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PREFACE

Chemical engineers frequently have to deal with multicomponent mixtures; that is, systems
containing three or more species. Conventional approaches to mass transfer in multicompo-
nent mixtures are based on an assumption that the transfer flux of each component is
proportional to its own driving force. Such approaches are valid for certain special cases.

• Diffusion in a two component (i.e., binary) mixture.
• Diffusion of dilute species in a large excess of one of the components.
• The case in which all of the components in a mixture are of a similar size and nature.

The following questions arise.

• Does the presence of three or more components in the system introduce additional
complications unpredicted by binary mass transfer theory alone?

• If the answer to the above question is in the affirmative, how can the problem of
multicomponent mass transport be tackled systematically?

• Do the transport processes of mass and heat interact with each other in normal
chemical engineering operations?

Though the first question has been in the minds of chemical engineers for a long time
(Walter and Sherwood in 1941 raised doubts about the equalities of the component
efficiencies in multicomponent distillation), it has been established beyond doubt in the last
two decades that multicomponent systems exhibit transport characteristics completely
different from those of a simple binary system. Furthermore, procedures have been
developed to extend the theory of binary mass transfer to multicomponent systems in a
consistent and elegant way using matrix formulations; such formulations have also been
incorporated into powerful computational algorithms for equipment design taking into
account simultaneous heat transfer effects. These advanced models have been incorporated
into design software for distillation, absorption, extraction, and condensation equipment.
This is one example where commercial application has apparently preceded a formal
academic training in this subject even at the graduate level.

This textbook is our attempt to address two needs:

1. The needs of the academic community for a reference text on which to base advanced
lectures at the graduate level in transport phenomena or separation processes.

2. The requirements of a process design or research engineer who wishes to use rigorous
multicomponent mass transfer models for the simulation and design of process
equipment.

This textbook has grown out of our research and teaching efforts carried out separately
and collaboratively at The University of Manchester in England, Clarkson University in the
United States, Delft University of Technology, and The Universities of Groningen and
Amsterdam in the Netherlands, The Royal Dutch Shell Laboratory in Amsterdam, and The
Indian Institute of Petroleum.
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This textbook is not designed as a first primer in mass transfer theory; rather, it is meant
to follow an undergraduate program of lectures wherein the theory of mass transfer and
fundamentals of transport phenomena have already been covered.

The 15 chapters fall into three parts. Part I (Chapters 1-6) deals with the basic equations
of diffusion in multicomponent systems. Chapters 7-11 (Part II) describe various models of
mass and energy transfer. Part III (Chapters 12-15) covers applications of multicomponent
mass transfer models to process design.

Chapter 1 serves to remind readers of the basic continuity relations for mass, momen-
tum, and energy. Mass transfer fluxes and reference velocity frames are discussed here.
Chapter 2 introduces the Maxwell-Stefan relations and, in many ways, is the cornerstone of
the theoretical developments in this book. Chapter 2 includes (in Section 2.4) an introduc-
tory treatment of diffusion in electrolyte systems. The reader is referred to a dedicated text
(e.g., Newman, 1991) for further reading. Chapter 3 introduces the familiar Fick's law for
binary mixtures and generalizes it for multicomponent systems. The short section on
transformations between fluxes in Section 1.2.1 is needed only to accompany the material in
Section 3.2.2. Chapter 2 (The Maxwell-Stefan relations) and Chapter 3 (Fick's laws) can be
presented in reverse order if this suits the tastes of the instructor. The material on
irreversible thermodynamics in Section 2.3 could be omitted from a short introductory
course or postponed until it is required for the treatment of diffusion in electrolyte systems
(Section 2.4) and for the development of constitutive relations for simultaneous heat and
mass transfer (Section 11.2). The section on irreversible thermodynamics in Chapter 3
should be studied in conjunction with the application of multicomponent diffusion theory in
Section 5.6.

Chapter 4 suggests usable procedures for estimating diffusion coefficients in multicompo-
nent mixtures. Chapters 5 and 6 discuss general methods for solution of multicomponent
diffusion problems. Chapter 5 develops the linearized theory taking account of multicompo-
nent interaction effects, whereas Chapter 6 uses the conventional effective diffusivity
formulations. We considered it appropriate to describe both of these approaches and to give
the readers a flavor of the important differences in their predictions. We stress the
inadequacy of the effective diffusivity approach in several cases of practical importance. It is
a matter of continuing surprise to us that the effective diffusivity approach is still being used
in the published literature in situations where it is clearly inapplicable. By delineating the
region of applicability of the effective diffusivity model for multicomponent mixtures and
pointing to the likely pitfalls in misapplying it, we hope that we will be able to warn
potential users.

In the five chapters that make up Part II (Chapters 7-11) we consider the estimation of
rates of mass and energy transport in multicomponent systems. Multicomponent mass
transfer coefficients are defined in Chapter 7. Chapter 8 develops the multicomponent film
model, Chapter 9 describes unsteady-state diffusion models, and Chapter 10 considers
models based on turbulent eddy diffusion. Chapter 11 shows how the additional complica-
tion of simultaneous mass and energy transfer may be handled.

Chapter 12 presents models of mass transfer on distillation trays. This material is used to
develop procedures for the estimation of point and tray efficiencies in multicomponent
distillation in Chapter 13. Chapter 14 uses the material of Chapter 12 in quite a different
way; in an alternative approach to the simulation and design of distillation and absorption
columns that has been termed the nonequilibrium stage model. This model is applicable to
liquid-liquid extraction with very little modification. Chapter 15 considers the design of
mixed vapor condensers.

A substantial portion of the material in this text has been used in advanced level
graduate courses at The University of Manchester, Clarkson University, The Universities of
Amsterdam, Delft, Groningen and Twente in the Netherlands, and The University of
Bombay in India. For a one semester course at the graduate level it should be possible to
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cover all of the material in this book. In our experience the sequence of presentation of the
chapters is also well suited to lecture courses.

We have included three appendices to provide the necessary mathematical background.
Appendix A reviews matrix algebra. Appendix B deals with solution of coupled linear
differential equations; this material is essential for the solution of multicomponent diffusion
problems. Appendix C presents two numerical methods for solving systems of nonlinear
algebraic equations; these algorithms are used to compute rates of mass transfer in
multicomponent systems and in the solution of the design equations for separation equip-
ment. We have usually found it necessary to include almost all of this material in our
advanced level courses; either by setting aside time at the start of the course or by
introducing the necessary mathematics as it is needed.

We also feel that portions of the material in this book ought to be taught at the
undergraduate level. We are thinking, in particular, of the materials in Section 2.1 (the
Maxwell-Stefan relations for ideal gases), Section 2.2 (the Maxwell-Stefan equations for
nonideal systems), Section 3.2 (the generalized Fick's law), Section 4.2 (estimation of
multicomponent diffusion coefficients), Section 5.2 (multicomponent interaction effects),
and Section 7.1 (definition of mass transfer coefficients) in addition to the theory of mass
transfer in binary mixtures that is normally included in undergraduate courses.

A special feature of this book is the large number of numerical examples that have been
worked out in detail. With very few exceptions these examples have been based on actual
physicochemical data and many have direct relevance in equipment design. The worked
examples can be used by the students for self-study and also to help digest the theoretical
material.

To gain a more complete understanding of the models and procedures discussed it is
very important for students to undertake homework assignments. We strongly encourage
students to solve at least some of the exercises by hand, although we recognize that a
computer is essential for any serious work in multicomponent mass transfer. We have found
equation solving packages to be useful for solving most of the simpler mass transfer
problems. For some problems these packages are not yet sufficiently powerful and it is
necessary to write special purpose software (e.g., for distillation column simulation or for
condenser design).

Our research and teaching efforts in multicomponent mass transfer have been strongly
influenced by two people. The late Professor George Standart of the University of
Manchester who impressed upon us the importance of rigor and elegance. Professor Hans
Wesselingh of the University of Groningen motivated us to present the material in a form
more easily understandable to the beginner in this area. It is left to our readers to judge
how well we have succeeded in achieving both rigor and simplicity.

R. TAYLOR
R. KRISHNA

Potsdam, New York
Amsterdam, The Netherlands
June 1993



A NOTE ON SOFTWARE

Multicomponent mass transfer calculations are sufficiently demanding that one really
requires computer software if one is to make more than one such calculation. The examples
in this book were solved with a variety of software packages. Almost all of the computa-
tional examples were solved first using software that we created specifically for this purpose.
A library of Fortran 77 routines for performing multicomponent mass transfer calculations
is available from R. Taylor. These routines can be made to work with any number of
components and are easily incorporated into other programs. We have checked all of our
original calculations by repeating the examples using software that has been designed for
mathematical work. We have used several such packages in the course of our work. With
the exception of the design examples in Chapters 14 and 15, all of the examples have been
solved using Mathcad for DOS (Version 2.5) from MathSoft. A disk containing our Mathcad
files is provided with this book.

The distillation design examples in Chapter 14 were solved using a software package
called ChemSep (Kooijman and Taylor, 1992). ChemSep (or an equivalent software package)
will be needed for solving some the exercises. Information on the availability of ChemSep
can be obtained from R. Taylor.
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NOMENCLATURE

at Weighting factor (Chapter 1) [various]

at Activity of component / in solution [ —]

a1 Interfacial area per unit volume of vapor [m2 /m3]

a Interfacial area per unit volume of liquid [m2 /m3]

a Interfacial area per unit volume of dispersion [m2 /m3]

ap Specific surface area of packing [m2/m3]

a'j Interfacial area per unit volume of vapor in bubble formation zone (Sections
12.1 and 12.2) [m2 /m3]

a'jj k Interfacial area per unit volume of vapor in A:th bubble population (Sections
12.1 and 12.2) [m2 /m3]

An Eigenvalue in Kronig-Brink model

A + Damping constant in van Driest mixing length model [ — ]

Ab Active bubbling area on tray [m2]

Ah Hole area of sieve tray [m2]

Ac Cross-sectional area [m2]

A Interfacial area in batch extraction cell [m2]

A(y+) Quantity defined by Eqs. 10.3.4

[A] Matrix defined by Eqs. 8.5.21 and 8.5.22 [s/m2]

[A(0] Matrix defined by Eq. 9.3.8

b Weir length per unit bubbling area (Section 12.1) [m"1]

B Channel base (Section 12.3) [m]

B Inverse of binary diffusion coefficient [s/m2]

[B] Matrix function of inverted binary diffusion coefficients defined by Eqs. 2.1.21
and 2.1.22 [s/m2]

[Bn] Matrix function of inverted binary diffusion coefficients defined by Eqs. 2.4.10
and 2.4.11 [s/m2]

[BuV] Transformation matrix defined by Eqs. 1.2.21 [ - ]

[BVu] Transformation matrix defined by Eqs. 1.2.23 [ - ]

[Buo] Transformation matrix defined by Eqs. 1.2.25 [ - ]

[Bou] Transformation matrix defined by Eqs. 1.2.27 [ - ]

[B(y + )] Matrix defined by Eq. 10.4.7

c, Molar density of component / [mol/m3]

ct Mixture molar density [mol/m3]

Cpi Specific heat of component / [J/kg]. Also, molar heat capacity of component i

[J/mol]

Cp Specific heat of mixture [J/kg]. Also, molar heat capacity of mixture [J/mol]

Ca Capillary number (Section 12.3) [ - ]

XXV
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d Characteristic length of contacting device [m]

d Diameter [m]

dt Driving force for mass diffusion [m" 1 ]

dj Diameter of jet in bubble formation zone (Sections 12.1 and 12.2) [m]

djj k Diameter of bubble in kth bubble population (Sections 12.1 and 12.2) [m]

deq Equivalent diameter [m]

dp Nominal packing size [m]

D Maxwell-Stefan diffusivity for pair i-j [m 2 /s]

DijXk^l Limiting value of Maxwell-Stefan diffusivity for pair i-j when xk tends to
unity [m 2 /s]

£>° Infinite dilution diffusivity for component / present in trace amounts in
component j [m 2 /s]

Dieff Effective diffusivity of component / in multicomponent mixture [m2/s]

Aurb Turbulent eddy diffusivity [m2/s]

Dj Thermal diffusion coefficient [kg/m s]

Drei Reference value for diffusion coefficient [m 2 /s]

[D] Matrix of Fick diffusion coefficients [m2 /s]

[D°] Matrix of Fick diffusion coefficients in mass average velocity reference frame
[m2 /s]

[Dv] Matrix of Fick diffusion coefficients in volume average velocity reference frame
[m 2 / s ]

[Df] Matrix of Fick diffusion coefficients relative to a reference diffusivity [ —]

[Z)turb] Matrix of turbulent diffusion coefficients [m2 /s]

Dt /th eigenvalue of [D] [m 2 /s]

(et) /th eigenvector of [D] [ — ]

E Energy flux in stationary coordinate frame of reference [ W / m 2 ]

W Energy transfer rate (Chapter 14) [W]

E Energy balance equation (Chapters 11, 13, 14, and 15) [ W / m 2 , W]

Eo Overall efficiency (Eq. 13.1.1) [ - ]

EMV Murphree tray efficiency (Eq. 13.1.2) [ - ]

Eov Murphree point efficiency (Eq. 13.1.3) [ - ]

/ Fanning friction factor [ — ]

fi Fugacity of component / [Pa]

F Discrepancy functions [various]

Fj Flow rate of feed stream [mol/s]

fIIk Fraction of vapor in A:th bubble population (Sections 12.1 and 12.2) [ —]

& Faraday's constant [9.65 X 104 C/mol]

[/] Matrix function [various] (Chapter 5)

Fs F-factor based on superficial velocity [ k g 1 / 2 / m 1 / 2 s]

F(Nt) Function of total molar flux (Section 8.4) [ - ]

Fo Fourier number [ - ]

Fr Froude number [ — ]

g Acceleration due to gravity [9.81 m / s 2 ]

Gtj Chemical potential—composition derivative (Eq. 3.3.9) [J /mol]

Gtj Parameter in NRTL model (Appendix D)
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h Heat transfer coefficient (Eq. 11.3.2) [W/m 2 K]

A Heat transfer coefficient (Eq. 11.3.1) [m/s]

hf Froth or dispersion height [m]

hj Height of bubble formation zone (Sections 12.1 and 12.2) [m]

hn k Height of bubbling zone (Sections 12.1 and 12.2) [m]

hw Weir height [m]

H Height of packing (Section 12.3) [m]

HK Height of a transfer unit for the vapor (Section 12.3) [m]

HL Height of a transfer unit for the liquid (Section 12.3) [m]

Hov Overall height of a transfer unit (Section 12.3) [m]

[Hv] Matrix of heights of transfer units for the vapor (Section 12.3) [m]

[HL] Matrix of heights of transfer units for the liquid (Section 12.3) [m]

[Hov] Matrix of overall heights of transfer units (Section 12.3) [m]

HETP Height equivalent to a theoretical plate [m]

Ht Partial specific enthalpy [J/kg] Also, partial molar enthalpy of component i

[J/mol]

A//vap i Latent heat of vaporization of component / [J/mol]

i Current [amps]

/ Referring to interphase or interface

[H] Matrix of transport coefficients (Chapter 3) [J/mol m2 s]

[ / ] Identity matrix [ — ]

/ Unit tensor [ — ]

j D Chilton-Colburn j factor for mass transfer [ - ]

j H Chilton-Colburn j factor for heat transfer [ - ]

j m Roots of zero-order Bessel function (Chapter 9) [ — ]

/ Mass diffusion flux relative to the mass average velocity [kg/m2 s]

j u Mass diffusion flux relative to the molar average velocity [kg/m2 s]

j v Mass diffusion flux relative to the volume average velocity [kg/m2 s]

j r Mass diffusion flux relative to velocity of component r [kg/m2 s]

Ji, turb Turbulent diffusion flux of component / [kg/m2 s]

/ Molar diffusion flux relative to the molar average velocity [mol/m2 s]

Jv Molar diffusion flux relative to the volume average reference velocity [mol/
m2 s]

Jr Molar diffusion flux relative to the velocity of component r [mol/m2 s]
Ju Molar diffusion flux relative to the mass average reference velocity [mol/m2 s]
Ji, turb Molar turbulent diffusion flux of component i [mol/m2 s]

Jt Pseudodiffusion flux (Chapter 5) [mol/m2 s]

Jo Zero-order Bessel function [ - ]

[J] Jacobian matrix [various]

kB Boltzmann constant [1.38048 J /K]

k Mass transfer coefficient in a binary mixture [m/s]

Kt Equilibrium ratio (K value) for component / [ —]

[K] Diagonal matrix of the first n — 1 K values [ - ]

Kt eff "Effective" volumetric mass transfer coefficient [s"1] or [h"1]
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[K] Matrix of volumetric mass transfer coefficients (Section 5.6) [s"1]

Kov Overall mass transfer coefficient in a binary mixture [m/s]

[k] Matrix of multicomponent mass transfer coefficients [m/s]

/̂,eff Pseudobinary (effective) mass transfer coefficient of component / in a mixture

[m/s]

[Kov] Matrix of multicomponent overall mass transfer coefficients [m/s]

Jft Equivalent conductivity of component / (Section 2.4)

X Equivalent conductivity of mixture (Section 2.4)

i Generalized characteristic length [m]

( Mixing length describing turbulent transport (Chapter 10) [m]

i+ Reduced mixing length [ - ]

6t Component flow of a liquid [mol/s]

Le Lewis number [ — ]

L Liquid flow rate [mol/s]

m Mass of molecule [kg]

M Molar mass of mixture [kg/mol]

Mt Molar mass of component / [kg/mol]

Mt Moles of i in batch extraction cell [mol]

Mt Total moles of mixture in batch extraction cell [mol]

[M] Matrix of equilibrium constants (Eq. 7.3.5) [ - ]

Mfj Component material balance equation (Chapters 13 and 14) [mol/s]

M/; Component material balance equation (Chapters 13 and 14) [mol/s]

Mv Mass flow of vapor [kg/s]

ML Mass flow of liquid [kg/s]

n Number of components in the mixture [ — ]
nt Mass flux component / referred to a stationary coordinate reference frame

[kg/m2 s]

nt Mixture total mass flux referred to a stationary coordinate reference frame
[kg/m2 s]

Nt Molar flux of component / referred to a stationary coordinate reference frame
[mol/m2 s]

Nt Mixture molar flux referred to a stationary coordinate reference frame
[mol/m2 s]

Nu Nusselt number [ - ]

Mv Number of transfer units for the vapor phase in binary system [ —]

N'L Number of transfer units for the liquid phase in a binary system [ — ]

[Nv] Matrix of numbers of transfer units for the vapor phase [ - ]

[NL] Matrix of numbers of transfer units for the liquid phase [ —]

[Nov] Matrix of overall number of transfer units [ - ]

JVV Number of transfer units for a vapor defined by Eq. 12.1.42 [ - ]

JV'L Number of transfer units for a liquid defined by Eq. 12.1.42 [ —]

JV Mass transfer rate (Chapter 14) [mol/s]

P Pressure [Pa]

P Perimeter in structured packing (Section 12.3) [m]

Pj Pressure drop equation (Chapter 14)
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p Sieve tray hole pitch (Section 12.1) [m]

p Pressure tensor (Chapter 1) [Pa]
[P] Modal matrix [-]

Pf Vapor pressure of component / [Pa]

Pi Partial pressure of component i [Pa]

Pi Parachor (Section 4.2) [g1/4 cm3/niol s
1/2]

Pr Prandtl number [ - ]

Pr turb Turbulent Prandtl number [ - ]

q Conductive heat flux [W/m 2 ] . Also, integer parameter [ - ]

<3Wb Turbulent contribution to the conductive heat flux [W/m 2 ]

Qj Unaccomplished equilibrium in bubble formation zone (Section 12.1) [ - ]
Qn,k Unaccomplished equilibrium in kth bubble population (Section 12.1) [ - ]

[Q] Matrix describing unaccomplished equilibrium (Section 12) [ - ]

[Qj] Matrix of unaccomplished equilibrium in bubble formation zone (Section 12.2)
[-]

[Q//.J Matrix describing unaccomplished equilibrium in kth bubble population
(Section 12.2) [ - ]

Qt Equilibrium equation (Chapters 11-15) [ - ]

Qj Heat duty (Chapters 13-14) [W]

QL Volumetric liquid flow rate [m3/s]

Qv Volumetric vapor flow rate [m3 /s]

r Coordinate direction or position [m]

r0 Inner edge of film [m]

r0 Radius of spherical particle [m]
r8 Outer edge of film [m]

rt Radius of molecule in Eq. 4.1.7 [m]

R Gas constant [8.314 J /mol K]

Rt Radius of gyration (Section 4.2 only) [nm]

(R) Vector of rate equations [mol/m2s or mol/s]

[R] Matrix function of inverted binary mass transfer coefficients defined by Eqs.

8.3.25 [s/m]

[Rov] Inverse of [Kov] [s/m]

Re Reynolds number [ - ]

Rw Inner radius of tube wall [m]

R+ Reduced tube radius [-]

R Mass transfer rate equation

s Surface renewal frequency [s"1]

S Quantity defined by Eq. 4.2.4
S Structured packing channel side (Section 12.3) [m]
S Summation equation [ —]
Sc Schmidt number [ - ]

[Sc] Matrix of Schmidt numbers [ - ]

Scturh Turbulent Schmidt number [ - ]

Sh Sherwood number [ - ]

[Sh] Matrix of Sherwood numbers [ - ]
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St Stanton number [ — ]

StH Stanton number for heat transfer [-]

[St] Matrix of Stanton numbers [ - ]

t Time [s]

tt Transference number (Section 2.4) [ - ]

te Exposure time [s]

tv Vapor residence time (Section 12.1) [s]

tL Liquid residence time (Section 12.1) [s]

tj Residence time in bubble formation zone (Section 12.1) [s]

tu k Residence time in A:th bubble population (Section 12.1) [s]

T Temperature [K]

ut Velocity of diffusion of species / [m/s]

u Molar average reference velocity [m/s]

uv Volume average reference velocity [m/s]

ul Velocity of the interface [m/s]

w* Friction velocity [m/s]

u Average flow velocity [m/s]

u + Reduced velocity [ - ]

Uj Velocity of vapor in bubble formation zone (Sections 12.1 and 12.2) [m/s]

UJJ k Rise velocity of kth bubble population (Section 12.1 and 12.2) [m/s]

us Superficial velocity [m/s]

usf Superficial velocity at flooding [m/s]

U Internal energy (Section 1.3)

U Velocity [m/s]

v Mass average mixture velocity [m/s]

Vt Molar volume at normal boiling point (Section 4.1) [m3 /mol]

Vt Partial molar volume [m3 /mol]

Vt Mixture molar volume [m3 /mol]

vi Molar flow rate of component i [mol/s]

V Molar flow rate of mixture [mol/s]

Vo Volume of bulb in two-bulb diffusion cell (Chapter 5) [m2]

Ve Volume of bulb in two-bulb diffusion cell (Chapter 5) [m2]

W Weir length (Section 12.1) [m]

[W] Matrix of mass transfer coefficients: [W] = [/3][k] [m/s]

Greek Letters

a Relative froth density (Section 12.1) [ - ]

ae Parameter in Bennett method for pressure drop (Eq. 12.1.27)

atj Multicomponent thermal diffusion factors [ - ]

f3 Cell constant in two-bulb diffusion cell (Eq. 5.4.6) [m~2]

[/3] Bootstrap matrix [ — ]

yi Activity coefficient of component / in solution [ — ]

F Liquid flow per unit length of perimeter (Section 12.3) [kg/m 3 s]

F Thermodynamic factor for binary system (Eq. 2.2.12) [ —]
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[T] Matrix of thermodynamic factors with elements defined by Eqs. 2.2.5 [ - ]

8 Distance from interface [m]

8U Kronecker delta, 1 if i = k, 0 if / # k [-]

s Void fraction [ - ]

£ Rate of production of field quantity in bulk fluid mixture (Section 1.3)

£l Rate of production of field quantity at the interface (Section 1.3)

£ Combined variable, £ = z/y/4t (Chapter 9)

T] Dimensionless distance [ - ]

K Maxwell-Stefan mass transfer coefficient in a binary mixture (Eqs. 8.3.26 and

8.8.16) [m/ s ]

A Dimensionless parameters [ — ]

A Stripping factor (Chapters 12 and 13) [ - ]

A, Difference between component molar enthalpies (Eq. 11.5.13) [ J /mol ]

A Parameter in mixing length models (Section 10.2)

A Molecular thermal conductivity [ W / m K]

A turb Turbulent thermal conductivity [ W / m K]

An Eigenvalue in the Kronig-Brink model [ —]

fxt Molar chemical potential of component / [ J /mol]

ju,; Viscosity of component i (Section 4.1) [Pa s]

fi Molecular (dynamic) viscosity of mixture [Pa s]

ju,turb Turbulent eddy viscosity [Pa s]

v Molecular kinematic viscosity of mixture [m 2 / s ]

vtmh Turbulent eddy kinematic viscosity [m2/s]

vt Determinacy coefficients for species / [various]

v Mole fraction weighted sum of component determinacy coefficients (Section
8.5) [various]

f Unit normal directed from phase "x" to phase "y" [ —]. Also, dimensionless
distance along dispersion or column height [ — ]

£ Ratio of component mass flux to total mass flux (Sections 10.3 and 10.4) [ - ]

S Correction factor for high fluxes in binary mass transfer [ - ]. Also, correction,
factor for high fluxes in explicit methods [ — ]

Si eff Correction factor for high fluxes in pseudobinary (effective diffusivity) methods
[-]

BH Correction factor for the effect of high fluxes on the heat transfer coefficient
[-]

[H] Matrix of high flux correction factors [ - ]

p{ Mass density of component i [kg /m 3 ]

pt Mixture mass density [kg /m 3 ]

a Rate of entropy production (Chapter 2) [ J / m 3 s K]

crdiff Rate of entropy production due to diffusion (Chapter 2) [ J / m 3 s K]

a Characteristic diameter of molecule (Section 4.1) [A]

a Surface tension [N/m]

ac Critical surface tension (Section 12.3) [N/m]

r Shear stress [Pa]

T0 Shear stress at the wall [Pa]

r turb Turbulent shear stress [Pa]
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T Stress tensor [Pa]

r/y Parameter in NRTL activity coefficient model [ — ]

</> Mass transfer parameter defined by Eq. 8.2.6 (Section 8.2) [ - ]

<t>t Volume fraction (Section 4.1) [ - ]

<\>i Fugacity coefficient (Chapter 2) [ - ]

(/> Electrical potential (Section 2.4) [V]

</> Association parameter in Eq. 4.1.8

(f> fractional free area (Section 12.1) [ - ]

(</>) Co lumn matr ix of dimensionless mass t ransfer p a r a m e t e r s (Sect ion 8.2) [ —]

4> Nonconvect ive flux of field quant i ty (Chap te r 1) [various]

O Mass transfer rate factor for binary mass transfer (Eqs. 8.2.5, 9.2.3, and

10.3.10) [ - ]

<I> Mass t ransfer r a t e factor for explicit me thods (Eq . 8.5.13) [ —]

<£, eff Mass t ransfer r a t e factor in pseudobinary (effective diffusivity) m e t h o d s [ — ]

O H H e a t t ransfer r a t e factors [ — ]

[<l>] Matrix of mass transfer rate factors [ - ]

\fj(t) Surface age distribution [s"1]

ifj Referring to any field variable (Section 1.3) [various]

[W] Matrix of mass transfer rate factors in linearized film model (Eq. 8.4.4) [-]

[^] Matrix of mass transfer rate factors in turbulent diffusion model (Eq. 10.3.9)

[-]
o)t Mass fraction of component / [ — ]

[co] Diagonal matrix of mass fractions [ —]

H Angular velocity [ r ad / s ]

11 Function defined by Eq. 12.1.15 [ —]

[ 11 ] Matrix function [ — ]

[fl] Matrizant [various definitions]

6 Angle

[S] Matrix of rate factors for nonideal systems [ —]

X Arbitrary independent variable

(x) Vector defined by Eq. 9.3.4 (Section 9.3)

Subscripts

av Denotes that suitably averaged properties are used in the determination of the
indicated parameter

b Bulk phase property

d Dominant eigenvalue

E Quantity entering zone under consideration

eff Pseudobinary or "effective" parameter

H Parameter relevant to heat transfer

/ Referring to the interface

/ Referring to bubble formation zone (Sections 12.1 and 12.2)

//, k Referring to kth bubble population in bubble rise zone (Sections 12.1 and
12.2)
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/ Component i property or parameter

/, j , k Component indices, stage or section numbers (; only)

L Quantity leaving zone under consideration

m Mean value. Also, refers to the mass average velocity

n nth component

O Overall parameter. Also, denotes reduced energy and heat conduction fluxes

OV Overall parameter referred to the vapor phase

ref Denotes reference quantity

t Referring to total mixture

T, P Constant temperature and pressure

x Referring to the "x" phase

y Referring to the "y" phase

8 Quantity evaluated at position 17 = 8

0 Quantity evaluated at position 17 = 0

00 Quantity evaluated at long time or long distance

Superscripts

C Referring to the coolant

F Referring to the feed

/ Referring to the interface

(k) Denotes iteration number

L Referring to the liquid phase

m Referring to the mass average velocity

V Referring to the vapor-gas phase

v Referring to the volume average velocity

W Referring to the wall

x Referring to the ' V phase

y Referring to the "y" phase

' Referring to the ' phase

" Referring to the " phase

Referring to mass average reference velocity frame

Referring to finite transfer rates

Miscellaneous

Overall denotes partial molar property. Also, averaged parameter

Eigenvalue of corresponding matrix

Mathematical Symbols

V Gradient

A Difference operator

lim Limit
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Matrix Operations and Notation

( ) Column matrix

[ ] Square matrix

[ ]~1 Inverse of a square matrix

( )T Row matrix

I I Determinant of a square 1

tr[ ] Trace of matrix



MULTICOMPONENT MASS TRANSFER



PARTI
Molecular Diffusion



1 Preliminary Concepts

The reader should not be intimidated by the great generality expressed by the vectorial character
of these equations, because a simple one-dimensional approximation is almost always used in
applications. (But it is hard to resist the lure of cheap generality when writing down equations.)

—E. A. Mason and H. K. Lonsdale (1990)

1.1 CONCENTRATION MEASURES

In the description of the interphase mass transfer process, a variety of measures for
constituent concentrations, mixture reference velocities, and diffusion fluxes (with respect to
the arbitrarily defined mixture velocity) are used. Table 1.1 summarizes the most commonly
used concentration measures together with a number of other quantities that will be needed
from time to time.

1.2 FLUXES

If ut denotes the velocity of component / (with respect to a stationary coordinate reference
frame) then the mass flux of that species is defined by

»/ = P,-«,- (1.2.1)

and has units of kilograms per meter squared per second (kg/m2 s). If we sum the
component fluxes we obtain

n
nt= Y,ni = ptv (1.2.2)

/-i

where we have defined the mass average velocity v by

* - £ > , « , (1.2.3)

The molar flux of species / is defined by

N^w (1.2.4)

which has units of moles per meter squared per second (mol/m2 s). The total molar flux is
the sum of these quantities

N,= EAl-c , . i i (1.2.5)
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TABLE 1.1 Concentration Measures and Other Thermodynamic
Mixture Parameters

ct [mol/m3]

ct [mol/m3]

xt[-]

Pi [kg/m3]

Pt [kg/m3]

Oil-]

Mt [kg/mol]

Vt [m3/mol]

Vt [m3/mol]

U [N/m2]

lit [J/mol]

Molar density of /; ci = Pi/Mt

n

Mixture molar density; ct = / , c,

n

Mole fraction of /; xt = ct/ct\ ^2 xt

Mass density of i; pt = c^M^

n

Mixture mass density; pt = ^ Pi

n

Mass fraction of /; a>f = Pi/pt\ ^2 <o,
i=l

Molar mass of i

n

Partial molar volume of species i; ^

Mixture molar volume; Vt = \/ct

Volume fraction of species /; 4>i = ct

Fugacity of i

Molar chemical potential of species i

= 1

i = l

Vt

where we have defined the molar average velocity u

n

u= ^xiUi (1.2.6)
i=\

It is the calculation of these fluxes (particularly the molar ones), which is our main
concern. However, before getting down to business we need to define a few more fluxes; in
particular, the diffusion flux, which is the flux of species / relative to the flux of the mixture
as a whole. The definition of this flux raises the first of our problems, which mixture velocity
are we going to use? We have already introduced two, v and w, and there are others that we
have not discussed yet. The literature on diffusion would be a good deal simpler if there
were only one way to define diffusion fluxes. For each choice of reference velocity there are
at least two different diffusion fluxes that we could define, mass fluxes and molar fluxes.

Perhaps an example will help to clarify the situation. If we choose v as the reference
velocity, then the mass diffusion flux with respect to the mass average velocity is

7 , = p , ( « , - " ) (1-2-7)

and

E; , = 0 (1.2.8)
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The mass flux ni is related to the mass diffusion flux as

nt=Ji + PiV =Ji + ^int (1.2.9)

On the other hand, we could choose u as the reference velocity and define molar diffusion
fluxes relative to it as

/ , = c,.( « , - « ) (1.2.10)

with

L/, = 0 (1.2.11)
/• = 1

The molar flux Â  is related to the molar diffusion flux by

Nt = Jt + ctu = J; + xtNt (1.2.12)

These are the most commonly encountered sets of fluxes; other sets could be defined. We
could, for example, define a mass diffusion flux relative to the molar average velocity or a
molar diffusion flux relative to the mass average velocity. Still other choices of reference
velocity are sometimes used; for example, the volume average velocity uv

uv= £c ; >>, .= ! > , « , . (1.2.13)
1=1 i=\

where <j>i is the volume fraction of species / defined in Table 1.1.
Table 1.2 summarizes the most commonly used reference velocities.
Let us define an arbitrary reference velocity ua

ua= £>,«, (1.2.14)
i = \

where at is a weighting factor that satisfies the requirement

X > , = 1 (1.2.15)
1 = 1

We now define a mass diffusion flux relative to this arbitrary reference velocity jf by

jf=Pi{«,.-««) (1.2.16)

Not all of these diffusion fluxes are independent; on summing these fluxes over the n
species we find

E-iT = 0 (1.2.17)
/=1 °>i

In a similar way we define the molar diffusion flux relative the velocity ua by

J,fl = c,(«,.-««) (1.2.18)
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TABLE 1.2 Reference Velocities0

ua Arbitrary mixture velocity, weighting factor at

n n

»a = E w E **• = *

v Mass average mixture velocity, weighting factor o)i

i=\ i=1

u Molar averaged reference velocity, weighting factor xt

uv Volume averaged reference velocity, weighting factor </>,

wr Velocity of species r, weighting factor 8ir,
where 8ir is the Kronecker delta

8ir = 1 if i == r

8ir = 0 if i # r

"Units are in meters per second [m/s].

The sum of these fluxes gives

n ai
E —J? = 0 (1.2.19)
/ = i x '̂

The diffusion fluxes defined earlier are seen to be special cases of the more general
definitions presented above. Table 1.3 summarizes the most commonly encountered diffu-
sion fluxes and Table 1.4 summarizes those fluxes that are measured with respect to a
laboratory fixed coordinate reference frame.

1.2.1 Transformations Between Fluxes

It will sometimes prove necessary to transform fluxes from one reference velocity to
another. We give some examples of the required relations here.

To relate the molar diffusion flux relative to the volume average velocity to the molar
diffusion flux relative to the molar average reference velocity we use the transformation

/, = E B?W (1.2.20)
k=l
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TABLE 1.3 Diffusion Fluxes0

jf Mass diffusion flux relative to arbitrary reference velocity

ji Mass diffusion flux relative to mass average velocity

jf Mass diffusion flux relative to molar average velocity

jf = p,(«, - u) £ Jj« = 0

jf Mass diffusion flux relative to volume average velocity

( ) ^

j \ Mass diffusion flux relative to component r velocity

j \ = Pi(ut - ur) jr
r = 0

Jf Molar diffusion flux relative to arbitrary reference velocity

Jt Molar diffusion flux relative to molar average velocity

n

7, = C,(H,-«) £7,-0
1 = 1

JY Molar diffusion flux relative to volume average velocity

Ji Molar diffusion flux relative to mass average velocity

Jf = cf.(B|. -v) E ^ = 0
i = l Xi

Jf Molar diffusion flux relative to component r velocity

Jf = c,(«,,- «,). 7r
r = 0

Units are kilograms per meter squared per second (kg/m2 s) for mass diffusion
fluxes and moles per meter squared per second (mol/m2 s) for molar diffusion
fluxes.
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TABLE 1.4 Fluxes With Respect to a Laboratory Fixed Frame
of Reference0

nt Mass flux relative to stationary coordinates

nt Total mass flux relative to stationary coordinates

n

1 = 1

Nt Molar flux relative to stationary coordinates

Ni * ciui = Ji + ciu

Nt Total molar flux relative to stationary coordinates

n

"Mass fluxes units are kilograms per meter squares per second
(kg/m2 s); molar fluxes units are moles per meter squared per second
(mol/m2 s).

where the coefficients B^ are defined by

B?f = 8ik-xt(l-Vk/Vn) (1.2.21)

The inverse transformation is

n-\

lV= LZ?k
uJk (1.2.22)

k = l

where the coefficients B\k
u are defined by

BYk
u = &ik-Xi{Vk-Vn)/Vt (1.2.23)

To transform the mass diffusion flux relative to the mass average velocity j t to the mass
diffusion flux relative to the molar average velocity 7" we use

jf = "E B»k°jk (1.2.24)

k=\

where the coefficients B™ are given by

/ xk xn\

(1.2.25)
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The inverse transformation is

where the Bf£ are

n-\

k=\
Ji ~ L, aik Jk

«>nXk

(1.2.26)

(.1.2.27)

To change the units in which the flux is expressed requires further manipulation.

Ct*iJ? = P,<»iJi (1.2.28)

For more on the use of these transformations see Section 3.2.4 and Exercises 1.1, and 1.2.

1.3 BALANCE RELATIONS FOR A TWO-PHASE SYSTEM INCLUDING
A SURFACE OF DISCONTINUITY

Let us consider a two-phase system including a surface of discontinuity (phase interface).
Let x and y represent the two phases. For example, y may refer to the gas phase and x to
the liquid phase in a two-phase system. Let the number of components in each phase be n.
Let / represent the phase interface and the unit normal directed from phase x to y. The
system considered is shown pictorially in Figure 1.1. Our immediate task is to develop the
balance relations describing the interphase transport processes taking place is this system.

During interphase mass transfer, concentration gradients will be set up across the
interface. The concentration variations in the bulk phases x and y will be described by
differential equations; whereas at the interface /, we will have jump conditions or boundary
conditions. Standart (1964) and Slattery (1981) give detailed discussions of these relations
for the transport of mass, momentum, energy, and entropy. It will not be possible to give
here the complete derivations and the reader is, therefore, referred to these sources. A
masterly treatment of this subject is also available in the article by Truesdell and Toupin
(1960), which must be compulsory reading for a serious researcher in transport phenomena.

The equations of change for each fluid phase and the "jump" balance conditions that
must be met at the interface are summarized in Table 1.5. There is an important restriction
on the equations in Table 1.5; the effect of chemical reactions in the bulk fluid phase has
been neglected. For all of the applications considered in this book this neglect is justified.

Our first major task is the description of the interfacial mass transfer process and,
therefore, we shall examine further the equations for continuity of species / and the
equation for conservation of total mass of mixture.

/, surface of
discontinuity

Figure 1.1. Pictorial representation of a two-phase
system showing a surface of discontinuity or inter-
face.



TABLE 1.5 Balance Relations for a Two-Phase System

Equation of Change for Any Conserved Property

d(p^)
+ V • {pfifv} + V • 4> = £ (1.3.1)

where

>P = an arbitrary field quantity per unit mass of mixture

£ = the rate of production of field per unit volume of bulk phase

O = a nonconvective flux of the field quantity through external bounding surface S

pt = the mass density of bulk fluid mixture

v = the mass average velocity of fluid mixture

The tensorial order of the flux 4> is one higher than that of the field quantity M>.

Jump Balance Relation for the Interface I

€ • {<f>y + pyyy(vy - u1) - <!>x - px^x{vx - u1)} = C1 (1-3.2)

where

£ = the unit normal to / directed from the x to y phase

C1 = the rate of production of field quantity per unit area at the interface /

u1 = the velocity of the interface /

All of the foregoing quantities are functions of position and time.

A. Balance of Species / (no chemical reactions in bulk phase)

B. Conservation of Total Mass of Mixture

C. Conservation of Linear Momentum
n

where

p = pi + T is the pressure tensor

p = the thermodynamic pressure

T = the stress tensor

/ = the unit tensor

Ft = the body force acting per unit mass of species i

£ = the sum of body forces Ft

D. Energy Balance
n

ty = U + \v • v 4> = <7+ /_2 HiJ + p * v

n

where

U — the internal energy per unit mass of mixture

q = the conductive heat flux

Ht = the partial specific enthalpy of component /
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The differential balance relation for continuity of mass of species / is

^ + V . { P l p } = - V . y i (1.3.3)

For the total mixture we have

^ + V • {Ptv} = ^ + p,V • v + v • Vp, = 0 (1.3.4)
ot ot

If we denote the mass average velocity following derivative as

d d

then it is easy to show that Eq. 1.3.3 can be simplified to the form

do):

( L 3 - 5 )

Equation 1.3.6 can be expressed in terms of the mass fluxes, nt, as

^ + V - W / = 0 (1.3.7)

The differential mass balance for continuity of mass of the mixture is

^ + V - « ( = 0 (1.3.8)

Equation 1.3.6 can also be written in molar units as

-W / (1-3.9)

where we use the mole average velocity following derivative. Only n - 1 of the Eqs. 1.3.9
are independent because the mole fractions xt sum to unity and the molar diffusion fluxes
Jt sum to zero (see Table 1.3). Exactly analogous relations will hold for the mole fractions yt

in phase y.
Equation 1.3.9 can be expressed in terms of the component molar fluxes Nt as

dct

—L+y.N. = o (1.3.10)
dt

The differential balance expressing conservation of total moles of mixture is obtained by
summing Eqs. 1.3.10 for all components to give (recall that we do not consider chemical
reactions occurring in the bulk phases)

dct

— + v • Nt = 0 (1.3.11)

If we choose to represent the diffusion fluxes with respect to the volume average velocity
uv then the differential balance relations take the form

d-£-+V-ciU"=-V-jy (1.3.12)
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It must be emphasized here that Eq. 1.3.12 cannot be simplified to a form analogous to
the Eqs. 1.3.6 or 1.3.9 because there is no law of conservation of volume.

We shall normally use mole fractions as composition measures, the molar average
reference velocity u and the molar diffusion fluxes (with respect to M) Jt to describe the
diffusion process within a given phase (Chapters 5-9). Molar quantities are not particularly
convenient when we have to solve the equations of continuity of mass in conjunction with
the equations of motion. The latter are best expressed in the mass average frame. We shall,
in fact, switch to the use of mass fractions, the mass average reference velocity v and mass
diffusion fluxes (with respect to the mass average velocity) j t in our discussion of turbulent
mass transfer (Chapter 10). The volume average reference velocity uv is, a favorite among
physical chemists who use this reference in the interpretation of diffusion data in, for
example, stirred cells. However, there is no conservation of volume, in general, and this
choice usually is not convenient for chemical engineering purposes. Consider the relative
simplicity of Eq. 1.3.9, using u, in comparison to Eq. 1.3.12 for the corresponding choice of
uv. We shall return to discuss this topic again when we consider various choices of the
driving force for diffusion (Section 3.1.2).

In addition to the differential Eqs. 1.3.9, which apply to the bulk phases, the following
boundary condition must be satisfied at the interface /, provided there are no interface
(surface) chemical reactions.

€ • cf(uf -uI) = $- cf(uf -u1) / = l , 2 , . . . , / i (1.3.13)

that is, the normal component of the flux of component / with respect to the interface must
be continuous across the phase boundary. If the interface itself is stationary (i.e., u1 = 0),
then Eq. 1.3.13 can be written as

g • JV/= £ • # / i = 1,2,..., n (1.3.14)

where N* is the molar flux of component / in phase x in a stationary, laboratory fixed,
coordinate reference frame (Table 1.4). Equation 1.3.14 merely states that the normal
component of the flux Nt is a phase invariant.

For mass transfer with surface chemical reaction (as, e.g., in a tube wall catalytic
reactor), Eqs. 1.3.2 and 1.3.14 yield

*-JV/* = tf (1-3.15)

The molar fluxes N; appear in engineering design models. One of the main objectives
of this text is to consider ways in which these fluxes may be calculated from a knowledge
of the hydrodynamics and transport properties of the system. The boundary conditions
(Eq. 1.3.13), or the simplified versions (Eqs. 1.3.14 and 1.3.15), are well known to chemical
engineers (see, e.g., the book by Bird et al., 1960), but it is instructive to follow the general
derivations of these relations [see Standart (1964) and Slattery (1981)].

1.4 SUMMARY

This first chapter has been somewhat in the nature of a housekeeping exercise with regard
to the definitions of mass and molar fluxes, reference velocities, and transformations from
one reference frame to another. We shall not have occasion to use all of these definitions,
but they have been included for reasons of completeness. Any reader who is interested in
furthering their knowledge on this topic must refer to De Groot and Mazur (1962).



2 The Maxwell-Stefan Relations

Das Studium der Maxwell'schen Abhandlung ist nicht leicht.
—J. Stefan (1871) commenting on Maxwell's (1866) work

Diffusion is the intermingling of the atoms or molecules of more than one species; it is the
inevitable result of the random motions of the individual molecules that are distributed
throughout space. The development of a rigorous kinetic theory to describe this intermin-
gling in gas mixtures is one of the major scientific achievements of the nineteenth century. A
simplified kinetic theory of diffusion, adapted from Present (1958), is the main theme of
Section 2.1. More rigorous (and complicated) developments are to be found in the books by
Hirschfelder et al. (1964), Chapman and Cowling (1970), and Cunningham and Williams
(1980). An extension to cover diffusion in nonideal fluids is developed thereafter.

2.1 DIFFUSION IN IDEAL GAS MIXTURES

2.1.1 The Mechanics of Molecular Collisions

Let us first consider the mechanics of collisions between an average molecule of species 1
and an average molecule of species 2. The molecule of species 1 has velocity u1 and the
molecule of species 2 has velocity u2.

The momentum of these two average molecules is m1u1 and m2u2 where m1 and m2 are
the masses of the respective molecules. The total momentum of the pair of molecules is
m1u1 + m2u2. This total momentum of the pair of molecules is conserved on collision. That
is, if u\ and u'2 represent the velocities after collision, then the law of conservation of
momentum requires that

"hOi " «i) + rn2{u2 - uf
2) = 0 (2.1.1)

The momemtum transferred from species 1 to species 2 is the left-hand member of Eq. 2.1.1

Momentum transferred
from a molecule of = momentum of 1 _ momentum of 1
1 to a molecule of 2 before collision after collision
through collision

= m1(«1-« '1) (2.1.2)

Our next task is to calculate the average velocity after collision u\. This calculation
requires us to make some statement about the type of collision undergone by the two
molecules. In an inelastic collision two bodies collide and stick together. Momentum is
conserved in this collision but the kinetic energy of the bodies is not usually conserved. In
an elastic collision the two bodies collide and then move apart again. Momentum must be
conserved in this type of collision also but the important difference between an inelastic

13
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collision and an elastic collision is that, in the latter type, the kinetic energy of the center of
mass of the two bodies is conserved. Most collisions between real bodies are somewhere
between these two extremes. Billiard balls undergo elastic collisions and, in many ways,
molecules behave like billiard balls.

When we consider all of the ways in which two hard spheres can approach each other,
collide, and separate, we find that the average velocity after collision u\ is the velocity of the
center of mass of the pair of molecules. This velocity is defined by

(m1u1+m2u2)
uc = = u\ (2.1.3)

mx + m2

If this result is not immediately obvious, you should remember that if two molecules
approach each other along the line joining their centers they will collide, exchange
momentum, and retrace their paths. However, this is only one out of an infinite number of
paths that the two molecules can have before and after collision. If we sit on the center of
mass of the pair of molecules and move with velocity uc, then any one direction of approach
and rebound is just as likely to occur as any other direction. We can justify this conclusion
with the necessary mathematics if we have to [Present (1958) does so]; for now, let us accept
the result and continue.

It is now possible to complete the calculation of the momentum exchanged in a single
collision between a molecule of species 1 and a molecule of species 2.

Momentum transferred
from a molecule of 1 , ,.

i i *-> = mAuA - i i i )

to a molecule of 2 1V ] i y

through collision
= ml(u1 -uc)

mlm2(ul -u2)
(2.1.4)

This result demonstrates that if two molecules of the same type collide, then there is no
net loss of momentum of the molecules of that type (any other result would be rather
unexpected). This result is important because it indicates that the total momentum lost by
the molecules of 1 depends only on collisions between molecules of 1 and other types of
molecules. The rate at which this momentum transfer occurs depends on how frequently
these different molecules collide.

2.1.2 Derivation of the Maxwell-Stefan Equation for Binary Diffusion

The molecules of these other species "get in the way" of the molecules of species 1 (say)
and, in effect, exert a drag on them in much the same way that a pipe exerts a frictional drag
on the fluid flowing through it. The analogy with pipe-flow does not end here; an analysis of
diffusion may be carried out in essentially the same way that we may derive, for example,
Poiseuille's equation for the rate of fluid flow in a pipe—through the application of
Newton's second law.

The sum of the The rate of change
forces acting on a of the momentum
a system of the system

We shall apply this law to the control volume shown in Figure 2.1.
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Area = A
i

z z+dz
Figure 2.1. Control volume for derivation of Maxwell-Stefan relations.

Momentum can enter and leave this volume due to the motion of the molecules across
the boundary walls. However, if the control volume moves with the molar average velocity of
the mixture w, then the flow of molecules into the volume across any of the surfaces in
Figure 2.1 is exactly balanced by an equal flow of molecules out of the volume across the
same surface. There is no net momentum change due to this movement of molecules.

Within the control volume the molecules of species 1 may lose (or gain) momentum each
time they collide with the atoms or molecules of the other species. Accounting for the
momentum exchange on collision is one part of the elementary kinetic theory of diffusion
that follows.

The forces acting on the control volume include surface forces, such as pressure forces,
and shear stresses caused by velocity gradients and body forces, such as gravity. We consider
only the pressure forces in the analysis that follows; the effects of other forces, such as
gravity and electric fields, will be discussed in more detail in a later chapter (and from a
rather different viewpoint too). Actually, the system as a whole is assumed to be at constant
pressure and there is, therefore, no net force acting on the mixture as a whole.

The rate at which collisions occur between molecules of species 1 and molecules of
species 2 depends on the number of species 1 molecules per unit volume cx = ctxx and on
the number of species 2 molecules per unit volume c2 = ctx2. Clearly, the more molecules
of both types that are present in the unit volume, the higher the number of collisions will be.
Thus,

The number of 1-2 collisions
per unit volume per unit time (XX,

A concise statement of the ideas put forward to this point might read

The rate of change
of momentum of the
molecules of type 1
per unit volume

average amount of
= momentum exchanged

in a single collision

number of 1-2
collisions per
unit volume
per unit time

and we have an expression for the first term on the right and we know that the second term
is proportional to xlx2. We now turn to the development of the force term.

The net force acting on the left-hand wall is the pressure force PA exerted by the
molecules outside this box striking this imaginary surface. The force acting on the species 1
molecules alone is the partial pressure of species 1, px = Pxv multiplied by the area A.
Thus, the force acting on the species 1 molecules in the plane z is Apx\z\ the force acting
on the species 1 molecules in the plane at z + Az is -Apx\z + Az (note that the system as a
whole is isobaric). The net force acting on the species 1 molecules is A(px\z — PX\Z + AZ).
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Dividing by the volume A Az and taking the limit as Az -> 0 we find

Net force acting on type 1 (Pi\z -Pl\z+Az)
molecules per unit volume = lim
in the z direction A 2~*°

dp,

- - * r ( 2 -L 5>
When we add on the contributions from the other two spatial dimensions we have

Net force acting on species 1 _ __
molecules per unit volume l \ - )

Combining these ideas gives

-Vp1 a (x1x2,(u1 -u2))

To convert a proportionality to an equality we multiply one side by a proportionality
coefficient, we shall call it f12, to get

YPi = -/i2*i*2(«i " ui) C2-1-?)

where Vpj is the actual force exerted per unit volume of the mixture trying to move species
1 past (through) the molecules of species 2 at a relative velocity (u1 — u2); x1x2 is a
concentration weight factor and, therefore, fl2 is analogous to a friction factor or drag
coefficient. A pictorial representation of the interaction between the molecules of species 1
and 2 is provided in Figure 2.2.

We may define the proportionality coefficient in Eq. 2.1.7 in any way we like to suit our
convenience. Let us, therefore, define an inverse drag coefficient Dl2 = P/f12 and rewrite
Eq. 2.1.7 as

( 1 \ X I X 2 ( M I — U2)

*)**-- V 1 2
 (2-L8)

where dt = (1/P) Vp, may be considered to be the driving force for diffusion of species / in
an ideal gas mixture at constant temperature and pressure.

Equation 2.1.8 is the Maxwell-Stefan equation for the diffusion of species 1 in a
two-component ideal gas mixture. The symbol £>12 is the Maxwell-Stefan (MS) diffusivity.

If we carry out a similar analysis for species 2 we obtain
xxx2(u2 - Mi)v (2L9)»* v a

 (2-L9)

For all the applications considered in this book the system pressure is constant across the
diffusion path. This simplification allows us to write dt = (l/P)Vpi = VJC, and Eqs. 2.1.8
and 2.1.9 simplify to

_ x1x2(u1 ~u2)

(2.1.10)
_ x1x2(u2-u1)

2 ~ f)
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;Force exerted on = ; Friction between

1

Figure 2.2. Pictorial representation of the interactions between differing kinds of molecules in a
two-component system.

Since Vx1 + Vx2 = 0 it follows that the Maxwell-Stefan binary diffusion coefficients are
symmetric: £>12 = D2l.

2.1.3 The Maxwell-Stefan Equations for Ternary Systems

The setting up of the constitutive relation for a binary system is a relatively easy task
because, as pointed out earlier, there is only one independent diffusion flux, only one
independent composition gradient (driving force) and, therefore, only one independent
constant of proportionality (diffusion coefficient). The situation gets quite a bit more
complicated when we turn our attention to systems containing more than two components.
The simplest multicomponent mixture is one containing three components, a ternary
mixture. In a three component mixture the molecules of species 1 collide, not only with the
molecules of species 2, but also with the molecules of species 3. The result is that species 1
transfers momentum to species 2 in 1-2 collisions and to species 3 in 1-3 collisions as well.
We already know how much momentum is transferred in the 1-2 collisions and all we have
to do to complete the force-momentum balance is to add on a term for the transfer of
momentum in the 1-3 collisions. Thus,

The corresponding equations for species 2 and 3 can be obtained from Eq. 2.1.11 by rotating
the subscripts 1, 2, and 3.

x2x1(u2 - ux) x2x3(u2 - u3)
<'2=--1JV \L_^J±_2 IL (2.1.12)

v2X ±J23
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Figure 2.3. Pictorial representation of the interactions be-
tween differing kinds of molecules in a ternary system.

and

x3x1(u3 -Ul) _ x3x2(u3 - u2)

32
(2.1.13)

At constant pressure the driving forces dt are equal to the composition gradients Vxt. Of
the three equations 2.1.11-2.1.13, only two are independent due to the restriction Vx1 +
Vx2 + Vx3 = 0. It is interesting to note that for a binary system, this restriction is sufficient
to prove that D12 = £)21. For a multicomponent ideal gas mixture we need a more detailed
analysis (Hirschfelder et al., 1964; Muckenfuss, 1973) to show that

Dij = Dji (2.1.14)

Let us return to Eq. 2.1.11 and consider its physical significance. This equation states
that the driving force d1 of component 1 arises from the frictional drag of molecules of the
first constituent moving past (through) those of the constituent 2 with a relative velocity
(ul - i#2), concentration weight factor xxx2, and drag coefficient 1/D12 and of the molecules
of the first constituent moving past (through) those of constituent 3 with a relative velocity
(iij - i#3), concentration weight factor x1x3, and drag coefficient 1/£)13. A pictorial repre-
sentation of the interactions between these three different kinds of molecule is provided by
Figure 2.3.

As the molecules of all three constituents are, in general, in relative motion with average
velocities ui9 it is hard to see how any simpler formulation will suffice. Equation 2.1.11
reduces to the proper binary equation in the limits x3 -> 0 and x2 -> 0 for the 1-2 and 1-3
binaries, respectively, so that both terms are necessary. It is to be noted that Eq. 2.1.11 does
not include a term (u2 — u3) for the first constituent as it is not reasonable to assume that
the relative velocity of these constituents alone will produce a potential gradient of the first
constituent as there would be no direct drag on the molecules of constituent 1. If an
additional term of the form x1x2x3(u2 - u3)/El23 were to be introduced into Eq. 2.1.11, it
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could be split up into x1x3(ul — u3)x2/EU3 - x1x2(u1 - u2)x3/E123 and these terms
absorbed into the existing ones with concentration dependent drag coefficients l/D13 and

Thus, Eqs. 2.1.11-2.1.13 are the only consistent generalization of Eqs. 2.1.9 and 2.1.10 to
a ternary mixture, assuming a linear relation between the potential gradients and the
constituents' relative velocities.

2.1.4 The Maxwell-Stefan Equations for Multicomponent Systems

For mixtures containing even more species, n say, we just continue to add similar terms for
each additional species. The generalization of Eq. 2.1.11 is

Equations 2.1.15 are not yet in the form that is most useful to us; we eliminate the
velocities using the definition of the molar fluxes Nt = ctut, to get

or, in terms of the diffusion fluxes Jt

y= l
cttJij

Only n — 1 of Eqs. 2.1.16 and 2.1.17 are independent because the Vxt sum to zero; the
nth component gradient is given by

Vxn = -Vx, - Vx2 - Vx3 • • • -Vxn_x

= - t Vxk (2.1.18)
k=\

These are the Maxwell-Stefan diffusion equations for multicomponent systems. These
equations are named after the Scottish physicist James Clerk Maxwell and the Austrian
scientist Josef Stefan who were primarily responsible for their development (Maxwell, 1866,
1952; Stefan, 1871). These equations appeared, in more or less the complete form of Eq.
2.1.15, in an early edition of the Encyclopedia Britannica (incomplete forms had been
published earlier) in a general article on diffusion by Maxwell (see Maxwell, 1952). In
addition to his major contributions to electrodynamics and kinetic theory, Maxwell wrote
several articles for the encyclopedia. Stefan's 1871 paper is a particularly perceptive one and
anticipated several of the multicomponent interaction effects to be discussed later in this
book.

2.1.5 Matrix Formulation of the Maxwell-Stefan Equations

It will prove convenient to cast Eqs. 2.1.17 in n - 1 dimensional matrix form. First, we write
Eq. 2.1.17 as a sum in terms of the Jt. However, since only n — 1 of the Jt are independent,
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we may eliminate Jn using

Jn ~~ J\ Jl J3 ' ' ' Jn-1

to get

ctdt= -

(2.1.19)

(2.1.20)

where the coefficients BH and Btj are defined by

X:X:

n = f- + E (2-1.21)

< 2 J 2 2 )

Now we may write the n — 1 Eqs. 2.1.20 in n — 1 dimensional matrix form as

c,(d)=-[B](J) (2.1.23)

where [B] is a square matrix of order n — 1.

with elements given by Eqs. 2.1.21 and 2.1.22. The column matrix ( / ) is

h

Jn-l

and (d) is a column matrix of order n — 1 defined by

00 s

Now, if we premultiply Eq. 2.1.23 by the inverse of [B] as follows:

(2.1.24)
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which, because [B]~l[B] = [I], simplifies to

(/) = -ct[B]-\d) (2.1.25)

For a two component system all matrices become scalars and Eq. 2.1.25 becomes

Jx = -ctB~^dx (2.1.26)

where B is obtained from Eq. 2.1.21 as

B =
£>1 £>1

Eq. 2.1.27 allows us to rewrite Eq. 2.1.26 as

(2.1.27)

(2.1.28)

which is just another way of writing Eq. 2.1.8.

Example 2.1.1 Multicomponent Diffusion in a Stefan Tube:
An Experimental Test of the Maxwell-Stefan Equations

The Stefan tube, depicted schematically in Figure 2.4, is a simple device sometimes used for
measuring diffusion coefficients in binary vapor mixtures. In the bottom of the tube is a pool
of quiescent liquid. The vapor that evaporates from this pool diffuses to the top of the tube.
A stream of gas across the top of the tube keeps the mole fraction of diffusing vapor there
to essentially nothing. The mole fraction of the vapor at the vapor-liquid interface is its
equilibrium value.

In an attempt to check the validity of the Maxwell-Stefan equations Carty and Schrodt
(1975) evaporated a binary liquid mixture of acetone(l) and methanol(2) in a Stefan tube.
Air(3) was used as the carrier gas. In one of their experiments the composition of the vapor
at the liquid surface was x1 = 0.319, x2 = 0.528. The pressure and temperature in the
vapor phase were 99.4 kPa and 328.5 K, respectively. The length of the diffusion path was

Air

Screen

T z = <

z=0

Liquid
mixture

Figure 2.4. Schematic diagram of a Stefan diffusion tube.
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0.238 m. The Maxwell-Stefan diffusion coefficients of the three binary pairs are

D12 = 8.48mm2/s

£>13 = 13.72 mm2/s

D23 = 19.91 mm2/s

Calculate the composition profiles predicted by the Maxwell-Stefan equations and compare
the results with the experimental data.

SOLUTION At constant temperature and pressure the molar density ct and the binary
diffusion coefficients are constant and the driving forces are the mole fraction gradients,
dt = VXJ. Furthermore, diffusion in the Stefan tube takes place in only one direction, up the
tube; there are no radial or circumferential gradients in composition. Thus, the continuity
Eqs. 1.3.7 simplify to Nt = constant. The carrier gas (3) diffuses down the tube as the
evaporating vapor diffuses up it, but because the gas does not dissolve in the liquid its flux
N3 is zero (i.e., the diffusion flux J3 of the gas down the tube is exactly balanced by a
diffusion induced convective flux x3Nt up the tube). The mole fraction of vapor at each end
of the tube is kept constant—at the top by the stream of carrier gas sweeping the diffusing
vapor away and, at the bottom, by the evaporating pool of liquid. The liquid level falls with
time, of course, but since diffusion up the tube is a relatively slow process, the level of liquid
at the bottom of the tube falls very slowly. Thus, it is safe to make use of the quasisteady-state
assumption; that, at any instant, the flux is given by its steady-state value.

With all of the above assumptions the Maxwell-Stefan relations (Eq. 2.1.16) reduce to a
system of first-order linear differential equations

^ i = y (X'NJ-XJN')

An analytical solution of these equations, subject to the boundary conditions

z = 0, xt=xiQ z = l , xt=xu

will be derived in Chapter 8. However, for the purposes of this illustration we integrated
these equations numerically using a fourth-order Runge-Kutta method. The calculations
were started at the interface (z = 0) and ended when we had marched a distance equal to
the length of the Stefan tube (z = £). A two-dimensional Newton-Raphson procedure was
used to search for the values of Nl and N2(N3 = 0) that allowed us to match the specified
composition at the top of the tube. The converged values of the fluxes Â  and N2 are

1.783 X 1(T3 N2 = 3.127 X 10"3 mol/m2 s

The results of the final integration are plotted in Figure 2.5 along with the data from Carty
and Schrodt (1975). The agreement between theory and experiment is quite good and
support the Maxwell-Stefan formulation of diffusion in multicomponent ideal gas mixtures.
This conclusion was also reached by Bres and Hatzfeld (1977) and by Hesse and Hugo
(1972). For further analysis of the Stefan diffusion tube see Whitaker (1991). •
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mole
fraction

0.1 0.2
distance along diffusion path / [m]

Figure 2.4. Composition profiles in a Stefan diffusion tube. Lines represent calculated profiles; points
represent the experimental data of Carty and Schrodt (1975).

2.2 DIFFUSION IN NONIDEAL FLUIDS

The much higher density of liquids and dense gases means that we can no longer safely
assume that only binary (two molecule) collisions take place; three (or more) molecule
collisions occur sufficiently frequently in liquids and dense gases and contribute to the
momentum transfer process. It is, therefore, difficult to develop an analysis of liquid-phase
diffusion in complete parallel to that above for gases. However, the physical interpretation
of Eq. 2.1.15 applies equally to gases and liquids: If (and only if) the constituents (/ and j)
are in motion relative to one another and, therefore, moving at different velocities (ut and
UjX may we expect composition gradients to be set up in the system as a result of the
frictional drag of one set of molecules moving through the other. It does not matter whether
this frictional drag arises purely from intermolecular collisions as in the kinetic theory of
gases or from intermolecular forces acting between the two sets of molecules. Intermolecu-
lar forces become dominant in diffusion in liquids and solids.

The force acting on species / per unit volume of mixture tending to move the molecules
of species / is ctRTdt, where dt is related to the relative velocities (ut — M;), by

= (2.2.1)

where Dtj is the Maxwell-Stefan diffusivity whose physical significance as an inverse drag
coefficient is the same as in the ideal gas case. For nonideal fluids dt, which can be
considered to be a driving force, is defined by

di = (2.2.2)

The appearance of chemical potential gradients in these equations should not come as a
surprise. Equilibrium is defined by equality of chemical potentials and departures from
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equilibrium are characterized by the presence of chemical potential gradients. As we shall
see in Section 2.3, chemical potential gradients arise in the thermodynamics of irreversible
processes as the fundamentally correct driving forces for diffusion. The subscripts T, P are
to emphasize that the gradient in Eq. 2.2.2 is to be calculated under constant temperature,
constant pressure conditions (pressure gradients and external forces also contribute to dt,
but we shall ignore their influence until we get to Section 2.3). The driving force dt reduces
to (l/P)Vpi for ideal gases, as it should. Also, the sum of the n driving forces vanishes

E *i = ° (2-2-3)

due to the Gibbs-Duhem restriction (see, e.g., Modell and Reid, 1983); this means that only
n — 1 driving forces are independent.

Chemical potential gradients are not the easiest of quantities to deal with. For nonideal
liquids we may express the driving force dt in terms of the mole fraction gradients as
follows:

n-\

xt
 n-} dln^JC;

' A dXj
VXj

T,P,%

i d In 7/

T,P,X

d\n7i

T,P,X

n~\

(2.2.4)

where yi is the activity coefficient of species / in the mixture and where

„ . d l n %•

dXj

(2.2.5)
T,P,X

The symbol 2 is used to indicate that the differentiation of In % with respect to mole
fraction Xj is to be carried out while keeping constant the mole fractions of all other species
except the nth. The mole fraction of species n must be eliminated using the fact that the xt

sum to unity. More specifically,

d In yt

dXj

d In yt

dXi T,P,xk,

The evaluation of the Fi; for liquid mixtures from activity coefficient models is discussed
at length in Appendix D.

For dense gas mixtures exhibiting deviations from ideal gas behavior the above formula-
tion can be used with the activity coefficient yt replaced by the fugacity coefficient </>,.

d I n <fi
i~dx~

(2.2.6)
T,P,X
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An equation of state needs to be used for the calculation of the molar density ct and the
derivatives of the fugacity coefficients (see, e.g., Walas, 1985).

2.2.1 Matrix Formulation of the Maxwell-Stefan Equations for Nonideal Fluids

It is convenient to cast Eqs. 2.2.1 into n - 1 dimensional matrix form as

(2.2.7)

where the column matrices (d) and (J) have elements

00 = (J)

and where the matrix [B] has elements given by Eqs. 2.1.21 and 2.1.22.

v n v

B = — + V *

11 '\*>»

Equations 2.2.4 may also be written in n — 1 dimensional matrix form as

(d) = [r](Vx)

which can be combined with Eq. 2.2.7 to give

-c,[r](v*) =

Equation 2.2.9 is more useful in its inverted form

(2.1.21)

(2.1.22)

(2.2.8)

(2.2.9)

(2.2.10)

2.2.2 Limiting Cases of the Maxwell-Stefan Equations

Let us now consider some limiting cases of Eqs. 2.2.10. The first important special case is
that of diffusion in a two-component mixture. In this case the n — \ dimensional matrices
reduce to scalar quantities and we have

Jx = -ctB~lTVxi = - c^rVi j

where the thermodynamic factor F is obtained from Eq. 2.2.5 as

r= 1 +xr
dx,

(2.2.11)

(2.2.12)

where it is understood that the mole fractions xx and x2 sum to unity when the partial
derivative of In y1 is evaluated.

For ideal mixtures the activity and fugacity coefficients are unity, yi = 1, <̂ - = 1, and,
therefore, [F] = [/], (d) = (Vx), and we recover Eqs. 2.1.25. A subset of this case arises if
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the mixture is made up of species of (almost) identical size, shape, polarity,... . In this case
the Maxwell-Stefan diffusion coefficients are almost equal to one another

and so

£),.,=£>

[B]~l ->£)[/] (2.2.13)

and, therefore

( / ) = - c , £ ) [ / ] (Vx) (2.2.14)

or

Jt = -ctDVxt (2.2.15)

In many chemical engineering problems we are interested in calculating the transfer
rates of a component that is present in a liquid mixture in very low concentrations. Let us
identify the trace component by the subscript 1; x1 ~ 0. This means that the coefficients
#i2> 5 i3> '">B i , n - \ o f [#1 a11 reduce to zero (see Eqs. 2.1.21 and 2.1.22). Also, the matrix
of thermodynamic factors [T] has the following elements on its first row

r n = i r12 = r13 = r14 = • • • = r,, , , . , = o (2.2.16)

With the above simplifications, Eq. 2.2.10 for component 1 reduces to

7, = -ctBj Vx, (2.2.17)

where Bn takes the simplified form

X9 X-i Xn _ 1
B" = ir + iF + "'+&— (2-2-18)

The D°j are the Maxwell-Stefan diffusivities of the /-/ pair where species / is present in
infinitely dilute concentrations.

Example 2.2.1 Diffusion of Toluene in a Binary Mixture

Consider the diffusion of toluene(l) present in trace amounts in a liquid mixture containing
rc-tetradecane(2) and n-hexane(3) at a temperature of 25°C. An "effective" diffusivity of the
trace toluene defined by

was measured by Holmes, et al. (1962); their data is summarized in Table 2.1. Calculate Bn

and compare its inverse to the measured values of Dleff.

DATA The infinite dilution coefficients are

D°12 = 1.08 X 1 0 - 9 m 2 / s

D°l3 = 4.62 X 10"9 m 2 / s

SOLUTION Toluene is present in trace amounts, xx ~ 0, and so x3 ~ 1 — x2. We
illustrate the calculation of Bn at the composition x2 = 0.501 and x3 = 0.499. The
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TABLE 2.1 "Effective" Diffusivity of Toluene in a Liquid Mixture
of w-Tetradecane-w-Hexane as a Function of the Mole Fraction
of w-Tetradecane, x2

a

x2

1.000
0.803
0.672
0.501
0.336
0.215
0.113
0.000

(measured)

1.08
1.37
1.58
1.92
2.38
2.90
3.57
4.62

(from Eq. 2.2.18)

1.08
1.272
1.44
1.75
2.20
2.71
3.37
4.62

aUnits are 10"9 m2 /s.

parameter Bn follows from Eq. 2.2.18 as

0.501 0.499

1.08 X 10" 4.62 X 10
T9 = 0.572 X 109 s/m2

which gives

= 1.75 X 10~9m2/s

Figure 2.6 shows the predictions of the transport coefficient Bn
l from Eq. 2.2.16 as a

function of the mole fraction of rc-tetradecane. The agreement between measured values of
Dx eff and predicted values of B^1 is quite good; the lack of better agreement may be
attributed to the variation in the liquid viscosity over the composition range covered. The
introduction of a factor to correct for the viscosity variation is considered by Perkins and
Geankoplis (1969). •

Effective
Diffusivity «
of toluene,

D1,eff

[10"9m2/s]

System: toluene (1) -
n tetradecane (2) - n hexane (3)

0 0.2 0.4 0.6 0.8 1

mole fraction of n tetradecane

Figure 2.6. "Effective" diffusivity of toluene in a liquid mixture of /t-tetradecane-rc-hexane as a
function of the mole fraction of rc-tetradecane, x2.
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2.3 THE GENERALIZED MAXWELL-STEFAN FORMULATION
OF IRREVERSIBLE THERMODYNAMICS

Until now, we have considered that the diffusion process took place under essentially
isobaric conditions, in nonelectrolyte systems and in the absence of external force fields,
such as centrifugal or electric fields. In this section we shall generalize our analysis to
include the influence of external force fields. The best starting point for a generalized
treatment is the theory of irreversible thermodynamics. The treatment below is similar to
that given by Lightfoot (1974) but readers will also find the books by de Groot and Mazur
(1962) and Haase (1969) very useful.

The purpose of the study of irreversible thermodynamics is to extend classical thermody-
namics to include systems in which irreversible processes (e.g., diffusion and heat transfer)
are taking place. Such an extension is made possible by assuming that for systems "not too
far" from equilibrium the postulate of "local equilibrium" applies "Departures from local
equilibrium are sufficiently small that all thermodynamic state quantities may be defined
locally by the same relations as for systems at equilibrium."

With the help of this postulate, it is possible to obtain an explicit expression for a, the
rate of entropy production per unit volume due to various irreversible processes taking
place within the system (see, e.g., Slattery, 1981). The rate of entropy production due to
diffusion is

7>diff = - E (V r£/ - Ft) • J, ^ 0 (2.3.1)

where j t is the mass diffusion flux with respect to the mass average velocity; T is the
absolute temperature, fL( is the specific chemical potential of species /, fii = /^/M,-; M( is
the molar mass of species i; Vj/X,- represents the isothermal gradient of the specific
chemical potential; Ft = FJM^ where Ft is the external body force per mole of species i.

The requirement that adm ;> 0 follows from the second law of thermodynamics.

2.3.1 The Generalized Driving Force

Each term contributing to the rate of entropy production may be regarded as the product of
two terms, one a "flux" and the other a "driving force." Which is which usually is obvious
from the context. However, the assignation of the names flux and driving force to terms in
the entropy production rate equation is not always clear cut. As far as we are concerned
here the distinction is largely irrelevant; that is, it does not matter which term is regarded as
flux and which is the driving force—although it must be noted that there are circumstances
where the distinction is very important. It might be more correct to refer to these quantities
as dependent and independent variables.

Let us now consider the driving force V ^ - - Ft. This can be rewritten as

Vrfii ~Fi=^r VT,PVi + ^ V/> - Ft (2.3.2)

where Vt is the partial molar volume of i and VT P\xi represents the isothermal, isobaric
gradient of the molar chemical potential. Now, since the diffusion fluxes j t sum to zero, that
is,

T.JI- £ M « . - - » ) - 0 (2-3-3)
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we can add any arbitrary vector to Vr/I- - Ft without altering the value of am. Let us
replace Vr/I/ - Ft by

Vr£/-^--VP+ j^np (2.3.4)
Pi i=i

where pt is the mixture mass density and oyi is the mass fraction. The reason for the choice
of the arbitrary vector

1
- - V P + £^ .F ,

is that the conservation of linear momentum gives

1 " _ dv
VP + £ coiFi = — + V • T (2.3.5)

and for a system at mechanical equilibrium, that is, no velocity gradients, the right-hand side
of Eq. 2.3.5 vanishes giving

^ n

— VP = J£Jo)iFi (mechanical equilibrium) (2.3.6)
Pt / = i

that is, the pressure gradients are balanced by the external body forces. In systems of
chemical engineering interest, mechanical equilibrium is established faster than diffusion
equilibrium and Eq. 2.3.5 is reasonably well obeyed. Thus, in replacing V ^ ; - Ft by
Eq. 2.3.4, we are essentially subtracting a vanishing vector from V ^ — Ft. With this
modification to the driving force and utilizing Eq. 2.3.6 we get

» / 1 v, i n - A
T<rdm = - E — VT Plx,. + -r^VP VP + £ aft - Fi -Ji (2.3.7)

i-i\Mi ' Mi P> j-i j

or

o-d.fr- -C,R£ « / , - ( « , - v)*0 (2.3.8)

where we have used the defining relations j \ = pi(ui - v) and

c,. Vr>,M, + (C/p- - a),-) VP - p i / , - E «y/y I (2.3.9)

The physical interpretation of ctRTdt is that it represents the force acting on species / per
unit volume of mixture tending to move species / relative to the solution. The quantity cyt

represents the volume fraction of species /, (f>p and so we may rewrite Eq. 2.3.9 as

c.RTd; - c,Vr>pMl. + (*,. - «,) VP - pip, - E cojf] (2.3.10)

which shows that a pressure gradient can effect a separation in a mixture provided there is a
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difference between its volume and mass fractions. For ideal gas mixtures Eq. 2.3.10
simplifies to give

dt ^ Vx, + (*, - « , , ) ^ - £ |F, - £ «,/} j (2.3.11)

It is sometimes convenient to express Eqs. 2.3.10 and 2.3.11 in terms of the external body
force exerted per mole of /; the corresponding equations are

ctRTdt = ctVT pfit + (</>, - o)t) VP - c^ - cot E CJFJ (2.3.12)

and, for ideal gases,

VP 1 t A \
dL = Vxt + (x, - *>,-)— - - k ^ . - W|. E cy^-1 (2.3.13)

What we have achieved so far is to express the rate of entropy production crdiff due to
mass diffusion in terms of a convenient driving force ctRTdt per unit volume of mixture.
Equation 2.3.8 shows that the rate of entropy production is a sum of the products of two
quantities; the force acting on /, per unit volume, tending to move / relative to the mixture
and the relative velocity of the movement of / with respect to the mixture; adm is, therefore,
the dissipation due to diffusion.

2.3.2 The Generalized Maxwell-Stefan Equations

Insertion of any other reference mixture velocity in place of v in Eq. 2.3.8 will not alter the
value of crdm, an expected and pleasing result because only relative motions of the various
species are important in the description of the diffusion process. In chemical engineering
applications it is often convenient to choose the molar average mixture velocity u and so we
may write

o-diff = -c,R E di • («, - «) £ 0 (2.3.14)

Eliminating the molar average velocity u using Eq. 1.2.6 allows us to write Eq. 2.3.14 in
terms of the relative velocities (ut — Uj) as

"diff = ~ — E E dt • («,. - uj) }> 0 (2.3.15)
n / = W = l

We may use Eq. 2.3.15 as the starting point for developing our constitutive relations rather
than the conventional Eq. 2.3.8.

The first postulate of irreversible thermodynamics is that the fluxes (or dependent
variables) are directly proportional to the driving forces (or independent variables). [Actu-
ally, it may be shown that the assumption of local equilibrium follows from the assumption
of a linear relation between the fluxes and driving forces (Truesdell, 1969).] If we take the dt

as dependent variables and the (ut — II;.) as independent variables we may, therefore, write
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a linear constitutive relation for diffusion as follows:

dt= ~ ItPuiUi-Uj) (2.3.16)

with Pij a coefficient of proportionality. We may, of course, define the coefficient of
proportionality in any way we like to suit our purposes; we, therefore, introduce a "new"
coefficient pu = xixj/Dij, which allows us to rewrite Eq. 2.3.16 as

y=i ^ij

Equations 2.3.17 are the generalized Maxwell-Stefan (GMS) relations and the Btj are the
Maxwell-Stefan diffusion coefficients we encountered earlier. These equations are more
useful when expressed in terms of the molar fluxes Nt = c ^ ,

di = £ K " ' '> (2.3.18)
y=l ctrjij

The positive definiteness requirement of crdiff allows us to derive certain restrictions on
the values of the Dtj. If we substitute the GMS relation for dt into Eq. 2.3.15 we obtain a
very neat and compact expression for the rate of entropy production due to diffusion

°diff £ ^ | ( a , - U])\
2 ;> 0 (2.3.19)

which is quite remarkable for the absence of any thermodynamic factors. Equation 2.3.19
was derived by Hirschfelder, Curtiss, and Bird (HCB) (1964) for ideal gas mixtures; the
generalization to nonideal fluids was carried out by Standart et al. (1979) using the HCB
treatment as a consistent basis.

For mixtures of ideal gases the Dtj are composition independent and taking into
consideration that Eq. 2.3.19 is valid for all compositions and values of (ut — i#;-), the
positive definite condition can only be satisfied if

Du ^ 0 | ideal gases | (2.3.20)

a result derived by HCB (cf. their Eq. 11.2-46).
For nonideal liquid mixtures the £>/; are composition dependent (as shall be discussed in

detail in Chapter 4) and without complete information as to the nature of the composition
dependence a result analogous to Eq. 2.3.20 cannot be derived. A more restrictive result for
the set of infinitely dilute diffusivities follows from the application of the second law
restriction Eq. 2.3.19.

£>° ^ 0 | nonideal fluids | (2.3.21)

which is the diluted analog of the HCB result for ideal gases.
Since the Dtj are defined in terms of dt and component velocity differences (ut - My),

both of which are independent of the reference velocity frame, the Dtj are, therefore,
reference frame independent.

A second postulate of irreversible thermodynamics is that the coefficients £>/; are
symmetric

£>y = Bn (2.3.22)
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Figure 2.7. Schematic diagram of an ultracentrifuge.

Equation 2.3.22 expresses the Onsager reciprocal relations (ORR) discussed briefly in
Section 3.3. For ideal gases, this symmetry relation can be obtained from the kinetic theory
of gases (HCB, 1964; Muckenfuss, 1973).

Equations 2.3.18 together with Eqs. 2.3.10 defining the generalized driving force are the
starting point for the analysis of diffusion in systems where external force fields influence
the process: the ultracentrifuge, for example, in electrolyte systems and in porous media
where pressure gradients become important. We examine the first two of these topics in the
Sections 2.3.3 and 2.4.

2.3.3 An Application of the Generalized Maxwell-Stefan Equations—The Ultracentrifuge

To illustrate the formulation discussed in Section 2.3.2 let us consider diffusion in the
presence of an imposed force field. The centrifuge is a device that subjects a fluid mixture to
a centrifugal force; the ultracentrifuge subjects the fluid to extremely high forces simply by
spinning at a very high rate. Figure 2.7 is a schematic of such a device.

The centrifugal force exerted on a unit mass of component / in a multicomponent
mixture is

F, = n2r (2.3.23)

where r is the distance from the axis of rotation and II is the angular velocity; fl = 2 77-/,
where / is the rotational speed (revolutions per second, rps). If we use Eq. 2.3.23 in
Eq. 2.3.10 we find

ctRTdi = ctVT pfJL; + (4>i - (oJVP - Pi(£l2r - Vt2r) (2.3.24)

The last term on the right-hand side of Eq. 2.3.24 cancels to leave

ctRTdl = CiVTiPfii + (fa - (Oi)VP (2.3.25)

Mechanical equilibrium is established quickly in relation to thermodynamic equilibrium in



THE GENERALIZED MAXWELL-STEFAN FORMULATION 33

an ultracentrifuge. At mechanical equilibrium we have (from Eq. 2.3.6)

n

VP = PtL"A = Pttt
2r (2.3.26)

On eliminating VP from Eq. 2.3.25 we have

ctRTdt = CiVTtP^ + (<£,. - a)f.)P/n
2r (2.3.27)

At equilibrium the driving forces and fluxes vanish; dt = 0, (u/ - i#y-) = 0. Thus,

c ^ ^ - ^ . - ^ P ^ r (2.3.28)

The chemical potential gradients are more conveniently expressed in terms of the composi-
tion gradients as

^ V r ) ^ . = ^ r , V x ; (2.2.4a)

where the thermodynamic factors F/y are given by

d In y.
Tij = SlJ+xi—— (2.2.5)

On combining Eqs. 2.3.27 and 2.2.4a we have

Er,VxrK-^.)-(]2r (2.3.29)
7 = 1 R T

where M is the mean molar mass of the mixture.
For a two component mixture we may simplify Eq. 2.3.29 as follows:

dx, _ M
T — = ( ^ 1 - c 1 F 1 ) — l l 2 r (2.3.30)

where F = (1 + x1 d In y1/dx1). For dilute solutions the thermodynamic factor F is approxi-
mately unity (cf. discussion in Section 2.2.2) and Eq. 2.3.30 simplifies to

dx1 _ x M

Integration of Eqs. 2.3.29 or the simplified forms (Eqs. 2.3.30 and 2.3.31) yields the
equilibrium composition distribution in the centrifuge (see Examples 2.3.1 and 2.3.2). From
Eq. 2.3.30 we see that the ultracentrifuge induces a separation only if the volume fraction
((/). = c-J/p is different from the mass fraction (wf). For dilute aqueous solutions M/RT is
of the order 10~5 s2/m2. Thus, for r of about 0.1 m we need an angular velocity £1 of about
1000 inverse seconds or approximately 175 rps in order to obtain a measurable separation.
The ultracentrifuge is used for the determination of molecular weights of proteins and for
the separation of isotopes. Cullinan and Lenczyck (1969) proposed that the ultracentrifuge
be used to determine the thermodynamic factor F for nonideal systems; this procedure is,
however, very expensive and time consuming.
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Example 23.1 Ultracentrifugation of a Binary Liquid Mixture

An equimolar mixture of benzene (1) and carbon tetrachloride (2) is placed in a sedimenta-
tion cell in an ultracentrifuge and rotated at 30,000 rpm. The outer radius of the cell (r2) is
100 mm and the depth of the liquid in the cell (of diameter 12.5 mm) is 40 mm. The cell is
maintained at a temperature of 20°C.

Estimate the separation achieved at equilibrium and the time required to attain 99% of
the equilibrium value.

DATA

Molar mass of benzene: Mx = 0.0781 kg/mol.
Molar mass of carbon tetrachloride: M2 = 0.1538 kg/mol.
Density of equimolar mixture: pt = 1252 kg/m3.
Partial molar volume of benzene in equimolar mixture

Vt = 89 X 10 "6 m3/mol

The liquid-phase Maxwell-Stefan diffusion coefficient

D = 1.45 X KT 9m 2 / s

The activity coefficient of benzene in solution is given by

In?! = 0.14JC|

SOLUTION The composition distribution at equilibrium is given by Eq. 2.3.30.

^ ( j 5 (2-3-30)

Assuming all terms in this expression to be constant (other than x1 and r, of course) allows
us to integrate Eq. 2.3.30 from the surface of the liquid r = rQ to the end of the centrifuge
r = rx (Fig. 2.7). The result is

_ M
TAx, = (a>x - c ^ ) — ( l 2 r A r (2.3.32)

where f is the average radius, \{rQ + rx)\ Ar is the difference (rx - r0); Axx is the
difference in mole fraction of component 1 at position r = rx and the mole fraction of
component 1 at r = r0. Equation 2.3.32 is the result we needed; now for the calculations.

To evaluate the thermodynamic factor T we write In yt in terms of xx only and
differentiate with respect to xx to give

d In yx

T = l + j c 1 —
dxx

At the average (initial) composition, xx = 0.5

T = 1 - 0.28 X 0.5 X (1 - 0.5) = 0.93
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The mass fraction OJ1 is calculated next

xlMl

OJ1 = = 0.3368
x1M1 + x2M2

The molar concentration of species 1 may now be calculated

c1 = p1/M1

= co1pt/M1

= 0.3368 X 1252/0.0781

= 5399 mol benzene/m3 mixture

and the volume fraction follows as

= 5399 X 89 X 10~6

= 0.4805 m3 benzene/m3 mixture

The angular velocity Cl is calculated as follows

0 = 2irf

= 2TT X 500

= 3141.6 s ' 1

The remaining terms on the right-hand side of Eq. 2.3.32 are evaluated as follows:

f = K r o + r\) = 80 mm = 80 X 10~3 m

Ar = rx - r0 = 100 - 60 = 40 mm = 40 X 10"3 m

M 0.5 X 0.0781 + 0.5 X 0.1538

~KT ~ 8.3144 X 293.15

= 4.757 X 10~5 kg/J

Finally, we may calculate the separation at equilibrium from Eq. 2.3.32 to be

A*! = (0.3368 - 0.4805) X 4.757 X 10~5 X 3141.62 X 0.08 X 0.04

= -0.2322

This means that benzene, which is the lighter component, tends to concentrate preferen-
tially at the center of the centrifuge, whereas carbon tetrachloride, which is the heavier
component, tends to concentrate at the periphery.

The time required to reach a close to equilibrium is given by (Cullinan and Lenczyck,
1969)

In
8£>r \ l - a
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where jS0 is obtained from the formula

Thus, for n = 0,

2 X 4 8
00 =

TV 77"

The product DT is found to be

DT = 1.45 X 1 0 ' 9 X 0.93 = 1.349 X 10"9 m 2 / s

So, for 99% approach to equilibrium a = 0.99 and we find

0.042 X 8
In

a IT2X 1.349 X 1 0 - 9 IO.OITT2

= 528,376 s

Thus, the time required to reach 99% of equilibrium is about 150 h (or a little over 6 days!).

•

Example 2.3.2 Separation of Uranium Isotopes with a Gaseous Ultracentrifuge

Consider the separation of U235F6 (1) and U238F6 (2) in a gas centrifuge that has an internal
diameter of 60 mm and rotates at 40,000 rpm, at a temperature of 20°C. If y and x refer to
the mole fractions of the lighter isotope at radii r = 0 and r = r1? respectively, determine
the value of the separation factor:

y(l-x)

DATA Molar masses Mx = 0.34915 kg/mol M2 = 0.35215 kg/mol.

SOLUTION At equilibrium the composition gradient is given by Eq. 2.3.31

dx, _ M „

We may rewrite the term (o>j - cxVx)M as follows:

(co1 — c^VAM = (&>! — x1)(xlMl + x2M2)

= x1(M1 -xxMx -x2M2)
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Equation 2.3.31 may now be simplified to

dx, Q,2

and is to be integrated subject to the boundary conditions

r = 0 xx=y

r = rx xx=x

to give

or

* ( i - y ) =

y(l-x) e '

or

a = exp ~{MX - M2)

The angular velocity fl is calculated as

2TT 40,000

= 4188.8 s-1

and with R = 8.3144 J/mol K and rx = 0.06 m we calculate the separation factor a as

(0.34915 - 0.35215) X 4188.82 X 0.062 '

(2 X 8.3144 X 293.15)

= 1.0396

Despite the low value of the separation factor, ultracentrifugation is a viable commer-
cially used technique for separation of the isotopes of uranium. In view of the small
separation factor and low capacity per unit, a commercial plant will have a few million
centrifuges (Von Halle, 1980; Voight, 1982)! •

2.4 DIFFUSION IN ELECTROLYTE SYSTEMS

There are many applications in chemical engineering where diffusion of charged species is
involved. Examples include ion exchange, metals extraction, electrochemical reactors, and
membrane separations. There is an excellent textbook in this area (Newman, 1991). Here
we will be content to show that the treatment of electrolyte diffusion follows naturally from
the generalized treatment of diffusion given in Section 2.3.
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Figure 2.8. Pictorial representation of ion-ion and ion-solvent
interactions in an electrolyte solution.

In mixtures of electrolytes the generalized Maxwell-Stefan equations

1 = ~~ f^ D
j = 1 U

(2.3.17)

(2.3.18)

are written for each of the ionic and nonionic (i.e., solvent) species in the system. The
inverse Maxwell-Stefan diffusion coefficients have the same physical significance as the
ones introduced in Section 2.2; they represent the friction experienced by the /-/ pair
whether or not they be ion-ion or ion-solvent interactions (Fig. 2.8).

The xt in these equations denote ionic mole fractions. In general, the ionic mole
fractions will differ from the undissociated electrolyte mole fractions. To illustrate this fact
consider an aqueous solution of sulfuric acid. Let us take 1 m3 of solution with cs kmol of
H2SO4 and cw kmol of H2O. The mole fraction of the undissociated species are

CH2SO4
l H 2 O

On complete dissociation of acid

Thus

H2SO4 -> 2 H + + SO4
2

: H ~ ^Cs CH2O ~ Cw CSO4 ~ cs

where the subscripts H and SO4 refer to the H + and SOf ions, respectively. The mole
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fractions of the various species are

XH " s w
H " 3c + c * s ° 4 " 3c + c * H 2 ° " 3c 4-c

Note that the mole fraction of H2O has "decreased" when considered in terms of ionic
species. This is an important point to bear in mind and the reader is advised to study
Newman (1991) for further discussion. For mixed ion systems there will be contributions to
Ci from various ionic species. For example, in the system with mixed salts HC1 and BaCl2

the concentration of chloride ion, cc l-= cHC1 4- 2cBaCl2 (see Example 2.4.2).
The generalized driving force di is defined by Eq. 2.3.12

ctRTdt - CiVTfP^ + (</>,. - cot) VP - L f i - co, £ CJFJ] (2.3.12)

where <j>t is the volume fraction cy{.
The external body force per mole acting on species i, Fi9 is given by (see Newman, 1991)

Fi = - z ^ Vcf) (2.4.1)

where zt is the ionic charge of the species (e.g., zH = +1 ; zSO4 = —2), & is Faraday's
constant = 9.65 X 104 C/mol = 9.65 X 107 C/kmol, and <j> \s the electrical potential
measured in volts (1 C = 1 A X 1 s and 1 V X 1 C = 1 J). With the force term given by Eq.
2.4.1 and neglecting the pressure diffusion term (VP = 0), Eq. 2.3.12 becomes

c.-Vr, ,,/£,.+ [ciZi-UiZcjzAPVt (2.4.2)

Except in regions close to electrode surfaces, where there will be charge separation (the
double layer phenomena), the condition of electroneutrality is met (see Newman, 1991, for a
detailed discussion of this topic):

E ciZi = 0 (2.4.3)

that is, there is no net electrical body force acting on the mixture as a whole. The
generalized driving force, therefore, simplifies still further to

ctRTdt s cf- VTtPlLt + ciZi^ V0 (2.4.4)

The chemical potential gradient may be expressed in terms of mole fraction and activity
coefficient gradients as shown in Section 2.2. Activity coefficient models for electrolyte
systems are discussed by, for example, Newman (1991) and Zemaitis et al. (1986).

As in the treatment of diffusion in nonionic systems it is usual to define diffusion fluxes
Jt with respect to a specified reference velocity. For diffusion in electrolyte systems the most
commonly used reference velocity is the solvent velocity un.

JP = Nt - ciUn (2.4.5)
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With this choice of reference velocity the flux of species n9j£, is zero (Table 1.3)

/„" = 0 (2.4.6)

with

t,J?*0 (2.4.7)

The generalized Maxwell-Stefan equations may be written in terms of these diffusion
fluxes as

n (x Jn — x Jn}
*t - E ̂  ' U (2-4-8)

j = 1 ct ̂ ij

Equations 2.4.8 may be written in the following equivalent form (cf. Eq. 2.1.23)

cA- -"LBS!? (2.4.9)

where the B% are defined by (cf. Eqs. 2.1.21 and 2.1.22)

^ , " = E — ^ i = l , 2 , . . . , / i - l (2.4.10)

5 « = -Xi/Dij i*j=l,2,...,n-l (2.4.11)

Equations 2.4.9 may be written in compact n — \ dimensional matrix form as

ct(d) = ~[Bn](Jn) (2.4.12)

or

(/") = -c,[B»]-\d) (2.4.13)

Equations 2.4.12 describing diffusion in concentrated electrolyte solutions are the counter-
parts of Eqs. 2.1.23 and 2.2.7 for diffusion in ideal gases and nonideal, nonelectrolyte
systems, respectively.

2.4.1 The Nernst-Planck Equation

In dilute electrolyte systems the driving force dt reduces to

dr= V*; + xizi — V<f) (2.4.14)

and the matrix [Bn] degenerates to a diagonal matrix with elements given by

B?t = l/B°in B?j = 0 (/ # ; ) (2.4.15)
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The superscript ° signifies the infinite dilution limit. Equations 2.4.13 for the diffusion
fluxes simplifies to

JP = -ctD°in Vx, - clZiD°n^ Vcfr (2.4.16)

The molar fluxes TV, are found by combining Eqs. 2.4.5 with Eq. 2.4.16

N-t — —ctD°in Vxi — CiZiD0^ V</> + ciun (2.4.17)

The three "contributions" to Nj are termed

Diffusion - ctD°in Vx7

Migration — c^zfi0^ Vc/>
RT

Convection + CMiun

Equation 2.4.17 is known as the Nernst-Planck equation.
In the electrochemical literature it is traditional to use molar concentration gradient

driving forces and the most commonly used form of the Nernst-Planck equation is

JV, = -D°n Vc, - c,2,.f)°n— V4> + c,un (2.4.18)

We have shown that the Nernst-Planck equation is only a limiting case of the general-
ized Maxwell-Stefan equations. Nevertheless, many ionic systems of interest are dilute and
the Nernst-Planck equation is widely used.

Even when the system is dilute, the diffusing ionic species are "coupled" to one another
in a very interesting manner. This coupling arises out of the constraint imposed by the
electroneutrality condition. Equation 2.4.3 can be differentiated to give

X^Vc, = 0 (2.4.19)
/ = i

which means that there are only n — 2 independent composition gradients describing the
system.

Example 2.4.1 Diffusion in the System KG - H2O at 25°C

Consider diffusion in the system KC1 — H2O at 25°C. Potassium chloride is a strong
electrolyte and complete dissociation into K+ and Cl~ ions will take place:

KCI -> K+ + c r

The species involved in the diffusion process are

2 = C\~

3 = H2O (undissociated)
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1. Determine the elements of [Bn] at a salt concentration of 1 kmol/m3.

2. To what concentration level of the salt can one "safely" use the Nernst-Planck dilute
solution approximation Eq. 2.4.18, instead of the generalized Maxwell-Stefan diffu-
sion equations?

DATA The Maxwell-Stefan diffusion coefficient £>12 at various salt concentrations, taken
from a figure in Newman (1991), is tabulated below.

CKC1

[mol/m3]

0.1
1

10
100

1000

CH2O
[kmol/m3]

55.5
55.5
55.5
55.5
55.5

X

1.8
1.8
1.8
1.8

1.74

1»*2

X 10-6

X 10-5

X 10~4

X 10~3

X 10-2

10-10/f)12

[s/m2]

67.0
28.6
10.0
2.86
0.55

The Maxwell-Stefan diffusion coefficients £)13 and D23 are virtually identical and, over
the concentration range of interest, independent of concentration at 2 X 10 ~9 m2/s.

SOLUTION As a basis for our calculations we consider 1 m3 of H2O. This solution will
contain 1000 kg of H2O or 55.5 (= 1000/18) kmol H2O. Thus, cHiO = 55.5 kmol/m3. The
concentration of K+ and C\~ ions will equal the concentration of KC1.

C l = C2 = CKCl

Thus, the total concentration of ions and solvent will be

= 2cKC1

The mole fractions of ions and solvent are evaluated as

Xl = CKCl/(2CKCl + CH2OJ

Cl + CH2o)

X3 = 1 — X1 — X2

Thus, at cKC1 = 1 kmol/m3 the mole fractions are

xx = 1/(2 + 55.5)

= 0.0174

= x2

x3 = 0.9652

and the Maxwell-Stefan diffusivity £>12 is

£>12 = (1/0.55) X lO"1 0 = 0.1818 X 1(T9 m 2 / s
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For a ternary mixture the elements of [Bn] are evaluated from Eqs. 2.4.10 and 2.4.11 as
follows:

0.0174 0.9652

0.1818 X 10

= 0.5782 X 10'

B;2 = -XX/D12

= -0.0174/0.

= -0.09556 X

Bn
2X = -x2/D12

= -0.0174/0.

= -0.09556 X

22 ~ ~fhi + S2I

- 0.5782 X 10

I"9 ' 2X 10-9

' s / m 2

1818 X 10~9

109 s/m2

1818 X HT9

109 s/m2

9 s/m2

and we see that B"x = B22 and 5f2 = B21; a result that follows from the equality of the
Maxwell-Stefan diffusivities, f)13 and £)23, and from the equality of the mole fractions xx

and x2.
To answer the second question we repeat the above calculations for other values of the

salt concentration cKC1. The results are summarized below.

CKC1

[mol/m3]

0.1
1

10
100

1000

-B\2
[106 s /m2]

1.206
5.148

17.993
51.295
95.560

Bn
[109 s /m2]

0.5012
0.5051
0.5178
0.5495
0.5782

-Bfo/Bh
[-]

0.0024
0.0102
0.0348
0.0934
0.1653

The ratio of cross-coefficient to the main coefficient, B"2/B"v is less than 5% if the salt
concentration is less than 10 mol/m3. So the Nernst-Planck equation can be used "safely"
below cKC1 = 10 mol/m3.

Many industrially important electrochemical systems have salt concentrations less than
10 mol/m3. This explains the widespread use of the Nernst-Planck equations. •

2.4.2 Conductivity, Transference Numbers, and The Diffusion Potential

Each species j carries with it a current
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and the current carried by the mixture is

n-\

i = ^Y, ZjXj (2.4.20)

with the units amp per meter squared (A/m2). The solvent, species n, carries no charge,
zn = 0, so the summation in Eq. 2.4.20 is taken over n - 1 terms. With the Nt given by the
Nernst-Planck equations (Eq. 2.4.18) we have

i = - / E ZjBJn Vcj - ^= v / £ cjZfDJn (2.4.21)

In proceeding with the development, it is convenient to define the following quantities:

1. Equivalent conductivity of species j

X, - ^cjZ}B°n (2.4.22)

2. Equivalent conductivity of the mixture

n-\

c>r — 2^1 <st>j

-^"icjzfBjn (2.4.23)
R T j - i

3. The transference number of species j

t: = -i- (2.4.24)

With the above definitions an expression for the current i carried by the mixture can be
obtained

n-\

i = -$r £ ZjB°n VCy -3TV<I> (2.4.25)
7 = 1

which may be rearranged to give the electrical potential as

V * = - ^ - ^ " l *,.£>?, Vc, (2-4.26)

Equation 2.4.26 shows that even when no current is carried by the mixture (i.e., i = 0), there
exists a finite electrical potential

Vcf>= - ^ LzjBjnVcj (2-4.27)

termed the diffusion potential. Substituting this expression for V4> in the Nernst-Planck
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relationship (Eq. 2.4.18) we find

N, = -D°n Vc, + CiUn + ^i^in^f^

+ clZimn^ J "E ̂  Vcy (2.4.28)

Equation 2.4.28 can be written a little more compactly in terms of the transference num-
bers ti

+ - E Zj&jn VCJ (2.4.29)

Now, for "pure diffusion" as is encountered in processes such as ion exchange or extraction
there is no current flowing through the mixture

i = 0 (2.4.30)

and the molar flux of each ionic species is given by

t. n-l

zi y-i
(2.4.31)

2.4.3 Effective Ionic Diffusivities

It is common to define an "effective ionic diffusivity" by

*f,~ -^/,effVc( + c,.«n (2.4.32)

An expression for the effective ionic diffusivity 9f{ eff may be obtained by setting equal the
right-hand sides of Eqs. 2.4.31 and 2.4.32.

^i.eff = &in-- "t ZjVjn^1 (^4.33)

zi y=i yci

The effective ionic diffusivity ^ eff is seen to depend on

1. The infinite dilution MS diffusivities

2. The charge numbers of all species

Zi(i = 1,2,..., n - 1).

3. The concentration gradients of all ionic species

Vct(i = 1,2,..., n - 1).
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compartment
A

magnetic
stirrer

stopper

sintered disc

compartment
B

Figure 2.9. Schematic diagram of a two compartment diffusion cell. The experiments by Vinograd and
McBain (1941) on diffusion in electrolyte systems were carried out in apparatus of this kind.

Example 2.4.2 Diffusion in an Aqueous Solution of HCl and BaCl2

Vinograd and McBain (1941) investigated the diffusion of electrolytes and their ionic species
using a two compartment diffusion cell similar to the one depicted in Figure 2.9. The
solution in one compartment was pure water while the other contained an aqueous
electrolyte solution. Diffusion took place through the pores of a sintered glass disk that
separated the two compartments. Vinograd and McBain experimented with a variety of salts
and mixtures of salts; the experiments that we are concerned with in this example involved
the system HCl - BaCl2 - H2O. The HCl and BaCl2 dissociate as follows:

HCI -> H + + c r
BaCl2 -> Ba2+ + 2C1~

We are required to compute the effective diffusivities of the ions in solution and compare
with the experimental values shown in Figure 2.10.

DATA The components in the mixture will be numbered as follows:

1 = H+

2 = cr
3 = Ba2 +

4 = H2O

The charge numbers of these species are

Zj = 1 Z2 = — 1 ^3 = 2 Z4 = 0

The infinite dilution Maxwell-Stefan diffusion coefficients for the ions in water are (from
Newman, 1991).

D°u = 9.3 X 1(T9 m 2 / s

D°24 = 2.0 X 10~9 m 2 / s

£>°34 = 0.85 X 10"9 m 2 / s
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Effective

ion diffusivity,
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hydrogen

^ ^ "pull

chlorine

barium 0 0.2 0.4 0.6 0.8 1.2

V V/CBa2+

Figure 2.10. Comparison of calculated experimental values of the effective ionic diffusivity. Data from
Vinograd and McBain (1941).

SOLUTION The effective diffusivities may be calculated from Eq. 2.4.33; we approximate
the ratio of concentration gradients Vcj/^ci by the ratio of concentration differences
Acy/Acy, thus:

ti
 n~l Ac,-

i 7 = 1 ^ c *

The concentrations of the ions in compartment 1 are

C\ = CHC1

C3 - CBaCl2

As a basis for calculating the effective diffusivities we make cBaCl2 = 1 kmol/m3. We further
define the concentration ratio r as

r = c1/c3 = cHC1/cBaCl2

and the concentrations of ions in solution are given in terms of r as

c1 = r c2= (2 + r) c3 = 1 kmol/m3

Compartment 2 contains pure H2O so the concentration of ions in compartment 2 is zero.
Thus, the concentration differences are equal to the concentrations in compartment 1

Ac, = r kmol/m3

Ac2 = (2 + r) kmol/m3

Ac3 = 1 kmol/m3
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Let us illustrate the calculation of the effective diffusivities at r = 1. The concentrations
of ions in compartment 1 become

c1 = 1 c2 = 3 c3 = 1 kmol/m3

and the concentration differences are

Ac1 = 1 Ac2 = 3 Ac3 = 1 kmol/m3

The equivalent conductivity of the three ionic species are calculated from Eq. 2.4.22 as

= (9.65 X 107)2 X 1 X I2 X 9.3 X 10~9/(8314.3 x 298.15)

= 34.94

= (9.65 X 107)2 X 3 X 22 X 2.0 X 10"9/(8314.3 X 298.15)

= 22.54

= (9.65 X 107)2 X 1 X ( - 1 ) 2 X 0.85 X KT9/(8314.3 x 298.15)

= 12.77

The equivalent conductivity of the mixture is

= 34.94 + 22.54 + 12.77
= 70.25

The transference numbers are given by Eqs. 2.4.24

^ err / c%7
fj — c/T \f 'Si-

= 34.94/1025

= 0.4973

= 22.54/70.25

= 0.3208

= 12.77/70.25

= 0.1818

It will simplify subsequent calculations if we introduce a quantity f

£ = zxB\^cx + z2D°24Ac2 + z3D°34Ac3

= 1 X 9.3 X 10~9 X 1 + ( - 1 ) X 2.0 X 10~9 X 3 + 2 X 0.85 X 10"9 X 1

= 5.0 X 10"9 kmol/m s
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We may finally calculate the effective ionic diffusivities as

Dutl£/z1kc1

9.3 X 10~9 - 0.4973 X 5.0 X 10~9/(l X 1)

6.813 X 10~9 m2/s

= 2.0 X 10~9 - 0.3208 X 5.0 X 1 0 ~ 9 / ( - l X 3)

= 2.535 X 10"9 m2/s

&3,e{f = D°34-t3t/z3Ac3

= 0.85 X 10"9 - 0.1818 X 5.0 X 10"9/(2 X 1)

= 0.395 X 10~9 m2/s

Additional calculations of the effective ionic diffusivities are shown in Figure 2.10 as a
function of the square root of the concentration ratio r. The experimentally determined
effective diffusivities are shown in the same figure for comparison. The agreement between
theory and experiment is very good, especially for the Cl" and Ba2+ ions. The theory
overestimates the effective diffusivity of the H+ ions but the decrease in the effective
diffusivity of the H+ ions as the concentration ratio increases is predicted correctly.

The important features of mixed ion diffusion are brought out very clearly in the
calculations. The rapidly diffusing H+ ions are slowed down by the electrostatic "pull"
being exerted on them by the more slowly diffusing Cl~ ions (Fig. 2.10). At the same time
the Cl~ ions are accelerated by the H+ ions. The Ba2+ ions, which have a low diffusion
coefficient already, diffuse even slower because of the constraint of electroneutrality. •

The consequences of mixed ion diffusion effects in chemical engineering are felt in the
following areas:

1. Metals extraction; see Tunison and Chapman (1976) and Van Brocklin and David
(1972).

2. Absorption of HC1 by NaOH (Sherwood and Wei, 1955).
3. Ion exchange (Helfferich, 1962).
4. Electrodialysis (Wesselingh and Krishna, 1990).
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It is a striking symptom of the common ignorance in this field that not one of the phenomenolog-
ical schemes which are fit to describe the general case of diffusion is widely known.

—L. Onsager (1945)

At about the same time that Maxwell was developing his kinetic theory of gases, Thomas
Graham, Adolf Fick, and others were attempting to uncover the basic diffusion equations
through experimental studies involving binary mixtures (Cussler (1976) provides a brief
history of the early work on diffusion). The result of Fick's work was the "law" that now
bears his name (Fick, 1855a, b) and discussed in Section 3.1. A generalization of Fick's law
to cover diffusion in multicomponent systems is the subject of Section 3.2. The irreversible
thermodynamics (IT) formulation for multicomponent diffusion, pioneered by Onsager
(1931), will also be developed and compared with the Fick formulation in Section 3.3.

3.1 DIFFUSION IN BINARY MIXTURES: FICK'S FIRST LAW

Let us consider in more detail diffusion in a simple system made up of components 1 and 2.
Let M1 and u2 represent the velocities of transfer of components 1 and 2 and u = x1ul +
x2u2 represents the molar average velocity of the mixture. If cx and c2 are the molar
concentrations of 1 and 2 and ct is the total mixture molar concentration, then the diffusion
flux Jx is usually related to the mole fraction gradient by the constitutive relation

Jx = cx(u, -u)= -ctD12VXl (3.1.1)

which is Fick's first law of diffusion. The Fick diffusion coefficient is Du. An analogous
relation may also be written for component 2.

J2 = c2(u2 -u)= -ctD21Vx2 (3.1.2)

It is easy to confirm that since Jx + J2 = 0 and xx + x2 = 1 we must have

D12=D21=D (say) (3.1.3)

that is, there is only one diffusion coefficient describing the molecular diffusion process in a
binary mixture. There is also only one independent driving force Vxx and only one
independent flux Jv Equation 3.1.1 defines the Fick diffusion coefficient.

3.1.1 Fick Diffusion Coefficients

A few typical values of the Fick diffusion coefficients are listed in Table 3.1. Although it may
not be discerned from this small sample of values, the diffusion coefficient in an ideal gas
mixture is independent of the mixture composition, inversely proportional to pressure, and
varies with the absolute temperature to around the 1.5 power. More extensive listings are
provided by Reid et al. (1987) and by Cussler (1984). The most comprehensive collection of

50
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TABLE 3.1 Diffusion Coefficients in Binary Gas Mixtures at 101.3 kPa

System

Air-CO2

Air-H2O
Air-benzene
Air-2-propanol
CO-N2

CO-O2

H2-N2

H2-He
N2-O2

N2-H2O

Temperature
[K]

276.2
289.1
298.2
299.1
273.0
273.0
297.2
298.2
273.2
307.5

D
[10~5 m2/s]

1.42
2.82
0.96
0.99
1.77
1.85
7.79

11.32
1.81
2.56

data on gaseous diffusion coefficients is a review by Marrero and Mason (1972). The range
of values in Table 3.1 is slightly more than one decade.

Diffusion coefficients in binary liquid mixtures are of the order 10 ~9 m2/s. Unlike the
diffusion coefficients in ideal gas mixtures, those for liquid mixtures can be strong functions
of concentration. We defer illustration of this fact until Chapter 4 where we also consider
models for the correlation and prediction of binary diffusion coefficients in gases and
liquids.

3.1.2 Alternative Forms of Fick's Law

In place of the molar diffusion flux with respect to the molar average velocity Jx we may use
the diffusion fluxes J? in the volume average reference velocity frame uv, in which case
Fick's law takes the form

/r = c1(«1-«^)=-DVc1 (3.1.4)

where we use the molar concentration gradient driving force, Vcv Equation 3.1.4 is, in fact,
the most commonly used form of the binary constitutive relationship. However, this form is
not the most convenient to use in practical design problems because under nonisothermal
conditions, the molar concentration gradients will vary with composition and temperature,
thus

dct

x ^ + x ^ V T

V2 dc,
^Vx 1 +x 1^Vr (3.1.5)

where Vt is the partial molar volume of component / and Vt is the mixture molar volume.
The use of molar concentration gradients as driving forces is not to be recommended
because

• Molar concentrations ct are not suggested by solution theories as convenient concen-
tration variables (even in ideal solutions) to represent the thermodynamically based
activity at.
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• It is not true that V2/Vt -> 1 for small concentration gradients, that is, the simple
relation Vcl = ctVx1 holds if and only if ct is constant and not approximately even for
a dilute solute.

• The presence of the temperature gradient term VT is indeed disturbing and the
second term of Eq. 3.1.5 can be very large for gases—leading to the "hot radiator
paradox" mentioned by Sherwood et al. (1975, p. 15). Thus, as pointed out by these
authors, use of the molar concentration gradient driving force will predict the existence
of a diffusion flux, j \ , in a system of uniform composition subject to a temperature
gradient.

The third commonly encountered form of Fick's first law is in the mass average reference
velocity frame v.

U =Pi(«i -v) = -ptDV(or (3.1.6)

This form of Fick's law is most convenient when we must solve the mass continuity
equations simultaneously with the equations of motion (see, e.g., Chapter 10).

The three diffusion coefficients D defined in Eqs. 3.1.1, 3.1.4, and 3.1.6 are identical
(Bird et al., 1960).

3.2 THE GENERALIZED FICK'S LAW

For the binary systems already discussed, we may regard Eq. 3.1.1 as a linear relationship
between the independent flux Jx and driving force Vxv For a ternary mixture there are two
independent fluxes (Jv J2) and two independent driving forces (Vxv Vx2). Thus, assuming
a linear relationship between the fluxes and composition gradients, we may write

/ 1 = -ctDnVXl-ctD12Vx2 (3.2.1)

J2 = -ctD21 Vx, - ctD22Vx2 (3.2.2)

Here we see that Jr and J2 depend on both of the independent mole fraction gradients Vx1

and VJC2. The Dtj in Eqs. 3.2.1 and 3.2.2 are the multicomponent diffusion coefficients; note
that four of them are needed to characterize a ternary system. These coefficients are not to
be confused with the binary diffusion coefficient in Eq. 3.1.1; they may take positive or
negative signs and they are not, in general, symmetric (Dl2 ¥= D21). Also, the multicompo-
nent Dij do not have the physical significance of the binary Fick diffusivity in that the Dtj do
not reflect the /-/ interactions. Furthermore, the numerical values of the Dtj depend on the
particular choice of system numbering.

For n-component systems there are n — 1 independent diffusion fluxes and composition
gradients and we simply continue to add terms and equations. Thus,

Jx = -clDnVx1 -ctD12Vx2 ••• - c ^ ^ ^ V ^ , !

J2= -ctD21VXl-ctD22Vx2 ••• -ctD2^_^Jxn_x

Jt= -ctDilVx1-ctDi2Vx2 <:,/),.,„_, ?*„_! (3.2.3)

Jn-1= ~CtDn~l,l^Xl - CtDn-2,2Vx2 ' ' ' ~ Ct Dn - 1, n - 1 *Xn _ j
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No additional equation is needed for Jn, which is given in terms of the other diffusion fluxes
by Eq 1.2.11. Each of Eqs. 3.2.3 can be written in the following algebraic form:

n - \

= ~ct
DikVxk (3.2.4)

3.2.1 Matrix Representation of the Generalized Fick's Law

The set of n - 1 equations (Eqs. 3.2.3 or 3.2.4) is more conveniently written in n — 1
dimensional matrix notation

CO = -c,[D](Vx)

where ( /) represents a column matrix of molar diffusion fluxes

(3.2.5)

CO =

Jn-i,

(Vx) represents a column matrix of composition gradients with n — 1 elements

The nth component diffusion flux Jn is not independent and is obtained from Eq. 2.1.19.
The nth component gradient is given by Eq. 2.1.18.

The matrix [D] of Fick diffusion coefficients is a square matrix of dimension n — 1 X
n - 1

D2 D 22 D 23

D1

D
n _ h 3

D,n-\,n-l

It is important to note that for multi-(ft-)-component diffusion, the nondiagonal or
off-diagonal elements or cross-coefficients /) / ; (/ # j = 1,2,..., n — 1) are, in general,
nonzero.

For a ternary system (n = 3), the matrix representation of the generalized Fick's law
(Eq. 3.2.5) is two dimensional. Using the property of matrix multiplication we recover Eqs.
3.2.1 and 3.2.2 for the molecular diffusion fluxes Jx and J2.

The reader should satisfy himself/herself that the three formulations (Eqs. 3.2.3, 3.2.4,
and 3.2.5) are entirely equivalent to one another. It is not only in the interests of economy
and elegance of presentation that we shall consistently prefer the matrix formulation (Eq.
3.2.4); we shall see later that matrix formulations lend themselves to easy manipulations and
in many cases the n-component mass transfer relations can be written down as n — 1
dimensional matrix analogs of the corresponding binary mass transfer relationships (Chap-
ter 5).
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3.2.2 Alternative Forms of the Generalized Fick's Law

There are three forms of the generalized Fick's law in common use:

1. Molar flux with respect to molar average velocity.

(/) - -c,[D](Vx) (3.2.5)

2. Mass flux with respect to mass average velocity.

(j)=-P,[D°](Va>) (3.2.6)

3. Molar flux with respect to volume average velocity.

{Jv)=-[Dv]{Vc) (3.2.7)

For binary systems all matrices contain just a single element and Eqs. 3.2.5-3.2.7 reduce
to Eqs. 3.1.1, 3.1.6, and 3.1.4, respectively. As noted earlier, the three binary coefficients, Z),
D°, and Dv, are equal (Bird et al., 1960). For the general multicomponent case, the three
matrices defined above are, in general, different from one another (as indicated in the next
section). Cullinan (1965) has shown that the eigenvalues of [D], [D°], and [Dv] are,
correspondingly, equal to one another. The eigenvalues of [D] are the roots of the
determinantal equation (cf. Eq. A.4.5)

\[D]-D[I]\-0 (3.2.8)

For an n-component system, Eq. 3.2.8 reduces to an (n — l)th-order polynomial in D,
giving n — 1 eigenvalues: Dl9 D2,... . For a ternary system, Eq. 3.2.8 is a quadratic
polynomial and the two roots D1 and D2 can be found from

Dx = Utr[D] + v/disc[£>]|
(3.2.9)

D2 = i { t r [ D ] - ^ i [ ] }

where

\D\ = DnD22 - D12D21

are the trace and determinant of [D], The term disc[Z)] is the discriminant of the
determinantal polynomial (Eq. 3.2.8)

disc[D] = (tr[Z)])2 - 4\D\

3.2.3 Multicomponent Fick Diffusion Coefficients

The Fick diffusion coefficients may be termed practical in the sense that the binary
coefficient D and the corresponding multicomponent diffusion coefficients can be obtained
from composition profiles measured in a diffusion apparatus. The measurement of binary
and multicomponent diffusion coefficients, a subject with an extensive literature, is beyond
the scope of this book. The interested reader is referred to Dunlop et al. (1972), Cussler
(1976) and Tyrrell and Harris (1984) for descriptions of techniques and summaries of
experimental results. Most experimental data are reported for [Dv]. This matrix must be
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TABLE 3.2 Fick Diffusion Coefficients in the System
Acetone(l)-Benzene(2)-Methanol(3) at 25°Ca

xl

0.350
0.766
0.553
0.400
0.299
0.206
0.102
0.120
0.150

flThe units of J

x2

0.302
0.114
0.190
0.500
0.150
0.548
0.795
0.132
0.298

DY: are in

3.819
4.400
4.472
4.434
3.192
3.513
3.502
3.115
3.050

10~9 m2/s.

D\2

0.420
0.921
0.962
1.866
0.277
0.665
1.204
0.138
0.150

Dv
2l

-0.561
-0.834
-0.480
-0.816
-0.191
-0.602
-1.130
-0.227
-0.269

Dv
22

2.133
2.680
2.569
1.668
2.368
1.948
1.124
2.235
2.250

transformed to [D] or [D° ] in order for it to be useful in the applications we consider later
in this book. More on this topic below.

To give an indication of the magnitude of the cross-coefficients that may sometimes be
encountered in practice we present in Table 3.2 some of the data of Alimadadian and
Colver (1976) for [Dv] for the system acetone(l)-benzene(2)-methanol(3) at 25°C and, in
Table 3.3, some of the data of Cullinan and Toor (1965) for the system
acetone(l)-benzene(2)-carbon tetrachloride(3).

It is clear from this small selection of data that the matrix of multicomponent diffusion
coefficients may be a complicated function of the composition of the mixture. The matrix
[Z>] is generally nonsymmetric, except for two special cases identified below. The cross
coefficients Dik (i # k) can be of either sign; indeed it is possible to alter the sign of these
cross-coefficients by altering the numbering of the components.

There are circumstances where the matrix [D] is diagonal and the diffusion flux of
species / is independent of the composition gradients of the other species. For an ideal
mixture made up of chemically similar species the matrix of diffusion coefficients degener-
ates to a scalar times the identity matrix, that is,

[D]=D[I] (special) (3.2.10)

The system toluene-chlorobenzene-bromobenzene is one where this simplification applies
(Burchard and Toor, 1962).

TABLE 3.3 Fick Diffusion Coefficients in the System
A c e t o n e ( l ) - B e n z e n e ( 2 ) - C a r b o n Tetrachloride(3) at 25°C a

0.2989
0.1496
0.1497
0.6999
0.0933
0.2415
0.4924
0.7432
0.8954

x2

0.3490
0.1499
0.6984
0.1497
0.8967
0.7484
0.4972
0.2466
0.0948

1.887
1.598
1.961
2.330
3.105
3.069
2.857
3.251
3.475

D\2

- 0 . 2 1 3
- 0 . 0 5 8

0.013
- 0 . 4 3 2

0.550
0.603
0.045

- 0 . 0 1 1
- 0 . 1 5 8

DV
2l

- 0 . 0 3 7
- 0 . 0 8 3
- 0 . 1 4 9

0.132
- 0 . 7 8 0
- 0 . 6 3 8
- 0 . 2 8 9
- 0 . 3 0 1

0.108

D\2

2.255
1.812
1.929
2.971
1.860
1.799
2.471
2.896
3.737

"The units of Dfj are in 10 ~9 m2/s.
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As the concentration of species / approaches zero, the off-diagonal elements Dik (i ¥= k)
also approach zero. Thus, for n — 1 components infinitely diluted in the nth (xt (i =
1,. . . , n - 1) close to 0), we find that all the cross-coefficients Dik (i ¥= k) vanish. In this
case, however, the diagonal elements Du are not necessarily equal to one another. Dilute
solutions occur sufficiently often for this special case to be of some practical importance.

The prediction of the Fick matrix [D] from fundamental data is considered in Chapter 4.

3.2.4 Transformation of Multicomponent Diffusion Coefficients from One Reference
Velocity Frame to Another

To relate [D] in the molar average velocity reference frame to the mass average reference
frame [D°] we must use Eq. 1.2.26 (in matrix form) to transform Eq. 3.2.6 to the molar
average velocity reference frame and Eq. 1.2.28 to change the units in which the flux is
expressed. We also need the analogous relations to transform mass fraction gradients to
mole fraction gradients (Exercise 1.5). The end result is the following similarity transforma-
tion

= [Bou][a>][xr1[D][x][a>]-1[B''T1 (3.2.11)

where [x] is a diagonal matrix whose nonzero elements are the mole fractions xt. The
matrix [co] is also diagonal with nonzero elements that are the mass fractions co^ Since [x]
and [co] are diagonal matrices, their inverses are easy to compute [JC]"1, for example, is
diagonal with elements that are the reciprocals of the mole fractions: l/xt. The matrices
[Buo] and [Bou] have elements defined by Eqs. 1.2.25 and 1.2.27, respectively.

XnCOk
(1.2.27)

It is interesting to note that the matrix [Bou] is the inverse of [Buo]; that is, [Bou] = [BUO]~A

as may be proved using the Sherman-Morrison formula (see Ortega and Rheinbolt, 1970,
p. 50 and Exercise 1.2).

To relate [D] to the volume average velocity reference frame [Dv] we use another
similarity transformation

[Dv] = [BVu][D][BVuYl

= [BVu][D][BuV] (3.2.12)

where the matrices [BVu] and [BuV] have elements

Btf = 8ik - xffi -Vn)/Vt (1.2.23)

B?? = Sik - Xi(l - Vk/Vn) (1.2.21)

The fact that [BuV] = [BVu]~l may be proved using the Sherman-Morrison formula.
It follows from Eqs. 3.2.11 and 3.2.12 and [D], [D°], and [Dv] will not, in general, be

equal.
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The proof that the eigenvalues of the three [D] matrices are equal follows immediately
from Eqs. 3.2.11 and 3.2.12. The eigenvalues of two matrices, [̂ 4] and [B] say, that are
related by a nonsingular similarity transformation [̂ 4] = [P]~X[B][P] are equal (see, e.g.,
Amundson, 1966; Appendix A.4). The equality of the three binary diffusion coefficients
denned by Eqs. 3.1.1, 3.1.4, and 3.1.6 also follows directly from Eqs. 3.2.11 and 3.2.12.

Example 3.2.1 Fick Diffusion Coefficients for the System Acetone-Benzene-Methanol

The Fick diffusion coefficients for the system acetone(l)-benzene(2)-methanol(3) in the
volume average reference velocity frame are given in Table 3.2. Calculate the elements of
[D] in the molar average reference velocity frame.

DATA The partial molar volumes Vt for acetone, benzene, and methanol are

Vx = 74.1 X 1(T6 m3/mol

V2 = 89.4 X 1(T6 m3/mol

V3 = 40.7 X 10~6 m3/mol

SOLUTION The matrix [D] is related to [Dv] by the inverse of Eq. 3.2.12. Thus, the first
step is the calculation of the transformation matrix [BVu] and its inverse [BuV] from Eqs.
1.2.23 and 1.2.21, respectively. For the first line of data in Table 3.2 Vt is found to be

= 0.350 X 74.1 X 10~6 4- 0.302 X 89.4 X 10~6 + 0.348 X 40.7 X 10""6

= 67.1 X 10"6 m3/mol

The elements of [BVu] follow as:

= 1 - 0.350 X (74.1 - 40.7)/67.1

= 0.8258

B\2
U = -xx(y2 - v3)/vt

= -0.350 X (89.4 - 40.7)/67.1

= -0.2540

B£ = -x2(yx - v3)/vt

= -0.302 X (74.1 - 40.7)/67.1

= -0.1503

= 1 - 0.302 X (89.4 - 40.7)/67.1

= 0.7808
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The inverse of this matrix can be calculated directly or from Eqs. 1.2.21 as follows:

Btf= 1 - Xl(l - V,/V3)

= 1 - 0.350 X (1 - 74.1/40.7)

= 1.2872

= -0.350 X (1 - 89.4/40.7)

= 0.4188

= -0.302 X (1 - 74.1/40.7)

= 0.2478

Bg = 1 - x2(l - V2/V3)

= 1 - 0.302 X (1 - 89.4/40.7)

= 1.3614

Now, we can compute [D] directly from the inverse of Eq. 3.2.12

[D] = [BVuYl[Dv][BVu]

= [BuV][Dv][BVu]

The result is

3.651 -0.069] 10_9 2 /
-0.300 2.303 J 7

It is interesting to note the change in sign of the cross-coefficients D\2 and Dn.
The eigenvalues of [D] may be computed from Eq. 3.2.9 as follows:

ti[D]=Dn+D22

= 3.651 X 10~9 + 2.303 X 10~9

= 5.954 X 10~9 m2/s

\D\ = DnD22 - D12D21

= 3.651 X HT9 X 2.303 X HT9 - (-0.069 X KT9) X (-0.300 X 10~9)

= 8.388 X 10~18m4/s2

We will also need to evaluate the discriminant

disc[D] = (tr[D]f - 4\D\

= (5.954 X 10"9)2 - 4 X 8.388 X 10~18

= 1.898 X 10"18rn4/s2
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The eigenvalues of [D] may now be evaluated as

D1 = i{tr[D] + v/disc[Z)]}

= i{5.954 x 1(T9 + Vl.898 x 1(T18}

= 3.665 X 10"9 m2/s

D2 = i{tr[D] - y/disc[Z)] }

= ^{5.954 X 10~9 - Vl.898 X 10"18}

= 2.287 X lO"9 m2/s

We leave it as an exercise for our readers to calculate the eigenvalues of [Z)K]. These values
should be equal to the eigenvalues of [D]. M

3.3 IRREVERSIBLE THERMODYNAMICS AND THE GENERALIZED FICK'S LAW

Support for the form of the generalized Fick's law of the preceding section can be found in
irreversible thermodynamics introduced in Section 2.3. The treatment below follows that of
Stewart and Prober (1964), but readers will also find the books by de Groot and Mazur
(1962) and Haase (1969), and the review of Kirkaldy (1970) very useful.

The starting point for our analysis is an expression for the rate of entropy production per
unit volume. For isothermal, isobaric processes in the absence of external force fields, the
rate of entropy production due to diffusion is given by (cf. Eq. 2.3.1)

n

Tcrdm= - £ V^/x, •/,.;> 0 (3.3.1)
i = \

where Jt is the molar diffusion flux with respect to the molar average reference velocity. The
rate of entropy production a is seen to be a sum of scalar, or dot, products of two
quantities; one of these is the diffusion flux and the other, the chemical potential gradient,
may be interpreted as the "driving force" for diffusion. The second law of thermodynamics
requires a to be positive definite, 0 ^ 0. In terms of independent fluxes and forces, Eq.
3.3.1 takes the form

n-\

i=\

or in n — 1 dimensional matrix notation

r o d « f = - V r , / . ( M - / O r - ( / ) (3.3.3)

At equilibrium both the fluxes and the driving forces vanish simultaneously giving

a = 0 lequilibriuml (3.3.4)

We now postulate a linear relationship between independent fluxes and driving forces

c , V T j F ( M / - M n ) = - ZHikJk (3.3.5)
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Equation 3.3.5 can be written in matrix form as

-c,VT,P(»-vLn) = [H](J) (3.3.6)

where [H] is the Onsager matrix of coefficients. The matrix [H] is positive definite because
of the second law restriction a ̂  0.

A second postulate of irreversible thermodynamics is that the matrix [H ] is symmetric

[H] = [H]T or Hlk=Hki (3.3.7)

Equation 3.3.7 expresses the Onsager reciprocal relations (ORR), named after Lars On-
sager who first established the principles of irreversible thermodynamics (Onsager, 1931).
The ORR have been the subject of many journal papers receiving support as well as
criticism, the latter from, in particular, Coleman and Truesdell (1960) and Truesdell (1969).
We shall assume the validity of the ORR in the development that follows.

The gradients Vr pi^i — /JLn) can be expressed in terms of the mole fraction gradients
V(x) by the relation

V r > ^ - M n ) = [G]V(x) (3.3.8)

where [G] is the Hessian matrix of the Gibbs free energy function; its elements G/; are
given by

32G g ( A - M j 3 ( M y - M )
= * ( }

The matrix [G] is symmetric. Its elements may be obtained from activity coefficient models
in much the same way that the matrix [F] is obtained. Expressions for the Gtj for some
models of the excess Gibbs energy are given in Appendix D.

On combining Eqs. 3.3.6 and 3.3.8 we see that

(/) = -c,[H\-\G\{Vx) (3.3.10)

Comparison with Eq. 3.2.5 shows that the Fick matrix [D] is related to the Onsager
coefficient matrix [H] by

[D] = [ / / ]"1[G] (3.3.11)

Now, the matrix [H] is symmetric (from the ORR) and positive definite (from the second
law requirement that crdiff ^ 0). In addition, for a thermodynamically stable fluid the matrix
[G] is symmetric and positive definite (see Section 3.3.1). The implication of Eq. 3.3.11 is
that the matrix [D] is positive definite, so that all its eigenvalues are real and positive
(Kirkaldy, 1970).

The condition for real and positive eigenvalues Dx and D2, for a ternary system can be
expressed as (Kirkaldy, 1970; Yao, 1966, Eqs. 3.2.9)

Dn +D22>0

DuD22-DuD21>0 ( 3 3 > 1 2 )

(Dn - D22f + 4D12D21 > 0
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It is interesting to note that thermodynamic stability considerations do not require the
diagonal elements Dn and D22 to be individually positive. If recourse is made to the kinetic
theory of gases, it can be shown that the main coefficients are individually positive, that is,

Du > 0 D22 > 0 (3.3.13)

All available experimental measurements of the Dik suggest the general validity of require-
ment (Eq. 3.3.13) (see Cussler, 1976; Dunlop et al., 1972; Tyrrell and Harris, 1984).

Example 3.3.1 Calculation of the Onsager Coefficients

The matrix of Fick diffusion coefficients in the molar average reference velocity frame for
the system acetone(l)-benzene(2)-carbon tetrachloride(3) at a temperature of 25°C and
composition xx = 0.70, x2 = 0.15, x3 = 0.15 has been obtained from the experimental data
of Cullinan and Toor (1965) as

"2.354 -0.471] x l 0 - 9 m 2 / s
0.089 2.947 J 7

Calculate the matrix of Onsager coefficients [H].

DATA The Hessian matrix of the Gibbs free energy [G] may be calculated with the
nonrandom two liquid (NRTL) model. The NRTL parameters are

r12 = -0.46504 T21 = 0.76432 al2 = a2A = 0.2

Tl3 = -0.42790 T31 = 1.5931 al3 = a31 = 0.2

r23 = -0.51821 r32 = 0.7338 a23 = a32 = 0.2

SOLUTION The Hessian [G] is calculated from Eq. D.3.4 and the NRTL model equations
in Table D.8. The result is

r r l / /? r f6-856 6-229

iGi/RT=[6229 13.323

Note that [G]/RT is dimensionless and symmetric; also, the cross-coefficients G12 and G21

are a large fraction of the main coefficients Gn and G22. Multiplying each element of the
above matrix by RT gives

16.995 15.441] v i n 2 T / i
15.441 33 .026 j X l ° J / m o 1

Equation 3.3.11 can be rearranged to

which we solved directly to give

5.981 6.355] y 1oi2
5.099 12.18 J *

Note that the ORR are not satisfied precisely pointing to experimental inaccuracies in the
measured data. •
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3.3.1 Diffusion in the Region of a Critical Point

Consider diffusion in a binary liquid mixture exhibiting an upper critical solution tempera-
ture (UCST) or lower critical solution temperature (LCST) (see Fig. 3.1). Let us take a
mixture at the "critical" composition xic at point A just above the UCST. Any concentra-
tion fluctuation at A will tend to be "smeared" out due to the effects of diffusion in this
homogeneous mixture. On the other hand, any fluctuation of a system at point B,
infinitesimally below the UCST, will lead to separation in two phases. Similarly, the mixture
at point D, just below the LCST is stable whereas the mixture at point C, just above the
LCST is unstable and will separate into two phases.

For thermodynamically stable binary systems the second derivative of the Gibbs free
energy with respect to the mole fraction x1 is positive

d2G

while

< 0

implies thermodynamic instability, that is, phase splitting. The locus of points where Gn

goes to 0 is the spinodal curve and is the boundary between the metastable and unstable
regions. At the critical point itself both G n and the third derivative of G with respect to xx

are equal to zero. For a detailed discussion of these points see, for example, Modell and
Reid (1983).

It follows that the Fick diffusion coefficient must tend towards zero as the spinodal curve
is approached. This has been experimentally confirmed for a few systems, the data of Haase
and Siry (1968) for the systems water-triethylamine and rc-hexane-nitrobenzene are shown
in Figs. 3.2 and 3.3 (see, also, Claesson and Sundelof, 1957; Myerson and Senol, 1984).
Vitagliano et al. (1980) and Clark and Rowley (1986) determined spinodal compositions by
extrapolating diffusivity data to zero.

Temperature

UCST

LCST

Composition

Figure 3.1. Upper and lower critical solution points.
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4r

Fick Diffusivity, D 2

[10"11rn2/s]

System: water (1)-
triethylamine (2)

J_
5 10 15

Temperature/ [°C]

20

Figure 3.2. Fick diffusion coefficient D as a function of temperature for the system water-triethyl-
amine. Measured data for Fick diffusivity D at constant composition = critical composition x2 = 0.0874.
Critical temperature = 18.3°C. Data from Haase and Siry (1968).

For thermodynamic stability in a multicomponent system the matrix [G] must be positive
definite. Thus

|G |>0 (3.3.14)

and each of the eigenvalues of [G] is positive definite. Negative eigenvalues of [G] imply
thermodynamic instability; that is, phase splitting. At the critical point

\G\ = 0 (3.3.15)

30 1—

20 -

Fick Diffusivity, D

[10"11m2/s]

10 —

1 — System:

_ 19.7 °C

nhexane(1)-
nitrobenzene (2) | /

I I I

20 25 30

Temperature/ [ °C]

35

Figure 3.3. Fick diffusion coefficient as a function of temperature for the system rc-hexane-nitroben-
zene. Measured data for Fick diffusivity D at constant composition x2 = 0.42. Critical temperature =
19.7°C. Data from Haase and Siry (1968).
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Now, the determinant of [D] is related to the determinant of [G] by

\D\ = \G\/\H\ (3.3.16)

Thus, at the critical point we must have

\D\ = 0 (critical point) (3.3.17)

and one of the eigenvalues of [D] must vanish.

For a ternary system the requirement \D\ = 0 at the critical point implies that

|D| = DnD22 - D12D21 = 0 (3.3.18)

and the eigenvalues of [D] are (see Eq. 3.2.9)

Dx = 0 D2 = Dn + D22 (3.3.19)

If \D\ = 0, the cross-coefficients must match the main coefficients in magnitude—implying
large coupling effects.

The eigenvectors corresponding to the eigenvalues (Eq. 3.3.19) are, respectively,

D
and

1

D\2
(3.3.20)

We shall now show that the first eigenvector (ej is in a direction parallel to the limiting
tie line in the vicinity of P. To do this, we begin with the condition of equilibrium between
two phases ' and " for which the following relation must be satisfied

i - 1 , 2 , 3 (3.3.21)

Consider now two phases, also in mutual equilibrium, the compositions of which differ from
the corresponding phases above by infinitesimal amounts. Considered as variations of the
above, the chemical potentials of these new phases must satisfy

l ,2 ,3 (3.3.22)

The Gibbs-Duhem restriction for constant temperature and pressure can be written for a
ternary system as

x[dfi\ + x'2 d^2 + x'sdfo = x\dyi\ + xldpC2 + x"3dfi

The mole fraction x3 can be eliminated using x3 = 1 — xx — x2 to give

and

x[d(n\ - fi'3) + x'2d{y!2 - M'3

(3.3.23)

(3.3.24)

(3.3.25)
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which relations can be rearranged in the form

x'[ - x\

The differentials d(/xf - JJL3) may be written in terms of composition fluctuations as

d(v-iL3) = [G\d(x) (3.3.27)

and so Eqs. 3.3.22, written in terms of dxh take the form

[G']d(x') = [G"]d(x") (3.3.28)

and

A ~ xr
2 = _ G'ndx\ + G\2dx'2 = _ G"ndx'[ + G\2dx»2

x\ - x\ G'2ldx\ + G'22dxf
2 G"2Xdx'[ + Gn

22dx2 V • • )

with G12 = G2\-
As the critical point is approached, the various [G] matrices become equal

[G'] = [G"] = [G] (3.3.30)

and

dx\ = dx'l = dxt (3.3.31)

so Eq. 3.3.29 takes the limiting form

dx2 Gn + Gu(dx2/dx1)

dxx G12 + G22(dx2/dxx)

Solving the resultant quadratic equation for dx2/dxl we obtain

dx2 G X2 GYI — GXXG22 GYI G j

(3.3.32)

j 2 2 Cr22 Cr22 G 2 2

(33.33)

because GnG22 — G\2 = 0 at P. The derivative dx2/dxx represents the slope of the
limiting tie-line.

Now using the relation [D] = [H]~\G] we can show that

D2l Dn Gu

D2 2 Du G22

after invoking the requirement of \H\ = 0 at equilibrium. Since the slope of the eigenvector
(ex) is -Dn/Du (cf. Eq. 3.3.35), it follows that (e^ is parallel to the limiting tie-line.

The implications of \D\ = 0 at the plait point for composition trajectories in this region
will be discussed later (Section 5.6.2).

Vitagliano et al. (1978) attempted to test Eq. 3.3.19 with the system water-chloroform-
acetic acid; their data are summarized on the triangular diagram (Fig. 3.4). The first five
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0.0854

fO.309 0.3681
" [0.344 0.939J'

•<>•<«»

• 0.0164

; | D | = 0

Figure 3.4. Phase diagram of the system water-chloroform-acetic acid at 25°C. Diffusion coefficient
data are expressed in the units 10~9 m2/s. Also shown in the figure are values of the determinant of
[D]. Data from Vitagliano et al. (1978).

data sets fall on a more or less straight line that intersects the two-phase boundary at the
plait point. Note that the cross-coefficients do indeed match the main coefficients in
magnitude. The last point on Figure 3.4 represents extrapolated data for the plait point. It is
very difficult to measure multicomponent diffusion coefficients at the plait point because the
accuracy of most measurement techniques decreases as the two-phase boundary is ap-
proached.



4 Estimation of Diffusion Coefficients

The coefficient of interdiffusion of two liquids must be considered as depending on all the
physical properties of the mixture according to laws which must be ascertained only by
experiment.

—J. C. Maxwell writing in the Encyclopedia Brittanica. See his collected papers (1952).

Thus far we have introduced two different constitutive relations along with their respective
diffusion coefficients, the Maxwell-Stefan £> and the Fick D. Here we show how these
coefficients are related to each other and present a sample of values of these coefficients
determined experimentally.

For process engineering calculations it is almost inevitable that experimental values of D
or £>, even if available in the literature, will not cover the entire range of temperature,
pressure, and concentration that is of interest in any particular application. It is, therefore,
important that we be able to predict these coefficients from fundamental physical and
chemical data, such as molecular weights, critical properties, and so on. Estimation of
gaseous diffusion coefficients at low pressures is the subject of Section 4.1.1, the correlation
and prediction of binary diffusion coefficients in liquid mixtures is covered in Sections
4.1.3-4.1.5. We do not intend to provide a comprehensive review of prediction methods
since such are available elsewhere (Reid et al., 1987; Ertl et al., 1974; Danner and Daubert,
1983); rather, it is our purpose to present a selection of methods that may be useful in
engineering calculations.

While the thermodynamic treatments of diffusion in Sections 2.3 and 3.3 provide some
useful information on the multicomponent diffusion coefficients, it does not solve our most
important problem, how do we predict these coefficients? Multicomponent diffusivity data is
not an item that we have in abundance and there are no correlations of multicomponent
diffusivity data that we might use. It is the Maxwell-Stefan Eqs. 2.1.24 for ideal gases or Eq.
2.2.9 for nonideal fluids that come to our aid (Section 4.2).

4.1 DIFFUSION COEFFICIENTS IN BINARY MIXTURES

4.1.1 Relationship Between Fick and Maxwell-Stefan Diffusion Coefficients

The Maxwell-Stefan equation for diffusion in a two component system is Eq. 2.2.11.

Jx = -ctB~1TVx1 = -ctDTVx1 (2.2.11)

where T is given by Eq. 2.2.12. Equation 2.2.11 is to be compared to Fick's law (Eq. 3.1.1)

We see that, for a binary system, the Fick diffusivity D and the Maxwell-Stefan diffusivity

67
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D are related by

(4.1.1)

The correlation and prediction of Fick and Maxwell-Stefan diffusion coefficients is dis-
cussed in the sections that follow. The Fick D incorporates two aspects: (1) the significance
of an inverse drag (£>) and (2) thermodynamic nonideality (F). Consequently, the physical
interpretation of the Fick D is less transparent than for the Maxwell-Stefan diffusivity.

For ideal systems F is unity and the Fick D and the Maxwell-Stefan £> are identical.

D=B~1=D |ideal| (4.1.2)

4.1.2 Estimation of Diffusion Coefficients in Gas Mixtures

A more rigorous kinetic theory than that in Chapter 2 not only supplies us with the proper
form of the constitutive relations for multicomponent diffusion, it also provides an explicit
relation for the binary diffusion coefficient. A slightly simplified version of the kinetic theory
result is

+M2)/M1M2\
\ ?' 2] (4.1.3)

where

D = diffusion coefficient [m2/s]
C = 1.883 X KT2

T = absolute temperature [K]
P = pressure [Pa]
cr = characteristic length [A]

£lD = diffusion collision integral [ — ]
Mi = molar mass of component / [g/mol]

The parameter flD, the diffusion collision integral, is a function of kBT/e, where kB is the
Boltzmann constant and £ is a molecular energy parameter. Values of flD, tabulated as a
function of kBT/e, have been published (Hirschfelder et al., 1964; Bird et al., 1960).
Neufeld et al., (1972) correlated HD using a simple eight parameter equation that is
suitable for computer calculations (see, also, Danner and Daubert, 1983; Reid et al., 1987).
Values of a and e/kB (which has units of kelvin) can be found in the literature—for only a
few species—or estimated from critical properties (Reid et al., 1987; Danner and Daubert,
1983). The mixture a is calculated as the arithmetic average of the pure component values.
The mixture e is taken to be the geometric average of the pure component values.

A number of empirical or semiempirical correlations for estimating gaseous diffusion
coefficients have also been developed. These include the method of Wilke and Lee (1955),
which is based on Eq. 4.1.3 with C = 0.02199 - 0.00507]/{(M1 + M2)/M17kf2} .

A correlation due to Fuller et al. (1966, 1969) is recommended by Reid et al. (1987) and
by Danner and Daubert (1983).

r, + M2)/MiM2
D = CT175-^— , * (4-1.4)
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TABLE 4.1 Diffusion Volumes in Fuller-Schettler-Giddings Correlation Parameters

c
H
O
N
S

He
Ne
Ar
Kr
Xe
H 2

D 2

N2

O2

Air

Atomic and Molecular Diffusion Volume Increments
15.9
2.31
6.11
4.54

22.9

F
Cl
Br
I
Aromatic ring
Heterocyclic ring

Diffusion Volumes for Some Simple Molecules

2.67
5.98

16.2
24.5
32.7

6.12
6.84

18.5
16.3
19.7

CO

co2
N2O
NH 3

H 2 O
SF6

C l 2

Br2

SO2

14.7
21.0
21.9
29.8

-18.3
-18.3

18.0
26.7
35.9
20.7
13.1
71.3
38.4
69.0
41.8

"From Fuller et al. (1969).

With T in kelvin (K), P in pascals (Pa), Mx and M2 in grams per mole (g/mol) and
C = 1.013 X 10 ~2, D will be in square meters per second (m2/s). The terms Vx and V2 are
molecular diffusion volumes and are calculated by summing the atomic contributions in
Table 4.1.

Examples illustrating the use of Eq. 4.1.1 and 4.1.2 are given by Reid et al. (1977, 1987)
and by Danner and Daubert (1983). The same authors describe methods for estimating Fick
diffusion coefficients for gases at high pressure.

4.1.3 Diffusion Coefficients in Binary Liquid Mixtures

Diffusion coefficients in binary liquid mixtures can be strong functions of composition. To
illustrate this fact we have plotted experimental data for a few systems in Figure 4.1. The
Maxwell-Stefan coefficient £> also is shown in Figure 4.1. To obtain the Maxwell-Stefan
coefficients we have divided the Fick D by the thermodynamic factor F

D=D/T (4.1.5)

We have calculated T using the activity coefficient models in Appendix D with parameters
from the literature (see Examples 4.1.2 and 4.1.3).

It is clear from these figures that the Fick D shows a significantly greater variation with
concentration than does the Maxwell-Stefan £). A particularly extreme example of the
strong composition dependence of D is afforded by the system methanol-n-hexane in the
vicinity of the spinodal curve. The experimental data for this system (obtained by Clark and
Rowley, 1986) are plotted in Figure 4.1(d); the values of D vary by a factor of almost 20!
The Maxwell-Stefan £), calculated from Eq. 4.1.5 varies by a factor of only 1.5.

To explain the rather striking difference in the behavior of the Fick D and
Maxwell-Stefan £> we recall from Section 3.3.1 that the Fick D vanishes along the spinodal
curve because Gn, the Hessian of the Gibbs free energy, vanishes on that curve. Now, the



70 ESTIMATION OF DIFFUSION COEFFICIENTS

thermodynamic factor T may be expressed in terms of Gn as

r = Xlx2Gn/RT (4.1.6)

It follows that the thermodynamic factor T vanishes wherever Gn goes to 0. The parameter
F for the methanol-rc-hexane system, calculated from the NRTL model given in Table D.5
using parameters given by Clark and Rowley (1986), is shown in Figure 4.2. It can be seen
that the thermodynamic factor for this system comes close to zero at a mole fraction of
methanol of 0.52. The composition dependence of T closely follows that of the Fick D
(compare the shapes of the curves for D in Figure 4.1W) and F in Figure 4.2) with the
result that the Maxwell-Stefan D (= D/T) is much less concentration dependent.
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Figure 4.1. (a) Concentration dependence of the Fick diffusivity D and the Maxwell-Stefan D for the
system ethanol(l)-water(2). Data from Tyn and Calus (1975b). (b) Composition dependence of Fick D
and Maxwell-Stefan £> for the system acetone(l)-benzene(2). Data from Anderson et al. (1958) and
Cullinan and Toor (1965). (c) Composition dependence of Fick D and Maxwell-Stefan D for diffusion
in triethylamine(l)-water(2). Data from Dudley and Tyrell (1973). (d) Fick diffusion coefficient for the
system methanol-tt-hexane at 40°C measured by Clark and Rowley (1986).
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Figure 4.1. (Continued).
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Figure 4.2. Thermodynamic factor T for the system methanol-n-hexane at 40°C. The parameter T
computed from the NRTL model with parameters from Clark and Rowley (1986).
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Figure 4.3. (a) Thermodynamic factor for the system ethanol-water at 40°C obtained from different
activity coefficient models. Parameters from Gmehling and Onken (1977ff Vol. I/la p. 133). (b)
Thermodynamic factor for the system ethanol-water at 50°C obtained using the NRTL equation using
parameters fitted to isothermal vapor-liquid equilibrium data. Parameters from Gmehling and Onken
(1977ff): Vol. I/la p. 116; • • • Vol. I / I p. 191; — Vol. I / I p. 171. (c) Thermodynamic factor for
the system ethanol-water at 40°C obtained using the NRTL equation using parameters fitted to
isobaric vapor-liquid equilibrium data. Parameters from Gmehling and Onken (1977ff): Vol. I/la
p. 133; • • • Vol. I/la p. 138; —; Vol. I / I p. 162.
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It should be noted that the Maxwell-Stefan D calculated from Eq. 4.1.5 can be quite
sensitive to the model used to compute F, an observation first made by Dullien (1971). One
of the reasons for this sensitivity is that F involves the first derivative of the activity
coefficient with respect to composition. Activity coefficient model parameters are fitted to
vapor-liquid equilibrium (VLE) data (see, e.g., Prausnitz et al., 1980; Gmehling and Onken,
1977). Several models may provide estimates of In yt that give equally good fits of the
vapor-liquid equilibrium data but that does not mean that the first derivatives of In yt (and,
hence, F) will be all that close. To illustrate this fact we have calculated the thermodynamic
factor, F, for the system ethanol-water with several different models of In yt. The results
are shown in Figure 4.3 (a). The interaction parameters used in these calculations were
fitted to one set of VLE data as identified in the figure caption. Similar illustrations for
other systems are provided by Taylor and Kooijman (1991).

The Maxwell-Stefan diffusion coefficients calculated from Eq. 4.1.5 may also be sensitive
to the parameters used in the calculation of F. Different sets of parameters obtained by
fitting different sets of equilibrium data may give quite different values of F (and, hence, of
£)) as shown in Figures 43(b) and (c) where we plot F for the ethanol-water system with
the NRTL model using several different sets of interaction parameters. Figure 4.3(b) was
prepared using three different sets of parameters fitted to three different sets of isothermal
VLE data. Figure 4.3(c) was prepared using three different sets of parameters fitted to
three different sets of isobaric VLE data. Whenever possible D should be calculated with F
obtained using activity coefficient parameters fitted to equilibrium data obtained at the
same temperature as the diffusion data. Parameters fitted to constant pressure equilibrium
data may not give good estimates of D at constant temperature.

More comprehensive collections of liquid diffusivity data can be found in the reviews by
Johnson and Babb (1956) and a two-part review by Dullien and co-workers (Ghai et al.,
1973; Ertl et al., 1974). The book by Tyrrell and Harris (1984) is a good place to begin a
search for experimental measurements of D.

4.1.4 Estimation of Diffusion Coefficients in Dilute Liquid Mixtures

As the mole fraction of either component in a binary mixture approaches unity, the
thermodynamic factor F approaches unity and the Fick D and the Maxwell-Stefan D are
equal. This result is shown clearly in Figures 4.1-4.3. The diffusion coefficients obtained
under these conditions are the infinite dilution diffusion coefficients and given the symbol
D°.

The Stokes-Einstein equation is a purely theoretical method of estimating D°.

kBT
D°u=—2— (4.1.7)

677>>*

where D°u is the diffusion coefficient of species 1 infinitely diluted in species 2, kB is
Boltzmann's constant, JJL2 is the viscosity of the solvent, and r1 is the radius of the diffusing
molecule. This simple relation is valid only if the molecules of the diffusing species are very
large compared to the solvent molecules (Evans et al., 1981), this restriction being one of
the assumptions made in its derivation. Despite this limitation on solvent size, Eq. 4.1.7 has
provided a useful starting point for a number of semiempirical correlations of infinite
dilution diffusivities.

One of the best known methods, due to Wilke and Chang (1955), is

«(</>2M2)1 / 2r
£>° = 7.4 X 1(T8 ' — (4.1.8)
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where

D°u = diffusion coefficent of species 1 (the solute) present in infinitely low concentration
in species 2 (the solvent) [cm2/s]

M2 = molar mass of the solvent [g/mol]
T = temperature [K]
fi = viscosity [mPa s = cP]

TABLE 4.2 Diffusion Coefficients at Infinite Dilution

A: General Correlations for Polar and NonPolar Systems"

1. Tyn-Calus (1975a) correlation6

D°u = 8.93 X lO-tV^Vi^n^iPi/Pif^T

2. Hayduk-Minhas (1982) correlations6

D°u = 1.55 X 10-8F2-°-23
At2-0-92P2

0-5/?r0-42r1-29

£>°12 = 6.915 X 10-

3. Siddiqi-Lucas (1986) correlation

B°12 = 9.89 X l O V a ^

4. Hayduk-Minhas (1982) correlation for n-alkanes

D°12 = 13.3 X 10

5. King et al. (1965) correlation

D\2 = 4.4 X 10-V

B: Correlations for Aqueous Mixtures0

6. Hayduk-Laudie (1974) correlation

D°12 = 13.26 X 10-V2"1 1 4^r°-5 8 9

7. Hayduk-Minhas (1982) correlation

D°l2 = 1.25 X 10- 8(Ff 0 1 9 - 0 .292)^ .

8. Siddiqi-Lucas (1986) correlation

D°12 = 2.98 X 10" V ^

aNotation [units]: D°n = infinite dilution diffusion coefficient [cm2/s]; T = temperature [K];
ju, = viscosity [cP = mPa s]; V = molar volume at the normal boiling point [cm3/molj;
R = radius of gyration [nm]; P = parachor [g1/4cm3/(mol s1/2)] and; AH = latent heat of
vaporization at the normal boiling point [any consistent units].
bWater should be treated as a dimer; that is, parachor and molar volumes should be
doubled. Organic acid solutes should be treated as dimers except when water, methanol, or
butanol is the solvent. For nonassociating solutes in monohydroxy alcohols, the solvent
parachor and molar volume should be multiplied by 8/JL2.
cWater is species 2 in these correlations.
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V1 = molar volume of Solute 1 at its normal boiling point [cm3/mol]
<j>2 = association factor for the solvent (2.26 for water, 1.9 for methanol, 1.5 for ethanol,

and 1.0 for unassociated solvents)

The value of 2.26 for the association factor for water was found by Hayduk and Laudie
(1974) to give better results than the value of 2.6 that was suggested by Wilke and Chang.

A number of other useful (and sometimes more accurate) correlations have been
developed; some of them are listed in Table 4.2. Of the correlations for nonaqueous
mixtures, those of King et al. (1965), Hayduk and Minhas (1982), Tyn and Calus (1975a),
and Siddiqi and Lucas (1986) gave about the same average error when evaluated against
1275 measured diffusivities (Siddiqi and Lucas, 1986). Siddiqi and Lucas report that their
own correlation for diffusion of a solute in water had a noticeably lower average error than
any other correlation when evaluated against 658 measured diffusivities. This does not,
however, mean that the Siddiqi-Lucas correlation is best for all aqueous systems (as
Example 4.1.1 demonstrates). Erkey et al. (1990) developed a correlation for predicting
infinite dilution diffusion coefficients in alkanes. Wong and Hayduk (1990) compare correla-
tions of estimating infinite dilution diffusivities in rc-alkane mixtures, for dissolved gases in
organic solvents and for dissolved gases in water. Comparative reviews (including example
calculations) of selected correlations published prior to 1986 are by Hayduk (1986) and by
Reid et al. (1987).

Example 4.1.1 Diffusion of Alcohols Infinitely Diluted in Water

The diffusivities of methanol and 2-propanol at infinite dilution in water were measured by
Matthews and Akgerman (1988). Use their data, given in Table 4.3, to provide a spot check

TABLE 4.3 Infinite Dilution Diffusion Coefficients of
Methanol and 2-Propanol in Watera

T(°C)

30
56
81

120

Diffusivity Data of Matthews and Akgerman

^MeOH-H2O

1.83
3.42
4.91
7.73

^2-PrOH-H2O

1.43
2.21
3.32
5.82

(1988)
b

^H 2 O
0.814
0.504
0.351
0.230

^MeOH-H2o Computed from Various Correlation

Wilke- Hayduk- Hayduk- Siddiqi-
T(°C) Chang Laudie Minhas Lucas

30
56
81

120

T(°C)

30
56
81

120

1.87
3.28
5.06
8.58

D 2 = PrOH-H2

Wilke-
Chang

1.27
2.22
3.43
5.81

1.86
3.21
4.85
7.84

o Computed from

Hayduk-
Laudie

1.27
2.19
3.31
5.35

1.77
3.07
4.75
8.11

1.44
2.56
4.00
6.85

Various Correlations

Hayduk-
Minhas

1.29
2.36
3.80
6.79

Siddiqi-
Lucas

1.01
1.80
2.80
4.80

"The units of £>° are in 10 9 m2/s. The units of viscosity are cP
[10~3 Pa s]
b Viscosity computed from DIPPR correlation (Daubert and Danner,
1985).
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on the correlations in Table 4.1(B) and the Wilke-Chang equation (Eq. 4.1.8).

DATA The molar volumes are

KMcOH = 41.94 cmVmol

FP r O H = 80.28 cm3/mol

The viscosity of water is given in Table 4.3.

SOLUTION The Wilke-Chang equation is selected to illustrate the calculation of the
infinite dilution diffusivities. The association factor (/> for water is 2.26

fi {cf>M2)
l/2T

x)° _ 7 4 y i n - 8 v ^ z /

\XV

(2.26 X 18)1/2 X 303.15
= 7.4 X 1 0 " 8 X TTT

0.814 X 41.9406

- 1.87 X 10~5cm2/s

The infinite dilution diffusivities computed from all four correlations are given in Table
4.3 below the experimental values. From the calculated results we see that for the
methanol-water system the Hayduk-Laudie method gives good estimates over the tempera-
ture range of these data. The Wilke-Chang method (with </> = 2.26) gives good results at
the lower temperatures. For the 2-propanol system these two correlations change places in
the order of merit. The Hayduk-Minhas correlation comes in as third best with results that
would probably still be adequate for many engineering purposes. The Siddiqi-Lucas
correlation consistently underpredicts the diffusivities. •

4.1.5 Estimation of Diffusion Coefficients in Concentrated Liquid Mixtures

Most methods for predicting D in concentrated solutions attempt to combine the infinite
dilution coefficients D°12 and D°21 in a simple function of composition. The simplest
expression

Bu=x2D\2+xlD°2l (4.1.9)

proposed by Caldwell and Babb (1956) is recommended by Danner and Daubert (1983).
Vignes (1966) suggested that the composition dependence of D can be expressed by a

relation of the form

£>12 = (f>°12)
X2(D°21)

Xl (4.1.10)

This formula is recommended by Reid et al. (1987).
The success of the Vignes relationship can be judged in Figure 4.1, where the dashed

lines represent Eq. 4.1.10. It would appear from the results in Figure 4.1 that Eq. 4.1.10 is
not always as good as had been shown earlier by Vignes himself. However, as noted earlier,
the Maxwell-Stefan diffusion coefficient can be quite sensitive to the correlation used to
calculate the activity coefficients (Dullien, 1971). Thus, it may be dangerous to draw
definitive conclusions from the limited number of data shown here. The Vignes equation is
less succesful for mixtures containing an associating component (e.g., an alcohol). Alterna-
tive prediction methods need to be developed for such systems (see, e.g., McKeigue and
Gulari, 1989; Rutten, 1992).
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Several modifications of the Vignes relation have also been proposed; Leffler and
Cullinan (1970), for example, included viscosity in the relation as follows:

Dnlx = (SWW/*,)" (4.1.11)

This expression is sometimes recommended for predicting the Fick diffusivity D instead of
the Maxwell-Stefan diffusivity (Danner and Daubert, 1983).

A number of studies suggested that the composition dependence of the Fick diffusivity
can be reasonably well represented by an equation with the form

D = D°Tm (4.1.12)

where D° is a function of the infinite dilution coefficients D°12 and D°2l and the composition
of the mixture. In terms of D°, the Maxwell-Stefan diffusivity D would be given by

D = DoTm-i (4.1.13)

Rathbun and Babb (1966) used Eq. 4.1.9 for D° and found that a value of m = 0.6 gave a
good fit to data for a few systems that exhibited positive deviations from Raoult's law,
whereas m = 0.3 worked well for systems having negative deviations from Raoult's law.
Kosanovich and Cullinan (1976) found that an exponent of 0.5 on the thermodynamic factor
reproduced the concentration dependence of several nonideal binary mixtures quite nicely.

Siddiqi and Lucas (1986) evaluated many of the foregoing ways of accounting for the
composition dependence of D (along with a number of other methods). For 79 mixtures of
two nonpolar components they found that Eq. 4.1.12 with m = 0.4 and Eq. 4.1.9 for D° was
best. However, the average errors were not much worse with m = 0.6 (the Rathbun and
Babb value) or 0.5. For 54 mixtures with a single polar component, the Rathbun and Babb
method fared noticeably better than any other methods tested and an exponent of 0.5 on T
came in second best. For 43 mixtures of two polar components they found best results were
obtained by Eq. 4.1.12 with m = 1 and D° given by

D° = <j>2D°12 + <j>xB°2l (4.1.14)

where <j> is the volume fraction. However, for this class of mixtures, the advantage over the
methods of Vignes and Leffler and Cullinan was not significant. It should also be noted that
the combination of Eq. 4.1.9 and 4.1.12 with m = 0.5 would have given results acceptable
for most engineering applications.

Of course, for specific systems, any one of the above (or other) models may give the best
results and it pays to check the correlation against experimental data if that is possible. For
example, Dullien and Asfour (1985) found that the Fick D for regular solutions may be well
represented by

It must be remembered that the sensitivity of the predicted Fick D to the thermody-
namic model used to calculate T, as well as to the model parameters, is more than enough
to make all of the above findings subject to some uncertainty. We suggest the Vignes
method, Eq. 4.1.10, and shall use it consistently throughout this book.

Example 4.1.2 Diffusion Coefficients for the System Acetone-Benzene

Estimate the Maxwell-Stefan and Fick diffusion coefficients for an acetone(l)-benzene(2)
mixture of composition xx = 0.7808 at a temperature of 25°C. The NRTL equation may be
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used to estimate the thermodynamic correction factor F.

DATA The infinite dilution diffusivities are (Anderson et al., 1958)

D°u = 2.75 X 1CT9 m2/s

D°21 = 4.15 X 1(T9 m2/s

The NRTL parameters for the acetone-benzene system at 25°C are available in the data
collection of Gmehling and Onken (1977ff Vol. 1/3 4- 4, p. 208). Their dimensionless values
are

T12 = -0.1189 r21 = 0.6482 au = a21 = 0.3029

SOLUTION We will use the Vignes method to estimate the MS diffusivity. Substituting
the numerical values for the infinite dilution diffusivities and the mole fraction into Eq.
4.1.10 gives

#12 = (£>u)X2(£>°2l)Xl

= (2.75 X 10-)°-2192 X (4.15 X 10-')0-7808

= 3.792 X 10~9 m2/s

The NRTL equation for the activity coefficient yi is presented in Table D.5. The
thermodynamic factor T is given by

r = l - 2*,* 2 (T 2 1 G1,A 3 + TUG\2/SI)

where

Sx = x} + x2G21 S2 = x2 + xxGl2

and

G12 = exp(-a12T12) G21 = exp(-a21T21)

Substituting the values of the parameters r12, r21, and aX2 into the above expressions from
Table D.5 gives

r = 0.871

The Fick diffusivity may now be computed from the product of D and T as

D=DT

= 3.792 X 10~9 X 0.871

= 3.30 X 10"9 m2/s

which compares reasonably well with the experimental value of D at this composition of
3.35 X 10~9 m2/s (Anderson et al., 1956). Additional data of Anderson et al. and of
Cullinan and Toor (1965) are shown in Figure 4.Kb). •

Example 4.1.3 Diffusion Coefficients in the System Ethanol-Water

Estimate the diffusivities of an ethanol(l)-water(2) mixture at 40°C and xx = 0.68.

DATA The infinite dilution diffusivities are (Tyn and Calus, 1975b)

D°12= 1.70 X 10-9m2 /s

f>21 = 1.64 X 10~9 m2/s



ESTIMATION OF MULTICOMPONENT DIFFUSION COEFFICIENTS 79

The NRTL parameters for ethanol-water at 40°C are taken from the collection of
Gmehling and Onken (1977ff Vol. I / I p. 172).

r12 = -0.02188 T21 = 1.6139 a12 = a21 = 0.2946

SOLUTION The Maxwell-Stefan diffusivity is computed using the Vignes equation (Eq.
4.1.10) as

= (1.70 X 10"9) X (1.64 X 10"9)

= 1.659 X 10~9m2/s

The parameter F is computed from the NRTL equation as illustrated in Example 4.1.2
with the result

r = o.6io

The Fick diffusivity may now be computed as

D =DT

= 1.659 X 10"9 X 0.610

= 1.012 X 10"9m2/s

The data of Tyn and Calus (1975b) covering the entire range of compositions is shown in
Figure 4.1(a). Their experimental value of D at the conditions used in this illustration is
1.02 X 10~9 m2/s, which compares quite well with the value predicted using the Vignes
method. •

4.2 ESTIMATION OF MULTICOMPONENT DIFFUSION COEFFICIENTS

Comparison of the Maxwell-Stefan formulation

( / ) = -c , [B]- 1 [ r ] (Vx) (2.2.10)

with the generalized Fick's law

(/) = -c,[D](Vx) (3.2.5)

shows that the matrix [D] and the product [B]~![r] are equivalent

Strictly speaking, the rules of matrix algebra do not allow us, on the basis of Eqs. 3.2.5 and
2.2.10, to assert that [D] and [i?]"1^] are equal. The equality of these two matrices is an
assumption, albeit the only reasonable way to relate the Fick diffusion coefficients Dtj to the
Maxwell-Stefan diffusion coefficients £>/y. The equality

[D] = [By^T] (4.2.1)

will be used throughout this book, just as it is in the literature on multicomponent mass
transfer.

Equation 4.2.1 is an important result for it allows us to predict the Fick matrix [D] from
information on the binary Maxwell-Stefan diffusivities Dtj and activity coefficients.
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4.2.1 Estimation of Multicomponent Diffusion Coefficients for Gas Mixtures

For ideal gases the thermodynamic matrix [F] reduces to the identity matrix and Eq. 4.2.1
becomes

[D] = [B]'1 |ideal| (4.2.2)

As discussed briefly in Section 4.1.2, the diffusion coefficients of the binary pairs Dtj can be
estimated from the kinetic theory of gases or from an appropriate correlation to a
reasonable degree of accuracy, particularly for nonpolar molecules. The matrix of diffusion
coefficients may therefore be calculated using Eq. 4.2.1 or, for a ternary system, directly
from the relations derived below.

For a ternary system [B] is of order 2 with elements given by

>12 #23

Bl2 = ©^ + ^ + ^

The inversion of [#] can be carried out explicitly using Equations A.3.9-A.3.10 as shown
below.

The determinant of [B] is

\B\ = BnB22 - B12B21 = S/DnD13D23 (4.2.4)

where

S = xxD23 + x2D13 + x3Du (4.2.5)

The cofactor matrix is

L _ J 2
2 ^ 1 -|_"B" "B"| (4-2.6)

Thus, the elements of [D] are

Z)n=f)13(x1£)23 + ( l - x 1 ) f ) 1 2 ) / ^

Dl2=x,D23(D13-D12)/S

D21=x2D13(D23-Dl2)/S

^22 = ^23(^2^13 + (1 ~ ^2)^12)/^

It is easy to check that if the binary diffusion coefficients Dtj are equal; Dtj = £>, for all
/, j permutations; then the matrix of diffusion coefficients degenerates to a scalar times the
identity matrix (cf. Eq. 3.2.10)

[D]=B[I] (special) (4.2.8)
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For two components infinitely diluted in a third (JCJ and x2 close to zero), we find the
cross-coefficients D12 and D21 vanish and the main coefficients Dn and D22 are given
simply by

Du=Di3 i = l , 2 (4.2.9)

These results, obtained for a dilute ternary vapor mixture may be generalized with the help
of Eq. 4.2.2 to a mixture of any number of components where one component is present in a
large excess; xn -* 1, xt -* 0, i = 1,2,- —,n — 1 (see discussion below Eq. 3.2.10)

Dit = Din Du = 0 (4.2.10)

Example 4.2.1 The Structure of the Fick Matrix [D] When All of the Binary Diffusion
Coefficients Are Nearly Equal

The Maxwell-Stefan diffusion coefficients for three binary gas pairs at a temperature of
273 K and a pressure of 101 kPa are listed below:

oxygen-nitrogen D = 18.1 mm2/s
oxygen-carbon monoxide D = 18.5 mm2/s
nitrogen-carbon monoxide £> = 17.7 mm2/s

Investigate the structure of the Fick matrix [D] for the ternary system oxygen(l)-
nitrogen(2)-carbon monoxide(3).

SOLUTION For the purposes of this illustration [D] is calculated from Eqs. 4.2.7 with
x1 = x2 = 0.3, x3 = 0.4.

S = xxB23 + x2D13 + x3D12

= 0.3 X 17.7 + 0.3 X 18.5 + 0.4 X 18.1

= 18.1 mm2/s

= 18.5 X (0.3 X 17.7 + (1 - 0.3) X 18.1)/18.1

= 18.38 mm2/s

= 0.3 X 17.7 X (18.5 - 18.1)/18.1

= 0.117 mm2/s

= 0.3 X 18.5 x (17.7 - 18.1)/18.1

= -0.123 mm2/s

D22 = D23(x2Dl3 + (1 - x2)Dl2)/S

= 17.7 X (0.3 X 18.5 + (1 - 0.3) X 18.1)/18.1

- 17.82 mm2/s
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We may write these results in matrix form as

As might be expected from the discussion above, this matrix is dominated by the diagonal
elements that are two orders of magnitude greater than the off-diagonal elements. More-
over, the diagonal elements themselves are approximately the same. It, therefore, seems
reasonable to use just one average value of D in the calculation of [D]. In this example
[D] = 18.1[/] mm2/s is a good approximation to [D]. •

Example 4.2.2 [D] for Dilute Gas Mixtures

2-Propanol(l) and water vapor© are condensing on the cooled surface of a vertical tube.
Nitrogen (3) is also present in the vapor mixture fed to the condenser. At the temperature
and pressure in the condenser the diffusion coefficients of the three binary gas pairs are

£>12 = 15.99 mm2/s

f)13 = 14.43 mm2/s

£>23 = 38.73 mm2/s

Near the exit from the condenser the composition in the vapor mixture is x2 = 0.005,
x2 = 0.003, x3 = 0.992. Calculate the matrix of multicomponent diffusion coefficients at this
composition.

SOLUTION The matrix [D] is calculated directly from Eqs. 4.2.7 as demonstrated in
Example 4.2.1. The result here is

As in our last illustration, this matrix is dominated by the diagonal elements. Since the
mixture is almost pure nitrogen with only traces of the condensable vapors remaining we
may let the mole fraction of nitrogen approach unity, x3 -> 1, and the mole fractions of
2-propanol and water go to zero, x1 -> 0, x2 -> 0 and approximate [D] as

14.43 0.0 1 2 / Q -
0.0 38.73 J 7 "

Example 4.2.3 Composition Dependence of the Pick Matrix [D]

The vapor-phase catalytic dehydrogenation of ethanol to acetaldehyde involves the diffusion
of ethanol to the catalyst surface where it reacts to produce acetaldehyde and hydrogen.
Under typical reactor conditions (temperature = 548 K, pressure = 101.3 kPa) the binary
diffusivities of the three binary pairs encountered are

f)12 = 147.7 mm2/s

f)13 = 25.0mm2/s

D23 = 142.4 mm2/s

where component 1 is acetaldehyde, component 2 is hydrogen, and component 3 is ethanol.
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The composition of the bulk gas may be taken to be xx = 0.20, x2 = 0.20, x3 = 0.60. At
the catalyst surface ethanol is consumed by the reaction that produces acetaldehyde. The
mole fraction of ethanol there will be much lower than in the bulk gas. For this illustration
assume the gas composition at the catalyst surface to be x1 = 0.584, x2 = 0.328, x3 = 0.088.

Investigate the structure of [D] and calculate some representative values.

SOLUTION The diffusivities f)23 and £>12 are nearly equal and we will make this
assumption in the estimation of the multicomponent diffusion coefficients. With D23 = £>12

= £> we calculate, with reference to Eqs. 4.2.7, the elements of [D] as

S = XlD23 + x2D13 + x3D12

= (1 - x2)D + x2D13

Dn = DB13/S

D12=x1D(D13-D)/S

D21 = 0

D22 = D(x2D13 + (1 - x2)D)/S

Note that D21 is zero regardless of the composition of the mixture. Hence, the flux of
hydrogen (2) depends on its own composition gradient Vx2 only

J2= -ctD22Vx2= -ctDVx2

No similar simplification is possible for acetaldehyde, the flux of which is given by Eq. 3.2.1.
At the bulk gas composition we estimate [D] using the above expressions to be

(D was taken to be the arithmetic average of Dl2 and D13 in this and the next calculation.)
At the interface composition [D] is

[D]=[ 34.32 -96.23] 2 /
0.0 145.05 m m / S

At this composition the ratio \Dl2/Dn\ exceeds unity suggesting that the flux of acetalde-
hyde will be strongly influenced by the composition gradient of species 2 (hydrogen).

The ratio £>i2/£>ii is given by

Dn

- B12/D13

For an ideal gas mixture in which £>12 and £>23 are similar the ratio D12/Dn becomes

Dl2/Dn=xx(l-Du/Dn)

When D12/D13 = 1 the ratio D12/Dn = 0 regardless of the composition of the mixture
(this corresponding to the case of three equal, or nearly equal, binary diffusivities discussed



84 ESTIMATION OF DIFFUSION COEFFICIENTS

D
12 12

Figure 4.4. The ratio Dn/Dn, which are the elements of the Fick matrix [D], as a function of the
binary pair Maxwell-Stefan diffusion coefficients Dl2/D\3-

in Example 4.2.1). When the ratio Du/D13 is different from unity, then the cross-coeffi-
cients may be significant with respect to Z)n, especially for high values of the mole fraction
xx. The ratio Du/Dn may also assume negative values and the absolute values of this ratio
may approach or even exceed unity as shown in the example calculation above and in Figure
4.4 where Du/Du is shown as a function of the ratio of the binary pair Maxwell-Stefan
diffusion coefficients D12/B13. •

Example 4.2.4 Effect of Component Numbering on the Fick Matrix

The preceding examples illustrated some of the ways in which the Fick matrix [D] depends
on the composition of the mixture and on the binary (Maxwell-Stefan) diffusion coefficients.
One further property of [D] is that both the sign and magnitude of the elements of [D]
depends on the order in which the components are numbered. Wesselingh (1985) provided a
dramatic and elegant illustration of this fact for the system H2-N2-CC12F2. At a tempera-
ture of 298 K and a pressure of 101.3 kPa the diffusion coefficients of the three binary pairs
that make up the mixture are

H2-N2

N2-CC12F2

CC12F2-H2

D = 77.0 mm2/s
D = 8.1 mm2/s
D = 33.1 mm2/s

The ratio of the largest to the smallest of these coefficients is nearly an order of magnitude;
thus we may expect the Fick matrix [D] to show a strong composition dependency.

Compute the matrix [D] at the composition x
subscripts N, C, and H refer to N2, CC12F2, and H2

= 0.4, xc = 0.25 and xH = 0.35. The
respectively.

SOLUTION For each of the three possible choices for "component 3" there are two ways
to order the components. We will calculate the elements of [D] for three ways of ordering
the components obtained by rotating the component numbers in order. With the compo-
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ccyj

ccy-

Figure 4.5. Four Fick diffusion coefficients plotted as a function of composition for the system
H2-N2-CCI2F2 for the three possible choices of "component 3."

nents ordered as N = 1, C = 2, H = 3 we calculate [D] as

With the components ordered as C = 1, H = 2, N = 3 we find

Finally, with the components ordered as H = 1, N = 2, C = 3 we have

[ D ] _ f 49.55 -3.521
-25.82 m m 2 / s

These three matrices are quite different but all three represent the one system at the same
conditions of temperature, pressure, and composition. It may be verified from Eq. 3.2.5 that,
for a given set of driving forces Vxh all three choices of [D] will yield the same set of fluxes
regardless of the component numbering (as is only to be expected, of course). It is
interesting to note that, even though these three matrices appear to be quite unrelated,
their eigenvalues are the same (for a formal proof that this will always be the case see, e.g.,
Taylor, 1981a).

We repeated Wesselingh's (1985) calculations of the [D] matrix as a function of
composition with the results shown in Figure 4.5. With hydrogen as "component 3," all the
Dtj are positive regardless of the composition of the mixture. In complete contrast, the
cross-coefficient D2l is always negative if CC12F2 is component 3 and the coefficient Dl2 is
always negative if nitrogen is component 3. Once again, we can see that the cross-coeffi-
cients can overshadow the main coefficients in absolute value in certain composition regions
but not with all choices of component 3; in this example the main coefficients are always
larger than the cross-coefficients if hydrogen is component 3. In fact, it is always possible to
order the components so that this is the case; the trick is to choose the species with the
smallest molecule as "component n." The cross-coefficients are zero along one side of the
ternary composition triangle (this should not come as a surprise; consult Eq. 4.2.7 again).
The main coefficients Dn and D22 are always positive regardless of the ordering of the
components or of the composition of the mixture (see discussion around inequalities Eq.
3.3.13). The component numbering is, to a very large extent, arbitrary. Thus, the Fick matrix
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Figure 4.6. The three Maxwell-Stefan diffusion coeffi-
cients in the system H 2 -N 2 -CC1 2 F 2 . Note that the
Maxwell-Stefan coefficients are independent of composi-
tion.

^$^888888888^ §88888888888 :̂

- H 2

[D] is, within limits set by the values of the Maxwell-Stefan diffusivities, also arbitrary. It is
worth noting here that the Maxwell-Stefan diffusion coefficients Dtj are completely
independent of the composition of the mixture. This result is emphasized in Figure 4.6
(after Wesselingh, 1985).

Another aspect of the choice of component numbering relates to the accuracy of the
calculations; it is not a good idea to calculate small fluxes by subtracting two "large"
numbers. Put another way, if the flux of component / is expected to be small, do not label
this as "solvent" species n; Include / as one of the first n - 1 species. Greater accuracy is
obtained by choosing n to be the species with the highest concentration. •

Example 4.2.5 Prediction of Multicomponent Diffusion Coefficients in the Mass Average
Reference Velocity Frame

Estimate the Fick diffusion coefficients in the mass average velocity reference frame for a
mixture containing carbon monoxide (1), hydrogen (2), methane (3), and water vapor (4)
flowing inside a tubular reactor at a point where the mole fractions are

x1 = 0.05 x2 = 0.75382 0.09809 xA = 0.09809

DATA Maxwell-Stefan diffusivities of the binary pairs

#12 = #23 = #24 = 13-5 X 10-6 m2/s

#13 = #14 = #34 = 4 ' ° X 10~6 m V s

The molar masses of the four components are

M1 = 0.02801 M2 = 0.002016 kg/mol

M3 = 0.01604 M4 = 0.018015 kg/mol

SOLUTION To predict multicomponent Fick diffusivities in the mass average velocity
reference frame we combine Eq. 4.2.2 to predict the Fick diffusivities in the molar average
velocity reference frame

with Eq. 3.2.11 to transform between velocity reference frames to give

where we have made use of the fact that [Buo] = [B°"]
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Our first calculation is to convert the mole fractions to mass fractions. The formulas for
converting between mole and mass fractions are given in Table 1.1 and the results of the
conversion are

col = 0.2237 co2 = 0.2427 co3 = 0.2513 co4 - 0.2822

The elements of [B] are defined by Eqs. 2.1.21 and 2.1.22. The calculation of the first
row of [B] is illustrated below.

xx x2 x3 xA

14 12 13 14

0.05 0.75382 0.09809 0.09809
• ^ -. _ ^ ̂  a ' ~. "Z IT ~Z '

4.0 X 10"6 13.5 X 10"6 4.0 X 10"6 4.0 X 10~6

1.1174 X 105s/m2

= -0.05 X '
13.5 x io~6 4.o x n r 6

= 8.796 X 103 s/m2

1 1

-0.05 X '
,4.0 X 10"6 4.0 X 10

= 0 s/m2

The remaining elements of [B] are calculated in similar ways with the result

[0.11738 0.00879 0.0 1
[B] = 0.0 0.07407 0.0 X 106 s/m2

[0.0 0.01725 0.11738 J

The Fick [D] in the molar average velocity reference frame is the inverse of this matrix

[8.5191 -1.0116 0.0 1
0.0 13.5000 0.0 X 10~6 m2/s

0.0 -1.98846 8.5191 J

The elements of the reference frame transformation matrix [Bou] are given by Eq. 1.2.27.

( o)nxk '
11
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The first row of this matrix has elements given explicitly by

= 1 - 0.2237 X (1 - 0.05 X 0.2822/(0.09809 X 0.2237))

= 0.9202

= - *> i ( l ~ x2a>4/x4a>2)

= -0.2237 X (1 - 0.7538 X 0.2822/(0.09809 X 0.2427))

= 1.7752

= -0.2237 X (1 - 0.09809 X 0.2822/(0.09809 X 0.2513))

= 0.0275

The complete transformation matrix is

[ 0.9202 1.7752 0.0275
[Bou] = \ -0.0866 2.9263 0.0298

-0.0898 1.9947 1.0309

The inverse matrix is

[Buo] =
1.0277 -0.6169 -0.0096
0.0301 0.3305 -0.0104
0.0312 -0.6932 0.9893

The Fick diffusion coefficients in the mass average reference velocity frame [D°] may
now be calculated directly from the expression above as

8.3828 -1.4960 0.0469
0.4612 13.5835 -0.1589

-0.1531 -1.6809 8.5718
X 10"6 m 2 / s

The eigenvalues of this matrix are found to be

m 2 / sDx = 8.519 X 1

D2 = 13.50 X 10"6 m 2 / s

Dx = 8.519 X 10~6 m 2 / s

which, in fact, are the diagonal elements of [D] in the molar average velocity reference
frame. This special result is obtained because two of the columns of [D] contain only one
nonzero element, the one on the main diagonal. It is also interesting to note that two of the
eigenvalues are equal. This will have interesting consequences when we compute mass
transfer rates in this system in Example 10.4.1. •

4.2.2 Estimation of Multicomponent Fick Diffusion Coefficients for Liquid Mixtures

Ideally one would like to be able to predict the elements of [D] from a knowledge of the
infinite dilution diffusion coefficients £>°. A comparison of the generalized Fick's law (Eq.
3.2.5), with the Maxwell-Stefan equations (Eq. 2.2.10) shows that, for a nonideal system, the
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matrix of Fick diffusion coefficients is related to the Maxwell-Stefan diffusion coefficients
by

[D] = [By'lT] (4.2.11)

This, or some other similar relation, is the starting point for developing methods of
predicting [£)].

For ternary systems the inverse of [B] is given by the right-hand sides of Eq. 4.2.7. This
matrix must be postmultiplied by [F] to obtain the elements of [D] as

0 n = {£>i3(*i£23 + (1 - * i ) £ i 2 ) r n +x1D23(D13 -DU)T21}/S

(4.2.12)

021 = {023(^2013 + (1 -*2)01 2 ) r 2 1 +^2013(023 " ^uWll

022 = {023(*2013 + (1 -^2)01 2 ) r 2 2 +X2f)13(f)23 -f)1 2)F1 2

with S given by Eq. 4.2.5.
This method of predicting [D] is illustrated in Example 4.2.6.

4.2.3 Estimation of Maxwell-Stefan Diffusion Coefficients
for Multicomponent Liquid Mixtures

In order to use the procedure of Section 4.2.2 to predict [D] we need the Maxwell-Stefan
diffusivities of each binary pair in the multicomponent mixture.

There are few published values of Maxwell-Stefan diffusivities in multicomponent
liquids. Figure 4.7 shows the binary Maxwell-Stefan diffusion coefficients for the ternary
mixture 2-propanol(l)-water(2)-glycerol(3). The values of the diffusion coefficients for the
binary systems water-glycerol and 2-propanol-glycerol are also shown in this figure, which
is adapted from Riede and Schliinder (1991). As would be expected (hoped), the binary
coefficients in the ternary mixture are similar to those in the respective binaries. Lightfoot
et al. (1962) found the same situation for the glycine-water-potassium chloride system at
low concentrations of glycine and potassium chloride.

There are few methods for predicting the Maxwell-Stefan diffusivities in multicompo-
nent liquid mixtures. The methods that have been suggested are based on extensions of the
techniques proposed for binary systems discussed in Section 4.1.5 (see, e.g., the works of
Cullinan and co-workers, 1966-1975; Bandrowski and Kubaczka, 1982; Kosanovich, 1975).
The Vignes equation, for example, may be generalized as follows (Wesselingh and Krishna,
1990; Kooijman and Taylor, 1991).

0,7= r i ( 0 , 7 , Xk->i)Xk (4.2.13)

where the Du Xk _̂  x are the limiting values of the Maxwell-Stefan diffusivities in a mixture
where component k is present in a very large excess.

Equation 4.2.13 is shown in Figure 4.8 for a ternary system where it becomes clear that
the limiting diffusivities are, in fact, the Maxwell-Stefan diffusion coefficients at the corners
of the diffusivity-composition surface. Equation 4.2.13 should reduce to the binary Vignes
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Figure 4.7. Maxwell-Stefan diffusion coefficients for the ternary system 2-propanol(l)-water(2)-
glycerol(3) and the binaries 2-propanol-glycerol and water-glycerol. From Riede and Schltinder (1991).

equation when (x, + Xj) -> 1 and xk -> 0 (k # / , ; ) . The two limiting diffusivities on the /-/
face may, therefore, be identified as the binary /-/ infinite dilution diffusivities.

(4.2.14)

Figure 4.8. Maxwell-Stefan diffusion coefficients as a
function of composition for a ternary system showing
limiting diffusivities. 3
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Substitution of these limiting values into Eq. 4.2.13 gives

Any model of the Maxwell-Stefan diffusivities based on Eq. 4.2.15 must obey some rules
that places certain restrictions on the kind of model that can be used for the limiting
diffusivities Dtj _^1. First, the final expression for the Maxwell-Stefan diffusivities must be
symmetric (£>/; = £>;/). In addition, we must have

lim Xi -> 0(f)/;- X y . o) = lim Xj -> 0(£) l 7 t , / = 0 ) (4.2.16)

to avoid discontinuities at the corners of the diffusivity-composition surface.
Wesselingh and Krishna (1990) tentatively suggested the following model for the limiting

diffusivities.

A7,,^i = (^^)1 / 2 (4.2.17)

When we combine Eqs. 4.2.15 and 4.2.17 we obtain the following elegant expression for the
binary Maxwell-Stefan diffusivity in a multicomponent system.

Dij = (f>o)a+*y-*i)/2(f>o)(i+'/-^)/2 (4.2.18)

Kooijman and Taylor (1991) proposed the following model for the limiting diffusivities

Dij,Xk^1 = (^kDli)
1/2 (4.2.19)

and found that it gave better predictions of multicomponent Fick diffusion coefficients for a
few systems than did Eq. 4.2.17 (or any other simple combination of infinite dilution
diffusion coefficients) (see, also, Rutten, 1992). For want of a fundamentally sound method,
we shall use Eq. 4.2.18 in the remainder of this book.

The infinite dilution diffusivities, £)°, are positive definite (cf. Eq. 2.3.21) and, conse-
quently, Eq. 4.2.18 leads us to conclude that the DtJ are positive definite everywhere in the
composition space.

Example 4.2.6 Prediction of [D] in the System Acetone-Benzene-Carbon Tetrachloride

Cullinan and Toor (1965) presented experimental data for the matrix of Fick diffusion
coefficients in the volume average reference velocity frame for the system acetone(l)-
benzene(2)-carbon tetrachloride(3) at a temperature of 25°C. Some of their data is shown
in Table 3.3. Estimate the Fick matrix [D] at the composition xx = 0.70, x2 = 0.15,
x3 = 0.15 using the predictive method described above.

DATA The infinite dilution diffusion coefficients £>° have been estimated as follows
[lO"9 m2/s]:

D°12 = 2.75 D°2l = 4.15

D°13 = 1.70 D°31 = 3.57

D°23 = 1A2 D°32=1.91

The NRTL parameters r / ; and atj are given in Example 3.3.1.
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SOLUTION The first step is to estimate the Maxwell-Stefan diffusion coefficients from
Eq. 4.2.18.

®\2 =E>°i2+X2 X l V ^ 2 1 +Xl Xl)

= (2.75 X 10-9)0-225 X (4.15 X 10"9)0-775

= 3.783 X 10~9 m 2 / s

^ 1 3 = ^ 1 3 X3 Xl ^ 3 1

= (1.70 xlO-9)°-2 2 5x (3.57 X10-9)0-775

= 3.021 X 10~9 m2/s
J?) _ r)o0+x^-x2)/2jr)o(\+x2-x3)/2
^ 2 3 ~ ^ 2 3 ^ 3 2

= (1.42 X 10-9)0-5000 X (1.91 X10-9)0-5000

= 1.647 X 10~9 m2/s

The elements of [B] may now be calculated from Eqs. 2.1.21 and 2.1.22 as

).321 0.047] 1o9 / 2
).O51 0.367J iU S / m

The elements of the thermodynamic factor matrix [F] are determined using the NRTL
model as described in Table D.2.

0.788 -0.088]
0.075 1.043 J

The Fick matrix [D] can now be calculated.

2.476 -0.701] 9 2

-0.142 2.939 J X 1U m / S

At the composition xt = 0.70, x2 = 0.15, x3 = 0.15 the matrix [D] in the molar average
reference frame, recalculated from the reported [Dv] values with the help of Eq. 3.2.12, is

[2.354 -0.471] x l 0 - 9 m 2 / s
[0.089 2 . 9 4 7 j X l ° m / S

[D] predicted by the above method agrees reasonably well with the experimental values
except for the coefficient D21. Since cross-coefficients reflect differences in pair diffusivities,
it is not uncommon to find that small cross-coefficients are not predicted accurately, even in
sign. It may be noted from Example 3.3.1 that the measured Dtj do not satisfy the Onsager
relations accurately. This could be one reason for the deviation between the predicted and
experimental Dtj values; the predicted set of coefficients implicitly satisfy the ORR.

The errors in flux calculations that result from any errors in the prediction of [D] are,
however, not large, as can be checked by assigning arbitrary values to Vx1 and Vx2. We
draw comfort from the fact that the relatively large cross-coefficient Du has been predicted
reasonably well. •
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4.3 MAXWELL-STEFAN, FICK, AND ONSAGER IRREVERSIBLE
THERMODYNAMICS FORMULATIONS: A SUMMARY COMPARISON

The three formulations for multicomponent diffusion are all equivalent to one another and
interrelatable

(4.3.1)

The Maxwell-Stefan coefficients Dtj = Djt are the ones that are most easily amenable to
physical interpretation in terms of intermolecular friction or drag, retaining this significance
even when other forces such as pressure gradients and electrostatic potential gradients
coexist. The Maxwell-Stefan £>/; are, therefore, convenient starting points for diffusivity
prediction methods. Furthermore, the Maxwell-Stefan coefficients are well behaved as
regards composition dependence in nonideal liquid mixtures, and retain this advantage even
in the region of the critical point. The second law of thermodynamics restricts the infinite
dilution coefficients, £>°, to positive definite values. The Maxwell-Stefan Dtj are indepen-
dent of the choice of the reference velocity frame.

The Fick [D] exhibits a complex composition dependence, reflecting as it does both
frictional and thermodynamic interactions and the elements Z)/; cannot be interpreted
simply. The elements Dtj are dependent on the choice of the reference velocity frame.
Since [D] is a product of two positive definite matrices [H]~x and [G], the Fick [D] is
positive definite. The Fick [D] is singular at the critical point, which imparts some
interesting characteristics to the mass transfer trajectories in that region (see Chapter 5).
The symmetry of [H] and [G] matrices places restrictions on the elements of [D] and only
\n{n — 1) of the Dtj are independent. The Fick formulation is more easily introduced into
the continuity equations and in this sense they are often referred to as being "practical."

To illustrate some of the above points we have carried out calculations of the
Maxwell-Stefan coefficients and the Fick matrix [D] over the entire ternary composition
triangle for the system acetone-benzene-carbon tetrachloride using the data and methods
employed in Example 4.2.6. The Maxwell-Stefan diffusivities predicted using Eq. 4.2.18 are
shown as a function of composition in Figure 4.9. The Fick diffusivities are shown in Figure
4.10. These illustrations are analogous to Figures 4.6 and 4.5, respectively. Figures 4.5, 4.9,

benzene (2)

carbon
tetrachloride

(3)

23

acetone (1)

Figure 4.9. The Maxwell-Stefan diffusion coefficients predicted using a generalized Vignes equation
for a nonideal liquid mixture.
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benzene
carbon

tetrachloride acetone

0

carbon
tetrachloride

acetone acetone benzene benzene carbon
tetrachloride

Figure 4.10. The Fick diffusion coefficients as a function of composition and component numbering for
a nonideal liquid mixture.

and 4.10 graphically emphasize the well behavedness of the Maxwell-Stefan diffusivities
and the complex composition dependence of the Fick Z)/;, even for ideal gases.

The Onsager IT formulation is particularly useful in the analysis of mass transfer
processes in the region of the critical point because it is the Hessian matrix [G] that dictates
thermodynamic stability.

We may conclude by saying that in practice we need all three formulations in analyzing
multicomponent diffusion in one context or another.



5 Solution of Multicomponent
Diffusion Problems:
The Linearized Theory

The linearized theory would be of interest even if restricted to small changes in concentration
since it gives the essential behavior of multicomponent systems. The fact that it may yield
accurate results even for large changes in concentration is encouraging, for higher accuracy will
require facing the nonlinear characteristics of the differential equations.

—H. L. Toor (1964a)

In order to analyze multicomponent diffusion processes we must be able to solve the
continuity equations (Eq. 1.3.9) together with constitutive equations for the diffusion
process and the appropriate boundary conditions. A great many problems involving diffu-
sion in binary mixtures have been solved. These solutions may be found in standard
textbooks, as well as in specialized books, such as those by Crank (1975) and Carslaw and
Jaeger (1959).

The solution of multicomponent diffusion problems is a little more complicated than the
solution of binary diffusion problems because the differential equations governing the
process are coupled. In the early 1960s a versatile and powerful method of solving
multicomponent diffusion problems was developed independently by Toor (1964a) and by
Stewart and Prober (1964). The method they proposed is described and illustrated in this
chapter.

5.1 MATHEMATICAL PRELIMINARIES

5.1.1 The Binary Diffusion Equations

For a binary system, the conservation equations (Eq. 1.3.9) may be written in terms of the
molar fluxes Nx and Nt as

^ . = _ V . J V 1 = - V . / 1 - V - ( J V ^ I ) (5.1.1)

Inserting Fick's law (Eq. 3.1.1), into Eq. 5.1.1 gives

^ (5.1.2)

In most cases the general Eq. 5.1.2 is simplified somewhat before being solved. It is
common, for example, to assume constant molar density ct and Fick diffusion coefficient D.
Unless these (or other) assumptions are made it may be difficult or impossible to solve

95
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Eq. 5.1.2 analytically. With these assumptions Eq. 5.1.2 simplifies to

— + V -uxx =Z)V2x1 (5.1.3)

Furthermore, if the velocity u is zero then Eq. 5.1.3 becomes

dx,
— = D V 2 x 1 (5.1.4)

an expression sometimes referred to as Fick's second law. This equation is usually used for
diffusion in solids or stationary liquids and for equimolar counterdiffusion in gases. Other
simplifications of Eq. 5.1.2 can be found in texts by Bird et al. (1960) and by Slattery (1981).

5.1.2 The Multicomponent Diffusion Equations

Both formulations of the constitutive equations for multicomponent diffusion, the
Maxwell-Stefan equations and the generalized Fick's law, are most compactly written in
matrix form. It might, therefore, be as well to begin by writing the continuity equations
(Eq. 1.3.9) in n — 1 dimensional matrix form as well

^ f l _ _V • (AT) - -V • ( / ) - V • (N,(x)) (5.1.5)
01

Inserting the generalized Fick's law, (Eq. 3.2.5) into this result gives

dt
(5.1.6)

Equations 5.1.6 represent a set of n - 1 coupled partial differential equations. Since the
Fick matrix [D] is a strong function of composition it is not always possible to obtain exact
solutions to Eqs. 5.1.6 without recourse to numerical techniques. The basis of the method
put forward by Toor and by Stewart and Prober is the assumption that ct and [D] can be
considered constant. (Actually, Toor worked with the generalized Fick's law formulation,
whereas Stewart and Prober worked with the Maxwell-Stefan formulation. Toor et al.
(1965) subsequently showed the two approaches to be equivalent.) With this assumption
Eqs. 5.1.6 reduce to

:) (5.1.7)

Ul

or, equivalently

d(x)
- ^ + V • (u{x)) = [D](V2x) (5.1.8)

dt
For binary systems the matrix equations (Eqs. 5.1.7 and 5.1.8) reduce to Eqs. 5.1.2 and 5.1.3.

The theory of Toor and of Stewart and Prober is referred to as the linearized theory of
multicomponent mass transfer because the set of nonlinear Eqs. 5.1.6 is linearized to give
the set Eq. 5.1.7.
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5.1.3 Solving the Multicomponent Equations

The general method of solution that was proposed by Toor and by Stewart and Prober
exploits the properties of the modal matrix [P] whose columns are the eigenvectors of [D]
(see Appendix A.4). The matrix product

[P]"1[Z>][i>] = [D] (5.1.9)

is a diagonal matrix with elements that are the eigenvalues of [D]. Cullinan (1965) showed
that this transformation is always possible. Thus, on premultiplying Eqs. 5.1.7 by [P]" 1 and
inserting an identity matrix [PHP]"1 between [D] and V2(x) gives

where we have defined "pseudocompositions" (x) by

(x) = [P]-\x) (5.1.11)

The generalized Fick's law (Eq. 3.2.5), may also be premultiplied by [P]" 1 to give

(/) = -c,[D](Vx) (5.1.12)

where the "pseudodiffusion fluxes" Jt are given by

0) - [P]~\J) (5.1-13)

Examination of Eqs. 5.1.7-5.1.10 shows that the similarity transformation reduces the
original set of n — 1 coupled partial differential equations to a set of n — 1 uncoupled
partial differential equations in the pseudocompositions. Equation (5.1.10) for the ith
pseudocomponent is

c , - £ U v •*,*,. = <:,£,• V2*,. (5.1.14)

with pseudodiffusion fluxes given by a set of uncoupled constitutive relations

Jt= -c^VXi (5.1.15)

If we compare Eqs. 5.1.14 with the conservation equation (Eq. 5.1.2) for a binary system
and the pseudo-Fick's law Eq. 5.1.15, with Eq. 3.1.1 then we can see that from the
mathematical point of view these pseudomole fractions and pseudofluxes behave as though
they were the corresponding variables of a real binary mixture with diffusion coefficient Dt.
The fact that the Dt are real, positive, and invariant under changes of reference velocity
strengthens the analogy. If the initial and boundary conditions can also be transformed to
pseudocompositions and fluxes by the same similarity transformation, the uncoupled equa-
tions represent a set of independent binary-type problems, n - 1 in number. Solutions to
binary diffusion problems are common in the literature (see, e.g., Bird et al., 1960; Slattery,
1981; Crank, 1975). Thus, the solution to the corresponding multicomponent problem can
be written down immediately in terms of the pseudomole fractions and fluxes. Specifically, if
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a binary diffusion problem has the solution

(x10 — xloo)

then the corresponding multicomponent problem has the solution

=f(r,t,D129Nt) (5.1.16)

or, equivalently,

(*,•-*„) = f(r,t,Di,Nt)(xi0-xioo) (5.1.18)

where xi0 and xiaa are suitably transformed boundary conditions. The precise form of the
function / depends on the problem at hand.

In order to recover the solution to the original problem in terms of real mole fractions
and fluxes we apply the inverse transformations

(x) = [P](x) (5.1.19)

and

(/) = [P]O) (5-1.20)

When the transformation (Eq. 5.1.19) is applied to Eqs. 5.1.18 we find

-xoo) (5.1.21)

where [/] is a diagonal matrix whose entries are given by fu = / ( r , t, Dh Nt). In view of
Eq. 5.1.19, Eq. 5.1.21 simplifies to

•) (5.1.22)

where [/] is defined by

H / H 1 (5-1.23)

The application of the transformation (Eq. 5.1.20) allows us to recover the generalized
Fick's law (Eq. 3.2.5); with the composition gradients then obtained by differentiation of
Eq. 5.1.22 we have

(J)=ct[Vf](x0-xoo) (5.1.24)

with

[ ] 1 (5.1.25)

where [V/] is a diagonal matrix with elements that are the gradients of the diagonal
elements of [/].

The assumption of constant [D], therefore, allows a host of solutions to multicomponent
diffusion problems to be obtained quite simply.
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5.1.4 Special Relations for Ternary Systems

For ternary systems the computation of the modal matrix [P] is fairly straightforward. The
two eigenvalues, D1 and D2, are given by Eqs. 3.2.9.

where

(3.2.9)
D1 = i{tr[

D2 = j{tr[D] - v/disc[D]}

tr[D]=Dn+D22

disc[£>] = (tr[£>])2-4|£>|

|D| =DnD22-D12D21

are, respectively, the trace, discriminant, and determinant of [£>].
Once the eigenvalues are known, the eigenvectors are found by solving the linear system

(0) (5.1.26)

for (Pt), the ith eigenvector of [D]. For the three component case Eq. 5.1.26 simplifies to

Du - Dt D12

D21 D22 - A
(5.1.27)

Carrying out the multiplications required by Eq. 5.1.27 and solving for Pt in terms of Pti

gives

Ph= -(Du-Di)Pii/D12

which has been derived from the first row or

(5.1.28)

(5.1.29)

which is obtained from the second row.
The parameters Pn and P22 may take any value; unity is, however, the obvious choice.

Thus, if we let [P] be the modal matrix of [D] formed from the eigenvectors of [D] we may
have

(5.1.30)



100 MULTICOMPONENT DIFFUSION PROBLEMS: LINEARIZED THEORY

An alternative structure for [P] is

P =

1

A--
1

D2 - D22

(5.1.31)

Other structures for [P] are possible, it all depends on what values we choose for Pn and
^22-

When the cross-coefficients D12 and D21 are negligibly small compared to the main
coefficients Dn and D22, the eigenvalues approach the values of the main coefficients. The
matrix [P] (and its inverse) will, therefore, tend towards the identity matrix [/]. A matrix
[P] that is quite different from [/] is an indication of a strongly coupled system.

5.2 INTERACTION EFFECTS

The presence of nonzero cross-coefficients, Dtj ¥= 0 (i ¥= j \ in the Fick matrix [D] lends to
multicomponent systems characteristics quite different from the corresponding binary
system. These characteristics are best illustrated by considering a binary system for which
the diffusion flux is given by Eq. 3.1.1

-ctDVx1 (3.1.1a)

where D is the binary Fick diffusion coefficient. For a ternary mixture the fluxes are given
explicitly by Eqs. 3.2.1 and 3.1.2

h = -

, -ClDnVx2

1 - c,D22Vx2

(3.2.1)

(3.2.2)

where the Dtj are the multicomponent Fick diffusion coefficients. Representative composi-
tion profiles for a binary system and for a ternary system are shown in Figure 5.1. For a
binary system the two composition gradients are equal in magnitude but opposite in sign:
V*2 = -Vxx [Fig. 5.K0)]. For a multicomponent system, however, the composition gradi-
ents of the individual species may be very different [Fig. 5.Kb)]; subject only to the

Binary diffusion Ternary diffusion

z=0 z=0

Figure 5.1. Representative composition profiles in (a) binary and (b) ternary systems. Note that for all
systems EVx, = 0. For binary systems this means that Vx2 = —Vxl but a similar restriction does not
exist for the ternary system.
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requirement that the composition gradients must sum over all species to zero. Indeed, we
see that is possible for one component, number 1 say, to have a vanishingly small
composition gradient, Vx1 = 0, at the same time that other components have nonzero, and
possibly quite large, driving forces for diffusion. Since, in general, Dl2 is not zero, it follows
that we may have a diffusion flux of component 1 even in the absence of a composition
gradient for component 1

= -ctD12Vx2 i = 0) (5.2.1)

This phenomenon is known as osmotic diffusion following Toor (1957) who investigated
these interaction effects. It is also possible for species 1 not to diffuse at all if the first and
second members of the right-hand side of Eq. 3.2.1 are precisely equal in magnitude but
opposite in sign

Jx = U \ct^n^x\ = ~ct^\2^xi) (5.2.2)

This condition is known as a diffusion barrier (Toor, 1957). Finally, it is possible for species
1 to diffuse in a direction opposite to that indicated by its own concentration gradient.

(DnVXl<D12Vx2 and Vx2/VXl < 0) (5.2.3)

This is known as reverse diffusion (Toor, 1957).
These interaction effects are illustrated in Figure 5.2, where we have plotted the

diffusion flux Jx as a function of — VJCJ for a binary and for a hypothetical ternary system.
Fick diffusion coefficients and the gradient of component 2, Vx2, are considered indepen-
dent of composition for the purposes of drawing these diagrams. Notice that the line that
represents Fick's law for binary systems in Figure 52{a) passes through the origin. For
ternary systems, the line that represents Eq. 3.2.1 does not, in general, pass through the
origin but is shifted up or down to an extent that depends on the magnitude and sign of
D12 Vx2. The region of reverse diffusion is delimited by the osmotic diffusion point and the

Binary diffusion Ternary diffusion

"normal"
diffusion
behavior

osmotic
diffusion

diffusion
barrier

v "normal"
diffusion reverse
behavior diffusion

Figure 5.2. The diffusion flux as a function of the composition gradient for (a) binary and (b) ternary
systems. Note the diffusion barrier, the osmotic diffusion point and the region of reverse diffusion that
are possible in ternary systems.
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diffusion barrier. Outside of this region the direction of diffusion is "normal" but this does
not mean that diffusion fluxes are uninfluenced by the other composition gradients.

It should now be clear that diffusional interaction effects cannot occur in binary mixtures
or in multicomponent systems where all the cross-coefficients, Dtj (i =£ ;), vanish. This will
be the case in mixtures in which all the binary diffusion coefficients are alike (the system
oxygen-nitrogen-carbon monoxide discussed in Example 4.2.1 is a case in point), as well as
in mixtures where one component is present in very large excess (see Example 4.2.2). Thus,
the first requirement for significant interaction effects is that the cross-coefficients Dtj be
"large" compared to the main coefficients Du. That is,

\DU/Dn\ ~ O(l) (5.2.4)

This condition is satisfied in the systems acetaldehyde-hydrogen-ethanol discussed in
Example 4.2.3 and hydrogen-nitrogen-dichlorodifluoromethane used to illustrate Example
4.2.4.

It is not sufficient for the multicomponent diffusion coefficients merely to satisfy the
approximation bound in Eq. 5.2.4 in order to have significant diffusional interaction effects;
a large cross-diffusion coefficient may be multiplied by a vanishingly small concentration
gradient leading to negligible interactions. It is also necessary to have a significant gradient
in the mole fraction of species ; in order for the flux of species / (/ ¥= j) to be affected to any
extent. A more demanding criterion for significant interaction effects, therefore, is

{DijVxj/DuVxJ ~ O(l) (5.2.5)

or, in other words, that the area of reverse diffusion in Figure 5.2(Z?) be "large."
At first sight it might appear that the second law of thermodynamics is violated for

reverse diffusion to occur. This is not so. One process may depart from equilibrium in such
a sense as to consume entropy provided it is coupled to another process that produces
entropy even faster. This is, of course, the basic principle of any pump, whether it moves
water uphill or moves heat towards a higher temperature region. For the second law
requirement a > 0 to hold it is allowable for al to be less than zero, corresponding to
reverse diffusion for 1, provided d2 and a3, due to species 2 and 3 diffusion, be such that
the overall entropy production rate is positive (ax + a2 + cr3 > 0).

These interaction phenomena have been discussed above in the context of ternary gas
diffusion but are typical of the general multicomponent case. The practical implications of
these interaction phenomena include such interesting possibilities as negative Murphree
point efficiencies in multicomponent distillation as we shall see later (Chapter 13).

5.3 STEADY-STATE DIFFUSION

As our first application of the linearized theory we consider steady-state, one-dimensional
diffusion. This is the simplest possible diffusion problem and has applications in the
measurement of diffusion coefficients as discussed in Section 5.4. Steady-state diffusion also
is the basis of the film model of mass transfer, which we shall discuss at considerable length
in Chapter 8. We will assume here that there is no net flux Nt = 0. In the absence of any
total flux, the diffusion fluxes and the molar fluxes are equal: Nt = Jt.

With the above assumptions, the differential mass balance (Eq. 5.1.8), simplifies to
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The mole fractions xt are known at two planes a distance i apart. The boundary conditions
therefore are

Z — U, X — XiQ, Z — I , X — Xu xp.S.L)

In this case the diffusion equations are already uncoupled so we do not need to use the
diagonalization procedure discussed above. The solution to the set of uncoupled linear
ordinary differential equations (Eq. 5.3.1) is obtained as

hZl^ = z/l (5.3.3)

Equation 5.3.3 shows that the composition profiles are linear.
The flux in a binary mixture is obtained from Fick's law, (Eq. 3.1.1) with the composition

derivative obtained by differentiating Eq. 5.3.3 to give

Jl p VA10 x\£) yj.o.^j

This equation is a special case of a more general result we obtain later (Section 8.2).
For a multicomponent system we write the first n — 1 Eqs. 5.3.3 into column matrix form

as

( x — Y \ = ( 7 /P\( y — r \ (^^^

This matrix equation can be differentiated to give

d{x)

dz
(5-3-6)

The fluxes in a multicomponent system are calculated from the one-dimensional form of
the generalized Fick's law (Eq. 3.2.5) with the composition derivatives given by Eq. 5.3.6 to
give

d() ct[D]
(J) = ~ct[D]-^- = -^(xo - x,) (5.3.7)

Equation 5.3.7 is the proper matrix generalization of Eq. 5.3.4.

Example 5 J.I Steady-State Diffusion in a Ternary System

For our first multicomponent flux calculation we ask you to calculate the fluxes for the
ternary system hydrogen (l)-nitrogen (2)-carbon dioxide (3) under the following conditions:

The boundary compositions are

x10 = 0.0 x20 = 0.50086 x30 = 0.49914

xu = 0.50121 x2e = 0.49879 x3, = 0.0

The diffusion path length is 85.9 mm.
The temperature is 35.2°C.
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The values of the diffusion coefficients of the three binary pairs at 35.2°C and a pressure
of 101.3 kPa are as follows:

H 2 - N2 £)12 = 83.3 mm 2 / s

H 2 - CO2 f)13 = 68.0 mm 2 / s

CO2 - N2 £>23 = 16.8 mm 2 / s

The total molar flux may be assumed to be zero: Nt = 0.

SOLUTION The molar density ct can be estimated from the ideal gas law. At 35.2°C and
101.3 kPa this gives

ct = P/RT

= 101.3 X 103/(8.3144 X 308.35)

= 39.513 mol/m3

The arithmetic average composition is

xXav = 0.2506 x2av = 0.4998 x3av = 0.2496

[D] may now be computed from Eqs. 4.2.7 at the average composition

[D]=[ 7.682 -0 .109] 5 2

-3.832 2.155 X 1U m / S

We now calculate the fluxes from Eq. 5.3.7

3 9 " 5 1 3 [ 7.682 -0 .109] 5 / - 0 . 5 0 1 2 \
0.0859 L "3.832 2.155J \ 0.0021

0.8*

The diffusion fluxes Jt and the molar fluxes Nt are equal in this case because the total molar
flux Nt is zero.

Although nitrogen is diffusing "normally" (i.e., in the direction that would be expected
on the basis of the composition change for nitrogen alone), the magnitude of the nitrogen
flux is far in excess of what we might have anticipated on the basis of the Fick diffusion
coefficient D22 and the rather small driving force for nitrogen Ax2. In fact, interaction
effects are particularly strong in this system under these conditions. Not only is the criterion
in Eq. 5.2.4 satisfied for nitrogen (component 2, but not for hydrogen, component 1)

D12/Dn = -0.0142

D21/D22 = -1.7783

but so, also, is the criterion in Eq. 5.2.5

D12 Ax2/Dn AJCJ = 5.871 X 10"5

D21 Axx/D22 Ax2 = 430.59
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This calculation shows that by far the largest contribution to the nitrogen (species 2) flux is
the product of the Fick diffusion coefficient D21 with the driving force for hydrogen
(component 1). •

5.4 DIFFUSION IN A TWO BULB DIFFUSION CELL

The two bulb diffusion cell is a simple device that can be used to measure diffusion
coefficients in binary gas mixtures. Figure 5.3 is a schematic of the apparatus. Two vessels
containing gas mixtures with different compositions are connected by a capillary tube. At
the start of the experiment (at t = 0), the valve is opened and the gases in the two bulbs
allowed to diffuse along the capillary tube. Samples from each bulb are taken after some
time and this information is used to calculate the binary diffusion coefficient.

An analysis of binary diffusion in the two bulb diffusion apparatus has been presented by
Ney and Armistead (1947) (see, also, Geankoplis, 1972). Their development is extended
below for multicomponent systems.

It is assumed that each bulb is at a uniform composition (the composition of each bulb is,
of course, different until equilibrium is reached). It is further assumed that the volume of
the capillary tube connecting the bulbs is negligible in comparison to the volume of the
bulbs themselves. This allows us to express the component material balances around each
bulb as follows:

dxi0 dxu

e~dt~
= -NlA (5.4.1)

where A is the cross-sectional area of the capillary, xi0 is the mole fraction of component /
in the left-hand side bulb, and xu is the mole fraction of that component in the right-hand
side bulb. The molar flux of species / through the capillary tube Nt and is taken to be
positive if from bulb 0 to bulb 6. At constant temperature and pressure the molar density of

t = 0

t > 0

t = <

Figure 5.3. Schematic diagram of two bulb diffusion apparatus.



106 MULTICOMPONENT DIFFUSION PROBLEMS: LINEARIZED THEORY

an ideal gas ct is a constant; thus, there is no volume change on mixing and in the closed
system depicted in Figure 5.3 the total flux Nt must be zero.

The composition in each bulb at any time is related to the composition at equilibrium xioo

by

(V0 + K)xioo = V0xi0 + V,xu (5.4.2)

The compositions at the start of the experiment are, therefore, related by

(J/o + Ve)x.m = V0x°0 + Vex°lt (5.4.3)

where x° is the mole fraction at time t = 0.

5.4.1 Binary Diffusion in a Two Bulb Diffusion Cell

In the analysis of Ney and Armistead it is assumed that, at any instant, the flux Nx is given
by its steady-state value; that is, by Eq. 5.3.4. Thus,

dxm D
ctvo-^f = -ctJA(xw ~ xu) (5.4.4)

To eliminate xie from Eq. 5.4.11 we make use of the component material balance around
both bulbs, Eqs. 5.4.2 and 5.4.3.

rir ^

(5.4.5)

where jSis a cell constant

dx10

dt

defined by

= -

(Vo

-PD(X1Q xloo)

+ V,)A/tV0V, (5.4.6)

A similar equation for the mole fraction of component 1 in bulb / may also be derived.

Equation 5.4.5 is easily integrated, starting from the initial condition that at t = 0,

*io = *io> t 0 § i v e

(xm - x1oo)

^ 4=exp(-/3Z)O (5.4.7)

Hence, if p is known then just one value of x0 is all that is needed to calculate the
diffusivity D. Alternatively, if an accurate value of D is available, Eq. 5.4.7 can be used to
calibrate a diffusion cell for later use in measuring diffusion coefficients of other systems.

5.4.2 Multicomponent Diffusion in a Two Bulb Diffusion Cell

To generalize the above analysis for multicomponent systems we rewrite the time-depen-
dent mass balances (Eq. 5.4.1) in n — 1 dimensional matrix form as

= ~{N)A ( 5 - 4 - 8 )

Now, with the molar fluxes given by the multicomponent rate relations (Eq. 5.3.7), we may
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write

cy«—jr = - -^V^^ 0"X e ) (5-4-9)

The material balance relation (Eq. 5.4.3) is used to eliminate the mole fractions (x^) to give

d(x0)

dt
= -P[D](XO-XJ (5.4.10)

By assuming [D] to be constant the matrix differential equation may be uncoupled as
described above and solved subject to the "initial" conditions:

to give the pseudocomposition profiles as

( xi0 - xioo)
-jSACr - tQ)} (5.4.12)

To recover the solution in terms of real mole fractions we group all n — 1 of Eqs. 5.4.12
together as

(xi0 - xix) = exp{-j3A-C - 'o)}(*?o - **») (5-4-13)

and apply the inverse transformation (Eq. 5.1.19) to Eq. 5.4.13 to get

(*„-*») = exp[-H[D](t - to)](x°o -*„) (5.4.14)

which is the matrix generalization of the binary result, Eq. 5.4.7. Equations 5.4.14 allow us
to calculate the time history of the concentration in each of the two bulbs. The exponential
matrix in Eq. 5.4.14 may be calculated using Sylvester's expansion formula (Eq. A.5.17) or
using Eq. A.5.28.

Example 5A.I Multicomponent Diffusion in a Two Bulb Diffusion Cell:
An Experimental Test of the Linearized Theory

A set of multicomponent diffusion experiments in a two bulb diffusion cell apparatus was
carried out by Duncan and Toor (1962) in an investigation of diffusional interaction effects.
The two bulbs in their apparatus had volumes of 77.99 and 78.63 cm3, respectively. The
capillary tube joining them was 85.9 mm long and 2.08 mm in diameter. The entire device
was placed in a water bath at 35.2°C. The system used by Duncan and Toor was the ternary
hydrogen (l)-nitrogen (2)-carbon dioxide (3). The initial concentration in each cell is

x10 = 0.0 x2Q = 0.50086 x30 = 0.49914

xie = 0.50121 x2e = 0.49879 xze = 0.0

where xi0 is the mole fraction of species i in bulb 1 and xu is the mole fraction of species i
in bulb 2.

Investigate how the concentrations in each bulb change with time.

DATA The effective t/A ratio for the cell was calculated from binary diffusion experi-
ments to be 25,810 m"1 (Duncan and Toor, 1962). The pressure is 101.3 kPa. The binary
diffusivities are given in Example 5.3.1.
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SOLUTION The composition at equilibrium is calculated from Eq. 5.4.3.

xlQ0 = 0.2516 x2oo = 0.4998 x3oo = 0.2486

The matrix [D] may now be computed from Eqs. 4.2.7 at the equilibrium composition as

r D l _ [ 7.683 -0.1098] 1 0 - 5 m 2 / s
[Di~ [-3.836 2.157 J X 1 0 m / S

The eigenvalues of this matrix are

Z>! = 7.758 X 10"5 m2/s D2 = 2.082 X 10~5 m2/s

The modal matrix [P] is calculated from Eq. 5.1.30

The inverse of [P] is

1 0.0196]
-0.6849 1 J

0.9868 -0.0193
0.6759 0.9868

Next, we need to compute the transformed boundary conditions (x°i0) and (£«,) using
Eq. 5.1.11.

0.9868 -
0.6759

-0.0193] (0.0 \
0.9868 J\ 0.50086/

= ( -0.0097,0.4942) r

(Note the negative pseudomole fraction for pseudospecies 1!)

0.9868 -0.0193] (0.2516
0.6759 0.9868 J\ 0.4998

= (0.2386,0.6633)r

The cell constant /3 is calculated from Eq. 5.4.6 and has the value 0.9895 m~2. Thus,
with (t — tQ) = 4 h = 14,400 s, we compute the pseudomole fractions from Eq. 5.4.13.

xio ~ xioo "•" e x P \ ~ P ^ A 1 fo;/Vxio xioo;

= 0.2386 + exp(-0.9895 X 7.758 X 10~5 X 14,400) X (-0.0097 - 0.2386)

= 0.1564

= 0.6633 + exp(-0.9895 X 2.082 X KT5 X 14,400) X (0.4942 - 0.6633)

= 0.5376
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The real mole fractions follow by applying the inverse transformation (Eq. 5.1.17) to give

1 0.0196
-0.6849 1

(0.1670,0.4305)r

1/ 0.1564 \
J\ 0.5376 j

The composition in the other bulb can be calculated from the material balance (Eq. 5.4.3).
The results of similar calculations at other times are shown in the composition time histories
shown in Figure 5.4 along with experimental data from the thesis of Duncan (1960). It can
be seen that the agreement between theory and experiment is very good indeed.

The boundary conditions used for the flux calculation in Example 5.3.1 were, in fact, the
compositions in the two bulbs at the start of this experiment of Duncan. The initial flux of
nitrogen computed in Example 5.3.1 was positive; thus, nitrogen accumulates in the
right-hand bulb and is depleted in the left-hand bulb. At the beginning of the experiment,
the flux of nitrogen is almost completely due to the interactions with the other two
components, since the initial driving force for nitrogen is essentially nothing (Example
5.3.1). However, as nitrogen diffuses from the left-hand bulb to the right-hand bulb, a
nonzero driving force of nitrogen is established that will tend to cause nitrogen to diffuse
from right to left. In the early part of the experiment this driving force is not large enough
to counter the reverse diffusion effect but we see in Figure 5.4 a slowing down in the rate of
change of the mole fractions in each bulb. Eventually, the driving force of nitrogen is large
enough to overcome the reverse diffusion effect and so the mole fraction of nitrogen in bulb
2 reaches a maximum and then starts to decrease. At the same time, the mole fraction of
nitrogen in bulb 1 goes through a minimum and then starts to increase. If diffusional
interaction effects did not exist, then the concentration maximum could not have occurred
(we shall demonstrate this in Chapter 6).

The matrices of Fick diffusion coefficients differ slightly in Example 5.3.1 from those
used here. In this example the equilibrium composition was used to calculate [D], whereas
in Example 5.3.1, [D] was calculated at the arithmetic average composition.

0.6r

mole
fraction
nitrogen

System : hydrogen (1) -
nitrogen (2) -
carbon dioxide (3)

- 0.6

mole
fraction

hydrogen

0.0

Figure 5.4. Composition-time history in two bulb diffusion cell. Experimental data from Duncan
(1960).
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0.00 1.00

1.00 0.00

0.00 0.25 0.50 0.75

Mole fraction hydrogen

1.00

Figure 5.5. Composition profiles in two bulb diffusion cell. Calculation and experimental data for three
separate experiments are shown here. Experimental data from Duncan (1960).

We have carried out similar computations covering the entire duration of three similar
experiments that were carried out by Duncan and Toor (1962). The results of these
calculations are shown in the triangular diagram, Figure 5.5, along with the data of Duncan
(1960). We see that for all three experiments theoretical profiles are in good agreement with
the data. This experiment (and others like it) provides support for the theoretical considera-
tions of earlier chapters and the successful prediction of the concentration time history in
the two bulb diffusion cell is a valuable test of the linearized theory of multicomponent
diffusion. •

5.5 THE LOSCHMIDT TUBE

Another device used to study diffusion and to measure diffusion coefficients is the Loschmidt
tube illustrated in Figure 5.6. Two tubes containing fluids with different concentrations are
brought together at time t = 0 and the fluids allowed to interdiffuse. After some time the
tubes are separated and the compositions measured.

An analysis of multicomponent diffusion in a Loschmidt tube was presented by Arnold
and Toor (1967). The salient results of their work are summarized below.

The equation governing unsteady-state, one-dimensional, multicomponent diffusion in
the Loschmidt tube is

dt L J dzz

The initial condition states that the concentration in each tube is uniform

t^O 0<z<f (x) = (x + )

(5.5.1)

(5.5.2)
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-r-L- z=0

J- z=-e

t = 0 t > 0 t

Figure 5.6. Schematic diagram of Loschmidt tube.

After the tubes are brought together diffusion proceeds, but since the tubes are sealed and
are of finite length 2 £, there can be no mass transfer across the ends of the tube; the
boundary conditions therefore are

t>0 z= ±i
dz

(5.5.3)

Before presenting the solution to the multicomponent diffusion problem we note that for
binary systems the differential Eq. 5.5.1 simplifies to

dt Ddz2 (5.5.4)

This equation can be solved by means of the technique of separation of variables. The
composition profiles as a function of time and position are given by

where

1 1 * 1 mirz
-Dt

(5.5.5)

(5.5.6)

where m = k + \.
In order to solve the multicomponent Eqs. 5.5.1, we use the transformation (Eq. 5.1.9) to

uncouple them

d2xt
(5.5.7)
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which may be solved subject to suitably transformed initial and boundary conditions,

f ^ 0 0 < z < / (x) = (* + )

d(x)
t > 0 z = ±<? - ^ = 0

dz

The solution for the pseudocomposition profiles as a function of time and position is
given by Eq. 5.1.17

where /(z, t, Dt) is given by Eq. 5.5.6 with the /th eigenvalue Di replacing the binary
diffusivity D.

The concentration profiles in terms of real mole fractions are given by Eqs. 5.1.22 and
5.1.23

(x -xj) = [P][f][PV\x + -x_) (5.5.10)

with [/] a diagonal matrix with elements given by /(z, t, Dt).
The average concentration (x) in the bottom tube is obtained by integrating Eq. 5.5.10

over the length -6 < z < 0. The result is

(x-x_) = [P][f][P]-\x + -x_) (5.5.11)

where [/] is another diagonal matrix with elements given by

. n
(5.5.12)

(x) is the composition that is measured in this kind of diffusion apparatus.

Example 5.5.1 Multicomponent Diffusion in the Loschmidt Tube: Another Test
of the Linearized Theory

Arnold and Toor (1967) investigated diffusional interaction effects in a Loschmidt tube of
the kind described above. The system they used was methane (l)-argon (2)-hydrogen (3).
The diffusion tube had a length of (TT/ / ) 2 = 60 m"2. At the temperature (34°C) and
pressure of the experiments (101.3 kPa) the binary diffusion coefficients of the three ternary
gas pairs were

CH4 - Ar = 21.57mm2/s

CH4 - H2 = 77.16 mm2/s

Ar - H2 = 83.35 mm2/s

The composition in each tube at the start of one of their experiments was as follows:

xx_= 0.0 x2_= 0.509 x3_= 0.491

x1 + = 0.515 x2 + = 0.485 x3 + = 0.0
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Calculate the average concentration in the bottom tube after 15 min and plot the change in
concentration with time.

SOLUTION The average composition is

xlav = 0.2575 x2av = 0.4970 x3av = 0.2455

The matrix of multicomponent diffusion coefficients is computed from Eqs. 4.2.7 using the
binary diffusivities given above and the average composition. The result is

4.442 1.832] 5 2

3.639 6.298] 7

The eigenvalues of this matrix are

DA = 8.114 X 10"5 m2 /s D2 = 2.626 X 10~5 m2 /s

The modal matrix [P] is

^ = 1.2.004 -0.991

where we have chosen to set Pu and Pl2 to unity. The inverse of this matrix is

r p l - i = [0.331 0.334]
1 1 [0.669 -0.334]

With t equal to 15 min, we compute the functions ft from Eq. 5.5.12. We illustrate the
calculation using just the first term of the series in Eq. 5.5.12.

* 1 4

1 4 (I
= ~ exp{ - - X 60 X 8.114 X 10"5 X 900

2 TTZ { 4

= 0.36447

, 1 4 / 1 7T2
 A

14(1
= 5- exp{ - - X 60 X 2.626 X 10"5 X 900

2 77 I 4

= 0.21568

(Note that ( T T / / ) 2 = 60 m"2). In fact, these results are very close to the converged series.

/x = 0.36447 f2 = 0.21383

The composition in the bottom tube is then given directly by carrying out the multiplications
required by Eq. 5.5.11 from right to left.

(x) = (0.135,0.553)r
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0.6r

System : methane (1)-
argon (2) -
hydrogen (3)

mole
fraction
argon

mole
fraction
methane

0.0

time / [h] time / [h]

Figure 5.7. Composition-time history in Loschmidt tube diffusion experiment. Experimental data from
Arnold (1965).

The composition in the top tube can be calculated simply from the relationship between the
compositions at any time and the equilibrium (average) composition.

The mole fractions of argon and methane in both the bottom and top tubes are shown as
a function of time in Figure 5.7 together with the experimental measurements from the
thesis of Arnold (1965). The composition profiles for three different experiments are shown
in the triangular diagram in Figure 5.8. It can be seen that the agreement between the
predictions of the linearized equations and the experimental data is excellent. If there were
no diffusional interaction effects, the composition profiles would be a straight line between
the two end (initial) points in the triangular diagram in Figure 5.7 (see Example 6.5.1)! •

0.00 1.00

1.00 0.00

0.00 0.25 0.50 0.75

Mole fraction methane

1.00

Figure 5.8. Composition profiles in Loschmidt tube. Calculation and experimental data for three
separate experiments are shown here. Experimental data from Arnold (1965).
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System : glycerol ( 1 ) -
water (2) -
acetone (3)

interface

„ acetone
rich phase

glycerol
rich phase

Figure 5.9. Schematic illustration of batch extraction cell used in liquid-liquid mass transfer studies.

5.6 MULTICOMPONENT DIFFUSION IN A BATCH EXTRACTION CELL

Since thermodynamic nonidealities are of the essence for phase separation in liquid-liquid
systems, and such nonidealities contribute to multicomponent interaction effects, it may be
expected that liquid-liquid extraction would offer an important test of the theories pre-
sented in this book. Here, we present some experimental evidence to show the significance
of interaction effects in liquid-liquid extraction. The evidence we present is largely based on
experiments carried out in a modified Lewis batch extraction cell (Standart et al., 1975;
Sethy and Cullinan, 1975; Cullinan and Ram, 1976; Krishna et al., 1985). The analysis we
present here is due to Krishna et al. (1985). The experimental system that will be used to
demonstrate multicomponent interaction effects is glycerol(l)-water(2)-acetone(l); this
system is of Type I. The analysis presented below is the liquid-liquid analog of the two bulb
gas diffusion experiment considered in Section 5.4.

The modified Lewis batch extraction cell used by Krishna et al. (1985) to obtain mass
transfer data for the system glycerol-water-acetone is illustrated in Figure 5.9. It is
basically a single glass cylinder with mixing, contacting, and sampling facilities, with a net
capacity of around 6 L. The heavier phase (i.e., glycerol or " phase) is introduced at the
bottom of the cell, and a horizontal ring and disc is placed on the liquid surface. The lighter
phase (acetone or ' phase) is charged on top. Two turbine stirrers and a set of vertical
baffles in each compartment provide the necessary agitation for complete mixing of the
phases. Representative samples are withdrawn through sample tubes at suitable intervals
(typically 30 min), and their compositions determined.

5.6.1 Equilibration Paths

From the experimental phase compositions at different intervals, the "equilibration paths"
can be determined on a ternary diagram. These are parametric curves, one for each phase
and with points in the two curves in pairwise correspondence. In the general case where
both phases are initially unsaturated, the equilibration paths obtained experimentally
(Krishna et al., 1985) are shown typically by Run C of that paper in Figure 5.10. Given
enough contact time, the phases will approach and attain equilibrium, becoming mutually
saturated. The equilibration paths will, therefore, terminate on the corresponding ends of a
tie-line, since metastable states are prevented from arising by the constant agitation.
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1.0

x , mole fraction
of water °-5

0.0

System : glycerol (1)-
water (2) -
acetone (3)

rimental
trajectory

pseudobinary
trajectory

0.0 0.5
x1, mole fraction of glycerol

1.0

Figure 5.10. Equilibration paths during mass transfer in the system glycerol (1), water (2), and acetone
(3) in a batch extraction cell. The point M is the mixture point and P represents the plait point.
Experimental data correspond to Run C of Krishna et al. (1985).

Now, the initial amounts and compositions of each phase are fixed and known from
experiment. If the comparatively small amounts of sample withdrawn from either phase are
neglected, the extraction cell can be considered to be a closed system in which the total and
constituent mass are constant and equal to the initial amounts Mt0, Mi0. At any given time,
therefore,

M((0

M\ 'I = Mi

or, in terms of the "bulk" or average compositions of the phases defined by

x\M\ = M\ x'[M"t = M'I

the following equations of conservation are obtained

Mf
t + M'I = Mt0

x\M[ I" =Mi0 =xiQMtQ i = 1,2

(5.6.1)

(5.6.2)

(5.6.3)

(5.6.4)

These are the only independent equations of material balance that can be written down
for the ternary system. All the terms in the left-hand side of Eq. 5.6.4 are functions of time.
Therefore, we have three equations in two unknowns M't and M", and this redundancy
provides for a statistical check of the measurements and allows "best values" to be
calculated.

Eliminating M[ and M" between the above relations, a form of the lever rule is obtained
// / //

(5.6.5)
x' - x,

This shows that the straight line that joins any two light- and heavy-phase compositions
corresponding to a same instant during the experiments must also pass through the point
that represents the overall composition of the system (point M in Fig. 5.10). This must, in
particular, be true of the terminal compositions of each phase in mutual equilibrium.
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Hence, we see that the equilibrium tie-line is uniquely fixed by the initial masses charged to
the cell, since there is only one tie-line that passes by M (otherwise, more than two phases
in equilibrium could coexist, which is not possible in a system of Type / as is the case here).

If A represents the interfacial area between the two liquid phases, we can calculate the
interfacial fluxes as follows:

1 dM: 1 dMt

N N < 5 6 6 >

From the material balance relations (Eqs. 5.6.1-5.6.4) we see that

N; + N;' = o
( 5 - 6 J )

that is, the rates of transfer of one phase must be the negative of the corresponding rate for
the other. The diffusive fluxes (J( = Nt - x(Nt) can be calculated for either phase from

Mt dxt
J ^ - - i - l , 2 (5.6.8)

where only two of the Jt are independent.
If the driving forces for mass transfer are taken to be the difference in compositions

between the interface (xu) and bulk fluid (xt), then the constitutive relations for (/) may be
written as

ct[D]
(O^—^ixj-x) (5.6.9)

where [D] represents the Fick matrix of diffusion coefficients in the phase under considera-
tion and / is the effective diffusion path length. We may combine Eqs. 5.6.8 and 5.6.9 and
write

d(x)
^ [K](x) (5.6.10)

where we have defined a volumetric transfer coefficient matrix

^ (5.6.11)

a matrix whose elements have the units of reciprocal seconds (s"1).
If we assume, for the moment, that [K] is time invariant, the differential Eq. 5.6.10 can

be solved with the initial condition t = 0, (x) = (JC0), to obtain the transient composition
trajectories

(x, -x) = [exp[-[K]t]](x, - x0) (5.6.12)

Let [P] represent the modal matrix of [K], that is, [P] has the property that

' [K] (5.6.13)
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where [K] represents the diagonal matrix

r k x o

0 K2

The columns of [P] are the eigenvectors, (ex) and (e2), of the matrix [K]

where

#22 ~ #2

Premultiplying Eq. 5.6.12 by [P] 1 we obtain

(xj-x) = [exp[-[£]f](*7-x0)

which represents a set of two uncoupled equations

xu -xt = exp{-#,-*}( £ l 7 - x / 0 ) / = 1,2

(5.6.14)

(5.6.15)

(5.6.16)

(5.6.17)

(5.6.18)

in pseudocompositions, defined by (x) = [P] 1(x). In the pseudocomposition space (xv x2),
the equilibration paths (Eq. 5.6.18) are straight lines approaching the equilibrium state.

To recover the composition profiles in the "real" (xl9 x2) space we premultiply
Eq. 5.6.17 by [P] giving

(x7 — x) — e ] Ax lo(ej) -

where the Ai / 0 are (pseudo-) initial driving forces

^Ax20(e2) (5.6.19)

\xj-x0). (5.6.20)

Examination of Eq. 5.6.19 shows that the initial trajectory will be dictated by the
dominant eigenvalue, say K2, and the initial path will lie along (e2). As equilibrium is
approached, the equilibration path will lie along the "slow" eigenvector (ex) as illustrated in
Figure 5.11.

Example 5.6.1 Equilibration Paths in a Batch Extraction Cell

We analyze the composition trajectory in the glycerol-rich phase (G) of the system
glycerol(l)-water(2)-acetone(3). The initial composition Go is

= 0.85 x7n = 0.15

The composition of the interface (G7) is

= 0.5480 x2I = 0.2838

= 0.0

x3I = 0.1682

For this set of conditions the matrix of volumetric transfer coefficients [K], defined by Eq.
5.6.11 is (Krishna et al., 1985).

0.2327 -0.3742] h _ i
-0.1162 0.3373 J
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0.4

x , mole fraction
of water

tie-lines-
0.1

"fast"
eigenvector

\ x

"slow"
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simulation

System : glycerol (1)-
water(2)-
acetone (3)

experimental

binodal curve

0.5 1.0
x1, mole fraction of glycerol

Figure 5.11. Equilibration paths during mass transfer in the system glycerol (1), water (2), and acetone
(3) in a batch extraction cell. Experimental data correspond to Run C of Krishna et al. (1985).

Draw the composition trajectories in xv x2 space along with the two eigenvectors {et) of
[K]. Compare with the experimental data of Krishna et al. (1985).

SOLUTION We begin by defining two one-dimensional vectors for the initial and final
compositions.

0.85

x f 0.
l} \ 0.

5480
2838

The first calculation step is the evaluation of the eigenvalues, Kx and K2, of [K] from the
following expressions

/disc[K])

K2 = \

where

The results are

tr[K] = Ku + K22

(tr[i^])2 - 4\K\

\K\ = KnK22 - K12K21

^ = 0.5 and it , = 0.07 h"1
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The corresponding eigenvectors (e^ and (e2) are given by Eq. 5.6.16

-K

Kl2

1

-K12 (5.6.16)

which gives

i ) ~ (-0.7143 J ^ ~ (0.4347J

The two eigenvectors are determined only in direction and not in absolute value. For
definiteness we may specify that these eigenvectors pass, respectively, through the points Go

and Gj. In (x1? x2) composition space the expressions for the first eigenvector is

- x?

x, - x,

or, defining x2 a sa function of x1

x 2 O i ) = x20 - 0.7143(x1 - x1Q)

The second eigenvector is given by

X\ ~~ X\

or, defining x2 as a function of xx

0A347(xl-x1I)

These two eigenvectors have been drawn in Figure 5.3.
The actual composition trajectory can be determined either from Eqs. 5.6.19 and 5.6.20

or directly from Eq. 5.6.12, evaluating the exponential matrix as described in Appendix A.4
or A.6. We shall illustrate the computation of the transient composition trajectories by
calculating the mole fractions after 1 h from Eq. 5.6.19. In order to calculate the composi-
tion trajectory we need to determine the modal matrix [P], The columns of [P] are the
eigenvectors (e^ and (e2).

1-0.7143 0.4347 J

The initial composition driving force vector, (Ax) = (xj — x0), is

{ 0.1338/

The pseudoinitial driving forces can be determined from Eq. 5.6.20.

- 0.2307 \
-0.0713)
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We may now compute the mole fractions after 1 h from Eq. 5.6.19.

*i = xu - exP{ - ^ } A*ioen ~ exP{ ~K2t} Ai20e12

= 0.5480 - exp(-0.5 X 1) x (-0.2307) X 1

- exp(-0.07 X 1) X (-0.0713) X 1

= 0.7544

x2 = x2I - exp{-K2t}AxU)e2l - exp{-K2t) kx20e22

= 0.2838 - exp(-0.5 X 1) x (-0.2307) X (-0.7143)

- exp(-0.07 X 1) X (-0.0713) X 0.4347

= 0.2127

The complete composition trajectory is plotted in Figure 5.11 and found to be highly
curvilinear. Initially the trajectory is along the first "fast" eigenvector and towards the end
of the equilibration process, the trajectory relaxes towards G7 along the second "slow"
eigenvector. Notice the sharp turn about in the trajectory as G7 is approached. The
theoretical trajectory is in good agreement with the measured data. The highly curvilinear
trajectory signifies the strong coupling in the system. M

5.6.2 Equilibration Paths in the Vicinity of the Plait Point

Let us now consider the equilibration paths in the vicinity of the plait point P. The Fick
matrix [D] is singular at the plait point with eigenvalues given by Eqs. 3.3.19

D1 = 0 D2 = Dn+D22 (3.3.19)

The eigenvectors corresponding to the eigenvalues (Eq. 3.3.19) are, respectively,

1

and (e2) =

1

£22 (3.3.20)

The matrix [K], which determines the equilibration path is a function of [D], and so the
modal matrix of [K] will have the following structure

DJ/Du (5-6.21)

With (ex) and (e2) as shown above, the equilibration paths (Eq. 5.6.19) simplify to give
(recall that Dx = 0).

xu-xx = Axx

ul2 u

(5.6.22)

(5.6.23)

Eliminating Ai10 from the above two equations we obtain the following relation between
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1.0

equilibration paths
near the plait point

x2, mole fraction
of water

plait poi

tie-lines

0.0

System : glycerol (1) -
water (2) -
acetone (3)

0.0 0.5 1.0
x y , mole fraction of glycerol

Figure 5.12. Composition trajectory in the region of the critical point in the system glycerol (1), water
(2), acetone (3). Source of data: Krishna et al. 1985).

the compositions x1 and x2

(x2I x2) - (x1 7 xx)
U \2

•exp{-£2f}Ajc20 (5.6.24)

which represents a straight line in the (xl9x2) space with a slope dx2/dx1 = —Dn/D12

equal to the slope of the limiting tie-line as shown in Section 3.3.1.
Figure 5.12 shows diagramatically the results of actual equilibration runs (Krishna et al.,

1985) obtained with the initial phases on the tangent to the binodal curve at the critical
point P. The path was indeed linear, and the rates of mass transfer were significantly lower
than in other regions of the ternary diagram. The slowness of the mass transfer can be
understood because the equilibration process is dictated by the smaller of the two eigenval-
ues. As the critical point is approached, the smaller eigenvalue tends to vanish.

5.7 THE LINEARIZED THEORY: AN APPRAISAL

The utility of the linearized Eqs. 5.1.7 would seem, on the face of things, to be limited to
situations in which the diffusion coefficient matrix does not change significantly as the
concentration changes during the diffusion process. Thus, the goodness of the assumption of
constant [D], of central importance to the theory, has been fairly thoroughly tested by those
responsible for the development of the method as well as by many other investigators.

Obviously, [D], if evaluated at the average concentration as usually recommended, will
not change significantly if the concentration gradients are small. Significant variations of the
Dik with composition may be found in gas mixtures (as in Examples 4.2.3 and 4.2.4) and in
nonideal liquids. For ideal gas systems it is possible to compare the predictions of the
linearized equations against exact solutions of the Maxwell-Stefan equations. The calcula-
tions of a number of investigators (Stewart and Prober, 1964; Arnold and Toor, 1967;
Cotrone and De Giorgi, 1971; Taylor and Webb, 1980b, 1981; Taylor, 1982c; Smith and
Taylor, 1983; Krishna et al., 1976; Bandrowski and Kubaczka, 1981; Webb and Sardesai,
1981; Taylor et al., 1985) all show the linearized equations to be of excellent accuracy even
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in situations involving the highest possible composition gradients. (It turns out that any
error in assuming [D] to be constant is usually favorably compensated by other details of the
mathematical solution.) It can be concluded from that, at least for the purposes of
calculating mass transfer rates in multicomponent mixtures, the linearized theory is almost
always adequate for engineering purposes. This conclusion is comforting, since with the
exception of the film model of steady-state, one-dimensional diffusion, it has so far proved
impossible to obtain exact analytic solutions of the Maxwell-Stefan equations that are easy
to use.

While fluxes computed from the linearized equations usually compare favorably with
fluxes computed from exact solutions, the same may not always be said for composition
profiles (see, e.g., Krishnamurthy and Taylor, 1982). Indeed, the assumption of constant [D]
may sometimes lead to physically impossible composition profiles (see, e.g., Gupta and
Cooper, 1971).

The linearized theory of Toor (1964a) and of Stewart and Prober (1964) is probably the
most important method of solving multicomponent diffusion problems. Very often, the
method provides the only practical means of obtaining useful analytical solutions of
multicomponent diffusion problems. Additional applications of the method are developed in
Chapters 8-10 and still more can be found in the literature [see Cussler (1976), Krishna and
Standart (1979) and Taylor (1982c) for sources].



6 Solution of Multicomponent
Diffusion Problems: Effective
Diffusivity Methods

It takes more time to scotch falsehood and expose fables than it does to set forth something solid
and new.

—C. A. Truesdell (1969)

The complexity of the Maxwell-Stefan equations and the generalized Fick's law have lead
many investigators to use simpler constitutive relations that avoid the mathematical com-
plexities (specifically, the use of matrix algebra in applications). In this chapter we examine
these effective diffusivity or pseudobinary approaches.

6.1 THE EFFECTIVE DIFFUSIVITY

6.1.1 Definitions

The effective diffusivity is defined by assuming that the rate of diffusion of species / depends
only on the composition gradient of species; that is,

Jt= -ctDiM^xt i = l,2,...,n (6.1.1)

where Diefi is some characteristic diffusion coefficient of species i in the mixture.
There is a second class of effective diffusivity method in which Dt eff is defined with

respect to the molar flux Nt as follows:

fy= -c,A\effV*/ i = l ,2, . . . , / i (6.1.2)

We continue the discussion by focusing attention on the more widely used of these two
definitions (Eq. 6.1.1).

For two component systems Eq. 6.1.1 reduces to Fick's law of diffusion (Eq. 3.1.1). But
does it provide a generally acceptable description of diffusion in multicomponent mixtures?
If we sum Eqs. 6.1.1 over the n species, we find in view of the restriction E/, = 0, that

C,LA,effV*, = 0 (6.1.3)

1 = 1

Eliminating the nth gradient \xn from Eq. 6.1.3 we obtain
7 1 - 1

C, L(A,eff-A,,eff)V*,. = 0 (6.1.4)
i=l

124
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If we now demand of the Dt en that they be independent of the composition gradients
(as are the Maxwell-Stefan and Fick diffusion coefficients) then, since each of the n — 1
gradients in Eq. 6.1.4 can be varied independently, the only solution possible to Eq. 6.1.4 is
that all the effective diffusivities are equal to one another

D'i.eff ^n.eff i = 1,2,..., n - 1 (6.1.5)

From our knowledge of diffusion in binary and ternary mixtures we can assert that this
circumstance, even if likely, is certainly not general (actually, it is not even very likely).
Consider, for example, the ternary gas mixture H2, N2, and CC12F2. The diffusion
coefficients of the binary pairs are given in Example 4.2.4. These values are so different that
it really does not seem possible that diffusion in the ternary mixture could be described by a
single diffusivity. We may expect a simple result like Eq. 6.1.5 to be true only when all the
species making up the mixture are of a similar nature as, for example, in the mixture
nitrogen-oxygen-carbon monoxide considered in Example 4.2.1.

6.1.2 Relationship Between Effective, Maxwell-Stefan, and Multicomponent
Fick Diffusion Coefficients

Equation 6.1.1 maybe rearranged to give the mole fraction gradient as

V x , - - •

(6.1.6)

which may be equated to the mole fraction gradient given by the Maxwell-Stefan Eqs.
2.1.16 in order to obtain a general expression for Dien as (Bird et al., 1960)

A,eff =
y - , BU

(6.1.7)

Alternatively, by setting the right-hand side of Eq. 6.1.1 equal to the right-hand side of Eq.
3.2.4 we have

A,eff=
k=\

(6.1.8)

For ternary system Eq. 6.1.8 simplifies to

Vx2
£>l,eff = ^ 1 1 + ^ 1 2 ^ - (6.1.9)

D 2,eff (6.1.10)

If the Du are given by Eqs. 4.2.7, Eqs. 6.1.9 and 6.1.10 are equivalent to formulas presented
by Stewart (1954). Stewart suggested that for practical calculations the mole fraction
gradients Vx, be replaced by mole fraction differences.
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Force fitting the Maxwell-Stefan equations into the form of Eq. 6.1.2 gives the following
expression for Dt efi (Kubota et al., 1969)

Equation 6.1.11 is useful when the flux ratios (Nj/Nt) are known and constant along the
diffusion path (as is the case when we have diffusion controlled chemical reactions taking
place on catalyst surfaces).

It is clear form the above expressions that effective diffusivities do not, in general, have
the physical significance of a diffusion coefficient, since they may assume values ranging
from minus to plus infinity (Toor and Sebulsky, 1961a). The effective diffusivity changes
along the diffusion path as xt and the Vxi change, Dt eff is zero at a diffusion barrier
(DnVx1 = DuVx2X is negative in the region of reverse diffusion (DnVx1/Dl2Vx2 < 0)
and is infinite at the osmotic diffusion point (Vxx = 0, Jx =£ 0). Care must therefore be
taken when drawing analogies between this quantity and a binary diffusion coefficient. Only
when the effective diffusivity is positive, bounded, and not a strong function of composition
or fluxes is it possible to draw useful analogies.

6.1.3 Limiting Cases

Despite the fundamental weakness of the effective diffusivity approach to multicomponent
diffusion, it has been widely used in the past and so it would seem to be worthwhile to
spend some time to delineate the conditions when such an approach is justified. Useful
limiting cases of the exact relation (Eq. 6.1.7) include

1. All binary diffusion coefficients equal

A> r f t = f > y - f ) (6.1.12)

An example of a mixture that meets this condition is the oxygen-nitrogen-carbon monoxide
system considered in Example 4.2.1. However, such mixtures, although they do exist, do not
constitute more than a small fraction of the total number of systems of interest.

2. In dilute mixtures where one component is in a large excess we may safely make the
approximation xn -> 1; xt: -> 0, / = 1,2,3,. . . , n - 1. For this case Du = Din and Dtj = 0
(i ^ ; = 1,2,..., n - 1) (cf., Example 4.2.2) and Eqs. 6.1.8 simplify to

Di,zff = &in *' = l , 2 , . . . , / i - l (6.1.13)

Dilute solutions are encountered sufficiently often to make this limiting case of some
practical importance.

3. When species i diffuses through a n — 1 stagnant gases and we have iV; = 0, i ¥= j
(Wilke, 1950)

A,eff = ( l -* i ) (6.1.14)

Equation 6.1.14 is often used to estimate Z\e f f for all species in a mixture even in cases
where none of the components has a vanishing flux (see, e.g., Elnashaie et al., 1988)!
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Other simple formulas for Dt eff include the expression of Burghardt and Krupiczka
(1975):

1 xi A xk
-fi— = ̂ ~ + E / (6-1.15)

which is equivalent to setting Dieff = 1/BU with Bit defined by Eq. 2.1.21. This really
amounts to neglecting the off-diagonal elements in the matrix [B]. A similar approach has
been taken by Kato et al. (1981) who write

A,eff = DU (6.1.16)

which amounts to neglecting the off-diagonal elements of the Fick matrix [D] (note that this
is not the same as neglecting the off-diagonal elements of [B] although the results would
probably be similar).

Example 6.1.1 Computation of the Effective Diffusivity

Calculate effective diffusivities for the H2-N2-CC12F2 system discussed in Example 4.2.4.
By way of a reminder, the Maxwell-Stefan diffusivities are

H 2 -N 2 £> = 77.0mm2 /s

N2-CC12F2 D = 8.1 mm2 /s

CC12F2-H2 D = 33.1 mm2 /s

The composition of the mixture is xN = 0.4, x c = 0.25, and xu = 0.35 where the
subscripts N, C, and H refer to N2, CC12F2, and H 2 , respectively.

SOLUTION We shall proceed by taking H 2 as component 1, N2 as component 2, and
CC12F2 as component 3.

The method of Wilke yields the following values of the effective diffusion coefficients

( 1 - 0 3 5 )

0.4/77.0 + 0.25/33.1

= 50.99 mm2/s

( l - * 2 )
X1/f)12+X3/f)23

(1 - 0.40)

" 0.35/77.0 + 0.25/8.1

= 16.95 mm2/s
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The method of Burghardt may be applied as follows:

1
1>ca x1/D13+x2/B12+x3/D13

1

" 0.35/33.1 + 0.4/77.0 + 0.25/33.1

= 42.88 mm2/s

1
2'eff " x2/D23 + x1/D12 + x3/D23

1

~ 0.4/8.1 + 0.35/77.0 + 0.25/8.1

= 11.79 mm 2 / s

In the method of Kato et al. we set the effective diffusivities equal to the corresponding
diagonal elements of the Fick matrix [D]. For a ternary system Eqs. 4.2.7 and 4.2.5 may be
combined to give

+x2D13 +x3Dl

33.1 X (0.35 X 8.1 + (1 - 0.35)) X 77.0

" 0.35 X 8.1 + 0.4 X 33.1 + 0.25 X 77.0

= 49.54 mm 2 / s

2'eff

8.

0

= 13

xxD23 + x2

.1 X (0.4 X

.35 X 8.1 +

i.63 mm 2 / s

D13

33.1

0.4

+

+

X

x3D

(1

33.1

12

" 0.4))

+ 0.25

X

X

77.0

77.0

The results of all three methods are summarized below along with the results of the
dilute solution limiting case, which is clearly inapplicable here.

Method £>l,eff £>2,eff

Wilke 50.99 16.95
Burghardt 42.88 11.79
Dilute solution limit 33.10 8.10
Kato 49.54 13.63

There is a factor of 2 variation in the values of D2 eff and a factor of 1.6 in the values of
D1 >eff. Fluxes calculated using these methods would differ by similar amounts! •
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6.2 SOLUTION OF MULTICOMPONENT DIFFUSION PROBLEMS USING
AN EFFECTIVE DIFFUSIVITY MODEL

As we have already seen, the analysis of a diffusion problem proceeds by solving the
conservation equations together with appropriate constitutive relations for the diffusion
fluxes. Use of Eq. 6.1.1 for the diffusion flux with Eq. 1.3.9 for the conservation of mass
leads to

ct— + V • (Ntxt) = V • (ctDieffVXi) (6.2.1)

Some assumptions regarding the constancy of certain parameters are usually in order to
facilitate the solution of the diffusion equations. For the binary diffusion problems discussed
in Chapters 5 (as well as later in Chapters 8-10), we assume the binary Fick diffusion
coefficient can be taken to be a constant. In the applications of the linearized theory
presented in the same chapters, we assume the matrix of multicomponent Fick diffusion
coefficients to be constant. If, on the other hand, we use Eq. 6.2.1 to model the diffusion
process then we must usually assume constancy of the effective diffusion coefficient Dt eff, if
we are to have any hope of obtaining a simple analytical solution. Since the effective
diffusivity is a rather strong function of concentration (even stronger functions than are the
multicomponent Fick diffusion coefficients DtjX as well as of the molar fluxes, this does not
seem to be a particularly good way to go. If we assume constancy of ctDt eff, Eq. 6.2.1
simplifies to

or

V • (Ntxt) = ctDitCBV2xt (6.2.2)

(6.2.3)

Equation 6.2.3 has exactly the same form as Eq. 5.1.3 for binary systems. This means that we
may immediately write down the solution to a multicomponent diffusion problem if we know
the solution to the corresponding binary diffusion problem simply by replacing the binary
diffusivity by the effective diffusivity. We illustrate the use of the effective diffusivity by
reexamining the three applications of the linearized theory from Chapter 5: diffusion in the
two bulb diffusion cell, in the Loschmidt tube, and in the batch extraction cell.

6.3 STEADY-STATE DIFFUSION

Let us reconsider steady-state, one-dimensional diffusion. A more rigorous analysis of this
simple diffusion problem has already been presented in Section 5.3. In that analysis it was
found that if the total flux was zero (the assumption made there and here), the mole
fraction profiles are straight lines and independent of the diffusion coefficients

<5-3-3)
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The molar flux in a binary mixture is given by Eq. 5.3.4; the corresponding result for a
multicomponent mixture, assuming an effective diffusivity approach, therefore, is

^• = (c,A-,eff/O(*/0-*//) (6-3.1)

Example 6.3.1 Computation of the Fluxes with an Effective Diffusivity Model

Let us illustrate the calculation of the effective diffusivity and the molar fluxes for the
conditions existing at the start of the two bulb diffusion cell experiment of Duncan and Toor
discussed in Examples 5.3.1 and 5.4.1. The components are hydrogen (1), nitrogen (2), and
carbon dioxide (3) and the values of the diffusion coefficients of the three binary pairs at
35.2°C and 1-atm pressure were

H2-N2 D12 = 83.3 mm2/s

H2-CO2 £>13 = 68.0 mm2/s

CO2-N2 D23 = 16.8 mm2/s

The composition in each bulb at the start of the experiment was

xw = 0.0 x20 = 0.50086 x30 = 0.49914

xu = 0.50121 x2e = 0.49879 x3, = 0.0

The capillary tube joining the two bulbs was 85.9 mm long.

SOLUTION Strictly speaking none of the limiting cases of the two general expressions
(Eqs. 6.1.10-6.1.14) applies to the two bulb diffusion cell. Nevertheless, we will proceed to
calculate Dt eff and the molar fluxes through the capillary tube using Wilke's method (Eq.
6.1.14).

The mole fractions at equilibrium are used in the evaluation of the effective diffusivities
(from Example 5.4.1)

xloo = 0.2506 x2oD = 0.4998 x3oo = 0.2496

The effective diffusivities are computed from Wilke's Eq. 6.1.14 as follows:

D
) + (x3/D13)

(1 - 0.2506)

(0.4998/83.3) + (0.2496/68.0)

= 77.49 mm2/s

(1 - 0.4998)

(0.2506/83.3) + (0.2496/16.8)

= 28.00 mm2/s
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The molar density ct is 39.5 mol/m3 . Hence, the fluxes through the tube are

39.51 X 77.5 X 10~6

= 85.9 X 10-3 (°-° - °-50121>

= -17.86 X 10~3 mol/m2s

39.51 X 28.00 X 1 0 ' 6

= 85.9 X 10-3 (°-5 0°8 6 - °-49879>

= 0.0267 X 1(T3 mol/m2s

The flux of hydrogen (component 1) is not too different from the flux estimated using the
linearized equations in Example 5.3.1. However, the effective diffusivity method predicts a
very small flux of nitrogen (component 2), a result quite different from the predictions of the
linearized theory. This, of course, is because the effective diffusivity method ignores
the contribution due to the driving forces of the other components. We will investigate the
consequences of this prediction in Example 6.4.1. •

6.4 THE TWO BULB DIFFUSION CELL

We derived expressions for the concentration time history in the two bulb diffusion cell in
Section 5.4. Here we present the corresponding problem solved using an effective diffusivity
formulation.

With the molar fluxes given by Eqs. 6.3.1 we may write the differential mass balances for
the two bulb cell, Eq. 5.4.1 as

dxi0 ctDie{f
cv (* * ) C6 4 1)

The material balance relation (Eq. 5.4.2) is used to eliminate the mole fractions xu

dxto
-jf = -0A\effO/o ~ **») (6.4.2)

where j8 is the cell constant defined by Eq. 5.4.6. The solution to this differential equation
subject to the initial condition (Eq. 5.4.11) is

O;o " **») = exp{ ~PDieff(t - to)}(x°iO - xi00) (6.4.3)

from which we may calculate the composition at any time t knowing the initial composition,
the cell constant and the effective diffusivities.

Example 6.4.1 Diffusion in a Two Bulb Diffusion Cell: A Test of the Effective Diffusivity

Let us now proceed to see if the Wilke effective diffusivity method is able to model the
diffusional process in the two bulb diffusion cell experiment of Duncan and Toor (1962). For
convenience, we repeat the following information from Example 5.4.1. The two bulbs in the
apparatus built by Duncan and Toor had volumes of 77.99 and 78.63 cm3, respectively. The
capillary tube joining them was 85.9 mm long and 2.08 mm in diameter. The entire device
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was maintained at a temperature of 35.2°C. The system used by Duncan and Toor was
hydrogen (l)-nitrogen (2)-carbon dioxide (3). In one of their experiments the initial
concentration in each cell was

= 0.50086 = 0.49914

xu= 0.50121 xie= 0.49879 JC3/ = 0.0

where xi0 is the mole fraction of species / in bulb 1 and xig is the mole fraction of species /
in bulb 2. The values of the diffusion coefficients of the three binary pairs are given in
Example 6.3.1.

SOLUTION The concentration time history can be determined directly from Eq. 6.4.3. We
illustrate the procedure by calculating the mole fractions after 4 h (14,400 s).

The effective diffusivities were calculated in Example 6.3.1

Dx eff = 77.49 mm2/s

Z)2eff = 28.00 mm2/s

The cell constant ft is calculated from Eq. 5.4.6

P = 0.9895 m"2

The mole fraction of component 1 may be calculated from Eq. 6.4.3 as

= 0.2506 + exp(-0.9895 X 7.749 X 1(T5 X 14,400) X (0.0 - 0.2506)
= 0.1682

x20 = x2oo + exp{ -pD2tGfi(t - to)}(x°2Q - x2oo)

= 0.4998 + exp(-0.9895 X 2.800 X 10"5 X 14,400) X (0.50086 - 0.4998)

= 0.5005

System : hydrogen (1) -
nitrogen (2) -
carbon dioxide (3)

0.6r

mole
fraction
nitrogen

linearized theory

effective diffusivity

10
time / [h]

10
time / [h]

n 0.6

mole
fraction

hydrogen

0.0

Figure 6.1. Composition-time history in two bulb diffusion cell. Experimental data from Duncan
(1960).
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Figure 6.2. Composition profiles in two bulb diffusion cell. Experimental data from Duncan (1960).

Figure 6.1 shows the concentration time history in the diffusion cell for the experiment of
Duncan and Toor that was described in detail in Example 5.4.1. The mole fraction of
hydrogen predicted by the effective diffusivity model compares well with the experimental
data of Duncan (1960). However, the effective diffusivity model suggests that the mole
fraction of nitrogen should remain almost constant at approximately 0.5. This is in stark
contrast to the experimental data (Fig. 6.1). The results obtained with the effective
diffusivity method for nitrogen are completely different from those obtained with the
linearized theory. Additional comparisons between the data of Duncan and Toor and the
predictions of both the linearized equations and the effective diffusivity models are shown in
the triangular diagram in Figure 6.2.

It is worth noting that the almost constant value of the composition of nitrogen would
have been predicted with any of the formulas used in Example 6.1.1 to calculate the
effective diffusivity. Thus, we have our first demonstration of the inability of the effective
diffusivity approach to model multicomponent diffusion processes. H

6.5 THE LOSCHMIDT TUBE

Our task here is to derive an expression that describes how the composition of a multicom-
ponent mixture changes with time in a Loschmidt diffusion apparatus of the kind described
in Section 5.5. The composition profile for a binary system is given by Eqs. 5.5.5 and 5.5.6);
the solution to the binarylike multicomponent problem is given by the same expressions on
replacing the binary diffusivity in those equations by the effective diffusivity. The average
composition in the bottom tube after time t, for example, is given by

(*/+-*/-)
(6.5.1)
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where

(6.5.2)

with m = k + \.

Example 6.5.1 Multicomponent Diffusion in The Loschmidt Tube:
Another Test of the Effective Diffusivity

In this example we repeat the calculations of Example 5.5.1, where we used the linearized
theory to compute the concentration time history in a Loschmidt tube experiment described
by Arnold and Toor (1967). The system they used was methane (l)-argon (2)-hydrogen (3).
The diffusion tube had a length of (TT/O2 = 60 m"2. At the temperature (34°C) and
pressure of the experiments (1 atm) the binary diffusion coefficients of the three ternary gas
pairs were

CH

CH

4-Ar =

4"H2 =

Ar-H2 =

be at the

= 0.0

= 0.585

= 21.57mm2/s

= 77.16 mm2/s

= 83.35 mm2/s

start of one of their exp*

x2_

x2+

= 0.509 x3_ =

= 0.485 x3 + =

0.

0.

mei

491

0

SOLUTION As in the preceding example, none of the simple effective diffusivity formulas
are applicable to the situation in the Loschmidt tube. We will proceed with the effective
diffusivity formula of Wilke that gives

D1>cff = 28.32 mm2/s

D2eff = 33.80 mm2/s

These diffusivities were calculated at the average composition

xlav = 0.2575 x2av = 0.4970 x3au = 0.2455

We will illustrate the procedure for computing the composition time history by calculat-
ing the mole fractions in the bottom tube after 15 min. This will allow us to compare the
results to those obtained in Example 5.5.1. With t equal to 15 min (900 s), we compute
the functions ft from Eq. 6.5.2. For present purposes we shall use just the first term of the
series in Eq. 6.5.2.

1 4 / 1 IT2

1 4 [ 1
= - exp j - - X 60 X 2.832 X 10~5 X 900

= 0.2235



THE LOSCHMIDT TUBE 135

1 4 ( 1
= 2 e xP\ - T X 60 X 3.380 X 10"5 X 900

= 0.2432

The converged values of fx and f2 are

/i = 0.2220

f2 = 0.2425

The mole fractions in the bottom tube follow from Eq. 6.5.1 as

x1 = 0.1143 x2 = 0.5032

The mole fractions computed with the linearized equations are (from Example 5.5.1)

x1 = 0.135 x2 = 0.553

These results are sufficiently different that we ought to be able to determine the better
model by comparing the results to the experimental data. The complete concentration time
history is shown in Figure 6.3 for this experiment. Note that the mole fraction of methane
predicted by the effective diffusivity method is in reasonable agreement with the data
(although the results from the linearized equations are better). However, the effective
diffusivity method predicts almost no change in the mole fraction of argon; a result that is in
marked contrast to both the experimental data and to the predictions of the linearized
equations.

Additional data of Arnold and Toor are compared to the predictions of the linearized
equations and of the effective diffusivity models in the triangular diagram in Figure 6.4.
Clearly, the agreement with the data is very bad indeed. Thus, we have our second
demonstration of the inability of the effective diffusivity method to model systems that
exhibit strong diffusional interactions. •

System : methane (1) -
argon (2) -
hydrogen (3)

0.6 r

mole
fraction
argon

linearized theory

effective diffusivity

n 0.6

0.0

time / [h] time / [h]

Figure 6.3. Composition time history for diffusion in the Loschmidt tube. Data from Arnold (1965).
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linearized theory

effective diffusivity
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Mole fraction methane

1.00

Figure 6.4. Comparison between Loschmidt tube experiments of Arnold and Toor (1967) and the
composition trajectories predicted by the linearized theory and effective diffusivity methods.

6.6 DIFFUSION IN A BATCH EXTRACTION CELL

The batch extraction cell experiments of Krishna et al. (1985) were discussed at some length
in Section 5.6, where it was shown that the diffusion fluxes could be calculated from

1 A dt

Here we use an effective diffusivity model for the diffusion fluxes

(5.6.8)

/ , = (6.6.1)

which may be combined with Eq. 5.6.8 and solved subject to the initial condition t = 0,
xi = xio t 0 giye the composition profiles

xu - xt = exp{ -Kt eift} AxiQ i = 1,2

where Kieff is a volumetric transfer coefficient [s"1] defined by

(6.6.2)

(6-6.3)

Example 6.6.1 Multicomponent Diffusion in a Batch Extraction Cell

In this example we analyze the composition trajectory in the glycerol rich phase (G) of the
system glycerol(l)-water(2)-acetone(3) using a pseudobinary model. The initial composition



DIFFUSION IN A BATCH EXTRACTION CELL 137

Gois

x1Q = 0.85 x20 = 0.15 JC30 = 0.0

The composition of the interface (G7) is

Xu = 0.5480 x2I = 0.2838 x3I = 0.1682.

DATA The matrix of multicomponent volumetric mass transfer coefficients [K]is given in
Example 5.6.1. as

0.2327 -0.3742] h_i
-0.1162 0.3373 J

SOLUTION The first calculation step is the determination of the effective volumetric mass
transfer coefficients. We may adapt Eqs. 6.1.9 and 6.1.10 for this purpose

Ax10

The initial composition driving force vector (Ax0) = (xj - x0) is

- 0 3 0 2

0.1338
)

The effective volumetric mass transfer coefficients may now be estimated as

Klef{ - 0.2327 + (-0.3742)[0.1338/(-0.302)]

= 0.398 h"1

K2eff = 0.3373 + (-0.1162)[(-0.302)/0.1338]

= 0.6 h"1

The compositions after 1 h are computed as follows:

= 0.5480 - exp(-0.398 X 1) X (-0.302)

= 0.7507

x2 = x2I - exp{ -K2efft} Ax20

= 0.5480 - exp(-0.6 X 1) X (-0.1338)

= 0.2103

The complete concentration time history is shown in Figure 6.5. The composition
trajectories do not compare all that favorably with the experimental data of Krishna et al.
(1985). The actual observed equilibration paths and the predictions of the linearized
equations are more highly curved (see Fig. 5.3). It must also be pointed out that the effective
volumetric mass transfer coefficients should take on equal values (cf. discussion in Section
6.1.1 and Krishna et al., 1985) to maintain consistency with the requirement that the mole
fractions sum to unity. We conclude that we must reject a pseudobinary mass transfer
formulation for the diffusion fluxes in the batch extraction cell. •
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0.4

x2, mole fraction
of water

predictions of
effective diffusivity
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Figure 6.5. Equilibration paths during mass transfer in the system glycerol (l)-water (2)-acetone (3) in
a batch extraction cell. Experimental data correspond to Run C of Krishna et al. (1985).

6.7 THE EFFECTIVE DIFFUSIVITY—CLOSING REMARKS

The advantage of the effective diffusivity formulation is its simplicity. The primary disadvan-
tage is that effective diffusivities are not system properties except for the limiting cases
noted above. Furthermore, they depend on the fluxes Ni9 which are not always known in
advance. More complicated variations on the effective diffusivity theme, some requiring
iteration on Dt eff, others incorporating a variation of Di eff on position or composition have
been discussed'by Wilke (1950), Toor (1957), Shain (1961) and Hsu and Bird (1960). In view
of the many better and, indeed, sometimes simpler methods that have been developed since
then, we have not included them here.

The numerical examples in this chapter show the effective diffusivity approach in about
as bad a light as possible. This was partly our intention. Strictly speaking, none of the
limiting cases presented above applies to the conditions pertaining to the above examples.
Nevertheless, it is common practice to use an effective diffusivity in situations where it is not
warranted, so these examples provide a small indication of the errors that may be
encountered using an effective diffusivity formula in situations it was not designed to
handle.

It would be unfair of us to end this chapter with the impression that these results are
typical. If conditions are such that the limiting cases do indeed apply we will find that the
effective diffusivity approach does much better; Example 8.6.1 is a case in point.



PART II
Interphase Transfer

We have now reached the stage in which the most important problem in mass transfer
modeling has to be tackled, namely, the choice of a simplified picture to describe the actual
hydrodynamic conditions prevailing in the region of the interface. You may be wondering
why we need to use a simplified model? Well, the difficulty is that though the basic
governing differential equations are well understood, in many situations the fluid flow is so
complicated that the governing equations cannot be solved without gross oversimplifications.
In essence, the models used are highly simplified transport phenomena equations; in this
sense, they are mathematical models. But we may take another view of the hydrodynamic
models and that is to picture them as physical constructs that are more easily analyzed than
the actual situation, but that show, in some way, the characteristic behavior of the actual
situation. From a pragmatic point of view, the flow field is simplified to the extent that the
equations describing the diffusion process can be solved, preferably analytically.

Once the equations have been solved to obtain the composition and temperature
profiles, the diffusion fluxes Jt can be calculated and the interfacial transfer rates Nt

determined. It is customary to determine, on the basis of the chosen hydrodynamic model,
mass transfer coefficients that reflect the overall transfer facility (molecular and turbulent
transport) of the phase under consideration.

In Chapter 7 we define mass transfer coefficients for binary and multicomponent
systems. In subsequent chapters we develop mass transfer models to determine these
coefficients. Many different models have been proposed over the years. The oldest and
simplest model is the film model; this is the most useful model for describing multicompo-
nent mass transfer (Chapter 8). Empirical methods are also considered. Following our
discussions of film theory, we describe the so-called surface renewal or penetration models
of mass transfer (Chapter 9) and go on to develop turbulent eddy diffusivity based models
(Chapter 10). Simultaneous mass and energy transport is considered in Chapter 11.



7 Mass Transfer Coefficients

Our knowledge of multicomponent mass transfer coefficients is improving, but this is a slow
process. I still occasionally have to pray that my estimate of some coefficient will not be off by
more than one order of magnitude.

—J. A. Wesselingh (1992)

7.1 DEFINITION OF MASS TRANSFER COEFFICIENTS

Let us consider the two phase x and y system as shown in Figure 7.1 where typical
composition profiles are shown. The interface compositions are xu on the x side of the
interface and yu on the y side of the interface. The bulk phase mole fractions are denoted
by xib and yib for the two phases.

We shall adopt a simple model of the interface itself; a surface that offers no resistance
to mass transfer and where equilibrium prevails. Thus, the usual equations of phase
equilibrium relate the mole fractions yu and xu.

The starting point for any analysis of the interphase mass transfer process will be Eqs.
1.3.13 describing the continuity of molar fluxes with respect to the interface. The simpler
form, Eq. 1.3.14, will suffice for a majority of the cases in which the interface remains
stationary. We proceed with Eq. 1.3.14 with the understanding that if the interface moves,
the fluxes Nt must be referred to the interface and not a stationary coordinate reference
frame. Furthermore, interphase mass transfer usually takes place in a direction normal to
the interface and, therefore, it is sufficient to use the scalar form of Eq. 1.3.14, that is,

Nx = N.y=N. i = l,2,...,n (7.1.1)

where Nt
x is the normal component of Nt and is directed from the bulk phase x to the

interface /. The flux N? is directed from the interface / to the bulk phase y.
Equations 7.1.1 may be summed over the n species to yield

n

Nt
x = Ky = Nt= £ Ni (7.1.2)

i=l

7.1.1 Binary Mass Transfer Coefficients

The mass transfer coefficient k in phase x for a binary system is best defined in a manner
suggested by Bird et al. (1960, p. 639)

Nlb - xlbNt Jlb

kb = limit — - ~ = — ^ (7.1.3)

where the driving force for mass transfer Axx is taken to be the difference between the bulk
phase mole fraction xlb and the composition of Component 1 at the interface. The diffusion
fluxes used in Eq. 7.1.3 are the bulk diffusion fluxes and the mass transfer coefficient
obtained in Eq. 7.1.3 are the bulk phase mass transfer coefficients. By using the interface
compositions in the calculations of the convective term xxNt in Eq. 7.1.3, we shall obtain
the interface transfer coefficients. (In some cases the distinction between kb and kt (or
equivalently between Jlb and Ju) is important; for example, in the description of mass

141
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Figure 7.1. Mole fraction profiles in the region close to the interface during interphase mass transfer.

transfer effects in reactors.) We have omitted writing the subscript x (or superscript x) on
these last four mentioned quantities because we shall be first considering what happens on
the x side of the boundary. When we wish to describe the overall mass transfer behavior of
the x-y transfer process we shall distinguish between the quantities on either side of the
phase boundary. In proceeding further, it must be remembered that analogous relations will
hold for the y phase using the mole fraction difference

A word now about the units of kb. With the fluxes Nt expressed in moles per second per
meter squared (mol/s) (m2 interfacial area), and ct in the units moles per meter cubed
(mol/m3), the units of kh are meters per second (m/s). But is it really a velocity? To
examine this further, we replace the diffusion flux Jlb

obtain (omitting the limit sign)
in Eq. 7.1.3 with ctxlb(ul - u) to

(7.1.4)

The numerator on the right-hand side of Eq. 7.1.4 is the velocity of transfer of Component 1
with respect to the molar average reference velocity of the mixture u. For a binary system
(but not always for a multicomponent system), the quotient in Eq. 7.1.4 is positive and the
coefficient kb is positive. The greatest possible driving force |Ax| is unity; thus, with xlb = 1
and xu = 0, the maximum value of the denominator of Eq. 7.1.4 is unity, that is,
\Axl/xl\ < 1. Therefore,

b ^ -u) (7.1.5)

Equation 7.1.5 gives a physical significance to the mass transfer coefficient kb: It is the
maximum velocity (relative to the velocity of the mixture) at which a component can be
transferred in the binary system. The actual velocity of Component 1 relative to the mixture
velocity is given by

(«, -«) = (7.1.6)
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Equation 7.1.6 should be compared to Eq. 3.1.1. It appears that kb may be related directly
to the binary Fick diffusion coefficient D. Indeed, this will be shown to be the case when we
examine various specific hydrodynamic models for mass transfer later in this book.

Let us now turn to the more difficult problem of explaining why the limits N1 -» 0,
N2 -> 0 appear in Eq. 7.1.3. During the actual mass transfer process itself the composition
(and velocity) profiles are distorted by the flow (diffusion) of 1 and 2 across the interface.
The mass transfer coefficient defined in Eq. 7.1.3 corresponds to conditions of vanishingly
small mass transfer rates, when such distortions are not present. These low-flux or zero-flux
coefficients are the ones that are usually available from correlations of mass transfer data.
These correlations usually are obtained under conditions where the mass transfer rates are
low. For the actual situation under conditions of finite transfer rates, we may write

The superscript * serves to remind us that the transfer coefficients k°b correspond to
conditions of finite mass transfer rates. For further reading on this point we recommend
Bird (1960, Chapter 21).

In order to calculate the flux Nv we need the finite flux coefficient k*b\ this coefficient
usually is related to the zero-flux coefficient by a general relation of the form

K = kbSb (7.1.8)

where Bb is a correction factor to account for the effect of finite fluxes on kb. The exact
form of the correction factor depends, of course, on the composition profiles and, therefore,
on the hydrodynamic model chosen to describe the mass transfer process. More about this
in subsequent chapters.

7.1.2 Multicomponent Mass Transfer Coefficients

The development for multicomponent mixtures is best carried out by using n — 1 dimen-
sional matrix notation. We, therefore, define a matrix of finite flux mass transfer coefficients
[**] by

(/,) = (N) - (xh)Nt = ct[k-b](xb - *,) = ct[k;](Ax) (7.1.9)

The finite flux coefficients are related to the zero-flux or low-flux coefficients by a matrix
equation of the form

[**] = [kb][Bb] (7.1.10)

where [ab] is a matrix of correction factors. The calculation of the mass transfer coefficient
matrices and the correction factor matrices for a multicomponent system can be sensitive to
the mass transfer model chosen. Even for the simplest mass transfer model—the film model
—different approximations lead to different values for the matrices [kb\ [3^,], and [A;£]
(Chapter 8). There is a further problem with the multicomponent mass transfer coefficients,
that of nonuniqueness; this is explained below.

In Eqs. 7.1.9 we define n — 1 X n — 1 elements of the mass transfer coefficients with the
help of n - 1 linear equations. It follows that the elements k'bij are not unique; that is,
another set of these coefficients can also lead to the same value of the fluxes Nt. Put
another way, making mass transfer measurements in a multicomponent system for the fluxes
Nt and Ax, does not uniquely determine the values of the mass transfer coefficients. A large
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set of measurements of Nt and AJC, will be necessary to obtain a set of coefficients. In
practice, we proceed in a different manner. We try to predict the values of the multicompo-
nent mass transfer coefficients from binary mass transfer correlations, using as a basis, the
generalized Maxwell-Stefan equations or the generalized Fick's law. However, various
approximations are necessary before tractable solutions are obtained.

7.1.3 Interaction Effects (Again)

Let us take another look at diffusional interaction effects with the help of Eqs. 7.1.9 and
7.1.10, rewritten for a ternary system as follows:

[ km
nl

where

»12
i i

k<-21 *22JL«21 a

: n H n + k12a2l knal2 + k12a22

[^2lBn + ^22^21 ^21^12 + k22322^

That is

h =ctK\^x\ +ctk
m

12kx2
(7.1.13)

J2 = ctk21 Axj + ctk22 Ax2

Since, in general, k\2, k21, Ax1? and AJC2 can take on any sign, depending on the
physical constraints imposed on the system, we could encounter one of the three situations
sketched below.

1. Even when its constituent driving force Ax1 is zero, we could have a nonvanishing
flux Jl9

Jx # 0 A*! = 0 (7.1.14)

This is known as osmotic diffusion (Toor, 1957).
2. Under a certain set of operating conditions and system properties the term k\2 AJC2

may be of the same magnitude and of opposite sign to k\x Axr leading to

Jx = 0 AJCJ # 0 (7.1.15)

A diffusion barrier is considered to exist for component 1 (Toor, 1957).
3. It is also conceivable that the term k\2 Ax2 overshadows k*n Axx in magnitude and is

of opposite sign giving rise to

< ° (7.1.16)

Component 1 experiences reverse diffusion in this case (Toor, 1957).
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It must be stressed that for a two-component system where

J1 =ctk-kXl (7.1.17)

with k* > 0, none of the three phenomena, sketched above for a ternary mixture, can take
place.

The ratio of driving forces Axx/Ax2 plays an important role in enhancing diffusional
interaction effects in multicomponent mass transfer. Thus, a small cross-coefficient k\2 may
be linked to a large Ax2, resulting in large interaction effects. The criteria presented above
are a little different from those discussed in Section 5.2, where Fick diffusion coefficients
and the mole fraction gradients were used. The physical significance is, however, the same.

7.2 THE BOOTSTRAP PROBLEM (AND ITS SOLUTION)

The major part of the next few chapters are devoted to methods of estimating the low flux
mass transfer coefficients k and [k] and of calculating the high flux coefficients k'b and [km

b].
In practical applications we will need these coefficients to calculate the diffusion fluxes Jt

and the all important molar fluxes Nt. The Nt are needed because it is these fluxes that
appear in the material balance equations for particular processes (Chapters 12-14). Thus,
even if we know (or have an estimate of) the diffusion fluxes Jk we cannot immediately
calculate the molar fluxes Af- because all n of these fluxes are independent, whereas only
n — 1 of the Jt are independent. We need one other piece of information if we are to
calculate the Nt. Usually, the form of this additional relationship is dictated by the context
of the particular mass transfer process. The problem of determining the Â  knowing the Jt

has been called the bootstrap problem. Here, we consider its solution by considering some
particular cases of practical importance.

7.2.1 Equimolar Counterdiffusion

When the total molar flux vanishes

Nt = 0 (7.2.1)

the component molar fluxes Nt equal the corresponding molar diffusion fluxes Jt for all
species of the mixture

N,=J, (JV, = O) (7.2.2)

This situation is sometimes referred to as equimolar counterdiffusion (or mass transfer).
In an isobaric closed system like the diffusion cell or Loschmidt tube (see Chapter 5), any

movement of the molecules of one (or more) species in one direction must be exactly
balanced by a movement of the molecules of other species in the opposite direction and
there is no net change in the number of moles Nt = 0.

7.2.2 Multicomponent Distillation

The condition Nt = 0 is often assumed to be valid in multicomponent distillation calcula-
tions. A better approximation is the relationship

,,. = 0 (7.2.3)
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where the A//vap i are the molar latent heats of vaporization. It can be seen that if the
molar latent heats are equal, the total flux Nt vanishes. However, Eq. 7.2.3 is a special case
of a more general relationship between the fluxes that we shall derive in Section 11.5.
Nonequimolar effects in distillation are illustrated in Examples 9.2.1 and 11.5.1.

7.2.3 Stefan Diffusion

The general case of mass transfer in a mixture where one component has a zero flux is
known as Stefan diffusion. This situation is very common.

• Condensation in the presence of a noncondensing gas is an important operation in
many chemical processes. A better known occurrence is the condensation of water
vapor on a cold window. The water vapor has a nonzero flux but the air does not
condense and so has a zero flux.

• Evaporation is the opposite of condensation in the presence of a noncondensing gas.
The most commonplace application is the evaporation into air of a puddle of water
lying on the ground. The flux of air is zero.

• Absorption is another very important chemical process where one or more species are
removed from a gas stream by absorption into a liquid. One of the components of the
gas stream may be insoluble (or is assumed to be insoluble) in the absorbing liquid and,
therefore, has a zero flux.

Let us denote that component with zero flux as species n. Thus,

Nn=Jn+xnN, = 0 (7.2.4)

The total molar flux N( is, therefore, given by

N, = - ^ (7.2.5)
xn

Thus, the relation that allows the calculation of the nonzero Â  from the Jt is

Xn

+ - ) / , • + - " £ 4 (7.2.6)

k¥=i

For a two component mixture Eq. 7.2.6 simplifies to

^ = (1+^/^)/!=/!/^ (7-2.7)

7.2.4 Flux Ratios Specified

In some situations it is possible to specify the ratio of the component molar flux Nt to the
total flux Nt

N; = ztNt (7.2.8)

where zi is the specified flux ratio. Equation 7.2.8 may be used to establish the following
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relationship between TV, and Jt

Some situations where the flux ratios may be known are identified below.

• Condensation of mixtures. It is easy to show with the help of a material balance that
the composition of the first drop of condensate is determined by the relative rates of
condensation. In practice, the condensate composition throughout a horizontal con-
denser often is assumed to be given by the relative rates of condensation (more on this
in Chapter 15).

• For diffusion controlled heterogeneous chemical reactions the reaction stoichiometry
dictates the flux ratios.

For example, in the synthesis of ammonia (3) from nitrogen (1) and hydrogen (2)
following the reaction

N2 4- 3H2 -> 2NH3

catalyzed by a porous solid catalyst, the flux ratios are fixed by reaction stoichiometry as

or, in terms of the zt,

Z\ = 1 Z2 = I

Note that the zt sum to unity; however, individual zt may be positive, zero, or negative. In
cases like this one the composition at the surface must be determined in order to satisfy the
stoichiometric relations and reaction rate equations (see Examples 8.4.1 and 10.4.1).

7.2.5 The Generalized Bootstrap Problem

The above relationships between the Nt and the Jt are special cases of a more general
expression we will derive below. The generalized determinacy condition is written in the
form

n

E ViNt = 0 (7.2.10)

where the vt can be considered to be determinacy coefficients. To relate the Nt to the Jt we
proceed as follows. First, we multiply Eq. 1.2.12 by vt to obtain

ViN.t - viJi + viXiNt (7.2.11)

then sum over all species to get, in view of Eq. 7.2.10,

n n

E ^ i + K E PiXi = 0 (7.2.12)
i=\ i=\
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The total flux Nt may now be expressed in terms of the diffusion fluxes as

N,= -\L Vih\ L "/*.•) = " "E A*/* (7.2.13)
\i=l / i=\ I k=l

where the coefficients A^ are defined by

A, = (vk - vn) / £ VjXj (7.2.14)
I J-i

Finally, we substitute for Nt in Eq. 1.2.12

«-i

Nt = Zfrkh (7-2.15)
A : = l

where the fiik are defined by

where 5//c is the Kronecker delta.
For equimolar counterdiffusion we make all the vt equal.

(7.2.16)

(7.2.17)

and the j8/A: reduce to 8ik.
On the other hand, for nonequimolar distillation the vt may be set equal to the molar

latent heats of vaporization

5/ I = 1 , 2 , . . . , / I (7.2.18)

For Stefan diffusion we make all the vt zero except one that may take any nonzero value.

Vi = 0 vn*0 (Afn = O) (7.2.19)

In this case Eq. 7.2.16 simplifies to

ft* = 8*+*,•/*» (JV« = O) (7.2.20)

For situations where the stoichiometry of a chemical reaction controls the flux ratios it is
preferable to proceed somewhat differently. Equations 7.2.9 may be combined in the form
of Eq. 7.2.15 with fiik given by

ft* = «/*/(!-*/A) (7-2.21)

7.2.6 The Bootstrap Matrix

Equations 7.2.13 and 7.2.15 will often be needed in n — 1 dimensional matrix form. The
required expressions are

N,= -(A)T(J) (7.2.22)
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and

(AT) = [£](/) (7.2.23)

[p] is known as the bootstrap matrix and has elements given by Eqs. 7.2.16 or 7.2.21
(Krishna and Standart, 1979). Equation 7.2.22 does not apply if the flux ratios are specified.

For equimolar counterdiffusion we have the simple result that [/3] = [/]. Departures
from the identity matrix signify the increasing importance of the convective term xtNt in the
mass transfer process.

Equations 7.2.9-7.2.21 apply at all points along the diffusion path; in the bulk fluid

(N) = [Hb\{Jb) = c,[pb][kl](Ax) (7.2.24)

as well as at the interface

(N) = [/3,](/,) - c,[0,][*;](A*) (7.2.25)

One important difference between the binary and the general multicomponent case is
worth recording here. For a binary system all matrices reduce to scalar quantities and we
must have

] = pbk*b = Nx/ct Ax, (7.2.26)

but we do not have the corresponding equality for the multicomponent system; that is,

[0/][*/*] * [Pt][kl] (7.2.27)

because the matrix equation [^4](x) = [B](x) does not imply the equality of the matrices
[A] and [B], The inequality (Eq. 7.2.27) actually spells out explicitly the problem of
nonuniqueness of the multicomponent mass transfer coefficients mentioned earlier. The
models of mass transfer that we describe in the next chapters will reveal that the two terms
on either side of Eq. 7.2.27 will be unequal except in the case of vanishingly small transfer
fluxes. It must be emphasized that the product of the two matrices on either side of
inequality (Eq. 7.2.27) with the column matrix of composition driving forces (Ax) will lead
to identical values of the molar fluxes Nt.

7.3 INTERPHASE MASS TRANSFER

Consider, once again, mass transfer across the phase boundary in Figure 7.1. We must have
continuity of the fluxes Â  across the interface (Eq. 7.1.1). We may express these fluxes in
terms of the driving forces for mass transfer on either side of the interface as

(N) = c^[kl\{xL - x') + Nt(x
L) = c{-[pL][k'L](xL - x') (7.3.1)

cr[k'v](y'-y^+Nt(y
y)=cr[pv][k'v](y'-y^) (7.3.2)

As noted earlier, we assume that at the interface itself the two phases are in equilibrium
with each other. The compositions on either side of the interface are, therefore, related by

yf = Kix\ i = l , 2 , . . . , n (7.3.3)

The Kt are the equilibrium ratios or "K values" (see, e.g., Henley and Seader, 1981; Walas,
1985).
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It will sometimes prove useful to linearize the vapor-liquid equilibrium relationship for
the interface over the range of compositions obtained in passing from the bulk to the
interface conditions

') + (b) (7.3.4)

where [M] is the matrix of equilibrium constants with elements

Mtj = dyf/dXj i, j = 1,2,..., n - 1 (7.3.5)

where yf is the mole fraction of a vapor in equilibrium with a liquid of composition xi and
(Z?) is a column matrix of "intercepts."

To evaluate [M] we must differentiate the vapor-liquid equilibrium model with respect
to composition. If the vapor liquid equilibrium ratios (lvalues) are given by

Kt = ytf/P (7.3.6)

then it can be shown that the matrix [M] is given quite simply by

[M] = [K][T] (7.3.7)

where [K]isa diagonal matrix with elements that are the equilibrium ratios (the first n - 1
of them) and [T] is the matrix of thermodynamic factors defined by Eqs. 2.2.5.

A general method of solving Eqs. 7.3.1-7.3.3 is described in Chapter 11, where we
complicate matters somewhat by including energy transfer across the phase boundary.

7.3.1 Overall Mass Transfer Coefficients

Summing the resistance in both phases in order to obtain a single expression for computing
the fluxes Nt without knowledge of the interface composition is widely discussed in the
literature on binary mass transfer. Here we consider the extension to multicomponent
systems (Toor, 1964a; Krishna and Standart, 1976b).

We define the composition of a vapor that would be in equilibrium with the bulk liquid
with the help of Eq. 7.3.4 as

(y*) = [M](xL) + (b) (7.3.8)

For binary systems we may define an overall mass transfer coefficient, KQV, by

j \ = cv
tK'ov{y\-yX) (7-3.9)

For binary systems all matrices contain must one element and we have no difficulty in
deriving the formula for the addition of resistances

1 1 M
- + —T T (7.3.10)

CtKOVh> CtK

where, for a binary system, M = K^ (cf. Eq. 7.3.7) with T given by Eq. 2.2.12.
For multicomponent systems we may write down the matrix generalization of Eq. 7.3.9 as

(/") = cr[K'ov\y
v'- y*) (7-3.li)

where the matrix of multicomponent overall mass transfer coefficients, [KQV\ is defined by
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a generalization of Eq. 7.3.10

[KhvY'WY1 = [k'yY
l[f*vY* + cMM][kiY\nLY' (7.3.12)

Unlike the binary case, we cannot define [KQV] by Eq. 7.3.11 because we have only n — 1
independent equations and the matrix [KQV] contains (n — I)2 elements (cf. discussion
below Eq. 7.2.25).

This cumbersome expression (Eq. 7.3.12) is not particularly useful as it stands. Fortu-
nately, it simplifies considerably in some special cases of interest. First, if the total flux is
near zero (as it will often be in distillation), the bootstrap matrices [f3] reduce to the identity
matrix and we have

[K'ovY1 " [k'vY1 + ̂ [M][k-LYl (7.3.13)

Second, in distillation the finite flux mass transfer coefficients will often be well approxi-
mated by their low flux limits and we can write a simpler expression for [Kov]

Y1 (7-3.14)

For binary systems Eq. 7.3.14 simplifies to

1 1 cv
t M

1? = Tv + ZLJL (7.3.15)
Kov K Ct K

Equations 7.3.11 and 7.3.14 are used in the development of expressions for modeling
mass transfer in multicomponent distillation, a topic we consider in Chapter 12. The
addition of resistances concept has seen use in distillation models by Krishna et al. (1981a),
Burghardt et al. (1983, 1984) and by Gorak and Vogelpohl (1985).



8 Film Theory

Conditions in the immediate region of an interface between phases are hard to explore
experimentally. In such situations it is helpful to develop a mathematical model of the process
starting with the known basic facts. The result of the analysis is then compared with those
experimental measurements which it is possible to make. Good agreement suggests that the
model may have been realistic.

—T. K. Sherwood, R. L. Pigford, and C. R. Wilke (1975)

8.1 THE FILM MODEL

In the film model, we imagine that all of the resistance to mass transfer is concentrated in a
thin film, or layer, adjacent to the phase boundary. Also that transfer occurs within this film
by steady-state molecular diffusion alone and that outside this film, in the bulk fluid, the
level of mixing or turbulence is so high that all composition gradients are wiped out, Figure
8.1. Mass transfer occurs through this film essentially in the direction normal to the
interface. That is, any constituent molecular diffusion or convection in any flow parallel to
the surface due to composition gradients along the interface is negligible in comparison to
the mass transfer fluxes normal to the interface. The thickness of this hypothetical film
is in the range 0.01-0.1 mm for liquid-phase transport and in the range 0.1-1 mm for
gas-phase transport.

Having made the appropriate simplifications to the hydrodynamics, the relevant differ-
ential equations describing the molecular diffusion process in the diffusion layer may now be
solved. The diffusion process is fully determined by

1. The one-dimensional steady-state of forms of Eqs. 1.3.10 and 1.3.11,

dNt
- 0 ^ = 0 (8.1.1)

showing that Nt and Nt are r invariant.
2. The constitutive relations (Eqs. 2.2.1 or 3.2.5).
3. The determinacy condition (Eq. 7.2.10).
4. The boundary conditions of the film model.

Xi ~~ Xi0

(8.1.2)

We shall develop the solution of these equations for the special case of a two-component
mixture before proceeding to the general ^-component case.

152
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Figure 8.1. Film model for transfer in phase x. Turbulent eddies wipe out composition gradients in the
bulk fluid phase. Composition variations are restricted to a layer (film) of thickness <f adjacent to the
interface. Model due to Lewis and Whitman.

8.2 FILM MODEL FOR BINARY MASS TRANSFER

Let us consider a planar film between the position coordinates r = r0 and r = r8. Mass
transfer between the two edges of the film occurs purely by molecular diffusion under
steady-state conditions. The thickness of the film is f = r8 - r0. The equation of continuity
of moles of species, (Eq. 8.1.1) can be written for species 1 and 2 as

dNx

dr

dN2

dr

dNt

dr
(8.2.1)

showing that Nv N2, and Nt ( = Nx + N2) are r invariant.
The generalized Maxwell-Stefan diffusion equations (Eq. 2.2.1) simplify to

d^

dr ctD
(8.2.2)

where D = BY is the Fick diffusion coefficient. In the development below we assume that
the Fick D is constant. That is equivalent to assuming that the Maxwell-Stefan D and the
thermodynamic factor Y are constant. The Fick D is, in fact, constant for ideal gas mixtures
at constant temperature and pressure and the assumption of constant D is a fair approxi-
mation for small concentration changes in nonideal fluid mixtures.

We rewrite Eq. 8.2.2 by substituting x2 = 1 - xv as

N2)

dr c,D c,D
(8.2.3)
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It is convenient to define the following parameters

1. A dimensionless distance

r - rn r - rn
(8-2.4)

where ( is the thickness of the diffusion layer or "film"

2. A dimensionless mass transfer rate factor

(N, + N2) Nt

3.

With these definitions Eq. 8.2.3 may be written as

— i = ®xA + (/>
dr\

which is to be solved subject to the boundary conditions of a film model

r = rQ v) = 0 x 1 = x 1 0

r = r8 7] = 1 x x = x u

( 8-2-6 )

(8.2.7)

(8.2.8)

The linear differential equation (Eq. 8.2.7), can be integrated to give the composition
profiles

- 1)(xi *io)

(x18 — x1Q)

The diffusion flux at 17 = 0, J10, is given by

ctD dxx

Similarly the diffusion flux at 17 = 1, JIS can be obtained

( 8 - 2 - 1 0 )

_ c,D dxx

Jls~ i dr,

D

Comparison of Eqs. 8.2.10 and 8.2.11 with the basic definition of the low flux mass transfer
coefficient (Eq. 7.1.3), shows

o = k8=k = D/i (8.2.12)
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Figure 8.2. High flux correction factor from film theory.

with the correction factors given by

<I> exp(<l>)

exp(<S>) - 1
(8.2.13)

In the limit of Nt (= N^ + N2) tending to zero, <I> = 0 and the correction factors Ho and H5

are unity (as can be shown using L'Hopital's rule). If 4> < 0, then the correction factor Ho is
greater than unity (and, therefore, A:J > kQ). On the other hand, if <l> > 0, then the
correction factor, Ho is less than unity (and, therefore, A:J < kQ). A graph showing the
behavior of the correction factors E o and H5 is shown in Figure 8.2.

The flux Nx can be calculated by multiplying the diffusion flux by the appropriate
bootstrap coefficient

Oexp(O)

(8.2.14)

(8.2.15)

To compute the flux N^ from either Eq. 8.2.14 or 8.2.15 requires an iterative procedure
since Nx (and A 2̂) are involved in the rate factor 4>. Repeated substitution of the fluxes
starting from an initial guess calculated with H = 1 will usually converge in only a few
iterations. It is possible, however, to derive an equation from which the flux Nt (and, hence,
Nx and 7V2) may be calculated without iteration. Recognizing that the right-hand members
of Eqs. 8.2.14 and 8.2.15 must give the same flux Nx we have, on cancelling the common
terms ct, k, <l>/(exp(<l>) - 1) and (x1Q - xia\

= Nt/Ctk = (8.2.16)

Various special cases of this result can now be identified.
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8.2.1 Equimolar Counterdiffusion

This situation can arise in, for example, a distillation column when the molar heats of
vaporization of the two components are equal to each other or when there is no net change
in the total number of moles during diffusion with heterogeneous chemical reaction.

Nt = 0 po = p8 = l d> = 0 Ho = H5 = 1

N^cMxio-Xu) (8.2.17)

N2= -N1 = ctk{x20-x28)

8.2.2 Stefan Diffusion

In this case we have diffusion of component 1 in the presence of an inert or stagnant gas.
This situation arises very often during absorption or condensation operations and when
reaction takes place in the presence of inerts or diluents. For the case where N2 = 0, we
have

60 = 1 + xlo/x2O = 1A2 0 /35 = 1 + x18/x2d = 1 /x
2S

- ^ = l n !£ = _ L = _ i (8.2.18)
x20j \ l - x 1 0 j ctk ctk

(8.2.19)

8.2.3 Flux Ratios Fixed

When the flux ratios zx = Nx/Nt and z2 = N2/Nt are fixed by, for example, the stoichiome-
try of a surface chemical reaction or by the composition of a liquid phase (as in some
condensation situations), the /3 coefficients are given by Eq. 7.2.21 and the mass transfer
rate factor reduces to

Nt Nl/zl 2/2—I = -1L± = _ i i_2 (8.2.20)
ctk ctk ctk

This expression allows calculation of the fluxes Nx and N2. It must be noted that in
problems of this kind one of the surface mole fractions, xl0 say, will be unknown and given
by an expression for the heterogeneous reaction rate at the surface (e.g., Nx = ksctx10,
where ks is the surface reaction rate constant). The flux ratios in condensation are
sometimes set equal to the condensate composition and the vapor composition at the
condensate surface is determined from vapor-liquid equilibrium equations. A more detailed
discussion of mass (and energy) transfer in condensation is postponed until Chapter 15.

8.2.4 Generalization to Other Geometries

For diffusion in cylindrical or spherical geometries the one-dimensional, steady-state form
of Eq. 1.3.10 simplifies to

draN: draNt

= 0 = 0 (8.2.21)
dr dr
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Figure 8.3. Generalization of film model to other geometries by appropriate definition of the character-
istic length i.

where a is unity for cylindrical geometries, two for spherical geometries, and zero for plane
films. Equation 8.2.21 shows that raNi and raNt are r invariant.

Equations 8.2.14-8.2.20, derived for the fluxes across a planar film, apply essentially
unchanged for diffusion in cylindrical and spherical films. All that needs to be done is to use
the appropriate definition of the characteristic length / from Figure 8.3. The flux then
calculated from Eqs. 8.2.14 or 8.2.15 would be that at the plane 77 = 0.

A very important practical application of the above film model is to determine the
external mass transfer resistance to catalyst particles (Example 8.2.2).

Example 8.2.1 Equimolar Distillation of a Binary Mixture

Estimate the rates of mass transfer in the distillation of the system methanol(l)-ethanol(2)
under the following conditions:

Temperature = 70°C, pressure = 101.325 kPa.
Composition in the vapor x1Q = 0.497.
Composition at the interface x15 = 0.567.
The Fick diffusion coefficient D = 9.1 X 10 "6 m2/s.
The film thickness i = 1 mm.

SOLUTION The first step is to calculate the molar density from the ideal gas law

ct = P/RT

= 101,325/(8.3143 X 343.15)

= 35.5mol/m3

The mass transfer coefficient is obtained from Eq. 8.2.12 as

: =D/i

= 9.1 X 10" 6 / 1 x 10~3

= 9.1 X 10~3 m/s
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Figure 8.4. Composition profiles in the vapor phase during the distillation of methanol(l) and
ethanol(2). Arrows indicate actual directions of mass transfer.

It is common (but not necessarily accurate—see Section 11.5) to assume equimolar
counterdiffusion in distillation. Thus, Nt = 0 and the flux of methanol is obtained directly
from Eq. 8.2.17 as

Nx = ctk(x10-xls)

= 35.5 X 9.1 X 10"3 X (0.497 - 0.567)

= -0.0226 mol/m2s

The flux of ethanol is just the negative of Nv Composition profiles are shown in Figure 8.4.
The arrows indicate the actual directions of mass transfer. Methanol diffuses from the
interface to the bulk vapor, whereas ethanol diffuses in the opposite direction. In other
words, the vapor is being enriched in the more volatile methanol. •

Example 8.2.2 Production of Nickel Carbonyl

Nickel carbonyl is to be produced by passing carbon monoxide over nickel spheres as shown
in Figure 8.5. The following reaction takes place at the solid surface:

Ni + 4CO(g) -> Ni(CO)4(g)

The reaction is very rapid, so that the partial pressure of CO at the metal surface is
essentially zero. The carbonyl forms as a gas that diffuses as fast as it forms from the metal
surface to the bulk gas stream.

We wish to estimate the rate of mass transfer of CO(1) during the production of nickel
carbonyl [Ni(CO)4](2) under the following conditions:

Temperature = 50°C, pressure = 101.325 kPa.
The composition of CO in the gas phase is 50 mol%.
Binary gas diffusivity D = 2X 10"5 m2/s.
Catalyst pellets are spherical with diameter d = 0.0125 m.
Film thickness = 0.695 mm.
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Figure 8.5. Composition profiles in the vapor film surrounding nickel spheres in the production of
nickel carbonyl. Arrows indicate actual directions of mass transfer.

SOLUTION For every mole of carbonyl that diffuses to the bulk gas stream, 4 mol of CO
diffuse to the metal surface. Thus, the flux ratios are determined as follows:

1 = -4N2

and

Hence,

and we may write

N2=J2/(l+x2/\)

When the flux ratios are fixed, we may evaluate the mass transfer rate factor <l> from
Eq. 8.2.20

It is convenient to identify the mole fraction x10 as the composition at the catalyst surface.
The mole fraction in the bulk gas is xls and is 0.5. The mole fraction x10 is zero, since
carbon monoxide is entirely consumed by the reaction at the catalyst surface. Thus,
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Eq. 8.2.20 simplifies to

= l n ( l - 0.5/f)

= -0.4700

To evaluate the flux of CO we need the molar density ct and the mass transfer
coefficient k = D/l. For a spherical film ( is obtained form the formula in Figure 8.3; the
result is 6 = 0.625 mm. The mass transfer coefficient therefore is

k = D/e

= 2x l(T5/0.625 X 10~3

= 0.0320 m/s

The next step is to calculate the molar density from the ideal gas law

ct = P/RT

= 37.1 mol/m3

The molar flux of CO may now be calculated as

N1 = zxctk^

= | X 37.7 X 0.032 X (-0.47)

= -0.756 mol/m2s

and 7V2 follows as:

N2 = z2ctk<$>

= - j X 37.7 X 0.032 X (-0.47)

= 0.189 mol/m2s

Composition profiles are shown in Figure 8.5. The directions of mass transfer are shown in
the figure by the arrows. •

Example 8.2.3 Condensation of a Binary Vapor Mixture

A vapor mixture of 40 mol% ethylene dichloride(l) and 60 mol% toluene® is fed at 130°C
and 101.325 kPa to a condenser. If the composition of the first drop of condensate that
forms on the cold surface is 32.5 mol% ethylene dichloride, find the total molar rate of
condensation at that position in the condenser.

DATA The interfacial equilibrium relationship is given by

1.14x17

where xu and yu are the interfacial compositions of ethylene dichloride in the liquid and
vapor phases, respectively.
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The vapor-phase mass transfer coefficient is

k = 0.054 m / s

SOLUTION The composition of the first drop of condensate is given by the relative rates
of condensation

The flux ratio z1 is, therefore, equal to the liquid mole fraction xx

We will identify the bulk gas with the position r = 0 and the interface with r — r8. The
bulk gas composition y10 is 0.4. The interface mole fraction yu is calculated from the
equilibrium relationship as

2.14 X 0.325
15 (1 + 1.14 X 0.325)

= 0.5075

Hence, the rate factor <l> is

<J> = In

= ln{(l - 0.5075/0.325)/(l - 0.4/0.325)}

= 0.8893

The molar density ct is evaluated from the ideal gas law as

ct = P/RT

= 101325/(8.3143 X 403.15)

= 30.2mol/m3

The total molar flux follows from Eq. 8.2.16 as

Nt = ctk®

= 30.2 X 0.054 X 0.8893

= 1.4517 mol/m2s

and the component fluxes are given simply by

Nx = zxNt

= 0.325 X 1.4517

= 0.4718 mol/m2s

N2 = z2Nt

= (1 - 0.325) X 1.4517

= 0.9799 mol/m2s

Composition profiles are shown in Figure 8.6. •
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Figure 8.6. Composition profiles in the vapor film adjacent to the condensate.

8.3 EXACT SOLUTIONS OF THE MAXWELL-STEFAN EQUATIONS
FOR MULTICOMPONENT MASS TRANSFER IN IDEAL GASES

Let us now turn our attention to ^-component mixtures. Exact analytical solutions of the
Maxwell-Stefan equations for a film model can be obtained for a mixture of ideal gases for
which the binary diffusion coefficients Dik are independent of composition and identical to
the diffusivity of the binary gas i-k pair. Solutions of the Maxwell-Stefan equations for
certain special cases involving diffusion in ternary systems have been known for a long time
(Gilliland (1937) (N3 = 0); Pratt (1950) (Nt = 0); Cichelli et al. (1951); Toor (1957),
(Nt = 0); Keyes and Pigford (1957); Hsu and Bird (1960); Johns and DeGance (1975)—mass
transfer with chemical reaction). A general solution applicable to mixtures with any number
of constituents and any relationship between the fluxes seems to have been derived first by
Turevskii et al. (1974) and independently by Krishna and Standart (1976a) and is developed
in detail below. The relationships between the general solution of Krishna and Standart and
the many special case solutions are explored by Taylor (1981a, 1982c).

The starting point for the ideal gas multicomponent film model are the Maxwell-Stefan
diffusion equations, written for the y phase, here taken to be gaseous

dr
(8.3.1)

Let us make use of the fact that the mole fractions add up to unity and eliminate yn from
Eq. 8.3.1 and write

(8.3.2)

where 77 is a dimensionless distance defined by

= (r~ ro)/f (8.3.3)
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The coefficients <f>/; are defined by

(8.3.4)

(8.3.5)

£i ctBik/l

1 1

c,Bln/e

and <f)i is defined by

4>i = - • (8.3.6)

Equations 8.3.2 are more conveniently written in n — 1 dimensional matrix form as

d(y)

where [<£] is a square matrix of mass transfer rate factors of order n — 1

(8.3.7)

12 $

with elements given by Eqs. 8.3.4 and 8.3.5 and where (4>) is a column matrix of order n — 1

The boundary conditions of the film model are

77 = 0 y,- = yi0

r; = 1 yy = yi8
(8.3.8)

Since c/} the Â  and the Dtj are constant, Eqs. 8.3.7 represents a set of linear differential
equations with constant coefficients. The solution, in n - 1 dimensional matrix form, is (see
Appendix B.2 for derivation)

(8.3.9)

(8.3.10)

(y) = [exp[*]rj](y0)

which we rewrite by subtracting (y0) from each side

(y - y0) -
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Equation 8.3.9 was presented as a solution of the Maxwell-Stefan equations by Turevskii
et al. (1974) and by Krishna and Standart (1976a). Krishna and Standart went further,
however, by applying the second boundary condition to Eq. 8.3.10

(ys - y0) - [exp[*] - M ] ( ( y 0 ) + I * ] " 1 ^ ) ) (8-3.ii)

This result can be combined with Eq. 8.3.10 to eliminate the column matrix ((y0) +
1

(y - y0) - [exp[<Kfr - [/]][exp[4>] - [/]]"1(yg - y0) (8.3.12)

which is an exact matrix analog of Eq. 8.2.9 for binary systems.
The next task is to obtain an expression for the diffusion fluxes Jt. For one-dimensional

diffusion the Maxwell-Stefan relations can be written in terms of the diffusion fluxes as (cf.
Eq. 2.1.24)

where the matrix [B] has elements given by Eqs. 2.1.20 and 2.1.21. The gradients in the
mole fractions are obtained from Eq. 8.3.12 as follows:

d(y) r ^ r r ^ u . • ' ^ - [ / ] ] - I ( y 8 - y 0 ) (8.3.14)

Equations 8.3.13 and 8.3.14 can be used to evaluate the diffusion fluxes at any position 77.
The diffusion fluxes at r\ = 0, JiQ, can be evaluated from

s c,[D0] d(y)

[O][exp[$]-[ /]]-1(y0-y8) (8.3.15)
V

where the elements of the matrix [Do] are obtained from [Do] = [T^]"1, with the elements
Bik evaluated from Eqs. 2.1.21 and 2.1.22 using the mole fractions yi0.

With the finite flux mass transfer coefficients matrix [km] defined by Eq. 7.1.9 we have

[fcj] = -l_-^[(i)][exp[(J)] - [/]] (8.3.16)

To calculate the zero flux mass transfer coeflicients [A:] we take the limit as the Nt (all n of
them) go to zero

lim [0>] -> [0] (8.3.17)

and

lim [<S>][exp[<I>] - [7]]"1 ^ [7] (8.3.18)

The proof of this is left as an exercise. Thus, the matrix of zero-flux mass transfer
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coefficients [A:o] is

= [D0]/f (8.3.19)

and the matrix of correction factors [Ho], is given by

[So] = [*][exp[*] - [7]]"1 (8.3.20)

Alternatively, we may proceed via the diffusion fluxes at r\ = 1

ct[Ds]d(y)

i d-q

-[nr\yo-y,) (8-3.21)

giving the zero-flux mass transfer coefficients

[*«] = [D&]/( (8.3.22)

and the matrix of correction factors

[H8] = [<D]exp[<t>][exp[<&] - [7]]"1 = [B 0 ]«p[*] (8.3.23)

By invoking the "bootstrap" solution, the fluxes Nt can be evaluated from one of two
equivalent expressions

(N) = c,[0o][*o][Bo](yo - ys) = c,[Wo](yo - ys)
(8.3.24)

- c f [ j 8 , ] [ * 8 ] [ B 8 ] ( y 0 - y 8 ) - C | [ ^ ] ( y 0 - y 8 )

where we have defined a matrix of combined mass transfer coefficients as [W] = [/3][A:][B].

8.3.1 Formulation in Terms of Binary Mass Transfer Coefficients

In proceeding with the discussions we define a matrix [R] with elements

V n ViR»-r+ L ?
"-in k=\ ik

k¥:i (8.3.25)

\ Kij Kin )

where Ktj is a low flux mass transfer coefficient for the binary i-j pair defined by

KU = Du/t (8.3.26)

The matrix of low flux mass transfer coefficients may be expressed in terms of the Rtj as

[*] = [R]'1 (8.3.27)
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We may also write the elements of the rate factor matrix [<I>] in terms of these binary
mass transfer coefficients.

(8.3.28)

For a ternary system we may carry out the inversion of [R] explicitly and calculate the
elements of [A:] as follows:

(8.3.30)

where

5 = y^23 + ^2*13 + ^3^12 (8.3.31)

The elements of [<I>] are given by

N l

C,Ki3 C

XT l 1

Nl\ctKj

XT ( !

N2[c,K

N2

tKl2

2

12

TV2

N-
1

C^13

CtK13

1 \

C / K 2 3 /

^ 3

(8.3.32)

where

1 1

CtKtK13

(8.3.33)

Some special cases of these expressions will be encountered in the illustrative examples we
consider below.
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8.3.2 Limiting Cases of the General Solution

Let us now examine the structure of the matrices [k], [4>], [3], and [km] for two limiting
cases.

• All binary diffusion (or mass transfer) coefficients equal.

• Species one and two present in very low concentrations.

If all the binary diffusion coefficients have the same value then we see from Eq. 8.3.25
that [k] degenerates to a scalar times the identity matrix

[*]=*[/] (8.3.34)

That is,

kn = K ku = 0 i*j=l,2,...,n-l (8.3.35)

The rate factor matrix [<£] also is diagonal with all diagonal elements equal

[<£>] = <*>[/] <S> = Nt/ctK (8.3.36)

The correction factor matrix is particularly simple to calculate since it too is diagonal with
all diagonal elements equal

[Ho] = H o [ / ] with Ho = * / ( e * - 1) (8.3.37)

and the general relation for the diffusion fluxes (Eq. 8.3.15) simplifies to

(/) - c,KB0[/](Ay) (8.3.38)

That is,

( 8 3 3 9 >

In fact, for this special case it is possible to derive an explicit relation for the molar fluxes Nt

(see Section 8.5 for further discussion).
In dilute solutions the concentrations of all but one of the components are so low that we

may assume that yt « 0 for / = 1,2,..., n — 1 and yn « 1. Returning to Eqs. 8.3.25 we
find, for this special case

k i i = Kin * l7 = 0 i * j (8.3.40)

The rate factor matrix follows from Eqs. 8.3.28 and 8.3.29

<$>u=Nt/ctKin % = 0 i*l (8-3.41)

In presenting these last results we make use of the fact that if the mole fractions are
vanishingly small, then so are the corresponding driving forces Ay,.
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Since [k] and [<l>] are diagonal we can calculate the correction factor matrix and the
finite flux mass transfer coefficients from

^ r T (83-42)

and

J; = c,*;i(y,o-y«) (8-3-43)

Only in these limiting cases is the computation of the fluxes from an exact solution of the
Maxwell-Stefan equations so straightforward. In most cases of practical importance we
must make use of the full matrix solution (Eq. 8.3.24).

8.3.3 Computation of the Fluxes

The computation of the fluxes Nt from either of Eqs. 8.3.24 necessarily involves an iterative
procedure (except for the special cases discussed above), partly because the Nt themselves
are needed for the evaluation of the matrix of correction factors and also because an explicit
relation for the matrix [<J>] cannot be derived as a generalization of Eq. 8.2.16 for binary
mass transfer; there is no requirement in matrix algebra for the matrices [WQ] and [W8] to
be equal to each other even though the fluxes calculated from both parts of these equations
must be equal. Indeed, these two matrices will be equal only in the case of vanishingly small
mole fraction differences (yQ — y8) and vanishingly small mass transfer rates. In almost all
cases of interest these two matrices are quite different. An explicit solution was possible for
binary systems only because all matrices reduce to scalar quantities.

The method of successive substitution can be a very effective way of computing the Nt

from Eqs. 8.3.24 when the mole fractions at both ends of the diffusion path yiQ and yi8, are
known. In practice, we start from an initial guess of the fluxes Nt and compute the rate
factor matrix [<£]. The correction factor matrix [H] may be calculated from an application of
Sylvester's expansion formula (Eq. A.5.20)

I r l / \

[B]= EB,- n [*]-*,[/] / n * ' - * ' <8-3-44)

where m is the number of distinct eigenvalues of [4>] (m ^ n — 1). The eigenvalue
functions H, are given by

4> • A 4> e x p <!> •
B ^ S ( 8 3 - 4 5 )B,o ^ r S « A

exp <£, - 1 exp O; - 1

depending on whether the flux correction factor matrix is to be evaluated at 77 = 0 or at

^ = L

For the ternary case with two distinct eigenvalues <f>x ¥= <f>2> Eq. 8.3.44 simplifies to

. a , [ w * j / i i + fl,[[i.[]]
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which can be expanded as follows:

B]I - *'(.»» - > ) + *>(?»-*>) (8.3.46a)

<Pi -<p2 $2 - $j

B12 = 7T T ^ U 1 2 (8.3.46b)

(a, - § , )
B21 - ;> . ^21 (8.3.46c)

(*i - * 2 )

ai(*22 - * 2 ) B2(<&22 - <!>,)
s 2 2 = ' \ 22 ^ 2^ + 2\ 22 ^ l> (8.3.46d)

The two eigenvalues <&1 and <f>2
 a r e t n e roots of the quadratic equation

* 2 " ( * n + *22)4> + C * , ! ^ - O12<K21) = 0 (8.3.47)

that is,

(8.3.48)
cX>2 = | { t r [O] - ydisc[^>]}

where

The fluxes (N) can then be calculated from either of Eqs. 8.3.24 (having previously
calculated [/3] and [k]). The new estimates of the Â  are used to recalculate [<£] and the
procedure is repeated until convergence is obtained. An initial estimate of the A/) can be
computed from Eqs. 8.3.24 with the correction factor matrices set equal to the identity
matrix [/]. This procedure is summarized in Algorithm 8.1 and illustrated in Example 8.3.1.

Before continuing we note that this procedure will not always converge and, if it does,
it may not do so particularly efficiently. In Section 8.3.4 we discuss some of the computa-
tional subtleties of these equations and provide a more efficient and robust algorithm for
computing the fluxes.

Algorithm 8.1 Algorithm for Calculation of Mass Transfer Rates
from an Exact Solution of the Maxwell-Stefan Equations

Given: (y{)),(y8),cnKij.
Step 1: Compute [k].
Step 2: Compute [/3].
Step 3: Estimate (TV) = ct[p][k](Ay).
Step 4: Calculate [<!>].
Step 5: Calculate [H].
Step 6: Calculate (/) = c
Step 7: Calculate (TV) =
Step 8: Check for convergence of the Nt

If fluxes have not converged
return to Step 4.



170 FILM THEORY

Example 8.3.1 Equimolar Counterdiffusion in a Ternary Mixture

Estimate the rates of mass transfer during the distillation of ethanol(l)-£-butyl
alcohol®*-water(3) under the following conditions:

Bulk vapor-phase composition y10 = 0.65, y20 = 0.13

Interface vapor composition y18 = 0.50, y25 = 0.14

The distillation process may be assumed to be equimolar.

DATA The difTusivities of the three binary pairs are

D12 = 0.80 X KT5 m2/s

£>13 = 2.1 X 10~5 m2/s

>23D23 = 1.7 X 10-5m2 /s

Molar density of vapor mixture: ct = 30 mol/m3

Film thickness: t = 1 mm

SOLUTION We follow below the procedure outlined as Algorithm 8.1; final results are
summarized in Table 8.1.

Step 1: Calculate [k0] = —-—= — = [ i^]" 1 . [k0] can be calculated directly from

Eqs. 8.3.30 using y0. The results are

n i [0.01872 0.00924] ,
L/C°J " L0.00158 0.01060jm / S

Step 2: Calculate [/3]. For equimolar counterdiffusion [/3] = [/] and the fluxes are given by

= Cl[k0][B0](y0-ya)

Step 3: We begin the iterations by assuming that all the fluxes are zero, A^(0) = 0. Hence,
[<!>] = [0], [H] = [/] and we obtain our first real estimate of the fluxes from

8.1450 X 10~2 1 T , 2

3.9347 X 10
T . 2. mol/m s

- 3 '

Step 4: [$] follows from Eqs. 8.3.32 as

-N2a2 Nxa2

*ter?-Butyl alcohol is the common name for 2-methyl-2-propanol.
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where ax and a2 are defined by Eqs. 8.3.33. The determinant of this matrix is zero and
its inverse, defined by Eq. A.3.8, does not exist. {In fact, [<I>] is always singular if Nt = 0
regardless of the number of components (Taylor, 1981a).} One of the eigenvalues of [<l>],
4>2

 sav> must be zero. The other eigenvalue is given by

^1=N1a2+N2a1

which, for this special case, is just the sum of the diagonal elements of [3>].
Substituting the current values of the molar fluxes gives

0.01015 -0.2109]
-0.00868 0.1797 J

and the eigenvalues are

4>! = 0.18982 <$>2 = 0.0

Step 5: [H] is calculated using Sylvester's theorem. First, the eigenvalues E0; from
Eqs. 8.3.45

a,
exp 4>x — 1

The latter expression can be obtained by a straightforward use of L'Hopital's rule.
Carrying out the computations gives

ax = 0.90809 a2 = 1.0

For this special case Eqs. 8.3.46 for the correction factor matrix simplify to

w = ( 5 l ~ - < S > 12

21 £

woo —

22

with the following numerical values (based on the current values of the

rwi = [ ° - 9 9 5 1 0.10172]
L " J [0.0042 0.913 J
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Step 6: Although it is more efficient NOT to calculate [km] here, we include the results for
illustrative purposes.

. i _ tk irw I = [0.01866 0.01034]
oJ - L^oJL-oJ [0.00162 0.00984J m / S

Now the diffusion fluxes Jt are calculated as

ST<2)\ n . v \ nnaf 0.01866 0.010341/ 0.15 \
(J(2)) = ct[k-0](y0-y8) = 0.03[0Q01618 0.00984j I -0.01 J

2s8.0881 X 1 0 -
4.3287 XlO" 3

Step 7: Since [/3] = [/], the third estimate of the Nt is, therefore,

8.0881 X 10(2) /
V J \ 4.3287 X 10~3

Comparing this result with the last shows that convergence has not been obtained and we
must continue for at least one more iteration.

Using the latest values of the Nt we recalculate [<I>], [3], and [k*] as follows:

0.011165 -0.20862]
-0.009548 0.17841 J

<!>! = 0.18958 <l>2 = 0.0

§ 2 = 0.9082 § 2 = 1 . 0

[0.9946 0.1010 ]
).0046 0.9136 J

r*«l _ [0.01866 0.01034] .
1 o J [0.00162 0.00984 J 7

and so we calculate our third estimate of the fluxes from

The fluxes are now converged to an accuracy of less than 1%. One further iteration will give
only marginal improvement (A^ = 8.0858 X 10"2, N2 = 4.3442 X 10~3 mol/m2s). The four
iterations required here is fairly typical of problems involving equimolar counter transfer
Nt = 0.

Interestingly, even for equimolar transfer Nt = 0, the correction factor matrix [H] does
not reduce to [/] (although it is well approximated by [/]). This means that the composition
profiles (as computed from Eq. 8.3.12 and shown in Fig. 8.7) will not be truly linear
(although it is hard to discern this fact from Fig. 8.7). Contrast this with a binary system for
which Nt = 0 leads to linear composition profiles and Ho equal to unity.
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1.0 r

mole
fraction

0.0

ethanol I

_L I
^ tert butyl alcohol (2)

z=0 z= l
Interface bulk vapor

Figure 8.7. Composition profiles for Example 8.3.1. Arrows indicate directions of mass transfer.
tert-Butyl alcohol is transported towards the interface when its own driving force suggests transfer away
from the interface.

The final results are summarized in Table 8.1. It is to be noted that component 2, £-butyl
alcohol, is being transported towards the interface when its own driving force suggests
transfer away from the interface. However, it can clearly be seen in Figure 8.7 that the
driving force for £-butyl alcohol is rather small and the effects of coupling between species
transfers, quantified by the terms k\2 Ay2 and k\x Ay1? are significant here (see Table 8.1)
and cannot be ignored. •

TABLE 8.1 Equimolar Transfer in Ethanol (1)-tert-Butyl alcohol (2)-Water(3)

Position

Composition (y)

Driving force (Ay)

Matrix of low flux mass
transfer coefficients
[*](mm/s)

Matrix of rate factors

[ * ] ( - )
Matrix of correction

factors [S] ( - )

Matrix of high flux mass
transfer coefficients
[*•] (mm/s)

Molar fluxes
(mmol/m2s)

0
/ 0.650 \
{ 0.130 J

18.72 9.243 ]
1.581 10.60 J

0.150 \
- 0.010 j

r = 8
( 0.500 \
\ 0.140 j

[0.9946 0.10101
[ 0.0046 0.9136 J

[18.658 1.034]
[ 1.622 9.845 J

-0.03694
-2.4713

/ 80.86 \
[ 4.344 j

[18.33 7.716]
[ 1.848 11.65 ]

0.0112 -0.2086]
-0.0096 0.1784 J

1.006
-0.0049

18.399
1.801

-0.1076]
1.092 ]

6.454
12.532

-0.02338
-2.1557
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Figure 8.8. Diagram of diffusional distillation process.

Example 8.3.2 Diffusional Distillation

Fullarton and Schliinder (1983) investigated the process of "diffusional distillation" for
separating liquid mixtures of azeotropic composition. The process is shown schematically in
Figure 8.8. A liquid mixture is evaporated at a temperature below its boiling point, diffuses
through a vapor space filled with inert gas and condenses at a lower temperature. The inert
gas functions as a selective filter that allows preferential passage of those components that
diffuse more quickly. Thus, the condensed liquid has a composition different from that of
the original mixture.

In modeling the process Fullarton and Schliinder made the following assumptions:

1. The composition of each liquid film and the vapor mixture does not change along the
length of the film.

2. The vapor space is regarded as a plane film and the vapor is ideal at constant pressure
and temperature.

3. Mass transfer in the vapor space can be described by steady-state molecular diffusion
(in other words, by a film model).

4. The flux of inert gas is zero.
5. The liquid films are sufficiently well mixed that the interface composition is the same

as the bulk composition. (This is equivalent to assuming that there is no resistance to
mass transfer in the liquid film.)

6. The vapor-liquid interfaces are at equilibrium.

In experiment A4 of Fullarton and Schliinder the evaporating liquid mixture of 2-pro-
panol(l) and water(2) has a composition x{ = 0.7625, xe

2 = 0.2375, Te = 40°C. The temper-
ature of the condensation side is 15°C. The total pressure of the system is 101.3 kPa. The
gap between the evaporating and condensing films was 6.5 mm. Air (3) was used as the inert
gas. Estimate the fluxes under these conditions.
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DATA The diffusivities of the three binary pairs are

Dn= 1.393 X 1(T5 m2/s

Dl3 = 1.046 X 1(T5 m2/s

D23 = 2.554 X 10"5 m2/s

Following Fullarton and Schllinder we use the Van Laar equation for the evaluation of In yi

l n y , - = A i j A 2
j i x f / ( A l 2 x x + A 2 1 x 2 ) 2 i*j = 1 , 2

The parameters for 2-propanol(l)-water(2) mixtures are

Au = 2.3405 A2l = 1.1551

The vapor pressures P/ may be calculated from the Antoine equation

\nPf=Ai-Bl/(T+Ci)

The Antoine constants are

Constant 2-Propanol Water

~At 20.44302 18.58488
Bi 4628.956 3984.923
Ct 252.636 233.426

which give Pf in millimeters of mercury and T is in degrees Celsius.

SOLUTION Before we can compute the molar fluxes we need to know the composition in
the vapor phase at both ends of the diffusion path. At the evaporating side the calculation
of yi0 is quite simple. From the assumption of interfacial equilibrium we have

yi0 = yiPfxf/P

The activity coefficients yi are calculated at the known temperature Te and composition xf.
Hence, at the azeotropic composition xe, the activity coefficients are

yj = 1.04243 y2 = 2.38166

The vapor pressures Pf are calculated from the Antoine equation.
At the evaporation side we have

P[ = 101.991 P | = 55.1929 mmHg

and the vapor composition at the evaporating side is

y1Q = yxP[x\/P = 0.10667

y2o = yiPixi/P =
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The mole fraction of inert gas at the evaporating side is

>>30 = 1 ~ Vio ~ yio = 0.85225

Since N3 = 0, a. mass balance on the condensation side yields

N1/(Nl+N2)=x\ N2/(N1+N2)=xc
2 = l - x i

which, together with the equations representing phase equilibrium at the condensing film
interface

y* = ViPfxf/P

must be solved simultaneously with Eq. 8.3.24 for the Nt.
One way to solve this set of simultaneous equations is to start by guessing the composi-

tion of the condensed film (we need guess only the mole fraction of one component here).
Then we may compute the composition of the vapor in equilibrium at the interface from the
equilibrium equations and compute the fluxes using Algorithm 8.3.1. The flux ratios may
then be checked to see if they equal the estimated liquid-phase composition. If not, then the
composition of the condensing film is reestimated and the procedure repeated.

We assume the composition of the condensing film to be

jcf = 0.5755 xc
2 = 0.4245

The vapor interface composition is computed directly from the equilibrium relations above
as

yls = 0.02082 y28 = 0.01323

The molar density ct may be calculated from the ideal gas law at the average temperature

ct = 40.53 mol/m3

We follow the procedure in Algorithm 8.1 below

Step 1: Calculate [k0] = [D0]/f = [ i ^ ] " 1 / ^ where [A:o] can be calculated directly from Eq.
8.3.30. The results are

1.6245 -0.0968] 0_6
0.0511 3.6054J X 1U m / s

Step 2: Calculate [/3]. For Stefan diffusion in a ternary mixture the elements of [/3] are given
by Eq. 7.2.20

[j80], therefore, is

1.1252 0.1252]
0.0482 1.0482J
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Step 3: The first estimates of the diffusion fluxes are calculated from

(Jo) =^[A: 0 ] (y 0 -y 5 )

5.543 X 10"3\ , , 2, mol/nrs

,4.247 X 1(T3 '

and the Nt are computed from

6.768 X l O - 3 l _ 1 / w 2

4.719 X 10
, mol/nrs3 /

Step 4: [<I>] follows from Eqs. 8.3.32 (setting N3 = 0) as

0.1581 0.0259]
0.0247 0.1076 J

The eigenvalues of this matrix may be computed from the general Eqs. 8.3.48. However,
for Stefan diffusion in a ternary mixture, it is possible to derive simple analytical
expressions for the eigenvalues as

ctK13 ctK23

®2= ^ 2

CtKu

The numerical values are

<E>! = 0.1334 <f>2 = 0.1323

Step 5: Next, the eigenvalues HOi are obtained from Eqs. 8.3.45

Hi = 0.9348 a2 = 0.9353

[H] follows from Eqs. 8.3.46 as

r w l ^ [0.9230 -0.0124]
L~J [0.0118 0.9471 J

Step 6: The next estimate of the diffusion fluxes is computed from

5.087 X KT3 \ , 7 2

4.166 X 10
, 7 2

, mol/m s
" 3 /

The Â  follow from the bootstrap relation as before

SAT\ [Q1ST\ / 6 . 2 4 5 x l O " 3 \ w 2(AM = I p0 \(J0) = a mol/mzs
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Convergence has not yet been obtained and so we need to carry out a few more
iterations. Successive estimates of the TV, are tabulated below.

X 103 N2 X 103

Iteration

1
2
3
4

[mol/m

6.768
6.245
6.275
6.273

2s]

4.719
4.611
4.624
4.624

The ratio of the fluxes is

=0.5757

which is quite close to our "guess" of the condensed film composition x{. If it had not
been, then we would have had to reestimate the condensed film composition. Any
one-dimensional search method could be used for this purpose. An alternative and
probably more efficient way (in this particular case) is to solve all of the independent
equations simultaneously using a multidimensional Newton-Raphson procedure as de-
scribed in Appendix C. Final results for the matrices of mass transfer coefficients at both

TABLE 8.2 Diffusional

Position

Composition (y)

Driving force (Ay)

Bootstrap matrix [/3]

Matrix of low flux mass
transfer coefficients
[*] (mm/s)

Matrix of rate factors

[*](-)

Matrix of correction
factors [B] ( - )

Matrix of high flux mass
transfer coefficients
[*•] (mm/s)

Diffusion fluxes ( / )
(mrnor/m2 s)

Molar fluxes (TV)
(mmol/m2 s)

Distillation

r z= 0

/ 0.1067 \
\ 0.0411/

[1.125
I 0.048

1.625
0.051

0.927
0.011

[ 1.505
[ 0.0892

r = 8

( 0.0208 \
{ 0.0132/

/ 0.08587 \
\ 0.02788 )

0.125]
1.048 J

-0.097]
3.605 J

0.1495
-0.0242

- 0.011 ]
0.950 ]

— 0.1111
3.425 J

( 5.114 \
\ 4.182/

/ 6.273
[ 4.624

[1.022 0.022]
10.014 1.014]

[1.614 -0.020]
[ 0.018 3.862]

0.0240]
0.1013 J

[ 1.077 0.013]
I -0.013 1.052]

[ 1.738 0.000]
[-0.030 4.061 ]

/ 6.050 )
[ 4.486 /

)
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ends of the diffusion path are shown in Table 8.2. Composition profiles, computed from
Eq. 8.3.12 using the converged values of the fluxes, are shown in Figure 8.8.

The essence of the diffusional distillation process is that the lighter component (in this
case the water vapor) condenses at a faster rate through air than the heavier 2-propanol.
This results in a condensate composition of x\ = 0.5757, lower than the azeotropic
composition of x\ = 0.7625. McDowell and Davis (1988) extended the analysis of Fullarton
and Schllinder by accounting for concentration changes along the length of the diffusion
distillation column (see Assumption 1 above) and simultaneous heat transfer. Their numeri-
cal simulations are in good agreement with the data (in better agreement than the
computations of Fullarton and Schllinder). •

8.3.4 Advanced Computational Strategies

Now that we have worked through some typical problems it will be clear that the amount of
computation involved is not trivial. Clearly, efficient computer based solution procedures
are desirable (and that used in the above example is not optimal except for some problems
involving only three components). The success or failure of any iterative scheme is very
closely related to the goodness of the initial guess of the independent variables (the Nt

here) (Step 2 in Algorithm 8.1). Krishna and Standart (1979) suggested taking the Nt as zero
in Step 2, in which case [<£] reduces to the null matrix and [H] to the identity matrix [/], as
shown above. Direct substitution of the Nt calculated in Step 8 back into Step 4 may lead to
very slow convergence from a null starting guess. Instead, we recommend that damped
substitution be employed (Taylor and Webb, 1981). Convergence will generally be obtained
within about 10 iterations. In Section 8.5 we will discuss a method of obtaining much better
initial estimates of the fluxes; estimates from which convergence can usually be obtained in
two or three iterations even in "difficult" cases.

Taylor and Webb (1980a) found that the second member of Eq. 8.3.24 converges most
rapidly if the eigenvalues of [<l>] are positive in sign (this will be the case if the Nt are
positive), whereas the fourth member converges most rapidly if the eigenvalues of [4>] are
negative in sign (corresponding to negative fluxes). In fact, the first part of Eq. 8.3.24 may
never converge if, in addition to being negative in sign, the eigenvalues <f>, are "large" in
absolute value ("large" means > 7). Conversely, the latter part may never converge if the
<f>; are large and positive. The explanation for this behavior is given by Taylor and Webb
and not repeated here. It should be noted that large 6, are characteristic of problems
involving mass transfer at very high rates. The possible occurrence of large <!>r must be
allowed for when drawing up a general purpose algorithm, such as that summarized in
Algorithm 8.2.

The more appropriate member of Eq 8.3.24 is determined from the sign of the dominant
eigenvalue of [<£] (the eigenvalue with the largest absolute value). Computing eigenvalues
can be quite time consuming and, in this case, can be avoided altogether if we recognize
that the trace of [3>] (i.e., the sum of the diagonal elements <$„) is equal to the sum of the
eigenvalues. Thus, the sign of <l>av, which is easily calculated in Step 4 of Algorithm 8.2,
suffices to determine which member of Eq. 8.3.24 should be used. In cases where the
eigenvalues are of mixed sign, they are generally low in value and both members could
equally well be used.

For the evaluation of [H] (Step 5 of Algorithm 8.1) Sylvester's expansion formula should
be used only if the number of components is small (3 or 4 say). For larger problems the use
of power series as discussed in Appendix A.6 is recommended (Taylor and Webb, 1981).
The power series expansions (Eqs. A.6.4 and A.6.7) may be used if the eigenvalues of [<£]
are repeated or are complex with no special treatment and should be the default methods in
any computer program that performs the relevant computations.
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Algorithm 8.2 Improved Algorithm for Calculation of Mass Transfer Rates
from an Exact Solution of the Maxwell-Stefan Equations

Given: (y0X(y8X
ct^ Ku

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

0 8 t u
Estimate the Nt (see text).
Compute [R] using y0.
Compute (A) using y0.
Compute [<£].
Compute trace of [<£]: tr[<l>].
Calculate $av = tr[4>]/(n - 1).
If Oav < - 5 , recalculate [R] and (A) using y8.

Step 7: Compute correction factor matrices:
If A/, = 0, calculate [H]"1 from a power series (Appendix A.6)
Do NOT invert [H]"1.
If Nt # 0, compute exp[4>] from a power series.
Subtract the identity matrix to obtain [exp[O] - [/]].

Step 8: Compute the diffusion fluxes as follows:
If Nt = 0: Solve the linear system

for (/) .
If Nt # 0: Solve the linear system

for(z).
Compute (z') = [<J>](z).

If <£av < - 5 : Compute (z') = exp[O](z').
Solve the linear system:

ct(z')

Step 9:

Step 10:
Step 11:

Step 12:

- (A) T ( / ) .
for (/).

Calculate Nt

Otherwise: Â  = Jt + yi0Nr

Check for convergence of the Nt. If fluxes have converged stop.
If number of iterations exceed five, then set A/, equal to
the average of the last two estimates of the Nt.
Compute [OJ.
Return to Step 7.

In problems where the flux ratios are known (e.g., condensation and heterogeneous
reacting systems where the reaction rate is controlled by diffusion) the mole fractions at the
interface are not known in advance and it is necessary to solve the mass transfer rate
equations simultaneously with additional equations (these may be phase equilibrium and/or
reaction rate equations). For these cases it is possible to embed Algorithms 8.1 or 8.2 within
another iterative procedure that solves the additional equations (as was done in Example
8.3.2). However, we suggest that a better procedure is to solve the mass transfer rate
equations simultaneously with the additional equations using Newton's method. This
approach will be developed below for cases where the mole fractions at both ends of the
film are known. Later we will extend the method to allow straightforward solution of more
complicated problems (see Examples 9.4.1, 11.5.2, 11.5.3, and others).
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The molar fluxes in a ternary system are calculated from

^2 = 2̂0 + ^20(^1+^2 + ^3)

with the molar diffusion fluxes /1 0 and J2{) given by

J\Q = ^ n O i o - yis) + ^kl2(y20 - y2S)

J20 = c^k21(yw - yls) + c^k°22iy20 - y28)

Given the binary mass transfer coefficients and the mole fractions yi() and yi8, there are
three unknown quantities in these equations; the molar fluxes, Nv N2, N3. However, there
are only two independent mass transfer rate equations. Thus, one more equation is needed;
this will be the bootstrap relation:

I/JN, + v2N2 + v3N3 = 0

These three equations can be solved simultaneously using Newton's method as described in
Appendix C.2. First, we write the independent equations in the form Fix) = 0

Fl

F2

F3

= Jio +

= /2o +

= ^ 1 ^ 1

ymiNx + N2

y2o(N1+N2

+ ^ ^ 2 + v3

+ N3) - N

+ N3) -N

N3 = 0

\ = °
2 = 0

The first step is to estimate the molar fluxes. This can be done as described above and
elsewhere (Section 8.5). The mass transfer coefficients are calculated and the values of the
discrepancy functions Fi evaluated. To reestimate the molar fluxes we must evaluate the
Jacobian matrix [J]. The elements of this matrix are obtained by differentiating the above
equations with respect to the independent variables. These derivatives may be approximated
by

dF./dN, =yw-l

dF,/dN2 = yU)

dF./dN, = y10

dF2/dN1 = y2{)

dF2/dN2 = y20 - 1

dF2/dN3 = y20

dF3/dNx = vx

dF3/dN2 = v2

3F3/dN3 = v3

In deriving these expressions we ignored the fact that the elements of [km] are complicated
functions of the mole fractions and of the molar fluxes. It would not be at all straightfor-
ward to allow for this dependence. In practice, it is found that the rate of convergence of
Newton's method is not seriously impaired by this simplification.

Following the calculation of [J] we solve the linear system (Eq. C.2.5) and obtain new
estimates of the independent variables. The entire procedure, summarized in Algorithm 8.3,
is repeated until convergence. We do not particularly recommend Algorithm 8.3 for solving
this class of mass transfer problem; for this category of problem Algorithm 8.2 (and often
Algorithm 8.1) will prove distinctly superior. However, Algorithm 8.3 is much more easily
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Algorithm 8.3 Algorithm for Calculation of Mass Transfer Rates
from an Exact Solution of the Maxwell-Stefan Equations
Using Newton's Method

Given: (yoX (y^X c/> Kij
Step 1: Estimate the Nt.
Step 2: Calculate [A:].
Step 3: Calculate [O].
Step 4: Calculate [H].
Step 5: Calculate (/) = ct[k][a](Ay).
Step 6: Evaluate discrepancy functions:

f = j + y M - M: (i = 1 , . . . , n - 1)

Step 7: Check values of the Ft. If converged, stop.
Step 8: Compute the Jacobian matrix.
Step 9: Solve linear system (Eq. C.2.5) for new values of the fluxes.

Return to Step 3.

adapted to those cases where the mole fractions at one or more film boundary must be
determined simultaneously with the fluxes. This, after all, will nearly always be the case.

8.3.5 An Alternative Formulation

An exact solution of the Maxwell-Stefan equations may be obtained in a somewhat
different way as shown below. Equations 1.2.12 are written in n — 1 dimensional matrix
form

(N) = (J) + Nt{y) (8.3.49)

which is combined with Eq. 8.3.13 to give

d(y -z)

- ^ = [*]((y) - (*)) (8-3.50)

ar\

where zt is the (constant) flux ratio Ni/Nt. The matrix [^] is defined by

NJ 1 NJ
m = —[D]-1 = —[B] (8.3.51)

In so far as [B] (or, more generally, [D]~x) depends on the composition of the mixture and
as the composition is, in turn, a function of position 77, we may regard [W] as a function of
7]. Thus, Eq. 8.3.50 is a first-order matrix differential equation of order n — 1 with a variable
coefficient matrix [^(17)]. This equation may be solved by the method of repeated substitu-
tion as shown in Appendix B.2. The solution is

( y - z ) = [ n j ( ¥ ) ] ( y o - z ) (8.3.52)

where [HJW] is the matrizant of W defined by Eq. B.2.16. Since the matrizant at 77 = 0
is the identity matrix [/], we may eliminate the column matrix (z) from the left-hand side of
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Eq. 8.3.52 as follows:

(y-y0) = [ [ f t3(¥) ] - [ / ] ] ( * > - * ) (8.3.53)

Now, applying the second boundary condition Eq. 8.3.8 gives

>-•*) (8-3-54)

which allows us to express the composition profiles in the form

(y -y0) - [["3(*)1 - M ] [ K m ] - M]~\y» -y0) (8-3.55)

The diffusion fluxes at 77 = 0 are evaluated from Eq. 8.3.13 with the composition gradient
obtained by differentiating Eq. 8.3.55 (cf., Eq. B.2.18).

[/]] -\y8 - y0) (8.3.56)

Thus, the diffusion fluxes at 77 = 0 (where [HgW] = [/]) are given by

Co) = ̂ W [ [ f t o W ] " [I]]~\yo-y8) (83.57)

and the diffusion fluxes at r\ = 1 are given by

(h) - ^ Y ^ M l K m ] [KW] - [/]] ~\y0 - ys) (8.3.58)

With the finite flux mass transfer coefficients matrix [k9] defined by Eq. 7.1.9 we have

[*o] - ^ [ * o l [ K W ] - [/]] "' (8-3-59)

[k'a] = ̂ -[%][nh(V)] [[ni(*)] - [/]] ~l (8.3.60)

In the limit of the total flux Nt going to zero we have

( / 0 ) - - ( c , [ 5 ] / / ) ( y 0 - y 8 ) (8.3.61)

where [D] is defined by

[D]=(1[D(T1)]dv (8.3.62)

Equations 8.3.52-8.3.57 were presented as an exact solution of the Maxwell-Stefan
equations for diffusion in ideal gas mixtures by Burghardt (1984). Equations 8.3.52-8.3.57
are somewhat less useful than Eqs. 8.3.15-8.3.24 because we need to know the composition
profiles in order to evaluate the matrizant. Even if the profiles are known, the computation
of the fluxes from either of Eqs. 8.3.62 or 8.3.63 is not straightforward and not recom-
mended. It is with the development in Section 8.4 in mind that we have included these
results here.
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8.4 MULTICOMPONENT FILM MODEL BASED ON THE ASSUMPTION
OF CONSTANT [D] MATRIX: THE LINEARIZED THEORY OF TOOR,
STEWART, AND PROBER

In 1964 Toor and Stewart and Prober independently put forward a general approach to the
solution of multicomponent diffusion problems. Their method, which was discussed in detail
in Chapter 5, relies on the assumption of constancy of the Fick matrix [D] along the
diffusion path. The so-called "linearized theory" of Toor, Stewart, and Prober is not limited
to describing steady-state, one-dimensional diffusion in ideal gas mixtures (as we have
already demonstrated in Chapter 5); however, for this particular situation Eq. 5.3.5, with
[D] given by Eq. 4.2.2, simplifies to

We emphasize the difference between the Toor, Stewart, and Prober approach and the
exact method considered above by using the subscript av; thus, [Daw]. For practical
purposes, this means that [£>av] has to be evaluated by employing suitable average mole
fractions, y- av, in the definition of the Bik (Eqs. 2.1.21 and 2.1.22). The arithmetic average
mole fraction yt av = j(yi0 + yiS\ normally is recommended for calculation of [Bav] (Stewart
and Prober, 1964; Arnold and Toor, 1967; Smith and Taylor, 1983). Thus, for gas mixtures

[Daw] = [BavV
1 (8.4.2)

is assumed constant over the diffusion path.
The solution to the film model diffusion equations for constant [D] can be obtained

directly from Eq. 8.3.55. For constant [D] (and, hence, [̂ F]), the matrizant simplifies to an
exponential matrix as shown in Section B.2. The composition profiles, for example, are given
by (Taylor and Webb, 1980b, Taylor, 1982b; Burghardt, 1984)

(y - y0) = [ ex P [*h - /[ / ]][exp[¥] - [I]]~\yd - y0) (8.4.3)

where

NJ 1 NJ
Ct

(8.4.4)

is the (now constant) matrix of mass transfer rate factors. The diffusion fluxes at 77 = 0 are
evaluated from

(Jo) = ~ ^ m [ e x P m - [/]]-1(yo - y«) (8.4.5)

and the diffusion fluxes at 17 = 1 are given by

Us) = ^ ^ m e x p [ * ] [ e x p [ * ] - [I]]-\yo-y8) (8.4.6)
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With the finite flux mass transfer coefficients matrix [k*] defined by Eq. 7.1.9 we have

[AJ
[ko] = —f l>][exp[¥] - [7]] (8.4.7)

[ Aw ]
[k's] = —J— [^r]exp[^r][exp['4r] - [7]] (8.4.8)

To obtain the low flux mass transfer coefficients we take the limit as the total flux Nt goes to
zero

lim [ ¥ ] -> [0] (8.4.9)
Nt—>0

and

lim [^][exp[^l - [711"1 -> [71 (8.4.10)
Nt-+0

lim [¥]exp[¥][exp[¥] - [7]]"1 -+ [7] (8.4.11)
Nt-*0

The matrices of zero-flux mass transfer coefficients [kQ] and [k8] are, therefore, equal

[*o] - ^ = [*«] = [*„] (8.4.12)

The matrices of correction factors [So] and [H5], are given by

[Ho] = m [ e x p [ ¥ ] - [7] ] - 1 (8.4.13)

(8.4.14)

where the matrix [̂ P] is given by

m-N.lk^/c, (8.4.15)

Finally, the fluxes Â  can be evaluated from

t[p0][av][0](y0y8)
(8.4.16)

ct[p8][kw][B8](y0-y8)

8.4.1 Comparison With Exact Method

Let us now take a closer look at the relationship between the exact solution of the
Maxwell-Stefan equations and the solution of the linearized equations developed above. If
we compare Eqs. 8.4.5 and 8.4.6 with Eqs. 8.3.15 and 8.3.21, their counterparts in the exact
solution, it can be seen that [Baw], [kaw] and ["¥] correspond exactly with [Bo] (or [Bs]\ [k0]
(or [ks]\ and [<£]. Furthermore, the similarity between the two methods extends right down
to the calculation of the individual elements of these matrices as is emphasized in Table 8.3.
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TABLE 8.3 Matrices in the Exact Solution and the Approximate Solution
of the Maxwell-Stefan Equations*

Matrix [M] Meaning mt

Exact Solution due to Krishna and Standart

[Bo] = [DQ]~l Inverted matrix of Fick yiQ

diffusion coefficients
evaluated at the origin

[ k o ] ~ l Inverted matrix of low flux yi0 i
mass transfer coefficients

[<J>] Matrix of mass transfer Nii/ct

rate factors

Linearized Method of Toor, Stewart, and Prober

[ Bav ] = [ Day ] ~
] Inverted matrix of Fick yt av

diffusion coefficients
evaluated at the average
composition

[kaw]~l Inverted matrix of low flux yiav i
mass transfer coefficients

[ ̂  ] Matrix of mass transfer yi av Nt i/ct

rate factors

aA matrix [M] has elements

We see that the only differences between the exact solution and the approximate method
described above are

1. The use of average mole fractions rather than the boundary conditions in the
calculation of [A:].

2. The average convective flux y^avNt replaces the molar flux Â  in the calculation of
the rate factor matrix [M*].

Despite these differences both solutions of the multicomponent diffusion equations will
give identical results if

1. All the binary diffusivities are equal; that is,

£>y = D (8.4.17)

Then [k0] and [k.dV] are equal (see Table 8.3) with

K n = kavii = D / t kOij = kavij = 0 i*j (8.4.18)

The rate factor matrices [W] and [O] are also equal with elements

% = ®u = Nt e/ctD % = % = 0 i * j (8.4.19)

The correction factor matrices will, therefore, be equal. In this case, however, the diffusion
equations are not coupled, and the ith diffusion flux is given by

( 8 - 4 - 2 0 )

and the matrix formulations discussed above are not required.
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2. The n — \ species are present in vanishingly low concentrations (yOi ~ 0, / =
1, 2 , . . . , n — 1; yOn ~ y8n = 1). In this case the matrices [k] become diagonal (see Table
8.3); that is,

K m = K v u = D i n / t kOlJ = k m i j = 0 i * j (8.4.21)

The matrices [ty] and [<£>] also become diagonal with elements given by

%i = ^ i l = N j / c , D m ¥ „ . = <&,.. = <) i*j (8.4.22)

The validity of the approximation in Eq. 8.4.22 for the exact solution depends on the
observation that if yOi ~ y8i ~ 0, where / = 1,2,... , n - 1; then the first n - lNt will be
vanishingly low. Under these conditions Eq. 8.4.20 and 8.4.21 will be valid whatever
variation may exist between the £>/;.

We have outlined above, situations where the two methods may be expected to be in
close agreement. It would seem that large differences between the methods are particularly
likely in mixtures of constituents with quite different £)/; at high molar concentrations.
Nevertheless, even in such cases the errors caused by linearizing the equations are not
usually large.

The goodness of the assumption of constant [D] for describing steady-state, one-dimen-
sional diffusion has been fairly thoroughly tested by several investigators (cf. the discussion
in Chapter 5). The most complete computational comparison of the approximate method
with the exact method described in the preceding section has been carried out by Smith and
Taylor (1983) who solved more than 10,000 problems for each of 23 real ternary gas systems
covering a wide range of ratios of diffusion coefficients and determinacy coefficients (the vt).
In general, the solution of the linearized equations can be expected always to provide
excellent estimates of the total flux and very good estimates of the individual fluxes unless
one (or more) of the components has a very small flux relative to the fluxes of the other
species. The largest discrepancies between the two methods occur when inert species are
present. We have no reservations about recommending the use of solutions derived on the
basis of constant [D] when a more exact method is not available or too difficult to use (as,
e.g., in Section 10.3).

8.4.2 The Toor-Stewart-Prober Formulation

We have developed the solution to the linearized equations as a special case of an exact
solution in Section 8.3.5 in order to emphasize the close relationship that exists between the
two methods. It should be noted, however, that this is not the way in which Toor or Stewart
and Prober obtained their results. Indeed, these equations are not to be found in this form
in the papers that first presented the linearized theory. Both Toor and Stewart and Prober
obtained their results using the procedure described in Chapter 5; that is, by diagonalizing
the matrix [D] and solving sets of uncoupled equations. The final result is

(J)'c,[k'm](yo-ys) (8.4.23)

where [/c*v] is given by

[*»] = [P][k'][P]~l (8-4-24)

where [k°] is a diagonal matrix whose nonzero elements are the eigenvalues of [k°] and [P]
is the modal matrix, of [D]. The eigenvalues of [k*dV] are related to the eigenvalues of [D] as
follows:

k- = k,S, (8.4.25)
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where

kt = Di/e (8.4.26)

% = Nt/ctkt (8.4.27)

g0, = %/(exp%-l) (8.4.28)

%Si = ^ exp V ( e x p * f " 1) (8.4.29)

are the eigenvalues of [kay], [^L [H0I and [H5], respectively.
It is important to recognize that this representation of [A:*] is possible only because the

matrix [D] was assumed constant along the diffusion path. The matrix [P], which diagonal-
izes [D], is constant along the diffusion path and the transformation that reduces [D] to a
diagonal matrix

[D] = [JP]-1[JD][JP] (8.4.30)

also diagonalizes [k], [M*], and [E]. Thus, the matrix [km] is really a function of only one
matrix, [D]. In the exact solution the matrix [k*] is a function of two matrices [B] and [4>]
that cannot be diagonalized by the same modal matrix (except for the limiting cases
identified above). The matrix [D] possesses a complete set of eigenvectors regardless of the
multiplicity of the eigenvalues of [D] (Cullinan, 1965). This means that the transformation
(Eq. 8.4.30) is always possible and Eq. 8.4.24 may always be used to evaluate the matrix of
mass transfer coefficients.

We may also use Sylvester's expansion formula (Eq. A.5.20) to compute [k*]

(8.4.31)

where m is the number of distinct eigenvalues of the Fick matrix [D] (m <; n — 1). The
eigenvalues k* are given by Eq. 8.4.25.

For the ternary case with two distinct eigenvalues, we have

Dt -D2 D2-Dt

which may be expanded as follows:

k\(Dn -D2) km
2(Dn -DA

KI = \ « J + \ * } (8.4.32a)
D1~-D2 D2-D1

(8.4.32b)

(8.4.32c)k21 = (yAD2i

k22 = \ A ^ + \ A
 } (8.4.32d)

D1-D2 D2-D1
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8.4.3 Computation of the Fluxes

The computation of the fluxes Nt from either of Eqs. 8.4.16 involves an iterative procedure
only if the total flux Nt is not specified. If it is zero, then no iterations are required since the
correction factor [H] reduces to the identity matrix. If it is not zero but can be specified in
advance (only rarely is this possible) then the calculations again involve no iteration but the
flux correction factors will have to be evaluated. The formal similarity between the exact
solution and the Toor, Stewart, and Prober method means that we may use essentially the
same algorithm for computing the fluxes; the only changes to the procedure in Algorithms
8.1-8.3 are that [k] is calculated at the average composition and [̂ F] is used in place of [4>].
Thus, given a computer program for calculating the fluxes from the exact solution, it is a
simple exercise to modify it so that the solution of the linearized film model equations may
be used instead. It is worth noting that the linearized equations are much more stable than
the exact solution; it is much harder to find a problem that causes divergence with the
linearized equations than it is with the exact method.

An alternative algorithm based on Eqs. 8.4.23 and 8.4.24 is presented in Algorithm 8.4.
Unlike modified versions of Algorithms 8.1 or 8.2, Algorithm 8.4 requires us to evaluate the
eigenvalues of [D] and the modal matrix [P] (but not its inverse). Fortunately, [P] need be
evaluated only once; thereafter, only two square matrix-column vector multiplications (and
one of the square matrices is a diagonal matrix) are required in each iteration. This is very
much less than the number of matrix-matrix multiplications required if Eq. 8.4.31 is used.
Algorithm 8.4 may also be used for other models of mass transfer (see Sections 9.3 and
10.4). Initial estimates of Nt are best calculated from Eq. 8.4.33 below with at = 1 and with
the A coefficients calculated at the arithmetic average mole fraction (Vickery et al., 1984).

An alternative method is summarized in Algorithm 8.5 based on the fact that we really
only need to determine the total flux Nt in order to completely determine the matrix of
mass transfer coefficients and, therefore, the molar fluxes Nt. We start from Eq. 7.2.22 and
substitute for (/) using Eqs. 8.4.23 and 8.4.24 to get

Nt = -ct(A)T[P][k][B][P]-\Ay) (8.4.33)

Algorithm 8.4 Algorithm Based on Repeated Substitution
for Calculation of Mass Transfer Rates from Solutions
of the Linearized Equations

Given:

Step 1:
Step 2:

Step 3:
Step 4:

Step 5:
Step 6:

Step 7:

Step 8:

Step 9:

Step 10:
Step 11:
Step 12:

Step 13:

Step 14:

(y0X(yslct,[D]
Obtain eigenvalues and eigenvectors of [D]: D and [P].
Solve [P](Ay) = (Ay) for (Ay).

Compute kt.
Compute (A) at average composition.

Estimate Nt = -ct(A)T[P][k](Ay).
Recalculate (A) at y0.

Calculate %

Calculate H;.

Calculate £*.

Calculate ( / ) = ct[P][k*](Ay).
Calculate Nt = -(A)T(J).
Check for convergence on Nt.

If Nt has not converged, return to Step 7.
Otherwise, continue with Step 13.

Compute Nt = Jt + y ^ .

Compute [&•] = [ P ] [ ^ - ] [ P ] " 1 only if needed.
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where [H] is a diagonal matrix whose elements are the eigenvalues of [S]. The function of
Nt whose root we seek is obtained by dividing Eq. 8.4.33 by Nt to give

F(Nt) s -(\f[P][f\[Pr\±y) "1 = 0 (8.4.34)

where

exp <£, - 1
(8-4.35)

This last step, which involves division by Nt9 is possible only if Nt ¥= 0. For Nt = 0, the
linearized equations are explicit with ait, = 1.

This equation in the single unknown Nt is easily and rapidly solved using Newton's
method. The relevant calculations are shown in Algorithm 8.5. First derivatives of F with
respect to Nt (needed in Step 6) are obtained from

F(Nt) = -(A)T[P][f}[P]-\Ay) (8.4.36)

where

- exp <f>,
f! = —: 7^ 2 (8-4-37)

( ^ . - 1)

The function F(Nt) possesses many desirable properties that make very rapid conver-
gence a virtual certainty; it is a highly unusual problem that needs more than three
iterations (Vickery et al., 1984).

Algorithm 8.5 Algorithm Based on Newton's Method
for Calculation of Mass Transfer Rates from Solutions
of the Linearized Equations

Given:
Step 1:

Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:

(y0X(ys),ct,[D]
Obtain eigenvalues and eigenvectors of [D]:

Dand[P].
Solve [P](Ay) = (Ay) for (Ay).
Compute kt.
Compute (A) at average composition.
Estimate Nt = -ct(A)T[P][k](Ay).
Recalculate (A) at boundary composition.
Calculate / , /) .
Calculate F(Nt) and F'(Nt).
Reestimate Nt = Nt - F/F'.
Check for convergence on Nr

If Nt has not converged return to Step 6.

Remaining calculations done only as needed

Step 11:
Step 12:
Step 13:

Calculate (/) = ct[P][k'](Ay).
Calculate (AO = (/) + Nt(y0).
Compute [km] = [P][k0][P]~\



MULTICOMPONENT FILM MODEL 191

Example 8.4.1 Vapor-Phase Dehydrogenation ofEthanol

Consider the vapor-phase dehydrogenation of ethanol(l):

Ethanol -> acetaldehyde + hydrogen
1 2 3

carried out at a temperature of 548 K and 101.3 kPa (see Froment and Bischoff (1979,
p. 151), from whose work this example has been adapted, for discussion of other aspects of
this process). The reaction is assumed to take place at a catalyst surface with a reaction rate
that is first order in ethanol mole fraction

Rate = -kry[ mol ethanol produced/(m2 surfaced area)(s)

where kr is the reaction rate coefficient and where y[ is the mole fraction of ethanol at the
catalyst surface.

Estimate the overall rate of reaction when the bulk phase gas-phase composition is

3^=0.6 y2
K=0.2 y3

K=0.2

DATA

1. Reaction rate constant:

kr = 10 mol/(m2 s mol fraction)

2. The Maxwell-Stefan diffusion coefficients are

D12 = 7.2 X 10"5 m2/s

£)13 = 23.0 X 10~5 m2/s

f>23 = 23.0 X 10"5 m2/s

3. The film thickness: I = 1 mm

ANALYSIS The flux of ethanol is determined by the rate of chemical reaction at the
surface

AT, = -kry{

Furthermore, for every mole of ethanol that diffuses to the catalyst surface, 1 mol of
acetaldehyde and 1 mol of hydrogen are produced and these components diffuse away from
the catalyst surface. That is,

N2 = N3 = -N,

The total flux, therefore, is

N, = N, + N2 + N3 = -N,

The ratios of the fluxes are fixed at

N,/Nt = -1 N2/N, - 1 N3/Nt = 1
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The molar fluxes in the vapor phase will be calculated from

N2=J2 + y[Nt

where Nt is the total molar flux

Nt=N1+N2 + N3

and the molar diffusion fluxes at the interface Jx and J2 are given by

We have identified the interface mole fractions y1 with yQ and the bulk vapor mole
fractions yv with y8.

There are five unknown quantities in these equations: Nv N2, N3, y[, and y2. The mole
fractions at the interface are included in the list of unknowns because they were not
specified in the problem statement. Indeed, we are not free to specify the interface
composition unless we relax the reaction stoichiometry relations and that is not possible.
Thus, the interface mole fractions must be determined simultaneously with the molar fluxes.
We suggest that this is best done with the help of Newton's method in a way similar to that
in Algorithm 8.3.

The stoichiometric relations allow us to eliminate N2 and N3 from the mass transfer rate
equations that we rewrite below together with the reaction rate equation in the form
Fix) - 0

F3 ^ -kry[ -Nr = 0

These three equations depend on just three variables: Nv y{, and y2. We may solve these
equations using Newton's method as described in Appendix C.2.

SOLUTION The total molar concentration ct, in the gas phase (assumed to be isothermal)
is estimated from the ideal gas law as 22.2 mol/m3.

We begin the iterative calculations by making an initial estimate of the three unknown
variables. We shall take the following values

JVx = -0.1 mol/m2s

y[ = 0.01

y{ = 0.6

The interface mole fraction of component 3, therefore, is

y3
7 = 0.39

As a basis for choosing these values we note that since ethanol is consumed by reaction at
the surface, its mole fraction is expected to be low. On the other hand, acetaldehyde is
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produced at the surface, 1 mol of aldehyde for every 1 mol of ethanol consumed; we,
therefore, estimate its interface mole fraction as equal to the bulk mole fraction of ethanol.
The flux Ni is estimated directly from the reaction rate equation.

The fluxes N2 and N3 may be computed from the stoichiometric relations as

N2 = N3= -Nx = 0.1 mol/m2s

and the total flux is estimated as

Nt= N2 = 0.1 mol/m2s

In order to evaluate the discrepancy functions F1-F3 we must compute the matrix of
finite flux mass transfer coefficients. The procedure is illustrated below.

The first step is to determine the matrix of Fick diffusion coefficients [D]. The arithmetic
average mole fractions will be needed in the evaluation of the [D]; these average mole
fractions are

ylav = 0.305 y2av = QA y3av = 0'295

The matrix of Fick dirfusivities is calculated from Eqs. 4.2.7 as

15.073 6.044] 5 m 2 / s

7.926 16.956J X 1 0 m / s

The eigenvalues of this matrix are

Dx = 23.000 X 10~5 m2/s D2 = 9.030 X 10~5 m2/s

The eigenvalues of the matrix of low flux mass transfer coefficients are computed from Eq.
8.4.26 as

kx = Dx/l

= 23.0 X 10~5/l-0 X 10~3

= 0.230 m/s

k2 = 0.0903 m/s

The next step is to compute the mass transfer rate factors from Eq. 8.4.27

% = Nt/ctk,

= 0.1/(22.2 X 0.230)

= 0.01955

% = Nt/ctk2

= 0.0498

The eigenvalues of the correction factor matrix follow from Eq. 8.4.28 as

0.01955/(exp(0.01955) - 1)

0.9902

= 0.9753
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The molar fluxes in the vapor phase will be calculated from

Nx = Jx + y[Nt

N2=J2 + y{Nt

where Nt is the total molar flux

Nt = N1+N2 + N3

and the molar diffusion fluxes at the interface Jx and J2 are given by

We have identified the interface mole fractions y1 with y0 and the bulk vapor mole
fractions yv with y8.

There are five unknown quantities in these equations: Nv N2, N3, y[, and y2. The mole
fractions at the interface are included in the list of unknowns because they were not
specified in the problem statement. Indeed, we are not free to specify the interface
composition unless we relax the reaction stoichiometry relations and that is not possible.
Thus, the interface mole fractions must be determined simultaneously with the molar fluxes.
We suggest that this is best done with the help of Newton's method in a way similar to that
in Algorithm 8.3.

The stoichiometric relations allow us to eliminate N2 and N3 from the mass transfer rate
equations that we rewrite below together with the reaction rate equation in the form
Fix) = 0

Fx = Jx - y{Nx - Nx = 0

These three equations depend on just three variables: Nl9 y[, and y2. We may solve these
equations using Newton's method as described in Appendix C.2.

SOLUTION The total molar concentration cn in the gas phase (assumed to be isothermal)
is estimated from the ideal gas law as 22.2 mol/m3.

We begin the iterative calculations by making an initial estimate of the three unknown
variables. We shall take the following values

Nx = -0.1mol/m2s

y[ = 0.01

yi = 0.6

The interface mole fraction of component 3, therefore, is

y!
3 = 0.39

As a basis for choosing these values we note that since ethanol is consumed by reaction at
the surface, its mole fraction is expected to be low. On the other hand, acetaldehyde is
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produced at the surface, 1 mol of aldehyde for every 1 mol of ethanol consumed; we,
therefore, estimate its interface mole fraction as equal to the bulk mole fraction of ethanol.
The flux Nx is estimated directly from the reaction rate equation.

The fluxes N2 and N3 may be computed from the stoichiometric relations as

^ 2 = Â 3 = -Nx = 0.1 mol/m2s

and the total flux is estimated as

Nt= N2 = 0.1 mol/m2s

In order to evaluate the discrepancy functions F1-F3 we must compute the matrix of
finite flux mass transfer coefficients. The procedure is illustrated below.

The first step is to determine the matrix of Fick diffusion coefficients [D]. The arithmetic
average mole fractions will be needed in the evaluation of the [D]; these average mole
fractions are

ylav = 0.305 y2av = 0.4 y3^ = 0.295

The matrix of Fick diffusivities is calculated from Eqs. 4.2.7 as

15.073 6.044] 5
7.926 16.956J X 10

The eigenvalues of this matrix are

D1 = 23.000 X 10~5 m2/s D2 = 9.030 X 10~5 m2/s

The eigenvalues of the matrix of low flux mass transfer coefficients are computed from Eq.
8.4.26 as

= 23.0 X 10~5/l-0 X 10"3

= 0.230 m/s

k2 = 0.0903 m/s

The next step is to compute the mass transfer rate factors from Eq. 8.4.27

% = Nt/ctkx

= 0.1/(22.2 X 0.230)

= 0.01955

= 0.0498

The eigenvalues of the correction factor matrix follow from Eq. 8.4.28 as

^^/(exp^-l)

= 0.01955/(exp(0.01955) - 1)

= 0.9902

£2 = ^ 2 / ( e x p ^ 2 - l )

= 0.9753
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The eigenvalues of the matrix of finite flux mass transfer coefficients is given by Eqs. 8.4.25
as

= 0.230 X 0.9902
= 0.2277 m/s

£ • — £ M
K2 — ^2^2

= 0.08807 m/s

We may now compute the matrix of high flux mass transfer coefficients from Eq. 8.4.32 as

[*-]-[S:J!S S-!SJlm/.1.0793 0.1673 J

With the molar density ct given above we may compute the diffusion fluxes as

Jx = -1.411 mol/m2s J2 = 0.4485 mol/m2s

Finally, we may evaluate the discrepancy functions F1~F3 as follows:

= -1.411 - 0.01 X (-0.1) - (-0.1)

= -1.31

F2 = J2-y[Nl-N2

= 0.4485 - 0.6 X (-0.1) - (-0.1)

= 0.4085

F3 = -kry[-Nx

= -10 X 0.01 - (-0.1)

= 0

Since these values of Ft clearly do not represent a converged solution it will be necessary
to reestimate the flux Nt and the two independent interface mole fractions. This requires
the evaluation of the Jacobian matrix [J]. The elements of this matrix are obtained by
differentiating the above equations with respect to the independent variables. The nonzero
derivatives of Fx and F2 are as follows:

dF./dN, = -y[ - 1

BF./dyi = cv
tk\2

8F2/dNx = -y[ + 1

dF2/dy[ = cv
tk\x

dF2/dyi = cv
tk\2 - Nx

As suggested in the discussion surrounding Algorithm 8.3, we have ignored the fact that the
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elements of [k'] are complicated functions of the mole fractions and of the molar fluxes in
working out the above partial derivatives.

The partial derivatives of the reaction rate equation are

dF3/dNt = -1

dF3/dy[ = -kr

dF3/dy[ = 0

Following the calculation of [J] we solve the linear system (Eq. C.2.5) and obtain the
following new estimates of the independent variables

Nt = -1.117 mol/m2s

y[ = 0.1117 y[ = 0.5526

We may now recalculate the functions F1-F3 with the following results:

Fj = 0.3253 F2 = -0.2038 F3 « 0

The next computed set of independent variables is

Nx = -0.8715 mol/m2s

y[ = 0.08715 y[ = 0.5845

We must now reevaluate the discrepancy functions F1-F3 using these new values of the
unknown variables. All of the calculations illustrated above must be repeated, including that
of the matrix of Fick diffusion coefficients (because the average mole fractions have
changed), the matrix of finite flux mass transfer coefficients (because [D] and the fluxes have
changed) and the diffusion fluxes (because [k*] has changed). Repeating the above calcula-
tion steps with the most recent values of the unknown variables gives the following values
for the functions

Fx = -0.0368 F2 = 0.0203 F3 « 0

This set of function values does not correspond to a converged solution either so we must
compute the Jacobian matrix a second time and solve the linear system (Eq. C.2.5) in order
to obtain a third estimate of the solution

Nt = -0.8997 mol/m2s

y[ = 0.08997 y[ = 0.5812

Three more iterations yields the converged values

TVj = -0.8960 mol/m2s

y[ = 0.08960 y[ = 0.5818

The values of the various matrices at these converged values are listed in Table 8.4.
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TABLE 8.4 Dehydrogenation of Ethanol at 548 K and 1.0135 bar.

Position r = 0 r = 8

Composition (y)

Matrix of low flux mass
transfer coefficients
[k] (m/s)

Eigenvalues of rate
factor matrix

Eigenvalues of correction
factor matrix

Matrix of high flux mass
transfer coefficients
[**] (m/s)

Diffusion fluxes ( / )
(mol/m2s)

Molar flux N^
(mol/m2s)

/ 0.08960 \
[ 0.5818 ) 02

\ 0.155 0.067]
[0.0755 0.163 J

0.1752 0.4579

0.9149 0.7884

[0.1355 0.066
[0.0750 0.144

/ - 0.9763 \
[ 0.3747 )

-0.8960

0.6

0.4

mole
fraction

0.2

0.0
Figure 8.9. Composition profiles in dehydrogena-
tion of ethanol.

^acetaldehyde (2)

z=0
catalyst surface bulk vapor

The composition profiles, calculated from Eq. 8.4.3 are shown in Figure 8.9. Notice the
quite large change in the mole fraction of ethanol. Despite this large change, the profiles
themselves are not highly curved; this being the result of the relatively low total molar flux.

8.5 SIMPLIFIED EXPLICIT METHODS

Both the exact solution and the Toor, Stewart, and Prober methods discussed above require
an iterative approach to the calculation of the fluxes. In addition, the calculations are
somewhat time consuming, especially when done by hand. It would be nice to have a
method of calculating the fluxes that involved no iterations and yet was sufficiently accurate
(when compared to these more rigorous methods) to be useful in engineering calculations.



SIMPLIFIED EXPLICIT METHODS 197

There are two such methods; one is due to Krishna (1979d, 1981b), the other to Burghardt
and Krupiczka (1975) and its generalization by Taylor and Smith (1982).

Our starting point for the development of these explicit methods is the diffusion
equation

and the bootstrap solution

(N) = [p](J) (8.5.2)

We combine these two equations as follows:

(AT) = -c , [ /3] [5]~ 1 — — (8.5.3)

Equations 8.5.1.3 are quite general; they involve no assumptions regarding the constancy
of particular matrices; they apply to mixtures with any number of components and for any
relationship between the fluxes. It is at this point where any assumptions necessary to solve
Eqs. (8.5.1-8.5.3) must be made. In the three methods to be discussed below we proceed in
exactly the same way as we did when deriving the exact solution and the solution to the
linearized equations; first obtain the composition profiles, then differentiate to obtain the
gradients at the film boundary, and combine the result with Eq. 8.5.3 to obtain the working
flux equations.

8.5.1 Method of Krishna

The simplest solution to Eqs. 8.5.3 is obtained by assuming that the matrix [pjB]'1 can be
considered constant over the film. Thus, since the N; are also invariant, Eqs. 8.5.3 can be
integrated directly to give linear composition profiles

(8.5.4)

The molar fluxes Nt are then given by Eq. 8.5.3 with [filB]'1 evaluated at some average
composition (the arithmetic average of y0 and y8 is that used in practice) (Krishna, 1979d,
1981b)

d(y)
KyJ (8.5.5)

With the mole fraction gradients obtained by differentiating Eq. 8.5.4 we have

= T ^ a v H A J U - ys) (8-5.6)

8.5.2 Method of Burghardt and Krupiczka

Burghardt and Krupiczka (1975) developed an approximate explicit solution to Eqs. 8.5.3 for
the special case of diffusion of m species through n — m stagnant gases. We develop their
method below for the case of diffusion in the presence of a single stagnant gas identified as
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species n. While we are more interested in general solutions to the multicomponent
diffusion equations, a derivation of their method will help us to understand the generaliza-
tion of it to be considered afterwards.

For the special case of Stefan diffusion we may relate the n — 1 independent molar
fluxes Nt to the n — 1 independent composition gradients as follows:

^ (8.5.7)

where the matrix [A] has elements

Ati = L^T (8-5.8)
i^k

A u ~ - ^ - (8.5.9)

Burghardt and Krupiczka (1975) did not assume [A] to be constant. Instead, they
assumed the matrix [[v4]/yj was constant over the film. To develop the solution of
Burghardt and Krupiczka we must, therefore, rewrite Eq. 8.5.7 as

( 8 . 5 . 1 0 )

Thus, on separating variables and integrating Eq. 8.5.10 we find

(N)fyndV= -c,[[Av]"VK,av]/^(y) (8.5.11)

The subscript av serves to remind us that [A] and yn are evaluated at the arithmetic average
composition. To solve Eq. 8.5.11 we need an expression for the variation of yn over the film.
The required equation is provided by the last of the set of n Maxwell-Stefan relations (Eq.
8.3.2), which simplifies to give

% - *>» (8-5-12)

where the mass transfer rate factor <£ is given by

* = E TTTe (8'5-13)
fc = l CtiJkn/

In view of the assumptions underlying the film model, <£ is constant. Equation 8.5.12 is
easily integrated to give the variation through the film of the composition of species n

yn/yno = exp(<D77) (8.5.14)

If we integrate over the film from r\ = 0 to 17 = 1 we obtain an explicit relation for the rate
factor <f>

<D = ln(y»«A-o) (8-5.15)
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Note that Eqs. 8.5.12-8.5.15 are exact. Now, if we substitute for yn in Eq. 8.5.11 and carry
out the required integrations we find that the composition profiles for all components are
identical

— - — ^ — = — ^ (8.5.16)

The molar fluxes are given by

(8.5.17)

Note that all nonconstant terms in Eq. 8.5.17 must be evaluated at the boundary at which
the gradient is calculated. With the derivatives of composition at 17 = 0 obtained from Eq.
8.5.16 we find

= j[Aw] a(yo-y8) (8.5.18)

where 3 is given by

t (exp $ + 1)
B = ^ 7 T( (8.5.19)

(exp <£ - 1) v 7

The parameter H in this expression accounts for the nonlinearity of the composition
profiles; it is, in fact, a high flux correction factor as is [H] in the matrix methods described
above. Equation 8.5.18 involves no iteration because the rate factor O and the correction
factor E can be calculated from Eqs. 8.5.15; all we need to know are the boundary
conditions yiQ and yiS.

For diffusion of m species into n — m stagnant gases [A] is of order m (the elements are
still given by Eqs. 8.5.8 and 8.5.9). The parameter <1> is calculated from Eq. 8.5.15 but yn is
replaced by the sum of the mole fractions of the n-m stagnant gases. This method is
illustrated in Example 8.5.1.

8.5.3 Method of Taylor and Smith

The method of Taylor and Smith (1982) is a generalization of the method of Burghardt and
Krupiczka for Stefan diffusion. We use the determinacy condition (Eq. 7.2.10) to eliminate
the ft th flux from the Maxwell-Stefan relations (Eq. 2.1.16) and combine the first n-1
equations in matrix form as

1 d(y)
(N)= - C t [ A ] - ' ^ (8.5.20)

where the matrix [A] has elements

k=\

For the special case of Stefan diffusion Nn = 0, Eqs. 8.5.20 reduce to Eqs. 8.5.7.
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It can be shown by inverting the bootstrap matrix [fi] using the Sherman-Morrison
formula (see Ortega and Rheinbolt, 1970, p. 50) that, in fact

[A] = m t / 3 ] - 1 or [A]-1 = [fS}[BYl (8.5.23)

That is, the matrices [A]"1 and [5H/3]"1 are equal and not simply equivalent. Thus, the
explicit method of Krishna could equally well be written in the form

j 0 - y s ) (8.5.24)

The generalization of the method of Burghardt and Krupiczka is based on the assump-
tion that the matrix [A] divided by the mole fraction weighted sum of the vt

n

v = E w

{i.e., ^M]"1} can be considered constant over the diffusion path. For the special case of
Stefan diffusion v = yn. The derivation of the final working equations follows the procedure
used above to obtain Eq. 8.5.18. In fact, all of Eqs. 8.5.7-8.5.19 apply with yn replaced by v
and with the rate factor $ given by the (now approximate) relation

® = \n(ps/v0) (8.5.25)

The only difference between Eq. 8.5.6 obtained by Krishna and Eq. 8.5.18 obtained by
Burghardt and Krupiczka (1975) and its generalization by Taylor and Smith (1982) is the
inclusion of the scalar correction factor H. For equimolar countertransfer (Nt = 0; vt = vn\
<I> = 0; S = 1), the methods of Krishna and of Taylor and Smith are equal and, indeed,
equal to the limiting form of Eq. 8.4.16 obtained from the linearized theory. In all other
instances, the two explicit methods give results that differ only by the scalar factor H.
However, this correction factor can result in a clear improvement in the predicted fluxes.

8.5.4 Computation of the Fluxes

Equation 8.5.23 allows us to rewrite Eq. 8.5.18 as

(N) = c,[/3av][A:av]E(y0 - y8) (8.5.26)

[kav] may be evaluated from Eq. 8.3.25 as [kay] = [i?av]~1.
For computational purposes it is better to break Eq. 8.5.26 into an expression for the

average diffusion fluxes Jiay

-y9) (8.5.27)

which is solved for the /, av. The molar fluxes Â  may then be computed from

Ni =Ji, av+y,,av^ (8.5.28)

with the total flux Â  given by

JV, = - (A) T ( /av) (8.5.29)
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The complete procedure for computing the fluxes from one of the explicit methods is given
in Algorithm 8.6.

Equation 8.5.24 may also be written in the form

c,[W;v]H(yo-y8) (8-5.30)

where

[^av]"1 - [&„][*»] = [|8av][i?av]^ (8.5.31)

The matrix [W] has elements

w-i _ ?'("'/",) + £ n (g 5 32)

< " • » >

where the /c/; are defined by Eq. 8.3.26. The parameter [Way] is evaluated from Eqs. 8.5.32
and 8.5.33 using the average mole fractions, yt:>av.

Equation 8.5.27 is a convenient starting point on which to base an algorithm for
computing the fluxes.

Algorithm 8.6 Algorithm for Calculation of Mass Transfer Rates
from Explicit Solutions of the Maxwell-Stefan Equations

Given: Mole fractions yi0, yiS.
Binary mass transfer coefficients
Molar density: ct.

Step 1: Compute average composition.
Step 2: Compute [R] using yiav and k^.
Step 3: Compute E.
Step 4: Solve Eq. 8.5.27 for (/av).
Step 5: Compute (Aav).
Step 6: Compute Nt from Eq. 8.5.29.
Step 7: Calculate Â  from Eq. 8.5.28.

Example 8.5.1 Evaporation into Two Inert Gases

Estimate the rate of evaporation of ethyl propionate(l) into mixtures of air(2) and hydro-
gen® using the method of Burghardt and Krupiczka. This problem is based on experiments
conducted by Fairbanks and Wilke (1950) with a view to assessing the validity of Wilke's
effective diffusivity formula (Eq. 6.1.14).

DATA

Temperature = 29.9°C, pressure = 101.325 kPa.

Composition of gas phase:

y10 = 0.0, y20 = 0.3, y30 = 0.7
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Composition at interface

y18 = 0.0634, y2S = 0.2594, y3d = 0.6772

The Maxwell-Stefan diffusion coefficients:

D12 = 8.5 mm2/s

B13 = 37.4 mm2/s

Film thickness i = 1 mm.

SOLUTION For diffusion of a single species into a mixture of inert gases all matrices in
the Burghardt-Krupiczka method are scalars and the flux of species 1 is given by

ne) (8.5.34)

where An is given by Eq. 8.5.8. For the ternary mixture in this problem this gives

= 51,318 s/m2

Arithmetic average mole fractions were used in the computation of An.
The mass transfer rate factor is computed from Eq. 8.5.15 using the total mole fraction

of inert species

- 0.0634)/(l - 0.0)}

= -0.0655

The correction factor E follows from Eq. 8.5.19 as

^ _ 1 (exp(d>) + 1)

* ~ 2 (exp(d>) - 1)

1 (exp(-0.0655) + 1)

( ° 0 6 5 5 >
= 1.00036

Clearly, the flux correction is rather low and there was no real need to compute H in this
problem.

The molar density is computed from the ideal gas law

c, = P/RT

= 101,325/(8.3143 X 303.05)

= 40.21 mol/m3

The numerical value of the flux of ethyl propionate therefore is

Nx = cta(yw-yld)/(Anf)

= 40.21 X 1.00036 X (0.0 - 0.0634)/(51,318 X 1 X 10~3)

= -0.0497 mol/m2s
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Figure 8.10. Composition profiles for evaporation of ethyl propionate into a mixture of air and
hydrogen.

There is, in fact, a little more to this problem than might be indicated by the above
computation. Since two of the fluxes are specified (N2 = N3 = 0), we are not at liberty to
specify the mole fractions of two species at the interface. The mole fraction of ethyl
propionate in the vapor at the liquid surface is determined from vapor-liquid equilibrium
relations. Since the liquid is pure ethyl propionate this means that yls is the ratio of the
vapor pressure of ethyl propionate at the system temperature divided to the total pressure.
With the vapor pressure given by the Antoine equation with constants taken from Reid et
al. (1977), this calculation gives the value specified above. Ethyl propionate is not present in
the bulk gas phase (at least initially), so yld = 0.0. The relative mole fractions of air and
hydrogen in the experiment of Fairbanks and Wilke therefore become the actual mole
fractions.

The mole fractions of air and hydrogen at the interface are given by exact solutions of
the Maxwell-Stefan equations for those components

N^/ctDin = \n(yid/yi0) i * 1 (8.5.35)

together with an equation that forces the mole fractions of all species to sum to unity. Not
all of these equations are independent, of course, and in our solution Eq. 8.5.35 for / = 3
was not used. The values of the interface compositions specified in the problem statement
are those that satisfy Eqs. 8.5.35. The values were found by solving Eq. 8.5.34 simultane-
ously with Eqs. 8.5.35. The resulting composition profiles are shown in Figure 8.10. •

8.5.5 Comparison With Exact and Linearized Solutions

The great advantage of the methods described in this section over those described earlier is,
of course, rapidity in computation. This gain in computational simplicity is, however, at the
expense of theoretical rigor. It is, therefore, important to establish the accuracy of the
methods described above using the exact method of Section 8.3 as a basis for comparison.
The extensive numerical computations made by Smith and Taylor (1983) showed that the
explicit method of Taylor and Smith ranked second overall among seven approximate
methods tested (the linearized method of Section 8.4 was best). For some determinacy
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conditions the explicit method of Taylor and Smith was actually the better of the approxi-
mate methods although the advantage over the linearized theory is negligibly small. The
method of Burghardt and Krupiczka was second best when stagnant components are in the
mixture. The average discrepancy in the predicted total flux is comparable to the discrepan-
ceis in this flux obtained from the linearized equations.

The explicit method of Krishna (1979d, 1981b) is most successful if the vt are close
together and, therefore (or for other reasons), the total flux is low. At high rates of mass
transfer, the assumption of constant [A]~l (or of [fi\B]~l) is a poor one, particularly in
cases involving an inert species.

A clue to the success of the explicit methods is provided by a comparison of the
composition profiles predicted by the explicit methods to the profiles obtained from the
exact and linearized methods. Krishna's explicit method always yields linear profiles and is
unable to account for large deviations from linearity. The methods of Burghardt and
Krupiczka and of Taylor and Smith yield identical dimensionless profiles for all species of
the correct (exponential) form. Another reason for the better performance of the
Burghardt-Krupiczka/Taylor-Smith method is that Eq. 8.5.24 represents an exact solution
of the Maxwell-Stefan equations if all the Du are equal (Burghardt, 1984; Taylor, 1984).
Krishna's explicit method is exact only if all the Dtj are equal and the total flux is zero (the
vi are equal). There is, however, more to it. The scalar correction factor a does a pretty
good job of correcting what we might consider as the "low-flux" estimates obtained from
Eq. 8.5.6. In fact, the rate factor <£ defined in Eq. 8.5.25 is an exact eigenvalue of the matrix
[<£] for three cases:

• All diffusivities are equal (regardless of the values of the vt).
• Stefan diffusion (Nn = 0) (regardless of the values of Dtj and vt).
• Equimolar countertransfer (Nt = 0, <£ = 0) (regardless of the values of the £>/; and vt).

It is the eigenvalues (literally; "characteristic values") of [<l>] that characterize the correction
factor matrix [H]. Thus, the scalar rate factor <1> and correction factor S when multiplied by
identity matrices frequently are quite good models for the behavior of the complete
matrices [O] (or [^]) and [H] in the exact and linearized methods.

One especially good use for the Taylor-Smith/Burghardt-Krupiczka method is to
generate initial estimates of the fluxes for use with the Krishna-Standart or
Toor-Stewart-Prober methods. It is a very rare problem that requires more than two or
three iterations if Eq. 8.5.26 is used to generate initial estimates of the fluxes (Step 3 in
Algorithm 8.2) (Krishnamurthy and Taylor, 1982).

8.6 EFFECTIVE DIFFUSIVITY METHODS

The oldest, simplest, and still widely used methods, pioneered by Hougen and Watson
(1947) and by Wilke (1950), employ the concept of an effective diffusion coefficient. The
effective diffusivity concept was discussed in detail in Chapter 6; here we show how the
effective diffusivity can be used to calculate mass transfer rates.

The starting point for this analysis is the one-dimensional form of Eq. 6.1.1



EFFECTIVE DIFFUSIVITY METHODS 205

with the effective diffusivity, Di eff, given by Eqs. 6.1.7 or 6.1.8 or the special cases and
approximate relations Eqs. 6.1.13-6.1.15.

If DitCS can be assumed constant at some suitably averaged composition then the
composition profiles are easily obtained as

-T r- (8-6-2)

where

®i,eff ^ Ntf/CtDi,eff i = 1,2,. . . , /I - 1 (8.6.3)

The diffusion fluxes at 17 = 0 are calculated from

_£L_^1eff (8.6.4)

With the composition derivatives obtained from Eq. 8.6.2 we may define an effective mass
transfer coefficient by

Jio = ctklcff(yiO-yi8) (8.6.5)

with the high flux mass transfer coefficient &*eff expressed as

<eff " £;,effE,,eff (8-6.6)

where we have defined a low-flux mass transfer coefficient kt eff

*/,dr = * W ' (8-6-7)

and high flux correction factor E, e f f

B,,eff = ^,eff/(exp(4>,. eff) - 1) (8.6.8)

In the limit that Nt -> 0, ^ijeS -> 0, Hf eff -> 1 and the diffusion fluxes are obtained
directly from

Ji = c,ki^{yi0-yiS) [Nt = 0] (8.6.9)

The molar fluxes are obtained from the appropriate bootstrap relation as discussed in
Chapter 7.

If the total flux Nt is not specified, an iterative approach is required for evaluation of the
molar fluxes A .̂ A procedure based on repeated substitution is provided in Algorithm 8.7. A
still more efficient procedure can be devised using Newton's method (cf. Algorithm 8.5)
(Krishna and Taylor, 1986).
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Algorithm 8.7 Algorithm Based on Repeated Substitution
for Calculation of Mass Transfer Rates
from an Effective Diffusivity Method

Given:
Step 1:

Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:

Compute effective diffusivities

A.eff ('" = 1, . . . ,» - 1)
Compute effective mass transfer coefficients, kifCf[.
Compute [0].
Estimate Nr

Calculate 4>/>eff.
Calculate H i e f f .
Calculate Jt = ctkitCffBiteff Ay,,
Calculate (N) = [ £ ] ( / ) .
Check for convergence on Nt

If Nt has not converged return to Step 4.

In the other category of this class of methods, the effective diffusion coefficient is defined
with respect to the molar flux Â . That is,

with D/>eff given by Eq. 6.1.2. If the flux ratios are known or can be approximated in some
way (as is the case when we have diffusion controlled chemical reactions taking place on
catalyst surfaces) then the Dieff defined in Eqs. 6.1.2 may be calculated.

Now, if Di eff can be considered constant at some average value, then integration of Eq.
8.6.10 yields linear composition profiles and a simple expression for calculating the fluxes
without iteration

^ = yA,eff(yo-y 5) (8.6.11)

Examples illustrating the application of this method are given by Kubota et al. (1969) and by
Geankoplis (1972).

The only advantage of the effective diffusivity definitions is their simplicity in computa-
tion; no matrix functions need be evaluated. The primary disadvantage of the use of Dt eff is
that these parameters are not, in general, system properties except for the limiting cases
noted in Chapter 6.

Example 8.6.1 Diffusion in a Stefan Tube

In Example 2.1.1 we described the experiments of Carty and Schrodt (1975) who evaporated
a binary liquid mixture of acetone(l) and methanol(2) in a Stefan tube. Air(3) was used as
the carrier gas. Using an effective diffusivity method calculate the composition profiles.

DATA

Composition at the interface: y1 = 0.319, y2 = 0.528.
Composition at the top of the tube: y1 = 0.0, y2 = 0.0.
Pressure = 99.4 kPa.
Temperature = 328.5 K.
The length of the diffusion path is 238 mm.
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The Maxwell-Stefan diffusion coefficients are

B12 = 8.48mm2/s

£>13 = 13.72 mm2/s

£>23 = 19.91 mm2/s

SOLUTION The composition profiles in the Stefan tube are given by Eq. 8.6.2. Before we
can compute the profiles we must determine the rates of evaporation of acetone and
methanol. Since the evaporating species are present in low concentrations at the top of the
tube (although not at the bottom) we shall use the dilute solution limit for the effective
diffusivities

^l.eff = ^13 = 1 3 - 7 2 mm2 /s

^ e f f = #23 = 1 9 - 9 1 mm2 /s

The effective mass transfer coefficients therefore are

= 13.72/238

= 0.05765 mm/s

= 19.91/238

= 0.08366 mm/s

Solution of Eq. 8.6.5 together with the determinacy condition N3 = 0 yields the following
values for the fluxes:

Nt = 1.781 X HT3 N2 = 3.309 X 10"3 mol/m2s

results that are in excellent agreement with the exact values (from Example 2.1.1)

Nt = 1.783 X 10~3 N2 = 3.127 X 10~3 mol/m2s

It is worth noting that simple repeated substitution of the fluxes is not effective for
solving this particular problem if the calculations are started with H,->eff = 1 (corresponding
to a null estimate of the fluxes). The oscillations in the fluxes that result with simple
repeated substitution can be avoided by using an average of the last two computed estimates
of the fluxes in the evaluation of the mass transfer rate factors. In this case, however, we
used Newton's method to solve a single function of the total flux (cf. Algorithm 8.5).

Using the converged set of fluxes, the rate factors have the values

*1>eff = 2.427 4>2,etf = 1.672

and these values may be used directly in Eq. 8.6.2 to compute the profiles shown in Figure
8.11. The effective diffusivity profiles are in rather good agreement with profiles given by an
exact solution and with the experimental data of Carty and Schrodt (1975). The good results
obtained here must be considered to be somewhat fortuitous; the fluxes computed with
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0.1 0.2
distance along diffusion path / [m]

Figure 8.11. Composition profiles in a Stefan tube. Lines are computed from effective diffusivity model.
Data of Carty and Schrodt (1975).

other effective diffusivity formulas are not as good as those given above (Krishna and
Taylor, 1986). •

8.6.1 Comparison With the Matrix Methods

The simple effective diffusivity method (Eq. 8.6.5), represents an exact solution of the
multicomponent diffusion equations if conditions are such that the appropriate limiting
forms of Eqs. 6.1.10 and 6.1.11 apply. Thus, Eq. 8.6.5 can be used with confidence for
systems where the binary Dtj display little or no variation or in mixtures where one
component is present in very large excess. However, the identification of these conditions
requires some a priori knowledge that none of the matrix methods require. "To knowingly,
or unknowingly, use these formulas in situations where these limiting cases do not apply
would stand about as much chance of successfully predicting the fluxes as the throw of a
dice to predict the magnitude and the toss of a coin to determine the sign" (Smith and
Taylor, 1983). Two problems that could be placed in this category were presented in
Chapter 5.

If the nonzero fluxes have the same sign (i.e., they are all in the same direction), then
effective diffusivity methods are more likely to give reasonable results. This is nearly always
the case in condensation and absorption processes and this goes some way at least to
explaining why effective diffusivity methods usually give good estimates of the total amount
condensed and the total heat load even if the individual condensation rates are not so well
predicted. Webb et al. (1981) discussed in detail the conditions that must apply for an
effective diffusivity method to be a useful model in multicomponent condensation.

The effective diffusivity formula of Stewart (Eq. 6.1.8) is by far the best of this class of
methods. This should not come as a surprise since this method is capable of correctly
identifying the various interaction phenomena possible in multicomponent systems. Indeed,
for equimolar countertransfer, this effective diffusivity method is equivalent to the linearized
theory and to both explicit methods discussed above. In fact, for some systems Stewart's
effective diffusivity method is superior to Krishna's explicit method (Smith and Taylor,
1983). However, since the explicit methods are actually simpler to use than Stewart's
effective diffusivity method (all methods require the same basic data) and, in general



MULTICOMPONENT FILM MODEL FOR MASS TRANSFER 209

provide such superior results we see no reason for any further use of the effective diffusivity
for describing diffusion in multicomponent ideal gas mixtures.

8.7 MULTICOMPONENT FILM MODEL FOR MASS TRANSFER IN NONIDEAL
FLUID SYSTEMS

In this section we briefly describe how the solutions developed above for mass transfer in
ideal gases can be extended to cover nonideal fluids. The starting point for the analysis of
mass transfer in nonideal fluid mixtures is the set of generalized Maxwell-Stefan Eqs. 2.2.1,
which for one-dimensional mass transfer, may be written as

where

and where the thermodynamic factors 1^ are defined by Eq. 2.2.5. The Tik and Bik are, in
general, composition dependent.

8.7.1 Exact Solutions

An exact solution to Eqs. 8.7.1 and 8.7.2 may be obtained by generalizing the analysis of
Section 8.3.5. In fact, the entire development of Section 8.3.5 holds for nonideal fluids as
long as we use [B]"1^] for the matrix [D].

Alternatively, we may cast Eqs. 8.7.1 and 8.7.2 in n — 1 dimensional matrix form as

[ r ] ^ T = [<t>1(x) + w (8'73)

where 77, [<E>], and ($) are as defined before for the ideal gas case. Equations 8.7.3 may be
solved by the method of repeated solution (Exercise 8.7.1).

The results of both approaches are expressed in terms of a matrizant and are not at all
straightforward to use. For this reason, we recommend the approximate methods discussed
below for use in applications.

8.7.2 Approximate Methods

Krishna (1977) presented an approximate solution of Eqs. 8.7.3 by assuming that the
coefficients 1^ and Bik could be considered constant along the diffusion path. With these
assumptions Eq. 8.7.3 represents a linear matrix differential equation, the solution of which
can be written down in a manner exactly analogous to the ideal gas case. Thus, the
composition profiles are given by

(x-x0) = [exp[0]r, - [/]][exp[0] - [I]]~\xs - xo) (8.7.4)
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where [©] is the augmented matrix of rate factors

[©] = [ r^ -H*] . (8.7.5)

The molar fluxes Nt can be calculated from

(N)=c,[f30][k0][a0](x()-xa)

= c,[/38][*4][B8](*o-*«) (8-7-6)

where the matrices of mass transfer coefficients are given by

[ko] = [Do]/e=[BQYxiT,v]/e

[] [] [ Y \ y

The subscripts 0 and 8 serve as reminders that the appropriate compositions, xi0 and xiS,
respectively, have to be used in the defining equations for Bik, (Eqs. 2.1.20 and 2.1.21). The
subscript av on [T] emphasizes the assumption that the matrix of thermodynamic factors
evaluated at the average mole fraction and is assumed constant along the diffusion path.

The correction factors [Ho] and [B8] are given by

[ H o ] - [ ® ] [ e x p [ 0 ] - [I]]-1

[ B 8 ] = [ 0 ] e x p [ ® ] [ e x p [ @ ] - [ ] ] 1

It is interesting to note the direct influence of the thermodynamic factors Tik on the mass
transfer correction factors [H].

Equations 8.7.4-8.7.8 may also be obtained as limiting cases of the exact (matrizant)
solution to Eqs. 8.7.3 (Exercise 8.7.1).

The interaction phenomena discussed earlier for the ideal gas case will also be possible
for nonideal fluid mixtures, for which [T] contribute to the matrix [A:*] by means of its
separate influence on [k], the zero flux matrix, and [H], the correction factor matrix.

The linearized theory of Toor (1964) and of Stewart and Prober (1964) discussed in
Section 8.4 can be extended to nonideal fluids simply by using the appropriate relation for
the matrix of multicomponent diffusion coefficients. For nonideal mixtures the matrix [D]is
evaluated as

[ A J - [5av]~'trav] (8.7.9)

The explicit methods developed in Section 8.5 can be generalized in similar ways.
Krishna (1979a, 1981b), for example, assumes constancy of the matrix product [j8][5]~1[F]
and obtains

(N) = j[Pm][Bm]-'[Tm](x0-xs) (8.7.10)

Extensions of the method of Taylor and Smith (1982) are described by Kubaczka and
Bandrowski (1990) and by Taylor (1991).

For liquid mixtures, effective diffusion coefficients may be defined using the generalized
Maxwell-Stefan equations (Lightfoot and Scattergood, 1965).

The computational methods discussed above for use with the ideal solution simplifica-
tions of the general relations presented could also be employed here. We recommend the
use of repeated substitution to calculate the Nt from Eqs. 8.7.4 and Newton's method for
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calculating Nt from the linearized equations. The explicit methods are useful for generating
initial estimates of the Nt.

Example 8.7.1 Mass Transfer in a Nonideal Fluid Mixture

To illustrate the application of the film model for nonideal fluid mixtures we consider
steady-state diffusion in the system glycerol(l)-water(2)-acetone(3). This system is partially
miscible (see Krishna et al., 1985). Determine the fluxes NVN2, and N3 in the glycerol-rich
phase if the bulk liquid composition is

JC15 = 0.7824 x28 = 0.1877 x3d = 0.0299

and the interface composition is maintained constant at

x10 = 0.5480 x20 = 0.2838 x30 = 0.1682

The flux ratio, zx = Nx/Nt is constant during the diffusion process and given by zx = -&•

DATA

1. The generalized Maxwell-Stefan diffusion coefficients (to be assumed constant over
the diffusion path) are [10~10 m2/s]

Dl2 = 11 f)13 = 18 D23 = 56

2. The matrix of thermodynamic factors, evaluated at the average composition is

r r l = f °-9 5 9 3 4 -1-2392]
1 J [-0-3586 1.8739 J

3. The effective film thickness is I = 10~5 m.
4. The mixture density ct is 15 kmol/m3.

SOLUTION Either of Algorithms 8.1 or 8.2 may be adapted for computing the fluxes in a
nonideal solution. We give only the final results of the iteration process below.

[A:o] is obtained from Eq. 8.7.7 as

[*<>] = \.Boy\Tm\/e

The results of this computation are

143 -1041 ^ i n _ 6 ,
-11 286jXl° m / S

The total flux is found with the help of Eq. 1.1.12 as

where zx = ^ .
The converged values for the diffusion fluxes are
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Figure 8.12. Composition profiles during mass
transfer in the system glycerol(l)-water(2)-
acetone(3). Note that despite a large negative
driving force for glycerol(l), its flux is positive.
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Composition profiles are shown in Figure 8.12. Arrows denote the actual directions of mass
transfer. It is interesting to note that despite a large negative driving force for glycerol(l),
AJCX = -0.2344, the flux Nx is positive, that is, in a direction opposite to its driving force.

8.8 ESTIMATION OF MASS TRANSFER COEFFICIENTS FROM
EMPIRICAL CORRELATIONS

In many cases, a priori estimates of the film thickness / cannot be made, and we resort to
empirical methods of estimating the mass transfer coefficients. Most published experimental
works have concentrated on two component systems and there are no correlations for the
multicomponent [k]. The need to estimate multicomponent mass transfer coefficients is very
real, however. The question is How can we estimate multicomponent mass transfer coeffi-
cients when all we have to go on are binary correlations? In this section we look at the
various methods that have been proposed to answer this question.
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8.8.1 Estimation of Binary Mass Transfer Coefficients

Binary mass transfer data usually are correlated in terms of dimensionless groups, such as
the Sherwood number,

Sh = kd/D (8.8.1)

the Stanton number

St = k/u (8.8.2)

and the Chilton-Colburn j factor

j D = St Sc2/3 (8.8.3)

where d is some characteristic dimension of the mass transfer equipment, u is the mean
velocity for flow, D is the Fick diffusion coefficient, and Sc is the Schmidt number v/D.

Dimensional analysis suggests that the Sherwood number be a function of the Reynolds
number (Re = ud/v) and Schmidt number, Sc (Sherwood et al., 1975)

Sh=/ (Re ,Sc) (8.8.4)

There are a great many correlations available in the literature for estimating binary mass
transfer coefficients. It is beyond the scope of this book to review these correlations in detail
[the reader is referred to the text by Sherwood et al. (1975) for more information]. For
present purposes it suffices to cite only a couple of examples of useful empirical expressions.
Other correlations are discussed in Sections 12.1.5 and 12.3.3.

The Gilliland-Sherwood correlation for gas-phase binary mass transfer in a wetted wall
column is

Sh = 0.023 Re083Sc0-44 (8.8.5)

An apparent weakness of the film model is that it suggests that the mass transfer
coefficient is directly proportional to the diffusion coefficient raised to the first power. This
result is in conflict with most experimental data, as well as with more elaborate models of
mass transfer [surface renewal theory considered in the next chapter, e.g., or boundary layer
theory (Bird et al., I960)]. However, if we substitute the film theory expression for the mass
transfer coefficient (Eq. 8.2.12) into Eq. 8.8.1 for the Sherwood number we find

Sh = d/t (8.8.6)

and we see that the inverse Sherwood number Sh"1 may be regarded as a dimensionless
film thickness. The film thickness obtained from a Sherwood number correlation, such as
Eq. 8.8.5, will be a function of the flow conditions, system geometry, and fluid properties
like viscosity and density. In addition, I is proportional to the Fick diffusion coefficient D
raised to some fraction of unity. The observation that ( may be a function of D removes
the objection that film theory does not predict the correct dependance of k on D.

A widely used expression for estimating mass transfer coefficients is the Chilton-Colburn
analogy

j D = f/2 or St = i /Sc" 2 / 3 (8.8.7)

where / is the Fanning friction factor. Further discussion of the Chilton-Colburn analogy
can be found in the books by Bird et al. (1960) and Sherwood et al. (1975), and in Chapters
10 and 11.
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The Sherwood number Sh for spherical bodies is defined by

Sh = k2ro/D (8.8.8)

The classic result Sh = 2 is obtained for the case where a spherical body is immersed in an
infinite fluid medium (r5 » r0) and for vanishingly small total molar flux Nr For finite slip
between the spherical body and the surrounding fluid the Sherwood number is usually
obtained from correlations of the form (see Sherwood et al., 1975):

Sh = 2+/(Re,Sc) (8.8.9)

where /(Re, Sc) is some function of the Reynolds and Schmidt numbers.
The binary mass transfer coefficients estimated from these correlations and analogies are

the low flux coefficients and, therefore, need to be corrected for the effects of finite transfer
rates before use in design calculations.

In some correlations it is the binary mass transfer coefficient—interfacial area product
that is correlated. In this case, then k should be considered to be this product and the N(

that are calculated from Eqs. 8.2.14 et seq are the mass transfer rates themselves with units
moles per second (mol/s) (or equivalent).

8.8.2 Estimation of Multicomponent Mass Transfer Coefficients:
The Method of Toor, Stewart, and Prober

In their original development of the linearized theory Toor (1964) and Stewart and Prober
(1964) proposed that correlations of the type given by Eqs. 8.8.5 and 8.8.7 could be
generalized by replacing the Fick diffusivity D by the charactersitic diffusion coefficients of
the multicomponent system; that is, by the eigenvalues of the Fick matrix [D]. The mass
transfer coefficient calculated from such a substitution would be a characteristic mass
transfer coefficient; an eigenvalue of [A:]. For example, the Gilliland-Sherwood correlation
(Eq. 8.8.5) would be modified as follows:

Sh; = 0.023 Re083 Sc/ (8.8.10)

and the Chilton-Colburn analogy (Eq. 8.8.6), becomes

St/ = \f^r (8.8.11)

where

Sĉ . - v/Dt

sh, - M/A

St; = kJU

are Schmidt, Sherwood, and Stanton numbers in terms of the eigenvalues of [D]. The kt

computed from these (or other similar) relations are used together with (Eqs. 8.4.23-8.4.32)
and Algorithms 8.4 and 8.5 to compute the matrices of multicomponent mass transfer
coefficients and the molar fluxes Nt.

This approach is, in fact, equivalent to replacing the binary diffusivity D by the matrix of
multicomponent diffusion coefficients [D] and the binary mass transfer coefficient with the
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matrix of multicomponents [k]. Thus, we have the matrix generalization of Eq. 8.8.5

[Sh] = [k]d[D]~x = 0.023 Re°-83[Scf44 (8.8.12)

and the matrix generalization of Eq. 8.8.2 is

[St] = [*]/M = §/[Sc]-2/3 (8.8.13)

where [Sc] is a matrix of Schmidt numbers [Sc] = v[D]~l.
Burghardt and Krupizcka suggested a variation on the Toor-Stewart-Prober approach

for use with their own explicit method for Stefan diffusion developed in Section 8.5.2 [see
Taylor (1984) for further discussion of their method].

8.8.3 Estimation of Multicomponent Mass Transfer Coefficients for
Gas Mixtures from Binary Mass Transfer Coefficients

Krishna and Standart suggested that, in situations where the film thickness i is not known
the matrix of low flux mass transfer coefficients be calculated directly from Eq. 8.3.27

[*] - [R]-1 (8.3.27)

where [R] is calculated from Eqs. 8.3.25

(8.3.25)

The binary Ktj may be calculated as a function of the appropriate Maxwell-Stefan diffusion
coefficient from a suitable correlation or physical model (e.g., the surface renewal models of
Chapter 10). These binary Ktj must also be used directly in the calculation of the rate factor
matrix [<S>] (cf. Eqs. 8.3.28 and 8.3.29).

The same approach may be used in conjunction with the linearized equations and
explicit methods of Section 8.5. Basically, [k] is calculated from Eq. 8.3.25 using the average
mole fractions yi av, and the binary / - j pair mass transfer coefficients Ktj in the evaluation
of [R].

The approach of Toor, Stewart, and Prober and that of Krishna and Standart are
equivalent for the two limiting cases discussed in Section 8.3.1: ideal gas mixtures in which
the binary Btj are equal or very dilute mixtures. In our experience the two approaches
almost always give virtually identical results [although Young and Stewart (1986) might
disagree]. We, therefore, recommend the use of [kaw] = [i? a v] - 1 in view of the ease of
computation and because the results are sufficiently accurate. In the Toor-Stewart-Prober
approach we need to evaluate fractional powers of matrices. This calculation can be done
using Sylvester's expansion formula or the modal matrix transformation approach but either
way is rather more involved than the direct use of binary Ktj in the calculation of [A:] (or
equivalent matrix).
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8.8.4 Estimation of Mass Transfer Coefficients for Nonideal Multicomponent Systems

Comparison of Eqs. 8.3.19 and 8.7.5 for the low flux mass transfer coefficients for ideal and
nonideal systems, respectively, suggests that in cases where the film thickness is not known
we may estimate the low flux mass transfer coefficient matrix for nonideal systems from

[k] = [RV'iT] (8.8.14)

where the elements of the matrix [R] are given by Eqs. 8.3.25 with the liquid-phase mole
fractions xt replacing the y-r

For a two component system Eq. 8.8.14 simplifies to

k = KT (8.8.15)

The Ktj may be estimated using an empirical correlation or alternative physical model
(e.g., surface renewal theory) with the Maxwell-Stefan diffusivity of the appropriate i-j pair
Dtj replacing the binary Fick D. Since most published correlations were developed with
data obtained with nearly ideal or dilute systems where T is approximately unity, we expect
this separation of diffusive and thermodynamic contributions to k to work quite well. We
may formally define the Maxwell-Stefan mass transfer coefficient Ktj as (Krishna, 1979a)

limit / .
KU = all ^ -> 0 —f— (8.8.16)

r A YC*X

Example 8.8.1 Ternary Distillation in a Wetted Wall Column

Dribicka and Sandall (1979) distilled ternary mixtures of benzene (1), toluene (2), and
ethylbenzene (3) at total reflux in a wetted wall column made from stainless steel and of
2.21-cm inside diameter (d). A schematic diagram of the column is shown in Figure 8.13.
Samples of the vapor and liquid phases were taken from various points along the column.
During one of their experiments the vapor phase at a height of 300 mm from the bottom of
the column had the composition

ylo = 0.7471 y20 = 0.2072 y30 = 0.0457

Estimate the rates of mass transfer assuming the vapor composition at the interface is

yls = 0.8906 y28 = 0.0995 y38 = 0.0099

DATA

Viscosity of vapor mixture: /UL = 8.819 X 10"6 Pa s.

Vapor mass density: pt = 2.810 kg/m3 .

Molar density: ct = 34.14 mol/m3 .

The vapor phase diffusivities of the three binary pairs are D12 = 2.228 X 10 ~6 m 2 / s ;

£>13 = 2.065 X 10~6 m 2 / s ; and £>23 = 1.832 X 10"6 m 2 / s .

Vapor mass velocity: G = 8.68 kg/m2s.

SOLUTION In this illustration we adopt the suggestion of Toor, Stewart, and Prober and
compute [k] from Eq. 8.8.12. The first step must, therefore, be to compute the matrix of
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liquid in:
benzene (1)-
toluene (2)-

ethyl benzene (3)^

A

/ i

vapor out:
benzene (1)-
toluene (2)-
ethyl benzene (3)

wetted-
wal!
column

0.3 m

mole
fraction

<=^benzene(1)

P toluene (2)i >

0 ethyl benzene (3) c = £ >

I I i i i I

bulk vapor interface

Figure 8.13. Schematic diagram of wetted wall column. Inset shows composition profiles in vapor film
at the interface.

multicomponent diffusion coefficients [D], which follows directly from Eqs. 4.2.7 as

2.093 -0 .130] Q_6 2

-0.067 2.148 J X 1U m / S

The arithmetic average mole fractions were used in the computation of [£>]. The eigenval-
ues of this matrix are

Dx = 2.218 X 10"6 m 2 / s D2 = 2.0231 X 10~6 m 2 / s
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The Gilliland-Sherwood correlation in the form of Eq. 8.8.12 may be used to estimate
the mass transfer coefficients in the vapor phase. The Reynolds number is found as follows:

Re = Gd/fi

= 8.68 X 0.0221/(8.819 X 10~6)

= 21,752

The Schmidt numbers are computed next as

=li/(PtDl)

= 8.819 X 10"6/(2.810 X 2.218 X 10~6)

= 1.4153

= 1.5513

The Sherwood numbers are obtained from Eqs. 8.8.10

Sh1 = 0.023 Re0-83 Sc^44

= 0.023 X 21,7520-83 X 1.4153044

= 106.71

Sh2 = 0.023 Re0-83 Sc^44

= 111.11

The eigenvalues of the matrix of mass transfer coefficients are computed next as

k^ = Sh^/d

= 106.71 X 2.218 X 10-6/0-0221

= 1.071 X 10~2 m/s

k2 = Sh2D2/d

= 1.017 X 10"2 m/s

The matrix of mass transfer coefficients may now be computed using Eqs. 8.4.31

1.036 -0.0359] x l 0 - 2 m / s
-0 .0184 1.0516J X 1 ° m / S

The total molar flux may safely be assumed to be zero so the diffusion and molar fluxes are
equal.

/ -5.209 X H P ' | 2§
V J \ 3.957 X 10-2 /

The flux of ethylbenzene 7V3 is

N3 = -N, - N2

= 1.252 X 10~2

No iterations are required since the correction factors are unity in this case.
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Since the experiments were carried out at total reflux, the bulk liquid at the same point
in the column must have the same composition as the bulk vapor. Furthermore, if the liquid
film is assumed to be well mixed, the liquid interface composition is the same as the bulk
liquid composition. Thus, a simple bubble point computation on yb gives the vapor
composition at the interface. The values we found were reported above for use in this
illustration.

Composition profiles are shown in Figure 8.13. Diffusional interactions are quite limited
in this system due to the similar nature of all three components. As a result, all three
components diffuse "normally" (Fig. 8.13). •

8.8.5 Estimation of Overall Mass Transfer Coefficients: A Simplified Result

We may use the results of Sections 8.8.3 and 8.8.4 to develop a simple method for
estimating overall mass transfer coefficients. The starting point for this development is Eq.
7.3.14 for [Kov\

[KoyV1 = [k^V1 + ^[M]^]'1 (7.3.14)
ct

For the vapor phase—here assumed ideal—[kv] may be estimated from Eq. 8.3.27

[kv] = [ f l " ]" 1 (8.8.17)

and [kL] may be obtained from (cf. Eq. 8.8.14)

[kL] = [^L]"X[F] (8.8.18)

The matrices [Rv] and [RL] have elements defined by Eqs. 8.3.25 using the appropriate
mole fractions and "ideal" mass transfer coefficients of the binary i-j pair ku for the
appropriate phase. If we substitute Eqs. 8.8.17 and 8.8.18, together with Eq. 7.3.7 for the
linearized equilibrium matrix, into Eq. 7.3.16 we find

[Rov] = [Rv] + ^[K][RL] (8.8.19)
cct

where [Rov] is a matrix of overall resistances to mass transfer. The matrix of overall mass
transfer coefficients is the inverse of [Rov]

[Kov] = [Rov]~l (8.8.20)

For two component systems Eqs. 8.8.19 and 8.8.20 simplify to

1 1 cv
t K

Js^ov K ct K

It is interesting to note that the thermodynamic factors cancel out of Eqs. 8.8.19 and 8.8.20.
The elimination of the thermodynamic factors will prove particularly useful in the estima-
tion of transfer efficiencies in multicomponent distillation (Section 12.3).



Unsteady-State Mass Transfer
Models

. . . my earliest work, done at a time when I had no experimental facilities and was much taken
up with the transient processes which occur when a gas comes into contact with a semi-infinite
liquid (particularly one containing a reagent) and was also somewhat fascinated by the possibili-
ties of mathematics (to which I had recently been introduced after a lapse of many years).

—P. V. Danckwerts (1981)

9.1 SURFACE RENEWAL MODELS

In the penetration or surface renewal models fluid elements (or eddies) are pictured as
arriving at the interface from the bulk fluid phase and residing at the interface for a period
of time te (the exposure time). During the time te that the fluid element resides at the
interface, mass exchange takes place with the adjoining phase by a process of unsteady-state
diffusion. The fluid element is quiescent during this exposure period at the interface and the
diffusion process is purely molecular. The element may, however, move in plug flow along
the interface. After exposure, and consequent mass transfer, the fluid elements return to
the bulk fluid phase and are replaced by fresh eddies. A pictorial representation of this
model, adapted from Scriven (1968, 1969), is given in Figure 9.1.

The governing differential equations for the unsteady-state diffusion process experienced
by the fluid element during its residence at the interface is Eq. 1.3.10 for each species. For
one-dimensional, unsteady-state diffusion in a planar coordinate system these equations
may be written as

dX: dN:
c , - + - = 0 (9.1.1)

where z represents the direction coordinate for diffusion. Summing Eqs. 9.1.1 for all species
in the mixture gives

- - 0 (9.1.2)

from which we conclude that the mixture flux Nt is not a function of position z and
depends only on time. If we substitute Eq. 1.2.12 for the molar fluxes Nt into Eq. 9.1.1 we
obtain

dX: dX: dJiz

ct— +Nt— = —^ (9.1.3)
' dt ' dz dz K '

The molar diffusion flux Jiz is given by Eq. 3.1.1 for a binary system and either Eq. 2.1.25
or Eq. 3.2.5 for a multicomponent system.

The assumptions of the model are incorporated into the initial and boundary conditions.
During the diffusion process the interface has the composition xi0. This composition usually

220
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eddy exposure

eddy arriving
at interface

from bulk fluid

eddy returning
to bulk fluid

after exposure

Figure 9.1. General representation of the surface re-
newal model. An eddy arrives at the interface and
resides there for randomly varying periods of time.
During this period, there is plug flow of fluid elements.
The bulk fluid is considered to be located at an infinite
distance from the interface. Pictorial representation
adapted from Scriven (1968, 1969).

is assumed to be constant (this assumption is not essential to the penetration model), and
we have the boundary condition

z = 0 t > 0 (9.1.4)

Before the start of the diffusion process, the compositions are everywhere uniform in the
phase under consideration, and equal to the bulk fluid composition xioa. Thus we have the
initial condition

z ^ O * = 0 jcf- = jci00 (9.1.5)

Finally, we have the last boundary condition that is valid for short contact times, that is,

z ^ o o ; > 0 xt=xioc> (9.1.6)

which essentially states that the diffusing component has not penetrated into the bulk fluid
phase.

The classic penetration model of Higbie (1935) is based on the assumption that all the
fluid elements reside at the interface for the same length of time. The surface age
distribution for this model is

= yt€ (9.1.7)

for all t ^ te and \jt(t) = 0 for t > te and is shown in Figure 9.2.
The basis for the Danckwerts (1951) surface renewal model is the idea that the chance of

an element of surface being replaced with fresh liquid from the bulk is independent of the

time, t

Figure 9.2. Surface age distribution function ifj(t) in
which each fluid element stays the same period of time
at the interface before being replenished from the bulk
fluid (Higbie model).
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) = s exp (-s t)

Ms
time, t

Figure 9.3. Surface age distribution according to Danckwerts; the elements undergo random surface
renewal at frequency s.

length of time for which it has been exposed. The age distribution function assumed is

\jj(t) = sQxp(-st) (9.1.8)

and is depicted in Figure 9.3. Here, s is the fraction of the area of surface that is replaced
with fresh liquid in unit time.

In the remainder of this chapter we present solutions to this set of equations. As in
Chapter 8 on film theory we begin with the binary case and then go on to consider
multicomponent systems.

9.2 UNSTEADY-STATE DIFFUSION IN BINARY SYSTEMS

For a binary system with no convection perpendicular to the interface, Eq. 9.1.1, combined
with Eq. 3.1.1 for Jl9 simplifies to

dx, d2xl

c' at
(9.2.1)

We have assumed ct and D to be constant in presenting Eq. 9.2.1.
We use the method of combination of variables, with the combined variable

This allows us to rewrite Eq. 9.2.1 as

d2xx dxx
(9.2.2)

where <f> is defined by

0 = (Nt/ct)ft (9.2.3)

The parameter (j> is not a function of £ (see Section 9.3 and Bird et al. (1960) for
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justification). In terms of £, the initial and boundary conditions become

C = 0 xx = x10

(9.2.4)

Equation 9.2.2 can be integrated to give the concentration profiles as (Arnold, 1944; Bird
et al., 1960)

The molar diffusion flux at the interface z = 0 is obtained from the one-dimensional form
of Eq. 3.1.1

-ctD —
1 dz

(9.2.6)

The composition derivative dxl/dx\z=o is obtained by differentiating Eq. 9.2.5, setting
z = 0, and the resulting expression combined with Eq. 9.2.6 to give

exp(-<

In the limit that Nt goes to zero, Eq. 9.2.7 simplifies to

J10 = ct}[D7^I(xl0 - xloo) (Nt = 0)

( 9 - 2 - 7 )

(9.2.8)

which shows that the instantaneous value of the low flux mass transfer coefficient k, defined
by Eq. 7.1.4, is (Bird et al., 1960)

k(t) = y/D/irt (9.2.9)

The average mass transfer coefficient over the total exposure period te, is given by

k = fk(t)ilt(t)dt (9.2.10)

where ij/(t) is a surface age distribution function representing the fraction of elements
having ages between t and t + dt at the surface. To evaluate this integral we need a model
for ilf(t).

With the age distribution function for the classic Higbie model (Eq. 9.1.5), the average
mass transfer coefficient is

k = 2yJD/irte (9.2.11)

The Danckwerts surface age distribution (Eq. 9.1.6) leads to an average value of the mass
transfer coefficient given by

k = (9.2.12)
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10r-

Correction
factor, 1

0.1

penetration^
model \

film
rnodel

-3 - 2 - 1 0 1 2 3

mass transfer rate factor, <j>

Figure 9.4. High flux correction factor from film and penetration models.

The correction factor for finite mass transfer rates a is given by [see Bird, et al. I960)]

^ exp{-t^2/77"}

in which the mass transfer rate factor <£ is defined as

Nt/ctk

(9.2.13)

(9.2.14)

A graphical comparison of the film and penetration model correction factors is provided
by Figure 9.4. It can be seen that for a given <l> the film model and penetration model
predictions of H are close to each other. For this reason we recommend the use of the film
model E in design calculations because of the relative simplicity in computations; to use the
penetration model B, we need to evaluate error functions that are more time consuming.

The calculation of k using Eqs. 9.2.11 and 9.2.12 requires a priori estimation of the
exposure time te or the surface renewal rate s. In some cases this is possible. For bubbles
rising in a liquid the exposure time is the time the bubble takes to rise its own diameter. In
other words, the jacket of the bubble is renewed every time it moves a diameter. If we
consider the flow of a liquid over a packing, when the liquid film is mixed at the junction
between the packing elements, then te is the time for the liquid to flow over a packing
element. For flow of liquid in laminar jets and in thin films, the exposure time is known but
in these cases it may be important to take into account the distribution of velocities along
the interface. In the penetration model, this velocity profile is assumed to be flat (i.e.,
plug flow). For gas-liquid mass transfer in stirred vessels, the renewal frequency in the
Danckwerts model s may be related to the speed of rotation (see Sherwood et al. 1975).

The molar flux at the interface N10 can be calculated by multiplying the diffusion flux Jl0

by the appropriate bootstrap coefficient p evaluated at the interface composition

= P0J10 = ctpokx(x1Q - xls) (9.2.15)

It is necessary to use an iterative method to compute the flux Nl0 from Eq. 9.2.15.
Repeated substitution of the fluxes, starting from an initial guess calculated with H = 1, will
usually converge in only a few iterations.
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Example 9.2.1 Regeneration of Triethylene Glycol

Triethylene glycol (TEG) is used in the drying of natural gas. After the drying operation the
aqueous solution of TEG is regenerated by stripping off the water. This stripping operation
is usually carried out in a distillation tray column and the process is illustrated schematically
in Figure 9.5. We shall assume that the vapor rises through the liquid on the tray in the
form of bubbles of 5-mm diameter. The bubbles rise with a velocity of 0.25 m/s. The
interphase mass transfer process is largely controlled by the liquid-phase resistance. Fur-
thermore, there is a substantial difference between the molar latent heats of vaporization of
TEG and water, 70 and 40.5 kJ/mol, respectively. Estimate the mass transfer coefficient in
the liquid phase and determine the mass transfer rates under the following conditions
(component 1 is TEG and component 2 is water).

Composition in the bulk liquid: xloo = 0.6.
Composition at the interface: x10 = 0.99.
The Fick diffusion coefficient: D = 2 X 10~1() m2/s.
Liquid density: ct = 6000 mol/m3.

SOLUTION The contact time is the time required for a bubble to rise one diameter.

te = d/U

= 5 X 10~3/0.25

= 0.02 s

The low flux mass transfer coefficient may now be calculated from Eq. 9.2.11 as

k = 2]/D/irte

= 2 X (2 X 10 - 1 0 /TTX 0.02)V2

= 1.128 X KT 4 m/s

System: triethylene glycol (1)-
water (2)

o o o o

°ooo°oo
ooo°oo°

.interface

gas

distance from Interface

Figure 9.5. Schematic diagram of the froth on a distillation tray used for regeneration of triethylene
glycol. Inset shows composition profiles in the liquid phase.
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The first estimate of /1 0 is calculated from Eq. 9.2.8 as

Ao ~ ctk\xio ~ xioo)

= 6000 X 1.128 X 10"4 X (0.99 - 0.6)

= 0.2640 mol/m2s

The molar flux at the interface follows from the bootstrap solution (Eqs.
7.2.18)

#io = /Wio

where

with

A ==:

Hence,

70 - 40.5
1 0.99 X 70 + 0.01 X 40.5

= 0.4232

30 = 1 - 0.99 X 0.4232

= 0.5810

Thus, the first estimate of Af10 is

= 0.5810 X 0.2640

= 0.1534 mol/m2s

The flux of water is given by

JV20= -A//vaplAT10/A//vap2

= -70 X 0.1534/40.5

= -0.2652 mol/m2s

The mass transfer rate factor is obtained from Eq. 9.2.14 as

<P = (N10+N20)/ctk

= (0.1534 - 0.2652)/(6000 X 1.128 X 10~4)

= -0.1651
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and the high flux correction factor follows from Eq. 9.2.13

^ exp{-<f>2/7r}

exp{-(-0.1649)2/7r}

~ 1 + erf{(- 0.1649)/^}

= 1.108

The high flux mass transfer coefficient is

k- = ka

= 1.128 X 1CT4 X 1.108

= 1.250 X n r 4 m / s

We may now reestimate the molar diffusion flux from

Ao = ctk*(xio ~ *ioo)

= 6000 X 1.250 X 1(T4 X (0.99 - 0.6)

= 0.2924 mol/m2s

The molar fluxes are calculated as before with the results

Nw = 0.1699 mol/m2s N2Q = -0.2936 mol/m2s

We may continue the iterative procedure as outlined above. After five iterations we
obtained the following converged results:

<£ = -0.1849

a = 1.1206

k* = 1.265 X M T 4 m / s

/1 0 = 0.2959 mol/m2s

N10 = 0.1719 mol/m2s A 2̂0 - -0.2972 mol/m2s

We can see from the results that the high flux correction is significant here. Also important
is the effect of the unequal molar latent heats of vaporization resulting in a net mixture
flux of

Nt = -0.1252 mol/m2s

If we had assumed equimolar counterdiffusion the molar fluxes would be equal to our first
estimate of the diffusion fluxes

N10 = 0.2640 mol/m2s 7V2O = -0.2640 mol/m2s

values that are substantially different from the correct results. •
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9.3 UNSTEADY-STATE DIFFUSION IN MULTICOMPONENT SYSTEMS

Let us now turn our attention to multicomponent systems. An exact analytical solution of
the multicomponent penetration model for ideal gas mixtures has been presented by
Olivera-Fuentes and Pasquel-Guerra (1987). Their analysis, which, in many ways, is similar
to the film model analysis of Section 8.3.5, is generalized below to any system described by
constitutive relations of the form of Eqs. 2.2.9 or 3.2.5.

9.3.1 An Exact Solution of the Multicomponent Penetration Model

In our analysis of the multicomponent penetration model we used the combined variable
/7

Following Olivera-Fuentes and Pasquel-Guerra (1987) we introduce transformed molar
fluxes vt

v^N-Ji vt=Ntft (9.3.1)

The fluxes vt are assumed to be functions only of £: vt = vt(£). In terms of £ the mixture
conservation Eq. 9.1.2 becomes

dvt/d£ = 0 (9.3.2)

from which we conclude that vt is constant. The individual species conservation Eqs. 9.1.1
become

dx: dxi

where we have defined transformed diffusion fluxes Xi by

=vi-vtxi (9.3.4)

We must also write the one-dimensional form of Eq. 5.1.5 in terms of the Xt a n ^ C as

which we use to eliminate the mole fraction gradients from the left-hand side of Eqs. 9.3.3

^ = -2(S - 4>)[D]-\X) (9.3.6)

where (j> = vt/ct and is a constant.
In so far as [D] depends on the composition of the mixture and as the composition is, in

turn, a function of £ we may regard [D] as a function of £. Thus, Eq. 9.3.6 is a first-order
matrix differential equation of order n — 1 in terms of (x) with a variable coefficient matrix

= WOK*) (9-3.7)
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where

[A(t)] = -2(£ - ^[DY1 (9.3.8)

In terms of £ the initial and boundary conditions become

£ = 0 *,.-*,•„ (9.3.9)

£ = » * , . - ** . (9.3.10)

Equations 9.3.7, subject to the transformed initial condition (Eq. 9.3.9) may be solved by the
method of repeated substitution as described in Appendix B.2. The solution is (Eq. B.2.15)

(X) = [ni(A)](Xo) (9.3.11)

where [H^(^4)] is the matrizant of [A] defined by Eq. B.2.16. The column matrix (xo) is the
(unknown) matrix of transformed diffusion fluxes at £ = 0. We now substitute the right-hand
side of Eq. 9.3.11 into Eq. 9.3.5 to obtain

(93.12)

This equation may be integrated to give

ct{x - jc0) = -2 jC[D]~l[^{A)\ d£ \(xo) (9.3.13)

with, in particular

c,(*oo - x0) = -2 ^[Dy^n^A)] dn(x0) (9.3.14)

which allows us to evaluate the diffusion fluxes at the interface as

*») (9.3.15)

The composition profiles are obtained by combining Eqs. 9.3.13 and 9.3.14.

- l

(*«,-*<,) (9.3.16)

Equations 9.3.15 and 9.3.16 represent an exact analytical solution of the multicomponent
penetration model. For two component systems, these results reduce to Eqs. 9.2.7. Unfortu-
nately, the above results are of little practical use for computing the diffusion fluxes because
they require an a priori knowledge of the composition profiles (cf. Section 8.3.5). Thus, a
degree of trial and error over and above that normally encountered in multicomponent mass
transfer calculations enters into their use. Indeed, Olivera-Fuentes and Pasquel-Guerra did
not perform any numerical computations with this method and resorted to a numerical
integration technique.



230 UNSTEADY-STATE MASS TRANSFER MODELS

9.3.2 Multicomponent Penetration Model Based on the Assumption
of Constant [D] Matrix

The only really practical approach is to use the Toor-Stewart-Prober approximation of
constant [D], The starting point for our analysis is the matrix generalization of Eq. 9.1.1

in which we have assumed the [D] matrix to be constant (we will drop the subscript av in
this section; it is understood that [D], if calculated as described in Section 4.3, is evaluated
at an average composition). Equation 9.3.17 may be solved in a variety of ways; one possible
approach is to use the procedure devised by Toor and by Stewart and Prober, uncoupling
the equations using a similarity transformation and solving equivalent binary-type problems
as described in Section 5.3. An alternative derivation using the matrizant formulation is
given by Taylor (1982c).

The solution of the linearized Eqs. 9.3.17 may also be obtained as a special case of the
exact Eqs. 9.3.15 and 9.3.16. If we take [D] to be independent of composition (and, hence,
of £), Eq. 9.3.15 for the diffusion fluxes simplifies to (cf. Taylor, 1982c)

] (xo-xj (9.3.18)

and Eq. 9.3.16 for the composition profiles becomes

(x - x0) = [/Q
fK(.4)] # ] [/o"N(>4)] # ] (*- - x0) (9.3.19)

For the case of constant [D] we may carry out the integrations required by Eq. B.2.16 to
evaluate the matrizant. The result is (Taylor, 1982c)

[Sli(A)\ = [I] + £ ^-(V2 - 24>r,)"[D]-k

k=l K-

(9.3.20)

The last part of Eq. 9.3.20 follows because functions of one matrix ([/)]) commute.
The integral of the matrizant can now be expressed as

2 1 ] d(

j t ] ^ (9.3.21)

where f = 17 — <j>.
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Consider the integral

where [M] is any arbitrary constant matrix. Expanding the exponential matrix in a power
series and integrating term by term yields

T ^ ^ e x p [ - ^ 2 [ M ] 2 ] ^ = [M]-1 eri[C[M]] (9.3.22)

where erf[£[M]] is the matrix error function defined by

(9.3.23)

which, if [M] is positive definite and diagonalizable, has the properties

erf[oo[M]] = [/] erf[-£[M]] = -erf[f[M]] (9.3.24)

In view of Eq. 9.3.24, Eq. 9.3.21 becomes

2exp[^2[Z)]-1] [erf[(i, -

(9.3.25)

Substituting Eq. 9.3.25 into Eq. 9.3.19, subtracting (xj from both sides and after some
manipulation we obtain the composition profiles

(x - x.) = [[/] - erf[(T, - 4>)[£]-1/2]]

l/z]\~\x0 - xj (9.3.26)

where we have again made use of the fact that functions of one matrix commute.
The diffusion fluxes at the interface are obtained from Eq. 9.3.18 with the integral of the

matrizant given by Eq. 9.3.25 as

(/„) = -^[D]1/2cxp[4>[D]-1/2][[I] +erf[<t>[D]-1/2]\-\x0-xJ (9.3.27)

The preceding development holds for the special case of Nt = 0; if we set 0 = 0 in
Eq. 9.3.27 the composition profiles become

(x-xo) = [[I]-eii[z[D]-l/2/2fi]](xo-xJ [N, = 0] (9.3.28)

and the diffusion fluxes are obtained from

(/„) = -^f[D]1/2(x0 - xa) [N, = 0] (9.3.29)
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When we compare Eq. 9.3.29 to Eq. 7.1.9 we see that the matrix of "low flux" mass transfer
coefficients is given by

[D]
[k] = ^jL- (9.3.30)

and the matrix of correction factors [E] has the form

[B] = exp[ - [<D] 2 / ^ ] [ [ / ] + e r f ^ / T r ] " 1 (9.3.31)

[<l>] is the matrix generalization of <£ in Eq. 9.2.14.

u[D]~1/2 v^7 = NXkY'/c, (9.3.32)

The matrix [A:] in Eq. 9.3.30 is the matrix of mass transfer coefficients at any time t. The
matrix of time-averaged zero-flux mass transfer coefficients is given for the Higbie model by

[D]
[k] = 2L

1=- (9-3.33)

and for the Danckwerts model by

[k] = }fs [D]1/2 (9.3.34)

With the above equations for [k] and [3], the diffusion fluxes at the interface (z = 0) are
obtained from

(/„) = c,[*][B](*0 - x.) - c,[k'](x0 - xM) (9.3.35)

and the molar fluxes at the interface follow from

(N0)=c,[p0][k'](x0-xJ (9.3.36)

Notice that it is not possible to derive a similar expression for the bulk fluid (z -> oo) where
all of the composition gradients vanish.

9.3.3 Toor-Stewart-Prober Formulation

Toor (1964) and Stewart and Prober (1964) did not use the method presented above; they
used the method described in Chapter 5. For the multicomponent penetration model, the
following expression for the matrix of mass transfer coefficients is obtained (cf. Section
8.4.2):

(8.4.24a)

where [km] is a diagonal matrix whose nonzero elements are the eigenvalues of [A:*]

*; = k& (8.4.25)
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and where

kt = 21/( A-AO (93.37)

(9.3.38)

(9.3.39)

These are the eigenvalues of [A:], [<$],• and [H], respectively.
Equation 8.4.24a serves as a starting point for computing the mass transfer coefficients

and, hence, the molar fluxes. As is the case with the film theory result a trial and error
procedure is needed if the total flux is not specified. We do not particularly recommend
computing the matrix functions needed in the penetration models from power series
expansions (even though this is possible; Taylor, 1982c). We prefer to use the algorithms
developed for computing the fluxes from the solution of the linearized film model equations
(Algorithms 8.4 and 8.5).

Example 9.3.1 Mass Transfer in a Stirred Cell

In this example we reexamine the mass transfer in the system glycerol (l)-water (2)-acetone
(3) considered in Example 8.7.1. A large amount of a glycerol-rich phase of bulk composi-
tion

xlQ0 = 0.7824 x2x = 0.1877 x3oo = 0.0299

is brought into contact with another (immiscible) phase such that the interface composition
is maintained at

xl0 = 0.5480 x20 = 0.2838 x30 = 0.1682.

The contactor is a stirred cell and was depicted in Figure 5.9. The stirrer is rotated at such a
speed that the surface renewal frequency of the phase under consideration is

s = 25 s"1

Using the same physical property data as in Example 8.7.1, calculate the fluxes Nt

SOLUTION With the Maxwell-Stefan diffusion coefficients and thermodynamic factors as
given in Example 8.7.1, the matrix of Fick diffusivities [D] can be evaluated from Eqs. 4.2.12
using the average mole fractions with the following results:

14.40 -9.97] x i n - i o m 2 A
-1.66 25.62_| X 1 U m / S

The eigenvalues of this matrix are

Dx = 2.694 X 10-9 m2/s D2 = 1.31 X 10"9 m2/s

The eigenvalues of [A:] are calculated from Eq. 9.3.37 as

k-i = 2.59 X 10~4 m/s k2 = 1.81 X 10~4 m/s
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The matrix of low flux mass transfer coefficients is found directly from Eqs. 8.4.31 or
8.4.24 as

1.88 -0.566] x l 0 - 4 m / s
-0.094 2.52 J X 1 0 m / S

The first estimate of the diffusion fluxes is calculated from Eq. 9.3.35 with the correction
factor matrix taken to be the identity matrix

The total flux is found from

AT _ J /( _ r \
lyt J \ / \ Z \ X\§)

with z1 = j2- This gives

Nt = 1.6 mol/m2s

The Nt follow from Eq. 1.1.12 as

Nx = 0.133 N2 = 0.851 N3 = 0.616 mol/m2s

These values are used in the calculation of the mass transfer rate factors form Eqs. 9.3.38,
the high flux correction factors from Eqs. 9.3.39 and, hence, new values of the high flux mass
transfer coefficients. The cycle of flux-coefficient calculations is repeated and after 10
iterations we obtain the following converged values:

<!>! = 0.316 &2 = 0.453

k{ = 2.097 X KT4 m/s k\ = 1.321 X HT4 m/s

rk.] = \ 1.398 -0.558] x l 0 - 4 m / s
L/C J [-0.093 2.02 J X 1 U m / S

The diffusion fluxes are

The total flux is

Nt = 1.23mol/m2s

and the Nt are

Nt = 0.102 JV2 = 0.673 7V3 = 0.453 mol/m2s

The above computations were carried out with Eqs. 9.3.39 for the eigenvalues of the
correction factor matrix. As noted earlier, this involves the computation of the error
function that is significantly more time consuming than the exponential function needed for
the film model correction factor. With the eigenvalues of [H] given by the film model



DIFFUSION IN BUBBLES, DROPS, AND JETS 235

Eq. 8.4.28 we obtain the following converged values of the fluxes

Nx = 0.108 N2 = 0.705 N3 = 0.483 mol/m2s

These values are within 5% of the values calculated with the penetration theory correction
factor matrix and support our earlier suggestion that it is sufficient to use the simpler film
model correction factor matrix in multicomponent mass transfer calculations at high mass
transfer rates. •

9.4 DIFFUSION IN BUBBLES, DROPS, AND JETS

One very important restriction in the development of the surface renewal models is the
assumption that the penetrating, or diffusing, component does not "see" the bulk fluid,
which, to all intents and purposes, is located at an infinite distance from the interface. This
assumption is implicit in the boundary condition (Eq. 9.1.6) and is strictly true only for short
Fourier times

Fo = Dt/82 < 0.20 (9.4.1)

where 8 is the distance from the interface to the "core" of the fluid phase. For example, if
we consider diffusion inside rigid droplets, the distance 8 corresponds to the radius of the
drop.

For long contact times and/or short distances between the interface and the "core" 8,
the solution given above for the zero-flux coefficient does not apply. This situation may arise
for mass transfer inside liquid droplets that stay sufficiently long in contact with the
surrounding gas or liquid. For long contact times, the diffusing species will penetrate deep
into the heart of the bubble (or drop), and it is important in such cases to define the mass
transfer coefficient in terms of the driving forces Ax, = xu — (xt), where xu represents
the interface composition and {xt) is the cup-mixing composition of the spherical dispersed
phase.

9.4.1 Binary Mass Transfer in Spherical and Cylindrical Geometries

In this section we present expressions for the mass transfer coefficients for diffusion in
spherical and cylindrical geometries. The results presented here are useful in the modeling
of mass transfer in, for example, gas bubbles in a liquid, liquid droplets in a gas, or gas jets
in a liquid as shown in Figure 9.6.

For a binary system, under conditions of small mass transfer fluxes, the unsteady-state
diffusion equations may be solved to give the fractional approach to equilibrium F defined
by (see Clift et al., 1978)

x\l)

where x10 is the initial composition (at t = 0) within the particle and x1I is the composition
at the surface of the particle (held constant for the duration of the diffusion process).
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gas bubbles
in liquid

liquid drops
in gas

gas jets
in liquid

O G
-I

Figure 9.6. Idealized view of (a) spherical gas bubbles in a liquid, (b) liquid droplets in a gas, and
(c) cylindrical gas jets in a liquid. Diffusion in bubbles, drops, and jets may be modeled by solving the
diffusion equations for cylindrical and spherical coordinates.

The Sherwood number for a spherical particle, Sh = k • 2ro /D, at time t, defined by
taking the driving force to be (JC17 - (jtj)), may be expressed in terms of F as (Clift et al.,
1978, p. 58)

Sh
dF

3(1 - F) <9Fo
(9.4.3)

where Fo is the Fourier number: Dt/r^; r0 is the radius of the particle. The time averaged
Sherwood number is

Sh = -21n(l - F) /3Fo (9.4.4)

The time averaged mass transfer coefficient ~k may be extracted from Eq. 9.4.4 as

k = -ln(l -F)/a't (9.4.5)

where a! is the surface area per unit volume of particle a' = 3/r0 and t is the contact time.
For a rigid spherical particle (bubble or droplet) F is given by (see Clift et al., 1978)

6 1
F = 1 =• E " I exP( ~m2v2 F°)

* m

(9.4.6)

We see from Eqs. 9.4.2 and 9.4.6 that when t -> oo equilibrium is attained, and the average
composition {xx) will equal the surface composition xXI. The time averaged Sherwood
number and mass transfer coefficients for a rigid spherical particle may be obtained directly
from Eqs. 9.4.4 and 9.4.5 with F given by Eq. 9.4.6 above. The Sherwood number at time t
may be found using Eqs. 9.4.3 and 9.4.6 as

^exp{-m27T2Fo}/ £ ^ e x p { - m V F o } (9.4.7)

Figure 9.7 shows the variation of Sh with Fo. For large values of Fo, Sh approaches the
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Figure 9.7. Sherwood number for mass transfer within a rigid spherical particle of radius r0 as a
function of the Fourier number Fo = Dt/r^.

asymptotic value § TT2 = 6.58. For this steady-state limit, the zero-flux mass transfer coeffi-
cient is

k = 7rzD/3r0 (9.4.8)

showing, as for the film model discussed in Chapter 8, a unity-power dependence on the
Fick coefficient D. This result is to be contrasted with the square-root dependence for small
values of Fo; see the variation in the curvature in Figure 9.7.

When the size of the bubble (or droplet) exceeds a certain limit the dispersed phase may
begin to circulate or oscillate. The Kronig-Brink model for circulation within the dispersed
phase gives the following expression for the fractional approach to equilibrium

(9.4.9)

and the Sherwood number at time t is

Sh = ^
m = \

I2
m\m exp{ - 16Am Fo} / E A2

m exp{ - 16Am Fo} | (9.4.10)
/ m = \

The eigenvalues An and Xn have been tabulated by Sideman and Shabtai (1964). For
Fo -> oo? the asymptotic value of Sh is

Sh = 32A1/3 = 17.66 (9.4.11)

which is 2.7 times the corresponding limit for noncirculating particles, demonstrating the
enormous influence of the system hydrodynamics on the mass transfer behavior.

Another situation that is of practical importance is radial diffusion inside a cylindrical jet
of gas or liquid. The fractional approach to equilibrium is given by

F = l - 4 (9.4.12)
m = \

where the j m are the roots of the zero-order Bessel function J0(jm) = 0. For this geometry
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the time averaged Sherwood number and mass transfer coefficient are given by

Sh = - l n ( l - F)/Fo (9.4.13)

~k = - l n ( l - F)/a't (9.4.14)

where a' is the surface area per unit volume of particle a' = 2/r0.

9.4.2 Transport in Multicomponent Drops and Bubbles

The analyses in Section 9.4.1 for binary systems can be extended to multicomponent systems
by using the Toor-Stewart-Prober approximation of constant [D]. We will not go through
the details of the derivations here, our readers can verify these results for themselves.

The fractional approach to equilibrium in a multicomponent system is given by the n — 1
dimensional matrix analog of Eq. 9.4.2.

(xo-(x)) = [F](xo-Xl) (9.4.15)

For mass transfer in a rigid spherical drop the matrix [F] is given by the n — 1 dimensional
matrix generalization of Eq. 9.4.6

= [[/] " —2 E -^exp[-m2ir2Forcf[D']}\ (9.4.16)
L n m = \ m \

where we have introduced an n — 1 X n — 1 matrix of normalized Fick diffusion coeffi-
cients

[D'] = [D]/Dnt (9.4.17)

and a reference Fourier number of Foref = DTeft/rQ.
The matrix of Sherwood numbers at time t

[Sh] = [*] • 2ro[Z>]"1 (9.4.18)

is given by

exp[-mVForef[Z)']]|[ £ \ exp[ -mV Foref[Z)']]|

(9.4.19)

In the limit Foref -> oo, [Sh] approaches the asymptotic limit

[Sh] = §772[/] (9.4.20)

or

[k] - &r2[D]/r0 (9.4.21)

A very interesting difference between the short contact time value: [A:] = 2[D]1/2/ yfrrt
and the long contact time steady-state value: [k] — ̂ 7r2[D]/r0 is the variation in the
influence of diffusional coupling. The influence of molecular diffusional coupling will be
maximum when [k] is proportional to [D] as is the case for the long-time asymptote. This
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influence is reduced as the contact time is reduced, and it is at its lowest for the
short-contact time square-root dependence (see Example 9.4.1).

The Kronig-Brink model for circulation within the dispersed phase can be generalized
to n-component systems to give the following expression for the matrix [F]

[F] = [[/] - I E^^exp[-16AmForef[Z)']]| (9.4.22)

and the matrix of Sherwood numbers is

[Sh] = ^ [ E exp[^AmForef[/)']]][ £ exp[^2
m Foref[/)']]] (9.4.23)

J |_m = l JLm = l J

For Foref -> oo, the asymptotic value of [Sh] is

[Sh] = 32A1[/]/3 = 17.66[/] (9.4.24)

For radial, unsteady diffusion in a cylindrical geometry the matrix [F] is given by

;2
J m

(9.4.25)

For calculating [Sh] from these models we may make use of Sylvester's formula as
follows:

fi(A-A)[Sh] = £ Sh/

where Sh- is the ith eigenvalue of [Sh] and s is the number of such eigenvalues that are
distinct (s < n - 1). The Shy are obtained from the equations in Section 9.2 with Dt, the
corresponding eigenvalue of [D], replacing the binary diffusivity in the Fourier number Fo.
A value for the reference diffusivity is not needed in the computation of [Sh] (or [k]), since
Drcf cancels out of the calculations.

Alternatively, we may use the similarity transformation

[Sh] = [PHShKP]-1 (9.4.27)

where [Sh] is a diagonal matrix whose nonzero elements are the eigenvalues of [Sh]. The
matrix [P] is the modal matrix of the Fick matrix [D].

To calculate [k], which is the value needed to compute mass transfer fluxes, we may
avoid computing [Sh]. Equations 8.4.23 or 8.4.30 and 8.4.31 may be used directly as written
to compute the multicomponent mass transfer coefficients with the eigenvalues of [k]
computed from the appropriate expression in Section 9.2 as described above.

We illustrate the use of these models in Example 9.4.1.

Example 9.4.1 Diffusion in a Multicomponent Drop

A droplet 5 mm in diameter containing a mixture of acetone(l)-benzene(2)-methanol(3) is
brought into contact with a surrounding vapor phase that maintains the surface of the
droplet at a fixed composition. Investigate the influence of the contact time between vapor
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and liquid on the ratios kn/kn and k21/k22 of the matrix of multicomponent mass
transfer coefficients [k]. Assume the droplet initially has the composition xx = 0.52,
x2 = 0.28, and x3 = 0.2. What are the directions of mass transfer if the ratio of driving
force of acetone to the driving force for benzene is

Ax2/Ax1 = -5

DATA The matrix of Fick diffusion coefficients is

4.280 1.040] 1 0 _ o 2 / s
-0.67 2.260 J X 1 0 m / S

SOLUTION For the purposes of this calculation we shall assume the drop to be noncircu-
lating. Thus, the matrix of multicomponent mass transfer coefficients [k] may be computed
from Eqs. 9.4.18 and 9.4.19 with the help of Sylvester's expansion formula or the modal
transformation. At both the long and short contact time limits, however, we may calculate
the ratios of mass transfer coefficients ku/kn and k21/k22 without evaluating the series
expansions needed in Eq. 9.4.19.

For short contact times, [A:] is proportional to [D]1/2, which may be computed using
Sylvester's expansion formula, or by the modal transformation method. Both methods
require the eigenvalues of [D], which are

Dx = 3.839 X 10~9 m2/s D2 = 2.701 X 10~9 m2/s

[D]1/2 is found to be

6.583 0.913] 5 m / s i / 2
-0.588 4 . 8 1 0 ] X i U / S

Thus,

ku/
kn = 0.913/6.583

= 0.139
k21/k22= -0.588/4.810

= -0.122.

In the other extreme of long contact times, [A:] is directly proportional to [D], and so

ku/kn = Dl2/Du = 0.243 k21/k22 = D21/D22 = -0.295.

The influence of contact time is illustrated in Figure 9.8, where kl2/kn and —k21/kn

are plotted against Foref = DrGft/rQ, where the reference diffusivity Dref is taken to be Dn

in the calculations.
Under conditions of low transfer fluxes (no correction factor to take into account) for the

steady-state asymptotic limit

kl2 Ax2
(kn Axt + k12 Ax2)/kn A*! = 1 + —— ——

= 1 + 0.243 X ( - 5 )

= -0.215

that is, acetone will experience reverse mass transfer; while in the other limit of short
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Figure 9.8. Ratios of k12/kn and — k2X/k22 for transfer inside a spherical rigid droplet containing a
mixture of acetone(l)-benzene(2)-methanol(3). Variation with the Fourier number Foref = DTeft/rQ.
The parameter Dref is taken equal to Dn in the calculations.

(kn

contact times

k12 Ax2
kx1 = 1 + — —

= 1 + 0.139 X ( - 5 )

= 0.307

and we see that though coupling effects still are significant, they are insufficient to drive
acetone against its driving force. Thus, the effect of contact time could be to alter the
direction of mass transfer. This effect was first pointed out by Krishna (1978a) who showed
that the film and penetration models could predict different directions of mass transfer.

From the calculations presented above, it should be clear that coupling effects in
multicomponent mass transfer will be influenced not only by the structure of the Fick matrix
[D] but also by the hydrodynamics of two-phase contacting, which influences both the
contact time between the phases and the distribution of sizes of droplets or bubbles. Very
small bubbles (or drops) may approach the steady-state limit (largest influence of coupling),
while larger bubbles will transfer mass in the "short-contact regime" (least influence of
coupling). •



10 Mass Transfer in Turbulent Flow

Chemical engineers cannot escape dealing with mass and heat transfer across fluid interfaces
that are in more or less chaotic motion, chaos that goes under name of turbulence.

—L. E. Scriven (1968, 1969)

Until now we have considered mass transfer by molecular diffusion. If turbulent conditions
prevail there will be an additional transport contribution by the turbulent eddies. The
understanding of turbulent (eddy) momentum transport is a prerequisite to the understand-
ing of turbulent mass transport. There is an astronomical amount of literature on turbu-
lence modeling. For a chemical engineer who is interested in learning something about the
state of affairs here, we can recommend the book by Launder and Spalding (1972). An
excellent review of turbulent heat and mass transfer at interfaces is given by Sideman and
Pinczewski (1975). This latter work reviews turbulent heat and mass transfer from the
viewpoint of a chemical engineer.

This chapter describes models of mass transfer in turbulent conditions. Beginning with a
brief survey of turbulent eddy diffusivity models we develop solutions to the binary mass
transport equations at length before presenting the corresponding multicomponent results.

10.1 BALANCE AND CONSTITUTIVE RELATIONS
FOR TURBULENT MASS TRANSPORT

If the conditions prevailing in the phase under consideration are turbulent, then it will be
necessary to time average the conservation equations. The time averaging procedure is
discussed by, for example, Bird et al. (1960). Time averaging the component material
balances (Eqs. 1.3.6) gives

3E: 1
— + v • Vo>, = - - V • (jt +yM u r b) (10.1.1)

where j / ? t u r b is the turbulent diffusion flux caused by the turbulent eddies present in the
system. The overbars in Eq. 10.1.1 denote time-averaged quantities. In subsequent discus-
sions we shall omit writing the overbars and take it as understood that time-smoothed
variables are considered.

A time-averaged velocity profile in fully developed turbulent flow is shown in Figure 10.1
where it can be seen that the profile is considered in three sections.

1. A wall region or viscous sublayer where the flow is laminar.

2. A buffer zone that acts as a transition between the laminar sublayer.

3. A fully developed turbulent core.

In the core of the bulk fluid phases in turbulent flow, the turbulent diffusion flux j i turb

predominates over the molecular diffusion flux j t . Close to the interface the turbulence is

242
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Time
averaged
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Fully developed
turbulent flow

laminar,
sublayer

Figure 10.1. Time-averaged velocity profiles in fully developed turbulent flow identifying the presence
of a laminar sublayer, a buffer layer, and the turbulent core of the flow. Velocity profile calculated from
Eqs. 10.2.14-10.2.16.

damped and the molecular diffusion flux ji predominates. It is generally only possible to
use the simplest description of turbulent diffusion, namely, Boussinesq's hypothesis

Ji, turb = ~Pt / = 1, 2 , . . . , U (10.1.2)

where DtUTb is the turbulent eddy diffusivity of mass. There are no coupling effects in
turbulent diffusion because turbulent eddy mass transport is not species specific. In other
words, all the components are transported by the same mechanism. We use mass units and
the mass average reference velocity frame because the eddy diffusivity approach requires
simultaneous consideration of the equations of motion.

Even with this simple constitutive relationship (Eq. 10.1.2) for the turbulent diffusion
flux, the problem remains as to the value of the turbulent diffusivity Dtnrh. The most usual
procedure for the prediction of Dturb is to proceed through a knowledge of ^turb, the
turbulent kinematic viscosity. We define a turbulent Schmidt number

Scturb = ^turb/Aurb (10.1.3)

If we accept the analogy between heat and mass transfer, Scturb must be equal to Prturb,
the turbulent Prandtl number defined by

Prturb = C^ turb/A turb (10.1.4)

where Aturb is the turbulent eddy thermal conductivity. Experimental values of Prturb show a
marked dependence on the molecular Prandtl number and vary between 0.2 and 2.5 as
indicated by Figure 10.2 (adapted from a thesis by Blom, 1970). Not surprisingly, there is a
variety of models available for Prturb (see Sideman and Pinczewski, 1975) but a choice of the
"best" model cannot easily be made and for most practical design purposes we are forced to
assume Scturb = Prturb = 1, for want of more reliable information.

By defining Scturb, we have replaced the problem of estimating Dtmb with the problem of
estimating ^turb, the turbulent kinematic viscosity. To estimate vtmh, we need to know the
velocity profiles between the interface and the bulk fluid phase. For simple flow situations,
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Figure 10.2. Compilation of experimental values for the turbulent Prandtl number Prturb. The horizon-
tal axis is a dimensionless distance from the wall defined by Eq. 10.2.6. Adapted from the thesis by
Blom (1970).

such as flow over flat plates and inside circular tubes, sufficient information is available
concerning the velocity profiles to allow estimation of the turbulent eddy diffusivities and,
hence, calculation of the mass and heat transfer coefficients and fluxes between the "wall"
and the flowing stream. We discuss this issue in Section 10.2.

10.2 TURBULENT EDDY DIFFUSIVITY MODELS

For definiteness, we consider the transfer processes between a cylindrical wall and a
turbulently flowing n-component fluid mixture. For condensation of vapor mixtures flowing
inside a vertical tube, for example, the "wall" can be considered to be the surface of the
liquid condensate film. We examine the phenomena occurring at any axial position in the
tube, assuming that fully developed flow conditions are attained. For steady-state condi-
tions, the equations of continuity of mass of component / (assuming no chemical reactions),
Eqs. 1.3.7 take the form

d(rnir)

dr
= 0 (10.2.1)

where r represents the radial coordinate and nir is the mass flux of component /. Equation
10.2.1 shows that rnir is r invariant. It will prove to be more convenient to work in a
coordinate system measuring the distance from the wall y

y = &w- (10.2.2)
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where Rw represents the radius of the circular tube. We consider niy to be positive if the
flux is directed in the positive y direction, that is, from the wall towards the flowing fluid
mixture. The mass flux niy can be written in terms of the diffusive mass flux j i y with respect
to the mass average mixture velocity, and a bulk-flow contribution <*>inty

niy =Jiy + <°inty> i = 1,2,. . . ,« (10.2.3)

where nty is the total mixture mass flux. Since the conditions inside the tube are considered
to be turbulent, we use time-smoothed fluxes and compositions in Eq. 10.2.3; j i y is the sum
of the molecular and turbulent contributions to diffusion.

The boundary conditions for this model are

y = 0 co = co0 (the interface)
(10.2.4)

y = yb co = (ob (bulk fluid)

where yb is a distance from the wall beyond which we may safely assume that the
turbulence level is high enough to wipe out any further radial composition variations.

Before proceeding further, it is convenient to define the following parameters and
variables that incorporate information on the flow

1. Friction velocity w*

"* = ]/^M = {iriu (io.2.5)

where r0 is the shear stress at the interface or wall, and u is the average velocity of
flow of the multicomponent fluid mixture inside the tube. The parameter / is the
Fanning friction factor.

2. A dimensionless distance from the wall.

y + = yu*Pt/iJL = yu*/v (10.2.6)

3. A dimensionless velocity.

u + = u/u* = y/2/fu/u (10.2.7)

4. A dimensionless tube radius.

Rtv = Rwu*/v = Re ^/f/S (10.2.8)

where Re is the Reynolds number for flow 2Rwil/v.

In terms of the reduced distance from the wall the boundary conditions are

y + = 0, o>; = (oi0 (the interface)
(10.2.9)

y + =yb a,- = coib (bulk fluid)

The first difficulty we encounter is that the position yb , at which the bulk fluid-phase
composition cob is reached, is not known precisely. To overcome this shortcoming in our
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knowledge, we proceed to divide the region 0 - y£ as follows:

1. A region 0 — yj1" in which both molecular and turbulent eddy contributions to mass
transfer are important.

2. A turbulent core from y^ to y£, where the contribution of turbulent eddy transport
is much larger than the molecular contribution

(10.2.10)

10.2.1 Estimation of the Turbulent Eddy Viscosity

We now turn our attention to the estimation of the ratio vimh/v. The starting point for our
analysis is the equation of motion, which for steady-state conditions gives the shear stress
profile as (see, e.g., Bird et al., 1960)

(rr + rr>turb) = (r/RJrw (10.2.11)

Transforming to the y-coordinate system and introducing the constitutive relations for the
shear stresses due to the molecular contribution (ry = —/JL du/dy) and due to the turbulent
eddy contribution (rturb = —Mturb du/dy) we can write Eq. 10.2.11 in terms of reduced
parameters as follows:

The ratio y+/R^ is negligibly small for problems in which the major concern is the
estimation of heat and mass transfer rates. This can be seen from the fact that most of the
resistance to mass and heat transfer is concentrated in a thin zone of thickness y + = 5. The
term R^ has a value exceeding 300 for Re = 10,000. We shall, therefore, approximate the
term (1 - y+/R+) by unity in the ensuing analysis. With the right-hand side of Eq. 10.2.12
set to unity we may rewrite it as

— = -f^-rr - 1 (10-2.13)
v du+/dy +

This ratio can be estimated if the functional form u+(y + ) is known.
The von Karman velocity profile for turbulent flow is given by three equations.

1. For the wall region or viscous sublayer.

u + =y+ 0 ^ y + < 5 (10.2.14)

2. For a buffer zone.

u + = 5.01ny + - 3.05 5 ^ y + <30 (10.2.15)

3. For the turbulent core.

u + = 2.51ny + + 5.0 30 ^ y + (10.2.16)

The von Karman velocity profile is illustrated in Figure 10.3. Substitution of Eqs.
10.2.14-10.2.16 into Eq. 10.2.13 yields the following expressions for vtnxh/v

J™± = o 0 < y + < 5 (10.2.17)
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Figure 10.3. von Karman model for the velocity profile in turbulent flow u+(y+). Also shown is the
ratio of turbulent to molecular kinematic viscosities vtmh/v that results from the von Karman velocity
profile.

for the viscous sublayer, and

= y
5

5 ^ 30 (10.2.18)

for the buffer zone in which both molecular and turbulent contributions play a role. The
ratio vXuxh/v is shown as a function of y + in Figure 10.3. The parameter y± is taken to be
30 in the von Karman development. Beyond this distance from the wall the transport is
purely turbulent.

For another class of models, the mixing length models, a different approach is used.
Here, the turbulent eddy viscosity is assumed to be of the form

"turb (10.2.19)

where u is the velocity in the direction of mean flow. The parameter / is known as the
mixing length and is analogous to the mean free path in the kinetic theory of gases. The
physical interpretation of / is that it is the distance over which a turbulent eddy retains its
identity. The absolute value of du/dy is required in Eq. 10.2.19 to ensure that the shear
stress changes when the flow field changes direction. The problem of estimating ^turb now
rests with a method for calculating the mixing length i. From physical considerations, i
must be a function of distance from the wall. The simplest model for i is to take it to be
proportional to the distance from the wall, as hypothesized by Prandtl

where we have defined a reduced mixing length

(10.2.20)

(10.2.21)

The constant A in Eq. 10.2.20 is the von Karman constant, equal to 0.4. Though the
Prandtl mixing length hypothesis (Eq. 10.2.20) works for conditions in the turbulent core
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(y + > 30), it greatly overestimates the values of / + closer to the wall, where the solid
surface hinders the mixing mechanisms. An important modification of Prandtl's develop-
ment was introduced by van Driest (1956) who introduced a damping factor

t= Ay + (1 - exp( -y + / ^ + )) (10.2.22)

where A+ is a damping length constant that is interpreted as the distance from the wall
beyond which viscous effects are negligible. In the notation used here, A + corresponds to
yf. van Driest empirically determined the value of A + = y^ =26. Introducing Eq. 10.2.19
into Eq. 10.2.13 we find a quadratic expression for du+/dy +

2 _i_

"T + -TT - 1 = 0 (10.2.23)
y+ J dy

and so du+/dy+ is obtained explicitly as

du+ - 1 + Vl + 4 ( / + ) 2

(10.2.24)

Equation 10.2.24, in combination with Eq. 10.2.13, allows vturh/v to be estimated.

10.3 TURBULENT MASS TRANSFER IN A BINARY FLUID

10.3.1 Solution of the Diffusion Equations

The constitutive relation for j i y , taking account of the molecular diffusion and turbulent
eddy contributions, is

dco
jy= -Pt(D+Dimh)— (10.3.1)

where D is the Fick diffusion coefficient and Dturh is the turbulent eddy diffusivity of mass.
With the help of definitions (Eqs. 10.2.6-10.2.8), we may combine Eqs. 10.3.1 and 10.2.3

and write the following expression for the mass flux of component 1 at the wall n0

(10.3.2)

For the reasons discussed earlier, we shall assume that the term (1 — y+/R^) in Eq. 10.3.2
is unity. With this simplification we rewrite Eq. 10.3.2 as follows:

do)
_ _ =A(y + )(o) + n (10.3.3)
dy +

where A(y + ) is defined by

(10.3.4)
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and where f is the flux ratio £ = no/ntQ. Since £ is a constant we may write

(10.3.5)

The solution of this first-order differential equation may be obtained through use of an
integrating factor. The solution is

where

(10.3.6)

(10.3.7)

and where C is a constant of integration. To determine C and eliminate f from Eq. 10.3.6
we make use of the boundary conditions (Eq. 10.2.9) to obtain the composition profiles as

(ojb-a)0)

where the factors ^ and >̂ are defined by

(10.3.8)

(10.3.9)

(10.3.10)

Equation 10.3.8 is identical to the corresponding film theory result (Eq. 8.2.9), with ^ and O
taking the place of 4>T7 and <X> in the film model.

The diffusion flux at the wall (y = 0) is given by Eq. 10.3.1 with vimh = 0 (the turbulent
eddy diffusivity dies out near fluid interfaces and is zero at the interface)

/0 = ~PtD
do)

which we rewrite in terms of y+ as

Jo =

ptu*D da)

v dy"

(10.3.11)

(10.3.12)

The composition gradient is obtained by differentiating Eq. 10.3.8 (using the Leibnitz rule
for the derivative of an integral)

do)

( e x p ^ - 1 )
(a)b - f i > 0 ) (10.3.13)

Hence, with A(0) = nt0 Sc/p,w* (from Eq. 10.3.4) with ^turb = 0), the diffusion flux is given
by

Jo = -nt0 (exp $ - -(^b ~ (10.3.14)
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Now, with the mass transfer coefficient k* defined by

jQ = ptk\a>0-<ob) (10.3.15)

we see that

k* = — {exp<D- I } " 1 (10.3.16)
nto

To obtain the low flux mass transfer coefficient k we take the limit as nt0 goes to zero

k = nt0/PiQ (10.3.17)

and substitute for <£ using Eqs. 10.3.10 and 10.3.4 to get

1 = J P ^ S C - + S c - } b ^ ) " ' dy+ (10.3.18)

where Sc is the Schmidt number Sc = v/D and Scturb is the turbulent Schmidt number
defined by Eq. 10.1.3. Note that k is not a function of the total flux nt0. The high flux
correction factor H given by k* = kU, is

a = <S>/(exp$ - 1) (10.3.19)

which is formally identical to the corresponding film theory result (Eq. 8.2.13). The molar
flux of component 1 is obtained from the appropriate from the bootstrap solution

no = Ptpok\a>o-a>b) (10.3.20)

/3 is given by Eq. 7.2.16 with the mole fractions replaced by mass fractions.

10.3.2 Mass Transfer Coefficients

Having completed the formal development of an expression for the evaluation of the
interfacial fluxes ni0, we turn to the actual evaluation of the zero-flux mass transfer
coefficient k for some specific models of turbulence. It is usual in such developments to
define the Stanton number

St = k/u = ijf/lk/u* (10.3.21)

We see from Eqs. 10.3.13, 10.3.18, and 10.3.21) that the inverse Stanton number is given by
the following expression:

St"1 = y/27f / ^ ( S c " 1 + S c - J ^ ) 1 dy+ (10.3.22)

We now write Eq. 10.3.22 as a sum of two integrals

~ V + Wf^+\~Vdy+ (103-23)

where we have made use of the approximation (Eq. 10.2.10), which states that molecular
diffusion is of no importance in the turbulent core. We must eliminate the upper limit on
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the second integral in Eq. 10.3.23 as this distance is not known precisely. To this end we
integrate Eq. 10.2.12 (with the right-hand side set to unity) as follows:

The above equation can be used to eliminate the second integral on the right-hand side of
Eq. 10.3.23. With this substitution and using u + = yJ2/f', the reduced bulk flow velocity, we
obtain the final working expression for the estimation of St

= 2//+ + c-^f)" - (l + dy+ (10.3.25)

In order to carry out the integrations required by Eq. 10.3.25 we need to know how Scturb

and the ratio vtUTb/v depend on y+ (the Schmidt number Sc is assumed constant).
Some special cases may now be derived from the general expression for St (Eq. 10.3.25).

When Scturb = 1 and the Schmidt number is assumed to be equal to unity, that is, Sc = 1,
then the integrand vanishes and we have

St=//2 (10.3.26)

which is Reynolds analogy for mass transfer.
With the help of Eqs. 10.2.17 and 10.2.18, derived from the von Karman universal

velocity profile, and assuming Scturb = 1 we may carry out the integrations required by Eq.
10.3.25 to obtain

(2//) + 5^2/f {Sc - 1 + ln(l + f(Sc - 1))} (10.3.27)

an expression sometimes referred to as the von Karman analogy. The variation of Stanton
number with Schmidt number is shown in Figure 10.4. Several other analogies have been

Stanton
number,

St

10

10

10

10

Karman

10" 101 103

Schmidt number, Sc

Figure 10.4. Stanton number, (St) as a function of Schmidt number (Sc) from the von Karman velocity
profile and the Chilton-Colburn analogy. The friction factor is maintained at 0.073 for this illustration.
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proposed based on different models for u+(y+) (see the review of Sideman and Pinczewski,
1975).

Insertion of a mixing length model (e.g., the one due to van Driest, Eq. 10.2.22) for / +

into Eq. 10.2.24 and combining with Eqs. 10.2.13 and 10.3.25 allows calculation of St. In this
case, however, numerical integration is required.

A modification of Reynolds analogy to take account of fluids whose Schmidt number is
not unity is the Chilton-Colburn analogy

St = i / S c ~ 2 / 3 (10.3.28)

which is compared to the von Karman model (Eq. 10.3.27) in Figure 10.4.
Provided / is based on shear friction and not on total drag, Eq. 10.3.28 has been found

to hold remarkably well for many types of flow systems and geometries (Sherwood et al.,
1975). As originally presented, the Chilton-Colburn analogy was purely empirical. However,
if the turbulent eddy viscosity is taken to vary according to (Vieth et al., 1963)

\2/3

\ (y + f (10.3.29)

then the Chilton-Colburn analogy may be derived from Eq. 10.3.25.
A clue to the success of the Chilton-Colburn analogy can be found in an analysis carried

out by Fletcher et al. (1982). Using a modified van Driest mixing length model, Fletcher
et al. showed that for the Prandtl (Schmidt) number greater than unity, this model predicted
a — f power dependence of the Stanton number on the Prandtl (Schmidt) number, in
agreement with the empirical Chilton-Colburn assumption. It is, however, interesting to
note that the studies of Fletcher et al. shows that for Pr(Sc) < 0.1, the Stanton number
varies inversely as the Prandtl (Schmidt) number for the van Driest model. The applicability
of the Chilton-Colburn analogy to systems with high molecular diffusivities of a particular
binary pair requires careful investigation.

Even the film theory discussed in Chapter 8 falls neatly into the framework provided by
Eq. 10.3.22. If we assume that the mass transfer process is governed by molecular transport
within an "effective" film of thickness yb and that the level of turbulence is such as to wash
out completely all composition gradients beyond this distance, then we see that

= y/2/fSc yb
+ = uyb/D (10.3.30)

where we have introduced yb = ybyf/2u/v. The zero-flux mass transfer coefficients
k = D/yb, the classic film theory result.

Example 10.3.1 Thin-Film Sulfonation of Dodecyl Benzene

Sulfonation of dodecyl benzene (DDB) is an industrially important process for detergent
manufacture. A gas mixture containing SO3 (1) and N2 (2) is brought into contact with a
thin "film" of DDB inside a cooled tube as shown in Figure 10.5. The gas and liquid phases
flow in a cocurrent downward manner. The reaction between SO3 and DDB occurs
instantaneously and, therefore, the bulk overall reaction rate is governed by the mass
transfer of SO3 from the bulk gas phase to the gas-liquid interface. Calculate the flux of
SO3 at the entrance to the tubular reactor.
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Figure 10.5. Schematic diagram of a thin-film sulfonator. Inset shows composition profiles (mass
fraction units) in the region close to the "wall," the surface of the liquid film of dodecyl benzene.

DATA

Tube diameter: d = 25 mm.
Gas/vapor temperature at the reactor inlet: T = 50°C.
Pressure: P = 130 kPa.
Composition of entering gas mixture (mass fraction):

colb = 0.1 co2b = 0.9

Average molar mass of gas phase: M = 0.029 kg/mol.
Gas velocity at the reactor inlet: u = 30 m/s.
Gas viscosity: fx = 19 /xPa s.
DifTusivity of SO3 in N2 at 50°C and 130 kPa; D = 12 mm2/s.
The friction factor inside the tube with the falling liquid film may be calculated from

f/2 = 0.023/Re02

SOLUTION Since the reaction between SO3 and DDB is instantaneous, the mass fraction
of SO3 at the gas-liquid interface will be zero, that is,

co10 = 0.0 co20 = 1.0
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We proceed by evaluating the mass density of the gas mixture from

pt = MP/RT

= 0.029 X 130 X 103/(8.3144 X 323.15)

= 1.403 kg/m3

The Reynolds number is

Re = ptud/fji

= 0.025 X 30 X 1.403/(19 X 10~6)

= 55,388

and we see that the flow is completely turbulent. The friction factor may now be calculated
as

/ = 2 X 0.023/(55,388)0-2

= 0.005176

The Schmidt number of the gas mixture is

Sc = n/PtD

= 19 X 10~6/(1.403 x 12 X 10"6)

= 1.128

The Stanton number may be evaluated from Eq. 10.3,27 as

St = 0.00244

and so the low flux mass transfer coefficient is

k = u X St
= 30 X 0.00244 = 0.0734 m/s

Since the flux of nitrogen is zero we may evaluate the mass transfer rate factor <l> directly as
(cf. Eq. 8.2.18)

$ = ln(>2z>A>2o)

= ln(0.9/1.0)

= -0.1054

and the high flux mass transfer coefficient is

= 0.0773 m/s

The mass flux of SO3 may now be calculated from

n1 = ptpk\co10 - o)lb)

where /3 is the bootstrap coefficient

13 = l/co20 = 1
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and so

nx = 1.403 X 1 X 0.0773 X (0.0 - 0.1)

= -0.0108 kg/m2s

The composition profiles in the vapor adjacent to the liquid surfaces are shown in Figure
10.5. •

10.4 TURBULENT EDDY TRANSPORT IN MULTICOMPONENT MIXTURES

10.4.1 Solution of the Muiticomponent Diffusion Equations

The analysis of turbulent eddy transport in binary systems given above is generalized here
for muiticomponent systems. The constitutive relation for j i y in muiticomponent mixtures
taking account of the molecular diffusion and turbulent eddy contributions, is given by the
matrix generalization of Eq. 10.3.1

(Jy) = ~P,[[D] + [AurbU^T ( 1 0 - 4 1 )

where [D] is the matrix of Fick diffusion coefficients in the mass average velocity reference
frame and [Dturh] is the matrix of turbulent eddy diffusivities of mass. Now, since eddy
diffusion is not specifies specific, [£>turb] reduces to the form of a scalar times the identity
matrix (Toor, 1960; Stewart, 1973)

[ A u r b ] = A u r b [ / ] (10.4.2)

With the help of Eqs. 10.4.1 and 10.4.2 and definitions (Eqs. 10.4.6-10.4.11), we may
derive the following expression for the mass fluxes at the wall:

Oo) = -P/W* [So]"' + Sc-;b^f[/]](l - £ ) £ £ > + („)„,„ (10.4.3)

where we have introduced a matrix of Schmidt numbers [Sc] = v[D] 1.
Let us proceed to integrate the differential Eq. 10.4.3. As in our analysis of binary mass

transfer we shall approximate the term (1 - y+/R + ) by unity. With this simplification we
may rewrite Eq. 10.4.3 as

^ + )]{co + O (10.4.4)

where the matrix M(y + )] is defined by

is a column matrix of flux ratios f i = ni0/nt0. The ^ are constants and so we may write

d(o) + £)

dy+
(io.4.6)
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The solution to the matrix differential Eq. 10.4.6 can be found using the method of
successive substitution (Appendix B.2). Here we follow closely the treatment by Taylor
(1981b) (see, also Krishna, 1982). The solution to Eq. 10.4.6 can be written as

0 + O (10.4.7)

where [flg+(^4)] is the matrizant defined by Eq. B.2.16. Substituting co = co0 when y + = 0 in
Eq. 10.4.7 we obtain, after noting that [fio(^4)] = [/], the identity matrix,

(a. - 6,0) - [[ao^+(^)] - [/]](«„ + o (10.4.8)

At the distance y + = yb , co = cob and we have (from Eq. 10.4.8).

K - «0) = [[nj f(^)] - [/]](*>„ + o (10.4.9)

which may be used to eliminate (o)0 + f) to give

(co-a>0) = [[nf(A)] - [I]][[iirot(A)] - [I]] ~\a,b - <o0) (10.4.10)

Let us now consider the evaluation of the matrizant [[l%h(A)]. The matrix [v4(y + )] is
given by Eq. 10.4.5 and it is easy to see that the inverse matrix [A(y + )Y~l exhibits a very
simple dependence on the position coordinate y+ ([Sc] is assumed to be constant in our
model): only the diagonal elements of[A(y + )]~1 are position dependent. Furthermore, the
position dependence is the same for all the principal diagonal elements because vimb/v is
not species dependent. The matrices [Sc]"1, [[Sc]"1 + Sc~Jb(^turb/^)[/]], [A(y+)]~1, and
[̂ 4(y + )] all commute with each other and with f[A(y+)]dy+. All this means is that the
integrations required by Eq. B.2.16 can be carried out by parts to give

[ (10.4.11)

where

f+ (10.4.12)

Taking the upper limit of this integral to be y£, the reduced distance from the wall at which
the bulk compositions (cob) are attained, we define a matrix of rate factors [O] by

(10.4.13)

The matrices [^] and [<£] assume the roles of ^ and O used earlier. We may write Eq.
10.4.10 in terms of [<S>] and [¥] as follows:

(co - co0) = [exp[^>] - [/]][exp[<S>] - [I]]~\(ob - co0) (10.4.14)

where (co0) and (cob) are the compositions at the wall (y + = 0) and in the bulk fluid
(y+=yt

+).
The diffusion fluxes at the wall y = 0 are given by Eq. 10.4.5 with ptUTh = 0

Oo) = ~P,[D]
d(<o)

dy
(10.4.15)
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which we rewrite in terms of y+ as

Ptu*[D]
v

The composition gradients are obtained by differentiating Eq. 10.4.14

dy+
+ = 0)][exp[*] - [I]\-\a»b - «o) (10.4.17)

Thus, with [v4(0)] = nt0[Sc]/ptu* (from Eq. 10.4.5 with ^ turb = 0), the diffusion flux is given
by

O'o) = ~w /o[ e xP[^] ~ [1]]~\<»b ~ wo) (10.4.18)

The matrix of multicomponent mass transfer coefficients defined by

O o ) - P , [ * * ] ( « o - « 4 ) (10.4.19)

and we see that [k*] is given by

[km] = — [exp[d>] - [7 ] ]" 1 (10.4.20)

Equation 10.4.20 is the matrix generalization of Eq. 10.3.17. To obtain the matrix of low flux
mass transfer coefficients [A:] we take the limit as nt goes to zero

[k]-1 = p,[<fr]/n,0 (10.4.21)

and substitute for [<l>] using Eq. 10.4.13 to get

+ 1 r v ~l

\k\~X = Yh — [Sc]"1 + Sc t u r
1

b-^-[ / ] dy+ (10.4.22)

The high flux correction factor matrix [H] given by [A:*] = [A:][H], is

[H] = [*][«p[*] - [7]]"1 (10.4.23)

The molar fluxes are obtained from the appropriate form of the bootstrap solution

(n0) = pt[p0][k*]((o0 — (ob) (10.4.24)

with the elements of [p] given by Eq. 7.2.16 where the mole fractions are replaced by mass
fractions.

10.4.2 Multicomponent Mass Transfer Coefficients

In proceeding with the development of an expression for the evaluation of [A:] we define a
matrix of Stanton numbers by

[St] = [k]/u = }/f72[k]/u* (10.4.25)
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Thus, the inverse of [St] is given by the following expression:

[SI]"1 = flff jyj [[Sc]"1 + Sc t- ;b^[/]] "' dy+ (10.4.26)

As in our development of Eq. 10.3.27 for binary mass transfer, we divide the region 0 -
into two parts, make use of Eq. 10.3.24, and obtain

r Q -i — 1 . r>i —1 " turb r T I I I r r i . " t u f b i

v _ _.~v
(10.4.27)

When Scturb = 1 and the matrix of Schmidt numbers is assumed to be equal to the
identity matrix, that is, [Sc] = [/], then we have the Reynolds analogy for multicomponent
mass transfer.

[St] = ( / /2 ) [7] (10.4.28)

The requirement [Sc] = [/] for a multicomponent system is a much more special case than
for a corresponding binary system for it requires that all binary pair diffusivities in the
multicomponent system be equal to one another and, furthermore, that v/D = 1, a
situation realizable only for ideal mixtures made up of species of similar size and nature.

The matrix generalization of the Chilton-Colburn analogy is

[St] = ^/[Sc]"2/3 (10.4.29)

With the universal velocity profile Eqs. 10.2.14-10.2.16, we obtain the multicomponent
form of the von Karman analogy

[Si]"1 = - [ / ] + 5^/2/7[[Sc] - [/] + ln{[7] + f [Sc - /]}] (10.4.30)

10.4.3 Computational Issues

For calculating [St] from Eq. 10.4.30 we may make use of Sylvester's formula as follows:

m min i in I in i

[St] = £ St, n [[Sc] - Scy[7]] / n (Sc, - Scy) (10.4.31)
^ /

where m is the number of distinct eigenvalues of [Sc] (m ^ n — 1). The eigenvalues of [St]
are given by Eq. 10.3.27 with Sc/? the corresponding eigenvalue of [Sc], replacing the binary
Schmidt number.

Alternatively, we may use the familiar similarity transformation

[St] = [PHStJtP]"1 <10.4.32)

where [St] is a diagonal matrix whose nonzero elements are the eigenvalues of [St]. The
matrix [P] is the modal matrix of [Sc] and of [£>].
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To calculate [A:] we would normally not bother to compute the matrix [St], only its
eigenvalues. Equations 8.4.24 or 8.4.31 may be used directly as written to compute the
multicomponent mass transfer coefficients with

Ic; = kt% (8.4.25)

where

k- = StyM (10.4.33)

£; = " , /PA- (10.4.34)

Xi = <V(exp 6f - 1) (10.4.35)

are the eigenvalues of [A:], [<£], and [H], respectively.
An alternative technique may sometimes be useful for computing [St] from Eq. 10.4.30

based on a series expansion of the natural logarithm of a matrix. The method is especially
useful if no method of computing the eigenvectors is readily available.

The function ln(l + x) may be evaluated from the series

ln(l + x) = x - \x2 + ^JC3 - \xA + • • • (10.4.36)

which is convergent as long as x lies between — 1 and 4-1. The matrix generalization of the
series representation of ln(l + x)

ln[[/] + [A]] = [A] - \[Af + \[Af - \[A\* + • • • (10.4.37)

may be used as long as the absolute value of all the eigenvalues of [A] is less than or equal
to unity.

We may identify [A] as the matrix f[[Sc] - [/]]. If the matrix f[[Sc] - [/]] will have
eigenvalues lying between —1 and +1 then the term ln[[7] + f[[Sc]— [/]]] may be
evaluated from the convergent series (Eq. 10.4.37). The matrix [St]"1 may then be computed
from Eq. 10.4.30 using only elementary matrix computations. For gas mixtures the eigenval-
ues of [Sc] are of order 1 and this procedure can, therefore, be used.

For computation of the fluxes themselves, Algorithms 8.1, 8.4, and 8.5 may be used more
or less as written; simply replace all quantities in molar units by the corresponding
quantities in the turbulent eddy diffusivity model.

Example 10.4.1 Methanation in a Tube Wall Reactor

The methanation reaction

CO(1) + 3H2(2) -> CH4(3) + H2O(4)

takes place in a circular tube with a coating of the catalyst on the inside wall as illustrated in
Figure 10.6. The pressure at the entrance to the reactor is 2.1 MPa and the temperature is
658 K. The reaction between CO and H2 may be assumed to be instantaneous at the
prevailing operating conditions. Estimate the rate of production of methane at the entrance
of the tubular reactor where the bulk gas mole fractions are

ylb = 0.10 y2b = 0.82 y3b = 0.04 y4b = 0.04
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carbon monoxide (1),
hydrogen (2),
methane (3),
water vapor (4)

gas mixture

catalyst
coating wall/

Figure 10.6. Schematic diagram of methanation reactor showing catalyst coating on the inside of the
reactor tube wall.

DATA

Tube diameter: d = 0.05 m.
Gas velocity at the reactor inlet: u = 1.5 m/s.
Gas viscosity: /n = 1 X 10"5 Pa s.
The Fanning friction factor: / = 0.006.
Maxwell-Stefan diffusivities of the binary pairs

#12 = #23 = #24 = 13.5 X 10~6

#13 = #14 = #34 = 4 ' ° X 1 0" 6

m2/s

ANALYSIS We are asked to determine the rate of production of methane. We shall use
the turbulent eddy diffusivity model to represent the transport processes in the gas phase.
The mass fluxes are given by Eq. 10.4.24

Oo) =Pt[Po] (10.4.24)

with the elements of [/3] given by Eq. 7.2.16 where the mole fractions are replaced by mass
fractions. The high flux mass transfer coefficients are functions of the multicomponent Fick
diffusion coefficients, the system hydrodynamics, and the total mass flux. The Fick diffusion
coefficients are a function of the mixture composition and the Maxwell-Stefan diffusion
coefficients.

Since the reaction is assumed to be instantaneous and hydrogen is present in excess of
the stoichiometric requirements (stoichiometric ratio of H2 : CO is 3:1 but the bulk gas
contains the same components in the ratio 8.2:1), the mole fraction of carbon monoxide
must be zero at the tube wall catalytic surface:

y10 = 0.0

The four molar fluxes are related through the reaction stoichiometry as follows:

Nx = -N3 N2 = -3N3 N4 = N3
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The total molar flux is the sum of the Nt and can be expressed as

Nt = Nx + N2 + N3 + N4

= -N3 - 3N3 + N3+N3

Thus, there is only one flux to be determined; we shall take that to be the flux of methane.
We may make use of the following relationship between mass and molar fluxes

nt = NtM,

and the stoichiometric relations discussed above to express the total mass flux as follows:

nt = nA + n2 + n3 + n4

= NXMX + N2M2 + N3M3 + N4M4

= -N3M{ - 3N3M2 + N3M3 + N3M4

= N3(M3 +M4- Mx- 3M2)

The term (M3 + M4- Mx — 3M2) is identically zero; mass is conserved in a chemical
reaction even though, as in this case, moles may not be. Thus, the total mass flux is zero.
This means that the high flux correction factor matrix and the bootstrap matrix simplify to
identity matrices and the mass fluxes are given by the simpler expression

O o ) = P/I>](a>o ~ ^b)

With the matrix of low flux mass transfer coefficients related to the matrix of Stanton
numbers by Eq. 10.4.25 we may write

O o ) =P/«[St](fi>0 ~ o)h)

The unknown variables to be determined are the mass flux of methane and the mass
fractions at the catalyst surface

n3, 6)20, 6>30> a n d w 40

The mass fractions at the interface are constrained by the summation equation

with o)m = 0.
The method of solution adopted in this case was to search for the value of the mass flux

of methane that makes co10 = 0. Thus, instead of computing fluxes from the rate equations
knowing the mass fractions in the bulk and at the interface, we solve the linear system

for the mass fractions at the interface knowing only the bulk composition and having
guessed the mass flux of methane. The correct value of the mass flux of methane has been
obtained when we compute a>10 = 0 (or as close to zero as our chosen convergence
tolerance will permit). This procedure is fairly simple to converge because the total mass
flux is zero.
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SOLUTION The first step is to convert the bulk phase mole fractions to mass fractions.
This conversion is done with the help of the relations in Table 1.1 with the result

(olb = 0.4816 co2b = 0.2842 co3b = 0.1103 oj4b = 0.12389

In order to calculate the composition at the interface we need to estimate the multicom-
ponent Fick diffusion coefficients. This is usually done at the average composition for which
the composition at the interface is required. We shall begin our illustration with the
following values

o)10 = 0 co20 = 0.2112 a)30 = 0.3716 o)40 = 0.4172

which allows us to determine the average mass fractions as

a>1 = 0.2408 co2 = 0.2477 o)3 = 0.2409 w4 = 0.2706

The average mole fractions are

yx = 0.0532 y2 = 0.7608 y3 = 0.0930 y4 = 0.0930

The average mole fractions were obtained by converting the average mass fractions and not
by averaging the mole fractions at the interface and in the bulk fluid.

The average molecular weight of the gas mixture is 0.00619 kg/mol. The mass density of
the gas mixture is estimated from the ideal gas law as

Pt = MP/RT

= 0.00619 X 2.1 X 106/(8.3143 X 658)

= 2.3766 kg/m3

The procedure for computing the multicomponent Fick diffusion coefficients in the mass
average velocity reference frame was illustrated in Example 4.2.5 and the steps shown there
have been repeated for this example with the result

8.4596 -1.5968 0.0515]
[D]= 0.4673 13.598 -0.1610 X 10~6 m2/s

-0.1497 -1.5978 8.6607

The eigenvalues of this matrix are found to be

Dl = 8.609 X 1(T6 m2/s

D2 = 13.50 X 10~6 m2/s

D3 = 8.609 X 10~6 m2/s

The matrix of multicomponent mass transfer coefficients may be evaluated from Eq.
10.4.30 as

[St]"1 = j[I] + 5 ^ / f [[Sc] - [/] + ln{[/] + f [Sc - /]}] (10.4.30)

where [Sc], the matrix of Schmidt numbers defined by [Sc] = v[D]~x, has values

[Sc] =
0.4942 0.0578 -0.0019

-0.0169 0.3081 0.0058
0.0054 0.0578 0.4869
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It is possible to check that the matrix f [[Sc] - [/]] has eigenvalues that lie between 0 and
+ 1 and the term ln[[7] + f[[Sc] — [/]]] may, therefore, be evaluated from the convergent
series (Eq. 10.4.37) as

[-0.5461 0.0970 -0.0031
ln[[/] + f[[S c l ~ [*]]] = -0.0284 -0.8583 0.0098

L 0.0091 0.0971 -0.5584

Seventeen terms of the series were required to converge all elements of the matrix to five
significant digits.

The inverse of the Stanton number matrix may now be computed from Eq. 10.4.30 as

[237.302 14.134 -0.456
-4.136 191.820 1.425

1.324 14.143 235.522

The matrix of mass transfer coefficients may be computed by inverting this matrix and
multiplying by the velocity. Although we do not actually need to carry out this computation,
we have included its result for illustrative purposes

[ 6.3128 -0.4663 0.0150]
[k] = 0.13645 7.8133 -0.0470 X 10"3 m/s

[-0.0437 -0.4666 6.3716 J

In order to compute the interface composition we need an estimate of the fluxes. We will
take the flux n3 to be

n3 = 4.086556 X 10~3 kg/m2s

from which we may compute the remaining mass fluxes using the stoichiometric relations
discussed above as

nx = -0.00713 n2 = -0.00154 n4 = 0.00459 kg/m2s

Armed with these values we solve the matrix equation

[ S t ] - 1 ^ ) = ptu(a)0 - cob)

for the interface mass fractions. This calculation gives

(o10 = 0.0 o>20 = 0.2112 o)30 = 0.3716 co40 = 0.4172

which, in fact, is the estimate that we started with.
The interface composition in mole fraction units is

y10 = 0.0 y20 = 0.69345 y30 = 0.15328 y40 = 0.15328

and the rate of production (molar flux) of methane is

N3 = 0.25373 mol/m2s

The composition profiles in the gas close to the catalyst surface are shown in Figure 10.7.
The profiles are linear because the total mass flux nt is zero.
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Figure 10.7. Composition profiles (mass fraction units) in the gas close to the catalyst surface. The
profiles are linear because the total mass flux nt is zero.

We have illustrated the calculations necessary to solve this problem by providing first
estimates of the flux of methane and of the interface mass fractions that were the converged
values. Thus, all the numerical results given above represent the final values of the
corresponding quantities. When we solved this problem with no knowledge of the interface
composition, our first step was to set the average mass fractions equal to the bulk mass
fractions in order to estimate the Fick diffusion coefficients. The first computed values of
the interface mass fractions are quite close to the final solution and determining the mass
flux of methane necessary to zero the interface mass fraction of CO is quite simple, since co1

is almost a linear function of «-,. •

10.4.4 Comparison of the Chilton-Colburn Analogy
with Turbulent Eddy Diffusivity Based Models

A fundamental shortcoming of the Chilton-Colburn approach for multicomponent mass
transfer calculations is that the assumed dependence of [A:] on [Sc] takes no account of the
variations in the level of turbulence, embodied by vturb/v, with variations in the flow
conditions. The reduced distance y+ is a function of the Reynolds number: y + =
(y/Rw)(f/S)1/2 Re; consequently, Re affects the reduced mixing length / + defined by Eq.
10.2.21. An increase in the turbulence intensity should be reflected in a relative decrease in
the influence of the molecular transport processes. So, for a given multicomponent mixture
the increase in the Reynolds number should have the direct effect of reducing the effect
of the phenomena of molecular diffusional coupling. That is, the ratios of mass transfer
coefficients kl2/ku and k21/k22 should decrease as Re increases.

In Figure 10.8 we have plotted the variation of the ratios of mass transfer coefficients
k12/kn and k21/k22 for an acetone-benzene-helium system considered in Example 11.5.3.
The Chilton-Colburn analogy predicts that these ratios would be independent of Re, as
shown by the horizontal lines in Figure 10.8. The von Karman turbulent model, on the other
hand, predicts that the influence of coupling should decrease with increase in Re. The latter
trend is in accord with our physical intuition. Depending on the driving forces for mass
transfer, the Chilton-Colburn and the von Karman turbulent models could predict different
directions of transfer of acetone (see, e.g., Krishna, 1982).

The influence of turbulence intensity on the extent of diffusional coupling, as portrayed
in Figure 10.8, is exactly analogous to the influence of the Fourier number Fo on the extent



TURBULENT EDDY TRANSPORT IN MULTICOMPONENT MIXTURES 265

0.20 r

0.15
ki2/k11

0.10

0.05

Chilton - Colburn

Von Karman
System: acetone (1)-

benzene (2)-
helium (3)

I _L
0 1 2 3

Reynolds Number,

Figure 10.8. Ratio k12/kn, which are elements of the zero-flux matrix of mass transfer coefficients [k],
as a function of the gas-phase Reynolds number. Mass transfer between a gaseous mixture of acetone
(l)-benzene (2)-helium (3) and a liquid film containing acetone and benzene. Calculations by Krishna
(1982) based on the von Karman turbulent film model and the Chilton-Colburn analogy.

of diffusional coupling for transfer inside a rigid droplet, considered earlier (Example 9.4.1).
We conclude that the precise description of the mechanism of mass transfer is important in
the estimation of mass transfer rates in multicomponent systems for systems in which the
[D] matrix has sizeable off-diagonal elements. The calculation of the flux of a component
with a relatively small driving force is particularly sensitive to the choice of the model for
describing the multicomponent mass transfer process.



11 Simultaneous Mass and
Energy Transfer

Accurate prediction of heat and mass transfer rates in applications of practical interest is still a
formidable problem.

—E. N. Lightfoot(1969)

Perfectly isothermal systems are rare in chemical engineering practice and many processes,
such as distillation, gas absorption, stripping, condensation, and evaporation, involve the
simultaneous transfer of mass and energy across fluid-fluid interfaces. Representative
temperature profiles in some nonisothermal processes are shown in Figure 11.1. The
temperature profile also has a large influence in chemically reacting systems. For non-
isothermal systems it is important to consider simultaneous heat transfer even though we
are primarily interested in the mass transfer process.

The purpose of this chapter is to present a general framework for dealing with the effect
of mass transfer on heat transfer and the effect of heat transfer on mass transfer.
Applications to distillation operations are included in this chapter; mass and energy transfer
in multicomponent condensation is considered in Chapter 15.

11.1 BALANCE EQUATIONS FOR SIMULTANEOUS HEAT AND MASS TRANSFER

For transfer in either fluid phase of the two-phase system considered in Figure 1.1, the
differential energy balance relation in Table 1.5 provides the additional physical law
necessary to determine the temperature profiles and energy fluxes. This balance relationship
may be rewritten in several alternative, equivalent, forms (see Bird et al., 1960). Two useful
forms of the energy balance relation, assuming mechanical equilibrium, are in terms of the
partial molar enthalpies Ht.

l'"1 = -V-lq+ ZHi*i} (11.1-1)
*< \ i - i

or
d{ctCpT}

= _ v . q - v . {c.cyii} - E Ji • vi/f. (n.i.2)

where ^ is the conductive heat flux.
In addition to the differential balance relationships (Eqs. 11.1.1 and 11.1.2) that are valid

in the bulk phases, we have the jump balance condition at the interface " /"

f - Ex = £ - Ey (11.1.3)

where Ex and Ey are the energy fluxes in the adjoining phases at the interface. Equation
11.1.3 states that the normal component of the energy fluxes must be continuous across the

266
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interface, I
Vapor phase Liquid phase

(xL)

Figure 11.1. Typical temperature and composition profiles in some nonisothermal processes.

phase boundary / and is entirely analogous to Eq. 1.3.14 for mass transfer. In either fluid
phase the energy flux takes the form

n

E = q+ £/f^. (H.1.4)

where E plays a role analogous to the molar fluxes Nt in the interphase energy-transfer
process. The conductive heat flux q plays a role analogous to the molar diffusion fluxes /. .
We shall be making further use of these analogies later on.

For turbulent flow conditions, on time averaging the differential energy balance rela-
tions, we note that the time smoothed heat flux q (caused by molecular transport processes)
is augmented by a turbulent contribution #turb.

11.2 CONSTITUTIVE RELATIONS FOR SIMULTANEOUS HEAT
AND MASS TRANSFER

The most appropriate starting point for setting up the constitutive relation for q is the
theory of irreversible thermodynamics and the expression for the rate of production of
entropy due to mass and energy-transfer processes (see Hirschfelder et al., 1964;
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Standart et al., 1979).

/ 1 \ c.R » "
cr = q • V - - — E E dtf • (W/ - Uj) (11.2.1)

V l i n i=ij=i

For diffusion in isothermal multicomponent systems the generalized driving force dt was
written as a linear function of the relative velocities (ut - w;). In the general case, we must
allow for coupling between the processes of heat and mass transfer and write constitutive
relations for dt and q in terms of the (ut - u}) and V( l /D . With this allowance, the
complete expression for the conductive heat flux is

DT

x x IDT DT\
( « i » j ) (H-2.2)

Pi P ]

where A is the thermal conductivity of the mixture and Dj is the thermal diffusion
coefficient of component /. It is convenient to define multicomponent thermal diffusion
factors

1 IDJ DT

which have the antisymmetric property

a u = - a j i i * j = l , 2 , . . . , n (11.2.4)

where au is undefined. With this definition of aij9 we may write

q = -XVT + - c , * r E E XiXj«u(Ui ~ U?) (11.2.5)

The second term on the right-hand side of Eq. 11.2.5 gives the contribution of the mass
fluxes to the heat flux q; this contribution is commonly referred to as the Dufour effect.

The inverse of the Dufour effect is the production of mass fluxes due to temperature
gradients; this is referred to as thermal diffusion or the Soret effect. To account for this
effect, we need to augment the generalized Maxwell-Stefan diffusion equations in the
following manner:

" XixAut - uj) * VT
di = ~ E ^ ~ " " E ^xj^j— (11.2.6)

j=i ^u y=i L

where the generalized driving force dt is defined by Eq. 2.3.12

c,RTdt - c,.VT>pM; + (<k - *>/)VP - I erf - <ot Z CjFA (2.3.12)
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If we substitute these expressions into Eq. 11.2.1 for the rate of entropy production per
unit volume we obtain (after some manipulation) the remarkably simple expression

"diff
vr X:X:

(H.2.7)
y=i

This leads us to conclude that A ̂  0, in addition to the constraint (Eq. 2.3.21) for the
positive definiteness of the Maxwell-Stefan diffusion coefficients at infinite dilution £)°;.

Equations 11.2.5 and 11.2.6 are the complete forms of the constitutive relations for
simultaneous mass and energy transport. The reader is referred to the treatise by
Hirschfelder et al. (1964) and to the papers by Merk (1960) and Standart et al. (1979) for
further background to these derivations.

The interactions between thermal and mass fluxes have been recognized for a long time.
A great deal of effort has been devoted to the study of thermal diffusion and a number of
reviews are available on the subject (Grew and Ibbs, 1962; Grew, 1969; Mason et al., 1966).
Its practical application has been highlighted by the successful application of a thermal
diffusion process to the separation of isotopes (Glasstone, 1958). Strong coupling effects
may be found in processes involving the transport of "heavy" species in very steep
temperature gradients; conditions encountered, for example, in ablation cooling during
space vehicle reentry, chemical vapor deposition (CVD) processes, and aerosol capture
applications. Rosner (1980) discusses the influence of thermal diffusion (Soret) effects on
interfacial mass transport rates in some of these (and other) cases. The effect of thermal
diffusion in nonisothermal gas absorption has been discussed by DeLancey and Chiang
(1968, 1970a, b) (see, also, DeLancey, 1972). It must be said that the coupling between
thermal and mass fluxes is of little significance in the classical unit operations, such as
distillation and condensation, since temperature gradients are rarely high enough, or
sustained long enough, to make the thermal contributions to the mass fluxes worth
considering. The Dufour and Soret effects, quantified by the members on the right of Eqs.
11.2.5 and 11.2.6, will, henceforth, be ignored. With this simplification, Eq. 11.2.6 reduces to
Eq. 2.3.17 and Eq. 11.2.5 reduces to

q = -AVr (11.2.8)

which is Fourier's law of heat conduction.
For the turbulent heat flux qturb we may write

tfturb = "AturbVr (11.2.9)

The estimation procedure for Aturb is analogous to that of Dtmh and the approach is to
proceed via the turbulent Prandtl number

P r , u r b = % ^ (H.2.10)
Aturb

For lack of better information, we must take Prturb = Scturb = 1.

11.3 DEFINITION OF HEAT TRANSFER COEFFICIENTS

By analogy with Eq. 7.1.3, we may define heat transfer coefficients, in either fluid phase, by

A = lim
c,CpAT

(11.3.1)
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where ^ is a heat transfer coefficient. We have defied convention in the above definition for
one very good reason: the heat transfer coefficient ft, has the dimensions of velocity, just as
for the mass transfer coefficient. The physical significance of & is simple and straightfor-
ward. It represents the maximum speed at which heat can be transferred in the phase under
consideration.

It is more conventional to define the heat transfer coefficients as

but with this definition the parallelism with the mass transfer coefficient definition is
somewhat lost. We shall proceed further with the conventional definition because it is firmly
enshrined in all textbooks. The coefficient defined by Eq. 11.3.2 corresponds to the heat
transfer coefficient under conditions of negligible mass fluxes, that is, zero flux heat transfer
coefficients.

Just as finite mass fluxes distort the composition profiles during the interphase mass
transfer process, they exert a similar effect on the temperature profiles and the interfacial
heat fluxes. Witness the presence of the term

in the differential energy balance relation (Eq. 11.1.1).
For the actual conditions of finite mass transfer rates, we have

where the superscript • serves to remind us that the transfer coefficient corresponds to
conditions of finite mass transfer rates. The finite-flux heat transfer coefficients are related
to the zero-flux coefficients by a relationship of the form

h' = hBH (11.3.4)

where BH is the correction factor to account for the effect of finite mass fluxes on the heat
transfer coefficient h. Both h and BH depend on the temperature and composition profiles
in the region adjacent to the interface which, in turn, are influenced by the hydrodynamics
prevalent in the phase.

11.4 MODELS FOR SIMULTANEOUS MASS AND ENERGY TRANSFER

The presence of temperature gradients in a multicomponent system introduces an addi-
tional complication in the analysis of the mass transfer process; such gradients influence the
values of physical, thermodynamic, and transport properties, such as the diffusion coeffi-
cients. These property variations may be taken care of by introducing temperature depen-
dent property functions or by using average values of the properties (as is done here). The
consequence of this simplification is that the basic mass transfer analysis remains essentially
unchanged from those in Chapters 8-10 and we need only consider the effect of mass
transfer on the heat transfer process.

11.4.1 The Film Model

In the film model we assume that all the resistance to mass and heat transfer is concen-
trated in a thin film and that transfer occurs within this film by steady-state diffusion and
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Figure 11.2. Film model for simultaneous mass and energy transfer.

heat conduction. In the bulk fluid all concentration and temperature gradients are wiped
out. Figure 11.2 illustrates the model.

For steady-state heat transfer within a planar film, the energy balance relation (Eq.
11.1.1) simplifies to

dE

that is, the energy flux E is constant through the film

E = Eo = E8 = constant

(11.4.1)

(11.4.2)

(Recall our earlier analysis of the mass transfer process in Section 8.1 when we found that
the Nj were constant through the film.) The energy flux E is related to the conductive heat
flux by Eq. 11.1.4 which, when combined with Eq. 11.2.8, simplifies to

dT
ar (11.4.3)

If the reference state for the calculation of the partial molar enthalpies Hi is taken to be
the pure component at temperature Tref, then we may write

Ht = Cpi(T- Tref) (11.4.4)

where Cpi is the molar heat capacity of the species / and is assumed independent of
temperature.

Equation 11.4.3 is to be solved subject to the boundary conditions of a film model

77 = 0

T=T8
(11.4.5)

where 77 is a dimensionless distance defined as in Section 8.2.
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In proceeding further, it is convenient to define a heat transfer rate factor

L NtCpi

( 1 L 4 - 6 )

where / is the characteristic diffusion path length, which is equal to the film thickness for a
plane film.

With definitions (Eqs. 11.4.4 and 11.4.6) we may write Eq. 11.4.3 in the form

E
( 1 L 4 - 7 )

Assuming constant thermal conductivity and heat capacities (in practice this means evaluat-
ing them at the average temperature), the differential Eq. 11.4.7 can be solved with the
boundary conditions (Eqs. 11.4.5) to yield the temperature profile

( r - r 0 ) expQ r̂,) - i
1 ^ • • }(T8 - To)

The conductive heat flux at r\ = 0, q0 may be evaluated from

A dT

drj 71=0

(11.4.9)

and, with the temperature gradient determined by differentiating Eq. 11.4.8, we may
identify the low flux heat transfer coefficient h and high flux correction factor &H, defined
by

q0 = hBH(T0 - Ta) = h\T0 - Ts) (11.4.10)

as

h=k/( (11.4.11)

and

H / / = ^ / ( e x p c D / / - l ) (11.4.12)

where aH is called the Ackermann correction factor (Ackermann, 1937). Note that the
correction factor for heat transfer behaves in exactly the same way that the corresponding
correction factor for mass transfer behaves (see Eqs. 8.2.13 and Figure 8.2). Thus, for
vanishingly small mass transfer fluxes, that is, Nt -> 0, aH reduces to unity, leading to linear
temperature profiles; for ®H > 0, BH is less than unity, whereas for <£H < 0, aH is greater
than unity. At very high mass transfer rates (as sometimes encountered in, e.g., spray
vaporization, or coal gasification processes when small droplets or particles are introduced
to a high temperature environment) the high flux heat transfer correction factor may be an
order of magnitude different from the low flux heat transfer coefficient.

The energy flux E can be calculated from

= h'(T0 - Ts) + h<SH(T0 - Tref) (11.4.13)

which shows that the value of E depends on the arbitrary choice of the reference
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temperature Tvef for the calculation of enthalpies. This is no drawback because, in practice,
we use the interfacial energy balance Ey = Ex, and the choice of Tref is of no importance.
The film model for estimation of the conductive flux q must actually be seen in the context
of our model independent analysis for the determination of Nt and E in Section 11.5.

The above analysis was first carried out by Ackermann (1937) and by Colburn and Drew
(1937) and forms the basis for, among other things, the design of condensers, a topic we
shall address in more detail in Chapter 15.

Example 11.4.1 Heat Transfer in Diffusional Distillation

In Example 8.3.2 we determined the rates of mass transfer in diffusional distillation, a
process described by Fullarton and Schllinder (1983) for separating liquid mixtures of
azeotropic composition. Estimate the heat flux through the gas/vapor mixture under the
conditions prevailing in the experiment described in Example 8.3.2.

DATA

Temperature of evaporating liquid = 40°C.
Temperature of condensing liquid = 15°C.
Annular gap (film thickness): / = 6.5 mm.
Molar fluxes of isopropanol (1) and water (2) in air (3) were found in Example 8.3.2 to be

Nx = 6.280 mmol/m2s

N2 = 4.633 mmol/m2s

Thermal conductivity of gas-vapor mixture: A = 0.025 W/m K.
Molar heat capacity of 2-propanol: Cpl = 89.5 J/mol K.
Molar heat capacity of water: Cp2 = 33.6 J/mol K.

SOLUTION A schematic diagram of the temperature and composition profiles in this
process was given in Example 8.3.2, where the mass transfer part of the problem was solved.
All we have to do here is compute the heat flux from the film theory model in Section
11.4.1.

The low flux heat transfer coefficient is computed as follows:

= 0.025/6.5 X KT3

= 3.85 W/m2 K

The heat transfer rate factor follows from Eq. 11.4.6 as

= (6.280 X 10~3 X 89.5 + 4.633 X 10"3 X 33.6)/3.85

= 0.187

The film theory correction factor is calculated from Eq. 11.4.12 as

3// =

= 0.187/(exp(0.187) - 1)

= 0.909
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and so the high flux heat transfer coefficient is

h' = hSH

= 3.85 X 0.909

= 3 .5W/m 2 K

Finally, the heat flux q0 is given by Eq. 11.4.10 as

q0 = h'(T0 - Ts)

= 3.5 X (40 - 15)

= 87.4 W/m2

If there were no mass transfer, the heat flux would be almost 10% higher. The effect of
mass transfer on heat transfer, although not all that large here, is clearly too large to ignore
altogether. •

11.4.2 The Penetration Model

Our discussions on the film model for heat transfer showed an exact parallel with the
corresponding mass transfer problem. The same parallel holds for unsteady-state transfer.
Thus, for Fo = Xt/pCprl -> 0 (short contact time), the time-averaged heat transfer coeffi-
cient is given by

h = 2pCp]/x/(pCp7rte) (11.4.14)

The asymptotic, steady-state limit for heat transfer coefficient within a rigid spherical body
is

7T2A

h = -— (11.4.15)
3r0

The correction factor for high fluxes is given by Eq. 9.2.13 and Figure 9.4 in which we use
the heat transfer rate factor

(11.4.16)

in place of the mass transfer rate factor <l>. For chemical engineering design purposes, we
recommend the use of the film theory correction factor given by Eq. 11.4.12.

11.4.3 Turbulent Eddy Diffusivity Model

We now take up the problem of estimating the heat transfer coefficients and the energy flux
E in turbulent flow in a tube. As in our analysis of the corresponding mass transfer problem
(Chapter 10), we consider the transfer processes between a cylindrical wall and a turbulently
flowing /^-component fluid mixture. We examine the phenomena occurring at any axial
position in the tube, assuming that fully developed flow conditions are attained. For
steady-state conditions, the differential energy balance (Eqs. 11.1.1 and 11.1.2) takes the
form

\ = 0 (11.4.17)
dr
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where r represents the radial coordinate and Er is the energy flux. Equation 11.4.17 shows
that rEr is r invariant.

In Chapter 10, we chose to describe the mass transfer process using mass fluxes and the
mass average reference velocity frame because of the need later to solve the equations of
continuity of mass in conjunction with the equations of motion. In terms of these mass
fluxes the energy flux is given by

n

Er = qr+ ZnirHi (11.4.18)
/ = i

where Hi now represents the partial specific enthalpy with units of joules per kilogram
(J/kg). All fluxes in Eqs. 11.4.17 and 11.4.18 are time smoothed quantities; thus, qr is the
sum of molecular and turbulent contributions given by Eqs. 11.2.8 and 11.2.9, respectively.

As discussed in Section 10.2, the description of the turbulent transport processes is much
more conveniently carried out in terms of a coordinate system measuring the distance from
the wall y

y=K-r (10.2.2)

where Rw represents the radius of the circular tube. We consider Ey to be positive if the
flux is directed in the positive y direction, that is, from the wall towards the flowing fluid
mixture.

The boundary conditions for this model are

y = 0 T = TQ (the interface)
(11.4.19)

y=yb T=Tb (bulk fluid)

where yb is a distance from the wall beyond which we may safely assume that the
turbulence level is high enough to wipe out any further radial variations in temperature.

We now reintroduce a number of parameters that were useful in the corresponding mass
transfer problem

1. Friction velocity w*.

«* = V ^ M - }/f/2u (10.2.5)

where r() is the shear stress at the interface or wall and u is the average velocity of
flow of the multicomponent fluid mixture inside the tube. The parameter / is the
Fanning friction factor.

2. A dimensionless distance from the wall.

y + = yu*Pt/ix = yu*/v (10.2.6)

3. A dimensionless velocity.

u + = u/u* = yfl/fu/u (10.2.7)

4. A dimensionless tube radius

7?+ = Rwii*/v = Re Jf/8 (10.2.8)

where Re is the Reynolds number for flow 2Rwu/v.
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With the help of these quantities, we may write the following expression for the energy
flux at the wall Eo

Eo= -P,Cpu*\?r~l + P r - ^ ^ l 1 - - ^ - } dr
 + E nmHi (H-4.20)

where H( is the partial specific enthalpy of component i and is calculated from

H, = Cpi(T - Tref) (11.4.21)

with Cpi being the specific heat capacity for component /.
The boundary conditions that apply to Eq. 11.4.20, expressed here in terms of y+, are

y + = 0 T = To (the interface)

y + =y£ T=Tb (bulk fluid)

Taking (1 - y+/R+) as unity, the energy balance relation can be solved in a manner
analogous to the corresponding Eq. 10.3.2 for the continuity of mass. Thus, we obtain the
temperature profiles as

(r-r0) <ewv,,->)

The heat transfer rate factors WH and <$>H are defined by

AH(y + )dy+ (11.4.23)

f^AH(y + )dy+ (11.4.24)

where AH(y+) is defined by

The integral <E>H is a heat transfer rate factor which, for purely molecular heat conduction,
reduces to &H defined in Eq. 11.4.6 (with ( = ybH). The integral tyH is equivalent to ^H7]
in Eq. 11.4.8.

Equation 11.4.22 can be differentiated to obtain q0, the conductive heat flux at the wall

n

E nicpi

^ ( T 0 - T b ) (11.4.26)qo h(ToTb) ^
exp <vH — i

Thus, the high flux heat transfer coefficient is given by

E nic
Pi

h' = -i=i- (11.4.27)
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and the correction factor for high mass fluxes is

UH = = — (11.4.28)
H exp $H - 1 h V ;

which is formally identical to the Ackermann film model correction factor derived earlier.
Proceeding in an exactly analogous manner to the corresponding mass transfer problem,

we may derive the following explicit expression for the Stanton number for heat transfer
SiH = h/ptCpu

Sttf1 = 2 / / + T/2/J jy* livr'1 + P r ^ — j - ( l + — j \dy+ (11.4.29)

The previously discussed turbulence model can be used for the evaluation of the integral in
Eq. 11.4.21. For example, with the von Karman velocity profile (Eqs. 10.2.14-10.2.16) we
obtain

St^1 = (2 / / ) + 5i/2/f{¥T - 1 + ln( l + f(Pr - 1))} (11.4.30)

Equations 11.4.26-11.4.30 allow the calculation of the conductive heat flux q0; the total
energy flux Eo is the sum of the conductive and the bulk flow enthalpy contributions

(11.4.31)

with the mass fluxes calculated from Eqs. 10.3.20 or 10.4.24.

Example 11.4.2 Estimation of the Heat Transfer Coefficient for a Thin-Film Sulfonator

In Example 10.3.1 we considered the calculation of the mass transfer coefficient in the gas
phase of a thin-film sulfonator. A schematic diagram of a sulfonation reactor was provided
by Figure 10.5. Now, in the modeling of the reactor, the estimation of the temperature
profiles along the reactor tube is very important. An important parameter in the determina-
tion of the temperature profiles is the gas-phase heat transfer coefficient. Estimate this heat
transfer coefficient at the entrance to the reactor for the same set of operating conditions as
specified in Example 10.3.1.

DATA Physical property and system data are given in Example 10.3.1. Additional physical
property data needed here are as follows:

Thermal conductivity of gas mixture: A = 0.026 W/mK.
Heat capacity of SO3 at bulk gas temperature: CpX = 4932 J/kg K.
Heat capacity of N2 at bulk gas temperature: Cp2 = 801.7 J/kg K.

SOLUTION The average heat capacity of the gas mixture is calculated at the mean
composition between the interface and bulk gas phases

= 1008 J/kg K
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The Prandtl number of the gas mixture, therefore, is

Pr = Cpix/k

= 1008 X 19 X 10~6/0.026

= 0.737

The Reynolds number Re and friction factor / were calculated in Example 10.3.1 as
55388 and 0.005176, respectively. The Stanton number for heat transfer may now be
evaluated from Eq. 11.4.29 as

StH = 0.002975

Hence, the low flux heat transfer coefficient is

h = uPtCpStH

= 30 X 1.403 X 1008 X 0.002975

= 126 W/m2K

The mass flux n1 was calculated in Example 10.3.1.
The heat transfer rate factor is

= (-0.0108) X 4932/126

= -0.424

and the high flux heat transfer coefficient is

= 155 W/m2K

Since the heat capacity of SO3 is very high there is a substantial correction to the heat
transfer coefficient caused by simultaneous mass transfer. Simultaneous mass and energy
transfer needs to be properly taken into consideration in the design of industrial thin-film
sulfonation reactors. •

11.4.4 Empirical Methods

Heat transfer data usually are correlated by use of dimensionless groups, such as the
Nusselt number (analogous to the Sherwood number for mass transfer)

NU = /M//A (11.4.32)

the Stanton number for heat transfer

StH = h/PtCpu (11.4.33)

and the Chilton-Colburn / factor for heat transfer

jH = StH Pr2/3 (11.4.34)
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where d is some characteristic dimension of the equipment, u is the mean velocity for flow,
and Pr is the Prandtl number CPJJL/X.

There are scores of expressions available in the literature for estimating heat transfer
coefficients; we mention only one here, the well-known Chilton-Colburn analogy

JD=JH=f/2 (11.4.35)

or

(11.4.36)

where / is the Fanning friction factor. Equations 11.4.35 and 11.4.36 express the full form of
the Chilton-Colburn analogy. As discussed in Section 10.4.4, the Chilton-Colburn analogy
may also be derived from the turbulent eddy diffusivity models of the previous subsection.
The Chilton-Colburn analogy is used for estimating mass transfer coefficients in Example
15.1.2.

The heat transfer coefficients estimated from correlations or analogies are the low flux
coefficients and, therefore, need to be corrected for the effects of finite transfer rates before
use in design calculations. We recommend the film theory correction factor given by Eq.
11.4.12.

11.5 INTERPHASE MASS AND ENERGY TRANSFER

We will often be faced with the problem of determining the rates of mass and energy
transfer across a phase boundary. It is these fluxes that appear in the equations that model
processes, such as distillation, gas absorption, condensation, and so on. Here we present a
summary of the relevant equations and suggest a procedure for determining the required
fluxes.

Consider transport across the phase boundary shown in Figure 11.3. We shall denote the
two bulk phases by L and V and the interface by /. Though the analysis below is developed
for liquid-vapor interphase transport the formalism is generally valid for all two-phase
systems. Therefore, what follows applies equally to distillation, stripping, and absorption
operations. With a few modifications (to be described later), the analysis below may be used
in the determination of rates of condensation, evaporation, vaporization, and boiling.

Figure 11.3. Schematic diagram of transport processes at a phase boundary.
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At the vapor-liquid interface we have continuity of the component molar fluxes

NL=Ni==Nv (11.5.1)

and of the total molar fluxes

Nt
L = Nt = Nt

v (11.5.2)

where Nt
L and N^ are the normal components of the molar flux Nt at the interface. These

fluxes are made up of diffusive and convective contributions as

Nt
L =Jt

L+ XiNt
L =Nt= J,v + yiNt

v = Nt
v (11.5.3)

Using the definitions of the mass transfer coefficients we may write, for the diffusion
fluxes

(JL) = cf-[ki](x' - xL) (11.5.4)

{Jv)=c\[k'v]{yv-y') (11.5.5)

where, for definiteness, we consider transfer from the " F " phase to the "L" phase as
leading to a positive flux. Any of the models described in Chapters 8-10, at least in
principle, may be used for the determination of the matrices of mass transfer coefficients

We also have continuity of the energy flux across the V-L interface

EV = EL = E (11.5.6)

where Ev and EL are the normal components of the energy flux at the interface. With the
energy flux defined by Eq. 11.1.4 we may rewrite Eq. 11.5.6 as

qv+Z WiT") = <1L + £ NtHt(TL) (11-5.7)
/ = i ; = i

The heat fluxes in the two phases are given by

qy = h*v(T
v - T1) (11.5.8)

qL = hl(TJ - TL) (11.5.9)

The finite flux heat transfer coefficient in the vapor phase hm
v is related to the zero-flux heat

transfer coefficient hv by

h'v = A"(<l£)/(exp < - 1) (11.5.10)

where we have used the film model correction factor defined by Eq. 11.4.12, with O^
obtained from

*«= Z^Cpi/h (11.4.16)

The high flux correction to hL is not usually needed; the value of the liquid-phase heat
transfer coefficient is high enough to ensure that any such correction would be close to
unity.
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To complete the model of interphase transport, we must say something about the
interface. It is usual to assume that equilibrium prevails at the interface, and relate the mole
fraction y/ and x\ by

yl = Ktx! i = l,2,...,n (11.5.11)

The K values are to be evaluated at the temperature, pressure, and compositions at the
interface.

11.5.1 The Bootstrap Problem Revisited

There is a close relationship between the bootstrap problem discussed in Chapter 7 and the
interphase energy balance Eq. 11.5.7. To demonstrate this relationship we rewrite Eq. 11.5.7
as

i=l i = l
n n

= E ^iJ^ + E A^-A/,
i=\ i=\

n n

- V A TL + V A v AT

/=1 i=l

n-\
= 2_j (A/ — A n ) / ; + AyA^

/ = i

n-\

= E ( A / - An) / /-+ A^A/; (11.5.12)
/ = i

where we have defined

« n
\ — V X ii X — V X v X — t/f7 t 7 ^ /11 ^ 1^\
Ay — ^ ^/y/ Ax — L-4 Ai-^i **-i ~ n i **i y\.i..J .lJj

i = 1 / = 1

Equations 11.5.12 and 11.5.1-11.5.3 may be combined to give n — \ independent
relations for the total flux Nt

Ay

=Nt (11.5.14)

In Eqs. 11.5.14 we use the vapor-phase diffusion fluxes. Alternatively, we may use the
liquid-phase diffusion fluxes to obtain

= Nt (11.5.15)

We now eliminate Nt from Eqs. 11.5.3 with Eqs. 11.5.15 to give

n—\ A n

(11.5.16)



282 SIMULTANEOUS MASS AND ENERGY TRANSFER

where we have defined the parameters

A, = (A, - kn)/ky Aq = qL - qV (11.5.17)

Equation 11.5.16 may be rewritten in matrix notation (n — 1 dimensional) as

(AO - [Py](J") + (y)T- (11.5.18)

Ay

where the matrix [pv] has the elements (cf. Eq. 7.2.16)

Put'Sik-yAk i,k = l,2,...,n-l (11.5.19)

An expression analogous to Eq. 11.5.18 may be written in terms of the liquid-phase
diffusion fluxes

(N) = [t3L](JL) + (x)-- (11.5.20)

Equation 11.5.18 or 11.5.20 may be used to determine the n — 1 fluxes Nt where
i = 1,2,..., n — 1, given the n — 1 diffusion fluxes Jt. The nth flux is determined from

Nn=N,~ £>/ (11.5.21)
i = \

and the total energy flux follows from Eq. 11.1.4.

11.5.2 Nonequimolar Effects in Multicomponent Distillation

In the treatment of transport processes during distillation, most textbooks (e.g., Sherwood
et al., 1975) assume that conditions of equimolar countertransfer hold. That is,

Nt = 0 (11.5.22)

We can see from Eqs. 11.5.15 that the total flux will vanish only if the following two
conditions are satisfied

Aq = qL -qv = 0 (11.5.23)

A. = \n i = 1,2,... 9n - 1 (11.5.24)

The first requirement may be written as follows:

Lq = hKT1 - TL) - h*v(T
v -TI) = Q (11.5.25)

This requirement is often met in practice because the heat transfer coefficients in the vapor
and liquid phases are such that they will wipe out any temperature gradients locally, say on
a tray. In any event, the contribution of the Aq term to the total flux is likely to be small
because it is small in comparison to the average latent heat terms Ay or A .̂

The second requirement (Eq. 11.5.25) is that the molar latent heats of vaporization of
the constituent species be identical. Now, molar latent heats of many compounds are close
to one another, but the differences are not zero. Let us examine the effect of such small
differences in the latent heats on the interfacial rates of transfer. Example 11.5.1 demon-
strates the importance of taking into account nonequimolar effects in distillation.
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Example 11.5.1 Nonequimolar Effects in Ternary Distillation

Determine the fluxes Nv N2, and N3 in the vapor phase during the distillation of the
mixture isopentane* (l)-ethanol (2)-water (3). The bulk vapor composition is

y\ = 0.60 yv
2 = 0.10 yv

3 = 0.30

and the interface composition is

y[ = 0.62 y[ = 0.16 yJ
3 = 0.22

DATA

Binary mass transfer coefficients.

K12 = 0.036 JC13 = 0.072 K23 = 0.105 m/s

Temperature = 346 K and pressure = 100 kPa.
Partial molar enthalpies are in kilojoules per mole [kJ/mol].

H\ = 38.0 H2
V = 50.6 H3

V = 47.0

H[ = 15.5 /72
L = 10.1 H3

L = 5.0

SOLUTION We shall use the method of Krishna and Standart described in Section 8.3 to
compute the molar fluxes. Algorithms 8.3.1 or 8.3.2 may be used to determine the molar
fluxes. Convergence is very rapid in this example. No more than two iterations are needed.
Only the final results of the relevant computations are summarized below.

The interface is taken to be the plane at rj = 0. Thus, y0 = y1 and y8 = yv. The matrix
of low flux mass transfer coefficients is calculated from Eq. 8.3.27 as [k] = [R]~x with the
elements of [R] given by Eq. 8.3.25. The matrix [Ro] is found to be

16.11 -8.6 ] /
3.84 J s / m

-2.92 20.;

where we have used the interface composition y0 in calculating [Ro]. The matrix [A:] is
found by inverting this matrix as

- [0.0671 0.0277]
0.0094 0.0519 J m / S

The total flux is computed from Eq. 11.5.14 (cf. Eq. 7.2.13) with the Aq term set to zero.
For the record, the bootstrap matrix [)30], although not used directly in the computation of
the molar fluxes, is

\R 1 = [1.4075 0.0313]
L P o J [0.1052 1.0081 J

* Isopentane is the common name for 2-methylbutane.
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Figure 11.4. Composition profiles in distillation of isopentane (l)-ethanol (2)-water (3). Arrows
indicate actual directions of mass transfer.

The converged values for the molar fluxes Nt are

Nx = 0.1506 N2 = 0.1228 N3 = -0.1991 mol/m2s

At these values for the fluxes the various matrices are given below

-0.0788 0.06021

[ B ] -

0.0645 - 0.0995 J

0.9615 0.0292]
0.0313 0.9514J

0.0654 0.02831
0.0496j m / S

Composition profiles are shown in Figure 11.4.
Diffusional interaction effects are moderately important in this system. Evidence for this

statement is provided by the values of the off-diagonal coefficients relative to the values of
the diagonal elements of the matrices of mass transfer coefficients. These interaction effects
will have the effect of making the individual component transfer efficiencies significantly
different.

If we repeat the computations but use equal values for the molar heats of vaporization
we then find the molar fluxes have the following values

= 0.1053 N2 = 0.1131 N3 = - 0.2184 mol/m2s

showing that the flux of isopentane, assuming equimolar transfer, is significantly lower than
that calculated using the proper interfacial energy balance relations. This result is expected,
since the molar latent heat of isopentane is much lower than those of the other two species.
Water has the highest molar latent heat and the assumption of equimolar transfer overesti-
mates its transfer rate. In dehydration processes by azeotropic distillation, the transfer
efficiency of water will be lower than that calculated assuming equimolar distillation. •
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11.5.3 Computation of the Fluxes

The number of independent equations that model the interphase mass and heat transfer
process is 3n + 1. 3n - 1 of these equations are

• n - 1 rate equations for the vapor phase (Eqs. 11.5.5).
• n - 1 rate equations for the liquid phase (Eqs. 11.5.4).
• n equilibrium relations for the interface (Eqs. 11.5.11).
• 1 interfacial energy balance (Eq. 11.5.7).

The set of equations is completed by expressions that force the mole fractions at the
interface to sum to unity

Sv= E y / - 1 = 0 (11.5.26)
i=\

n

SL = ! > / - 1 = 0 (11.5.27)

The 3n + 1 variables that may be determined by solving this set of equations include

• In mole fractions on each side of the interface yf and x\.
• n molar fluxes Nt.
• The interface temperature T1.

All other quantities appearing in Eqs. 11.5.3-11.5.9 must be specified. The specified
variables normally will be the bulk phase compositions x[ and yY, and the bulk tempera-
tures TL and Tv, and the system pressure. In practice, the bulk conditions are determined
by process material and energy balances (see, e.g., Chapters 14 and 15). Transport, physical,
and thermodynamic properties (K values and enthalpies), and the mass and heat transfer
coefficients (the low flux ones) can be evaluated from appropriate models in terms of the
composition, temperature, and pressure of the appropriate phase.

Given the bulk fluid conditions (mole fractions and temperatures), the system pressures,
the low flux mass and heat transfer coefficients (or methods to evaluate them), and
appropriate equilibrium models, what is the most effective means of obtaining the rates of
mass and heat transfer?

One possible approach is to take the interfacial mole fractions xf as the independent
variables. The remaining interfacial parameters (y/ and T1) may then be obtained from a
bubble point calculation (Henley and Seader, 1981). Knowing the compositions in the bulk
fluid phase, as well as at the interface, allows us to determine the fluxes in each phase
separately using the algorithms presented in Chapters 8-10. If the fluxes for the vapor and
liquid phases do not agree (as required by the continuity Eq. 11.5.1) then the interfacial
composition must be reestimated somehow and the procedure repeated. From one point of
view this is an attractive and easily implemented method. It is built from what we may
consider to be very well tried algorithms: bubble point calculations for the interfacial state
and the multicomponent mass transfer algorithms of Chapters 8-10. A possible drawback is
that all three steps require iteration. The net result is that too much time is wasted
converging mass transfer rate calculations for estimates of the interfacial state that may be
nowhere near the true solution.

We believe that a better way to solve the set of Eqs. 11.5.1-11.5.10 is to solve all the
equations simultaneously using Newton's method (Algorithm C.2). This approach avoids the
nested iterations of the foregoing procedure and keeps both thermodynamic property
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evaluations and multicomponent mass transfer coefficient matrix computations to a mini-
mum.

For use with Newton's method, the 3n + 1 independent equations are rewritten in the
form (F(x)) = (0).

1. n - 1 mass transfer rate equations in the vapor phase.

(Rv)=cV[k'v}{yv-y>) + N,{yv) - (N) = (0) (11.5.28)

2. n - 1 mass transfer rate equation is in the liquid phase.

(RL) = cf-[ki](xJ - xL) + Nt(x
L) - (N) = (0) (11.5.29)

3. n interfacial equilibrium equations.

Q{ = Ktxl - y / = 0 / = l ,2 , . . . , / i (11.5.30)

4. One energy continuity equation (Ev - EL = 0).

E i s q V - q L + £ N.(Jjv -Hf-)~0 (11.5.31)
1 = 1

The independent equations are ordered into a vector of functions (F) as follows:

(c\T _ (nV DV DV pi DL QL QL

The unknown variables corresponding to this set of equations are ordered into a vector
as follows:

(xf = (NuN2,...,Nn_1,Nn,x{,x{,...,xI
n,

We wish to find the vector of variables (x) that gives (F) = (0). The steps of an algorithm to
accomplish this are given in Algorithm 11.1.

Algorithm 11.1 Procedure for Determination of Mass and Energy
Fluxes at a Phase Boundary

Given: Bulk phase conditions.
Mass and heat transfer coefficient models.
Thermodynamic property models.

Step 1: Generate initial estimates of all unknown variables.
Set interface temperature to the average of vapor
and liquid temperatures.
Set interface mole fractions equal to bulk values.
Set molar fluxes to small, nonzero, values.

Step 2: Compute:
Transport properties.
Thermodynamic properties (K values, enthalpies).
Mass transfer coefficient matrix [k].
Heat transfer coefficients.
Vector of discrepancy function (F).

Step 3: Compute elements of Jacobian matrix [J].
Step 4: Check for convergence, if not obtained continue with

Step 5.
Step 5: Compute new set of unknown variables by solving

Eq. C.2.5. Return to Step 2.
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Example 11.5.2 Distillation of a Binary Mixture

Methanol (1) and water (2) are being distilled in a tray column operating at 101.3 kPa. On
one of the trays in the column the mole fractions of methanol in the bulk vapor and liquid
phases are y\ = 0.5776 and x[ = 0.3105. Estimate the rates of interphase mass transfer.

DATA

Vapor-phase mass transfer coefficient: kv = 8 X 10~2 m/s.
Liquid-phase mass transfer coefficient: kL = 2 X 10~4 m/s.
Liquid-phase molar density: c[ = 36.58 kmol/m3.
Latent heat of vaporization of methanol: A//vapl = 36 kJ/mol.
Latent heat of vaporization of water: A//vap2 = 43 kJ/mol.

The vapor-liquid equilibrium behavior of the methanol-water system at 101.3 kPa may be
represented by

K, = yiP>/P K2 = y2P}/P

The pure component vapor pressures may be estimated from the Antoine equation as
follows:

In P{ = 23.402 - 3593.4/(7 - 34.29)

In Pi = 23.196 - 3816.4/(7 - 46.13)

where P{ and P | are in pascals (Pa) and T is in kelvin (K).
The activity coefficients may be estimated from the Margules equation (Table D.2) with

parameters from Gmehling and Onken (1977ff, Vol. 1/la, p. 53):

Al2 = 0.8517 A21 = 0.4648

ANALYSIS Since there are only two components, the number of equations we must solve
is just 7. We list these equations below to assist us in taking the derivatives that we need if
we are to use Newton's method.

F, s c\kvUv{y\ - y[) + y\{N, + N2) - JV,

F2 = Nt A//vapl + N2 A//vap2

F3 = c{-kLBL(xi - xf) + jtfttf, + N2) - iV,

F5 = K2x>2 - y{

F7 =x{+x'2-\

The discrepancy functions Fj-F7 are zero at the solution. We have ignored the A<j term in
the interfacial energy balance F2. The temperature of the two bulk phases will, therefore,
be assumed to be equal to the (as yet unknown) interface temperature.

During the solution of these nonlinear equations we will need the partial derivatives of
these functions with respect to each of the independent variables: Nit N2, y[, y2, x[, x2,
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and T1. Many of the required partial derivatives are zero. Examples include the partial
derivatives of the summation equations F6 and F7 with respect to everything except the two
mole fractions that appear in those expressions. The nonzero elements of the Jacobian
matrix are

dFx/dN, = y\ - 1
dFx/dN2 = y\

dFl/dy[= -cv
tk

v*v

dF./dN, = AHvapl

dF2/dN2 = A/fvap2

dF3/dNx = jcf - 1
dF3/dN2=xt

{ =dF3/dx{ =

dFA/dy[ = x[dKl/dy[- 1
dFA/dyI

2=x[dKl/dyI
2

dFA/dx[ = xfdKi/dxi + Kx

dF4/dx{=x{dKl/dx{

dF4/dT! =x{dK1/dTI

dF5/dyl=xidK2/dy{

dF5/dy{ = x{dK2/dy{-l

dF5/dx{ =x{dK2/dx[

dF5/dx^ = x[ dK2/dx{ + K2

dF5/dTJ =x{dK2/8TI

dF6/dy{ = 1
dF6/dy{ = 1
dF7/dx{ = 1

t = 1

When taking these partial derivatives it must be remembered that, in general, the molar
densities, the mass transfer coefficients, and thermodynamic properties are functions of
temperature, pressure, and composition. In addition, H is a function of the molar fluxes. We
have ignored most of these dependencies in deriving the expressions given above. The
important exception is the dependence of the K values on temperature and composition
that cannot be ignored. The derivatives of the K values with respect to the vapor mole
fractions are zero in this case since the model used to evaluate the K values is independent
of the vapor composition.

SOLUTION We are now in a position to be able to compute the fluxes, Nx and 7V2.

Step 1: Estimate all of the independent variables. For the first iteration we use the following
values.

Nt = -0.1 mol/m2s N2 = 0.09 mol/m2s

yl = yi = 0.5

xI
1=x{ = 0.5

T1 = 75°C
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The fluxes were estimated simply by giving two small, nonzero numbers. A negative sign
was put in front of the estimate of the flux of methanol because methanol is more
volatile than water and will transfer from the liquid to the vapor phases. The mole
fractions at the interface are given values of \/n, where n is the number of components.
We will see later that it would have been more logical to estimate the interfacial mole
fractions at their corresponding bulk values. The temperature is somewhere between the
boiling point of methanol and that of water.

Step 2: Evaluation of the discrepancy functions. The molar density of the gas phase is
computed from the ideal gas law using the temperature of the interface (which, by
dropping the Aq term in F2, is assumed equal to the bulk vapor and liquid tempera-
tures)

cv
t = 35.0mol/m3

Next, the mass transfer rate factor for the vapor phase is

<$>v = (A^ + N2)/c\kv = -0.00357

and the vapor-phase high flux correction factor follows as:

Bv = <Pv/(exp($v) - 1) = 1.002

which is close enough to unity to suggest that it may not be worth including it in the
computations.

We now have everything we need to evaluate Fv By simply substituting the current
values for every quantity appearing in the expression for F1 we get

= 35.0 X 0.08 X 1.002 X (0.5776 - 0.5)

+ 0.5776 X (-0.1 + 0.09) - (-0.1)

- 0.3119

The energy balance disceprancy is quickly evaluated as

= -0.1 X 36,000 + 0.09 X 43,000
= 270

The mass transfer rate factor for the liquid phase is computed as

= ( -0 .1 + 0.09)/(36.58 X 103 X 4 X 10~4)

= -0.00137

and the liquid-phase high flux correction factor follows as:

= (-0.00137) X exp(-0.00137)/(exp(-0.00137) - 1)

= 0.9993
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The liquid-phase mass transfer discrepancy is

F3 = c{*kLiaL(xi - x£) + x^N, + N2) - N,

= 36.58 X 103 X 4 X 1(T4 X 0.9993 X (0.5 - 0.3105)

+ 0.3105 X (-0.1 + 0.09) - (-0.1)

= 1.4833

Evaluating the equilibrium relations requires us to first compute the vapor pressures
and activity coefficients. Note that these thermodynamic properties are computed using
the temperature and composition at the interface. Expressions for the activity coeffi-
cients are given in Table D.2. Substituting the numerical values of x1 into those
equations gives the following results:

yx = 1.1232 y 2 = 1.2373

The vapor pressures are

P( = 155,274 Pa Pi = 38,551 Pa

The K values may now be computed as

Kx = 1.7217 K2 = 0.4708

We may now evaluate the departures from equilibrium.

F4 = KlX{ - y[

= 1.7217 X 0.5 - 0.5
= 0.3606

F5 = K2x{ - y{

= 0.4708 X 0.5 - 0.5
= -0.2646

Finally, our initial guess of the interfacial mole fractions was such that the mole fractions
summation equations are already satisfied

F6 = 0 F7 = 0

It is clear simply by inspection of the values of F^Fj that their values are not
sufficiently small so we must generate a new estimate of the independent variables.

Step 3: Evaluation of the Jacobian matrix [J]. The elements of [J] are obtained quite
straightforwardly using the expressions derived above. The only derivatives that need
further discussion are those of the equilibrium equations, F4 and F5.

In this particular problem the partial derivatives of the K values are given by

dKx/dx = Kx(d In 7l/dx + d In P[/dx)

with a similar expression for K2. The parameter x represents any mole fraction or
temperature.

The composition derivatives of the activity coefficients are given by expressions in
Table D.2, the numerical values are

d In yx/dx[ = -0.4259 d In yx/dxl
2 = 0.2324

d In y2/dx{ = 0.4259 d In y2/dx[ = -0.2324
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The partial derivatives d In yx/dx[ and -d In y2/dx[ are equal only when the mixture is
an equimolar one (as it is currently estimated to be).

The derivatives of vapor pressure with respect to temperature are

d In Pf/dT1 = 0.0365 d In Ps
2/dTl = 0.0418

The vapor pressures are independent of composition.
The partial derivatives of the K values with respect to the temperature and composi-

tion at the interface, therefore, are

dKx/dx[ = -0.7330

dK2/dx{ = 0.2004

dKx/dT* = 0.0628

dKx/dx[ = 0.4000

dK2/dx{ = -0.1094

dK2/dT' = 0.0197

Finally, since the vapor phase is assumed ideal, the K values do not depend on the
composition of the vapor phase. Hence,

dF5/dy[ = 0

Step 5: Computation of a new set of independent variables.
Following the calculation of [J] we solve the linear system (Eq. C.2.5) to obtain a new

estimate. The above procedure is then repeated three times with the following converged
results.

Ni = -0.2598 mol/m2s

y[ = 0.6617

x{ = 02761

T1 = 78.09°C

N2 = 0.2175 mol/m2s

y[ = 0.3383

x[ = 0.7233

vapor
phase
mole

fraction

liquid
phase
mole

fraction

bulk
liquid

Figure 11.5. Composition profiles in the vapor and liquid phases during distillation of a methanol and
water mixture. Arrows indicate the actual direction of mass transfer.
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Composition profiles for both phases are shown in Figure 11.5. The profiles are not
linear although that fact is hard to discern from Figure 11.5.

The final values of the high flux correction factors (HK = 1.009, 3 L = 0.9999) confirm
our earlier remark that it was not worth including them in the calculations. This will
often be true for distillation calculations but not for other processes, such as condensa-
tion and evaporation. •

Example 11.53 Interphase Mass Transfer in the Presence of an Inert Gas

A series of experiments involving mass transfer in a wetted wall column were carried out by
Modine (1963) with a view to investigating coupled diffusion effects. A schematic diagram of
the wetted wall column is provided in Figure 11.6. The liquid mixture flowing down the
inside of the tube contained acetone (1) and benzene (2). The downwards flowing gas-vapor
mixture contained acetone, benzene, and an inert gas that was either nitrogen or helium
Modine's data for experiment No. 7, with helium (3) as the inert gas, are summarized below
(from Krishna, 1981a).

Diameter of column, d = 0.025019 m.
Helium flow rate = 0.2438985 mol/s.
Vapor inlet temperature = 36°C.
Liquid flow rate = 5.5439 X 10 ~3 kg/s.
Liquid inlet temperature = 36.45°C.
Inlet pressure = 129.81 k Pa.

liquid
acetone(1)-
benzene (2)

vapor:
acetone(1)-
benzene (2)-
inert gas (3)

V

I liquid
\Jkr film

vapor
out

V

wetted-
wall
column

liquid
out

Figure 11.6. Schematic diagram of wetted wall column used in experiments by Modine (1963).
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Inlet vapor composition (mole fraction)

yx = 0.052354 y2 = 0.0 y3 = 0.947646

Inlet liquid composition (mole fraction)

xx = 0.076583 x2 = 0.923417

Estimate the mass fluxes at the top of the wetted wall column.

ANALYSIS We shall use the turbulent eddy difTusivity model to represent the transport
processes in the vapor phase. The mass fluxes in the vapor phase will, therefore, be
calculated from

"i = h +o>[(n1 +n2)

n2 =j2 + (oI
2(n1 + n2)

The mass diffusion fluxes j \ and j2 are given by

where we have adopted the convention that transfers from the liquid to the vapor phase are
positive. The flux of helium is zero so there is no contribution from n3 in the convective
contributions to nx and n2.

The molar flux of acetone in the liquid phase is given by

Nx = C/
L/CLHL(JC1

L - x{) + * / (# ! + N2)

A similar equation for benzene is not needed since the liquid phase is a binary mixture.
The energy balance at the interface may be written in mass units as

where the H values are the partial specific enthalpies of the subscripted component in the
superscripted phase. Helium does not contribute to the interphase energy-transfer process.

The model is completed by assuming equilibrium at the phase interface. This condition is
represented by Eqs. (11.5.11, 11.5.25, and 11.5.26). Since helium is present only in the vapor
phase, its mole fraction in the liquid phase is zero and, hence, its K value is infinite.
Therefore, Eq. 11.5.11 for helium cannot be used in the calculations.

We shall, as before, use Newton's method to solve all the independent equations
simultaneously. The independent variables that are to be determined by iteration are the
fluxes and the interface compositions and temperature. However, the use of the turbulent
eddy diffusion model for the vapor-phase mass transport means that the mass fluxes n1 and
n2, and the molar fluxes Nx and N2, appear in the set of model equations. These fluxes are
related by

Furthermore, the interface composition is needed in both mass fraction and mole fraction
units. The selection of mass or molar quantities as independent variables is not obvious;
indeed, there are good reasons for using either set. We feel that it is preferable to retain the
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interface vapor mole fractions as independent variables, rather than the mass fractions that
appear in the rate equations, because the interface equilibrium equations are simpler when
expressed in molar quantities. We also prefer to use the mass fluxes n1 and n2, as
independent variables in place of the molar fluxes.

The eight independent equations, written in the form Fix) = 0 in terms of the mass
fluxes and the interface mole fractions, are listed below.

Ft =j\ + ft>i(«! + n2) - n1 = 0

^2 — h + ^ik71! + ni) ~ n2 = 0

F3 = hLiTL - T1) - h^UuiT1 - Tv)

- n^Hf - Ht) ~ n2(H2
v - H2

L) = 0

F4 = c^kLaL(xt - x[) + x[inl/Ml + n2/M2) - n1/Ml = 0

F5 = KlX[ -y{ = 0

F6 ^ K2x{ -y{ = 0

F7 = y[ + y{ + y[ - 1 = 0

Note that only two equilibrium equations F5 and F6 are used, and that the mole fraction
summation for the vapor phase is made over all three components, whereas that for the
liquid is made over only the two species actually present in the liquid. The eight indepen-
dent variables computed by solving these equations are

nl9 n2, x{, x{, y[, y{, y'3, and T1

Step 4 of Algorithm 11.1 calls for the evaluation of the Jacobian matrix [J]. The elements
of this matrix are obtained by differentiating the above equations with respect to the
independent variables. Many of these partial derivatives are zero (or can be approximated
as zero). The nonzero derivatives of Fx and F2 are as follows:

dFl/dn1 = co[ — 1

dFl/dn2 = o)[

= ( p ^ n + nt)(da>[/dy{) + pV
tk\2{dul

2/dy[)

= (pYk-u + nt)(dco[/dy{) + pv
tk\2{b^/byl

2)

dF2/dn1 = co2

dF2/dn2 = o)2 — 1

dF2/dy[ = PYk-21(da>[/dyl) + {pv
tk\2 + nt){d^2/dy[)

dF2/dy{ = PYk-21(da>[/dyl) + (p^k22 + nt)(da>i/dyi)

The partial derivatives of the mass fractions with respect to the mole fractions are given by

dcoi/dyj = Stj
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The above derivatives must be evaluated at the interface composition before use in
computing the Jacobian elements. This additional complexity in evaluating the derivatives of
the vapor-phase mass transfer rate equations arises because we have used mass fluxes and
mole fractions as independent variables. If we had used mass fractions in place of mole
factions the derivatives of the rate equations would be simpler, but the derivatives of the
equilibrium equations would be more complicated. For simplicity, we have ignored the
dependence of the mass transfer coefficients themselves on the mixture composition and on
the fluxes.

The partial derivatives of the energy balance are given below

dF3/dnx = H\ ~ Hf

dF3/dn2 = H2
V - H£

dF3/dT> = -hL - hvnH + nt(c^ - c £ ) + * 2 ( c ; 2 - cL
p2)

where we have assumed the heat transfer coefficients and the flux correction factor to be
constant. The Cp terms in the third equation are due to the temperature dependence of the
vapor- and liquid-phase enthalpies.

The partial derivatives of the liquid-phase mass transfer rate equation are (assuming the
liquid-phase density and mass transfer coefficient may be regarded as constant)

BFA/dnx = (x[ - l)/Mx

dF4/dn2=x{/M2

dF4/dx{ = -c^kLaL + n1/M1 + n2/M2

Expressions for the partial derivatives of the equilibrium equations with respect to the
interface temperature and compositions are the same as those given in Example 11.5.2. The
partial derivatives of the mole fraction summation equations are either unity or zero (cf.
Example 11.5.2).

DATA A good deal of physical property data is needed for interphase mass and energy-
transfer calculations. The data and methods used for this example are summarized below.

Maxwell-Stefan diffusion coefficients in the vapor phase

D12 = 2.93 X 10~6 m2/s

D13 = 31.8 X 10-6m2 /s

D23 = 29.0 X 10"6 m2/s

Molar masses

Mj = 0.05808 M2 = 0.0781 M3 = 0.004 kg/mol

Vapor viscosity and thermal conductivity

fjLV - 1.485 X 10~5Pas

Xv = 0.025 W/mK

The liquid-phase mass transfer coefficient is taken to be

kL = 2.26 X HT4 m/s
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This is the value used by Krishna (1981a) in his simulations of Modine's experiments.
This value is consistent with a penetration model of mass transfer in the liquid phase
with a contact time of 0.065 s or a surface renewal frequency of 0.25 s"1. The molar
density of the liquid phase has been estimated as

c,L = 11.34 kmol/m3

The vapor-phase molar density may be calculated from the ideal gas law.
The liquid-phase heat transfer coefficient may be estimated using a correlation

provided by Modine et al. (1963). The numerical value used in this example is

hL = 2063 W/m2K

The K values of acetone and benzene may be calculated from

The pure component vapor pressures may be estimated from the Antonie equation as
follows:

In P[ = 21.625 - 2975.9/(7 - 34.523)

In PI = 21.068 - 2948.8/(7 - 44.563)

where P( and P | are in pascals and T is in kelvin.

The liquid phase is a binary mixture so we may use the Margules equation (Table D.2) to
estimate the activity coefficients. The interaction parameters are taken from Gmehling and
Onken (1977ff, Vol. 1/3 + 4, p. 197)

A12 = 0.4608 A21 = 0.3159

For this example we shall assume that the partial molar enthalpies are equal to the pure
component enthalpies. The liquid enthalpy may be calculated from

= CfrT - Tle[)

and the enthalpy of the vapor species will be

= CfrTbti - Tref) + A#vapj,. + Cv
pi{T - TbJ)

where Tbi is the normal boiling point of species /. The reference temperature used in these
calculations is 300 K. The pure component vapor-phase heat capacities have been estimated
at the bulk vapor temperature as

Cv
pX = 1300 Cv

p2 = 1100 C£ = 5200 J/kg K

and the pure component liquid heat capacities at the bulk liquid temperature are

C£ = 2241 C^ = 1773 J/kg K

The latent heats of vaporization at the normal boiling points have the values

A//vapl = 501.7 kJ/kg A//vap2 = 394.1 kJ/kg
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and the normal boiling points are

Tbl = 329.43 K Tb2 = 353.25 K

Viscosities, thermal conductivities, liquid density, and pure component heat capacities
have been estimated at the temperature and composition in the respective bulk phases.
These properties are assumed constant for this example. In view of the small temperature
changes that are encountered here, this is a reasonable assumption.

SOLUTION We will illustrate the evaluation of the functions Fl-F8 using the following
"estimates" of the independent variables.

nx = 1.1467 X 10~3 kg/m2s n2 = 18.809 X 10"3 kg/m2s

y[ = 0.03603 yl
2 = 0.12480 y3

7 = 0.83917

x[ = 0.07667 xl
2 = 0.92333

T1 = 32.39°C

The elements of the matrix of low flux mass transfer coefficients may be computed using
Eqs. 10.4.25 and 10.4.30. This requires the matrix of Fick diffusion coefficients in the mass
average velocity reference frame. This matrix can be computed with the help of Eqs. 4.2.2,
from which [D] is obtained in the molar average velocity reference frame, and Eqs. 3.2.11,
which allows transformation to the mass average reference velocity frame. Thus, we need
the Maxwell-Stefan diffusivities of the three binary pairs in the vapor phase and the molar
masses of the three components.

The first step is to convert the mole fractions given above, as well as those in the bulk
vapor, to mass fractions. The required formulas are given in Table 1.1 and the results are

^ = 0.44512 o)v
2 = 0.0 (ov

3 = 0.55488

a>[ = 0.13770 coJ
2 = 0.64140 OJJ

3 = 0.22089

The arithmetic average mole fractions will be needed in the calculation of the matrix of Fick
diffusivities [D].

yaul = 0.04419 yav2 = 0.06240 yav3 = 0.89341

Converting the average mole fractions to mass fractions yields

coav] = 0.23304 o)au2 = 0.44249 <oav3 = 0.32447

The next step is to calculate [D] in the molar average reference velocity frame directly
from Eqs. 4.2.7 as

22.063 6.288
8.793 23.322

_6 m / s

The elements of the reference frame transformation matrix [Buo] are given by Eqs.
1.2.25; the numerical values are

1.597 0.609]
1.134 2.156 J
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The inverse matrix is

0.783 -0.221]
-0.412 0.580J

The average mass and mole fractions given above were used in the computation of [Buo]
and [Buo].

The matrix [D] in the mass average reference velocity frame may now be calculated
directly from Eqs. 3.2.11 as

21.73 5.703] i n - 6 m 2 A
9.600 23 .659j X 1 U m / S

The eigenvalues of this matrix are

D1 = 30.16 X KT6 D2 = 15.23 X 10~6 m2/s

We require the density of the vapor mixture in order to calculate the low flux mass
transfer coefficients. The molar density of the vapor may be estimated using the ideal gas
law and, since the system is almost isothermal, may safely be assumed to be nearly constant.
The mass density, however, is likely to vary considerably between the bulk and interface,
since the molar masses of the three components in the vapor phase cover such a wide range.
The mass density should, therefore, be evaluated with the average molar mass

p\ = MP/RTV

= 0.5562 kg/m3

where M is the molar mass of the vapor evaluated at the average molar composition.
The total vapor flow rate is the flow rate of inert helium divided by its bulk phase mole

fraction

V = v3/y% = 0.2574 mol/s

where ẑ 3 is the molar flow rate of helium. The velocity of the vapor mixture u may be
calculated from

V = cv
tuA

where A is the cross-sectional area of the column (4.92 X 10 ~4 m2). The velocity is found
to be

u = 10.37 m/s

The Reynolds number follows as:

Re =

= 9714
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The friction factor may be calculated from a correlation obtained by Modine (1963)

/ = 2 X 0.926(0.0007 + 0.0625/Re032)

= 0.00743

The eigenvalues of [Sc] are calculated from

Sc7 = ^/pv
tf)x = 0.8853

Sc7 = M 7 p r 4 = 1-753

The eigenvalues of [St] may now be calculated from Eq. 10.3.27

St7 = 0.00397 St̂  = 0.00270

[St] follows from Eq. 10.4.31 as

r s l _ [3.252 0.489] 3
L M J " [ 0 .824 3 .418 J X l °

The matrix of low flux mass transfer coefficients is obtained by multiplying [St] by the
velocity u

[.369 0.502] v i n _ 2 2 ,
.859 3.545J X l ° m / S

which has the following eigenvalues

kx = 4.120 X 10~2 m/s k2 = 2.794 X 10~2 m/s

The next step is to compute the multicomponent mass transfer coefficients modified for
the effect of a nonzero total flux. The total mass flux is needed for the evaluation of the high
flux correction factor and is

nt = nx + n2 = 19.95 X 10"3 kg/m2s

The eigenvalues of the rate factor matrix are given by Eq. 10.4.34 with numerical values

<!>! = 0.8708 <I>2 = 1.2839

The eigenvalues of the correction factor matrix are obtained from the film theory expression
(Eq. 10.4.35), and the eigenvalues of the high flux mass transfer coefficient matrix follow
from Eq. 10.4.32

Hi = 0.6270 ~2 = 0.4917

k{ = 2.583 X 10"2 m/s k*2 = 1.374 X 10"2 m/s

The matrix of high flux mass transfer coefficients [km] may now be computed from Eqs.
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8.4.31 as

[1900 0462] 2X l ° m/S[ ]
[0.787 2.057j

The mass diffusion fluxes may be calculated from Eq. 10.4.19 as

= -1.6104 X 10~3 kg/m2s

k = P?{k2i(*>i ~ O + ^22(^2 " "2)}

= 6.0087 X 10~2 kg/m2s

k = ~k - k
= -4.407 X 10~2 kg/m2s

The first two discrepancy functions Fl and F2 may now be evaluated as

F1 =j\ + <*>[(nx + n2) - nx

= -1.6104 X 10~3 + 0.1377 X (1.1467 + 18.809) X 10~3

- 1.1466 X 10"3

« 0

F2 = j 2 + (oI
2(nl + n2) — n2

= 6.0087 X 10~2 + 0.6440 X (1.1467 + 18.809) X 10~3

- 18.809 X 10~3

« 0

To evaluate the energy balance we need the heat transfer coefficients and partial molar
enthalpies in both phases. The vapor-phase heat transfer coefficient may be estimated from
Eq. 11.4.30 as shown below.

The average heat capacity of the gas mixture is calculated at the mean composition
between the interface and bulk gas phases

Cp = <*>avlCpl + °>av2Cp2 + (tiav2Cp2

= 2476.1 J/kgK

The Prandtl number of the vapor mixture is

Pr = Cpfi/\

= 2476.1 X 14.85 X 10~6/0-()25

= 1.471

The Reynolds number and friction factor were calculated above. The Stanton number
for heat transfer may now be evaluated from Eq. 11.4.29 as

Sttf = 0.002984
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and so the low flux heat transfer coefficient is

h = uPtCpStH

= 10.37 X 0.5562 X 2476.1 X 0.002984

- 42.62 W/m2K

The heat transfer rate factor is

= 0.5204

and the high flux heat transfer coefficient is

= 32.49 W/m2K

Evaluation of the enthalpies at the interface temperature using the formulas presented
above yields the following numerical values

H^T1) = C^(Tbl - Tref) + A//vapl + C £ ( r ' - Tbl)

= 2.241 X (329.43 - 300.0) + 501.7 + 1.300 X (305.54 - 329.43)

= 536.6 kJ/kg

HftT1) = Cj;2(Tb2 - Tref) + A//vap2 + Cv
p2(T

l - Tb2)

= 1.773 X (353.25 - 300.0) + 394.1 + 1.100 X (305.54 - 353.25)

= 436.0 kJ/kg

HtiT1) = C&T' - TJ)
= 2.241 X (305.54 - 300.0)

= 12.43 kJ/kg

miT1) = C^T' - rref)
= 1.773 X (305.54 - 300.0)

= 9.83 kJ/kg

The use of constant physical properties is acceptable in this case since the composition and
temperature changes over the length of the column are not substantial. The system is at a
pressure slightly above atmospheric but that has been ignored in making the enthalpy
calculations.

The energy balance function may now be evaluated as

F3 EE hL(TL - T1) - trBuiT1 - Tv)

= 2096 X (36.45 - 32.39) - 32.49 X (32.39 - 36.0)

- 1.1467 X 10~3 X (536.6 - 12.43) X 103

- 18.809 X 10~3 X (436.0 - 9.83) X 103

« 0
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We now turn our attention to the liquid-phase mass transfer rate equation. The high flux
correction to the liquid-phase mass transfer coefficient is given by the second part of Eq.
8.2.13. However, its value is sufficiently close to unity to have no impact on the results.
Accordingly, we shall set the liquid-phase mass transfer flux correction factor to unity.

We may now complete the evaluation of the liquid-phase mass transfer equation.

F4 = c}-kLBL(xf - x{) + x[{nl/Ml + n2/M2) - nx/Mx

= 11.34 X 103 X 2.26 X 1(T4 X 1 X (0.07658 - 0.07667)

+ 0.07667 X (1.14667/0.0581 + 18.809/0.0781) X 10~3

- 1.160 X 10-3/(L0581

« 0

To evaluate the equilibrium relations requires the computation of the K values. The
pure component vapor pressures may be estimated from the Antoine equation. At the
interface temperature the vapor pressures are

P( = 41,961 Pa Pi = 17,482 Pa

Substituting the interface mole fractions x1 into the Margules equation for activity coeffi-
cients (Table D.2) gives the following results:

yx = 1.4534 y2 = 1.0034

The K values may now be computed as

K1 = 0.4699 K2 = 0.1352

We may now evaluate the departures from equilibrium as

F5 = Kxx[-y[

= 0.4699 X 0.07667 - 0.03603

« 0

F6 = K2x{ - y{

= 0.1352 X 0.92333 - 0.12480
« 0

The interfacial mole fractions satisfy the mole fraction summation equations

F7 = 0 F8 = 0

It is apparent that the "initial" estimate with which we began these computations was, in
fact, the correct solution. When Algorithm 11.1 was used to obtain these results, conver-
gence was obtained in about 15 iterations from what was more or less the starting guess
described in that algorithm. The interface mole fraction of benzene was given an initial
value of 0.05 since a value of 0.0 (the bulk value) gave numerical problems during the
computations. In some cases, negative mole fractions were obtained after the first iteration,
but these caused no problems even when left uncorrected before continuing with the
calculations. That might not always be the case; in general, it is a good idea to reset negative
mole fractions to small nonzero values before continuing.
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Figure 11.7. Composition and temperature profiles in the vapor phase at the top of the wetted wall
column. Bulk composition corresponds to the conditions in an experiment carried out by Modine
(1963). Arrows indicate the actual direction of mass transfer.

Composition and temperature profiles in the vapor phase at the top of the column are
shown in Figure 11.7. Note the arrows show that acetone is evaporating even though the
concentration of acetone is significantly higher in the bulk vapor than it is at the interface.
DifTusional interactions are responsible only for part of the "reverse" mass flux of acetone;
there is a convective contribution that provides the balance of the flux, m
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JLZ Multicomponent Distillation:
Mass Transfer Models

Distillation trays are so simple... Sieve tray decks are, after all, hardly more than sheets of
metal with a few holes punched in them. This of course is part of the fascination—that the
behavior of something so simple can be so difficult to predict with regard to its hydrodynamic
and mass transfer performance.

—M. J. Lockett (1986)

Distillation retains its position of supremacy among chemical engineering unit operations
despite the emergence in recent years of many new separation techniques (e.g., membranes).
In fact, when choosing a separation scheme the first question that is usually asked is Why
not distillation? (King, 1980).

It is beyond the scope of this book to describe distillation equipment at any length; in
depth treatments are available in, for example, Smith (1964), Billet (1979), King (1980), Fair
(1984) Lockett (1986) and Kister (1992). However, some comments are needed to place the
material in Chapters 13 and 14 in their proper context.

Distillation is most frequently carried out in multitray columns, although packed columns
have long been the preferred alternative when pressure drop is an important consideration.
In recent years, the development of highly efficient structured packings has led to increased
use of packed columns in distillation.

The design of both types of distillation columns is a fascinating subject to which a great
many books and papers have been devoted (some were cited above). The modeling of mass
transfer on distillation trays and the use of these mass transfer models in the simulation of
multicomponent distillation and absorption columns are the aspects of the process design
function that we shall consider in this book.

Two different approaches have evolved for the simulation and design of multicomponent
distillation columns. The conventional approach is through the use of an equilibrium stage
model together with methods for estimating the tray efficiency. This approach is discussed in
Chapter 13. An alternative approach based on direct use of matrix models of multicompo-
nent mass transfer is developed in Chapter 14. This nonequilibrium stage model is also
applicable, with only minor modification, to gas absorption and liquid-liquid extraction and
to operations in trayed or packed columns.

In this chapter we set the scene for these later chapters by developing models that
represent the overall mass transfer performance in distillation columns.

12.1 BINARY DISTILLATION IN TRAY COLUMNS

A schematic diagram of the two-phase dispersion on a distillation tray is shown in Figure
12.1, which serves to introduce some of the symbols we shall use in this and subsequent
chapters. The composition of the vapor below the tray is yiE and yiL is the composition of

307



308 MULTICOMPONENT DISTILLATION: MASS TRANSFER MODELS
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Figure 12.1. Schematic illustration of the froth on a distillation tray. The entering vapor-pha
fractions are yiE; yiL represents the average exiting vapor-phase mole fractions.
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Figure 12.2. Idealized view of the free bubbling regime on a distillation tray.

Splash zone

Jetting zone

Figure 12.3. Idealized view of the spray regime on a distillation tray.
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the vapor above the dispersion in the narrow slice of froth shown in the figure. The
parameter hf is the froth height.

Two fundamentally different regimes of operation on distillation trays have been distin-
guished (Lockett, 1986): the free bubbling regime, pictured in Figure 12.2, and the spray
regime, depicted in Figure 12.3. Detailed modeling of the hydrodynamics and mass transfer
coefficients for these regimes is postponed until Section 12.1.7. Below we present the
material balance relations that are the starting point for all subsequent analyses.

12.1.1 Material Balance Relations

Let us concentrate our attention on the narrow, vertical slice of froth in Figure 12.1. The
liquid phase in the vertical slice will be assumed to be well mixed and have a bulk phase
composition x-c The vapor phase is assumed to rise through the liquid in plug flow. The
composition of the vapor phase depends on the distance above the tray.

If vt represents the molar flow rate of component i in the vapor phase, V = E vt the
total vapor flow rate, a the interfacial area per unit volume of froth, hf the froth height,
and Ab the active bubbling area, then the component material balance for the vapor phase
may be written as

dvi/dh= ~NlaAh i = l,29...,n (12.1.1)

where TV, is the molar flux of species / across the vapor-liquid interface. For the mixture we
may sum Eqs. 12.1.1 to give

dV/dh = -NtaAb (12.1.2)

Substituting TV, = Z/7 + ytNt in Eq. 12.1.1 and writing vt = ytV we obtain

dyt dV
V + J^A N A ( 1 2 1 3 )

In view of Eq. 12.1.2, the right members on both sides of Eq. 12.1.3 cancel each other and
we get

V(dyt/dh) = -J^aAh i = 1,2,..., n (12.1.4)

This result is valid even when Nt ¥= 0, that is, when we have nonequimolar transfer.
Equations 12.1.4 must be integrated over the froth height to yield the composition

profiles. The boundary conditions are

h = 0; yt = yiE

h=hf; yt=ylL

The material balance relations presented above are valid for any number of components.
We shall discuss solutions to this system of equations for binary mixtures in the remainder
of this section of Chapter 12 before moving on to obtain generalized results for multicompo-
nent systems in Section 12.2. In the analyses that follow we shall ignore the effects of heat
transfer between the vapor and liquid phases.
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12.1.2 Composition Profiles

For a binary system the material balance relation (Eq. 12.1.6) may be written for component
1 as

V— = -JXaAb (12.1.6)

A similar expression for component 2 is not needed since yx + y2
 = 1-

To compute the diffusion flux we use Eq. 7.3.9 (simplified here by ignoring the flux
correction)

J\ = c^Kov(y1 — y*) (7.3.9a)

where Kov is the overall mass transfer coefficient given by Eq. 7.3.15.

1 1 cY M

Kov k^ c^k^

When the binary rate relation (Eq. 7.3.9a) is combined with the material balance
Eq. 12.1.6 we obtain

V{dy,/dh) = cYKov{y* - yx)aAb (12.1.7)

Equation 12.1.7 may be solved, subject to the boundary conditions (Eq. 12.1.5) to give

(y* ~y\L) = exp(-^oK)O* -y\E) (12.1.8)

where Nov, the overall number of transfer units for the vapor phase, is defined by

^\cv
tKovaAb/V)dh (12.1.9)

If we assume the integrand in Eq. 12.1.9 to be independent of froth height we may
complete the integration to give the overall number of transfer units Nov as

Nov s cv
tKovahfAb/V (12.1.10)

and the vapor composition at any point in the dispersion yx may be obtained from

(y* -yx) = txp(-NovO(yf-yiE) (12.1.11)

where g is a dimensionless froth height defined by £ = h/hf.

12.1.3 Mass Transfer Rates

The rates of interphase transfer vary as the vapor rises through the froth and the
compositions change. The average molar flux of component 1 (A^) in the vertical section of
the froth in Figure 12.1 may be found from

Nr = cYKoviyi - yf) (12.1.12)

where yx is the average mole fraction of component 1 and is defined by

Vi= CviOdS (12.1.13)
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We may use Eq. 12.1.11 for y(£) with the result

(y* ~ Pi) = (y* - yiE)/^v (12.1.14)

where £lv is defined by

£lv = ( - N o ^ ) / ( e x p ( - N O K ) - 1) (12.1.15)

Equation 12.1.15 may be combined with Eq. 12.1.12 to give

Nx = c?Kov(£lvy\y1E - y*) (12.1.16)

Equation 12.1.16 is based on the assumptions that Kov may be considered constant over
the height of the formation zone and that the total flux is zero. If the total flux is not zero
the right-hand side of Eq. 12.1.16 must be multiplied by the bootstrap coefficient fiv and the
calculation of the overall mass transfer coefficient modified (see Example 12.1.2).

12.1.4 Numbers of Transfer Units

Equation 12.1.8 relates the entering and exiting vapor mole fractions through the overall
number of transfer units. To predict tray performance, therefore, we need to estimate this
quantity. A working relationship for Nov may be obtained by combining Eq. 12.1.10 with
Eq. 7.3.15 for Kov to give

1 1 M(V/L)

MQV Ny N'L

where Nv and N'L are the numbers of transfer units for the vapor and liquid phases defined
by

Ny = kva'tv = kvahf/us (12.1.18)

HL = kLatL = kLahfZ/(QL/W) (12.1.19)

where hf is the froth height, Z is the liquid flow path length, W is the weir length, QL is the
volumetric liquid flow rate (QL = L/c^) and us is the superficial vapor velocity based on
the bubbling area of the tray

us = Qv/Ab (12.1.20)

where Qv is the volumetric vapor flow rate (Qv = V/cv
t), a' is the interfacial area per unit

volume of vapor, and a is the interfacial area per unit volume of liquid. The area terms d
and a are related to a, the interfacial area per unit volume of froth, by

a' = fl/(l -a)

a = a/a

where a is the relative froth density (hL/hf). The parameters tv and tL are the residence
times of the vapor and liquid phases, respectively:

tv={l-a)hf/u, (12.1.21)

tL = Z/uL-hLZW/QL (12.1.22)

where uL is the horizontal liquid velocity.
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The prime on N'L appears because an alternative definition of the number of transfer
units for the liquid phase has been suggested by Lockett to deal with some fundamental
deficiencies in the definition of N'L. While Lockett is undoubtedly right that the conven-
tional derivations of NL are at fault, there is no ambiguity in the calculation of N'L.

In practice, the numbers of transfer units for each phase may be obtained from either
one of the following sources:

• Experimental data.
• Empirical correlations (of experimental data).
• Theoretical models.

12.1.5 Numbers of Transfer Units from Empirical Correlations

The AIChE Bubble Tray Design Manual (AIChE, 1958; Gerster et al., 1958) presented the
first comprehensive estimation procedure for numbers of transfer units. For many years this
remained the only such procedure available in the open literature; the work of organizations
like Fractionation Research Incorporated (FRI) was available only to member companies.
However, during the last 15 years or so there has been a revival of distillation research and
other comprehensive estimation procedures have been published (e.g., Zuiderweg, 1982;
Chan and Fair, 1984a). We summarize these methods below. The text by Lockett (1986)
provides an excellent summary of what is available in the open literature on distillation tray
design for those interested in further study.

1. AIChE Method. The AIChE correlation of the number of transfer units for the vapor
phase on both bubble caps and sieve trays is

Nv = (0.776 + 4.57hw - 0.238F5 + 104.82L/^)Sc^0-5 (12.1.23)

where Fs is the superficial F factor defined by

Fs = us(p\)Q'5 (12.1.24)

where ScK is the vapor-phase Schmidt number (ScK = JJLV/P^DV), DV is the Fick diffusivity
in the vapor phase in meters squared per second (m2/s), hw is the exit weir height in meters
(m), W is the weir length in meters (m), and QL is the volumetric liquid flow rate in meters
cubed per second (m3/s).

The liquid-phase number of transfer units for sieve trays only is given by

NL = 19,700(£>L)°'5(0.4F5 + 0.17)fL (12.1.25)

where DL is the Fick diffusivity in the liquid phase (in meters squared per second) and tL is
the liquid-phase residence time defined by Eq. 12.1.22.

The original AIChE method includes a correlation for the clear liquid height hL; it is
preferable, however, to use the more recent correlation of Bennett et al. (1983)

hL = ae{hw + C(QL/(Wae)f
67} (12.1.26)

where

(12.1.27)
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and

C = 0.50 + 0.438 exp(-137 .Shw) (12.1.28)

2. Chan and Fair Method. Chan and Fair (1984a) retained the AIChE (1985) procedure
for calculation of the N'L but developed an alternative correlation for the number of
transfer units in the vapor phase Nv as follows:

Nv = (10,300 - 8670Ff)Ff(D
v)0'5tv/h

0
L;5 (12.1.29)

where Ff is the fractional approach to flooding defined by

Ffu,/u,f (12.1.30)

where usf is the superficial velocity under flooding conditions and tv is given by

tv=(l-ae)hL/(aeus) (12.1.31)

The parameters hL and ae are to be calculated using the method of Bennett et al. (1983)
[see, also, Lockett (1986) for details].

3. Zuiderweg Method. Zuiderweg's (1982) method involves calculation of Nv and N'L
from separate correlations of kv, kL, and (ahf). The correlation for the vapor-phase mass
transfer coefficient is

kv = 0.13/p? - 0.065/(P/
K)2 (1 < 9Vt < 80 kg/m3) (12.1.32)

It is interesting to note that Zuiderweg's correlation for kv is independent of the diffusion
coefficient. The liquid-phase mass transfer coefficient is calculated from either

kL = 2.6 X 10-5(AtL)"°"25 (12.1.33)

or

kL = 0.024(DL)°25 (12.1.34)

The parameter (ahf) is dependent on the regime of operation; for the spray regime

40 / u1
sp

v
thL FP \

and for the mixed froth-emulsion flow regime

43 / u2
sp

v
thL

0.37

(12.1.36)

where <f> is the fractional free area of the tray, <j> = Ah/Ab where Ah is the total area of the
holes, and Ab is the bubbling area of the tray. The flow parameter (FP) is defined by

FP = (ML/Mv)(p\/pLf5 (12.1.37)

where ML and Mv are the mass flow rates of liquid and vapor phases.
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The transition from the spray regime to mixed froth-emulsion flow is described by

FP > 3.0bhL

where b is the weir length per unit bubbling area

b = W/Ab (12.1.38)

For estimation of the clear liquid height Zuiderweg (1982) gives the following correla-
tion:

hL = 0.6h°w
5(p FF/b)025 (12.1.39)

where p is the hole pitch.

Example 12.1.1 Distillation of Toluene-MethyIcyclohexane

Estimate the numbers of transfer units for the system toluene (l)-methylcyclohexane(2) for
a distillation tray with the following specifications:

Column diameter
Weir length
Flow path length
Active tray bubbling area
Downcomer area
Total hole area
Tray spacing
Hole diameter
Hole pitch
Exit weir height

0.6 m
0.457 m
0.374 m
0.2 m2

0.034 m2

0.0185 m2

0.34 m
4.8 mm
12.7 mm
50 mm

The molar flow rate of the vapor and liquid phases leaving the tray are

V = 4.54 mol/s L = 4.80 mol/s

The pressure is 101 kPa. The composition of the liquid leaving the tray is

xx = 0.52 x2 = 0.48

The flooding velocity has been estimated to be

usf = 0.949 m/s

DATA Physical properties of the mixture at the bubble point temperature of the liquid
have been estimated as follows:

Viscosity of vapor mixture: 3.373 X 10~5 Pa s.

Viscosity of liquid mixture: 2.203 X 10~4 Pa s.

Vapor density: 2.986 kg/m3.

Liquid density: 726 kg/m3.

Average molar mass of vapor: 0.0955 kg/mol.

Average molar mass of liquid: 0.0952 kg/mol.

The vapor-phase diffusivity: Dv = 3.856 X 10"6 m2/s.

The liquid-phase diffusivity: DL = 7.082 X 10~9 m2 /s.

Surface tension: a = 0.0169 N/m.

The slope of the vapor-liquid equilibrium data: M = 1.152.
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The properties are not particularly sensitive to the composition of the vapor and liquid
mixtures.

SOLUTION We will begin by estimating the numbers of transfer units using the AIChE
correlations.

The Schmidt number is calculated first as

= 3.373 X l(T5/(2.986 X 3.856 X 1(T6)

= 2.930

The gas velocity may be calculated from the vapor flow rate as

us = V/(Abc
v
t)

= 4.54/{0.2 X (2.986/0.0955)}

= 0.726 m/s

The F factor is calculated next

= 0.726 X 2.9860-5

= 1.255 (m/s)(kg/m3)0 '5

The volumetric liquid flow rate is determined as follows:

QL = LML/p^

= (4.80 X 0.0952)/726

= 6.294 X 10~4 m3/s

The number of transfer units Ny may now be computed using Eq. 12.1.23 as

Nv = (0.776 + 4.57 X 0.05 - 0.238 X 1.255 + 104.8 X 6.294 X 10-4/0.457)/2.9300-5

= 0.4968

The froth height is determined using the method of Bennett et al. (1983) as discussed
above with the following results:

ae = 0.4623

hf = 60.16 mm

hL = 27.81 mm

The liquid-phase residence time may now be calculated from Eq. 12.1.22 as

tL = hLZW/QL

= 27.81 X 10~3 X 0.374 X 0.457/6.294 X 10"4

= 7.553 s

The number of transfer units for the liquid phase may now be calculated as

Nr
L = 1.97 X 104 X (7.082 X 10"9)°'5(0.4 X 1.255 + 0.17) X 7.553

- 8.412
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The overall number of transfer units follows from Eq. 12.1.17

1 1 M(V/L)

Nov Nv N'L

The stripping factor M(V/L) has the value 1.090. Thus Nov is computed from

1 1 1.090

Nov 0.4968 8.412

and so

Nov = 0.4667

We will repeat the estimation of the numbers of transfer units using the Chan and Fair
correlation for the number of transfer units for the vapor phase. The fractional approach to
flooding is

Ff = us/usf

= 0.726/0.949

= 0.7650

The froth height and clear liquid height are as calculated above; thus the gas-phase
residence time is

tv= (1 - ae)hf/us

= 0.0446 s

The number of transfer units for the vapor phase may now be calculated as

Nv= (10,300 - 8670 X 0.7650) X 0.7650 X (3.856 X lO"6)0"5 X 0.0446/(0.02781)05

= 1.472

For the liquid-phase Chan and Fair make use of the AIChE correlation; thus, NL = 8.412,
as calculated above. The overall number of transfer units follows from Eq. 12.1.17 as

Noy= 1.236

In Zuiderweg's method we determine the mass transfer coefficients for the vapor phase
from Eq. 12.1.32 as

kv = 0.13/2.986 - 0.065/2.9862

= 0.0362 m/s

and for the liquid phase using Eq. 12.1.34

kL = 0.024 X (7.082 X 10~9)0'25

= 2.2017 X 10"4 m/s

The mass flow rate of the vapor and liquid phases are

My = 4.54 X 0.0955 = 0.4336 kg/s

ML = 4.80 X 0.0952 = 0.4570 kg/s
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The flow parameter is computed next

FP = (0.4570/0.4336) X (2.986/726)05

= 0.0676

The clear liquid height is calculated from Zuiderweg's correlation (Eq. 12.1.39), as

hL = 0.6 X (0.050)05 X (0.0127 X 0.0676/2.285)025

= 0.0187 m

The parameter (3bhL) has the value 0.128, which is greater than the value of the flow
parameter FP. According to the criterion below Eq. 12.1.37, this means that the tray is
operating in the spray regime. The interfacial area term is, therefore, calculated from
Eq. 12.1.35 as

ahf = 37.00

The number of transfer units for the vapor phase now follows from Eq. 12.1.18

Nv = kvahf/us

= 0.0362 X 37.00/0.726

= 1.8474

and for the liquid phase from Eq. 12.1.19 as

NL = kLahfZ/(QL/W)

= 2.2017 X 10~4 X 37.00 X 0.374/(6.294/0.457)

= 2.2122

The overall number of transfer units is

Nov = 0.9673

We shall continue these calculations in Example 13.2.1. •

12.1.6 Numbers of Transfer Units—A Simplified Approach

An interesting simplification of the above procedure results when we use Eq. 7.3.7 for the
linearized equilibria (for a binary system, M = (JK^F) and Eqs. 8.8.16 for the mass transfer
coefficients (k = KT) to get (the vapor phase is assumed ideal)

1 1 c\ Kx

7T- = — + T T (8.8.21)
Koy KV C[ KL

which is noteworthy for the absence of the thermodynamic factor F. If we combine
Eq. 8.8.21 with Eq. 12.1.17 we may express the overall number of transfer units as

1 1 X ( / )
^ ^ (12.1.40)
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where Jfv and JV'L are numbers of transfer units for the vapor and liquid phases defined as
follows:

yyv=Kva'tv (12.1.41)

yy"L = KLatL (12.1.42)

Note the presence of the "ideal" mass transfer coefficients KV and KL in place of the
conventional kv and kL.

We suggest that the numbers of transfer units */Vv and yV'L be evaluated from the
models presented above with the Maxwell-Stefan diffusivities Dv and DL replacing the
Fick diffusivities. The elimination of the thermodynamic factor will prove particularly useful
when we come to adapt this method for estimating efficiencies of multicomponent systems.

12.1.7 A Fundamental Model of Tray Performance

As noted in Section 12.1.1, there are two quite different regimes of operation of distillation
trays, the froth regime and the spray regime. In this section we develop detailed models of
the hydrodynamic and mass transfer character of these regimes.

The froth regime on a distillation tray really consists of three zones.

1. Zone / Jetting-bubble formation region.

2. Zone / / Free bubbling zone.

3. Zone / / / The splash zone.

In Zone /, the jetting-bubbling formation zone, the vapor issues through the perfora-
tions in the tray in the form of jets, breaking into bubbles. These jets could be modeled as a
set of parallel cylindrical vapor jets. The model parameters are

• The diameter of the jet—dj.

• The velocity of the vapor in the jet—Ur

• The height of the jetting zone—hj.

In the free bubbling zone a distribution of bubble sizes is usually obtained. The model
parameters for the bubbling zone are

• The bubble diameters—du k.

• The bubble rise velocities—UIIk.

• The height of the free bubbling zone—hH.

• The fraction of vapor that is in each bubble population—fH k.

The fraction of vapor in each bubble population are given by

///,* = UntkeIitk/us (12.1.43)

where us is the superficial velocity based on the bubbling area and en k is the gas hold-up
of the A:th bubble population. The bubble population fractions sum to unity.

Available experimental data show that the assumption of a bimodal bubble size distribu-
tion is a good approximation (Lockett and Plaka, 1983; Lockett, 1986; Kaltenbacher, 1982;
Hofer, 1983; Prado and Fair, 1990). Thus, we have fast-rising "large" bubbles and slow-
rising "small" bubbles in the dispersion. This bimodal bubble size distribution is also a
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characteristic feature in gas-liquid bubble columns operating in the churn-turbulent regime
(Vermeer and Krishna, 1981) and has hydrodynamic analogies with a gas-solid fluidised bed
(Van Deemter, 1961). Typically, about 90% of the incoming vapor is transported by the
large bubbles (this is a kind of vapor channelling) while the small bubbles despite their large
interfacial area are not very effective in mass transfer contributing only about 10% of the
total transfer (Krishna, 1985).

The large bubbles are of the order of 10-20 mm in diameter and have a rise velocity of
about 1.5 m/s. The small bubbles, on the other hand, are 2-5 mm in diameter and have a
rise velocity of about 0.25 m/s. The large bubbles rise through the froth virtually in plug
flow. Prado and Fair (1990), in developing their tray hydrodynamics model, assumed the
small bubble population to also rise in plug flow through the froth. If we draw an analogy
between the hydrodynamics on a tray with a gas-liquid bubble column (Krishna, 1993b), we
may consider the small bubbles to be entrained in the froth and, as a first approximation, to
have the backmixing characteristics of the froth on the tray. Further experimental work
needs to be carried out to settle this issue. For purposes of calculation later on we shall
follow Prado and Fair (1990) and assume plug flow of the small bubble population.

The splash zone above the free bubbling zone consists of entrained droplets. We may
model this zone as being made up of droplets of uniform size rising in plug flow through the
splash zone. The model parameters are

The diameter of the drop—dlu.
The velocity of the entrained droplets-
The height of the splash zone—hUI.

-U,in-

The contribution to the total mass transfer of the splash zone is generally negligibly small
and is neglected in the working model for mass transfer calculations pictured in Figure 12.4.

Zone II

Zone I

Figure 12.4. Model of the free bubbling regime on a distillation tray.
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Zone I

Q P P

cylindrical jets

A

Vapor

Figure 12.5. Model of the spray regime on a distillation tray.

It is interesting to note a further analogy between tray hydrodynamics and gas-solid
fluidized beds: the splash zone is akin to the freeboard zone in the latter case.

At higher vapor velocities we attain the spray regime of operation, pictured in Figure
12.3. In the spray regime the vapor jets penetrate through the whole dispersion. Between
these vapor jets we have liquid "pockets" containing entrained small vapor bubbles. Almost
all the entering vapor is transported by the vapor jets, the small entrained bubbles
contributing almost nothing to vapor through-flow and mass transfer.

The splash zone at the top of the dispersion has the same characteristics as the one
described above for the free bubbling zone; its contribution to mass transfer can usually be
neglected.

The model of the spray regime for mass transfer calculations is pictured in Figure 12.5.
The key to developing an expression for estimating the overall mass transfer perfor-

mance of a single tray using the zone-model is to recognize that in each region of the froth
(bubble formation zone and each bubble population) the composition change in the vapor is
given by Eq. 12.1.8, where yE and yL refer to the mole fractions entering and leaving the
respective region. The overall numbers of transfer units must, therefore, be found for each
region; we shall use the simplified procedure described in Section 12.1.4 for estimating these
numbers.

We define the following quantities:

yiE The mole fraction of component / in the vapor entering the tray.
yi j The mole fraction of component i in the vapor at the top of the bubble

formation zone.
yi,u,k The mole fraction of component / in the vapor in the kth bubble population

at the top of the bubble rise zone.
yiL The average mole fraction of the vapor above the froth.
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The bulk liquid is assumed completely mixed and so y*, the mole fractions in a vapor in
equilibrium with the bulk liquid, will be the same for all regions of the froth.

Bubble Formation Zone The change in the vapor composition in the bubble formation
zone is given by (cf., Eq. 12.1.8).

(y? -yu) = Qi(yl -yiE) (12.1.44)

where

QI = txp(-NOVI) (12.1.45)

with NOVj the overall number of transfer units for the bubble formation zone. The
parameter Nov 7 is defined by

V/EV/^/ (12.1.46)

where a) is the interfacial area per unit volume of vapor

a!l = \/dl (12.1.47)

and tj is the residence time for the vapor

tI = hI/UI (12.1.48)

where dI is the diameter of the jet, Ul is the velocity of the vapor in the jet, and hl is the
height of the jetting zone.

The overall mass transfer coefficient for the jetting zone is given by (cf. Eq. 8.8.21)

1 1 cv
t K,

Kov,i Ki ct Ki

with the vapor-phase mass transfer coefficient for the bubble formation zone obtained from
Eqs. 9.4.14 and 9.4.12

fc)T= -\n(l -F^/ia'jtj) (12.1.50)

where

exp{A^r?Fo7}
F / - 1 - 4 E P l " ' " (12.1.51)

n = l Anrl

where 77 is the radius of the jet and with Fo7 the Fourier number for the jetting zone.

Fo7 = 4Bvtj/dj (12.1.52)

The penetration model is used for the mass transfer coefficient in the liquid phase

K\ = 2(DL/wtI)
1/2 (12.1.53)

The average molar flux of component 1, N1]9 in the bubble formation zone are given by
(cf. Eq. 12.1.16)

^1/ = c\KOVJ(D};y\ylE - y*) (12.1.54)
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where

nvj = (-^OV,I)/(ZM-^OV,I) - 1) (12.1.55)

Equation 12.1.54 is subject to the same assumptions and modifications that apply to
Eq. 12.1.16.

The kth Bubble Population The change in composition in the k\h bubble population as the
bubbles rise from the top of the formation zone to the top of the froth is given by

(12.1.56)

where

(12.1.57)

with Nov JJ k the overall number of transfer units for the kth bubble population. The
parameter NOv,n,k i s defined by

^ov,n,k - *OK,/ / ,*«/ / ,* ' / / ,* (12.1.58)

where dn k is the interfacial area per unit volume of vapor in the A:th bubble population

a'//,* = 6/<///f* (12.1.59)

and tn k is the residence time for the vapor in the A:th bubble population

tIIk = hH/UIIk (12.1.60)

where du k is the diameter of the kth bubble population, UIIk is the rise velocity of the
A:th bubble population, and hn is the height of the bubble rise zone.

hn = hf-hI (12.1.61)

The overall mass transfer coefficient for each bubble population is given by (cf. Eq.
8.8.21)

1 1 cY K,

AOK,//,Jfc KII,k ct KII,k

with the vapor-phase mass transfer coefficient for a rigid spherical bubble obtained from
Eq. 9.4.5 as

«n,k = " M l " *•//,*)/(«//,*'//,*) (12.1.63)

where FIIk is the fractional approach to equilibrium in the A:th bubble population and is
given by Eq. 9.4.6

Fn.k = 1 " — E — exp{-nV2Fo / / > l t} (12.1.64)
7 7 n = l "
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with Fo/7 k the Fourier number for the A:th bubble population

Fo / / > t - £ > V t A u (12.1.65)

where rIIk is the radius of the /cth bubble population.
The penetration model is used for the mass transfer coefficient in the liquid phase; the

contact time being the time required for the bubble to rise one diameter

K$Itk = 2[DL/Tr(dIhk/Un,k)}
1/2 (12.1.66)

The average molar flux of component 1, N1JIk, in the kth bubble population may be
found from (cf. Eq. 12.1.16)

Nin,k = cYKov,nACln,kV\yu-y:n (12.1.67)

where

ton.k = (-^ov,n,k)/(^P(-^ov,n,k) ~ 1) (12.1.68)

The vapor composition at the top of the formation zone may be eliminated using Eq. 12.1.44
to give

Nui.k = cr^o^ ,H, t (n / / ,* )" 1 e / (y i £ - yf) (12.1.69)

Overall Performance The average composition of the vapor above the froth is given by

Vi,L= LUkVuLk (12.1.70)
k = \

where p is the number of discrete bubble populations in the model and j n k is the fraction
of the vapor in the /cth bubble population (both parameters of the model). When we
combine Eq. 12.1.56 with Eq. 12.1.70 we find

(12.1.71)

where Qn is defined by

Qn= { Lfn.kQii.k) (12.1.72)

The mole fraction difference at the top of the formation zone may be eliminated with
Eq. 12.1.44 to give

(yf - y1L) = QnQj(yt ~ VIE) (12.1.73)

The total mass transferred between phases may be determined by summing the contribu-
tions from the bubble formation zone and each bubble population. The total number of
moles transferred in the /cth bubble population is the product of the average molar flux
given by Eq. 12.1.69 and the total interfacial area in that population (aIIjkhjjAbeIIk). The
total number of moles transferred in the bubble formation zone is the product of the
average molar flux given by Eq. 12.1.54 and the total interfacial area in the formation zone

) , where er is the gas hold-up in Zone /.
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Example 12.1.2 Regeneration of Triethylene Glycol

Estimate the composition of the vapor above the froth on a tray in a column for the
regeneration of triethylene glycol(2) (TEG) from a mixture with water(l) under the follow-
ing conditions:

Composition in the bulk vapor below tray

ylE = 0.7216 y2E = 0.2784

Composition in the liquid on the tray

*! = 0.258 x2 = 0.742

Equilibrium vapor composition

y* = 0.969 y* = 0.031

The froth may be modeled with a jet-bubble formation zone and a bimodal bubble
population with the following characteristics:

The height of the jetting zone: hI = 2 mm.
The diameter of the jet: dj = 3 mm.
The velocity of the vapor in the jet: Ul = 5 m/s.
The height of the free bubbling zone: hn = 80 mm.
The small bubble diameter: du x = 3 mm.
The small bubble rise velocity: [//71 = 0.23 m/s.
The fraction of vapor in the small bubbles: fH1 = 0.05.
The large bubble diameter: du 2 = 13 mm.
The large bubble rise velocity: UII2 = 1.5 m/s.
The fraction of vapor in the large bubbles: fII2 = 0.95.

DATA Physical properties have been estimated as follows:

Liquid molar density: 8.621 kmol/m3.
Vapor molar density: 32.25 mol/m3.

The vapor-phase Maxwell-Stefan diffusivity

Bv = 1.4 X 10~5m2/s

The liquid-phase Maxwell-Stefan diffusivity

DL = 2.0 X 10~9 m2/s

The K value: Kx = 3.756.
Heat of vaporization of water: A//vapi = 40.5 kJ/mol.
Heat of vaporization of TEG: A//vap2 = 70 kJ/mol.

SOLUTION The heats of vaporization of TEG and water are sufficiently different as to
make it necessary to consider departures from equimolar distillation in the evaluation of the
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overall mass transfer coefficients. The overall mass transfer coefficient in each region of the
froth will, therefore, be evaluated from (cf. Eq. 8.8.21)

Kov

where pv and f3L are the bootstrap coefficients for the vapor and liquid phases given by (in
this case) Eqs. 7.2.16, 7.2.14, and 7.2.18. The bootstrap coefficient for the liquid phase will
be evaluated at the liquid composition as follows:

with

x2AHwap2

Hence,

40.5 - 70
1 0.258 X 40.5 + 0.742 X 70

= -0.473

pL = 1 - 0.258 X (-0.473)

= 1.122

The bootstrap coefficient for the vapor phase will be evaluated at the average of the
entering vapor and equilibrium vapor composition

with

The average vapor composition is

ylao = 0.8455 y2au = 0.1545

Hence,

40.5 - 70

v _ A^vapl - Ai/vap2

1 )>

A l =
0.8455 X 40.5 + 0.1545 X 70

= -0.655

pv = i - 0.8455 X (-0.655)

= 1.553

The values of /3L and fiv computed above will be used in the determination of the overall
mass transfer coefficients in all three regions of the dispersion: the bubble formation-jetting
zone and both small and large bubble populations.
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Bubble Formation-Jetting Zone The interfacial area per unit volume of vapor in the jetting
zone is

a'j = 4/dj

= 4/0.003

= 1333 m2/m3

The residence time for the vapor in a jet is

tj = hj/Uj

= 0.002/5

= 0.0004 s

The Fourier number for a jet is

Fo7 = 4 D V(<*/ ) 2

= 4 X 1.4 X 10"5 X 0.0004/0.0032

= 2.489 X 10~3

The fractional approach to equilibrium in the jetting zone is given by Eq. 12.1.51 and is
computed to be

Fj = 0.1101

The vapor-phase mass transfer coefficient may now be calculated from Eq. 12.1.50 as

= - ln ( l - 0.1101)/(1333 X 0.0004)

= 0.2187 m/s

Turning to the liquid phase, we may evaluate the mass transfer coefficient with
Eq. 12.1.53 as

= 2 x (2 x 10-7(77 x 0.0004))V2

= 2.523 X 10~3 m/s

We may now compute the overall mass transfer coefficient for the jetting zone as

1 1 32.23 1.553 3.756
+ X XKOVI 0.2187 " 8621 " 1.122 " 2.523 X 10"3

Hence,

KOVI = 0.08142 m/s

The overall number of transfer units is

= 0.08142 X 1333 X 0.0004
= 0.04342
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The departure from equilibrium in the jetting zone follows as:

G/ = exp(-No l / ? /)

= exp(-0.04342)

= 0.9575

The molar fluxes in the formation zone are computed as follows (cf. Eq. 12.1.54)

with

= (-0.04342)/(exp( -0.04342) - 1)

= 1.0219

Hence

Nu = 32.25 X 1.553 X 0.08142 X (1.0219)^(0.7216 - 0.969)

= -0.9875 mol/s

Small Bubble Population We now turn our attention to the determination of the mass
transfer characteristics of the bubble rise zone, beginning with the small bubble population.

The interfacial area per unit volume of vapor in the small bubble population is

a'IIA = 6/dn !

= 6/0.003

= 2000 m2/m3

The residence time for the vapor in the small bubbles is

hi,i = hn/un,i

= 0.08/0.23
= 0.3478 s

The Fourier number for the small bubbles is

= 4 X 1.4 X 10~5 X 0.3478/0.0032

= 2.1643

The fractional approach to equilibrium in the small bubbles is given by Eq. 12.1.64 and is
computed as

The vapor-phase mass transfer coefficient is calculated from Eq. 12.1.63 as

= -ln(3.215 X 10~10)/(2000 X 0.3478)

= 0.03142 m/s
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The mass transfer coefficient for the liquid phase is computed from Eq. 12.1.66 as

Kf'I,1 = 2(DL/(irdIIfl/UIItl))
1/2

= 2 X (2 X I ( r 9 / O X 0.003/0.23))1/2

= 4.419 X 10"4 m/s

The overall mass transfer coefficient for the small bubbles is calculated next

1 1 32.23 1.553 3.756

Kov n i " 0.03142 + 8621 X 1.122 X 4.419 X 10"4

Hence
Kov,n,i = 0.01318 m/s

The overall number of transfer units is

^OK,//,l = ^OK,//,lfl//,l^//,l

= 0.01318 X 2000 X 0.3478
= 9.172

The departure from equilibrium in the small bubbles follows as:

QUA = exp(-NOI/f / />1)

= exp(-9.172)

= 1.0394 X 10"4

In other words, the small bubbles are close to equilibrium when they reach the top of the
froth.

The molar fluxes in the small bubble population are computed next. The factor flj^ 1 is
computed first as

= ( -9.172)/(exp( -9.172) - 1)

= 9.173

The high value of fl^ x is another indication that the small bubble population is close to
equilibrium. The average molar flux is

= 32.25 X 1.553 X 0.01318 X (9.173)-1 X 0.9575 X (0.7216 - 0.969)

= -0.01706 mol/s

Large Bubble Population The final part of the problem is the calculation of the mass
transfer performance of the large bubble population.

The interfacial area per unit volume of vapor in the large bubble population is

a'II2 = 6/dn 2

= 6/0.013

= 461.5 m2/m3
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The residence time for the vapor in the large bubbles is

*//,2 = hn/UIIt2

= 0.08/1.5

= 0.0533 s

The Fourier number for the large bubbles is

Fo/7,2 = 4 £>% f 2 / (d / / i 2 ) 2

= 4 X 1.4 X 10"5 X 0.0533/0.0132

= 0.01767

The fractional approach to equilibrium in the large bubbles is computed as for the small
bubble population with Eq. 12.1.64.

FJIt2 = 0.3970

The vapor-phase mass transfer coefficient may now be calculated from Eq. 12.1.63 as

= - ln ( l - 0.3970)/(461.5 X 0.0533)

= 0.02055 m/s

The mass transfer coefficient for the liquid phase is computed from Eq. 12.1.66 as for the
small bubble population.

Ktit2 = 2(DL/(irdiit2/Un,2))
1/2

= 2 X (2 X 10 - 9 / (TT X 0.013/1.5))1/2

= 5.421 X 10"4 m/s

We may now calculate the overall mass transfer coefficient for the large bubbles as

1 1 32.23 1.553 3.756
+ x xKov,n,2 0.02055 8621 1.122 5.421 X 10"

Hence,

Kov,n,2 = 0.01183 m/s

The overall number of transfer units for the large bubble population is

= 0.0193 X 461.5 X 0.0533
= 0.2912

The departure from equilibrium in the large bubbles follows as:

= exp(-0.2912)

= 0.7474
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The molar fluxes in the large bubble population may now be calculated. The factor £lv
n

is computed

= (-0.2912)/(exp(-0.2912) - 1)

= 1.1526

Hence,

= 32.25 X 1.553 X 0.01183 X (1.1526)"1 X 0.9575 X (0.7216 - 0.969)

= -0.12178 mol/s

Overall Performance The overall departure from equilibrium for the bubble rise zone is
given by (cf. Eq. 12.1.72)

However, the contribution of the small bubbles (/iQ/^i), is essentially nothing and Qn is
well approximated by

= 0.95 X 0.7474

= 0.7100

Armed with the value of Qu we may calculate the composition of the vapor above the tray
as

= 0.969 - 0.7100 X 0.9575 X (0.969 - 0.7216)

= 0.8008

12.2 MULTICOMPONENT DISTILLATION IN TRAY COLUMNS

12.2.1 Composition Profiles

Let us now try to extend the model of binary distillation developed in Section 12.1.1 to
multicomponent systems. The extension is based on the work of Toor (1964b) and the
starting point is the material balance Eqs. 12.1.4, which must now be combined in n — 1
dimensional matrix form as

dh~{jV)aA» {U2A)

The vapor-phase diffusion fluxes at any point are expressed using Eq. 7.3.11 (once again
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ignoring the high flux correction)

Vv)=cV[Kov]{y-y*) (7.3.11a)

where [Kov] is the matrix of overall mass transfer coefficients and accounts for resistances
to mass transfer in both vapor and liquid phases. Introducing the rate relations (Eq. 7.3.11a)
into Eq. 12.2.1 gives

d(y)

Equation 12.2.2 may be integrated over the dispersion height to give

(AyL) = [G](Ay£) (12.2.3)

where (AyL) = (y* - yL), (Ay£) = (y* - yE), and

[Q]=exp[-[NW]] (12.2.4)

and where [Nov], the overall number of transfer units for the vapor phase, is denned by

= j^[Kov]aAb/V) dh (12.2.5)

As in the binary case, we assume the integrand in Eq. 12.2.5 to be independent of froth
height in order to complete the integration to give the overall number of transfer units,
[Nov], as

[\ov] - cf[Koy]ahfAb/V

= CV[Kov\a'tv (12.2.6)

and the composition of the froth at any point is obtained from the matrix generalization of
Eq. 12.1.11 as

(y* - y ( O ) - e x p [ - [ N w K ] ( y * -yE) (12.2.7)

where f = h/hj.
If the matrix of overall numbers of transfer units [Nov] is known, (a topic we address

below) [Q] can be evaluated using the truncated power series, Eq. A.6.3, by diagonalization
(Eq. A.5.32) or by Sylvester's expansion formula (Eq. A.5.21). For a ternary system the latter
two methods may be expressed as (assuming the two eigenvalues are distinct)

.„. Qi[[^ov] iW/ ] ] Qi[[Noy] "W'] ] „ „ „ „
[Q\ = 7 * 1 7. 7. (12.2.8)

where NOVy and NOV2 are the eigenvalues of [Nov]

is^uJ}
] (12.2.9)
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where

Novn + NOV22

|

and where Qt are the eigenvalues of [Q].

a = exp( -N o w ) (12.2.10)

Equation 12.2.8 can be expanded as follows:

n _Qx^ovn-Kvi) Qi(Novu ~ ̂ ovi) / 1 O o o ^
(Ju - 1 (l/.z.oa)

Qn = J Q l ^ s"ovn (12.2.8b)
(NOV1 - NOV2)

(Gi - Q2)
G21 = 7 ^ IT\No™ ( 1 2 - 2 - 8 c )

[Noyi - Noy2)

Gl(OV22 Kyi) Q2(OV22 OVl) ,„„„.,,
Q22 = 7. 7. 1 A 7 (lZ.Z.od)

12.2.2 Mass Transfer Rates

The rates of interphase transfer vary as the vapor rises through the froth and the bulk vapor
composition changes. The average molar fluxes Ni9 are given by

{N)=c\[Kov](y-y*) (12.2.11)

where (y) is the average vapor composition and is defined by

(12.2.12)

We may use Eq. 12.2.7 for (y(O) with the result

( y * - y ) = [ H I / ] " 1 ( y * - y £ ) (12.2.13)

where [HK] is defined by

(12-2.14)

Equation 12.2.14 may be combined with Eq. 12.2.11 to give

(JV) = cY[Kov][Clv]~\yE - y*) (12.2.15)

Equation 12.2.15 is based on the assumptions that the matrix of overall mass transfer
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coefficients [Kov] may be considered constant over the height of the two-phase dispersion
and that the total flux is zero. If the total flux is not zero the right-hand side of Eq. 12.2.11
must be multiplied by the bootstrap matrix [fiv] and the calculation of the overall mass
transfer coefficient modified.

The total mass transferred is the product of the average flux and the total interfacial area
(ahfAb). These expressions for the mass transfer rates in distillation are useful in the
prediction of the performance of distillation columns (Chapter 14).

12.2.3 Numbers of Transfer Units for Multicomponent Systems

Let us now consider the prediction of the matrix [Nov] for multicomponent systems. The
starting point for the development that follows is Eq. 8.8.20 for [Kov] and Eq. 8.8.19 for
[R°v]

[Kov]-' = [*"] + (cY/cf-)[K][RL] (12.2.16)

The matrices [Rv] and [RL] have elements defined by (cf. Eqs. 8.3.25)

Rn = — + I — (12.2.17)
Kin &=1 Kik

(12.2.18)

where the zt are the mole fractions of the appropriate phase. The K/; are the "ideal" mass
transfer coefficients of the binary / ¥= j pair for the same phase.

If we combine Eq. 12.2.16 for [Kov] with Eq. 12.2.6 for [Nov] we have

[^WF1 = i^vV1 + (^ / / L ) [^ ] [^L]~ 1 (12.2.19)
where [K] is a diagonal matrix of the first n — 1 equilibrium K values. The matrices [Nv]
and [NL] are matrices of numbers of transfer units for the vapor and liquid phases,
respectively. The inverse matrices are defined by

[Nvy
l = [Rv]/a'tv (12.2.20)

[NL]~l = [RL]/atL (12.2.21)

When we carry out the multiplications required by Eqs. 12.2.18-12.2.21, we obtain
explicit expressions for the elements of the inverse matrices [f^Jj/]"1 and [f\JL]~1 in terms of
the numbers of mass transfer units of each binary pair as follows:

(12.2.22)

(12.2.23)

where yVu are binary numbers of transfer units for the phase in question defined by
Eqs. 12.1.41 or 12.1.42. The superscript - 1 on the elements Ntj indicates that these
quantities are the elements of the inverse matrices [N]"1. Thus, to calculate [I^J^]"1 and
[NL] - 1 requires nothing more complicated than the determination of the binary numbers of
transfer units JV^ from an appropriate correlation, theoretical model or experimental data,
and the use of Eqs. 12.2.22 and 12.2.23 directly.
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For ternary systems [N]"1 may be inverted explicitly with the following results (cf. the
inversion of [R] in Section 8.3.1)

+ ( l -

(12.2.24)

where
S = zxJf23 + z2jrl3 + z3jrl2 (12.2.25)

The numbers of transfer units for each binary pair may be obtained as described in
Section 12.1.5 or from experimental data and these binary numbers of transfer units used
directly in the estimation of the matrices of numbers of transfer units for multicomponent
systems as Example 12.2.3 demonstrates.

Example 12.2.1 Numbers of Transfer Units for the Methanol-1-Propanol-Water System

Biddulph and Kalbassi (1988) investigated the distillation of the ternary system
methanol(l)-l-propanol(2)-water(3). In separate experiments they determined the numbers
of transfer units for each binary pair that makes up the ternary system. Estimate the
number of transfer units for the ternary system at total reflux if the composition of the
liquid leaving the tray is

x1L = 0.1533 x2L = 0.5231 x3L = 0.3236

The experiments were carried out at 101.3 kPa.

DATA The numbers of transfer units for each phase reported by Biddulph and Kalbassi
are as follows:

System JVV JVL

MeOH-1-PrOH L61 5̂ 83
MeOH-H2O 2.56 12.5
l-PrOH-H2O 1.88 7.05

The equilibrium vapor composition y* has been estimated from a bubble point calcula-
tion on xL to be

y% = 0.35434 y* = 0.33373 y* = 0.31193

and the equilibrium ratios are

Kx = 2.3114 K2 = 0.63799 K3 = 0.96394

The vapor-liquid equilibria of this system was represented by the Wilson model for the
activity coefficients and the Antoine equation for the vapor pressures. The binary Wilson
model parameters are (quoted by Biddulph and Kalbassi).

MeOH-1-PrOH 421.821 245.905 cal/mol
MeOH-H2O 216.851 468.601 cal/mol
l-PrOH-H2O 906.526 1396.6398 cal/mol
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The molar volumes used in the Wilson model are (from Gmehling and Onken, 1977)

Vx = 40.73 V2 = 75.14 V3 = 18.07 cm3/mol

SOLUTION At total reflux the average composition of the vapor just below the tray is
equal to the composition of the liquid leaving the tray. Thus, yE = xL

y1E = 0.1533 y2E = 0.5231 y3E = 0.3236

We shall compute the overall number of transfer units matrix from the simplified
Eq. 12.2.19. We shall use the average of the entering and equilibrium vapor mole fractions
as representative of the average vapor composition in the dispersion

yx = 0.2538 y2 = 0.4284 y3 = 0.3178

The elements of [Nv]~x may be calculated directly from Eqs. 12.2.22 and 12.2.23 using the
measured binary numbers of transfer units for the vapor phase. Thus,

•^Vl3 ^VYl -^VYi

0.2538 0.4284 0.3178

2.56 1.61 2.56

= 0.4894

1 1

-0.2358 X
51 2.56

= -0.0585

1 1

= -0.4284 X

= -0.0382

y\

f— —\
V 1.61 1.88/

^V\2 "^J/23 ^V2i

0.2538 0.4284 0.3178

1.61 1.88 1.88

= 0.5546

We may collect these elements together in matrix notation as

m , - i _ [ 0.4894 -0.0585]
[Nyi "[-0.0382 0.5546 J
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The elements of [NL]~* may be calculated in a similar way using the liquid composition
and the measured binary numbers of transfer units for the liquid phase

0.1533 0.5231 0.3236

12.5 + 5.83 + 12.5
= 0.1279

1 1

1 1 ^ / 1 2 ^L

1 1
= -0.1533 X

, 5.83 12.5

= -0.014

1

1
-0.5231 X ".5.83 7.05

= -0.0155
JCi X ?

0.1533 0.5231 0.3236

5.83 7.05 7.05

= 0.1464

or, in matrix notation

0.1279 -0.014

^-0.0155 0.1464

The matrix [ N ^ ] " 1 is now readily computed from Eq. 12.2.19 as

!- i F 0.7849 -0.09091
- i - i _

*ov\ ~ [-Q.0481 0.6480 J

and the matrix of overall numbers of transfer units is obtained on inverting as

1.2850 0.1803]
0.0954 1.5567 J

The composition of the vapor above the froth may be estimated using Eq. 12.2.3
following the computation of [Q] using Eqs. 12.2.8. We leave this as an exercise for our
readers to complete. •

12.2.4 A Fundamental Model of Mass Transfer in Multicomponent Distillation

For multicomponent systems we may extend the hydrodynamic model described in Section
12.1.7 to obtain the following matrix generalization of Eq. 12.1.73

(y* - yL) = [Q,i\[Qi](y* - yE) (12.2.26)
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where [Q}1] and [Qj] are the matrices representing the departure from equilibrium in the
free bubbling Zone / / and the bubble formation-jetting Zone / , respectively. It should be
noted the order of multiplication [£?//][2/3 is important. The matrices [Qj] and [Qn] are
obtained from

[N W t / ] ] (12.2.27)

for the jetting zone and

[Qn] = f E ///,k[Qn,*]] (12.2.28)

for the bubbling zone with

[G/ / ,* ] -exp[ - [N O K , / / t J ] (12.2.29)

for the kth bubble population.
The matrices of numbers of transfer units for each region of the froth may be obtained

from their defining equation

["ov] s [KovVt (12.2.30)

where a' is the interfacial area per unit volume of vapor and t is the residence time for the
vapor in the particular region of the froth. Equation 12.2.30 applies to the bubble formation
zone and all bubble populations.

The matrices of multicomponent mass transfer coefficients in all three zones may be
estimated using the procedure developed in Section 8.8. The overall mass transfer coeffi-
cient matrix for each zone may be obtained from Eq. 8.8.20

[KOy] - [It0"]'1 (8.8.20)

where

[Rov] = [Rv] + 4;[^][i?L] (8.8.19)
c

where [K] is a diagonal matrix of the first n — 1 K values. Both [R] matrices are calculated
from Eqs. 8.3.25

7 n 7

Kin k=l Kik
k¥:i (8.3.25)

1 1 '

Kij Kin

using the mole fractions zi9 and binary Maxwell-Stefan mass transfer coefficients Ktj of the
appropriate phase.

Binary mass transfer coefficients for the vapor in the jetting-bubble formation zone may
be computed from

tfj = ""K1 ~ Fi^/WU) (12.2.31)
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where

4
F, = 1 - E — exp -;•£ Fo , - ^ - (12.2.32)

w = 1 Jm \ ^ r e f I

where the j m are the roots of the Bessel function J0(jm) = 0 and Fo7 is the Fourier number
for the jetting zone defined in terms of a reference diffusivity £)ref

Fo7 = AD^h/d} (12.2.33)

The binary mass transfer coefficients for the liquid phase may be evaluated with a
penetration model

) l / 2 (12.2.34)

The residence time of the vapor is given by

tI = hI/UI (12.1.48)

and the interfacial area per unit volume of vapor is

(12.1.47)

The average molar fluxes in the bubble formation zone are obtained from (cf.
Eq. 12.2.11)

(NI)=cr[KOKI](yI-y*) (12.2.35)

where (y7) is the average composition in the bubble formation zone and is determined from
(cf. Eq. 12.2.13)

( y * - y / ) = [ a /
/ ] " 1 ( y * - y £ ) (12.2.36)

[fljn is given by

K ] = [-[^ , / ] ] [exp[-[NO K j /]] - [ / ] ] - ' (12.2.37)

Equations 12.2.35-12.2.37 may be combined to give

(N,) =cr[KOKI][W]-\yE-y*) (12.2.38)

The total mass transferred in the bubble formation zone is the product of the average flux
and the total interfacial area in the bubble formation zone.

Binary mass transfer coefficients for the vapor in the A:th bubble population may be
computed from

FIhkij)/(a'lhktn,k) (12.2.39)
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where

6 °° 1 ( Dv \
Fn,kl] = 1 " — E — exp -mV Fo / M - ^ (12.2.40)

ir m = i m \ &ref j

with Fo/7 k the Fourier number for the /cth bubble population defined using the reference
diffusivity

Fo//,ft = 4© re ffw, f t/d/ / i t (12.2.41)

with the residence time for the vapor inside each bubble population given by Eq. 12.1.60

tn,k=hIItk/Uu<k (12.1.60)

and the interfacial areas per unit volume of vapor from Eq. 12.1.59

«'//,* = <>/<*//,* (12.1.59)

The penetration model is used for the mass transfer coefficients in the liquid phase; the
contact time being the time required for the bubble to rise one diameter

{dlhk/VII^))l/2 (12.2.42)

The average molar fluxes in each bubble population are obtained from (cf. Eq. 12.2.11)

{Nu,k) = cv
t{KOVJUk\{yluk - y*) (12.2.43)

where (y/7 k) is the average composition in the A:th bubble population and is determined
from (cf. Eq. 12.2.13)

(y* - hi.k) = WuA ~\y* ~ yi) (12.2.44)

(y7) is the composition of the vapor at the top of the bubble formation zone and [H^ fc] is
defined by

' (12.2.45)

Equations 12.2.43-12.2.45 may be combined to give

(Nu,k) =cY[KOKll<k][a^k]~\yi-y*) (12.2.46)

The mole fractions at the top of the formation zone may be eliminated to yield (cf.
Eq. 12.1.69)

(tf//,*) = cY[KOVtUtk\[^k] " ' [G/K^ - y*) (12.2.47)

Example 12.2.2 Distillation of Ethanol-teH-Butyl Alcohol*-Water in a Sieve Tray Column

A mixture of ethanol(l)-£-butyl alcohol(2)-water(3) is being distilled in a sieve tray column
operating in the froth regime. Estimate the mass transfer coefficients in a dispersion

*tert-B\ity\ alcohol is the common name for 2-methyl-2-propanol.
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with the following characteristics:

The height of the jetting zone: hl = 10 mm.

The diameter of the jet: df = 3 mm.

The velocity of the vapor in the jet: JJI = 6.4 m/s .

The height of the free bubbling zone: hH = 65 mm.

The small bubble diameter: du x = 5 mm.

The small bubble rise velocity: £/7/ x = 0.3 m/s .

The fraction of vapor in the small bubbles: fIIX = 0.10.

The large bubble diameter: dn 2 = 12.5 mm.

The large bubble rise velocity: Un 2 = 1.5 m / s .

The fraction of vapor in the large bubbles: fJI2 = 0.90.

These values are consistent with a superficial velocity of 1 m / s and a total gas hold-up e of
0.8 with s = SJJ x 4- eu 2 and eu x = \.

The composition of the bulk vapor below the tray is

yx = 0.5558 yx = 0.1353 y3 = 0.3089

At total reflux, the composition of the liquid leaving the tray is the same as the
composition of the vapor entering the tray

xx = 0.5558 x2 = 0.1353 x3 = 0.3089

The liquid is considered to be well mixed. The equilibrium vapor composition is determined
from a bubble point calculation to be

y * = 0.6040 yf = 0.1335 y% = 0.2625

and the equilibrium ratios are

Kx = 1.0867 K2 = 0.98669 K3 = 0.84979

DATA Other physical property data is summarized below.

Liquid molar density: cv
t = 19.665 kmol/m3 .

Vapor molar density: c,L = 34.07 mol/m3 .

The Maxwell-Stefan diffusivities in the vapor phase [units are 10 ~5 m2 /s]

DV
X2 = 0.799

#13 = 2 ' 1 4

Dv
23 = 1.65

The infinite dilution diffusivities in the liquid phase [units are 10 ~9 m2 /s]

D\2 = 4.08 £>5i = 2.60

D\3 = 3.711 £>§! = 4.064

DQ
23 = 2.652 D°32 = 3.143

The molar latent heats of vaporization may be taken to be equal.
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SOLUTION In preparation for the estimation of the mass transfer coefficients in the
liquid phase we must first compute the Maxwell-Stefan diffusion coefficients. Equation
4.2.18 is used for this task as illustrated below.

(4.08 X io-*)0-28975 x (2.60 X 10-9)0-71025

2.9626 X 1(T9 m2/s

Similarly,

f)f3 = 3.9273 X 10~9 m2/s

D^3 = 2.84483 X 10~9 m2/s

Bubble Formation-Jetting Zone The interfacial area per unit volume of vapor in the jetting
zone is

= 4/0.003

= 1333 m2/m3

and the contact time is

h = hj/Uj

= 0.01/6.4

= 0.0015625 s

For the estimation of the vapor-phase mass transfer coefficients we use Eqs. 12.2.31-
12.2.33 and use D\2 as the reference diffusivity. The Fourier number for the jetting zone is
calculated as

Fo7 = 4Dreftj/dj

= 4X 0.799 X 10~5 X 0.0015625/0.0032

= 5.549 X 10~3

The binary mass transfer coefficients for the vapor phase are found to be

Kv
hi = 0.0851 m/s

K\U = 0.1445 m/s

K£3 = 0.1254 m/s
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The matrix of inverted mass transfer coefficients for the vapor phase [R^] is computed
below:

0.5558 0.1353 0.3089
0.1445 + 0.0851 + 0.1445

"1= 7.576 (m/s)

1 1

^ "A3

1
= -0.5558 X ' 0.0851 0.1445

-2.683 (m/s)" 1

1 1

^ ^ 2 3

1
= -0.1353 X " 0.0851 0.1254

-0.511 (m/s)" 1

0.5558 0.1353 0.3089

0.0851 0.1254 0.1254

= 10.07 (m/s)" 1

We may collect these elements together in matrix notation as

7.576 -2 .6831 . , - i
-0.511 10.07 J l 7 ;

The binary mass transfer coefficients for the liquid phase are evaluated using Eq. 12.2.34

= 2 X (2.9626 X 10~9 / (^ x 0.0015625))1/2

= 1.554 X 10"3 m/s

The remaining binary mass transfer coefficients are computed in a similar way to give

K£3 = 1.789 X 10~3 m/s

K\ = 1.523 X 10~3 m/s
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The matrix of inverse mass transfer coefficients for the liquid phase in the jetting zone
may now be computed just as the matrix [Rv] was computed:

Rf = —j- + —f- + —f-
11 < < <

0.5558 0.1353 0.3089

1.789 X10"3 1.554 X 10~3 1.789 X1O~3

= 570.4 (m/s)" 1

The complete matrix [Rjr] is

We may now compute [Rov] from Eq. 8.8.19

tff^ = 7.576 + (34.07/19665) X 1.0867 X 570.4

= 8.650 (m/s)" 1

The complete matrix is

8.650 -2.7721 , ,.-i

The matrix of overall mass transfer coefficients for the jetting region is, therefore

[Kov,I]=[R?VV1

= I" 0.1173 0.0291]
[0.00532 0.0907 J m / S

The matrix of overall number of transfer units for the bubble formation zone may now be
computed from

0.2444 0.0606
0.0111 0.1890

The departure from equilibrium in the jetting zone follows as:

0.7834 -0.0488]
-0.0089 0.8280 J

The composition of the vapor as it leaves the jetting zone (y7) is given by

(y* - yi) = [Qi](y* - yE)

So

yu = 0.56615 y2I = 0.13542 y3I = 0.29843
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To compute the average molar fluxes in the formation zone we first compute [H^] using
Eq. 12.2.37.

1.1272 0.0325]
0.0059 1.0975 J

The average molar fluxes follow from Eq. 12.2.38 as

Thus

Nn = 0.1692 mol/m2s NI2 = 0.00197 mol/m2s

The molar flux of component 3 is obtained from the assumption of equimolar countertrans-
port.

Small Bubble Population We now turn our attention to the determination of the mass
transfer characteristics of the bubble rise zone, beginning with the small bubble population.

The interfacial area per unit volume of vapor in the small bubble population is

a'n,i = 6/dn,i

= 6/0.005

= 1200 m2/m3

The residence time for the vapor in the small bubbles is

hi,i =hII/UIIl

= 0.065/0.3

= 0.21667 s

The Fourier number for the small bubbles is

= 4 X 0.799 X 10~5 X 0.21667/0.0052

= 0.27699

The binary mass transfer coefficients for the vapor phase are calculated using Eqs. 12.2.39
as

KV
llXxi = 0.01243 m/s

K/7,1,3 = 0.03008 m/s

"//.la = 0.02363 m/s

The matrix of inverted mass transfer coefficients for the vapor phase [JR/^J is computed
in exactly the same way that [R%] was found earlier.

\Rv I _ [ 39.64 -26.73
16 63.92
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The binary mass transfer coefficients for the liquid phase are evaluated with the help of
Eq. 12.2.42.

= 2 X (2.9626 X 1 0 - 9 / ( T T X 0.005/0.3))1/2

= 0.4757 X 10~3 m/s

The remaining binary mass transfer coefficients are computed in a similar way to give

Kh,ii3
 = ° - 5 4 7 7 x 10~3 m / s

K/L/,i23 = 0.4662 X 10"3 m/s

The matrix of inverse liquid-phase mass transfer coefficients for the small bubbles may
now be computed

r L i _ ("1863.1 -153 .581 . , , - i
yR"^ '[ 5.827 2121.lJ ( m / s )

[Rf,j] is calculated from Eq. 8.8.19.

43.145 -26.529
-5.150 67.146

The matrix of overall mass transfer coefficients for the small bubbles is computed next

r v l — f J?°V 1 ~1

iKov,ii,iJ ~ LK//,iJ
= [0.02434 0.00974]

[0.00186 0.01555 J m / S

Thus, the overall number of transfer units for the small bubble population is

6.3277 2.5312]
0.4829 4.0427 J

The departure from equilibrium in the small population follows as:

0.0048 -0.0209]
-0.0040 0.0238 J

indicating that the small bubble population is almost at equilibrium with the bulk liquid.
To compute the average molar fluxes in the small bubble population we compute [nJ^

as follows:

= [6.3487 2.4566]
[0.4687 4.1310 J



346 MULTICOMPONENT DISTILLATION: MASS TRANSFER MODELS

The average molar fluxes follow from Eq. 12.2.47

(tf//,i) = cr[KOKIItl][n?Itl] " ' [G/K^ - y*)

Thus

NIIth = -0.004929 mol/m2s NIIAi = 0.0002262 mol/m2s

Large Bubble Population The interfacial area per unit volume of vapor in the large bubble
population is

= 6/0.0125

= 480 m2/m3

The residence time for the vapor in the large bubbles is

tlI,2 = hIl/UII,2

= 0.065/1.5

= 0.04333 s

Note the very low residence time of the large bubbles.
The Fourier number for the large bubbles is

= 4 X 0.799 X 10~5 X 0.04333/0.01252

= 0.00886

As for the small bubble population, the binary mass transfer coefficients for the vapor phase
are calculated using Eqs. 12.2.39

*//,2p = 0-01661 m/s

*//,213
 = 0.02877 m/s

K//.223 = 0.02481 m/s

The matrix of inverted mass transfer coefficients for the vapor phase [R^I2\ is computed
to be

r v i _ [ 38.20 -14.41] r , . - i
l^//,2j - [_2.69 51.58j ( m / s )

The binary mass transfer coefficients for the liquid phase are evaluated using Eq. 12.2.42

= 2 X (2.9626 X 10^7(77 X 0.0125/1.5))1

= 0.6728 X 10~3 m/s
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and

Kh,2l3
 = 0.7746 X 10"3 m / s

Kh,223
 = 0.6593 X 10~3 m / s

The matrix of inverse liquid-phase mass transfer coefficients for the large bubbles may
now be computed

vRL i _ [1317.4 -108.60] . -i
lKii,2\ ~ [ 4.12O 1499.9J ( m / s )

[i?^J^] is calculated from Eq. 8.8.19

\Rov] [40 .682 -14.615] , , , - 1
l*"'2J = [-2.687 54.141 J ( m / S )

The matrix of overall mass transfer coefficients for the large bubbles is computed next.

0.02503 0.00676] ,
0.00124 0.01881 J m / S

The overall number of transfer units for the large bubble population is

[f^W,//,2] = [KOV, 11,2^11,2^1,2

"0.5206 0.1405]
.0.0258 0.3912 J

The departure from equilibrium in the large population follows as:

0.5953 -0.0892]
-0.0164 0.6775 J

The molar fluxes in the large bubble population are computed following the procedure
used above for the small bubble population.

1.2830 0.0809]
0.0149 1.2086J

The average molar fluxes follow from Eq. 12.2.47

(N11.2) = cr[KOKII,2][Clflt2] ~\Q,]{yE - y*)

with numerical results

^// ,2, = -0.0248 mol/m2s

JV//j2z = -1.2173 X 10- 6 mol/m2s
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Overall Performance The overall departure from equilibrium for the bubble rise zone is
given by (cf. Eq. 12.2.28)

[Qii]=fiiAQii,i]+fiiAQn,2]

0.5363 -0.0824]
-0.0152 0.6121 J

The combined matrix is

[Q] = [QIJ][QJ]

0.4212 -0.0944]
-0.0174 0.5079 J

which allows the calculation of the composition of the vapor above the froth.
It is interesting to note that although the transfer process is predominantly gas-phase

mass transfer controlled, there is a finite contribution from the liquid-phase transfer
resistance. In multicomponent distillation, it is our experience that it is not "safe" to ignore
the liquid-phase resistance even when for similar operating conditions for a binary system,
the liquid-phase resistance is negligible.

It should be noted that [Rv] was computed using the composition of the vapor below the
tray. It would have been better to use an average of the mole fractions in the appropriate
zones in the computations of the three vapor phase [R] matrices. However, this would have
required an iterative procedure which, in view of the length of the calculations, we wished
to avoid. The above calculations would serve as a first iteration if it is desired to repeat the
calculations. •

12.3 DISTILLATION IN PACKED COLUMNS

The purpose of packing in a column is to provide a large surface area for interphase mass
transfer. With that objective in mind, almost any material that will survive the environment
in the column while providing adequate surface area at a moderate to low pressure drop
could be used. Indeed, Fair (1987) reports that in the 1930s chain and carpet tacks were
tested as column packing material.

Today, there are two main types of packing commonly employed in distillation and
absorption columns:

• Random or dumped packings.
• Structured packing.

Random packings, illustrated in Figure 12.6, may be of metal, plastic, or ceramic construc-
tion. Typical packing element sizes are from 1 to 5 cm with the larger sizes favored in
commercial operations. The older designs of the simple ring type have largely been
superseded by the more open rings and saddles that allow fluid to flow through as well as
around the packing elements. Structured packings are depicted in Figure 12.7. Structured
packings have not been used in large scale packed columns for as long as dumped packings.
Although they are more expensive than dumped packings, they have better pressure drop
and mass transfer characteristics than dumped packings and are, therefore, popular for
fitting in new columns and for revamping older columns to improve performance (including
refitting columns equipped with trays).



Figure 12.6(a). Example of dumped packing. This illustration shows Hypak(R) packing. Photograph
courtesy of Norton Chemical Process Products Corporation, Stow, OH.

Figure 12.6(b). Example of dumped packing. This illustration shows ceramic Intalox(R) saddles.
Photograph courtesy of Norton Chemical Process Products Corporation, Stow, OH.
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(c)

Figure 12.6(c). Example of dumped packing. This illustration shows Intalox(R) Snowflake(R) packing.
Photograph courtesy of Norton Chemical Process Products Corporation, Stow, OH.

Figure 12.7. Structured packing. This illustration shows Intalox(R) structured packing. Photograph
courtesy of Norton Chemical Process Products Corporation, Stow, OH.

Vapor and liquid flows in a packed column truly flow in opposite directions. Contrast this
with the flow in a tray column where the vapor-liquid contact is between the vapor as it
rises up through a liquid that is flowing laterally across the column prior to flowing down to
the tray below.

12.3.1 Material and Energy Balance Relations

For continuous contact equipment the material and energy balances are written around a
section of column of differential height as shown in Figure 12.8. For the vapor phase the
component material balance reads

vi\z+Az-vi\z-Ni
va'AcAz = (12.3.1)
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dz

Figure 12.8. Differential section of a packed column.

where a' is the interfacial area per unit volume and Ac is the cross-sectional area of the
column. Thus, Ac Az is the volume of the small section of packing we are considering.
Dividing by Az and taking the limit as Az goes to zero gives

/ = l , 2 , . . . , / i (12.3.2)

The total material balance is obtained simply by summing Eqs. 12.3.2 over all n species

dV v
~dz~ =Nt (12.3.3)

The differential material balances for the liquid phase are obtained in a similar way: for
each component we have

f \ . p \ hjLn'A \ 7 — o (M *\ A\

Note that the liquid is flowing countercurrent to the vapor phase. When we divide by z and
take the limit as Az goes to zero we obtain

i = l , 2 , . . . , / i

and the total material balance is

dL

~dz
= Nt

La'A,

(12.3.5)

(12.3.6)

where L = Ht\ is the total liquid flow down the column.
The terms on the right-hand sides of Eqs. 12.3.1 and 12.3.4 are the molar fluxes of

species / in the vapor and liquid phases, respectively; we assume that transfers from the
vapor to the liquid phase are positive.
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The energy balance for the vapor phase can be derived as follows. First, we write down
the energy flows into and out of the differential element of packing

VHV\Z + Az - VHV\Z + Eva'Ac Az = 0 (12.3.7)

Once again, we divide by Az and take the limit as Az goes to zero to give

(12.3.8)

In a similar way we can derive expressions for the energy balance for the liquid phase as

d(LHL)

dz
= ELa'Ac (12.3.9)

where EL is the energy flux into the liquid.
At any position in the packed column we have continuity of the molar fluxes across the

vapor-liquid interface

NL=Ni==Nv (11.5.1)

and

N^=Mt = Nt
v (11.5.2)

These fluxes are made up of diffusive and convective contributions as

Nt
L =Jt+ xtNt

L =N;= Jt
v + ytNt

v = Nt
v (11.5.3)

The diffusion fluxes are given in terms of the mass transfer coefficients as

UL) = ct[kl](x> - xL) (11.5.4)

(Jv)=c\[k'v]{yv-y>) (11.5.5)

with the multicomponent mass transfer coefficients [k°] determined from one or other of
the models described in Chapters 8-10.

We also have continuity of the energy flux across the vapor-liquid interface.

EV==EL = E (11.5.6)

which may be expressed as

qv+t NrmTV) = QL + E NtHt{TL) (11.5.7)
i=l i=l

with the heat fluxes in the two phases given by

qy = h'v(T
v- T1) (11.5.8)

qL = hl(TI - TL) (11.5.9)

where h'v and h*L are the finite flux heat transfer coefficients for the vapor and liquid
phases, respectively (see Chapter 11 for further discussion).



DISTILLATION IN PACKED COLUMNS 353

The set of differential and algebraic equations given above for modeling multicomponent
distillation in a packed column must be integrated numerically in general. The complexity
and nonlinearity of the above equations precludes analytical solution in most cases of
practical importance. Moreover, because the vapor and liquid streams flow in opposite
directions means that, in all but one circumstance—total reflux—several integrations may
be required in order to properly solve the equations. An alternative method of solving
approximate forms of these equations is discussed in Chapter 14.

Let us proceed by writing the differential material balances (Eqs. 12.2.2) in the following
equivalent form (cf. the derivation in Section 12.2.1)

dy
V-^ = -Jl

vaAc i = l , 2 , . . . , w (12.3.10)

which is valid when Nt ¥= 0, that is, when we have nonequimolar transfer. These equations
may be combined in n — 1 dimensional matrix form as

^ c (12.3.11)

Introducing the rate relations (Eq. 7.3.11a)

(Jv)=c?[Kov](y-y*) (7.3.11a)

into Eq. 12.3.11 gives

^ (12.3.12)

12.3.2 Transfer Units for Binary Systems

It is traditional for chemical engineers to model packed columns through the concept of
transfer units (in much the same way as we used transfer units in the treatment of transfer
in the froth on a tray in Sections 12.1.2 and 12.2.1). For two component systems Eq. 12.3.12
simplifies to (cf Eq. 12.1.7)

dyx y

which may be written in dimensionless form as

~77 = Nov(yt -Vi) (12.3.14)

where £ = z/H is a dimensionless coordinate with H the total height of packing. The
parameter Noy, the overall number of transfer units for the vapor phase, may be defined by

Nov EE cv
tKova!HAc/V (12.3.15)

Equation 12.3.13 is similar to the corresponding expressions for binary mass transfer in the
froth on a distillation tray, Eqs. 12.1.7. In the model of mass transfer in the froth on a tray,
the liquid is assumed to be well mixed vertically. Hence, y* may be assumed constant. A
similar assumption cannot be justified for a packed column where both liquid and vapor
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truly flow in opposite directions and the equilibrium vapor composition y* changes with
elevation as the liquid composition changes. Analytical solutions of Eqs. 12.3.14 for binary
systems are available in the literature for certain special cases (equimoiar countertransfer or
Stefan diffusion where the equilibrium data can be approximated by the equation of a
straight line, as in the two component—scalar—form of Eq. 7.3.8, for the entire height of
the packing). In general, however, numerical or graphical techniques are used to solve
Eqs. 12.3.14 (see, e.g., Sherwood, et al., 1975).

To evaluate the overall number of transfer units we may proceed to combine Eq. 7.3.15
for Kov with Eq. 12.3.15 for Nov to give (cf. Eq. 12.1.17)

1 1 M(V/L)

N^~v
 = N~v

 + ML
 ( 1 2 3 ' 1 6 )

where Nv and ML are the numbers of transfer units for the vapor and liquid phases defined
by

Nv = kva'H/uv (12.3.17)

N'L = hLa'H/uL (12.3.18)

where uv = V/(Acc\) and uL = L/(Acc^) are the superficial vapor and liquid velocities,
respectively.

Mass transfer coefficients for packed columns sometimes are expressed as the height of a
transfer unit (HTU). Thus, for the vapor and liquid phases, respectively,

HK = H/Ny = uv/(k
va') (12.3.19)

HL = H/NL = uL/(kLa') (12.3.20)

The overall height of a transfer unit for a two-component system is

Uov = H/Nov = uv/(Kova') (12.3.21)

If we use Eq. 7.3.15 for Kov, we obtain the following relationship between Hov, Hv, and
HL

nov= Uv+ AHL (12.3.22)

where A is the stripping factor

A = MV/L (12.3.23)

where M is the slope of the equilibrium line, V is the molar flow rate of the vapor, and L is
the molar flow rate of the liquid. If, as alternative to Eq. 7.3.15, we use the simplified
Eq. 8.8.21 for Kov, we recover Eq. 12.3.22 for Uov with A = KXV/L and Kx the K value.

The performance of a packed column is often expressed in terms of the height equivalent
to a theoretical plate (HETP). The HETP is related to the height of packing by

HETP = H /Neqm (12.3.24)

where Neqm is the number of equilibrium stages needed to accomplish the same separation
possible in a real packed column of height H. The equilibrium stage model of distillation
and absorption is reviewed briefly in Chapter 13 and in more detail in a number of
textbooks (see, e.g., King, 1981; Henley and Seader, 1981). If the equilibrium line may be
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assumed straight, the HETP may be related to the HTU values by

In A
HETP = ̂ ovj—[ (12.3.25)

The evaluation of the HTU and HETP values is illustrated in Examples 12.3.1 and 12.3.2.

12.3.3 Mass Transfer Coefficients for Packed Columns

Three methods of estimating binary mass transfer coefficients in packed columns are
presented below.

• Correlation for random packings by Onda et al. (1968).
• Correlation for random packings by Bravo and Fair (1982).
• Correlation for structured packings by Bravo et al. (1985).

Many other correlations for packed columns have been presented in the literature; they are
reviewed by Ponter and Au-Yeung (1986). Mass transfer coefficients for two component
systems in packed columns sometimes are reported as a correlation of the height of a
transfer unit (see, e.g., Fair, 1984).

The methods of Onda et al. (1968) and of Bravo and Fair (1982) are illustrated in
Example 12.3.1; mass transfer coefficients in structured packing are calculated in Example
12.3.2.

Onda's Correlations for Randomly Packed Columns Onda et al. (1968) developed correla-
tions of mass transfer coefficients for gas absorption, desorption, and vaporization in
randomly packed columns. The vapor-phase mass transfer coefficient is obtained from

kv/{apD
v) =AK^v

1Sc0
v^{apdpy

2 (12.3.26)

where dp is the nominal packing size, and ap is the specific surface area of the packing
(m2/m3 of packing). The parameter A is a constant that takes the numerical value 2.0 if the
nominal packing size, dp, is less than 0.012 m and has the value 5.23 if the nominal packing
size is greater than (or equal to) 0.012 m. The parameter ReK is the vapor-phase Reynolds
number

Rev = pYuv/(p
yap) (12.3.27)

where uv is the superficial velocity of the vapor. The vapor-phase Schmidt number is

Scv= fiy/(p?Dv) (12.3.28)

The liquid-phase mass transfer coefficient is obtained from the following equation:

^ ( p f / M ^ f 3 3 3 = 0.0051(Re'L)0-667ScZ0-5(«prfp)°-4 (12.3.29)

where ScL is the Schmidt number for the liquid phase

ScL = ixL/(p^DL) (12.3.30)
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and Re'L is the liquid-phase Reynolds number based on the interfacial area

') (12.3.31)

The parameter a' is the interfacial area density (m2/m3 packing) and is obtained from the
third part of Onda's correlation

a' = ap{\ - exp{ - lA5(ac/af75 Re*-1 Fr,;005 We°2}) (12.3.32)

where a is the surface tension of the liquid and ac is the critical surface tension of the
packing. Values of the critical surface tension are tabulated by Onda et al. (1968). The
liquid-phase Reynolds (ReL) number based on the specific surface area (cf. Eq. 12.3.27), is

ReL=P^uL/(nLap) (12.3.33)

The liquid-phase Froude (FrL) number is

FrL - apu\/g (12.3.34)

and the Weber (WeL) number is

WeL = pf-u2
L/(ap<r) (12.3.35)

Bravo and Fair's Correlation for Randomly Packed Columns Bravo and Fair (1982) devel-
oped a method of estimating the mass transfer characteristics for distillation in randomly
packed columns. Their method is based on Onda's Eqs. 12.3.26 and 12.3.29 for the vapor-
and liquid-phase mass transfer coefficients, but uses an alternative correlation for the
interfacial area density

d = 19.78fl,(CaL Re,/)0-392^0-5/^0-4 (12.3.36)

where the vapor-phase Reynolds number is as defined in Eq. 12.3.27, H is the height of the
packed section, and CaL is the capillary number

CaL = u2
Li±L/(i (12.3.37)

Although the method of Bravo and Fair makes use of Onda's equations for kv and kL, it
should be noted that the liquid-phase mass transfer coefficients estimated from the two
procedures will be different since Eq. 12.3.29 for kL depends on the interfacial area density
(through the liquid-phase Reynolds number).

Correlation of Bravo, Rocha, and Fair for Structured Packings Bravo et al. (1985, 1992)
developed correlations for the prediction of mass transfer coefficients for structured packing
with the geometry shown in Figure 12.9. Bravo et al. (1985) use the correlation of Johnstone
and Pigford (1942) to estimate the Sherwood (Sh^) number for the vapor phase

ShK = 0.0338 Re£8 Sc£333 (12.3.38)

where the Sherwood number is defined by

Shv = kvdeq/D
v (12.3.39)
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Figure 12.9. Geometry of structured packing.

Here deq is the equivalent diameter of a channel and is given by

deq = Bh[l/(B + 25) + 1/2S] (12.3.40)

where B is the base of the triangle (channel base), 5 is the corrugation spacing (channel
side), and h is the height of the triangle (crimp height) (consult Fig. 12.9).

The vapor-phase Reynolds ReK number is defined by

(12.3.41)

(12.3.42)

The effective velocity of vapor through the channel uVe is defined by

uVe = uv/(e sin 6)

The superficial vapor velocity is uv, s is the void fraction of the packing, and 9 is the angle
of the channel with respect to the horizontal. The effective liquid velocity uLe is based on
the relationship for laminar flow in a falling film

2Pf-

0.333

(12.3.43)

where T is the liquid flow rate per unit length of perimeter

T = pj-uL/(PA,) (12.3.44)

where At is the cross-sectional area of the column, P is the perimeter determined by

P = (45 + B)/Bh (12.3.45)

The penetration model (Eq. 9.2.11) is used to predict the liquid-phase mass transfer
coefficients with the exposure time assumed to be the time required for the liquid to flow
between corrugations (a distance equal to the channel side)

kL = 2(DLuLe/irS)
1 /2

(12.3.46)

The method of Bravo et al. (1985) is based on the assumption that the surface is
completely wetted. That is the interfacial area density is equal to the specific packing
surface: a' = ap.
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The method presented above has been revised by Bravo et al. (1992). In the revised
correlations the equivalent diameter is taken to be equal to the channel side S. The
velocities are adjusted to allow for liquid holdup and the assumption that the packing is
completely wetted has been dispensed with.

Example 12.3.1 Distillation of Acetone and Water in a Packed Column

Estimate the mass transfer coefficients, interfacial area, and the heights of transfer units for
the system acetone (l)-water (2) in a packed column under the following conditions
prevailing near the top of the column:

Column diameter dt = 2 m
Column cross-sectional area At = 3.142 m2

Height of packing H = 2 m
Packing type 50-mm steel Pall rings
Specific packing surface ap = 105 m2 /m3

Critical surface tension ac = 0.075 N/m

The molar flow rates of the vapor and liquid phases are

V = 100 mol/s L = 25 mol/s

The pressure and temperature are 101 kPa and 330 K, respectively. The composition of the
liquid and vapor at the point in the packed section under consideration

xl = 0.84189 x2 = 0.15811

yj = 0.91000 y2 = 0.09000

DATA Physical properties of the mixture at the bubble point temperature of the liquid
have been estimated as follows:

Viscosity of vapor mixture: /xK= 1.0 X 10 ~5 Pa s.

Viscosity of liquid mixture: JJLL = 2.8 X 10~4 Pa s.

Vapor density: p\ = 2.0 kg/m3.

Liquid density: pf = 780 kg/m3.

Molar mass of acetone: M1 = 0.05808 kg/mol.

Molar mass of water: M2 = 0.0181 kg/mol.

The vapor-phase diffusivity: Dv = 1.67 X 10~5 m2/s.

The liquid-phase diffusivity: DL = 4.3 X 10"9 m2/s.

Surface tension: a = 0.035 N/m.

The K value: Kx = 1.081.

SOLUTION We will begin by estimating the mass transfer coefficients and interfacial area
using the correlations of Onda et al., Eqs. 12.3.26-12.3.35. To use these correlations we first
compute a number of dimensionless groups. These calculations are summarized below.

The molar mass of the vapor is calculated first.

Mv = y1M1 +y2M2

= 0.91 X 0.05808 + 0.09 X 0.0181

= 0.05448
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The molar mass of the liquid is calculated in the same way with the result

ML = x1M1 + x2M2

= 0.05176

The gas velocity may be calculated from the vapor flow rate as

uv=VMv/(Atp
v
t)

= 100 X 0.05448/(3.142 X 2)

= 0.8671 m/s

The liquid velocity is determined in a similar way.

uL=LML/(Atp^)

= 25 X 0.05176/(3.142 X 780)

= 5.279 X 10~4 m/s

The vapor-phase Reynolds number is

Re^ = P\uv/(iL
Vap)

= 2 X 0.8671/(1 X 10~5 X 105)

= 1651

The liquid-phase Reynolds number is

= 780 X 5.279 X 10"4/(2.8 X 10~4 X 105)

= 14.01

The liquid-phase Froude number is

= 105 X (5.279 X 10~4)2/9.81

= 2.985 X 10~5

and the Weber number is

WeL = p^u2
L/(apo-)

= 780 X (5.279 X 10-4)2/(i05 x 0.035)

= 5.918 X 10~5

The Schmidt number for the vapor is found to be

= 1.0 X l(T5/(2.0 x 1.67 X 10~5)

= 0.299
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and the Schmidt number for the liquid is

ScL = nL/{pi-DL)

= 2.8 X 10~4/(780 x 4.3 X 10~9)

= 83.48

The interfacial area density may now be obtained from Eq. 12.3.32 as

a' = ap(l - expl-l^C^/o-^Re^Fri:0-05 We£-2})

= 62.37 m2/m3

The liquid-phase Reynolds number based on the interfacial area may now be calculated as

R e ' L = p ^ L / ( / i V )

= 780 X 5.279 X 10~4/(2.8 x 1(T4 X 62.37)

= 23.58

The mass transfer coefficient for the vapor phase is computed from Eq. 12.3.26 with the
coefficient A equal to 5.23, since the packing size dp is larger than 0.012 m,

= 0.03982 m/s

The mass transfer coefficient for the liquid phase is computed from Eq. 12.3.29

= 1.363 X 10- 4 m/s

The heights of the transfer units follow as:

Uv=uv/(k
vaf)

= 0.8671/(0.03982 X 62.368)

= 0.349 m

UL = uL/(kLa')

= 5.279 X 10"5/(1.363 X 10~4 X 62.368)

= 0.062 m

The stripping factor A is 4.324 and the overall height of a transfer unit is

nov= nv + AHL

= 0.349 + 4.324 X 0.062
= 0.618

Finally, the HETP is calculated from

HETP = HO I / lnA/(A - 1)

= 0.618 ln(4.324)/(4.324 - 1)

= 0.272
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We now repeat the calculation using the Bravo and Fair correlations. The vapor-phase
mass transfer coefficient is exactly the same as determined above. We need only compute
the interfacial area density and the liquid-phase mass transfer coefficient. We begin by
computing the capillary number

CaL = uLfiL/or

= 5.279 X 1(T4 X 2.8 X 10~4/0.035

= 4.224 X 1(T6

The interfacial area density follows from Eq. 12.3.36

a' = 19.78^(CaLReK)°-39V}-5/#0-4

= 19.78 X 105 X (4.224 X 1(T6 X 1651)°'3920.0350-5/20'4

= 42.045 m2/m3

The liquid-phase Reynolds number based on the interfacial area may now be recalculated

= 780 X 5.279 X 10~4/(2.8 x 10~4 X 42.045)

= 34.98

The mass transfer coefficient for the liquid phase is computed from Eq. 12.3.29

= 1.773 X 10"4m/s

The heights of the transfer units follow as:

Uv = uv/(k
va')

= 0.8671/(0.03982 X 42.045)

= 0.518 m

HL = uL/{kLaf)

= 5.279 X 10-5/(i.363 x IQ- 4 X 42.045)

= 0.0709 m

The stripping factor A is 4.324 and the overall height of a transfer unit is

= 0.518 + 4.324 X 0.0709
= 0.824

The HETP is calculated as

HETP = Uov In A/(A - 1)

= 0.824 ln(4.324)/(4.324 - 1)

= 0.363
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Example 12.3.2 Mass Transfer Coefficients in a Column with Structured Packing

Estimate the mass transfer coefficients, interfacial area, and the heights of transfer units for
the system in Example 12.3.1, namely, acetone (l)-water (2), in a column equipped with
Sulzer BX structured packing. The characteristics of this packing are (Bravo et al., 1985).

Specific packing surface ap = 492 m2/m3

Crimp height h = 6.4 mm
Channel base B = 12.7 mm
Channel side S = 8.9 mm
Void fraction s = 0.90
Channel flow angle 6 = 60°

All other details of the operation are as in Example 12.3.1.

SOLUTION We begin by computing the equivalent diameter from Eq. 12.3.40

d&q=Bh(l/(B + 2S) + 1/2S)

= 12.7 X 6.4 X (1/(12.7 + 2 X 6.4) + 1/(2 X 6.4))

= 7.231 mm

The wetted perimeter is computed next

P = (45 + B)/Bh

= (4 X 6.4 + 12.7)/(12.7 X 6.4)

= 0.59424 mm/mm2

= 594.24 m/m2

The superficial vapor velocity was determined in Example 12.3.1 to be

uv=VMv/(AtP\)

= 0.867 m/s

The effective vapor velocity follows from Eq. 12.3.42

uVe = uv/(e sin 6)

= 0.867/(0.9 X sin(7r/3))

= 1.1125 m/s

The superficial liquid velocity is (from Example 12.3.1)

= 5.279 X 10~4 m / s
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Thus, the liquid flow rate per unit length of perimeter is

= 780 X 5.279 X 10-4/(594.24 X 3.142)

= 2.206 X 10~4

and the effective liquid velocity, computed from Eq. 123A3, is

7 v 0.333

( P f ) 2
g

3 X 2.206 X 10~4 / 7802 X 9.81 v °'333

2 X 780 \ 3 X 2.8 X 10" 4 X 2.206 X 10" 4

= 0.01336 m / s

The vapor-phase Reynolds number is

= 7.231 X 10~3 X 2.0 X (1.1125 + 0.01336)/(1.0 X 10~5)

= 1628

The Schmidt number for the vapor is (from Example 12.3.1)

= 0.299

The Sherwood number may now be determined as

ShK= 0.0338 R e ^

= 0.0338 X 162808 X 0.2990333

= 8.392

The mass transfer coefficient for the vapor phase is computed from the definition of the
Sherwood number (Eq. 12.3.39), as

kv=ShvDv/deq

= 8.392 X 1.67 X 10~77.231 X 10~3

= 0.01938 m/s

The mass transfer coefficient for the liquid phase is computed from Eq. 12.3.46

kL = 2(DLuLe/irS)l/2

= 9.065 X 10" 5 m / s
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The heights of the transfer units follow as:

Wv = uv/{k
vap)

= 0.867/(0.01938 X 492)

= 0.091 m

HL = uL/(kLap)

= 5.279 X 10~5/(9.065 X 10"5 X 492)

= 0.012 m

Uov = HV+ AHL

= 0.091 + 4.324 X 0.012

= 0.142

Notice that we use the specific area of the packing in calculating Hy and HL as required by
the method.

Finally, the HETP is calculated from

HETP = H O K l n A / ( A - 1)

= 0.142ln(4.324)/(4.324 - 1)

= 0.063

The height of the transfer units is much lower for the Sulzer BX packing than it was for the
50-mm Pall rings considered in Example 12.3.1. The practical implication of this calculation
is that a much shorter column would be needed to separate acetone-water mixtures if the
column were fitted with this kind of structured packing instead of Pall rings. The reduction
in the height of the transfer units is brought about not by increasing the mass transfer
coefficients (in fact, kv and kL are lower in this example than they were in Example 12.3.1)
but by an enormous increase in the interfacial area. •

12.3.4 Transfer Units for Multicomponent Systems

Equation 12.3.12 may be written in dimensionless form as

^ (12.3.47)

where £ = z/H. The overall number of transfer units [Nov] is for the vapor phase and may
be defined by

[Nov] = c?[Koy]a'HAc/V= [Kov]a'H/uv (12.3.48)

The composition of the vapor along the length may be determined by integrating (numeri-
cally) Eq. 12.3.47. Each step of the integration requires the estimation of the matrix of
overall number of transfer units.

To evaluate the overall number of transfer units we may proceed to combine Eq. 12.2.16
for [Kov] with Eq. 12.3.48 for [Nov] to give (cf. Eq. 12.2.19)

1 1 - ! (12.3.49)
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where [K] is'a diagonal matrix of the first n - 1 equilibrium K values. The matrices [Nv]
and [NL] represent the numbers of transfer units for the vapor and liquid phases, respec-
tively. The matrices of numbers of transfer units for each phase may be expressed in terms
of the mass transfer coefficients for each phase as

[Ny] = [kv]a'H/uv (12.3.50)

[NL] = [kL]a'H/uL (12.3.51)

If we use the simplified models discussed in Section 8.8 for the matrices of mass transfer
coefficients we may relate the inverse matrices of numbers of transfer units to the matrices
of inverse binary mass transfer coefficients as (cf. Eqs. 12.2.20 and 12.2.21)

[Ny]'1 = [Rv]uv/(a'H) (12.3.52)

[NL]~l = [RL]uL/(a'H) (12.3.53)

For multicomponent systems it is possible to define matrices of HTU values. Thus, for
the vapor phase

[My] = (uy/a')[kv]~l (12.3.54)

and for the liquid phase

[HJ = {uL/a')[kL]~l (12.3.55)

The multicomponent generalization of Eq. 12.3.22 is

[Hov] = [Hy] + (V/L)[K][HL] (12.3.56)

To evaluate the matrices of heights or numbers of transfer units we may use the
empirical methods of Section 12.3.3 to estimate the binary (Maxwell-Stefan) mass transfer
coefficients as functions of the Maxwell-Stefan diffusion coefficients. The elements of the
[R] matrices may then be computed with the aid of Eqs. 12.2.17 and 12.2.18 as illustrated in
Example 12.3.3.

Experimental studies carried out with a view to testing these models have been reported
by Dribicka and Sandall (1979), by Gorak and co-workers (1983, 1985, 1987, 1988, 1990,
1991), by Krishna et al. (1981), and by Arwickar (1981). All of these groups assumed
equimolar overflow in the analysis of their data. There are additional differences between
the equations integrated by these groups that the interested reader can discern for
themselves.

Example 12.3.3 Distillation of a Quaternary System in a Sulzer Packed Column

Gorak (1991) conducted a number of distillation experiments with the system
acetone(l)-methanol(2)-2-propanol(3)-water(4) in a column of 0.1-m internal diameter
and height 0.8 m fitted with Sulzer BX structured packing. The characteristics of Sulzer BX
packing are (Bravo et al., 1985).

Specific packing surface ap = 450 m2/m3

Crimp height h = 6.4 mm
Channel base B = 12.7 mm
Channel side S = 8.9 mm
Void fraction e = 0.90
Channel flow angle 6 = 60°
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Estimate the mass transfer coefficients and the numbers of transfer units for this system
at the following conditions that existed at the bottom of the packing in one of Gorak's
experiments.

Flow rate of the vapor 28.3305 mol/m2s

Pressure 101 kPa.

Composition of the vapor below the packing:

y1 = 0.003157 y2 = 0.164701 y3 = 0.394518 y4 = 0.437623

The experiments were carried out at total reflux.

DATA Physical properties of the vapor and liquid phases at the composition reported
above and at the bubble point temperature of the liquid have been estimated as follows:

Viscosity of vapor mixture: ^ = 1.113 X 10"5 Pa s.

Viscosity of liquid mixture: JJLL = 3.814 X 10"4 Pa s.

Vapor density: pv
t = 1.253 kg/m3 .

Liquid density: p,L = 823.7 kg/m3 .

Average molar mass of vapor: Mv = 0.03705 kg/mol.

Surface tension: a = 0.048 N m.

The Maxwell-Stefan diffusivities in the vapor phase [units are 10 " 5 m2 /s]

Dv
l2= 1.258

Dv
13 = 0.8084

£ ) £ = 1.944

Bv
23 = 1.220

BV
2A = 2.896

BV
3A = 1.883

The Maxwell-Stefan diffusivities in the liquid phase [units are 10 ~9 m2 /s]

B\2 = 3.423

£>£> = 2.925

£>f4 = 3.742

B*i3 = 3.637

£>£4 = 5.029

B^ = 4.358

Equimolar countertransfer may be assumed to prevail.
The K values determined at the bubble point of the liquid with a composition equal to

that of the vapor are

Kx = 3.5416 # 2 = 1.5581 K3 = 1.0865 KA = 0.6936
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K values were estimated using Eq. 7.3.6 with activity coefficients calculated with the NRTL
model and vapor pressures determined with the Antoine equation.

SOLUTION We begin by performing a few geometric calculations. The cross-sectional
area of the column is

At = 7rd2
c/4

= 7.854 X 1CT3 m2

The equivalent diameter is found using Eq. 12.3.40

deq = Bh(l/(B + 25) + 1/25)

= 12.7 X 6.4 X (1/(12.7 + 2 X 6.4) + 1/(2 X 6.4))

= 7.231 mm

and the wetted perimeter is

P = (45 + B)/Bh

= (4 X 6.4 + 12.7)/(12.7 X 6.4)

= 0.59424 mm/mm2

= 594.24 m/m2

The molar flow rate of the vapor below the packing is

V= 0.0283305 xAt

= 0.22251 mol/s

At total reflux the flow and composition of the liquid leaving the bottom of the packing is
the same as the flow and composition of the vapor entering the column. Thus,

L = 0.22251 mol/s

and

xA = 0.003157 x2 = 0.164701 x3 = 0.394518 x4 = 0.437623

The molar mass of the liquid will equal the molar mass of the vapor; Mv = ML.
The superficial vapor velocity is

= 0.8379 m/s

The effective vapor velocity follows from Eq. 12.3.42

uVe = uv/(s sin 6)

= 0.8379/(0.9 X sin(ir/3))

= 1.085 m/s
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The superficial liquid velocity is

= 1.2745 X l ( T 3 m / s

Thus, the liquid flow rate per unit length of perimeter is

= 823.7 X 1.2745 X HT3 /(594.24 x 7.854 X 1(T3)

= 0.227

and the effective liquid velocity, computed from Eq. 12.3.43 is

uLe =
0.333

3 X 0.227 / 823.72 X 9.81

2 X 823.7 \ 3 X 3.814 X 1(T4 X 0.227

= 1.2017 m / s

The vapor-phase Reynolds number is

R e K = d&qp
v
t(uVe + uLe)/iJLV

= 7.231 X 1(T3 X 1.253 X (1.0750 + 1.2017)/(1.113 X 10~5)

= 1853.4

For each binary pair in the mixture we must determine the Schmidt number and the
Sherwood number before computing the mass transfer coefficient. For the 1-2 pair the
Schmidt number for the vapor is (from Example 12.3.1)

= 0.7061

The Sherwood number for the 1-2 pair is

ShK12 = 0.0338 Re0y

= 0.0338 X 1853.408 X 0.70610333

= 12.387

The vapor-phase mass transfer coefficient for the 1-2 pair is computed from the definition
of the Sherwood number (Eq. 12.3.39) as

deq

= 12.387 X 1.258 X 10~5/7.231 x 10"3

= 0.0216 m / s
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In the same way we compute the mass transfer coefficients for the other binary pairs

K\3 = 0.0160 m/s

K\A = 0.0288 m/s

KV
23 = 0.0211 m/s

#c£ = 0.0376 m/s

/c£ = 0.0282 m/s

The matrix of inverted mass transfer coefficients for the vapor phase [Rv] is computed
using Eqs. 12.2.17 and 12.2.18. We illustrate by calculating just two elements

+ + +
v v v v

Kl4 Kn fC13 Ku

0.003157 0.1647 0.3945 0.4376
0.0288 0.0216 0.0160 0.0288

= 47.5323 (m/s)" 1

1 1
v v

1 1
= -0.003157 X ' 0.0216 0.0288

= -0.0367 (m/s)" 1

The remaining elements are computed with the following result:

[ 47.5323 -0.0367 -0.0872]
-3.2604 34.8600 -3.4184 (m/s) x

-10.599 -4.6981 37.505 J

Turning, now, to the liquid phase we have, for the 1-2 binary

Kf;2 = 2(Dl
l2uLe/rrS)1/2

= 2(3.423 X 10"9 X 1.2017/(77 X 8.9 X 10~3))1/2

= 0.7671 X 10"3 m/s

The liquid-phase mass transfer coefficients are computed in the same way to give

K\3 = 0.7091 X 10~3 m/s

K\A = 0.8021 X 10"3 m/s

K!
23 = 0.7907 X 10~3 m/s

K£4 = 0.9298 X 10"3 m/s

K3
L
4 = 0.8656 X 10"3 m/s
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The matrix of inverted mass transfer coefficients for the liquid phase [RL] is computed
from Eqs. 12.2.17 and 12.2.18 using zt = xt and the liquid-phase mass transfer coefficients
computed above. The result is

[ 13.206 -0.0018 -0.0052
[RL] = -0.3757 11.508 -0.3116 X 102 (m/s)~

[-1.006 -0.4314 11.741

We may now compute [Rov] from Eq. 8.8.19. The complete matrix is

I" 54.6470 -0.0379 -0.0900]
[Rov] = -3.3494 37.5876 -3.4922 (m/s)~

[-10.7655 -4.7681 39.4452 J

The matrix of overall mass transfer coefficients is, therefore

18.3094 0.0240 0.0439
2.1196 26.9095 2.3872
5.2533 3.2593 25.6521

X 10"3 m/s

Finally, the matrix of overall numbers of transfer units may now be computed from

[Nov] ^ c^[Kov]a'HAc/V

7.8669
0.9107
2.2572

0.0103
11.5621
1.4004

0.0188
1.0257

11.0218

This matrix can be used in the determination of the composition of the vapor a short
distance above the bottom of the packing by integrating (numerically) Eq. 12.3.47.

The molar fluxes at the bottom of the packing may be evaluated using Eq. 7.3.11a (noting
that Nt = 0 and, therefore, Nt = /,.)

(N)=cY[Kov](y-y*)

which yields the following values for the molar fluxes

Nx = -5.093 X 10~3 mol/m2s

N2 = -86.97 X 10~3 mol/m2s

N3 = -41.16 X 10"3 mol/m2s

N4 = 0.1332 X 10~3 mol/m2s

showing, as might be expected, that acetone, methanol, 2-propanol (components 1-3) are
transferring from the liquid to the vapor phase. The equilibrium vapor mole fractions y*
needed for this calculation were determined from yf = Ktxt with the K values provided in
the problem statement. •



A«5 Multicomponent Distillation:
Efficiency Models

The equilibrium stage concept makes possible the adequate design of separation processes
despite our inability to deal adequately with the complex heat and mass transfer operations that
occur in an actual contact stage. A hypothetical process whose contact stages are all true
equilibrium stages is created on paper to accomplish the separation desired in the actual plant
process. The number of equilibrium stages required in the hypothetical process is related to the
required number of actual contact stages by proportionality factors (stage efficiencies) which
describe the extent to which the performance of an actual contact stage duplicates the
performance of an equilibrium stage.

—B. D. Smith (1964)

13.1 INTRODUCTION

Simulation and design of multicomponent distillation and other multistage separation
operations usually is carried out using the equilibrium stage model. The key assumption of
this model is that the vapor and liquid streams leaving a stage are in equilibrium with each
other. A complete distillation or absorption column may be modeled as a sequence of these
stages. The first methods for solving the equilibrium stage model equations were graphical
in nature. Modern methods for solving equilibrium stage separation process problems are
computer based. Indeed, since the late 1950s, hardly a year has gone by without the
publication of at least one computer-based method for solving the equilibrium stage model
equations. Developments to about 1980 have been described in a number of textbooks (see,
e.g., Holland, 1975, 1981; King, 1980; Henley and Seader, 1981). Seader (1985) has written
as interesting history of equilibrium stage simulation. Computer programs implementing
one or more simulation methods are commonly used in industry.

The trays in a real distillation column are not equilibrium stages. In other words, the
vapor above the froth is not in equilibrium with the liquid leaving the tray. The degree of
separation on a real tray is, of course, determined as much by mass and energy transfer
between the phases being contacted on a tray as it is by thermodynamic equilibrium
considerations. This is where an efficiency comes into the picture.

13.1.1 Definitions of Efficiency

An efficiency is a measure of how close to the equilibrium separation the real column or
tray comes. The simplest and still a widely used approach is to use an overall column or
section efficiency defined by

Eo=Neqm/Nact (13.1.1)

where Ncqm and Nact are, respectively, the number of ideal or equilibrium stages and the
number of actual trays in the section of the column under consideration.

371
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Overall column or section efficiencies are complicated functions of tray design, fluid
properties, and operating conditions. Some empirical correlations of overall column effi-
ciency have been developed but are capable only of rough estimates of efficiency that may at
best be useful in preliminary design studies (Lockett, 1986).

Some column simulation programs require the user to provide an efficiency for each tray.
There are many different definitions of tray efficiency: Murphree (1925), Hausen (1953),
vaporization (Holland, 1975) and generalized Hausen (Standart, 1965). There is by no
means a consensus on which is the most useful. Arguments for and against the various
definitions are presented by, among others, Standart (1965, 1971), Holland and McMahon
(1970) and by Medina et al. (1978, 1979). King (1980), Lockett (1986) and Seader (1989)
conveniently summarized many of these arguments. Possibly the most soundly based
efficiency, the generalized Hausen efficiency of Standart (1965), is the most difficult to use
(see, however, Fletcher, 1987). The Murphree tray efficiency is the one most widely used in
separation process calculations.

The Murphree vapor-phase tray efficiency is defined by (refer to Fig. 12.1, which pictures
vapor-liquid contacting on a distillation tray)

where the composition of vapor below the tray is yiE, yiL is the average composition of the
vapor above the froth and y*L is the mole fraction of component / in a vapor in equilibrium
with the liquid that is leaving the tray. The composition yfL is determined from a
bubble-point calculation for a liquid of composition xiL.

In practice the tray efficiency is estimated from a model that combines information about
the tray hydrodynamics, with a model for the point efficiency that is defined analogously to
the tray efficiency but applied to a narrow vertical slice of the froth (see Fig. 12.1). The
Murphree vapor-phase point efficiency, for example, is defined by

yIL ~ VIE _ AylXEov,i - * _ - 1 - A C13-1-3)

where the composition of vapor below the tray is yiE, yiL is the composition of the vapor
above the vertical slice of froth under consideration, and yf is the composition of a vapor
that would be in equilibrium with the liquid at the point on the tray in question. The
composition yf is determined from a bubble-point calculation for a liquid of composition xt

and Ayi is the difference between the equilibrium composition and the actual vapor
composition Ay,- = y* - yt.

There are basically two situations that might require a process engineer to estimate the
distillation tray efficiency. First, when he/she is involved in the design of the column, the
tray efficiency is required for estimation of the actual number of trays to be installed. The
second situation arises when the operating column does not meet the desired purity
requirements and one would like to know the tray efficiency for the given set of operating
conditions in order to determine the precise cause for the less than desired purity; for
example, to establish whether the column is operating with excessive entrainment or
weeping or whether there are "hardware" problems in the column (blown valves, plugged
holes, etc.). The estimation of the tray efficiency in the second situation (trouble shooting)
requires a much higher level of understanding of the factors affecting the tray efficiency
than the design situation. The reason is that at the design stage it is possible to select the
operating conditions; one does not need to bother about, for example, weeping and
entrainment, one simply tries to minimize their negative influence.

Most published procedures deal primarily with binary systems. For a binary system the
fact that the mole fractions sum to unity means that the Murphree efficiencies of both
components are the same on any given tray. These values may, however, vary from tray to
tray. Multicomponent systems are, however, far more common in industrial processes. For a
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multicomponent system there are n — 1 independent component efficiencies for each tray
and there is no requirement that the efficiencies of all components be equal. In fact, it is
possible to have negative efficiencies for one or more components in a multicomponent
mixture. Conventional practice is to use the same value for all component efficiencies. This
approach to separation process design and simulation may be expected to lead to over- or
underdesign when, for whatever reason, the efficiencies of different components are quite
distinct (as they may be in mixtures of species with widely differing physical properties),
when efficiencies are low or vary widely from stage to stage (as in hydrocarbon absorbers
and in high purity separations, such as azeotropic and extractive distillation), or when heat
effects are important (as they are in several gas absorption processes).

In fact, through use of matrix models of mass transfer in multicomponent systems (as
opposed to effective diffusivity methods) it is possible to develop methods for estimating
point and tray efficiencies in multicomponent systems that, when combined with an
equilibrium stage model, overcome some of the limitations of conventional design methods.
The purpose of this chapter is to develop these methods. We look briefly at ways of solving
the set of equations that model an entire distillation column and close with a review of
experimental and simulation studies that have been carried out with a view to testing
multicomponent efficiency models.

13.2 EFFICIENCIES OF BINARY SYSTEMS

13.2.1 Point Efficiency for Binary Systems

The composition of the vapor above any point of the dispersion is given by Eq. 12.1.8

( t f - VXL) = exp( -N O K ) (y f - y1E) (12.1.8)

which allows us to express the point efficiency defined by Eq. 13.1.3 as

E°" = I*L " I'" = 1 " T^ = 1 " exP(-^ov) (13-2.1)

EOV1 has a value ranging between 0 and 1 because Nov is a real and positive quantity. Also,
for a two component system there is only one independent mole fraction y1 and only one
independent point efficiency Eovl, which equals the component efficiency of Component 2:
Eovl = EOV2' The prediction of the number of transfer units was discussed at length in
Section 12.1.5.

If the fundamental model described in Section 12.1.7 is used to characterize the mass
transfer properties of the dispersion, the overall composition change in the vapor phase is
given by Eq. 12.1.73.

( y f - y i J = G / / G / ( y f - y , £ ) (12.1.73)

where Ql and QIJ9 for the bubble formation and free bubbling zones, respectively, are
obtained in terms of the numbers of transfer units for each region of the froth as discussed
in Section 12.1.7. The point efficiency is, therefore,

Eovi = 1 - QnQi (13-2.2)

Example 13.2.1 Point Efficiency of Toluene-MethyIcyclohexane

Estimate the Murphree point efficiency for the system toluene (l)-methylcyclohexane (2)
considered in Example 12.1.1.
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The number of overall transfer units was estimated for this system using three different
empirical methods. The results were as follows:

AIChE method Nov = 0.4667
Chan and Fair method Nov = 1.236
Zuiderweg method Nov = 0.9673

SOLUTION Using the results of the AIChE correlation, the point efficiency follows from
Eq. 13.2.1

Eov= 1 - exp(-Nov)

= 1 - exp(-0.4667)

= 0.3729

We will repeat the estimation of the point efficiency using the Chan and Fair correlation
for the number of transfer units for the vapor phase.

The point efficiency again follows from Eq. 13.2.1

Eov= 1 -

= 1 - exp(-1.236)

= 0.7095

Using Zuiderweg's method we determine the point efficiency as

Eov= 1 - exp(-NOK)

= 1 - exp(-0.9673)

= 0.6199

The AIChE and Chan and Fair methods have given quite different estimates of the point
efficiency for this system; Zuiderweg's method falls in between. In fact, this example is
based on experiments carried out by Plaka et al. (1989) and the column dimensions are for
their column. The point efficiency determined by Plaka et al. in a number of experiments is
around 75-80%. In this case we see that the method of Chan and Fair has given an
acceptable estimate of the experimentally determined value, whereas the AIChE method
severely underpredicts the point efficiency. The latter result is in accord with the findings of
Plaka et al. •

Example 13.2.2 Point Efficiency for the Regeneration of Triethylene Glycol

Let us continue with Example 12.1.2 and estimate the point efficiency for the regeneration
of triethylene glycol(2) (TEG) from a mixture with water(l).

Composition in the bulk vapor below tray.

y1E = 0.7216 y2E = 0.2784

Composition in the liquid on the tray.

xx = 0.258 x2 = 0.742

Equilibrium vapor composition.

y* = 0.969 yf = 0.031
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SOLUTION The values of both g 7 and Qu were determined in Example 12.1.2. The
values were

G, = 0.9575

Qn = 0.7100

The point efficiency may be calculated from Eq. 13.2.2 as

Eov=l- QIIQI

= 1 - 0.7100 X 0.9576
= 0.3201

Armed with the point efficiency we may calculate the composition of the vapor above the
tray as

= 0.7216 + 0.3201 X (0.969 - 0.7216)

= 0.801

13.2.2 Tray Efficiency

A horizontal concentration gradient will develop in the liquid due to mass transfer into and
from the liquid as the liquid flows across the tray. Thus, the composition of the vapor above
the froth will change as we traverse the tray even if the composition of the vapor just below
the tray is uniform. The point efficiency defined in the preceding section models the mass
transfer processes at a particular point on the tray but does not take into account the fact
that the liquid may have a significant concentration change as it crosses the tray. Thus, the
point efficiency must be related to the tray efficiency before it can be used in column design
calculations.

There are many different models for liquid flow across a distillation tray. We consider
the two simplest here.

If the liquid is completely mixed in the horizontal direction (a reasonable approximation
for small diameter columns) then the tray efficiency and the point efficiency are one and the
same (all points being equal as it were) and E^v = Eov t.

Lewis (1936) was the first to provide a model for relating the point efficiency to the tray
efficiency for the special case in which the liquid flows across the tray in plug flow (e.g., with
no horizontal mixing). In the so-called Lewis Case /, the vapor entering the tray is assumed
to be well mixed and we obtain (see, e.g., Lockett, 1986):

EMV/EOV = (exp(£OKA) - 1)/EOVA (13.2.3)

where

A = MV/L (13.2.4)

is the stripping factor.

13.3 EFFICIENCIES OF MULTICOMPONENT SYSTEMS

13.3.1 Point Efficiency of Multicomponent Systems

For multicomponent systems the composition above the froth is given by Eq. 12.2.3 as

= [Q](AyE) (12.2.3)
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where (AyL) = (y* - yL),(AyE) = (y* - yE) and where [Q] is defined by Eq. 12.2.4

[C]-exp{-[NOI/]} (12.2.4)

The Murphree point efficiencies conventionally defined by Eq. 13.1.3 may be expressed
in terms of the elements of the matrices [Q]. For a ternary mixture there are two
independent compositions and two independent efficiencies. Using Eq. 12.2.3 we can show
that the component efficiencies Eovl and EOV2 are given by

Eovi = 7 f T ~ 7 = l " I ^ = ! ~ 2n " Gi2/« (13.3.1)

Eov2 = y2* _ yiE = 1 - Y^ = 1 ~ Qii - Qi\a (13.3.2)

where a is defined by

a = Ay1E/Ay2E (13.3.3)

The efficiency of component 3 can be expressed in terms of the efficiency of the other two
components as

_ y 3 L y?,E _ ,

°V3 " ? "
Only when [Q] is a diagonal matrix with all elements on the main diagonal equal to one
another (i.e., [Q] reduces to the form Q[I]) will the three component efficiencies EOV1,
EOV2, and EOV3 have the same value. This will be the case in mixtures made up of
components of a similar nature (e.g., close boiling hydrocarbons or mixtures of isomers). For
mixtures made up of chemically dissimilar species, that is, mixtures with large differences
between the binary pair diffusivities, we must except [Nov] to have significant nondiagonal
elements (through [Koy]). When this is the case, [Q] will have significant cross-coefficients
and the point efficiencies will not be equal to each other.

Examination of Eqs. 13.3.1-13.3.4 shows that the ratio of driving forces a = Ay1E/Ay2E

plays a key role in determining the relative magnitudes of the EOVi. Now, in a multicompo-
nent system, a may take any value in the range — oo to +o° (contrast this with a binary
system for which Ay1/Ay2 = —1). Thus, the component EOVi are unbounded and could
exhibit values ranging anywhere from -oo to +°°!

Example 13.3.1 Point Efficiency in the Distillation of the Methanol-1-Propanol-Water System

Estimate the point efficiency for the ternary system methanol(l)-l-propanol(2)-water(3)
studied in Example 12.2.1.

DATA The average composition of the vapor just below the tray is (at total reflux) equal to
the composition of the liquid leaving the tray. Thus, yE = xL with

y1E = 0.1533 y2E = 0.5231 y3E = 0.3236

The matrix of overall numbers of transfer units was obtained in Example 12.2.1 as

1.2850 0.1803
0.0954 1.5567
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The equilibrium vapor composition y* has been estimated from a bubble point calcula-
tion on xL to be

y* = 0.35434 y* = 0.33373 yf = 0.31193

SOLUTION The matrix [Q] may be computed from Eqs. 12.2.8 with the following results:

[Q]
0.2788 -0.04381

-0.0232 0.2128 J

The ratio of driving forces a is found to be

= (0.35434 - 0.1533)/(0.33373 - 0.5231)
= -1.0616

The point efficiencies of components 1 and 2 may be computed directly from Eqs. 13.3.1
and 13.3.2)

Eov\ = 1 - Gn - Qn/a

= 1 - 0.2788 - (-0.0438)/(-1.0616)
= 0.6799

EOV2 = 1 ~ Ql2 ~ Qll<*

= 1 - 0.2129 - (-0.0232) X (-1.0616)

= 0.7626

The point efficiency of component 3 follows from Eq. 13.3.4

aE ovl + EOV2

a + 1
(-1.0616) X 0.6799 + 0.7626

(-1.0616) + 1

= -0.6614

1.5 1—

Murphree
point

efficiencies,

-0.5

-2 0
a

methanol (1)

1-propanol (2)

water (3)

Figure 13.1. Point efficiencies for the system methanol-1-propanol-water as a function of the ratio of
driving forces.
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It can be seen from Eq. 13.3.4 that since a ~ - 1 , EOV3 is particularly sensitive (in
magnitude and sign) to a. In this case EOV3 is negative in sign. It should also be noted that
the point efficiencies may be rather sensitive to the composition of the vapor and liquid
phases (even though [Q] is not so sensitive to composition variations). The component
efficiencies are shown as function of the ratio of driving forces a in Figure 13.1. The
efficiencies of methanol and water are particularly sensitive to the value of a. •

Example 13.3.2 Point Efficiencies of Ethanol-tert-Butyl Alcohol-Water System*

The distillation of a mixture of ethanol(l)-£-butyl alcohol(2)-water(3) in a sieve tray column
was considered in Example 12.2.2. Here, we continue that problem by determining the point
efficiencies for this system under the conditions specified in the prior example. For the
record the composition of the vapor entering the tray is

ylE = 0.5558 y2E = 0.1353 y3E = 0.3089

The distillation is at total reflux; thus, the composition of the liquid leaving the tray is the
same as that of the entering vapor.

*! = 0.5558 x2 = 0.1353 x3 = 0.3089

The liquid is considered to be well mixed. The equilibrium vapor composition is

y* = 0.6040 y* = 0.1335 y* = 0.2625

SOLUTION First, we recall some of the important results from Example 12.2.2. The
departure from equilibrium in the jetting zone is

= T 0.7834 -0.0488]
[-0.0089 0.8280 J

The departure from equilibrium in the small population is

0.0048 -0.0209
-0.0040 0.0238

The departure from equilibrium in the large population follows as:

0.5953 -0.0892]
-0.0164 0.6775 J

The overall departure from equilibrium for the bubble rise zone is given by (cf. Eq.
12.2.27)

0.5363 -0.0824]
-0.0152 0.6121 J

l alcohol is the common name for 2-methyl-2-propanol.
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The combined inefficiency matrix is

[Q] = [QIJ][QJ]

= \ 0.4212 -0.0944]
[-0.0174 0.5079 J

The composition of the vapor above the froth may now be calculated from

O* -yL) = [G](y* -yE)

Thus,

ylL = 0.58352 y2L = 0.13525 y3L = 0.28123

The ratio of driving forces a is found to be

a = Ay1E/Ay2E

= (0.60399 - 0.5558)/(0.1335 - 0.1353)

= -26.759

Finally, the point efficiencies for each component may be calculated as

EOvi = 1 - Gn - Qn/a

= 1 - 0.4212 - (-0.0944)/(-26.759)

= 0.5753

= 1 - 0.5079 - (-0.0174) X (-26.759)

= -0.0277

The point efficiency of component 3 follows from Eq. 12.3.4

(-26.759) X 0.5753 + 0.0277
= (-26.759) + 1

= 0.5966

The interesting consequences for the point efficiencies that result when the model
parameters are varied are left as exercises for our readers. •

13.3.3 Tray Efficiency for Multicomponent Systems

In this section we show how the matrix generalization of the binary tray efficiency equation
(Eq. 13.2.3) may be obtained.

Consider the distillation tray illustrated in Figure 13.2. The parameter w is the fractional
coordinate direction across the tray starting from the outlet weir. Note that the liquid is
flowing in the negative w direction. The composition of the vapor at any point above the
froth is given by Eq. 12.2.3, which we rearrange to give

[E](y* - yE) - (yL - yE) (13.3.5)
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(yL)

'§m j ;? f -s?f ::-:?!:;N:-*;:S;:|v

Figure 13.2. Schematic diagram of the froth on a distillation tray showing the control volume used for
the material balances. The parameter w is the coordinate direction starting from the weir.

where

(13.3.6)

is the matrix generalization of Eq. 13.2.1.
We differentiate Eq. 13.3.5 with respect to w (assuming the matrix [E] is constant) to get

(13.3.7)
dw dw

In order to proceed further we must say something about how the composition of the
vapor below the tray varies with coordinate w. In the so-called Lewis Case /, the vapor
entering the tray is assumed to be well mixed: d(yE)/dw = (0) in which case Eq. 13.3.7
simplifies to

[E]
d(y*) d{yL)

dw dw
(13.3.8)

To eliminate the equilibrium vapor composition (y*) we use the linear equilibrium
relationship

(y*) = [M](x) + (b) (7.3.8a)

which we differentiate with respect to w (now assuming [M] and (b) to be constant)

(13.3.9)
dw dw

We have replaced the problem of not knowing the gradient of (y*) with the more easily
solved problem of not knowing how the liquid-phase composition changes as it flows across
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the tray. In fact, we do know (or have assumed we know) exactly how the liquid flows
across the tray (in plug flow). This assumption allows us to draw up the material balances
around the differential section of tray in Figure 13.2.

V(y)E dw + L(x)\w+dw = V(y)Ldw + L{x)\w (13.3.10)

Dividing by dw and taking the limit as dw goes to zero gives

d(x)
L—— = V(yL - yE) (13.3.11)

which may be combined with Eq. 13.3.9 to give

-yE) (13.3.12)
uw

[A] is a matrix of stripping factors defined by

[A] = (V/L)[M] (13.3.13)

Substitution of Eq. 13.3.12 into Eq. 13.3.8 gives

d(yL)

dw
yE) (13.3.14)

Equation 13.3.14 is a first-order matrix differential equation with constant coefficients
(we have already assumed that [E] and [M] are constant matrices). The solution is

( ? L ~ yE) = exP[[£][A]H>](yL0 - yE) (13.3.15)

where yL0 is the composition of the vapor above the liquid at the tray exit, w = 0.
The average composition of the vapor above the liquid is defined by

yL)dw (13.3.16)
o

Insertion of Eq. 13.3.15 into Eq. 13.3.16 and carrying out the resulting integration gives

OL ~ yE) = [exp[[£][A]] - [ / ]][A]~1[£]-1(yL 0 - yE) (13.3.17)

Equation 13.3.5 is used to express (yL0) m terms of (yE) and (yj)

(:VLO - yE) = [£](yo - ^ ) (13.3.18)

where (y*) is t n e composition of the vapor in equilibrium with the liquid leaving the tray.
Combination of this result with Eq. 13.3.18 gives

OL ~ yE) = [exp([£][A]) - [ /]][A]-1(y* - yE) (13.3.19)

which we rewrite as

(yL - yE) = [EMV\(yt - yE) (13.3.20)



382 MULTICOMPONENT DISTILLATION: EFFICIENCY MODELS

where [EMV] is a square matrix of dimension « - 1 X « - 1 of multicomponent Murphree
tray efficiencies defined by

[£""] = [exp[[£][A]] - [/]][A]"1 (13.3.21)

Equation 13.3.21 may also be written as

[EMV][E]-I . [exp[[£][A]] - [/lltf^lfA]]-1 (13.3.22)

which is the generalization of the well-known result for binary systems Eq. 13.2.3.
The Murphree tray efficiency for component / as defined by Eq. 13.1.2 can be expressed

in terms of the elements of the matrix [EMV] if desired.
This extension to multicomponent systems of Lewis's tray efficiency model is due to Toor

(1964b). Many more complicated models of liquid flow across a tray have been developed,
and used for the determination of the tray efficiency for binary distillation. We recommend
the book by Lockett (1986) for those interested in reading further. Few of these more
advanced models have been extended to multicomponent systems.

Example 13.3.3 Tray Efficiency in the Distillation of the Methanol-1-Propanol-Water System

Estimate the tray efficiency in the distillation of the ternary system methanol(l)-l-pro-
panol(2)-water(3) considered in Examples 12.2.1 and 13.3.1.

DATA The composition of the vapor below the tray is

y1E = 0.1533 y2E = 0.5231 y3E = 0.3236

The equilibrium vapor composition y* is

yf = 0.35434 y* = 0.33373 yf = 0.31193

and the equilibrium ratios are

K1 = 2.3114 K2 = 0.63799 K3 = 0.96394

The matrix of thermodynamic factors computed from the Wilson model with the
parameters in Example 12.2.1 and at the liquid bubble point temperature of 80.57°C is

0.7875 -0.0875]
0.0748 1.0433 J

SOLUTION We will use the Lewis Case / to compute the tray efficiency. Specifically, Eq.
13.3.20 is used to estimate the average composition of the vapor above the froth and Eq.
13.3.21 is used to obtain [EMV].

The matrix [Q] was obtained in Example 12.3.1 as

0.2788 -0.0438]
-0.0232 0.2128 J

The matrix [E] = [/] - [Q] is found next as

0.7212 0.0438
0.0232 0.7872



EFFICIENCIES OF MULTICOMPONENT SYSTEMS 383

The matrix [M] is given by Eq. 7.3.7

[M] = [K][T]

where [K] is a diagonal matrix of the first n - 1 K values. The computed results are

TMI = [1.8202 -0.2022]
L J [0.0477 0.6656 J

At total reflux the ratio of vapor and liquid flows is unity, thus [A] = [M].
To compute [EMV] we postmultiply [E] by [A], then evaluate its exponential (again, we

used the power series method), subtract an identity matrix and, finally, postmultiply the
result of the foregoing by the inverse of the stripping factor matrix. The result is

i = [1.489 0.0029]
J 0.0853 1.0331 J

The average composition of the vapor above the froth may now be computed directly from
Eq. 13.3.20

as

yiL = VIE = E%V(yt ~ VIE) + *S"(yJ " VIE)

= 0.1533 + 1.489 X (0.35434 - 0.1533) + 0.0029 X (0.33373 - 0.5231)

= 0.4521

yiL = y2E + E%v(yl ~ yiE) + E&v(y$ - yiE)

= 0.5231 + 0.0853 X (0.35434 - 0.1533) + 1.0331 X (0.33373 - 0.5231)

= 0.3446

y?,L = 1 ~ y\L - yiL

= 0.2033

The tray efficiencies follow from the definition of the Murphree tray efficiency (Eq. 13.1.2)

MV yiL - yiE

' ~y?-y<E

with numerical results

E™v = 1.4863

EMV = 0.9426

E™v = 10.31

As in Example 13.3.1 we find that E^v is particularly sensitive to the magnitude of the
ratio of driving forces a defined in Eq. 13.3.3. Note that though we calculate E^v = 1031%,
the estimation of the exiting vapor composition y3L, is insensitive to the sign and magnitude
of the Efv.
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It is worth pointing out that the composition of the vapor above the froth can be
calculated without computing the component efficiencies. As noted later, the use of
component efficiencies may well be the cause of convergence difficulties that have been
encountered when using these multicomponent tray efficiency models in column simula-
tions. •

13.4 COLUMN SIMULATION

The next task is to set up the equations that model a complete distillation column. As noted
in the introduction to this chapter, simulation of multicomponent distillation operations
usually is carried out using the equilibrium stage model introduced below.

13.4.1 The Equilibrium Stage Model

A schematic diagram of a single equilibrium stage is shown in Figure 13.3, which also serves
to introduce the notation we shall use here. A complete distillation column is taken to be a
sequence of these stages (Fig. 13.4). The equations that model equilibrium stages have been
termed the MESH equations, MESH being an acronym referring to the different types of
equations that form the mathematical model. The M equations are the Material balance
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Figure 13.3. Equilibrium stage model.
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Figure 13.4. Schematic diagram of a distillation column.

equations, of which there are two types: the total material balance for stage j

- V} + 1 -

and the component material balances

Mij = Vj-yij + LjXij - Vj+1yiJ+1

(13.4.1)

(13.4.2)

The E equations are the Equilibrium relations, here modified to include the Murphree
efficiencies defined by Eq. 13.1.5

E,7 - EffvKijXlJ - ytJ - (1 - Eff")yiJ+1 = 0 (13.4.3)
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The S or Summation equations

S? - E yl7 " 1 = 0 (13.4.4)
1 = 1

= E (13.4.5)

are required to force the mole fractions to sum to unity.
The H equations are the ent//alpy balance equations

Qj-O (13.4.6)

where Hj and // ;
L are the enthalpies of the vapor and liquid streams leaving the /th stage;

Hf is the enthalpy of the feed stream.
If we count the equations listed, we will find that there are 2n + 4 equations per stage.

However, only In + 3 of these equations are independent. These independent equations
are generally taken to be the n component mass balance equations, the n equilibrium
relations, the enthalpy balance, and two more equations. These two equations can be the
two summation equations or the total mass balance and one of the summation equations (or
an equivalent form). The 2^ + 3 unknown variables determined by the equations are the n
vapor mole fractions ytj; the n liquid mole fractions, xtj\ the stage temperature 7} and the
vapor and liquid flow rates Vj and L;. Thus, for a column of s stages, we must solve
s(2n + 3) equations.

The MESH equations can be applied as written to all of the trays in the column. In
addition to these stages, the reboiler and condenser (if they are included) for the column
must be considered. These stages differ from the other stages in the column in that they are
a heat source or sink for the column. The MESH equations may be used more or less as
written above to model these stages exactly as you wold any other stage in the column. For a
total condenser at the top of a distillation column, for example, the distillate is U1 and the
reflux ratio is l / r / \ For a partial condenser, the vapor product is Vx and the "reflux ratio"
is L1/Vv For a partial reboiler at the base of a column, the bottoms flow rate is Ls. The
efficiency of condensers and reboilers would normally be unity. In other words, the liquid
condensate is usually in equilibrium with the vapor entering the condenser. Similarly, the
vapor leaving the reboiler is in equilibrium with the liquid entering it. Equations 13.4.3,
therefore, reduce to

Ey = Kyxy - y(7 = 0 (13.4.7)

For these special stages it is common to use some specification equation instead of the
enthalpy balance. Common specifications include

1. The flow rate of the distillate-bottoms product stream.

2. The mole fraction of a given component in either the distillate or bottoms product
stream.

3. A component flow rate in either the distillate or bottoms product stream.

4. A reflux/reboil ratio or rate.

5. A heat duty to the condenser or reboiler.
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In the case of a total condenser, the vapor-phase compositions used in the calculation of
the equilibrium relations and the summation equations are those that would be in equilib-
rium with the liquid stream that actually exists. That is, for a total condenser, the vapor
composition used in the equilibrium relations is the vapor composition determined during a
bubble point calculation based on the actual pressure and liquid compositions found in the
condenser. These compositions are not used in the component mass balances since there is
no vapor stream from a total condenser.

13.4.2 Solving the Model Equations

The class of simultaneous solution methods in which all of the model equations are solved
simultaneously using Newton's method (or a modification thereof) is one class of methods
for solving the MESH equations that allow the user to incorporate efficiencies that differ
from unity. Simultaneous solution methods have long been used for solving equilibrium
stage simulation problems (see, e.g., Whitehouse, 1964; Stainthorp and Whitehouse, 1967;
Naphtali, 1965; Goldstein and Stanfield, 1970; Naphtali and Sandholm, 1971). Simultaneous
solution methods are discussed at length in the textbook by Henley and Seader (1981) and
by Seader (1986).

Newton's method for solving systems of equations is summarized in Algorithm C.2 and
has been used elsewhere in this book for solving mass and energy transport problems. For
solving the modified MESH equations we may identify the vector of variables (x) as

where N is the number of stages. The vector (Xj) is a vector of unknown variables for
stage j .

The vector of discrepancy functions for the column as a whole is given by

(nT = ((Fif (F2)
T •••(FNf)

The vector of functions for the /th stage (F7) corresponding to (x;) is

(Ff = {Mf, MlJt M2j • • • Mnj, Hjt Eljt E2j • • • Enj, Sf-y)

where SjL~v is

n

$jL~V = E (xu - yu) = 0 (13.4.8)
1 = 1

To the best of our knowledge, the only attempt to combine the full matrix efficiency
prediction models with a general purpose column simulation code has been made by
Aittamaa (1981). Aittamaa integrated a program for computing efficiencies from the
methods described above with an equilibrium stage simulation program that solved the
process model equations simultaneously using Newton's method. Aittamaa's procedure was
first to solve the column model equations with an efficiency of 75% for all components on
all stages. On convergence, the tray efficiencies were computed from models similar to those
described in Sections 13.2 and 13.3. The simulation was then repeated with these new values
for the component efficiencies. This cycle of efficiency estimation—column simulation is
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continued until complete convergence is obtained. The procedure is summarized in Algo-
rithm 13.1. Some results of Aittamaa's calculations are presented in Section 13.5.

Aittamaa (1981) reports that the complete calculation required about three times the
computer time required by a simulation in which the column efficiencies were kept constant
even though the efficiency estimation method accounted for only about 15% of the total
computation time. The reason appeared to be that many more Newton iterations were
required each time the column model equations were solved for the case where tray
efficiencies vary from component to component. Convergence also seemed to depend on the
model used to predict the tray efficiency from the point efficiency. In one case involving a six
component mixture, convergence was easily obtained when the liquid was assumed well
mixed but the program failed to converge when the plug flow model was used. We suspect
that the convergence difficulties experienced by Aittamaa may be due to the way in which
the efficiency models are used. It may be that using Eq. 13.3.20 directly, rather than the
more conventional Eqs. 13.1.2 would be a better approach; an observation also made by
Toor (1964).

Algorithm 13.1 Procedure for Solving Equilibrium Model Equations with Multicomponent Tray
Efficiency Model Based on Method of Aittamaa (1981)

Step 1: Specify: Feed conditions.
Column configuration and design (as needed).
Column pressures and heat duties.

Step 2: Generate Initial Estimates of
Flow rates
Temperatures
Mole fractions of vapor and liquid phases

Set efficiency of all components to 0.75.
Step 3: Compute, for each Stage j .

Thermodynamic properties (K values, enthalpies).
Vector of stage functions (Fy).
Jacobian matrix of partial derivatives.

Step 4: Check for convergence, if not obtained continue with Step 5.
Step 5: Solve linear system (Eq. C.2.5) for new (X) vector.

Return to Step 3.
Step 6: If this is the first time through continue with Step 7.

Otherwise compare composition and temperature profiles from last converged
column calculation.

If not converged continue with Step 7.
Step 7: Compute stage efficiencies from multicomponent model.

Return to Step 3.

13.5 SIMULATION AND EXPERIMENTAL RESULTS

There is ample experimental evidence to show that the efficiencies of different components
in a multicomponent system are not all equal. The first clear statement of this fact can be
found in a paper by Walter and Sherwood (1941) who, on the basis of an extensive
experimental study of Murphree vapor and liquid efficiencies for absorption, desorption,
and rectification operations, concluded "The results indicate that different efficiencies
should be used for each component in the design of absorbers for natural gasoline and
refinery gases." Since the publication of their paper many others have provided additional
data to confirm this view [see Krishna and Standart (1979) for a list of references]. We
review some of these data below.
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Figure 13.5. Composition profiles in distillation of acetone-methanol-water system. Calculations and
data from Vogelpohl (1979).

13.5.1 Two Nonideal Systems at Total Reflux

Vogelpohl (1979) presented some results for the distillation of two ternary systems: acetone,
methanol, water and methanol, 2-propanol, water. The experiments were carried out in a 38
bubble cap tray column of 0.3-m diameter with 0.2 m between the trays. Due to the ease of
separating these particular mixtures only up to 13 trays were active for the experiments for
which composition profiles and flow rates are reported. A portion of Vogelpohl's experi-
mental data for the system acetone-methanol-water is shown in Figure 13.5, which also
shows the composition profiles computed using a theoretical model based on the
Maxwell-Stefan equations and those obtained using a model based on equal efficiencies for
all components. Figure 13.5 shows that the assumption of equal component efficiencies gives
rise to large differences between the predicted and measured composition profiles.

Component Murphree efficiencies for two of Vogelpohl's experiments are shown in
Figures 13.6 and 13.7, where it can be seen that the efficiencies vary from tray to tray and
are not the same for each component. The behavior anticipated in Figure 13.1 (in which the
component efficiencies are shown to go through a singular point depending on the driving
forces) is in evidence here.

1.4

1.0
Murphree
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0.6

0.2
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water ( 0

acetone ( B )

12
Stage number

Figure 13.6. Efficiency profiles in distillation of acetone-methanol-water system. Data from Vogelpohl
(1979).
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Figure 13.7. Efficiency profiles in distillation of acetone-methanol-water system. Data from Vogelpohl
(1979).
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Figure 13.8. Composition profiles in distillation of acetone-methanol-water system. Calculations by
Aittamaa (1981), data from Vogelpohl (1979).

Vogelpohl's data have been used by a number of other investigators to test three quite
different column simulation models (Aittamaa, 1981; Burghardt and Warmuzinski, 1983,
1984; Burghardt et al., 1983; Krishnamurthy and Taylor, 1985b); we present Aittamaa's
results below.

Aittamaa used a number of different methods to calculate the number of transfer units.
Profiles calculated using the AIChE method of Section 12.1.5 and a method due to Dieter
and Hundertmark (1963) are shown in Figure 13.8 along with the profiles obtained with an
equilibrium stage (ideal) model. The Dieter and Hundertmark correlation was found to give
the best agreement with the measured profiles for the acetone-methanol-water system.
Composition profiles obtained using the Dieter and Hundertmark (1963) correlation for the
system methanol-2-propanol-water are shown in Figure 13.9. It can be seen that there is
good agreement between predicted and measure profiles.

13.5.2 Industrial Scale Columns

Few investigators have used large industrial scale equipment to test multicomponent
efficiency models; an exception is the work reported by Ognisty and Sakata (1987). Tests
with a mixture of propane, isobutane,* and rc-butane, were carried out in a column of 2.4-m

Isobutane is the common name for 2-methylpropane.



SIMULATION AND EXPERIMENTAL RESULTS 391

Stage
number

Experimental data

m methanol

• 2 - propanol

• water

Simulations

Dieter-Hundertmark

mole fraction

Figure 13.9. Composition profiles in distillation of methanol-2-propanol-water system. Calculations by
Aittamaa (1981), data from Vogelpohl (1979).
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Figure 13.10. Composition and efficiency profiles in distillation of propane-isobutane-rc-butane. Calcu-
lations and data from Ognisty and Sakata (1987).

diameter with 8 active trays and in a column with two-pass bubble cap trays of 3-m diameter
with 36 trays. Composition profiles for one of these tests is shown in Figure 13.10.
Interaction effects were minimal in this system, as is only to be expected for this thermody-
namically ideal system made up of components with not too dissimilar molar masses. For
this reason Ognisty and Sakata also investigated the acetone-methanol-water system.
Composition profiles for this system are shown in Figure 13.11. The full matrix method of
predicting the efficiencies was not found by these authors to be significantly better than the
simpler effective diffusivity type of method.

13.5.3 Simulations of Aittamaa

Aittamaa (1981) simulated a number of experiments with the systems ethanol-benzene-rc-
heptane, and chloroform-benzene-ft-heptane (data were obtained at Hoffmann-La Roche
in a fair size pilot scale column) and 1-butanol-ethanol-water in a 12 sieve-tray column.
The Hoffman-La Roche data were taken in a column having 24 sieve trays and 30-cm inside
diameter. Unlike many studies of distillation efficiency, these experiments were not carried
out at total reflux. The measured flow rates and compositions of the feed, distillate, and
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Figure 13.11. Composition profiles in distillation of acetone-methanol-water system. Calculations and
data from Ognisty and Sakata (1987).

TABLE 13.1 Specifications and Results for Distillation
of Ethanol-Benzene-w-Heptane

Column has 26 Stages (includes reboiler and condenser)
Tray type: Sieve
Average column width = 0.3 m
Total condenser, equilibrium reboiler
Reflux ratio = 4.6
Bottoms flow rate = 55.2 kg/h
Feed to stage 15 from top

Ethanol
Benzene
n-Heptane

Component

Ethanol

Feed Composition (Weight

Measured

50.86
23.12
25.96

Percent)

Adjusted

50.88
23.10
26.01

Product Compositions (Weight Percent)

Overhead

36.75
11 7Q

Bottoms

80.70
0.56
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Figure 13.12. Composition and efficiency profiles in distillation of ethanol-benzene-n-heptane system.
Calculations by Aittamaa (1981).

bottoms are given in Table 13.1 for one of these experiments. Composition and efficiency
profiles for the ethanol-benzene-ft-heptane system are shown in Figure 13.12, for the
chloroform-benzene-rc-heptane system in Figure 13.13, and for the system ethanol-1-
butanol-water in Figure 13.14. The correlation of Hughmark was used to calculate the
numbers of transfer units. The liquid phase was assumed completely mixed.

For the ethanol-benzene-rc-heptane system, the calculated product flows agree well with
the measured values. There are some deviations in the concentrations on some of the trays
but most of the deviations are less than the accuracy of the measurements. The deviations
between simulation and experiment are a little larger for benzene on some of the intermedi-
ate trays for the ethanol-benzene-rc-heptane system but the calculated product flows agree
very well with the measured values.

It can be seen that there are wild fluctations between values of the efficiency for different
components on each tray and from tray to tray for each component. The variation is
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Figure 13.13. Composition and efficiency profiles in distillation of chloroform-benzene-«-heptane
system. Calculations by Aittamaa (1981).
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Figure 13.14. Composition and efficiency profiles in distillation of ethanol-1-butanol-water system.
Calculations by Aittamaa (1981).

particularly strong around the feed tray or when the mole fraction of a component passes
through a maximum somewhere in the column.

13.5.4 Other Studies

Other studies carried out with a view to testing these methods of predicting multicomponent
efficiency have been reported by Diener and Gerster (1968), Krishna et al. (1977), Medina
et al. (1979), Aittamaa (1981), Chan and Fair (1984b), Bunke et al. (1987), and Biddulph and
Kalbassi (1988). Diener and Gerster investigated the system acetone-methanol-water in a
small split flow sieve tray. Krishna et al. used the system ethanol-r-butyl alcohol-water in a
small sieve tray column and found widely varying efficiencies that they attributed to
diffusional interactions. Aittamaa investigated the same system. Chan and Fair worked with
the systems methyl acetate-chloroform-benzene and methanol-methyl acetate-chloroform
at total reflux in an Oldershaw column [see the thesis by Chan (1983) for complete details].
Bunke et al. (1987) used the system methanol-acetone-methyl acetate at total reflux in a
small laboratory scale column.

13.5.5 Design Calculations

As far back as 1960, Toor and Burchard performed a theoretical calculation to show that
the neglect of interaction effects in design calculations could lead to severe underdesign.
For systems under complete vapor-phase control, equations were developed based on a
generalized driving force pseudobinary approach (Toor, 1957), for the effects of diffusional
interactions among the components on their respective plate efficiency. A design calculation
was made for the separation of methanol from 2-propanol and water. For the hypothetical
case in which all binary efficiencies were assumed to be 40%, consideration of interactions
gave a column requiring 117 plates compared to 84 plates for the case where diffusional
interactions were neglected.
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Chan and Fair (1984b) carried out a case study involving a six component de-ethanizer.
The full matrix method presented above was compared to pseudobinary methods of
estimating the component efficiencies. They found insignificant differences between the
matrix and pseudobinary efficiency methods. However, considering the nature of their
system, this should not come as a great surprise.

Using an entirely different approach to the modeling of multicomponent mass transfer in
distillation (an approach that we describe in Chapter 14), Krishnamurthy and Taylor (1985c)
found significant differences in design calculations involving nonideal systems. For an almost
ideal system (a hydrocarbon mixture), pseudobinary methods were found to be essentially
equivalent to a more rigorous model that accounted for diffusional interaction effects.

13.6 CONCLUDING REMARKS

The results of the many investigations to indeed confirm that individual component
efficiencies are likely to be different. It is less clear that the matrix methods provide
uniformly better predictions of component efficiencies than simpler effective diffusivity type
approaches; as shown in, for example, the data of Chan and Fair (1984b) and Ognisty and
Sakata (1987).

Aittamaa (1981) notes that column composition profiles are not very sensitive to wildly
fluctuating component efficiencies simply because large negative or positive efficiencies of a
component occur only when next to no transport of that component is taking place and,
therefore, the mole fraction of that component does not change greatly from stage to stage.

It should be remembered that unequal component tray efficiencies are not due solely to
diffusional interaction effects via off-diagonal elements of the matrices of multicomponent
mass transfer coefficients. Unequal component efficiencies may also be due to differing
volatilities of the various components. If the resistance in either phase is totally unimpor-
tant, unequal component point efficiencies could be said definitely to be due to diffusional
interactions. Negative or large positive efficiencies arise only for those components whose
driving forces Ay are close to zero. Whenever this happens, for example, when the mole
fraction of a component of intermediate volatility passes through a maximum somewhere in
the column, the efficiency is exceptionally sensitive to the measured composition (see, e.g.,
Biddulph and Kalbassi, 1988). Furthermore, the component efficiencies are also very
sensitive to the computed equilibrium composition y*. It is quite possible to compute
efficiencies using one particular method for computing y* (this involves a bubble point
calculation) that show the gross fluctuations expected of strongly interacting systems and
obtain completely different efficiencies with a different method of computing y*. This can
also happen when the same thermodynamic model is used with a different set of interaction
parameters even when both models or parameter sets give equally good representations of
the vapor-liquid equilibrium behavior of the system. Few of the published studies that have
attempted to test these matrix efficiency models have noted this sensitivity of the component
efficiencies to the vapor-liquid equilibrium data (see, however, Ognisty and Sakata, 1987).

In any event, we hope it is now well understood that mass transfer in multicomponent
systems is described better by the full set of Maxwell-Stefan or generalized Fick's law
equations than by a pseudobinary method. A pseudobinary method cannot be capable of
superior predictions of efficiency. For a simpler method to provide consistently better
predictions of efficiency than a more rigorous method could mean that an inappropriate
model of point or tray efficiency is being employed. In addition, uncertainties in the
estimation of the necessary transport and thermodynamic properties could easily mask more
subtle diffusional interaction effects in the estimation of multicomponent tray efficiencies. It
should also be borne in mind that a pseudobinary approach to the prediction of efficiency
requires the a priori selection of the pair of components that are representative of the
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system. The best choice of key components may change in different parts of the column
(Chan and Fair, 1984b) and it may not always be obvious which pair of components should
be selected. The full matrix methods require no a priori designation of the key components.

In view of the large influence of interaction effects found by Toor and Burchard (1960) it
is a little surprising that there have been so few design calculations reported in the
literature. More experience with these models is required before definitive conclusions can
be made regarding the use of complicated efficiency models in sophisticated distillation
codes. The whole issue of multicomponent mass transfer models in distillation column
simulation is taken up again in Chapter 14.



A 4 Multicomponent Distillation:
A Nonequilibrium Stage Model

" . . . the concept of plate efficiency of individual components in a multicomponent mixture is of
doubtful validity and is retained only on account of its simplicity."

—H. Sawistowksi (1980)

In Chapter 13 we presented the equilibrium stage-stage efficiency approach to the model-
ing of multicomponent separation processes. However, the matrix models of efficiency are
rarely employed in industrial design practice. If an efficiency model is used at all, it is
common to assume the efficiency is the same for all components on any given tray (and,
often, constant through the column as well). The limitations of conventional equilibrium
stage-stage efficiency calculations have been recognized for a very long time. As far back as
1925 E. V. Murphree wrote:

For three-component mixtures, the approach to equilibrium would not in general be equal for
the two volatile components, and hence the theoretical plate cannot be used as a basis of
calculation.

In this chapter we discuss some work that has been done towards the development of
what we shall refer to as nonequilibrium models of multicomponent distillation (and
absorption and extraction) operations. The building blocks of any nonequilibrium model will
include

• Material balances.
• Energy balances.
• Equilibrium relations.
• Mass and energy transfer models.

The first three of the above items are also used in building equilibrium stage models;
however, there is a crucial difference in the way in which the conservation and equilibrium
equations are used in the two models. In equilibrium stage models the balance equations
are written around the stage as a whole and the composition of the leaving streams related
through an assumption that they are in equilibrium or by use of an efficiency equation. In a
nonequilibrium model, separate balance equations are written for each phase. The conser-
vation equations for each phase are linked by material balances around the interface;
whatever material is lost by the vapor phase is gained by the liquid phase. The energy
balance for the stage as a whole is treated in a similar way, split into two parts—one for
each phase, each part containing a term for the rate of energy transfer across the phase
interface.

In equilibrium stage calculations the equilibrium equations are used to relate the
composition of the streams leaving the stage. K values are evaluated at the composition of

397
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the two exiting streams and the stage temperature (usually assumed to be the same in both
phases). In a nonequilibrium model the equilibrium relations are used to relate the
compositions on either side of the phase interface; the K values being evaluated at the
interface compositions and temperature. The interface composition and temperature must,
therefore, be determined (by calculation) as part of a nonequilibrium column simulation.

A number of nonequilibrium models fall into the general framework described above.
The differences between models are due primarily to the models of flow and mass transfer
on a tray (or within a section of packed column). Young and Stewart (1990), for example,
use collocation techniques to solve a boundary layer model of cross-flow on a tray. An
alternative approach that builds on the models of mass and energy transfer described in
Chapters 11 and 12 has been developed in a series of papers by Taylor and co-workers
(Krishnamurthy and Taylor, 1985a-c, 1986; Taylor et al., 1992). The latter model and some
illustrations of its use are presented in this chapter.

14.1 A NONEQUILIBRIUM MODEL

A schematic illustration of a nonequilibrium stage is provided in Figure 14.1. Vapor from
the stage below is brought into contact with liquid from the stage above and allowed to
exchange mass and energy across their common interface represented in the diagram by the
wavy line. Provision is made for vapor and liquid feed streams. Sidestream drawoffs of vapor

liquid
side draw

Figure 14.1. Schematic diagram of a nonequilibrium stage. This stage represents a tray in a trayed
column or a section of packing in a packed column.
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and/or liquid may also be accounted for if necessary. The entire column is taken to consist
of a sequence of such stages. Stages are numbered starting at the top with the condenser, if
required, being stage number 1.

The nonequilibrium stage in Figure 14.1 may represent either a single tray or a section of
packing in a packed column. In the models described in this chapter the same equations are
used to model both types of equipment and the only difference between these two
simulation problems is that different expressions must be used for estimating the binary
mass transfer coefficients and interfacial areas.

For packed columns each model stage represents a section of packing and the height of
that section must be specified in advance. Shorter section heights mean more stages are
needed to represent a specific total height, therefore, more calculations and longer compu-
tation times. Smaller stages mean more accurate results. It is not always easy to know in
advance how many stages should be used in any given situation. To some extent, experience
plays a role in choosing an appropriate height of packing for each model stage. The problem
is akin to choosing the appropriate step size for the numerical integration of a set of
differential equations.

In writing down the equations that model the behavior of this nonequilibrium stage, the
flow rates of vapor and liquid phases leaving the jth stage are denoted by Vj and L},
respectively. The mole fractions in these streams are ytj and xtj. The Jfti are the rates of
mass transfer of species / on stage ;. The temperature of the vapor and liquid phases are
not assumed to be equal and we must allow for heat transfer as well as mass transfer across
the interface. The symbol ^- represents the rate of energy transfer across the phase
boundary.

The equations used to model the behavior of this stage are presented below.

14.1.1 The Conservation Equations

The component material balance equations for the vapor phase may be written as follows:

= 0 i = l , 2 , . . . , c (14.1.1)

where f? and is the feed flow rate of component / to stage j in the vapor phase.
The component material balance for the liquid phase is

= 0 i=l,2,...,c (14.1.2)

where f/j and is the feed flow rate of component / to stage / in the liquid phase.
The last term in the left-hand side of Eqs. 14.1.1 and 14.1.2 represents the net loss or

gain of component / on stage ; due to interphase transport. Without loss of generality we
may define JV^ and Jiff- as

) dttj (14.1.3)

and

L- da: (14.1.4)
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where N^ and N^ are the molar fluxes of component i at a particular point in the two
phase dispersion and dcij is the elemental interfacial area through which that flux passes.
We have adopted the convention that transfers from the vapor to the liquid phases are
positive in sign. With a mechanistic model, such as that developed in Sections 12.1.7 and
12.2.4, we can account for the separate contributions to mass transfer in the bubble
formation zone, in the bulk froth zone on a tray and to entrained droplets in the spray. An
alternative (and somewhat simpler) approach based on the use of the empirical methods in
Section 12.1.5 for tray columns and Section 12.3.3 for packed columns is described below.

It follows from Eqs. 14.1.3-14.1.4 that

M/j = jrV -jrfi = o i = i, 2 , . . . , n (14.1.5)

Equation 14.1.5 may also be derived by constructing a material balance around the entire
interface.

The total material balances for the two phases are obtained by summing Eqs. 14.1.1 and
14.1.2 over the component index /.

MY - (1 + r^Vj - VJ+1 - FY + < = 0 (14.1.6)

M/; = (1 + rf-)Lj - Lt.x - Ff
L - rf = 0 (14.1.7)

where Fj denotes the total feed flow rate for stage j , Fj = E^=1/ i ;. The use of total material
balances and the component balances in the solution procedure ensures the the bulk phase
mole fractions sum to unity.

The energy balance for the vapor phase is

{ ) - VJ + ,H^ - F^HjF + QY + g f - 0 (14.1.8)

where Vj is the total vapor flow leaving stage /. The energy balance for the liquid phase is

E^ (1 + rfiLjHf- - LJ^H/L, - FfHf-" + Qf - Xf* = 0 (14.1.9)

The last terms on the left-hand side of Eqs. 14.1.8 and 14.1.9 represent the energy loss or
gain due to interphase transfer. We may define %?Y and lf;

L by the following equations:

v daj (14.1.10)

and

g>.L = JEfdaj (14.1.11)

where Ej is the energy flux at a particular point in the dispersion.
An energy balance around the interface yields

Ej = ^v -^L = 0 (14.1.12)



A NONEQUILIBRIUM MODEL 401

14.1.2 The Rate Equations

The mass transfer rates can be evaluated from a model of mass and energy transfer in
distillation such as those developed in Chapters 11 and 12. We review the necessary
material here for convenience. The molar fluxes in each phase are given by

Nf-Jf + NfyY (11.5.3a)

Nt
L =Jt

L +Nt
Lxt (11.5.3b)

where y\ is the mole fraction of species /, is the bulk vapor, and x[ is the mole fraction of
species / in the bulk liquid. The diffusion fluxes J? and Jt

L are given by Eqs. 11.5.4 and
11.5.5.

(Jv) = cr[kn(yv~yI) (n.5.5a)

(JL) = c,L[&L](x7 - xL) (11.5.4a)

Powers et al. (1988) found that the high flux correction factor is not important in distillation
and it has been ignored in rewriting Eqs. 11.5.4 and 11.5.5.

In the nonequilibrium stage model of Krishnamurthy and Taylor (1985a) the total mass
transfer rates are obtained by combining Eqs. 11.5.3a and 11.5.5a and multiplying by the
interfacial area available for mass transfer

(yy-y/) +<(y>) (14.1.13)

For the liquid phase we have the analogous relation

K L ) - ^[*/-]f ly(*; - xj) + jrL(Xj) (14.1.14)

where JVV is the total mass transfer rate. Following Krishnamurthy and Taylor (1985a), we
have used the composition of the phases leaving stage j as the bulk phase composition for
the purposes of evaluating the mass transfer rates. This is equivalent to assuming the bulk
phases are completely mixed.

The matrices of multicomponent low-flux mass transfer coefficients [kv] and [kL] may
be calculated from Eqs. 8.8.17 and 8.8.18, respectively, using binary mass transfer coeffi-
cients obtained from the correlations in Sections 12.1.5 and 12.3.2. It is important to
recognize that the binary mass transfer coefficients obtained from these correlations are
functions of the tray design and layout, or of the packing type and size, as well as of the
operating conditions. This means that equipment design parameters must be known so that
the nonequilibrium model equations can be solved. Equipment design parameters may be
specified in advance (along with other necessary specifications) or determined during the
solution by carrying out column design calculations simultaneously with the solution of all
the model equations (Taylor et al., 1992).

For tray columns the net interfacial area is a = afhfAb, where a' is the interfacial area
per unit volume of froth, hj is the froth height, and Ab is the bubbling area. For tray
columns the interfacial area is a'hAc, where a! is the interfacial area per unit volume, h is
the height of a section of packing, and Ac is the cross-sectional area of the column.
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The energy flux is defined by Eq. 11.1.4, written for each phase as

f = hY{TY - T>) + £ NuHy} (14.1.15)

and

Ef = hf(T> - TjL) + £ NijHff (14.1.16)
i=\

where hj is the heat transfer coefficient, and Htj is the partial molar enthalpy of component
/ for stage ;. Heat transfer coefficients may be estimated from correlations or analogies as
discussed in Section 11.4.4.

The energy transfer rates in the vapor and liquid phases are obtained after multiplying
the energy fluxes by the interfacial area a;

V? = hVaffl - T/) + £ SiPYi (14.1.17)

-ft = hfaj(T/ - TjL) + Z^iflil (14.1.18)

14.1.3 The Interface Model

Phase equilibrium is assumed to exist only at the interface with the mole fractions in both
phases related by

Q!j = Ktjx'j -y!j=O i = 1,2,..., c (14.1.19)

where Ktj is the equilibrium ratio for component / on stage j . The Ktj must be evaluated at
the temperature, pressure, and mole fractions at the interface. The mole fractions at the
interface must sum to unity

SF= I>iy-l=0 (14.1.20)

E4" l = 0 (14.1.21)

14.1.4 The Hydraulic Equations

Column pressure drop is a function of tray (or packing) type and design and column
operating conditions, information that is required for the estimation of the mass transfer
coefficients. It is, therefore, possible to add a pressure drop equation to the set of
independent equations for each stage and to make the pressure of each stage (tray or
packed section) an unknown variable. The stage is assumed to be at mechanical equilibrium
so PY = PjL = Pj.

The pressure of the top tray (or top of the packing) must be specified along with the
pressure of any condenser. The pressure of trays (or packed sections) below the topmost are
calculated from the pressure of the stage above and the pressure drop on that tray (or over
that packed section).
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If the column has a condenser, which is numbered as stage 1 here, the hydraulic
equations are expressed as follows:

P1^Pc-P1=0 (14.1.22)

^2-^spec-^2 = 0 (14.1.23)

Pj = Pj - Pj., - ( APj_t) =0 ; = 3 ,4 , . . . , n (14.1.24)

where Pc is the condenser pressure, Pspec is the specified pressure of the tray or section of
packing at the top of the column. The term APj_1 is the pressure drop per tray or section
of packing from section-stage j - 1 to section-stage /.

If the top stage is not a condenser, the hydraulic equations are expressed as follows:

Pi s Apec " A = 0 (14.1.25)

Pj = Pj - Pj.x - (APj-i) =0 j = 2 , 3 , . . . , n (14.1.26)

The pressure drop over sieve and valve trays may be estimated using correlations
presented by Lockett (1986) and Kister (1992). For bubble cap trays the procedures
described by Bolles (1963) can be adapted for computer based calculation. Kister (1992)
reviews the methods available for estimating the pressure drop in dumped packed columns.
The pressure drop in structured packed columns may be estimated using the method of
Bravo et al. (1986).

14.1.5 Specifications for Nonequilibrium Simulation

Most of the quantities normally specified in an equilibrium stage simulation (number of
stages, feed stage location, feed flow rates and composition, reflux ratio, distillate or
bottoms rate, and so on) must be specified for a comparable nonequilibrium simulation. By
including the hydraulic or pressure drop equations in the model it is not necessary to specify
the pressure of each stage for a nonequilibrium simulation; only the pressure of the top
stage and of the condenser need be specified.

As noted above, a number of equipment parameters must normally be specified so that
the mass transfer coefficients can be estimated correctly. For example, the diameter of all
columns must be known. For trayed columns, the tray type, weir height, liquid flow path
length, and bubbling area must be known; for packed columns, the packing type, size, and
material must be known. It may also be necessary to allow for different diameters, tray or
packing type, or other tray or packing parameters in different parts of the same column.

The actual process flow rates are important in nonequilibrium model simulations,
whereas in most equilibrium stage simulations, a simulation with a feed flow rate of 1 unit is
as meaningful as a simulation with a feed flow of 10, 100, or 573 units. In real columns the
flow rates influence the mass transfer coefficients as well as the tray hydraulics. An
inappropriate flow specification may mean the column will flood or, just as likely, dump all
the liquid through the holes in the tray. Thus, it is important to ensure that the specified (or
calculated) flows and tray or packing characteristics are consistent with the satisfactory
operation of the column.

14.2 SOLVING THE MODEL EQUATIONS

Newton's method has often been the method of choice for solving equilibrium stage
separation process problems (see, e.g., Henley and Seader, 1981). We have also made
extensive use of Newton's method throughout this book. Thus, it will come as no surprise to
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our readers that we advocate the use of Newton's method for solving the nonlinear
algebraic equations of the nonequilibrium stage model.

14.2.1 Variables and Equations for a Nonequilibrium Stage

There are 6 c + 8 unknown variables for each nonequilibrium stage.

• Vapor and liquid flow rates (Vp Lp 2).

• Vapor and liquid-phase compositions (y/;, xtp2c).

• Vapor and liquid temperatures (TjV, TjL; 2).

• Vapor and liquid interface compositions (y}p xjplc).

• Interface temperature (Tf; 1).

• Mass transfer rates {jrK, JT^\ 2c).

• Energy transfer rates (<r/", <Ty
L; 2).

• Stage pressure (P;; 1).

The 6 c + 8 equations for the ;th stage, collectively referred to as the MERSHQ
equations (after the letters used to identify the different equations), are

• M: Material balances for the vapor (M^, M^; c + 1).

• M: Material balances for the liquid (M/j, Mt
L; c + 1).

• M: Material balances for the interface (Mfp c).

• E: Energy balance equations (E;
K, E;

L, Ej; 3).

• R: transfer /?ate equations (2c - 2).

• R: energy transfer Rate equations (2).

• S: Summation equations (S/7 , S;
L/; 2).

• H: Hydraulic equations (Py; 1).

• Q: interface equilibrium equations (Qfp c).

A modest reduction in the rather large number of variables and equations can be
obtained by recognizing that there is really only one set of independent mass transfer rates,
,/f-; = yy]^ = Jr

i^, and we can eliminate either the vapor- or the liquid-phase mass transfer
rates from Eqs. 14.1.1 and 14.1.2 and by combining the mass transfer rate equations (Eqs.
14.1.13 and 14.1.14) and the interface material balances (Eqs. 14.1.5) to give

Rr^jr-j-jry^o / = l , 2 , . . . , r c - l (14.2.1)

and

Rf*. = jr.. - jr.L = o i = 1,2,..., n - 1 (14.2.2)

where

< , . = Aft(*r*,y> a>> yL' y*J> K> k=l,2,...,n) (14.2.3)

jr^ = ^(kkj, aj, x'kJ, xktJ, jr^, k = 1 , 2 , . . . , « ) (14.2.4)

are the mass transfer rates written as a function of mole fractions, mass transfer coefficients,
and the mass transfer rates themselves.
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The final working form of the interface energy balance Ej is obtained on substituting
Eqs. 14.1.17 and 14.1.18 for the energy-transfer rates into Eq. 14.1.12 to give

Ej = h-a^ -T/)- h$a,{T> - T/-) + t JT^HV - Hf;) = 0 (14.2.5)
i=\

Note that the energy-transfer rates W^ and ̂ L are eliminated once this substitution has
been made.

There remain only 5c + 6 independent variables and they are ordered into a vector (xy)
as follows:

(Xj)T EE (]/. , ylj9 y2j9..., ycJ, TY 9 y{j9 y{j9..., y'cj9 x{j, xij,..., xij, T/9 Lj9

xlj9 x2j,..., xcj, TjL, jr.., jr2j,..., jrcj, p.) (14.2.6)

The corresponding 5c + 6 equations per stage are ordered into a vector (F;) as follows:

Q ' u , O i j , . . . , Q ' c j , Ej, Mf;, M f r , M ^ , • • • , M c ) , Ej;

Rtj,R!:j,...,RcL-ij,St-1,Pj) (14.2.7)

14.2.2 Condensers and Reboilers

Condensers and reboilers may be modeled as equilibrium stages. The independent variables
for such a stage are the mole fractions (x / ;, ytj: 2c), the temperature (7}: 1), the flow rates
(Vj, Lj: 2), and the stage pressure (P; : 1). The corresponding 2c + 4 independent equations
are the MESH equations (of Section 13.4.1) plus a pressure drop equation.

The 2c + 4 variables for an equilibrium stage are ordered into a vector (x ;) as follows:

(xj)T s ( ^ yv> yip..., yCp TJ9 xlj9 x2j9..., xcy, Ly, py) (14.2.8)

The corresponding 2c + 4 discrepancy equations for an equilibrium stage are ordered
into a vector (F;) as follows:

(Fj)T = (Mtj,Ml}, M2J,..., McJ, Hj, E1}, E2J,..., Ecj, Sj, P,) (14.2.9)

where E / ; are the equilibrium relationships (Eqs. 13.4.7), and Sj is the summation equation
for an equilibrium stage and is expressed as

Sj= L(xij-yij)=0 (13.4.8)

14.2.3 Equations and Variables for a Multistage Column

The nonequilibrium model equations for an entire column can be expressed in the general
functional form

(F(x)) = (0) (14.2.10)

where (F)

(Ff={(F,)T,(F2)
T,...,(Fn)

T) (14.2.11)
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is the vector of equations to be solved and where (x) is the vector of unknown variables

(x)T=((Xl)
T,(x2)

T,...,(xn)
T) (14.2.12)

(Fj) is the vector of model equations for stage ; and (x;) is a vector of variables for stage ;.

14.2.4 Solution of the Model Equations

As noted above, Newton's method can be used to solve the entire set of nonlinear equations
simultaneously. To use Newton's method, we repeatedly solve Eq. 14.2.10 linearized about a
current guess (x^) of the vector (x).

[Jk]A(xk)= ~(F(xk)) (14.2.13)

[Jk] is the Jacobian matrix at the kth iteration with elements

and

H*k) = (** + i) - (**) (14.2.15)

The method may be assumed to have converged when either of the following two criteria
are satisfied

E E ^ < e (14.2.16)

E ElAx l 7 | /x l 7<e (14.2.17)

where N is the number of stages, e, is the number of equations for the ;th stage, and £ is a
small number (10 ~3 in the examples below).

Powers et al. (1988) developed some guidelines to provide a set of initial estimates for
nonequilibrium models. With reasonable initial estimates x0 Newton's method will usually
converge quickly. However, it is a good idea to limit the variable changes computed from
Eq. (14.2.15). Temperature changes should be restricted to 10 K per stage per iteration, flow
changes to 50% of the flow itself, and changes in composition that would take a mole
fraction outside the range from 0 to 1 to \ of the step that would take it to the boundary.
Limiting variable corrections is particularly important when the column specifications do
not constrain the internal flows. Nonequilibrium model simulations are about as difficult to
converge as a corresponding equilibrium stage simulation provided that column design
specifications (diameter, tray type, weir height, length, etc.) are consistent with the satisfac-
tory operation of a real column.

Newton's method requires the evaluation of the partial derivatives of all equations with
respect to all variables. The partial derivatives of thermodynamic properties with respect to
temperature, pressure, and composition are most awkward to obtain (and the ones that have
the most influence on the rate of convergence). Since pressure is an unknown variable in
this model, the derivatives of K values and enthalpies with respect to pressure must be
evaluated. Neglect of these derivatives (even though they are often small) can lead to
convergence difficulties.
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For single, simple columns, the Jacobian matrix has the block tridiagonal structure
shown below.

[A2] [B2] [C2]

The submatrices [Aj], [Bj], and [Cj] are defined by

[An] [Bn]

(14.2.18)

j = 2 , 3 , . . . , n (14.2.19)

(14.2.20)

y = 1,2 /i - (14.2.21)

The structure of the submatrices [Aj], [Bj], and [Cj] is given by Hung (1991).
Linear systems with a block tridiagonal coefficient matrix can be solved quite efficiently

using a matrix generalization of the well-known Thomas algorithm. Henley and Seader
(1981) give the steps of the algorithm. The number of equations per nonequilibrium stage
(5c + 6) is not the same as the number of equations for equilibrium stages (2 c + 4) and this
must be allowed for when implementing the Block Thomas algorithm. In fact, even the
diagonal blocks are rather empty and it is better to devise a special elimination procedure
that exploits the structure of the nonequilibrium model or use a general sparse equation
solver.

14.3 DESIGN STUDIES

In this section we present a number of examples designed to illustrate the use of a
nonequilibrium model as a design tool. In view of the large number of equations that must
be solved it is impossible to present illustrative examples of the application of the
nonequilibrium model that are as detailed as the examples in prior chapters. In the
examples that follow we confine ourselves to a brief summary of the problem specifications
and the results obtained from a computer solution of the model equations. In most cases
several different column configurations were simulated before the results presented below
were obtained.

Example 14.3.1 Depropanizer Column Design

A depropanizer is a distillation operation encountered in almost all oil refineries. Our task
here is to design a column to separate 1000 mol/s of a four component mixture containing
300 mol/s n-propane and 500 mol/s n-butane so that there is no more than 3.5 mol/s of
n-propane present in the bottom product and no more than 3.5 mol/s of ^-butane is



TABLE 14.1 Specifications and Stream Table for Depropanizer

Operation:
Simple distillation
Partial (vapor product) condenser
Partial (liquid product) reboiler
35 Stages
Feeds to stages 16

Properties:
EOS K model
Peng-Robinson Cubic EOS
Excess enthalpy from EOS

Specifications:
Column pressure

Condenser pressure 15.00 (atm)
Top pressure 15.00 (atm)

Condenser
Reflux ratio = 2.500 ( - )

Reboiler
Bottom product flow rate = 600.0 (mol/s)

Stream Feed 1 Top Bottom

Stage
Pressure (atm)
Vapor fraction ( - )
Temperature (°C)
Mole flows (mol/s)
Ethane
Propane
n-Butane
ft-Pentane
Total molar flow

16
15.00

0.0000
25.00

100.0
300.0
500.0
100.0
1000

1
15.00
1.000
34.92

100.0
296.7
3.328

0.0009178
400.0

35
15.12

0.0000
105.7

0.0001485
3.329
496.7

100.00
600.0

TABLE 14.2 Depropanizer Column Design

Number of sections
System factor ( —)
Default flooding factor ( - )

Section

First stage
Last stage
Column internals
Column diameter (m)
Total tray area (m2)
Number of flow passes
Tray spacing (m)
Liquid flow path length (m)
Active area (m2)
Total hole area (m2)
Downcomer area (m2)
Hole diameter (m)
Hole pitch (m)
Weir length (m)
Weir height (m)
Downcomer clearance (m)
Deck thickness (m)

2
1.000

0.7000

1

2
15

Sieve tray
4.820
18.25

5
0.5000
0.7945

14.96
0.8813 .

1.645
0.004763

0.01807
17.60

0.05080
0.03810

0.002540

2

16
34

Sieve tray
6.170
29.90

5
0.5000

1.037
24.51
1.355
2.696

0.004219
0.01685

22.97
0.03734
0.03810

0.002540
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Figure 14.2. Liquid-phase composition profiles in a depropanizer.

present in the distillate. The operation takes place at the moderately elevated pressure of
15 atm.

A number of simulations were carried out for different column configurations (number of
stages and feed stage location) and for differing operation specifications (reflux ratio and
bottom product rate). Only the specifications and results of our final simulation are reported
here.

The problem specification and computed product flows are provided in Table 14.1. The
column is divided into two sections, the section above the feed has a diameter of 4.82 m and
the section below the feed has a diameter of 6.17 m. Additional column design parameters
are provided in Table 14.2.

propane

n butane

ethane

Figure 14.3. Liquid-phase composition profiles in a depropanizer shown as a tetrahedron. The four
corners represent the pure components.
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Figure 14.4. Temperature profiles in a depropanizer.
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Figure 14.5. Flow profiles in a depropanizer.

2500

Composition profiles are shown in Figures 14.2 and 14.3. Figure 14.4 shows the vapor-
and liquid-phase temperatures. In this particular example these two temperatures are not
too different. Flow profiles are shown in Figure 14.5.

A pseudo McCabe-Thiele diagram is shown in Figure 14.6. Note that the steps that
represent the trays in the column do not reach the equilibrium line. This kind of diagram is
invaluable in the design process as an aide to determining the optimum feed stage location.
Murphree efficiencies of each component on each tray, computed from Eq. 13.1.2, are
shown in Figure 14.7. The discontinuities in the efficiency profiles arise at or around feed
stages or where the mole fractions of one of the components passes through a maximum. It
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Figure 14.6. McCabe-Thiele diagram for propane and ^-butane in a depropanizer.
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Figure 14.7. Murphree efficiency profiles in a depropanizer.

is important to emphasize that these efficiencies are calculated following a nonequilibrium
simulation but are not used during the calculations. •

Example 14.3.2 Extractive Distillation Column Design

In Section 14.4.2 we shall show that the nonequilibrium model provides excellent predic-
tions of the product compositions in the extractive distillation of an acetone (l)-methanol
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TABLE 14.3 Specifications and Stream Summary for Extractive Distillation

Operation:
Simple distillation
Total (liquid product) condenser
Total (liquid product) reboiler
80 Stages
Feeds to stages 13, 68

Properties:
DECHEMA K model
Original UNIQUAC model
Antoine vapor pressure
Excess enthalpy from UNIQUAC model

Specifications:
Column pressure

Condenser pressure 0.1013 (MPa)
Top pressure 0.1013 (MPa)

Condenser
Reflux ratio - 10.00 ( - )

Reboiler
Bottom product flow rate = 88.89 (mol/s)

Stream

Stage
Pressure (MPa)
Vapor fraction (—)
Temperature (K)
Mole flows (mol/s)
Acetone
Methanol
Water
Total molar flow

F e e d l

13
0.1013
0.0000

373.2

0.0000
0.0000

22.22
22.22

Feed 2

68
0.1013
0.0000

333.5

22.22
66.67

0.0000
88.89

Top

1
0.1013
0.0000

328.5

19.88
2.321

0.01960
22.22

Bottom

80
0.1560

1.000
360.9

2.344
64.35
22.20
88.89

TABLE 14.4 Extractive Distillation Column Design

Number of sections
System factor (—)
Default flooding factor ( - )

Section

First stage
Last stage
Column internals
Column diameter (m)
Total tray area (m )
Number of flow passes
Tray spacing (m)
Liquid flow path length (m)
Active area (m2)
Total hole area (m2)
Downcomer area (m2)
Hole diameter (m)
Hole pitch (m)
Weir length (m)
Weir height (m)

1
1.000

0.7000

1

2

79
Sieve tray

2.320
4.227

2
0.5000
0.7930
3.550

0.2366
0.2842

0.004667
0.01406

2.984
0.05029
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Figure 14.8. Liquid-phase composition profiles in extractive distillation column.
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Figure 14.9. Liquid temperature profile in extractive distillation column.
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Figure 14.10. McCabe-Thiele diagram for acetone and methanol.

(2) mixture using water (3) as the solvent. In this example, we are asked to design a large
scale column that can recover about 90 mol% of the acetone in the distillate product and
more than 95 mol% of the methanol in the bottom product. The mole fraction of acetone in
the acetone-methanol feed is 0.25 and the feed flow is 88.89 mol/s. The column is to
operate at a pressure of 101.3 kPa.

A great many simulations are required to solve a problem of this kind. Since there are
two separate feeds to the column, there are many more possible column configurations that
need to be investigated. In addition, the separation is strongly influenced by the flow rate of
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efficiency
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Figure 14.11. Murphree efficiency profiles in extractive distillation column.
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the solvent, water. A column configuration and operation specifications that meets the
design objective is provided in Table 14.3. There are, no doubt, many other configurations
and operating conditions that would be as good if not better. The column was simulated as a
single section with a uniform diameter; the equipment design parameters are given in Table
14.4.

The liquid-phase composition profiles are shown in Figure 14.8, the temperature profiles
in Figure 14.9. In this example, the liquid and vapor temperatures are almost equal. The
pressure profile is not shown since it was more or less a straight line between the specified
top tray pressure and the computed bottom pressure reported in Table 14.3. The pseudo
McCabe-Thiele diagram and efficiency profiles are shown in Figures 14.10 and 14.11. In
this case we see that the efficiencies of acetone and methanol are essentially equal over
most of the column with the efficiency of water somewhat higher. Interestingly, the
efficiencies decrease in the lower portion of the column below the acetone-methanol feed.

•

Example 14.3.3 Ethylbenzene-Styrene Distillation Column Design

In this example we are asked to design a column to separate 60 mol/s of a mixture of 45%
styrene and 55% ethylbenzene. The column should produce an overhead product that is

TABLE 14.5 Specifications and Stream Table for Packed Column

Operation:
Simple distillation
Total (liquid product) condenser
Partial (liquid product) reboiler
152 Stages
Feeds to stages 43

Properties:
Raoult's law K model
Lee Kesler vapor pressure
Ideal enthalpy

Specifications:
Column pressure

Condenser pressure 50.00 (torr)
Top pressure 50.00 (torr)

Condenser
Reflux ratio = 12.00 ( - )

Reboiler
Bottom product flow rate = 25.25 (mol/s)

Stream

Stage
Pressure (torr)
Vapor fraction ( - )
Temperature (°F)
Mole flows (mol/s)
Ethylbenzene
Styrene
Total molar flow
Mole fractions ( - )
Ethylbenzene
Styrene

Feedl

43
65.00

0.0000
151.9

33.00
27.00
60.00

0.5500
0.4500

Top

1
50.00

0.0000
137.4

32.99
1.759
34.75

0.9494
0.05063

Bottom

152
104.9

0.0000
179.5

0.009403
25.24
25.25

0.0003724
0.9996
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TABLE 14.6 Packed Column Design

Number of sections
System factor ( - )
Default flooding factor ( - )

Column internals
Packed height above feed (m)
Packed height below feed (m)
Column diameter above feed (m)
Column diameter below feed (m)
Specific packing surface (1/m)
Void fraction ( - )
Channel base (m)
Crimp height (m)
Channel side (m)
Equivalent diameter (m)
Channel flow angle (rad)
Packing factor ( - )

2
1.000

0.2800

Koch Flexipac II
14.000
36.000
7.270
6.610
223.0

0.9500
0.02590
0.01240
0.01800
0.01411
0.7854
72.00

approximately 5% styrene and a bottoms product that is less than 400 ppm ethylbenzene
(Strigle, 1987). This operation must be carried out at low pressure to reduce the polymeriza-
tion of styrene that takes place at higher temperatures. A vacuum system at 50 mmHg is
available for this operation. The column will use Koch Flexipac II structured packing.

A number of simulations were needed to design this column. The most important
parameters were the overall height of packing, the feed stage location, and the reflux ratio.
The purity specifications were not used in any simulation since nonstandard specifications of
that kind can make the simulations harder to converge.

The configuration and operation specifications for a column that we found would
produce the desired products are shown in Table 14.5. The total height of packing is 50 m
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Figure 14.12. Composition profiles in a packed ethylbenzene-styrene splitter.
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TABLE 14.7 Specifications and Results for Hydrocarbon Absorber

Operation
Simple absorber/stripper
12 Stages
Feeds to stages 1, 12

Properties:
EOS K model
Peng-Robinson cubic EOS
Excess enthalpy from EOS

Specifications:
Column pressure

Top pressure 4.000 (atm)

Stream

Stage
Pressure (atm)
Vapor fraction ( - )
Temperature (K)
Mole flows (kmol/s)
Methane
Ethane
Propane
«-Butane
/i-Pentane
/?-Tridecane
Total molar flow

Feed 1

1
4.000

0.0000
305.2

0.0000
0.0000
0.0000

0.001104
0.002760
0.05134
0.05520

Feed 2

12
4.000

0.9547
300.0

0.01430
0.007850
0.01200

0.008450
0.007400

0.0000
0.05000

Top

1
4.000
1.000
309.0

0.01371
0.006382
0.005216

0.0006009
0.0003280
1.365E-06

0.02624

Bottom

12
4.103

0.0000
321.7

0.0005901
0.001468
0.006784
0.008953
0.009832
0.05133
0.07896

TABLE 14.8 Absorber Column Design

Number of sections
System factor ( - )
Default flooding factor ( - )

Section

First stage
Last stage
Column internals
Column diameter (m)
Total tray area (m2)
Number of flow passes
Tray spacing (m)
Liquid flow path length (m)
Active area (m2)
Total hole area (m2)
Downcomer area (m)
Hole diameter (m)
Hole pitch (m)
Weir length (m)
Weir height (m)
Downcomer clearance (m)
Deck Thickness (m)

1
1.000

0.7000

1

1
12

Sieve tray
1.140
1.021

1
0.5000
0.7412
0.7886

0.03803
0.1161

0.003737
0.01592

1.026
0.02745
0.03810

0.002540
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with 14 m above the feed and 36 m below. The reflux ratio is 12. The column diameter was
7.27 m above the feed and 6.61 m below the feed (Table 14.6). Larger column diameters
above the feed are typical of these operations (King, 1980; Strigle, 1987). The complete
column design is summarized in Table 14.6. A total of 150 nonequilibrium stages were used
to model the 50 m of packing.

The predicted bottom pressure (Table 14.5) is 105 mmHg at a temperature of 180°F.
This compares to 104 mmHg and 182°F as suggested by Strigle (1987). The column was
designed with a flooding factor of 0.28 in order to meet the pressure drop limit mentioned
by Strigle (1987).
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Figure 14.13. Composition profiles in a hydrocarbon absorber.
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Figure 14.14. Temperature profiles in an absorber.
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Figure 14.15. McCabe-Thiele diagram for ^-butane and ^-pentane.

Composition profiles are shown in Figure 14.12. Note the hour glass shape that
asymptotes towards the vertical axes at the bottom of the column to meet the 400 ppm
specification on the ethylbenzene purity. B

Example 14.3.4 Gas Absorption

The nonequilibrium model is not limited to simulating distillation operations; with no
fundamental change, it can be applied to absorption operations as well. A design case study
is presented here by way of illustrating the model. This problem is adapted from an
application discussed by Krishnamurthy and Taylor (1986).
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Figure 14.16. Murphree efficiency profiles for an absorber.
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A hydrocarbon gas mixture is to have its propane content reduced by 45% by absorption
in a heavy oil at a pressure of 4 atm. Tridecane is used to represent the oil in this
illustration. Feed flows are summarized in Table 14.7.

The important design variables in this problem are the number of trays and the oil flow
rate. Seven (or more) sieve trays were needed to reach the desired reduction in the propane
content of the gas mixture. A complete set of configuration and operation specifications is
given in Table 14.7. Calculated product stream flows and compositions are also given. The
column and tray design is summarized in Table 14.8.

Composition and temperature profiles are shown in Figures 14.13 and 14.14. In this
example we see that the vapor and liquid temperatures are rather different. This result is
quite typical of absorption columns; indeed, it is possible for temperature differences to be
over the order of 20 K. The McCabe-Thiele diagram is shown in Figure 14.15 and the
component efficiencies in Figure 14.16. The efficiencies tend to be lower than in the
distillation operations considered above.

It is possible to achieve more or less the same separation achieved in the seven tray
column in two equilibrium stages. Thus, the overall efficiency is about 28%. Industrial
absorbers typically operate at overall efficiencies between 15 and 40%. •

14.4 EXPERIMENTAL STUDIES

In this section we present several comparisons between the predictions of a nonequilibrium
model and actual experimental data. Simulations of a variety of operations are described
including small and industrial scale and trayed and packed towers.

14.4.1 Multicomponent Distillation

In Section 13.5.1 we presented the data of Vogelpohl for the distillation of two ternary
systems: acetone-methanol-water and methanol-2-propanol-water in a bubble cap col-
umn. Krishnamurthy and Taylor (1985b) simulated these experiments using a nonequilib-
rium stage model similar to the one described above. The AIChE correlations were used to
calculate the mass transfer coefficients. Thermodynamic properties were calculated with the
models described by Prausnitz et al. (1980).

Predicted and measured composition profiles for the acetone-methanol-water system
are compared in Figure 14.17. The average discrepancy between predicted and measured

1.0

Mole
fraction 0.5

0.0
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Stage number

Figure 14.17. Composition profiles in the distillation of acetone-methanol-water system in a bubble
cap column at total reflux. Data of Vogelpohl (1979). Calculations by Krishnamurthy and Taylor
(1985b).
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Figure 14.18. Composition profiles in the distillation of acetone-methanol-water and methanol-2-pro-
panol-water systems in a bubble cap column at total reflux. Profiles obtained using matrix models and
an effective (equal) diffusivity model of mass transfer. Data of Vogelpohl (1979). Calculations by
Krishnamurthy and Taylor (1985b).

mole fractions is 1.122 mol% for the acetone-methanol-water system and 2.211 mol% for
the methanol-2-propanol-water system.

Let us consider in more detail whether there is any support for a matrix model of mass
transfer in these data. Krishnamurthy and Taylor (1985b) found that all multicomponent
(i.e., matrix) models gave identical results. However, a model in which a single average value
of the diffusion coefficient was used for all binary pairs does not do a particularly good job
of predicting the composition profiles in Vogelpohl's experiments as shown in Figure 14.18.
To give a feel for the magnitude of this discrepancy we note that for run 1 of the
acetone-methanol-water system, the measured mole fractions of acetone and methanol on
the top stage are 0.46 and 0.54, respectively. The mole fractions predicted using a matrix
model of mass transfer are 0.4613 and 0.5334, respectively, whereas the mole fractions
predicted using the equal diffusivity model are 0.5215 and 0.4716. The multicomponent
matrix models are clearly superior in this case.

14.4.2 Extractive Distillation

Acetone and methanol are impossible to separate by simple distillation due to the presence
of an azeotrope. However, the addition of water near the top of a column allows these two
components to be separated. Five sets of steady-state operating data for the extractive
distillation of an acetone-methanol azeotrope in a laboratory scale column have been
provided by Kumar et al. (1984). A schematic diagram of the column is provided in Figure
14.19. The column had a diameter of 15 cm and was fitted with 13 bubble cap trays, a total
condenser and a thermosiphon (equilibrium) reboiler. Unlike many experimental distillation
studies, these experiments were not carried out at total reflux; the acetone-methanol feed
entered the column on the eleventh stage from the top (the condenser counts as the first
stage) and the water was introduced on stage six. The column was operated at atmospheric
pressure for all five runs. Additional details of the column, operational specifications, and
computed product compositions for one of these experiments can be found in Table 14.9.



422 MULTICOMPONENT DISTILLATION: NONEQUILIBRIUM STAGE MODEL

water

age 15

Figure 14.19. Schematic diagram of extractive distillation operation.

Predicted composition profiles are shown in Figure 14.20. Flow and temperature profiles
are shown in Figures 14.21 and 14.22 respectively. The location of the feeds is easily seen in
these profiles. Murphree efficiencies, computed from Eq. 13.2.1 using the results of a
simulation, are shown in Figure 14.23. As has been the case in many of our comparisons, the
Murphree efficiencies vary widely from component to component and from tray to tray as
well.

A comparison between predicted and measured top and bottom product mole fractions
for all five experiments is provided in Figure 14.24 (Taylor et al., 1987). In all five cases, the
agreement between predicted and measured mole fractions is excellent. Kumar et al.
simulated the behavior of the column using an equilibrium stage model. They fitted (but
only to two significant figures) efficiency values for each component on each stage; a total of
39 quantities. The mole fractions predicted by the nonequilibrium stage model are not
significantly different from theirs!

14.4.3 Alcohol Wash Columns

Simulations of two commercial scale alcohol wash columns have been described by Taylor
et al. (1992). A schematic flowsheet of the wash columns is shown in Figure 14.25. Column 1
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TABLE 14.9 Specifications and Stream Table for Extractive Distillation

Operation:
Simple distillation
Total condenser
Total reboiler
15 Stages
Feeds to stages 6 and 11

Properties:
DECHEMA K model
Original UNIQUAC model
Antoine vapor pressure
Excess enthalpy

UMQUAC

i J ^u

1 2 1236.206
1 3 329.056
2 3 -284.892

Specifications:
Column pressure

Condenser pressure 0.1013 (MPa)
Top pressure 0.1013 (MPa)

Column design:
Number of sections
System factor ( - )
Default flooding factor ( - )

Section
First stage
Last stage
Column internals
Mass transfer coefficient
Column diameter (m)
Total tray area (m2)
Tray spacing (m)
Liquid flow path length (m)
Active area (m2)
Weir length (m)
Weir height (m)

Condenser
Reflux ratio = 1.600 ( - )

Reboiler

I Parameters (cal/mol)

-456.272
154.059
194.508

Bottom product flow rate = 0.2008 (kmol/h)

Stream Feed 1

Stage 6
Pressure (MPa) 0.1013
Vapor fraction ( - ) 0.0000
Temperature (K) 333.4
Total molar flow 0.1776
Mole fractions ( - )

Acetone 0.0000
Methanol 0.0000
Water 1.000

Feed 2

11
0.1013
0.0000

313.5
0.09876

0.6286
0.3714
0.0000

Component

Acetone
Acetone
Methanol

1
1.000

0.7000
1
2

14
Bubble cap tray

AIChE
0.1524

0.01824
0.3048
0.1050

0.01420
0.1275

0.02250

Top

1
0.1013
0.0000
329.6
0.07556

0.8029
0.1296
0.06751

Component

Methanol
Water
Water

Bottom

15
0.1025
1.000
370.1
0.2008

0.007039
0.1339
0.8591
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Figure 14.20. Composition profiles predicted by nonequilibrium model. Calculations by Taylor et al.
(1987).
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Figure 14.21. Calculated flow profiles in experimental extractive distillation column.

has 75 trays plus a reboiler. The alcohol feed is near the top of the column and there is a
vapor side stream withdrawn near the bottom of the column. The column is swaged with a
maximum diameter of 3 m. The main feed to column 1 is a four-component mixture
containing ethanol (~ 20 mass%) and water (~ 80 mass%) along with small quantities of
acetaldehyde and 2-butanol. There is an additional feed of water to the top tray in column
1. Column 2 processes the overhead from column 1 and has 60 trays plus a condenser and
reboiler. The column has a diameter of around 1.5 m. There is a water feed near the top of
the column and the stream from column 1 enters near the middle of the column.
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Figure 14.22. Calculated temperature profiles in experimental extractive distillation column.
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Figure 14.23. Murphree efficiencies for experimental extractive distillation column.

The nonequilibrium model of column 1 consists of 75 trays plus an equilibrium reboiler
with feeds to and the side stream taken from the trays where they exist in the actual plant.
The nonequilibrium model of column 2 consists of 60 trays plus an equilibrium reboiler and
a total condenser. The column model takes into account the different diameters in different
parts of the column. Representative average values of the weir height and length, bubbling
area, liquid flow path length, and other equipment design parameters were used for each
main section of the columns. No attempt was made to incorporate all of the very many
design variations in each section into the simulation (even though this was possible). Minor
variations in, for example, weir length do not have a major impact on the results of a
simulation.
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Figure 14.24. Predicted versus experimental top and bottom product compositions in distillation of
acetone-methanol-water system. Calculations by Taylor et al. (1987). Data from Kumar et al. (1984).

Figure 14.25. Schematic diagram of industrial alcohol wash column configuration.
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Figure 14.26. Composition profiles in alcohol wash column 1.

The bottom product rates were specified in molar units. For column 1 the side stream
flow rate also was specified in molar units. Specification of the molar flow rates makes the
simulations converge more easily. Nonstandard specifications can be harder for a nonequi-
librium model to converge than for a corresponding equilibrium model because nonstan-
dard specifications are more likely to lead to large variations in vapor and liquid flows from
iteration to iteration. Since mass transfer coefficient and pressure drop calculations may

Stage
number

Liquid composition

Figure 14.27. Composition profiles in alcohol wash column 2.
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Figure 14.28. McCabe-Thiele diagram for alcohol wash column 1.

make use of empirical correlations for the estimation of tray-packing performance, it is
possible that large changes in the flows could lead to the use of design correlations in
regions for which they are invalid or to the prediction of flow regimes that are undesirable,
unlikely, or simply impossible. For the same reason, it is essential to check at all stages of
the calculations that the internal flows are consistent with the satisfactory performance of
the column. K values were estimated using the NRTL model.

Predicted composition profiles for the two columns are shown in Figures 14.26 and 14.27.
In column 1 the concentration of 2-butanol falls off rapidly below the side stream.
Acetaldehyde, however, appears to be essentially absent from the column below about tray

^acetaldehyde

y +y
acetaldehyde 2-butanol

.0 0.2 0.4 0.6 0.8 1.0

acetaldehyde

X + X
acetaldehyde 2-butanol

Figure 14.29. McCabe-Thiele diagram for alcohol wash column 2.
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Figure 14.30. Murphree efficiency profiles for alcohol wash column 1.

40. In column 2 the acetaldehyde concentration falls off below the feed, whereas the
2-butanol concentration does not change a great deal.

Modified McCabe-Thiele diagrams for acetaldehyde and 2-butanol are shown in Figure
14.28 and 14.29. Note that the staircase construction that represents the trays in the real
column does not touch the equilibrium line. The length of each horizontal step compared to
the distance from the rather curved operating line to the equilibrium line is a measure of
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Figure 14.31. Murphree efficiency profiles for alcohol wash column 2.



430 MULTICOMPONENT DISTILLATION: NONEQUILIBRIUM STAGE MODEL

100 r-

Predicted
composition

0.01 r

0.001
0.001 0.01 0.1 1 10

Experimentally measured composition

Figure 14.32. Comparison between predicted and observed product stream compositions for two
industrial alcohol wash columns.

the component efficiency. However, it should be emphasized that this diagram is con-
structed from the simulation results directly and does not employ the efficiency concept
sometimes used in the construction of pseudoequilibrium lines on McCabe-Thiele dia-
grams.

The Murphree efficiencies for each component have, in fact, been back calculated from
the results of the simulation and are shown in Figures 14.30 and 14.31. It is to be noted that
the efficiencies are not the same for each component and vary significantly from tray to tray
as well. Consequently, it is difficult to know in advance of a simulation just how many
equilibrium stages should be used as well as where the side streams and feeds are to be
located (in terms of the number of equilibrium stages).

Figure 14.32 provides an indication of how well the model matches the plant data. The
predicted product compositions appear to be quite good in general. The one major
discrepancy between the plant data and the simulation results is the concentration of
acetaldehyde in the side stream from column 1. This data point is not shown in Figure 14.32
since the model predicted no acetaldehyde in the sidestream (in contrast to the data) and
could not be plotted in Figure 14.32 because it employs a log scale. In any event, there is no
precise experimental measurement of the side stream composition; the mole fractions of the
side stream are, indeed, inferred from measurements of other streams.

14.4.4 A Packed C4 Splitter

Simulations of an industrial scale column with structured packing have been reported by
Taylor et al. (1992). They modeled a packed C4 splitter that had an internal diameter of
about 2.5 m and five beds of structured packing with a total height of approximately 37 m as
shown in Figure 14.33. The feed, which contains predominantly isobutane* and ^-butane

*Isobutane is the common name for 2-methylbutane.
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Figure 14.33. Schematic diagram of an industrial packed C4 splitter.

with small amounts of propane and isopentane* is introduced between the second and third
packed sections. Feed and product flows, compositions and temperatures were available
for a small number of plant experiments and these data were used as the basis for the
simulations.

For the purposes of simulating a packed column the packing was divided into a number
of sections each of which is modeled as a nonequilibrium stage as discussed above. The C4
splitter was modeled using 150 nonequilibrium sections, an equilibrium reboiler and a total
condenser. The bottom product rate in molar units and the reflux ratio were fixed at the
values observed in the plant tests. Additional specifications included the component feed
flows and the column pressures.

Mass transfer coefficients and interfacial areas were computed using the model of Bravo
et al. (1985) described in Section 12.3.3. K values and enthalpies were estimated using the
Soave-Redlich-Kwong equations of state (see, e.g., Walas, 1985).

A parity plot comparing predicted overhead and bottoms compositions is provided in
Figure 14.34. All four product compositions at both ends of the column are included in this
illustration. It can be seen that the product compositions are predicted quite well. Product
temperatures were predicted to within one-half a degree Celsius.

A sensitivity study was carried out by varying some of the important parameters in the
mass transfer model and the column specifications. It was discovered that changing the

Isopentane is the common name for 2-methylbutane.
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Figure 14.34. Comparison between predicted and measured distillate and bottoms compositions for a
large scale packed C4 splitter. Calculations by Taylor et al. (1992).

bottoms flow rate, the reflux ratio, or the degree of feed vaporization by modest amounts
had very little effect on the predicted product compositions. The column pressure has a
more substantial effect. The parameter with the greatest influence, however, is the interfa-
cial area which, in the model of Bravo et al. (1985), is assumed to be equal to the specific
surface area of the packing. There is some evidence suggesting that the assumption of equal
interfacial and specific surface areas is not valid for sheet metal packings (see Bravo et al.,
1992). A modest change in the ratio of the interfacial area to specific surface area of the
packing would allow the product compositions reported for each plant test to be matched
exactly.

Equilibrium stage simulations of the C4 splitter were carried out in parallel with the
nonequilibrium calculations. Several simulations of each data set were performed in which
both the number of equilibrium stages and the location of the feed stage were adjusted until
the product compositions could be matched at both ends of the column.

To achieve the separation reported for Test 1 35 equilibrium stages (plus an equilibrium
reboiler and a condenser) were required (with the feed to stage 15). The corresponding
HETP is, therefore, more than 1 m (assuming constant average HETP). To attain the
separation reported for Test 2 required 45 equilibrium stages (plus condenser and reboiler)
with the feed to stage 18. This suggests that the HETP for this test is about 80 cm. To
achieve the separation reported for Test 3 30 equilibrium stages (plus condenser and
reboiler) were needed. The corresponding HETP, therefore, is about 1.2 m. It is interesting
to note that the number of equilibrium stages needed (and, hence, the HETP) is not the
same for each test. As in the preceding examples, one level of guesswork is removed from
the task of simulating an existing column by using a nonequilibrium model.

14.4.5 Other Applications

A number of other papers providing comparisons between plant, pilot, or laboratory scale
operations have been published in the literature. A brief review is provided here.
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A process that assumed enormous importance during World War II involved the
separation of C4 hydrocarbons for the manufacture of synthetic rubber that was used to
make tires. Furfural is used as an extractive distillation agent for three separations involved
in this process: isobutane* from 1-butene, n-butane from 2-butenes, and 1-butene from
butadiene. These separations were carried out in very large columns (10-14-ft diameter
two-piece columns each of 50 stages) using a mixture of furfural and water as the extractive
solvent (Happel et al, 1946, Gerster et al., 1955, Buell and Boatright, 1947). The stage
efficiency of these columns was of the order of 25-45%. Taylor et al. (1987) simulated a
number of pilot plant tests in which the separation of isobutane from 1-butene is made
possible by the addition of furfural (McCartney, 1948). In this process, relatively pure
isobutane leaves from the top of the column while most of the 1-butene and virtually all of
the furfural leave as bottoms product. The apparatus consisted of a 13-in. diameter column
with 10 bubble cap trays, a total condenser, and a once through reboiler with a separator
(again modeled as an equilibrium reboiler). The column was operated as the stripping
section of an extractive distillation column. This operation was accomplished by operating
the column with no reflux and feeding the mixed overhead and bottoms products to the top
of the column (stage two). The column was operated at a pressure of about 5.5 bar. The
agreement between experimental measurement and simulation prediction was very good
indeed.

Gorak and Vogelpohl (1985) provided experimental data for the distillation of
methanol-2-propanol-water mixtures in a column filled with Sulzer CY wire mesh packing.
The experiments were carried out at total reflux. Gorak and Vogelpohl simulated their own
experiments using a nonequilibrium model devised for simulating distillation at total reflux
in packed columns. In their simulations, binary mass transfer coefficients were obtained
from a correlation due to Zogg (1972). A number of different models were used by Gorak
and Vogelpohl to obtain the activity coefficients. The distillate compositions predicted with
these models are significantly different from the measured values. Taylor et al. (1987)
simulated these experiments using the nonequilibrium stage model. Using the correlation of
Bravo et al. (1985) to estimate the binary mass transfer coefficients. The results obtained by
Taylor et al. were in reasonable agreement with the data.

Arwickar (1981) reported some results for distillation under total reflux conditions of the
system acetone-methyl acetate-methanol. The experiments were carried out in a laboratory
scale column of 7.62 cm diameter packed with 0.635 cm Raschig rings. The simulation of
total reflux operations using the nonequilibrium model is discussed by Krishnamurthy and
Taylor (1985a). In simulations of Arwickar's experiments Taylor et al. used the correlations
of Onda et al. (1968) to estimate the mass transfer coefficients in each phase and the
effective interfacial area. The average absolute discrepancy between predicted and mea-
sured mole fractions was less than 2 mol% for acetone and methyl acetate and less than
4 mol% for methanol.

Gorak et al. (1991) and Wozny et al. (1991) presented a brief description of their use of a
nonequilibrium state model to simulate vacuum distillation of fatty alcohols in columns
fitted with structured packing. They found that the compositions predicted by the nonequi-
librium model were closer to the experimental data than were the results of an equilibrium
stage-HETP calculation.

Krishnamurthy and Andrecovich (1989) used a nonequilibrium model to simulate cyro-
genic distillation processes.

McNulty and Chatterjee (1992) discuss the use of nonequilibrium models to design
packed bed pumparound zones of crude distillation towers.

As noted above, nonequilibrium models can be used for modeling absorption operations.
Krishnamurthy and Taylor (1986) present results for the absorption of ammonia in water,

* Isobutane is the common name for 2-methylpropane.
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the absorption of acid gases in cold methanol and the design of a tray column to reduce the
amount of propane in a hydrocarbon gas stream. Krishnamurthy and Taylor (1985b) provide
results for two industrial scale packed columns processing hydrocarbon mixtures, one of
which is a large absorption column.

Nonequilibrium models have also been developed for simulating liquid-liquid extraction
operations. Descriptions of the models and some comparisons of simulation predictions with
experimental data have been reported by Lao et al. (1989) and by Zimmerman et al. (1992).

14.5 CONCLUDING REMARKS—NONEQUILIBRIUM OR EQUILIBRIUM MODEL?

It has been demonstrated that nonequilibrium models offer several advantages over conven-
tional (equilibrium stage) approaches for simulating existing columns. There is no need to
guess the number of equilibrium stages needed or the location of feed or side streams when
simulating an existing column. A priori computations of stage efficiency (for tray columns)
and HETP (for packed columns) are entirely avoided. Nonequilibrium models are especially
useful for the following classes of problem:

• Packed columns (including structured packings).
• Strongly nonideal systems (where efficiencies are uncertain and vary widely from tray

to tray and component to component).
• Systems involving trace components, which include the processing of environmentally

sensitive mixtures.
• Columns with profiles that contain maxima or change rapidly over a small section of

the column, for example, azeotropic distillation or nonisothermal gas absorption.
Nonequilibrium models can locate such features with greater accuracy.

• Columns with a complicated configuration (multiple feeds and sidestreams).
• Any columns with unknown efficiencies (in order to estimate overall efficiencies for use

in equilibrium stage simulations).

Since a nonequilibrium model requires the equipment design parameters (column
diameter, tray or packing type and design, etc.) to be available, they can be used to diagnose
operating and design problems. Nonequilibrium models may also be used to identify
equipment design parameters that can be altered to improve column performance.



15 Condensation of Vapor Mixtures

It is much the same for condensers: the presence of air ensures that the temperature of the gas
phase does not remain uniform throughout, for it must fall as the steam concentration (and
therefore partial pressure also) diminishes. Often, however, designers will ignore such effects, or
take account of them only approximately. Similar problems arise in condensers for multicompo-
nent mixtures.

—D. B. Spalding (1983)

Condensation of vapor mixtures is an operation of great significance in the process
industries. The term vapor mixture covers a wide range of situations. One limit of this range
is one in which all components have boiling points above the maximum coolant tempera-
ture; in this case the mixture can be totally condensed. The other limit is a mixture in which
at least one component in the initial vapor stream has a boiling point lower than the
minimum coolant temperature and is negligibly soluble in the liquid condensate formed by
the remaining components and, hence, cannot be condensed at all. An intermediate case of
some importance is typified by a mixture of light hydrocarbons, in which the lightest
members often cannot be condensed as pure components. In each of the three cases, the
vapor mixture may form a partially or totally immiscible condensate. In practice, condensa-
tion takes place in a variety of equipment, most notably, however, in shell and tube heat
exchangers. Modeling multicomponent condensation is the subject of this chapter. We begin
with an analysis of mass and energy transfer in condensation in Section 15.1 before moving
on to develop the design equations in Section 15.2. A number of design examples are
discussed in Section 15.3 and a comparison of model predictions with experimental data can
be found in Section 15.4.

15.1 MASS AND ENERGY TRANSFER IN CONDENSATION

15.1.1 Condensation Flow Patterns

Condensation occurs whenever a vapor, a vapor mixture, or a vapor containing a noncon-
densable gas is brought into contact with a surface below the dew point or saturation
temperature of the vapor. The condensed liquid is most likely to form a continuous film
covering the cooled surface. In some cases, however, dropwise condensation is possible if
the fluid does not wet the surface. Filmwise condensation is encountered in most industrial
applications and is the only mode of condensation we shall consider further.

The cooled surface may be of any orientation although vertical and horizontal arrange-
ments are most common. Condensation operations often are carried out inside shell and
tube heat exchangers and the condensing vapors may be fed either to the shell side or to the
tube side depending on the nature of the fluids involved, their pressure, and their corrosion
and fouling characteristics (Webb and McNaught, 1980).

In vertical devices with condensation on the inside or on the outside of the tubes the
condensed liquid-film falls under the influence of gravity. The thickness of the condensed
liquid film increases in the direction of flow due to the increased liquid load caused by

435
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vapor
mixture

Figure 15.1. Condensation on vertical surfaces.

continuing condensation (Figure 15.1). At the top of the cooled surface, the film flow will be
laminar but becomes turbulent if the liquid flow rate becomes high enough. The vapor may
flow cocurrent with or countercurrent to the downwards flowing condensed liquid. The
velocity and direction of the vapor flow may have a significant influence on the condensed
liquid-film flow regime and, hence, on the condensate heat transfer coefficient (see Webb
and McNaught, 1980).

On perfectly horizontal tubes a condensed film will increase its thickness towards the
bottom of the tube (Fig. 15.2). Some of the condensed liquid will fall onto lower tubes,
increasing the liquid load, and decreasing the heat transfer coefficient on those tubes. Even
a slight inclination of the tube is sufficient to cause the condensate to drain in the direction
of the slope. A horizontal shell and tube condenser is likely to be baffled so as to force the
vapor to flow horizontally across the tubes. Other flow arrangements are, however, possible.

Condensation may also take place inside horizontal tubes, the flow regimes depend
strongly on the velocity of the vapor. At low vapor flows, the condensate film tends to collect

Figure 15.2. Condensation on horizontal tubes.
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coolant

Figure 15.3. Condensation inside horizontal tubes.

at the bottom of the tube, whereas at very high vapor flows rates, a condensate film of more
uniform thickness forms in the tube (Fig. 15.3).

15.1.2 Mass and Energy Transfer

Typical composition and temperature profiles in condensation operations are shown in
Figure 15.4. The analysis of mass and energy transfer in condensation that follows is an
extension of the general analysis of simultaneous mass and energy transfer presented in
Section 11.5. The additional complication here is that we must account for energy transfer
(but not mass transfer) across the tube wall into the coolant.

interface

bulk
vapor

Figure 15.4. Composition and temperature profiles in condensation.
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The molar fluxes on each side of the vapor-liquid interface must be equal, so Eqs.
11.5.3-11.5.5 apply here as well

Nt
L =Jt + xtNt

L =Nt = JY + ytNt
v = Nt

v (11.5.3)

with the diffusion fluxes in each phase are given by

(JL) = ct{k'L}(x> - xL) (11.5.4)

We consider transfer from the "K" phase to the "L" phase as leading to a positive flux.
In most models of multicomponent condensation the mass transfer coefficients for the

vapor phase are obtained using methods derived from film theory. The low flux coefficients
commonly are estimated using the empirical procedures described in Section 8.8; the use of
the Chilton-Colburn analogy is particularly common (see Webb and McNaught, 1980).

It is possible to circumvent the need to calculate liquid-phase mass transfer coefficients
by assuming that either

1. The condensate is completely mixed with regard to composition (but not with regard
to temperature) and so

x\=x<f (15.1.1)

2. The condensate is completely unmixed with the composition at the interface given by
the relative rates of condensation

x\ = Nt/N, (15.1.2)

The former corresponds to liquid-phase mass transfer coefficients that are effectively infinite
(no liquid-phase resistance), the latter to zero liquid-phase mass transfer coefficients
(infinite liquid-phase resistance). Clearly, the truth lies somewhere between these two
limiting cases. There is some evidence to show that if there is a noncondensing component
in the vapor phase, then these two limiting cases give essentially identical results (Sections
15.3 and 15.4).

We also have continuity of the energy fluxes across the vapor-liquid interface, liquid-wall
and wall-coolant interfaces. If we adopt a one-dimensional (film) model of the transport
processes, then all of these energy fluxes are equal. Changes in the interfacial area due to
curvature have been ignored; such differences may be accounted for with the corrections
shown in Section 8.2.4.

Ev = E1 = EL = Ew = Ec = E (15.1.3)

with the energy flux defined by the one-dimensional form of Eq. 11.2.4

n

E^q+ E ^ # / (15.1.4)
* = i

There is no convective (i.e., mass transfer) contribution to the energy flux for the
coolant Ec

Ec = qc (15.1.5)
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We may set the energy flux in the bulk vapor Ev equal to that in the liquid at the
interface E1 to give

qv + £ NrEr{Tv) = q' + £ NfRKT') (15.1.6)
i = l r = l

or

q1 - «" + E N^HW) - flftr')} (15.1.7)
/ = 1

The heat flux in the vapor phase is given by Eq. 11.5.8

qv = h-v(T
v -T1) (11.5.8)

The finite flux heat transfer coefficient in the vapor phase h*v is related to the zero flux heat
transfer coefficient hv by

exp $£ - 1
(11.5.10)

where we have used the film model correction factor defined by Eq. 11.4.12 with <J>̂  defined
by Eq. 11.4.16

(11.4.16a)

In most applications, the low flux heat transfer coefficient for the vapor phase hv is
estimated from the Chilton-Colburn analogy (Eq. 11.4.35).

If we neglect subcooling of the liquid condensate, the conductive heat flux in the
condensed liquid film q1, will also equal the heat flux through the wall and into the coolant.
Thus, we may write

q1 = qw = ho(T
J - Tc) (15.1.8)

where h0 is the heat transfer coefficient incorporating the resistances of the condensed
liquid film, wall, coolant, and any fouling resistance. The heat transfer coefficient for the
condensed liquid may be estimated from Nusselt's equation or modifications thereof as
discussed by, for example, Webb and McNaught (1980). The heat transfer coefficient for the
coolant may be estimated from standard correlations, such as the Dittus-Boelter correlation
for flow in pipes.

To proceed further we break up the enthalpy difference in Eq. 15.1.7 into the sum of two
contributions

{W(TV) -HtiT1)} = {W(TV) -WiT1)} + [W(T') -HtiT1)}

= [H?{TV) ~ HriT1)} + A//vap,, (15.1.9)

where A//vap t is the molar heat of vaporization of species i defined by
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We further assume that we are dealing with ideal vapor mixtures and that the ideal gas heat
capacities can be considered constant over the temperature range of interest and so

{Hy(Tv) - WiT1)} = Cv
pi(T

v - T1) (15.1.10)

Equation 15.1.7 may now be expressed as

= h

£ exD J

= hv H J H(TV - T1) + E NAHwapJ (15.1.11)
exp<pH - i i=1

The model is completed by equations that represent phase equilibrium at the vapor-liquid
interface,

y/ = KiX; i = l , 2 , . . . , n (11.5.11)

and the two mole fraction summation equations (Eqs. 11.5.26 and 11.5.27)

Sv= E y / - l = 0 (11.5.26)
i = l

n

SL = E ^ / - 1 = 0 (11.5.27)
i=\

A number of algorithms have been published for computing rates of condensation from
the mathematical model developed above. Krishna et al. (1976) solved the mass and energy
transfer rate equations (by repeated substitution of the Nt) and the vapor-liquid equilib-
rium equations (standard bubble point calculation) within an outer loop that, in effect,
solved the liquid mixing equations using Newton's method. The outer loop variables were
the n — 1 interfacial compositions xf. Other algorithms, those of Price and Bell (1974) and
of Webb and co-workers (Webb and McNaught, 1980; Webb and Taylor, 1982; Webb 1982)
involve up to three levels of iteration loop. For the general multicomponent case we
recommend solving all of the model equations simultaneously using Newton's method. This
approach, as described in Section 15.1.3, represents an extension of Algorithm 11.5.1 for the
general interphase mass transfer problem. Special algorithms for solving problems when the
vapor phase contains two species are discussed in Sections 15.1.4 and 15.1.5.

15.1.3 Computation of the Fluxes in Multicomponent Systems

The number of independent equations that model the general multicomponent condensa-
tion problem is 3n + 1. These equations are

• n — 1 mass transfer rate equations for the vapor phase.

• n — 1 equations representing the liquid phase.

• n equilibrium relations for the vapor-liquid interface.

• Two mole fraction summation equations (Eqs. 11.5.26 and 11.5.27).

• One interfacial energy balance (Eq. 15.1.11).
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As noted above, we recommend solving all 3n + 1 equations simultaneously using
Newton's method. The 3n + 1 variables that may be determined by solving this set of
equations numerically are as follows:

• In mole fractions on each side of the interface y} and xf.

• n molar fluxes Nt.

• The vapor-liquid interface temperature T1.

The problem formulation for condensation is very similar to the interphase mass transfer
problem discussed at some length in Section 11.5. The set of independent equations,
ordered into a vector of functions (F), is as follows:

where the Rv represent the mass transfer rate equations for the vapor phase given by

(Rv)^c^[k'v](yv-y')+Nt(y
v) - (N) = (0) (11.5.28)

The interfacial energy balance (Eq. 11.5.7), is replaced by Eq. 15.1.11 rearranged as

E1 - ho(T' - Tc) - hy(HH + *^ ) ( r " - 7") - £ NAH^, = 0 (15.1.12)

The n — 1 equations for the liquid phase are either the n — 1 mass transfer rate
equations (Eqs. 11.5.29), or n — 1 mixing equations for the liquid phase

Xt = xjNt - Nt = 0 no mixing (15.1.13)

or
xt = x! ~ xt = ° complete mixing (15.1.14)

The 0 / represent the equilibrium equations

Q! = KiXJ -yf = 0 / = l , 2 , . . . , n (11.5.30)

The vector of independent variables remains as defined in Section 11.5.

f = (NuN2,...,Nn_1,Nn,x>,x{,...,x!,,

Algorithm 11.1 may be adapted as Algorithm 15.1 to determine the set of temperatures,
mole fractions, and fluxes that makes the discrepancy functions close to zero. An illustration
of this algorithm is provided by Example 15.1.1. One of the advantages of the simultaneous
solution procedure is that, as shown in Example 15.1.2, only minor modifications of it are
needed if the vapor contains noncondensing gases.
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Algorithm 15.1 Procedure for Determination of Mass and Energy Fluxes
in Multicomponent Condensation

Given: Bulk vapor conditions, coolant temperature.
Mass and heat transfer coefficient models.
Thermodynamic and physical property models.

Step 1: Generate initial estimates of all unknown variables.
Set vapor-liquid interface temperature to the average

of vapor and coolant temperatures.
Set interface mole fractions equal to bulk vapor composition.
Set molar fluxes to small, nonzero, values.

Step 2: Compute
Transport properties.
Thermodynamic properties (K values, enthalpies).
Mass transfer coefficients.
Heat transfer coefficients.
Vector of discrepancy functions (F).

Step 3: Compute elements of Jacobian matrix [J].
Step 4: Check for Convergence, if not obtained continue with Step 5.
Step 5: Compute new set of unknown variables by solving Eq. C.2.5. Return to Step 2.

Example 15.1.1 Condensation of a Methanol-Water Mixture

A mixture of methanol (1) and water (2) vapors at 90°C, containing 40 mol% methanol, is
flowing downwards through a water cooled vertical tube as illustrated in Figure 15.5. Find
the composition of the condensate formed at the top if the cooling water temperature at
that position in the condenser is 39.1°C.

ANALYSIS For two component mixtures the mathematical model developed above con-
sists of seven equations.

F, - cv
tk

vav{y\ - y{) + yftJV, + N2) - N, = 0

F2 = ho(T' - Tc) - hv*H{Tv - T>) - hv^H(Tv - 7") - N^Hmpl - N^Hvap2 = 0

F4 = Kxx{ -y{ = 0

F5 = K2x'2 - y{ = 0

F6 = y[ + y{ - l = o

F 7 = x\ + x'2 - 1 = 0

The function Fx is the mass transfer rate equation for the vapor phase F2 is the interfacial
energy balance F3 is valid if the liquid phase may be assumed unmixed with

kL = 0 /] = 0 N1=x{Nl

F4-F7 represent phase equilibrium at the interface.
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Figure 15.5. Schematic diagram of vertical condenser tube. Inset shows composition profiles in the
vapor film at the top of the tube.

The seven variables to be computed are

All other quantities appearing in the above equations must be specified or calculated.
Specified quantities include the coolant temperature, the bulk vapor composition, and the
bulk vapor temperature. All physical and thermodynamic properties including the mass and
heat transfer coefficients must be known or methods for estimating them in terms of
specified or calculated variables must be available.
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DATA

Molar heat capacity of methanol: Cpl = 45 J/mol K.
Molar heat capacity of water: Cp2 = 34 J/mol K.
Latent heat of vaporization of methanol: Ai/vapl = 36 kJ/mol.
Latent heat of vaporization of water: A/fvap2 = 43 kJ/mol.
Vapor-phase heat transfer coefficient: hv = 60 W/m2K.
Vapor-phase mass transfer coefficient: kv = 0.08 m/s.
Heat transfer coefficient for

(condensate + wall + coolant): h0 = 2000 W/m2K

The vapor-liquid equilibrium behavior of the methanol-water system may be represented
by

Kx = 7lP[/P K2 = y2Pi/P

The pure component vapor pressures may be estimated from the Antoine equation as
follows:

In P[ = 23.402 - 3593.4/(7 - 34.29)

In P | = 23.196 - 3816.4/(7 - 46.13)

where Pf and P2 are in pascals and T is in kelvin.
The activity coefficients may be estimated from the Margules equation (Table D.2) with

parameters from Gmehling and Onken (1977ff, Vol. 1/la, p. 53):

A12 = 0.8517 A21 = 0.4648

SOLUTION This problem is very similar to Example 11.5.2 where a mixture of methanol
and water was distilled. Essentially the same procedure is used here to determine the rates
of condensation.

Step 1: Estimation of all of the independent variables. For the first iteration we use the
following values:

Nx = 0.4 mol/m2s N2 = 0.6 mol/m2s

y{ = 0.4 y[ = 0.6

x[ = 0.4 x{ = 0.6

T1 = 65° C

The vapor-phase mole fractions at the interface are set equal to the bulk-phase mole
fractions; the liquid-phase mole fractions are given the same values as the interface
vapor mole fractions. The interface temperature is estimated midway between the vapor
phase and coolant temperatures. Finally, the molar fluxes in moles per second (mol/s)
were set equal to the liquid mole fractions. This set of initial values is not a particularly
good set of initial values. In other words, it will take more iterations to converge to a
final set of variables from this set of initial values than it might from some other, better
set of values. The advantage of this procedure is that the rules outlined here are simple
and easy to apply to any similar problem.



MASS AND ENERGY TRANSFER IN CONDENSATION 445

Step 2: Evaluation of the discrepancy functions. The evaluation of the functions F1-F1

follows much the same path that we took in Example 11.5.2.
The molar density of the gas phase is computed from the ideal gas law using the

average of the bulk vapor and interface temperatures

cv
t = 34.75 mol/m3

The mass transfer rate factor for the vapor phase may now be computed

<$>v = (N, +N2)/c?kv

= (0.4 + 0.6)/(34.75 X 0.08)

= 0.3597

The vapor-phase high flux correction factor follows as:

= 0.3597/(exp(0.3597) - 1)

= 0.8309

The function F1 may now be evaluated as

Ft - c^Uv{y\ - y[) + yX{Nx + N2) - N,

= 34.75 X 0.08 X 0.8309 X (0.4 - 0.4) + 0.4 X (0.4 + 0.6) - 0.4

= 0

Note that our initial estimates were chosen in a way that makes F1 equal to zero
regardless of the values of cv

t, <1>
K, and av.

We now turn our attention to evaluation of the energy balance F2. The heat transfer rate
factor is computed first

= (0.4 X 45 + 0.6 X 34)/60

= 0.64

The heat transfer correction factor may now be calculated

= 0.64/(exp(0.64) - 1)

= 0.7139

The energy balance function F2 may now be evaluated as

F2 = h^T1 - Tc) - hv(~H 4- &H)(TV - T1)

- N^Hvapl - N2AHvap2

= 2000 X (65 - 39.1) - 60 X (0.7139 + 0.64) X (90 - 65)

- 0.4 X 36,000 - 0.6 X 43,000
= 9569
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The liquid-phase mixing equation is evaluated next

= 0.4 X (0.4 + 0.6) - 0.4

= 0.0

As was the case with Fv our initial estimates of the fluxes and liquid composition were
chosen in a way that makes F3 = 0.

The equilibrium relations F4 and F5 are evaluated in exactly the same way as in Example
11.5.2. Expressions for the activity coefficients are given in Table D.2. At the current
estimates of the interface composition and temperature the activity coefficients have the
values

The vapor pressures are

and the K values are

= 1.2155

P{ = 106,527 Pa

y 2 = 1.1603

= 25,010 Pa

= 1.2155 X 106,527/101,325

= 1.278

K2 = y2P}/P

= 0.2865

We may now evaluate the departures from equilibrium as

F4 - KlX{ - y[

= 1.278 X 0.4 - 0.4

= 0.0954

F5 - K2x[ - y{ = 0

= 0.2865 X 0.6 - 0.6

= -0.4261

Finally, we evaluate the mole fraction summation functions.

= 0.4 + 0 . 6 - 1

= 0

F 7 =x{ + x!
2-l

= 0.4 + 0 . 6 - 1

= 0

Step 3: Evaluation of the Jacobian matrix [J]. The elements of [J] are obtained by
differentiating the functions above with respect to each of the independent variables.
The derivatives of Fx and of F4-F7 are given in Example 11.5.2 and are not repeated
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here. The partial derivatives of F2 and F3 are given below

dF2/dTl

dF3/dNx

dF3/dN2

dF3/dx[

= ho +

— xx

= Nt +

1

N2

We have assumed the high flux correction to the heat transfer coefficient can be
considered a constant for the purpose of deriving the expressions given above.

We do not have the space to provide numerical values for all the elements of the
Jacobian matrix here.

Step 5: Computation of a new set of independent variables.
Following the calculation of [J] we solve the linear system (Eq. C.2.5) and obtain the

following new estimates of the independent variables.

Nx = 0.4613 mol/m2s N2 = 1.7565 mol/m2s

y[ = 0.5843 y[ = 0.4157

x{= -0.0258 x[ = 1.0258

T1 = 359.01 K

Although the new estimates of the liquid-phase mole fractions satisfy the mole fraction
summation equation, the values given above clearly are physically impossible. Since
negative mole fractions may cause problems computing physical properties it is advisable
to reset them so that they are positive. We proceed with the values

x{ = 0.001 x[ = 0.999

A second computation of the functions Fx-Fn yields

F1 = 0.1049 F2 = 937.3 F3 = -0.5185

F 4 = -0.7294 F5 = 0.1901

F6 = 0 F7 = 0

The energy balance is much closer to being satisfied but other functions show greater
discrepancies than before. This is, in fact, no more or less than we should have expected.
Since the equations are not dimensionless, we will find that the energy balance is always
the last equation to be converged. The next set of values of the independent variables is
found by solving Eq. C.2.5 again

Nt = 0.2242 mol/m2s N2 = 1.3578 mol/m2s

y[ = 0.6347 y{ = 0.3653

x[ = 0.0937 x{ = 0.9063

T1 = 346.34 K
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After about eight iterations we converge to the following values:

Nx = 0.4134 mol/m2s JV2 = 1.5610 mol/m2s

y[ = 0.6033 y[ = 0.3467

x{ = 0.2094 x[ = 0.7906

T1 = 353.74 K

The final values of the mass transfer rate factor and high flux correction factor are

3>K= 0.726 av = 0.6806

The corresponding heat transfer parameters are

$£=1,195 aH = 0.5189

It is obvious that the flux correction factors cannot be ignored in this particular problem.
This is likely to be the case in many condensation problems.

Composition and temperature profiles in the vapor phase are shown in Figure 15.5. •

Example 15.1.2 Condensation of a Binary Vapor in the Presence of an Inert Gas

During the manufacture of methyl ethyl ketone (MEK) from 2-butanol it is necessary to
condense a stream of MEK(1) and 2-butanol(2) in the presence of hydrogen (3). In this
example, adapted from Austin and Jeffreys (1979), the gas-vapor mixture is fed to the shell
side of a shell and tube heat exchanger as shown in Figure 15.6. The heat exchanger has the

incoming vapor uncondensed vapor

Figure 15.6. Schematic diagram of shell and tube condenser used for condensation of MEK and
2-butanol in the presence of hydrogen.
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following dimensions:

Number of tubes 104
Length of tubes 2.55 m
Outside diameter of tubes 0.0191 m
Inside diameter of tubes 0.0158 m
Shell side cross-sectional area 0.0292 m2

Shell side equivalent diameter Weq) 0.0239 m
Heat transfer surface area 15.913 m2

The gas-vapor mixture enters the condenser at the following conditions:

Vapor flow rate Mv = 0.43293 kg/s.
Vapor inlet temperature Tv = 398.2 K.
Inlet pressure = 100.0 kPa.
Inlet vapor composition (mole fraction)

y\ = 0.4737 yv
2 = 0.0579

The coolant temperature at the vapor inlet end of the condenser is 299 K.
Estimate the rates of condensation at the inlet to the condenser.

ANALYSIS The molar fluxes in the vapor phase will be calculated from

Nt = J-i + y\{Nx + N2)

N2=J2+y2
/(N1+N2)

The molar diffusion fluxes J1 and J2 are given by

where we have adopted the convention that transfers from the vapor to the liquid phase are
positive. Hydrogen does not condense so N3 = 0 and there is no contribution from N3 in
the convective contributions to N1 and N2. For this example we shall use the
Krishna-Standart (1976) method of estimating the multicomponent mass transfer coeffi-
cients. This method is described in detail in Section 8.3.3.

The energy balance relation (Eq. 15.1.11), simplifies to

q*-ho(T'-Tc)

= hv(BH + ®H)(TV - T>) + N.AH^ + N2\Hvap2

The model is completed by assuming equilibrium at the phase interface. This condition is
represented by Eqs. (11.5.11, 11.5.25, and 11.5.26).
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We shall, as before, use Newton's method to solve all the independent equations
simultaneously. The independent equations, written in the form F(x) = 0, are listed below

F2 = J2+ ?2 (#i +N2)-N2 = Q

F3 = ho(T< - Tc) - hvBH(Tv - T') - hv<$>v
H{Tv ~ T') - N^Hnpl - N2AHmp2 = 0

F4 = xKN, + N2) - Ny

F5 = KlX[ - y[ = 0

F6 = K2x{-yi = 0

F7 = y[ + y{ + y{ - 1 - 0

F8 = * / + * £ - 1 = 0

Note that only two equilibrium equations F5 and F6 are used. Since hydrogen is present
only in the vapor phase, its mole fraction in the liquid phase is zero and, hence, its K value
is infinite. Therefore, Eq. 11.5.11 for hydrogen cannot be used in the calculations.

The eight independent variables computed by solving these equations are

Step 4 of Algorithm 15.1.1 calls for the evaluation of the Jacobian matrix [J]. The
elements of this matrix are obtained by differentiating the above equations with respect to
the independent variables. Many of these partial derivatives are zero (or can be approxi-
mated as zero). The nonzero derivatives of F1 and F2 are as follows:

dF./dN, = y\ - 1

dFx/dN2 - y\

[ = -cv,k'n

'2 = -cv
tk\2

= yv
2

3F2/dN2 =y\-l

dF2/dy> - cv
tk'2l

dF2/dy<2 = cv
tk'22

For simplicity, we have ignored the dependence of the mass transfer coefficients themselves
on the mixture composition and on the fluxes.

The partial derivatives of the energy balance are given below

dF3/dN2 = - A / / v a p 2 - Cp2(T
v - T1)

dF3/dTJ = ho + hvaH + hv<$>v
H

where we have assumed the heat transfer coefficients and the flux correction factor to be
constant for the purpose of deriving expressions for the partial derivatives.
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The partial derivatives of the liquid mixing equation are

dF3/dN1 = x[ - 1

dF3/dN2=x{

dF3/dx{ = N1+N2

The vapor phase is assumed ideal and so, the K values are independent of the
composition of the vapor phase. The partial derivatives of the equilibrium equations with
respect to the interface temperature and compositions are the same as those in Example
11.5.1. The partial derivatives of the mole fraction summation equations are either unity or
zero (cf. Example 11.5.1).

DATA Maxwell-Stefan diffusion coefficients in the vapor phase.

D12 = 6.39 X 1(T6 m2/s

£>13 = 54.5 X 1(T6 m2/s

D23 = 53.4 X 1(T6 m2/s

Molar masses

Mx = 0.072107 M2 = 0.07412 M3 = 0.002016 kg/mol

Vapor viscosity and thermal conductivity

fiv = 0.959 X 10~5Pas

AK = 0.0203 W/(m K)

The vapor-phase molar density may be calculated from the ideal gas law.
The heat transfer coefficient for the vapor phase may be estimated from the following

correlation:

hv = 0.0035 ReK

where the Reynolds number is defined by

Re = Gd&q/n
v

where G is the mass velocity of the gas-vapor mixture and deq is the shell side equivalent
diameter. The heat transfer coefficient that accounts for the resistances to heat transfer in
the condensate, wall, and coolant is assumed constant with the value

ho= 1116W/m2K

Mass transfer coefficients for the gas-vapor phase may be estimated using the
Chilton-Colburn analogy Eqs. 11.4.35 and 8.8.7

St Sc2/3 = StH Pr2/3

which can be arranged to give

K = h/(crC^)(Pry/Scv)
2/2
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The K values of MEK and 2-butanol may be calculated from

Kx = yxP{/P K2 = y2P{/P

The pure component vapor pressures may be estimated from the Antoine equation as
follows:

log P{ = 7.06356 - 1261.340/(7 - 51.181)

log P{ = 7.47429 - 1314.188/(7 - 86.65)

where P{ and Pi are in millimeters mercury and T is in kelvin.
The liquid phase is a binary mixture because hydrogen does not condense. We may,

therefore, use the Margules equation (Table D.2) to estimate the activity coefficients for the
liquid phase. The interaction parameters are

A12 = 0.3084 A21 = 0.3315

The pure component vapor-phase heat capacities have been estimated at the bulk vapor
temperature to be

Cv
pl = 120 Cv

p2 = 130.5 Cjf3 = 29.53 J/mol K

The latent heats of vaporization at the normal boiling points have the values

A#vapl = 33.3 kJ/mol A//vap2 = 33.3 kJ/mol

The vapor viscosity, thermal conductivity, and pure component capacities have been
taken from the detailed calculations of Austin and Jeffreys (1979). For the purpose of this
particular example these properties are assumed to be independent of temperature and
composition. This may not be a particularly good assumption in this case since the
temperature and composition changes are relatively large and the properties of the pure
components also differ quite widely.

SOLUTION We will illustrate the evaluation of the functions Fx-F8 using the following
"estimates" of the independent variables.

# ! = 0.6594 mol/m2s N2 = 0.1091 mol/m2s

y{ = 0.4227 y{ = 0.0308 y | = 0.5465

x[ = 0.8581 x[ = 0.1419

T7 = 331.54 K

The first step is the computation of a number of physical properties and dimensionless
groups. These will be needed in the estimation of the heat transfer coefficient that must
precede the calculation of any mass transfer coefficients.

The molar density of the vapor may be estimated using the ideal gas law at the average
vapor temperature (364.87 K).

cv
t = P/RTav

= 32.964 mol/m3
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The mass density is
V VTT7

Pt = c\M
= 1.2985 kg/m3

where M = 0.0394 kg/mol was evaluated at the bulk gas composition.
The average heat capacity of the gas mixture is calculated using the bulk gas composition

as

+ y2Cp2 + y3Cp3

= 78.23 J/molK

The Prandtl number of the vapor mixture may now be evaluated as

= (78.23/0.0394) X 0.959 X 10~5/0-0203

= 0.9382

The mass velocity of the vapor is computed as follows:

G = Mv/As

= 0.43293/0.0292

= 14.826 kg/m2s

where As is the cross-sectional area for flow on the shell side. The Reynolds number
follows as;

Re = Gdeq/fi
v

= 14.826 X 0.0239/0.959 X 10"5

= 36,950

The heat transfer coefficient in the vapor phase may now be calculated from

hv = 0.0035 ReK Pr*/3(AK/deq)

= 0.0035 X 36,950 X 0.9382(1/3) X (0.0203/0.0239)

= 107.53 W/m2K

The next step is to compute the binary mass transfer coefficients. For this example we
must make use of the Chilton-Colburn analogy as discussed above. The Schmidt numbers
for the 1-2 binary pair is computed first

= 0.959 X 1(T5/(1.2985 x 6.39 X HT6)

= 1.1558

The Schmidt numbers for the 1-3 and 2-3 binaries are found in the same way

ScK13 = 0.1355

ScK23 = 0.1383
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The binary pair mass transfer coefficients may now be calculated

K12=hV/(ctCp)(?Tv/Scvl2)
2/3

= 107.53/(32.964 X 78.23)(0.9382/1.1558)2/3

= 0.03629 m/s

K13 and K23 are calculated in the same way

K13 = 0.1515 m/s

K23 = 0.1494 m/s

The multicomponent mass transfer coefficients may be evaluated with the help of Eqs.
8.3.30 and 8.3.31 using the binary mass transfer coefficients determined above and the bulk
gas-vapor composition. The result of the calculation is the following matrix:

0.1410 0.0844]
0.0102 0.0665] m / S

The elements of the matrix of mass transfer rate factors are computed next using Eqs. 8.3.32

0.2233 -0.4192] ,
-0.0691 0.5734 J m /

The eigenvalues of the rate factor matrix are given by Eqs. 8.3.48 and have the following
numerical values:

$>1 = 0.6425 O2 = 0.1542

The eigenvalues of the correction factor matrix are obtained from Eq. 8.3.45.

Bx = 0.7129 H2 = 0.9249

The matrix of correction factors follows from Eqs. 8.3.46.

r~-, [0.8949 0.1820] .
L~J [0.0300 0.7429 J 7

The matrix of high flux mass transfer coefficients is obtained by carrying out the matrix
multiplication [A:][B] to yield

r , # 1 [0.1287 0.0884] ,c
[k]= [0.0112 0.0513] m / S

The diffusion fluxes may be calculated as

= 0.2954 mol/m2s

= 0.0646 mol/m2s

J3= -Jx-J2

= -0.3600 mol/m2s
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The first two discrepancy functions Fx and F2 may now be evaluated as

= 0.2954 + 0.1377 X (0.6954 + 0.1091) - 0.6594

« 0

2̂ = 2̂ + ^2(^1 +^2) ~N2

= 0.0646 + 0.0597 X (0.6954 + 0.1091) - 0.1091

« 0

Let us turn our attention to the evaluation of the energy balance. The heat transfer rate
factor is

= 0.8682

and the Ackermann correction factor is

= 0.6279

The energy balance function may now be evaluated as

F3 = *0(7" - Tc) - h^(BH + *%)(TV - T1)

= 1116 X (331.45 - 299.0)

- 107.53 X (0.6279 + 0.8682) X (398.2 - 299.0)

- 0.6954 X 33.3 X 103

- 0.1091 X 33.3 X 103

« 0

Next, we complete the evaluation of the liquid-phase mixing equation

= 0.8581 X (0.6594 + 0.1091) - 0.6594

« 0

To evaluate the equilibrium relations requires the computation of the K values. The
pure component vapor pressures may be estimated from the Antoine equation. At the
interface temperature the vapor pressures are

PI = 48,917 Pa P{ = 17,091 Pa

Substituting the interface mole fractions x1 into the Margules equation for activity coeffi-
cients (Table D.2) gives the following results

yx = 1.0070 y2 = 1.2703
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The K values may now be computed as

KA = 0.4926 K2 = 0.2171

We may now evaluate the departures from equilibrium as

= 0.4926 X 0.8581 - 0.4227

= 0.2171 X 0.1419 - 0.0308

« 0

The interfacial mole fractions satisfy the mole fraction summation equations.

F7 = 0 F8 = 0

It will now be clear that our initial "estimate" was, in fact, the final converged solution.
Thus, all the calculations reported provide the final values of the appropriate quantities.
Convergence was readily obtained from a set of initial values estimated as follows. The
interface mole fractions for both vapor and liquid were set equal to the bulk vapor mole
fractions. The interface temperature was estimated as the average of the coolant and bulk
vapor temperatures. The molar fluxes in moles per second were estimated to be equal to the
bulk-phase mole fractions.

Composition and temperature profiles are shown in Figure 15.7 where it is apparent that
there is a large composition and temperature change over the vapor "film."

Diffusional interaction effects are quite important in this example. We leave it as an
exercise for our readers to determine the molar rates of condensation using an effective
diffusivity model. It is worth pointing out, however, that the rates are quite different from
those calculated here.

The use of constant physical properties is somewhat questionable in this example since
the composition and temperature changes over the film are substantial. Using the average

0.6
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2-butanol (2)
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Figure 15.7. Composition and temperature profiles in the vapor film at the inlet to the MEK, 2-butanol
condenser.
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composition in the evaluation of the molar mass of the mixture and the average heat
capacity does not have a significant effect on the final results. However, using constant
average values for the diffusion coefficients and the mixture viscosity is a more serious
offense. More exact calculation would have taken both temperature and composition
dependence into consideration. •

15.1.4 Condensation of a Binary Vapor Mixture

For two component mixtures we may, in fact, devise alternative procedures suitable for
hand calculations.

A conventional bubble point calculation involves the specification of the liquid mole
fractions and pressure the subsequent computation of the vapor-phase mole fractions and
the system temperature. For a binary system (and only for a binary system) we may specify
the temperature and pressure and compute the mole fractions of both phases. Thus, our
first step is to estimate the interface temperature T1. The second step is to solve the
equilibrium equations for the mole fractions on either side of the interface. This step is, in
fact, equivalent to reading the composition of both phases from a T-x-y equilibrium
diagram.

If the liquid phase may be considered unmixed, the relative rates of condensation are
given by

tf2) (15.1.15)

which permits the fluxes Nx and N2 to be calculated explicitly from Eq. 8.2.20.

N< Ni/X'i N ^

( 1 5 - L 1 6 )

We may now solve the energy balance (Eq. 15.1.12) for the interface temperature that
may be compared with the previous estimate. If the two values of T1 differ to any extent, we
may use the newer value or some weighted average of the new and old values and go back
to solving the interface equilibrium equations.

The steps of this computational procedure are summarized in Algorithm 15.2. It is left as
an exercise for our readers to show that this simple procedure yields appropriate numerical
results when applied to the system in Example 15.1.1.

Algorithm 15.2 Condensation of a Binary Vapor Mixture

Given: Bulk vapor temperature and composition Tv, y v.
Coolant temperature Tc.
Correlations for all necessary physical properties and

transport coefficients.
Find: Condensation rate, energy flux.
Step 1: Estimate interface temperature T1.
Step 2: Calculate y[, x[ by solving equilibrium equations.
Step 3: Set the ratio of fluxes equal to the interface liquid mole fraction.

Zl = x[ = NX/(NX + N2)
Step 4: Calculate Nx and N2 from

I 1 - y[/A \ N, Nj/xj _ N2/xj
n\i-yrAi7/ W <kv cv,kv

Step 5: Check energy balance (Eq. 15.1.11).
If not satisfied, return to Step 1.
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15.1.5 Condensation of a Single Vapor in the Presence of an Inert Gas

The simplest case of practical interest to us involves the condensation of a single vapor in
the presence of a noncondensing gas. Condensation of steam in the presence of air is an
important practical application. The equations developed in the preceding section may also
be used here to determine the rate of condensation of the vapor. However, some simplifica-
tions are possible since the liquid phase will be a pure component.

The vapor species (1) has to diffuse through the inert gaseous species (2) to the
vapor-liquid interface before it can condense and release its heat to the coolant. Since the
vapor is a binary mixture we may use Eqs. 8.2.14 and 8.2.16 to calculate the fluxes. However,
since species 2 does not condense N2 = 0, the rate of condensation of the vapor species 1 is
given explicitly by Eq. 8.2.19.

(15.1.17)

The energy balance relation (Eq. 15.1.11) also simplifies to

Ew = qw = ho(T'- Tc)

= hv(aH + K)(TV - T>) + N, A//vapl (15.1.18)

We can adopt a very simple strategy for calculating the rates of condensation. The
calculation procedure is summarized in Algorithm 15.3 and illustrated in Example 15.1.2.

Algorithm 15.3 Condensation of Single Vapor in the Presence of Inert Gas

Given: Bulk vapor temperature and composition Tv,yv.
Coolant temperature Tc.
Correlations for all necessary physical properties and

transport coefficients.
Find: Condensation rate, energy flux.
Step 1: Estimate interface temperature T1.
Step 2: Calculate interface vapor composition at T1.

y{ = P?/P y[ = 1 - y[

Step 3: Calculate molar flux of condensing species.

Step 4: Calculate energy fluxes.

Step 5: If (Ew/Ev) - 1 > 0.001 (say) reestimate T1.
Return to Step 2

Example 15.13 Condensation of Methanol in the Presence of Nitrogen

A mixture of methanol vapor and nitrogen gas (40% CH3OH, 60% N2) enters inside the top
of a single vertical tubular condenser at a temperature of 70°C. The tube is cooled on the
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outside by means of cooling water that enters the top section of the annular section at a
temperature of 15°C. The condensation takes place at atmospheric pressure (101.3 kPa).

Find

1. The rate of condensation in moles per meter square per second (mol/m2s) of
methanol at the top of the tube.

2. The energy flux in watts per meter square (W/m2) at the top of the tube.

DATA

The mass transfer coefficient in the vapor phase (obtained under low rates of transfer):

kv = 0.0091 ms"1.
The vapor-phase heat transfer coefficient (uncorrected for finite transfer rates): hv =

11.6 W/m2K.
The overall heat transfer coefficient including resistance of condensate film, wall and

coolant: h0 = 400 W/m2K.
Molar heat capacity of methanol: Cpl = 45 J/mol K.
Heat capacity of nitrogen: Cp2 = 29 J/mol K.
Heat of vaporization of methanol: A//vapl = 36.4 kJ/mol.
The vapor pressure of methanol in millimeters of mercury is given by the Antoine

equation as

In P[ = 18.587 - 3626.55/[T(K) - 34.29]

(760 mmHg = 1 atm = 101.3 kPa).
SOLUTION Let us follow the steps of Algorithm 15.3.

Step 1: We begin by making an initial estimate of the interface temperature T1 at a value
midway between the vapor and coolant temperatures 42.5°C in this case.

Step 2: The vapor pressure of methanol is calculated from the Antoine equation given
above as

P/ = exp(18.587 - 3626.55/(42.5 + 273.15 - 34.29)) X 101.3/760

= 39.77 kPa

The interface concentration of methanol may be estimated as follows:

y{ = PIS/P

= 39.77/101.3
= 0.3925

Step 3: The flux of methanol follows from Eq. 8.2.19 as written above after computing the
molar density cv

t at the average of Tv and T1 (c\ = 37 mol/m3)

1 - 0.3925
= 37 X 0.0091 X In'

1 - 0.40

= 4.173 X 10~3 mol/m2s
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Step 4: The energy flux through the wall is

Ew = ho(T
I - Tc)

= 400 X (42.5 - 15)

= 11,000 W/m2

The heat transfer rate factor <PH is given by

= 4.173 X 10~3 X 45/400

= 0.0162

The heat transfer coefficient correction factor aH is calculated next.

= 0.0162/[exp(0.0162) - l]

= 0.9939

The energy flux in the vapor film is found from the second part of Eq. 15.1.18 as

Ev = h"(BH + *V
H){TV - 7") + N, A//vapl

= 400 X (0.9939 + 0.0162)(70 - 42.5) + 4.173 X 10"3 X 36.4 X 103

= 473.5 W/m2

Clearly, there is a substantial difference between Ev and £ ^ so we must reestimate T1.
A rather simple way to do this is to rearrange Eq. 15.1.18 as an explicit expression for T1

and using the energy flux in the vapor phase in place of the energy flux in the coolant

T1 = Ev/h0 + Tc

= 473.5/400 + 15

= 16.18°C

We now return to Step 2 and carry out further iterations. The final results are
summarized as follows:

y{ =

Ev =

26.4°C

P?/P

0.108

0.419

Ew =

= 0.1794

mol/m2s

4553.3 W/m2s

The numerical value of the high flux correction factor is 0.805. Thus, a calculation of
the heat flux qv from Eq. 11.5.8 would be some 20% in error if the flux correction factor
were ignored.
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Figure 15.8. Composition and temperature profiles in the vapor phase at the inlet to the condenser
tube.

The simple way of reestimating T1 used here works because Ew is a linearly increasing
function of T\ whereas Ev is mildly nonlinear but decreasing function of T1. Approxi-
mately 10 iterations were needed to reach 0.1% accuracy in the energy balance. Applying
Newton's method to the interface energy balance does not improve things much unless Nx

and y{ are regarded as functions of T1 and that makes the method much more complicated
than the simple and entirely workable method described above.

Composition and temperature profiles in the vapor phase at the top of the condenser
tube are shown in Figure 15.8. Note how the concentration of inert gas increases towards
the interface. The noncondensing nitrogen is acting as a blanket, making it harder for the
methanol to condense.

15.2 CONDENSER DESIGN

Existing models for designing heat exchangers to condense multicomponent mixtures are of
two basic kinds: equilibrium models, such as those of Kern (1950), Silver (1947) and Bell and
Ghaly (1972), and the differential or nonequilibrium models that have developed following
the original work of Colburn and Drew (1937). In the latter class of models a set of
one-dimensional differential material and energy balances is integrated numerically along
the length of the condenser. Mass and energy transfer rates usually are calculated using
equations based on a film model (Colburn and Drew, 1937; Schrodt, 1973; Price and Bell,
1974; Krishna et al, 1976, Krishna and Panchal 1977; Krishna, 1979a-d; Rohm, 1980;
Bandrowski and Kubaczka, 1981; Webb and McNaught, 1980; Webb and Sardesai, 1981;
Webb, 1982; Taylor and Noah, 1982; Shah and Webb, 1983; McNaught, 1983a, b, Webb and
Panagoulias, 1987). Still more sophisticated nonequilibrium models based on boundary layer
theory are limited primarily to describing the condensation of binary vapors or of one vapor
in the presence of a noncondensing gas. Extensions of the boundary layer models to
multicomponent systems are few in number (see, however, Taitel and Tamir, 1974; Tamir
and Merchuk, 1979; Sage and Estrin, 1976) but have not been developed to the point where
they could be used in the design of heat exchangers of complex geometry. While the
equilibrium methods are widely used (the reasons being their simplicity, rapidity in compu-
tation and because there is no need to compute intermediate vapor compositions or to
obtain diffusivity data), the one-dimensional nonequilibrium methods are more soundly
based. We develop the design relations for both vertical and horizontal condensers below.
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15.2.1 Material Balance Relations

Consider the condensation of a vapor mixture inside the vertical tube as shown in Figure
15.1. Vapor enters the top of the tube and flows downwards. The condensate flows
cocurrently with the remaining vapor down the tube. The coolant may flow cocurrently with
or countercurrently to the vapor and liquid streams. Condensation on a horizontal tube was
illustrated in Figure 15.2. In this case the condensed liquid drips off the tube and eventually
collects at the bottom of the heat exchanger. The vapor flow is directed along or, more
likely, across bundle of tubes. The design equations are developed in the same way for both
types of condenser.

We start by drawing up the appropriate material balances which, here, are written
around a section of condenser tube of differential area shown in Figure 15.9. This figure
also serves to introduce the notation we shall use here.

For the vapor phase the component material balance reads

Vi\A+AA ~ V>\A + NibA=0 (15.2.1)

Dividing by A A and taking the limit as A A goes to zero gives

-£[=-* i-l,2,...,n (15.2.2)

The total material balance is obtained simply by summing Eqs. 15.2.2 over all n species.

dV

~dA~ ~ l (15.2.3)

The differential material balances for the liquid phase are obtained in a similar way: For
each component we have

dlt
— - = Nt i = 1 , 2 , . . . , / i
dA

and the total material balance is

dL

(15.2.4)

(15.2.5)

vapor
mixture

Figure 15.9. Differential section of condenser for purposes of drawing up heat and material balances.
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The terms on the right-hand sides of Eqs. 15.2.2 and 15.2.4 are the molar fluxes of species /
in the vapor and liquid phases, respectively; we assume that transfers from the vapor phase
to the liquid phase are positive.

For a horizontal condenser where the condensed liquid drains off as soon as it forms the
component and total material balances for the liquid (Eqs. 15.2.4 and 15.2.5), do not apply.
The condensed liquid-phase composition is dictated by the local rates of condensation Nt

and we have (cf. Eqs. 15.1.1 and 15.1.2)

(15.2.6)

15.2.2 Energy Balance Relations

The energy balance for the vapor phase is

d(™y)
dA

where Hv is the enthalpy of the bulk vapor.

= -Ev (15.2.7)

Hv= LyiH? (15.2.8)

The product VHV may be expressed as

VHV= ZviRy (15.2.9)

i = i

where we have made use of the relation vt = Vyt. On differentiating Eq. 15.2.9 we obtain

_ " d{VHr)
dA . ~ dA

« / dH? dvt

n (fijV n _
«£«/-rj--EW (15.2.10)

,-=i a A , = i

The component material balance (Eq. 15.2.2) was used to eliminate dvJdA. Substituting
this result into Eq. 15.2.7, together with Eq. 15.1.4 for Ev, gives

» my
£«,— - -? (15.2.11)

where qv is the conductive heat flux out of the bulk vapor.
To proceed further we make use of the following expression to calculate the partial

molar enthalpies

c£ ( r 6 i / - rref) + A//vap>I. + cv
pi(T - TbJ)

where Tbi is the normal boiling point of species / and Tref is a reference temperature. With
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the help of this model for the enthalpies, the vapor-phase energy balance may be expressed
as

dTv

F C ; — = -qv (15.2.12)

where Cjf is the molar heat capacity of the vapor mixture.
If we neglect subcooling of the liquid condensate, the conductive energy flux through the

condensed liquid film El will also equal the energy flux through the wall of the condenser
and carried away by the coolant on the other side of the wall. The energy balance for the
coolant is

dTc

LcGp = ±QW + = cocurrent
dux

- = countercurrent (15.2.13)

where qw is the heat flux into the coolant. The sign in Eq. 15.2.13 is determined by whether
the coolant is flowing counter to the vapor phase or not. Differences in the interfacial area
at the vapor-condensate and condensate-tube wall interfaces are ignored here; it would,
however, be easy to allow for such variations.

The equations presented above can be used (with or without modifications) to describe
mass transfer processes in cocurrent flow. See, for example, the work of Modine (1963),
whose wetted wall column experiments formed the basis for Example 11.5.3 and are the
subject of further discussion in Section 15.4. The coolant energy balance is not needed to
model an adiabatic wetted wall column and must be replaced by an energy balance for the
liquid phase. Readers are asked to develop a complete mathematical model of a wetted wall
column in Exercise 15.2.1.

15.2.3 Solving the Model Equations

The set of differential and algebraic equations that make up the model must be solved
numerically in general; their complexity and nonlinearity precludes analytical solution in the
majority of cases of practical importance. It is beyond the scope of this book to discuss in
any detail the multitude of numerical methods that have been developed for solving systems
of differential equations. The equations developed above can be solved perfectly satisfacto-
rily with nothing more complicated than a fourth-order Runge-Kutta method (used by, e.g.,
Webb and Sardesai, 1981) and the first-order Euler method has also been used on occasions
(by, e.g., Krishna and Panchal, 1977). If an implicit Euler method is used, the derivatives
are, in effect, replaced by finite difference approximations. The resulting set of algebraic
material and energy balance equations can be combined with the algebraic equations that
model the mass and energy transfer rate calculation and solved simultaneously using
Newton's method (Taylor et al., 1986).

Whichever method is selected, the calculations start at one end of the condenser, the
vapor inlet presumably, where the vapor temperature, pressure, flow rate, and composition
is known and proceed until either a specified area has been reached (a simulation problem)
or until a specified amount of vapor has been condensed (a design problem). To simplify the
calculations it is usual to specify the temperature of the coolant at the vapor inlet end of the
condenser and determine the coolant entry temperature as part of the solution. Multiple
pass condensers (where the coolant and/or gas vapor streams make more than one pass
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through the heat exchanger) pose additional computational challenges that are discussed by,
for example, Webb and McNaught (1980) and by Taylor et al. (1986).

15.3 DESIGN STUDIES

In this section we present a number of examples designed to demonstrate the use of the
models presented in the preceding section as a condenser simulation and design tool. Four
example problems, taken from the literature on multicomponent condensation, are used as
a basis for illustrating the features of the model and calculation procedure. As was the case
in Chapter 14, it is not practical to present illustrative examples of the condensation model
that are as detailed as the examples in prior sections. Only a summary of the problem
specifications and a selection of results is provided here. The discussion that follows is based
on a paper by Taylor et al. (1986).

15.3.1 Example Specifications

Example 1 involves the condensation of methanol and water in the presence of air, a system
studied earlier by Schrodt (1973), by Krishna and Panchal (1977), and by Krishna (1979c).
Example 2 is similar to Example 1 but involves helium instead of air as the noncondensing
species. This change serves to increase the importance of diffusional interaction effects
which are quite considerable in this system (Krishna, 1979b, c). Example 3 involves the
condensation of a mixture of straight-chain hydrocarbon vapors taken originally from Kern
(1950) and reconsidered by Webb and McNaught (1980) who used an effective diffusivity
model to calculate the vapor phase mass transfer rates. Example 4 is a variation on an
example considered by Krishna et al. (1976); it involves the same hydrocarbons as Example
3 with the addition of hydrogen (which, in fact, has a significant effect on the results).
Unlike Krishna et al., in the results shown here, hydrogen is not considered to be a
noncondensing gas; it is, however, only sparingly soluble in the condensate. The problem
specifications are summarized in Tables 15.1 and 15.2.

TABLE 15.1 Specification of Condenser Design Examples 1 and 2

Example
Components 1

2
3

Tube orientation
Tube diameter (m)
Surface area per meter length of

one tube (m2)
Inlet vapor flow rates

(mol/s X 103 per tube)
Component 1

2
3

Vapor inlet temperature (K)
Coolant temperature at top (K)
Coolant flow rate (kg/s)
Coolant flow direction
Heat transfer coefficients

hQ (W/m2K)

1
Methanol
Water
Air
Vertical
0.0254
0.08

128.9
36.8
18.4
360.0
308.15
0.06
Counter

1700

2
Methanol
Water
Helium
Vertical
0.0254
0.08

92.1
46.0
46.0
350.0
308.15
0.06
Counter

1700

References: Schrodt (1973); Krishna and Panchal (1977); Krishna (1979c);
Taylor and Noah (1982); Taylor et al. (1986).
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TABLE 15.2 Specification of Condenser Design Examples 3 and 4

Example
Components 1

2
3
4
5
6

Tube orientation
Tube diameter (m)
Surface area per meter length of

one tube (m2)
Inlet vapor flow rates

(mol/s X 103 per tube)
Component 1

2
3
4
5
6

Vapor inlet temperature (K)
Coolant temp, at top (K)
Coolant flow rate (kg/s)
Coolant flow direction
Heat transfer coefficients

h0 (W/m2K)
hc (W/m2K)

3
^-Octane
^-Heptane
«-Hexane
«-Butane
Propane

Vertical
0.0254
0.08

204.4
245.5
40.9
204.6
122.7

413.06
300.0
NA
NA

1700

4
^-Octane
n-Heptane
«-Hexane
n-Butane
Propane
Hydrogen
Vertical
0.0254
0.08

8.4
4.2
12.6
6.3
10.5
28.0
345.4
283.15
0.04376
Counter

1700

References: Krishna et al., (1976); Kern (1950); Webb and McNaught
(1980).

In the discussion that follows we focus attention on the following:

1. A comparison of the film models that ignore difTusional interaction effects (the
effective diffusivity methods) with the film models that take multicomponent interac-
tion effects into account (Krishna-Standart (1976), Toor-Stewart-Prober (1964),
Krishna, (1979b, c) and Taylor-Smith, 1982).

2. A comparison of the interactive film models that use the Chilton-Colburn analogy to
obtain the heat and mass transfer coefficients with the turbulent eddy diffusivity
models.

3. The influence of the model used to approximate the mass transfer behavior in the
liquid phase (i.e., mixed, unmixed or finite mass transfer rate model).

15.3.2 Significance of Interaction Effects

In considering very many condenser simulations (not just those reviewed here) we have yet
to find an application where the differences between any of the multicomponent film models
that account for interaction effects (Krishna-Standart, 1976; Toor-Stewart-Prober, 1964;
Krishna, 1979a-d; Taylor-Smith, 1982) are significant. There is also very little difference
between the turbulent eddy diffusivity model and the film models that use the Chilton-
Colburn analogy (Taylor et al., 1986). This result is important because it indicates that the
Chilton-Colburn analogy, widely used in design calculations, is unlikely to lead to large
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100 r-
matrix method

% vapor
condensed

system: methanol-
-water-air

Length / [m]

Figure 15.10. Percentage condensed as a function of condenser length for condensation of methanol
and water in the presence of air.

errors in design calculations. However, effective diffusivity methods may yield results that
can differ quite markedly from the results obtained using an interactive model.

Figures 15.10-15.13 can be used to determine the relative amounts of vapor that would
condense in a device of given size for each of the four examples. Consider Example 2: from
Figure 15.11 we find that the tube needed to condense 60% of the incoming vapor is 1.16 m
predicted using an interactive model but as much as 1.66 m predicted using the effective
diffusivity model, an increase in tube length of 43%! The temperature of the vapor leaving a
condenser of either size (or any other size for that matter) can be determined directly from
Figure 15.14. The condensate composition as a function of tube length is shown, for the
same example, in Figure 15.15. For this particular example the models that account for
interaction effects are in good agreement on all these quantities but the effective diffusivity
method predicts a mole fraction of methanol in the condensate quite different to that
predicted by the interactive models (Fig. 15.15). The large differences between the percent-
age condensed predicted by the matrix and the effective diffusivity methods is indicative of
large differences between the respective predictions of the total fluxes, the disagreement
between the two predictions of the condensate composition is a measure of the disagree-
ment between the predictions of the component fluxes.

100 r

% vapor
condensed

0.0 Length / [m]

matrix method

effective
diffusivity

system: methanol-
-water-helium

2.5

Figure 15.11. Percentage condensed as a function of condenser length for condensation of methanol
and water in the presence of helium.
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(unmixed liquid)

system: C3 -C4 -C 5 -
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0.0 Length / [m] 2.5

Figure 15.12. Percentage condensed as a function of condenser length for condensation of a mixture of
normal paraffins (propane to «-octane). Note differences between condensate mixing models.
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Figure 15.13. Percentage condensed as a function of condenser length for condensation of a mixture of
normal paraffins (propane to n-octane) in the presence of hydrogen.
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Figure 15.14. Vapor temperature as a function of condenser length for condensation of methanol and
water in the presence of helium.
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Figure 15.15. Condensate composition a function of condenser length for condensation of methanol
and water in the presence of helium.

For Example 1, we find that the matrix models suggest that tubes 1.41 m long will
condense 65% of the incoming vapor, whereas the effective diffusivity method suggests that
1.84 m would be needed, a 30% larger condenser (Fig. 15.10). The same relative difference
in the size of device needed to condense 50% of the inlet vapor is found for Example 3 (Fig.
15.12). In each of Examples 1-3, the effective diffusivity model gave the most conservative
design (larger condenser surface area). That this is not always the case is demonstrated in
Example 4, where the effective diffusivity method requires some 44% less area to condense
30% of the inlet stream (Fig. 15.13). It is now clear from these few results that the effective
diffusivity methods may result in either a significantly over designed or an under designed
condenser and it is not possible to forecast whether the effective diffusivity method will be
conservative or not!

Interaction effects are most important in systems containing species whose molecular size
and nature differ widely, as is the case in Examples 2 and 4. Temperature, composition, and
flux profiles for Example 4 are shown in Figures 15.16-15.18. There are significant
differences between the matrix methods and the effective diffusivity methods. Without
hydrogen in the mixture (Example 3) all of the models give very similar results. This result

360

Temperature

[iq

260

Krishna-Standart
matrix method

effective diffusivity

0.0
Dimensionless distance

1.0

Figure 15.16. Temperature profiles during condensation of a mixture of normal paraffins (propane to
rc-octane) in the presence of hydrogen.
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Figure 15.17. Mole fractions in the vapor phase as a function of condenser length for condensation of a
mixture of normal paraffins (propane to ^-octane) in the presence of hydrogen.
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0.0
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Figure 15.18. Molar fluxes as a function of tube length for condensation of a mixture of normal
paraffins (propane to ^-octane) in the presence of hydrogen.

occurs because the diffusivities of all of the binary pairs cover a much narrower range of
values. For the same reasons, interaction effects are more pronounced in system 2 than in
system 1.

Further evidence for the significance of interaction effects in condensation can be found
in the papers by Krishna et al. (1976), Krishna (1979a-d), Rohm (1980), and Webb et al.
(1981). We shall return to this topic in Section 15.4, where we provide some experimental
support for our recommendation that an effective diffusivity model should not be used. It
might be worth pointing out that, if the calculations are done as we have suggested in
preceding sections, there are no computational advantages to using an effective diffusivity
approach.

15.3.3 Liquid-Phase Models

There is no significant difference between the two extremes of condensate mixing (i.e.,
completely mixed or completely unmixed) if there is a noncondensing or sparingly soluble
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gas present in the vapor stream (Examples 1, 2, and 4). This conclusion was also reached by
Krishna et al. (1976), Webb and Saredesai (1981), and Taylor and Noah (1982). However, in
Example 3, in which all of the components are condensable, there is a very considerable
difference between these two extremes (Fig. 15.12). McNaught (1983a) writes that it is
common practice to assume complete mixing of the condensate when applying the Silver
(1947) (equilibrium) method and "it is well established that this can lead to under design if
significant separation of the phases occurs" (as in a horizontal condenser). The same thing
can be said if complete mixing of the condensate is assumed in the models described in this
paper. A design based on the well-mixed condensate model might lead to a significant under
design. We conclude from these and other results that the more conservative design is, in
general, obtained with the condensate assumed to be completely unmixed. We would
emphasize once more that there is no computational penalty for adopting either one of the
two extreme cases. Interestingly enough, it is impossible to predict situations where some
components condense while others evaporate using the no mixing option. It is quite possible
to predict this situation with a rate model or with the well-mixed condensate; indeed,
computations indicate that this happens in Example 3 in some of the sections closer to the
vapor inlet.

15.4 EXPERIMENTAL STUDIES

In this section we review the experimental studies that have been carried out with a view to
testing models of multicomponent condensation. There is a great shortage of experimental
data on mass transfer in multicomponent vapor (plus inert gas)-liquid systems. Most
published works deal with absorption (or condensation or evaporation) of a single species in
the presence of a nontransferring component. Thus, this review is necessarily brief.

15.4.1 Multicomponent Condensation

The most comprehensive experimental studies of multicomponent condensation have been
carried out by Webb and co-workers. Webb and Sardesai (1981) report the results of a
number of experiments involving the condensation of 2-propanol and water in the presence
of a noncondensing gas. The experiments were carried out in a vertical condenser tube 1 m
long and 0.023-m internal diameter. Eight runs were carried out in which 2-propanol and
water were condensed in the presence of nitrogen as inert gas and another seven runs with
freon-12 as the noncondensable component. These experiments cover a somewhat larger
range of Reynolds numbers (7000-20,000) and vapor composition. Complete details of the
experiments are available in the thesis of Sardesai (1979); a summary of the results is given
by Webb and Sardesai (1981). Webb (1982) reviewed other data obtained by his co-workers,
including the results of Deo (1979) obtained in a condenser of annular geometry and Shah
and Webb (1983) who condensed water and methanol in the presence of a variety of inert
gases in a condenser consisting of 50 horizontal tubes mounted in a rectangular duct.

Numerical simulations of Sardesai's experiments are discussed by Webb and Sardesai
(1981) and Webb (1982) (who used the Krishna-Standart (1976), Toor-Stewart-Prober
(1964) and effective diffusivity methods to calculate the condensation rates), McNaught
(1983a, b) (who used the equilibrium model of Silver, 1947), and Furno et al. (1986) (who
used the turbulent diffusion models of Chapter 10 in addition to methods based on film
theory). It is the results of the last named that are presented here.

Webb and Sardesai (1981) used a fourth-order Runge-Kutta method to integrate the
differential equations modeling the condenser. Furno (1986) divided the condenser tube
into 40 sections. Both investigators used the same method to calculate physical properties.
The Fanning friction was calculated from a correlation obtained by Webb and Sardesai
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Figure 15.19. Comparison between predicted and measured temperature drop over a vertical tube
condensing 2-propanol and water in the presence of nitrogen or freon-12. Experimental data of Webb
and Sardesai (1981); predictions by Furno et al. (1986).

from dry gas cooling experiments carried out in their condenser. Furno's simulations of
Sardesai's experiments were made easier by employing the measured wall temperature
profile. This obviates the need to consider the energy balance for the coolant and the
uncertainties in the estimation of the coolant heat transfer coefficient (the dimensions of
the annular space occupied by the coolant and the coolant flow rate are not specified in the
paper by Webb and Sardesai). The wall temperatures at positions located between the
thermocouples were estimated by interpolation.

The results of Furno's simulations of Sardesai's experiments are summarized in Figure
15.19 (predicted versus measured overall temperature drop), Figure 15.20 (predicted versus
measured total condensation rate), and Figure 15.21 (predicted versus measured condensate
composition). The condensate composition is a good indicator of the individual condensa-
tion rates.
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Figure 15.20. Comparison between predicted and measured overall rates of condensation in a vertical
tube condensing isopropanol and water in the presence of nitrogen or freon-12. Experimental data of
Webb and Sardesai (1981); predictions by Furno et al. (1986).
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Figure 15.21. Comparison between predicted and measured mole fractions of 2-propanol in a conden-
sate of 2-propanol and water. Experimental data of Webb and Sardesai (1981); predictions by Furno
et al. (1986).

Both extremes of condensate mixing yield almost identical results; those shown in
Figures 15.19-15.21 were obtained using the no-mixing option. The use of the Chilton-
Colburn analogy to estimate the heat and binary pair mass transfer coefficients consistently
underpredicted the total condensation rates. Figures 15.19-15.21 show the results of
simulations in which the Gilliland-Sherwood correlation (Eq. 8.8.5) was used for estimating
only the mass transfer coefficients (heat transfer coefficients were calculated from the
analogy). The model using the Gilliland-Sherwood correlation still tends to underpredict
the total condensation rates, but not by as much as was found using the Chilton-Colburn
analogy to estimate the mass transfer coefficients).

We see from these figures that the mass transfer models that take diffusional interactions
into account are quite a lot better than the effective diffusivity model, which underpredicts
the rate of condensation of 2-propanol in every case. However, the effective diffusivity
methods give good predictions of the overall temperature drops (Fig. 15.19) although there
is little to distinguish any of the models here on this basis.

15.4.2 Ternary Mass Transfer in a Wetted Wall Column

A set of ternary mass transfer experiments was carried out by Toor and Sebulsky (1961b)
and Modine (1963) in a wetted-wall column and also in a packed column. These authors
measured the simultaneous rates of transfer between a vapor-gas mixture containing
acetone, benzene, and nitrogen or helium, and a binary liquid mixture of acetone and
benzene. Vapor and liquid streams were in cocurrent flow in the wetted-wall column and in
countercurrent flow in the packed column. Their experimental results show that diffusional
interaction effects were significant in the vapor phase, especially for the experiments with
helium in the wetted wall column.

Modine (1963) carried out his experiments in an adiabatic wetted-wall column 0.6096 m
in length and 0.025019-m inside diameter. A gas-vapor stream containing acetone (1)-
benzene(2)-nitrogen(3) or helium(3) was contacted with a cocurrently flowing liquid stream
containing only the first two components. Seven runs were carried out with nitrogen as inert
gas and six runs with helium. The experimental results are most accessible in a paper by
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Krishna (1981); for this reason, they are not repeated here. It is worth noting, however, that
most of the experiments involve the simultaneous evaporation of benzene and condensation
of acetone. The experiments cover a rather narrow range of liquid compositions (mole
fraction acetone ~ 0.1) and vapor flow rates (Re numbers ~ 9000).

A number of investigators used the wetted-wall column data of Modine to test multicom-
ponent mass transfer models (Krishna, 1979, 1981; Furno et al., 1986; Bandrowski and
Kubaczka, 1991). Krishna (1979b, 1981a) tested the Krishna-Standart (1976) multicompo-
nent film model and also the linearized theory of Toor (1964) and Stewart and Prober
(1964). Furno et al. (1986) used the same data to evaluate the turbulent eddy diffusion
model of Chapter 10 (see Example 11.5.3) as well as the explicit methods of Section 8.5.
Bandrowski and Kubaczka (1991) evaluated a more complicated method based on the
development in Section 8.3.5. The results shown here are from Furno et al. (1986).

To simulate Modine's experiments, Krishna (1981a) and Furno et al. (1986) divided the
column into 24 sections, each of which was modeled by a nonequilibrium section as
described in Section 15.2.3. Thus, the model of the wetted wall column is simpler than the
model of a condenser in that the coolant energy balance is not needed and the interphase
energy balance does not include a term for heat transfer through the outer wall (the column
is assumed to be adiabatic). In all other respects, however, the model of a wetted wall
column is the same as the model of a condenser tube. Physical properties like density,
viscosity, heat capacity and thermal conductivity were evaluated using the same methods
employed by Krishna (1981a). The Fanning friction factor (needed in the calculation of the
heat and mass transfer coefficients) was estimated using an expression obtained by Modine
in his column (see Example 11.5.3). K values were estimated using the Antoine equation for
the vapor pressures and the Wilson equation for the liquid-phase activity coefficients.
Latent heats of vaporization were calculated using the Watson equation (Reid et al., 1977).
All physical and thermodynamic properties were evaluated separately in each section of the
condenser.

Figure 15.22 provides a comparison between the mass transfer rates measured by
Modine (1963) and the rates predicted using the different classes of model for the
vapor-phase mass transfer process: methods based on the multicomponent film model (all of
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Figure 15.22. Comparison between predicted and measured mass transfer rates for mass transfer
between a falling liquid film of acetone and benzene and a gas-vapor mixture containing, in addition,
nitrogen or helium. Experimental data of Modine (1963); predictions by Krishna (1981a) and by Furno
et al. (1986).
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Figure 15.23. Acetone and benzene composition profiles along the length of a wetted wall column for
Run 7 of Modine (1963). After Krishna (1981a).

them yield essentially identical results), and the effective diffusivity models. It is clear from
this figure that the models that account for interactive effects are in better agreement with
the experimental data than is the effective diffusivity method.

Run 7 of the simulations of Modine's experiments is particularly sensitive to the mass
transfer model used. This experiment was used as the basis for the flux calculation in
Example 10.4.1. For this experiment none of the models does well at predicting the total
amount of acetone transfer. The Krishna-Standart method, the linearized theory and the
effective diffusivity model predict the wrong direction of mass transfer; while the experimen-
tal data show that there is net vaporization of acetone, the models predict net condensation.
This erroneous prediction comes about in part because of the extremely small magnitude of
the acetone flux relative to the total flux.

Predicted vapor-phase composition profiles for Run 7 are shown in Figure 15.23 and the
fluxes calculated by three different mass transfer models are shown in Figure 15.24. The
latter figure shows that the Krishna-Standart and linearized theory predict that the flux of
acetone undergoes a change in sign somewhere in the column from negative values at the
top of the column (corresponding to vaporization of acetone) to positive in the lower section
of the column (corresponding to evaporation of acetone). The effective diffusivity method,
on the other hand, predicts that acetone will condense everywhere in the column; com-
pletely opposite to the data. These results must be considered as evidence that reverse mass
transfer takes place over part of the length of the column. As has been noted elsewhere in
this book, models of the effective diffusivity type cannot account for this behavior, even
qualitatively. The detailed calculation of the mass fluxes provided in Example 11.5.3
provides further evidence for the reverse mass transfer. Similar calculations using the
Krishna-Standart (1976), Toor-Stewart-Prober (1964) and effective diffusivity models are
given by Krishna (1981a).
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Figure 15.24. Acetone flux along the length of a wetted wall column for Run 7 of Modine (1963). After
Krishna (1981a).

15.5 CONCLUSIONS AND RECOMMENDATIONS

In this chapter we have considered models of multicomponent condensation. In particular,
we have considered various approaches to calculating the rates of mass and energy transfers
in the vapor and condensate, respectively. Methods of solving the model equations have also
been discussed.

With regard to the various models of vapor-phase mass transfer we conclude that

1. Effective diffusivity models should not be used in the determination of the rates of
mass transfer in the vapor phase. These models are not justified on theoretical
grounds, nor on experimental grounds and their use offers no reduction in the cost of
obtaining a solution or any increase in the ease by which that solution is obtained.

2. The film models that take interaction effects into account (Krishna-Standart, 1976;
Toor-Stewart-Prober, 1964; Krishna, 1979; Taylor-Smith, 1982) yield temperature
and composition profiles that, for all practical purposes, are indistinguishable.

3. There is little to choose between the film models that use the Chilton-Colburn
analogy to obtain the heat and mass transfer coefficients and the turbulent eddy
diffusivity methods when they are used to predict the performance of multicomponent
condensers.

With regard to the liquid phase, there is very little to distinguish between the results
obtained using the two extremes of condensate mixing if noncondensing or sparingly soluble
gases are present in the vapor phase. There can be a very considerable difference if all
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species condense. More conservative design is obtained with the liquid phase assumed to be
completely unmixed.

The simple one-dimensional models of multicomponent condensation and cocurrent
separation processes described in this chapter are well able to model the performance of a
wetted-wall column operated by Modine (1963) and a vertical tube condenser operated by
Sardesai (1979). The results obtained with the one-dimensional model are probably good
enough for design purposes; it is doubtful if a more sophisticated boundary layer analysis
could yield any better results.



Postface

In this textbook we have concentrated our attention on mass transfer in mixtures with three
or more species. The rationale for doing this should be apparent to the reader by now;
multicomponent mixtures have characteristics fundamentally different from those of two
component mixtures. In fact, a binary system is peculiar in that it has none of the features of
a general multicomponent mixture. We strongly believe that treatments of even binary mass
transfer are best developed using the Maxwell-Stefan equations. We hope that this text will
have the effect of persuading instructors to use the Maxwell-Stefan approach to mass
transfer even at the undergraduate level.

We have emphasized the proper modeling of thermodynamic nonideality both with
regard to molecular diffusion and interphase mass transfer. The benefits of adopting the
irreversible thermodynamic approach are particularly apparent here; it would not be
possible otherwise to explain the "peculiar" behavior of the Fick diffusivities. The practical
implications of this behavior in the design of separation equipment operating close to the
phase transition or critical point (e.g., crystallization, supercritical extraction, and zone
refining) are yet to be explored. In any case, the theoretical tools are available to us.

We anticipate that in the future, most separation process design will be carried out by a
"head-on" approach using nonequilibrium stage models rather than by the time honored
method of equilibrium stage simulations followed by efficiency estimation. After all, design-
ers of chemical reactors never resort to equilibrium stage approaches to packed bed
reactors. There is going to be a computational penalty for incorporating matrix formulations
of multicomponent mass transfer into equipment design procedures. We have tried to
indicate how these models may most effectively be used in design. With the help of the
worked out design examples we hope we have convinced the process designer of the need to
exercise particular caution when dealing with nonideal multicomponent mixtures.

An important application of multicomponent mass transfer theory that we have not
considered in any detail in this text is diffusion in porous media with or without heteroge-
neous reaction. Such applications can be handled with the "dusty gas" (Maxwell-Stefan)
model in which the porous matrix is taken to be the n + lth component in the mixture.
Readers are referred to monographs by Jackson (1977), Cunningham and Williams (1980),
and Mason and Malinauskas (1983) and a review by Burghardt (1986) for further study.
Krishna (1993a) has shown the considerable gains that accrue from the use of the
Maxwell-Stefan formulation for the description of surface diffusion within porous media.

One of the most exciting possibilities afforded by a proper appreciation of the theory of
multicomponent mass transfer is that we are able to effect separations that would otherwise
not be possible using "simple-minded" binary-like approaches. An example of this is
diffusional distillation where deliberate use is made of multicomponent effects to separate
azeotropic mixtures. The trick of deliberately adding a third component, in the case of
diffusional distillation of a noncondensing gas, to act as a selective "filter" or "membrane"
can also be used to separate gaseous mixtures that are noncondensable; the third compo-
nents can be a condensable vapor, such as steam. This technique has been used to separate
mixtures as helium-neon and isotopes of helium. Conceptually speaking, there is no
difference between diffusional distillation and membrane pervaporation; the inert gas in the
former case plays the same role as the membrane in the latter case. In fact, gaseous
membrane separation processes lend themselves very nicely to analysis using the
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Maxwell-Stefan (dusty gas) approach by taking the membrane to be the additional "compo-
nent" in the mixture. When the model is extended to account for thermodynamic nonideali-
ties (what may be considered to be a dusty fluid model) almost all membrane separation
processes can be modeled systematically. Put another way, the Maxwell-Stefan approach is
the most promising candidate for developing a generalized theory of separation processes
(Lee et al., 1977; Krishna, 1987).



Exercises

To complete this text we offer a selection of exercises. Some of the exercises are of a
theoretical nature and we ask you to verify some of the equations presented in the text or to
derive established results in other ways. In other exercises we invite you to extend the
theoretical treatments in ways that we have not considered in detail (although in some cases
the results are available in the literature). Still other exercises are of a computational nature
and we invite you to compute mass transfer coefficients, molar fluxes, composition profiles,
and other quantities. In order to gain some familiarity with the various methods described
in the text we strongly recommend solving the computational problems. Hand calculation is
extremely instructive but does get to be a bit tiresome after a while. There are also exercises
that require you to evaluate papers in the literature. Finally, we have provided exercises that
can be assigned as term projects for students, perhaps as a replacement for a final
examination.

CHAPTER 1

1.1 Starting from the definitions of the molar diffusion fluxes in the molar average velocity
reference frame and in volume average velocity reference frame (Table 1.3), verify Eqs.
1.2.20 and 1.2.22. These equations may be written in n - 1 dimensional matrix form as

(Jv) = [BV»](J)

Show that [BVu] = [BuV]~\
Hint: Use the Sherman-Morrison formula (Eqs. A.3.22 and A.3.23).

1.2 Starting from the definitions of the mass diffusion fluxes in the mass average velocity
reference frame and in molar average velocity reference frame (Table 1.3), verify Eqs.
1.2.24 and 1.2.26. These equations may be written in n - 1 dimensional matrix form as

Uu) = [Buo](j)

U) = [BOU]UU)

Show that [Buo] = [Bou]'\

1.3 Obtain an equation similar to Eqs. 1.2.20 or 1.2.22 that transforms the molar diffusion
flux relative to an arbitrary reference velocity ua to the molar diffusion flux relative to
some other arbitrary reference velocity ub. Verify that Eqs. 1.2.20 and 1.2.22 are
special cases of the general result.

1.4 Repeat Exercise 1.3 for transforming mass diffusion fluxes between reference velocities
ua and ub.

1.5 Derive an expression for transforming the gradient mole fractions to gradient of mass
fractions (and vice versa) analogous to Eqs. 1.2.20 et seq. That is, find the matrix [BXI°]
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in the equation

(Vx) = [B™](Va>)

and find the inverse transformation

(Vw) = [B»x](Vx)

What is the relationship between [B^] and [Buo]l

CHAPTER 2

2.1 The chemical potential of species / in a mixture is given by

where ju° is the standard state chemical potential, a function only of temperature. The
activity ai of species / is defined by

where ft is the fugacity of species / and / ° is the standard state fugacity. For ideal
gases the fugacity is equal to the partial pressure

Use the above thermodynamie definitions to show that the driving force dt defined by

d, - (xt/RT^r^, (2.2.2)

reduces, for ideal gases, to

dl = (l/P)VPl

2.2 Experiments in ultracentrifugation of binary solutions have been reported by Cullinan
and Lenczyk (1969). In their experiments an equimolar mixture of hexane (1) and
carbon tetrachloride (2) was placed in a sedimentation cell in an ultracentrifuge and
rotated at 30,000 rpm. The temperature of the cell was held constant at 20°C. After
sedimentation equilibrium had been obtained, samples were withdrawn from several
radial positions and analyzed in a gas chromatograph with accuracy better than 1%.
The composition profile at equilibrium is given in the following table.

r2

[103 mm2]

2.91
3.08
3.37
3.61

0.651
0.642
0.629
0.612

r2

[103 mm2]

4.05
4.46
4.92
5.36
5.88

0.592
0.574
0.548
0.524
0.498

r2

[103 mm2]

6.34
6.86
7.37
7.95

0.467
0.439
0.413
0.378

Estimate the thermodynamie derivative d\xx/dxx for an equimolar mixture of
hexane and carbon tetrachloride, at 20°C. Assume that the partial molar volumes at
the constituents are independent of pressure and composition. Compare your result
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with the one obtained from the equation given by Christian et al. (1960) for the activity
coefficient of hexane in the same system at 20°C.

= 0.18(1 -xxf

Data

Molar masses: M1 = 0.0862 kg/mol M2 = 0.1538 kg/mol
Densities at 20°C: p1 = 659 kg/m3 p2 = 1595 kg/m3

2.3 Laity (1963) reported values of "friction coefficients" / / ; = RT/D^ for aqueous solu-
tions of NaCl at 25°C, at various salt concentrations. The data, recalculated in terms of
the Du, is given below. Numbering is 1 = Na+; 2 = Cl~; 3 = H2O

[mol/m3]

0.0
10
20
50

100
200

013

1.333
1.333
1.333
1.325
1.312
1.298

[10~9 m2 /s]

2.032
2.065
2.083
2.083
2.083
2.101

012

0
0.0078
0.0113
0.0197
0.0302
0.0468

a. Determine the matrix [Bn] x at a salt concentration of 200 mol/m3.
b. Determine the salt concentration up to which the Nernst-Planck equation can

"safely" be used.

CHAPTER 3

3.1 Show that Eq. 3.2.11 relates the matrix of Fick diffusion coefficients in the mass
average reference velocity frame to the matrix of Fick diffusion coefficients in the
molar average reference velocity frame.

3.2 Show that Eq. 3.2.12 relates the matrix of Fick diffusion coefficients in the molar
average reference velocity frame to the matrix of Fick diffusion coefficients in the
volume average reference velocity frame.

3.3 Continue the calculations of Example 3.2.1 for the remainder of the data in Table 3.2
(transformation of Fick diffusion coefficients in the volume average reference velocity
frame to the molar average reference velocity frame).

3.4 For the system dodecane(l)-hexadecane(2)-hexane(3), Kett and Anderson (1969)
reported the values of the matrix of Fick diffusion coefficients in the volume average
reference velocity frame. At a temperature of 25°C and at the composition: xl = 0.35,
x2 = 0.317 the matrix [Dv] is

0.968 0.266] 1 0 - 9 m 2 / s
0.225 1.03lJX 1 U m / S

Determine the values of the coefficients of [D] in the molar average reference velocity
frame.
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Data

Vx = 229 X 10"6 m3/mol

V2 = 293 X 10"6 m3/mol

V3 = 132 X 10~6 m3/mol

3.5 Carry out a review of the literature on diffusion in the vicinity of critical points and
spinodal lines. Your review should concentrate on summarizing the data that has been
measured as well as on contrasting the various theories that have been proposed to
explain diffusion phenomena near critical conditions. Consider the question Can the
fact that the matrix of Fick diffusion coefficients is close to being singular near the
spinodal be exploited in a commercially useful separation process?

CHAPTER 4

4.1 Carry out a review of methods for estimating infinite dilution diffusion coefficients in
binary liquid mixtures. Your review should include calculations to test the accuracy of
the methods that have been proposed. Fundamental data for computing the coeffi-
cients should be obtained from a single source as far as is possible; we recommend
the compilation by Daubert and Danner (1985).

4.2 Tyn and Calus (1975b) measured the Fick diffusion coefficient D in mixtures of
ethanol and water at 40°C. Their data are tabulated below.

0.240
0.100
0.144
0.200
0.254
0.300
0.400
0.500
0.590
0.600
0.680
0.700
0.792
0.800
0.880
0.900
0.960

£>[10~9 m2 /s]

0.151
0.100
0.780
0.680
0.635
0.610
0.640
0.730
0.850
0.865
1.020
1.060
1.260
1.270
1.440
1.470
1.570

These data were shown in Figure 4.1 and used as the basis for Example 4.1.3. Carry
out your own check of the accuracy of the Vignes correlation using the NRTL model
for the activity coefficients and the parameters in Example 4.1.3. Repeat the calcula-
tions using the Van Laar model with parameters A12 = 1.5922 and A2i = 0.9836.
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4.3 Look up activity coefficient model parameters for the system methanol-n-hexane in
the collection of Gmehling and Onken (1977ff, Vol. I/2c). Hence, compute the
thermodynamic factor T for a range of concentrations for each of the models in
Appendix D.I. What conclusions can be drawn from a comparison of your results
with those in Figure 4.2.

4.4 Sanni and Hutchison (1973) presented data on the binary Fick difTusivity for the
systems benzene-chloroform, cyclohexane-carbon tetrachloride, cyclohexane-
toluene, benzene-cyclohexane, benzene-toluene, and diethyl ether-chloroform. Cal-
culate the thermodynamic factor T for these systems using parameters from Gmehling
and Onken (1977fT). Hence, estimate the Maxwell-Stefan diffusion coefficients and
test the applicability of the Vignes model.

4.5 Carry out a comparitive review of methods for estimating diffusivities in binary liquid
mixtures as a function of composition. Your review should include sample calcula-
tions to support any conclusions you may have reached regarding the efficacy of any
particular method. Write up your work in the format of a paper for publication in
Industrial and Engineering Chemistry Research.

4.6 Myerson and Senol (1984) provided data for the Fick diffusivity of urea in aqueous
solutions along with thermodynamic data. Determine the Maxwell-Stefan diffusion
coefficient for this system and satisfy yourself that this diffusivity is better "behaved"
than the Fick diffusivity, which approaches zero near the spinodal curve.

4.7 Explore the structure of the matrix of Fick diffusion coefficients for a gas-vapor
mixture of acetone (l)-benzene(2)-helium(3). The Maxwell-Stefan diffusion coeffi-
cients in the vapor phase are Dl2 = 2.93 X 10"6 m2/s, £>13 = 31.8 X 1CT6 m2/s,
and D23 = 29.0 X 10 "6 m2/s.

4.8 Change the order in which the components in Exercise 4.7 are numbered and
recalculate the matrix of Fick diffusion coefficients at the same compositions you used
in that exercise.

4.9 Compute the eigenvalues of the matrices of Fick diffusion coefficients you computed
in Exercises 4.7 and 4.8. Convince yourself that at the same composition, the
eigenvalues of [D] are the same regardless of the order in which the components are
numbered. Prove that this must always be the case.

4.10 Calculate the matrix of vapor-phase Fick diffusion coefficients in the four component
mixture: acetone(l)-methanol(2)-2-propanol(3)-water(4). The composition of the
vapor is

yx = 0.003157 y2 = 0.164701

y3 = 0.394518 y4 = 0.437623

Data: The Maxwell-Stefan diffusivities in the vapor phase [units are 10~5 m2/s].

D\2 = 1.258 Bv
u = 0.8084

B\A= 1.944 £)£ = 1.220

4.11 Calculate the matrix of liquid-phase Fick diffusion coefficients in the four component
mixture: acetone(l)-methanol(2)-2-propanol(3)-water(4). The composition of the
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liquid is

xx = 0.003157 x2 --= 0.164701

x3 = 0.394518 x4 = 0.437623

The Maxwell-Stefan diffusivities in the liquid phase [units are 10 ~9 m 2 /s] .

B\2 = 3.423 £)£> = 2.925

£>f4 = 3.742 £)£> = 3.637

£>̂ 4 = 5.029 £>3
L
4 = 4.358

Activity coefficients may be calculated with the help of the NRTL model. The NRTL
parameters are taken from the Gmehling and Onken (1977® [units of Ag are
cal/mol K].

Ag12 = 1332.548 Ag21 = -519.890 a12 = a21 = 0.2840

Ag13 = 536.728 Ag31 = -97.8216 a13 = a31 = 0.3018

Ag14 = 189.113 Ag41 = 1581.274 au = a41 = 0.3010

Ag23 = 1520.984 Ag32 = -961.576 a23 = a32 = 0.2820

Ag24 = 263.258 Ag24 = 115.782 a24 = a42 = 0.3550

Ag34 = -51.824 Ag43 = 1495.643 a34 = a43 = 0.2700

4.12 Compute the matrix of Fick diffusion coefficients in the mass average reference
velocity frame for a mixture of MEK(l)-2-butanol(2)-hydrogen(3). The vapor compo-
sition (mole fraction) is yx = 0.4737 and y2 = 0.0579. The Maxwell-Stefan diffu-
sion coefficients in the vapor phase are £>12 = 6.39 X 10 ~6 m 2 / s , £>13 = 54.5 X
10~6 m 2 / s , and £>23 = 53.4 X 10~6 m 2 / s and the molar masses are M1 = 0.072107,
M2 = 0.07412, and M3 = 0.002016 kg/mol.

CHAPTER 5

5.1 A set of multicomponent diffusion experiments in a two bulb diffusion cell apparatus
was carried out by Duncan and Toor (1962) in an investigation of diffusional interac-
tion effects. In Experiment 1 the initial concentration in each cell is

x10 = 0.50199 x2Q = 0.00000 x30 = 0.49801

xu = 0.00000 x2e = 0.49930 x 3 / = 0.50070

where xi0 is the mole fraction of species / in bulb 1 and xig is the mole fraction of
species i in bulb 2. The three components are hydrogen (l)-nitrogen(2)-carbon
dioxide(3). The binary diffusivities are given in Example 5.3.1. Geometric details of the
two bulb cell used by Duncan and Toor and operating conditions are given in Example
5.4.1.

Compute the mole fractions in each bulb after 1 h and after 3 h. Plot the change in
concentration with time.

5.2 Repeat Exercise 5.1 for Experiment 3 of Duncan and Toor (1962). The initial mole
fractions in each bulb for this experiment were

x10 = 0.50056 x2Q = 0.49954 x30 = 0.00000

x,, = 0.49923 x7, = 0.00000 x,, = 0.50077
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5.3 Arnold and Toor (1967) investigated diffusional interaction effects in a Loschmidt tube
with the system methane (l)-argon(2)-hydrogen(3). The composition in each tube at
the start of their experiment 2T was

*!_= 0.515 JC2_= 0.485 x3_= 0.0

JC1 + = 0.488 x2 + = 0.000 x3 + = 0.512

Calculate the average concentration in the bottom tube after 180 min and plot the
change in concentration with time.

The experiments were carried out at 34°C and 101.3 kPa. The diffusion tube had a
length of (TT/ / ) 2 = 60 m~2. The binary diffusion coefficients of the three ternary gas
pairs are given in Example 5.5.1.

5.4 The composition in the two tubes of a Loschmidt diffusion apparatus are

xx_= 0.000 x2+= 0.509 x3 + = 0.491

Xl + = 0.488 x2_= 0.000 x3_= 0.512

Repeat the calculations of Exercise 5.3 for this set of data, which corresponds to the
start of experiment 3T of Arnold and Toor (1967).

5.5 McKay (1971) carried out experiments in a Loschmidt-type diffusion cell with a nine
component system including nitrogen, carbon dioxide, and a number of paraffins. The
experiments were carried out at the high temperatures and pressures typical of
underground oil and gas reservoirs. McKay's paper includes a dimensioned drawing of
the Loschmidt-type cell used for the experiment and the initial conditions for some
of his experiments. Use the theory of Section 5.5 to predict the composition profiles in
this system. State clearly any assumptions made in your calculations. You will need to
estimate diffusion coefficients at high pressure. Consult Reid et al. (1987) for details of
methods that can be used for this purpose.

5.6 Consider interphase mass transfer in the system glycerol(l)-water(2)-acetone(3). In a
particular equilibration experiment carried out by Krishna et al. (1985) the initial
composition in the acetone-rich phase is

x10 = 0.85 x20 = 0.15 x30 = 0.0

The composition of the interface is

xu = 0.5480 x2I = 0.2838 x3I = 0.1682.

The matrix of volumetric transfer coefficients [K], averaged over the entire equilibra-
tion process is

0.4948 -0.0385] , _ i
-0.6552 0.2852 J

Determine the equilibration trajectory for the acetone-rich phase. Draw this path on a
triangular diagram together with the eigenvectors passing through the initial state.

5.7 In a diaphragm cell diffusion occurs through a horizontal porous diaphragm separating
two chambers containing liquid mixtures of different compositions. In the mathemati-
cal analysis of diffusion cell data, the following assumptions normally are made.
a. Diffusion through the diaphragm is unidirectional.
b. Quasisteady state is obtained.
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c. The contents of the cell chambers are well mixed.
d. Partial molar volumes are constant and there is no net volume change on mixing.
With the above assumptions, the diffusion coefficient in a binary liquid mixture D12 is
obtained from

\n(ACl/Ac10) = -pD12t

whereAc10 is the initial difference in concentration of species 1 in the two chambers;
Act is the difference in concentration of species 1 in the two chambers at any time t
after the start of the experiment, and f3 is the cell constant. Use the linearized theory
of multicomponent diffusion to derive the multicomponent generalization of the above
diaphragm cell relation. Suggest a procedure for calculating the four elements of [D]
from experimental data obtained with a ternary system.

For more information (and a derivation) see Cussler (1976). A more general
analysis is given by DeLancey (1969).

CHAPTER 6

6.1 Using the Maxwell-Stefan equations for nonideal fluids, Eqs. 2.2.1, as a basis, develop
a general expression for an effective diffusivity defined in terms of the generalized
driving force as

With the help of Eq. 2.2.4, develop a more practical expression for the effective
diffusivity in nonideal fluids defined in terms of the gradient of mole fraction.

6.2 Repeat Example 6.4.1 for the conditions at the start of Experiments 1 and 3 of Duncan
and Toor (1962). See Exercises 5.1 and 5.2 for data.

6.3 Show that the effective diffusivity method leads to composition profiles in ternary
systems that are straight lines when plotted on triangular diagrams.

6.4 Repeat Exercise 5.5 using an effective diffusivity method.

CHAPTER 8

8.1 In Section 8.3 we presented a derivation of an exact matrix solution of the
Maxwell-Stefan equations for diffusion in ideal gas mixtures. Although the final
expression for the composition profiles (Eq. 8.3.12), is valid whatever relationship
exists between the fluxes (i.e., bootstrap condition), the derivation given in Section
8.3.1 cannot be used when the total flux is zero. Why not? Use the method of solving
coupled differential equations developed in Appendix B.3 to develop Eq. 8.3.12. Does
the same limitation apply to this alternative method of obtaining the composition
profiles. If not, are there any other limitations that do apply.

In the course of carrying out Exercise 8.1 you should obtain the following
expressions

In I l \ = 4>z when 6,- # 0
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and

where the <£, are the eigenvalues of the matrix of mass transfer rate factors defined
by Eqs. 8.3.4 and 8.3.5. In addition,

(y) = [PV\y)

and

($) = [P]-\4>)

where [P] is the modal matrix of [<!>].
These equations, which sometimes are referred to as parametric solutions, are

quite general in the sense that they hold for mixtures with any numbers of con-
stituents and for any relationship between the fluxes. In fact, for certain special cases
these equations have been available in the literature for a long time. The next five
exercises explore these special cases.

8.2 Slattery (1981) presents a solution of the Maxwell-Stefan equations for the special
case when two molar fluxes are zero, N1 = N2 = 0. Write down expressions for <f>/?

[P], (y), and show that, for this special case, the eigenvalue solutions are equivalent
to the expressions given by Slattery.

8.3 Toor (1957) derived a solution of the Maxwell-Stefan equations for ternary systems
when the total molar flux is zero, Nt = 0. Write down expressions for <f>/? [P], (y),
and show that, for Nt = 0, the eigenvalue solutions are equivalent to the expressions
given by Toor.

8.4 Gilliland (1937) derived a solution of the Maxwell-Stefan equations for ternary
systems when the flux of component 3 is zero, N3 = 0. Write down expressions for <§>,,
[P], (y), and show that, for this special case, the eigenvalue solutions are equivalent
to the expressions obtained by Gilliland.

8.5 Brocker and Schulze (1991) expounded on Gilliland's solution to the Maxwell-Stefan
equations. It has long been known that Gilliland's equations are satisfied by more
than one set of numerical values for the molar fluxes. Brocker and Schulze present
criteria for choosing the "correct" set. Use the Brocker and Schulze algorithm and
determine the three sets of molar fluxes that satisfy Gilliland's equations for, say,
Examples 8.3.2 and 8.6.1. Is the exact matrix solution satisfied by more than one set of
numerical values of the fluxes?

8.6 The eigenvalue solutions are also valid for two component systems where all matrices
are of order one. Simplify the eigenvalue solutions for mass transfer in binary systems
when
a. Nt = 0
b. N2 = 0
c. NX/(NX + N2) = zx

See Section 8.2 for the answers you should get.

8.7 Verify that for three component systems the matrix [R], with elements defined by
Eqs. 8.3.25, can be inverted explicitly to give Eqs. 8.3.30.

8.8 Do the algorithms of Section 8.3 work if one component, No. 2 say, is totally absent
from the mixture (in other words, y2 = 0 at both ends of the film)? Hint: Using a
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ternary system as a basis, write expressions (not numbers) for every calculation
required by Algorithm 8.3.1.

8.9 Johns and DeGance (1975) presented an exact solution of the Maxwell-Stefan
equations. The starting point for their analysis is the ^-dimensional matrix equation

where [T] is a matrix with elements defined by

The solution to this equation, subject to the initial condition r\ = 0 and yi = yi0 is

(y) =

Show that this expression is equivalent to Eq. 8.3.9 when reduced to n — 1 dimen-
sional matrix form. What, if any, is the relationship between the eigenvalues of [<£]
and [T]? See Taylor (1982c) for help if needed.

8.10 In some cases it is possible (although not for the bootstrap conditions Nt = 0 and
N3 = 0) for the eigenvalues of [<£] to be complex (see, e.g., the paper of Johns and
DeGance cited in Exercise 8.9). Develop alternatives to Eqs. 8.3.46 for the evaluation
of the correction factor matrix when [O] has complex eigenvalues. Show that any
imaginary part of the composition profiles is identically zero (whoever heard of an
imaginary mole fraction)! This exercise can be extremely difficult or trivially simple
depending on how you choose to go about it.

8.11 Repeat Example 8.4.1 (dehydrogenation of ethanol) using an exact matrix method of
determining the fluxes.

8.12 Repeat Example 8.6.1 (diffusion in a Stefan tube) using an exact matrix method of
determining the fluxes.

8.13 Repeat Example 8.5.1 (evaporation into two inert gases) using an exact solution of the
Maxwell-Stefan equations for determining the fluxes.

8.14 A condenser operates with a feed vapor consisting of ammonia(l)-water vapor(2)-
hydrogen(3) at a pressure of 340 kPa. At one point in the condenser the mole
fractions in the bulk vapor are y10 = 0.30, y20 = 0.40, and y30 = 0.30. The liquid on
the condensing surface at this point is at 93.3°C and contains 10 mol% ammonia and
90 mol% water, with negligible hydrogen. The composition of the vapor-gas mixture
at the liquid surface, assumed to be in equilibrium with the liquid surface of the
stated composition, is yl8 = 0.455, y28 = 0.195, and y3S = 0.35. Employ the exact
matrix solution of the Maxwell-Stefan equations to estimate the rate of condensation
of water relative to that of ammonia.

The diffusivities of the three binary pairs at 101 kPa are

D12 = 29.4mm2/s

Dl3 = 114 mm2/s

D23 = 130 mm2/s
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Molar density of vapor mixture: ct = 30 mol/m3. This exercise is worked out in detail
by Sherwood et al. (1975) who used the eigenvalue expressions derived in Exercise 8.4
as a basis for computing the fluxes.

8.15 Taylor and Krishnamurthy (1982) provided the following data for diffusion in the
gaseous system He(l), SF6(2), O2(3):

Bulk vapor-phase composition: y10 = x, y20 = 0.0, y30 = 1 - x
Interface vapor composition: yls = 0, y28 = x, y38 = 1 — x

where x is to be varied in the range 0.0-1.0.
The diffusivities are

£>12 = 43.54 mm2/s

£>13 = 79.15 mm2/s

B23 = 9.993 mm2/s

The diffusion process may be assumed to be equimolar at a temperature of 310 K and
a pressure of 100 kPa across a film of thickness 8 = 0.3 mm.

Use an exact matrix method to estimate the fluxes and plot the composition
profiles on a triangular diagram for selected values of x.

8.16 Hydrogen is being oxidized on a solid catalyst surface at steady state according to the
reaction

2H2 + O2-+ 2H2O

At a given point in the reactor at 473 K and 101.35-kPa total pressure the composi-
tion (mole fraction) of the bulk gas phase is for H2(l), yx = 0.40; O2, y2 = 0.20; and
for H2O(3), y3 = 0.40. Assume that H2 and O2 diffuse through a gas film 1 mm thick
to the catalyst surface, react instantly, and the H2O diffuses back through the same
film.

Estimate the rate of reaction in kilomoles of hydrogen per second per meters
squared of catalyst surface (kmol H2 /s m2 catalyst surface) that can be obtained if
the overall reaction rate is diffusion controlled.

The diffusivities are

D12 = 180 mm2/s

Dl3 = 212 mm2/s

D23 = 59 mm2/s

8.17 The development of the Toor-Stewart-Prober method in Section 8.4 is based on the
assumptions that the molar density and the matrix of Fick diffusion coefficients in the
molar average reference velocity frame can be assumed constant along the diffusion
path. Develop the theory anew in the mass average reference velocity frame; that is,
assuming pt and [D° ] can be considered constant. You will need to work with mass
fluxes ni and mass diffusion fluxes j t .

8.18 Repeat Example 8.3.1 (equimolar diffusion in a ternary system) using the linearized
equations for determining the fluxes and composition profiles.

8.19 Repeat Example 8.3.2 (diffusional distillation) using the linearized equations for
determining the fluxes and composition profiles. Compare your results to those given
in Example 8.3.2.
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8.20 Repeat Example 8.6.1 (diffusion in a Stefan tube) using the Toor-Stewart-Prober
method of determining the fluxes. Compare the profiles computed from the linearized
equations to the profiles obtained with the exact method and the experimental data
given in Example 2.2.1.

8.21 Repeat Example 8.5.1 (evaporation into two inert gases) using the Toor-Stewart-
Prober method of determining the fluxes.

8.22 Repeat Exercise 8.14 using the Toor-Stewart-Prober method of determining the
fluxes.

8.23 Show that the explicit method of Taylor and Smith (1982) (discussed in Section 8.5) is
an exact solution of the Maxwell-Stefan equations if all the binary diffusion coeffi-
cients are equal. Solutions are given by Burghardt (1984) and Taylor (1984).

8.24 The explicit method of Taylor and Smith (1982) discussed in Section 8.5 makes use of
the mass transfer rate factor

d> = \n(v8/v0) (8.5.25)

where

Show that <l> defined in Eq. 8.5.25 is an exact eigenvalue of the matrix [<£>] defined by
Eqs. 8.3.4 and 8.3.5 for three cases.

a. All diffusivities equal (regardless of the values of the vt).

b. Stefan diffusion (Nn = 0) (regardless of the values of Dtj and vt).

c. Equimolar countertransfer (Nt = 0, 4> = 0) (regardless of the values of the £>/; and

Is <I> always an eigenvalue of [O]?

8.25 A matrix [A] that arises in the explicit methods of Section 8.5 has elements defined
by

)

Invert [A] for the three component case. If [W] denotes [^4]-1, what are the
elements of [W] when

a. Nt = 0

b. N3 = 0
What is the determinant of [̂ 1]?

8.26 Prove that

[A] = [B][/3]1 or [A]-1 = [p^B]-1 (8.5.23)

8.27 Repeat Example 8.3.2 (diffusional distillation) using the explicit method for determin-
ing the fluxes and composition profiles. Compare your results to those given in
Example 8.3.2.
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8.28 Repeat Example 8.4.1 (dehydrogenation of ethanol) using an explicit method of
determining the fluxes.

8.29 Repeat Example 8.6.1 (diffusion in a Stefan tube) using an explicit method of
determining the fluxes. Plot the composition profiles and compare them to the results
of an exact solution and to the experimental data given in Example 2.2.1.

8.30 Repeat Example 8.6.1 (diffusion in a Stefan tube) using Wilke's effective diffusivity
formula (Eq. 6.1.14).

8.31 Repeat Example 8.6.1 (diffusion in a Stefan tube) using the effective diffusivity
formula of Kato et al. (1981), Eq. 6.1.16.

8.32 Repeat Example 8.6.1 (diffusion in a Stefan tube) using the effective diffusivity
formula of Burghardt and Krupiczka (1975), Eq. 6.1.15.

8.33 Repeat Example 8.3.2 (diffusional distillation) using an effective diffusivity method for
determining the fluxes and composition profiles. Compare your results to those given
in Example 8.3.2.

8.34 Repeat Example 8.4.1 (dehydrogenation of ethanol) using an effective diffusivity
method of determining the fluxes.

8.35 Repeat Example 8.3.1 (equimolar diffusion in a ternary system) using an effective
diffusivity method for determining the fluxes and composition profiles. Compare the
fluxes calculated with the effective diffusivity model to those obtained in Example
8.3.1.

8.36 Simplify the definition of the effective diffusivity given by Eq. 6.1.7 for the special case
when two molar fluxes are zero, Nx = N2 = 0. What is the relationship between the
effective diffusivity method and the method of Section 8.5.2 for this special case.

8.37 An exact solution of the Maxwell-Stefan equations for diffusion in nonideal fluids
may be obtained using, as a basis, the method developed in Section 8.3.5. All of the
results given in that section are valid with the proviso that the matrix [D] is given by

wKn
As an alternative to this approach we may cast the Maxwell-Stefan equations in

n — 1 dimensional matrix form as

[ r ] ~ = [$](*) + (</>) ( 8 7 3 )
dr)

where [<I>] and (</>) are as defined for the ideal gas case.
For nonideal fluids [T], [<£], and ((/>) are functions of composition (and, hence, of

position). Develop an exact solution to this n — 1 dimensional matrix equation using
the method of repeated solution (see Appendix B.2 for details of the method). Note
that at this level of analysis it is not necessary to know exactly how [T], [<I>], and (4>)
depend on position; it suffices to know only that they are functions of 17.

8.38 Kubaczka and Bandrowski (1991) presented a method for calculating fluxes in
nonideal fluid mixtures. Examine their paper and prepare a critical essay discussing
any novel features of their paper. Back up your conclusions with sample calculations
based on the problems considered in the paper by Kubaczka and Bandrowski.

8.39 Devise an efficient computational algorithm for computing the molar fluxes using the
models developed by Kubaczka and Bandrowski (1991). Present your algorithm in the
form of a paper suitable for submission to Computers and Chemical Engineering.
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8.40 A generalized derivation of the explicit methods of Section 8.5 for diffusion in ideal
gas mixtures is given by Taylor and Smith (1982). The starting point for their analysis
is the set of Maxwell-Stefan equations written in n-dimensional matrix form. By
making use of a matrix transformation, they eventually obtain a generalized explicit
method. Starting from the Maxwell-Stefan equations for nonideal fluids, Eq. 2.2.1,
use the method of solution employed by Taylor and Smith to develop an explicit
method for nonideal fluids. Hint: You will need to develop an ^-dimensional analog
of Eq. 2.2.4 for the driving forces di (Appendix D can be helpful here). Write up your
work in a format suitable for submission as a paper in Chemical Engineering
Communications. However, before you submit it, look up articles by Kubaczka and
Bandrowski (1990) and by Taylor (1991).

8.41 Repeat Example 8.7.1 using the linearized method of Toor-Stewart-Prober (1964)
discussed in Section 8.4.

8.42 The explicit method of Taylor and Smith (1982) for mass transfer in ideal gas
mixtures is an exact solution of the Maxwell-Stefan equations for two component
systems where all matrices are of order 1. Does the generalized explicit method
derived in Exercise 8.40 reduce to the expressions given in Section 8.2 for a film
model of mass transfer in binary systems?

8.43 Repeat Example 8.7.1 using the explicit methods derived in Exercise 8.40.

8.44 Repeat Example 8.7.1 using the effective diffusivity methods you derived in Exercise
6.1. Compare the results with those obtained in Example 8.7.1 and in Exercise 8.43.

8.45 Repeat Example 8.8.1 (ternary distillation in a wetted wall column) using the
linearized equations to calculate the molar fluxes but following the suggestion given
in the second paragraph of Section 8.8.3 for estimating the multicomponent mass
transfer coefficients in terms of the binary mass transfer coefficients.

8.46 Repeat Example 8.8.1 (ternary distillation in a wetted wall column) using the method
of calculating the fluxes developed in Section 8.3 but following the suggestion of
Krishna and Standart as described in Section 8.8.3 for estimating the binary mass
transfer coefficients.

8.47 In Example 8.4.1 we considered multicomponent diffusion with heterogeneous chemi-
cal reaction. In this example the reaction was considered to be first order in the mole
fraction of ethanol. For the catalytic reaction A + 2B -> C, conforming to
Langmuir-Hinshelwood kinetics, it has been demonstrated by Lowe and Bub (1976)
that multiple steady states are possible. The analysis of Lowe and Bub assumes equal
diffusivities for the three reacting species A, B, and C. Extend their analysis for the
general case of unequal diffusivities using the Maxwell-Stefan equations. In addition
to the possibility of multiple steady states show that it is possible to obtain diffusion of
a species against its gradient.

CHAPTER 9

9.1 Extend the film-penetration model of mass transfer developed by Toor and Marchello
(1958) to multicomponent mixtures. See also, Krishna (1978a).

9.2 A droplet containing a mixture of acetone(l)-benzene(2)-methanol(3) has a diameter
of 8 mm and attains a velocity of 0.1 m/s in a sieve tray extraction column when it is
dispersed in a continuous hydrocarbon phase. Use the penetration model to estimate
the matrix of low flux mass transfer coefficients [k] inside the droplet.
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The matrix of Fick diffusion coefficients is

3.860 0.890] x 10-9
-0.30 2.24OJX1U

9.3 For the system considered in Exercise 9.2 calculate the unaccomplished composition
change

as a function of the dimensionless parameter

using Eq. 9.3.28 valid for low transfer fluxes. For these calculations assume that the
ratio of driving forces

for components acetone(l) and benzene© to have the following set of values: (a) 4.5
and (b) 0.1.

Examine the behavior of the composition profiles for acetone and benzene in the
two cases (a) and (b) and see if you detect any unusual, unbinary-like behavior. After
completing your calculations have a look at the paper by Krishna (1978b) and compare
your results with his. How would you go about tackling the same problem for finite
mass transfer rates?

CHAPTER 10

10.1 Your objective here is to examine the influence of turbulence on the interfacial fluxes
of acetone(l)-benzene(2)-helium(3) for interphase mass transfer in a wetted wall
column at the top of the column where the incoming vapor-gas mixture first comes
into contact with the downflowing liquid mixture of acetone and benzene. The details
of the column and the operating conditions are given in Example 11.5.3. For the
purposes of this exercise you may ignore thermal effects. Take the vapor-phase
compositions, expressed in mass fractions, in the bulk vapor and at the interface to be

a>r = 0.44512 (x)v
2 = 0.0 a>% = 0.55488

(o[ = 0.13770 coi = 0.64140 a>\ = 0.22089

Carry out calculations of the mass fluxes at Reynolds numbers of 104, 1.5 X 104,
2 X 104, 3 X 104, 4 X 104, and 5 X 104 using the following models: (1) Turbulent
kinematic viscosity determined from the Von Karman universal velocity profile (Eqs.
10.2.17 and 10.2.18). (2) Turbulent kinematic viscosity determined from the Prandtl
mixing length model (Eq. 10.2.19), along with the Van Driest damping factor (Eq.
10.2.22). (3) Chilton-Colburn analogy (Eq. 10.3.28).

Note that the sign and magnitude of the flux of acetone is sensitive to the value of
the Re number (why?) and to the choice of the turbulent mass transfer model (again,
why?). Rationalize your results in terms of the results portrayed in Figure 10.8.
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10.2 2-Propanol(l) and water© are condensing in the presence of nitrogen(3) inside a
vertical tube. At the vapor inlet, the gas-vapor phase has the composition

yx = 0.1123 y2 = 0.4246

The composition of the vapor in equilibrium with the condensate at that point is

y10 = 0.1457 y20 = 0.1640

Estimate the rates of condensation using the Von Karman model for calculating the
mass transfer coefficients.

The diffusivities of the three binary pairs are

D12 = 15.99 mm2/s

f)13 = 14.44 mm2/s

£>23 = 38.73 mm2/s

Density of vapor mixture: p\ = 0.882 kg/m3.
Viscosity of vapor mixture: JJLV = 1.606 X 10~5 Pa s.
Vapor phase Reynolds number: ReK = 9574.
Friction factor: f/2 = 0.023 Re^017.

10.3 Repeat Exercise 10.2 using the multicomponent generalization of the Chilton-
Colburn analogy to estimate the mass transfer coefficients.

10.4 Repeat Example 10.4.1 using the multicomponent generalization of the Chilton-
Colburn analogy to estimate the mass transfer coefficients.

10.5 Von Behren et al. (1972) analyzed multicomponent mass transfer in turbulent flow in
a pipe. Show that their model is fundamentally incorrect. You may also refer to the
paper by Stewart (1973).

10.6 Reijnhart et al. (1980) analyzed mass transfer from spills of volatile, single compo-
nent, liquids into turbulent air streams. As the temperature increases the high flux
correction factors become significant due to the increased mass transfer rates.
Reconcile the analysis of Reijnhart et al. with the material presented in Chapter 10.
Attempt to simulate their experimental results for the evaporation of toluene into air.
Note that for spills of multicomponent liquid mixtures, the analysis of Chapter 10
really comes into its own.

CHAPTER 11

11.1 One of Modine's (1963) experiments involving mass transfer in a wetted wall column
was the basis for Example 11.5.3. Here we provide data for another of Modine's
experiments and ask you to compute the mass fluxes at the top of the column. The
components for this experiment were acetone (l)-benzene (2)-nitrogen (3).

Diameter of column, d = 0.025019 m.
Nitrogen flow rate = 0.0891404 mol/s.
Vapor inlet temperature = 37.4°C.
Liquid flow rate = 5.8223 X 10~3 kg/s.
Liquid inlet temperature = 38.05°C.
Inlet pressure = 154.99 kPa.
Inlet vapor composition (mole fraction): yx = 0.123570 y2 = 0.0.
Inlet liquid composition (mole fraction): xx = 0.076529.
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Estimate the mass fluxes at the top of the wetted wall column. Physical property data
(where it differs from that provided in Example 11.5.3) is given below.

Maxwell-Stefan diffusion coefficients in the vapor phase

D12 = 3.54 X 1(T6 m2/s

£)13 = 7.65 X 10"6 m2/s

f)23 = 6.49 X 10"6 m2/s

Molar masses are Mx = 0.05808, M2 = 0.0781, and M3 = 0.028 kg/mol.
Vapor viscosity and thermal conductivity

fiv= 1.400 X 10~5Pas

AK = 0.025 W/m K

The liquid-phase mass transfer coefficient is taken to be

kL = 2.26 X 10~4 m/s

The molar density of the liquid phase has been estimated as

CL = n.34 kmol/m3

The vapor-phase molar density may be calculated from the ideal gas law.
The liquid-phase heat transfer coefficient may be estimated using a correlation

provided by Modine et al. (1963). The numerical value used in this example is

hL = 2063 W/m2K

The pure component vapor-phase heat capacities have been estimated at the bulk
vapor temperature as

Cv
pl = 75.13 Cv

p2 = 85.98 C^ = 29.15 J/kmol K

and the pure component liquid heat capacities at the bulk liquid temperature are

C£ = 128.8 C£2 = 138.8 J/kmol K

11.2 Repeat Exercise 11.1 using the Chilton-Colburn analogy to estimate the mass
transfer coefficients.

11.3 Revise the analysis of Example 11.5.3 and show how a method based on the film
models of Chapter 8 could be used to compute the rates of mass transfer. Then use
the Krishna-Standart method (of Sections 8.3 and 8.8.3) and compute the molar
fluxes. Binary pair mass transfer coefficients may be estimated using the Chilton-Col-
burn analogy.

11.4 Repeat the calculations of Exercise 11.3 using the linearized theory of multicompo-
nent mass transfer to compute the molar fluxes.

11.5 Calculate the molar fluxes in the system methanol(l)-ethanol(2)-water(3) under the
following conditions:

The bulk vapor composition.

yx = 0.94200 y2 = 0.02800 y3 = 0.03000
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The bulk liquid composition.

Xl = 0.94199 x2 = 0.02801 x3 = 0.03000

Bulk vapor temperature: Tv = 67°C.
Bulk liquid temperature: TL = 64°C.
Pressure: P = 101.3 kPa.
Binary mass transfer coefficients in the vapor phase where C\K\2

 = 0.4054
mol/m2s, cv

tK
V

u = 0.6435 mol/m2s, and cv
tK

V
23 = 0.5397 mol/m2s.

Binary mass transfer coefficients in the liquid phase where cf/cf2 = 0.2141
mol/m2s, C^K^ = 0.5841 mol/m2s, and C^K^3 = 0.4561 mol/m2s.

Vapor-liquid equilibrium data for this system can be found in Gmehling and
Onken (1977ff, Vol. I / I pp. 562-568).

This exercise is adapted from an example worked out by Rohm and Vogelpohl (1980).

11.6 Repeat Exercise 11.5 but use a pseudobinary (effective diffusivity) approach for the
diffusion fluxes.

11.7 Develop the film model for simultaneous mass and energy transfer including Soret
and Dufour effects. Use the Toor-Stewart-Prober linearized theory in developing
the model. An example of a process where thermal diffusion effects cannot be
ignored is chemical vapor deposition. Use the model to perform some sample
calculations for a system of practical interest. You will have to search the literature to
find practical systems. To get an idea of the numerical values of the transport
coefficients consult the book by Rosner (1986).

CHAPTER 12-13

12.1 Lockett and Ahmed (1983) studied the distillation of methanol and water at total
reflux in a sieve tray column with the following dimensions:

Column diameter: 0.59 m
Weir length: 0.457 m
Flow path length: 0.374 m
Active tray bubbling area: 0.200 m2

Downcomer area: 0.034 m2

Total hole area: 0.0185 m2

Tray spacing: 0.6 m
Hole diameter: 4.8 mm
Hole pitch: 12.7 mm
Exit weir height: 50 mm

Below we provide the following data for one of the experiments.
F factor based on active area of tray.

Fs = 1.06(m/s)(kg/m3)0-5

Composition of the liquid leaving the tray is

xx = 0.154

The pressure is 101 kPa and the temperature is 357.3 K.
The fractional approach to flooding was estimated to be

Ff = 0.241
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Use the Chan and Fair method to estimate the numbers of transfer units and, hence,
the point efficiency for this system. The experimental value of the point efficiency for
this experiment was 0.696.

Physical properties of the mixture can be estimated using Figure 3 in the paper
Lockett and Plaka (1983).

12.2 Use the fundamental model of mass transfer on distillation trays in Section 12.1.7 to
investigate the performance of the system methanol(l)-water(2) considered in
Exercise 12.1.

Assume a bimodal bubble population with the following parameters:
The small bubble diameter: du 1 = 5 mm.
The small bubble rise velocity: Un x = 0.6 m/s.
The fractional holdup of vapor in the small bubbles: en 1 = 0.2.
The large bubble diameter: dn 2 = 50 mm.
The fractional holdup of vapor in the small bubbles: en 2 = 0.5.
The height of the bubbling zone: hn = 0.11 m.

Neglect the formation zone.
Compare your results with those of Lockett and Plaka (1983). In what ways does

the model of Section 12.1.7 differ from theirs?

12.3 Use the fundamental model of mass transfer on distillation trays in Section 12.1.7 to
investigate the performance of the system toluene(l)-methylcyclohexane (2). Tray
dimensions and physical properties are provided in Example 12.1.1.

Assume a bimodal bubble population with the following parameters:
The small bubble diameter: dH 1 = 5 mm.
The small bubble rise velocity: UIIt 1 = 0.3 m/s.
The fractional holdup of vapor in the small bubbles: en l = 0.2.
The large bubble diameter: du 2 = 50 mm.
The fractional holdup of vapor in the small bubbles: en 2 = 0.5.

The height of the bubbling zone (neglect the formation zone so that hu = hf) and
superficial vapor velocity was calculated in Example 12.1.1.

How does the mass transfer performance of the tray change if the liquid-phase
mass transfer resistance is ignored?

12.4 Biddulph and Kalbassi (1988) investigated the distillation at total reflux of the
ternary system methanol(l)-l-propanol(2)-water(3). Their experimental data is tab-
ulated below.

Run

WA
WB

we
WD
WE
WF
WG
WI

x1

0.1533
0.2847
0.3611
0.2474
0.1460
0.0785
0.2127
0.1572

X2

0.5231
0.4126
0.3557
0.3927
0.2015
0.1343
0.2103
0.2388

X3

0.3255
0.3027
0.2832
0.3098
0.6525
0.7870
0.5769
0.6041

In Example 12.2.1 we computed the matrices of numbers of transfer units for run
WA. Estimate the number of transfer units for each of the remaining experiments.
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Hence, compute the Murphree point efficiencies for each data set (see Example
13.3.1). Note that it will be necessary to compute the composition of the vapor that
would be in equilibrium with the liquid for each experiment. Physical property data
is provided in Example 12.2.1.

12.5 Correlations of numbers of transfer units developed for binary systems may be used
to compute numbers of transfer units for multicomponent systems as described in
Section 12.1.5. An alternative method that follows the ideas put forward by Toor in
his development of the linearized theory of mass transfer is to generalize binary
correlations by replacing the binary diffusivity with the matrix of Fick diffusion
coefficients (in much the same way that we generalized correlations of binary mass
transfer coefficients in Section 8.8.2). Let the number of transfer units in a binary
system be expressed as

where a and (3 are constants or functions of physical properties, equipment design,
and operational parameters. The matrix of transfer units for a multicomponent
vapor mixture would be expressed as

Sylvester's formula could be used to evaluate [DVY. A similar expression could be
written for the liquid phase.

Based on these ideas, develop multicomponent forms of the AIChE, Chan and
Fair, and Zuiderweg methods of computing numbers of transfer units.

12.6 A mixture of acetone(l)-methanol(2)-water(3) is being distilled in a tray column.
You are asked to examine the mass transfer behavior of the system on a particular
tray operating at 101.3 kPa and 80°C. The composition of the vapor entering the tray
is y1E = 0.257, y2E = 0.518, and y3E = 0.225. The composition of the vapor in
equilibrium with the liquid leaving the tray has been determined to be y* = 0.480,
y2 = 0.445, and y* = 0.075. Measurements of the tray hydrodynamics have shown
that the bubble size distribution on the tray is bimodal. The "small" bubble
population consists of bubbles of 5-mm diameter having a rise velocity of 0.3 m/s.
The "large" bubble population consists of bubbles of 12.5-mm diameter and having
a rise velocity of 1.5 m/s. The froth height is 75 mm and 90% of the vapor passes
through the froth in the large bubbles.

Estimate the mass transfer rates in each bubble population. Hence, the point
efficiencies for the three components. The mass transfer process may be assumed
to be equimolar and to be controlled by the vapor-phase resistance. The
Maxwell-Stefan diffusion coefficients are

D\2 = 8.7mm2/s

Dv
l3 = 12.1 mm2/s

Bv
23 = 18.4mm2/s

12.7 Distillation test runs on the following binary mixtures:

ethanol-water ethanol-r-butyl alcohol £-butyl alcohol-water
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were carried out in a 3 in. diameter sieve tray column under the same hydrodynamic
conditions. It was found that the overall number of transfer units Nov could be
correlated by

NOV=3.1D0-5

where D is the vapor-phase Fick diffusion coefficients (in cm2/s) of the correspond-
ing binary pair.

In a test run with the ternary mixture ethanol-^-butyl alcohol-water, the follow-
ing results were obtained for a particular tray.

Composition of vapor entering tray (mole fractions)

y1 = 0.2720 y2 = 0.2874 y3 = 0.4405

Composition of vapor in equilibrium with liquid on the tray

y* = 0.3106 yf = 0.3580 yf = 0.3292

Using the matrix generalization technique developed in Exercise 12.2, calculate the
matrix of overall numbers of transfer units. Hence, estimate the composition of the
vapor above the tray and the Murphree efficiencies of the three components.
Comment on the relative values of the efficiencies. Under what circumstances would
you expect them to be equal?
Data: The matrix of Fick diffusion coefficients is

0.151 0.043] 2 / s

0.035 0.131 J X c m / S

12.8 Distillation test runs on the following binary mixtures

acetone-methanol methanol-water acetone-water

were performed in a rectangular (5 in. X 6 in.) split flow sieve tray column under
identical hydrodynamic conditions.

In a test run at atmospheric pressure with the ternary mixture acetone(l)-metha-
nol(2)-water(3), the following results were obtained for a particular tray.

Composition of vapor entering tray (mole fractions)

yx = 0.257 y2 = 0.518 y3 = 0.225

Composition of vapor in equilibrium with liquid on the tray

y* = 0.480 yf = 0.445 y^ = 0.075

If the distillation operation is assumed to be controlled by the vapor-phase
resistance to mass transfer, indicate which of the following inequalities will hold

c. Eovl — EOV3 — EOV2

where EOVi are the Murphree point efficiencies of the components acetone,
methanol, and water. Support your conclusions by performing preliminary calcula-
tions using the data supplied below.
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Data: The Maxwell-Stefan diffusion coefficients are

Du = 8.7mm2/s

f)13 = 12.1 mm2/s

B23 = 18.4 mm2/s

12.9 Hofer (1983) has analyzed the influence of gas-phase dispersion on the tray effi-
ciency for binary systems. Extend the analysis for multicomponent mixtures. Include
some numerical calculations and write up your work in the form of a paper for
possible publication in the AIChEJ.

12.10 Mora and Bugarel (1976) used the theory of irreversible thermodynamics to analyze
interphase mass transfer on a distillation tray. Compare their treatment with the
analysis in Chapters 12 and 13; which is more general, theirs or that given in this
book? Write up your comparison in the form of a paper to Entropie.

12.11 A packed distillation column for the separation of ethylbenzene(l) and styrene(2)
was designed in Example 14.3.3. The packing is Koch Flexipac II with characteristic
dimensions in Table 14.6. Estimate the mass transfer coefficients and the heights of
transfer units for the rectifying and stripping sections in this column.

Physical properties of the system have been estimated as follows:
Viscosity of vapor mixture: 7.3 X 10 ~6 Pa s.
Viscosity of liquid mixture: 4.2 X 10 ~4 Pa s.
Liquid density: 790 kg/m3.
Molar mass of ethylbenzene: 0.106 kg/mol.
Molar mass of styrene: 0.104 kg/mol.
Surface tension: a = 0.024 N/m.

Use the methods of Chapter 4.1 to estimate the vapor and liquid-phase diffusion
coefficients. K values may be estimated using Raoult's law.

12.12 Gorak (1991) conducted a number of distillation experiments with the four compo-
nent system acetone(l)-methanol(2)-2-propanol(3)-water(4). The data for one of
Gorak's experiments were used as the basis for Example 12.3.3. Here we ask you to
estimate the mass transfer coefficients and the numbers of transfer units for the
conditions existing in a different experiment:

Flow rate of the vapor: 38.1557 mol/(m2s).
Pressure: 101 kPa.
Composition of the vapor below the packing is y1 = 0.001899, y2 = 0.128267,
y3 = 0.440088, and y4 = 0.429745.

The experiments were carried out at total reflux.
Data: Physical properties of the vapor and liquid phases at the composition
reported above and at the bubble point temperature of the liquid have been
estimated as follows:

Viscosity of vapor mixture: /JLV = 1.083 X 10~5 Pa s.
Viscosity of liquid mixture: fiL = 4.112 X 10~4 Pa s.
Vapor density: pv

t = 1.319 kg/m3.
Liquid density: p,L = 822.0 kg/m3.
Average molar mass of vapor: Mv = 0.0384 kg/mol.
Surface tension: a = 0.0481 N/m.
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The Maxwell-Stefan diffusivities in the vapor phase [units are 10 " 5 m2/s].

D\2 = 1.223

Bv
l3 = 0.7863

Dv
u = 1.891

Bv
23 = 1.186

£)£ = 2.817

BV
3A = 1.832

The Maxwell-Stefan diffusivities in the liquid phase [units are 10 " 9 m2/s].

£>f2 = 3.219

B\3 = 2.735

f)f4 = 3.507

)L

'24

£)^4 = 4.169

Equimolar countertransfer may be assumed to prevail.
The K values determined at the bubble point of the liquid with a composition

equal to that of the vapor are K1 = 3.6750, K2 = 1.5678, K3 = 1.0820, and K4 =
0.7348.

The column had an internal diameter of 0.1 m and was 0.8 m high. The column
was fitted with Sulzer BX structured packing. The characteristics of Sulzer BX
packing are given in Example 12.3.3.

CHAPTER 14

There are many excellent texts that discuss the design of distillation columns using
equilibrium stage calculations. Some of them were cited in Chapters 12-14. These texts
provide a wealth of examples that could be used as the basis for a design using the
nonequilibrium model described in Chapter 14. We adapt one such example below (Ex-
ercise 14.1) in order to indicate how this might be done.

The worked examples and simulation results in Chapter 14 were, for the most part,
obtained with a simulation program known as ChemSep (Kooijman and Taylor, 1992). You
will need to obtain this program (or something equivalent) in order to carry out the
numerical exercises for this chapter. Contact R. Taylor for more information on the
availability of ChemSep.

14.1 Fair (1987) presents the results of a design calculation for a six component de-ethanizer
(see Table 5.3.4 of this reference). Use a nonequilibrium model to determine the
number of trays required to reach the purity requirements.

14.2 How would the performance of the ethylbenzene-styrene column in Example 14.3.3
differ if the column were filled with: (a) 50-mm metallic Pall rings, (b) Sulzer BX
packing, and (c) Sieve trays.
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14.3 In Section 12.2.2 we derived an expression that allows us to calculate the average
molar fluxes in a vertical slice of froth on a tray under the assumptions that the vapor
rises through the froth in plug flow and the liquid in the vertical slice is well mixed.
Extend the treatment and derive an expression for the average mass transfer rates for
the entire tray if the liquid is in plug flow. Some clues as to how to proceed may be
found in Section 13.3.3.

14.4 Discuss how the fundamental models of mass transfer in Sections 12.1.7 (binary
systems) and 12.2.4 (multicomponent systems) may be used to estimate mass transfer
rates for use in a nonequilibrium simulation of an existing distillation column. Your
essay should address the important question of how the model parameters are to be
estimated.

14.5 Most experimental studies of distillation are carried out at total reflux to prevent loss
of materials. How would the nonequilibrium model of Chapter 14 be used to simulate
a distillation column operating under total reflux conditions?

14.6 Discuss the simplifications of the nonequilibrium model that are possible when:
(a) constant pressure operation is assumed and (b) the resistance to mass transfer in
the liquid phase is ignored.

14.7 Gorak and Vogelpohl (1985) present an experimental study of ternary distillation in a
packed column. The system used was methanol(l)-2-propanol(2)-water(3) and the
column was 0.1 m wide and filled with Sulzer CY packing. Use the nonequilibrium
model to simulate their experiments. Investigate the sensitivity of the simulation
results to the thermodynamic model parameters. Write an article in the format
required by Separation Science Technology that summarizes your calculations.

14.8 Burghardt et al. (1983) present data for the distillation of methanol(l), 2-propanol(2),
water(3) and acetone(l), ethanol(2), water(3) in a sieve tray column (0.25-m diameter).
Use the nonequilibrium model of Chapter 14 to simulate their experiments. Write up
your work in an article in the format required by the Chemical Engineering Journal.

14.9 In a paper entitled "A new simulation model for a real trays absorption column,"
Grottoli et al. (1991) present their version of a nonequilibrium model for computer
simulation of absorption columns. Using the material presented in Chapter 14 as a
basis, critically examine any novel aspects of their paper.

CHAPTER 15

15.1 Repeat Example 15.1.2 using the Toor-Stewart-Prober method of estimating the
multicomponent mass transfer coefficients.

15.2 Repeat Example 15.1.2 using an effective diffusivity formulation for the diffusion
fluxes. Compare your results with those of Example 15.1.2, Exercise 15.1, and the
results obtained by Austin and Jeffreys (1979).

15.3 Webb and McNaught (1980) present in detail the design of a heat exchanger for
condensing a mixture of five hydrocarbons [propane(l)-«-butane(2)-w-hexane(3)-/2-
heptane(4)-rc-octane(5)]. Using the data presented in their article, calculate the molar
rates of condensation at the entrance to the condenser.

15.4 Ketene (CH2CO) is an industrially important intermediate that has a number of uses,
particularly for acetylation purposes. Nielsen and Villadsen (1984) provide a nice
example of the theories discussed in this book to the design of a condenser for
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treating a vapor mixture consisting of 10% acetic anhydride, 45% acetic acid, and
45% ketene. One added complication in this condensation system is that when it is
condensed the ketene and acetic acid will react with each other. At the conditions
chosen for design this reaction may be assumed to be a surface reaction. With the
information given in the paper by Nielsen and Villadsen (1984) you are required to
simulate the condenser. Other thermodynamic and transport properties can be
estimated by reference to Reid et al. (1987).

15.5 Krishna et al. (1976) presented a condenser design problem in which the condenser
area requirements are estimated for condensing 50% of a vapor mixture containing
propane(l), rc-butane(2), rc-hexane(3), ft-heptane(4), rc-octane(5), and hydrogen(6).
Repeat their calculations using the design algorithms outlined in Chapter 15. This
example should provide a strong reason for taking multicomponent diffusion interac-
tions into account in design calculations.

15.6 Develop a mathematical model of an adiabatic wetted wall column. Hint: The model
will be similar to that presented in Section 15.2. Use your model to generate
composition profiles for the wetted wall column of Modine as discussed in Example
11.5.3. This is a lengthy exercise and will require you to calculate physical properties
as a function of temperature, pressure, and composition. Modine's experimental data
are most accessible in a paper by Krishna (1981a).

MISCELLANEOUS TOPICS

M.I The fathers of multicomponent diffusion are James Clerk Maxwell and Josef Stefan.
It is remarkable how several of the multicomponent diffusional interaction phenom-
ena introduced in Chapter 5 were anticipated by these two scientists. Study the classic
contributions of Maxwell (1866, 1868) (see his collected papers; Maxwell, 1952) and
Stefan (1871) and draw your own conclusions as to how much (or how little) extra
insight has been gained in the last century.

M.2 The Dusty Gas Model (DGM) (Mason and Malinauskas, 1983) is commonly used for
describing diffusion in porous media. In this model the medium is modeled as giant
molecules (dust) held motionless in space (udust = 0). Derive the DGM equations
using the treatment given in Chapter 2 by taking the medium as the (n + l)th species
in the mixture. Compare the results of your derivations with that in Mason and
Malinauskas (1983). You may also refer to Wesselingh and Krishna (1990) for more
information.

M.3 Carry out a literature survey on multicomponent diffusion in inorganic ceramic
materials and examine whether it would be beneficial for researchers in this area to
adopt the Maxwell-Stefan approach instead of the generalized Fick's law. A paper by
Cooper (1974) is a good starting point for your survey.

M.4 Frey (1986) has analyzed mass transfer within the liquid phase in an ion exchanger.
He presents a detailed comparison of the approaches of Krishna and Standart
(1976a), Toor (1964a) and Stewart and Prober (1964), Van Brocklin and David (1972),
and Tunison and Chapman (1976). Try to reproduce the results of Frey and satisfy
yourself of the need for rigorous modeling of mass transfer in multicomponent ionic
systems.

M.5 The process of azeotropic distillation is widely used to separate mixtures that are
difficult or impossible to separate by simple fractional distillation. An example of an
azeotropic distillation process is the separation of ethanol from water using, as
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entrainer, benzene or ft-pentane. A potential disadvantage of the use of benzene
(depending on the intended use for the ethanol) is its toxicity. Consider an alternative
process based on diffusional distillation as illustrated in Example 8.3.2 in which an
inert gas is introduced in the condenser in order to effect a separation of the
azeotropic mixture that can be further enhanced in a second distillation column.
Develop a process for separating ethanol from water using these idea. You may
consult Fullarton and Schliinder (1986a, b) for further details of the use of diffusional
distillation in process development.

M.6 One topic that has not been covered in this book is that of multicomponent diffusion
with simultaneous homogenous reaction. Carry out a literature survey of this field
(the number of papers is not very large) and determine whether there is scope for
further analysis using the Maxwell-Stefan formulation of multicomponent diffusion as
opposed to the generalized Fick's law. A paper by §entarli and Hortacsu (1987) can
serve as a starting point for your survey.



APPENDIX A
Review of Matrix Analysis

A.1 INTRODUCTION

Diffusion and mass transfer in multicomponent systems are described by systems of
differential equations. These equations are more easily manipulated using matrix notation
and concepts from linear algebra. We have chosen to include three appendices that provide
the necessary background in matrix theory in order to provide the reader a convenient
source of reference material. Appendix A covers linear algebra and matrix computations.
Appendix B describes methods for solving systems of differential equations and Appendix C
briefly reviews numerical methods for solving systems of linear and nonlinear equations.
Other books cover these fields in far more depth than what follows. We have found the
book by Amundson (1966) to be particularly useful as it is written with chemical engineering
applications in mind. Other books we have consulted are cited at various points in the text.

A.1.1 Definition

A matrix is a rectangular array of elements arranged in horizontal and vertical columns. For
example,

A12

A22 23 12m
(A.1.1)

The square brackets are used to denote a matrix. The Atj are the elements of the matrix.
They may be real or complex numbers. Quite often the elements of a matrix will be
functions or operators. The matrix [A] above has p rows and m columns and is said to be a
p X m matrix; alternatively, the matrix [A] is said to be of orderp X m. (It is common to
use the letter n to denote the number of rows a matrix has. To avoid confusion with the rest
of this book, we have reserved the letter n for denoting the number of components in a
mixture.) The order of the matrices we will encounter in this book usually is obvious from
the context but, in the event that it becomes necessary to distinguish between matrices of
different order, this will be done by appending a subscript to the bracket notation. Thus, the
p X m matrix [A] would be written [A]pXm.

The transpose, denoted by [A]T, of a matrix is the matrix formed by interchanging the
rows and columns of the matrix. That is, the first row becomes the first column, the second
row becomes the second column, and so on.

[A]T-

The transpose of a p X m matrix is an m X p matrix.

~An

A

_A\P

A 21

A22

A2P

A

A32

A3p

. . . A

. . . A

. . . A

(A.I.2)

506
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A.1.2 Principal Types of Matrix

Besides the rectangular matrix discussed above, the following principal types of matrices
occur in matrix algebra.

Square Matrix If the number of columns is equal to the number of rows, that is, p = m,
the matrix [A] is said to be a square matrix of order m.

*23

Am\ Am2 Am3

12m
(A.1.3)

If necessary, the order of a square matrix will be denoted by a single subscript; for example,
[A]m.

The diagonal of the square matrix that contains the elements AH (i.e., An, A22, • • •, Amm)
is called the principal diagonal.

Column Matrix If the matrix has only one column (m = 1), the m elements are arranged
in a single column; such a matrix is a column matrix (sometimes called a column vector) and
is of order p X l . A column matrix is denoted by parentheses

(A.I.4)

Row Matrix A set of n elements in a row (p = 1) is a matrix of order 1 X m; such a matrix
is a row matrix or row vector. Since the transpose of a column matrix is a row matrix, this
helps determine the way in which row matrices are denoted.

( O r = ( c , c2---cm) (A.1.5)

Diagonal Matrix A square matrix with nonzero elements only on the principal diagonal
and zeroes everywhere else is called a diagonal matrix.

(A.1.6)

Identity Matrix If the nonzero elements of a diagonal matrix are all unity, it is called an
identity, idem, or unit matrix and given the symbol [/]

0

0

0
A2

0

0
0

0

0
0

••• A.

1 0 0
0 1 0

0 0 0

(A.1.7)
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Sparse Matrices Any matrix that has a high proportion of its elements equal to zero is a
sparse matrix. Thus, any diagonal matrix is sparse. Another common sparse matrix is the
tridiagonal matrix.

[A]
B,

R
(A.1.8)

where we have omitted the zeroes for clarity.

Partitioned Matrix A matrix of matrices is a partitioned matrix. For example, the block-tri-
diagonal matrix

[ABC] =

[A2] [B2] [C2]
[A3] [B3] [C3]

(A.1.9)

[Am] [Bm]

in which each entry [̂ 4], [B], [C] is a submatrix, is a partitioned matrix. Matrices with this
structure arise when the equations used in the modeling of separation processes like
distillation, absorption, and extraction are solved numerically. The matrix in Eq. A.1.9 is
also a sparse matrix.

Symmetric Matrix A symmetric matrix is a square matrix that is equal to its transpose. That
is,

[A] = [A]T or Au=An (A.I.10)

Diagonal matrices are symmetric.

Skew or Antisymmetric Matrix A skew or antisymmetric matrix has the property that

[A] = ~[A]T or Au= -Aji (A.I.11)

Any matrix that has this property must have zeroes on the principal diagonal.

A.2 ELEMENTARY OPERATIONS AND PROPERTIES OF MATRICES

The simplest relationship between two matrices is equality. Intuitively, one feels that two
matrices should be equal if their corresponding elements are equal. This is the case,
providing the matrices are of the same order. Thus, the matrices [A]pXm

equal if they have the same order and if
and [B]DXm are

i = 1 , 2 , . . . , / ? ; ; = 1 , 2 , . . . , m (A.2.1)
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A.2.1 Addition

Two matrices [A] and [B] can be added together only if they are of the same order, and
then the elements in the corresponding positions are added, that is, if [A] + [B] = [C],
then

C y - ^ y + B y (A.2.2)

It is not difficult to show that the addition of matrices is both commutative and
associative.

[A] + [B] = [B] + [A] (A.2.3)

[A] + ([B] + [C]) = {[A] + [B]) + [C] (A.2.4)

If we define a null matrix [0] to be a matrix consisting of only zero elements, then

[A] + [0] = [A] (A.2.5)

A.2.2 Multiplication by a Scalar

If [A] is a p X m matrix and A is a scalar, then k[A] is a p X m matrix [B] where

B i j = X A i j i = 1 , 2 , . . . , p ; = l , 2 , . . . , m (A.2.6)

The related operation of division by the scalar A will be denoted by [v4]/A. The elements of
this matrix are A^/X. This operation is equivalent to multiplication of [A] by I/A.

A.2.3 Multiplication of Two Matrices

Many of the important uses of matrices depend on the definition of multiplication.
Multiplication is defined only for conformable matrices. Two matrices [A] and [B] are said
to be conformable in the order M][£] if [A] has the same number of columns as [B] has
rows.

Given a matrix [̂ 4] with p rows and m columns and a matrix [B] with m rows and q
columns, the product matrix [C] is a matrix of p rows and q columns in which the elements
in the /th row and ;th column of [C] is obtained as the sum of the products of the
corresponding elements in the /th row of [A] and the /th column of [B]. That is, if
[C] = [A][B], then

Cu= LAikBkj (A.2.7)

For example, two square matrices of order 2, [A] and [B], when multiplied together give a
third matrix [C]

I
21 ^22

AnBu + A12B21 AnB12 + A12B 22

[A21Bn +A22B2l A2lBl2+A22B22_

A square matrix [A] of order 2 and a column matrix (b) of order 2 when multiplied together
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yield a column matrix (c), also of order 2

(c) = [A](b) =
An

Anbl +A12b2

A2lbx + A22b2

A row matrix of order m can be multiplied by a column matrix of order m in two
different ways. The inner product is a scalar defined by

c = ( a ) T ( b ) = ( a x a 2 ••• fl
b2

E *,A- (A.2.8)
/=!

The outer product of a row and column matrix, both of order m, is a square matrix of
order m and is written as [C] = (a)(b)T with

C i j = a i b j i , j = 1 , 2 , . . . , m (A.2.9)

For example, if (0) and (b) are of order 2 then

When the product is written [y4][.B], [̂ 4] is said to premultiply [B] while [B] is said to
postmultiply [̂ 4].

In general, it can be shown that matrix multiplication is associative

(A.2.10)

and distributive

[A][[B] + [C]] = [A][B] + [A][C] (A.2.11)

In contrast with scalar multiplication, the one basic property that matrix multiplication
does not possess is commutativity; that is, in general

[A][B] * [B][A] (A.2.12)

If we have the equality [v4][#] = [#]M], the matrices [̂ 4] and [B] are said to commute or
to be permutable. The identity matrix [/] commutes with any square matrix of the same
order,

[A][I] = [I][A] = [A] (A.2.13)

and any matrix commutes with itself, of course.
One "unfortunate" property of matrix multiplication is that the equation [-/!][£] =

[A][C] does NOT imply that [B] = [C]. In the same vein, the equation [A](c) = [B](c)
does not imply equality of [A] and [B].

If a square matrix is multiplied by itself k times, the resultant matrix is defined as [A]k

[A]k=[A][A]...[A] (A.2.14)
(k factors)
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A.2.4 Differentiation and Integration of Matrices

The derivative of a p X m matrix [A] is defined by

d[A]

dt

dAn

dt
dAn

dt

dApl

dAn

dt
dA22

dt

dAp2

dt
dA2m

dt dt

dt

dt

(A.2.15)

For example, the derivative of the matrix [A]t where [A] is a constant matrix is

d[[A]t]

dt

and the gradient of a column matrix V(JC) is

Vx,

Vx2

The chain rule for the differentiation of products has the matrix generalization

dtdt dt
(A.2.16)

(note the order of multiplication). For example, the gradient of [P](x), where [P] is a
constant matrix, is

) (V[P] = [0])

Integration is defined in a way analogous to differentiation.

J A n d t J A n d t ••• J A l m d t

J A 2 1 d t J A 2 2 d t ••• J A 2 m d t
f[A]dt

JAp2dt • • • JApmdt

For example, the integral of [A]t, where [A] is constant is

(A.2.17)
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A.3 THE INVERSE

The inverse of an m X m matrix [A] is an m X m matrix [B] having the property that

[ A ] [ B ] = [ B ] [ A ] = [I] (A.3.1)

Here [B] is called the inverse of [A] and is usually denoted by M ] " 1 .
One method for finding inverses requires calculating the cofactor and adjoint matrices,

as explained below.
The cofactor matrix associated with an m X m matrix [A] is an m X m matrix [Ac]

obtained from [A] by replacing each element of [A] by its signed cofactor Ac
tj where

^ . = ( - l ) ' + y M, 7 (A.3.2)

here Mtj is the minor and is the determinant of the m - 1 X m — 1 submatrix of [A],
formed by deleting the /th row and ;th column. The determinant of [A] is then given by

m m

\A\ = L^u= L^jAtj (A.3.3)
i=\ y=i

where / and j may take any value (from 1 to m). (There are many other ways to defining
and computing determinants; the recursive definition given here suffices for our needs.)

The adjoint of an m X m matrix [A] is the transpose of the cofactor matrix of [A]. Thus,
if we denote the adjoint of [A] by [Aa], we have

[A'] = [A']T (A.3.4)

The adjoint matrix [Aa] has the following important property

[A][A°] = [A°][A] = \A\[I] (A.3.5)

If \A | = 0, [A] is said to be invertible or nonsingular. If \A\ = 0, [A] is said to be singular
and its inverse is not defined (in this way at least). In particular, the identity matrix [/] is
invertible and is its own inverse, that is,

[/][/] = [7] (A.3.6)

while the null matrix [0] is singular.
We divide Eq. A.3.5 by \A \ to obtain

[A][A']/ \A\ = [A"][A]/ \A\ = [I] (A.3.7)

Thus, using the definition of the inverse, we have

[A]"1 = [Aa]/ \A\ i f | > 4 | # 0 (A.3.8)

That is, the inverse of [A] may be obtained by dividing the adjoint of [A] by the
determinant \A\.

For a square matrix of order 2, the inverse can be computed from Eq. A.3.8 as follows:
The determinant of a matrix [A] of order 2 is

\A\ =AnA22-A12A21 (A.3.9)
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The cofactor matrix is

A22 -Ai2

An\ \-A2l An
(A.3.10)

(A.3.11)

Thus, the elements of [A] \ denoted below by A^^ are given by

An
l =A22/\A\

An1 = ~AU/\A\

A^ = -A2X/\A\

A^=An/\A\

One of the uses of matrix inversion is in the solution of systems of simultaneous linear
equations

[A](x) = (b) (A.3.12)

If [A] is invertible, then the solution is given by

(*) = [A]'\b) (A.3.13)

This method of solving systems of linear equations (or even of inverting a matrix) is NOT
recommended for systems of order greater than 2. Better methods are discussed in texts on
numerical methods (e.g., Press et al., 1992) (see, also, Appendix C).

A.3.1 Properties of the Inverse and Transpose

1.

2.

3.

4.

5.

(A.3.14)

(A.3.15)

1 (A.3.16)

(A.3.17)

(A.3.18)

6. The inverse of a nonsingular diagonal matrix is diagonal. One can readily check that
the inverse of [A]

[[A][B]]T=[B]T[A]T

Ai 0 0

0 A2 0

0 0 0

(A.3.19)

0

0

0

A"1

0

0

0

0 •• A,

Note that no A, (/ = 1,2,..., n) can be equal to zero.

(A.3.20)
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7. The inverse of a nonsingular symmetric matrix is also symmetric.

8. The inverse of a matrix that can be written in the form

[B] = [A] + (u)(v)T (A.3.21)

where (u) and (u) are column matrices of the same order as [A], can be computed
using the Sherman-Morrison formula (Ortega and Rheinbolt, 1970, p. 50)

[BY1 = [AY" - a[AY\u){v)T[AYl (A.3.22)

The scalar a is defined by

a = 1 + (u)T[A]"\u) (A.3.23)

Equation (A.3.22) is especially useful if [̂ 4] is diagonal.

A.4 EIGENVALUES AND EIGENVECTORS

Consider a square matrix [A] of order m. Let (x) be a column matrix of the same order,
that is, with m rows and 1 column. From the definition of matrix multiplication it is known
that the premultiplication of the matrix (x) by the matrix [A] generates a new column
matrix (y) so that

The matrix (y) can be considered to be a transformation of the original matrix (x). The
question that will now be asked is Is it possible for the matrix (y) to be proportional to (x),
that is, (y) = A(x), where A is a scalar multiplier? That is, for (y) to have the same
"direction" as the matrix (x). For the case of a collinear transformation we have

(y) = [A](x) = \(x) (A.4.2)

or

) = (0) (A.4.3)

where (0) is a null column matrix. Equation A.4.3 represents a system of linear homoge-
neous equations. If [[A] — A[/]] is nonsingular, that is, \[A] - A[/]| =£0, then we may
formally write

(x) = [[A] - \[I]]-\0) = (0) (A.4.4)

This result is, however, trivial for (x) = (0) represents a trivial solution. But we may ask the
question Are there values of A that will produce nontrivial solutions? The necessary and
sufficient condition that there be nontrivial solutions is that the determinant of the
coefficients vanishes, that is,

\[A]-\[I]\-0 (A.4.5)

which is called the characteristic equation of [A]. The determinantal Eq. A.4.5, when
expanded, will be of the form

\[A] - A[I]\ = Pm(\) = 0 (A.4.6)
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where

Pm(A) = A- + Q A - 1 + C2A"-2 • • • + Cm_,A + Cm (A.4.7)

will be a polynomial of mth degree in A. From a fundamental theorem in algebra it is
known that a polynomial of the mth degree has m roots. In other words, there are m values
A, such that

Pm(kt) = 0 / = l , 2 , . . . , m (A.4.8)

The A, that satisfy this Eq. A.4.8 may be complex, since an algebraic equation with real
coefficients may have complex conjugate pairs of roots, or they may be complex since the
polynomial may have complex coefficients if the matrix [A] has nonreal elements.

The values (roots) A1 ,A2 ,A3 , . . . ,Am of the characteristic equation Pm(A) = 0 are called
eigenvalues of the matrix [A].

A.4.1 Properties of Eigenvalues

1. The sum of the eigenvalues of a matrix equals the trace of the matrix: the trace of a
matrix being the sum of the elements on the principal, or main, diagonal.

nn
A, + A 2 + A 3 + ••• +kn=An+A72+Aj3+ ••• +An

= tr[A] (A.4.9)

2. The product of the eigenvalues of a matrix equals the determinant of the matrix, thus,

AiA2A3 . . . Xm= \A\ (A.4.10)

3. A matrix is singular if and only if it has a zero eigenvalue.

4. If A is an eigenvalue of [A], then I/A is the corresponding eigenvalue of M ] " 1 .

5. If A is an eigenvalue of [A], then cA is an eigenvalue of c[A] where c is any arbitrary
scalar.

6. The eigenvalues of a real symmetric matrix are real.

7. For a matrix of order 2,

\A21 A22^

where the two eigenvalues A1 and A 2 are the roots of the quadratic equation

Aj - (An + A22)Ai + (AnA22-A12A21) = 0 (A.4.11)

That is,

(A.4.12)
A2 - j{tr[A] / d i f ^ ] }

where

tr[A]=An+A22

I VT. I = ^ 1 1 ^ 2 2 12 21

disc[y4] = ( tr[^l]) 2 - 4\A\

are the trace, determinant and discriminant of the two dimensional matrix [A].
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A.4.2 Eigenvectors

For each possible value of A = Af, / = 1,2,. . . , m, a solution of the homogeneous equation

) - ( 0 ) i-l,2,...,m (A.4.13)

can be found.
Let (x) = (et) be the column matrix associated with A = A,-. We may write

[[A] - A z [ / ] ] ( ^ ) = (0) i = 1,2,...,m (A.4.14)

provided the characteristic equation has m distinct roots. The column matrices (et) are
called eigenvectors or principal axes of the matrix [A].

For a matrix of order 2, Eq. A.4.14 simplifies to

\An'A> 'Vlh)-(S) (A-4.15)

Carrying out the multiplications required by Eq. A.4.15 and solving for e2 in terms of e1

gives

eh= -(An-Ai)eii/Aa (A.4.16)

which has been derived from the first row or

eh= -A21eli/(A22-Ai) (A.4.17)

which is obtained from the second row.
Since the eigenvectors are solutions of a homogeneous system of equations, the solution

is determined only up to a constant factor and only the ratios of the elements in the
columns (et) are uniquely determined. The geometrical interpretation of this is that the
eigenvectors are uniquely determined only in their direction, but their length or absolute
value is arbitrary.

A.4.3 Similar Matrices

A matrix [̂ 4] is said to be similar to a matrix [B] if there exists an invertible matrix [P] such
that

[A] = [PV'lBJlP] (A.4.18)

If [A] is similar to [B] then [B] is similar to [A], that is,

[B] = [PKAftP]-1 (A.4.19)

The above transformations are called similarity transformations and are very important in
developing solutions to systems of coupled differential equations.

Similar matrices have the same characteristic equation and, therefore, the same eigenval-
ues.

A.4.4 Diagonalizable Matrices

A matrix is diagonalizable if it is similar to a diagonal matrix. Diagonalizable matrices are
of particular interest since their matrix functions can be easily computed. Let us see how a
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square matrix [̂ 4] of order m X m can be diagonalized. Let Az-, A2 , . . . , Am represent the m
eigenvalues of [̂ 4] and let us assume that these are real and distinct. There will be m
eigenvectors (e() corresponding to these eigenvectors, placed in sequence, thus,

[E] = [(e1)(e2)(e3)-.'(em)] (A.4.20)

that is, the columns of [E] are the eigenvectors of [A]. The matrix [E] is called the modal
matrix of [̂ 4]. Since the eigenvectors are determined only to within an arbitrary multiplying
factor, the modal matrix [E] is also not uniquely determined.

Consider the matrix product

[A][E] = [A][(ei)(e2)(e3) • • • (en)]

= [[AKe,) [A](e2) [A](e3) • • • [A](em)] (A.4.21)

But, by definition

[A](et) = A^O;) ( A . 4 . 2 2 )

and so

[M[E\ = [ A 1 ( ^ 1 ) A 2 ( g 2 ) A 3 ( e 3 ) ••• Xm(em)]

= [E][X] (A.4.23)

where [A] is a diagonal matrix containing the eigenvalues on the principal diagonal.
If the eigenvalues of [A] are distinct so that the characteristic equation of [A] does not

have multiple roots, it can be shown that the modal matrix [E] is nonsingular. The matrix
[E]~l is, therefore, defined and exists. Premultiplying the foregoing equation by [E]~l we
get

[E]-\A][E] = [EY\E][X] = [A] (A.4.24)

or

[A] = [E^X^E]'1 (A.4.25)

For a matrix of order 2, a possible modal matrix formed from the eigenvectors (Eq.
A.4.17 and A.17.18) is

= [eiAl)e2(A2)\

1 1

(A.4.26)

Au A22-A2

Other structures for [E] are possible; it all depends on what values we choose for En and
Eu.

A.5 MATRIX CALCULUS

Polynomials and exponentials play an important role in matrix calculus and matrix differen-
tial equations. It is, therefore, necessary to develop techniques for calculating these
functions.
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Let Pk(x) denote an arbitrary polynomial of degree ^ in i :

Pk(x) = akx
k + ak_lx

k~1 + ak_2x
k-2 + • • • + a1x + a0

where a0, ax, a2,...,ak are real numbers. The matrix Pj[yl]], a polynomial of the square
matrix [A] of the A:th degree, is defined as

- ak[A]k + a^lAf-' + ••• +ttl[A] + ao[I] (A.5.2)

which represents a sum of (k + 1) matrices, all of order m X m.
If we recall from calculus that many functions can be written as a Maclaurin series, then

we can define functions of matrices quite easily. For instance, the Maclaurin series for ex is

x2

ex = l+x + — '" (A.5.3)

We define a matrix exponential exp[yl] in a similar manner.

exp[A] = [I] + [A] + — [Af+ •••

= E T^Mf (A.5.4)
k = 0 K'

(Note that when we change a scalar equation to a matrix equation the unity element 1 is
replaced by the identity matrix [/].)

Other functions like sin[,4] or cos[^4] are also defined in a manner analogous to that for
scalars. For example,

D —— [A]
K

= [A] - ^[Af + ^ [ ^ ] 5 - ^[A]7 + • • • (A.5.5)

The question of convergence now arises. For an infinite series of matrices we define
convergence as follows. A sequence [[B]k] of matrices with elements Bk is said to converge
to a matrix [B] with elements Btj if the elements Bk- converge to Btj for every i and /.

A.5.1 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem is one of the most powerful theorems of matrix theory. It
states "A matrix satisfies its own characteristic equation." That is, if the characteristic
equation of an m X m matrix [A] is

km + am_1X
m-1 + am^2X

m'2 + • • • 4-fijA + a0 = 0 (A.5.6)

then

[A]m + am_x[A]m~l + am_2[A\m'2 + •' ' +a,[A] + ao[I] = [0] (A.5.7)

In many cases it is very difficult to compute functions of matrices from their definitions
as infinite series (an exception is the exponential matrix). The Cayley-Hamilton theorem,
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however, provides a starting point for the development of a straightforward method for
calculating these functions. Let us first consider how to calculate polynomials of matrices.

Let [A] represent an m X m matrix and let us define d{X) = \[A] - A[/]|. Thus, d(X) is
an mth degree polynomial in A and the characteristic equation of [A] is d(X) = 0. If \t is
an eigenvalue of [A] then A, is a root of the characteristic equation and

d(\t) = 0 (A.5.8)

Let P[[^4]] be a matrix polynomial of arbitrary degree that we wish to compute. Then
P(X) represents the corresponding polynomial of A. A theorem of algebra states that there
exist polynomials q(X) and r(A) such that

P(X) = d(X)q(X) + r(X) (A.5.9)

where r(A) is called the remainder and is of degree m - 1. The degree of r(A) is one less
than that of d(X), which is m, and must be less than or equal to the degree of P(X). Since a
matrix commutes with itself, many of the properties of polynomials are still valid for
polynomials of a matrix. Therefore, we may write

P[[A]] = d[[A]]q[[A]] + r[[A]] (A.5.10)

But d[[A]] = [0]. Therefore P[[A]] = r[[A]]. It follows that any polynomial on an m X m
matrix [A] may be written as a polynomial of degree m — 1. The latter polynomial may be
much easier to compute.

If [A] is a 2 X 2 matrix, r(A) will be a polynomial having the form

r(A) =ax\ +a0 (A.5.11)

where a0 and a1 are coefficients to be determined.
If A1 and A2 are the two eigenvalues of [^4], then we must have

/ ( A 1 ) = « i A 1 + a 0 (A.5.12)

/(A 2) = ax\2 + a0 (A.5.13)

which represent two simultaneous linear equations in the two unknowns ax and a0. The two
equations can be solved to yield

a A , - A 2
(A.5.14)

A,/(A 2 ) -A 2 / (A 1 )

We are now in a position to evaluate

f[[A]]=r[[A]]=ai[A]+aQ[l]

(A,/(A2)

A, - A 2

A2 A2

(A.5.15)

( A 5 1 6 )
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The procedure outlined above for a 2 X 2 matrix may be extended to m X m matrices.
This involves the solution of m simultaneous linear equations in m unknowns,
a m-i ' am-2> " ' ' av ao- The final result for P[[^4]] can be written as

(A.5.17)

and is Sylvester's expansion formula for a matrix polynomial. The symbol II represents a
product over m - 1 factors.

A.5.2 Functions of a Matrix

Suppose we wish to compute /[[^4]], /(A) being an arbitrary function of A. It can be shown
that, for a large class of problems, there exists a function q(X) and a polynomial of degree
m — 1, r(A), such that

/(A) = d(X)q(k) + r(A) (A.5.18)

where

It follows that

f[[A]]=d[[A]]q[[A]]+r[[A]]

= r[[^4]] (since

and /[[v4]] can be computed using Sylvester's theorem.

f [ [ A ] ] =

(A.5.19)

(A.5.20)

Equations A.5.17 and A.5.20 may be used for computing polynomials and functions of
diagonalizable matrices of any order (> m) with m distinct eigenvalues (A, ^ A;) (Lancaster
and Tismenetsky, 1985).

A.5.3 Functions of Diagonalizable Matrices

Functions of a diagonalizable matrix can be evaluated by an alternative procedure. If [A]
represents a diagonal matrix

then [A]* is

(A.5.21)

(A.5.22)

Ai
0

0

A
0

0

0
A2

0

0

A2

0

0 •••

0 •••

0 •••

0 •••

0 •••

0 •••

0
0

K

0

0

A*
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An arbitrary polynomial PJ[A]] is given by

>*(Ai) 0 0

o PkU2) o

0 0 0

An arbitrary function /[[A]] of [A] is calculable from

/[[A]] =

For example, exp[A] is

exp[[A]]

0 0 0

Consider a diagonalizable matrix [A]

/(A,) 0 0 ••
0 /(A2) 0 ••

0 0 0 ••

0 0
0 exp(A2) 0

o

0

/(Am)

0

0

exp(Am)

- l

It is easy to see that

and, in general,

kr J--1 — 1[A]* = [E][X]k[E]

(A.5.23)

(A.5.24)

(A.5.25)

(A.5.26)

(A.5.27)

which provides a straightforward procedure for evaluating [A]k, since [X]k can be evaluated
simply.

Let us now consider the evaluation of the matrix exponential exp[^4].

k[EYlE V}[E][X]k[E

k=o

(A.5.28)
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In general, we can evaluate any function of a diagonalizable matrix [A] by the above
procedure. Thus,

f[[A]] = [EmixmEV1 (A.5.29)

A.6 MATRIX COMPUTATIONS

Matrix computations can be very time consuming, particularly for matrices of large size. By
performing the calculations in the most efficient way it is often possible to save a lot of time.
Here, we provide some guidelines as to how certain matrix computations can most
expediently be carried out. For definiteness, we consider the problem of computing the
molar diffusion fluxes Jt from the equation

Equation A.6.1 arises when the Maxwell-Stefan equations are solved for the case of
steady-state, one-dimensional mass transfer, as discussed in Chapter 8. The matrices [k] and
[<l>] are as defined in Chapter 8, ct is the molar density of the mixture and a scalar, and
(Ax) is a column matrix of mole fraction differences. All matrices in Eq. A.6.1 are of order
n — 1 where n is the number of components in the mixture. For the purposes of this
discussion we shall assume that the matrices [k] and [O] have already been calculated. The
matrix function [<l>][exp[<I>] — [7]]"1, denoted by [H], can be computed using Sylvester's
expansion formula (see, however, below) so the immediate problem is the calculation of the
column matrix ( /) from

(J)=c,[k][E](Ax) (A.6.2)

A.6.1 Arithmetic Operations

Now, the multiplication of two square matrices of order m involves m3 multiplication
operations and m2(m — 1) additions. However, the multiplication of a square and a column
matrix involves m2 multiplications and m(m — 1) additions and the multiplication of a
square matrix with a scalar involves just m2 multiplications. With regard to Eq. A.6.2, there
is, therefore, some incentive to computing ( /) from right to left rather than from left to
right, as written.

A.6.2 Matrix Functions

The most time consuming step in the calculation of the fluxes is the evaluation of the matrix
[B]. For problems involving only a few (three or four) components the use of Sylvester's
theorem is recommended. Unfortunately, Sylvester's expansion formula demands an in-
creasing percentage of computer time as the number of components and, therefore, the size
of the matrices involved increases. An alternative to the use of Sylvester's formula is to
evaluate a matrix function from its power series definition. Thus, for example, the exponen-
tial matrix in Eq. A.6.1 could be evaluated directly from Eq. A.5.4. The number of terms
needed to evaluate exp[^>] in this way depends on the magnitude of the dominant
eigenvalue &d of [<1>] (the eigenvalue with the largest absolute value). Convergence will be
rapidly obtained for small <t>d. However, for large &d we may need a great many terms of
the series to evaluate the exponential.

Moler and Van Loan (1978) discuss at some length "Nineteen dubious ways to compute
the exponential of a matrix." They consider three or four methods as candidates for the
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"best" method. Included among this small group of "best" methods is one that they call
"scaling and squaring," which is attributed to many, but which we first came across in a
paper by Buffham and Kropholler (1971). They write ex in the form

ex = {exp{x/2^}}2" (A.6.3)

where q is a positive integer. By choosing a suitable value for q the magnitude of the
exponential argument will be of order 1. Convergence of Qxp{x/2q} from the power series
(Eq. A.5.3) will be very rapidly obtained. It only remains to multiply this quantity by itself q
times to obtain ex. Equation A.6.3 may be generalized in matrix form as

exp[<I>] = [exp[^]/2^]2<? (A.6.4)

A suitable value of q may be estimated from (Buffham and Kropholler, 1971)

(A.6.5)

If q calculated from Eq. A.6.5 is negative, it should be assigned a value of zero. Subtraction
of the identity matrix [/] from exp[O], followed by inversion and premultiplication by [<!>]
gives the matrix [H]. Using Eq. A.6.4 to calculate [H] can be several times faster than
Sylvester's formula (Taylor and Webb, 1981).

Since the computation of eigenvalues can be quite time consuming, it would be a good
idea to replace an exact determination of the dominant eigenvalue with an approximation.
Gershgorin's circle theorem (see, e.g., Wilkinson, 1965) may be used to estimate the limits
of the eigenvalues. This theorem states that the /th eigenvalue of [<I>] lies within a circle
with center Qu and radius given by the sum of | $>ik |, excluding the diagonal element. Thus,
Qd may be estimated quite readily from

tn-\ \
|<fcj ^ max £ I^J (A.6.6)

1 U = i /

Unfortunately, the above procedure cannot be used when [<l>] is singular. In this case the
matrix [exp[<I>] — [/]] is singular and cannot be inverted. Hence, the matrix function [H],
though finite, cannot be obtained in this way. A power series expansion of [H] is not
convergent for all [<£]. On the other hand, an expansion of the inverse, [H]"1 is convergent
and can be calculated even when [$] is singular. The series [H]"1 may be expressed as
(Taylor and Webb, 1981)

The matrix [H] is then obtained by inversion of the result of this series. The series
representation (Eq. A.6.6) is preferred to Sylvester's formula (especially when the order of
the matrix is > 3 or 4) but is not as fast as the truncated power series (Eq. A.6.4) (Taylor
and Webb, 1981). For problems involving a singular, or nearly singular [<£>], the series (Eq.
A.6.7) is the best alternative to Sylvester's formula.



APPENDIX B
Solution of Systems
of Differential Equations

B.I GENERALIZATION OF THE SOLUTIONS
OF SCALAR DIFFERENTIAL EQUATIONS

In many cases, the solution to a matrix differential equation can be obtained as the matrix
generalization of the equivalent scalar differential equation. For example, the first-order
differential equation

— =Ax (B.I.I)
dt

with "initial" condition

(B.1.2)

(B.1.3)

(B.1.4)

(B.1.5)

(x) = [cxp[A]t](x0) (B.1.6)

Using the definition of the exponential matrix (Eq. A.5.4), we may rewrite Eq. B.1.6 as

(*) = [ [ / ] + [A]t + \[A?t2 + i [ / l ] V + • • •](*„) (B.1.7)

and differentiate term by term to get

has

The

with

has

the solution

matrix generalization

i initial conditions

the solution

of Eq.

(.

x =x0

x =

B.1.1

d(x)

dt

x) = (jc0)

at t = 0

eA'x0

= [A](x)

at t =

[A][exp[A]t](x0)

which completes the proof.

524
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Let us now consider the matrix differential equation

d(x)
-^-— = [A](x) + (b) (B.1.9)

dt
where both [A] and (b) are constant matrices. The "initial" or boundary condition is, again,
given by Eq. B.I.5. This system of equations can be solved as follows. First, we rewrite Eq.
B.1.9 as

d^l = [A}((x) + [AY\b)) (B.1.10)

Since [A] and (b) are constant matrices, it follows that

d(o>) _ d(x)

dt dt

where we have defined (a>) by

In terms of (co) we now have to solve

d(co)

(B.1.11)

= [A](w) (B.1.13)
dt

subject to

(a>) = (o>0) = (x0) + [A]~\b) at r = 0 (B.1.14)

Equations B.I.16 and B.I.17 represent the system for which we already have the solution

(«) = [exp[>l]f](«0) (B.1.15)

Equation B.1.15 can be rewritten in terms of (x) as

(*) = [exp[A]t](x0) + [[expM];] - [I]][A]~\b) (B.1.16)

B.2 THE METHOD OF SUCCESSIVE SUBSTITUTION

The method of successive substitution is useful for solving matrix differential equations in
which the coefficients are functions of the independent variable t.

To illustrate the method of successive substitution, also known as Picard's method, we first
consider the scalar differential equation

dx
(B.2.2)
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with the initial condition

x = x0 at t = 0 (B.2.3)

Separating variables and integrating Eq. B.2.2. gives

jdx = JA(t)xdt (B.2.4)

Integrating from the initial condition at t = 0 gives

x = x o + [tA(t1)xdt1 (B.2.5)

•'o
where we have introduce a dummy variable of integration tv

Equation B.2.5 gives x in terms of an integral of itself. Approximate expressions for x
can be obtained by substituting any appropriate function of x under the integral on the
right-hand side. For example, we could let x = 0 and the zeroth approximation to the
solution to Eq. B.2.2 would be x = x0. Obviously, this is not a very good approximation
except when t = 0. A better one is obtained by substituting the entire right-hand side of Eq.
B.2.5 for x under the integral

x =x0 + f'A^tMxo + (hA(t2)xdt2) dt,\
o

,) dtx x0 + f'Aitjf'A^xdtt dtx (B.2.6)

Now we have the first two terms of a series solution to Eq. B.2.4. The third term on the
right-hand side of Eq. B.2.6 involves x; so, once again, we replace it using Eq. B.2.5 to give
the next approximation

= xQ

o + ft2A{t3)xdt\dt2dtx

dtx x0 + fA(t1)j
hA(t2) dt2 dtx x0

Uo,) (hA(t2) (t2A(t3)xdt3 dt2 dt, (B.2.7)

It should be obvious that we may continue indefinitely by substituting the right-hand side of
Eq. B.2.5 for x in the last term of each series we generate. The final result is the solution of
Eq. B.2.2

x = %{A)x, (B.2.8)

where

£1{A) - 1 + f'AOJdh + j

^Oj) (hA(t2) fhA(t3) dt3 dt2 dtx

+ • • • (B.2.9)
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The solution to the matrix generalization of Eq. B.2.2

d(x)

- ~ - = M(OK*) (B.2.10)

with

( x ) = (JC0) at t = 0 (B.2.11)

follows in exactly the same way. Separating variables in Eq. B.2.10 and integrating gives

(*) - (x0) + f\A(tl)](x) dtx (B.2.12)

The first approximation is obtained when we substitute for (x) under the integral using the
entire right-hand side.

(x) = (x0) + /oW,)]((*o) + £[A(t2)](x) dt2j dh

(B.2.13)
0 - - - - - - - -

The second approximation is

(*) = (*„)+ fM('i)]*i(*o)

+ l'[A(tl)]f'\A(t2)}ft\A{ti)}{x)dhdt2dtl (B.2.14)

Continuing in this way we end up with

(x) = [£l'0(A)](x0) (B.2.15)

where the matrix [1VO(^4)], termed the matrizant by Amundson (1966), is given by

[il'0(A)] = [I] + f'Uih^dtr + f'[A(h)]j'\A{t2)]dt2dt,
•'o

+

+ • • • (B.2.16)
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The same approach can be used to solve the matrix differential equation (Eq. B.2.1). The
solution is (Amundson, 1966)

(x) = [%(A)}((x0) + [^(^)]/J[H5(^)]-1(KO)^) (B.2.17)

Let us demonstrate this method by reconsidering the matrix differential equation

^ - = [A](x) + (b) (B.2.18)

with

(*) = (*<>) a t ' = 0 (B.2.19)

that we solved in Section B.I. Even though [A] and (b) are constant matrices we may use
the method of successive substitution.

The solution can be written down immediately as

(*) - [a'0(A)](x0) + [%(a)] (/o'[a5(^)]-1rfr)(i) (B.2.20)

where we have taken (b) out of the integral because it is constant.
The matrizant [OQ(V4)] is found as follows:

[%(A)\ = [I] + f[A]dt, + j'[A]jh[A] dt2 dtx

+ f'[A]fi[A]f2[A]dt3dt2dt1+ •••
Jo Jo Jo
f[]f[]f
Jo Jo Jo

= exp[,4]; (B.2.21)

Thus, the matrizant of a constant matrix is the exponential matrix. Returning to Eq. B.2.20
we have

(x) = [exp[A]t](x0) + [exp[A]t]jXexp[A]tl]-\b) dt, (B.2.22)

By using the definition of the exponential matrix (Eq. A.5.4), it is easy to show that

[exp[^]]exp[-[^]] = [7] (B.2.23)

Hence,

[exp[^]]"1 = exp[ - [^ ] ] (B.2.24)

which allows the integral in Eq. B.2.22 to be evaluated.

l dt = f'cxp[-[A]t]dt

(B.2.25)
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Substituting this result into Eq. B.2.20 we obtain

(x) = [exp[A]t](x0) + [exp[,4]f][[/] - cxp[-[A]t]][A]-\b)

= [exp[A]t](x0) + [[exp[^]r] - [I]][A]~\b) (B.2.26)

which, of course, is Eq. B.I.22. Although we did not really have to go through all of this
calculus to obtain the above result, this example serves to illustrate the lengths to which one
must go in order to evaluate the matrizant and the solution of a matrix differential equation
by the method of successive substitution. This method is used to solve multicomponent mass
transfer problems in Sections 8.3.5 (see, also, Sections 8.4 and 8.7), 9.3, and 10.4.

B.3 SOLUTION OF COUPLED DIFFERENTIAL EQUATIONS
USING SIMILARITY TRANSFORMATIONS

An alternative to the methods described above can be used if the coefficient matrix is
diagonalizable. Consider, once again, the matrix differential equation and its associated
initial condition

with initial conditions

(*) = (*o) ^ t = 0 (B.1.5)

If [A] is diagonalizable it is possible to find a nonsingular matrix [E] such that

( )

where [A] is a diagonal matrix whose elements are the eigenvalues of [A]. Premultiplying
Eq. B.1.4 by [E]'1 and inserting the identity matrix [E\E]~X between [A] and (x) gives

= [\][E]-\x) (B.3.2)

If [A] is a constant matrix, that is, [A] = [A(t)], then its eigenvalues A, and modal matrix
[E] will also be independent of t. Thus, we may bring [E]~l inside the derivative. Defining
a column matrix of new variables (x) by

(x) = [E]-\x) (B.3.3)

we have

d(x)
— = [A](x) (B.3.4)

Now, since [A] is diagonal, this result represents a set of m uncoupled differential equations

dx(

— = A,-*,- (B.3.5)
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The solution to the ith equation is, of course,

xi = exp(Ayf )* i 0 i = 1,2,..., m (B.3.6)

where xi0 is obtained from the transformation

(i0) - [E]~\x0) (B.3.7)

To obtain the solution in terms of the original set of variables (x) we arrange the set of Eqs.
B.3.6 in matrix form

(*) = [exp[A]f](*0) (B.3.8)

and premultiply by [E] to get

[E](x) = [E][exp[A]t][Erl[E](x0) (B.3.9)

or

(x) = [F](x0) (B.3.10)

where

[F] - [EftexpMtftE]1 (B.3.11)

This method is used in Chapter 5 to solve multicomponent diffusion problems.



APPENDIX C
Solution of Systems
of Algebraic Equations

C.I SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Consider the system of simultaneous linear equations

If [A] is nonsingular then the solution is given formally by

(A.3.12)

(b) (A.3.13)

However, this method of solving a system of linear equations is not used in practice, largely
because it is much too time consuming. A better method is based on the so-called LU
decomposition in which the matrix [A] is factorized as follows:

(C.1.1)

where [L] is a lower triangular matrix

L21 L22

'-m Ln2 Ln3

(C.1.2)

and [U] is an upper triangular matrix

ul2

u22 a23
(C.1.3)

Following the computation of the factors [L] and [U] it is a simple matter to obtain the
column matrix (x) as follows. The first step (forward substitution) is to compute a column
matrix (z) = [U](x) by solving the linear system [L](z) = (b). The second step (backward
substitution) involves the computation of (x) from [U](x) = (z). We shall not go into the
details of the decomposition process here. The interested reader can find them in almost
any book on numerical methods. The entire method can be programmed in only a few lines
of computer code (see, e.g., Press et al., 1992).

The LU decomposition method is particularly useful for solving linear systems of the
form [^4][X] = [B], where [X] and [B] are rectangular (i.e., with more than one column).

531
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For these systems, we simply perform the back substitution as many times as necessary
(once for each column in [X]), but the factors of [A], [L] and [U], need be computed only
once.

C.2 SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS

A very large number of methods of solving systems of nonlinear algebraic equations has
been devised (Ortega and Rheinbolt, 1970). However, just two methods are employed in the
algorithms presented in this book: repeated substitution and Newton's method; we review
these methods below.

C.2.1 Repeated Substitution

To use repeated substitution, the equations to be solved must be expressed in the form

(G((x))) = (x) (C.2.1)

where (G) is a vector consisting of all the equations to be solved and (x) is, again, the vector
of variables. The procedure for solving the equations is summarized in Algorithm C.I.

C.2.2 Newton's Method

To use Newton's method, the equations to be solved are written in the form

(F((x) ) ) = (0) (C.2.2)

where (F) is a vector consisting of all the equations to be solved and (x) is, again, the vector
of variables. A Taylor series expansion of the function vector around the point (x0) at which
the functions are evaluated gives

(F((x))) = (F((x0))) + [J]((x) - (x0))) + O(|(x) - (xo)|
2) (C.2.3)

where [J] is the Jacobian matrix of partial derivatives of (F) with respect to the independent
variables (x)

J y = dFSdXj (C.2.4)

If (x) is the actual solution to the system of equations, then (F((x))) = (0): Additionally, if
the O(|(x) - (xo)|2) term is neglected then Eq. C.2.3 can be rearranged to give

[J](00 - (*o)) = -(n(*o))) (C.2.5)

Here the only unknown is the value of the vector (x). Thus, by solving the linear system of
Eqs. C.2.5 it is possible to obtain a value for this vector. If the new vector (x) obtained in
this way does not actually satisfy the set of equations (F) then the procedure can be
repeated using the calculated value as a new (x()). The entire procedure is summarized in
Algorithm C.2.

Algorithm C.I Repeated Substitution

1. Set iteration counter k to zero. Estimate (x)0.
2. Compute
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3. Set(x)* + 1 = (G((x)*)).
4. Check for convergence. If ||(x)^ + 1 - (x)k\\ is less than some prescribed small num-

ber, stop. Otherwise, increment k and return to Step 2.

Algorithm C.2 Newton's Method

1. Set iteration counter k to zero. Estimate (x)0.
2. Compute (F(x)k) and [J].
3. Solve Eq. C.2.5 for (x)k + 1.
4. Check for convergence; if not obtained, increment k and return to Step 2.



APPENDIX D
Estimation of Thermodynamic Factors
from Activity Coefficient Models

For concentrated nonideal liquid mixtures the thermodynamic factors can be calculated
from models of the excess Gibbs energy GEX. There are quite a number of models of GEX

available: the Margules, Van Laar, Wilson, NRTL, and UNIQUAC models are widely used.
With the comprehensive data compilation edited by Gmehling and Onken (1977ff), an
extremely large number of parameters of these solution models has become available and
these can be used in the calculation of the thermodynamic factors. In the absence of
experimental data, group contribution methods, such as ASOG (Analytical Solution of
Groups) and UNIFAC (UNIQUAC Functional Activity Coefficients), can be used. There
are many thermodynamics texts that discuss these models in great detail (see, e.g., Walas
(1985) and Prausnitz et al., 1986). However, the necessary expressions for evaluating the
thermodynamic factors are rarely needed in textbook treatments of thermodynamics. Taylor
and Kooijman (1991) presented expressions for the thermodynamic factors for many of the
above models. We summarize their results here.

D.I ESTIMATION OF THE THERMODYNAMIC FACTOR FOR BINARY SYSTEMS

The thermodynamic factor T for a binary system is defined by

d In y1

r = dXl
(D.1.1)

The symbol 2 is used to indicate that the differentiation of In y1 with respect to mole
fraction x1 is to be carried out subject to the restriction that x1 + x2 = 1. For a regular
solution, for example, the activity coefficient of component 1 is given by

If we replace the mole fraction x2 with 1 - xx and differentiate with respect to xx we find

d In 7l

= -2.4(1 -xx) = -2Ax2 (D.1.3)

and, therefore, T is given by

= 1 - 2Axxx2

Few real systems are adequately represented by the regular solution model. As a result,
there are several more complicated models of GEX that have been proposed. For these

534
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other models we find that an alternative procedure, formally equivalent, is algebraically
simpler to apply, especially for the multicomponent systems we consider later. In what
follows we develop this procedure in detail and provide the results for a number of models
of activity coefficients in solution.

Let Q be the dimensionless excess Gibbs energy

Q = Q(xux2) = GEX(x1,x2)/RT

= ^ 1 lny 1 +x 2 l ny 2 (D.1.5)

The activity coefficients yx and y2 may be expressed in terms of Q and its composition
derivatives by (see Section D.2 for derivation)

In n = Q + Gi - *iGi - X2Q2 (D.1.6)

In y2 = Q + Q2 - xxQx - x2Q2 (D.1.7)

where Qx and Q2 are defined by

dO dQ
e 2 - - (D.1.8)

/ Xi

That is, Qx is the partial derivative of Q with respect to mole fraction xl9 while holding
mole fraction x2 constant, and Q2 is the partial derivative of Q with respect to mole
fraction x2, while holding mole fraction xx constant.

TABLE D.I Regular Solution Model for Binary Systems

Dimensionless Gibbs excess energy

Q =Axxx2

Parameter

A

Unconstrained first composition derivatives

<2j =Ax2 Q2 =Axx

Unconstrained second composition derivatives

Qn = 0 Q12=A

Qn =A Q22 = 0

Activity coefficients

In?! =Ax\

In y2 — Ax\

Thermodynamic factor

T = 1 - 2Axtx2
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We may differentiate Eq. D.1.6 and D.1.7 to obtain the partial derivatives of In yx and
In y2 as

d\nyi

dx,

d\n7l

dx2

dh\y2

<91ny2

= Ql2 -

= Q2i -X2Q21 - * i

Q22 x2Ql2 X\Ql2

(D.1.9a)

(D.1.9b)

(D.1.9c)

(D.1.9d)

TABLE D.2 Margules Model for Binary Systems

Dimensionless Gibbs excess energy

Q =x1x2(A12x2 + A2lxx)

Parameters

Al2 and A2l

Unconstrained first composition derivatives

Q\ =^12*2 + 2^21^1^2

Q2 = 2Anx1x2+ A2Xx\

Unconstrained second composition derivatives

Qll =

G12 = 2^12x2 + 2A2lxx = Q2l

Q22 = 2A12xx

Other relations

Activity coefficients

lnri = 2i -2 (2

In y2 = Q2 ~ 2<2

Thermodynamic factor

= 1 + 2Xlx2((A2l-A12)(l - 3*0 -Al2)
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e Qtj are second partial derivatives defined by

(D.1.10)

212

222

dx2

dQ2

~ dx2

TABLE D.3 Van Laar Model for Binary Systems

Dimensionless Gibbs excess energy

Q = AX2A2XXXX2/S

o — /\.y2,^\ "• -^21*^2

Parameters

Al2 and A2l

Unconstrained first composition derivatives

n = A J 2 r 2 / o 2
xc 1 12 21 2/

Q2=A2
2A2lx

2/S2

Unconstrained second composition derivatives

Qn= -2A2
2A

2
21x

2/S3

G12 = 2A2
l2A

2
2lXlx2/S

3 = Q21

Q22 = -2A2
nA

2
2lx

2/S3

Other relations

Q=xlQl+x2Q2

Activity coefficients

In yi = <2i In y2 = Q2

Unconstrainted composition derivatives of In y

<91n-

dx,

(91n-

din o^

dx2

Thermodynamic factor

r = i+^(Gii-Gi2) = i -

= e1
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TABLE D.4 Wilson Model for Binary Systems

Dimensionless Gibbs excess energy

Q = —Xi In Sj - x2 In S2

S1=x1+ x2A12 S2=x2+ x x A 2 1

Parameters

Unconstrained first composition derivatives

g 2 = - I n 5 2 - -

Unconstrained second composition derivatives

fin = " 2 / ^ + jCi/5? + x2A
2

21/,S2
2

fil2 = ~A12/^1 - A2l/^2 +*lA12/S1
2 +X

Q22 = -2/S2 + x2/S\ + ̂ iAiz/^i2

Other relations

ll +^2^21 = "

Activity coefficients

In y1 = x1 + x2 + Qx In y2 = xx + x2 •

Unconstrained composition derivatives of In y

d]n-

dx,

Thermodynamic factor

= 1 + Gi:

= 1 + Q2

+x1(Qn-Ql2)
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TABLE D.5 NRTL Model for Binary Systems

Dimensionless Gibbs excess energy

Q = ^1^2(^21^21/^1 + T12Gl2/S2)

Sl =xl +x2G21 S2=x2+xlG12

Gl2 = exp(-ar1 2) G2] = exp(-ar2 1)

T12 = (in - Sn)/RT r21 = (g2l - g22)/RT

Parameters

(§12 - £11), (£21 ~ £22) a n d «

Unconstrained first composition derivatives

Q\ = -^2^21^11 +-^2^12

Q2 = -XXG12E22 + xxe2x

en = -Cx/S\ e12 = G12(T12 - C2/S2)/S2

e2\ = ̂ 2i(T2i ~ Cl/Sl)/Sl e22 = ~C2/S\

Unconstrained second composition derivatives

Qn = 2x2(G2lsn/Sl - Gueu/S2)

Qu = ^1(^12^12/^2 ~ ^21^11/^1)

+ x2(G21e2l/Sl - Gue22/S2) = Q21

Q22 = 2xi(G12£22/S2 - G2le2l/Sx)

Other relations

Activity coefficients

Unconstrained composition derivatives of In y

d In yx

dxx

<91ny2

G2

dx-?

dlny2

Thermodynamic factor

n - Q 1



TABLE D.6 UNIQUAC Model for Binary Systems

Dimensionless Gibbs excess energy

Qc = x1m1 + x2m2

/ z
= I 1 - -q

el/xl = (?i/^ 02/x2 = q2/q

r =x1r1 +x2r2

q =xxqx + x2q2

z = 10

Qr = -x1q1 In 5! - x2q2 In 5

51! = 0X + 0 2 T 1 2 S2 = 62

r12 = exp(-(A12-A11)//?71)

r21 = exp( - (A 2 1 -A 2 2 ) / i ? r )

Parameters

(A12 - An) , (A21 - A22), rl9 qx, r2,q2

Unconstrained first composition derivatives

Gi = Q\ + Gf Q2 = 21 + 25
z

Q{ = m1- (r1/r)(x1 + x2) + -<

z
QC2 = ̂ 2~ (>2A)Ol + ̂ 2> + ^(rl/r ~ Ql/i)

Qr
1^g1(i-insl-01/s1-e2r12/s2)

Qr
2 = q2(l - In S2 - Slr2l/Sl - 62/S2)

Unconstrained second composition derivatives

Qu = Qu + Qu

Qc
n = -2r,/r + ( r ^ O i + x2) - \d<jjr - q./qf

Qh = -rx/r - r2/r + (r1r2/r
2)(xl + x2)

z
(

- G I i

- 2/s2 + e^/sl + 82/sl)/q
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TABLE D.6 (Continued)

Other relations

x1(l + Ql)+x2(l+Q2)
xiQn +X2Q21 = " I

Activity coefficients

In y1=x1+x2 + Qx In y2 = x1 + x2 + Q2

Unconstrained composition derivatives of In y

d\n7l
G11

a in 7i
= 1 + Qv.

d\ny2 5 In y2

dx.

Thermodynamic factor

Q12 and Q21 a r e eQual

Gl2 = 221 (D.1.11)

Equations D.I.9 provide the unconstrained (by x1 + x2 = 1) partial derivatives of the
activity coefficients. It is essential to evaluate the second partial derivatives of Q before
making any use of x1 + x2 = 1 to simplify the results of the first differentiation. Only after
all differentiation has been carried out may we employ the summation relationship.

The partial derivative of In yx needed in the evaluation of T is the constrained (by
xi + X2 = D derivative of In y1 and is related to the unconstrained derivatives by

a In 7!

dx, dx, dxo

= (1 - x1)Qn - x2Q21 - (1 - x1)Q12 + x2Q22

= *2(Qn + Q22 ~ Qn ~ Q21)

= x
2(Qn + Q22-2Q12) (D.I.12)

The thermodynamic factor, defined by Eq. D.1.4, may now be expressed in terms of the Qtj
as

r = 1 + x1x2(Qu + Q22 - 2<212) (D.I.13)

The results of applying this procedure to a number of activity coefficient models are
given in Tables D.1-D.6. It should be noted that for some models there exist relations
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between Q and its derivatives that can simplify Eq. D.I.13. These special relations are also
noted in the tables.

D.2 THERMODYNAMIC FACTORS FOR MULTICOMPONENT SYSTEMS

For multicomponent mixtures, the elements of the thermodynamic matrix are defined by

„ d l n ?/
(D.2.1)

The symbol 2 is used to indicate that the differentiation of In yt with respect to mole
fraction x; is to be carried out while keeping constant the mole fractions of all other species
except the «th. The mole fraction of species n must be eliminated using the fact that the xt

sum to unity.
Of the models introduced in Section D.I, only the Wilson, NRTL, and UNIQUAC are

extended to multicomponent systems. Below we show how this is done. At the same time we
provide rigorous derivations of some of the relations presented in Eq. D.I.I.

For a multicomponent system GEX is given by

= GEX/RT
/=!

yt is defined by

In yt =
d(ntQ)

dn,.

(D.2.2)

(D.2.3)

where Q denotes the dimensionless excess Gibbs energy GEX/RT, ni is the number of
moles of species / in solution and nt is the total number of moles in the mixture

"t = E ni (D.2.4)

The partial derivative in Eq. D.2.3 may be expanded to give

(D.2.5)

We will find it useful to replace the partial derivative of Q with respect to the number of
moles nt in Eq. D.2.5 with the partial derivatives of Q with respect to the mole fractions xt

defined by

t = ni/nt (D.2.6)

It is important to recognize that a change in the number of moles of species i,ni9 changes
the mole fractions of all n species, not just the mole fraction of species /. Accordingly, we
may express the partial derivatives in Eq. D.2.5 as

dn, £ i y (D.2.7)
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where

i
(D.2.8)

is the partial derivative of Q with respect to the mole fraction xjt The symbol X is
shorthand notation to emphasize that the mole fractions of all species except the y'th are
kept constant while performing the differentiation. The requirement that the mole fractions
sum to unity is not used to eliminate any mole fraction before the differentiation has been
carried out.

The mole fraction derivatives may be obtained by differentiating Eq. D.2.6 go give

dnf

(D.2.9)

where 8tj is the Kronecker delta.
When we combine Eq. D.2.6 with Eqs. D.2.7 and D.2.8 we obtain the following

expression for the activity coefficients yi

(D.2.10)
k=l

Equation D.2.10 is the multicomponent generalization of Eqs. D.I.6 and D.I.7.
The derivatives of In yi with respect to mole fraction Xj are obtained on differentiation

of Eq. D.2.10 as

d In yt

dXi

where

Qu-

Q = ^

tkj (D.2.11)

(D.2.12)

are the partial derivatives of Q, with respect to mole fraction Xj. The Qtj are symmetric.

Qij = Qji (D.2.13)

Equation D.2.11 provides the unconstrained mole fraction derivatives of In yi9 and the
differentiation of Qi must be done prior to any use of the fact that mole fractions sum to
unity in order to simplify the expression for Qt. The constrained mole fraction derivatives
(where only n — 1 of the mole fractions are regarded as independent—i.e., the xt sum to
unity), needed in the evaluation of the F/;, are given in terms of the unconstrained
derivatives by

d In yt

~ix~
d In yi d In yi

(D.2.14)
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TABLE D.7 Wilson Model for Multicomponent Systems

Dimensionless Gibbs excess energy

1 = 1

Parameters

(My-Mii),^

Unconstrained first composition derivatives

n

Qt= - ln(S,)- Y,xkAki/Sk
k = \

Unconstrained second composition derivatives

n

Qtj = -Aij/Si - Aji/Sj + £ xkAkiAkj/Si
k = \

Other relations

e = AT + E ̂ «Gi
/ = i

E ^ - G y i ^ " I ' = 1 ,2 , . . . ,n

Activity coefficients

In y/ = A' + Qi

Unconstrained composition derivatives of In yt

d In yt

dXj
= 1 + Qu

i
Thermodynamic factor

Tu = 8ij+xi(Qu-Qin)
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TABLE D.8 NRTL Model for Multicomponent Systems

Dimensionless Gibbs excess energy

Tij = (gu ~ ga)/RT

TU = 0 and Gu = 1

Parameters

{Sij-gii) and atj^aj

Unconstrained first composition derivatives

Unconstrained second composition derivatives

n
Qij = el7 + e^ - E xk(Gikejk + Gjkeik)/Sk

k=l

Other relations

Activity coefficients

In y,- = G,

Unconstrained composition derivatives of In yt

d In yt

= G/y
dXj

Thermodynamic factor

r,j - s,j + x^j - Qln)
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TABLE D.9 UNIQUAC Model for Multicomponent Systems

Dimensionless Gibbs excess energy

Q = QC + Qr

n

Qc= E *,-"»,

™jr = 1 - —C

*i = ri/r

z= 10

Qr= -I

Si - t ern

Parameters

(Ay /-A77),r / 5^.

Unconstrained first composition derivatives

Q, = Qf + Q>

eik = Tik/Sk
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TABLE D.9 (Continued)

Unconstrained second composition derivatives

Qu -Qfj + Qij

Qfj= ~rl/r-rJ/r+ (r^/r2)*

I] J J J Jl 1*^4 K IK JK I I

Other relations

Qr= L^
/ = 1

Activity coefficients

In yf = x + Gf

In y/ - Gf

In yt = In yf +In yf = AT + Gf + Gf

Unconstrained composition derivatives of In yt

d In yt

dXj

Thermodynamic factor

r« = su +

= 1

i
"•" G/y

- Gin)

The elements of the thermodynamic factor follow from Eq. D.2.1 as

IV = 8U + x ^ - Qin ~ £ ^ ( e , y - C ) \ (D.2.15)
I k=l J

The results of applying the above procedure to the multicomponent forms of the Wilson,
NRTL, and UNIQUAC models are summarized in Tables D.7-D.9.

It is interesting to note that for the three models in Tables D.7-D.9 the summation in
Eq. D.2.15 vanishes and the thermodynamic factor is given by the simpler equation

r y = Sl7 + x,{Q,j - Qin) \Special | (D.2.16)
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D.3 THERMODYNAMIC FLUID STABILITY AND THE GIBBS FREE ENERGY

The total Gibbs free energy is given by (Walas, 1985; Prausnitz et al., 1986)

G = GID + GEX (D.3.1)

where GID is the ideal Gibbs free energy

n

GID/RT= E^lnx,. (D.3.2)
/ = i

The Hessian matrix of the Gibbs free energy [G] is useful in determining the stability of
a given fluid phase. For a fluid phase to be stable the eigenvalues of [G] must be positive.
The elements of this matrix are defined by

Gti -
dlG

dxtdXj
(D.3.3)

The Gtj may be expressed in terms of the Qtj as

Gij = 8 ^ + l/xn + Qu - Qin - Qjn + Qnn (D.3.4)

The first two terms are the contribution to the Gtj from the ideal Gibbs free energy, the
last four terms represent the contribution from the excess Gibbs energy. For a binary system
Eq. D.3.4 simplifies as follows:

Gn/RT = 1/Xlx2 + Qu + Q22 - 2QU

= T/x1x2 (D.3.5)

and we see that, for binary systems, Gn is closely related to the thermodynamic factor F.
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E.I WHAT IS ON THIS DISK?

The accompanying diskette contains Mathcad implementations of the examples that are
worked out in detail in the text. Some of these files require only minimum modification in
order to be useful for solving some of the exercises. It is necessary to purchase the Mathcad
program in order to load these examples.

The files on this disk may be used in conjunction with Mathcad for DOS version 2.5 or
Mathcad for Windows versions 3.1 or 4.0. Mathcad is a product of MathSoft, Inc. The files
on the disk were created with Mathcad for DOS version 2.5 and translated to the Mathcad
for Windows 3.1 format.

To use these files you must run the installation program included on this diskette. Since
all the example files are in a compressed format you will NOT be able to use them without
running the installation program

The files on the diskette are given a name that corresponds to the numbering of the
examples in the text. For example, the file named 04-2-5.MCD contains the solution to
Example 4.2.5.

Please note that files created with the DOS version can be loaded into the Windows
version but that the converse is not true. That is, files created by Mathcad for Windows
cannot be loaded into Mathcad for DOS. To load these files into Macintosh Mathcad,
consult your Mathcad documentation.

For more information, or to place an order for Mathcad, please contact MathSoft, Inc. at
1-800-688-8553 or send in the enclosed business reply postcard.

E.2 HARDWARE REQUIREMENTS

Mathcad requires the following hardware and software:

Mathcad for DOS

• IBM PC, PC/XT, PC/AT or compatible, including PS/2 series

• MS-DOS or PC-DOS version 2.x and above

• CGA, EGA, VGA, or Hercules Monochrome monitor and adapter

• 512K RAM required; 640K recommended

• Math coprocessor not required; but supported and recommended

• Printer (See Mathcad documentation for supported printers)
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Mathcad for Windows:

• 80286/386/486 based IBM or compatible computer
• Math coprocessor not required
• MS-DOS or PC-DOS version 3.0 or later
• Microsoft Windows version 3.0 or later
• 2MB RAM minimum—all memory above 640K should be configured as extended

memory
• Hard disk with at least 7MB free space
• Monitor and graphics card supported by Windows
• A mouse and printer supported by Windows

E.3 WHAT IS MATHCAD?

Mathcad is a program established to work with formulas, numbers, text, and graphs.
Mathcad lets you enter equations expanded fully on your screen. The equation in Mathcad
appears the way you might see it on a blackboard or in a reference book. You can even
illustrate your work with graphics taken from another Windows application. Mathcad
equations can be used to solve any math problem symbolically or numerically, and allows
the user to present their work in two and three dimensional plots.

By combining text, graphics and equations in a single document Mathcad makes it easy
to keep track of the most complex calculations. By printing the document exactly as it
appears on the screen, Mathcad lets you make a permanent accurate record of your work.

E.4 MAKING A BACKUP COPY

Before you start to use the enclosed disk, we strongly recommend that you make a backup
copy of the original. Remember, however, that a backup disk is for your own personal use
only. Any other use of the backup disk violates copyright law. Please take the time now to
make the backup, using the instructions below:

1. Assuming your floppy drive is "A", insert your DOS disk into drive A of your
computer.

2. At the A: > , type DISKCOPY A: A: and press Return.

You will be prompted by DOS to place the disk to be copied into drive A.

3. Place the Multicomponent Mass Transfer disk into drive A.

Follow the directions on the screen to complete the copy. When you are through, remove
the new copy of the disk and label it immediately. Remove the original disk and store it in a
safe place.
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Mass Transfer Installation Program

Choose each of the following menu selections to configure
the way in which Mass Transfer will be installed on your
system.

rEdit destination paths
Select destination drive :
Toggle overwrite mode
Select groups to install
Start installation

\TAYLOR
C:
Overwrite All

ITEM DESCRIPTION
Allows you to edit each of the destination paths.

Press [ALT-XJ to exit at any time

Figure E.I. Multicomponent Mass Transfer installation program startup screen.

E.5 INSTALLING THE DISK

The enclosed diskette contains 63 individual files in compressed format. In order to use the
files, you must run the installation program from the diskette.

You can install the diskette onto your computer by following these simple steps:

1. Assuming your floppy drive is "A", insert the Multicomponent Mass Transfer disk in
drive A of your computer.

2. At the A: > type INSTALL and press Return.

The installation program will be loaded. After the title screen appears, you will be given
the options shown in Figure E.I.

To change any of the default settings, type the highlighted letter or move the menu bar
to the desired option and press Enter.

3. To start the installation, type "S" or move the menu bar to the Start installation
option, and press Enter.

After the installation is complete remove your original diskette and store it in a safe
place.



552 APPENDIX E ABOUT THE SOFTWARE

File to load: a:\mcadsO2-2-l

Figure E.2. Loading a file in Mathcad for DOS.

E.6 HOW TO USE THE FILES ON THIS DISK

E.6.1 Mathcad for DOS

To load a document from a disk:

1. Press [F5] or type [Esc] load. The top line menu will change to read "File to load:"

2. Type the name of the file you wish to open and press Enter. For example, to load
Example 2.2.1, you can type A : \ MCAD \ 02-2-1 as shown in Figure E.2.

You will then be presented with the example file to edit, as shown in Figure E.3.

E.6.2 Mathcad for Windows

To load a document from a disk file, choose Open Document from the File menu. Mathcad
prompts you for a name by displaying the dialog box shown in Figure E.4.

The current directory is shown in the "Directories" box. If the file you want to open is in
this directory skip to the next step. Otherwise, move the pointer to the scrolling list of
directories and double-click on the directory containing the file you want to open. This box

"Example 2 . 2 . 1 . D i f f u s i o n of toluene in a binary mixture"

Consider diffusion in the system toluene (1) - n-tetradecane (2)
n - hexane

The units for the diffusiuit ies are le-09 m2/s

ORIGIN

x2 : =

= 1

1
0.803
0.672
G.501
0.336
0.215
0.113
0.0

Dleff :=

"1.08
1.37
1.58
1.92
2.38
2.90
3.57
4.62

i := 1 ..8

From the experimental data the infinite dilution diffusion coefficients can
be determined as follows

D120 : = 1.08 D130 := 4.62

From the riaxuell-Stefan diffusion equations the effectiue diffusiuity ualue
for toluene can be calculated from the equation

Figure E.3. Example 2.2.1 in Mathcad for DOS.
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File N<

02-2-1.mcd

Open Document

Directories:
c: \projectsUayloi \mwin

02-3-1.mcd
02-3-2. mcd
02-4-1.mcd
02-4-2. mcd
03-2-1.mcd
03-3-1.mcd

List Files of Jype: D lives:

Mathcad Files(-.mcd) I c: spotted dog

Figure E.4. Open document dialog box.

lists all subdirectories of the current directory. To switch to another drive, click on the
arrow near the "Drive" box, then select the drive letter.

Next to the Directory is a scrolling list of all the files in the current directory with the
extension "MCD". Double-click on one of these names to open it. You can also select a file
name, then click "OK".

You will then be presented with the example file to edit. For instance, Example 2.2.1 is
shown in Figure E.5.

Mathcad [02-2-1 .MCD]
File Edit lext Math Graphics Symbolic Window Help

LJ|_jExample 2.2.1. Diffusion of toluene in a binary mixture

E
=
=̂

m..n
^ =

w
=
lxl
^=

T

Consider diffusion in the system toluene (1) - n-tetradecane (2) -
n - hexane

The units for the diffusivities are le-09 m2/s

ORIGIN = 1

x2:=

HI

1

1

0.803

0.672

0.501

0.336

0.215

0.113

0.0

Dleff:=

1.08

1.37

1.58

1.92

2.38

2.90

3.57

4.62

H j From the experimental data the infinite dilution diffusion coefficients c
^m be determined as follows

1 D120:=1.08 D130:=4.62

^M From the Maxwell-Stefan diffusion equations the effective diffusivity val
H j for toluene can be calculated from the equation

an

ue

Page 1 | auto

Figure E.5. Example 2.2.1 in Mathcad for Windows.
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USER ASSISTANCE AND INFORMATION

John Wiley & Sons, Inc. is pleased to provide assistance to users of this software package.
Should you have questions regarding the use of this package, please call our technical
support number at (212) 850-6194 weekdays between 9 am and 4 pm Eastern Standard
Time.

To place additional orders or to request information about other Wiley products, please
call (800) 879-4539.
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