA delivery specifically to macrophages uses potential ligands for 
known macrophage receptors. The first example of receptor-mediated gene 
transfer to macrophages used DNA coupled to a ligand for the macrophage 
mannose receptor (Ferkol et al. 1996). Attempts to use this technology to deliver 
an alpha1 antitrypsin gene to alveolar macrophages in vivo were very inefficient 
(Ferkol et al. 1998). Recent papers have used mannose coupled to polyethylen­
imine (PEl) to deliver DNA to DCs (Diebold et al. 1999; Diebold et al. 2001) and 
Kawakami et al. have explored the possibility of using mannosylated, fucosylat­
ed and galactosylated liposome-DNA complexes for macrophage-specific gene 
delivery (Kawakami et al. 2000a,b). 

One interesting approach to in vivo protein, drug or DNA delivery to selected 
cell populations has been developed by the laboratory of Seppo YHi-Herttuala. 
Lehtolainen et al. constructed a novel endocytic receptor in which the C-termi­
nalligand-binding domain of the bovine scavenger receptor has been replaced 
with avidin. This "scavidin" receptor behaves as a novel endocytic receptor that 
binds and internalises biotinylated molecules (Lehtolainen et al. 2001). Macro­
phage-restricted expression of this or similar novel receptors could allow for 
highly selective delivery of therapeutic compounds to macrophages in vivo. 
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4 
Future Prospects 

Significant progress has been made towards identifying important regulatory el­
ements for macrophage-specific gene expression but we are still some way from 
having a macrophage expression vector that will reproducibly yield high-level 
expression in macrophage populations in vivo. The identification of potentiallo­
cus control regions in the human c-fes and the murine spi-l genes is an exciting 
development in the field and analysis of these regions may reveal important mo­
lecular mechanisms that underlie the development of the mononuclear phago­
cyte lineage. It will be very interesting to see if these sequences can be used to 
develop macrophage-specific expression vectors. 

Table 1 shows that the human SR-A promoter has found the most widespread 
application in directing macrophage-specific expression in transgenic mice so 
far, and the usefulness of the SR-A promoter may be augmented by changes in 
vector design such as the introduction of heterologous introns into the primary 
transcription unit and careful selection of poly A addition sequences (c. Glass, 
personal communication). Most of the experiments we have discussed have used 
pronuclear microinjection of naked DNA to transfer trans gene expression con­
structs to the mouse germline. So far there have been few reports of attempts to 
incorporate macrophage-specific promoters into viral vectors that would allow 
for macrophage-specific expression following transduction of bone marrow-de­
rived stem cells or haematopoietic progenitor cells. 

All the examples of macrophage gene targeting that we have discussed in this 
review have been aimed at directing constitutive transgene expression in macro­
phages. Recently we have used human CD68 sequences to drive IL-10 expression 
in transgenic mice, and mice with more than two copies of the trans gene had 
very high serum levels of IL-lO and died from opportunistic bacterial infections 
(Lang et al. 2002). This observation suggests that for some transgenes it will be 
important to start designing vectors that allow for inducible macrophage gene 
expression. Currently, inducible gene expression systems based on the bacterial 
Tet repressor and the tetracycline analogue doxycycline seem to offer the 
best prospects for mediating regulated gene expression in transgenic mice 
(Lewandoski et al. 2001). The development of an inducible macrophage expres­
sion system would allow a detailed appreciation of macrophage function in a 
whole range of pathological settings, ranging from endotoxic shock to athero­
sclerosis. 

Impressive preliminary results have been obtained using naked DNA to in­
duce humoral and cellular immune responses to test antigens in animal systems. 
The success obtained using DNA vaccine prime, recombinant virus boost vacci­
nation protocols has focused attention on generating specific immune responses 
to candidate antigens derived from infectious disease agents or tumours (Hanke 
et al. 1999). The ability to target macrophage and DC populations in vivo could 
have very important consequences for our ability to develop immunomodula­
tion protocols for therapeutic benefit. Of especial interest would be switching a 
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predominantly Th2-type immune response to a more Thl-type immune re­
sponse in allergic asthma or the induction of immune tolerance in transplanta­
tion or autoimmunity. 

It is our belief that progress in understanding the basic biology of macro­
phages will yield benefits in developing new treatments for pathologies charac­
terised by monocyte recruitment, macrophage differentiation or macrophage 
dysfunction such as atherosclerosis, arthritis and lysosomal storage disorders. 
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Abstract The integrins are a family of heterodirneric adhesion receptors present 
on virtually every cell in metazoan organisms. Macrophage integrins are in­
volved in adhesion to extracellular matrix and to other cells, in phagocytosis, 
and in cell migration and spreading. Macrophage integrins also transduce sig­
nals from the extracellular environment, both through activation of specific ki­
nase cascades and through modulation of cytoskeletal elements. The ligand­
binding ability of macrophage integrins can be regulated by environmental cues 
including growth factors, lipid mediators, bacterial peptides, and fragments of 
complement, clotting, and other proteins that may accumulate at sites of inflam­
mation. In addition, integrins can function as components of multimolecular 
plasma membrane complexes that include tetraspanins, proteases, and other re­
ceptors. These multimolecular complexes can be endowed with functional prop­
erties not inherent in the isolated components. This review summarizes current 
understanding of the complex biology of macrophage integrins. The involve­
ment of integrins in many macrophage processes fundamental to the function 
of these cells for inflammation and host defense makes them double-edged 
swords as candidates for therapeutic intervention. Beneficial effects of broad in-
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tegrin blockade in ameliorating idiopathic inflammation may be accompanied 
by unacceptable susceptibility to infection or other deleterious side effects. 
However, more specific blockade of less widely expressed integrins holds the 
promise of a better therapeutic effect. For example, recent studies in animals 
suggest potential therapeutic use for blockade of osteoclast aV {33 in osteoporo­
sis and of T-cell and monocyte al{31 and a2{31 in arthritis. Further understand­
ing of the molecular mechanisms through which macrophage integrins control 
key events in a variety of diseases may lead to the development of inhibitors of 
even greater specificity. The integrins remain appealing therapeutic targets be­
cause of their central role in macrophage biology. 

Keywords Adhesion, Affinity modulation, Cytoskeleton, Dietary fatty acids, 
Extracellular matrix, I CAM -1, Macrophages, Migration, Phagocytosis, Signal 
transduction, VCAM-l 

The integrins are a family of 22 adhesion receptors that recognize a wide variety 
of ligands, including: various proteins and proteoglycans of basement mem­
branes and extracellular matrix; members of the immunoglobulin superfamily 
on cell surfaces; and potentially some anionic phospholipids. Integrins are pres­
ent on all nucleated cells and on platelets; only erythrocytes are apparently de­
void of integrins, although relatively mature erythrocyte precursors do express 
these receptors. Integrins are involved in leukocyte proliferation, maturation, 
migration, activation, and multiple effector functions including phagocytosis, 
cytotoxicity, synthesis of cytokines, and activation of the nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase. Based on the importance of integrins 
in leukocyte migration to and activation at sites of inflammation, these recep­
tors have for some time been considered excellent targets for therapy of inflam­
matory diseases. Recently, understanding of the critical role of osteoclast inte­
grins has led to great enthusiasm for targeting these integrins to prevent or treat 
osteoporosis. After a brief review of general aspects of integrin structure and 
function, this review will consider specifically macrophage integrins and the 
physiologic and pathologic processes in which they are involved, and ultimately 
the potential therapeutic applications of anti-integrin therapy to treat diseases 
in which macrophages and related cells may have an important role. 

1 
Integrin Structure 

All integrins are heterodimers of two type I membrane proteins (N terminal on 
the extracytoplasmic face of the membrane) that function primarily as adhesion 
receptors. There are 17 known a chain proteins (aI-all, aM, aL, aX, aD, aV, 
aE) and 8 known {3 chain proteins ({31-{38); various a and {3 chains combine in 
the endoplasmic reticulum to create a family of 22 cell surface receptors. The in­
teractions between the two chains are complex, and failure to associate appro­
priately leads to failure of secretion. Recently, the crystal structure of the inte-
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Fig.1A-C Integrin structure. A Structure of integrin aVf33 based on the crystallographic data from 
Xiong et al. (2001). B The extensive contact between the f3 propeller domain of the a chain and the 
f3A domain of the f3 chain provides the interface for ligand binding. C For integrins that contain an I 
domain (aA domain, C) in the a chain, this domain likely interacts with the a/ f3 interface created by 
the f3 propeller and the f3A domain and provides an independent ligand binding face. (Reproduced 
from Humphries and Mould 2001, with permission) 

grin aVf33 was solved (Xiong et al. 2001). A key feature of the structure is a pre­
viously predicted "beta-propeller" domain in the a chain with heptad symme­
try, reminiscent of the structure of the beta chain of heterotrimeric G proteins 
(Springer 1997). The aminoterminal domain of the 13 chain (the so-called f3A 
domain) interacts with this beta propeller structure and has a fold similar to the 
alpha chain of heterotrimeric G proteins, as well as to domains in a variety of 
extracellular molecules, including von Willebrand factor. The interface between 
the beta propeller and the f3A domain closely resembles the interface between 
alpha and beta chains in heterotrimeric G proteins. Ligands for aV 133 are 
thought to bind at this interface between a and 13 chains (Fig. 1); this has been 
confirmed very recently for the peptide ligand Arg-Gly-Asp (Xiong et al. 2002). 
Carboxy terminal to the f3A domain are four highly disulfide bonded epithelial 
growth factor (EGF)-like domains which also participate in interaction with the 
a chain (Fig. 1). Some a chains have an additional domain with high homology 
to the f3A domain, also called the A or I (for inserted) domain, which is inserted 
between spokes 2 and 3 of the beta-propeller structure. When this a chain I do-
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main is present, it accounts for most if not all ligand binding by the integrin 
(Fig. 1). Integrin a chains containing this domain include aI, a2, aL, aM, aX, 
and aD. Historically and experimentally, an important feature of this domain is 
its ability to fold on its own, allowing important insights into integrin function. 

When the first I domain (from aM) was crystallized, two different structures 
were noted which depended on the divalent cation used in the crystallization 
process. The difference between the two structures was a small change in the di­
valent cation binding site and a much greater shift in the position of an alpha 
helix at the carboxy terminus of the domain. It is now clear that these two struc­
tures represent conformations which differ in affinity for ligand. This confor­
mation-dependent affinity change can account for at least part of the well-docu­
mented ability of integrins to alter their ligand binding properties in response 
to cell activation ("inside-out signaling"). A caveat to this hypothesis is that it 
would apply only to those few integrins with a chain I domains. However, if the 
{3A domain, which is structurally homologous to this a chain I domain, can un­
dergo a similar conformational change in response to cell activation, the ability 
of the {3A domain to assume two distinct conformations could go a long way to­
ward explaining cellular regulation of ligand binding for non-I domain-contain­
ing integrins. The recent crystal structure of aV {33 with its peptide ligand shows 
that ligand indeed can induce conformational changes in the {3A domain (Xiong 
et al. 2002), consistent with this hypothesis about integrin activation. In this re­
spect, the homology of integrins with heterotrimeric G proteins is quite intrigu­
ing; it appears that nature has conserved a specific molecular mechanism for 
communicating cell activation in two quite disparate pathways. 

Understanding of the mechanism for regulation of ligand binding by I do­
main-containing integrins has led to the generation of a unique reagent for inhi­
bition of lymphocyte function associated antigen (LFA)-1 (aL{32) function. 
Shimaoka et al. (2001) created a soluble I domain that was locked into the high­
affinity conformation by introduction of a disulfide bond at relevant sites in the 
domain. This constitutively high-affinity receptor had almost 10,000-fold in­
creased affinity for intercellular adhesion molecule (rCAM)-1 compared to wild­
type I domain or intact aL{32 and acted as an inhibitor of aL{32 function both in 
vitro and in vivo. To this point, only monoclonal antibodies have been available 
to inhibit aL{32 function; the new inhibitor has the advantage that it is smaller 
and, at least theoretically, more readily diffusible to sites where leukocyte aL{32 
might be engaged outside the vasculature. 

2 
Integrin Expression in Macrophages and Macrophage-like Cells 

Monocytes and macrophages constitutively express integrins of the {31, {32, and 
{3S families (Table 1). Of the 12 known {31 integrins, monocytes and macro­
phages have been shown to express aI, a2, a3, a4, as, and a6 associated with 
{31. These cells also constitutively express aL and aM associated with {32. In hu­
mans, numerous macrophage populations also express aX{32 (CDllc/CDlS), and 
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Table 1 Monocyte and macrophage integrins 

{3 chain family 

{31 

{32 

{33 
{3S 
{37" 

Associated a 

a 1 
a2 
a3 
a4 
as 
a6 
aM 
aL 
aX 
aD 
aV 
aV 
a4 
aE 

Ligands 

Collagen 
Collagen, laminin 
Laminin 
Fibronectin, VCAM-l 
Fibronectin 
Laminin 
ICAM-l , fibrinogen, othersb 

ICAM-l, ICAM-2 
Fibrinogen 
ICAM-3 
Many RGD-containing proteins 
Similar to aV {33 
MADCAM-1, fibronectin 
E-cadherin 

"For a discussion of ligands for aM{32, see Brown (1991), Ross and Vetvicka (1993), Ehlers (2000), and 
Humphries and Mould (2001) 

bThere is a single report of {37 expression on macrophages 

expression of this receptor increases during monocyte differentiation to macro­
phages, but in mouse this ICAM-3 receptor seems to be restricted to dendritic 
cells. A fourth 132-associated a chain, aD, also seems to be expressed to a greater 
extent on tissue macrophages than monocytes. Coordinate expression of aX 
and aD is not surprising in view of their tight linkage (11.5 kbp apart) on chro­
mosome 22. aV is the integrin a chain with the most promiscuous f3 chain pair­
ings, since it can interact with f31, f33, f35, f36, and f38. On human monocytes and 
murine bone marrow macrophages, the major aV-containing integrin is aVf35. 
Of importance, during the maturation of monocytic cells to osteoclasts, aV f33 
expression increases markedly, and aVf35 expression diminishes. Indeed aVf33 
is the major osteoclast integrin, and it appears to be important both for migra­
tion of osteoclasts to and on bone and for regulation of osteoclast survival 
(McHugh et al. 2000). Unligated aVf33 leads to rapid apoptosis (Stupack et al. 
2001). f37 integrins (aEf37 and a4f37), expressed on gut-homing lymphocytes, 
are not present on blood monocytes, but can be induced during inteferon 
(IFN)-y-mediated differentiation (Tiisala et al. 1995). These integrins are present 
on macrophages in liver, lung, and lymph node sinuses, suggesting that they 
may be markers of differentiation from monocyte to tissue macrophage. 

3 
Integrins in Macrophage Biology 

There have been numerous reviews of leukocyte integrin function (e.g., Madri 
and Graesser 2000; Ley 2001; Woods and Shimizu 2001; Bunting et al. 2002), so 
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this section will only highlight briefly the major areas of relevance to macro­
phage biology. 

3.1 
Integrins in Monocyte/Macrophage Extravasation 

Integrins can mediate both cell-cell and cell-extracellular matrix adhesions. In­
tegrins are necessary for monocyte migration from blood to tissue, which is 
necessary for macrophage accumulation at sites of inflammation. Whether 
monocyte extravasation is necessary for replenishing tissue macrophages dur­
ing normal homeostasis is less certain. There is evidence both for self-renewal 
of tissue macrophages and for repletion of this population from the bone mar­
row (Naito et al. 1996). Essentially all studies of integrin involvement in mono­
cyte extravasation have been done in the context of inflammation. The first 
point of integrin engagement is during monocyte-endothelial interaction. Firm 
integrin-mediated adhesion of monocyte to endothelium is required for suc­
cessful extravasation; the major integrins involved in this appear to be aL{32 
and a4{31. These integrins appear to have overlapping functions in mediating 
firm adhesion. a4{31 recognizes vascular cell adhesion molecule (VCAM)-l, an 
endothelial ligand induced at sites of inflammation. aL{32 is known to interact 
with both ICAM-1 and ICAM-2 expressed on endothelial cells; it has also recent­
ly been shown to recognize the endothelial tight junction protein junctional ad­
hesion molecule OAM)-l may be important in initiating leukocyte migration 
through the interendothelial junctions (Ostermann et al. 2002). Presumably, 
mechanisms of transendothelial migration are similar in maintenance of the tis­
sue macrophage pool in homeostatic conditions; since aL{32 can recognize en­
dothelialligands that do not require inflammation for expression (ICAM-2 and 
JAM-1), it would be a leading candidate to mediate monocyte-endothelial inter­
action in this circumstance. Consistent with this, unperturbed {32 integrin-defi­
cient mice have decreased numbers of pulmonary dendritic cells and macro­
phages (Schneeberger et al. 2000). However, the defect is only partial, suggesting 
that there are alternative pathways for maintenance of the tissue macrophage 
pool. 

Transendothelial migration also is important in dendritic cell migration from 
tissues to lymph nodes after antigen exposure. In this case, cells must cross the 
lymphatic endothelium to gain entry into the lymph nodes where they can in­
teract with T cells to initiate an immune response. There is some evidence that 
this migration may be mediated by a4{31 (Zou et al. 2001), although other inte­
grins may contribute as well (Weiss et al. 2001). a4{31 expression is increased 
during the dendritic cell differentiation that occurs concomitant with migration 
back to lymph nodes (Puig-Kroger et al. 2000). "Reverse transmigration" (move­
ment across endothelium from the abluminal to the lumenal side) may be im­
portant in dendritic cell entry into the afferent lymphatic circulation in order to 
migrate to the lymph nodes. In vitro, monocyte maturation to dendritic cells is 
required for this migration, and the maturation process requires both phagocy-
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tosis of antigen and interaction of monocytes with collagen (Randolph et al. 
1998). This may implicate integrins not only in the transmigration process but 
also in differentiation to dendritic cells. However, no investigation of the roles 
of specific integrins in either reverse transmigration or dendritic differentiation 
of monocytes has been reported. 

3.2 
Macrophage Interaction with Extracellular Matrix 

In addition to trans endothelial migration, macrophage integrins mediate both 
cell migration through tissue and stable adhesion at sites of inflammation, 
wound repair, and other perturbations of homeostasis. Macrophages have not 
to date been a popular model system for study of the mechanisms of cell migra­
tion, presumably because they are neither as motile as neutrophils or lympho­
cytes nor as easy to transfect as fibroblasts. Progress in understanding integrins 
and cell migration in these other model systems has been rapid and reviewed 
extensively in recent years (e.g., Eliceiri 2001; van der Flier and Sonnenberg 
2001; Woods and Shimizu 2001) and will not be reviewed in detail here. Among 
the key enzymes involved in integrin-mediated adhesion to and/or migration on 
extracellular matrix are focal adhesion kinase (FAK), PI 3-kinase, and src family 
kinases. In fibroblasts, endothelial cells, and T cells, FAK can act as a scaffolding 
molecule for assembly of the other kinases together with certain key structural 
molecules, such as paxillin, upon integrin ligation. However, FAK itself is only 
minimally expressed in macrophages which instead express a homologue called 
pyk2 (Duong and Rodan 2000). While there is good evidence that pyk2 phos­
phorylation can be activated by adhesion, whether it serves an analogous role to 
FAK in macrophage migration remains debated. Despite this caveat, there is ex­
cellent evidence that phosphatidyl inositol (PI) 3-kinase and src family kinases 
are involved in integrin mediated adhesion and migration (Suen et al. 1999; 
Ridley 2001). This suggests that, despite differences in detail, the basic mecha­
nisms of regulation of integrin function are similar in macrophages and fibro­
blasts. 

A potentially important role for integrin-extracellular matrix interactions in 
macrophages is to regulate phagocytic function. Interaction with several differ­
ent extracellular matrix proteins, including fibronectin, collagen, and laminin 
stimulates phagocytosis via both Fcy and complement receptors (Pommier et al. 
1983; Bohnsack et al. 1985; Newman and Tucci 1990). This activation of phago­
cytic function occurs in polymorphonuclear leukocytes as well, but may have a 
more complex regulation in that cell type. The aVf33 integrin has a major role 
in this activation and requires association with a second plasma membrane pro­
tein, CD47, to initiate the signal. Interferon-y treatment can downregulate extra­
cellular matrix-mediated activation of macrophages (Wright et al. 1986), sug­
gesting that immunologically activated macrophages may lose some integrin 
signaling mechanisms; the molecular basis for this phenomenon is unknown. 
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3.3 
Macrophage Integrins in Macrophage Cell-Cell Interactions 

Macrophages and dendritic cells participate in a variety of cell-cell interactions 
outside the vasculature as an essential aspect of their biological functions. For 
example, they must interact with other cells of the immune system (T cells and 
B cells), with epithelial cells in the lung and gut, with virally infected cells as 
part of the immune response, with tumor cells as part of the innate anti-tumor 
response, and with bone marrow stromal cells during development. Further­
more, macrophages are important in removal of apoptotic cells during develop­
ment and in adult life. 

Interaction with bone marrow stroma seems to depend on interactions be­
tween a4,81 on monocyte precursors and VCAM-1 expressed on stromal cells 
(Teixido et al. 1992; Harada et al. 1998; Berrios et al. 2001; Hidalgo et al. 2001). 
,82 integrins may contribute to this interaction as well; they are clearly impor­
tant in interactions with tumor cells, infected fibroblasts, and possibly some epi­
thelial cells that express ICAM-1 (Shang and Issekutz 1998; Rosseau et al. 2000; 
Chang et al. 2002). However, in the case of macrophage interactions with Band 
T cells, most of the emphasis in studies to date has been on lymphocyte integrin 
interactions with macrophage immunoglobulin (Ig) superfamily ligands, both 
for formation of the immunologic synapse (which involves interaction of T cell 
aL,82 with ICAM-1 on dendritic cells or other antigen-presenting cells) and for 
T-cell homing to thymus or B-cell homing to lymph nodes. Nonetheless, both B 
and T cells can express ICAM-1 and ICAM-3, so it seems likely that some contri­
bution to cell-cell interactions may arise from recognition of these lymphocyte 
Ig ligands by macrophage integrins. 

In contrast to the almost exclusive use of a4,81 and,82 integrins in these cell­
cell interactions, several groups have described a role for aV integrins in macro­
phage recognition of apoptotic cells (Leverrier and Ridley 2001; Ren et al. 2001). 
Because of the large number of receptors involved in recognition of apoptotic 
cells by macrophages (Fadok and Henson 1998), inhibition of aV integrins, ei­
ther with antibody or arginine-glycine-aspartic acid (RGD) peptides, only leads 
to about 50% diminution of phagocytosis of apoptotic cells. Nonetheless, trans­
fection of aV,85 can confer ability to recognize and ingest apoptotic cells on 293 
epithelial cells (Albert et al. 2000), and ingestion is initiated by a signaling path­
way reminiscent of the pathway defined by studies of apoptotic cell phagocyto­
sis in Caenorhabditis elegans (Henson et al. 2001). Phagocytosis of apoptotic 
cells is anti-inflammatory because these targets induce macrophage production 
of transforming growth factor (TGF)-,8. It has been reported that ligation of aV 
integrins leads to TGF-,8 synthesis (Freire-de-Lima et al. 2000), which would 
suggest that these integrins are critical to the macrophage response to apoptotic 
cells, but this view has been challenged recently (Huynh et al. 2002). 
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4 
Integrins and the Macrophage Cytoskeleton 

Integrins are named because they integrate the extracellular matrix with the in­
tracellular matrix, or cytoskeleton (Tamkun et al. 1986). There are direct con­
nections between integrin cytoplasmic domains and the actin cytoskeleton, me­
diated via talin, vinculin, and a-actinin. While no direct links are known be­
tween integrins and other components of the cytoskeleton, there is evidence that 
indirect interactions between microtubules and integrins may regulate integrin 
avidity in macrophages (Zhou et al. 2001). Perhaps this is un surprising, given 
the extensive crosstalk among various structural elements of the cytoskeleton, 
but the involvement of micro tubules in regulating integrin adhesion points to 
potential new mechanisms of cellular control and new targets for pharmacologic 
regulation. Moreover, the connection between microtubules and integrins may 
be more fundamental than initially apparent, since the microtubule polymeriza­
tion inhibitor colchicine blocks integrin-mediated but not FcyR-mediated pha­
gocytosis (Munthe-Kaas et al. 1976). Possibly, microtubule-dependent delivery 
of intracellular vesicle membranes is important for integrin regulation. 

5 
Integrin Signaling in Migration and Phagocytosis 

Macrophage migration and spreading on extracellular matrix proteins are de­
pendent on integrin contacts with cytoskeleton. The basic paradigm developed 
from work in fibroblasts-that different rho family GTPases regulate distinct as­
pects of cytoskeletal assembly-seems to operate in macrophages as well. cdc42 
and rac are apparently important in filapodial and lamellar extension, while rho 
is involved in the generation of contractility. In macrophage migration, both rac 
and rho are required for migration, and rac seems to be activated downstream 
of PI 3-kinase, at least in response to CSF-1 (Ridley 2001). In contrast, the re­
quirement for cdc42 is not for migration but for appropriate sensing of a che­
motactic gradient; when cdc42 is inhibited, macrophages migrate randomly 
(Ridley et al. 1999). One difference between fibroblasts and macrophages is that 
actin stress fibers are less prominent in macrophages than fibroblasts, and "fo­
cal contacts" -the linear arrangement of integrins at adhesion sites in response 
to the contractile force of the stress fibers-are very much more frequent in fi­
broblasts. Instead, rhoA-acting through Rho kinase and perhaps other effec­
tors-is very important for the contractile force on the uropod required for 
macrophage migration. Inhibition of rhoA or rho kinase leads to macrophages 
that have lengthy, extended uropods, and fail to migrate (Worthylake et al. 
2001). 

Recent work has emphasized that, in contrast to migration, integrin-mediated 
phagocytosis requires rho, but is independent of cdc42 and rac (Caron and Hall 
1998). This is quite distinct from FcyR-mediated ingestion, which is dependent 
on cdc42 and rac, but independent of rho. The exclusive dependence of inte-
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grin-mediated phagocytosis on rho may correlate with the morphology of this 
sort of ingestion. In FcyR-mediated phagocytosis, macrophage membrane pro­
trudes around the target; in contrast, in integrin-mediated phagocytosis, target 
particles sink into the cytoplasm, and there is little or no protrusion of mem­
brane around the particle, emphasizing the contractile rather than protrusive 
functions of cytoskeleton. This dependence on contractility is consistent with 
the requirement for rho guanosine triphosphate (GTP)ase, which seems most 
closely associated with this cytoskeletal function. Almost all studies of integrin­
mediated phagocytosis have examined aMf32; it remains to be determined 
whether the rho dependence of the process is true for integrins in general. 
There are many examples of macrophage phagocytosis via other integrins, in­
cluding aVf33, aVf35, and a5f31. 

There are other distinctions between the signals required for integrin-mediat­
ed spreading and phagocytosis. While syk is required for integrin f32-dependent 
cell spreading in macrophages (Vines et al. 2001), it is not necessary for aMf32-
mediated phagocytosis (Kiefer et al. 1998). Indeed, even quite broadly reactive 
tyrosine kinase inhibitors do not block aMf32-mediated phagocytosis (Allen 
and Aderem 1996). Consistent with a different requirement of tyrosine kinases 
in integrin-dependent adhesion and phagocytosis, macrophages that fail to ex­
press the transmembrane tyrosine phosphatase CD45 show abnormal adhesion 
and spreading, but ingest normally (Roach et al. 1997). Together, these studies 
suggest that integrin ligation can activate a tyrosine kinase-initiated pathway in 
macrophages involving syk that likely leads to cdc42 and rac activation down­
stream from syk activation of PI 3-kinase. This pathway is required for events at 
the leading edge of an orientated macrophage, including lamellar protrusion, 
that are required for migration and spreading. In contrast, this pathway is not 
required for integrin-mediated ingestion. The data imply that there must be a 
pathway for rho activation during phagocytosis-independent of tyrosine ki­
nases-that is sufficient to support integrin-mediated ingestion. Rho can be ac­
tivated by certain G protein-coupled receptors, and there is evidence that inte­
grin ligation can activate heterotrimeric G protein signaling (Erb et al. 2001; 
Wei et al. 2001). Thus, it is intriguing to speculate that integrin-mediated inges­
tion may be initiated or sustained by a pathway involving heterotrimeric G pro­
tein activation of rho. It is possible that protein kinase C, which also is required 
for integrin-mediated ingestion (Allen and Aderem 1995), synergizes with rho 
to activate phospholipase D (Du et al. 2000). Phospholipase D activity is closely 
correlated with integrin-mediated phagocytosis (Kusner et al. 1996; Serrander et 
al. 1996). Given these distinctions, it might be possible to target pharmacologi­
cally either integrin-mediated phagocytosis or integrin-mediated adhesion and 
migration without affecting the other function. This could be useful in modulat­
ing, e.g., presentation of particulate antigens, without interfering with other 
host defense functions of the macrophages. 
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6 
Integrins as Components of Multimolecular Complexes on Macrophages 

An emerging area of understanding is that integrins can function as compo­
nents of multimolecular complexes at the plasma membrane that have unique 
functions that are more than the sum of the individual receptors. Although not 
the first to be discovered, complexes of growth factor receptors and integrins 
have received the most intense scrutiny because it is clear that these complexes 
are responsible for many of the survival or proliferative signals initially attribut­
ed to growth factor signaling in anchorage-dependent cells. For many years, it 
has been known that most nontransformed cells require adhesion for survival 
or proliferation, even in the presence of adequate growth factor. This role for 
adhesion is now clearly attributable to integrin signaling. While fibroblasts un­
dergo only growth arrest on loss of adhesion, endothelial cells and epithelial 
cells die from a form of apoptosis termed anoikis ("homelessness"). Even fibro­
blasts require adhesion for survival in the absence of growth factors (!lie et al. 
1998). In fibroblasts, endothelial cells, and epithelial cells, complexes among in­
tegrins and EGF or platelet-derived growth factor (PDGF) receptors have been 
identified. The growth factor receptors in these complexes are phosphorylated 
to a greater extent and more efficiently signal microtubule-associated protein 
(MAP) kinase activation than receptors not associated with integrins (DeMali et 
al. 1999; Yu et al. 2000). In addition to survival or proliferation, these complexes 
may be important in cell migration in response to growth factors. Although 
these phenomena have not been studied extensively in macrophages, they may 
have relevance to macrophage biology. Colony-stimulating factor (CSF)-l with­
drawalleads to both cell rounding and apoptosis of murine macrophages (Pixley 
et al. 2001); both processes require the tyrosine phosphatase Src-homology-con­
taining phosphatase (SHP)-l (Roach et al. 1998; Berg et al. 1999), suggesting a 
possible functional link between the two phenomena. Moreover, deliberate inhi­
bition of adhesion induces apoptosis in bone marrow-derived macrophages, 
suggesting that these cells may undergo anoikis. Finally, genetic defects that lead 
to diminished adhesion (e.g., absence of the transmembrane tyrosine phospha­
tase CD45 or the integrin CD18) lead to rapid apoptosis on growth factor with­
drawal. These data are all consistent with an important role for cooperation be­
tween integrins and c-fms, the CSF-1 receptor, in macrophage biology. To date, 
no evidence about whether or not macrophage integrins form a complex with 
the CSF-I receptor has been published. 

A second multimolecular complex at the plasma membrane involves integrins 
and a family of proteins known as tetras pan ins (Berditchevski 2001). As their 
name suggests, the tetras pan in family all have four transmembrane segments, 
with a large extracellular loop between the third and fourth segment and short 
aminoterminal and carboxy terminal cytoplasmic domains. There are at least 26 
members of the tetraspanin family in higher eukaryotes, many of which have 
broad cellular distribution. There has been no systematic study of tetraspanin 
expression in macrophages, but several, including CD9 and CD81, which have 
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important integrin associations, are known to be expressed on macrophages. 
Tetraspanin-integrin complexes have been implicated both in cell adhesion and 
cell motility. Tetraspanins may contribute to these integrin-dependent phenom­
ena by recruiting important signaling enzymes, such as phosphatidylinositol 
4-kinase and protein kinase C, to sites of adhesion. Tetraspanins may also con­
tribute to regulation of integrin expression at the plasma membrane or recycling 
from coated pits. Very little investigation has been done to date on the role of 
these undoubtedly physiologically important complexes in macrophage integrin 
function. 

The association of specific integrins with particular proteases is important in 
cell migration through extracellular matrix, presumably because the interaction 
allows the adhesive integrin to direct the matrix degrading activity to specific 
sites on the cell surface. The association of matrix metalloproteinase (MMP)-2 
with aV{33 has been shown to be involved in angiogenesis (Brooks et al. 1998), 
and the protease and integrin seem to act synergistically, since while intact col­
lagen is not a ligand for aV {33, the integrin can recognize collagen that has been 
degraded by the MMP. Association of aV {36 with MMP-9 is implicated in metas­
tasis of colorectal cancer (Niu et al. 1998), and a2{31 ligation by collagen can in­
duce synthesis of MMP-1 (Jones and Walker 1997). Although macrophage 
MMPs have been implicated in a variety of chronic inflammatory and destruc­
tive diseases, such as arthritis, emphysema, and atherosclerosis, there has not 
been a systematic examination of the significance of the MMP-integrin interac­
tion for these diseases. 

A second example of protease-integrin association involves a multimolecular 
complex involving integrins and the urokinase receptor (uPAR). UPAR is a gly­
can phosphoinositol (GPI)-linked receptor that has been coprecipitated with 
aV{33, aM{32, a3{31, and as{31 in a variety of cells. Binding of the enzyme ligand 
plasminogen activator to uPAR enhances integrin-mediated adhesion and mi­
gration. The site of interaction of aM{32 with uPAR has been mapped to a region 
of the aM chain in the beta propeller domain. A peptide based on this aM se­
quence also inhibited uPAR association with a3{31 and as{31, suggesting that a 
common site on uPAR interacts with diverse integrins. Other GPI-linked recep­
tors can be physically associated with the aM{32 integrin, including FcyRIIIB 
and CD14 (Poo et al. 1995j Pfeiffer et al. 2001). FcyRIIIB function as a signaling 
or phagocytic receptor may depend on its association with aM{32. Finally, some 
transmembrane receptors (e.g., FcgRIIAj Petty and Todd 1996) physicallyasso­
ciate with specific integrinsj in these circumstances, integrins and associated re­
ceptors reciprocally influence each other's function. 

The best-studied example of a plasma membrane multimolecular complex in­
volving association of integrins with other adhesion receptors is the interaction 
of a subset of integrins with CD47 (Brown and Frazier 2001). CD47 is an Ig su­
perfamily member that has five transmembrane segments that can be coprecipi­
tated with {33 integrins and a2{3l. It also may associate with other integrins, per­
haps with affinity too low to be detected by coprecipitation. The known ligands 
for CD47 include thrombospondins, through which CD47 may participate in 
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recognition of the extracellular matrix, and signal regulatory protein (SIRP)a, a 
plasma membrane protein expressed on a variety of cells, through which CD47 
may participate in cell-cell interactions. The unusual structure of CD47 suggests 
that it can act as a signaling molecule, and there is abundant experimental evi­
dence that supports this hypothesis. In association with integrins, CD47 can ac­
tivate heterotrimeric G proteins, especially Gi (Brown 2001); this complex may 
be important in the integrin-mediated functions that appear to depend on het­
erotrimeric G protein signaling. However, it is clear that not all signaling by 
CD47 is inhibited by pertussis toxin; in these cases, the proximal signals from 
CD47 ligation are uncertain. Ligation of the integrin-CD47 complex can lead to 
cell migration, activation, and aggregation, and mice lacking CD47 have a defect 
in integrin-mediated cell activation that leads to a deficiency in host defense. 
The significance of the complex for macrophage biology specifically has not 
been studied in detail. 

7 
Therapeutic Inhibition of Macrophage Integrin Function 

The previous discussion makes it clear that there are a number of integrins ex­
pressed on macrophages that might be rational targets for therapeutic interven­
tion, but several conceptual problems exist that may limit the utility of thera­
peutic integrin blockade. The first problem is that integrins present on macro­
phages are usually expressed on other cells as well. Therefore, integrin inhibi­
tion might lead to undesired side effects because of blockade of essential func­
tions on these other cells. The second problem is redundancy in integrin func­
tion. For example, multiple {31 integrins recognize the extracellular matrix fibro­
nectin, so that inhibition of cell binding to this ligand could require inhibition 
of as many as six different integrins. At the same time, too broad an inhibition 
of integrins could lead to unwanted side effects. For example, inhibition of {32 
integrin function with monoclonal antibodies, although it has beneficial effects 
on acute survival from reperfusion injury (Winn et al. 1997), markedly increases 
susceptibility to bacterial infection (Mileski et al. 1993). Nonetheless, there are 
some diseases in which anti-integrin therapy has had clear utility. The greatest 
success to date has been the use of inhibitors of aIIb{33, the major platelet inte­
grin required for platelet aggregation, as acute anti-thrombotic therapy follow­
ing angioplasty (Coller 2001). 

There are several chronic inflammatory diseases that seem to be natural can­
didates for anti-macrophage integrin therapy because they are thought to play 
an important role in pathogenesis. These include multiple sclerosis, inflammato­
ry bowel disease, various arthritides, and atherosclerosis. At this point, the data 
for involvement of integrins comes primarily from in vitro studies or experi­
ments in animal models. Much of the work has focused on the integrin a4{31 be­
cause of its predominant expression on leukocytes and its importance for 
transendothelial migration of both lymphocytes and macrophages. Thus, inhibi­
tion of a4{31 has the possibility to block trafficking of these two cell types with-
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out significant effect on other biologic processes. Moreover, since polymorpho­
nuclear neutrophil (PMN) express little a4{31, blockade of this integrin has less 
potential to increase susceptibility to infection than blockade of {32 integrins, 
which are highly expressed on PMN. A humanized monoclonal antibody that 
blocks a4{31 function is now in clinical trials for both multiple sclerosis and 
Crohn's disease. Other potentially important targets are the collagen-binding in­
tegrins al{31 and a2{31 that are expressed more widely than a4{31. These two in­
tegrins are expressed on macrophages and on lymphocytes at sites of chronic 
inflammation, and inhibition of these integrins has a preventive or therapeutic 
effect in several murine models of chronic inflammation (de Fougerolles 2000). 
While most therapeutic effects of anti-a4{31 may be attributable to effects on 
lymphocyte trafficking, inhibition of al and a2 blocks inflammation in diseases 
that do not have a lymphocyte component, implicating a therapeutic effect of 
blockade of these molecules on macrophages. 

Because of the important role of macrophages in the pathogenesis of athero­
sclerosis and the early expression of VCAM-l (an a4{31 ligand) on endothelium 
overlying sites of intimal proliferation, atherosclerosis seems to be a good target 
for anti-integrin therapy (Li et al. 1993). Furthermore, ICAM-l (a ligand for 
aL{32 and aM(32) likely contributes to the atherogenic process, which is modest­
ly delayed in ICAM-l-deficient mice (Collins et al. 2000). While CDllb deficien­
cy does not have the same protective effect against atherogenesis (Kubo et al. 
2000), combined deficiency of aL{32 and aM{32 has not been investigated. Be­
cause a4 deficiency leads to embryonic lethality, atherosclerosis in a4-deficient 
mice has not been investigated. However, in some models, short-term treatment 
with anti-a4 antibodies or a4{31 blocking peptides reduces both monocyte and 
lipid accumulation in plaques (Huo and Ley 2001), suggesting the possibility 
that successful targeting of monocyte a4{31 could have a significant impact on 
generation of the atheromatous lesion. 

Finally, a very promising target for anti-integrin therapy is in treatment of os­
teoporosis, a disease caused by increased bone resorption by osteoclast, a blood 
monocyte-derived cell, relative to bone formation by osteoblasts. The multinu­
cleate osteoclast develops a specialized bone-apposed plasma membrane that is 
rich in the H+ ATPase proton pump, allowing secretion of acid into a space be­
tween the cell and the mineralized surface of the bone, that is thought to be im­
portant in the process of bone resorption. The fact that the pH of this compart­
ment is quite different from the surrounding medium implies that there must 
be a tight barrier between this compartment and the rest of the milieu of the os­
teoclast. It is thought that integrin aV {33-mediated adhesion is required for this 
tight seal. During differentiation from monocyte to osteoclasts, cells begin to 
express the integrin aV {33 at high levels. Moreover, aV /33 is present at the cir­
cumference of the acid bone-resorbing compartment. In mice, /33 deficiency 
leads to enhanced bone mineralization (osteosclerosis) (McHugh et al. 2000), 
and inhibitors of aV {33 significantly block bone resorption in several animal 
models of osteoporosis (Crippes et al. 1996; Engleman et al. 1997). Blockade of 
av/33 also inhibits tumor-induced angiogenesis and neovascularization at in-
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flammatory sites (Eliceiri and Cheresh 1999). While this anti-angiogenic effect 
is a potential problem, these antagonists apparently have no effect on already 
established vasculature. Indeed, the additional effect of antagonizing aV /33 may 
make this integrin a target in inflammation and cancer as well as osteoporosis. 

Because of the side effects associated with general inhibition of /32 integrins, 
these have been considered poor targets for therapeutic intervention. However, 
as we learn more about the signaling cascades associated with integrin ligation, 
it may be possible to develop more specific inhibitors that can block some as­
pects of integrin signaling without disturbing integrin-mediated adhesion and 
migration. Such a strategy might lead to blockade of consequences of chronic 
adhesion-for example, macrophage synthesis of growth factors and chemoat­
tractants for smooth muscle cells at atherosclerotic plaques-while allowing 
normal migration of PMN and macrophages to sites of acute infection. However, 
neither the molecular mechanisms required for activation of adhesion and mi­
gration-"inside out signaling" -or the signaling pathways impacted by inte­
grin engagement-"outside in signaling" -are known in sufficient detail to ex­
ploit this strategy for therapeutic purposes. This both justifies further basic re­
search into understanding the molecular mechanisms of regulation of integrin 
function and holds hope that the future will see important advances in manipu­
lation of integrin targets for therapeutic purposes. 

8 
References 

Albert,M.L., Kim,}.!., and Birge,R.B. 2000. alphavbeta5 integrin recruits the CrkII­
Dockl80-racl complex for phagocytosis of apoptotic cells. Nat.Cell BioI. 2:899-905 

Allen,L.A.H. and Aderem,A. 1996. Molecular definition of distinct cytoskeletal structures 
involved in complement- and Fc receptor-mediated phagocytosis in macrophages. 
J.Exp.Med. 184:627-637 

Allen,L.H. and Aderem,A. 1995. A role for MARCKS, the alpha isozyme of protein kinase 
C and myosin I in zymosan phagocytosis by macrophages. J.Exp.Med. 182:829-840 

Berditchevski,F. 2001. Complexes of tetraspanins with integrins: more than meets the 
eye. J.Cell Sci. 114:4143-4151 

Berg,K.L., Siminovitch,K.A., and Stanley,E.R. 1999. SHP-l regulation of p62(DOK) tyro­
sine phosphorylation in macrophages. J.BioI.Chem. 274:35855-35865 

Berrios,V.M., Dooner,G.J., Nowakowski,G., Frimberger,A., Valinski,H., Quesenberry,P.J., 
and Becker,P.S. 2001. The molecular basis for the cytokine-induced defect in homing 
and engraftment of hematopoietic stem cells. Exp.Hematol. 29:1326-1335 

Bohnsack,J.F., Kleinman,H., Takahashi,T., O'Shea,J.J., and Brown,E.J. 1985. Connective 
tissue proteins and phagocytic cell function: laminin enhances complement and Fc­
mediated phagocytosis by cultured human macrophages. J.Exp.Med. 161:912-923 

Brooks,P.C., Silletti,S., Von Schalscha,T.L., Friedlander,M., and Cheresh,D.A. 1998. Dis-
ruption of angiogenesis by PEX, a non catalytic metalloproteinase fragment with inte­
grin binding activity. Cell 92:391-400 

Brown,E. 2001. Integrin-associated protein (CD47): an unusual activator of G protein sig­
naling. J.Clin.Invest 107:1499-1500 

Brown,E.J. 1991. Complement receptors and phagocytosis. Curr.Opin.Immunol. 3:76-82 
Brown,E.J. and Frazier,W.A. 2001. Integrin-associated protein (CD47) and its ligands. 

Trends Cell BioI. 11:130-135 



126 E. J. Brown 

Bunting,M., Harris,E.S., McIntyre,T.M., Prescott,S.M., and Zimmerman,G.A. 2002. Leuko­
cyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 
integrins and selectin ligands. Curr.Opin.HematoI. 9:30-35 

Caron,E. and Hall,A. 1998. Identification of two distinct mechanisms of phagocytosis 
controlled by different Rho GTPases. Science 282:1717-1721 

Chang,Y.J., Holtzman,M.J., and Chen,C.C. 2002. Interferon-gamma-induced epithelial 
ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-depen­
dent c-Src tyrosine kinase activation pathway. J.BioI.Chem. 277:7118-7126 

Coller,B.S. 2001. Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb.­
Haemost.86:427-443 

Collins,R.G., Velji,R., Guevara,N.V., Hicks,M.J., Chan,L., and Beaudet,A.L. 2000. P-Selectin 
or intercellular adhesion molecule (ICAM)-l deficiency substantially protects against 
atherosclerosis in apolipoprotein E-deficient mice. J.Exp.Med. 191:189-194 

Crippes,B.A., Engleman,V.W., Settle,S.L., Delarco,J., Ornberg,R.L., Helfrich,M.H., Horton, 
M.A., and Nickols,G.A. 1996. Antibody to beta3 integrin inhibits osteoclast-mediated 
bone resorption in the thyroparathyroidectomized rat. Endocrinology 137:918-924 

de Fougerolles,A.R., Sprague,A.G., Nickerson-Nutter,C.L., Chi-Rosso,G., Rennert,P.D., 
Gardner,H., Gotwals,P.J., Lobb,R.R., and Koteliansky,V.E. 2000. Regulation of inflam­
mation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hy­
persensitivity and arthritis. J.Clin.Invest 105:721-729 

DeMali,K.A., Balciunaite,E., and Kazlauskas,A. 1999. Integrins enhance platelet-derived 
growth factor (PDGF)-dependent responses by altering the signal relay enzymes that 
are recruited to the PDGF beta receptor. J.BioI.Chem. 274:19551-19558 

Du,G., Altshuller,Y.M., Kim,Y., Han,J.M., Ryu,S.H., Morris,A.J., and Frohman,M.A. 2000. 
Dual requirement for rho and protein kinase C in direct activation of phospholipase 
D1 through G protein-coupled receptor signaling. MoI.BioI.Cell11:4359-4368 

Duong,L.T. and Rodan,G.A. 2000. PYK2 is an adhesion kinase in macrophages, localized 
in podosomes and activated by beta(2)-integrin ligation. Cell MotiI.Cytoskeleton 
47:174-188 

Ehlers,M.R. 2000. CR3: a general purpose adhesion-recognition receptor essential for in­
nate immunity. Microbes.Infect. 2:289-294 

Eliceiri,B.P. 2001. Integrin and growth factor receptor crosstalk. Circ.Res. 89:1104-1110 
Eliceiri,B.P. and Cheresh,D.A. 1999. The role of alphav integrins during angiogenesis: in­

sights into potential mechanisms of action and clinical development. J.Clin.lnvest 
103:1227-1230 

Engleman, V.W., Nickols,G.A., Ross,EP., Horton,M.A., Griggs,D.W., Settle,S.L., Ruminski, 
P.G., and Teitelbaum,S.L. 1997. A peptidomimetic antagonist of the alpha(v)beta3 in­
tegrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J.Clin.ln­
vest 99:2284-2292 

Erb,L., Liu,J., Ockerhausen,J., Kong,Q., Garrad,R.C., Griffin,K., Neal,C., Krugh,B., Santia­
go-Perez,L.I., Gonzalez,EA. et aI. 2001. An RGD sequence in the P2Y(2) receptor in­
teracts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal 
transduction. J.Cell BioI. 153:491-501 

Fadok,V.A. and Henson,P.M. 1998. Apoptosis: getting rid of the bodies. Curr.BioI. 8:R693-
R695 

Freire-de-Lima,C.G., Nascimento,D.O., Soares,M.B., Bozza,P.T., Castro-Faria-Neto,H.C., 
de Mello,EG., DosReis,G.A., and Lopes,M.E 2000. Uptake of apoptotic cells drives the 
growth of a pathogenic trypanosome in macrophages. Nature 403:199-203 

Harada,H., Kukita,T., Kukita,A., Iwamoto,Y., and Iijima,T. 1998. Involvement of lympho­
cyte function-associated antigen-1 and intercellular adhesion molecule-1 in osteo­
clastogenesis: a possible role in direct interaction between osteoclast precursors. En­
docrinology 139:3967-3975 

Henson,P.M., Bratton,D.L., and Fadok,V.A. 2001. Apoptotic cell removal. Curr.BioI. 
11:R795-R805 



Integrins of Macrophages and Macrophage-Like Cells 127 

Hidalgo,A., Sanz-Rodriguez,F., Rodriguez-Fernandez,I.L., Albella,B., Blaya,C., Wright,N., 
Cabanas,C., Prosper,F., Gutierrez-Ramos,J.C., and Teixido,J. 2001. Chemokine stro­
mal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fi­
bronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp.Hema­
tol. 29:345-355 

Humphries,M.J. and Mould,A.P. 2001. Structure. An anthropomorphic integrin. Science 
294:316-317 

Huo,Y. and Ley,K. 2001. Adhesion molecules and atherogenesis. Acta Physiol Scand. 
173:35-43 

Huynh,M.L., Fadok,V.A., and Henson,P.M. 2002. Phosphatidylserine-dependent ingestion 
of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. 
J.Clin.lnvest 109:41-50 

Ilic,D., Almeida,E.A., Schlaepfer,D.D., Dazin,P., Aizawa,S., and Damsky,C.H. 1998. Extra­
cellular matrix survival signals transduced by focal adhesion kinase suppress p53-
mediated apoptosis. J.Cell BioI. 143:547-560 

Jones,J.L. and Walker,R.A. 1997. Control of matrix metalloproteinase activity in cancer. 
J.Pathoi. 183:377-379 

Kiefer,F., Brumell,J., Al Alawi,N., Latour,S., Cheng, A., Veillette,A., Grinstein,S., and Paw­
son,T. 1998. The Syk protein tyrosine kinase is essential for Fcgamma receptor sig­
naling in macrophages and neutrophils. Mol.Cell BioI. 18:4209-4220 

Kubo,N., Boisvert,W.A., Ballantyne,C.M., and Curtiss,L.K. 2000. Leukocyte CD11b expres­
sion is not essential for the development of atherosclerosis in mice. J.Lipid Res. 
41:1060-1066 

Kusner,D.J., Hall,C.F., and Schlesinger,L.S. 1996. Activation of phospholipase D is tightly 
coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan 
by human macrophages. J.Exp.Med. 184:585-595 

Leverrier,Y. and Ridley,A.J. 2001. Requirement for Rho GTPases and PI 3-kinases during 
apoptotic cell phagocytosis by macrophages. Curr.Bioi. 11:195-199 

Ley,K. 2001. Pathways and bottlenecks in the web of inflammatory adhesion molecules 
and chemoattractants. Immunol.Res. 24:87-95 

Li,H., Cybulsky,M.I., Gimbrone,M.A., Jr., and Libby,P. 1993. An atherogenic diet rapidly 
induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, 
in rabbit aortic endothelium. Arterioscler.Thromb. 13:197-204 

Madri,J.A. and Graesser,D. 2000. Cell migration in the immune system: the evolving in­
ter-related roles of adhesion molecules and proteinases. Dev.lmmunol. 7:103-116 

McHugh,K.P., Hodivala-Dilke,K., Zheng,M.H., Namba,N., Lam,J., Novack,D., Feng,X., 
Ross,F.P., Hynes,R.O., and Teitelbaum,S.L. 2000. Mice lacking beta3 integrins are os­
teosclerotic because of dysfunctional osteoclasts. J.Clin.lnvest 105:433-440 

Mileski,W.J., Sikes,P., Atiles,L., Lightfoot,E., Lipsky,P., and Baxter,C. 1993. Inhibition of 
leukocyte adherence and susceptibility to infection. J.Surg.Res. 54:349-354 

Munthe-Kaas,A.C., Kaplan,G., and Seljelid,R. 1976. On the mechanism of internalization 
of opsonized particles by rat Kupffer cells in vitro. Exp.Cell Res. 103:201-212 

Naito,M., Umeda,S., Yamamoto,T., Moriyama,H., Umezu,H., Hasegawa,G., Usuda,H., 
Shultz,L.D., and Takahashi,K. 1996. Development, differentiation, and phenotypic 
heterogeneity of murine tissue macrophages. J.Leukoc.Biol. 59:l33-138 

Newman,S.L. and Tucci,M.A. 1990. Regulation of human monocyte/macrophage function 
by extracellular matrix. Adherence of monocytes to collagen matrices enhances pha­
gocytosis of opsonized bacteria by activation of complement receptors and enhance­
ment ofFc receptor function. J.Clin.lnvest. 86:703-714 

Niu,J., Gu,X., Turton,J., Meldrum,C., Howard,E.W., and Agrez,M. 1998. Integrin-mediated 
signalling of gelatinase B secretion in colon cancer cells. Biochem.Biophys.Res.Com­
mun.249:287-291 



128 E. J. Brown 

Ostermann,G., Weber,K.S., Zernecke,A., Schroder,A., and Weber,C. 2002. JAM-l is a li­
gand of the beta(2) integrin LFA-l involved in transendothelial migration of leuko­
cytes. Nat.lmmunoI. 3:151-158 

Petty,H.R. and Todd,R.E 1996. Integrins as promiscuous signal transduction devices. Im­
munology Today 17:209-212 

Pfeiffer,A., Bottcher,A., Orso,E., Kapinsky,M., Nagy,P., Bodnar,A., Spreitzer,!., Liebisch,G., 
Drobnik,W., Gempel,K. et aI. 2001. Lipopolysaccharide and ceramide docking to 
CD14 provokes ligand-specific receptor clustering in rafts. Eur.J.lmmunoI. 31:3153-
3164 

Pixley,EJ., Lee,P.S., Condeelis,J.S., and Stanley,E.R. 2001. Protein tyrosine phosphatase 
phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating fac­
tor I-induced morphological changes in macrophages. MoI.Cell BioI. 21:1795-1809 

Pommier,C.G., Inada,S., Fries,L.E, Takahashi,T., Frank,M.M., and Brown,E.J. 1983. Plasma 
fibronectin enhances phagocytosis of opsonized particles by human peripheral blood 
monocytes. J.Exp.Med. 157:1844-1854 

Poo,H., Krauss,J.c., Mayobond,L., Todd,R.E, and Petty,H.R. 1995. Interaction of Fe-gam­
ma receptor type IIIB with complement receptor type 3 in fibroblast transfectants­
evidence from lateral diffusion and resonance energy transfer studies. J.MoI.BioI. 
247:597-603 

Puig-Kroger,A., Sanz-Rodriguez,E, Longo,N., Sanchez-Mateos,P., Botella,L., Teixido,J., 
Bernabeu,C., and Corbi,A.L. 2000. Maturation-dependent expression and function of 
the CD49d integrin on monocyte-derived human dendritic cells. J.lmmunoI. 
165:4338-4345 

Randolph,G.J., Beaulieu,S., Lebecque,S., Steinman,R.M., and Muller,W.A. 1998. Differenti­
ation of monocytes into dendritic cells in a model of transendothelial trafficking. Sci­
ence 282:480-483 

Ren,Y., Stuart,L., Lindberg,EP., Rosenkranz,A.R., Chen,Y., Mayadas,T.N., and Savill,J. 
2001. Nonphlogistic clearance oflate apoptotic neutrophils by macrophages: efficient 
phagocytosis independent of beta 2 integrins. J.lmmunoI. 166:4743-4750 

Ridley,A.J. 2001. Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS 
Lett. 498:168-171 

Ridley,A.J., Allen,W.E., Peppelenbosch,M., and Jones,G.E. 1999. Rho family proteins and 
cell migration. Biochem.Soc.Symp. 65:111-23:111-123 

Roach,T., Slater,S., Koval,M., White,L., McFarland,E., Okumura,M., Thomas,M., and 
Brown,E. 1997. CD45 regulates src family member kinase activity associated with 
macrophage integrin-mediated adhesion. Curr.BioI. 7:408-417 

Roach,T.!., Slater,S.E., White,L.S., Zhang,X., Majerus,P.W., Brown,E.J., and Thomas,M.L. 
1998. The protein tyrosine phosphatase SHP-l regulates integrin-mediated adhesion 
of macrophages. Curr.BioI. 8: 1 035-1 038 

Ross,G.D. and Vetvicka,V. 1993. CR3 (CD11b, CD18): a phagocyte and NK cell membrane 
receptor with multiple ligand specificities and functions. Clin.Exp.lmmunoI. 92:181-
184 

Rosseau,S., Selhorst,J., Wiechmann,K., Leissner,K., Maus,U., Mayer,K., Grimminger,E, 
Seeger,W., and Lohmeyer,J. 2000. Monocyte migration through the alveolar epithelial 
barrier: adhesion molecule mechanisms and impact of chemokines. J.lmmunoI. 
164:427-435 

Schneeberger,E.E., Vu,Q., LeBlanc,B.W., and Doerschuk,C.M. 2000. The accumulation of 
dendritic cells in the lung is impaired in CD18-/- but not in ICAM-1-/- mutant mice. 
J.lmmunoI. 164:2472-2478 

Serrander,L., Fallman,M., and Stendahl,O. 1996. Activation of phospholipase D is an early 
event in integrin-mediated signalling leading to phagocytosis in human neutrophils. 
Inflammation 20:439-450 



Integrins of Macrophages and Macrophage~Like Cells 129 

Shang,X.Z. and Issekutz,A.C. 1998. Contribution of CD11a/CD18, CD11b/CD18, ICAM~l 
(CD54) and -2 (CD102) to human monocyte migration through endothelium and 
connective tissue fibroblast barriers. Eur.J.Immunol. 28:1970-1979 

Shimaoka,M., Lu,C., Palframan,R.T., Von Andrian,U.H., McCormack,A., Takagi,J., and 
Springer,T.A. 2001. Reversibly locking a protein fold in an active conformation with 
a disulfide bond: integrin alphaL I domains with high affinity and antagonist activity 
in vivo. Proc.NatI.Acad.Sci.U.S.A 98:6009-6014 

Springer,T.A. 1997. Folding of the N~terminal, ligand~binding region of integrin alpha~ 
subunits into a beta~propeller domain. Proc.NatI.Acad.Sci.U.S.A 94:65-72 

Stupack,D.G., Puente,X.S., Boutsaboualoy,S., Storgard,C.M., and Cheresh,D.A. 2001. Ap~ 
optosis of adherent cells by recruitment of caspase~8 to unligated integrins. J.Cell 
BioI. 155:459-470 

Suen,P.W., Ilic,D., Caveggion,E., Berton,G., Damsky,C.H., and Lowell,C.A. 1999. Impaired 
integrin~mediated signal transduction, altered cytoskeletal structure and reduced 
motility in Hck/Fgr deficient macrophages. J.Cell Sci. 112:4067-4078 

Tamkun,J.W., Desimone,D.W., Fonda,D., Patel,R.S., Buck,C., Horowitz,A.F., and Hynes,~ 
R.O. 1986. Structure of integrin,a glycoprotein involved in the transmembrane link~ 
age between fibronectin and actin. Cell 46:271-282 

Teixido,J., Hemler,M.E., Greenberger,J.S., and Anklesaria,P. 1992. Role of beta 1 and beta 
2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. 
J.Clin.Invest 90:358-367 

Tiisala,S., Paavonen,T., and Renkonen,R. 1995. Alpha E beta 7 and alpha 4 beta 7 inte~ 
grins associated with intraepithelial and mucosal homing, are expressed on macro~ 
phages. Eur.J.Immunol. 25:411-417 

van der Flier, A. and Sonnenberg,A. 2001. Function and interactions of integrins. Cell Tis~ 
sue Res. 305:285-298 

Vines,C.M., Potter,J.W., XU,Y., Geahlen,R.L., Costello,P.S., Tybulewicz,V.L., Lowell,C.A., 
Chang,P.W., Gresham,H.D., and Willman,C.L. 2001. Inhibition of beta2 Integrin Re~ 
ceptor and Syk Kinase Signaling in Monocytes by the Src Family Kinase Fgr. Immu~ 
nity. 15:507-519 

Wei,Y., Eble,J.A., Wang,Z., Kreidberg,J.A., and Chapman,H.A. 2001. Urokinase receptors 
promote beta1 integrin function through interactions with integrin alpha3beta1. 
Mol.Biol.Cell 12:2975-2986 

Weiss,J.M., Renkl,A.C., Maier,C.S., Kimmig,M., Liaw,L., Ahrens,T., Kon,S., Maeda,M., Hot~ 
ta,H., Uede,T. et al. 2001. Osteopontin is involved in the initiation of cutaneous con~ 
tact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph 
nodes. J.Exp.Med. 194:1219-1229 

Winn,R.K., Ramamoorthy,C., Vedder,N.B., Sharar,S.R., and Harlan,J.M. 1997. Leukocyte~ 
endothelial cell interactions in ischemia~reperfusion injury. Ann.N.Y.Acad.Sci. 
832:311-21:311-321 

Woods,M.L. and Shimizu,Y. 2001. Signaling networks regulating beta1 integrin~mediated 
adhesion of T lymphocytes to extracellular matrix. J.Leukoc.Biol. 69:874-880 

Worthylake,R.A., Lemoine,S., Watson,J.M., and Burridge,K. 2001. RhoA is required for 
monocyte tail retraction during trans endothelial migration. J.Cell BioI. 154:147-160 

Wright,S.D., Detmers,P.A., Jong,M.T., and Meyer,B.C. 1986. Interferon~gamma depresses 
binding ofligand by C3b and C3bi receptors on cultured human monocytes, an effect 
reversed by fibronectin. J.Exp.Med. 163:1245-1259 

Xiong,J.P., Stehle,T., Diefenbach,B., Zhang,R., Dunker,R., Scott,D.L., Joachimiak,A., Good~ 
man,S.L., and Arnaout,M.A. 2001. Crystal structure of the extracellular segment of 
integrin alpha Vbeta3. Science 294:339-345 

Xiong,J.P., Stehle,T., Zhang,R., Joachimiak,A., Frech,M., Goodman,S.L., and Arnaout,M.A. 
2002. Crystal Structure of the Extracellular Segment of Integrin {alpha}V{beta}3 in 
Complex with an Arg~Gly~Asp Ligand. Science In press 



130 E. J. Brown 

Yu,X., Miyamoto,S., and Mekada,E. 2000. Integrin alpha 2 beta I-dependent EGF receptor 
activation at cell-cell contact sites. J.Cell Sci. 113:2139-2147 

Zhou,X., Li,J., and Kucik,D.F. 2001. The microtubule cytoskeleton participates in control 
ofbeta2 integrin avidity. J.Biol.Chem. 276:44762-44769 

Zou,W., Machelon,V., Coulomb-L'Hermin,A., Borvak,J., Nome,F., Isaeva,T., Wei,S., Krzy­
siek,R., Durand-Gasselin,I., Gordon,A. et al. 2001. Stromal-derived factor-l in human 
tumors recruits and alters the function of plasmacytoid precursor dendritic cells. 
Nat.Med.7:1339-1346 



Macrophage Targets in Inflammation: Purinergic Receptors 

F. Di Virgilio· D. Ferrari 

Department of Experimental and Diagnostic Medicine, Section of General Pathology 
and Interdisciplinary Center for the Study of Inflammation (ICSI), 
University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy 
e-mail: fdv@unife.it 

Introduction . . . . . . . . . . . . . . . 

2 Purinergic Receptors: What Are They? 
2.1 P2 Receptors . . . . . . . . . . . . . . . 
2.2 PI Receptors ................ 

3 Sources and Mechanism for ATP Release into the Extracellular Space. 

4 Systems Involved in Degradation of Extracellular ATP . . 

5 PI and P2 Receptor Subtypes Expressed by Macrophages. 

6 Role of PI and P2 Receptors in Macrophage Physiology. 

7 Conclusions 

8 References . 

132 

132 
133 
135 

136 

137 

137 

138 

140 

141 

Abstract Extracellular adenosine and adenine nucleotides are potent endoge­
nous modulators of inflammation that accumulate in the pericellular space un­
der various physiological and pathological conditions. Their action is mediated 
by plasma membrane receptors named PI (adenosine) or P2 (adenine nucleo­
tides). Adenosine is generated extracellularly by ubiquitous ecto-ATPases/ecto­
nucleotidases that dephosphorylate adenosine 5' -triphosphate (ATP). Adenosine 
is then either finally degraded by adenosine deaminase or taken up by the cells. 
Activation of PI receptors by adenosine mainly inhibits, and activation of P2 re­
ceptors by adenine nucleotides mainly stimulates inflammatory cell responses. 
Differential expression by inflammatory cells and modulation during differenti­
ation make PI and P2 receptors potential targets for development of novel anti­
inflammatory drugs. 

Keywords Adenosine, Adenine, Cytokines, Ecto-ATPases, 
Adenosine 5' -triphosphate, Intracellular parasites 
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1 
Introduction 

It has been known for some years that adenosine inhibits in vitro inflammatory 
cell responses, and there are grounds to believe that locally released adenosine 
downmodulates inflammation in vivo by acting at A2A receptors and may medi­
ate the in vivo therapeutical effect of anti-inflammatory drugs (Cronstein et al. 
1983; Cronstein et al. 1993; Ohta and Sitkovsky 2001). It was less appreciated 
until recently that adenosine precursors, the adenine nucleotides, may also 
modulate responses of inflammatory cells, among which, most notably, are the 
macrophages. At inflammatory sites, cell injury or activation causes release of 
substantial amounts of intracellular nucleotides that may dramatically affect re­
sponses of resident or infiltrating inflammatory cells (Di Virgilio 1995; Morabito 
et al. 1998) (the cytoplasmic ATP concentration ranges from 5 to 10 mM in most 
cell types, while that of other nucleotides, e.g., uridine triphosphate (UTP), can 
reach about one third of that of ATP) (Lazarowski and Boucher 2001). Extracel­
lular nucleotides trigger a complex network of autocrine/paracrine interactions 
that, depending on the relative amounts of nucleotide or nucleoside present, the 
type and level of specific plasma membrane receptors expressed, and the state 
of priming of neighbouring cells by other inflammatory mediators, will eventu­
ally lead to the amplification or inhibition of the inflammatory response. In ad­
dition, the ubiquitous ecto-ATPases/ecto-nucleotidases, that rapidly hydrolyse 
extracellular nucleotides to adenosine, are powerful modulatory elements. 
Adenosine is then either finally degraded by adenosine deaminase (ADA), or 
taken up by the cells to be further utilized in intracellular synthetic pathways. 
While a number of agents able to modulate the effects of adenosine have been 
available for several years and are currently tested for clinical use, drugs that in­
terfere with inflammatory cell stimulation by extracellular nucleotides have at­
tracted interest only very recently, and none of them has entered clinical trials. 

2 
Purinergic Receptors: What Are They? 

The name "purinergic" receptors was initially coined on a purely functional and 
pharmacological basis, indicating those plasma membrane receptors mediating 
the action of extracellular adenine nucleotides or nucleosides, i.e. ATP or adeno­
sine. As it has recently become clear that some P2 receptor subtypes are highly 
specific for UTP or uridine diphosphate (UDP), it has been agreed to drop the 
word "purinergic" (UTP and UDP are pyrimidines) and simply name receptors 
for extracellular nucleotides or nucleosides as P2 or PI, respectively. The origi­
nal classification based on the pharmacological profile has been replaced by that 
based on the molecular structure; accordingly, P2 receptors are grouped into 
two subfamilies (P2Y and P2X), numbering eight and seven members, respec­
tively, and PI receptors into four subtypes. Very recently, the receptor for uri-
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Table 1 Classification of mammalian adenosine/P1 receptors 

Subtype Amino acid number Signal transduction 

A, 326- 328 l lPl l cAMP 
A2A 409--411 l cAMP 

A' B 328- 332 l lPl l cAMP 
A3 318- 320 l lP3 l cAMP 

Size of P1 receptororthologues depends on the speciesof origin. 

Table 2 Classification of mammalian P2Yand P2X receptors 

Subtype Amino acid Preferred naturally Signal transduction 
number occurring agonist 

P2Y, 362 ADP l lP3 l cAMP 
P2Y2 373 UTp, ATP l lP3 

P2Y4 352 UlP l iP) 
P2Y6 379 UDP l iP) 
P2Yll 371 ATP l lPJ l cAMP 
P2Y12 342 ADP l cAMP 
P2Y13 334 ADP l lPl l l cAMP 
PSY14 338 UDP-glucose l lP3 

P2X, 399 AlP Ion currents 
P2X, a 472 Al P Ion currents 
P2Xl 397 AlP Ion currents 
P2X4 • 388 AlP Ion currents 
P2Xs 455 ATP Ion currents 
P2X6 379 AlP Ion currents 
P2X7 595 AlP Ion currents 

Protein- protein interaction 
P2X2/P2Xl AlP Ion currents 
P2X ./P2Xs AlP Ion currents 
P2XJ P2X6 AlP Ion currents 

a Splice variantsof P2X2 and P2X4 have been identified. P2X receptors may assemble as heteroligomers. 
At P2Y, and P2Y12 AlP may act as an antagonist. P2Y13 mediatesinhibition of adenylatecyclase at low 
and stimulation at high concentrations. 

dine 5'-diphosphoglucose (UDP-glucose) has been included in the P2 family 
(Tables 1 and 2). 

2.1 
P2 Receptors 

P2 receptors are divided into two subfamilies: P2X (ligand-gated ion channels, 
ionotropic, receptors) and P2Y (G protein-coupled, metabotropic, receptors), 
P2X receptors are activated by extracellular ATP (the only known physiological 
ligand), and mediate fast mono- and di-valent cation (Na+, K+ and Ca2+) fluxes 
across the plasma membrane (North 2002). Intriguingly, permeability of some 
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P2X receptors (especially P2X7, but to a lesser extent also P2X2 and P2X4) in­
creases during continuous ATP stimulation or upon application of repeated ATP 
pulses (Di Virgilio 1995; Falzoni et al. 1995; Virginio et al. 1999; Khakh et al. 
1999). The molecular basis of this odd phenomenon is as yet unknown, but it is 
hypothesized that it might depend on the recruitment of additional receptor 
subunits, thus increasing the size of the channel pore. All P2X receptors are 
multimeric structures of which seven basic subunits, and some splice variants, 
have been cloned (P2XI - 7). 

An open problem is P2X receptor subunit stoichiometry and composition. 
Growing consensus supports the view that P2X receptors assemble as trimers or 
hexamers (Nicke et al. 1998), but assembly into tetramers has also been report­
ed (Kim et al. 1997). Functional expression studies show that heterologously ex­
pressed P2X subunits may assemble to form heteromultimeric structures, and 
patch-clamp data suggests that native P2X receptors may also assemble as het­
eromultimers (Lewis et al. 1995; Torres et al. 1999). A relevant exception is 
P2X7, the P2X receptor mainly expressed by macrophages. While there is good 
evidence to support a tri/hexameric stoichiometry for this receptor, there is 
likewise strong evidence that the P2X7 subunit does not assemble with any other 
P2X subunit (Torres et al. 1999; Kim et al. 2001b). Size of P2X subunits is com­
prised between 379 (P2X6) and 595 (P2X7) amino acids, for a predicted molecu­
lar weight of 42 to 65 kDa. Hydropathy plots and absence of a leader sequence 
predict a membrane topology with only two transmembrane stretches separated 
by a bulky extracellular region with both the N- and C-termini on the cytoplas­
mic side (Brake et al. 1994; Surprenant et al. 1996). The extracellular domain 
contains 10 cysteines and 2-6 N-linked glycosylation sites. 

Within the P2X subfamily, a special place is occupied by P2X7 for several rea­
sons: (1) it has a long (242 residues) cytoplasmic carboxy-terminal tail com­
pared to the other members of the family; (2) the COOH tail contains a hydro­
phobic stretch that might insert into the plasma membrane or interact with cy­
toplasmic vesicles; (3) it does not heteropolymerize with other P2X subunits; 
(4) its activation needs ATP concentrations that are 10- to 100-fold higher than 
those required to activate other P2X receptors; (5) it is the P2X receptor that 
more readily undergoes a large increment in conductance (channel-to-pore 
transition) upon sustained stimulation with ATP (in fact it is the only P2X re­
ceptor for which this phenomenon has been reproducibly demonstrated and ex­
tensively characterized); (6) it is mainly, although not exclusively, localized to 
immune cells; (7) it is the only P2X receptor whose activation undisputedly trig­
gers cell death. 

Of particular relevance for the participation of P2X7 in the modulation of 
macrophage responses is the finding that its COOH tail harbours an amino acid 
stretch (573-590) highly homologous (about 90%) with the lipopolysaccharide 
(LPS)-binding site of LPS-binding protein (Denlinger et al. 2001). Additional 
studies have provided evidence that P2X7 interacts with several extracellular, 
transmembrane or cytoskeletal proteins to form a highly complex and versatile 
signalling complex (receptosome) (Denlinger et al. 2001; Kim et al. 2001a). At 
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least eleven P2Xr associated proteins have been conclusively identified: laminin 
a3, integrin 132, receptor protein tyrosine phosphatase 13 (RPTPf3), a-actinin, 
f3-actin, supervillin, heat shock protein (Hsp) 90, heat shock cognate (Hsc) pro­
tein 71, Hsp70, phosphatidylinositol 4-kinase (PI4 K) 230 and membrane-asso­
ciated guanylate kinase (MAGuK) P55 (Kim et al. 2001a). Finally, all P2X recep­
tors contain in the N-terminus a consensus sequence for protein kinase C (Thr­
X-Lys/Arg). 

P2Y receptors are members of the rhodopsin-like G protein superfamily with 
seven transmembrane domains (North and Barnard 1997; von Kugelgen and 
Wetter 2000). They number from 333 (P2Y13) to 379 (P2Y6) amino acids, for a 
predicted molecular mass of 36-42 kDa. Agonist selectivity is a discriminant 
feature of P2Y receptors: P2Y I> P2Y 11, P2Y 12 and P2Y 13 are selective for adenine 
nucleotides, whereas other members of the P2Y family can also be activated by 
uracil nucleotides. Furthermore, P2Y I> P2Y 6, P2Y IZ and P2Y 13 are selectively ac­
tivated by nucleoside diphosphates, while the other P2Y receptors are preferen­
tially activated by nucleoside triphosphates. All P2Y receptors, with the excep­
tion of P2Y IZ, couple to phospholipase C, thus causing inositol triphosphate for­
mation and Caz+ release from intracellular stores. Coupling to phospholipase D 
has also been described (Purkiss and Boarder 1992). P2Y I and P2Yz mediate in­
hibition of adenylate cyclase, while P2Y 11 mediates stimulation. P2Y 13 mediates 
inhibition of adenylate cyclase at low and stimulation at high concentration. 
The receptor for UDP-glucose has been included in the P2Y family as P2Y 14. 

This receptor, expressed in a wide variety of human tissues, couples to Caz+ re­
lease from intracellular stores (Chambers et al. 2000). 

2.2 
Pl Receptors 

PI receptors are defined as those plasma membrane receptors that bind adeno­
sine. This family comprises four members: AI> A ZA , AZB and A3. All adenosine 
receptors are seven membrane-spanning and couple via G proteins to phospho­
lipase C and/or adenylate cyclase. Activation of the Al subtype causes phospho­
lipase C stimulation and a decrease in cyclic adenosine monophosphate 
(cAMP), while activation of AZA causes only stimulation of adenylate cyclase. 
Activation of AZB causes an elevation of both IP3 and cAMP. Finally, activation 
of A3 causes a decrease in cAMP and an increase in IP3 concentration (Ralevic 
and Burnstock 1998). Like all the other members of the serpentine receptors su­
perfamily, PI receptors were until recently thought of as monomeric molecules, 
but a recent paper by Yoshioka et al. (2001) suggests that Al and P2Y I receptors 
may form heteromeric structures with P2Y I -like agonistic pharmacology. 
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3 
Sources and Mechanism for AlP Release into the Extracellular Space 

There is no doubt that ATP is a major neurotransmitter in the central and pe­
ripheral nervous system, often in combination with other mediators. Less ap­
preciated is the occurrence of ATP release outside the nervous system, but proof 
that this is a much more frequent event than commonly thought is being pro­
vided by an increasing number of laboratories (Dubyak et al. 2002; Schwiebert 
et al. 2002). Concentration of ATP in the blood or in the interstitial fluid under 
resting conditions is thought to be in the low nanomolar range, although this is 
likely to be a large underestimate of the actual ATP concentration in the pericel­
lular space. Most cell types have been shown to continuously release ATP thus 
generating an autocrine tonic stimulation of P2 receptor (Ostrom et al. 2000), 
that may even lead to P2-receptor desensitisation. Several basal cellular parame­
ters (e.g. the resting cytoplasmic Ca2+ and cAMP concentration, and the basal 
arachidonic acid release) appear to be modulated by the tonic stimulation of P2 
receptors (Grierson et al. 1995; Ostrom et al. 2000). More interestingly, several 
agents are capable of inducing ATP release thus raising several fold the concen­
tration of this nucleotide in the proximity of the plasma membrane (Ferrari et 
al. 1997b; Sperlagh et al. 1998; Warny et al. 2001). 

One of the most important sources of ATP release are platelets. These cells 
store ATP up to a several millimolar concentration within their dense granules, 
thus massive ATP release, up to 20-50 ,uM, occurs during platelet aggregation 
(Beigi et al. 1999). Since activated platelets adhere to leukocytes and can estab­
lish protected compartments at the site of interaction with adjacent cells, it has 
to be expected that much higher ATP concentrations can be reached within 
these secluded environments, in a way reminiscent of the high concentrations 
achieved by neurotransmitters secreted into the synaptic cleft. Endothelial cells 
are another important source of extracellular ATP in response to shear stress 
(Bodin et al. 1991), swelling (Oike et al. 2000), or stimulation of plasma mem­
brane receptors (Yang et al. 1994). Furthermore, leukocytes stimulated with 
bacterial endotoxin (LPS) also release ATP (Ferrari et al. 1997b; Sperlagh et 
al. 1998; Sikora et al. 1999; Imai et al. 2000; Warny et al. 2001; but see also 
Grahames et al. 1999 and Beigi and Dubyak 2000). There is hint that some well­
known anti-inflammatory drugs (e.g. sulphasalazine and methotrexate) owe 
their action to their ability to promote ATP release from macrophages and con­
version of this nucleotide to adenosine (Morabito et al. 1998). 

While it is obvious that cell lysis may well be responsible for the discharge of 
cellular ATP, how this nucleotide is extruded from intact cells is still an open 
question. As mentioned above, platelets and a few other cell types certainly re­
lease ATP by exocytosis of their cytoplasmic granules (Meyers et al. 1982; Lages 
and Weiss 1999), but secretion of ATP from many other different cell types does 
not appear to occur via stimulated exocytosis. It has been suggested that ATP 
might be stored within vesicles originating from the Golgi and released by con­
stitutive exocytosis (Maroto and Hamill 2001). Plasma membrane transporters 
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such as the multidrug resistance protein (Abraham et al. 1993) or the cystic fi­
brosis protein (CFTR) (Jiang et al. 1998) have also been candidated to the role 
of ATP transporters. Connexin 43 hemichannels have been reported to mediate 
ATP release (Cotrina et al. 1998), but this evidence has been recently questioned 
(Romanello et al. 2001). Rather intriguingly, it has been shown that transfection 
with the differentiation antigen CD39 (which is a member of plasma membrane 
ecto-nucleoside triphosphate diphosphohydrolase family) enhances ATP trans­
port across the plasma membrane of Xenopus oocytes (Bodas et al. 2000). Final­
ly, data by Baricordi et al. (1999) show that transduction of human lymphoblas­
toid cell lines with the P2X7 receptor increases their ability to release ATP, thus 
suggesting that P2X7 might participate in ATP secretion. 

4 
Systems Involved in Degradation of Extracellular AlP 

Once in the extracellular space, ATP is quickly degraded by very active ecto-en­
zymes grouped into four families: ecto-nucleotide triphosphate diphosphohy­
drolase (E-NTPDase), ecto-nucleotide pyrophosphatase/phosphodiesterase (E­
NPP), alkaline phosphatase and ecto-s' -nucleotidase (Zimmermann 2000, 
2001). E-NTPDases cleave ATP, adenosine diphosphate (ADP) and several other 
purine and pyrimidine nucleotides to AMP and Pi. An important member of 
this family is the lymphocyte differentiation marker CD39. E-NPPases hydrolyse 
ATP to AMP and Ppi, ADP to AMP and Pi or NAD+ to nicotinamide mononucle­
otide. E-NPPases are known as differentiation antigens for plasma cells, motili­
ty-stimulating proteins (autotaxins) or neural differentiation and tumour sur­
face markers. Alkaline phosphatases are non-specific ecto-phosphomo­
noesterases with a broad substrate specificity. Finally, ecto-s' -nucleotidases 
catalyse the conversion of nucleoside 5' -monophosphates to the respective nu­
cleoside and Pi. Ecto-S' -nucleotidase is the main enzyme responsible for the ex­
tracellular generation of adenosine. 

5 
P1 and P2 Receptor Subtypes Expressed by Macrophages 

An extensive characterization of PI receptor expression by macrophages has 
not yet been carried out. However, broadly converging biochemical and phar­
macological data from human monocyte/macrophages or mouse macrophages 
and human and mouse macrophage cell lines suggest that all the four PI sub­
types are expressed by these cells (McWhinney et al. 1996; Xaus et al. 1999; 
Montesinos and Cronstein 2001; Johnston et al. 2001). As regards P2 receptors, 
mRNA for P2Y 1> P2Y 2, P2Y 4 and P2Y 6 has been amplified from monocytes and 
macrophages (Di Virgilio et al. 2001a; Dubyak 2001). Expression of P2Yll has 
been demonstrated in human dendritic cells (Wilkin et al. 2001), but as yet there 
is no published evidence that it may also be present in macrophages. Expression 
of members of the P2X subfamily is much less characterized, with the exception 
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Autocrine/paracrine loop based on AlP release from the macrophage and P2/Pl receptor activa-

of P2X7, that has been the focus of intense investigation over recent years (Di 
Virgilio et al. 2001a,b). While there is no doubt that P2X7 is the main P2X recep­
tor subtype expressed by macrophages (and very likely also by monocytes, de­
spite previous evidence of the contrary) (Falzoni et al. 2000; Gu et al. 2000; 
Gudipaty et al. 2001), scattered evidence suggests that P2X1 and P2X4 might also 
be expressed, at least at certain developmental stages (Buell et al. 1996; Soto et 
al. 1996). 

6 
Role of Pl and P2 Receptors in Macrophage Physiology 

While it is generally appreciated that extracellular ATP has an important role as 
a neuromediator, the notion that this nucleotide may also be a mediator of in­
flammation has received attention only very recently. Macrophages are fully 
equipped to exploit the potential of nucleotides and nucleosides as extracellular 
messengers as (1) they express P2Y, P2X and PI receptors, (2) express ecto-AT­
Pase/nucleotidase that convert nucleotides to nucleosides, and (3) can release 
ATP. Thus, macrophages are not only the target of ATP released by neighbour 
cells, but also the centre of an ATP-based autocrine/paracrine loop (Fig. 1). 
However, our understanding of signalling via extracellular nucleotides in the 
immune system is still very rudimentary. Some authors have suggested that ex­
tracellular nucleotides might be early signals for alerting the immune system of 
an impendent danger, and thus drive recruitment and activation of inflammato­
ry cells (Greenberg et al. 1988; Di Virgilio et al. 1995; Gallucci and Matzinger 
2001). Nucleotides have a strong macrophage chemotactic activity (McCloskey 
et al. 1999; Oshimi et al. 1999), activate the NADPH (nicotinamide adenine di­
nucleotide phosphate, reduced) oxidase, especially in the presence of phagocytic 
particles (Schmid-Antomarchi et al. 1997), stimulate release of interleukin (IL)­
la, IL-I,B, IL-8 and IL-18 (Perregaux and Gabel 1994; Ferrari et al. 1997a; Perre-
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gaux and Gabel 1998; Perregaux et al. 2000; Warny et al. 2001), drive the exter­
nalisation of active caspase-l (Laliberte et al. 1999), trigger nitric oxide genera­
tion (Denlinger et al. 1996), increase expression of tumour necrosis factor 
(TNF)-a mRNA (Tonetti et al. 1995), and finally ATP at high doses has a potent 
cytotoxic effect (Steinberg and Silverstein 1987; Murgia et al. 1992). The ATP­
dependent cytotoxic activity is of particular interest because a side-effect, not 
shared by other cytotoxic stimuli, is the killing of intracellular parasites (i.e. My­
cobacterium tuberculosis) that are normally able to survive within phagocytic 
vacuoles. A number of different laboratories have shown that stimulation with 
ATP of macrophages that have ingested Mycobacteria causes an increased rate 
of phagosome-lysosome fusion that greatly enhances the microbicidal efficacy 
of the phagocytes (Molloy et al. 1994; Lammas et al. 1997; Fairbairn et al. 2001; 
Mancino et al. 2001). In the context of granulomatous diseases such as tubercu­
losis or sarcoidosis, it is of interest that one of the P2X subtypes, P2X7, appears 
to be necessary for the formation of multinucleated giant cells (MGCs) (Chiozzi 
et al. 1997; Falzoni et al. 2000). A recent report shows that this same receptor is 
overexpressed in macrophages from sarcoidosis patients (Mizuno et al. 2001). 
The P2X7 receptor has also an important role in osteoclast differentiation and in 
communication between osteoblasts and osteoclasts (Morrison et al. 1998; Jor­
gensen et al. 2002). 

Most attention has so far concentrated on the involvement of P2X7 in inflam­
mation; however, other P2 receptor are increasingly implicated in macrophage 
responses to nucleotides. P2Y\ and/or P2Yz are likely to be the main receptors 
mediating monocyte/macrophage chemotaxis in response to nucleotides, while 
P2Y 6 is coupled to release of the granulocyte selective chemokine IL-8. An in­
triguing, and as yet little studied subtype is P2Y 11. This receptor appears to have 
an important role in the maturation of dendritic cells, alone or in association 
with other P2 receptors (Wilkin et al. 2001; La Sala et al. 2001). Whether it is 
also involved in monocyte/macrophage differentiation is not yet known. 

Participation of PI and P2 receptors in the modulation of so many different 
macrophage responses makes these molecules obvious targets for the develop­
ment of innovative anti-inflammatory drugs. The clinical use of PI or P2 ago­
nists/antagonists is complicated by the several side-effects due to the wide­
spread expression of their receptors in many different organs. Thus, one should 
either concentrate on the development of agents able to affect the local nucleo­
side or nucleotide concentration, or try to exploit the tissue-specific expression 
of Pland P2 subtypes. A simpleminded, but probably not as naive as it might 
appear, approach would be the attempt to modulate the local concentration of 
the PI and/or P2 agonists, i.e. adenosine and the nucleosides di- and tri-phos­
phates (ATP, ADP, VTP and VDP). This strategy is supported by two observa­
tions: (1) the mechanism of action of some anti-inflammatory drugs is under­
stood to be mediated by the local accumulation of adenosine (Montesinos et al. 
1998), and (2) an excessive accumulation of extracellular ATP as a consequence 
of CD39 (ecto-ATPase) reduced activity severely impairs inflammatory cell mi-
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gration (Goepfert et al. 2001). These observations make CD39 an additional ap­
pealing target for pharmacological modulation of inflammation. 

Design and synthesis of selective P 1 agonists or antagonists has been the field 
of extensive investigation over recent years, and some compounds are being 
evaluated for clinical use (see Baraldi and Borea 2000, and Linden 2001 for re­
cent reviews). In contrast, comparatively fewer agonist or antagonists selective 
for P2Yor P2X subtypes are available. At the moment, P2Y 12 is the only receptor 
targeted by antagonists widely used in clinical trials (Storey 2001). But P2Y12 is 
not expressed by macrophages. An interesting selective antagonist of P2Y 1 

(MRS 2179) has been recently described, but no clinical data are as yet available 
(Camaioni et al. 1998). Stable agonists for the P2Y2 receptor are available for the 
local treatment of respiratory and ophthalmic diseases (cystic fibrosis, dry eye 
syndrome) (Boeynaems et al. 2001). Some stable ATP analogues (a, ,B-methylene 
ATP and ,B,y-methylene ATP) have a strong preference for P2X over P2Y recep­
tors (Ralevic and Burnstock 1998) and might be used to selectively stimulate 
P2X responses. A few selective antagonists are available for P2X receptors. The 
most widely used is pyridoxalphosphate-6-azophenyl 2'-4' -disulfonic acid 
(PPADS), a pyridoxal phosphate derivative that, however, may also inhibit P2Y1• 

PPADS is a non-competitive antagonist that is thought to form Schiff's bases 
with lysines (possibly K64 and K311) that are key constituents of the ATP bind­
ing site (Thompson 2002). The same mechanism of action is shared by another 
irreversible blocker: oxidized ATP. This compound too, thanks to its aldehyde 
groups, covalently binds the same lysines and irreversibly blocks P2X receptors 
(Murgia et al. 1993). Oxidized ATP was initially thought to be selective for P2X7, 

but it is now clear that it blocks other P2X subtypes. Another compound, the 
quinoline derivative 1- [N,O-bis(S-isoquinolinesulphonyl)-N-methyl-l-tyrosyll-
4-phenylpiperazine (KN-62) originally introduced as a P2 reagent by Gargett 
and Wiley (1997), is proving very useful as a lead compound for the synthesis of 
novel P2X7 blockers (Baraldi et al. 2000; Ravi et al. 2001). As of now, none of 
these compounds has entered clinical trials. 

7 
Conclusions 

Receptors for extracellular nucleotides and nucleosides are emerging as novel 
and important modulators of inflammation. Expression of specific PI and P2 
subtypes by different white blood cell types at various developmental stages 
confers to these receptors an intriguing plasticity that on the one hand under­
lines their importance in leukocyte function and differentiation, and on the oth­
er suggests new avenues for the development of innovative anti-inflammatory 
drugs. The relevance of P2 receptors in the overall inflammatory process is 
further underscored by their increasingly recognized role in nociception 
(Burnstock 2000; Cook and McCleskey 2002). These studies suggest that modu­
lation of signal transduction based on extracellular ATP and its metabolites may 
allow us to design a new generation of drugs targeted at many manifestations of 
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inflammation, ranging from pain sensation to leukocyte recruitment and patho­
gen killing. 
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Abstract The attraction and sub-endothelial migration of monocytes or macro­
phages (Mt/J) to the early atherosclerotic lesion or fatty streak are central events 
in atherogenesis. During migration through the endothelium these cells differ­
entiate to Mt/J, which subsequently become activated in the milieu of cytokines 
and reactive products secreted by the dysfunctional endothelial layer, underly­
ing smooth muscle cells and resident tissue leukocytes. As the lesion advances, 
the products secreted by activated Mt/J further escalate the inflammatory pro-
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cess, increasing the recruitment of more activated inflammatory cells. M¢ with­
in the lesion also actively accumulate lipid to become foam cells. Therefore, in­
terventions that target the escalation of the inflammatory cascade, foam cell dif­
ferentiation, and foam cell lipid metabolism should have distinct therapeutic 
benefits in altering the progression of CAD. In this chapter, various aspects of 
M¢ lipid metabolism and foam cell formation are explored. These include the 
sources of cholesterol for foam cell formation, receptor-dependent and recep­
tor-independent uptake pathways by which foam cells may accumulate choles­
terol, cholesterol trafficking within M¢, cholesterol efflux from M¢, and foam 
cell death. All of these processes represent possible therapeutic targets in CAD. 

Keywords CD36, Cholesterol efflux, Foam cells, Macrophages, Macrosialin, 
Scavenger receptors, SR-A, SR-BI 

Abbreviations 

ABCA1 
ACAT 
AcLDL 
aP2 
[3-VLDL 
CAD 
CE 
FC 
HDL 
LXR 
M¢ 
oxLDL 
PPAR 
SR-A 
SR-BI 
RXR 
VLDL 

1 
Introduction 

ATP-binding cassette, subfamily A, member 1 
Acyl-CoA:cholesterol acyltransferase 
Acetylated low-density lipoprotein 
Fatty acid-binding protein 
[3-Very low-density lipoprotein 
Coronary artery disease 
Cholesteryl ester 
Free cholesterol 
High-density lipoprotein 
Liver X receptor 
Macrophage( s) 
Oxidized low-density lipoprotein 
Peroxisome proliferator-activated receptor 
Scavenger receptor class A 
Scavenger receptor class B, type I 
Retinoid X receptor 
Very low-density lipoprotein 

The attraction and sub-endothelial migration of monocytes or macrophages 
(M¢) to the early atherosclerotic lesion or fatty streak are central events in ath­
erogenesis (Ross 1999; Glass and Witztum 2001). One of the earliest observed 
endothelial changes is the surface arrest of monocytes. During migration 
through the endothelium these cells differentiate to M¢, which subsequently be­
come activated in the milieu of cytokines and reactive products secreted by the 
dysfunctional endothelial layer, underlying smooth muscle cells and resident tis-
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sue leukocytes. As the lesion advances, the products secreted by activated M¢ 
further escalate the inflammatory process, increasing the recruitment of more 
activated inflammatory cells. M¢ within the lesion also actively accumulate lipid 
to become foam cells. Therefore, interventions that target the escalation of the 
inflammatory cascade, foam cell differentiation and foam cell lipid metabolism 
should have distinct therapeutic benefits in altering the progression of CAD. In 
this chapter the various aspects of M¢ lipid metabolism and foam cell formation 
that may represent therapeutic targets are explored. 

2 
Cholesterol Sources and Foam Cell Development 

Two types of lipid oils, cholesteryl ester and triglyceride, can produce cellular lip­
id droplet accumulation and cause a foamy appearance in tissue sections prepared 
with organic solvents. Lipid droplets in tissues of cells prepared without extract­
ing solvents can be stained with lipid-soluble dyes such as oil red o. Chemical 
studies of human atherosclerotic lesions show that the major lipid oil accumulat­
ing in lesions is cholesteryl ester (CE) and not triglyceride (Garner et al. 1997). 

Exogenous cholesterol, not endogenously synthesized cholesterol, is the ma­
jor source of cholesterol for foam cell formation. De novo synthesis of cholester­
ol functions to maintain cellular cholesterol levels in the absence of an exoge­
nous source, and key enzymes in the cholesterol biosynthetic pathway are 
downregulated when an exogenous source of cholesterol is present (Goldstein 
and Brown 1990). Plasma lipoproteins are the major source of the exogenous 
cholesterol of foam cells, although other sources, such as cholesterol-rich plate­
let fragments (Curtiss et al. 1987), cause cholesterol loading in cultured M¢. 
Lipoproteins form emulsions of particles of varying densities that consist of a 
hydrophobic core containing neutral lipids, CE and triglycerides surrounded by 
an outer phospholipid monolayer containing a small amount of free cholesterol 
(FC) and protein (apolipoprotein). The bulk of the cholesterol (e.g., 80% in 
LDL) is carried as CE in the core of the particle. 

2.1 
Modified Forms of LDL 

Although fasting plasma levels of LDL are strongly correlated with the extent of 
atherosclerosis, native plasma LDL is a poor inducer of foam cell formation in 
cultured M¢ (Brown and Goldstein 1983; Steinberg et al. 1989). This finding can 
be explained by the combination of downregulation of LDL receptors (Brown 
and Goldstein 1983) and, as described below, specific characteristics of LDL­
cholesterol metabolism in M¢ (Tabas et al. 1990). A possible resolution to the 
apparent paradox of epidemiological data linking LDL to atherogenesis and 
foam cell formation is that LDL is modified to an "atherogenic" form in the sub­
endothelium (Steinberg 1995). In an in vitro model to explore this concept, LDL 
modified by oxidation or acetylation has been widely studied. Native LDL is rec-
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ognized by the LDL receptor by virtue of specific receptor-binding domains of 
the apolipoprotein B-100 moiety of LDL (Brown and Goldstein 1986). In con­
trast, AcLDL, due to acetylation of key lysine residues on apolipoprotein B-100, 
is not recognized by the LDL receptor but rather by another class of receptors, 
the so-called scavenger receptors (Goldstein et al. 1979; Krieger and Herz 1994). 
Scavenger receptor class A (SR-A) is widely expressed on differentiated M¢ and 
mediates the constitutive uptake of AcLDL, leading to massive CE accumulation 
in most cultured M¢ models (Brown and Goldstein 1983; Krieger and Herz 
1994). Although acetylation ofLDL does not occur in vivo, oxidation ofLDL is a 
physiologically plausible process that also renders LDL a ligand for scavenger 
receptors and other cell-surface scavenger receptors that are not downregulated 
by cellular cholesterol loading (Steinberg 1997). Immunohistochemical studies 
have documented the presence of oxLDL in atherosclerotic lesions, and a wide 
variety of cell-culture studies have demonstrated potentially atherogenic effects 
of oxLDL, such as induction of atherogenic endothelial cell responses and 
smooth muscle cell proliferation (Steinberg 1997). Further support for the oxi­
dation hypothesis includes recent data showing that deletion of the M¢-specific 
enzyme, 12115-lipoxygenase, which is involved in the synthesis of oxygenated 
fatty acids, reduces levels of atherosclerosis in ApoE -/- mice (Cyrus et al. 1999). 

A widely held misconception, however, is that LDL oxidized by most standard 
in vitro methods induces foam cell formation (i.e., marked CE accumulation) in 
cultured M¢. In fact, quite a few studies have shown that while M¢ incubated 
with oxLDL internalize lipoprotein extensively, the cells accumulate mostly FC 
(Roma et al. 1990; Ryu et al. 1995; Klinkner et al. 1995; Musanti and Ghiselli 
1993). The mechanism may be related to reduced CE content of the lipoprotein 
as a result of oxidation (Ryu et al. 1995) or to incomplete lysosomal degradation 
of oxLDL components, which in turn may lead to decreased export of FC from 
lysosomes (Lougheed et al. 1991; Hoppe et al. 1994; Maor et al. 1995). Additional 
in vitro modifications of oxLDL, such as by FC enrichment (Greenspan et al. 
1997), are able to convert this lipoprotein into one that can cause substantial CE 
accumulation in cultured M¢, but it is still not certain whether these additional 
modifications of oxLDL occur in vivo. Recently, investigators have shown that 
SR-A-deficient and CD36-deficient mice have reduced, but by no means absent, 
foam cell lesions (Suzuki et al. 1997; Febbraio et al. 2000). Whereas proponents 
of the oxidation hypothesis might argue that the presence of foam cells in these 
knockout mice implicates a role for other oxLDL receptors in foam cell forma­
tion in vivo, an equally plausible interpretation is that a significant portion of 
foam cell formation involves other types of atherogenic lipoproteins altogether. 

2.2 
Aggregated Lipoproteins 

Aggregated lipoproteins, which are not necessarily recognized by scavenger re­
ceptors, have been demonstrated in both early and late atherosclerotic lesions 
and are very potent inducers of foam cell formation in cultured M¢ (Khoo et al. 
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1988; Suits et al. 1989; Hoff et al. 1990; Xu and Tabas 1991). Freeze-fracture im­
ages of the sub endothelium (Nievelstein et al. 1991) as well as analyses of LDL 
isolated from atherosclerotic lesions (Hoff and Morton 1985; Guyton and Klemp 
1996) indicate that a large proportion oflesional LDL is in the form of aggregate 
and fused particles averaging approximately 100 nm in diameter. Although the 
mechanism of LDL aggregation is not known, physiological plausible hypothe­
ses include extensive oxidation (Hoff et al. 1989), hydrolysis by mast cell-de­
rived proteases (Kovanen 1991), and hydrolysis by a M¢>-derived and endotheli­
al-derived secretory sphingomyelinase (Schissel et al. 1998). Thus, in contrast to 
the situation with oxLDL, cultured M¢> incubated with aggregated LDL formed 
by a variety of methods in vitro accumulate massive amounts of CEo 

2.3 
Chylomicron Remnants 

Post-prandial chylomicron remnants are a class of lipoproteins other than LDL 
that are epidemiologically associated with atherosclerosis, and are potent induc­
ers offoam cell formation in cultured M¢> (Havel 1995). Chylomicrons are very 
buoyant, lipid-rich lipoproteins formed in intestinal epithelial cells during the 
absorption of dietary fat. Following entry into the circulation, the triglyceride 
component of the core of chylomicrons is rapidly hydrolyzed by the enzyme li­
poprotein lipase bound to the lumenal surface of the endothelium. The resulting 
chylomicron "remnants" may either be rapidly cleared by the liver or remain in 
the circulation for an extended period, depending upon specific metabolic and 
genetic factors that differ among individuals (Havel 1995). Chylomicron rem­
nants remaining in the circulation can become enriched in CE, enter the arterial 
wall, and enhance lesion development. A widely studied model of CE-rich chylo­
micron remnants is (3-VLDL, a lipoprotein found at very high levels in the plas­
ma of cholesterol-fed rabbits. Chylomicron remnants and (3-VLDL lead to 
marked accumulation of CE when incubated with cultured M¢> (Goldstein et al. 
1980; Mahley et al. 1980). 

3 
Mechanisms by Which Foam Cells May Accumulate Cholesterol 

3.1 
Receptor-Mediated Uptake Pathways 

Lipoprotein binding to the plasma membrane has been studied with different 
ligands (e.g., AcLDL, (3-VLDL, LDL, oxLDL) in different M¢> model systems. 
Generally, M¢> lipoprotein binding occurs in coated (clathrin-associated) pits 
on microvillous extensions, and on uncoated regions of plasma membrane 
ruffles. Both uncoated and coated pits function in the uptake and delivery of 
bound lipoproteins to lysosomes (van der Schroeff et al. 1983; Traber et al. 1983; 
Mommaas-Kienhuis et al. 1985). Scavenger receptor-mediated endocytic path-
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ways have received the most interest as a mechanism for cholesterol accumula­
tion and M¢ foam cell formation. Although several proteins may contribute to 
this overall process, SR-A and CD36 have been demonstrated to play quantita­
tively significant roles. Recent evidence suggests that SR-A and CD36 represent 
two scavenging systems that are physiologically important in foam cell forma­
tion and atherogenesis. 

3.1.1 
SR-A 

The overexpression or up regulation of SR-A results in the transformation of 
Chinese hamster ovary cells or peritoneal murine M¢ into foam cells in the pres­
ence of AcLDL (Freeman et al. 1991; de Villiers et al. 1994; de Winther et al. 
1999). However, the natural ligand that promotes M¢ foam cell formation by 
SR-A in vivo has not been clearly identified, and ligands other than oxidatively 
modified lipoproteins may lead to foam cell formation by SR-A in vivo (Tabas 
1999). SR-A recognizes only extensively modified LDL, and in vitro studies have 
demonstrated that peritoneal M¢ lacking SR-A showed 80% less uptake of 
AcLDL, whereas the uptake of oxLDL was reduced by only 30% (Lougheed et al. 
1997; Terpstra et al. 1997). The pro-atherogenic role of SR-A was confirmed in 
studies with mice deficient in apoE and SR-A (Suzuki et al. 1997). These animals 
develop 58% less atherosclerotic lesions than apoE-deficient control mice. LDL­
receptorlSR-A double-knockout mice similarly showed less atherosclerotic 
plaque formation (20%) compared with LDL-receptor knockout animals 
(Sakaguchi et al. 1998). 

M¢ are the primary, but not the only cell type expressing SR-A (Bickel and 
Freeman 1992; Hughes et al. 1995). Therefore, to dissect the impact of M¢ SR-A 
on atherogenesis, mice chimeric for M¢ SR-A were generated by transplantation 
with SR-A -/- fetal liver cells. Lethally irradiated C57BL/6 mice reconstituted 
with SR-A -/- M¢ and challenged with a high-fat diet for 16 weeks had a 60% re­
duction in lesion area compared with SR-A +/+ -->C57BL/6 mice (Babaev et al. 
2000). LDLR-/- mice reconstituted with SR-A -/- M¢ and fed a Western diet for 
10 weeks had a similar 60% reduction in atherosclerotic lesions compared with 
SR-A+/+-->LDLR-/- mice (Babaev et al. 2000). There were no significant differ­
ences in serum lipid levels in these two experimental models, suggesting that 
SR-A does not affect serum cholesterol and triglyceride levels, but plays a cen­
tral role in atherogenesis by loading vascular wall M¢ with oxidized and other­
wise modified lipoprotein material. 
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3.1.2 
Class B Scavenger Receptors 

C036 

CD36, a member of the class B scavenger receptor family, is structurally unrelat­
ed to SR-A and more widely expressed, and has a broader ligand specificity 
(Febbraio et al. 1999). CD36 was originally identified as an oxLDL receptor by 
an expression cloning strategy used to isolate murine M¢ receptors that recog­
nize oxLDL, but not AcLDL (Endemann et al. 1993). A genetic polymorphism 
in the CD36 gene has been identified in Japanese subjects (Kashiwagi et al. 
1995) and shown to result in deficient expression of CD36 (NAKa- phenotype). 
Monocyte-derived M¢ isolated from these patients bind ::::::40% less oxLDL and 
accumulate ::::::40% less cholesterol ester from oxLDL than cells derived from 
normal controls (Nozaki et al. 1995), further implicating CD36 as a physiologi­
cal oxLDL receptor. In addition, peritoneal M¢ from CD36 knockout mice 
showed a 60% reduction in the uptake of oxLDL and a 52% reduction in the up­
take of AcLDL (Febbraio et al. 1999, 2000). ApoE-deficient mice lacking CD36 
develop significantly less atherosclerosis with a 77% decrease in aortic tree le­
sion area (Western diet) and a 45% decrease in aortic sinus lesion area (normal 
chow) when compared with control apoE-1- mice (Febbraio et al. 2000). These 
data support an important role for CD36 in foam cell formation and atherogen­
esis in vivo. However, CD36 also has a crucial role in fatty acid transport in 
heart and other tissues, and this predominant physiological role of CD36 is un­
likely to be attenuated by pharmacological interventions without a marked neg­
ative effect on cardiac metabolism. 

SR-BI 

The other member of the class B scavenger receptor family, SR-BI, also binds 
oxLDL and LDL, but has been better characterized as a physiologically relevant 
lipoprotein receptor for HDL (Krieger 2001). SR-BI mediates the selective up­
take of HDL CE (Acton et al. 1996; Krieger 1999) by a process in which HDL de­
livers CE to the cell without lysosomal degradation of the whole HDL particle 
(Pittman et al. 1987). Recent reports indicate that HDL is internalized by SR-BI 
and that CE is selectively removed from HDL as HDL particles are recycled back 
to the cell surface (Silver et al. 2000, 2001). Although CD36 can also mediate the 
selective uptake oflipids from HDL, it is much less efficient than SR-BI, and its 
predominant physiological role seems to be in oxLDL, rather than LDL or HDL 
metabolism (de Villiers et al. 2001). SR-BI is predominantly expressed in liver 
and steroidogenic tissues, precisely those tissues that show the highest levels of 
selective uptake of HDL cholesteryl esters (Acton et al. 1996; Krieger 1999). He­
patic overexpression of SR-BI by adenoviral-mediated transfer (Kozarsky et al. 
1997; Webb et al. 1998) results in decreased plasma levels of HDL cholesterol 
and increased biliary cholesterol content. 
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SR-BI expression can be regulated by estrogen, PPAR agonists, vitamin E, 
polyunsaturated fatty acids, and cholesterol (Fluiter et al. 1998; Krieger 1999; 
Spady et al. 1999; Trigatti et al. 2000; Witt et al. 2000). The antiatherogenic role 
of SR-BI in mouse models of atherosclerosis is unequivocal. The absence of 
SR-BI in knockout mice dramatically accelerates the onset of atherosclerosis 
(Trigatti et al. 1999; Huszar et al. 2000), whereas atherosclerosis is suppressed 
by hepatic overexpression of SR-BI (Arai et al. 1999; Kozarsky et al. 2000; Ueda 
et al. 2000). Because of the antiatherogenic effects of increased hepatic SR-BI ex­
pression, SR-BI represents a possible target for therapeutic intervention in CAD. 
However, the contribution of MI{> SR-BI to atherogenesis is unclear and may be a 
confounding factor. 

Selective lipid uptake of CE from HDL has been shown for many cell types, 
including MI{> (Stein et al. 1987; Panzenboeck et al. 1997; Hirano et al. 1999; 
Chinetti et al. 2000). SR-BI expression levels correlate with selective CE uptake 
from HDL in differentiated THP-1 MI{>, and caveolin-1, an important constituent 
of caveolae, acts as a negative regulator (Matveev et al. 1999, 2001). In addition 
to uptake from HDL, MI{> also take up CE selectively from LDL (Rinninger et al. 
1995) and oxLDL (manuscript submitted). In the latter instance, THP-1 cells se­
lectively internalize CE from oxLDL by a process that appears to be independent 
of SR-BI. Selective uptake of CE in mouse peritoneal MI{> has also been suggested 
in the case of aggregated LDL (Rinninger et al. 1995; Rhainds and Brissette 
1999), but the receptors involved have not been identified. It remains to be 
shown, however, that selective uptake from any of the ligands mentioned can in­
duce MI{> cholesterol accumulation. 

3.1.3 
Macrosialin 

Murine macrosialin and its human homologue CD68 are extensively glycosylat­
ed transmembrane proteins expressed in MI{> and MI{>-related cells, including liv­
er Kupffer cells (Rabinowitz and Gordon 1991). Macrosialin is predominantly a 
late endosomal protein but is also found on the cell surface (Rabinowitz and 
Gordon 1991; Kurushima et al. 2000). Interest in macrosialin as a scavenger and 
oxLDL receptor arose when, on the basis of ligand blotting, macrosialin was 
suggested to bind oxLDL (Ramprasad et al. 1995; Ramprasad et al. 1996). Fur­
ther examples of evidence supporting a role for macrosialin in modified LDL 
catabolism include its identification in liver Kupffer cells as the major oxLDL 
binding protein (van Velzen et al. 1997) and its prominent expression in MI{> in 
atherosclerotic plaques from apoE knockout mice (de Villiers et al. 1998). How­
ever, we found no binding of oxLDL to macrosialin in intact transfected COS-7 
and CHO cells, despite significant cell-surface expression of macrosialin (manu­
script submitted). Although macrosialin expression in MI{> and Kupffer cells is 
responsive to a pro-atherogenic inflammatory diet and to oxLDL, possibly indi­
cating a compensatory protective role, there is no evidence that macrosialin 
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functions as an oxLDL receptor on the cell surface or participates in foam cell 
formation. 

3.1.4 
LOX-l and SR-PSOX 

More recently, two additional oxLDL receptors were described that are also ex­
pressed on MtfJ. Their precise role in foam cell formation and atherogenesis is 
unclear and is currently the focus of intense investigation. Lectin-like oxLDL re­
ceptor-I (LOX-1) was identified by expression cloning from a cDNA library of 
cultured bovine aortic endothelial cells (BAECs) and is a type II membrane pro­
tein that belongs to the C-type lectin family of molecules (Sawamura et al. 
1997). LOX-l acts as a cell-surface endocytic receptor by mediating the binding, 
internalization, and proteolytic degradation of oxLDL, but not AcLDL (Moriwa­
ki et al. 1998). Cell-surface LOX-l can be cleaved through some protease activi­
ties that are associated with the plasma membrane, and released into the culture 
media (Murase et al. 2000). LOX-l is present in cultured human and murine MtfJ 
and activated smooth muscle cells (Yoshida et al. 1998); and its expression is in­
ducible by pro inflammatory stimuli, such as tumor necrosis factor (TNF}-a, 
transforming growth factor (TGF}-j3, lipopolysaccharide (LPS), angiotensin II 
and oxLDL itself (Kume and Kita 2001). In early atherosclerotic lesions in hu­
man carotid arteries, LOX-l is highly expressed in endothelial cells. In more ad­
vanced lesions with large atheromatous plaques, LOX-l expression is more 
prominent in MtfJ and smooth muscle cells suggesting roles for LOX-l in foam 
cell formation and vascular cell dysfunction (Kataoka et al. 2000). 

The same group of investigators recently identified another novel cell-surface 
receptor for oxLDL by expression cloning from phorbol myristate acetate 
(PMA}-stimulated THP-l cells, designated SR-PSOX (scavenger receptor for 
phosphatidylserine and oxidized lipoprotein). SR-PSOX can specifically bind 
oxLDL with high affinity, followed by internalization and degradation (Shimao­
ka et al. 2000). Human and murine SR-PSOX are 30-kDa type I membrane gly­
coproteins which do not share any homology with other oxLDL receptors, and 
seem to be identical to the membrane-anchored chemokine CXCLl6, which may 
playa dual role in inflammation and homeostasis (Matloubian et al. 2000). Im­
munohistochemistry showed that SR-PSOX was predominantly expressed by lip­
id-laden MtfJ in the intima of atherosclerotic plaques (Minami et al. 2001). Taken 
together, SR-PSOX may be involved in oxLDL uptake and subsequent foam cell 
transformation in MtfJ in vivo. 

3.1.5 
Fatty Acid Binding Protein (aP2) 

Another lipid-binding protein that is expressed in both adipocytes and MtfJ also 
has a role in the development and metabolism of foam cells. Genetic deletion of 
fatty acid binding protein (aP2), a protein known to have a physiologically im-
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portant role in regulating lipid metabolism and insulin sensitivity, has a 
pro atherogenic effect in ApoE -1- mice. Isolated M¢ from aP2 -1- mice secrete 
lower levels of inflammatory cytokines and accumulate lower levels of intracel­
lular cholesterol esters in response to modified lipoproteins (Layne et al. 2001; 
Makowski et al. 2001). The introduction of aP2 -1- M¢ to ApoE -1-xaP2 +1+ mice 
by bone marrow transplantation results in a reduction of atherosclerotic lesions 
that is comparable to that observed in ApoE -1-xaP2 -1- mice, indicating that it 
is the M¢ expression of aP2 that is pro-atherogenic. 

3.2 
Receptor-Independent Uptake Pathways 

In contrast to most other cells, M¢ also have the capacity to take up materials 
by phagocytosis. M¢ phagocytose some types of aggregated LDL that then leads 
to rapid lysosomal degradation of the accumulated aggregated LDL (Hoff et al. 
1989; Hoff and Cole 1991). Two lines of evidence support the phagocytosis of 
chylomicron remnants and aggregated LDL by M¢. First, cytochalasin D inhibit­
ed the uptake of lipoprotein particles (Khoo et al. 1988; Suits et al. 1989) and 
second, electron microscopy studies suggested the accumulation of lipoproteins 
in phagocytic vacuoles (Salisbury et al. 1985). 

Other endocytic pathways have been described that may be unique to M¢. 
Large /3-VLDL enter peripheral surface-connected wide invaginations, so-called 
STEMs (surface tubules for entry into M¢), prior to undergoing lysosomal deg­
radation (Tab as et al. 1990; Tabas et al. 1991; Myers et al. 1993). Importantly, 
there are different fates for /3-VLDL cholesterol that enters M¢ through STEMs 
and LDL cholesterol that enters M¢ through a coated pit-mediated endocytic 
pathway. /3-VLDL cholesterol delivered through STEMs leads to more efficient 
cholesterol esterification compared with LDL cholesterol delivered through 
coated pits. 

Patocytosis is a recently described pathway for human monocyte-M¢ uptake 
of aggregated lipoproteins, microcrystalline cholesterol, cholesterol-phospholip­
id liposomes, and other hydrophobic materials. In this pathway, aggregated LDL 
induces surface invaginations that connect with a labyrinth of interconnected 
vacuolar compartments within the M¢ cytoplasm (Kruth et al. 1999a,b; Zhang et 
al. 2000). The characteristic hallmark of phagocytosis, namely the pinching off 
of M¢ plasma membrane to form a phagocytic vacuole, does not occur in pato­
cytosis. During patocytosis the aggregated LDL accumulates within a cytoplas­
mic labyrinth that remains connected to the M¢ surface. While some accumulat­
ed aggregated LDL subsequently undergoes lysosomal degradation, most aggre­
gated LDL remains in the surface-connected compartments of the labyrinth. 
The poor degradation of aggregated LDL taken up by patocytosis differs from 
the rapid degradation of aggregated LDL taken up by phagocytosis. Actin mi­
crofilaments function in lipoprotein uptake during both patocytosis and phago­
cytosis but not during uptake of /3-VLDL into STEMs (Tabas et al. 1990). As a 
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result, cytochalasin D, an agent that interferes with actin polymerization, in­
hibits lipoprotein uptake mediated by patocytosis and phagocytosis. 

Pinocytosis (uptake of fluid in small vesicles) and macropinocytosis (uptake 
of fluid in large vacuoles) also potentially function in lipoprotein uptake by 
M¢>. In fibroblasts, pinocytotic uptake of LDL in bulk fluid is linearly related to 
LDL concentration, and the LDL taken up undergoes lysosomal degradation 
(Goldstein and Brown 1977). A similar pathway appears to function in M¢> but 
has not been extensively studied (Traber et al. 1983). Uptake of lipoproteins 
bound to plasma membrane areas that then form macropinosomes is another 
mechanism by which lipoproteins may enter M¢> (Jones et al. 1999; Jones and 
Willingham 1999). Indeed, AcLDL and aggregated LDL, both potent inducers of 
cholesterol esterification, engage in prolonged association with surface invagi­
nations in M¢> (Zha et al. 1997). The underlying mechanism is unknown, but 
may be quite relevant in foam cell formation in the sub endothelium of develop­
ing lesions in vivo, where most of the lipoproteins are not free in solution, bur 
rather are very tightly bound to extracellular matrix, often in an aggregated 
form. 

4 
Cholesterol Trafficking Within Macrophages 

Multiple pathways exist for lipoprotein and non-lipoprotein sources of choles­
terol to enter M¢>. Following endocytosis of lipoproteins by M¢> and foam cells, 
CE is hydrolyzed in lysosomes by a CE hydrolase (Anderson and Sando 1991). 
The newly liberated FC may either be retained or released from M¢>, perhaps de­
pending on the pathway by which it was delivered. In most peripheral cells, in­
tracellular levels of FC are controlled in part by an enzymatically regulated cycle 
of esterification and hydrolysis (Brown et al. 1980). Excess plasma membrane 
cholesterol enters the cytoplasm and is delivered to the intracellular cholesterol 
esterifying enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) located pre­
dominantly in the endoplasmic reticulum. Esterified cholesterol is stored in 
membrane-bound inclusions in the cytoplasm. These CE stores can be rehy­
drolyzed to FC by cytoplasmic neutral cholesterol-ester hydrolases (Khoo et al. 
1993) to complete the cycle. Following hydrolysis, FC traffics back to the plasma 
membrane where it may undergo efflux from the cell. 

Two ACAT isoforms have been described: ACAT -1 is expressed largely in pe­
ripheral tissues, including M¢>; and ACAT-2 is expressed in the intestine and liv­
er (Brewer 2000). ACAT inhibitors have been shown to reduce diet-induced ath­
erosclerosis in rabbits and hamsters with minimal alterations to circulating cho­
lesterollevels (Bocan et al. 2001). The mechanism for this effect is presumed to 
be a reduction in the differentiation of M¢> into lipid-laden foam cells, which 
results from the interruption of the cholesterol esterification-hydrolysis cycle 
(Rodriguez and Usher 2002). An ACAT inhibitor, avasimibe (Pfizer), is now in 
phase III clinical trials for the treatment of CAD (Insull et al. 2001). 
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This process of cholesterol trafficking through cells, including M¢, is under 
intense investigation to learn whether it occurs in association with carrier pro­
teins, such as the NPC1 protein (Carstea et al. 1997; Loftus et al. 1997), and 
whether cholesterol is transported by membrane vesicles or smaller macromo­
lecular complexes which may contain caveolin-1 and other proteins (Smart et al. 
1996; Uittenbogaard et al. 2002). Cholesterol and other molecules that become 
deposited in ceroid inclusions in M¢ may not be available for eventual choles­
terol efflux. These inclusions contain insoluble oxidized and polymerized pro­
teins and lipid presumably including CEo Ceroid inclusions can be produced in 
vitro when M¢ take up oxLDL or lipid particles containing lipids that are espe­
cially susceptible to oxidation (Ball et al. 1986, 1987, 1988). Sphingomyelin is a 
cholesterol-binding lipid that exists with cholesterol in endosomes, lysosomes, 
and in cholesterol-enriched detergent-insoluble membrane microdomains 
(DIGS) such as caveolae. Sphingomyelin is rapidly hydrolyzed by lysosomal 
sphingomyelinase, a product of the acid sphingomyelinase gene. M¢ deficient in 
acid sphingomyelinase exhibit defective cholesterol trafficking and efflux, sug­
gesting sphingomyelin plays an important role in cholesterol trafficking from 
intracellular sites to the plasma membrane (Leventhal et al. 2001). 

5 
Cholesterol Efflux From Macrophages 

Mechanisms mediating cholesterol efflux are of critical importance in foam cell 
development. As with the control of the cholesterol esterification-hydrolysis cy­
cle, many of the mechanisms that are important for the regulation of cholesterol 
metabolism and efflux in M¢ and foam cells are shared by the liver and other 
peripheral tissues. M¢ have two potential mechanisms for disposing of excess 
cholesterol: enzymatic modification to more soluble forms, and efflux via mem­
brane transporters. 

5.1 
Macrophage Excretion of 27-0xygenated Cholesterol Metabolites 

The enzyme cholesterol 27-hydroxylase is expressed in M¢ at relatively high lev­
els and could potentially playa role in cholesterol excretion by converting it to 
the more polar and soluble 27-0H-cholesterol and 3,B-OH-cholesterolenoic acid 
(Babiker et al. 1997). In the absence of cholesterol acceptors such as HDL, these 
compounds are then excreted from M¢ (Westman et al. 1998; Brown et al. 2000). 

5.2 
Plasma-Derived HDL 

The major mechanism for cholesterol efflux is likely to be via membrane trans­
porters, with HDL serving as a primary extracellular acceptor. This role of HDL 
is central to the "reverse cholesterol transport" process and may explain the in-
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verse correlation of HDL levels with the risk of atherosclerosis (Tall et al. 2000). 
HDLs induce cholesterol efflux when incubated with M¢> by stimulating translo­
cation of cholesterol from intracellular membranes to the plasma membrane 
(Aviram et al. 1989; Bierman et al. 1991). The HDL then acquires excess plasma 
membrane cholesterol. Alternatively, some studies show that HDL enters M¢> 
and acquires cholesterol through interactions with lipid droplets. This cholester­
ol-enriched HDL is then re-secreted by the M¢> (Schmitz et al. 1985; Takahashi 
et al. 1989; Takahashi and Smith 1999). 

SR-BI, in addition to mediating selective CE uptake from HDL, has also been 
shown to promote bi-directional flux of FC and phospholipids between cells and 
HDL Oi et al. 1997; Jian et al. 1998; Krieger 1999; Rothblat et al. 1999). The phys­
iologic importance of SR-BI for reverse cholesterol transport is suggested by 
studies that show mice over-expressing hepatic SR-BI have reduced atheroscle­
rosis (Kozarsky et al. 2000). However, the significance of SR-BI-dependent cellu­
lar cholesterol efflux from M¢> has not been established. 

5.3 
The Cassette Protein ABCA 1 

A key insight into the molecular mechanisms responsible for cholesterol efflux 
resulted from studies of patients with Tangier disease, which is characterized by 
extremely low levels of HDL and cholesterol accumulation in M¢>. The cause of 
Tangier disease was found when several different approaches led to the identifi­
cation of null mutations in the ABCAl (ATP-binding cassette, subfamily A, 
member 1) gene, encoding a member of the ATP binding cassette family of 
transporters (Bodzioch et al. 1999; Brooks-Wilson et al. 1999; Lawn et al. 1999; 
Rust et al. 1999). In vitro studies indicate that ABCA1 mediates transport of 
cholesterol and phospholipids from cells to apoA-I and other apolipoproteins or 
to lipid-poor pre-f3 HDL (Oram et al. 2000; Oram and Lawn 2001). In the ab­
sence of sufficient lipidation, nascent HDL particles are rapidly cleared, suggest­
ing a probable explanation for the extremely low HDL cholesterol levels in 
Tangier patients. 

Cholesterol efflux occurs with lipid-free amphipathic apolipoproteins of HDL 
such as apoA-I that associate with M¢> phospholipid and form nascent HDL par­
ticles. Deletion of apoA-I, the major protein component ofHDL, is not sufficient 
to cause atherosclerosis in mice fed a normal chow diet. However, apoA-I defi­
ciency markedly exacerbates atherosclerosis in hypercholesterolemic mouse 
models (Voyiaziakis et al. 1998). Adenovirus-mediated overexpression of 
apoA-I protects against the development of atherosclerosis (Benoit et al. 1999; 
Tangirala et al. 1999). 

In addition to ABCA1, M¢> and adipocytes also express and secrete the am­
phipathic apolipoprotein, apoE, in response to increases in intracellular choles­
terol. Importantly, apoE expression in arterial wall M¢> is believed to promote 
cholesterol efflux from lipid-laden foam cells, and to protect against atherogene­
sis by a mechanism that is distinct from its well-known role in hepatic lipopro-
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tein uptake. M¢ produce their own HDL particles that may mediate M¢ choles­
terol efflux through an autocrine/paracrine mechanism involving both apoE 
and ABCAl. This occurs when M¢ secrete apoE that associates with M¢ phos­
pholipid to form apoE-phospholipid discoidal complexes (Basu et al. 1982). 
These apoE-phospholipid particles acquire cholesterol from M¢ sufficiently to 
cause a decrease in cholesterol content of human monocyte-derived M¢ and cy­
clic adenosine monophosphate (cAMP)-treated RAW mouse M¢, but not un­
treated mouse peritoneal M¢ (Smith et al. 1996; Zhang et al. 1996). ABCA1 
probably plays a major role in this cellular efflux of cholesterol and phospholip­
id to apoE. M¢-specific expression of human apoE reduces atherosclerosis in 
hypercholesterolemic apoE-null mice, supporting a possible function of M¢­
produced apoE within lesions in promoting cholesterol efflux (Bellosta et al. 
1995). 

Recent studies link ABCA1, PPARs, apoE and the nuclear receptors LXRa 
and LXR,B in cholesterol efflux. These nuclear receptors are important in regu­
lating the expression of various proteins involved in the control of hepatic lipid 
metabolism, and have significant biological effects on the regulation of systemic 
lipid and cholesterol levels, as well as on the regulation of cellular cholesterol ef­
flux. Among the main physiological activators of the LXR receptors are oxys­
terols, and genetic deletion of LXRa in mice attenuates the ability of the liver to 
regulate the expression of lipid-metabolizing gene products in response to die­
tary cholesterol (Peet et al. 1998). In contrast, mice in which LXR,B is deleted re­
spond normally to changes in dietary cholesterol (Alberti et al. 2001). These re­
ceptors might also have an important role in cholesterol efflux, independent of 
their role in lipid metabolism. Overexpression of LXRa in fibroblast or M¢ cell 
lines, or treatment of these cells with oxysterols, induces expression of the 
mRNA for ABCA1, indicating that its expression might be under the control of 
oxysterols through their interaction with LXR (Venkateswaran et al. 2000). Cho­
lesterol regulation of M¢ and adipocyte expression of apoE is also under the 
transcriptional control of LXR receptors. It has recently been shown that adipo­
cytes and M¢ from Lxra -/- , Lxr,B -/- mice and double-knockout mice have re­
duced or absent activation of apoE expression by oxysterols. These data indicate 
that M¢ LXR receptors are physiologically important in the regulation of choles­
terol efflux (Laffitte et al. 2001). 

The PPAR class of transcription factors belongs to the broad nuclear hor­
mone receptor superfamily, which includes the steroid, retinoid, and thyroid 
hormone receptors. The three PPAR isoforms (a, 8, and y) form a heterodimer 
with RXR and regulate the transcription of genes that are involved in lipid and 
glucose metabolism. Binding oflipid ligands to the PPAR-RXR heterodimer ac­
tivates the transcription factor complex (Kersten et al. 2000). PPAR-y is most 
abundantly expressed in adipocytes, but is also present in M¢ (Ricote et al. 
1998). PPAR-y is the specific target of the insulin-sensitizing thiazolidinediones 
that are widely used in the treatment of hyperlipidemia and type 2 diabetes mel­
litus. A role for PPAR-y in foam cell formation became relevant when it was 
shown that lipid ligands present in oxLDL, as well as the thiazolidinediones, 
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could activate PPAR-y in M¢>, upregulate expression of the oxLDL receptor, 
CD36, and increase their own uptake (Nagy et al. 1998; Tontonoz et al. 1998). 
These findings, describing a forward feeding loop resulting in increased oxLDL 
uptake and foam cell formation, raised serious concerns about the potential 
long-term side effects of thiazolidinedione treatment of type 2 diabetic patients, 
who are already at increased risk for developing atherosclerosis (Spiegelman 
1998). However, recent studies show a more complex regulation of M¢> lipid me­
tabolism by PPAR-y resulting in protection from atherosclerosis. In addition to 
upregulating CD36 expression, troglitazone treatment of peritoneal M¢> also 
downregulates SR-A expression (Moore et al. 2001). This opposing regulation of 
modified LDL receptors results in the largely unchanged uptake of oxLDL by 
M¢>. Studies in apoE and LDL-receptor knockout mice showed that treatment 
with PPAR-y agonists (rosiglitazone and troglitazone) had a favorable influence 
on the development of atherosclerosis (Li et al. 2000; Chen et al. 2001; Collins et 
al. 2001). PPAR-y was shown to limit cholesterol accumulation in M¢> by increas­
ing ABCA1 expression and cholesterol efflux in response to apoA-I. Interesting­
ly, the PPAR-y induction of ABCA1 appears to be driven through the PPAR-y in­
duction of the nuclear receptor LXR (Chawla et al. 2001; Chinetti et al. 2001). A 
major physiologic role of PPAR-y/LXR signaling may, therefore, be modulation 
of the reverse cholesterol transport process in M¢> and the atheroprotective ac­
tions of PPAR-y agonists may be partly related to the induction of cholesterol 
efflux. Recent data also indicate that selective activation of another PPAR iso­
form, PPAR-c5, resulted in lipid accumulation in primary M¢> and THP-1 cells 
(Vosper et al. 2001). A selective PPAR-c5 agonist increased SR-A and CD36 ex­
pression, and downregulated gene expression of cholesterol 27-hydroxylase and 
apoE. The exact significance of PPAR-c5 activation as a promoter of M¢> foam cell 
formation remains unclear. 

6 
Foam Cell Death 

Foam cell death may interfere with removal of cholesterol from atherosclerotic 
lesions and contribute to the accumulation of extracellular cholesterol in le­
sions. There are conflicting reports whether massive cholesterol accumulation 
within M¢> actually causes foam cell death. Cholesterol accumulation in M¢> 
treated with an ACAT inhibitor is associated with the buildup of unesterified 
cholesterol in cellular membranes and M¢> cell death (Warner et al. 1995; 
Kellner-Weibel et al. 1998). However, M¢> accumulation of excessive unesterified 
cholesterol does not always result in foam cell death. M¢> are able to increase 
phospholipid content, a natural buffer, in response to excess unesterified choles­
terol (Tabas 1997). Even when maintaining normal phospholipid content, hu­
man monocyte-derived M¢> are able to accumulate large amounts of cholesterol 
crystals without displaying cell death. This may be because these M¢> sequester 
excessive cholesterol in protective locations such as surface-connected compart­
ments or lysosomes. The conversion of cholesterol to oxysterols could be anoth-
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er factor determining the toxicity of excess cholesterol, because oxysterols, but 
not cholesterol, are reported to be toxic to human monocyte-derived MtjJ (Clare 
et al. 1995). 

7 
Therapeutic Implications 

The data describing the importance of MtjJ expression of various types of scav­
enger receptors, ACAT, PPARs, LXR, ABCA1, apoE and aP2 for the progression 
of atherosclerosis in mouse models confirm the central contribution oflipid me­
tabolism in MtjJ and foam cells to the pathology of CAD. Therapeutic interven­
tions aimed at inhibiting the pathways that are involved in the accumulation of 
lipid by MtjJ as they differentiate into foam cells could complement both existing 
and developing therapies for the management of lipid and lipoprotein levels. 

Important caveats for the benefit of these approaches may be the impact of a 
particular therapeutic intervention on the normal function of the immune sys­
tem and its response to invading pathogens, as is evident from the described 
multi-functional role of scavenger receptors, particularly SR-A in innate immu­
nity (Platt and Gordon 2001). As existing lipid-lowering therapies have an excel­
lent risk/benefit ratio, new therapies for the treatment of CAD will require a 
similarly excellent safety profile in order to be maximally accepted and used. 
Significant impairment of the normal immune system, leading to an increase in 
the rate of infections, will probably be unacceptable for therapies used for the 
treatment of CAD. 

8 
Conclusion 

The MtjJ foam cell is a prominent and important component of the atherosclerot­
ic lesion, playing roles in both lesion initiation and lesion progression. Foam 
cell biology as it pertains to both of these processes can be understood only 
through analysis of how MtjJ interact with and internalize atherogenic lipopro­
teins and how they metabolize lipoprotein-derived cholesterol. Much of our 
knowledge of foam cell formation comes from studying cultured MtjJ, often per­
manent cell lines, interacting with monomeric lipoproteins dissolved in tissue 
culture medium. MtjJ subtypes are known to differ in important ways, and le­
sional MtjJ may in fact possess important differences to those studied in the lab­
oratory. Likewise, the form of lipoprotein that interact with MtjJ in lesions is al­
most certainly different from those investigated in most cell-culture studies. 
Therefore, studies examining the interaction of MtjJ with aggregated lipoproteins 
should be pursued in future research. 

The conclusion that foam cells promote atherogenesis may require careful ex­
amination. Clearly, MtjJ foam cells can secrete molecules, such as oxidants, 
growth factors, inflammatory cytokines, and metalloproteinases, which may 
promote lesion development and plaque breakdown. But the ability of MtjJ to 
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scavenge potentially harmful molecules, including oxidized lipids, may be bene­
ficial, such as is often the case in other types of inflammatory and infectious le­
sions. Thus, as we identify specific molecules related to foam cell biology, and 
as we increasingly use in vivo systems, such as transgenic and knockout mice, 
to study these molecules, experimental strategies must specifically address this 
critical issue. Only through such studies will we be able to use our knowledge of 
foam cell biology to rationally design anti-atherogenic therapeutic interven­
tions. 
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Abstract Fatty acids constitute key components of cell membranes. The fatty 
acid composition of cell membranes influences membrane fluidity. Membrane 
phospholipids are substrates for the generation of intracellular and extracellular 
signalling molecules. The supply of fatty acids to monocytes and macrophages 
influences their fatty acid composition. Thus, dietary fatty acid composition in­
fluences that of monocyte and macrophage membranes. This can have function­
al consequences. The n-6 polyunsaturated fatty acid (PUFA) arachidonic acid is 
the principal substrate for generation of eicosanoids via cyclooxygenase and li­
poxygenase enzymes. Increased availability of n-3 PUFAs (found in oily fish and 
fish oil) can affect chemotaxis, phagocytosis, respiratory burst, eicosanoid pro­
duction, cytokine production and other monocyte/macrophage functions. Al­
though some of the effects of n-3 PUFAs may be brought about by modulation 
of the amount and types of eicosanoids made, it appears that these fatty acids 
might elicit some of their effects by eicosanoid-independent mechanisms, in­
cluding actions upon intracellular signalling pathways and transcription factor 
activity. The functional effects of n-3 PUFAs are generally termed as "anti-in­
flammatory" and are considered beneficial to health. The effects of dietary fatty 
acids on monocyte/macrophage function may also be relevant to atherosclero­
sis, which is now recognised to include an inflammatory component. Fatty acids 
could potentially affect the degree of oxidation of low-density lipoprotein 
(LDL), its uptake by vascular cells, aspects of foam cell formation and inflam­
matory activity within atherosclerotic lesions. These effects might account for 
the reported protective effects of n-3 PUFAs towards cardiovascular mortality. 

Keywords Cardiovascular disease, Cholesterol, Cytokine, Eicosanoid, Fish oil, 
Foam cell, LDL oxidation, Phagocytosis, Polyunsaturated fatty acid, Respiratory 
burst 
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1 
Dietary Fatty Acids 

1.1 
Types and Sources of Fatty Acids in the Human Diet 

In Western countries an adult eats on average 75-150 g of fat each day and fat 
contributes 30%-45% of dietary energy. By far the most important component 
of dietary fat in quantitative terms is triacylglycerol, which in most diets consti­
tutes more than 95% of dietary fat. Each triacylglycerol molecule is composed 
of three fatty acids esterified to a glycerol backbone. Thus, fatty acids are major 
constituents of dietary fat. Because of the wide range of foods consumed, the 
human diet contains a great variety of fatty acids. It is the nature of the con­
stituent fatty acids (their chain length and degree of unsaturation) that gives a 
fat its physical properties. 

Fatty acids have systematic names, but most also have common names and 
are described by a shorthand nomenclature, e.g. 18:2n-6. This nomenclature in­
dicates the number of carbon atoms in the hydrocarbon chain, the number of 
double bonds in the hydrocarbon chain, and the position of the first double 
bond from the methyl terminus of the chain (see Fig. O. It is the n-7, n-9, n-6 or 
n-3 notation that indicates the position of the first double bond in the hydrocar­
bon chain for a fatty acid. Thus, an n-6 fatty acid has the first double bond on 
carbon number 6 from the methyl terminus and an n-3 fatty acid has the first 
double bond on carbon number 3 from the methyl terminus. The n- notation is 
sometimes referred to as OJ or omega. 

Methyl end 

HaC 

HaC 

HaC 
-

6 

HaC 3 

Mammals cannot insert double bonds in here 

Fig. 1 The structure of fatty acids 

Carboxyl end 

Stearic acid 
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COOH Oleic acid 
18:1".9 
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COOH 
... Linolenic acid 
18:3n-3 
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Saturated fatty acids and most monounsaturated fatty acids (MUFAs) can be 
made in mammalian tissues from non-fat precursors, but this does not usually 
occur in humans eating a Western diet, since the consumption of fat in general, 
and of saturated and monounsaturated fatty acids in particular, is high. Howev­
er, mammals cannot insert double bonds between the methyl terminus and car­
bon number 9 in oleic acid (l8:1n-9) (Fig. 1). Thus, mammals cannot convert 
oleic acid into linoleic acid (18:2n-6). The L112-desaturase enzyme which does 
this is found only in plants. Likewise, mammals cannot convert linoleic acid into 
a-linolenic acid (l8:3n-3). The M5-desaturase enzyme which does this is again 
found only in plants. Since these two fatty acids cannot be made by mammals 
they are termed essential fatty acids. Also, because mammalian tissues do not 
contain the L115-desaturase, they cannot interconvert n-6 and n-3 fatty acids. 
Plant tissues and plant oils tend to be rich sources of linoleic and a-linolenic ac­
ids. These fatty acids are the main polyunsaturated fatty acids (PUFAs) in most 
human diets: the average intake of linoleic acid among adult males in the United 
Kingdom is approximately 14 g/day, while that of a-linolenic acid is approxi­
mately 2 g/day. These intakes are lower than those of saturated and monounsat­
urated fatty acids (approximately 42 and 32 g/day, respectively). 

1.2 
Synthesis of Longer Chain Polyunsaturated Fatty Acids 

Once consumed in the diet, linoleic acid can be converted via y-linolenic acid 
(GLA; 18:3n-6) and dihomo-y-linolenic acid (DGLA; 20:3n-6) to arachidonic 
acid (AA; 20:4n-6) by the pathway outlined in Fig. 2. Using the same pathway 
(Fig. 2), dietary a-linolenic acid can be converted into eicosapentaenoic acid 
(EPA; 20:5n-3), docosapentaenoic acid (22:5n-3) and docosahexaenoic acid 
(DHA; 22:6n-3). Thus, there is competition between the n-6 and n-3 fatty acids 
for the enzymes which metabolise them. The long chain n-3 PUFAs, EPA and 
DHA can be obtained directly from the diet since they are found in relatively 
high proportions in the tissues of so-called "oily fish" (e.g. herring, mackerel, 
tuna, sardines) and in the commercial products called "fish oils" which are a 
preparation of the body oils of oily fish; EPA and DHA are also found in high 
proportions in the oils extracted from the livers of some other species of fish 
(e.g. cod). EPA and DHA comprise 20%-30% of the fatty acids in a typical prep­
aration of fish oil. The intake of longer chain n-3 PUFAs is not clearly known, 
but it appears that the average adult in the United Kingdom consumes about 
250 mg EPA plus DHA per day. In the absence of significant consumption of oily 
fish, a-linolenic acid is the major dietary n-3 fatty acid. 

1.3 
Polyunsaturated Fatty Acid Synthesis by Macrophages 

Experiments with murine peritoneal macrophages in culture demonstrated that 
these cells have limited capacity to carry out the key metabolic transformations 
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Fig. 2 Outline of the pathway 
of biosynthesis and metabolism 
of polyunsaturated fatty acids 

shown in Fig. 2. These studies indicate that (murine) macrophages have an effi­
cient fatty acid elongase (capable of converting linoleic acid to 20:2n-6, GLA to 
DGLA and EPA to 22:Sn-3), lack ~6-desaturase activity and have a low activity 
of ~S-desaturase (Chapkin et al. 1988a,b; Chapkin and Coble 1991). Thus, the 
bulk, if not all, of the AA, EPA and DHA in macrophage phospholipids is likely 
to originate from exogenous sources. PUFAs circulate in the bloodstream as the 
fatty acid components of phospholipids and triacylglycerols in lipoproteins and 
as non-esterified fatty acids. These circulating lipid pools provide PUFAs to im­
mune cells such as monocytes and macrophages. 

2 
Roles of Fatty Acids in Monocytes and Macrophages 

The majority of the fatty acids taken up by cultured macrophages are incorpo­
rated into phospholipids of the plasma and organelle membranes. There is se­
lective enrichment of particular phospholipid classes with particular fatty acids 
(e.g. AA is particularly associated with phosphatidylcholine). The fatty acid 
components of membrane phospholipids are pardy responsible for regulating 
the fluidity of the membrane (Stubbs and Smith 1984). Fluidity ensures the ap­
propriate environment for the function and movement of membrane proteins, 
and changing fluidity can affect the activities of such proteins (Stubbs and 
Smith 1984). Membrane phospholipids are also the source of a range of sig­
nalling molecules including inositol-1,3,S-trisphosphate, diacylglycerol, phos­
phatidic acid, lysophosphatidylcholine, choline, ceramide, platelet activating 
factor and AA. It is now recognised that there are particular regions of the cell 
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Membrane 
phospholipid class 

Membrane phospholipid 
fatty acid composition 

Fig. 3 Mechanisms whereby polyunsaturated fatty acids might exert effects on monocyte/macrophage 
function 

membrane specialised for these roles in cell signalling; these regions are termed 
rafts, and they are sites where certain receptors and signalling enzymes are clus­
tered (Simons and Toomre 2000). Rafts are also characterised by the presence of 
a different range of phospholipids from the bulk of the plasma membrane, and 
this most likely relates to providing the correct environment for the receptors 
and signalling enzymes and providing substrates for the generation of signalling 
molecules. The arrangement of the phospholipids in membranes and their fatty 
acid compositions might have important functional effects for macrophages 
(Fig. 3). 

3 
Influence of Altered Supply of Fatty Acids on Monocyte 
and Macrophage Fatty Acid Composition 

Monocyte and macrophage membrane phospholipids are rich in AA, which typ­
ically comprises 15%-25% of the fatty acids. Since it appears that these cells 
have a limited capacity to synthesise AA from linoleic acid (see "Polyunsaturat­
ed Fatty Acid Synthesis by Macrophages" above), the AA most likely originates 
from metabolism of linoleic acid in the liver. The proportions of EPA and DHA 
in macrophages and monocytes are low, since most diets contain little a-linolen­
ic acid and very little EPA and DHA. 
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Culture of macrophages with a given fatty acid results in enrichment of that 
fatty acid in the cells (Calder et al. 1990). The incorporation of exogenously sup­
plied n-3 PUFAs (EPA and DHA) is frequently at the partial expense of AA, i.e. 
increased proportions of n-3 PUFAs result in a decreased proportion of AA. 
This is believed to be of functional significance because of the role of AA as an 
eicosanoid precursor (see "Arachidonic Acid as an Eicosanoid Precursor" be­
low). Furthermore, changes in macrophage membrane fluidity occur as a result 
of selective enrichment with certain fatty acids (Mahoney et al. 1980), and this 
might affect functions such as phagocytosis (see "Phagocytosis" below). 

Changing the fatty acid composition of the diet has also been demonstrated 
to result in a change in the fatty acid composition of macrophages. Feeding mice 
a diet in which borage oil (contains GLA) was the fat source resulted in a 
marked increase in the proportion of DGLA in peritoneal macrophage phospho­
lipids (Chapkin et al. 1988c). Feeding rats a diet in which linseed oil was the fat 
source resulted in a marked increase in the proportions of a-linolenic acid, EPA, 
docosapentaenoic acid and DHA in peritoneal macrophage phospholipids (Ma­
grum and Johnston 1983). Feeding laboratory animals a diet rich in fish oil re­
sults in a marked increase in the proportions of EPA and DHA in macrophage 
phospholipids (see Calder 1998 for references). The incorporation of n-3 PUFAs 
following feeding of either linseed or fish oil results in a decline (up to 50%) in 
the proportion of AA in macrophage phospholipids. 

Those studies that have examined the effects of providing fish oil to humans 
on the fatty acid composition of peripheral blood monocytes show a marked in­
crease in the proportion of EPA (e.g. from <0.1 to > 1.5% [Lee et al. 1985; Fisher 
et a1.l990]) and DHA. The incorporation is paralleled by a decline in the pro­
portion of AA (e.g. from 22.6% to 15% [Fisher et al. 1990]). The incorporation 
of dietary EPA and DHA from the diet into human monocytes reaches a plateau 
within 3 or 4 weeks (see Gibney and Hunter 1993; Yaqoob et al. 2000). However, 
both the time course of incorporation and the extent of the compositional 
change depend upon the dose of fish oil provided. 

4 
Regulation of Monocyte and Macrophage Functions by Dietary Fatty Acids 

4.1 
Influence of Fatty Acids on Membrane-Mediated Functions of Monocytes 
and Macrophages 

4.1.1 
Chemotaxis 

Chemotaxis of monocytes and macrophages could be affected by changes in the 
fatty acid composition of membrane phospholipids which might influence the 
binding of chemotactic agents to their receptors, the subsequent signalling path­
ways, or the cytoskeletal rearrangements which occur. Chemotaxis of blood 
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monocytes towards the chemoattractants leukotriene (LT) B4 and formyl-me­
thionyl-Ieucyl-phenylalanine was found to be suppressed following supplemen­
tation of the human diet with approximately 5.5 g EPA plus DHA per day for 
6 weeks (Lee et al. 1985; Endres et al. 1989; Schmidt et al. 1992). There was no 
effect of a much lower dose of n-3 PUFAs (0.65 g/day for 12 weeks) upon mono­
cyte chemotaxis towards pooled human serum (Schmidt et al. 1996). 

4.1.2 
Phagocytosis 

The ability of a cell to perform phagocytosis may be influenced by membrane 
structure, in particular by the fluidity of the membrane, which may in turn be 
modulated by the fatty acid composition of membrane phospholipids (Mahoney 
et al. 1980). Indeed, several studies show that phagocytosis by murine macro­
phages is influenced by manipulation of their fatty acid composition in culture 
(see Calder 1998 for references). In general, increasing the macrophage content 
of saturated fatty acids decreases the ability to perform phagocytosis, while in­
creasing the macrophage content of PUFAs increases the ability to perform pha­
gocytosis. These studies showed phagocytosis to be highly correlated with the 
degree of phospholipid fatty acid unsaturation, suggesting that membrane fluid­
ity is an important determinant of phagocytosis. 

Despite the consistency of the effects of fatty acids on phagocytosis by mac­
rophages following their enrichment with fatty acids in culture, most studies 
show little or no effect of dietary fatty acid manipulation on phagocytosis by 
rodent and pig macrophages (see Calder 1998 for references) or human mono­
cytes (Halvorsen et al. 1997; Thies et al. 2001). The differences between the ef­
fects of fatty acids delivered in vitro or through the diet most likely relate to the 
much smaller changes in fatty acid composition observed in the latter case. 

4.1.3 
Respiratory Burst 

There is a large but inconsistent literature on the effects of dietary fish oil on 
respiratory burst by macrophages. This might in part relate to the different ex­
perimental models used, particularly the stimulus used to generate respiratory 
burst, and to the different ways of expressing the results from such measure­
ments. Some studies demonstrate that feeding fish or linseed oils results in a re­
duction in the absolute amount of superoxide (and hydrogen peroxide) generat­
ed at a given time after stimulation of macrophages with some agents (see 
Calder 1998 for references). However, Eicher and McVey (1995) reported no ef­
fect of dietary fat on the number of murine Kupffer cells engaging in respiratory 
burst. A detailed study of the hydrogen peroxide generation by peritoneal mac­
rophages from mice fed safflower or fish oil was conducted by Hubbard et al. 
(1991). These authors found that macrophages from fish oil-fed mice showed 
lower hydrogen peroxide production in response to unopsonised zymosan, but 
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production in response to phorbol ester was not different from cells of mice fed 
the different fatty acids. However, macrophages from fish oil-fed mice produced 
more hydrogen peroxide than those from safflower oil-fed mice following prim­
ing with a high concentration of interferon (IFN)-y (Hubbard et al. 1991). Thus 
the true impact of dietary n-3 PUFAs on respiratory burst remains unclear. 
There have been few investigations of the influence of dietary fatty acids on res­
piratory burst by human monocytes. Fisher et al. (1990) reported that giving 
healthy volunteers 6 g EPA plus DHA per day for 6 weeks resulted in a marked 
decrease in the production of superoxide by zymosan-stimulated monocytes. In 
contrast, Halvorsen et al. (1997) reported no effect of 3.8 g EPA or DHA per day 
for 7 weeks on superoxide production by monocytes in response to Escherichia 
coli. Furthermore, superoxide production by monocytes in response to E. coli 
was not affected by consumption of 2 g a-linolenic acid, 0.75 g DHA or 1.2 g 
EPA plus DHA per day for 12 weeks by healthy elderly humans (Thies et al. 
2001). These data suggest that there is little impact of modestly increased con­
sumption of n-3 PUFAs on respiratory burst by human monocytes. 

4.2 
Influence of Fatty Acids on Eicosanoid Generation by Monocytes 
and Macrophages 

4.2.1 
Arachidonic Acid as an Eicosanoid Precursor 

Eicosanoids are a family of oxygenated derivatives of DGLA, AA and EPA. Eico­
sanoids include prostaglandins (PGs), thromboxanes, LTs, lipoxins, hydroper­
oxyeicosatetraenoic acids and hydroxyeicosatetraenoic acids. Monocytes and 
macrophages are important sources of eicosanoids. Because the membranes of 
monocytes and macrophages typically contain large amounts of AA, compared 
with DGLA and EPA, AA is usually the principal precursor for eicosanoid syn­
thesis. AA in the monocyte/macrophage can be mobilised by various phospholi­
pase enzymes, most notably phospholipase Az, and the free AA can subsequent­
ly act as a substrate for cyclooxygenase (COX), forming 2-series PGs and related 
compounds, or for one of the lip oxygenase (LOX) enzymes, forming 4-series 
LTs and related compounds (Fig. 4). There are two forms of COX: COX-1 is a 
constitutive enzyme and COX-2 is induced in response to stimulation, for exam­
ple with bacterial lipopolysaccharide (LPS) or tumour necrosis factor (TNF), 
and is responsible for the marked elevation in production of PG which accom­
panies such cellular activation. Monocytes and macrophages produce large 
amounts of PGEz and PGFza. The LOX enzymes have different tissue distribu­
tions, with 5-LOX being the most important in immune cells including mono­
cytes and macrophages. 
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4.2.2 
Effects of Eicosanoids on Inflammation and Immunity 

Eicosanoids are involved in modulating the intensity and duration of inflamma­
tory and immune responses. The effects of PGEz and LTB4 have been studied 
most widely. PGEz has a number of pro-inflammatory effects including inducing 
fever, increasing vascular permeability and vasodilation and enhancing pain 
and oedema caused by other agents such as histamine. PGEz acts on T cells to 
suppress proliferation and interleukin (IL)-2 and IFN-y production. PGEz also 
inhibits natural killer cell activity. Thus, in these respects PGEz is immunosup­
pressive. With respect to cytokine production by monocytes and macrophages, 
PGEz inhibits production of TNF-a, IL-l and IL-6. Since TNF-a induces COX-2 
and so promotes PGEz production, the inhibition of synthesis of the classic pro­
inflammatory cytokines by PGEz forms an important regulatory loop. LTB4 in­
creases vascular permeability, enhances local blood flow, is a potent chemotactic 
agent for leukocytes (including monocytes), induces release of lysosomal en­
zymes by neutrophils, enhances generation of reactive oxygen species, inhibits 
lymphocyte proliferation and promotes natural killer cell activity. The 4-series 
LTs also regulate production of pro-inflammatory cytokines; for example LTB4 
enhances production of TNF-a, IL-l and IL-6. In this latter respect, PGEz and 
LTB4 are antagonistic. Thus, AA gives rise to mediators which can have opposing 
effects to one another, so the overall physiological effect will be governed by the 
concentration of those mediators, the timing of their production and the sensi­
tivities of target cells to their effects. 

4.2.3 
EPA as an Alternative Eicosanoid Precursor 

Since increased consumption of fish oil results in a decrease in the amount of 
AA in the membranes of monocytes and macrophages (see "Influence of Altered 
Supply of Fatty Acids on Monocyte and Macrophage Fatty Acid Composition" 
above), there will be less substrate available for synthesis of eicosanoids from 
AA. Furthermore, n-3 PUFAs inhibit phospholipase Az activity in macrophages, 
competitively inhibit the oxygenation of AA by COX, and inhibit the cytokine­
induced up regulation of COX-2 gene expression (Curtis et al. 2000). Thus, fish 
oil feeding results in a decreased capacity of monocytes and macrophages to 
synthesise eicosanoids from AA. This has been demonstrated in a variety of ani­
mal models and following high-dose fish oil feeding in humans (see Calder 1998 
for references). 

In addition to effects on generation of eicosanoids from AA, EPA is able to 
act as a substrate for both COX and 5-LOX (Fig. 4), giving rise to derivatives 
which have a different structure from those produced from AA (i.e. 3-series PGs 
and 5-series LTs). Thus, the EPA-induced suppression in the production of AA­
derived eicosanoids can potentially be accompanied by an elevation in the pro­
duction of EPA-derived eicosanoids. Studies in experimental animals have dem-



Arachidonic acid 

LTB4 
LTC4 
LTD4 
LTE4 

5-HETE 

Dietary Fatty Acids and Macrophages 183 

Eicosapentaenoic acid 

LTBs 
LTCs 
LTDs 
LTEs 

Fig. 4 Generation of eicosanoids from polyunsaturated fatty acids 

onstrated that feeding fish oil results in markedly enhanced production of 5-se­
ries LT (Chapkin et al. 1990; Whelan et al. 1991). Similarly, dietary fish oil (at 
a high dose) was demonstrated to significantly increase generation of LTBs, 
6-trans LTBs and 5-hydroxyeicosapentaenoic acid by stimulated human mono­
cytes (Lee et al. 1985; Sperling et al. 1993). The generation of EPA-derived COX 
metabolites following fish oil feeding has not been demonstrated suggesting 
that, at the concentrations incorporated into membrane phospholipids, EPA is a 
relatively poor substrate for COX. It is considered that the eicosanoids produced 
from EPA are less biologically potent than the analogues synthesised from AA, 
although the full range of biological activities of these compounds has not been 
investigated. 

4.3 
Influence of Fatty Acids on Cytokine Generation by Monocytes and Macrophages 

Since n-3 PUFAs decrease PGE2 production and since PGE2 is an inhibitor of in­
flammatory cytokine production, it would be predicted that n-3 PUFAs would 
enhance production of TNF, IL-1 and IL-6. Some animal studies support this 
prediction as far as TNF and IL-1 are concerned (see Calder 1998 for refer­
ences). However, other animal studies demonstrate the reverse effect of fish oil 
feeding: significantly decreased production of TNF, IL-1 and IL-6 following LPS 
stimulation of macrophages from fish oil-fed rodents has been reported (see 
Calder 1998 for references). The studies showing reduced cytokine production 
after fish oil feeding are supported by cell culture studies which demonstrate 
that EPA or DHA decrease the production of TNF-a, IL-j3 and tissue factor by 
monocytic cell lines (Baldie et al. 1993; Chu et al. 1999), and that n-3 PUFAs in­
hibit the cytokine-induced up-regulation of the TNF-a and IL-la genes in bo­
vine chondrocytes (Curtis et al. 2000). Whatever the reasons for the differences 
between study outcomes, it is evident that n-3 PUFAs might affect cytokine pro­
duction by mechanisms other than a decrease in production of PGE2• 

A large number of studies have now investigated the effect of dietary n-3 PU­
FAs on ex vivo cytokine production by LPS-stimulated blood mononuclear cells 
or purified monocytes from healthy human subjects (reviewed by Calder 
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2001a). A high dose of a-linolenic acid (approximately 15 g/day for 4 weeks) de­
creased by about 30% the production of IL-l{3 and TNF-a production by LPS­
stimulated human mononuclear cells (Caughey et al. 1996). A lower dose of a­
linolenic acid (2 g/day for 12 weeks) did not affect production of TNF-a, IL-l{3 
or IL-6 by such cells (Thies et al. 2001). A number of studies have shown that 
supplementation of the diet with between 2.4 and 5 g EPA plus DHA per day for 
a number of weeks leads to a significant reduction in ex vivo production of 
TNF, IL-l and IL-6 (e.g. Endres et al. 1989; Meydani et al. 1991; Caughey et al. 
1996; see Calder 2001a,b for further references). Similarly high dose fish oil 
(providing 4.6 g EPA plus DHA/day) resulted in decreased expression of mRNA 
for platelet-derived growth factors A and B and monocyte chemoattractant pro­
tein-I in unstimulated and adherence-stimulated human monocytes (Baumann 
et al. 1999). Lower doses of EPA plus DHA appear to be without effect on cyto­
kine production (Schmidt et al. 1996; Blok et al. 1997; Thies et al. 2001). 

5 
Dietary Fatty Acids and Atherosclerosis 

5.1 
Dietary Fatty Acids, Blood Cholesterol and Cardiovascular Disease 

Atherosclerosis is the leading cause of death in Western populations. One of the 
few statements concerning the condition that can be made with certainty is that 
blood cholesterol concentrations play an important role. Blood cholesterol rep­
resents one of the "modifiable" risk factors for cardiovascular disease, which 
means that it can be altered through pharmacological or dietary therapy. The 
degree to which treatment is able to alter blood cholesterol levels depends to 
some extent on an individual's "non-modifiable" risk factors, which include 
family history, race, age and gender. Epidemiological studies (such as the Multi­
ple Risk Factor Intervention Trial 1982) and drug trials suggest that a lowering 
of blood cholesterol concentration by 1 % decreases the risk of a heart attack by 
2% (Vines 1989). In most individuals, low-density lipoprotein (LDL) contributes 
approximately 75% of total circulating cholesterol. With the elucidation of the 
LDL and scavenger receptor pathways and the discovery that oxidation of LDL 
is a pre-requisite for uptake by macrophages, a widely accepted hypothesis of 
the mechanisms underlying atherosclerosis has evolved, whereby an elevated 
LDL-cholesterol concentration predisposes towards oxidation and subsequent 
uptake of modified LDL by macrophages (Kruth 2001). 

Although dietary cholesterol is involved in blood cholesterol homeostasis, it 
generally has little impact on total cholesterol concentration, since homeostasis 
primarily involves regulation of hepatic synthesis and degradation of cholester­
ol. Dietary fat, especially saturated fat, intake, on the other hand, is correlated 
with total blood cholesterol concentration in cross-sectional studies of popula­
tions with markedly different total fat intakes (Keys 1970). However, while 
cross-cultural studies tend to find significant associations between dietary fat 
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consumption and blood cholesterol concentration, within-population studies of­
ten fail to find this correlation, probably because the variation in fat intake is 
much smaller (Caggiula and Mustad 1997). Nevertheless, the relationships be­
tween intake of each class of dietary fatty acid, blood cholesterol and cardiovas­
cular disease continue to be a subject for debate. The general consensus is that 
the relationship between dietary fatty acids and coronary heart disease is medi­
ated in part by effects on blood cholesterol concentrations, and, while saturated 
fatty acids tend to be positively associated with both blood cholesterol and cor­
onary heart disease, relationships between other fatty acids (MUFAS and 
PUFAs) are less consistent, but tend to be negative (Caggiula and Mustad 1997). 

Cholesterol-lowering drug intervention trials, such as those testing the effects 
of statins, prove beyond doubt that decreasing blood cholesterol concentration 
in individuals with existing coronary heart disease or with a raised cholesterol 
concentration reduces the risk of a coronary event. However, paradoxically, 
while blood cholesterol concentration is a primary risk factor, it does not serve 
as an adequate predictor of coronary risk within populations. This is because a 
high proportion of individuals with high blood cholesterol concentrations have 
cardiovascular disease, yet a large proportion of individuals diagnosed with car­
diovascular disease have concentrations within the normal range (Griffin 1999). 
Thus, while the interrelationships between diet and blood cholesterol may be of 
interest, it is impossible to conclude with absolute certainty the importance of 
the effects of dietary fatty acids on blood cholesterol with respect to cardiovas­
cular disease in a normal population. This is not to say that dietary fat cannot 
influence atherosclerosis through other mechanisms. Some fatty acid classes (in 
particular the n-3 PUFAs) have profound effects on blood clotting and, poten­
tially, thrombosis (British Nutrition Foundation 1992, 1999). Furthermore, fatty 
acids may directly affect the atherogenic process by modifying the susceptibility 
of LDL to oxidation, by modulating inflammatory functions of macrophages 
and by altering scavenger receptor expression and foam cell formation. 

S.2 
Dietary Fatty Acids and LDL Oxidation 

Oxidative modification of LDL, which progressively degrades PUFA within the 
particle, increases its atherogenicity (Steinberg et al. 1989). The susceptibility of 
LDL to oxidation is influenced by its PUFA content (amount of substrate avail­
able for oxidation) and its antioxidant content (confer resistance to oxidation). 
Thus, at a given antioxidant content, decreasing the PUFA content of LDL 
should decrease its susceptibility to oxidation. Consumption of a diet rich in 
oleic acid, a MUFA, has been reported to decrease the susceptibility of LDL to 
oxidation ex vivo (Parthasarathy et al. 1990; Reaven et al. 1991; Berry et al. 
1992), presumably because MUFAs replace PUFAs in LDL and are less suscepti­
ble to oxidation. Diets high in linoleic acid increase the linoleic acid content of 
LDL and in some studies this is associated with increased susceptibility to oxi­
dation ex vivo (Parthasarathy et al. 1990; Abbey et al. 1993; Reaven et al. 1993; 
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Louheranta et al. 1996). However, some studies report no effect of increased li­
noleic acid consumption on susceptibility of LDL to oxidation (Nenseter et al. 
1992; Suzukawa et al. 1995), although this may be due to the use oflower doses 
of linoleic acid than in some other studies. The effects of dietary n-3 PUFAs on 
LDL oxidation are unclear. Some studies demonstrate that fish oil supplementa­
tion of the diet increases the susceptibility of LDL to oxidation ex vivo (Suzuka­
wa et al. 1995), presumably by increasing the PUFA content. However, other 
studies, using similar doses and similar measurements of lipid peroxidation, 
showed no effect of fish oil (Nenseter et al. 1992; Frankel et al. 1994). The dis­
crepancies in the results may be related to the antioxidant content of the LDL, 
which was not reported in any of the studies and may differ. Thus, despite re­
ported protective effects of fish oil against mortality from cardiovascular disease 
(Burr et al. 1989; Singh et al. 1997; Gissi Prevenzione 1999), it remains possible 
that n-3 PUFAs may, paradoxically, increase the susceptibility of LDL to oxida­
tion. 

5.3 
Fatty Acids and the Atherogenicity of Oxidised LDL 

The foam cell hypothesis, describing uptake of oxidatively modified LDL by 
macrophages, which subsequently become foam cells, is widely accepted (Kruth 
2001). The foam cell hypothesis goes on to explain that the lipid core of an 
atherosclerotic plaque is derived from the release of cholesterol by dying foam 
cells. However, it is interesting to note that the fatty acid composition of choles­
teryl esters from plaque regions containing foam cells is different from that in 
the lipid core region. Foam cells contain cholesteryl esters which are rich in ole­
ic acid, whereas extracellular lipid particles in the lipid core have a high propor­
tion of linoleic acid, similar in fact to the fatty acid profile of LDL cholesteryl 
esters (Smith and Slater 1972; Chao et al. 1990). Furthermore, a number of ex­
perimental studies suggest that subendothelial lipid accumulation precedes en­
try of monocytes into the subendothelial space and subsequent foam cell forma­
tion (Guyton and Kemp 1992). These observations suggest that there may be 
flaws in some aspects of the rationale for the foam cell hypothesis. It has been 
suggested as an alternative that the primary function of macrophages in 
atherosclerotic lesions may in fact be to remove cholesterol, since they can ex­
crete the cholesterol they accumulate through many processes (Kruth 2001). Ac­
cordingly, pharmacological agents used to modulate foam cell formation can 
function to limit cholesterol uptake, to alter cholesterol esterification or traffick­
ing within the macrophage (e.g. by modulating lysosomal degradation) or to en­
hance cholesterol efflux (Kruth 2001). Physiological agents, such as cytokines 
and hormones, may also modulate lipoprotein uptake and metabolism by mac­
rophages. This suggests that there may be potential for the modulation of foam 
cell formation by dietary fatty acids, either through their actions on cytokines 
or through modifications in the fatty acid composition of LDL and/or macro­
phage lipids, resulting in altered uptake of oxidised LDL. However, this area has 
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been little studied to date. A few studies have examined the effects of n-3 PUFAs 
on scavenger receptor expression by monocytes or macrophages. An animal 
study demonstrated that feeding a fish-oil-rich diet to mice resulted in down­
regulation of macrophage scavenger receptors AI and All, while coconut oil and 
sunflower oil had no effect compared with the standard diet fed to the animals 
(Miles et al. 2000). Pietsch et al. (1995) reported a down-regulation of the 
expression of CD36 by the human monocytic U937 cell line after incubation 
with 5 ,LIM EPA or DHA, but not with linoleic acid or AA. In another study, EPA 
(30-240 ,LIM) was shown to inhibit the proliferation of the same cell line in a 
dose-dependent manner and, at the highest concentrations, induced apoptosis 
(Finstad et al. 1998). Expression of CD36 was lower in cells treated with 60 ,LIM 
EPA or oleic acid compared with untreated cells (Finstad et al. 1998). However, 
EPA unexpectedly caused greater accumulation of lipid droplets in the cells than 
oleic acid, although the effects were reversed when cells were re-incubated in 
EPA-free medium. This leaves the question of the precise nature of the effects of 
fatty acids on foam cell formation unresolved. It is interesting to note, however, 
that the transcription factor, peroxisome proliferator activated receptor 
(PPAR)y, has been reported to be involved in foam cell formation by virtue of 
its induction of CD36 (Nagy et al. 1998; Tontonoz et al. 1998). Since oxidised fat­
ty acids are likely candidates as physiological ligands of PPARy, it is possible 
that dietary modulation of the fatty acid composition of LDL could generate dif­
ferent patterns of oxidised derivatives, which could have differential effects on 
PPARy. 

Oxidation of LDL has many physiological effects that may influence 
atherosclerotic lesion development. In cell culture systems, foam cell formation 
by monocytic cells is rarely observed (Kruth 2001), reflecting a limitation in ex­
perimental techniques. These systems have been used, however, to investigate 
the pro-atherogenic and pro-inflammatory properties of oxidised LDL. Oxidised 
LDL is pro-atherogenic by virtue of its upregulated uptake by scavenger recep­
tors. There has often been an assumption that oxidised LDL is pro-inflammato­
ry in nature and that it is primarily the reaction of macrophages to oxidised 
LDL which confers the chronic inflammation characteristic of atherosclerosis. 
However, the evidence for this is rather limited. Oxidised LDL is reported to 
stimulate the expression of monocyte chemotactic protein, adhesion molecules 
and some cytokines (Berliner and Heinecke 1996). However, a number of stud­
ies report anti-inflammatory effects of oxidised LDL, including downregulation 
of CCR2 (Han et al. 2000) and downregulation of the platelet-activating factor 
receptor on monocytes (Hourton et al. 2001). There are even reports that oxi­
dised LDL at low concentrations improves the viability of monocytes and that 
the purpose of this may be to maintain long-term survival of macrophages in 
lesions (Hamilton et al. 1999). Other studies demonstrate that oxidised LDL at 
high concentrations leads to apoptosis of vascular cells, which could contribute 
to plaque instability (Siow et al. 1999). Thus, the nature of the atherogenicity of 
oxidised LDL remains to be clarified. Since the fatty acid composition of LDL is 



188 P. C. Calder· P. Yaqoob 

responsive to diet, it is possible that dietary modification could alter cellular re­
sponses to oxidised LDL, but this has not been studied to date. 

S.4 
Fatty Acids and Plaque Stability 

The propensity of atherosclerotic plaques to rupture is influenced by their lipid 
content and the distribution oflipid within the plaque (Felton et al. 1997). There 
appears to be a reduction in the proportion of n-6 PUFAs and total PUFAs at the 
edges of disrupted plaques compared to the centres, which may reflect oxidative 
damage (Felton et al. 1997). It is therefore postulated that oxidised derivatives of 
PUFA may alter inflammatory activity and connective tissue degradation at the 
edges of lesions, enhancing the likelihood of disruption at this site (Felton et al. 
1997). The effects of individual fatty acids and their oxidised derivatives have 
not been elucidated. However, given the evidence for the anti-coagulatory, anti­
thrombotic and anti-inflammatory properties of n-3 PUFAs (British Nutrition 
Foundation 1992, 1999), it is possible that alteration of the PUFA composition 
of the diet could affect plaque progression, stability and thrombus formation. 
This has yet to be demonstrated in humans, but would strengthen the case for 
the reported protective effects of n-3 PUFAs in mortality from cardiovascular 
disease (Burr et al. 1989; Singh et al. 1997; Gissi Prevenzione 1999). 

6 
Summary of the Effects of Fatty Acids on Monocyte 
and Macrophage Functions 

Dietary fatty acids, especially n-3 PUFAs, can modulate monocyte/macrophage 
activities. At high intakes n-3 PUFAs can affect chemotaxis, phagocytosis, respi­
ratory burst, eicosanoid production, cytokine production and other monocyte/ 
macrophage functions. Although some of the effects of n-3 PUFAs may be 
brought about by modulation of the amount and types of eicosanoids made, it 
appears that these fatty acids might elicit some of their effects by eicosanoid-in­
dependent mechanisms, including actions upon intracellular signalling path­
ways and transcription factor activity (see Miles and Calder 1998; Calder 2002). 
These effects of n-3 PUFAs are generally termed as "anti-inflammatory" and are 
considered to be beneficial to health (see Calder 200Ia,b). The effects of dietary 
fatty acids on monocyte/macrophage function may also be relevant to athero­
sclerosis, which is now recognised to include an inflammatory component. Fatty 
acids could potentially affect the degree of oxidation of LDL, its uptake by vas­
cular cells, aspects of foam cell formation and inflammatory activity within le­
sions. 
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Abstract Gaucher disease (lysosomal glucocerebrosidase deficiency) is a rare 
inborn error of metabolism. The type 1 variant is characterised by lysosomal 
storage of glucosylceramide in tissue macrophages exclusively. The accumula­
tion of storage cells (Gaucher cells) results in pronounced hepatosplenomegaly, 
haematological abnormalities and deterioration of the skeleton. Type 1 Gaucher 
disease should be considered as a true macrophage disorder. Specific markers 
for Gaucher cells, like a hitherto unknown chitinase, have been identified and 
are commonly used to monitor progression of disease and efficacy of therapies. 
A spectacular correction in clinical symptoms of type 1 patients can be accom­
plished by chronic intravenous administration of human glucocerebrosidase 
containing glycans with terminal mannose-moieties. Currently, about 3,000 pa­
tients are treated worldwide with recombinant enzyme (Cerezyme). Enzyme re­
placement therapy (ERT) is not able to prevent glucosylceramide accumulation 
in the brain of patients suffering from the severe type 2 variant of Gaucher dis­
ease. Recently, oral administration of N-butyl-deoxynojirimycin has been regis­
tered in the EU for treatment of type 1 Gaucher patients that are unsuitable for 
ERT. The iminosugar inhibits the synthesis of glucosylceramide and thus pre­
vents massive accumulation of the lipid. 
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1 
Introduction to Lysosomes and Lysosomal Storage Disorders 

1.1 
Lysosomes 

The continuous recycling of their macromolecular constituents is a hallmark of 
the long-lived eukaryotic cell. For this reason mammalian cells contain single 
membrane-enclosed compartments in which a variety of biological macro­
molecules can be safely and efficiently degraded. Based on their lytic function, 
these acid organelles have been named lysosomes (De Duve et al. 1955). Sub­
strates for lysosomal degradation can enter the organelles via different routes, 
such as endocytosis, pinocytosis, phagocytosis and autophagocytosis. In addi­
tion, direct chaperon-mediated import of specific proteins from the cytoplasm 
has been reported (Holzmann 1989; Dice et al. 1990). Lysosomes are equipped 
with a set of about 60 acid hydrolases and a dozen accessory proteins that allow 
sequential degradation of almost all natural macromolecules, including lipids, 
glycosaminoglycans, oligo saccharides, proteins and nucleic acids. Mediated by 
specific carriers in the lysosomal membrane, the products of intralysosomal ca­
tabolism are exported to the cytoplasm where they can be re-utilised. The lyso­
somal membrane is effectively protected against self-digestion by the presence 
of transmembrane proteins with large, highly glycosylated intralysosomal do­
mains (Peters and von Figura 1994). 

The prominent lectin-based mechanism that governs the selective routing 
of newly formed acid hydrolases to lysosomes was elucidated two decades ago 
(Kornfeld and Mellman 1989). Upon co-translational translocation of lysosomal 
enzymes into the lumen of the endoplasmic reticulum, their signal peptide is re­
moved and specific asparagine residues are glycosylated by transfer of a pre­
formed oligosaccharide from a dolichol phosphate lipid carrier. The glycopro­
teins are folded, assembled in correct multimeric structures, and terminal glu­
cose moieties are removed from their glycans, an important checkpoint in the 
quality control of protein folding (Helenius 1994). Next, the glycoproteins are 
exported to the Golgi apparatus where some of their oligosaccharide chains ex­
clusively obtain mannose-6-phosphate moieties by a two-step process. The 
phosphomannosyl moieties act as a specific recognition signal. Selective bind­
ing of a major fraction of most lysosomal enzymes to cation-dependent or cat­
ion-independent mannose-6-phosphate receptors (MPRs), allows their segrega­
tion from the secretory proteins in the trans-Golgi network. In endosomal com­
partments, dissociation of mannose-6-phosphate receptors and lysosomal pro­
tein ligands occurs due to local acidity. Following uncoupling, the receptor recy­
cles to the Golgi apparatus and the newly formed hydrolases are delivered into 
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lysosomes. The cation-independent MPR is also involved in the delivery to lyso­
somes of extracellular soluble acid hydrolases containing mannose-6-phosphate 
residues. In contrast, targeting of integral lysosomal membrane proteins is not 
mediated by phosphomannosyl moieties but by specific motifs in their cytoplas­
mic domains. Further alternative targeting mechanism to lysosomes have to ex­
ist. Some membrane-associated lysosomal enzymes like glucocerebrosidase do 
not acquire phosphomannosyl moieties at all in their glycans but are neverthe­
less efficiently targeted to lysosomes by still unknown mechanisms (Aerts et al. 
1988). The lysosomal targeting oflysozyme and chitotriosidase in macrophages 
is also independent of lectin receptors, since these enzymes completely lack 
N-linked glycans (Renkema et al. 1997). Moreover, investigations on patients 
suffering from I -cell disease, in which formation of phosphomannosyl moieties 
is impaired, have indicated that in hepatocytes and lymphocytes very efficient 
intracellular sorting of newly formed soluble acid hydrolases can also occur in­
dependently of mannose-6-phosphate receptors (Owada and Neufeld 1982). The 
precise mechanism of the mannose-6-phosphate independent targeting of solu­
ble acid hydrolases is yet unknown, but it has been suggested that it involves a 
transient membrane association in the Golgi apparatus (Rijnboutt et al. 1991). 

1.2 
Lysosomal Storage Disorders 

The physiological importance of the degradative processes in lysosomes is re­
vealed by the existence of a group of at least 40 distinct inherited diseases, the 
so-called lysosomal storage disorders (Neufeld 1991; Gieselmann 1995). Most of 
these diseases are caused by a deficiency in a single lysosomal enzyme or essen­
tial cofactor and result in the lysosomal accumulation of one or sometimes sev­
eral natural compounds. According to the prevailing stored compound, the lyso­
somal storage diseases are grouped as mucopolysaccharidoses, sphingolipidos­
es, mucolipidoses, lipidoses, glycoproteinoses, glycogenosis and ceroid lipofus­
cinoses. Some lysosomal storage disorders are not single enzymopathies but 
based on defects in transport of hydrolytic products across the lysosomal mem­
brane, deficiencies in non-lysosomal proteins involved in lysosome biogenesis 
or post-translational modification oflysosomal enzymes or inherited abnormal­
ities in intracellular membrane flow. 

All lysosomal storage diseases are relatively rare with an overall incidence for 
the whole group of 1:5,000-1:10,000. The individual incidence of the more 
prominent lysosomal diseases is between 1:20,000 and 1:100,000 in most popu­
lations (Meikle et al. 1999; Poorthuis et al. 1999). Genetic drift and founder ef­
fects have led to unusually high incidences of specific lysosomal storage diseases 
in some populations. The best examples of this are Gaucher and Tay-Sachs dis­
ease among Ashkenazim, and aspartylglucosaminuria, Salla disease and infan­
tile neuronal ceroid lipofuscinosis in Finland (Peltonen 1997). As an example, 
Table 1 summarises the nature and prevalence of one subgroup of the lysosomal 
storage disorders: the sphingolipidoses. 
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Table1 Birth prevalence (per 100,000)of sphingolipidoses in The Netherlands 

Disease 

Fabry 
Gaucher 
Niemann-Pick type A and B 
Niemann-Pick type ( 
Krabbe 
Sandhoff 
lay-Sachs 
GM l -gangliosidosis 

Prevalence 

0.21 
1.16 
0.53 
0.35 
1.35 
0.34 
0.41 
0.41 

The clinical manifestation of lysosomal storage disorders is remarkably het­
erogeneous, contributing to the limited awareness of these diseases. Age of onset 
and progression of disease vary considerably for almost each individual storage 
disorder. This remarkable phenotypic variability is usually linked to the extent 
of the deficiency that is determined by the exact nature of the underlying genet­
ic defect. In the case of some lysosomal enzymopathies, a strict correlation be­
tween residual enzyme activity and severity of disease manifestation exists. A 
common feature of lysosomal storage disorders is that accumulation of storage 
material is generally restricted to lysosomes of particular cell types. The nature 
and residual capacity of the defective metabolic pathway in combination with 
the actual flux through this pathway in various cell types determine the chance 
that particular cell types are affected. This phenomenon explains why in some 
lysosomal storage disorders, external genetic or environmental factors that in­
fluence the flux through the defective pathway also have a major impact on dis­
ease manifestation. The genotype-phenotype relation is therefore not strict in 
many lysosomal storage disorders. 

The lysosomal apparatus of tissue macrophages fulfils many important 
degradative functions. Macrophages participate in the degradation of invading 
microbes, the natural turnover of blood cells and tissue modelling. In view of 
this, it is not surprising that in a considerable number of the lysosomal storage 
disorders accumulation of storage material also takes place prominently in tis­
sue macrophages. The relatively common type 1 variant of Gaucher disease is 
unique with respect to the fact that lysosomal storage occurs exclusively in mac­
rophages. The remainder of this review will deal with Gaucher disease and the 
progress that has been made regarding therapeutic correction of this macro­
phage disorder. 

2 
Gaucher Disease: A Macrophage Disorder 

Gaucher disease is the most frequently encountered lysosomal storage disorder 
in man (Barranger and Ginns 1989; Beutler and Grabowski 1995). In 1882 the 
clinical features of the disease were first described in detail by the French medi-
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cal student Philippe C.E. Gaucher, reporting the presence of large unusual cells 
in a 32-year-old female with an enlarged spleen. Already at the beginning of the 
last century it was suggested that the disease was a familial disorder. In 1934 the 
primary storage material in Gaucher disease was finally identified as glucocere­
broside (glucosylceramide). The glycosphingolipid glucocerebroside is the com­
mon intermediate in the synthesis and degradation of gangliosides and globo­
sides. In 1965 Patrick and Brady et al. independently showed that the primary 
defect in Gaucher disease is a marked deficiency in activity of the lysosomal en­
zyme glucocerebrosidase (EC. 3.2.1.45) (Brady et al. 1965; Patrick 1965). Inherit­
ed deficiencies in glucocerebrosidase result in accumulation of its lipid sub­
strate in the lysosomal compartment of macrophages throughout the body. 
Three different phenotypes are recognised, which are differentiated on the basis 
of the presence or absence of neurological symptoms. The most prevalent vari­
ant of the disease is the non-neuronopathic form, named type 1 Gaucher dis­
ease. The age of onset and clinical manifestations of type 1 Gaucher disease are 
highly variable. The most common symptoms include splenomegaly with anae­
mia and thrombocytopaenia, mostly due to hypersplenism, hepatomegaly and 
bone disease. Anaemia may contribute to chronic fatigue. Thrombocytopaenia 
and prolonged clotting times may lead to an increase in bleeding tendency. 
Atypical bone pain, pathological fractures, avascular necrosis and extremely 
painful bone crises may also have a great impact on the quality of life. Type 1 
Gaucher disease is relatively common in all ethnic groups. It is prevalent among 
Ashkenazim with a carrier frequency as high as about 1 in 10 and an incidence 
of about 1 in 450. The most common mutation in the glucocerebrosidase gene 
of Caucasians, including Ashkenazim, encodes the amino acid substitution 
N370S. The heteroallelic presence of the N370S mutation is always associated 
with a non-neuronopathic course (Jonsson et al. 1987). It has been demonstra­
ted that the N370S glucocerebrosidase is normally produced and present in ly­
sosomes. Its catalytic activity is only severely impaired at pH values above 5.0, 
illustrating the subtle nature of the mutation (Van Weely et al. 1993). Most, but 
not all, homozygotes for the N370S mutation do not develop significant clinical 
symptoms. Twin studies and the poor predictive power of phenotype-genotype 
investigations in Gaucher disease have clearly pointed out that epigenetic factors 
also playa key role in Gaucher disease manifestation (Aerts et al. 1993; Cox and 
Schofield 1997). 

Although glucocerebrosidase is present in lysosomes of all cell types, type 1 
Gaucher disease patients develop storage of glucocerebroside solely in cells of 
the mononuclear phagocyte system. It is believed that the storage material 
stems from the breakdown of exogenous lipids derived from the turnover of 
blood cells. The glucocerebroside-loaded cells show a characteristic morphology 
with a 'wrinkled paper' -like appearance of their cytoplasm, which contains lyso­
somal inclusion bodies; these cells are referred to as Gaucher cells. In the last 
decades it has become apparent that Gaucher cells are not inert containers of 
storage material but viable, chronically activated macrophages that secrete vari­
ous factors that contribute to the diverse clinical manifestations of Gaucher dis-
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ease. Increased circulating levels of several pro-inflammatory cytokines [tumour 
necrosis factor (TNF)-a, interleukin (IL)-I,8, IL-6 and IL-8], the anti-inflamma­
tory cytokine IL-I0, and macrophage colony-stimulating factor (M-CSF) have 
been reported (Aerts and Hollak 1997; Cox 2001). It has been hypothesised that 
cytokine abnormalities may playa crucial role in the development of common 
clinical abnormalities in Gaucher patients such as osteopaenia, activation of co­
agulation, hypermetabolism, gammopathies and multiple myeloma and hy­
polipoproteinaemias. More recently, examination of gene expression profiles by 
suppressive subtraction hybridisation analysis of Gaucher and control spleens 
has led to the identification of over-expression by Gaucher cells of transcripts 
for cathepsins B, K and S (Moran et al. 2000). It is of interest to note that osteo­
clast -derived cathepsin K is prominently involved in osseous type I collagen de­
struction. Local release of this cathepsin by Gaucher cells may contribute to the 
osteolysis in Gaucher disease. 

3 
Therapy of Type 1 Gaucher Disease 

Type 1 Gaucher disease has generally been considered to be the most attractive 
candidate among the inherited lysosomal storage disorders for developing effec­
tive therapeutic interventions. First, the molecular basis of the underlying ge­
netic defect had been already established in detail at the gene and protein level. 
Second, just a single cell type, the tissue macrophage, is primarily implicated in 
the pathophysiology of the disorder. The rationale for therapeutic intervention 
of type 1 Gaucher disease is therefore relatively simple: correction (or preven­
tion of ongoing formation) of Gaucher cells. This could be accomplished by 
supplementation of macrophages with the enzyme glucocerebrosidase (enzyme 
replacement therapy), by reduction of glycolipid synthesis with specific in­
hibitors (substrate deprivation or substrate balancing therapy), or by introduc­
tion of glucocerebrosidase eDNA in haematopoietic progenitors of macrophages 
(gene therapy). 

3.1 
Enzyme Therapy 

Thanks to the pioneering work of Brady, Barranger and co-workers at the Na­
tional Institutes of Health (Bethesda, USA) as well as valuable contributions by 
many others, a highly effective treatment of type 1 Gaucher disease is now feasi­
ble based on chronic intravenous administration of human glucocerebrosidase 
(Brady 1997; Barranger and O'Rourke 2001). The first attempts to treat type 1 
Gaucher disease by infusions with glucocerebrosidase isolated from human pla­
centa were already started in the early 1970s at the National Institutes of Health. 
Unfortunately, these did not result in an effective therapy for two compelling 
reasons. In the first place, too little and insufficiently pure glucocerebrosidase 
could be generated with the existing technology. In the second place, most of 
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Fig. 1 Structures of deoxynojirimycin-type inhibitors of glycosylceramide synthase. Butyl-DNM, butyl­
deoxynojirimycin; AMP-DNM, adamantane-pentyl-deoxynojirimycin 

the administered enzyme was not delivered to macrophages but to other cell 
types such as hepatocytes. The final development of an effective enzyme re­
placement therapy for type 1 Gaucher disease relied on a fortunate intersection 
of scientific disciplines: the discovery of receptors for glycoproteins and the 
complete purification of glucocerebrosidase. Purification of the protein to ho­
mogeneity was achieved in 1977 and subsequently isolation procedures were 
markedly improved (Murray et al. 1985; Aerts et al. 1986). In 1974, the first 
mammalian cell lectin, the asialoglycoprotein receptor, was described and next 
a mannose-specific lectin on Kupffer cells in the liver was identified (Ashwell 
and Morell 1974). The mannose receptor was shown to interact avidly with 
mannose-terminal glycoconjugates and mediate their delivery into lysosomes 
(Stahl et al. 1978). It was realised by Barranger, Brady and co-workers that this 
receptor-mediated uptake mechanism could be exploited for therapy of Gaucher 
disease. Analysis of the carbohydrate composition of placental glucocerebrosi­
dase showed the presence of three complex-type glycans and a single high man­
nose-type glycan per molecule (Takasaki 1984). The presence of terminal galac­
tose moieties in the glycans of placental glucocerebrosidase provided an expla­
nation for its undesired preferential targeting to hepatocytes. To increase the 
amount of terminal mannose moieties in placental glucocerebrosidase, an in vit­
ro method based on sequential enzymatic removal of N-acetylneuraminic acid, 
galactose and N-acetylglucosamine moieties with exoglycosidases was devel­
oped (Furbish et al. 1981) (see Fig. 1). The modified 'mannose-terminated' glu­
cocerebrosidase remained fully enzymatically active. It has been further demon­
strated that a similar mannose-terminated form of the enzyme is generated by 
sequential action of lysosomal exoglycosidases during maturation of endoge­
nous glucocerebrosidase in lysosomes of human fibroblasts (Van Weely et al. 
1990). Animal studies with the mannose-terminated placental glucocerebrosi­
dase revealed that the enzyme was delivered differentially to Kupffer cells in 
comparison with hepatocytes (Furbish et al. 1981). Upon treating a 5-year-old 
Ashkenazi Jewish boy with the modified placental enzyme, Barranger and co­
workers noted promising clinical improvements. In subsequent years the in­
volvement of industry (Genzyme Corporation, Boston, USA) was required to 
produce sufficient enzyme for further clinical studies with mannose-terminated 
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placental glucocerebrosidase (Ceredase). In 1990, Barton and co-workers finally 
demonstrated unequivocally in a study with 12 type 1 Gaucher patients that 
twice-weekly intravenous administration of Ceredase (l30 IU/kg/month) result­
ed in marked improvement in organomegaly and corrections of haematological 
abnormalities (Barton et al. 1991). The spectacular clinical response to enzyme 
replacement therapy has led to a rapid application worldwide. At present close 
to 3,000 type 1 Gaucher patients benefit from therapeutic intervention with Cer­
ezyme, the recombinant form of glucocerebrosidase that has superseded the pla­
centa-derived Ceredase (Grabowski et al. 1995). 

The introduction of Ceredase was associated with considerable controversy 
regarding optimal dosing regimens, further stimulated by concerns regarding 
the safety of the incompletely pure placental enzyme preparation and the ex­
treme costs for treatment of adult patients (US $50,000-$500,000 per patient per 
year). The availability of pure recombinant glucocerebrosidase and clinical in­
vestigations on optimal individualised dosing regimens have resolved most of 
the debate (Hollak et al. 1995). However, still at this moment little is known 
about the true efficacy of targeting of mannose-terminated glucocerebrosidase 
to macrophages or Gaucher cells. Investigations in rats have revealed that a ma­
jor fraction of Ceredase is not delivered to macrophages but endocytosed by liv­
er endothelial cells (Bijsterbosch et al. 1996). This is not unexpected, since it 
had been earlier demonstrated that the mannose-receptor is also expressed on 
these cells (see Linehan et al. 1999). Although elegant studies with radiolabelled 
enzyme in volunteers have been conducted by Mistry, it remains an unanswered 
question to which cells precisely mannose-terminated glucocerebrosidase is de­
livered in Gaucher patients (Mistry et al. 1996). 

Systemically administered glucocerebrosidase, a glycoprotein of about 
52 kDa, is unable to pass the blood-brain barrier. The outcome of enzyme re­
placement therapy for acute neuronopathic (type 2) and severe forms of chronic 
neuronopathic (type 3) Gaucher disease is disappointing (Erikson 2001). Several 
clinical investigations have revealed that in the severe neuronopathic Gaucher 
patients, the effects of enzyme replacement therapy on visceral and haematolog­
ical symptoms are good, but the fatal neurological deterioration continues. Ac­
cumulation of glucocerebroside and its metabolite glucosylsphingosine inside 
the brain underlies the severe neuropathology of these patients. Importantly, 
milder forms of type 3 Gaucher disease, where the chronic neuronopathic dis­
ease is primarily caused by perivascular storage cells, respond well to enzyme 
replacement therapy; and treatment with a high-dose enzyme regimen is recom­
mended by the European Working Group on Gaucher Disease (Vellodi et al. 
2001). Perivascular macrophages in the brain are known to express mannose re­
ceptor (Linehan et al. 1999). 
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3.2 
Substrate Deprivation Therapy 

An alternative approach for therapeutic intervention of type 1 Gaucher and oth­
er glycosphingolipidoses is substrate deprivation (also termed substrate reduc­
tion) therapy. Radin and coworkers firstly formulated the challenging concept 
(see for a review Radin 1996). The approach aims to reduce the rate of glyco­
sphingolipid biosynthesis to levels which match the impaired catabolism. It is 
conceived that patients who have a significant residual lysosomal enzyme activi­
ty could gradually clear lysosomal storage material and therefore should profit 
most from reduction of substrate biosynthesis. 

Two main classes of inhibitors of glycosphingolipid biosynthesis have been 
described, both of which inhibit the ceramide-specific glucosyltransferase (also 
termed glucosylceramide synthase; GlcT-1; UDP-glucose: N-acylsphingosine d­
glucosyl-transferase, EC 2.4.1.80). The enzyme catalyses the transfer of glucose 
to ceramide, the first step of the biosynthesis of glucosphingolipids. The first 
class of inhibitors is formed by analogues of ceramide. The prototype inhibitor 
is PDMP (d, 1-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol). 
More specific and potent analogues have been subsequently developed based on 
substituting the morpholino group for a pyrrolidino function and by substitu­
tions at the phenyl group: 4-hydroxy-1-phenyl-2-palmitoylamino-3-pyrroli­
dono-1-propanol (p-O H -P4) and ethylenedioxy-1-phenyl-palmitoylamino-3-
pyrrolidino-1-propanol (EtDo-P4) (Lee et al. 1999). Studies in a knock-out 
mouse model for Fabry disease have shown that oral administration of the com­
pounds can result in a marked reduction of the accumulating glycosphingolipid 
globotriaosylceramide (Abe et al. 2000). The second class of inhibitors of gluco­
sylceramide synthase is formed by N-alkylated iminosugars. Such compounds 
were already in common use as inhibitors of N-glycan processing enzymes, and 
the potential application of N-butyl-deoxynojirimycin (NB-DNJ) as HIV inhibi­
tor had been studied in AIDS patients. Platt and Butters at the Glycobiology In­
stitute in Oxford were the first to recognise the ability of NB-DNJ to inhibit gly­
cosylceramide synthesis at low micromolar concentrations (Platt and Butters 
1995). The same researchers demonstrated in knock-out mouse models of Tay­
Sachs disease and Sandhoff disease significant reductions in glycosphingolipid 
storage in the brain (Jeyakumar et al. 1999). Preclinical studies in animals and 
the previous clinical trial in AIDS patients have indicated (transient) adverse ef­
fects in the gastrointestinal tract, probably related to the ability of NB-DNJ to 
inhibit disaccharidases on the intestinal brush border. Animal studies have 
shown that the galactose analogue N-butyl-deoxygalactonojirimycin (NB-DGJ) 
may have the same therapeutic efficacy as NB-DNJ but does not cause gastroin­
testinal side-effects (Andersson et al. 2000). Overkleeft and coworkers in their 
search for inhibitors of glucosidases have serendipitously developed a more po­
tent inhibitor of glucosylceramide synthase. Adamantane-pentyl-deoxynojir­
imycin (AMP-DNM) was found to inhibit glycosphingolipid biosynthesis at low 
nanomolar concentrations (Overkleeft et al. 1998) and able to prevent globo-
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triaosylceramide accumulation in a Fabry knock-out mouse model without 
overt side-effects (D. Copeland, personal communication). 

The first clinical study of the use of NB-DNJ to treat a glycosphingolipid stor­
age disorder was reported recently (Cox et al. 2000). In an open-label phase IIII 
trial, 28 adult type 1 Gaucher patients received three times daily 100 mg NB­
DNJ (OGT918; Oxford GlycoSciences). Improvements in visceromegaly and 
haematological abnormalities as well as corrections in plasma levels of glucosyl­
ceramide and biomarkers of Gaucher disease activity have been described, al­
though the extent of the response is less spectacular than generally observed 
with high-dose enzyme replacement therapy. Provided that imino sugars or oth­
er inhibitors of glucosylceramide synthase prove to be safe in the long term, 
they will have an important role to play in the management of glycosphingolipid 
storage disorders, including Gaucher disease. 

3.3 
Gene Therapy 

Since tissue macrophages are derived from bone marrow, it is logical that cura­
tive bone marrow transplantations have been reported for some patients with 
Gaucher disease (Ringden et al. 1995). The risks of allogeneic transplantation, 
however, do not justify this approach in patients with milder forms of the dis­
ease. The observed efficacy of enzyme replacement therapy and bone marrow 
transplantation has stimulated the pursuit of gene therapy for Gaucher disease. 
Three independent studies of gene transfer to the haematopoietic cells of 
Gaucher patients have been conducted but none produced encouraging results 
(Richter and Karlsson 2001). Low transduction efficiencies of CD34 cells and no 
sustained expression of glucocerebrosidase in white blood cells have contribut­
ed to this. The development of gene therapy strategies to correct haematological 
and genetic disorders has been hampered by the low levels of gene transfer into 
human stem cells using vectors derived from oncoretroviruses. Much interest 
has been recently focused on vectors derived from lentiviruses that have been 
shown to transduce a variety of nondividing cells, including haematopoietic 
cells (Richter and Karlsson 2001). The use of such vectors and new develop­
ments with respect to macrophage-specific gene targeting (see Chap. 6, this vol­
ume) may open novel possibilities for effective gene therapy of Gaucher disease 
in the future. 

4 
Monitoring of Therapeutic Correction 

Considerable attention has been paid in relation to type 1 Gaucher disease to 
treatment goals and the monitoring of response to therapeutic interventions 
(Cox 2001; Hollak et al. 2001). The definition of treatment goals has to depend 
on clinical endpoints or surrogate endpoints that can predict clinical benefit 
based on epidemiological, pathophysiological or other scientific evidence. In 



C 4000 
:~ -u 
~ 30000 
Q,j~ 

'" -~S 
.§:§ 2000 
.- c 
bS 
.B= :a ~ 10000 
u 

Macrophages as Therapeutic Targets in Lysosomal Storage Disorders 203 

Response to therapeutic interventions 

Enzyme therapy Substrate deprivation 
therapy 

30000 

20000 

10000 

OL..-__ -_-_-_~ o 
o 10 20 30 40 50 o 5 10 15 20 

time (wk) time (months) 

Fig. 2 Corrections in elevated plasma chitotriosidase following therapeutic intervention. Left panel: Re­
sponse of the first type 1 Gaucher patient treated in continental Europe by intravenous administration 
of Ceredase (48 IU/kg/month). Right panel: Response of first type 1 Gaucher disease patient treated in 
continental Europe by oral administration of butyl-deoxynojirimycin (300 mg/day) 

view of the burden imposed by chronic intravenous infusions and the high costs 
associated with enzyme therapy as well as the uncertainty regarding dose-de­
pendent, long-term adverse effects of imino sugar therapy, it seems wise to es­
tablish for the individual Gaucher patient the minimal dose of drug required for 
effective intervention. In severely affected patients, the initial response to thera­
py can be accurately assessed by determination of spleen and liver volumes, 
haemoglobin level and platelet count. During maintenance therapy, however, 
these clinical parameters are of little value. Monitoring the effect of therapy on 
bone disease is complicated and has usually been restricted to documentation 
of the occurrence of bone crises, pathological fractures or the need for surgical 
intervention. More recently, quantitative chemical shift imaging (QCSI) has 
been applied to study the triglyceride content of lumbar bone marrow (Hollak 
et al. 2001). The fat fraction of the bone marrow is variably reduced in Gaucher 
disease due to displacement of normal triglyceride-rich adipocytes by Gaucher 
cells. It has been noted that a marked reduction in bone marrow fat fraction is 
predictive for the occurrence of bone complications. A marked correction in 
bone marrow fat content following therapy can be therefore defined as a treat­
ment goal. 

A search for plasma abnormalities in Gaucher disease has led to the discovery 
of a marked elevation in chitotriosidase, a hitherto unknown human chitinase 
(Hollak et al. 1994). In symptomatic Gaucher patients, plasma chitotriosidase 
levels were found to be about l,OOO-fold higher than in normal individuals. It 
has been subsequently shown that Gaucher cells are the source of this hydrolase 
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in plasma and that the elevated levels are an indicator of the burden of storage 
cells in a patient. Chitotriosidase is synthesised in the pathological macro­
phages, and its elevated activity correlates with tissue glucosylceramide storage 
as well as clinical parameters of disease severity. Enzyme replacement therapy, 
substrate deprivation therapy or bone marrow transplantation rapidly reduces 
the plasma chitotriosidase activity (see Fig. 2). To assess the utility of chi­
totriosidase activity measurements as a biomarker for treatment efficacy, the re­
lationship between and clinical parameters has been studied (Hollak et al. 
2001). On the basis of this investigation, it has been proposed that in patients in 
whom initiation of treatment is questionable, based solely on clinical parame­
ters, a chitotriosidase activity above 15,000 nmo1!ml/h may serve as an indicator 
of a high Gaucher cell burden and an indication for the initiation of treatment. 
A reduction ofless than 15% after 1 year of treatment should be a reason to con­
sider a dose increase. Furthermore, a sustained increase in chitotriosidase at 
any point during treatment should alert the physician to the possibility of clini­
cal deterioration and the need for dose adjustment. The assay of chitotriosidase 
activity is complicated by the existence of apparent substrate inhibition due to 
transglycosidase activity (J.M. Aerts, manuscript in preparation). Another pitfall 
results from the complete absence of the enzymatic activity in about 6% of all 
individuals. This results from homozygosity for a null allele of the chitotriosi­
dase gene (Boot et al. 1998). Plasma chitotriosidase levels in heterozygotes for 
this mutation (about 35% of all individuals) can lead to an underestimation of 
the actual presence of Gaucher cells in patients. Determination of chitotriosi­
dase genotype in Gaucher patients is therefore recommended. 

Chitotriosidase has been characterised in detail at the gene and protein level 
(Boot et al. 1995, 1998; Renkema et al. 1995, 1997). The enzyme mimics lyso­
zyme in several aspects. It is also selectively expressed in phagocytes, particular­
ly in chronically activated macrophages, and likewise is a compact globular en­
doglucosaminidase lacking N-linked glycans. The physiological role of chi­
totriosidase seems to be found also in innate immunity. It has been observed in 
studies with Candida albicans and Aspergillus fumigatus that the enzyme exerts 
a potent fungistatic effect by selective lysis of the growth tip of hyphae. The mo­
lecular basis for the massive overexpression of chitotriosidase in Gaucher cells 
and in related foam cells observed in arteriosclerosis, sarcoidosis, Wolman dis­
ease and Niemann-Pick disease is still unknown and the subject of ongoing in­
vestigation. 

5 
Prospects 

In the last decade enormous progress has been made in therapy of type 1 Gau­
cher disease, a severely debilitating disorder characterised by intralysosomal 
storage of glucocerebroside in tissue macrophages. A highly effective therapy 
based on chronic intravenous administration of mannose-terminated recombi­
nant human glucocerebrosidase is available. During the past decade this therapy 
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has been applied in several thousand patients without serious adverse effect. 
Moreover, for the same orphan disease, promising clinical responses have been 
observed upon oral administration of an iminosugar inhibitor of glucosylce­
ramide synthesis. Provided that long-term treatment with such inhibitors is 
without adverse effects, substrate deprivation therapy (in conjunction with en­
zyme replacement therapy) may play an important role in the future clinical 
management of patients suffering from glycosphingolipid storage disorders. 
Progress in vector technology and selective expression of the trans gene in mac­
rophages seem to be essential requirements before gene therapy can fulfil its 
promise as cure for type 1 Gaucher disease. 

Despite the success of the present enzyme replacement therapy with Cere­
zyme, the question should be raised whether the enzyme supplementation treat­
ment can be further improved in order to be more economic and widely avail­
able. For example, it is unclear which percentage of the mannose-terminated 
Cerezyme is actually endocytosed by tissue macrophages and storage cells and 
which percentage is 'wasted' in other cell types such as liver endothelial cells. 
The occurrence and consequences of binding of the therapeutic enzyme to re­
ceptors other than the mannose receptor, to soluble receptor fragments like sol­
uble mannose receptor (sMR), or to serum mannose-binding lectins still war­
rants further examination. Little attention has so far been paid to the expression 
of the mannose receptor on macrophages and other cells types of Gaucher pa­
tients. Increased knowledge about this matter may give valuable clues for fur­
ther improvement of the current enzyme replacement therapy. Similar consider­
ations can be made with respect to substrate deprivation therapy. In the case of 
type 1 Gaucher disease, one would prefer to inhibit selectively the synthesis of 
glucosylceramide in blood cells. More selective targeting of drugs to blood cells 
might therefore result in major improvement of efficacy and reduce the risk for 
side-effects. 

It seems likely that Gaucher disease will also serve in the future as an inter­
esting and challenging model for developing new or improved therapy modali­
ties for the correction of lipid-laden tissue macrophages. 
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Abstract Nuclear hormone receptors comprise a superfamily of ligand-depen­
dent transcription factors that regulate diverse aspects of development and ho­
meostasis. Several members of this superfamily play important roles in the reg­
ulation of inflammatory responses and lipid homeostasis in macrophages. These 
include the glucocorticoid receptor, which acts to inhibit inflammatory pro­
grams of gene expression in response to natural corticosteroids and synthetic 
anti-inflammatory agents such as dexamethasone, peroxisome proliferator-acti­
vated receptors (PPARs) that regulate fatty acid homeostasis and inflammation 
in response to endogenous eicosanoids, and liver X receptors (LXRs) that regu­
late cholesterol efflux in response to endogenous oxysterols. Recent progress in 
defining the physiological roles of these receptor systems in macrophages and 
understanding their mechanisms of action suggest that they may be important 
targets for the development of new classes of pharmaceuticals that will be useful 
for treating human diseases in which macrophages play critical pathogenic 
roles, such as atherosclerosis and arthritis. 
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1 
Introduction 

Nuclear receptors comprise a superfamily of ligand-dependent transcription 
factors that regulate diverse aspects of development, homeostasis, and immune 
function (Evans 1988; Kastner et al. 1995; Mangelsdorf and Evans 1995; Chawla 
et al. 2001). Forty-eight distinct genes encoding nuclear receptors have been 
identified in humans and mice (Maglich et al. 2001). Several members of the nu­
clear receptor superfamily have been shown to play important physiologic roles 
in macrophages. This chapter will focus on the most extensively characterized 
of these: the glucocorticoid receptor a (GRa), estrogen receptor a (ERa), vita­
min D receptor (VDR), retinoid X receptor a (RXRa), peroxisome proliferator­
activated receptors a and y (PPARa and y), and the liver X receptors a and f3 
(LXRa and LXRf3). Each of these receptors are regulated by small molecular 
weight ligands and are well-established or emerging targets of drugs that are 
used to treat human diseases in which macrophages play prominent pathogenic 
roles. Recent advances in the understanding of nuclear receptor biology and 
function raise the prospect that new generations of nuclear receptor ligands can 
be developed with improved therapeutic activities. 

1.1 
Domain Structure 

Nuclear receptors share conserved modular domains that are illustrated in 
Fig. 1. These include a variable N-terminal activation domain (AFl), a highly 
conserved DNA binding domain (DBD), and a C-terminal ligand-binding do­
main (LBD) (Evans 1988). The DBD consists of two interdependent zinc fingers 
that mediate specific DNA binding of nuclear receptor monomers, dimers, and 
heterodimers to hormone response elements (HREs) in direct target genes. 
Crystal structures of several nuclear receptor DBDs bound to their respective 
HREs indicate that the DBD provides both specific and non-specific DNA inter­
actions that allow for general DNA binding and recognition of receptor-specific 
sequences (Luisi et al. 1991; Rastinejad et al. 1995). Most hormone response ele­
ments contain two or more closely spaced core recognition motifs, each of 
which is contacted by a single DBD. Steroid hormone receptors recognize palin­
dromic inverted repeats as homodimers. An important subset of nuclear recep­
tors that includes the retinoic acid receptors, PPARs and LXRs bind to DNA as 
heterodimers with a common partner, RXR (Yu et al. 1991; Kliewer et al. 1992; 
Chawla et al. 2001). In contrast to steroid hormone receptors, RXR het­
erodimers generally bind to target genes in the presence or absence of ligand. In 
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Fig. 1 Domain structure of nuclear receptors. Nuclear receptors exhibit a common modular domain 
structure. The N-terminus encodes a variable activation domain (AF-1) that is particularly important for 
the function of steroid hormone receptors. The DNA-binding domain is highly conserved and mediates 
specific interaction with a 6-bp core recognition sequence in hormone response elements. The ligand­
binding domain determines the specific ligand-binding properties of each nuclear receptor and under­
goes ligand-dependent conformational changes that control coactivator, corepressor, and heat shock 
protein interactions 

addition, RXR heterodimers prefer HREs that consist of direct repeat organiza­
tions of the core recognition motifs rather than the palindromic HREs recog­
nized by steroid hormone receptors (Umesono and Evans 1989; NiHir et al. 1991; 
Umesono et al. 1991). Protein-protein interaction surfaces within the DBD de­
termine the optimum spacing and orientation of core recognition motifs for 
each nuclear receptor dimer or heterodimer, and thereby play important roles 
in determining specificity ofHRE recognition (Rastinejad et al. 1995). 

The ligand-binding domain integrates several nuclear receptor functions. In 
addition to binding hormone, the LBD plays roles in dimerization/heterodimer­
ization, subcellular localization, and ligand-dependent transcriptional activation 
and repression. In the case of steroid hormone receptors, the LBD also mediates 
interactions of unliganded receptors with heat shock protein complexes (Fig. 2). 
Hormone binding results in dissociation of steroid receptors from these com­
plexes and acquisition of transcriptional activity (Evans 1988). Within the nu­
cleus, the major transcriptional role of the LBD is to mediate interactions with 
coactivator and corepressor proteins in a ligand-dependent manner. This is 
thought to occur primarily through ligand-dependent conformational changes 
in an alpha helical region in the C-terminus referred to as activation function 2 
(AF2). Crystal structures of a number of nuclear receptor LBDs in the absence 
and presence of cognate ligands suggest that ligand binding causes the AF2 helix 
to go from an extended or relatively mobile position to an "active" position, in 
which it is tightly bound to the LBD and in some cases interacts directly with 
the ligand (Bourguet et al. 1995; Renaud et al. 1995; Wagner et al. 1995; Moras 
and Gronemeyer 1998). This structural shift creates a "charge clamp" that inter­
acts with a short helical motif in nuclear receptor coactivators that contains the 
consensus LxxLL, where L is leucine and x is any amino acid (Heery et al. 1997; 
Torchia et al. 1997). Because the position of the AF2 domain relative to the LBD 
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Fig, 2 Systemic and local regulation of macrophage gene expression by nuclear receptors. Classical ste­
roid hormone receptors, such as the glucocorticoid receptor, regulate gene expression in response to 
circulating hormones that are produced under the control of the hypothalamic/pituitary axis. Adopted 
orphan receptors, such as PPARs and LXRs (not shown), regulate macrophage gene expression in re­
sponse to intracellular metabolites of fatty acids and cholesterol, respectively. The production of these 
ligands may be influenced by local cytokines and other classes of signaling molecules 

is essential for coactivator recruitment, ligands that fit in the ligand-binding 
pocket, but distort the AF2 position, offer the potential to act as antagonists or 
as selective modulators of nuclear receptor activity (Brzozowski et al. 1997; Shi­
au et al. 1998). While this principle has been clearly demonstrated for the anti­
estrogens raloxifene and raloxifene, it remains to be generalized to the entire 
nuclear receptor family. 

1.2 
Functional Classification 

The spectrum of nuclear receptors can be subdivided into three sub-families 
based on their ligand-binding properties and physiological roles (Chawla et al. 
2001). The classical steroid/thyroid hormone receptors, exemplified by gluco­
corticoid and estrogen receptors, define the first and most extensively charac­
terized subfamily (Evans 1988). The so-called orphan receptors define a sub­
family at the opposite end of the nuclear receptor spectrum in that they exhibit 
conserved features of the nuclear receptor superfamily, but have not yet been 
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linked to naturally occurring ligands. A subset of orphan nuclear receptors, 
such as RORa and Nurr77, have been suggested to play important roles in regu­
lating lymphocyte function and survival (Winoto and Littman 2002), but roles 
in macrophages remain relatively unexplored. The third sub-family consists of 
"adopted" orphan receptors. These receptors were initially identified as orphan 
receptors, with subsequent studies leading to the identification of naturally oc­
curring ligands and physiological roles. Members of this subfamily that have 
been recently linked to regulation of macrophage gene expression include the 
PPARs and LXRs (Chawla et al. 2001). 

The transcriptional activities of steroid hormone and adopted orphan recep­
tors are regulated by small lipophilic molecules. In the case of the steroid hor­
mone receptors, the regulatory ligands are classic endocrine hormones, pro­
duced in glandular tissues in response to systemic physiologic circuits [e.g., the 
hypothalamic-pituitary-adrenal axis Fig. 2)]. Steroid hormones diffuse into cells 
and bind to their cognate receptors in target tissues with sub-nanomolar affini­
ties. In contrast, the adopted orphan receptors tend to be activated by metabo­
lites of cholesterol and fatty acids that are produced within the cell and bind 
with relatively low affinity. Thus, adopted orphan receptors appear to function 
as effectors of autocrine or paracrine signaling events (Fig. 2). For both steroid 
hormone and adopted orphan receptors, numerous high-affinity synthetic lig­
ands have been developed, some of which are in widespread clinical use. For ex­
ample, the synthetic GR agonists dexamethasone and prednisone are extensively 
utilized as potent anti-inflammatory agents, and the synthetic PPARy agonist 
rosiglitazone is used for treatment of type 2 diabetes mellitus. 

1.3 
Transcriptional Activities of Nuclear Receptors 

Nuclear receptors have been shown to regulate transcription by three general 
mechanisms. The prototypic activity of nuclear receptors is to activate tran­
scription in a ligand-dependent manner following direct binding to DNA re­
sponse elements in promoter or enhancer regions of target genes (Figs. 2 and 3, 
ligand-dependent transactivation). Ligand-dependent transactivation has been 
linked to the recruitment of coactivator complexes that modify chromatin struc­
ture and facilitate assembly of general transcriptional machinery at the promot­
er (Glass and Rosenfeld 2000; McKenna and O'Malley 2002). A large number of 
coactivator complexes have been identified, and it is hypothesized that combi­
natorial usage of these complexes provides the basis for cell type-specific, gene­
specific, and signal-specific transcriptional responses. Nuclear receptors can 
negatively regulate gene expression by inhibiting the activities of other classes 
of signal-dependent transcription factors, such as members of the NF-KB and 
AP-1 families (Jonat et al. 1990; Yang-Yen et al. 1990; Schule et al. 1991; Ray and 
Prefontaine 1994; Helmberg et al. 1995) (Fig. 3, ligand-dependent transrepres­
sion). Several mechanisms have been suggested to account for this activity, but 
unifying principles remain to be elucidated. Third, several of the adopted or-
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Fig. 3 Transcriptional activities of nuclear receptors. Ligand-dependent transactivation is mediated by 
the binding of nuclear receptor dimers or heterodimers to hormone response elements in target genes. 
Nuclear receptors can directly repress transcription in the absence of ligand (ligand-independent repres­
sion) or indirectly inhibit transcription in a ligand-dependent manner by inhibiting the activities of oth­
er transcription factors such as nuclear factor (NF)-KB (ligand-dependent transrepression). Other mecha­
nisms of action may also exist. For example, the estrogen receptor has been demonstrated to activate 
transcription from activator protein (AP)-l elements by serving as a coactivator (ligand-dependent coac­
tivation) 

phan receptors, exemplified by retinoid acid receptor (RAR) and thyroid recep­
tor (TR), actively repress transcription of direct target genes in the absence of 
ligands (Fig. 3, ligand-independent repression) (Damm et al. 1989; Sap et al. 
1989; Datta et al. 1992). This activity has been linked to the recruitment of core­
pressor complexes that function to antagonize the actions of coactivator com­
plexes (Chen and Evans 1995; Horlein et al. 1995). Not all nuclear receptors ex­
hibit this entire spectrum of transcriptional activities and the possible tran­
scriptional effects of a single nuclear receptor vary in a cell-specific manner. In 
addition to these general mechanisms of nuclear receptor action, specific nucle­
ar receptors have been demonstrated to regulate transcription by other mecha­
nisms. For example, the estrogen receptor can in some contexts interact with 
AP-l proteins and function as a coactivator (Fig. 3, ligand-dependent coactiva­
tion) (Paech et al. 1997). 
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2 

Nuclear Receptor Functions in Macrophages 

Studies of nuclear receptor function in the macrophage suggest three general 
physiologic roles. One role is the negative regulation of inflammatory responses 
mediated by AP-l and NF-ICB family members. Emerging evidence suggests that 
these actions represent important functions of GRa, ERa, and PPARs in the 
macrophage. A second major role that has emerged involves regulation of lipid 
homeostasis by LXRs and PPARs. Third, a smaller subset of nuclear receptors, 
exemplified by the vitamin D receptor, have been found to influence specialized 
programs of macrophage differentiation, such as osteoclast formation. 

While GRa, VDR, RXRa, and LXR,B appear to be constitutively expressed in 
macrophages, ERa and PPARy have both been shown to be increased during 
macrophage differentiation (Ricote et al. 1997; Cutolo et al. 2001). In addition, 
PPARy is upregulated by multiple stimuli in the macrophage, including oxidized 
low-density lipoprotein (LDL), granulocyte macrophage colony-stimulating fac­
tor (GM-CSF), macrophage colony-stimulating factor (M-CSF) and interleukin 
(IL)-4 (Nagy et al. 1998; Ricote et al. 1998; Huang et al. 1999). LXRa expression 
is positively regulated by its oxysterol ligands, providing a positive feedback 
mechanism for maintenance of cholesterol homeostasis (Kohro et al. 2000; Laf­
fitte et al. 2001). 

2.1 
Systemic and Endogenous Ligands 

Ligand availability represents one of the most important determinants of nucle­
ar receptor activity. Thus far, the macrophage appears to possess mechanisms 
for the autocrine or paracrine production of three distinct classes of ligands. 
First, although estrogen is largely an endocrine hormone regulated by the hypo­
thalamic-gonadal axis, differentiated macrophages express and regulate the en­
zyme aromatase, capable of converting serum dehydroepiandrosterone (DHEA) 
into the immunomodulatory steroids estrogen, 3,B,17,B-androstenediol, and an­
drostenedione (Schmidt et al. 2000). Second, PPARy can be activated by a vari­
ety of fatty acid metabolites and oxidation products. These include the linoleic 
and arachidonic acid metabolites 13-HODE, IS-HETE and IS_deoxy_L'l12,14 pros­
taglandin h (Forman et al. 1995; Kliewer et al. 1995; Forman et al. 1997; Kliewer 
et al. 1997; Nagy et al. 1998). Both 13-HODE and IS-HETE have been identified 
as components of oxidized LDL, which has itself been shown to upregulate 
PPARy expression and induce its transcriptional activity (Nagy et al. 1998; 
Ricote et al. 1998). In addition, 13-HODE and IS-HETE can be enzymatically 
generated by the IL-4 inducible 12/1S-lipoxygenase, suggesting that IL-4 can co­
ordinately regulate both the expression and activity of PPARy (Huang et al. 
1999). Third, LXRs are activated by cholesterol metabolites (Peet et al. 1998). In 
the macrophage, the enzyme 27-hydroxylase is able to modify cholesterol into a 
ligand for both LXRa and LXR,B (Babiker et al. 1997; Fu et al. 2001). Therefore, 
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nuclear receptors provide mechanisms for regulating macrophage gene expres­
sion in response to changes in cellular lipid homeostasis and the production of 
arachidonic acid metabolites that occur during the evolution of inflammatory 
responses. 

2.2 
Anti-inflammatory Effects of GRa, ERa, PPARy, and VDR 

The striking ability of GRa agonists to inhibit inflammatory responses is one of 
the best-documented effects of nuclear receptor ligands on macrophage physiol­
ogy. Endogenous glucocorticoids are released in response to a variety of stres­
sors (starvation, pain, trauma, infection, etc.) and are essential for maintenance 
of homeostatic functions (Fig. 2) (Schimmer and Parker 1996). Although in 
widespread clinical use for the treatment of a variety of inflammatory diseases 
including rheumatoid arthritis, systemic lupus erythematosus, inflammatory 
bowel disease, psoriasis, eczema, asthma and transplant rejection, the mecha­
nistic basis of the anti-inflammatory actions of glucocorticoids remains poorly 
understood (Barnes 1995; McKay and Cidlowski 1999). Accumulating evidence 
suggests that these effects largely result from inhibition of signal-dependent 
transcription factors that mediate inflammatory programs of gene activation, 
particularly NF-KB and AP-l family members (Herrlich and Ponta 1994; McKay 
and Cidlowski 1999). NF-KB is a transcription factor that is activated in multiple 
cell types by inflammatory stimuli such as bacteriallipopolysaccharides (LPS) 
or interleukins such as IL-l,6 (Barnes and Karin 1997). Like GRa, classical NF­
KB activation involves the removal of a cytoplasmic inhibitor (IKB) and the nu­
clear translocation of NF-KB dimers or heterodimers to cognate KB elements in 
the promoter or enhancer regions of target genes. AP-l transcriptional activity 
can also be activated by a number of inflammatory stimuli as well as by phorbol 
esters [e.g., 12-0-tetradecanoylphorbol-13-acetate (TPA)]. These general mecha­
nisms allow for the regulated expression of a wide variety of growth factors 
(GM-CSF), cytokines (IL-l, IL-6, IL-8, TNF-a, MCP-l), and inflammatory medi­
ators [inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)2] in mac­
rophages and other cell types (McKay and Cidlowski 1999). Many of these in­
flammatory genes can be repressed by GRa activity. Genes that are strongly re­
pressed by GRa agonists include GM-CSF (Adcock and Barnes 1996), TNF-a, 
(Joyce et al. 1997), IL-l, IL-6, IL-8, IL-12 (Almawi et al. 1996), iNOS (Kleinert et 
al. 1996; Tanaka and Fujita 1997) and COX2 (Koehler et al. 1990). Despite the 
requirement for both the GRa, LBD, and DBD for transrepression activity, the 
majority of the promoters and enhancers for these genes do not contain func­
tional glucocorticoid response elements (GREs) (Caldenhoven et al. 1995; 
Scheinman et al. 1995; McKay and Cidlowski 1999). These observations suggest 
that GRa-mediated transrepression of NF-KB and AP-l involves mechanisms 
that are distinct from the classical GRa transactivation of target genes (Heck et 
al. 1997) (Fig. 3). Interestingly, activation of the AP-l and NF-KB pathways re­
sults in reciprocal antagonism of the classical GRa transactivation of HRE-con-



Nuclear Receptors as Regulators of Macrophage Homeostasis and Function 217 

taining promoters (Jonat et al. 1990; Caldenhoven et al. 1995). This has raised 
the possibility that NF-ICB and GRa compete for a limiting supply of co-activa­
tor complexes and use similar mechanisms for mutual repression (Kamei et al. 
1996; Sheppard et al. 1998; McKay and Cidlowski 2000). Modification of the de­
gree of phosphorylation of the C-terminal repeat of RNA polymerase II at NFICB 
target genes has also been suggested as the basis for GR-mediated transrepres­
sion (Nissen and Yamamoto 2000). Regardless of the mechanistic details, these 
opposing transcription factors appear to mutually regulate the other's function, 
maintaining a balance of inflammatory and anti-inflammatory responses in the 
macrophage and other cells that regulate immune responses, including endothe­
lial cells and lymphocytes. 

Like GRa, ERa and PPARy have also been shown capable of antagonizing the 
expression of an overlapping set of NF-ICB and AP-1 regulated genes in macro­
phages (Frazier-Jessen and Kovacs 1995; Stein and Yang 1995; Jiang et al. 1998; 
Ricote et al. 1998). This transrepression function has also been shown to require 
elements of both the LBD and DBD, but not direct binding to HREs in the en­
hancer or promoter regions of these genes (Li et al. 2000; Valentine et al. 2000). 
VDR also inhibits inflammatory gene expression, but has been suggested to ex­
ert these effects by inducing the expression of both transforming growth factor 
(TGF)-,B and IL-4 (Deluca and Cantorna 2001). These factors modulate tran­
scriptional programs that evolve during an immune response and act to antago­
nize the effects of many classical inflammatory signals. 

The findings that nuclear receptors possess the ability to modulate inflamma­
tory immune responses have raised the possibility that agonists for ERa, 
PPARy, or VDR might have clinical applications as anti-inflammatory drugs. 
Currently, PPARy ligands have been shown to ameliorate inflammation in ani­
mal models of inflammatory bowel disease (Su et al. 1999; Desreumaux et al. 
2001), atherosclerosis (Li et al. 2000; Chen et al. 2001; Claudel et al. 2001; Collins 
et al. 2001), experimental autoimmune encephalomyelitis (Diab et al. 2002), ar­
thritis (Setoguchi et al. 2001), and psoriasis (Ellis et al. 2000). Likewise, clinical 
evidence has long been mounting that estrogens playa key role in modulating 
atherogenesis independent of their effects on lipid metabolism (Reckless et al. 
1997; Cushman et al. 2001). In addition, 1,25-dihydroxyvitamin D3 has been 
shown to ameliorate experimental autoimmune encephalomyelitis, rheumatoid 
arthritis, systemic lupus erythematosus, and inflammatory bowel disease (Delu­
ca and Cantorna 2001). 

2.3 
Regulation of Cholesterol Homeostasis by LXRs 

Tight regulation of cellular cholesterol levels is essential for the maintenance of 
a diverse range of normal cellular functions. In most cells, cholesterol availabili­
ty is determined by the sum of de novo biosynthesis and uptake from lipopro­
teins via the LDL receptor (Brown and Goldstein 1986). These processes are reg­
ulated by a negative feedback system involving the sterol response element 
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binding proteins (SREBPs), which are transcription factors that stimulate ex­
pression of the LDL receptor gene as well as genes involved in cholesterol and 
fatty acid biosynthesis (Brown and Goldstein 1997). When cellular cholesterol 
levels become elevated, SREBPs are inactive, leading to decreased cholesterol 
availability. In addition, elevated cholesterol levels have recently been demon­
strated to stimulate cholesterol efflux by inducing the expression of sterol trans­
porters such as ABCAL Stimulation of efflux pathways by elevated cholesterol 
levels has been linked to the adopted orphan receptors, LXRa and LXR,B. These 
receptors bind with RXRs to response elements in target genes such as ABCA1 
and are activated by oxysterols that are thought to accumulate in hypercholes­
terolemic cells (Peet et al. 1998; Chawla et al. 2001). The LXR-ATP-binding cas­
sette (ABC) pathway appears to be particularly important in the macrophage. 
Mutations in the ABCA1 gene result in Tangier disease, which is characterized 
by lipid filled macrophages in tissues such as the tonsils, and extremely low lev­
els of circulating high-density lipoproteins (HDL) (Young and Fielding 1999; 
Tall and Wang 2000). Because one essential function of the macrophage is the 
phagocytosis and degradation of cholesterol-containing apoptotic and necrotic 
cells, the macrophage may utilize the LXR-ABC pathway as a critical feed-for­
ward mechanism for disposing of such cellular by-products. This system ap­
pears to be overwhelmed or inactivated in foam cells of atherosclerotic lesions, 
which contain massive amounts of cholesterol derived from modified lipopro­
teins that are taken up by scavenger receptors. LXR alpha expression is induced 
in macrophages by PPARr ligands, which may account for some to the antiath­
erogenic effects observed in murine models (Chawla et al. 2001). 

2.4 
Effects of Nuclear Receptors on Macrophage Differentiation 
and Specialized Functions 

One of the most intriguing characteristics of the macrophage lineage is its abili­
ty to give rise to a family of related cells that execute specialized roles, such as 
Kupffer cells, osteoclasts, and microglial cells (Gordon 1995). For example, re­
cent work has found that mature bone resorbing osteoclasts can be induced to 
differentiate from cells of the monocyte lineage when stimulated with osteoblast 
products M-CSF and receptor activator of NF-KB ligand (RANKL) (Roodman 
1999). This differentiation program can be inhibited by the addition of either an 
estrogenic ligand (Shevde et al. 2000) or a PPARr ligand (Bendixen et al. 2001). 
In contrast, glucocorticoids also decrease bone resorption, but appear to do so 
by increasing osteoclast apoptosis (Dempster et al. 1997). While mechanisms 
for these effects are not yet fully elucidated, current models have focused on the 
inhibition of NF-KB activity, an essential stimulus for osteoclastogenesis. 

Like osteoclasts, dendritic cells can be induced to differentiate from macro­
phages in vitro, but in the presence of different stimuli: GM-CSF and IL-4. This 
differentiation program can be largely prevented by either the presence of corti­
costeroids, anti-estrogens (Komi and Lassila 2000) or vitamin D analogs (Griffin 
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et al. 2000; Piemonti et al. 2000). Vitamin D analogs have also been shown to 
enhance monocyte-to-macrophage differentiation, suggesting that they playa 
role in determining a balance in the monocyte lineage developmental choices 
(Nakajima et al. 1996). The physiological significance of these findings remains 
to be established in vivo. 

Recent genetic screens have also identified mutations in the VDR as suscepti­
bility markers for infection with the intracellular pathogens Mycobacterium tu­
berculosis and M. leprae (Roy et al. 1999; Bellamy 2000). This relationship could 
result from VDR biasing a T helper (Th)2 immune response or from as yet un­
characterized mechanisms. However, it does suggest that normal VDR contribu­
tions to macrophage function are an important part of regulatory mechanisms 
necessary to deal with these and perhaps other pathogens. 

3 
Conclusions and Future Directions 

Several nuclear receptors are expressed in macrophages and ligands for these 
receptors have been documented to influence inflammatory responses, special­
ized macrophage functions, and lipid homeostasis. While these findings have 
important biological and pharmacological implications, regulation of macro­
phage gene expression by members of the extended nuclear receptor family re­
mains relatively unexplored. Even for the best-characterized nuclear receptors, 
emerging information on the ability of synthetic ligands to alter the specificity 
of coactivator and corepressor recruitment raises new possibilities for the devel­
opment of novel pharmaceutical agents. Advances in the understanding of 
mechanisms responsible for transcriptional activation and repression by nucle­
ar receptors may allow the development of selective nuclear receptor modula­
tors that regulate a defined subset of target genes. For example, it may be possi­
ble to develop ligands for the glucocorticoid receptor that retain the ability to 
inhibit NF-KB, but do not have gluconeogenic activities (Vayssiere et al. 1997). 
Such ligands would be likely to exert anti-inflammatory effects without many of 
the limiting side effects of currently available steroid hormone analogs. The 
ability to selectively modulate nuclear receptor function may prove to be of 
therapeutic benefit in a wide range of human diseases in which macrophages 
play important roles, including atherosclerosis, osteoporosis, and chronic in­
flammatory diseases. 
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Abstract The armature of macrophages includes systems that catalytically pro­
duce a variety of chemical agents that help form the core of the innate inflam­
matory response. Compounds derived from oxygen are collectively known as re­
active oxygen species (ROS), while those generated from nitrogen and oxygen 
are termed reactive nitrogen oxide species (RNOS). Both ROS and RNOS partic­
ipate in cytotoxic mechanisms designed to kill pathogens. These systems re­
quire tight regulatory control to deter vascular abnormalities and host cell dam­
age. ROS and RNOS also function to modulate a broad array of signaling path­
ways that shape adaptive immune responses. Effective pharmacological inter­
vention of bystander injury elicited by ROS and RNOS will require an under­
standing of the specific interrelationships between these agents and how they 
factor into the various phases of inflammatory responses, which may be unique 
to different leukocyte subpopulations within each organ system. 
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1 
Introduction 

The reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS) 
produced by macrophages play key roles in innate immune responses and the 
development of specific adaptive immunity. This review will focus on the major 
enzymatic systems in macrophages that generate ROS and RNOS. The factors 
that influence the secondary interactions of ROS and RNOS following their for­
mation will be emphasized. An excellent overview of ROS and RNOS interac­
tions has been previously presented in the Handbook of Experimental Pharma­
cology series (Wink et al. 2000). 

2 
Reactive Oxygen Species 

2.1 
Superoxide and NADPH Oxidase 

The major source of ROS produced by activated leukocytes is the multicompo­
nent enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
which catalyzes the production of superoxide (02 -) by the one-electron reduc­
tion of oxygen (Sbarra and Karnovsky 1959; Babior 1973, 1999; Root and Cohen 
1981; Tauber et al. 1983; Garcia and Segal 1988; Sies and de Groot 1992; Bastian 
and Hibbs 1994; Robinson and Badwey 1994, 1995; Rosen et al. 1995; Clark 
1999). Although the preponderance of data are derived from neutrophils, the 
pivotal importance of NADPH oxidase in combating pathogens has been amply 
demonstrated in macrophages. In contrast to vanquishing pathogens, O2 - pro­
duction from NAD(P)H oxidase in non-phagocytes participates in signal trans­
duction and the regulation of blood pressure as well as atherosclerotic prolifera­
tion. Activation of NADPH oxidase in lymphocytes may largely serve a mitoge­
nic role (Lee et al. 1998; Devadas et al. 2002). Endothelium and vascular smooth 
muscle cells in kidney (Wilcox 2001), heart (Griendling et al. 2000), and lung 
(Brar et al. 2002) also possess a relatively lower level of NAD(P)H oxidase activi­
ty that is somewhat homologous to the enzyme assembly in leukocytes. 

Phagocytes increase oxygen consumption in response to a variety of stimuli; 
however, the term respiratory burst is a misnomer in that oxygen usage is not 
strictly related to mitochondrial respiration. Rather, glucose is consumed via 
the pentose phosphate pathway forming NADPH, which donates electrons for 
the oxidase reaction. For each NADPH, two electrons are shuttled through the 
flavin portion of the complex for the univalent reduction of oxygen (Eq. O. 
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A commonly used inhibitor of the electron transfer reaction is diphenylene 
iodonium (Cross and Jones 1986); however, this reagent also has inhibitory in­
teraction with mitochondrial complex I (Ragan and Bloxham 1977). 

A multitude of stimuli can prompt assembly and activation of the NADPH 
oxidase complex, which in phagocytes comprises five phox (phagocyte oxidase) 
components. An initial step involves phosphorylation of cytosolic p47phoX, 
which in association with p40Phox and p67phox is mobilized to the plasma mem­
brane. These subunits subsequently associate with the p22phoxand p91 phox dimer, 
which comprise the cytochrome bsss. Alternatively, subunits may segment via 
intracytoplasmic vesicles directly to phagolysosomes. Activity of the NADPH 
oxidase complex is further modified by interaction with small G proteins Rac 
(Rho family, cytosolic) and Rap (Ras family, membrane). Therefore, NADPH ox­
idase activity can be regulated through a multitude of kinase and G protein sig­
naling cascades (Bromberg et al. 1991; Babior 1999; Prada-Delgado et al. 2001). 
Stimulation of neutrophils with phorbol ester resulted in a rapid onset of O2-

formation with a rate of 0.78 nmollminll06 cells, while zymosan exposure elicit­
ed a slower onset and 10-fold lower rate of production (Roubaud et al. 1998). 
Cytokines, such as interferon (IFN)-y or tumor necrosis factor (TNF)-a, can 
prime expression of signal transduction components in phagocytes resulting in 
augmented NADPH oxidase activity upon a secondary stimulus (Robinson and 
Badwey 1994). In addition to soluble factors, cues from the surrounding matrix 
in conjunction with changes in cell morphology influence trafficking, activation, 
and catalytic efficiency of NADPH oxidase (Berton and Gordon 1983; Wymann 
et al. 1989; Nathan et al. 1989; Nauseef et al. 1991; Zhou and Brown 1993; Berton 
et al. 1996; Hampton et al. 2002). 

2.2 
Hydrogen Peroxide 

2.2.1 
Haber-Weiss Cycle 

In general, activated NADPH oxidase complex vectorially generates O2- on the 
extracellular face of the plasma membrane. Within minutes of pathogen inter­
nalization, fusion events occur to join the NADPH oxidase complex with the 
phagolysosome (DeLeo et al. 1999). Alternatively, subunits may segment via in­
tracytoplasmic vesicles directly to phagolysosomes. Within this compartment, 
conditions are favorable for the dismutation of O2 - to form hydrogen peroxide 
(H20 2; Eq. 2). 

(2) 

Much of the cytotoxicity associated with NADPH oxidase activity is due to sec­
ondary generation of H20 2 in conjunction with other components of the phago-
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lysosome (Klebanoff 1967; Nanda et al. 1994; Pacelli et al. 1995; Reeves et al. 
2002). Microbes have evolved specific defenses against ROS (Prada-Delgado et 
al. 2001; Vazquez-Torres and Fang 2001). 

Dismutation of O2- to H20 2 is catalytically accelerated to near diffusion con­
trol by the superoxide dismutase (SOD) family of isoenzymes (Fridovich 1995, 
1999). Cytosolic and mitochondrial SOD in conjunction with peroxisomal cata­
lase, which catalytically forms water from H20 2, categorically serves a protective 
role. Extracellular Cu/Zn SOD (tetrameric glycoprotein isoforms called type A, 
B, and C) is also present in the tissue matrix and bound to heparin sulfate pro­
teoglycans on the surface of various cell types (Halliwell and Gutteridge 1990; 
Abrahamsson et al. 1992). Therefore, under inflammatory conditions, genera­
tion of O2 - by NADPH oxidase may lead to formation of H20 2 at these intercel­
lular sites, which may influence the redox environment and shape the inflamma­
tory response. Low-dose exposure of macrophages to exogenous H20 2 has been 
shown to elicit specific functional changes (Gamaley et al. 1994, Rhee 1999; For­
man and Torres 2001a,b). 

In contrast to O2- (pKa=4.3; Fridovich 1995), H20 2 may be considered the 
traveling ROS in that it is freely permeates through cellular membranes. Gener­
ation of H20 2 through O2 - formation by NADPH oxidase can cause tissue inju­
ry when free-transition metal (Mn; such as Fe3+, Cu2+) catalysts are present 
(Eqs. 3, 4; Halliwell and Gutteridge 1984, 1999; Hibbs et al. 1984). 

(3) 

(4) 

This reaction pathway has become known as the Haber-Weiss cycle (Haber and 
Weiss 1934), which links O2- generation of reduced transition metals (Mn-1) to 
putative formation of the highly reactive hypervalent metal species or hydroxyl 
radical COH) via H20 2 (Fenton 1894). However, the existence of 'OH versus 
production of alternate oxidizing intermediates remains an area of debate 
(Koppenol 1985; Wink et al. 1994). For 'OH to be an effective bactericide, this 
ROS would likely need to be generated in the immediate vicinity of the bacteria 
within the phagosome (Lymar and Hurst 1995). These data emphasize the differ­
ences in relative toxicities of ROS and RNOS when determined in the context of 
cellular and extracellular compartments. In addition to the NADPH oxidase sys­
tem, lipoxygenase-catalyzed reactions may account for a significant portion of 
ROS formation by activated macrophages (e.g., 30%; Hume et al. 1983). 

2.2.2 
Myeloperoxidase 

Myeloperoxidase (MPO) is a tetrameric glycosylated heme protoporphyrin-con­
taining enzyme that is stored primary in azurophilic granules (Nauseef and 
Malech 1986; Heinecke et al. 1993; Kettle and Winterbourn 1997; Podrez et al. 
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2000). Upon stimulation, MPO can be released into the intercellular space or 
transport into the phagolysomal pathway and works in tandem with NAD(P)H 
oxidase pathways. Hydrogen peroxide is required to convert the resting-state, 
ferric heme of MPO by two electron equivalents to the hypervalent ferryl n cat­
ion radical termed compound I. In the presence of halides such as Cl-, Br-, and 
1-, and the pseudohalide SCN-, compound I is reduced in a single two-electron 
step to regenerate resting-state (MPO-Fe3+) and form the corresponding hypo­
halous acid (HOX). Alternatively, MPO can oxidize nitrite (N02-) by one elec­
tron to give the RNOS nitrogen dioxide (N02 ) and the MPO intermediate com­
pound II. Subsequently, an additional nitrite molecule will reduce compound II 
by one electron to regenerate the resting state and produce a second N02 

(Eiserich et al. 1996; Abu-Soud and Hazen 2000; van Dalen et al. 2000). MPO­
catalyzed formation of N02 can lead to nitration of aromatic compounds such 
as tyrosine (see sections entitled "NO and O2-'' and "N02 - and H20 2"). Numer­
ous other unknown substrates for peroxidation by MPO likely exist. Similar to 
NADPH oxidase, the presence of transition metals can enhance MPO-catalyzed 
oxidant production (Ramos et al. 1992). 

The roles MPO plays in macrophage biology remain an area of debate. MPO 
activity in monocytes declines rapidly upon adherence and differentiation in 
vitro (Nakagawara et al. 1981). However, development of peroxidatic activity in 
the rough endoplasmic reticulum (ER) and perinuclear cisternae has been ob­
served 2 h after monocyte adherence to serum- or fibrin-coated surfaces (Bodel 
et al. 1977). MPO immunoreactivity is associated with activated macrophages 
within human atherosclerotic vascular tissue (Daugherty et al. 1994). Subse­
quent studies have shown that macrophage MPO mediates modification of LDL 
cholesterol causing aberrant lipoprotein oxidation, aggregation, and uptake 
(Hazen et al. 1996, 1999; Chisolm et al. 1999; Hazen 2000; Podrez et al. 2000). 

In addition to adherence, MPO activity in monocytes/macrophages is strong­
ly influenced by numerous soluble immune factors. CDl4-positive monocytes 
purified from peripheral blood monocytes developed into dendritic cells with 
potent antigen-presenting capacity following exposure to cytokines granulo­
cyte-monocyte colony-stimulating factor and interleukin (IL)-4, but also re­
tained significant amounts of MPO (Pickl et al. 1996), while a downregulation of 
expression has been observed in other preparations (Tsuruta et al. 1996). Like­
wise, macrophage exposure to exogenous MPO results in alterations in function, 
such as TNF-a production (Shepherd and Hoidal 1990; Lefkowitz et al. 1992; 
Lefkowitz and Lefkowitz 2001). Macrophages play an important role in the clear­
ance of neutrophils (Savill et al. 1989) and remove neutrophil-derived MPO via 
mannose receptor-mediated uptake (Biggar and Sturgess 1976; Shepherd and 
Hoidal 1990). MPO of both endogenous (Rodrigues et al. 2002) and exogenous 
origin (Leung and Goren 1989; Lincoln et al. 1995) may incorporate into the 
macrophage phagosome and augment bacterial killing. A mixture of enzymati­
cally active and effete forms of MPO released during neutrophil degranulation 
may coordinate a variety of macrophage functions (Bradley et al. 1982; Lefko­
witz et al. 2000; Lefkowitz and Lefkowitz 2001). 
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These data raise an important point for consideration. The role of ROS and 
RNOS (see "Reactive Nitrogen Oxide Species" below) during an immune re­
sponse is highly dependent on the tissue and the phase of the response. Activa­
tion of NADPH oxidase (either in the absence or presence of SOD) results in 
formation of HzOz, which in turn, provides electrons for MPO-catalyzed oxida­
tion of substrates. However, each of these components does not necessarily have 
to present within the macrophage. Macrophage interaction with surrounding 
leukocytes, parenchymal cells, and their products profoundly shapes the pattern 
of ROS and RNOS that are subsequently formed, thereby impacting the immune 
response on multiple levels (Klebanoff 1980). 

3 
Reactive Nitrogen Oxide Species 

3.1 
Nitric Oxide and Nitric Oxide Synthase 

RNOS originate with nitric oxide (NO) biosynthesis catalyzed by the nitric ox­
ide synthase (NOS) family of isozymes, an exception being a potential contribu­
tion from dietary nitrite (NOz -) and nitrate (N03 -). The discovery of NO in bi­
ology and pathophysiology was borne out of metabolic studies with macro­
phages. In 1985, Stuehr and Marletta showed that activation of macrophages 
with bacterial lipopolysaccharide (LPS) caused a marked increase in NOz- and 
N03- formation (Stuehr and Marletta 1985). Hibbs and colleagues subsequently 
observed that the cytostatic and tumoricidal capacity of macrophages stimulat­
ed with cytokines in vitro was dependent on the presence of L-arginine in the 
culture medium (Hibbs et al. 1987b). Moreover, this capacity was linked to the 
conversion of L-arginine to L-citrulline with formation of NOz - rather than the 
known urea cycle pathway involving loss of the guanidino-carbon of L-arginine 
to urea via arginase and subsequent conversion of L-ornithine to L-citrulline by 
ornithine transcarbamoylase (Hibbs et al. 1987a). These studies paved the way 
for the identification of NO as the effector molecule (Hibbs et al. 1988; Marletta 
et al. 1988) and cloning of the inducible isoform of nitric oxide synthase (iNOS, 
often termed NOS II) from macrophages (Lowenstein et al. 1992; Lyons et al. 
1992; Xie et al. 1992). The biosynthesis and function of NO in the immune sys­
tem has been extensively reviewed in the Handbook of Experimental Pharmacol­
ogy series (Bogdan 2000; Zamora and Billiar 2000). Several excellent sources 
on the structure and function of NOS are available (Geller and Billiar 1998; 
Weinberg 1998; Stuehr 1999; Stuehr and Ghosh 2000; Alderton et al. 2001). 

The human iNOS gene contains 26 exons and encodes a 131-kDa protein 
(Geller et al. 1993; Chartrain et al. 1994). Interestingly, an alternative splice vari­
ant of iNOS has been detected in human lung epithelia (Eissa et al. 1998). NOS 
can be divided into three functional domains: (1) an amino-terminal oxygenase 
domain that binds heme, L-arginine, and tetrahydrobiopterin (BH4); (2) a cal­
modulin (CaM)-binding domain; and (3) a carboxy-terminal reductase domain 
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that binds flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), 
and NADPH, which facilitates electron transfer to the oxygenase domain. The 
catalytic cycle of NOS proceeds in two separate successive monooxygenase reac­
tions with the overall stoichiometry given in Eqs. 5 and 6). 

L-arginine + NADPH + H+ 

+02 ----> NW -hydroxy - L-arginine + NADP+ +H20 (5) 

N W - hydroxy - L-arginine + 0.5NADPH 

+0.5H+ +02 ----> L - citrulline + 0.5NADP+ +H2 0 + NO (6) 

To balance these equations for NO formation, NADPH must contribute 1.5 re­
ducing equivalents. Several groups have proposed that the true stoichiometry is 
one NADPH consumed per mono oxygenase cycle resulting in HNO (nitroxyl) as 
the product (Hobbs et al. 1994; Schmidt et al. 1996; Adak 2000). HNO has a re­
activity pattern uniquely different from NO (Hughes 1999; Bartberger et al. 
2001; Miranda et al. 2001,2002; Espey et al. 2002a). Consequently, catalytic pro­
duction of HNO by NOS in lieu of NO would influence a different array of cellu­
lar targets (Ma et al. 1999; Colton et al. 2001; Paolocci et al. 2001; Espey et al. 
2002a). 

All NOS isoforms require CaM binding for enzymatic activity. However, iNOS 
is distinguished from the neuronal and endothelial NOS isoforms (NOS-I, NOS­
III) in that CaM is tightly bound at basal calcium levels and therefore does not 
require higher calcium transients for activation. In addition, iNOS lacks se­
quences present in the FMN-binding subdomain of constitutive NOS isoforms 
that may serve to destabilize electron transfer to the heme pocket at lower basal 
calcium levels (Salerno et al. 1997). Indeed, only an approximately 50% homolo­
gy exits between iNOS and the neuronal and endothelial NOS isoforms (Ganster 
and Geller 2000; Zamora et al. 2000). Further distinction of iNOS resides in for­
mation of the homodimer, a requisite step for I-arginine catalysis. In addition to 
dimer stabilization by heme and I-arginine, iNOS may be particularly sensitive 
to BH4 binding, which facilitates alignment of the subunits in a head-to-head 
manner (Venema et al. 1997; Stuehr 1999; Chen et al. 2002). 

While expression and activity of iNOS in rodents can be readily achieved in 
the laboratory, demonstration has been relatively more difficult in human leu­
kocyte preparations. However, numerous studies have clearly shown iNOS plays 
a pivotal role in human macrophages (MacMicking et al. 1997). In septic pa­
tients, iNOS activity was markedly increased in putrescent areas of the systemic 
vasculature containing macrophages and expression of TNF-a and IL-1,6 
(Annane et al. 2000). Human macrophages treated ex vivo with LPS and IFN-y 
yielded an iNOS-specific amplification product by reverse transcriptase poly­
merase chain reaction (RT-PCR) (Reiling et al. 1994). IFN-y, a or IL-4 augment­
ed polyribonucleotide-induced N02 - production by human monocyte-derived 
macrophages (Snell et al. 1997). Alveolar macrophages isolated from lavage fluid 
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of patients with tuberculosis have been shown to produce NO (Steiner et al. 
1996). IFN-a treatment of macrophages or administration of IFN-a to hepatitis 
C patients in vivo increased expression of iNOS mRNA, protein, and activity 
concomitant with NO production (Sharara et al. 1997; Weinberg 1998). Apolipo­
protein-E augmented NO production from activated human microglia, while 
amyloid-beta peptide blocked this effect (Vitek et al. 1997). Many cells in addi­
tion to macrophages are capable of iNOS expression including astrocytes, chon­
drocytes, hepatocytes, neurons, neutrophils, skeletal muscle, vascular smooth 
muscle, vascular endothelial cells, and several cancers. 

In general, macrophages initiate synthesis of iNOS after immune stimulation 
(Nathan and Xie 1994; MacMicking et al. 1997; Bogdan 2000; Clancy et al. 1998; 
Ganster and Geller 2000; Taylor and Geller 2000; Zamora et al. 2000). However, 
constitutively expressed iNOS has been observed in some cell types (Mannick et 
al. 1994; Guo et al. 1995) including macrophages (Amin et al. 1995). The signal 
transduction pathways mediated by IFN are of particular importance. The Jak­
STAT cascade is initiated by IFN binding to cell surface receptors with intrinsic 
or receptor-associated tyrosine kinase activity Oak), which mediates phosphor­
ylation of cytosolic proteins collectively known as STATs. STAT members acti­
vated in this manner form homo- and heterodimeric complexes that translocate 
to the nucleus, interact with other DNA-binding proteins (e.g., interferon regu­
latory factors) and bind specific sequences in the iNOS promoter region (e.g., 
gamma activation sequences, interferon response sequence elements). Exposure 
to IFN primes macrophages for expression of iNOS upon secondary activation 
(Espey et al. 2000b). Additional immune modulators such as TNF-a, IL-l,8 and 
pathogen products (e.g., LPS) are potent secondary stimulants. These agents 
predominantly regulate transcription of iNOS through the NF-KB family of 
DNA-binding proteins; however, numerous routes for gene expression are likely 
deployed by discrete macrophage subpopulations dependent on their repertoire 
of receptors and signaling cascades. Engagement of membrane CD23 on human 
macrophages by IgE complexes stimulates expression of iNOS (Paul-Eugene et 
al. 1995). Glucocorticoids, transforming growth factor (TGF)-,8, IL-4, IL-I0 and 
IL-13 act to negatively regulate iNOS at the levels of transcription and mRNA 
stability (Doyle et al. 1994; Vodovotz 1997; Diaz-Guerra et al. 1999). 

While numerous factors have been found to regulate transcription, decipher­
ing mechanisms for posttranslational control of iNOS remains more elusive. 
Relative to the constitutive isoforms, iNOS is less susceptible to feedback inhibi­
tion from NO reaction with the heme moiety. The factors that control the iNOS 
subunit dimerization are an important determinant in the biochemistry of the 
enzyme (Venema et al. 1997; Stuehr 1999; Chen et al. 2002). However, the dy­
namics of iNOS monomer and dimer pools that likely exist within macrophages 
have not been determined (Baek et al. 1993). L-Arginine transport and intracel­
lular metabolism are important regulators of NO biosynthesis amenable to 
pharmacological exploitation (Morris 1999; Closs et al. 2000). Uptake of L-argi­
nine via the cationic amino acid transport systems are a rate-limiting factor for 
sustained iNOS activity (Hibbs et al. 1987a,b; Bogel et al. 1992). L-Arginine is 
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subsequently mobilized within macrophages differentially dependent upon the 
stimulant conditions (Morris et al. 1998). Concomitant changes in argininosuc­
cinate synthase, arginase isoforms and iNOS expression upon activation point 
to the complexity of L-arginine metabolic cycles in macrophages. An intriguing 
feedback loop is the inhibitory action of N W-hydroxY-L-arginine, the initial oxi­
dation product of L-arginine formed in the iNOS catalytic cycle (Eq. 5), on argi­
nase (Chenais et al. 1993). Helicobacter pylori has evolved a survival mechanism 
involving inhibition of NO production by activated macrophages by usurping L­
arginine availability through constitutive bacterial arginase activity (Gobert et 
al. 2001). 

The fate of L-arginine in macrophages is controlled in part by distinct subcel­
lular compartmentalization of enzymes and substrate pools. For instance, argi­
nase I resides in the cytosol, while arginase II is present in the mitochondrial 
matrix (Morris 1999). The localization of iNOS, particularly in association with 
cytoskeletal elements (Webb et al. 2001; Zeng and Morrison 2001), may also play 
a prominent role in the effector functions of NO and related nitrogen oxides de­
rived from macrophages (Vodovotz et al. 1995; Espey et al. 2001b). 

3.2 
RNOS and ROS Interactions 

3.2.1 
NO and O2-

Peroxynitrite is a highly reactive RNOS formed by the reaction between NO and 
O2 - (Eq. 7; Koppenol et al. 1992; Crow and Beckman 1995; Pryor and Squadrito 
1995; Greenacre and Ischiropoulos 2001; Radi et al. 2001). 

(7) 

Selective chemical modifications are observed upon exposure of many bio­
logical substances to ONOO- in vitro. Dependent on the constituents of the tar­
get, ONOO- can mediate both one- and two-electron oxidation as well as nitra­
tion reactions. Nitration involves the electrophilic addition of a N02 + equivalent 
(nitronium, an electron acceptor) to a site of electron density, such as an 
aromatic ring. Transition metal catalysts and physiological levels of carbon 
dioxide augment nitration and oxidation yields derived from ONOO­
(Lymar et al. 1996; Denicola et al. 1995, 1996). Development of antibodies that 
recognize nitrated tyrosyl residues (3-nitrotyrosine) has revealed the extent of 
nitration under a variety of disease conditions (Ye et al. 1996; Greenacre and 
Ischiropoulos 2001; Radi et al. 2001). 

Caution should be exercised when attributing the cytotoxic actions of activat­
ed macrophages expressing iNOS to ONOO- formation (Ischiropoulos et al. 
1992). The 109 M-1 S-I rate constant for the NO+02- reaction signifies that these 
species will react with each other at near diffusion control (Huie and Padmaja 
1993; Kissner et al. 1997). The stoichiometry of the reactants must also be taken 
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into consideration. Maximal oxidation and nitration mediated by ONOO- are 
observed when the rate of NO synthesis is equivalent to the rate of O2 - produc­
tion. A tip in balance in favor of either reactant results in a rapid decline or 
abatement of oxidation and nitration due to reactions secondary to ONOO- for­
mation; for instance, reaction between ONOOH and NO (Rubbo et al. 1994; 
Miles et al. 1996; Wink 1997; Jourd'heuil et al. 1999; Espey 2002b,c). In general, 
exposure to ONOO- does not elicit cytotoxicity until relatively high bolus con­
centrations (>200 ,liM) are applied (Zhu et al. 1992; Espey et al. 2002d). There­
fore, a prominent role for ONOO- as a macrophage effector RNOS would re­
quire a substantial and prolonged synthesis of both NO and O2- at equivalent 
rates. 

Synchronization of both NO and O2- rates of formation during an immune 
response would require a precise regulation to produce significant ONOO-. Ki­
netic modeling of macrophages predict that the limited diffusion of O2- will re­
strict migration of ONOO- as an effector RNOS (Chen and Deen 2001). Assem­
bly and translocation of the NADPH oxidase complex is a rapid process relative 
to de novo iNOS expression and protein synthesis, which fosters a temporal dis­
association between O2- and NO production within an individual activated mac­
rophage (Iyengar et al. 1987; Doyle et al. 1994; Espey et al. 2000b; Pfeiffer et al. 
2001). This dichotomy gives rise to either ROS or RNOS formation during dis­
tinct phases of macrophage phagocytosis and immune responses, largelyexclu­
sive of ONOO- generation (Vazquez-Torres et al. 2000; Mastroeni et al. 2000; 
Espey et al. 2000b, 2002b; Pfeiffer et al. 2001). However, numerous studies have 
suggested that formation of ONOO- and derived intermediates are essential for 
killing pathogens in macrophage phagosomes or cytoplasm (Saran and Bors 
1994; Nozaki et al. 1997; Linares et al. 2001; Hickman-Davis 2002). These reports 
are hampered by the lack of pharmacology or analytical methodology specific 
for ONOO- versus other ROS and RNOS pathways. 

Innate immunity is dependent upon coordination between neutrophil and 
macrophage populations. Neutrophil infiltration characteristically precedes 
monocyte recruitment or activation of resident macrophages during acute in­
flammatory reactions (Metchnikoff 1905). This sequence results in an initial 
predominance of ROS generation by neutrophils at inflammatory foci. The ROS 
phase is downregulated by subsequent iNOS catalyzed formation of NO within 
activated macrophages. RNOS derived from NO autoxidation (see "NO and 0/' 
below) interfere with assembly of the neutrophil NADPH oxidase complex 
(Clancy et al. 1992; Fujii et al. 1997; Lee et al. 2000) and diapedesis of neutro­
phils through the vasculature (Kubes et al. 1991; Granger and Kubes 1994). In 
this manner, coincident generation of O2 - and NO by neutrophils and macro­
phages, respectively, are spatially and temporally segregated minimizing the 
probability of ONOO- formation. A similar reciprocal relationship between en­
dothelial NAD(P)H oxidase activation and eNOS in hemodynamic shear stress­
induced monocyte chemotactic protein expression has been described (Wung et 
al. 2001). These data illustrate that ONOO- may be implicated only within dis­
crete zones where conditions are ideal for contemporaneous and equivalent 
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rates of NO and Oz - formation. It should be emphasized that NO is a highly ef­
fective ROS scavenger (Wink et al. 1995,2001; Espey et al. 2002d). 

A challenge for effective pharmacological intervention of iNOS in macro­
phages is to identify the timing for specific RNOS participation in the different 
phases of innate and adaptive immune responses. Although RNOS can compro­
mise host cellular functions, they also play pivotal roles in both eradication of 
pathogens and abatement of ROS bystander injury. 

Bacteria are rich in proteins containing Fe and Cu that facilitate electron trans­
fer reactions (Salerno 1996). NO can disrupt these proteins (e.g., Fe-sulfur cen­
ter of ferredoxins) causing the release of redox active metal ions (Drapier 1997; 
Poole and Hughes 2000). As described above ("Haber-Weiss Cycle"), the bacte­
rial and mammalian cytotoxicity of HzOz involves reduction by either Fe2+ or 
Cu1+ to yield either hypervalent metal ions or 'OH (Fenton 1894; Clifford and 
Repine 1982; Halliwell and Gutteridge 1984, 1999). NO-mediated labialization of 
metalloproteins in Escherichia coli bacteria has been shown to potentiate HzOz 
toxicity more than 1,000-fold (Pacelli et al. 1995). Mobilization of transition 
metals from the periplasmic space and inner membrane to the genome was evi­
denced by DNA double-strand breaks. 

Catalase is a heme-containing enzyme that catalyzes the catabolism of HzOz 
into HzO and Oz (Chance 1947). NO can limit HzOz catabolism through forma­
tion of nitrosylheme-catalase (Brown 1995; Brunelli et al. 2001). This may serve 
to augment the synergistic bactericidal action of NO and HzOz, provided NO is 
not overtly consumed by excess catalase. Paradoxically, other studies have sug­
gested that virulence may be related to SOD-catalyzed conversion of Oz - to 
HzOz (De Groote et al. 1997). Periplasmic Cu,Zn-SOD may protect pathogenic 
bacteria, such as E. coli and Salmonella typhimurium, from redox injury (Benov 
et al. 1995; De Groote et al. 1997). Salmonella deficient in this Cu,Zn-SOD have 
reduced survival in macrophages and attenuated virulence in mice. These data 
illustrate that the tandem bactericidal action NO, Oz - and HzOz are dependent 
on a complex interrelationship between both host and bacterial systems that in­
teract with ROS and RNOS. 

Synergism between NO and HzOz is not limited to bactericidal processes. NO 
formation by activated macrophages can disrupt transition metal homeostasis 
in tumor cell targets as well (Hibbs et al. 1984). Viability of a human ovarian 
cancer cell line exposed to 3-morpholino-sydnonimine, a compound that de­
composes to simultaneously form NO and Oz -, was found to not involve 
ONOO- formation. Rather, the mechanism of cytotoxicity was dependent NO 
and HzOz-mediated reduction of trace metals and generation of potent oxidants 
(e.g., 'OH; see "Haber-Weiss Cycle" above; Farias-Eisner et al. 1996). In contrast 
to Salmonella and CU,Zn-SOD, it was found that these cancer cells rely on the 
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glutathione peroxidase-glutathione reductase for HzOz resistance and potential 
toxicity synergism with NO and reduced metals. 

3.2.3 
N02 - and H202 

Nitrite is an end product of NO autoxidation (Eq. 8; see section "NO and Oz" 
below; Wink et al. 1993,2000; Fukuto 1995). 

(8) 

Marked increases in NOz - are observed during immune activation, which corre­
lates well with iNOS induction in macrophages (Stuehr and Marletta 1985; 
Hibbs et al. 1987a,b; Granger et al. 1991, 1996; Ignarro et al. 1993; Lewis et al. 
1995; Grisham et al. 1996; Espey et al. 2000b). Nitrite can be converted to N03-

by oxyhemoproteins (Rodkey 1976; Doyle et al. 1985; Ignarro et al. 1993) sug­
gesting that the parenchymal concentration of NOz - at sites of inflammation 
may be much higher than the low micro molar levels (Miranda et al. 2001) de­
tected in plasma. As mentioned above (in "Myeloperoxidase" section), MPO in 
the presence of HZ0 2 readily catalyzes oxidation of N02 - to generate N02 (Eq. 9 
; Sampson et al. 1995; Eiserich et al. 1996; van der Vliet et al. 1997; Hazen et al. 
1999; Abu-Soud and Hazen 2000; van Dalen et al. 2000; Espey et al. 2002d). 

(9) 

Similar to ONOO-, N02 is an oxidant and nitrating agent. However, N02 pro­
duced by MPO/HzOz and N02 - elicited substantially greater nitration than an 
equivalent amount of ONOO- generated from xanthine oxidase/hypoxanthine 
(an Oz - source) and NO (Espey et al. 2002d). Differences in nitration were most 
pronounced under conditions that required transmembrane diffusion of the 
RNOS into target cells, consistent with data showing a significant lifetime for 
N02 (Espey et al. 2001, 2002d). Catalytic production of NOz by the MPO path­
way is much less restricted by the spatial and temporal constraints on ONOO­
formation in that all the components do not need to be generated contempora­
neously. Nitration mediated by the MPO/H20 2 route may predominate subse­
quent to macrophage expression of iNOS and N02 - accumulation in lesion sites. 
Under these conditions, cellular or free MPO deposits in combination with 
episodic formation of H20 2 may lead to N02 generation over an extended peri­
od, which may playa role during inflammatory flares and chronic disease set­
tings. In addition to MPO, protoporphyrin IX (hemin) in the presence of H20 2 

catalyzes N02 - oxidation to form N02 resulting in nitration of tyrosyl-contain­
ing peptides (Thomas et al. 2002). NO production by activated macrophages 
may dislodge hemin from hemeproteins and generate copious amounts of NOz-. 
These low molecular weight agents may then move to sites involved in NADPH 
oxidase activity and H20 Z formation causing subsequent nitrative modifications 
via formation of NOz. 
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3.2.4 
NO and O2 

In the presence of Oz, the lifetime of NO is inversely proportional to its concen­
tration due to the second order dependency of the autoxidation reaction on NO, 
which is third order overall (Eq. 10; Ford et al. 1993£; Wink et al. 1993, 2000; 
Fukuto 1995). 

(10) 

The rate of NO autoxidation is influenced by the solubility of both NO and Oz 
(Liu et al. 1998). Both species partition to the hydrophobic phase of membranes 
(Shaw and Vosper 1977; Subczynski and Hyde 1983), which accelerates the rate 
of NO autoxidation approximately 300-fold relative to the surrounding aqueous 
phase (Liu et al. 1998). The rate-limiting step for NO autoxidation in hydropho­
bic medium is the formation of NOz, which subsequently reacts with NO to 
form equilibrium with N20 3 (Eqs. 11 and 12; Wink et al. 1993, 2000; Ford et al. 
1993; Fukuto 1995). 

2NO + Oz -+ 2NOz 

NOz+NO i--+ NZ0 3 

(11 ) 

(12) 

Indeed, the autoxidation process within the architecture of intact cells was 
found to be distinct from that which occurs in the aqueous extracellular medi­
um, suggesting that cellular hydrophobic domains in conjunction with scaven­
ger composition and location serve to focus RNOS chemistry to discrete sites 
during NO formation (Espey et al. 2001b) and emphasize the importance of 
N02 intermediacy as a determinant in the functional outcome of NO biosynthe­
sis (Espey et al. 2002b,c,d). 

NO autoxidation becomes more competitive with other NO reaction path­
ways (e.g., NO+oxyhemeproteins) under conditions of high NO biosynthesis be­
cause the rate of autoxidation is proportional to the square of the NO concentra­
tion. Consistent with this, macrophages expressing iNOS have been shown to 
form NO adducts on a variety of nucleophiles via formation of NZ0 3 (Miwa et 
al. 1987; Iyengar et al. 1987; Kosaka et al. 1989; Wink et al. 1997, 2000; Espey et 
al. 2001a,b). This process is termed nitrosation, where N20 3 acts as a nitrosoni­
urn donor (NO+; Williams 1988). Nitrosation has been implicated in the modifi­
cation of a variety of proteins containing critical thiol, amine, and hydroxyl resi­
dues (Wink et al. 2000; Espey et al. 2000a, 2001). Of particular interest, NZ0 3 for­
mation and nitrosative facility of macrophages was dependent on the route of 
activation (Espey et al. 2000b). Macrophages stimulated with IFN-y and LPS 
contained a twofold greater iNOS protein level compared to macrophages acti­
vated with IFN-y and either TNF-a or IL-l,8; however, the difference in ni­
trosative capacity was greater than 30-fold. These data show that the NO profiles 
derived from iNOS can be distinct and depend on inductive signal cascades. 
Formation of NO adducts on amines and thiols can occur during concurrent 
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Oz - and NO biosynthesis through either NzOrmediated nitrosation or oxidative 
nitrosylation (e.g., thyl radical+NO--+RSNO) further demonstrating the complex 
interrelationships between ROS and RNOS and the functional outcomes of mac­
rophage activation (Espey et al. 2002c). 

4 
Oxygen 

An understanding of the dynamic changes in molecular Oz usage is crucial to 
deciphering macrophage ROS and RNOS cascades. On the basis of changes 
in electron paramagnetic resonance spectroscopy signals from spin labels 
DEPMPO (for Oz -) and PDT (for Oz), Oz - generation from activated neutrophils 
corresponded to 50% of oxygen uptake (Roubaud et al. 1998). Metabolic label­
ing studies suggest that consumption of Oz also increases upon stimulation in 
macrophages, but a smaller percentage is reduced to Oz - (Baehner and Johnston 
1972; Baehner et al. 1975; Reiss and Roos 1978). In severely hypoxic environ­
ments, it is possible that oxygen tension may be insufficient to sustain Oz - for­
mation (Edwards and Lloyd 1988). However, a rebound phenomenon of aug­
mented Oz - generation may occur upon re-oxygenation (Wilhelm et al. 1997). 
Generation of NZ0 3 by activated macrophages can nitro sate intracellular gluta­
thione to form S-nitrosoglutathione thereby activating bioreductive metabolism 
via the hexose-monophosphate pathway and glutathione reductase (Albina and 
Mastrofrancesco 1993; Clancy et al. 1994). Additional changes in Oz usage by ac­
tivated macrophages and surrounding cells is manifest by the reversible inhibi­
tion of mitochondrial respiration by NO, which has a greater affinity for cyto­
chrome oxidase than Oz (Brown 1997, 2000; Boveris and Poderoso 2000). NO 
also interacts within macrophages to stabilize hypoxia-inducible factor and 
modulate its associated transcription networks (Brune et al. 2001; Sandau et al. 
2001). 

5 
Conclusion 

These examples underlie the concept that participation of ROS and RNOS in 
disease processes is highly dependent on the state of tissue. Parameters, such as 
pOz, may change quickly as waves of different leukocyte populations are en­
gaged within inflammatory lesions over a period of time, subsequently affecting 
the levels and types of reactive intermediates formed. The action of ROS and 
RNOS are diverse and dependent on their rates of formation, mobility, interac­
tion with each other, and the composition of the surrounding milieu. Coordina­
tion of macrophage-derived ROS and RNOS formation involves signaling from 
soluble, cell-cell, and matrix cues. These pathways vary greatly among the spe­
cialized members of the macrophage lineage. Macrophages have numerous 
mechanisms that control and balance formation of specific ROS and RNOS to­
ward combating pathogens and preserving host tissue. With an increased 
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awareness of feedback mechanisms, pharmacological strategies aimed at allevi­
ating macrophage-mediated cellular stress and injury will improve. 
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Abstract The macrophage, as a gatekeeper to both the innate and acquired im­
mune systems, has great potential as a therapeutic target for such diverse hu­
man disease states as bacterial and viral infection, autoimmunity, inflammatory 
diseases, and cancer. The phenotype of macrophages in different tissues varies 
markedly between tissues. While this characteristic creates technical challenges 
in terms of isolation and characterization of resident tissue macrophages, it 
opens the possibility of targeting individual tissue-specific macrophage popula­
tions for pharmacologic intervention. The proteases are among the most nu­
merous and abundant of enzyme classes, representing 1 %-4% of all proteins en­
coded by eukaryotic genomes. Proteases are particularly abundant in macro­
phages, where they are critical players in many key functions of the macro-
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phage, such as degradation of exogenous, potentially pathogenic proteins; diges­
tion of both foreign and self proteins into peptides for presentation by MHC 
class I and II; and functional regulation of target proteins, for example by re­
moval of a regulatory domain or a transmembrane anchor. This chapter reviews 
some of the proteases expressed in macrophages, and discusses what functional 
roles have been shown for, or postulated for, these enzymes. The enzymes dis­
cussed here are divided into two main groups: ectoproteases, which cleave ami­
no acids from either end of a protein or peptide, and endoproteases, which 
cleave proteins at internal sites. Examples are given illustrating the actions of 
proteases within the macrophage, at the cell surface, and after secretion into the 
extracellular milieu. 

Keywords Aminopeptidase, Angiotensin converting enzyme, Carboxypeptidase, 
Caspase, Cathepsin, CPVL, Matrix metalloprotease, TNF-? converting enzyme 

1 
Introduction 

The role of macrophages lies at the interface of the innate and adaptive immune 
systems. Innate immune functions include phagocytosis of both unopsonized 
and opsonized pathogens, release of toxic free radicals, and secretion of inflam­
matory mediators such as cytokines, chemokines, and a large variety of other 
extracellular signaling molecules. Within the adaptive immune response, macro­
phages process and present antigen to T cells, and are capable of providing both 
immunogenic and tolerogenic signaling through secretion of cytokines and oth­
er soluble mediators. This unique immunomodulatory role of macrophages 
makes them ideal candidates for pharmacological intervention, with the poten­
tial to treat a highly diverse set of human diseases, including bacterial and viral 
infections, autoimmunity, inflammatory conditions, and cancer. An important 
hallmark of macrophages is their ability to adapt to their cellular surroundings, 
leading to extreme phenotypic diversity of macrophages. While this diversity 
presents the researcher with certain challenges, it also represents a unique op­
portunity for pharmacological intervention. If the nature of this diversity is un­
derstood, it may be possible to treat restricted subsets of macrophages without 
affecting others, thus greatly increasing drug specificity. 

The proteases are among the most numerous and abundant of enzyme class­
es. The MEROPS database (Rawlings et al. 2002) (http://www.merops.san­
ger.ac.uk) lists nearly 400 different human proteases for which a chromosomal 
location has been mapped, representing more than 1 % of the human genome. 
Analysis of the more completely characterized eukaryotic genomes has shown 
that proteases comprise between 1.7% and 3.9% of expressed genes, suggesting 
the presence of a large number of unknown or poorly characterized human pro­
teases. Proteases can be subdivided functionally into those that can cleave inter­
nal polypeptide sequences (endopeptidases) and those that cleave only from 
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one end of the substrate molecule (ectopeptidases). The ectopeptidases are fur­
ther divided into enzymes cleaving from the Nand C termini, called aminopep­
tidases and carboxypeptidases, respectively. Proteases perform a wide variety of 
physiological functions throughout the body, both inside and outside the cell. 
From a pharmacological standpoint, a comprehensive understanding of prote­
ase function is critical, both for identification of new drug targets and to antici­
pate and ameliorate the side effects associated with protease inhibition. Known 
protease functions include: (1) intracellular destruction of proteins that are se­
nescent, misfolded, or expressed cyclically; (2) breakdown of foreign, potentially 
pathogenic proteins; (3) digestion of both foreign and self proteins into peptides 
for presentation by MHC class I and II; (4) activation and execution of cell death 
cascades, acting either on itself or on an adjacent target cell; (5) functional acti­
vation and/or inactivation of enzymes, bioactive peptides, and many other types 
of proteins by proteolytic removal of a regulatory domain; (6) release of pro­
teins from the plasma membrane or other membrane-bound compartment by 
cleavage of a transmembrane domain; and (7) digestion of proteins in the diges­
tive tract for nutritional purposes. 

Since the vast array of proteases in the human body display widely variable 
specificities and inhibitor sensitivities, the value of proteolysis as a pharmaco­
logic target is clear. Targeting proteolytic pathways has led to such drug success­
es as angiotensin converting enzyme inhibitors for high blood pressure 
(Douglas 1985) (see below), the plasmin-targeted thrombolytic agents such as 
streptokinase and urokinase (Reilly 1985), and HIV protease inhibitors as part 
of combination therapy for HIV infection (Hammer et al. 1997; Gulick et al. 
1997). Proteases are particularly abundant in macrophages, where they perform 
a wide variety of functions. These functions, which will be described in more 
detail below, include destruction of phagocytosed material, trimming of pep­
tides for presentation by MHC class II molecules, alterations of extracellular 
matrix components, and a variety of regulatory roles. This chapter will provide 
an overview of the properties of proteases found in macrophages, and will at­
tempt to highlight some areas of interest for further basic biochemical study 
and potential pharmacologic intervention. 

2 
Ectoproteases 

Ectoproteases differ from the more abundant endoproteases in that they cleave 
substrates only at the carboxy or amino terminus. This functional difference 
has a structural basis: the substrate binding sites of ectoproteases tend to be sol­
vent-accessible at only one end, thus allowing cleavage at the end of a protein 
but not in the middle of a polypeptide loop. This difference has important im­
plications in design of synthetic inhibitors. Properties of ectoproteases found in 
macrophages are discussed below. Alternate names are shown in parentheses. 



256 J. A. Mahoney 

HeLa 

mock CPVL 

200 
116 
97 

66 

-' 
45 

31 

" 21 

1 2 

2.1 

MOM 
IFNI 
SAC 

• 

3 4 

Fig. 1 Regulation of CPVL expression by macro­
phage activation state. Polyclonal anti-CPVL West­
ern blot of Iysates from mock- and CPVL-transfec­
ted HeLa cells (lanes 1 and 2) shows a major spe­
cific band of about 48 kDa. Human monocyte-de­
rived macrophages (MDM, lanes 3 and 4) were 
cultured for approximately 10 days in RPM I 1640 
plus 10% fetal bovine serum, either alone or with 
IFN-y and Staphylococcus aureus cells (SAC, a 
source of lipopolysaccharide). Activation led to 
complete loss of the immunoreactive band. Equal 
protein loading was confirmed by Ponceau 5 
staining (not shown). Note that recombinant 
CPVL migrates slightly more slowly because of an 
N-terminal epitope tag 

Carboxypeptidase, Vitellogenic-Like (CPVL, CP-Mac) 

CPVL (MEROPS ID SlO.003) is a 476 amino acid serine carboxypeptidase, dis­
covered as a result of a differential display polymerase chain reaction (PCR) 
screen for novel macrophage-specific genes (Mahoney et al. 2001). RT-PCR, 
Northern blot, and Western blot analysis confirm that, among hematopoietic 
cells, CPVL is indeed restricted to the monocytic lineage. CPVL mRNA was 
readily detected throughout the lineage, whereas protein expression was absent 
or low in monocytes and relatively abundant in mature monocyte-derived mac­
rophages. Outside the immune system, however, a wider expression pattern was 
apparent. High levels of expression, as judged by Northern blot, were apparent 
in kidney and heart, two organs with few macrophages, while lung and liver, 
which have much larger macrophage populations, expressed little or no CPVL 
mRNA. We postulate that CPVL has two distinct expression profiles, one in a 
subset of tissue macrophages and a second one, presumably representing a sep­
arate function, in organs of the cardiovascular system. This pattern is similar to 
the expression pattern of angiotensin-converting enzyme (ACE, see below), 
which also shows significant expression in macrophages, heart, and kidney, al­
though ACE is detectable in virtually all organs because of its presence in vascu­
lar endothelial cells (Dzau et al. 2001). Moreover, an alternate isoform of ACE is 
highly expressed in testis. Surveys of the human expressed sequence tags (EST) 
database suggest that CPVL is also expressed in testis. 

The physiological function of CPVL is not currently known. Both primary se­
quence analysis and pulse-chase experiments (unpublished studies) suggest a 
lumenal and/or secreted distribution. In preliminary immunocytochemical 
studies using confocal microscopy, CPVL showed cytoplasmic expression in a 
vesicular pattern that did not coincide with endosomes, lysosomes, or MHC 
class II peptide-loading compartments (B. Ntolosi, R. DaSilva, and S. Gordon, 
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personal communication). Protein levels of CPVL are strikingly modulated by 
inflammatory stimuli: Culture of developing macrophages in the presence of in­
terferon (IFN)-y and lipopolysaccharide causes a dramatic downregulation of 
cellular CPVL expression (Fig. 1). While a great deal more work is required to 
ascertain the importance of this macrophage-restricted protease, we speculate 
that CPVL may playa role in the macrophage inflammatory response. 

2.2 
Carboxypeptidase M (CPM) 

CPM (MEROPS ID M14.006) is a 439-amino acid glycosylphosphatidyl inositol­
linked, membrane-bound metallo-carboxypeptidase (Tan et al. 1989) with pref­
erence for removal of lysine or arginine. While it is found in several different 
cell types, it is strongly expressed in monocytic lineage cells. Just as is the case 
with CPVL, CPM expression is upregulated during maturation of monocytes to 
macrophages (Rehli et al. 1995). CPM cleaves the C-terminal basic amino acid 
from a variety of biologically active peptide substrates, including bradykinin, 
dynorphin A(l-l3), and enkephalins (Skidgel et al. 1989). It has been suggested, 
though not yet explicitly shown, that CPM would cleave and thus inactivate the 
anaphylatoxins C3a/C4a/C5a, in the same way as the related liver enzyme car­
boxypeptidase N (Rehli et al. 2000). 

The level of CPM expression in vivo is highly dependent on the activation 
and/or differentiation state of the cells. Expression in macrophages of secondary 
lymph organs is low, but macrophage CPM expression during rejection of kid­
ney transplants is much higher, and this elevated expression is inhibited by cy­
closporin treatment (Andreesen et al. 1988). Moreover, monocytes from patients 
with aplastic anemia (Andreesen et al. 1989) or HIV (Andreesen et al. 1990) do 
not display maturation-induced CPM upregulation, even when cultured with 
healthy serum. These data suggest that CPM activation may be part of a macro­
phage inflammatory process. While these types of data show a compelling cor­
relation between CPM levels and macrophage activation, proof of the impor­
tance of CPM in macrophage activation will require more understanding of its 
physiologically relevant substrates. 

2.3 
C013 (Aminopeptidase N, Alanine aminopeptidase) 

CD13 (MEROPS ID MOl.OOi) is, like CPM, a plasma membrane-bound ectopro­
tease, consisting of 967 amino acids and one N-terminal transmembrane do­
main (Olsen et al. 1988). CD13 is ubiquitously expressed, and highly expressed 
in monocytic and granulocytic cells. As an aminopeptidase, CDl3 removes sin­
gle amino acids from the N termini of proteins and peptides. Like most ectopep­
tidases, CD13 is capable of removing amino acids from small bioactive peptides. 
Strikingly, removal of a single amino terminal residue from the chemokine 
monocyte chemotactic protein (MCP)-1 converts this basophil-activating che-
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mokine into an eosinophil-activating one (Weber et al. 1996), taking advantage 
of the alternate expression of chemokine receptors with overlapping specificity 
in these cell types. However, its primary role appears to be the trimming of anti­
genic peptides bound to MHC molecules (Larsen et al. 1996). Therefore, the rel­
ative efficiency of CD13 to perform this function on antigen-presenting cells 
may significantly affect the balance of epitopes presented to T cells, with impor­
tant ramifications in autoimmunity. 

In addition to these physiologic roles, CD13 is also the receptor for coron­
aviruses to attach to endothelial cells of the upper respiratory tract (Yeager et al. 
1992). Cytomegalovirus also uses CD13 as its receptor, as evidenced by the inhi­
bition of both viral binding and infection with anti-CDl3 antibodies in vitro 
(Soderberg et al. 1993). Cytomegalovirus binding to targets can lead to produc­
tion of chronic graft-versus-host disease and pathogenic anti-CD13 autoanti­
bodies (Soderberg et al. 1996). 

2.4 
Lysosomal Protective Protein (LPP, Cathepsin A, PPCA, 
Lysosomal Carboxypeptidase A) 

LPP (MEROPS ID SI0.002) is a lysosomally localized serine carboxypeptidase 
that, along with CPVL and a smooth muscle cell protein called RISC (Chen et al. 
2001), make up the only three serine carboxypeptidases known in mammals. 
LPP was first isolated as the gene mutated in the human lysosomal storage dis­
ease galactosialidosis (Galjart et al. 1988), a syndrome caused by instability of 
lysosomal beta galactosidase and neuraminidase in the absence of a 54-kDa 
"protective protein," which normally protects these enzymes from degradation 
in the harsh lysosomal environment. Phenotypes vary by exact mutation, but 
generally include dwarfism, mental retardation, and a macular cherry-red spot. 
Sequence analysis showed similarity to serine proteases, and serine carboxypep­
tidase activity was soon confirmed but, importantly, shown not to be required 
for the protective function (Galjart et al. 1991). 

LPP has three distinct enzymatic activities: an esterase activity, a deamidase 
activity, and a carboxypeptidase activity (Jackman et al. 1990). The protein is 
made as a 452 amino acid, 54-kDa precursor, which is then cleaved into 32-kDa 
and 20-kDa subunits (Pshezhetsky 1998). Mature LPP cleaves a variety ofbioac­
tive pep tides in vitro, including bradykinin, endothelin I, substance P, and oxy­
tocin (Jackman et al. 1990; Pshezhetsky 1998). However, the physiologically rel­
evant substrates are not known. 

Significant progress has recently been made in the treatment of a galactosiali­
dosis model disease in mice (LPP knockout mice), which raises the possibility 
that this disease may be treatable in humans. D'Azzo and colleagues transplant­
ed LPP knockout mice with bone marrow cells transduced to overexpress LPP 
under the influence of the colony stimulating factor-l promoter, which directs 
expression to monocytes and macrophages. Since bone marrow-derived mono­
cytic lineage cells traffic to essentially all tissues and secrete LPP, resident cells 
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may take up the secreted LPP, thus curing the defect in their own lysosomes. 
The treated mice showed marked reduction in symptoms and histopathology, 
with virtually all but the loss of cerebellar Purkinje cells corrected (Hahn et al. 
1998). Their most recent model used murine stem cell virus to stably infect 
bone marrow cells with LPP and green fluorescent protein from a bicistronic 
vector (Leimig et al. 2002). The treated mice showed marked improvement for 
many months, including sparing of Purkinje cells. As this impressive work con­
tinues on the protective role LPP and its link to galactosialidosis, little informa­
tion has emerged so far on the physiological role of the enzyme activities of this 
protein. Lysosomal storage disorders are discussed in detail in Chap. 11. 

2.5 
Angiotensin Converting Enzyme (ACE, Peptidyl Dipeptidase, Kininase II) 

ACE (MEROPS ID X06.00l) is a 1,306 amino acid cell surface bound protein 
containing two independent metalloprotease domains (Soubrier et al. 1988). It 
is widely expressed in somatic cells, and an alternate form with only the C-ter­
minal protease domain is expressed only in male germ cells. ACE is a dicar­
boxypeptidase, cleaving two amino acids from the C terminus of the inactive 
angiotensin I, thus creating the powerful vasoconstrictor angiotensin II. In­
hibitors of ACE such as captopril, enalapril, and numerous others have been ex­
tremely valuable agents for controlling hypertension (Douglas 1985). 

Macrophages express high levels of ACE, and several reports within the past 
few years have emphasized the pathophysiological importance of macrophage 
ACE. It has long been known that ACE inhibition is beneficial in the treatment 
of atherosclerosis. Diet et al. showed that ACE accumulates in atherosclerotic 
plaques, and that the main source of ACE is foam cells, the characteristic lipid­
laden macrophages of atherosclerosis (Diet et al. 1996). Moreover, they showed 
that differentiation of the monocytic cell line THP-l into a macrophage pheno­
type led to an increase in ACE activity, and that increase was potentiated by ad­
dition of acetylated LDL. The mechanism of this effect is unknown, but proba­
bly involves inhibition of inflammatory mediators such as MCP-l and interleu­
kin (IL)-12 in the macrophages (Hernandez-Presa et al. 1997; Constantinescu et 
al. 1998). Finally, treatment of human mononuclear cells with ACE inhibitors in 
vitro decreased the synthesis of tissue factor, the clotting cascade initiator im­
plicated in arterial thrombosis (Napoleone et al. 2000). 

3 
Endoproteases 

3.1 
Cathepsins 

The term cathepsins does not refer to a group of proteins related by evolution, 
but rather by location and function. Cathepsins are a group of lysosomal pro-
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teases, most of which are involved in the degradation of phagocytosed or endo­
cytosed products. They can be of any enzyme class, although most are cysteine 
proteases. Many of the cathepsins are ubiquitously expressed, but as the numbers 
of known cathepsins increases, some cell type-specific examples are emerging. 

Cathepsins Band D (MEROPS IDs COl.060, AOl.009) have been implicated in 
the degradation of apolipoproteins in macrophages (Kuroda et al. 1994). 
Apolipoproteins from oxidized LDL particles are not digested well by macro­
phages, potentially leading to accumulation of foam cell macrophages and ath­
erosclerosis. This inhibition of apolipoprotein digestion appears to be mediated 
by oxidized LDL inhibition of cathepsin B, via an unknown mechanism (Hoppe 
et al. 1994). 

Cathepsin K (MEROPS ID COl.036) is one of the most cell type-specific of 
this group. While cathepsin K was originally thought to be expressed only on 
osteoclasts, the macrophage lineage cells responsible for bone resorption (see 
Chap. 19, this volume), recent evidence suggests that macrophages involved in 
foreign body responses, such as multinucleated giant cells or epithelioid cells in 
granulomas, also express it (Buhling et al. 2001). Resident tissue macrophages 
did not express cathepsin K, whereas cathepsins Band L were expressed on both 
resident and foreign body-elicited macrophages. 

A final example of macrophage-specific cathepsin function comes from the 
study of processing of the invariant chain, Ii, by antigen-presenting cells. The 
invariant chain associates with nascent MHC class II molecules, to prevent bind­
ing of endogenous antigens. When the class II molecule enters the endosomal 
compartment, Ii is cleaved by a cathepsin, leaving only the small class II-associ­
ated invariant-chain peptide (CLIP) in the MHC groove, to be exchanged for a 
newly processed antigenic peptide. Chapman and colleagues showed that ca­
thepsin S (MEROPS ID COl.034) is required for Ii cleavage in B cells and den­
dritic cells (Shi et al. 1999). They went on to show that MHC class II presenta­
tion in macrophages of cathepsin S knockout mice was normal, and identified a 
novel protease, cathepsin F (MEROPS ID COl.018), responsible for this activity 
in macrophages (Shi et al. 2000). 

3.2 
Caspase-1 (Interleukin 1/3 Converting Enzyme, ICE) 

Caspases are cysteine endoproteases that cleave after Asp residues, in the con­
text of a four amino acid recognition motif, in a wide variety of protein sub­
strates. Caspases are best known for their involvement in the apoptosis cascade 
(Earnshaw et al. 1999). However, a subset of caspases are primarily involved in 
proteolytic release of cytokine precursors from the membrane, for action at a 
distant site. The best-known example is caspase-1 (MEROPS ID C14.001), which 
was identified by its ability to release IL-1,8 from monocytes and macrophages 
(Thornberry et al. 1992). Mice deficient in caspase-1 cannot release IL-1,8, and 
thus are resistant to septic shock, an IL-1,8-dependent process (Li et al. 1995). It 
was subsequently shown that caspase-1 also catalyzes the release of IL-18, or in-
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terferon y inducing factor (Ghayur et al. 1997; Gu et al. 1997). These data raise 
the possibility that a specific inhibitor of caspase-1 may be a useful treatment 
for sepsis. In the meantime, this area has provided an explanation for the regu­
latory effect of nitric oxide on inflammatory cytokine release. Nitric oxide po­
tently inhibits cysteine proteases by S-nitrosylation of the active site cysteine. 
Kim et al. showed that activated macrophages treated in vitro with a nitric oxide 
synthase inhibitor released fourfold more IL-1,8 than those untreated (Kim et al. 
1998). Furthermore, mice deficient in inducible nitric oxide synthase produced 
more IL-1,8 and more interferon y in response to challenge with endotoxin. 

3.3 
Proteases Secreted to Act on Their Environment 

3.3.1 
Macrophage Gelatinase (Matrix Metalloprotease 9, MMP9, Gelatinase B) 

MMP9 (MEROPS ID M10.009) is a 707 amino acid zinc metalloprotease 
(Wilhelm et al. 1989) and member of the matrix metalloprotease (MMP) family, 
a large (>20 different genes discovered) family of zinc metalloproteases respon­
sible for the clearance and remodeling of the extracellular matrix, with down­
stream effects in areas such as development and wound healing (Nagase and 
Woessner 1999). The MMPs are highly regulated by gene expression, by synthe­
sis as inactive preproenzymes, and by the presence of inhibitors such as the tis­
sue inhibitors of metalloproteases (TIMPs). Unlike some other groups of pro­
teases, such as the cathepsins, MMPs are generally not expressed in normal tis­
sue, but expression is induced by a variety of stimuli, such as cytokines, growth 
factors, and others. 

MMP9 is expressed on macrophages and neutrophils, and like all gelatinases, 
degrades a variety of extracellular components such as collagens, elastin, and fi­
bronectin. However, the physiological roles played by this enzyme (and the oth­
ers in this section; see below) are surprisingly broad, as demonstrated by the re­
sults of knockout studies. MMP9 knockout mice showed defects in bone forma­
tion and vascularization, caused by a lack of MMP9 in chondroclasts, the multi­
nucleated, bone marrow-derived cells that resorb cartilage (Vu et al. 1998). Oth­
er studies showed that MMP9 knockout mice had reduced capacity for out­
growth of oligodendrocyte processes in the developing brain (Oh et al. 1999), 
and diminished ability for exogenously implanted tumors to metastasize (Itoh 
et al. 1999). Intriguingly, the tumors did not express MMP9, but rather required 
MMP9 secreted from host cells for successful metastasis. Finally, MMP9 has 
been shown to cleave a short amino terminal peptide from the neutrophil che­
mokine IL-8, and this modified IL-8 was more than tenfold more potent in neu­
trophil activation and chemotaxis assays (Van den Steen et al. 2000). Therefore, 
MMP9 has pleiotropic effects because of its matrix proteolytic functions, and 
moreover, exerts immunostimulatory effects by modification of a chemokine. 
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3.3.2 
Macrophage Metalloelastase (MME, MMP12) 

MMP12 (MEROPS ID MlO.009) is a 470 amino zinc metalloprotease (Shapiro et 
al. 1993) in the MMP family. MMP12 degrades elastin and other extracellular 
matrix components. Consistent with the notion that many MMPs are inducible 
proteins, MMP12 signal is only detected in placenta (a highly macrophage-en­
riched tissue) by Northern blotting (Belaaouaj et al. 1995). Experiments with 
MMP12 promoter constructs indicated that MMP gene expression was induced 
by LPS in a mouse macrophage cell line, but not in human umbilical vein endo­
thelial cells. Knockout studies showed that MMP12 was necessary for matrix 
degradation by macrophages in vitro and in vivo. MMP12-I- macrophages had 
reduced proteolytic activity against insoluble elastin in vitro, and the ability 
to penetrate Matrigel artificial basement membranes in vitro and in vivo was 
abolished (Shipley et al. 1996). Strikingly, the knockout conferred complete 
protection in an experimental model of cigarette smoke-induced emphysema 
(Hautamaki et al. 1997). Control mice exposed to cigarette smoke for 3 months 
showed immunohistochemical evidence of MMP12-positive macrophage re­
cruitment to the lungs, and increased mean alveolar air space. Neither effect 
was detectable with MMP1rl - mice. If macrophage recruitment of MMP12-I-

macrophages was artificially induced by adding the chemokine MCP-1, the 
(MMP12-negative) macrophages were detected in the lung, but there was still no 
change in mean alveolar air space. These experiments suggest that an MMP12-
specific inhibitor has potential therapeutic value in the setting of pathological 
macrophage recruitment. 

3.3.3 
Leukocyte Elastase (LE, Neutrophil Elastase) 

LE (MEROPS ID S01.131), despite sharing many properties with MMPs 9 and 
12, is not a member of the MMP family, but rather is a 218 amino acid serine 
endoprotease (Sinha et al. 1987). Although LE is expressed in macrophages, it is 
most highly expressed in neutrophils, where it can be the cause of destructive 
lung disease (Mitsuhashi et al. 1999). It was recently reported that cystic fibrosis 
patients have impaired removal of apoptotic inflammatory cells by macro­
phages. This defect is caused by LE-mediated cleavage of the phosphatidylserine 
receptor that recognizes apoptotic cells for uptake (Vandivier et al. 2002). The 
lost capacity to dispose of toxic mediators from apoptotic inflammatory cells 
may exacerbate the deleterious effects of these cells. 
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3.4 
Proteases Acting at the Cell Surface 

3.4.1 
lNF-a Converting Enzyme (lACE, ADAM17, CD156b) 

Tumor necrosis factor (TNF)-a is a powerful pro-inflammatory cytokine that, 
like 1L-l{3, is synthesized in a plasma membrane-bound form, and is then re­
leased into the extracellular space by TACE (MEROPS ID MI2.217). TACE is an 
824 amino acid member of the ADAM (the name is derived from a disintegrin 
and metalloprotease) family, a group of over 40 proteins containing a disinte­
grin domain that binds integrins and a metalloprotease domain similar to those 
in the MMP family (Black et al. 1997; Moss et al. 1997). While TACE is ubiqui­
tously expressed, it is highly expressed in some macrophage populations, where 
TNF-a is made and secreted. Because TNF-a is often implicated in harmful in­
flammatory pathways, there has been great interest in devising methods to inac­
tivate TACE. Methods for inhibiting TACE include use of the natural inhibitor 
TIMP-3 (Amour et al. 1998), creation of a recombinant dominant negative form 
of the enzyme (Solomon et al. 1999), and development of small molecule in­
hibitors (Barlaam et al. 1999). 

Surprisingly, attempts to create a TACE knockout mouse led to the finding 
that TACE has a much broader substrate specificity. Mice carrying a mutation 
in the Zn binding site ofTACE had a large number of developmental abnormali­
ties, and most died between embryonic day 17.5 and 1 day after birth (Peschon 
et al. 1998). Their mutations were reminiscent of those in mice deficient in 
transforming growth factor (TGF)-a, which is also released from the plasma 
membrane by a cleavage event. The authors went on to show that TACE is re­
sponsible for cleavage of the ectodomains of TGF-a, L-selectin, and TNF recep­
tor p75. Subsequent work by other groups has shown that other proteins of po­
tential therapeutic significance are also cleaved by TACE, including the amyloid 
protein precursor associated with Alzheimer's disease (Buxbaum et al. 1998), 
and the receptor for colony stimulating factor-I, the factor critical for commit­
ment of precursor cells to the monocytic lineage (Rovida et al. 2001). 

3.4.2 
Macrophage Mannose Receptor Secretase 

Macrophage mannose receptor (MMR) is a 180-kDa glycoprotein expressed on 
the plasma membrane of macrophages, some dendritic cells, and a few isolated 
endothelial cell types (Linehan et al. 2000). Eight C-type lectin domains mediate 
its functions as a phagocytic and endocytic receptor, recognizing mannose- and 
fucose-containing structures. A second carbohydrate recognition domain, the 
N-terminal cysteine-rich (CR) domain, mediates binding to sulfated sugars on 
ligands such as sialoadhesin and CD45 expressed on marginal zone macro­
phages and in germinal centers (Martinez-Pomares et al. 1996; Martinez-
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Pomares et al. 1999). MMR is released from macrophages in vitro and in vivo by 
a metalloprotease-type secretase (Martinez-Pomares et aI. 1998). Martinez­
Porn ares and Gordon have proposed that MMR may transport polysaccharide 
antigens to secondary lymphoid organs for generation of immune responses 
(Martinez-Pomares and Gordon 1999). To date little is known about the nature 
of the MMR secretase, except that it is present on macrophages, and is suscepti­
ble to hydroxamate-based inhibitors. Given these facts, one may speculate that 
MMR secretase is, in fact, TACE. However, since most of the over 40 members 
of the ADAM family share the same basic domain structure as TACE, and as yet 
have no described function, there is no shortage of good candidates. 

4 
Summary 

Proteases are critical players in many of the central functions of macrophages, 
including digestion of phagocytosed material, processing of foreign antigens for 
presentation on MHC class II molecules, tissue remodeling, and regulation of 
immune responses by activating, inactivating, or releasing from membranes a 
host of immune-active proteins and peptides. The task of understanding the 
roles of these enzymes is complicated by the fact that many proteases have mul­
tiple and overlapping functions. However, with the appropriate tools and in­
sight, assisted by the arrival of whole genome data sets, the prospects for major 
advances in understanding the pathophysiology of this system are bright, lead­
ing to significant advancements in the treatment of human disease. 
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The chemokine superfamily consists of small, basic, heparin-binding proteins 
that playa pivotal role in basal trafficking as well as in activation and recruit­
ment of leukocytes from the circulation to sites of inflammation. The chemo­
kines are a subset of the cytokine family and are distinguished from other cy­
tokines in that they activate seven-transmembrane (7TM) G protein-coupled re­
ceptors. They are a large family, with approximately 50 members identified to 
date, and for which 19 receptors have been described. The chemokine family is 
divided structurally into four subfamilies exe, ee, ex3e and e, based on the 
position of the amino terminal cysteine residues. The majority of chemokines 
fall into the exe or ee groups (also referred to as a and f3 subclasses respec­
tively), and hence have been the most extensively studied. The known chemo­
kine/receptor pairs are depicted in Fig. 1, which also indicates a second division 
based on the recent advances in chemokine biology-chemokines are either ex­
pressed constitutively and control basal trafficking or homing, or are inducible, 
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Fig. 1 Chemokine receptor-ligand pairing. The known chemokine receptor-ligand pairs are shown. 
Both the common names for the chemokines, as well as their systematic nomenclature are given. Re· 
ceptors that bind a single ligand are classified as specific, while those that bind more than one ligand 
are classified as shared. Receptors which are constitutively expressed are shaded in grey, while those 
that are inducible are shaded in orange. This division must not be considered as absolute, since the 
receptors that are not shaded have overlapping properties, for example CCR6 is downregulated, while 
CCR7 is upregulated during the maturation process of dendritic cells, and CCR8 has been implicated in 
allergic inflammation, although it is expressed constitutively in the thymus. The main point to be made 
is that the receptors classified as inducible have been shown to playa role in inflammation 

and are involved in inflammation. Chemokines were generally named according 
to the function that was identified such as monocyte chemoattractant protein 
(MCP) or neutrophil activating peptide (NAP) but since many chemokines were 
concomitantly identified in more than one laboratory, a single sequence was at· 
tributed more than one name. Therefore a systematic nomenclature was recently 
adopted (Zlotnik and Yoshie 2000) and both common and systematic names are 
shown in Fig. 1. 

Chemokines do not necessarily have a high level of homology at the level of 
primary amino acid sequence, but they have a very highly conserved monomer­
ic three-dimensional structural fold, which is conferred on them by the canoni­
cal4·cysteine motif, which the majority possess. Their monomeric fold is super­
imposable for all chemokines whose structures have been solved to date 
(Fig. 2A), independent of the subfamily to which they belong. However, many 
chemokines form dimers, and the dimeric structure of CXC chemokines is very 
different from that of the CC chemokines as shown in Fig. 2. The CXC subclass 
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A 

B 

Fig.2A-C The monomeric and dimeric topology of chemokines. A The superposition of seven mono­
meric chemokine structures. The CC chemokines are shown in blue: RANTES/CCl5, dark blue, MCP-1/ 
CCl2, medium blue and MIP-1,B, light blue; the CXC chemokines are shown in green: PF4/CXCl4, dark 
green, Il-8/CXCl8, medium green and NAP-2/CXCL7, light green, and the CX3C chemokine, fractalkine in 
shown in red. B The dimeric structure of the CXC chemokine Il-8/CXCl8. C The dimeric structure of the 
CC chemokine RANTES/CCl5 

form compact dimers, with the two carboxy helices lining a groove formed by 4 
beta sheets, rather similar to the MHC class II groove, while the CC chemokines 
form elongated cylindrical dimers through interactions of their amino termini. 
It is widely debated whether the dime ric structure is in fact physiologically rele­
vant, since dimers form at micro molar concentrations, whereas chemokines are 
active at nanomolar concentrations. While it is well documented that the mono­
meric forms of chemokines that are known to dimerize are fully active in vitro 
(Rajarathnam et al. 1994; Paavola et al. 1998; Laurence et al. 2000), it is not 
known whether in vivo they may dimerize on the receptor. Certain chemokines 
such as RANTES/CCL5 are also known to form higher order aggregates, which 
have been shown to be important both in inflammation (Appay et al. 1999) and 
in inhibition ofHIV infectivity (Wagner et al. 1998). 

As mentioned above, chemokines are involved in both basal trafficking and 
inflammatory cell recruitment. Figure 1 highlights an interesting contrast be­
tween the receptors involved in basal trafficking (controlled by homeostatic che­
mokines), which tend to be specific, and those involved in inflammatory cell 
trafficking, which are shared by several chemokines. As is the rule for all such 
rules, this division is not strict, since CCR10 is considered to be constitutive, 
but is involved in certain skin inflammatory syndromes (Reiss et al. 2001; 



272 Z. Johnson et al. 

Homey et al. 2002) while its ligand CTACK/CCL27 is upregulated by pro-inflam­
matory cytokines (Homeyet al. 2002). The role of the homeostatic chemokines 
is to maintain the "normal" physiologic trafficking of cells for routine immuno­
surveillance requiring antigen sampling in the secondary lymphoid organs. 
Mice in which their genes have been deleted have demonstrated the importance 
of these receptors in development. Knockout mice deficient in either the CXCR4 
receptor (Zou et al. 1998a,b; Ma et al. 1998; Tachibana et al. 1998) or SDF-1 (Na­
gasawa et al. 1996) die perinatally and the embryos show conspicuous defects in 
the hematopoietic and nervous systems. CCR7 and CXCRS play important roles 
in homing of T cells and B cells respectively to secondary lymphoid tissue such 
as lymph nodes, and spleen, and both CCRT1- and CXCRS-1- mice show severe 
defects in secondary lymphoid tissue architecture (Forster et al. 1996, 1999). 

In inflammatory situations, the expression of inducible or inflammatory che­
mokines is upregulated. Control of expression of these chemokines is under the 
temporal control of pro-inflammatory cytokines. Pro-inflammatory cytokines 
such as interleukin (IL)-l,8, tumor necrosis factor (TNF)-a, and interferon 
(IFN)-y alone or in combination induce chemokine expression at sites of in­
flammation in nonlymphoid tissue (Segerer et al. 2000). In fact, the 3 ligands for 
CXCR3 were all identified upon upregulation with IFN-y, hence their common 
names: IP-10, interferon-inducible protein 10 (Luster et al. 1988); MIG, mono­
kine induced by interferon-y (Farber 1990; Cole et al. 1998) and I-TAC/CXCL-S, 
interferon-inducible T-cell alpha chemoattractant (Rani et al. 1996). Activated 
cells, which possess appropriate chemokine receptors, upregulated during effec­
tor cell generation (Moser and Loetscher 2001) are then attracted to the site of 
inflammation. This is in contrast with resting peripheral cells, which express 
only homeostatic chemokine receptors. Different cell populations characterize 
different inflammatory responses, and the predominance of one cell type over 
another at a site of inflammation is probably dictated by the chemokines ex­
pressed at that particular site of inflammation/injury and the receptor expres­
sion pattern on the leukocytes. 

The fact that chemokines interact with 7TM receptors not only differentiates 
them from other cytokines, but also renders their receptors tractable targets for 
therapeutic intervention. Screening for small-molecule inhibitors of cytokine re­
ceptors has been rather unsuccessful, whereas a huge proportion of drugs cur­
rently on the market act on members of the 7TM superfamily. There is, however, 
a feature of the chemokine family which may detract from their suitability as 
therapeutic targets, namely, the redundancy shown in Fig. I, since multiple che­
mokines can bind certain receptors, and several chemokines can bind to more 
than one receptor. However, the levels of control in vivo such as temporal and 
spatial expression patterns, differential glycosaminoglycan (GAG) binding, dif­
ferential receptor trafficking patterns as well as the different signaling pathways 
are far from fully delineated. 

The interaction of chemokines on target cells is mediated through seven­
transmembrane G protein-coupled receptors, which are usually of the Gi- Gi/Go 
type (Murphy 1996). Following activation, which has been reported to result in 
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dimerization (Mellado et al. 2001), chemokine receptors become either partially 
or totally desensitized to repeated stimulation-this process may be important 
in helping the cell sense a chemotactic gradient, so that it may move through 
the stroma to the inflammatory site. Binding of a chemokine to its receptor in­
duces a conformational change in the cytoplasmic tail, which promotes the acti­
vation of the signaling cascades. Several intracellular signaling pathways, which 
are believed to influence each other through crosstalk, are induced and lead to 
cellular adhesion, migration, degranulation, and gene expression (Jiang et al. 
1997; Szabo et al. 1998; Katanaev 2001). Some main components of the signaling 
events include release of intracellular Ca2+ via the phospholipase C (PLCj3) path­
way and the activation of several isoforms of the protein kinase (PKC) family 
and phosphoinositide 3-kinase (PI3Ky). One early event stimulated by ligand 
binding is the recruitment and activation of a heterotrimeric G protein complex 
leading to dissociation of the Ga subunit from the membrane-anchored Gf3y­
heterodimer (Gether and Kobilka 1998). The Gf3y subunit released transduces 
signaling events that lead to chemotaxis in motile cells in a Ga-independent 
manner (Parent and Devreotes 1999). Another Gf3y-activated pathway involves 
PI-3 kinase y (PI3Ky) where PI3Ky activation induces the production of phos­
phoinositil triphosphate (PIP3) (Jiang et al. 1997) and is involved in mitogen­
activated protein kinase (MAPK) activation (Bondeva et al. 1998). Both effects 
are implicated in the chemotactic response. However, other factors mediated 
through small guanosine triphosphate (GTP)-binding proteins of the Rho-fami­
ly, whose linkage to the G protein-coupled receptors is not fully understood, 
have been proved to be involved in chemotaxis (Hart et al. 1998). Chemokines 
also activate another set of cytoplasmic protein kinases, Janus kinases (JAKs), 
which phosphorylate signal transducers and activators of transcription (STATs) 
proteins, which affect gene expression (Mellado et al. 1998; Wong and Fish 
1998). While the link between chemotaxis and PI3Ky has been clearly estab­
lished (Hirsch et al. 2000), the biological responses mediated by the JAK/STAT 
signaling pathways remain to be elucidated. As more insight is gained into this 
complex network, potential targets for therapeutic intervention should be dis­
covered as has been postulated for an intracellular CCR2 receptor antagonist 
(Yokochi et al. 2001). 

2 
Cellular Recruitment and Chemotaxis Assays 

In order for circulating leukocytes to reach sites of inflammation, they must 
cross the endothelial cell barrier. Leukocyte transmigration usually occurs at 
post-capillary venules, and is a multistep process first described by Butcher 
(1991) in which chemokines play at least two major roles, as illustrated in Fig. 3. 
Leukocytes first slow down by a selectin-mediated rolling, enabling the initial 
encounter with chemokines, which are presented on the endothelial cell surface 
by their immobilization on proteoglycans-introducing the second important 
intramolecular interaction in chemokine biology their interaction with GAGs. 
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Fig.3 Orchestrated cellular recruitment mediated by chemokines. Leukocytes Circulating in the blood­
stream, enter the underlying tissue through the endothelial cell layer (I), a process called transendothe­
lial migration. (ii) The leukocyte is first slowed down by interactions between selectin/mucin molecules, 
which cause it to roll along the endothelium. Close to sites of inflammation, the endothelial layer is 
activated by pro-inflammatory cytokines, resulting in the upregulation of expression of adhesion mole­
cules. Chemokines are secreted and are immobilized on the surface by binding to glycosaminoglycans 
(GAGs). The interaction of leukocytes with these immobilized chemokines changes the affinity of sur­
face integrins, resulting in firm arrest of the leukocyte, followed by transmigration through the endo­
thelium. (iii) Once the migrating cell has crossed the endothelial layer, it follows the haptotactic gradi­
ent of chemokines immobilized on the stroma and matrix of interstitial cells. (iv) When the cell reaches 
the site of inflammation, pro-inflammatory cytokines and chemokines induce distinct effector functions 

Chemokinelreceptor binding on leukocytes causes integrin activation resulting 
in increased avidity, and thus firm adhesion with adhesion molecules on the en­
dothelial cell surface (Springer 1990; Dustin and Springer 1991). Once firm ad­
hesion to the endothelial surface has been established, the leukocyte transmi­
grates from the lumen to the site of inflammation in the tissue by a process of 
haptotaxis (movement along a solid phase gradient). Chemokines bind GAGs, 
which are present in the extracellular matrix, to create such a gradient or a 
"guideline" that the cells may use to navigate towards the site of inflammation, 
where they exert their effects. It is probable that, in vivo, several gradients of 
different chemokines are present in the tissue, separated temporally and spatial­
ly [reviewed in Moser and Loetscher (2001) and Devalaraja and Richmond 
(1999)]. Specificity introduced to the system both spatially and temporally has 
been demonstrated by Foxman et al. (1997). In this elegant study, the authors 
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demonstrate that neutrophils navigate towards agonists in a spatially defined 
and sequential manner. 

Recently, the first example of reverse cell migration induced by a chemokine 
has been reported (Poznansky et al. 2000). This follows the observation that 
while there are high levels of SDF-1 (a chemoattractant for mature T lympho­
cytes) in bone marrow and thymic tissue, there is a paucity of this cell type in 
these areas. This may be explained by a theory put forward by Zlatopolskiy and 
Laurence (2001) who propose that differential signaling mechanisms control 
forward or reverse cell migration in response to a chemokine, depending on the 
critical concentration of that chemokine. 

The ability of chemokines to recruit cells has been mimicked in vitro by che­
motaxis assays. The classical in vitro assay of the chemotactic function of che­
mokines has been a system using the Boyden chamber or a similar method of 
cell chemotaxis [methods reviewed in Wilkinson (1998) J. Briefly, these experi­
ments involve the monitoring of cell migration across a permeable membrane 
in the positive direction of the agent that is being tested. In these experiments, 
the chemotactic gradient is created artificially by increasing the chemokine con­
centration in the lower wells. While this system is widely used as a primary test 
for the chemotactic ability of a molecule, as with all in vitro methods, it is only 
an imitation of the in vivo situation. More sophisticated chemotaxis assays have 
also been described whereby the cell must migrate across an endothelial cell lay­
er and, to make the system more physiological, a shear flow can be applied 
(Cinamon et al. 2001). However, the best demonstration of the chemoattractant 
properties should be those in vivo. 

Experiments using a flow chamber and endothelial cells to study the differen­
tial roles of chemokine in monocyte arrest and extravasation have shown that 
while GRO-a/CXCR2 is important in transforming monocytes from a rolling 
state to one of firm arrest, MCP-l/CCL2 is involved in the subsequent shape 
change and transmigration step (Weber et al. 1999). It is noteworthy that in 
these studies the effects of MCP-l/CCL2 could only be seen under flow condi­
tions, suggesting that flow may play an important role in the transmigration 
step, an observation which was also made by another group (Cinamon et al. 
2001). 

While it would appear simple to monitor cellular recruitment by injecting the 
chemokine of interest into an animal, in vivo chemotaxis has not been widely 
used. However, certain methods have been reported where the chemokine is ad­
ministered into a "pocket" in an animal. The pocket may be a naturally occur­
ring space in the animal; for example, the chemokine can be applied to the lung 
via the intra tracheal route (Hisada et al. 1999), or into the peritoneal cavity by 
injection (Z. Johnson and A.E.!. Proudfoot, unpublished observations) or im­
plantation of a chemokine-soaked sponge (Fine et al. 2000). In other situations 
the pocket may be artificial-for example, by creating an air pouch on the ani­
mal's back (Takano et al. 1999). Cellular recruitment can also be induced by the 
administration of a chemokine by intra dermal injection and MCP-1/CCL2, 
MCP-2/CCL8, and MCP-3/CCL7 in rabbits have all been shown to recruit mono-
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cytes to the site of injection in the skin (Van Damme et al. 1992). Eotaxin, which 
was identified by biochemical means as the eosinophil recruitment factor from 
the BAL of sensitized guinea pigs, when injected into guinea pig skin induces an 
accumulation of eosinophils as would be expected (Jose et al. 1994). Interesting­
ly, however, RANTES/CCLS, which is also an eosinophil chemoattractant in vit­
ro, will only attract an inflammatory cell infiltrate of eosinophils and monocytes 
following injection into the skin of dogs previously subjected to helminth infec­
tion (Meurer et al. 1993). The ability of RANTES/CCLS to recruit eosinophils 
only in sensitized subjects was further demonstrated in man where RANTES/ 
CCLS injection into skin of non-atopic subjects did not elicit an inflammatory 
response, compared with the predominantly eosinophilic infiltrate observed fol­
lowing RANTES/CCLS injection in atopic patients (Beck et al. 1997). Intrader­
mal injection of the prototypic CXC chemokine IL-8/CXCL8 in rabbits induces 
plasma exudation which is dependent on specific recruitment of neutrophils 
(Colditz et al. 1989; Foster et al. 1989; Rampart et al. 1989; Colditz et al. 1990), 
and the same exclusive recruitment of neutrophils induced by IL-8/CXCL8 has 
been confirmed in man (Leonard et al. 1991; Swensson et al. 1991). 

In addition to the injection of specific chemokines in vivo, chemotactic 
agents such as thioglycollate or the bacterial cell wall component lipopolysac­
charide (LPS) have been shown to produce a pronounced and specific cellular 
infiltrate following injection in vivo. LPS induces a rapid initial recruitment of 
neutrophils followed later by monocytes into the host tissue (Evans et al. 1989; 
Ghosh et al. 1993), which has been shown to be partially mediated by localized 
production of chemokines, including MCP-l/CCL2, RANTES/CCLS, and MIP-
1a/CCL3 and -{3/CCL4 (Kopydlowski et al. 1999). Injection of aged thioglycollate 
medium has been used as a method for eliciting peritoneal neutrophils or mac­
rophages for many years, with neutrophil recruitment occurring at 4 h (Rodrick 
et al. 1982) while 3-4 days after injection the predominant cell type in the peri­
toneal cavity are macrophages (Mishell 1980). Macrophage recruitment after 
thioglycollate administration involves MCP-l/CCR2, since both the MCP-I-I-

and the CCRrl- mice show impaired responses in this model (Boring et al. 
1997; Kurihara et al. 1997; Kuziel et al. 1997), and administration of an anti­
CCR2 antibody also significantly inhibits cell recruitment in this model (Mack 
et al. 2001). 

3 
Macrophage Chemokine and Receptor Expression Involved in Disease 

The aim of this chapter is to concentrate on the effects of chemokines on the 
monocyte/macrophage leukocyte phenotype in disease, which is the central 
theme of this book. Several chemokine receptors are expressed on monocytes 
which are responsible for the rapid and directed migration of these cells from 
the circulation into tissue, where they mature into phagocytic macrophages in­
volved in cell-mediated host defense against infection. It is very important to 
note that macrophages have a different chemokine-receptor expression pattern 
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from circulating monocytes (Kaufmann et al. 2001). A good example of differen­
tial expression is shown by the RANTES receptors. Circulating monocytes ex­
press high levels of CCR1, but very low levels of CCR5 and CCR3. Thus 
RANTES/CCL5 induces a robust response of monocyte chemotaxis, while eo tax­
in/CCLll and MIP-1,B/CCL4, specific ligands for CCR3 and CCR5 respectively, 
induce only moderate responses (Proudfoot et al. 1999) Furthermore, the amino 
terminally modified variant AOP-RANTES, which is a potent agonist of CCR5, 
but not of CCR1 (Proudfoot et al. 1999) is not able to induce monocyte chemo­
taxis (Simmons et al. 1997). On the contrary, AOP-RANTES induces a robust 
calcium response on monocytes that have acquired the macrophage phenotype 
in vitro, while it is not able to elicit this response in freshly isolated monocytes 
(Proudfoot et al. 1999), indicative of the altered expression pattern of chemo­
kine receptors on monocytes and macrophages. 

The levels of chemokines and their receptors in macrophage-mediated 
pathologies such as rheumatoid arthritis (RA); multiple sclerosis (MS) and arte­
riosclerosis have been extensively studied. In RA, macrophages are believed to 
playa pivotal role in nefarious activities such as joint destruction, and the syno­
vial fluid from RA patients has been shown to contain a variety of chemokines 
which attract monocytes, including macrophage inflammatory protein (MIP)-
1a/CCL3 (Hosaka et al. 1994; Koch et al. 1994), MIP-1,B/CCL4 (Koch et al. 1995), 
MCP-1/CCL2 (Koch et al. 1992; Villiger et al. 1992) and RANTES/CCL5 
(Rathanaswami et al. 1993; Volin et al. 1998). A study of the chemokine recep­
tors expressed in the three leukocyte-trafficking compartments ofRA (peripher­
al blood, synovial fluid and synovial tissue) showed that CCR1 and CCR2 are 
highly expressed on normal and RA peripheral blood monocytes, but are ex­
pressed at low levels on these cells in the synovial fluid, suggesting that they are 
involved in the recruitment process. Other receptors such as CCR3, CCR4, and 
CCR5 were found to be upregulated on peripheral blood mononuclear cells 
(PBMC) from arthritic patients compared to normal samples (Katschke et al. 
2001). These results suggest that differential chemokine-receptor expression 
patterns play important roles in monocyte/macrophage recruitment and reten­
tion in disease. 

In another chronic autoimmune disease in which macrophages are believed 
to playa major role, MS, the chemokines IP-10/CXCLlO, Mig/CXCL9, which act 
via CXCR3, and RANTES/CCL5, which acts via CCR1, CCR3 and CCR5 were all 
shown to be up regulated in the cerebrospinal fluid (CSF) of patients during an 
MS attack, whereas MCP-l/CCL2 levels, which acts via CCR2, were decreased 
(Sorensen et al. 1999). The study of the receptor levels in the CSF and on cells 
present in MS lesions revealed that CXCR3 is elevated in the CSF compared with 
the level of expression in the peripheral blood (Sorensen et al. 1999). Other 
studies have shown that CCR5 receptor expression is increased on T cells and 
macrophages both in the CSF and in MS lesions (Balashov et al. 1999; Sorensen 
et al. 1999; Strunk et al. 2000). Further evidence that CCR5 plays an important 
role in the progression and pathology of MS comes from the observation that 
MS patients that are heterozygous for the CCR5L'132 allele, which codes a non-
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functional CCR5, have prolonged disease-free intervals between MS attacks 
compared with individuals expressing wildtype CCR5 (Sellebjerg et al. 2000). 
Recently the same phenomenon of decreased CCR1 expression in recruited cells 
that was observed in the synovial fluid of RA patients was seen in MS lesions, 
whereas CCR5 expression is increased (Trebst and Ransohoff 2001). 

The macrophage is known to playa major role in arteriosclerosis, and the ob­
servation of high levels of one of the major monocyte/macrophage chemoattrac­
tant, MCP-l!CCL2, in atherosclerotic plaques taken from patient samples is not 
surprising (Nelken et al. 1991). The role of this chemokine and its receptor 
CCR2 is well borne out by their deletion in mice as is described below. In the 
remainder of this chapter, we will describe the approaches that would interfere 
with the role of chemokines as potential strategies to interfere with the inflam­
matory process in disease, and review the current status of chemokine anti-in­
flammatory therapeutics. 

4 
Proof of Concept of Interference with the Chemokine System 
as Anti-inflammatory Therapies 

Before describing the therapeutic strategies that could be applied in man, it is 
worthwhile to briefly review the evidence that has validated the role of the che­
mokine system and macrophage biology in animal models using genetic manip­
ulation. 

The first genetic manipulation approach is the creation of transgenic mice, 
an overexpression of a specific chemokine. The theoretical advantage of this ap­
proach is that high levels of the chemokine may be maintained at a specific site 
for a sustained period, perhaps mimicking the effects of an inflammatory re­
sponse. Surprisingly, the targeted overexpression of MCP-l!CCL2 to the pancre­
as under the control of the insulin promoter showed that, while extensive mono­
cytic infiltration was induced, this was not paralleled with inflammation, lead­
ing to the important observation that cellular recruitment alone is not sufficient 
to create an inflammatory response, but that a second activation or danger sig­
nal is required, as has been suggested by the work of Matzinger (1994). Similar­
ly, overexpression of MCP-l!CCL2 in alveolar cells, so that the chemokine was 
secreted into the bronchoalveolar space, resulted in an increase in monocytes 
and lymphocytes in the bronchoalveolar lavage, again without an accompanying 
inflammation (Gunn et al. 1997) 

The alternative genetic approach is to generate knockout mice by gene dele­
tion. In contrast to deletion of constitutive receptors and ligands, which have 
shown striking phenotypes, inflammatory receptor, and ligand-knockout mice 
have no unusual phenotype under normal conditions, but do show phenotypes 
when subjected to inflammatory stress. A good example is the MIP-1a/CCL3 
knockout, which only demonstrated a phenotype in infection with Coxsackie vi­
rus (Cook et al. 1995). Knockout mice in which the gene for MCP-l!CCL2 has 
been deleted have been far more informative. These mice showed a fourfold re-
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duction in recruitment of macrophages in response to thioglycollate adminis­
tered peritoneally, even though the exact mechanism of cellular recruitment re­
mains to be elucidated (Gosling et al. 1999). Further evidence for the role of 
MCP-l/CCL2 in monocyte recruitment was shown in a delayed-type hypersensi­
tivity (DTH) model. In the MCP-1-1- mouse, an impairment of macrophage ac­
cumulation in DTH lesions was observed compared with wildtype mice, despite 
the fact that the swelling response was similar in both wildtype and gene-deleted 
mice. Perhaps the most convincing data generated from these mice is in a 
mouse model of MS, experimental autoimmune encephalomyelitis (EAE). In this 
study, MCP-1-1- mice were shown to be significantly resistant to EAE following 
active immunization, with a corresponding impairment of recruitment of mac­
rophages to the CNS (Huang et al. 2001). These experiments demonstrated a 
very important fact with respect to redundancy. While MCP-l/CCL2 acts only 
on CCR2, it is not the only chemokine to activate this receptor; yet the deletion 
of this chemokine mirrored the effect of deleting the receptor itself. In other 
words, the other CCR2 ligands were not able to compensate. CCRZ-1- mice have 
shown similar macrophage recruitment defects, where macrophage recruitment 
in response to peritoneal thioglycollate administration is severely impaired. 
In murine models of arteriosclerosis, both MCP-l/CCL2 and CCRZ-1- mice 
have unequivocally demonstrated the importance of this receptor/ligand pair 
(Gosling et al. 1999) 

Knockout mice do not always confirm the role for certain ligands or recep­
tors, since deletion of MIP-1aICCL3 and CCR5 showed that these mice remained 
fully susceptible to EAE (Tran et al. 2000). However, MIP-1aICCL3 knockout 
mice show a decrease in cuprizone-induced demyelination (McMahon et al. 
2001). These results are in contrast to the neutralization of MIP-1a as described 
below, and with the strikingly high levels of expression of CCR5 in MS lesions, 
we believe that interpretations with knockout mice should be taken with care, as 
compensatory mechanisms may occur in gene-deleted animals-especially in a 
system as "redundant" as the chemokine system. 

5 
Anti-inflammatory Strategies 

There are several approaches that could be undertaken to inhibit the chemo­
kine-mediated recruitment of monocyte/macrophages into inflammatory sites, 
which are summarized in Fig. 4. The most frequently applied strategy is that of 
preventing the interaction between the chemokine and its receptor, and to this 
end several approaches have been adopted. 

The use of neutralizing monoclonal antibodies, principally against the che­
mokines themselves, has been used extensively in animal models of disease, al­
though surprisingly, few are being developed for therapeutic use perhaps a re­
flection of the belief that orally available small molecule receptor inhibitors 
would supersede the use of antibodies. However, published results prove that 
the use of neutralizing antibodies against specific chemokines can successfully 
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Fig.4 The possibilities of intervention points in the chemokine system to prevent inflammation. Four 
possible strategies are depicted. (1) The most frequent strategy applied to date, which is the prevention 
of chemokine/receptor interactions. (2) Chemokines are believed to interact with cell surface gly­
cosaminoglycans in order to form the chemotactic gradient. (3) Chemokines may have specific sig­
nalling pathways. (4) Receptor endocytotic pathways have been shown to differ for different chemokine 
receptors 

block specific inflammation in animal models. The blockade of several different 
CC chemokines in T helper (Th)2 inflammation using a murine model of air­
ways inflammation induced by ovalbumin sensitization revealed that there is a 
coordinated action of chemokines in the inflammatory process which orches­
trates the complete response. Eotaxin/CCL2 and MCP-lICCL2 were shown to be 
important for lung inflammation (eosinophil and monocyte infiltration respec­
tively) and bronchial hyperreactivity (BHR), whereas neutralizing MIP-1aICCL3 
had little effect. Use of a neutralizing antibody against the CXC chemokine IL-SI 
CXCLS was also shown to be effective at blocking reperfusion-associated lung 
injury in a rabbit model (Sekido et al. 1993). 

Similar efficacious treatments using this approach have been demonstrated 
in Th1 disease models. In collagen-induced arthritis in rodents, treatment with 
an anti-MCP-lICCL2 mAb improved disease by significantly reducing the num­
ber of infiltrating macrophages into the lesions, correlating with a reduction in 
ankle swelling by 30% (Ogata et al. 1997). A neutralizing anti-RANTES/CCLS 
polyclonal antibody similarly improved adjuvant induced arthritis by signifi­
cantly reducing the cellular infiltrate, maintaining joint integrity and preventing 
bone destruction (Barnes et al. 1995). In EAE, macrophage accumulation has 
been shown to correspond with levels of MCP-lICCL2 at the site of inflamma­
tion (Ransohoff and Tani 1995). Administration of an anti-MCP-1/CCL2 anti­
body prevented relapses in rodent EAE (Karpus and Kennedy 1997), suggesting 
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that the macrophage plays a role in this process. On the other hand, anti-MIP-
1a/CCL3 treatment prevented the disease onset in an acute model, but not in re­
lapsing and remitting EAE (Karpus and Kennedy 1997). A mAb against rat 
MCP-l/CCL2 was also used to demonstrate that MCP-1 is responsible for infil­
tration of monocytes in bleomycin-induced lung injury in rats (Sakanashi et al. 
1994). An antibody to MCP-l/CCL2 was able to inhibit monocyte migration 
across an in vitro model of the blood brain barrier (BBB) by 85%, which sup­
ports the role of MCP-l/CCL2 and its receptor CCR2 in recruiting monocytes 
into the brain (Weiss et al. 1998). 

Neutralizing antibodies to rodent chemokine receptors are not widely avail­
able, introducing a limiting factor to correlate data obtained in rodent models 
to receptor antagonism in human disease. Recently, mAbs against murine CCR2 
and CCR5 have been described (Mack et al. 2001), which hopefully will provide 
more information as to the efficacy of blocking these receptors in macrophage­
mediated inflammation. While Eotaxin/CCLl1-mediated eosinophil recruitment 
in the guinea pig has been shown to be blocked by a mAb against guinea pig 
CCR3 (Sabroe et al. 1998), there is no report of its efficacy in airways inflamma­
tion. 

A second approach to preventing ligand-mediated receptor activation is to 
use a modified ligand that retains high-affinity binding to the receptor but has 
lost the ability to induce signaling, and is thus a receptor antagonist. The amino 
terminal region has been shown by many studies to be crucial for receptor acti­
vation, and therefore such receptor antagonists have been generated by the 
modification of this region, either by truncation or elongation. There are several 
examples described in vitro of the former approach with IL-8, (Clark-Lewis et 
al. 1991), RANTES/CCL5 (Gong et al. 1996) and MCP-l/CCL2 (Zhang and Roll­
ins 1995; Kim et al. 1996), but not many in vivo. However, the truncated MCP-l/ 
CCL2 analog (9-76)-MCP-1/CCL2 was shown to have very good efficacy in the 
murine model of arthritis in MRL-lpr mice; its therapeutic administration re­
duced disease symptoms (Gong and Clark-Lewis 1995). The elongation ap­
proach has been extensively studied in vivo with the RANTES analog, Met­
RANTES (Proudfoot et al. 1996), where it has shown efficacy in a variety of 
models which implicate monocyte/involvement such as collagen-induced arthri­
tis (Plater-Zyberk et al. 1997), glomerular crescentic nephritis (Lloyd et al. 
1997), organ transplant (Grone et al. 1999), and colitis (Ajuebor et al. 2001). 

While the power of biological therapeutics should not be ignored, the dogma 
of the pharmaceutical industry is based on the superiority of orally bioavailable 
small molecule inhibitors. Chemokine receptors, which belong to the GPCR 
class, are ideal targets. However, the majority of these receptors have smalllig­
ands, and while chemokines are small proteins, they are significantly larger 
compared to ligands such as histamine, adrenaline, or dopamine. Moreover, the 
fact that they bind several ligands, and that ligand binding can be allotropic be­
cause the ligands do not necessarily bind to the same site (Cox et al. 2001), ren­
ders the search for small molecules more challenging. However, the combina­
tion of focused high-throughput screening and medicinal chemistry has led to 



282 Z. Johnson et al. 

the development of highly-potent small molecule chemokine receptor antago­
nists, for which the number in the patent literature is now over 200-no mean 
feat since this receptor class was only identified just over a decade ago. Certain 
small molecule antagonists lack receptor selectivity, which may in fact be advan­
tageous, as has been suggested for the dual CCRlICCR3 inhibitor (Sabroe et al. 
2000). However, specific small molecules have been described in the peer-re­
viewed literature, such as the CCR1 inhibitor BX471, CXCR2 inhibitors, and the 
CCR5 inhibitors, TAK779 and SCH-C, although TAK779 also has significant in­
hibitory properties for the closely related receptor, CCR2. To date the only anti­
inflammatory in vivo data published are for the CCR1 antagonist BX471, where 
the compound has been shown to be efficacious in rat heart transplant rejection 
by reducing RANTES-mediated monocyte adhesion on inflamed endothelium 
(Horuk et al. 2001), in renal fibrosis by reducing macrophage and lymphocyte 
infiltration into the kidney (Anders et al. 2002), and in a rat model of EAE 
(Liang et al. 2000). The CCR5 compound TAK779 demonstrates an important 
feature in that it is a non-competitive inhibitor, since it binds to a cavity in the 
transmembrane domains rather than to the ligand-binding site(s) (Dragic et al. 
2000). This is particularly important in view of the fact that certain receptors 
such as CXCR3 have distinct ligand-binding sites (Cox et al. 2001), which makes 
the identification of competitive inhibitors impossible. 

It should be noted that while the published data on small molecule inhibitors 
are still very limited, since clinical trials have started for some of these in­
hibitors, numerous conference presentations indicate that there is considerable 
progress. 

6 
The Role of the Macrophage in Infection: HIV 

In this chapter we have focused on the role of chemokines and their receptors 
in inflammation, but the importance of these proteins and the macrophage with 
respect to HIV cannot be ignored. It is widely believed that the macrophage is 
the cell involved in viral transmission, although primary transmission through 
infection of T lymphocytes and the dendritic cell cannot be excluded. For many 
years it was known that the high-affinity interaction with CD4 (Dalgleish et al. 
1984) was not sufficient for infection of host cells, but it was only in 1996 that 
chemokine co-receptors were identified as the essential co-receptors (reviewed 
in Berger 1997). The initial binding of HIV to CD4 on the target cell surface 
leads to a conformational change in gp120, a viral envelope surface glycopro­
tein, which then interacts with the chemokine receptor, inducing a second con­
formational change which exposes another viral protein gp41, also known as 
the fusion peptide, that is inserted into the host membrane, resulting in mem­
brane fusion and virus entry into the cell. It had been shown a few months be­
fore the discovery of the chemokine receptors as co-receptors that three chemo­
kines, RANTES/CCL5, MIP-1a/CCL3, and MIP-1,B/CCL4 were able to reduce 
HIV infection of cells (Cocchi et al. 1995). This immediately indicated that a 
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blockade of the chemokine receptors could be an anti-HIV therapeutic strategy. 
This strategy was borne out by the finding that homozygous individuals with a 
mutation in the CCR5 gene (~32-CCR5), which prevents the cell surface expres­
sion of the receptor, are resistant to infection by HIV (Samson et al. 1996). It is 
still not completely clear why transmission is almost exclusively mediated by 
CCR5-using HIV-1 strains, also called R5 strains, and not by CXCR4 or X4 
strains, since macrophages express all the required components, CD4, CCR5, as 
well as CXCR4. 

The establishment of the principle that infection could be prevented with 
chemokine receptor antagonists caused a huge effort by the pharmaceutical in­
dustry to find small-molecule inhibitors. CCR5 has proved more tractable than 
CXCR4, with nanomolar compounds described in the literature (Baba et al. 
1999; Strizki et al. 2001). SCH -C has the advantage of having very good oral bio­
availability, allowing an in vivo proof of concept in severe combined immunode­
ficiency (SCID) mice, since studies in non-human primates were excluded, ow­
ing to the high degree of specificity of the compound for the human receptor 
(Strizki et al. 2001). The start of clinical trials with this molecule has been an­
nounced at conferences. Many more chemical series have been granted patent 
filing, with the total number now being over 50. On the other hand, only one 
CXCR4 inhibitor series has been described in the literature (Donzella et al. 
1998), which has the handicap of not being very "drug-like;' with a molecular 
weight over 1,000 Da. 

Studies with modified chemokines as potential anti-HIV therapies have pro­
vided very interesting information as to the biology behind HIV inhibition, but 
their clinical development programs are not yet known. Chemokines could in­
hibit HIV infection by two mechanisms. First, steric hindrance through acting 
as pure competitive or non-competitive inhibitors as is the case for TAK779, or 
alternatively by inducing endocytosis of the receptor, thereby stripping the es­
sential co-receptor from the cell surface. While the first mechanism obviously 
plays an important role, the efficacy of the second mechanism was demonstra­
ted by a chemically modified RANTES/CCL5 variant, created by the chemical 
coupling of a pentacarbon alkyl chain to the N-terminus of the chemokine, and 
hence named aminooxy pentane RANTES (AOP-RANTES) (Simmons et al. 
1997). This analog was shown to be far more potent than the truncated RANTES 
receptor antagonist (9-68)-RANTES (Arenzana-Seisdedos et al. 1996) and Met­
RANTES (Simmons et al. 1997) and was subsequently shown not to be a CCR5 
antagonist but rather a superagonist of this receptor in that it caused enhanced 
phosphorylation of CCR5 (Oppermann et al. 1999) as well as enhanced receptor 
down modulation properties (Mack et al. 1998). But more surprising was its 
property to prevent recycling of functional receptors (Mack et al. 1998). Al­
though the mechanism of this phenomenon is not yet fully elucidated, it appears 
that while it does allow receptor recycling, the receptor is immediately re-inter­
nalized (Signoret et al. 2000), thereby rendering it inaccessible to the HIV gp120 
interaction. The efficacy of preventing cell-surface receptor expression has been 
elegantly demonstrated using another approach by the genetic addition of the 
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endoplasmic retrieval peptide KDEL to RANTES/CCLS, MIP-1aCCL3, or SDF-l/ 
CXCLS (Chen et al. 1998) to create so-called intrakines, which bind to newly 
synthesized receptors CCRS or CXCR4, respectively, and inhibit their trans­
portation to the cell surface. 

7 
Can We Learn Strategic Therapeutic Approaches from Pathogens? 

Pathogens have evolved over the millennia in an attempt to evade the host's im­
mune response. Examples of "silent" (non-viral) pathogens are leeches and ticks 
that are able to feed on their host in the absence of an inflammatory or allergic 
response. Anti-cytokine and chemokine activities have been identified in tick 
saliva (Gillespie et al. 2001; Hajnicka et al. 2001) although the molecular identi­
ties of these molecules are as yet unknown. However, the best documented 
pathogens are viruses whose rapid mutational capacities could allow them to 
become immunologically silent or to devise other methods to escape the host 
response. Several mammalian viral species have been found to express arrays of 
immunomodulating molecules, such as chemokines, chemokine receptors, or 
chemokine-binding proteins, which are used to increase survival and dissemi­
nation in vivo and/or decrease the recognition of the virus by its host. Virally 
expressed chemokines may enhance dissemination by either inducing the re­
cruitment of host cells (McFadden and Murphy 2000) or inducing a Th2-shift of 
the host immune response (Weber et al. 2001). Human herpes virus-8 encoded 
viral MIP-II binds potently to both ce and cxe receptors and can efficiently 
block HIV infection (Zhou et al. 2001). In fact, this molecule crosses one of the 
barriers of chemokine receptor specificity in that it is able to inhibit both RS 
and X4 HIV viral infection (Kledal et al. 1997), a feat that man has yet to 
achieve. In a rat model for glomerular nephritis, the in vivo administration of 
vMIP-II attenuates the disease (Chen et al. 1998) and studies on ischemic brain 
injury have shown that it might also be useful in the therapeutic intervention of 
stroke (Takami et al. 2001). A soluble chemokine receptor antagonist, MC148R, 
is expressed by the molluscum contagiosum virus that might become useful as 
an anti-inflammatory molecule, as it has been shown to be highly specific for 
eeR8 and hence for inhibiting monocyte invasion and dendritic cell function 
(Luttichau et al. 2000). 

Poxviruses have revealed another interesting class of chemokine inhibitors in 
the guise of molecules that bind and neutralize chemokines, but which have no 
mammalian homologs. These binding proteins fall into different classes (Lusso 
2000). The first, belonging to the Tl or p35 type (Lalani and McFadden 1997; 
Stine et al. 1999) show promiscuous binding to several beta-chemokines and are 
able to inhibit in vitro chemokine activities, thereby interfering with chemokine 
receptor interactions (Lalani and McFadden 1997; Alcami et al. 1998). Another 
chemokine-binding protein, M3, encoded by the murine y-herpesvirus-68, 
binds members of all four classes of chemokines (Bridgeman et al. 2001). Its ex­
pression prevents the recruitment of T cells, but not of B cells and neutrophils 
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(Parry et al. 2000), which seems to have an evolutionary advantage as the virus 
replicates in B cells. Another class is represented by the myxoma viral protein, 
M-T7, which is unable to inhibit in vitro activities despite the fact that it inter­
acts in vitro with a broad range of ee and exe chemokines. Its mode of action 
is believed to be through interaction with their heparin-binding domains 
(Lalani et al. 1997), thereby inhibiting the formation of a chemokine gradient 
on the endothelial surface and adds weight to the approach suggested in Fig. 3 
as a possible anti-inflammatory strategy. The administration of this protein in 
animal models of inflammation has validated this concept (Liu et al. 2000). Last­
ly, functional chemokine receptor-like molecules are expressed by some viruses. 
The receptor US-28 is expressed by the human cytomegalovirus, presumably to 
help its dissemination in the human host by mediating migration of infected 
smooth-muscle cells, a fact that can be linked to the acceleration of vascular dis­
ease (Streblow et al. 1999,2001). It is certain that with more structural informa­
tion and biological data becoming available, viruses could perhaps teach us how 
to create molecules with, for example, the property described above of vMIP-II, 
the only molecule that can block both R5 and X4 HIV infection. 

8 
Conclusions 

There is sufficient evidence, some of it summarized in this chapter, that despite 
the redundancy apparent in the chemokine system, that interference with the 
system has a significant therapeutic potential. The therapeutic areas encompass 
those involving macrophage function, including many inflammatory patholo­
gies, as well as infectious disease such as AIDS, where the macrophage is be­
lieved to playa pivotal role. It is, perhaps, in the latter area where chemokine 
antagonists are most advanced, where small-molecule inhibitors of the principal 
co-receptor, eeRS, are already in clinical trials. 

We have described some of the many results obtained with an approach used 
by that of the biotechnology field: protein therapeutics. Both neutralizing anti­
bodies and modified chemokines in the guise of receptor antagonists have 
shown to have efficacy. While it is well accepted that an orally available small­
molecule inhibitor is the preferred molecule of choice, antibody therapies have 
a well-proven track record in the clinic. Hopefully biological therapeutics will 
find their niche as anti-chemokine strategies, in the form of antibodies, receptor 
antagonists, or pathogen-derived chemokine-binding proteins. 

To date the focus has been on receptor antagonists, but as we have illustrated 
in Fig. 3, we believe that there are many other approaches, some of which are 
not even depicted in this illustration. The signaling pathway are far from being 
fully delineated, and may provide attractive targets which interfere not only 
with chemotaxis, but with other aspects of chemokine biology such as cellular 
activation, differentiation, angiogenesis, and metastasis, to name but a few. The 
approaches to block chemokine action could also be more indirect, such as het­
erologous receptor desensitization, interference with chemokine gene transduc-
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tion by gene therapy, or prevention of receptor expression for the prevention of 
HIV infection using subtle strategies such as trapping in the endoplasmic retic­
ulum. In summary, the relatively new area of immunology opened up by the 
field of chemokine biology promises many novel therapeutic approaches. 
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Abstract Antimicrobial peptides, mainly defensins and cathelicidins, are abun­
dant components of granulocytes, Paneth cells of the small intestine, inflamed 
epithelia, and rabbit alveolar macrophages. There is increasing evidence that in 
these settings antimicrobial peptides and larger proteins contribute to microbi­
cidal activity and other host defense functions. However, antimicrobial peptides 
and antimicrobial proteins (with the exception of lysozyme) are present at most 
in small amounts in most types of macrophages. In some cases, antimicrobial 
pep tides may be difficult to detect at the protein level because macrophages lack 
granules, the large preformed storage compartment for antimicrobial peptides 
of granulocytes and Paneth cells, and may instead synthesize antimicrobial sub­
stances continually or on demand. Alternatively, histones, other nucleoproteins, 
or as yet unrecognized polypeptides or nonprotein components may contribute 
to oxygen-independent killing in macrophages. 

Keywords Cathelicidins, Defensins, Histones, Host defense 
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1 
Overview 

Antimicrobial peptides are polypeptides of mass less than 10 kDa. They are 
found in a host-defense context and manifest antimicrobial activity in vitro 
when tested under conditions found in their proposed sites of action. Antimi­
crobial pep tides may act alone or in concert with other host-derived molecules. 
In the last 20 years, hundreds of different antimicrobial peptides have been dis­
covered in the phagocytes, epithelia, and secretions of vertebrates, and in the 
blood cells and tissues of invertebrates. The peptides comprise one end of a 
continuum of gene-encoded antimicrobial molecules that range in size from the 
large protein complexes that form complement pores, through intermediate size 
(l0-100 kDa) proteins that can target and disrupt microbial membranes or se­
quester essential micronutrients. 

It is important to acknowledge "up front" that most available information 
about antimicrobial peptides comes not from studies of macrophages, but from 
other cells-mainly polymorphonuclear leukocytes (PMN) and epithelial cells. 
Epithelia, most prominently the epidermis, synthesize antimicrobial pep tides 
constitutively or in response to signals associated with injury, inflammation, or 
infection. In the PMN of many species, antimicrobial peptides are synthesized 
constitutively and in such abundance that they constitute the predominant poly­
peptides in crude cell extracts. Polymorphonuclear leukocytes store their anti­
microbial peptides in cytoplasmic granules of several types. Some of these sub­
cellular organelles (e.g., the primary or azurophil granules of human PMN) pref­
erentially deliver their contents to phagosomes, while others (e.g., the secondary 
or specific granules of human PMN) release their contents mostly to the cell 
surface and external milieu. In the inflamed epidermis, the site of antimicrobial 
peptide deposition is not yet well characterized. In either case, the presence of 
high concentrations of stored antimicrobial peptides has facilitated their bio­
chemical detection, recovery, and analysis. In contrast, with the prominent ex­
ception of rabbit alveolar macrophages, the macrophages examined to date have 
not contained high concentrations of antimicrobial peptides other than his tones 
or fragments thereof. 

Nevertheless, even macrophages from mice, an animal whose PMN are rela­
tively deficient in antimicrobial peptides (Eisenhauer and Lehrer 1992) clearly 
possess antimicrobial mechanisms other than the production of reactive oxygen 
or nitrogen products (Shiloh et al. 1999). Several possible scenarios have been 
considered. First, there maya substantial contribution to antimicrobial activity 
from phagosome acidification, nutrient depletion (e.g., depletion of iron or 
tryptophan), or other mechanisms not dependent on the delivery of high con­
centrations of antimicrobial substances into the phagosome. Second, sufficient 
amounts of antimicrobial substances may be delivered to the phagosome by ac­
tive synthesis coupled with vesicular transport, even in the absence of a storage 
compartment. Lysozyme (muramidase), a peptidoglycan-degrading enzyme 
found in most macrophages, is more often secreted than retained by murine 
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peritoneal macrophages. Third, an external source of antimicrobial substances, 
including granule proteins and pep tides from PMN or histones from phagocy­
tized and degraded nuclear material could contribute to killing in vivo. Finally, 
as yet unrecognized antimicrobial substances, including autologous histones 
and histone fragments may contribute to phagocytic killing in macrophages. We 
will first discuss the biology of antimicrobial peptides in mammalian polymor­
phonuclear leukocytes before reviewing the more limited information available 
in the diverse types of animal macrophages. 

2 
Antimicrobial Peptides in PMN 

Within each PMN there are several thousand membrane-bounded cytoplasmic 
structures-"granules" -whose contents include cationic polypeptides com­
plexed to an anionic proteoglycan matrix (Olsson 1969; Parmley et al. 1986). 
The granules are selectively recovered from broken PMN by differential centrif­
ugation, and their contents can be extracted by acidic solvents. The extract typi­
cally consists of four groups of proteins (Modrzakowski et al. 1979; Greenwald 
and Ganz 1987) that can be separated by molecular weight. In the highest mo­
lecular weight fraction (>50 kDa), myeloperoxidase and lactoferrin are the pre­
dominant proteins, accompanied in some species by the somewhat less abun­
dant B/PI (bactericidal/permeability inducing protein). In human PMN, the 
next fraction consists of -30-kDa serine proteases (elastase, cathepsin G, pro­
teinase 3) accompanied by azurocidin/CAP37, their enzymatically inactive ho­
molog. The third fraction (-14 kDa) is predominantly lysozyme, but also 
contains the pro-forms of antimicrobial cathelicidin peptides. The last fraction 
(3-4 kDa), which is especially abundant in human and rabbit PMNs, contains 
defensins. 

From the cellular content of the various antimicrobial polypeptides and the 
volume occupied by their cytoplasmic granules, it can be estimated that each of 
the major peptides and proteins exists at multi-milligram/ml concentrations 
within these organelles. Electron micrographs of phagocytic PMN suggest that 
the granule contents are deposited onto the surfaces of ingested microbes with 
relatively little dilution. 

3 
Defensins 

Mammalian defensins (Ganz et al. 1985a; Selsted et al. 1985) are a family of ge­
netically related pep tides that possess a framework of six cysteines with three 
characteristic disulfide linkages. Based on the spacing of the cysteines and the 
pattern of their connections, defensins are further subdivided into a-, J3-, and 8-
defensins. All three families have been found in PMN. a-Defensins occur in 
PMNs from humans and other primates, rats, hamsters, guinea pigs, and rab­
bits. J3-Defensins were found in cattle (Selsted et al. 1996) and fowl (Harwig et 
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al. 1994), and O-defensins were identified in rhesus monkeys (Tang et al. 1999). 
The PMN of mice, pigs, sheep, and horses apparently lack defensins altogether. 
In Paneth cells, a specialized granule-rich epithelial cell implicated in the 
defense of small-intestinal crypts, only a-defensins (Ouellette and Lualdi 1990; 
Selsted et al. 1992a; Bevins et al. 1996) have been well documented in humans, 
mice, and rabbits, while in other epithelial cells ,B-defensins (Diamond et al. 
1991; Bensch et al. 1995; Harder et al. 1997) predominate. 

Post-phagocytic degranulation and nicotinamide adenine dinucleotide phos­
phate (NADPH) oxidase activation provide the phagocytic vacuoles of PMN 
with myeloperoxidase and hydrogen peroxide-the catalytic machinery and ma­
terial needed to iodinate proteins. If radioactive iodine is provided, the contents 
of phagocytic vacuoles are rapidly radioiodinated. Such phagocytic vacuoles 
can be recovered from broken cells and analyzed by electrophoresis and autora­
diography. In the phagocytic vacuoles of human PMN that ingested Salmonella 
typhimurium, defensins were the predominant iodinated polypeptide (Joiner et 
al. 1989). 

In vitro, defensins display concentration-dependent antibacterial and anti­
fungal activity, and several a-defensins were shown to inactivate herpes simplex 
virus (Daher et al. 1986). Their potency depends on the primary sequence and 
cationic charge of the peptide, the microbial target, and its metabolic state, and 
the composition of the test medium. In particular, the activity of defensins 
against gram-negative bacteria and many fungi is competitively inhibited by in­
creasing concentrations of physiologic cations such as sodium, potassium, and 
especially calcium or magnesium, as well as by several serum proteins (Lehrer 
et al. 1988; Panyutich and Ganz 1991; Panyutich et al. 1994, 1995). Although the 
available information on the ionic composition of the phagosomal fluid is limit­
ed, the concentration of defensins in the phagocytic vacuole is so high that in­
hibitory ionic factors are likely to be overwhelmed. High de fens in concentra­
tions also occur at epithelial surfaces that interface with the external environ­
ment, as recently reported for ,B-defensin 1 in the porcine tongue (Shi et al. 
1999). 

A similar argument also holds for rabbit alveolar macrophages, phagocytes 
that contain macrophage cationic pep tides (MCP)-1 and -2 (Patterson Delafield 
et al. 1980). These peptides are structurally (Selsted et al. 1983) identical to NP-
1 and -2, the two most cationic defensins of rabbit PMN (Selsted et al. 1984). 
That MCP-1 and -2 are produced by alveolar macrophages was shown in meta­
bolic labeling experiments with 35S-cysteine (Ganz et al. 1985b) and by their 
high levels of MCP-1 and -2 mRNA (Ganz et al. 1989). The concentration of 
MCPs in alveolar macrophages increases during postnatal maturation of rabbit 
lungs (Ganz et al. 1985b), and is further increased by Freund's adjuvant-induced 
lung inflammation (Lehrer et al. 1981), so that the amounts of MCPs per cell are 
similar to the corresponding defensins in rabbit neutrophils. Surprisingly, rab­
bit peritoneal macrophages lack defensins (Ganz et al. 1989), even when induced 
by Freund's adjuvant. Thus, the expression of defensins appears to be a marker 
of alveolar macrophage differentiation in the rabbit. With the exception of rab-
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bit alveolar macrophages, no other macrophage in any animal species has yet 
been shown to contain defensins in amounts comparable to human or rabbit 
PMN. 

Defensin mRNA expression (predominantly bovine ,B-defensins 4 and 5) has 
also been detected in bovine alveolar macrophages by polymerase chain reac­
tion (PCR) and Northern blots (Ryan et al. 1998), but cellular concentrations or 
secretion rates for defensin peptides have not yet been published. Duits et al. 
recently reported that chimpanzee alveolar macrophages contained mRNA for 
,B-defensin-1 (Duits et al. 2000). In the 1980s, we did not detect defensins in hu­
man alveolar macrophage extracts by electrophoretic methods, nor by immuno­
staining with antibodies against human neutrophil a-defensins HNPl-3. How­
ever, human monocytes from peripheral blood do contain detectable HNPl-3 
pep tides as shown by co-immunostaining with CD14 and anti-HNPl-3 antibody 
(Agerberth et al. 2000). The concentration and eventual fate of these defensins 
has not yet been determined. 

The recent discovery of cyclic (8) minidefensins in the leukocytes of a pri­
mate, Macaca mulatta (the Rhesus monkey), is remarkable for many reasons 
(Tang et al. 1999; Leonova et al. 2001). These peptides have only 18 residues, in­
cluding six cysteines that form a three-rung disulfide ladder between its two an­
tiparallel ,B-sheets. The only known cyclic peptides of animal origin, each 
minidefensin derives from two peptide precursors (demidefensins), each of 
which contributes nine total residues to the mature peptide. Although the cellu­
lar machinery responsible for splicing and trimming the precursors remains to 
be defined, it is operational in human leukocytes (Tang et al. 1999). No cyclic 
minidefensin peptides are known to exist in humans; however, normal human 
bone marrow expresses an mRNA homologous to the rhesus minidefensin pre­
cursors. A synthetic cyclic minidefensin (retrocyclin) whose sequence was based 
on this mRNA, was remarkably effective in protecting human cells from in vitro 
infection by HIV-l (Cole et al. 2002). 

4 
Cathelicidins 

Cathelicidins are a family of mammalian antimicrobial peptides that share a 
conserved cathelin domain with approximately 100 residues (Zanetti et al. 
1995). The active peptide is located C-terminally to this domain, and is in most 
cases released by proteolysis during the secretion of the peptides from PMN. 
Like defensins, the C-terminal peptides are broadly antimicrobial but (Turner et 
al. 1998; Ganz et al. 2000) appear to be less sensitive than defensins to the inhib­
itory effects of salt and serum. Thus, cathelicidins may have evolved to act in 
extracellular spaces, where salt and serum components are present in abun­
dance. The function of the cathelin domain is not known with certainty, but it 
could prevent premature intracellular activation of the potentially cytotoxic 
peptides, and target the peptide to its subcellular compartment-the specific 
(or secondary) granules ofPMN (Sorensen et al. 1997). The C-terminal peptides 
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are highly varied, and include a-helical peptides, ,B-sheet peptides, and other 
structural forms. The conservation of the cathelin domain encoded by exons 
1-3 and the extreme variability of the C-terminal peptide encoded by exon 4 
have suggested that this gene family evolved by exon (domain) swapping (Zhao 
et al. 1995). Cathelicidins are highly abundant and represented by multiple 
genes in cattle (Romeo et al. 1988; Gennaro et al. 1989; Selsted et al. 1992b) and 
pigs (Agerberth et al. 1991; Kokryakov et al. 1993; Boman et al. 1993; Storici and 
Zanetti 1993; Zanetti et al. 1994; Tossi et al. 1995). The number of genes in mu­
rine (Gallo et al. 1997), rabbit (Ooi et al. 1990; Zarember et al. 1997; Larrick et 
al. 1993) and human (Cowland et al. 1995; Larrick et al. 1995; Gudmundsson et 
al. 1996) is considerably smaller (1-3), but these peptides are relatively abun­
dant. The human cathelicidin LL-37 has been detected in monocytes by immu­
no staining (Agerberth et al. 2000), but the location and concentration of the 
peptide in these cells is not known. Cathelicidins have not yet been reported in 
macrophages, but it is not clear if adequate attempts have been made to detect 
them. 

5 
Other Antimicrobial Peptides in Macrophages 

The same extractive methods and assays that detected defensins and catheli­
cidins in PMN of many animal species and in alveolar macrophages of rabbits 
have also been applied to resting and interferon-y induced murine macrophages 
and macrophage-like cell lines. In these studies, antimicrobial peptides similar 
to those of PMN were not detected, but his tones and a ribosomal protein were 
responsible for the antimicrobial activity of cell extracts (Hiemstra et al. 1993, 
1999). Histones in particular have a long history of showing up in screens for 
antimicrobial substances (Hirsch 1958) and perhaps it is finally time to pay at­
tention to them. 

Macrophages have an impressive lysosome system and are keen practitioners 
of phagosome-lysosome fusion. It is clear that many pathogens that survive 
within macrophages actively prevent phagosome-lysosome fusion, as shown 
first for Mycobacterium tuberculosis (Armstrong and Hart 1971; Hart 1979). 
Other organisms now known to subvert phagosome-lysosome fusion in macro­
phages include Brucella spp., Legionella pneumophila, Salmonella typhimurium 
and the protozoan, Toxoplasma gondii. Interference with phagolysosomal fusion 
almost certainly prevents some antimicrobial substances from reaching the 
phagosomes but the nature of these substances is not known. 

Although histones are generally thought of as "nuclear" proteins, they are 
"born" (synthesized) in the cytoplasm, travel to and live in the nucleus, and 
"die" (undergo proteolysis) within lysosomes (Odaka and Mizuochi 1999). Con­
sequently, the lysosomal compartment of macrophages may contain a brew that 
is rich in histones and other polycationic nucleoproteins. Exposure to such a 
mixture could be noxious for many, if not all, ingested bacteria. It still remains 
to be determined whether histones and other cationic "nuclear" proteins reach 
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sufficient concentrations in phagolysosomes to contribute to the killing of in­
gested microbes. If so, it would also be of interest to ascertain whether these 
proteins enter phagolysosomal compartments during recycling of internal nu­
clear material, phagocytosis of extrinsic cellular material, or after de novo syn­
thesis induced by cytokines or phagocytosis. As his tones and other cationic nu­
cleoproteins have dedicated transport systems for nuclear delivery (Jakel et al. 
2002), it would also be of interest to learn if similar pathways exist to deliver 
them to the phagolysosomal compartment. 

6 
Summary and Conclusions 

Macrophages employ multiple antimicrobial pathways to kill or inhibit phago­
cytized microbes and microbes that have evolved to parasitize macrophages. Al­
though the pathways that generate reactive oxygen and nitrogen intermediates 
are similar to those in PMN, there are substantial differences in the oxygen-in­
dependent antimicrobial mechanisms. With the possible exception of their juve­
nile forms (i.e., monocytes) most macrophages lack an extensive primary stor­
age compartment analogous to the granules found in PMNs. Without a store­
house of dedicated antimicrobial peptides and proteins, macrophages appear to 
rely on alternative mechanisms linked to phagolysosomal fusion to render the 
environment around ingested bacteria antimicrobial. What effector molecules 
do macrophages use to kill ingested organisms? If they are polypeptides, then 
intact and cleaved portions of his tones and other highly cationic "nuclear" pro­
teins are the prime suspects. If they are not polypeptides, then an important 
chapter in macrophage biology (unfortunately, not this one) remains to be writ­
ten. 
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Abstract This chapter focuses on a number of elements in the pharmacology, 
biochemistry, and biology of three families of extracellular phospholipid media­
tors as they relate to macrophages. In particular, it raises questions that are un­
ique to phospholipids as mediators, including mechanisms of secretion, mem­
brane association, and presentation to their receptors. A number of similarities 
between the different groups of phospholipids is emphasized, even though the 
lysophosphatides and PAFs act through seven transmembrane G protein-linked 
receptors, and phosphatidylserine does not. The phospholipid mediators dis­
cussed herein have very broad, and highly potent biologic activities, providing a 
real motive for appropriate pharmacological manipulation, both in the macro­
phage and more generally. 

Keywords Eicosanoids, Lipid mediators, Lysophosphatides, Macrophages, PAF, 
Phosphatidylserine, Phospholipids, Receptors 

1 
Questions on the Synthesis, Secretion and Biologic Effects 
of Phospholipid Mediators 

Macrophages both produce and respond to a host of different types of lipids 
with an equally bewildering array of physiologic and/or pathologic conse­
quences. The pharmacology of lipid products in relation to macrophage func­
tion is thus an immense subject with many potential points of therapeutic at­
tack, from the enzymology of lipid synthesizing and metabolizing enzymes to 
manipulation of the relevant intracellular and extracellular binding proteins or 
receptors. Therefore, this chapter will emphasize conceptual issues in lipid 
pharmacology rather than a catalog of active molecules and their receptors. It 
will also focus primarily on extracellularly acting phospholipids, in particular 
the PAF or platelet activating family of phospholipids, the family of lysophos­
pholipid growth factors, sometimes called PLGFs (phospholipid growth-fac­
tors), and phosphatidylserines. Each family has broad biologic effects acting via 
one or more specific cell-surface receptors but with additional complexity relat­
ed to intracellular metabolism and effects as well as its ability to insert into, and 
cross, lipid membranes. 

The first two groups are generally thought to act in the fluid environment on 
cell-surface receptors, while PS may mediate its action while remaining on the 
presenting-cell membrane. However, as we shall see, each of these families may 
have the potential to act from either location. Surprisingly, although macro­
phages are known to respond to these bioactive phospholipids, their effects and 
signaling pathways have not received the degree of investigation that one might 
have expected. 

Phospholipids are the main constituents of cell membranes. Their key struc­
tural elements are a glycerol backbone, one or two hydrophobic acyl, alkyl or 
alky-l-enyl side chains and a phosphate-linked polar head group, usually serine, 
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ethanolamine, choline, glycerol, or various inositides. They are oriented in the 
membrane lipid bilayer with the head groups facing the extracellular medium 
or the cytoplasmic contents and the hydrophobic domains comprising the two 
leaflets of the lipid bilayer, admixed with other lipidic molecules such as choles­
terol and the transmembrane domains of proteins. The phospholipid compo­
nent of cell membranes is now recognized as being far from an inert matrix for 
active proteins to float in. Rather it is both a dynamic, highly active environ­
ment for such proteins as well as itself providing a critical supply of mediators 
and signaling molecules for extra- and intra-cellular regulation. These latter 
functions imply specific binding sites on proteins for phospholipids, a subject 
of ever-widening interest. Such binding may also be to specific receptors, i.e., 
leads to signaling activation and cellular responses. In addition, phospholipids 
can be released/secreted to the outside of the cell and there signal to other cells 
in the environment via such receptors on the outer cell surface. 

Important to our understanding of the complex roles played by membrane 
phospholipids is the recognition that they are not uniformly distributed in the 
membrane, either within the plane of the membrane or between its inner and 
outer leaflet. There is a significant asymmetry between the two leaflets, with 
phosphatidylcholines (pes) primarily found in the outer leaflet along with the 
lipid family of sphingomyelins (SM) or glycosphingolipids. The anionic phos­
phatidylserine and ethanolamine (PS and PE) are predominantly located in the 
inner leaflet. As discussed below, this asymmetry will turn out to have impor­
tant implications in membrane function, lipid secretion and uptake, and cell 
recognition and stimulation. 

Given the size of the subject, the bibliography is representational rather than 
exhaustive. In many cases, reviews will be cited instead of the original manu­
scripts, since there may be large numbers of these. Accordingly, I wish to tender 
my apologies in advance for any seeming omissions. The intent in this chapter 
is to raise questions, point to potential directions, and suggest future pharmaco­
logic approaches to macrophage lipid mediator production and response. 

1.1 
The Questions 

Detailed consideration of macrophage production and response to bioactive 
phospholipids raises a number of questions many of which relate to lipid medi­
ators in general and certainly to those belonging to the family of phospholipids. 
These include: (1) location of the synthesizing enzymes within the cell, (2) 
mechanisms of transport to the plasma membrane, (3) translocation across the 
plasma membrane, (4) liberation of the phospholipids from the source cell into 
the environment, (5) special issues relating to presentation of amphipathic lipids 
to receptors on the cell membrane of the responding cells, (6) the possibility of 
direct receptor engagement on the responding cell with surface-membrane 
phospholipid expressed on the cell of origin and (7) the implications of phos-
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pholipid uptake and further metabolism, biosynthesis, and even re-secretion by 
responding cells such as macrophages. 

1.2 
The Players 

Three examples of externally active, bioactive phospholipid families will form 
the focus of this discussion: (i) PAF and its analogs, including oxidized PCs of 
appropriate structure to bind the PAF receptor; (2) Lysophospholipids some­
times called lysophospholipid growth factors and including lyso-phosphatidic 
acids (LPA), lysosphingophospholipids such as sphingosine-i-phosphate (SIP, 
sometimes known as SPP) and lysophosphatidylcholines (LPC); (3) Phosphati­
dylserine (PS). In addition, lipoproteins may also contain members of these po­
tentially active phospholipids. A key point in considering any of these bioactive 
phospholipids is that all of them can have highly varied structures and in truth 
represent families of molecules. For the lysophospholipids the snl group can 
vary. For PAFs and PS, substituents occur in both the snl and sn2 position. In 
addition, the structure of PAFs, i.e., snl alkyl or acyl PCs with a short chain sn2 
acyl group (usually acetate) is not strikingly different from lysophospholipids. 

As mentioned above, most phospholipids can and do interact with proteins 
and, as a consequence, exhibit biologic responses, whether these proteins are 
considered receptors or not. The key distinction here is extracellular action on 
cell-surface receptors. An additional complexity for phospholipids is their abili­
ty to cross the membrane into the cell, there to act on intracellular responding 
proteins, or to be metabolized into products that have such activities. Elements 
of this process will only be discussed here in the context of trans cellular biosyn­
thesis of the bioactive phospholipids mentioned above. Another huge, and 
largely unfathomed, possibility is that intracellularly active phospholipids, such 
as the products of sphingomyelin metabolism (ceramides, sphingosine, sphin­
gosine-i-P, etc.) or the myriad phosphatidylinositol metabolites may gain access 
to the outside of the cell and act on nearby or adherent cells either on external 
receptors if present, or more likely, by internalization and interaction with intra­
cellular binding proteins/receptors. Largely ignored so far in this spectrum of 
potential biologic effects are phosphatidylethanolamines, phosphatidylglycerols, 
or phospholipids with variations in the snl linkage such as plasmalogens. It 
seems highly unlikely that, in the long run, these will prove be devoid of extra­
cellular effects and biologic activities. 

1.3 
Platelet Activating Factor(s) and Eicosanoids 

Cleavage of the sn2 arachidonyl group from PC generates two products, each 
with enormous potential for further metabolism and biologic function. The hy­
drolysis is mediated by phospholipases A2, of which the most important for 
generation of arachidonate products, also known as eicosanoids, is the type IV, 
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arachidonyl-specific cytoplasmic or cPLA2. The critical role played by this up­
stream enzyme is exemplified by the phenotypic effects seen in genetically defi­
cient mice (Klivenyi et al. 1998; Fujishima et al. 1999) and in the great interest 
in its modulation shown at various times by the pharmaceutical industry. The 
relevance for this chapter is that translocation and activation of cPLA2 is a first 
step in generation of the myriad eicosanoids, i.e., the subsequent products of ar­
achidonate metabolism as well as being one source for lysophosphatides and 
synthesis of the phospholipid mediator, platelet activating factor (PAF). These 
latter are of importance as candidate mediators for a wide range of biologic pro­
cesses, from fertilization and parturition to inflammation and brain function. 
PAF has additional historical interest in being one of the first phospholipid me­
diators to be described and shown to have a distinct receptor. 

Eicosanoids are produced following oxidation of the released arachidonic 
acid by cyclo-oxygenases (COX enzymes or PGH synthases), lipoxygenases, and 
P450 family enzymes. PAFs are derived from the other product of sn2 fatty acid 
hydrolysis, the LPC, by the action of a specific acetyltransferase which inserts 
an ester-linked acetyl group in place of the original arachidonate. This pathway 
is sometimes known as the remodeling pathway to distinguish if from de novo 
synthesis of PAF, the latter being a constitutive process and of less importance 
in bulk production of the mediator. The initial PC substrate for the cPLA2 can 
have either an acyl- or alkyl-linked snl fatty acid yielding either acyl or alkyl 
PAP. The susceptibility of the snl acyl group to lysophospholipase (Nakagawa et 
al. 1992) or phospholipase Al activity (including from the cPLA2 itself, which 
has an additional activity in this regard) makes the alkyl forms more stable and 
may explain why they were the first to be identified. Increasingly in recent years, 
it has been recognized that there is an alternative pathway for stimulated PAF 
production involving the activity of a CoA-independent transacylase (Blank et 
al. 1995; Winkler et al. 1995). This process may be of particular relevance in the 
more persistent production of PAF seen in macrophages (Shamsuddin et al. 
1997; Svetlov et al. 1997) but, nevertheless does require an initial source oflyso­
phosphatide as recipient of the transacylase process. 

Importantly, included in the PAF family are a variety of oxidation products of 
PCs, since one effect of oxidation of sn2 unsaturated fatty acids is chain-short­
ening, i.e., creating molecules with short chain acyl groups that therefore exhibit 
similar structure and function to PAF (Marathe et al. 1999; Marathe et al. 2000; 
Marathe et al. 2001) reacting with the same receptor and being susceptible to 
the same PAF acetylhydrolase. Indeed it has been questioned whether one of the 
raisons d'etre for the plasma acetylhydrolase is to deal with inappropriate con­
centrations of such oxidized phospholipids, which, for example are found in 
preparations of oxidized low-density lipoprotein (LDL) (Marathe et al. 2001). 
The ability of macrophages to mount an oxidative burst is suspected of enhanc­
ing this mode of PC modification, i.e., leading to an alternative, non-enzymatic 
generation of PAF-like activities. 

As indicated, macrophages synthesize and "secrete" PAFs (Ninio et al. 1982; 
Dentan et al. 1996). However, they also synthesize and secrete significant 
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amounts of PAF acetylhydrolase (Ninio et al. 1982; Elstad et al. 1989; Stafforini 
et al. 1990) an enzyme that specifically hydrolyses short chain sn2 fatty acids 
(including acetate), thereby returning the PAF to lyso PAF. Because of the im­
portance of the alkyl forms of PAF, the term lysoPAF has often been used even 
though the molecule is directly equivalent to lysoPC containing an snl alkyl 
linkage. This can then be remodeled, either by re-acetylation back to PAF or by 
acylation with other, longer chain fatty acids. The presence in macrophage and 
macrophage supernatants of this enzyme (Ninio et al. 1982; Stafforini et al. 
1990) may have led to underestimates in early investigations of PAF production 
by this cell type. Macrophages are a significant source of plasma acetylhydrolase 
(Howard and Olson 2000), an enzyme that circulates in association with 
lipoproteins and has been shown to have significant anti-inflammatory effects 
in vivo (Stafforini et al. 1987; Prescott 1997; Stafforini et al. 1999). The enzyme 
is also expressed by macrophages in atherosclerotic plaques (Hakkinen et al. 
1999). 

1.3.1 
Actions of PAFs 

PAFs have an extremely broad range of activities and are thought to act primar­
ily through a specific, seven transmembrane, G protein-linked receptor (GPCR), 
the PAFR (see Henson 2000a,b). To date, only one such extracellular membrane 
receptor has been identified, although many pharmacological studies have sug­
gested that all the actions of PAF are difficult to reconcile with a single receptor. 
In addition, as we shall see, possible intracellular effects of this group of mole­
cules needs to be considered, and here too, the likelihood of additional binding 
molecules or receptors within the cell has been discussed (see Henson 2000a,b; 
Yamada et al. 1999). Effects on macrophages are complex. Mononuclear phago­
cytes express the GPCR PAF receptor. Most investigations have suggested the in­
duction of proinflammatory responses including inflammatory mediator syn­
thesis and secretion, as well as effects on motility and weak chemotactic activity 
for monocytes. One of the intriguing effects of PAFs on inflammatory cells is 
their ability to induce priming. Here, PAF increases the responsiveness of the 
cell to other stimuli, even though it does not (or only weakly) initiate the re­
sponse itself. This priming effect is also seen in macrophages (Kucey et al. 1991; 
Bautista and Spitzer 1992; Waga et al. 1993; Rose et al. 1995; Bozza et al. 1996; 
Yamaguchi et al. 1999). 

On the other hand, in the context of interaction with apoptotic cells (see be­
low), macrophages appear to respond to PAF with a potential anti-inflammatory 
effect (Fadok et al. 1998a). Since this was blocked by a PAF receptor antagonist, 
a potentially complex signaling from this receptor might be suggested. However, 
one or both of two alternatives may explain these diverse effects. As mentioned, 
other cell surface receptors for this molecule may exist. As discussed below, PAF 
may also be translocated across the membrane and there gain access to intracel­
lular "receptors" or binding proteins. One such candidate is the peroxisome 
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proliferator-activated receptors (PPAR) family of nuclear receptors, particularly 
PPARr This has been shown to bind to, and be activated by, oxidized alkyl PC 
moieties from oxidized LDL (Davies et al. 2001) and could conceivably respond 
to other members of the "PAF" family. There is separate evidence that PPARr 
can mediate anti-inflammatory responses in macrophages (Delerive et al. 2001; 
Alleva et al. 2002) suggesting a potentially fruitful area for future investigation. 

1.4 
Lysophosphatides 

LPC and LPA contain a glycerol backbone whereas SIP and related family mem­
bers are lysosphingophospholipids. They all act through closely related, seven 
transmembrane G protein-coupled receptors including a family of 8 or more 
EDG receptors for LPA and SIP (Chun et al. 2002) and a newly described G2A 
receptor for LPC (Kabarowski et al. 2001) or GPR4 receptor for sphingosylphos­
phorylcholine (Zhu et al. 2001). These molecules are found in significant 
amounts in the circulation, in association with albumin, other binding proteins, 
or lipoproteins, and in levels that can vary in different disease states. 

Stimulated production of LPA (Moolenaar 1995,2000) can arise from at least 
three pathways. In one, phospholipids are hydrolyzed to phosphatidic acid (PA) 
by phospholipases D (Exton 2000, 2002) with subsequent hydrolysis of the sn2 

acyl group by phospholipases Az. When the source is membrane vesicles, pre­
sumably sPAzs are responsible (Goetzl and Lynch 2000). In a second pathway, as 
in activated platelets, diacylglycerol kinase phosphorylates DAG (derived from 
the action of phospholipase C) to PA with subsequent PLAz action to generate 
LPA. This is released into the medium (see below). The third pathway involves 
oxidative chain-shortening effects (e.g., on LDL) similar to that seen for non-en­
zymatic production of PAF-like molecules (Goetzl and Lynch 2000). Similar 
pathways are operative for the generation of sphingosine-I-phosphate, SIP, 
starting with sphingomyelinase action on membrane sphingomyelin (Hannun 
and Bell 1993), but require the final action of sphingosine kinases, very widely 
distributed, stimulatable, intracellular enzymes located in both the cytosol and 
membrane fractions of cells (Liu et al. 2000). To no great surprise, the intracel­
lular levels of SIP are highly regulated, in part by the actions of phosphohydro­
lases (Le et al. 2002). 

LPC can be produced by the action of any of the many phospholipases Az 
that can act on Pc. In the cell, this can include the calcium dependent cPLAz 
that is so important for eicosanoid generation as well as calcium-independent 
enzymes. However, as already discussed, the presence of reacylating enzymes 
would be expected in general to result in rapid removal of the LPC. In fact, the 
relatively high levels of acetyl-CoA in the cell and the presence of an acetyltrans­
ferase (see above) has even led to the suggestion that intracellular PAF produc­
tion might be, in part, a mechanism for rapid removal of potentially toxic LPC. 
(LPC acts as a potent detergent at higher concentrations.) Extracellular sPLAzs 
from multiple sources (including from infectious organisms) acting on PC in 
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membrane vesicles, damaged cells, lipoproteins, etc. can all initiate LPC produc­
tion. Macrophage-derived sPLA2 would be a likely source in many circum­
stances including, for example, in LPS-induced LPC generation in the lung 
(Arbibe et al. 1998). 

As expected from the discussions above, LPC has also been suggested to arise 
from oxidation of PC-containing sn2 unsaturated acyl groups, for example of 
LDL. A cautionary note here is the distinction between chain shortening, lead­
ing to generation of short-chain sn2 acyl groups, which would act like PAF on 
the PAF receptor, versus the generation of true LPC. In even more general terms, 
a clear comparison between the PAF and lysophosphatide family of lipids in 
terms of production and receptor-driven effects has still to be completed. To 
this point, the two literatures have tended to remain separate. 

Initially considered as having possible ionophore-like activity, LPA soon be­
came recognized as a ligand for receptor-mediated calcium mobilization 
(Moolenaar 2000) and a host of other cellular responses including cell replica­
tion, cytoskeletal regulation, and movement or inflammatory mediator genera­
tion. This broad spectrum of activities extends to SIP and LPC (see Moolenaar 
2000; Tigyi et al. 2000; Hla et al. 2001; Graler and Goetzl 2002; Spiegel and 
Milstien 2002). These molecules also exhibit a wide spectrum of intracellular 
roles (see for example: Hla et al. 1999). Actions on the immune system and in­
flammation have not received as much attention as on tissue cells but are likely 
to be important (see Graler and Goetzl 2002). LPC has been suggested to have 
varying effects on lymphocytes, and genetic deletion of the LPC receptor G2A 
resulted in progressive inflammation and a lupus-like syndrome (Le et al. 2001). 

Roles for these mediators in macrophage function are significantly under­
studied. However, macrophages do express a number of the EDG receptors 
(Goetzl et al. 2000a; Hornuss et al. 2001; Lee et al. 2002). LPC has been reported 
to have chemotactic activity on monocytes (Quinn et al. 1988) and the broad 
abilities of the lysophospholipid mediators to affect cell movement (Spiegel et 
al. 2002b) (in part through actions on the rho family of GTPases) suggest at least 
one likely group of effects. 

LPA and SIP likely act as proinflammatory stimuli and appear able to en­
hance inflammatory mediator production (Lee et al. 2002). On the other hand, 
LPA activation of adenylate cyclase has been reported in RAW cells (Lin et al. 
1999) raising the possibility of more complex effects. LPA induces calcium mo­
bilization in microglial cells (Moller et al. 2001). It has also been suggested to 
function as a macrophage survival stimulus acting through phosphoinositol 
(PI)3 kinase and presumably Akt (Koh et al. 1998). These authors raise the pos­
sibility that LPA may explain some of the known survival effects of serum (plas­
ma). LPC can also activate PKCs in macrophages (Prokazova et al. 1998), en­
hances FcR-mediated phagocytosis (Morito et al. 2000), and when injected into 
the spinal cord, initiates macrophage accumulation (Ousman and David 2000), 
although whether by direct or indirect effects is not clear. In general, the full 
spectrum of activities, likely autocrine and paracrine effects, regulatory process­
es, and in vivo biologic relevance for the macrophage remain to be determined. 



1.5 
Phosphatidylserine 

Macrophage Phospholipid Products 313 

PS is normally found in intracellular membranes and on the inner leaflet of the 
plasma membrane. As discussed below, when it becomes expressed on the outer 
leaflet, especially in apoptotic cells, it serves as a recognition signal for removal 
of such cells. A specific receptor (PSR) has been described that recognizes the 
polar head group of PS in a stereospecific fashion and which mediates this activ­
ity (Fadok et al. 1998b, 2000, 2001a,b). On the other hand, PS is recognized by a 
host of proteins, both within and without the cell. For example, many of the in­
tracellular signaling proteins, such as most of the PKCs use PS as a co-factor. 
Many of the annexin family of molecules also bind PS, and annexin V has be­
come a standard marker for detecting the phospholipid on the cell membrane. 
In the extracellular environment, coagulation factors V and X bind and use PS 
to accelerate clotting. Molecules such as GAS-6, f3 glycoprotein 1, MFG-E8, 
members of the collectin family (see below) and probably many others are 
known to interact with PS. Scavenger receptors can also bind anionic phospho­
lipids, including PS. In many cases, unlike the PS receptor mentioned above, 
these binding proteins do not show high specificity for PS and will also bind 
PE, PI, or PA. On the other hand, this does not diminish their potential role in 
recognizing and responding to PS in the environment or on cell surfaces. 

A significant source of PS in the extracellular environment are membrane 
vesicles. Activation of platelets results in external PS expression and concomi­
tant assembly and activation of the coagulation cascade. It is now recognized 
that liberated vesicles are the major source of this activity. Most cell types, in­
cluding mononuclear phagocytes, actively release vesicles and do so to a greater 
degree when activated. As discussed below, we suspect a high degree of PS ex­
pression on such structures. Membrane fragmentation during cell death (necro­
sis or post-apoptotic cytolysis) also results in vesicle formation and, without the 
normal mechanisms for regulating phospholipid asymmetry (see below) they 
are likely to exhibit PS on their surfaces. 

Macrophages can expose PS on their surface during stimulation, phagocyto­
sis, and apoptosis. They express the PS receptor (Fadok et al. 1992, 1993, 1998b, 
2000) and respond to PS binding of this by ingestion (for example of the apop­
totic cell or membrane vesicle) through, what we suggest is a process of stimu­
lated macropinocytosis (Hoffmann et al. 2001). Ligation of this receptor also in­
duces the generation of anti-inflammatory molecules and signals and blocks the 
production of pro inflammatory chemokines, cytokines, growth factors, and ei­
cosanoids (Fadok et al. 1998a). 

In summary, then, macrophages make and respond to PAFs, LPCs, and LPAs. 
They can express PS on their surfaces, probably release PS-expressing vesicles 
as well as recognize and respond to PS on other cells and vesicles. They also can 
both make and respond to a wide variety of eicosanoid types, including prosta­
noids, HPETES and HETES, leukotrienes (LTB4 and sulfidopeptide leuko­
trienes), lipoxins, and isoprostanes. This clearly shows the breadth of expression 
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of both the appropriate synthesizing enzymes as well as of surface receptors for 
the products; although, not surprisingly, different macrophage populations may 
express different patterns of these and may up regulate or downregulate them to 
different degrees to different stimuli. 

As noted, there are a number of additional common features exhibited by 
these families of bioactive phospholipids. They each have significant intracellu­
lar signaling and co-factor roles as well as exhibiting specific extracellular re­
ceptors. They can be found in lipoproteins and may therefore play important 
additional roles in atherogenesis. Intriguingly, antibodies against these phos­
pholipids (LPCs, PS, etc.) are not uncommon, particularly in autoimmune dis­
ease. 

2 
Sites of Synthesis 

Phospholipid synthesis is segregated to different sites within the cell depending 
on the lipid species being generated (Voelker 2000). There is also a large body 
of work addressing membrane biosynthesis, which does not need to be consid­
ered particularly here. Most of the plasma membrane PS in the resting cell ends 
up on the inner leaflet. More to the point for our discussions is the site at which 
the biologically active forms of the externally acting phospholipids are generat­
ed. 

It is now recognized that many of the key synthetic enzymes for these media­
tors translocate to, or are located at, the nuclear membrane, endoplasmic reticu­
lum, or Golgi. This includes the initiating cPLAz, as well as the PGH synthases 
involved in prostanoid generation and the 5-lipoxygenase (5-LO) required for 
synthesis of leukotrienes. The acetyltransferase involved in PAF synthesis is also 
thought to be found at these intracellular sites (Record and Snyder 1990; Sam­
ples et al. 1999). The co-localization of these various enzymes would certainly 
make for enhanced efficiency of product generation, particularly if the lipid 
substrates and intermediates are inserted into, or bound to, hydrophobic mem­
brane domains at this one site. On the other hand, location on what is presumed 
to be the cytoplasmic face of nuclear or endoplasmic reticulum membrane does 
raise questions about transport of products and intermediates from this site to 
the plasma membrane, not to mention passage across this to the outside envi­
ronment (see below). 

Secretary phospholipases Az can, under specialized conditions, act on phos­
pholipids of the external membrane to generate lysophosphatides and macro­
phages synthesize and secrete sPLAzs including those of groups II, V and x. 
(Berger et al. 1999; Morioka et al. 2000; Jaross et al. 2002) Some of these show 
preference for PS or PE, but others may have broader specificity. In a number of 
cell types, including macrophages, there is also evidence for complex functional 
coupling between sPLAz and cPLAz (Balsinde et al. 1998) although this may not 
apply to all types of macrophage or stimuli (Dieter et al. 2002). Whether these 
externally acting enzymes can generate bioactive LPA or LPC [or lyso-PAF for 
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later internalization and conversion to PAF at the endoplasm reticulum (ER)] is 
not clear but must certainly remain a possibility. Intracellular PLA2s must be 
seen as likely candidates for the generation of the bioactive lysophosphatides 
and these may include those with varying sn2 fatty acid specificities, implying 
varying degrees of accompanying arachidonate release and eicosanoid synthe­
sis. One poorly studied or considered question is a possible source of bioactive 
phospholipids from intracellular organelles (granules, vesicles, etc.). Once again, 
the issue of local generation of active phospholipids at intracellular membranes 
must raise questions of access to the plasma membrane and to the outside envi­
ronment. 

3 
How Do Intracellularly Generated Bioactive Phospholipids Gain Access 
to the Plasma Membrane and Extracellular Environment? 

The bulk of cell phospholipid is found in membrane bilayers, in intracellular 
membranes and organelles or in the plasma membrane. However, in order to 
supply biologically active phospholipids to the external environment, most of 
these molecules must transit one or more membrane bilayers. Initially synthe­
sized in the ER, often modified enzymatically subsequently, the lipid elements 
of membrane assembly are a subject of detailed ongoing investigation. Transit 
across the cytoplasm to the cell membrane is clearly required not only for main­
tenance of the membrane itself but also for "secretion" of the bioactive phos­
pholipid mediators. Access of these to the external environment may come from 
three main processes. In one, conventional secretion involving vesicle (or gran­
ule) transport to the plasma membrane with discharge of contents would cause 
release of any contained phospholipids. It would also lead to surface expression 
of phospholipids inserted into the intraluminal membrane leaflet of the vesicle 
or granule. 

In a second process, phospholipids may be transported from synthesis or 
modification sites within the cell to the inner surface of the plasma membrane, 
probably in physical association with transport proteins. Insertion into this in­
ner leaflet would leave the phospholipid available for regulated transmembrane 
movement (translocation) to the outer leaflet, a process sometimes called "flop" 
to contrast with inward movement across the membrane ("flip") or bidirectional 
movement (flip-flop or "scrambling"). Fusion of transport vesicles with the in­
ner surface of plasma membranes would also supply the inner leaflet of the lat­
ter with new phospholipids that could later be translocated to the outer surface. 

A third potential mechanism for supply of extracellular phospholipids is 
more complex and could include elements of each of the former. Many cell types 
in vitro release membrane vesicles from their surface, both spontaneously and 
in response to stimuli. There is also increasing evidence for the presence of such 
vesicles in the circulation, and such vesicles may contain oxidized phospholipids 
with biologic effects on monocytes (Huber et al. 2002). Stimulated monocytes, 
for example, release large numbers of such vesicles and these have been shown 
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to contain protein mediators of inflammation (MacKenzie et al. 2001). Such ves­
icles may also supply externally expressed bioactive phospholipids to receptors 
on other cells. The mechanisms for vesicle release are only now beginning to be 
studied. Teleologically, over-supply of plasma membrane from secretory events 
would need to be regulated to maintain cell size and surface area. This could be 
achieved both by re-internalization of the extra membrane or its pinching off 
and release of vesicles to the environment. It seems likely that the vesicles could 
also act as stimuli to adjacent or even distant cells. 

As far as PAF and lysophosphatide mediators is concerned, the exact mecha­
nisms of such transport are not known. Intracellular PAF binding proteins have 
been described in macrophages and could serve as transporters (Banks et al. 
1988; Lumb et al. 1990). The phosphoinositol transfer proteins (PITPs) also car­
ry single molecules of PC (as well as sphingomyelin and phosphatidic acid) and 
exchange them for membrane-resident phospholipid molecules (Li et al. 2002). 
They might serve similar roles for the bioactive phospholipids under discus­
sion. PAF or lyso-PAF appear able to move efficiently across the cytoplasm in 
both directions, since radiolabeled compounds can be seen in the nuclear mem­
brane by autoradiography very soon after addition to the outside of the cell 
(F.H. Chilton, P.M. Henson and R.C. Murphy, unpublished observations). This 
could certainly fit a transport protein model. On the other hand, the molecules 
are relatively hydrophilic, so simple diffusion cannot be ruled out. The possible 
presence of PAF, or lysophosphatides, in intracellular transport vesicles has not 
received much attention, but there seems no intrinsic reasons why this could 
not also serve as a route for export. 

4 
How Do Bioactive Phospholipids (ross the Plasma Membrane? 

This question of how bioactive phospholipids cross the plasma membrane is 
important for both secretion and surface expression of active phospholipids as 
well as for uptake and then re-expression in trans cellular biosynthetic processes. 
Studies with PAF have shown that this molecule can be actively transported 
across the plasma membrane in both directions. At issue for such a process is 
insertion into one leaflet of the bilayer followed by a mechanism for flip or flop 
(inward or outward) to the other leaflet. Compounding factors are the possibili­
ty that the phospholipid might be metabolized at the membrane and/or may 
also be interacting with proteinaceous membrane receptors. PAF proved useful 
as a tool for understanding membrane phospholipid movement, in part because 
the snl ether linkage is resistant to phospholipase cleavage. Short -chain sn2 
analogs that were biologically active but also resistant to hydrolysis were addi­
tionally helpful (Bratton et al. 1991, 1992; Bratton 1994). 

Phosphatidylcholines with long-chain fatty acids are only poorly moved 
across the membrane bilayer, but those with shorter sn2-linked groups moved 
more rapidly (Zhou et al. 1997). However, in both cases, translocation is en­
hanced after activation of the cells. In the case of PAF, this activation can arise 
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from ligation of the PAF receptor itself, so that stimulation through this receptor 
can enhance non-selective uptake of PAF or other phospholipids that have be­
come inserted into one or other membrane leaflet. While uptake of PAF mayoc­
cur through internalization of the ligated receptor, this appears to represent 
only a small proportion of total uptake; most presumably occurs through the ac­
tion of flippases. Thus, blockade of the specific PAF receptor but ligation of un­
related G protein-linked receptors can induce just as much uptake. 

4.1 
Phospholipid Scrambling 

The physical processes involved in phospholipid translocation across the plasma 
membrane are unknown. However, a group of phospholipid "scramblases" ap­
pear to be required (Williamson et al. 1995,2001; Comfurius et al. 1996; Zhou et 
al. 1997; Frasch et al. 2000; Sims and Wiedmer 2001). The name derives from 
their ability to move phospholipids bidirectionally across the membrane, there­
by reducing the inherent phospholipid asymmetry between the inner and outer 
leaflets, i.e., scrambling the membrane. The activity seems to be significantly in­
dependent of phospholipid head group and, as suggested above, probably acts 
more efficiently on molecules with shorter sn2 substituents. It has been suggest­
ed that scramblase activation requires PKC-dependent phosphorylation and the 
presence of calcium for optimal activity (Frasch et al. 2000). There may also be 
a tyrosine phosphorylation event involved (Sun et al. 2001). Scramblases are a 
family of type 2 transmembrane proteins whose exact contribution to the phos­
pholipid movement remains to be determined. It is hard to see how they can di­
rectly mediate this process. Assembly into multimers in the membrane might 
lead to local disorder in the lipid bilayer to enhance movement. More likely, oth­
er membrane proteins are involved. Possible candidates for such are members 
of the ATP cassette family of proteins already known to participate in phospho­
lipid and cholesterol import or export. 

Regulation of membrane phospholipid distribution is suggested to be impor­
tant and requires some concerted investigation. The lipid environment is in­
creasingly seen to playa critical role in the function of membrane proteins, re­
ceptors, etc., and the activity of phospholipid translocation processes is bound 
to contribute to this and the overall cell functions. A recently emphasized case 
in point is the recognition of proteases that appear to function within the hydro­
phobic domain of the lipid bilayer (Wolfe and Selkoe 2002). Activation of many, 
or even most, cell types (i.e., activation of PKCs and mobilization of calcium) 
leads to transient membrane phospholipid scrambling. The relationship of this 
to defined membrane domains (e.g., cholesterol-rich regions, rafts, caveolae, 
etc.) remains to be clarified, although early evidence suggests ties between rafts 
and scrambling (Kunzelmann et al. 2002). 

Since resting cells, including macrophages, maintain membrane phospholip­
id asymmetry, casual activation of scramblase and scrambling must generally 
be transient, implying both a cessation of the scramblase activation and a recti-
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fication process to return any externalized PS or PE back to the inner leaflet. Al­
though different cell stimuli induce scrambling at different rates and for differ­
ent lengths of time [G protein receptors, fast and shorter, or growth factors such 
as macrophage colony-stimulating factor (M-CSF), slow and longer], the process 
is usually time limited. Although not formally shown at this point, cessation of 
scrambling may be attributed to the action of phosphatases on the scramblase, 
inactivation of the PKCs, and/or rectification of the increased calcium levels. 
However, cessation of the actual scrambling is not enough to maintain homeo­
stasis, the translocated phospholipids are actively returned to their original 
state. This is achieved by an aminophospholipid translocase. Its activity re­
quires ATP and is blocked by high calcium. Various candidates for this activity 
have been implicated. A possible aminophospholipid translocase (a member of 
the P-type ATPase family) is widely distributed from plants to man (Chen et al. 
1999; Daleke and Lyles 2000; Ding et al. 2000; Gomes et al. 2000) and although 
the validity of this candidate has been challenged, more recent data in Arabidop­
sis does add support to an aminophospholipid translocase role for these P-type 
ATPases (Gomes et al. 2000). 

While alterations in phospholipid scrambling have been shown to be impor­
tant in maintaining or altering phospholipid asymmetry, in surface expression 
of PS, and in "secretion" of PAF, there has been little attention to a role for re­
lease of the lysophosphatide mediators. The comment is made in Moolenaar 
(2000) that "Precisely how LPA and SIP are released into the extracellular envi­
ronment remains to be elucidated." We are suggesting that translocation across 
the membrane mediated by activated phospholipid scramblase as outlined for 
PAF is an important first step. This would be followed by partitioning onto car­
rier proteins such as albumin or lipoproteins (see below); this may represent a 
key release mechanism for these phospholipids as it appears to be also for 
PAFs. 

4.2 
Membrane Scrambling and Phosphatidylserine Expression in Apoptosis 

By contrast, permanent membrane scrambling is seen in cells that are undergo­
ing the process of apoptosis. In this case PKC8 is cleaved and rendered perma­
nently active by the action of caspase 3, increased calcium levels are maintained, 
and the aminophospholipid translocase activity is inhibited probably as a con­
sequence of the decreased ATP and increased calcium. This process leads to per­
manent expression of phosphatidylserine on the apoptotic cell surface now 
known to be important for apoptotic cell recognition and removal as well as for 
the biologic consequences of this (see below). As mentioned above, while much 
emphasis has been placed on PS in this circumstance, scrambling of the mem­
brane phospholipids in apoptosis is likely to have other profound effects on the 
cell surface. This would range from alterations in other phospholipids (internal­
ization of sphingomyelin, externalization of PE), alterations in lipid and protein 
orientation and distribution in the membrane, effects on rafts, etc. It also proba-
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bly contributes to other effects seen in apoptosis, such as membrane blebbing, 
cell shrinking, binding of recognition molecules such as collectins, thrombo­
spondin, ,B-glycoprotein 1, GAS-6 (Scott et al. 2001), MFG-E8, (Hanayama et al. 
2002). Expression of PS on apoptotic membrane blebs enhances local pro-coag­
ulant activity (Casciola et al. 1996). The increased membrane scrambling that 
occurs during apoptosis would also be expected to move any internal phospho­
lipid mediators to the outer membrane, which could include PAF and the 
lysophosphatides. Apoptosis is often accompanied by PLA2 activation, which 
could increase the supply of such mediators. 

Macrophages are not at all unique in their apoptotic mechanisms or manifes­
tations. Although not studied as much as many other cell types, they too express 
PS on the membrane and are certainly removed as efficiently as other cells when 
they become apoptotic in vivo. 

4.3 
Why May Membrane Phospholipid Translocation Be Important? 

The maintenance of phospholipid asymmetry is suggested to playa major role 
in membrane functions, with regard to the structural and biochemical effects of 
the lipids themselves as well as for attached or embedded proteins. The role of 
surface PS expression during macrophage activation and phagocytosis is not yet 
delineated but is expected to contribute to the processes in some fashion. In­
triguingly, such PS exposure has been reported on the macrophage during up­
take of apoptotic cells, i.e., during a process that involves PSR recognition of PS 
also on the target (Marguet et al. 1999; Callahan et al. 2000). 

As argued herein, we also suggest an important role for phospholipid scram­
bling in supplying new phospholipids to the extracellular environment, for ac­
cess to other cells, or "release" into the surroundings. However, the bidirection­
ality of the process also suggests a role in uptake of these same phospholipids, 
especially the lysophosphatides and PAFs with the opportunities for intracellu­
lar metabolism, inactivation, or conversion, or even intracellular biologic ef­
fects. 

Whether there are any pharmaceutical possibilities in altering scrambling 
and/or aminophospholipid translocase activity during apoptosis is as yet un­
clear. However, as we begin to understand the processes better, as well as their 
consequences, such potential may become apparent. 

5 
How Are Phospholipids Released from the Membrane 
into the Aqueus Extracellular Milieu? 

Bioactive phospholipids that have reached the external membrane leaflet of the 
originating cell may act on other cells in the environment by release into the 
medium, blood, or interstitial fluid or because they are directly recognized by 
receptors on the responding cell. Here we will consider the release aspects. 
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5.1 
Carrier Proteins 

Even relatively hydrophilic phospholipids such as LPC may not easily partition 
from the membrane into an aqueus environment without some help, and the 
longer the sn2 fatty acid, the more difficult this process will be. Extracellular 
binding proteins, particularly albumin, are more probably involved in all these 
process. Serum albumins have a high capacity for lipid binding on multiple sites 
and with varying affinities. This makes them ideal as carriers for biologically ac­
tive lipids. A specific example is the confusion seen in the early studies of a 
platelet-activating material released from IgE-stimulated blood or leukocytes 
when the experiments were carried out (as they originally were) in protein-free 
medium. The inclusion of albumin in the medium immediately enhanced the 
activity, its stability, and biologic effects, not to mention setting the stage for its 
isolation and characterization. 

However, while simple to state, this issue adds enormous complexity to an 
understanding of the effects and activities of phospholipid mediators, especially 
in vivo. Seldom are in vitro experiments carried out in 100% plasma. Addition 
of 2% or even 10% plasma, serum, or albumin hardly mimics real-life condi­
tions. Albumin in vivo will already have bound lipids so that the surface phos­
pholipids of interest will have to displace these before being "extracted" from 
the membrane. Partition onto albumin will depend then on many factors: the 
protein concentration, relative affinity of the phospholipid for given binding 
sites, whatever phospholipids are already on these sites as well as the hy­
drop hili city of the phospholipid in question (after all, the albumin itself is a 
globular, water-soluble molecule). An ability of albumin to physically bind to 
the cell membrane would contribute to this process. While many studies have 
shown how difficult it is to completely free isolated cells of albumin, this may 
be in part due to internalization in microvesicles as well as surface attachment. 
Might such attachment itself be due to phospholipid binding (see below)? 

In vitro stimulation of macrophages, harvesting the supernatant and subse­
quent examination of active phospholipid effects on responding cells will be 
critically dependent on all these issues. 

In order to further illustrate this point, standard assays for phospholipid 
translocation across the plasma membrane involve incubation of the cells with 
lipid (usually supplied on albumin, in micelles or liposomes) to allow insertion 
into the outer leaflet and translocation. Then, in order to detect intracellular 
phospholipid, any material remaining on/in the outer leaflet is back-extracted 
with lipid-free albumin. Not usually considered in such studies is how much of 
the preexisting extracellular leaflet phospholipid is also extracted by such a pro­
cedure. This is probably not of critical importance when investigating transloca­
tion in this way. However, the issue does raise intriguing questions about ongo­
ing phospholipid exchange from membrane to albumin and back in tissue cul­
ture or even in vivo. When macrophages or other cells express PS on their sur­
face during activation (transient) or apoptosis (permanent), is any of this por-
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tioned onto albumin to become potentially available for PS receptors on other 
cells? 

This discussion has focused on albumin in part because of its high capacity 
and low specificity for lipid binding as well as its high concentration. LPA and 
LPC in plasma are found bound to albumin. However, there may well be other, 
more specific carriers in plasma or tissues that play more selective roles. One 
might wonder, for example, whether the acute phase reactant, C-reactive protein 
(CRP), which is known to bind phosphorylcholine, could "extract" and carry 
LPC from a producing cell to one with LPC receptors. Gelsolin has also been 
suggested as a carrier for lysophosphatides (Goetzl et al. 2000b), particularly 
perhaps after cellular damage or inflammation. Clearly, the other major source 
of carriers for bioactive phospholipids are the lipoproteins. The issues of parti­
tioning from membrane to carrier apply here as well and once again from an 
experimental perspective, few investigators carry out mediator experiments in 
the presence of physiological levels of lipoproteins. Plasma phospholipid trans­
fer protein (PLTP) exchanges phospholipids between lipoproteins (van Haperen 
et al. 2000; van Tol 2002), but whether it is important in movement and distri­
bution of the bioactive phospholipids that we are discussing is not yet clear. 
The presence of PAF acetylhydrolase in lipoproteins raises the intriguing likeli­
hood that it serves here to limit the presence of PAF or bioactive, oxidized, PCs 
in this circulating pool. An implication might be to confine the effects of highly 
active PAFs to local sites. 

5.2 
Vesicles 

As discussed above, the other way in which bioactive phospholipids could be 
"released" from cells is as components of vesicles. The presence of bioactive 
phospholipids in the membranes of such vesicles would also be expected to al­
low stimulation of their cognate receptors (see below). Whether vesicles released 
from monocytes or macrophages do indeed contain such phospholipids remains 
to be determined. Vesicles and apoptotic bodies liberated during apoptosis also 
express PS. It seems highly likely that vesicles liberated from activated macro­
phages do the same and that these could possibly, in the right circumstances, 
provide a potential stimulus to cells via the PS receptor. Vesicles containing PAF 
and/or lysophosphatides might be able to directly stimulate the PAF or EDG re­
ceptors on target cells. 

5.3 
Retention or "Storage" of Bioactive Phospholipids 

An early observation in the study of PAF synthesis was that in most cell types, 
relatively little PAF was actually released into the medium. This cellular "reten­
tion" has led to questions about intracellular activities of the molecules. We sus­
pect that it reflects in part the combined need for the newly synthesized mole-



322 P. M. Henson 

cules to be transported across the cytoplasm, translocated across the plasma 
membrane, and partitioned onto carriers in the environment. In like fashion, 
the lysophosphatide mediators are also sometimes seen retained or "stored" 
within cells (e.g., platelets) (Yatomi et al. 1997; Goetzl and Lynch 2000). Whether 
these molecules are ever stored in vesicles or granules for later export is not yet 
clear. 

6 
How Do Phospholipids Stimulate Surface Receptors? 

6.1 
Presentation 

A number of special issues arise in consideration of the way in which a phos­
pholipid might interact with its surface protein receptor. 

6.1.1 
Albumin and Carrier Proteins 

Solubility in the aqueous environment is just as important here as in release 
from the cell of origin. It is probably no accident that the phospholipid media­
tors under discussion (lysophosphatides, PAF, etc.) have significant hydrophilic 
properties in comparison with the bulk of their membrane counterparts. How­
ever, it seems likely that even here, presentation on carrier proteins, especially 
albumin, is the norm. How much is ever free in the aqueous milieu is question­
able. This point has certainly been emphasized (and challenged) for interaction 
of PAF with its receptor (Clay et al. 1990; Grigoriadis et al. 1992). We suggest 
that in biologic fluids, PAF is bound to one of four potential binding sites on 
albumin and exchanges from these to the receptor which has a higher affinity 
for the molecule. Once again, at least one implication from this would be poten­
tial competition for PAF on the albumin by other lipids, since the binding sites 
are not specific. In the circulation, the concentration of albumin (lipid-binding 
capacity) is high, but in the tissues and in the immediate environment of the 
macrophage membrane this may not always be the case. In vitro stimulation ex­
periments are seldom carried out in whole plasma. The degree to which LPA or 
LPC are presented to their receptors on albumin or other potential carriers is 
unknown, but it seems highly likely from their related structures that the same 
issues apply. 

6.1.2 
Membrane Insertion 

If not on albumin, the PAF is susceptible to metabolism by plasma PAF acetyl­
hydrolase (probably following partition into lipoprotein particles) and incuba­
tion with plasma leads to rapid inactivation. In the presence of cells, the bioac-
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tive phospholipids also rapidly and effectively insert into the outer leaflet of 
plasma membranes. As we have already noted, if the cell is actively scrambling 
its membrane, the material will then be flipped to the inside with consequences 
that can include metabolism, remodeling, and even possible direct effects on in­
tracellular signaling pathways. Transcellular metabolism of PAF, lyso-PAF or 
analogs appears to result from uptake subsequent to membrane insertion rather 
than following receptor binding. However, this question has not been easy to re­
solve. PAF receptor antagonists can certainly prevent internalization through 
the receptor and do not block initial insertion into the outer leaflet of the cell 
membrane. On the other hand, stimulation of the cell through ligation of the re­
ceptor enhances internalization (see above) and often activates or alters the syn­
thetic or metabolic processes within the cell so that antagonist blockade of 
trans cellular metabolism can occur at this step. Examination of trans cellular 
metabolism (see Sect. 7) in the presence of specific PAF receptor antagonists but 
also with alternative stimuli (i.e., active on unrelated receptors) has helped an­
swer these questions. 

Insertion into the membrane too provides a competitive site for the phospho­
lipid mediator interaction, although the affinity will be much lower than that for 
the receptor. The additional question is whether membrane inserted PAF or 
lysophosphatides can act on their surface receptors from this site or must be 
"released" or rebound to albumin to have this effect. Can the membrane act as a 
store for immediately adjacent (and relatively protected) ligand that contributes 
to the overall effects of such phospholipid ligands on the receptor? 

It is clear that these considerations might play havoc with conventional anal­
ysis of receptor-ligand interactions. It is unlikely that these types of molecules 
are ever in true monomeric form. If not in membranes or on proteins, they tend 
to interact with themselves or other lipids to form micelles and indeed, in all 
too many in vitro experiments, appropriate attention to the critical micellar 
concentration (i.e., the physical form of the ligand) appears to be lacking. An­
other confounding feature is that insertion of these hydrophilic (amphipathic) 
phospholipids itself induces physical changes in the membrane, in high enough 
concentrations, even causing cell lysis. This demands experimental studies with 
low concentrations of ligand. However, when a cell is itself releasing lysophos­
phatides to a nearby recipient in vivo, or even in vitro, the local concentrations 
are not usually known and, especially if released in vesicles, could reach levels 
with possible physical effects on portions of the responding cell membrane. 

6.2 
Membrane Presentation 

At issue here is whether phospholipid "mediators" in the outer leaflet of cells 
can, from this site, interact with cognate receptors on another cell. A special 
case would be presentation from membrane vesicles to receptors on the re­
sponding cell. 
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6.2.1 
Phosphatidylserine 

Specific recognition of, and response to, PS on the surface of apoptotic cells rep­
resents a clear case of this type of membrane presentation. A receptor for PS 
has been identified (Fadok et al. 2000) that recognizes the polar head group of 
the phospholipid in a stereospecific fashion. Numerous other extracellular pro­
teins and surface "receptors" are also known to bind PS (see above). In particu­
lar in macrophages, these include a variety of scavenger receptors. The extracel­
lular, soluble, PS-binding molecules may serve to cross-link apoptotic cells or 
membrane vesicles to macrophage surfaces and, thereby, induce or enhance up­
take and removal. 

We have suggested that the PS receptor plays particularly important roles in 
such removal. Its blockade or removal prevents much of the apoptotic cell up­
take into macrophages in vitro and preliminary evidence supports such a role in 
vivo as well (Hoffmann et al. 2001; Huynh et al. 2002). More indication of the in 
vivo importance of this receptor will come from studies of its knockout, which 
is not yet available. On the other hand, blockade of the PS by attachment of an­
nexin V both in vitro and in vivo has been shown to prevent uptake of apoptotic 
cells and some of the consequences of this (Bennett et al. 1995; Blankenberg et 
al. 1998; Stach et al. 2000). Interaction of apoptotic cells with, and uptake into, 
macrophages does not induce the pro inflammatory consequences usually asso­
ciated with phagocytosis. Rather it results in an active suppression of proin­
flammatory mediator production (Fadok et al. 1998a). This appears in part due 
to selective induction of anti-inflammatory mediators such transforming 
growth factor (TGF)-,B. Under some circumstances there is also increased inter­
leukin (IL)-10 production (Voll et al. 1997; Fadok et al. 2001c). These effects ap­
pear to be due to the PS receptor since in its absence, or blockade, the anti-in­
flammatory response is no longer seen. Direct ligation of the PSR with antibody 
or PS liposomes induces these molecules, is anti-inflammatory and, in vivo, can 
hasten resolution of an inflammatory response. 

Intriguingly, engagement of the PS receptor suppresses proinflammatory 
eicosanoids (e.g., thromboxanes) and enhances production of PGE2 and PGI2 

(Fadok et al. 1998a; and W. Vandivier, unpublished observations). In addition, 
some of the in vitro suppression of pro inflammatory mediator production was 
blocked by COX inhibitors (Fadok et al. 1998a). Selective effects of the PSR on 
eicosanoid biosynthetic enzymes are implicated. Increasingly, evidence is ap­
pearing of subversion of these apoptotic cell recognition systems and their anti­
inflammatory consequences by parasites. Thus Leishmania may use the PS 
receptor to interact with macrophages and alter inflammatory reactions (de 
Freitas Balanco et al. 2001) and Trypanosoma cruzi, the PGE2 production to 
evade the inflammatory response (Freire-de-Lima et al. 2000). In addition, and 
so far unexplained, pharmacologic blockade of the PAF receptor also reduced 
the anti-inflammatory effects of apoptotic cell uptake by macrophages, and this 
could be mimicked by direct addition of PAF to the cells. While production of 
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PAF from macrophages interacting with apoptotic cells or PSR ligands could 
not be detected, this may have been because of low levels of free mediator and/ 
or its attachment to any of the membranes in the system. A potential dual pro­
or anti-inflammatory role for PAF and its receptor on macrophages is raised by 
these observations but requires much more investigation to prove. 

At issue here is how PS in the membrane leaflet is bound by the receptor on a 
responding cell. At least the receptor recognizes the polar head group of the PS 
and this is facing the aqueous, extracellular environment. (The potential role of 
other substituents of the PS molecule in PSR binding are at this point un­
known.) On the other hand, it would not seem easy for a protein in a cell mem­
brane surrounded by surface carbohydrates, etc. (the glycocalyx) to gain access 
to the head group of a phospholipid on the cell being recognized also surround­
ed by surface structures. In general, cell membranes are mutually repulsive un­
less specific adhesion molecules are engaged. We have suggested a two-part pro­
cess in recognition and removal of apoptotic cells in which adhesion or tether­
ing ligands playa key role in bringing the two players in close apposition and, 
we propose, in allowing appropriate engagement of the PS receptor (Hoffmann 
et al. 2001). Either intrinsically, or because of these geographical constraints, it 
would appear that the PSR is of low effective affinity, although whether this is 
true in any real Michaelis Menton sense is completely unknown. Local high den­
sities of PS on membrane blebs or on free vesicles would also serve to enhance 
the potential for PS receptor activation. 

The potential difficulty for PS receptor activation in "normal" circumstances 
may have biologic implications in that it would mean that transient PS exposure 
on activated cells would not initiate responses in adjacent macrophages unless a 
number of other factors also came into play, including the presence of key teth­
ering ligands and local high concentrations of "aggregated" PS on the target cell. 
Soluble PS-binding proteins acting as bridge molecules might have less of a 
problem gaining access to the surface phospholipids but again may need other 
factors or local high surface densities to be effective back on the responding 
cell. 

6.2.2 
Surface Effects for PAF and Lysophosphatides 

How much any of these potential constraints apply to the other bioactive phos­
pholipids is not at all clear. Their short (or absent) sn2 fatty acids and higher 
hydrophilicity means that liberation from the membrane is easier (see above). 
Numerous studies with PAF analogs and antagonists suggest that the active site 
in the receptor can "see" each portion of the molecule, i.e., the phosphoryl­
choline, short chain sn2 substituent, and the snl group, an alkyl link in this po­
sition being more effective. The clear implication is that ultimately the PAF that 
acts on the receptor is completely free of the membrane of origin or carrier mol­
ecule. Can the receptor "extract" the PAF from a cell membrane? Is membrane­
associated PAF bioactive? In this regard, an important series of experiments has 
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addressed the effects of endothelial PAF on monocyte adhesion and stimulation 
(Patel et al. 1993; Zimmerman et al. 1996). Here PAF on the endothelial mem­
brane can stimulate the monocytes. Adhesion molecules are also involved, per­
haps to enhance binding to the PAF receptors. What is not clear is whether the 
PAF is actually membrane-inserted in this circumstance or is bound to an endo­
thelial surface protein serving to "present" the molecule to the responding 
monocytes. 

Whether similar phenomena and constraints occur in the case of SIP, LPA, 
LPC, or even PS is not yet clear, but seem quite likely. 

7 
Metabolism Versus Stimulation 

Interaction of PAF with macrophages may have additional effects because of the 
ability of these cells to produce PAF acetylhydrolase. The product of this enzy­
matic activity is LPC (with either an alkyl or acyl snl substituent depending on 
the type of PAF). This could occur within the cell or in the local extracellular 
environment. While such inter-conversion between these phospholipid media­
tors has not received much attention, trans cellular metabolism and biosynthesis 
has been well documented for eicosanoids. The process adds complexity to our 
overall understanding of lipid mediators. 

7.1 
Transcellular Metabolism and Biosynthesis 

The terms trans cellular metabolism and biosynthesis are used to describe the 
production of intermediates in the eicosanoid, PAF, or lysophosphatide path­
ways by one cell, followed by their secretion or release to the outside, their sub­
sequent uptake by other cells in the environment for further metabolism to ma­
ture mediators, which then are themselves secreted from the secondary cells for 
subsequent action (by ligation of specific receptors) on nearby cells. 

The best example of this phenomenon is the synthesis of LTA4 from arachido­
nate by 5-lipoxygenase (5-LO) on the nuclear membrane in cells such as neutro­
phils that do not contain the appropriate LTC4 synthase to complete the synthe­
sis of sulfidopeptide leukotrienes. In the presence of platelets, endothelial cells, 
or macrophages which do have this latter enzyme, the LTA4 is efficiently taken 
up, metabolized to LTC4 (Maclouf et al. 1996; Fradin et al. 1989; Maclouf et al. 
1989; Sala et al. 2000) and then secreted into the environment to act on cells 
with appropriate receptors for these sulfidopeptide leukotrienes, including the 
macrophages themselves (Grimminger et al. 1991; Fukai et al. 1996). 

Activation of macrophages and other inflammatory cells has been shown not 
only to result in synthesis and release of PAF, but in most cases where this 
is carefully examined, of LPC, and/or of lyso-PAF (i.e., alkyl-Iyso-PC) as well. 
Uptake of these [possibly by scrambling, possibly via receptor engagement 
(Ohshima et al. 2002)] is rapid and efficient and can result in esterification by 
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the PAF acetyltransferase, i.e., the synthesis in this secondary cell of PAF or rea­
cylation with longer chain fatty acids to add to the PC pool (Ohshima et al. 
2002). Since macrophages contain and secrete high levels of PAF acetylhydro­
lase, any PAF they synthesize will always be subject to hydrolysis, reuptake, and 
re-esterification. The final balance of products is therefore likely to be highly 
dynamic, depending significantly not only on the initial production oflyso-PAF, 
the availability of acetyl-CoA, and levels of active acetyltransferase, but also on 
the extracellular environment. Although not much studied to date, similar ef­
fects may be seen with the lysophosphatides 

8 
Summary 

This chapter has addressed a number of elements in the pharmacology, bio­
chemistry, and biology of extracellular phospholipid mediators. It has focused 
on special features of phospholipids as mediators including mechanisms of se­
cretion, membrane association, and presentation to their receptors. A number 
of similarities between the different groups of phospholipids were emphasized, 
even though the lysophosphatides and PAFs act through seven transmembrane, 
G protein-linked receptors and PS does not. One of the main points perhaps is 
that because of these special features, the pharmacology may be significantly 
more complex. On the other hand, these molecules are highly active, which pro­
vides real motive for appropriate pharmacological manipulation probably most 
easily at the level of the specific receptors. The phospholipid mediators dis­
cussed herein have very broad biologic activities. Some of this may be because 
of the numerous receptors (e.g., the EDG family). With others, the breadth can­
not be accounted for in receptor heterogeneity (e.g., PAF) and more likely lies at 
the level of cell response variation and or multiple signaling pathways. Overall, 
with the possible exception of the PS receptor (study of which itself is in its in­
fancy) the macrophage has not been a major focus for investigation of either 
these mediators' production or responses. This should be rectified. 
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Abstract Dendritic cells (DC) and macrophages contribute to both the innate 
and adaptive immune responses. It is becoming clear that DC and macrophages 
can be derived from common precursors, and that monocytes differentiate into 
DC under defined experimental conditions. Multiple types of DC and macro­
phages exist with different functional roles. Both immature DC and macro­
phages have significant phagocytic ability and are recruited by chemokines and 
cytokines to inflammatory sites. Upon encountering antigen or inflammatory 
stimuli, DC and macrophages become activated and responsible for several dis­
tinct non-specific and specific immunological functions. Most importantly, dif­
ferent stimuli, i.e. different pathogen-associated molecular patterns trigger dif­
ferent DC outcomes. Thus, the different DC subsets regulate the processing/de­
livery of antigen and provide a variety of costimulatory surface molecules, solu­
ble cytokines and chemokines. DC are uniquely capable of activating primary 
immunity. This has driven the use of DC for tumour immunotherapy. 

Keywords Dendritic cells, Macrophages, Differentiation, Sentinel function, 
Primary immunity, Immunotherapy 
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1 
Introduction 

Dendritic cells (DC) and macrophages belong to a family of antigen-presenting 
cells (APC). DC show certain similarities with macrophages, such as their differ­
entiation pathway and sentinel functions but also have unique properties, such 
as efficient induction and maintenance of primary immune responses. Whilst 
the differentiation pathway that generates human DC in vivo remains unknown, 
DC and macrophages can be generated from common precursors under defined 
experimental conditions. As efficient sentinels, DC, like macrophages, are capa­
ble of recognizing danger signals derived from pathogens, taking up, processing 
and presenting antigen. However, DC differ from macrophages in key functions, 
notably the processing and delivery of antigen and the provision of costimulato­
ry and accessory signals. These unique properties enable DC to function as ef­
fective APC, uniquely able to initiate primary immune responses and regulate 
adaptive immune responses. Because of their capacity to induce and maintain 
primary immune responses, DC are attractive vehicles for tumour immunother­
apy. 

This review points out similarities between DC and macrophages in their dif­
ferentiation pathways and sentinel functions, as well as unique features of DC 
such as initiation and regulation of primary immune responses. Much of this 
work depends on the ability to discriminate DC populations with monoclonal 
antibodies. The currently limited but increasingly important field of DC differ­
entiation antigens has been reviewed elsewhere (Hart et al. 2001, 2002). 

2 
Differentiation Pathways of DC and Their Relation to Macrophages 

Human DC are found in almost all organs and represent a heterogeneous cell 
population. Based on phenotype and current views as to DC development, the 
different DC subsets are now universally subdivided into a minimum of two 
subsets. The myeloid-derived DC may include further subsets, but these certain­
ly include the archetypical DC originally identified in mouse spleen. The lym­
phoid, plasmacytoid or confusingly, even the monocytoid DC is considered a 
very distinct subset, distinguished to a certain extent by its morphology but 
most effectively by its type I interferon (IFN)-producing capability. Myeloid-de­
rived DC include Langerhans cells (LC), interstitial DC (e.g. dermal DC) and 
CDllc+ DC isolated from lymphoid tissues. Their precursors are included in the 
CDllc+ CD123dim blood DC subset. In addition, DC derived from monocytes 
(Mo-DC) are also considered as myeloid-derived DC. Plasmacytoid blood 
CD123hiCD11c- DC, are the most probable candidates of lymphoid-derived DC 
and they are identified in thymus and other lymphoid organs. Their entry into 
the latter via high endothelial venules is a key distinguishing feature from my­
eloid DC, which enter lymph nodes via the afferent lymphatics. 



Dendritic Cells Versus Macrophages as Antigen-Presenting Cells: Common and Unique Features 339 

Some subsets of myeloid-derived DC, dermal DC, LC and Mo-DC share com­
mon precursors with macrophages. CD34+CD1a- precursors could generate DC 
when cultured with interleukin (IL)-7, tumour necrosis factor (TNF)-a, stem 
cell factor (SCF) and FLT3L. These precursors could also generate macrophages 
when cultured with macrophage colony-stimulating factor (M-CSF) (Dalloul et 
al. 1999). CD34+ precursor cells obtained from cord blood or bone marrow dif­
ferentiate into DC when cultured with granulocyte-macrophage (GM)-CSF and 
TNF-a (Caux et al. 1996; Caux et al. 1997). In this culture system, differentiation 
appears to occur via two independent, immature DC intermediates, defined by 
their exclusive expression of CD14 and CD1a. When cultured with GM-CSF and 
TNF-a, CD14+CD1a- intermediates generate E-cadherin-mature DC, with a der­
mal or lymphoid-organ DC phenotype. They could also generate macrophages, 
when cultured with M-CSF. In contrast, CD14-CD1a+ intermediates generate 
E-cadherin+langerin+ LC-like DC. Differentiation of LC can also be achieved 
from the CD14+CD1a- intermediates, in culture with transforming growth fac­
tor (TGF)-,8 (Jaksits et al. 1999). Similarly, LC-like DC can be generated by 
culturing monocytes (Geissmann et al. 1998) or blood CDllc+CD1a+DC with 
GM-CSF, IL-4 and TGF-,8 (Ito et al. 1999). 

Peripheral blood monocytes cultured with the cytokine combination of GM­
CSF and IL-4 (Sallusto and Lanzavecchia 1994) or GM-CSF and IL-13 (Piemonti 
et al. 1995; Allavena et al. 1998) differentiate into immature Mo-DC. Differentia­
tion of monocytes into DC occurs during the transendothelial migration of 
monocytes (Randolph et al. 1998) and takes place in the lymph nodes (Ran­
dolph et al. 1999). Interestingly, mouse monocytes, which migrate in vivo, dif­
ferentiate into DC-like cells that have high late bead uptake capacity but lack 
CDllc (Randolph et al. 1999), the key DC subset marker. It appears that the mi­
nority CD16+ monocyte subset may be at least partially committed to DC differ­
entiation (Randolph et al. 2002). Peripheral blood monocytes can be made to 
differentiate into macrophages, when cultured with M-CSF or GM-CSF (Clark 
and Kamen 1987; Metcalf 1989). 

Cytokines and undefined serum component(s) control the balance between 
the differentiation of monocytes into DC and into macrophages. The cytokine 
IL-6 exerts inhibitory effects on DC development and promotes differentiation 
of monocytes to macrophages after addition to GM-CSF and IL-4 cultures 
(Mitani et al. 2000). This action of IL-6 can be abrogated by TNF-a, lipopolysac­
charide (LPS), IL-1,8, CD40L and TGF-,8l. Furthermore, certain immunosup­
pressive cytokines, such as 1L-10 prevent the differentiation of monocytes into 
DC but not into macrophages (Allavena et al. 1998). The results obtained from 
serum-containing and serum-free culture experiments show that the humoral 
factor(s) in serum promote differentiation of monocytes into macrophages 
rather than into DC, when cultured with GM-CSF and IL-4 (Cao et al. 2000). 

Notch receptors are conserved transmembrane receptors, which playa cen­
tral role in regulating cell decision of bipotent precursors. Notch receptors ex­
pressed by bipotential progenitors are activated by neighbouring cells bearing 
Notch ligands, leading to differentiation of Notch-expressing cells along a lin-
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eage-specific pathway. Interaction between the transmembrane receptor Notch 
and its ligand Delta-1 balance the differentiation of blood monocytes towards 
DC but not towards macrophages (Ohishi et al. 2001). 

Immature Mo-DC exposed to TNF-a, LPS, CD40L or prostaglandin E2 
(PGE2), following culture with GM-CSF and IL-4, acquire a final commitment 
towards mature DC expressing a high level of MHC class I and II, the costimula­
tory molecules CD80 and CD86, and the DC differentiation/activation molecules 
CMRF-44 (Vuckovic et al. 1998), CMRF56 (Hock et al. 1999) and CD83 (Zhou 
and Tedder 1996). In addition, type I IFN also promotes differentiation of 
monocyte to mature DC in culture with granulocyte (G)-CSF or with GM-CSF 
and IL-4 (Santini et al. 2000; Huang et al. 2001). 

At least some subsets of myeloid-derived DC appear capable of differentiating 
into macrophages, again indicating a developmental link between DC and mac­
rophages. Immature Mo-DC derived after culture with GM-CSF and IL-4 have 
limited DC commitment and acquire macrophage features after removing cy­
tokines, unless stimulated to differentiate to mature Mo-DC (Palucka et al. 
1998). A subset of DC found in the blood, which has a low expression of CD11c 
molecules, acquired macrophage features following exposure to M-CSF (Robin­
son et al. 1999). Curiously, the plasmacytoid blood CD123hi DC appear to have 
CD14+ CD16+ precursors (Ho et al. 2002). 

Differentiation of DC from either CD34+ precursor cells or peripheral blood 
monocytes and the developmental link between DC and macrophages observed 
in vitro requires in vivo confirmation that they represent physiological counter­
parts. Further research will address physiological mechanisms governing the 
differentiation of DC and the link between DC and macrophages. We have previ­
ously suggested that the preformed surveillance DC provide primary immune 
activation (Vuckovic et al. 1998). Recruitment of monocyte precursors and dif­
ferentiation into DC may represent an inflammatory boost pathway for antigen 
presentation. Experiments can be designed to address this hypothesis. 

3 
DC and Macrophages in Pathogen Recognition 

DC and macrophages function as sentinels for the cognate and innate immune 
systems. In the peripheral tissues, DC are found in an immature form character­
ized by their ability to recognize pathogen-associated molecular patterns 
(PAMP) shared by large groups of pathogens. Immature DC recognize PAMP 
through phylogenetically conserved Toll-like receptor (TLR) family members. 
In humans, six TLR homologues have been reported (Rock et al. 1998) and at 
least four others have been identified (Bowie and O'Neill 2000). All are type I in­
tegral membrane receptors with extracellular leucine-rich repeats and a cyto­
plasmic portion that is homologous to the signalling domain of the IL-1R. In 
mice, gene knockout studies indicate that TLR2 is required for gram-positive re­
sponses such as peptidoglycan (PGN) (Takeuchi et al. 1999) and outer mem­
brane protein A (OmpA) (Jeannin et al. 2000), and TLR4 is essential for gram-
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negative responses, including bacterial toxin LPS (Poltorak et al. 1998). TLR3 
recognizes double-stranded RNA (dsRNA) or a synthetic dsRNA analogue 
poly(inosinic acid)-poly(cytidylic acid) [poly (I:C)], a molecular pattern associ­
ated with viral infection (Alexopoulou et al. 2001). TLR9 mediates immune re­
sponses to unmethylated CpG dinucleotides in the bacterial DNA (Hemmi et al. 
2000). The function of other TLRs has yet to be defined. 

Whilst several TLR are found on DC, the TLR are more abundantly expressed 
on macrophages. Mo-DC express TLR1, 2, 3 and 4 whereas TLR5 is barely de­
tectable (Kadowaki et al. 2001; Visintin et al. 2001). Plasmacytoid blood CD123hi 

DC express TLR7 and 9 (Kadowaki et al. 2001). Macrophages express an abun­
dance of TLR including TLR1, 2, 4, 5 and 8 (Visintin et al. 2001). It is of interest 
that TLR2 and 4 are required for responses to a number of PAMP and are ex­
pressed on both immature Mo-DC and macrophages, which perhaps reflects 
their similar functions. In accordance with TLR expression patterns, Mo-DC re­
spond to the TLR2-ligand PGN, and plasmacytoid CD123hi blood DC respond to 
the TLR9-ligand unmethylated CpG dinucleotides in bacterial DNA (Hartmann 
et al. 1999; Kadowaki et al. 2001). Macrophages respond to microbial molecules 
known to trigger signalling via TLR2, TLR3 and TLR4, such as PGN, poly (I:C) 
and LPS, respectively. 

Signalling through TLR drives DC and macrophages to produce proinflam­
matory cytokines. Signalling through TLR2 stimulates Mo-DC to produce large 
amounts of TNF-a in response to PGN. In contrast, signalling through TLR9 
stimulates plasmacytoid blood CD123hi DC to produce IFN-a/j3, during antibac­
terial immune responses. Signalling through TLR2, TLR3 and TLR4 empowers 
macrophages with the ability to produce large amounts of TNF-a and IL-6 dur­
ing gram-positive or gram-negative immune responses (Kadowaki et al. 2001). 

Recognition of PAMP drives the maturation of DC and progressive downreg­
ulation of TLR. This coincides with a functional switch from sentinel to anti­
gen-presenting function. Mature Mo-DC lack any TLR. This results in a loss of 
responsiveness to LPS and a loss of TNF-a-producing capability. Upon matura­
tion, plasmacytoid blood CD123hi DC downregulate expression of TLR7 and 
TLR9, lose their ability to produce IFN -a/ j3 and acquire the ability to present 
antigen to T cells (Kadowaki et al. 2001; Visintin et al. 2001). 

The presence of only a limited set of TLR on DC suggests that they might 
have a restricted ability to recognize PAMP and subsequently have lesser func­
tional plasticity in response to pathogens, compared to macrophages. The rec­
ognition of PAMP by innate receptors on DC probably provides stress signals 
required for antigen targeting and cross-presentation by DC. The recognition of 
PAMP by macrophages enhances the elimination of bacteria. The possibility of 
cellular cooperation, in which macrophages provide antigen and relevant signals 
to DC was raised some time ago (McKenzie et al. 1989). 
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4 
DC and Macrophages Differ in Their Ability 
to Cross-Present Exogenous Antigens 

Initial investigations of DC and macrophages focused on the uptake of exoge­
nous antigens for processing and presentation in the context of MHC class II 
molecules to CD4 +T lymphocytes. 

The generation of cytotoxic effector T lymphocytes (CTL) responses to tu­
mours (Berard et al. 2000), viruses (Sigal et al. 1999), bacterial antigens (Lenz et 
al. 2000), graft tissue (Bevan 1976) and even self-antigens (Kurts et al. 1996) also 
requires the presentation of exogenous antigen by MHC class I molecules on the 
surface of APC, a process termed cross-priming or cross-presentation. Both 
Mo-DC and macrophages can take up exogenous antigens in the form of soluble 
proteins, particulate antigen and cell-associated antigens derived from apoptotic 
or necrotic cells, and then process and cross-present them in the context of the 
MHC class I molecules (Rock et al. 1993; Shen et al. 1997). Other reports have 
indicated that cross-presentation is a specific property of DC (Mitchell et al. 
1998; Rodriguez et al. 1999). 

DC and macrophages use scavenger receptor-mediated endocytosis to take 
up exogenous antigen derived from apoptotic cells. Mo-DC use a v/3S integrin in 
cooperation with CD36 and thrombospondin to form a molecular bridge to their 
apoptotic target (Albert et al. 1998). Macrophages use av/33 integrin, CD36, 
thrombospondin and the phosphatidylserine-binding protein, the cognate re­
ceptor for externalized phosphatidylserine on apoptotic cells (Savill et al. 1992; 
Fadok et al. 2000). Uptake of soluble proteins by phagocytosis or macropinocy­
tosis (Kovacsovics-Bankowski et al. 1993; Norbury et al. 1995) also leads to 
cross-presentation but requires higher antigen concentration and could be less 
relevant in vivo than receptor-mediated endocytosis. 

DC and macrophages also express an extensive range of both type I and 
type II C type lectins that appear to have a role in antigen uptake. The lectin 
molecules DEC-20S (CDZOS), MMR (CDZ06), DC-SIGN (CDZ09) and BDCA-2 
are differentially expressed on DC, Mo-DC and macrophages (Kato et al. 2000; 
Osugi et al. 2002). DEC-20S delivers antigen deep into the endocytic pathway. 
Other lectins such as DC-SIGN (Geijtenbeek et al. 2000) and BDCA-2 (Dzionek 
et al. 2001) are internalized, resulting in effective antigen processing. 

Mo-DC are able to prime naIve T cells, and induce CTL responses to antigen 
derived from apoptotic cells and clear pathogens responsible for the induction 
of apoptotic cell death (Albert et al. 1998). Macrophages are more efficient at 
taking up antigens derived from apoptotic cells than Mo-DC, but they degrade 
rather than cross-present the ingested antigens and subsequently suppress in­
flammatory responses (Voll et al. 1997; Fadok et al. 1998). This could be ex­
plained by the direct transport of internalized antigens from endosome to the 
cytosol, which exists in DC but not in macrophages (Rodriguez et al. 1999). Di­
rect entry of exogenous antigen into the cytosol results in antigen introduction 
into the classical transporter associated with the antigen processing (TAP)-de-
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pendent MHC class I presentation pathway. Noncytosolic pathways are related 
to endocytic processing by macrophages and involve loading of peptides on 
post-Golgi MHC class I molecules (Yewdell et al. 1999). 

Exogenous antigens chaperoned by heat shock proteins (HSP) are released 
into the extracellular milieu during necrotic cell death. A wide array of antigenic 
peptides are chaperoned by HSP such as tumour-antigenic peptides (Ishii et al. 
1999), viral epitopes (Greenstone et al. 1995) or corresponding epitopes from 
ovalbumin or ,B-galactosidase-transfected cells (Arnold et al. 1995). They are 
chaperoned by different HSP including gp96, hsp90 and hsp70. DC and macro­
phages use the HSP receptor, CD91 to take up HSP-peptide complexes (Binder 
et al. 2000; Basu et al. 2001). Interactions of HSP with CD91 induce expression 
of costimulatory molecules on the DC and stimulate both DC and macrophages 
to secrete cytokines such as TNF-a, GM-CSF and IL-12. 

Both DC and macrophages are able to cross-present HSP-peptide complexes 
in the context of MHC class I molecules and induce antigen-specific CTL re­
sponses. Presentation of HSP-peptide complexes occurs exclusively in tissue 
but not in blood as a result of localized necrotic cell death. Extremely small 
quantities of pep tides (nanograms or picograms) are sufficient to induce CTL 
responses. Pep tides alone or chaperoned by non-HSP proteins such as albumin 
do not induce CTL responses (Anderson and Srivastava 2000). 

Demonstration in vitro that a cell can cross-present antigen does not prove 
that cell is responsible for the special function of cross-presentation in vivo. 
There is the paucity of evidence concerning the identity of APC involved in the 
latter process. den Hann and colleagues identified, for the first time, the APC in 
lymphoid tissue involved in cross-presentation (den Haan et al. 2000) and 
showed that mouse CDS+ DC but not CDS- DC, cross-present antigen in the 
spleen. The number of cross-presenting APC appears to be very low, and only 
1 % of these cross-present cell-associated antigen to CDS+ T cells. A similarly low 
percentage of activated DC is found in human lymphoid tissue (Summers et al. 
2000). Rat CD4- DC containing apoptotic cell remnants have been found to mi­
grate to the T-cell areas oflymph nodes (Huang et al. 2000). These rat CD4- DC 
may be the rat equivalent of the mouse CDS+ DC and may be involved in cross­
presentation. Macrophage-like cells with cross-presenting function have been 
isolated from tumours (Ostrand-Rosenberg et al. 1999). The role of distinct 
types of DC and macrophages in cross-presentation in vivo needs further inves­
tigation. 

5 
The Differentiation of DC 

The differentiation (maturation) of DC reduces the high rate of antigen uptake, 
increases the secretion of the cytokines and chemokines needed for the migra­
tion of DC and induces the expression of the antigen presenting and costimula­
tory molecules required to enhance antigen presentation and initiate an im­
mune response. Oligonucleotide array and proteomics studies indicate the pro-
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grammed expression of many genes during DC differentiation, most of which 
are likely to enable the differentiating and migrating DC to respond to micro en­
vironmental regulatory signals. 

Most studies show the changes in gene and protein expression that occur 
during differentiation/maturation of immature Mo-DC into mature Mo-DC 
(Dietz et al. 2000; Le Naour et al. 2001). This differentiation is accompanied by 
changes in the expression of several genes encoding proteins involved in cell ad­
hesion and motility. The adhesion molecules, galectin 2, galee tin 3, CDlla/LFA­
la, ninjurin 1, macmarcks, syndecan 2, CD44E and presenilin 1, are all down­
regulated. A truncated form of Cadherin-8 is downregulated. Differentiation of 
DC induces a switch from galectin 3 (high in immature DC) to galee tin 9 (high 
in mature DC). Expression of secreted proteins involved in cell mortality, auto­
taxin-t and semaphoring E, macrophage capping protein and vimentin, are up­
regulated. The concomitant decrease in expression of integrins and other cell 
adhesion molecules plus the increase in expression of genes involved in cell mo­
tility almost certainly contributes to the enhanced migration properties of ma­
ture DC compared with immature DC (Barratt-Boyes et al. 2000). 

The differentiation of DC is accompanied by marked changes in the expres­
sion of cytokines and chemokine expression as well as their receptors. Several 
genes encoding pro inflammatory cytokines and their receptors, such as proint­
erleukin 1{3, TNF-a, CD163, CSa anaphylatoxin receptor, IL-6R, and TNFR, are 
downregulated. The chemokines, which act as potent neutrophil chemoattrac­
tants and activators including CTAPIII, MIP2-a, MIP-2{3, ENA78, PF4 and IL-8, 
are downregulated. Genes encoding anti-inflammatory proteins such as cy­
clophilin C and TSG-6, are upregulated. The differentiation of DC is also accom­
panied by the upregulation of osteopontin, a key cytokine involved in T-cell ac­
tivation (Ashkar et al. 2000). Mac-2-binding protein, an adhesion molecule in­
volved in natural killer (NK) and lymphokine-activated killer (LAK) cell activa­
tion and secretion of IL-2 (Ullrich et al. 1994), is up regulated. Upregulation of 
TGF-a is also observed during DC differentiation. Among leukocytes, only acti­
vated macrophages secrete TGF-a. TGF-a secreted by DC may participate in 
wound healing and repair (Schultz et al. 1991), tumourigenesis (DiGiovanni et 
al. 1994) and/or providing support for DC homing. 

Differentiated DC express IL-7, IL-IS and their appropriate ligands, which 
stimulate T-cell expansion (Dietz et al. 2000). Such expression of cytokines and 
their cognate ligands may be analogous to the expression by differentiated DC 
of IL-12 together with IL-12R, another potent T-cell stimulus (Grohmann et al. 
1998). Differentiation of DC is accompanied by increasing levels of CCR7, TARC 
and STCP-l, all of which are involved in chemotaxis and are needed to target 
cells into the lymph nodes. Another gene transcribed selectively during DC dif­
ferentiation is indoleamine 2,3-deoxygenase (IDO). IDO degrades tryptophan 
required for T-cell proliferation and subsequently suppresses T-cell proliferation 
(Mellor and Munn 1999). DC that transcribe IDO can reduce local levels of 
available tryptophan by the action of IDO and protect themselves from the acti­
vated cytotoxic T cells they stimulate. The identification of another putative en-
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zyme DCAl (Dekker et al. 2002) induced during DC differentiation indicates 
there is much more to be learnt about these processes. 

Several HSP that participate in antigen processing and presentation, hsp73, 
hsp27, and calreticulin are also regulated during DC differentiation. Hsp73 
binds specifically to the cell surface of monocytes and DC lines, is internalized 
spontaneously by receptor-mediated endocytosis (Arnold-Schild et al. 1999) 
and is upregulated during DC differentiation. The role of hsp27 up regulation 
during DC differentiation is less clear. Increased hsp27 promotes resistance of 
monocytes to apoptotic cell death (Samali and Cotter 1996). In contrast to 
hsp73 and hsp27, calreticulin is downregulated during DC differentiation due to 
post-translational modification. Calreticulin participates in the assembly of 
MHC class I with peptide and /32-microglobulin in the endoplasmic reticulum, a 
process required for the presentation of antigenic pep tides to cytotoxic T lym­
phocytes at the cell surface (Krause and Michalak 1997). Proteomic analysis of 
DC identified a truncated form of calreticulin 32 present only in DC (le Naour 
et al. 2001). This form contains the P-domain, a site of chaperone activity, the 
C-domain, which contains the endoplasmic reticulum retrieval sequence, but 
lacks the N-domain. The function of calreticulin 32 in mature DC is under in­
vestigation. 

6 
DC Regulate the Adaptive Immune Response 

Mature DC provide a permissive environment for inducing immune responses. 
Both myeloid DC and plasmacytoid CD123hi DC can induce T helper (Th)l and 
Th2 immune responses, and despite initial suggestions, there is no stable DC 
phenotype or subset distinction, which polarizes distinct, Th1 or Th2 immune 
responses. The type and magnitude of Th immune responses is dependent on 
the differentiation/activation status of DC regulated by the type of differentiat­
ing stimulus, duration of DC activation and the DC-T cell ratio. 

Following exposure to CD40l, lPS (Vieira et al. 2000) or dsRNA (Verdijk et 
al. 1999), mature DC produce Il-12 and consequently drive Th1 responses. 
Blood myeloid CDllc+ DC can generate higher numbers of Th1 effector cells 
than Mo-DC obtained from the same donors (Osugi et al. 2002). In contrast, 
PGE2 promotes differentiation of mature DC that produce low levels of Il-12 
and drive Th2 immune responses (Kalinski et al. 1998). Type I IFN could pro­
mote mature DC with the ability to induce Th1 or Th2 responses, depending on 
the cytokine combined with type I IFN. Mature DC derived in culture with type 
I IFN and GM-CSF produce IL-15 and promote Th1 immune responses (Santini 
et al. 2000). In contrast, mature DC derived in culture with type I IFN, GM-CSF 
and Il-4, produce IL-lO and favour Th2 immune responses (Huang et al. 2001). 
Yssel's medium supplemented with lPS or IFN-y promotes differentiation of 
mature DC that produce low levels of IL-12, increased levels of Il-10 and direct 
differentiation ofTh cells towards the ThO/Th2 responses (Chang et al. 2000). 
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DC taken at early time points after induction of maturation induce Thl re­
sponses. DC that are "exhausted" or "polarized" as a results of prolonged activa­
tion, lose the ability to produce IL-12 and induce Th2 responses (Langenkamp 
et al. 2000). The DC:T-cell ratio in these experiments influences outcome, e.g. a 
high DC:T-cell ratio promotes Thl and a low DC:T-cell ratio promotes Th2 re­
sponses (Tanaka et al. 2000). 

Human plasmacytoid CD123hi DC could induce Thl or Th2 immune respons­
es depending on the type of differentiation factors. When cultured with IL-3, 
they preferentially promote Th2 immune responses, whereas activated with 
viruses they prime naIve T cells to produce IFN-y and IL-I0 (Cella et al. 2000; 
Kadowaki et al. 2000). 

Effector CD4+ T cells induced by mature DC are required for recruitment of 
other effectors such as macrophages and eosinophils and for the induction of 
CD8+ T-cell mediated CTL responses to cross-presented exogenous antigens. In 
addition to T-cell activation, it is important to note that cross-presentation can 
also induce T-cell tolerance. In lymph nodes, in the absence of effector CD4+ T 
cells, memory CD8+ T cells divided and were subsequently deleted leading to 
tolerance. In contrast, in the presence of CD4+ T cells, effector IFN-y-producing 
CTL occurred (Albert et al. 2001). The contribution of CD4+ T cells can be re­
placed by CD40 crosslinking and inflammatory cytokines. Macrophages are not 
capable of generating IFN-y-producing CTL even in the presence of CD40 
crosslinking (Albert et al. 1998) and T cells exposed in this way remain immu­
nologically ignorant. Endogenous antigen-loading via a classical MHC class I 
pathway allows both macrophages and DC to trigger production of IFN-y-pro­
ducing CTL. 

7 
New Approaches in DC Immunotherapy 

Because of their ability to cross-present exogenous antigen and induce and 
maintain efficient primary immune responses, DC are the main cellular vehicle 
for clinical trials of vaccine strategies aimed to initiate CTL responses to tu­
mours and pathogens (www.mmri.mater.org.au). In this context, macrophages 
are not attractive candidates for use in immunotherapy because of their failure 
to induce primary immune responses. 

Despite the variety of strategies that have induced tumour-specific immune 
responses, the optimal DC-based strategies for human trials still remain to be 
determined. The most commonly used, clinically approved, approach is based 
on loading empty MHC class I molecules on DC with exogenous peptides. How­
ever, this is limited by peptide restriction to a given HLA type, induction of CTL 
responses only and limited patient responses to defined tumour antigen. Indeed, 
many DC-based immunotherapy protocols in human cancer have shown limited 
efficacy (Nestle et al. 2001), challenging research for improved strategy. Which 
type of DC preparation to use and how to administer it remain major issues. 
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As an alternative, apoptotic or necrotic tumour cells can be provided to DC 
for cross-presentation of tumour antigen. The use of apoptotic or necrotic killed 
tumour cells as a source of tumour antigen should provide both MHC class I 
and class II epitopes, leading to diverse immune responses involving polyclonal 
CTL and helper CD4+ T cells. Moreover, helper CD4+ T cells are able to recruit 
other effectors such as macrophages and eosinophils. DC loaded with killed 
allogeneic melanoma cells are able to induce differentiation of naIve T cells into 
CTL that are specific for a broad spectrum of shared melanoma antigens 
(Berard et al. 2000). This demonstration of cross-priming against shared tumour 
antigens builds the basis for using allogeneic tumour cells lines to deliver tu­
mour antigen to DC for vaccination protocols. 

Emerging data suggest that HSP participate in antigen presentation and play 
a central role in the induction of primary immune responses by DC. Tumour­
derived HSP are used to treat autologous tumours in patients with advanced tu­
mours, renal cell carcinoma and metastasis melanoma (Anderson and Srivasta­
va 2000). Results showed that the autologous gp96 vaccine was effective in the 
adjuvant setting and post-vaccination stabilization of disease and CTL-restricted 
responses against autologous tumours was demonstrated. 

New approaches based on the use of apoptotic or necrotic allogeneic tumour 
cell lines or HSP prepared from autologous tumours to induce responses against 
tumour antigens may have the advantages of applicability to many patients re­
gardless of HLA type, as well as the generation of tumour-specific CD4+T re­
sponses, which may recruit other effectors such as macrophages and eosino­
phils. The possibility of administering these subcutaneously as adjuvant killed 
tumour cells or HSP may even avoid antigen loading or transfection of DC pre­
pared in vitro. These approaches will need to be studied and contrasted with 
more defined methods of antigen loading DC, which are more attractive to the 
regulatory authorities. 

In summary, we have much to learn about the relationship of DC subsets to 
macrophages and their potential cooperative interactions. The plethora of 
emerging molecular data give scientists new opportunities and that data will un­
doubtedly translate rapidly into clinical applications. 
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Abstract The osteoclast is the cell that resorbs bone. It has been known for 
many years that it is formed from cells of the mononuclear phagocyte system, 
and that its formation and function are governed by osteoblastic cells. Recently, 
the molecular basis for this regulation was identified: osteoblastic cells induce 
osteoclastic differentiation in immature mononuclear phagocytes through ex­
pression of macrophage colony-stimulating factor (M-CSF) and receptor-activa­
tor of NFKB ligand (RANKL). Osteoblastic regulation of bone resorption is as­
sisted through secretion of an inhibitor, osteoprotegerin (OPG), a soluble (de­
coy) receptor for RANKL. Transforming growth factor beta (TGF-jJ), which is 
present in bone matrix in large amounts, is also essential for osteoclast forma­
tion, at least in vitro. Surprisingly, TNF-a can substitute for and is strongly syn­
ergistic with RANKL for osteoclast-induction. TNF-a is widely expressed, and 
RANKL can also be present in situations that are not associated with osteoclast 
formation, so that the presence of large quantities of TGF-,B in bone matrix 
might explain why osteoclast formation is essentially confined to the bone mi­
croenvironment. In this review, recent data concerning the mechanisms under­
lying the induction of osteoclastic differentiation and function are described, to­
gether with recent findings concerning the mechanisms through which osteo­
clasts adhere to and resorb bone. Several of these mechanisms are currently be­
ing exploited for the development of novel therapies for diseases, such as osteo­
porosis, that are caused by excessive bone resorption. 
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CTR 
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MMP 
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macrophage colony-stimulating factor 
matrix metalloproteinase 
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receptor activator for NF-KB 
ligand for RANK 
TNF receptor-associated factor 
tartrate-resistant acid phosphatase 
tumour necrosis factor-related activation-induced cytokine 

Bone resorption is crucial to the normal development and maintenance of the 
skeleton, and for the regulation of plasma calcium levels. In development, defi­
cient resorption leads to osteopetrosis and failure of tooth eruption. In the 
adult, the continuous physiological remodelling of bone, whereby aged or fa­
tigued bone is removed and replaced by new, is dependent on bone resorption. 
Excessive bone resorption is the key pathophysiological event underlying sever­
al diseases, including malignant hypercalcaemia and postmenopausal osteopo­
rosis, in humans. 

It has long been the consensus that osteoclasts are responsible for bone re­
sorption. Their origin, though, has until recently been hotly contested. Their 
multinuclear and debriding characteristics suggested an origin from macro­
phages, but kinetic and histodynamic studies argued that they are locally de­
rived, and there was even a popular idea that they could interconvert with os­
teoblasts, the cells that form bone. There have been striking advances in the last 
few years that have established a very close relationship between these cells and 
macrophages, and have illuminated many of the mechanisms involved in their 
formation, regulation and function. 

2 
Mechanisms of Bone Resorption 

The defining characteristic of the osteoclast is its ability to resorb bone. When 
osteoclasts are placed on a bone surface in vitro, they make deep excavations 
with extraordinary speed. Macrophages can digest ingested bone particles but 
only the osteoclast can dissolve bone by an extracellular mechanism; and it 
achieves this unaided by other cell types (Chambers et al. 1984a). Actively re-
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sorbing osteoclasts establish a circle of close contact with the bone surface, 
known as the sealing zone, below a peripheral ring of cytoplasm from which or­
ganelles are excluded (the clear zone of electron microscopy). This clear zone 
corresponds to a ring of F-actin, which correlates well with functional activa­
tion. The bone-apposed surface of the osteoclast circumscribed within this seal­
ing zone is thrown into deep folds to form the 'ruffled border' seen by electron 
and light microscopy. In this area protons and acid hydrolases are extruded onto 
the bone surface. The mineral (calcium hydroxyapatite) and organic (predomi­
nantly collagen) components of bone are thereby dissolved. Solubilisation of or­
ganic components might continue during transocytic vesicular transport of the 
released material to the basal surface of the osteoclast, which is usually in con­
tact with a blood vessel (Halleen et al. 1999). 

Osteoclasts were originally identified as multinuclear cells, but it is not 
known why they are multinuclear. In vitro and in vivo, they can remain mono­
nuclear, especially when the density is low, yet resorb bone (Kaye 1984; Fuller 
and Chambers 1989; Prallet et al. 1992), so that multinuclearity is not essential 
for their function. Multinuclearity may help in regulation, or improve the effi­
ciency with which they can resorb: the effort expended in maintaining an extra­
cellular resorptive micro-environment will be inversely related to the area of the 
interface with bone. 

Osteoclasts have been shown to secrete protons into the subosteoclastic at­
tachment zone (Baron et al. 1985; Silver et al. 1988). This occurs by targeted se­
cretion of hydrochloric acid, by an H+ -ATPase proton pump, through the ruffled 
border (Vaananen et al. 1990). Concomitant with the development of the ruffled 
border, the number of intracellular acid compartments promptly decreases as 
vesicles containing proton pumps are transported to the surface that becomes 
the ruffled border. This sequence does not occur in osteopetrotic oc/oc mice, 
which lack an osteoclast-specific component of the vacuolar proton pump 
(Nakamura et al. 1997; Brady et al. 1999; Li et al. 1999; Nakamura et al. 1999; 
Scimeca et al. 2000). Mutation of the same subunit is one of the causes of osteo­
petrosis in humans (Frattini et al. 2000). The recent finding that vacuolar H+­
ATPase at the ruffled border contains osteoclast-specific subunits has further 
encouraged development of resorption-inhibitors that inhibit the osteoclastic 
proton pump (Hernando et al. 1995; Van Hille et al. 1995; Li et al. 1996). Recent 
data suggest that protons are not laterally contained by the so-called sealing 
zone, but are neutralised by mineral before loss by lateral diffusion occurs 
(Stenbeck and Horton 2000). 

Protons for the proton pump are produced by cytoplasmic carbonic anhy­
drase II (CAlI). High levels are present in osteoclasts (Gay and Mueller 1974). 
Inhibition of the enzyme suppresses bone resorption by isolated osteoclasts in 
vitro (Hall et al. 1991) and inherited deficiency leads to osteopetrosis (Sly et al. 
1983). Excess cytoplasmic bicarbonate is removed via the chloride-bicarbonate 
exchanger located in the basolateral membrane (Hall and Chambers 1989). Cor­
respondingly, there are large numbers of chloride channels in the ruffled border, 
which allow a flow of chloride anions into the resorption lacuna to maintain 



356 T. J. Chambers 

electroneutrality (Schlesinger et al. 1997). Loss of a component of this channel 
(ClC9) leads to osteopetrosis in mice and man (Kornak et al. 2001). 

After dissolution of the mineral phase, osteoclastic enzymes destroy the or­
ganic bone matrix. This process is sensitive to inhibition by leupeptin and other 
inhibitors of cysteine proteinases (Delaisse et al. 1987; Fuller and Chambers 
1995). The overwhelmingly predominant cysteine proteinase in osteoclasts is 
cathepsin K, while cathepsins B, Land S are rare (Tezuka et al. 1994; Drake et al. 
1996; Kamiya et al. 1998; Ishibashi et al. 2001). The enzyme differs from other 
cathepsins in its ability to act at a relatively high pH (pH 6), which might facili­
tate its extracellular activity, and in its ability to cleave native collagen in the tri­
ple-helical region (Garnero et al. 1998). This collagenase activity, otherwise seen 
only in the collagenases of the matrix metalloproteinase family and neutrophil 
elastase, depends upon the presence of chondroitin 4-sulphate, a component of 
bone (Li et al. 2000b). Cathepsin K has been immunolocalised to resorption pits 
(Xia et al. 1999). Mutation of the gene for cathepsin K in humans and mice re­
sults in osteopetrosis (Gelb et al. 1996; Saftig et al. 1998). This suggests that ca­
thepsin K is the dominant proteinase responsible for the digestion of bone, with 
little compensation by other cathepsins. 

Ostoclasts also express high levels of MMP-9 (gelatinase B) (Reponen et al. 
1994). However, deletion of the gene for MMP-9 causes only a transient distur­
bance of bone resorption (Vu et al. 1998). Since inhibition of MMPs has no dis­
cernible effect on bone resorption by isolated osteoclasts (Fuller and Chambers 
1995), the enzyme seems likely to be involved in some other function in the os­
teoclast, such as migration, or mobilisation of matrix-associated growth factors 
(Vu et al. 1998). 

3 
Osteoclast Differentiation and Activation 

It was established in the 1970s, by parabiosis, tissue grafting, and bone marrow 
transplants, that osteoclasts were of haematogenous rather that local origin (see 
Marks 1983 for review). The mononuclear phagocyte series seemed the most 
likely candidate as precursors because, like the osteoclast, these cells are spe­
cialised for debridement and can fuse to form multinuclear cells in the presence 
of extracellular foreign bodies. On the basis of this origin, two predictions were 
made concerning the regulation of bone resorption (Chambers 1980). First, an 
origin for osteoclasts from inherently wandering cells suggests that their local­
isation is governed by local bone cells such as osteoblasts and osteocytes; and 
second, that this control needs to include some form of protection for bone 
from phagocytic attack as a foreign body, since implantation of unprotected 
bone provokes this reaction. 

It became apparent, though, that while osteoclasts share some immunological 
markers with macrophages (see Athanasou 1996), they are also distinctive (see 
Chambers 1989; Helfrich and Horton 1993). Osteoclasts lack many markers 
characteristic of macrophages (e.g. Fc, C3 receptors) and express very high lev-
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els of tartrate-resistant acid phosphatase (TRAP) and 'vitronectin receptors' (in­
tegrin av/33); and express calcitonin receptors (CTR), which are absent from 
macrophages. Most distinctively, osteoclasts ex vivo excavate bone within hours, 
while macrophages show no excavation whatsoever, even on extended incuba­
tion on bone surfaces (Chambers and Horton 1984; Chambers et al. 1984a). 

When osteoclasts were extracted and tested, it was found that they were in­
deed governed by osteoblastic cells: agents known to stimulate osteoclasts in in­
tact bone stimulated isolated osteoclasts only in the presence of osteoblastic 
cells (Chambers 1982; Chambers 1985; Mcsheehy and Chambers 1986; Thomson 
et al. 1986; Thomson et al. 1987). Similarly, osteoclast differentiation was found 
to depend on factors from osteoblastic/bone marrow stromal cells (Takahashi et 
al. 1988; Hattersley and Chambers 1989), the expression of which is increased 
by resorptive hormones (Fuller and Chambers 1998; Liu et al. 1998; Matsuzaki 
et al. 1998; Takeda et al. 1999). This led to the view that the induction of bone 
resorption depended upon a primary interaction of resorptive stimuli with os­
teoblastic cells, which responded by expressing factor(s) that induced the differ­
entiation and activation of osteoclasts (Chambers 1992; Suda et al. 1995). 

One of the factors produced by osteoblastic cells that supports osteoclast for­
mation is M-CSF. The evidence for this came from the discovery that osteope­
trosis in the op/op mouse was caused by a stop codon in the gene for M-CSF 
(Wiktor-Jedrzejczak et al. 1990; Yoshida et al. 1990). M-CSF is nevertheless not 
sufficient for osteoclast formation in vitro: an additional, osteoblast-derived fac­
tor is also required, or macrophages form by default (Hattersley et al. 1991; 
Takahashi et al. 1991). Nor is M-CSF essential in vivo: osteoclasts are present in 
op/op mice, but in reduced number, and the osteopetrosis resolves after a few 
weeks, perhaps as the resorptive burden decreases. Resolution is accelerated by 
transgenic over-expression of Bcl-2 in mononuclear phagocytes (Lagasse and 
Weissman 1997). The main role of M-CSF in osteoclast biology appears to be to 
enhance the survival and proliferation of precursors, and the survival of mature 
cells. More recently, it has also been found to induce the expression of RANK, 
the receptor for the osteoclast-inductive ligand RANKL (see below) (Arai et al. 
1999). Flt3 ligand (FL) also induces RANK, and might account for the partial re­
dundancy of M-CSF in osteoclast formation (Lean et al. 2001). 

A major consequence of the identification of the role of M-CSF in osteoclast 
biology was the conclusion that, despite its distinct phenotype, the osteoclast 
derives from the mononuclear phagocyte system. This was reinforced when 
mice deleted for c-fos were found to be osteopetrotic, with absence of osteo­
clasts. Without c-Fos, precursors form macrophages, either by default or 
through arrested development, despite an osteoclast-inductive environment 
(Grigoriadis et al. 1994). 

The osteoblast-derived ligand responsible for osteoclast differentiation and 
activation was independently discovered by Snow Brand Milk Products and Am­
gen. Both initially found a soluble inhibitor of osteoclast formation [osteoprote­
gerin (OPG), a soluble receptor of the tumour necrosis factor (TNF) superfami­
ly] (Simonet et al. 1997; Tsuda et al. 1997). They used this to identify the cognate 
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osteoblastic I stromal cel l osteoclast 

Fig. 1 Induction and regulation of osteoclasts by osteoblastic/stromal cells. Resorptive hormones such 
as parathyroid hormone, 1,25 dihydroxyvitamin D3, interleukin-1 and TNF-a induce bone marrow stro­
mal cells and osteoblastic cells to express M-CSF and RANKL. Haemopoietic cells are induced to express 
RANK by M-CSF or FL, and this interacts with RANKL on the surface of stromal cells to induce osteoclast 
formation and activity. The stromal cells also produce OPG, the soluble decoy receptorfor RANKL. Ex­
pression of OPG is regulated in a manner reciprocal to RANKL 

ligand, which was identical to the recently discovered TNF superfamily member 
TRANCE/RANKL (see Suda et al. 1999; Chambers 2000 for reviews). 

RANKL is a type I transmembrane protein that (with M-CSF) replaces the 
need for osteoblastic/stromal cells in the induction and activation of osteoclasts 
from haemopoietic precursors in vitro (see Fig. I). Expression of RANKL by os­
teoblastic cells is up regulated by agents that stimulate bone resorption. Mice in 
which the gene is deleted have osteopetrosis, caused by complete absence of os­
teoclasts. RANK is the receptor on osteoclasts and their precursors that inter­
acts with RANKL. Soluble RANK and anti-RANK antibodies suppress osteoclast 
formation and activity, and deletion of the gene results in complete absence of 
osteoclasts (see Chambers 2000; Suda et al. 1999 for reviews). 

RANK binds TNF receptor-associated factor (TRAF) 1,2,3,5 and 6 (Galibert 
et al. 1998; Kim et al. 1999). Animals double-mutant for p50/p52 nuclear factor 
(NF}-KB (Iotsova et al. 1997) or deficient in c-Fos, part of the activator protein 
(AP}-1 transcription factor complex, have osteopetrosis (Johnson et al. 1992; 
Wang et al. 1992). TRAF 2,5 and 6 have been shown to activate NF-KB down­
stream of TNF receptors (see Kim et al. 1999). The same TRAFs activate c-jun 
N-terminal kinase (JNK), which activates AP-l (Kim et al. 1999). RANK acti­
vates not only NF-KB and JNK (Anderson et al. 1997; Wong et al. 1997; Damay 
et al. 1998), but also expression of c-fos in osteoclasts (Matsuo et al. 2000). Dele­
tion of the gene for TRAF6 causes osteopetrosis with normal numbers of non­
resorptive osteoclasts (Lomaga et al. 1999), or absent osteoclasts (Naito et al. 
1999). Many agents that do not induce osteoclast differentiation activate these 
signals, so RANKL presumably also induces unknown, osteoclast-specific sig­
nals. 

Although precursors, whether from bone marrow, spleen, blood or peritone­
um undergo osteoclastic differentiation when incubated in M-CSF and RANKL, 
macrophages also form. With continued incubation, only macrophages persist. 
In semi-solid media, osteoclasts always differentiate in colonies mixed with 
macrophages. This is unlikely to be the case on bone surfaces. It might be that 
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culture conditions, which are essentially pro-inflammatory (Thyberg 1996; Iyer 
et al. 1999) (see below) divert some of the precursors to macrophages; or the 
precursors that provide osteoclasts differ from those used in the above experi­
ments; or there may be additional signals in vivo that ensure osteoclasts form. 
The proportion of cells that develops into osteoclasts is much greater if precur­
sors are incubated on bone slices, rather than on plastic substrates (Fuller et al. 
2000). 

Transforming growth factor (TGF)-,6 is an essential cofactor for osteoclast 
formation, at least in vitro. It substantially increases the proportion of precur­
sors that become osteoclasts (Sells Galvin et al. 1999; Fuller et al. 2000), and 
blockade of TGF-,6 signalling abolishes osteoclast formation, while increasing 
macrophage numbers (Fuller et al. 2000). Basal osteoclast formation by RANKL 
in vitro is likely to be due to TGF-,6 in serum and/or produced by the precur­
sors themselves. In the osteoblast-containing cultures used to analyse osteo­
clasts before RANKL was discovered, TGF-,6 had been found to either stimulate 
or inhibit resorptive cells. Inhibition might reflect negative feedback, because 
TGF-,6, which osteoclasts express, induces production of OPG, the soluble decoy 
receptor for RANKL, in osteoblastic cells (Murakami et al. 1998; Takai et al. 
1998). 

In common with many pro-resorptive agents, TNF-a induces osteoblastic 
cells to stimulate osteoclasts (Thomson et al. 1987), and accordingly induces 
RANKL expression in osteoblastic cells (Horwood et al. 1998; Hofbauer et al. 
1999). Surprisingly (to those who had spent many years looking for such a fac­
tor) it also stimulates osteoclast formation and bone resorption in vitro through 
a direct action on osteoclasts and their precursors (Azuma et al. 2000; Kobaya­
shi et al. 2000; Fuller et al. 2002). This RANKL-like action in vitro appears to be 
independent of but strongly synergistic with RANKL, and of similar potency 
(Fuller et al. 2002). However, the role of TNF-a in vivo is less clear: Mice deleted 
for TNF receptors have normal bone, unlike RANK-deficient animals; and while 
injection of RANKL cures osteopetrosis in RANKL deficiency, TNF-a does not 
cure osteopetrosis in RANK-deficient mice (Li et al. 2000a). Even in inflamma­
tion, osteoclast formation is dependent on RANKL: It is required for bone loss 
in experimental arthritis (Kong et al. 1999; Pettit et al. 2001). Osteolysis by TNF­
a in vivo might occur through induction of RANKL in osteoblastic cells. Also, 
extremely low levels of TNF-a are strongly synergistic with RANKL in vitro. 
Thus, although TNF-a cannot substitute for RANKL, systemic or local TNF-a 
could promote both RANKL expression and responsiveness, and so increase 
bone resorption with minimal disturbance to the underlying, RANKL-mediated 
physiological patterns of osteoclastic resorption. 

4 
The Osteoclast and the Macrophage 

The ability of TNF-a, a ubiquitous macrophage-activating agent, to induce os­
teo clasts from immature mononuclear phagocytes in vitro, raises several ques-
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tions concerning the nature of the osteoclast, and its relationship with macro­
phages. A major effect of TNF-a on macrophages is the activation of bacterioci­
dal activity (NO/superoxide), which is primed by interferon (IFN)-y and deacti­
vated by TGF-,B. TGF-,B by itself enhances phagocytosis and lysosomal enzyme 
production, and it has been suggested that while IFN-y induces cytocidal mac­
rophages early in host defence, TGF-,B diverts macrophage activity towards de­
bridement in the subsequent healing phase (see Riches 1996; Letterio and Rob­
erts 1998 for reviews). We found that for TNF-a, as for RANKL, TGF-,B dramati­
cally increases the proportion of precursors that become osteoclasts, and IFN-y 
does the reverse (Fox et al. 2000). The signals through which TGF-,B achieves 
this are unknown, but there is evidence that IFN-y suppresses osteoclast forma­
tion through inhibition ofTRAF6 (Takayanagi et al. 2000). Whatever the mecha­
nism, the observations of Fox et al. (2000) imply that lineage in M-CSF-induced 
precursors is determined by TGF-,B/IFN-y, and merely activated by TNF-a. By 
analogy, the osteoclast is a lineage determined by TGF-,B and activated by TNF­
a/RANKL. This suggests a model in which the osteoclast is an alternative and 
equivalent destiny for macrophage precursors to that of the cytocidal macro­
phage; it is an activated variant of the debriding macrophage. 

In vitro, the osteoclastic phenotype is induced by the particular combination 
of M-CSF, RANKL/TNF-a and TGF-,B. However, while TNF-a is ubiquitous in 
vivo, osteoclast formation is essentially confined to bone. This might be because 
the pro-inflammatory cytokine TNF-a and the anti-inflammatory TGF-,B do not 
co-exist at levels sufficient to induce osteoclastic differentiation. Even if they 
did, because TNF-a is pro-inflammatory, it will normally be accompanied by, or 
itself induce, inflammatory cytokines such as GM-CSF, IL-4, IL-12, IL-18 and 
IFN-y. These are all potent anti-osteoclast agents (Hattersley and Chambers 
1990; Lacey et al. 1995; Udagawa et al. 1997; Horwood et al. 2001; Miyamoto et 
al. 2001). The ability of these cytokines to inhibit osteoclast differentiation 
might be secondary to their role in macrophage induction/stimulation. In con­
trast, RANKL is not pro-inflammatory (Fox et al. 2000), and this might facilitate 
the specific activation of the debridement pathway in macrophages. It might 
be that RANKL, unlike TNF-a, cures osteoclast deficiency in mice deleted for 
RANKL because the former does not generate osteoclast-inhibitory cytokines. 

This view of the osteoclast, as an activated, non-inflammatory, debriding 
macrophage, is consistent with the absence of associated inflammatory cells 
such as neutrophils at sites of resorption. It is noteworthy though that cells with 
many of the characteristics of osteoclasts, such as multinuclearity, high levels of 
TRAP and cathepsin K, can be seen in inflammatory sites, particularly where 
extracellular foreign material is present (Diaz et al. 2000; Buhling et al. 2001). 
The osteoclast might have evolved as a variant of such defence cells, which be­
came professionalised for the extracellular destruction of a particular substrate 
of predictable composition. 

This does not imply that all multinuclear cells are closely related to osteo­
clasts. Not only RANKL, but cytokines that strongly inhibit osteoclast forma­
tion, such as IFN-y, IL-3, IL-4 and GM-CSF, induce macrophages to form multi-
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nucleate giant cells in vitro. Even those foreign body giant cells that most resem­
ble osteoclasts are probably distinct: If devitalised bone is implanted subcuta­
neously into mice, it soon becomes covered by multinucleate giant cells, but the 
bone is not resorbed (Chambers and Horton 1984; Popoff and Marks 1986). Re­
sorption only occurs when osteoblasts appear. Macrophage giant cells cannot be 
induced to resorb bone by RANKL (Boissy et al. 2001). Multinuclear macro­
phages may well be as phenotypically diverse as mononuclear macrophages; 
multinuclearity occurs most readily in immature, 'responsive' macrophages 
(Most et al. 1997) and may reflect the intensity of the stimulus or response, 
rather than its nature. 

The osteoclast might then be seen as the equivalent of those specialised mac­
rophage derivatives that populate other tissues under physiologic conditions, 
such as alveolar macrophages, Kupffer cells and microglia. The question arises, 
as it does for these cells, as to the extent to which osteoclasts derive from self­
sustaining local precursors that were originally established from the blood, or 
derive continuously from the blood. For osteoclasts, this is completely un­
known. If they are replenished from the blood, this does not seem to occur via a 
typical monocyte, because only a very small proportion «3%) of monocytes 
can form osteoclasts in vitro (Quinn et al. 1994; Fuller and Chambers 1998). Os­
teoclast formation from blood cells also takes a surprisingly long time (> 14 days 
in human), suggesting that origin is from a proliferative subpopulation, rather 
than from typical monocytes. The resistance of the majority of monocytes to 
osteoclast differentiation may reflect the resistance to osteoclast formation that 
develops in bone marrow cells during incubation in M-CSF (Arai et al. 1999; 
Wani et al. 1999). 

Recent observations in a variant of Paget's disease suggest that osteoclasts de­
rive from local precursors. At least some cases of this disease, which is charac­
terised by foci of reckless osteoclasts, were found to be due to an inherited mu­
tation that causes RANK to be overactive (Hughes et al. 2000). This implies that 
the foci of reckless osteoclasts derive from locally proliferative precursors that 
have developed a second, activating mutation (if the precursor were haematoge­
nous, reckless osteoclasts would be systemic). Thus, it remains unknown 
whether in adulthood osteoclasts originate from typical monocytes, or from a 
subpopulation of immature peripheral blood mononuclear cells, or from a 
haematogenous cell that establishes a self-sustaining pool of precursors on bone 
surfaces. The distinction is critical to the design of in vitro models for recruit­
ment mechanisms and precursor responsiveness. 

5 
How is the Spatial Control of Resorption Achieved? 

A striking feature of bone cell biology is the complexity and dynamism of the 
patterns of osteoclastic localisation associated with bone morphogenesis and re­
structuring. These patterns depend on the ability of resident bone cells to direct 
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precursors and mature osteoclasts to the sites at which activation of bone re­
sorption is appropriate. 

Despite uncertainty regarding the nature of the precursor, some speculations 
are possible concerning localisation mechanisms. This might occur via direct 
tethering by M-CSF or RANKL, because both are expressed by bone cells as 
transmembrane forms. If so, they must be mutually redundant, because system­
ic administration of (soluble) M-CSF or RANKL to mice deficient in the respec­
tive genes for these proteins leads to cure of osteopetrosis with largely normal 
patterns of osteoclastic localisation. An alternative explanation for the ability of 
soluble RANKL to localise osteoclasts might be via TNF-a-like induction of ad­
hesion receptors in endothelial cells, for RANKL specifically in bone endothelial 
cells. However, bone marrow transplants show that RANK is required only on 
osteoclasts and their precursors for localisation to occur (Li et al. 2000a). While 
the possibilities above have not been excluded, the most likely model for local­
isation is one in which bone cells generate patterns of adhesion molecules, such 
as integrin ligands [especially ligands for the alpha v beta 3 receptor (av/33), 
which is highly expressed on osteoclasts], in addition to RANKL and M-CSF. An 
advantage of such a RANKLIM-CSF-independent localisation mechanism would 
be that it would enable the establishment of a pool of special, non-differentiated 
osteoclast precursors on bone surfaces. 

A second, related question is: Once osteoclasts are localised, how is resorp­
tion induced? It might merely be a matter of increased expression of RANKL. 
RANKL clearly activates resorption behaviour by osteoclasts on bone or dentine 
slices (Fuller et al. 1998; Burgess et al. 1999). However, it seems unlikely that the 
same behaviour occurs on other substrates; this would be inappropriate and po­
tentially destructive. It is more likely that there are recognition factors whereby 
bone allows or assists resorptive behaviour. 

The role of the integrin av/33 has received much attention in the context of 
osteoclast localisation and activation. av/33 is highly expressed in osteoclasts 
and it is likely to playa role in migration, adhesion and perhaps endocytosis of 
resorption products (see Vaananen et al. 2000). Antibodies against av/33, or 
RGD tripeptide-containing peptides such as echistatin and kistrin, are effective 
inhibitors of bone resorption in vitro and in vivo (Chambers et al. 1986; Horton 
et al. 1991; Lakkakorpi et al. 1991; Fisher et al. 1993), and resorption is reduced, 
although still present, in mice deleted for the /33 gene (McHugh et al. 2000). Os­
teoclast localisation in vivo, however, appears unaffected by av/33 blockade or 
deficiency (Masarachia et al. 1998; Yamamoto et al. 1998; MCHugh et al. 2000). 
Surprisingly, av/33 seems to be absent from the sealing zone of close attachment 
of the resorbing osteoclast to bone (Lakkakorpi et al. 1991; Masarachia et al. 
1998), although actin ring formation, and probably migration of osteoclasts 
over the bone surface, depends on av/33 ligation (Nakamura et al. 1999). 

Although av/33 is redundant for osteoclastic localisation, it does greatly assist 
bone resorption. However, the ubiquitous presence of av/33 ligands makes it un­
likely that signalling through this integrin alone is sufficient to induce resorp­
tive behaviour. It seems very likely that there are alternative signals for localisa-



The Osteoclast 363 

Fig. 2 A model for the mechanism of induction of bone resorption. Osteoclasts undertake resorptive 
behaviour only when in contact with bone mineral. Hormones and cytokines that stimulate bone re­
sorption also stimulate osteoblastic cells to secrete interstitial collagenase. This exposes osteoclasts to 
bone mineral, which induces or enables resorptive behaviour. Shaded area represents non-mineralised 
organic material that covers bone surfaces. Arrows represent interstitial collagenase 

tion, and probable that the substrate provides additional signals to the osteo­
clasts that resorptive behaviour is appropriate. Bone mineral might be involved 
in both processes: implantation of inorganic materials such as hydroxyapatite 
crystals into tissues evokes a foreign body giant cell (multinuclear macrophage) 
response that leads to sequestration and dissolution of the implanted material. 
Presumably, therefore, bone has evolved ways to protect itself from such phago­
cytic attack. One possibility is that the osteoblastic cells on bone surfaces retract 
to allow resorption (Rodan and Martin 1981). However, in experiments de­
signed to test this idea, surface cells offered only minor protection against re­
sorption (Karsdal et al. 2001). A second possibility is that the non-mineralised 
layer of organic material that lines bone surfaces represents the protection 
against phagocytic (or osteoclastic) attack. Then, when bone resorption is re­
quired, bone-lining cells remove the organic protective layer to expose bone 
mineral to 'phagocytic' recognition by the special deb rider of bone, the osteo­
clast (Chambers 1980) (Fig. 2). 

This model is consistent with a large body of evidence (see Chambers 1992; 
Fuller and Chambers 1995 for references). First, while osteoclasts cultured on 
bone slices require only cysteine proteinases to resorb the bone matrix, resorp­
tion in vivo depends upon both cysteine proteinases and interstitial collagenase. 
Second, interstitial collagenase expression is observed in bone-lining and osteo­
cytic cells immediately adjacent to osteoclasts in bone tissue, but not in osteo­
clasts (Fuller and Chambers 1995; Zhao et al. 1999); and there is abundant evi-
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Fig. 3 Molecular mechanisms of osteoclast differentiation and function. An essential role in vivo for all 
the molecules, except those in parentheses, has been demonstrated by gene deletion/mutation. CAI/, 
carbonic anhydrase; ClC7, chloride transporter; CTR, calcitonin receptor; FL, flt3 ligand; MITF, microph­
thalmia transcription factor; TRAp, tartrate-resistant acid phosphatase. See text for further details 

dence that hormones that stimulate resorption strongly stimulate interstitial 
collagenase expression in osteoblasts (see Chambers 1992 for references). Third, 
osteoclasts readily resorb bone if mineral is exposed on the bone surface, but 
do not resorb bone that is un mineralised or has been demineralised (Chambers 
et al. 1984b; Chambers and Fuller 1985). Last, incubation of native bone surfaces 
with interstitial collagenase exposes mineral onto the surface, and renders the 
bone resorption-inductive for osteoclasts (Chambers et al. 1985). The observa­
tions provide compelling evidence for a model in which, while osteoclasts can 
undoubtedly digest all the components of bone including native collagen, unaid­
ed by other cell types, the induction of resorptive activity in osteoclasts depends 
on contact with bone mineral. 

6 
Pharmacologic Intervention in Bone Disease 

Although it is merely the pawn, the osteoclast is invariably the agent, whenever 
there is excessive bone destruction. The commonest consequence is osteoporo­
sis, but there are many other circumstances in which it is beneficial to suppress 
excessive bone resorption, such as in the bone destruction that accompanies 
metastatic and non-metastatic malignancy, rheumatoid arthritis, periodontitis 
and Paget's disease. The osteoclast has a very specialised function, compared to 
many other members of the macrophage family. This might be responsible for 
the wealth of molecules that are unique to or uniquely essential in these cells. 
The recent remarkable progress in identifying these molecules has provided 
many new potential targets for the specific and potent inhibition of osteoclastic 
function (Fig. 3). Many of these, and many other agents such as oestrogens, se­
lective oestrogen receptor modulators (SERMS) and bisphosphonates, that 
specifically inhibit resorption through less-well understood mechanisms, and 
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many agents beyond, are used in current therapy, or are the subject of drug dis­
covery and development programmes. A detailed treatment of this area is be­
yond the scope of this article, and the reader is referred elsewhere for reviews 
(Gowen et al. 2000; Rodan and Martin 2000). 
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Abstract In the central and peripheral nervous system there are several distinct 
populations of macrophages. In the brain there are macrophages in the paren­
chyma and meninges, and there are macrophages associated with the vascula­
ture. The macrophages in the brain parenchyma, the microglia are highly atypi­
cal with a distinct morphology and downregulated phenotype. The molecular 
mechanisms that underpin this unusual phenotype are being unravelled. Micro­
glia rapidly respond to perturbations of their microenvironment and become 
activated in almost all brain pathologies. There is considerable interest in the 
possible role that activated microglia may have in brain and spinal cord pathol­
ogy. The perivascular macrophages abutting the brain vasculature are also high­
ly specialised macrophages and play an important role in communication be­
tween systemic inflammation and the brain. There is still much to learn about 
the role of macrophages in nervous system injury and repair. 

Keywords Brain, eNS (central nervous system), Downregulation, Macrophage, 
Microglia, Neurodegeneration, Perivascular, PNS (peripheral nervous system), 
Spinal cord 

In the central and peripheral nervous system there are large numbers of resident 
macrophages. These reside in different compartments of the nervous system, 
and the local microenvironment has a profound effect on their phenotype. 
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These macrophage populations have different roles in local homeostasis and re­
spond differentially to injury and infection. It is now recognised that inflamma­
tion may contribute to the outcome of diverse neurological conditions including 
stroke, acute traumatic injury, HIV-l associated dementia and Alzheimer's dis­
ease (Perry 1994). In all these conditions it is the macrophage that lies centre 
stage, and understanding how these cells contribute to brain damage and repair 
remains a significant challenge. Studies of the phenotype, the regulation of phe­
notype, and function of these different resident populations will aid in elucidat­
ing how these mononuclear phagocyte populations contribute to these diverse 
disease states. 

1 
Macrophages of the Central Nervous System 

1.1 
Microglia 

The most abundant macrophage in the central nervous system (CNS) is the mi­
croglia. These cells have a distinct morphology (Fig. 1) and a distinct pheno­
type. The phenotype of the microglia in the normal adult CNS is best described 
as being in a downregulated or switched-off state (Perry and Gordon 1991). For 
example, microglia express low levels of major histocompatability complex 
(MHC) class I and II, low levels of CD45 (Streit et al. 1989) and low or unde­
tectable levels of the scavenger receptor (Bell et al. 1994). The microglia do ex­
press F4/BO, complement receptor type 3 (CR3) and Fc receptors (Perry et al. 
1985). It is likely that the unusual morphology and the atypical phenotype gave 
rise to the debate as to whether microglia were or were not cells of the mononu­
clear phagocyte lineage (Ling and Wong 1993). However, numerous studies us­
ing bone marrow chimeras and specific panels of antibodies show that these 
cells are indeed the resident macrophages of the brain parenchyma (see Perry et 
al. 1993 for review). While there is little doubt that the microglia are of mononu­
clear phagocyte lineage, the precise origin and time of entry of mononuclear 
phagocytes into the CNS remains to be clarified (Kaur et al. 2001). 

The microglia are present throughout the rostrocaudal axis of the adult CNS. 
They are more abundant in grey than white matter, and the density and mor­
phology varies depending on their precise location (Lawson et al. 1990). Despite 
the marked neurochemical differences that exist from one brain region to the 
next, the phenotype of the parenchymal microglia, as judged by their morphol­
ogy and expression of cell surface antigens, is rather uniform. 

1.1.1 
Phenotype 

While numerous studies have documented the unusual phenotype of the micro­
glia and the cell surface and cytoplasmic antigens that are, or are not, expressed 
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Fig. la-c Photomicrographs to illustrate complement type 3 expression on normal microglia (upper) 
and activated microglia (middle) in the rat brain. Perivascular macrophages are revealed by the mono­
clonal antibody ED2 (lower). Scale bar=20 ,um 
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by these cells, the key issue is to discover the mechanisms that regulate their 
phenotype. What is it about the CNS microenvironment that so effectively 
downregulates the macrophage? One approach to this problem has been to in­
vestigate the factors that produce a microglia morphology or phenotype in vit­
ro. Not surprisingly given the highly ramified nature of adult microglia (Fig. 1), 
the isolation of these cells from adult brain has not been routinely carried out, 
although it is possible (Ford et al. 1996). In the main, those studying microglia 
in in vitro studies have isolated immature microglia from neonatal brains, a 
time when the cells are less ramified and greater yields are obtained. However, 
the cells isolated from neonates, particularly when kept in culture for any length 
of time, have rather few similarities to microglia of the adult CNS. Indeed they 
have the phenotype of a typical macrophage, apart from some subtle morpho­
logical specializations (Giulian et al. 1995). To investigate the factors that might 
induce the microglia phenotype, various co-culture systems have been studied. 
Sievers and colleagues (Schmidtmayer et al. 1994; Sievers et al. 1994) have dem­
onstrated that astrocytes will induce microglia morphology in macrophages de­
rived from brain, spleen or blood and induce some aspects of the phenotype of 
the microglia. However, the astrocyte-derived cell surface, or secreted mole­
cules, that may be responsible for the phenotype have not been isolated. A num­
ber of other systems have also been used to study factors that induce the micro­
glia phenotype in vitro, but these have largely depended on morphological crite­
ria and have not defined precisely the criteria for deciding that a macrophage in 
vitro actually represents the microglia phenotype in vivo. 

At least part of the downregulated phenotype may come about as a conse­
quence of immune regulatory molecules secreted by astrocytes or other cells in 
the CNS. Low levels of transforming growth factor {31 (Kiefer et al. 1995) and 
interleukin-l0 (Strle et al. 2001) are expressed in the normal CNS and they may 
contribute to microglia downregulation. There is evidence that neuronal activity 
is involved in the regulation of microglia phenotype, since blockade of neural 
activity in co-cultures leads to the up regulation of MHC class II expression by 
microglia (Neumann et al. 1996), an effect shown to be mediated by neu­
rotrophins (Neumann et al. 1998). Recently, it has been shown that the interac­
tion between CD200, expressed on neurons, and CD200R expressed by macro­
phages is involved in the regulation of microglia phenotype. Microglia in the 
CNS of mice lacking CD200 were found to have a more activated phenotype and 
formed focal clusters of microglia, although this was by no means ubiquitous 
(Hoek et al. 2000). The absence of CD200 also resulted in more rapid induction 
of experimental allergic encephalomyelitis. Other receptor-ligand interactions 
of this sort may be critically involved in the microglia phenotype (Barclay et al. 
2002). It is known that the extracellular matrix of the CNS is highly atypical, be­
ing dominated by proteoglycans (Bandtlow and Zimmermann 2000), and that 
macrophages are differentially activated depending on the substratum to which 
they adhere. In an adhesion assay in which macrophages were allowed to adhere 
to brain sections a novel monoclonal antibody that blocked macrophage adhe-
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sion to brain sections but not to spleen suggested the presence of a novel adhe­
sive interaction (Brown et al. 1998). 

In addition to the ligand-receptor interactions between microglia and com­
ponents of the brain microenvironment, which may downregulate these cells, it 
may also be the absence of stimuli that playa part in the atypical phenotype. In 
regions of the eNS where the blood-brain barrier is absent and the macro­
phages are exposed to serum products, such as in the circumventricular organs, 
the resident brain macrophages are more activated (Perry et al. 1992). 

1.1.2 
Function 

Numerous functions have been ascribed to the microglia, but definitive evi­
dence is largely lacking. During development of the eNS, at least half of the neu­
rons and glia generated in the embryo will not survive into adulthood, and at 
least some proportion of these cells undergoing apoptosis are phagocytosed by 
the microglia (Perry et al. 1985). Although it has been suggested that macro­
phages invading the developing brain may be in some way essential for eNS de­
velopment, this seems unlikely. A comparison of the distribution of the apoptot­
ic cells and the immature microglia reveals that these macrophages are opportu­
nistic phagocytes rather than attracted to the apoptotic cells (Ashwell 1991). 
The PU.1-null mouse, which lacks myeloid cells, is viable until at least several 
weeks postnatally and major abnormalities of the eNS have not been reported 
(McKercher et al. 1996). This is not to say that there are no abnormalities of the 
eNS in these mice and results from more detailed studies will be of interest, par­
ticularly in the organisation of the fibre tracts where large numbers of macro­
phages invade the immature brain (Innocenti et al. 1983). 

One structure in which the invading macrophages do appear to play an essen­
tial developmental role is in the vasculature of the eye (Lang and Bishop 1993). 
When macrophages were eliminated from the anterior chamber of the eye, the 
hyaloid artery and pupillary membrane were abnormally persistent (Diez-Rous 
and Lang 1997). These studies also showed that the macrophages do not just re­
move the cells of the vasculature but actively induce the endothelial cells to un­
dergo apoptosis. Whether the macrophages are actively involved in remodelling 
of vasculature elsewhere or other components of the developing eNS remains to 
be established. 

In the normal, healthy adult brain parenchyma, the role of microglia in brain 
homeostasis is unclear. Although there has been speculation that they may be 
involved in synaptic modelling, there is little evidence to support this except in 
the rather special circumstance of the neural lobe. In this structure, resident 
macrophages phagocytose the endings of hypothalamic magnocellular neurons 
where they abut the capillaries of the neural lobe (Pow et al. 1989). When the 
numbers of microglia processes in the neuropil are viewed in the context of the 
density of synapses, it is hard to envisage these cells playing a significant role in 
ongoing eNS synaptic plasticity. 
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The most important role for the microglia is that of first line of defence 
against injury and infection. It is now well documented that following any inju­
ry or pathology of the brain the microglia alter their levels of antigen expression 
and their morphology (Kreutzberg 1996). The more severe the disturbance, the 
more radical are the changes in the microglia morphology and phenotype but 
these cells are typically referred to as activated microglia (Fig. 1, middle). There 
is considerable interest as to how these cells, or other macrophage populations 
in the CNS, contribute to the outcome of diverse neurological diseases. In all 
conditions of acute or chronic neurodegeneration the microglia become activat­
ed, but not surprisingly there is no simple relationship between morphological 
activation and the associated cytokine profile (Walsh et al. 2000; Perry et al. 
2002). 

One key issue is the role of the microglia in antigen presentation and 
whether, for example, the up regulation of MHC class II leads to antigen presen­
tation to CD4 T-lymphocytes and propagation of an immune assault on the 
CNS. There remains some controversy in this area but the weight of the evi­
dence suggests that microglia are rather poor antigen-presenting cells (reviewed 
in Perry 1998), although other views have been expressed (Aloisi 2001). The 
normal brain parenchyma lacks dendritic cells and it appears that it is the peri­
vascular macrophages that present antigen to T-lymphocytes patrolling the CNS 
(see below). 

1.2 
Perivascular Macrophages 

A long overlooked population of CNS macrophages is that closely associated 
with the vasculature, the perivascular macrophages. These cells lie adjacent to 
the cerebral endothelial cells behind the blood-brain barrier but separated from 
the CNS parenchyma by a basement membrane (Graeber 1989) and are present 
throughout the rostrocaudal axis of the CNS. The perivascular macrophages 
have a simpler morphology than the microglia (Fig. 1, lower) and also a more 
activated phenotype. They express readily detectable levels of MHC class I and 
II CD45 (Streit et al. 1989) and in the normal mouse brain express the scavenger 
receptor (Mato et al. 1996) which is absent from the normal microglia. In the rat 
the monoclonal antibody, ED2 was found to be a selective marker of the perivas­
cular macrophages (Graeber et al. 1989). 

These cells are not only more activated than the microglia, they also turn 
over more rapidly. Data from a number of bone marrow chimera studies suggest 
that a significant proportion is replaced over a period of 3-6 months (Hickey et 
al. 1992). The important point in this regard is that monocytes are continually 
trafficking across the normal intact blood-brain barrier, which has implications 
for understanding how a number of intracellular pathogens, including HIV-l, 
may enter the CNS. 
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One might expect from the location of these that cells they are well placed to re­
spond to immune-activating molecules in the blood and are also the first cells 
that activated T lymphocytes will encounter on crossing the cerebral endotheli­
um. Following a peripheral challenge with endotoxin [lipopolysaccharide 
(LPS) 1, to mimic a peripheral infection, it is the perivascular macrophages that 
first respond by increased synthesis of inhibitory factory KBa and cyclooxyge­
nase-2 (Cox-2) (Nguyen et al. 2002). This sensitivity of the perivascular macro­
phages relative to the microglia is also seen following intracerebral challenge 
with LPS or pro-inflammatory cytokines. The perivascular macrophages rapidly 
upregulate their synthesis of Cox-2 while the microglia do not (Minghetti et al. 
1999). These cells playa major role in signalling between the periphery and the 
brain in the induction of fever and sickness behaviour that accompany systemic 
infection (Konsman et al. 2002). 

The fact that perivascular macrophages constitutively express MHC class II 
molecules has led to the suggestion that these are the major APCs of the CNS. 
Studies by Hickey and Kimura (1988) show that these cells have the capacity to 
present antigen to encephalitogenic CD4 + T lymphocytes. The selective isolation 
and study of perivascular and meningeal macrophages, as distinct from micro­
glia, also shows that the CD45high population are competent APCs while the 
CD4510w microglia are not (Ford et al. 1996). The observations raise the impor­
tant question as to whether the perivascular macrophages are akin to, or are, 
dendritic cells of the CNS with the capacity to migrate from the brain compart­
ment to lymphoid organs. At the present time there is little evidence to support 
the idea that there are dendritic cells in the perivascular space, or within the pa­
renchyma of the brain. Two lines of evidence suggest that dendritic cells are 
present in the meninges and choroid plexus but not in the perivascular space or 
brain parenchyma. 

In the rat the monoclonal antibody OX62 recognises an integrin restricted to 
a population of dendritic cells and yc5 T lymphocytes (Brenan and Puklavec 
1992). Using this antibody it has been shown that there are OX62+/MHC class II+ 
in the meninges and choroid plexus (Matyszak and Perry 1996; McMenamin 
1999) but they are absent from the brain parenchyma. However, the presence or 
absence of any single antigen is not sufficient to define a cell as a dendritic cell, 
it is the functional capacity that is the key. Functional studies in vivo show that 
there are no dendritic cells in the brain parenchyma. 

The microinjection of heat-killed mycobacterium bacillus Calmette-Guerin 
(BCG) into the ventricles, or on to the surface of the brain, gives rise to a typical 
overt delayed-type hypersensitivity (DTH) response. However, when the BCG is 
delivered in such a manner as to restrict it to the brain parenchyma it may re­
side there for many months undetected by the immune system (Matyszak and 
Perry 1995). Similar experiments have been performed using influenza virus 
(Stevenson et al. 1997). These simple experiments demonstrate that neither 
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perivascular macrophages nor microglia are able to phagocytose the BCG or vi­
rus and with these antigens then migrate to the lymphoid organs to initiate a 
primary immune response. In contrast, it has been shown that soluble antigen 
when delivered to the brain parenchyma, and with the appropriate precautions 
being taken to limit the delivery to the parenchyma, will rapidly drain via the 
perivascular spaces to the cervical lymph nodes (Cserr and Knopf 1992). The 
soluble antigen draining to the periphery results in an effective antibody re­
sponse to the delivered antigen (Gordon et al. 1992). The functional significance 
of the drainage of soluble antigens, some of which are likely to be potentially 
immunogenic CNS antigens, is of interest in the maintenance of tolerance to 
CNS antigens. 

1.3 
Macrophages of the Meninges and Choroid Plexus 

In the meninges, the membranes covering the brain, and within the stroma of 
the choroid plexus there are large numbers of macrophages. Although these 
macrophages lie outside the CNS itself, it is clear that these cells have the poten­
tial to playa significant part in immunological reactions in the CNS. These mac­
rophages have a more activated phenotype than the microglia and perivascular 
cells and there are also some dendritic cells (Matyszak et al. 1992; Matyszak and 
Perry 1996; McMenamin 1999). These macrophage populations are involved in 
both innate and acquired immune reactions (see above) in the CNS. 

2 
Macrophages of the Peripheral Nervous System 

Within the endoneurium of peripheral nerves there are resident macrophages 
which constitute about 5% of the total cell population. There are also large num­
bers of macrophages in the membranes covering the nerves and peripheral gan­
glia (Braun et al. 1993). It is not known whether these macrophage populations 
play any significant role in peripheral nervous system (PNS) homeostasis, but 
they are likely involved in the response to nerve injury. There has been consid­
erable interest as to whether the monocytes that invade a peripheral nerve after 
nerve injury playa part in the regeneration response (Lazarov-Spiegler et al. 
1998). However, data show that macrophages phagocytose the myelin and axon 
debris in the distal segment of the injured nerve but playa rather minor role in 
the regeneration of the peripheral nerve fibres; it is the peripheral glial cell, the 
Schwann cell, that is key to successful regeneration (Hughes and Perry 1999). 
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Abstract Resident tissue macrophages are ideally placed for a role in the first 
line of defence against invading viruses and other microorganisms. Binding of 
viruses to macrophages can occur via a variety of molecules including the direct 
use of proteins, lipids and oligo saccharides as receptors, as well as opsonic rec­
ognition of viruses by the macrophage. Often multiple surface components are 
involved in virus-macrophage interactions, and interestingly a number of lectin 
receptors are expressed on macrophages for which viral ligands have been pro­
posed. This review focuses on the initial viral attachment to macrophages and 
describes the interactions of certain macrophage lectin, proteoglycan and Toll­
like receptors with viruses. The study of the role of pattern recognition recep­
tors in the macrophage response to viruses may reveal new features of viral 
pathogenesis and some of the interactions could provide targets for antiviral 
agents. 

Keywords Attachment, Collectin, Lectin, Macrophage, Proteoglycan, Receptor, 
Virus 
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Abbreviations 

APC 
CMV 
CRD 
DC 
GAG 
HSV 
LPS 
MBL 
MR 
PAMP 
PRR 
RSV 
TLR 

1 
Introduction 

Antigen-presenting cell 
Cytomegalovirus 
Carbohydrate recognition domain 
Dendritic cell 
Glycosaminoglycan 
Herpes simplex virus 
Lipopolysaccharide 
Mannan-binding lectin 
Mannose receptor 
Pathogen-associated molecular pattern 
Pattern recognition receptor 
Respiratory syncytial virus 
Toll-like receptor 

Innate immune mechanisms are critical in limiting the spread of infection with­
in the host and provide protection while specific immunity develops. These pro­
cesses are rapid and non-specific in the sense of being active against a broad 
spectrum of microbial pathogens. Innate immunity to pathogens is thought to 
be triggered by pattern recognition receptors (PRR) on antigen-presenting cells 
(APC) that detect and respond to conserved structural motifs on invading mi­
croorganisms. Toll-like receptors (TLR) have been proposed to play an essential 
role in linking innate and acquired immunity through their ability to fulfil the 
role of the PRR on the APC, as they respond to defined lipid, protein and nucle­
ic acid components of microorganisms and signal cytokine production and co­
stimulatory molecule induction (Akira et al. 2001). Other PRR which recognise 
pathogen-associated motifs include complement, CD14, calcium-dependent 
(C-type) lectins [mannose receptor (MR), mannan-binding lectin (MBL), 
DC-SIGN], and scavenger receptors. Much of our knowledge of the interaction 
and function of innate immune receptors in microbial infections has to date fo­
cussed on interactions with bacteria, mycobacteria, fungi and parasitic patho­
gens, whereas the role of these receptors in response to viruses is largely unex­
plored. 

Macrophages are a major cellular element in the clearance and inactivation of 
viral pathogens. Resident tissue and blood macrophages are ideally placed to 
play an important role in mediating the innate interaction between the host and 
virus. Their ability to phagocytose free virus, or virus opsonised by serum col­
lectins, complement or antibody, and hence clear virions from the circulation, 
constitutes an early line of defence for reducing virus load. Subsequent to pha­
gocytosis, the associated intracellular killing of viruses contributes to non-pro­
ductive viral clearance. In addition to immediate clearance of invading viruses, 
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macrophages phagocytose virus-infected cells, along with apoptotic cells or ne­
crotic cells, earning their reputation as the most efficient phagocytes in the 
body. 

Viral interaction with, and infection of, macrophages can stimulate these cells 
to release a number of proinflammatory and immunoregulatory cytokines and 
chemokines, along with proteolytic enzymes and oxygen radicals in vitro and in 
vivo (Julkunen et al. 2000; Guidotti and Chisari 2001). These factors act to limit 
virus spread and initiate a series of immune reactions including the attraction 
oflymphocytes, neutrophils and mast cells to the site of virus production, invit­
ing them to playa role in host defence. The production of interferon-a and in­
terferon-fJ by macrophages can further limit virus spread through its ability to 
induce an antiviral state in uninfected cells. 

The activation of the innate immune response is a prerequisite for the trig­
gering of acquired immunity. It is through modulating the threshold of activa­
tion of adaptive antigen-recognition receptors and by inducing key costimulato­
ry molecules and cytokines, that innate immunity may shape the nature of the 
response and determine to which antigens the acquired immune system re­
sponds (Fearon and Locksley 1996). Recognition of antigenic arrays or patho­
gen-associated molecular patterns (PAMPs) by PRR (Medzhitov and Janeway 
1997) on macrophages and on dendritic cells (DC) has been hypothesised to in­
duce activation of defence mechanisms in the cell and the maturation of the cell 
into an efficient APC that subsequently attracts and activates the antigen-specif­
ic T cells essential for an adaptive immune response (Fearon and Locksley 1996; 
Janeway 1989). Mononuclear phagocytes, especially DC, act as APC, taking up, 
processing and delivering viral antigens to T cells in regional lymph nodes. 
While DCs are generally regarded as being the most efficient APC, macrophages 
can also present viral antigens to primed T lymphocytes. Through their function 
as APCs and their secretion of inflammatory and immunoregulatory cytokines, 
macrophages form an important bridge between innate and acquired antiviral 
immune responses. 

In addition to their role in viral defense, macrophages are targets for viral in­
fection and may provide an infectious reservoir for persistent viruses such as 
lentiviruses and cytomegaloviruses (CMV). For example, the cytopathic effects 
observed following HIV-1 infection of macrophages appear to be minimal, and 
infected macrophages remain viable; hence, macrophages may provide a mecha­
nism of viral dissemination. In a model system of rhesus macaque monkeys in­
fected with a simian immunodeficiency virus (SIV)/HIV-1 chimera, tissue mac­
rophages were identified as the principal reservoir of virus after the depletion of 
CD4+ T cells (Igarashi et al. 2001). This system, which is thought to be analo­
gous to the late stages ofHIV-1 infections in humans, showed that tissue macro­
phages sustained high plasma virus loads, implicating tissue macrophages as an 
important reservoir of virus in vivo. Measles and mumps viruses also avoid kill­
ing within macrophages, enabling these viruses to utilise the migratory proper­
ties of these cells to disseminate to the respiratory tract and salivary glands, re­
spectively. 
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Table 1 Examples of some virus receptors found on macrophages 

Receptor 

Protein receptors 

CD4 

Poliovirus receptor 

Undefined macrophage membrane proteins 
TLR3 
Carbohydrate receptors 
Sialic acid-containing oligosaccharides 

Heparan sulphate 

Antibody-dependent enhancement of viral entry 

Fc receptors (via bound immunoglobulin) 

See text for definitions of abbreviations. 

Virus 

HIV 

Polioviruses 

Dengue virus 
ds viral RNA 

Influenza virus 

Human CMV 
HSV 

Dengue virus 
West Nile virus 

HIV 
CMV 
Influenza virus 

Reference(s) 

Collman et al. 1990; 
Weiss 2002 
Mendelsohn et al. 1989; 
Freistadt and Eberle 2000 
Moreno et al. 2002 
Alexopoulou et al. 2001 

Wilson et al. 1981; 
Weis et al. 1988 
Compton et al. 1993 
Herold et al. 1994 

Daughadayet al. 1981 
Peiris et al. 1981; 
Cardosa et al. 1986 
Takeda et al.1988 
Inada et al. 1985 
Ochiai et al. 1988; 
Tamura et al. 1991 

Viruses generally infect cells by endocytosis (rather than phagocytosis) or by 
fusion with the plasma membrane. Entry of a virus is often a multistep process, 
including initial attachment of the virus to the target cell surface, followed by 
fusion between the viral and cellular membranes and culminating in the inter­
nalisation of the viral genome into the cytosol of the target cells. The extracellu­
lar receptors used by viruses for attachment and entry are, presumably, recep­
tors that serve other functions in the host. In some cases, host molecules are 
discovered as virus receptors prior to determination of their natural ligands 
and functions in normal host physiology. Given that host proteins are being 
used by viruses for attachment, choosing such receptors as antiviral targets will 
provide the challenge to designers of anti-viral drugs, to block viral binding 
without interfering with the normal functions of the host cell receptors. 

Virus particles have multiple avenues for engaging cells and can interact with 
many molecules on the macrophage cell surface. The composition of a virus al­
lows it to bind in a more complex manner to macrophages, than, for example, 
molecules such as lipopolysaccharide (LPS). Binding of viral lipid to CDl or to 
annexins can occur, as well as protein-protein and lectin-carbohydrate interac­
tions, be they on the cell surface or in endocytic vesicles. Hence, multiple recep­
tors may come into play when examining recognition of viruses by macrophages 
and, whether multistep or involving a single molecule, the interactions can have 
a range of possible outcomes. This review will principally focus on the initial vi-
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Table 2 Soluble and cellular C-type lectin receptorsfor viruses 
Table 2 Soluble and cellular C-type lectin receptorsfor viruses 

Receptor 

MR 

DC-SIGN 

DC-SIGNR 

SP-A 

SP-D 

MBl 

location 

Most macro phages, 
immature DC 

Immature DC, lung and 
placental macro phages 

Endothelial cells in liver 
and lymph node 
lung surfactant 

lung surfactant 

Serum 

See text for definitions of abbreviations. 

Viral ligand 

HIV (gp120) 

Influenza virus 
HIV-1, HIV-2 
SIV 

Ebola virus 
HIV-1, HIV-2 

Influenza virus 

RSV 

HSV 
CMV 
Influenza virus 

RSV 

Influenza virus 

HIV 

Reference(s) 

larkin et al. 1989; 
Curtis et al. 1992 
Reading et al. 2000 
Curtis et al. 1992; 
Geijtenbeek et al. 2000; 
Pohlmann et al. 2001 
Alvarez et al. 2002 
Pohlmann et al. 2001 

Benne et al. 1995; 
Benne et al. 1997 
Ghildyal et al. 1999; 
Hickling et al. 1999; 
Barr et al. 2000 
van Iwaarden et al. 1991, 1992 
Weyer et al. 2000 
Hartshorn et al. 1994; 
Reading et al. 1997; 
Hartshorn et al. 2000 
Hickling et al. 1999; 
leVine et al. 1999 
Anders et al. 1990; 
Hartshorn et al. 1993; 
Malhotra et al. 1994 
Ezekowitz et al. 1996 

ral attachment to macrophages. A selection of macrophage molecules that func­
tion as receptors for a number of viruses will be discussed, including receptors 
involved in both defence mechanisms against viruses and those commandeered 
by viruses for entry and infection. Identification of cellular receptors for viruses 
and inhibition of macrophage infection by viruses is of particular interest, since 
this is an important target for clinical therapy and could be used to prevent viral 
infection and progression of disease. 

2 
Interaction of Macrophage Receptors With Viruses 

The interaction of macrophages with viruses can be mediated by a diverse set of 
receptors. Table 1 gives some examples of the types of viral receptors found on 
macrophages. In some cases the expression of protein receptors can explain the 
species, tissue and cell tropism of a virus, whereas carbohydrate receptors tend 
to be more broadly expressed on different cell types and hence do not always 
directly account for the tropism of a virus. An important mechanism of entry 
into macrophages for some viruses is via complexes with subneutralising 
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amounts of virus-specific antibody, binding to Fc receptors. Macrophages may 
also be able to detect entry and replication of virus, using the TLR3 receptor 
that has recently been shown to recognise double-stranded (ds)RNA, the molec­
ular intermediate associated with many viral infections (Alexopoulou et al. 
2001). 

A number of viruses bind to multiple receptors during the infection process, 
a fact which may be important in clustering of different receptors to generate 
novel molecular assemblies with distinctive properties. For instance, interac­
tions with one receptor may be required to bring about conformational change 
or endocytosis required for fusion, or for binding to a secondary receptor. Dis­
tinguishing between binding of viruses to "productive receptors" (Dimmock 
1982) that lead to infection and non-specific binding to cell surface receptors is 
a key issue that is further complicated by the hypothesis that such non-specific 
binding to the cell may be important in concentrating virus particles on the cell 
surface for subsequent interactions with a specific low-affinity host cell recep­
tor. 

2.1 
Macrophage lectin Receptors 

Lectin receptors can recognise carbohydrate on the surface of micro-organisms, 
and so selectively alert the innate immune system to the presence of potential 
pathogens. Such foreign carbohydrate motifs are found on a variety of micro-or­
ganisms, and hence lectin receptors may bind to a number of different microbial 
pathogens. For example, the MR binds to yeast, HIV, influenza virus and a num­
ber of bacteria. While bacterial sugars are encoded for and produced by bacte­
ria, viral sugars are, by contrast, produced by the host, for the most part. This 
provides a greater challenge for recognition and specific targeting of viruses by 
the immune system, which has evolved to recognise foreign molecules. 

The roles of macrophage lectins in host defence against bacteria and yeasts 
have been well reviewed elsewhere (Linehan et al. 2000) and this review will fo­
cus on their known and possible interaction with viruses. Table 2 summarises 
known interactions between viruses and soluble and cellular C-type lectins, 
some of which are described in more detail in the following text. The soluble 
collectins are included in this discussion, although they are not macrophage re­
ceptors, as they have similar carbohydrate specificity to that of the macrophage 
mannose receptor, and they opsonise microbes for their uptake by phagocytes 
(Holmskov et al. 1994; Hoppe and Reid 1994; Ezekowitz et al. 1996). 

2.1.1 
Mannose Receptor 

The MR (CD206) is an integral membrane C-type lectin expressed on the sur­
face of alveolar and other tissue macrophages. A multilectin receptor, the MR 
has specificity for two groups of sugar ligands; the 8 carbohydrate recognition 
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domains (CRDs) define the specificity for mannose, fucose and N-acetylglu­
cosamine (Taylor et al. 1990, 1992), while the N-terminal cysteine-rich domain 
of the MR binds to sulphated terminal N-acetylgalactosamine residues (Fiete et 
al. 1998; Martinez et al. 1999; Leteux et al. 2000). Capable of binding to a wide 
range ofligands, the MR is a prototypical PRR (Stahl and Ezekowitz 1998). It is 
a characteristic marker of macrophages but in addition it can also be expressed 
on DC (Dong et al. 1999) and selected endothelial cells. 

The MR has been implicated as a major endocytic receptor in the infectious 
entry of influenza virus. The ability of influenza virus to infect macrophages 
was shown to correlate both with the levels of MR expression on the macro­
phage and with the level of mannose-containing oligosaccharide present on the 
haem agglutinin molecule of the virus (Reading et al. 2000). Furthermore, puri­
fied glycoproteins from influenza virus inhibited the binding of mannosylated 
bovine serum albumin (BSA), a ligand of the MR, to peritoneal macrophages. 
Periodate treatment of the viral glycoproteins to oxidise their carbohydrate, pri­
or to their inclusion in the assay, reduced their inhibitory capacity, consistent 
with a direct interaction of the influenza virus glycoproteins with the lectin do­
mains of the MR. 

The envelope glycoprotein of HIV, gp120, is a heavily glycosylated molecule 
implicated in binding to the MR (Daughaday et al. 1981; Curtis et al. 1992). Car­
bohydrate represents approximately half of the molecular weight of gp120 
(Allan et al. 1985; Ratner et al. 1985), and when grown in human T cells, the oli­
gosaccharide moieties of gp120 comprise approximately 50% oligomannosidic 
species, with fucosylated complex- and hybrid-type oligosaccharides also pres­
ent (Geyer et al. 1988), making this viral glycoprotein a good potential ligand 
for the MR as well as other lectin receptors. Evidence for the interaction of 
gp120 with the MR comes from binding studies which showed that gp120 bind­
ing to a MR immobilised on beads was inhibitable by mannosylated-BSA but 
not by soluble CD4 glycoprotein. Additionally, binding of mannosylated-BSA to 
human peripheral blood monocyte-derived macrophages was inhibited by re­
combinant gp120, but not by soluble CD4 (Larkin et al. 1989). 

Given the wide range of bacteria, yeasts, parasites and mycobacteria recogni­
sed by the MR (Fraser et al. 1998, and references therein), it is surprising that 
so little work has investigated its interaction with viruses. Further research 
needs to be performed on examining viral ligands for the MR. It should also be 
noted that the use of mannosylated-BSA as a blocking agent in the work de­
scribed above does not conclusively demonstrate that these viruses interact with 
the MR, due to the existence of other mannose-specific lectins on macrophages 
(Imamura et al. 1984; Fernandes et al. 1999). Available anti-human MR mono­
clonal antibodies and the recent development of monoclonal antibodies specific 
for the murine MR (L. Martinez-Pomares, personal communication) will be use­
ful in clarifying viral interactions with this receptor. 
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2.1.2 
DC-SIGN and Also DC-SIGNR 

The type II membrane protein DC-SIGN (dendritic cell-specific ICAM-3 grab­
bing nonintegrin; CD209) has one mannose-binding C-type lectin extracellular 
domain. This protein is proposed to function normally in binding to ICAM-2 
expressed on endothelial cells, to promote transmigration of DC from the blood 
to lymphoid tissues, and in binding to ICAM-3 on resting T cells, contributing 
to T-cell activation (Geijtenbeek et al. 2000a,b). DC-SIGN is better studied on 
immature DC, where it is highly expressed (Geijtenbeek et al. 2000b) but is also 
found on macrophages (Soilleux et al. 2002). The related molecule, DC-SIGNR, 
is found on liver sinusoidal endothelium and endothelium of lymph node sinus­
es and placental villi, and its expression on macrophages has not yet been docu­
mented. Both of these lectins, DC-SIGN and DC-SIGNR bind to HIV-l, HIV-2, 
SIVand Ebola virus (see references in Table 2). 

DC-bearing DC-SIGN have been proposed to playa role in the establishment 
of HIV infection and may be critical in acquiring virus and transmitting it to T 
lymphocytes. DC-SIGN does not act as a receptor for entry of HIV into cells, 
but facilitates viral infection in trans of target CD4+ T cells (Geijtenbeek et al. 
2000b; Pohlmann et al. 2001). While mannan very efficiently blocks transmis­
sion of HI V-I by cells transfected with DC-SIGN, mannan (or DC-SIGN-specific 
monoclonal antibodies) only partially block HIV transmission by DC, suggest­
ing that other factors may be utilised by the virus, in addition to DC-SIGN, for 
DC-mediated HIV-l transmission to target cells (Wu et al. 2002b). Additional 
support for this hypothesis comes from the observation that DC from rhesus 
macaques do not express DC-SIGN and are still able to efficiently transmit pri­
mate lentiviruses (Wu et al. 2002a). 

DC-SIGN-mediated transmission of HIV to T cells does not appear to require 
the ICAM-3 binding activity of the DC-SIGN molecule, and binding to HIV may 
not be mediated by a lectin interaction. Binding to ICAM-3 requires calcium 
and is dependent on glycosylation of ICAM-3, whereas in contrast, binding of 
DC-SIGN to the HIV-l envelope glycoprotein is independent ofN- and O-linked 
glycosylation (Geijtenbeek et al. 2002). A mutant of DC-SIGN that no longer 
bound to ICAM-3, but retained a specificity for gp120, was still able to mediate 
HIV-l infection of T cells efficiently in trans, suggesting that virus transmission 
was not dependent on DC-SIGN interactions with ICAM-3. Thus, it appears that 
there are overlapping but distinct sites for DC-SIGN binding to ICAM-3 and to 
gp120. This may aid the development of inhibitors of HIV attachment to DC­
SIGN that have reduced negative effects on the normal function and roles of 
DC-SIGN. 

While research has focussed on DC-mediated transfer of HIV to T cells, now 
that macrophages have also been shown to bear DC-SIGN, it will be important 
to assess the degree to which they have roles in carrying virus from the periph­
ery into lymph nodes. 
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2.1.3 
Collectins 

Endogenous lectins, including soluble collagenous C-type lectin members of the 
collectin family, have an important role in innate defence against respiratory 
viruses (Sastry and Ezekowitz 1993; Malhotra and Sim 1995; Crouch et al. 2000). 
These proteins are known to bind to influenza virus, respiratory syncytial virus 
(RSV), herpes simplex virus (HSV), HIVand CMV (see references in Table 1) 
and display antiviral activity in vitro and in vivo. Members of this family found 
in humans include serum MBL, and the lung surfactant proteins (SP)-A and -D. 
Collectins use multivalent lectin-like domains coupled to collagenous stalks for 
the recognition and opsonisation of microbes for uptake by macrophages. Much 
of the investigation of the interaction of collectins with viruses has been per­
formed with influenza virus. 

The in vitro antiviral activities of collectins against influenza virus include vi­
rus neutralisation and aggregation, opsonisation for contact with neutrophils, 
and lysis of virus-infected cells in the presence of complement (Reading et al. 
1995; Hartshorn et al. 1997; Anders et al. 2001) and are consistent with a role 
for these molecules in first line host defence. MBL and SP-D bind to glycans on 
the influenza virus haem agglutinin (HA) and neuraminidase glycoproteins, 
whereas the interaction of SP-A with viruses involves binding of the viruses to 
SP-A-associated carbohydrates (Benne et al. 1995; van Iwaarden et al. 1991, 
1992). Bovine SP-D has been shown to inhibit infectivity of rotaviruses through 
Ca2+ -dependent, mannose-inhibitable attachment to the major viral envelope 
glycoprotein (Reading et al. 1998b). 

Only more recently have roles for collectins in innate defense against influen­
za virus been demonstrated in vivo. Studies on the sensitivity of a range of 
strains of influenza virus to collectin-mediated neutralisation revealed a marked 
inverse correlation between collectin sensitivity and the ability of a virus to 
replicate in the mouse lung after intranasal inoculation (Reading et al. 1997). 
Co-administration of mannose-containing oligo saccharides along with virus re­
sulted in markedly increased replication of influenza A virus in the lung. Al­
though MBL levels were undetectable in lavage from normal or influenza-infect­
ed mice, SP-D levels were detected and increased several fold after influenza A 
virus infection. Strains of influenza virus bearing higher levels of glycosylation 
on the HA molecule grew very poorly in the mouse lung, whereas the A/PR/8/34 
strain, which grows to high titres in mouse lung, carries no glycans on the head 
of its HA molecule and is essentially resistant to neutralisation by SP-D and 
MBL. Overall, these results provided strong evidence that lung collectins, in par­
ticular SP-D, contribute significantly to containment of influenza infection in 
vivo. 

There are many strong indications for roles of SP-D and SP-A in innate im­
munity. Reading et al. showed that compromise of SP-D, due to elevated glucose 
levels in the lungs of diabetic mice appeared to be the major factor contributing 
to the increased susceptibility of diabetic mice to influenza virus (Reading et al. 
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1998a). The study of infection in the SP-D knockout mouse is hampered by a 
phenotype sharing features of alveolar lipoproteinosis disease, with activated 
macrophages and accumulation of surfactant in the alveolar spaces (Botas et al. 
1998; Korfhagen et al. 1998). Nevertheless, SP-D-deficient mice showed de­
creased clearance (compared to wild-type mice), of a heavily influenza virus 
(LeVine et al. 2001). In contrast to the proteinosis observed in the lung of the 
SP-D knockout mouse, the SP-A knockout mouse has only marginal defects in 
surfactant homeostasis and respiratory function, and studies on the immune re­
sponse to RSV, adenovirus and other pathogens have confirmed its role as an 
innate immune protein (LeVine et al. 1999; Harrod et al. 1999; Lawson and Reid 
2000). Influenza virus and RSV clearance from the lungs of SP-A knockout mice 
was significantly decreased compared to wild-type SP-A +1+ mice and was associ­
ated with increased neutrophil and lymphocyte numbers in the bronchial alveo­
lar lavage along with increased titres of pro inflammatory cytokines in lung 
homogenates (LeVine et al. 1999,2002). 

Together these observations strongly indicate that the ability of these respira­
tory viruses to replicate in the lungs of mice is limited by lectin-mediated de­
fence mechanisms. Furthermore, these studies identify viral carbohydrate as a 
ligand for recognition of virus by collectins of the innate immune system and 
are consistent with the hypothesis that glycosylation can affect virulence 
through mediating susceptibility to such innate mechanisms as collectins and 
phagocytic lectin receptors. Collectins can be thought of as soluble receptors 
that bind to PAMPs, to opsonise particles for uptake by macrophages; however, 
the receptors for collectins are still poorly defined. The antiviral activity of col­
lectins against a number of enveloped viruses supports the hypothesis that col­
lectins represent a general innate defence mechanism of natural resistance. 

3 
Other Lectin Receptors 

Other lectin receptors have been described on the macrophage, and a number of 
novel lectin receptors have recently been discovered (Balch et al. 1998; Bakker et 
al. 1999; Bates et al. 1999; Matsumoto et al. 1999; Brown and Gordon 2001). For 
many of these molecules neither the sugar specificity nor a function has yet 
been determined. However, by extrapolation from observations with the MR, 
DC-SIGN and collectins, these lectin receptors are potential PRR that may bind 
a wide selection of micro-organisms, including viruses. Viral ligands for these 
macrophage receptors have not been identified as yet. Some receptors that were 
described initially on DC have subsequently been shown to have broader cell ex­
pression. For example, DC-SIGN was originally isolated from human placental 
cDNA library (Curtis et al. 1992) and was described as being exclusively ex­
pressed on DC (Geijtenbeek et al. 2000c); however, it is now realised that this 
receptor is also expressed on alveolar and placental macrophages, as well as 
BDCA2+ plasmacytoid peripheral blood DC precursors in situ and in vivo (Soil­
leux et al. 2002). 
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Of note, DEC-20S (CD20S) is topologically very similar to the MR and ex­
pressed on DC and macrophages. This multilectin receptor has 10 CRDs and ap­
pears to mediate uptake of glycosylated antigens, although to date no ligand 
specific for any of the CRDs in DEC-20S has been identified. The similarity of 
DEC-20S to the MR suggested that it too may be involved in recognition of 
pathogens and playa role in innate immunity and in antigen processing. Inter­
estingly, none of the CRDs of DEC-20S have conserved the key amino acids in­
volved in carbohydrate and calcium binding, consequently it is unlikely that the 
CRDs of this receptor have lectin activity (Inaba et al. 1995; Jiang et al. 1995; 
Swiggard et al. 1995). 

Finally, viral glycoproteins themselves can also function as lectins, and medi­
ate binding to cell-surface oligosaccharides. Influenza virus initiates infection 
by binding of the viral HA glycoprotein to terminal N-acetylneuraminic (sialic) 
acid-containing receptors on the cell surface (Wilson et al. 1981; Weis et al. 
1988). The receptor specificity of the influenza virus HA has been well studied 
and depends on a number of amino acid residues in the receptor-binding pocket 
of the HA which are involved in either direct or stabilising interactions with sial­
ic acid. Experiments have also suggested that the HIV gp120 glycoprotein may 
have lectin-like properties. Based on studies examining trans cellular transport 
of gpl20-coated particles, Kage et al. suggested that the gp120 glycoprotein of 
HIV-l may contain a lectin-like domain that interacts with mannosyl residues 
on the mucosal surface (Kage et al. 1998). 

3.1 
TLR 

Janeway proposed that leukocytes must have molecules that are able to recog­
nise antigenic arrays or patterns that are generic to micro-organisms and absent 
from host cells (Janeway 1992). Such PAMPs include bacterial LPS, peptidogly­
can and lipoteichoic acid of gram-positive bacteria, unmethylated CpG de­
oxynucleotide motifs in prokaryotic DNA, and mannans on fungi and viruses, 
and are recognised by both soluble and cell-associated PRR. Members of the 
TLR family function as PRR in mammals and have been intensively investigated 
recently. TLR discriminate between a variety of microbial products, for example 
TLR2 confers responsiveness to lipoproteins and several gram-positive bacteria, 
TLR4 binds to LPS, TLRS mediates responsiveness to flagellin and TLR9 recog­
nises unmethylated DNA containing CpG motifs (CpG-DNA) (Akira et al. 2001). 

To date, only TLR4 and TLR3 have been implicated as being involved in in­
nate immunity to viruses. The pro inflammatory cytokine response to the fusion 
protein of RSV in vitro, and cellular responses and viral clearance following in­
tranasal infection with live virus were reduced in mice mutated in the gene en­
coding TLR4 (Kurt et al. 2000; Haynes et al. 2001). In addition, TLR4 has recent­
ly been identified as one of the components mediating activation of B cells in 
response to the retroviruses mouse mammary tumour virus and Moloney mu­
rine leukaemia virus (Reading et al. 1998a). The recognition of dsRNA by TLR3 
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induces activation of nuclear factor (NF)-KB (in T cells and macrophages) and 
the production of type 1 interferon (Alexopoulou et al. 2001), suggesting a role 
for this TLR in the antiviral response; however, this remains to be established. It 
is of interest that influenza or Sendai infection of human macrophages, or ex­
ogenously added interferon-a, enhanced mRNA expression of TLR1, TLR2, 
TLR3 and TLR7, and downregulated TLR5 mRNA (Miettinen et al. 2001), sug­
gesting that control of TLR expression by type 1 interferon may be a novel 
mechanism by which interferon can modulate the innate immune response. 

Subversion of a host defence mechanism by viruses gives another indication 
of the importance of that defence mechanism. Vaccinia virus carries two pro­
teins products, A46R and A52R, with similar amino acid structure to Toll/inter­
leukin (IL)-1 receptor domains (that define the TLR family), through which IL-l 
and TLR4 signalling can be inhibited (Bowie et al. 2000). The evolution of these 
antagonistic proteins by vaccinia highlights the importance of TLR-mediated 
mechanisms in immune defense against this virus. 

TLR recognise a heterogeneous variety of ligands; however, it is not known 
what viral structure might be recognised by TLR. It may be that other molecules 
and/or receptors assist TLR recognition of viruses, analogous to the manner 
that cellular CD14 or secreted MD-2 bind to LPS to facilitate its interaction with 
TLR4. A functional receptor complex may be involved in TLR interaction with 
virus, which may contain lectins, chemokines, etc. that coordinate to facilitate 
recognition, binding and signal transduction in response to virus binding. Some 
TLR have been shown to be located intracellularly, in which case co-receptors 
may be essential for delivery of virus, or viral antigens, to the TLR. Alternatively 
the natural pathway of virus infection may result in the virus meeting an intra­
cellular TLR. Future studies in this area should clarify viral interactions with 
TLR. 

3.2 
Proteoglycans 

Proteoglycan molecules, present on the surface of mammalian cells, and in the 
extracellular matrix, are composed of a membrane-linked protein core with at­
tached, variously charged sulphated glycosaminoglycans (GAGs). Proteoglycans 
exist as both pure molecules, which have either only heparan sulphate or chon­
droitin sulphate GAG chains, and those with mixtures of different GAGs. The 
GAG chains consist of alternating residues of an amino sugar and an uronic 
acid, and as the chains polymerise, varying amounts of sulphation and epimeri­
sation result in a large degree of heterogeneity amongst proteoglycans. Proteo­
glycans can be separated based on the charge characteristics of the GAG chains, 
with greater levels of sulphation corresponding to a higher charge. Heparin is a 
highly sulphated version of heparan sulphate and one of the most highly sul­
phated GAGs. 

Proteoglycans on the cell surface are used by a number of viruses as cellular 
adhesion receptors, with at least 10 human pathogenic virus infections implicat-
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ed in binding to heparan sulphate (Rostand and Esko 1997; Wad strom and 
Ljungh 1999; Bose and Banerjee 2002). For some viruses the initial binding to 
heparan sulphate-containing proteoglycans appears to function primarily to 
concentrate the virus particles at the cell surface, before interaction with addi­
tional, higher affinity receptors. This is the case for foot-and-mouth disease, 
which has a primary interaction with heparan sulphate followed by binding to 
the RGD motif of the u v /33 integrin (Jackson et al. 1996). Other viruses, such as 
HSV, appear to be able to utilise heparan sulphate directly as an entry receptor 
(Shukla et al. 1999). 

HIVand CMVare examples of viruses for which primary binding to cell-sur­
face GAGs appears to assist viral interaction with secondary receptors required 
for entry. Heparan sulphate on the cell surface is also able to initiate binding of 
CMV (Neyts et al. 1992; Compton et al. 1993). A soluble form of the human 
CMV glycoprotein B (gB) showed 40% reduced binding to CHO cells lacking 
heparan sulphate proteoglycans and to fibroblast cells treated to remove hepa­
ran sulphate. However, an undefined non-heparin component of binding re­
mained, suggesting the presence of another class of human CMV cellular recep­
tors (Boyle and Compton 1998). Heparan sulphate has also been proposed to be 
involved in the initial attachment of HIV-l to target cells, prior to the known 
required interaction between gp120 and CD4 and an appropriate chemokine re­
ceptor. Only HIV-l isolates containing highly positively charged V3-100p se­
quences showed reduced infectivity in cells lacking GAGs (Zhang et al. 2002). 
This marked strain-dependent difference in the requirement for target cells to 
express cell-surface heparan sulphate (Ohshiro et al. 1996; Mondor et al. 1998) 
supports the hypothesis that attachment is likely to be mediated by electrostatic 
interactions, predominantly between the charged V3 domains of gp120 and cell­
surface heparin (Roderiquez et al. 1995). 

Evidence to highlight the importance of a primary interaction between HIV 
and GAGs for the infectious process has recently been highlighted. The gp120-
CD4 interaction alone is not thought to be sufficient for tight attachment of HIV 
to cells such as macrophages, microglia and DC (Sonza et al. 1995; Dick et al. 
1997), and the additional binding of virus to cell-surface GAGs, along with other 
adhesion receptors, is thought to be required for efficient infection of these cells 
(Ugolini et al. 1999). This was clearly shown when HIV-l no longer attached to 
monocyte-derived macrophages after heparitinase treatment, which removes all 
the cell surface heparan sulphate chains but leaves CD4 unaltered (Saphire et al. 
2001). 

In the case of HSV-l and HSV-2, the interaction of glycoproteins gB and gC 
with cell surface heparan sulphate has been more thoroughly studied. Both clin­
ical and laboratory isolates of alphaviruses initially attach to cells via interac­
tions of gB and gC viral glycoproteins with heparan sulphate proteoglycans 
(Herold et al. 1991, 1994; Lee and Fuller 1993), and in particular, the sulphate 
groups at C-2 of the uronic acids and the carboxyl groups were critical for gB 
binding to heparin (Herold et al. 1995). In the absence of cell-surface heparan 
sulphate, virus entry is very inefficient. However, with time virus adherence to 
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cells can become irreversible by heparin, suggesting that additional interactions 
with non-heparan sulphate receptors can occur. Further to their role in viral 
binding, involvement of proteoglycans in viral entry has been suggested. Bind­
ing of gB to heparan sulphate led to fusion of the viral envelope with the host­
cell plasma membrane and syncytium formation (Shieh and Spear 1994). Subse­
quent to virus attachment to heparan sulphate, the viral gD glycoprotein, in 
concert with gB, gH and gL, interacts with anyone of several co-receptors 
(Spear et al. 2000), to facilitate entry of HSV by a fusion process. Interestingly, 
one of the classes of co-receptors that gD can interact with to initiate HSV-l en­
try are sites in heparan sulphate generated by the action of specific 3-0-sulpho­
transferases (Shukla et al. 1999). 

Both the choice of specific macrophage subsets, and macrophage activation 
status, can significantly alter expression levels of many receptors on macro­
phages. For example, freshly isolated monocytes express very low levels of hep­
aran sulphate GAGs, whereas macrophages derived by culture on plastic for 
10 days express high heparan sulphate GAG levels (Clasper et al. 1999; Saphire 
et al. 2001). This may explain why the susceptibility to infection with HIVof 
freshly isolated monocytes increases during maturation (Gendelman et al. 1986; 
Rich et al. 1992). Having varied and changing levels of virus receptors on mac­
rophages both increases the complexities of macrophage-virus interactions, and 
may help explain the tissue-specific susceptibility of cells to viral infection, par­
ticularly when infection is mediated via receptors thought to be ubiquitously ex­
pressed. For instance, different tissues have been reported to exhibit different 
heparan sulphate monosaccharide sequences (Lindahl et al. 1998; Jenniskens et 
al. 2000). The recent data suggesting that specific heparan sulphate sequences 
are recognised by viruses give us the best clues yet to understanding the tissue 
and cell-specific tropism of viruses that utilise GAGs for cell attachment and en­
try (Liu and Thorp 2002). Further analysis of saccharide sequences and struc­
ture of GAGs, and viral interactions with them, should improve the understand­
ing of their role in assisting viral infections and will facilitate the future devel­
opment of intervention strategies. 

4 
Conclusions 

The success of viral invasion is an important factor in determining disease 
severity, and tissue macrophages are in a position to pose barriers to the estab­
lishment and dissemination of virus infection. Viruses bind, both specifically 
and non-specifically, to a number of cell-surface receptors on macrophages; un­
derstanding the biology of host -cell receptors used by viruses for binding and 
entry into macrophages may reveal new features of viral pathogenesis and lead 
to new modalities for preventing disease caused by viruses. This review has fo­
cussed on macrophage receptors, including lectins and proteoglycans, which are 
utilised by a number of viruses (along with other intracellular parasites) for at­
tachment and entry. Even though the attachment process is usually very specific, 
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the range of viruses bound by these receptors suggests a degree of pattern rec­
ognition, and the spectrum of viruses bound by these receptors is likely to 
broaden further still with continued research. The outcome of the interaction 
between viruses and macrophages depends on the state of macrophage differen­
tiation, as it can affect the receptors expressed by the cell, with some viruses po­
tentially utilising alternative receptors on individual or different cells. In partic­
ular this highlights the importance of extending studies performed using mac­
rophage cell lines, to include the interaction of viruses with tissue macrophages 
(Turville et al. 2001), and also to study how receptor expression varies on the 
different populations of tissue macrophages. As we improve our understanding 
of the interaction of viruses with their cognate receptors, we improve the oppor­
tunity to identify new targets for rationally designed drugs, that are unique and 
selective for viruses and that minimise the risks of inopportune adverse effects 
on the host. Knowledge gained from research into the role of host cell molecules 
as virus receptors may also assist the future development of viral vaccines. 

One approach used when designing antiviral agents is to target specific viral 
replication processes, as has been done in the development of reverse transcrip­
tase and integrase inhibitors for antiretroviral therapy. An alternative approach 
is competition for the ligand recognised by the virus. This can either be relative­
ly non-specific, as in the case of carbohydrate ligands, or greater selectivity can 
be achieved using specific protein reagents, such as antibodies. Polyanionic 
compounds, such as dextran sulphate, have been tested as anti-HIV therapeutic 
agents to block the non-specific interaction that has been proposed to playa 
role in attachment of the HIV-1 virion to the cell surface (Abrams et al. 1989; 
Stafford et al. 1997). Although relatively cheap, sulphated polysaccharides are 
not specific inhibitors of HIV viral binding, being able to inhibit other viruses 
also (Leydet et al. 1998). The rational design of sialic acid analogues has led to 
the development of Relenza and Tamiflu, which bind with high affinity to the 
influenza virus neuraminidase to inhibit release of virus particles from infected 
cells. In general, however, sugars and polyanionic compounds do not have high 
affinities for their ligands and their bioproperties are considered poor. Proteins 
tend to have higher affinities for their ligands and bind more specifically. In ei­
ther case, one must hope that the binding site for the viral ligand differs from 
that of the physiological ligand of a receptor. The mapping of both virus binding 
and functional domains of receptors may allow targeting of specific areas of re­
ceptors for focussed design of antiviral agents; however, we will most likely have 
to hope for some functional redundancy if we are to successfully target host re­
ceptors to prevent viral infection. 
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Abstract Tuberculosis (TB) is rivalled only by the acquired immunodeficiency 
syndrome (AIDS) as a communicable cause of death. Yet of an estimated 2 bil­
lion individuals who have been infected with the pathogen Mycobacterium tu­
berculosis (Mtb), less than 10% will develop disease. For the remainder, natural 
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immunity appears sufficient to limit bacterial growth. An integral component of 
host protection to TB is the activated macrophage. Mtb recognition, phagocyto­
sis, vacuolar trafficking and redox-based killing are all enlisted as part of this 
cell's anti-tubercular arsenal. When assembled together with lymphocytes and 
stromal elements as part of the tuberculoid granuloma, macrophages also pro­
vide a physical constraint to further dissemination. The liaison between macro­
phages and T cells in particular forms much of the current basis of vaccination 
in immunologically naive subjects. Recent experimentation with post-exposure 
vaccines, however, suggests that cellular immunity may not be fully elicited by 
the existing single-dose regimen. New approaches that embrace small molecule 
chemistry to enhance or mimic macrophage effector mechanisms, or which 
sensitise Mtb to further immunologic insult, could help address this issue. Har­
nessing the macrophage as a therapeutic target could thus prove a useful ad­
junct to TB vaccination and chemotherapy in the future. 

Keywords Cytokine, Macrophage activation, Microbial recognition, 
Mycobacterium tuberculosis, Tuberculosis, Vaccination 
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Signal transducer and activator of transcription 
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The Relationship Between Mtb and Its Human Host: 
Ancient Origins, Modern Concerns 

Exhumation of the 3,203 year-old tomb of Nebwenenef, high priest of Egyptian 
pharaoh Ramses II, uncovered the mummified remains of a young boy harbour­
ing acid fast-bacilli (AFB) together with blood in his trachea (haemoptysis)­
hallmarks of pulmonary tuberculosis (TB) (Zimmermann 1979). A further 31 
mummies dated between 3700-1000 B.C. displayed angular kyphosis typical of 
Pott's disease, wherein TB causes long bone and spinal deformities (Morse et al. 
1964). More recently, DNA specific for the pathogenic tubercle bacilli has been 
detected in the tracheobronchial lymph node of a 1,300-year old Peruvian 
corpse (Salo et al. 1994). So begins the paleopathological record of mankind's 
ongoing struggle with one of nature's most durable and successful pathogens, 
Mycobacterium tuberculosis (Mtb). This relationship, steeped in antiquity and 
human suffering, still accounts for nearly 2 million deaths and 8 million active 
new cases per year (WHO 2000). The introduction of effective chemotherapy in 
1952 offered respite but patient non-compliance, governmental neglect and the 
advent of the AIDS epidemic have again helped raise the spectre of TB in the 
form of multi-drug resistant (MDR) strains. Add to this a global reservoir of 
clinically latent TB in nearly 2 billion infected people, an estimate which repre­
sents one-third of the earth's population (Dye et al. 1999), and the magnitude of 
the problem becomes palpable. Little wonder the search for novel anti-microbial 
drugs and protective vaccines has taken on renewed urgency (McKinney 2000). 
At the vanguard of this effort will be the quest for understanding how Mtb 
adapts to its human host, an interaction which focuses attention on the bacteri-
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urn's favoured dwelling and, paradoxically, its chief antagonist: the macro­
phage. l 

1.2 
Adversarial Profiles 

Macrophages and Mtb share not only the legacy of co-evolution but also that of 
contemporaneous discovery. In 1882, the German physician Robert Koch deliv­
ered his landmark address to the Berlin Physiological Society in which he pro­
vided clear evidence for the tubercle bacillus being the aetiologic agent respon­
sible for "consumption" (Koch 1882). In the same year, Russian-born zoologist 
Ilya (Elie) Metchnikoff had been watching through his microscope at home in 
Messina the wandering amoeboid cells in transparent starfish larvae, mobile 
cells which he knew could ingest solid particles from earlier experiments con­
ducted in coelenterates (Metchnikoff 1880). Out of these observations grew the 
realisation that such cells may in fact help defend the organism against "noxious 
intruders" (Metchnikoff 1921). By placing a thorn under the larva's skin, Metch­
nikoff witnessed the amoeboid cells accumulate at the site of injury. This experi­
ence served as the basis for his seminal theory of phagocytosis, a postulate soon 
formally demonstrated by the ability of gut mesoderm in the water flea, Daph­
nia, to engulf the fungal ascospores of Monospora bicuspidata (Metchnikoff 
1884). In turning his attention thereafter towards vertebrate immunity, Metchni­
koff established the chief importance of macrophages in providing innate de­
fence against invading micro-organisms (Metchnikoff 1905). Among his most 
significant and enduring findings was one of giant cells from resistant tubercu­
lar animals being capable of ingesting and killing Koch's causative agent 
(Metchnikoff 1888). 

Today we appreciate that macrophages represent one of the most highly spe­
cialised lineages in all of metazoan immunity. Besides their marked phagocytic 
profile (shared to a lesser extent by certain other cell types, e.g. retinal epithe­
lia), a number of additional characteristics have helped define their metier as 
host protectant and are especially relevant to TB. These include: (1) an abun­
dant fixed tissue distribution, with sessile populations in nearly all organ sys­
tems, notably within alveoli (alveolar macrophages; AMs) as well as interstitial 
and intravascular macrophages originally sequestered as monocytes from the 
pulmonary microcirculation; (2) rapid serosal motility in response to chemotac­
tic gradients generated within cavities such as the pleura; (3) multiple pathways 
for microbial killing and antigen presentation; and (4) an ability to co-opt other 
immunocytes to the site of infection, a task accomplished via the elaboration of 
some ten or more classes of secretory products (e.g. cytokines/chemokines, 
growth factors, coagulation factors, matrix proteins, bioactive oligopeptides, li­
pids, sterols, purines, pyridines and oxygen/nitrogen intermediates) (Nathan 

1 The term, "macrophage" as used here refers to all cells of the mononuclear phagocyte 
system, including monocytes. 
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1987; Gordon 1999). This degree of plasticity implies much in the way of co-or­
dinate regulation of a large number of genes. Indeed, macrophages are endowed 
with enormous biosynthetic capacity. Upon encountering Mtb, for example, mu­
rine macrophages regulate as many as 600-700 genes (of -11,000 micro arrayed) 
within the first 24 h (Erht et al. 2001). Some 10% of mRNA transcripts analysed 
in human macrophages are significantly induced (10- to 100-fold) as early as 6 h 
and up to 400-fold by 12 h post-infection (Ragno et al. 2001). Given that the vast 
majority of housekeeping genes remain unchanged and represent nearly 60% of 
the genomic total (Erht et al. 2001), a 20%-25% response of the remainder illus­
trates just what a potent signal Mtb is for the macrophage transcriptome. When 
accompanied by activating cytokines such as interferon gamma (IFN-y), this ge­
netic commitment may reach as high as 40% (Erht et al. 2001). 

Why is Mtb such a powerful natural stimulus for macrophage activation? The 
answer, in part, lies with the unique physiology of the organism itself. Mtb is a 
non-motile, rod-shaped actinomycete closely related to saprophytic bacteria 
such as M. smegmatis. Despite staining poorly by the usual gram-stain proce­
dure (owing to the impermeability of its thick, waxy cell wall), the tubercle ba­
cillus is nonetheless grouped together with gram-positive bacteria, since they all 
possess a single, cytoplasmic membrane (McKinney et al. 1998). Like other 
gram positives, Mtb also shares a peptidoglycan wall yet augments it with an ar­
ray of complex lipidoglycans, the latter of which may reflect the need to have 
resisted desiccation in an ancestral soil environment (Russell 2001). This lipid­
rich structure avidly retains Carbol fuchsin dye even in the presence of acidic 
alcohol (hence the term, "acid fast") as well as providing the decidedly foreign 
(non-self) determinants against which cells of the immune system have evolved. 

Where Mtb differs markedly from other gram-positive bacteria is in the slow 
rate at which it replicates: -20-24 h in synthetic medium or infected mammals 
(McKinney et al. 1998). This indolent growth contributes to the chronic nature 
of the disease and undoubtedly provides a continuous source of immune activa­
tion, some of which is potentially injurious. Moreover, it imposes lengthy 
(6-9 month) treatment regimens and substantial obstacles for experimentation. 
It may also enable the bacilli to reside within the same human host for possibly 
decades before reactivating later in life (Lillebaek et al. 2002). Such tissue-adapt­
ed dormancy could involve metabolic shutdown as a result of the cell-mediated 
immune response which contains but does not immediately eradicate the infec­
tion. Whether Mtb acquires significant heritable changes as part of this adapta­
tion remains unclear. Spoligotype and microarray analyses so far depict limited 
polymorphic diversity among clinical isolates, a genetic invariance which could 
have several explanations (Kato-Maeda et al. 2001). Multiple mutations and/or 
deletions, for example, may be poorly tolerated, or their low level representative 
of recent evolutionary dissemination among human hosts (Musser et al. 2000; 
Brosch et al. 2002). Alternatively, extant strain similarities may truly reflect a 
lengthy intracellular quiescence (Musser et al. 2000; Brosch et al. 2002), one 
which could account for the persistence of certain isogenic strains within com­
munities oflow endemicity or reinfection rates (Kato-Maeda et al. 2001). 
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Reactivation of latent TB occurs in -5% of infected individuals, while in an­
other 5%, "primary progressive" TB usually ensues within a year or two of 
transmission (McKinney et al. 1998; Parrish et al. 1998; Flynn and Chan 2001). 
This still leaves a staggering 90% of people infected with the tubercle bacillus 
who never develop disease. The inescapable conclusion, often overlooked, is that 
in the vast majority of cases host immunity appears more than adequate to hold 
the organism in check-indeed, so successful is it that many human tuberculous 
lesions are completely sterilised with time (reviewed in McKinney et al. 2001). 
Part of this success can be ascribed to the activated macrophage, a concept first 
enunciated and aptly shown in Lurie's classic studies over 60 years ago (Lurie 
1939, 1942). Yet despite the insights provided by this work and that of earlier 
pioneers such as Metchnikoff, neither could have foreseen the complexity of the 
macrophage anti-tubercular arsenal, an elaborate system of defence that defies 
its phylogenetically primitive origins. 

2 
Beyond Metchnikoff: Emerging Complexity 
of the Macrophage Anti-Tubercular Arsenal 

2.1 
Sensory Logic of the Macrophage Against Mtb 

2.1.1 
Receptors for Mtb Recognition 

Located at the interface of gaseous exchange between the outside world and 
respiring host, AMs appear well situated to sample the incoming repertoire of 
pathogen-specific motifs belonging to airborne infectious agents like Mtb. The 
necessity of AMs to discriminate not only between self and the external environ­
ment, but also between different micro-organisms, poses a serious challenge to 
innate pulmonary immunity, and one compounded by the high mutation rates 
of many inhaled pathogens. This challenge, however, has in part been met by an 
evolving set of receptors capable of recognising invariant microbial structures 
not found in higher eukaryotes. Janeway first proposed the term "pathogen-as­
sociated molecular patterns" (PAMPs) to embrace these conserved motifs and 
"pattern-recognition receptors" (PRRs) for the host apparatus which detects 
them (Janeway 1989). PAMPs share common features which allow efficient host 
recognition: prokaryotic specificity, invariance within a given microbial class 
(and hence detection by a limited number of germline-encoded PRRs), and last­
ly, obligate roles in microbial survival, such that alteration or loss would either 
be lethal or lead to a greatly reduced adaptive fitness. Microbial genes contain­
ing PAMPs would therefore not be subject to a high incidence of mutation and 
"escape mutants" less likely to be selected (Medzhitov 2001). 

PAMPs include cell wall components such as yeast mannans, formylated bac­
terial peptides, trypanosome glycosyl phosphatidylinositol (GPI) linkages, and 
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lipoteichoic acids and lipopolysaccharides (LPS) on gram-positive and gram­
negative organisms, respectively (Aderem and Ulevitch 2000; Medzhitov 2001). 
Likewise, recognition of Mtb by macrophages takes advantage of the unique lip­
id-rich outer envelope found in all Mycobacterium spp., thus satisfying the first 
two PAMP criteria. That this unusually complex cell wall contributes to the evo­
lutionary fitness of Mtb-thereby complying with the third PAMP criterion-is 
based on a remarkable ability to resist chemical, physical and chemotherapeutic 
stresses, to withstand macrophage killing mechanisms in order to replicate in­
tracellularly, and to act as a potent adjuvant, the latter of which may elicit im­
munopathology as an to aid further bronchial spread (Dannenberg and Rook 
1994; McKinney et al. 1998). 

Largely due to the efforts of Brennan and co-workers, the surface chemical 
composition of virulent Mtb has been well characterised (reviewed in Baulard et 
al. 1999), enabling some of the molecular signatures buried within to be defined. 
Prominent among the glycolipids non-covalently attached to the peptidoglycan­
arabinogalactan-mycolate scaffold is the mannose-capped lipoarabinomannan 
(ManLAM) (Fig. 1). Man LAM is recognised in non-opsonised form by several 
human and mouse macrophage PRRs: Toll-like receptors (TLRs), mannose (C­
type lectin) receptors (MRs), and CD14 (Pugin et al. 1994; Schlessinger et al. 
1994; Schlessinger et al. 1996; Prigozy et al. 1997; Means et al. 1999; Underhill et 
al. 1999b). Within this overlap, as well as for other Mtb cell wall components, a 
finer specificity of recognition has begun to emerge. For example, TLRs 2 and 4 
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both respond to ManLAM, whereas only TLR2 recognises AraLAM from rapidly 
growing mycobacteria (Means et al. 1999; Underhill et al. 1999b; Means et al. 
2001). Class A scavenger receptors ignore both mannosylated and arabinosyl 
LAM moieties yet scrutinise trehalose 2-sulphate derivatives (Ernst 1998). TLRs 
2 and 6 scan peptidoglycan, but only TLR2 detects lipopeptides, phosphatidyl­
inositol mannosides or the Mtb 19-kDa lipoprotein (Brightbill et al. 1999; Un­
derhill et al. 1999b; Ozinsky et al. 2000; Jones et al. 2001). 

Receptor co-operativity confers another level of sophistication in which dis­
crete signalling modules are assembled to activate certain macrophage respons­
es and direct effector localisation. TLRs 2 and 6 physically associate in order to 
recognise peptidoglycan and signal tumour necrosis factor alpha (TNF) produc­
tion, while TLR4 can elicit TNF as a homodimer (Ozinsky et al. 2000). Induction 
of this cytokine, as well as interleukins (IL)-6 and -12, appears reliant on 
MyD88 binding to the cytoplasmic tail of each of these TLRs, whereas nitric ox­
ide (NO) secretion does not (Brightbill et al. 1999; Kawai et al. 1999; Underhill 
et al. 1999a,b; Means et al. 2001). Combinatorial effects also are evident for 
CD14, a soluble or GPI-linked membrane-bound receptor which lacks a cyto­
plasmic tail and therefore requires binding partners to help transduce its intra­
cellular signal. Here, CD14 can complex with TLR2 to bind peptidoglycan (Yang 
et al. 1999b) or with MRs on human macrophages to recognise LAM (Bernardo 
et al. 1998), a detection couplet which may acquire further sensitivity via the in­
teraction of LAM with the LPS-binding protein (Savedra et al. 1996). Once asso­
ciated with a particular PRR, the particle-receptor complex could have several 
destinational fates. Binding of LAM to surface MRs leads to lysosomal delivery 
(Prigozyet al. 1997) and TLR2, singly or in combination with TLR6, is recruited 
to phagosomes where it may survey the contents as part of an ongoing homeo­
static mechanism (Underhill et al. 1999a; Ozinsky et al. 2000). 

2.1.2 
Receptors for Mtb Uptake 

Metchnikoff invoked the term, Jresszellen (or devouring cells), in his manuscript 
on Daphnia to describe the gustatory activities of primitive mesoderm 
(Metchnikoff 1884). Having tasted the lipid-laden surface of Mtb, macrophages 
subsequently employ a variety of phagocytic receptors including PRRs to ingest 
the organism. Unlike pinocytosis, which involves passive solute uptake, or re­
ceptor-mediated endocytosis, which enlists clathrin-coated pits for receipt of 
smaller molecules, phagocytosis uses both receptor diversity to increase its par­
ticle range (>0.5 .urn) and actin-driven cytoskeletal remodelling to increase the 
rate of internal is at ion (Aderem and Underhill 1999). For Mtb, a particle 1-4.um 
in length and 0.3-0.6 .urn in diameter, this task extends primarily to the comple­
ment (CR) and Fc (FcR) receptor families, although some assistance may be 
rendered by CD43 and fibronectin as well (Fratazzi et al. 2000; Pasula et al. 
2002). These receptors enable macrophages to capture mycobacteria via comple­
ment or antibody (Ab) fixation, respectively. They also indirectly bind different 
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Fig. 2 Receptor-dependent fate of Mtb in macrophages 

solvent structures on Mtb: C3b, C3bi, and C4b cleavage products (recognised by 
CRs 1, 3 and 4) attach lipid/carbohydrate moieties while Ig domains ensure a 
(glyco)protein template contact (Ernst 1998). 

A role for CRs was first suggested by experiments in which small amounts of 
fresh (complement-replete) autologous non-immune serum led to enhanced 
phagocytosis by human monocytes (Schlesinger et al. 1990). Opsonic entry of 
virulent Mtb indicated that as little as 1% serum was sufficient for maximal en­
hancement (Schlesinger et al. 1990). This percentage is found in the lungs of 
healthy non-smokers for C3bi and C4b, primarily secreted by AMs, type II epi­
thelia and fibroblasts (Reynolds and Newball 1974; Hill 1993). Human AMs ap­
pear particularly reliant on CR4 to mediate mycobacterial uptake (Hirsch et al. 
1994; Zaffran et al. 1998) while in human monocytes, Mtb internalisation may 
be blocked by as much as 80% using monoclonal antibodies against CR3 
(Schlesinger et al. 1990). Further evidence for CR3 involvement comes from re­
cent studies of CDllb-deficient mice, since this integrin serves as the a-chain in 
the CD11b/CD18 heterodimer (Fig. 2). Resident macrophages from CD11b-/--t 
mice exhibit 40%-50% lower levels of serum-mediated Mtb uptake and a 50%-
60% reduction in non-opsonic binding (Melo et al. 2000), the latter normally 
mediated via capsular polysaccharides interacting with the CD 11 b-glucan bind­
ing site (Cywes et al. 1997). Despite the reduced internalisation, CD11b-/- mice 
were no more or less susceptible to TB, like their CRr/- counterparts (Hu et al. 
2000; Melo et al. 2000). Clearly other receptors help control growth of the patho­
gen. 
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Engagement of FcRs may lead to better restriction of Mtb growth as it usually 
triggers an oxidative burst, while ligation of CRs does not (Douvas et al. 1986; 
Kobzik et al. 1990). FcR participation also depends on the maturational state of 
the cell; it is all but absent in human monocytes (Schlesinger et al. 1990) yet op­
erative in terminally differentiated macrophages (Malik et al. 2000, 2001). Abun­
dant expression of FcyRsI, IIA and IlIA on adult human AMs together with ele­
vated pulmonary IgG levels during TB also raises the likelihood that FcR-medi­
ated uptake of Mtb occurs in vivo (Naegel et al. 1984; Fukushima et al. 1991; 
Sharma et al. 1992). Such uptake leads to a rise in cytosolic Ca2+ which pro­
motes phagosome maturation (Armstrong and Hart 1975; Malik et al. 2000), 
nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) oxidase as­
sembly (Zhou et al. 1997; Melendez et al. 2001), and, at least in the case of hu­
man macrophages, killing (Malik et al. 2000) (Fig. 2). 

The above studies indicate that the route of Mtb entry can influence the or­
ganism's fate, and raise the issue of whether Mtb internalisation is solely an ac­
tive host process or assisted by the pathogen. The Mtb mcel gene, for example, 
heterologously conferred invasive properties on Escherichia coli for HeLa cells 
(Arrunda et al. 1993) although its function in Mtb awaits confirmation. Prefer­
ential uptake by CRs and avoidance of an oxidative burst may be mediated by 
mycobacteria through salvage of C2a to assemble a C3 convertase on its surface, 
resulting in cleavage and deposition of C3bi (Schorey et al. 1997). Others have 
suggested that Mtb may selectively use cholesterol-rich caveolae or lipid rafts as 
portals of entry (Pieters 2001). Mycobacterial products assigned such a func­
tion, however, have yet to be identified. 

2.2 
Cognitive Logic of the Macrophage Against Mtb 

2.2.1 
Intracellular Sorting and the Conduits for Antigen Presentation and Elimination 

Almost immediately after uptake, macrophages attempt to dispose of Mtb via a 
series of vesicular transportation pathways leading to lysosomal degradation. 
These vesicles were among the most striking ultrastructural features of TB gran­
ulomata noted by early investigators (Dumont and Sheldon 1965). We now re­
alise they also help establish memory of the encounter through their intersec­
tion with major histocompatibility complex (MHC) and CD1 loading compart­
ments. 

Podal closure around bacilli and F actin depolymerisation give rise to newly 
formed phagosomes (PGs) displaying a composition similar to the plasma 
membrane from which they originate. However, many of the plasma membrane 
proteins (including FcyRII and MR; Muller et al. 1983) are lost within 3-5 min 
after PG formation (Pitt et al. 1992; Oh and Swanson 1996). Others, like MHC 
class II, transferrin receptor, cellubrevinlVAMP3, soluble N-ethylmaleimide-sen­
sitive factor attachment protein (SNAP)-23 and syntaxins 3 and 4, remain from 
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20 min to 72 h on the mycobacterial PG surface (Clemens and Horwitz 1995; 
Fratti et al. 2000). So does ARF6 (Fratti et al. 2000), which in addition to its in­
volvement in actin rearrangement, recycles endosomal vesicles to the plasma 
membrane (Al-awar et al. 2000). This protein profile, together with the fact that 
nascent PGs become accessible to plasma membrane-derived glycosphingolipids 
and exogenously added tracers like transferrin as early as 5 min after Mtb up­
take, all suggest an interaction with the recycling endosome network (Clemens 
and Horwitz 1996; Russell et al. 1996). Fusion with early endosomes similarly 
results in delivery of the small monomeric guanosine 5' triphosphatase (GT­
Pase) rabS (Clemens et al. 2000b; Fratti et al. 2000), considered the critical timer 
for endosomal docking and fusion (reviewed in Zerial and Mcbride 2001). 

It is at this juncture that the mycobacterial PG either proceeds toward a hy­
drolytically competent phagolysosome (PL) or undergoes maturational arrest 
(Via et al. 1997; Fratti et al. 2000). The outcome appears largely dictated by the 
route of Mtb entry and activation status of the host cell (Fig. 2). Prevention of 
PL fusion was first observed by Hart and colleagues using unstimulated macro­
phages in which viable Mtb failed to co-localise with acid phosphatase-rich lyso­
somes (Armstrong and Hart 1971; Armstrong and Hart 1975). In contrast, Mtb 
that had been coated with Ab or rendered non-viable by irradiation were deliv­
ered to lysosomes. Work conducted 25-30 years later suggests the block resides 
at the level of rabS and one of its effectors, the early endosome auto antigen 1 
(EEA1) (Fratti et al. 2001). EEAl, a tethering molecule that normally couples 
vesicle docking with SNAP receptor (SNARE) priming, is excluded from unop­
sonised mycobacterial PGs while present on those encircling latex beads. More­
over, EEAl is recruited to the latter PGs within 10 min of uptake via its FYVE­
domain association with phosphatidyl inositol 3-phosphate (PI3P), a product 
generated within the PG membrane (ElIson et al. 2001) by the class III PI3P ki­
nase VPS34, which directly binds rabS (Fratti et al. 2001; Vieira et al. 2001). An­
tibody neutralisation or use of cells deficient for VPS34 have both established 
the necessity of this kinase for PL development. 

The specific involvement of PI3P could also link Ab-opsonised Mtb with the 
PL maturation initially seen by Armstrong and Hart (1975), an uptake presum­
ably mediated via FcyRs since F'ab-coated Mtb does not lead to vacuole acidifi­
cation (Malik et al. 2000). Clustered FcRs provide docking sites for Syk kinase 
which has been implicated in lysosomal targeting (Bonnerot et al. 1998). Syk 
forms the nexus for at least three signalling pathways: (1) class I PI3 kinase, 
which generates PI(3,4,S)P3 for amphiphysin lIm, dynamin, ARF6 and Rab 11 
recruitment, leading to early events such as pseudopod extension and PG clo­
sure; (2) PLCy activation and PI(1,4,S)P3, diacylglycerol and Ca2+ mobilisation; 
and (3) class III PI3 kinase, which generates PI(3)P for EEAl-mediated RabS/ 
SNARE association and the next stage of PG-lysosome fusion (Crowley et al. 
1997; Aderem and Underhill 1999; Greenberg and Grinstein 2002). This stage, 
characteristically seen in macrophages activated with IFN-y plus LPS, coincides 
with a loss of rabS from the PG (Via et al. 1997) and inaccessibility to transfer­
rin (Schaible et al. 1998). The latter effect may help limit the supply of iron 
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chelated by Mtb siderophores for microbial growth (Gobin and Horwitz 1996; 
De Voss et al. 2000). By 4 h post-uptake, the Mtb PL within activated macro­
phages has acquired the late endosomal marker rab7, lysosomal integral mem­
brane proteins (LGPS or LAMPS), and vacuolar H+ ATPase (V-ATPase) pump 
subunits (Xu et al. 1994; Fratti et al. 2000), the last responsible for a drop in lu­
menal pH from -6.5 to 5.2 (Schaible et al. 1998). This environment allows for 
the processing of immature cathepsins and activation of acid phosphatases 
(Armstrong and Hart 1975; Ullrich et al. 1999) following their likely arrival from 
the trans-golgi network through the aid of EEA1 binding to syntaxin 6-contain­
ing vesicles (Fig. 2; Simonsen et al. 1999; Fratti et al. 2002). Such changes are 
thought to precede a decrease in mycobacterial viability (Schaible et al. 1998). 

How the transition from PG to PL occurs is still unclear. It could enlist re­
peated, transient vesicular transfer between PGs and late endosomes!1ysosomes 
(a "kiss-and-run" model; Desjardins 1995) or undergo direct fusion with these 
organelles to form a hybrid compartment (Mullock et al. 1998). The recent dis­
covery of the Rab7 effector RILP (Rab7-interacting lysosomal protein; Can­
talupo et al. 2001) has shed some light on the directional nature of PL traffick­
ing. RILP recruits dynein-dynactin motor complexes to Rab7-containing late 
endosomes!1ysosomes, resulting in vesicular transport to the minus end of mi­
crotubules rather than towards the macrophage periphery (Jordens et al. 2001). 
Whether the Rab7-RILP complex is important for polarised maturation of Mtb 
PLs awaits enquiry, although in infected fibroblasts Rab7 appears dispensable 
(Clemens et al. 2000b). SNARE proteins such as syntaxin 7 and VAMP7, both re­
quired for late endosome-lysosome fusion in human AMs (Ward et al. 2000), or 
the recently cloned Vam6p (Caplan et al. 2001), are among other candidates for 
this role. 

Not all endosomal trafficking proceeds terminally towards lysosomes, which 
can themselves recycle some of their cargo to the plasma membrane via newly 
described exosomes (Denzer et al. 2000). For Mtb-derived antigens to be pre­
sented at the cell surface, loading and sorting must entail retrograde transport. 
The compartment in which antigens are processed and exported for presenta­
tion is very much dependent on their composition. Mtb N-formyl methionine 
peptides, for example, associate with H2-M3 MHC class 1b in the endoplasmic 
reticulum (Chun et al. 2001), while Ag85 is bound to I-Ab in specialised MHC 
class II compartments (MIlCs) (Ramachandra et al. 2001). In humans the latter 
are enriched for LAMPs 1-3, acid hydrolases, and HLA-DM and HLA-DO which 
regulate peptide-MHC class II assembly (Geuze 1998). Recycling of antigen­
MHC complexes to the plasma membrane is also rapid, with Ag85-bound I-Ab 
being detected as soon 20 min after uptake (Ramachandra et al. 2001). Mtb (gly­
co)lipids encounter a different set of antigen-presenting molecules: the MHC 
class I-related CD1 family (Moody and Porcelli 2001). CD1 isoforms are dis­
tributed along the endocytic highway; on the plasma membrane/early endo­
somes (CD1a), early to late endosomes (CD1c), late endosomes!1ysosomes 
(CD1d/CDle) and MIlCs (CDlb). There is thus ample opportunity to sample 
Mtb lipids like LAM, mycolic acids, polyisoprenols, phosphatidyl-inositol man-
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nosides, and lysocardiolipin detected within the macrophage endosomal net­
work (Beatty et al. 2000; Ficsher et al. 2001). Once presented at the surface, hu­
man T cells recognising these Mtb-derived glycolipids produce cytokines such 
as IFN-y (Stenger et al. 1997) to further incite macrophage antimicrobial re­
sponses. 

2.2.2 
Receptors for Activation 

Discovery of IFN-y as the principal macrophage-activating cytokine (Nathan et 
al. 1983; Schreiber et al. 1983; Nathan et al. 1984) soon led to reports of its effec­
tiveness in curtailing Mtb replication (Rook et al. 1986a; Flesch and Kaufmann 
1987). It also opened the door to a molecular description of how phagocytes re­
ceive and integrate such signals from cell surface to nucleus (Bach et al. 1997). 

When both chains of the IFN-yreceptor (IFNGR) bind cytokine, they dimer­
ise, allowing Janus kinases Oaks) 1 and 2 attached to their cytoplasmic tails to 
phosphorylate each other. Jaks can further phosphorylate IFNGRI via the classi­
cal pathway (Ramana et al. 2002) to then create docking sites for STATl (signal 
transducer and activator of transcription-1). These latent transcription factors 
pair to form gamma-activated factors (GAFs) and translocate to the nucleus via 
the importin-a5 complex (McBride et al. 2002), where they bind IFN-y activation 
site (GAS) elements in the promoters of IFN-y-inducible genes. All this tran­
spires within 5-20 min of receptor engagement (Bach et al. 1997; Darnell 1997). 
It also initiates waves of secondary transcription via target genes like interferon 
regulatory factor-l (IRF-l) and IFN consensus sequence binding protein (ICS­
BP/IRF-8), which themselves enhance the later expression of macrophage genes 
such as inducible nitric oxide synthase (NOS2) and FcyRI (Contursi et al. 2000). 
Autocrine stimulation of this pathway during TB is also likely, since human AMs 
are a significant source ofIFN-y (Fenton et al. 1997). 

That IFN-y and IFNGR signalling components are critical for protection 
against TB is based on several lines of evidence. First, latently infected individu­
als or exposed asymptomatic household contacts exhibit higher levels ofIFN-y­
secreting bronchoalveolar lavage (BAL) or peripheral blood mononuclear cells 
(PBMC) than do patients with culture-positive pulmonary TB (Schwander et al. 
2000; Pathan et al. 2001). Thus IFN-y expression may correlate with resistance 
to developing disease. Second, loss-of-function mutations lead to TB suscepti­
bility, as most dramatically demonstrated in IFN-y-I- (Cooper et al. 1993; Flynn 
et al. 1993), IFN-yRI-I- or STATl-1- mice 0. MacMicking, unpublished results). 
The same could apply to humans; hypofunctional and nonfunctional (null) mu­
tations in IFNGRs and STATl all lead to greatly impaired anti-mycobacterial im­
munity, as do mutations in the p40 subunit of the IFN-y-inducing cytokine, IL-
12, or the IL-12 receptor chain (Casanova and Abel 2002). Human macrophages 
may also be made refractory to IFN-y signalling by Mtb itself, which can inter­
fere with STATl binding its transcriptional coactivators CBP and p300 (Ting et 
al. 1999). Lastly, transgenic IFN-y reconstitution in the lungs of nullizygous 
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mice had significant ameliorative effects (Collins and Kaufmann 2001), while 
provision of recombinant IFN-y alleviated bacterial burdens in patients who 
were non-responsive to antimicrobials and conferred bactericidal activity on 
human macrophages in culture (Condos et al. 1997; Bonecini-Almeida et al. 
1998). 

The effectiveness ofIFN-y in programming macrophages for Mtb clearance is 
augmented by the action of another cytokine, TNF (Chan et al. 1992). Such syn­
ergy is a recurring theme in cytokine biology and provides several advantages: 
(1) increased diversity of the responding host gene repertoire due to alternate 
transcription factor usage; (2) higher rates of synthesis for those genes with 
promoters possessing binding sites for both sets of transcription factors; and 
(3) a lower signalling threshold brought about by shared pre-existing compo­
nents. The latter is especially germane given the relative paucity of IFNGRs 
(4,000-12,000/cell) on the macrophage surface (Pace et al. 1983; Finbloom et al. 
1985). Examples of the other two benefits are readily appreciated if one exam­
ines NOS2 induction. This 260-kDa flavoenzyme requires each of its monomers 
to be transcribed via STATl/IRF1-dependent signalling, yet induction is pro­
foundly enhanced by a second signal, such as nuclear factor (NF)-KB originating 
from TNF or LPS (or LAM) stimulation (MacMicking et al. 1997b; Chan et al. 
2001). Moreover, TNF elicits GTP cyclohydrolase 1, which furnishes an essential 
cofactor (BH4) for NOS2 catalysis, while NF-KB signals the argininosuccinate 
synthetase and cationic amino acid transporter 2 genes needed to regenerate 
and import L-arginine, a NOS2 substrate (Bogdan 2001). 

Not only are there co-operative effects between TNF and IFN-y but also be­
tween individual TNF receptors 1 (TNFR1) and 2 (TNFR2); their co-ligation in 
the presence ofIFN-y leads to a more sustained NO production than with either 
alone (Riches et al. 1998). This is consistent with a "ligand passing" model in 
which at low TNF concentrations, the higher affinity and more rapid Ka/Kd of 
TNFR2 ensures ligand capture for TNFR1 as part of a binary complex (Pickard 
et al. 1997). TNFR1 then preferentially recruits TNF receptor-associated factor 2 
(TRAF2) by virtue of its higher affinity for the TNFR1-associated death domain 
protein (TRADD) (Baud and Karin 2001). NOS2 induction thereby benefits from 
the coupling of a stronger intracellular signal issued by TNFR1 (Riches et al. 
1998) with the extracellular ligand sensitivity provided by TNFR2. 

In mice lacking TNFR1 or TNF, or receiving inhibitory TNFR fusion proteins, 
Mtb grows unabated until death of the host within weeks after infection com­
pared with months for untreated controls (Adams et al. 1995; Flynn et al. 1995; 
Bean et al. 1999). Some of this marked susceptibility was attributed to dimin­
ished macrophage NO production within the first 10 days (Flynn et al. 1995). In 
humans, administration of infliximab (an anti -TNF mAb) as part of the treat­
ment for rheumatoid and Crohn's disease led to prompt recrudescence of TB in 
70 patients who were latently infected (Keane et al. 2001). Natural inhibitory 
forms of soluble TNFRs (sTNFRI and II) comprising just the extracellular do­
main could also diminish TNF levels, especially since these are greatly elevated 
in the serum of active TB patients versus healthy non-TB cohorts, TB contacts 
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or those on antituberculous therapy (Juffermans et al. 1998). Heightened release 
of sTNFRs has similarly been seen in vitro for Mtb-infected AMs (Balcewitz­
Sablibska et al. 1998). Each report suggests the TNF/TNFR axis otherwise pro­
tects against TB in the human population. 

Secreted lymphotoxin (LT-a3, or TNF-,B) serves as another ligand for both 
TNFRs, and exhibits affinity constants commensurate with those of soluble TNF 
(Loetscher et al. 1991). Yet unlike TNFR1-1- or TNF-1- mice, LTa-l- chimeras 
showed uncompromised NOS2 induction despite being equally susceptible to 
TB (Roach et al. 2001). This highlights two points. First, there exist mechanisms 
besides NO for Mtb containment, notably structural integrity of the granuloma 
(Roach et al. 2001). Second, lung macrophages probably rely more heavily on 
autocrine TNFR signalling to induce NO synthesis, since TNF (primarily a 
monokine) substitutes in the absence ofLT (a lymphokine) but not vice versa. 

TLR2 and members of the P2 purinergic receptor family have recently been 
added to the list of receptors involved in activating the macrophage anti-tuber­
cular arsenal. Specific TLR2 engagement using the Mtb 19-kDa lipoprotein elic­
its mouse macrophage NOS2 for restriction of Mtb growth, while in human 
AMs a novel NOS2-, TNF-independent pathway apparently exists (Thoma­
Uszynski et al. 2001). P2 purinergic receptor subtypes are likewise engaged in 
differential fashion: P2X7 activates cytosolic Ca2+ release and phospholipase D 
for maturation of Mtb phagosomes in human macrophages (Kusner and Adams 
2000; Kusner and Barton 2001), whereas subtypes other than P2X7 stimulate 
Mtb killing via NOS2 and possibly reactive oxygen intermediates (ROI) in the 
mouse (Sikora et al. 1999). 

Though not considered a macrophage-activating cytokine in the classical 
sense, vitamin D3 [25(OHhD3] and its ligand-binding receptor (VDR) deserve 
special mention in the context of TB. Calcitriol [1,25-(OHhD3] was shown in 
early studies to be crucial in aiding the tuberculostatic action of IFN -y in human 
macrophages (Rook et al. 1986b; Crowle et al. 1987). This bioactive D3 metabo­
lite is synthesised from 25(OHhD3 by 25(OHhD3-1 a-hydroxylase and degrad­
ed by 24-hydroxylase, enzymes respectively stimulated and inhibited by IFN-y 
(Adams and Gacad 1985; Koeffler et al. 1985; Reichel et al. 1987). Calcitriol in 
turn promotes STATl-VDR association and the transactivation of IFN-y-induc­
ible genes (Vidal et al. 2002), suggesting an involvement beyond its well-known 
effects on macrophage differentiation (Hmama et al. 1999). It is therefore not 
surprising that some correlation between VDR affinity and the anti-tubercular 
efficacy of individual metabolites was noted in the initial studies. More recent 
experiments suggest non-orthodox VDR signalling could account for these ob­
servations, because D3 activates PI3 kinase plus an oxidative burst in PBMCs 
and NOS2 in human and mouse myelomonocytic cell lines (Rockett et al. 1998; 
Sly et al. 2001). Moreover, D3 may contribute to protection in vivo: VDR poly­
morphisms and TB susceptibility appear to be linked in certain African and 
Asian populations (Bellamy et al. 1999; Wilkinson et al. 2000). 
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2.2.3 
Deployment of Macrophage Tuberculostatic and (idal Mechanisms 

Nathan and colleagues developed stringent criteria to assess whether a given 
macrophage effector mechanism operates against a particular pathogen 
(MacMicking et al. 1997b). They include: (1) correlation of host gene expression 
with resistance; (2) conferral of direct antimicrobial activity by the host gene or 
its product (see e.g. Karupiah et al. 1993); (3) loss of host gene function leading 
to enhanced microbial growth in vitro (via pharmacologic inhibition, RNA in­
terference) or disease exacerbation in vivo (using natural and engineered host 
mutants, or drug ablation); and (4) evolution of microbial genes resistant to the 
mechanism in question. The latter would infer its existence through selective 
pressure. Based on all four criteria, reactive nitrogen intermediates (RNI) aris­
ing from the generation of NO by NOS2 emerge as the primary, albeit imperfect, 
candidates against Mtb. Two others, ROI and PL fusion, await further clarifica­
tion, while more recently a fourth, the fJ-defensins, has yet to be demonstrated 
as a natural product of human macrophages (Kisich et al. 2001). 

The case for RNI in vitro is compelling. Direct exposure of Mtb to as little as 
90 ppm of NO gas -approaching the exhaled concentrations found for some 
pulmonary TB patients (Wang et al. 1998) -kills more than 99% of plated or­
ganisms (Long et al. 1999). Unstable derivatives such as nitrogen dioxide (N02) 

appear even more potent (Yu et al. 1999), while the acidified milieu of the mac­
rophage PL may help retrieve additional NO equivalents from stably oxidised 
forms (e.g. N02 -) by protonation to HN02 and subsequent dismutation 
(MacMicking et al. 1997b). Indeed, acidified NaN02 was as one of the earliest 
compounds employed in demonstrating a role for NO in direct killing of Mtb 
(Chan et al. 1992). Susceptibility of various Mtb strains to acidified NaN02 cor­
related inversely with their virulence in guinea-pigs (O'Brien et al. 1994) as well 
as suggesting the presence of detoxifying pathways on behalf of the pathogen 
(Rhoades and Orme 1997). 

Causal relationships between macrophage NOS2 expression and loss of Mtb 
viability confirm results found in cell-free systems. Mtb inhibition in Bcgf and 
Bcg' macrophages correlates with NO production (Arias et al. 1997), while acti­
vated murine macrophages treated with NOS inhibitors (Denis 1991a; Chan et 
al. 1992) or in which the NOS2 locus has been genetically disrupted (Bodnar et 
al. 2001; Erht et al. 2001) exhibit little tuberculocidal activity. In human macro­
phages, eliciting NOS2 via cytokines and/or microbial products appears more 
complex, akin to human lung epithelia where at least three independent stimu­
li-IFN-y, TNF, and IL-l-are required to produce a relatively weak transcrip­
tional response due to STAT! and NF-KB acting at some distance (-5-8 kbp) 
from the start site (Ganster et al. 2001). Restricted NOS2 cofactor availability, 
especially BH4, could also contribute to the generally lower RNI production of 
human versus rodent cells (Berholet et al. 1999). Nonetheless, recent evidence 
shows that macrophages taken from the inflamed lungs or peripheral blood of 
TB patients, or AMs from healthy donors subsequently infected in vitro, can ex-
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press NOS2 and produce mycobactericidal amounts of NO (refer to Dlugovitzky 
et al. 2000; Nathan and Shiloh 2000; Means et al. 2001; Wang et al. 2001). More­
over, where examined, anti-tubercular effects were blocked by NOS inhibitors. 

A case for RNI -dependent protection extends to the intact host. Macrophage 
NOS2 was present in TB granulomas of humans (Fachetti et al. 1999) and resis­
tant wild-type mice (MacMicking et al. 1997a; Mogues et al. 2001); the latter 
were rendered susceptible with specific NOS2 inhibitors like Ni-(l-iminoethyl)­
L-Iysine (MacMicking et al. 1997a) and drugs of lower isoform specificity such 
as amino guanidine and N-methyl-L-arginine (Chan et al. 1995; Flynn et al. 
1998). More convincing evidence is provided by NOSrl - mice, which are ex­
tremely sensitive to Mtb infection (MacMicking et al. 1997a; Mogues et al. 2001; 
Scanga et al. 2001). The same is true of other gene-deficient mice (IFN-y-I-, 
TNFR1-1- or TNF-1-) as well as glucocorticoid-immunosuppressed and mal­
nourished animals exhibiting secondary defects in macrophage NOS2 expres­
sion (reviewed in Nathan and Shiloh 2000). Lastly, the presence of RNI resis­
tance genes may indirectly suggest a role for this pathway in the host response 
to TB. NoxRl, noxR3, alkyl hydroperoxide reductase (ahpC), peptidyl methio­
nine sulphoxide reductase (msrA), dihydrolipoamide dehydrogenase (Lpd) and 
dihydrolipoamide succinyl-transferase (SucB) are each posited as Mtb RNI resis­
tance genes (Nathan and Shiloh 2000; St. John et al. 2001; Bryk et al. 2002), al­
though chromosomal inactivation has yet to corroborate these claims (Stewart 
et al. 2000; Springer et al. 2001). Disruption of the oligopeptide permease oper­
on (oppBCA), which can transport NO-thiol adducts across the mycobacterial 
cytoplasmic membrane, confers resistance to S-nitrosoglutathione and suggests 
that NO could be more effective as a congener (Green et al. 2000). 

Virulent Mtb grown in culture or in murine macrophages are relatively resis­
tant to the effects of ROI, and host cells either treated with ROI scavengers or 
deficient in the production of superoxide (02-) still managed to restrict Mtb 
replication (Flesch and Kaufmann 1987; O'brien and Andrew 1991; Chan et al. 
1992; Adams et al. 1997). Likewise, an oxidative burst triggered by mycobacteri­
al agonists in IFN-y-primed NOSrl - macrophages still failed to inhibit microbi­
al growth (MacMicking et al. 1995; Erht et al. 2001). Mice with targeted disrup­
tions in either gp47Phox or gp91Phox subunits of the periplasmic NADPH oxidase 
responsible for O2- synthesis allow very modest increases in lung bacterial bur­
dens versus wild-type controls (Adams et al. 1997; Cooper et al. 2000). More­
over, humans with crippling mutations in anyone of four NADPH oxidase sub­
units (collectively referred to as chronic granulomatous disease; CGD) do not 
appear especially vulnerable to infections by mycobacteria (Segal et al. 2000), 
although anti-tubercular immunity may be impaired in some patients (Lau et al. 
1998). 

A major reason for the limited potency of ROI against Mtb is that the bacteri­
um robustly expresses ROI-detoxifying enzymes (e.g. catalase, superoxide dis­
mutase, peroxiredoxins) both within and outside activated human macrophages 
(Andersen et al. 1991; Mariani et al. 2000). Such enzymes could also serve to 
counteract oxidative species arising as by-products of bacterial respiration. Ad-
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ditionally they may work in concert with RNI neutralising pathways to limit the 
production of compound intermediates such as peroxynitrite (ONOO-), a pow­
erful oxidant that can decompose under acidic conditions to N02 and the hy­
droxyl radical (OR). Virulent strains of Mtb, for example, appear to be more re­
sistant to ONOO- than non-pathogenic strains (Yu et al. 1999), reminiscent of 
studies examining sensitivities to hydrogen peroxide (H20 2) (Jackett et al. 1978; 
Laochumroonvorapong et al. 1997). Another reason could include the fact that 
catalase and peroxiredoxins are also directly effective at scavenging RNI (re­
viewed in Nathan and Shiloh 2000). Both scenarios may be examined using mice 
that are doubly deficient for NOS2 and ph ox (Shiloh et al. 1999) together with 
the respective Mtb mutants, a genetic approach similar to that already employed 
for the Mtb sodC gene (Piddington et al. 2001). 

The antimicrobial actions of both RNI and ROI are potentiated by low pH 
and iron (usually Pe[III]), the latter incorporated into dinitrosyl-iron complexes 
as well as helping drive the Haber-Weiss reaction for OR' formation. The useful­
ness of acid in host defence was first suggested by Metchnikoff (1893) and 
gained credence from two early observations: that phagocytes acidify their PLs 
(Rous 1925) and that achlorhydric hosts permit bacterial colonisation of the 
stomach (Gianella et al. 1973). In the case of mycobacteria, the macrophage PL 
acidifies to pH -4.5-5.0 following cytokine stimulation, irrespective of whether 
the agonist is given before or after bacterial uptake (Schaible et al. 1998; J. 
MacMicking, unpublished). Acidification coincides with the delivery of V-AT­
Pases, enables processing of lysosomal hydrolases, and correlates with dimin­
ished Mtb growth (Schaible et al. 1998; Gomes et al. 1999; Ullrich et al. 1999). 
Conversely, agents that specifically inhibit the ATPase (e.g. omeprezole) allow 
increased Mtb replication in human AMs (Suzuki et al. 2000). As yet there is no 
reliable information on whether such mechanisms operate in vivo, a void diffi­
cult to fill, since natural and engineered ATPase mutants, or pharmacologic ma­
nipulation within the intact host, would surely have widespread homeostatic 
consequences for the cell. Perhaps gain-of-function studies involving forced PL 
maturation on an RNI/ROI-deficient background may yield information about 
the requirement for acid per se. 

The last point is especially relevant for Mtb since it was originally shown to 
be unique among other Mycobacteria spp. in its sensitivity to pH less than 6.5, 
with a marked attenuation for growth at pH 5.0 (Chapman and Bernard 1962). 
Later studies, however, found little difference in viability between pH 4.5-7.0 
(Jackett et al. 1978; Chan et al. 1992). An explanation for this discordance may 
rest with the use of complex media varying in divalent cation concentration. 
When grown at lower pH under restricted Mg2+ conditions, for example, Mtb 
fares much less well (Piddington et al. 2000). These conditions could also mimic 
that found in the host: an Mtb mutant lacking the mgtC (magnesium trans­
porter) gene replicates poorly at low pH and Mg2+ concentration, and its growth 
is highly attenuated in human macrophages and the lungs of mice (Buchmeier 
et al. 2000). 
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Mtb similarly imports other divalent cations-Fe2+, Mn2+, Zn2+, Cu2+ -via 
expression of Mramp, a pH-dependent transporter which functions optimally at 
pH 5.5-6.5 and is up regulated under axenic culture at low pH as well as in hu­
man macrophages (Agaroff et al. 1999). In this respect it may compete with its 
mammalian homologue, natural resistance-associated macrophage protein 1 
(NRAMP1, or SLCllA!), a H+/divalent cation antiporter located at the phagoso­
mal membrane (Jab ado et al. 2000). A caveat to this relationship is that while 
NRAMP1's role in protecting the host against mycobacteria other than Mtb is 
well established, its deletion has no effect on TB susceptibility in mice (North et 
al. 1999). The case in humans is less clear: a lack of association between TB sus­
ceptibility and NRAMP1 status was noted for Brazilian populations (Blackwell 
et al. 1997) while NRAMPI polymorphisms in West Africans, Japanese and Ko­
reans may carry an increased risk (Bellamy et al. 1998; Gao et al. 2000; Ryu et al. 
2000). 

Realisation that Mtb could tolerate an acidified, nutrient-poor environment 
moves understanding beyond the current preoccupation with models of how 
the bacterium blocks PL fusion. This latter effect, perhaps involving (1) bacteri­
al ammonia generation via urease or sulphatide (Gordon et al. 1980; Goren et al. 
1976) or (2) a host tryptophan aspartate-containing coat protein (TACO, or 
coronin-1; Ferrari et al. 1999), appears relevant only in macrophages that have 
not been activated (Via et al. 1997; Schaible et al. 1998). Of course, strategies for 
preventing activation are likely to exist: eliciting deactivating cytokines (e.g. IL-
10, transforming growth factor-beta; Murray 1999) or evading antigen presenta­
tion altogether (Pancholi et al. 1993) are two such examples. Nonetheless, more 
attention should perhaps focus on examining bacterial adaptations within a 
hostile cell and to the combined rather than isolated actions of macrophage tu­
berculostatic/cidal pathways. Equally, consideration could be given to higher-or­
der structure, where substratum, stromal- and T-cell contact within granulomas 
provide additional stimuli and where anatomical specialisations (e.g. to low oxy­
gen tension) may be paramount. 

2.3 
Systems Logic of the Macrophage Against Mtb 

2.3.1 
Macrophage-Lymphocyte Networks: The Role of Granulomas 

In humans, tuberculoid granulomas occupy not only the lungs, but anatomical 
sites as diverse as the larynx, palate, nasal septum, submaxillary and tracheo­
bronchial lymph nodes, spine, bone marrow, genitourinary tract and peritoneal 
lining (Iseman 2000). Events leading to such widespread dissemination were 
chronicled in the preantibiotic era by Canetti (1955). From histobacteriologic 
examination of 30 cadavers, he suggested the following sequelae: a (pre)exuda­
tive stage dominated by mononuclear infiltrates and small numbers of AFB; 
walling off and caseous necrosis at the centre of the granuloma with progres-
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sively fewer AFB; lesion resolution by fibrin deposition, sclerosis and calcifica­
tion accompanied by disappearance of AFB. Alternatively, there could be case­
um liquefaction and focal reappearance of AFB in the liquefied areas, the latter 
of which may rupture into a bronchus with discharge rendering the patient in­
fectious. 

The cellular composition and structure of the granuloma appears critical to 
whether TB lesions regress or become "open". Poorly organised granulomas, as 
seen in IFN-y-I-, TNF-1- and intercellular adhesion molecule (ICAM)-l-l - mice 
as well as LTa-l - bone-marrow chimeras (Garcia et al. 1997; Sugawara et al. 
1998; Bean et al. 1999; Kanedo et al. 1999; Saunders et al. 1999; Roach et al. 
2001), correlate with rapid bacterial dissemination and reduced host survival. A 
characteristic feature in all of these cases is the paucity of epithelioid macro­
phages and failure to recruit T lymphocytes. The latter's participation in suc­
cessful Mtb containment is underscored by a study of HIV-infected patients suf­
fering from culture-proven tuberculous lymphadenitis (Muller and Kruger 
1994). Severely lymphopaenic patients completely lacked epithelioid granulo­
mas, while those HIV patients retaining modest peripheral CD4+ counts had 
granulomas replete with lysozyme-expressing macrophages in apposition with 
CD2S+ (IL-2R) lymphocytes, in addition to fewer AFB. The presence of T cells 
not only ensures a vicinal supply of macrophage-activating T helper (Th)l cy­
tokines (Robinson et al. 1994; Bergeron et al. 1997; Fachetti et al. 1999; Fenhalls 
et al. 2000; Wangoo et al. 2001) but also raises the possibility of reciprocal co­
stimulation. AMs in TB granulomas express high levels of the co stimulatory 
molecules B 7 -1 and B 7 - 2 with nearby T cells being CD28+ (Soler et al. 1999). T 
cell-macrophage liaison may thus engender immunologic memory in addition 
to microbial killing. 

2.3.2 
Macrophage-Monocyte Networks: A Case for Multinucleated Giant Cells 

Multinucleated giant cells (MGCs) were discovered as large, polykaryonic struc­
tures within TB granulomata over 130 years ago (Langhans 1868). Subsequently 
found to be a common feature in many infectious and foreign body granulomas, 
MGCs are thought to represent fusions between descendants of the monocyte­
macrophage lineage (Anderson 2000). Indeed, MGCs can now routinely be de­
rived in vitro using macrophages alone following the initial demonstration of 
rabbit AMs to fuse after treatment with supernatants from mycobacteria-sensi­
tised lymph node cells stimulated with antigen (Galindo et al. 1974). The soluble 
bioactive component in this early study was most likely IFN-y; use of recombi­
nant IFN-y when it became available also led human AMs to fuse which could 
in turn be blocked by anti-IFN-y mAbs (Nagasawa et al. 1987). 

Circulating monocytes are thought to be another source of MGCs (Gillman 
and Wright 1966) and they, too, appear heavily reliant on soluble factors for 
their coalescence (Postlethwaite et al. 1982). Again, IFN-y seems to be the major 
fusogenic cytokine (Weinberg et al. 1984; Most et al. 1990; Fais et al. 1994; Gas-
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ser and Most 1999; Mizuno et al. 2001) although some assistance is rendered by 
1L-3 (Enelow et al. 1992; Byrd 1998) and 1L-4 (Takashima et al. 1993). Multinu­
cleation also requires cell-cell contact in addition to soluble mediators, with 
lymphocyte function-associated antigen (LFA)-l, 1CAM-1, f3rintegrins, CD44, 
CD47 and the macrophage fusion receptor (MFR) all posited to playa role (Most 
et al. 1990; Fais et al. 1994; Saginario et al. 1998; Sterling et al. 1998; Gasser and 
Most 1999). 

That multinucleation serves some benefit against Mtb is suggested by the 
ability of 1FN-yIIL-3-treated human monocyte-derived MGCs to severely limit 
microbial spread (Byrd 1998). How MGCs bring about this restriction remains 
obscure although it could involve the purinergic P2X7 receptor which is upregu­
lated by 1FN-y (Humphreys and Dubyak 1996). Both an mAb directed against 
the P2X7 extracellular domain and irreversible ATP analogues (0 ATP) block hu­
man monocyte fusion (Falzoni et al. 2000). Since stimulation of P2X7 is known 
to promote PL maturation (see "Receptors for Activation" above), the genera­
tion of MGCs via extracellular nucleotides may be tightly coupled with an ability 
to dispose of the pathogen. This idea is consonant with earlier studies showing 
elevated lysozymal activity of MCGs within human tuberculoid granulomas (Ya­
mashita et al. 1978; Williams and Williams 1983). 

2.4 
Macrophage Specialisations Within the Pulmonary Context 

2.4.1 
Surfactant Receptors 

With a surface area approaching 50-100 m2, the human lung mandates a very 
broad system of innate defence consisting of ciliary (mechanical) clearance, 
cough reflex (ironically serving as a vehicle for Mtb transmission), and cellular 
responsiveness. Surfactant proteins (SPs) present within the alveolar lining fluid 
as a means to reduce surface tension and lung collapse appear increasingly im­
portant in this non-adaptive immune repertoire (Holmskov 1999). Their rele­
vance to TB was first noted by the ability of surfactant protein A (SP-A) to pro­
mote Mtb attachment and phagocytosis by AMs from both normal subjects and 
H1V patients (Downing et al. 1995; Gaynor et al. 1995). A second surfactant pro­
tein, SP-D, has more recently been shown to bind Mtb and LAM via its carbohy­
drate recognition domain, a feature characteristic of the collectin family to 
which SPs belong (Ferguson et al. 1999). SPs-A and -D have each been localised 
to endocytic vesicles and lysosomal granules of AMs (Walker et al. 1986; Voorh­
out et al. 1992), suggesting their uptake was receptor-mediated. This has proved 
to be the case; the human collectin receptor C1qRp and SP-R2l0 both bind SP­
A while SP-D enters AMs via a scavenger receptor superfamily member, gp-340 
(Holmskov 1999). Antibodies directed against SP-R2l0, in particular, inhibited 
SP-A-associated uptake of mycobacteria (Weikert et al. 1997) and the subse­
quent induction of NO and TNF-a synthesis (Weikert et al. 2000). In the pres-
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ence of IFN-y, however, SP-A treatment together with Mtb actually lowered RNI 
release (Pasula et al. 1999), while the same was seen in human AMs for peptido­
glycan/TLR2-induced TNF-a secretion (Murakami et al. 2001). Thus, SPs could 
also have macrophage-suppressive functions which help resolve inflammation 
once the major bacterial burden is cleared. 

2.4.2 
Hypoxia-Induced Responses 

Mtb is an obligate aerobe, despite being equipped with pathways for anaerobic 
energy metabolism (Cole et al. 1998; McKinney et al. 1998; Wayne and Sohaskey 
2001). This may explain why disseminated tuberculous lesions tend to develop 
more rapidly in the apical lung fields of an upright host where steady-state oxy­
gen tension is highest (Riley 1960; West 2000). Human AMs, on the other hand, 
remain effective phagocytes even under mildly hypoxic conditions (p02 
>25 mmHg; -3% O2 at sea level) as measured in granulomas or abscess cavities 
remote from oxygenated blood (Cohen and Cline 1971; Hocking and Golde 
1979). The environment within human macrophages may further limit O2 avail­
ability since bacteria appear more sensitive to reduced ambient O2 tensions 
when grown intracellularly (Meylan et al. 1992). 

Restricted growth of Mtb inside macrophages could equally be interpreted 
from the viewpoint of the host; hypoxia elicits powerful mycobacteriostatic/ci­
dal responses. Approximately 1 % O2 alone or in combination with IFN-y in­
creased NOS2 expression -25-fold and TNF secretion 500-fold in murine and 
human macrophages, respectively (Scannell et al. 1993; Melillo et al. 1996). The 
molecular basis of these increases is in part due to hypoxia-inducible protein 
(HIF)-l, a transcriptional activator that functions as master regulator of mam­
malian O2 homeostasis (Semenza 2001). HIF-1 binds to hypoxia response ele­
ments (HREs) in either 5' or 3' flanking regions of target genes following expo­
sure to 0.5%-6% O2 (Semenza 2001). The murine and rat NOS2 promoters, for 
example, both contain HREs which are bound in vitro and in vivo (Melillo 1995; 
Jung et al. 2000). Moreover, the earlier synergy reported for IFN-y and hypoxia 
(Mellilo 1995) in promoting macrophage NOS2 expression probably stems from 
the recent observation that HIF-1 physically associates with IRF-1 as part of a 
co-activating promoter complex (Tendler et al. 2001). A cycle of stimulation is 
then propagated since NO enhances HIF-1a expression and DNA binding (San­
dau et al. 2001), perhaps through nitrosyl-cysteine modification. 
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3 
Harnessing the Macrophage Anti-tubercular Arsenal 

3.1 
Intersection of Immunity and Conventional Chemotherapy 

When modern chemotherapy against Mtb fails, it usually does so for one of two 
reasons. Firstly, unsuccessful treatment outcomes may be due to acquisition of 
multi-drug resistance mutations on the part of the pathogen. MDR-TB accounts 
for only a minor fraction, however, of newly diagnosed cases: -3% worldwide in 
the year 2000 (Dye et al. 2002). A second, more common problem is patient 
non-compliance. TB therapy calls for concomitant administration of 2-3 drugs 
for a minimum of 6 months. Many patients are unable or unwilling to adhere to 
such a lengthy drug regimen, and their neglect leads to high relapse rates since 
short-course therapy is insufficient to eradicate a small subpopulation of myco­
bacterial "persisters" (Mitchinson 1985). For this reason, the World Health Or­
ganisation has recommended that every patient receive directly observed thera­
py (DOT) to ensure compliance (Who 2000). Extension of the DOT strategy to 
individuals with latent TB infection (LTBI), however, is not practicable given the 
enormous number of cases involved. The problem is further aggravated by the 
fact that LTB! also requires a lengthy drug regimen, usually 6-12 months of iso­
niazid prophylaxis. To persuade a patient with active TB to complete a protract­
ed course of antibiotics is often challenging: exhorting the same practice in an 
asymptomatic individual with LTBI may prove even more difficult. Clearly, de­
velopment of shorter treatment regimens, especially for LTBI, is an urgent prior­
ity (Institute of Medicine 2000). 

Recent studies in experimental animals suggest that post-exposure vaccina­
tion may serve as a useful adjunct to standard drug therapy (Lowrie et al. 1999; 
Lowrie and Silva et al. 2000). Mice infected with Mtb were treated with anti-tu­
berculosis drugs and then vaccinated with DNA encoding the mycobacterial 
Hsp65 heat shock protein. Such mice were completely protected from subse­
quent reactivation of disease, even after being treated with powerful immuno­
suppressive agents (Lowrie et al. 1999). Thus, in principle, immune modulation 
in conjunction with conventional chemotherapy could lead to a more rapid and 
complete cure in humans. Enhancing the efficacy of the immune response in 
this manner would be particularly apposite in persistent infections like TB, 
where natural immunity, left unmodified, does not always eliminate the patho­
gen (McKinney et al. 1998). The observations of Lowrie and colleagues suggest 
that this failure is not because the host is incapable of sterilising immunity but 
rather that immunity remains poorly elicited, a situation corrected with vacci­
nation. If one could provide the requisite forms of immunostimulation, not only 
through vaccination but potentially via macrophage-activating agents based on 
cytokine signalling or downstream effectors, then new avenues of treatment for 
LTBI and MDR-TB could be possible in the future. 
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3.2 
Appropriately Activating the Macrophage In Situ 

3.2.1 
Cytokine and Ab Immunotherapy 

Parenteral administration of IFN-y as adjunctive to antimicrobials or even as re­
placement therapy in immunodeficiencies such as AIDS or CGD substantiates 
the virtues extolled for this cytokine in what are largely experimental systems 
(Murray 1996). In humans, intravascular (i.v.), intramuscular (i.m.) or intrader­
mal (i.d.) IFN-y treatment appears well tolerated and stimulates the antimicro­
bial repertoire of PBMCs, circulating neutrophils and tissue macrophages. When 
given as an aerosol, IFN-y activates AMs in a lung-restricted fashion (Jaffe et al. 
1991). Ameliorative effects have been seen for non-viral infections caused by 
atypical mycobacteria (e.g. M. avium, M. chelonei) (Holland et al. 1994), and cu­
taneous (e.g. Leishmania tropica, L. mexicana, L. braziliensis) or visceral (kala­
azar) leishmaniasis, in some cases yielding complete cure, especially if given 
with other modalities (e.g. antimonial compounds) (Murray 1996). For leproma­
tous leprosy, i.d. IFN-y administration shows a clear enhancement of cell-medi­
ated immunity, including oxidative burst, delayed-type hypersensitivity reac­
tions and granuloma formation (Nathan et al. 1986). 

In the case of TB, provision of exogenous IFN-y could be of significant help 
to those patients refractory to chemotherapy. Benefits have been found for indi­
viduals with severe, advanced MDR-TB; 500 I1g of aerosolised IFN-y given thrice 
weekly for a month led to clear salutary effects in the form of demonstrable 
weight gain, reversion of positive sputum smears to negative status, and reduc­
tion in the size of cavitary lesions (Condos et al. 1997). Similar doses in other 
studies led to increased respiratory burst capacities and chemokine release from 
AMs (Jaffe et al. 1991; Halme et al. 1995), suggesting that some of the benefits in 
people with TB probably operate at the level of the macrophage. An improved 
outcome was also noted for an MDR patient receiving subcutaneous IFN-y to­
gether with granulocyte-macrophage colony-stimulating factor (GM-CSF) (Raad 
et al. 1996), as well as in TB and MDR-TB patients given inhaled IFN-a, a benefit 
largely thought to be due to local induction of IFN-y (Giosue et al. 1998; Giosue 
et al. 2000). Whether IFNs could be administered systemically to combat extra­
pulmonary TB or as a reconstitutive measure in HIV-positive TB patients has 
yet to be examined. 

Inveighing against the use of TNF as potential immunostimulant for TB is its 
established history as both pro inflammatory and pyrogenic; indeed, these are 
mainly held responsible for certain clinical characteristics of the disease, name­
ly, "phthisis" (wasting/cachexia), night sweats and tissue destruction (Keane et 
al. 2001). Yet its value as adjunctive agent has been suggested in some (but not 
all, e.g. Moreira et al. 2002) animal models: mice receiving recombinant human 
TNF or a non-toxic mimetic peptide (TNF70- 80) exhibit increased resistance to 
mycobacterial infection accompanied by reduced CFU, heightened NO release 



Macrophage Immunity and Mycobacterium tuberculosis 433 

and better organised granulomas (Denis 1991b; Roach et al. 1999; Briscoe et al. 
2000). Small peptide mimics may also have the advantage of bypassing any sTN­
FR blockage (Juffermans et al. 1998) if composed of epitopes not bound by 
these truncated receptors. Other TNF-modulating agents (e.g. thalidomide ana­
logues) facilitate in vivo TNF production during TB as shown by recent studies 
ofHIV-infected patients (Bekker et al. 2000; Gotri et al. 2000). 

Concern that TNF unduly promotes pulmonary tissue damage is also subject 
to debate; both acute and persistent TB models suggest that TNF's protective 
role far outweighs any pathologic involvement (Adams et al. 1995; Flynn et al. 
1995; Bean et al. 1999; Mohan et al. 2001; Smith et al. 2002). In humans, too, 
TNF antagonists (e.g. infliximab) appear to reactivate rather than limit disease 
(Keane et al. 2001; Martinez et al. 2001; Wagner et al. 2002; Mayordomo et al. 
2002). It could even be argued that some degree ofTNFR1I2-mediated apoptosis 
(Mohan et al. 2001) might be useful, either through directly killing Mtb-infected 
macrophages or by liberating drug-sensitive bacteria which are more readily ac­
cessed by antimicrobials than inside the cell. 

Ab therapy directed against specific Mtb cell wall components, e.g. LAM epi­
topes, is another method which could encourage macrophage activation, this 
time through uptake by FcyRs. An IgG3 mAb recognising arabinomannan deliv­
ered intratracheally has been shown to partially protect wild-type, IFN-y-I- and 
MHC class n-I- mice against Mtb infection (Teitelbaum et al. 1998). All mAb­
treated mice exhibited enhanced granuloma formation with a mantle of NOS2-
positive macrophages thought to represent a barrier to bacterial dissemination. 
Whether mAb treatment is effective if begun after clinical signs are evident, 
however, remains to be determined. So, too, does the issue of whether Ab thera­
py might hasten immune complex deposition leading to alveolitis and other 
FcR-mediated lung damage (Clynes et al. 1999). In a recent study of 68 patients 
with active progressive TB, for example, over 50% had immune complexes in 
their lungs, although whether this was a primary cause or a secondary conse­
quence of disease cannot be distinguished (Surkova et al. 1999). 

As with all recombinant proteins, the utility of cytokines and mAbs is limited 
by the concerns of cost, bioavailability and generation of neutralising antibod­
ies. However, at least in the case of IFN-y, long-term administration appears fea­
sible; CGD patients have tolerated repeated prophylactic injections for up to 
7 years without noticeable decreases in plasma half-life or side-effects more de­
bilitating than mild fever (Segal 2000). Even so, as a serious avenue for treat­
ment of TB and activator of human macrophages in situ, cytokines and mAbs 
are impractical in those developing countries most affected by the disease. The 
real importance of the aforementioned studies is the didactic lesson they pro­
vide: enhancing macrophage anti-tubercular mechanisms can have a genuine 
impact on TB progression, especially in cases where chemotherapy is no longer 
tenable. 
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3.2.2 
Small Molecule Chemistry: Adaptor Protein Mimics 

If macrophage activation is primarily achieved through cytokine receptor sig­
nalling, why not obviate the need for a bulky ligand altogether? Small, non-pep­
tidyl mimics could offer advantages both in terms of specificity and pharmaco­
kinetics. Events at or downstream of IFNGRs and novel PI3 K effectors are two 
examples where such an approach may be applicable to the macrophage-Mtb 
problem. 

Elicitation of Jaks or STATs by small molecule modulators has already been 
demonstrated in the case of Jak3; large-scale chemical screens were based on a 
known tyrosine kinase inhibitor pharmacophore and homology model derived 
from kinase crystal structures (Goodman et al. 1998). However, this represents 
but one tier of a multistage signalling cascade. In searching for modifiers of 
IFNGR signal transduction, for example, one could extend the screen to several 
levels: (1) IFNGRII2 ligand binding and dimerisation, (2) Jakll2 binding, (3) 
STATl homodimerisation, and (4) STATl-DNA binding and transcriptional acti­
vation (Seidel et al. 2000). At the cell surface, small molecules capable of causing 
receptor dimerisation have already been found for erythropoietin and the GM­
CSF receptor, in the latter case binding to alternate sites which do not compete 
or interfere with the natural ligand (Qureshi et al. 1999; Seidel et al. 2000). 

Beyond receptor clustering lies the problem of how to confer specificity when 
so many components of the Jak/STAT entourage are shared among different cy­
tokines. Here, a combinatorial approach may prove useful: drugs exhibiting 
higher specificity for STATl could be given with another of known preference 
for Jaks1l2. Signalling by other cytokines/growth factors would thus be min­
imised, since additional adaptor proteins (STATs2-S) or kinases (Tyk2, Jak3) 
obligate for their transduction are either poorly induced or missing. Imiquimod 
[1-(2-methylpropyl)-IH-imidazo[4,S-c]quinolin-4-amine] and its analogue 
S28463, antiviral drugs used against human papillomavirus and experimentally 
effective against vacuolar pathogens like Leishmania and M. bovis BCG, mediate 
their effects on macrophages preferentially through STATl (Bottrel et al. 1999) 
and MyD88 (Hemmi et al. 2002); they could serve as parent or lead compounds 
for more soluble derivatives. Selectivity may also be imposed at the level of tran­
scription by targeting the STATl linker domain, since this region is critical for 
promoter complex formation following IFN -y but not IFN -at f3 stimulation 
(Yang et al. 1999a). 

A second signalling intermediate thought to be involved in countering Mtb is 
PI3P. This lipid directs EEAl to the mycobacterial PG for subsequent maturation 
into PLs (see section entitled "Intracellular Sorting and the Conduits for Antigen 
Presentation and Elimination"). It also appears to bind the NADPH subunit 
p4QPhox for oxidase assembly on nascent PGs (Bravo et al. 2001) and could par­
ticipate in IFN-y-dependent STATl S727 phosphorylation (Nguyan et al. 2001). 
What makes PI3P such an attractive biochemical target is its phosphoinositide 
headgroup interactions with protein FVYE and PX domains; they distinguish 
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PI3P from all other lipids, with recognition reliant on its being embedded in a 
phospholipid bilayer (Misra et al. 2001). Indeed, FYVE domains exclusively bind 
PI3P and no other phosphoinositide. The recent co-crystallisation of PI3P-EEAl 
(Dumas et al. 2001) and PI3P-p4()phox (Bravo et al. 2001) has provided structural 
information on which to design small molecule mimics. Novel PI3P or plS0/ 
VPS34 (class III PI3 K) binding partners could also be isolated by selective cap­
ture on phosphoinositide affinity matrices as recently shown for PI3 kinase ef­
fectors regulating both Arf and Rho GTPases (Krugmann et al. 2002). High­
throughput screens of this type may uncover compounds capable of specifically 
forcing macrophage PL fusion in the absence of activation. 

Exploring the world of small GTPases in PL biogenesis is an avenue that 
promises much in the way of understanding macrophage immunity during in­
fection with implications for drug development. GTPases are judiciously posi­
tioned to direct intracellular traffic and assist the spatial convergence of several 
effector pathways. For example, IFN-y-induced RabSa has recently been shown 
to remodel the PG environment of engulfed listeriae where it facilitates the 
translocation of Rac2 (another GTPase) to the PG surface (Prada-Delgardo et al. 
2001). With Rac2 comes the NADPH oxidase and potentially NOS2 (Kuncewicz 
et al. 2001). Another group of IFN-elicited GTPases (the 47-kDa family) help 
control Toxoplasma gondii and L. monocytogenes infections in mice (Taylor et 
al. 2000; Collazo et al. 2001). One of these, interferon-inducible protein 1 (IFIl; 
LRG47), operates against Mtb as well 0. MacMicking, unpublished results). 
How IFIl brings about its anti-tubercular effects is unknown, but mechanisms 
could include assisting PL fusion, Ag presentation or trafficking of lysosomal 
hydrolases between vesicular compartments (Fig. 2). Once determined, human 
IFIl homologues would seem a logical target for pharmacologic intervention, 
given that its expression is limited to disease or inflammatory states making dis­
ruptions of homeostatic processes less likely. Reaching or mimicking vesicle-as­
sociated adaptor proteins like IFIl is probably easier than attempting to deliver 
drugs into the Mtb PG lumen directly. Translocation of xenobiotics across the 
PG/PL membrane needs take into account substrate-specific porters and efflux 
pumps (Lloyd 2000); perhaps drug-conjugates utilising the transferrin receptor 
would enable larger molecules to gain entrance to the interior before PL matu­
ration is complete (Clemens and Horwitz 1996). 

3.2.3 
Local Provision of Effector Molecules 

At present no studies exist describing macrophage effector molecules being di­
rectly delivered to the pulmonary tree of TB patients. Nonetheless, one could 
make a case for NO or its congeners based on indirect findings. Doses as low as 
70-90 ppm for 48 h kill both drug-sensitive and drug-resistant strains of Mtb 
(Long et al. 1999); this level is tolerated for up to 2 weeks in neonates with per­
sistent hypertension, where it provides dramatic benefits (Clark et al. 2000). NO 
gas is preferentially delivered to the well-ventilated areas of the lung, coupling 
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ventilation (V) to perfusion (Q) and acting as a selective pulmonary vasodilator 
(Moya et al. 200l). Whether it could reach the relatively hypoxic centre of a 
granuloma, however, remains conjectural. Nor are the amounts of NO needed to 
sterilise smear-positive patients, some of whom may harbour as many as 105_ 

106 CFU/ml of saliva or sputum (Yeager et al. 1967), known. Higher doses of NO 
run the risk of toxicity, especially within an Oz-rich environment where deriva­
tives like ONOO- arise more frequently. For this reason most NO bioactivity 
comes in the guise of S-nitrosothiols (SNOs) which are relatively resistant to 
toxic reactions with O2/02- and are transported across the cell membrane by y­
glutamyl transpeptidases (Moya et al. 2001). It may also explain why free NO in 
human airway lining fluid and expired air is often below the levels required to 
dilate blood vessels or relax airways-the majority is complexed with glutathi­
one and SNO-proteins which are themselves sensors of ventilatory hypoxia 
(Lipton et al. 200l). 

An ideal drug would therefore convert NO equivalents into SNOs. It should 
also avoid potentially harmful peroxidation and allow the desired V/Q matching 
and pulmonary/systemic activity quotients (Le. be a gas). Recently, Stamler and 
colleagues (Moya et al. 2001) used the following criterion to isolate such a com­
pound: (1) high volatility, (2) resistance to oxidative decomposition, (3) low 
oxidising potential towards haemoglobin, and (4) biocompatibility. O-ni­
trosoethanol (ENO) was found to fulfill these criteria. It is stable at high ambient 
O2 concentrations since heterolytic transfer reactions predominate over ho­
molytic decomposition, enabling it to react preferentially with nucleophiles 
such as sulphurs of glutathione and proteins within the lung. It was also active 
under hypoxic conditions and did not affect systemic haemodynamics (Moya et 
al. 2001). ENO could thus represent the prototype of future compounds which 
allow transnitrosation reactions to occur within pulmonary granulomas in situ. 
The problem of delivery, however, remains uppermost on the list of limitations 
needing to be overcome before use against respiratory infections like TB would 
be considered. 

3.3 
Beyond Koch: Mtb targets as Adjunct to Macrophage Immunity 

Besides attempting to enhance the macrophage armamentarium or directly fur­
nish its products, another approach to aiding anti-tubercular immunity could 
include interference with the putative counter-strategies used by Mtb (Ta­
ble l).Traditional drugs target bacterial processes that are required for growth 
and division such as DNA replication or cell-wall biogenesis (McKinney 2000). 
This may be a critical factor limiting the efficacy of conventional chemotherapy 
against latent TB, where mycobacteria are thought to be in a metabolically al­
tered and/or essentially non-replicative state (McKinney et al. 1998; Wayne and 
Sohaskey 200l). Agents that damage Mtb indirectly-by ablating RNIIROI 
detoxifying enzymes, contesting Fe acquisition and storage, blocking acid toler­
ance or pathways involved in macrophage deactivation-may be less dependent 
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on the growth state of the organism for their activity. A cautionary note, howev­
er, is that many bacterial species (e.g. E. coli, Salmonella typhimurium, L. mono­
cytogenes) develop a general stress resistance profile upon entry into stationary 
phase, including mechanisms designed to deal with oxidative stress, acidic pH 
and other conditions synonymous with the macrophage PL environment (Nys­
trom 2001). Thus, it will be important to ascertain whether the same counter­
strategies are operative in both dividing and non-replicating Mtb, a parity not 
necessarily observed in all bacteria (Kjelleberg 1993; Spector 1998). 

Based on the aforementioned approaches, one could envisage future TB drug 
regimens using conventional antimicrobials, interventions that enhance or sup­
plement endogenous immunity, and agents which further sensitise Mtb to kill­
ing by its human host. Such novel forms of "combination therapy" could offer 
several advantages over current protocols: improved effectiveness against MDR­
TB, faster (shorter) treatment of active TB, and feasible strategies to address the 
long-neglected issue of LTBI. With respect to the last point, the successful intro­
duction in 1997 of one-shot therapy for single-lesion paucibacillary leprosy, 
caused by the related pathogen, M. leprae, provides a relevant and inspiring 
precedent (WHO 1998). 

Acknowledgements. John D. MacMicking acknowledges the support of a Life Science Re­
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Abstract Macrophages play an important role in the innate immune response 
to fungal pathogens. They express receptors which recognise a variety of fungal 
molecular patterns, many of which are conserved cell wall carbohydrates. We 
present an overview of the macrophage receptors shown to be involved in fungal 
recognition and binding, the various antifungal mechanisms utilised by these 
cells, and demonstrate strategies that fungal pathogens have evolved to escape 
these mechanisms. We also provide an overview of the current clinical anti-fun­
gal agents, as well as strategies which are being developed to enhance the anti­
microbial mechanisms of the macrophages themselves. Finally, we discuss fun­
gal-derived carbohydrates and their potential use as immunomodulators. 

Keywords Anti-fungal agents, Beta-glucan, Carbohydrate, Fungi, Macrophage 
receptor 
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Abbreviations 

H.MW 
CLP 

1 
r 

1 
Introduction 

High molecular weight 
Caecal ligation and puncture 
Decrease 
Increase 
No change 

Macrophages (Met>s) playa central role in the innate recognition of a range of 
pathogens, including fungi, and in the modulation of the subsequent effector 
mechanisms. Recognition generally leads to phagocytosis and killing of the in­
vading pathogen through a variety of passive and active mechanisms. However, 
some fungal pathogens have learned to subvert their host's anti-microbial de­
fence mechanisms requiring the clinical administration of anti-fungal com­
pounds. Furthermore, with the emergence of drug-resistant strains, a greater 
understanding of how the immune system deals with fungal pathogens is crucial 
if novel anti-fungal strategies are to be developed. In this chapter, we have 
placed particular emphasis on the Met> receptors involved in the recognition of 
fungal pathogens, as well as the killing mechanisms employed. We also discuss 
both current and potential strategies used to control fungal pathogens, and the 
role of fungal derived carbohydrates in modulating Met> and immune responses. 

Although this chapter will focus specifically on the contribution of Met>s to 
the innate recognition and control of fungal pathogens, these cells are not the 
only line of defence. Neutrophils, dendritic cells (DCs) and some lymphocytes 
have all been shown to play a role in the immune response to various fungal 
pathogens (see Vazquez-Torres and Balish 1997 for a review). Furthermore, al­
though not discussed, the reader should bear in mind that Met> and their spe­
cialised relatives, DCs, have a crucial role in instructing the adaptive immune 
response, which also plays an important role in the control of fungal pathogens 
(see Romani 2002 for a review). 

2 
Macrophage Receptors 

Contact between the Met> and fungal pathogen occurs when Met> receptors recog­
nise structures, such as polysaccharides, which are displayed on the fungal cell 
wall. The fungal cell wall, apart from giving the cell its rigidity and providing 
protection against environmental stress, contributes to virulence by providing a 
platform for adhesion to the host. The structure of the cell wall, which has been 
derived from the non-pathogenic fungus Saccharomyces cerevisiae, consists 
mostly of polysaccharides, including mannoproteins, ,B-glucans and chitin (see 
Fig. 1 and Chaffin et al. 1998; Lipke and Ovalle 1998 for reviews). In total, about 



Detection and Control of Fungi by Macrophages: The Role of Carbohydrates and Antifungal Agents 461 

CW 

PM 

a 

b 

~-1,6 

Mannoproteins 
-40% 

13-Glucan 
50- 60 % 

Chitin 
1- 9 % 

Fig. la, b The fungal cell wall (CW) is modular in structure and composed of various polysaccharide 
layers. a The plasma membrane (PM) is surrounded by a chitin layer (unbranched acetyl-glucosamine 
polymers) linked to j3-glucans. Mannan is connected via di-N-acetylchitobiose residues to the CW pro­
tein fraction. (see Chaffin et al. 1998 and Lipke and Ovalle 1998 for reviews). b j3-glucans form linear 
chains via j3-1,3-linked glucose residues and branched chains via 13-1,6 linkage(s) 

80%-90% of the Candida albicans fungal cell wall is composed of carbohy­
drates, some of which have immunomodulatory activities, discussed in more 
detail below (see Tzianabos 2000 for a review). 

The recognition of fungal pathogens occurs either directly via specific M<I> 
surface receptors or indirectly through the recognition of opsonins, such as C3 
or antibodies, which coat the microbial cell surface (see Aderem and Underhill 
1999; Underhill and Ozinsky 2002a for reviews). These receptors bind conserved 
molecular patterns that are often part of immutable structural components, 
such as conserved polysaccharides found within the cell wall (Medzhitov and 
Janeway 1997). Although complex and simple carbohydrate structures are re­
cognised by a range of M<I> receptors (see Table 1), we will focus on those specif-
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ically shown to have the ability to recognise intact fungi; the mannose receptor 
(MR), the j3-glucan receptor (j3GR), and the complement receptor (CR)3. The 
Toll-like receptors, which mediate intracellular signalling and resultant pro-in­
flammatory response, will also be discussed briefly (see Chap. 5). These recep­
tors should not be thought of in isolation, but rather that they are simultaneous­
ly contributing to the recognition of fungal pathogens. Finally, it should be not­
ed that the function of these receptors and their interactions remains to be fully 
elucidated. It is also likely that other M<I> receptors, which recognise fungal 
pathogens, have yet to be identified. 

2.1 
Mannose Receptor 

The MR, often referred to as the mannose-fucose receptor, is a type I transmem­
brane glycoprotein, containing an extracellular cysteine-rich domain, a fibro­
nectin type II-like domain, and eight tandem carbohydrate recognition domains 
(CRDs) (see Fig. 2) (see Stahl and Ezekowitz 1998 and Martinez-Pomares et al. 
2001 for reviews). The MR is expressed on the majority of differentiated mono­
nuclear cell phagocytes (see Table 1), with weak or no expression on most M<I> 
cell lines (Pontow et al. 1992). 

The MR exhibits preferences for oligo saccharides with the following terminal 
residues, l-fucose>d-mannose?:d-N-acetyl-glucosamine»>d-galactose (Stahl 
et al. 1978), and displays high affinity for endogenous ligands containing 
branched a-linked oligo-mannoses (Keryet al. 1992; Linehan et al. 2001). MR 
transfectant CHO cells are capable of mediating the phagocytosis of yeast, such 
as Pneumocystis carinii and C. albicans, the pinocytosis of mannosylated glyco­
proteins (Ezekowitz et al. 1990; Ezekowitz et al. 1991) and the binding of Crypto­
coccus neoformans mannoproteins (Mansour et al. 2002). The MR also exists as 
a soluble cleaved form capable of binding the S. cerevisiae-derived particle, zy­
mosan, as well as C. albicans (Martinez-Pomares et al. 1998). While both endog­
enous and exogenous ligands have been identified for the MR (see Table 1), its 
full role in the binding of yeast remains unresolved (see Linehan et al. 2000 and 
Martinez-Pomares et al. 2001 for reviews). Experimental conditions under 
which fungal binding was assayed often did not take into account the presence 
of other mannose-binding lectins, such as Nkcl/Dectin-2 (Fernandes et al. 1999; 
Ariizumi et al. 2000a). 

The MR is believed to signal via its 45-amino acid cytoplasmic tail, via as yet 
unknown mechanisms (Ezekowitz et al. 1990). The pro-inflammatory cytokines 
interleukin (IL)-6, granulocyte-M<I> colony-stimulating factor (GM-CSF), tu­
mour necrosis factor (TNF)-a and 1L-12 can all be generated after phagocytosis 
of fungi (Stein and Gordon 1991; Garner et al. 1994; Shibata et al. 1997; Ya­
mamoto et al. 1997). The MR is not, however, responsible for the production of 
certain chemokines, such as M<I> inflammatory protein (M1P)-lj3, M1P-2 and KC 
(a platelet factor 4 neutrophil chemoattractant family member) during C. albi­
cans infection, indicating that other receptors are involved in fungal-mediated 
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~ F2 

C 

Mannose receptor 

mouse Dectin-l 

~ w, 

I 
n~f nn bbbb bbbb 

TIR 

C 

Toll-like receptor 

CL 

y 

N 

humanBGR-A 

C 

humanBGR-B 

C 
CRJ 

Fig. 2 Schematic representation of the M<I> receptors involved in fungal recognition. The following ab­
breviations and symbols represent protein domains, their various modifications, and important motifs: 
CL, lectin (-type; a, CDllb integrin subunit; fl, CD18 integrin subunit; e-, N-glycosylation sites; F2, 
fibronectin type II-like repeats; Y, ITAM motif; LLR, leucine-rich repeat (-terminal domain; CR, cysteine­
rich domain; TlR, Toll-interleukin l-resistance intracellular signalling domain. The protein orientation rel­
ative to the lipid bilayer (open lollipops) is indicated by the N (N-terminal) and C ((-terminal) ends 

signalling (Yamamoto et al. 1997). These data support the concept that M<l> re­
ceptors act in concert to generate the appropriate signalling response. 

2.2 
The fJ-Glucan Receptor 

The existence of a non-opsonic zymosan and yeast-binding ,B-glucan inhibitable 
monocyte/M<l> receptor was first demonstrated two decades ago (Czop and Aus­
ten 1985a,c; Czop and Kay 1991). Recently, a trypsin sensitive C-type lectin re­
ceptor, Dectin-1, was demonstrated to be a M<l> ,BGR (Brown and Gordon 2001; 
Brown et al. 2002; Willment et al. 2001). Dectin-1 is a type II transmembrane 
protein with a single CRD, and a cytoplasmic tail containing an immunomodu­
latory tyrosine-activating motif (ITAM) (see Fig. 2) (Ariizumi et al. 2000b). Mu-



Detection and Control of Fungi by Macrophages: The Role of Carbohydrates and Antifungal Agents 465 

rine Dectin-l is expressed in a number of cell types; including DCs, monocytes, 
M<I>s, neutrophils and even a small sub-population of T cells (Brown and Gor­
don 2001; Taylor et al. 2002). 

Dectin-l recognises a variety of carbohydrates containing [3-1,3 and/or [3-1,6 
linked glucans, as well as an unidentified endogenous ligand, so far described 
only on T cells (Ariizumi et al. 2000b; Brown and Gordon 2001; Willment et al. 
2001). Murine NIH3T3 fibroblasts transduced with the human and murine form 
of Dectin-l were shown to recognise and internalise intact C. albicans and S. cer­
evisiae blastospores, in a [3-glucan dependant fashion (Brown and Gordon 2001; 
Willment et al. 2001). As most fungi contain [3-glucans within their cell wall (see 
Douglas 2001 for a review), it is likely that they interact with Dectin-l. Indeed, a 
number of pathogens have been reported to interact with [3-glucan binding re­
ceptors, including P. carinii, C. neoformans and Aspergillus fumigatus (Kan and 
Bennett 1991; Cross and Bancroft 1995; Vassallo et al. 2000). 

The interaction of fungi with the [3GR results in the activation of M<I>s and 
the release of pro-inflammatory mediators and cytokines (see Czop 1986 and 
Williams 1997 for reviews). These stimulatory effects appear to be linked to the 
structure of the [3-glucans (see below) and may be mediated by the !TAM motif 
in the cytoplasmic tail of this receptor (Brown and Gordon 2001). Furthermore, 
the [3-glucan content of fungi varies depending on their morphological state 
which results in the production of different cytokine and chemokine profiles 
(for example see Torosantucci et al. 2000). A more comprehensive list of the ef­
fects of [3-glucans on the immune system is presented in Table 2. 

2.3 
Complement Receptor 3 

CR3 (Mac-1) is a heterodimer composed of two chains, CD 11 b, which is unique 
to CR3, and CD18, which is common to all [32 integrins (see Fig. 1). CR3 is wide­
ly expressed in monocytes, M<I>, DCs, neutrophils, eosinophils, natural killer 
(NK) cells, some CD8+ T cells and CD5+ B cells. It has diverse functions (see Ta­
ble 1) ranging from mediating migration of myeloid leukocytes and NK cells, to 
the phagocytosis and killing of complement opsonised microbes (see Ross and 
Vetvicka 1993; Ross et al. 1999, 2000 for reviews). Unlike the [3-glucan or man­
nose receptors, CR-mediated recognition does not directly result in the release 
of pro-inflammatory responses, such as the production of reactive oxygen inter­
mediates and arachidonic acid, implying that other receptors are involved in 
mediating these responses (Wright and Silverstein 1983; Aderem et al. 1985; 
Aderem and Underhill 1999). 

Most fungi become opsonised with C3b by activating the alternative and 
mannose-binding protein pathways, or though the classical (antibody-mediat­
ed) pathway (see Kozel 1996, 1998 for reviews). As CR3 has a binding site for 
the C3b component of complement, it plays an important role in the recognition 
of opsonised fungi. In addition, CR3 possesses a lectin domain on CD 11 b, which 
binds a broad range of carbohydrates as well as unopsonised yeast particles 
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(Ross et al. 1985a; Thornton et al. 1996). The importance of complement and 
CR3 in the recognition and control of fungal infections is highlighted by genetic 
defects which result in decreased resistance to a variety of fungal pathogens, in­
cluding C. neoformans, C. albicans, A. fumigatus and Paracoccidioides brasilien­
sis (Ross et al. 1985b; Kozel 1996, 1998). However, as uptake via CR3 also by­
passes the cellular defence mechanisms mentioned above, this receptor is also 
targeted by a number of fungal pathogens, including H. capsulatum, C. albicans, 
and Blastomyces dermatitidis, as a means of invading the cell (Hogan et al. 
1996). 

2.4 
Toll-Like Receptors 

Innate immune specificity is thought to be determined by homo- or het­
erodimers of Toll-like receptors (TLR) (see Fig. 2), which cooperate with phago­
cytic receptors, such as the MR, to trigger a pathogen-specific response 
(Ozinsky et al. 2000; Takeuchi and Akira 2001; Underhill and Ozinsky 2002b; 
Vasselon and Detmers 2002). Toll receptors were originally identified as key 
components of the antifungal response in Drosophila (Lemaitre et al. 1996). Al­
though a number of TLRs have now been identified in mammals (Medzhitov 
2001), only a few have so far been implicated in fungal recognition (Underhill et 
al. 1999). TLR-2 was shown to participate in the immune response to zymosan 
as well as gram-positive bacteria, peptidoglycans and lipoarabinomannan. How­
ever, heterodimers ofTLR-2, and TLR-6 are required for the complete activation 
of the transcription factor nuclear factor-kappa B (NF-KB), and the subsequent 
TNF-a production during the detection of zymosan (Underhill et al. 1999; 
Ozinsky et al. 2000). 

TLR-4 was originally thought to be involved in the recognition of bacterial 
components, such as lipopolysaccharide (LPS) and lipoteichoic acid (Underhill 
and Ozinsky 2002b), but has recently been shown to be involved in the recogni­
tion of fungal pathogens as well (Shoham et al. 2001). The requirements for 
TLR-4-induced signalling, however, vary depending on the pathogen and cell 
type examined (Wang et al. 2001; Netea et al. 2002). In Candida-treated periph­
eral blood mononuclear cells and murine M<J>s, TLR-2, but not TLR-4, is in­
volved in the production of the pro-inflammatory cytokines, TNF-a and IL-1,6 
(Netea et al. 2002). However, TLR-4-defective mice are more susceptible to C. al­
bicans infection, perhaps as a result of the reduction in the production of vari­
ous chemokines required for neutrophil recruitment in these mice (Netea et al. 
2002). Similarly C. neoformans glucuronoxylomannan activates NF-KB via TLR-
4 and CD14, as examined in transfected fibroblast cells, but the activation does 
not result in TNF-a production (Shoham et al. 2001). In contrast, A. fumigatus 
hyphae induce TNF-a, IL-1,6 and IL-6 production in human leukocytes via TLR-
4 and CD14, but not via TLR-2 mediated pathways (Wang et al. 2001). Overall, 
these data suggest that a wide range of fungi, and consequently a diverse range 
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of potential ligands, can be recognised by a variety of Toll-like receptors, a pro­
cess which leads to the appropriate immune response. 

3 
M<I> Killing and Fungal Avoidance Mechanisms 

The recognition and binding of fungal pathogens, via the various M<l> surface 
receptors, leads to phagocytosis and the implementation of a variety of anti-mi­
crobial mechanisms. Killing is achieved by a combination of oxygen-indepen­
dent mechanisms, such as the low pH, degradative environment and limitation 
of nutrients within the phagosome, as well as oxygen-dependent mechanisms, 
including the production of reactive oxygen and nitrogen intermediates. 

The production of reactive oxygen intermediates is an effective antimicrobial 
mechanism against fungi, such as C. albicans (Hampton et al. 1998; Clark 1999). 
Superoxide (Oz -) is generated by the activated membrane-associated enzyme 
complex phagocyte NADPH oxidase (phox), which transfers electrons from 
NADPH to Oz. Toxic oxidants, such as hydroxyl radicals and hydrogen peroxi­
dase (HzOz), are then generated within the phagosome killing the internalised 
organism. Mutations of the ph ox proteins, resulting in chronic granulomatous 
disease, are defined by the lack of in vitro phagocyte killing and the recurrence 
of bacterial and fungal infections, highlighting the importance of this antimicro­
bial mechanism (Leijh et al. 1977; Borgato et al. 2001). The role of superoxide 
acting as a signal for the activation of neutrophil granule proteases, and not as a 
toxic intermediate, was recently shown to be essential for bacterial killing and 
may also prove to be important in fungal killing (Reeves et al. 2002). 

Myeloperoxidase (MPO) catalyses the production of hypochlorous acid, a po­
tent microbicidal agent, from HzO z (see Hoy et al. 2002 for a review). MPO is 
located within the granules of monocytes and neutrophils and is involved in 
their fungicidal and anti-microbial functions (Marodi et al. 1991; Hampton et 
al. 1998). It may function as a regulator of the oxidative degradation process, by 
the sequestration of HzOz in the phagosome, thereby facilitating granule prote­
ase activity (Reeves et al. 2002). Although M<l>s do not synthesise MPO, recom­
binant human MPO has been shown to enhance killing of Candida by GM-CSF­
activated M<l>s (Marodi et al. 1998). There may also be a link between the ability 
of the M<l> MR to bind MPO and its role in antifungal mechanisms (Shepherd 
and HoidaI1990). 

The inducible nitric oxide (NO) synthase (iNOS) plays a key role in the kill­
ing of pathogens (see MacMicking et al. 1997 for a review). iNOS enables the 
production of NO via the oxidative deamination of I-arginine. The NO then re­
acts with superoxide, or with thiol groups to produce peroxynitrite and ni­
trosothiols. A combination of NO, superoxide and peroxynitrite seems to be re­
quired for the full M<l> fungicidal activity (Vazquez-Torres and Balish 1997). In­
duction of iNOS occurs in the presence of microbial products, such as LPS and 
zymosan, or pro-inflammatory cytokines, such as TNF-a, IFN-y and IL-l,B. The 
importance of iNOS in controlling infections is evident by the use of specific 
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NOS inhibitors, which generally exacerbate infections (MacMicking et al. 1997). 
Furthermore, NOS knock-out mouse models display an increased susceptibility 
to fungal infections, such as C. neoformans (Rivera et al. 2002). 

In addition to these oxygen-dependent killing mechanisms, the non-oxygen­
dependent mechanisms also play an important role in the control of fungal in­
fections. The confinement of microbes within the phagosome acts as a physical 
barrier limiting the availability of nutrients, whose supply is further restricted 
by active mechanisms. For example, the transferrin receptor, which transports 
iron via the endosomal pathway, is down-regulated during infection, while the 
recruitment of the natural resistance-associated M<P protein (Nramp)-1 to the 
phagosome ensures the removal of iron and other essential divalent cations 
(Gruenheid et al. 1997; Blackwell and Searle 1999; Sunder-Plassmann et al. 
1999). The degradative enzymes and acidic pH of the phagosome contribute to 
fungal killing, although these mechanisms have yet to be fully characterised 
(Vazquez-Torres and Balish 1997). The iron content and pH of the phagosome 
have also been targeted for anti-fungal therapy, discussed below. 

Although M<Ps are very efficient at killing microbial invaders, fungal patho­
gens have subverted many of these killing mechanisms to ensure their survival. 
Some fungi actively seek intracellular residence in a modified phagosome, such 
as H. capsulatum, which survives and replicates intracellularly by regulating the 
phagosomal pH (Newman 1999). Other fungi ensure that they avoid recogni­
tion, such as C. neoformans which has a viscous polysaccharide capsule pre­
dominantly composed of glucuronoxylomannan that protects against recogni­
tion by phagocytes (Perfect et al. 1998). Other avoidance mechanisms include 
the ability to suppress iNOS, as occurs in C. albicans infections (Vazquez-Torres 
and Balish 1997; Schroppel et al. 2001), and the production of compounds that 
interfere with phagocytosis, such as the aflatoxins and gliotoxins of A. fumiga­
tus (Tomee and Kauffman 2000). 

4 
Antifungal Agents 

While only few fungi are considered "professional pathogens", many are oppor­
tunistic pathogens capable of infecting immunocompromised individuals, such 
as AIDS patients (van Burik and Magee 2001). To combat these infections, two 
general antifungal strategies have been pursued, those that target the fungus it­
self and those that enhance the microbicidal activity of phagocytes. Often the 
simultaneous use of these strategies results in improved efficacy (for example 
see Tanida et al. 2001). Most drugs in clinical use directly debilitate the fungus 
and include those that target fungal cell membrane sterols, such as the polyenes 
(including amphotericin B), azoles (including fluconazole), allylamines and 
morpholines. Drugs which target fungal cell-wall synthesis include compounds 
such as the echinocandins and pneumocandins, which target f3-glucan synthe­
sis, and nikkomycin Z, which inhibits chitin synthesis. Other antifungal drugs 
include 5-tluorouracil, which interferes with RNA, DNA and protein synthesis. 
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For a more complete review on these and other antifungal agents see Ghannoum 
and Rice (1999). 

Although not in routine clinical use, a number of studies have indicated that 
modulation of phagocyte function by immunotherapy can be beneficial for the 
management of systemic fungal infections. A number of cytokines, including 
GM-CSF, G-CSF and 1FN-y, have been shown to enhance phagocyte antifungal 
activity (Marodi et al. 1993; Farmaki and Roilides 2001; Roilides and Farmaki 
2001). Furthermore, pretreatment with cytokines, such as GM-CSF, could reduce 
the risk of disseminated fungal infections in patients therapeutically immuno­
suppressed with drugs such as corticosteroids (Brummer et al. 2002). Other po­
tential antifungal drugs include compounds which modify the phagolysosome, 
such as chloroquine, which by altering the phagolysosomal pH and iron avail­
ability, is effective against fungal pathogens such as Histoplasma capsulatum 
(Weber et al. 2000). Finally, as mentioned above, carbohydrates derived from 
the cell wall of the fungi themselves also show promise as immunomodulators 
for the control of fungal infection (Williams et al. 1978; Williams et al. 1991; 
Garner and Hudson 1996). 

5 
Immunomodulation by Fungal-Derived Carbohydrates 

There is a considerable body of research documenting the effects of fungal-de­
rived carbohydrates on the immune system, and an interest in generating novel 
therapeutics based on these compounds. These effects were initially noted over 
40 years ago with zymosan, which is rich in (X-mannan and ,B-glucans, and now 
is widely used as a particulate activator of M<I>s (Benacerraf et al. 1959; Czop et 
al. 1989). More recent studies have shown that mannoproteins have im­
munomodulatory properties (see below), whilst soluble ,B-glucans can have mi­
togenic, anti-infective, anti-sepsis, and anti-tumourigenic effects (Riggi and Di 
Luzio 1961; Williams and Di Luzio 1980; Browder et al. 1987; Sherwood et al. 
1987; Sandula et al. 1995; Williams et al. 1996; Kogan et al. 1997; Ross et al. 
1999). 

Fungal mannans have both suppressive and stimulatory activities on the im­
mune system (Garner et al. 1990; Delfino et al. 1996; Delfino et al. 1997). Man­
nan is often associated with protein, which may be contributing to the im­
munomodulatoryeffects (Palma et al. 1992; Gomez et al. 1996; Tzianabos 2000; 
Mansour et al. 2002). As a stimulator, mannans can interact with phagocyte re­
ceptors, such as the mannose receptor, inducing the production of pro-inflam­
matory cytokines, such as TNF-(X and 1L-6 (Garner and Hudson 1996; Tzianabos 
2000). The suppressive activities of mannans have been documented in patients 
suffering from Candida or Cryptococcus infections (Tzianabos 2000). Although 
the suppressive mechanism is not clearly understood, it is thought to involve in­
teractions with T lymphocytes (Garner et al. 1990; Tzianabos 2000). 

,B-Glucans have potent stimulatory effects on the immune system, although 
the degree of immunomodulation is linked to structure of these carbohydrates 
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(Bohn and BeMiller 1995; Williams et al. 1996; Kogan et al. 1997; Williams 
1997). The tertiary structure, degree of branching, polymer length and carbohy­
drate content have all been implicated in the ability of a particular ,B-glucan to 
stimulate the immune system. These stimulatory effects are probably related to 
the ability of the glucan to cross-link the ,BGRs on the phagocyte surface 
(Okazaki et al. 1995; Mueller et al. 2000). Unfortunately, the detailed structure of 
most immunomodulatory ,B-glucans and the molecular mechanisms by which 
they exert their effects are unknown, hampering efforts to develop these com­
pounds for therapeutic use. In general, the administration of ,B-glucans results 
in phagocyte activation and the production of pro-inflammatory mediators, 
such as TNF-a (Czop and Austen 1985b,c; Browder et al. 1990). A list of some of 
these glucans and their immunomodulatory effects is presented in Table 2. 

6 
Conclusions 

M<Ds have an important role in the innate immune response to fungal patho­
gens, and consequently they express a number of receptors, which are able to 
recognise fungal molecular patterns. The identification of these receptors has 
greatly aided the understanding of the mechanisms by which the immune sys­
tem recognises these pathogens and how the ensuing cellular and immune re­
sponse is generated. These studies have also provided insight into the mecha­
nisms by which fungal pathogens subvert the immune system and have led to 
the development of therapeutics, including the use of fungal-derived carbohy­
drates as immunomodulators. 
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