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PREFACE

Chemical engineers frequently have to deal with multicomponent mixtures; that is, systems
containing three or more species. Conventional approaches to mass transfer in multicompo-
nent mixtures are based on an assumption that the transfer flux of each component is
proportional to its own driving force. Such approaches are valid for certain special cases.

 Diffusion in a two component (i.e., binary) mixture.
 Diffusion of dilute species in a large excess of one of the components.
e The case in which all of the components in a mixture are of a similar size and nature.

The following questions arise.

* Does the presence of three or more components in the system introduce additional
complications unpredicted by binary mass transfer theory alone?

e If the answer to the above question is in the affirmative, how can the problem of
multicomponent mass transport be tackled systematically?

e Do the transport processes of mass and heat interact with each other in normal
chemical engineering operations?

Though the first question has been in the minds of chemical engineers for a long time
(Walter and Sherwood in 1941 raised doubts about the equalities of the component
efficiencies in multicomponent distillation), it has been established beyond doubt in the last
two decades that multicomponent systems exhibit transport characteristics completely
different from those of a simple binary system. Furthermore, procedures have been
developed to extend the theory of binary mass transfer to multicomponent systems in a
consistent and elegant way using matrix formulations; such formulations have also been
incorporated into powerful computational algorithms for equipment design taking into
account simultaneous heat transfer effects. These advanced models have been incorporated
into design software for distillation, absorption, extraction, and condensation equipment.
This is one example where commercial application has apparently preceded a formal
academic training in this subject even at the graduate level.
This textbook is our attempt to address two needs:

1. The needs of the academic community for a reference text on which to base advanced
lectures at the graduate level in transport phenomena or separation processes.

2. The requirements of a process design or research engineer who wishes to use rigorous
multicomponent mass transfer models for the simulation and design of process
equipment.

This textbook has grown out of our research and teaching efforts carried out separately
and collaboratively at The University of Manchester in England, Clarkson University in the
United States, Delft University of Technology, and The Universities of Groningen and
Amsterdam in the Netherlands, The Royal Dutch Shell Laboratory in Amsterdam, and The
Indian Institute of Petroleum.
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This textbook is not designed as a first primer in mass transfer theory; rather, it is meant
to follow an undergraduate program of lectures wherein the theory of mass transfer and
fundamentals of transport phenomena have already been covered.

The 15 chapters fall into three parts. Part I (Chapters 1-6) deals with the basic equations
of diffusion in multicomponent systems. Chapters 7-11 (Part II) describe various models of
mass and energy transfer. Part III (Chapters 12—15) covers applications of multicomponent
mass transfer models to process design.

Chapter 1 serves to remind readers of the basic continuity relations for mass, momen-
tum, and energy. Mass transfer fluxes and reference velocity frames are discussed here.
Chapter 2 introduces the Maxwell-Stefan relations and, in many ways, is the cornerstone of
the theoretical developments in this book. Chapter 2 includes (in Section 2.4) an introduc-
tory treatment of diffusion in electrolyte systems. The reader is referred to a dedicated text
(e.g., Newman, 1991) for further reading. Chapter 3 introduces the familiar Fick’s law for
binary mixtures and generalizes it for multicomponent systems. The short section on
transformations between fluxes in Section 1.2.1 is needed only to accompany the material in
Section 3.2.2. Chapter 2 (The Maxwell-Stefan relations) and Chapter 3 (Fick’s laws) can be
presented in reverse order if this suits the tastes of the instructor. The material on
irreversible thermodynamics in Section 2.3 could be omitted from a short introductory
course or postponed until it is required for the treatment of diffusion in electrolyte systems
(Section 2.4) and for the development of constitutive relations for simultaneous heat and
mass transfer (Section 11.2). The section on irreversible thermodynamics in Chapter 3
should be studied in conjunction with the application of multicomponent diffusion theory in
Section 5.6.

Chapter 4 suggests usable procedures for estimating diffusion coefficients in multicompo-
nent mixtures. Chapters 5 and 6 discuss general methods for solution of multicomponent
diffusion problems. Chapter 5 develops the linearized theory taking account of multicompo-
nent interaction effects, whereas Chapter 6 uses the conventional effective diffusivity
formulations. We considered it appropriate to describe both of these approaches and to give
the readers a flavor of the important differences in their predictions. We stress the
inadequacy of the effective diffusivity approach in several cases of practical importance. It is
a matter of continuing surprise to us that the effective diffusivity approach is still being used
in the published literature in situations where it is clearly inapplicable. By delineating the
region of applicability of the effective diffusivity model for multicomponent mixtures and
pointing to the likely pitfalls in misapplying it, we hope that we will be able to warn
potential users.

In the five chapters that make up Part II (Chapters 7-11) we consider the estimation of
rates of mass and energy transport in multicomponent systems. Multicomponent mass
transfer coefficients are defined in Chapter 7. Chapter 8 develops the multicomponent film
model, Chapter 9 describes unsteady-state diffusion models, and Chapter 10 considers
models based on turbulent eddy diffusion. Chapter 11 shows how the additional complica-
tion of simultaneous mass and energy transfer may be handled.

Chapter 12 presents models of mass transfer on distillation trays. This material is used to
develop procedures for the estimation of point and tray efficiencies in multicomponent
distillation in Chapter 13. Chapter 14 uses the material of Chapter 12 in quite a different
way; in an alternative approach to the simulation and design of distillation and absorption
columns that has been termed the nonequilibrium stage model. This model is applicable to
liquid-liquid extraction with very little modification. Chapter 15 considers the design of
mixed vapor condensers.

A substantial portion of the material in this text has been used in advanced level
graduate courses at The University of Manchester, Clarkson University, The Universities of
Amsterdam, Delft, Groningen and Twente in the Netherlands, and The University of
Bombay in India. For a one semester course at the graduate level it should be possible to
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cover all of the material in this book. In our experience the sequence of presentation of the
chapters is also well suited to lecture courses.

We have included three appendices to provide the necessary mathematical background.
Appendix A reviews matrix algebra. Appendix B deals with solution of coupled linear
differential equations; this material is essential for the solution of multicomponent diffusion
problems. Appendix C presents two numerical methods for solving systems of nonlinear
algebraic equations; these algorithms are used to compute rates of mass transfer in
multicomponent systems and in the solution of the design equations for separation equip-
ment. We have usually found it necessary to include almost all of this material in our
advanced level courses; either by setting aside time at the start of the course or by
introducing the necessary mathematics as it is needed.

We also feel that portions of the material in this book ought to be taught at the
undergraduate level. We are thinking, in particular, of the materials in Section 2.1 (the
Maxwell-Stefan relations for ideal gases), Section 2.2 (the Maxwell-Stefan equations for
nonideal systems), Section 3.2 (the generalized Fick’s law), Section 4.2 (estimation of
multicomponent diffusion coefficients), Section 5.2 (multicomponent interaction effects),
and Section 7.1 (definition of mass transfer coefficients) in addition to the theory of mass
transfer in binary mixtures that is normally included in undergraduate courses.

A special feature of this book is the large number of numerical examples that have been
worked out in detail. With very few exceptions these examples have been based on actual
physicochemical data and many have direct relevance in equipment design. The worked
examples can be used by the students for self-study and also to help digest the theoretical
material.

To gain a more complete understanding of the models and procedures discussed it is
very important for students to undertake homework assignments. We strongly encourage
students to solve at least some of the exercises by hand, although we recognize that a
computer is essential for any serious work in multicomponent mass transfer. We have found
equation solving packages to be useful for solving most of the simpler mass transfer
problems. For some problems these packages are not yet sufficiently powerful and it is
necessary to write special purpose software (e.g., for distillation column simulation or for
condenser design).

Our research and teaching efforts in multicomponent mass transfer have been strongly
influenced by two people. The late Professor George Standart of the University of
Manchester who impressed upon us the importance of rigor and elegance. Professor Hans
Wesselingh of the University of Groningen motivated us to present the material in a form
more easily understandable to the beginner in this area. It is left to our readers to judge
how well we have succeeded in achieving both rigor and simplicity.

R. TaYLOR
R. KrisHNA

Potsdam, New York
Amsterdam, The Netherlands
June 1993



A NOTE ON SOFTWARE

Multicomponent mass transfer calculations are sufficiently demanding that one really
requires computer software if one is to make more than one such calculation. The examples
in this book were solved with a variety of software packages. Almost all of the computa-
tional examples were solved first using software that we created specifically for this purpose.
A library of Fortran 77 routines for performing multicomponent mass transfer calculations
is available from R. Taylor. These routines can be made to work with any number of
components and are easily incorporated into other programs. We have checked all of our
original calculations by repeating the examples using software that has been designed for
mathematical work. We have used several such packages in the course of our work. With
the exception of the design examples in Chapters 14 and 15, all of the examples have been
solved using Mathcad for DOS (Version 2.5) from MathSoft. A disk containing our Mathcad
files is provided with this book.

The distillation design examples in Chapter 14 were solved using a software package
called ChemSep (Kooijman and Taylor, 1992). ChemSep (or an equivalent software package)
will be needed for solving some the exercises. Information on the availability of ChemSep
can be obtained from R. Taylor.

ix
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MULTICOMPONENT MASS TRANSFER



PART 1
Molecular Diffusion



1 Preliminary Concepts

The reader should not be intimidated by the great generality expressed by the vectorial character
of these equations, because a simple one-dimensional approximation is almost always used in
applications. (But it is hard to resist the lure of cheap generality when writing down equations.)

—E. A. Mason and H. K. Lonsdale (1990)

1.1 CONCENTRATION MEASURES

In the description of the interphase mass transfer process, a variety of measures for
constituent concentrations, mixture reference velocities, and diffusion fluxes (with respect to
the arbitrarily defined mixture velocity) are used. Table 1.1 summarizes the most commonly

used concentration measures together with a number of other quantities that will be needed
from time to time.

1.2 FLUXES

If u; denotes the velocity of component i (with respect to a stationary coordinate reference
frame) then the mass flux of that species is defined by

n; = p;u; (1.2.1)

and has units of kilograms per meter squared per second (kg/m? s). If we sum the
component fluxes we obtain

n,=Y n=puv (12.2)

v= ) wu (1.2.3)
The molar flux of species i is defined by
N; = cu; (124)

which has units of moles per meter squared per second (mol/m? s). The total molar flux is
the sum of these quantities

N,= YN, =cu (1.2.5)



4 PRELIMINARY CONCEPTS

TABLE 1.1 Concentration Measures and Other Thermodynamic
Mixture Parameters

¢; [mol/m?] Molar density of i; ¢; = p;/M;
n
¢, [mol/m?] Mixture molar density; ¢, = Y, ¢;
i=1
n
x;[-] Mole fraction of i; x; = ¢;/c,; Zx,— =1
i=1
p; [ke/m?3] Mass density of i; p; = ¢;M;
n
p, [kg/m’] Mixture mass density; p, = 3. p;
i=1
n
w;[—] Mass fraction of i; w; = p;/p,; E w; =1
i=1
M, [kg/mol] Molar mass of i
n
¥, [m3/mol] Partial molar volume of species i; Y x;V. = 7,
i=1
7, [m3/mol] Mixture molar volume; ¥V, = 1/c,
¢, [-] Volume fraction of species i; ¢; = ¢,V
f; IN/m?] Fugacity of i
u; [J/mol] Molar chemical potential of species i

where we have defined the molar average velocity u
u= 3y xu; (1.2.6)

It is the calculation of these fluxes (particularly the molar ones), which is our main
concern. However, before getting down to business we need to define a few more fluxes; in
particular, the diffusion flux, which is the flux of species i relative to the flux of the mixture
as a whole. The definition of this flux raises the first of our problems, which mixture velocity
are we going to use? We have already introduced two, v and u, and there are others that we
have not discussed yet. The literature on diffusion would be a good deal simpler if there
were only one way to define diffusion fluxes. For each choice of reference velocity there are
at least two different diffusion fluxes that we could define, mass fluxes and molar fluxes.

Perhaps an example will help to clarify the situation. If we choose v as the reference
velocity, then the mass diffusion flux with respect to the mass average velocity is

Ji=pi(u; —v) (1.2.7)

and

Lii=0 (1.2.8)
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The mass flux n; is related to the mass diffusion flux as
n;=j;+pv =j +omn (1.2.9)

On the other hand, we could choose u as the reference velocity and define molar diffusion
fluxes relative to it as

Ji=c(u; —u) (1.2.10)

with
YJ=0 (1.2.11)

The molar flux A, is related to the molar diffusion flux by

N, =J;, +cu=J,+ x;N, (1.2.12)
These are the most commonly encountered sets of fluxes; other sets could be defined. We
could, for example, define a mass diffusion flux relative to the molar average velocity or a

molar diffusion flux relative to the mass average velocity. Still other choices of reference
velocity are sometimes used; for example, the volume average velocity u”

n 14
w' =Y cVu =} du (1.2.13)

where ¢; is the volume fraction of species i defined in Table 1.1.
Table 1.2 summarizes the most commonly used reference velocities.
Let us define an arbitrary reference velocity u®

u= Y au,; (1.2.14)

AZ a; =1 (1.2.15)

We now define a mass diffusion flux relative to this arbitrary reference velocity j# by
-ltu = p’,(ul_ — ua) (1.216)

Not all of these diffusion fluxes are independent; on summing these fluxes over the n
species we find
n ai
Y —ijf=0 (1.2.17)
i=1 @i

In a similar way we define the molar diffusion flux relative the velocity u“ by

J’_“ = Ci(ui — ua) (1218)
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TABLE 1.2 Reference Velocities”

a

u Arbitrary mixture velocity, weighting factor a;
n n
"“=Za.-u,- Zaz=1
i=1 i=1
v Mass average mixture velocity, weighting factor w;
n n
v= Z w;u; Z w; =1
i=1 i=1
u Molar averaged reference velocity, weighting factor x;
n n
u= Z X;u; Z x; =1
i=1 i=1
u” Volume averaged reference velocity, weighting factor ¢;

u?’ = Zd’iui Zd’i:l

i=1 i=1

u, Velocity of species r, weighting factor §;,,
where §;, is the Kronecker delta

8,=1 ifi=r

ir

8, =0 ifi#r

“Units are in meters per second [m/s].

The sum of these fluxes gives
Z —Jf=0 (1.2.19)

The diffusion fluxes defined earlier are seen to be special cases of the more general
definitions presented above. Table 1.3 summarizes the most commonly encountered diffu-
sion fluxes and Table 1.4 summarizes those fluxes that are measured with respect to a
laboratory fixed coordinate reference frame.

1.2.1 Transformations Between Fluxes

It will sometimes prove necessary to transform fluxes from one reference velocity to
another. We give some examples of the required relations here.

To relate the molar diffusion flux relative to the volume average velocity to the molar
diffusion flux relative to the molar average reference velocity we use the transformation

n—1
J.= Y. B¥JY (1.2.20)
k=1
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TABLE 1.3 Diffusion Fluxes”

Ji

sa
i

Ji

Ji

Ji

Ji

J?

JY

Jir

Mass diffusion flux relative to arbitrary reference velocity
n a.
. Lo,
Jit = pi(u; —u®) Y —ijf=0
i=1%i
Mass diffusion flux relative to mass average velocity
n
Ji=pi(u; - v) Zji=0
i=1

Mass diffusion flux relative to molar average velocity
su Xi ]
Jit =pi(u; — u) Z '(;Ji =0

Mass diffusion flux relative to volume average velocity

n (b
iV =piui—u’) Y =j/=0

i=1 @i
Mass diffusion flux relative to component r velocity
gl =p(u; —u,) jir=0

Molar diffusion flux relative to arbitrary reference velocity
a al
Ji = ci(u; — u®) Y —Ji=0

Molar diffusion flux relative to molar average velocity

n
Ji=ci(u; —u) ZJi:O

i=1

Molar diffusion flux relative to volume average velocity
J,V=c,(u,-—uV) ZV,»J,-V= 0

Molar diffusion flux relative to mass average velocity

n w’
J = ci(u; —v) Z —Ji=0
i=1"i

Molar diffusion flux relative to component r velocity

Jir=ci(ui—ur) ',rr=0

Units are kilograms per meter squared per second (kg/m? s) for mass diffusion
fluxes and moles per meter squared per second (mol/m? s) for molar diffusion

fluxes.
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TABLE 1.4 Fluxes With Respect to a Laboratory Fixed Frame
of Reference*

i Mass flux relative to stationary coordinates
n; = pu; =j; +pw

n, Total mass flux relative to stationary coordinates

n
n,= Z n;, = pp
i=1
N; Molar flux relative to stationary coordinates

Ny=cu;=J; +cu

N, Total molar flux relative to stationary coordinates

“Mass fluxes units are kilograms per meter squares per second
(kg/m? s); molar fluxes units are moles per meter squared per second
(mol/m? s).

where the coeflicients B are defined by
BY =8y —x,(1 - V,/V,) (1.2.21)

The inverse transformation is
n—1
W'=Y By, (1222)
k=1

where the coefficients B,»'Z" are defined by
Bi =8y — xi(Vk - 17;1)/17; (1.2.23)

To transform the mass diffusion flux relative to the mass average velocity j; to the mass
diffusion flux relative to the molar average velocity jj* we use

n—1
it =X B, (1224)
k=1

where the coefficients B}}° are given by

Xk Xn

ib;(o = Bik - wi(— - _) (1225)

W w,
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The inverse transformation is

n—1
Ji= X Bk (1.2.26)
k=1
where the B are
W, X
i =0y —w;|1 -~ (1.2.27)
Xp®Wp

To change the units in which the flux is expressed requires further manipulation.
¢ xjit = pwl; (1.2.28)

For more on the use of these transformations see Section 3.2.4 and Exercises 1.1, and 1.2.

1.3 BALANCE RELATIONS FOR A TWO-PHASE SYSTEM INCLUDING
A SURFACE OF DISCONTINUITY

Let us consider a two-phase system including a surface of discontinuity (phase interface).
Let x and y represent the two phases. For example, y may refer to the gas phase and x to
the liquid phase in a two-phase system. Let the number of components in each phase be n.
Let I represent the phase interface and the unit normal directed from phase x to y. The
system considered is shown pictorially in Figure 1.1. Our immediate task is to develop the
balance relations describing the interphase transport processes taking place is this system.

During interphase mass transfer, concentration gradients will be set up across the
interface. The concentration variations in the bulk phases x and y will be described by
differential equations; whereas at the interface 1, we will have jump conditions or boundary
conditions. Standart (1964) and Slattery (1981) give detailed discussions of these relations
for the transport of mass, momentum, energy, and entropy. It will not be possible to give
here the complete derivations and the reader is, therefore, referred to these sources. A
masterly treatment of this subject is also available in the article by Truesdell and Toupin
(1960), which must be compulsory reading for a serious researcher in transport phenomena.

The equations of change for each fluid phase and the “jump” balance conditions that
must be met at the interface are summarized in Table 1.5. There is an important restriction
on the equations in Table 1.5; the effect of chemical reactions in the bulk fluid phase has
been neglected. For all of the applications considered in this book this neglect is justified.

Our first major task is the description of the interfacial mass transfer process and,
therefore, we shall examine further the equations for continuity of species i and the
equation for conservation of total mass of mixture.

Figure 1.1. Pictorial representation of a two-phase

1, surface of system showing a surface of discontinuity or inter-
discontinuity face.



TABLE 1.5 Balance Relations for a Two-Phase System

Equation of Change for Any Conserved Property

v
i(‘;'t—)+v-{p,\1rv}+v-<l>=§ (13.1)

where

¥ = an arbitrary field quantity per unit mass of mixture
{ = the rate of production of field per unit volume of bulk phase
® = a nonconvective flux of the field quantity through external bounding surface §

Py
14

the mass density of bulk fluid mixture

the mass average velocity of fluid mixture
The tensorial order of the flux ® is one higher than that of the field quantity W.

Jump Balance Relation for the Interface 1

£ {7 + V(v —ul) — ®F = pf¥r(v* —u')} =’ (1.32)
where
& = the unit normal to I directed from the x to y phase

¢! = the rate of production of field quantity per unit area at the interface I
u’ = the velocity of the interface I

All of the foregoing quantities are functions of position and time.
A. Balance of Species i (no chemical reactions in bulk phase)
VY=w, ®=j (=0
B. Conservation of Total Mass of Mixture
v=1 ®=0 (=0 ({'=0

C. Conservation of Linear Momentum

vV =y [ ]

I
=
o~

I
>
e
N

]

(=]

where

p = pl + 1 is the pressure tensor

p = the thermodynamic pressure

T = the stress tensor

I = the unit tensor

14:1 = the body force acting per unit mass of species i
{ = the sum of body forces I;‘,

D. Energy Balance

where
U = the internal energy per unit mass of mixture
g = the conductive heat flux
17,- = the partial specific enthalpy of component i
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The differential balance relation for continuity of mass of species i is

p;
ar +V-{pw}=-V-.j (1.3.3)
For the total mixture we have
ap, ap
I—FV {ptl/'} = t V v +tuv- Vp,—O (134)

If we denote the mass average velocity following derivative as

d d

— = — + 1.3.
dt at vev (1.3.3)

then it is easy to show that Eq. 1.3.3 can be simplified to the form

! = ’ -V = -V 1.3.6
_— = + [ . 7. 3.
pl ,'[ pt{ at v w} -11 ( )

Equation 1.3.6 can be expressed in terms of the mass fluxes, n;, as

_+V = D
P “n;=0 (1.3.7)

The differential mass balance for continuity of mass of the mixture is

.__+ = D
Ve =0 (1.3.8)

Equation 1.3.6 can also be written in molar units as

dx; ax;
Ctz =c, -5}—+u 'in = —V'Ji (139)
where we use the mole average velocity following derivative. Only n — 1 of the Egs. 1.3.9
are independent because the mole fractions x; sum to unity and the molar diffusion fluxes
J; sum to zero (see Table 1.3). Exactly analogous relations will hold for the mole fractions y;
in phase y.
Equation 1.3.9 can be expressed in terms of the component molar fluxes N, as

dc;

— + V- NA = 1.3.10
7 0 (1.3.10)

The differential balance expressing conservation of total moles of mixture is obtained by
summing Eqgs. 1.3.10 for all components to give (recall that we do not consider chemical
reactions occurring in the bulk phases)

dc,

— +V:N,= 13.11
P 0 (1.3.11)

If we choose to represent the diffusion fluxes with respect to the volume average velocity
u" then the differential balance relations take the form

dc;
a—t+V-cu ——V-J,V (13.12)
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It must be emphasized here that Eq. 1.3.12 cannot be simplified to a form analogous to
the Egs. 1.3.6 or 1.3.9 because there is no law of conservation of volume.

We shall normally use mole fractions as composition measures, the molar average
reference velocity u and the molar diffusion fluxes (with respect to u) J; to describe the
diffusion process within a given phase (Chapters 5-9). Molar quantities are not particularly
convenient when we have to solve the equations of continuity of mass in conjunction with
the equations of motion. The latter are best expressed in the mass average frame. We shall,
in fact, switch to the use of mass fractions, the mass average reference velocity v and mass
diffusion fluxes (with respect to the mass average velocity) j; in our discussion of turbulent
mass transfer (Chapter 10). The volume average reference velocity u” is. a favorite among
physical chemists who use this reference in the interpretation of diffusion data in, for
example, stirred cells. However, there is no conservation of volume, in general, and this
choice usually is not convenient for chemical engineering purposes. Consider the relative
simplicity of Eq. 1.3.9, using u, in comparison to Eq. 1.3.12 for the corresponding choice of
u”. We shall return to discuss this topic again when we consider various choices of the
driving force for diffusion (Section 3.1.2).

In addition to the differential Egs. 1.3.9, which apply to the bulk phases, the following
boundary condition must be satisfied at the interface I, provided there are no interface
(surface) chemical reactions.

goci(uf—u')y=k-c/(u—-u") i=12,...,n (1.3.13)

that is, the normal component of the flux of component i with respect to the intzrface must
be continuous across the phase boundary. If the interface itself is stationary (i.e., u’ = 0),
then Eq. 1.3.13 can be written as

E-N'=§-N" i=12....n (1.3.14)

where N/ is the molar flux of component i in phase x in a stationary, laboratory fixed,
coordinate reference frame (Table 1.4). Equation 1.3.14 merely states that the normal
component of the flux N, is a phase invariant.

For mass transfer with surface chemical reaction (as, e.g., in a tube wall catalytic
reactor), Egs. 1.3.2 and 1.3.14 yield

E-NT={! (13.15)

The molar fluxes N, appear in engineering design models. One of the main objectives
of this text is to consider ways in which these fluxes may be calculated from a knowledge
of the hydrodynamics and transport properties of the system. The boundary conditions
(Eq. 1.3.13), or the simplified versions (Egs. 1.3.14 and 1.3.15), are well known to chemical
engineers (see, e.g., the book by Bird et al., 1960), but it is instructive to follow the general
derivations of these relations [see Standart (1964) and Slattery (1981)].

1.4 SUMMARY

This first chapter has been somewhat in the nature of a housekeeping exercise with regard
to the definitions of mass and molar fluxes, reference velocities, and transformations from
one reference frame to another. We shall not have occasion to use all of these definitions,
but they have been included for reasons of completeness. Any reader who is interested in
furthering their knowledge on this topic must refer to De Groot and Mazur (1962).



2 The Maxwell-Stefan Relations

Das Studium der Maxwell’schen Abhandlung ist nicht leicht.
—1J. Stefan (1871) commenting on Maxwell’s (1866) work

Diffusion is the intermingling of the atoms or molecules of more than one species; it is the
inevitable result of the random motions of the individual molecules that are distributed
throughout space. The development of a rigorous kinetic theory to describe this intermin-
¢ling in gas mixtures is one of the major scientific achievements of the nineteenth century. A
simplified kinetic theory of diffusion, adapted from Present (1958), is the main theme of
Section 2.1. More rigorous (and complicated) developments are to be found in the books by
Hirschfelder et al. (1964), Chapman and Cowling (1970), and Cunningham and Williams
(1980). An extension to cover diffusion in nonideal fluids is developed thereafter.

2.1 DIFFUSION IN IDEAL GAS MIXTURES

2.1.1 The Mechanics of Molecular Collisions

Let us first consider the mechanics of collisions between an average molecule of species 1
and an average molecule of species 2. The molecule of species 1 has velocity u; and the
molecule of species 2 has velocity u,.

The momentum of these two average molecules is mu, and m,u, where m, and m, are
the masses of the respective molecules. The total momentum of the pair of molecules is
mqu, + m,u,. This total momentum of the pair of molecules is conserved on collision. That
is, if | and w’, represent the velocities after collision, then the law of conservation of
momentum requires that

mqy(uy —uy) + my(u, —u,) =0 (2.1.1)
The momemtum transferred from species 1 to species 2 is the left-hand member of Eq. 2.1.1

Momentum transferred
from a molecule of momentum of I  momentum of 1

1 to a molecule of 2 "~ before collision after collision
through collision

=my(u, —u}) (2.1.2)

Our next task is to calculate the average velocity after collision #}. This calculation
requires us to make some statement about the type of collision undergone by the two
molecules. In an inelastic collision two bodies collide and stick together. Momentum is
conserved in this collision but the kinetic energy of the bodies is not usually conserved. In
an elastic collision the two bodies collide and then move apart again. Momentum must be
conserved in this type of collision also but the important difference between an inelastic

13
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collision and an elastic collision is that, in the latter type, the kinetic energy of the center of
mass of the two bodies is conserved. Most collisions between real bodies are somewhere
between these two extremes. Billiard balls undergo elastic collisions and, in many ways,
molecules behave like billiard balls.

When we consider all of the ways in which two hard spheres can approach each other,
collide, and separate, we find that the average velocity after collision u] is the velocity of the
center of mass of the pair of molecules. This velocity is defined by

myu, + myu
u, = Gy = matz) ) (2.1.3)
my + my,

If this result is not immediately obvious, you should remember that if two molecules
approach each other along the line joining their centers they will collide, exchange
momentum, and retrace their paths. However, this is only one out of an infinite number of
paths that the two molecules can have before and after collision. If we sit on the center of
mass of the pair of molecules and move with velocity u,., then any one direction of approach
and rebound is just as likely to occur as any other direction. We can justify this conclusion
with the necessary mathematics if we have to [Present (1958) does so]; for now, let us accept
the result and continue.

It is now possible to complete the calculation of the momentum exchanged in a single
collision between a molecule of species 1 and a molecule of species 2.

Momentum transferred
from a molecule of 1

to a molecule of 2
through collision

= my(u, — uy)

=m(u; —u,)

_ mymy(uy — uy) (2.1.4)
m, +m, o

This result demonstrates that if two molecules of the same type collide, then there is no
net loss of momentum of the molecules of that type (any other result would be rather
unexpected). This result is important because it indicates that the total momentum lost by
the molecules of 1 depends only on collisions between molecules of 1 and other types of
molecules. The rate at which this momentum transfer occurs depends on how frequently
these different molecules collide.

2.1.2 Derivation of the Maxwell-Stefan Equation for Binary Diffusion

The molecules of these other species “get in the way” of the molecules of species 1 (say)
and, in effect, exert a drag on them in much the same way that a pipe exerts a frictional drag
on the fluid flowing through it. The analogy with pipe-flow does not end here; an analysis of
diffusion may be carried out in essentially the same way that we may derive, for example,
Poiseuille’s equation for the rate of fluid flow in a pipe—through the application of
Newton’s second law.

The sum of the The rate of change
forces acting on o of the momentum
a system of the system

We shall apply this law to the control volume shown in Figure 2.1.
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Area=A

z z+dz

Figure 2.1. Control volume for derivation of Maxwell-Stefan relations.

Momentum can enter and leave this volume due to the motion of the molecules across
the boundary walls. However, if the control volume moves with the molar average velocity of
the mixture u, then the flow of molecules into the volume across any of the surfaces in
Figure 2.1 is exactly balanced by an equal flow of molecules out of the volume across the
same surface. There is no net momentum change due to this movement of molecules.

Within the control volume the molecules of species 1 may lose (or gain) momentum each
time they collide with the atoms or molecules of the other species. Accounting for the
momentum exchange on collision is one part of the elementary kinetic theory of diffusion
that follows.

The forces acting on the control volume include surface forces, such as pressure forces,
and shear stresses caused by velocity gradients and body forces, such as gravity. We consider
only the pressure forces in the analysis that follows; the effects of other forces, such as
gravity and electric fields, will be discussed in more detail in a later chapter (and from a
rather different viewpoint too). Actually, the system as a whole is assumed to be at constant
pressure and there is, therefore, no net force acting on the mixture as a whole.

The rate at which collisions occur between molecules of species 1 and molecules of
species 2 depends on the number of species 1 molecules per unit volume ¢; = ¢,x; and on
the number of species 2 molecules per unit volume ¢, = ¢, x,. Clearly, the more molecules
of both types that are present in the unit volume, the higher the number of collisions will be.
Thus,

The number of 1-2 collisions
per unit volume per unit time L XXy

A concise statement of the ideas put forward to this point might read

The rate of change number of 1-2
average amount of ..
of momentum of the collisions per
= momentum exchanged x .
molecules of type 1 unit volume

. in a single collision .
per unit volume per unit time

and we have an expression for the first term on the right and we know that the second term
is proportional to x,x,. We now turn to the development of the force term.

The net force acting on the left-hand wall is the pressure force PA exerted by the
molecules outside this box striking this imaginary surface. The force acting on the species 1
molecules alone is the partial pressure of species 1, p; = Px,, multiplied by the area A.
Thus, the force acting on the species 1 molecules in the plane z is Ap,|,; the force acting
on the species 1 molecules in the plane at z + Az is —Ap,|,+ . (note that the system as a
whole is isobaric). The net force acting on the species 1 molecules is A(p;|, — Pyl +a2)
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Dividing by the volume A Az and taking the limit as Az — 0 we find

Net force acting on type 1 (p1|z _ p1|z+Az)
molecules per unit volume = lim —
in the z direction Az-0 z
dp,
= —— 2.15
e (2.1.5)
When we add on the contributions from the other two spatial dimensions we have
Net force acting on species 1
g on sp = -Vp, (2.1.6)

molecules per unit volume
Combining these ideas gives
=Vpy o (x1%x,, (uy — u,))

To convert a proportionality to an equality we multiply one side by a proportionality
coefficient, we shall call it f,, to get

Vp, = —frx1x,(u; — uy) (2.1.7)

where Vp, is the actual force exerted per unit volume of the mixture trying to move species
1 past (through) the molecules of species 2 at a relative velocity (u; — u,); x;x, is a
concentration weight factor and, therefore, f;, is analogous to a friction factor or drag
coefficient. A pictorial representation of the interaction between the molecules of species 1
and 2 is provided in Figure 2.2.

We may define the proportionality coefficient in Eq. 2.1.7 in any way we like to suit our
convenience. Let us, therefore, define an inverse drag coefficient D,, = P/f;, and rewrite
Eq. 2.1.7 as

1 x1x,(uy — uy)
d, = (——)Vp = —— (2.1.8)
1 P 1 1912

where d; = (1/P) Vp, may be considered to be the driving force for diffusion of species i in
an ideal gas mixture at constant temperature and pressure.
Equation 2.1.8 is the Maxwell-Stefan equation for the diffusion of species 1 in a
two-component ideal gas mixture. The symbol P, is the Maxwell-Stefan (MS) diffusivity.
If we carry out a similar analysis for species 2 we obtain

x1x,(uy — uy)

(2.1.9)
DZI

1
dy=|—=]|Vp,= -
2 ( P) p;
For all the applications considered in this book the system pressure is constant across the
diffusion path. This simplification allows us to write d;, = (1/P)Vp, = Vx; and Eqgs. 2.1.8
and 2.1.9 simplify to

xx,(u, —u
Vi, = — 1 2(D1 2)
12
(2.1.10)
_ x1%(uy — uy)

V. =
2 D,
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u,

<—£

IForce exerted on ' = :

®

Figure 2.2. Pictorial representation of the interactions between differing kinds of molecules in a
two-component system.

Since Vx; + Vx, = 0 it follows that the Maxwell-Stefan binary diffusion coefficients are
symmetric: D, = D,;.

2.1.3 The Maxwell-Stefan Equations for Ternary Systems

The setting up of the constitutive relation for a binary system is a relatively easy task
because, as pointed out earlier, there is only one independent diffusion flux, only one
independent composition gradient (driving force) and, therefore, only one independent
constant of proportionality (diffusion coefficient). The situation gets quite a bit more
complicated when we turn our attention to systems containing more than two components.
The simplest multicomponent mixture is one containing three components, a ternary
mixture. In a three component mixture the molecules of species 1 collide, not only with the
molecules of species 2, but also with the molecules of species 3. The result is that species 1
transfers momentum to species 2 in 1-2 collisions and to species 3 in 1-3 collisions as well.
We already know how much momentum is transferred in the 1-2 collisions and all we have
to do to complete the force—-momentum balance is to add on a term for the transfer of
momentum in the 1-3 collisions. Thus,

B x1x,(uy — uy) _ xyx3(uy — usz) (2.1.11)
Dy, Dy,

d, =

The corresponding equations for species 2 and 3 can be obtained from Eq. 2.1.11 by rotating
the subscripts 1, 2, and 3.

X XU, — U XoX3(Uy — U
d2 - _ 2 I(DZ 1) . 2 3(D2 3) (2112)
21 23
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Figure 2.3. Pictorial representation of the interactions be-
tween differing kinds of molecules in a ternary system.

and

_ x3x,(us — uy) _ x3x,(u3 — uy)
Dy, D,

d; = (2.1.13)

At constant pressure the driving forces d; are equal to the composition gradients Vx;. Of
the three equations 2.1.11-2.1.13, only two are independent due to the restriction Vx,; +
Vx, + Vx; = 0. It is interesting to note that for a binary system, this restriction is sufficient
to prove that ,, = P,,. For a multicomponent ideal gas mixture we need a more detailed
analysis (Hirschfelder et al., 1964; Muckenfuss, 1973) to show that

D, =D, (2.1.14)

Let us return to Eq. 2.1.11 and consider its physical significance. This equation states
that the driving force d, of component 1 arises from the frictional drag of molecules of the
first constituent moving past (through) those of the constituent 2 with a relative velocity
(u; — u,), concentration weight factor x,x,, and drag coefficient 1 /P, and of the molecules
of the first constituent moving past (through) those of constituent 3 with a relative velocity
(u; — u3), concentration weight factor x,x;, and drag coefficient 1/P;. A pictorial repre-
sentation of the interactions between these three different kinds of molecule is provided by
Figure 2.3.

As the molecules of all three constituents are, in general, in relative motion with average
velocities u;, it is hard to see how any simpler formulation will suffice. Equation 2.1.11
reduces to the proper binary equation in the limits x; — 0 and x, — 0 for the 1-2 and 1-3
binaries, respectively, so that both terms are necessary. It is to be noted that Eq. 2.1.11 does
not include a term (u, — u3) for the first constituent as it is not reasonable to assume that
the relative velocity of these constituents alone will produce a potential gradient of the first
constituent as there would be no direct drag on the molecules of constituent 1. If an
additional term of the form x,x,x;(u, — u;)/E,,; were to be introduced into Eq. 2.1.11, it
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could be split up into x;x3(u; — u3)x,/E,; — x1x,(u; — u,)x3/E ,; and these terms
absorbed into the existing ones with concentration dependent drag coefficients 1/P,; and
1/D,.

Thus, Eqgs. 2.1.11-2.1.13 are the only consistent generalization of Egs. 2.1.9 and 2.1.10 to
a ternary mixture, assuming a linear relation between the potential gradients and the
constituents’ relative velocities.

2.1.4 The Maxwell-Stefan Equations for Multicomponent Systems

For mixtures containing even more species, n say, we just continue to add similar terms for
each additional species. The generalization of Eq. 2.1.11 is

noxixi(u;—u;)
a- -y LT

j=1 ij

(2.1.15)

Equations 2.1.15 are not yet in the form that is most useful to us; we eliminate the
velocities using the definition of the molar fluxes N, = c;u;, to get

[Aad &

o (xN; = x;N;)

d=3 (2.1.16)
j=1 ¢ by
or, in terms of the diffusion fluxes J;
= (xid = xd;
d= ) (i — 2:d) (2.1.17)

j=1 ¢ Dy
Only n — 1 of Egs. 2.1.16 and 2.1.17 are independent because the Vx; sum to zero; the

nth component gradient is given by
Vx,=-Vx; —Vx, —Vx; --- =Vx

n n—1

n—1

- Y Vx, (2.1.18)
k=1

These are the Maxwell-Stefan diffusion equations for multicomponent systems. These
equations are named after the Scottish physicist James Clerk Maxwell and the Austrian
scientist Josef Stefan who were primarily responsible for their development (Maxwell, 1866,
1952; Stefan, 1871). These equations appeared, in more or less the complete form of Eq.
2.1.15, in an early edition of the Encyclopedia Britannica (incomplete forms had been
published earlier) in a general article on diffusion by Maxwell (see Maxwell, 1952). In
addition to his major contributions to electrodynamics and kinetic theory, Maxwell wrote
several articles for the encyclopedia. Stefan’s 1871 paper is a particularly perceptive one and
anticipated several of the multicomponent interaction effects to be discussed later in this
book.

2.1.5 Matrix Formulation of the Maxwell-Stefan Equations

It will prove convenient to cast Egs. 2.1.17 in n — 1 dimensional matrix form. First, we write
Eq. 2.1.17 as a sum in terms of the J;. However, since only n — 1 of the J; are independent,
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we may eliminate J, using

Jo=—Ji == =J
n—1
--X
i=1
to get
n—1
cd; = =B, J; - Z B;;J;
j=1
j#i

where the coefficients B; and B;; are defined by

X; Toox
By=——+ Y —
Bin k=IDik
itk
B 1 1
vT e, B,

Now we may write the n — 1 Egs. 2.1.20 in n — 1 dimensional matrix form as
c(d) = —[B](J)

where [ B] is a square matrix of order n — 1.

By, B, B3 U Bl,nq
By By, By T B2,n’1
[B] = : :
Bn—l,l Bn71,2 Bn\1,3 Bn—l,n~1

with elements given by Egs. 2.1.21 and 2.1.22. The column matrix (J) is

Ji

J>
="
Jnfl
and (d) is a column matrix of order n — 1 defined by

d,

a,
@=
J

n—1

Now, if we premultiply Eq. 2.1.23 by the inverse of [ B] as follows:

¢[B]7'(d) = —[B] '[BI(J)

(2.1.19)

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)

(2.1.24)
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which, because [B]~'[B] = [I], simplifies to

(J) = —¢,[B] '(a) (2.1.25)
For a two component system all matrices become scalars and Eq. 2.1.25 becomes
J, = —c,B7d, (2.1.26)
where B is obtained from Eq. 2.1.21 as

_ (o) 1

B N
Bl2 D]Z

(2.1.27)

Eq. 2.1.27 allows us to rewrite Eq. 2.1.26 as
J, = —c¢,Dd; (2.1.28)
which is just another way of writing Eq. 2.1.8.

Example 2.1.1 Multicomponent Diffusion in a Stefan Tube:
An Experimental Test of the Maxwell-Stefan Equations

The Stefan tube, depicted schematically in Figure 2.4, is a simple device sometimes used for
measuring diffusion coefficients in binary vapor mixtures. In the bottom of the tube is a pool
of quiescent liquid. The vapor that evaporates from this pool diffuses to the top of the tube.
A stream of gas across the top of the tube keeps the mole fraction of diffusing vapor there
to essentially nothing. The mole fraction of the vapor at the vapor-liquid interface is its
equilibrium value.

In an attempt to check the validity of the Maxwell-Stefan equations Carty and Schrodt
(1975) evaporated a binary liquid mixture of acetone(1) and methanol(2) in a Stefan tube.
Air(3) was used as the carrier gas. In one of their experiments the composition of the vapor
at the liquid surface was x; = 0.319, x, = 0.528. The pressure and temperature in the
vapor phase were 99.4 kPa and 328.5 K, respectively. The length of the diffusion path was

—
—_—
Air ——H

—_—

—

—_—> .. "

A
Screen -----

z=0
Liquid
mixture

Figure 2.4. Schematic diagram of a Stefan diffusion tube.
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0.238 m. The Maxwell-Stefan diffusion coefficients of the three binary pairs are

D, = 8.48 mm?/s
D3 =13.72mm?/s

D,; = 19.91 mm?/s

Calculate the composition profiles predicted by the Maxwell-Stefan equations and compare
the results with the experimental data.

SOLUTION At constant temperature and pressure the molar density ¢, and the binary
diffusion coefficients are constant and the driving forces are the mole fraction gradients,
d; = Vx,;. Furthermore, diffusion in the Stefan tube takes place in only one direction, up the
tube; there are no radial or circumferential gradients in composition. Thus, the continuity
Egs. 1.3.7 simplify to N, = constant. The carrier gas (3) diffuses down the tube as the
evaporating vapor diffuses up it, but because the gas does not dissolve in the liquid its flux
N; is zero (i.e., the diffusion flux J; of the gas down the tube is exactly balanced by a
diffusion induced convective flux x;N, up the tube). The mole fraction of vapor at each end
of the tube is kept constant-—at the top by the stream of carrier gas sweeping the diffusing
vapor away and, at the bottom, by the evaporating pool of liquid. The liquid level falls with
time, of course, but since diffusion up the tube is a relatively slow process, the level of liquid
at the bottom of the tube falls very slowly. Thus, it is safe to make use of the quasisteady-state
assumption; that, at any instant, the flux is given by its steady-state value.

With all of the above assumptions the Maxwell-Stefan relations (Eq. 2.1.16) reduce to a
system of first-order linear differential equations

(x;N; — x;N;)

dx, &
e
j=1 1Hij

An analytical solution of these equations, subject to the boundary conditions

z=0, x;

i=%io z=0, X=Xy

will be derived in Chapter 8. However, for the purposes of this illustration we integrated
these equations numerically using a fourth-order Runge—Kutta method. The calculations
were started at the interface (z = 0) and ended when we had marched a distance equal to
the length of the Stefan tube (z = ¢ ). A two-dimensional Newton—Raphson procedure was
used to search for the values of N, and N, (N; = 0) that allowed us to match the specified
composition at the top of the tube. The converged values of the fluxes N; and N, are

N, =1.783x 1072 N, =3.127 X 1073 mol/m? s

The results of the final integration are plotted in Figure 2.5 along with the data from Carty
and Schrodt (1975). The agreement between theory and experiment is quite good and
support the Maxwell-Stefan formulation of diffusion in multicomponent ideal gas mixtures.
This conclusion was also reached by Bres and Hatzfeld (1977) and by Hesse and Hugo
(1972). For further analysis of the Stefan diffusion tube see Whitaker (1991). =
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distance along diffusion path / [m]

Figure 2.4. Composition profiles in a Stefan diffusion tube. Lines represent calculated profiles; points
represent the experimental data of Carty and Schrodt (1975).

2.2 DIFFUSION IN NONIDEAL FLUIDS

The much higher density of liquids and dense gases means that we can no longer safely
assume that only binary (two molecule) collisions take place; three (or more) molecule
collisions occur sufficiently frequently in liquids and dense gases and contribute to the
momentum transfer process. It is, therefore, difficult to develop an analysis of liquid-phase
diffusion in complete parallel to that above for gases. However, the physical interpretation
of Eq. 2.1.15 applies equally to gases and liquids: If (and only if) the constituents (i and j)
are in motion relative to one another and, therefore, moving at different velocities (u; and
uj), may we expect composition gradients to be set up in the system as a result of the
frictional drag of one set of molecules moving through the other. It does not matter whether
this frictional drag arises purely from intermolecular collisions as in the kinetic theory of
gases or from intermolecular forces acting between the two sets of molecules. Intermolecu-
lar forces become dominant in diffusion in liquids and solids.

The force acting on species i per unit volume of mixture tending to move the molecules
of species i is ¢,RTd;, where d, is related to the relative velocities (u; — u;), by

_ i xix;(u; — u;)
j=1 b;;
_ i (x;N; — x;N;)
¢,by;

Jj=1

(2.2.1)

where D;; is the Maxwell-Stefan diffusivity whose physical significance as an inverse drag
coefficient is the same as in the ideal gas case. For nonideal fluids d;, which can be
considered to be a driving force, is defined by

X;

d; = EVT, PH; (222)

The appearance of chemical potential gradients in these equations should not come as a
surprise. Equilibrium is defined by equality of chemical potentials and departures from
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equilibrium are characterized by the presence of chemical potential gradients. As we shall
see in Section 2.3, chemical potential gradients arise in the thermodynamics of irreversible
processes as the fundamentally correct driving forces for diffusion. The subscripts T, P are
to emphasize that the gradient in Eq. 2.2.2 is to be calculated under constant temperature,
constant pressure conditions (pressure gradients and external forces also contribute to d,,
but we shall ignore their influence until we get to Section 2.3). The driving force d; reduces
to (1/P)Vp; for ideal gases, as it should. Also, the sum of the » driving forces vanishes

n

Yd, =0 (2.2.3)

i=1
due to the Gibbs-Duhem restriction (see, e.g., Modell and Reid, 1983); this means that only
n — 1 driving forces are independent.

Chemical potential gradients are not the easiest of quantities to deal with. For nonideal

liquids we may express the driving force d; in terms of the mole fraction gradients as
follows:

X
d; = EVT,P/-‘Q‘
x; "o,
TR E |,
j=1""ilr p s
x; "=l dlnyx;
- RT ; ox; ij
j=1 J T,P,3
n=1{3lnx, Jdlny,
=X; ( -+ d Vx;
j=1 9x, 9x; T,P,3
n—1 dlny,
- X (8,-,-+xi - Vx;
j=1 Jodr, ey
n—1
= Y I, Vx, (2.2.4)
j=1

where v, is the activity coefficient of species i in the mixture and where

L =8;; +x, ox

(2.2.5)

T,pP,%

The symbol 3, is used to indicate that the differentiation of Invy; with respect to mole
fraction x; is to be carried out while keeping constant the mole fractions of all other species
except the nth. The mole fraction of species » must be eliminated using the fact that the x;
sum to unity. More specifically,

dlnvy,
ax

dlnvy,

. ax;
T,P,3 J

J T,P,xp, k#j=1n~-1

The evaluation of the I}; for liquid mixtures from activity coefficient models is discussed
at length in Appendix D.

For dense gas mixtures exhibiting deviations from ideal gas behavior the above formula-

tion can be used with the activity coefficient vy, replaced by the fugacity coefficient ¢,.

(2.2.6)
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An equation of state needs to be used for the calculation of the molar density ¢, and the
derivatives of the fugacity coeflicients (see, e.g., Walas, 1985).

2.2.1 Matrix Formulation of the Maxwell-Stefan Equations for Nonideal Fluids

It is convenient to cast Egs. 2.2.1 into n — 1 dimensional matrix form as

—c¢(d) = [B](J) (22.7)

where the column matrices (d) and (J) have elements

dl Jl

d2 J2
(@)= " @=|"

dn—l Jn~l

and where the matrix [ B] has elements given by Egs. 2.1.21 and 2.1.22.

Xi 2Xy
B,=—+ ) — (2.1.21)
Bin k=1 Dik
i*k
B ! ! 2.1.22
i = T b, D, (2.1.22)
Equations 2.2.4 may also be written in » — 1 dimensional matrix form as
(d) =[T](Vx) (2.2.8)
which can be combined with Eq. 2.2.7 to give
—c,[T](Vx) = [B](J) (2.29)
Equation 2.2.9 is more useful in its inverted form
(J) = —c[B] '[T1(Vx) (2.2.10)

2.2.2 Limiting Cases of the Maxwell-Stefan Equations

Let us now consider some limiting cases of Egs. 2.2.10. The first important special case is
that of diffusion in a two-component mixture. In this case the n — 1 dimensional matrices
reduce to scalar quantities and we have

Jy = —¢,B7'T'Vx; = —¢, DI Vx, (2.2.11)

where the thermodynamic factor I" is obtained from Eq. 2.2.5 as

(2:2.12)

where it is understood that the mole fractions x, and x, sum to unity when the partial
derivative of In vy, is evaluated.

For ideal mixtures the activity and fugacity coefficients are unity, y;, = 1, ¢, = 1, and,
therefore, [I'] = [1], (d) = (Vx), and we recover Egs. 2.1.25. A subset of this case arises if
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the mixture is made up of species of (almost) identical size, shape, polarity, ... . In this case
the Maxwell-Stefan diffusion coefficients are almost equal to one another

b,;=D
and so
[B] ' - P[] (2.2.13)
and, therefore
(J) = —¢,D[I1(Vx) (2.2.14)
or
Ji=—¢DVx; (2.2.15)

In many chemical engineering problems we are interested in calculating the transfer
rates of a component that is present in a liquid mixture in very low concentrations. Let us
identify the trace component by the subscript 1; x; = 0. This means that the coefficients
Byy, By3, ++, By, _; of [B] all reduce to zero (see Eqgs. 2.1.21 and 2.1.22). Also, the matrix
of thermodynamic factors [T'] has the following elements on its first row

Iy=1 Fp=Ty=Ty= " =I,,=0 (2:2.16)
With the above simplifications, Eq. 2.2.10 for component 1 reduces to
J, = —¢,B;' Vx, (2.2.17)
where By, takes the simplified form

X2 X3 Xn-1

-+

By, = > > P°
12 13 1,n—1

(2.2.18)

The Df; are the Maxwell-Stefan diffusivities of the i—j pair where species i is present in
infinitely dilute concentrations.

Example 2.2.1 Diffusion of Toluene in a Binary Mixture

Consider the diffusion of toluene(1) present in trace amounts in a liquid mixture containing
n-tetradecane(2) and n-hexane(3) at a temperature of 25°C. An “effective” diffusivity of the
trace toluene defined by

Dy ep= —Ji/c Vx,

was measured by Holmes, et al. (1962); their data is summarized in Table 2.1. Calculate By,
and compare its inverse to the measured values of D .g.

DATA The infinite dilution coefficients are

°, = 1.08 X 107 m?/s
Py =4.62 X 1077 m?/s

SOLUTION Toluene is present in trace amounts, x; =0, and so x; =1 —x,. We
illustrate the calculation of B;; at the composition x, = 0.501 and x; = 0.499. The



DIFFUSION IN NONIDEAL FLUIDS

TABLE 2.1 “Effective” Diffusivity of Toluene in a Liquid Mixture
of n-Tetradecane—n-Hexane as a Function of the Mole Fraction
of n-Tetradecane, x,"

Dl, efl Bl_ll
Xy (measured) (from Eq. 2.2.18)
1.000 1.08 1.08
0.803 1.37 1.272
0.672 1.58 1.44
0.501 1.92 1.75
0.336 2.38 2.20
0.215 2.90 271
0.113 3.57 3.37
0.000 4.62 4.62

“Units are 107° m?/s.

parameter By; follows from Eq. 2.2.18 as

0.501 0.499
n= —5 * -9
1.08 X 10 4.62 X 10

= 0.572 X 10° s/m?

which gives

Bl =1.75x10""m?/s

27

Figure 2.6 shows the predictions of the transport coefficient Bj;! from Eq. 2.2.16 as a
function of the mole fraction of n-tetradecane. The agreement between measured values of
D, ¢ and predicted values of B! is quite good; the lack of better agreement may be
attributed to the variation in the liquid viscosity over the composition range covered. The
introduction of a factor to correct for the viscosity variation is considered by Perkins and

Geankoplis (1969). =

5
System: toluene (1) -
Effective 4 PY n tetradecane (2) - n hexane (3)
Diffusivity B
of toluene,
—-Q—DT—” 2r
[107 m7s]
1 -
0 1 1 1 | 1 1 | L \ |
0 0.2 0.4 0.6 0.8 1

mole fraction of n tetradecane

Figure 2.6. “Effective” diffusivity of toluene in a liquid mixture of n-tetradecane-n-hexane as a

function of the mole fraction of n-tetradecane, x,.
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2.3 THE GENERALIZED MAXWELL~STEFAN FORMULATION
OF IRREVERSIBLE THERMODYNAMICS

Until now, we have considered that the diffusion process took place under essentially
isobaric conditions, in nonelectrolyte systems and in the absence of external force fields,
such as centrifugal or electric fields. In this section we shall generalize our analysis to
include the influence of external force fields. The best starting point for a generalized
treatment is the theory of irreversible thermodynamics. The treatment below is similar to
that given by Lightfoot (1974) but readers will also find the books by de Groot and Mazur
(1962) and Haase (1969) very useful.

The purpose of the study of irreversible thermodynamics is to extend classical thermody-
namics to include systems in which irreversible processes (e.g., diffusion and heat transfer)
are taking place. Such an extension is made possible by assuming that for systems “not too
far” from equilibrium the postulate of “local equilibrium” applies “Departures from local
equilibrium are sufficiently small that all thermodynamic state quantities may be defined
locally by the same relations as for systems at equilibrium.”

With the help of this postulate, it is possible to obtain an explicit expression for o, the
rate of entropy production per unit volume due to various irreversible processes taking
place within the system (see, e.g., Slattery, 1981). The rate of entropy production due to
diffusion is

n
Toys= — 3 (Vri; — F) *J; 20 (23.1)

i=1

where j; is the mass diffusion flux with respect to the mass average velocity; T is the

absolute temperature, fi; is the specific chemical potential of species i, i; = u,/M;; M, is

the molar mass of species i; Vyji,; represents the isothermal gradient of the specific

chemical potential; Iv:, = F,/M,, where F, is the external body force per mole of species i.
The requirement that o4 > 0 follows from the second law of thermodynamics.

2.3.1 The Generalized Driving Force

Each term contributing to the rate of entropy production may be regarded as the product of
two terms, one a “flux” and the other a “driving force.” Which is which usually is obvious
from the context. However, the assignation of the names flux and driving force to terms in
the entropy production rate equation is not always clear cut. As far as we are concerned
here the distinction is largely irrelevant; that is, it does not matter which term is regarded as
flux and which is the driving force—although it must be noted that there are circumstances
where the distinction is very important. It might be more correct to refer to these quantities
as dependent and independent variables.
Let us now consider the driving force V;i; — F,. This can be rewritten as

1
Vi, = Fy= 20 Ve piy + 3 VP = F; (23.2)

1

where V; is the partial molar volume of i and V; pu; represents the isothermal, isobaric
gradient of the molar chemical potential. Now, since the diffusion fluxes j; sum to zero, that
is,

n

Y= i pi(u; —v) =0 (2.3.3)

i=1 i=1



THE GENERALIZED MAXWELL-STEFAN FORMULATION 29

we can add any arbitrary vector to Vrfi; — F, without altering the value of ogi- Let us
replace V4, — F; by

.1 LI
Voi;—F,— —VP+ Y wF (23.4)
p

L i=1

where p, is the mixture mass density and w, is the mass fraction. The reason for the choice
of the arbitrary vector

1 n _
-—VP+ Y oF,
Py i=1

is that the conservation of linear momentum gives

! vpP Z o \Y (2.3.5)
- — + w;F;=—+V-nx 3.
Py i—1 dt

and for a system at mechanical equilibrium, that is, no velocity gradients, the right-hand side
of Eq. 2.3.5 vanishes giving

1 L
— VP =Y F;,  (mechanical equilibrium) (2.3.6)
Py i=1

that is, the pressure gradients are balanced by the external body forces. In systems of
chemical engineering interest, mechanical equilibrium is established faster than diffusion
equilibrium and Eq. 2.3.5 is reasonably well obeyed. Thus, in replacing Vya, — F; by
Eq. 2.3.4, we are essentially subtracting a vanishing vector from Vi, — F,. With this
modification to the driving force and utilizing Eq. 2.3.6 we get

i Z 1 noo
Togg=— 2 HVT,P/‘LI' + HVP - —VP+ ) oF — F,») i (237
i=1 i i Py j=1
or
n
it = —c,RZdi “(u;—v)=0 (2.3.8)

i=1

where we have used the defining relations j; = p,(u; — v) and

n
¢,RTd; = ¢,V pp; + (¢;V, — w;) VP — p,.(i,. - Y oF (2.3.9)

j=1

The physical interpretation of ¢,R7d; is that it represents the force acting on species i per
unit volume of mixture tending to move species i relative to the solution. The quantity c¢;V;
represents the volume fraction of species i, ¢;, and so we may rewrite Eq. 2.3.9 as

¢ RTd; = ¢;Vp pp; + (¢; — 0;) VP — p,

F - i w,i,) (2.3.10)

j=1

which shows that a pressure gradient can effect a separation in a mixture provided there is a
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difference between its volume and mass fractions. For ideal gas mixtures Eq. 2.3.10
simplifies to give

F, - Z w,ﬁ,) (23.11)

It is sometimes convenient to express Egs. 2.3.10 and 2.3.11 in terms of the external body
force exerted per mole of i; the corresponding equations are

n
¢, RTd; = ¢;Vy pp; + (¢; — ;) VP — (ciFi —w; ) ¢;F (2.3.12)
j=1
and, for ideal gases,
v 1 n
d, =Vx, + (x; — w,.)7 v Gy Y ¢ F (2.3.13)
j=1

What we have achieved so far is to express the rate of entropy production oys due to
mass diffusion in terms of a convenient driving force ¢,RTd; per unit volume of mixture.
Equation 2.3.8 shows that the rate of entropy production is a sum of the products of two
quantities; the force acting on i, per unit volume, tending to move i relative to the mixture
and the relative velocity of the movement of i with respect to the mixture; oy is, therefore,
the dissipation due to diffusion.

2.3.2 The Generalized Maxwell-Stefan Equations

Insertion of any other reference mixture velocity in place of v in Eq. 2.3.8 will not alter the
value of oy, an expected and pleasing result because only relative motions of the various
species are important in the description of the diffusion process. In chemical engineering
applications it is often convenient to choose the molar average mixture velocity # and so we
may write

n
Ogr = —¢, R d;*(u;—u) 20 (2.3.14)

i=1

Eliminating the molar average velocity u using Eq. 1.2.6 allows us to write Eq. 2.3.14 in
terms of the relative velocities (u; — u;) as

Y Ydi(u—u)z0 (2.3.15)

i=1j=1

¢R 2z
Gaigr = = 7 7

We may use Eq. 2.3.15 as the starting point for developing our constitutive relations rather
than the conventional Eq. 2.3.8.

The first postulate of irreversible thermodynamics is that the fluxes (or dependent
variables) are directly proportional to the driving forces (or independent variables). [Actu-
ally, it may be shown that the assumption of local equilibrium follows from the assumption
of a linear relation between the fluxes and driving forces (Truesdell, 1969).] If we take the d,
as dependent variables and the (u; — u;) as independent variables we may, therefore, write
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a linear constitutive relation for diffusion as follows:

d, = - ): Bii(u; — u)) (2.3.16)

ji=1

with B;; a coefficient of proportionality. We may, of course, define the coefficient of
proportionality in any way we like to suit our purposes; we, therefore, introduce a “new”
coefficient B;; = x,x;/D;;, which allows us to rewrite Eq. 2.3.16 as

mox;xi(u; — u;
d":—z—j(l_g—..—])

j=1 ij

l]’

(2.3.17)

Equations 2.3.17 are the generalized Maxwell-Stefan (GMS) relations and the B;; are the
Maxwell-Stefan diffusion coefficients we encountered earlier. These equations are more
useful when expressed in terms of the molar fluxes N, = c;u;,

(xiN; = x;N;)

=
j=1 CtDij

(2.3.18)

The positive definiteness requirement of oy allows us to derive certain restrictions on
the values of the D;;. If we substitute the GMS relation for d; into Eq. 2.3.15 we obtain a
very neat and compact expression for the rate of entropy production due to diffusion

1
it = ‘C

n'M:

|y = u)[ 2 0 (2.3.19)

l]

which is quite remarkable for the absence of any thermodynamic factors. Equation 2.3.19
was derived by Hirschfelder, Curtiss, and Bird (HCB) (1964) for ideal gas mixtures; the
generalization to nonideal fluids was carried out by Standart et al. (1979) using the HCB
treatment as a consistent basis.

For mixtures of ideal gases the BD,; are composition independent and taking into
consideration that Eq. 2.3.19 is valid for all compositions and values of (u; — u;), the
positive definite condition can only be satisfied if

D;z0 lideal gases| (2.3.20)
a result derived by HCB (cf. their Eq. 11.2-46).

For nonideal liquid mixtures the D;; are composition dependent (as shall be discussed in
detail in Chapter 4) and without complete information as to the nature of the composition
dependence a result analogous to Eq. 2.3.20 cannot be derived. A more restrictive result for
the set of infinitely dilute diffusivities follows from the application of the second law
restriction Eq. 2.3.19.

by z0 Inonideal fluids| (2.3.21)

which is the diluted analog of the HCB result for ideal gases.

Since the B;; are defined in terms of d; and component velocity differences (u; — u;),
both of which are independent of the reference velocity frame, the D;; are, therefore,
reference frame independent.

A second postulate of irreversible thermodynamics is that the coefficients D;; are
symmetric

D.=P, (23.22)

ij Jji
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Figure 2.7. Schematic diagram of an ultracentrifuge. |

Equation 2.3.22 expresses the Onsager reciprocal relations (ORR) discussed briefly in
Section 3.3. For ideal gases, this symmetry relation can be obtained from the kinetic theory
of gases (HCB, 1964; Muckenfuss, 1973).

Equations 2.3.18 together with Egs. 2.3.10 defining the generalized driving force are the
starting point for the analysis of diffusion in systems where external force fields influence
the process: the ultracentrifuge, for example, in electrolyte systems and in porous media
where pressure gradients become important. We examine the first two of these topics in the
Sections 2.3.3 and 2.4.

2.3.3 An Application of the Generalized Maxwell-Stefan Equations—The Ultracentrifuge

To illustrate the formulation discussed in Section 2.3.2 let us consider diffusion in the
presence of an imposed force field. The centrifuge is a device that subjects a fluid mixture to
a centrifugal force; the ultracentrifuge subjects the fluid to extremely high forces simply by
spinning at a very high rate. Figure 2.7 is a schematic of such a device.

The centrifugal force exerted on a unit mass of component i in a multicomponent
mixture is

F,= Q% (2.3.23)
where r is the distance from the axis of rotation and (2 is the angular velocity; Q = 27 f,
where f is the rotational speed (revolutions per second, rps). If we use Eq. 2.3.23 in
Eq. 2.3.10 we find

¢,RTd; = ¢;Vy pu; + (¢; — 0;) VP — p,(Q*r — Q7r) (2.3.24)
The last term on the right-hand side of Eq. 2.3.24 cancels to leave

¢,RTd, = ¢, V; pu; + (¢, — ;) VP (2.3.25)

Mechanical equilibrium is established quickly in relation to thermodynamic equilibrium in
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an ultracentrifuge. At mechanical equilibrium we have (from Eq. 2.3.6)

n
VP =p, Y w,F =pQ% (2.3.26)
i=1
On eliminating VP from Eq. 2.3.25 we have
¢,RTd; = ¢;V; pp; + (¢; — w,)p,Q%r (23.27)

At equilibrium the driving forces and fluxes vanish; d; = 0, (u; — u;) = 0. Thus,

¢;Vr pui = (@; = ¢,)p, Vr (2.3.28)
The chemical potential gradients are more conveniently expressed in terms of the composi-
tion gradients as
n—1

Xi
ﬁ VT,P/-Li = jg] Fij ij (2243)

where the thermodynamic factors I;; are given by

dlny;
[i=68;+x—— 7%, (2.2.5)
On combining Egs. 2.3.27 and 2.2.4a we have
n—1 M
Y [ Vx; = —¢; )—02 (2.3.29)
Jj=1

where M is the mean molar mass of the mixture.
For a two component mixture we may simplify Eq. 2.3.29 as follows:

r 7) 2 2.3.30
dr —(wl Cy l)ﬁ r ( . )
where I' = (1 4+ x; dIny,/dx,). For dilute solutions the thermodynamic factor I' is approxi-
mately unity (cf. discussion in Section 2.2.2) and Eq. 2.3.30 simplifies to

dx, W

—d_r = (wl - CIVI)E‘Q r (2331)
Integration of Egs. 2.3.29 or the simplified forms (Egs. 2.3.30 and 2.3.31) yields the
equilibrium composition distribution in the centrifuge (see Examples 2.3.1 and 2.3.2). From
Eg. 2.3.30 we see that the ultracentrifuge induces a separation only if the volume > fraction
(¢; = ¢;V)) is different from the mass fraction (w;). For dilute aqueous solutions M/RT is
of the order 10> s2/m?. Thus, for r of about 0.1 m we need an angular velocity Q of about
1000 inverse seconds or approximately 175 rps in order to obtain a measurable separation.
The ultracentrifuge is used for the determination of molecular weights of proteins and for
the separation of isotopes. Cullinan and Lenczyck (1969) proposed that the ultracentrifuge
be used to determine the thermodynamic factor I" for nonideal systems; this procedure is,
however, very expensive and time consuming.
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Example 2.3.1 Ultracentrifugation of a Binary Liquid Mixture

An equimolar mixture of benzene (1) and carbon tetrachloride (2) is placed in a sedimenta-
tion cell in an ultracentrifuge and rotated at 30,000 rpm. The outer radius of the cell (r,) is
100 mm and the depth of the liquid in the cell (of diameter 12.5 mm) is 40 mm. The cell is
maintained at a temperature of 20°C.

Estimate the separation achieved at equilibrium and the time required to attain 99% of
the equilibrium value.

DATA

Molar mass of benzene: M; = 0.0781 kg/mol.

Molar mass of carbon tetrachloride: M, = 0.1538 kg/mol.
Density of equimolar mixture: p, = 1252 kg /m’.

Partial molar volume of benzene in equimolar mixture

V, =89 x 107% m*/mol
The liquid-phase Maxwell-Stefan diffusion coefficient
D =1.45x%x10"° m?/s
The activity coefficient of benzene in solution is given by
Iny, = 0.14x3

SOLUTION The composition distribution at equilibrium is given by Eq. 2.3.30.

— = (0, - clvl)ﬁﬂzr (2.3.30)

Assuming all terms in this expression to be constant (other than x,; and r, of course) allows
us to integrate Eq. 2.3.30 from the surface of the liquid r = r{ to the end of the centrifuge
r = ry (Fig. 2.7). The result is

- M
FAx, = (0, — clVl)R—TQZFAr (2.3.32)

where 7 is the average radius, 3(ro + ry); Ar is the difference (r; —ry); Ax, is the
difference in mole fraction of component 1 at position r = r; and the mole fraction of
component 1 at r = r,. Equation 2.3.32 is the result we needed; now for the calculations.

To evaluate the thermodynamic factor I' we write Iny, in terms of x; only and
differentiate with respect to x; to give

dlny
I'=1+x, !

ax,
=1-028x(1-1x,)
At the average (initial) composition, x; = 0.5

r=1-028x05x(1-05)=0.93
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The mass fraction w; is calculated next

x M,
= —— =0.3368
@1 My +x,M,

The molar concentration of species 1 may now be calculated

¢y =p1 /M,
=wip,/M,;
= 0.3368 X 1252/0.0781

= 5399 mol benzene /m> mixture

and the volume fraction follows as

$y=c¢ 1‘71
= 5399 X 89 X 107°
= 0.4805 m> benzene /m> mixture

The angular velocity () is calculated as follows

Q=2rf
=27 X 500
=3141.6s""

The remaining terms on the right-hand side of Eq. 2.3.32 are evaluated as follows:

F=3(ro+r) =8 mm=280x10">m
Ar=r —ry=100 — 60 =40 mm = 40 X 103 m

M 0.5 x0.0781 + 0.5 x 0.1538
RT 8.3144 X 293.15

= 4.757 x 1075 kg /J

Finally, we may calculate the separation at equilibrium from Eq. 2.3.32 to be

Ax,

(0.3368 — 0.4805) x 4.757 X 107° x 3141.62 x 0.08 X 0.04
—0.2322

It

35

This means that benzene, which is the lighter component, tends to concentrate preferen-
tially at the center of the centrifuge, whereas carbon tetrachloride, which is the heavier

component, tends to concentrate at the periphery.

The time required to reach « close to equilibrium is given by (Cullinan and Lenczyck,

1969)

=
“ 8DT

_ A’ZB() ln( Bo )

l1—-«a
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where B, is obtained from the formula

2
B ——=
(m(n+3))
Thus, for n = 0,
2 x4 8
b= "0

The product BT is found to be

DI =1.45%x 1077 X 0.93 = 1.349 X 107 m?%/s

So, for 99% approach to equilibrium « = 0.99 and we find

0.04> x 8 : ( 8 )
t =
« T 21349 x 10-° "\ 0.0172
~ 528376

Thus, the time required to reach 99% of equilibrium is about 150 h (or a little over 6 days!).
n

Example 2.3.2 Separation of Uranium Isotopes with a Gaseous Ultracentrifuge

Consider the separation of U%°F, (1) and U?*F; (2) in a gas centrifuge that has an internal
diameter of 60 mm and rotates at 40,000 rpm, at a temperature of 20°C. If y and x refer to
the mole fractions of the lighter isotope at radii r = 0 and r = r;, respectively, determine
the value of the separation factor:

_y(1-x)

a—x(l—y)

DATA Molar masses M, = 0.34915 kg /mol M, = 0.35215 kg /mol.

SOLUTION At equilibrium the composition gradient is given by Eq. 2.3.31

dx, M
-; = (wl - CIVI)ETQ r (2.3.31)
We may rewrite the term (w; — ¢,//;)M as follows:

(wl - C1171)M = (w; —x)(x M, +x,M,)

x M,

—_— —x |(x M, + x, M
X, M, + x,M, 1] (x1 M,y My)

=x(M; — x; M, — x,M,)
=x(1 —x)(M; — M,)
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Equation 2.3.31 may now be simplified to

dx, 2

— = dr
x(1—xy)

M, — _
(M, MZ)RTr

and is to be integrated subject to the boundary conditions

r=r; X=X
to give
2] - nf 2 Lt
n( ) 1=y ) = = M) oy
or
x(1-y) i
—_—= M, - M.
y(1 - x) exp[( 1= M) SR
or
M- M erf
a = exp| —(M; — Mp) -0
The angular velocity () is calculated as
Q 2 40,000
60
= 41888571

and with R = 8.3144 J /mol K and r; = 0.06 m we calculate the separation factor a as

(0.34915 — 0.35215) x 4188.8% x 0.06>
(2 x 83144 x 293.15)

a = exp| —

= 1.0396

Despite the low value of the separation factor, ultracentrifugation is a viable commer-
cially used technique for separation of the isotopes of uranium. In view of the small
separation factor and low capacity per unit, a commercial plant will have a few million
centrifuges (Von Halle, 1980; Voight, 1982)! m

2.4 DIFFUSION IN ELECTROLYTE SYSTEMS

There are many applications in chemical engineering where diffusion of charged species is
involved. Examples include ion exchange, metals extraction, electrochemical reactors, and
membrane separations. There is an excellent textbook in this area (Newman, 1991). Here
we will be content to show that the treatment of electrolyte diffusion follows naturally from
the generalized treatment of diffusion given in Section 2.3.
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Figure 2.8. Pictorial representation of ion—ion and ion-solvent
interactions in an electrolyte solution.

In mixtures of electrolytes the generalized Maxwell-Stefan equations

n"ox;x(u; —u;
d=-Yy —/—F—= i~ ) (2.3.17)
=1 by
_ i (x:iN; —x;N;)
c,Dij

ji=1

(2.3.18)

are written for each of the ionic and nonionic (i.e., solvent) species in the system. The
inverse Maxwell-Stefan diffusion coefficients have the same physical significance as the
ones introduced in Section 2.2; they represent the friction experienced by the i-j pair
whether or not they be ion-ion or ion—solvent interactions (Fig. 2.8).

The x; in these equations denote ionic mole fractions. In general, the ionic mole
fractions will differ from the undissociated electrolyte mole fractions. To illustrate this fact
consider an aqueous solution of sulfuric acid. Let us take 1 m® of solution with ¢, kmol of
H,S0O, and ¢, kmol of H,0. The mole fraction of the undissociated species are

c

XH,80, = CW—-;CS H,0 = c. : c
On complete dissociation of acid
H,SO, —» 2H*+ SO;~
Thus
cy = 2¢ CH,0 = Cw €s0, = Cs

where the subscripts H and SO, refer to the H* and SO2~ ions, respectively. The mole
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fractions of the various species are

2¢; c

=3 T “¥so
3¢, + ¢, 4

X S N L
H 3¢, +c, H,0 3¢, + ¢,

Note that the mole fraction of H,O has “decreased” when considered in terms of ionic
species. This is an important point to bear in mind and the reader is advised to study
Newman (1991) for further discussion. For mixed ion systems there will be contributions to
¢; from various ionic species. For example, in the system with mixed salts HCI and BaCl,
the concentration of chloride ion, cq-= ¢y + 2¢p,q, (see Example 2.4.2).

The generalized driving force d; is defined by Eq. 2.3.12

¢,RTd; = ¢;Vy pp; + (b; — ) VP — | ¢,F; — w; ), ¢;F; (2.3.12)

where ¢, is the volume fraction c,V..
The external body force per mole acting on species i, F;, is given by (see Newman, 1991)

F,= -2, V¢ (2.4.1)

where z; is the ionic charge of the species (e.g., zy = +1; Zso, = —2), & is Faraday’s
constant = 9.65 X 10* C/mol = 9.65 X 107 C/kmol, and ¢ is the electrical potential
measured in volts (1 C=1A X 1sand 1 V X 1 C = 1J). With the force term given by Eq.
2.4.1 and neglecting the pressure diffusion term (VP = 0), Eq. 2.3.12 becomes

n
¢,RTd; = ¢;Vy pu; + (c,.z,. -w; Y, cjzj)y Vo (24.2)
j=1

Except in regions close to electrode surfaces, where there will be charge separation (the
double layer phenomena), the condition of electroneutrality is met (see Newman, 1991, for a
detailed discussion of this topic):

Y cz;=0 (2.43)

that is, there is no net electrical body force acting on the mixture as a whole. The
generalized driving force, therefore, simplifies still further to

¢,RTd; = ¢,V p; + ¢;2,5 Vo (2.4.4)

The chemical potential gradient may be expressed in terms of mole fraction and activity
coefficient gradients as shown in Section 2.2. Activity coefficient models for electrolyte
systems are discussed by, for example, Newman (1991) and Zemaitis et al. (1986).

As in the treatment of diffusion in nonionic systems it is usual to define diffusion fluxes
J; with respect to a specified reference velocity. For diffusion in electrolyte systems the most
commonly used reference velocity is the solvent velocity u,,.

J"=N;—-cu, (245)
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With this choice of reference velocity the flux of species n, J, is zero (Table 1.3)

Jr=0 (2.4.6)

with

Y Jr#0 (24.7)
i=1

The generalized Maxwell-Stefan equations may be written in terms of these diffusion
fluxes as

n (x.J." —x.Jl.")
=Yy - (2.4.8)
j=1 B
Equations 2.4.8 may be written in the following equivalent form (cf. Eq. 2.1.23)
n—1
cd;=— ) BLJI (2.4.9)
j=1
where the Bj; are defined by (cf. Eqgs. 2.1.21 and 2.1.22)
n xk
Bi=Y — i=12,...,n—1 (2.4.10)
k=1 Pk
i+k
B} = —x;/b;; i#j=12,...,n—-1 (2.4.11)
Equations 2.4.9 may be written in compact » — 1 dimensional matrix form as
c(d) = —[B"](J") (2.4.12)
or
(J") = —c,[B"]'(d) (2.4.13)

Equations 2.4.12 describing diffusion in concentrated electrolyte solutions are the counter-
parts of Egs. 2.1.23 and 2.2.7 for diffusion in ideal gases and nonideal, nonelectrolyte
systems, respectively.

2.4.1 The Nernst-Planck Equation

In dilute electrolyte systems the driving force d; reduces to

F
d,=Vx;, + xiziﬁV(b (24.14)

and the matrix [ B"] degenerates to a diagonal matrix with elements given by

Bi=1/B;,  Bj=0 (i#]) (2.4.15)
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The superscript ° signifies the infinite dilution limit. Equations 2.4.13 for the diffusion
fluxes simplifies to

a

F
= —¢,D;, Vx; —¢;z,D} — V 2.4.16
Jl Ct mn xl (‘lzl mRT d) ( )

The molar fluxes N, are found by combining Eqgs. 2.4.5 with Eq. 2.4.16

F

N, = —¢, D}, Vx; — ciziﬂfnﬁ V¢ + cu, (2.4.17)

The three “contributions” to N; are termed
Diffusion - ¢, b7, Vx;
. . o F
Migration - ¢;z;D5, RT V¢
Convection  + c;u,,
Equation 2.4.17 is known as the Nernst-Planck equation.

In the electrochemical literature it is traditional to use molar concentration gradient
driving forces and the most commonly used form of the Nernst—Planck equation is

F

N, = -b;, V¢, — ciz,-Df-’nﬁ V¢ + cu, (2.4.18)

We have shown that the Nernst—Planck equation is only a limiting case of the general-
ized Maxwell-Stefan equations. Nevertheless, many ionic systems of interest are dilute and
the Nernst—Planck equation is widely used.

Even when the system is dilute, the diffusing ionic species are “coupled” to one another
in a very interesting manner. This coupling arises out of the constraint imposed by the
electroneutrality condition. Equation 2.4.3 can be differentiated to give

n
Y z; Ve, =0 (2.4.19)
i=1

which means that there are only » — 2 independent composition gradients describing the
system.

Example 2.4.1 Diffusion in the System KCl — H,0 at 25°C

Consider diffusion in the system KCl — H,O at 25°C. Potassium chloride is a strong
electrolyte and complete dissociation into K* and CI~ ions will take place:

KCl - K* + ClI-

The species involved in the diffusion process are

1=K"
2=Cl"
3 = H,0 (undissociated)
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1. Determine the elements of [ B"] at a salt concentration of 1 kmol /m?.

2. To what concentration level of the salt can one “safely” use the Nernst—Planck dilute
solution approximation Eq. 2.4.18, instead of the generalized Maxwell-Stefan diffu-
sion equations?

DATA The Maxwell-Stefan diffusion coefficient D, at various salt concentrations, taken
from a figure in Newman (1991), is tabulated below.

Cxal CH,0 10719/,
[mol /m?] [kmol /m3] X1, Xy [s/m?]
0.1 55.5 1.8 X 107° 67.0
1 55.5 1.8 X 1073 28.6
10 55.5 1.8 X 10~4 10.0
100 55.5 1.8 x 1073 2.86
1000 55.5 1.74 x 1072 0.55

The Maxwell-Stefan diffusion coefficients D3 and D,; are virtually identical and, over
the concentration range of interest, independent of concentration at 2 X 10~% m?/s.

SOLUTION As a basis for our calculations we consider 1 m* of H,O. This solution will
contain 1000 kg of H,O or 55.5 (= 1000/18) kmol H,O. Thus, ¢y, = 55.5 kmol /m>. The
concentration of K* and Cl~ ions will equal the concentration of KCI.
€1 =€ = Cka
Thus, the total concentration of ions and solvent will be
c,=C+cy+ CH,0
=2cka t Chy0

The mole fractions of ions and solvent are evaluated as

Xy = cxa/(2¢ka + €n,0)
X, = cxar/(2¢ka * €u,0)
X;3=1-x; —x,
Thus, at cx = 1 kmol/m? the mole fractions are
xy=1/(2 +55.5)
= 0.0174

=x2

Xy = 0.9652

and the Maxwell-Stefan diffusivity D, is

Dy, = (1/0.55) X 1071% = 0.1818 X 1072 m?/s
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For a ternary mixture the elements of [ B"] are evaluated from Eqgs. 2.4.10 and 2.4.11 as
follows:

0.0174 0.9652
= +
0.1818 x 10~° 2x107°

0.5782 X 10° s/m?
B, = —x/Dy,

—0.0174,0.1818 x 10~°

—0.09556 X 10° s/m?
By = —x,/Dy
—0.0174/0.1818 x 10~°

—0.09556 x 10° s/m?

I

X1 X3
Bp= 5=+ o=
Dy, D3

0.5782 X 10° s/m?

and we see that Bj} = B}, and B{, = BJ;; a result that follows from the equality of the
Maxwell-Stefan diffusivities, D3 and D,;, and from the equality of the mole fractions x,
and x,.

To answer the second question we repeat the above calculations for other values of the
salt concentration cgc. The results are summarized below.

Ckal - B B —By/B1
[mol /m?] [10® s/m?] [10° s/m?] [-]
0.1 1.206 0.5012 0.0024
1 5.148 0.5051 0.0102
10 17.993 0.5178 0.0348
100 51.295 0.5495 0.0934
1000 95.560 0.5782 0.1653

The ratio of cross-coefficient to the main coefficient, B{,/B7}, is less than 5% if the salt
concentration is less than 10 mol/m?3. So the Nernst—Planck equation can be used “safely”
below ¢y = 10 mol/m>.

Many industrially important electrochemical systems have salt concentrations less than
10 mol /m?>. This explains the widespread use of the Nernst—Planck equations. H

2.4.2 Conductivity, Transference Numbers, and The Diffusion Potential
Each species j carries with it a current

Fz.N.

J7
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and the current carried by the mixture is
n—1

i=5 ) zN, (2.4.20)
j=1

with the units amp per meter squared (A/m?). The solvent, species n, catries no charge,
z, = 0, so the summation in Eq. 2.4.20 is taken over n — 1 terms. With the N; given by the
Nernst-Planck equations (Eq. 2.4.18) we have

n—1 yZ n—1

i=-7Y z;b5, Ve, — — V¢ Y ¢z

’pe 2421
RT (2.4.21)

jin

j=1 j=1

In proceeding with the development, it is convenient to define the following quantities:

1. Equivalent conductivity of species j

2

gt
7y = =,z D, (2.4.22)

2. Equivalent conductivity of the mixture

n—1
= Y%
j=1

F2n-l

= =7 ‘El c;z} D5, (2.4.23)
i-

3. The transference number of species j
== (2.4.24)

With the above definitions an expression for the current i carried by the mixture can be
obtained

n—1
i=-FY ;P V¢; — % V¢ (2.4.25)
j=1

which may be rearranged to give the electrical potential as
(2.4.26)

Equation 2.4.26 shows that even when no current is carried by the mixture (i.e., i = 0), there
exists a finite electrical potential

T n—1
Vo = — s Y. z;D;, Ve, (24.27)
j=1

termed the diffusion potential. Substituting this expression for V¢ in the Nernst—Planck
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relationship (Eq. 2.4.18) we find

N, = -b}, + + DS —-——i
°©
Ve, + cu, + ¢;z,D;,
2 17 n—1
+ b by, Vv 2.4.28
€125 RT % Z i i ( )

Equation 2.4.28 can be written a little more compactly in terms of the transference num-
bers t;

t.

N;= =D, Ve, + cu, + ——i
;¥
; n—1
+ b Y z;B, Ve, (2.4.29)

Zi j=1

Now, for “pure diffusion” as is encountered in processes such as ion exchange or extraction
there is no current flowing through the mixture

i=0 (2.4.30)

and the molar flux of each ionic species is given by

; n—1
N,=-D;, Ve, + cu, + — 2 z,;D5, Ve; (2.4.31)
l ]_1
2.4.3 Effective Ionic Diffusivities
It is common to define an “effective ionic diffusivity” by
N; = =9, Ve, + cu, (24.32)

An expression for the effective ionic diffusivity 9; .4 may be obtained by setting equal the
right-hand sides of Eqgs. 2.4.31 and 2.4.32.

D et = B = 4 ni‘,l Z,D,‘-’,,& (2.4.33)
’ z; ;5 Ve;
The effective ionic diffusivity 9; .4 is seen to depend on
1. The infinite dilution MS diffusivities
b (i=1,2,...,n—1).
2. The charge numbers of all species
z;(i=1,2,...,n=1).

3. The concentration gradients of all ionic species

Ve, (i=1,2,...,n—1).



46 THE MAXWELL-STEFAN RELATIONS
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Figure 2.9. Schematic diagram of a two compartment diffusion cell. The experiments by Vinograd and
McBain (1941) on diffusion in electrolyte systems were carried out in apparatus of this kind.

Example 2.4.2 Diffusion in an Aqueous Solution of HCI and BaCl,

Vinograd and McBain (1941) investigated the diffusion of electrolytes and their ionic species
using a two compartment diffusion cell similar to the one depicted in Figure 2.9. The
solution in one compartment was pure water while the other contained an aqueous
electrolyte solution. Diffusion took place through the pores of a sintered glass disk that
separated the two compartments. Vinograd and McBain experimented with a variety of salts
and mixtures of salts; the experiments that we are concerned with in this example involved
the system HCI — BaCl, — H,0. The HCI and BaCl, dissociate as follows:

HCl -» H' + CI”
BaCl, — Ba?* + 2Cl~

We are required to compute the effective diffusivities of the ions in solution and compare
with the experimental values shown in Figure 2.10.

DATA The components in the mixture will be numbered as follows:

1=H"*
2=Cl"
3 = Ba?*
4=H,0

The charge numbers of these species are
z;=1 z, = —1 z3=12 z;,=0

The infinite dilution Maxwell-Stefan diffusion coefficients for the ions in water are (from
Newman, 1991).

°,=93%x 1072 m?/s
5. =2.0X 107 m?/s
%, = 0.85 X 107 m?/s



DIFFUSION IN ELECTROLYTE SYSTEMS 47

14 -
hydrogen
L e ¢ - . 3
® “~\\ "puII“
10 ®
Effective
ion diffusivity, 8 r
"J;,eff 6

110° m%/s]
4 +
2 -

Ilpu"" '

Figure 2.10. Comparison of calculated experimental values of the effective ionic diffusivity. Data from
Vinograd and McBain (1941).

SOLUTION The effective diffusivities may be calculated from Eq. 2.4.33; we approximate
the ratio of concentration gradients ch/Vc,- by the ratio of concentration differences
Ac;/Ac;; thus:

¢, n-1 Ac
— o __ _b o J

D et = Diy Z z;b;, A
Zi j=1 C;

The concentrations of the ions in compartment 1 are

€1 = Cuql
€3 = Cha + 2¢pyqy,

€3 = Cpacl,

As a basis for calculating the effective diffusivities we make cp,c;, = 1 kmol /m?. We further
define the concentration ratio r as

r=cy/cy= Chal/CBacl,
and the concentrations of ions in solution are given in terms of r as
c;=r ¢;=(2+r) ¢; = 1 kmol/m?

Compartment 2 contains pure H,O so the concentration of ions in compartment 2 is zero.
Thus, the concentration differences are equal to the concentrations in compartment 1

Ac,

r kmol /m?
Ac, = (2 + r) kmol /m?

Acy = 1 kmol/m3
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Let us illustrate the calculation of the effective diffusivities at » = 1. The concentrations
of ions in compartment 1 become

c;=1  ¢,=3 c¢3=1kmol/m?
and the concentration differences are
Ac;=1  Ac,=3  Acy=1kmol/m’
The equivalent conductivity of the three ionic species are calculated from Eq. 2.4.22 as
= (F?/RT)c,ziD3,
= (9.65 X 107)> X 1 X 12X 9.3 x 107°/(8314.3 x 298.15)
= 34.94
Hy = (F?/RT)c,25D5,
= (9.65 x 107)> X 3 X 22 X 2.0 X 107°/(8314.3 X 298.15)
=22.54
Hy=(F?/RT)c323D5,
= (9.65 x 107)> X 1 x (—1)* X 0.85 x 107?/(8314.3 x 298.15)
=12.77

The equivalent conductivity of the mixture is

T =H, +H,+H
=34.94 + 22.54 + 12.77
=70.25

The transference numbers are given by Eqgs. 2.4.24

ty =%/ F
= 34.94/70.25
= 0.4973
ty =7,/ %
= 22.54/70.25
= 0.3208
ly=7/%
= 12.77/70.25
= 0.1818

It will simplify subsequent calculations if we introduce a quantity ¢
& =2,PYAcy + 2, D5, Ac, + 23D5,Ac,
=1X93x107°Xx1+(-1)X20X107°x3+2x085Xx107°x1
=5.0 X 107° kmol/m s
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We may finally calculate the effective ionic diffusivities as

D, e = Dla — 116/2,0¢y
=93X107°-04973 X 5.0 X 107°/(1 X 1)
= 6.813 X 107° m?/s

D, et = Do — 126/25A¢,
=2.0Xx107°-0.3208 X 5.0 x 107%/(—1 X 3)
=2.535 X 10~° m?/s

D30 = D34 — 13€/23005
=0.85x107° - 0.1818 X 5.0 X 107%/(2 X 1)
= 0.395 X 10~° m?/s

Additional calculations of the effective ionic diffusivities are shown in Figure 2.10 as a
function of the square root of the concentration ratio r. The experimentally determined
effective diffusivities are shown in the same figure for comparison. The agreement between
theory and experiment is very good, especially for the Cl~ and Ba?* ions. The theory
overestimates the effective diffusivity of the H* ions but the decrease in the effective
diffusivity of the H* ions as the concentration ratio increases is predicted correctly.

The important features of mixed ion diffusion are brought out very clearly in the
calculations. The rapidly diffusing H* ions are slowed down by the electrostatic “pull”
being exerted on them by the more slowly diffusing Cl~ ions (Fig. 2.10). At the same time
the Cl~ ions are accelerated by the H* jons. The Ba?* ions, which have a low diffusion
coeflicient already, diffuse even slower because of the constraint of electroneutrality. ®

The consequences of mixed ion diffusion effects in chemical engineering are felt in the
following areas:

1. Metals extraction; see Tunison and Chapman (1976) and Van Brocklin and David
(1972).

2. Absorption of HCI by NaOH (Sherwood and Wei, 1955).
3. Ion exchange (Helfferich, 1962).
4. Electrodialysis (Wesselingh and Krishna, 1990).



3 Fick’s Law

It is a striking symptom of the common ignorance in this field that not one of the phenomenolog-
ical schemes which are fit to describe the general case of diffusion is widely known.
—L. Onsager (1945)

At about the same time that Maxwell was developing his kinetic theory of gases, Thomas
Graham, Adolf Fick, and others were attempting to uncover the basic diffusion equations
through experimental studies involving binary mixtures (Cussler (1976) provides a brief
history of the early work on diffusion). The result of Fick’s work was the “law” that now
bears his name (Fick, 1855a,b) and discussed in Section 3.1. A generalization of Fick’s law
to cover diffusion in multicomponent systems is the subject of Section 3.2. The irreversible
thermodynamics (IT) formulation for multicomponent diffusion, pioneered by Onsager
(1931), will also be developed and compared with the Fick formulation in Section 3.3.

3.1 DIFFUSION IN BINARY MIXTURES: FICK’S FIRST LAW

Let us consider in more detail diffusion in a simple system made up of components 1 and 2.
Let u, and u, represent the velocities of transfer of components 1 and 2 and u = x,u; +
x,u, represents the molar average velocity of the mixture. If ¢; and ¢, are the molar
concentrations of 1 and 2 and c, is the total mixture molar concentration, then the diffusion
flux J, is usually related to the mole fraction gradient by the constitutive relation

Jy=cy(uy —u)y= —c,D,Vx, (3.1.1)

which is Fick’s first law of diffusion. The Fick diffusion coefficient is D;,. An analogous
relation may also be written for component 2.

J,=c(uy —u) = —c,Dy Vx, (3.1.2)
It is easy to confirm that since J, +J, = 0 and x; + x, = 1 we must have
D, =D, =D (say) (3.1.3)

that is, there is only one diffusion coefficient describing the molecular diffusion process in a
binary mixture. There is also only one independent driving force Vx; and only one
independent flux J,. Equation 3.1.1 defines the Fick diffusion coefficient.

3.1.1 Fick Diffusion Coefficients

A few typical values of the Fick diffusion coefficients are listed in Table 3.1. Although it may
not be discerned from this small sample of values, the diffusion coefficient in an ideal gas
mixture is independent of the mixture composition, inversely proportional to pressure, and
varies with the absolute temperature to around the 1.5 power. More extensive listings are
provided by Reid et al. (1987) and by Cussler (1984). The most comprehensive collection of

50
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TABLE 3.1 Diffusion Coefficients in Binary Gas Mixtures at 101.3 kPa

Temperature D
System K] [1073 m?/s]
Air-CO, 276.2 1.42
Air-H,0 289.1 2.82
Air-benzene 298.2 0.96
Air-2-propanol 299.1 0.99
CO-N, 273.0 1.77
CO-0, 273.0 1.85
H,-N, 297.2 7.79
H,-He 298.2 11.32
N,-0, 273.2 1.81
N,-H,0 307.5 2.56

data on gaseous diffusion coefficients is a review by Marrero and Mason (1972). The range
of values in Table 3.1 is slightly more than one decade.

Diffusion coefficients in binary liquid mixtures are of the order 10~° m?/s. Unlike the
diffusion coefficients in ideal gas mixtures, those for liquid mixtures can be strong functions
of concentration. We defer illustration of this fact until Chapter 4 where we also consider
models for the correlation and prediction of binary diffusion coefficients in gases and
liquids.

3.1.2 Alternative Forms of Fick’s Law

In place of the molar diffusion flux with respect to the molar average velocity J; we may use
the diffusion fluxes J;” in the volume average reference velocity frame u”, in which case
Fick’s law takes the form

JU = cl(u1 - uV) = —DVc, (3.1.4)

where we use the molar concentration gradient driving force, Vc,. Equation 3.1.4 is, in fact,
the most commonly used form of the binary constitutive relationship. However, this form is
not the most convenient to use in practical design problems because under nonisothermal
conditions, the molar concentration gradients will vary with composition and temperature,
thus

dc, dc,
Ve, = ¢, +x;— | Vx; +x,— VT
dx, T
172 dc

a3 Vx, +x137—f vT (3.1.5)
t

where ¥, is the partial molar volume of component i and ¥, is the mixture molar volume.
The use of molar concentration gradients as driving forces is not to be recommended
because

* Molar concentrations c¢; are not suggested by solution theories as convenient concen-
tration variables (even in ideal solutions) to represent the thermodynamically based
activity a;.
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e It is not true that ¥,/¥, — 1 for small concentration gradients, that is, the simple
relation Ve, = ¢, Vx, holds if and only if ¢, is constant and not approximately even for
a dilute solute.

¢ The presence of the temperature gradient term VT is indeed disturbing and the
second term of Eq. 3.1.5 can be very large for gases—leading to the “hot radiator
paradox” mentioned by Sherwood et al. (1975, p. 15). Thus, as pointed out by these
authors, use of the molar concentration gradient driving force will predict the existence
of a diffusion flux, JlV, in a system of uniform composition subject to a temperature
gradient.

The third commonly encountered form of Fick’s first law is in the mass average reference
velocity frame v.

ji =pi(u; —v) = —p,D Vo, (3.1.6)

This form of Fick’s law is most convenient when we must solve the mass continuity
equations simultaneously with the equations of motion (see, e.g., Chapter 10).

The three diffusion coefficients D defined in Egs. 3.1.1, 3.1.4, and 3.1.6 are identical
(Bird et al., 1960).

3.2 THE GENERALIZED FICK’S LAW

For the binary systems already discussed, we may regard Eq. 3.1.1 as a linear relationship
between the independent flux J; and driving force Vx,. For a ternary mixture there are two
independent fluxes (J;, J,) and two independent driving forces (Vx;, Vx,). Thus, assuming
a linear relationship between the fluxes and composition gradients, we may write

Ji= —¢,Dy;Vx; —¢,D;, Vx, (32.1)
J,= —¢,D,yVx; —¢,D,, Vx, (3.2.2)

Here we see that J; and J, depend on both of the independent mole fraction gradients Vx,
and Vx,. The D;; in Egs. 3.2.1 and 3.2.2 are the multicomponent diffusion coefficients; note
that four of them are needed to characterize a ternary system. These coefficients are not to
be confused with the binary diffusion coefficient in Eq. 3.1.1; they may take positive or
negative signs and they are not, in general, symmetric (D, # D,;). Also, the multicompo-
nent D;; do not have the physical significance of the binary Fick diffusivity in that the D;; do
not reflect the i—j interactions. Furthermore, the numerical values of the D;; depend on the
particular choice of system numbering.

For n-component systems there are n — 1 independent diffusion fluxes and composition
gradients and we simply continue to add terms and equations. Thus,

Ji=—¢ Dy Vxy — ¢ DpVxy oo ¢, Dy, VX,
Jo=—¢ Dy Vxy = ¢, Dy Vxy - —¢,Dy 1V,
Ji=—¢,DyVxy —¢,DpVxy - ¢, Dy, VX, (3.23)

Jio1=—¢D,_;,Vx; ¢ D, 5,Vx, o —¢, Dy 1 VX,
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No additional equation is needed for J,, which is given in terms of the other diffusion fluxes
by Eq 1.2.11. Each of Egs. 3.2.3 can be written in the following algebraic form:
n—1
Ji=—c, Y, Dy Vx, (3.2.4)
k=1
3.2.1 Matrix Representation of the Generalized Fick’s Law

The set of n — 1 equations (Egs. 3.2.3 or 3.2.4) is more conveniently written in n — 1
dimensional matrix notation

(J) = —¢,[D](Vx) (3.2.5)
where (J) represents a column matrix of molar diffusion fluxes
Ji
w=|"
Jos
(Vx) represents a column matrix of composition gradients with n — 1 elements

Vx,

Vx,

(Vo =| .| =v)
Vx.

n—1
The nth component diffusion flux J, is not independent and is obtained from Eq. 2.1.19.
The nth component gradient is given by Eq. 2.1.18.

The matrix [ D] of Fick diffusion coefficients is a square matrix of dimension n — 1 X
n—1

Dy, Dy, Dy, Dy,
D, Dy, D D, oy
[D] =
anl,l Dn-],z Dn—1,3 Dn71,n~1
It is important to note that for multi-(n-)-component diffusion, the nondiagonal or
off-diagonal elements or cross-coefficients D;; (i #j=1,2,...,n — 1) are, in general,
nonzero.

For a ternary system (n = 3), the matrix representation of the generalized Fick’s law
(Eq. 3.2.5) is two dimensional. Using the property of matrix multiplication we recover Egs.
3.2.1 and 3.2.2 for the molecular diffusion fluxes J, and J,.

The reader should satisfy himself /herself that the three formulations (Egs. 3.2.3, 3.2.4,
and 3.2.5) are entirely equivalent to one another. It is not only in the interests of economy
and elegance of presentation that we shall consistently prefer the matrix formulation (Eq.
3.2.4); we shall see later that matrix formulations lend themselves to easy manipulations and
in many cases the n-component mass transfer relations can be written down as n — 1
dimensional matrix analogs of the corresponding binary mass transfer relationships (Chap-
ter 5).
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3.2.2 Alternative Forms of the Generalized Fick’s Law

There are three forms of the generalized Fick’s law in common use:
1. Molar flux with respect to molar average velocity.
(J) = —¢,[D](Vx) (3.255)
2. Mass flux with respect to mass average velocity.
(J) = —p[D° (Vo) (3.2.6)
3. Molar flux with respect to volume average velocity.
(J¥) = =[D"](Ve) (3'.2.7)

For binary systems all matrices contain just a single element and Eqgs. 3.2.5-3.2.7 reduce
to Egs. 3.1.1, 3.1.6, and 3.1.4, respectively. As noted earlier, the three binary coefficients, D,
D°, and DY, are equal (Bird et al., 1960). For the general multicomponent case, the three
matrices defined above are, in general, different from one another (as indicated in the next
section). Cullinan (1965) has shown that the eigenvalues of [D], [D°], and [D"] are,
correspondingly, equal to one another. The eigenvalues of [D] are the roots of the
determinantal equation (cf. Eq. A.4.5)

I[p] - D1]] =0 (32.8)

For an n-component system, Eq. 3.2.8 reduces to an (n — 1)th-order polynomial in 15,
giving n — 1 eigenvalues: Dy, D, ... . For a ternary system, Eq. 3.2.8 is a quadratic
polynomial and the two roots D, and D, can be found from

D, = 3{tr[D] + Ydisc[ D] }
D, = %{tr[D] - \/disc[D]}

(32.9)

where
tr[D] =Dy, + Dy,
|D| = Dy Dy — Dy, Dy

are the trace and determinant of [D]. The term disc[D] is the discriminant of the
determinantal polynomial (Eq. 3.2.8)

disc[ D] = (tr[ D])* - 4ID|

3.2.3 Multicomponent Fick Diffusion Coefficients

The Fick diffusion coefficients may be termed practical in the sense that the binary
coeflicient D and the corresponding multicomponent diffusion coefficients can be obtained
from composition profiles measured in a diffusion apparatus. The measurement of binary
and multicomponent diffusion coefficients, a subject with an extensive literature, is beyond
the scope of this book. The interested reader is referred to Dunlop et al. (1972), Cussler
(1976) and Tyrrell and Harris (1984) for descriptions of techniques and summaries of
experimental results. Most experimental data are reported for [D¥]. This matrix must be
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TABLE 3.2 Fick Diffusion Coefficients in the System
Acetone(1)-Benzene(2)-Methanol(3) at 25°C*

x X DY) DY, D3 D%,
0.350 0.302 3.819 0.420 -0.561 2.133
0.766 0.114 4.400 0.921 —0.834 2.680
0.553 0.190 4.472 0.962 —0.480 2.569
0.400 0.500 4.434 1.866 -0.816 1.668
0.299 0.150 3.192 0.277 —0.191 2.368
0.206 0.548 3.513 0.665 —0.602 1.948
0.102 0.795 3.502 1.204 -1.130 1.124
0.120 0.132 3.115 0.138 -0.227 2.235
0.150 0.298 3.050 0.150 —0.269 2.250

“The units of D[] are in 107° m?/s.

transformed to [ D] or [ D°] in order for it to be useful in the applications we consider later
in this book. More on this topic below.

To give an indication of the magnitude of the cross-coefficients that may sometimes be
encountered in practice we present in Table 3.2 some of the data of Alimadadian and
Colver (1976) for [D"'] for the system acetone(1)-benzene(2)-methanol(3) at 25°C and, in
Table 3.3, some of the data of Cullinan and Toor (1965) for the system
acetone(1)-benzene(2)—-carbon tetrachloride(3).

It is clear from this small selection of data that the matrix of multicomponent diffusion
coeflicients may be a complicated function of the composition of the mixture. The matrix
[D] is generally nonsymmetric, except for two special cases identified below. The cross
coefficients D;, (i # k) can be of either sign; indeed it is possible to alter the sign of these
cross-coeflicients by altering the numbering of the components.

There are circumstances where the matrix [D] is diagonal and the diffusion flux of
species [ is independent of the composition gradients of the other species. For an ideal
mixture made up of chemically similar species the matrix of diffusion coefficients degener-
ates to a scalar times the identity matrix, that is,

[D]=D[I] (special) (3.2.10)

The system toluene—chlorobenzene—bromobenzene is one where this simplification applies
(Burchard and Toor, 1962).

TABLE 3.3 Fick Diffusion Coefficients in the System
Acetone(1)-Benzene(2)-Carbon Tetrachloride(3) at 25°C*

Xy x2 DY) DY, D, D%,
0.2989 0.3490 1.887 -0.213 —0.037 2.255
0.1496 0.1499 1.598 —0.058 —-0.083 1.812
0.1497 0.6984 1.961 0.013 —0.149 1.929
0.6999 0.1497 2.330 -0.432 0.132 2971
0.0933 0.8967 3.105 0.550 —0.780 1.860
0.2415 0.7484 3.069 0.603 -0.638 1.799
0.4924 0.4972 2.857 0.045 -0.289 2.471
0.7432 0.2466 3.251 —-0.011 —-0.301 2.896
0.8954 0.0948 3.475 —0.158 0.108 3.737

“The units of D] are in 107° m?/s.
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As the concentration of species i approaches zero, the off-diagonal elements D;, (i # k)
also approach zero. Thus, for n» — 1 components infinitely diluted in the nth (x; (i =
1,...,n — 1) close to 0), we find that all the cross-coefficients D;, (i # k) vanish. In this
case, however, the diagonal elements D;; are not necessarily equal to one another. Dilute
solutions occur sufficiently often for this special case to be of some practical importance.

The prediction of the Fick matrix [ D] from fundamental data is considered in Chapter 4.

3.2.4 Transformation of Multicomponent Diffusion Coefficients from One Reference
Velocity Frame to Another

To relate [ D] in the molar average velocity reference frame to the mass average reference
frame [D°] we must use Eq. 1.2.26 (in matrix form) to transform Eq. 3.2.6 to the molar
average velocity reference frame and Eq. 1.2.28 to change the units in which the flux is
expressed. We also need the analogous relations to transform mass fraction gradients to
mole fraction gradients (Exercise 1.5). The end result is the following similarity transforma-
tion

[D°] = [B“] '[o]lx] '[DI[x][«] '[B*]
= [Bl[e]lx] ' [D1[x][«] '[B*]" (3:2.11)

where [x] is a diagonal matrix whose nonzero elements are the mole fractions x,. The
matrix [w] is also diagonal with nonzero elements that are the mass fractions ;. Since [x]
and [w] are diagonal matrices, their inverses are easy to compute [x]~!, for example, is
diagonal with elements that are the reciprocals of the mole fractions: 1/x;. The matrices
[B“°] and [ B°“] have elements defined by Eqgs. 1.2.25 and 1.2.27, respectively.

Xk Xn

wo — 5., —w,[ = — = (1.2.25)
@y @,

ou W, X

ou_ 5 — w1 - v (1.2.27)

It is interesting to note that the matrix [ B°#] is the inverse of [ B“°]; that is, [B°*] = [B¥°]~!
as may be proved using the Sherman—Morrison formula (see Ortega and Rheinbolt, 1970,
p. 50 and Exercise 1.2).

To relate [D] to the volume average velocity reference frame [DY] we use another
similarity transformation

[DV] = [B*][D][B**] "
= [B*][D][B*] (32.12)

where the matrices [ B¥#] and [B“Y] have elements
Bl =6, —x(Vi = V,)/V, (1.2.23)
BY =8y —x,(1=V/V,) (1.2.21)
The fact that [B*Y] = [B¥#]~! may be proved using the Sherman—Morrison formula.

It follows from Egs. 3.2.11 and 3.2.12 and [D], [D°], and [D"] will not, in general, be
equal.
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The proof that the eigenvalues of the three [ D] matrices are equal follows immediately
from Egs. 3.2.11 and 3.2.12. The eigenvalues of two matrices, [ 4] and [B] say, that are
related by a nonsingular similarity transformation [ 4] = [P]~[BI P] are equal (see, e.g.,
Amundson, 1966; Appendix A.4). The equality of the three binary diffusion coefficients
defined by Egs. 3.1.1, 3.1.4, and 3.1.6 also follows directly from Eqgs. 3.2.11 and 3.2.12.

Example 3.2.1 Fick Diffusion Coefficients for the System Acetone—Benzene—Methanol

The Fick diffusion coefficients for the system acetone(1)-benzene(2)-methanol(3) in the
volume average reference velocity frame are given in Table 3.2. Calculate the elements of
[D] in the molar average reference velocity frame.

DATA The partial molar volumes V; for acetone, benzene, and methanol are

V, =74.1 x 107% m*/mol
V, = 89.4 x 107° m?/mol

V, = 40.7 x 10~% m?/mol

SOLUTION The matrix [ D] is related to [D"] by the inverse of Eq. 3.2.12. Thus, the first
step is the calculation of the transformation matrix [B¥*] and its inverse [B*Y] from Egs.
1.2.23 and 1.2.21, respectively. For the first line of data in Table 3.2 ¥, is found to be
17’ = x1I71 -+ x2172 + X3I73
=0.350 X 74.1 X 107% + 0.302 X 89.4 X 1076 + 0.348 x 40.7 X 10~°
=67.1 X 107° m3/mol

The elements of [ B¥*] follow as:

B =1 _xl(vl - I73)/i7t
=1-0.350 % (74.1 — 40.7) /67.1
= 0.8258

Bl = ‘xl(Vz - 173)/17,

~0.350 X (89.4 — 40.7)/67.1
—0.2540

"xz(l_/l - I73)/171

Vu
B21

—0.302 X (74.1 — 40.7) /67.1
—0.1503

By =1 —x2(172 - I73)/‘71

=1-0.302 X (89.4 — 40.7) /67.1
= 0.7808
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The inverse of this matrix can be calculated directly or from Egs. 1.2.21 as follows:

Bl =1-x(1-V,/V3)
=1-10.350 x (1 — 74.1/40.7)

1.2872

—xl(l - 172/173)

—0.350 X (1 — 89.4,/40.7)
= 0.4188

By = —x,(1 = V,/V3)

—0.302 X (1 — 74.1/40.7)
= 0.2478

BY =1 —x,(1 - V,/V5)

ulV
B12

=1-0.302 X (1 —89.4/40.7)
= 1.3614

Now, we can compute [ D] directly from the inverse of Eq. 3.2.12

[D] = [B"*] '[D"1[B"]
= [B*][D"1[B"]

The result is

3.651 —0.069
(1=

-9 2
~0.300 2.303]X10 m=/s

It is interesting to note the change in sign of the cross-coefficients DY, and D,.
The eigenvalues of [ D] may be computed from Eq. 3.2.9 as follows:

tr[D] = D, + D,
=3.651 x 107° +2.303 x 107°
=5.954 X 107° m?/s
|ID| =D, Dy, — D1, D,
=3.651 X 107° X 2.303 X 10~° — (—0.069 X 107?) X (—0.300 X 10~7)
= 8.388 X 1078 m*/s?

We will also need to evaluate the discriminant
disc[ D] = (tr[ D])* - 4ID|

= (5.954 X 10°)° — 4 X 8388 x 10~ 18
= 1.898 x 1078 m*/s?
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The eigenvalues of [ D] may now be evaluated as

D, = 3{u[D] + Ydisc[ DT}
5{5.954 x 107° + V1.898 x 107%}

3.665 X 107 m?/s
D, = 3{u[ D] - Ydisc[ D]}
5{5.954 x 107 — V1.898 x 1071}

2.287 X 107 m?/s

We leave it as an exercise for our readers to calculate the eigenvalues of [DY']. These values
should be equal to the eigenvalues of [D]. ®

3.3 IRREVERSIBLE THERMODYNAMICS AND THE GENERALIZED FICK’S LAW

Support for the form of the generalized Fick’s law of the preceding section can be found in
irreversible thermodynamics introduced in Section 2.3. The treatment below follows that of
Stewart and Prober (1964), but readers will also find the books by de Groot and Mazur
(1962) and Haase (1969), and the review of Kirkaldy (1970) very useful.

The starting point for our analysis is an expression for the rate of entropy production per
unit volume. For isothermal, isobaric processes in the absence of external force fields, the
rate of entropy production due to diffusion is given by (cf. Eq. 2.3.1)

Togs = — 2 Ve *J;i20 (3.3.1)

i=1

where J; is the molar diffusion flux with respect to the molar average reference velocity. The
rate of entropy production o is seen to be a sum of scalar, or dot, products of two
quantities; one of these is the diffusion flux and the other, the chemical potential gradient,
may be interpreted as the “driving force” for diffusion. The second law of thermodynamics
requires o to be positive definite, 0 > 0. In terms of independent fluxes and forces, Eq.
3.3.1 takes the form

n—1
Togs= — 2 Ve p(pi—n,) < J; 20 (332)

i=1

or in n — 1 dimensional matrix notation

Togs = —Vr p(p — :U«n)T “(J) (33.3)
At equilibrium both the fluxes and the driving forces vanish simultaneously giving
o =10 lequilibrium| (3.3.4)
We now postulate a linear relationship between independent fluxes and driving forces

n—1

¢,V p(p; — p,) = — Z H, J, (3.3.5)
k=1
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Equation 3.3.5 can be written in matrix form as

=, Ve p(p —uy,) = [H](J) (33.6)

where [ H] is the Onsager matrix of coefficients. The matrix [ H] is positive definite because
of the second law restriction o > 0.
A second postulate of irreversible thermodynamics is that the matrix [ H] is symmetric

[H]=[H]" o H,=H,; (3.3.7)

Equation 3.3.7 expresses the Onsager reciprocal relations (ORR), named after Lars On-
sager who first established the principles of irreversible thermodynamics (Onsager, 1931).
The ORR have been the subject of many journal papers receiving support as well as
criticism, the latter from, in particular, Coleman and Truesdell (1960) and Truesdell (1969).
We shall assume the validity of the ORR in the development that follows.

The gradients V. p(u; — u,) can be expressed in terms of the mole fraction gradients
V(x) by the relation

Vo p(n — 1) = [G]V(x) (33.8)

where [G] is the Hessian matrix of the Gibbs free energy function; its elements G;; are
given by

PG _ o) ) (3.3.9)

Y axx; ax; ax; s

The matrix [G] is symmetric. Its elements may be obtained from activity coefficient models
in much the same way that the matrix [I'] is obtained. Expressions for the G,; for some
models of the excess Gibbs energy are given in Appendix D.

On combining Egs. 3.3.6 and 3.3.8 we see that

(J) = —c[H] '[G](Vx) (3.3.10)

Comparison with Eq. 3.2.5 shows that the Fick matrix [D] is related to the Onsager
coefficient matrix [ H] by

[D]=[H] '[G] (33.11)

Now, the matrix [ H ] is symmetric (from the ORR) and positive definite (from the second
law requirement that oy > 0). In addition, for a thermodynamically stable fluid the matrix
[G] is symmetric and positive definite (see Section 3.3.1). The implication of Eq. 3.3.11 is
that the matrix [D] is positive definite, so that all its eigenvalues are real and positive
(Kirkaldy, 1970).

The condition for real and positive eigenvalues D ; and ﬁ2, for a ternary system can be
expressed as (Kirkaldy, 1970; Yao, 1966, Egs. 3.2.9)

D,y +D,, >0
DDy = DDy > 0 (33.12)
(D11 - D22)2 + 4D12D21 >0
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It is interesting to note that thermodynamic stability considerations do not require the
diagonal elements D; and D,, to be individually positive. If recourse is made to the kinetic
theory of gases, it can be shown that the main coefficients are individually positive, that is,

D, >0 Dy,>0 (3.3.13)

All available experimental measurements of the D;, suggest the general validity of require-
ment (Eq. 3.3.13) (see Cussler, 1976; Dunlop et al., 1972; Tyrrell and Harris, 1984).
Example 3.3.1 Calculation of the Onsager Coefficients

The matrix of Fick diffusion coefficients in the molar average reference velocity frame for
the system acetone(1)-benzene(2)—carbon tetrachloride(3) at a temperature of 25°C and
composition x; = 0.70, x, = 0.15, x5 = 0.15 has been obtained from the experimental data
of Cullinan and Toor (1965) as

_[2.354 -0471
[D]_[o.osg 2.947

] X 107° m?/s

Calculate the matrix of Onsager coefficients [ H ].

DATA The Hessian matrix of the Gibbs free energy [G] may be calculated with the
nonrandom two liquid (NRTL) model. The NRTL parameters are
T = —0.46504 7, = 076432 @y, =ay =02
042790 7y, = 15931 a3 =ay =02
—0.51821 T4, = 0.7338 Ay = a3 =02

Il

T13

Il

T23

SOLUTION The Hessian [G]is calculated from Eq. D.3.4 and the NRTL model equations
in Table D.8. The result is

[6.85% 6229
[G]/RT’[é.zzg 13.323]

Note that [G]/RT is dimensionless and symmetric; also, the cross-coefficients G, and G,
are a large fraction of the main coefficients G,; and G,,. Multiplying each element of the
above matrix by RT gives

16.995 15.441
[61-|

2
15.441 33.026] X 107J/mol

Equation 3.3.11 can be rearranged to
[H][D] = [G]
which we solved directly to give

_16.981 6.355 12 2
[H] = [6.099 1218 ] %X 10" J s/mol m
Note that the ORR are not satisfied precisely pointing to experimental inaccuracies in the
measured data. B



62 FICK’S LAW

3.3.1 Diffusion in the Region of a Critical Point

Consider diffusion in a binary liquid mixture exhibiting an upper critical solution tempera-
ture (UCST) or lower critical solution temperature (LCST) (see Fig. 3.1). Let us take a
mixture at the “critical” composition x;, at point A just above the UCST. Any concentra-
tion fluctuation at 4 will tend to be “smeared” out due to the effects of diffusion in this
homogeneous mixture. On the other hand, any fluctuation of a system at point B,
infinitesimally below the UCST, will lead to separation in two phases. Similarly, the mixture
at point D, just below the LCST is stable whereas the mixture at point C, just above the
LCST is unstable and will separate into two phases.

For thermodynamically stable binary systems the second derivative of the Gibbs free
energy with respect to the mole fraction x; is positive

G ’G 0
= — >
U ax?

while

Gy <0

implies thermodynamic instability, that is, phase splitting. The locus of points where G,
goes to 0 is the spinodal curve and is the boundary between the metastable and unstable
regions. At the critical point itself both G, and the third derivative of G with respect to x;
are equal to zero. For a detailed discussion of these points see, for example, Modell and
Reid (1983).

It follows that the Fick diffusion coefficient must tend towards zero as the spinodal curve
is approached. This has been experimentally confirmed for a few systems, the data of Haase
and Siry (1968) for the systems water—triethylamine and n-hexane—nitrobenzene are shown
in Figs. 3.2 and 3.3 (see, also, Claesson and Sundelof, 1957; Myerson and Senol, 1984).
Vitagliano et al. (1980) and Clark and Rowley (1986) determined spinodal compositions by
extrapolating diffusivity data to zero.

Temperature

Composition

Figure 3.1. Upper and lower critical solution points.
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Fick Diffusivity, D
[(10""m7s]

1 |System: water (1)-
triethylamine (2)

0 1 1 | |
0 5 10 15 20

Temperature/ [°C]

Figure 3.2. Fick diffusion coefficient D as a function of temperature for the system water—triethyl-
amine. Measured data for Fick diffusivity D at constant composition = critical composition x, = 0.0874.
Critical temperature = 18.3°C. Data from Haase and Siry (1968).

For thermodynamic stability in a multicomponent system the matrix [G] must be positive
definite. Thus

1G> 0 (3.3.14)

and each of the eigenvalues of [G] is positive definite. Negative eigenvalues of [G] imply
thermodynamic instability; that is, phase splitting. At the critical point

IGl=0 (3.3.15)
30 — |System: n hexane (1)-
nitrobenzene (2)
20
Fick Diffusivity, D
110" m?/s]
10
0 ; I 1 ]

20 25 30 35
Temperature/ [°C]
Figure 3.3. Fick diffusion coefficient as a function of temperature for the system n-hexane-—nitroben-

zene. Measured data for Fick diffusivity D at constant composition x, = 0.42. Critical temperature =
19.7°C. Data from Haase and Siry (1968).
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Now, the determinant of [ D] is related to the determinant of [G] by
D] =|Gl/IH] (3.3.16)
Thus, at the critical point we must have
|ID|=0 (critical point) (3.3.17)

and one of the eigenvalues of [ D] must vanish.
For a ternary system the requirement |D| = 0 at the critical point implies that

|D| = Dy;D,, —D;D,;, =0 (3.3.18)
and the eigenvalues of [ D] are (see Eq. 3.2.9)
D,=0 D,=D, +Dy, (33.19)
If |D| = 0, the cross-coefficients must match the main coefficients in mégnitude—implying

large coupling effects.
The eigenvectors corresponding to the eigenvalues (Eq. 3.3.19) are, respectively,

1 1
(e)=|_Pu| and (&)=|_P2 (3.3.20)
D12 D12

We shall now show that the first eigenvector (e,) is in a direction parallel to the limiting
tie line in the vicinity of P. To do this, we begin with the condition of equilibrium between
two phases ' and ” for which the following relation must be satisfied

w(xh, xh) = p( ], x5 i=1,2,3 (3.3.21)
Consider now two phases, also in mutual equilibrium, the compositions of which differ from
the corresponding phases above by infinitesimal amounts. Considered as variations of the
above, the chemical potentials of these new phases must satisfy

du, = du, i=1,2,3 (33.22)

The Gibbs—Duhem restriction for constant temperature and pressure can be written for a
ternary system as

xidyy + xhdu, + xhdus = xjduy + x5du’y, + xhduy (3.3.23)
The mole fraction x; can be eliminated using x; = 1 — x; — x, to give
d(w; — ws) = d(w; — % i=1,2 (3.3.24)
and
xyd(py — i) + xpd(ws — 13)
= Xjd (i — i) + xd (s — 1ty (33.25)
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which relations can be rearranged in the form

Xyoxy d( ) (-

X—xy o d(us— ) A — i

(3.3.26)

The differentials d(u; — p;) may be written in terms of composition fluctuations as
d(p — u3) = [Gld(x) (33.27)

and so Egs. 3.3.22, written in terms of dx;, take the form

[G']d(x") = [G"]d(x") (3.3.28)
and
x// _ xl G/ dx/ + Gl dx/ U dx// + " dx"
e e (3.3.29)
Xy — Xy 2ndxy + Ghydx) Goidx| + Ghydx,

with Gy, = G,;.
As the critical point is approached, the various [G] matrices become equal

[G']1=[G"] =[G] (3.3.30)
and
dx; = dx} = dx; (3.3.31)
so Eq. 3.3.29 takes the limiting form

ﬁz_ Gy + Gpo(dx,/dxy)

= — (3.3.32)
dx, Gia + Gyp(dxy/dxy)
Solving the resultant quadratic equation for dx,/dx; we obtain
dx G Gi, - G,,G G G
e A S ubaz Y Yu (33.33)

dx; Gy G, G, Gy

because G,,G,, — G, =0 at P. The derivative dx,/dx, represents the slope of the
limiting tie-line.
Now using the relation [D] = [H] ![G] we can show that

Dy Dy Gy

D22

=== (3.3.34)
D12 G22

after invoking the requirement of |H| = 0 at equilibrium. Since the slope of the eigenvector
(e)is —D,,;/Dy, (cf. Eq. 3.3.35), it follows that (e,) is parallel to the limiting tie-line.

The implications of |D| = 0 at the plait point for composition trajectories in this region
will be discussed later (Section 5.6.2).

Vitagliano et al. (1978) attempted to test Eq. 3.3.19 with the system water—chloroform-—
acetic acid; their data are summarized on the triangular diagram (Fig. 3.4). The first five
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_[0.970 0.130
/[D]-[g073 1250]: DI =0.1231
/
/
/
/ _[0.782 0.194]. _
/ [D]‘[g.ﬁz 1.135]' IDI =0.0854
/
/o
s [0.672 0.236]
/. PF|g1gs 110s) 101 =0.06%
/ Vs
/ /
/ : .
N 0.498 0.321
;. - . -
/,[D] 0.295 0.983) |D| =0.0395
[0.309 0.368]. _
0.344 0,930 DI =0.0164
920 0.4007. _
[D]'[gsm o1e1) 101 =0

Figure 3.4. Phase diagram of the system water—chloroform—acetic acid at 25°C. Diffusion coefficient
data are expressed in the units 107° m?/s. Also shown in the figure are values of the determinant of
[D]. Data from Vitagliano et al. (1978).

data sets fall on a more or less straight line that intersects the two-phase boundary at the
plait point. Note that the cross-coefficients do indeed match the main coefficients in
magnitude. The last point on Figure 3.4 represents extrapolated data for the plait point. It is
very difficult to measure multicomponent diffusion coefficients at the plait point because the
accuracy of most measurement techniques decreases as the two-phase boundary is ap-
proached.



4 Estimation of Diffusion Coefficients

The coefficient of interdiffusion of two liquids must be considered as depending on all the
physical properties of the mixture according to laws which must be ascertained only by
experiment.

—1J. C. Maxwell writing in the Encyclopedia Brittanica. See his collected papers (1952).

Thus far we have introduced two different constitutive relations along with their respective
diffusion coefficients, the Maxwell-Stefan P and the Fick D. Here we show how these
coefficients are related to each other and present a sample of values of these coefficients
determined experimentally.

For process engineering calculations it is almost inevitable that experimental values of D
or D, even if available in the literature, will not cover the entire range of temperature,
pressure, and concentration that is of interest in any particular application. It is, therefore,
important that we be able to predict these coefficients from fundamental physical and
chemical data, such as molecular weights, critical properties, and so on. Estimation of
gaseous diffusion coefficients at low pressures is the subject of Section 4.1.1, the correlation
and prediction of binary diffusion coefficients in liquid mixtures is covered in Sections
4.1.3-4.1.5. We do not intend to provide a comprehensive review of prediction methods
since such are available elsewhere (Reid et al., 1987; Ertl et al., 1974; Danner and Daubert,
1983); rather, it is our purpose to present a selection of methods that may be useful in
engineering calculations.

While the thermodynamic treatments of diffusion in Sections 2.3 and 3.3 provide some
useful information on the multicomponent diffusion coefficients, it does not solve our most
important problem, how do we predict these coefficients? Multicomponent diffusivity data is
not an item that we have in abundance and there are no correlations of multicomponent
diffusivity data that we might use. It is the Maxwell-Stefan Egs. 2.1.24 for ideal gases or Eq.
2.2.9 for nonideal fluids that come to our aid (Section 4.2).

4.1 DIFFUSION COEFFICIENTS IN BINARY MIXTURES

4.1.1 Relationship Between Fick and Maxwell-Stefan Diffusion Coefficients

The Maxwell-Stefan equation for diffusion in a two component system is Eq. 2.2.11.
Ji= —¢,B7'I'Vx; = —¢,DTI' Vx, (2.2.11)
where T is given by Eq. 2.2.12. Equation 2.2.11 is to be compared to Fick’s law (Eq. 3.1.1)
J,= —¢,DVx, (3.1.1a)

We see that, for a binary system, the Fick diffusivity D and the Maxwell-Stefan diffusivity
67
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D are related by
D=B"'T=pT (4.1.1)

The correlation and prediction of Fick and Maxwell-Stefan diffusion coefficients is dis-
cussed in the sections that follow. The Fick D incorporates two aspects: (1) the significance
of an inverse drag (P) and (2) thermodynamic nonideality (I'). Consequently, the physical
interpretation of the Fick D is less transparent than for the Maxwell-Stefan diffusivity.
For ideal systems I' is unity and the Fick D and the Maxwell-Stefan P are identical.

D=B"'=D |ideal| (4.1.2)

4.1.2 Estimation of Diffusion Coefficients in Gas Mixtures

A more rigorous kinetic theory than that in Chapter 2 not only supplies us with the proper
form of the constitutive relations for multicomponent diffusion, it also provides an explicit
relation for the binary diffusion coefficient. A slightly simplified version of the kinetic theory
result is

\/{(Ml +M,) /M M,}

D = CT3?
Pl Q)

(4.13)

where

D = diffusion coefficient [m?/s]
C=1.883x 1072
T = absolute temperature [K]
P = pressure [Pa]
o = characteristic length [10\]
Q, = diffusion collision integral [—]
M; = molar mass of component i [g/mol]

The parameter (), the diffusion collision integral, is a function of kg7 /¢, where kp is the
Boltzmann constant and ¢ is a molecular energy parameter. Values of (1, tabulated as a
function of kzT/e, have been published (Hirschfelder et al., 1964; Bird et al., 1960).
Neufeld et al., (1972) correlated [, using a simple eight parameter equation that is
suitable for computer calculations (see, also, Danner and Daubert, 1983; Reid et al., 1987).
Values of o and e /kg (which has units of kelvin) can be found in the literature—for only a
few species—or estimated from critical properties (Reid et al., 1987; Danner and Daubert,
1983). The mixture o is calculated as the arithmetic average of the pure component values.
The mixture ¢ is taken to be the geometric average of the pure component values.

A number of empirical or semiempirical correlations for estimating gaseous diffusion
coefficients have also been developed. These include the method of Wilke and Lee (1955),

which is based on Eq. 4.1.3 with C = 0.02199 — 0.00507/{(M, + M,)/M,M,} .

A correlation due to Fuller et al. (1966, 1969) is recommended by Reid et al. (1987) and
by Danner and Daubert (1983).

VM, + My) /M M)

)

D=CT'”

(4.1.4)
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TABLE 4.1 Diffusion Volumes in Fuller—Schettler—-Giddings Correlation Parameters

Atomic and Molecular Diffusion Volume Increments

C 15.9 F 14.7
H 2.31 C1 21.0
(0] 6.11 Br 21.9
N 4.54 I 29.8
S 229 Aromatic ring —-18.3
Heterocyclic ring —-183
Diffusion Volumes for Some Simple Molecules
He 2.67 CO 18.0
Ne 5.98 CO, 26.7
Ar 16.2 N,O 35.9
Kr 24.5 NH; 20.7
Xe 32.7 H,O 13.1
H, 6.12 SF, 71.3
D, 6.84 C1, 38.4
N, 18.5 Br, 69.0
0O, 16.3 SO, 41.8
Air 19.7

“From Fuller et al. (1969).

With T in kelvin (K), P in pascals (Pa), M; and M, in grams per mole (g/mol) and
C = 1.013 X 1072, D will be in square meters per second (m?/s). The terms V; and V, are
molecular diffusion volumes and are calculated by summing the atomic contributions in
Table 4.1.

Examples illustrating the use of Eq. 4.1.1 and 4.1.2 are given by Reid et al. (1977, 1987)
and by Danner and Daubert (1983). The same authors describe methods for estimating Fick
diffusion coefficients for gases at high pressure.

4.1.3 Diffusion Coefficients in Binary Liquid Mixtures

Diffusion coeflicients in binary liquid mixtures can be strong functions of composition. To
illustrate this fact we have plotted experimental data for a few systems in Figure 4.1. The
Maxwell-Stefan coefficient P also is shown in Figure 4.1. To obtain the Maxwell-Stefan
coefficients we have divided the Fick D by the thermodynamic factor T’

P=D/T (4.15)

We have calculated I' using the activity coefficient models in Appendix D with parameters
from the literature (see Examples 4.1.2 and 4.1.3).

It is clear from these figures that the Fick D shows a significantly greater variation with
concentration than does the Maxwell-Stefan P. A particularly extreme example of the
strong composition dependence of D is afforded by the system methanol-n-hexane in the
vicinity of the spinodal curve. The experimental data for this system (obtained by Clark and
Rowley, 1986) are plotted in Figure 4.1(d); the values of D vary by a factor of almost 20!
The Maxwell-Stefan D, calculated from Eq. 4.1.5 varies by a factor of only 1.5.

To explain the rather striking difference in the behavior of the Fick D and
Maxwell-Stefan P we recall from Section 3.3.1 that the Fick D vanishes along the spinodal
curve because G,;, the Hessian of the Gibbs free energy, vanishes on that curve. Now, the



70 ESTIMATION OF DIFFUSION COEFFICIENTS

thermodynamic factor I' may be expressed in terms of G,; as
T =x,x,G,,/RT (4.1.6)

It follows that the thermodynamic factor I' vanishes wherever G,; goes to 0. The parameter
I" for the methanol-n-hexane system, calculated from the NRTL model given in Table D.5
using parameters given by Clark and Rowley (1986), is shown in Figure 4.2. It can be seen
that the thermodynamic factor for this system comes close to zero at a mole fraction of
methanol of 0.52. The composition dependence of T’ closely follows that of the Fick D
(compare the shapes of the curves for D in Figure 4.1(d) and T in Figure 4.2) with the
result that the Maxwell-Stefan P (= D/T) is much less concentration dependent.

2 r
Vignes relationship (- -)
1.5
Diffusivity 1
(10°m?ss] Fick (u)
[
05 System: ethanol (1) -
water (2)
0 1 1 1 | 1 1 | | 1 ]
0 0.2 0.4 0.6 0.8 1
mole fraction of ethanol
(a)

System: acetone (1) -
benzene (2)

Diffusivity

(10° nfss]

2 1 1 ] ] 1 ] 1 ] ] ]
0 0.2 0.4 0.6 0.8 1
mole fraction of acetone
(b)

Figure 4.1. (a) Concentration dependence of the Fick diffusivity D and the Maxwell-Stefan D for the
system ethanol(1)-water(2). Data from Tyn and Calus (1975b). (b) Composition dependence of Fick D
and Maxwell-Stefan P for the system acetone(1)-benzene(2). Data from Anderson et al. (1958) and
Cullinan and Toor (1965). (¢) Composition dependence of Fick D and Maxwell-Stefan D for diffusion
in triethylamine(1)-water(2). Data from Dudley and Tyrell (1973). (d) Fick diffusion coefficient for the
system methanol-n-hexane at 40°C measured by Clark and Rowley (1986).
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Figure 4.2. Thermodynamic factor T’ for the system methanol-n-hexane at 40°C. The parameter I’
computed from the NRTL model with parameters from Clark and Rowley (1986).
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Figure 4.3. (a) Thermodynamic factor for the system ethanol-water at 40°C obtained from different
activity coefficient models. Parameters from Gmehling and Onken (1977ff Vol. 1/la p. 133). (b)
Thermodynamic factor for the system ethanol-water at 50°C obtained using the NRTL equation using
parameters fitted to isothermal vapor-liquid equilibrium data. Parameters from Gmehling and Onken
(1977ff): — Vol. 1/la p. 116; - - - Vol. 1/1 p. 191; --- Vol. 1/1 p. 171. (¢) Thermodynamic factor for
the system ethanol-water at 40°C obtained using the NRTL equation using parameters fitted to
isobaric vapor-liquid equilibrium data. Parameters from Gmehling and Onken (1977ff): — Vol. I/la
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It should be noted that the Maxwell-Stefan D calculated from Eq. 4.1.5 can be quite
sensitive to the model used to compute T, an observation first made by Dullien (1971). One
of the reasons for this sensitivity is that I' involves the first derivative of the activity
coeflicient with respect to composition. Activity coefficient model parameters are fitted to
vapor-liquid equilibrium (VLE) data (see, e.g., Prausnitz et al., 1980; Gmehling and Onken,
1977). Several models may provide estimates of In vy, that give equally good fits of the
vapor-liquid equilibrium data but that does not mean that the first derivatives of In v, (and,
hence, I') will be all that close. To illustrate this fact we have calculated the thermodynamic
factor, I', for the system ethanol-water with several different models of In y,;. The results
are shown in Figure 4.3 (a). The interaction parameters used in these calculations were
fitted to one set of VLE data as identified in the figure caption. Similar illustrations for
other systems are provided by Taylor and Kooijman (1991).

The Maxwell-Stefan diffusion coeflicients calculated from Eq. 4.1.5 may also be sensitive
to the parameters used in the calculation of I'. Different sets of parameters obtained by
fitting different sets of equilibrium data may give quite different values of I" (and, hence, of
D) as shown in Figures 4.3(b) and (¢) where we plot T’ for the ethanol-water system with
the NRTL model using several different sets of interaction parameters. Figure 4.3(b) was
prepared using three different sets of parameters fitted to three different sets of isothermal
VLE data. Figure 4.3(¢) was prepared using three different sets of parameters fitted to
three different sets of isobaric VLE data. Whenever possible D should be calculated with T’
obtained using activity coefficient parameters fitted to equilibrium data obtained at the
same temperature as the diffusion data. Parameters fitted to constant pressure equilibrium
data may not give good estimates of P at constant temperature.

More comprehensive collections of liquid diffusivity data can be found in the reviews by
Johnson and Babb (1956) and a two-part review by Dullien and co-workers (Ghai et al.,
1973; Ertl et al., 1974). The book by Tyrrell and Harris (1984) is a good place to begin a
search for experimental measurements of D.

4.1.4 Estimation of Diffusion Coefficients in Dilute Liquid Mixtures

As the mole fraction of either component in a binary mixture approaches unity, the
thermodynamic factor I" approaches unity and the Fick D and the Maxwell-Stefan D are
equal. This result is shown clearly in Figures 4.1-4.3. The diffusion coefficients obtained
under these conditions are the infinite dilution diffusion coefficients and given the symbol
b°.

The Stokes—Einstein equation is a purely theoretical method of estimating D°.

kT
b, = —— 4.1.7
e (41.7)

where D7, is the diffusion coefficient of species 1 infinitely diluted in species 2, kg is
Boltzmann’s constant, w, is the viscosity of the solvent, and r, is the radius of the diffusing
molecule. This simple relation is valid only if the molecules of the diffusing species are very
large compared to the solvent molecules (Evans et al., 1981), this restriction being one of
the assumptions made in its derivation. Despite this limitation on solvent size, Eq. 4.1.7 has
provided a useful starting point for a number of semiempirical correlations of infinite
dilution diffusivities.
One of the best known methods, due to Wilke and Chang (1955), is

(6,M5)'°T

0, =17.4x10"8
12 IU’ZVIO'G

(4.18)
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where

diffusion coefficent of species 1 (the solute) present in infinitely low concentration
in species 2 (the solvent) [cm?/s]

M, = molar mass of the solvent [g/mol]
T = temperature [K]
wu = viscosity [mPa s = cP]

o
12

TABLE 4.2 Diffusion Coefficients at Infinite Dilution

A: General Correlations for Polar and NonPolar Systems*®
1. Tyn-Calus (1975a) correlation®
9, = 8.93 X 1078V}/6V51/3u 1 (P,/P)*°T
2. Hayduk—Minhas (1982) correlations?

1.55 X 10—8V2—0.23’L2—0.92Pé).5P1——0.42T1.29

o
12

?2 6.915 X 10——10“2—0.19R§).2R50.4T1.70
3. Siddigi-Lucas (1986) correlation
DCI,Z = 9.89 X 10_S}LZ_O'907V1_0'45V20'265T
4. Hayduk-Minhas (1982) correlation for n-alkanes
D3, =133 X 10—8V1—0.71#(210.2/V,—0.791)T1.47

5. King et al. (1965) correlation

S2 = 4.4 X 10785 1(V,/V,)/*(AH,/AHY)*T

B: Correlations for Aqueous Mixtures®

6. Hayduk-Laudie (1974) correlation
o, = 13.26 X 1035 114y 0589
7. Hayduk—Minhas (1982) correlation
0, =125 x 10—8(V‘—0.19 _ 0_292)#(29.58/ V1127152
8. Siddigi-Lucas (1986) correlation

?2 =298 X 10_7#2_1'026V1—0'5473T

“Notation [units]: P, = infinite dilution diffusion coefficient [cm?/s]; T = temperature [K];
u = viscosity [cP = mPa s]; ¥ = molar volume at the normal boiling point [cm?®/mol];
R = radius of gyration [nm]; P = parachor [g!/*cm?/(mol s!/?)] and; AH = latent heat of
vaporization at the normal boiling point [any consistent units].

bWater should be treated as a dimer; that is, parachor and molar volumes should be
doubled. Organic acid solutes should be treated as dimers except when water, methanol, or
butanol is the solvent. For nonassociating solutes in monohydroxy alcohols, the solvent
parachor and molar volume should be multiplied by 8u,.

“Water is species 2 in these correlations.
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Vi
P

molar volume of Solute 1 at its normal boiling point [cm?/mol]

I

association factor for the solvent (2.26 for water, 1.9 for methanol, 1.5 for ethanol,
and 1.0 for unassociated solvents)

The value of 2.26 for the association factor for water was found by Hayduk and Laudie
(1974) to give better results than the value of 2.6 that was suggested by Wilke and Chang.

A number of other useful (and sometimes more accurate) correlations have been
developed; some of them are listed in Table 4.2. Of the correlations for nonaqueous
mixtures, those of King et al. (1965), Hayduk and Minhas (1982), Tyn and Calus (1975a),
and Siddiqi and Lucas (1986) gave about the same average error when evaluated against
1275 measured diffusivities (Siddiqi and Lucas, 1986). Siddigi and Lucas report that their
own correlation for diffusion of a solute in water had a noticeably lower average error than
any other correlation when evaluated against 658 measured diffusivities. This does not,
however, mean that the Siddigi-Lucas correlation is best for all aqueous systems (as
Example 4.1.1 demonstrates). Erkey et al. (1990) developed a correlation for predicting
infinite dilution diffusion coefficients in alkanes. Wong and Hayduk (1990) compare correla-
tions of estimating infinite dilution diffusivities in n-alkane mixtures, for dissolved gases in
organic solvents and for dissolved gases in water. Comparative reviews (including example
calculations) of selected correlations published prior to 1986 are by Hayduk (1986) and by
Reid et al. (1987).

Example 4.1.1 Diffusion of Alcohols Infinitely Diluted in Water

The diffusivities of methanol and 2-propanol at infinite dilution in water were measured by
Matthews and Akgerman (1988). Use their data, given in Table 4.3, to provide a spot check

TABLE 4.3 Infinite Dilution Diffusion Coefficients of
Methanol and 2-Propanol in Water ¢

Diffusivity Data of Matthews and Akgerman (1988)

TCC) BTV[cOH—HZO D;-PrOH—Hzo #Hzoh
30 1.83 1.43 0.814
56 342 221 0.504
81 491 3.32 0.351

120 7.73 5.82 0.230

Deon-n,0 Computed from Various Correlation
Wilke- Hayduk- Hayduk- Siddiqi-

T(°C) Chang Laudie Minhas Lucas
30 1.87 1.86 1.77 1.44
56 3.28 3.21 3.07 2.56
81 5.06 4.85 4.75 4.00
120 8.58 7.84 8.11 6.85

DS _pron-n,0 Computed from Various Correlations
Wilke- Hayduk- Hayduk- Siddiqi-

T(CC) Chang Laudie Minhas Lucas
30 1.27 1.27 1.29 1.01
56 2.22 2.19 2.36 1.80
81 343 331 3.80 2.80
120 5.81 5.35 6.79 4.80

“The units of D}’j are in 107° m?/s. The units of viscosity are cP
[1073 Pas]

bViscosity computed from DIPPR correlation (Daubert and Danner,
1985).
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on the correlations in Table 4.1(B) and the Wilke—Chang equation (Eq. 4.1.8).

DATA The molar volumes are

Vieon = 41.94 cm®/mol
Vpron = 80.28 cm? /mol

The viscosity of water is given in Table 4.3.

SOLUTION The Wilke—-Chang equation is selected to illustrate the calculation of the
infinite dilution diffusivities. The association factor ¢ for water is 2.26

(2.26 x 18)"/% x 303.15
0.814 X 41.94%6
=1.87 X 107° cm?/s

=74x10"%x

The infinite dilution diffusivities computed from all four correlations are given in Table
4.3 below the experimental values. From the calculated results we see that for the
methanol-water system the Hayduk—Laudie method gives good estimates over the tempera-
ture range of these data. The Wilke—Chang method (with ¢ = 2.26) gives good results at
the lower temperatures. For the 2-propanol system these two correlations change places in
the order of merit. The Hayduk—Minhas correlation comes in as third best with results that
would probably still be adequate for many engineering purposes. The Siddigi-Lucas
correlation consistently underpredicts the diffusivities. B

4.1.5 Estimation of Diffusion Coefficients in Concentrated Liquid Mixtures

Most methods for predicting P in concentrated solutions attempt to combine the infinite
dilution coefficients 7, and D%, in a simple function of composition. The simplest
expression

D, = x,D% + x, D% (4.1.9)

proposed by Caldwell and Babb (1956) is recommended by Danner and Daubert (1983).
Vignes (1966) suggested that the composition dependence of P can be expressed by a
relation of the form

Dy, = (Dﬁz)xz(f);l)x' (4-1-10)

This formula is recommended by Reid et al. (1987).

The success of the Vignes relationship can be judged in Figure 4.1, where the dashed
lines represent Eq. 4.1.10. It would appear from the results in Figure 4.1 that Eq. 4.1.10 is
not always as good as had been shown earlier by Vignes himself. However, as noted earlier,
the Maxwell-Stefan diffusion coefficient can be quite sensitive to the correlation used to
calculate the activity coefficients (Dullien, 1971). Thus, it may be dangerous to draw
definitive conclusions from the limited number of data shown here. The Vignes equation is
less succesful for mixtures containing an associating component (e.g., an alcohol). Alterna-
tive prediction methods need to be developed for such systems (see, e.g., McKeigue and
Gulari, 1989; Rutten, 1992).
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Several modifications of the Vignes relation have also been proposed; Leffler and
Cullinan (1970), for example, included viscosity in the relation as follows:

Dpu = (Dhmy) " (Dup) ™ (4.1.11)

This expression is sometimes recommended for predicting the Fick diffusivity D instead of
the Maxwell-Stefan diffusivity (Danner and Daubert, 1983).

A number of studies suggested that the composition dependence of the Fick diffusivity
can be reasonably well represented by an equation with the form

D=D°T" (4.1.12)

where D° is a function of the infinite dilution coefficients P}, and D%, and the composition
of the mixture. In terms of D°, the Maxwell-Stefan diffusivity P would be given by

D=D°Trm"1 (4.1.13)

Rathbun and Babb (1966) used Eq. 4.1.9 for D° and found that a value of m = 0.6 gave a
good fit to data for a few systems that exhibited positive deviations from Raoult’s law,
whereas m = 0.3 worked well for systems having negative deviations from Raoult’s law.
Kosanovich and Cullinan (1976) found that an exponent of 0.5 on the thermodynamic factor
reproduced the concentration dependence of several nonideal binary mixtures quite nicely.

Siddiqi and Lucas (1986) evaluated many of the foregoing ways of accounting for the
composition dependence of D (along with a number of other methods). For 79 mixtures of
two nonpolar components they found that Eq. 4.1.12 with m = 0.4 and Eq. 4.1.9 for D° was
best. However, the average errors were not much worse with m = 0.6 (the Rathbun and
Babb value) or 0.5. For 54 mixtures with a single polar component, the Rathbun and Babb
method fared noticeably better than any other methods tested and an exponent of 0.5 on T
came in second best. For 43 mixtures of two polar components they found best results were
obtained by Eq. 4.1.12 with m = 1 and D° given by

D° = ¢,b%, + ¢,D5 (4.1.14)

where ¢ is the volume fraction. However, for this class of mixtures, the advantage over the
methods of Vignes and Leffler and Cullinan was not significant. It should also be noted that
the combination of Eq. 4.1.9 and 4.1.12 with m = 0.5 would have given results acceptable
for most engineering applications.

Of course, for specific systems, any one of the above (or other) models may give the best
results and it pays to check the correlation against experimental data if that is possible. For
example, Dullien and Asfour (1985) found that the Fick D for regular solutions may be well
represented by

Dy/p = (Biz/ﬁz)xz(ﬂcz)l/ﬂl)xl (4.1.15)

It must be remembered that the sensitivity of the predicted Fick D to the thermody-
namic model used to calculate I', as well as to the model parameters, is more than enough
to make all of the above findings subject to some uncertainty. We suggest the Vignes
method, Eq. 4.1.10, and shall use it consistently throughout this book.

Example 4.1.2 Diffusion Coefficients for the System Acetone—Benzene

Estimate the Maxwell-Stefan and Fick diffusion coefficients for an acetone(1)-benzene(2)
mixture of composition x; = 0.7808 at a temperature of 25°C. The NRTL equation may be
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used to estimate the thermodynamic correction factor I'.

DATA The infinite dilution diffusivities are (Anderson et al., 1958)
9 =275 X107 m?/s
PS5, =4.15x 107 m?/s
The NRTL parameters for the acetone—benzene system at 25°C are available in the data

collection of Gmehling and Onken (1977ff Vol. I/3 + 4, p. 208). Their dimensionless values
are

T, = —0.1189 T, = 0.6482 ay, = ay = 0.3029
SOLUTION We will use the Vignes method to estimate the MS diffusivity. Substituting
the numerical values for the infinite dilution diffusivities and the mole fraction into Eq.
4.1.10 gives
Dy, = (Biz)xz(Dgl)x‘

0.2192 0.7808

=(2.75 X 107°)
=3.792 X 1079 m?/s

X (4.15 x 1077)

The NRTL equation for the activity coeflicient vy, is presented in Table D.5. The
thermodynamic factor I' is given by

[=1-2xx)(r5G3/S + 12G1/S3)
where
S, =x, +x,G5 S, =x, +x,Gy,
and
G, = exp(—a,713) G, = exp(—ay7y)

Substituting the values of the parameters 7,,, 75, and «,, into the above expressions from
Table D.5 gives

r'=0.871
The Fick diffusivity may now be computed from the product of P and I as

D=9PT
=3.792 x 10~° X 0.871
=330 % 107 m?/s

which compares reasonably well with the experimental value of D at this composition of
3.35 X 107° m?/s (Anderson et al., 1956). Additional data of Anderson et al. and of
Cullinan and Toor (1965) are shown in Figure 4.1(b). ®

Example 4.1.3 Diffusion Coefficients in the System Ethanol-Water
Estimate the diffusivities of an ethanol(1)-water(2) mixture at 40°C and x; = 0.68.
DATA The infinite dilution diffusivities are (Tyn and Calus, 1975b)

°, =170 X 107° m?/s

5. = 1.64 X 107° m?/s
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The NRTL parameters for ethanol-water at 40°C are taken from the collection of
Gmehling and Onken (1977ff Vol. 1/1 p. 172).

T = —002188 7, =16139 @, =a, = 0.2946

SOLUTION The Maxwell-Stefan diffusivity is computed using the Vignes equation (Eq.
4.1.10) as

Dy, = (Dciz)xz(}-)%)x1

0.32 0.68

= (1.70 X 107°) 7" X (1.64 X 10~?)
= 1.659 X 107° m?/s

The parameter I' is computed from the NRTL equation as illustrated in Example 4.1.2
with the result -

I' =0.610
The Fick diffusivity may now be computed as

D =PT
=1.659 X 107° x 0.610
=1.012 X 107° m?/s

The data of Tyn and Calus (1975b) covering the entire range of compositions is shown in
Figure 4.1(a). Their experimental value of D at the conditions used in this illustration is
1.02 x 10~ m?/s, which compares quite well with the value predicted using the Vignes
method. W

4.2 ESTIMATION OF MULTICOMPONENT DIFFUSION COEFFICIENTS
Comparison of the Maxwell-Stefan formulation
(J) = —¢,[B]M[T](Vx) (2.2.10)
with the generalized Fick’s law
(J) = —¢,[D](Vx) (3.2.5)
shows that the matrix [ D] and the product [B]~![T'] are equivalent
[D]=[B]"'[T]

Strictly speaking, the rules of matrix algebra do not allow us, on the basis of Egs. 3.2.5 and
2.2.10, to assert that [D] and [B]~![I'] are equal. The equality of these two matrices is an
assumption, albeit the only reasonable way to relate the Fick diffusion coefficients D;; to the
Maxwell-Stefan diffusion coefficients D;;. The equality

[D] = [B]"'[T] (4.21)

will be used throughout this book, just as it is in the literature on multicomponent mass
transfer.

Equation 4.2.1 is an important result for it allows us to predict the Fick matrix [ D] from
information on the binary Maxwell-Stefan diffusivities D;; and activity coeficients.
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4.2.1 Estimation of Multicomponent Diffusion Coefficients for Gas Mixtures

For ideal gases the thermodynamic matrix [I'] reduces to the identity matrix and Eq. 4.2.1
becomes

[D]=[B]" |ideal| (4.2.2)

As discussed briefly in Section 4.1.2, the diffusion coefficients of the binary pairs D;; can be
estimated from the kinetic theory of gases or from an appropriate correlation to a
reasonable degree of accuracy, particularly for nonpolar molecules. The matrix of diffusion
coeflicients may therefore be calculated using Eq. 4.2.1 or, for a ternary system, directly
from the relations derived below.
For a ternary system [B] is of order 2 with elements given by
X1 X2 X3

B = — + =+ —
Bl} BlZ B13

B 1 1
2= 7% 1'9; D

B 1 1
2T b, Dy

Bp=—— + —— + —

(4.2.3)

The inversion of [B] can be carried out explicitly using Equations A.3.9-A.3.10 as shown
below.
The determinant of [B] is

|Bl = By By, — B1y By = S/D ;D 3D (4~2’4)
where
S =x,Dy +x,D3 +x3D4, (4.2.5)
The cofactor matrix is
B, -By,]" B, -B
[BL»]T _ 22 21| _ 22 12 (4.2.6)
“312 Bu _321 Bu

Thus, the elements of [ D] are

Dy =Dy3(x; Dy + (1 —x1)Dy,) /S
Dy, =x1Dp3(Py3 — D) /S
Dy =x,D3(Dy; — D) /S
Dy =Py x;D45 + (1 —x3) D) /S

(4.2.7)

It is easy to check that if the binary diffusion coeflicients D;; are equal; D;; = D, for all
i, j permutations; then the matrix of diffusion coefficients degenerates to a scalar times the
identity matrix (cf. Eq. 3.2.10)

[D]=DB[I]  (special) (4.2.8)
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For two components infinitely diluted in a third (x, and x, close to zero), we find the
cross-coefficients D;, and D,; vanish and the main coefficients D;; and D,, are given
simply by

Diy=b; i=12 (4.2.9)

These results, obtained for a dilute ternary vapor mixture may be generalized with the help
of Eq. 4.2.2 to a mixture of any number of components where one component is present in a
large excess; x, = 1, x; > 0,i =1,2,---,n — 1 (see discussion below Eq. 3.2.10)

D,;=b,, D,;=0 (4.2.10)

Example 4.2.1 The Structure of the Fick Matrix [D] When All of the Binary Diffusion
Coefficients Are Nearly Equal

The Maxwell-Stefan diffusion coefficients for three binary gas pairs at a temperature of
273 K and a pressure of 101 kPa are listed below:

oxygen—nitrogen D = 18.1 mm?/s
oxygen—carbon monoxide D = 18.5 mm?/s
nitrogen—carbon monoxide D =17.7 mm?/s

Investigate the structure of the Fick matrix [D] for the ternary system oxygen(1)-
nitrogen(2)-carbon monoxide(3).

SOLUTION For the purposes of this illustration [D] is calculated from Egs. 4.2.7 with
X =x,=03, x3=04.
S=xDp +x,D13 +x3D),
=03X177+03 X 185+ 0.4 X 18.1
= 18.1 mm?/s
Dy = Dy3(x,Pp3 + (1 —x,)Dy,) /S
=185 % (0.3 X 17.7 + (1 — 0.3) x 18.1) /18.1
= 18.38 mm?/s
Dy, = x,Dp(Py3 — Dy,)/S
=0.3Xx17.7 X (185 - 18.1) /18.1
= 0.117 mm?/s
Dy =x,D13(Py — Dyy)/S
=03 x 185 x (17.7 — 18.1) /18.1
= —0.123 mm?/s
Dy =Dy(x;Dy5 + (1 - x)Dy,) /S
=177 x (0.3 X 18.5 + (1 — 0.3) x 18.1) /18.1
= 17.82 mm?/s
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We may write these results in matrix form as

_[ 1838 012]
[D]—[-0.12 17.82]“““/S

As might be expected from the discussion above, this matrix is dominated by the diagonal
elements that are two orders of magnitude greater than the off-diagonal elements. More-
over, the diagonal elements themselves are approximately the same. It, therefore, seems
reasonable to use just one average value of P in the calculation of [D]. In this example
[D] = 18.1[1] mm? /s is a good approximation to [D]. ®

Example 4.2.2 [D] for Dilute Gas Mixtures
2-Propanol(1) and water vapor(2) are condensing on the cooled surface of a vertical tube.
Nitrogen (3) is also present in the vapor mixture fed to the condenser. At the temperature
and pressure in the condenser the diffusion coefficients of the three binary gas pairs are
D, = 15.99 mm?/s
D3 = 14.43 mm?/s
Do, = 38.73 mm?/s
Near the exit from the condenser the composition in the vapor mixture is x; = 0.005,

x, = 0.003, x5 = 0.992. Calculate the matrix of multicomponent diffusion coefficients at this
composition.

SOLUTION The matrix [D] is calculated directly from Egs. 4.2.7 as demonstrated in
Example 4.2.1. The result here is

14.43 —0.019
(]~ |

2
0.061 3845 | ™m/S

As in our last illustration, this matrix is dominated by the diagonal elements. Since the
mixture is almost pure nitrogen with only traces of the condensable vapors remaining we
may let the mole fraction of nitrogen approach unity, x; — 1, and the mole fractions of
2-propanol and water go to zero, x; = 0, x, — 0 and approximate [ D] as

(1443 00 ]
[D]_[o.o 38.73]“““/S m

Example 4.2.3 Composition Dependence of the Fick Matrix [D]

The vapor-phase catalytic dehydrogenation of ethanol to acetaldehyde involves the diffusion
of ethanol to the catalyst surface where it reacts to produce acetaldehyde and hydrogen.
Under typical reactor conditions (temperature = 548 K, pressure = 101.3 kPa) the binary
diffusivities of the three binary pairs encountered are

D, = 147.7 mm?/s
Dy = 25.0 mm?/s
Dy, = 142.4 mm?/s

where component 1 is acetaldehyde, component 2 is hydrogen, and component 3 is ethanol.
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The composition of the bulk gas may be taken to be x; = 0.20, x, = 0.20, x; = 0.60. At
the catalyst surface ethanol is consumed by the reaction that produces acetaldehyde. The
mole fraction of ethanol there will be much lower than in the bulk gas. For this illustration
assume the gas composition at the catalyst surface to be x; = 0.584, x, = 0.328, x; = 0.088.

Investigate the structure of [ D] and calculate some representative values.

SOLUTION The diffusivities P,; and D, are nearly equal and we will make this
assumption in the estimation of the multicomponent diffusion coefficients. With D,; = D,
= P we calculate, with reference to Egs. 4.2.7, the elements of [ D] as

S =x1Dyp +x,D13 + x3D4,
=1 -x)D +x,Dp5

Dy, =DD3/S
Dy, =x,D(Dy3 —D)/S
D,y =0

Dy, = B(x,D15 + (1 —x,)D) /S

Note that D,, is zero regardless of the composition of the mixture. Hence, the flux of
hydrogen (2) depends on its own composition gradient Vx, only

J,= —¢,DyVx, = —c,DVx,

No similar simplification is possible for acetaldehyde, the flux of which is given by Eq. 3.2.1.
At the bulk gas composition we estimate [ D] using the above expressions to be

2095 -2877]_
[D] [0.0 145.051“““/S

(P was taken to be the arithmetic average of D, and P,; in this and the next calculation.)
At the interface composition [ D] is

_[3432 -9623]_
[D]‘[o.o 145.05]“““/s

At this composition the ratio |D;,/D,| exceeds unity suggesting that the flux of acetalde-
hyde will be strongly influenced by the composition gradient of species 2 (hydrogen).
The ratio D,,/D;, is given by

_D__IE _ x1Dp(Dy3 — Dyy)
Dy Dy(xDp+ (1 —x1)Dyp)
1- Dlz/Dls

1+ (1= x)Dp/x,Py3
For an ideal gas mixture in which D, and D,; are similar the ratio D,,/D,, becomes
Dy/Dyy = x,(1 = B1y/Dy3)

When P,,/P; =1 the ratio D,,/Dy; = 0 regardless of the composition of the mixture
(this corresponding to the case of three equal, or nearly equal, binary diffusivities discussed
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D2

11

Figure 4.4. The ratio D,/D,;, which are the elements of the Fick matrix [D], as a function of the
binary pair Maxwell-Stefan diffusion coefficients D,/D 5.

in Example 4.2.1). When the ratio D,,/P; is different from unity, then the cross-coeffi-
cients may be significant with respect to D;, especially for high values of the mole fraction
x;. The ratio D,,/D;; may also assume negative values and the absolute values of this ratio
may approach or even exceed unity as shown in the example calculation above and in Figure
4.4 where D,,/D;, is shown as a function of the ratio of the binary pair Maxwell-Stefan
diffusion coefficients P,/D;;. H

Example 4.2.4 Effect of Component Numbering on the Fick Matrix

The preceding examples illustrated some of the ways in which the Fick matrix [ D] depends
on the composition of the mixture and on the binary (Maxwell-Stefan) diffusion coefficients.
One further property of [ D] is that both the sign and magnitude of the elements of [ D]
depends on the order in which the components are numbered. Wesselingh (1985) provided a
dramatic and elegant illustration of this fact for the system H,-N,—-CC1,F,. At a tempera-
ture of 298 K and a pressure of 101.3 kPa the diffusion coeflicients of the three binary pairs
that make up the mixture are

H,-N, D = 77.0 mm?/s
N,-CC1,F, P = 81mm?/s
CC1,F,-H, D = 33.1 mm?/s

The ratio of the largest to the smallest of these coefficients is nearly an order of magnitude;
thus we may expect the Fick matrix [ D] to show a strong composition dependency.

Compute the matrix [ D] at the composition xy = 0.4, xo = 0.25 and x, = 0.35. The
subscripts N, C, and H refer to N,, CC1,F,, and H,, respectively.

SOLUTION For each of the three possible choices for “component 3” there are two ways
to order the components. We will calculate the elements of [ D] for three ways of ordering
the components obtained by rotating the component numbers in order. With the compo-
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Figure 4.5. Four Fick diffusion coefficients plotted as a function of composition for the system
H,-N,-CC1,F, for the three possible choices of “component 3.”

nents ordered as N = 1, C = 2, H = 3 we calculate [D] as

_[3945 2582]
[D] [13.62 23.73]"‘"‘/S

With the components ordered as C =1, H =2, N = 3 we find

_[1011 -1363]_
(D] [3.52 53.08]““"‘/S

Finally, with the components ordered as H = 1, N = 2, C = 3 we have

_[ 4955 -352]_,
[D]”[—zs.sz 13.63]“““/S

These three matrices are quite different but all three represent the one system at the same
conditions of temperature, pressure, and composition. It may be verified from Eq. 3.2.5 that,
for a given set of driving forces Vx;, all three choices of [ D] will yield the same set of fluxes
regardless of the component numbering (as is only to be expected, of course). It is
interesting to note that, even though these three matrices appear to be quite unrelated,
their eigenvalues are the same (for a formal proof that this will always be the case see, e.g.,
Taylor, 1981a).

We repeated Wesselingh’s (1985) calculations of the [D] matrix as a function of
composition with the results shown in Figure 4.5. With hydrogen as “component 3,” all the
D;; are positive regardless of the composition of the mixture. In complete contrast, the
cross-coefficient D, is always negative if CC1,F, is component 3 and the coefficient D,, is
always negative if nitrogen is component 3. Once again, we can see that the cross-coeffi-
cients can overshadow the main coefficients in absolute value in certain composition regions
but not with all choices of component 3; in this example the main coefficients are always
larger than the cross-coeflicients if hydrogen is component 3. In fact, it is always possible to
order the components so that this is the case; the trick is to choose the species with the
smallest molecule as “component n.” The cross-coefficients are zero along one side of the
ternary composition triangle (this should not come as a surprise; consult Eq. 4.2.7 again).
The main coefficients D;; and D,, are always positive regardless of the ordering of the
components or of the composition of the mixture (see discussion around inequalities Eq.
3.3.13). The component numbering is, to a very large extent, arbitrary. Thus, the Fick matrix
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[ D] is, within limits set by the values of the Maxwell-Stefan diffusivities, also arbitrary. It is
worth noting here that the Maxwell-Stefan diffusion coefficients D;; are completely
independent of the composition of the mixture. This result is emphasized in Figure 4.6
(after Wesselingh, 1985).

Another aspect of the choice of component numbering relates to the accuracy of the
calculations; it is not a good idea to calculate small fluxes by subtracting two ‘“large”
numbers. Put another way, if the flux of component i is expected to be small, do not label
this as “solvent” species n; Include i as one of the first n — 1 species. Greater accuracy is
obtained by choosing n to be the species with the highest concentration. ®

Example 4.2.5 Prediction of Multicomponent Diffusion Coefficients in the Mass Average
Reference Velocity Frame

Estimate the Fick diffusion coefficients in the mass average velocity reference frame for a
mixture containing carbon monoxide (1), hydrogen (2), methane (3), and water vapor (4)
flowing inside a tubular reactor at a point where the mole fractions are
x; =0.05 x, = 0.75382 x5 = 0.09809 x, = 0.09809

DATA Maxwell-Stefan diffusivities of the binary pairs

P, =Dy =D, =135 x 10" m?/s

P;=D, =Dy =4.0X10"°m?/s

The molar masses of the four components are

M, = 0.02801 M, = 0.002016 kg /mol
M; = 0.01604 M, = 0.018015 kg/mol
SOLUTION To predict multicomponent Fick diffusivities in the mass average velocity

reference frame we combine Eq. 4.2.2 to predict the Fick diffusivities in the molar average
velocity reference frame

-1
[D] = [B]
with Eq. 3.2.11 to transform between velocity reference frames to give

[D°] = [B*“I[e][x] '[B] '[x][w] '[B*]

where we have made use of the fact that [B¥°] = [B°“]~ L.
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Our first calculation is to convert the mole fractions to mass fractions. The formulas for
converting between mole and mass fractions are given in Table 1.1 and the results of the
conversion are

w, = 0.2237 w, = 0.2427 w5 = 0.2513 w, = 0.2822

The elements of [B] are defined by Egs. 2.1.21 and 2.1.22. The calculation of the first
row of [B] is illustrated below.

B - X, N X, N X3 N X4
n= g T T T
Dy Py Dy Dy

0.05 0.75382 0.09809 0.09809
+ + +
40X 107%  135x107°  40x107% 40x10°°

It

1.1174 X 10° s/m?

B 1 1
2= "\, T P,

It

1
—0.05 % — -
135x107% 4.0x10°°

= 8.796 X 10> s /m?

Il
|
o
o
(]
X
——

1
40x10°° 4.0 x 10'6)

0s/m?
The remaining elements of [ B] are calculated in similar ways with the result

0.11738 0.00879 0.0
[B]=1]0.0 0.07407 0.0 x 10 s/m?
0.0 0.01725 0.11738

The Fick [ D] in the molar average velocity reference frame is the inverse of this matrix

85191 —1.0116 0.0
[D]=1]0.0 13.5000 0.0 X 107 m?/s
0.0 —1.98846 8.5191

The elements of the reference frame transformation matrix [ B°“] are given by Eq. 1.2.27.

w, X
ou _ _ nk
B =6, wi(l - )
xnwk
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The first row of this matrix has elements given explicitly by

Bif' =1 — (1 — xj0,/x,0,)
=1-0.2237 X (1 — 0.05 x 0.2822/(0.09809 x 0.2237))
= 0.9202

By = —oy(1 = xy0,/x,0,)
= —0.2237 x (1 — 0.7538 x 0.2822 /(0.09809 x 0.2427))
= 1.7752

Biy' = —oy(1 — x30,/x,05)

—0.2237 x (1 — 0.09809 x 0.2822/(0.09809 x 0.2513))
0.0275

The complete transformation matrix is

0.9202 1.7752 0.0275
[B°“] = | —0.0866 2.9263 0.0298
—0.0898 1.9947 1.0309

The inverse matrix is

1.0277 —0.6169 —0.0096
[B“] = |0.0301 0.3305 —0.0104
0.0312 —0.6932 0.9893

The Fick diffusion coefficients in the mass average reference velocity frame [D°] may
now be calculated directly from the expression above as

8.3828 —1.4960 0.0469
[D°] = 04612  13.5835 —0.1589 | X 107° m?/s
—0.1531 —1.6809 8.5718

The eigenvalues of this matrix are found to be

D, = 8.519 X 10°° m?/s
D, =13.50 X 10°° m?/s
D, = 8.519 X 10~° m?/s

which, in fact, are the diagonal elements of [D] in the molar average velocity reference
frame. This special result is obtained because two of the columns of [ D] contain only one
nonzero element, the one on the main diagonal. It is also interesting to note that two of the
eigenvalues are equal. This will have interesting consequences when we compute mass
transfer rates in this system in Example 10.4.1. ®

4.2.2 Estimation of Multicomponent Fick Diffusion Coefficients for Liquid Mixtures

Ideally one would like to be able to predict the elements of [ D] from a knowledge of the
infinite dilution diffusion coefficients D;;. A comparison of the generalized Fick’s law (Eq.
3.2.5), with the Maxwell-Stefan equations (Eq. 2.2.10) shows that, for a nonideal system, the
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matrix of Fick diffusion coeflicients is related to the Maxwell-Stefan diffusion coefficients
by

[D] =[B]'[T] (4.2.11)

This, or some other similar relation, is the starting point for developing methods of
predicting [ D].

For ternary systems the inverse of [B] is given by the right-hand sides of Eq. 4.2.7. This
matrix must be postmultiplied by [I'] to obtain the elements of [ D] as

Dis(x1Py + (1 = x,)D )Ty +x,D5( D13 — D)y} /S

(4.2.12)

= {

={D13(x2Dp5 + (1 = x)) D )Ty + x,Dp5( P13 — D)y}
= {Dy(x2P13 + (1 = 1) D)1y + 2,D15(Py3 — Pyp)Tyy
= {

/S
}/s
323(x2913 +(1- xZ)DIZ)FZZ +x,D3(Dys — DIZ)F12}/

with § given by Eq. 4.2.5.
This method of predicting [ D] is illustrated in Example 4.2.6.

4.2.3 Estimation of Maxwell-Stefan Diffusion Coefficients
for Multicomponent Liquid Mixtures

In order to use the procedure of Section 4.2.2 to predict [ D] we need the Maxwell-Stefan
diffusivities of each binary pair in the multicomponent mixture.

There are few published values of Maxwell-Stefan diffusivities in multicomponent
liquids. Figure 4.7 shows the binary Maxwell-Stefan diffusion coefficients for the ternary
mixture 2-propanol(1)-water(2)-glycerol(3). The values of the diffusion coefficients for the
binary systems water—glycerol and 2-propanol-glycerol are also shown in this figure, which
is adapted from Riede and Schliinder (1991). As would be expected (hoped), the binary
coefficients in the ternary mixture are similar to those in the respective binaries. Lightfoot
et al. (1962) found the same situation for the glycine~water—potassium chloride system at
low concentrations of glycine and potassium chloride.

There are few methods for predicting the Maxwell-Stefan diffusivities in multicompo-
nent liquid mixtures. The methods that have been suggested are based on extensions of the
techniques proposed for binary systems discussed in Section 4.1.5 (see, e.g., the works of
Cullinan and co-workers, 1966—1975; Bandrowski and Kubaczka, 1982; Kosanovich, 1975).
The Vignes equation, for example, may be generalized as follows (Wesselingh and Krishna,
1990; Kooijman and Taylor, 1991).

n
= k]jl(a,.j,xkﬂ) * (4.2.13)

where the D;; . _,, are the limiting values of the Maxwell-Stefan diffusivities in a mixture
where component k is present in a very large excess.

Equation 4.2.13 is shown in Figure 4.8 for a ternary system where it becomes clear that
the limiting diffusivities are, in fact, the Maxwell-Stefan diffusion coefficients at the corners
of the diffusivity—composition surface. Equation 4.2.13 should reduce to the binary Vignes
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Figure 4.7. Maxwell-Stefan diffusion coefficients for the ternary system 2-propanol(1)-water(2)-
glycerol(3) and the binaries 2-propanol—glycerol and water—glycerol. From Riede and Schliinder (1991).

equation when (x; + x;) > 1 and x;, —» 0 (k # i,]). The two limiting diffusivities on the i—j
face may, therefore, be identified as the binary i—j infinite dilution diffusivities.

D =Dy

ij,xjal

(4.2.14)

D, =D;

ij,x;—1

ij, x, =»1

Figure 4.8. Maxwell-Stefan diffusion coefficients as a
function of composition for a ternary system showing
limiting diffusivities. 3 1
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Substitution of these limiting values into Eq. 4.2.13 gives

n
b; = (B?j XI(D;‘) ‘ kl:[1 (Dij,xk_q)Xk (4.2.15)
k=i, j

Any model of the Maxwell-Stefan diffusivities based on Eq. 4.2.15 must obey some rules
that places certain restrictions on the kind of model that can be used for the limiting
diffusivities D;; ,, _,,. First, the final expression for the Maxwell-Stefan diffusivities must be
symmetric (D;; = D;;). In addition, we must have

lim x; > 0(Dy; o) = lim x; > 0(D;; ;o) (4.2.16)

to avoid discontinuities at the corners of the diffusivity—composition surface.
Wesselingh and Krishna (1990) tentatively suggested the following model for the limiting
diffusivities.
o o\ 1/2
Dij,xk—>1 = (Diiji) (4.2.17)
When we combine Egs. 4.2.15 and 4.2.17 we obtain the following elegant expression for the
binary Maxwell-Stefan diffusivity in a multicomponent system.

D[j _ (D,O] (1+xj—x,~)/2( D]?i)(l +x;=x;)/2 (4218)
Kooijman and Taylor (1991) proposed the following model for the limiting diffusivities
Bjj o1 = (DD} (4.2.19)

and found that it gave better predictions of multicomponent Fick diffusion coefficients for a
few systems than did Eq. 4.2.17 (or any other simple combination of infinite dilution
diffusion coefficients) (see, also, Rutten, 1992). For want of a fundamentally sound method,
we shall use Eq. 4.2.18 in the remainder of this book.

The infinite dilution diffusivities, Df;, are positive definite (cf. Eq. 2.3.21) and, conse-
quently, Eq. 4.2.18 leads us to conclude that the D;; are positive definite everywhere in the
composition space.

Example 4.2.6 Prediction of [D] in the System Acetone—Benzene—Carbon Tetrachloride

Cullinan and Toor (1965) presented experimental data for the matrix of Fick diffusion
coefficients in the volume average reference velocity frame for the system acetone(1)—
benzene(2)—-carbon tetrachloride(3) at a temperature of 25°C. Some of their data is shown
in Table 3.3. Estimate the Fick matrix [D] at the composition x, = 0.70, x, = 0.15,
x5 = 0.15 using the predictive method described above.

DATA The infinite dilution diffusion coefficients Df; have been estimated as follows
[10~° m?/s]:

%2 = 2.75 51 = 4.15

35 = 1.70 51 = 3.57

55 = 1.42 % = 1.91

The NRTL parameters 7,; and «;; are given in Example 3.3.1.
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SOLUTION The first step is to estimate the Maxwell-Stefan diffusion coeflicients from
Eq. 4.2.18.

D]2 — Dciél +X2Ax])/2Dozfl+x| —X3)/2

0.225 0.775

= (2.75 X 107%)
=3.783 X 107% m?/s

X (4.15 X 1077%)

_ o(l+x3—x1)/2 pyo(1+x,~x3)/2
DIB _Dl3 e DB] e

0.225 0.775

= (1.70 X 10°%)
=3.021 X 107° m?/s

_ (1+x3-x5)/2 myo (1 +x,—x3)/2
DZ3 _D33 i D32 2

X (3.57 x 107%)

0.5000 0.5000

(1.42 X 107%)
1.647 X 107° m?/s

X (1.91 X 1079)

The elements of [ B] may now be calculated from Egs. 2.1.21 and 2.1.22 as

0.321  0.047
(51 |

9 2
0.051 0.367] X 10%s/m

The elements of the thermodynamic factor matrix [T'] are determined using the NRTL
model as described in Table D.2.

_[0.788  —0.088
[r]‘[o.ms 1.043]

The Fick matrix [ D] can now be calculated.

[D]=[B]'[T]
[ 2476 —0.701 o
- [—0.142 2.939] X 107" m7/s

At the composition x; = 0.70, x, = 0.15, x5 = 0.15 the matrix [D] in the molar average
reference frame, recalculated from the reported [ D¥'] values with the help of Eq. 3.2.12, is

2.354 —0.471 —9 2

[P]= [0.089 2.947] X 1077 m?/s

[D] predicted by the above method agrees reasonably well with the experimental values
except for the coefficient D,,;. Since cross-coefficients reflect differences in pair diffusivities,
it is not uncommon to find that small cross-coefficients are not predicted accurately, even in
sign. It may be noted from Example 3.3.1 that the measured D;; do not satisfy the Onsager
relations accurately. This could be one reason for the deviation between the predicted and
experimental D;; values; the predicted set of coefficients implicitly satisfy the ORR.

The errors in flux calculations that result from any errors in the prediction of [ D] are,
however, not large, as can be checked by assigning arbitrary values to Vx; and Vx,. We
draw comfort from the fact that the relatively large cross-coefficient D, has been predicted
reasonably well. W
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4.3 MAXWELL-STEFAN, FICK, AND ONSAGER IRREVERSIBLE
THERMODYNAMICS FORMULATIONS: A SUMMARY COMPARISON

The three formulations for multicomponent diffusion are all equivalent to one another and
interrelatable

[B] '[T]=[DP]=[H] '[G] (43.1)

The Maxwell-Stefan coefficients D;; = D;; are the ones that are most easily amenable to
physical interpretation in terms of intermolecular friction or drag, retaining this significance
even when other forces such as pressure gradients and electrostatic potential gradients
coexist. The Maxwell-Stefan D,; are, therefore, convenient starting points for diffusivity
prediction methods. Furthermore, the Maxwell-Stefan coefficients are well behaved as
regards composition dependence in nonideal liquid mixtures, and retain this advantage even
in the region of the critical point. The second law of thermodynamics restricts the infinite
dilution coefficients, By}, to positive definite values. The Maxwell-Stefan D;; are indepen-
dent of the choice of the reference velocity frame.

The Fick [D] exhibits a complex composition dependence, reflecting as it does both
frictional and thermodynamic interactions and the elements D;; cannot be interpreted
simply. The elements D;; are dependent on the choice of the reference velocity frame.
Since [D] is a product of two positive definite matrices [H]~! and [G], the Fick [D] is
positive definite. The Fick [D] is singular at the critical point, which imparts some
interesting characteristics to the mass transfer trajectories in that region (see Chapter 5).
The symmetry of [ H] and [G] matrices places restrictions on the elements of [ D] and only
3n(n — 1) of the D;; are independent. The Fick formulation is more easily introduced into
the continuity equations and in this sense they are often referred to as being “practical.”

To illustrate some of the above points we have carried out calculations of the
Maxwell-Stefan coefficients and the Fick matrix [ D] over the entire ternary composition
triangle for the system acetone—benzene—carbon tetrachloride using the data and methods
employed in Example 4.2.6. The Maxwell-Stefan diffusivities predicted using Eq. 4.2.18 are
shown as a function of composition in Figure 4.9. The Fick diffusivities are shown in Figure
4.10. These illustrations are analogous to Figures 4.6 and 4.5, respectively. Figures 4.5, 4.9,

benzene (2)

~ ~
~ ]\ \‘

Ess
/ ~
~ N~
carbon acetcne (1)
tetrachloride
©)

Figure 4.9. The Maxwell-Stefan diffusion coefficients predicted using a generalized Vignes equation
for a nonideal liquid mixture.
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Figure 4.10. The Fick diffusion coefficients as a function of composition and component numbering for
a nonideal liquid mixture.

and 4.10 graphically emphasize the well behavedness of the Maxwell-Stefan diffusivities
and the complex composition dependence of the Fick D;;, even for ideal gases.

The Onsager IT formulation is particularly useful in the analysis of mass transfer
processes in the region of the critical point because it is the Hessian matrix [G] that dictates
thermodynamic stability.

We may conclude by saying that in practice we need all three formulations in analyzing
multicomponent diffusion in one context or another.



5 Solution of Multicomponent
Diffusion Problems:
The Linearized Theory

The linearized theory would be of interest even if restricted to small changes in concentration
since it gives the essential behavior of multicomponent systems. The fact that it may yield
accurate results even for large changes in concentration is encouraging, for higher accuracy will
require facing the nonlinear characteristics of the differential equations.

—H. L. Toor (1964a)

In order to analyze multicomponent diffusion processes we must be able to solve the
continuity equations (Eq. 1.3.9) together with constitutive equations for the diffusion
process and the appropriate boundary conditions. A great many problems involving diffu-
sion in binary mixtures have been solved. These solutions may be found in standard
textbooks, as well as in specialized books, such as those by Crank (1975) and Carslaw and
Jaeger (1959).

The solution of multicomponent diffusion problems is a little more complicated than the
solution of binary diffusion problems because the differential equations governing the
process are coupled. In the early 1960s a versatile and powerful method of solving
multicomponent diffusion problems was developed independently by Toor (1964a) and by
Stewart and Prober (1964). The method they proposed is described and illustrated in this
chapter.

5.1 MATHEMATICAL PRELIMINARIES

5.1.1 The Binary Diffusion Equations
For a binary system, the conservation equations (Eq. 1.3.9) may be written in terms of the
molar fluxes N; and N, as

dc
— = VN, = -V-J, -V -(Nx,) (5.1.1)

Inserting Fick’s law (Eq. 3.1.1), into Eq. 5.1.1 gives

ac,
8_t1 +V-(Nx,)=V-(c,DVx,) (5.1.2)

In most cases the general Eq. 5.1.2 is simplified somewhat before being solved. It is
common, for example, to assume constant molar density ¢, and Fick diffusion coefficient D.
Unless these (or other) assumptions are made it may be difficult or impossible to solve

95
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Eq. 5.1.2 analytically. With these assumptions Eq. 5.1.2 simplifies to

— + V- ux, =DV, (5.1.3)

— =DV, (5.1.4)

an expression sometimes referred to as Fick’s second law. This equation is usually used for
diffusion in solids or stationary liquids and for equimolar counterdiffusion in gases. Other
simplifications of Eq. 5.1.2 can be found in texts by Bird et al. (1960) and by Slattery (1981).

5.1.2 The Multicomponent Diffusion Equations

Both formulations of the constitutive equations for multicomponent diffusion, the
Maxwell-Stefan equations and the generalized Fick’s law, are most compactly written in
matrix form. It might, therefore, be as well to begin by writing the continuity equations
(Eq. 1.3.9) in n — 1 dimensional matrix form as well

()

at

= —V+(N)=-V:(J) -V +(N(x)) (5.1.5)

Inserting the generalized Fick’s law, (Eq. 3.2.5) into this result gives

1) v (M) = ¥+ (e[ D)(T) (5.16)

Equations 5.1.6 represent a set of n — 1 coupled partial differential equations. Since the
Fick matrix [ D] is a strong function of composition it is not always possible to obtain exact
solutions to Egs. 5.1.6 without recourse to numerical techniques. The basis of the method
put forward by Toor and by Stewart and Prober is the assumption that ¢, and [D] can be
considered constant. (Actually, Toor worked with the generalized Fick’s law formulation,
whereas Stewart and Prober worked with the Maxwell-Stefan formulation. Toor et al.
(1965) subsequently showed the two approaches to be equivalent.) With this assumption
Eqgs. 5.1.6 reduce to

¢, a(a’:) +V +(N(x)) = ¢[D](V2x) (5.1.7)
or, equivalently
% + V- (u(x)) = [D](V*x) (5.1.8)

For binary systems the matrix equations (Egs. 5.1.7 and 5.1.8) reduce to Egs. 5.1.2 and 5.1.3.

The theory of Toor and of Stewart and Prober is referred to as the linearized theory of
multicomponent mass transfer because the set of nonlinear Egs. 5.1.6 is linearized to give
the set Eq. 5.1.7.
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5.1.3 Solving the Multicomponent Equations

The general method of solution that was proposed by Toor and by Stewart and Prober
exploits the properties of the modal matrix [ P] whose columns are the eigenvectors of [ D]
(see Appendix A.4). The matrix product

[P17'[D][P] = [D] (5.1.9)

is a diagonal matrix with elements that are the eigenvalues of [ D]. Cullinan (1965) showed
that this transformation is always possible. Thus, on premultiplying Egs. 5.1.7 by [P]~! and
inserting an identity matrix [P[P]~! between [D] and V3(x) gives

(%)

ot

+ Vo (N,(%)) =¢,[D](V%) (5.1.10)

ct
where we have defined “pseudocompositions” (x) by

(#) =[P] (x) (5.1.11)

The generalized Fick’s law (Eq. 3.2.5), may also be premultiplied by [P]™! to give

(J) = —¢,[D](V#) (5.1.12)

A

where the “pseudodiftusion fluxes” J; are given by

(1) =[P1"'()) (5.1.13)

Examination of Eqgs. 5.1.7-5.1.10 shows that the similarity transformation reduces the
original set of n — 1 coupled partial differential equations to a set of » — 1 uncoupled
partial differential equations in the pseudocompositions. Equation (5.1.10) for the ith
pseudocomponent is

A

ax; n
ot V +N,% =c¢,D,; V3%, (5.1.14)

with pseudodiffusion fluxes given by a set of uncoupled constitutive relations

= —c,D, V3, (5.1.15)

If we compare Egs. 5.1.14 with the conservation equation (Eq. 5.1.2) for a binary system
and the pseudo-Fick’s law Eq. 5.1.15, with Eq. 3.1.1 then we can see that from the
mathematical point of view these pseudomole fractions and pseudofluxes behave as though
they were the corresponding variables of a real binary mixture with diffusion coefficient ﬁi.
The fact that the D, are real, positive, and invariant under changes of reference velocity
strengthens the analogy. If the initial and boundary conditions can also be transformed to
pseudocompositions and fluxes by the same similarity transformation, the uncoupled equa-
tions represent a set of independent binary-type problems, n — 1 in number. Solutions to
binary diffusion problems are common in the literature (see, e.g., Bird et al., 1960; Slattery,
1981; Crank, 1975). Thus, the solution to the corresponding multicomponent problem can
be written down immediately in terms of the pseudomole fractions and fluxes. Specifically, if



98 MULTICOMPONENT DIFFUSION PROBLEMS: LINEARIZED THEORY
a binary diffusion problem has the solution

(X — X1)

(X10 — X12) =f(r,t,D, N,) (5.1.16)

then the corresponding multicomponent problem has the solution

()?,- —)?,-w) .
m =f(r,t,D,.,N,) (5.1.17)

or, equivalently,
('fi_x/\[oc) =f(r7t7 DAinz)(xA[()_-f,‘w) (5118)

where X, and X, are suitably transformed boundary conditions. The precise form of the
function f depends on the problem at hand.

In order to recover the solution to the original problem in terms of real mole fractions
and fluxes we apply the inverse transformations

(x) = [P1(%) (5.1.19)
and
J) =[P1(J) (5.1.20)

When the transformation (Eq. 5.1.19) is applied to Egs. 5.1.18 we find

[P1(% - %) = [PI[F][P]T'[PI(% - £.) (5.1.21)

where [f] is a diagonal matrix whose entries are given by f, = f(r,t, D,, N,). In view of
Eq. 5.1.19, Eq. 5.1.21 simplifies to

(x —x2) = [f1(xg — %) (51.22)
where [ f]is defined by

[f1=[P1[F][P]" (5.1.23)

The application of the transformation (Eq. 5.1.20) allows us to recover the generalized
Fick’s law (Eq. 3.2.5); with the composition gradients then obtained by differentiation of
Eq. 5.1.22 we have

(J) = c[Vf (%o — x) (5.1.24)
with

[vf1=[PI[V/][P]" (5.1.25)

where [Vf ] is a diagonal matrix with elements that are the gradients of the diagonal
elements of [ f].

The assumption of constant [ D], therefore, allows a host of solutions to multicomponent
diffusion problems to be obtained quite simply.
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5.1.4 Special Relations for Ternary Systems

For ternary systems the computatlon of the modal matrix [ P] is fairly straightforward. The
two eigenvalues, D1 and D2, are given by Egs. 3.2.9.

D, = %{tr[D] + \/disc[D]}
D, = %{tr[D] - \/disc[D]}

(3.2.9)

where
tr[D] = Dy, + D,,
disc[D] = (tr[ D])* - 4ID|
ID| = DyyDy, — D1, Dy

are, respectively, the trace, discriminant, and determinant of [D].
Once the eigenvalues are known, the eigenvectors are found by solving the linear system

[[D]-Dil1]](P) = (0) (5.1.26)

for (P,), the ith eigenvector of [D]. For the three component case Eq. 5.1.26 simplifies to

D11 - Di D12
Dy, D,, — D;

Carrying out the multiplications required by Eq. 5.1.27 and solving for Pi2
gives

P,

h

P.

B2

= (8) (5.1.27)
in terms of P;

P, =- (Dll - DAi)Pil/Dlz (5.1.28)
which has been derived from the first row or
P, = —DyP, /(Dy— D) (5.1.29)

which is obtained from the second row.

The parameters P;; and P,, may take any value; unity is, however, the obvious choice.
Thus, if we let [ P] be the modal matrix of [ D] formed from the eigenvectors of [ D] we may
have

Il
~
—_

o
=

~
%)
—~

=
)
=

[P([DD]

(5.1.30)
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An alternative structure for [P] is
p=|D.—Dy Dy, (5.1.31)

~

D,, D, - D,

Other structures for [ P] are possible, it all depends on what values we choose for P;; and
P,,.

When the cross-coefficients D, and D,; are negligibly small compared to the main
coefficients D, and D,,, the eigenvalues approach the values of the main coefficients. The
matrix [ P] (and its inverse) will, therefore, tend towards the identity matrix [7]. A matrix
[P] that is quite different from [/] is an indication of a strongly coupled system.

5.2 INTERACTION EFFECTS

The presence of nonzero cross-coefficients, D;; # 0 (i # j ), in the Fick matrix [ D] lends to
multicomponent systems characteristics quite different from the corresponding binary
system. These characteristics are best illustrated by considering a binary system for which
the diffusion flux is given by Eq. 3.1.1

J,=—¢,DVx, (3.1.1a)

where D is the binary Fick diffusion coefficient. For a ternary mixture the fluxes are given
explicitly by Egs. 3.2.1 and 3.1.2

J,= —¢,D;Vx; —¢,D;, Vx, (3.2.1)
Jy,= —¢,D5; Vx; —¢,Dp Vx, (32.2)

where the D;; are the multicomponent Fick diffusion cocfficients. Representative composi-
tion profiles for a binary system and for a ternary system are shown in Figure 5.1. For a
binary system the two composition gradients are equal in magnitude but opposite in sign:
Vx, = —Vx, [Fig. 5.1(a)]. For a multicomponent system, however, the composition gradi-
ents of the individual species may be very different [Fig. 5.1(d)]; subject only to the

Binary diffusion Ternary diffusion

z=0 z=¢ z=0 z=¢

Figure 5.1. Representative composition profiles in (a) binary and (b) ternary systems. Note that for all
systems LVx; = 0. For binary systems this means that Vx, = —Vx; but a similar restriction does not
exist for the ternary system.
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requirement that the composition gradients must sum over all species to zero. Indeed, we
see that is possible for one component, number 1 say, to have a vanishingly small
composition gradient, Vx, = 0, at the same time that other components have nonzero, and
possibly quite large, driving forces for diffusion. Since, in general, D, is not zero, it follows
that we may have a diffusion flux of component 1 even in the absence of a composition
gradient for component 1

Ji= —¢,D,Vx, (Vx; =0) (5.2.1)

This phenomenon is known as osmotic diffusion following Toor (1957) who investigated
these interaction effects. It is also possible for species 1 not to diffuse at all if the first and
second members of the right-hand side of Eq. 3.2.1 are precisely equal in magnitude but
opposite in sign

Ji=0 (¢,D;Vxy = —¢,D;,Vx,) (52.2)

This condition is known as a diffusion barrier (Toor, 1957). Finally, it is possible for species
1 to diffuse in a direction opposite to that indicated by its own concentration gradient.

Ji/(—Vx;) <0 (Dy; Vx; <Dy, Vx, and Vx,/Vx; <0) (5.2.3)

This is known as reverse diffusion (Toor, 1957).

These interaction effects are illustrated in Figure 5.2, where we have plotted the
diffusion flux J; as a function of —Vx, for a binary and for a hypothetical ternary system.
Fick diffusion coefficients and the gradient of component 2, Vx,, are considered indepen-
dent of composition for the purposes of drawing these diagrams. Notice that the line that
represents Fick’s law for binary systems in Figure 5.2(a) passes through the origin. For
ternary systems, the line that represents Eq. 3.2.1 does not, in general, pass through the
origin but is shifted up or down to an extent that depends on the magnitude and sign of
D1, Vx,. The region of reverse diffusion is delimited by the osmotic diffusion point and the

Binary diffusion Ternary diffusion
osmotic
diffusion
J1 J1
diffusion
barrier

"normal"
diffusion
behavior

"normal"
diffusion reverse
behavior  diffusion

Figure 5.2. The diffusion flux as a function of the composition gradient for (@) binary and () ternary
systems. Note the diffusion barrier, the osmotic diffusion point and the region of reverse diffusion that
are possible in ternary systems.
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diffusion barrier. Outside of this region the direction of diffusion is “normal” but this does
not mean that diffusion fluxes are uninfluenced by the other composition gradients.

It should now be clear that diffusional interaction effects cannot occur in binary mixtures
or in multicomponent systems where all the cross-coefficients, D;; (i # j), vanish. This will
be the case in mixtures in which all the binary diffusion coefficients are alike (the system
oxygen—nitrogen—carbon monoxide discussed in Example 4.2.1 is a case in point), as well as
in mixtures where one component is present in very large excess (see Example 4.2.2). Thus,
the first requirement for significant interaction effects is that the cross-coefficients D;; be
“large” compared to the main coefficients D;;. That is,

ID;;/D;;| ~ O(1) (524)
This condition is satisfied in the systems acetaldehyde—hydrogen—ethanol discussed in
Example 4.2.3 and hydrogen—nitrogen—dichlorodifluoromethane used to illustrate Example
4.24.

It is not sufficient for the multicomponent diffusion coefficients merely to satisfy the
approximation bound in Eq. 5.2.4 in order to have significant diffusional interaction effects;
a large cross-diffusion coefficient may be multiplied by a vanishingly small concentration
gradient leading to negligible interactions. It is also necessary to have a significant gradient
in the mole fraction of species j in order for the flux of species i (i # j) to be affected to any
extent. A more demanding criterion for significant interaction effects, therefore, is

D, Vx,/D;; Vx;| ~ O(1) (5.2.5)

or, in other words, that the area of reverse diffusion in Figure 5.2(b) be “large.”

At first sight it might appear that the second law of thermodynamics is violated for
reverse diffusion to occur. This is not so. One process may depart from equilibrium in such
a sense as to consume entropy provided it is coupled to another process that produces
entropy even faster. This is, of course, the basic principle of any pump, whether it moves
water uphill or moves heat towards a higher temperature region. For the second law
requirement o > 0 to hold it is allowable for o; to be less than zero, corresponding to
reverse diffusion for 1, provided o, and o5, due to species 2 and 3 diffusion, be such that
the overall entropy production rate is positive (o + o, + 5 > 0).

These interaction phenomena have been discussed above in the context of ternary gas
diffusion but are typical of the general multicomponent case. The practical implications of
these interaction phenomena include such interesting possibilities as negative Murphree
point efficiencies in multicomponent distillation as we shall see later (Chapter 13).

5.3 STEADY-STATE DIFFUSION

As our first application of the linearized theory we consider steady-state, one-dimensional
diffusion. This is the simplest possible diffusion problem and has applications in the
measurement of diffusion coefficients as discussed in Section 5.4. Steady-state diffusion also
is the basis of the film model of mass transfer, which we shall discuss at considerable length
in Chapter 8. We will assume here that there is no net flux N, = 0. In the absence of any
total flux, the diffusion fluxes and the molar fluxes are equal: N, = J,.

With the above assumptions, the differential mass balance (Eq. 5.1.8), simplifies to

d’x,

—= =0 (5.3.1)
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The mole fractions x; are known at two planes a distance ¢ apart. The boundary conditions
therefore are

z=0,x =X, z={(,x=x;, (53.2)

In this case the diffusion equations are already uncoupled so we do not need to use the
diagonalization procedure discussed above. The solution to the set of uncoupled linear
ordinary differential equations (Eq. 5.3.1) is obtained as

Xi — Xio
—— =z /N (5.3.3)

Xi¢ — Xio

Equation 5.3.3 shows that the composition profiles are linear.
The flux in a binary mixture is obtained from Fick’s law, (Eq. 3.1.1) with the composition
derivative obtained by differentiating Eq. 5.3.3 to give

¢, D
11=7(x10_x1z) (5:34)

This equation is a special case of a more general result we obtain later (Section 8.2).
For a multicomponent system we write the first # — 1 Egs. 5.3.3 into column matrix form
as

(x = x¢) = (2/¢)(x,— xo) (5:35)

This matrix equation can be differentiated to give

d(x)
— = W) (x,—x0) (53.6)

The fluxes in a multicomponent system are calculated from the one-dimensional form of
the generalized Fick’s law (Eq. 3.2.5) with the composition derivatives given by Eq. 5.3.6 to
give

d D
)= _C:[D]‘de_) = C'[/ ](xo —x,) (5:3.7)

Equation 5.3.7 is the proper matrix generalization of Eq. 5.3.4.

Example 5.3.1 Steady-State Diffusion in a Ternary System
For our first multicomponent flux calculation we ask you to calculate the fluxes for the
ternary system hydrogen (1)-nitrogen (2)—carbon dioxide (3) under the following conditions:
The boundary compositions are
x;0=0.0 X5 = 0.50086 X3 = 0.49914
X1, = 0.50121 X5, = 0.49879 x3,=0.0

The diffusion path length is 85.9 mm.
The temperature is 35.2°C.
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The values of the diffusion coefficients of the three binary pairs at 35.2°C and a pressure
of 101.3 kPa are as follows:

H,-N, D, =833mm?/s
H, - CO, D =068.0mm?/s
CO, - N,  D,;=168mm?/s
The total molar flux may be assumed to be zero: N, = 0.

SOLUTION The molar density c, can be estimated from the ideal gas law. At 35.2°C and
101.3 kPa this gives

¢, =P/RT
= 101.3 x 10%/(8.3144 X 308.35)
= 39.513 mol/m?
The arithmetic average composition is

X1, = 02506 x,,, = 04998  x,,, = 0.2496

[D] may now be computed from Egs. 4.2.7 at the average composition

[ 7682 -0.109
[D]_[—3.832 2.155

] X 107> m?/s

We now calculate the fluxes from Eq. 5.3.7

39.513 _ _
[ 7.682 0.109]X10_5( 0.5012)

0.0859 | —3.832 2.155 0.0021
_[-1771 2 5
= ( 0.885) X 107“ mol/m* s

The diffusion fluxes J; and the molar fluxes N, are equal in this case because the total molar
flux N, is zero.

Although nitrogen is diffusing “normally” (i.e., in the direction that would be expected
on the basis of the composition change for nitrogen alone), the magnitude of the nitrogen
flux is far in excess of what we might have anticipated on the basis of the Fick diffusion
coefficient D,, and the rather small driving force for nitrogen Ax,. In fact, interaction
effects are particularly strong in this system under these conditions. Not only is the criterion
in Eq. 5.2.4 satisfied for nitrogen (component 2, but not for hydrogen, component 1)

D,,/D,, = —0.0142
D,,/D,, = —1.7783

but so, also, is the criterion in Eq. 5.2.5

D, Ax,/D, Ax, = 5.871 X 10~°
Dy, Ax, /Dy, Ax, = 430.59
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This calculation shows that by far the largest contribution to the nitrogen (species 2) flux is
the product of the Fick diffusion coefficient D,, with the driving force for hydrogen
(component 1). ®

5.4 DIFFUSION IN A TWO BULB DIFFUSION CELL

The two bulb diffusion cell is a simple device that can be used to measure diffusion
coefficients in binary gas mixtures. Figure 5.3 is a schematic of the apparatus. Two vessels
containing gas mixtures with different compositions are connected by a capillary tube. At
the start of the experiment (at ¢ = 0), the valve is opened and the gases in the two bulbs
allowed to diffuse along the capillary tube. Samples from each bulb are taken after some
time and this information is used to calculate the binary diffusion coefficient.

An analysis of binary diffusion in the two bulb diffusion apparatus has been presented by
Ney and Armistead (1947) (see, also, Geankoplis, 1972). Their development is extended
below for multicomponent systems.

It is assumed that each bulb is at a uniform composition (the composition of each bulb is,
of course, different until equilibrium is reached). It is further assumed that the volume of
the capillary tube connecting the bulbs is negligible in comparison to the volume of the
bulbs themselves. This allows us to express the component material balances around each
bulb as follows:

cho@ - _ctV/ﬁz — _N.A (5.4.1)
dt dt !

where A is the cross-sectional area of the capillary, x;, is the mole fraction of component i
in the left-hand side bulb, and x;, is the mole fraction of that component in the right-hand
side bulb. The molar flux of species i through the capillary tube N, and is taken to be
positive if from bulb 0 to bulb /. At constant temperature and pressure the molar density of

t>0

Figure 5.3. Schematic diagram of two bulb diffusion apparatus.
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an ideal gas c, is a constant; thus, there is no volume change on mixing and in the closed
system depicted in Figure 5.3 the total flux N, must be zero.

The composition in each bulb at any time is related to the composition at equilibrium x
by

Vo + V)X = Viyxio + Vyxyy (54.2)
The compositions at the start of the experiment are, therefore, related by
Vo + V) xp = Vx5 + Vx5, (54.3)

where x° is the mole fraction at time ¢ = 0.

5.4.1 Binary Diffusion in a Two Bulb Diffusion Cell

In the analysis of Ney and Armistead it is assumed that, at any instant, the flux N, is given
by its steady-state value; that is, by Eq. 5.3.4. Thus,

dxy, D
C,Vo—dt— = —C,7A(X10 - X“a) (544)

To eliminate x;, from Eq. 5.4.11 we make use of the component material balance around
both bulbs, Egs. 5.4.2 and 5.4.3.

dxyg
a —BD(x19 — X12) (54.5)

where B is a cell constant defined by
B=Vy+V,)A/NVV, (5.4.6)

A similar equation for the mole fraction of component 1 in bulb / may also be derived.
Equation 5.4.5 is easily integrated, starting from the initial condition that at ¢ = 0,
X19 = X3, tO give

X190~ X1
(—-}f’——‘) = exp(—BDr) (5.4.7)
(xT0 — X 1)
Hence, if B is known then just one value of x, is all that is needed to calculate the
diffusivity D. Alternatively, if an accurate value of D is available, Eq. 5.4.7 can be used to
calibrate a diffusion cell for later use in measuring diffusion coefficients of other systems.

5.4.2 Multicomponent Diffusion in a Two Bulb Diffusion Cell

To generalize the above analysis for multicomponent systems we rewrite the time-depen-
dent mass balances (Eq. 5.4.1) in n — 1 dimensional matrix form as

d(x) d(x,)
cVy e -c,V,—d-t— =—(N)4 (54.8)

Now, with the molar fluxes given by the multicomponent rate relations (Eq. 5.3.7), we may
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write

d(xg c[D]A4
(;t) = - [/] (xg —x,) (5.4.9)

CVo

The material balance relation (Eq. 5.4.3) is used to eliminate the mole fractions (x,) to give

d(xy)
=22~ —B[D](xo - ) (5:4.10)

By assuming [D] to be constant the matrix differential equation may be uncoupled as
described above and solved subject to the “initial”’ conditions:

t=1ty,(x9) = (x3) (5.4.11)

to give the pseudocomposition profiles as

(xtO t°°)

i) exp{—BD;(1 — 1,)} (5.4.12)

To recover the solution in terms of real mole fractions we group all » — 1 of Egs. 5.4.12
together as

(%10 — £i) = exp{=BD,(t = to)}( £ — %.) (5.4.13)
and apply the inverse transformation (Eq. 5.1.19) to Eq. 5.4.13 to get

(xo — x) = exp[ =B[D](t — 15)](x§ — x..) (5.4.14)

which is the matrix generalization of the binary result, Eq. 5.4.7. Equations 5.4.14 allow us
to calculate the time history of the concentration in each of the two bulbs. The exponential
matrix in Eq. 5.4.14 may be calculated using Sylvester’s expansion formula (Eq. A.5.17) or
using Eq. A.5.28.

Example 5.4.1 Multicomponent Diffusion in a Two Bulb Diffusion Cell:
An Experimental Test of the Linearized Theory

A set of multicomponent diffusion experiments in a two bulb diffusion cell apparatus was
carried out by Duncan and Toor (1962) in an investigation of diffusional interaction effects.
The two bulbs in their apparatus had volumes of 77.99 and 78.63 cm?, respectively. The
capillary tube joining them was 85.9 mm long and 2.08 mm in diameter. The entire device
was placed in a water bath at 35.2°C. The system used by Duncan and Toor was the ternary
hydrogen (1)-nitrogen (2)—carbon dioxide (3). The initial concentration in each cell is

X0 = 0.0 Xy = 050086  xs = 0.49914
X1,=050121  x,,=049879  x;,=0.0

where x;, is the mole fraction of species i in bulb 1 and x,, is the mole fraction of species i
in bulb 2.

Investigate how the concentrations in each bulb change with time.

DATA The effective //A ratio for the cell was calculated from binary diffusion experi-
ments to be 25,810 m~! (Duncan and Toor, 1962). The pressure is 101.3 kPa. The binary
diffusivities are given in Example 5.3.1.
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SOLUTION The composition at equilibrium is calculated from Eq. 5.4.3.

X =02516  x, =04998  x,, =0.2486
The matrix [ D] may now be computed from Egs. 4.2.7 at the equilibrium composition as

7.683 —0.1098
(D] = [

-5 2
~3.836 2.157]><10 m~/s

The eigenvalues of this matrix are

D, =7758%x10"°m?/s D, =2.082x 107° m?/s

The modal matrix [ P] is calculated from Eq. 5.1.30

_ 1 0.0196
(P]= [—0.6849 1 ]

The inverse of [ P] is

[p] ' = [09868 00193
0.6759  0.9868

Next, we need to compute the transformed boundary conditions (£3)) and (£,) using
Eq. 5.1.11.

(#) =[P17'(x})

_ 109868 —0.01931(0.0
0.6759 0.9868 |\ 0.50086

= (-0.0097,0.4942)"

(Note the negative pseudomole fraction for pseudospecies 1!)

(%) = [P]"'(x)

_ 109868 —0.0193|(0.2516
0.6759 0.9868 |\ 0.4998

= (0.2386,0.6633)"

The cell constant B is calculated from Eq. 5.4.6 and has the value 0.9895 m~2. Thus,
with (¢ — #,) = 4 h = 14,400 s, we compute the pseudomole fractions from Eq. 5.4.13.

Ry =X + exp{—Bﬁl(t - to)}(fcl’o — %10)
= 0.2386 + exp(—0.9895 X 7.758 X 107> X 14,400) X (—0.0097 — 0.2386)
= 0.1564

£y0 = X + exp{—Bﬁz(t = 1) (%30 — £2.)
= 0.6633 + exp(—0.9895 X 2.082 X 107° X 14,400) X (0.4942 — 0.6633)
= 0.5376
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The real mole fractions follow by applying the inverse transformation (Eq. 5.1.17) to give

(x0) = [P](%7)

_[ o1 0.0196 ] 0.1564
-0.6849 1 ]\0.5376

= (0.1670,0.4305)"

The composition in the other bulb can be calculated from the material balance (Eq. 5.4.3).
The results of similar calculations at other times are shown in the composition time histories
shown in Figure 5.4 along with experimental data from the thesis of Duncan (1960). It can
be seen that the agreement between theory and experiment is very good indeed.

The boundary conditions used for the flux calculation in Example 5.3.1 were, in fact, the
compositions in the two bulbs at the start of this experiment of Duncan. The initial flux of
nitrogen computed in Example 5.3.1 was positive; thus, nitrogen accumulates in the
right-hand bulb and is depleted in the left-hand bulb. At the beginning of the experiment,
the flux of nitrogen is almost completely due to the interactions with the other two
components, since the initial driving force for nitrogen is essentially nothing (Example
5.3.1). However, as nitrogen diffuses from the left-hand bulb to the right-hand bulb, a
nonzero driving force of nitrogen is established that will tend to cause nitrogen to diffuse
from right to left. In the early part of the experiment this driving force is not large enough
to counter the reverse diffusion effect but we see in Figure 5.4 a slowing down in the rate of
change of the mole fractions in each bulb. Eventually, the driving force of nitrogen is large
enough to overcome the reverse diffusion effect and so the mole fraction of nitrogen in bulb
2 reaches a maximum and then starts to decrease. At the same time, the mole fraction of
nitrogen in bulb 1 goes through a minimum and then starts to increase. If diffusional
interaction effects did not exist, then the concentration maximum could not have occurred
(we shall demonstrate this in Chapter 6).

The matrices of Fick diffusion coefficients differ slightly in Example 5.3.1 from those
used here. In this example the equilibrium composition was used to calculate [ D], whereas
in Example 5.3.1, [ D] was calculated at the arithmetic average composition.

System : hydrogen (1) -
nitrogen (2) -
carbon dioxide (3)

0.6 - 0.6
()
mole Bulb 2 mole
fraction fraction
nitrogen hydrogen
Bulb 1 L--8 -
oty 'E' 0.2
o .0 ;
------ /' Bulb 1
0.4 . 1 ' e : 0.0
0 10 20 0 10 20
time / [h] time / [h]

Figure 5.4. Composition—time history in two bulb diffusion cell. Experimental

(1960).

data from Duncan
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0.00 1.00

0.00 0.25 0.50 0.75 1.00
Mole fraction hydrogen

Figure 5.5. Composition profiles in two bulb diffusion cell. Calculation and experimental data for three
separate experiments are shown here. Experimental data from Duncan (1960).

We have carried out similar computations covering the entire duration of three similar
experiments that were carried out by Duncan and Toor (1962). The results of these
calculations are shown in the triangular diagram, Figure 5.5, along with the data of Duncan
(1960). We see that for all three experiments theoretical profiles are in good agreement with
the data. This experiment (and others like it) provides support for the theoretical considera-
tions of earlier chapters and the successful prediction of the concentration time history in
the two bulb diffusion cell is a valuable test of the linearized theory of multicomponent
diffusion. |

5.5 THE LOSCHMIDT TUBE

Another device used to study diffusion and to measure diffusion coefficients is the Loschmidt
tube illustrated in Figure 5.6. Two tubes containing fluids with different concentrations are
brought together at time ¢ = 0 and the fluids allowed to interdiffuse. After some time the
tubes are separated and the compositions measured.

An analysis of multicomponent diffusion in a Loschmidt tube was presented by Arnold
and Toor (1967). The salient results of their work are summarized below.

The equation governing unsteady-state, one-dimensional, multicomponent diffusion in
the Losc